
Springer Tracts in Modern Physics 281

Ion I. Geru

Time-Reversal 
Symmetry
Seven Time-Reversal Operators for Spin 
Containing Systems



Springer Tracts in Modern Physics

Volume 281

Series editors

Yan Chen, Department of Physics, Fudan University, Shanghai, China
Atsushi Fujimori, Department of Physics, University of Tokyo, Tokyo, Japan
Thomas Müller, Inst für Experimentelle Kernphysik, Universität Karlsruhe,
Karlsruhe, Germany
William C. Stwalley, Department of Physics, University of Connecticut, Storrs,
USA
Jianke Yang, Department of Mathematics and Statistics, University of Vermont,
Burlington, VT, USA



Springer Tracts in Modern Physics provides comprehensive and critical reviews of
topics of current interest in physics. The following fields are emphasized:

– Elementary Particle Physics
– Condensed Matter Physics
– Light Matter Interaction
– Atomic and Molecular Physics
– Complex Systems
– Fundamental Astrophysics

Suitable reviews of other fields can also be accepted. The Editors encourage
prospective authors to correspond with them in advance of submitting a manuscript.
For reviews of topics belonging to the above mentioned fields, they should address
the responsible Editor as listed in “Contact the Editors”.

More information about this series at http://www.springer.com/series/426

http://www.springer.com/series/426


Ion I. Geru

Time-Reversal Symmetry
Seven Time-Reversal Operators for Spin
Containing Systems

123



Ion I. Geru
Institute of Chemistry
Academy of Sciences of Moldova
Chisinau, Moldova

ISSN 0081-3869 ISSN 1615-0430 (electronic)
Springer Tracts in Modern Physics
ISBN 978-3-030-01209-0 ISBN 978-3-030-01210-6 (eBook)
https://doi.org/10.1007/978-3-030-01210-6

Library of Congress Control Number: 2018955912

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-01210-6


Foreword

Time-reversal symmetry is of fundamental importance to physics but remains to
puzzle physicists until the present day. My first step in research concerned the
consequences of time-reversal symmetry for dynamical systems, leading me to
observe that while recognized as important, time-reversal symmetry had not
received the central attention it deserved and as a consequence, the corresponding
theory was not always developed to the required level. I was most fortunate to be
able to stimulate further research, in particular, through organizing a Workshop on
Time-reversal Symmetry in Dynamical Systems at the University of Warwick in
1996 and writing an accompanying survey article with John Roberts.1

Ion Geru is a well-established physicist and I am happy to have been approached
to write a foreword for his book which addresses a similar deficiency of the liter-
ature on time-reversal symmetry in quantum spin systems as I observed before in
the context of dynamical systems.

Ion Geru’s book is a very welcome addition to the literature, which counts few
attempts to focus in comparative detail on time-reversal symmetry. The first five
chapters provide an excellent accessible exposition of the classical theory of
time-reversal symmetry in classical and quantum systems, and the last chapter
summarizes the importance of time-reversal symmetry violation in a variety of
contexts. The remaining chapters are more specialized, and Chaps. 8–9 address a
particular deficiency in the theory, re-enforcing the point that time-reversal remains
a topic that deserves further scrutiny and dedicated exploration.

1 J.S.W. Lamb and J.A.G. Roberts, Time-reversal symmetry in dynamical systems: A survey,
Physica D 112 (1998), 1–39.
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I warmly recommend this book as a primer for all interested to learn about the
state of the art in time-reversal symmetry. Personally, it has revealed to me some
unexplored directions for future research.

London, UK Jeroen S.W. Lamb
Professor of Applied Mathematics

Imperial College London
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Preface

The symmetry of time reversal is one of the most important discrete symmetries in
the natural sciences. In classical mechanics, Newton’s differential equations of
motion are invariant with respect to the change of the variable t by −t. The
equations of classical electrodynamics are also invariant with respect to time
reversal if, along with the substitution of t by −t, invert the directions of the axial
vectors of the magnetic induction B and the magnetic field strength H (respectively,
the axial magnetization vector M) and the polar current density vector j.

In Chap. 1, the symmetry of the time reversal in classical mechanics and in
classical and relativistic electrodynamics is discussed, as well as the dynamic
reversibility and statistical irreversibility of time, and the reversibility of fluctuations
in closed systems as a consequence of the Onsager relations and Poincaré recur-
rence theorem.

In Chap. 2, the symmetry of the time reversal in quantum mechanics and in
quantum electrodynamics is considered.

In quantum mechanics, Wigner introduced, in 1932, the time-reversal operator
on the basis of the invariance of the Schrödinger equation with respect to the
substitution of t by −t, which is accompanied by the operation of complex con-
jugation (and by a certain unitary transformation, if the spin is also taken into
account). Unlike linear operators describing spatial symmetry, this operator is an
antiunitary (antilinear and unitary) operator.

After a brief presentation of the fundamentals of quantum mechanics and the
properties of antilinear operators, the properties and various applications of the
Wigner antiunitary time-reversal operator are discussed. There are given the criteria
(a), (b), and (c), found for the first time by Wigner, concerning the absence or
presence of an additional degeneracy of the energy levels due to the time-reversal
symmetry without taking into account and taking into account the spin of the
particles forming the quantum system. We also consider the corepresentations of
symmetry groups introduced by Wigner, connected with the presence of the
time-reversal symmetry.
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A geometric interpretation of the time-reversal transformation and the Kramers
theorem is given and various ways are given for constructing the matrix of the
unitary operator U entering into the time inversion operator T ¼ UK, where K is
the complex conjugation operator for systems with integer or half-integer spin
S � 1=2. The matrix of the unitary operator U is determined in the basis of 32 point
symmetry groups.

Further, the Herring criteria (a), (b), and (c), established by him in 1937 and
relating to the cases of the absence or presence of an additional degeneracy of the
energy bands in crystals due to the time-reversal symmetry, are discussed.

After Wigner introduced the time-reversal operator and after establishing its
properties, determining Wigner criteria (a), (b), (c) for atomic and molecular sys-
tems and Herring criteria (a), (b), (c) for crystals, it might be considered that the
theory of groups applied to the time-reversal operator is complete. Indeed, these
results are included in the tables of irreducible representations of 32 point symmetry
groups and are found for a number of groups of the wave vector. However, as
shown in this book (Chaps. 8 and 9), it turned out that the properties of the
time-reversal operator were not fully studied.

There are also discussed in Chap. 2 the non-conventional time-reversal sym-
metry, selection rules due to the time-reversal symmetry, the detailed balance
principle and the time-reversal symmetry, application of the time-reversal operator
to the dynamic matrix in the classical theory of lattice vibrations, as well as the
time-reversal symmetry in the theory of quantized field and the CPT theorem.

Chapter 3 is devoted to magnetic symmetry point groups. Problems of the
invariant spin arrangement and of such called admissible magnetic point groups of
non-Kramers systems are discussed. It is presented the well-known method for
constructing point magnetic symmetry groups using a cyclic group of the second
order, containing the identity transformation and the time-reversal operator. On the
basis of this method, different authors found 58 nontrivial black-and-white groups
of magnetic symmetry. We have shown that this result is valid only for the case of
non-Kramers systems. In the case of systems with Kramers degeneracy of energy
levels, the extension of 32 point symmetry groups to magnetic symmetry groups
must be performed not with the help of a cyclic group of the second order, but using
a cyclic group of the fourth order, constructed on the basis of the time-reversal
operator. With such an extension, the point groups of magnetic symmetry are not
two colors, but four colors and the number of nontrivial groups is not equal to 58,
but to four. Magnetic symmetry groups were also constructed for the more general
case when instead of a fourth-order cyclic group containing four consecutive
anti-rotations by 90° of a square with differently colored neighboring vertices
(around an axis passing through the center of the square perpendicular to its plane),
a noncyclic group of the eighth order, formed by all symmetry elements of a square
with colored vertices, is used. In this case, the number of groups of magnetic
symmetry is also four, and these groups are also four-colored, but they naturally
have a different structure.
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In Chap. 4, anomalous properties of trihomonuclear Kramers clusters due to their
four-color symmetry are studied. It is shown that some anomaly of the magnetic
properties of trihomonuclear Kramers clusters is due to the presence of structural
distortions of these clusters, which are a consequence of the existence of
time-reversal symmetry. This theoretical conclusion is confirmed by experimental
data.

Chapter 5 contains the results of a study of the time-reversal symmetry in
quantum systems with a quasienergy spectrum. The behaviors of nonstationary
states of quantum systems under time-reversal operator, the time-reversal invariance
of the Schrödinger equation for the Green function, the quasienergy spectrum, and
the Brillouin zone in the quasienergy space are considered. It is predicted the
existence of quasienergy doublets due to non-commuting time translation and
time-reversal operators. The doublet structure of the quasienergy levels has no
Kramers origin, since it also exists in the case of systems formed from spinless
particles.

Chapter 6 proposes an original method of converting the antiferromagnetic-type
exchange interaction into a ferromagnetic one and vice versa in magnetic dimer
clusters. The possibility of such a transformation is based on the fact that the wave
function of the hole in the unfilled electron shell of the 3d- or 4f-ion is a
time-reversed wave function of the electron. If the Hamiltonian of the exchange
interaction of the magnetic homonuclear dimer is acted upon by the time-reversal
operator in only one of the dimer ions, then the invariance with respect to the time
reversal will be violated. If we restore the violated invariance not by performing the
time-reversal transformation for the second ion, but by changing the sign of the
exchange interaction constant, then an inversion of the dimer spin levels occurs. For
example, for the dimer Cu2þ � Cu2þ this is equivalent to a transition from the hole
wave function in an unfilled 3d-shell to the wave function of an electron in the same
shell. Thus, in order for a homonuclear dimer 3dn � 3dn or 4f m � 4f m with the
exchange interaction of an antiferromagnetic type to be converted into a
heteronuclear dimer with a ferromagnetic exchange, it is necessary to replace one
of the dimer ions by a time-reversed ion, that is, to replace electrons in this ion by
holes (or holes by electrons). On the one hand, this method is of interest, because
the number of dimeric coordination compounds with antiferromagnetic exchange
interaction is much higher than the number of compounds with ferromagnetic
exchange and it is possible to increase the number of these latter compounds on
account of the first ones. On the other hand, an increase in the number of com-
pounds with a ferromagnetic-type exchange interaction is promising in practical
terms in connection with the widespread practical application of ferromagnetic
substances, in particular, for recording and storing information.

In the last, fifth paragraph of this chapter, an experimental confirmation of the
method proposed by us is given.

Chapter 7 discusses the possibility of the existence or absence of the effect of
instability of spin populations of an equilateral trimeric magnetic cluster containing
antiferromagnetic coupled half-integer spins, with respect to a weak structural
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deformation. The ground state of such a cluster is formed by two Kramers doublets.
It is shown that this instability is forbidden because the contributions to the mag-
netic moments of the paramagnetic ions localized at each of the vertices of the
triangle due to the spin wave functions u1 and u3 of the first and second Kramers
doublets are compensated by the contributions due to the spin wave functions
u2 ¼ Tu1 and u4 ¼ Tu3 of the same Kramers doublets, where T is the
time-reversal operator. It is shown that the effect of instability of spin populations in
the presence of weak structural deformation can exist in the case of a time-reversal
symmetry breaking. In particular, this takes place in the presence of a constant
electric field, since in this case invariants containing spin projection operators in the
first degree can be constructed in the form of products with components of the
electric field strength vector. Such a Hamiltonian for the interaction of the spins of a
magnetic cluster with a constant electric field is not invariant with respect to time
reversal.

According to the novelty of the results, Chaps. 8 and 9 occupy a special place
among other chapters of the book. In the Preface it was already noted that after the
establishment of Wigner criteria (a), (b), (c) and Herring criteria (a), (b), (c), in
atomic and molecular physics, as well as in solid state physics, it is only necessary
to apply these criteria to solving specific problems. It would seem that no new
group-theoretical results can be obtained, but we still succeeded in obtaining some
new theoretical results. They concern, first of all, the nontrivial factorization of the
Wigner time-reversal operator, that is, in the representation of the operator T as the
product of two or three operators, each of which commutes separately with the
corresponding Hamiltonian of the quantum system. To prove the existence of a
nontrivial factorization of the operator T, previously unknown non-Abelian groups
of 8th and 16th orders containing the operator T (for the Kramers systems) and
Abelian groups of 8th and 16th orders containing the operator T (for non-Kramers
systems) were constructed and studied.

In Chap. 8, symmetry groups of the 8th and 16th orders were constructed,
containing the time-reversal operator T related to systems with half-integer angular
momentum and it was shown that they are non-Abelian groups. Each of these
groups contains a cyclic subgroup of the fourth order, constructed on the basis
of the operator T. In the case of non-Kramers systems, the corresponding groups of
8th and 16th orders are Abelian. The structures of non-Abelian and, respectively,
Abelian groups are different, but these structures do not change when the angular
momentum changes.

On the basis of the group-theoretic approach, it is proved that there are six new
time-reversal operators, along with the antiunitary operator T. Among the new
operators, the three time-reversal operators are antiunitary, and three are unitary.
A characteristic feature of the new time-reversal operators is that under their action,
the signs do not change for all three angular momentum projection operators, but
only for two or only for one of them. As a result, such operators can be called
operators of incomplete time reversal, in contrast to the Wigner operator, which in
this context is an operator of the full-time reversal.
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In Chap. 9, based on the results obtained in Chap. 8, a nontrivial factorization
of the operator of the complete time reversal T as a product of two or three
operators of incomplete time reversal is carried out. It is proved that when the
time-reversal symmetry decreases in systems with Kramers degeneracy of energy
levels, a violation of Kramers theorem occurs, with the exception of one case when
the degree of lowering the time-reversal symmetry turns out to be insufficiently high
to remove the Kramers degeneracy.

The commutation and anticommutation relations between operators of incom-
plete time reversal and between these operators and the T operator are found. It is
shown that these relations are different for Kramers and non-Kramers systems.

It is proved that in the two-boson representation of operators of the angular
momentum J, the sum of the boson occupation numbers can be negative for integer
J. This corresponds to the anti-boson states, which can be obtained from boson
states under the action of the time-reversal operator. It is found that for a special
type of time-reversal symmetry breaking, shifts and broadening of the energy levels
occur in Zeeman systems, which depend on the value of the angular momentum
J (Sect. 9.6).

The six possible types of T-symmetry reducing to T1ðyzÞ-, T2ðzxÞ-, T2ðxyÞ-, T1ðxÞ-,
T1ðyÞ- or T1ðzÞ-symmetries, discussed in Chap. 8, can be restored by introducing six
types of corresponding meta-particles. The types of meta-particles depend on spin
values of initial particles of systems with broken T-symmetry. The meta-particles
corresponding to spin-1/2 and spin-1 particles are presented in Sect. 9.7 and
Appendix E. Existence of six types of meta-particles theoretically means the
availability of six metaworlds in the Universe.

In Chap. 10, experimental data related to time-reversal symmetry violation in
meson systems, atomic nuclei, atoms and molecules, and high-Tc superconductors
are discussed. It is also discussed here the enhancement of quantum transport at
time-reversal symmetry breaking (Sect. 10.5) and the implication of T violation
processes in the phenomenological unidirectionality of time observed in the
Universe (Sect. 5.6).

In the last Sect. 10.7 of Chap. 10, we propose a simple experimental method for
testing the time-reversal symmetry breaking in paramagnetic molecules and ions in
gases, liquids, and solids based on EPR spectroscopy. Here are given the experi-
mental results obtained by this method (called by us the method of virtual time
reversal) for EPR spectra of free radicals in DPPH and EPR spectra with hyperfine
structure for 0.001 M aqueous solution of manganese chloride, MnCl2. The EPR
spectra detected in the natural flow of time and during virtual time reversal coincide
in shape, which indicates the presence of the time-reversal symmetry. In this case, a
shift in the resonant frequency was detected. This shift is much greater than the
frequency shift found by other methods and interpreted as a consequence of the
time-reversal symmetry breaking (the presence of a constant electric dipole moment
in protons, electrons, nuclei, atoms, molecules, etc.). Apparently, such a shift can be
related to the non-coincidence of sweep rates of the magnetic field in the forward
and reverse directions during detecting the EPR spectrum.

Preface xi



Generally, the time-reversal symmetry violation remains the most mysterious
symmetry violation, of which origin is not yet fully understood.

Chisinau, Moldova Ion I. Geru
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Chapter 1
Time Reversal in Classical and
Relativistic Physics

The symmetry of time reversal is one of the basic symmetries considered in the natural
sciences. It occurs in many physical dynamic systems, in particular, in classical and
relativisticmechanics and electrodynamics. These consider the time conception, time
translation invariance, and time-reversal symmetry. It was shown that the symmetry
under time translation, which is amanifestation of the time homogeneity, is stipulated
by the law of conservation of total energy of a closed system. This is proved in the
Lagrange formalism of classical mechanics, as well as on the basis of Nöether’s
theorem in the case of Einstein’s special relativity.

In this chapter it is presented the proof of Painlevé theorem. The time-reversal
symmetry in classical and relativistic mechanics and electrodynamics is discussed
in the absence and presence of external magnetic field. The reversibility, including
microscopical reversibility of fluctuations in closed systems, and irreversibility, as
well as the Poincaré recurrence, are analyzed.

1.1 The Time Conception and Time Translation Invariance

Time is a dimension in which events can be ordered from the past to the future and a
measure of the duration of events and the intervals between them [1]. Time is a part
of the fundamental structure of the Universe. In classical physics, time is a dimension
that does not depend on events. In this dimension, events occur in a certain sequence.
Time was historically closely related to space, the two merging into space-time in
the special relativity and general relativity of Einstein.

The nature and role of time variable in physics are different from those of space
variables. Our perception about time is influenced by the irreversibility of our every-
day life. Therefore it is of special importance to make a distinction between the
motion equations and the actual motion as far as the time variable is concerned [2].
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2 1 Time Reversal in Classical and Relativistic Physics

The time variable is distinguished also in other ways. Namely, the roles of space
and time variables inNewtonian dynamics and in special relativity are quite different.
In the first case, space and time variables are separated, while in special relativity
the Lorentz transformations interrelating time and space variables make an invariant
distinction between timelike and spacelike quantities. These distinctions mean that
not only the time variables must be treated differently from the space variables,
but also that the consequences of symmetry considerations in these two cases can
be different. Specifically, it may be shown that consequences of time reversal are
different from the space inversion [2].

In order to elucidate the physical aspect of the time variable nature, it is convenient
to consider the analogy with spatial variables, as far as they are applicable. Among
the features of the space that appear to be simply a question of convenience, the
location of coordinate system would be included, because we assume that the space
is homogeneous. Similarly, the orientation of the coordinate axes is assumed to be
arbitrary, because we believe the space to be isotopic. Both of those assumptions
have important physical consequences: leading to the laws of conservation of the
total linear momentum and the total angular momentum for isolated systems. In
analogy with these conservation laws, the assumption that the time is uniform leads
to the law of conservation of total energy for isolated systems. All these fundamental
conservation laws, which are consequences of the homogeneity and isotropy of the
space, and uniformity of the time, can be strongly proved in the Lagrange formalism
of classical mechanics [3–5].

Let us prove that the time uniformity leads to the law of conservation of the total
energy of a conservative system. We begin with the Lagrangian1 of the system from

n particles, written in generalized coordinates (qk and
·
qk = dqk/dt are generalized

coordinates and generalized velocities, respectively; k = 1, 2, . . . , s), which has the
form

L(qk,
·
qk, t) = T (qk,

·
qk) −U (qk, t), (1.1)

where T (qk,
·
qk) and U (qk, t) are kinetic and potential energy, respectively. For a

closed system or a system situated in a stationary field of force, Lagrangian does
not depend explicitly on time (∂L/∂t = 0). In this case the time by virtue of its
homogeneity can not be included explicitly in Lagrangian, since homogeneity means
equivalence of all time moments. That is why the replacement of one time moment
by another with the replacement of coordinates and velocities of particles must not
change mechanical properties of the system.

In the case of stationary bonds and stationary potential forces the potential energy
U from (1.1) does not depend on time, but the kinetic energy T is determined by the
expression [5]

T = 1

2

s∑

k=1

s∑

l=1

n∑

i=1

mi
∂xi
∂qk

∂xi
∂ql

·
qk

·
ql , (1.2)

1Lagrangian L is a functional, so (strongly speaking) its dependence on generalized coordinates

qk , generalized velocities
·
qkand time t should be notated as L[qk , ·

qk , t].
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where xi = xi (q1, q2, . . . , qs) is the coordinate of particle with mass mi and n is the
total number of particles.

The derivative with respect to time of Lagrange function is

dL

dt
=

s∑

k=1

(
∂L

∂qk

∂qk
∂t

+ ∂L

∂
·
qk

∂
·
qk

∂t

)
, (1.3)

which for a conservative system with regard to Euler–Lagrange equations

d

dt

(
∂L

∂
·
qk

)
= ∂L

∂qk
, (k = 1, 2, . . . , s) (1.4)

leads to the form
d

dt

(
s∑

k=1

·
qk

∂L

∂
·
qk

− L

)
= 0. (1.5)

Since only kinetic energy T depends on
·
qk , we replace

∂L

∂
·
qk

by ∂T

∂
·
qk

in (1.5), and after

that we obtain
d

dt

(
s∑

k=1

·
qk

∂T

∂
·
qk

− L

)
= 0. (1.6)

The expression in brackets from (1.6) is equal to a constant which we denote by H

H =
s∑

k=1

·
qk

∂T

∂
·
qk

− L. (1.7)

Now we can apply Euler theorem in accord to which a homogeneous function of
variables q1, q2, . . . , qs of degree m satisfies the equation

s∑

i=1

∂ f

∂qi
qi = m f (q1, q2, . . . , qs). (1.8)

Comparing (1.8) with the sum from (1.7), we find that this sum is the doubled kinetic

energy (the degree of homogeneity of the function T (qk,
·
qk) is m = 2)

H = 2T − L = const. (1.9)

Taking into account (1.1), the formula (1.9) takes the form

H = T +U = const. (1.10)
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Thus H is the Hamiltonian function and (1.10) is the law of conservation of total
energy of conservative system as consequence of the time uniformity.

The general theory of conservation laws was developed on the base of the Nöether
theorem [6] and continuous groups of symmetry Lee [4, 7–9]. The Nöether theory
asserts that if the Lagrange function for a physical system is not affected by changes
in the coordinate system used to describe it, then the corresponding conservation
law will be satisfied. For example, if the Lagrangian is not dependent on the time,
then energy is conserved. Below we briefly outline the theory of conservation laws,
following [10].

Let us consider the Euler–Lagrange equation

δL

δuα
= 0, (α = 1, . . . ,m) (1.11)

which admits the group G of Lie–Bäcklund transformation [11, 12]. Here

L = L(x, u, u(1), . . . , u(p)), x = (x1, . . . , xn), u = (u1, . . . , um),

u(1) = {
uα
i1...is | α = 1, . . . ,m; i1 . . . is = 1, . . . , n

}
, s = 1, 2, ....

The operator δ
δuα in (1.11) is

δ

δuα
= ∂

∂uα
+

∑

s≥1

(−1)s Di1 . . . Dis · ∂

∂uα
i1...is

, (1.12)

where

Di = ∂

∂xi
+ uα

i

∂

∂uα
+

∑

s≥1

uα
i j1... js · ∂

∂uα
j1... js

. (1.13)

Here and further the summation is done on repeating indexes.
The Lie–Bäcklund infinitesimal operators of the continuous group G are

X = ξ i ∂

∂xi
+ ηα ∂

∂uα
+

∑

s≥1

ζ α
i1...is · ∂

∂uα
i1...is

, (1.14)

where ξ i = ξ i (x, u, u(1), . . .), ηα = ηα(x, u, u(1), . . .) are analytical functions of
finite numbers of variables, and

ζ α
i1...is = Di1 . . . Dis

(
ηα − ξ j uα

j

) + ξ j uα
j i1...is . (1.15)

Besides the operator X , its equivalent canonical Lie–Bäcklund operator is

__
X = X − ξ i Di = __

η
α ∂

∂uα
+ · · · ,

__
η

α = ηα − ξ j uα
j . (1.16)
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The system (1.11) is said to have a conservation law if there exists a vector
C = (C1, . . . ,Cn) satisfying the condition

DiC
i = 0 (1.17)

for any solution of the system.
One of the possible algorithms for constructing conserved vectors is provided

by Nöether’s theorem [6, 10]: if the action (which is a functional) is invariant with
respect to G, then the vector

Ci = NiL, (1.18)

where

Ni = ξ i + __
η

α

(
∂

∂uα
i

+
∑

s≥1

(−1)s D j1 . . . Djs
∂

∂uα
i j1... js

)
+ (1.19)

+
∑

r≥1

Dk1 . . . Dkr

(__
η

α)
(

∂

∂uik1...kr
+

∑

s≥1

(−1)s D j1 . . . Djs
∂

∂uα
ik1...kr j1... js

)

and Ci from (1.18) satisfies the equation (1.17). The infinitesimal criterion of invari-
ance of the action is [13]

XL + LDiξ
i = 0. (1.20)

If X is admitted by the system (1.11), and C is any conserved vector, then the
vector

P = __
X(C) (1.21)

also satisfies the conservation law (1.17).

Theorem Suppose the operators X, X1, X2 correspond (in accordance with (1.17))
to the conserved vectors C, C1, C2, and

X2 = adX (X1) ≡ [X, X1]. (1.22)

Then the vectors
__
XC1 and C2 define equivalent conservation laws.

This theorem is proved in [10].
To illustrate the application of the general theory of conservation laws, let obtain

the law of conservation of energy in relativistic mechanics. Let at t ′ = t = 0 the
origin of the coordinate system x ′, y′, z′, associated with the moving particle of rest
massm, coincides with the origin of the coordinate system with respect to which this
particle moves with the speed v (v ≤ c, c is the speed of light in vacuum). According
to the special theory of relativity, the transformation of coordinates from x, y, z, t
to x ′, y′, z′, t ′ (Lorentz transformation) leaves invariant the quantity x2 + y2 + z2 −
c2t2. Among infinitesimal operators of Lorentz group, which is one of Lee groups,



6 1 Time Reversal in Classical and Relativistic Physics

we choose the operator

X0 = ∂

∂t
. (1.23)

The Lagrangian of a free particle in special relativity is

L = −mc2
√
1 − β2, β = v/c. (1.24)

Applying the Nöether theorem to X0 from (1.23) with the Lagrangian (1.24) we can
obtain the corresponding conservation law. Since for the Lorentz group

X = ξ(t, x)
∂

∂t
+ ηα(t, x)

∂

∂xα
, (α = 1, 2, 3) (1.25)

we obtain a conserved quantity of the form [13]

T = ξL + (ηα − ξvα)
∂L

∂vα
, (1.26)

where
∂L

∂vα
= mvα

√
1 − β2

. (1.27)

For X0 = ∂
∂t we have ξ = 1, η1 = η2 = η3 = 0. Equation (1.26) yields

T = L − vα ∂L

∂vα
= −mc2

√
1 − β2 − m|v|2√

1 − β2
= − mc2√

1 − β2
. (1.28)

Substituting T by −E (T = −E) we get

E = mc2√
1 − β2

. (1.29)

This formula is the law of energy conservation in the special relativity of a free
particle moving with a velocity v.

1.2 Kinematically Admissible Transformations and Time
Reversal

In the Sect. 1.1 it was mentioned the distinction between equations of movement and
themovement itself at time reversal. Themovement equations of classicalmechanics,
containing a second derivative with respect to time do not change at time reversal.
In contrast to this, at macroscopic scale the real movement corresponds to only one
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direction course of time (from the past to the future). Thus transformation of time
reversal is basedonproperties of forces or interchanges,whichdetermine the dynamic
behavior of the system. Since the movement properties studied in kinematics are
independent of those studied in dynamics, wemay introduce admissible time reversal
transformations, which must be formulated in terms of kinematics. For this we shall
require that the equation of movement must leave invariant under the symmetry
transformation in conditions when all forces or interactions are absent.

Thus, for a mass point in classical mechanics, kinematically admissible trans-
formations of position and time kinematic variables from rrr to ξξξ and from t to τ ,
respectively, will reduce the free-particle equation

d2r
dt2

= 0 (1.30)

to the form
d2ξξξ

dτ 2
= 0. (1.31)

If we take τ ≡ t , the form of an admissible space transformation is found to be

xi → ξi =
∑

j

ai j x j + bi + ci t, i = 1, 2, 3, (1.32)

where xi is the i th component of r (r = x1e1 + x2e2 + x3e3), ai j , bi and ci are real
numbers, and the matrix of ai j is nonsingular (det a �= 0) [2].

The kinematically admissible transformations of the time variable may be identi-
fied by noting that if τ = τ (t), then [14]

d2r
dt2

= d2r
dτ 2

(
dτ

dt

)2

+ dr
dτ

· d
2τ

dt2
. (1.33)

The conditions of (1.30) and (1.31), with ξξξ ≡ r, lead to

d2τ

dt2
= 0. (1.34)

In this case, admissible transformations are of the form

τ = At + B. (1.35)

We can see that (1.35) includes both time translations (A = 1) and time reversal
(A = −1, B = 0). Thus, we find that conceptions of uniformity and reversibility
of time are built into the kinematics. Below we will examine some consequences of
time-reversal invariance of the motion equations of classical mechanics.
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The basic measure of time is taken to be a constant time interval (for example,
the constant period of oscillations of a clockwork drive based on Mössbauer effect).
It is known that the unit of time is the second, defined as the duration of 9 192 631
770 periods of the oscillations of the electromagnetic radiation associated with the
allowed magneto-dipole quantum transition between the two neighboring hyperfine
levels of the ground state of the 133Cs atom. This method of determining the time
unit is less exact than the method based on Mössbauer effect. Because the basic
measure of the time is taken to be a constant time interval, only the time interval is
defined and the choice of the time origin, t = 0, is a matter of convenience. Once the
choice of an origin, t = 0, for the time variable has been made, the assignment of a
sign (positive for a t later than t = 0 and negative for a t earlier than t = 0) appears
to be a matter of convention. The “time-reversed” variable t ′ = −t appears to have
equal standing, because the time interval 
t = t2 − t1 can be expressed in terms of
t ′: 
t ′ = t ′2 − t ′1.

However, can be seen that

t ′ = −
t, (1.36)

which leads to some differences in the form of equations describing the motion. For
example, if a particle goes from the position r1 to the position r2 during the interval

t = t2 − t1, then its average velocity is v = (r2 − r1)/
t . If we use t ′ instead the
time-reversed system, then (r2 − r1)/
t ′ = −v.

These relations can be written also by introducing the time-reversal operator T

T : t → t ′ = −t, (1.37)

where T is an improper transformation (time reversal) similar to inversion P. For the
velocity we have

T : v → v′ = −v, (1.38)

and the transformationmay be said to reverse the velocity. For this reason the transfor-
mationT can be called alsomotion reversal. The term “motion reversal” is convenient
as a supplementary concept related only to the transformation of variables describing
motion, such as velocity, momentum, angular momentum, and so forth.

A reference system using t as a variable can be called “standard system” and the
one using t ′ as a variable, “time-reversal” system. Since the T transformation of one
system to another reverses velocities, it might appear that the two reference systems
are physically distinguishable. This situation is in a contradiction with the evident
assertion that the difference between the systems is merely a matter of convention.
In fact, the reversal of velocities does not distinguish the reference systems, because
the sign of velocity vector itself is merely a matter of convention.

In spite of fact that the difference between “standard” and “time-reversed” sys-
tems is merely a matter of convention, there are any physical implications of the
transformation T, which arise from the dynamics, not the kinematics. The equa-
tions of motion (which are solved by methods of dynamics) for all physical systems
are invariant under the operator T. Thus, the acceptance of a convention led to an
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assumption of time-reversal invariance (T -invariance) despite the apparent irre-
versibility of nature.

In conclusion, we emphasize once again that T is an improper transformation by
analogy with the spatial inversion P. In the last case, the violated parity symmetry
can be restored by introduction of charge conjugation operation and, respectively, by
introduction the notions of antiparticles, antinucleus, antiatoms, antimolecules and
antiworld.

By analogy with this, the time-reversal symmetry can be broken by any known
and unknown now interactions. In this case the restoration of improper symmetrywill
lead to conceptions of meta-particles. This problem will be discussed more detailed
in the Chap.9.

1.3 Time-Reversal Symmetry in Dynamical Systems

In the Hamiltonian formalism of classical mechanics the equations

·
qk = ∂H

∂pk
,

·
pk = −∂H

∂qk
, (k = 1, 2, . . . , s), (1.39)

where s is the number of generalized coordinates (momenta), are invariant under the
reversal of the time direction t → −t . Under such transformation the positions and
momenta are transformed according to

qk → qk , pk = mk
dqk
dt

→ mk
dqk
d(−t)

= −pk . (1.40)

Thus
dqk
d(−t)

= ∂H

∂(−pk)
,
d(−pk)

d(−t)
= −∂H

∂qk
, (1.41)

·
qk = ∂H

∂pk
,

·
pk = −∂H

∂qk
.

The classical notion of time-reversal symmetry as discussed above is directly related
to symmetry properties of the Hamilton function:

H(qk, pk) = H(qk,−pk). (1.42)

Namely, if the Hamiltonian satisfies (1.39), then the equations of motion (1.41) are
invariant under the transformation

T : (qk, pk, t) → (qk,−pk,−t) (1.43)
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In turn, it means that if (q(t),p(t)) ≡ (q1(t), q2(t), . . . , qs(t); p1(t), p2(t), . . . ,
ps(t)) is a trajectory in the phase space describing a possible motion of the sys-
tem with the initial position and momentum (q0,p0), the same is (q(−t),−p(−t))
with the initial position (q0,−p0). It means that if there is a trajectory q(t), then
there exists a trajectory q(−t).

The same result we shall obtain, if we start from the motion equations of Newton
mechanics in Cartesian coordinates:

mi
d2ri
dt2

= Fi (r1, r2, . . . , rn; t), (1.44)

where Fi is the force acting on the i th mass point. The designation of the force as
a three-vector implies that it transforms in the same way as ri under rotations of
coordinate axes. Thus, if the only vectors determining Fi are r1, r2, . . . , rn , it must
be a function of these variables. In this case, a rotation applied to ri leaves (1.44)
invariant and they are now consistent with the assumption of space isotropy. A partic-
ular consequence of this symmetry is conservation of the total angular momentum.
However, ifFi depends on any external fixed vectors, as in the casewhen any external
forces are acting, (1.44) will no longer be invariant, because the fixed vectors are not
rotated. In this case the total angular momentum will change with time in a manner
determined by the torque associated with external forces [2].

Since (1.44) involve the second time derivative, they are invariant under time-
reversal transformation t → t ′ = −t , if Fi are independent on the sign of t . Even
assuming that Fi does not depend explicitly on time or on the particle velocity, this is
not a trivial requirement due to the possible involvement of internal parameters such
as spin variables and pseudoscalars. As long as the internal properties of particles
and the three-dimensional configuration space character are not dependent on time,
there are no explicit time dependences of the forces acting within the isolate system.
Therefore (1.44) remain invariant under time translations because of uniformity of
the time variable. If the forces are conservative, i.e., they can be expressed as a
gradient of the potential, which does not depend explicitly on time, the energy will
be conserved.

The conception about the time-reversal symmetry in classical physics may be
demonstrated by the following: mental experiment. Let r(t0), v(t0) be the position
and velocity of a classical particle subjected to some statistical forces at t = t0 and
allow it to proceed undisturbed for a time t1, when its position and velocity will
become r(t0 + t1), v(t0 + t1). Let at t = t0 + t1 another identical particle start off
at r(t0 + t1) ≡ r′ with a velocity −v(t0 + t1) ≡ v′. Then at later time t0 + 2t1, we
will find that the new position and velocity are r(t0),−v(t0). We can see that in the
case of motion in a force field derivable from a potential, the basic laws (equation
of motion) are invariant under the time reversal. On the other hand, if consider the
motion of a charged particle in a magnetic field, there is no time-reversal symmetry
[15].

As it can be seen on Fig. 1.1a for time-reversed orbits in the case when the equa-
tions of motion are invariant under the time reversal, the two trajectories (1 and 1′)



1.3 Time-Reversal Symmetry in Dynamical Systems 11

(a)

(b)

Fig. 1.1 Particle trajectories corresponding to forward and backward directions of the time: a in
absence of a magnetic field, b the charged particle in a magnetic field

really coincide (they are shown for clarity). The tangential arrows indicate the veloci-
ties. On the Fig. 1.1b it is shown the trajectory of the negative charged particle (q < 0)
in a magnetic field, when its direction is normal to the page (oriented to the rider); 1
and 1′ correspond to the forward and backward the time flow. It should be noted that
in this case the orbit 1′ coincides with 1 if we also change the sign of the charge.

To summarize, the classical equations ofmotion are said to be invariant under time
reversal operator T if one can separate all motions in two subsets with a one-to-one
correspondence between them. Let q1(t) and p1(t) be the canonical variables of the
motion belonging to the subset 1, and q1′(t) and p1′(t) - the canonical variables of
the subset 1′. The above-mentioned one-to-one correspondence is

q1(t0 + t) = q1′(t0 − t),

p1(t0 + t) = −p1′(t0 − t). (1.45)

In the case of the motion in a magnetic field, the correspondence (1.45) does not
exist. Instead one has

q1(H, t0 + t) = q1′(−H, t0 − t),

p1(H, t0 + t) = −p1′(−H, t0 − t), (1.46)

where H is the vector of the magnetic field strength.
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1.4 Painlevé Theorem

In 1904 P. Painlevé had formulated and proved the theorem about the relative motion
of an isolate system of particles that are governed by the conservative forces acting
between particles in conditions when the initial velocities vanish [16].

Theorem If the relative motion of an isolated system of particles is governed by the
action of conservative forces and if the initial velocities (at t = t0) of all particles
vanish, then the system cannot resume the configuration again with the same relative
positions as the initial position, but with a different general orientation in space.

The proof of this theorem, which differs from the proof presented in the original
Painlevé paper, will be carried out according to [2].

The Painlevé theorem proof may be summarized as follows. Let V (r12, r13,
. . . , rαβ, . . .) be the potential generating the conservative forces between particles,
where ri j = ri − r j is the vector distance between the i th and j th particles. The
potential energy V is a scalar function assumed to depend only on the ri j . The
equations of motion (1.44) take the form

mi
d2ri
dt2

= −∇i V, i = 1, . . . , n. (1.47)

These equations are invariant under the time-reversal operator T changing t by
t ′ = −t .

At the initial time t0 = 0 the particle positions are r(0)
i and respectively all veloc-

ities vanish (
dri
dt

)

t=0

= 0. (1.48)

In this case the initial conditions are invariant under T, since

(
dri
dt

)

t=0

= −
(
dri
dt ′

)

t ′=0

= 0 (1.49)

Hence the motion is invariant under T. Thus the solution ri (t) of (1.47) and (1.48)
satisfy the relationship

ri (−t) = ri (t). (1.50)

Let us suppose the contrary of the theorem, namely, suppose that at some time t1 > 0
the system does return to its initial relative configuration, but with a reorientation
in space. Then, because positions r(1)

i at t = t1 differ from the r(0)
i by a common

rotation R, that is the same for all particles, the distance vectors ri j can be presented
as

ri j (t1) = R[ri j (0)], (1.51)
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where R is a three-dimensional orthogonalmatrix (rotation transformation) operating
on the vector ri j , that is the same for all i, j . The potential energy is a scalar function
of ri j and, therefore, has the same value at t = t1 as at t = 0. Taking into account
the conservation energy law, the kinetic energy also has the same value at t = t1 and
t = 0. But the kinetic energy vanishes at t = 0 and therefore it must vanish again at
t = t1. Since the kinetic energy is a positive definite function of the velocity, each
velocity of particles of the system must vanish:

(
dri
dt

)

t=t1

= 0. (1.52)

The conditions at t = t1 are identical to those at t = t0 excepting the initial posi-
tions that are rotated from r(0)

i to r(1)
i . Therefore, if t = t1 rather than t = 0 is taken as

the initial point, then previous arguments made relative to t may be repeated without
change, but starting from the new positions r(1)

i . Thus, if we use a reference system
rotated by R with respect to the original one, the motion from t = t1 to t = 2t1 in the
new system will be identical to the motion from t = 0 and t = t1 in the old reference
system. Since the magnitude ri j of the vector ri j is independent on the orientation of
the reference frame, we find after n repetitions of this argument that ri j are periodic
functions of t with the period t1:

ri j (t + nt1) = ri j (t). (1.53)

Wemay also consider t1 as the initial time by introducing a translated time variable

τ = t − t1 (1.54)

to write the equations of motion and initial conditions. In the rotated frame the
equations, written for position vectors ρρρi = R[ri ] in terms of τ , will be identical to
those given for ri in terms of t in the original frame. Therefore, the motion will again
be invariant under reversal of the translated time variable

ρρρi (−τ) = ρρρi (τ ). (1.55)

We can see from (1.54) that the solution ri (t) satisfies the condition

ri (t1 + τ) = ri (t1 − τ) (1.56)

in analogy with (1.50) and, therefore,

ri j (t1 + τ) = ri j (t1 − τ). (1.57)

If we consider a third time variable,
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τ ′ = t − 1

2
t1 = τ + 1

2
t1, (1.58)

then from (1.57) we have

ri j

(
t1 + τ ′ − 1

2
t1

)
= ri j

(
t1 − τ ′ + 1

2
t1

)
(1.59)

or

ri j

(
1

2
t1 + τ ′

)
= ri j

(
3

2
t1 − τ ′

)
. (1.60)

On the other hand, according to (1.53), the periodicity condition is

ri j

(
1

2
t1 + τ ′

)
= ri j

(
1

2
t1 − τ ′

)
(1.61)

for arbitrary τ ′. Thus ri j ( 12 t1 + τ ′) is an even function of τ ′, and its time derivative
must be an old function vanishing at τ ′ = 0:

(
dri j
dt

)

t= t1
2

=
[

d

dτ ′ ri j
(
1

2
t1 + τ ′

)]

τ ′=0

= 0. (1.62)

By presenting ri j in the form
ri j = (ri j · ri j ) 1

2 , (1.63)

we obtain
dri j
dt

= ri j · r̂i j , (1.64)

where r̂i j is the unit vector in the direction ri j . As a consequence, the motion of
the system may be described as a rigid body rotation. However, since total angular
momentum is conserved and it vanished at t = 0, the system cannot be rotating at
t = 1

2 t1. Therefore, (
dri
dt

)

t= t1
2

= 0. (1.65)

Thus at t = 1
2 t1 the velocities satisfy the same initial conditions as those at t = 0

and the arguments, that we made using t = t1 as an initial point, may be repeated by
using t = 1

2 t1. Particularly, the time-reversal argument for the variable t ′ leads to the
equation

ri

(
1

2
t1 + τ ′

)
= ri

(
1

2
t1 − τ ′

)
(1.66)
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that is equivalent to (1.56). For τ ′ = 1
2 t1 the system has the same position at t = t1

as it had at t = 0. The only “rotated” set of positions r(1)
i that the system can attain

are identical to the initial positions r(0)
i . This completes the proof of the Painlevé

theorem.

1.5 Time-Reversal Symmetry in Classical Electrodynamics

For beginning, let us consider a charged particle of the mass m and charge q in
an homogeneous electric field of strength E. In this case the equation of motion in
vectorial form is

m
d2r
dt2

= qE(r). (1.67)

This equation is invariant under the time-reversal transformation t → t ′ = −t ,
because the left-hand side contains the second time derivative and right one is time
independent. Thus at the time-reversal transformation we have: t → −t , r → r,
E → E (m and q are scalars and, along with r andE, do not change at time-reversal).
However, this property does not hold for magnetic forces (see Fig. 1.1b). In this case
the equation of motion includes the first-order time derivative

m
d2r
dt2

= q

c
· dr
dt

× B(r), (1.68)

where B(r) is the vector of magnetic induction, q is the particle charge and c is the
light velocity.

The left-hand side of this equation is invariant under t → −t , while the second
term in the right-hand side changes its sign. For example, the sense of the circular
motion of a charged particle in a constant magnetic field is determined by the charge
of the particle, not by the initial conditions. If we make the replacement B → −B as
well as t → −t then the motion equation (1.68) becomes invariant under the time-
reversal operation. It means that the time-reversed motion is physically admissible
in the reversed magnetic field. One can see that a system that interacts with external
fields does not possess the invariance of time reversal in itself. However, if one
includes the charges and currents producing external fields in the definition of “the
system”, then the invariance of the Hamiltonian under time-reversal operator may
be restored. If the motion of all charges in a closed system is reversed, then charge
densities and currents are transformed according to

ρ → ρ, j → −j, (1.69)

while the electric and magnetic fields produced by these charges and currents are
transformed according to

E → E, B → −B. (1.70)
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These are the basic transformation equations of the electromagnetic field under time-
reversal operator, which are combined with (1.67) and (1.68) to show that electro-
magnetic phenomena are time-reversed.

The presented above argumentation concerning restoration of the time-reversal
symmetry by extension of the definition of “the system”has also a connectionwith the
invariance of classical Maxwell equations under time-reversal operator. In a Gauss
system, the Maxwell equations for macroscopic electromagnetic field in the matter
are

rotE = −1

c

∂B
∂t

, divB = 0,

rot H = 4π

c
j + 1

c

∂D
∂t

, div D = 4πρ, (1.71)

whereE andH are vectors of strengths of electric and magnetic fields, whileD andB
are vectors of inductions of electric and magnetic fields determined by relationships

D = E + 4πP, H = B − 4πM. (1.72)

Here P and M are depending on E and B vectors of electrical polarization (P)
and magnetization (M) of the matter, j is the vector of the density of the conduction
current and ρ is the density of electric charges.

The fundamental Maxwell equations (1.71) do not yet constitute a complete sys-
tem of equations of the electromagnetic field. They must be supplemented by corre-
lations named material equations.

The material equations are most simple in the case of sufficiently weak electro-
magnetic fields, comparativelyweakly changing in space and time. In this case, for an
isotropic medium, that do not contain ferroelectrics and ferromagnetics, the material
equations have the form

D = εE, B = μH, j = σ(E + E∗), (1.73)

where ε andμ are electric andmagnetic permeabilities,σ is the electrical conductivity
and E∗ is the strength of the field of foreign forces, conditioned by chemical and
thermal processes.

The Maxwell equations are not symmetrically relative to electric and magnetic
fields. This is conditioned by the fact that in the nature there exist electric charges,
but there are no magnetic charges (magnetic monopoles predicted theoretically by
Dirac are not yet discovered experimentally).

However, in a neutral homogeneous and not conducting medium, where ρ = 0
and j = 0, Maxwell equations (1.71) have almost a symmetrical form. In this case E
is connected with ∂B

∂t , like B with ∂E
∂t , excepting the fact that signs in front of these

derivatives do not coincide. Different signs in front of ∂B
∂t and ∂E

∂t mean that lines of
the vortex electric field induced by change of the field B form a leftspiral system
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with the vector ∂B
∂t , while lines of magnetic field induced by change of D form a

rightspiral system with the vector ∂D
∂t .

Note that in the first pair of Maxwell equations from (1.71) only principal charac-
teristics of electromagnetic field E and B enter, while in the second pair of equations
auxiliary vectors D and H appear. Moreover, Maxwell equations can be written in
such a way that the vectors D and H do not enter into these equations. For this, it
is necessary to change D and H in the second pair of equations (1.71) by respective
vectors from (1.72):

rotE = −1

c

∂B
∂t

, divB = 0,

rot B = 4π

c

(
j + c rotM + ∂P

∂t

)
+ 1

c

∂E
∂t

, div (E + 4πP) = 4πρ. (1.74)

In the absence of polarizable and magnetizable mediums Maxwell equations for
the electromagnetic field in vacuum can be presented in the form [5]:

rotE = −1

c

∂B
∂t

, divB = 0,

rotB = 4π

c
j + 1

c

∂E
∂t

, divE = 0. (1.75)

Since in the Gauss system for a field in vacuumH coincides with B (see form (1.72)
at M = 0), in this case one may change B by H in (1.75). However, since B is a
fundamental characteristic of the magnetic field and H is an auxiliary vector, we
will not do it.

In (1.71) E, D, P and j are polar vectors, while B,H andM are axial vectors. The
first and third equations from (1.71) contain the first time derivative in the right-hand
side (third equation contains also the vector j). Therefore, the Maxwell equations
(1.71) will be invariant under the time-reversal, if along with the transformation
t → −t perform transformationsB → −B,H → −H (correspondinglyM → −M)
and j → −j.

Thus, we can see that in classic electrodynamics the Lorentz equation (1.68) is
invariant under time reversal, if in parallel with the transformation t → −t change
the direction of the vector B to the opposite. The Maxwell equations (1.71) are
invariant under time reversal, if in parallel with the transformation t → −t change
to the opposite directions of axial vectors B and H (axial vector M, respectively),
and that of the polar vector j.

If Maxwell equations are written in the form (1.74), then the transformation
H → −H is absent, since these equations do not contain H in this case.



18 1 Time Reversal in Classical and Relativistic Physics

1.6 Time-Reversal Symmetry in Relativistic
Electrodynamics

According to the special theory of relativity of Einstein [17], the four-dimension
coordinates of one and the same event in different inertial systems are expressed
with each other linearly and, moreover, the square of the interval

S2AB = c2(tA − tB)2 − (xA − xB)2 − (yA − yB)2 − (zA − zB)2 (1.76)

between any two events is the same in all frames of reference. There the positive
signature is used, when the time part of the square of the interval S2AB enters with
the sign plus, and the space part with the sign minus. The negative signature is used
no less frequently under the choice of which the time part of the square of interval
enter S2AB with the sign minus and the space part, with the sign plus. We separate
in all inertial frames of references the set of all frames, of which origins in some
moment of time coincide, and take this moment as the beginning of time reference
in all these inertial frames of reference. It is clear that the event with coordinates
(0, 0, 0, 0) in one of the inertial frame of reference has the same coordinates in every
other inertial frame. That is why the dependence between the coordinates of some
event in different inertial frames of reference is not only linear, but homogeneous
as well. We denote by a(K , K ′) the matrix realizing the transition from coordinates
in the inertial frame of references K to coordinates in the frame of reference K ′,
moving uniformly relative to K . Then

x ′
i =

∑

j

ai j (K
′K )x j , (1.77)

where i, j = 0, 1, 2, 3, x0 = ct , x1 = x , x2 = y, x3 = z.
If in the frame K ′′ coordinates of the same event are denoted by x ′′

l (l = 0, 1, 2, 3),
then one may write

x ′′
l =

∑

j

al j (K
′′K )x j , x ′′

l =
∑

i

ali (K
′′K ′)x ′

i . (1.78)

From (1.78) and (1.77) it follows that

al j (K
′′K ) =

∑

i

ali (K
′′K ′)ai j (K ′K ). (1.79)

The relationship (1.79) shows that matrices a form a continuous group relative to
matrix multiplication, in addition

a(K ′′K ) = a(K ′′K ′)a(K ′K ). (1.80)
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This group is called the complete Lorentz group L [7]. The group contains as a
subgroup the so-called proper Lorentz groupL1, which is obtained, if from all inertial
frames of references only left (or only right) ones are separated.

Let us consider an important particular case when axes of K ′ are parallel to axes
of K and it is moving relative to the last one with the speed v, directed parallel to
the axis X . In this case, from the explicit form of the matrix a, which may be found
by algebraic transformations beginning with the invariance of the interval relative to
transitions from one inertial frame of reference to another [18], the known Lorentz
transformations follows:

x ′ = x − vt√
1 − β2

, y′ = y, z′ = z, t ′ = t − β

c x√
1 − β2

, (1.81)

where β = v/c.
If there are two inertial frames of reference, the frame K and the frame K ′ moving

relative to it with the speed v and values of fields E and B in some space-time point
of frame K are known, then values of fields E′ and B′ in the same space-time point
in frame K ′ are determined by formulas

E ′
x = Ex , B ′

x = Bx ,

E ′
y = Ey−vBz√

1−β2
, B ′

y = By+ β

c Ez√
1−β2

,

E ′
z = Ez+vBy√

1−β2
, B ′

z = Bz− β

c Ey√
1−β2

,

(1.82)

where it is supposed that coordinate axes X and X ′ are directed along the vector of
speed v, the axis Y ′ is parallel to the axis Y and the axis Z ′ is parallel to the axis Z .

It is easy to see that the system of equation (1.82) is invariant under the time-
reversal transformation. For this, we rewrite this system of equations in a vector
form

E′
‖ = E‖, B′

‖ = B‖,
E′

⊥ = E⊥+[vB]√
1−β2

, B′
⊥ = B⊥+[vE]/c2√

1−β2
,

(1.83)

where by symbols ‖ and ⊥ are marked the longitudinal and transversal components
of electric and magnetic fields, relative to the vector v.

According to (1.83), in the case of alternating in time electric and magnetic fields
the longitudinal components of electric fields E‖ and E′

‖ do not change at the trans-
formation T(t → t ′ = −t), while for the vector E′

⊥ to leave invariant it is necessary
that side by side with the change of direction of the speed vector to the opposite
(v → −v), the change of the vector B to the opposite (B → −B) should take place
as well. Moreover, the vectors B‖ and B⊥ (as well as B′

‖ and B
′
⊥) change their direc-

tions to opposite, so that the system of equation (1.83) as a whole leaves invariant.
This means an invariance with respect to the time reversal of laws of transforma-
tion of electric and magnetic fields under transition from one frame of reference to
another.
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Now, let us consider Maxwell equations for the electromagnetic field in vacuum
in the absence of charges (ρ = 0, j = 0), obtained from (1.75) at j = 0, which have
the form

rotE = − ∂B
∂t , divB = 0,

rotB = ∂E
∂t , divE = 0.

(1.84)

Here and below on we use the system of units, in which the light speed c = 1.
Further the problem of time-reversal symmetry in Relativistic Electrodynamics will
be presented according to the monograph [19].

We introduce vector and scalar potentials A and ϕ of the electromagnetic field
and express vectors E and B as follows:

E = −∂A
∂t

− ∇ϕ, B = rotA. (1.85)

In this case the first two equations (1.84) turn into identities. However, the relations
(1.85) do not define potentials uniquely, but only to within a gauge transformation
[19]

A → A + ∇χ, ϕ → ϕ − ∂χ

∂t
, (1.86)

where χ is an arbitrary function of coordinates and time.
Obviously, all physical relations, containing vectors of the field, are invariant

relative to caliber transformations.
The lack of uniqueness in the choice of potentials allows to impose to them a

supplementary condition (Lorentz condition)

divA + ∂ϕ

∂t
= 0. (1.87)

The second pair of Maxwell equations in (1.84) at substitution (1.85) with regard
to (1.87) takes the form of wave equations for the potentials

�A = 0, �ϕ = 0, (1.88)

where � is D’Alembert operator

� = ∇ − ∂2

∂t2
(1.89)

The Lorentz condition (1.87) does not determine the calibration of potentials A and
ϕ completely. We can see that Lorentz condition will be satisfied if potentials A and
ϕ are subjected to the gauge conversion (1.86), in which the function χ satisfies the
wave equations

�χ = 0. (1.90)
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In order to ensure the relativistic invariance of Maxwell equations (1.84), it is
sufficient to introduce a four dimensional vector of electromagnetic field constructed
on the basis of potentials A and ϕ with components

Aμ = (A)μ, μ = 1, 2, 3,
A4 = iϕ.

(1.91)

Under the Lorentz transformations these components behave as components of the
four dimensional radius vector xμ(r, i t). Then the equations for potentials take the
form

�Aμ = 0, (1.92)

and the Lorentz condition will be written in the form

∂Aμ

∂xμ

= 0. (1.93)

The gauge transformation (1.86) may be written in the form

Aμ → Aμ + ∂χ

∂xμ

. (1.94)

The formula (1.94) conserves its form at Lorentz transformations, if χ is a four
dimensional scalar.

In the 4-vector writing, equation (1.85) determine a four dimensional antisym-
metric tensor of the electromagnetic field, Fμν

Fμν = ∂Aν

∂xμ

− ∂Aμ

∂xν

, (1.95)

joining the vectors of electromagnetic fields

Fjk = ε jkl Bl, F4k = i Ek, (1.96)

(i, j, k = 1, 2, 3, ε jkl is the unit antisymmetric tensor).
Relations (1.96) permit to write Maxwell equations (1.84) in the form

∂Fμν

∂xλ
+ ∂Fνλ

∂xμ
+ ∂Fλμ

∂xν
= 0,

∂Fμν

∂xν
= 0,

(1.97)

where the summation is done by twice encountered index ν from 1 to 4.
For electromagnetic field in the presence of charges, the equation (1.92) and the

second one from the equation (1.97) become non-homogeneous

�Aμ = − jμ, (1.98)
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∂Fμν

∂xν

= − jμ, (1.99)

where jμ is a 4-vector of electric current density.
Returning to matrices a, and performing the transition from one inertial reference

frame to another in formulas (1.77)–(1.81), one can observe that the proper Lorentz
group is the totality of all transformations of the complete Lorentz group, which
contain the identity transformation I and infinitesimal transformations

x ′
μ = xμ +

∑

ν

εμνxν . (1.100)

In other words, these transformations are realized by the matrix

a = I + ε, (1.101)

where ε is an infinitesimal antisymmetric matrix

εμν = −εμν, |εμν | 
 1. (1.102)

Thus, every transformation of the proper Lorentz group may be obtained from the
identity one by continuous changing the elements of matrix a, for which

det α = 1, a44 > 1. (1.103)

At the transition from one inertial frame of reference to another, determined by the
transformation of the proper Lorentz group, the four dimensional vector potential of
electromagnetic field 4-vector is transformed like x , that is

A′(x ′) = aA(x) (1.104)

at x ′ = ax , where a is a transformation of the proper Lorentz group.
It is easy to see from (1.95), that the tensor of electromagnetic field Fμν , which

is a tensor of second rank, is transformed in the following way:

F ′(x ′) = aF(x)ã, (1.105)

where ã is a matrix transposed to matrix a.
Every transformation of the complete Lorentz group (not entering the proper

group) differs from a proper transformation by the sign of det a or a44 (or of both these
quantities). It may be obtained as a totality of the proper transformation, the discrete
transformation of space inversion x ′ = aPx and the time-reversal transformation
x ′ = aT x , where
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aP =

⎛

⎜⎜⎝

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞

⎟⎟⎠ , aT =

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞

⎟⎟⎠ , (1.106)

det(aP) = −1, det(aT ) = −1.
Each of these transformations (together with the identity transformation) forms

a group, which is a subgroup of the complete Lorentz group. These subgroups are
formed by matrices aP and I or aT and I . Matrices aP and aT satisfy the relationship

a2P = I, a2T = I. (1.107)

At transformations of the complete Lorentz group, different 4-vectors may be trans-
formed in different ways, depending on their behavior at the space inversion P and
the time reversal T, of which matrices of transformations have the form

P = γPaP ,T = γT aT . (1.108)

Since P2 = I and T2 = I , then γ 2
P = 1, γ 2

T = 1, whence it follows that

γP = ±1, γT = ±1. (1.109)

A four-dimensional vector is called polar at γP = 1 and axial at γP = −1. At γT =
−1, the vector is called t-even and at γT = 1 such a vector is called t-odd [19].

Determining the quantities γP and γT for the vector of potential of the electromag-
netic field can not be done on the basis of equations (1.92) and (1.93) for potentials,
because these equations admit any values for γP and γT . However, this can be done
on the basis of non-homogeneous equation (1.98), in which the density of current jμ
is a polar even vector. It is easy to see this, considering the connection of the charge
q with the time component of the density of current j4 = iρ

q =
∫

ρd3x . (1.110)

Since the charge is an invariant quantity and the volume
∫
d3x is not changed at space

inversion and time reversal, then j4 → j4 like at P−, aswell as at T− transformation.
On the other hand, the space components of the current density, which are determined
by formula

jk = ρvk = ρ
dxk
dt

, (k = 1, 2, 3), (1.111)

change the sign at space inversion (xk → −xk, t → t) and time reversal (xk →
xk, t → −t): jk → − jk .

From (1.98), it follows that the 4-potential Aμ is a polar even vector
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γP = 1, γT = −1. (1.112)

From this and (1.95) it follows the transformation of components of the electromag-
netic field at space inversion and time reversal:

PE j = −E j , PBj = Bj ,

TE j = E j , TBj = −Bj .
(1.113)

Components Dj and Hj of auxiliary vectors, which characterize the electromagnetic
field will be transformed under the action of operators P and T in a similar way.

We see that although in relativistic electrodynamics the space and time are not
independent, but in a single four dimensional Minkovsky space operation of time
reversal is realized in fact in the same way, as in the case of the classical electrody-
namics. It consists in the reversion of the direction of movement of all electrically
charged particles, that leads to the change of sign of space components of the polar
even vector of current density, the components of polar t-even four dimensional
vector potential Aμ(A, iϕ) and, as a consequence, to the reversion of the direction
of the three-dimensional vector of magnetic induction B. More cardinal changes of
conceptions at time-reversal symmetry transformation, which take place in quantum
mechanics and quantum electrodynamics, will be considered in the next chapter.

1.7 Dynamical Reversibility and Statistical Irreversibility
of Time

Let a system evolving forward in time at some initial condition up to a time t . At
t the evolution is stopped and a time-reversal transformation is performed. Further,
the system is allowed to evolve once again for a time interval t . The system, obvi-
ously, will return to its original starting point in the phase space. In accordance with
mechanics and microcanonical ensemble, there does not exist a preferred direction
of the time flow.

The motion of a N -particle system is determined by the 3N initial positions of
particles and 3N initial their velocities, when the forces acting on the particles are
known. If we consider n possible one-particle initial states for each of the particles,
the number of initial states for the system will be nN . Therefore, as the number
of particles, N , increases, a very rapid increase in the number of available states
occurs and, consequently, an increase in the amount of information necessary for
determining the motion. This rapid increase in the complexity of the information
required to determine the state of the system has a strong influence on its behavior
under time reversal, regardless of whether the dynamics is T -invariant or not [2].

Thus, the irreversibility of the motion from an ordered state to a disordered state
of a complex system is associated with the irreversibility of the initial conditions.
Although in a T -invariant system the motion of each particle is reversible, the
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probability of finding the precise initial conditions required to attain the reversed
motion is exponentially small.

There is an apparent contradiction which consists in the fact that the entropy
of a system increases inevitably with time, while the behavior of the atoms and
molecules is determined by reversible (T -invariant) equations of motion. Such a
situation is known as “Locshmidt paradox”, because the most important application
of T -invariance in classical physics was made by Locshmidt [20]. He shown that
Boltzmann proof of the H theorem [21] leads to a paradox, because in the proof
of this theorem T -invariant equations were used to derive result that violated T -
invariance. Considering elastic collisions between molecules of the perfect gas by
means of the distribution of velocities f (v, t), after making a plausible assumption
about the separation of velocity and spatial distributions, Boltzmann obtained the
relation

∂H

∂t
� 0, (1.114)

where

H =
∫

d3v f (v, t)ln f (v, t). (1.115)

If f (v, t) from (1.115) is replaced by f (v0), the Maxwell–Boltzmann distribution
for the perfect gas, f0(v), then H = H0 and the following relation take place

S0 = −kH0, (1.116)

where S0 is the equilibrium value of the entropy of the gas per unit volume and
k is the Boltzmann constant. This suggests that H should be considered similarly
related to the non-equilibrium value of entropy and that (1.114), which implies the
inevitable increase of the entropy toward equilibrium, is a “proof” of the second law
of thermodynamics for the perfect gas [2].

The Locshmidt observation was that, in view of the T -invariance of the dynam-
ics underlying the motion of molecules, with every distribution f (v, t), it must be
associated with another possible distribution f1(v, t) = f (−v,−t) obtained by time
reversal of the motion. But the quantity H1 defined in (1.115) with f replaced by f1
must satisfy

∂H1

∂t
� 0 (1.117)

in contradiction with the second law of thermodynamics [2].
A first solution of the Locshmidt paradox was proposed by Gibbs [22], who gave

an explanation based on the concepts of fine-grained and course-grained structure
of the phase space. However, to date, many works have been written that explain
the paradoxical situation, when a system that has the symmetry of time reversal on
a microscopic scale breaks this symmetry in its macroscopic behavior. A popular
solution to the Loschmidt paradox is to consider that, despite the reversibility of the
equations of motion, not all solutions must possess the complete symmetry of time
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reversal. A different view is presented in [23]. For a historical reference see [24].
An extensive bibliography on the topic of time-reversal symmetry in dynamical
systems is presented in [25]. In this context, it should be noted that the concepts
of reversibility and irreversibility for a long time contributed to the lack of clarity
in classical thermodynamics. Particularly, Clausius defines a reversible process as a
slowly varying process (called quasi-static transformation), the successive states of
which differ by infinitesimals from the equilibrium state of the system.

Alternatively, the Kelvin concept of reversibility includes the ability of the system
to restore its initial state from the final state of the system. Planck introduced several
concepts of reversibility. The main of these concepts is complete reversibility, which
includes the restoring capacity of the initial state of the dynamic system and, at the
same time, the restoration of the environment to its original state. Unlike the concept
of the reversibility of Clausius, the concepts of reversibility of Kelvin and Planck do
not require that the system accurately return the original trajectory in reverse order
[26]. Another concept of thermodynamic reversibility that includes restoration of the
system state in an adiabatic process was introduced by Caratheodory [27, 28]. All
these notions of reversibility were used during a long time discussion of Loschmidt’s
paradox.

From our point of view, here is no paradox. According to the definition of the
symmetry transformation, it is not required that such a transformation was really
realized, it is sufficient for it to be realized in principle. For example, in order to
state that some crystal possesses a center of space inversion it is not necessary to
really change all atoms situated in some positions in the crystal lattice by atoms in a
equivalent positions. For this it is sufficient only to make such a change in principle.
Therefore from the presence of time-reversal invariance of dynamical equations on
microscopical level it does not follow at all the reverse of direction of motion of
particles. The law of entropy (the second law of thermodynamics) in the form of
the Boltzmann H -theorem (in the proof of which, although time-reversal invariance
of the equations is used, but the supposition about the real reverse of direction of
particle motion is not contained) testifies only the fact that ongoing processes are not
reversible, and so there exists the “arrow of time”.

The above-presented subtle distinctions between reversibility and irreversibility,
as opposite conceptions are often unrecognized in the thermodynamic literature. An
exceptions to this fact are [26, 29, 30], which give an excellent description of the
relationship between irreversibility, the second law of thermodynamics and the time
arrow [30]. The arrow of time is one of “most perplexing enigmas” in physics [31–
36]. The idea that the second law of thermodynamics provides the physical basis of
the arrow of time was voiced by many authors [32, 37, 38]. However, a convincing
argument of this assertion has never been given [30, 33, 35]. An approach in which
the irreversible dynamics of non-equilibrium thermodynamical systems is modeled
by reversible dynamical systems, is given in papers [39–41]. A general discussion
related to reversibility/irreversibility and arrows of the time in physics and chemistry
is given in the works of Prigogine [42, 43].

It is necessary to note that in statistical thermodynamics, the time arrow is viewed
as a consequence of a high system dimension and randomness. However, since in
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statistical thermodynamics there is no absolute certainty that entropy increases in
each dynamic process, the direction of time determined by the increase in entropy
has only statistical and not absolute certainty. Therefore, it cannot be deduced from
statistical thermodynamics that the flow of time has a single direction [26].

In a global aspect, if the laws are invariant under the time reversal, for every
physically admissible process there is a time-reversed one, which is also admissi-
ble. Initial conditions then forbids on average a large class of local processes. For
instance, a low entropy initial condition for the Universe can explain the second ther-
modynamical principle [44]. An example would be the Universe undergoing a big
crunch accompanied by a reduction of the total entropy [45] (see, however, [46, 47]).
If the classical state of the Universe at maximum expansion is not a time-reversal
invariant, then we must expect a contracting epoch to be substantially different from
the expanding one. Thus, there will be no time-reversed epoch of expansion of the
Universe [44]. The fact that we observe entropy increasing everywhere rather than
decreasing could be explained, if we clearly understood the peculiarities of events
in low and high entropy epochs [32, 44, 48, 49].

1.8 Reversibility of Fluctuations in the Closed Systems
and Onsager’s Relationships

At small deviations from the equilibrium state, not only in equilibrium processes in
closed system, it is possible to describe, beginning with very general considerations,
firstly started by Onsager [50]. We shall characterize the state of a closed system
by the some macroscopic parameters xi , which are functions of time. By xi it is to
understand the difference between the values of thermodynamic quantities in a given,
not in equilibrium, state and in equilibrium state.

At small values of xi all quantities which characterize the state of the system and
the speed of its change may be expanded into a series on powers of xi , keeping in
these series only the first terms [51]

dxi
dt

=
∑

k

αik xk, (1.118)

S = S0 − 1

2

∑

i,k

βik xi xk, (1.119)

dS

dt
= −

∑

i,k

dxi
dt

· xk, (1.120)

where S is the entropy, αik and βik are kinetic coefficients.
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Formula (1.118) shows that all processes near the state of equilibrium are slow.
The entropy of the system not in state of equilibrium is given by a quadratic form,
moreover, from the condition (1.119) it follows that βik = βki . Formula (1.120)
describes the production of entropy, during the unit of time, which is a small value.
Formulas (1.118)–(1.120) may be applied only to changes of state of the system due
to limited time t (τmicro 
 t 
 τmacro), where τmicro is the time of microscopic scale
characterizing changes of the state of the microscopic part of system, while τmacro is
the time of macroscopic scale, after which in the system it is established the state of
complete statistical equilibrium.

We denote, according to [51], by I ′
i the flow corresponding to the macroscopic

parameter xi , I ′
i = dxi

dt , and by X ′
i the so-called thermodynamic force

X ′
i = ∂S

∂xi
= −

∑

k

βik xk . (1.121)

Then the relations (1.118)–(1.120) may be rewritten in the form

I ′
i =

∑

i

αik xk = −
∑

j,k

αi jβ
−1
jk X ′

k =
∑

k

γik X
′
k, γik = −

∑

j

αi jβ
−1
jk , (1.122)

S = S0 + 1

2

∑

i

X ′
i xi , (1.123)

dS

dt
=

∑

i

I ′
i X

′
i . (1.124)

According to Onsager hypothesis, the macroscopic non-equilibrium state near equi-
librium may be considered as some fluctuation. The change in time of the state of a
macroscopic non-equilibrium system and that of a microscopic system the fluctua-
tion is described by common laws. Thus, the relation between flows and forces or,
in other words, the macroscopic law

Ii =
∑

k

Lik Xk, (1.125)

may be equally applied to non-equilibrium processes and to processes of fluctuation
relation. Macroscopic flows Ii and forces Xi are obtained, averaging that I ′

i and X ′
i ,

and coefficients βik and γik coincides.
Onsager proved [50] that Lik = Lki . Note that it is possible to come to the same

result, if the hypothesis ofGibbs local distribution is used, instead ofOnsager hypoth-
esis.

The symmetry of kinetic coefficients Lik = Lki has a profound sense. It shows
that if, for example, in the system two parameters are changed, then two flows I1 and
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I2 appear. In this case, the force X1 gives contribution to the flow I2, and the force
X2 gives the same contribution to the flow I1.

Onsager relationsmaybe obtained on the basis of the general theory of fluctuations
as well [51]. According to the principle of microscopic reversibility, fluctuations in a
closed systemare reversed in time, so that for the correlation function 〈xl(t)xk(t + τ)〉
one may write

〈xl(t)xk(t + τ)〉 = 〈xl(t)xk(t − τ)〉 . (1.126)

On the other hand, changing the origin of time reference in the right part of the
equality (1.126), we obtain

〈xl(t)xk(t + τ)〉 = 〈xl(t + τ)xk(t)〉 . (1.127)

Here symbol 〈· · · 〉 means the average over ensemble. Averaging once more over
time, we have

〈xl(t)xk(t + τ)〉 = 〈xl(t + τ)xk(t)〉. (1.128)

Both averages are independent and equivalent. After subtracting from both parts of
the equality (1.128) of 〈xl(t)xk(t), dividing by τ and passing to limit τ → 0, we have

〈
xl(t)

dxk(t)

dt

〉
=

〈
xk(t)

dxl(t)

dt

〉
. (1.129)

On the basis of Onsager hypothesis for fluctuations, as well as for macroscopic
processes, it takes place the relation

Ii (t) = dxi (t)

dt
=

∑

k

Lik Xk(t). (1.130)

Using (1.130), the relation (1.129) leads to the equality

〈
xl(t),

∑

i

Lki Xi (t)

〉
=

〈
xk(t),

∑

i

Lli Xi (t)

〉
. (1.131)

Since it is possible to prove that 〈xl Xi 〉 = δli and 〈xk Xi 〉 = δik [51], then from (1.131)
it follows ∑

i

Lkiδli =
∑

i

Lliδki , (1.132)

whence we find Lkl = Llk .
At this proof of the symmetry principle of kinetic coefficients there is used only

the principle of the microscopic reversibility in time of the fluctuation in a closed
system and the Onsager hypothesis. However, the sense of kinetic coefficients at this
proof is not revealed.



30 1 Time Reversal in Classical and Relativistic Physics

When the Onsager principle was deduced, it was not supposed in fact that the
system is not in a magnetic field and is not rotated. But if the system is in a magnetic
field H, then at change of the sign of time τ → −τ there takes place the relation

H → −H. (1.133)

In this case, in order to fulfill the principle of the microscopic reversibility of fluc-
tuations, the Lorentz’s force does not change the sign. Therefore at time-reversal in
the presence of a magnetic field the following relationship takes place:

dx(τ )

dτ
→ dx(−τ)

dτ
. (1.134)

The same refers to the angular velocity of the motion of charged particles in a
magnetic field. By repeating the previous reasoning it is easy to obtain the Onsager
principle for non-equilibrium processes in the magnetic field at non-large deviations
of the equilibrium state

Lkl(H) = Llk(−H). (1.135)

This equality always takes place, if two parameters xk and xl are such that at time
reversal one of them changes its sign and the other does not. The relation (1.135) is
the Casimir-Onsager reciprocity relation.

1.9 Poincaré Recurrence Theorem

In the Sect. 1.7 we have shown that the assumption of molecular chaos allows us
to prove the Boltzmann H -theorem, a theorem that predicts an increase in entropy
until equilibrium is reached. However, the Boltzmann assumption ofmolecular chaos
remains unproved.

Poincaré proved the so-called recurrence theorem, which established that if the
flow of a dynamical system preserves its volume and has only bounded orbits, then
for each open set there exist orbits that intersect the set infinitely often [52].

Theorem A system having a finite amount of energy and confined to a finite spatial
volume will, after a sufficiently long time, return to an arbitrary small neighborhood
of its initial state.

Since the proof of the recurrence theorem has been given by Poincaré, it was
discussed by different authors (see, for example, [53]).

In [26] a system-theoretic foundation for thermodynamics is presented. Specifi-
cally, using a state space formulation, it was developed a nonlinear compartmental
dynamical system model characterized by energy conservation laws, that is con-
sistent with basic thermodynamic principles. It was established the existence of a
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unique, continuously differentiable global entropy function for a large-scale dynam-
ical system.Moreover, it was shown the absence of Poincaré recurrence for proposed
thermodynamic model.

In fact the last result follows also from estimations made on the basis of Poincaré
theorem, which leads to a very long (practically infinite) recurrence time. Really, let
us consider an initial state, in which all particles of any gas are initially in a corner
of a large box of volume V , after which they occupy all the volume of the box.
By Poincaré theorem, after some time the gas particles must eventually return to
their initial state in the corner of the box. In order to find their recurrence time, one
considers that the box is divided into small cells of volume v. The total number of
microstates accessible to the gas varies with the number of particles N like V N . The
number of microstates corresponding to all the particles occupying a single cell of
volume v is vN .

Thus, the probability of finding the system in the microstate is approximately
(v/V )N . Even if v = V/2, for N ∼ 1023, the probability is vanishingly small. On
the other hand, the Poincaré recurrence time is proportional to the inverse of this
probability or (V/v)N . Believing N ∼ 1023 and v = V/2, the required time is

t ∼ 210
23
s,

which is many orders of magnitude longer than the current age of the Universe (1010

years). Thus, although the system will return arbitrarily close to its initial state, the
time required for this is nonphysically long and will never be observed. We see that
although in accordance with Poincaré’s recurrence theorem, the physical process of
returning of gas molecules in initial state is formally reversible, in fact this process
is irreversible.



Chapter 2
Time Reversal in Quantum Mechanics
and Quantized Field Theory

In this chapter we discuss the properties of the time-reversal operator (introduced
into quantum mechanics by Wigner in 1932 [68, 222]) for particles without spin,
as well as taking into account the spin. There are given Wigner criteria (a), (b), and
(c) concerning the absence or presence of an additional degeneracy of energy levels
due to the symmetry with respect to time reversal, both in the case when the spin
of particles that form the quantum system is taken into account and in the case it is
not. Wigner corepresentations of symmetry groups associated with the presence of
time-reversal symmetry are also discussed.

Criteria (a), (b) and (c) of Herring for the wave vector group are considered,
relating to the absence or presence of an additional degeneracy of the energy bands
due to the symmetry of the time reversal.

On the basis of available publications, the nonconventional time-reversal symme-
try, the selection rules due to the symmetry of time reversal, the role of the time-
reversal symmetry for detailed balance principle and for crystalline lattice dynamics,
the time-reversal symmetry in the theory of quantized field, and the CPT theorem
are analyzed.

In this chapter, the original results belonging to the author refer to the geometric
interpretation of the time reversal and the Kramers theorem (Sect. 2.9), the different
ways of determining the unitary partU of the time-reversal operator, and the presen-
tation of the operator U matrix in the basis of irreducible representations for all of
32 point symmetry groups (Sect. 2.5).

2.1 The Basic Concepts of Quantum Mechanics

In contrast to classic mechanics, the description of physical system states in quan-
tum mechanics has a probabilistic character [3, 54–64]. We can not point out in
the moment of time t exact values of generalized coordinates ξ ≡ {ξ1, . . . , ξn},
© Springer Nature Switzerland AG 2018
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characterizing the system. However, we can give the probability density of distri-
bution (the density of probability) ρ(ξ, t), on the basis of which to determine the
probability of the fact that measuring in time moment t the variable ξ in the given
state, we shall obtain its value in the interval (ξ, ξ + dξ):

dw(ξ, t) = ρ(ξ, t)dξ. (2.1)

The states of physical systems are divided into pure and mixed, which are
described respectively by a complex quadratically integrable functionψ(ξ, t), called
the wave function (as well as amplitude of probability), and a matrix of density. The
wave function depends on n generalized coordinates (dynamic variables) ξ1, . . . , ξn
and on time t , which is not a dynamic variable and is considered as a parameter. It
determines the density of distribution of dynamic variables ξ :

ρ(ξ, t) = |ψ(ξ, t)|2 . (2.2)

The complete probability is normed on identity:

‖ψ‖2 =
∫

|ψ(ξ, t)|2 dξ, (2.3)

where integration is carried out onwhole domain of definition of the functionψ(ξ, t).
The set of all quadratically integrable complex functions of real variables is a

linear unitary function space (Hilbert space L2) [63]. It is possible to show that this
space is infinite-dimensional, that is there are infinite linear independent vectors in
it. The orthogonal set of vectors of the spaceL2 is complete and can not be extended
by means of introducing some other vectors of the space. The complete set in L2

contain an infinite number of mutually orthogonal basis vectors. Thus, in quantum
mechanics it is postulated, that some element (vector of state) of the space L2 is
associated to every system state. In the Dirac notations the inner product between
vectors of states |�〉 and |�〉 in this space is introduced by means of the relationship

〈�|�〉 =
∫

�∗(ξ, t)�(ξ, t)dξ (2.4)

where |�〉 and |�〉 are any elements in L2 and the asterisk denotes the complex
conjugation. The definition (2.4) satisfies to all axioms of inner product.

If an orthogonal set of basic vectors in the Hilbert space is denoted by |η〉, where
η is a continuous or discrete index, or both of them, then

|�〉 =
∫

dη |η〉 〈η|�〉 , (2.5)

where 〈η|�〉 is a complex number (“component” of |�〉) and



2.1 The Basic Concepts of Quantum Mechanics 35

〈�|�〉 =
∫

dη 〈�|η〉 〈η|�〉 . (2.6)

Here 〈�|η〉 is complex conjugate, 〈η|�〉∗, of the component so that 〈�|, is the
Hermitian conjugate to |�〉.

Oneof principal statements of quantummechanics is the principle of superposition
of states, which in a simplest form is reduced to two statements

(i) If some system can be in two states, described by vectors of states |�1〉 and
|�2〉, then it can also be in states, which are described by the state vectors, obtained
from |�1〉 and |�2〉 using the linear transformation

|�〉 = c1 |�1〉 + c2 |�2〉 , (2.7)

where c1 and c2 are any complex numbers, not depending on time.
(ii) If a state vector is multiplied by any nonzero complex number, then a new

state vector will correspond to the same state of the system.
It is necessary to mention that the superposition of states in quantum mechanics

essentially differs from the superposition of oscillations in classical physics, where
the superposition of states leads to new oscillations with a higher or smaller ampli-
tude. Moreover, in the classical theory of oscillations there exists the resting state, in
which the amplitude of oscillations is equal to zero everywhere, while in the quantum
theory the equality to zero of the wave function in all points of the space corresponds
to the absence of a state [61].

In quantum mechanics, the following statements are also postulated:
1. Every physical quantity F is associated to some linear Hermitian operator F,

acting in the space L2. F is a Hermitian (or self-adjoint) operator if F+ = F, i.e., for
any |�〉 and |�〉 from L2 the following relationship takes place:

〈�|F|�〉 = 〈�|F|�〉∗ . (2.8)

The explicit form of principal physical quantities is postulated.
2. A physical quantity F in every quantum-mechanical state may take only those

values, which belong to the spectrum of the operator F that corresponds to it.
If ρ(Fn) is the probability of the fact that in the state �(ξ, t) in the time moment

t the physical quantity F has the value Fn , and ρ( f ) is the corresponding density of
probability for a neighborhood of the point f of the continuous spectrum, then

∑
n

ρ(Fn) +
∫

fρ( f )d f = 1, (2.9)

and the mean value (mathematical expectation) of the quantity F in the state �(ξ, t)
is

〈F〉 =
∑
n

Fnρ(Fn) +
∫

fρ( f )d f. (2.10)
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3. The average value of the physical quantity F in the state �(ξ, t) is calculated
by the formula

〈F〉 = 〈�|F|�〉
〈�|�〉 . (2.11)

If the wave function is normed on identity, then

〈F〉 = 〈�|F|�〉 . (2.12)

We see that the dependence of 〈F〉 on t is determined by the time dependence of the
wave function and the operator F.

A totality of points (discrete) and continuous spectra of the operator F is called
a complete spectrum of this operator. In the functional analysis it is proved that the
complete spectrum of the Hermitian operator lies on the real axis. The reality of the
operator spectrum of every physical quantity is in accordance with the requirement
of reality of a result of every its measurement.

4. The given physical system can be in those and only those states, whose wave
functions satisfy the differential equation

i�
∂ |�(ξ, t)〉

∂t
= H |�(ξ, t)〉 , (2.13)

where H is the Hamiltonian of the system.
Equation (2.13) is written in the Schrödinger representation and is called the

Schrödinger equation. An equivalent statement of the dynamics can be made in
the Heisenberg representation, for which explicit time dependence is ascribed to the
operators representing the observations. These operators satisfy the dynamic equa-
tion

i�
∂F(t)

∂t
= [F(t),H] , (2.14)

where [F(t),H] is a commutator of operators F(t) and H.
From (2.14) it follows that all operators commuting with the Hamiltonian are

unchanged in time not only in the Schrödinger representation, but also in the Heisen-
berg one. Since at t = 0 the operators coincide in these two representations, the
form of operators commuting with H remains unchanged at the transition from the
Schrödinger representation to the Heisenberg one.

In the case of mixed states of the quantum system, when wave functions can not
be used for their characterization, it is necessary to introduce the density matrix and
the corresponding statistical operator1 ρ, which satisfies the following differential
equation:

i�
∂ρ

∂t
= [H, ρ] . (2.15)

1The statistical operator should not be confused with the probability density, denoted earlier also
by ρ.
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Sometimes this equation is called the quantum Liouville equation, since it cor-
responds to the Liouville equation for classical distribution function in statistical
physics. The density matrix was introduced for the first time by Landau [65] and von
Neumann [66].

The operator equation (2.15) permits to determine the statistical operator for every
time moment, if it is known in some initial time moment. If the Hamiltonian does
not depend explicitly on time and elements of the density matrix are equal to ρn′n(0)
in the initial moment of time, then from (2.15) it follows

ρn′n(t) = ρn′n(0) exp

{
i

�
(En − En′)t

}
, (2.16)

where En and En′ are eigenvalues of the energy of the system.
One of the basic concepts of quantum mechanics is connected with physical

quantities, of which operators commute with the Hamiltonian and, as a consequence,
are integrals of motion. In particular, if Tτ is the operator of time translation of the
value τ , Tτ t = t + τ then

Tτ�(t) = �(t − τ). (2.17)

The homogeneity of time at such a translation will be expressed by the commutation
condition

[Tτ ,H] = 0. (2.18)

In spite of the operator Tτ it is convenient to use the infinitesimal operator I(t), which
is defined as a derivative of the operator with respect to a parameter at zero value of
this parameter:

I(t) = ∂

∂τ
Tτ

∣∣∣∣
τ=0

. (2.19)

It is easy to obtain the explicit form of the operator I(t), taking into account that

I(t)�(t) = ∂

∂τ
Tτ�(t)

∣∣∣∣
τ=0

= ∂

∂τ
�(t − τ)

∣∣∣∣
τ=0

= − ∂

∂t
�(t).

Thus

I(t) = − ∂

∂t
. (2.20)

The energy conservation law is connected with the commutation of the infinitesi-
mal operator I(t) with the Hamiltonian. For this reason, an operator having a dimen-
sion of energy

−i�I(t) = i�
∂

∂t

is called sometimes the energy operator. Really, an operator of energy is theHamilton
operator, which is a function of the operators of coordinates and impulses.
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In contrast to space coordinates, the time is not an operator [61]. However, in this
context it is necessary to mention that currently there are many studies, containing
frequently contradictory data about the existence of time operator and its properties.

As for kinematical aspect of quantum mechanics, we can note that kinematical
relationships are associated with algebra of operators representing observables of the
system and usually formulated as commutation relations between these operators.

2.2 Antilinear and Antiunitary Operators

An operator L, acting in a linear space,2 is called a linear operator if it satisfies the
relationships [67]

L(|ϕ1〉 + |ϕ2〉) = L |ϕ1〉 + L |ϕ2〉 , (2.21)

L(c |ψ〉) = cL |ψ〉 ,

where |ϕ1〉, |ϕ2〉 and |ψ〉 are arbitrary ket-vectors and c is an arbitrary complex
number (c-number).

In contrast to linear operators,which havewide application in quantummechanics,
there exist antilinear operators. The antilinear operator A satisfies the relationships

A(|ϕ1〉 + |ϕ2〉) = A |ϕ1〉 + A |ϕ2〉 , (2.22)

A(c |ψ〉) = c∗A |ψ〉 ,

where c∗ is a complex-conjugate c-number relative to c.
An example of antiunitary operator is the operator of complex conjugation, which

action on bra- and ket-vectors is determined by formulas

K (α |ϕ1〉 + β |ϕ2〉) = α∗K |ϕ1〉 + β∗K |ϕ2〉 = α∗ 〈ϕ1| + β∗ 〈ϕ2| , (2.23)

K 2(α |ϕ1〉 + β |ϕ2〉) = (α∗)∗ 〈ϕ1| K + (β∗)∗ 〈ϕ2| K = α |ϕ1〉 + β |ϕ2〉 ,

K 2 = 1, K = K−1,

where α and β are c-numbers.
It is clear that the real Hamiltonian is invariant under the operator K :

K HK = H. (2.24)

Two antilinear operators A1 and A2 are considered equal to each other, if A1 |ψ〉 =
A2 |ψ〉 for every ket-vector |ψ〉. The operator of identical transformation A = I is
defined for every ket-vector |ψ〉 by the equality I |ψ〉 = |ψ〉.

2Further, if it does not involve misunderstandings, we shall write L instead of L (respectively, A
instead of A) omitting the symbol of operator.
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Now, it is possible to construct the algebra of antilinear operators. We define a
sum of two operators A1 + A2 using their action on ket-vector |ψ〉

(A1 + A2) |ψ〉 = A1 |ψ〉 + A2 |ψ〉 (2.25)

and a product of two operators A1A2 in the form

(A1A2) |ψ〉 = A1(A2 |ψ〉). (2.26)

From this relationship it follows that we can define different powers of the operator
A at A1 = A2 = A. Also, it is evident that the following relationships are fulfilled:

(A1 + A2) |ψ〉 = (A2 + A1) |ψ〉 ,

[(A1 + A2) + A3] |ψ〉 = [A1 + (A2 + A3)] |ψ〉 , (2.27)

[A1(A2 + A3) |ψ〉 = A1A2 |ψ〉 + A1A3 |ψ〉 .

The algebra of n-dimensional antilinear square matrices is the same as algebra of
antilinear operators. If two antilinear operators A1 and A2 satisfy equations

A1A2 = A2A1 = I, (2.28)

where I is the identity transformation, then the operator A2 (if it exists) is an inverse
operator to the operator A1. In this case

A2 = A−1
1 , A1 = A−1

2 . (2.29)

By defining the action of antilinear operators on ket-vectors, we must define how
these operators act on bra-vectors. So, we consider a ket-vector

|�〉 = A |ψ〉 . (2.30)

It is possible to find a dot product of this ket-vector by any bra-vector (for example,
bra-vector 〈χ |):

〈χ |�〉 = 〈χ | (A |ψ〉). (2.31)

This dot product depends antilinearly on ket-vector |ψ〉, since A is an antilinear
operator. Therefore the dot product 〈χ |�〉 from (2.31) can be considered as a dot
product of the ket-vector |ψ〉 by the bra-vector 〈χ | A. Let us agree that antilinear
operators acting on bra-vectors always stand at the right to bra-vectors, in contrast
to the case when these operators act on ket-vectors, standing at the left to them. It is
easy to see that the following relationship

〈χ | (A |ψ〉) = (〈χ | A) |ψ〉 (2.32)

takes place.
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Every of two sides of the equation (2.32) may be written in the form 〈χ |A|ψ〉 and
therefore we shall not use round parentheses further. Consequently, the antilinear
operator A can first act on bra-vector 〈χ | and afterwards the obtained result must
be scalarly multiplied on ket-vector |ψ〉. It may come to the same result, if to act
first by the operator A on ket-vector |ψ〉, and afterwards the obtained new ket-vector
multiply scalarly by the bra-vector 〈χ |. We note that the scalar product 〈χ |A|ψ〉 is
a number, which may be a complex one.

Antilinear operators, in contrast to linear ones, have a very limited application in
quantum mechanics, which is related in essence only on the average to problems of
time-reversal symmetry. In these problems, the antilinear operators are not applicable
by themselves, except the case of combination with some unitary operator U , for
which (as it is known) an inverse operator coincides with Hermitian-conjugated
operator (U−1 = U+, U+U = UU+ = 1). The product of an antilinear operator
by an unitary operator is called the antiunitary operator. Such is the time-reversal
operator, as it will be shown in the Sect. 2.3.

2.3 Wigner Time-Reversal Operator

The antiunitary time-reversal operator was first obtained on the basis of theoretical-
group analysis by E. Wigner in 1932 [68, 222], starting from the invariance of the
Schrödinger equation under time-reversal transformation. Before determining the
explicit form of the time-reversal operator in non-relativistic quantum mechanics,
we shall show that this operator (according E. Wigner) can not be linear. So we
consider the behavior of a physical system relative to a rotation of the coordinate
system. Let the relative arrangement of two coordinate systems be such that a point
with the radius-vector r(x, y, z) in the second (turned) system has the radius-vector
r′(x ′, y′, z′). Here the rotation is realized by a real orthogonal three-dimensional
matrix R with the determinant equal to unity. By virtue of space isotropy we can
define the function OR� as a wave function assigned to the state � by the second
observer in the turned coordinate system, or as a wave function of the initial state
�, turned by the help of transformation R and observed by the first observer in the
original coordinate system.

If the wave function would be dependent only on space coordinates, the operator
OR would be a point transformation PR

PR

∣∣ϕ(r′)
〉 = |ϕ(r)〉 , (2.33)

where |ϕ(r)〉 and ∣∣ϕ(r′)
〉
are the particle vector states in two reference systems (the

function PR

∣∣ϕ(r′)
〉
in the point (x ′, y′, z′) has the same value as the function |ϕ(r)〉

has in the point (x, y, z)).
When alongwith space coordinates the spin coordinates are included, the operator

OR can not remain a point transformation, since the spin can not be subjected to a
dot transformation. Therefore the operator OR will be more general than PR is.
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The operator OR satisfies to relationship (2.21) (at L = OR) and hence it is a
linear operator. Moreover, this operator leaves unchanged the absolute value of the
dot product of two arbitrary state vectors, and consequently it does not change the
norming condition of wave functions

| 〈OR�|OR�〉 | = | 〈�|O+
ROR�

〉 | = | 〈�|�〉 |, (2.34)

O+
RO = 1.

Relationships (2.34) take place, since the dot product of two state vectors is inde-
pendent of choice of a representation. Thus, OR is a linear unitary operator.

Let |�〉 be an arbitrary state vector, decomposed by a complete set of basic ket-
vectors |�κ

〉, beginning from |�1〉:

|�〉 =
∑

κ

aκ
|�κ

〉 . (2.35)

It may be shown [222] that the following relationships take place:

| 〈�1 + �κ|�〉 | = |a1 + aκ|, (2.36)

| 〈OR�1 + OR�κ|a1OR�1 + a′
2OR�2 + a′

3OR�3 + · · · 〉 | = |a1 + a′
κ
|, (2.37)

where a1, a′
2, a

′
3, . . . are the coefficients of decomposition of the ket-vector OR |�〉

by the complete orthogonal system of ket-vectorsOR |�1〉 , OR |�2〉 , OR |�3〉 , . . .,
so that

OR |�〉 = a1OR |�1〉 +
∑

κ=2,3,...

a′
κ
OR |�κ

〉 . (2.38)

Since
〈�1 + �κ|�〉 = 〈OR�1 + OR�κ|OR�〉 , (2.39)

then |a1 + aκ| = |a1 + a′
κ
| according to (2.36) and (2.37), and consequently

|a1 + aκ|2 = |a1 + a′
κ
|2, (2.40)

or
|a1|2 + a∗

1a
′
κ

+ a1a
′∗
κ

+ |a′
κ
|2 = |a1|2 + a∗

1aκ + a1a
∗
κ

+ |aκ|2. (2.41)

The quantity a′∗
κ
may be excluded from (2.41) on the basis of the equality a′

κ
a′∗

κ
=

aκa∗
κ
. As a result, we obtain for a′

κ
the quadratic equation

a∗
1a

′2
κ

− (a∗
1aκ + a1a

∗
κ
)a′

κ
+ a1|aκ|2 = 0, (2.42)

of which two solutions have the form
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a′
κ,1 = aκ, a′

κ,2 = a∗
κ
a1/a

∗
1 . (2.43)

In the first case (a′
κ

= aκ) for every of ket-vectors |�〉 = ∑
κ

aκ
|�κ

〉 and |�〉 =∑
κ

bκ
|�κ

〉 the relationships

OR |�〉 =
∑

κ

aκOR |�κ
〉 , OR |�〉 =

∑
κ

bκOR |�κ
〉 (2.44)

take place, so we obtain

OR(a |�〉 + b |�〉) = OR

∑
κ

(aaκ + bbκ) |�κ
〉 = (2.45)

=
∑

κ

(aaκ + bbκ)OR |�κ
〉 = aOR |�〉 + bOR |�〉 ,

and the operator OR is linear. Moreover, since there are also valid the relationships

〈OR�|OR�〉 =
〈∑

κ

aκOR�κ|
∑

λ

bλOR�λ

〉
= (2.46)

=
∑
κλ

a∗
κ
bλ

〈
�κ|O+

ROR�λ

〉 =∑
κλ

a∗
κ
bλδκλ =

∑
κ

a∗
κ
bκ,

〈�|�〉 =
〈∑

κ

aκ�κ|
∑

λ

bλ�λ

〉
=
∑
κλ

a∗
κ
bλ 〈�κ|�λ〉 =

∑
κ

a∗
κ
bκ,

it follows
〈OR�|OR�〉 = 〈�|�〉 , (2.47)

and we can conclude that the operator OR is not only a linear operator, but also an
unitary one.

Thus, the second solution a′
κ,2 = a∗

κ
a1/a∗

1 from (2.43) is not related to linear uni-
tary operators, but possibly it is related to antilinear or antiunitary operators. In order
to prove this fact, we identify the system of state vectors |�1〉 , |�2〉 , |�3〉 , . . . with
eigenfunctions of the Hamiltonian. Then |�i 〉 are stationary states. Also, stationary
states are the states T |�i 〉, where T is the time-reversal operator. Thus, state vectors
|�i 〉 and T |�i 〉 correspond to the same values of energy.

If the first solution of the equation (2.41) a′
κ

= aκ (given in (2.42)) should also
be applicable to the operatorT, thenT should be linear. This leads to a contradiction,
from which it follows that the second possibility from (2.42) is realized T [222]. In
order to come to this contradiction, we consider an arbitrary state |�0〉 and expand
it by stationary states |�κ

〉:
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|�0〉 =
∑

κ

aκ
|�κ

〉 . (2.48)

We suppose that T is a linear operator:

T |�0〉 =
∑

κ

aκT |�κ
〉 . (2.49)

SinceT |�κ
〉 is also a stationary state with energy Eκ , then the time interval t passes

to the state exp(−i Eκ t/�)T |�κ
〉when it outflows. Thus after the time interval t the

state T |�0〉 will become the state

T |�0〉t =
∑

κ

aκe
−i Eκ t/�T |�κ

〉 . (2.50)

This state must coincide with the state obtained by application of the operator T to
the state vector

|�〉−t =
∑

κ

aκe
i Eκ t/� |�κ

〉 . (2.51)

If the operator T is linear, its action on the vector |�〉−t leads to the state

T |�〉−t =
∑

κ

aκe
i Eκ t/�T |�κ

〉 . (2.52)

The state vector (2.52) is not a multiple (with a constant factor) to the state vector
(2.50), since exponents of powers under the signs of sums in (2.52) and (2.50) have
different signs. Consequently, the supposition thatT is linear, leads to a contradiction.
Therefore, the operator T corresponds to the second possibility from (2.43) (a′

κ,2 =
a∗

κ
a1/a∗

1 ) and the state vector T |�0〉 must be represented in the form

T |�0〉 = a1
a∗
1

(
a∗
1T |�1〉 + a∗

2T |�2〉 + a∗
3T |�3〉 + · · · ) . (2.53)

up to a constant factor. Since the constant factor in the definition of T |�0〉 may be
selected arbitrarily, we can select it to be equal to a∗

1/a. Then

T |�0〉 = T

(∑
κ

aκ
|�κ

〉
)

=
∑

κ

a∗
κ
T |�κ

〉 (2.54)

and thus the operator T is antilinear with respect to the system of basis state vectors
|�κ

〉 (κ = 1, 2, 3, . . .).
It is easy to show that the time-reversal operator is also antilinear with respect to

every system of wave functions. In particular, if |�1〉 =∑
κ

bκ
|�κ

〉, we have



44 2 Time Reversal in Quantum Mechanics and Quantized Field Theory

α |�0〉 + β |�1〉 = α
∑

κ

aκ
|�κ

〉 + β
∑

κ

bκ
|�κ

〉 =
∑

κ

(αaκ + βbκ) |�κ
〉 ,

(2.55)
where α and β are arbitrary complex numbers, in general case.

The action of the time-reversal operator T on the linear superposition of state
vectors (2.55) leads to the result

T(α |�0〉 + β |�1〉) = T

(∑
κ

(αaκ + βbκ) |�κ
〉
)

= (2.56)

=
∑

κ

(αaκ + βbκ)∗T |�κ
〉 =

= α∗∑
κ

a∗
κ
T |�κ

〉 + β∗∑
κ

b∗
κ
T |�κ

〉 =

= α∗T |�0〉 + β∗T |�1〉 .

The relationship (2.56) is true for every state vectors |�0〉 and |�1〉 and every two
complex numbers α and β and (as it was mentioned in the Sect. 2.2, formulas (2.22)
and (2.23)) it is the definition of the antilinear operator. This follows from the fact that
the second possibility from (2.43) is realized for the time-reversal operator, as well

as from the normalizing condition, accepted for the state vector T
(∑

κ

aκ
|�κ

〉
)
in

(2.54).
Besides the fact that the operator T is antiliniar, it is also antiunitary. Let us prove

this property of the operator for spinless particles and for spin containing systems.
In the first case the operator T is reduced to the operator of complex conjugation
K. If |ψ1〉 and |ψ2〉 are two ket-vectors related to a spinless particle, then under the
operator T = K the inner product 〈ψ1 | ψ2〉 is transformed as follows

〈T�1 | Tψ2〉 =
∫

(Kψ1 (r))� Kψ2 (r) d3r =
∫

ψ1 (r) ψ
�

2 (r) d3r = 〈ψ2 | ψ1〉 .

(2.57)
This formula is the definition of antiunitarity of the operator T.We consider now the
case of a particle with a spin. Let |�1〉 and |�2〉 be two arbitrary spinors of rank one
for a particle with spin S = 1

2 :

|�1〉 =
(

ψ
(1)
+ 1

2
(r)

ψ
(1)
− 1

2
(r)

)
, |�2〉 =

(
ψ

(2)
+ 1

2
(r)

ψ
(2)
− 1

2
(r)

)
, (2.58)

where + 1
2 and − 1

2 denote the eigenvalues (in the system of units with � = 1) of the
operator Sz . It will be shown in this chapter that the operator T can be presented as
a product of two commuting operators

T = UK = KU, (2.59)
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where U is any unitary operator and K is the operator of complex conjugation. For
a spinless particle T = K, while for a particle with spin S = 1

2 the operator T is
determined by (2.59) and, as it will be shown below, the explicit form of the operator
U is

U = iσy (2.60)

where σy is the imaginary Pauli matrix [63, 222]. So the following transformations
take place:

T |�1〉 = iσyK

(
ψ

(1)
+ 1

2
(r)

ψ
(1)
− 1

2
(r)

)
= iσy

⎛
⎝ψ

(1)∗

+ 1
2

(r)

ψ
(1)∗

− 1
2

(r)

⎞
⎠ =

⎛
⎝ ψ

(1)∗

− 1
2

(r)

−ψ
(1)∗

+ 1
2

(r)

⎞
⎠ , (2.61)

T |�2〉 = iσyK

(
ψ

(2)
+ 1

2
(r)

ψ
(2)
− 1

2
(r)

)
= iσy

(
ψ

(2)
+ 1

2
(r)

ψ
(2)
− 1

2
(r)

)
=
⎛
⎝ ψ

(2)∗

− 1
2

(r)

−ψ
(2)∗

+ 1
2

(r)

⎞
⎠ ,

〈T�1 | T�2〉 =
∫ [

ψ
(1)
− 1

2
(r) ψ

(2)�
− 1

2
(r) + ψ

(1)
+ 1

2
(r) ψ

(2)�
+ 1

2
(r)
]
d3r = 〈�2 | �1〉 .

The last formula from (2.61) represents the definition of antiunitarity of the operator
T for particles with spin, which coincides with an analogical definition for spinless
particles. We can easily extend this definition to quantum systems with the spin S.
Let |�1〉 and |�2〉 be two spinors of 2S rank

|�1〉 =

⎛
⎜⎜⎜⎜⎜⎜⎝

ψ
(1)
S (r)

ψ
(1)
S−1 (r)

...

ψ
(1)
1−S (r)

ψ
(1)
−S (r)

⎞
⎟⎟⎟⎟⎟⎟⎠

, |�2〉 =

⎛
⎜⎜⎜⎜⎜⎜⎝

ψ
(2)
S (r)

ψ
(2)
S−1 (r)

...

ψ
(2)
1−S (r)

ψ
(2)
−S (r)

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2.62)

In this case the last formula from (2.61) is transformed into

〈T�1 | T�2〉 =
s∑

ms=−S

∫
ψ(1)

ms
(r)ψ(2)�

ms
(r)d3r = 〈�2 | �1〉 . (2.63)

The transformation t → t ′ = −t of time variable is carried out by the time-
reversal operator T, which transforms the state vector and observable of any system.
The transformed state vector or operator representing an observable will be denoted
by the prime of the original state or observable. The transformation of the state vector
in Schrödinger representation can be written as

∣∣ψ1
′(t ′)

〉 = Tψ(t). (2.64)
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The transformations of the vector operator rα associated with the position of αth
particle and the vector operator Pβ associated with the momentum of βth particle
are

rα′ = TrαT−1, (2.65)

Pβ ′ = TPβT−1.

The commutators of operators xα, P̂β
x and xα′

, P̂β ′
x satisfy the relationships

[
xα′

, P̂β ′
x

]
= T

[
xα, P̂β

x

]
T−1. (2.66)

In accordance to the classical conditions, motion reversal imposes the requirements

rα′ = rα, Pβ ′ = −Pβ. (2.67)

Thus we arrive at the condition
[
xα′

, P̂β ′
x

]
= −

[
xα, P̂β

x

]
. (2.68)

Comparing this condition with the commutation relation

[
xα, P̂β

x

]
= i�δαβ (2.69)

and taking into account (2.66), we obtain [2]

�δαβTiT−1 = −�δαβ i, TiT−1 = −i. (2.70)

HenceTmust include the operator of complex conjugationK.The same result can be
obtained if instead of commutation relation (2.69) commutation relations between
operators yα and P̂β

y or zα and P̂β
z are used. Moreover, the condition (2.70) can be

obtained if instead of commutation relations between operators associated with the
position of αth particle and the momentum of βth particle ((2.69) and two other
analogical equations) we use the commutation relations between operators of pro-
jections of the total angular momentum J, which in a compact form are represented
by a single vectorial relationship

[J × J] = I�J. (2.71)

Operators L and S of orbital and spin momenta satisfy the analogical commuta-
tion relations. On the other hand, the motion reversal imposes (in accordance with
classical conditions) the requirements

J′ = −J, L′ = −L, S′ = −S. (2.72)
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Taking into account (2.71) and (2.72), we obtain again the formula (2.70):

TJT−1 = −1

�
(TiT−1)[TJT−1 × TJT−1] = −1

�
(TiT−1)[J × J], (2.73)

−J = −1

�
(TiT−1)i�J, TiT−1 = −i.

Certainly, the same result will be obtained by replacing J by operators L or S. The
conclusion about the fact that operatorT contains in amultiplicative form the operator
of complex conjugation follows also directly from the invariance of Schrödinger
equation under time reversal. Let consider firstly a system with the Hamiltonian H
in absence of external forces. Then the Schrödinger equation

i�
∂ |ψ〉
∂t

= H |ψ〉 (2.74)

must be transformed under T to

i�
∂
∣∣ψ ′〉
∂t ′

= H
∣∣ψ ′〉 , (2.75)

where t ′ = −t and
∣∣ψ ′〉 = T |ψ〉 . By applying T from (2.59) to both sides of (2.74),

we find

−i�
∂T |ψ〉

∂t
= THT−1 × T |ψ〉 ,

or

i�
∂
∣∣ψ ′〉
∂t ′

= THT−1
∣∣ψ ′〉 , (2.76)

which is consistent with (2.75) if and only if

THT−1 = H, (2.77)

that is, if and only if H is invariant under time reversal. The operator T belongs
to a class of operators, which includes those operators that, when repeated, restore
the original state. Wigner calls “involutional” such a class of operators [222]. Since
multiplication of the state T |ψ〉 by a phase factor is the only transformation that
leaves the physical state unchanged, we have for involution operator

T2 = ε1, (2.78)

where ε = eiφ is a constant phase factor, φ is an undetermined phase angle that may
be φ = 0, and 1 is the identity operator. Wigner showed that ε = ±1. The proof of
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this result is as follows
T2 = UKUK = UU�. (2.79)

Since U is unitary,
U−1 = U+ = Ũ∗

or
U∗ = Ũ−1. (2.80)

From (2.79), (2.80) and (2.78) follows

T2 = UŨ−1 = ε1 (2.81)

and
UŨ−1Ũ = εŨ, U = εŨ. (2.82)

The transpose of last equation is
Ũ = εU. (2.83)

Substituting (2.83) in (2.82), we obtain

U = ε2U,

from which ε = ±1 and taking into account (2.81),

T2 = ±1. (2.84)

Thus, there are two classes of quantum mechanical systems, “even” systems and
“odd” ones. The coordinates, total energy and kinetic energy belong to the first class.
These quantities either are not connected with time, or contain an even degree of time
variable. The velocity, linear and angular momenta are those related to the second
class. The operators corresponding to quantities of the first class are commuting with
T, while those corresponding to quantities of the second class are anti-commuting
with T [222]. For spinless particles T = K and T2 = +1, while for a system,
containing n particles with spin S = 1/2, T2 = +1 if n is an even number and
T2 = −1 if n is an odd number.

The fundamental property of the antiunitary time-reversal operator T was found
on the basis of inner product of two arbitrary states |ψ1〉 and |ψ2〉 of the spinless
particle (2.57) or arbitrary states |�1〉 and |�2〉 in the case of particles with spin
((2.61) and (2.63)). The fundamental property of the inner product under antiunitary
transformation yields directly the important result that for “odd” systems (i.e., such
systems, of which observables change the sign at time reversal) the state T |�1〉 is
orthogonal to |�1〉

〈T�1 | �2〉 = 〈T�1 | T2�1
〉
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from (2.61) or (2.63) with |�2〉 = T |�1〉 , whence, for T2 = −1

〈T�1 | �1〉 = − 〈T�1 | �1〉 = 0. (2.85)

Thus for “odd” systems the arbitrary state vector |�〉is orthogonal to the state vector
T |�〉, i.e., there is a doubly degeneracy of energy levels due to the existence of the
time-reversal symmetry. Such a type of degeneracy is called Kramers degeneracy,
after the author, who first discovered it [69], though Kramers did not connected this
degeneracy of the energy levels with the time-reversal symmetry. As we already
mentioned, the antiunitary time-reversal operator was firstly introduced in physics
by Wigner and he also showed that in the case of a system with odd number of
particles with spin 1

2 the invariance of the Hamiltonian under time-reversal operator
leads to a supplementary degeneracy of energy levels. Questions connected with
Kramers degeneracy of energetical levels will be discussed in more detail in the
Chaps. 4 and 9 after finding the explicit form of the matrix of unitary operator U for
different particular cases. In the Sect. 2.9, geometrical interpretations of time-reversal
transformation and Kramers theorem will be brought out.

Let us find the form of operatorU for a particle with spin S = 1
2 . There are several

ways to determine the matrix of operator U.
(i) In the standard representation the spin operator S takes the form

S = �

2
σ,

σx =
(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (2.86)

A useful time-reversal transformation for the spin S = 1
2 follows from the require-

ment
TJT−1 = −J, (2.87)

which occurs not only for the orbital momentum, but also for the spin (see (2.72)).
However, with respect to the spin, T cannot be a complex-conjugate operator, since
all pure imaginary Hermitian 2 × 2-matrices commute with each other. The matrix
U (2.87) must satisfy

TσxT−1 = UKσxKU−1 = UσxU−1 = −σx , (2.88)

TσyT−1 = UKσyKU−1 = −UσyU−1 = −σy,

TσzT−1 = UKσzKU−1 = UσzU−1 = −σz .

We see that U must commute with σy and anti-commute with σx and σz . Since any
matrix U can be represented as a sum of Pauli matrices, one can write

U = ασx + βσy + γ σz + δ. (2.89)
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The first of (2.88) gives α = δ = 0, the second yields γ = 0, whereas β remains
unrestricted by (2.88). However, sinceU is unitary, β must have unit modules. There-
fore, we can choose β = i , whereupon the time-reversal operation reads [70]:

T = iσyK = eiπ
σy
2 K. (2.90)

The operator T from (2.90) can be considered as conventional time-reversal operator
for a particle with spin S = 1

2 .

(i i) We represent the matrix U in the form

U =
(
a b
c d

)
. (2.91)

Taking into account formulas (2.88), written for convenience of calculations in the
form

Uσx = −σxU, (2.92)

Uσy = σyU,

Uσz = −σzU,

we obtain d = −a, c = −b, and a = 0, whence

U = b

(
0 1

−1 0

)
. (2.93)

Thematrix (2.93) coincides with iσy up to a real coefficient, which can be considered
to be equal to identity since U+U = UU+ = 1.

(i i i) The wave function of the particle with spin 1
2 can be presented in the form

|�〉 =
∑

ψms

ms=± 1
2

(r) |S,ms〉 . (2.94)

Let operator T = UK acts on |�〉 from (2.94) considering that the operator U does
not act on coordinate part of the wave function ψms (r). Then we obtain:

UK |�〉 =
∑

ψ∗
ms

ms=± 1
2

(r)UK |S,ms〉 . (2.95)

The spinwave functions
∣∣ 1
2 ,

1
2

〉
and

∣∣ 1
2 ,− 1

2

〉
are transformed under the irreducible rep-

resentation D( 1
2 ) of the rotation group of symmetry, while the state vectorsUK

∣∣ 1
2 ,

1
2

〉
andUK

∣∣ 1
2 ,− 1

2

〉
are transformed under the representation D( 1

2 )∗ . The representations

D( 1
2 ) and D( 1

2 )∗ are equivalent, because the characters of elements in these represen-
tations are the same real numbers. The matrixD( 1

2 )(α, β, γ ) defined in the spin space
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L( 1
2 ) by the basis vectors

∣∣ 1
2 ,

1
2

〉
and

∣∣ 1
2 ,− 1

2

〉
has the form [71]

D( 1
2 )(α, β, γ ) =

(
e−i α+γ

2 cos β

2 − e−i α−γ

2 sin β

2

ei
α−γ

2 sin β

2 ei
α+γ

2 cos β

2

)
, (2.96)

where α, β,nd γ are Euler angles. Since representations D( 1
2 ) and D( 1

2 )∗ are equiv-

alent, it is easy to find such a spin space L
( 1
2 )

1 with basis spinors being a linear
combination of basis spinors of the space L( 1

2 ), namely 0 · ∣∣ 12 , 1
2

〉 − ∣∣ 12 ,− 1
2

〉
and∣∣ 1

2 ,
1
2

〉+0 · ∣∣ 12 ,− 1
2

〉
, in which the matrixD( 1

2 )∗(α, β, γ ) coincides withD( 1
2 )(α, β, γ ).

In other words, under action of the operator T on spinors
∣∣ 1
2 ,

1
2

〉
and

∣∣ 1
2 ,− 1

2

〉
such a

linear combinations of these spinors arise, at which the matrixD( 1
2 )∗(α, β, γ ) defined

in the spin space L
( 1
2 )

1 coincides with the matrix D( 1
2 )(α, β, γ ) defined in the spin

space L( 1
2 ). It follows directly from here that the matrix of unitary operator U in the

basis of spinors
∣∣ 1
2 ,

1
2

〉
and

∣∣ 1
2 ,− 1

2

〉
has the form

U =
(

0 1
−1 0

)
(2.97)

that coincides with iσy . Thus, the transition from the representation D( 1
2 ) to the

representation D( 1
2 )∗ is equivalent to the transition from the basis {∣∣ 12 , 1

2

〉
,
∣∣ 1
2 ,− 1

2

〉}
to {UK ∣∣ 12 , 1

2

〉
,UK

∣∣ 1
2 ,− 1

2

〉}. However, these notations need some caution since it is
possible to give two different meanings to complex-conjugated quantities UK

∣∣ 1
2 ,

1
2

〉
andUK

∣∣ 1
2 ,− 1

2

〉
. On the one hand, the spinor unit vectors

∣∣ 1
2 ,

1
2

〉= (10
)
and

∣∣ 1
2 ,− 1

2

〉=(0
1

)
are real quantities, thereforeUK

∣∣ 1
2 ,

1
2

〉 = U
∣∣ 1
2 ,

1
2

〉
andUK

∣∣ 1
2 ,− 1

2

〉 = U
∣∣ 1
2 ,− 1

2

〉
.

On the other hand, spinor unit vectors
∣∣ 1
2 ,

1
2

〉
and

∣∣ 1
2 ,− 1

2

〉
are transformed at rotations

by the irreducible representation D( 1
2 ). Since these matrices of the representation

D( 1
2 ) are complex, the spinor unit vectors

∣∣ 1
2 ,

1
2

〉
and

∣∣ 1
2 ,− 1

2

〉
are to be considered as

complex quantities. The first interpretation at which the state vector

|�〉 =
(

ψ+ 1
2

(r)

ψ− 1
2

(r)

)
= ψ 1

2
(r)
(
1
0

)
+ψ− 1

2
(r)
(
0
1

)
= ψ 1

2
(r) ζ 1

2
(σz)+ψ− 1

2
(r) ζ− 1

2
(σz)

(2.98)
is represented as a decomposition by basic spinors

∣∣∣∣12 ,
1

2

〉
≡ ζ 1

2
(σz), (2.99)

∣∣∣∣12 ,−1

2

〉
≡ ζ− 1

2
(σz),

where ζ 1
2
(+1) = 1, ζ 1

2
(−1) = 0, ζ− 1

2
(+1) = 0, ζ− 1

2
(−1) = 1, and correspond-

ingly Kζ 1
2
(+1) = 1, Kζ 1

2
(−1) = 0, Kζ− 1

2
(+1) = 0, Kζ− 1

2
(−1) = 1 are used at
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computations of matrix elements and determination of the conditions of orthonor-
malization of basis spinors.

Particularly, the condition of orthonormalization of basis spinors is written in the
form ∑

σz

ζ ∗
α (σz)ζβ(σz) = δαβ, (2.100)

or

(
1 0
) (1

0

)
= 1,

(
1 0
) (0

1

)
= 0,

(
0 1
) (1

0

)
= 0,

(
0 1
) (0

1

)
= 1, (2.101)

which is the same. The second interpretation of quantities K | 1
2 ,

1
2 〉 and K | 1

2 ,− 1
2 〉

follows from their transformation properties. Let denote the elements of the matrix
D( 1

2 )(α, β, γ ) from (2.96) by a11, a12, a21, and a22. Then we have

R

∣∣∣∣12 ,
1

2

〉
≡ a11

∣∣∣∣12 ,
1

2

〉
+ a12

∣∣∣∣12 ,−1

2

〉
, (2.102)

R

∣∣∣∣12 ,−1

2

〉
≡ a21

∣∣∣∣12 ,
1

2

〉
+ a22

∣∣∣∣12 ,−1

2

〉
.

where the operator of rotation, described by Euler angles α, β and γ, is denoted by
R. SinceR is a real transformation of real coordinate axes Ox , Oy and Oz , the action
of operator UK on expressions (2.102) gives

RUK

∣∣∣∣12 ,
1

2

〉
≡ a∗

11UK

∣∣∣∣12 ,
1

2

〉
+ a∗

12UK

∣∣∣∣12 ,−1

2

〉
, (2.103)

RUK

∣∣∣∣12 ,−1

2

〉
≡ a∗

21UK

∣∣∣∣12 ,
1

2

〉
+ a∗

22UK

∣∣∣∣12 ,−1

2

〉
.

In accordance to the form (2.96) of matrices of transformations D( 1
2 )(α, β, γ ) ≡

D( 1
2 )(R), we have

a∗
11 = a22, a∗

12 = −a21, a∗
21 = −a12, a∗

22 = a11. (2.104)

and

R
(
UK

∣∣∣∣12 ,
1

2

〉)
≡ a11

(
UK

∣∣∣∣12 ,−1

2

〉)
+ a12

(
−UK

∣∣∣∣12 ,−1

2

〉)
, (2.105)

R
(

−UK

∣∣∣∣12 ,
1

2

〉)
≡ a21

(
UK

∣∣∣∣12 ,−1

2

〉)
+ a22

(
−UK

∣∣∣∣12 ,
1

2

〉)
.

Thus, UK
∣∣ 1
2 ,− 1

2

〉
and −UK

∣∣ 1
2 ,− 1

2

〉
are transformed like

∣∣ 1
2 ,

1
2

〉
and

∣∣ 1
2 ,− 1

2

〉
, that is

by representation D( 1
2 ). Suppose that UK

∣∣ 1
2 ,

1
2

〉
and UK

∣∣ 1
2 ,− 1

2

〉
must be expressed
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as a linear combination of unit vectors
∣∣ 1
2 ,

1
2

〉
and

∣∣ 1
2 ,− 1

2

〉
. Then according to Schur’s

lemma [75, 80]UK
∣∣ 1
2 ,− 1

2

〉
and −UK

∣∣ 1
2 ,

1
2

〉
are proportional to

∣∣ 1
2 ,

1
2

〉
,
∣∣ 1
2 ,− 1

2

〉
. We

may assume that the arbitrary phase factor is equal to identity and obtain

UK

∣∣∣∣12 ,
1

2

〉
= −

∣∣∣∣12 ,−1

2

〉
, (2.106)

UK

∣∣∣∣12 ,−1

2

〉
=
∣∣∣∣12 ,

1

2

〉
,

from where it follows again that the matrix of unitary operator U in spinor basis
{∣∣ 12 , 1

2

〉
,
∣∣ 1
2 ,− 1

2

〉} has the form (2.97)

U =
(

0 1
−1 0

)
= iσy .

Note that in the reversibility space defined by basis vectors

(
1
0

)
and

(
0
−i

)
the

time-reversal operator T for a particle with spin 1
2 obtains a supplementary factor as

a unitary antisymmetric (2 × 2)-matrix [72].
In conclusion, in parallel with the invariance of the Schrödinger equation (2.74)

and of the Hamiltonian H under time-reversal operator T (see (2.77)), we discuss
also the invariance under operator T of the Pauli equation

H |ϕ〉 = ε |ϕ〉 (2.107)

with the Hamiltonian [76]

H = mc2+ p2

2m
− p4

8m3c2
+V (r)+ �

i
· 1

4m2c2
(∇V,p)+ �

4m2c2
[∇V×p]·σ . (2.108)

Here p,m, ε and V (r) are respectively the operator of linear momentum, the mass,
the total and the potential electron energy; c is the light velocity in vacuum and σ

is Pauli operator determined by Pauli matrices σx , σy and σz from (2.86). The state
vector |ϕ〉 is a two-component spinor, which can be represented in the form of a
decomposition by basis spinors by analogy with (2.98). The first three summands
in (2.108) represent the energy of the free electron. The main summand mc2 is the
proper energy of electron, p2

2m and p4

8m3c2 are kinetic energy in null approach by
v
c (v is

the electron velocity) and mass-velocity correction in the first approach by v2

c2 . The
fifth summand described the relativistic correction constant to the potential, which
is called the Darvin correction. The last summand corresponds to the interaction of
the spin with orbital momentum of the electron. The presence in (2.108) of terms
containing operators p4, (∇V,p) does not violate the invariance of the Hamiltonian
H from (2.108) under time-reversal transformation. It is easy to see that the time-
reversed state vector |Tϕ〉, as well as the state vector |ϕ〉satisfy the Pauli equation
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(2.107) and belongs to the same eigenvalue of energy ε. In this case, as well as in the
case of the Schrödinger equation for a particle with spin 1

2 , the relationship T
2 = −1

takes place and the state vectors |ϕ〉 and |Tϕ〉 not only belong to the same energy
level, but are also mutually orthogonal (the Kramers degeneracy of energy levels due
to time-reversal symmetry).

2.4 Time-Reversal Operator in High Spin Systems

The time-reversal operator T and, respectively, the unitary operator U for systems
with high spin S can be obtained in the same way as for a particles with spin S = 1

2 .

(i) Starting from (2.90), we can write for a system formed by N particles with
spin S = 1

2 :
T = UK, U = U1yU2y...UNy = eiπ Sy , (2.109)

where Sy is the y-component of the total spin S = 1
2 (σ1 + σ2 + · · · + σN )/2 in a

system of units with � = 1. The square of T depends on the number of particles
according to

T2 =
{+1, N even,

−1, N odd.
(2.110)

Decomposition of the exponential operator from (2.109) in series leads to an infinite
sum of terms containing increasing powers of the operator Sy :

U = eiπ Sy = 1·
(
1 − π2

2! S
2
y + π4

4! S
4
y − π6

6! S
6
y + · · ·

)
+i

(
π Sy − π3

3! S
3
y + π5

5! S
5
y − · · ·

)
.

(2.111)
Since there is a restriction on the degree of spin operators, according to which spin
operators having the degree k > 2S are reduced to spin operators of less degrees
(k ≤ 2S), the operator polynomial (2.111) of degree k → ∞ is reduced to the
polynomial of degree 2S. As an example, let consider the spin S = 1. In this case the
greatest degree of operator Sy in (2.111) is equal to 2 because the following relations
between different degrees of the operator Sy from (2.111) take place

S2ky = S2y , k ≥ 1 and S2k+1
y = Sy, k ≥ 0. (2.112)

Taking into account (2.112), the operator polynomial (2.111) can be transformed to
the form

U = 1 − 2S2y . (2.113)

The matrix of the operator U in the basis of spin functions |1, 1〉, |1, 0〉 and |1,−1〉
has the form
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U =
⎛
⎝1 0 0
0 1 0
0 0 1

⎞
⎠− 2 · 1

2

⎛
⎝ 1 0 −1

0 0 0
−1 0 1

⎞
⎠ =

⎛
⎝ 0 0 −1

0 1 0
−1 0 0

⎞
⎠ . (2.114)

We see thatU is a symmetric matrix. Uniutary matrices are also symmetric for every
integer values of the spin or summary angularmomentum J . In the case of half-integer
J unitary matrices U are antisymmetric. In both cases the nonzero matrix elements
of unitary matrix U are situated on the collateral diagonal of the type indicated in
(2.114) for matrix U in the case of spin S = 1. All other matrix elements of the
matrix U are equal to zero for every systems with integer or half-integer values of
the angular momentum.

(i i) At first view it seems that using the formulas of type (2.88) to determine
the form of the matrix of unitary operator U in the case of great values of angular
momentum is weakly efficient. This is due to great dimensions of the operator matrix
of the angular momentum and, respectively, great number of unknown matrix ele-
ments of the operator U, in contrast to spin S = 1

2 , for which the number of matrix
elements is equal to 4. However, formulas of type (2.88) may be used to determine
matrix U at S > 1

2 . as a consequence of the fact that the matrix elements of the spin
projection operator are equal to zero, excepting those lying on the main diagonal
(Sz) or on the neighboring diagonals (Sx,Sy). It is especially simple done, if it is to
use the property of anti-commutation of T with operator Sz and at the same time to
take into account the unitarity of U. This is in accordance with the results obtained
in [72], where for finding the explicit form of the operator in the representation, in
which Sx and Sz have real matrix elements, and operator Sy , excepting null elements,
has pure imaginary matrix elements, the solution of the equations

USx + SxU = 0, (2.115)

USy − SyU = 0,

USz + SzU = 0,

is written in the form U = eiπ Sy . The matrix of operator U is symmetric at integer
values of S and antisymmetric at half-integer of S.

(i i i) The wave function of the system with spin S we represent in the form

|�〉 =
s∑

ms=−S

ψmS (r) |S,ms〉 . (2.116)

Let act with the operator T = UK on � from (2.116) and take into account that the
operator U does not act on the coordinate part of the wave function,

UK |�〉 =
s∑

ms=−S

ψ∗
ms

(r)UK |S,ms〉 . (2.117)
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The spin wave functions |S, S〉 , |S, S − 1〉 , . . . , |S, 1 − S〉 and |S,−S〉 are trans-
formed under the irreducible representation D(S) of the rotation group, while the
state vectors UK |S, S〉 , UK |S, S − 1〉 , . . . ,UK |S, 1 − S〉 and UK |S,−S〉 are
transformed under the representation D(S)∗ . The representations D(S) and D(S)∗

are equivalent by virtue of the same reason discussed in the Sect. 2.3 for the rep-
resentations D( 1

2 ) and D( 1
2 )∗ . Under action of the operator T = UK on spinors

|S, S〉 , |S, S − 1〉 , . . . , |S, 1 − S〉 and |S,−S〉 such linear combinations of these
spinors arise, at which the matrix D(S)∗(α, β, γ ) defined in the space L(S)

1 coincides
with the matrix D(S)(α, β, γ ) defined in the space L(S).

The unitary matrix U satisfies the relationship

D(S)∗(α, β, γ ) = UD(S)(α, β, γ )U+, (2.118)

which can be obtained taking into account that the time-reversal and space rotation
operators are commuting. The relation (2.118) is valid, since the representation D(S)

is unitary and has a real character. On the other hand, since D(S) is a irreducible
representation of the rotation group, the matrix U is determined up to a constant
factor c = ±1 [222]. Thus, depending on the value of the spin S the matrix U is
either symmetric at integer value of S, or antisymmetric at half-integer S. This can
be seen, starting directly from the form of matrix U.

According to Wigner [222], matrix elements of the matrix U from (2.118) are3

Unm = (−1)S+mδn,−m = (−1)S−nδn,−m . (2.119)

All matrix elements of the matrix U are equal to zero, excepting those which are
on collateral diagonal. In turn, these elements are equal to +1 and −1 beginning
in upper right corner and ending in lower left angle with the number +1, if S is an
integer number, and −1, if S is half-integer number:

U =

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

1

0 −1
1

... 0±1

, (2.120)

Therefore U is symmetric for integer S and antisymmetric for half-integer S. This
conclusion predicted on the basis of formulas (2.97) and (2.114), is now confirmed.

3Formula (2.119) differs from that given in [222], since our spinor basis of the matrix U differs by
a permutation of the basis spinors used in [222].
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2.5 Time-Reversal Operator in Symmetry Point Groups

In the presence of crystalline or external electric fields the representations D(S) split
into irreducible representations �γ of symmetry point groups, and so change the
form of the time-reversal operator. By analogy with (2.118) for the unitary operator
U in the case of rotation group, which can be rewritten in the form

TD(S)(R) = D(S)(R)T, (2.121)

where R is the element of the rotation group, one can suppose that in the case of
symmetry point group we can also write

T�γ (g) = �γ (g)T, (2.122)

where γ enumeratesmatrices�γ (g) irreducible representations�γ of the point group
of symmetry and g is the element of this group.

The condition (2.122) means that time reversal and transformations of symmetry
of point groups are independent operations. For the operator U these conditions are
reduced to the relationship

U�∗
γ (g) = �γ (g)U. (2.123)

However, in contrast to representations D(S) of the rotation group, of which basis
vectors are spinors and the unitary operator U is also given in the spinor basis, in the
case of representations of point groups of symmetry the matrices of operators �γ (G)

and U are given in the basises of irreducible representations �γ . There are two ways
for determining the operator U.

(i) The wave functions of the many-particle system with the total spin S in the
case of spherical symmetry are transformed under time-reversal operator T = UK
as follows [222]

T |S, M〉 = UK |S, M〉 = (−1)S+M |S,−M〉 , (2.124)

where M is the eigenvalue of the operator Sz (in the units system with � = 1) and
the matrixU is defined by basis vectors |S, S〉 , |S, S − 1〉 , . . . , |S, 1 − S〉 , |S,−S〉,
which form the representation D(S) of the rotation group. At lowering the symmetry
basis vectors of the irreducible representations �γ of point symmetry groups can be
determined by means of Clebsh–Gordan coefficients for point groups of symmetry
[73]. The basis vectors of representations �γ , obtained by such a way, are subjected
to the action of the time-reversal operator T. As a result, the matrices U in the bases
of irreducible representations �γ can be obtained.

(i i) We start directly from the basis function-operators of the irreducible repre-
sentations �γ , expressed in a general case as polynomials of the spin projections
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operators Sx , Syand Sz . The form of matrices of the operators U is found as a result
of action of the time-reversal operator T = UK on basis function-operators of rep-
resentations �γ .

Using the both methods (i) and (i i) leads to the same results concerning the
matrices of operatorsU for different irreducible representations of the point symme-
try groups.

The matrices of unitary operatorsU for ordinary irreducible representations of 32
point groups of symmetry are presented in the AppendixA.

2.6 Wigner Criteria of Energy Levels Degeneracy Due to
Time-Reversal Symmetry

In the Sect. 2.4, it was shown that the Schrödinger equation (2.76) for the state vector∣∣ψ ′〉 is consistent with (2.75), ifH is invariant under time-reversal. Under stationary
conditions the Schrödinger equation take the form

(H − E) |ψ〉 = 0. (2.125)

At real Hamiltonian when H∗ = THT−1= H the state vectors |ψ〉 and T |ψ〉 corre-
spond to the same energy level, as well as functions |ψ〉 and g |ψ〉, where g is one
of the elements of the Hamiltonian symmetry group G. Therefore, the time-reversal
operator T can be considered as a new element of symmetry.

It is easy to show that the operatorT commutes with all symmetry transformations
of the space groupG.Since |ψ〉 andT |ψ〉 are transformedunder complex-conjugated
representations D and D∗ of this group, we can write

g |ψi 〉 =
∑
j

D ji (g)
∣∣ψ j
〉
, (2.126)

g(T |ψi 〉) =
∑
j

D∗
j i (g)

(
T
∣∣ψ j
〉)

.

On the other hand,

Tg |ψi 〉 = T

⎛
⎝∑

j

D ji (g)
∣∣ψ j
〉
⎞
⎠ =

∑
j

D∗
j i (g)(T

∣∣ψ j
〉
),

that is
Tg = gT. (2.127)



2.6 Wigner Criteria of Energy Levels Degeneracy Due to Time-Reversal Symmetry 59

The state vectors |ψ〉 andT |ψ〉, satisfying the same (2.125) and corresponding to
the same energy level may be linearly independent or linearly dependent. In the first
case, two orthonormed state vectors |ψ〉 and T |ψ〉 correspond to one eigenvalue of
energy E . In the second case, two state vectors |ψ〉 and T |ψ〉 are expressed each by
other using the unitary matrix C :

T |ψi 〉 =
∑
j

C ji

∣∣ψ j
〉
. (2.128)

We can see that in the last case the representations D and D∗ are equivalent.
In the case, when the state vectors |ψ〉 and T |ψ〉 are linearly independent, they

may be transformed either by equivalent representations or by not equivalent ones.
We have seen (see (2.85)) that, for “odd” systems, the arbitrary state vector |ψ〉 is
orthogonal to the state vectorT |ψ〉, i.e., there is a double degeneracy of energy levels
due to existence of time-reversal symmetry4 (the Kramers theorem). The presence of
this degeneracy can be shown in otherway. It follows from (2.77) that ifH |ψ〉 = Eψ,

thenHT |ψ〉 = ET |ψ〉 .Therefore, |ψ〉 andT |ψ〉 belong to one and the same energy
level. In order for this to lead to degeneracy, it is necessary to show that these state
vectors are linearly independent. We suppose the contrary, that is we consider that

T |ψ〉 = c |ψ〉 , (2.129)

where c is a constant. Then

T2 |ψ〉 = Tc |ψ〉 = c∗T |ψ〉 = c∗c |ψ〉 . (2.130)

For systems with an odd number of electrons this leads to a contradiction with
T2 |ψ〉 = − |ψ〉 for “odd” systems, since c∗c positive and can not be equal to −1.
Thus, the supposition (2.129) is false, and |ψ〉 and T |ψ〉 are linearly independent.
Since T2 |ψ〉 = − |ψ〉, the multiplicity of degeneracy of every energy level is even
according to the Kramers theorem.

It is easy to show that if the Hamiltonian of the system is invariant under time-
reversal, then acting with the transformation T on some degenerated system of eigen
state vectors, we obtain another system of eigen state vectors with the same degree of
degeneracy. Let the initial system of state vectors is transformed by the representation
of symmetry group of the Hamiltonian. Then the new system will be transformed
by the complex-conjugated representation D∗. A question arises, whether the new
system of state vectors will be linearly independent of the old one. If the new system
of state vectors and the old one will be linearly dependent, then none new degeneracy
of energy levels will appear. In the opposite case the time-reversal symmetry leads
to the appearance of a new degeneracy of energy levels.

4In the absence of a magnetic field.
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There are three cases5 [9, 74–78, 222]:

(a) The representation D is real or can be reduced to a real one with the help of
an equivalent transformation of basis vectors.

(b) The representations D and D∗ are nonequivalent.
(c) The representations D and D∗ are equivalent, but can not be reduced to a pure

real form with the help of equivalent transformation of basis vectors.
Further we shall subdivide these cases and consider separately systems with even

and odd numbers of electrons. In addition, we shall consider that the Hamiltonian is
invariant under time-reversal and shall determine, in what cases this leads to the same
supplementary degeneracy of energy levels in comparison with that which follows
only from the symmetry of the group G. Let us first consider a system with an even
number of electrons.

Case (a). Let state vectors |ψi 〉 be chosen in such a way that representation D is
real. Then

RT |ψi 〉 =
∑
j

D∗
j i (R)T

∣∣ψ j
〉 =∑

j

D ji (R)T
∣∣ψ j
〉
, (2.131)

and functions |ϕi 〉 = |ψi 〉 + T |ψi 〉 are also transformed by the representation D of
the group G. From (2.110), the case of N even (T2 = +1), it follows T2 |ϕi 〉 =
|ϕi 〉 , so that the system |ϕi 〉 passes self into itself under the action of all symmetry
transformations, that is under action of transformations of the group G and the
time-reversal operator. Thus, there are no symmetry transformations, connecting the
system |ϕi 〉 with other state vectors and therefore the additional degeneration of
energy levels is absent.

Case (b). The state vectors T |ψi 〉 are transformed under the representation D∗,
which is not equivalent to the representation D, so that |ψi 〉 and T |ψi 〉 are linearly
independent. Thus, representations D and D∗ alwaysmeet each other simultaneously.
Since the Hamiltonian H is invariant with respect to T, the state vectors |ψi 〉 and
T |ψi 〉 belong to the same energy level, and we have a supplementary degeneracy. If
there is a symmetry relative to time-reversal, then such two representations are always
degenerated and behave as one double degenerated irreducible representation. For
this reason such a pair is joined by brackets and is denoted by an unique symbol.

Case (c). In this case the time-reversal symmetry leads to a supplementary degen-
eracy of energy levels (doubling of degeneracy). It is possible to show thatT

∣∣ψ j
〉
and

|ψi 〉 can not be linearly independent for all j , since in the opposite case it would be
possible in the vector space (

∣∣ψ1

〉
, . . . , |ψn〉) to form functions

∣∣ϕ j
〉 = ∣∣ψ j

〉+T
∣∣ψ j
〉
,

satisfying the condition T
∣∣ϕ j
〉 = ∣∣ϕ j

〉
, leading to the case (a). Thus, at least one

of the state vector T
∣∣ψ j
〉
is not a linear combination of state vectors |ψi 〉 . Further,

using this state vector, on the basis of standard methods it is possible to determine

5The indicated classification of cases (a), (b) and (c) is rather different from that introduced in [78],
for which (a) it is related to the case when functions |ψ〉 and T |ψ〉 are linearly dependent, (b) it
is referred the case when functions |ψ〉 and T |ψ〉 are linearly independent and are transformed
by nonequivalent representations, and (c) is related to the case when |ψ〉 and T |ψ〉 are linearly
independent and are transformed by equivalent representations. For ordinary representations both
classifications coincide, but for spinor representations the cases (a) and (c) change places.
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all the other state vectors of the representation D∗, which is equivalent to D. In such
a way we can construct a complete system of basis state vectors orthogonal to state
vectors |ψi 〉.

Consider nowa systemwith an odd number of electrons. In contrast to the previous
case, for which the relation T2 = +1 was used for N even, now it is necessary to
use the relationship T2 = −1 (or T2

∣∣ψ j
〉 = − ∣∣ψ j

〉
) for N odd.

Case (a). According to (2.126), the state vectors |ψi 〉 and T |ψi 〉 are transformed
again under representations D and D∗ of the symmetry group G, respectively. As
in the proof of the Kramers theorem (see (2.129)), the relationship T |ψi 〉 = c |ψi 〉
can not be valid. However, it is the unique possible if |ψi 〉 and T |ψi 〉 belong to
the same irreducible vector space. Therefore, the representation D enters twice and
there is an additional doubling of the degeneracy of energy levels due to time-reversal
symmetry.

Case (b). Since we have not used the relationship (2.110), the situation is the
same for even, as well as for odd number of electrons. Thus, the state vector T |ψi 〉
is transformed under the representation D∗ of the group G, which is not equivalent
to the representation D, so that |ψi 〉 and T |ψi 〉 are linearly independent and belong
to the same energy level and representations D and D∗ always meet each other
simultaneously. The presence of the time-reversal symmetry leads to a supplementary
degeneracy of energy levels as a consequence of the fact that such two representations
are always degenerated and behave themselves as one twice degenerated irreducible
representation.

Case (c). In this case it is possible to show that for an odd number of electrons it is
always possible to choose basis vectors |ψi 〉 so thatT

∣∣ψ j
〉
will be a linear combination

of |ψi 〉 [68, 75]. Hence, the supplementary degeneracy of electron levels due to the
time-reversal symmetry is absent.

Thus, the obtained results for the three cases (a), (b), and (c) are essentially
different and also essentially depend on the fact, what is (even or odd) the number
of electrons and, in a more general case, the number of particles with spin 1

2 in the
system. These results may be stated shortly in the following form:

1. At an even number of electrons or neglecting the spin:
(a) There is no supplementary degeneracy.
(b) The representations D and D∗ are realized simultaneously and between them

a supplementary degeneracy appears.
(c) There is a supplementary degeneracy.

2. At an odd number of electrons (with spin):
(a) There is a supplementary degeneracy.
(b) Representations D and D∗ are realized simultaneously and between them a

supplementary degeneracy appears.
(c) There is no supplementary degeneracy.

There exists a simple method, permitting to determine to what case from the three
ones is related the given representation. In particular, this is related to cases (a) and
(c), since the case (b) may be established directly by the table of characters. We give
without proof the following criteria, which depends only on group characters:
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∑
R

χ(R2) =

⎧⎪⎪⎨
⎪⎪⎩

h − the case (a),

0 − the case (b),

−h − the case (c).

(2.132)

Here R enumerates all elements of the Hamiltonian symmetry group G, χ is the
character of the element R2 in a considered irreducible representation and h is the
order of the group. Such a classification of irreducible representations of the groupG
taking into account the invariance of the HamiltonianH under time-reversal operator
was first fulfilled by Wigner [222]. The results obtained by Wigner were based on
the theorem, proved for the first time by Frobenius and Schur [74].

Frobenius–Schur Theorem. If D is any irreducible representation of a finite
group G of the order N and if χD(g) is the character of the element g in this repre-
sentation D, then

∑
g∈G

χD(g2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

N , if D is equivalent to the representation realized

by real matrices;
0, if representations D and D∗ are nonequivalent;
−N , if D is equivalent to D∗, but is equivalent to none

representation, constructed entirely from real matrices.
(2.133)

Summation in (2.132) is carried on by all elements of the group G. In (2.132),
the first, second, and third possibilities from (2.133) are called case (a), (b), and (c),
respectively.

The proof of the Frobenius–Schur theorem consists in the fact that

∑
g∈G

χD(g2) =
∑
i, j

∑
g∈G

Di j (g)Dji (g) =
∑
i, j

∑
g∈G

Di j (g)D
∗
i j (g

−1). (2.134)

If the representations D and D∗ are non-equivalent, then the sum from (2.134)
vanishes by virtue of the main theorem of representation theory concerning the
relation of orthogonality for every two irreducible representations Dq and Dp

∑
g∈G

D(q)

i j (g)D(p)−1

kl (g) = N

dp
δilδ jkδ

′
qp, (2.135)

where dp is the dimension of the representation Dp. Symbol δ′
qp means that δ′

qp = 0
if the representation Dq is nonequivalent to Dp and δ′

qp = 1 for Dq ≡ Dp [76]. But
if representations D and D∗ are equivalent, that is

D∗ = S−1DS, (2.136)
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where the operator S satisfies relationships6

SS∗ = ±1, (2.137)

then according to (2.132) we have again

∑
g∈G

χD(g2) =
∑
i, j

∑
g∈G

Di j (g)S
−1
im Dmn(g

−1)Snj = N

d

∑
i, j

S−1
i j Si j = (2.138)

= N

d

∑
i, j

S∗
j i Si j = N

d
Sp(S∗S) = ±N ,

where d is the dimension of the representation D. The upper (lower) sign before N
corresponds to the upper (lower) sign in (2.137).

2.7 Herring Criteria for Energy Bands Degeneracy Due
to Time-Reversal Symmetry

Frobenius–Schur theorem is also the basis for elucidation the possibility of existence
of additional degeneracy of state vectors due to time-reversal symmetry in the case of
space groups. Such an analysis was first fulfilled by Herring [79]. The nontriviality
of applying the Frobenius–Schur theorem to a crystal consists in the fact that the
continuous translation group, which is an invariant subgroup of the space group,
contains an infinite number of elements, while formulas (2.133) are deduced for
finite groups. Every space group G contains as an invariant subgroup the group of
translations T, consisting from all translations of the form

R =
3∑

i=1

ni ti , (2.139)

where t1, t2, t3, are three main translation vectors, directed along crystallographic
axes and n1, n2, n3 a set of integer positive and negative numbers. If the crystal-
lographic model is given by three of its dimensions N1t1, N2t2 and N3t3, where
N1, N2, N3 are big numbers, then Born–Carman boundary cyclic conditions can be
written in the form

RN100 = R0N20 = R00N3 = R000 (2.140)

(RN100 = N1t1, R0N20 = N2t2, R00N3 = N3t3, R000 = 0).

6Relation SS∗= 1 corresponds to case (a), when representation D is equivalent to the real repre-
sentation Dr (D ∼ D∗ ∼ Dr), while the relation SS∗= −1 corresponds to the case (c), when a
real representation equivalent to D does not exist [76].
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On the basis of this, the group of translations can be changed by a finite group,
consisting of N1N2N3 elements. All the irreducible representations of this group are
unidimensional with Block wave functions ψk(r) = uk(r) exp(ikr), where uk(r) is
the periodical part of the Block function, as basis vectors:

Rψk(r) = ψk(r + R) = eikRψk(r). (2.141)

Therefore each irreducible representation of the finite Abelian group of N1N2N3

dimension, replacing the translation group, is determined by the wave vector k.
However, this determination is not unique, firstly, because in the k space there is a
whole lattice (inverse lattice) of vectors

K =
3∑

i=1

mibi , (2.142)

where bi (i = 1, 2, 3) are the basis vectors of the inverse lattice and m1, m2, m3 are
integer positive or negative numbers, which satisfy the relationship

exp(iKR) = 1 (2.143)

for all R. Since for all R the relation

exp(ikR) = exp{i(k + K)R}, (2.144)

takes peace, the vectors k and k + K (where K is the vector of the inverse lattice)
belong to one and the same irreducible representation of thefinite groupof N1, N2, N3

dimension. Hence, in order to determine the representations uniquely, it is necessary
to restrict k by same range, which is an elementary cell of inverse lattice (the reduced
Brillouin zone). The second restriction on k is imposed by the boundary cyclic
conditions (2.140) and is reduced to the fact that wave vector k can be represented
in the form [9]

k =
3∑

i=1

qi
Ni

bi , (2.145)

where q1, q2 and q3 are integer numbers. This formula determines the complete
number N1N2N3 of different irreducible representations in the reduced Brillouin
zone. N1N2N3 values of the vector k are uniformly distributed across the whole
zone. At such approach some uncertainty still remains concerning vectors k lying on
the surface of the zone. Since the Brillouin zone is an unit cell of inverse lattice, the
distance between opposite faces is always equal to the length of a vector of inverse
lattice.

On Fig. 2.1 the Brillouin zone of a square lattice with indicated singular points of
six types is shown. The wave vector k� = 0 corresponds to the center of Brillouin
zone. Vectors kZ and kZ ′ differ by a vector of inverse lattice K1: kZ ′ = kZ + K1.
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Fig. 2.1 The Brillouin zone
of a square lattice with
plotted singular points of six
types: a singular points
�,�, X, Z , �, M; b star of
vector k�

(a)

(b)

These vectors determine the same representation. Similarly there is also another
representation, which is denoted by one of the four vectors kA,kB,kC and kM .

The singular points of theBrillouin zone differ in that for them two ormore vectors
ki are identical. They may be found identical, if they (1) lie on the axis of rotation or
on the plane of symmetry, (2) are separated from each other by a vector of inverse
lattice and (3) conditions (1) and (2) are fulfilled simultaneously. According to this
classification, the points �,� and � are related to the type (1), Z – to the type (2),
and X and M – to the type (3).
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In order to determine the presence or absence of the additional degeneracy of
energy bands of crystals due to time-reversal symmetry it is necessary some infor-
mation about the space groups of symmetry and groups of the wave vector. From
physical point of view, the space group is formed from all the symmetry transforma-
tions, as a result of which the crystal is superposed self by itself. This corresponds to
the rigorous mathematical definition, according to which the space group is called
a discrete subgroup of the real affine group (consisting of various translations and
orthogonal transformations of the three-dimensional space), of which translations
form its invariant subgroup T and have the form {ε | Rε | Rε | R}, where εεε is the identity
transformation of the space and R is determined by (2.139). A parallelepiped con-
structed on the basis vectors t1, t2 and t3 (2.139) is called the unit cell of the crystal.
The crystal lattice can be considered as constructed from identical cells. The vertices
of parallelepipeds forming each unit cell, which are the ends of the vectors R, are
called Bravais nodes. The lattice formed by the Bravais nodes is called the Bravais
lattice, which corresponds to the space group of the crystal under consideration.
Nodes of this lattice do not necessary coincide with the positions of equilibrium of
oscillating particles. Moreover, the number of equilibrium positions of particles in
the general case is greater than the number of nodes of Bravais lattice. Let {α | Rα | Rα | R} be
an arbitrary element of the space group G (ααα is an orthogonal transformation). The
point transformation ααα of the element {α | Rα | Rα | R} of the space group form themselves a
group, which is called the point group G0. One of the important property of space
groups is that the space group lattice remains invariant relative to all elements of the
point group, corresponding to a given space group.

In [76], it is shown that between two wave vectors k and k′, of which values lie
in the first (irreducible) Brillouin zone and which characterize representations D(i)

and D(i ′) of the space group of symmetry G, the following relationship takes place:

k′ = αkαkαk +KKK. (2.146)

Here the superscript i indicates that D(i) is an induced representation obtained on
the basis of a representation of the wave vector group Gk, the definition of which is
given below (similarly for D(i ′)); K is an arbitrary vector of the inverse lattice. We
remark that though vector k lyes in the Brillouin zone, it may turn out that αkαkαk does
not yet lye inside it. So, in order for k′ lyes in the Brillouin zone, the conditionK �= 0
must be fulfilled, since only adding a nonzero vector of the inverse lattice will pass
again the vector αkαkαk inside the Brillouin zone. The totality of vectors k′, obtained on
the basis of (2.146), when ααα ranges over all elements of the point group is called the
star of the vector k. The number of different “rays” of the star is called the order of
the star. The same proper value of energy corresponds to all members of star. The
order of the star is not greater the h (h is the order of the point group). If the star order
equals to h, the star is of a general type. Than the position of the vectors of the star is
more symmetric, so its order and the number of its rays is smaller. Particularly, the
star of the vector k = 0 consists of only one ray. On Fig. 2.1b the star of the vector
k� is presented. � represents the point of type (1).
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Now, it is possible to construct a small group, consisting of elements {α | Rα | Rα | R}, for
which

αkαkαk = kkk +KKK. (2.147)

Here the vectorK is not zero only for vectors k, lying on the surface of the Brillouin
zone, and it serves to return vectors αk,αk,αk, if they are out of the Brillouin zone. Such a
small group is called the group of wave vector and it is denoted by Gk. This group
consists of elements {α | Rα | Rα | R} of the space group, the point transformations ααα, which
pass star rays of the vector k into itself (or if K �= 0, into an equivalent position of a
given ray).

The collection of different vectors, which are part of the star of the vector k
corresponds to basis functions of representation D(i) of the space group G. Since
this collection includes all the set of vectors k, vectors αkαkαk coincides with one of the
vectors ki for all elements g ∈ G. Let take any vector k1 of the star of representation
and consider all possible vectors αkαkαk1. All these vectors enter into the star (among
them may be also equal). There are only two possibilities [78]:

(i) The set of vectors αkαkαk1 exhaust all stars of the representation D(i). Such a star
is called reducible. Each irreducible star is determined by some vector k1. The other
wave vectors are obtained as a result of applying the transformations of the group
G. The irreducible star that is characterized by a single vector k1 is denoted.

(i i) The set αkαkαk1 does not exhaust all the stars. Such a star is called reducible. It
is clear that such a reducible star may be decomposed into irreducible stars.

In the study of irreducible representations only irreducible stars are essential. It
may be proved that every irreducible representation possesses only an irreducible star
[78]. It should be noted that the converse assertion is not true, because in the center of
the Brillouin zone a irreducible star consisting of a single vector k = 0 corresponds
to every representation, including a reducible one as well. We also mention that if the
vector k1 occupies a general position inside the Brillouin zone, then the star {k1} is
irreducible and the respective representation of the space groupG is also irreducible.

In the group Gk of the wave vector, as well as in the space group G, there is an
invariant subgroup of translations. The quotient group on this subgroup is isomorphic
to the point group, which includes all the rotary elements ααα ∈ G0k, which either do
not change k or passes the vector k into an equivalent vector. The point group G0k

is determined by a vector k and is a subgroup of the group G0, which characterizes
the crystallographic class. In the case of point k = 0 in the center of the Brillouin
zone G0k = G0 and in this case Gk = G. Points groups G0k for singular points
�,�, X, Z , � and M on Fig. 2.1a are the groups 4mm, 4mm, 2mm, 4mm, 4mm
and 4mm, respectively (here the international notations for point symmetry groups
are used).

The representation Dk of the wave vector groupGk, which is also called the small
representation, determines uniquely the representation D(i) of the space group with
irreducible star {k}. Moreover, if the representation Dk is irreducible, then represen-
tation D(i) of space group is irreducible as well. Similarly, if the representation Dk

is unitary, then it is the same for representation D(i) of a space group.
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The problem of construction of irreducible representations of the space group is
reduced to the construction of irreducible representations of small groups Gk. The
admissible irreducible representations of the group Gk are expressed by irreducible
representations of the point group G0k of the wave vector k.

In addition, if it is fulfilled at least one of the following two conditions:
(1) vector k lies strictly inside the Brillouin zone;
(2) Gk is a symmorphic group (the elements of Gk are only admissible transla-

tions), then the number of nonequivalent admissible irreducible representations Dk

of the group Gk is equal to the number of nonequivalent irreducible representations
D0k of the point group G0k of the wave vector k.

Between the matrices of representations Dk and D0k there exists the relation [76]

Dk({βββ|b}) = e−ikbD0k(βββ), (2.148)

where {βββ|b} is an arbitrary element of the group Gk (βββ is an orthogonal transfor-
mation and b = vβ + R, vβ is the vector of a non-elementary translation) and βββ in
the right side of the (2.148) is the element of the point group G0k. Under the made
suppositions (1) and (2) it is possible to prove that matrices D0k(βββ) and Dk({βββ|b})
really form an irreducible representations of the point groupG0k and the wave vector
group Gk, respectively. This statement is valid as a consequence of the fact that the
relation

Dk({β|b})Dk({β ′|b′}) = Dk({β|b}{β ′|b′}) (2.149)

is fulfilled for all β, ββ, ββ, β ′ ∈ G0k [76].
Since the point symmetry groups have not high orders, using (2.148) it is easy

to find irreducible representations of the wave vector group Gk, and on its basis to
determine irreducible representations of space groups. Difficulties appear only for
the non-symmorphic space group in the case when the star vector get into the surface
of the Brillouin zone. If in the wave vector group there are non-trivial screw axes or
planes of slip planes and the wave vector k lies on the frontier of the Brillouin zone,
then relations (2.149) are not fulfilled and it is necessary to construct the so-called
loaded [7] or that is the same projective [78] representations instead of usual vectorial
irreducible representations of the space groups.

The projective representations were first introduced by Schur, which developed
the general theory of projective representations and worked out methods of finding
the projective representations of finite groups [80] (see also monographs [81, 82]).
All irreducible representations (vectorial and projective) of the space groupG can be
obtained, taking one ray k from every star and inducing irreducible representations
of group G from all non-equivalent admissible irreducible representations Dk of the
wave vector group Gk. If m is the dimension of the representation Dk and s is the
order of star {k}, then the dimension of the representation D(i) of the space group
is equal to ms. Herring [79] investigated conditions (2.133), obtained by Frobenius
and Schur for finite groups [74], in connection with space groups. In this case, these
conditions take the form:
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∑
Q0

χ(Q2
0) = nk in case (a), (2.150)

∑
Q0

χ(Q2
0) = 0 in case (b),

∑
Q0

χ(Q2
0) = −nk in case (c).

Here it is denoted by Q0 the element of the space group G, which passes k in−k,
and by nk – the order of the group ofwave vectork. That iswhy the transformation Q2

0
does not change the vector k and it is an element of the wave vector group Gk. As χ

in (2.150), it means the character of the element Q2
0 in the irreducible representation

of the group Gk (but not G!).
The Herring criteria (2.150) are related to spinless systems, as well as to systems,

for which spin is considered, since it is a mathematic property of group representa-
tions and does not depend on any its applications in quantum mechanics.

If the space group G contains the inversion i and i is the element of the group Gk,
then Q0 is an element of the group Gk. If i is also an element of the group G, but
does not enter in Gk, then Q0 are elements of i⊗Gk. That is why the criteria (2.150)
are easy to apply, if the table of characters of the group Gk is known. Moreover, it
is not necessary to make an implicit summation by all elements of the group, which
are represented by identical matrices, but it is sufficient to take one element of each
type.

Elliot [83] showed how to use the table of characters of the wave vector group Gk

for the elucidation of question about the equivalence of a given irreducible represen-
tation of the space group to its complex conjugated representation. If it is to denote
by χ and χ ′ characters of some irreducible representation of the group G and those
of representation, which is complex conjugated to it, then between these characters
there is the relation

χ ′({ααα| RRR}) = [χ({ααα| RRR})]∗eikRkRkR . (2.151)

By denoting k = −k + K, one must distinguish three cases depending on the
relation between k and k [76, 83].

Case 1: k = k. Such a relation can occur only at 2k = K, particularly, for k = 0.
If there is an additional degeneracy due to time-reversal symmetry (according to
Herring, the cases (b) and (c) without spin and the cases (a) and (b) with spin), then
the irreducible representation Dk of the wave vector groupGk is not equivalent to the
representation D∗

k. In this case, every ray of the star is doubly degenerated (additional
degeneracy of energy bands).

Case 2: k �= k, the star {k} coincides with the star {k}. If there is no additional
degeneracy (according to Herring, the case (a) without spin and the case (c) with
spin), then representations D(i) and D(i)∗ of the space group G are given in the same
space of the representation.

If there is additional degeneracy due to time-reversal symmetry, then spaces corre-
sponding to representations D(i) and D(i)∗ are different. Since stars of representations
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D(i) and D(i)∗ coincide, then D(i)∗ may be obtained from the same ray k, as D(i). In
this case, firstly D(i)∗ must be obtained beginning with the ray k. Thereupon with the
help of transformation of similarity the representation D(i)′ is obtained. This repre-
sentation can be already construct beginning with the ray k. Functions corresponding
to the ray k are basic functions of the representation D∗

k of the wave vector group
Gk. For matrix D′

k of the representation D′
k the equality

D′
k(g) = D′

k(ggg
−1) (g ∈ Gk = Gk) (2.152)

takes place [76]. SinceGk = Gk, then D′
k
is the representation of the groupGk. In this

case, the representation D′
k coincides with D∗

k, so for the matrix of the representation
D′

k, from which D(i)∗ is obtained, we have

D′
k(g) = D∗

k(ggg
−1) (g ∈ Gk). (2.153)

Thus, “small” representations Dk and D′
k, on the basis of which representations D

(i)

and D(i)′ of the space group G may be obtained, are connected each to other in a
sufficiently complicated way, as it follows from the relation (2.152).

Case 3: k �= k, star {k} does not coincide with the star {k}. In this case, repre-
sentations D(i) and D(i)∗ of the space group G belong to different stars, and they are
not equivalent. The case (b) takes place, by Herring. Additional degeneracy consists
in covering the energy bands due to time-reversal symmetry.

2.8 Corepresentations of a Symmetry Group

The time-reversal operator is an antiunitary operator. In spite of this it may be joined
together with unitary operators g in a special group. Moreover, state vectors |ψ〉
and T |ψ〉, if they are linearly independent, are also joined and form a representa-
tions of this group, called corepresentation, to remind about the sign of the complex
conjugation in the basis relation, which determines the corepresentation (see below).

Corepresentations were first introduced by Wigner [222]. Properties of corep-
resentation differ from the properties of usual group representations. They were
considered in details in [84, 222].

When the influence of the time-reversal symmetry on energy spectrum, rules
of selections and other characteristics are considered, one may use at once these
corepresentation, or begin with usual representations of space or point group and
influence of the time-reversal symmetry is considered in addition. Certainly, both
these approaches lead to the same results, however using the second method seems
to be physically more visual [78]. In connection with this, below we consider very
briefly bases of themethod of the corepresentation theorywithout a detailed analysis.

The theory of representation of a group by linear transformations does not give a
complete mathematical basis to consider a symmetry group, containing antiunitary
operators. That is why it needs an extension. Before we pass to corepresentations,
let consider briefly the method of introducing usual group representations, in order
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to see by comparison the distinction between corepresentations and representations.
According to Wigner [222], the group, necessary to be considered in order to obtain
consequences of the symmetry of some problem, is not the group of physical trans-
formations, but the group of quantum mechanical operators, corresponding to these
transformations.

By denoting elements of the symmetry group G of Schrödinger equation by
R, S, . . . , one may introduce linear operators PR,PS, . . . corresponding to these ele-
ments. In general case, when an eigenvalue E of the Hamiltonian with l linearly
independent eigenfunctions |ψ1〉 , |ψ2〉 , . . . , |ψl〉 are considered, these state vectors
under the operator P are transformed under the representation D of the group G:

PR |ψκ
〉 =

l∑
κ=1

D(R)κν |ψκ
〉 . (2.154)

If S belongs also to the symmetry group G, then we have

PS |ψκ
〉 =

l∑
λ=1

D(S)λκ
|ψλ〉 . (2.155)

Further, one may show that

PSPR |ψν〉 =
l∑

λ=1

l∑
κ=1

D(S)λκD(R)κν |ψλ〉 . (2.156)

On the other hand,

PSPR |ψν〉 = PSR |ψν〉 =
l∑

λ=1

D(SR)λν |ψλ〉 . (2.157)

By comparing (2.156) and (2.157), we obtain

D(SR)λυ =
l∑

κ=1

D(S)λκD(R)κν, (2.158)

whence it follows that matrices D(S),D(R) and D(SR) satisfy the relation

D(SR) = D(S) · D(R). (2.159)

These matrices form an irreducible representation of dimension l of the group G,
relative to which the stationary Schrödinger equation H |ψ〉 = E |ψ〉 is invariant.
In order to pass to corepresentations, we take into account that the time-reversal
operator T commutes with operators OR and OU , which correspond to rotations of
the coordinate system:



72 2 Time Reversal in Quantum Mechanics and Quantized Field Theory

ORT = TOR, OUT = TOU , (2.160)

where U is an element of the two-dimensional unimodular unitary transformation
group.

We mention that if the number of electrons of the considered system is odd,
then the group of quantum mechanical operators, which correspond to rotations, is
isomorphic to the group of two-dimensional unitary unimodular transformations and
is only homomorphic to rotation group. In this case,U = −1, notU = 1 corresponds
to operator T2. The complete group consists of unitary transformations OU and
antiunitary transformations TOU with multiplications rules [222]

OV · OU = OVU , TOV · OU = TOVU , (2.161)

OV · TOU = TOVU , TOV · TOU = O±VU ,

where the upper sign in the last equality relates to even and the lower one to odd
number of electrons. The multiplication rules (2.161) show that unitary operators
form an invariant subgroup of index 2 and antiunitary operators form a coset of this
subgroup.

Relations of type (2.154) and (2.155) remain valid also for antiunitary operators
TOU :

TOU |ψκ
〉 =

∑
λ

D(TOU )λκ
|ψλ〉 . (2.162)

It remains also in force the assertion about the fact that the matrixD(TOU ) is unitary,
if state vectors |ψκ

〉 are orthogonal. This is a consequence of the fact that by virtue
of (2.57) and (2.61), the relation

〈TOUψκ | TOUψλ〉 = 〈OUψλ | OUψκ
〉 = 〈ψλ | ψκ

〉 = δλκ (2.163)

is fulfilled as well as for unitary operators.
We can see that the product of matricesD(TOV) andD(OU ) orD(TOU ) nowwill

be not equal toD(TOVOU ) =D(TOVU ) orD(TOVTOU ) =D(O±VU ). In particular,
if it is to apply TOV to (2.162), we obtain

TOVTOUψκ =
∑

λ

D(TOU )∗λκ
TOVψλ =

∑
λ,μ

D(TOU )∗λκ
D(TOV )μ,λψμ,

(2.164)
whence it follows

D(TOV )D(TOU )∗ = D(TOVTOU ) = D(O±VU ). (2.165)

In a similar way,

D(TOV )D(OU )∗ = D(TOVOU ) = D(OVU ). (2.166)
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Equations (2.165) and (2.166) show that matrices, which transform self-functions
under group operations, do not form representations of this group, if the group con-
tains antiunitary operators. The system of matrices D, satisfying equations (2.165)
and (2.166), is not a representation of the group of unitary and antiunitary operators
OU and TOU in a usual sense, but forms a corepresentation of this group. Wigner
developed the method of reduction of corepresentations, that is a decomposition of
reducible corepresentations to irreducible ones. However, due to the reasons men-
tioned at the beginning of this section, we will not consider this method, but confine
ourselves to general concepts about corepresentations.

2.9 Time Reversal and Kramers Theorem Geometrical
Interpretation

As it is known, the symmetry transformation connected with the time reversal is
accepted to be called the time-reversal transformation. Under the time-reversal trans-
formation the directions of motion of all particles, forming the system, are reversed.
The system passes through the same set of states, in which it was successively the
translational movement on time axis, but now just in the opposite direction.

In Chap.1, we have noted and here we underline once more that a real reversal
of the direction of movement of all particles of the system is not required for the
existence of the time-reversal symmetry. For this, it is only required that such a
reversal of the movement direction be possible in principle. In just the same way, it
is not necessary to fulfill really the respective permutations of equivalent atoms in
crystalline or molecular (claster) structures to make sure about the existence of one
or other space or point symmetry group. It is sufficient only to make sure that such
transformations are possible in principle. Sometimes the time-reversal transformation
is called the time inversion by analogy with the space inversion, taking into account
that at time inversion the point t = 0 on the time axis is fixed and is the center of
inversion. For similar reasons this transformation of symmetry is called sometimes
“the time reflection”.

Using the group-theoretic approach, we shall show that the time-reversal transfor-
mation is an operation of antirotation in the space of basis state vectors. In a functional
(2S + 1)-fold space, the state of the system with the total spin S corresponds to a
point that, under the action of the time reversal operator, performs an antirotation
around the axis passing through the coordinate system origin. In the simplest case
of a particle with spin S = 1

2 the antirotation axis of fourth order is orthogonal to
the plane of a square with the vertices colored with two colors (red and blue, see
Fig. 2.2). There exist a significant geometric difference between the systems of par-
ticles with half-integer total spin and a system of particles with integer spin. In the
first case, the antirotation takes place by an angle of 90◦, and the system returns to
the initial state with the initial wave function after four consecutive antirotations by
the same angle in the same direction. In the second case, the angle of antirotation
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ξ+
ξ -

T3Ψ

T2Ψ = -Ψ

TΨ

ψ-(r)

T4Ψ =ΨS=1/2

ψ+(r)

T2Ψ = -Ψ

T4Ψ = Ψ

S = 3/2

TΨ

T3Ψ

S = 1

TΨ
Ψ

Fig. 2.2 The geometric interpretation of the wave function � of systems with half-integer spins
(S = 1

2 , 3
2 ) and integer spin (S = 1) at time reversal in the absence of a magnetic field. The wave

function is represented as an expansion in spinor basis vectors (in the case of a particle with spin
S = 1

2 these basis vectors are ξ+ = (10
)
and ξ− = (01

)
). The quantum system state corresponds to a

point at the vertex of the (2S + 1)-dimensional cube; blue bullet •−the state �; red bullet ◦−the
time-reversed state T�

is 180◦, and the system is returned to the initial state after the second antirotation,
that is opposite with respect to the first one.This is shown in Fig 2.2 for S = 1

2 , 1
and 3

2 . The operation of anti-identification corresponds to carrying out the complex
conjugation of the wave function.

The different geometric behavior of the systems with integer and half-integer
S at time-reversal is connected with the spin dependence of the shape of unitary
part of the time-reversal operator [85]. Such a sharp difference in the behavior of
spin systems with integer and half-integer spins under action of the time-reversal
operator has a group-theoretic explanation. It consists in the fact that at an inte-
ger S (or an even number N of particles with spin 1

2 ) there exists the Abelian
group of the second order 2′ : {T,T2= 1}, while at a half-integer spin S (or an
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odd number N of particles with spin 1
2 ) there exists the Abelian group of fourth

order 4′ : {T,T2= −1,T3= −T,T4= 1}.
Using a system of coordinate axes, we construct a (2S + 1)-dimensional cube,

inscribed in a (2S + 1)-dimensional unit sphere centered at the origin, where the
coordinate axes pass through the center of 2S-dimensional faces. Then we rotate this
cube so that the position of an arbitrary chosen vertex would correspond to a point on
(2S+1)-dimensional sphere to correspond to representing the wave function�(s) of
the system. The position of this point is determined by the values of 2S+1 functions
ψσ (r1 , r2 , . . . , rN ) playing the role of coefficients in the decomposition of N -particle
wave function �(s) in the basis spinors ξ (s)

σ

�(s) =
S∑

σ=−S

ψ
σ
(r1 , r2 , . . . , rN )ξ (s)

σ (2.167)

that satisfies the normalization condition

S∑
σ=−S

∫ ∣∣ψ
σ
(r1 , r2 , . . . , rN )

∣∣2 dr1dr2 . . . drN = 1. (2.168)

As a result of the time-reversal transformation, the vector of state, directed along one
of the main diagonals of the cube, is antirotated with the transition to the other main
diagonal. From the theorem of Kramers on additional degeneracy of energy levels,
due to the symmetry of time reversal, the geometric theorem follows [85].

Theorem In an n-dimensional Euclidean cube, there are no mutually orthogonal
main diagonals if n is an odd number, and there exists a unique pair of such diagonals
for even n, with an accuracy up to a group of motions of the n-dimensional cube.

A point-behavior analysis, which describes the state of a system under consecu-
tive time-reversal transformations, has allowed to clarify the geometric meaning of
Kramers theorem on additional degeneracy energy levels due to time-reversal sym-
metry. It consists in the existence of a some pair of mutually orthogonal diagonals
(with an accuracy up to a movement group specified in the Theorem) in the (2S+1)-
dimensional Euclidean cube when S is half-integer. In this case, the wave functions
� and T� are orthogonal (Fig. 2.2, S = 1

2 ,
3
2 ) that leads to an additional degeneracy

of energy levels (Kramers degeneracy). If S is an integer number, then the state vec-
tors � and T� are linear dependent (the absence of Kramers degeneracy) that was
proved first by Wigner [68, 222]. The geometric interpretation of this result consists
in the fact that at integer spin S none of main diagonals of the (2S + 1)-dimensional
cube are orthogonal (Fig. 2.2, S = 1).
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2.10 Non-conventional Time-Reversal Symmetry

The invariance of Schrödinger equation (2.74) and HamiltonianH (2.77) under con-
ventional time-reversal operator T take place if H does not contains the operator of
interaction of the electron with the magnetic field. The Schrödinger equation (2.74),
which corresponds to a non-relativistic connection between the energy E and the
impulse P of a particle with the mass m

E = P2

2m
+ V (r), (2.169)

may be obtained formally from (2.169) using transformations

E → i�
∂

∂t
, P → − i�∇. (2.170)

If instead of (2.169), we start from the relativistic relation between the energy and
the impulse (c is the light velocity in the vacuum)

E2

c2
= P2 + m2c2 (2.171)

and use the same transformations (2.170), then we come to the Klein–Gordon–Fock
equation for a spinless particle [86–88]

i�
∂ |�〉
∂t

= H f |�〉 , (2.172)

which coincides by form with the Schrödinger equation with the Hamiltonian

H f = (τ3 + iτ2)
P2

2m
+ mc2τ3 , (2.173)

where

τ1 =
(
0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
. (2.174)

and the state vector |�〉 is given by the one-column matrix

|�〉 =
(

ϕ

χ

)
, (2.175)

of which component satisfies the following equation

i� ∂|ϕ〉
∂t = − �

2

2m∇2
(|ϕ〉 + |χ〉) + mc2ϕ

i� ∂|χ〉
∂t = − �

2

2m∇2
(|ϕ〉 + |χ〉) − mc2ϕ

}
. (2.176)
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In the absence of the magnetic field the Klein–Gordon–Fock equation (2.172)
also is invariant under time-reversal operator. This equation may be reduced to the
form [61]:

�
2

c2
∂2 |�〉
∂t2

= (�2∇2 − m2c2) |�〉 . (2.177)

Since the equation (2.177) contains a second derivative of the state vector |ψ〉 with
respect to time, then its invariance under time-reversal operator is obvious.

Another equation, of which behavior under time-reversal operator is considered
here, is the Pauli equation obtained from Dirac equation in the approximation v � c
(v is the particle velocity) [76]:

{
mc2 + P2

2m
− P4

8m3c2
+ V (r) + �

i

1

4m2c2
(∇V,P) + �

4m2c2
[∇V × P] · σ − E

}
|�〉 = 0,

(2.178)
whereP, V = V (r) and E are the operator of linear momentum, the potential and the
total energy of the electron; σ is the Pauli operator determined by Pauli matrices σx ,

σy and σz from (2.86). The state vector |ψ〉 is a two-component spinor, represented
as a decomposition in basis spinors.

The first three terms in (2.178) are the energy of the free electron. The main term
mc2 is the proper energy of the electron, p2/2m and p4/8m3c2 are the kinetic energy
and mass-velocity correction at first approximation with respect to v2/c2. The fifth
term describes the relativistic component of the potential and is called the Darvin
correction. The seven term corresponds to the interaction of the electron spin (of
which operator is SSS = 1

2σσσ ) with its orbital momentum.
Actingwith the operatorT from (2.90) on the equation (2.178), it is easy to see that

the state vector |T�T�T�〉, as well as |���〉, satisfy Pauli equation and belong to the same
eigenvalue E . The presence in (2.178) of terms containing operators (∇V,P) and
[∇V ×P] · σ does not violate the time-reversal invariance. In this case, as well as in
the case of the Schrödinger equation for spin- 12 particle, T2 = −111 and state vectors
|�〉 and |T�〉 not only belong to the same level of energy, but are also mutually
orthogonal (the Kramers degeneracy).7

The invariance of above indicated equations under time-reversal operator is due
to transformations

TrT−1 = r, (2.179)

TPT−1 = −P,

TST−1 = −S.

The time-reversal operator T satisfy also the relation

〈
T�1

∣∣T�2〉 = ∣∣�2

∣∣�1〉, (2.180)

7In the case of Klein–Gordon–Fock equation for a spinless particle T2 = +1.
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T2 = ±1. (2.181)

These relations were introduced earlier ((2.67), (2.72), (2.84), (2.87) and (2.57),
(2.63)).

The motivation for reminder of relations (2.179), (2.180) and (2.181) is that many
Hamiltonians for practically important systems are invariant to conventional time
reversal. Particularly,

[H,T] = 0, [H f ,T] = 0, [Hp,T] = 0, (2.182)

where H and H f are determined by (2.77) and (2.173), and Hp is the Hamiltonian
of the Pauli equation (2.178).

In the presence of an external magnetic field the time-reversal symmetry takes
place only if the direction of the magnetic induction vector B is changed on opposite
(B → −B). In this case, the Hamiltonian of the system containing moving charged
particles, gains additional terms,which describe theZeeman interaction of orbital and
spin electron momenta and nuclear momenta with the magnetic field. But, besides,
the modification of translation moving of particles and quasiparticles takes place
because the classical generalized linear momentum P is changed by the operator
P− e

cA, where A is the vector potential of the magnetic field.Thus, the conventional
time-reversal is broken by an extremal magnetic field. In fact, the validity of (2.179)
is not at all necessary for the classification of Hamiltonians according to their groups
of canonical transformation and, in this context, the concept of a “nonconventional”
time-reversal invariancewas introduced. It turned out that many systems haveHamil-
tonians that commute with some unitary operators, obeying (2.180) and (2.181), but
not (2.179) [70].

As a confirmation of the existence of a nonconventional time-reversal, we give
below two examples from Haake book [70] related to hydrogen atom.

Let us consider an hydrogen atom in presence of a constant magnetic field. By
choosing the field as B = (0, 0, B) and the vector potential as A = 1

2 [B × r] and
including the spin-orbit interaction, we obtain the Hamiltonian

H = P2

2m
− e2

r
− eB

2mc
(Lz + gSz) + e2B2

8mc2
(x2 + y2) + f (r)LS. (2.183)

Here L and S denote the orbital angular momentum and spin, respectively, while the
operator of the total angular momentum is J = L + S.

The Hamiltonian (2.183) is invariant not under the usual time-reversal operator,
T0 = UK =eiπJyK, but under the unconventional time-reversal operator

T =eiπJxT0, (2.184)

where the units system with � = 1 is used. If the spin is absent, T2 = +1, whereas,
T2 = −1 with spin.
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When in the (2.184), in addition to the magnetic field, there is a homogeneous
electric field E, then the Hamiltonian ceases to be invariant under unconventional
time-reversal operatorT as a result of changing the sign of the electric dipolemomen-
tum −erE.

In this case T = RT0 is an antiunitary symmetry, where the unitary operator R
is a reflection in the plane of B and E. The component of the angular momentum
lying in this plane changes the sign under the action of the reflection operator R,
because the angular momentum is an axial vector. The Zeeman term inH changes its
sign under both conventional and nonconventional time-reversal operators and under
the reflection R. Despite this, it is left-invariant under the combined transformation
RT0. The electron–dipole term of the Hamiltonian, as well as all other terms in H,
are symmetric with respect to both T0 and R operators, owing to which [H,RT0] =
0 [70].

2.11 Selection Rules Due to Time-Reversal Symmetry

Selection rules for passing between different quantum states are determined by of
symmetry properties of initial and final states, as well as those of perturbation oper-
ator. In terms of group theory, the matrix element of the transition between states,
which are transformed by representations �i and � f under the action of perturbation
operator H′(t), which is transformed under the representation �′, is not equal to
the zero, if �′ ∈ �i ⊗ � f or, in other words, if the unit representation �1 is con-
tained in the Kronecker product of representations �i , �

′and � f of the symmetry
group of Hamiltonian (�1 ∈ �i ⊗ �′ ⊗ � f ). Apart from this, there are additional
selection rules caused by the time-reversal symmetry. Following to monograph [78],
we will consider, what additional conditions the time-reversal invariance imposes
on matrix elements of perturbation operator H′(t), involving quantum transitions
between states |�1〉 and |�2〉:

〈
�1

∣∣H′∣∣�2
〉 =

∫
�∗

1H
′�2dτ. (2.185)

According to formulas (2.57) and (2.63), which are related to spin 1/2 and to the
system with arbitrary spin S respectively, we have

〈
�1

∣∣H′∣∣�2
〉∗ = 〈T�1

∣∣TH′ �2
〉 = 〈T�1

∣∣TH′T−1 T�2
〉
. (2.186)

On the other hand, 〈
�1

∣∣H′∣∣�2
〉∗ = 〈�2

∣∣H′+∣∣�1
〉
. (2.187)

Therefore,

〈
�1

∣∣H′∣∣�2
〉 = 〈T�1

∣∣TH′T−1 T�2
〉∗ = 〈T�2

∣∣TH′+T−1 T�1
〉
, (2.188)

where it was taken into account that (TH′T−1)+ = TH′+T−1.
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We introduce the operator θH = TH′+T−1 as a result of action of the time-
reversal operator T on the operator H′+. Since θ2H′ = H′, any operator H′ may be
decomposed in two operators:

H′ = H′
+ + H′

−, H′
± = 1

2
(H′ ± θH′). (2.189)

In this case

θH′
± = TH′+

± T−1 = fH′
±, f =

{ +1 for H′+
−1 for H′−.

(2.190)

The operator H′+ is called an even operator and H′− - odd one with respect to
time reversal. These names are due to the fact that for even operators the mean
value H

′
(t) = 〈

�
∣∣H′∣∣�〉 does not change at replacing t by −t (or, in other words,

at replacing |�〉 in |T�〉), while for odd operators it changes the sign at such a
replacement.

In fact, according to (2.188) and (2.190)

TH
′ ≡ 〈T�

∣∣H′∣∣T�
〉 = 〈T2�

∣∣TH′+T−1
∣∣T2�

〉 = f
〈
�
∣∣H′∣∣�〉 = fH

′
. (2.191)

Therefore, the operators of observables that do not change the sign at time reversal
(for example, the position and energy) are even operators, whereas odd operators
correspond to observables changing the sign at time reversal (velocity, linear and
angular momenta, currents). In this case the operator H′ corresponding to real value
H

′
is Hermitian operator (H′+ = H′). Note that if these operators do not act on

spin variables, then TH′+T−1 = TH′T−1 = KH′K−1 = H′∗ (K is the complex
conjugation operator).

For even and odd operators, according to (2.188) and (2.190), the time-reversal
invariance imposes additional restrictions on matrix elements:

〈
�i

∣∣H′∣∣� j
〉 = f

〈
T� j

∣∣H′∣∣T�i
〉
, (2.192)

where f = ±1.
On the basis of Kramers conjugated state vectors the following two useful rela-

tionships for matrix elements can be obtained. Thus, if |�i 〉 = ∣∣� j
〉
, then according

to (2.191) we can write

〈
T�i

∣∣H′∣∣T�i
〉 = f

〈
�i

∣∣H′∣∣�i
〉
. (2.193)

If we assume now
∣∣� j
〉 = |T�i 〉 , then from (2.191) it follows that

〈
�i

∣∣H′∣∣T�i
〉 = f

〈
T2�i

∣∣H′∣∣T�i
〉 = f T2

〈
�i

∣∣H′∣∣T�i
〉
. (2.194)

The relationship (2.194) shows that
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〈
�i

∣∣H′∣∣T�i
〉 = 0 at f T2 = −1. (2.195)

This means that matrix elements of an even operator ( f = +1) on Kramers conju-
gated spinor functions are equal to zero, and for an old operator ( f = −1) matrix
elements are equals to zero on complex-conjugated coordinate functions.

2.12 Time Reversal and Detailed Balance Principle

In the case of collision processes, the time-reversal operation indicates the change
of roles of colliding and scattered particles. The presence of time-reversal symmetry
leads to relationships between probabilities of direct and inverse processes, known as
“detailed balance principle” [51, 61]. A basis for understanding the detailed balance
principle is the conception of scattering matrix, which is introduced in a following
way. Let suppose that the time-dependent perturbation H′(t) acts on the system
described by the time-independent Hamiltonian H0 during some time, so that the
full Hamiltonian

H = H0 + H′(t) (2.196)

is time-dependent and the Schrödinger equation

i�
∂ |�〉
∂t

= (H0 + H′(t)
) |�〉 (2.197)

has no stationary solutions.
Let the state vector |�a〉 be given at t → −∞ before the inclusion of interaction

H′(t) (initial state). The problem of scattering theory consists in finding the state
vector |�〉 of the system a long interval of time after the inclusion of the interaction
(t → ∞). The state vector |�〉 can be expressed through the initial state vector |�a〉
by means of the unitary operator V (t, t0) describing the time evolution of the state
vector |�〉:

|�〉 = V (t, t0) |�a〉 , V (t, t0) = e− i
�
H(t−t0), V+ (t, t0)V (t, t0) = 1. (2.198)

The limit value of the operator V (t, t0) is called the “scattering matrix” S (more
exactly, scattering operator, corresponding to the scattering matrix) [51]

S = lim
t0→−∞,t→∞V (t, t0) . (2.199)

Thus, the scattering operator S transforms the initial state vector |�a (−∞)〉 into
final state vector |� (∞)〉:

|� (∞)〉 = S |�a (−∞)〉 . (2.200)
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Index a in (2.200) denotes the complete set of quantum numbers, determining the
state of the system before the scattering. It is assumed that both in the initial and in the
final state the particles are separated by a sufficiently large time distance from each
other, so that one can neglect the interaction between them (adiabatic hypothesis).

Let decompose the state vector |�〉 into a series by some complete orthonormed
system state vectors |�b〉 including the state vector |�a〉 as a particular case at b = a,
where b denotes the respective complete set of quantum numbers

|�〉 =
∑
b

cb |�b〉 . (2.201)

In (2.201) the symbol
∑
b

means summation by quantum numbers, running a

discrete set of values and integration by quantum numbers, which are changed con-
tinuously.

Taking into account (2.200), it is easy to see that coefficients of decomposition
from (2.201) are expressed by matrix elements of the operator S:

cb = 〈�b | �〉 = 〈�b | S�a〉 = 〈�b |S| �a〉 = Sba . (2.202)

Since the operator V (t, t0) is unitary, one can conclude on the basis of (2.198)
and (2.199) that the operator S is unitary as well

S+S = SS+ = 1, (2.203)

where 1 denotes an unit operator.
If the complete Hamiltonian can be represented in the form (2.196), then in it is

convenient to use the representation of the interaction in order to find explicit form
of S-matrix. In this representation the state vector |ϕ〉 is determined by the equation

i�
∂ |ϕ〉
∂t

= H′ (t) |ϕ〉 , (2.204)

which represents the Schrödinger equation with the Hamiltonian H′ (t) in the inter-
action representation

H′ (t) = e
i
�
H0tH′e− i

�
H0t . (2.205)

The evolution operator V (t, t0) determined by (2.198) by definition transfers the
state vector given in the Schrödinger representation at the time moment t0 into a state
vector at the time moment t . It may be determined in interaction representation

|ϕ(t)〉 = V (t, t0) |ϕ (t0)〉 . (2.206)

By substituting (2.206) into (2.204), we obtain
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i�
∂V (t, t0)

∂t
= H′ (t)V (t, t0) , (2.207)

V (t0, t0) = 1. (2.208)

One can associate to the system of equations (2.207) and (2.208) the integral
equation

V (t, t0) = 1 − i

�

t∫

t0

dt ′H′ (t ′)V (t ′, t0) , (2.209)

which may be solved by the method of successive approximations

V (t,−∞) = 1 − i

�

t∫

−∞
dt1H′ (t1) +

(
− i

�

)2
t∫

−∞
dt1

t1∫

−∞
dt2H′ (t1)H′ (t2) +

+
(

− i

�

)3
t∫

−∞
dt1

t1∫

−∞
dt2

t2∫

−∞
dt3H′ (t1)H′ (t2)H′ (t3) + · · · (2.210)

By using the chronological operatorP, which puts in order the product of operators
depending on time (by placing them from left to right in order of a chronological
sequence of decreasing time t1 > t2 > t3 > · · · > tn):

PL (t1)M (t2) =
{
L (t1)M (t2)
L (t2)M (t1)

for t1 > t2,
for t2 > t1,

(2.211)

the operator V (t,−∞) can be represented in the form [51]

V (t,−∞) = P exp

⎧⎨
⎩− i

�

t∫

−∞
H′ (t) dt

⎫⎬
⎭ . (2.212)

On the basic of formulas (2.199) and (2.212), it is easy to obtain

S = lim
t→∞, t0→−∞V (t, t0) = lim

t→∞V (t,−∞) = P exp

⎧⎨
⎩− i

�

∞∫

−∞
H′ (t) dt

⎫⎬
⎭ . (2.213)

This formula for S-matrix is called the Dyson formula. It is an exact formula in
the sense that summation is fulfilled over all series of the perturbation theory.

Under the action of time-reversal operator T = UK, the operator V (t, t0) is
transformed as follows:

TV (t, t0)T−1 = UKe− i
�
H(t−t0)KU+ = e− i

�
H(t0−t). (2.214)



84 2 Time Reversal in Quantum Mechanics and Quantized Field Theory

The amplitude of transition from the initial state |�a〉 at the moment ta into the
final state |�b〉 at timemoment tb is equal to the corresponding amplitude of transition
from the state |T�b〉 at time moment ta into the state |T�a〉 at the time moment tb.
Indeed [89],

〈
�b

∣∣∣e− i
�
H(tb−ta)

∣∣∣�a

〉
=
〈
T�b

∣∣∣
(
Te− i

�
H(tb−ta)T+

)∣∣∣T�a

〉∗ =
=
〈
T�b

∣∣∣
(
e− i

�
H(ta−tb)

)∣∣∣T�a

〉∗ =
=
〈
T�a

∣∣∣
(
e− i

�
H(tb−ta)

)∣∣∣T�b

〉
. (2.215)

At such a transformation, under the assumption of translational invariance in time,
the coordinates remain unchanged and the signs of impulses, and that of orbital and
spin moments are reversed.

On the basis of (2.199) and taking into account (2.214) and (2.215), we obtain

〈�b |V (tb, ta)| �a〉 = 〈T�a |V (tb, ta)|T�b〉 . (2.216)

Since between the scattering matrix and the operator V (t, t0) the relation (2.199)
is valid, then between the elements of the scattering matrix there exists also a relation
similar to (2.216):

〈�b |S| �a〉 = 〈T�a |S|T�b〉 . (2.217)

The S matrix element between an initial state |�a〉 and a final state |�b〉 can be
written as

〈�b |S| �a〉 = 〈
�b

∣∣T+TST+T
∣∣�a

〉 = 〈T�b

∣∣S+∣∣T�a
〉∗ = (2.218)

= 〈ST�b | T�a〉∗ = 〈T�a |S|T�b〉 .

The relation (2.218) has been obtained using the definition of the adjoint
(hermitian-conjugated) operator A+ for an antilinear operator A:

〈
� | A+�

〉 = 〈A� | �〉∗ for any |�〉 , |�〉 . (2.219)

If 〈�| = 〈�b| , |�〉 = |T�a〉 and A+ = T+S+, we have
〈
�b

∣∣T+S+∣∣T�a
〉 = 〈ST�b | T�a〉∗ . (2.220)

Here, it was taken into account that the product of a linear operator S by the antilinear
operator T is antilinear to operators ST. In addition, it was taken into account the
property of the inner product of state vectors |T�a〉 and |ST�b〉:

〈T�a | ST�b〉 = 〈ST�b | T�a〉∗ . (2.221)
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The operator V (t0, t) satisfies (2.207) at the initial condition (2.208). We apply
T to (2.207) and obtain

Ti�
d

dt
V (t, t0)T+ = TH′ (t)T+TV (t, t0)T+. (2.222)

Since dt is a real quantity, T and d
dt commute:

T
d

dt
V (t, t0) = T

1

dt
[V (t + dt, t0) − V (t, t0)] = (2.223)

= 1

dt
[TV (t + dt, t0) − TV (t, t0)] = d

dt
[TV (t, t0)] .

Taking account of (2.223) becomes

− i�
d

dt
[TV (t, t0)] = H′ (−t)

[
TV (t, t0)T+] . (2.224)

On the other hand, by setting t = −t ′ and t0 = −t ′0 in (2.207), we obtain

− i�
d

dt
V (−t,−t0) = H′ (−t)V (−t,−t0) , (2.225)

where the primes on t and t0 were removed. Since TV (t0, t0)T+ = TT+ = 1
and V (−t0,−t0) = 1, we can see that TV (t, t0)T+ and V (−t,−t0) satisfy the
same initial condition and are described by the same first-order differential equation.
Hence,

TV (t, t0)T+ = V (−t,−t0) . (2.226)

Using |� (t)〉 = V (t, t0) |� (t0)〉, we obtain

|� (t0)〉 = V (t0, t) |� (t)〉 = V (t0, t)V (t, t0) |� (t0)〉 , (2.227)

which should hold for any |� (t0)〉. Thus,

V (t0, t)V (t, t0) = 1 or V (t0, t) = V−1 (t, t0) . (2.228)

Using the unitary property of V (t, t0),

V (t0, t) = V+ (t, t0) , (2.229)

the relationship (2.226) becomes

TV (t, t0)T+ = V+ (−t0,−t) . (2.230)
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Taking the limits t → ∞ and t0 → −∞, we get

TV (∞,−∞)T+ = V+ (∞,−∞) (2.231)

and applying the definition S ≡ V (∞,−∞) to (2.231), we obtain that operator S
satisfies relation TST+ = S+.

Thus, a common consequence of the T -invariance of (2.207) and (2.231) is the
reciprocity theorem, expressedby the relationship (2.217).According to this theorem,
the amplitude of the transition from the initial state |�a〉 to the final state |�b〉, which
is determined by the matrix element 〈�b |S| �a〉 of the scattering operator S, is equal
to the amplitude of transition of the “reversed” process, in which the sequence of
initial and final states is inverted, and the states |�a〉 and |�b〉 are changed by |T�a〉
and |T�b〉.

The matrix elements of the S-matrix may be written in the form [61]

〈b |S| a〉 = −2π i 〈b |f | a〉 δ (Eb − Ea) , (2.232)

where

〈b |f | a〉 = 〈
b
∣∣H′∣∣ a〉+∑

k

〈
b
∣∣H′∣∣ k〉 〈k ∣∣H′∣∣ a〉
Ea − Ek + iη

+ (2.233)

+
∑
k,k ′

〈
b
∣∣H′∣∣ k〉 〈k ∣∣H′∣∣ k ′〉 〈k ′ ∣∣H′∣∣ a〉

(Ea − Ek + iη) (Ea − Ek ′ + iη)
+ · · ·

The matrix element 〈b |f | a〉 is called the matrix element on the energetic surface.
The equality (2.233) may be written in a operator form

f = H′ + H′ (Ea − H0 + iη)−1 H′ + (2.234)

+ H′ (Ea − H0 + iη)−1 H′ (Ea − H0 + iη)−1 H′ + · · · ,

which can be considered as a solution obtained of the operator equation

f = H′ + H′ (Ea − H0 + iη)−1 f (2.235)

by themethod of successive approximations [61]. HereH0 is the operator of infinitely
distant parts of the system and H′ is an operator of interaction in Schrödinger repre-
sentation, determining quantum transition.

The probability of transition at infinitely large time is determined by the equality

Wba (∞) = |〈b |S| a〉|2 = 4π2δ2 (Eb − Ea) |〈b |f | a〉|2 , (2.236)

and the probability of transition (probability of scattering and reactions (b → a) at
time unit at b �= a may be written in form
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Pba = 2π

�
|fba|2 ρ (Eb) = 2π

�
|〈b |f | a〉|2 ρ (Eb) , (2.237)

where ρ (Eb) is the number of finite states, in the volume V , per an unit energy
interval in neighborhood of level Eb.

Taking account of (2.232) it follows from (2.217) the relation between matrix
elements of direct and reversed in time transitions:

〈�b |f | �a〉 = 〈T�a |f |T�b〉 . (2.238)

The same relation may also be obtained by the direct method. Indeed,

〈T�a |f |T�b〉 = 〈UK�a |f |UK�b〉 = 〈U�∗
a |f |U�∗

b

〉 = 〈�∗
a

∣∣U+fU
∣∣�∗

b

〉 =
= 〈

�∗
a

∣∣(f+)∗∣∣�∗
b

〉 = 〈�∗
a

∣∣∣f̃
∣∣∣�∗

b

〉
= 〈�b |f |�a〉 . (2.239)

If we denote the matrix element 〈�b |f | �a〉 by fba and the matrix element
〈T�a |f |T�b〉 by f−a,−b, we have

fba = f−a,−b. (2.240)

The (2.240) is another form of (2.238) and (2.239), expressing the reciprocity the-
orem in terms of matrix elements of f . According to (2.237), the probability of
transition a → b over a time unit is expressed by the square of modulus of the
matrix element | fba|2 = |〈b |f| a〉|2 and the density of final states ρ (Eb). Therefore
the relationship (2.240) expresses another formulation of the reciprocity theorem,
connecting probabilities of direct and inverted in time transitions [61]:

Pba
ρ (Eb)

= P−a,−b

ρ (Ea)
, (2.241)

where ρ (Ea) is the number of final states, in the volumeV, per an unit energy interval
in the neighborhood of the level Ea . If the densities of states in both processes are
equal to each other, (ρ (Eb) = ρ (Ea)), then probabilities of direct and reversed in
time transitions are also equal.

If Hamiltonian is invariant with respect to space coordinates reversal, then at
simultaneous performing of space and time reversal the velocities and impulses of
particles are not changed and the components of the angular momentum change
the sign. Therefore in systems not containing spin variables the states |a〉 and |−a〉
are equivalent, so that wave functions of these states may differ only by a phase
factor. In this case, absolute values of matrix elements of direct a → b and inverse
b → a transitions are equal (| fba| = | fab|) andmatrix elements of the corresponding
scattering matrix satisfy the equality |Sba| = |Sab|.

In such systems, a detailed equilibrium takes place at which the probabilities of
direct and inverse transitions, related to one finite state (ρ (Eb) = ρ (Ea)), are equal:
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Pba
ρ (Eb)

= Pab
ρ (Eb)

. (2.242)

If particles forming the system or its subsystem posses spin, then projections of
spins in states |a〉 and |−a〉 differ by sign and therefore the detailed equilibrium is
realized only for probabilities averaged by spin projections of initial and final states.

In connection with this, we note that else Boltzmann pointed to the possibility
of detailed equilibrium violation at classical description of collisions between non-
spherical molecules.

If the interaction operator involving transitions is invariant with respect to space
rotations, then a transition takes place between states |a〉 and |b〉 characterized by
quantum numbers j and m, at conservation of the complete angular momentum and
its projection on any direction. In this case, the matrix elements fba do not depend
on magnetic quantum numbers. Since the states |a〉 and |−a〉 differ only by sign of
magnetic quantum numbers m, we have

| fba| = ∣∣ f−a,−b

∣∣ = | fab| (2.243)

and the detailed balance takes place.
In this first Born approximation the detailed balance is fulfilled for all systems.

This conclusion follows from the following transformations

f (B)
ba = 〈�b

∣∣H′∣∣�a
〉 = 〈�a

∣∣H′∣∣�b
〉∗ = f ∗

ab
(B), (2.244)

hence ∣∣∣ f (B)
ab

∣∣∣2 =
∣∣∣ f (B)

ba

∣∣∣2 . (2.245)

The reciprocity theorem (2.217) and unitarity (2.203) of the scattering matrix
impose additional conditions to its matrix elements. For a reaction running on N
possible channels, the complex scattering matrix contains 2N 2 real parameters. In
view of reciprocity theorem and unitarity of scattering matrix, only 1

2N (N + 1) of
these parameters are independent. The proof of this statement is contained in [61].

As an example, let consider nuclear reactions of type a+A � b+B, where A and
B are initial and final nuclei, a is the falling particle and b is the outgoing particle as a
result of direct reaction. Similarly, B and A are initial and final nuclei, b is the falling
particle and a is the outgoing particle as a result of converse reaction. We denote
by ja,ma, jA,mA, jb,mb, jB,mB total angular momenta and their projections for
particles involved in the reaction. The differential cross-sections of the direct and
inverse reactions dσba

d�b
and dσab

d�a
will be expressed by matrix elements of S-matrix with

regard to elastic and nonelastic channels in the following way [51]:

dσba

d�b
= 4π2

k2a
|〈 jb,mb, jB,mB;−nb |S| ja,ma, jA,mA;na〉|2 , (2.246)
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dσab

d�a
= 4π2

k2a
|〈 ja,ma, jA,mA;−na |S| jb,mb, jB,mB;nb〉|2 , (2.247)

where ka = 1
�
pa and kb = 1

�
pb; na = pa

pa
and nb = pb

pb
are unit vectors, oriented

in directions of linear momenta of the relative motion pa and pb; d�b is an interval
of the solid angle, in which vector nb lies; d�a is an interval of the solid angle, in
which vector na lies.

In the initial states there are two particles. The process is considered in the system
of a centroid. The wave function of the initial state |�a〉 describes a state with a given
energy of the relative motion Ea and the direction of the linear momentum of relative
motion na . Since the linear momentum of relative motion of particles in finite state
is direct from centroid of the system, therefore the sign minus was ascribed to it in
formulas (2.246) and (2.247).

Due to the fact that the reciprocity theorem binds cross-sections of the direct
process (2.246) and the reversed process,which differs from (2.247) by changed signs
of projections of angular momenta ma,mA,mb,mB on opposite, it is impossible to
write directly a relation between these cross-sections of reactions. However, one can
write a relation between cross-sections summed on projections of angular momenta
of final states and averaged on projections of angular momenta of initial states.
Such sections do not depend on projections of angular momenta and for them the
reciprocity theorem (2.217), or the equivalent form (2.240), leads to the relationship
[51]

1

k2b
(2 ja + 1) (2 jA + 1)

〈
dσba

d�b

〉
= 1

k2a
(2 jb + 1) (2 jB + 1)

〈
dσab

d�a

〉
, (2.248)

where 〈
dσba

d�b

〉
= 1

(2 ja + 1) (2 jA + 1)

∑
ma ,mA
mb,mB

dσba

d�b
, (2.249)

and 〈
dσab

d�a

〉
= 1

(2 jb + 1) (2 jB + 1)

∑
ma ,mA
mb,mB

dσab

d�a
. (2.250)

Relations similar to (2.248) may be written also for complete cross-sections of
direct and inverse reactions

k2a (2 ja + 1) (2 jA + 1) 〈σba〉 = k2b (2 jb + 1) (2 jB + 1) 〈σab〉 . (2.251)

In view of applicability of the perturbation theory, one can also establish a con-
nection between non-averaged cross-sections of direct and inverse reactions

1

k2b

dσba

d�b
= 1

k2a

dσab

d�a
. (2.252)
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In this case, the effective cross-section determined by the square of modu-
lus of matrix elements of perturbation Hamiltonian H′, for which the relation∣∣H ′

ba

∣∣2 = ∣∣H ′
ab

∣∣2 is fulfilled as a consequence of Hermiticity, whence the relation
(2.252) follows.

The consequences of the T -invariance in collision processes including, in partic-
ular, the polarization in scattering of spin 1

2 particles on unpolarized targets, have
been carried out in [2].

2.13 Dynamic Matrix and Time-Reversal Operator

The time-reversal operator T with antilinear and antiunitary properties, that was
applied spin containing quantum systems in this chapter, has been introduced in
quantum mechanics on the basis of invariance of the Hamiltonian under time rever-
sal [68]. In other words, the explicit form of T was obtained considering that the
state vectors |�〉 and |T�〉 satisfy the Schrödinger equation. In the Chap.1 the con-
sequences, following from the time-reversal symmetry in classical physics have been
discussed without using the explicit form of the operator T.

In this section, the quantum-mechanical operatorT is applied to a dynamic matrix
in classical theory of lattice vibrations on the basis of approach developed in [91].
Firstly we note that the classical theory of crystal lattice vibrations does not take into
account spin. Therefore, in this case the time-reversal operator has the form T = K.

We denote by u
( l
κ

)
the vector of displacement of the atom from the equilibrium

state in an elementary cell of the crystal, where l determines the cell andκ the number
of atoms in lth cell. The equations of movement for the dynamic variables uα

( l
κ

)
have the form

Mκ üα

(
l

κ

)
+
∑
l ′κ′β

φαβ

(
ll ′

κκ
′

)
uβ

(
l ′

κ′

)
= 0, (2.253)

where α = x, y, z, Mκ is the mass of the κth particle and

φαβ

(
ll ′

κκ
′

)
=
(

∂2φ

∂uα

( l
κ

)
∂uβ

( l ′
κ

′
)
)∣∣∣∣∣uα ( l

κ
)=0

uβ( l′
κ

′)=0

. (2.254)

The function φ depends on the instantaneous positions of atoms ρρρ
( l
κ

)
. In its turn

eachof themdepends on the position of the resting atom r
( l
κ

)
andon the instantaneous

value of the displacement vector u
( l
κ

)
:

ρρρ

(
l

κ

)
= r
(
l

κ

)
+ u
(
l

κ

)
. (2.255)
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The functionsφαβ

(
ll ′

κκ
′

)
are called “force constants” and satisfy the relationship

φαβ

(
ll ′

κκ
′

)
= φβα

(
l ′l

κ
′
κ

)
, (2.256)

because the order of differentiation in (2.254) is not essential. Since all atoms are
shifted at translation in equivalent states, and the tensor of force constants must
remain invariant under symmetry operations of the lattice, for the force constants we
have [91]:

φαβ

(
l − l ′ 0

κ κ
′

)
= φαβ

(
l l ′
κ κ

′

)
. (2.257)

Let Fourier transformation are fulfilled for cartesian components of elementary
displacements:

uα

(
l

κ

)
= 1√

Mκ

1√
N

∑
k

Wα (κ|k)eikRL (2.258)

where N is the order of the translation group of the crystal at boundary cyclic con-
ditions of Born–Karman, k is the wave vector in the Brillouin zone, RL is the vector
of the lattice, which determines the state of the elementary cell and Wα (κ|k) are
complex variables, which satisfy the relationship

W ∗
α (κ|k) = Wα (κ| − k), (2.259)

so that components uα

( l
κ

)
of the displacement vector should be real.

In order to obtain equations for variables Wα (κ|k), we express the potential and
kinetic energies in these variables. Then, by substituting (2.258) in the expression of
the potential energy

V = 1

2

∑
lκα

l ′κ′β

uα

(
l

κ

)
φαβ

(
ll ′

κκ
′

)
uβ

(
l ′

κ′

)
, (2.260)

we obtain

V = 1

2

∑
lκα

l ′κ′β

∑
kk′

φαβ

(
ll ′

κκ
′

)
1

N
√
MκMκ

′
Wα (κ|k)Wβ

(
κ

′∣∣k′)·exp[i(kRL+k′R′
L)].

(2.261)
Now we use the relations
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∑
RL

(
exp ikRL√

N

)(
exp ik′RL√

N

)∗
= δkk′ , (2.262)

∑
k

(
exp ikRL√

N

)(
exp ikRL ′√

N

)∗
= δLL ′, (2.263)

which may be obtained from the orthogonality and norming relations for rows and
columns of irreducible representations of the translation group T. These relations
may be also considered as a set of equations of completeness for the totality of
functions 1√

N
exp ikRL , which are defined for all k in the Brillouin zone (at fixed

RL ) and for all vectors of lattice (at fixed k). Using (2.262) and (2.263), we obtain

V = 1

2

∑
κα

κ
′β

∑
k

Wα (κ| − k)Dαβ

(
k

κκ
′

)
Wβ

(
κ

′∣∣k′), (2.264)

where

Dαβ

(
k

κκ
′

)
≡
∑

λ

φαβ

(
λ

κκ
′

)
exp(−ikRL)√

MκMκ
′

. (2.265)

ThematrixD(k), ofwhich thematrix elements are given in (2.265), is the dynamic

matrix of the crystal. Thematrix elements φαβ

(
l l ′
κ κ

′

)
from (2.254) form thematrix

of force constants φ. The dynamic matrix, which must be considered complex, is a
Hermitian matrix

Dαβ

(
k

κκ
′

)
= Dβα

(
k

κ
′
κ

)∗
(2.266)

or
D(k) = (D(k))+ = (D̃(k))∗ (2.267)

This follows from (2.256) or (2.257), which determines the symmetry of the matrix
of force constants.

Similarly, by substituting (2.258) in

T = 1

2

∑
lκα

Mκ

(
u̇α

(
l

κ

))2

, (2.268)

for the kinetic energy we obtain (do not confuse the kinetic energy T with the time-
reversal operator)

T = 1

2

∑
κα

∑
k

Ẇα (κ|k)∗Ẇα (κ|k). (2.269)
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Thus, the Lagrangian will be written in the form

L = T − V = 1

2

∑
κα

Ẇα (κ|k)∗Ẇα (κ|k) − (2.270)

− 1

2

∑
κκ

′

∑
αβ

∑
k

Wα (κ|k)∗Dαβ

(
k

κκ
′

)
Wβ

(
κ

′∣∣k).

If we take Wα (κ|k)∗ as a coordinate, then the conjugate linear momentum corre-
sponding to it will be

πα (κ|k) = ∂L

∂Wα (κ|k)∗
= Ẇα (κ|k). (2.271)

From the Hamilton equations it follows [91]

π̇α (κ|k) = Ẅα (κ|k) = −
∑
κ

′β

Dαβ

(
k

κκ
′

)
Wβ

(
κ

′∣∣k) (2.272)

or

Ẅα (κ|k) +
∑
κ

′β

Dαβ

(
k

κκ
′

)
Wβ

(
κ

′∣∣ k) = 0. (2.273)

Since the exponent in (2.258) is complex, a complication in calculations appears
connectedwith the complexfield of shiftsW(|k) .Since there are only 3r components
Wα (κ|k) (α = 1, 2, 3; κ = 1, 2, . . . , r),W(|k) is a vector in the 3r -space for fixed
k. Further we suppose that Wα (κ|k) depends harmonically on time:

Wα (κ|k) = ξα (κ|k) exp iω (k| j)t, (2.274)

where j = 1, 2, . . . , 3r.
By substituting (2.274) in (2.273), we obtain the equation

− ω2 (k| j)ξα (κ|k) +
∑
κ

′β

Dαβ

(
k

κκ
′

)
ξβ

(
κ

′∣∣ k) = 0 (2.275)

for finding the eigenvalues and eigenvectors.
We denote 3r of eigenvectors of the dynamic matrix from (2.275) by

e
(∣∣∣∣kj

)
, j = 1, 2, . . . , 3r.

Every of such vectors has 3r components for fixed j :

eα

(
κ

∣∣∣∣kj
)

, α = 1, 2, 3; κ = 1, 2, . . . , r.
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The corresponding eigenvalues of the matrix D(k) are denoted by ω2 (k| j), j =
1, 2, . . . , 3r . For fixed k and j , the following equation take place

∑
κ

′β

Dαβ

(
k

κκ
′

)
eβ

(
κ

′
∣∣∣∣kj
)

= ω2 (k| j)eα

(
κ

∣∣∣∣kj
)

. (2.276)

In absence of degeneracy the eigenvectors can be closed satisfying the Hermite
conditions of orthogonality and normalization [92]

∑
κα

e∗
α

(
κ

∣∣∣∣kj
)
eα

(
κ

∣∣∣∣ kj ′
)

= δ j j ′ , (2.277)

∑
j

e∗
β

(
κ

′
∣∣∣∣kj
)
eα

(
κ

∣∣∣∣kj
)

= δαβδκκ
′ . (2.278)

These relations are valid because the matrix D(k) is Hermitian. If degeneracy is
present, it is necessary to ascribe to eigenvectors D(k) a supplementary index num-
bering the degenerated eigenvectors.Thus instead of (2.276), we obtain the equations
for all lm-multiple degenerated eigenvalues

D(k)e
(∣∣∣∣ kjμ

)
= ω2 (k| j)e

(∣∣∣∣ kjμ
)

; μ = 1, 2, . . . , lm . (2.279)

In this case, it is necessary to rewrite equations (2.277) and (2.278) in the form

∑
κα

e∗
α

(
κ

∣∣∣∣ kjμ
)
eα

(
κ

∣∣∣∣ kj ′μ′

)
= δ j j ′′ δμμ′′ , (2.280)

∑
j

∑
μ

e∗
β

(
κ

′
∣∣∣∣ kjμ

)
eα

(
κ

∣∣∣∣ kj ′μ′

)
= δαβδκκ

′ . (2.281)

Since the matrix D(k) is Hermitian, eigenvalues ω2 (k| j) are real. Because the
matrix of force constants φ is nonnegative, the dynamic matrix D(k) is also nonneg-
ative and we have ω2 (k| j) > 0 (the condition of stability). Using a suitable set of
the eigenvectors, it is possible to construct the following (3r × 3r)-matrix

E(k) =

⎛
⎜⎜⎜⎜⎜⎝

e1

(
1

∣∣∣∣k1
)

· · · e1
(
1

∣∣∣∣ k3r
)

...

e3

(
r

∣∣∣∣k1
)

· · · e3
(
r

∣∣∣∣ k3r
)

⎞
⎟⎟⎟⎟⎟⎠

. (2.282)
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From (2.280) and (2.281), it follows that E(k) is an unitary matrix

(E(k))−1 = (E(k))+ = (Ẽ(k))∗. (2.283)

Thus from (2.279) and (2.283), it follows that

(E(k))−1D(k)E(k) = �(k),�(k),�(k), (2.284)

where�(k)�(k)�(k) is a diagonal matrix with k-dependent real eigenvalues [91]

�(k)�(k)�(k) =

⎛
⎜⎜⎜⎝

ω2 (k| 1) 0 · · · 0
0 ω2 (k| 2) · · · 0
...

... · · · ...

0 0 · · · ω2 (k| jm)

⎞
⎟⎟⎟⎠ (2.285)

In (2.285) each proper value is met so many times as is its degree of degeneracy.

The complex eigenvector e
(∣∣∣∣kj

)
, the components of which satisfy (2.276), and

real eigenvectors e j of which components eα

(
l
κ

∣∣∣∣ j
)
satisfy the equations

− ω2
j eα

(
l
κ

∣∣∣∣ j
)

+
∑
l ′κ′β ′

Dαβ

(
ll ′

κκ
′

)
eβ

(
l ′
κ

′

∣∣∣∣ j
)

= 0, (2.286)

or, in operator form,
De j = ω2

je j , (2.287)

are connected with each other by the relation [91]

eα

(
κ

∣∣∣∣kj
)

= 1√
N

∑
L

e−ikRL eα

(
l
κ

∣∣∣∣ j
)

. (2.288)

The relation converse to (2.288) has the form

eα

(
l
κ

∣∣∣∣ j
)

= 1√
N

∑
k

e−ikRL eα

(
κ

∣∣∣∣kj
)

. (2.289)

Now let us introduce complex normal coordinates Q

(
k
j

)
, writing amplitudes

Wα (κ|k) from (2.258) in the form
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Wα (κ|k) =
3r∑
j=1

eα

(
κ

∣∣∣∣kj
)

Q

(
k
j

)
. (2.290)

Using (2.277), we find the converse relation

Q

(
k
j

)
=
∑
κα

e∗
α

(
κ

∣∣∣∣kj
)
Wα (κ|k). (2.291)

By substituting (2.290) in (2.264) taking account of (2.259) and using (2.276),
we find the potential energy of the oscillating crystalline lattice in the harmonic
approximation

V = 1

2

∑
k

∑
j

ω2 (k| j)Q
(
k
j

)∗
Q

(
k
j

)
. (2.292)

The derivative on time from (2.290) is

Ẇα (κ|k) =
3r∑
j=1

eα

(
κ

∣∣∣∣kj
)

Q̇

(
k
j

)
. (2.293)

By substituting (2.293) in (2.269), we find for the kinetic energy

T = 1

2

∑
k

∑
j

Q̇

(
k
j

)∗
Q̇

(
k
j

)
. (2.294)

Thus, the Hamiltonian of the system, expressed in normal coordinates, takes the form

H = 1

2

∑
k

∑
j

{
Q̇

(
k
j

)∗
Q̇

(
k
j

)
+ ω2 (k| j)Q

(
k
j

)∗
Q

(
k
j

)}
. (2.295)

Starting from (2.295), one can obtain the following equation of motion for complex
amplitudes:

Q̈

(
k
j

)
+ ω2 (k| j)Q

(
k
j

)
= 0. (2.296)

The solution to equation (2.296) for fixed j has the form

Q

(
k
j

)
= Q0

(
k
j

)
exp[±iω (k| j)t], (2.297)

where Q0

(
k
j

)
does not depend on time. In (2.292), (2.294) and (2.295), the

summation is taken over all wave vectors k in Brillouin zone and over all j for
each k.
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Physical shifts Uα

(
l
κ

)
can be expressed in the form

Uα

(
l
κ

)
= 1√

MκN

∑
j

∑
k

eikRL eα

(
κ

∣∣∣∣kj
)

Q

(
k
j

)
. (2.298)

The relation converse to (2.298) has the form

Q

(
k
j

)
= 1√

N

∑
L

∑
κα

e−ikRL e∗
α

(
κ

∣∣∣∣kj
)
Uα

(
l
κ

)√
Mκ . (2.299)

Relations (2.298) and (2.299) show that normal coordinates Q

(
k
j

)
are carte-

sian components of shifts multiplied by
√
Mκ and projected on the vector e−ikRL e∗

α(
κ

∣∣∣∣kj
)

[91].

Each space symmetry groupG contains the subgroup of translations T as a normal
subgroupG/T.SinceT is Abelian group, its irreducible representations D(k) are one-
dimensional and are characterized by the wave vector k and the Bloch state vector
|ψk〉 [93]. The set of admissible values k fills the first Brillouin zone of the crystal
and characterizes all irreducible representations D(k) of the group T (with regard to
Born–Karman cyclic boundary conditions this number of irreducible representations
is finite).

For each vector k, the set of operators of the group G is determined, which
transforms the state vector |ψk〉 into a state vector with an equivalent value of the
wave vector k. As it was mentioned in Sect. 2.7, this totality of operators forms the
group Gk, named the group of the wave vector, which is a subgroup of the space
group G.

The dynamic matrix D(k) commutes with each of matrices of representations
D(k)(e) of the group Gk (e is the index of admissible representation). The form of the
matrix D(k) is given by (2.265), from which it is seen that D(k) is not an identity
matrix multiplied by a scalar. Since the matrix D(k) is not reducible to a constant
one and commutes with all matrices of the representation D(k)(e) of the group Gk, it
follows from Schur lemma [68, 80, 94] that the representation D(k)(e) is reducible.
Moreover, the dynamicmatrixD(k) commutes with each ofmatrices of the reducible
representation D(k)(e) of the group Gk:

D(k)D(k)(e) = D(k)(e)D(k). (2.300)

Now if we fix the argument of the matrix D(k)(e), which is not indicated in (2.300)
and which is an element of the wave vector group Gk, and realize the unitary trans-
formation using E(k) in both parts of (2.300) with regard to (2.284), we obtain [91]

(E(k))−1D(k)(e)E(k)�(k)�(k)�(k) = �(k)�(k)�(k)(E(k))−1D(k)(e)E(k). (2.301)



98 2 Time Reversal in Quantum Mechanics and Quantized Field Theory

Let us introduce the notation

D(k)(e) = (E(k))−1 D(k)(e)E(k) = (Ẽ(k))∗D(k)(e)E(k). (2.302)

Thus, taking account of (2.302), instead of (2.301) we obtain

�(k)�(k)�(k)D(k)(e) = D(k)(e)�(k).�(k).�(k). (2.303)

If we put together degenerated eigenvalues, the formula (2.285) can be rewritten in
the form

�(k)�(k)�(k) =

⎛
⎜⎜⎜⎜⎝

ω2 (k| 1) · 11 0 · · · 0 · · · 0

0 ω2 (k| 2) · 12
...

... ω2 (k| j) · 1 j

0 · · · ω2 (k| n) · 1ln

⎞
⎟⎟⎟⎟⎠ , (2.304)

where 1 j is a l j -dimensional identity matrix.
Since according to (2.302) and (2.303), every matrix D(k)(e) commutes with one

and the same block of the diagonalmatrix (2.304), anymatrixD(k)(e) for each element
of the group Gk is reduced to block form, in accordance with (2.304)

D(k)(e) =

⎛
⎜⎜⎜⎝

D(k)(1) 0 0 · · ·
0 D(k)(2) 0
0 0 D(k)(3)

... D(k)(n)

⎞
⎟⎟⎟⎠ . (2.305)

Matrices D(k)(1), . . . ,D(k)(n) in (2.305) have dimensions (l1 · l1), . . . , (ln · ln). Each
of these matrices is associated with its eigenvalue ω2 (k| 1), ω2 (k| 2), . . . , ω2 (k| n).

An important property of eigenvectors of the dynamic matrix D(k) is that they
may be used as a basis for representations D(k)(e) of the wave vector group Gk. This

is due to the fact that 3r eigenvectors e
(∣∣∣∣kj

)
of dynamic matrix ( j = 1, 2, . . . , 3r)

are Bloch vectors, corresponding to the wave vector k. It is easy to show that the
dynamic matrixD(k) is invariant to transformations of the group Gk, and this means
that one can construct from its eigenvectors the bases of irreducible representations
of the group Gk.

Side by side with the representationD(k)(e), one can also construct the representa-
tionD(k)( j) of the group Gk,which is interconnected withD(k)(e) by an unitary trans-

formation. This possibility is due to the fact that, besides 3r components eα

(
κ

∣∣∣∣kj
)

(α = 1, 2, 3; κ = 1, 2, . . . , r) of the 3r -dimensional vector e
(∣∣∣∣kj

)
, there exist
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3r components eα

(
κ

∣∣∣∣k
)

(α = 1, 2, 3; κ = 1, 2, . . . , r) of the 3r -dimensional

vector eα

(
κ

∣∣∣∣k
)
. The component eα

(
κ

∣∣∣∣kj
)

may be considered as an (ακ)-

component of the vector e
(∣∣∣∣kj

)
, or as a j-component of the vector eα

(
κ

∣∣∣∣k
)
. In

addition, between the set of 3r vectors

e
(∣∣∣∣kj

)
, j = 1, 2, . . . , 3r (2.306)

and the set of 3r vectors

eα

(
κ

∣∣∣∣k
)

, (α = 1, 2, 3; κ = 1, 2, . . . , r) (2.307)

there is a linear dependence [91]

eα

(
κ

∣∣∣∣k
)

= Ue
(∣∣∣∣kj

)
, (2.308)

where U is an unitary matrix:
U−1 = U+. (2.309)

Due to the fact that U is an unitary matrix, the relation converse to (2.308) has the
form

e
(∣∣∣∣kj

)
= U+eα

(
κ

∣∣∣∣k
)

. (2.310)

Since the bases of representations D(k)(e) and D(k)( j) are connected by a unitary
transformation (see (2.308) and (2.310)), it follows that matrices of these represen-
tations D(k)(e) and D(k)( j) must be equivalent:

D(k)( j) = U−1D(k)(e)U. (2.311)

In order to find all consequences of essential degeneracy of oscillating modes,
caused by operators of the complete space group G, it is necessary to obtain the set
of representations D(�k)(m) of G, using the representation D(k)(e) of the wave vector
group Gk, found by solving the dynamic problem.

The irreducible representation D(�k)(m) is marked by the star �k asterisk at the
wave vector k (the set �k ≡ {k,k2, . . . ,ks} from s wave vectors, corresponding to
the totality of s Bloch state vectors

{|ψk〉 ,
∣∣ψk2

〉
, . . . ,

∣∣ψks

〉}
) and by the index of

the admissible representation m. For values of s there are two possibilities: s = p
or s < p, where p is the index of the subgroup T of the group G, that is the order of
the quotient group G/T.
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The presence of an even more complete significant degeneracy in the problem of
dynamics of the crystalline lattice is connected with the complete space-time group
G of the crystal, which consists of the sum of the crystalline space group G and the
coset TG

G = G + TG, (2.312)

where T is the time-reversal operator.
Now, we can proceed to the consideration of the role of time-reversal symmetry

in the classical problem of dynamics of crystalline lattice. As it was already noted,
since spins of electrons and nuclei are not taken into account, when solving such
problem, the time-reversal operator T = UK is reduced to the operator of complex
conjugationK. The operatorK transforms a function into a complex-conjugated one
and plays a significant role as one of operators of symmetry of the dynamic matrix
D(k), as it will be shown below.

The operator K does not change the real eigenvector e(R)

Ke(R) = e(R) (2.313)

but changes the sign of the imaginary eigenvector e(I ):

Ke(I ) = −e(I ). (2.314)

If e is a complex eigenvector, in particular e
(∣∣∣∣ kj ′μ

)
, satisfying the condition of a

scalar product

e
(∣∣∣∣ kjμ

) ∗
· e
(∣∣∣∣ kj ′μ′

)
= δ j j ′δμμ′, (2.315)

then

(
Ke
(∣∣∣∣ kjμ

))∗
·
(
Ke
(∣∣∣∣ kj ′μ′

))
=
(
e
(∣∣∣∣ kjμ

) ∗
· e
(∣∣∣∣ kj ′μ′

))∗
. (2.316)

The antilinear and antiunitary properties of the operatorK, expressed by relations
(2.23), (2.57) and (2.316) make the operatorK qualitatively different from operators
of transformations of the space group G. Moreover, the operator K commutes with
all operators of the group G. In this case, the complete space-time symmetry group
of crystal is determined by the relation (2.312), in which T = K.

The completely depending on time solution to the dynamic equation (2.279) is
obtained, if one takes into account that the depending on time eigenvector εεε corre-
sponding to the wave vector K, is [91]

εεε

(∣∣∣∣ kjμ
∣∣∣∣ t
)

≡ e
(∣∣∣∣ kjμ

)
exp

{−iω (k| jμ)t
}

(2.317)
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and satisfies the equation

D(k) · εεε
(∣∣∣∣ kjμ

∣∣∣∣ t
)

+ ∂2εεε

∂t2

(∣∣∣∣ kjμ
∣∣∣∣ t
)

= 0. (2.318)

We act with the operator K on the left side of the (2.318):

KD(k)K−1 · K εK εK ε

(∣∣∣∣ kjμ
∣∣∣∣ t
)

+ K
∂2

∂t2
K−1 · K εK εK ε

(∣∣∣∣ kjμ
∣∣∣∣ t
)

= 0. (2.319)

Since ∂2

∂t2 is a real operator, we have

K
(

∂2

∂t2

)
K−1 = ∂2

∂t2
. (2.320)

We act now with the operator K on D(k)

KD(k)K−1 = (D(k))∗, (2.321)

using the definition (2.265) and the reality of the force constant. As a result we obtain

(D(k))∗ = D(−k). (2.322)

By comparing (2.322) with the condition thematrixD(k) to be Hermitian (2.267),
it follows that the matrix D(k) at fixed k is a Hermitian matrix and (2.322) gives the
relation between matrices D(k) and D(−k). From (2.320), (2.322) and (2.319), it
follows

D(−k) · K εK εK ε

(∣∣∣∣ kjμ
∣∣∣∣ t
)

= ∂2

∂t2
· K εK εK ε

(∣∣∣∣ kjμ
∣∣∣∣ t
)

. (2.323)

Now consider the complete set of eigenvectors depending on time at a given value
−k:

εεε

(∣∣∣∣−k
jλ

∣∣∣∣ t
)

= e
(∣∣∣∣−k

jλ

∣∣∣∣
)
exp {−iω (−k| jλ)t} . (2.324)

Each eigenvector from this set satisfies the equation

D(−k)εεε

(∣∣∣∣−k
jλ

∣∣∣∣ t
)

+ ∂2

∂t2
εεε

(∣∣∣∣−k
jλ

∣∣∣∣ t
)

= 0. (2.325)

By comparing (2.323) and (2.325), we see that the vector K εK εK ε

(∣∣∣∣ kjμ
∣∣∣∣ t
)
is connected

directly with the vector εεε

(∣∣∣∣−k
jλ

∣∣∣∣ t
)

. In order to establish this connection, we return
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to equations of motion non-depending of time for dynamic matrix. At a given value
k these equations have the form (2.279) and equations for the wave vector −k have
the form

D(−k)e
(∣∣∣∣−k

j̄λ

)
= ω2 (−k| j)e

(∣∣∣∣−k
j̄λ

)
, λ = 1, 2, . . . , l̄ j. (2.326)

Acting with the operator K on both sides of the (2.279) with regard to (2.322), we
obtain

D(−k)Ke
(∣∣∣∣ kjμ

)
= ω2 (k| j)Ke

(∣∣∣∣ kjμ
)

, μ = 1, 2, . . . , l j. (2.327)

It follows that non-depending on time eigenvectorsKe
(∣∣∣∣ kjμ

)
satisfy the same equa-

tions for eigenvalues, as e
(∣∣∣∣−k

j̄λ

)
do, with the dynamic matrix D(−k).

In [91], it is proved that the relation

e∗
α

(
κ

∣∣∣∣ kjλ
)

ω2 (k| j) = ω2 (−k| j̄)eα

(
κ

∣∣∣∣−k
j̄μ̄

)
(2.328)

takes peace. Since real eigenvalues of matrices D(k) and D(−k) = D(k)∗ are the
same, we can put

ω2 (k| j) = ω2 (−k| j̄) (2.329)

and then

e∗
α

(
κ

∣∣∣∣ kjλ
)

= eα

(
κ

∣∣∣∣−k
j̄μ̄

)
, (2.330)

or

Ke
(∣∣∣∣ kjλ

)
= e∗

(∣∣∣∣ kjλ
)

= e
(∣∣∣∣−k

j̄μ̄

)
. (2.331)

Formulas (2.331) were obtained in the [95] for the particular case of absence of
degeneracy

(
l j = 1 or l̄ j = 1

)
. It is necessary to note that, in general case, jμ̄ and jλ

in (2.330), as well as in (2.331), are different.
It is easy to show that the relation

K εK εK ε

(∣∣∣∣ kjμ
∣∣∣∣ t
)

= εεε

(∣∣∣∣−k
j̄μ̄

∣∣∣∣− t

)
(2.332)

takes place. According to (2.332), the operatorK transforms eigenvector correspond-
ing to the shift with the wave vector k at the time moment t , into the eigenvector
corresponding to the shift with the wave vector −k at time moment −t. That is

way the eigenvector K εK εK ε

(∣∣∣∣ kjμ
∣∣∣∣ t
)
can be named time-reversed relative to the eigen-
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value εεε

(∣∣∣∣ kjμ
∣∣∣∣ t
)
. It is necessary to note that the non-depending on time eigenvectors

e
(∣∣∣∣ kjμ

)
and e∗

(∣∣∣∣ kj̄μ̄
)

are concerned to the degenerated proper state. Therefore,

even for non-depending on time eigenvectors one may consider that e∗
(∣∣∣∣ kj̄μ̄

)
is

time-reversed relative to e
(∣∣∣∣ kjμ

)
.

Now we consider the complete set of eigenvectors, which determine the vec-
tor space and form a basis for the irreducible representation D(�k)(m) of the space
symmetry group G:

(�k)( j)∑
≡
{
e
(∣∣∣∣ kj1

)
, . . . , e

(∣∣∣∣ kj2
)

, . . . , e
(∣∣∣∣ ksjl j

)}
(2.333)

The set
(
s · l j

)
of complex normal coordinates

(�k)( j)∑
≡
{
Q

(∣∣∣∣ kj1
)

, . . . , Q

(∣∣∣∣ kj2
)

, . . . , Q

(∣∣∣∣ ksjl j
)}

(2.334)

may also be used as a basis of the irreducible representation D(�k)( j).

As it was shown in [91], the complete set (2.333) of eigenvectors of the dynamic
matrix D(k) or the complex normal coordinates (2.334), forming a basis of the irre-
ducible representation D(�k)( j) of the space group G, may also serve as a basis for
the irreducible representation D(�k)( j)∗ of the group G, if this basis is transformed
using the time-reversal operator K. If D(�k)( j) is an irreducible representation of the
group G, it follows that D(�k)( j)∗ will be also an irreducible representation of the
same group.

Since the operator K is an operator of symmetry, the set of the eigenvalues of
matrix D(k)

{
ω2 (k| j), . . . , ω2 (k| jl j ), . . . , ω2 (k| j ′1), . . . , ω2 (k| j ′

l j ′
)
}

(2.335)

is identically equal to the set of eigenvalues of the matrix D(k)∗ = D(−k)

{
ω2 (−k| j1), . . . , ω2 (−k| jl j ), . . . , ω2 (−k| j ′1), . . . , ω2 (−k| j ′

l j ′
)
}

. (2.336)

Taking account of (2.335), it follows that the space generated by the set of all eigen-
vectors of the matrix D(k) or normal coordinates at a given k :

(k)({ j})∑
≡
{
e
(∣∣∣∣ kj1

)
, . . . , e

(∣∣∣∣ kjl j
)

, . . . , e
(∣∣∣∣ ksj ′l j ′

)}
(2.337)
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or
(k)({ j})∑

≡
{
Q

(∣∣∣∣ kj1
)

, . . . , Q

(∣∣∣∣ kjl j
)

, . . . , Q

(∣∣∣∣∣
k
j ′l ′j

)}
, (2.338)

is degenerated with the space formed by corresponding sets at a given −k:

(−k)({μ})∑
≡

(k)({ j})∗∑
≡ K

(k)({ j})∑
, (2.339)

(k)({ j})∗∑
≡
{
e∗
(∣∣∣∣ kj1

)
, . . . , e∗

(∣∣∣∣ kj ′l j ′
)}

, (2.340)

or
(k)({ j})∗∑

≡
{
Q∗
(∣∣∣∣ kj1

)
, . . . , Q∗

(∣∣∣∣ kj ′l j ′
)}

. (2.341)

If the space
∑(�k)( j) is real and satisfies the relationship

K
(�k)( j)∑

=
(�k)( j)∑

, (2.342)

then it may serve as a basis for the “physically irreducible representation” of the
complete space-time group G, which appears in the problem of dynamics of the
crystal latticewith the space symmetry groupG.Since the physical shiftsu describing
deviations of atoms of the crystal from equilibrium positions are real, there are
possible only such physical irreducible representations, of which basis is the real
space � [91].

Since every normal oscillation appearing in lattice dynamics is transformed as a
basis for the irreducible representation of the group G, it is possible to say that if

D(�k)( j) ≡ D(�k)( j)∗ , (2.343)

then the irreducible representation of the space group G is real and it can be used as
a “physical” irreducible representation of the group G. However if (2.343) does not
take place, i.e.,

D(�k)( j) �≡ D(�k)( j)∗ , (2.344)

then the “physical” irreducible representation of the complete space-time group G is
a direct sum

D(�k)( j) ⊕ KD(�k)( j) = D(�k)( j) ⊕ D(�k)( j)∗ , (2.345)

which is, in this case, a real irreducible representation of the group G [91].
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If the relation (2.343) is fulfilled, then accounting the time-reversal symmetry
does not change the results of this analysis made by taking into account only the
space symmetry group G. In the case when relations (2.344) and (2.345) are valid,
taking account of the time-reversal operator leads to doubling the degeneracy of
oscillation modes. Namely, it takes place a transition from the degeneracy due to the
space group G that is characterized by the representation D(�k)(m) to a degeneracy
connected with the complete space-time symmetry group G, which is characterized
by a direct sum of representations D(�k)(m) ⊕ D(�k)(m)∗ . In addition,

D(�k)(m)∗ = D(�−k)(m̄), (2.346)

where D(�−k)(m̄) is the irreducible representation corresponding to the star (�−k).

It is necessary to mention that the irreducible representation D(�k)(m) of the space
group G is an induced representation constructed using the small representation of
the wave vector group Gk. Therefore, in order to study representation D(�k)(m), one
may use Herring criteria mentioned in Sect. 2.7 (2.150), which allow to operate only
with characters of elements of the group Gk.

According to Frei [96], only three classes of wave vectors k and stars �k are
distinguished

Class I : k = −k+2πBH , �k = � − k. (2.347)

Class I I : k �= −k+2πBH , �k = � − k. (2.348)

Class I I I : k �= −k+2πBH , �k �= � − k. (2.349)

In (2.347)–(2.349), BH is the vector of the reciprocal lattice (to avoid ambiguity,
here we do not use the notation K for the vector of the reciprocal lattice, introduced
in Sect. 2.7, the formula (2.142), do not confuse this vector with the time-reversal
operator K for spinless systems).

Each of three classes I, II, III requires a special consideration, which is done in
[91] using a method different from Frei’s method. Here we restrict ourselves only to
the discussion of results.

Class I. If D(k)(m) is real, then m = m̄ and a supplementary degeneracy of oscil-
lating modes is absent. If D(k)(m) is complex, then m �= m̄ and representations
D(k)(m) and D(k)(m̄) are joined. The admissible physical irreducible representations
for phonons are representations D(k)(m)⊕ D(k)(m̄), having a double dimension as
compared with D(k)(m). This is an important case from the practical point of view
since it corresponds to a local doubling of the degree of degeneracy relative to the
degeneracy, caused by a poorly space symmetry group G.

Class II. If m = m̄, then the supplementary degeneracy is absent. However, if
m �= m̄, then the representations D(k)(m) and D(k)(m̄) are joined. In this case there is
again a local doubling of the degeneracy comparing with degeneracy caused by the
purely space symmetry group G.

Class III. For wave vectors of class III, the following relation between irreducible
representations takes place
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D(�k)(m) �≡ D(�−k)(m̄) (2.350)

This relationship shows that the complete representations D(�k)(m) and D(�−k)(m̄) must
be considered together as a single representation. Such a doubling the degeneracy
multiplicity of oscillating modes is “global”. It differs from a “local” join of the
representations at a given wave vector k. In this case, the significant degeneracy is
connected with the doubling of the number of representations of the space group G
by means of the complete space-time symmetry group G.

2.14 Time-Reversal Symmetry in Quantized Field Theory

Let the basis of the Hilbert space can be taken as [90]

|{ni ,pi , σi }〉 ≡ a+
n1p1σ1

. . . a+
nk pk σk

|0〉 , (2.351)

which is a k-particle state, where the i th particle is specified by the particle type ni ,
its momentum pi , and its spin component along an axis σi . The n-type antiparticle
will be specified by n̄ included in ni . In this case, the antiparticle will be considered
just as another particle type. Bound states are included as separate particles. One can
take different spin quantization axes for different particle types and momenta, but for
simplicity we will consider the z axis for all particle types and momenta. In (2.351),
a+
nipiσi is the creation operator of the i th particle and |0〉 is the vacuum state.
The invariance of the quantum field theory equations under time-reversal operator

T, along with invariances of these equations under the parity operator P and charge
conjugation operatorC, have been analyzed bymany authors [2, 70, 72, 89, 97–102].

In this section, a short presentation of the T -invariance in quantum field theory is
given according to [70, 90].

In the definition of the basis state (2.351) it is implicitly assumed the following. If
there are N particles with exactly the same type of momentum and spin, then there
is a factor 1/ \√N ! to ensure the normalization

〈{nipiσi }| {nipiσi }〉 = 1. (2.352)

The complete set of basis states consists of all possible combinations of particle
types, momenta, spins and particle numbers. Once the action of the antiunitary time-
reversal operator T on each of the creation and destruction operators is given, its
action on the basis state is defined and, consequently, the T operator is uniquely
determined.

Under the time-reversal operator the 3-momentum P and the spin component
σ change their signs, whereas the particle type n remains the same. Thus, the
time-reversal operator T should transform a creation operator of the type n parti-
cle, momentum P and spin component σ to that for (n,−p,−σ) up to the phase
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factor, which in general case depends on (n, p, σ ):

Ta+
npσT

+ = ζnpσa
+
n−p−σ . (

∣∣ζnpσ

∣∣ = 1) (2.353)

By analogy, for the annihilation operator anpσ we obtain

TanpσT+ = ζ ∗
npσan−p−σ . (2.354)

In spite of the vacuum state |0〉 should transform to itself under time reversal up
to a phase

T |0〉 = ζVAC |0〉 , (2.355)

the basis state |{nipiσi }〉 of (2.351) transforms as

T |{nipiσi }〉 = Ta+
n1p1σ1

T+T... ...T+Ta+
nk pkσk

T+T |0〉 =
= ζn1p1σ1 . . . ζnkpkσk ζVACa

+
n1−p1−σ1

. . . a+
nk −pk−σ |0〉 =

= ζ{nipiσi }ζVAC |{ni − pi − σ }〉 , (2.356)

where we have defined
ζ{nipiσi } ≡ ζn1p1σ1 . . . ζnkpkσk . (2.357)

Here we have taken into account that ζVAC from (2.355) is equal to 1 (ζVAC = 1)
from the following considerations: the phase associated with the vacuum state can be
removed by redefining the overall phase of the operator T. If we define T ≡ζVACT′,
then

T |0〉 = ζVAC |0〉 , ζVACT′ |0〉 = ζVAC |0〉 ⇒ T′ |0〉 = |0〉 . (2.358)

Because of the antilinearity of the operator T, we can also remove the phase by
redefining the vacuum state phase. Namely, if T transforms the state vector into
itself up to a phase factor

T |ψ〉 = eiφ |ψ〉 , (2.359)

then by defining |ψ〉 = e−i φ

2

∣∣ψ ′〉, we have
Te−i φ

2
∣∣ψ ′〉 = eiφe−i φ

2
∣∣ψ ′〉⇒ T

∣∣ψ ′〉 = ∣∣ψ ′〉 , (2.360)

taking into account that Te−i φ

2 = ei
φ

2 T. We see that the phase factor is an eigenvalue
of the time-reversal operator T. Since this factor has no physical meaning, it is
assumed that the time-reversal phase of the vacuum state is +1 [90]:

T |0〉 = |0〉 . (2.361)



108 2 Time Reversal in Quantum Mechanics and Quantized Field Theory

The matrix elements of T with respect to the basis state vectors are determined
by 〈

ψ{nipiσi }
∣∣T
∣∣∣ψ{n jp jσ j}

〉
= ζ{nipiσi }δ{nipiσi }{n j−p j−σ j}, (2.362)

where the notation
∣∣ψ{nipiσi }

〉 = |{nipiσi }〉 is used and δ{nipiσi }{n j−p j−σ j} is taken to be+1, if there are only one type of particles and momenta and, in addition, spins are of
opposite signs between the two groups, otherwise the value is zero. The huge matrix
formed by matrix elements (2.362) is an unitary matrix containing only one nonzero
element in each row or in each column. The antilinear time-reversal operatorTwhich
is represented by a product of unitary operator and operator of complex conjugation
is an antiunitary operator.

We consider the Yukawa interaction Hamiltonian

hY (t) =
∫

d3xψψφ (2.363)

and the quantum electrodynamics (QED) interaction Hamiltonian

hQED =
∫

d3x Aμ(x)ψ̄(x)γμψ(x), (2.364)

where γμ is the Dirac 4-matrix, ψ and ψ̄ are the 4-component spinor and the cor-
responding Hermitian conjugated spinor Aμ is the 4-vector potential of the electro-
magnetic field.

In accordance to [90], it will be shown below that it is possible to select the
arbitrary time-reversal phases ζnpσ from (2.353) in such a way that Hamiltonians
hY (t) and hQED(t) satisfy the condition of time-reversal invariance:

Th(t)T+ = h(−t). (2.365)

For a spin-0 particle the spin index can be omitted and thus (2.353) and (2.354) are

Ta+
spT

+ = ζspa
+
s−p,TaspT

+ = ζ ∗
spas−p. (2.366)

By applying T to the scalar spin-0 field

φ(x) =
∑
p

(
aspep(x) + a+

s̄pe
∗
p(x)

)
(2.367)

with

ep(x) = e−i px

2p0V
, p0 =

√
p2 + m2, (2.368)

where p and p are linear 4- and 3-momentum, m is the physical mass of the particle
and V is the volume at quantization of the field in a limited volume, we obtain
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Tφ(x)T+ =
∑
p

((
TaspT+) e∗

p(x) + (Ta+
s̄pT

+)ep(x)
)

=

=
∑
p

ζ ∗
spas−pe

∗
p(x) + ζs̄pa

+
s̄−pep(x) =

=
∑
p

ζ ∗
s−paspe

∗
−p(x) + ζs−pa

+
s̄pe−p(x) =

=
∑
p

ζ ∗
s−paspep(x

′) + ζs−pa
+
spe

∗
p(x

′), (2.369)

where we have used x ′ ≡ T x = (−x0, x) and e−p(x) = e∗
p(x

′) in the last sum. In
the third sum from (2.369) the substitution p → −p was fulfilled, which did not led
to changing the size of this sum.

We require that the transformed field should be “proportional” to the original
field [90]. Then, the phase factors should not depend on p : ζsp = ζs, ζs̄p = ζs̄ and
ζs̄ = ζ ∗

s .

So we have
Tφ(x)T+ = ζ ∗

s φ(x ′), (x ′ ≡ T x). (2.370)

In (2.370), the operator T which transforms x into x ′ belongs to the Lorentz group
and it is explicitly written in the four dimension space-time as

T =

⎛
⎜⎜⎝

−1
1
1
1

⎞
⎟⎟⎠ . (2.371)

For the fermion field, the transformation (2.353) gives

Ta+
f pσT

+ = ζ f pσa
+
f −p−σ . (2.372)

An analogical relationship for a f pσ is

Ta f pσT+ = ζ ∗
f pσa f −p−σ . (2.373)

By applying T to the fermion field, ψ(x),

ψ(x) =
∑
pσ

(a f pσ fpσ (x) + a+
f̄ pσ

gpσ (x)), (2.374)

where
fpσ (x) = upσ ep(x), gpσ (x) = vpσ e

∗
p(x) (2.375)

and ep(x) is determined by (2.368), we obtain
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Tψ(x)T+ =
∑
pσ

(Ta f pσT+ f ∗
pσ (x) + Ta+

f pσT
+g∗

pσ (x)) = (2.376)

=
∑
pσ

(ζ ∗
f pσa f −p−σ f ∗

pσ (x) + ζ f̄ pσa
+
f̄ −p−σ

g∗
pσ (x)) =

=
∑
pσ

(ζ ∗
f −p−σa f pσ f ∗

−p−σ (x) + ζ f̄ −p−σa
+
f̄ pσ

g∗
−p−σ (x)),

where the following substitutions were used in the last sum: p → −p, σ → −σ.

Using e∗−p(x) = ep(x ′) with x ′ ≡ T x = (−x0, x) it was shown in [90] that

f ∗
−p−σ (x) = u∗

−p−σ e
∗
−p(x) = u∗

−p−σ ep(x
′), (2.377)

g∗
−p−σ (x) = v∗

−p−σ e−p(x) = v∗
−p−σ ep(x

′), (2.378)

and correspondingly, Tψ(x)T+ is

Tψ(x)T+ =
∑
pσ

(ζ ∗
f −p−σa f pσu

∗
−p−σ ep(x

′) + ζ f̄ −p−σa
+
f̄ pσ

v∗
−p−σ e

∗
p(x

′)). (2.379)

The values of u∗−p−σ and v∗−p−σ in (2.379) are

u∗
−p−σ = sign(σ )δTupσ , v∗

−p−σ = sign(σ )δ̄Tvpσ , (2.380)

where δ and δ̄ are phase factors do not depended on σ . The (4× 4)-matrix T unitary
and antisymmetric

T+T = 1, TT = −T, (2.381)

and satisfies the relation

Tγ μT+ = γ ∗
μ (μ = 0, 1, 2, 3). (2.382)

We note that the (4 × 4)-matrix T is not antilinear and acts in the spinor space.
It is necessary to distinguish it from the antilinear time-reversal operator T, which
operates in the Hilbert space, as well as from the Lorentz transformation matrix T ,
operating in the four-dimensional space-time.

In Dirac representation, the matrix T has the form

T = γ3γ1 =

⎛
⎜⎜⎝
0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎠ (2.383)

We can see from (2.383) that the matrix T is antisymmetric. Using the relationship
γ +

μ = γ μ, we obtain
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T+T = (γ3γ1)
+(γ3γ1) = γ +

1 γ +
3 γ3γ1 = γ 1γ 3γ3γ1 = 1. (2.384)

Thus, T is an unitary and antisymmetric matrix.
On the basis of (2.380) the formula (2.379) can be transformed to the form [90]:

Tψ(x)T+ = T
∑
pσ

(ζ ∗
f −p−σ sign(σ ) · δa f pσ fpσ (x ′)+ ζ f −p−σ sign(σ ) · δ̄a+

f pσ gpσ (x ′)).

(2.385)
We require that the transformed fermion field should be “proportional” to the original
one. Also the phase factors in front of a f pσ and a+

f pσ should not depend on p, σ , and
particle or antiparticle:

ζ ∗
f −p−σ sign(σ )δ = ζ f̄ −p−σ δ̄ ≡ ζ ∗

f . (2.386)

The relation (2.386) can be considered as a definition of ζ ∗
f . So we have

Tψ(x)T+ = ζ ∗
f Tψ(x ′)). (2.387)

Under the time-reversal operator T, the spin-1 vector field

Aμ(x) =
∑
pσ

(avpσ εμ
pσ ep(x) + a+

v̄pσ εμ∗
pσ e

∗
p(x)) (2.388)

transforms as

TAμT+ =
∑
pσ

(TavpσT+εμ
pσ ep(x) + Ta+

v̄pσT
+εμ∗

pσ e
∗
p(x)) = (2.389)

=
∑
pσ

(ζ ∗
vpσav−p−σ εμ∗

pσ e
∗
p(x) + ζv̄pσa

+
v̄−p−σ εμ

pσ ep(x)) =

=
∑
pσ

(ζ ∗
v−p−σavpσ ε

μ∗
−p−σ e

∗
−p(x) + ζv̄−p−σa

+
v̄pσ ε

μ
−p−σ e−p(x)).

When passing from the second double sum in (2.389) to the third one, substitutions
p → −p and σ → −σ have been fulfilled, which do not change the sums.

Using the relationship [90]

ε
μ∗
−p−σ = (−1)1+σ εpσμ (2.390)

and taking into account that e∗−p(x) = ep(x ′) (x ′ ≡ T x), we have

TAμT+ =
∑
pσ

(ζ ∗
v−p−σ (−1)1+σavpσ εpσμep(x

′) + ζv̄−p−σ (−1)1+σa+
v̄pσ ε∗

pσμe
∗
p(x

′).

(2.391)
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In order for this to be “proportional” to Aμ(x ′), the phase factors should be indepen-
dent on particle type, momentum, and spin:

ζ ∗
v̄−p−σ (−1)1+σ = ζv̄−p−σ (−1)1+σ ≡ ζ ∗

v . (2.392)

Thus, the transformation of a spin-1 field becomes

TAμ(x)T+ = ζ ∗
v Aμ(x ′) (x ′ = T x) (2.393)

To summarize, under time reversal the fields transforms as [90]

Tφ(x)T+ = ζ ∗
n φ(T x) (spin − 0) (2.394)

Tψ(x)T+ = ζ ∗
n Tψ(T x) (spin − 1/2)

TAμ(x)T+ = ζ ∗
n Aμ(T x) (spin − 1),

where the factors ζn in general case can differ for different particles, and T is ternary
and antisymmetric (4×4)-matrix that satisfies the relationship Tγ μT+ = γ ∗

μ (μ =
0, 1, 2, 3). We note that for the spin−1 field the Lorentz index μ changes from
superscript to subscript under time-reversal operator T.

It is shown in [90] that under time-reversal operator the current transforms as

T jμ(x)T+ = ψ+(x ′)γ0γ μψ(x ′) = jμ(x ′) (x ′ = T x). (2.395)

Now let find how the operatorT acts on Hamiltonian hQED(t) (2.364), beforehand
presenting it in the form

hQED =
∫

d3xHint(x) =
∫

d3x Aμ(x) jμ(x), jμ(x) = ψ̄(x)γμψ(x). (2.396)

Taking into account (2.396), (2.395) and (2.394), the transformed Hamiltonian
Hint(x) under time-reversal operator T can be represented as

THint(x)T+ = TAμ(x)T+T jμ(x)T+ = ζ ∗
v Aμ(x ′) jμ(x ′), (2.397)

where the index v of the phase factor is related to the photon field (n = v). By
choosing the arbitrary phase factor ζ ∗

v to be unity, we obtain

THint(x)T+ = Aμ(x ′) jμ(x ′) = Hint(x
′) (x ′ = T x) (2.398)

The space-integrated Hamiltonian of QED interaction is transformed under time
reversal as [90]

ThQED(t)T+ =
∫

d3xTHint(x)T+ =
∫

d3xHint(x
′) = hQED(−t) (x ′ = T x).

(2.399)
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Similarly, the Yukawa coupling transforms under T as

Tψ̄(x)ψ(x)φ(x)T+ =ζ ∗
s ψ̄(x ′)ψ(x ′)φ(x ′) (x ′ = T x). (2.400)

When the formula (2.400) was deduced, the first two relationships (2.394) were used.
By choosing ζ ∗

s = 1, the interaction Hamiltonian hY (t) satisfy the relationship [90]

ThY (t)T+ = hY (−t). (2.401)

Thus, all processes caused by the Yakawa coupling are invariant under time-reversal.
At the end of this section, we note that applying T twice spin-0 and spin-1 fields

recovers the original field

TTφ(x)T+T+ = ζnTφ(T x)T+ = ζnζ
∗
n φ(T 2x) = φ(x). (2.402)

TTAμ(x)T+T+ =ζnTAμ(T x)T+ = ζnζ
∗
n A

μ(T 2x) = Aμ(x). (2.403)

As for the spin-1/2 fields, applying T twice flips the sign:

TTψ(x)T+T+ = Tζ ∗
n Tψ(T x)T+ = ζnT

∗Tψ(T x)T+ =
= ζnζ

∗
n T

∗Tψ(T 2x) = −ψ(x), (2.404)

because ζnζ
∗
n = 1,T∗T = −1, and T 2x = x .

The relation (2.404) represents the Kramers theorem, which takes place in the
quantum field theory for spin-1/2 fields, as well as in quantum mechanics for a
system formed by an odd number of particles with spin 1/2.

2.15 The CPT Theorem

Relations (2.394) show how scalar field φ(x) ((2.367), spin equal to 0), fermion field
ψ(x) ((2.374), spin equal to 1/2), and the charged vector field Aμ(x) ((2.388), spin
equal to 1) are transformed under the time-reversal operator T. Similarly, (2.399)
and (2.401) describe the transformations of space-integrated Hamiltonians of QED
interaction and Yukawa coupling under T. In all these cases, we deal with the time-
reversal symmetry or, in other words, with the invariance of interactions under time-
reversal (T -invariance).

In a similar way, we can consider P- and C-invariances, connected with the oper-
ator of space-reversal P and with operator of charged conjugation C, respectively. In
Table2.1 it is indicated how some physical quantities are transformed at operations
P, T and C.

Now, we consider the principle of invariance of physical laws relative to each of
the symmetry transformations P, T and C. First of all, we note that the operation of
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Table 2.1 Transformation of some physical quantities at operations P, T and C [103]

Initial quantity Result of operation

P T C

Vector of position r(t) −r(t) r(−t) r(t)

Impulse p(t) −p(t) −p(−t) p(t)

Total angular
momentum J(t)

J(t) −J(−t) J(t)

Electrical charge q q q −q

Electric field strength
E(r, t)

−E(−r, t) E(r,−t) −E(r, t)

Magnetic induction
B(r, t)

B(−r, t) −B(r,−t) −B(r, t)

Electric dipole
momentum dE (t)

−dE (t) dE (−t) −dE (t)

Magnetic dipole
momentum μμμ(t)

μμμ(t) −μμμ(−t) −μμμ(t)

space reversal is a product of the mirror reflection in the plane xOy and the rotation
by angle 1800 around the axis Oz perpendicular to the given plane. Since there is
no reason to doubt the invariance of laws relative to rotations, it follows that it is
necessary to consider either space reversal or reflection. Until 1956, the principle
of invariance of physical laws relative to the space reversal P remained immovable
and nobody decided to doubt, for example, the fact the parity conservation law is
realized in all interactions.8 However, it was discovered soon that theweak interaction
is not invariant relative to the space reversal. Wu et al. [105] discovered that parity
at β-decay of 60Co is not preserved, in the experiment suggested by Lee and Yang
[106]. Another experimental proof of violation of the invariance principle relative
to space reversal in weak interactions is the fact, that neutrino is met in nature
with chirality hν = −1, while photon may exist both in the state with chirality
+1, and with chirality −1 (the chirality hν of particle or antiparticle is defined as
hν = (s · p)/(|s| · |p|), where s is the spin vector and p is the linear momentum
vector). These two examples are sufficient to show that P-invariance is not universal
(it is violated in weak interactions) and, at the same time, to doubt the universality
of C- and T -invariances.

The operation of charge conjugation C consists in reversal of all electric, baryon
and lepton charges (as well as strangeness) of particles without changing their posi-
tion and velocity. In other words, other conditions being equal, these operations
consists in a transformation of the particle system in a system of antiparticles.

Up to 1956, it was considered that all physical laws are invariant not only relative
to operation P, but also to the operation of charge conjugationC. Now, this assertion

8Although in 1848 Paster called attention to the fact that some organic compounds are met in
biological structures only in a left rotation form [104].
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is confirmed for all interactions, excepting the weak interaction. The violation of C-
invariance in the case of weak interactions is attested, in particular, by the existence,
as it was already noted, of a unique state of chirality hν = −1 at neutrino. If it is
produced a “charge conjugation” of neutrino, one gets a fictitious anti-neutrino with
chirality h ν̄ = −1, which does not exist in nature.

Thus, theweak interactionviolates simultaneously P-invariance andC-invariance,
but it may turn out that PC-invariance is not violated. In the existence of
PC-invariance, one can be convinced by considering again the properties of the
neutrino. Indeed, as a result of action on the neutrino by the operator of space rever-
sal P a fictitious neutrino with chirality hν = +1 is obtained (we remind that the
real neutrino has the chirality hν = −1). However, if on this imaginary object it
is produced the operation of charge conjugation C, which in this case consists in
changing the sign of the lepton charge, then we again obtain an object existing in
nature, namely an anti-neutrino with chirality hν = +1.

This result is the basis of the so-called theory of two-component neutrino [103],
where Dirac equation for neutrino with the mass taken equal to zero9 has only two,
not four linearly independent solutions. One of them corresponds to the positive
energy and is connected with the neutrino in a state with chirality hν = −1, and
the other corresponds to the negative energy and describes the anti-neutrino with
chirality hν = +1. The anti-neutrino, of which mass is zero in this theory, like the
mass of neutrino, is spread, like a neutrino, with a light velocity.

However, the anti-neutrino differs significantly from the neutrino in that its spin
is always directed along the motion, and not against, as in the case of neutrinos.

Thus, in a processes with the participation of a neutrino the C-invariance is vio-
lated.10 However, the role of the neutrino is not restricted only to this fact, especially
after the fundamental discovery of existence its rest mass. In particular, the data con-
cerning the atmosphere neutrinos are consistent with νμ ←→ ντ oscillations (νμ is
the muon neutrino and ντ is the tau neutrino). These oscillations show that neutrinos
have some rest mass, although for a long time they were considered massless. The
experimental data show a zenith angle v dependent deficit of muon neutrinos, which
is inconsistent with the exceptions based on calculations of the atmosphere neutrinos
flux. These data are consistent with νμ ←→ ντ oscillations with sin2 2θ > 0.82 and
5 · 10−4 < �m2 < 6 · 10−3 eV2/c2 (c is the light speed in vacuum) at a 90% confi-
dence level [108]. After this discovery the neutrino becomes an important participant
in the Universe evolution scenario.

The observed now expansion of the Universe, along with the experimental dis-
covery of the relic microwave background radiation confirm the Big Bang theory.
Will the expansion of the Universe be continuous for ever, beginning with, or will it
replaced by compression in some timemoment, it depends on the amount of neutrino
particles in the Universe. In spite of the very small rest mass of these particles, their

9Experimental researches, made often the suggestion of theory of two-component neutrino, showed
that really the rest mass of neutrino is not equal to zero.
10Moreover, as noted in [107], in some processes with the participation of neutrinos even the CPT
theorem is violated.
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great amount in the Universe can be sufficient for the mean density of the matter in
the Universe ρ to be greater than the critical one (ρ > ρcr), at which the expansion
of the Universe will be replaced by its compression. On the other hand, a recent
publication [107] mentioned the role of neutrinos in the process of expansion of the
Universe.

Numerous experimental data allow to conclude that the weak interaction is
CP-invariant [103]. This means that the C-invariance is violated if P-invariance
is violated (and vice versa). This is exactly what is observed experimentally in weak
interactions. The evolution from P- to CP-invariance shows that in the case when a
violation of CP-invariance is observed, it is necessary to require all physical laws to
be invariant relative to the transformation CPT . The violation of the CP-invariance
in weak interactions was observed as early as 1964 in the decay of K 0

L meson into two
π -mesons in one special process (K 0

L → π++π−) [109]. Though this process occurs
very rarely (the relative probability∼ 1.6 ·10−3), it raises doubts about the existence
of CP-invariance. In this situation, the requirement of CPT -invariance inevitably
leads to violation of T -invariance. Different ways of violation of T -invariance (more
exactly, the reduction of the T -symmetry from T ≡ T3 to T2 and T1 as a conse-
quence of the special structure of non-Abelian and Abelian groups, introduced in the
Chap.8), will be discussed in the Chap.9.

Thus, all physical laws are invariant relative to the antiunitary involution θ = CPT
(the order of succession of operators C,P and T is not significant, because the
operators are commuting). It is the famous Lüders–Pauli CPT theorem [110–112].

The CPT theorem is of a great importance, since it shows that the discrete sym-
metry appears not only in theories, which are symmetrically relative to operations
P,C and T, but also in theories containing initially only an invariance relative to
continuous symmetry groups.

According to the CPT theorem, even if the invariance relative to each of C,P
and T operators separately is not present, the invariance relative to their combination
is fulfilled. Particularly, in the case of a charged field this means the existence of
antiparticles with the same masses and spins as the respective particles. Moreover,
in this case, the invariance of the theory relative to CPT transformations means
also the equality of g-factors of particles and antiparticles. This makes it possible to
experimentally test the CPT symmetry with high accuracy. The more exact value of
the ratio of g-factors for the positron and electron is the following [89]:

g(e+)

g(e−)
= 1 + (22 ± 64) · 10−22.

In the case of neutral fields, the particles and antiparticles are identical.
The exceptionality of the Lüders–Pauli theorem is that its content during the

time was deepened and methods of its proof were continuously improved, using a
generalized functions and an axiomatic approach in the theory of quantum fields.
In this connection, it should be noted especially the results, obtained by Jost, as
well as by Streater and Wingtman in their books [98, 102]. The proof of the CPT
theorem in an axiomatic approach was fulfilled by Jost [102], which has shown that
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every field theory satisfying all axioms possesses a supplementary discrete antilinear
symmetry θ.

However, understanding the contents and proof of the CPT theorem in an
axiomatic approach require a special mathematical training in the theory of gen-
eralized functions. Since our book is addressed to a wider range of readers, we shall
not give here this proof, but will consider the transformation of fields under the
antiunitary involution θ [90]. For this, in addition to formulas (2.394), we will obtain
similar formulas for the transformation of fields under the operators P and C.

The parity operator P, defined in the Hilbert space with the basis (2.351), should
transform the creation operator of a particle of type n, momentum p and spin σ to
one for (n,−p, σ ) up to a phase factor that, in general case, depends on (n,p, σ ):

Pa+
npσP

−1 = ηnpσa
+
n−pσ , (

∣∣ηnpσ

∣∣ = 1). (2.405)

Taking into account that the vacuum state |0〉 should transform under a parity
operator up to a phase factor

P |0〉 = ηVAC |0〉 , (2.406)

the basis state |{ni ,pi , σi }〉 of (2.351) transforms under the operator P as

P |{ni ,pi , σi }〉 = Pa+
n1p1σ1

P−1P . . . . . .P−1Pa+
nkpkσk

P−1P |0〉 =
= ηn1,p1,σ1 . . . ηnkpkσkηVACa

+
n1−p1σ1

. . . a+
nk−pkσk

|0〉 =
= η{ni ,pi ,σi }ηVAC |{ni ,−pi , σi }〉 , (2.407)

where
η{ni ,pi ,σi } ≡ ηn1p1σ1 . . . ηnkpkσk . (2.408)

We suppose that the parity of the vacuum is taken to be +1 [90]. Then

P |0〉 = |0〉 ,

P |{ni ,pi , σi }〉 = η{ni ,pi ,σi } |{ni ,−pi , σi }〉 . (2.409)

We see that for the set of creation operators
{
a+
nipiσi

}
that correspond to all possible

particle types, momenta and spins, one can choose an arbitrary set of phases for
constructing a unitary operator P representing the space inversion in a Hilbert space.

Taking into account that P is an unitary operator, we can rewrite (2.405) in the
form

Pa+
npσP

+ = ηnpσa
+
n−pσ . (2.410)

Then we shall obtain an analogous expression for the transformation of an annihila-
tion operator anpσ :

PanpσP+ = η∗
npσan−pσ . (2.411)
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The operators anpσ and a+
n′p′σ ′ satisfy commutation relations

[
anpσ , a+

n′p′σ ′

]
= δnn′δpp′δσσ ′ (2.412)

for bosons and the anti-commutation relations
{
anpσ , a+

n′p′σ ′

}
= δnn′δpp′δσσ ′ (2.413)

for fermions.
Let firstly apply the parity operator to a spin 0 field from (2.367), where the index

n is replaced by s to emphasize that this is a scalar field. For a neutral scalar field we
have s = s. Using (2.410), (2.411) and (2.367), we have [90]

Pφ(x)P+ =
∑
p

(PaspP+ep(x) + PaspP+e∗
p(x)) = (2.414)

=
∑
p

(η∗
spas−pep(x) + ηspa

+
s−pe

∗
p(x)) =

=
∑
p

1√
2p0V

(η∗
spas−pe

−i(p0x0−px) + ηspa
+
s−pe

i(p0x0−px)) =

=
∑
p

1√
2p0V

(η∗
spas−pe

−i(p0x ′0+px′) + ηspa
+
s−pe

i(p0x ′0+px′)) =

=
∑
p

1√
2p0V

(η∗
s−paspe

−i px + ηs−pa
+
spe

i px ) =

=
∑
p

(η∗
s−paspep(x

′) + ηs−pa
+
spe

∗
p(x

′)),

when passing from the third sum to the fourth one and from the fourth sum to the
fifth one, the changes p −→ −p, x ′ = (x0,−x) and px ′ = p0x ′0 + px′ were used,
respectively, and passing from the fifth sum to the sixth one the formula (2.368) was
used.

Let’s now apply the parity operator to a spin-1/2 fermion field from (2.374),
where n is replaced by f to emphasize that this is a fermion field. Applying P to
ψ(x) from (2.374) and using (2.410) and (2.411), we get

Pψ(x)P+ =
∑
p,σ

(Pa f pσ fpσ
(x)P+ + Pa+

f pσ
gpσ (x)P+) = (2.415)

=
∑
p,σ

1√
2p0V

(η∗
f pσa f −pσupσ e

−i px + η f pσa
+
f −pσ

vpσ e
ipx ) =

=
∑
p,σ

1√
2p0V

(η∗
f −pσa f pσu−pσ e

−i px ′ + η f −pσa
+
f pσ

v−pσ e
ipx ′

),
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when passing from the second sum to the third one, the changes x ′ = (x0,−x) and
p → −p were used, taking into account definitions of functions fpσ (x) and gpσ (x)
by formulas (2.375) and that of the function ep(x) by the formula (2.368).

Using relationships [90]

γ 0upσ = u−pσ , (2.416)

γ 0vpσ = −v−pσ ,

where γ 0 is the Dirac matrix

γ 0 =
(
I 0
0 −I

)
, I =

(
1 0
0 1

)
, 0 =

(
0 0
0 0

)
, (2.417)

the formulas (2.415) may be written in the form

P�(x)P+ =
∑
p,σ

1√
2P0V

(η∗
f −pσa f pσ γ 0upσ e

−i px ′ − η f −pσa
+
f pσ

γ 0vpσ e
ipx ′

) =

= γ 0
∑
p,σ

(η∗
f −pσa f pσ fpσ (x ′) − η f −pσa

+
f pσ

gpσ (x ′)). (2.418)

Taking into consideration the relations ηs = η∗
s and η f = −η∗

f in (2.414) and
(2.415), the transformations of spin-0 and spin-1/2 fields under the parity operator
P are written as [90]

Pφ(x)P+ = η∗
sφ(x ′), (2.419)

Pψ(x)P+ = η∗
f γ

0ψ(x ′),
(
x ′ ≡ Px

)

where the operator of the space inversion P belongs to the Lorentz group. This
operator can be explicitly written in the space-time four dimension as

P =

⎛
⎜⎜⎝
1

−1
−1

−1

⎞
⎟⎟⎠ . (2.420)

We will proceed in an analogical way for the charged vector field (2.388), where
we set n = v indicating that it is a vector field and that v = v for a neutral spin-1
field. Applying P to (2.388) and fulfilling the change p −→ −p, we obtain

PAμ(x)P+ =
∑
p,σ

(η∗
vpσav−pσ εμ

pσ ep(x) + ηvpσa
+
v̄−pσ εμ∗

pσ e
∗
p(x)) = (2.421)

=
∑
pσ

(η∗
v−pσavpσ ε

μ
−pσ ep(x

′) + ηv̄−pσa
+
v̄pσ ε

μ∗
−pσ e

∗
p(x

′)) =
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= −
∑
pσ

(η∗
v−pσavpσ εpσμep(x

′) + ηv̄−pσa
+
v̄pσ ε∗

pσμe
∗
p(x

′)),

where x ′ is determined by (2.419) and (2.420). Here it was taken into account the
relations

ε
μ
−pσ = −εpσμ, ε

μ∗
−pσ = −ε∗

pσμ. (2.422)

Using ηv = η∗
v in (2.421), the transformation of a vector field under the parity

operator is now written as

PAμ(x)P+ = −η∗
v Aμ(x ′), (2.423)

where x ′ is determined by (2.419) and (2.420), and the Lorentz index μ changed its
position.

Thus, the transformation properties of spin-0, spin-1/2 and spin-1 fields under
the parity operator P are [90]

Pφ(x)P+ = η∗
nφ(Px) (spin S = 0) (2.424)

Pψ(x)P+ = η∗
nγ

0ψ(Px) (spin S = 1/2)

PAμ(x)P+ = −η∗
n Aμ(Px) (spin S = 1)

ηn = η∗
n (spin S = 0, 1)

ηn = −η∗
n (spin S = 1/2).

Equation (2.424) satisfy the relationships η∗
n = ηn for spins S = 0, 1 and η∗

n = −ηn
for S = 1/2. For self-conjugate (Hermitian) spin-0 and spin-1 fields, we have n = n.
Comparing this equality with ηn = η∗

n from (2.424), we obtain ηn = η∗
n , from which

for the phase factor ηn we find ηn = ±1. The transformations of spin-0 and spin-1
fields under the parity operator are represented in the Table2.2, where the phase
factor ηn is noted by η.

For charged or non-Hermitian fields, η is not restricted by itself to ±1, excepting
the case when charged particles are related to neutral particles characterized by the
isospin.

Table 2.2 The transformations of self-conjugate (Hermitian) spin-0 and spin-1 fields under the
parity operator at η = ±1

S η = +1 η = −1

0 Pφ(x)P+ = φ(Px) Pφ(x)P+ = −φ(Px)

scalar pseudo-scalar

1 PAμ(x)P+ = −Aμ(Px) PAμ(x)P+ = Aμ(Px)

axial vector vector
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Finally, we consider transformations of the spin-0 filed φ(x), spin-1/2 fieldψ(x)
and spin-1 field Aμ(x) under the operator of the charge conjugation C. The operator
C changes the particle and the antiparticle without changing the momentum and the
spin:

Ca+
npσC

+ = ξnpσa
+
npσ , (2.425)

where the phase factor ξnpσ , in general, depends on the particle type, momentum,
and spin. With such a definition, the particle and antiparticle are treated as separate
particles. Namely, the above definition includes (with n = n)

Ca+
npσC

+ = ξnpσa
+
npσ , (2.426)

In the analogyofP andToperators, the set of phases
{
ξnpσ

}
completely determines

the operator C that it must be unitary:

C+C = 1. (2.427)

Similarly to P and T, the overall phase of C is defined by requiring the vacuum
to be invariant under C :

C |0〉 = |0〉 , (2.428)

C+ |0〉 = |0〉 , (2.429)

where (2.429) is obtained by applyingC+ to both sides of the (2.428). Then, applying
(2.425) to the vacuum state, we obtain

C |npσ 〉 = ξnpσ |npσ 〉 . (2.430)

Under charge conjugation operator C the multi-particle states transform with a
multiplicative phase factor

C |{ni ,pi , σi }〉 = Ca+
n1p1σ1

C+C . . . . . .C+Ca+
nkpkσk

C+C |0〉 =
= ξn1p1σ1 . . . ξnkpkσk a

+
n1p1σ1

. . . a+
n̄kpkσk

|0〉 , (2.431)

where the implicit normalization factor is different from unity when there are more
particles with identical quantum numbers. In this case,

C |{ni ,pi , σi }〉 = ξ{ni ,pi ,σi } |{n̄i ,pi , σi }〉 , (2.432)

where
ξ{ni ,pi ,σi } ≡ ξn1p1σ1 . . . ξnkpkσk . (2.433)

For spin-0 field, we drop the spin index σ , and write (2.426) and the Hermitian
conjugate of (2.425) as
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Ca+
s̄pC

+ = ξspa
+
sp, CaspC+ = ξ ∗

spasp, (2.434)

where n = s indicates that it takes place for a spin-0 particle. Applying the operator
C to (2.367) and using the above equation, we obtain

Cφ(x)C+ =
∑
p

(CaspC+ep(x) + Ca+
spC

+e∗
p(x)) = (2.435)

=
∑
p

(ξ ∗
spas̄pep(x) + ξspa

+
spe

∗
p(x)).

The right side of (2.435) contains as̄p and a+
sp, while φ(x) contains asp and a+

sp
(see (2.367)). This leads to the conclusion that the phases ξsp and ξsp should not
depend on the momentum:

ξsp = ξs, ξsp = ξs (2.436)

and the charge-conjugation phase of the antiparticle is the complex conjugate of the
particle phase:

ξs = ξ ∗
s . (2.437)

The Hermitian conjugate of (2.367) is

φ+(x) =
∑
p

(a+
spe

∗
p(x) + aspep(x)). (2.438)

Multiplying both sides of (2.438) by ξ ∗
s , one obtains

ξ ∗
s φ+(x) =

∑
p

(ξ ∗
s a

+
spe

∗
p(x) + ξ ∗

s aspep(x)). (2.439)

By comparing (2.439) and (2.435), we see that the right sides of these equations
coincide, if one takes into account (2.436) and (2.437). The transformation of a spin-0
field is

Cφ(x)C+ = ξ ∗
s φ+(x). (2.440)

Thus, the choice of charge-conjugation phases reduces to assigning a phase to
a spin-0 particle. For a self-conjugate particle, the relation ξs = ξ ∗

s take place.
Therefore ξs is real. In this case, ξs = ±1. By setting s = s in (2.430), one can
be argued that this is the eigenvalue of the charge conjugation operator C for a
single-particle state with any momentum

C |sp〉 = ξs |sp〉 (s = s). (2.441)

Such ξs for a self-conjugate field is called the intrinsic parity conjugation of the
particle [90].
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We consider now the transformation of a fermion field under the operator of charge
conjugation C. First, we write (2.426) and the Hermitian conjugate of (2.425) as

Ca+
f̄ pσ

C+ = ξ f̄ pσa
+
f pσ , Ca f pσC+ = ξ ∗

f pσa f̄ pσ , (2.442)

where we put n = f for fermions. Applying C to the (2.374), in which n and n are
changed by f and f̄ , we obtain

Cψ(x)C+ =
∑
p,σ

(Ca f pσC+ fpσ (x) + Ca+
f̄ pσ

C+gpσ (x)) = (2.443)

=
∑
p,σ

(ξ ∗
f pσa f̄ pσ fpσ (x) + ξ f̄ pσa

+
f pσ gpσ (x)),

where fpσ (x) and gpσ (x) are determined by (2.375).
According to [90], there exists a (4×4)-matrix�, which is unitary and symmetric

(the upper index T in (2.444) is a transposition superscript)

�+� = 1, �T = �, (2.444)

and satisfies
�γ ∗

μ�+ = −γμ (μ = 0, 1, 2, 3), (2.445)

where γμ are Dirac matrices. Using such matrix �, fpσ (x) and gpσ (x) from (2.443)
can be represented as [90]

fpσ (x) = upσ ep(x) = �v∗
pσ ep(x) = �g∗

pσ (x), (2.446)

gpσ (x) = vpσ e
∗
p(x) = �u∗

pσ ep(x) = � f ∗
pσ (x).

Using (2.446), the transformation of ψ(x) (2.443) becomes

Cψ(x)C+ =
∑
p,σ

(ξ ∗
f pσa f̄ pσ�g∗

pσ (x) + ξ f̄ pσa
+
f pσ� f ∗

pσ (x)) = (2.447)

= �
∑
p,σ

(ξ f̄ pσa
+
f pσ f ∗

pσ (x) + ξ ∗
f pσa f̄ pσ g

∗
pσ (x)).

By reasons analogous to those that were discussed in the case of transformation
of the spin-0 field φ(x) under the C operator (formulas (2.436) and (2.437)), the
phases ξ f pσ and ξ f pσ should not depend on the momentum and spin, and there are
the following relationships:

ξ f pσ = ξ f , ξ f̄ pσ = ξ f̄ (2.448)

and
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ξ f̄ = ξ ∗
f . (2.449)

Now, the transformation (2.447) can be represented as

Cψ(x)C+ = ξ ∗
f �ψ∗(x). (2.450)

The action of C on a charged spin-1 field is analogous to the action of C on a
spin-0 field. By analogy with (2.425) and (2.426), the transformations of creation
and annihilation operators of the charged spin-1 field are

Ca+
vpσC

+ = ξvpσa
+
vpσ ,CavpσC+ = ξ ∗

vpσavpσ , (2.451)

where we put n = v to specify that they refer to a particle with spin 1. In this case,
the μ-component of spin-1 field from (2.388) transforms as

CAμ(x)C+ =
∑
p,σ

(CavpσC+εμ
pσ ep(x) + Ca+

v̄pσC
+εμ∗

pσ e
∗
p(x)) =

=
∑
p,σ

(ξ ∗
vpσav̄pσ εμ

pσ ep(x) + ξvpσa
+
vpσ εμ∗

pσ e
∗
p(x)) = (2.452)

=
∑
p,σ

(ξ ∗
vpσavpσ εμ

pσ ep(x) + ξvpσa
+
vpσ εμ∗

pσ ep(x))
+.

This can be proportional to Aμ+(x), if the phases do not depend on p and σ [90]:

ξvpσ = ξv, ξvpσ = ξv, (2.453)

and
ξv = ξ ∗

v . (2.454)

The transformation of Aμ+(x) under the operator of the charge conjugation C can
be written as

CAμ(x)C+ = ξ ∗
v A

μ+(x). (2.455)

Byanalogywith the spin-0field, if Aμ isHermitian or the particle is self-conjugate,
that is equivalent, then the relation ξv = ξ ∗

v leads to ξv = ±1, which becomes an
eigenvalue of the operator C for a single-particle state |vpσ 〉 . In this case, the ξv is
the intrinsic charge parity of the self-conjugate particle with spin 1.

On the grounds of (2.440), (2.450) and (2.455), the transformation properties of
the fields under C are [90]

Cφ(x)C+ = ξ ∗
n φ+(x) (spin S = 0) (2.456)

Cψ(x)C+ = ξ ∗
n �ψ+(x) (spin S = 1/2)

CAμ(x)C+ = ξ ∗
n A

μ+(x) (spin S = 1)
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ξn = ξ ∗
n . (spin S = 0, 1/2, 1)

Now, when we know how fields are transformed under the action of every of
operators C,P and T (see (2.456), (2.424) and (2.394), correspondingly), it is easy
to find how fields are transformed under the action of the product of these operators.
For this, we introduce the operator

θθθ = CPT = PTC = TCP = CTP = TPC = PCT. (2.457)

The operator equalities (2.457) are due to the commutation of operators C and
P,P and T,T and C.

Let us find out how fields φ(x), ψ(x) and Aμ(x) are transformed under CPT.

Using the transformations under T (2.394), P (2.424) and C (2.456), we obtain

θθθφ(x)θθθ+ = CPTφ(x)T+P+C+ = ξ ∗
n η∗

nζ
∗
n φ+(−x), (2.458)

θθθψ(x)θθθ+ = CPTφ(x)T+P+C+ = CPζ ∗
n Tψ(T x)P+C+ = (2.459)

= ζ ∗
n TCPψ(T x)P+C+ = ζ ∗

n TCη∗
nγ

0ψ(−x)C+ =
= ζ ∗

n Tη∗
nγ

0Cψ(−x)C+ = ζ ∗
n Tη∗

nγ
0�ψ+(−x) =

= ζ ∗
n η∗

nζ
∗
n (Tγ 0�)ψ+(−x).

The spin-1 vector field transforms under the antiunitary involution θθθ as

θθθ Aμθθθ+ = CPTAμT+P+C+ = −ζ ∗
n η∗

nξ
∗
n A

μ+(−x). (2.460)

Taking into account that �γ ∗
μ�+ = −γμ and Tγ μT+ = γ ∗, one can show that the

matrix, which anti-commutes with all γμ must be γ5 up to a phase factor. Therefore,
on the basis of (2.458), (2.459) and (2.460), the transformations of spin-0, spin-1/2
and spin-1 fields under θθθ are [90]:

θθθφ(x)θθθ+ = θ∗
nφ+(−x), (spin S = 0) (2.461)

θθθψ(x)θθθ+ = θ∗
n γ ∗

5 ψ∗(−x), (spin S = 1/2)

θθθ Aμ(x)θθθ+ = −θ∗
n A

μ+(−x), (spin S = 1)

where θ∗
n = ξ ∗

n η∗
nζ

∗
n .

The CPT theorem is one of the most fundamental theorems in the quantum field
theory, which states that the interaction Hamiltonian density satisfies the relation
[90]

θHθHθH int(x)θθθ
+ = HHH int(−x), (2.462)

where the space-time argument x is sign-flipped for each of the four components:
PT x = −x . Here the space inversion P belongs to the Lorentz group. It is explicitly
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written in the four dimension space-time as (2.420). The time inversionT also belongs
to the Lorentz group and in the same space-time four dimension is explicitly written
as (2.371).

The universality of CPT theorem consists in that it is based on the microscopic
causality, Lorentz invariance and continuity of field operators.

Since θθθ is an antilinear operator, it does not have physical eigenvalues. Thus,
it does not lead to quantum numbers conservation, unlike the cases of P and C
operators, for which the quantum numbers are conserved.

When creating the quantum field theory it was assumed that it is symmetric with
respect to P, C and T transformation separately. As it was noted above, in 1957 it
was found that the parity is violated in the β-decay of the nucleus 60Co. In 1964, it
was found that combinedCP-symmetry is also violated in neutral kaon systems. The
CPT -symmetry is still considered sacred because there is no reliable experimental
evidence that it is violated.



Chapter 3
Magnetic Symmetry Point Groups

In this chapter, we consider the magnetic symmetry point groups, which are obtained
by extending the classical point symmetry groups using the time-reversal operator
T. In this case, the operator T is not an element of the extended symmetry group, but
it is contained in the group as a product of elements of the original point group.

By extending the 32 classic point symmetry groups using the second-order cyclic
group {T,T2 = e}, where e is a unit group element, one obtains 58 nontrivial point
groups of magnetic symmetry. These groups along with the original 32 point groups
(which are trivial in terms of magnetic symmetry) form 90 point groups of magnetic
symmetry. However, this conclusion is valid only for systems containing an even
number of electrons. As it will be shown in this chapter, for systems with Kramers
degeneracy of energy levels, the expansion of classic point groups should be carried
out using a fourth-order cyclic group (or a non-cyclic one, in a more general case)
that contains the operatorT. In this case, the magnetic symmetry point groups are not
two-color (black andwhite), but four-color ones. The number of nontrivial four-color
magnetic symmetry groups is four, instead of 58 in the case of two-color groups.

The time-reversal operation also allows expanding the Fyodorov’s space groups
to magnetic space groups of symmetry, as it is the case for point groups. In magnetic
crystals, there are magnetic space groups in which the time-reversal operator enters
in combination with ordinary rotations, mirror rotations and translations, but it is not
itself an element of symmetry.

3.1 Magnetic Two-Color Point Symmetry Groups
for Non-Kramers Systems

The first publication related to point groups of magnetic symmetry date back to 1929
and belongs to Heesh [113], who gave a complete list of magnetic point groups. The
next publication in this field, which appeared 27 years later, is the paper of Tavger
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and Zaitsev [114]. Around the same time the theory of magnetic space groups began
to be developed by different methods. The fundamentals of this theory will not be
discussed in this book.

As for the magnetic point groups of symmetry, in deriving these groups by exten-
sion of 32 point groups using the Abelian group {T,T2 = e}, it was assumed that they
belong to both non-Kramers systems (T2 = e) and systems with Kramers degener-
acy of energy levels (T2= −e). In any case, nowhere in the early and in the modem
scientific literature is it not emphasized that 58 nontrivial point groups of magnetic
symmetry are only related to non-Kramers systems. To draw attention to this fact,
the title of this Section emphasizes that considered magnetic symmetry groups are
related to non-Kramers systems. The four-color point groups of magnetic symmetry
for Kramers systems will be derived in the next Section.

In order to understand how the point groups of magnetic symmetry are introduced
in physics, it should be noted that point groups describe a possible point symmetry
of the charge density in the equilibrium state of the crystal, averaged over time. In
this equilibrium state, one can also define the time-averaged current density, j. The
vector of the current density satisfies the equation

div j = 0 (3.1)

since the charge sources and drains are absent in the equilibrium.
For antiferro- and ferromagnetic materials, j �= 0. If the direction of the current

is reversed at any point, the equilibrium state is not changed. Now, if we act on the
operator j by the time-reversal operator T, it will cause a change in the sign of j
at each point of the space without changing the spatial coordinates. The element
T has the order 2 (T2 = e) and commutes with all spatial rotations and reflections.
If among the elements of the point group G there is an element g ∈ G, under the
action of which the vector j changes its direction to the opposite, then the vector
j remains invariant with respect to the operator Tg = gT. In other words, Tg is
an element of the extended group G ′ (Tg ∈ G ′), which is one of point groups of
magnetic symmetry. The name “point group of magnetic symmetry” is a reminder
that an electric current of a density j creates a magnetic field in the surrounding
space. In this case, the magnetic moments of paramagnetic ions localized in some of
nodes of the crystal lattice have such mutual orientations, which cannot be described
by the initial point group G. Instead, they are adequately described by the extended
point group G ′ containing elements of Tg type.

It is easy to see that the magnetic symmetry point group G ′ cannot be obtained by
a simple addition of the time-reversal operator T to one of the usual 32 point groups.
Indeed, if a group contains the element T, it means that j = − j, which implies
that j = 0, is the contradiction with the fact that j �= 0 for point groups of magnetic
symmetry. In other words, according to standard assumptions of the electromagnetic
theory, the magnetic moment changes its sign under time reversal. Hence, the point
groups of magnetic symmetry cannot have the time-reversal operator as an element.
Note that all 32 classical point groups are admissible symmetry groups at j �= 0
together with the extended groups of the type G ′.
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The above consideration is based on the distribution of the current density j, but
one could consider equally well the distribution of the magnetizationM:

M =
∑

k
µk

�V
, (3.2)

where µk is the vector of the magnetic moment of kth paramagnetic ion, �V is
a physically small volume, i.e., �V is much smaller than the volume V of the
system, but it is large enough in order the macroscopic quantities (in this case, the
magnetization) to be determined within the volume�V . The only feature that should
be kept in mind is that M is an axial vector, where as j is a polar vector.

Before presenting the method of constructing the point groups of magnetic sym-
metry for systems consisting of an even number of particles with the spin 1/2, we
will make a few general comments and consider one simple example.

The extended point group of symmetry G ′ is a direct product of an usual point
group G by identity transformation and a time-reversal operation that commutes
with all operations of the point group. However, this statement may be true only for
non-magnetic crystals, since the operator T reverses the direction of currents and
spins. As a consequence, the magnetization direction in the magnetically ordered
crystals is also reversed. In this case, the magnetic crystals would have only the
symmetry of usual point groups. This is not always the case, because some of the
magnetic crystals can be invariant with respect to the product of the operation T on a
rotation, although they are not invariant with respect to the operationT. For example,
in a ferromagnetic crystal with a magnetization along the z axis, the TR operation
(where R is a rotation about the x axis by π ) is a symmetry operation, since R
reverses the direction of the magnetization, whereas T restores its original direction.
As it was already mentioned, the groups of symmetry of this type comprising a
time reversal operation only in conjunction with a rotation or reflection are called
magnetic symmetry point groups.

Let us consider as an example a ferromagnetic crystal, which is described by the
symmetry group D3 in the Shenfliss notation (or 32 in the international notation). In a
magnetically disordered state, above the transition temperature Tc, at which the mag-
netic order is established, the addition of the time-reversal operation leads to a larger
group of symmetry D3 ⊗ {e,T} due to the absence of the magnetic moment. Below
the temperature Tc the crystal becomes ferromagnetic, and its magnetic moment is
directed along the third-order axis. Since the three C2 rotations by angle π around
the axes in the xy plane lead to the reversal of the magnetization direction, they are
no more symmetry operations. The same applies to the time-reversal operator T.
However, the products TC2 retain the value of symmetry operations. In this case,
the new symmetry group includes the e, C3, and C 2

3 operators and three operators
TC2 containing the time-reversal transformation [115]. Note that the point group of
magnetic symmetry contains the subgroup C3 of the original point group D3, and
the C3 subgroup is a normal index 2 subgroup of the D3 group that is designated as
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D3(C3). It should also be noted that in the direct product of the groups H and K,
G = H ⊗ K the elements of the group G commute with the elements of the groupK.

Now we introduce the so-called semi-direct product G = H ∧ K. In this case, the
products Gia = Hi Ka are elements of the group G, where Hi is the element of the
subgroup H and Ka is the element of the subgroup K. The elements of H do not
necessarily have to commute with the elements ofK, however the following relation
should be satisfied

KaHi K
−1
a = Hf , (3.3)

where Hf is the other element of the subgroupH. This definition means that all the
elements conjugated with any of Hi relative to any element of the group G, belong
to the subgroup H.

The definition (3.3) is not symmetrical with respect to subgroups H and K. The
subgroupH is called a normal subgroup of the group G. Along with the term “normal
subgroup” it is also used the terms “invariant subgroup” and “self-conjugated sub-
group”. The subgroupK is a factor-group of the group Gwith respect to the subgroup
K. The relationship between K, G, and H is given by the formula K = G/H.

If we denote by g the order of the group G (not to be confused with the earlier
designation by the same symbol the element of the point group), and by h and k the
number of elements of the subgroups H and K, it is easy to see that g = hk, where
k is called the index of the normal subgroup H in the group G [116].

In this context, G, H, and K represent some abstract groups, H and K being
subgroups of the group G. Further in this section, the space group of symmetry will
be designated by G.

We recall here some information from the abstract theory of groups that will be
needed for the construction of magnetic point groups.

In particular, it can be shown that each point group of magnetic symmetry of
non-Kramers systems possesses a normal (invariant, self-conjugated) subgroup of
index 2. Finding of these invariant subgroups allows us to identify all the nontrivial
point groups of magnetic symmetry, the number of which is equal to 58, as already
mentioned.

First of all, note that if the two-color magnetic point groupG ′ contains the element
Tg, where g is an element of the point group G(g ∈ G), the order of the element
g must not be odd, because otherwise among all degrees of T, which contains G ′,
would be an element T. For example, (TC3)

3 = T3e = T, taking into account that e
is the unit element of the groupG and that for non-Kramers systems with integer spin
T2 = +1, where 1 is a unit operator defined in the spin space. For Kramers system
T2 = −1 and (TC3)

2 = −T. Consequently, among the elements of the group G ′ the
TC3 or TS3 elements cannot exist (S3 is the mirror rotation by 2π/3).

The group G ′ cannot simultaneously contain the elements g ∈ G and Tg, since
otherwise G would also contain the element Tg · g−1 = T. In accordance with this
result, we denote the elements of the group G ′ by gk (k = 1, 2, . . . ,m) where all the
geometrical operations are different. It is easy to see that if T is replaced by a unit
operator, then n elements of gk (k = 1, 2, . . . ,m) and gi (i = m + 1,m + 2, . . . , n)

form one of 32 point groups.
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Now, let us take any of the point symmetry groups G and find the subgroupH of
this group with elements gk (k = 1, 2, . . . ,m). Multiplying by T all the elements gi
(i = m + 1,m + 2, . . . , n) of the set G \ H (in other words, all the elements of the
group G, which do not belong to the subgroup H), we obtain Mi = Tgi . If Mi and
gk form a group, then it is one of the point groups of magnetic symmetry that we are
looking for. Such a method of constructing new point groups of magnetic symmetry
is a very tedious one. However, the problem of finding the point groups of magnetic
symmetry becomes easier, if the following theorem holds [117].

Theorem It is necessary and sufficiently the subgroupH in the group G to have the
index 2, in order that Tgi and gk to form a group (gi and gk are the elements of any
point group G).

Proof If the subgroup H has the index 2 in the group G, then

G = H + giH, (3.4)

where gi is one of the elements of the set G \ H. Now, let us choose a new set G ′,
which satisfies the relationship:

G ′ = H + TgiH (3.5)

The set G ′ is a group, because

H · H = H,Tgi · H · H =TgiH,TgiH·TgiH = H, (3.6)

This is just one of the point groups of magnetic symmetry we are looking for.
Conversely, if the elements gk and Tgi form the group G ′, then as a result of

multiplying the m elements of the subgroup H by any of the elements Tgi , we get
m different elements of Tgi type. However, if we multiply the Tgi elements by any
of them, we get n different elements of gk type [117]. Therefore the subgroupH has
the index 2 in the group G ′ and as a resultH has also the index 2 in the group G. �

Thus, the above method of finding nontrivial point groups of magnetic symmetry
is applied as follows. First of all, we need to select an arbitrary point group G. In the
group G one selects any subgroup H of index 2. The elements of the set G \ H are
to be multiplied by the time-reversal operator T. In this case we have the following
relation

G ′ = H + T(G \ H), (3.7)

where G ′ is one of the sought-for two-color point groups of magnetic symmetry.
The above prescription of constructing a point group of magnetic symmetry

requires finding firstly the subgroups of index 2 in a point group. This prescrip-
tion is an adaptation of the well-known way of finding all subgroups of the group
of proper and improper rotations, which does not contain the space inversion as an
element. The group of all proper and improper rotations is a direct product group
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R ⊗ I, where R is the group of all proper rotations and I is a group consisting of the
identity and the space inversion. Therefore, one has only to make G to correspond to
R and {e,T} to I, in order to obtain the correspondence between the two prescriptions
[118].

The problem of finding all subgroups HG of index 2 of an arbitrary group G
is equivalent to finding all alternating representations of the group G. Actually, the
factor group G/HG has only two representations: the identical representation and
the alternating one. Therefore, each subgroupHG of G will generate one alternating
representation of G. Conversely, if all alternating representations of G are known,
one can find all subgroups HG . Namely, one can find the subgroup HG , which
generates each alternating representation, by simply picking out from G all those
elements, to which +1 corresponds to the alternating representation in question [6].
The equivalence of the two problems has been noticed by Indenbom [119] and Niggli
[120] in the case when G is a point group or a space one, respectively.

Returning to the problem of finding all possible subgroups of index 2 for each of
the 32point groups,which are necessary for constructing the point groups ofmagnetic
symmetry, we note that a full set of these subgroups is known and can be found in
International Tables for X-Ray Crystallography [121]. Therefore the procedure of
finding the point groups of magnetic symmetry is greatly simplified and reduced, in
essence, to the application of (3.7), where the right-hand side contains the known
elements of the invariant subgroupH and that of the set G \ H, as well as the known
time-reversal operator T.

Regarding the operator T, it is necessary to note the following. The elements of a
magnetic group G ′, containing T included in the product Tg, act on the space-time
variables, while the elements of the corresponding magnetic group of quantum-
mechanical operators act on state vectors. In the last case, the time-reversal operator
is defined in the space of vector states of the total angular momentum for systems
consisting of particles with spin and in the space of vector states of the total orbital
angular momentum for systems consisting of spinless particles. Since T is an antiu-
nitary operator, the transformation of state vectors under a nontrivial magnetic group
of quantum-mechanical operators generates corepresentations of the group, not rep-
resentations of the group (see Sect. 2.8 and [122–124]).

The application of (3.7), where H is an invariant subgroup of index 2, leads
to 58 nontrivial black-and-white point groups of magnetic symmetry [113, 114],
which together with 32 point groups of symmetry form a system of 90 point groups
of magnetic symmetry [113, 114]. These magnetic point groups are referred to as
Heesh’s groups, after Heesh published a complete list of these groups [113]. The
Heesh groups have been considered by many authors [113–115, 117–120, 122–128]
and their complete list can be found, for example, in [117, 118, 127].

The list of black-and-white magnetic point groups arranged in families [118] is
given in the Table3.1. The denotations used in the list have been introduced by Belov
et al. [129] as a generalization of international symbols used for the ordinary point
groups. The international symbol of a point group denotes the generating elements
of the group. The symbols of generating elements in a magnetic point group have a
prime as an upper right superscript. The bar denotes mirror rotations and the prime
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– antirotations, if it is referred to a rotation axis, or antreflections if it is referred to
a reflexion plan. By omitting the primes in the symbol of a magnetic point group,
one obtains the symbol of the ordinary point group, to whose the family of magnetic
point group belongs [118].

Excepting the point groups 1 (identity), 3 (trigonal), and 23 (tetrahedral), all
point groups contain subgroups of index 2. In the list on Table 1, each line gives
all magnetic point groups belonging to one family, if it is used the term family of
magnetic point groups. The family of magnetic point group includes a point group G
and themagnetic point groups constructed from it bymeans of the above prescription
from all subgroups HG of G, which in the case of non-Kramers systems are the
subgroups of index 2.

The magnetic groups belonging to the same family are isomorphic. This implies
that all of them have the same irreducible representations as the trivial magnetic
groups of the family (Table3.1).

In Table3.1, 31 magnetic point groups are marked with asterisk. These are the
so-called admissible magnetic point groups. The concept of admissible magnetic
point groups is connected with the construction of an invariant spin arrangement and
it will be discussed in Sect. 3.2.

Now, let us give a nontrivial example of constructing the family of a point group
[118]. Let this group belongs to the class of point groups denoted by 422 and let it
consists of the elements 1, 4z , 2z , 4 3

z , 2x , 2y , 2xy , 2x y . The symbol 1 stands for the
identity of the group. The symbols 4z , 2z , and 4 2

z stand for rotations by 90◦, 180◦,
and 270◦ around the z-axis. The remaining four symbols stand for rotation by 180◦
around the x- and y-axis, and around the two bisectors of angles between the x- and
y-axis.

It can be seen that the point group 422 consists of three subgroups of index 2 (see
International Tables ofX-rayCrystallography [121]). These are the groups consisting
of elements 1, 4z , 2z , 4 3

z ; 1, 2z , 2x , 2y , and 1, 2z , 2xy , 2x y , respectively. The first
group belongs to the class of point groups denoted by 4, and the last two groups
are equivalent and belong to the class of point groups 222. Therefore the family of
this point group contains three nontrivial magnetic point groups. The first of them
contains the unprimed elements 1, 4z , 2z , 4 3

z and the primed elements 2′
x , 2

′
y , 2

′
xy ,

2′
x y . The second magnetic point group consists of unprimed elements 1, 2z , 2x , 2y ,

and the primed elements 4′
z , 4

3′
z , 2

′
xy , 2

′
x y . At last, the third magnetic point group

consists of the unprimed elements 1, 2z , 2xy , 2x y , and the primed elements 4′
z , 4

3′
z , 2

′
x ,

2′
y . The first of these groups belongs to the class of magnetic point groups denoted

by 42′2′. The last two groups are equivalent and belong to the class of magnetic point
groups, which are denoted by 4′22′ or by 4′2′2.

Thus, we can conclude that the family of the point group 422 consists of magnetic
point groups 422, 42′2′, and 4′2′2.

In conclusion, let us consider another aspect of magnetic point groups. The for-
mulas (3.5) and (3.7) are two equivalent ways of defining the magnetic point group
G ′. In these formulas the time-reversal operator T cannot be an element of the group
G ′, but it can enter the group as a product Tg, where g is an element of the initial
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Table 3.1 List of magnetic point groups arranged by families
∗1
∗1̄ 1̄′
∗2 ∗2′
∗m ∗m′
∗2/m 2′/m 2/m′ ∗2′m′

222 ∗2′2′2
mm2 ∗m′m2′ ∗m′m′2
mmm m′mm ∗m′m′m m′m′m′
∗4 4′
∗4̄ 4̄′
∗4/m 4′/m 4/m′ 4′/m′

422 4′22′ ∗42′2′

4mm 4′m′m ∗4m′m′

4̄2m 4̄′2′m 4̄′2m′ ∗4̄′2′m′

4/mmm 4/m′mm 4′/mm′m 4′/m′m′m ∗4/mm′m′ 4/m′m′m′
∗3
∗3̄ 3′

32 ∗32′

3m ∗3m′

3̄m 3̄′m 3̄′m′ ∗3̄m′
∗6 6′
∗6̄ 6̄′
∗6/m 6′/m 6/m′ 6′/m′

622 6′2′2 ∗62′2′

6mm 6′m′m ∗6m′m′

6̄2m 6̄′m′2 6̄′m2′ ∗6̄m′2′

6/mmm 6/m′mm 6′/mm′m 6′/m′m′m ∗6/mm′m′ 6/m′m′m′

23

m3 m′3
432 4′32′

4̄3m 4̄′3m′

m3m m′3m m3m′ m′3m′

point group. Thus, one can expand normal point groups to magnetic point groups
using the time-reversal operator T. However, this can also be done in a different way.

Let us assume that the crystal faces are colored in two colors—black (B) and
white (W ). We introduce the operation R that changes colors - W by B and B by
W . In other words, we introduce the cyclic group {e,R}, where e is a unit element
of this group and R2 = e, instead of the second-order cyclic group {e,T} for non-
Kramers systems, when T2 = +e. Now, let us consider the elements Rg in addition
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to g operations of geometrical symmetry that lead to a shift of faces, but do not
change their colors. For example, if g is a rotation transforming the face F into the
face F ′, then Rg will transform F into F ′ and make the color of the face F ′ opposite
to the color of F . We also require that no one face was painted in two colors, so that
the element R should not belong to the group. Such groups are called colored. In
the case of two colors (black and white), when the operation R changes one color to
another, the groups are called black-white. The black-and-white symmetry groups
(also called antisymmetry groups) were introduced by Shubnikov [130, 131].

The expansion of classical groups to the Shubnikov black and white symmetry
groups is performed using the second-order cyclic group {e,R}, in complete anal-
ogy with the way it is done using the group {e,T}. In both cases, the process of
constructing new groups begins with finding the invariant subgroups of the original
group of index 2. If one of the point or space symmetry groups is an original group,
the resulting new groups are called respectively the Shubnikov black-and-white point
or spatial symmetry groups.

Although the use of cyclic groups {e,T} or {e,R} in the construction of magnetic
symmetry groups leads to the same results, it seems more physically obvious the use
of the cyclic group {e,T}, as magnetically ordered crystals contain actual localized
atoms (ions) with nonzero magnetic moments, whose directions are reversed by the
time-reversal operator. These changes are compensated by geometrical transforma-
tions of the magnetic symmetry group, thus preserving its symmetry.

It is necessary to make one more remark that a point group of symmetry is a
group of (proper or proper and improper) rotations, which leaves the lattice invariant.
Such a group is called a crystallographic point group. Similarly, the magnetic point
groups in non-Kramers systems, as defined in this Subsection, could also be called
crystallographic magnetic point groups of symmetry.

3.2 Invariant Spin Arrangement and Admissible Magnetic
Point Groups for Non-Kramers Systems

A spin arrangement in a group of magnetic atoms (ions) is defined, if the spin of
each atom is specified. In this case, a spin arrangement is a vector function S (ri )
defined on a finite set ri (i = 1, 2, . . .) of position vectors of all magnetic atoms that
correspond to the symmetry space group of the crystal G [118]. If the magnetic atom,
along with a spin, also has an orbital momentum, we will conventionally mean by
spin the total angular momentum.

In order to determine the invariant spin arrangements, it is necessary to know
how a vector function S (ri ) is transformed under each element gm of the magnetic
space group G′. Each element gm of the group G′ is presented as gm = gA, where
g ∈ G′, A = e or A = T and e is a unit 2 × 2-matrix defined in the spin space with
the basis vectors |1/2, 1/2〉 and |1/2,−1/2〉 (e and T form a second-order cyclic
group). There are three types of transformations
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(i) the transformation of S (ri ) from ri to the position gmri = gri (A = e);
(ii) the rotation of S (ri ) in the same way as ri is rotated, taking into account that

S (ri ) is an axial vector, unlike ri , which is a polar vector;
(iii) the transformation

TS (ri )T+ = −S (ri ) , (3.8)

where the time-reversal operator T is given by (2.109).
Thus,

gmS (gri ) = ε det R · RS (ri ) , i = 1, 2, . . . (3.9)

where R is a point transformation of the space group G; det R is the determinant of
the matrix corresponding to this element; ε = 1, if A = e and ε = −1, if A = T.

We should consider that the spin arrangement S (ri ) , i = 1, 2, . . . is invariant
under gm ∈ G′, if for all i

gmS (ri ) = S (ri ) . (3.10)

A necessary and sufficient condition for an existence of a spin arrangement invari-
ant under G′ belonging to the family of G generated by G from an atom at r is the
existence of a spin vector S (r) invariant under “the magnetic site point group of r"
G′(r) [118]. It is therefore important to know, which of the magnetic point group
leaves a spin vector invariant. Those groups that have this property are called admis-
sible magnetic point groups and their invariant spin vectors are called admissible
ones.

The number n of linearly independent spin vectors, which are invariant under all
elements of the group G ′(r), is equal to the number of times the identical represen-
tation occurs in the standard representation of the group G ′(r) [118]:

n = 1

h

∑

Rm∈G ′(r)

χ (Rm) , (3.11)

where χ (Rm) is the trace of the matrix ε(Rm) det Rm · Rm , h is the order of the
magnetic site point group G ′(r), and the sum is extended over all its elements. The
magnetic point group is admissible, if n = 1, 2 or 3 [118].

It was shown that 31 of the 90 magnetic point groups related to non-Kramers
systems are admissible. The list of groups (firstly published by Tavger [132]) and
their invariant spin vectors with comments of authors of the [118] are given in the
Table3.2.

No magnetic point groups of the cubic system are admissible. Each of the 31
admissible magnetic point groups is a subgroup of the infinite non-crystallographic
magnetic group (∞/m)

(
2′/m ′) [118]. To find out the special role of this group for

the invariant spin arrangement, it should be noted that along with the continuous
group R of all proper rotations, there exist five infinite continuous proper subgroups
of the group R ⊗ I of all proper and improper rotations (I is the group consisting of
identity and space inversion).
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Table 3.2 List of admissible magnetic point groups

Magnetic point groups Admissible spin directions

n = 3

1 1′ Any direction

n = 2

2′ 2′/m′ m′m2′ Perpendicular to the axis

m′ Any direction in the plan

n = 1

m Perpendicular to the plan

m′m′m Perpendicular to the unprimed plan

2′2′2 Along the unprimed axis

2 2/m m′m′2 Along the axis

4 4̄ 4/m 42′2′ Along the axis of higher order

4m′m′ 4̄2′m′ 4/mm′m′ Along the axis of higher order

3 3̄ 32′ 3m′ 3̄m′ Along the axis of higher order

6 6̄ 6/m 62′2′ Along the axis of higher order

6m′m′ 6̄m′2′ 6/mm′m′ Along the axis of higher order

In its turn, four of these subgroups have subgroups of index 2, which give rise to
six nontrivial infinite non-crystallographic magnetic groups of rotations [133]. One
of these groups, namely (∞/m)

(
2′/m ′), is particularly important, because it leaves

invariant the spin momentum vector and the magnetic field vector. The unprimed
elements of this group consist of all proper and improper rotations around a fixed
axis, while its primed elements are obtained from unprimed ones by combining the
latter with the rotation by 180◦ around an axis perpendicular to the fixed axis. Spin
and magnetic moments are invariant under (∞/m)

(
2′/m ′), if only they are directed

along the fixed axis.
Thus, if the magnetic point group G ′ is not admissible, then no spin arrangement

invariant under all elements of the group G′(r) can exist. If G ′ is an admissible
magnetic point group, all invariant spin arrangements can be obtained using the
standard procedure. Each invariant spin arrangement is uniquely characterized byG ′
and S (r).

3.3 Magnetic Four-Color Point Groups of Kramers Systems

In the academic and scientific literature, the Kramers and non-Kramers systems are
usually not separated when studying their symmetry properties. In particular, it is
accepted to consider that all 58 nontrivial magnetic point groups are, in general,
related to localized spin systems without indicating more precisely whether the sys-
tem has or has not a Kramers degeneracy of energy levels. However, these groups
must actually be related only to non-Kramers systems, which is a consequence of the
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way they have been deduced. In fact, the magnetic point groups have been obtained
by extending the 32 classical point groups of symmetry using the second-order cyclic
group G2 : {

T,T2 = e
}
, where T is the time-reversal operator and e is the identity

element of the group [117]. The same result can be obtained, if the cyclic group
of second order 2′ : {2′

z, 2′2
z = e} is used instead of the group G2, where 2′

z is the
antirotation by 180◦ around the antirotation axis of the second order.

However, such an extension is not correct in the case of Kramers systems and one
should use fourth-order cyclic groups, instead ofG2 or 2′, which are isomorphic with
G2. The difference in the number and types of magnetic point groups for Kramers
and non-Kramers systems is due to the fact that the behavior of systems with half-
integer spin under time-reversal is different from that of systems with integer spin.
There are two ways to deduce the magnetic point groups of Kramers systems:

1. a purely geometric approach based on the symmetry and antisymmetry properties
of a square with colored vertices;

2. an algebraic approach followed by a geometric image of the result of action of
operators T,T2,T3, and T4 on the total wave function, which depends on the
space and spin coordinates.

At the beginning let us consider the first approach, consisting in selection of an
arbitrary squarewith twoopposite vertices colored in a color, and the adjacent vertices
colored in differently colors. The opposite vertices of the square are equivalent, while
any adjacent vertices,which are coloreddifferently, are nonequivalent (Fig. 3.1). Let’s
draw through the center of the square an axis perpendicular to its plane, which is
simultaneously a second-order rotation axis and a fourth-order antirotation axis.

The operation of antirotation by 90◦ consists in a rotation of the vertice of the
square by 90◦ around an axis passing through the center of the square perpendicular
to the plane, in which it is given, followed by changing of color into the “opposite”
one. Four successive antirotations of the square with colored vertices by 90◦ around
the axis of antirotation return the system to its initial state. The four antirotations form
a fourth-order cyclic group 4′ : {

4′
z, 4

′2
z , 4′3

z , 4′4
z = e

}
, which can be used to perform

an extension of the 32 classical point groups and obtain magnetic point groups in the
case of Kramers systems [85].

As it was shown in [85, 134], the group 4′ can be used to extend the classical

point symmetry groups to the following four-colors symmetry groups: 4(4
′
z), 4(

4′
z),

4(4
′
z)/m(1) and 4(4

′
z)/m(2), where the overscribed bar indicates a mirror rotation and

the prime denotes the antirotation. The first two groups are generated using the
groups 4 and 4, respectively, while the other two groups are generated with the use
of the group 4/m. The symbols m(1) and m(2) denote the generating elements of
the groups 4(4

′
z)/m(1) and 4(4

′
z)/m(2), which generate the symmetry transformations

4′4
z m = em, 4′2

z m = 2zm, 4′
zm = 4′3

z 2zm, and 4′3
z m = 4′

z2zm, respectively.
If the other four generalized symmetry elements of the square with nonequivalent

adjacent vertices are taken into account (two mirror reflections m(i)
xy from the diago-

nals and two antireflections m ′(i)
x from the straight lines passing through the centers

of the opposite sides; i = 1, 2), in addition to the antirotations forming the cyclic
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Fig. 3.1 Two symmetry and six antisymmetry elements of a square with colored vertices. Vertices
A and B, as well as C and D are colored differently and are nonequivalent, while vertices A and
C , and B and D are equivalent

group 4′, then the 4′m ′m group of eight order should be used for extending the
classical point groups. Among all the 32 point groups of symmetry, only the groups
422, 4mm and 42m can be extended using the 4′m ′m group. In thismore general case,
there also exist four point generalized-symmetry groups (four-color symmetry point

groups [85, 134–136]): 4(4
′
z)2(m

′
x)2(mxy), 4(4

′
z)m(m ′

x)m(mxy), 4(
4′
z)2(m

′
x)m(mxy), and

4(
4′
z)2(mxy)m(m ′

x). The first two four-color symmetry groups are generalized using
the groups 422 and 4mm, respectively, while other two groups have been generalized
by using the 42m group.

It is seen that themagnetic point groups ofKramers systems obtained by extension
of 32 classical point groups by means of the cyclic group 4′ or, in a more general
case, by using the non-Abelian group 4′m ′m, are very different from the magnetic
point groups of non-Kramers systems. This difference is related to both types of
corresponding groups and their number (four instead of 58).

Let us now consider a secondway to deduce the four-color point groups consisting
in the analysis of behavior of the time-dependent total wave function in the form of
a spinor under time-reversal operator T. Let’s expand the full wave function of the
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system with total spin S in terms of spinor basis vectors [see (2.167)]:

� =
S∑

σ=−S

ψσξ(S)
σ , (3.12)

where

ξ
(S)
S = |S, S〉 , ξ

(S)
S−1 = |S, S − 1〉 , . . . , ξ

(S)
−S+1 = |S,−S + 1〉 , ξ

(S)
−S = |S,−S〉 .

(3.13)
Under the action of the operator T, the wave function in the (3.12) is transformed

into:

T� =
S∑

σ=−S

ψ∗
σUξ (S)

σ , (3.14)

where the matrix of the unitary operator U is given in (2.120).
In the case of half-integer spin S, the action of operators T,T2 = −e,T3 = −T,

and T4 = e on the wave function � corresponds to four successive antirotations of
the point representing the state � by 90◦ in the function space spanning the basis
vectors ξ (S)

σ . In Fig. 2.2, it is represented the action of these operators on the wave
function � in the case of half-integer spins S = 1/2 and 3/2 (as well as in the case
of the integer spin S = 1).

In the case of spin S = 1/2 the axis of antirotation passes through the origin of
coordinates and is perpendicular to the plane of the square, whose corners correspond
to the states T�,T2� = −�,T3� = −T�, and T4� = �. The opposite corners
of the square

(
�,−�,T3�,−T�

)
are equivalent, while any adjacent corners are

nonequivalent and colored differently. Such coloration of the square corners, as it
was shown above in this section, is a way to deduce the magnetic point groups of
Kramers systems. In contrast to this, in the case of integer spin, the coloration only
of a two corners of a (2S + 1)-dimensional cube, corresponding to the states � and
T�, is need to deduce the magnetic point groups of non-Kramers systems.

It is easy to see that there is an univocal correspondence between the elements 4′
z,

4′2
z , 4′3

z , 4′4
z of the group 4′ and the elementsT,T2,T3,T4,which form a fourth-order

cyclic group G4. Therefore, the group 4′ and G4 are isomorphic. The isomorphic
correspondence between the elements of groups 4′ and G4 is shown in Fig. 2.2 for
S = 1/2. Such a correspondence cannot be represented graphically in the case of
half-integer spin S > 1/2, that is, in a space of dimensionality higher than three.
Nevertheless, using the properties of the unitary part of the time-reversal operator T,
it can be shown that the geometric transformations corresponding to the elements of
the group 4′ are also four antirotations 4′

z, 4
′2
z , 4′3

z and 4′4
z [135, 136].

By comparing the Fig. 2.2 (the part related to the case S = 1/2) and Fig. 3.1, one
can conclude that alongwith the isomorphism of the groups 4′ andG4, an isomorphic
correspondence should also exist between the elements m(1)

x ,m(2)
x ,m(1)

xy ,m(2)
xy of the

group 4′m ′m and the four elements of the eight-order non-Abelian group G8. These
elements do not coincide with the elements of the group G4, which is a subgroup
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of the G8 group. Indeed, reflections m(i)
xy and antireflections m ′(i)

x (i = 1, 2) in the
symmetry group 4′m ′m are in an isomorphic correspondence with the operators
σx ,−σx , and σzK,−σzK, in the spinor basis for the spin S = 1/2. Here, σx and σz

are real Pauli operators andK is a complex-conjugated operator, as earlier. Therefore,
the group 4′m ′m is isomorphic to the eighth-order non-Abelian group G8, which is
composed of operators iσyK, −iσyK, e, −e, σx ,−σx , σzK and −σzK, where σy is
an imaginary Pauli operator.

Themagnetic point groups ofKramers systems can be also obtained by themethod
basedon the (3.7),whichwas used in theSect. 3.1 to deduce themagnetic point groups
of non-Kramers systems. However, unlike the non-Kramers systems, where H is a
subgroup of index 2 of the classical point group G, in Kramers systems H must be
a subgroup of index 4 of the group G.

Thus, the magnetic point groups of Kramers systems, obtained by extension of 32
classical point groups by means of the cyclic group 4′ (isomorphic to the group G4)
or, in a more general case, by means of the non-Abelian group 4′m ′m (isomorphic
to the group G8), are very different from the magnetic point groups of non-Kramers
systems. This difference refers to both the type of corresponding groups (four colors
instead of two colors) and the number of nontrivial magnetic groups (four instead of
58).

The isomorphism of groups 2′, 4′ and 4′m ′m with groupsG2,G4 andG8 indicates
the important role of the time-reversal operatorT for any types ofmagnetic symmetry
groups, including magnetic space groups, which are not considered in this book. For
obtaining all classes of magnetic space groups, the Shubnikov’s theory of black–
white symmetry [137–142], the Belov’s theory of color symmetry [143–147], and
Zamorzaev’s method for constructing the magnetic space groups [148–151] have
been used.

Extension of 230 space groups to magnetic space groups can be carried out also
on the basis of general formula (3.7), which is used for deducting of the magnetic
point groups. However, in this case G is the classical space group, G ′ is the magnetic
space group and H is the subgroup of the space group G. The group G contains a
point group and a translation group as subgroups. The index of the subgroup H is
2 or 4 depending on the structure of the corresponding point subgroup (related to
non-Kramers or Kramers systems). In other respects, the procedure of deducting the
magnetic space groups is the same as in the case of magnetic point groups. Certainly,
the number of nontrivial magnetic space groups is much bigger as compared with the
number of magnetic point groups. It is caused not only by the fact that the number of
the space groups is much bigger as compared with the number of point groups (230
instead of 32), but also by more complex structure of the space groups.

The mentioned isomorphism of geometric symmetry groups and correspond-
ing groups of quantum-mechanical operators, including the time-reversal operator
T = iσyK, indicates the fundamental role of the time-reversal symmetry in all mag-
netic phenomena, that has been long ago understood by Landau and Lifshits [3].

The magnetic point groups discussed in Sects. 3.1 and 3.3 do not include as trivial
magnetic groups the icosahedral groups I and Ih = I ⊗ {e, I }, where I is the space
inversion. The group I consists of 60 rotations around the axes of symmetry of a right
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20-polyhedron with triangular faces (of the icosahedron) and regular 12-polyhedron
with pentagonal faces (of the pentagonal dodecahedron). These rotations are made
around 6 axes of fifth order, 10 axes of third order and 15 axes of second order.
The group Ih , which contains a spatial inversion, is a complete transformation of the
icosahedron [3].

In the list of magnetic point groups there are not included the groups, which can be
obtained by expansion of point groups I and Ih using the prescription for constructing
magnetic point groups.

Since opening of the C60 fullerene molecule [152], the irreducible representations
of the groups I and Ih have been widely used to identify the allowed transitions in
the optical absorption and Raman spectra of fullerenes in the liquid and solid state
[153].

For the study of the endohedral C60 : Re3+ fullerene molecule, containing a rare
earth 4 f -ion in the center of the molecule, there is no need to expand the group
Ih to magnetic point groups. Such an extension would be required to study the
ordering of the magnetic moments of the nuclei 13C at very low temperatures, if one
synthesizes a molecule C60 consisting entirely or mostly of atoms of the isotope 13C,
the natural abundance of which is only 1,108%. It hardly makes sense to perform
such an expensive experiment.

However, if for any practical goals one needs magnetic point groups constructed
by expanding the group Ih , then such groups can be easily found. One can say in
advance that in such magnetic point groups there will be forbidden rotations around
axes of the third and fifth orders in combination with a time-reversal transformation
that leads to structural distortions in themolecule 13C60. The reason for this structural
distortion, aswell as for othermagnetic point groups, is that the time-reversal operator
T enters in the magnetic symmetry group only in combination with other elements of
the original point group. In other words, the structural distortions are a consequence
of the time-reversal symmetry, because if we do not take into account the operatorT,
the magnetic symmetry group becomes trivial and structural distortions are absent.



Chapter 4
Kramers Trimer Clusters
and Time-Reversal Symmetry

In this chapter is shown that structural distortions of trihomonuclear Kramers clus-
ters occur as a consequence of the time-reversal symmetry. These distortions are
caused by the fact that the time-reversal operator T is not a separate element of
the magnetic point group G ′, but forms a combined Tg element with other g ele-
ments of the original point group G. The order of the element g cannot be an odd
number, otherwise it would lead to T ∈ G ′, which contradicts the definition of the
group G ′. Forbidden rotations by 2π/3 and 2π/5 in the group G ′ lead to the fact
that metal ions of homonuclear magnetic clusters in a magnetic ordered state can-
not occupy the vertices of an equilateral triangle or those of a regular pentagon.
The distortion of the regular triangle or pentagon occurs only if the time-reversal
operator T is taken into account. Hence these structural distortions are due to the
time-reversal symmetry. There are presented and discussed experimental data con-
cerning the anomalous behavior of chromium(II), iron(III), copper(II), vanadium(II),
and cobalt(II) trihomonuclear clusters determined by their four-color symmetry.

The chapter offers an overview of experimental data related to structural and
magnetic properties [156–219], excepting the Sect. 4.1, which contains some theo-
retical results obtained by the author concerning time-reversal symmetry [85, 134,
155], on the basis of the analysis reproduced from [155], with the permission of AIP
Publishing.

4.1 The Structural Asymmetry of Trihomonuclear
Kramers Clusters as a Consequence of Time-Reversal
Symmetry

The spatial arrangement of isolated groups of atoms, forming complex molecules or
clusters is determined by the corresponding point group symmetry. If the atoms that
form an isolated system, are “introduced” in a crystal, then the initial symmetry can
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change, and the symmetry of the corresponding crystalline class may be lower the
original point group symmetry. This can occur due to the interaction of “introduced”
atomswith the atoms surroundingswhen the latter occupy a less symmetrical position
in the crystal lattice.

Another reason for lowering the symmetry of the initial point group is the Jahn–
Teller effect [154], which is observed in isolated and nonlinear structure of poly-
atomic molecules, clusters and crystals, if the electronic ground state is orbitally
degenerated.

As is known, a decrease of symmetry also occurs at phase transitions of the
second kind, regardless the physical nature of the order parameter. It is confirmed
by many experimental data (first, by X -ray diffraction data), but it is not found why
there is a decrease of symmetry. However, this does not apply to phase transitions
in magnetically ordered states. In this case, the lowering of the symmetry can be
understood proceeding from the structure of magnetic point groups [85, 118, 134,
155] discussed in the Sects. 3.1 and 3.3.

As itwasmentioned, theTg element of themagnetic point groupG ′ cannot contain
an element g of odd order g belongs to the classical point groupG. Otherwise, among
the Tg that contains G ′ an element T would be found, which is prohibited in G ′.
Therefore, among the elements G ′ cannot be the elements TC3 or TS3 (S3 is the
mirror rotation by the angle 2π/3), as well as TC5 or TS5 (S5 is the mirror rotation
by the angle 2π/5), if the magnetic point groups obtained by expanding the I and Ih
groups are taken into account. In fact,

(C3T)3 = C3
3T

3 = eT2 · T =
{

T for non-Kramers systems (4.1)

−T for Kramers systems (4.2)

and
(C5T)5 = C5

5T
5 = eT2 · T2 · T = T (4.3)

for both Kramers and non-Kramers systems.
As (4.1)–(4.3) show, if one admits that rotations C3 or C5 are allowed for the

magnetic point group G ′, then the operator T will also be allowed as an element
of G ′, in contradiction with the definition of G ′. Thus, in both cases, structural
distortions would arise as a consequence of the time-reversal symmetry. This means,
in particular, that magnetic atoms (ions) with an integer spin of a trihomonuclear
or pentahomonuclear cluster cannot occupy the vertices of an equilateral triangle
or regular pentagon. Such interdictions and associated structural distortions of the
equilateral triangle and the regular pentagon with magnetic atoms in the vertices are
due to the structure of the point group of magnetic symmetry. Since for non-Kramers
systems the magnetic symmetry group G ′ is obtained by expanding of classic point
group G by a cyclic group

{
T,T2 = e

}
, it can be concluded that resulting structural

distortions are due to the existence of time-reversal symmetry.
Analogically, no one from the point groups of magnetic symmetry for Kramers

systems (Sect. 3.3) contains simple ormirror rotations of the third-order- or fifth-order
(ifmagnetic point groups due to expansion of I and Ih groups are taken into considera-
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tion; in this book such expansion is not examined). This applies to groups 4(4
′
z), 4(

4′
z),

4(4
′
z)/m(1) and 44

′
z/m(2), which are obtained by extending the classical point groups

by using the cyclic group 4′, and to groups 4(4
′
z)2(m

′
x)2(mxy), 4(4

′
z)m(m ′

x)m(mxy),

4(
4′
z)2(m

′
x)m(mxy) and 4(

4′
z)2(mxy)m(m ′

x), which are obtained by a general expansion
using the non-cyclic group 4′m ′m. Because the group 4′ is isomorphic to the cyclic
groupG4 and the group 4′m ′m is isomorphic to the non-Abelian groupG8, both con-
taining the time-reversal operator, it means that considered structural distortions for
trihomonuclear and pentagonal spin clusters are due to the time-reversal symmetry.

There are many experimental data related to the anomalous behavior of
Cr(II), Fe(III), Cu( II), V(IV) and Co( II) trihomonuclear clusters due to their four-
color symmetry that will be discussed in the Sects. 4.2–4.4 on the basis of the analysis
reproduced from [155], with permission of AIP Publishing.

4.2 Trinuclear Chromium(III) and Iron(III) Carboxylate
Clusters

The trimer clusters with an anomalous temperature behavior of their magnetic prop-
erties were discovered in 1928, when for the first timeWelo [156] measured the mag-
netic susceptibility of polynuclear salts containing three atoms of iron and chromium
in the temperature range from 200 to 400K, and found that these materials fol-
low the Curie–Weiss law with a large Curie–Weiss constant (100−600K). Later,
Kambe [157] tried to explain the large Curie–Weiss constant by introducing isotropic
exchange interactions in the spin-trimer model, where three spin operators S1,S2,
and S3 of spin 3/2 form an equilateral triangle in the crystal. However, the insuf-
ficiency of the model, was soon recognized. It was shown that the thermomagnetic
data [158, 159], as well as data on specific heat of triads in Cr-acetate[
Cr3O (CH3COO)6 (OH)2

]
Cl · 8H2O [160] need a model in the supposition of a

significant lowering of the triad symmetry from D3h with the transformation of the
equilateral triangle into an isosceles one.

Further studies demonstrated that this supposition is confirmed by the X -ray struc-
ture data of metal–acetate complexes obtained at room temperature [161, 162]. In
this case, a X -ray structure analysis of chromium acetate compounds shows that the
chromiumcomplex containsmetal atoms as vertices of the equilateral trianglewith an
oxygen atom in the center. The X -ray single diffraction pattern for a monochloroac-
etate complex is similar to patterns for the chromium and iron complexes.

Further studies have shown that the trinuclear chromium acetate has a phase
transition at 215K with possible change of the molecular structure [163]. Actually,
the earlier X -ray investigations were carried out at temperatures above the point of
phase transition, while the magnetic susceptibility and specific heat data showing the
lowering of symmetry were obtained at low temperatures.

The trinuclear iron(III) carboxylate compounds of the type
[
Fe3O (RCO2)6

(OH)2
] · X · nH2O have been studied by magnetic susceptibility and Mössbauer
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Table 4.1 The best-fit values of J and J ′ for five iron(III) carboxylate complexes

Complex J ′(cm−1) J (cm−1) �EQ(mm/s)

Formiate −14.0 ± 1.0 61.0 ± 2.0 0.50 ± 0.10

Acetate −12.0 ± 1.0 64.0 ± 2.0 0.43 ± 0.10

Propionate −14.0 ± 1.0 62.0 ± 2.0 0.72 ± 0.10

Monochloroacetate −10.0 ± 1.0 54.0 ± 2.0 0.69 ± 0.10

Triochloroacetate −10.0 ± 1.0 58.5 ± 2.0 0.73 ± 0.10

spectroscopy methods [164]. The results of a magnetic study of similar trinuclear
Fe(III) carboxylate complexes are also given in [165]. All the compounds are high-
spin and trinuclear in solid state with the iron atoms in almost equivalent sites.

The best fit of experimental data was obtained using the spin Hamiltonian
H = J (S1S2+S2S3+S3S1) + J ′S3S1. The best-fit values of exchange integrals J
and J ′ are given in Table4.1 [164].

The Mössbauer spectrum of each of the complexes given in Table4.1 has only
two relatively broad absorption lines with approximately the same intensity. The
probability is small that these two lines are caused by two different iron sites, since
in this case the intensity ratio of the lines would be 2 : 1. The two lines are most
likely caused by interactions of identical iron nuclei with the gradient of the electric
field resulting in quadruple splitting �EQ . The values of �EQ from Table 1 are
characteristic for high-spin iron(III) compounds. However, the width of the absorp-
tion lines in Mössbauer spectra is broader than one might expect. It can be caused by
the iron atoms that are situated in a slightly different sites. This assumption is con-
firmed by magnetic measurements data. Since small structural distortions at highly
symmetric environment are detected with high accuracy in the quadrupole splitting
�EQ [166], two broad lines are to be expected. The results obtained for carboxy-
late complexes investigated by means of magnetic susceptibility measurements and
Mössbauer spectra are consistent with the trihomonuclear complex with one of the
sites in a slightly different environment than the other two.

As it follows on the basis of a few experimental data, the data from Table4.1
are typical for all trihomonuclear magnetic clusters. They are as follows: an equilat-
eral triangle with equivalent magnetic ions in corners at high temperatures, which
transforms into an isosceles one at low temperatures. The above-mentioned struc-
tural phase transition in chromium acetate at 215K [163] was found at 211K by
using more accurate structural experiments on X -ray diffraction at 190K [167]. The
high temperature (HT ) and low temperature (LT ) space groups are P21212 and
P212121. The intracluster Cr–Cr distance is 3.27Å, while the intercluster one is
equal to 5.78Å. The LT magnetic and spectroscopic properties are due to structural
distortions of trimer clusters.

In [168], the experimental results on the temperature behavior of trihomonuclear
iron complexes have been evaluated in two differentways, using the spinHamiltonian
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H = −2J (S1S2 + S2S3) − 2J ′S3S1. (4.4)

In the first method (it is assumed J = J ′), the value of J is varied to optimize the
agreement between theoretical and experimental magnetic moments. In the second
method, J and J ′ are varied independently to optimize the agreement. It was shown
that for formiate, acetate, andmonochloroacetate compounds a reasonable agreement
can be obtained between calculated and experimental moments, if only an equivalent
coupling between the three iron atoms is supposed.

For trichloroacetate, phenylacetate, and benzoate a reasonable agreement between
experimental and theoretical data can be obtained, if J and J ′ vary independently.
It was also shown that the line width for the two quadrupole split Mössbauer lines
is considerably larger (from 0.31 and 0.32 mm/s for acetate and trichloroacetate to
0.37 mm/s for phenylacetate at room temperature), than expected for all equivalent
iron atoms. These broadened line widths would be expected, if the three iron atoms
were nonequivalent as the magnetic results indicate.

Using the spin Hamiltonian, (4.4), the magnetic properties andMössbauer spectra
of trinuclear iron(III) complexes of malonic, succinic, fumarie, and phthalic acids
have been investigated [169]. In order to describe the magnetic behavior of these
complexes, seven different models were discussed. There were investigated the fol-
lowingmodels: “the equilateral triangle (EqT ), equilateral triangle plus amonomeric
component (EqT + Z ), isosceles triangle (I SOS), biquadratic exchange (BqX ),
biquadratic exchange plus a monomeric component (BqX + Z ), equilateral tri-
angle with intertrimer exchange (EqT X ), and equilateral triangle with intertrimer
exchange plus a monomeric component (EqT X + Z )”. The best-fit parameters for
molar static magnetic susceptibility vs. temperature for acetate and suscinate com-
plexes were obtained for the {I SOS; BqX; EqT X + Z} and EqT X + Z models,
respectively.

In [170] there have been determined the crystal structures of the isomorphic pro-
totypic oxo-centered trihomonuclear coordination compounds [Cr3O(OOCCH3)6
(H2O)3]Cl · 6H2Oand [Fe3(OOCCH3)6(H2O)3] Cl · 6H2O,CRACandFEAC (1,2).
These compounds are prototypes of the general class of trihomonuclear basic car-
boxylates. Authors argue that metal ions in the oxo-centered units are antiferromag-
netically coupled, but the results of all investigations presented in [171–175] point to
the fact that the three exchange coupling constants are different. It is not clearwhether
the inequalities are due to differences in metal–metal bond distances, metal–oxygen
distances, or bond angles. More accurate structural data are necessary to solve this
problem. Such data were reported in [170] as a complete structure determination of
both CRAC and FEAC. In Table4.2, the selected bond distances for both 1(CRAC)
and 2(FEAC) are listed.

The results of Table4.2 are in agreement with themagnetic symmetry of trinuclear
magnetic clusters with the Kramers degeneracy of energy levels (see Sects. 3.3 and
4.1).

The study of the crystalline structure of polynuclear iron(III) pivalates [176]
by X -ray diffraction analysis demonstrate that the metal core of the hexanuclear
trimethylacetate [Fe6(O)2(OH)2(OOCCMe3)12 · (HOOCCMe3)(THF)] · 1.5C6H6
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Table 4.2 Selected bond
distances

(
Å

)
1 (CRAC) and

2 (FEAC)

1 (CRAC) 2 (FEAC)

M(1)–M(2) 3.281(1) 3.285(1)

M(1)–M(3) 3.288(1) 3.295(1)

M(2)–M(3) 3.279(1) 3.291(1)

complex consists of two triangular Fe3O fragments. Fe–Fe distances are 3.423(4),
3.291(4), and 3.260(4)Å in one triangle and 3.258(4), 3.439(4), and 3.264(4)Å in
another triangle, i.e., neither triangle is equilateral.

4.3 Trinuclear Copper(II) Clusters

Themagnetic properties of the intramolecularly coupled trinuclear
(
CuII

)
3 compound

have been summarized by Kahn [177]. He analyzed the different arrangement of
copper(II) ions. Spin-frustration effects in trimeric units were also discussed.

A number of studies [178–194] have reported symmetric and asymmetric trin-
uclear copper complexes. In particular, two types of trinuclear copper(II) clusters
with similar magnetic behavior were reported [193, 195]. The first type is a trin-
uclear Schiff base [Cu3L(OH)]+3 complex with Cu–Cu separations of 3.62, 4.92,
and 5.89Å [193]. The second trihomonuclear copper(II) cluster in the compound
{[Cu3L(μ-OH)(μ3-HPO4)(H2O)] [PF6]3 3H2O}n consists of trinuclear metal sites
in which three copper(II) centers in a distorted square-pirammidal geometry are
linked by an HPO2−

4 phosphate bridge. The Cu–Cu separations in the triangle of
copper(II) ions are 4.56, 5.47, 3.56Å [195].

In the case of the equilateral triangular arrangement of antiferromagnetically cou-
pled metal ions, the description of the magnetic properties is hindered by the spin-
frustration effects [177]. For the spin S = 1/2, of each component of a trimer
cluster, the ground state for this arrangement is a generated doublet of Kramers dou-
blets. In absence of spin-frustration, this degeneracy is not removed by Coulomb
interactions, and it can arise in the second-order perturbation theory due to Dzya-
loshinsky-Moria antisymmetric exchange [196, 197]. The effect of the isotropic
antisymmetrical exchange is to slope the neighboring spins that leads to a weak
magnetization in the direction orthogonal to the antiferromagnetic alignment axis.
The estimated value of the effective antisymmetric exchange constant for a S = 1/2
trimeric system is Geff = 5.5 cm−1 [198]. This antisymmetric exchange theoreti-
cal model confirms the assumption that in an antiferromagnetically coupled cyclic
trimer, the spin-frustration leads to a ground state doublets splitting. The removal of
the triads ground states fourfold degeneracy due to antisymmetric exchange has also
been taken into account to interpret magnetic susceptibility data and ESR spectra for
trinuclear chromium(III) and iron(III) carboxylates [199, 200].

In the [201] there have been reported two types of cyclic trinuclear copper (II)
complexes [Cu3(μ3-OH)(aaat)3(H2O)3] [NO3]2 · H2O (1) (where Haaat = 3-
acetylamino-5-amino-1,2,4-triazole) and [Cu3-(μ3-OH)(aat)3(μ3-SO4)] · 6H2O
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Table 4.3 Selected bond
distances (Å) for 1 and 2
complexes

1 2

Cu(1)–Cu(2) 3.347(2) 3.337(4)

Cu(1)–Cu(3) 3.374(2) 3.364(4)

Cu(2)–Cu(3) 3.393(2) 3.337(5)

(2) (where Haat = 3-acetylamino-1,2,4-triazole). In Table4.3, the selected bond
lengths for 1 and 2 that were determined by using single-crystal X -ray diffraction
data at room temperature, are given.

The temperature dependence of χmT product (where χm is the molar magnetic
susceptibility per [Cu3] entity) for complexes 1 and 2 exhibits that the χmT val-
ues (0.72 and 0.75 cm3 mol−1 K for 1 and 2, respectively, at room temperature)
are lower than expected for three uncoupled S = 1/2 spins (ca. 1.2 cm3mol−1K).
These values are decreasing steadily at increasing temperature. Based on the tem-
perature dependence curves, it was concluded that it does exist an intratrimer
antiferromagnetic coupling. The magnetic behavior of 1 and 2 in the 90−300K
temperature range is explained within the framework of the isotropic Heisenberg-
Dirac-van Vleck (HDVV) Hamiltonian formalism with a single exchange constant
(J12 = J13 = J23 = J, HHDVV = −J (S1S2 + S2S3 + S3S1)).

The best-fit parameters [201] are J = −194.6 cm−1 and g = 2.08 with R =
2.1× 10−6 for 1; J = −185.1 cm−1 and g = 2.10 with R = 2.1× 10−6 for 2 (here
R is the agreement factor).

To rationalize the magnetic behavior below 90K the distortion of the equilat-
eral triangle (C3v point group symmetry) to give an isosceles one (C2v point group
symmetry) aswell as the antisymmetric exchange interactionwere taken into account

Ĥ = −J (S1S2 + S1S3) − jS2S3 + Ĥas, (4.5)

Ĥas =
∑
i j

Gi j
[
Si × S j

]
. (4.6)

To avoid over parameterization in the fitting process, there were supposed a C2v

symmetry and an identical g-factor for all three Cu(II) ions (g1u = g2u = g3u , where
u = x, y, z) and a common antisymmetric factor, Gi j , for all three interesting ion
pairs (G12 = G13 = G23 = G). In this case, the relevant parameters are J , j , g⊥,
g‖ and G and the resulting best-fit parameters are [201] J = −191.0 cm−1, j =
−156.4 cm−1,G = 27.8 cm−1, g‖ = 2.09, g⊥ = 2.00 (fixed in the fitting process),
and the agreement factor R = 2.7 × 10−6 for 1; and J = −175.4 cm−1, j =
−153.2 cm−1,G = 31.0 cm−1, g‖ = 2.10, g⊥ = 2.10 (fixed in the fitting process),
and R = 3.9 × 10−6 for 2.

These experimental results clearly confirm that the existence of a disagreement
between the high symmetry of triads in X -ray data at room temperature (equilat-
eral triangle) and lowered symmetry (isosceles triangle) at low temperatures is not
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accompanied by a structural phase transition. It is a general characteristic for all
trimer magnetic clusters with the Kramers degeneracy of energy levels.

The study of the structure and magnetism of Na9[Cu3(H2O)9(α-AsW9O32)2]·
26H2O (Na9-2) over 2 − 300K [202] has shown that Na9-2 has antiferromagneti-
cally coupled Cu2+ ions, with J = −1.36 ± 0.01 cm−1 (using isotropic exchange
Hamiltonian). The ground state total spin in Na9-2 is ST = 1/2. In fact, the polyan-
ion 2 has three Cu2+ ions arranged in a triangular fashion with Cu–Cu distances
[203] Cu1−Cu2 = Cu1−Cu3 = 4.696Å and Cu2−Cu3 = 4.689Å. The possible
super exchange path between any two Cu2+ ions of the polyanion 2 are the same
(Cu−O−W−O−W−O−Cu) , therefore the Cu–Cu distances are equal and the Cu3
system is an equilateral triangle.

The hyperfine interactions of the exchange-coupled 3d9-electrons of copper(II)
dimer clusters with the 63,65Cu nuclei are neglected in the susceptibility analysis,
because these interactions are not resolved in theEPR spectra. Probably, this is due to
the fact that the rate of the spin exchange process is higher than the hyperfine splitting
(in frequency units). Therewas also neglected the zero-field splitting constants D and
E , since these constants aremuch smaller than the constant of exchange interaction J ,
as it follows inESR experiments. The temperature behavior of themolar susceptibility
χm for Na9-2 at H = 1000 Oe has shown that in the range of 60−200K the χmT
value is nearly constant (∼1.34 emu · K · mol−1). This indicates an admixture of
both ST = 1/2 and ST = 3/2 spin states. In the case of S1 = S2 = S3 = 1/2 and
J ′ = J , the total spin takes the values 1/2 (↑↑↓) , 1/2 (↑↓↑) , or 3/2 (↑↑↑) , with
energies 3J/2, 3J/2 or −3J/2, respectively. The single-crystal EPR experiments
on Na9-2 at Q-band (v = 34 GHz) give the following values of spin Hamiltonian
constants: g‖ = 2.117±0.005 and g⊥ = 2.254±0.005 for ST = 1/2 (ground state)
and g‖ = 2.060 ± 0.005, g⊥ = 2.243 ± 0.005 and |D| = 0.023 ± 0.005 cm−1 for
ST = 3/2 (excited state). The W -band (v = 93.165 GHz) powder EPR spectrum
of Na9-2 at 4K, as well as the temperature dependence of the W -band (v = 93.165
GHz) EPR spectrum, confirm the Q-band single-crystal EPR data. This is a rare case
EPR observed from both the ground and excited states [202]. We note that although
the assumption J ′ = J was correctly argued and the best J parameter was obtained
[202], the experimental values of g‖ and g⊥

(
g‖ 	= g⊥

)
agree with distortions of the

trinuclear copper(II) cluster.
The equilateral triangle with Cu2+ ions in the corners contained in the

Cu3(O2C16H23)6 · 1.2C6H12 compound [204] shows an unexpected structure and
an example of spin frustrations. The structure of the crystal consists of discrete
molecules Cu3(O2C16H23)6 with a triangular arrangement of copper(II) ions with a
3-fold axis of symmetry passing through the center of the equilateral triangle. The
Cu–Cu separations are 3.131(3)Å, precluding from any direct bonding. Magnetic
susceptibilitymeasurements on a polycrystalline sample at 1000G in the temperature
range from 1.8 to 380K are consistent with the presence of a doublet ground state
with a g value equal to 2.071(5). The magnetic moment μeff is constant between 10
and 50K at 1.80μB . Above 50K, μeff gradually increases without saturation from
1.80μB to 2.69μB at 380K. At low temperatures (below 10K) a small decrease is
probable due to some very small antiferromagnetic interaction (|θ | < 0.1K) between
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Cu(II) trimers. Since Cu3 is an equilateral triangle, the magnetic susceptibility mea-
surements data were explained on the basis of the spin Hamiltonian describing
the isotropic Zeeman and exchange interactions. The best-fit parameters [204] are
J = −108K and g = 2.07.

Detailed Q-band (v = 34 GHz) single-crystal EPR experiments were carried
[205] out to clarify the peculiarities of the magnetic behavior of this high-symmetric
trimer cluster. The main result obtained lead to the conclusion that at high tempera-
tures (above 50K) EPR data are in agreement with an equilateral triangle model of
trinuclear cluster (confirmed by X -ray diffraction data), while at low temperatures
(below 50K) the structural distortions of trinuclear copper (II) clusters are detected
and, as a consequence, the model of equilateral triangle is not acceptable.

4.4 Trinuclear Vanadium(IV) and Cobalt(II) Clusters

The trinuclear vanadium(IV) magnetic clusters with Kramers degeneracy of energy
levels are contained in two species of polyoxovanadate-based magnetic
molecules, labeled V-1 and V-2, with the chemical formulas
[206] (CN3H6)4 Na2

[
H4VIV

6 O8 (PO4)4 {(OCH2)3 CCH2OH}2
] · 14H2O and

Na6
[
H4VIV

6 O8 (PO4)4 {(OCH2)3 CCH2OH}2
] · 18H2O.A single-crystal X -ray anal-

ysis has established [207] that in V-1 the distances between V IV ions are
3.218(V 1−V 2), 3.222(V 1−V 3) and 3.364(V 2−V 3)Å. In V-2, the corresponding
distances are 3.212, 3.253 and 3.322Å. These structural data allow us to suppose that
only two exchange constants are necessary and sufficient for defining the Heisenberg
model Hamiltonian

(
J12 = J13 = J, J23 = J ′). The best-fit parameters for interpret-

ing the magnetization versus temperature data are [206] J = −32.6 ± 0.5K and
J ′ = −3.5± 1K for V-1, and J = −31.9± 0.6K and J ′ = −2.9± 1.1K for V-2.

The proton spin-lattice relaxation rate as a function of temperature, as well as the
23Na spin-lattice relaxation rate as a function of temperature confirm the magnetic
susceptibility data for both V-1 and V-2 compounds. The temperature dependence
of spin-lattice relaxation rate, 1/T1, is described by a phenomenological formula
[207] giving 1/T1 proportional to T · χ (T ) , if the condition 2a/b = 1 holds. Here
a and b are coefficients in the (18) from [206]. These constants can be expressed in
terms of magnetic dipole–dipole interaction tensor elements. In the case of protons,
a = 4.94 and b = 13.45, and a = 1.45 and b = 3.97 for V-1 and V-2, respectively,
that is 2a/b ≈ 0.73 for both V-1 and V-2. For 23Na the results are a = 0.525 and
b = 1.252, and a = 0.6 and b = 1.09 for V-1 and V-2, respectively. We see that
2a/b is equal to 0.81 for V-1 and to 1.11 for V-2, in a satisfactory agreement with
the condition 2a/b = 1.

Note that V−V distances 3.212 and 3.253Å in V-2 are not so close as dis-
tances 3.218 and 3.222Å in V-1. Therefore, more accurately, V-1 must not be
considered an isosceles triangle, but a general one (J12 	= J23 	= J31) . The mag-
netic contribution to the specific heat, as well as the inelastic neutron struc-
ture factor confirm this conclusion for these and other complexes with trimer
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magnetic clusters having the spin ground state ST = 1/2 [207], including
K6 [V15As6O42 (H2O)] · 8H2O [208–212] (symmetric trimer + capping hexamers),
Na9-2 (isosceles trimer) [213],

[
Cu3 (cpse)3 (H2O)3

] · 8.5H2O (symmetric trimer)
[213] and Cu3(O2C16H23)6 · 1.2C6H12 (symmetric trimer) [204]. The magnetic con-
tribution to the specific heat is usually masked by much larger phonon contributions
[207] and it may be separated experimentally by subtracting the specific heats in zero
and non-zero magnetic fields. As for inelastic neutron cross-sections for the sym-
metric trimer with two degenerate ST = 1/2 ground states and a single ST = 3/2 ex
citate state, there are two different inelastic neutron structure factors, but only one sin-
gle transition energy. The same structure factors follow also for the isosceles trimers.
However, in that case the two ST = 1/2 states are nondegenerated (the two
ground state Kramers doublets are separated). The 15-cobalt-substituted
polyoxotungstate [Co6 (H2O)30 |Co9Cl2 (OH)3 (H2O)9 (β-SiW8O31)3 ∼]5− (Co-1)
and Na5 [Co6 (H2O)30 |Co9Cl2 (OH)3 (H2O)9 (β-SiW8O31)3 ∼ ] · 37H2O (Co- 2)
have been studied [214]. The trimeric polyanion Co-1 has a core of nine CoII ions
encapsulated by three unexampled (β-SiW8O31) fragments and twoCl− ligands. The
9 exchange-coupledCoII ions in the core ofCo-1 can be considered as three triangular
units belonging to three Keggin fragments that are connected by two chlorobridges.
The

(
CoII

)
9 core is the same for both Co-1 and Co-2. The magnetic properties of

Co-2 in the low temperature range (T < 30K) can be understood if we neglect the
sufficiently small difference between Co1 − Co2(3.037Å) and Co1 − Co3(3.141Å)

distances, e.g., taking into account that each triangle
(
CoII

)
3 is an equilateral one.

The total static magnetic susceptibility is presented as a sum of contributions of
the

(
CoII

)
9 core and the six uncoupled peripheral CoII ions with effective spins

S = 1/2. Taking into consideration that the bond angles and the bond lengths of the(
CoII

)
9 core are very similar to that in

[
Co9 (OH)3 (H2O)6 (HPO4)2 (PW9O34)3

]16−
,

the full anisotropic Ising model with J1z and J2z exchange constants used by
Coronado and co-workers [215] has been employed. The best fit parameters are J1z =
17.0 ± 1.5 cm−1 and J2z = −13.1 ± 1.5 cm−1, which are in good agreement with
the values presented in literature for

[
Co9 (OH)3 (H2O)6 (HPO4)2 (PW9O34)3

]16−
([215]). ThepowderEPR spectra ofCo-2 inQ-band (34GHz) andW -band (93GHz)
at 4K exhibit an asymmetric transition at low magnetic fields, that can be associated
with an anisotropic ground state Kramers doublet [216]. The effective g-values asso-
ciated with this doublet are geff (xx) = 2.63, geff (yy) = 3.89 and geff (zz) = 5.72,
as expected for CoII coordination compounds [216–219]. This effective S = 1/2
ground state is in a good agreement with the static magnetic susceptibility data.

We see that low temperature magnetic susceptibility and EPR data for Co-1 and
Co-2 can be satisfactory explained in the framework of the symmetric trimer model,
although the Co3 triangle is in fact distorted.

The experimental results discussed in this subsection show that the trinuclear
vanadium(IV) clusters have a temperature behavior similar to that for trihomonuclear
clusters formed by Cr(III), Fe(III), Cu(II) or Co(II) atoms. For all symmetric trimer
magnetic clusters, the model of an equilateral triangle is in a good agreement with
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the magnetic susceptibility, ESR, specific heat and inelastic neutron scattering data
at high temperatures (above 50K), but it is in contradiction with the experiment at
low temperatures (below 50K).

4.5 Concluding Remarks

A relative large number of trinuclear species have been described in this chapter by
neglecting local anisotropies and anisotropic interactions between spins. However,
only a very limited number of trimer clusters with the arrangement of magnetic
atoms in the vortexes of an equilateral triangle are known at present. Excepting the
above-mentioned copper(II), full-symmetric trimers with the ground state total
spin ST = 1/2, Cu3 (O2C16H23)6 · 1.2C6H12,

[
Cu3 (cpse)3 (H2O)3

] · 8.5H2O,
and Na9-2, there is also one equilateral triangle related to the triangular cation[
Cu3 (pao)3 OH

]2+
with Hpao = pyridine-2-aldehyde-oxime [177]. It should be

remembered that the Na9-2 complex (see the notation above) was considered [207]
as containing equilateral triangles Cu3 while the crystalline structure data demon-
strated that there are nonequilateral triangles [202, 203]. Thus, only three triangles
are considered as equilateral and they are all formed by copper atoms [177, 207,
213].

It is curious to note that the first discovered trinuclear clusters Fe3 and Cr3 were
considered for long time as clusters with a symmetric arrangement of the iron and
chromium atoms, respectively, in the vortexes of an equilateral triangle [156–163,
177, 207]. This consideration was based on Figgis, Robertson [161] and Chang,
Geffrey [162] structural data published in 1964 and 1970, respectively. Later, it
was established that conclusions about the equilateral triangles have been based a
rather low accuracy analysis of the single-crystal X -ray diffraction. A more exact
structural data determined by Schent and Güdel in 1982 by low temperature (190K)

X -ray diffraction brought to distortions of triangular cluster Cr3 contained in the[
Cr3O (CH3COO)6 (H2O)3

]
Cl · 6H2O complex [167]. In 1997, it was done more

precise determination of the crystalline structure of this complex on the basis of
single-crystal X -ray diffraction at room temperature, as well as of the isomorpheous
iron containing trinuclear complex (denoted in Sect. 3.2 as CRAC 1 and FEAC 2,
respectively). It was shown [170] that there are isosceles triangles for both CRAC 1
and FEAC 2.

According to the results given in Sects. 3.1, 3.3, all trihomonuclear magnetic
clusters must be characterized by generalized point groups (black-and-white groups
for non-Kramers systems and four-color magnetic point groups for Kramers sys-
tems) with a low-symmetry atom arrangement. This follows from specific properties
of the black-and-white groups and four-color magnetic point groups, taking into
account the possible correlation between the spin configurations and the correspond-
ing arrangements of atoms (ions) with spins. The structure of black-and-white and
four-color point groups of magnetic symmetry depends on the type of simultaneous
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transformations of coordinate and spin parts of the full wave function (depending
on the space, spin, and time variables) under action of the time-reversal operator.
We certify that no any structural distortions appear, if the time-reversal operator is
not taken into account, i.e., structural distortions under consideration are due to the
time-reversal symmetry.

The three types of Cu3 triangles, considered now as equilateral triangles [177,
204, 213] on the basis of single-crystal X -ray diffraction data, are actually not equi-
lateral, in magnetic ordered phase at low temperature, because there are no four-color
groups of magnetic symmetry with threefold rotation axes. The single-crystal X -ray
diffraction experiments lead to the conclusion about symmetric copper trimers in
these cases as a consequence of small geometrical distortions of equilateral trian-
gles. In the case when experimentally measured sides of the triangle (or exchange
interaction constants between magnetic ions) appear to be equal, the magnetic ions
are nonequivalent, within the experimental errors. This can be revealed by more
precise measurements. There are no doubts, that in the future such measurements
will be made and the nonequivalence of copper atoms in trinuclear clusters Cu3 will
also be discovered, in analogy with the early-discovered nonequivalence of iron and
chromium atoms.



Chapter 5
Time-Reversal Symmetry of Quantum
Systems with Quasi-energy Spectrum

In this section, it will be shown how the wave function of a non-stationary state
of a quantum system is transformed under the action of the time-reversal operator
T. Despite the fact that in the case of non-stationary states the total energy of the
system is uncertain, it does not mean violating the law of energy conservation, since
the average energy is conserved. It is found that the wave functions � (ξ, t) and
T� (ξ, t), on average, belong to the same energy level and are linearly dependent,
if T2 = 1. However, if T2= − 1, then the wave functions � (ξ, t) and T� (ξ, t)
belonging in average to the same level, are orthogonal (quasi-degeneracy of energy
levels due to time-reversal symmetry).

The Schrödinger equation for the Green function is invariant relative to time
reversal, and the function itself behaves under time reversal like wave functions of
non-stationary states.

It is demonstrated that Kramers degeneracy of quasi-energy states is present
(absent) at a half-integer (integer) value of the angular momentum. An additional
(compared with Kramers one) degeneracy of quasi-energy states is found for cases
when the time-reversal operator doesn’t commutates with time-translation operators.

The main results presented in this Chapter, have been published in [135, 220,
221] and are related, in particular, to the reduced Brillouin zone in the space of
quasi-energies and to supplementary degeneracy of quasi-energy levels due to non-
commutation of time-reversal and time-translation operators.
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5.1 Non-stationary States of Quantum System Under
Time-Reversal Operator

The Wigner time-reversal operator T has been introduced in the non-relativistic
quantum mechanics on the basis of invariance of the time-dependent Schrödinger
equation under the reversal of time [222]. From the requirement of this invariance
it follows inevitably that the time-independent Hamiltonian H in the coordination
representation is also invariant with respect toT. Another consequence of this invari-
ance is that the operatorT should be represented as the product of an unitary operator
U

(
U+U = 1

)
, having the property

UH∗ = HU, (5.1)

and the operator of complex conjugationK. The last operator is nonlinear by defini-
tion that leads to the nonlinearity of the operator T. On the other hand, the operator
of time reversal is an anti-unitary operator, since the unitary operator U, satisfying
the relation (5.1), is also part of T.

For systems consisting of spinless particles, U = 1 and T = K, if each of
particles does not have orbital momentum. If spinless particles forming the system
have nonzero orbital moments, the matrix of the operator U is a symmetric one
with alternating elements +1 and −1, located only on the secondary diagonal. The
remainingmatrix elements are zero. The number of nonzero matrix elements is equal
to 2l + 1 or 2L + 1, where l is the orbital momentum of a single particle, and L is
the total orbital angular momentum of the system of particles.

Since the operatorT is defined up to a phase constant, of which module is equal to
1, it does not matter what element (+1 or −1) is located on the end of the secondary
diagonal; it is important that the selected phase factor at the operator T remains
unchanged. Thus, in this case, there is no additional degeneracy of energy levels due
to time-reversal symmetry. The matrix of the operator U has the same structure, if
the orbital momentum is zero, and the spin of particles (paramagnetic ions, atomic
nuclei) and, correspondingly the total spin of the system of particles is an integer
(see Sect. 2.4).

In the case of systems formed of an odd number of half-integer spin particles and,
accordingly, having a half-integer total angular momentum as a whole, the matrix
of the operator U has a similar structure, with the only difference that the secondary
diagonal now contains an even number of blocks (+1,−1), arranged symmetrically
relative to its center, excepting the case of the spin S = 1/2, to which corresponds
only one such a block.

In the first case, there is no degeneracy of energy levels due to time-reversal
symmetry.On the contrary, in the second case, such a degeneracy is present in systems
containing an odd number of particles with half-integer spin. In the presence of an
electric field of any strength it does not occur a complete splitting of energy levels,
at least their double degeneracy remains (Kramers theorem [69]).
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In a system consisting of an odd number of particles with spin-orbit interaction
that have both an orbital and a spin angular momentum, there exist also an additional
degeneration of energy levels caused by the time-reversal symmetry.

It is appropriate to make a remark concerning the change in the form of time-
reversal operator at the transition from the coordinate representation to the momen-
tum one. In the coordinate representation, the Hamiltonian H is a real operator, so
that H∗ = H. Therefore, according to (5.1) we have the relation

UH = HU, (5.2)

that is, the operators U and H commute. The commutativity of operators U and H
is broken in the momentum representation, in which H∗ �= H. Since r̂ = i�∇p and
p̂= p, in this representation the time-reversal operator for a system of N particles
with spin 1/2, but without the orbital angular momentum, is of the form

T = i NO1pO2p . . .ONpσ1yσ2y . . . σNyK, (5.3)

where Oi p is an unitary operator, which changes the direction of the momentum of
i th particle to opposite one, and σiy it is the imaginary Pauli operator of i th particle.

The problems related to the time-reversal symmetry of stationary states (eigen-
functions of the operator H) have been discussed in Sects. 2.3–2.7 and 2.9–2.13.

Let us now consider how the wave functions of non-stationary states of a quantum
system are transformed under the time-reversal operator T. We assume that the
system at time t = 0 is in a state, described by a square-integrable complex wave
function (see (5.6) below)� (ξ, 0) = �(ξ), which depends on 3N dynamic variables
designated by ξ : ξ ≡ {ξ1, ξ2, . . . , ξN }. In this case, the wave function of the system
consisting of N particles, which depends both on the spatial coordinates and the spin
variables, is given by

� (ξ, t) = � (r1, r2, . . . , rN ; σ1, σ2, . . . , σN ; t) . (5.4)

The set of all square-integrable complex functions of N real variables forms an
infinite linear Hilbert space.

If the function �(ξ) coincides with one of the eigenfunctions �E (ξ) of the
HamiltonianH of the system, it means that the system is in a stationary state with the
total energy E . In this case, the change with time of the wave function is determined
by the well-known harmonic law

�E (ξ, t) = �E (ξ) exp

(
− i

�
Et

)
. (5.5)

Now we suppose that �(ξ) is not an eigenfunction of the Hamiltonian. In this
case, in order to find the wave function of the non-stationary state of the system,
� (ξ, t) at t > 0, we shall use the wave Schrödinger equation
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i�
∂� (ξ, t)

∂t
= H� (ξ, t) (5.6)

at the initial condition
� (ξ, 0) = �(ξ) . (5.7)

We take into account that all functions of stationary states of the system alongwith
all “generalized” eigenfunctions of the Hamiltonian (including factors depending on
the time) form a complete set. Any solution of the Schrödinger equation can be
represented as an expansion over this set [223]:

� (ξ, t) =
∑

n

cn�εn (ξ) exp

(
− i

�
εnt

)
+

∫
C (ξ)�ε (ξ) exp

(
− i

�
εt

)
dε, (5.8)

where cn and C (ξ), in general case, are complex numbers. The wave functions of
the stationary states �εn (ξ) and �ε (ξ) from (5.8) satisfy the stationary Schrödinger
equation:

H�εn (ξ) = εn�εn (ξ) , (5.9)

H�ε (ξ) = ε�ε (ξ) . (5.10)

Further, we require the wave function of the non-stationary state � (ξ, t) from
(5.8) to satisfy the initial condition (5.7)

∑

n

cn�εn (ξ) +
∫

C (ξ)�ε (ξ) dε = �(ξ) , (5.11)

where the summation is over all points of the discrete spectrum and the integration
– over all points of the continuous spectrum. Due to orthonormality conditions

〈
�εn |�εn′

〉 = δnn′ (5.12)

and ∫
�∗

ε (ξ)�ε′ (ξ) dξ = δ
(
ε − ε′) , (5.13)

the coefficients cn and C (ξ) of (5.11) are defined as follows:

cn = 〈
�εn |�

〉 =
∫

�∗
εn

(ξ)� (ξ) dξ, (5.14)

C (ξ) = 〈�ε|�〉 =
∫

�∗
ε (ξ)� (ξ) dξ. (5.15)
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After substituting (5.14) and (5.15) into (5.8), it can be considered that the wave
function of the non-stationary state is completely defined.

For a system consisting of N particles with the spin 1/2 and without an orbital
angular momentum, the time-reversal operator in the coordinate representation has
the form:

T = i Nσ1y, σ2y, . . . , σNyK, (5.16)

where σiy is determined in (5.3).
The time-reversal operatorT in the coordinate representation for a system consist-

ing of N particles (5.16) differs from the operatorT in the momentum representation
(5.3) by the absence of the product of operators Ui p(i = 1, 2, . . . , N ).

It is easy to show that acting on the wave function of the non-stationary state
� (ξ, t) from (5.8) by the operator T2 (where T is defined by (5.16)), we obtain

T2� (ξ, t) = 1 · � (ξ, t) ,T2 = +1 (5.17)

for systems consisting of an even number of particles with spin 1/2, and

T2� (ξ, t) = −1 · � (ξ, t) ,T2 = −1 (5.18)

for systems consisting of odd number of particles with the spin 1/2. In (5.17) and
(5.18), 1 is a unitary operator, which is a product of operators σ 2

iy (i = 1, 2, . . . , N ).
Equations (5.17) and (5.18) are analogical to corresponding equations for station-

ary states �εn (ξ) and �ε (ξ) from equation (5.8):

T2�εn (ξ) = 1 · �εn (ξ) ,T2 = 1 (5.19)

T2�ε (ξ) = 1 · �ε (ξ) ,T2 = 1 (5.20)

for non-Kramers systems and

T2�εn (ξ) = −1 · �εn (ξ) ,T2 = −1 (5.21)

T2�ε (ξ) = −1 · �ε (ξ) ,T2 = −1 (5.22)

for Kramers systems, where T is the Wigner time-reversal operator.
It can be seen from the comparison of the (5.17) with (5.19) and (5.20), as well

as (5.18) with (5.21) and (5.22) that wave functions of non-stationary states � (ξ, t)
and T� (ξ, t) are the solutions of the same time-dependent Schrödinger equation.

Similarly, the wave functions of stationary states �εn (ξ) and T�εn (ξ), as well as
�ε (ξ) and T�ε (ξ) are solutions of the Schrödinger equation independent of time
for systems with discrete and, respectively, continuous energy spectrum (5.9) and
(5.10).

However, unlike, for example, the functions �εn (ξ) and T�εn (ξ) belonging to
the same eigenvalue of the operator H, in the case of non-stationary states the total
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energy of the system is indefinite. The uncertainty of the energy in a non-stationary
state does not mean that the energy of this state is not conserved. It is conserved in
the average.

5.2 Time-Reversal Invariance of Schrödinger Equation for
Green Function

Let us express the wave function of the non-stationary state � (ξ, t) in (5.8) through
the Green function G

(
ξ, ξ ′, t

)
. To do this, we introduce the expressions for the

coefficients cn and C (ξ) from (5.14) and (5.15) into the (5.8), which defines the
function� (ξ, t), and change the order of integrationwith respect to ξ and summation
(integration) over the energy spectrum:

� (ξ, t) =
∫

dξ ′
[
∑

n

�εn (ξ)�∗
εn

(
ξ ′) exp

(
− i

�
εnt

)
+ (5.23)

+
∫

�ε (ξ)�∗
ε

(
ξ ′) exp

(
− i

�
εt

)
dε

]
�

(
ξ ′) .

If we now introduce the Green function G
(
ξ, ξ ′, t

)
for the Schrödinger equation

(5.6)

G
(
ξ, ξ ′, t

) =
∑

n

�εn (ξ)�∗
εn

(
ξ ′) exp

(
− i

�
εnt

)
+

∫
�ε (ξ)�∗

ε

(
ξ ′) exp

(
− i

�
εt

)
dε,

(5.24)
the function � (ξ, t) will be is expressed in terms of the function G

(
ξ, ξ ′, t

)
as

follows:

� (ξ, t) =
∫

G
(
ξ, ξ ′, t

)
�

(
ξ ′) dξ ′, (5.25)

where the function �(ξ) is defined by (5.11).
The Green’s function G

(
ξ, ξ ′, t

)
satisfies the Schrödinger equation [223]

i�
∂G

(
ξ, ξ ′, t

)

∂t
= HG

(
ξ, ξ ′, t

)
(5.26)

with the initial condition
G

(
ξ, ξ ′, 0

) = δ
(
ξ − ξ ′) . (5.27)

If we denote the functionG
(
ξ, ξ ′, t

)
that satisfies the Schrödinger equation (5.26)

by Gα , one can introduce a “time reversed” function G−α , which is obtained from
the function Gα under the action of the time-reversal operator.
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Since theHamiltonianH is invariant under the time-reversal operator, the function
G−α satisfies the Schrödinger equation (5.26), in which t should be replaced by −t :

− i�
∂G−α

∂t
= HG−α. (5.28)

Now we consider an equation, complex conjugate to the (5.26):

− i�
∂G∗

α

∂t
= H∗G∗

α (5.29)

If there exists a unitary operatorU
(
U+U = U+U = 1

)
that satisfies the condition

UH∗ = HU, (5.30)

it can be seen that if this operator acts on the both sides of equation (5.29), we obtain
the equation

− i�
∂

(
UG∗

α

)

∂t
= H

(
UG∗

α

)
. (5.31)

By comparing this equation with the (5.28), one can see that

G−α = UG∗
α = UKGα = TGα, (5.32)

where K is a operator of complex conjugation and T is the time-reversal operator.
It is easy to see that under the action of the operator T = UK, the Green function

G
(
ξ, ξ ′, t

)
from the (5.29) is transformed as follows:

TG
(
ξ, ξ ′, t

) =
∑

n

U�∗
εn

(ξ)�εn

(
ξ ′) exp

(
i

�
εnt

)
+U

∫
�∗

ε (ξ)�
(
ξ ′) exp

(
i

�
εt

)
dε.

(5.33)

Acting by T operator on both sides of equation (5.33), we obtain

T2G
(
ξ, ξ ′, t

) = U2G
(
ξ, ξ ′, t

)
,T2 = U2. (5.34)

If the system, of which function1 G
(
ξ, ξ ′, t

)
is determined, is characterized by

an integer angular momentum, then U2 = +1, since the matrix of the operator U is
symmetrical (see Sect. 2.4). On the contrary, for systems with half-integer angular
momentum it is true thatU2 = −1. As can be seen from (5.24), although the Green’s
function itself G

(
ξ, ξ ′, t

)
is not a wave function of a non-stationary state � (ξ, t), it

is transformed analogously to the non-stationary state function under the action of
the operator T2 (see (5.17) and (5.18)):

1ξ and ξ ′ include both space coordinates and spin variables.
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T2G
(
ξ, ξ ′, t

) = 1 · G (
ξ, ξ ′, t

)
,T2 = +1 (5.35)

in the case of systems with an integer angular momentum and

T2G
(
ξ, ξ ′, t

) = −1 · G (
ξ, ξ ′, t

)
,T2 = −1 (5.36)

in the case of systems with an half-integer angular momentum.
The comparison of (5.19), (5.20), (5.17) and (5.35), aswell as (5.21), (5.22), (5.18)

and (5.36) shows that wave functions of stationary states�εn (ξ) and�ε (ξ), thewave
function of the non-stationary state � (ξ, t) and the Green’s function G

(
ξ, ξ ′, t

)
are

transformed in a similar way under the action of T2 operator. In this case the states
�εn (ξ),T�εn (ξ) and�ε (ξ),T�εn (ξ) belong in pairs to the same energy levels. For
systems with a half-integer angular momentum, this leads to the Kramers degenera-
tion of energy levels. Non-stationary states � (ξ, t) and T� (ξ, t) belong in average
to the same energy level, since the energy is conserved only on average. In this
case for systems with half-integer angular momentum, instead of Kramers degener-
ation, a quasi-degeneracy of energy levels occurs, of which position is determined
on average.

As for theGreen’s functionG
(
ξ, ξ ′, t

)
and the time reversed functionTG

(
ξ, ξ ′, t

)
,

there is no such simple interpretation for them. Nevertheless, it is curious that the
behavior of functions �εn (ξ) ,�ε (ξ) ,� (ξ, t) and G

(
ξ, ξ ′, t

)
under the action of

T2 is similar.

5.3 Quasi-energy Spectrum and Brillouin Zone in
Quasi-energy Space

So farwe have considered the transformation ofwave functions of stationary and non-
stationary states of a quantum system under the action of the time-reversal operator.
According to (5.8), the wave function of a non-stationary state is defined as a linear
superposition of wave functions of stationary states of the discrete and continuous
spectrum of the operator H.

In both cases, according to the Heitler quantum theory of radiation [224], the
quantum system and the radiation field have been considered as independent sub-
systems in the zero approximation. In this case, the radiation field was considered a
perturbation and the quantum transitionwas described as the result of the perturbation
operator action on the wave functions.

Of course, there are of particular interest, one-, two-, three-, and multi-quantum
transitions between stationary energy levels of the system allowed by the selection
rules. It is possible, in principle, to talk about quantum transitions between non-
stationary states, although such transitions are not of great practical interest.

Let us now consider the situation when the allowed resonant transitions between
two or more levels of energy (or energy bands, in the case of elementary excitations
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such as excitons, biexcitons, magnetic excitons, magnons et al. in crystals) occur at
deep saturation. Under the concept of deep saturation of quantum transitions one
implies so high values of the alternating field strength, at which the quantum system
and the radiation field should be treated as a whole.

After the discovery of the laser in 1961, this task has become actual in the exper-
iment, that stimulated the implementation of the first theoretical studies in this field
[225–227].

Let us consider the behavior of a quantum system in the periodic field of large
strength, using the concept of quasi-energy introduced by Zeldovich [226].

In the presence of an external periodic field of large strength with a frequency ω,
the Hamiltonian of the system has the property of time-periodicity:

H (x, t + τ) = H (x, t) , τ = 2π/ω. (5.37)

Let � (x, t) be a solution of the Schrödinger equation dependent on time (x
includes both spatial coordinates and spin variables) of the form

� (x, t) = ϕ (x, t) e−iεt/�, (5.38)

where the function ϕ (x, t) is square integrable (i.e., the integral
∫ |ϕ (x, t)|2 dx has

a finite value), and has the property of periodicity in time

ϕ (x, t + τ) = ϕ (x, t) . (5.39)

The function ϕ (x, t + τ) satisfies the Schrödinger equation

H (t) ϕ (x, t) = Eϕ (x, t) , (5.40)

where

H (t) = H (t) − i�
∂

∂t
(5.41)

and E is the eigenvalue of the operator H (t) (quasi-energy).
The self-functions of the operator H (t) (5.41) are referred to as Floquet states,

named after the author, who as early as in 1883 found the solution of the first degree
differential equation containing an operator depending periodically on time, long
before the discovery of quantum mechanics [228].

The time-translation operator transforms the total wave function � (x, t) (5.38)
into the function � (x, t + mτ)

Tmτ� (x, t) = � (x, t + mτ) , m = 0,±1,±2, . . . (5.42)

In this section, the time-translation operator is designated by Tmτ (not to be
confused with the time-reversal operator, denoted in this book by T).

Taking into account (5.42) and (5.38), we obtain:
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Tmτ� (x, t) = ϕ (x, t + mτ) exp

[
− i

�
E (t + mτ)

]
, m = 0,±1,±2, . . . (5.43)

It is easy to see that this equation reduces to the form

Tmτ� (x, t) = exp

(
− i

�
Emτ

)
� (x, t) , m = 0,±1,±2, . . . (5.44)

if we introduce (5.38) into (5.43) and take into account that an equality of wave
functionsϕ(x, t) andϕ(x, t+τ) takes place alongwith the equality ofwave functions
ϕ(x, t) and ϕ(x, t + mτ) (where m = 0,±1,±2, . . . ).

This result can be interpreted on the basis of the theory of groups. The time-
translation operators Tmτ (m = 0,±1,±2, . . .) commute with the operator H (t)
from (5.41) and form an Abelian symmetry group, of which irreducible representa-
tions must be numbered by quasi-energy values E. Here τ is fixed and given by the
resonance frequency ω of high amplitude vibrations of the external generator whose
action on the quantum system leads to the formation of the quasi-energy spectrum.

In general, a set of wave functions ϕlm (x, t) corresponds to the quasi-energy
value E

ϕlm (x, t) = fl (x) exp (imωt) , (l = 1, 2, . . . ;m = 0,±1,±2, . . .) . (5.45)

The functions ϕlm (x, t) can be considered as vectors of states in the generalized
Hilbert spaceR + T [229]. In this case, the functions fl (x) are defined in the spaceR
and the functions exp (imωt) – in the spaceT. In the spaceR + T, the operator−i� ∂

∂t
is Hermitian and the Hamiltonian H (t) is Hermitian as well. Therefore, their sum
H (t)−i� ∂

∂t , representing the operatorH (t) (see (5.41)), is also aHermitian operator
in this space. Consequently, each value of the quasi-energy is a real number and the
functions ϕlm (x, t) belonging to different values of quasi-energy are orthogonal.

It is useful to make an analogy with the Brillouin zones in the one-dimensional
crystals. If E is the eigenvalue of the operatorH (t)(the quasi-energy) and ϕ (x, t) is
its eigenfunction, then

E′ = E+m�ω, ϕ′ (x, t) = ϕ (x, t) exp (imωt) (5.46)

also, respectively, the eigenvalue and the eigenfunction of the operatorH (t) for any
integer m. At the same time, the total wave function of the system is not changed

ϕ (x, t) exp
(

− i

�
Et

)
= ϕ′ (x, t) exp

(
− i

�
E′t

)
. (5.47)

Thus, all the solutions (5.46) of the (5.40) for any integer m are equivalent.
It is important to note that any values of the quasi-energy can be reduced to the

points in the first Brillouin zone in the space of quasi-energies (similar to the first
Brillouin zone in the case of one-dimensional crystal lattice) by defining the real
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Fig. 5.1 The Brillouin zone
with singular points � and �

in the space of quasi-energies
(a)

(b)

(c)

value of the energy E

(
E − 1

2
�ω

)
≤ E ≤

(
E + 1

2
�ω

)
. (5.48)

The choice of E and hence the choice of the Brillouin zone in the space of quasi-
energies is arbitrary.

Figure5.1a shows the first Brillouin zone with the singular points � and � in the
space of quasi-energies. The energy value E from (5.48) is selected here as the origin
of quasi-energies.

We note that all points lying in the first Brillouin zone, with the exception of the
point �, are in a general position and therefore none of them is a singular point. This
is due to the fact that neither in the Brillouin zone, nor on its borders there is not a
singular point, which would be equivalent to a point occupying a general position in
the zone.

In the next section, we will analyze the influence of symmetry properties of point
groups of singular points � and � of the reduced Brillouin zone on the presence or
absence of supplementary degeneration of the quasi-energy levels due to the time-
reversal symmetry.

5.4 Time-Reversal Symmetry at Commuting
Time-Reversal and Quasi-energy Operators

We consider the transformation of the function ϕ (x, t), which is a solution of the
equation (5.40) with the “Hamiltonian” (5.41), under the time reversal. Equation
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(5.40) is not invariant under theWigner time-reversal operatorT = UK, as operators
T and H (t) are non-commuting ones

[T,H (t)] �= 0. (5.49)

Indeed,

[
T,H (t) − i�

∂

∂t

]
= [T,H (t)] + i�

(
T

∂

∂t
+ ∂

∂t
T

)
. (5.50)

In order that the operator H (t) was invariant under time reversal, it is necessary
the operator T = UK to be supplemented by a factor in the form of the operator It ,
which under acting on any operator A(t) or any function F(t) depending explicitly
on time, changes t by −t

ItA(t)I−1
t = A(−t), It F(t) = F(I−1

t t) = F(−t), I2t = 1. (5.51)

The operator It is similar to the operator of space inversion (Ir f (r) = f (−r) ,
I2r = 1

)
.

Thus, if the operator H (t) of quasi-energy and its eigenfunction ϕ (x, t) are
depending periodically on time, the time-reversal operator has the form [135]

T′ = TIt = UKIt . (5.52)

In this case

T′
(
H (t) − i�

∂

∂t

)
T′−1 = TH (−t)T−1 − i�

∂

∂t
, (5.53)

i.e. the “Hamiltonian” H (t) is invariant under the time-reversal operator T′

T′H (t)T′−1 = H (t) , (5.54)

if the following relation takes place:

TH (−t)T−1 = H (t) . (5.55)

The relation (5.55) is actually valid for the Hamiltonian of interaction of the quan-
tumsystemwith a time-periodic field of frequencyω and large amplitude (macrofilled
mode).

As an example, we consider the problem of resonant interaction of hyper- or
terasound wave of frequency ωq with excitons having the wave vectors k and k + q,
which are in the exciton bands λ and λ′, respectively. For the macrofilled hyper- or
terasound mode the temporal dependence of the operator bq of phonon destruction
may be represented in the form
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bq = Bq exp
(−iωqt

)
, Bq = √

Nq, (5.56)

where Nq is the macroscopic number of hyper- or terasound phonons with the wave
vector q in the macrofilled mode. In a similar way, the temporal dependence of the
operator b+

q of phonon creation may be represented in the form

b+
q = B+

q exp
(
iωqt

)
, B+

q = √
Nq. (5.57)

In (5.56) and (5.57) Bq and B+
q are c -numbers.

The Hamiltonian of the interaction of the macrofilled phonon mode with excitons
in the λ and λ′ zones has the form [135]

Hex−ph (t) = √
Nq

∑

k

[
gλλ′ (q)C+

k+q,λ′Ck,λ exp
(−iωqt

) + H.c.
]
, (5.58)

where C+
k+q,λ′ and Ck,λ are the exciton creation and destruction operators in exciton

bands λ′ and λ, correspondingly, and gλλ′ (q) is the constant of exciton–phonon
coupling. We see that the Hamiltonian Hex−ph (t) is periodically dependent on time

Hex−ph (t) = Hex−ph (t + mτ) , m = 0,±1,±2, . . . (5.59)

as

exp
[∓iωq (t + mτ)

] = exp
(∓iωqt

)
exp (∓i · 2πm) = exp

(∓iωqt
)
, m = 0,±1, ±2, . . .

(5.60)

Thus, the operator Hex−ph (t) satisfies the relationship of the type (5.55)

THex−ph (−t)T−1 = Hex−ph (t) . (5.61)

Acting by the time-reversal operator T′ from (5.52) directly on wave functions
(5.45) one can show that the functions ϕlm (x, t) and T′ϕlm (x, t) belong to the same
value of the quasi-energy E. If x does not include the spin coordinate, then ϕlm (x, t)
and T′ϕlm (x, t) are linearly dependent and the supplementary degeneracy of quasi-
energy levels due to time-reversal symmetry is absent. Taking into account the spin,
it is possible to have an additional degeneracy of quasi-energy levels due to the
time-reversal symmetry. In spin systems, the matrix of the operator U has matrix
elements on the secondary diagonal equal, in turn, to +1 and −1, and other matrix
elements equal to zero [230]. If the total angular momentum is an integer, then the
matrix of the operator U is symmetric and no additional degeneracy exists. The
additional degeneracy of quasi-energy levels due to time-reversal symmetry exists
only in the case of the half-integer total angular momentum, when U2 = −1 and
correspondingly T′2 = −1. In the presence of a crystal field, it is necessary to use
the operator U in the space of basis functions of ordinary irreducible representations
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of crystallographic point groups of symmetry. In this case the evident form of the
matrix of the operator U is given in the AppendixA.

We now consider the singular points � and � in the Brillouin zone in the space of
quasi-energies (Fig. 5.1) and consequences relating to the additional degeneration of
quasi-energy levels due to the time-reversal symmetry by neglecting the spin. These
consequences are determined by symmetry properties of the point groups related to
the points � and �.

We apply a criteria, which are similar to the Herring criteria for the wave vector
group (Sect. 2.7), to the point group, of which elements Q0 transfer the point E in−E

in the first Brillouin zone in the space of quasi-energies, while Q2
0 does not change

E. We obtain
∑

Q0

χ
(
Q2

0

) =
⎧
⎨

⎩

n − the case (a)
0 − the case (b)

−n − the case (c)
, (5.62)

where χ
(
Q2

0

)
is the character of the element Q2

0 and n is the order of the group.
(1). Point� (Fig. 5.1b). The star� consists of one pointE = 0 and is irreducible. It

is connected with the point � of the point symmetry group 1 in international notation
or S2(Ci ) in notation of Schoenflies. This group contains the unitary element e and
the inversion operator IE in the space of quasi-energies. It is characterized by one-
dimension symmetric and antisymmetric representations Ag and Au . The application
of (5.62) to the point group 1 gives

∑

Q0

χ
(
Q2

0

) = 2, (5.63)

which corresponds to the case (a), i.e., to the absence of an additional degeneracy of
quasi-energy levels caused by the time-reversal symmetry.

(2). Point� (Fig. 5.1c). The point�, located on the border of the one-dimensional
Brillouin zone in the space of quasi-energies has a corresponding equivalent point
located on the opposite boundary of the zone. The quasi-energy values E1 = +�π/τ

and E2 = −�π/τ differ from each other by the “reciprocal lattice vector” 2π�/τ in
the space of quasi-energies

E1 − E2 = 2π�/τ. (5.64)

The star of the point � is irreducible and consists of “vectors” E1 and E2. It
should be emphasized once again that the corresponding points on opposite ends of
the Brillouin zone must be considered as points belonging to the same quasi-energy
E. For example, the symmetry group of the point � contains the transformation IE,
despite the fact that it transfers the point �π/τ into the point −�π/τ . As a result, the
symmetry group that owns the singular point � is the group 1. Therefore, we have
once again the relation (5.63), which corresponds to the absence of degeneracy of
the quasi-energy levels due to time-reversal symmetry (the case (a)).

The fact that the same point symmetry group corresponds to singular points � and
� of the Brillouin zone in the space of quasi-energies, is not an exception. A similar
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situation occurs, for example, for space singular points � and M of a square lattice
in the quasi-momentum space (wave vectors), to whom the same point symmetry
group corresponds [9].

The analysis carried out in this section corresponds to the case when the spin of
particles is not taken into account. Moreover, the translation operators Tmτ

(m = 0,±1,±2, . . .) and the time-reversal operatorT′ are considered separately, not
jointly. In the next section, a joint consideration of these operators will be presented.

5.5 Quasi-energy Doublets Due to Non-commuting
Time-Reversal and Time-Translation Operators

The “Hamiltonian” H (t) (5.41) is simultaneously invariant under both the time-
reversal and time-translation operators

[
H (t) ,T′] = [H (t) ,Tmτ ] = 0, (m = 0,±1,±2, . . .) . (5.65)

Let us consider a new group of transformations created by operators T′Tmτ . This
new expanded group of symmetry is not an Abelian one, like the translations group,
because T′Tmτ and TmτT′ are not coinciding operators.

Taking into account (5.38), (5.43), (5.44), and (5.52), it is easy to show that the
following operator equality takes place

T′T−mτ = TmτT′, (m = 0,±1,±2, . . .) . (5.66)

Indeed,

T′T−mτ� (x, t) = Uϕ∗ (x,−t − mτ) exp

[
− i

�
E (t + mτ)

]
, (m = 0,±1,±2, . . .) ,

(5.67)
and

TmτT′� (x, t) = Uϕ∗ (x,−t + mτ) exp

[
− i

�
E (t + mτ)

]
, (m = 0,±1,±2, . . .) .

(5.68)
Due to the periodicity in time of the function ϕ (x, t), we have the equality

ϕ∗ (x,−t − mτ) = ϕ∗ (x,−t + mτ) , (m = 0,±1,±2, . . .) , (5.69)

which leads to the coincidence of right sides of equations (5.67) and (5.68), and
correspondingly, to the relationship

(
T′T−mτ − TmτT′) � (x, t) = 0, (m = 0,±1,±2, . . .) , (5.70)
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that proves the validity of equality (5.66).
Now we find the commutation relation for operators T′ and Tmτ :

T′Tmτ� (x, t) = Uϕ∗ (x,−t + mτ) exp

(
− i

�
Et

)
exp

(
i

�
mEτ

)
, (5.71)

TmτT′� (x, t) = Uϕ∗ (x,−t + mτ) exp

(
− i

�
Et

)
exp

(
− i

�
mEτ

)
. (5.72)

Subtracting (5.72) from (5.71) and taking into account that, according to (5.38)
and (5.52)

T′� (x, t) = Uϕ∗ (x,−t) exp

(
− i

�
Et

)
, (5.73)

and that the functions ϕ∗ (x,−t) and ϕ∗ (x,−t + mτ)(where m = 0,±1,±2, . . .)
coincide due to their periodicity in time, we obtain

[
T′,Tmτ

] = 2i sin (mEτ/�)T′� (x, t) , (m = 0,±1,±2, . . .) (5.74)

In the absence of additional degeneration of quasi-energy levels due to the time-
reversal symmetry, wave functions � (x, t) and T′� (x, t) are linearly dependent

T′� (x, t) = c� (x, t) , (5.75)

where c is a constant. In this case, according to (5.74) and (5.75), the commutation
relation for operators T′ and Tmτ is

[
T′,Tmτ

] = 2ic sin

(
2πm

E

�ω

)
, (m = 0,±1,±2, . . .) , (5.76)

where it was considered that τ = 2π/ω.
The commutation relation (5.76) shows that if the ratio of the quasi-energy E to

the energy �ω of the quantum of monochromatic periodic field of large amplitude,
E/�ω, is equal to a integer (the casem = 0 is not relevant), the operators T′ and Tmτ

commute. In this case, there is no additional degeneracy of quasi-energy levels.
On the contrary, if the ratio E/�ω is not a integer or half-integer, then the com-

mutator of the operators T′ and Tmτ from (5.76), which are elements of the extended
non-Abelian symmetry group, is different from zero. However, it is easy to see that
each of the non-commuting operators T′ and Tmτ commute with the quasi-energy
operator H (t). In other words, there is an invariance of the operator H (t) with
respect to the operator T′ (see (5.54)) and similarly with respect to the operator Tmτ

(TmτHT−1
mτ = H (t)). The situation when two operators do not commute, but each

separately commutes with the Hamiltonian of the system, corresponds in quantum
mechanics to the presence of a twofold degeneracy of energy levels [231]. Since in
our case the operators T′ and Tmτ commute with the quasi-energy operator H (t),
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it must be concluded that there is an additional twofold degeneracy of quasi-energy
levels, ofwhich nature is caused by the simultaneous existence of both a time-reversal
and a time-translation symmetry. In contrast to the Kramers degeneracy of energy
levels, which exists only in systems containing an odd number of particles with the
spin 1/2, the new additional degeneracy of quasi-energy levels we predicted is partly
due to the time-reversal symmetry and partly to the time-translation symmetry. Such
a specific quasi-energy levels degeneracy takes place not only when the spin is taken
into account, but also in systems formed from spinless particles. This new type of
quasi-energy levels degeneration has been discussed for the first time in [221, 232].



Chapter 6
Transformation of Antiferromagnetic
Type of Exchange Interaction into
Ferromagnetic One in Dimer Clusters

We consider coordination compounds of ions with unfilled up 3d - and 4f -shell in
a weak or intermediary crystalline field, containing dimer clusters in the case when
the distance between clusters is more than the distance between the ions forming
the cluster. In this case it is possible to neglect the exchange interaction between
electrons of different clusters and the structure of the ground state of separate dimer
is determined by the intercluster exchange, spin orbital, magnetic dipole–dipole and
superhyperfine interactions.

Supplementary simplification consists in neglecting effects of covalency, condi-
tioned by overlapping of orbits of cation electrons and electrons of neighbor diamag-
netic ions or atoms. By this we exclude from consideration complexes of 4d - and
5d -groups, as well a cyanides of 3d -group and complexes containing ions with par-
tially filled up 5f -shell (actinides). However, even after these restrictions the number
of complex compounds satisfying above-mentioned demands is sufficiently large.

It is also required that for the considered 3d - and 4f -shells effects of intracon-
figurational interaction of electrons are slightingly weak. In Sects. 6.1 and 6.2 we
bring up experimental data confirming this supposition. In these conditions the wave
function of the hole in unfilled up shell of paramagnetic ion may be obtained from
the wave function of electron of the same shell with the help of time-reversal oper-
ator. Within the framework of this approach it will be shown that it is possible to
realize transformation of antiferromagnetic type of exchange interaction in dimer
cluster into ferromagnetic one, for which the ground state of dimer cluster is spin
degenerate.
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6.1 Magnetic Dimer Clusters in Coordination Compounds

The first experimental manifestations of exchange interaction between paramagnetic
ions in dimer clusters of coordination compounds were lowered values (approxi-
mately as many as twice) of the magnetic moment of the ion Cu2+ in salts of greasy
acids [233] and the temperature dependence of the magnetic susceptibility of copper
monohydrate acetate Cu2 (CH3COO)4 · 2H2O, which has a maximum near the room
temperature and decreases rapidly with decreasing temperature, becoming zero at
50 K [234]. However, authors of [233, 234] limited themselves only to the estab-
lishing the anomaly without explaining it. That is why it is necessary to consider
that the first publications, that started the research of dimer clusters in coordination
compounds, are papers of Bleany and Bowers [235, 236]. On the basis of studied
EPR spectra of the copper monohidrat acetate single crystal, they suggested that the
abnormal paramagnetism is due to the presence of isolated pairs, in which copper
ions are coupled by exchange forces. A similar result was obtained in [237, 238] on
the basis of EPR spectra of the same single crystal. In this case the interaction of
two spins leads to arising an upper triplet state with a summary spin S = 1 and a
lower singlet state with S = 0 [235–241]. The roentgenostructural study of above
mentioned crystals [239] confirmed that really there are dimer clusters in crystalline
lattice (Fig. 6.1).

The six nearest neighbors of the copper atom are four atoms of oxygen belonging
to four distinct acetate groups, copper atom and oxygen atom of water molecule.
These six atoms are located in vertices of a distorted octahedron with the copper
atom in center All the distances between the copper atom and oxygen of carboxyl
groups are approximately equal to 1.97Å. Every of four acetate groups is planar.
The distance between two neighbor atoms of copper is very small and equals 2.64Å,

Fig. 6.1 A structure
fragment of the binuclear
copper(II) acetate
monohydrate
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which is only a little more than distances in metallic copper (2.56Å). The distance
Cu–O(H2) is 2.20Å.

The study of EPR spectra of crystals of copper(II) propionate mono-
hydrate Cu2 (CH3CH2COO)4 · 2H2O [242], copper(II) n-butyrate monohydrate
Cu2 (C4H7O2)4 ·2H2O and copper(II)monochloroacetatemonohydrate Cu2 (CH2Cl
COO)4 · 2H2O [243] has shown that ions of copper in these compounds also form
dimer clusters.

A review of research results on dimer magnetic clusters in coordinating com-
pounds obtained over 50 years since their discovery is contained in the book [241].
Quadratic on spin operators interaction between uncoupled electrons of two ions of
magnetic clusters with orbital non-degenerate ground states has the form [241]

H = Hiso
ex + Hs

ex,anis + Has
ex,anis, (6.1)

where
Hiso

ex = JS1S2 (6.2)

is the Heisenberg–Dirac–van Vleck operator of the isotropic exchange interaction (J
is the exchange integral; J > 0 and J < 0 correspond to the exchange interaction of
antiferromagnetic and ferromagnetic types, respectively), and

Hs
ex,anis =

∑

j,k

Dex
jk

(
S1jS2k + S1kS2j

)
(6.3)

describes the symmetric part of the anisotropic exchange interaction,

Has
ex,anis = Gex[S1 × S2] (6.4)

is the Dzyaloshinsky–Moryia antisymmetric exchange [244], leading to the appear-
ance of the vector of magnetization perpendicular to the plane, in which spins of two
interacting ions are disposed. Dex

jk from (6.3) and G from (6.4) are determined by

Dex
jk = 1

2

(
Jjk − Jkj

) − δjkJ , (6.5)

J = 1

3

∑

i

Jii; j, k = x, y, z,

Gex
x = 1

4

(
Jyz − Jzy

)
, Gex

y = 1

4
(Jzx − Jxz) , Gex

z = 1

4

(
Jxy − Jyx

)
. (6.6)

As Moryia [245] has shown, the spin Hamiltonian (6.1) without the last term can be
obtained in the framework of the perturbation theory if as a perturbation one takes
into account the spin–orbital coupling inside one ion and the isotropic exchange
interaction between both ions of the cluster. Under this consideration the opera-
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tor Gex[S1 × S2] appears in the second order of perturbation theory and for the
constant G of antisymmetric exchange, which gives contribution to the splitting of
spin multiplets, the relation G ∼ (λ/�) J ′ may be obtained, where λ is the constant
of spin–orbital coupling, � is the difference of energies between the levels of the
ground and excited states of exchange-coupled pair, J ′ is the constant of isotropic
exchange interaction in the excited state. It is to be taken into account that G �= 0
only for the clusters without inversion centers [241]. The theory of antisymmetrical
exchange is considered in [241, 246, 247].

The intramolecular exchange changes the structure of energy levels of interacting
ions, leading to splitting the spin levels corresponding to different values of the
summary spin. In different exchange pairs of iron group the intervals between levels
due to the isotropic part of exchange interactions J change their values in wide limits:
from fractions of cm−1 to 1000cm−1 and more. Anisotropic exchange interactions
cause the splitting of spin multiplets in intervals ≤1cm−1.

The magnetic dipole–dipole interaction between paramagnetic ions of dimer
clusters leads to the splitting of spin multiplets (∼0.2 ± 0.1cm−1 for the distance
between ions of metal RMe−Me ∼ 2.5 − 3.0Å), which is much smaller than split-
tings caused by anisotropic exchange interactions and the splittings of spin levels of
separate centers with S ≥ 1 in the crystalline electric field [241]. That is why the
operator of dipole–dipole interaction between magnetic moments of ions of dimer
clusters is not included in the spin Hamiltonian (6.1). It is also not necessary to take
into account in (6.1) the operators of isotropic and anisotropic hyperfine interactions
when solving the problem of changing the degree of spin degeneration of the energy
level of the ground state of a magnetic dimer cluster discussed in this chapter.

In the case of high spin interacting ions (S1 > 1/2, S2 > 1/2) it is necessary to
take into account in the spin Hamiltonian not only quadratic in spin operator sum-
mands, but also scalar products of spin operators of higher degrees. For example, that
is the operator of biquadratic exchangeJ (S1S2)2,whichdescribes double jumpings of
electrons in exchange processes. However, experimental data show that for exchange
pairs Mn (II)–Mn(II) and Cr (III)–Cr(III) [248] we have J/J ∼ 0.01− 0.05, there-
fore processes of biquadratic exchange interaction may be neglected, as compared
with other processes of exchange interaction. This refers to the case when cluster
ions interacting with one another exist separately in the singlet ground state. In the
presence of orbital degeneration of the cluster ground state, the exchange anisotropy
sharply increases, and the role of biquadratic effects is also extended [249].

The spin Hamiltonian (6.1) is the input in order to describe interactions between
electrons of different ions of the magnetic dimer cluster. It is necessary to analyze
three types of exchange interactions: direct (under immediate overlapping of mag-
netic orbits), indirect (by orbits of unmagnetic ligands) and hybrid (as a result of the
first two). By analyzing values of exchange interaction in clusters, it is necessary
to consider all three types of exchange. However, since ions of metals are usually
located at a sufficiently large distance from each other, the main contribution is due
to the exchange interaction of indirect and hybrid types, in which bridge ligands are
involved.
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The mechanism of indirect exchange interaction with allowance for the wave
functions of intermediary anions in the third order of the perturbation theory was first
suggested by Kramers [250]. This interaction leads to a weak effect of ferromag-
netic ordering. In order to explain the antiferromagnetic ordering, it was suggested
a mechanism, according to which two electrons with opposite spins are simultane-
ously separated from the diamagnetic ion and transferred to a half-filled state of
magnetic ions [251, 252]. Later on it was shown that a more essential antiferromag-
netic contribution is due to a mechanism that was called “Anderson superexchange”
[253, 254]. In this model, it is necessary firstly to find wave functions of individual
centers and thereupon take into account their interaction. According to Anderson
theory, the indirect exchange interaction consists of two contributions: from electro-
static interaction (potential exchange) and from virtual jumpings (kinetic exchange).
The kinetic exchange leads to a antiferromagnetic contribution to the parameter of
exchange interaction, which is proportional to the square of modulus of the transfer
integral of the electron |b12|2 from one center to another:

Jkin = 2|b12|2U , (6.7)

where U is the excited state energy, when there are two electrons with opposite
spins on one center. According to Anderson’s estimations, the potential exchange
(of ferromagnetic type) is an order of magnitude less than the kinetic one. Therefore,
the expression (6.7) describes the main contribution in J , i.e., one may conclude that
between electrons of distinct ions of a magnetic dimer cluster there is an exchange
interaction of antiferromagnetic type (J > 0). The theory of indirect exchange
evoked a great interest [255–267]. It is a particular importance the question of the
mechanism of indirect exchange and its role in determining the exchange parameter.
Anderson’s ideaswerewidely adopted and formed thebasis ofmost essentialmethods
for calculating the parameter J [268–274]. Some of these mechanisms, as well as
ab initio direct calculations of the singlet–triplet separation in dimer clusters were
discussed in [241, 261, 275–277].

According to the microscopic theory of superexchange [278], actually there are
more probable schemes of electron jumpings, than Anderson has shown. These sup-
plementary schemes are realized with the participation not only of half-filled orbits
of magnetic ions, but also of empty and filled orbits. In Eremin approach [278–282],
the Hamiltonian of indirect exchange interaction is constructed simultaneously with
finding the ground states of paramagnetic ions. This is an significant difference
from the Anderson’s theory. The Eremin’s theory of indirect exchange interaction of
paramagnetic ions in dielectrics at arbitrary relations between energies of electron
transfer from cation to cation and from cation to anion contains all results of Ander-
son’s theory as a particular case of high energy electron transfer from a ligand to a
paramagnetic ion. Moreover, the theoretical analysis is performed on one-electron
wave functions, orthogonalized by Bogolyubovmethod [257]. From all possible per-
turbations there are taken into account: (1) transfer of the electron from a ligand to
the neighbor paramagnetic ion; (2) carry of the electron from a metal ion to another



178 6 Transformation of Antiferromagnetic Type of Exchange …

one inside the cluster; (3) simultaneous transfer of two electrons from a ligand, one
by one, to every of neighbor paramagnetic ions of the cluster.

In [278–282] calculations are carried out in the representation of the secondary
quantization using the perturbations theory up to fifth order, inclusively, in energies
of the electron carry from an anion to a cation. Taking into account covalency effects,
this approach permitted to get the most complete Hamiltonian of exchange interac-
tion with allowance for all main mechanisms, including direct, indirect and hybrid
interactions. Schematically this Hamiltonian can be represented in the following
form (superscripts of operator show the order of perturbations theory):

Hex= H
(1,2)
dir. + H

(3)
dir. + H

(3)
hib. + H

(4)
hib. + H

(3)
indir. + H

(4)
indir. + H(5), (6.8)

where
H(5) = H(5)

c + H(5)
a + H

(5)
b (6.9)

describes the exchange interaction of ferromagnetic type between paramagnetic ions
of the dimer cluster.

In (6.8), H(1,2)
dir. and H

(3)
dir. describe the direct exchange interaction between the

ions of cluster, which appears in the first, second, and third orders of the perturbation
theory [241]. It is obtained in the supposition that the energy of electron transfer is
much more than intervals between the terms of individual electronic configurations
of ions. This approximation is well fulfilled for the ground states, but it turned out
to be incorrect for strongly excited states of paramagnetic ions. H

(3)
hib. and H

(4)
hib.

describe different hybrid interactions. In particular, H(4)
hib. is the operator of the hybrid

exchange interaction of ferromagnetic type when the direct jumpings of electrons
are realized in empty orbits and from filled to half-filled ones.

The operators H
(3)
indir. and H

(4)
indir. describe the indirect exchange interaction in the

third and fourth orders of the perturbations theory. The first summand in (6.9) is the
potential exchange in Anderson’s theory. Two other summands in (6.9) characterize
processes of virtual interactions of electrons at the supplementary consideration of
interactions of electrons with ions a and b, respectively (in (6.9), c is the anion with
a filled orbit).

The process of electron transfer, corresponding to the fifth order of perturbation
theory (the operatorH(5) from (6.8) and (6.9)) becomes important when corrections
of third and fourth orders vanish. Expressions for all summands of the Hamiltonian
(6.8) are given in [279]. As similar attempt to develop the theory of superexchange in
higher orders of perturbation theory was earlier undertaken by Fukuchi [283]. Using
the method developed in [257, 284], he derived a series of cumbersome expressions
in one s-electron model. However, these formulas have not been discussed and no
physical conclusions have been made on their basis.

Experimental data belonging to iron group compounds, which are mostly related
to binuclear copper(II) compounds, confirm the existence of magnetic dimer clusters
in coordinating compounds. Some of these results are given below (Tables6.1, 6.2,
6.3, 6.4, 6.5, 6.6, 6.7, 6.8 and 6.9).
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Table 6.1 Singlet–triplet splitting J and parameters D and E of crystalline field for copper(II)
acetate monohydrate Cu2(CH3COO)4 · 2H2O [236, 238, 240]

Effective spin S Temperature, K J , cm−1

(EPR data)
J , cm−1

(χ data)
|D|, cm−1 E, cm−1

1 90 260 ± 50 310 ± 15 0.34(3) 0.10(5)

1 320 0.345(5) 0.005(3)

Table 6.2 Singlet–triplet splitting J , anisotropic symmetric exchange parameter Dex, constants D
and E of electric crystalline field of axial and rhombic symmetries and distance RCu−Cu between
copper ions in dimers for adducts (RCOO)4Cu2Cl · 2L [241]

L R J , cm−1 Dex, cm−1 D, cm−1 E, cm−1 RCu−Cu, Å

NC9H7
(chin)

H 600 0.429 2.652

CH3 342 +0.521
−0.161

0.341 0.003 2.652

C6H5CH2 328 0.351 0.002 2.724

ClCH2 371 +0.538
−0.204

0.371 0.002

FCH2 364 0.395 0.002

Cl2CH 294 0.389 0.003

F3C 310 0.425 2.886

2-Cl-
-C5H5N
(2-Cl-
-py)

C6H5CH2 309 0.348 0.001

ClCH2 331 0.362 0.001

FCH2 400 0.380 0.002

Cl2CH 311 0.379 0.002

Cl3C 183 0.366 0.003

OC(NH2)2
(urea)

CH3 270 +0.512
−0.144

0.328 0.002

C6H5CH2 − +0.526
−0.158

0.342 0.002 2.625

ClCH2 311 +0.533
−0.171

0.353 0.003 2.643

FCH2 355 +0.546
−0.190

0.368 0.002 2.665

py = C5H5N (pyridine)
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Table 6.3 Singlet–triplet splitting J and parameters D and E of crystalline field for some copper
arilcarboxilates [241]

Compound J , cm−1 D, cm−1 E, cm−1

(C6H5COO)2Cu 312 0.344 0.014

(C6H5COO)2Cu · C6H5COOH 315 0.336 0.006

(C6H5COO)2Cu · chin 306 0.356 0.002

(p-Br-C6H4COO)2Cu 302 0.339 0.012

(p-Br-C6H4COO)2Cu · CH3OH 293 0.343 0.002

(m-I-C6H4COO)2Cu · C4H9OH 321 0.352 0.001

(m-NO2-C6H4COO)2Cu − 0.345 0.005

(m-NO2C6H4COO)2Cu · CH3OH 296 0.348 0.002

(o-NO2-C6H4COO)2Cu 300 0.352 0.011

(3, 5-(NO2)2-C6H3COO)2Cu − 0.355 0.001

(3, 5-(NO2)2-C6H3COO)2Cu· chin − 0.368 0.001

(2, 4-(OCH3)2-C6H3COO)2Cu − 0.327 0.005

(C6H5CH=CHCOOH)2Cu 300 0.317 0.005

Table 6.4 Singlet–triplet splitting J and parameters D and E of crystalline field for copper dimers
with bicarbonic acids [241]

Compound J , cm−1 D, cm−1 E, cm−1

[O2C(CH2)2CO2]Cu 312 0.335 0.002

[O2C(CH2)3CO2]Cu 320 0.337 0.002

[O2C(CH2)3CO2]Cu · py 337 0.358 0.001

[O2C(CH2)4CO2]Cu 348 0.338 0.005

[O2C(CH2)4CO2]Cu · py 342 0.357 0.002

Table 6.5 Distances RCu−Cu in the dimeric complexes [Cu2L2L′
2] and [Cu2L2L′

2] · 2Y [L = 1, 10
phenathroline (phen), or 2, 2′ bipyridyl (bipy), or di- 2-pyridylamine (dpa)]; [L′ = phenylpropionato
(PPr), or salicylaldehydato (salal), or diisopropylsalicylato (DIPS), or salycilato (sal)]; [Y = H2O,
or H2 sal, or H2 DIPS]

Complex RCu−Cu, Å References

[Cu2(phen)2(sal)2] · 2H2O 3.242(2) [285]

[Cu2(bipy)2(sal)2] · 2H2O sal · 4H2O 3.188(3) [286]

[Cu2(bipy)2(DIPS)2] · 2H2O DIPS 3.168(1) [287]

[Cu2(dpa)2(salal)2(ClO4)2] 3.343(1) [288]

[Cu2(phen)2(salal)2(NO3)2] 3.486(1) [289]

[Cu2(phen)2(salal)2(ClO4)2] 3.369(1) [290]

[Cu2(bipy)2(salal)2(ClO4)2] 3.454(1) [291]

[Cu2(phen)2(PPr)2(H2O)2]2+ · 2NO3 3.054(1) [292]
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Table 6.6 Singlet–triplet splitting J for some binuclear copper(II) complexes containing 6-
(benzylamino)purines as bridging ligands: HL1 = 6-[(2-methoxybenzyl)amino]purine; HL2 = 6-
[(4-methoxybenzyl)amino]purine; HL3 = 6-[(2, 3-dimethoxybenzyl)amino]purine; HL4 = 6-
[(3, 4-dimethoxy benzyl)amino]purine; AdeH =Adeline; AzabH = 4-azabenzimidazole; 2-
ClBapH = 6-[(2-chlorobenzyl)amino]purine; 3-ClBapH = 6-[(3 -chlorobenzyl)amino]purine; 4-
ClBapH = 6-[(4-chlorobenzyl)amino]purine; Nphtd = 1, 8-naphthyridine; H2 oda = diglycolic
acid

Compound J , cm−1 References

[Cu2(μ-AzabH)4Cl2]Cl2 · 3CH3OH 329 [294]

[Cu2(μ-AdeH)4Cl2]Cl2 · 6H2O 285 [295, 296]

[Cu2(μ-AdeH)4(H2O)2](ClO4)4 · 2H2O 312 [296, 297]

{[Cu2(μ-AdeH)4(H2O)2]·
[Cu (oda)(H2O)]4} · 6H2O

274 [298]

[Cu2(μ-HL1)4Cl2]Cl2 · 2H2O 266 [293]

[Cu2(μ-HL2)4Cl2]Cl2 · 2H2O 256 [293]

[Cu2(μ-HL3)4Cl2]Cl2 · 2H2O 261 [293]

[Cu2(μ-HL4)4Cl2]Cl2 · 2H2O 269 [293]

[Cu2(μ-Nphtd)2(μ-Cl2)Cl2] 139 [299, 300]

[Cu2(μ-HL1)2(μ-Cl2)Cl2] 78, 9 [293]

[Cu2(μ-HL2)2(μ-Cl2)Cl2] 114 [293]

[Cu2(μ-HL3)(μ-Cl2)Cl2] 119 [293]

[Cu2(μ-3-ClBapH)2(μ-Cl2)Cl2] 82 [301]

[Cu2(μ-4-ClBapH)2(μ-Cl2)Cl2] 114 [302]

[Cu2(μ-2-ClBapH)2(μ-Cl2)·
(2-ClBapH)2Cl2] · 2H2O

111 [303]

[Cu2(μ-3-ClBapH)2(μ-Cl2)·
(3-ClBapH)2Cl2] · 2H2O

123 [301]

[Cu2(μ-2-ClBapH)2(μ-Cl2)(H2O)2] 77 [303]

[Cu2(μ-3-ClBapH)2(μ-Cl2)(H2O)2] 100 [303]

Table 6.7 Singlet–triplet splitting J andμeff/μB at different temperatures for binuclear copper(II)
complexes 1a-3b [303]

Compound J , cm−1 μeff/μB

1a 110.6(6) 1.87 (294K)–1.22 (82K)

1b 110.0(3) 1.98 (296K)–1.28 (80K)

2a 76.8(6) 1.94 (295K)–1.36 (80K)

2b 99.4(4) 1.64 (286K)–1.20 (82K)

3a 15.2(2) 1.94 (291K)–1.82 (83K)

3b 41.6(5) 1.92 (294K)–1.63 (80K)
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Table 6.8 Experimental and theoretical values of magnetic moments of ions of iron group [318]

Ion Electron
configuration

Term g
√
J (J + 1),

(μB)

2
√
s(s + 1),

(μB)

μ
exp
eff (μB)

Ti3+, V4+ 3d1 2D3/2 1.55 1.73 1.8

V3+ 3d2 3F2 1.63 2.83 2.8

Cr3+, V2+ 3d3 4F3/2 0.77 3.87 3.8

Mn3+, Cr2+ 3d4 5D0 0 4.90 4.9

Fe3+, Mn2+ 3d5 6S5/2 5.92 5.92 5.9

Fe2+ 3d6 5D4 6.70 4.90 5.4

Co2+ 3d7 4F9/2 6.63 3.87 4.8

Ni2+ 3d8 3F4 5.59 2.83 3.2

Cu2+ 3d9 2D5/2 3.55 1.73 1.9

Table 6.9 Singlet–triplet splittings for VO(II)–VO(II), Cr(III)–Cr(III) and Fe(III)–Fe(III) dimers
[241]

Compound S1 = S2 S J , cm−1 References

[tmen (H2O)VO(C2O4)VO·
(H2O) tmen](ClO4)2 · 1.25H2O

1/2 0; 1 5.7
(χ data)

[319]

[LCr(OH)3CrL](ClO4)3 · 3H2O
L = (μ-N,N′-bis(6-ethil-
3,6-diazooctil)oxamidato (2)-
N1,N3,N6,O : N1,N3,N6′

,O′)

3/2 0; 1
2; 3

128
(χ data)

[320]

DPACr
(chrome di-μ-diphenilphosh phinatoceto-
nato)

3/2 0; 1
2; 3

2.4 ± 0.4
(EPR data)
2.4 ± 0.05
(χ data)

[321]

[(FeHEDTA)2O] · 6H2O 5/2 5; 4
3; 2
1; 0

190
(EPR data)
185
(χ data)

[322]

(acac)2Fe(C2O4)Fe
(acac)2 0.5H2O

5/2 5; 4
3; 2
1; 2

7.2
(χ data)

[323]

tmen = N,N,N′,N′-tetramethilethilenediamine,
HEDTA = nitrilotriacetic acid,
acac = acetylacetone

6.1.1 Copper(II) Dimers

As it was earlier mentioned, dimer clusters have been detected for the first time in
coordination compounds, in copper(II)monohydrate acetate [235]. InTable6.1, there
is given the constant J of isotropic exchange interaction of 3d -electrons belonging
to different ions of Cu2+ dimer clusters. It was found on the basis of EPR spectra
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measurements and static magnetic susceptibility χ . Also, constants of axial and
rhombic crystalline field (D, E) for this compound are presented.

Other experimental data, related to magnetic and structure characteristics of the
copper(II) dimer clusters, are presented in the Tables6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8
and 6.9.

There are many other copper(II) coordination compounds containing Cu(II)–
Cu(II) dimer clusters. Particularly, a set of binuclear 1, 10-phenantroline and sali-
cylate ternary copper(II) complexes contain Cu(II)–Cu(II) dimers with the distance
RCu−Cu between Cu(II) ions given in the Table6.5.

As it is seen from Table6.5, the distance RCu−Cu is a little changed when passing
from one of the coordination compounds, given in this table, to another. In accor-
dance with this, the constant of the isotropic exchange interaction J is also a little
changed, as it takes place for other classes of binuclear copper(II) complexes too
(Tables6.1, 6.2, 6.3 and 6.4). Such a relatively weak dependence of the constant J
on the type of coordination compound is connected with the fact that in these cases
the main contribution to the exchange interaction between ions Cu(II) in dimers is
due to indirect interactions with the participation of one diamagnetic atom. But in
the cases when an indirect exchange interaction is realized, for example, by means
of 6-(benzylamino)purines as bridging ligands [293], the variations of the constant
J value are more significant (Table6.6).

Note: The exchange constant J from the spin Hamiltonian used in [293] has an
opposite sign relative to J in comparison with J from (6.2).

From the physical point of view, there are of interest the magnetic properties
of the dimer copper(II) complexes with 6-(2-chlorobenzylamino)purine (HL1) and
6-(3-chlorobenzylamino)purine (HL2)1:

[Cu2(μ-HL1)2(μ-Cl2)2(HL1)2Cl2] (1a,b),

[Cu2(μ-Cl)2(μ-L1)2(H2O)2] (2a), [Cu2(μ-Cl)2(μ-L2)2(H2O)2] (2b),

[Cu2(μ-Cl)2(HL1)2Cl2] (3a), [Cu2(μ-Cl)2(HL2)2Cl2] (3b).
The components 1a and 1b have the same chemical formula C48H40N20

Cl8Cu2 · H2O, but they were synthesized in two different ways. The method of
preparation 1a consists in adding the organic ligand HL1 (0.5mmol, 130mg) to a
solution of CuCl2 · 2H2O (1mmol, 170mg) in 2M HCl. For preparing 1b the above
procedurewas used, butwith an inversemolar ratio of the reactants, i.e., CuCl2 ·2H2O
(0.5mmol) and HL1 (1mmol) [303]. Surprisingly, 1a and 1b having the same chem-
ical formula exhibit slightly different magnetic properties (Table6.7). The singlet–
triplet splitting J and the ratio of the measured effective magnetic moment per one
Cu2+ ion to Bohr magneton, μeff/μB, at different temperatures are presented in the
Table6.7.2

The magnetic moments per one copper(II) ion for 1a and 1b are 1.87 μeff/μB

at 294K, and 1.98 μeff/μB at 296K, respectively, and gradually decrease to 1.22
μeff/μB (for 1a) and 1.28 μeff/μB (for 1b) with decreasing temperature near 80K.

1Do not confuse these notations of HL1 and HL2 with those given in the title of the Table6.6.
2The exchange constant J from the spin Hamiltonian used in [303] is twice as many and has an
opposite sign in comparison with J from (6.2).
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In contrast to this, themolarmagnetic susceptibility values increase up to amaximum
near 100K (Neel temperature) and consequently decrease [303], thus indicating the
antiferromagnetic interaction between the Cu(II) ions.

The room temperature magnetic moments of 2a and 2b per one copper(II) ion are
1.94 and 1.64μeff/μB. These magnetic moments gradually decrease with decreasing
temperature, suggesting the presence of an antiferromagnetic interaction between the
Cu(II) ions.

Compounds 3a and 3b have the room temperature magnetic moments of 1.94
and 1.92 μeff/μB, respectively. However, the μeff/μB values decrease as the tem-
perature is reduced to the temperature of liquid nitrogen, indicating the presence of
antiferromagnetic exchange.

The binuclear complex of copper(II) with coumarin-3-carboxylic acid (CcaH)
is an exotic system containing Cu(II)–Cu(I) dimers. This complex supports the
stoichiometry [Cu2)(Cca)4(H2O)2] · 2H2O [304].

The UV − V is reflectance diffuse spectrum exhibits two bands closely analo-
gous to spectra of other copper(II) dimers with carboxyl bridges [305]. The band
at 625nm may be assigned to the spin allowed transitions (dxy, dyz) → (dx2−y2)

[304, 306, 307], whereas the band at 386nm is referred as a characteristic of the
brinding systems [308].

1H NMR data for this complex show that the ligand is coordinated to copper,
resulting in slight up-field chemical shifts of the aromatic protons relative to the
free ligand. The free ligand show a peak at 8.74ppm due to carboxylic protons,
which is absent in the NMR spectrum of the complex, due to the deprotonation
of the carboxylic group upon coordination to the copper atom. The paramagnetism
of the copper centers results in broadening of the NMR lines due to the aromatic
proton in the complex [304]. However, on the basis of NMR data it is impossible to
determinewhy the narrowing ofNMR lines happens: due to the interaction of protons
with single ions Cu2+ or as a consequence of action on protons of the magnetic
field, created by Cu(I)–Cu(II) dimers in the excited triplet state with S = 1. For
that independent experiments are required, among them EPR investigations have an
important role. The X -band EPR powder spectra of the complex exhibit features
typical for those dimeric complexes with axial symmetry: g‖ ≈ 2.3 and g⊥ = 2.09
[304] that are similar to those reported for other binuclear Cu(II) carboxylate adducts
(g‖ ≈ 2.3 and g⊥ ≈ 2.08 [309–311]), indicating that this complex has an axially
elongated octahedral geometry with Jahn-Teller distortions. The parameters of axial
and rhombic crystalline fields calculated by the method of Watson et al. [312] are
|D| = 0.368cm−1 and E = 0.0043cm−1 [304]. These values are in agreement with
axial and rhombic zero field splittings for a large number of binuclear copper(II)
complexes (Tables6.2, 6.3 and 6.4). The room temperature magnetic moment of the
complex (μeff = 1.3μB) is substantially smaller than the spin-only value for Cu2+
ion, suggesting that copper(II) ions are coupled by exchange interaction into dimers
with S = 0 in ground state and S = 1 in an excited one.

The results of investigations of other dimer copper(II) clusters with bridging
ligands of different types (including hidroxyl and metroxyl bridges, Schiff’s bases
and other) can be found, for example, in [241, 313–316]. It is to be noted that
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the authors [316] have studied the structure of coordination polyhedron of complex
of the same copper(II) acetate with 2-[2-hydroxiphenil]-4, 4-diphenil-1, 2-dihydro-
4H-3, 1 -benzoxazin in solid state and in solutions of ethanol and chloroform almost
60 years later after the discovery by Bleaney and Bowers [235] of the existence of
dimer clusters in coordination compounds on the example of copper acetate. They
have detected an exchange interaction of antiferromagnetic type between two ions
of copper(II) in a dimer cluster (J = 57.8cm−1).3

6.1.2 Dimer Clusters of Other 3d-Elements

It is known [317, 318] that ions of transit metals of iron group are characterized
so much the paramagnetic 3d -shell of such ions lies closer to the surface of the
ion, where it is screened more efficiently from the nucleus. As a consequence, 3d -
electrons are not screened from the electric crystalline field and are exposed to its
direct action. In its turn, the interaction of electrons with the crystalline field is
stronger than the spin-orbital interaction (the case of intermediary crystalline field).
On the other hand, contributions of above-discussed mechanisms of indirect and
direct exchanges to the total exchange interaction between ions in a dimer depend
on the form of wave functions of 3d -electrons in the crystalline field of different
symmetries (with regard to covalency effects). These contributions are determined
by overlaps of wave function tails of interacting electrons.

Another common property of 3d -ions is that in such ions the Russell–Saunders
coupling of angular momenta is realized (a separate addition of orbital and spin-
angular moments of electrons: L = ∑

i
li, S = ∑

i
si).

Finally, for 3d -ions in crystalline field the effect of freezing of the orbital angular
momentum is also characteristic [317, 318]. This effect is a consequence of the
following theorem [317].

Theorem The matrix element of the orbital angular momentum, taken between two
non-degenerated states, has an arbitrary phase. In particular, it may be real or pure
imaginary.

The proof of this theorem is carried out using the time-reversal operator T, acting
on non-generated state � neglecting the spin (T� = �∗, �∗ = eiϕϕ , where ϕ is a
real quantity) and taking into account that L is a pure imaginary operator and T is
an antiunitary operator.

This theorem has an important corollary.

Corollary 1 The mean value of the operator L for non-generated states is equal to
zero.

3The exchange constant J from the spin Hamiltonian used in [316] is twice as many and has an
opposite sign in comparison with the sign from (6.2).
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According to the theorem, the diagonal matrix element of the operator of orbital
angular momentum 〈n|L|n〉 must be pure imaginary. However, since all physical
observable values (including the orbital angular momentum) must be real, it follows
that 〈n|L|n〉 = 0.

Thus, if the crystalline field has a sufficiently low symmetry to cut the orbital
degeneration, then in the first approach of the perturbations theory the orbitalmomen-
tum is equal to zero. This is just the circumstance, which explains the fact that
g
√
J (J + 1) (where J is the complete angular momentum of the ion and g is Lande-

factor) is not consistentwith experimental values ofmagneticmomentumsof 3d -ions,
while pure spin values 2

√
s(s + 1) lead to close coincidence with experimental data

(Table 6.8).
Up to now, binuclear clusters of other ions of iron group are by far less studied

than the above discussed copper dimers. Some information on magnetic properties
of such clusters with bridging ligands of different types (including hidroxyl and
methoxyl bridges, Shiff’s bases and others), and also information about the dimers,
in which one of ions have the orbital angular momentum, are given in [241]. Below
some of these properties according to mentioned work will be discussed.

In Table 6.9, the values of exchange interaction constants in homonuclear dimers,
constructed from iron group ions, are given. These data are obtained on the basis
of EPR spectra and static magnetic susceptibility measurements of respective com-
pounds.

In the Table 6.9 S denotes the value of the total spin of the magnetic dimer. The
dimer fragments for five compounds indicated in the Table 6.9 are presented below
in the order they appear on a vertical in this table as a–e in the following figures:

(a) (b)

(c) (d)

(e)
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VO(II)–VO(II) (3d1; the principal term of single center is 2D, Si = 1/2). The
cluster structure appeared in EPR spectra of vanadyl dimer with tridental Schiff
bases [324, 325] in the form of a forbidden transition with �MS = 2 [319]. Using
the spectral position of EPR line corresponding to this transition, it was estimated
the constant of axial crystalline fieldD, which turned out to be significantly less than
for analogous copper dimers, though the isotropic exchange interaction constants are
comparable for both cases.

Cr(III)–Cr(III) (3d3; the main term of single center is 4F , Si = 3/2).
Such dimers there exist in monocrystals of the compound [LCr(OH)3CrL](ClO4)3 ·
3H2O [320] (see Table 6.9 and dimer fragment c) as three hydrobridged dimers
with distance R = 2.642Å(the least known distance for dimers Cr(III)–Cr(III)
[241]) and, respectively, with a large constant of the isotropic exchange interaction
(J = 128cm−1).

Co(II)–Co(II) (3d7; 4F , Si = 3/2). In the crystalline field of the trigonal bipyra-
mid the high spin slate of the ion Co(II) with a frozen orbital momentum is real-
ized if distorted trigonal bipyramid exists around the ion Co(II) in the compound
[Co2(tren)2X2](BPh4)2 [326], which is a dimer with weak exchange interaction
(J � 1cm−1) in accordance with measurements of the magnetic susceptibility. Here
tren = 2, 2′, 2′′-triaminotriethylamine, BPh4 = tetraphenylborate.

Mn(II)–Mn(II) (3d5; 6S, Si = 5/2). In [327] EPR spectra of dimer compounds
Mn(II) [Mn2(tren)2X2](BPh4)2 and [Mn2(tren)2(NCO)2](BPh4)2, where X =
NCS−, OCN−, were studied. It was found that theseEPR spectra are due to exchange
pairsMn(II)–Mn(II) and that all splittings in spectra (thin structure of theEPRspectra
of single centers, Zeeman and exchange splittings) are comparable in magnitude.

Fe(III)–Fe(III) (3d5; 6S, Si = 5/2). The last two compounds in the Table
6.9 are examples of iron(III) dimer with one oxygen bridge and dimer formed by
oxalate bridge. Iron dimer with oxalate bridge was studied on polycrystalline pat-
terns and in frozen solution [323]. It was shown that in the studied iron dimer, where
RFe−Fe � 5Å, the parameter J found from temperature dependence of staticmagnetic
susceptibility is comparable in magnitude with J for dihydroxodimers of iron(III),
where RFe−Fe ∼ 3Å.

Thus, data presented inTables 6.2, 6.3, 6.4, 6.6, 6.7, and 6.9 show that the exchange
interaction between ions of iron group, which form homonuclear dimer clusters,
has an antiferromagnetic character. The exchange interaction constant depends on
many factors, including the geometry encirclement of paramagnetic ions forming
dimer clusters, and decreases with the increase of extension of polyatomic bridged
fragments (Table 6.9 and corresponding dimer fragments).

The main conclusion that can be drawn from the analysis of data given in
Sects. 6.1.1 and 6.1.2, is that there is an exchange interaction of antiferromagnetic
type in homonuclear dimer magnetic clusters formed by ions of iron group with
electron configuration 3dn (n �= 5). In principle, an exception is possible, when it
is necessary to take into account the contribution of excited states leading to weak
ferromagnetism in homonuclear clusters [241]. However, this happens very rarely.
As to dimers of iron group ions with the electron configuration 3d5 (Mn(II)–Mn(II),
Fe(III)–Fe(III), Mn(II)–Fe(III)), the probability of formation of such dimers with
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the exchange interaction of antiferromagnetic or ferromagnetic type is apparently
approximately the same (Sect. 6.4).

It is to pay attention to unusual magnetic behavior of the heteronuclear exchange
pair Cu(II)–VO(II). While according to above-mentioned empiric rule, the homonu-
clear dimers Cu(II)–Cu(II) and VO(II)–VO(II) shows an exchange interaction of
antiferromagnetic type, the exchange interaction between ions Cu(II) andVO(II) has
a ferromagnetic character. The theoretical interpretation of the nature of exchange
interaction of ferromagnetic type in such a dimer will be discussed in Sect. 6.3. In
Sect. 6.2 it will be introduced the notion of “partial time-reversal”. Within this con-
cept the transition from the antiferromagnetic ordering to the ferromagnetic one (and
vice versa) is a natural consequence of the combined transformation of symmetry
“partial time-reversal” + inversion of sign of exchange integral.

6.1.3 Dimer Clusters of 4f -Elements

In the rare-earth group 4f -shell is built, in which the maximal number of electrons
attains fourteen.As a result of chemical interactions, atomsof rare-earth elements lose
three electrons and trivalent ions are formed with the external electron configuration
5s25p6 [318].

Unlike the unpaired d -electrons of transition metal ions and s, p electrons of
organic radicals, the unpaired f -electrons of lanthanide ions are highly contracted
and energetically shielded deeply by outer 5s, 5p shells. Therefore, the magnetic
interaction between 4f -electrons of the rare-earth ions coupled into exchange pairs
is very weak, the value of coupling constant J being normally smaller than 1cm−1

[328–365].
The f orbitals of the lanthanide ions have a strong unquenched orbital angular

momentum, which can induce effective spin-orbit coupling. The trivalent ions are
characterized by f n configurations, which give rise to 2S+1LJ multiplets, further split
by spin–orbit interaction to give J states

E
(
2S+1LJ

) = (λ/2)[J (J + 1) − L(L + 1) − S(S + 1)], (6.10)

where J is defined by the angular momentum summation rules |L − S| ≤ J ≤
|L + S|, and λ = ±ξ/2S. ξ is the spin-orbit coupling constant, which ranges from
600 to 3000cm−1 the highest values in lanthanide series corresponding to heaviest
lanthanide ions [329]. The (+) sign applies for n < 7 and the (− ) sign for n > 7. The
sign of the spin–orbit coupling constant λ implies that in the ground state J = L− S
for n < 7 and J = L + S for n > 7. For f 7 ions such as Gd(III) and Eu(II), L = 0
and S = 7/2, the orbital momentum is completely absent in the ground state. In the
Table6.10 the trivalent rare-earth ions in the order of building their electron shells
are presented [318].

In the third column of Table6.10 the spectral terms of trivalent rare-earth ions
determined accordingly to Hund rules are presented. In the fourth and fifth columns
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Table 6.10 Electron configurations, spectroscopic terms, calculated and measured magnetic
moments of rare-earth ions

Ion Electron
configuration

Spectroscopic
term

μtheor
eff , Bohr

magnetons
μ
exp
eff , Bohr

magnetons

Ce2+ 4f 15s25p6 2F5/2 2.54 2.4

Pr3+ 4f 2 3H4 3.58 3.5

Nd3+ 4f 3 4I9/2 3.62 3.5

Pm3+ 4f 4 5I4 2.68 −
Sm3+ 4f 5 6H5/2 0.84 1.5

Eu3+ 4f 6 7F0 0 3.4

Gd3+ 4f 7 8S7/2 7.94 8.0

Tb3+ 4f 8 7F6 9.72 9.5

Dy3+ 4f 9 6H15/2 10.63 −
Ho3+ 4f 10 5I8 10.60 10.4

Er3+ 4f 11 4I15/2 9.59 9.5

Tu3+ 4f 12 3H6 7.57 7.3

Yb3+ 4f 13 2F7/2 4.54 4.5

the values of magnetic moments calculated using formulas μtheor
eff = g[J (J + 1)]1/2

and μ
exp
eff = (1/μB)(3χ0kBT/n)1/2 are given. Here μB is the Bohr magneton, J is

the total angular momentum of the ion, χ0 is the static magnetic susceptibility, kBT
is the thermal energy, n is the concentration of paramagnetic centers and g is the
Landé-factor

g = 3

2
+ S(S + 1) − L(L + 1)

2J (J + 1)
. (6.11)

As we can see in Table 6.10, the model of LS-interaction leads to an adequate
description of static paramagnetic properties of trivalent rare-earth ions, excepting
one or two cases, the most characteristic one being the ion Eu3+.

The Ln(III) ions have both a large spin-angular momentum part and a large orbital
angular momentum part associated with the internal nature of the valence f orbitals.
Compared with the d -electrons of transition-metal ions, the orbital component of
the magnetic moment is much more important for the rare-earth ions, because the
crystal-field effects are smaller and spin–orbit coupling larger for f -electrons.

In contrast to the ions of transition metals, there are no simple rules to predict the
occurrence of ferro- or antiferromagnetic coupling, unlike those of Goodenough and
Kanamori for compounds of d -elements [330].

Let us consider magnetic properties of binuclear coordination compounds,
beginning with the most studied Gd(III)–Gd(III) dimer in different compounds. The
magnetic behavior of the single crystals of Gd(HF2CCOO)3(H2O)2 ·
H2O were investigated in the temperature range 1.7–300K. The magnetic data
were interpreted considering exchange interaction effects in the binuclear
Gd(III)–Gd(III) units. The exchange coupling constant J = −0.024cm−1 (g =
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Table 6.11 Comparison of exchange coupling constants J [cm−1] and Landé-factors g for dimeric
gadolinium compounds [331]

Compound J g References

Gd(HF2CCOO)3(H2O)2 · H2O −0.024 1.99 [331]

Gd(H3CCOO)3(H2O)2 · 2H2O +0.05 1.99 [331]

Gd(H3CCOO)3(H2O)2 · 2H2O +0.06 2 [332]

Gd(L)2 · 2CHCl3 −0.09 2 [333]

Gd2(L1)2(NO3)2 · 2MeOH −0.198 1.975 [334]

Gd2(L2)(NO3)2 · 4H2O −0.211 1.975 [335]

Gd2L3(NO3)2 · 3H2O −0.104 1.999 [336]

[Gd2(L4-3H)(NO3)2](NO3) · 1.5H2O −0.194 2.023 [337]

[Gd(L5)3(H2O)]2 +0.05 1.98 [338]

[Gd2(μ2-OOCFc)2(OOCFc)4·
(MeOH)2(H2O)2 · 2MeOH · 2H2O]

+0.006 2 [339]

Gd2salen3 · 2H2O −0.14 2.025 [340]

Gd2dsp3 · 2H2O −0.1 1.976 [340]

[Gd2(CH3CO2)6(phen)2] −0.053 2 [341]

1.99) shows an antiferromagnetic interaction, whereas J = +0.05cm−1 (g = 1.99)
for Gd(H3CCOO)3(H2O)2 · 2H2O a ferromagnetic one [331]. These data were
obtained using the spin HamiltonianH = −JSGd1SGd2, where SGd1 = SGd2 = 7/2,
g is Landé-factor.

Some binuclear complexes of gadolinium are available for comparison
[332–341]. The constant J of these compounds ranges between +0.06 and
−0.211cm−1 (Table 6.11).

In Table 6.11 the following notations are introduced:
H3L = tris(((2-hydroxybenzol)amino)ethyl)amine;
H3L1 = N -salicylidene-2-(bis-(2-hydroxyethyl)amino)ethylamine;
H4L2 = Schiff bases obtained by condensation of 3-formylsalicilic acid and 4-

N -dodecycldiethylenetriamine;
H3L3 = tris-[4-(2-hydroxy-3-methoxyphenyl)-3-aza-3 -butenyl]amine;
L4-3H = cryptante, given in [105]; HL5 = salicylic acid;
Fc = ferrocene; H2salen = N ,N ′-diaminoethane-salicylaldimine;
H2dps = disalicylidene-1, 2-phenylenediamine; phen = o-phenanthroline.
The different types of interaction in these acetates might be due to the nature

of bridging in the Gd(III)–Gd(III) dimers. Whereas Gd(H3CCOO)3(H2O)2 · 2H2O
shows the bridging mode μ2O′; k2O,O′ (Fig. 6.2b), the compound
Gd(HF2CCO)3(H2O)2 · H2O shows the bridging mode μ2-carboxylato-k1O: k1O′
(Fig. 6.2a) [331].

In these two dimeric compounds the constants of isotropic exchange interaction
J have opposite signs, i.e. in one dimer there is the exchange interaction of antifer-
romagnetic type between Gd(III) ions, while in the other - the exchange interaction
of ferromagnetic type. It is due to the substitution of H3 from the first dimer by HF2
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(a) (b)

Fig. 6.2 Bounding and bridging types of the carboxylate groups: a - bidental (μ2-carboxylato-k1O:
k1O′); b - tridental (μ2O′; k2O,O′)

Table 6.12 Comparison of J [cm−1], bridging mode and RGd−Gd distance [Å] for
Gd2(ClH2CCOO)6(bipy)2 (1), where bipy = 2, 2′-bipyridyl, Gd2(CF2HCOO)3(phen)
(2), [NH3C2H5][Gd(Cl2HCCOO)4] (3), [NH3CH3][Gd(Cl2HCCOO)4] (4),
Gd(H3CCOO)3(H2O)2 · 2H2O (5) and Gd(F2HCCOO)3(H2O)2 · H2O (6) [342]

Compound J Bridging mode RGd−Gd, Å References

1 −0.020 μ2O′; k2O,O′ and
μ2-carboxylato-k1O: k1O′

3.990 [342]

2 −0.016 μ2O′; k2O,O′ and
μ2-carboxylato-k1O: k1O′

4.034 [343]

3 +0.029 μ2O′; k2O,O′ 4.181 [344]

4 +0.023 μ2O′; k2O,O′ 4.184 [345]

5 +0.025 μ2O′; k2O,O′ 4.206 [332, 346]

6 −0.012 μ2-carboxylato-k1O: k1O′ 4.456 [331]

4 −0.007 μ2-carboxylato-k1O: k1O′ 4.516 [345]

in the second one, as well as to different numbers of H2O molecules in the outer
sphere (two in the first case and only one in the second one). Further investigation
of gadolinium compounds, where the Gd(III) ions are differently bridged to dimers,
confirmed the assumption about a correlation between the types of bridging modes
and types of exchange interactions (Table 6.12) [342].

The values for the constant of exchange interaction J from Table 6.12 were
obtained considering that the intramolecular interaction within the dimeric unit is
described by the Heisenberg model with the spin Hamiltonian H = −2JSGd1SGd2.
Therefore, to compare the values J given in Tables 6.12 and 6.11, it is necessary to
double the data from Table 6.12.

The crystal structure of1 is built up bydiscrete dimersGd(III)–Gd(III) (RGd−Gd =
3.990Å) with two kinds of bridging carboxylate groups (μ2-carboxylato-k1O: k1O′
and μ2O′; k2O,O′) and besides a chelating monochloroacetate ion [331]. The Gd3+
ion is ninefold coordinated by seven oxygen atoms originating from the carboxylate
groups and two nitrogen atoms stemming from a 2, 2′-bipyridyl molecule.
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As it can be seen fromTable 6.12, theμ2O′; k2O,O′-bridgingmode is responsible
for a ferromagnetic interaction, whereas the μ2-carboxylato-k1O: k1O′ -bridging
mode leads to an antiferromagnetic interaction (see also [331, 332, 343–347]).

Such a magnetic behavior of dimer clusters formed by rare-earth ions with the
electron configuration 3d7 is not surprising. As noted earlier, in this case the elec-
tron shell of each ion is half-filled both with electrons and holes. In such conditions,
unlike the homonuclear dimer clusters, where equivalent ions have different num-
bers of electrons and holes, the exchange interaction of both antiferromagnetic and
ferromagnetic type can be realized.

According to data from Table 6.12, the Gd(III)–Gd(III) dimers are characterized
by bidentate (μ2-carboxylato-k1O: k1O′)-bridging mode (A) and tridentate (μ2O′;
k2O,O′)-bridgingmode (B). Besides the pure bridgingA andB, where only bidentate
or tridentate modes are involved, there is one another, in which both modes are
involved (bridging C) (Table 6.13).

The Hamiltonian used for finding J is H = −2JSGd1SGd2.
The magnetic data given in Table 6.13 show that antiferromagnetic interactions

are found for A and C, and a ferromagnetic one for B. These data, as well as the
data from Table 6.11 show very small values for the exchange interaction constant
J for binuclear units Gd(III)–Gd(III) in different coordination compounds. This is
due to the fact that the electrons of 4f -shells of gadolinium ions are relatively strong
localized that weakens the exchange interaction between the 4f -electrons in the
cluster Gd(III)–Gd(III).

The binuclear lanthanide(III) complexes described by the general formula
[Ln2(CTPHA)(Mephen)4(ClO4)2](ClO4)2 (Ln = La, Ce,Nd,Sm,Eu,Gd,Tb,Dy,
Ho, Er), where Mephen stands for 5-methyl-1, 10-phenanthroline, and CTPHA are
the 2-chloroterephthalate dianions, have been synthetized and characterized in [354].
It was shown that these complexes are CTPHA-bridged structures consisting of two
lanthanide(III) ions. The complex with Ln = Gd is an ideal model for studying the
magnetic interaction between Ln(III) and Ln(III) ions among the binuclear com-
plexes. The reason for the choice of gadolinium is that Gd(III) ion and its complex
are quite simple for magnetic study. The Gd3+ ion has a 8S7/2 ground state, which
is located at some 3× 104 cm−1 below the first excited state and is not perturbed by
crystal field effects [355–357].

The effective magnetic moment of the binuclear complex [Gd2(CTPHA)

(Mephen)4 (ClO4)2] (ClO4)2 at room temperature is 11.15 μB, which is slightly
less than the spin-only value, 11.23 μB, calculated from the equation μeff =
(μ2

Gd(III) + μ2
Gd(III))

1/2, in the absence of the exchange interaction for a binuclear
Gd(III) system, and is nearly constant over the 30–300K region, but it sharply
decreases below 30K [355]. This behavior is characteristic for the weak intramolec-
ular antiferromagnetic spin–exchange interaction between the paramagnetic ions in
the dimeric cluster. Two spin states of Gd(III) ions are coupled in the dimeric cluster

to yield the total spin states, S = 7, 6, 5, 4, 3, 2, 1, 0 (D7/2 ⊗ D7/2 =
7∑

S=0
DS , DS
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Table 6.13 Exchange parameter J and bridging motifs for Gd3+ carboxylates [348]

Compound J , cm−1 Bridging References

Gd2(CF2ClCOO)6 · (H2O)6 −0.006 A [347]

Gd2(CCl3COO)6(bipy)2·
(H2O)2 · 4 bipy

−0.004 A [348]

Gd2(CH3COO)6(H2O)4 · 4H2O +0.03 B [332]

Gd2(OOCFc)6(CH3OH)2·
(H2O)2 · 2CH3OH · 2H2O

+0.003 B [339]

Gd2(bz)6(phen)2 −0.215 C [349]

Gd2(oet)6(DMF)2(H2O)2 −0.034 C [350]

Gd2(CClH2COO)6(bipy)2 −0.02 C [342]

Gd2(CF2HCOO)6(phen)2 −0.016 C [343]

(CH3NH3)2[Gd2(CCl3COO)6·
(H2O)6](CCl3COO)2·
2CCl3COOH

−0.0106 C [348]

Gd2(crot)6(phen)2 · 2H2O AFM a C [351]

Gd2(crot)6(bipy)2 AFM a C [352]

Gd2(crot)6(H2O)4 · 4bpa AFM a C [352]

Gd2(CH3COO)6(phen)2 +0.0265 − [353]

Gd2(sal)6(H2O)2 +0.025 − [338]
aThe compound was only reported to be antiferromagnetic (AFM), but the value of J was not
calculated.

Notations:
Hbz = benzoic acid;
Hoet = 4-ethoxybenzoic acid;
Hcrot = crotonic acid;
DMF = dimethylformamide;
H2sal = salicylic acid;
bipy = 2, 2′-bipyridyl;
phen = 1, 10-phenanthroline;
bpa = di(2-pyridyl)amine

is the irreducible representation of the rotation group of symmetry). On the basis
of Boltzmann distribution, all these states are thermally populated at room temper-
ature due to the weak antiferromagnetic interaction between Gd(III) ions [358]. A
good beast-square fit to experimental data was obtained for the exchange parameter
J = −0.16cm−1 and g = 2.00. The agreement factor

F =
∑ [

(χ0M )obs − (χ0M )calc
]2

/
∑

(χ0M )obs

is 1.9×10−9 (χ0M is themolecular static susceptibility per binuclear complex) [355].
This result (a small and negative J value) indicates that the complex is binuclear and
undergoes a veryweak antiferromagnetic superexchange interaction betweenGd(III)
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Table 6.14 The isotropic exchange constant J (determined with g = 2.00 on the basis of the
spin Hamiltonian H = −2JSGd1SGd2) and Gd(III)–Gd(III) distance in some Gd(III) binuclear
compounds [360]

Compounda J , cm−1 RGd−Gd, Å Symmetry transformations
used to generate atoms

Gd2(ClF2CCOO)6·
(hypy)2

−0.019 3.866(3) −x + 1,−y + 1,−z + 1

Gd2(F3CCOO)6·
(hypy)2

−0.034 3.877(3) −x + 1,−y + 1,−z + 1

Gd2(F2HCCOO)6·
(hypy)2

−0.064 3.880(3) −x + 1,−y + 1,−z + 1

Gd2(Cl2HCOO)6·
(H2O)2(hypy)2

−0.011 4.051(2) −x + 1,−y + 1,−z + 2

ahypy = 4-hydroxypyridine

ions. The very weak antiferromagnetic behavior of the complex may result mainly
from the properties of the bridged ligand [359] and lanthanide (III) ions [357].

The weak antiferromagnetic behavior is characteristic also for other Gd(III) bi-
nuclear compounds. In Table 6.14, the experimental data confirming this statement
are given.

In [361] a series of six isostructural lanthanide dimers of general formula
[Ln2(mdea H2)2(piv)6], (wheremdeaH2 isN -methyldiethanolamine, piv is pivalate
and Ln = La, Ce, Pr, Nd, Sm, and Gd) has been surveyed to gauge the nature of
magnetic interactions between the lanthanide centers. The following isostructural
lanthanides were synthetized and investigated:

[La2(mdea H2)2(piv)6] (I), [Ce2(mdea H2)2(piv)6] (II),
[Pr2(mdea H2)2(piv)6] (III), [Nd2(mdea H2)2(piv)6] (IV),
[Sm2(mdea H2)2(piv)6] (V) and [Gd2(mdea H2)2(piv)6] (VI).
Of this series of compounds, La2 (I) is a diamagnetic compound, thus its static

magnetic susceptibility (χ0 La2 = χ0 dia = −8.8 · 10−4 cm3mol−1) was used to cor-
rect for the diamagnetic contribution of this system [361]. At room temperature,
the experimental χ0T products for crystalline powder samples of (I)–(VI) are all
more or less close to the excepted values (Table 6.15) [361, 362]. When lowering
the temperature, the χ0T product decreases down to 1.8K for all the compounds
(II)–(V), except for Gd2 (VI), where it stays constant until 10K and then slightly
increases to reach 16.8cm3mol−1 at 1.8K.

As it can be seen in Table 6.15, the expected values of the χ0T product for Ln2
dimers are closer to experimental ones data in comparison with the expected values
of χ0T for single Ln ion. It is shown that all compounds in the Table 6.15 contain
Ln2 dimers.

In the case ofGd2 (VI), the slight increase ofχ0T product at low temperature indi-
cates dominant ferromagnetic interactions. As Gd(III) has no orbital contribution, it
can be considered as an isotropic S = 7/2 spin. For Gd2 (VI) J = +0.0035cm−1

indicating that Gd–Gd interaction is very weak and the two Gd(III) ions are very
weakly coupled ferromagnetically. This value of the constant of isotropic exchange
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Table 6.15 Comparison of the χ0T product at room temperature (RT) between the excepted [362]
and the experimental values for compounds (II)–(VI) [361]

Compound χ0T (cm3K mol−1)

theoretical value for
each Ln ion at RT
[363]

χ0T (cm3K mol−1)

expected value for Ln2
at RT

χ0T (cm3K mol−1)

experimental value for
Ln2 at RT

Ce2 (II) 0.80 1.60 1.29

Pr2 (III) 1.60 3.20 2.98

Nd2 (IV) 1.64 3.28 2.93

Sm2 (V) 0.09 0.18 0.46

Gd2 (VI) 7.875 15.75 16.16

interaction was found from the temperature dependence of the static magnetic sus-
ceptibility χ0 (product χ0T ) by fixing g = 2.03(1) and using the spin Hamiltonian
H = −2JSGd1SGd2, as well as by fitting the magnetizationM versus H/T (H is the
magnetic field). Both methods lead to the same value of J [361].

The binuclear lanthanide complex series [Ln2(valdien)2(NO3)2], where
Ln = Eu(III), Gd(III), Tb(III), Dy(III) and Ho(III), which exhibits O-bridged
Ln(III) ions, have been reported in [364]. The Dy(III) analogue was shown to
exhibit a single molecular magnet behavior. It consist in two Dy(III) ions bridged by
two phenoxide-oxygen atoms with a Dy(III)–Dy(III) distance of 3.77Å. The ligand
involved in the synthesis of this complex is the Schiff-base ligand, N1,N3-bis(3
-methoxysalicylidene)diethylenetriamine (H2valdien), which provides two bridging
phenoxide-O atoms acting as super exchange pathways between two Dy(III) metal
centers inducting weak antiferromagnetic interactions with the isotropic exchange
constant JDy−Dy = −0.21cm−1 [365]. The Gd(III) analogue, consisting in two
Gd(III) ions coupled by exchange interaction into magnetic dimer, exhibits weak
antiferromagnetic interactions with JGd−Gd = −0.178(1)cm−1, if g-factor is fixed
at the value g = 2.00(0) [364].

6.2 Combined Time-Reversal Transformation

The invariance of the Hamiltonian with respect to the time-reversal operator is one
of the fundamental properties of symmetry of quantum-mechanical systems. Among
different equivalent ways to define the time-reversal operator (Sects. 2.3–2.6), in this
section it is convenient to use the time-reversal operator in the representation such
that the matrix of the unitary operatorU to be given in the spinor basis. In the case of
dimer, in which two paramagnetic ions with spins S1 and S2 are coupled with each
other by an exchange interaction, the time-reversal operator T in the presence of a
magnetic field can be written as [61, 366]

T = OAU1U2K, (6.12)
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where U1 and U2 are unitary operators (U+
1 U1 = U1U+

1 = e(S1), U+
2 U2 = U2U+

2 =
e(S2)), which are defined by sets of basic spin wave functions {|S1, S1〉 , |S1, S1 − 1〉 ,

. . . , |S1, 1 − S1〉 , |S1,−S1〉} and {|S2, S2〉 , |S2, S2 − 1〉 , . . . , |S2, 1 − S2〉 ,
|S2,−S2〉} ; e(S) is the unit operator given in the spinor basis (the corresponding
matrix is unit (2S + 1) × (2S + 1)-matrix), K is the antilinear operator of complex
conjugation (K� = �∗, K2� = �, K2 = 1, K−1 = K), A is the vector potential
of the magnetic field and operator OA is defined by

OAA = −A. (6.13)

All matrix elements of the operatorU are equal to zero, with the exception of those
disposed on the secondary diagonal and equal in turn to +1 and −1. In addition, if
the choice of spin basis functions is such that 〈S, S |U | S,−S〉 = +1 (it corresponds
to the mentioned above choice of the spinor basis for the matrix of the operator U),
then for integer S we have 〈S,−S |U | S, S〉 = +1. The matrix of the operator U is
symmetric and its square equals the identity matrix of dimension (2S+1)×(2S+1).
In the case of half-integer S 〈S,−S |U | S, S〉 = −1 and U2 = −e(S).

Thus, the nonzero matrix elements of the operator U are

〈S, S |U | S,−S〉 = 〈S, S − 2 |U | S, 2 − S〉 = ... =
= 〈S, 3 − S |U | S, S − 3〉 = 〈S, 1 − S |U | S, S − 1〉 = 1,

〈S, S − 1 |U | S, 1 − S〉 = 〈S, S − 3 |U | S, 3 − S〉 = ... =
= 〈S, 2 − S |U | S, S − 2〉 = 〈S,−S |U | S, S〉 = −1.

Particularly, for different values of the spin S of paramagnetic ions in the dimeric
cluster (S = 1/2, 1, 3/2, 2) we obtain

S = 1/2

{〈1/2 |U | − 1/2〉 = 1, 〈−1/2 |U | 1/2〉 = −1}
S = 1

{〈1 |U | − 1〉 = 1, 〈0 |U | 0〉 = −1, 〈−1 |U | 1〉 = 1}
S = 3/2

{ 〈3/2 |U | − 3/2〉 = 1, 〈1/2 |U | − 1/2〉 = −1,
〈−1/2 |U | 1/2〉 = 1, 〈−3/2 |U | 3/2〉 = −1

}

S = 2
{ 〈2 |U | − 2〉 = 1, 〈1 |U | − 1〉 = −1, 〈0 |U | 0〉 = 1,

〈−1 |U | 1〉 = −1, 〈−2 |U | 2〉 = 1

}
.

Let us imagine that under the action of the time-reversal operator on the wave
functions of paramagnetic ions of the dimer coupled due to exchange interaction
between them, the reversion of signs of the spin projection operators takes place
only in one of centers, for example, in the ion with spin S1 and no changes take
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place to spin wave functions of the second ion (that is a fortiori not true). Such a
transformation could be called a “partial” or “incomplete” time-reversal.

It is clear that under the action of the partial time-reversal operator, the spin
Hamiltonian of the isotropic exchange interaction between paramagnetic ions of the
magnetic dimer cluster

H = −JS1S2 (6.14)

does not remain invariant, but changes its sign

T1HT−1
1 = −J [(U1KS1xKU+

1 )S2x + (U1KS1yKU+
1 )S2y+ (6.15)

+(U1KS1zKU+
1 )S2z] = JS1S2 = −H.

The result is not changed if instead of T1 it is to use the operator T2 = U2K:

T2HT−1
2 = −J [S1x(U2KS2xKU+

2 ) + S1y(U2KS2yKU+
2 )+ (6.16)

+S1z(U2KS2zKU+
2 )] = JS1S2 = −H.

If T1 would be a transformation of symmetry of the spin Hamiltonian, then the
change of sign of the Hamiltonian could be described by the change of sign of the
exchange parameter J . Since the change of sign of the constant of exchange interac-
tion corresponds to a transition from the exchange interaction of antiferromagnetic
type to the exchange interaction of ferromagnetic type and vice versa, this would
be a method to obtain ferromagnetic coordination compounds and to liquidate the
known disbalance between the number of compounds with antiferromagnetic and
ferromagnetic behavior (the number of compounds with antiferromagnetic type of
exchange interaction is much more than that with ferromagnetic one). However, this
scenario is not possible for two reasons. First, the partial time-reversal operator T1

is not a transformation of symmetry of the Hamiltonian. Second, the change of sign
of the exchange interaction constant J leads to the shift of spin levels of the dimer
cluster in opposite directions. For example, if initial positions of spin levels were
such that the spin singlet (S = 0) was corresponding to the ground state and the
spin triplet (S = 1) was corresponding to the excited state, then these spin levels
would change their places at the change of sign of the constant J . Inversion of spin
levels takes place (not the inversion of population of spin levels, as in systems with
maser-effects), which is a radical change of the energy spectrum of the dimer. On the
other hand, according to the definition of the symmetry transformation, it does not
change the physical system. From this, it follows once again that changing the sign
of the exchange integral (or equivalent to this transformation of T1 or T2) can not be
a transformation of symmetry, while the operator T = T1T2 being a time-reversal
operator is a transformation of symmetry (THT−1 = H).

The analysis of the mental experiment described above has shown that there are
only two ways for restoration of the time-reversal symmetry T1T2HT−1

2 T−1
1 = H:

(i) to act on the Hamiltonian H with operator T2 in parallel with the operator T1

(or to act on the Hamiltonian H with operator T1 in parallel with the operator T2
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too); (ii) to change the sign of the parameter of exchange interaction J . For changing
the sign of the constant J , we introduce the operator IJ :

IJ J = −J , I2J = 1. (6.17)

The spin Hamiltonian H from (6.14) remains invariant under the simultaneous
action of operators IJ and T1 on it, that it is the operator IJ which restores the time-
reversal symmetry broken by the action only of the partial time-reversal operator T1

on H (see formula (6.15)):

T1IJHIJT−1
1 = −(−J )[(U1KS1xKU+

1 )S2x + (U1KS1yKU+
1 )S2y+ (6.18)

+(U1KS1zKU+
1 )S2z] = −JS1S2 = H.

Similarly the simultaneous action of operators IJ and T2 on spin Hamiltonian H
preserves its invariance, that is IJ restores the time-reversal symmetry broken by the
action of the partial time-reversal operator T2 on H (see formula (6.16)):

T2IJHIJT−1
2 = −(−J )[S1x(U2KS2xKU+

2 ) + S1y(U2KS2yKU+
2 )+ (6.19)

+S1z(U2KS2zKU+
2 )] = −JS1S2 = H.

Thus, the combined operations T1IJ and T2IJ are symmetry operations, which can
be called the combined time-reversal operations.

Fulfillment of (i) restores the time-reversal symmetry, but does not lead to new
nontrivial physical consequences. Realization of (ii) also restores the time-reversal
symmetry, i.e., the invariance of the Hamiltonian with respect to time-reversal opera-
tor T = T1T2. Additionally, at changing the sign of exchange constant J a transition
from the exchange interaction of antiferromagnetic type to the exchange interaction
of ferromagnetic type takes place.

Thus, at a formal level, the transformation J → −J and the inversion of spin levels
are achieved. It remains only to understand, how to realize such a transformation
practically.

6.3 Spin Levels Inversion in Cu(II)–Cu(II) Dimers Caused
by Combined Time-Reversal

The magnetic dimer Cu(II)–Cu(II) is characterized by that the every ion of Cu(II),
which is a part of this dimer, has an electron configuration 3d9 and contains eight
electrons with pairwise coupled spins and one electron with an uncompensated spin.
This ion appears as a localized electron with the spin S = 1/2 in magnetic properties
of coordination compounds of the single ion Cu(II), while in the copper binuclear
complexes the states are of the total spins S = 0 and S = 1.
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Here it is relevant to note the analogy with the energy band structure of solids,
although at first sight there is no reason for such an analogy. Really, the system of
two paramagnetic ions, coupled by an exchange interaction is slightly similar to a
multiparticle systemofN atoms, forming solidswith a periodic crystalline lattice, and
elementary excitations of electrons and holes with zero and nonzero quasiimpulses
in the conduction and valence bands. However, both these systems have a similar
behavior with respect to the time-reversal transformation. In the case of solids, the
wave function of the hole (its coordinate and spin components) is determined as a
result of action of the time-reversal operator on wave function of valence electron
taking into account the complex structure of the valence band, if such a structure
is known. By analogy with this, in the concrete case of electron configuration 3d9

we shall consider that there is one “hole” (which means a “missing electron with
unpaired spin in the 3d -shell”), of which spin wave function is determined as a result
of action of the time-reversal operator on the spin wave function of the 3d1-electron.
The 3d -hole spin wave functions are

|1/2, 1/2〉h = −T |1/2, −1/2〉e , (6.20)

|1/2, −1/2〉h = T |1/2, 1/2〉e .

Thus, the transformation consisting in changing the sign of the exchange inter-
action constant (J → −J ) is equivalent to the transition from the 3d9-electron
configuration (which is equivalent to 3d1-hole configuration) to the 3d1-electron
configuration in one ion Cu(II) of exchange-coupled dimer cluster. Such a “compen-
sating” transformation restores the broken time-reversal symmetry under the action
of the Hamiltonian (6.14) on operators T1 = U1K and T2 = U2K separately. The
transformation of the symmetry of the Hamiltonian H from (6.14) is a combined
transformation, consisting in application of the operator T1 or T2 with a consequent
changing the sign of the exchange interaction constant J between electrons of dif-
ferent ions of the dimer. The change of the sign of the constant J is equivalent to
the transition from the electron configuration 3d9 to the electron configuration 3d1

of an ion with spin S2 in the case the operator T1 is used. In the case of application
of the operator T2 the transition from the electron configuration 3d9 to the electron
configuration 3d1 is necessary to be done in the ion with spin S1. In other words, the
combined transformation of the symmetry of Hamiltonian H from (6.14) is deter-
mined as “the partial time-reversal operator T1 (or T2) + isomorphic replacement
of the one of two ions Cu(II) with the electron configuration 3d9 by the ion with
electron configuration 3d1”. In this case, the Hamiltonian is invariant with respect
to the combined transformation “partial time-reversal + isomorphic substitution”,
however at such a transformation the isomorphic replacement of one ion by another
leads to essential shifts (in opposite directions) of spin levels with S = 0 and S = 1
of the two-nuclear cluster. Apparently, this is the first case when a generalized sym-
metry transformation, under the action of which the Hamiltonian remains invariant,
describes also significant changes in the structure of the energy spectrum of the
quantum-mechanical system.
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Let us consider the result of action of the operator T1 on the spin Hamiltonian
(6.14) for theCu(II)–Cu(II) dimer, inwhich the ionCu(II)with electron configuration
3d9 and spin S2 = 1/2 is replaced by an ion with the electron configuration 3d1.
Hypothetically, such an ion may be Cu(X ). Although positive copper ions of high
charge exist in an eximer laser-produced high density copper plasma [367], such ions
are not long-lived and they certainly cannot form any coordination compounds.

The proposed method of transformation of dimeric homonuclear complexes with
antiferromagnetic interaction into dimeric heteronuclear complexes with ferromag-
netic interaction has an experimental confirmation (see Sect. 6.5).

6.4 Changing the Position of Spin Levels in 3d − 3d and
4f − 4f Dimer Clusters Caused by Combined Time
Reversal

Among the binuclear coordination compounds with ferro- and antiferromagnetic
properties, the latter are more widely spread (the number of known ferromagnetic
materials ismuch less that of the antiferromagnetic ones). This non-equivalence of the
signs of exchange interaction integrals is not caused by the existence of a supplemen-
tary interdiction principle, because the parallel as well as the antiparallel orientations
of localized spins are equally possible. Therefore, the difference between the binu-
clear coordination compounds with ferromagnetic and antiferromagnetic properties
may be considered as casual. But it is necessary to note that as a consequence of the
Pauli principle the antiparallel orientation of spins is preferable.

In the Sects. 6.2 and 6.3 we have shown that the antiferromagnetic exchange inter-
actions in binuclear compounds can be transformed into ferromagnetic ones and vice
versa [366, 368], using the generalized symmetry transformation “the partial time-
reversal + isomorphic substitution”. Now we will show how to apply this method
for transforming the 3d − 3d and 4f − 4f binuclear compounds, in which the
components of dimers are coupled by exchange forces of antiferromagnetic type,
into dimers with exchange interactions of ferromagnetic type. In order to change
the exchange interaction type, it is necessary make a transition under time-reversal
operator from the electron wave functions to the hole states of one ion in the dimer
cluster. Thus, formagnetic dimer clusters containing equivalent ions, the partial time-
reversal transformation signifies an isomorphic substitution of one of two ions by
a “time-reversal” ion. The electron wave functions of such “time-reversed” ion are
obtained from the wave functions on the non-time-reversed ion under action of the
time-reversal operator. Time-reversed electrons correspond to the holes in the elec-
tron shell and vice versa. Additionally, as a result of transforming electrons into holes
(or holes into electrons, respectively) a change of the exchange interaction type takes
place. As a rule, the exchange interaction of antiferromagnetic type is characteris-
tic for a magnetic dimer containing equivalent ions, regardless of electron and hole
structure of dimers. After the partial time-reversal, the distance between “inverted”
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spin levels changes for heteronuclear cluster as compared with the distance between
the spin levels of the initial bihomonuclear cluster.

In the case of 3d and 4f ions separately forming a dimer cluster, this trans-
formation can be performed by an isomorphic substitution of one of the ions of
exchange-coupled dimer, in the following way: one ion with 3dn configuration in
the 3d − 3d dimer is replaced by an ion with a 3dN−n configuration, or one ion
with 4f m configuration in the 4f − 4f dimer is replaced by an ion with a 4f M−m

configuration. In these designations, N andM are the numbers of electrons in filled
3d and 4f shells (N = 10,M = 14), respectively. Thus, using the concept of “partial
time-reversal + isomorphic substitution” [366, 368], we can perform a controlled
synthesis of coordination compounds containing magnetic dimer clusters composed
of 3d and 4f ions with exchange interactions of ferromagnetic or antiferromagnetic
types.

The suggested statement stipulates a weak interconfiguration interaction, a weak
external perturbations of electron (hole) states of electron shells and possibilities for
separating electron and hole states. These conditions are met for 3d and 4f ions, in
spite of different schemes of addition of angular momenta of electrons in these ions.
On the basis of this statement, the following classification of exchange interactions
of 3d − 3d and 4f − 4f clusters may be suggested (see Tables 6.16 and 6.17).

Thus, on the basis of the generalized symmetry transformation “partial time-
reversal + isomorphic substitution”, it was carried out the classification of homo-
and heteronuclear 3d−3d dimers, formed of paramagnetic ions of iron group, aswell
as that of homo- and heteronuclear 4f − 4f dimers, formed of paramagnetic ions
of rare-earth elements. There were selected in separate classes coordination com-
pounds, containing binuclear clusters with the exchange interaction of antiferro- and
ferromagnetic types between electrons of different ions of the dimers. On the basis
of this method, every coordination compound containing homobinuclear clusters of
ions 3d or 4f with antiferromagnetic exchange interaction, may be transformed into
a compound containing two-component heteronuclear clusters with exchange inter-
action of ferromagnetic type and vice versa. In this way, it may be eliminated (or at
least diminished) the difference between the numbers of coordination compounds,
for which the exchange interaction of antiferromagnetic type is realized in magnetic
dimers as comparedwith the number of coordination compounds, forwhich electrons
of different ions of the dimers are coupled with each other by forces of exchange
interaction of ferromagnetic type. Moreover, the synthesis of heteronuclear coordi-
nate compounds with ferromagnetic properties are of an independent scientific and
practical interest due to the large demand of ferromagnetic materials in micro-, nano-
and optoelectronics.
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6.5 Experimental Evidence of Spin Levels Inversion
in Dimer Magnetic Clusters Caused by Combined Time
Reversal

The combined symmetry transformation “partial time-reversal + isomorph substitu-
tion” contains the operation of isomorphic substitution of atoms (ions), consisting in
replacing one ion of the dimer cluster by an ion of the isomorphic atom. Practically,
this can be performed very simply, if in the initial homobinuclear compound a half
from the total number of ions it substituted by ions of which the electron wave func-
tions coincide with the time reversed electron wave functions of initial ions (the ratio
of ions of different types must be 1:1). It is clear that at this substitution of atoms a
modification of energetic spectrum of the system will occur. In the case of magnetic
homobinuclear clusters an inversion of spin levels will occur. However, if after the
isomorphic substitution of atoms the cluster becomes heteronuclear, there will be
a not exact inversion of spin levels, although the order of their succession will be
inversed. In other words, in this case the transformation of the exchange interaction
of antiferromagnetic type into a ferromagnetic one will also occur, but without the
conservation of the exchange interaction constant J, which will be less by modulus.

The combined transformation “partial time-reversal + isomorph substitution”
discussed in this chapter is of some heuristic interest. However, the generalized
symmetry transformation of this type, accompanied by a change of the structure of
the energy spectrum of the system, can be taken into account in a serious way only in
the case, when there exist reliable data, proving that the modification of the energy
spectrum really takes place. In this section, we will show that such data really exist.

The results of research of magnetic properties of complex CuVO(fsa)2 en
CH3OH [369, 370] are an experimental proof of the transformation of the 3d9 −3d9

dimer with antiferromagnetic exchange interaction into a 3d9 − 3d1dimer with a
ferromagnetic behavior. As a consequence of the invariance of the spin Hamiltonian
(6.14) relative to the combined transformation “partial time-reversal + isomorphic
substitution” betweenCu(II) andVO(II) in this compound, containing Cu(II)–VO(II)
binuclear clusters, it must exist an exchange interaction of the ferromagnetic type.
In this particular case one can come to the same conclusion starting from quantum-
mechanical reasons, according towhich the exchange interaction between ionsCu(II)
andVO(II) bears purely a ferromagnetic character due to the orthogonality of orbitals
�Cu and �VO.

According to [369], the heterobinuclear complex CuVO(fsa)2 en CH3OH
is crystallized in monocline system with the space group of symmetry P21/n, lat-
tice parameters a = 11.636(3)Å, b = 13.612(3)Å, c = 12.426(3)Å, monocline
angle β = 100.8(4)◦ and the coordinating number z = 4. The structure consists of
heterobinuclear units, in which copper atom is five coordinated with two nitrogen
atoms, two phenol oxygens and one oxygen molecule of metanol; the atom of vana-
dium is also five coordinated by two phenol, two carboxyl oxygens and an oxygen
of vanadil group. Atoms of metals and oxygen molecules of metanol and vanadil
group are in a mirror σ -plane for two square pyramids CuN2O3 and VO5 [241, 369].
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Fig. 6.3 Magnetic orbitals
of the dimer Cu(II)–VO(II)
[369]

The ion Cu(II) is characterized by a magnetic orbital dx2−y2 , while the ion VO(II) is
characterized by the orbital dxy (Fig. 6.3). The exchange interaction between ions of
the dimer Cu(II)–VO(II) with spins S1 = S2 = 1/2 leads to the total spin S = 0, 1
(D1/2 ⊗ D1/2 = D0 ⊕ D1, DS denotes, as earlier, the irreducible representation of
the rotation group of symmetry).

On the basis of data on temperature dependence of the static magnetic suscepti-
bility χ(T ) (T = 18−300K), there was found J = 118cm−1, g = 2.017 [369, 370].
The ground state of the dimer cluster Cu(II)–VO(II) is a spin triplet (D1 ∈ D1/2 ⊗
D1/2).

The mechanism of ferromagnetic exchange in the Cu(II)–VO(II) heterobinuclear
cluster can be understood on the basis of the approach developed by Kahn and Briat
[270]. Since orbitals of copper and vanadil are orthogonal, i.e., 〈�Cu|�VO〉 = 0, the
integral of exchange interaction is determined by the formula

J = 〈
�Cu(1)�VO(2)|r−1

12 |�Cu(2)�VO(1)
〉
. (6.21)

By examining the structure of the magnetic fragment, one can conclude that
orbitals 2p give covering σ with dx2−y2 - copper orbital and covering π with dxy-
vanadil orbital. The density of covering the orbitals ρ = �Cu�VO has two positive
extrema on one bridged oxygen along the line Cu-O and two negative extrema, on
other oxygen [241]. Since the depth of negative extrema compensates the height of
positive extrema, the integral of covering is equal to zero (

∫
ρ(1)dτ(1) = 0). Just at

the same time the two-electron exchange integral
∫∫ [

ρ(1)ρ(2)/r1/2
]
dτ(1)dτ(2),

which determines the ferromagnetic contribution, is not zero and is essentially con-
nected with extrema of the covering density ρ.

The singlet–triplet splitting is equal to 118cm−1 for the dimer Cu(II)–VO(II)
with exchange interaction of ferromagnetic type and turns out to be essentially less
as compared with similar splitting, equal to 650cm−1 (see below) for the dimer
Cu(II)–Cu(II) with exchange interaction of antiferromagnetic type. This is due to the
fact that ions Cu(II) and VO(II) are not equivalent.
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The compound Cu2(fsa)2 enCH3OH contains Cu(II)–Cu(II)
(
3d9 − 3d9

)
antifer-

romagnetic dimer clusters with J = −650cm−1 [371]. The ground state of 3d9−3d9

dimer is a spin singlet (D0 ∈ D1/2 ⊗ D1/2).
The compound

[
Fe2 (dhpta) (OOCR) (H2O)2

]
, where H5dhpta = 1, 3 -diamino-

2-hydroxypropane- N ,N ,N
′
,N

′
-tetraacetic acid, contains Fe(III)–Fe(III)(

3d5 − 3d5
)
antiferromagnetic dimer clusters with J = −14.4, −15.9, −15.1,

−15.4 and −16.3cm−1 for R = C6H4OH, CH2CH = CH2, C6H4NH2, CH2CH2Br
and CH = CHCH3, respectively [372]. The Hamiltonian H = −2JS1S2 with
S1 = S2 = 5/2 was used. The ground state of the Fe(III)–Fe(III) cluster is the
spin singlet (D0 ∈ D5/2 ⊗ D5/2).

The compounds
[
Fe2O (TPA)2 X

]
(ClO4)2 · 2H2O, where TPA = tripyridi-

namine, contain Fe(III)–Fe(III)
(
3d5 − 3d5

)
antiferromagnetic dimer clusters with

J = −106.6, −102.8, −102.8, −100.8cm−1 for X = SO4, HPO4, HAsO4 and
MoO4, respectively [373].

The compounds Kat2 [Fe2Cl6O] contain Fe(III)–Fe(III)
(
3d5 − 3d5

)
antiferro-

magnetic dimer clusters with J = −116, −117, −112, −117 and −127cm−1

for Kat = [BzEt3N ]+ , [BzPh3P]+ , [Ph4P]+ , [Ph4As]+ and
[
HPy

]+
, respectively

[374].
The compounds

[
Cu2 (La)2 (DMSO)2

] · 2DMSO and
[
Cu2 (Lb)2 (DMSO)2

] ·
2DMSO, where H2La(b) = N -salicylidene-2-hydroxy-5-chloro (or bromo)
benzilamine and DMSO = dimetylsulfoxide, contain Cu(II)–Cu(II)

(
3d9 − 3d9

)

antiferromagnetic dimer clusters with J = −223cm−1 for La and J = −226cm−1

for Lb [375]. The Hamiltonian H = −2JS1S2 with S1 = S2 = 1/2 was used.
The compounds

[
Fe2 (La)2 (CH3COO)2

] ·2THF and
[
Fe2 (Lb)2 (CH3COO)2

] ·
2THF (for the notation of La and Lb see the paragraph on this section; THF is
tetrahydrofuran) contain Fe(III)–Fe(III)

(
3d5 − 3d5

)
ferromagnetic dimer clusters

with J = 2cm−1 for La and J = 1.6cm−1 for Lb [375]. The Hamiltonian H =
−2JS1S2 with S1 = S2 = 5/2 was used. The ground state is 11-fold degenerate
(S = 5, D5 ∈ D5/2 ⊗D5/2). In the ligand crystalline field the removal of degeneracy
takes place. For 3d5−3d5 ferromagnetic clusters, the constant of isotropic exchange
interaction is significantly smaller than that for the 3d5−3d5 antiferromagnetic ones.

As to homobinuclear 3d − 3d and 4f − 4f magnetic clusters, the ESR and static
magnetic susceptibility data show that, as a rule, the exchange interaction of the
antiferromagnetic type is realized in these clusters especially at relatively large values
of the constant J of the isotropic exchange interaction. An exception is the dimer
4f 7−4f 7, for which this interaction may be of antiferro -, as well as of ferromagnetic
type, depending on the type of atoms (or group of atoms) which provide an indirect
exchange interaction between the paramagnetic ions of the cluster.

Thus the data from Tables 6.1, 6.2, 6.3, 6.4, 6.6, 6.9, 6.11, 6.13, 6.14 show that
homobinuclear clusters, excepting the clusters containing ions with half-filled shells,
show an exchange interaction of antiferromagnetic type between ions.

Thedata fromTables 6.11, 6.12 and6.13 show that the typeof exchange interaction
in homobinuclear clusters containing ions with half-filled shells depend on the type
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of bridging. Particularly, there is an exchange interaction of antiferromagnetic type
for Gd(III)–Gd(III)

(
4f 7 − 4f 7

)
dimers with A and C bridging and an exchange

interaction of ferromagnetic type with B bridging (see Table 6.13).
The method of controlled transformation of homobinuclear compounds with

exchange interaction of antiferromagnetic type into heterobinuclear compounds with
ferromagnetic behavior using the combined transformation “partial time-reversal +
isomorphic substitution” is not limited only to dimer magnetic clusters and can be
extended to multinuclear magnetic clusters. This is possible, because in this case
the main contribution into exchange interactions is due to the isotropic exchange
constants, which are included linearly in the spin Hamiltonian.

Let us consider in detail how the inversion of the spin levels in binuclear coor-
dination compounds occurs, for example, in dimers 3d9 − 3d9 and 3d1 − 3d1. To
this end, we perform the diagonalization of the exchange interaction HamiltonianH
from (6.14) in three cases. In the first case, the matrix of the operatorH is given in the
standard spinor basis {( 1√

2
)(α1β2 − β1α2), α1α2, (

1√
2
)(α1β2 + β1α2), β1β2} where

αi(i = 1, 2) and βi(i = 1, 2) are the basis spinors belonging to the first and second
dimer ions, respectively. The diagonalization of the Hamiltonian (6.14) in this basis
leads to a well-known result for singlet, E(s), and triplet, E(t) spin energy levels

E(s) = 3

4
J , E(t) = − 1

4J (6.22)

In the second case, the diagonalization of the Hamiltonian H = T1IJHIJT+
1 or

H = T2IJHIJT+
2 is carried out in the same basis of spin wave functions. In the

third case, the diagonalization of the same Hamiltonian, bordered by operators T1IJ
and IJT1 or T2IJ and IJT2, is carried out in the basis of the spin wave functions
{( 1√

2
)(α1β2h − β1α2h), α1α2h, (

1√
2
)(α1β2h + β1α2h), β1β2h}. In this case, the Hamil-

tonian (6.14) is represented in the form

H = −JS1S2h, (6.23)

where S2h is the spin operator of the hole in the electron 3d -shell. The values of the
energies E(s) and E(t), calculated by the last two methods of diagonalization, are also
determined by equations (6.22). The positions of these levels on the energy diagram
are determined by the sign of the exchange interaction constant.

Figure6.4 shows the lowest two energy levels of the dimer 3d9 − 3d9, for which
J < 0, and the dimer 3d9 − 3d1, for which J > 0. For the Hamiltonian (6.14), the
first case corresponds to an exchange interaction of the antiferromagnetic type, and
the second case corresponds to an exchange interaction of the ferromagnetic type.

As can be seen fromFig. 6.4, the spectrum (b) is the inverted spectrum (a) (replace-
ment of the singlet level by the triplet one and vice versa) and shifted toward high
energies by 1

2J . When the energy spectrum is inverted, the singlet–triplet splitting
does not change if it is assumed that the ions with electronic configurations 3d9 and
3d1 are equivalent. In the case of nonequivalent ions, the singlet–triplet splitting
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Fig. 6.4 Splitting of a spin quadruplet when the crystal field is neglected in magnetic dimers
3d9 − 3d9 (or 3d1 − 3d1) at J < 0 (a) and 3d9 − 3d1 (or 3d1 − 3d9) at J > 0 (b)

before and after the inverting of the spin levels have slightly different values, which
is confirmed by experimental data (see Sect. 6.5).

Theorem: The inversion of the sign of the exchange interaction constant in mag-
netic binuclear clusters is equivalent to the isomorphic replacement of one of the
cluster ions by an ion whose wave functions are time reversed with respect to the
wave functions of the unsubstituted ion.

We shall prove this theorem for homonuclear clusterswith an exchange interaction
of an antiferromagnetic type containing ions with one electron or one hole in the
electron shell, which after isomorphic substitution become heteronuclear clusters
with an exchange interaction of the ferromagnetic type. The proof is based on the
calculation and comparison among themselves of the following matrix elements:

1
2 < α1β2 − β1α2 | T1IJHIJT+

1 | α1β2 − β1α2 >= 3
4J

1
2 < α1β2 − β1α2 | T2IJHIJT+

2 | α1β2 − β1α2 >= 3
4J

− 1
2 < α1β2h − β1α2h | JS1S2h | α1β2h − β1α2h >= 3

4J

< α1α2 | T1IJHIJT+
1 | α1α2 >= − 1

4J

< α1α2 | T2IJHIJT+
2 | α1α2 >= − 1

4J

− 1
2 < α1β2h + β1α2h | JS1S2h | α1β2h + β1α2h >= − 1

4J

< β1β2 | T1IJHIJT+
1 | β1β2 >= − 1

4J

< β1β2 | T2IJHIJT+
2 | β1β2 >= − 1

4J

− < β1β2h | JS1S2h | β1β2h >= − 1
4J

(6.24)

As can be seen from (6.24), the operation of combined time reversal (T1IJ or
T2IJ ), containing the operator IJ of changing the sign of the exchange interaction
constant (see (6.17)), is equivalent to the operation of isomorphic substitution of one
of the dimer ions by a time-reverse ion. With this substitution, the wave function of
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the substituting ion is a time-reversed wave function of the substituted ion. In other
words, after such isomorphous substitution, the dimer 3d9 − 3d9 is transformed into
the dimer 3d9 − 3d1. There are also other alternatives: 3d9 − 3d9 is transformed
into 3d1 − 3d9 and 3d1 − 3d1 is transformed to 3d1 − 3d9 or 3d9 − 3d1. The values
of matrix elements (6.24) prove that the formal transformation J −→ −J can be
carried out practically by means of this isomorphic substitution of ions in magnetic
dimers.



Chapter 7
Is There an Analogy Between Jahn-Teller
Effect and an Instability of Spin
Populations in Kramers Clusters with
Odd Number of Atoms?

The molecules and molecular clusters of high symmetry with orbital degeneracy of
the ground state are unstable with respect to a weak structural deformation due to
Jahn-Teller effect. In the Sect. 7.1 is discussed the possibility for existence of an
analogical effect of instability of spin populations of the trihomonuclear magnetic
cluster with respect to a weak structural deformation (the Kahn’s instability) in the
case when each of three ions of the cluster has the spin S = 1/2.

It is shown that the Kahn’s instability of spin populations for a triangle of isotropic
antiferromagnetically coupled half-integer spins with respect to a weak structural
deformation is forbidden. The spin moments associated with spin states of two
Kramers doublets for trihomonuclear cluster containing three equivalent ions with
half-integer spins situated in the corners of an equilateral triangle ABC have been
calculated in Sects. 7.2 and 7.3 for the cases of spins SA = SB = SC = 1/2 and
SA = SB = SC = 5/2, respectively. The full mutual compensation of spin moments
corresponding to both components of each Kramers doublet has been found. Such
compensation of spin moments is characteristic for all trimer clusters with half-
integer values of the spin (Sect. 6.4). It is due to the time-reversal symmetry prop-
erties of spin wave functions corresponding to two Kramers doublets of the ground
state. For clusters formed by an odd number of atoms with half-integer spins, the in-
stability of spin populations with respect to a weak structural deformation is possible
only at breaking the time-reversal symmetry accompanied by its lowering from the
complete time-reversal symmetry to the incomplete one.

The incomplete time-reversal operator is an operator under action of which not
all three projections of the spin operator S are reversed, but only one or only two
of them. The conception of incomplete time-reversal differs from the partial time-
reversal one used in the Chap.6 for the case when the signs of all three projections
of the spin operator S change under the action of the Wigner time-reversal operator.
At incomplete time-reversal it take place for only one from two paramagnetic ions
of the dimer cluster.
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7.1 Kahn’s Instability of an Equilateral Spin Trimer
1/2 ⊗ 1/2 ⊗ 1/2 Due to a Weak Perturbation

Starting from the concept of spin frustration, introduced by Toulouse relative to
the phenomenon of spin glass behavior [376], the term “spin frustration” has been
used not only for spin glass systems [377–381], but also in the physics of molecular
magnetism to describe polymetallic species, in which a competing interaction leads
to a criterion of complexity in the spectrum of low-lying states [382]. It is considered
that competing interactions create an orbital degeneracy (or quasi-degeneracy) of
the ground state, which can lead to different kinds of instabilities. In the case of
discrete molecular species, for which competing spin interactions lead to an orbitally
degenerated ground state, with at least one magnetic component, such a situation
has been defined as a degenerated frustration [383]. The relation between the spin
frustration and the orbital degeneracy (or quasi-degeneracy) is given particularly in
the book of Mydosh devoted to spin glasses [381].

The exchange interaction spin Hamiltonian for an ABC triangle (Fig. 7.1a) of
isotropic 1/2 spins antiferromagnetically (AF) coupled can be written as

H = −J (SASB + SBSC + SCSA) , (7.1)

where J is the constant of isotropic exchange interactions.
By introducing the notations

S′ = SB + SC , (7.2)

S = S′ + SA,

the spin states of the system can be written as
∣
∣ S, S′〉, where S is one of the values

of the cluster total spin (S1 = S2 = 1/2, S3 = 3/2).
If SA is half integer, the two spin states | 1/2, SA − 1/2〉 and | 1/2, SA + 1/2〉

have the same lowest energy, which corresponds to an orbitally degenerated 2E
ground state, transformed by irreducible representation of the C3 symmetry group
[383]. According to [383], in the simple case of SA = 1/2 the two components of
the degenerated ground state can be defined as | 1/2, 0〉 and | 1/2, 1〉. There are two
Kramers doublets that follows from simple group-theoretic relations

D(1/2) ⊗ D(1/2) ⊗ D(1/2) = (D(0) ⊕ D(1)) ⊗ D(1/2) = 2D(1/2) ⊕ D(3/2), (7.3)

where D(S) is the irreducible representation of the rotations group.
The corresponding spin populations in the corners of the triangle (in NμB units)

were obtained as eigenvalues of the gSZ operator [383], assuming that the Zeeman
factor g is equal to 2.00 and ignoring spin delocalization and polarization effects
[384]. These eigenvalues for the ABC triangle were found to be equal to 1, 0, 0 and
−1/3, 2/3, 2/3 for the spin states | 1/2, 0〉 and | 1/2, 1〉 respectively (Fig. 7.1b, c).
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(a) (b)

(c)

Fig. 7.1 The AF type of exchange interactions in a triangle of isotropic 1/2 spins AF coupled
and corresponding spin populations at the corners of the triangle for one component of the ground
state Kramers doublets | 1/2, 0〉 and | 1/2, 1〉 (after [383]). a the ABC triangle with AF exchange
interactions between atoms; b the spin populations in the corners of the triangle (in NμB units, N
is the number of trihomonuclear clusters and μB is the Bohr magneton) for one of the components
of the ground state Kramers doublet | 1/2, 0〉; c the spin populations in the corners of the triangle
(in NμB units) for one of the components of the ground state Kramers doublet | 1/2, 1〉

Here are taken into account only pure spins without orbital contributions, leading to
the splitting of the 2E term in the C3 symmetry due to spin–orbit coupling [385].

Data presented in Fig. 7.1b, c are not complete, since when these were obtained
in [383] it was taken into account only one from the components of each from two
Kramers doublets of the ground state. The author of [383] has calculated the variation
of spin populations for a triangle of isotropic 1/2 spins AF coupled versus a weak
deformation with respect to equilateral topology. In numeric calculations there were
used the experimental data concerning the trihomonuclear cation [Cu3(pao)3OH]3+
[9, 386] with Hpao = pyridine-2-aldehyde-oxime with a perfect threefold symmetry
at room temperature. On the basis of these calculations, a conclusion was drawn
about the existence of a new effect consisting in the instability of spin populations at
the corners A, B and C of the triangle of isotropic 1/2 spins with respect to a weak
perturbation transforming the equilateral triangle into an isosceles one. It is supposed
that changes of the spin population due to its instability may be experimentally
deduced from the polarized neutron diffraction data [387] or magnetic resonance
spectroscopy experiments [388].

However, the conclusion about the instability of spin populations is wrong, be-
cause in [383] there were taken into account only contributions in spin population
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due to one component for every of two Kramers doublets of the ground state, but
there were not taken into account contributions from the second (“time-reversed”)
component of Kramers doublets.

In Sects. 7.2 and 7.3 it will be shown that these contributionsmutually compensate
each other [389, 390] and the indicated spin populations are really stable with respect
to weak irreversible replacements of atoms from equilibrium positions.

For trihomonuclear clusters having a Kramers degeneracy of the ground state, the
instability of spin populations with respect to a weak deformation takes place only
at breaking the time-reversal symmetry (Sect. 7.4).

7.2 Mutual Compensation of Distorted-Induced Spin
Polarization in a Trimer 1/2 ⊗ 1/2 ⊗ 1/2 Due to
Time-Reversal Symmetry

The specificity of the degeneracy of Kramers multiplets, which are splitted in the
crystalline field of low symmetry into a set of Kramers doublets, is that the spin
wave function ϕ associated with one component of the doublet is coupled with the
spin wave function of the second component Tϕ by time-reversal operator T [222].
Therefore, at quantum-mechanical calculations with allowance for Kramers states it
is necessary to be careful and confident that there is an non-equivocal correspondence
between ϕ and Tϕ, independently of the origin of Kramers doublets in concrete spin
systems.

The Wigner time-reversal operator for a system consisting of N particles with
spin 1/2 is [222]

T = i Nσy1σy2 . . . σyNK, (7.4)

where σy j ( j = 1, 2, . . . , N ) is the imaginary Pauli matrix in the spinor basis
{|1/2, 1/2〉 , |1/2, −1/2〉} and K is the operator of complex conjugation.

Such a form of the T operator is not convenient for calculations in many cases
when the spin system consists of particles with spin S > 1/2 (for example, magnetic
clusters containing ions with high spins). In this case, for spin systems containing
subsystems with the summary spin Si (i = 1, 2, . . . , n) the time-reversal operator T
is presented as a product of n unitary operators Ui (i = 1, 2, . . . , n; U+

i Ui = e(S),
e(S) is the unit operator defined in the spinor basis) and the operator K [220]:

T = U1U2 . . .UnK, (7.5)

where the operator Ui is defined in the spinor basis

{|Si , Si 〉 , |Si , Si − 1〉 , . . . , |Si , 1 − Si 〉 , |Si , −Si 〉} .
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The non-zero matrix elements (Ui )αβ are equal to +1 or −1, as follows:

(Ui )Si ,−Si = (Ui )Si−2,2−Si = (Ui )Si−4,4−Si = · · · = (7.6)

= (Ui )2−Si ,Si−2 = (Ui )1−Si ,Si−1 = 1,

(Ui )Si−1,1−Si = (Ui )Si−3,3−Si = (Ui )Si−5,5−Si = · · · =
= (Ui )3−Si ,Si−3 = (Ui )−Si ,Si = −1.

All other matrix elements of the operator Ui are equal to zero (see also Sect. 6.1).
Let us consider again a trimer cluster consisting of atoms with spins SA = SB =

SC = 1/2. The irreducible representation of the rotation group of symmetry D(1/2)
ABC is

contained two times in the direct product of representations D(1/2)
A ⊗ D(1/2)

B ⊗ D(1/2)
C .

Therefore, there are twoKramers doublets {ϕ1, ϕ2 = Tϕ1} and {ϕ3, ϕ4 = Tϕ3} , asso-

ciated with representations D(1/2)
ABC[1] ∈ D(0)

AB ⊗ D(1/2)
C and D(1/2)

ABC[2] ∈ D(1)
AB ⊗ D(1/2)

C ,
respectively.

The single subscript at the irreducible representation of the rotation group D(S)
p

(p = A, B,C) indicates, that according to the given irreducible representation, it
transforms the spin wave function of ion, localized in the vertex p of the trian-
gle. But if the subscript at the irreducible representation of the rotation group
contains notations of two or three vertices of the triangle (for example, D(1)

AB and
D(1/2)

ABC ), this means that we deal with the Kronecker (direct) product of correspond-
ing irreducible representations. Particularly, in the case of considered examples we
have D(1)

AB ∈ D(1/2)
A ⊗ D(1/2)

B , D(1/2)
ABC[1] ∈ D(0)

AB ⊗ D(1/2)
C = D(1/2)

A ⊗ D(1/2)
B ⊗ D(1/2)

C

and D(1/2)
ABC[2] ∈ D(1)

AB ⊗ D(1/2)
C , where basic functions of irreducible representations

of D(1/2)
ABC[1] and D(1/2)

ABC[2] of one and the same weight (of the same dimension) are
different.

The spin wave functions ϕ1 and ϕ2 = Tϕ1 are

ϕ1 = 1√
2

(|1/2, 1/2〉A |1/2, −1/2〉B |1/2, 1/2〉C − (7.7)

− |1/2, −1/2〉A |1/2, 1/2〉B |1/2, 1/2〉C
)

,

ϕ2 = KU(1/2)
A U(1/2)

B U(1/2)
C ϕ1 = Tϕ1. (7.8)

Here the unitary operator U(1/2)
p (p = A, B,C) is represented by the (2 × 2)-matrix

U(1/2)
p =

(

0 1
−1 0

)

(7.9)

in the spinor basis
{|1/2, 1/2〉p , |1/2, −1/2〉p

}

.
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Table 7.1 The spin moments
〈

SZp
〉 = 〈

ϕm | SZp | ϕm
〉

(p = A, B,C) associated with the states ϕm
(m = 1 ÷ 4) for a spin trimer with spins Sp = 1/2

ϕm 〈SZ A〉 〈SZB〉 〈SZC 〉
ϕ1 0 0 1/2

ϕ2 0 0 −1/2

ϕ3 1/3 1/3 −1/6

ϕ4 −1/3 −1/3 1/6

Taking into account (7.7)–(7.9), the definition of the operator of complex conju-
gation K and using the Clebsh–Gordan coefficients [9], we obtain:

ϕ2 = 1√
2

(|1/2,− 1/2〉A · |1/2, 1/2〉B · |1/2, −1/2〉C − (7.10)

− |1/2, 1/2〉A · |1/2, −1/2〉B · |1/2,− 1/2〉C
)

.

Two components of the second Kramers doublet correspond to the following spin
wave functions

ϕ3 = 1√
6

(

2 |1/2, 1/2〉A |1/2, 1/2〉B |1/2, −1/2〉C − (7.11)

− |1/2, 1/2〉A |1/2, −1/2〉B |1/2, 1/2〉C −
− |1/2, −1/2〉A |1/2, 1/2〉B |1/2, 1/2〉C

)

,

ϕ4 = KU(1/2)
A U(1/2)

B U(1/2)
C ϕ3 = Tϕ3. (7.12)

Acting by analogy with the case of finding the function ϕ2 = Tϕ1, we will find the
next formula for the spinwave function ϕ4 = Tϕ3, which is one of the basic functions
of irreducible representation of the rotation group D(1/2)

ABC[2] ∈ D(1)
AB ⊗ D(1/2)

C ,

ϕ4 = 1√
6

(

2 |1/2, −1/2〉A · |1/2, −1/2〉B · |1/2, 1/2〉C − (7.13)

− |1/2,− 1/2〉A · |1/2, 1/2〉B · |1/2, −1/2〉C −
− |1/2, 1/2〉A · |1/2, −1/2〉B · |1/2, −1/2〉C

)

.

Using the formulas (7.7), (7.10), (7.11) and (7.13), the spin moments
〈

SZp
〉 =

〈

ϕm | SZp | ϕm
〉

(p = A, B,C) associated with the states ϕm (m = 1 ÷ 4) were calcu-
lated and presented in the Table7.1.1

1The results from Table7.1 were also obtained in [389] without using the properties of the time-
reversal operator, but taking into account the corresponding Clebsh–Gordan coefficients.
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For p = A, B,C and m = 1 ÷ 4 it can be shown that

〈

SXp
〉 = 〈

ϕm | SXp | ϕm
〉 = 0,

〈

SYp
〉 = 〈

ϕm | SYp | ϕm
〉 = 0. (7.14)

As for
〈

SZp
〉

, one can see that mean values of operators SZ A and SZB , calculated
using the spin wave function ϕ1, are equal to zero, while in accordance to data
from [383], which are given in Fig. 7.1b, the spin moments at the corners B and C
are equal to zero. Thus, our notations turn into Kahn’s ones [383] at substitutions
A → B, B → C and correspondingly C → A.

According to Table7.1, the spin moment at the corner C is equal to 1/2 that
corresponds to the spin moment equal to 1 at the corner A in Kahn’s notations
(Fig. 7.1b, calculations are done using the wave function |1/2, 0〉). This difference
of values 1/2 and 1 is due to different coefficients at spin wave functions ϕ1 and
|1/2, 0〉 (the value 1/2 for the spin moment at the corner C corresponds to the
normalized wave function ϕ1 from (7.7)).

The mean values of operators SZ A, SZB and SZC calculated by means of the spin
wave function ϕ3 from (7.11) (see Table7.1) are 1/3, 1/3 and−1/6 at the corners A,
B and C of the triangle. Taking into account the substitutions A → B → C → A,
this leads to spin moments −1/3, 2/3 and 2/3 at the corners A, B and C in Kahn’s
notations (Fig. 7.1b, calculations are done using the wave function |1/2, 1〉). We see
that in this case the given in Table7.1 data concerning spin moments at the corners A,
B and C , calculated using the spin wave function ϕ3, and data from [383], obtained
using the spin wave function |1/2, 1〉 (Fig. 7.1c) also, differ by the same constant
factor 1/2. This deviation, as well as the previous one are due to different normalized
coefficients at wave functions ϕ3 and |1/2, 1〉. However, as it was alreadymentioned,
the main omission of [383], was to disregard contributions into spin moments at the
corners of the triangle caused by spin operators SZp (p = A, B,C) overaged by
means of spin wave functions ϕ2 = Tϕ1 and ϕ4 = Tϕ3.

A comparison of first and second rows, as well as of third and fourth rows in
the Table7.1 shows that any spin moment resulting after averaging the spin operator
SZp (p = A, B,C) by means of the wave function of one component of the Kramers
doublet will be canceled out by the opposite spin moment resulting after averaging
the SZp operator bymeans of the wave function of another component of the Kramers
doublet. Such a mutually compensation of spin moments is a consequence of the fact
that the spinwave functions of theKramers doublet are time-reversed onewith respect
to another. The functions ϕ1 and ϕ2 of one Kramers doublet connected with each
other by the relationship ϕ2 = Tϕ1, while between functions ϕ3 and ϕ4 of the another
Kramers doublet the relationship ϕ4 = Tϕ3 takes place, where T is the time-reversal
operator.

Thus, the instability of spin populations for a triangle of isotropic 1/2 spins anti-
ferromagnetically coupledwith respect to aweak structural deformation is forbidden.
This prohibition is due to the time-reversal operator properties, i.e., to the existence
of a time-reversal symmetry.
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7.3 Mutual Compensation of Distorted-Induced Spin
Polarization in a Trimer 5/2 ⊗ 5/2 ⊗ 5/2 Due to
Time-Reversal Symmetry

The absence of the instability of spin populations with respect to a weak deforma-
tion for a triangle of isotropic 1/2 spins antiferromagnetically coupled suggests that
such a situation must be also characteristic for trimer clusters containing paramag-
netic ions with high half-integer spins. Firstly, in this case the Kronecker product
of representations D(SA) ⊗ D(SB ) ⊗ D(SC ) (SA = SB = SC ) contains only two times
the irreducible representation D(1/2), in full analogy with the triangle of isotropic
1/2 spins. In the case of antiferromagnetic exchange interaction between ions of the
cluster it must lead to the presence of two Kramer doublets of the ground state, as
it occurs for the trihomonuclear cluster of isotropic 1/2 spins. Secondly, matrices of
unitary operators U(1/2)

p and U(S)
p (p = A, B,C) in the spinor basis have a similar

structure. For example, matrices U(3/2)
p and U(5/2)

p have the form

U(3/2)
p =

(

0 U(1/2)
p

U(1/2)
p 0

)

, U (5/2)
p =

⎛

⎜
⎝

0 0 U(1/2)
p

0 U(1/2)
p 0

U(1/2)
p 0 0

⎞

⎟
⎠ , (7.15)

where U(1/2)
p is defined by (7.9) and 0 is a the null (2 × 2)-matrix.

Among coordination compounds with high-spin trihomonuclear clusters there are
complex compounds, which contain trinuclear clusters

{

Fe3+
}

3 with spins Sp = 5/2
(p = A, B,C). Particularly, [Fe3O(OOCCH3)6(H2O)3]Cl · 6H2O is one of the first
chemical compounds, along with [Cr3O(OOCCH3)6(H2O)3]Cl · 6H2O (Sp = 3/2,
p = A, B,C ), in which there were discovered for the first-time trihomonuclear
clusters of ions of metals [370–373, 391–404]. Later, these and other clusters of
iron(III) and chromium(III) trihomonuclear compounds were investigated in detail.
The following consideration also applies to manganese(II) trihomonuclear com-
pounds (Sp = 5/2, p = A, B,C).

Let us calculate the resulting distortion-induced spin polarization in the ground
state of a trihomonuclear magnetic cluster with the values of individual spins equal
to Sp = 5/2 (p = A, B,C). In this case, the ground state of the trinuclear cluster
contains two Kramers doublets, as in the case of trihomonuclear clusters with Sp =
1/2 (p = A, B,C). But the structure of spin wave functions is essentially different
in comparison with the structure of ϕm (m = 1 ÷ 4) wave functions from (7.7),
(7.10), (7.11) and (7.13). Using Clebsh–Gordan coefficients for the vector coupling
of spins SA = SB = SC = 5/2 [9], we obtain twoKramers doublets {ψ1, ψ2 = Tψ1}
and {ψ3, ψ4 = Tψ3} associated with irreducible representations D(1/2)

ABC[3] ∈ D(2)
AB ⊗

D(5/2)
C and D(1/2)

ABC[4] ∈ D(3)
AB ⊗ D(5/2)

C , respectively.
The spin wave functions ψ1 and ψ2 = Tψ1 are [155]

ψ1 = 1

2
√
210

{√
10

[√
5

(|1/2〉A |−5/2〉B − |−5/2〉A |1/2〉B
)+ (7.16)
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+3
(|−3/2〉A |−1/2〉B − |−1/2〉A |−3/2〉B

)] |5/2〉C +
+4

[√
5

(|−5/2〉A |3/2〉B − |3/2〉A |−5/2〉B
) +

+√
2

(|1/2〉A |−3/2〉B − |−3/2〉A |1/2〉B
)] |3/2〉C +

+√
2

[

5
(|5/2〉A |−5/2〉B − |−5/2〉A |5/2〉B

) +
+ |3/2〉A |−3/2〉B − |−3/2〉A |3/2〉B +
+4

(|1/2〉A |−1/2〉B − |−1/2〉A |1/2〉B
)] |1/2〉C +

+2
√
2

[√
5

(|−3/2〉A |5/2〉B − |5/2〉A |−3/2〉B
) +

+√
2

(|3/2〉A |−1/2〉B − |−1/2〉A |3/2〉B
)] |−1/2〉C +

+√
2

[√
5

(|5/2〉A |−1/2〉B − |−1/2〉A |5/2〉B
) +

+ 3
(|1/2〉A |3/2〉B − |3/2〉A |1/2〉B

)] |−3/2〉C
}

,

ψ2 = KU(5/2)
A U(5/2)

B U(5/2)
C ψ1 = Tψ1. (7.17)

In the spinor basis {|5/2, 5/2〉 , |5/2, 3/2〉 , ..., |5/2, −3/2〉 , |5/2, −5/2〉} the uni-
tary matrix U(5/2)

p (p = A, B,C) is

U(5/2)
p =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 1
0 0 0 0 −1 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 1 0 0 0 0

−1 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (7.18)

Taking into account (7.16)–(7.18), we obtain:

ψ2 = 1

2
√
210

{√
10

[√
5

(|−1/2〉A |5/2〉B − |5/2〉A |−1/2〉B
)+ (7.19)

+3
(|3/2〉A |1/2〉B − |1/2〉A |3/2〉B

)] |−5/2〉C +
+4

[√
5

(|5/2〉A |−3/2〉B − |3/2〉A |5/2〉B
) +

+√
2

(|−1/2〉A |3/2〉B − |3/2〉A |−1/2〉B
)] |−3/2〉C +

+√
2

[

5
(|−5/2〉A |5/2〉B − |5/2〉A |−5/2〉B

) +
+ |−3/2〉A |3/2〉B − |3/2〉A |−3/2〉B +
+4

(|−1/2〉A |1/2〉B − |1/2〉A |−1/2〉B
)] |−1/2〉C +

+2
√
2

[√
5

(|3/2〉A |−5/2〉B − |−5/2〉A |3/2〉B
) +

+√
2

(|−3/2〉A |1/2〉B − |1/2〉A |−3/2〉B
)] |1/2〉C +

+√
2

[√
5

(|−5/2〉A |1/2〉B − |1/2〉A |−5/2〉B
) +

+ 3
(|−1/2〉A |−3/2〉B − |−3/2〉A |−1/2〉B

)] |3/2〉C
}

.
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The other two componentsψ3 and ψ4 = Tψ3 of the second ground state Kramers
doublet, associated with the representation D(1/2)

ABC[4] ∈ D(3)
AB ⊗ D(5/2)

C , are

ψ3 = 1

6
√
35

{√
5

[(|−3/2〉A |−1/2〉B + |−1/2〉A |−3/2〉B
) − (7.20)

−√
5

(|−5/2〉A |1/2〉B + |1/2〉A |−5/2〉B
)] |5/2〉C +

+2
[√

10
(|−5/2〉A |3/2〉B + |3/2〉A |−5/2〉B

) +
+ |−3/2〉A |1/2〉B + |1/2〉A |−3/2〉B − 2

√
2 |−1/2〉A |−1/2〉B

]

|3/2〉C +
+ [

4
(|−1/2〉A |1/2〉B + |1/2〉A |−1/2〉B

) − 7
(|−3/2〉A |3/2〉B + |3/2〉A |−3/2〉B

) −
−5

(|−5/2〉A |5/2〉B + |5/2〉A |−5/2〉B
)] |1/2〉C +

+2
√
2

[√
10

(|−3/2〉A |5/2〉B + |5/2〉A |−3/2〉B
) +

+ |−1/2〉A |3/2〉B + |3/2〉A |−1/2〉B − 2
√
2 |1/2〉A |1/2〉B

]

|−1/2〉C +
+5

[(|1/2〉A |3/2〉B + |3/2〉A |1/2〉B
) −

−√
5

(|−1/2〉A |5/2〉B + |5/2〉A |−1/2〉B
)] |−3/2〉C +

+2
√
5

[√
5

(|1/2〉A |5/2〉B + |5/2〉A |1/2〉B
)− 2

√
2 |3/2〉A |3/2〉B

]

|−5/2〉C
}

,

ψ4 = KU(5/2)
A U(5/2)

B U(5/2)
C ψ3 = Tψ3. (7.21)

Taking into account (7.18), (7.20) and (7.21), we obtain:

ψ4 = 1

6
√
35

{√
5

[(|3/2〉A |1/2〉B + |1/2〉A |3/2〉B
)− (7.22)

−√
5

(|5/2〉A |−1/2〉B + |−1/2〉A |5/2〉B
)] |−5/2〉C +

+2
[√

10
(|5/2〉A |−3/2〉B + |−3/2〉A |5/2〉B

) +
+ |3/2〉A |−1/2〉B + |−1/2〉A |3/2〉B − 2

√
2 |1/2〉A |1/2〉B

]

|−3/2〉C +
+ [

4
(|1/2〉A |−1/2〉B + |−1/2〉A |1/2〉B

)−
−7

(|3/2〉A |−3/2〉B + |−3/2〉A |3/2〉B
) −

−5
(|5/2〉A |−5/2〉B + |−5/2〉A |5/2〉B

)] |−1/2〉C +
+2

√
2

[√
10

(|3/2〉A |−5/2〉B + |−5/2〉A |3/2〉B
)+

+ |1/2〉A |−3/2〉B + |−3/2〉A |1/2〉B − 2
√
2 |−1/2〉A |−1/2〉B

]

|1/2〉C +
+5

[(|1/2〉A |−3/2〉B + |−3/2〉A |−1/2〉B
)−
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Table 7.2 The spin moments
〈

SZp
〉 = 〈

ψm | SZp | ψm
〉

(p = A, B,C) associated with the statesψm
(m = 1 ÷ 4) for a spin trimer with spins Sp = 5/2 [155]

ψm 〈SZ A〉 〈SZB〉 〈SZC 〉
ψ1 −1/3 −1/3 7/6

ψ2 1/3 1/3 −7/6

ψ3 2/3 2/3 −5/6

ψ4 −2/3 −2/3 5/6

−√
5

(|1/2〉A |−5/2〉B + |−5/2〉A |1/2〉B
)] |3/2〉C +

+2
√
5

[√
5

(|−1/2〉A |−5/2〉B + |−5/2〉A |−1/2〉B
) −

− 2
√
2 |−3/2〉A |−3/2〉B

]

|5/2〉C
}

.

For compactness, in formulas (7.16), (7.19), (7.20) and (7.22), the product of spin
wave functions |5/2, M〉A

∣
∣5/2, M ′〉

B

∣
∣5/2, M ′′〉

C is denoted | M〉A
∣
∣ M ′〉

B

∣
∣ M ′′〉

C .
The spin moments

〈

SZp
〉 = 〈

ψm | SZp | ψm
〉

(p = A, B,C) associated with the
states ψm (m = 1 ÷ 4) for the spin trimer with SA = SB = SC = 5/2 are given in
the Table 7.2.

For p = A, B,C and m = 1 ÷ 4, it can be shown that

〈

SXp
〉 = 〈

ψm | SXp | ψm
〉 = 0,

〈

SYp
〉 = 〈

ψm | SYp | ψm
〉 = 0. (7.23)

Comparison of the first and second rows, as well as the third and fourth rows in the
Table 7.2 in the case of a trimer containing ions with spins Sp = 5/2 (p = A, B,C)
shows that any spin moment at the corner p of the triangle, resulting after averaging
the spin operator SZp using the spin wave function ψ1, will be canceled out by
the opposite spin moment, resulting after averaging the SZp operator using the spin
wave function ψ2. Analogically, any spin moment at the corner p of the triangle,
resulting after averaging the spin operator SZp using the spin wave function ψ3, will
be canceled out by the opposite spin moment at the corner p of the triangle, resulting
after averaging of SZp operator using the spinwave functionψ4. The functionsψ1 and
ψ2 = Tψ1 are components of the ground state Kramers doublet, corresponding to
the irreducible representation D(1/2)

ABC[3] ∈ D(2)
AB ⊗ D(5/2)

C , while the functions ψ3 and
ψ4 = Tψ3 are components of the ground state Kramers doublet, corresponding to
the irreducible representation D(1/2)

ABC[4] ∈ D(3)
AB ⊗ D(5/2)

C . Themutual compensation of
spin moments at the corner p (p = A, B,C) of an equilateral triangle with Sp = 5/2
(as in the case of the triangle with Sp = 1/2) is due to the structure of time-reversal
operator T. A consequence of this compensation is the stability of spin populations
with respect to a weak deformation.
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7.4 Distortion-Induced Spin Population Instability of
Trimer Homonuclear Kramers Clusters Caused by
Time-Reversal Symmetry Violation

As it was shown in Sects. 7.2 and 7.3, the stability of spin populations in trimer
clusters with half-integer spin with respect to a weak structural deformation is due
to the time-reversal symmetry. Therefore, at violation of the time-reversal symmetry
the stability of spin populations should also be broken.

Traditionally, when the effects caused by the time-reversal symmetry violation in
many fields of physics are discussed, the sense of the conception “violation of the
time-reversal symmetry” is not refined.

Moreover, it is tacitly supposed, that the time-reversal symmetry completely dis-
appears at its violation. However, in the case of space symmetry under the action
of an external perturbation it first is lowered gradually as less symmetric atom con-
figurations appear and only in the limiting case it completely disappears (for point
groups of symmetry this corresponds to the symmetry group C1).

The question arises: whether something similar occurs also at time-reversal sym-
metry, despite the fact that in the non-relativistic quantummechanics time is separated
from space and flows only in one direction? Moreover, even in nuclear physics and
physics of elementary particles, in which relativistic effects are essential, it is not re-
vealed the content of the notion “the time-reversal symmetry violation”, considering
that the complete destruction of time-reversal symmetry takes place too.

In Chap.8 this problem is discussed on the basis of theoretical-group treatment
(discrete non-Abelian and Abelian groups of symmetry) with determination of all
incomplete time-reversal operators and their classification. Below, only two of these
operators are obtained and used to show that the time-reversal symmetry violation
(more exactly, the time-reversal symmetry lowering) leads to the spin populations
instability in a trimer cluster with half-integer spin.

Let us consider again the equilateral triangle ABC containing ions with half-
integer spins Sp (p = A, B,C) in the corners. As it was shown in [134], even in
the case of one particle with spin 1/2 there is a non-Abelian group of symmetry of
the eight order G(1/2)

8 consisting of operators iσyK, −e, −iσyK, e, σx , −σx , σzK
and −σzK. Here e is a unit operator defined in the spin space and in the spinor basis
set {|1/2, 1/2〉, |1/2,−1/2〉} ; σx , σy and σz are Pauli operators in the same spinor
basis set and K, as earlier, denotes the operator of complex conjugation.

It follows directly from the multiplication table of this group of symmetry
(Table 7.3), that for a particle with spin 1/2 the Wigner time-reversal operator T
can be represented as a product of two operators T1 and T2 [134]

T = T1 · T2, (7.24)
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Table 7.3 Multiplication table for elements of the group G(1/2)
8

G(1/2)
8

±iσyK ∓e ±σx ±σzK

iσyK ∓e ∓iσy K ±σzK ∓σx

-e ∓iσyK ±e ∓σx ∓σzK

−iσy K ±e ±iσyK ∓σzK ±σx

e ±iσy ∓e ±σx ±σzK

σx ∓σzK ∓σx ±e ∓iσyK

−σx ±σzK ±σx ∓e ±iσyK

σzK ±σx ∓σzK ±iσyK ±e

−σzK ∓σx ±σzK ∓iσyK ∓e

where
T1 = σzK, (7.25)

T2 = σx . (7.26)

TheoperatorT, aswell as operatorsT1 andT2 belong to the symmetry groupG(1/2)
8

(T,T1,T2 ∈ G(1/2)
8 ). Therefore, these operators commute with the corresponding

Hamiltonian of the system and the following invariance relationships hold

THT−1 = H, T1H1T−1
1 = H1, T2H2T−1

2 = H2, (7.27)

where H, H1 and H2 are different Hamiltonians (if the Hamiltonian H is invariant
under time-reversal operator T, then H2 and H3, which are invariant under T1 and
T2, respectively, contain interactions breaking T -symmetry).

The spin-projection operators Sx , Sy and Sz
(

S = 1
2σ

)

go into their negatives
under the time-reversal [222]. We will refer to the simultaneous change of signs of
all operators Sx , Sy and Sz under the action of the operatorT as the complete reversal
of motion and the operator T as the complete time-reversal operator.

On the other hand, taking into account (7.25) and (7.26), we obtain

T1SxT−1
1 = −Sx , T1SyT−1

1 = Sy, T1SzT−1
1 = Sz . (7.28)

T2SxT−1
2 = Sx , T2SyT−1

2 = −Sy, T2SzT−1
2 = −Sz . (7.29)

As follows from (7.28) and (7.29), only Sx changes its sign under the action of
the operator T1 and only Sy and Sz change signs under the action of the operator T2.
Therefore, T1 and T2 are “incomplete time-reversal operators”.
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A similar consideration can be carried out for systems with any high half-integer
spins. In particular, for systems with spin S = 3/2 the non-Abelian group of symme-
try G(3/2)

8 is formed from eight operatorsU(3/2)K, −e(3/2), −U(3/2)K, e(3/2), σ
(3/2)
x ,

−σ
(3/2)
x , σ

(3/2)
z K and−σ

(3/2)
z K, where e(3/2) is the unit operator defined in the spinor

basis set {|3/2, 3/2〉, . . . , |3/2,−3/2〉} and the block matrices U(3/2) , σ
(3/2)
x and

σ
(3/2)
z , in the same basis set, are

U(3/2) = i

(

0 σy

σy 0

)

, σ (3/2)
x =

(

0 σx

σx 0

)

, σ (3/2)
z =

(

σz 0
0 σz

)

. (7.30)

On the basis of the multiplication table of the G(1/2)
8 group of symmetry (which is

similar to the multiplication table for G(3/2)
8 group, taking into account that U(3/2) =

iσ (3/2)
y ) the time-reversal operator T = U(3/2)K for a system with spin S = 3/2 can

be represented as a product of two operators T1 and T2, in analogy with the formula
(7.24):

T = U(3/2)K = T1 · T2, (7.31)

where
T1 = σ (3/2)

z K, (7.32)

T2 = σ (3/2)
x . (7.33)

For systems with the spin S = 3/2 there apply the same relationships (7.27),
(7.28) and (7.29), which are valid for a particle with the spin S = 1/2.

For systems with spin S = 5/2 there is a non-Abelian group of symmetry G(5/2)
8

formed by operatorsU(5/2)K, −e(5/2), −U(5/2)K, e(5/2), σ
(5/2)
x , −σ

(5/2)
x , σ

(5/2)
z K and

−σ
(5/2)
z K, where e(5/2) is the unit operator defined in the spinor basis set {|5/2, 5/2〉,

..., |5/2,−5/2〉} and the block matrices U(5/2) , σ (5/2)
x and σ

(5/2)
z in the same basis

set are

U(5/2) = i

⎛

⎝

0 0 σy

0 σy 0
σy 0 0

⎞

⎠ , σ (5/2)
x =

⎛

⎝

0 0 σx

0 σx 0
σx 0 0

⎞

⎠ , (7.34)

σ (5/2)
z =

⎛

⎝

σz 0 0
0 σz 0
0 0 σz

⎞

⎠ .

The multiplication table for the elements of the G(5/2)
8 symmetry group is similar

to multiplication tables for the elements of G(1/2)
8 and G(3/2)

8 non-Abelian groups of
symmetry, taking into account that U(5/2) = iσ (5/2)

y (see (7.34)).
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In this case, the time-reversal operator T can also be represented as a product of
operators T1 and T2 (see the formulas (7.24)), which commute separately with the
Hamiltonian (see the formula (7.27)). These operators are

T1 = σ (5/2)
z K, (7.35)

T2 = σ (5/2)
x . (7.36)

The operators T1 and T2 satisfy the relationships (7.27), (7.28) and (7.29).
Nowwewill find out the behavior of distortion-induced spin polarizations at time-

reversal symmetry violation with preservation of T1- or T2-invariance. In Sect. 7.2,
it has been shown that, in the presence of the time-reversal symmetry, the instability
with respect to aweakdeformationof spin levels populations for a triangle of isotropic
1/2 spins antiferromagnetically coupled is forbidden.

We will show that such instability can take place at time-reversal symmetry viola-
tion. Let us consider, for example, the spin polarization at the corner C of the trimer
containing ions with spin Sp = 1/2 (p = A, B,C) at time-reversal symmetry vio-
lation, when the time-reversal operators T1, T2 and T are determined by formulas:

T1 = σzAσzBσzCK, (7.37)

T2 = σx Aσx BσxC , (7.38)

T = −i σyAσyBσyCK. (7.39)

The results of calculations of matrix elements of the operator SzC for the magnetic
trimer (Sp = 1/2, p = A, B,C) using spin wave functions ϕ1, Tϕ1, T1ϕ1,T2ϕ1,
ϕ3, Tϕ3, T1ϕ3 and T2ϕ3 are given for clarity in Tables7.4, 7.5 and 7.6.

Table 7.4 Mutual compensation of spin moments in the corner C of the triangle ABC of isotropic
1/2 spins AF coupled at presence of Wigner time-reversal symmetry

Spin wave functions ϕ1 Tϕ1 ϕ3 Tϕ3

〈SzC 〉 (in NμB units) 1/2 −1/2 −1/6 1/6

Table 7.5 Mutual compensation of spin moments in the corner C of the triangle ABC of isotropic
1/2 spins AF coupled at lowering the time-reversal symmetry from T (all projections Sx , Sy , Sz of
the spin operator S are reversed) up to incomplete time-reversal symmetry T2 (only two projections
of the spin operator S are reversed)

Spin wave functions ϕ1 T2ϕ1 ϕ3 T2ϕ3

〈SzC 〉 (in NμB units) 1/2 −1/2 −1/6 1/6
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Table 7.6 The resulting spin moment (2/3 in NμB units) in the corner C of the triangle ABC
of isotropic 1/2 spins AF coupled leading to a spin populations instability with respect to a weak
structural deformation due to lowering the time-reversal symmetry from T up to incomplete time-
reversal symmetry T1 (only one projection of the spin operator S is reversed)

Spin wave functions ϕ1 T1ϕ1 ϕ3 T1ϕ3

〈SzC 〉 (in NμB units) 1/2 1/2 −1/6 −1/6

Because the above-discussed symmetries are not realized simultaneously,
Tables7.4, 7.5 and 7.6 clearly show that the spin populations are stable in condi-
tions of time-reversal symmetries T or T2 and only if the time-reversal symmetry is
lowered from T up to T1 an instability of spin populations with respect to a weak
structural deformation arises.

One can see from Table7.6 that for the cluster with Sp = 1/2 at violation of T -
invariance (but preservation of T1-invariance), in the C corner of the triangle there
is a spin polarization, which was equal to zero in the presence of the complete time-
reversal symmetry (see Sect. 7.2).

Similar results are valid as well for two other corners of the triangle. Moreover,
for a triangle containing ions with spins Sp = 3/2, 5/2 or Sp > 5/2 there are also
unstable spin populations at all corners of the triangle at violation of the complete
time-reversal symmetry with preservation of the T1-invariance.

Thus, the theoretical-group treatment allows to find the physical sense of the
concept of lowering in time-reversal symmetry. Namely, in the most widespread
case of existence of a “the complete time-reversal symmetry”, the Hamiltonian is
invariant under the action of the operator T, whereas at an “incomplete time-reversal
transformation”, the Hamiltonian is invariant under the action of operatorsT1 andT2

(there are also other opportunities that are examined in Chap.8). If the Hamiltonian
of the system with a half-integer spin is invariant under the action of operator T1,
but is not invariant under the action of the operator T, then the Kramers theorem
is broken. In this case, an instability of spin populations with respect to a weak
structural distortion becomes possible.

According to (7.27), all three operators T, T1 and T2 commute with the corre-
sponding Hamiltonians as they belong to the same non-Abelian group of symmetry
(G(1/2)

8 , G(3/2)
8 , G(5/2)

8 , . . . for spin values 1/2, 3/2, 5/2, . . ., correspondingly). If
the Hamiltonian commutes with T1 or T2, but does not commutes with the oper-
ator T, then there is a violation of the complete time-reversal symmetry, which is
lowered up to T1- or T2-symmetries. Such a Hamiltonian plays the role of a pertur-
bation operator leading to the violation of the time-reversal symmetry. In particular,
under action of a permanent external electric field on trihomonuclear clusters with a
Kramers degeneracy of energy levels, the violation of time-reversal symmetry with
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preservation of T1-invariance becomes possible. In this case, the spin invariant like
∑

p
(α

(p)
yy S

(p)
y Ey + α

(p)
zz S(p)

z Ez) is allowed.Hereα
(p)
yy andα

(p)
zz are the constants of inter-

actions between the spin and the electric field, Ey and Ez being y- and z-components
of the electric field strength. Note that the Kramers theorem is also broken at vio-
lation of T -symmetry with preservation of T2-invariance and a spin invariant like
∑

p
α

(p)
xx S

(p)
x Ex is allowed, while in the case of T -invariance both these spin invariants

are forbidden.



Chapter 8
Non-Abelian and Abelian Symmetry
Groups Containing Time-Reversal
Operators

On the basis of the group-theoretic approach, the existence of six new time-reversal
operators is proved, along with the well-known anti-unitary time-reversal operator
introduced into quantum mechanics by Wigner. Among the new time-reversal oper-
ators, three are anti-unitary and three are unitary. A characteristic feature of the
new time-reversal operators is that under their action the signs do not change for
all three spin projection operators, but only for two or only for one of them. For
this reason, such operators should be called operators of incomplete time reversal,
in contrast to the Wigner operator, which in this context is an operator of complete
time reversal. Symmetry groups of the eighth and sixteenth orders containing the
operators of complete and incomplete time reversal, which are related to systems
with a half-integer angular momentum J, are introduced, and they are shown to
be non-Abelian groups. Each of these groups contains a fourth-order cyclic sub-
group, constructed on the basis of the Wigner time-reversal operator. Moreover, if
the symmetry groups contain operators of incomplete time reversal, but do not con-
tain a time-reversal operator, they are Abelian groups. In the case of non-Kramers
systems, the corresponding eighth and sixteenth orders groups are Abelian ones.
The structure of non-Abelian and, accordingly, Abelian groups is different, but
these structures do not change when the magnitude of the angular momentum J
varies for both types of groups. This chapter contains the results published by the
author [134, 136, 405–409] and their generalization.1

1In [409], a geometric proof of the Kramers theorem was obtained for the case of a particle with the
spin 1/2 based on the 4′m′m group of generalized symmetry of a square with neighboring vertices
colored in different colors (at the same color of opposite vertices). The group 4′m′m is isomorphic
to the eighth-order group G8 containing the time-reversal operator, on the basis of which it would
be possible to prove the existence of incomplete time-reversal operators. However, in [409] this was
not done.

© Springer Nature Switzerland AG 2018
I. I. Geru, Time-Reversal Symmetry, Springer Tracts in Modern Physics 281,
https://doi.org/10.1007/978-3-030-01210-6_8

229

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01210-6_8&domain=pdf
https://doi.org/10.1007/978-3-030-01210-6_8


230 8 Non-Abelian and Abelian Symmetry Groups Containing Time-Reversal Operators

8.1 Non-Abelian Group of Eighth Order Related to
Spin-1/2 Particle

In Chap.3, it was shown that for the Kramers system the extension of 32 crystal-
lographic point symmetry groups to nontrivial point groups of magnetic symme-
try (the number of which is equal to four) can be performed using a fourth-order
Abelian group G4: {T, T2=−e, T3 = −T, T4 = e} containing the time-reversal
operator T or, more generally, using the eighth-order non-Abelian group G8

( 1
2 ):

{T, T2 = −e, T3 = −T, T4 = e, σx , −σx , σzK, −σzK}. Here e is a unit (2 × 2)-
matrix, σx and σz are real Pauli matrices, and K is the operator of complex conjuga-
tion. In both cases, such an extension results in four nontrivial groups of magnetic
symmetry, the structure of which depends on the way of expansion of classical
point groups.

The group G4 is isomorphic to the group 4′ containing four antirotations by 90◦
around an axis passing through the center of a square, perpendicular to its plane,
with neighboring vertices colored in different colors and the opposite ones in a same
color.

The group G8
( 1
2 ) is isomorphic to the group 4′m ′m containing all the symmetry

transformations of a square with vertices colored as described above (Sect. 2.9, Fig.
2.2). In the Table8.1, the Kayley table elements of the group G8

( 1
2 ) are presented.

According to Table8.1, the following relation is satisfied:

iσyK = σzKσx (8.1)

Of course, this relation can be obtained directly based on the properties of the
Pauli matrices, without the use of the theory of groups. However, the fact that the
operators T = iσyK, σzK and σx belong to the same group of symmetry suggests
that σzK and σx together with the time-reversal operator T commute separately with
the corresponding Hamiltonians. However, not all of the spin projection operators
Sα = 1

2σα(α = x, y, z) change their sign under the action of the operatorsσzK andσx

σzKSxKσz = −Sx , σzKSyKσz = Sy, σzKSzKσz = Sz, (8.2)

Table 8.1 The Kayley table of the non-Abelian group G8

(
1
2

)
[405]

iσyK −e −iσyK e σx −σx σzK −σzK

iσyK −e −iσyK e iσyK σzK −σzK −σx σx

−e −iσyK e iσyK −e −σx σx −σzK σzK

−iσyK e iσyK −e −iσyK −σzK σzK σx −σx

e iσyK −e −iσyK e σx −σx σzK −σzK

σx −σzK −σx σzK σx e −e −iσyK iσyK

−σx σzK σx −σzK −σx −e e iσyK −iσyK

σzK σx −σzK −σx σzK iσyK −iσyK e −e

−σzK −σx σzK σx −σzK −iσyK iσyK −e e
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σx Sxσx = Sx , σx Syσx = −Sy, σx Szσx = −Sz, (8.3)

Taking into account (8.2) and (8.3), we introduce the notation

T1(x) = σzK, T2(yz) = σx , (8.4)

where the lower indices (x) and (yz) of the operators T1(x) and T2(yz) indicate the
spin projection operators that change the sign under the action of the corresponding
time-reversal operator. Since, according to (8.2)–(8.4), the action of operators T1(x)

and T2(yz) change the sign of Sx and, respectively, Sy and Sz , but they do not change
the sign of all spin projection operators, as it occurs in the case of the operatorT, these
operators can be referred to as “partial” time-reversal operators. Thus, the Wigner
time-reversal operator can be represented as the product of partial time-reversal
operators T1(x) and T2(yz) [134]:

T = T1(x)T2(yz). (8.5)

In this context, T is a total time-reversal operator. T, T1(x) and T2(yz) opera-
tors commute with different Hamiltonians, but not with the same Hamiltonian. For
example, if T commutes with H, then T1(x) and T2(yz) will not commute with this
Hamiltonian. Conversely: if T1(x) or T2(yz) commute separately with H1 or H2, then
T and T2(yz) or T and T1(x) will not be commuting with H. Therefore there is no

reason to give preference to the element T of the group G8
( 1
2 ) instead of elements

T1(x) and T2(yz). The basis for the representation of the T operator as a product of the
operators T1(x) and T2(yz) (see (8.5)) is a feature of the structure of Kayley table of

the group G8
( 1
2 ) (Table8.2). However, it follows from the same Kayley table that the

operator T1(x) (the action of which changes only the sign of the operator Sx , whereas
the operators Sy and Sz are invariant under such transformation) can be represented
as the product of operators T and T2(yz). This can use confusion due to the fact that
the operatorsT andT2(yz) have higher symmetry as compared with operator T1(x). In
reality, there is no contradiction, since the operators Sy and Sz change the sign twice
under the action of the operator TT2(yz). As a result, these operators are invariant
with respect to TT2(yz):

TT2(yz)SyT−1
2(yz)T

−1 = −TSyT−1 = Sy, (8.6)

TT2(yz)SzT−1
2(yz)T

−1 = −TSzT−1 = Sz . (8.7)

In this case, the sign of the spin projection operator Sx is changed under the action of
T operator, but it does not change under the action of T2(yz) operator, and as a result
we have the relation

TT2(yz)SxT −1
2(yz)T

−1 = −Sx , (8.8)
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which is equivalent to the relation

T1(x)SxT −1
1(x) = −Sx , (8.9)

while (8.6) and (8.7) are equivalent to the relations

T1(x)SyT −1
1(x) = Sy, T1(x)SzT −1

1(x) = Sz . (8.10)

Thus, using the symmetry properties of theG8
( 1
2 ) group allows to justify the intro-

duction of incomplete time-reversal operators and to represent theWignerT operator
of complete time-reversal as a product of the incomplete time-reversal operatorsT1(x)

and T2(yz) (see (8.5)). It is easy to understand that, along with T1(x) and T2(yz), there
must be also other operators of incomplete time-reversal, such as T1(y), T2(zx), T1(z),
T2(xy). However, the existence of these operators does not follow from the symmetry

of the non-Abelian group G8
( 1
2 ). In order to prove the existence of the operators

of incomplete time-reversal other than T1(x) and T2(yz), it is necessary to build and

study other groups of eighth order with elements other than the elements of theG8
( 1
2 )

group. Such groups may be obtained, for example, on the basis of the non-Abelian
group

G8
( 1
2 ) : {iσyK,−e,−iσyK, e, σx ,−σx , σzK,−σzK} (8.11)

by performing the cyclic permutation of indicies x, y, z. It is easy to see that one can
build only two groups of eighth order, different from the G8

( 1
2 ) (which we denoted

by G8
( 1
2 ,a) and G8

( 1
2 ,b)), under cyclic permutation of indices x → z → y → x and

x → y → z → x :

G8
( 1
2 ,a) : {iσxK,−e,−iσxK, e, σz,−σz, σyK,−σyK}, (8.12)

G8
( 1
2 ,b) : {iσzK,−e,−iσzK, e, σy,−σy, σxK,−σxK}. (8.13)

The Kayley tables of the group G8
( 1
2 ,a) and G8

( 1
2 ,b) are presented in Tables8.2

and 8.3.
Let’s consider again the non-Abelian symmetry group G8

( 1
2 ) and represent it,

taking into account (8.4), as a group consisting of the unit element e, the operator
of full time-reversal T and two different operators of partial time-reversal T1(x) and
T2(yz). Thus, each of the elements e, T, T1(x), T2(yz) will be in the group twice: once
with the coefficient +1, and other time with the coefficient −1:

G8
( 1
2 ) : {T,−e,−T, e,T2(yz),−T2(yz),T1(x),−T1(x)}. (8.14)
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Table 8.2 The Kayley table of the non-Abelian group G8

(
1
2 ,a

)
(8.12)

iσxK −e −iσxK e σz −σz σyK −σyK

iσxK e −iσxK −e iσxK σyK −σyK σz −σz

−e −iσxK e iσxK −e −σz σz −σyK σyK

−iσxK −e iσxK e −iσxK −σyK σyK −σz σz

e iσxK −e −iσxK e σz −σz σyK −σyK

σz −σyK −σz σyK σz e −e −iσxK iσxK

−σz σyK σz −σyK −σz −e e iσxK −iσxK

σyK −σz −σyK σz σyK iσxK −iσxK −e e

−σyK σz σyK −σz −σyK −iσxK iσxK e −e

Table 8.3 The Kayley table of the Abelian group G8

(
1
2 ,b

)
(8.13)

iσzK −e −iσzK e σy −σy σxK −σxK

iσzK e −iσzK −e iσzK −σxK σxK −σy σy

−e −iσzK e iσzK −e −σy σy −σxK σxK

−iσzK −e iσzK e −iσzK σxK −σxK σy −σy

e iσzK −e −iσzK e σy −σy σxK −σxK

σy −σxK −σy σxK σy e −e −iσzK iσzK

−σy σxK σy −σxK −σy −e e iσzK −iσzK

σxK −σy −σxK σy σxK −iσzK iσzK e −e

−σxK σy σxK −σy −σxK iσzK −iσzK −e e

Table 8.4 The Kayley table of the non-Abelian group G8

(
1
2

)
, formed by the total and partial

time-reversal operators

T −e −T e T2(yz) −T2(yz) T1(x) −T1(x)

T −e −T e T T1(x) −T1(x) −T2(yz) T2(yz)

−e −T e T −e −T2(yz) T2(yz) −T1(x) T1(x)

−T e T −e −T −T1(x) T1(x) T2(yz) −T2(yz)

e T −e −T e T2(yz) −T2(yz) T1(x) −T1(x)

T2(yz) −T1(x) −T2(yz) T1(x) T2(yz) e −e −T T

−T2(yz) T1(x) T2(yz) −T1(x) −T2(yz) −e e T −T

T1(x) T2(yz) −T1(x) −T2(yz) T1(x) T −T e −e

−T1(x) −T2(yz) T1(x) T2(yz) −T1(x) −T T −e e

In the Table8.4 there are given the elements of the Kayley table of the group
G8

( 1
2 ), containing the operators from (8.14).
Both Kayley Tables8.1 and 8.4 of the groupG8

( 1
2 ) are equivalent. In this case, the

definition of the G8
( 1
2 ) group elements (8.14) through the complete and incomplete

time-reversal operators has been possible due to the specific structure of the Kayley
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Table8.1. A similar situation is also typical for groups G8
( 1
2 ,a) and G8

( 1
2 ,b). As

follows from the Table8.2, the following relationship between the elements σyK,
iσxK and σz takes place:

σyK = iσxKσz . (8.15)

If we denote

T = σyK, T1(z) = iσxK, T2(xy) = σz, T = T1(z)T2(xy), (8.16)

then the group G8
( 1
2 ,a) can be represented as

G8
( 1
2 ,a) : {T1(z),−e,−T1(z), e,T2(xy),−T2(xy),T,−T}. (8.17)

In the case of the groupG8
( 1
2 ,a) the operator of complete time-reversalT = σyK is

different from the operator T = iσyK by an insignificant phase factor i = exp
(
i π
2

)
.

As throughout this book it is used the definition of the time-reversal operator T =
iσyK for a particle with the spin 1

2 [222], we denote the operator σyK in (8.16) and
(8.17) by T in order to avoid any confusion. Under the action of the operators T1(z),
T2(xy) and T of the group G8

( 1
2 ,a), the spin projection operators Sx ,Sy and Sz are

transformed as follows:

T1(z)SxT −1
1(z) = Sx , T1(z)SyT −1

1(z) = Sy, T1(z)SzT −1
1(z) = −Sz (8.18)

T2(xy)SxT −1
2(xy) = −Sx , T2(xy)SyT −1

2(xy) = −Sy, T2(xy)SzT −1
2(xy) = Sz (8.19)

TSxT
−1 = −Sx , TSyT

−1 = −Sy, TSzT
−1 = −Sz (8.20)

Taking into consideration (8.16) and (8.18)–(8.20), the Kayley table of the group
G8

( 1
2 ,a) (8.17) can be expressed in terms of the complete and incomplete time-

reversal operators T, T1(z) and T2(xy) (Table8.5).

Table 8.5 The Kayley table of the non-Abelian group G8

(
1
2 ,a

)
(8.17)

T1(z) −e −T1(z) e T2(xy) −T2(xy) T −T

T1(z) e −T1(z) −e T1(z) T −T T2(xy) −T2(xy)

−e −T1(z) e T1(z) −e −T2(xy) T2(xy) −T T

−T1(z) −e T1(z) e −T1(z) −T T −T2(xy) T2(xy)

e T1(z) −e −T1(z) e T2(xy) −T2(xy) T −T

T2(xy) −T −T2(xy) T T2(xy) e −e −T1(z) T1(z)

−T2(xy) T T2(xy) −T −T2(xy) −e e T1(z) −T1(z)

T −T2(xy) −T T2(xy) T T1(z) −T1(z) −e e

−T T2(xy) T −T2(xy) −T −T1(z) T1(z) e −e
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For obtaining incomplete time-reversal operators, a similar analysis can be per-
formed for the group G8

( 1
2 ,b) (8.13), based on the Kayley table of this group. First

of all we note that unlike the groups G8
( 1
2 ) and G8

( 1
2 ,a), the group G8

( 1
2 ,b) (8.13) is

Abelian and that among the elements of this group there are not found the complete
time-reversal operators T or T.

If we introduce the notation

T2(zx) = σy, T1(x) = −iσzK, T1(z) = σxK (8.21)

then in accordance with the Table8.3 the following relation exists between the oper-
ators (−iσzK), σxK and σy :

σy = (−iσzK)σxK (8.22)

Using (8.21), this relation can be represented as

T2(zx) = T1(x)T1(z). (8.23)

The operators of the spin projections Sx , Sy and Sz transform under incomplete

time-reversal operators T1(x), T1(z) and T2(xz) of the group G8
( 1
2 ,b), as follows:

T1(x)SxT −1
1(x) = −Sx , T1(x)SyT −1

1(x) = Sy, T1(x)SzT −1
1(x) = Sz (8.24)

T1(z)SxT −1
1(z) = Sx , T1(z)SyT −1

1(z) = Sy, T1(z)SzT −1
1(z) = −Sz (8.25)

T2(xz)SxT −1
2(xz) = −Sx , T2(xz)SyT −1

2(xz) = Sy, T2(xz)SzT −1
2(xz) = −Sz (8.26)

Using (8.21), the group G8
( 1
2 ,b) (8.13) can be represented as

G8
( 1
2 ,b) : {−T1(x),−e,T1(x), e,T2(zx),−T2(zx),T1(z),−T1(z)} (8.27)

The Kayley table of the group G8
( 1
2 ,b) (8.27) is presented in the Table8.6.

As seen from (8.13) and (8.21)–(8.23), as well as fromTable8.3 and 8.6, the group
G8

( 1
2 ,b) includes only incomplete time-reversal operators and the unit element. In

this case, the operatorT2(zx) is the product of the operatorsT1(x) andT1(z) (8.23). The
results of the identification of incomplete time-reversal operators based on symmetry
properties of non-Abelian groups G8

1
2 and G8

( 1
2 ,a), and the Abelian group G8

( 1
2 ,b)

are presented in the Table8.7.
As already mentioned, the operator T from the Table8.7 related to the group

G8
( 1
2 ,a) differs from theWigner time-reversal operatorT = iσyK by the phase factor

i . The operator T1(x) related to the group G8
( 1
2 ,b) differs by the factor −i from the

operator T1(x) related to the group G8
( 1
2 ). Similarly, the operator T1(z) related to the
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group G8
( 1
2 ,a) differs by the factor −i from the operator T1(z) related to the group

G8
( 1
2 ,b). On the basis of the Table8.7 it can be concluded that the use of the symmetry

properties of the groupsG8
( 1
2 ),G8

( 1
2 ,a) andG8

( 1
2 ,b) elements permitted identification

of the following incomplete time-reversal operators: T2(yz),T2(zx), T2(xy), T1(x) and
T1(z). However, this approach doesn’t allow identifying the operator T1(y), and the
operators T1(x) and T1(z) that are found on the basis of different groups to differ from
eachother byphase factor.Moreover, it is not proved the possible representation of the
operator T with fixed phase factor as operators T2(xy) T1(z) and T2(zx)T1(y) as well
as the product of operators T1(x),T1(y) and T1(z). An alternative way to determine
the operators of incomplete time-reversal, free of the deficiencies noted, will be
developed in Sect. 8.2 by extending the G8

( 1
2 ) group to the non-Abelian group of

higher, sixteenth order. Before doing this expansion, we will make a generalization
of theG8

( 1
2 ) group to the case of the same group of eight-order, but related to systems

with a high half-integer angular momentum J .

Table 8.6 The Kayley table of the Abelian group G8

(
1
2 ,b

)
(8.27)

−T1(x) −e T1(x) e T2(zx) −T2(zx) T1(z) −T1(z)

−T1(x) e T1(x) −e −T1(x) −T1(z) T1(z) −T2(zx) T2(zx)

−e T1(x) e −T1(x) −e −T2(zx) T2(zx) −T1(z) T1(z)

T1(x) −e −T1(x) e T1(x) T1(z) −T1(z) T2(zx) −T2(zx)

e −T1(x) −e T1(x) e T2(zx) −T2(zx) T1(z) −T1(z)

T2(zx) −T1(z) −T2(zx) T1(z) T2(zx) e −e T1(x) −T1(x)

−T2(zx) T1(z) T2(zx) −T1(z) −T2(zx) −e e −T1(x) T1(x)

T1(z) −T2(zx) −T1(z) T2(zx) T1(z) T1(x) −T1(x) e −e

−T1(z) T2(zx) T1(z) −T2(zx) −T1(z) −T1(x) T1(x) −e e

Table 8.7 The operators of incomplete time-reversal related to symmetry properties of groups

G8

(
1
2

)
, G8

(
1
2 ,a

)
and G8

(
1
2 ,b

)

Group The operators of incomplete time-reversal

G8

(
1
2

)
T2(yz) = σx , T1(x) = σzK, T = iσyK = T1(x)T2(yz). There are missing the
definitions of operators T1(y) and T1(z), the representation of the operator
T2(yz) as T2(yz) = T1(y)T1(z), and, accordingly, the representation of the T
operator as T = T1(x)T1(y)T1(z)

G8

(
1
2 ,a

)
T2(xy) = σz , T1(z) = −iσxK, T = σyK = T1(z)T2(xy). There are missing the
definitions of operators T1(x) and T1(y), the representation of the operator
T2(xy) through T1(x) and T1(y) and, accordingly, the representation of the T
operator through T1(x), T1(y), and T1(z)

G8

(
1
2 ,b

)
The group G8

(
1
2 ,b

)
is Abelian and does not include the operator of complete

time-reversal T. T2(zx) = T2(xz) = σy , T1(z) = σxK, T1(x) = −iσzK,
T2(zx) = T1(z)T1(x) = T1(x)T1(z). There are missing the representations of
the operator T through T2(zx) and T1(y), and, accordingly, through operators
T1(x), T1(y) and T1(z)
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Let us suppose that the system is characterized by angular momentum J = 3
2 . In

this case, the group G8
( 3
2 ) is formed by the following elements:

G8
( 3
2 ) : {T, −e(

3
2 ), −T, e(

3
2 ), V ( 3

2 ), −V ( 3
2 ), W ( 3

2 )K, −W ( 3
2 )K}, (8.28)

where e(
3
2 ) is a unit (4 × 4)-matrix, T is given by:

T = U ( 3
2 )K, (8.29)

and U ( 3
2 ), V ( 3

2 ), W ( 3
2 ) represents the following matrices

U ( 3
2 ) =

(
0 iσy

iσy 0

)
, V ( 3

2 ) =
(
0 σx

σx 0

)
,W ( 3

2 ) =
(

σz 0
0 σz

)
. (8.30)

In (8.30) and further in (8.33) and (8.36) 0 denotes the zero 2 × 2-matrix.
If we consider that T in the Table8.1 is the time-reversal operator for a system

with the angular momentum J = 3
2 and replace e, σx , iσy and σz by e(

3
2 ),V ( 3

2 ),U ( 3
2 )

and W ( 3
2 ), then we obtain the Kayley table of non-Abelian G8

( 3
2 ) group, related to

a system with the angular momentum J = 3
2 .

Now, let’s consider a system with the angular momentum J = 5
2 . In this case, the

group G8
( 5
2 ) is

G8
( 5
2 ) : {T, −e(

5
2 ), −T, e(

5
2 ), V ( 5

2 ), −V ( 5
2 ), W ( 5

2 )K, −W ( 5
2 )K}, (8.31)

where e(
5
2 ) is a unit 6 × 6-matrix, and the time-reversal operator T has the form

T = U ( 5
2 )K. (8.32)

In (8.31) and (8.32) U ( 5
2 ), V ( 5

2 ) and W ( 5
2 ) represents the matrix:

U( 5
2 )=

⎛
⎜⎜⎝
0 0 iσy

0 iσy 0
iσy 0 0

⎞
⎟⎟⎠, V( 5

2 )=

⎛
⎜⎜⎝
0 0 σx

0 σx 0
σx 0 0

⎞
⎟⎟⎠, W( 5

2 )=

⎛
⎜⎜⎝
σz 0 0
0 σz 0
0 0 σz

⎞
⎟⎟⎠. (8.33)

If we consider that T in the Table8.1 is the time-reversal operator for a system
with the angular momentum J = 5

2 and replace e, σx , iσy and σz by e(
5
2 ),U ( 5

2 ), V ( 5
2 )

and W ( 5
2 ), then we obtain the Kayley table of non-Abelian group G8

( 5
2 ), related to

a system with the angular momentum J = 5
2 .

Now, let J = 7
2 . The non-Abelian group G8

( 7
2 ) of a system with the angular

momentum J contains the following elements:

G8
( 7
2 ) : {T, −e(

7
2 ), −T, e(

7
2 ), V ( 7

2 ), −V ( 7
2 ), W ( 7

2 )K, −W ( 7
2 )K}, (8.34)
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where e(
7
2 ) is a unit (8 × 8)- matrix, and the operator T is given by

T = U ( 7
2 )K. (8.35)

In (8.34) and (8.35), we use the notation U ( 7
2 ),V ( 7

2 ) and W ( 7
2 ) for the following

matrices, respectively:

U ( 7
2 ) =

⎛
⎜⎜⎝

0 0 0 iσy

0 0 iσy 0
0 iσy 0 0
iσy 0 0 0

⎞
⎟⎟⎠ , V ( 7

2 ) =

⎛
⎜⎜⎝

0 0 0 σx

0 0 σx 0
0 σx 0 0
σx 0 0 0

⎞
⎟⎟⎠ ,

W ( 7
2 ) =

⎛
⎜⎜⎝

σz 0 0 0
0 σz 0 0
0 0 σz 0
0 0 0 σz

⎞
⎟⎟⎠ . (8.36)

The form of matrices in (8.36) is similar to that of matrices in (8.33).
If we consider that T in the Table8.1 is the time-reversal operator (8.35) for a

system with the angular momentum J = 7
2 and replace e, σx , iσy and σz by e(

7
2 ),

U ( 7
2 ),V ( 7

2 ) andW ( 7
2 ), then we obtain the Kayley table of non-Abelian group G8

( 7
2 ),

related to a systemwith the angular momentum J = 7
2 . On the basis of (8.28)–(8.36)

we can conclude that for an arbitrary half-integer value of the angular momentum J
the non-Abelian group G8

(J ) has the following structure:

G8
(J ) : {T, −e(J ), −T, e(J ), V (J ), −V (J ), W (J )K, −W (J )K} (8.37)

where e(J ) is the unit ((2J + 1) × (2J + 1))-matrix, and the complete time-reversal
operator T is

T = U (J )K. (8.38)

In (8.37) and (8.38) U (J ), V (J ) and W (J ) are the following matrices:

U (J ) =

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

iσy

0 iσy

iσy

... 0iσy

, V (J ) =

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

σx

0 σx

σx

... 0
σx

,

W (J ) =

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

σz

σz 0
σz

0
. . .

σz

(8.39)
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In (8.39) iσy , σx and σz in matrices U (J ), V (J ) and W (J ) are found J + 1
2 times.

If we consider that T from Table8.1 is an operator of complete time-reversal for a
system with a half-integer angular momentum J and substitute e, σx , iσy and σz by
e(J ),U (J ), V (J ) andW (J ), than we obtain the Kayley table for the non-Abelian group
G8

(J ) related to a system with the half-integer angular momentum J . Analogically,
if in (8.14) and in the Table8.4 we substitute e by e(J ) and define the operator T by
(8.38), and the operators T2(yz) and T1(x) by the formulas

T2(yz) = V (J ), (8.40)

T1(x) = W (J )K, (8.41)

where U (J ), V (J ) and W (J ) are defined by (8.39), then we obtain the non-Abelian
group G8

(J ), formed by the complete and incomplete time-reversal operators ±T,
±T2(yz) and ±T1(x) (taking into account that for Kramers system ±e(J ) = ±T 4),
and its Kayley table, for arbitrary half-integer J .

8.2 Extension of the Group G8

(
1
2

)
to Non-Abelian Groups

of Sixteenth Order Related to Kramers Systems

We extend the group G8
( 1
2 ) to the group G16

( 1
2 ), presenting it as a direct product of

groups
G16

( 1
2 ) = G8

( 1
2 ) ⊗ G2, (8.42)

where G2 is a second-order cyclic group formed by the elementsK andK2 = 1. The
non-Abelian group G16

( 1
2 ) consists of the following elements:

G16
( 1
2 ) : {

iσyK,−e,−iσyK, e, σx ,−σx , σzK,−σzK, (8.43)

iσy,−eK,−iσy, eK, σxK,−σxK, σz,−σz
}
.

It is easy to create the Kayley table of group G16
( 1
2 ), which is conveniently to be

represented in the form of four blocks: O11, O12, O21 and O22 (Tables 8.8, 8.9, 8.10
and 8.11).

The block O11 of the Kayley table of G16
( 1
2 ) group coincides with the Kayley

Table8.1 of the group G8
( 1
2 ), which has been discussed in the Sect. 8.1.Based on the

structure of this Kayley table, it was justified the introduction of incomplete time-
reversal operators T2(yz) and T1(x) (see (8.4)), and shown that the operator T can be
represented as a product of operators T1(x) and T2(yz) (8.1), (8.4), (8.5).

Based on the structure of the block O12 of the Kayley table of the group G16
( 1
2 )

it can be set the relation

(σzK)(eK) = σz . (8.44)
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Table 8.8 The Kayley table of the non-Abelian group G16

(
1
2

)
(the block O11)

iσyK −e −iσyK e σx −σx σzK −σzK

iσyK −e −iσyK e iσyK σzK −σzK −σx σx

−e −iσyK e iσyK −e −σx σx −σzK σzK

−iσyK e iσyK −e −iσyK −σzK σzK σx −σx

e iσyK −e −iσyK e σx −σx σzK −σzK

σx −σzK −σx σzK σx e −e −iσyK iσyK

−σx σzK σx −σzK −σx −e e iσyK −iσyK

σzK σx −σzK −σx σzK iσyK −iσyK e −e

−σzK −σx σzK σx −σzK −iσyK iσyK −e e

Table 8.9 The Kayley table of the non-Abelian group G16

(
1
2

)
(the block O12)

iσy −eK −iσy eK σxK −σxK σz −σz

iσyK −eK −iσy eK iσy σz −σz −σxK σxK

−e −iσy eK iσy −eK −σxK σxK −σz σz

−iσyK eK iσy −eK −iσy −σz σz σxK −σxK

e iσy −eK −iσy eK σxK −σxK σz −σz

σx −σz −σxK σz σxK eK −eK −iσy iσy

−σx σz σxK −σz −σxK −eK eK iσy −iσy

σzK σxK −σz −σxK σz iσy −iσy eK −eK

−σzK −σxK σz σxK −σz −iσy iσy −eK eK

Table 8.10 The Kayley table of the non-Abelian group G16

(
1
2

)
(the block O21)

iσyK −e −iσyK e σx −σx σzK −σzK

iσy −eK −iσy eK iσy σz −σz −σxK σxK

−eK −iσy eK iσy −eK −σxK σxK −σz σz

−iσy eK iσy −eK −iσy −σz σz σxK −σxK

eK iσy −eK −iσy eK σxK −σxK σz −σz

σxK −σz −σxK σz σxK eK −eK −iσy iσy

−σxK σz σxK −σz −σxK −eK eK iσy −iσy

σz σxK −σz −σxK σz iσy −iσy eK −eK

−σz −σxK σz σzK −σz −iσy iσy −eK eK

If the notation T2(xy) from (8.16) is used and a new notation

T1(x) = σzK, T1(y) = eK (8.45)
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Table 8.11 The Kayley table of the non-Abelian group G16

(
1
2

)
(the block O22)

iσy −eK −iσy eK σxK −σxK σz −σz

iσy −e −iσyK e iσyK σzK −σzK −σx σx

−eK −iσyK e iσyK −e −σx σx −σzK σzK

−iσy e iσyK −e −iσyK −σzK σzK σx −σx

eK iσyK −e −iσyK e σx −σx σzK −σzK

σxK −σzK −σx σzK σx e −e −iσyK iσyK

−σxK σzK σx −σzK −σx −e e iσyK −iσyK

σz σx −σzK −σx σzK iσyK −iσyK e −e

−σz −σx σzK σx −σzK −iσyK iσyK −e e

is introduced, then the notation (8.44) can be rewritten as

T2(xy) = T1(x)T1(y). (8.46)

It is seen that the operatorT1(x) = −iσzK from (8.21), obtained by using the group
G8

( 1
2 ,b) (8.13), differs by the phase factor −i from the operator T1(x) from (8.45),

defined by using the block O12 of the Kayley table of the group G16
( 1
2 ). However,

we note that the difference in phase factors does not affect the result of the action of
the T1(x) operator on the spin projection operators Sx , Sy and Sz .

The structure of the block O21 allows writing the relation

(eK)(σzK) = σz, (8.47)

which coincides with (8.44), since the operators eK and σzK commute. In addition,
the rules of multiplication of elements of the G16

( 1
2 ) group belonging to the block

O21, lead to the known relation between the Pauli matrices

σzσx = iσy . (8.48)

However, it is not surprising this known relationship, confirmed by the Kayley
table, but the fact that iσy , σz and σx are operators of incomplete time-reversal:
T2(zx) = iσy , T2(xy) = σz , T2(yz) = σx and T2(zx) = T2(xy)T2(yz). It should be noted
that the operator Sy changes its sign twice under the operator T2(xy)T2(yz) (as a result
it remains unchanged), while the operators Sx and Sz change the sign only once. As
a consequence, the operator T2(xy)T2(yz) is equivalent to the operator T2(zx).

New operator relations containing the incomplete time-reversal operators can also
be found based on the structure of the Kayley table of the group G16

( 1
2 )

T = (iσy)(eK) = iσyK, (8.49)

T = σz(σxK) = iσyK. (8.50)
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According to the rules of multiplication of O11 block elements of Kayley table
for the groupG16

( 1
2 ) (which coincide with the rules of multiplication ofG8

( 1
2 ) group

elements), we have the relations

T = iσyK = (σzK)σx = T1(x)T2(yz), (8.51)

where T1(x) and T2(yz) are defined in (8.4). On the other hand, on the basis of the rules
of multiplication of O22 block elements we find

T2(yz) = σx = (eK)(σxK) = T1(y)T1(z), (8.52)

where

T1(y) = eK, T1(z) = σxK. (8.53)

Using (8.53), the operator T of (8.51) can be represented as

T = T1(x)T2(yz) = T1(x)T1(y)T1(z). (8.54)

Further, on the basis of the rules of multiplication of elements of the same block
we find two expressions for the operator T, different in form but identical in content

T = (iσy)(eK) = T2(zx)T1(y) = (σzK)(σxK)T1(y) = (8.55)

= T1(x)T1(z)T1(y) = T1(x)T1(y)T1(z),

T = σz(σxK) = T2(xy)T1(z), (8.56)

where

T2(zx) = iσy, T2(xy) = σz, (8.57)

while T1(y), T1(z) and T1(x) are determined by (8.53) and (8.4), respectively. The

rules of multiplication of O12 block elements of Kayley table for the group G16
( 1
2 )

allow the operator T2(xy) = σz from (8.57) to be represented as

T2(xy) = (σzK)(eK) = T1(x)T1(y). (8.58)

Substituting T2(xy) of (8.58) in (8.56), we find

T = T2(xy)T1(z) = T1(x)T1(y)T1(z). (8.59)
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It is seen that the relations (8.49) and (8.50) can be represented in the formof (8.55)
and (8.56) (or (8.59)), of which right sides contain the operators of incomplete time-
reversal. Thus, it was proved the existence of six incomplete time-reversal operators
T1(x), T1(y), T1(z), T2(yz), T2(zx), and T2(xy) on the basis of rules of multiplication of

the G16
( 1
2 ) group elements.

In quantum mechanics and quantum field theory, T -symmetry is one of the fun-
damental discrete symmetries.With regard to T1(x)-, T1(y)-,T1(z)-, T2(yz)-, T2(zx)-, and
T2(xy)-symmetry, now their range of application is not determined. Assuming that
under some conditions any one of these symmetries takes place, at the same time a
violation of T -symmetry will happen. In this case, one should talk about a lowering
of the symmetry, not about the violation of the complete time-reversal symmetry,
by analogy with the lowering of the spatial symmetry in the presence of an exter-
nal perturbation. If the first eight elements of the G16

( 1
2 ) group (8.43) are presented

in the form of equivalent elements of the G8
( 1
2 ) group (8.14), and for the remain-

ing elements we take into account that iσy = T2(zx), eK = T1(y), σxK = T1(z), and
σz = T2(xy), (8.53) and (8.57), this group can be represented by operators of complete
and incomplete time-reversal, taking into account that e = T4

G16
( 1
2 ) : {

T, −e, −T, e, T2(yz), −T2(yz), T1(x), −T1(x), T2(zx), (8.60)

−T1(y), −T2(zx), T1(y), T1(z), −T1(z), T2(xy), −T2(xy)
}
.

The Kayley table of this group is presented in the AppendixB.
Extension of the G16

( 1
2 ) group to G16

(J ) at a half-integer angular momentum
J > 1

2 is carried out by analogy with the extension of the G8
( 1
2 ) group to G8

(J ). In
this case, the G16

(J ) group may be represented as direct products of groups G8
(J )

and G2,

G16
(J ) = G8

(J ) ⊗ G2, (8.61)

where the G8
(J ) group is defined in (8.37) and G2 is a second-order Abelian group,

formed ofK andK2 = 1 elements. Considering this, it is easy to show that theG16
(J )

group is formed of the following elements

G16
(J ) : {T, −e(J ), −T, e(J ), V (J ), −V (J ), W (J )K, −W (J )K, U (J ),

−e(J )K, −U (J ), eK, V (J )K, −V (J )K, W (J ), −W (J )}, (8.62)

where T,U (J ), V (J ), and W (J ) are defined by (8.38) and (8.39). The Kayley table of
the G16

(J ) group (8.62) is presented in the AppendixC.
Using (8.38), (8.40), and (8.41) and introducing the notation

T2(zx) = U (J ), T2(xy) = W (J ), T1(y) = e(J )K, T1(z) = V (J )K (8.63)
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and taking into account that T4 = (V (J ))4K4 = e(J ) for Kramers systems, the
group G16

(J ) elements can be defined by the operators of complete and incomplete
time-reversal

G16
(J ) : {T, −e(J ), −T, e(J ), T2(yz), −T2(yz), T1(x), −T1(x), T2(zx),

−T1(y), −T2(zx), T1(y), T1(z), −T1(z), T2(xy), −T2(xy)}.
(8.64)

The Kayley table of the G16
(J ) group (8.64) is presented in the AppendixD.

It should be noted that the Kayley table of the G16
(J ) group (8.64) at half-integer

J is identical in form with the Kayley table of the G16
( 1
2 ) group (8.60). This means

that the structure of the matricesU (J ),V (J ) andW (J ) from (8.39) at half-integer J has
been determined correctly and that there are an infinite number of finite non-Abelian
G16

(J ) groups at half-integer J = 1
2 , 1, 3

2 , . . . ,∞ for which the Kayley tables have
the same structure.

With regard to incomplete time-reversal operators, they can be introduced into
quantummechanics for particleswith the spin 1

2 in two differentways: (1) on the basis

of Kayley tables of non-Abelian groups G8
( 1
2 ),G8

( 1
2 ,a) and G8

( 1
2 ,b)(Tables8.1, 8.2

and 8.3), and (2) on the basis of the Kayley table of theG16
( 1
2 ) group (Tables8.8, 8.9,

8.10 and 8.11). As it was shown in Sect. 8.1, the incomplete time-reversal operators
obtained by the first method may differ by phase factors. For example, the operator
T1(x) = −iσzK, found on the basis of the G8

( 1
2 ,b) group, differs by a phase factor−i

from the T1(x) = σzK operator, found on the basis of the group G8
( 1
2 ). Similarly, the

operatorT1(z) = −iσxK, determined using theG8
( 1
2 ,a) group, differs by an−i factor

from theT1(z) = σxK operator, found on the basis of theG8
( 1
2 ,b) group.Analogically,

the operator T1(z) = −iσxK, defined by a group G8
( 1
2 ,a), differs by a factor −i from

the operator T1(z) = σxK, found on the basis of the group G8
( 1
2 ,b). This difference

in the phase factors has no effect on the result of action of incomplete time-reversal
operators on the spin projection operators and on the wave functions (which are
determined themselves up to a phase factor). Nevertheless, it seems that determining
the incomplete time-reversal operators is more acceptable by second way, in which
their form are uniquely determined.

8.3 Abelian Groups of Eighth and Sixteenth Orders
Related to Non-Kramers Systems

The essential difference between non-Kramers and Kramers system is that for the
first the Abelian group, built on the basis of theT andT2 operators, is a second-order
group, while for Kramers systems the lowest order Abelian group is built on the basis
of T, T2, T3 and T4 operators and is a fourth-order group.
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In the Sect. 3.2, the G4
( 1
2 ) : {T, T2 = −e, T3 = −T, T4 = e} group has been

extended to theG8
( 1
2 ) group on the basis of existence of an isomorphic group 4m ′m of

generalized symmetry of a square with neighboring vertices colored with different
colors (at the same time, the opposite vertices must have of the same color). The
4′m ′m group has eight symmetry elements: four antirotations,4′

z , 4
′
z
2, 4′

z
3, 4′

z
4 = e,

two reflectionsmxy
(i)(i = 1, 2) in the diagonals of the square and two antireflections

mx
(i)(i = 1, 2) in the lines passing through themiddle of the opposite sides (Fig. 3.1).

In the Sect. 8.1, two new groupsG8
( 1
2 ,a) andG8

( 1
2 ,b), have been obtained on the basis

of theG8
( 1
2 ) group.Basedon theKayley tables of theG8

( 1
2 ) andG8

( 1
2 ,a) groups, it has

been demonstrated the existence ofT1(x) andT2(yz), and, respectively,T1(z) andT2(xy)

operators of incomplete time reversal. The G8
( 1
2 ,b) group does not contain the time-

reversal operator T. However, using this group it has been proven the representation
of the T2(zx) operator as T2(zx) = T1(z)T1(x). It was shown that the regular method
of introducing all possible (compatible with the symmetry properties) operators of
incomplete time reversal T2(yz), T2(zx), T2(xy), T1(x), T1(y) and T1(z) for a particle

with spin 1
2 is based on the extension of the group G8

( 1
2 ) to the non-Abelian group

G16
( 1
2 ). The Groups G8

( 1
2 ) and G16

( 1
2 ) were further extended to the groups G8

(J )

and G16
(J ) at half-integer J.

A similar, but not identical program can also be used to find operators of incom-
plete time reversal in the case of non-Kramers systems.We begin with the analysis of
the simplest case of a non-Kramers system characterized by the angular momentum
J = 1. It is easy to verify that the following four operators T = U (1)K, e(1), W (1)

and V (1)K form the group

G4
(1) : {T, e(1), W (1), V (1)K }, (8.65)

where

U (1) =
⎛
⎝
0 0 1
0 −1 0
1 0 0

⎞
⎠ , V (1) =

⎛
⎝
0 0 1
0 1 0
1 0 0

⎞
⎠ , W (1) =

⎛
⎝
1 0 0
0 −1 0
0 0 1

⎞
⎠ (8.66)

and e(1) is the unit 3 × 3-matrix.
It must be noted that the number of rows and the number of columns of matrices

e(1),U (1), W (1) and V (1) is three. This number is odd for any integer J, which makes
it impossible to use Kronecker products of operators to extend the group G4

(1) to the
group G4

(J ) with an integer J, in contrast to the Kramers systems for which such an
extension was carried out. Another significant difference between the groups related
to Kramers systems and the groups related to non-Kramers systems is that in the
first case these groups are non-Abelian, whereas in the second case they are Abelian
groups.

It is easy to verify that the elements of the groupG4
(1) commutewith each other. If,

in addition, the extension of the group G4
(1) to a group of higher order (for example,
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Table 8.12 The Kayley table of the Abelian group G4
(1)

T e(1) W (1) V (1)K

T e(1) T V (1)K W (1)

e(1) T e(1) W (1) V (1)K

W (1) V (1)K W (1) e(1) T

V (1)K W (1) V (1)K T e(1)

Table 8.13 The Kayley table of the Abelian group G4
(1) (8.70)

T e(1) T2(xy) T1(z)

T e(1) T T1(z) T2(xy)

e(1) T e(1) T2(xy) T1(z)

T2(xy) T1(z) T2(xy) e(1) T

T1(x) T2(xy) T1(z) T e(1)

to the group G8
(1)) is carried out using some cyclic group, then the extended group

will also be Abelian. The Kayley table of the group G4
(1) is given in the Table8.12.

In the Table8.12, the time-reversal operator T is represented as T = U (1)K, and
W (1) and V (1)K are operators of incomplete time reversal

W (1)Sx (W
(1))

−1 = −Sx , W (1)Sy(W
(1))

−1 = −Sy , W (1)Sz(W
(1))

−1 = Sz, (8.67)

V (1)KSx (V
(1)K)−1 = Sx , V (1)KSy(V

(1)K)−1 = Sy, (8.68)

V (1)KSz(V
(1)K)−1 = −Sz .

On the basis of (8.67) and (8.68) and in accordance with the notations adopted
in this book, operators W (1) and V (1)K should be represented through the operators
T2(xy) and T1(z):

T2(xy) = W (1), T1(z) = V (1)K. (8.69)

In this case, the group G4
(1) (8.65) can be represented in the form

G4
(1) : { T, e(1), T2(xy), T1(z) }. (8.70)

Taking into account that e(1) = T2, the Kayley table of the group G4
(1) can be rep-

resented through operators of complete and incomplete time reversal (Table8.13).
Using the cyclic group G2 : {K, K2 = 1}, the group G4

(1)can be extended to the
group G8

(1) = G4
(1) ⊗ G2:

G8
(1) : { T, e(1), W (1), V (1)K, U (1), e(1)K, W (1)K, V (1) }. (8.71)
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Table 8.14 The Kayley table of the Abelian group G8
(1) (8.71)

T e(1) W (1) V (1)K U (1) e(1)K W (1)K V (1)

T e(1) T V (1)K W (1) e(1)K U (1) V (1) W (1)K

e(1) T e(1) W (1) V (1)K U (1) e(1)K W (1)K V (1)

W (1) V (1)K W (1) e(1) T V (1) W (1)K e(1)K U (1)

V (1)K W (1) V (1)K T e(1) W (1)K V (1) U (1) e(1)K

U (1) e(1)K U (1) V (1) W (1)K e(1) T V (1)K W (1)

e(1)K U (1) e(1)K W (1)K V (1) T e(1) W (1) V (1)K

W (1)K V (1) W (1)K e(1)K U (1) V (1)K W (1) e(1) T

V (1) W (1)K V (1) U (1) e(1)K W (1) V (1)K T e(1)

The Kayley table of the group G8
(1) is presented in Table8.14.

On the basis of the Kayley Table8.13 and taking into account that T = U (1)K,
we found the following relations:

T = T2(xy)T1(z), T = T1(y)T2(zx), T = T1(x)T2(yz), (8.72)

where

T2(xy) = W (1), T1(z) = V (1)K, T1(y) = e(1)K, T2(zx) = U (1), (8.73)

T1(x) = W (1)K, T2(yz) = V (1).

Taking account of (8.73), the group G8
(1) (8.71) can be represented through the

operators of complete and incomplete time reversal

G8
(1) : { T, e(1), T2(xy), T1(z), T2(zx), T1(y), T1(x), T2(yz) }. (8.74)

The Kayley table of the Abelian group G8
(1) (8.74), expressed in terms of operators

of complete and partial time reversal, is presented in the Table8.15.
The Table8.15 contains all six operators of incomplete time reversalT2(yz),T2(zx),

T2(xy), T1(x), T1(y), T1(z), along with the operator of full time reversal T. Thus, using
the Kayley Table8.14 of the Abelian group G8

(1) = G4
(1) ⊗ G2 from (8.71) there

can be found all six operators of incomplete time reversal for the system with the
angular momentum J = 1.

Another method for determining operators of incomplete time reversal for a sys-

tem with the angular momentum J = 1 is to use the Kayley table of the group G̃8
(1)

that differs in structure from the group G8
(1) (8.71) and is made up of the following

elements:

G̃8
(1) : { e(1), −e(1), T, −T, V (1), −V (1), W (1)K, −W (1)K }, (8.75)
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Table 8.15 The Kayley table of the Abelian group G8
(1) (8.74)

T e(1) T2(xy) T1(z) T2(zx) T1(y) T1(x) T2(yz)

T e(1) T T1(z) T2(xy) T1(y) T2(zx) T2(yz) T1(x)

e(1) T e(1) T2(xy) T1(z) T2(zx) T1(y) T1(x) T2(yz)

T2(xy) T1(z) T2(xy) e(1) T T2(yz) T1(x) T1(y) T2(zx)

T1(z) T2(xy) T1(z) T e(1) T1(x) T2(yz) T2(zx) e(1)K

T2(zx) T1(y) T2(zx) T2(yz) T1(x) e(1) T T1(z) T2(xy)

T1(y) T2(zx) T1(y) T1(x) T2(yz) T e(1) T2(xy) T1(z)

T1(x) T2(yz) T1(x) T1(y) T2(zx) T1(z) T2(xy) e(1) T

T2(yz) T1(x) T2(yz) T2(zx) T1(y) T2(xy) T1(z) T e(1)

where e(1) is the unit 3 × 3-matrix, U (1), V (1), and W (1) are determined by (8.66),

and T = U (1)K. The Kayley table of the group G̃8
(1)

is presented in the Table8.16.

The group G̃8
(1)

also allows us to find the operators of incomplete time reversal,
since on the basis of Table8.16 there is the relation

T = (W (1)K)V (1) (8.76)

that coincides with the third relation from (8.72), where T = U (1)K and T1(x) and

T2(yz) are defined in (8.73). Introducing the operatorsT2(yz) andT1(x), the group G̃8
(1)

(8.75) becomes a group formed from the operators of complete and incomplete time
reversal

G̃8
(1) : { e(1), −e(1), T, −T, T2(yz), −T2(yz), T1(x), −T1(x) }. (8.77)

Table 8.16 The Kayley table of Abelian group G̃(1)
8 (8.75)

e(1) −e(1) T −T V (1) −V (1) W (1)K −W (1)K

e(1) e(1) −e(1) T −T V (1) −V (1) W (1)K −W (1)K

−e(1) −e(1) e(1) −T T −V (1) V (1) −W (1)K W (1)K

T T −T e(1) −e(1) W (1)K −W (1)K V (1) −V (1)

−T −T T −e(1) e(1) −W (1)K W (1)K −V (1) V (1)

V (1) V (1) −V (1) W (1)K −W (1)K e(1) −e(1) T −T

−V (1) −V (1) V (1) −W (1)K W (1)K −e(1) e(1) −T T

W (1)K W (1)K −W (1)K V (1) −V (1) T −T e(1) −e(1)

−W (1)K −W (1)K W (1)K −V (1) V (1) −T T −e(1) e(1)
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Table 8.17 The Kayley table of the Abelian group G̃8
(1)

(8.77)

e(1) −e(1) T −T T2(yz) −T2(yz) T1(x) −T1(x)

e(1) e(1) −e(1) T −T T2(yz) −T2(yz) T1(x) −T1(x)

−e(1) −e(1) e(1) −T T −T2(yz) T2(yz) −T1(x) T1(x)

T T −T e(1) −e(1) T1(x) −T1(x) T2(yz) −T2(yz)

−T −T T −e(1) e(1) −T1(x) T1(x) −T2(yz) T2(yz)

T2(yz) T2(yz) −T2(yz) T1(x) −T1(x) e(1) −e(1) T −T

−T2(yz) −T2(yz) T2(yz) −T1(x) T1(x) −e(1) e(1) −T T

T1(x) T1(x) −T1(x) T2(yz) −T2(yz) T −T e(1) −e(1)

−T1(x) −T1(x) T1(x) −T2(yz) T2(yz) −T T −e(1) e(1)

The Kayley table of this group in terms of the operators of complete and incomplete
time reversal is presented in the Table8.17.

The generalization of the groups G8
(1) (8.71) and G̃8

(1)
(8.75) to the case of non-

Kramers systemswith angularmomentum J > 1 is carried out by a direct verification
of the fulfillment of group postulates for J = 2 and J = 3. Assuming

U (2) =

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

1

0 −1
1

−1 01

, V (2) =

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

1

0 1
1

1 01

, (8.78)

W (2) =

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

1
−1 01

0 −1
1

we can see that if in (8.71) and (8.75) to replace e(1), U (1), V (1) and W (1) by e(2),

U (2), V (2) and W (2), then the groups G8
(1) and G̃8

(1)
go over into the groups G8

(2)

and G̃8
(2)
, respectively. As for the Kayley tables of groups G8

(2) and G̃8
(2)
, they will

remain the same as for the G8
(1) and G̃8

(1)
groups, taking into account the above

replacements.
A direct check of the fulfillment of group postulates in the transition from e(2),

U (2), V (2) and W (2) to e(3), U (3), V (3) and W (3),where
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U (3) =

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

1

0 −1
1

... 01

, V (3) =

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

1

0 1
1

... 01

, (8.79)

W (3) =

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

1
−1 01

0
. . .

1

shows that G8
(3) and G̃8

(3)
, as well as G8

(2), G8
(1) and G̃8

(2)
, G̃8

(1)
are Abelian

symmetry groups. On the basis of the method of mathematical induction, we can

conclude that G8
(J ) and G̃8

(J )
are eighth-order Abelian symmetry groups for any

integer angular momentum J and consist of the following elements:

G8
(J ) : {T, e(J ), W (J ), V (J )K, U (J ), e(J )K, W (J )K, V (J )}, (8.80)

˜G8
(J ) : {e(J ), −e(J ), T, −T, V (J ), −V (J ), W (J )K, −W (J )K}, (8.81)

where U (J ), V (J ) and W (J ) are the following (2J + 1) × (2J + 1)-matrices:

U (J ) =

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

1

0 −1
1

... 01

, V (J ) =

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

1

0 1
1

... 01

, (8.82)

W (J ) =

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

1
−1 01

0
. . .

1

,

T = U (J )K is the complete time-reversal operator and e(J ) is a unit (2J + 1) ×
(2J + 1)-matrix.
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In this case, each of the matrices U (J ), V (J ) and W (J ) is symmetric with respect
to the reflection of its matrix elements at the center of the matrix and has the property

(U (J ))2 = e(J ), (V (J ))2 = e(J ), (W (J ))2 = e(J ). (8.83)

The group G(J )
8 can be easily extended to the Abelian group G(J )

16 = G(J )
8 ⊗ G2,

where the cyclic group G2 is formed by elements K and K2 = 1.

8.4 Peculiarities of the Structure of Eighth- and
Sixteenth-Order Non-Abelian Groups

In order to elucidate the structure of the non-Abelian group G8
( 1
2 ) (8.11), we denote

by gi and gk the elements of the cyclic subgroup G4
( 1
2 )(gi , gk ∈ G4

( 1
2 )), containing

four consecutive antirotations at an angle of 90◦ about an axis passing through the
center of a square with colored vertices, perpendicular to its plane, as shown in Fig.
2.2. Let denote by hi and hk two of the four remaining elements of the group G8

( 1
2 )

that do not belong to the subgroup G4
( 1
2 ). These four elements constitute the set

H4
( 1
2 )(hi , hk ∈ H4

( 1
2 )). In this case, we have

gi gk ∈ G4
( 1
2 ), hihk ∈ G4

( 1
2 ), gihk ∈ H4

( 1
2 ), hi gk ∈ H4

( 1
2 ). (8.84)

As seen from (8.84), any product of elements of the set H4
( 1
2 ) belongs to the

subgroup G4
( 1
2 ).

The indicated properties of the elements of group G8
( 1
2 ) follow directly from the

Kayley table (Table8.1) of this group. The relation gi gk ∈ G4
( 1
2 ) from (8.84) follows

from the definition of the groupG4
( 1
2 ) containing the elements iσyK, (iσyK)2 = −e,

(iσyK)3 = −iσyK and (iσyK)4 = e and is trivial. The correctness of the remaining
three relations from (8.84) can be verified using Table8.1:

hihk = gl ∈ G4
( 1
2 )

σx (−σx ) = −e, σx (±σzK) = ∓T,

σzK(±σx ) = ±T, σzK(−σzK) = −e.

(8.85)

gihk = hl ∈ H4
( 1
2 )

T(±σx ) = ±σzK, T(±σzK) = ∓σx ,

e(±σx ) = ±σx , e(±σzK) = ±σzK.

(8.86)
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hi gk = hm ∈ H4
( 1
2 )

σx (±T) = ∓σzK, σx (±e) = ±σx ,

(σzK)(±T) = ±σx , (σzK)(±e) = ±σzK.

(8.87)

Similar relations hold for the group G8
(J ) (8.37) related to Kramers systems with

half-integer angular momenta J > 1/2:
hihk = gl ∈ G4

(J )

V (J )(−V (J )) = −e(J ), V (J )(±W (J )K) = ∓T,

W (J )K(±V (J )) = ±T, (W (J )K)(−W (J )K) = −e(J ).

(8.88)

gihk = hl ∈ H4
(J )

T(±V (J )) = ±W (J )K, T(±W (J )K) = ∓V (J ),

e(J )(±V (J )) = ±V (J ), e(J )(±W (J )K) = ±W (J )K.

(8.89)

hi gk = hm ∈ H4
(J )

V (J )(±T) = ∓W (J )K, V (J )(±e(J )) = ±V (J ),

(W (J )K)(±T) = ±V (J ), W (J )K(±e(J )) = ±W (J )K.

(8.90)

As in the case of the group G8
( 1
2 ) (8.11), the relation gi gk ∈ G4

(J ) holds, where
the fourth-order cyclic group G4

(J ) is formed by the elements U (J )K, (U (J )K)2 =
−e(J ), (U (J )K)3 = −U (J )K and (U (J )K)4 = e(J ). In (8.88), (8.89) and (8.90)
T = U (J )K, e(J ) is the unit (2J + 1) × (2J + 1)-matrix, whileU (J ), V (J ) andW (J )

are determined by (8.39).
The elements of the group G8

( 1
2 ,a) (8.12) are characterized by the same features

as the elements of the group G8
( 1
2 ) (8.11):

hihk = gl ∈ G4
( 1
2 ,a)

σz(−σz) = −e, σxK(±σz) = ±σyK,

σz(±iσxK) = ∓σyK, (iσxK)(−iσxK) = −e.

(8.91)

gihk = hl ∈ H4
( 1
2 ,a)

σyK(±iσxK) = ∓σz, σyK(±σz) = ±iσxK,

e(±σz) = ±σz, e(±iσxK) = ±iσxK.

(8.92)

hi gk = hm ∈ H4
( 1
2 ,a)

(iσxK)(±σyK) = ±σz, σz(±e) = ±σz,

(±iσxK)e = ±iσxK, σz(±σyK) = ∓iσxK.

(8.93)
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Table 8.18 The Kayley table of the non-Abelian group G8
(J,a) at half-integer angular momentum

J (8.94)
iV (J )K −e(J ) −iV (J )K e(J ) W (J ) −W (J ) −iU (J )K iU (J )K

iV (J )K e(J ) −iV (J )K −e(J ) iV (J )K iU (J )K −iU (J )K −W (J ) W (J )

−e(J ) −iV (J )K e(J ) iV (J )K −e(J ) −W (J ) W (J ) iU (J )K −iU (J )K

−iV (J )K −e(J ) iV (J )K e(J ) −iV (J )K −iU (J )K iU (J )K W (J ) −W (J )

e(J ) iV (J )K −e(J ) −iV (J )K e(J ) W (J ) −W (J ) −iU (J )K iU (J )K

W (J ) iU (J )K −W (J ) −iU (J )K W (J ) e(J ) −e(J ) −iV (J )K iV (J )K

−W (J ) −iU (J )K W (J ) iU (J )K −W (J ) −e(J ) e(J ) iV (J )K −iV (J )K

−iU (J )K −W (J ) iU (J )K W (J ) −iU (J )K −iV (J )K iV (J )K e(J ) −e(J )

iU (J )K W (J ) −iU (J )K −W (J ) iU (J )K iV (J )K −iV (J )K −e(J ) e(J )

As in the case of the group G8
( 1
2 ), a fourth-order cyclic group G4

( 1
2 ,a)(gi gk ∈

G4
( 1
2 ,a)) is separated in the group G8

( 1
2 ,a). The fourth-order cyclic group G4

(J,a) is
also separated in the groupG8

(J,a) (8.94). The groupG8
(J,a), which is a generalization

of the group G8
( 1
2 ,a) to the case of an arbitrary half-integer angular momentum J, is

formed by the elements

G8
(J,a) : {iV (J )K, −e(J ), −iV (J )K, e(J ), W (J ), −W (J ), −iU (J )K, iU (J )K}, (8.94)

where e(J ) is a unit ((2J + 1) × (2J + 1))-matrix and U (J ), V (J ) and W (J ) are
determined by (8.39). The Kayley table of this group is presented in the Table8.18.

On the basis of Table8.18, one can see that the elements of the group G8
(J,a) are

characterized by the same features as the elements of the group G8
( 1
2 ,a)

hihk = gl ∈ G4
(J,a)

W (J )(−W (J )) = −e(J ),W (J )(±iV (J )K) = ±iU (J )K,

iV (J )K(−iV (J )K) = −e(J ), iV (J )K(±W (J )) = ∓iU (J )K.

(8.95)

gihk = hl ∈ H4
(J,a)

−iU (J )K(±iV (J )K) = ∓V (J ),−iU (J )K(±W (J )) = ±iV (J )K,

e(J )(±W (J )) = ±W (J ), e(J )(±iV (J )K) = ±iV (J )K.

(8.96)

hi gk = hm ∈ H4
(J,a)

W (J )(∓iU (J )K) = ∓iV (J )K, W (J )(±e(J )) = ±W (J ),

(iV (J )K)(∓iU (J )K) = ±W (J ), (±iV (J )K)e(J ) = ±iV (J )K.

(8.97)

As already noted, the group G8
( 1
2 ,b) (8.13) does not contain the operator of com-

plete time reversal T and is an Abelian group.
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Table 8.19 The Kayley table of the Abelian group G8
(J,b) (8.98) at half-integer angular

momentum J
iW (J )K −e(J ) −iW (J )K e(J ) −iU (J ) iU (J ) V (J )K −V (J )K

iW (J )K e(J ) −iW (J )K −e(J ) iW (J )K −V (J )K V (J )K iU (J ) −iU (J )

−e(J ) −iW (J )K e(J ) iW (J )K −e(J ) iU (J ) −iU (J ) −V (J )K V (J )K

−iW (J )K −e(J ) iW (J )K e(J ) −iW (J )K V (J )K −V (J )K −iU (J ) iU (J )

e(J ) iW (J )K −e(J ) −iW (J )K e(J ) −iU (J ) iU (J ) V (J )K −V (J )K

−iU (J ) V (J )K iU (J ) −V (J )K −iU (J ) −e(J ) e(J ) −iV (J )K iV (J )K

iU (J ) −V (J )K −iU (J ) V (J )K iU (J ) e(J ) −e(J ) iV (J )K −iV (J )K

V (J )K iU (J ) −V (J )K −iU (J ) V (J )K iW (J )K −iW (J )K e(J ) −e(J )

−V (J )K −iU (J ) V (J )K iU (J ) −V (J )K −iW (J )K iW (J )K −e(J ) e(J )

This group can be easily generalized to the group G8
(J,b) at an arbitrary half-integer

angular momentum J :

G8
(J,b) : {iW (J )K, −e(J ), −iW (J )K, e(J ), −iU (J ), iU (J ), V (J )K, −V (J )K}, (8.98)

where, as before e(J ) is a unit ((2J + 1) × (2J + 1)) -matrix and U (J ), V (J ) and
W (J ) are defined by (8.39).

The Kayley table of the group G8
(J,b) (8.98) is presented in the Table8.19.

All the groups considered above relating to systems with Kramers degeneracy of
energy levels are non-Abelian symmetry groups. Exceptions are the groups G8

( 1
2 ,b)

and G8
(J,b), which do not contain the operator of the complete time reversal T, but

contain operators of incomplete time reversal. Although they refer to systems with
a half-integer angular momentum J , these groups do not contain fourth-order cyclic
groups based on the T operator, related to the Kramers degeneracy of energy levels.

Unlike the systems with a half-integer angular momentum, for an integer J the
groups containing the time-reversal operator T are Abelian symmetry groups. This
is due to the fact that such groups can not contain a fourth-order cyclic subgroup,
but contain only a second-order cyclic subgroup formed by the operators T and
T2 = e(J ). Nevertheless, in this case there is also a definite structure of the symmetry
groups, which is preserved with increasing the angular momentum (J > 1). More-
over, due to the commutation of the elements of these groups, their Kayley tables
become more symmetric in comparison with Kayley tables of the groups related to
Kramers systems. In particular, the group G8

(1) (8.71) contains a fourth-order non-
cyclic subgroup formed by the elements e(1), U (1)K, W (1) and V (1)K. As follows
from the Table8.14, two equivalent (4 × 4)-blocks of the Kayley table of this group
consist of only elements of the subgroup G4

(1) and are located on the main diagonal
of the Kayley table. The elements of the group G8

(1) that are not part of the subgroup
G4 form two other equivalent (4 × 4)-blocks located on the secondary diagonal of
the Kayley table. Such a structure of the Kayley table is also characteristic of the
group G8

(J ) for any integer J .
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An analogous situation is also characteristic of the group G̃8
(J )

, for which the
elements e(J ), −e(J ), T and −T form a cyclic subgroup of G̃4

(J )
, and the remaining

four elements V (J ), −V (J ), W (J )K, and −W (J )K do not enter into G̃4
(J )

. As can
be seen from the Table8.16 at J = 1, in this case also the elements of the subgroup
G̃8

(J )
form two equivalent (4 × 4)-blocks located on the main diagonal of the Kayley

table. The remaining elements of the group G̃8
(J )

form two other equivalent (4 × 4)-
blocks located on the secondary diagonal of the Kayley table.

In the case of the Kramers systems, the structure embedded in the group G8
(J ) is

preserved evenwhen it is expanded by a second-order cyclic groupG2 : {K, K2 = 1}
to the groups G(J )

16 (8.62) and G(J )
16 (8.64) (AppendicesC and D).



Chapter 9
Factorization of Wigner Time-Reversal
Operator and Reduction of
Time-Reversal Symmetry

The Wigner time-reversal operator T is represented as the product of two or three
so-called operators of incomplete time reversal, under the action of which not all
the angular momentum projection operators change sign. It is shown that when the
symmetry of time reversal is violated (reduced) in systems with Kramers degeneracy
of energy levels, a violation of the Kramers theorem occurs, with the exception of
one case when such reducing is insufficient to remove the Kramers degeneracy. The
commutation and anticommutation relations between operators of incomplete time
reversal, as well as between these operators and the operatorT, are found. It is shown
that these relations are different for Kramers and non-Kramers systems. In the two-
boson representation of the angular momentum J , it is shown that for an integer
J the sum of the occupation numbers of bosons of two types can be negative. This
corresponds to the antibosonic states, which can be obtained from boson states under
the action of the time-reversal operator.

The existence of six incomplete time-reversal operators, found in Chap.8, causes
six possibilities for reducing the time-reversal symmetry to one of the six incomplete
time-reversal symmetries. For a systems consisting of spin-1/2 particles, six types
of reduced T -symmetry could be restored by using the concept of meta-particles.
There are six types of meta-particles related to spin-1/2 elementary particle and
other six types of meta-particles related to a spin-1 elementary particles (Sect. 9.7).
For systems with integer angular momentum the lowering of the T -symmetry to T2-
or T1-symmetry also is possible. Particularly, this may be relevant for interactions
between elementary particles of nuclei through spin-1 gauge vector bosons. In this
case the lowered T -symmetry (from T - to T2- or T1-symmetry) can be restored by
introducing six types of gauge vector meta-bosons.

This chapter is written on the basis of the results obtained and published by the
author [134, 136, 431–433, 455, 456].
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I. I. Geru, Time-Reversal Symmetry, Springer Tracts in Modern Physics 281,
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9.1 Six New Types of Time-Reversal Symmetry Related
to Kramers Systems

In Sect. 8.1, a non-Abelian group of the 8th order,G8
( 1
2 ), was introduced for a particle

with spin 1
2 , which contains the time-reversal operator T. This group is isomorphic

to the 4′m ′m group of generalized symmetry of a square with neighboring vertices
colored in different colors, provided that opposite vertices are of the same color [134].
Because of the isomorphism of the groups G8

( 1
2 ) and 4′m ′m, there is a one-to-one

correspondence between the operatorsT,T2 = −e,T3 = −T,T4 = e and successive
anti-rotations by an angle 90◦ about the axis passing through the center of the square,
perpendicular to its plane 4′

z, 4′2
z, 4′3

z and 4′4
z . As for the remaining four elements

of the group G8
( 1
2 ), (σx , −σx , σzK, −σzK), they correspond to two reflections in

the diagonals of the square and two anti-reflections in the lines passing through the
centers of opposite sides.

We see that the operators σx and σzK describe the symmetry and antisymmetry
transformations if the values of thewave functions�, T�, T2� andT3� correspond
to the vertices of the square (Fig. 2.2). This is not surprising, considering, for example,
that the time-reversal operatorT

(
T = iσyK

)
is defined on the basis of the imaginary

Pauli operator σy [222]. Moreover, under certain conditions, in the case of a violation
of T -symmetry, the operators σx and σzK can act as operators of incomplete time
reversal T2(yz) and T1(x) (8.4) and (8.5).

Equations8.4 and 8.5 were found on the basis of the properties of the Kayley
table of the group G8

( 1
2 ). It turned out that the operator T can be represented as

the product of the operators T1(x) and T2(yz). By the concept of factorization of the
operator T we mean such a product of operators that form part of the operator T,
which are elements of the same symmetry group.

In the case of Kramers systems, this is the group G8
( 1
2 ) and its various gen-

eralizations, which were fulfilled in Sects. 8.1 and 8.2. The representation of the
time-reversal operator T as the product of two (or three) operators, each of which
commutes with the corresponding Hamiltonian, means the existence of a potential
possibility of breaking the T -symmetry or, more precisely, its lowering (from T - to
T2(yz)-symmetry or T1(z)-symmetry in the case of the G8

( 1
2 ) group). This happens

if the Hamiltonian is invariant, for example, with respect to the operator T1(x), but
is not invariant under the operators T and T2(yz). This situation holds, in particular,
for the Hamiltonian H = αyz

(
EySy + EzSz

)
, which is invariant under the operator

T1(x), but is not invariant with respect to the operators T2(yz) and T, which leads to
a decrease of the T -symmetry to T1(x)- symmetry. In the Hamiltonian H, Ey and
Ez are components of the constant electric field strength, and αyz is the spin-electric
field coupling constant (see Sect. 7.4).

The nontrivial factorization of the time-reversal operator, found on the basis of the
symmetry properties of the group G8

( 1
2 ) (8.11), is not unique. Using the properties

of the group G8
( 1
2 ,a) (8.12), we found a nontrivial factorization of the time-reversal

operator T = T1(z)T2(xy), where T = σyK (the operator that differs by the factor
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i from the Wigner time-reversal operator T = iσyK), T1(z) and T2(xy) are defined
in (8.16).

The symmetry properties of the Abelian groupG8
( 1
2 ,b), which contains the opera-

tors of incomplete time reversal, together with the unit element, but does not contain
the operator T, allow us to find the nontrivial factorization of the operator of incom-
plete time reversal T2(zx) in the form T2(zx) = T1(z)T1(x) = T1(x)T1(z) (8.23), where
T2(zx), T1(z) and T1(x) are defined in (8.21).

The extension of the group G8
( 1
2 ) (8.11) to the group G16

( 1
2 ) (8.43) made it

possible to prove on the basis of (8.45), (8.52), (8.53) and (8.57) that in the case of
a particle with spin 1

2 there are only six operators of incomplete time reversal:

T1(x) = σzK, T1(y) = eK, T1(z) = σxK,

T2(yz) = σx , T2(zx) = iσy, T2(xy) = σz,
(9.1)

where e is the unit element of the group G16
( 1
2 ).

Using the incomplete time inversion operators from (9.1), the nontrivial factor-
ization of the operator of complete time reversal T is realized in the following ways:

T = T1(x)T2(yz) = T1(x)T1(y)T1(z),

T = T2(zx)T1(y) = T1(x)T1(z)T1(y) = T1(x)T1(y)T1(z),

T = T2(xy)T1(z) = T1(x)T1(y)T1(z).

(9.2)

The Wigner’s time-reversal operator T together with the incomplete time
reversal operators from (9.1) form a system of seven time-reversal operators in the
simple case of a particle of spin 1

2 . In Sect. 8.1, it was shown that if the group G8
( 1
2 )

is extended to the group G8
(J ) for a system with half-integer angular momentum

J , and the group G8
(J ) is extended further to the group G16

(J ) (8.62), then it can
be proved on the basis of (8.40), (8.41) and (8.63) that in this case there exist the
following six operators of incomplete time reversal:

T1(x) = W (J )K, T1(y) = e(J )K, T1(z) = V (J )K,

T2(yz) = V (J ), T2(zx) = U (J ), T2(xy) = W (J ),
(9.3)

where e(J ) is a unit ((2J + 1) × (2J + 1))-matrix and the matrices U (J ), V (J ) and
W (J ) are defined in (8.39).

The representation of the Wigner time-reversal operator T = U (J )K (8.38) as a
product of twoor three operators of incomplete time-reversal from (9.3) is determined
by formulas (9.2), which were found for a particle with the spin 1

2 , if expressions for
operators of incomplete time reversal from (9.3) are used for the latter in the case of
a system with a half-integer angular momentum J .
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Thus, in the general case of systems with a half-integer angular momentum J ,
there are six different operators of incomplete time reversal (9.3), with the help of
which four types of nontrivial factorization (9.2) of the time-reversal operator T
can be performed. The representation of the operator T as a product of operators
of incomplete time reversal in the case of systems with any half-integer angular
momentum J , as well as in the case of a particle with spin 1

2 , indicates the possibility
(but not necessarily) of a violation of T -symmetry in some processes. If T -symmetry
is violated, with the realization of one of the three T2-symmetries or one of the three
T1-symmetries, only its decrease occurs, but not the complete annihilation.

9.2 Violation of Kramers Theorem

The Kramers theorem [69] refers to systems with an odd number of particles with
spin 1

2 , such as, for example, an atom with an odd number of electrons. In each such
system, placed in an arbitrary electric field, but in the absence of a magnetic field,
there is an additional n-fold degeneracy of all energy levels (where n is an integer
even number) caused by the time-reversal symmetry.

There are at least three ways to prove the Kramers theorem. Two of them are
given in Sects. 2.4 and 2.9, namely, the traditional proof in 2.4 and a geometric proof
in 2.9. The third original way of proving this theorem, based on transformations of
complex-conjugate basis spinors at the rotation of the real axes of coordinates Ox , Oy

and Oz , is given in Heine’s monograph [9].
Since the additional degeneracy of the energy levels is due to the time-reversal

symmetry, it can disappear when this symmetry decreases. If, however, there is a
complete violation of the time-reversal symmetry, when none of the seven time-
reversal operators commutes with the corresponding Hamiltonians, then it can be
said with certainty that the Kramers degeneracy of energy levels is absent even in
systems with a half-integer angular momentum, that is, a violation of the Kramers
theorem occurs.

A convenient way to verify the presence or absence of an additional degeneracy of
the energy levels caused by the operators of incomplete time reversal T2(yz), T2(zx),
T2(xy), T1(x), T1(y), andT1(z) is to find the squares of these operators. SinceT2 = −e
(in the case of spin S = 1

2 ) and T2 = −e(J ) (in the case of semi-integer angular
momentum J > 1

2 ) for the Kramers systems, the violation of similar relations for the
squares of partial time-reversal operators would mean the violation of the Kramers
theorem when T -symmetry is decreasing. Let us verify in what cases the Kramers
theorem is violated for a particle with spin 1

2 . Based on (9.1) we find

T1(x) = σzK, T2
1(x) = σ 2

z = e,

T2(yz) = σx , T2
2(yz) = σ 2

x = e.
(9.4)
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Using (9.1), we obtain an analogous result for the operatorsT2
1(y), T

2
1(z) andT

2
2(xy)

T1(y) = eK, T2
1(y) = e,

T1(z) = σxK, T2
1(z) = σ 2

x = e,

T2(xy) = σz, T2
2(xy) = e.

(9.5)

However, in the case of T2(zx)-symmetry (T2(zx) = iσy , see (9.1), i.e., when T -
symmetry decreases to T2(zx)-symmetry, the Kramers theorem is not violated:

T2(zx) = iσy, T2
2(zx) = −e (9.6)

In the case of Kramers systems with half-integer angular momentum J > 1
2 , on

the basis of (9.3), we obtain

T1(x) = W (J )K, T2
1(x) = e(J ), T1(y) = e(J )K, T2

1(y) = e(J ),

T1(z) = V (J )K, T2
1(z) = e(J ), T2(yz) = V (J ), T2

2(yz) = e(J ),

T2(xy) = W (J ), T2
2(xy) = e(J ), T2(zx) = U (J ), T2

2(zx) = −e(J )

(9.7)

Thus, for Kramers systems, in five of the six cases of T -symmetry breaking, when
this symmetry is reduced to T1(x)-, T1(y)-, T1(z)-, T2(yz)- and T2(xy)- symmetry, there
is also a violation of the Kramers theorem, and the Kramers theorem is not violated
only in the case of decreasing T -symmetry to T2(zx)-symmetry. This exception is
due presumably to the fact that although T -symmetry decreases to T2(zx)-symmetry,
this decrease is not sufficient to remove the Kramers degeneracy of energy levels. In
other words, the remaining time-reversal symmetry ensures the conservation of the
Kramers degeneracy of energy levels, which existed in the system in the presence of
T -symmetry.

9.3 Six New Types of Time-Reversal Symmetry Related
to Non-Kramers Systems

In Sect. 8.3 we introduced and studied the properties of Abelian groups G4
(1) (8.65),

G8
(1) (8.71), ˜G8

(1) (8.75) and ˜G8
(J ) (8.81). Based on the structure of Kayley tables

of these groups, it was found that in the case of non-Kramers systems there are also
six operators of incomplete time reversal, which belong to the groups listed above,
along with the Wigner’s operator of complete time reversal T. This circumstance
makes it possible to call them operators of incomplete time reversal. Just as in the
case of Kramers systems, the operator T can be represented as the product of two or
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three operators of incomplete time reversal. However, there is a significant difference
between the structures of groups related to Kramers systems and non-Kramers ones.
For example, the Abelian groupG4

(1) (8.65) consisting of elementsU (1)K, e(1),W (1)

and V (1)K (with symmetricmatricesU (1), V (1) andW (1) defined by (8.66) and related
to non-Kramers systems with angular momentum J = 1, differs in structure from
the cyclic group G4

( 1
2 ) consisting of the elements T, T2 = −e, T3 = −T, T4 = e.

A similar difference exists also between the Abelian group G4
(J ) formed by the

elementsU (J )K, e(J ),W (J ) and V (J )K and the fourth-order non-Abelian group con-
sisting of the elements U (J )K, −e(J ),−U (J )K and e(J ), where J is an integer in the
first case and a half-integer in the second. In the first case,

(
U (J )

)2 = e(J ), and in the

second case
(
U (J )

)2 = −e(J ). This is due to the fact that a fourth-order cyclic group
constructed on the basis of the operator T exists only for Kramers systems, while for
non-Kramers systems it is a second-order group.

As for the Abelian group G8
(1) = G4

(1) ⊗ G2 (8.71) and its extension to the
group G8

(J ) (8.80) for the integer angular momentum J > 1, for the above reason
the structure of these groups also differs from the structure of the non-Abelian groups
G8

( 1
2 ) (8.11) and G8

(J ) (8.37) for an arbitrary half-integer J . From this point of view,

it is of interest to compare the structures of the groups ˜G8
(1) (8.75) and ˜G8

(J ) (8.81)
for the integer J and, respectively, the groups G8

( 1
2 ) (8.11) and G8

(J ) (8.37) for a

half-integer J . The groups ˜G8
(1) and ˜G8

(J ) are Abelian and their elements coincide in
formwith the elements of the non-Abelian groupsG8

( 1
2 ) andG8

(J ), if they are written
in terms of the operator T and operators of incomplete time reversal. The difference
lies in the fact that in the first case

(
U (1)

)2 = e(1) and
(
U (J )

)2 = e(J ) and in the second

case
(
U (J )

)2 = −e(J ) (U (J ) is the unitary part of the operatorT = iσyK = UK) and
(
U (J )

)2 = −e(J ). This difference leads to the fact that the groups ˜G8
(1) and ˜G8

(J ) are

Abelian, in contrast to the non-Abelian groups G8
( 1
2 ) and G8

(J ) and in accordance
with the fact that for systems with integer angular momentum J there is no Kramers
degeneracy of the energy levels.

For non-Kramers systems, the nontrivial factorization of the time reversal operator
T is carried out in the sameway as in the case of theKramers systems (9.2).Moreover,
for non-Kramers systems, each of the six operators of incomplete time reversal has the
same form as for the Kramers systems (9.1). The difference consists only in the fact
that for an integer J the matrices U (J ), V (J ), and W (J ) are symmetric, in contrast to
the case of half-integer J . As already noted, for an integer J we have

(
U (J )

)2 = e(J ),

while for a half-integer J we have
(
U (J )

)2 = −e(J ). This is an essential difference
in behavior of Kramers and non-Kramers systems under the action of operators of
complete and incomplete time reversal.
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Since in the case of an integer J from the relation
(
U (J )

)2 = e(J ) it follows that
T2 = e(J ), then all operators T2

1(x), T
2
1(y), T

2
1(z), T

2
2(yz), T2

2(zx) and T2
2(xy) at integer

J are unit operators. This corresponds to the absence of a degeneracy of energy
levels due to the complete and incomplete time-reversal symmetry as it should be
for non-Kramers systems.

9.4 Commutation and Anticommutation Relations
for Time-Reversal Operators

In the case of Kramers systems, there are eight nonzero commutators for operators
of incomplete time reversal from (9.3)

[
T1(x),T1(z)

] = 2T2(zx),
[
T1(x),T2(yz)

] = 2T,

[
T1(x),T2(zx)

] = 2T1(z),
[
T1(z),T2(zx)

] = −2T1(x),

[
T1(z),T2(xy)

] = −2T,
[
T2(yz),T2(zx)

] = −2T2(xy),

[
T2(yz),T2(xy)

] = −2T2(zx),
[
T2(zx),T2(xy)

] = −2T2(yz).

(9.8)

Commutators
[
T1(x),T1(y)

]
,
[
T1(x),T2(xy)

]
,
[
T1(y),T1(z)

]
,
[
T1(y),T2(yz)

]
,[

T1(y),T2(zx)
]
,
[
T1(y),T2(xy)

]
,
[
T1(z),T2(yz)

]
are zero.

Thus, there are eight nonzero commutators (9.8), and seven commutators are zero.
The operators of incomplete time reversal for Kramers systems satisfy the anti-

commutation relations

{T1(x),T1(y)} = 2T2(xy), {T1(x),T2(xy)} = 2T1(y), {T1(y),T1(z)} = 2T2(yz),

{T1(y),T2(yz)} = 2T1(z), {T1(y),T2(zx)} = 2T, (9.9)

{T1(y),T2(xy)} = 2T1(x), {T1(z),T2(yz)} = 2T1(y).

Thus, there are seven nonzero anticommutators (9.9), and the other eight anticom-
mutators are zero: {T1(x), T1(z)}, {T1(x), T2(yz)}, {T1(x), T2(zx)}, {T1(z),T2(zx)},
{T1(z), T2(xy)}, {T2(yz), T2(zx)}, {T2(yz), T2(xy)} and {T2(zx),T2(xy)}. In addition,
there are the following relations between the operator T and the operators of incom-
plete time reversal:

[
T,T1(x)

] = −2T2(yz),
[
T,T1(z)

] = 2T2(xy),[
T,T2(yz)

] = 2T1(x),
[
T,T2(xy)

] = 2T1(z),[
T,T1(y)

] = 0,
[
T,T2(zx)

] = 0.
(9.10)
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and the following anticommutation relations of these operators

{T,T1(y)} = 2T2(zx), {T,T2(zx)} = −2T1(y),

{T,T1(x)} = {T,T1(z)} = {T,T2(yz)} = {T,T2(xy)} = 0.
(9.11)

In contrast to the Kramers systems, in the case of systems with an integer angular
momentum J , all 21 commutators (15 commutators between six incomplete time-
reversal operators and six commutators of the operatorTwith operators of incomplete
time reversal) are equal to zero, while all 21 anticommutators are nonzero:

{T1(x),T1(y)} = 2T2(xy), {T1(x),T1(z)} = 2T2(zx), {T1(x),T2(yz)} = 2T,

{T1(x),T2(zx)} = 2T1(z), {T1(x),T2(xy)} = 2T1(y), {T1(y),T1(z)} = 2T2(yz),

{T1(y),T2(yz)} = 2T1(z), {T1(y),T2(zx)} = 2T, {T1(y),T2(xy)} = 2T1(x),

{T1(z),T2(yz)} = 2T1(z), {T1(z),T2(zx)} = 2T1(x), {T1(z),T2(xy)} = 2T,

{T2(yz),T2(zx)} = 2T2(xy), {T2(yz),T2(xy)} = 2T2(zx), {T2(zx),T2(xy)} = 2T2(yz),

{T,T1(x)} = 2T1(z), {T,T1(y)} = 2T2(zx), {T,T1(z)} = 2T2(xy),

{T,T2(yz)} = 2T1(x), {T,T2(zx)} = 2T1(y), {T,T2(xy)} = 2T1(z).

(9.12)

The operators of incomplete time reversal in the case of non-Kramers systems are
determined by the same formulas (9.3) as for the Kramers systems, with the only
significant difference that in this case U (J ), V (J ) and W (J ) are symmetric matrices,
where

(
U (J )

)2 = e(J ) and, respectively, T2 = (
U (J )K

)2 = e(J ).

9.5 Unitarity of Spinor Operators in Two-Boson
Representation of Angular Momentum and
Time-Reversal Symmetry

In a number of cases it turns out to be convenient to use other representations of angu-
lar momentum operators along with the traditional representation of these operators
in quantum mechanics. In applications, it is not very convenient to represent spin
operators through Bose creation and annihilation operators, such as the Holstein–
Primakoff [410] andDyson–Maleev [411, 412] representations, which are used in the
quantum theory of magnetism [413] and in the theory of order–disorder phase tran-
sitions in ferroelectrics [414]. This is due to the fact that in the Holstein–Primakoff
representation the dependence of the operators Sx and Sy is such that the Bose cre-
ation and annihilation operators are under the square root. On the other hand, the
use of the Dyson–Maleev representation leads to non-Hermitian Hamiltonian. In
contrast, from these drawbacks is free the Schwinger representation [415], in which
the angular momentum projection operators are expressed through the creation and
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annihilation operators of two different but correlating Bose fields. Before consider-
ing unitary spinor operators in two-boson representation of the angular momentum,
it is appropriate to make the following observation. The well-known commutation
relation for creation, b+, and destruction, b, Bose operators

bib
+
i − b+

i bi = 1, (9.13)

or in the more general form

bkλb
+
k′λ′ − b+

k′λ′bkλ = δkk′δλλ′ (9.14)

(where k,k′ and λ, λ′ are respectively the wave vector indexes and the indexes of
the particles (quasiparticles) polarization), contains an operator on the left side and
a c-number on the right-hand side [3, 51, 61, 410–430].

Such an approach is easy to justify, starting from the definition of bi and b+
i

operators [425]:

bi | Ni >= √
Ni | Ni − 1 >, (9.15)

b+
i | Ni >= √

Ni + 1 | Ni + 1 >, (9.16)

where | Ni > is a wave function in the representation of occupation numbers. Using
(9.15) and (9.16), we find

bib
+
i | Ni > = (Ni + 1) | Ni >, (9.17)

b+
i bi | Ni > = Ni | Ni > . (9.18)

Subtracting (9.18) from (9.17), we obtain

(
bib

+
i − b+

i bi
) | Ni >=| Ni > (9.19)

From this, the commutation relation (9.13) follows. Although the commutation
relation for Bose operators in the form (9.13) is applied most often, there is also a
justification for this relation for the case when the right-hand side of equation (9.13)
is a unit operator in an abstract infinite space. Such an analysis is given in [72],
where the commutation relation for the Bose creation and annihilation operators in
the quantum state τ is given by the expression

b(τ )b+(τ ) − b+(τ )b(τ ) = I (τ ). (9.20)

In (9.20) I (τ ) is a unit infinite matrix. As is known, the operators b(τ ) and b+(τ )

are also defined in an infinite-dimensional space (the matrices of these operators are
given, for example, in [61, 72]). The operator of the number of particles N (τ ) is
connected with the operators b(τ ) and b+(τ ) by the following relations:

b+(τ )b(τ ) = N (τ ), b(τ )b+(τ ) = I (τ ) + N (τ ) (9.21)
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By subtracting the first relation in (9.21) from the second, we obtain the commu-
tation relation (9.20). The relation (9.20) follows from (9.21), but not vice versa. It
is important to pay attention to this, since the direct calculation of the commutator
(9.20) on the basis of the matrices of the operators b(τ ) and b+(τ ) does not lead
to a unit infinite-dimensional matrix. Indeed, it is easy to show that for a matrix
corresponding to the operator b(τ )b+(τ ) − b+(τ )b(τ ) in the left-hand side of the
equation (9.20), all off-diagonal elements are zero, and the diagonal elements satisfy
the relations

e11 = e22 = e33 = · · · = en−1,n−1 = 1; enn = −
n−1∑

i=1

eii = 1 − n. (9.22)

When n >> 1, we have enn = −n and, respectively,

lim
n→∞ enn = −∞. (9.23)

Thus, thematrix of theoperatorb(τ )b+(τ ) − b+(τ )b(τ ) in an infinite-dimensional
basis has the form

b(τ )b+(τ ) − b+(τ )b(τ ) =

⎛

⎜⎜⎜
⎜
⎝

⎞

⎟⎟⎟
⎟
⎠

1
1 01

0
. . .

−∞

= Iτ . (9.24)

This matrix differs from the unit infinite matrix I (τ ) from (9.20) introduced in
[72] by the fact that one (the bottom) diagonal matrix element tends to a negative
number infinitely large in absolute value, while each of the remaining matrix ele-
ments on the main diagonal are equal to 1. Despite the essential difference between
the commutation relation (9.24) and the commutation relations (9.13), (9.14) and
(9.20), calculations with their application lead to the same results for the number
of bosons and the quantities associated. This is the hidden paradox, connected with
the commutation relation for Bose creation and annihilation operators. In the case of
fermions, there is no analogous paradox.

In the case of spin S = 1
2 the transition from the spinor representation of spin

operators to Schwinger representation can be realized in a very simple way on the
basis of creation and annihilation Bose operators a+, b+ and a, b (a and b being

commuting operators) by introduction of an unitary spinor operator U 1
2

=
(
a
b

)
.

Under action of this operator the following unitary transformation takes place

U 1
2
SzU

+
1
2

= 1
2 (a

+a − b+b),

U 1
2
S+U+

1
2

= a+b, U 1
2
S−U+ = b+a,

(9.25)
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where S± = Sx ± i Sy . The unitary property of the spinor operatorU 1
2

(
U+

1
2
U 1

2
= 1

)

leads to relationship

a+a + b+b = 1, (9.26)

which takes into account that only the self-values of the operator a+a + b+b, which
satisfy the conditionna + nb = 1

(
na =< na | a+a | na >, nb =< nb | b+b | nb >

)
,

and corresponding them self-functions of this operator, are involved in Schwinger
representation of the angular momentum. The operator a+a + b+b is an invariant of
the Lie group of symmetry SU (2) with respect to rotations taking into consideration
that groups SU (2) and R3 (the group of thee dimensional rotations) are homomorphic
[71]. Moreover, this operator commutes with operators Sz, S+ and S−

[
a+a + b+b, Ŝz

]
=
[
a+a + b+b, Ŝ+

]
=
[
a+a + b+b, Ŝ−

]
= 0 (9.27)

Therefore the operatora+a + b+b commute alsowithZeemanHamiltonianwhich
depends linearly on Sz, S+ and S−.

Thus, the commutation relations (9.27) lead to conservation of the total number of
bosons of a- and b-types, i.e. to na + nb = const . It is in accordancewith relationship
(9.26) averaged on boson number of occupation (na + nb = 1)with specification that
the constant value is equal to unit. The formula (9.26), which is a single consequence
of unitarity of the operator U 1

2
in the case of a particle with spin S = 1

2 , must be
transformed into relationship

a+a + b+b = 2S · 1 (9.28)

for any system with spin S, where 1 is unit operator represented by unit (2S + 1) ×
(2S + 1)-matrix. It is a single kinematic condition traditionally related to Schwinger
representation of angular momentum. However, excepting (9.28) there are (2S − 1)
new kinematic conditions resulting from the unitarity property of the operator US ,
by means of which the transition from the spinor representation of an arbitrary spin
S to its two-boson representation is realized [135, 431]. This is the non-Schwinger
approach to Schwinger representation of spin operators.

Let us introduce the following unitary spinor operator (M is the self-value of the
operator Sz , in the system of units in which � = 1 is used):

Us =

⎡

⎢
⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

[(2S)!]− 1
2 a2S

[(2S − 1)!]− 1
2 a2S−1b

.

[(S + M)! (S − M)]−
1
2 aS+MbS−M

.

[(2S − 1)!]− 1
2 ab2S−1

[(2S)!]− 1
2 b2S

⎤

⎥
⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

(9.29)
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by means of which the transition from spinor representation of operators Sz, S+ and
S− to Schwingers one is carried out [135, 220, 431]:

Sz = 1
2

(
a+a − b+b

)
O(S)

z ,

S+ = a+bO(S)
+ , S− = b+aO(S)

− .
(9.30)

Here O(S)
z , O(S)

+ and O(S)
− are known as operator loads to operators Sz, S+ and S−

of spin S = 1
2 , which represented some polynomials of 2S − 1 degree in the terms

of operator n = a+a + b+b. According to [135, 220, 431], each from operator leads
O(S)

z , O(S)
+ and O(S)

− is equivalent to unit operator, that is caused by specific structure
of unitary spinor operator US . Thus, interdependently of the value of spin S the
operators Sz, S+, and S− in the coupled bosons (CB) representation have the form

Sz = 1
2

(
a+a − b+b

)
,

S+ = a+b, S− = b+a.
(9.31)

Because in CB representation the form of operators Sz, S+, and S− does not
depend on the value of spin S, all of the specific of multilevel spin system is deter-
mined by spin wave functions in this representation:

| S, M > = [(S + M)! (S − M)!]− 1
2
(
a+)S+M (

b+)S−M | 0 >= (9.32)

= | S + M >a| S − M >b,

where | 0 > is the vacuum state (| 0 >=| 0 >a| 0 >b).
Averaging the operator equation

U+
S
(
a+, b+)US (a, b) = 1, (9.33)

where US (a, b) is determined by (9.29), by means of wave functions |S + M >a

|S + M >b that present the set of 2S + 1 functions | 2S >a| 0 >b, |2S − 1 >a

|1 >b, | 2S − 2 >a| 2 >b,. . .,| 2 >a| 2S − 2 >b, | 1 >a| 2S − 1 >b,| 0 >a| 2S >b,
we obtain the following algebraic equation of 2S degree with respect to variable
n = na + nb:

n2S − C2S−1n
2S−1 + C2S−2n

2S−2 + · · · + (−1)2SC2n + (9.34)

+(−1)2S+1

[
2

(
S − 1

2

)]
!n = (2S)!

The coefficient from (9.34) for S = 1
2 , 1, 3

2 , 2, 5
2 , 3, 7

2 , . . . are

C2S−1 = 0, 1, 3, 6, 10, 15, 21, ...; C2S−2 = 0, 0, 2, 11, 35, 85, 175, ...;
C2S−3 = 0, 0, 0, 6, 50, 225, 735, ...; C2S−4 = 0, 0, 0, 0, 24, 277, 1624, ...;
C2S−5 = 0, 0, 0, 0, 0, 120, 1764, ...; C2S−6 = 0, 0, 0, 0, 0, 0, 720, ...;
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The values of coefficients C2S−q = in (9.34) depend on the spin S value. The
coefficients C2S−1 for angular momenta S and S + 1

2 satisfy the equality

CS+ 1
2 2S−1 − CS

2S−1 = 2S (9.35)

The introduced above spin wave functions (9.32) inCB representation hereinafter
will be denoted for simplicity by |2S 0 >, |2S − 1 1 >, | 2S − 2 2 >, · · · , |2 2S −
2 >, |1 2S − 1 >, | 0 2S >.

Lets consider (9.34) and its solutions for some particular cases.

1. S = 1
2 . It was obtained the known result consisting in the existence of a single

consequence n = 1 from unitarity of the spinor operator U 1
2
.

2. S = 1. Equation (9.34) for S = 1 have the form

n2 − n − 2 = 0. (9.36)

Two solutions of the (9.36) are n1 = 2S = 2 and n2 = −1. It should be noted
that presence of the real positive solution n = 2S of (9.34) is characteristic for
any value of the spin S. As for solution n = −1 which corresponds to negative
numbers of filling of the boson states (na + nb = −1) for integer S, this result
will be discussed in the Sect. 9.6.

3. S = 3
2 The equation

n3 − 3n2 + 2n − 6 = 0 (9.37)

have the following three solutions: n1 = 2S, n2,3 = ±i
√
3.

Unlike systems with spin 1
2 and 3

2 there are one real solution n1 = 2S and two
imaginary complex-conjugate ones (n2 and n3). The imaginary solutions of (9.34)
at S = 3

2 and, in more general case, the complex-conjugate solutions of (9.34) at
S > 3

2 also will be discussed in the Sect. 9.6.
By analyzing 2S solutions of the (9.34) for a given value of spin S, we can say

that the only x1 = na + nb = 2S solution meets positive occupation numbers of a-
and b-bosons (na ≥ 0, nb ≥ 0). The relationship na + nb = 2S sets the number of
bosons of a- and b-types necessary for the implementation of this condition. For a
given number of states of bosons of the same type, there must be defined, correlated
with it, number of states of bosons of another type. In this context, we can talk about
boson–boson correlations.

In the case of a particle with spin S = 1
2 , the Wigner time reversal operator T in

the two-boson representation of the angular momentum has the form

T = (
a+b − b+a

)
K, (9.38)

where K is the complex conjugation operator. Similarly, for six operators of incom-
plete time reversal, in this case we obtain
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T1(x) = (
a+a − b+b

)
K, T1(y) = eK, T1(z) = (

a+b + b+a
)
K,

T2(yz) = a+b + b+a, T2(zx) = a+b − b+a, T2(xy) = (
a+a − b+b

)
.

(9.39)

All the results obtained earlier concerning operators of complete and incomplete
time reversal using the spinor representation for the spin-1/2 projection operators
are also preserved in the case of using the two-boson representation of these opera-
tors. In particular, the action of the operator T = iσyK on the spin wave functions

| 1
2 ,+ 1

2 >≡
(
1
0

)
and | 1

2 ,− 1
2 >≡

(
0
1

)
written in the spinor basis leads to the fol-

lowing results:

T | 1
2
,+1

2
> =

(
0 1

−1 0

)
K
(
1
0

)
= − | 1

2
,−1

2
>, (9.40)

T | 1
2
,−1

2
> =

(
0 1

−1 0

)
K
(
0
1

)
=| 1

2
,
1

2
> .

It is easy to see that the operator T, written using the two-boson representation of
the operator iσy = S+ − S− (see (9.31)), transforms the spin wave functions written
in the same representation as follows:

T | 1
2
,+1

2
> = (

a+b − b+a
)
Ka+ | 0 >= (9.41)

= a+a+b | 0 > −aa+b+ | 0 >= − | 0 >a| 1 >b= − | 1
2
,−1

2
>,

T | 1
2
, −1

2
> = (

a+b − b+a
)
Kb+ | 0 >= (9.42)

= a+bb+ | 0 > −b+b+ | 0 >= a+bb+ | 0 >=| 1 >a | 0 >b=| 1
2
,
1

2
> .

In Table9.1 thematrices of unitary operatorsU (J ) in the two-boson representation
are presented, which determine the time-reversal operator T = U (J )K for systems
with angular momentum J .

As follows from (9.41) and (9.42), the matrix U ( 1
2 ) that determines the oper-

ator T in the spinor representation for the case of a particle with spin S = 1
2

(T = U ( 1
2 )K, U ( 1

2 ) = iσy, U ( 1
2 )+U ( 1

2 ) = U ( 1
2 )U ( 1

2 )+ = e), coincides in form
with thematrixU ( 1

2 ) written in the two-boson representation (in following basises:{| 1
2 ,

1
2 >, | 1

2 ,− 1
2 >

}
and {| 1 >a| 0 >b, | 0 >a| 1 >b}, respectively):

U ( 1
2 ) =

(
0 1

−1 0

)
=
(

0 1
−1 0

)
(9.43)
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Table 9.1 The matrices of unitary operators U (J ) in the two-boson representation of the angular
momentum

J Basis wave functions of angular
momentum projection operators in the
two-boson representation

The matrices of unitary operators
U (J )

1
2

| 1 >a | 0 >b

| 0 >a | 1 >b

(
0 1

−1 0

)

1

| 2 >a | 0 >b

| 1 >a | 1 >b

| 0 >a | 2 >b

⎛

⎜
⎝
0 0 1

0 −1 0

1 0 0

⎞

⎟
⎠

3
2

| 3 >a | 0 >b,

| 2 >a | 1 >b,

| 1 >a | 2 >b,

| 0 >a | 3 >b

⎛

⎜⎜
⎜
⎝

0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

⎞

⎟⎟
⎟
⎠

2

| 4 >a | 0 >b,

| 3 >a | 1 >b

| 2 >a | 2 >b

| 1 >a | 3 >b

| 0 >a | 4 >b

⎛

⎜⎜
⎜
⎜⎜
⎝

0 0 0 0 1

0 0 0 −1 0

0 0 −1 0 0

0 1 0 0 0

−1 0 0 0 0

⎞

⎟⎟
⎟
⎟⎟
⎠

... ... ...

J

| J >a | 0 >b

| J − 1 >a | 1 >b

| J − 2 >a | 2 >b,

...,

| 2 >a | J − 2 >b

| 1 >a | J − 1 >b

| 0 >a | J >b

⎛

⎜⎜
⎜
⎜⎜
⎜
⎝

⎞

⎟⎟
⎟
⎟⎟
⎟
⎠

1

0 −1

1
... 0± 1

where sign “+” is selected in the last row when J is integer, and sign “−” is selected when J is
half-integer

9.6 Boson–Antiboson Representation of Angular
Momentum and Its Correlation with Factorization of
Wigner Time-Reversal Operator

Among 2S solutions of the (9.34) one is n1 = 2S, other is n2 = −1 (this solutions
exist only for integer S), and the remaining 2S − 2 solutions for integer S and 2S − 1
solutions for half-integer S are in pairs complex conjugated. The kinematic condition
n1 = 2S leads to simultaneous elimination of the states with filling quantum numbers
na > S + M and nb > S − M . Since the spinwave function | S, M > corresponding
to projection M of the spin is a product of boson wave functions | S, M >a and
| S, M >b (see (9.32)) there are correlations between bosons of a- and b-types.
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More exactly, if S + M a-bosons are excited then for realizing of the spin state
| S, M > simultaneously S − M b-bosons must be excited too. All other Bose-states
are forbidden. Thus only wave functions of such correlated a- and b-bosons must be
used for description of the spin state | S, M >. Because the knowledge of | S, M >

wave functions (M = S, S − 1, · · · ,−S + 1, −S)permits to calculate all interested
magnetic effects, we can talk about boson–boson correlations in quantum theory of
magnetism.

The kinematic condition n2 = −1, which corresponds to negative resulting quan-
tum numbers of filling for boson states, leads to boson–antiboson representation of
spin operators. This representation was introduced in [432, 433]. Let us consider
the unitary transformation of spin projection operators under time-reversal opera-
tor T using obvious forms (9.31) for Sz, S+ and S−. In the case of non-Kramers
systems (T2 = 1) the physical sense of solution n2 = −1 of (9.34) consists in exis-
tence of antiboson states. In this case, the operator of destruction of the antiboson
corresponding to a boson of a-type [135] can be presented as

ã = TaT+, (9.44)

where the designation ã does not signifies the transpose operator. It is necessary to
mention that, if the kinematic condition n2 = −1 takes place, then all other solutions
of the (9.34) including kinematic condition n1 = 2S that corresponds to boson–boson
correlations and Wigner time-reversal invariance of the Hamiltonian are forbidden.

The kinematic condition n2 = −1, arising in the case of integer values of the
spin S, can be presented as n2 = na + nã = −1 or �ω

(
na + 1

2

) = −�ω
(
nã + 1

2

)
.

At ω = ωa = ωã (ω is the boson frequency) the energy εã of an antiboson of
ã-type is negative (εã = −εa, εa = �ω(na + 1

2 )). Therefore, the wave function of
ã-antiboson coincides with the time-reversed wave function of a-boson. In other
words, a+ is the operator of creation of the boson of a-type and ã+ is the opera-
tor of creation of the antiboson corresponding to the time-reversed boson of a-type
(̃a+ = Ta+T+). Thus, at n2 = −1, it is impossible to realize the boson–boson (two-
boson) representation of spin operators. In this case, the identical representation of
spin operators is the boson–antiboson representation. Such a situation with boson–
antiboson correlations is characteristic for all solutions of the (9.34) related to integer
spin S, excluding the solution n1 = 2S corresponding to boson–boson correlations.

In the boson–antiboson representation the spin wave function is

| S, M > = [(S + M)!(S + M + 1)!]− 1
2
(
a+)S+M (

ã+)S+M+1 | 0 > = (9.45)

= | S + M >a| S + M + 1 >ã .

where ã+ is the operator of creation of the antiboson,which is time-reversed relatively
to the boson of a-type.We see that the spin state | SM > from (9.45) is realized using
S + M bosons of a-type and correlated with these bosons S + M + 1 antibosons of
ã-type, ã+ being the operator of creation of the antiboson of ã-type.
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The same kinematic condition n2 = −1 can be satisfy using two Bose operators
a+ and b̃+ (b̃+ is the operator of creation of antibosonwhich is time reversed relatively
to the boson of b-type). In this case, the spin wave function | SM > is

| SM > = [(S + M)!(S + M + 1)!]− 1
2
(
a+)S+M (̃

b+)S+M+1 | 0 > = (9.46)

= | S + M >a| S + M + 1 >b̃ .

According to (9.46), the spin state | SM > is realized by means of S + M bosons
states of a -type and correlating S + M + 1 antiboson states of b̃ -type.

In (9.45) and (9.46), the following antiboson states were introduced:

| S + M + 1 >ã= T | S + M + 1 >a, | S + M + 1 >b̃= T | S + M + 1 >b . (9.47)

Let us now consider the action of time-reversal operatorT on spin operators Sz, Sx
and Sy from (9.31) when the relationship (9.44) is satisfied

TSzT+ = 1

2

(
Ta+T+TaT+ − Tb+T+TbT+) = 1

2
(b+b − a+a) = −Sz, (9.48)

TSxT+ = 1

2
T(a+b + b+a)T+ = (9.49)

= 1

2

(
Ta+T+TbT+ + Tb+T+TaT+) = 1

2
(b+a + a+b) = Sx ,

TSyT+ = −1

2
T
[
i
(
a+b − b+a

)]
T+ = (9.50)

= i

2

(
Ta+T+TbT+ − Tb+T+TaT+) = i

2

(
b+a − a+b

) = Sy .

Equations (9.48)–(9.50) show that, when fulfilling the kinematic condition
n2 = −1, a violation of the Wigner time-reversal symmetry takes place. In this
case, operator T is similar to the operator of incomplete time reversal T1(z) for a
particle with spin S = 1

2 found in the Sect. 8.1 (8.4) on the basis of properties of the
non-Abelian symmetry group G8 (see (8.11)).

The remaining 2S − 2 solutions of (9.34) for systems with integer spin S, and
2S − 1 solutions for systems with half-integer S are in pairs complex conjugated.
Since these solutions, as it will be shown, also have a physical meaning, they will be
taken into account at the end of this Section.

Only for n1 = 2S the results obtained in the spinor representation and in the
two-boson one are the same. Specifically, for S = 1 and n1 = 2 energy positions
of Zeeman components | 1, 1 >, | 1, 0 > and | 1,−1 > in spinor representation are
the same as the positions of Zeeman components | 2 >a| 0 >b, | 1 >a| 1 >b and
| 0 >a| 2 >b, respectively, in the two-boson representation. But for n2 = −1 (in
the case of spin S = 1 there are only two solutions n1 = 2 and n2 = −1) the Zee-
man levels corresponding to | 2 >a| 0 >b, | 1 >a| 1 >b and | 0 >a| 2 >b states are
shifted to high energies by

(
S + 1

2

)
gμBH as compared with Zeeman components
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corresponding to | 1, 1 >, | 1, 0 >, and | 1,−1 > spin states. Here g is g-factor, μB

is Bohr magneton and H denotes the magnetic field. At S > 1 the high-energy shift
of spin levels is accompanied by their broadening due to pairs of complex-conjugated
solutions of the (9.34). For n = n1, n2 this leads to continuous Zeeman energy bands
(see below).

As regards T -invariance in Zeeman systems, it takes place if not only the sign
of spin projection operators, but also the direction of the magnetic field is reversed.
In this case, the infringement of T -invariance can be described in terms of the spin-
Hamiltonian depending linearly on magnetic field, and containing the unit operator
1 defined in the space of spin wave functions. The interaction between the total spin
S and the magnetic field at infringement of T -invariance is described by the operator

H = gμBHzSz + gμBαHz · 1, (9.51)

where α is dimensionless constant which characterizes the interaction between spin
S and the magnetic field infringing the T-invariance (Hz = H). Denoting the first
and the second terms in (9.51) by H1 and H2, respectively, we see that H2-operator
changes the sign under time-reversal operator

OHUKH2KU+O+
H = −H2 (9.52)

where, as usual,U is the unitary operator defined in the space of spin wave functions,
K is the operator of complex configuration and OH is the operator reversing the
direction of the magnetic field

OHH = −H, O2
H = 1. (9.53)

The spectrum of operator H at α = S + 1
2 calculated in spinor basis or in the

Schwinger representation under the kinematic condition n1 = 2S coincides with the
spectrum of the operator H1 calculated in the Schwinger representation under the
kinematic condition n2 = −1. Particularly, for S = 1 there are only two solutions
of the (9.34): n1 = 2 and n2 = −1. If the solution n1 = 2 is realized then there are
three Zeeman levels, E (1)

1 = gμBH, E (1)
0 = 0 and E (1)−1 = −gμBH . But if the

time-reversal symmetry is violated and the kinematic condition n2 = −1 is realized,
then each Zeeman level will be shifted by 3

2gμBH to the high-energy range. The
both spectra are discrete with the same distance between the neighboring levels.

At S > 1 the 2S − 1 solutions for half-integer S and 2S − 2 solutions for integer
S are in pairs complex-conjugated.The real parts of these solutions give the contri-
bution to high-energy shift of Zeeman levels, while their imaginary parts describe
the broadening of the levels at time-reversal symmetry violation [136]. This follows
from generalized formula for energy of Zeeman levels

E (1)
M,q = gμBH

(
M + S − 1

2n
(S)
q

)
,

M = S, S − 1, . . . , −S + 1, −S,
(9.54)
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Table 9.2 The values δEs(n) and γs(n) for Zeeman systems with Hamiltonian (9.51)

S nq (q = 1, 2, . . . , 2S) δEs(n)/gμB H γs(n)/gμB H

1
2 1 – –

1

{
2

−1

{
−
3
2

{
−
−

3
2

{
3

+i
√
2

{
−
3
2

{
−
−

2

⎧
⎪⎨

⎪⎩

4

−1
3
2 ± i

√
15
2

⎧
⎪⎨

⎪⎩

−
5
2
5
4

⎧
⎪⎨

⎪⎩

−
−√

15
4

5
2

⎧
⎪⎨

⎪⎩

5

2.915 ± 2.119i

−0.415 ± 1.295i

⎧
⎪⎨

⎪⎩

−
1.042

2.707

⎧
⎪⎨

⎪⎩

−
1.059∗

0.647

which was obtained using the representation of spin operators throughout operators
a+, a, b+, and b, taking into account all solutions n(S)

q (q = 1, 2, . . . , 2S) of (9.34).
In Table9.2 values δEs(n) and γs(n) of shifts and broadening of Zeeman levels

(in dimensionless units) for high-spin systems
(
S = 1

2 , 1, 3
2 , 2, 5

2

)
at infringement

of T -invariance are presented.
The value 1.059 for γ ( 52 )/gμBH denoted in Table9.2 by asterisk is larger than

the corresponding shift of energy level δE 5
2
(n)/gμBH = 1.042. Therefore, in this

case the Zeeman spectrum is continuous without forbidden bands.
It is seen in Table9.2 that values δE1/2(1) and γ1/2(1) are equal to zero, i.e. for a

spin-1/2 particles the time-reversal symmetry violation under magnetic field (second
term in (9.51)) is not possible. It is not in contradiction with results concerning six
types of the Wigner time-reversal symmetry violation for any free spin- 12 particle

obtained on the basis of non-Abelian groupG(1/2)
16 (seeChap.8, (8.43). In the last case,

the types of Hamiltonians are not specified, but there are Hamiltonians, which are not
invariant under Wigner time-reversal operator (two examples of such Hamiltonians,
including the case of spin-1/2 particles, were discussed in Sect. 7.4). For all other
cases, the violation of time-reversal symmetry under second termof (9.51) is possible
with high-energy shifts of Zeeman levels and their transformation (excluding the case
of S = 1) into a broaded levels (bands), which in some cases may overlap.

In conclusion, Table9.2 contains results for all kinematic conditions that follow
from all 2S solutions of (9.34). However, it is necessary to remember that, if any of
these kinematic conditions is realized (usually, it is the solution n1 = 2S), then the
others are forbidden.
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9.7 About Restoration of Broken Wigner Time-Reversal
Symmetry

It is well known that the reconstruction of the symmetry of spatial inversion when
the law of parity conservation in weak interactions is violated [434] occurs, if an
additional transformation is performed, referred to as the charge conjugation, with
the introduction of the concept of antiparticles [435]. A combined transformation
containing spatial inversion and charge conjugation (replacement of particles by
antiparticles) was called a combined inversion [436].

Similarly, in order to restore the symmetry of the time reversal in cases where
it is violated, “one could postulate that time reversal transforms matter into meta-
matter” [437]. Experimentally, the meta-matter was not yet discovered by the time
when Wigner monograph was published [437]. The meta-matter has not yet been
discovered and, probably, will be discovered in the future, when more powerful
accelerators will be built.1

At present, there are quite a few publications on the violation of the symmetry of
time reversal in meson systems, in light and heavy nuclei, in atoms and molecules,
superconductors, in quantum transport, etc. (see Chap.10). However, these works
do not discuss the Wigner heuristic postulate on the existence of meta-particles and
meta-matter.

We made an attempt to determine some properties of the meta-particles not yet
discovered experimentally. Before presenting the results, it is necessary to make four
observations.

1. We consider the meta-particles, with the help of which the broken time-reversal
symmetry for spin-1/2 particles is restored, not as a hypothetical elementarymeta-
matter formations, but as a consequences of the existence of a 16th order non-

Abelian group G
( 1
2 )

16 (8.43). The pecularities of meta-particles are determined by
the symmetry properties of this group. All six incomplete time-reversal operators

are elements of this group G
( 1
2 )

16 . For meta-particles related to spin-1 elementary

particles, instead of non-Abelian group G
( 1
2 )

16 , the analogical role play the Abelian

group G(1)
16 = G(1)

8 ⊗ G2

(
G(J )

16 at J = 1
)
.

2. The six incomplete time-reversal operators T2(yz), T2(zx), T2(xy), T1(x), T1(y)

and T1(z) for a spin-1/2 particle ((8.4), (8.53), and (8.57)) found in Chap.8 are
also a group-theoretical consequence of the existence of the non-Abelian group

G
( 1
2 )

16 .
3. The proved possibility of representing the operator of complete time reversalT in

the form of three products of operators of incomplete time reversal: T1(x)T2(yz),

T2(zx)T1(y), T2(xy)T1(z), and one product of three operators of incomplete time
reversal T1(x)T1(y)T1(z)((8.5), (8.55), (8.56), (8.59)) indicates only the potential

1In many books and articles the term “metamaterials” is widely used [438–453], but it has no
relation to the concept of meta-matter introduced by Wigner in [437]. Unlike this (as well as
unlike the definition of meta-matter introduced in [457], we will use the Wigner conception of
meta-particles).
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possibility of lowering the symmetry of time reversal, but not the existence of a
violation of such symmetry.

4. If the experimental data indicate, for example, that for a spin-1/2 particle, in
some interaction, the T -symmetry decreases to T2(yz)-symmetry (which will be
perceived as a violation of T -symmetry), then to restore the initial symmetry
it will be necessary to introduce such an operator, under the action of which
the spin projection operator Sx changes its sign. Such an operator is T1(x). If
we now represent the operator T in the form T = T1(x)T2(yz), then the broken
T -symmetry will be restored, since all the operators, Sx , Sy and Sz , change the
sign under the action of the operator T. However, such a transformation is trivial.
Instead, in this case we postulate the existence of meta-particles whose intrinsic
angular momentum differs from the spin S = 1

2 only in that the operator�x of the
projection of this momentum on the direction x has an inverse sign with respect
to the operator Sx for a particle with spin 1

2 . The matrices �x , �y and �z of the
meta-particle with spin projection2 � = 1

2 have the form (a system of units where
� = 1 is used):

�x = −1

2

(
0 1
1 0

)
, �y = 1

2

(
0 −i
i 0

)
, �z = 1

2

(
1 0
0 −1

)
(9.55)

We note that in (9.55) the matrices of the operators �x , �y and �z are written in the
spinor basis {| 1

2 ,
1
2 >, | 1

2 ,− 1
2 >}.

Here it is necessary to make one refinement, which consists in the fact that the
form of the spin projection operators matrices is determined by the requirement that
the introduction ofmeta-particles restores the broken T -symmetry.More specifically,
this means the following. As the T -symmetry is reduced to T2(yz)-symmetry, the spin
projection operators Sx , Sy , and Sz are transformed under the action of the operator

T2(yz) as elements of the non-Abelian group G
( 1
2 )

16 (8.60) as follows:

T2(yz)SxT−1
2(yz) = Sx , T2(yz)SyT−1

2(yz) = −Sy, T2(yz)SzT−1
2(yz) = −Sz, (9.56)

which is a confirmation of the T -symmetry violation, since the sign of the operator
Sx did not change.

If we now postulate the existence of meta-particles with meta-spin � = 1
2 , then,

since, �x = −Sx , �y = Sy and �z = Sz the following relations hold:

T2(yz)�xT−1
2(yz)− = T2(yz)SxT−1

2(yz) = −Sx ,

T2(yz)�yT−1
2(yz)− = T2(yz)SyT−1

2(yz) = −Sy,

T2(yz)�zT−1
2(yz)− = T2(yz)SzT−1

2(yz) = −Sz .

(9.57)

2Since thematrices�y and�z coincide with Sy and Sz , the sign of thematrix�x differs from that of
thematrix Sx , and the commutation relations for thematrices�χ and, accordingly, Sχ (χ = x, y, z)
are different, then the own angular momentum of the meta-particle could be not called a spin, but
otherwise (for example, meta-spin).
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Table 9.3 Relations between spin projection operators S(n)
x , S(n)

y , S(n)
z of a spin-1/2 particle

and meta-spin projection �
(n)
x , �

(n)
y , �(n)

z (n = 1, 2, . . . , 6) of corresponding meta-particles with
meta-spins �(n) = 1

2

Incomplete time-
reversal operators

Correlations between spin projection operators Sx , Sy, Sz of a spin-1/2 particle

and corresponding meta-spin projection operators �
(n)
x , �

(n)
y , �(n)

z of a meta-
spin-1/2 meta-particles

T2(yz) �
(1)
x = −S(1)

x �
(1)
y = S(1)

y �
(1)
z = S(1)

z

T2(zx) �
(2)
x = S(2)

x �
(2)
y = −S(2)

y �
(2)
z = S(2)

z

T2(xy) �
(3)
x = S(3)

x �
(3)
y = S(3)

y �
(3)
z = −S(3)

z

T1(x) �
(4)
x = S(4)

x �
(4)
y = −S(4)

y �
(4)
z = −S(4)

z

T1(y) �
(5)
x = −S(5)

x �
(5)
y = S(5)

y �
(5)
z = −S(5)

z

T1(z) �
(6)
x = −S(6)

x �
(6)
y = −S(6)

y �
(6)
z = S(6)

z

Table 9.3 shows the possibility to restore the broken T -symmetry at the cost of
introducing meta-particles with the meta-spin (9.56). In particular, the reduced T -
symmetry to T2(yz)-symmetry (see (9.57)) can be restored by introducting meta-
particles with meta-spin

∑ = 1
2 and meta-spin projection operators

∑(1)
x ,
∑(1)

y and
∑(1)

z . The operator T2(yz) is an element of the non-Abelian group G
( 1
2 )

8 , which is a

subgroup ofG
( 1
2 )

16 group.However, on the basis of only the groupG
( 1
2 )

8 , it is impossible
to determine all six operators of incomplete time reversal. On the other hand, since

the form of the matrices �x , �y and �z also depends on the structure of G
( 1
2 )

16 ,
it can be argued that the combined transformation of “incomplete time reversal +
introduction of a meta-particle with spin �” restores the symmetry of time reversal.

The type of the meta-particle is due to the structure of the group G
( 1
2 )

16 .
The existence of the operatorT2(yz) itself is due to the structure of the non-Abelian

group.
Table9.3 presents the relations between the spin projection operators �x , �y, �z

of a spin-1/2 particle and the meta-spin projection operators of corresponding meta-
particles.

As can be seen fromTable9.3, each of the six operators of incomplete time reversal
corresponds to a meta-particle of a certain type, having the meta-spin �(n) = 1

2 and
meta-spin projection operators �(n)

x , �(n)
y and �(n)

z (n = 1, 2, . . . , 6). In this case,
if the performance of each of the incomplete time-reversal operations is accom-
panied by a transition from a particle to the corresponding meta-particle indicated
in Table9.3, then such a combined transformation is a symmetry operation (com-
bined time-reversal transformation), as a result of which the broken T -symmetry is
restored. The price of restoration of the broken T -symmetry is, as already noted, the
need to take into account the presence of certain types of meta-particles. Apparently,
one could postulate that particles and meta-particles are produced and annihilated
in pairs, like as particles and antiparticles. Since there are six operators of incom-
plete time reversal, the reducedWigner’s T -symmetry can be restored by performing
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six combined time-reversal transformations involving the six types of meta-particles
listed in Table9.3. The commutation relations for the meta-spin projection operators
for the meta-particles listed in the first three rows of Table9.3 have the form

[
�(n)

y , �(n)
z

] = −i�(n)
x ,

[
�(n)

z , �(n)
x

] = −i�(n)
y ,

[
�(n)

x , �(n)
y

] = −i�(n)
z .

(9.58)

Nine commutation relations (9.58) at n = 1, 2, 3 differ in sign on the right-hand
side from the known commutation relations for the spin projection operators. For the
remaining meta-particles (n = 4, 5, 6), the other nine commutation relations for the
operators�(n)

x , �(n)
y , �(n)

z coincide with the commutation relations for the operators
Sx , Sy, Sz . However, despite this coincidence, the meta-spin projections operators
�(n)

x , �(n)
y and �z

(n) (n = 4, 5, 6) are not identical to the particle spin projection
operators Sx , Sy and Sz . Indeed, it is easy to see that for n = 4, 5, 6 the following
relations hold

n = 4

< M | �
(4)
x | M ′ >=< M | Sx | M ′ >,

< M | �
(4)
y | M ′ >= − < M | Sy | M ′ >, < M | �

(4)
z | M ′ >= − < M | Sz | M ′ >,

(9.59)

n = 5

< M | �
(5)
y | M ′ >=< M | Sy | M ′ >,

< M | �
(5)
x | M ′ >= − < M | Sx | M ′ >, < M | �

(5)
z | M ′ >= − < M | Sz | M ′ >,

(9.60)

n = 6

< M | �
(6)
z | M ′ >=< M | Sz | M ′ >,

< M | �
(6)
x | M ′ >= − < M | Sx | M ′ >, < M | �

(6)
y | M ′ >=< M | Sy | M ′ > .

(9.61)

The discrepancy of certain matrix elements of the operators �χ
(n) and Sχ (χ =

x, y, z) also occurs when the commutation relations for the spin projection operators
of the particle and that for the meta-particle do not coincide (n = 1, 2, 3):

n = 1

< M | �(1)
x | M ′ >= − < M | Sx | M ′ >,

< M | �(1)
y | M ′ >=< M | Sy | M ′ >, < M | �(1)

z | M ′ >=< M | Sz | M ′ >,

(9.62)

n = 2

< M | �(2)
y | M ′ >= − < M | Sy | M ′ >,

< M | �(2)
x | M ′ >=< M | Sx | M ′ >, < M | �(2)

z | M ′ >=< M | Sz | M ′ >,

(9.63)
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n = 3

< M | �(3)
z | M ′ >= − < M | Sz | M ′ >,

< M | �(3)
x | M ′ >=< M | Sx | M ′ >, < M | �(3)

y | M ′ >=< M | Sy | M ′ > .

(9.64)

As is known, a two-valued irreducible representation of the rotation group D(1/2),
according to which the basis spin wave functions of a particle with spin 1

2 are trans-
formed, can be found using the method proposed by Weyl [454]. This method is
based on the fact that any rotation of space at a fixed coordinate system is charac-
terized by three Euler angles (α, β, γ ). It can be represented as a product of three
basic rotations: rotation around the Z axis by an angle γ , rotating about the Y axis
by an angle β, followed by a second rotation around the Z axis by the angle α. In
this case, the Hermitian matrix

h ≡ xσx + yσy + zσz ≡ σr =
(

z x − iy
x + iy −z

)
(9.65)

is tied to each point of space having coordinates (x, y, z), where σx , σy and σz are
the Pauli matrices. Using a unitary 2 × 2-matrix U with a determinant equal to one
(U+U = UU+ = 1, detU = 1), one can construct a Hermitian matrix

h′ = UhU+, (9.66)

whose trace is equal to one as well as the trace of the matrix h. Consequently, the
matrix h′ should have the form

h′ =
(

z′ x ′ − iy′
x ′ + iy′ −z′

)
= σr′, (9.67)

where r′ = r′(x ′, y′, z′). In this case, the coordinates (x ′, y′, z′) are linear combina-
tions of coordinates (x, y, z) with coefficients that depend on the elements of the
matrix U .

The matrix U describing the rotation of the space about the Z axis by an angle α

has the form:

U =
(
e−i α

2 0
0 ei

α
2

)
. (9.68)

On the basis of (9.65)–(9.68) we find

(
e−i α

2 0
0 ei

α
2

)(
z x − iy

x + iy −z

)(
ei

α
2 0
0 e−i α

2

)
=
(

z′ x ′ − iy′
x ′ + iy′ −z′

)
. (9.69)
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The solution of the matrix equation (9.69) has the form [454]:

x ′ = x cosα − y sin α,

y′ = x sin α + y cosα,

z′ = z.

(9.70)

Equation (9.70) show that the vector r′ is obtained from the vector r as it rotates
about the Z axis by an angle α. If, by analogy with (9.65), we determine

h(n) = 2
(
x�(n)

x + y�(n)
y + z�(n)

z

) = 2�(n)r, n = 1, 2, . . . , 6, (9.71)

and, by analogy with (9.66) and (9.67), determine

h′(n) = Uh(n)U+ = 2�(n)r′, (9.72)

then we obtain six matrix equations of the type (9.69), whose solutions, as well as
solutions of (9.70), show how the vector r′ is obtained from rwhen rotating about the
Z axis by an angle α. The obtained formulas of transformation from the coordinates
(x, y, z) to the coordinates (x ′.y′, z′) for the rotation of the space about the Z axis by
the angle α in six cases of T -symmetry restoration by introducing six types of meta-
particles with meta-spins �(n) = 1

2 and meta-spin projection operators �(n)
x , �(n)

y

and �(n)
y (n = 1, 2, . . . , 6) are presented in Table9.4.

As can be seen from Table9.4, in the case of T2(yz)-, T2(zx)-, T1(x)- and T1(y)-
symmetries, the rotations of the space about the Z axis are performed by the same
angle α, but in opposite direction compared to the rotations in the case of T2(xy)-
and T1(z)-symmetries. This can be easily verified if we take into account that cosα

and sin α are, respectively, even and odd functions of the argument α. In this case,
replacing α by −α, the equation

x ′ = x cosα + y sin α

will transform into the equation

x ′ = x cosα − y sin α,

and the equation
y′ = −x sin α + y cosα

will transform into the equation

y′ = x sin α + y cosα.
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Table 9.4 Transformations of the coordinates (x, y, z) of the vector r into the coordinates
(x ′, y′, z′) of the vector r′ when the space rotates about the Z axis by an angle α

Incomplete time-reversal
operators

2�(n)r The relationship between the coordinates
(x ′, y′, z′) and (x, y, z) at the rotation of the
space about the Z axis by the angle α (z′ = z)

T2(yz) −xσx + yσy +
zσz

{
x ′ = x cosα + y sin α

y′ = −x sin α + y cosα

T2(zx) xσx − yσy + zσz

{
x ′ = x cosα + y sin α

y′ = −x sin α + y cosα

T2(xy) xσx + yσy − zσz

{
x ′ = x cosα − y sin α

y′ = x sin α + y cosα

T1(x) xσx − yσy − zσz

{
x ′ = x cosα + y sin α

y′ = −x sin α + y cosα

T1(y) −xσx + yσy −
zσz

{
x ′ = x cosα + y sin α

y′ = −x sin α + y cosα

T1(z) −xσx − yσy +
zσz

{
x ′ = x cosα − y sin α

y′ = x sin α + y cosα

The second and fourth of these equations completely agree with the equations for
x ′ and y′ from (9.70).We see that a spontaneous change takes place in the direction of
rotation of the vector r around the Z axis (with the same angle α remaining) for inter-
actions lowering the T -symmetry to T2(yz)-, T2(zx)-, T1(x)- and T1(y)-symmetries as
comparedwith interactions lowering the T -symmetry to T2(xy)- and T1(z)-symmetries.

In the case of spin-1 particles, the broken T -symmetry can be restored also by
means of corresponding meta-particles. Matrices of meta-spin projection operators
for this case are given in AppendixE.



Chapter 10
Time-Reversal Symmetry Violation

The time-reversal symmetry violation is themostmysterious phenomenon that allows
explaining the matter–antimatter asymmetry in the present Universe. This is due
to the fact that the CP-symmetry violation [458], which causes the asymmetry of
matter-antimatter, also leads to a violation of T -symmetry due to the CPT theorem.
According to Sakharov [478], this asymmetry could have arisen from CP-violating
(and consequently, T -violating) interactions at an early stage of the Big Bang. In
the course of further evolution, this led to the present structure of the Universe. The
most important motivation for studying the time-reversal symmetry breaking is the
fact that its origin is not completely understood.

Sections10.1–10.6 contain a brief description of the time-reversal symmetry vio-
lation based on the results of other authors. In Sects. 10.1–10.3, the time-reversal
symmetry breaking inK0

L andB
0 meson systems, in atomic nuclei, as well as in atoms

andmolecules is discussed. As a result of the experiments, a rare (with relative proba-
bility∼1.6×10−3) π+π− mode of decay of a longer livedK0

L -meson (in comparison
with the K0

S -meson) was found, which indicates a violation of CP- and, respectively,
T -symmetry. The violation of CP-symmetry is also characteristic of various decay
processes of the B0-mesons: B0 −→ π+π−, B0 −→ k+π−, B0 −→ k+k−, and
others. The violation of P- and T -symmetry in the nuclei causes the presence of an
electric dipole moment (EDM ) in protons and, correspondingly, in nuclei. In atoms
and molecules, P- and T -symmetry breaking leads to atomic and molecular EDMs,
which are enhanced in heavy nuclei (Z ≥ 50) (due to the relativistic effects and
complex structure of these nuclei) and in paramagnetic molecules.

Section 10.4 is devoted to the discussion of the appearance of localized states
with broken time-reversal symmetry and the global T -symmetry violation in the
bulk high-Tc superconductors.

Sections 10.5 and 10.6 contain the discussion of time-reversal symmetry breaking
in connection with the enhancement of quantum transport and unidirectionality of
the time.
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In the last, 7th section, a simple method of experimental verification of the viola-
tion of T -symmetry in paramagnetic ions and molecules is proposed on the basis of
EPR spectra.

10.1 Time-Reversal Symmetry Violation in Meson Systems

The fundamental CPT theorem (Sect. 2.15) means that the time-reversal symmetry
violation occurs not only when T -invariance is violated, but also when the CP-
invariance is violated. The existence of the CP-violation has been observed for the
first time in 1964 in the decay of K-mesons (kaons) [109]. Later, starting with 2001,
the time-reversal symmetry violation was again detected in neutral B-meson decays
in the BaBar experiment at SLAC [459–462].

It was shown in [109] that K0
2 -meson decays to two pions with a branching ratio

R = (
K0
2 → π+ + π−)

/
(
K0
2 → all charged modes

) = 2.0 ± 0.4 · 10−3, where the
error is a standard deviation. The presence of a two pion decay mode implies that
the state of K0

2 -meson is not a pure eigenstate of CP. Indeed, the neutral K0
2 -meson

state can be represented in the form

| K0
2 >= 1√

2

[
(| K0 > − | K0 >) + ε(| K0 > + | K0 >)

]
, (10.1)

where | K0 > is the neutral antimeson state. In this case | ε |2 ∼= RT τ1τ2, where τ1 and
τ2 are the K0

1 and K0
2 average lifetimes and RT is the branching ratio including decay

to neutral pions. Using RT = 3
2R and the above mentioned value for the branching

ratio R, it was obtained | ε | ∼= 2.3 · 10−3. The states | K0 > and | K0 > are not the
eigenstates of the CP-operator. Indeed, the operator C replaces | K0 > by | K0 >

(and vice versa), and the operator P multiplies each of these states by −1 (their
internal parity is −1). As a result, we have

CP | K0 >= − | K0 >, CP | K0 >= − | K0 > . (10.2)

Nevertheless, one can construct from these states the eigenstates of the operator
CP, denoted by | K0

1 > and | K0
2 >:

| K0
1 >=

(
1√
2

) (
| K0 > − | K0 >

)
,

| K0
2 >=

(
1√
2

) (
| K0 > + | K0 >

)
.

(10.3)

Taking into account the relations (10.2), it is easy to show that the orthonormal
states | K0

1 > and | K0
2 > are eigenstates of the operator PC with eigenvalues +1

and −1:
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CP | K0
1 >= + | K0

1 > ,CP | K0
2 >= − | K0

2 > . (10.4)

Turning the equalities (10.3), we can rewrite them in the form

| K0 >=
(

1√
2

) (
| K0

1 > + | K0
2 >

)
, | K0 >=

(
1√
2

) (| K0
2 > − | K0

1 >
)
. (10.5)

This allows us to give the following interpretation [463]: at the moment of its
birth, each neutralK-meson can be in the form of eitherK0

1 -meson orK0
2 -meson with

the probability 1
2 . Since the average lifetime of these particles is very different, the

activity associated with the decay of the K0
1 -meson into two π -mesons (π+ and π−)

is initially approximately 600 times greater than for the decay of the K0
2 -meson.

Therefore, firstly, the K0
1 -meson decays into two π -mesons. But after a certain time,

which is sufficiently small in comparison with the lifetime of the K0
2 -meson (but

exceeding the lifetime of the K0
1 -meson), only the mesons of the decay of the K0

2
particle are observed, since theK0

1 mesons have already disappeared as a result of the
decay of each of them into twoπ -mesons. Thus, as a result of experiments carried out
in [109], for the first time, a rare mode of π+ +π− decay (with a relative probability
of ∼1.6 · 10−3) of the neutral, longer-lived K0

2 meson was discovered, which after
this discovery became known as the K0

L -meson (respectively, the K0
1 meson became

known as theK0
S meson). Although the decay of theK0

2 meson is very rare, it impugns
CP-invariance, since the state | K0

1 > is an eigenstate of the operator CP with the
eigenvalue +1, while the state | K0

2 > is an eigenstate of the operator CP with the
eigenvalue −1 (see (10.4)).

Here it is appropriate tomake two comments.Oneof them is that, in the presence of
CP-invariance, each particle has an antiparticle with “CP-conjugated” decay modes
[463], and the relative decay probabilities and partial lifetimes for these decay modes
are the same as for its corresponding particle. But even at violation ofCP-invariance,
which is discussed in this section, the basic conclusions concerning antiparticles
remain valid in the framework of the CPT theorem, since according to this theorem,
in violation ofCP-invariance, T -invariancemust also be violated forCPT -invariance
conservation.The second remark is that the decayof theK0

L -meson into twoπ -mesons
(π+ andπ−)with aweight of the order of 10−3 indicates that theCP-invariance (and,
correspondingly, T -invariance) is only broken “slightly” in the decay of K0

L -mesons.
For comparison, we point out that the violation of P and C invariance is observed
in processes of weak interaction with a weight equal to 100%, as evidenced, for
example, by the fact that the neutrino exists only in one helicity state [463].

The noted features of the violation of CP- and T -invariances are manifested not
only in decays of K-mesons, but also in other types of decay in meson systems

1. The time-dependent CP-violating asymmetries in decay of neutral B-mesons
[459]. Authors of [459] have selected events in which one neutral B-meson is
fully reconstructed in a final state and the feature of the other neutral B-meson is
determined from its decay products. The amplitude of CP-violating asymmetry,
which in the StandardModel is proportional to sin 2β, was derived from the decay
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time distribution in such events. The result sin β = 0.59±0.14(stat)±0.05(sust)
indicated a CP-violation in the neutral B-meson system.

2. CP-violating asymmetries for neutral B-meson decays to two-body final states of
charged pions and kaons (Bo −→ π+π−,K+π−,K+K−) [460].

3. The direct CP-violating asymmetry in the decay of the neutral B-meson into a
charged kaon and a charged pion (Bo −→ K+π−). The probability of observ-
ing such an asymmetry in the absence of a direct CP-violation is 1.3 · 10−5,
corresponding to a 4.2 standard deviation [461].

4. The time-dependent CP-violating asymmetries in decays of B-mesons to η′K
mesons [462].

10.2 Time-Reversal Symmetry Violation in Atomic Nuclei

The basis for studying the time-reversal symmetry violation in nuclei is the CPT
theorem [464, 465], which links the time-reversal symmetry with a combination of
particle–antiparticle and parity symmetries (CP). This fundamental theoretical result
and its experimental evidence [109, 459–462] allow us to expect that T -violation
should be accompanied by a corresponding CP-violation and vice versa.

The evidence of CP-violation in the decay of neutral kaons is firmly estab-
lished. In a number of experiments, the observed effect of CP-violation not only
in meson systems, but also in atomic nuclei, exceeds the statistical uncertainty by
more than an order ofmagnitude. The best-knownmechanisms considered as sources
of CP-violation are the super weak interaction [462, 466], the Cabibbo–Kobayashi–
Maskawa (CKM )mixing of quark states [467, 468], the term in the quantumchromo-
dynamics (QCD) Lagrangian [469], models involving left- and right-handed gauge
bosons [470], and numerous Higgs particles [471, 472] or leptoquarks [473–475].
An indirect evidence ofCP- or T -violation is the excess of matter over the antimatter
in the present Universe. If the CP- and T -invariances were met exactly (that is, if
there were not a single violation of these invariants), then all baryons and antibaryons
created in the Big Bangwould have been annihilated and the Universe would be filled
now mostly with energy in the form of massless quanta of radiation [476, 477]. It
was suggested by Sakharov [478] that matter-antimatter asymmetry in the present
Universe could have arisen due to the time-reversal symmetry violating interaction
at an early stage of the Big Bang.

Experimental data and, in particular, lack of the characteristic annihilation radia-
tion suggest that the largest structures in the Universe are composed of regular matter
[479]. However, the CP-violating interaction, detected in a kaon system [465] and
later in the system of neutral B-mesons [459–462], is too weak to produce so much
matter in the baryon genesis process [480, 481]. For this reason, other unknown
mechanisms of breaking the CP- and T -invariances would also exist. This shows
that elucidating the mechanism of violation of T - and CP-symmetry is a timely
problem.
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Our task is not to describe in detail the violations of CP- and T -symmetries in
nuclear physics and elementary particle physics, but only a discussion, as far as pos-
sible, of some of them. Before doing this, we note that after the discovery of the
violation of the parity conservation law in weak interactions [109, 482], Sakharov’s
paper on the role of violation of CP-invariance in the evolution of the Universe was
published in 1967 [478]. From that moment, there were all the necessary prerequi-
sites for planning and conducting experiments on the study of time-reversal symmetry
breaking in β-decay of polarized nuclei and, primarily, in 60Co nuclei, which were
used in the famous experiment [109] on discovering the violation of the parity con-
servation law. Indeed, in this case the violation of P-symmetry was experimentally
proved [109], and the data on the structure of the present Universe indicated a signif-
icant predominance of the number of particles over the number of antiparticles. Both
these facts, taken together, indicated a violation of CP-symmetry, which, according
to the CPT theorem, should lead to a violation of T -symmetry. However, the corre-
sponding experimental work was published only many years after the appearance of
real opportunities for their planning and implementation (see, for example, [479]).

Further discussion of the time-reversal symmetry breaking in atomic nuclei
reduces to the following. An important advantage of the search for time-reversal sym-
metry violation in nuclei interactions is the possibility of enhancing the T -violating
observables by many orders of magnitude due to the complex nuclear structure. It
could be an enhancement of nuclear electric dipole moments (EDMs) or that of
time-reversal symmetry violating effects in neutron–nuclei interactions [483, 484].
Taking into account that different models of CP-symmetry breaking may contribute
differently to a particular T - or CP-observable, which may have unknown theo-
retical uncertainties, the time-reversal symmetry violation nuclear effects could be
considered valuable complementary experiments for EDM measurements.

The comparison of CP-odd nucleon-coupling constants that lead to time-reversal
symmetry violation effects in neutron–deuteron scattering with constrains on the
coupling constants from EDM measurements offers the opportunity to estimate the
sensitivity of time-reversal symmetry effects in neutron scattering experiments. An
obvious way to study the time-reversal symmetry is to compare the scattering process
with the same process running backward in time. This leads to the principle of
detailed balance (see Sect. 2.12) that is based on the invariance of the scattering
matrix under the time-reversal transformation T. The detailed balance was tested in
cross-sections [485] and in polarization observables [486, 487] in a number of nuclear
reactions. The obtained results show that T -violating amplitudes are at most 10−3

to 10−2 of dominating strong interaction amplitudes. New prospects for T -violating
experiments with strongly interacting systems have appeared as a consequence of
discovering the large enhancement factors of 103 to 106 for parity non-conserving
phenomena in the interaction of polarized neutrons with nuclear media [479]. It
was argued that a similar amplification mechanism may operate for effects of time-
reversal symmetry violation [488, 489].

The presence of nuclear EDMs is due to simultaneous breaking of time-reversal
and parity symmetries [490]. However, these effects might also be observed as
insignificant asymmetries in dynamical processes like nuclear collisions or radia-
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tive capture/disintegration reactions. The time-reversal symmetry breaking might
be traced when observing specific asymmetries in nuclear reaction cross-sections,
involving polarized reaction products. In particular, the transmission of a low-energy
polarized neutron beam through the matter is of great interest, because in this case
the effects of the time-reversal symmetry violation might be explored at very low
(thermal or resonance) neutron energies. The neutron beam may scatter coherently,
whereas the presence of T -violating terms in the Hamiltonian of neutron–nucleus
interaction will lead to overall neutron spin rotation by an angle proportional to the
thickness of the target material.

In [479], the time-reversal symmetry violation in β-decay of polarized 8Li nuclei
was studied. The transverse polarization in a plane perpendicular to the nuclear
spin axis has been determined for emitted electrons. Using a sample of 8Li nuclei
with the vector polarization of ∼0.11 and a polarimeter with an average analyzing
power of S = −0.10, the asymmetry of the Mott scattering of decay electrons was
measured with an accuracy of ±4 × 10−5. From this asymmetry, the transverse
spin polarization of electrons has been determined with an accuracy of ±4 × 10−4.
Also, the amplitude R = (−0.2 ± 4.0) × 10−3 of the triple correlation between
the nuclear spin, momentum, and the electron spin has been obtained. These are
the results of the precise measurement of the transverse spin polarization of leptons
emitted in weak decays. The time-reversal violating part of the correlation amplitude
is RTRV = (−0.9 ± 4) × 10−3.

We now discuss the contribution to EDM of the nucleus due to Shiff moment
(SM ) and the magnetic quadruple moment (MQM ), which is the lowest T , P-odd
magnetic moment [491]. We note that in EDM experiments using nuclei with a
valence neutron (for example, 199Hg), the direct valence nucleon contribution is zero
and the SM is generated primarily by the polarization of the nuclear core by its T ,
P-odd interaction with the valence neutron [492, 493]. This leads to the fact that SMs
are sensitive tomany-body corrections [492–497]. On the contrary, for theMQM , the
valence nucleon gives the main contribution and so the result should be less sensitive
to many-body corrections. The T , P-odd core polarization contribution to theMQM
was estimated in [498]. It should be noted that in paramagnetic molecules there is
an increase of contributions of SM andMQM to T , P-odd effects. This problem will
be discussed in the next section.

10.3 Time-Reversal Symmetry Violation in Atoms
and Molecules

Atomic and molecular systems are characterized by the presence of electrons in
them, in contrast to nuclei, which do not contain electrons, with the exception of
nuclei emitting β-particles (electrons). This leads to specific features of the effects
of T -symmetry breaking in atoms and molecules consisting, first, in the presence of
constantEDMs in electrons and, secondly, in the influence of the electronic subsystem
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on the effects of T -symmetry breaking in nuclei. Atoms andmolecules are of interest
from the point of view of the time reversal symmetry breaking, because they are
composed of both leptons and hadrons and involved in a wide range of fundamental
interactions.

After the discovery of the combined charge and parity violation (CP-violation) in
K0
L -meson decay [109] (see Sect. 10.1), the search of EDMs of elementary particles

has become one of the fundamental problems in physics [499–503]. A permanent
EDM is induced by the weak interaction that breaks both the spatial symmetry
inversion and the time-reversal invariance [504]. The P- and T -violating interaction
between electrons and nucleons, which gives rise to atomic and molecular EDMs
has the form [503]

be−N
PT = i

GF√
2

∑

N

[
CSP
N

(
�N�N

) (
�eγ5�e

) + CPS
N

(
�N γ5�N

) (
�e�e

) + (10.6)

+ CT
N

(
�N γ5σμν�N

) (
�eσμν�e

)]
,

where the sum runs over all nucleons, �e and �N under the summation sign are
the electron and nucleon wave functions, �e and �N are wave functions of cor-
responding antiparticles, GF � 1.166 · 10−5 GeV−2 is the Fermi weak constant,
2σμν = i[γμ, γν], γμ, γν and γ5 are Dirac matrices; CSP

N , CPS
N , and CT

N are the
strength of the scalar–pseudoscalar (SP), pseudoscalar–scalar (PS), and tensor (T )

nucleon–nucleon interaction, respectively [505, 506]. For the standard definition of
angular wave functions, these interactions produce real matrix elements contributing
to mixing the opposite P-states, and give rise to atomic and molecular EDMs.

The EDM of an atom or molecule in the | a > state, D(a), can arise from the
sum of intrinsic EDMs of the constituent particles or from the mixing of opposite
P-states due to P- and T -odd interaction, b̂PT [502]:

D(a) = 2
∑

n

< a | d | n >< n | b̂e−N
PT | a >

Ea − En
(10.7)

where b̂e−N
PT is the electric dipole operator, determined by (10.7), which lies in the

direction of the angular momentum J. The polar vector operator d is P-odd and
T -even, whereas the axial vector operator J is P-even and T -odd (Fig. 10.1).

An atomic or molecular EDM can be generated by several P- and T -violating
mechanisms, such as the interaction with the electron EDM or the P- and T -odd
electron–nucleon and nucleon–nucleon interactions [507]. Different systems vary
in sensitivity to various sources depending on their electronic and nuclear struc-
ture. In paramagnetic systems (with non-zero angular momentum J ) the EDM is
almost entirely due to the electron EDM and P- and T -odd electron-nucleon inter-
actions. However, for diamagnetic systems (J = 0) EDMs are mostly due to P-
and T -violating inter-nuclear forces and interactions described by the effective spin-
dependent electron Hamiltonian [503].
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Fig. 10.1 A particle with angular momentum J and dipole moment D under parity P and time
reversal T. In each of these cases, the result produces a different state with EDM either parallel or
anti-parallel to J

Considerable experimental efforts have been invested to study the atomic EDMs
induced by proton, neutron and electronEDMs and byP,T -odd interactions between
them. The available restriction for the electron EDM , de, was obtained in an atomic
Tl experiment [508], which established an upper limit of | de |=< 1.6 · 10−27e · cm,
where e is the electron charge. After it was suggested in [509] to use the polar heavy-
atom molecules for experimental searching for the proton EDM . Such molecules
have been considered the most promising objects for such experiments. In heavy
atoms, the P- and T -parity non-conservation effects are strongly enhanced due to
relativistic and other effect. Particularly, in paramagnetic atoms the enhancement
factor for an electron EDM , datom

de
, is proportional to α2Z3αD, where α ≈ 1

137 is the
fine structure constant, Z is the nuclear charge and αD is the atomic polarizability
(the α2Z3 enhancement formula was first derived in [510]). The enhancement factor
can be of the order of 100 or greater for highly polarizable heavy atoms (Z ≥ 50).
Furthermore, the effective intramolecular electric field acting on electrons in polar
molecules can be five or more orders of magnitude higher than the maximal field
accessible in a laboratory [502].

The statistical sensitivity of experiments to the electron or proton EDM depends
on some parameters common for all EDM experiments. To verify this, it is neces-
sary to apply the Heisenberg uncertainty principle to evaluate the sensitivity of EDM
measurements. Let suppose the EDM of a molecule is measured in an electric field
E. It is necessary to do not confuse the EDM of a polar molecule with the large
conventional dipole moment of the molecule, which average to zero in the absence
of the electric field in a laboratory coordinate system. In contrast to the latter, the
molecular EDM , which is vanishingly small, can exist only due to P,T -odd interac-
tion. It is a permanent moment and its direction depends on the sign of the projection
of the total electronic angular momentum on the molecular axis [501]. Thus, the
interaction energy of the molecular EDM , ddd = dλλλ, (where λλλ is the unit vector along
the total angular momentum of themolecule) isd · Ed · Ed · E. The energy difference between
the levels corresponding to the opposite directions of the total angular momentum is
2d · Ed · Ed · E. If we measure the shift of the energy levels during the time interval τ0, then
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the d measurement uncertainty will be δd = �

2τ0E·λE·λE·λ . For such measurements on N
uncorrelated molecules, the value of δd will be equal to

δd = �

2τ0

√
NE · λE · λE · λ = �

2τ0Eλ

√
τdN
dt

, (10.8)

where dN
dt is the counting rate, Eλ = E · λE · λE · λ, and τ is the total measurement time

(usually, τ >> τ0 and τ0 is limited by the coherence time of the considered system).
Let us now write d = Gde, where de is the value of the electron EDM and G is
the proportionality coefficient, usually referred to as the enhancement factor. In this
case, we have the following final expression:

δde = �

2τ0GEλ

√
τ dN

dt

= �

2τ0W
√

τ dN
dt

, (10.9)

where W = GEλ is the effective electric field in the molecule, which can be inter-
preted as the field that should be applied along the EDM of a free electron to have
the energy shift 2Wde ≡ 2Eλd [502]. Of course, for the energy shift caused by the
proton EDM , a formula analogous to (10.9) is valid if in the latter we replace δde by
δdp, and consider G to be the proton enhancement factor.

The energy difference, 2d · Ed · Ed · E, is extremely small for completely polarized heavy-
atommolecules. Therefore theEDM experiment is usually carried out in parallel and
antiparallel electric and magnetic (BBB) fields. The interaction energy of the molecular
magnetic moment μμμ, with the magnetic field is much higher than that of the EDM
with the electric field and energy differences are 2μ · Bμ · Bμ · B+2d · Ed · Ed · E and 2μ · Bμ · Bμ · B−2d · Ed · Ed · E
for parallel and antiparallel orientations of the electric and magnetic fields (in prac-
tice, the atomic or molecular spin precessions are usually studied instead of direct
measurement of the energy shift [511]. When the electric field is reversed, the energy
shift, 4d · Ed · Ed · E = 4deW , indicates the existence of a permanent molecular EDM [502].

Nowweconsider theP,T -odd interactionof the 205Tl nucleus havingoneunpaired
proton with the electromagnetic field of electrons in 205TlF molecule [512]. The
Hamiltonian of effective interaction of this electromagnetic field with the EDM of
the Tl nucleus in TlF can be written in the form [502]

HHH eff = (
dV + dM

) I
I
λλλ, (10.10)

where I is the 205Tl nucleus spin operator,λλλ is a unit vector along the Z-axis (pointing
from Tl nucleus to the F nucleus), dV and dM are the so-called volume and magnetic
constants [513]:

dV = 6QX , (10.11)
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where Q is the magnitude of nuclear Schiff moment (SM ),

Q = e

6

[
3

5

∑

n

r2nrrrn − 1

Z

∑

n

r2n
∑

n′
rrrn′

]

, (10.12)

where e is the proton charge and rrrn is the location of nth proton. X in (10.11) is
determined by

X = 2π

3

[
∂

∂z
ρψ(rrr)

]

x,y,z=0

, (10.13)

where ρψ(rrr) is the electronic density calculated on the basis of the electron wave
function ψ .

The value dM from (10.10) is

dM = 2
√
2 (dP + dN )

(
μ

Z
+ 1

2mc

)
M , (10.14)

where dN is the nuclear EDM arising due to P,T -odd forces acting between the
nucleons; μ,m, and Z are the magnetic moment, mass and charge of the Tl nucleus;
c is the velocity of light and M is defined as

M = 1√
2

< ψ |
∑

i

1

r3i
[αααi × llli]z | ψ >, (10.15)

where llli is the orbital momentum operator of the ith electron and αααi are its Dirac
matrices. Accounting forHHH eff (10.10) leads to a difference in the hyperfine splitting
of TlF molecule in parallel and antiparallel electric and magnetic fields. The level
shift

hν = 4
(
dV + dM

) < Iλλλ >

I
(10.16)

is measured experimentally [514].
In [514], the violation of the time-reversal symmetry in the molecule TlF was

studied using a rotationally cold beam from a jet source. It was measured the fre-
quency shift of the thallium nuclear magnetic resonance (NMR) when an external
electric field of 29.5kV/cm was reversed with respect to a magnetic quantization
axis. The measured shift value of (1.4 ± 2.4) × 10−4 Hz is a tenfold improvement
in sensitivity over previous measurements. This experiment has reduced the upper
limits on the proton and electron electric dipole moments and on other T -violating
weak couplings that can be deduced from the frequency shift. The experimental data
have been interpreted on the basis of the effective spin Hamiltonian

H = −μTlσσσN ·BBB0 − hdσσσNλλλ, (10.17)
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where the first term is the usual T -conserving hyperfine interaction of the nuclear
magnetic dipole moment operator μTlσσσN with the internal magnetic field BBB0 of the
molecule and σσσN is the Pauli operator related to the nuclear spin operator I =
1
2�σσσN (� = h

2π ), i.e., σσσN = iiiσNx + jjjσNy + kkkσNz, where σNx, σNy, and σNz are Pauli
matrices defined in the spinor basis {| I = 1

2 ,+ 1
2 >, | I = 1

2 ,− 1
2 >}. The second

term in (10.17) describes the P-, T -violating electric dipole interaction between
molecular EDM and 205Tl nucleus. The unit vector λλλ was defined above, d is the
module of the molecular EDM (a measure of T -violation in the TlF molecule), and �

is the Planck constant. In the free space, such an interaction leads to small permanent
EDM . However, it would be better to detect this interaction by applying a strong
electric field EEE, which substantially polarizes the molecule and look for an energy
of the form σ · Eσ · Eσ · E. This energy appears as a shift of the NMR frequency when EEE is
reversed.

Without going into details of the experiment [502] and its interpretation, we only
note that a beam of TlF molecules was produced by a hypersonic jet source. The
temperature of molecules was sufficiently low so that all they were in the electronic
ground state andmost of them in the vibrational ground state (1�, v = 1). In this case,
a large number of rotational and hyperfine states were occupied, but the experiment
was performed using only one particular magnetic hyperfine sublevel of the first
excited rotational state with the angular momentum J = 1 [502]. This experiment
provides the best limits on the proton EDM dp = (−3.7 ± 6.3) × 10−23 e·cm and
also places strong limits on the electron–nucleus tensor coupling CT = (−1.5 ±
2.6) × 10−7, the nuclear Schiff moment QTl = (2.3 ± 3.9) × 10−10 e·fm3, and
T -odd nucleon-nucleon interactions. Limits derived from this experiment for the
electron EDM , de = (−2.1 ± 3.5) × 10−25e·cm, are strong, but not as good as
those found using paramagnetic atoms (see above in this section). Finally, we note
that the second term in the Hamiltonian (10.17) that describes the P-, T -violating
internal interaction induces a permanent molecular EDM , dTlF , directed along the
total angular momentum F of the molecule. In the J = 1 state having F = 2, it was
found that dTlF = (−1.7 ± 2.9) × 10−23 e·cm.

According to Schiff theorem [513, 515], in heavy diamagnetic atoms [516–519]
andmolecules [514] theEDM of the nucleus is entirely screened by electrons. Indeed,
here the observable EDM is generated by the nuclear Schiff moment Q introduced
in the first term of the effective Hamiltonian (10.10) (see also (10.11)–(10.13)).
The SM is an intra-nuclear charge distribution, generated by T ,P-odd interactions
within the nucleus, which can introduce an atomic or nuclear EDM by polarizing
the bound electrons [520, 521]. The SM size is ∼r2NdN , where rN and dN are the
nuclear radius and nuclear EDM , respectively. The radius rN is very small compared
to the electron orbital size. Therefore, the atomic EDM , dm, produced by the nuclear
SM is much smaller than dN . By contrast, the magnetic interaction between nuclear
moments and electrons is not screened. The lowest T -, P-odd magnetic moment
is the magnetic quadrupole moment (MQM ) [522]. It was shown in [520] that in
paramagnetic atoms and molecules, as was also noted in [510], the nuclear MQM
produces a largerEDM than SM does at the same underlying source ofCP-violation.



294 10 Time-Reversal Symmetry Violation

Moreover, theMQM has a collective nature and is significantly enhanced in deformed
nuclei (like the case of ordinary electric quadrupole momentum). The time-reversal
symmetry violation in paramagneticmolecules inducedbynuclearMQM was studied
in [522]. It was shown that nuclear T -, P-odd effects are amplified in paramagnetic
molecules containing deformed nuclei, where the primary effects arise from the T -,
P-odd nuclear MQM . Also, it was argued that EDMs measurements in molecules
withMQMs may, particularly, provide improved limits on the strength of T -, P-odd
nuclear forces.

10.4 Time-Reversal Symmetry Violation in
Superconductors

After the discovery of ceramic superconductors with high-Tc (HTCS) [523], it
became clear that in materials of this class the pairing of electrons with opposite
momenta and spin projections is not adequately described by the electron–phonon
interaction in the framework of BCS theory [524] developed for conditional metallic
superconductors. Considerable efforts have been made to find an alternative mech-
anism that causes superconductivity in unconventional HTCS, such as YBa2Cu3O7

(YBCO) and Bi2Sr2CaCu2O8 (BSCCO), and also in later discovered HTCS MgB2
[525], iron pnictide compounds and many others. Moreover, the theory of BCS was
modified (including both phonon and non-phononmechanisms), and other additional
models were also proposed, such as resonant valence bands, marginal Fermi liquid,
etc.

As a result of the performed research, the following was clarified: (a) many of
HTSC are quasi-2D and quasi-3D with anisotropic superconducting properties; (b)
Fermi surfaces are much more complicated, involving many bands of electronic
structure, and (c) on the basis of angle-resolved photoemission spectroscopy data,
it was shown the existence of a variety of superconducting gap symmetries (singlet
or triplet and s-wave, p-wave, and d -wave) [526]. This variety of superconducting
bands symmetries, as it will be seen further, is of a crucial importance for the problem
of time-reversal symmetry breaking in unconventional superconductors. According
to [525–528], many experimental data show that the pair wave function has a dx2−y2

character and can be written as

ψ(k) =< c+
k↑c

+
−k↓ >∝ cos kx − cos ky, (10.18)

where c+
ks denotes the electron creation operator. The concept of dx2−y2wave sym-

metry pairing is used in various theories. One such theory is based on the idea that
the pairing interaction is averaged through the exchange of antiferromagnetic spin
fluctuations among quasiparticles [529, 530]. Another theory describes the super-
conducting states as pairing resulting from the doping of a spin liquid state, so-called
resonating valence bonds (RVB) states [531–533]. The third alternative point of view
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Table 10.1 Symmetry
classification of even-parity
pairing states [535]

� ψ(k)

A1g cos kx + cos ky
A2g sin kx sin ky(cos kx − cos ky)

B1g cos kx − cos ky
B2g sin kx sin ky
Eg −

assumes the existence of a large continuous symmetry SO(5), which establishes a
connection between antiferromagnetic and superconducting order parameters [534].

All oxide high-temperature superconductors consist of CuO2-superconducting
planes and intermediate layers acting as charge reservoirs for removing or adding
electrons to the planes. Therefore the discussion of the superconducting state sym-
metry must be based on the planes lattice structure, which is basically square-like
(with a slight orthorombic distortion in some cases) [535]. The pairing states in the
lattice are classified according to irreducible representations of the square lattice
point groupC4v by analogy with the angular momentum classification in rotationally
symmetric systems [536].

These representations include both even-(spin singlet) and odd-parity (spin triplet)
pairing states. It is possible to distinguish between the two states by some of their
magnetic properties. For spin singlet pairing, the spin susceptibility is suppressed in
the superconducting state, while it should be only weakly affected for spin triplet
states, because the spin freedom degrees in the latter case remain active. Measure-
ments of the Knight shift demonstrated that spin triplet pairing can be ruled out
[537]. Thus, it is necessary to restrict even-parity representations, which consist of
four one-dimensional (A1g, A2g, B1g and B2g) and a two-dimensional (Eg) repre-
sentations. The last representation can be ignored, it would imply interlayer pairing.
The list of remaining pairing states is given in Table 10.1.

The pair wave functions are given in the momentum space corresponding to real
space pairing of particles in the nearest or next nearest sites. The strong Coulomb
repulsion among the carriers in the CuO2-plane forbids them to occupy the same
state. Therefore any onsite pairing amplitude in the pair wave function has to vanish
[534].

Themost symmetric state in theA1g representation cannot be a true s-wave pairing
state. It has the form of a so-called extended s-wave with nodes in the first Brillouin
zone. There are two pairing wave functions called dx2−y2 -wave and dxy-wave in B1g

and, respectively, B2g representations. The state belonging to A2g has a more com-
plicated modal structure and can be termed as g-wave.

From the group theory point of view, all four symmetries are equally good candi-
dates for a superconducting state in the CuO2-plane. However, only the experiment
or a microscopic theory would determine which of them can be realized. A number
of experiments including measurements of the Knight shift [537] indicate the pres-
ence of low-lying quasiparticle excitations that require nodes in the gap [527]. This
requirement is satisfied by all four states. Selection of candidates for the role of a
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superconducting state can be carried out experimentally. Based on the angle-resolved
photoemission spectroscopy (ARPES), locating the nodes of thewave function exclu-
sively along the [110]-direction in BSCCO and YBCO [537], it was shown that A2g

and B2g are ruled out, while B1g is the strongest candidate together with A1g .
We now find out when the time-reversal symmetry breaking occurs in supercon-

ductors. In particular, let us consider a structure SNS consisting of two superconduc-
tors A and B, between which there is a thin layer of a normal metal (the Josephson
junction). Suppose, for definiteness, that the superconducting states in materials A
and B are transformed with respect to irreducible representations A1g (extended s-
wave pairing state) and B1g (dx2−y2 -wave pairing state) of the C4v point group of
symmetry. The d -wave nature of the order parameter implies the following three
relations concerning the Josephson current I for different, but related angles

I(−θ) = +I(θ),

I
(
θ ± π

2

) = −I(θ),

I(θ ± π) = +I(θ)

(10.19)

for an arbitrary phase difference ϕ = �B−�A [538–541]. In (10.19), θ is the relative
angle of one of the main symmetry axes to the interface normal vector. Thus, the
critical current Ic may be considered as a θ -dependent function:

Ic(θ) = Ico cos 2θ, (10.20)

which does not reproduce correctly the angular dependence of the coupling strength,
but merely gives the proper sign structure.

The sign of Ic(θ) determines an intrinsic phase shift α of the junction, which is
α = 0 for Ic > 0 and α = π for Ic < 0 [535].

The presence of the intrinsic phase shift α = π can lead to various unusual
properties inmultiply connected systems. For example, interference phenomenawere
used to prove the existence of π -phase shifts in some HTSC. The order parameter
symmetry in such HTSC was identified as dx2−y2 -wave like [542–548].

The time-reversal symmetry of Josephson junctions is broken if one of the two
connected superconductors breaks the time-reversal symmetry. In order for time-
reversal symmetry breaking to take place, it is necessary that two wave functions of
different symmetries form a linear combination with complex coefficients. In this
context, two time-reversal symmetry breaking states are proposed (s+ id -wave and
d + id -wave states), both of them with the phase shift φ − φ′ = ±π

2 . Here the order
parameters are η =| η | eiφ and η′ =| η′ |= eiφ

′
. The corresponding gap functions

in the quasiparticle spectrum

�(k) =
√

| η�d (k) + η′� ′(k) |2 (10.21)
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are nodeless ones in both cases. However, the experimentally observed modes ruled
out such time-reversal symmetry breaking states in most of HTSC [535]. Never-
theless, in a number of cases, experiments confirm the existence of time-reversal
symmetry breaking superconducting states. It is assumed that the superconductor B
violates the time-reversal symmetry described by the two-component order parame-
ter (ηB, η

′
B). In this case, the intrinsic phase shift can be obtained using the junction

energy [549, 550]

EJ = −E0|ηA|
[(|ηB| + |η′

B| cosχ
)2 + |η′

B|2 sin2 χ
]1/2 · cos(ϕ − α), (10.22)

where

tan α = | η′
B | sin χ

| η | + | η′ | cosχ
(10.23)

and E0 = I0�0/2πc, ϕ = �B − �A, χ = �B − �′
B. The time-reversal symmetry is

broken for a combination of η and η′ if

η + η′ −→ η∗ + η′∗ �= (η + η′)eiγ , (10.24)

where γ is an arbitrary phase. Thus, η+η′ and its time-reversed η∗+η′∗ are different,
but degenerate states. This is the case if the relative phase χ �= 0, π . Note that the
phase shift satisfies α �= 0, π , if the relative phase χ �= 0, i.e. for time-reversal
symmetry breaking states [551, 552].

Let us now discuss the multiple Cooper pair transfer. On a microscopic level,
the multiple Cooper pair transfer between two superconductors can be described
by Bogolyubov–de Gennes equations or using a quasiclassical approach [553–555].
The interface shall be represented by a simple potential barrier

Hbarr = Zδ(x). (10.25)

The current density has the form

j(ϕ) = e

π�

π
2∫

− π
2

dϑ
1

β

∑

ωn

t(ϑ)�A�B(ϑ − θ) sin ϕ

[ωn2 + �A�B(ϑ − θ) cosϕ + EnAEnB]t(ϑ) + ZEnAEnB
,

(10.26)

where ϕ = �B − �A and the angle integral over ϑ is restricted, for simplicity, in
the basal plane of the d -wave superconductor (the c-axis is always parallel to the
interface) [541, 556]. The function t(ϑ) denotes the tunneling form factor of the
junction (by choosing t(ϑ) = t0 cos2 ϑ , the perpendicular tunneling is favored ).
The s-wave gap and the angle-dependent d -wave gap with �B(ϑ) = �0 cos 2ϑ are
denoted by�A and�B(ϑ), respectively. The corresponding quasiparticle energies are
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En = (
ωn

2 + �2
) 1

2 , where ωn = π(2n+1)
β

is the Matsubara frequency (β−1 = kBT ).
In the limit Z >> 1, it is possible to expand (10.26) in �A�B [535]:

j(ϕ) = e
π�

π
2∫

− π
2

dϑ 1
β

∑

ωn

�A�B(ϑ−θ)t(ϑ) sin ϕ

(ωn
2+EnAEnB)t(ϑ)+ZEnAEnB

×

×
(
1 − �A�B(ϑ−θ)t(ϑ) cosϕ

(ωn
2+EnAEnB)t(ϑ)+ZEnAEnB

)
+ · · ·

(10.27)

As the temperature at the superconducting side approaches Tc, the first term in
(10.27), that is proportional to �2, vanishes more slowly than the second one, pro-
portional to �4. It can be shown that in the specific case of θ = π

4 the first term
disappears for any temperature so that α = ±π

2 minimizes the junction energy for
all T < Tc. It is a feature specific to the dx2−y2 - wave superconductor. For any other
angles there is a critical temperature T̃c, belowwhich the phase shift α decreases con-
tinuously from 0 to π [541]. Thus, the change occurring at T̃c may be considered as
a second order phase transition of the Josephson junction, breaking the time-reversal
symmetry.

We consider now the Josephson current, which can be obtained by the derivative
of the free energy with respect to ϕ. The contribution of current at each Fermi
momentum kF is:

JkF = 2ekF
�

LkF

∞∑

n′=0

n′fn′(vkF ) sin(n
′ϕ), (10.28)

whereLkF = L
(kF ·n)

is the traveling distance of the electron or hole in the normalmetal,
L is the thickness of normal metal layers situated between the superconductors A and
B.

It is easily to decompose the current from (10.28) into the perpendicular com-
ponent, J⊥, passing through the junction (Josephson current) and the component
parallel to the metal layer, J‖, [557]:

(
J⊥
J‖

)
= 2ekF

�

π
2∫

− π
2

dvkF
2π

LkF

∞∑

n′=0

(
cos vkF
sin vkF

)
n′fn′(vkF ) sin(n

′ϕ). (10.29)

The lowest energy state is obviously given by J⊥(ϕ = ϕo) = 0, where

ϕo = ± arccos

(
− I1
2I2

)
for I2 < 0 and

I1
2I2

< 1. (10.30)

The values I1 and I2 from (10.30) are determined by the current-phase relation

I(ϕ) = I1 sin ϕ + I2 sin 2ϕ. (10.31)
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The vanishing of J⊥ implies the overall canceling of all current contributions in
different kF -directions projected on the normal vector of the normal metal layer.
However, for ϕo �= 0, π the parallel current component is not zero. The presence
of a finite parallel current component is a manifestation of broken time-reversal
symmetry, since there is a degenerate statewith reversed current. In the used approach
this spontaneous current flows uniformly in the metal layer and in the cases θ = π

4
and T = 0 the total current is given by [557]

I‖ = LJ‖
(
ϕ = π

2

)
= ek2F

2π2
. (10.32)

This result is valid for two dimensions only, because the motion of quasiparticles
along the c-axis has been neglected.

In the continuation of this section, we discuss two effects that seem to be the
most promising for the detection of time-reversal symmetry breaking. The first one
is connected with the possible fractional flux of quanta [551, 552, 558–560] and the
second one is connected with phase slips [561] between two degenerate Josephson
junction states.

In general, the phase difference ϕ is not uniform and can vary over a certain
length scale λJ (Josephson penetration depth) that is the screening length for external
magnetic fields in the junction.A Josephson junction can support vortices (flux lines),
which contain fluxes

� = n�o, (10.33)

where n is an integer positive number and �o is the magnetic flux quantum

�o = �c

2e
. (10.34)

In (10.34), �, c and e are, respectively, the Planck constant, light speed, and the
electron charge.

The mentioned vortices are most conveniently described through the spatial vari-
ation of ϕ along the junction. For definiteness, we consider a junction that lies in
the (xz)-plane with the direction of the magnetic field along the z-axis and the vari-
ation of ϕ exclusively along x-axis. Using Maxwell’s equations and the Josephson
current-phase relation in a long inhomogeneous junction, the sine-Gordon equation
can be obtained [562]:

∂2ϕ

∂x2
= 1

λ2
J

sin ϕ, (10.35)

where λJ is the Josephson penetration depth. The constant solutions ϕ = 2πn of
(10.35) are stable.
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Based on (10.35), the half-integer quantization of the magnetic flux can be
obtained [538, 563]

� = �o

(
n + 1

2

)
. (10.36)

Along with (10.36), a new flux quantization appears

� = �o

(
n + χ

π

)
, (10.37)

which is shifted by a junction-specific value and is neither integer, nor half-integer
[551, 552, 564]. This is the fractional type quantization.

Following the [555, 560], we present a simple argument for the fact that the
observation of anomalous flux quantization (10.37) is uniquely connected with the
local violation of the time-reversal symmetry of the superconducting state. Let a
flux � vortex is located somewhere on the junction. If we apply the time-reversal
operation to this system, the vortex flux changes its sign:� −→ −�. These two flux
values can only differ by an integer multiple of�o, if the underlying superconducting
state is not altered by this operation (apart from inverting the phase):

� = −� + �on. (10.38)

This leads to � = �o
n
2 , and only integer and half-integer values are allowed

to appear. On the other hand, if the superconducting state changes under the time-
reversal operation (and as a consequence the time-reversal symmetry is violated),
then no constraint is imposed on the difference between � and −�, and any value
of � is possible.

An effect known as phase slip, which does not require long inhomogeneous junc-
tions, is related to a kink of ϕ in time [535]. This effect implies that the phase
difference in standard Josephson junctions jumps from one stable state to another
by 2π . In the case when the time-reversal symmetry in the junction is violated, the
situation may change, because the number of stable states is doubled and a transition
between stable junction states includes now differences smaller than 2π . In this case,
the transferred flux has a fractional value in the previously defined sense. If we take
into account that ϕ varies in time and yields the voltage

V (t) =
(

�o

2π

)
∂ϕ

∂t
, (10.39)

then, under the conditions taken in [535], the voltage signal integrated over time is
related to the magnitude of the transferred flux and the total change of ϕ is

∞∫

−∞
V (t)dt = �o

2π

∞∫

−∞

∂ϕ

∂t
dt = �o

π
χ, (10.40)
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i.e. the fractional flux introduced in (10.37) appears again (due to the fractional
quantization).

Since the current flow is accompanied by generation of a voltage, energy is
absorbed in this process. The barrier between two degenerate minims in the time-
reversal breaking state is particularly low and close to the transition in this state.
Therefore, oscillating phase slips between two minims can be induced near this tran-
sition bymicrowave radiation. The transitionwould be accompanied by enhancement
of the microwave absorption in the junction [535].

In addition to these two effects, the arrangement of energy levels of quasiparticle
bound states can also indicate the violation of time-reversal symmetry. Consideration
of the surface of a dx2−y2 - wave superconductor, where states with broken time-
reversal symmetry can appear, leads to results similar to those obtained for Josephson
junctions, but with some specific features. While two order parameters exist at the
interface between two superconductors (one on each side) that can form together a
time-reversal symmetry breaking state [558], only one order parameter component
is a priori available close to the surface. The pair breaking effect can not only destroy
the dx2−y2 - wave order parameter at the surface, but also open the way to an order
parameter of different symmetry, which is suppressed in the bulk (such as s-wave
or d -wave). This new pairing component can form a complex combination together
with the dominant dx2−y2 - wave component [551, 552, 565–567]. Similarly to the
interface state, such a state is accompanied by spontaneous currents at the surface. In
[535], this state is discussed phenomenologically, based onGinsburg–Landau theory,
and microscopically, using Bogolyubov-de Gennes equations. It was shown that the
generated zero-energy state splits into two separate states, one above and other below
the Fermi level, leading to lowering the quasiparticle contribution to the free energy.
Thus, removal of the large density of states is an important factor contributing to the
creation of a time-reversal breaking state.

The splitting of the zero-energy peak also manifests itself in quasiparticle tunnel-
ing. The normal metal-superconductor (NS) quasiparticle tunneling spectra made the
interface between the metal and semiconductor sufficiently non-transparent [568].
As a consequence, the bound state appears as a resonance in the current-voltage
characteristics. Thus, it was suggested that the zero-energy bound state leads to a
so-called zero-bias anomaly in the tunneling spectrum. In [565–567, 569, 570], it
was suggested that the occurrence of time-reversal symmetry breaking, including
splitting of the zero-energy level, should also lead to an observable modification in
the tunneling spectrum. This tunneling spectrum modification was indeed identified
in the experiments on [110]-oriented NS devices with YBCO and in the zero-bias
anomaly splits into a double peak below 4 K [571]. These experiments are a strong
proof of the existence of a superconducting state with broken time-reversal symmetry
at the surface.

It is easy to show that the spontaneous current is also carried by quasiparticles,
similar to the Josephson junction case. Splitting of the zero-energy level leads to an
imbalance in the occupation among the electron states with the momentum compo-
nent parallel and antiparallel to (1,−1, 0). Thus, there exists a finite current along
the surface, whose direction depends on which of the two degenerate time-reversal
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symmetry breaking superconducting states is realized [559, 567]. There were also
studied other structures, where spontaneous broken time-reversal states can occur,
in particular, the twin boundary in an orthorombically distorted originally tetragonal
system [572–574] and the crystal with lattice dislocations [575]. In both cases, a
state with spontaneously broken time-reversal symmetry can occur locally.

While in high-Tc semiconductors the time-reversal symmetry breaking is appar-
ently restricted to specific regions in the sample, there are other nonconventional
superconductors where the time-reversal symmetry is very likely violated through-
out the whole material. As an example, we can indicate the heavy fermion supercon-
ductors UPt3 and U1−xThxBe13(0, 017 < x < 0, 045) [576]. The two consecutive
phase transitions identified in these compounds by the temperature dependence of
specific heat indicate that these are attributed to the superconductivity involving
pairing states of different symmetry. The theory of this double transition is based on
multidimensional order parameters (η1, η2, . . .) whose components have different
transition temperatures [577, 578]. The onset of the superconductivity is character-
ized by the fact that one of the components (denoted by η1) with the highest critical
temperature Tc becomes finite, and one or more other components (denoted by η2) at
the second transition are admixed to form a complex order parameter combination,
e.g., η = (| η1 |, ±i | η2 |) [535, 550, 579]. Another example is the superconductor
Sr2RuO4 discovered in [580], which has a single superconducting phase transition
leading to an apparently time-reversal symmetry breaking state [535].

Of a particular importance for detecting the broken time-reversal symmetry in
these and other compounds is the study of their magnetic properties [550, 578]. As
it was noticed earlier, locally time-reversal symmetry breaking states can generate
spontaneous currents and field distributions. In order to generate spontaneous cur-
rents in a bulk time-reversal symmetry breaking superconductor, it is necessary the
order parameter to be not homogeneous As a rule, generated fields do not lead to net
magnetic moments and that is why high resolution probes are need for their detection
[559, 581, 582]. A suitable experimental method of investigation in this case is the
method of spin polarized muons [583, 584]. When such muons are injected into a
material, they are trapped quickly in symmetric crystal lattice locations and their
spins precess in the local static magnetic field. In the absence of a magnetic order,
this field of various origins has, in general, random values and directions. The field
distribution can have a Gaussian form

D(H ) = 1√
2πσ

exp

(
−H 2

2σ

)
, (10.41)

where σ and H are the distribution width and the magnetic field strength. The time
dependence of the muon spin polarization along the initial direction is

P(t) = 1

3

[
1 + 2(1 − γ 2

μσ 2t2) exp

(
−1

2
γ 2

μσ 2t2
)]

, (10.42)
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where γμ is the gyromagnetic ratio of the muon [585]. As it is known, the Gaussian
distribution width (10.41) is the measure of the internal field. In a time-reversal
symmetry breaking superconductor, the field distribution around each inhomogeneity
causes an additional contribution to the width σ . The superconductor contribution to
a state of the form η = (| η1 |, i | η2 |) is δσkT (T ) ∝| η1(T ) || η2(T ) | , where k and
T are the Boltzmann constant and, respectively, the absolute temperature.

For UPt3 [586] and U1−xThxBe13 [587], below the second transition at T ′
c, it was

found the approximate form

δσkT (T ) ∝| T − T ′
c | 1

2 . (10.43)

This form is dominated by the second-order parameter η2, while η1 is already
finite and has a weaker temperature dependence [550, 578]. On the other hand, if the
violation of the time-reversal symmetry occurs at the onset of superconductivity, as
is probably the case in Sr2RuO4, both order parameters have the same temperature
dependence and lead to

δσkT (T ) ∝| T − Tc | (10.44)

close to Tc [586].
There are also of interest the results obtained in the BCS formalism concerning

the time-reversal symmetry broken (TRSB) state in a multi-band superconductor.
For the first time, Moskalenko [588] and Suhl et al. [589], independently of each
other, extended the one-band BCS theory to the two-band theory with overlapping
the energy band on the Fermi surface. These works were published long before
the discovery of high Tc-superconductivity and the synthesis of a number of new
superconductors, thus bridging the gap between conventional lowTc superconductors
and high Tc cuprates. As it is shown in [526] based on the multi-band BCS theory,
frustration between the bands, in three bands BCS superconductors with repulsive
inter-band interaction, can lead to an inherently complex gap function, arising out
of the phase difference between the bands in the range from 0 to π . The complex
conjugate of this state is also a solution: the ground state is degenerate, therefore a
TRSB state appears. This state is a result of frustrated repulsive interactions between
the three bands that gives rise to a relative phase appearing between the bands. It
was shown that the TRSB state only appears in a very small region of the parameter
space, where the interaction between bands is of the same order. This allows the
frustrated repulsive interaction to form the TRSB state. It was also shown that there
is a possible phase transition between the TRSB and conventional BCS states at a
finite temperature, which can be experimentally probed.

Let us consider now the case of a 2D superconductor with a frustrated checker-
board lattice, which may be considered as a 2D projection of the 3D corner-sharing
lattice of pyrochlore. Using the renormalized mean field theory and the extended
Habbard model, it was shown that the dx2−y2 -symmetry state is most stable in a large
parameter region for small values of | t′

t | (t and t′ are hopping integrals for the
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nearest neighbor links and the next nearest neighbor links) [590]. The authors of
[590] have found that around | t′

t |= 1 a time-reversal symmetry broken state exists.
They have shown that (d + id)- and (d + is)-symmetries states are the most stable.

10.5 Time-Reversal Symmetry Violation and Enhancement
of Quantum Transport

After discovery by Wigner [68, 222] of the antiunitary time-reversal symmetry
(TRS), this symmetry, aswell as various its violations have become the object ofmany
studies in elementary particle physics, in nuclear, atomic and molecular physics, and
in solid state physics. However, it cannot be said the same about quantum informatics
and, in particular, about quantum transport, communication networks, more effective
energy transfer and improved information processing devices.

Ideas about the antiunitary symmetry began to penetrate into these areas of knowl-
edge only in recent years, but already brought encouraging results, consisting, in
particular, in the growth of the quantum transport enhancement by time-reversal
symmetry breaking [587, 591–596]. Note that the quantum transport enhancement
studied in these works is not related with the enhancement of transport due to quan-
tum noise [597, 598], which has been studied in the context of photosynthesis [598,
599]. Here the emphasis is on the time-reversal symmetry breaking of the Hamilto-
nian dynamics and its influence on the quantum transport.

However it is necessary to make the following remark. The possibility of time-
reversal symmetry breaking became a fundamental problem since the creation of
quantum mechanics. Until now, the mechanisms of T -violation are not fully under-
stood. In particular, there is the possibility of time-reversal symmetry violation
in high-energy physics since some elements of the Cabibbo–Kobayashi–Maskawa
(CKM) matrix may have complex values [600]. However, this is related to heavy
quark properties and noT -violation is expected to occur in low-energy atomic physics
[601]. Search for time-reversal symmetry breaking in low-energy collective modes
of an atomic nucleus, as well as for TRS violation in atoms, molecules and solids
is a subject of extensive studies, both theoretical and experimental. In contrast to
the fundamental violation of T -symmetry, it is relatively easy to find a spontaneous
time-reversal symmetry breaking in any quantum circuits. In what follows we will
follow the papers [591, 596].

In [596], an approach based on a complex network theory of quantum systems
[602–604] has been developed. In this approach the probability transfer is directed
by the controlled breaking of time-reversal symmetry that creates a so-called chiral
quantum walks [591–595]. Since their recent introduction, continuous time chiral
quantum walks have been studied in the context of energy transport in ultra-cold
atoms and molecules [592], in non-equilibrium physics [593, 594] and as a method
to achieve near perfect state transfer [591, 595]. In [596], conditions of making a
Hamiltonian (circuit) time asymmetric have been established in terms of the geom-
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etry and edge-weights (gates) of the underlying graph. The time-reversal symmetry
breaking is of practical importance because it is equivalent to introducing a biased
probability flow in a quantum system. The TRS breaking in a quantum process allows
direct state transfer without a biased distribution in initial states, a coupling to an
environment or using in situ tunable Hamiltonians [605, 606].

The time-independent quantum walks Hamiltonian is defined by [607–611]:

HQW =
sites∑

n,m

Jnm(| n >< m | + | m >< n |). (10.45)

The requirement that hopping weights, Jnm, are to be real numbers implies that the
induced transitions between two sites are symmetric under time reversal. The time-
reversal symmetry can be violated (the hermitian property of the operator being
maintained) by appending a complex phase to an edge: Jnm −→ Jnmeiθnm [612],
resulting in a continuous time chiral quantum walk (CQW) Hamiltonian governed
by

HCQW =
∑

n,m

Jnme
iθnm | n >< m | + Jnme

−iθnm | m >< n | . (10.46)

Equation (10.46) can be written in terms of the spin-Pauli matrices:

HCQW =
∑

n,m

Jnm cos(θnm)(σ x
nσ x

m + σ y
nσ y

m) +
∑

n,m

Jnm sin(θnm)(σ x
nσ y

m − σ y
nσ x

m),

(10.47)

which arise in a variety of physical systems when magnetic fields are considered.
The coherent quantum dynamics and incoherent dynamics within the Markov

approximation can be investigated in the chiral quantum walks (CQW) frame-
work. Both types of evolution are included in the Kossakowski–Lindblad equation
[613–617]

d

dt
ρ(t) = L{ρ} = −i[HCQW , ρ] +

∑

k

LkρL
+
k − 1

2
(L+

k Lkρ + ρL+
k Lk),

(10.48)

where ρ(t) is the density operator describing the state of the system at the time t and
Lk are Lindblad operators inducing stochastic jumps between quantum states. Using
the usual terminology of Markovian processes, the site t can be called a trap if it is
coupled to the site s by the Lindblad jump operator, Lk =| t >< s |. The site-to-site
transfer probability, Pn−→m(t) =< n | ρ | m >, gives the occupancy probability of
the site m at the time t at the initial condition ρ(0) =| n >< n |.

A quantum switchwhich violates the time-reversal symmetry and enables directed
transport can be introduced and used to create a logic gate.

In this case, PS−→E is the occupancy probability of the site E with the particle
initially starting from the site S with and without sink. This evolution is time-reversal
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asymmetric as replacing t by−t results in the particle moving from the site S towards
the site F , different from E. When starting at the site E, the particle evolves towards
the same site F . By replacing t by −t, a particle being initially at the site E evolves
towards the initial configuration. Equation (10.48) can be written as follows:

L{ρ} = −i[HCQW , ρ] +
∑

(n,m)

Cnm

(
LnmρL+

nm − 1

2
{L+

nmLnm, ρ}
)

, (10.49)

where the chiral HamiltonianHCQN is defined in (10.46), and the Lindblad operators
are given as Lnm =| m >< n | with Cnm ≥ 0. The transport from the vertex | S >

to the vertex | E > in such a dynamics is characterized by the site-to-site transfer
probability, which in the unitary case (Cnm = 0) is [591]

PS−→E(t) = Tr
(
e−iHCQW tρSe

iHCQW tρE
)

(10.50)

with ρS= | S >< S | and ρE= | E >< E |, while in the general Markovian case it is

ρS−→E(t) = Tr
(
eLt{ρS}ρE

)
. (10.51)

In the case of quantum walks, the time-reversal operator T acts as a complex
conjugation (with respect to the vertex basis) [591, 618]:

T
∑

v∈V
Cv | v >=

∑

v∈V
C∗
v | v > . (10.52)

The antiunitarity of the T -operator and the relationship T 2 = e (for non-Kramers
systems) implies that T+ = T . The time reversal of a Hamiltonian H is given1

as THT−1 = THT . The H −→ THT action is represented by the replacement
θmn −→ −θmn in (10.46). The site-to-site transfer probability of H (PS−→E(t)) and
that of H ′ = THT (P′

S−→E(t)) are related as follows [591]:

P′
S−→E(t) = Tr

(
e−i(THT )tρSei(THT )tρE

) =
= Tr

(
TeiHtTρSTe−iHtTρE

) =
= Tr

(
eiHtTρSTe−iHtTρET

) =
= Tr

(
eiHtρSe−iHtρE

) = PS−→E(−t),

(10.53)

PS−→E(−t) = Tr
(
eiHtρSe

−iHtρE
) = Tr

(
e−iHtρEe

iHtρS
) = PE−→S(t).

(10.54)

1In this and next sections the Hamiltonian and the time-reversal operator are denoted as H and T
instead of H and T.
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A consequence arising from (10.53) and (10.54) is that the transition probabilities
in the case of achiral quantum walks are the same at t and −t, i.e. PS−→E(t) =
PS−→E(−t). However, H �= THT+ does not necessarily imply that transition rates
are asymmetric in time, because THT+ might be gauge-equivalent toH (see below).
The gauge transformation is simply a local change of basis, i.e., a diagonal unitary
transformation Ud :

Ud | n >= eiαn | n > . (10.55)

Note that any unitary basis-changeU would induce a transformation of the Lind-
blad superoperator L −→ L′ with

L′{ρ} = UL{U+ρU }U+. (10.56)

Using (10.56) and the invariance of localized states under diagonal unitary oper-
ator Ud

(
U+

d ρvUd = ρv
)
, the following relationship can be obtained [591]:

P′
S−→E(t) = Tr

(
eL

′t{ρS}ρE
) = Tr

(
UdeLt{U+

d ρSUd }U+
d ρE

) =
= Tr

(
eLt{ρS}U+

d ρEUd
) = Tr

(
eLt{ρS}ρE

) = PS−→E(t),
(10.57)

which proves the invariance of the site-to-site probability under the gauge transfor-
mation defined by (10.55). Here the cyclicity of the trace and the invariance of the
statistical operator ρv(v = S,E) under the time-reversal operator (TρvT = ρv) have
been taken into account. It was also taken into consideration that the antiunitarity of
T and T 2 = e implies that T−1 = T+ = T . Under diagonal unitary transformations,
the quantum walks Hamiltonian parameters transform as

θmn −→ θmn + αm − αn. (10.58)

The incoherent part of the Kossakowski–Lindblad (10.49) does not change, since
Lindblad operators transform as Lnm −→ ei(αm−αn)Lnm and phases αm and αn cancel
in (10.49), because Lnm and L+

nm appear paired.
The approach developed in [591] was used to demonstrate the effect of time-

reversal symmetry breaking in some examples, which illustrate the main idea of
directionality, suppression, and enhancement of the quantum transport:

1. a unitary quantum switch where the phase, that is, the time-reversal asymmetry
parameter controls the direction of quantum transport;

2. the complete suppression of chiral quantum walks on loops with an even number
of sites;

3. the exciton transport of energy from antenna to the reaction center in photosyn-
thesis process;
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4. randomly generated small-world networks. In the last case, it was shown that by
appending time-reversal asymmetric terms to only the network connected to the
final site, the speed of the site-to-site transport increases up to 130% [591].

In [596], a quantum circuit version of the time-reversal symmetry theory is devel-
oped, which classifies the time-symmetric and time-asymmetric Hamiltonians and
circuits in terms of their underlying network elements and geometric structures.
These results reveal that many of the typical quantum circuit networks exhibit a
time-asymmetry and that the physical effect of time-symmetry breaking plays an
essential role in quantum transport science. Using this approach, the most basic
time-asymmetric process is identified and it is shown that the fundamental building
block can be created and controlled experimentally on the basis of room-temperature
liquid-state nuclear magnetic resonance (NMR) of 13C-labeled trichloroethylene dis-
solved in d-chloroform. It was demonstrated that the time-asymmetry and, as a conse-
quence, the transport probability can be controlled with limited access to the system,
namely, by using local z-rotations paired with a naturally emulated time-symmetric
evolution, achieving state transfer probabilities approaching unity.

Focusing on a fundamental three-cubit circuit, it was demonstrated experimentally
that the time-symmetry breaking can lead to transition probabilities that are enhanced
from strictly less than 0.6 toward unity. In thrichloroethylene molecule, C2HCl3, the
two 13C and one 1H spins form a 3-qubit register. There is a gate sequence in the
single excitation subspace spanned by the computational basis vectors {| 100 >, |
010 >, | 001 >} of a three-qubit system. One of 13C spins is denoted as C1(qubit
1), another as C2 (qubit 2), and 1H spin as H (qubit 3). The natural Hamiltonian of
this system is

H =
3∑

i=1

πνiZ
i + π

2

(
J13Z

1Z3 + J23Z
2Z3

)
+ π

2
J12

(
X 1X 2 + Y 1Y 2 + Z1Z2

)
,

(10.59)

whereX j,Y j and Zj are Pauli matrices2 acting on qubit i, vi is the chemical shift of the
ith spin and Jij is the scalar coupling strength between spins i and j. As the difference
in chemical shifts between C1 and C2 is not larger (see below) enough to adopt the
weak J -coupling approximation [618], these two carbon spins are treated strongly
coupled. The parameter of the Hamiltonian (10.59) determined by iteratively fitting
the simulated and experimental NMR spectra are presented in Table 10.2.

In Table 10.2 the diagonal elements are the chemical shifts vi, and the off-diagonal
elements are scalar coupling strengths Jij. T1 and T2 are, respectively, the relaxation
and dephasing time scales.

The single qubit gates acting on the three-qubit system with the computational
basis vectors {| 100 >, | 010 >, | 001 >} are

2In contrast to quantum informatics, in the literature on magnetism these matrices are denoted by
σx , σy , and σz , respectively.
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Table 10.2 Parameters of the spinHamiltonian (10.59) for a three-qubit system in trichloroethylene
molecule [596]

(Hz) C1 C2 H T1(s) T2(s)

C1 21784.6 − − 13.0 ± 0.3 0.45 ± 0.02

C2 103.03 20528.0 − 8.9 ± 0.3 1.18 ± 0.02

H 8.52 201.45 4546.9 8.9 ± 0.3 1.7 ± 0.2

Uij(α, θ) = exp

{
−i[cos(α)Sij + sin(α)Aij]θ

2

}
, (10.60)

where

Sij = X iX j + Y iY j and Aij = X iY j − Y iX j. (10.61)

The NMR Hamiltonian (10.59) contains terms like Sij and thus gates with α =
0 are naturally implementable. Gates with α �= 0 can be created by additionally
applying local z-rotations:

Uij(α, θ) = Zj(α)Uij(0, θ)Zj+(α), (10.62)

where Zj(α) = e−i( α
2 )Zj

is a local z-rotation. Probabilities of transition into one of
the computational basis states {| 100 >, | 010 >, | 001 >} have been measured
experimentally in the same basis by applying the circuit U (α, θ).

The slice α = 0 corresponds to the amplitude and probability time-symmetric
case. The slice α = π

2 corresponds to the maximum probability time-asymmetry in
probabilities. Slices corresponding to α = π and α = 3π

2 represent a reflection in
θ of the former two cases with the effect of changing the direction of time. In the
time-symmetric case (α = 0), probabilities of transporting the excitation to other
spins are always bounded from above by 0.6. However, the time-asymmetry (α �= 0)
allows to break this barrier, with transition probabilities approaching unity at the
point of maximal time-asymmetry (α = π

2 ) [596].

10.6 Time-Reversal Symmetry Violation and
Unidirectionality of Time

In quantummechanics, the evolution in time of a physical system characterized by the
state vector | �(ξ, t) > that depends on n dynamical variables {ξ1, ξ2, . . . , ξn} = ξ is
considered. For t > 0, this evolution is described by the Schrödinger equation. If we
replace t by −t, then the term containing the first time derivative in the Schrödinger
equation changes its sign. However, by performing an additional transformation,
introduced byWigner [222] (Sect. 2), one can easily achieve the reconstruction of the



310 10 Time-Reversal Symmetry Violation

form of the Schrödinger equation, which is satisfied by the state vector | T�(ξ, t) >,
where T is the time-reversal operator. This leads to the well-known result of the
invariance of the Hamiltonian with respect to the operator T (THT+ = H ). For
T -violating process

H �= THT+, (10.63)

where H is the Hamiltonian for a specific direction of time (t > 0) and THT+ is the
version of the Hamiltonian in the reversed direction of time (t < 0). In (10.63), T+
is used instead of T−1, because T = UK , where U is a unitary operator (U+U =
UU+ = e) and K is a complex conjugation operator (K = K−1).

We can write down the Schrödinger equation for T -violating process, provided
the direction of time evolution and the corresponding Hamiltonian are known. By
applying the time-reversal operator, we obtain the Schrödinger equation involving
the THT+ version of the Hamiltonian for reversed direction of time. However, we do
not have a dynamical equation of motion for the case when the time direction cannot
be specified and there is no reason to favor one version of the Hamiltonian over the
other [619]. This problem becomes critical when we attempt to describe the Universe
as a closed system, because in this case none external clock-like device can be used as
a reference for the direction of time. There is no reason to favor one direction of time
over the other and, as a consequence, to favor H over THT+. This major problem
has been solved by Vaccaro in a series of recent publications [619–621, 628, 629].

Attempts to understand the implication of the T -violation in the nature of time
were also undertaken earlier [622–624], however only Vaccaro showed that it can be
clarified by using Feynmans sum [625] to construct a set of all possible paths that the
Universe can take over time. The set includes paths that zigzag forwards and back-
wards through time, corresponding to the Universe evolving according to H in one
time direction and according to THT+ in the reversed time direction. The violation
of time-reversal symmetry induces a destructive interference that restricts possible
paths in time the Universe can take. The interference eliminates paths meandering
forwards and backwards in time and leaves only two main paths corresponding to
continuous evolutions forwards and backwards. This analysis solves the problem of
modeling the dynamics of T -violation processes in absence of preferred direction
of time by incorporating two Hamiltonians, one to forwards evolution and other to
backwards one in a single dynamical equation [620]. Further discussion of the Uni-
verse evolution and the time-reversal symmetry breaking is based on publications
[619–621].

Let theUniverse be a closed system. In this case no external clock devices could be
used as reference indicators of the direction of time scale and, as a consequence, the
evolution of the Universe could be considered independent on the time-scale direc-
tion. For convenience, the two time scale directions will be referred to as “forward”
and “backward”. Let the Universe be in a “origin state” | ψo > without reference
to the time scale direction. Now, let the Universe evolution in the forward direction
over the time interval τ be
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| ψF(τ ) >= UF(τ ) | ψo >, (10.64)

where UF(τ ) = exp(−iτHF ) is the forward time evolution operator and HF is the
Hamiltonian of the forward time evolution (throughout this section units with � = 1
will be used). The backward time evolution operator is

UB(τ ) = TUF(τ )T−1 = exp(iτHB), (10.65)

where HB = THAT−1 is the Hamiltonian of the backward time evolution. The state
of the Universe after a time interval τ of backward evolution will be

| ψB(τ ) >= UB(τ ) | ψo > . (10.66)

The matrix elements < � | UF(τ ) | ψo > and < � | UB(τ ) | ψo > are the
probability amplitudes for the Universe in the state | ψo > to evolve over the time
interval τ to | � > in two time paths corresponding to forward and, respectively,
backward directions. Given that there is no reason to favor one path over the other,
Vaccaro [619–621], following Feynman [625], attributes an equal statistical weight-
ing to each of them. In this case, the total probability amplitude for the Universe to
evolve from a given state to another is proportional to the sum of probability ampli-
tudes for all possible time paths between the two states. There are only two possible
paths in this case and the total amplitude is proportional to

< � | UF(τ ) | ψo > + < � | UB(τ ) | ψo >=< � | [UF(τ ) +UB(τ )] | ψo > .

(10.67)

This result is valid for all states | � > of the Universe. Therefore the evolution
of | ψo > via both paths, called the symmetric time evolution of the Universe, can
be written as

| �(τ) >= [UF(τ ) +UB(τ )] | ψo > . (10.68)

The symmetric time evolution of the Universe in the state | �(τ) > over an
additional time interval τ is given by

| �(2τ) >= [UF(τ ) +UB(τ )] | �(τ) >= [UF(τ ) +UB(τ )]2 | ψo > .

(10.69)

By repeating this operation forN such time intervals, one can obtain the following
relation for the symmetric time evolution:

| �(Nτ) >= [UF(τ ) +UB(τ )]N | ψo > . (10.70)
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Fig. 10.2 Binary tree
representation of the
generation of the state
| �(Nτ) > from the origin
state | ψo > according to
(10.70) for the case
HF �= HB and N >> 1: a
shows an expanded view of
the detail near the root node,
and b shows the whole tree
on a much coarser scale
[621]

Equation (10.70) can be presented in the form [619]

| �(Nτ) >=
N∑

n=0

SN−n,n | ψo >, (10.71)

where

Sm,n = UB(mτ)UF (nτ)

m∑

v=0

· · ·
s∑

l=0

l∑

k=0

exp[(v + · · · + l + k)2τ 2[HF ,HB]] + (10.72)

+ expO(τ 3).

Sm,n is a sum containing

(
n + m
n

)
different terms, each of them comprising n factors

of UF(τ ) and m factors of UB(τ ), where

(
k
j

)
= k!

(k − j)!j!
is the binomial coefficient and [HF ,HB] is the commutator of operators HF and HB.

In Fig. 10.2 a graphical interpretation of | �(nτ) > from (10.70) is represented.
States on Fig. 10.2 are represented as nodes (solid discs) and the unitary evolution

by links (arrows) between them. The root node (at the top) represents the origin state
| ψo > and the leaf nodes (on the bottom row) are components of the state | �(4τ) >.

The expression < � | SN−n,n | ψo > represents the evolution of the Universe

from | ψo > to | � > over a set of

(
N
n

)
paths through time, where each path

comprises a total of n steps in the forward direction and N − n steps in the backward
one. The set of paths includes all possible ordering of forward and backward steps.
The discussion of consequences of the limit τ → 0 of infinitely small time steps for
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a fixed total time suggests that the time interval τ should be a small non-zero number
of the order of Planck time, i.e. τ ≈ 5 ·10−44 s for a Universe-like system [620, 621].

Returning to equation (10.72), we note that the commutator [HF ,HB] is an anti-
Hermitian one and therefore it has imaginary eigenvalues. Its presence in summations
in (10.72) gives rise to interference terms in the basis of eigenstates of [HF ,HB] of
the form [620]

m∑

v=o

· · ·
s∑

l=0

l∑

k=0

exp[−(v + · · · + l + k)τ 2iλ], (10.73)

where λ is an eigenvalue of i[HF ,HB]. This leads to the interference between the set
of paths represented by < � | SN−n,m | ψ0 >.

The estimation of typical values for λ can be done using discussed in the Sect. 10.1
the neutralK meson evolution as a prototypicalT -violating process. The phenomeno-
logical model of Lee and Wolfenstein [626] and empirical values of Yao et al. [627]
give a spectrum of λ values, which have a zero mean value and a standard deviation
of λSD ≈ √

f ·1057 s−2. Here f is a fraction given by dividing the number of particles
associated with T -violating processes by the total number of particles in the Universe
(which is assumed to be 1080) [620].

As it is shown in [619], the destructive interference leads to (10.71) being replaced
with

| �(Nτ) >=
[
∑

n≈0

SN−n,n +
∑

n≈N

SN−n,n

]

| ψ0 > (10.74)

for the total time Nτ > 10−17 s. Ignoring terms of the order of τ gives

| �(Nτ) >= {[UB(τ )]N + [UF(τ )]N } | ψ0 >= [UB(Nτ)] +UF(Nτ)] | ψ0 > .

(10.75)

By presenting the time as t = Nτ , we arrive at a key result, the bievolution
equation of motion

| �(t) >= [UB(t) +UF(t)] | ψ0 >, (10.76)

which is illustrated in Fig. 10.1b.Here the termbievolution refers to the dual evolution
generated by two different Hamiltonians. The approximation made at deriving this
equation is in the limits t >> f − 1

2 10−13 s. The destructive interference has eliminated
all paths excepting two ones corresponding to either continuous evolution in forward
time direction or continuous evolution in backward one.

In [621], the bievolution equation of motion in differential form was derived
as follows. By increasing t in (10.76) by a relatively small amount δt we have
| �(t + δt) >= [UB(δt)UB(t) +UF(δt)UF(t)] | ψ0 >.
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As a consequence, the rate of change of the state becomes

δ | �(t) >

δt
= [iHBUB(t) − iHFUF(t)] | ψ0 > +O(δt), (10.77)

where δ | �(t) >=| �(t + δt) > − | �(t) >. Taking the limit δt → τ and ignoring
the term of the order of τ gives another key result, the Schrödinger equation for
bievolution

d | �(t) >

dt
= d | ψF (t) >

dt
− d | ψB(t) >

dt
, (10.78)

where ( d
dt ) | ψμ(t) >= −iHμ | ψμ(t) > and | ψμ(t) >= Uμ(t) | ψ0 > for μ = F

or B.
To the full impact of T -violation process, it is sufficient to compare the above

analysis with a Universe without breaking the T -invariance. In this case, HF =
HB = H and it can be shown [621] that

SN−n,n = exp[i(N − 2n)τH ]
(
N
n

)
, (10.79)

which is never zero and therefore all possible paths are included in (10.71). The
direction of time is ambiguous as there are no physical reasons to prefer one of
the two directions of the time flow corresponding to continuous evolution forwards
or backwards direction over the other. The fact that this ambiguity is removed in
a Universe with T -violation processes leads to the conclusion that these processes
are responsible for the phenomenological unidirectionality of time observed in our
Universe.

10.7 Virtual Time-Reversal Method and Its Application to
EPR Spectroscopy

In this section we propose a simple experimental method for testing the time-reversal
symmetry in systems containing paramagnetic ions or molecules. Before outlining
this testing method, it is necessary to make the following remark about the symmetry
transformations. To make sure that the space symmetry group of a certain crystal
contains certain symmetry elements, it is not necessary to really interchange those
crystal atoms that, as a result of these transformations, change to other, but equivalent,
locations. For this it is sufficient that such transformations are possible in principle.
Similarly, since the angular momentum projection operators reverse their sign under
the action of the time-reversal operator, in order to verify the invariance relative to
the operator T of the Hamiltonian of linear interaction of the spin with a constant
magnetic field, it is not necessary to actually change the direction of the magnetic
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induction vector to the opposite. It is sufficient that such a transformation is possible
in principle.

Continuing these analogies, we can conclude that in the case of time reversal
symmetry transformation, there is no need to really change the direction of time flow
to the opposite one in order to verify the presence of this symmetry transformation.
Moreover, due to the law of increasing entropy in irreversible processes, this cannot
be done in principle. Nevertheless, one can do what we call a virtual time reversal.
The method of virtual time reversal in the application to EPR spectroscopy consists
in detecting the EPR spectrum of paramagnetic gases, liquids and solids in two ways,
with a subsequent comparison of the results.

The first way consists of recording the EPR spectrum at a slow increase in the
induction of the magnetic field in a given interval (Bi,Bf ) at a constant rate ( dBdt > 0).
In the second way of detecting the EPR spectrum, the induction of the magnetic field
B, on the contrary, decreases ( dBdt < 0) in the interval (Bf ,Bi)with the same constant
velocity. The essence of a proposed method consists in the rotation of the plane in
which the EPR spectrum is recorded in the second way (together with the spectrum
on it) by an angle of 180◦ around the c-axis located in the same plane and passing
through the middle of the interval (Bf ,Bi), perpendicular to the coordinate axis
of magnetic fields, and superposition of the rotated spectrum on the original EPR
spectrum recorded by the first way.

As a result of this rotation, the points Bf and Bi change places,3 (Bf ,Bi) −→
(Bi,Bf ), which seems to correspond to the detection of the rotated EPR spectrum by
the first method ( dBdt > 0), but in reality this spectrum was detected by the second
method ( dBdt < 0). There is no contradiction here (the spectrum detected in the
conditions of a real experiment cannot change due to the fact that someone turned it
to a certain angle) and everything is explained simply.

After the rotation of the spectrum detected by the second way ( dBdt < 0), by an
angle of 180◦ about the c-axis, a minimum magnetic induction Bi corresponds to
the beginning of the magnetic field sweep. In this case, the EPR spectrum would
be detected at increasing magnetic induction (dB > 0). However, since the EPR
spectrum was detected experimentally under the opposite condition, dB

dt < 0, to
satisfy this condition it is necessary that the inequality dt < 0 holds (for dB > 0
and dt < 0, the inequality dB

dt < 0 is satisfied). This is just the virtual inversion of
time, just as under these conditions the inequality dB > 0 (at dt < 0) means a virtual
increase in the induction of the magnetic field.

It is important to note that as a result of the virtual time-reversal operation per-
formed over the EPR spectrum, we have obtained such an EPR spectrum as it would
be at a real time reversal, without changing the direction of the time axis. Since the
spin Hamiltonian is invariant under the time-reversal operator T, the spectral posi-
tions of the EPR lines corresponding to the conditions dB

dt > 0 (dB > 0, dt > 0)
and dB

dt < 0 (dB > 0, dt < 0) must coincide. On the other hand, since the time-
dependent perturbation operator causing quantum EPR transitions is also invariant

3The intervals (Bf ,Bi) and (Bi,Bf ) coincide up to the error of the experimental determination of
the quantities Bi and Bf .
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Fig. 10.3 Mirror reflection of the t axis related to the vertical axis passing through point t = τ

(virtual time reversal). EPR lines I and II are symmetric related to those axis

with respect to the time-reversal transformation, the EPR lines must coincide not
only in resonance frequency values, but also in form.

For a supplementary argumentation of the above described virtual time-reversal
method, the time dependence of the induction B of magnetic field at detection of the
EPR spectrum is presented on the Fig. 10.3. The cases of B increasing in the time
interval 0 ≤ t ≤ τ with subsequent decreasing in the interval τ ≤ t ≤ 2τ are carried
out at conditions of the coincidence of velocities of direct and inverse magnetic field
scan. The detected EPR signals I and II that have opposite phases are marked by red
in Fig. 10.3 (see also the insertion on Fig. 10.3). Themirror reflection of the right side
of the isosceles triangle by its height, passing through the point t = τ orthogonally
to the axis t, coincide with the left side. The EPR signal I and the mirror reflection of
the EPR signal II also coincide in the values of resonance fields, as well as in shapes,
if the time-reversal symmetry is not broken. It is important to note that the time axis
t reverses the direction at mirror reflection. Certainly, changing the direction of the
time axis due to the symmetry operation does not lead to a real-time reversal. It is a
virtual time reversal.

In the case of breaking time-reversal symmetry, the position and shape of the EPR
line I do not coincide with those of mirror image of EPR line II. As it will be shown
below, the detected shift of the EPR line with respect to the mirror image of the
EPR line II is much bigger than the shift due to the time-reversal symmetry violation
and has another origin. As for the non-coincidence of shapes of corresponding EPR
lines, it can be a reliable sign of the time-reversal symmetry violation, if magnetic
field inhomogeneities in the resonance cavity of the EPR spectrometer are suffi-
ciently small. A supplementary confidence that the non-coincidence of the shapes
of discussed EPR lines indicates a time-reversal symmetry violation consists in the
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experimental confirmation of the time-reversal invariance for a standard sample using
the same EPR spectrometer with the mentioned high-quality resonance cavity.

We demonstrate the application of the proposed method to EPR spectroscopy
using two examples: the EPR spectrum of the reference sample of α, α-diphenyl-β-
picrylhydrazyl (DPPH ) containing free radicals and the EPR spectrum of 10−3 M
aqueous solution of manganese chloride MnCl2.

The DPPH , discovered almost 100 years ago (in 1922) [630] and being a tradi-
tional standard in EPR spectroscopy, is characterized by a single EPR line, whose
width �Hpp lies in the interval (0.15–0.5)mT [631–634], depending on the synthe-
sis technology of this compound. This reference standard sample is used in EPR
spectroscopy since the discovery of the EPR method in 1944 [635, 636].

The experiments were carried out at room temperature on the EPR spectrometer
SE/X -2544 with detecting the spectra on the computer monitor. The magnetic field
induction was measured using the Bruker Teslameter ER036TM . In addition, a Hall
effect sensor was used to independently measure the magnetic induction and to
visualize its time dependence on the monitor at magnetic field sweep in the forward
( dBdt > 0, dB > 0, dt > 0) and backward ( dBdt < 0, dB < 0, dt > 0) directions.

Two EPR spectra of DPPH are presented in Fig. 10.4. One of them (red one) was
detected in the usual regime of an increasing magnetic field ( dBdt > 0, dB > 0, dt >

0), whereas the second spectrum (blue one) was obtained at a virtual time reversal
( dBdt < 0, dB > 0, dt < 0).
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Fig. 10.4 EPR spectra of DPPH . Red curve : g = 2.00202 ± 0.00056, �Bpp = (0.248 ±
0.004)mT; dB

dt > 0, dB > 0, dt > 0. Blue curve : gT = 2.000660 ± 0.00060, �BT
pp =

(0.256 ± 0.004)mT; dB
dt < 0, dB > 0, dt < 0
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In the caption to Fig. 10.4, gT and �BT
pp denote, respectively, the value of

the g-factor and the width of the EPR line, which was obtained using the method of
virtual time reversal.

The EPR line corresponding to the virtual time reversal exhibits a shift by
�BDPPH = (0.080 ± 0.004)mT in the direction of large magnetic fields (“blue”
shift). It should be noted that the shift �BDPPH is much greater than the error in
measuring the magnitude of the magnetic induction | �B |= 0.002mT.

The shift of the EPR spectra (see Fig. 10.4) relative to each other along the
magnetic field axis until they coincide shows their good coincidence (Fig. 10.5), as it
should be in the presence of time-reversal symmetry. Thus, in the case of DPPH , of
the two above-mentioned experimental signs of the time-reversal symmetry presence
(the coincidence of the resonant frequencies and the coincidence of the EPR line
shapes in the forward and backward (virtual) time flow), only one is satisfied—
the coincidence of the resonance line shapes. However, this does not yet mean that
the time-reversal symmetry breaking, since there are other reasons that lead to a
discrepancy between the resonance frequencies of the EPR lines, recorded by the
conventional method and by the virtual time-reversal method (see above).

The EPR spectra of MnCl2 detected at increasing the magnetic field (red curve,
dB
dt > 0, dB > 0, dt > 0) and using the virtual time-reversal method (blue curve,
dB
dt < 0, dB > 0, dt < 0) are shown on the Fig. 10.6.
The g-factors g and gT , whose values are given in the caption to Fig. 10.6, were

determined by measuring the magnetic induction corresponding to the center of
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Fig. 10.5 The coincidence of the shapes ofEPR lines (DPPH ) at the usual detection of the spectrum
(red curve, dB

dt > 0, dB > 0, dt > 0) and using the virtual time-reversal method (blue curve,
dB
dt < 0, dB > 0, dt < 0)
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Fig. 10.6 The hyperfine structure of the EPR line of 10−3M aqueous solution of MnCl2 at usual
detecting the spectrum (red curve, dB

dt > 0, dB > 0, dt > 0) and using the virtual time-reversal

method (blue curve, dB
dt < 0, dB > 0, dt < 0). Red curve : a = (9.55 ± 0.21)mT, g =

2.0072 ± 0.0034, �Bpp = (47.74 ± 0.38)mT, blue curve : aT = (9.53 ± 0.21)mT, gT =
1.9976 ± 0.0034, �BT

pp = (47.67 ± 0.16)mT

gravity of the group of six components of the EPR spectrum, characteristic of the
contact hyperfine Fermi interaction between the 3d5-electrons and the 55Mn nucleus.
As seen fromFig. 10.6, both forMnCl2 andDPPH , a “blue” shift of theEPR spectrum
obtained by the virtual time-reversal method is observed with respect to the spectrum
detected at increasing magnetic field induction ( dBdt > 0, dB > 0, dt > 0). As in
the case of DPPH , the magnitude of this shift, �BMnCl2 = (1.703 ± 0.223)mT, is
much greater than the magnetic induction measurement error | �B |= 0.002mT.

By shifting the EPR spectra in Fig. 10.6 relative to each other along the axis of the
magnetic fields until they coincide, we can see that, within the experimental accuracy,
there is a good agreement between the shapes of all the spectral lines of the hyperfine
sextet (Fig. 10.7), as it should be in the presence of time-reversal symmetry.

Let us now proceed to discuss the observed effects. The EPR data show that
the spin densities in two hydrazyl nitrogen atoms in DPPH are large and equally
distributed between them. Apparently, partly for this reason, the single EPR line
of DPPH ∗ free radical is inhomogeneously broadened, as a result of which the
fine structure of this line does not appear. On the other hand, the DPPH is a polar
molecule having the electric dipole moment d = 4.92D. It is known that the parity
and the time-reversal violating interactions between electrons and nucleons give rise
to atomic and molecular permanent electric dipole moments (EDMs) [503], and that
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Fig. 10.7 The coincidence of shapes of the lines of the hyperfine structure of the EPR spectrum
of 10−3M aqueous solution ofMnCl2 at usual detection of the spectrum (red curve, dB

dt > 0, dB >

0, dt > 0) and using the virtual time-reversal method (blue curve, dB
dt < 0, dB > 0, dt < 0)

the P,T -parity non-conservation effects are strongly enhanced in polar molecules
with heavy nuclei [509].

Since the nuclei of N (in theDPPH molecule) and 55Mn (in the MnCl2 molecule)
are not heavy (for which Z ≥ 50), the relativistic effects important for heavy nuclei
will not make a significant contribution to the enhancement factor in P,T -parity
non-conservation effects. However, another contribution to the enhancement factor,
connected with the molecular polarizability, can be significant. The role of param-
agnetic atoms in the enhancement factor can also be significant [502, 510]. In the
case of paramagnetic atoms (ions), the enhancement factor for an electron EDM ,
η = datom/de, is proportional to αD:

η = α2Z3αD, (10.80)

where α ≈ 1
137 is the fine structure constant, Z is the nuclear charge, and αD is the

atomic polarizability. Knowing αD for N and Mn atoms, we can determine η and,
respectively, the atomic EDMs of these atoms due to P,T -parity non-conservation
effects. However, the observed shifts in the EPR lines cannot be explained in this
way for the following reason.
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Comparison of the frequency (energy) shift due to T ,P-odd effect in TlF, �ν =
−0.13±0.22mHz [502, 521] (h�ν = (−0.54±0.91) ·10−18 eV), with�EDPPH =
(0.927± 0.046) · 10−8 eV and �EMnCl2 = (1.974± 0.258) · 10−7 eV shows that the
observed EPR lines shifts are much higher than the shift due to T ,P-odd effects and
have a different origin.

We note that the resonant values of the magnetic induction B greatly exceed the
upper value of B for the hysteresis loop of the EPR spectrometer electromagnet. On
the other hand, the magnetic field sweep rates at dB

dt > 0, (dB > 0, dt > 0) and
dB
dt < 0, (dB > 0, dt < 0), which although are close in magnitude, but do not
coincide, because the accuracy of the determination Bi and Bf is ±0.002mT. This
can lead to an observed shift of the EPR lines.

In the book “Symmetries and Reflections” of E. Wigner [437], there is the follow-
ing remark: “If even the problem is not invariant under the transformation t′ = −t,
nevertheless the transformation containing the time inversion exists. For example,
a homogeneous magnetic field has a symmetry element: a reflection in a plane per-
pendicular to the magnetic field, with a simultaneous change in the sign of t” (E.
Wigner, Etyudy o simmetrii (Publishing House Mir, Moscow) 1971, p. 275).

In our experiments, the inhomogeneity of the magnetic field is sufficiently small,
which allows us to observe the hyperfine structure of the EPR spectra. Coincidence
of EPR lines shapes detected by standardmethod and by virtual time-reversal method
indicates that the homogeneity of the magnetic field of the electromagnetic wave in
the resonance cavity (at the location of the test sample) is sufficiently high in order
to no violation of the time-reversal symmetry occurs due to the inhomogeneity of
the magnetic field. As for a homogeneous constant magnetic field, in [437] it is not
discussed the degree of inhomogeneity (microinhomogeneity) of this field which
is allowed in order to a reflection in a plane perpendicular to the magnetic field
(with a simultaneous charge in the sign of t) would be the time-reversal symmetry
transformation. This is to be determined experimentally.

Note that the virtual time reversal method can be used not only in the study of
EPR spectra, but also electron-nuclear double resonance (ENDOR) spectra, nuclear
magnetic resonance (NMR) spectra and others, if only the equipment used allows
detecting spectra in two ways, described in this section.
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(See TableA.1)

TableA.1 Matrix of unitary operatorU defined bymeans of basis function operators of the ordinary
irreducible representations of the symmetry point groups

Symmetry group Irreducible representations Basises [9, 78] U

Bethe symbols Mulliken symbols

1 2 3 4 5

1̄ �+
1 Ag Jx ; Jy ; Jz −1; +1; −1

2 and m �1 AA′ Jz −1

�2 B A′′ Jx ; Jy −1; +1;
222 and 2mm �1 AA J , (222) +1

�2 B2B1 Jy +1

�3 B1 A2 Jz −1

�4 B3B2 Jx −1

2/m �+
1 Ag Jz −1

�+
2 Bg Jx ; Jy −1; +1

4 and 4̄ �1 AA Jz −1

�2 B B [Jx Jy], (4) −1

J 2
x − J 2

y , (4) +1

�3 }E E{ {−J+, J−}
[
0 1

1 0

]

�4

422, 4 mm, 4̄ 2 m �1 AA J +1

�2 A2 A2 Jz −1

�3 B1B1 J 2
x − J 2

y , (422) +1

�4 B2B2 [Jx Jy], (422) −1

�5 E E {Jx , Jy}
[
−1 0

0 1

]

(continued)
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Table A.1 (continued)

Symmetry group Irreducible representations Basises [9, 78] U

Bethe symbols Mulliken symbols

3 �1 A J ; Jz 1; −1

�2 }E {−J+, J−}
[
0 1

1 0

]

�3

32 and 3 m �1 A1 A1 J +1

�2 A2 A2 Jz −1

�3 E E {J−,−J+}
[
0 1

1 0

]

1 2 3 4 5

6 and 6̄ �1 AA′ Jz , (6); J , (6, 6̄) −1; +1

�2 B B ′ − +1

�3 }E1 E ′
1{ {−z J+, z J−}, (6̄)

[
0 1

1 0

]

�4

�5 }E2 E ′
2{ {−J+, J−}

[
0 1

1 0

]

�6

622, 6mm, 6̄m2 �1 A1 A1 A′
1 J 1

�2 A2 A2 A′
2 Jz −1

�3 B1B2 A′′
1 i(J 3+ − J 3−), (622) +1

�4 B2B1A′′
2 (J 3+ + J 3−), (622) −1

�5 E1E1E ′′ {J−,−J+}
[
0 1

1 0

]

�6 E2E2E ′ {J 2+, J 2−}, (622)
[
0 1

1 0

]

{ i J−(J 3+ − J 3−),

[
0 1

1 0

]

−i J+(J 3+ − J 3−) }, (622)

23 �1 A J ; [Jx Jy Jz] +1; +1

�2 }E 1√
2
(u − v)

[
1 0

0 1

]

�3
1√
2
(u + v)

�4 T {Jx , Jy, Jz} w

(continued)
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Table A.1 (continued)

Symmetry group Irreducible representations Basises [9, 78] U

Bethe symbols Mulliken symbols

432 and 4̄3m �1 A1 A1 J 1

�2 A2 A2 [Jx Jy Jz], (432) 1

�3 E E {u, v}, (432)
[
1 0

0 1

]

�4 T1T1 {Jx , Jy, Jz}, (432) w

{J 3
x , J 3

y , J 3
z }, (432) w

{J 5
x , J 5

y , J 5
z }, (432) w

{[Jy Jz], [Jz Jx ], [Jx Jy]},
(4̄3m)

w

{Vx , Vy, Vz}, (4̄3m) w

�5 T2T2 {Jx , Jy, Jz}, (4̄3m) w

{J 3
x , J 3

y , J 3
z }, (4̄3m) w

{J 5
x , J 5

y , J 5
z }, (4̄3m) w

{[Jy Jz], [Jz Jx ], [Jx Jy]},
(432)

w

{Vx , Vy, Vz}, (432) w

The symbol J denotes an invariant with respect to proper and improper rotations,
J± = Jx ± i Jy , u = 3J 2

z − J (J + 1), v = √
3(J 2

x − J 2
y ), [Jα Jβ] = 1

2 (Jα Jβ +
Jβ Jα), were α, β = y, z; z, x and x, y; [Jx Jy Jz]=1

6 (Jx Jy Jz+Jy Jz Jx+ Jz Jx Jy+
Jx Jz Jy+Jz Jy Jx+Jy Jx Jz), Vx = [Jx (J 2

y − J 2
z )], Vy = [Jy(J 2

z − J 2
x )], Vz =

[Jz(J 2
x − J 2

y )].

w =
⎡
⎣−1 0 0

0 1 0
0 0 −1

⎤
⎦ .
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(See TablesB.1, B.2, B.3 and B.4)

TableB.1 TheKayley table of the non-Abelian groupG
( 12 )

16 in the terms of complete and incomplete
time-reversal operators. Block O11

T −e −T e T2(yz) −T2(yz) T1(x) −T1(x)

T −e −T e T T1(x) −T1(x) −T2(yz) T2(yz)

−e −T e T −e −T2(yz) T2(yz) −T1(x) T1(x)

−T e T −e −T −T1(x) T1(x) T2(yz) −T2(yz)

e T −e −T e T2(yz) −T2(yz) T1(x) −T1(x)

T2(yz) −T1(x) −T2(yz) T1(x) T2(yz) e −e −T T

−T2(yz) T1(x) T2(yz) −T1(x) −T2(yz) −e e T −T

T1(x) T2(yz) −T1(x) −T2(yz) T1(x) T −T e −e

−T1(x) −T2(yz) T1(x) T2(yz) −T1(x) −T T −e e

TableB.2 TheKayley table of the non-Abelian groupG
( 12 )

16 in the terms of complete and incomplete
time-reversal operators. Block O12

T2(zx) −T1(y) −T2(zx) T1(y) T1(z) −T1(z) T2(xy) −T2(xy)

T −T1(y) −T2(zx) T1(y) T2(zx) T2(xy) −T2(xy) −T1(z) T1(z)

−e −T2(zx) T1(y) T2(zx) −T1(y) −T1(z) T1(z) −T2(xy) T2(xy)

−T T1(y) T2(zx) −T1(y) −T2(zx) −T2(xy) T2(xy) T1(z) −T1(z)

e T2(zx) −T1(y) −T2(zx) T1(y) T1(z) −T1(z) T2(xy) −T2(xy)

T2(yz) −T2(xy) −T1(z) T2(xy) T1(z) T1(y) −T1(y) −T2(zx) T2(zx)

−T2(yz) T2(xy) T1(z) −T2(xy) −T1(z) −T1(y) T1(y) T2(zx) −T2(zx)

T1(x) T1(z) −T2(xy) −T1(z) T2(xy) T2(zx) −T2(zx) T1(y) −T1(y)

−T1(x) −T1(z) T2(xy) T1(z) −T2(xy) −T2(zx) T2(zx) −T1(y) T1(y)
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TableB.3 TheKayley table of the non-Abelian groupG
( 12 )

16 in the terms of complete and incomplete
time-reversal operators. Block O21

T −e −T e T2(yz) −T2(yz) T1(x) −T1(x)

T2(zx) −T1(y) −T2(zx) T1(y) T2(zx) T2(xy) −T2(xy) −T1(z) T1(z)

−T1(y) −T2(zx) T1(y) T2(zx) −T1(y) −T1(z) T1(z) −T2(xy) T2(xy)

−T2(zx) T1(y) T2(zx) −T1(y) −T2(zx) −T2(xy) T2(xy) T1(z) −T1(z)

T1(y) T2(zx) −T1(y) −T2(zx) T1(y) T1(z) −T1(z) T2(xy) −T2(xy)

T1(z) −T2(xy) −T1(z) T2(xy) T1(z) T1(y) −T1(y) −T2(zx) T2(zx)

−T1(z) T2(xy) T1(z) −T2(xy) −T1(z) −T1(y) T1(y) T2(zx) −T2(zx)

T2(xy) T1(z) −T2(xy) −T1(z) T2(xy) T2(zx) −T2(zx) T1(y) −T1(y)

−T2(xy) −T1(z) T2(xy) T1(z) −T2(xy) −T2(zx) T2(zx) −T1(y) T1(y)

TableB.4 TheKayley table of the non-Abelian groupG
( 12 )

16 in the terms of complete and incomplete
time-reversal operators. Block O22

T2(zx) −T1(y) −T2(zx) T1(y) T1(z) −T1(z) T2(xy) −T2(xy)

T2(zx) −e −T e T T1(x) −T1(x) −T2(yz) T2(yz)

−T1(y) −T e T −e −T2(yz) T2(yz) −T1(x) T1(x)

−T2(zx) e T −e −T −T1(x) T1(x) T2(yz) −T2(yz)

T1(y) T −e −T e T2(yz) −T2(yz) T1(x) −T1(x)

T1(z) −T1(x) −T2(yz) T1(x) T2(yz) e −e −T T

−T1(z) T1(x) T2(yz) −T1(x) −T2(yz) −e e T −T

T2(xy) T2(yz) −T1(x) −T2(yz) T1(x) T −T e −e

−T2(xy) −T2(yz) T1(x) T2(yz) −T1(x) −T T −e e



Appendix C

(See TablesC.1, C.2, C.3 and C.4)

Table C.1 The Kayley table of non-Abelian group G(J )
16 at arbitrary half-integer J . The matrices

U (J ), V (J ) and W (J ) are defined by (8.39). Block O11

T −e(J ) −T e(J ) V (J ) −V (J ) W (J )K −W (J )K

T −e(J ) −T e(J ) T W (J )K −W (J )K −V (J ) V (J )

−e(J ) −T e(J ) T −e(J ) −V (J ) V (J ) −W (J )K W (J )K

−T e(J ) T −e(J ) −T −W (J )K W (J )K V (J ) −V (J )

e(J ) T −e(J ) −T e(J ) V (J ) −V (J ) W (J )K −W (J )K

V (J ) −W (J )K −V (J ) W (J )K V (J ) e(J ) −e(J ) −T T

−V (J ) W (J )K V (J ) −W (J )K −V (J ) −e(J ) e(J ) T −T

W (J )K V (J ) −W (J )K −V (J ) W (J )K T −T e(J ) −e(J )

−W (J )K −V (J ) W (J )K V (J ) −W (J )K −T T −e(J ) e(J )

Table C.2 The Kayley table of non-Abelian group G(J )
16 at arbitrary half-integer J . The matrices

U (J ), V (J ) and W (J ) are defined by (8.39). Block O12

U (J ) −e(J )K −U (J ) e(J )K V (J )K −V (J )K W (J ) −W (J )

T −e(J )K −U (J ) e(J )K U (J ) W (J ) −W (J ) −V (J )K V (J )K

−e(J ) −U (J ) e(J )K U (J ) −e(J )K −V (J )K V (J )K −W (J ) W (J )

−T e(J )K U (J ) −e(J )K −U (J ) −W (J ) W (J ) V (J )K −V (J )K

e(J ) U (J ) −e(J )K −U (J ) e(J )K V (J )K −V (J )K W (J ) −W (J )

V (J ) −W (J ) −V (J )K W (J ) V (J )K e(J )K −e(J )K −U (J ) U (J )

−V (J ) W (J ) V (J )K −W (J ) −V (J )K −eJK e(J )K U (J ) −U (J )

W (J )K V (J )K −W (J ) −V (J )K W (J ) U (J ) −U (J ) e(J )K −e(J )K

−W (J )K −V (J )K W (J ) V (J )K −W (J ) −U (J ) U (J ) −e(J )K e(J )K
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Table C.3 The Kayley table of non-Abelian group G(J )
16 at arbitrary half-integer J . The matrices

U (J ), V (J ) and W (J ) are defined by (8.39). Block O21

T −e −T e V (J ) −V (J ) W (J )K −W (J )K

U (J ) −e(J )K −U (J ) e(J )K U (J ) W (J ) −W (J ) −V (J )K V (J )K

−e(J )K −U (J ) e(J )K U (J ) −e(J )K −V (J )K V (J )K −W (J ) W (J )

−U (J ) e(J )K U (J ) −e(J )K −U (J ) −W (J ) W (J ) V (J )K −V (J )K

e(J )K U (J ) −e(J )K −U (J ) e(J )K V (J )K −V (J )K W (J ) −W (J )

V (J )K −W (J ) −V (J )K W (J ) V (J )K e(J )K −e(J )K −U (J ) U (J )

−V (J )K W (J ) V (J )K −W (J ) −V (J )K −e(J )K e(J )K U (J ) −U (J )

W (J ) V (J )K −W (J ) −V (J )K W (J ) U (J ) −U (J ) e(J )K −e(J )K

−W (J ) −V (J )K W (J ) V (J )K −W (J ) −U (J ) U (J ) −e(J )K e(J )K

Table C.4 The Kayley table of non-Abelian group G(J )
16 at arbitrary half-integer J . The matrices

U (J ), V (J ) and W (J ) are defined by (8.39). Block O22

U (J ) −e(J )K −U (J ) e(J )K V (J )K −V (J )K W (J ) −W (J )

U (J ) −e(J ) −T e(J ) T W (J )K −W (J )K −V (J ) V (J )

−e(J )K −T e(J ) T −e −V (J ) V (J ) −W (J )K W (J )K

−U (J ) e(J ) T −e(J ) −T −W (J )K W (J )K V (J ) −V (J )

e(J )K T −e(J ) −T e(J ) V (J ) −V (J ) W (J )K −W (J )K

V (J )K −W (J )K −V (J ) W (J )K V (J ) e(J ) −e(J ) −T T

−V (J )K W (J )K V (J ) −W (J )K −V (J ) −e(J ) e(J ) T −T

W (J ) V (J ) −W (J )K −V (J ) W (J )K T −T e(J ) −e(J )

−W (J ) −V (J ) W (J )K V (J ) −W (J )K −T T −e(J ) e(J )
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Appendix D

(See TablesD.1, D.2, D.3 and D.4)

Table D.1 The Kayley table of non-Abelian group G(J )
16 at arbitrary half-integer J in terms of

complete and incomplete time-reversal operators. The operators T = U (J )K,T1(x) = W (J )

K, T1(y) = e(J )K, T1(z) = V (J )K, T2(yz) = V (J ),T2(zx)=U (J ) and T2(xy)=W (J ) are determined
by U (J ), V (J ) and W (J ) from (8.39); K is the operator of complex conjugation. Block O11

T −e(J ) −T e(J ) T2(yz) −T2(yz) T1(x) −T1(x)

T −e(J ) −T e(J ) T T1(x) −T1(x) −T2(yz) T2(yz)

−e(J ) −T e(J ) T −e(J ) −T2(yz) T2(yz) −T1(x) T1(x)

−T e(J ) T −e(J ) −T −T1(x) T1(x) T2(yz) −T2(yz)

e(J ) T −e(J ) −T e(J ) T2(yz) −T2(yz) T1(x) −T1(x)

T2(yz) −T1(x) −T2(yz) T1(x) T2(yz) e(J ) −e(J ) −T T

−T2(yz) T1(x) T2(yz) −T1(x) −T2(yz) −e(J ) e(J ) T −T

T1(x) T2(yz) −T1(x) −T2(yz) T1(x) T −T e(J ) −e(J )

−T1(x) −T2(yz) T1(x) T2(yz) −T1(x) −T T −e(J ) e(J )

Table D.2 The Kayley table of non-Abelian group G(J )
16 at arbitrary half-integer J in terms of

complete and incomplete time-reversal operators. The operators T = U (J )K,T1(x) = W (J )K,

T1(y) = e(J )K, T1(z) = V (J )K, T2(yz) = V (J ), T2(zx) = U (J ) andT2(xy) = W (J ) are determined
by U (J ), V (J ) and W (J ) from (8.39); K is the operator of complex conjugation. Block O12

T2(zx) −T1(y) −T2(zx) T1(y) T1(z) −T1(z) T2(xy) −T2(xy)

T −T1(y) −T2(zx) T1(y) T2(zx) T2(xy) −T2(xy) −T1(z) T1(z)

−e(J ) −T2(zx) T1(y) T2(zx) −T1(y) −T1(z) T1(z) −T2(xy) T2(xy)

−T T1(y) T2(zx) −T1(y) −T2(zx) −T2(xy) T2(xy) T1(z) −T1(z)

e(J ) T2(zx) −T1(y) −T2(zx) T1(y) T1(z) −T1(z) T2(xy) −T2(xy)

V (J ) −T2(xy) −T1(z) T2(xy) T1(z) T1(y) −T1(y) −T2(zx) T2(zx)

−V (J ) T2(xy) T1(z) −T2(xy) −T1(z) −T1(y) T1(y) T2(zx) −T2(zx)

W (J )K T1(z) −T2(xy) −T1(z) T2(xy) T2(zx) −T2(zx) T1(y) −T1(y)

−W (J )K −T1(z) T2(xy) T1(z) −T2(xy) −T2(zx) T2(zx) −T1(y) T1(y)
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Table D.3 The Kayley table of non-Abelian group G(J )
16 at arbitrary half-integer J in terms of com-

plete and incomplete time-reversal operators. The operatorsT = U (J )K, T1(x) = W (J )K, T1(y) =
e(J )K, T1(z) = V (J )K, T2(yz) = V (J ), T2(zx) = U (J ) and T2(xy) = W (J ) are determined by
U (J ), V (J ) and W (J ) from (8.39); K is the operator of complex conjugation. Block O21

T −e(J ) −T e(J ) T2(yz) −T2(yz) T1(x) −T1(x)

T2(zx) −T1(y) −T2(zx) T1(y) T2(zx) T2(xy) −T2(xy) −T1(z) T1(z)

−T1(y) −T2(zx) T1(y) T2(zx) −T1(y) −T1(z) T1(z) −T2(xy) T2(xy)

−T2(zx) T1(y) T2(zx) −T1(y) −T2(zx) −T2(xy) T2(xy) T1(z) −T1(z)

T1(y) T2(zx) −T1(y) −T2(zx) T1(y) T1(z) −T1(z) T2(xy) −T2(xy)

T1(z) −T2(xy) −T1(z) T2(xy) T1(z) T1(y) −T1(y) −T2(zx) T2(zx)

−T1(z) T2(xy) T1(z) −T2(xy) −T1(z) −T1(y) T1(y) T2(zx) −T2(zx)

T2(xy) T1(z) −T2(xy) −T1(z) T2(xy) T2(zx) −T2(zx) T1(y) −T1(y)

−T2(xy) −T1(z) T2(xy) T1(z) −T2(xy) −T2(zx) T2(zx) −T1(y) T1(y)

Table D.4 The Kayley table of non-Abelian group G(J )
16 at arbitrary half-integer J in terms of com-

plete and incomplete time-reversal operators. The operatorsT = U (J )K, T1(x) = W (J )K, T1(y) =
e(J )K, T1(z) = V (J )K, T2(yz) = V (J ), T2(zx) = U (J ) and T2(xy) = W (J ) are determined by
U (J ), V (J ) and W (J ) from (8.39); K is the operator of complex conjugation. Block O22

T2(zx) −T1(y) −T2(zx) T1(y) T1(z) −T1(z) T2(xy) −T2(xy)

T2(zx) −e(J ) −T e(J ) T T1(x) −T1(x) −T2(yz) T2(yz)

−T1(y) −T e(J ) T −e(J ) −T2(yz) T2(yz) −T1(x) T1(x)

−T2(zx) e(J ) T −e(J ) −T −T1(x) T1(x) T2(yz) −T2(yz)

T1(y) T −e(J ) −T e(J ) T2(yz) −T2(yz) T1(x) −T1(x)

T1(z) −T1(x) −T2(yz) T1(x) T2(yz) e(J ) −e(J ) −T T

−T1(z) T1(x) T2(yz) −T1(x) −T2(yz) −e(J ) e(J ) T −T

T2(xy) T2(yz) −T1(x) −T2(yz) T1(x) T −T e(J ) −e(J )

−T2(xy) −T2(yz) T1(x) T2(yz) −T1(x) −T T −e(J ) e(J )
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Appendix E

Matrices of meta-spin projection operators for six types of meta-particles with
meta-spin �(n) = 1 (n = 1, 2, . . . , 6).

Time-reversal symmetry restoration from T2(yz) to T (n = 1)

�
2(yz)
x = 1√

2

⎛
⎝ 0 −1 0

−1 0 −1
0 −1 0

⎞
⎠ , �

2(yz)
y = 1√

2

⎛
⎝0 −i 0

i 0 −i
0 i 0

⎞
⎠ , �

2(yz)
z =

⎛
⎝1 0 0
0 0 0
0 0 −1

⎞
⎠

Time-reversal symmetry restoration from T2(zx) to T (n = 2)

�
2(zx)
x = 1√

2

⎛
⎝0 1 0
1 0 1
0 1 0

⎞
⎠ , �

2(zx)
y = 1√

2

⎛
⎝ 0 i 0

−i 0 i
0 −i 0

⎞
⎠ , �

2(zx)
z =

⎛
⎝1 0 0
0 0 0
0 0 −1

⎞
⎠

Time-reversal symmetry restoration from T2(xy) to T (n = 3)

�
2(xy)
x = 1√

2

⎛
⎝0 1 0
1 0 1
0 1 0

⎞
⎠ , �

2(xy)
y = 1√

2

⎛
⎝0 −i 0

i 0 −i
0 i 0

⎞
⎠ , �

2(xy)
z =

⎛
⎝−1 0 0

0 0 0
0 0 1

⎞
⎠

Time-reversal symmetry restoration from T1(x) to T (n = 4)
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�1(x)
x = 1√

2

⎛
⎝0 1 0
1 0 1
0 1 0

⎞
⎠ , �1(x)

y = 1√
2

⎛
⎝ 0 i 0

−i 0 i
0 −i 0

⎞
⎠ , �1(x)

z =
⎛
⎝−1 0 0

0 0 0
0 0 1

⎞
⎠

Time-reversal symmetry restoration from T1(y) to T (n = 5)

�
1(y)
x = 1√

2

⎛
⎝ 0 −1 0

−1 0 −1
0 −1 0

⎞
⎠ , �

1(y)
y = 1√

2

⎛
⎝0 −i 0

i 0 −i
0 i 0

⎞
⎠ , �

1(y)
z =

⎛
⎝−1 0 0

0 0 0
0 0 1

⎞
⎠

Time-reversal symmetry restoration from T1(z) to T (n = 6)

�
1(z)
x = 1√

2

⎛
⎝ 0 −1 0

−1 0 −1
0 −1 0

⎞
⎠ , �

1(z)
y = 1√

2

⎛
⎝ 0 i 0

−i 0 i
0 −i 0

⎞
⎠ , �

1(z)
z =

⎛
⎝1 0 0
0 0 0
0 0 −1

⎞
⎠
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110. G. Lüders, Kgl. Danske Vidensk. Selsk. Mat-Fys. Medd. 28, N5 (1954)
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301. M. Maloň, Z. Trávniček, M. Maryško et al., Inorg. Chim. Acta 323, 119–129 (2001)
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Chem. 46(26), 11017–11024 (2007)
395. U.A. Jayasooriya, R.D. Cannon, R.P. White et al., J. Chem. Phys. 98, 9303 (1993)
396. J.P. Costes, F. Dahan, J.P. Laurent, Inorg. Chem. 25, 413 (1986)
397. K.D. Karlin, Q. Gan, A. Farooq et al., Inorg. Chim. Acta 165, 37 (1989)
398. Y. Agnus, R. Louis, B. Metz el al., Inorg. Chem. 30, 3155 (1991)
399. R.J. Butcher, C.J. O’Connor, E. Sinn, Inorg. Chem. 20, 537 (1981)
400. F.B. Hulsbergen, R.W.M. Ten Goedt, G.C. Verschoor, J. Chem. Soc. Dalton Trans. 3, 539

(1983)
401. K.D. Karlin, Q.F. Gan, A. Farooq et al., Inorg. Chem. 29, 2549 (1990)
402. P. Chaudhuri, M. Winter, B.P.C. Della Vedova et al., Inorg. Chem. 30, 2148 (1991)
403. H. Adams, N.A. Bailey, M.J.S. Dwyer, J. Chem. Soc. Dalton Trans. 8, 1207 (1993)
404. S. Meenakumari, S.K. Tiwary, A.R. Chakravarty, Inorg. Chem. 33, 2085 (1994)
405. I. Geru, Extended group-theoretical treatment of the time inversion symmetry and Kramers

degeneracy: T3-, T2- and T1-invariances, in Proceedings of the XXXI Congress AMPERE
Magnetic Resonance and Related Phenomena (Poznan, Poland, 2000), p. 130

406. I.I. Geru, Rom. J. Phys. 48, 485–494 (2003)
407. I.I. Geru, Non-Abelian groups of symmetry and behavior of systems with total half-integer

spin under time reversal, in Conference of Physicists of Moldova (Chishinau, 2007), p. 174
408. I.I. Geru, Non-Abelian groups of symmetry containing time-reversal operator for systems

with spin S = 1/2 and S = 3/2, in International Conference Physics of Low Dimensional
Structures, 27–28 June 2007, Book of Abstracts (Publishing House of USM, Chisinau, 2007),
pp. 69–71

409. I.I. Geru, Time inversion and generalized symmetry of spin systems, inAbstracts of All-Union
Symposium on Symmetry Theory and Its Generalizations (Kishinev, 1980), pp. 42–44

410. T. Holstein, H. Primakoff, Phys. Rev. 58, 1098 (1940)
411. F.J. Dyson, Phys. Rev. 102, 1217 (1956)
412. S.V. Maleev, Zh. Eksp. Teor. Fiz. 33, 1010 (1957)
413. S.V. Vonsovsky, Magnetism (Wiley, New York, 1974), 1256 pp
414. C. Tsallis, J. Phys. 33(11–12), 1121–1127 (1972)
415. J. Schwinger, On angular momentum, in Quantum Theory of Angular Momentum, ed. by L.C.

Biedenham, H. Van Dam (Academic Press, New York, 1956), pp. 229–279
416. N.N. Bogoliubov, D.V. Shirkov, Quantum Fields (Nauka, Moscow, 1980), p. 319
417. A.S. Davydov, Solid State Theory (Nauka, Moscow, 1978), 639 pp



346 References

418. S.V. Tyablikov, Methods in the Quantum Theory of Magnetism (Plenum Press, New York,
1967), 354 pp

419. R. Jost, General Theory of Quantified Fields (Mir, Moscow, 1967), 236 pp
420. H. Haken, Quantum Field Theory of Solid State (Nauka, Moscow, 1980), 341 pp
421. D. Pines, Elementary Excitations in Solids (W. A. Benjamin Inc, New York, 1963)
422. A. Isihara, Statistical Physics (Academic Press, New York, 1971)
423. J.A. Reisland, The Physics of Phonons (Wiley LTD, London, 1973)
424. R. Loudon, The Quantum Theory of Light (Clarendon Press, Oxford, 1973)
425. N.H. March, W.H. Young, S. Sampanthar, The Many-Body Problems in Quantum Mechanics

(Cambridge University Press, Cambridge, 1967)
426. V.M. Agranovich, The Theory of Excitons (Nauka, Moscow, 1968), 382 pp
427. Sh. Tsitseica, Quantum Mechanics (Publishing House of the Romanian Academy, Bucharest,

1984), 635 pp
428. A.A. Maradudin, E.W. Montrall, G.H. Weiss, Theory of Lattice Dynamics in the Harmonic

Approximation (Academic Press, New York, 1963), 319 pp
429. I.V. Saveliev,The Basics of Theoretical Physics, vol. 2. QuantumMechanics (Nauka,Moscow,

1977), 351 pp
430. E.G. Pestov, G.M. Lapshin, Quantum Electronics (Voenizdat, Moscow, 1972), 334 pp
431. I.I. Geru, V. Geru, Bosonization of angular momentum. Rom. J. Phys. 44, 97–115 (1999)
432. I.I. Geru, Boson-antiboson representation of spin operators, in The International Seminar

Radiospectroscopy of Condensed Matter. Abstracts of Communications (Kiev,Ukraine, 1998),
pp. 13–14

433. I.I. Geru, New approach in time-inversion symmetry. Rom. J. Phys. 48, 485–494 (2003)
434. C.S. Wu, E. Ambler, R.W. Hayward et al., Phys. Rev. 105, 1413 (1957)
435. T.D. Lee, R. Oehme, C.N. Yang, Phys. Rev. 106(2), 340–345 (1957)
436. L.D. Landau, About conservation laws in weak interactions. JETF 32, 405–406 (1957)
437. E.P. Wigner, Symmetries and Reflections (Indiana University Press, Bloomington, 1970)
438. R.V. Craster, S. Guenneau, Acoustic Metamaterials. Negative Refraction, Imagining, Lensing

and Cloaking (Springer, Dordrecht, 2013), 319 pp
439. B. Banerjee, An Introduction to Metamaterials and Waves in Composites (Taylor and Francis

Group, London, 2011), 109 pp
440. V.M. Shalaev, Nature Photonic 1, 41–48 (2007)
441. C.M. Soukoulis, M. Wegener, Nature Photonic 5, 523–530 (2011)
442. M. Wegener, S. Linden, Phys. Today 63, 32–36 (2010)
443. H. Chen, C.T. Chan, P. Sheng, Nature Mater. 9(5), 387–396 (2010)
444. D. Shuring, J.J. Mock, B.J. Justice et al., Science 314, 977–980 (2006)
445. J. Mei, G. Ma, M. Yang, Nat. Commun. 3, 756 (2012). https://doi.org/10.1038/ncomms1758
446. Z.G. Nicolaou, A.E. Motter, Nat. Mater. 11, 608–613 (2012)
447. H.H. Huang, C.T. Sun, G.L. Huang, Int. J. Eng. Sci. 47, 610–617 (2009)
448. S.H. Lee, C.M. Park, Y.M. Seo et al., J. Phys. Condens. Mater. 21, 175704 (2009). https://

doi.org/10.1088/0953-8984/21/17/175704
449. A.N. Norris, J. Acoust. Soc. Am. 125, 839–849 (2009)
450. A. Martin, M. Kadic, R. Schittry, Phys. Rev. B 86, 155116 (2012). https://doi.org/10.1103/

physrevb.86
451. N.I. Zheluder, Y.S. Kivshar, Nat. Mater. 11, 917–924 (2012)
452. S.A. Tretyakov, J. Opt. 19, 013002 (2017). https://doi.org/10.1088/2040-8986/19/1/013002
453. M. Kadic, T. Bckmann, R. Schittny et al., Rep. Prog. Phys. 76, 126501 (2013)
454. B.F. Bayman, Some Lectures on Groups and their Applications to Spectroscopy (Nordisk

Institut for Teoretisk Atomfysik, Copenhagen, 1957), 225 pp
455. I. Geru, Proceedings of the 30th Congress AMPERE Magnetic Resonance and Related Phe-

nomena (Poznan, Poland, 2000), p. 130
456. I.I. Geru, New approach in time inversion symmetry, in The Third International Balkan

Workshop on Applied Physics (Targovishte, Romania, 2002), p. 38

https://doi.org/10.1038/ncomms1758
https://doi.org/10.1088/0953-8984/21/17/175704
https://doi.org/10.1088/0953-8984/21/17/175704
https://doi.org/10.1103/physrevb.86
https://doi.org/10.1103/physrevb.86
https://doi.org/10.1088/2040-8986/19/1/013002


References 347

457. K.J. Boström, Combined Bohm and Everett: Axiomatics for a Standalone Mechanics (2012),
arXiv:1208.5632v4 [quant-ph]

458. T.D. Lee, C.N. Yang, Phys. Rev. 106, 340 (1957)
459. B. Aubert et al., [The BaBar Collaboration], Phys. Rev. Lett. 87, 091801 (2001).

arXiv:hep-ex/0107013
460. B. Aubert et al., [The BaBar Collaboration], Phys. Rev. Lett. 89, 281802 (2002).

arXiv:hep-ex/0207055
461. B. Aubert et al., [The BaBar Collaboration], Phys. Rev. Lett. 93, 131801 (2004).

arXiv:hep-ex/0407057
462. B. Aubert et al. [The BaBar Collaboration], Phys. Rev. Lett. 94, 191802 (2005).

arXiv:hep-ex/0502017
463. L. Valentin, Subatomic Physics: Nuclei and Particles, vol. 2. Developments (PublishingHouse

Mir, Moscow, 1986), 336 pp
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Classical mechanics, 6
Classical physics, 10
Classical point group, 144
Classical thermodynamics, 26
Clebsh–Gordan coefficients, 57, 216, 218
Cluster, 218
Coherence time, 291
Combined C P-symmetry, 126
Combined inversion, 276
Combined symmetry transformation, 204
Combined time reversal, 198, 200, 204, 278
Combined time-reversal transformation, 195
Communication networks, 304
Commutation relation, 118, 170, 265, 266,

277, 279
Complete Lorentz group, 19, 22, 23
Complete time reversal, 229, 254, 261, 276
Complete time-reversal operator, 223, 238,

250
Complete time-reversal symmetry, 243
Complex conjugated representation, 69
Complex conjugation operator, 269, 310
Complex eigenvector, 95, 100
Complex normal coordinates, 95, 103
Complex-conjugated representation, 59
4-component spinor, 108
Computational basis vectors, 308
Conservation laws, 2
Conservative forces, 12
Constant of exchange interaction, 197
Continuous group, 18
Continuous space group, 68
Continuous Zeeman energy bands, 274
Conventional time-reversal operator, 50, 76
Cooper pair transfer, 297
Coordinate representation, 157, 159
Coordinating compounds, 175, 178
Coordination compound, 173, 182, 192, 200,

201
Copper dimers, 186
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Corepresentations, 70, 73
Corepresentations of symmetry groups, 33
Correlating Bose fields, 265
Correlation amplitude, 288
Correlation function, 29
Correlations between bosons, 271
Coupled bosons (C B) representation, 268
C P-symmetry breaking, 287
C P-violating asymmetry, 285
C P-violating interaction, 286
C P-symmetry violation, 283
C PT -invariance, 116
C PT symmetry, 116
C PT -symmetry, 126
C PT theorem, 33, 113, 116, 125, 283, 285
CPT transformations, 116
C P-violation, 284, 286, 293
Creation and annihilation operators, 124
Creation operator, 106, 117
Creation operator of the i th particle, 106
Critical current, 296
Critical temperature, 298
Cross-sections, 89, 287
Crystal field, 208
Crystal-field effects, 189
Crystal lattice vibrations, 90
Crystal structure, 191
Crystalline electric field, 176
Crystalline field, 187, 206
Crystalline structure, 153
Crystallographic point group, 135
Crystallographic point groups of symmetry,

168
Curie–Weiss constant, 145
Current density, 128, 297
Current-phase relation, 298, 299
Cyclic group, 134

D
D’Alembert operator, 20
d-wave superconductor, 297
Darvin correction, 53, 77
Decay of K -mesons, 284
Decay of neutral B-mesons, 285
Deep saturation, 163
Degeneracy of oscillation modes, 105
Degenerated eigenvalues, 98
Degenerated frustration, 212
Degenerated ground state, 212
Density matrix, 37
Density of current, 23
Density operator, 305

Destructive interference, 313
Detailed balance principle, 81
Detailed equilibrium, 87
Detailed equilibrium violation, 88
Diagonal matrix, 95, 98
Diagonal unitary transformation, 307
Dimer, 207
Dimer cluster, 173, 174, 182, 192, 197, 200,

201, 211
Dimeric cluster, 192, 196
Dimeric complexes, 184
Dimer magnetic clusters, 204
Dimers, 201
Dipole moment, 290
Dirac equation, 77
Dirac matrices, 123, 289, 292
Dirac 4-matrix, 108
Dirac notations, 34
Dirac representation, 110
Direct product of representations, 215
Direct products of groups, 243
Direct sum of representations, 105
Discrete antilinear symmetry, 117
Discrete symmetries, 243
d-wave gap, 297
Dynamical variables, 309
Dynamic equation, 36, 100
Dynamic matrix, 92–94, 97, 98, 100, 102
Dyson formula, 83
Dyson–Maleev representation, 264
Dzyaloshinsky–Moryia exchange, 175

E
E DM of a free electron, 291
Effective magnetic moment, 183
Effective spin Hamiltonian, 292
Eigenfunctions, 157
Eigen state vectors, 59
Eigenvalue, 159
Eigenvector, 102
Electrical charge, 114
Electrical conductivity, 16
Electric dipole moment, 283
Electric dipole momentum, 114
Electric field strength, 114
Electrodynamics, 1
Electromagnetic field, 16, 20, 108
Electron E DM , 289, 293
Electron configuration, 189, 199
Electron creation operator, 294
Electronic configurations, 207
Electronic ground state, 144, 293
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Electron-phonon interaction, 294
Electron wave function, 292
Elementary cell, 91
Elementary displacements, 91
Elementary particle physics, 287
Elementary particles, 257
Energy spectrum, 70, 199, 204
Energy transfer, 304
Energy transport, 304
Enhancement factor, 290
Enhancement of quantum transport, 283
Entropy, 27
EPR lines shapes, 321
EPR spectra, 174, 175, 182, 186, 187
E P R spectra, 321
E P R spectroscopy, 317
E P R spectrum, 315
Equations of motion, 12, 13, 102
Equivalent representations, 59
E SR, 153
E SR spectra, 148
Euclidean cube, 75
Euler angles, 51, 52, 280
Euler–Lagrange equations, 3
Euler theorem, 3
Even operator, 80
Even-parity pairing states, 295
Evolution operator, 82
Exchange coupling constants, 190
Exchange Hamiltonian, 150
Exchange interaction, 182, 187, 188, 190–

192, 196–198, 200, 202–207
Exchange interaction constant, 186, 192,

197, 199
Exchange interaction effects, 189
Exchange interaction Hamiltonian, 207
Exchange interaction of antiferromagnetic

type, 185
Exchange interactions, 176, 201
Exchange pairs, 188
Exchange-coupled dimer, 201
Excited state, 197
Exciton-phonon coupling, 167
Excitons, 163
Exciton transport of energy, 307
Expansion of the Universe, 27
Extended Habbard model, 303

F
Factor group, 132
Factor-group of the group, 130
Fermi level, 301

Fermi momentum, 298
Fermion field, 109, 111, 123
Fermions, 123
Fermi surfaces, 294
Fermi weak constant, 289
Ferroelectrics, 16
Ferromagnetic clusters, 206
Ferromagnetic coordination compounds,

197
Ferromagnetic crystal, 129
Ferromagnetic exchange, 205
Ferromagnetic interaction, 192, 194
Ferromagnetics, 16
Feynmans sum, 310
Fine structure constant, 290, 320
Finite group, 64
First Born approximation, 88
First Brillouin zone, 97, 164, 295
Floquet states, 163
Forward time evolution, 311
Four-color magnetic point groups, 153
Four-color point groups, 139
Four-colors symmetry groups, 138
Four-color symmetry, 145
Four dimension space-time, 109
Fourier transformation, 91
Fourth-order Abelian group, 262
Fourth-order cyclic group, 138, 253
Fourth-order cyclic subgroup, 229, 254
Fractional flux, 301
Fractional quantization, 301
Fractional type quantization, 300
Frequency shift, 292
Frobenius–Schur theorem, 62, 63
Frozen orbital momentum, 187
Fullerene molecule, 142

G
g-factor, 149
Gadolinium compounds, 191
Gap functions, 296
Gauge bosons, 286
Gauge transformation, 307
Gauge vector bosons, 257
Gauge vector meta-bosons, 257
General relativity, 1
Generalized Hilbert space, 164
Generalized point groups, 153
Generalized symmetry, 138
Generalized symmetry transformation, 199–

201, 204
Gibbs local distribution, 28
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Ginsburg–Landau, 301
Gradient of the potential, 10
Green function, 155, 160, 161
Ground state, 175, 176, 178, 188, 192, 206,

211, 213, 218, 221
Ground state Kramers doublets, 213
Group, 130, 251, 253, 254, 278
Group of generalized symmetry, 229, 258
Group of translations, 64
Group postulates, 249
Groups of transformations, 135
Groups of magnetic symmetry, 127
Groups of the wave vector, 66
Group theory, 295
Group-theoretic approach, 73, 229
Group-theoretic relations, 212
Gyromagnetic ratio of the muon, 303

H
Hadrons, 289
Half-integer spin, 156, 211
Hall effect sensor, 317
Hamilton equations, 93
Hamiltonian, 9, 36–38, 47, 49, 53, 58, 59,

71, 76, 78, 79, 82, 87, 96, 112, 113,
125, 156, 157, 161, 163, 164, 166,
170, 192, 195, 197, 199, 206, 207,
223, 225, 226, 258, 272, 289, 293,
306, 308–310, 314

Hamiltonian dynamics, 304
Hamiltonian of exchange interaction, 178
Hamiltonian of QED interaction, 112
Hamiltonian symmetry group, 62
Harmonic approximation, 96
Heavy-atom molecules, 290
Heavy fermion superconductors, 302
Heavy nuclei, 283
Heisenberg–Dirac–van Vleck operator, 175
Heisenberg model Hamiltonian, 151
Heisenberg representation, 36
Heisenberg uncertainty principle, 290
Hermitian-conjugated operator, 40
Hermitian matrix, 101
Hermitian operator, 35, 36, 164
Herring criteria, 69, 105, 168
Heterobinuclear cluster, 205
Heterobinuclear complex, 204
Heterobinuclear compounds, 207
Heteronuclear clusters, 208
Heteronuclear3 exchange pair, 188
Hidden paradox, 266
Higgs particles, 286

High-energy physics, 304
High half-integer spins, 218
High-Tc semiconductors, 302
High-temperature superconductors, 295
Hilbert space, 34, 106, 117, 157
Holstein-Primakoff representation, 264
Homobinuclear clusters, 201
Homobinuclear compounds, 207
Homonuclear clusters, 208
Homonuclear dimer clusters, 187
Homonuclear dimers, 186
H theorem, 25
Hund rules, 188
Hyperfine interactions, 150
Hyperfine splitting, 292
Hyperfine structure, 321
Hypersonic jet source, 293
Hysteresis loop, 321

I
Icosahedron, 142
Identical representation, 136
Identity matrix, 98, 196
Identity transformation, 22
Imaginary eigenvector, 100
Improper transformation, 8
Impulse, 114
Incomplete time inversion, 259
Incomplete time reversal, 197, 229, 243–

245, 247, 254, 258, 259, 261, 264,
273, 276, 278

Incomplete time-reversal operator, 211, 222,
223, 232, 235, 241, 243, 257, 282

Incomplete time-reversal operators, 278
Incomplete time-reversal symmetry, 225
Incomplete time-reversal transformation,

226
Indirect exchange, 177
Induced representation, 105
Inelastic neutron cross-sections, 152
Inelastic neutron scattering, 153
Inelastic neutron structure factor, 151
Inertial frames of reference, 18
Infinite-dimensional basis, 266
Infinite-dimensional space, 265
Infinitesimal operator, 37
Infringement of T -invariance, 274, 275
Initial condition, 13, 158
Inner product, 84
Inner product between vectors of states, 34
Instability of spin populations, 213, 217,

218, 226
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Interaction representation, 82
Interconfiguration interaction, 201
Intracluster exchange, 173
Intramolecular electric field, 290
Intramolecular exchange, 176
Intrinsic phase shift, 296
Invariance, 307
Invariance of the Hamiltonian, 198
Invariance relationships, 223
Invariant spin arrangement, 133, 135–137
Invariant subgroup, 63, 130, 132, 135
Inverse lattice, 64
Inverse operator, 40
Inversion of spin levels, 197, 198, 204, 207
Inverted spectrum, 207
Iron group, 186, 201
Irreducible representation, 50, 56, 60, 64, 71,

103, 104, 133, 142, 205, 212, 215,
216, 218, 221, 280, 295

Irreducible representations, 323
Irreducible star, 67
Irreversibility, 26
Irreversibility of the motion, 24
Irreversible processes, 315
Ising model, 152
Isomorphic substitution, 200, 201, 204, 208
Isomorphism, 141
Isomorphism of the groups, 140, 258
Isospin, 120
Isostructural lanthanides, 194
Isotope, 142
Isotropic antisymmetrical exchange, 148
Isotropic exchange constant, 194, 195
Isotropic exchange interaction, 175, 187,

190, 195, 197, 206, 212

J
Jahn–Teller effect, 144
Josephson current, 296, 298
Josephson junction, 299, 301
Josephson penetration depth, 299

K
Kayley table, 230–244, 246–249, 251, 253,

254, 258, 327–332
Keggin fragments, 152
Ket-vector, 38, 40
Kinematic condition, 267, 271, 273–275
Kinetic energy, 92
Kinetic exchange, 177
Klein–Gordon–Fock equation, 76, 77
K 0
1 -meson, 285

K 0
2 -meson, 285

Knight shift, 295
Kossakowsky–Lindblad equation, 305
Kramer doublets, 218
Kramers clusters, 143
Kramers conjugated state vectors, 80
Kramers degeneracy, 49, 54, 75, 77, 127,

128, 147, 150, 151, 155, 171, 214,
226, 254, 257, 261

Kramers degeneration, 162
Kramers doublet, 152, 211, 212, 216, 217,

220, 221
Kramers multiplets, 214
Kramers states, 214
Kramers system, 128, 130, 138–141, 144,

153, 230, 239, 244, 245, 252, 254,
258, 260, 261, 264

Kramers theorem, 33, 49, 59, 61, 75, 113,
156, 226, 227, 229, 257, 260

Kronecker product of representations, 79,
218

Kronecker products of operators, 245

L
Lagrange formalism, 2
Lagrange function, 3
Lagrangian, 2, 6, 93
Landé-factor, 189, 190
Lanthanide ions, 188
Lanthanide series, 188
Lattice dynamics, 104
Lee groups, 5
Left-invariant, 79
Leptons, 289
Leptoquarks, 286
Lie–Bäcklund infinitesimal operators, 4
Lie group of symmetry, 267
Lindblad operators, 305–307
Linear operator, 38, 41, 42
Locshmidt paradox, 25
Logic gate, 305
Lorentz condition, 20
Lorentz equation, 17
Lorentz group, 5, 6, 109, 119
Lorentz index, 120
Lorentz invariance, 126
Lorentz transformation, 5, 19, 21
Lorentz transformation matrix, 110
Lowering of the symmetry, 243
Lowering the time-reversal symmetry, 226
Lüders–Pauli CPT theorem, 116
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M
Macrofilled mode, 166
Macrofilled phonon mode, 167
Magnetically disordered state, 129
Magnetically ordered crystals, 129, 135
Magnetic binuclear clusters, 208
Magnetic clusters, 151, 175, 214
Magnetic dimer cluster, 174, 176, 178, 197,

200, 201
Magnetic dimers, 208
Magnetic dipole–dipole interaction, 176
Magnetic dipole momentum, 114
Magnetic excitons, 163
Magnetic field, 196, 275
Magnetic flux quantum, 299
Magnetic group, 132
Magnetic induction, 114, 321
Magnetic moment, 129, 135, 150, 189, 192,

292, 302
Magnetic orbitals, 205
Magnetic order, 129, 302
Magnetic point group, 130, 132, 135–139,

141, 144
Magnetic properties, 204
Magnetic quadrupole moment, 288, 293
Magnetic quantum numbers, 88
Magnetic resonance spectroscopy, 213
Magnetic space groups, 141
Magnetic susceptibility, 145, 148, 150–152,

174, 187
Magnetic symmetry, 128–132, 230
Magnetic symmetry group, 127, 135, 142
Magnetic symmetry point group, 127–129
Magnetization, 129, 195
Magnons, 163
Many-body corrections, 288
Many-particle system, 57
Marginal Fermi liquid, 294
Markov approximation, 305
Markovian processes, 305
Matrix equation, 281
Matrix of force constants, 92
Matsubara frequency, 298
Matter–antimatter asymmetry, 283, 286
Maxwell–Boltzmann distribution, 25
Maxwell equations, 16, 17, 20, 21, 299
Mean field theory, 303
Meson systems, 284
Meta-matter, 276
Meta-particle, 257, 276–279
Meta-particles with meta-spins, 281
Meta-spin projection operators, 278, 282
Microscopic reversibility of fluctuations, 30

Microscopic theory of superexchange, 177
Minkovsky space, 24
Mirror rotation, 132, 138
Mixed states, 36
Molar susceptibility, 150
Molecular E DM , 289, 293
Molecular clusters, 211
Molecular magnetic moment, 291
Molecular magnetism, 212
Molecular polarizability, 320
Momentum representation, 159
Mössbauer effect, 8
Mössbauer spectroscopy, 146
Mössbauer spectrum, 146, 147
Movement equations, 6
Multi-band BCS theory, 303
Multi-band superconductor, 303
Multidimensional order parameters, 302
Multi-particle states, 121
Multiplicative phase factor, 121
Muon neutrino, 115
Mutual compensation of spin moments, 221

N
Narrowing of NMR lines, 184
Natural abundance, 142
Neel temperature, 184
Negative numbers of filling, 269
Negative signature, 18
Neutral antimeson state, 284
Neutral B-meson decays, 284, 286
Neutral kaon systems, 126
Neutral K -meson, 285
Neutrino, 114, 115
Neutron–deuteron scattering, 287
Neutron–nucleus interaction, 288
Newtonian dynamics, 2
Newton mechanics, 10
NMR spectrum, 184
Nöether theorem, 4, 6
Non-Abelian group, 75, 139, 140, 145, 224,

226, 229, 232–236, 238, 240, 241,
245, 251, 253, 258, 262, 275–278,
327–332

Non-abelian group of symmetry, 222, 224
Non-Abelian symmetry group, 170, 254
Nonconventional time-reversal, 78
Nonconventional time-reversal symmetry,

76
Non-crystallographic magnetic group, 136
Non-equilibrium thermodynamical systems,

26
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Nonequivalent representations, 60
Non-hermitian fields, 120
Non-Hermitian Hamiltonian, 264
Non-Kramers systems, 128, 130, 133, 134,

137, 139, 140, 144, 153, 229, 245,
249, 261, 263, 264, 272

Non-stationary state, 155, 157, 159, 161, 162
Non-symmorphic space group, 68
Normal coordinates, 97
Normal oscillation, 104
Normal subgroup, 97, 130
Nuclear charge, 320
Nuclear E DM , 292, 293
Nuclear electric dipole moments, 287
Nuclear magnetic dipole moment operator,

293
Nuclear magnetic resonance, 292, 308, 321
Nuclear physics, 287
Nuclear reactions, 88, 287
Nuclear Schiff moment, 292, 293
Nuclear T -, P-odd effects, 294
Nuclei, 286
Nucleon-nucleon interaction, 289, 293
Nucleus spin operator, 291

O
Occupation numbers of bosons, 257
Odd operator, 80
One-dimensional crystals, 164
One-to-one correspondence, 11
Onsager hypothesis, 28, 29
Onsager principle, 30
Onsager relations, 29
Operation of anti-identification, 74
Operation of antirotation, 73
Operation of combined time reversal, 208
Operation of isomorphic substitution, 208
Operator equation, 268
Operator loads, 268
Operator of charge conjugation, 121, 123
Operator of complete time-reversal, 232,

234, 253
Operator of complex configuration, 274
Operator of complex conjugation, 100, 161,

196, 222, 331, 332
Operator of space inversion, 166
Operator polynomial, 54
Operators of incomplete time reversal, 269
Operators of incomplete time-reversal, 236,

247
Operators of partial time-reversal, 232
Orbital angular momentum, 132, 185, 188

Orbital degeneracy, 211
Orbital momentum, 49, 77, 156
Orbital momentum operator, 292
Order-disorder phase transitions, 264
Order parameter, 144, 296
Order parameter symmetry, 296
Orthogonal transformation, 68
Orthonormality conditions, 158
Orthonormalization of basis spinors, 52
Orthonormal states, 284
Oscillating modes, 99

P
Painlevé theorem, 1, 12, 15
Pairing interaction, 294
Pairing states in the lattice, 295
P- and T -parity non-conservation, 290
P- and T -symmetry breaking, 283
P- and T -violating interaction, 289
Paramagnetic ions, 156, 176, 192, 195, 196,

201, 211, 218
Paramagnetic molecules, 283
Paramagnetism, 184
Parameter of exchange interaction, 198
Parity of the vacuum, 117
Parity operator, 106, 117–120
Parity symmetry, 9
Partial time-reversal, 200, 211
Partial time-reversal operator, 197, 199, 231,

233
Partial time-reversal transformation, 200
Particle, 121, 278, 279
Particle with spin, 259
Pauli equation, 77
Pauli matrix, 49, 53, 77, 214, 230, 241, 293,

308
Pauli operator, 157, 222
PC-invariance, 115
Pentagonal dodecahedron, 142
Pentahomonuclear cluster, 144
Periodic functions, 13
Permanent E DM , 289
Perturbation Hamiltonian, 90
Perturbation operator, 79, 162, 315
Perturbation theory, 89, 178
Phase factor, 47, 112, 235, 241
Phase shift, 298
Phase transition, 298
Phenomenological unidirectionality of time,

314
Photosynthesis process, 307
P-invariance, 115, 116
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Planck time, 313
Poincaré recurrence theorem, 30
Poincaré recurrence time, 31
Point generalized-symmetry groups, 139
Point group, 67, 128–132
Point groups of magnetic symmetry, 144
Point groups of symmetry, 58, 132, 138, 139,

222
Point symmetry group, 127, 168, 230
Point transformation, 40
Polarization observables, 287
Polarized heavy-atom molecules, 291
Polarized neutron diffraction, 213
Polar molecule, 290
Polar vector, 136
Polar vector operator, 289
Polyanion, 150
Positive signature, 18
4-potential, 23
Potential barrier, 297
Principle of detailed balance, 287
Principle of microscopic reversibility, 29
Principle of superposition of states, 35
Probability of transition, 86, 87
Projective representations, 68
Proper Lorentz group, 22
Proton E DM , 290, 291, 293
Proton enhancement factor, 291
Proton spin-lattice relaxation, 151
Pseudo-scalar, 120
P, T -odd interaction, 291
P, T -parity non-conservation, 320
P-, T -violating electric dipole interaction,

293

Q
Q-band, 150
QED interaction, 113
Quadruple splitting, 146
Quantum chromodynamics, 286
Quantum circuit, 304, 308
Quantum circuit networks, 308
Quantum electrodynamics, 24, 108
Quantum E P R transitions, 315
Quantum field theory, 106, 113, 125, 243
Quantum informatics, 304, 308
Quantum Liouville equation, 37
Quantum-mechanical operators, 132
Quantum-mechanical system, 199
Quantum mechanics, 24, 40, 90, 113, 163,

243, 309
Quantum system, 162

Quantum theory of magnetism, 264, 272
Quantum theory of radiation, 162
Quantum transitions, 162
Quantum transport, 304, 308
Quantum transport enhancement, 304
Quantum walks, 306
Quantum walks Hamiltonian, 305, 307
Quark states, 286
Quasiclassical approach, 297
Quasi-degeneracy, 212
Quasi-degeneracy of energy levels, 162
Quasi-energy, 163, 164, 166
Quasi-energy doublets, 169
Quasi-energy levels, 155, 165, 167, 168, 170
Quasi-energy operator, 170
Quasi-energy spectrum, 164
Quasi-energy states, 155
Quasiparticle spectrum, 296
Quotient group, 99

R
Radiation field, 162
Rare-earth elements, 188, 201
Rare-earth group, 188
Rare-earth ions, 192
Real eigenvector, 100
Reciprocal lattice vector, 168
Reciprocity theorem, 86, 87, 89
Reconstruction of the symmetry, 276
Reduced Brillouin zone, 64, 155, 165
Reducible corepresentations, 73
Reducible star, 67
Reduction of the T -symmetry, 116
Relativistic effects, 283
Relativistic electrodynamics, 20
Relativistic mechanics, 1, 5
Representation of occupation numbers, 265
Representation of the secondary quantiza-

tion, 178
Representations, 71
Representation theory, 62
Resonance cavity, 321
Resonant transitions, 162
Resonating valence bonds states, 294
Restoration of the broken T -symmetry, 278
Reversibility, 26
Rotation group, 56, 216, 280
Rotation group of symmetry, 50, 193, 205,

215
Rotations group, 212
Rotation transformation, 13
Russell–Saunders coupling, 185
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S
Scalar, 120
Scattering matrix, 81, 84, 287
Scattering operator, 81
Schiff-base ligand, 195
Schiff theorem, 293
Schrödinger equation, 47, 54, 58, 71, 76, 77,

81, 82, 155, 157, 159, 160, 163, 309
Schrödinger equation for bievolution, 314
Schrödinger representation, 36, 45, 82, 86
Schur lemma, 53, 97
Schwinger representation, 264, 266, 267,

274
Second law of thermodynamics, 25, 26
Second-order cyclic group, 135, 138
Second-order cyclic subgroup, 254
Second-order group, 262
Selection rules, 79
Self-conjugated subgroup, 130
Self-conjugate field, 122
Self-conjugate particle, 122
Semi-direct product, 130
Set, 251
Shiff moment, 288
Shift of spin levels, 197
Sine-Gordon equation, 299
Single-crystal X -ray diffraction, 153
Single molecular magnet, 195
Single qubit gates, 308
Singlet state, 174
Singlet–triplet splitting, 179–183, 205, 207
Singular points, 64, 165, 168
Site-to-site probability, 307
Site-to-site transfer probability, 305, 306
Small-world networks, 308
S-matrix, 83, 86
Space group, 58, 63, 67, 68, 99, 104, 106
Space group of symmetry, 130
Space inversion, 119
Space of quasi-energies, 155, 164, 165, 168
Space symmetry group, 97, 104, 314
Space-time, 1
Space-time group, 100, 104
Space-time point, 19
Space-time symmetry group, 100, 106
Spatial inversion, 142
Spatial symmetry groups, 135
Spatial symmetry inversion, 289
Special relativity, 1, 6
Specific heat, 153
Spectroscopic terms, 189
Spin, 156
Spin arrangement, 136

Spin basis functions, 196
Spin containing systems, 44
Spin-electric field coupling constant, 258
Spin-0 field, 108, 122, 124
Spin frustration, 212
Spin-frustration effects, 148
Spin glasses, 212
Spin glass systems, 212
Spin Hamiltonian, 146, 150, 175, 176, 183,

190, 191, 194, 195, 197, 198, 200,
204, 212, 274, 315

Spin invariants, 227
Spinless particles, 45, 156, 171
Spin levels inversion, 198, 204
Spin moment, 211, 216, 217, 221, 225, 226
Spin operator, 49, 217, 221
Spinor basis, 53, 195, 196, 214, 219, 222,

224, 270, 274, 277
Spinor basis vectors, 74
Spinor operator, 267
Spinor representation, 266, 267, 270, 273
Spinor unit vectors, 51
Spin orbit coupling, 213
Spin-orbit coupling, 188, 189
Spin-orbit interaction, 157, 188
Spin-0 particle, 108, 122
Spin-Pauli matrices, 305
Spin polarized muons, 302
Spin populations, 212, 213, 226
Spin populations instability, 222, 226
Spin projection operators, 196, 223, 234,

272, 277–279
Spin quadruplet, 208
Spin quantization axes, 106
Spin singlet, 197
Spin singlet pairing, 295
Spin space, 135
Spin trimer, 212, 221
Spin-trimer model, 145
Spin triplet, 197
Spin triplet pairing, 295
Spin triplet states, 295
Spin wave function, 199, 218, 221, 268
Spin-1 field, 112, 119, 124
Spin-1 vector field, 111, 125
Spin-1/2 fermion field, 118
Square lattice point group, 295
Stability of spin populations, 221, 222
Standard method, 321
Standard Model, 285
Star, 67
Star of the point, 168
State transfer probabilities, 308
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State vector, 45, 53, 309
Staticmagnetic susceptibility, 189, 194, 195,

205
Stationary state, 43, 157
Strongly interacting systems, 287
Structural asymmetry, 143
Structural deformation, 211
Structural distortion, 142, 154
Subgroup, 72, 129, 132, 136, 251, 254
Subgroup of translations, 97
Subsystems, 162
Superconducting gap symmetries, 294
Superconducting planes, 295
Superconducting state, 301
Super exchange, 150
Super weak interaction, 286
s-wave gap, 297
s-wave pairing state, 295
Symmetric matrix, 55
Symmetric time evolution, 311
Symmetry group, 61, 70, 71, 212, 223
Symmetry group of Hamiltonian, 79
Symmetry of kinetic coefficients, 28
Symmetry point groups, 323
Symmorphic group, 68

T
T -symmetry, 304
Tau neutrino, 115
T -conserving hyperfine interaction, 293
Tensor of electromagnetic field, 22
Theoretical-group treatment, 222
Theory of generalized functions, 117
Theory of groups, 164, 230
Three-qubit system, 308
Time translations, 10
Time-reversal, 10, 24, 30, 56, 58, 59, 155,

166
Time-reversal breaking state, 301
Time-reversal invariance, 26, 77, 160, 272,

289
Time-reversal operation, 129, 300
Time-reversal operator, 8, 12, 16, 40, 42, 44,

45, 48, 49, 53, 58, 62, 70, 74, 77,
83, 90, 100, 105, 106, 110, 112, 113,
127–129, 132–134, 139–143, 145,
155, 157, 159, 161, 163, 166, 169,
195, 196, 199, 200, 211, 214, 217,
222, 224, 230, 231, 235, 237, 238,
245, 246, 254, 257–259, 262, 269,
271–273, 275, 306, 307, 310, 314,
315

Time-reversal symmetry, 10, 20, 33, 54, 59,
60, 63, 66, 69, 70, 81, 105, 141–144,
154–156, 165, 167, 168, 170, 197,
198, 217, 218, 222, 225, 226, 260,
261, 263, 264, 273, 274, 276, 286,
292, 296, 304, 305, 308, 314, 318,
321

Time-reversal symmetry breaking, 283, 287,
288, 294, 296, 301, 304, 305, 307

Time-reversal symmetry effects, 287
Time-reversal symmetry lowering, 222
Time-reversal symmetry violation, 222, 225,

274, 283, 284, 286, 287, 294, 304
Time-reversal transformation, 15, 22, 53, 73,

199, 284, 287, 316
Time-reversal violating part, 288
Time-reversed boson, 272
Time-reversed electrons, 200
Time-reversed motion, 15
Time-reversed state, 74
Time-reversed state vector, 53
Time-reversed variable, 8
Time-reversed wave function, 209, 272
Time translation invariance, 1
Time-translation operator, 155, 163
Time translation symmetry, 171
T -invariance, 25, 86, 106, 274
T -invariance in collision processes, 90
Total angularmomentum, 132, 156, 167, 189
Total electronic angular momentum, 290
T, P-odd effect, 321
Transition temperature, 129
Translated time variable, 13
Translation group, 91, 92, 169
Translation operators, 169
Trihomonuclear cation, 213
Trihomonuclear cluster, 211, 213, 218, 226
Trihomonuclear compounds, 218
Trihomonuclear Kramers clusters, 143
Trihomonuclear magnetic clusters, 146
Trimer, 214
Trimer cluster, 145, 153, 215, 218, 222
Trimeric polyanion, 152
Trimer magnetic clusters, 152
Trinuclear chromium acetate, 145
Trinuclear clusters, 153
Triplet state, 174
Trivalent rare-earth ions, 188
T -symmetry breaking, 288
T -symmetry breaking in nuclei, 289
T -symmetry lowering, 282
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