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Supervisors’ Foreword

Even a century after its birth, we are still challenged by fundamental questions
posed by quantum mechanics and learning how to use its striking features for
practical applications. The field of quantum information explores the computational
power of quantum systems, which can greatly outperform classical computers;
entanglement can be used to secure communications; the high sensitivity of
quantum superpositions to external parameters is being used to design new sensors.
Quantum computation, quantum communication, quantum sensing, and metrology
are examples of the new technologies that make use of genuine quantum effects,
like coherence and entanglement.

In recent years, a new field has been added to these attempts to exploiting
quantum effects: quantum thermodynamics. Furthermore, the progress toward
systems composed of several elementary units with increasing complexity requires
the study of emergent phenomena, such as quantum synchronization. These timely
topics are treated in the thesis of Gonzalo Manzano within the common theoretical
framework of open quantum systems. Manzano’s original contributions lead to a
better understanding of a number of basic phenomena: synchronization, decoher-
ence, thermalization, and irreversibility in open systems, whose control is crucial to
implement the aforementioned quantum technologies. The thesis also includes the
design and analysis of quantum thermal machines that can achieve higher effi-
ciencies than classical engines and refrigerators.

As known, isolated systems are a useful idealization to start with, but only a
more realistic approach considering interactions with the environment can explain
most physical phenomena, taking into account the effects of exchanges of energy,
matter, and information. In the classical regime, the interaction with the environ-
ment is necessary for basic tasks that require friction, such as walking, as well as to
relax toward equilibrium, like when ice melts in our drink, and plays a prominent
role in emergent phenomena and dissipative structures, ranging from synchro-
nization of heart pacemaker cells to cyclones. Therefore, the study of open systems
is a well-established topic intersecting with most research fields including, but not
limited to, thermodynamics.
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Still, it is in the quantum regime where the study of open systems becomes even
more relevant and powerful, since open quantum systems play a fundamental role
in establishing the conditions for the emergence of a classical world out of fun-
damental quantum laws valid in the microscopic regime. Superposition of states is
at the heart of quantum physics, and the process of decoherence provides a
mechanism for the transition to classical mixed states, with prominent experimental
demonstrations in atomic systems known from the 1990s.

This thesis explores the behavior of open quantum systems in a variety of
contexts. Its first part is a very valuable, self-contained, and exhaustive introduction
(Part I) that covers the main aspects of (a) basic quantum theory, including several
quantities to assess the correlation between quantum systems, (b) the theory of
quantum open systems, including the formalism of quantum maps and stochastic
trajectories, and (c) the more recent framework of stochastic thermodynamics and
quantum thermodynamics.

The rest of the Gonzalo Manzano’s thesis is devoted to his original contributions
to these fields. Part II focuses on synchronization of quantum oscillators. Among
complex phenomena, mutual synchronization is a paradigmatic one, reported in
physical, biological, chemical, and social contexts, allowing for the adjustments
of the rhythms of different systems. A natural question addressed in recent years is
about the persistence of this phenomenon in the quantum regime, as well as its
connection with quantum correlations. The thesis contains the first study in which
mutual synchronization is actually found to witness the presence of quantum
discord and entanglement, in a fundamental model of coupled oscillators (Chap. 4).
Furthermore, it addresses the intriguing possibility that synchronization not only
persists in the presence of quantum noise, but is also induced by dissipation into the
environment. Quantum synchronization is discussed in bosonic models allowing for
more complex forms of interaction with the environment, acting not only inde-
pendently and identically on different system components, but also collectively or
locally (Chaps. 4 and 5). Spontaneous synchronization can arise either during a
pre-thermalization transient or also in the stationary state, when more than two
detuned oscillators are considered. The last case is studied in connection with
persistent decoherence-free subspaces (Chap. 5).

Can mesoscopic systems like quantum complex networks synchronize? In
Chap. 6, it is shown that bosonic networks not only can display mutual synchro-
nization induced by dissipation, but also have the possibility to be tuned locally
(only at one node) to make the whole network synchronous, and therefore also
strongly quantum correlated, or to select synchronous clusters. Furthermore, the
conditions to synchronize and entangle two nodes through a network are also
established. These results provide a comprehensive description of quantum syn-
chronization in the framework of bosonic networks.

Part III is devoted to quantum fluctuation theorems (QFTs) that characterize the
fluctuations of work, heat, and other quantities related to entropy production, along
arbitrary nonequilibrium processes. Chapter 7 introduces a QFT for quantum maps
and operations, a generic formalism that describes the evolution of open systems.
The novelty of this QFT is that it is independent of the details of the environment
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and can be applied when the physical mechanism behind a phenomenon is not fully
understood, such as decoherence and the collapse of the wave function. Another
general QFT, in this case for bipartite systems, is derived in Chap. 8. This theorem
helps to clarify some aspects of the previous QFT for maps and also allows one to
split the entropy production along nonequilibrium processes into two terms that
obey respective “second laws”: the adiabatic entropy production, which quantifies
the entropy production due to nonequilibrium constraints, such as temperature
gradients, and the nonadiabatic entropy production, which accounts for the local
irreversible relaxation due to driving. All those results are illustrated in a number of
relevant physical examples.

The last part of the thesis (Part IV) focuses on quantum thermal machines,
that is, quantum systems that are in contact with thermal baths at different tem-
peratures and are able to perform different tasks, like converting heat into work
(motors) or pumping heat from cold to hot reservoirs (refrigerators). Over the
last decade, a vast literature has developed on these machines, which is reviewed in
the introduction, whereas Part IV of the thesis contains the original contributions to
the field. Chapter 11 analyzes how the efficiency of these machines depends on the
dimension of the Hilbert space. Another interesting aspect is the consideration
of nonequilibrium reservoirs. In quantum mechanics, one can modify the state of
an equilibrium thermal bath, by squeezing or adding coherences, to obtain a
nonequilibrium reservoir. Then, we can imagine a thermal machine working with
those reservoirs. In fact, there are already experimental realizations of thermal
motors working with squeezed baths. Chapter 10 analyzes in detail several ther-
modynamic cycles between squeezed thermal baths using QFTs and shows that one
can have motors and refrigerators that greatly outperform cycles with equilibrium
reservoirs.

Summarizing, here you will find a number of relevant and original contributions
that help to better understand the collective and thermodynamic properties of open
quantum systems. Gonzalo Manzano has also included an exhaustive and
self-contained introduction that makes the thesis an excellent resource for learning
more about all these new developments, which are crucial for understanding both
the fundamental aspects of quantum mechanics and the possibilities and limitations
of quantum technologies.

Madrid, Spain Prof. Juan M. R. Parrondo
Palma de Mallorca, Spain
April 2018

Prof. Roberta Zambrini
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Abstract

Dissipation effects have profound consequences in the behavior and properties of
quantum systems. The unavoidable interaction with the surrounding environment,
with whom systems continuously exchange information, energy, angular momen-
tum, or matter, is ultimately responsible for decoherence phenomena and the
emergence of classical behavior. However, there exists a wide intermediate regime
in which the interplay between dissipative and quantum effects gives rise to a
plethora of rich and striking phenomena that has only started to be understood. In
addition, the recent breakthrough techniques in controlling and manipulating
quantum systems in the laboratory have made this phenomenology accessible in
experiments and potentially applicable. In this thesis, we aim to explore from a
theoretical point of view some of the connections between dissipative and quantum
effects regarding two main aspects: the thermodynamical behavior of quantum
systems and the relation between dynamical and quantum correlations shared
between them.

Quantum correlations are one of the most surprising characteristics of nature,
attracting a long-standing interest from the formulation of quantum theory. The
understanding of the mechanisms creating, preserving, or destroying quantum
correlations becomes of major importance when exploring the quantum-to-classical
boundary, while being essential to designing schemes in which decoherence phe-
nomena can be avoided in practical applications. An important type of dynamical
correlations with a more classical flavor is synchronization phenomena, which have
been studied in a broad range of physical, chemical, and biological systems.
Synchronization may arise as a spontaneous cooperative behavior of different
oscillatory units that, when coupled, adapt their rhythms to a common frequency.
This mutual synchronization phenomenon has been recently considered in the
quantum regime, mostly from a classical point of view, while genuine quantum
traits of synchronization are now starting to be investigated.

A first main objective of this thesis is to determine the possible connections
between mutual synchronization and quantum correlations, as measured by
entanglement or quantum discord. In order to investigate this connection, we use
the machinery of open quantum systems theory. More precisely, we consider
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many-body systems consisting of interacting quantum harmonic oscillators coupled
to the environment. The environment will be modelled in two main different ways,
which will be compared. In the first case, all the units in the many-body system feel
the same dissipation modelled as a common heat bath. In the second case, each unit
is assumed to feel an independent dissipation modelled by separate thermal baths.
We start with the simplest case of two quantum harmonic oscillators in Chap. 4
which allows us to identify the basic mechanisms leading to transient synchro-
nization and its relation with the slow decay of quantum correlations. We find that
both phenomena are produced due to the presence of collective dissipation. We then
consider the case of three oscillators in Chap. 5, in which a richer phenomenology
appears while still allowing an analytical treatment in several cases of interest.
Finally, we scale the system up to complex harmonic networks in Chap. 6, where a
broader class of local/global dissipation can be addressed, and our previous findings
let us engineer the normal modes of the network. We can then obtain synchro-
nization and protection of quantum correlations in the whole network or in a
selected cluster, by simply tuning one or few parameters, such as one frequency or
certain coupling strengths. The importance of the results presented in this part of the
thesis relies on the fact that they show for the first time that synchronization is
related to genuine quantum features and that it may emerge, even in linear systems,
due to the presence of dissipation.

The remaining parts of the thesis are dedicated to explore the thermodynamic
features of open quantum systems. In particular, we explore the quantum versions
of fluctuation theorems. These theorems are universal relations which introduce
constraints in the statistics followed by quantities such as work, or entropy, defined
as stochastic fluctuating variables in processes occurring arbitrarily far from equi-
librium. They can be understood as a refined version of the second law of ther-
modynamics for small systems dominated by fluctuations where the laws
of thermodynamics are only expected to be fulfilled on average.

Work fluctuation theorems have been extensively investigated in the quantum
regime under an inclusive Hamiltonian approach. Also, fluctuation theorems for the
exchange of heat and particles in transient and steady-state regimes have been
established, as well as entropy production fluctuation theorems. Other approaches
considered specific open-system dynamics, including unital measurements, quan-
tum trajectories, or Lindblad master equations. However, the different attempts to
generalize those results to general completely positive and trace-preserving (CPTP)
maps are limited by the presence of an efficacy (correction) term. Furthermore, the
characterization of entropy production in situations going beyond the assumption of
ideal equilibrium reservoirs constitutes an open challenge.

The second main objective we pursue in this thesis is the development of
fluctuation theorems valid for quantum CPTP maps, together with the interpretation
of the quantities fulfilling them. This theoretical development may then be applied
to gain insight into the characterization of entropy production in general quantum
evolution and the thermodynamic description of specific configurations. We define
thermodynamic protocols generating trajectories by means of quantum measure-
ments and the occurrence of the quantum operations which compose the CPTP
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maps. The probabilities of such trajectories then must be compared with those
of their time-reversed twins, defined in a suitable way. The application to specific
situations will require as well an adequate modelling of the dynamical evolution.
In Chap. 7, we develop a general fluctuation theorem for a large class of quantum
CPTP maps. The theorem is based on the properties of the invariant states of the
dynamics. We discuss the meaning of the quantity fulfilling the theorem in many
situations of physical interest as different versions of the entropy production. This
interpretation is then clarified in Chap. 8, where we characterize entropy production
from first principles and explore the conditions under which it splits into adiabatic
and nonadiabatic contributions, each of them fulfilling an independent fluctuation
theorem. In Chap. 9, we illustrate our findings with some particular models of
interest in quantum thermodynamics and discuss their implications.

Thermodynamic theory was developed from the analysis of real heat engines,
such as the steam engine along the nineteenth century. Those macroscopic engines
have quantum analogues, whose analysis constitutes an important branch of
quantum thermodynamics. A quantum thermal machine is intended as a small
quantum system operating between different thermal reservoirs (or more general
reservoirs) and possibly subjected to external driving. The machine performs a
thermodynamic task such as work extraction, refrigeration, heat pumping,
or information erasure. Quantum thermal machines provide simple setups in which
quantum thermodynamics can be studied at the fundamental level, but also tested
experimentally.

Clarifying the impact of quantumness in the operation and properties of the
machines represents a major challenge. Quantum effects may be incorporated, e.g.,
by means of nonequilibrium reservoirs. There have been different works in the
literature pointing that nonequilibrium quantum reservoirs may be used to increase
both power and efficiency. Nevertheless, a solid understanding of this enhancement
and their optimization has remained elusive, as it requires a precise formulation
of the second law of thermodynamics in such nonequilibrium situations.
Furthermore, the sole fact that energy levels are discretized may also introduce
limitations when trying to improve the performance of machines by means of
increasing the number of levels. Indeed, the scaling properties of small thermal
machines have not been yet established.

A final general objective of this thesis is to provide insight into the role played
by quantumness in the performance and operation of quantum thermal machines.
We perform a thermodynamic analysis of the quantum Otto cycle for a single
bosonic mode in the presence of a nonequilibrium squeezed thermal reservoir.
Equipped with the findings about entropy production in quantum processes and the
generalized formulation of the second law previously developed, we will perform
an entropic analysis of this setup in Chap. 10. We identify nonequilibrium features
introduced by the squeezed thermal reservoir in the operation of the engine, opti-
mize it, and discuss its many striking consequences such as the appearance of
multitask regimes in which the heat engine may extract work and refrigerate a cold
reservoir at the same time. Finally, we study the performance of multi-level
autonomous thermal machines in terms of the number of levels in Chap. 11. We
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first identify the primitive operation of autonomous machines and then characterize
the different elements determining their performance. This allows us to compare
different ways of scaling the system by adding extra levels. Fundamental limitations
to improve the performance of the machine then naturally arise, leading to a novel
statement about the third law of thermodynamics in terms of the Hilbert space
dimension of the machine.
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Part I
Introduction to Open Quantum Systems

and Quantum Thermodynamics



Chapter 1
Basic Concepts

Any realistic quantum system cannot be completely isolated. In general, it is
unavoidably coupled to a larger environment and thus, even if this interaction isweak,
needs to be regarded as an open system, just like happens when one considers small
classical particles. The environment, which is frequently (but not only) regarded as
a thermal reservoir or bath, influences the quantum system under consideration in a
non-negligible way, whichmust be taken into account when describing its dynamical
evolution and properties. System and environment are continuously sharing infor-
mation, which is manifested in the building up of correlations between them. This
information is no longer available in general, as it involves a huge number of uncon-
trollable degrees of freedom. Indeed, obtaining a complete microscopic description
of the whole ensemble involved in the problem is both intractable and generally not
needed from a practical point of view, but a rather simpler probabilistic approach
is highly desirable. The theory of open quantum systems provides such an effective
description, allowing the treatment of complex systems by means of a small number
of relevant variables. The irrelevant degrees of freedom are instead described only
approximately, which results in the appearance of dissipative and stochastic terms
in the final form of the effective equations of motion, a characteristic feature of an
irreversible evolution [1, 2].

Open quantum systems theory has been widely studied and applied by many sci-
entists fromdifferent communities in the last half-century. Nowadays it constitutes an
everyday tool inmodern quantumoptics, atomic physics, condensedmatter, chemical
physics, quantum information science or the novel field of quantum thermodynam-
ics. A more rigorous treatment of open quantum systems from a mathematical point
of view complements this heterogeneity and provides consistency to the theory (see
e.g. [3] and references therein).

The study of open quantum systems is also of special importance for fundamental
questions about the quantum description of nature. One example is quantum mea-
surement theory, as long as any measurement requires a description in terms of the
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4 1 Basic Concepts

interaction of the system to be measured with an apparatus (a second quantum sys-
tem), which records the result and leads to fundamental back-action on the former.
Another example comes from the fact that the interaction of a quantum system with
its environment leads to thewell-known phenomenon of decoherence, throughwhich
superpositions of quantum states are irreversibly lost producing the emergence of
classical behavior [4]. It is thus clear that the detailed study of open quantum systems
constitutes a key point if one wants to benefit from quantum phenomena in practical
applications, as become patent in modern quantum computation, quantummetrology
or quantum cryptography [5, 6].

This chapter aims to provide an introduction to some of the most important con-
cepts employed when dealing with open quantum systems. In particular, we review
and illustrate the essential concepts and methods which are going to be used in this
thesis, while skipping rigorous demonstrations and referring to more specific books
or reviews on this topic. We organized the chapter as follows. In Sect. 1.1 we start
by reviewing the necessary elements of quantum theory needed for the description
of open quantum systems, the dynamical evolution of closed (completely isolated)
quantum systems, and its relation with the open system dynamics experienced by
one of its constituents in the case of many-body systems. Next, in Sect. 1.2, we focus
on the case of qubits and harmonic oscillators, as they are two prototypical sys-
tems where the basic elements of the theory can be well illustrated. In Sect. 1.3 we
review the basics of quantum measurement theory, its general mathematical formu-
lation in terms of operations and effects, and introduce the most important classes
of measurements. Finally, in Sect. 1.4, we define classical and quantum correlations,
introducing different quantifiers such as entanglement, mutual information, and dis-
cord, discussing their main physical interpretations.

1.1 Quantum Mechanics

In the general framework of quantum mechanics, each state of an isolated quan-
tum system can be represented by a normalized state vector |ψ〉 in an associated
Hilbert vectorial space H. Any measurable quantity on this system is represented
by an hermitian (or self-adjoint) operator, Ô = Ô†, in the same space, whose eigen-
values represent possible results (or outcomes) of a quantum measurement, as we
will see in more detail in Sect. 1.3. Quantum theory is intrinsically random and the
pure state |ψ〉 contains all the information one can know about the probability of
obtaining different outcomes for all different observables of the system. To illustrate
this point let us decompose the operator Ô = ∑

n on|on〉〈on| where {|on〉} is the set
of eigenvectors (or eigenstates) of Ô providing a basis of H, and on its correspond-
ing (non-degenerate) eigenvalues. The probability of obtaining the result on in a
measurement of the observable Ô is the scalar product 0 � |〈ψ |on〉|2 � 1, as given
by Born rule [7]. Moreover the mean value of some observable in the state |ψ〉 is
given by the quantum mechanical expectation value 〈Ô〉 = 〈ψ |Ô|ψ〉, representing
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the mean of different results when the observable is measured, weighted with their
different probabilities to occur. In the same manner the variance of Ô on |ψ〉 reads
σ 2(Ô) = 〈Ô2〉 − 〈Ô〉2. The latter is zero if and only if the state |ψ〉 is an eigenstate of
the operator, that is, when Ô|ψ〉 = α|ψ〉, being α a real number (then |ψ〉 = |on〉 and
α = on for some n). At difference from classical physics, σ(Ô) cannot be simultane-
ously zero for all observables Ô, as the Heisenberg uncertainty principle asserts [8].
Indeed for any quantum system, non-commuting observables such as position and
momentum, [x̂, p̂] ≡ x̂ p̂ − p̂x̂ = i�1 being 1 the identity operator, cannot share
any common eigenstate. A general form of the Heisenberg uncertainty principle for
arbitrary observables Ô and Ô′ is the Robertson uncertainty relation [9] Robertson
uncertainty relation.

σ(Ô)σ (Ô′) � 1

2
|〈ψ |[Ô, Ô′]|ψ〉|, (1.1)

which unravels the connection between the commutativity of observables and the
complementarity of their uncertainties [10].

1.1.1 The Density Operator

When considering open quantum systems we need to incorporate in the description
new sources of randomness other than the intrinsic uncertainty of quantum states,
coming e.g. from our lack of knowledge about the specific state of the environment,
the preparation procedure, or the correlations built up in the interaction between
system and surroundings. In this case we represent the state of our open system by
a density operator (or density matrix) ρ,1 firstly introduced by von Neumann [11]
and Landau [12] in 1927. It characterizes our state of knowledge about the system
and represents the quantum analogue to the phase-space probability distribution of
classical statistical mechanics. The use of the density operator allows us to work with
statistical mixtures of state vectors:

ρ =
∑

k

pk |ψk〉〈ψk |, with k = 1, 2, . . . , N , (1.2)

where pk are the probabilities
(
0 � pk � 1,

∑
k pk = 1

)
of being our microscopic

system in each of the N pure states |ψk〉, and the operators |ψk〉〈ψk | are projec-
tors onto the state |ψk〉. The density operator is self-adjoint (ρ = ρ†), positive-
semidefinite (ρ � 0), and has unit trace (Tr[ρ] = 1).

In principle any mixed state ρ can be decomposed into a mixture of pure states
in an infinite number of ways,2 but there is only one in which the states |ψk〉 in

1We omit the hat symbol ˆused to distinguish between operators and scalars for the density operator.
2All of them related by a unitary transformation. Furthermore the same density operator can be also
decomposed in a mixture of mixed states in an infinite number of ways.
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the decomposition are mutually orthogonal between them, i. e. for which they verify
〈ψk |ψl〉 = δk,l . This is guaranteed by the spectral theory of density operators, as long
as ρ has only a countable set of strictly positive eigenvalues [1]. In such case, wemay
call Eq. (1.2) the spectral decomposition of ρ, the probabilities pk and the states |ψk〉
being respectively the eigenvalues and eigenstates of the ρ, and N the dimension of
the Hilbert space H (which may be infinite). Given a density operator, ρ, the most
likely pure state the system is in, is given by the eigenstate |ψk〉 corresponding to the
largest eigenvalue pk [13].

It is worth mentioning that the density operator ρ is sufficient to describe all
the possible results of measurements on the system for any observable. Indeed the
expression for the mean value introduced earlier, can be now rewritten for the case
of a mixed state as

〈Ô〉 = Tr[Ôρ] =
∑

k

pk〈ψk |Ô|ψk〉, (1.3)

In a similar waywemay use the trace to rewrite the expression for the variance σ 2(Ô)

in terms of ρ, or the general uncertainty relation in Eq. (1.1).
Another important property of the density operator is that it always verifyTr[ρ2] �

Tr[ρ] = 1, where the equality is only reached in the case of a pure state ρ = |ψ〉〈ψ |,
when the information about the state of the microscopic system is complete. On the
opposite side, the maximally mixed state reads ρ = 1/N , where N again denotes
the dimension of the system Hilbert spaceH. This corresponds to the case in which
all the possible physical pure states of the microscopic system are equally probable.
Hence we may define the quantity P(ρ) ≡ Tr[ρ2], called the purity of a state, in
order to quantify its degree of mixedness. This quantity takes values in the range
1/N 2 � P(ρ) � 1, with the upper bound reached for pure states and the lower bound
reached for maximally mixed states.

It is however important to distinguish amixture of pure states, as given in Eq. (1.2),
from a superposition of the form

|ψ〉 =
∑

k

ck |ψk〉, with k = 1, 2, . . . , N , (1.4)

where ck = 〈ψk |ψ〉 are a set of complex numbers such that
∑

k |ck |2 = 1. The exis-
tence of such states, as motivated by the superposition principle, lies at the heart
of quantum theory. The differences between mixture and superposition states are
fundamental. While the former simply describes our lack of knowledge in the spe-
cific pure state the system is in, the latter corresponds to a single pure state. Hence
we can no longer interpret the system being in different states |ψk〉 with certain
probability, but we have to really consider that the system is in all those states at
once. Let us assume the set of states {|ψk〉} to form a basis of the Hilbert space of
the system with dimension N , and compare the density operator ρ = |ψ〉〈ψ | for
the superposition state (1.4) with the one of the mixed state in Eq. (1.2). The state
(1.2) has only diagonal elements (using the basis {|ψk〉}) given by the probabilities
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Fig. 1.1 Interference pattern for stochastically arriving single PcH2 molecules in a modern double-
slit experiment. The images correspond to selected frames from a false-color movie recorded with
an EMCCD camera. Obtained from Ref. [15]

pk , while the state (1.4) gets diagonal elements ρkk = 〈ψk |ρ|ψk〉 = |ck |2, but also
off-diagonal ones ρkl = 〈ψk |ρ|ψl〉 = c∗

k cl for k �= l. Off-diagonal terms are called
coherences between the states {|ψk〉}, and are responsible of the interference effects
due to the wave-particle complementarity of quantized matter, just as in Young’s
famous double-slit experiment [14]. Modern which-path experiments within differ-
ent setups have considerably evolved from the 90s [2], being nowadays able to test
some of the most famous thought-experiments formulated from the very beginning
of the quantum theory for larger and larger systems (electrons, atoms, molecules),
testing in the laboratory the connections between complementarity and decoherence
(see Fig. 1.1).

1.1.2 Liouville–von Neumann Equation

The time evolution of a (non-relativistic) isolated quantum system in terms of its
density operator, ρ, is given by the Liouville–von Neumann equation

i�
d

dt
ρ(t) = [Ĥ(t), ρ(t)], (1.5)

being Ĥ(t) the Hamilton operator representing the energy of the system. Notice
that we have included the possibility of time-dependent Hamilton operators, allow-
ing for the description of external driving. The Liouville–von Neumann equation
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describes the reversible evolution of the quantum system and when ρ is a pure
state it is equivalent to the usual Scrödinger equation, first introduced in 1926
[16]. The formal solution of Eq. (1.5), given the initial state ρ(t0) at time t0, reads
ρ(t) = Û (t, t0)ρ(t0)Û (t, t0)†, with

Û (t, t0) ≡ T̂+ exp

(

− i

�

∫ t

t0

ds H(s)

)

, (1.6)

the unitary evolution operator, ÛÛ † = Û †Û = 1, fulfilling

i�
d

dt
Û (t, t0) = Ĥ(t)Û (t, t0), (1.7)

and with initial condition Û (t0, t0) = 1. It fulfills the chain rule Û (t, t0) = Û (t, t1)
Û (t1, t0) for t � t1 � t0. Due to the fact that the Hamilton operator may not commute
with itself at different times, we introduced in the integral above the time-ordering
operator, T̂+, implying that in general the unitary evolution operator can be only
calculated from an infinite series in the form

Û (t, t0) = 1 +
∞∑

n=1

(−i

�

)n ∫ t

t0

dsn Ĥ(sn)

∫ sn

t0

dsn−1 Ĥ(sn−1) . . .

. . .

∫ s3

t0

ds2 Ĥ(s2)
∫ s2

t0

ds1 Ĥ(s1), (1.8)

where time ordering implies t > sn > sn−1 > · · · > s2 > s1, an expression known
as the Dyson series. When the Hamilton operator in Eq. (1.6) is independent of time
the unitary evolution operator reduces to

Û (t, t0) = Û (t − t0) = exp

(

− i

�
Ĥ(t − t0)

)

, (1.9)

and then Û †(t − t0) = Û (t0 − t), corresponding to the evolution operator when time
is reversed.

1.1.3 Heisenberg and Interaction Pictures

The above Eq. (1.5) gives us the evolution of the density operator ρ(t) in the
Schrödinger picture. An equivalent formulation, the so-called Heisenberg picture, is
obtained by assuming the state of the system fixed and letting the observables evolve
in time. Then the equation of motion for an arbitrary observable Ô(t), can be written
as
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d

dt
Ô(t) = i

�
[Ĥ(t), Ô(t)] +

(
∂Ô

∂t

)

H

, (1.10)

whose solution is given by Ô(t) = Û †(t, t0) Ô Û (t, t0), Ô being the initial

(Schrödinger picture) observable and Û given byEq. (1.6).Herewe denote
(

∂Ô
∂t

)

H
=

Û †(t, t0)
(

∂Ô
∂t

)
Û (t, t0). It’s straightforward to check that both pictures produce iden-

tical expectation values for all observables.
A third frame, the interaction picture, can be also introduced by splitting the

Hamiltonian into time-independent and time-dependent parts, which we denote as
Ĥ = Ĥ0 + V̂ (t). Typically Ĥ0 is easy to deal with, and represents the Hamilton
operator of two or more non-interacting systems, while V̂ (t) usually represents a
time-dependent interaction term. In this case we split the evolution operator into a
product of two unitary operators

Û (t, t0) = Û0(t − t0) × ÛI (t, t0), (1.11)

where Û0(t − t0) ≡ exp (− i
�

Ĥ0(t − t0)) is generated by the time-independent part

of the Hamiltonian, and ÛI (t, t0) is given by Eq. (1.6) replacing Ĥ(t) by Û †
0 V̂ (t)Û0.

Hence the operator Û0 governs the evolution of observables, while the density opera-
tor evolves accordingly with ÛI . By redefining the density operator and observables,
we have the following time-evolution equations:

ρI (t) = ÛI ρ(0) Û †
I , with ρI (t) ≡ Û †

0 ρ(t) Û0,

ÔI (t) = Û †
0 Ô Û0, with ÔI (t) ≡ ÛI Ô(t) Û †

I , (1.12)

where we call ρI (t) and ÔI (t) the interaction frame density operator and observables
respectively. The interaction picture has proven very useful in deriving and solving
the dynamics for open quantum systems, as we will see in the next sections. It allows
to split the effects of the interaction between a system and its surroundings from the
(isolated) free-evolution, simplifying considerably the mathematical treatment.

1.1.4 The Microreversibility Principle

The microreversibility principle is a crucial symmetry of time evolution in isolated
quantum systems. It relates the unitary evolution operator of a non-autonomous
quantum system, as introduced in Eq. (1.6), with the one describing the time-reversed
evolution [17, 18]. Let us assume a quantum system evolving from time t = 0 to time
τ under the action of someHamiltonian Ĥ (λ(t)), whose time-dependence arises from
external manipulation through a control parameter λ(t). Consider that this parameter
vary in time according to some prescribed protocol 
 = {λ(t) for 0 � t � τ }. The
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unitary time evolution operator for the system, Û (t, 0)[
], obeys

i�
d

dt
Û (t, 0)[
] = Ĥ(λ(t))Û (t, 0)[
], (1.13)

in the interval t ∈ [0, τ ] where the protocol 
 is defined.
Now we compare this evolution with the one generated by the time-reversed

protocol 
̃ = {λ̃(t) for 0 � t � τ }, where λ̃(t) = λ(τ − t), i.e. the control parameter
takes on exactly the inverse sequence of values. The corresponding time-evolution
operator Û (t, 0)[
̃] generated by the Hamiltonian Ĥ(λ̃(t)) now reads:

i�
d

dt
Û (t, 0)[
̃] = Ĥ(λ̃(t))Û (t, 0)[
̃] (1.14)

where again t ∈ [0, τ ]. Themicroreversibility principle ensures the following relation
between forward and backward evolutions [18]:

Û †(τ, t)[
] = �̂† Û (τ − t, 0)[
̃] �̂, (1.15)

where �̂ is the anti-unitary time-reversal operator in quantum mechanics, ��† =
�†� = 1 and �̂(a|ψ〉 + b|φ〉) = a∗�̂|ψ〉 + b∗�̂|φ〉.3 It is responsible of sign inver-
sion of odd variables under time-reversal such as linear and angular momenta, spin
or magnetic field, while leaving even variables, such as position, unaltered [19]. The
microreversibility principle in Eq. (1.15) is always fulfilled provided the Hamilton
operator is invariant under time-reversal, �̂† Ĥ(λ(t))�̂ = Ĥ(λ(t)) (for a proof see
[18]). Otherwise the Hamiltonian governing the time-reversed evolution can be set
as

ĤR(λ̃(t)) ≡ �̂Ĥ(λ̃(t))�̂†, (1.16)

in Eq. (1.14) [instead of Ĥ(λ̃(t))]. The latter implies the change in sign of the odd
variables appearing in Ĥ , such as external magnetic fields [17]. We provide a proof
of this claim in Appendix.

The microreversibility principle relates the evolution from some arbitrary ini-
tial state ρ(0) to ρ(τ) = Û (t, 0)[
] ρ(0) Û †(t, 0)[
], to the evolution from the
time-reversed final state ρ̃(0) = �̂ ρ(τ) �̂† to the time reversed initial state ρ̃(τ ) =
�̂ ρ(0) �̂† as:

ρ̃(τ ) = Û (τ, 0)[
̃] ρ̃(0) Û †(τ, 0)[
̃], (1.17)

as is illustrated in Fig. 1.2. It is worth noticing that the notion of time-reversal here
corresponds to an operational point of view, as it is defined via the time-reversed
protocol for the external drive controlling the parameter λ(t). We finally stress that

3This antilinearity property is what differentiates anti-unitary from unitary operators. Unitary
operators fulfills linearity, while anti-unitary ones fulfills anti-linearity, and for both of them
�̂�̂† = �̂†�̂ = 1.
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Fig. 1.2 Illustration of the microreversibility principle. The unitary time-evolution operators of the
forward evolution (top) and the backward one (bottom) are related by the time-reversal operator �̂.
The two unitary operators appearing in Eq. (1.15) are marked in blue. In the axis we put the mean
values of position and momenta in order to emphasize the effect of time-reversal in odd variables

the microreversibility principle is a crucial symmetry property in deriving the so-
called fluctuation theorems for quantum evolutions which will be the subject of Part
III of this thesis.

1.1.5 Composite Quantum Systems

Let us now consider a quantum system composed by two different interacting subsys-
tems, A and B, with associated Hilbert spacesHA andHB respectively. The subsys-
tems may correspond to different physical systems (particles, atoms, molecules, ...)
or also to different degrees of freedom of the same entity. In any case, the compound
system AB has an associated Hilbert space given by the tensor product of the sub-
systems Hilbert spaces HAB = HA ⊗ HB . This larger Hilbert space has dimension
equal to the product of the dimensions ofHA andHB , and any arbitrary observable
of the compound system takes the form

Ô =
∑

k

Ô
(k)
A ⊗ Ô

(k)
B , (1.18)

where Ô(k)
A acts onHA and Ô

(k)
B acts onHB for all k. Local observables corresponding

to subsystem A alone are then expressed by ÔA ⊗ 1B . Similarly for local observ-
ables of subsystem B, we have 1A ⊗ ÔB . As can be immediately noticed, the local
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observables of the above form constitute only a very small portion of the set of
possible observables in AB.

Imagine our subsystems A and B have not interacted before some arbitrary time t0,
hence being completely uncorrelated at this moment. In this case the density operator
of the compound system can be expressed as the product state ρAB(t0) = ρA(t0) ⊗
ρB(t0), ρA(t0) being the local state of subsystem A at that time (and similarly for
B). Then let the two systems interact accordingly to some global Hamilton operator
Ĥ(t), in such a way that at a later instant of time t , the state of the compound system
is

ρAB(t) = Û (t, t0)ρA(t0) ⊗ ρB(t0) Û †(t, t0), (1.19)

Û (t, t0) being the unitary evolution operator given by Eq. (1.6). The local state of the
subsystems at time t is obtained by partial tracing over the complementary Hilbert
space:

ρA(t) = TrB[ρAB(t)] and ρB(t) = TrA[ρAB(t)], (1.20)

where TrA(B)[·] = ∑
i 〈ψ A(B)

i | · |ψ A(B)
i 〉, with the set {|ψ A(B)

i 〉} a orthonormal basis
of the Hilbert space HA(B). The use of the partial trace operation is justified as it
can be proven to be the unique operation which provides the correct description of
local observables for subsystems of a composite system [5]. The states appearing
in Eq. (1.20) are called the reduced states (or local states) of subsystems A and B,
which retain only the local information determining the statistics of measurements
of local observables. Indeed, we cannot express any more the global state as a tensor
product of the reduced counterparts, ρAB(t) �= ρA(t) ⊗ ρB(t), since the state ρAB(t)
contains in general much more information than ρA(t) and ρB(t). More precisely,
this happens whenever the unitary evolution cannot be expressed as a tensor product
of local unitary evolutions in each subsystem Û (t, t0) = ÛA(t, t0) ⊗ ÛB(t, t0), or
if Û is the complete SWAP operation exchanging the states of the subsystems, in
the case of equal dimensions [20]. We then say that the state ρAB(t) is correlated,
meaning that the two subsystems have exchanged information during the interaction.

In particular, if the global state of the system at time t is pure, ρAB(t) = |
〉〈
|,
the reduced states ρA(t) and ρB(t) have the same eigenvalues. This follows from
the Schmidt decomposition theorem, which asserts that there always exists a unique
decomposition of |
〉 reading

|
〉 =
∑

k

αk |ψ(k)
A 〉 ⊗ |ψ(k)

B 〉, (1.21)

where {|ψ(k)
A 〉} and |ψ(k)

B 〉 are respectively orthonormal basis ofHA andHB , and the
complex amplitudes αk (where

∑
k |αk |2 = 1) are called Schmidt coefficients. We

say that |
〉 is entangled if it cannot be expressed as a product |
〉 = |ψA〉 ⊗ |ψB〉
of some states of the subsystems, that is, if it has more than one non-zero Schmidt
coefficients. Furthermore we say that |
〉 is a maximally entangled state if all non-
zero Schmidt coefficients are equal [1].
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Consider for instance the case of two spin- 12 particles (or more generally two-
level systems or qubits), with basis states |0〉i and |1〉i for i = A, B. The maximally
entangled states in this case, commonly called Bell states, read as follows:

|�±〉 ≡ 1√
2

(|0〉A|0〉B ± |1〉A|1〉B) , (1.22)

|
±〉 ≡ 1√
2

(|0〉A|1〉B ± |1〉A|0〉B) , (1.23)

to be compared with an uncorrelated state of the type |�〉 = |φ〉A ⊗ |ψ〉B . In contrast
to the separable state |�〉, in the states (1.22) and (1.23) the particles A and B do not
have a definite pure state vector characterizing its quantum state. Their corresponding
reduced density matrices read ρA = ρB = 1/2, i.e. themaximally mixed states in the
two-dimensional Hilbert spacesHA = HB = C

2. Hence, from a local point of view,
the two particles are with equal probabilities in either |0〉 or |1〉. Imagine now that we
perform a measurement on particle A, obtaining that it is in the state |0〉A. Hence the
particle A ‘collapses’ to this state, and the state of particle B should also immediately
‘collapse’ to the correspondent state |0〉B for Eq. (1.22) or |1〉B for Eq. (1.23), even
if the two particles are arbitrarily far away from each other. This effect represents
the so-called ‘spooky action’ at the heart of the EPR ‘paradox’ [21]. Any posterior
measurement on B is then no longer random, but it can be predicted with probability
1, in sharp contrast with what would happen if we do not measure A or even if we
simply don’t know the result of this measurement. Nevertheless, for an observer in
solitary confinement who has only access to particle B, there is no way to determine
if particle A has been previously measured or not (the observer always obtain the
same statistics). In any case, the local measurement results in subsystems A and B
will always be strongly correlated (see Fig. 1.3). This reveals a non-local character
of quantum physics, which is encoded in the global entangled quantum state of AB,
non accessible from a local point of view, but making the subsystems statistically
dependent of each others, in a way that any local and deterministic (hidden variable)
theory can never reproduce [22].

We will turn on the concept of entanglement in Sect. 1.4 where we introduce and
discuss different quantifiers of entanglement for pure and mixed states, together with
their role as an indicator of the quantumness of correlations.

1.1.6 Quantum Entropies

Here we introduce two important notions in order to characterize the information
contained in a quantum state given by a density operator ρ, namely the von Neumann
entropy and the relative entropy. The vonNeumann entropy is ofmajor importance in
quantum statistical mechanics and quantum thermodynamics, and we will reefer to
it in general as simply the entropy of a state. It is defined as the functional introduced
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Fig. 1.3 Scheme of the
composite quantum system
discussed in the text. A
source emits an entangled
pair of spin- 12 particles in the
Bell state |
+〉 of Eq. (1.23).
The results of local
measurements (indicated by
the solid arrows) produce
correlated results which lead
to complete certainty in the
prediction of results in one
subsystem when the result of
the measurement in the other
subsystem is known

by von Neumann in 1927:

S(ρ) ≡ − Tr[ρ ln ρ] = −
∑

k

pk ln pk, (1.24)

where in the second equality we have used the spectral decomposition of ρ, as given
in Eq. (1.2), and the convention 0 ln 0 = 0 is adopted. Von Neumann entropy mea-
sures the amount of uncertainty (or the lack of information) about the specific (pure)
state the system is in. Indeed it is equivalent to the Shannon entropy, H({pk}), of
the distribution {pk} for the ρ eigenstates, that is, the average value of the surprise,
ln(1/pk), of finding the quantum system in state |ψk〉 when measuring it. We imme-
diately notice that, as long as the state ρ can be written as a mixture of pure states in
several ways, we may obtain different values for the Shannon entropies of the corre-
sponding (different) distributions, e.g. ρ = ∑

k p′
k |ψ ′

k〉〈ψ ′
k |, with 〈ψ ′

k |ψ ′
l 〉 �= δk,l . In

this sense, the von Neumann entropy corresponds to the minimum of all those uncer-
tainties, that is, it describes our uncertainty about the state when the measurement
process allows for perfect distinction between the pure states of the mixture ρ.

The von Neumann entropy is non-negative for all density operators, S(ρ) � 0,
and invariant under unitary transformations, S(ÛρÛ †) = S(ρ). It vanishes only in
the case of a pure state, for which one has complete knowledge of the system state.
Furthermore, it is bounded from above by S(ρ) � ln N , N being the dimension of the
system Hilbert space, where the equality is reached for the maximally mixed state.
This implies that the vonNeumann entropy is also ameasure of the ‘mixedness’ of the
sate ρ, alternative to the previously introduced purity. Another important property of
S(ρ) is that it constitutes a concave functional of ρ, i. e. for any two positive numbers
λ1 + λ2 = 1 we have:

S(λ1ρ1 + λ2ρ2) � λ1S(ρ1) + λ2S(ρ2), (1.25)
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the equality holding only when ρ1 = ρ2. In addition, for composite systems, it fulfills
the subadditivity condition:

S(ρAB) � S(ρA) + S(ρB), (1.26)

where ρA = TrB[ρAB] and ρB = TrA[ρAB] are the reduced density operators for the
subsystems A and B respectively.Here the equality holds onlywhenρAB = ρA ⊗ ρB ,
corroborating that beyond product states, ρAB contains more information than the
sum of the informations we can extract from the subsystems, due to the correlations
between them. Furthermore if the global state ρAB is pure, we have that S(ρA) =
S(ρB) � 0 (see also Sect. 1.4).

We also introduce the relative entropy of a density operator ρ to another density
operator σ , as:

D(ρ||σ) ≡ Tr[ρ(ln ρ − ln σ)] = −S(ρ) − Tr[ρ ln σ ] (1.27)

which constitutes ameasure of the distinguishability between the two quantum states.
More specifically, it corresponds to the extra amount of information required to
encode ρ in the eigenstates of σ . In the definition (1.27) we adopt the convention
−s ln 0 = ∞ ∀s > 0, which leads to D(ρ||σ) = ∞ when the support of ρ intersects
with the kernel of σ . In this case ρ cannot be encoded in the eigenstates of σ , and
the states are perfectly distinguishable. If we introduce the spectral decompositions
of ρ and σ as:

ρ =
N∑

k=1

pk |ψk〉〈ψk | and σ =
N∑

k=1

qk |φk〉〈φk |.

Then the relative entropy in Eq. (1.27) can be rewritten as:

D(ρ||σ) =
N∑

k=1

(pk ln pk − rk ln qk) , (1.28)

with rk = ∑
j p j |〈φk |ψ j 〉|2, which reduces to the Kullback–Leibler divergence [23]

between the distributions {pk} and {qk} when 〈φk |ψ j 〉 = δk, j , i.e. when the two
density operators commute, [ρ, σ ] = 0. The Kullback–Leibler divergence between
two distributions is a logarithmic measure of the probability of incorrectly guessing
via hypothesis testing the distribution {pk} to be the source of a large sequence of data
being truly generated by the distribution {qk} [24]. This argument applies as well to
the quantum case, in which the probability of guessing the state ρ after performing
n measurements on σ (for n large) is e−nD(ρ||σ) (for a more detailed discussion see
[25] and references therein).

The relative entropy is an asymmetric distance, which is always non-negative,
D(ρ||σ) � 0, and zero if and only ifρ = σ , as follows fromKlein’s inequality [5].As
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the von Neumann entropy, it is invariant under unitary transformations, D(ρ||σ) =
D(UρU †||UσU †), and fulfills joint convexity:

D(λ1ρ1 + λ2ρ2||σ) � λ1D(ρ1||σ) + λ2D(ρ2||σ), (1.29)

D(ρ||λ1σ1 + λ2σ2) � λ1D(ρ||σ1) + λ2D(ρ||σ2), (1.30)

where again λi � 0 (i = 1, 2) and λ1 + λ2 = 1. It is also worth stressing that partial
tracing cannot increase the relative entropy

D(ρ||σ) � D(TrP [ρ]||TrP [σ ]), (1.31)

where P denotes the part of the system which is traced over, as ignoring part of the
information about a system can never help to better distinguish between its states.

The relative entropy is an essential tool to characterize correlations in compos-
ite systems and also to quantify irreversibility in dynamical evolution, as we will
discuss in more detail in Sect. 1.4 and in Chap.3. Let us also point that most of the
measurements of entanglement can be derived from relative entropy [25].

1.1.7 Distance Measures

Distance measures are introduced to quantify how close are two quantum states. We
have already introduced the relative entropy, D(ρ||σ) in Eq. (1.27), but it lacks some
desirable properties onewould expect fromaproper distance, such as symmetry in the
arguments. There is indeed a variety of distancemeasureswhichhavebeen introduced
and found convenient in different contexts related to quantum information [5]. Here
we introduce two important and widely used measures of the distance between two
quantum states: the trace distance and the fidelity, both of them obtained throughout
generalization of concepts in classical probability theory, and playing an important
role in the description of open quantum systems.

The trace distance between two generic quantum states ρ and σ is defined as

T (ρ, σ ) = 1

2
Tr[|ρ − σ |] = 1

2
Tr

[√
(ρ − σ)2

] = 1

2

∑

k

|λk |, (1.32)

where for any operator Â, we define | Â| =
√

Â† Â, and {λk} are the set of (not
necessarily positive) eigenvalues of ρ − σ . If ρ and σ commute, the trace dis-
tance reduces to the classical Kolmogorov distance between probability distribu-
tions, T (pi , qi ) = ∑

i |pi − qi |/2, {pi } and {qi } being the eigenvalues of ρ and σ

respectively. An alternative way of writing the trace distance is

T (ρ, σ ) = max
�̂

Tr[�̂(ρ − σ)], (1.33)
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where the maximum runs over all projectors �̂. This expression can be indeed
extended to all positive operators 0 � �̂ � 1 (see Sect. 1.3 below), leading to inter-
pret the trace distance as the maximum difference in probabilities when an arbitrary
measurement is performed [5].

The trace distance constitutes a proper distance as T (ρ, σ ) = 0 if and only if
ρ = σ , it is symmetric in its arguments, and fulfills the triangle inequality

T (ρ, χ) � T (ρ, σ ) + T (σ, χ), (1.34)

which establish that the trace distance is a metric [5]. Moreover we have 0 �
T (ρ, σ ) � 1, where T (ρ, σ ) = 1 if and only if ρ and σ have orthogonal supports,
corresponding to the maximum distance between the two states. Some other impor-
tant properties of the trace distance are the following. First, it is preserved under uni-
tary transformations, T (ρ, σ ) = T (ÛρÛ †, Ûσ Û †). Furthermore, it is strong convex,
a more general property than joint convexity implying the later, which reads

T

(
∑

i

ρi ,
∑

i

qiσi

)

� T (pi , qi ) +
∑

i

pi T (ρi , σi ), (1.35)

for probabilities pi and qi with
∑

i pi = ∑
i qi = 1 and density operators ρi and σi .

Finally, as the relative entropy, it never increases under partial tracing

T (ρ, σ ) � T (TrP [ρ]||TrP [σ ]), (1.36)

P being the part of the system which is averaged over.
We now introduce a second distance between quantum states, the fidelity, mea-

suring the closeness of two quantum states:

F(ρ, σ ) = Tr[
√

ρ
1
2 σρ

1
2 ]. (1.37)

The fidelity, unlike the trace distance, does not constitute a metric on density oper-
ators. It is bounded by 0 � F(ρ, σ ) � 1, where F(ρ, σ ) = 1 if and only if ρ = σ .
Furthermore, as the trace distance, fidelity is also symmetric in its arguments and is
invariant under unitary transformations. It is related to the trace distance by

1 − F(ρ, σ ) � T (ρ, σ ) �
√
1 − F2(ρ, σ ), (1.38)

where the upper bound is reached when ρ and σ are pure states. The fidelity behaves
qualitatively as the contrary of the trace distance, that is, it increases when the two
states are less distinguishable and decreaseswhen they becomemore distinguishable.
As a consequence, the fidelity fulfills an strong concavity property in analogy to the
strong convexity property of the trace distance, c.f. Eq. (1.35).
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Two simple examples in which a closed form of the fidelity can be obtained are
the case of commuting density operators, and for σ being a pure state. In the first
case the fidelity becomes

F(ρ, σ ) =
∑

i

√
pi qi , (1.39)

where again {pi } and {qi } are the eigenvalues of ρ and σ . In this case the fidelity
reduces to its classical expression for probability distributions of random variables.
In the second case, by assuming σ = |ψ〉〈ψ |, we have σ

1
2 = σ , and hence

F(ρ, σ ) = √〈ψ |ρ|ψ〉, (1.40)

the fidelity becomes the square root of the overlap between the two states. The fidelity
is widely used in the context of quantum communication to characterize how well a
quantum channel preserves information [5].

As commented above, the fidelity is not a metric on density operators because it
does not fulfill the triangle inequality. Still it can be turned into a metric by using
again the implications of Ullman’s theorem (see [5] for details). Indeed the angle

�(ρ, σ ) ≡ arccos F(ρ, σ ), (1.41)

is non-negative, symmetric in its inputs, equals zero if and only if ρ = σ , and verifies
the triangle inequality. Henceforth, it is a proper metric on density operators.

1.2 Prototypical Systems

In most of the situations of interest in open quantum systems, the reduced system
interacting with its surroundings can be described by some simple canonical models
[26]. Thosemodels capture the essence of the physical behavior of real systems,while
making the calculations simpler, and in some cases analytically tractable. In this
section, we introduce and review some important characteristics of two ubiquitous
canonicalmodels: the qubit system and the harmonic oscillator. These twomodels are
important not only at a fundamental level, but also because experimental techniques
have been developed in the last decade in order to provide in vivo control at the single
particle level [27].

The qubit system describes systems with only two discrete accessible states. This
implies that its Hilbert space H can be reduced to dimension N = 2, like a spin- 12
particle. This situation arises, among others, in the case of photons with vertical or
horizontal polarization, when a particle passes through a two-slit configuration in a
Young interferometer, in the case of an atom interacting with a field nearly resonant
to one of its atomic transitions, or for a low-energy particle trapped in a double
well potential. On the other hand, the harmonic oscillator (or bosonic mode) model
describes very accurately the electromagnetic field, and is well suited in general to
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account for potentials within a quadratic approximation e.g. close to a minimum of
the potential. The harmonic oscillator model is usually employed e.g. to describe the
vibrational modes of atoms bound in a molecule, ions trapped by electromagnetic
fields, or the phonons generated in crystalline media [2].

1.2.1 The Qubit System

The qubit system is probably the simplest object in quantum theory. Its Hilbert space
can be expanded by just two state vectors, which we denote {|0〉, |1〉}, often called
computational basis states in quantum information contexts [5]. The two basis states
may have different energy. We hence write the Hamiltonian of the system as

Ĥ = E |1〉〈1| = E

2

(
1 + σ̂Z

)
, (1.42)

where we set to zero the energy of the (ground) state |0〉, and keep E as the energy
gap between the two basis states. Furthermore, in the second equality we introduced
the three Pauli operators σ̂i for i = X, Y, Z , which are hermitian, unitary, traceless,
and have eigenvalues±1. Moreover they fulfill the commutation relations [σ̂i , σ̂ j ] =
2iεi jk σ̂k , being εi jk the Levi-Civita symbol, which is zero if two of the three indices
are equal, takes the value 1 for even permutations of XY Z , and −1 for the odd ones.
Importantly, any observable of the qubit system can be written as a combination of
the three Pauli operators σ̂i and the identity 1.

We also introduce the raising and lowering operators:

σ̂ ≡ 1

2

(
σ̂X + i σ̂Y

) = |0〉〈1|,

σ̂ † ≡ 1

2

(
σ̂X − i σ̂Y

) = |1〉〈0|, (1.43)

which promote jumps between the qubit energy levels, σ̂ †|0〉 = |1〉 and σ̂ |1〉 = |0〉.
The raising and lowering operators fulfill the anti-commutation relation {σ̂ , σ̂ †} ≡
σ̂ σ̂ † + σ̂ †σ̂ = 1, and verify σ̂ σ̂ = σ̂ †σ̂ † = 0.

Themost general pure state of the qubit system can be written as the superposition

|ψ〉 = c0|0〉 + c1|1〉, (1.44)

where c0 and c1 are complex coefficients such that 0 � |ci |2 � 1 and |c0|2 + |c1|2 =
1. As the Hilbert space dimension of the qubit system is just N = 2, |ψ〉 can be
viewed just as a unit vector in a two-dimensional complex vector space. A convenient
geometrical representation of such set of states is the so-called Bloch sphere in which
any state |ψ〉 is represented as a point in the surface (see Fig. 1.4). Here the eigenstates
of the operator σ̂Z , i.e. the basis states {|0〉, |1〉}, are represented as the north and shout
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Fig. 1.4 Bloch sphere for a qubit system. The green vector pointing the surface represents the pure
state |ψ〉, as specified by the angles θ and ϕ, while the orange vectors is its projection in the XY
plane

poles of the sphere, while the x and y axes correspond to the eigenstates of σ̂X and
σ̂Y respectively

| ± X〉 = 1√
2

(|0〉 ± |1〉) , | ± Y 〉 = 1√
2

(|0〉 ± i |1〉) . (1.45)

Indeed, any twoarbitrary orthonormal states 〈ψ |ψ⊥〉 = 0, are representedbyantipode
points on the Bloch sphere surface. Taking spherical coordinates we can associate
the above introduced coefficients ci to the polar and azimuthal angles, θ ∈ [0, π ] and
ϕ ∈ [0, 2π), which allows us to rewrite Eq. (1.44) as

|ψ〉 = cos(θ/2)|0〉 + eiφ sin(θ/2)|1〉. (1.46)

Pure states are represented as points in the surface of the Bloch sphere, while the
inner volume corresponds to mixed states. A general state of the qubit system can
be generally written as

ρ = 1

2
(1 + �r · �σ) , (1.47)
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where �r = r(sin θ cosϕ, sin θ sin ϕ, cos θ) is a real three-dimensional vector with
0 � r � 1, and �σ = (σ̂X , σ̂Y , σ̂Z ). Notice also that the maximally mixed state 1/2
corresponds to the center of the sphere.

An important state of any quantum system is the thermal equilibrium or Gibbs
state, which is generically defined for any quantum system with Hamiltonian Ĥ as

ρth(β) ≡ e−β Ĥ

Z(β)
, (1.48)

where β ≡ 1/kB T is the inverse temperature of the system, and Z(β) = Tr[e−β Ĥ ]
is the partition function. Indeed the following relations are verified

〈Ĥ〉ρth = −∂β ln Z , S(ρth) = kB(ln Z + β〈Ĥ〉ρth). (1.49)

It can be furthermore shown that theGibbs statemaximizes the vonNeumann entropy
for a fixed value of the mean energy, and analogously that it is the state minimizing
the mean energy for a fixed value of the entropy. In the case of the qubit system the
thermal equilibrium state reads

ρth(β) = 1

Z

(|0〉〈0| + e−βE |1〉〈1|) , (1.50)

with the partition function Z = 1 + e−βE . The average energy of the qubit system
in the Gibbs state reads

〈Ĥ〉th = E
e−βE

Z
= E

1 + e−βE
, (1.51)

where 0 � 〈Ĥ〉th � E , and the dispersion is given by

σ 2
th(Ĥ) = E2 e−βE

(1 + e−βE )2
. (1.52)

This corresponds to the thermal energy fluctuations for a classical two-level system,
fulfilling the following thermodynamical relation

σ 2
th(Ĥ) = kB T 2 ∂T 〈Ĥ〉th. (1.53)

An important property of the qubit system extensively used in quantum ther-
modynamic contexts is that, given the Hamilton operator in (1.42), any mixture
ρ = p0|0〉〈0| + p1|1〉〈1| can be seen as a Gibbs state for an unequivocally inverse
temperature defined by the detailed balance relation

p0

p1
≡ eβE ⇔ β ≡ 1

�ω
ln

p0

p1
. (1.54)
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The definition of such an effective temperature for a qubit system has proven very
useful in recent studies on quantum thermal machines and theoretical investigations
in quantum work extraction scenarios, where it has been sometimes called virtual
temperature (see e.g. Ref. [28]).

The time evolution of an isolated qubit system is also rather simple. From the
Hamiltonian in Eq. (1.42) it turns out that only the elements of the density operator
non-diagonal in the computational basis evolve in time, acquiring a time-dependent
phase factor ei Et/�. In the Bloch sphere representation, this implies that the azimuthal
angle, θ , is kept constant during the evolution, together with r , the distance of the
system state to the center of the sphere. The only effect is hence a rotation in the
XY -plane at angular velocity E/�. However, arbitrary rotations on the Bloch sphere
become possible if we introduce an extra classical field interacting with our qubit
system.

1.2.2 Manipulation of Qubits by Classical Fields

Consider the situation inwhich an external classical field interactswith a qubit system
as described above. This setup can be used to prepare arbitrary states of the qubit
system, provided it is completely isolated from the environment andwe have a precise
control over the field parameters. Physically, this situation arises in nuclear magnetic
resonance (NMR) experiments when spin− 1

2 nuclei are put on a constant magnetic
field and perturbed by radio frequency pulses, or in the case of an isolated two-level
atom interacting with a classical time-dependent electric field [2]. The interaction of
the external field with the atomic dipole introduces an extra term in the Hamiltonian
Ĥ of Eq. (1.42) of the form

Ĥf(t) = ��R

2

(
σ̂ †e−i(ωf t+ϕ0) + σ̂ ei(ωf t+ϕ0)

)
, (1.55)

where ωf is the frequency of the field, ϕ0 its phase, and �R is sometimes called
the classical Rabi frequency [2]. This Hamiltonian results after eliminating terms
oscillating at fast frequencies, ±2ωf , a procedure which is usually known as the
Rotating Wave Approximation (RWA).

The inclusion of extra Hamiltonian terms non-diagonal in the computational
basis, changes drastically the time-evolution of the qubit system, making possible
the exchange of energy between the qubit and the external field. In order to illus-
trate the dynamics, let us adopt an interaction frame with respect to H0 ≡ �ωf |1〉〈1|,
which represents a rotating frame at frequency ωf . In such interaction picture the
time-dependences are eliminated from the total Hamiltonian Ĥ = Ĥ0 + Ĥf :

ĤI = ��f σ̂
†σ̂ + �

�R

2

(
σ̂ †e−iϕ0 + σ̂ eiϕ0

)
, (1.56)
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with �f = E/� − ω f the detuning between the atomic transition and field frequen-
cies. It can be indeed rewritten in the more suggestive form

ĤI ≡ ��f

2
1 + ��′

R

2
�n · �σ , with �′

R =
√

�2
f + �2

R (1.57)

the Rabi frequency, and the vector

�n = 1

�′
R

(�R cos(ϕ0),�R sin(ϕ0),�f). (1.58)

ThisHamiltonian canbe interpretedby looking at the qubit state in theBloch sphere as
a pseudo-spin. Hence the second term in Eq. (1.57) describes the Larmor precession
of the pseudo-spin at angular frequency �′

R , around the axis defined by the vector
�n, while the first term is a constant with no effect on the dynamics. Therefore, the
dynamics of the two-level atom state in the Bloch sphere can be viewed as the
combination of two movements: a circular motion of frequency �′

R around the axis
�n in which the distance r to the center is maintained (unitary evolution), combined
with a rotation in the XY plane at frequency ωf ∼ E/�. It is worth noticing that the
Z component of the vector �n is proportional to the detuning between the two-level
atom and the field frequencies,�f , in contrast to the X and Y components, which are
proportional to �R . This implies that a large detuning, �f � �R , will only imply
rotations in the XY plane, making all the Z axis points invariant, corresponding to
no-energy exchange between the two-level atom and the field.On the other hand, only
when nearly resonant frequencies are reached, �f � �R , the vector �n is contained
in the equatorial plane, and the field is able to induce flips between the basis states
|0〉 and |1〉, which corresponds to the situation in which the two-level atom and the
field exchange quanta of energy E � �ωf .

1.2.3 The Harmonic Oscillator

The second canonical quantum extensively adopted in this PhD thesis is the one
dimensional harmonic oscillator. This corresponds for instance to a particle ofmassm
moving in one dimension, trapped in a quadratic (attractive) potential V̂ = mω2 x̂2/2.
The Hamiltonian of the model when including the kinetic energy of the particle reads

Ĥ = p̂2

2m
+ mω2

2
x̂2, (1.59)

where x̂ and p̂ (with [x̂, p̂] = i�) are respectively the position and momentum oper-
ators of the particle. The harmonic oscillator model, apart of being ubiquitous in
quantum physics as argued above, is also one of the few models for which an exact
analytical solution is known. The eigenvalues and eigenstates of the Hamiltonian
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Fig. 1.5 Picture of the first four energy levels andwavefunctions of the quantumharmonic oscillator
model. The infinite set of energy levels are equally spaced with energy gap �ω. The annihilation and
creation operators, â and â†, produce respectively jumps down and up in the energy levels ladder

(1.59), Ĥ |ψn〉 = En|ψn〉, are

En = �ω

(

n + 1

2

)

, (1.60)


n(x) = 1√
2nn!

(mω

π�

) 1
4

e− mω2x2

2� Hn

(√
mω

�
x

)

, (1.61)

for n = 0, 1, 2, . . ., and where we introduced the Hermite polynomials Hn(z) =
(−1)nez2∂n

z (e−z2). We hence obtain an infinite number of equally spaced (quan-
tized) energy levels spanning the Hilbert space of the harmonic oscillator. The wave-
function corresponding to the nth energy level is a Gaussian function on x modulated
by a polynomial with n zeros or nodes (see Fig. 1.5).The eigenstates of Ĥ are called
Fock states, and will be denoted by {|0〉, |1〉, |2〉, . . . , |n〉, . . .}. As an orthonormal
basis, the Fock states fulfill 〈n|k〉 = δk,n , and

∑
n |n〉〈n| = 1. It is also worth noticing

that the ground state of the model, the state |0〉, is characterized by a non-zero energy,
E0 = �ω/2, usually called the zero point energy, or vacuum fluctuation energy.

It is very useful at this point to introduce the following annihilation and creation
(or simply ladder) operators

â =
√

mω

2�

(

x̂ + i

mω
p̂

)

, â† =
√

mω

2�

(

x̂ − i

mω
p̂

)

, (1.62)

which promote jumps in the energy ladder of the harmonic oscillator,

â|n〉 = √
n|n − 1〉, â†|n〉 = √

n + 1|n + 1〉, (1.63)
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and a|0〉 = 0. As can be easily appreciated, those operators remove or add an energy
quantum �ω to the oscillator, and fulfill the commutation relation [a, a†] = 1. We
can furthermore introduce the number operator as N̂ ≡ â†â, whose action over the
Fock states is simply N̂ |n〉 = n|n〉, and fulfill

[N̂ , â] = −â, [N̂ , â†] = â†. (1.64)

The Hamiltonian (1.59) can be rewritten in the canonical form

Ĥ = �ω

(

N̂ + 1

2

)

. (1.65)

In this above canonical form, the constant term corresponding to the zero-point
energy, E0 = �ω/2, is often neglected by redefining the energy origin. The energy
corresponding to the Fock states {|n〉}, c.f. Eq. (1.60), can be hence attributed to n
quanta �ω [2]. The Hamiltonian (1.65) may describe as well an electromagnetic field
mode of angular frequencyω in a (completely isolated) cavity, or more generally, one
of the components of the electromagnetic field propagating in free space. In this case
the excitations of the oscillator are called photons, N̂ the photon number operator, and
the states |n〉, the photon number states. In light of the intimate connexion between
the harmonic oscillator model and the nature of the electromagnetic field, we will
often employ during this thesis the characteristic nomenclature used for fields to refer
as well to the general harmonic oscillator model, and vice-versa.

Any generic pure state of the harmonic oscillator model can be written as a
superposition of Fock states

|ψ〉 =
∞∑

n=0

cn|n〉, (1.66)

with complex coefficients cn , such that 0 � |cn|2 � 1 and
∑

n |cn|2 = 1. The time
evolution of such state under the action of the Hamiltonian (1.65) is

|ψ〉(t) = e− i
�

Ĥ t |ψ〉 =
∞∑

n=0

cne−iω(n+1/2)t |n〉, (1.67)

that is, each of the Fock states appearing in the superposition |ψ〉, acquires a time
dependent phase. It is worth noticing that while the number of quanta in the Fock
states |n〉 is always well defined, the mean value of the position (and momentum)
operator vanishes, 〈n|x̂ |n〉 = 0, indicating that Fock states do not behave in a classical
way.

The thermal equilibrium state can be again defined for the harmonic oscillator
model from Eq. (1.48) as a mixture of Fock states with Boltzmann weights
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ρth =
∞∑

n=0

e−β�ω(n+ 1
2 )

Z(β)
|n〉〈n|, (1.68)

where β = 1/kB T represents again the inverse temperature, and now the partition
function reads Z(β) = eβ�ω/2/(eβ�ω − 1). The mean energy in ρth using Eq. (1.65)
reproduces Planck’s law 〈Ĥ〉th = �ω(〈N̂ 〉th + 1/2), where 〈N̂ 〉th = (eβ�ω − 1)−1 is
the mean number of quanta. Furthermore we see that in the limit T → ∞ (or equiv-
alently β → 0) we obtain

〈Ĥ〉th � kB T, 〈N̂ 〉th � kB T

�ω
, (1.69)

approaching the value predicted by the classical Maxwell–Boltzmann distribution
[10]. The variance in the number of quanta can be calculated yielding

σ 2
th(N̂ ) = eβ�ω

(eβ�ω − 1)2
. (1.70)

It is now easy to check that the state ρth shows equilibrium energy fluctuations
verifying, like in the qubit system case,

σ 2
th(Ĥ) = kB T 2 ∂T 〈Ĥ〉th (1.71)

as corresponds to the canonical ensemble [29].

1.2.4 Coherent States

In contrast to Fock states, the coherent or Glauber states [30] (also Gaussian states
in more general contexts [6]) reproduce much better the classical behavior required
by the correspondence principle [10]. They are usually denoted as |α〉, and can be
defined as the (right) eigenstates of the annihilation operator, that is a|α〉 = α|α〉 (or
equivalently 〈α|a† = α∗〈α|), with complex eigenvalue α. In the Fock states basis
they can be written as the superpositions

|α〉 = e− 1
2 |α|2

∞∑

n=0

αn

√
n! |n〉, (1.72)

with a Poissonian probability distribution pα(n) = exp(−|α|2)|α|2n/n! for the pho-
ton number. The distribution is peaked around the mean number of quanta 〈N̂ 〉α =
〈α|N̂ |α〉 = |α|2, with variance given by σ 2

α = 〈N̂ 2〉α − 〈N̂ 〉2α = |α|2 = 〈N 〉α . This
implies that, as the mean number of quanta increases, the distribution becomes more
peaked around its mean value, presenting smaller relative energy fluctuations, corre-
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sponding to the classical case. Indeed coherent states can be obtained by considering
the radiation emitted by a classical oscillating electric current [31, 32]. Another
prominent physical example is the highly coherent monochromatic light emitted by
a laser.

An important property of coherent states is that they also correspond to minimum
uncertainty states for position and momenta

σα(x̂)σα( p̂) = �

2
(1.73)

where σα(x̂) = √
�/2mω and σα( p̂) = √

�mω/2. Furthermore the set of coherent
states fulfill the completeness relation

∫
α|α〉〈α| = π1, while being non-orthogonal

|〈α|α′〉|2 = exp(−|α − α′|2) [31].
The time evolution of a coherent state |α〉 can be easily calculated from Eq. (1.67)

to be |α〉(t) = e−iωt/2|αe−iωt 〉, meaning that the harmonic oscillator always remains
in a coherent state. Its wave function in the position representation reads

ψα(x) =
(mω

π�

) 1
4

e−|α|2/2e
mωx2

2� e(
√

mω/�x−αe−iωt /
√
2)2 . (1.74)

It corresponds to a minimum uncertainty Gaussian wake packet which maintains
the same shape during its evolution, while its centroid follows a classical oscillatory
trajectory between the two turning points of the potential [32].

It is also convenient to introduce at this point the field quadratures of the harmonic
oscillator, corresponding to the operators

X̂ϕ ≡ 1√
2
(ae−iϕ + a†eiϕ) and P̂ϕ ≡ X̂ϕ+π/2. (1.75)

They are dimensionless versions of the position and momenta operators, rotated by
an angle ϕ in phase space. They fulfill the commutation relation [X̂ϕ, P̂ϕ] = i , as
well as the uncertainty principle σ(X̂ϕ)σ (P̂ϕ) � 1

2 , in accordance with Eq. (1.1).
With the help of the field quadratures, we may consider an ‘optical’ phase space
in terms of the quadratures X̂0 and P̂0, instead of using the original position and
momentum operators, x̂ and p̂, used to define the quantum-mechanical phase space.
In the optical phase space, coherent states can be represented by filled circles centered
around the point (Re(α), I m(α))with diameter 1/

√
2, as the uncertainty in any field

quadrature turns out to be equal, σα(X̂ϕ) = σα(P̂ϕ) = 1/
√
2. Their time evolution,

as calculated above, corresponds to a uniform clockwise circular motion of the filled
circle with respect to the origin of coordinates at angular velocity ω (see Fig. 1.6).
A mere general representation of states in the quantum optics phase space would be
obtained with quasi-probability distributions as discussed in Ref. [33].

Notice that the vacuum state |0〉 is also a coherent state with α = 0. It can be
indeed represented in optical phase space as a filled circle with the same diameter as
any other coherent state, centered at the origin of coordinates. This picture suggests
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Fig. 1.6 Representation of a Fock state |n〉 (blue color) and a coherent state |α〉 (black color)
in optical phase space. Fock states are represented by hollow circles centered at the origin of
coordinates, being its uncertainty in any field quadrature negligible. In the other hand, coherent
states with α = |α|eiϕ , are represented by filled circles stressing the presence of equal uncertainties
in the quadrature fields. The later are displaced from the origin of coordinates a distance |α| and
rotate clockwise around the origin of coordinates at angular velocity ω (see text)

that coherent states are just vacuum states displaced in phase space a distance |α| in
the direction determined by the angle θ defined by the complex number α = |α|eiθ .
The above idea can be made mathematically precise by defining a displacement
operator

D̂(α) ≡ eαâ†−α∗â, (1.76)

which is unitary, D̂(α)D̂(α)† = D̂(α)†D̂(α) = 1, and fulfills D̂(α)† = D̂(−α). Any
coherent state can be generated applying the displacement operator to the vacuum
state D̂(α)|0〉 = |α〉 [31]. Moreover, the action of the displacement operator over the
annihilation and creation operators turns out to be

D̂(α) a D̂(α)† = a − α, D̂(α) a† D̂(α)† = a† − α∗. (1.77)

Using the above properties one can also prove that

D̂(α)D̂(β) = D̂(α + β) e(αβ∗−α∗β)/2,

D̂(α)|β〉 = e(αβ∗−α∗β)/2 |α + β〉. (1.78)
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These relationships play an important role in quantum optics. They have been used
e.g. in the development of field measurement techniques such as homodyne detec-
tion [2].

Once the displacement operator has been introduced in Eq. (1.76), we may apply
it to arbitrary states. Of particular relevance is the so-called coherent thermal state,
defined as

ρd ≡ D̂(α)ρth(β)D̂(α)† = e−βD̂(α)ĤD̂(α)†

Z(β)
. (1.79)

This state corresponds to the thermal equilibrium state of a displaced field with
modified Hamiltonian Ĥd ≡ D̂(α)ĤD̂(α)† = �ω( Â† Â + 1/2), being Â = a − α.
The state ρd has the same entropy as the Gibbs state ρth but modified mean energy

〈Ĥ〉ρd = Tr[D̂(α)† ĤD̂(α)ρth(β)] = 〈Ĥ〉ρth + �ω|α|2, (1.80)

with the addition of a term scaling with |α|2. In the above equation we used the cyclic
property of the trace and the relations (1.77). In a similar way we can calculate the
energy fluctuations in the state

σ 2
ρd

(Ĥ) = σ 2
ρth

(Ĥ) + |α|2(�ω + 2〈Ĥ〉ρth), (1.81)

leading to a stretched photon number distribution with respect to the thermal equilib-
rium case. In analogy to coherent states with respect to vacuum, the coherent thermal
state has the same shape as the Gibbs state, displaced a distance |α| in direction θ .

1.2.5 Squeezed States

A second class of states of great importance in quantum optics and quantum infor-
mation, are the so-called squeezed states. In order to introduce their definition and
properties it is convenient to turn back to the generalized Heisenberg’s uncertainty
relation in Eq. (1.1). The fluctuations of two conjugate observables Â and B̂ in any
state ρ of the quantum system under consideration are linked by

σ( Â) σ (B̂) � 1

2
|〈[ Â, B̂]〉ρ |, (1.82)

where σ 2( Â) = 〈 Â2〉ρ − 〈 Â〉2ρ denotes the variance of the observable Â in the state
ρ. A state is called a squeezed state if it satisfies [31]

σ 2( Â) <
1

2
|〈[ Â, B̂]〉ρ |, or σ 2(B̂) <

1

2
|〈[ Â, B̂]〉ρ |, (1.83)
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that is, a squeezed state verifies that the variance in the statistics of some observable
is below the standard levels of quantum noise, at the expense of increasing the
fluctuations of the conjugate observable. If the state of the system furthermore verifies
the equality in Eq. (1.82), then it is called an ideal squeezed state, a nomenclature
originally introduced in Ref. [34]. In the case of the harmonic oscillator, we usually
deal with quadrature squeezing, which is defined by

σ 2(X̂ϕ) <
1

2
, or σ 2(P̂ϕ) <

1

2
. (1.84)

It follows from that definition that Fock and coherent states are not squeezed. Notice
that the concept of squeezing may be applied as well to any other two conjugate
observables of the harmonic oscillator other than the field quadratures [32].

Squeezed states may be mathematically characterized by means of the following
squeezing operator

Ŝ(ξ) ≡ e
1
2 (ξ

∗â2−ξ â†2), (1.85)

where ξ ≡ reiθ is a complex number with r � 0, usually called the squeezing param-
eter, and θ ∈ [0, 2π ]. The squeezing operator may act on any state of the harmonic
oscillator and is intimately connected to the second order coherences generated by
the operators â2 and â†2, describing two quanta annihilation and creation processes.
Squeezing must be henceforth considered as a quantum effect [32] with no classical
analogue [10].

The squeezing operator in Eq. (1.85) has many similarities with the displacement
operator introduced in Eq. (1.76). It is also unitary Ŝ(ξ)Ŝ†(ξ) = Ŝ†(ξ)Ŝ(ξ) = 1, with
Ŝ†(ξ) = Ŝ(−ξ). Furthermore it acts on the annihilation and creation operators as

R̂ ≡ Ŝ(ξ) â Ŝ†(ξ) = â cosh(r) + â† sinh(r)eiθ

R̂† ≡ Ŝ(ξ) â† Ŝ†(ξ) = â† cosh(r) + â sinh(r)e−iθ (1.86)

which defines a canonical Bogoliubov–Valatin transformation, mapping the annihi-
lation and creation operators to the new operators R̂ and R̂† as given in Eq. (1.86),
with [R̂, R̂†] = 1.

The most simple example of a squeezed state follows from applying the operator
(1.85) to the vacuum state |0〉, to get

|ξ 〉 ≡ Ŝ(ξ)|0〉 = 1√
cosh(r)

∞∑

n=0

(− tanh(r))n

√
(2n)!
2nn! |2n〉, (1.87)

called the squeezed vacuum state. Notice that this state is an infinite superposition
of even-quanta Fock states, with non-zero mean number of quanta 〈N̂ 〉ξ = sinh(r)2

and variance

σ 2
ξ (N̂ ) = 2 sinh2(r) cosh2(r) = 2〈N̂ 〉ξ (〈N̂ 〉ξ + 1),
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showing photon bunching and super-Poissonian statistics [35, 36]. The squeezed
vacuum state also verifies R̂|ξ 〉 = 0, and can be regarded as the vacuum (ground)
state of theBogoliubovmode defined by aHamiltonian of the form ĤB = �ω(R̂† R̂ +
1/2). The crucial property of the state (1.87) is the modification of their variances in
the field quadratures along the angle θ/2 with respect to the vacuum state

σ 2
ξ (X̂θ/2) = e−2r

2
, σ 2

ξ (P̂θ/2) = e2r

2
. (1.88)

As we can see in the above equation, the fluctuations in the field quadrature X̂θ/2

are ‘squeezed’ by an exponential factor depending on the squeezing parameter r ,
while the ones in P̂θ/2 are increased by the inverse multiplicative factor. They
still correspond to a minimum uncertainty state (or ideal squeezed state), that is
σξ (X̂θ/2)σξ (P̂θ/2) = 1/2. The squeezed vacuum (1.87) can be represented in optical
phase space as a filled ellipse centered at the origin, minor axis in the θ/2 direction
and major axis in the (θ + π)/2 one, with respective widths given by the variance
in Eq. (1.88). Furthermore, the time evolution generated by the Hamiltonian (1.65)
will produce clockwise rotation of the ellipse at uniform angular frequency ω.

The above introduced squeezed vacuum state may be generalized by applying the
displacement operator in Eq. (1.76) as

|α, ξ 〉 = D̂(α)|ξ 〉 = D̂(α)Ŝ(ξ)|0〉, (1.89)

where again ξ = reiθ and α = |α|eiϕ . This family of squeezed displaced states,
including the vacuum squeezed state |ξ 〉, are all ideal squeezed states with the
same variances in the field quadratures as in Eq. (1.88), independently of the field
amplitude α. Indeed squeezing is a macroscopic quantum effect which may be
present in high intensity fields [35], a prediction which has been recently demon-
strated in the laboratory [37] (see also Ref. [38]). The photon number distribution in
squeezed coherent states is peaked around 〈N̂ 〉α,ξ = |α|2 + sinh2(r) with variance
σα,ξ (N̂ ) = |α cosh(r) − α∗ sinh(r)eiθ | + 2 cosh2(r) sinh2(r) [10]. It can show both
sub-Poissonian or super-Poissonian statistics depending on the squeezing and dis-
placement angles θ and ϕ, and hence display anti-bunching or bunching effects [36].
The representation of squeezed displaced states in optical phase space can be easily
obtained by just shifting the ellipse representing the squeezed vacuum state |ξ 〉 a
distance |α| along the direction defined by ϕ [32]. Squeezed displaced states have
been studied since the 60s by authors interested in the generalization of the minimum
uncertainty states in different systems [34, 39–45] (for reviews see [35, 36]).

Another interesting example of a squeezed state to particular relevance for this
thesis is the squeezed thermal state, resulting from the application of the squeezing
operator (1.85) to the thermal equilibrium state [47, 48]

ρsq = Ŝ(ξ) ρth Ŝ
†(ξ) = Ŝ(ξ)

e−β Ĥ

Z(β)
Ŝ†(ξ), (1.90)
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with again ξ = reiθ , to be compared with Eq. (1.79). In analogy to the displaced
thermal state, the squeezed thermal state has the same entropy as the Gibbs state but
an increased mean energy

〈Ĥ〉ρsq = Tr[Ĥ Ŝ(ξ) ρth Ŝ(ξ)†] = �ω

(

〈N̂ 〉th cosh(2r) + sinh(r)2 + 1

2

)

,

which increases exponentially with r . Its fluctuations are also larger than in the
thermal equilibrium case, and given by

σsq(Ĥ) = (�ω)2
(
cosh(4r)(〈N̂ 〉2th + 〈N̂ 〉th) + sinh2(2r)/2

)
. (1.91)

Moreover, in this case its variances in the field quadratures X̂θ/2 and P̂θ/2 read

σρsq(X̂θ/2)
2 = e−2rσρth(X̂θ/2)

2 = e−2r

(

〈N̂ 〉th + 1

2

)

,

σρsq(P̂θ/2)
2 = e2rσρth(P̂θ/2)

2 = e2r

(

〈N̂ 〉th + 1

2

)

, (1.92)

again producing the squeezing of the fluctuations in the first quadrature at expenses
of increasing in the conjugate one. The will turn on the interesting properties of the
squeezed thermal states from a quantum nonequilibrium thermodynamics point of
view in Part IV of this thesis.

The first experimental generation of squeezed light was performed in 1985 using
four-wave mixing techniques in an optical cavity with sodium atoms [49, 50]. Other
pioneering experimental realizations of squeezing states include four-wavemixing in
optical fibers [51] and degenerate parametric down conversion by using a nonlinear-
optical crystal of MgO : LiNbOs inside an optical cavity [52]. The development of
quantum state reconstruction methods and related theoretical tools, allowed then to
comprehensively analyze and reconstruct squeezed states of light (see e.g. Fig. 1.7
and Ref. [46]). Squeezed thermal states have been also generated in the labora-
tory in a variety of physical systems of interest, its first experimental realization
being throughout a Josephson-parametric amplifier operated at microwave frequen-
cies [53].

Squeezing nowadays constitutes a central tool in quantum optics, with several
applications in quantum metrology, quantum communication and quantum infor-
mation processing [54, 55]. Some examples are the use of squeezed states of light
in gravitational-wave detection [34, 56, 57], as well as in quantum teleportation
scenarios [58], quantum computation with continuous variable systems [59], secure
quantum key distribution protocols [60], or quantum imaging [61]. Furthermore,
squeezing has been also successfully generated and detected in non-optical systems
such as trapped atoms [62, 63], Bose–Einstein condensates [64, 65], collective spin-
wave excitations (magnons) [66], or motional degrees of freedom in optomechanical
setups [67, 68].
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Fig. 1.7 Experimental results from generation and detection of different states of squeezed light by
using a lithium-niobate optical parametric oscillator, pumped by a frequency-doubled continuous-
wave Nd : YAG laser. In the left column the noise traces in the photocurrent i�(t) when measuring
the field quadratures are shown. In the center column the quadrature distributions are plotted, which
can be interpreted as the time evolution of wave packets during one oscillation period. Finally in
the third column it is shown one of the reconstructed quasi-probability distributions (the Wigner
function [33]) of the generated states. From top to bottom: coherent state, phase-squeezed state,
state squeezed in the θ = 48◦-quadrature, amplitude squeezed state, and squeezed vacuum state.
Image obtained from Ref. [46]

1.3 Quantum Measurement

As commented previously, quantum theory ascribes an intrinsic probabilistic nature
to measurement results of any observable. Even when we have maximal knowledge
about the state of a system, that is, a pure state, the observables of the system are not
completely determined, and if we measure it, different random results are obtained.
In this section we introduce the formalism of quantum measurement. First we will
introduce ideal quantum measurements to then move to the case of indirect mea-
surements, i.e. measurements that are performed with the help of an ancillary system
which is correlated with the system to be measured. We will use along the section
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the formalism of density operators introduced above and the related quantities used
to measure purity, uncertainty or correlations in composite systems.

1.3.1 Ideal Measurements

Ideal quantum measurements constitute the simplest case of measurements in quan-
tum theory, in which no extra sources of noise coming from the measuring apparatus
are considered. They were introduced by Von Neumann [69] and Lüders [70] and
are given in terms of projectors. Imagine we want to measure some observable given
by an hermitian operator

Ô =
∑

k

ok�̂k, (1.93)

where ok are the real eigenvalues of Ô , which we consider to be discrete. The opera-
tors �̂k are called the projectors onto the eigenspace of Ô with eigenvalue ok . If the
eigenvalues are non-degenerate we recover the expression introduced at the begin-
ning of Sect. 1.1, that is, the projectors �̂k = |ok〉〈ok | have rank-1. Otherwise a new
quantum number has to be introduced in order to take into account the degeneracy,
the projector then reading �̂k = ∑dk

n=1 |ok, n〉〈ok, n|, where dk is the degeneracy of
the eigenvalue ok . Notice that the sum of all degeneracies gives us the dimension of
the system Hilbert space,

∑
k dk = dim(H). In any case the projectors always fulfill

orthonormal relations �̂k�̂n = δk,n�̂k and the completeness relation
∑

k �̂k = 1̂,
i.e. they provide a resolution of the identity operator.

The projection postulate states that we can choose any arbitrary observable Ô
with a corresponding set of projectors {�̂k} to measure our system. The state of the
system prior to measurement can be described by a density operator ρ. As a result of
the measurement we will obtain an eigenvalue ok , with probability Pk = Tr[ρ�̂k],
leaving the system after measurement in state

ρ ′
k = �̂k ρ �̂k

Pk
, (1.94)

i.e. the state is projected onto the eigenspace �̂k of Ô . Then any posterior measure-
ment of the observable Ô would produce the same result ok , leaving unaltered the
system so far, as can be easily checked iterating Eq. (1.94).We call ρ ′

k the conditional
state of the system after the selective measurement, which implies knowledge about
the result, as labeled by index k. If, on the contrary, we know that a measurement
has been performed but we ignore the result (or forgot it), then the final state after
measurement is given by averaging over all possible outcomes of the measurement

ρ ′ =
∑

k

Pkρ
′
k =

∑

k

�̂k ρ �̂k, (1.95)
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to which we refer as the unconditional state after the unselective measurement. Dif-
ferent observers can ascribe different density operators to the same system depending
on their knowledge in a compatible way [6].

A selectivemeasurement, in general, tends to reduce the entropy of a state ρ, as we
obtain information about it. Indeed if the projectors �̂k are rank-1, the conditional
state after measurement is pure, ρ ′

k = �̂k = |ok〉〈ok | and then S(ρ) � S(ρ ′
k) = 0.

On the other hand, for an unselective measurement the entropy of the state cannot
decrease, S(ρ ′) � S(ρ), holding the equality if and only if the state of the system is
unaltered by the measurement [5]. The proof of the above statement follows from
Klein’s inequality, by noticing that

S(ρ ′) − S(ρ) = − Tr[ρ ′ ln ρ ′] − S(ρ) = −
∑

k

Tr[�kρ�k ln ρ ′] − S(ρ)

= − Tr[ρ ln ρ ′] − S(ρ) = D(ρ||ρ ′) � 0, (1.96)

where we have used [�̂k, ρ
′] = 0, the cyclic property of the trace and

∑
k �̂2

k = 1.
This result can be understood from the fact that an unselective quantummeasurement
disturbs the system in a random way, as we have no information about the result
of the measurement, and hence we lose information about its state. From the above
expression it is also clear that S(ρ ′) = S(ρ) if andonly ifρ ′ = ρ, i.e. themeasurement
does not change the state of the system. For this to happenwe need [Ô, ρ] = 0.Hence
in contrast to unitary evolutions, measurements can change the entropy of a system,
leading, in general, to irreversible processes in which information is lost.

Togive a simple example of an idealmeasurement, let us consider a spin- 12 particle.
We denote as {|0〉, |1〉} the two spin eigenstates on the z-axis. The system is prepared
in a state of the form

ρ = pg |0〉〈0| + cge|0〉〈1| + c∗
ge|1〉〈0| + pe|1〉〈1|, (1.97)

where pe + pg = 1 and |cge|2 � pe pg , corresponding to a pure state when the
equality is reached. Now imagine we perform a measurement of the spin on the
z-axis, as given by the operator Ŝz = −�

2 �̂0 + �

2 �̂1, with projectors �̂0 = |0〉〈0|
and �̂1 = |1〉〈1|. This corresponds to the prototypical measurement of spin first
realized in 1922 in the Stern–Gerlach experiment (see Fig. 1.8). As a result of the
measurement we obtain spin −�/2 with probability pg , collapsing the state of the
particle to |0〉, or spin �/2 with probability pe, then collapsing the state to |1〉. If the
ensemble of all the outputs is considered we get the following unconditional state
after measurement:

ρ ′ = pg|0〉〈0| + pe|1〉〈1|, (1.98)

which is simply a mixture of states |0〉 and |1〉. Here the coherences in the {|0〉, |1〉}
basis present in the initial state ρ, have ‘disappeared’ by effect of the measurement.
This means that the system has been disturbed in a random way (collapsing either to
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Fig. 1.8 Configuration of the Stern–Gerlach experiment showing the existence of the spin and the
influence of quantum measurement on the state of the system being measured. Pictures from Ref.
[71]

|0〉 or |1〉) and we lose information if we does not have access to the result of each
measurement.

1.3.2 Generalized Measurements

In the previous section we introduced projective measurements as the simplest case
of quantum measurements. However, in real experiments this ideal description is
often not adequate, for example when the apparatus performing the measurement
introduces some noise, or when we verify that the final state of our system is not
an eigenstate of the observable that we are measuring [6]. Furthermore, one never
measures directly the system of interest. It usually interacts with another systems,
such as the environment or the meter, from which we finally collect the information.
Then if we want to generalize the description of measurements to account for more
general situations, we must consider composite systems. One of the major problems
in the interpretation of quantum measurements is that, even if we include in our
description a chain of other systems interacting one with the next and broadcasting
progressively the information we want to retrieve, at some stage we always have to
cut the chain introducing an ideal measurement. This is the so-called Heisenberg’s
cut [72]. In practice, we will introduce the Heisenberg’s cut by simply adding a
second stage to ourmeasurement process, that is, our system of interest interacts with
another ancillary system on which we assume to perform a projective measurement.
Considering a chain with only one extra element is appropriate when the ancillary
system undergoes a rapid decoherence process, which will yield results negligibly
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different from those obtained by adding further stages in the measurement process
[6].

Let’s consider the quantum system which we want to measure, S, with associated
Hilbert spaceHS, and an ancillary system A (withHA) representing the measuring
apparatus. As in the introduction to composite systems in Sect. 1.1.5, we assume
system and ancilla to be completely independent of each other at the initial instant of
time, t = 0, i.e. the global state of the composite system is a product state ρSA(0) =
ρS ⊗ ρA, where ρA is a generic known state of the meter. Then for some arbitrary
period of time, τ , system and meter interact via the Hamiltonian

Ĥ(t) = ĤS + ĤA + Ĥint(t), (1.99)

where ĤS is the Hamiltonian of system alone,HA is the Hamiltonian of the ancilla,
and Ĥint(t) represents some time-dependent interaction between system and ancilla,
which becomes zero outside the time interval [0, τ ]. Hence the composite system
follows unitary evolution as given by Eq. (1.6), that is

Û ≡ Û (τ, 0) = T+ exp

(

− i

�

∫ τ

0
dt Ĥ(t)

)

, (1.100)

building up correlations between system and ancilla. The state of the composite
system after evolution is

ρSA(τ ) = Û (ρS ⊗ ρA) Û †, (1.101)

which in general is an entangled state. Then an idealmeasurement of some observable
R̂A = ∑

k rk�̂
A
k , with �̂A

k projectors on the eigen-spaces corresponding to eigenval-
ues rk , is performed on the ancilla (here R̂A acts only on the ancilla’s Hilbert space
HA). This measurement may take some time as well, during which we assume the
evolution of system and ancilla is negligible, and hence consider the measurement
as instantaneous. In Fig. 1.9 we provide a sketch of this generalized measurement
scheme.

The probability of obtaining the result rk on the ancillary system, according to
the projection postulate, is then given by

Pk = Tr[(1̂S ⊗ �̂A
k )ρSA(τ )] = Tr[Û †(1̂S ⊗ �̂A

k )Û (ρS ⊗ ρA)], (1.102)

where the trace is performed over the whole Hilbert spaceHS ⊗ HA. Analogously,
the global state of system and ancilla after obtaining outcome k in the measurement
reads

ρ
′(k)

SA(τ ) = (1̂S ⊗ �̂A
k ) ρ(τ ) (1̂S ⊗ �̂A

k ) / Pk, (1.103)

according to Eq. (1.95), while its unconditional counterpart should read ρ ′
SA(τ ) =

∑
k Pkρ

′(k)

SA(τ ). Given the spectral decomposition ρA = ∑
n qn|φn〉〈φn|A, and
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Fig. 1.9 Schematic representation of the generalized measurement process introduced in the text.
System and ancilla are prepared in an uncorrelated state, and interact by means of the unitary
evolution operator Û from t = 0 to t = τ , building up correlations between them. Then the observer
performs quasi-instantaneously a local ideal measurement of the observable R̂A on the ancilla,
obtaining outcome k, and leading to back-action on the system

assuming for simplicity the ancillary projectors to be rank-1, i.e. �̂A
k = |rk〉〈rk |A,

the above Eq. (1.102) may be rewritten as follows

Pk = TrS[
∑

n

M̂†
k,n M̂k,n ρS], (1.104)

where we have introduced the measurement operators:

M̂k,n = 〈rk |AÛ |φn〉A√
qn, (1.105)

acting on the system Hilbert space HS. Notice that M̂k,n actually depend on two
indices corresponding to the measurement result rk , and the initial pure state |φn〉
of the ancilla, as given by the spectral decomposition of ρA. However, since we
can rewrite the ancilla density operator as an arbitrary mixture of (non-orthonormal)
pure states, the term measurement operator is often restricted to the case in which
the ancilla starts in a pure state, i.e. M̂k = 〈rk |AÛ |φ〉A. In this case the operators
are unequivocally associated to the results of the measurement. In any case we can
always define the positive operators

F̂k =
∑

n

M̂†
kn M̂kn � 1̂S, (1.106)

These are the so-called effects of the measurement corresponding to outcome k,
as they completely determine the statistics of the measurement results. It is worth
noticing that

∑
k F̂k = ∑

k,n M̂†
k,n M̂k,n = 1̂S, i.e. the effects constitute a resolution
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of the identity in the system Hilbert space HS, which implies
∑

k Pk = 1. The set
{F̂k; k} is usually called a Positive-Operator-Valued Measure (POVM) [6].

The measurement operators are also useful to account for the local disturbance of
the measurement on the system. The reduced state of the system after the selective
measurement conditioned to outcome k, taking the trace in Eq. (1.103) over the
ancilla degrees of freedom, reads

ρ
′(k)

S =
∑

n

M̂k,n ρS M̂†
k,n

Pk
≡ Ek(ρS)

Pk
, (1.107)

to be compared to Eq. (1.95). We call the mapping

Ek(ρS) =
∑

n

M̂k,nρSM̂k,n, (1.108)

transforming positive operators into positive operators, a quantum operation. Notice
that Ek in general does not preserve the trace, unless there is only one possible
outcome in the measurement (Pk = 1). From Eq. (1.107) we immediately find that
the unconditional system state after measurement is

ρ ′
S =

∑

k

Pk ρ
′(k)

S =
∑

k,n

M̂k,n ρS M̂†
k,n ≡ E(ρS), (1.109)

andwewill refer toE(ρS) = ∑
k Ek(ρS) as a quantum map, which preserves the trace

and hence transforms physical states into physical states of the system. In Chap.2
we will turn to this important class of maps, also called Completely Positive and
Trace Preserving (CPTP) maps. On the other hand, after obtaining result k in the
measurement, the ancillary system collapses to the pure state �A

k , and hence the
corresponding unconditional ancillary state is

ρ ′
A =

∑

k

Pk |rk〉〈rk |A. (1.110)

1.3.3 Classes of Measurements

The measurement scheme presented in the previous section did not assume any
form of the interaction Hamiltonian leading to the global evolution Û . This allows
to include measurements that give only partial information about the system, that
disturb the system minimally or even that do not correspond to observables of the
system. Such generalized measurements are essential to account for the effects of
both classical and quantum noise in the measurement apparatus by means of the
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initial state of the ancilla, a general mixed state diagonal in a different basis than the
eigenstates {|rk〉} of R̂A.

In the following we will describe some important classes of measurements by
imposing extra conditions on the form of the effects or the measurement operators
(for amore complete classification ofmeasurements see [6]). However, it is important
to first introduce the so-called polar decomposition theorem. This theorem states that
any operator can be expressed as a product of a positive operator and a unitary one.
For instance, for the measurement operators:

M̂k = Ûk N̂k, (1.111)

where the unitary part is ÛkÛ †
k = Û †

k Ûk = 1̂ andwe have introduced the positive and
Hermitian operator N̂k = N̂ †

k . The theorem is really relevant as it gives us a picture
of a quantum measurement as a combination of two processes. The first process
determined by the action of the positive operator N̂k is irreversible and responsible
for the back-action on the system associated with the information gathering process
[6]. Indeed it completely determines the statistics of the measurement

Pk = TrS[M̂†
k M̂kρS] = TrS[(N̂k)

2ρS], (1.112)

and extracts information about the system corresponding to its eigenbasis, hence
disturbing it when [N̂k, ρS] �= 0. The second process of the measurement consist on
the unitary operation Ûk :

ρ
′(k)

S = Ûk
N̂kρS N̂k

Pk
Û †

k , (1.113)

which can be viewed as a reversible feedback process depending on the specific
result of the measurement. The positive operators {N̂k} can change the eigenvalues
of ρS, and therefore its entropy. In contrast, the unitary operation does not provide
any further information about the system [13].

1.3.3.1 Efficient Measurements

A first class of measurements are the so-called efficient measurements. They cor-
respond to the case in which the operations Ek are defined in terms of a single
measurement operator

Ek(ρS) = M̂kρSM̂†
k , (1.114)

and resultswhen the ancillary system starts in a pure state, aswe showed inSect. 1.3.2.
Hence efficient measurements transform pure states into pure states and any noise
arising in the process can be interpreted as quantum noise [6].

The term efficient makes reference to the fact that this kind of measurements are
the only ones that produce, on average, an information gain [73, 74]
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S(ρS) �
∑

k

Pk S(ρ
′(k)

S ), (1.115)

which implies a refining of the observer’s state of knowledge. However the entropy
of the state conditioned to outcome k is not necessarily lower than the entropy of
the initial state for all the outcomes. Furthermore, the entropy of the unconditional
system state after measurement, ρ ′

S = ∑
k Pkρ

′(k)

S , can be either greater or lower than
the entropy of the initial state ρS. In the later case, the reduction of entropy in the
system is always compensated by an increase in the entropy of the ancilla, the total
entropy of the composite system being always a non-decreasing quantity.

1.3.3.2 Bare Measurements

Bare measurements are a subclass of efficient measurements. They are defined from
the polar decomposition theorem introduced in Eq. (1.111) as the ones in which the
unitary part of the decomposition is absent, Ûk = 1̂S up to an arbitrary phase. In this

case we have that M̂k =
√

F̂k = N̂k and the measurement disturbs the system state
only ‘minimally’, in the sense that the average fidelity between a pure initial state
and the conditional state after measurement is maximized [6].4

As bare measurements are given by positive Hermitian operators, they do not
disturb the system state if [M̂k, ρS] = 0. Furthermore, the measurement operators
represent different observables of the system, being Hermitian operators acting on
the Hilbert spaceHS, fromwhich partial information is obtained in the measurement
process. Finally bare measurements also satisfy

S(ρ ′
S) � S(ρS) �

∑

k

Pk S(ρ
′(k)

S ). (1.116)

As for ideal measurements, ignoring the result of the measurement always produces
a loss of information about the system state. Indeed, Eq. (1.116) can be extended to
all measurements for which the unitary operators Ûk are equal (i.e. not depending
on the measurement outcome k) and to any other measure of mixedness of the state
[6].

1.3.3.3 Complete Measurements

Complete measurements extract all the information contained in the initial state of
the system, and hence further measurements do not provide new insight about it. This
condition can be made formal by requiring that the conditional states associated to
any outcome k do not depend on ρS. This implies that the operations associated to

4However as pointed in Ref. [13] the disturbance of a measurement can be defined in other different
ways.
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the measurements are of the form [6]

Ek(ρS) =
∑

n,m

|ψ(k)
n 〉〈φ(k)

m | ρS|φ(k)
m 〉〈ψ(k)

n |, (1.117)

{|ψ(k)
n 〉} and {|φ(k)

m 〉} being arbitrary states of HS (possibly non normalized). The
probability of obtaining outcome k is then

Pk =
∑

n

|〈ψ(k)
n |ψ(k)

n 〉|2
∑

m

〈φ(k)
m | ρS|φ(k)

m 〉, (1.118)

and the effects of the measurement are

F̂k =
∑

n,m

〈ψ(k)
n |ψ(k)

n 〉|φ(k)
m 〉〈φ(k)

m |, (1.119)

with
∑

k F̂k = 1̂S. It is easy to see that in this case

ρ
′(k)

S = Ek(ρS)

Pk
=

∑
n |ψ(k)

n 〉〈ψ(k)
n |

∑
n |〈ψ(k)

n |ψ(k)
n 〉|2 , (1.120)

which is independent of ρS. Notice that here any initial state of the system is trans-
formed into ρ

′(k)

S only depending on the outcome k. On the other side the uncondi-
tional state of the system reads

ρ ′
S = E(ρS) =

∑

k

Ek(ρS) ≡
∑

k

ak Âk, (1.121)

with Âk = ∑
n |ψ(k)

n 〉〈ψ(k)
n | and ak = ∑

m〈φ(k)
m | ρS|φ(k)

m 〉, which may still depend on
the initial state ρS through the quantities ak .

1.3.3.4 Non-demolition Measurements

A quantum non-demolition measurement (QND measurement), as introduced by
Braginsky and Khalili [75], is defined as a measurement for which the probabil-
ity distribution of some observable of the system, ÔS, does not change during the
measurement process. For the case of a unselective measurement this implies [1]

Tr[(ÔS)lρS] = Tr[(ÔS)lρ ′
S] =

∑

k,n

Tr[(ÔS)l M̂k,nρSM̂†
k,n], (1.122)

where l is any integer. This means that all the moments of ÔS are the same before
and after the measurement, and hence the complete distribution of its eigenvalues.
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We can rewrite the above equation as

∑

k,n

Tr[M̂†
k,n(ÔS)l M̂k,nρS] − Tr[(ÔS)lρS] =

=
∑

k,n

Tr[M̂†
k,n[(ÔS)l, M̂k,n] ρS] = 0, (1.123)

wherewehaveused
∑

k,n M̂†
k,n M̂k,n = ∑

k F̂k = 1̂S. The above conditionEq. (1.122)
[or equivalently Eq. (1.123)] must be satisfied for all initial states ρS. Hence a suffi-
cient condition for a QND measurement is

[ÔS, M̂k,n] = 0 ∀ k, n, (1.124)

which are sometimes also called back-action-evading measurements. By following
the general measurement scheme of Sect. 1.3.2 this condition can be translated into
[ÔS ⊗ 1̂A, Û ] = 0, Û being the unitary evolution operator in Eq. (1.100), coupling
system and ancilla. This can be achieved by requiring both

[ĤS, ÔS] = 0, and [Ĥint, ÔS ⊗ 1̂A] = 0, (1.125)

which ensures that the statistics of the system observable ÔS are not disturbed by
the interaction with the ancilla. Here the observable ÔS defines the so-called pointer
observable, which determines the basis states (or pointer basis) which are robust
against the measurement process [76].

1.3.3.5 Projective Measurements

Finally, we stress that ideal measurements introduced in Sect. 1.3.1 are a particular
case of the above generalized measurements, also called projective measurements.
They correspond to the case in which the measurement operators are projectors onto
the eigenspaces of some observable ÔS on HS:

M̂k = F̂k = �̂S
k , (1.126)

with the orthogonality �̂S
k �̂S

l = δk,l�̂
S
k and completeness relations

∑
k �̂S

k = 1̂S.
Again the observable ÔS is generally determined from the specific form of the
interactionHamiltonian Ĥint(t) in Eq. (1.99)which couples system and ancilla during
the first part of the measurement process. In the case of a strong interaction we
can approximate Ĥ(t) � Ĥint(t), and the pointer observable is the one satisfying
[Ĥint(t), ÔS] = 0.

We notice that projective measurements are simultaneously efficient, bare, and
non-demolition measurements. However they are only complete when the projectors
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�̂S
k onto eigenspaces of the system observable ÔS are rank-1. The latter subclass of

projective measurements is called by some authors, von Neumann measurements [6].

1.4 Classical and Quantum Correlations

Correlations are the main characterizing signature of multipartite systems. Further-
more, it has been a long standing question in quantum theory the distinction between
classical and quantum correlations from a theoretical point of view, but also in the
search of new applications and the development of quantum technologies. In this
section we review different indicators of classical and quantum correlations present
in bipartite or multipartite systems and introduce specific quantifiers which will be
especially useful in Part II of this thesis.

1.4.1 Entanglement

The phenomenon of entanglement is a consequence of the superposition principle
when applied to composite systems. It yields a rich and striking phenomenology
which led Scrödinger to consider it as “The characteristic trait of quantum physics”
[77]. It constitutes a key quantum resource for the development of quantumcommuni-
cation and quantumcomputation, responsible of applications such as superdense cod-
ing, quantum teleportation, quantum error-correction algorithms or key-distribution
protocols for quantum cryptography [5, 78].

We already introduced entanglement in the case of pure states through the Schmidt
decomposition theorem in Sect. 1.1.5. In the more general context of the density
operator formalism, we say that a state ρAB of a composite quantum system AB
(with Hilbert space HA ⊗ HB) is entangled if it cannot be written in the form

ρAB =
∑

k

pk ρ
(k)
A ⊗ ρ

(k)
B (1.127)

where ρ
(k)
A and ρ

(k)
B are local states of systems A and B respectively, and 0 � pk � 1

with
∑

k pk = 1. The states of the form in Eq. (1.127) are called separable states and
can always be prepared by distant observers following instructions from a common
source [10]. On the other hand, for two systems to be entangled it is required some
kind of interaction, which makes them lose their local identity. In this case there exist
properties of the composite system that cannot be reconstructed by means of local
operations on the subsystems, even if the local observers are allowed to communicate
classically. This makes entanglement a notion of the quantumness of correlations, as
under the framework of Local Operations and Classical Communication (LOCC),
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only separable states in the form of Eq. (1.127) can be generated [78]. Any other
state contains some degree of entanglement.

TheSchmidt decomposition not only allows to characterize entanglement in bipar-
tite pure quantum states, but also leads to a measure of entanglement, the so-called
entropy of entanglement. Indeed, if the global state is pure, ρAB = |
〉〈
|, it follows
that the reduced states, ρA = TrB[ρAB] and ρB = TrA[ρAB], have exactly the same
eigenvalues, which implies, as we already pointed in Sect. 1.1.6, that they have the
same von Neumann entropy. The entropy of entanglement is precisely defined as this
quantity:

E(|
〉〈
|) = S(TrA[|
〉〈
|]) = S(TrB[|
〉〈
|]) � 0, (1.128)

which is only zero in the case of a separable state in the form |
〉 = |ψ〉A ⊗ |φ〉B .
However, in the case of mixed states the situation becomesmuchmore complicate

and a remarkable theoretical effort has been devoted to quantifying entanglement.
In this context, many indicators with its own advantages and disadvantages have
been proposed. In the following we will review some of them, but let us first state a
general set of desirable conditions which a measure of entanglement in mixed states,
E(ρAB), should fulfill [25, 78]:

1. If the state ρAB is separable then E(ρAB) = 0. That is, separable states have zero
entanglement.

2. Local unitary operators cannot modify the amount of entanglement

E(ρAB) = E(ÛA ⊗ ÛBρABÛ †
A ⊗ Û †

B) (1.129)

where ÛA and ÛB are arbitrary unitary operators acting on HA and HB respec-
tively.

3. LOCC operations cannot increase the entanglement

E(ρAB) � E

(
∑

i

pi M̂A
i ⊗ M̂B

i ρAB M̂A†
i ⊗ M̂B†

i

)

(1.130)

for any set of measurement operators {M̂A
i } and {M̂B

i } on subsystems A and
B respectively. Notice that they can share a common index, meaning that the
operations in subsystems A and B may be correlated.

4. When the state ρAB is pure, the measurement of entanglement reduces to the
entropy of entanglement in Eq. (1.128).

The following measures of entanglement fulfill conditions (1–3) and some of them
also condition (4). Someof themprovide specific operational interpretations of entan-
glement while others are more easily computable. Whether we use one or the other
depends mainly on the specific situation for which entangled states are needed.

• Logarithmic Negativity: This measure is based on the Positive Partial Transpose
(PPT) criterion, which constitutes a strong condition for the separability of a quan-
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tum state [79]. It asserts that if ρAB is separable then, the partial transposed matrix
ρ

TA
AB , where the indices of one of the two subsystems (hereA) have been exchanged,

is a ‘legal’ density operator (i.e. it is non-negative and has unit trace). The PPT cri-
terion is in general a necessary condition for separability, but it is also a sufficient
condition for the case of composite systems consisting of two two-level systems
and the composition of a two-level system and a three-level system [78].
Logarithmic negativity captures the violation of the PPT criterion. It is defined as

EN(ρAB) ≡ ln Tr[
√

ρ̃
†
AB ρ̃AB] (1.131)

being ρ̃AB = ρ
TA
AB (or equivalently ρ

TB
AB), the partial transpose of the density opera-

tor ρAB . Notice that for separable states, ρ
TA
AB is a legal density operator and hence

EN(ρAB) = ln Tr[ρTA
AB] = 0, thus satisfying condition (1). Furthermore it also ful-

fills conditions (2) and (3), while representing an additive and easily computable
quantity [80]. In particular, wewill employ the logarithmic negativity as a measure
of entanglement between a pair of dissipative harmonic oscillators in Chaps. 5 and
6, for which a closed expression exists when the global state ρAB is Gaussian (see
below).

• Entanglement of formation: This is an extension of the entropy of entanglement
to mixed states. It is defined as [81]

EF (ρAB) ≡ min
∑

i

pi S(ρ
(i)
A ), (1.132)

ρ
(i)
A = TrB[|
(i)〉〈
(i)|]being the local reduced state of subsystem A in the decom-

position of the global state as a mixture of pure states ρAB = ∑
i pi |
(i)〉〈
(i)|.

Notice that, as long as the decomposition of ρAB is not unique, we need to take
the minimum over all possible decompositions. This measure satisfies conditions
(1–4) and represents the asymptotic ratio n/m at which two observers (Alice and
Bob) can create n copies of ρAB in the LOCC framework by using m copies of
maximally entangled pairs (e.g. Bell states) in the limit of n and m large. Closely
related to the concept of entanglement of formation is the so-called entanglement
of distillation, ED(ρAB), which involves the opposite process: here Alice and Bob
obtain maximally entangled states from many copies of the state ρAB by using
the LOCC framework. The logarithmic negativity introduced above provides and
upper bound to the entanglement of distillation, i.e. ED(ρAB) � EN(ρAB).
Even if the computation of the entanglement of formation from its definition is
usually hard due to the minimization procedure, it can be easily evaluated in some
specific cases. For instance in the case of a pair of two-level systems it can be
computed by using another entanglement measure, the so-called concurrence,
C(ρAB) [82]. An example for continuous variable systems, are two-mode sym-
metric Gaussian states, for which an expression of the entanglement of formation
has been derived [83, 84].
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• Relative entropy of entanglement: This is another important measure of entan-
glement, which satisfies conditions (1–4) and is defined by means of the relative
entropy

ER(ρAB) ≡ min
σAB∈S

D(ρAB ||σAB) (1.133)

where S denote the set of separable states. This measure quantifies entanglement
as the distinguishability of ρAB from the set of non-entangled states, i.e. the more
the state is entangled the easier is to distinguish it from a separable state [85]. It
can be shown that:

ED(ρAB) � ER(ρAB) � EF (ρAB), (1.134)

i.e. the relative entropy of entanglement, ER(ρAB), is bounded from above by
the entanglement of formation, EF (ρAB), and constitutes an upper bound for the
entanglement of distillation, ED(ρAB) [25]. Finally, an advantage of the relative
entropy of entanglement with respect to other measures is that it can be easily
extended to multipartite systems.

Of particular interest to this thesis is the expression of the logarithmic negativity
for bipartite Gaussian states, which will be used in Chaps. 5 and 6 of Part II in order
to calculate the entanglement between a pair of dissipative harmonic oscillators. This
expression has been obtained in Refs. [80, 86], to which we refer for details on the
derivation, and is based on the properties of the so-called covariance matrix. Indeed,
all the information about the correlations in bipartite continuous-variable systems
AB is encoded in this matrix, which we denote VAB , and whose entries correspond
to the average values of the ten covariances of position x̂k and momenta p̂k operators
for k = A, B in the global Gaussian state ρAB (see Sect. 1.2.4)

[VAB]i j = 〈(X̂i − 〈X̂i 〉ρAB )(X̂ j − 〈X̂ j 〉ρAB )〉ρAB , i, j = 1, 2, 3, 4 (1.135)

and where X̂1 = x̂ A, X̂2 = p̂A, X̂3 = x̂B , and X̂4 = p̂B . It can be rewritten in block
form as

VAB =
(

α γ

γ t β

)

, (1.136)

where α, β, γ are (2 × 2) blocks: α(β) contains the variances (1.135) of subsystem
A(B), and γ contains correlations of both subsystems. The minimum symplectic
eigenvalue of the partially transposed covariance matrix, ṼAB = V TA

AB corresponding
to time inversion in one subsystem, is given by

ν− =
√
1

2
(a + b − 2g − √

(a + b − 2g)2 − 4s), (1.137)

with a = 4 det(α)/�
2, b = 4 det(β)/�

2, g = 4 det(γ )/�
2 and s = 16 det VAB/�

4.
The expression of the logarithmic negativity can be shown to depend only on this
quantity [80, 86]



48 1 Basic Concepts

EN(ρAB) = max{0,− log ν−}. (1.138)

1.4.2 Mutual Information

We are now in position to introduce another of the fundamental quantities needed
to characterize correlations and thermodynamics in open quantum systems. Let us
consider again the composite system AB, with global state ρAB and reduced states
ρA and ρB , respectively. The quantum mutual information (or simply the mutual
information) between subsystems A and B is defined as the distance

I (A : B) ≡ D(ρAB || ρA ⊗ ρB) � 0, (1.139)

quantifying the distinguishability of the actual state of the composite system ρAB

with respect to the completely uncorrelated state ρA ⊗ ρB . Mutual information is
hence a measure of the total correlations present in the composite system, being zero
if and only if ρAB = ρA ⊗ ρB . It is related to the von Neumann entropies of the
subsystems by the general relation

S(ρAB) = S(ρA) + S(ρB) − I (A : B), (1.140)

from which subadditivity of von Neumann entropy is derived (see Sect. 1.1.6). From
the above Eq. (1.140) we deduce that the mutual information corresponds to the
information about the composite system (contained in ρAB) which is unaccessible
by local measurements in the subsystems (as characterized by ρA and ρB). It indeed
corresponds to the total amount of correlations (both classical and quantum) between
the subsystems [87].

The quantum mutual information is the extension to the quantum domain of the
classical mutual information between random variables X and Y , taking values x
and y according to the probability distribution p(x, y). The latter is defined as

I (x : y) ≡
∑

x,y

p(x, y) (ln p(x, y) − ln p(x)p(y)) =

= H(Y ) − H(Y |X) = H(X) − H(X |Y ) =
= H(X) + H(Y ) − H(X, Y ), (1.141)

where p(x) = ∑
y p(x, y) and p(y) = ∑

x p(x, y) are marginal probability distri-
butions, and we denoted again the Shannon information of p(x, y) as H(X, Y ) =
−∑

x p(x, y) ln p(x, y) and equivalently for the marginals of variables X and Y .
Further, we also introduced the classical conditional entropy

H(Y |X) = H(X, Y ) − H(X) =
∑

x

p(x)H(p(y|x)), (1.142)
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Fig. 1.10 Information diagram illustrating the different Shannon information measures introduced
in the main text. The area of each circle represent the Shannon informations H(X) and H(Y )

respectively. The Shannon entropy of the joint distribution, H(X, Y ), is the union of the circles
(delimited by the solid black line), while the mutual information, I (X : Y ), corresponds to its
intersection (delimited by the dashed black line)

where p(y|x) = p(x, y)/p(x) is the conditional probability distribution of y given
x (see the diagram of Fig. 1.10). However, there exist important differences between
quantum and classical mutual information. One way to see these differences is to
rewrite the quantum mutual information in Eq. (1.140) as

I (A : B) = S(ρA) + S(ρB) − S(ρAB) = S(ρA) − S(ρB |ρA), (1.143)

where we have introduced the conditional quantum entropy S(ρB |ρA) ≡ S(ρAB) −
S(ρA). The latter would be the analogous to the classical conditional entropy,
H(Y |X) � 0. However, in the quantum case the conditional entropy S(ρB |ρA) can
be negative [88] in sharp contrast to the classical situation. This is due to the funda-
mental difference between the quantum conditional entropy as defined by S(ρB |ρA)

and its classical counterpart, H(Y |X). The latter represents the average uncertainty
in the value of Y when we know the value of X . In the quantum case this concept
would involve measurements on the subsystems that may disturb the quantum states
[89]. Hence, one may define a different version of the conditional entropy based on
this concept of information acquisition, which would lead to a different notion of
mutual information. In this context, different indicators of the quantumness of the
correlations alternative to entanglement have been proposed, such as the so-called
quantum discord [90] in order to distinguish between the classical and quantum
contents of the mutual information [87] (see below).
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Quantum mutual information can be easily generalized to multipartite sys-
tems. Consider a composite system in state ρ which can be split into subsystems
1, 2, . . . , M . Then the multipartite mutual information is defined as the distance:

I (1 : 2 : . . . : M) ≡ D(ρ || ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρM), (1.144)

whereρi = Tr j �=i [ρ] denotes the partial trace over all subsystems except subsystem i ,
and the stateρ1 ⊗ ρ2 ⊗ · · · ⊗ ρM corresponds to the case inwhich the subsystems are
completely independent. The multipartite mutual information measures the amount
of correlations among all subsystems and the relation (1.140) still holds in the form

I (1 : 2 : . . . : M) =
M∑

i=1

S(ρi ) − S(ρ). (1.145)

However, in the multipartite case there exist many other partial mutual informations
measuring the correlations in some subset of systems, or conditional mutual infor-
mations stressing the amount of correlations between some subsystems given some
knowledge about other ones.

1.4.3 Quantum Discord

The separation of correlations into classical and quantum parts by means of entan-
glement has been questioned in the last decade, motivated in part by the discovery of
quantum exponential speedups in some computational tasks with vanishingly small
entanglement [91]. This led some authors to consider quantum correlations beyond
entanglement, introducing the so-called quantum discord as a quantifier of the quan-
tumness of correlations [87, 90].

As we commented in the previous section, the classical notion of mutual infor-
mation unfolds into two different concepts when extending it to the quantum case.
Together with the quantum mutual information defined in Eqs. (1.139) and (1.140),
which represents the intersection of uncertainties between the two subsystems A and
B of the composite system AB (see Fig. 1.10), we may define a different mutual
information based on information acquisition through (ideal) measurements on one
of the subsystems. Consider again the state ρAB with marginals ρA and ρB . If we
measure subsystem B by means of a set of projectors {�̂B

k } (corresponding to some
observable of subsystem B), then the informationwe obtain about subsystem A reads

J (A : B){�̂B
k } ≡ S(ρA) − S(A|{�̂B

k })
= S(ρA) −

∑

k

Pk S(ρ
′(k)
A ) � 0, (1.146)
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where Pk = Tr[(1̂A ⊗ �̂B
k )ρAB] is the probability of obtaining outcome k in the

measurement, and

ρ
′(k)
A = TrB[ρ ′(k)

AB ] = TrB[(1̂A ⊗ �̂B
k )ρAB(1̂A ⊗ �̂B

k )]/Pk, (1.147)

is the conditional state of subsystem A after measurement in B (see Sect. 1.3.2).
This version of the mutual information, as the average information gain (entropy
decrease) in one subsystem by performing measurements in the other, does not coin-
cide, in general, with the definition in Eq. (1.139), representing the total amount of
correlations. As we mentioned above, this is in sharp contrast with the classical case,
in which the two definitions of mutual information are equivalent due to Bayes’ rule.

When the mutual information in Eq. (1.146) is maximized over all possible mea-
surements in subsystem B, we obtain the classical part of the correlations in the state
ρAB [87]:

J (A : B) = max
{�̂B

k }
J (A : B){�̂B

k }. (1.148)

This is the maximum amount of information that can be obtained on average about
one subsystem by measuring the other one. The quantum discord is defined as the
difference [90]:

δ(A : B) ≡ I (A : B) − J (A : B) =
= min

{�̂B
k }

S(A|{�̂B
k }) + S(ρB) − S(ρAB) � 0, (1.149)

which hence corresponds to the quantum part of the correlations. Notice that the
maximization in Eq. (1.148) translates into a minimization in Eq. (1.149), equiv-
alent to finding the measurement which disturbs least the global state ρAB while
extracting the maximum amount of information about A [90]. Furthermore discord
is asymmetric in A and B, and zero if and only if

δ(A : B) = 0 ⇔ ρAB =
∑

k

(1̂A ⊗ �̂B
k )ρAB(1̂A ⊗ �̂B

k ), (1.150)

meaning that all the mutual information can be locally recovered without disturbance
in the global state ρAB = ∑

k Pkρ
′(k)
AB . This corresponds to a different notion of clas-

sicality in correlations, not based on separability, but on the disturbance of the global
state when acquiring local information. Interestingly quantum discord reduces to
entanglement in the case of pure states. On the other hand, quantum correlations in
mixed states can be present even in separable states (see Fig. 1.11). We also mention
that discord is bounded from above by the von Neumann entropy of the measured
subsystem, that is δ(A : B) � S(ρB) [92].

Quantum discord has attracted increasing attention in the quantum information,
quantum computation and quantum foundations communities, raising the question
of how to distinguish between classical and quantum correlations, also in view of
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Fig. 1.11 Value of the discord for Werner states 1−z
4 1̂ + z|ψ〉〈ψ | (for z ∈ [0, 1]), with |ψ〉 =

(|00〉 + |11〉)/√2. Discord does not depend on the basis of measurement in this case because both
1̂ and |ψ〉 are invariant under local rotations. Picture taken from Ref. [90]

applications (see [89] for a recent review). Discord has been shown to be responsible
of computational speedup in some quantum protocols not using entanglement [93,
94], to spotlight critical points associated with quantum phase transitions [95], or
to be a resource for quantum state merging [96, 97], remote state preparation [98],
entanglement distribution [99], and device-dependent quantum cryptography [100],
among others.

Albeit discord has been originally introduced using (local) rank-1 orthogonal
projectors [90] (here denoted as {�̂B

k }), it can be easily extended to generalized local
measurements (see e.g. [89]). Indeed, the class of measurements minimizing Eq.
(1.149) are not orthogonal rank-1 projectors but a class of genuine rank-1 POVMs,
whose effects are proportional to projectors, not necessarily orthogonal between
them [93] and extremal [101], that is, their elements are linearly independent [102].
Nevertheless, in the case of two qubits (or two-level systems) it has been shown
[103] that orthogonal-projectors are optimal for rank-2 states and that they provide
the correct value for rank-3 and rank-4 states up to minimal corrections.

Even if it is difficult in general to obtain an analytical expression for the quantum
discord when optimizing over generalized measurements, a closed expression for the
case of Gaussian states has been reported [104, 105]. We introduce here the relevant
expression for the Gaussian discord in the case of two-mode states, minimized for
the set of single-mode generalized Gaussian measurements [104, 105]

D(ρ) = f (
√

b) − f (ν+) − f (ν−) + f

(√
a + 2

√
ab + 2

√
g

1 + 2
√

b

)

. (1.151)
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This expression is valid for squeezed thermal states of the form Ŝρ th
A ⊗ ρ th

B Ŝ
† with

Ŝ ≡ er(â†b̂†−âb̂) the two-mode squeezing operator (â and b̂ are the corresponding anni-
hilation operators of modes A and B), and ρ th

i with i = A, B, arbitrary Gibbs states
for each mode. In Eq. (1.151) the quantities a, b, g and s correspond to the determi-
nants of the blocks of the covariance matrix VAB [Eqs. (1.135) and (1.136)], while
ν± are the maximum and minimum symplectic eigenvalues of VAB (see Sect. 1.4.1)

ν2
± = 1

2

(
a + b + 2g ± √

(a + b + 2g)2 − 4s
)

, (1.152)

and the function f (x) is defined as

f (x) =
(

x + 1

2

)

ln

(

x + 1

2

)

−
(

x − 1

2

)

ln

(

x − 1

2

)

. (1.153)

Those expressions will be used extensively along Part II of the thesis to quantify the
quantum correlations shared between interacting harmonic oscillators in a composite
Gaussian state.

Appendix

A.1 Proof of the Micro-Reversibility Principle

In Sect. 1.1.4 of this chapter we claimed that the microreversibility principle for non-
autonomous systems can be generalized to the case in which the systemHamiltonian
is not invariant under the action of the time-reversal operator, that is [�̂, Ĥ(λ)] �= 0.
Here we provide a proof which is essentially the proof presented by Campisi et al.
in Ref. [18], while the key point is the observation that the condition [�̂, Ĥ(λ)] = 0
is not needed if one defines the time-reversed unitary evolution Û
̃(t, 0) as the one
governed by the Hamiltonian

ĤR(λ̃) ≡ �̂Ĥ(λ̃)�̂†. (A.1)

Following Ref. [18] one may discretize Û
(τ − t, 0) as a time-ordered product in a
large number of steps of duration ε = t/N as

Û
̃(τ − t, 0) = lim
N→∞ e− i

�
ĤR(λ̃(τ−Nε))ε e− i

�
ĤR(λ̃(τ−(N−1)ε))ε ...

... e− i
�

ĤR(λ̃(ε))ε e− i
�

ĤR(λ̃(0))ε . (A.2)

Then using λ̃(t) = λτ−t , i.e. in the time-reversed dynamics the control parameter
takes the inverse sequence of values, we have
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Û
̃(τ − t, 0) = lim
N→∞e− i

�
ĤR(λ(Nε))ε e− i

�
ĤR(λ((N−1)ε))ε ...

... e− i
�

ĤR(λ(τ−ε))εe− i
�

ĤR(λ(τ ))ε . (A.3)

Now inserting the product �̂†�̂ = 1 in between any two exponentials in the decom-
position we may calculate

�̂†Û
̃(τ − t, 0)�̂ = lim
N→∞ �̂†e− i

�
ĤR(λ̃(Nε))ε�̂†�̂e− i

�
ĤR(λ̃((N−1)ε))ε

�̂†�̂ ... �̂†�̂e− i
�

ĤR(λ̃(τ−ε))ε�̂†�̂e− i
�

ĤR(λ̃(τ ))ε�̂.

At this point, we calculate the action of the time-reversal operation on any exponen-
tial, which leads to

�̂†e− i
�

ĤR(λ)ε�̂ = e
i
�

�̂† ĤR(λ)�̂ε = e
i
�

Ĥ(λ)ε, (A.4)

where we have used that ε is a real number and, crucially, the definition (A.1). Using
Eq. (A.4) we hence obtain

�̂†Û
̃(τ − t, 0)�̂ = lim
N→∞ e

i
�

Ĥ(λ(Nε))ε e
i
�

Ĥ(λ((N−1)ε))ε (A.5)

...e
i
�

Ĥ(λ(τ−ε))ε e
i
�

Ĥ(λ(τ ))ε

= lim
N→∞

[
e− i

�
Ĥ(λ(τ ))ε e− i

�
Ĥ(λ(τ−ε))ε

... e− i
�

Ĥ(λ((N+1)ε))ε e− i
�

Ĥ(λ(Nε))ε
]†

,

and then �̂†Û
̃(τ − t, 0)�̂ = Û
(τ, t), that is, we recover the micro-reversibility
principle in Eq. (1.15).
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Chapter 2
Open Quantum Systems Dynamics

In the previous chapter we reviewed a number of fundamental concepts and elements
needed to build a satisfactory description of open quantum systems. We are now in
position to properly focus on the dynamical evolution of open quantum systems
and its main properties. In the framework of open quantum systems the interaction
of a system with its surroundings induces a noise affecting the evolution of the
system of interest. This noise appears as a result of neglecting or averaging over
the complete isolated evolution of system plus environment, which allows us to
obtain an approximate effective description of the open system dynamics which is
mathematically tractable.

Along this chapter, we will see that there exist different approaches to describe
the dynamics of open quantum systems, which involve different levels of generality
and approximations, and may result useful in different contexts. As a field developed
by many different communities one may also find, as pointed in Ref. [1], that the
kind of tools and approximations involved in the description of e.g. optical systems
[2–4], may greatly differ from those employed in condensed matter [5], quantum
information theory [6], or statistical physics [7–9]. The purpose of this chapter is not
to provide a review of these many different approaches, but to introduce the main
tools we will employ along the thesis. Modern expositions providing a unifying view
while covering the most important methods in open quantum system theory, can be
found in excellent specialized textbooks in the matter (see e.g. [1, 10, 11]).

Here we primarily differentiate between twomain approaches to describe the evo-
lution of open quantum systems. The first one corresponds to the general formalism
of quantum maps and operations, a powerful tool which has received increased
attention in the context of quantum computation and quantum information [6].
This general framework provides a mathematical description which can be derived
from few physically motivated axioms. It is based on discrete state changes where
the explicit reference to time plays a very secondary role. Its range of applicabil-
ity is huge, including systems interacting weakly as well as strongly with their
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surroundings, or being suddenly measured. The second approach to describe open
quantum systems dynamics is provided by both master equations and stochastic
differential equations. They give rise to a continuous-time description of the dynam-
ics useful to understand the processes involved in the system evolution and their
properties. However, the development of such approaches often requires more spe-
cific approximations. In the following we will present and discuss both dynamical
descriptions, highlighting the specific concepts and techniques which will be useful
in the following chapters of this thesis.

This chapter starts in Sect. 2.1 by introducing the general framework of quantum
maps and operations, together with fundamental related concepts such as positivity
or complete positivity. We will introduce an important tool in the quantum maps and
operations formalism, the Kraus sum decomposition, and discuss its implications,
establishing connections to quantum measurement theory and the environmental
modelings of the maps. We then move to the time-continuous approach for open
quantum systems, introducing the concept of quantum master equations in Sect. 2.2.
We will focus on a particular and important case of open quantum system dynam-
ics, the one following a Markov process, and derive the master equation governing
its evolution from both theoretical considerations and microscopic derivations. In
Sect. 2.3 we present different examples of Markovian master equations concerning
the open system dynamics of prototypical systems (qubit and harmonic oscillator)
in different dissipative situations. Next, we discuss in Sect. 2.4 the extension of the
master equation formalism to the case of many-body systems where different mech-
anisms of dissipation may be present, developing a master equation approach for
the case of coupled dissipative oscillators. Finally, we review in Sect. 2.5 the formal-
ism of quantum trajectories, where measurement and environmental action meet in a
unique framework giving rise to the stochastic Schrödinger equation, complementing
the master equation approach.

2.1 Quantum Maps and Operations

Noise in classical systems is usually described by the theory of stochastic processes,
in which the state of a system is allowed to change into other states by following
some probability rules. If, for instance, the states of the system are a discretized set,
following the exposition in Ref. [6], one can associate an input probability vector
�p = (p1, p2, . . . , pN ) to the initial probabilities of the system to be in its different N
states. Then after some time in which the system interacts with the environment, we
will have some output probabilities �p′, that in the simplest case are linearly related
to the input ones by

�p′ = M �p, (2.1)

where M is a N × N matrix whose elements are conditional probabilities, usually
called the evolution matrix. This evolution matrix must fulfill two important prop-
erties in order to guarantee that the components of the vector �p′ are well defined
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probabilities. The first one is known as positivity, meaning that all the entries of M
are non-negative. The second is known as completeness, requiring that the columns
of M sum up to one. Of course, the values of the conditional probabilities depend
on the specific nature of the interaction with the environment, implying that one will
need in general some modeling of the underlying processes to determine M .

In order to characterize noisy processes in quantum systems the previous formal-
ism must be generalized. In first place we replace the probability vectors such as �p
by density operators, ρ. Hence, analogously to Eq. (2.1), we introduce the map

ρ ′ = E(ρ) (2.2)

providing an output stateρ ′ when the input state isρ.E is a quantummap and captures
any dynamical change in the state of a quantum system. The simplest example of
a quantum map is given by a unitary transformation (see Sect. 1.1 of the previous
chapter), for which ρ ′ = E(ρ) = ÛρÛ †, and corresponds to the case for which the
system does not decohere into the environment (but at most interacts with an ideal
external driver). Other examples of quantum maps are unconditional measurements,
both ideal or generalized. In that case ρ ′ = E(ρ) = ∑

k,n M̂k,nρM̂
†
k,n, where M̂k,n are

the measurement operators introduced in Sect. 1.3. However, the theory of quantum
maps and operations can be used to describe more general situations [6].

Following Sect. 1.3.2 in Chap.1 a natural way of interpreting Eq. (2.2) is consid-
ering it as the result of partial tracing over the environment degrees of freedom after
some unitary interaction between our system of interest and its surroundings. If we
assume that system and environment start in some product state ρ ⊗ ρE , where the
subscript E denotes the environment degrees of freedom, after an arbitrary transfor-
mation Û our system is described by

ρ ′ = E(ρ) ≡ Tr[Û (ρ ⊗ ρE)Û †]. (2.3)

This is one way to provide a definition of quantum maps [6]. Here we assumed
system and environment as initially uncorrelated, which in principle may limit the
applicability of the formalism. However, it must be stressed that in many situations
of physical interest the initial experimental preparation of the state ρ ideally implies
the destruction of all the previously generated correlations between system and envi-
ronment, in accordance with Eq. (2.3). We will turn to this question below.

A second way of defining quantum maps, more interesting from an operational
point of view, is by direct imposition on Eq. (2.2) of a set physically motivated
constraints, in analogy to the case of classical stochastic processes. In order to ensure
that E describes a physical process transforming well defined density operators on
well defined density operators, we must require the following conditions:

1. The quantummapmust preserve the trace, that is Tr[E(ρ)] = Tr[ρ] = 1, to return
a physical output density operator.

2. The quantummap is required to be convex linear. Thismeans that, for an ensemble
of density operators {ρi} randomly chosen with probabilities pi with

∑
i pi = 1,
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Fig. 2.1 Schematic representation of the equivalence between the definition of a quantum map as
a result of partial tracing over the environmental degrees of freedom after an interaction between
the system of interest and its surroundings, c.f. Eq. (2.3), and in terms of requiring it to be a linear
CPTP map (red arrow)

we have

E

(
∑

i

piρi

)

=
∑

i

piE(ρi). (2.4)

This requirement can be physically motivated by application of Bayes’ theorem
[10].

3. The quantum map Emust be completely positive. This condition is stronger than
positivity, the latter meaning that E maps positive operators onto positive opera-
tors. Complete positivity implies that if we enlarge theHilbert space of our system
of interest by including an extra ancillary system of arbitrary dimension dA, but
which do not interact with the system of interest at any stage, the map (E ⊗ 1A)

acting on the global system, must be also positive (see Ref. [1] for a transpar-
ent discussion of this point). We stress that, while complete positivity implies
positivity, the contrary is not always true, a statement which can be proven by
considering the partial transposition operation.

Quantum maps obeying those three general requirements are commonly called
completely positive and trace preserving (CPTP) maps or also quantum channels.
In addition to CPTP maps, we may define a more general class of quantum opera-
tions by relaxing the first assumption regarding the preservation of the trace, while
maintaining intact the second and the third requirements. In such case we replace the
condition Tr[ρ ′] = TrE(ρ), by 0 � Tr[E(ρ)] � 1, which implies that the operator
resulting from the application of the mapping E(ρ) must be normalized in order to
represent a legal density operator. This generalization allows to include general selec-
tive quantum measurements into the framework, in which case E is related to some
measurement result, and the quantity Tr[E(ρ)] must be regarded as the probability
to obtain such result (Fig. 2.1).
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2.1.1 Properties of CPTP Maps

Some interesting properties of CPTP maps are the following:

• CPTP maps are contractive, that is, any CPTP map E causes a contraction on the
space of density operators. This property can be properly expressed in mathemat-
ical terms by using the trace distance (see Sect. 1.1.7 in Chap.1) as

T (ρ, σ ) � T (E(ρ),E(σ )). (2.5)

It is worth noticing that the last inequality is fulfilled as well when replacing
the trace distance by the quantum relative entropy [12], D(ρ||σ) as introduced
in Sect. 1.1.6 of Chap.1. This result, called the Uhlmann inequality, is of central
importance both in the context of quantum information processing, and when
considering the thermodynamics of open quantum systems [13]. With respect to
the fidelity, F(ρ, σ ), the above equation is also fulfilled inverting the direction of
the inequality.

• Any CPTP map E has at least an invariant state (or fixed point) π , such that

E(π) = π, (2.6)

a result which follows from Schauder’s fixed point theorem [6]. Furthermore, if E
is strictly contractive, i.e.

T (ρ, σ ) > T (E(ρ),E(σ )), (2.7)

for anyρ andσ , then themaphas a uniquefixed point,which is called the stationary
state.

• CPTP maps fulfilling E(1) = 1, that is, for which the identity operator is a fixed
point of the dynamics, are called unital maps or bistochastic maps. They constitute
an important class of quantum CPTP maps, including unitary evolution as well
as ideal projective measurements as special cases. Unital maps exhibit special
thermodynamic properties, as we will see in Part III of the thesis. An important
property of unital maps is that they can never decrease the von Neumann entropy
of any state ρ:

S(ρ) � S(E(ρ)). (2.8)

• Any quantum CPTP map of the form

E(ρ) = pρ0 + (1 − p)E′(ρ), (2.9)

where ρ0 is a density operator, E′(ρ) is another CPTP map, and 0 � p � 1, is
strictly contractive, and therefore it has a unique fixed point π = ρ0. The physical
meaning of the above map is that with probability p it replaces the state ρ by the
predefined ρ0, and with probability 1 − p it applies the map E′(ρ).
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• The set of CPTP maps possesses a semi-group structure under concatenation. If
E1 and E2 are two CPTP maps, the concatenation

�(ρ) ≡ E2 ◦ E1(ρ) = E2(E1(ρ)), (2.10)

is also a CPTP map. However notice that the operation ◦ is not commutative, i.e.
in general E2 ◦ E1(ρ) �= E1 ◦ E2(ρ).

• A CPTP map E is invertible, that is, one can guarantee the existence of another
CPTP map E−1 such that

E−1 ◦ E = 1, (2.11)

if and only if it is a reversible transformation given by a unitary mapping, E(ρ) =
ÛSρÛ †

S with ÛS unitary.

2.1.2 Kraus Operator-Sum Representation

An important theorem due to Karl Kraus [14] states that the map E satisfies the three
requirements introduced in the above section (both for the case of CPTP maps or for
general quantum operations) if and only if it can be written as

E(ρ) =
∑

k

M̂kρM̂
†
k . (2.12)

Here the countable set of operators {M̂k} are called the Kraus operators, mapping the
input Hilbert space into the output Hilbert space, and fulfill

∑
k M̂

†
k M̂k � 1 (reaching

the equality in the case of CPTP maps). The form in Eq. (2.12) is usually called the
Kraus operator-sum representation or decomposition of the map E, and the above
theorem is usually referred to as the representation theorem.

The operator-sum representation provides a useful way to write a CPTP map
(or a quantum operation) without having to consider the specific properties of the
environment, which are just encoded in the form of the Kraus operators M̂k . Indeed,
many different environments can result in the same dynamical representation. This is
an important feature, as it can greatly simplify the calculations and provide theoretical
insights [6]. The Kraus representation also provides a physical interpretation of the
process (2.2) analogous to classical stochastic maps. The map E is understood as the
application of a number of physical operations on the system

E(ρ) =
∑

k

Ek(ρ), with Ek(ρ) = M̂kρM̂
†
k , (2.13)

occurring with probability Pk = Tr[Ek(ρ)]. Each operations transforms the initial
state ρ into
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ρ ′
k = Ek(ρ)

Pk
, (2.14)

thus the map E randomly replaces ρ by ρ ′
k with probability Pk . This is a very similar

picture as in the case of noisy communication channels [6]. Furthermore, it is worth
noticing that theKraus operator-sum representation in not unique. Ifwe have operator
elements {M̂k}Kk=1 and {F̂j}Jj=1 corresponding to two quantum operations E and F

respectively, and we append zero operators to the shorter set until K = J , it follows
that E = F if and only if

M̂k =
∑

j

ukjF̂j (2.15)

for ukj the entries of a K × K unitary matrix. This freedom implies that all quantum
operationsE acting on aHilbert spaceH of dimension dim(H) = N can be generated
by an operator-sum representation of at mostN 2 Kraus operators. Among all possible
Kraus representations there exists a canonical form with an orthogonality relation
between the Kraus operators Tr[M̂ †

k M̂l] ∼ δk,l .
It is finally worth recalling here that complete positivity requires that the map E is

physically meaningful for any arbitrary initial state ρ. Following the representation
theorem, this implies that the Kraus operators appearing in Eq. (2.12) do not depend
on the input state ρ, which is also equivalent to the first definition of quantum maps
provided in Eq. (2.3) for an initial product state between system and environment
[1]. On the contrary, maps of the form E(ρ) ≡ TrE[ÛρtotÛ †] with TrE[ρtot] = ρ and
ρtot an arbitrary correlated state may be written as in (2.12), but complete positivity
is not guaranteed for any initial state. This can be understood by simply noticing
that the initial correlations between system and environment will be encoded in the
Kraus operators M̂k of the mapping, which are related to the specific state ρ shar-
ing that correlations, and not to any arbitrary state. Henceforth it can happen that
for some initial input states the dynamics

∑
k M̂kρM̂

†
k is not completely positive.

However, it has been shown in Refs. [15, 16] that the Kraus operator-sum represen-
tation in Eq. (2.12) is still valid for any quantum evolution by allowing the Kraus
operators to explicitly depend on the initial state ρ, i.e. M̂k = M̂k(ρ). This kind of
more general evolution is not included in the framework of CPTP maps presented
here.

2.1.3 Environmental Models

Notice the similarities of the above introduced framework of quantum CPTP maps
and the general quantum measurements introduced in Sect. 1.3.2. Indeed, using the
Kraus representation, any CPTP map can be viewed as an efficient measurement for
which the environment plays the role of the ancillary system, starting in some pure
state |φ0〉E and being found to be in some state of the basis {|φk〉E} after the global
interaction Û . In this case the Kraus operators would read
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M̂k ≡ 〈φk |E Û |φ0〉E . (2.16)

Here the operator Û must be defined by its action as Û |ψ〉 |φ0〉E ≡ ∑
k M̂k |ψ〉 |φk〉E ,

for any arbitrary state of the system |ψ〉. This imposes that the first column elements
of Û when represented in the basis {|φk〉E} correspond to the set of Kraus operators
{M̂k}, while the rest of the elements can be arbitrarily chosen such that Û is unitary [6].
This kind of environmental model is sometimes called the Stinespring representation
of the map, and is always well defined even in the case of an environment starting in
some mixed state ρE via purification [17, 18].

Finding an environmentalmodel for the case of quantumoperations not preserving
the trace follows in a similar manner, with the difference that now one can associate
to the initial state of the environment a probability, therefore including a source of
classical noise in the description

M̂k ≡ √
p0 〈φk |E Û |φ0〉E , (2.17)

0 � p0 � 1 being the probability that the environment is initially in |φ〉0. Now it can
be easily checked that

∑
k M̂

†
k M̂k = p01̂ � 1̂. Alternatively one can also associate

the operation E to the result of a measurement performed in the system [6].
Finally, we stress that the unitary freedom in the selection of the Kraus operator-

sum representation can be easily identified in the environmental representation intro-
duced above by introducing a final local unitary transformation acting only on the
environmental degrees of freedom, ÛE . Clearly, the introduction of this unitary pro-
cess does not influence the dynamics of the system of interest, which is still described
by the sameCPTPmap (or quantumoperation)E. However, alternatively to (2.16) [or
(2.17) for quantum operations] we can define a new representation given by elements

F̂k ≡ 〈φk |E (1̂ ⊗ ÛE)Û |φ0〉E = 〈φ′
k |E Û |φ0〉E , (2.18)

where we introduced a new set of orthonormal basis elements for the environment
{|ψ ′

k〉E ≡ Û †
E |φk〉E}. We hence see that the action of the local unitary ÛE can be

included in the selection of a different environmental basis. Now it can be easily
shown that the relation (2.15) between the old and new Kraus operators is

F̂k =
∑

j

〈φk |E ÛE |φj〉E 〈φj|E Û |ψ0〉E =
∑

j

ukjM̂j, (2.19)

with ukj ≡ 〈φk |E ÛE |ψk〉E entries of a unitary matrix. From the above reasoning
we hence see that the unitary freedom of the Kraus operator-sum representation
is equivalent to the selection of a specific environmental basis which, following
Sect. 1.3.2, corresponds to the basis where measurements are performed.
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Fig. 2.2 Effect of the depolarizing channel on the Bloch sphere of a qubit system. All pure states
in the surface of the Bloch sphere are mapped to mixed states in the inner sphere. The entire sphere
contracts uniformly with p, in this case p = 0.5. The picture has been obtained from Ref. [6]

2.1.4 Some Examples of CPTP Maps

Here we give two simple examples of CPTP maps. The first one is the so-called
depolarizing channel, operating on finite dimensional quantum systems

E(ρ) = (1 − p)ρ + p
1̂

N
Tr[ρ], (2.20)

where 0 � p � 1 is called the probability of error, and N is the dimension of the
Hilbert space, H. This CPTP quantum map transform the initial state ρ into the
maximally mixed state 1/N with probability p and has no effect with probability
1 − p. A Kraus operator-sum representation of the map is given by [18]

E(ρ) = M̂0ρM̂
†
0 +

N∑

ij=1

M̂ijρM̂
†
ij , (2.21)

with M̂0 = √
1 − p 1, and M̂ij = √

p/N |ψi〉 〈ψj| being {|ψi〉}Ni=1 an arbitrary
orthonormal basis of H. This gives us a decomposition of the map into operations
leaving the state untouched with probability 1 − p (operator M̂0), or transforming
it into the pure state |ψi〉 with probability p 〈ψj| ρ |ψj〉 /N (operator M̂ij). It can be
easily checked that the depolarizing channel is strictly contractive, as it is of the form
(2.9). Therefore, it has a unique fixed point (steady state) π = 1̂

N Tr[ρ], to which any
initial state converges after a large sequence of successive applications of the map.
In the case of a qubit system, a single application of the map can be visualized on the
Bloch sphere (see Sect. 1.2.1 in Chap.1) by representing all the output states when
the input are pure states (that is, the surface of the sphere), as shown in Fig. 2.2.
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Our second example is the generalized amplitude damping channel for qubit
systems. It describes e.g. the relaxation process of a spin due to its coupling to other
spins in a surrounding lattice (or more general spin environments) when they are in
thermal equilibrium, a relevant situation in NMR quantum computation [6]. A Kraus
operator-sum representation of such CPTP map is defined by four Kraus operators
of the form

M̂0 = √
p

(
1 0
0

√
1 − λ

)

, M̂1 = √
p

(
0

√
λ

0 0

)

, (2.22)

M̂2 = √
1 − p

(√
1 − λ 0
0 1

)

, M̂3 = √
1 − p

(
0 0√
λ 0

)

,

in the basis defined by |0〉 =
(
1
0

)

and |1〉 =
(
0
1

)

.

The two parameters appearing in Eq. (2.22), 0 � p � 1 and 0 � λ � 1 can be
associated to physical processes producing this map. For instance in the case of a
two-level atomwith energy spacingE weakly interacting in the dipole approximation
with a thermal radiation reservoir at inverse temperature β = 1/kBT , we can make
the identifications

p ≡ nth + 1

2nth + 1
, λ ≡ 1 − e−t/τR , (2.23)

where nth = (eβE − 1)−1 is the mean number of thermal photons with energy E (see
Sect. 1.2.3), t parametrizes time, and τR ∝ (2nth + 1)−1 is the relaxation time. In
such case, the operator M̂1 (M̂3) describes a jump process where the atom emits
(absorbs) an energy quantum E to (from) the environment, and the operator M̂0 (M̂2)
a monitoring process in which the amplitude of state |1〉 (|0〉) decreases, while the
coherences in the energy basis are damped.

The generalized amplitude damping channel is also strictly contractive, being
its unique fixed point (stationary state) π = p |0〉 〈0| + (1 − p) |1〉 〈1|. Using the
identification (2.23) for p, the stationary state π is easily shown to correspond to the
Gibbs thermal equilibrium state at inverse temperature β:

p = 1

Z
, 1 − p = e−βE

Z
, with Z = 1 + e−βE, (2.24)

as introduced in Sect. 1.2.1. Therefore, many successive applications of the map (or
also when t → ∞) produce the complete thermalization of the two-level system
to the reservoir’s temperature. We notice that the generalized amplitude damping
channel can be further generalized to describe the effect of a squeezed thermal reser-
voir (e.g. a continuum of light modes in a squeezed thermal state) on the qubit
system [19].



2.2 Markovian Master Equations 69

2.2 Markovian Master Equations

So far we provided a characterization of open quantum system dynamics mainly
focused on discrete transformations, where time does not explicitly enter in the
description, and the specific time evolution occurring in the larger Hilbert space of
the global system (open system plus its environment) played only a secondary role.
Here we will turn our perspective to a continuous-time description of open quantum
systems based on the development of differential equations for the density operator, a
method usually called the master equation approach. This approach requires a more
careful look at the global picture, as we will shortly see. In this section we show
how one can deduce master equations describing the evolution of an open quantum
system both by deriving it from the above quantum maps and operations formalism,
or considering specificmodels for the environment and its interactionwith the system
of interest.

Let us start by discussing continuity in timeof quantumCPTPmaps andoperations
inspired by the more detailed discussion presented in Ref. [1]. We have previously
seen that the concatenation of CPTP maps provides a well defined CPTP map, how-
ever we will now see that the converse statement is not always true. Consider a CPTP
map E describing the dynamics of an open quantum system from some initial instant
of time t0 to some posterior instant t2. We pursue the splitting of the map as a con-
catenation of two CPTP maps, E ≡ E2 ◦ E1, where E1 describes the evolution of the
open system from the initial time t0 to t1, and E2 describes it from time t1 to t2. As
we have previously seen, the CPTP map E can be viewed as the result of tracing
the environmental degrees of freedom after a global unitary evolution of system and
environment

E(ρ(t0)) = TrE[Û (ρ(t0) ⊗ ρE)Û †] = ρ(t2), (2.25)

where initially, system and environment must be completely uncorrelated. However,
we may in principle do the same for the maps E1 and E2 as we want they to be
also CPTP. By splitting the global unitary evolution as Û = Û2Û1 we can indeed
provide such environmental representation for E1, but for the case of E2 we would
obtain

E2(ρ(t1)) = TrE[Û2ρtot(t1)Û
†
2 ] = ρ(t2). (2.26)

Here the state ρtot(t1) = Û1(ρ(t0) ⊗ ρE)Û †
2 in general contains correlations, imply-

ing that it cannot be written in the required product state form ρtot(t1) �= ρ(t1) ⊗
ρE(t1), with ρE(t1) the reduced state of the environment at time t1. From the above
reasoning it follows that one cannot in general deduce a continuous-time evolu-
tion, as we cannot in general split a generic CPTP map E in a concatenation of
many CPTP maps describing infinitesimal time-steps of the dynamics. The evolu-
tions which allow time divisibility E ≡ E2 ◦ E1 as discussed above, are sometimes
called Markovian evolutions, a convention that we will adopt in this thesis, and are
analogous to the classical evolutions fulfilling the Chapman–Kolmogorov equation,
introduced in the context of Markov processes [1]. The underlying physical idea
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behind Markovian evolution in both classical and quantum cases, is that the dynami-
cal effects arising in the open systemas a result of the interactionwith its surroundings
can be considered to be uncorrelated from one infinitesimal instant of time to the
next. However, other notions of Markovianity have been introduced in the context
of open quantum systems, e.g. based on measures of the back-flow of information
between system and environment [20] (for reviews see Refs. [21, 22]).

From the above discussion, it becomes clear that we may need to introduce extra
conditions in order to ensure a description of CPTP dynamics in terms of differential
equations. Consider the splitting of time into a sequence of small time steps of
duration τ . If we denote ρ(t) the density operator of the open system at an arbitrary
time t, after one of those small time steps we have ρ(t + τ) = Et(ρ(t)) being Et a
CPTPmap, whichmay depend both on t and τ . From this coarse-grained description,
a first-order differential equation (or master equation) can be mathematically defined
as

dρ(t)

dt
= lim

τ→0

ρ(t + τ) − ρ(t)

τ
= Lt(ρ(t)), (2.27)

with Lt ≡ limτ→0

(
Et − 1̂

)
/τ , provided the limit τ → 0 is well defined (smooth

evolution) [1]. However, as we have seen previously, to define the CPTP maps Et ,
we must require that the global state of system and environment at any time t

ρtot(t) = ρ(t) ⊗ ρE(t) + δρcorr(t) ≈ ρ(t) ⊗ ρE(t), (2.28)

where δρcorr(t) is a traceless term containing the correlations between system and
environment due to its prior interaction and ρE(t) is the reduced state of the environ-
ment at time t.

Equation (2.28) may be fulfilled under a variety of physical circumstances. The
most common situation is to consider the environment a large system in some steady
state with small fluctuations ρE(t) = ρE + δρE(t) and with levels spanning a wide
energy range ��ω [23] (see also Sect. 2.2.2 below). In this case the time scale asso-
ciated to the two-time correlations of the terms δρE(t) and δρcorr(t) is very short, of
the order τc = �/�ω, while the time scale associated to the variation of the system
density operator is τρ = �

2/g2τc, g being the magnitude of the coupling between
system and environment. Therefore, if τc � τρ , which is the case when the cou-
pling is weak, g � �/τc = �ω, we can always choose a coarse-grained time τ such
that τc � τ � τρ . Then the influence of δρE(t) and δρcorr(t) in ρ(t + τ), devel-
oped only during the interval [t, t + τc], is negligible (for details see Ref. [23]). This
corresponds to Markov conditions, as the environment becomes effectively mem-
oryless (see Sect. 2.2.2 below). It is important to notice that, although Eq. (2.28)
is fulfilled, system and environment will continuously create classical and quan-
tum correlations between them, but those correlations are not significantly affecting
the evolution of the open system. A second situation, described by the so-called
collisional models, consists of a system that interacts sequentially with indepen-
dent parts of the environment at random times. In such case, if the environment
is sufficiently big, the probability that the system of interest interacts more than
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one time with the same part of the environment becomes negligible, and we can
assume that Eq. (2.28) is true. This kind of situation is usually engineered in cav-
ity quantum electrodynamics, where an electromagnetic field mode is trapped in a
micro-cavity and interacts with a sequence of atoms crossing the cavity and acting as
its environment [23]. As important examples we mention the derivation of the one-
atom maser master equation [24], and the bosonic collisional model developed in
Sect. 2.3.

2.2.1 The Lindblad Form

The more general form for a Markovian master equation [see Eq. (2.27)] reads [1]

dρ

dt
= − i

�
[Ĥ , ρ] +

K∑

k=1

γk(t)

(

L̂kρL̂
†
k −

∑

k

{L̂†k L̂k , ρ}
)

= Lt(ρ), (2.29)

where Ĥ ≡ Ĥ (t) is a time-dependent Hermitian (Hamiltonian-like) operator, L̂k ≡
L̂k(t) are called the Lindblad operators, and γk(t) � 0 ∀ k, t, are positive time-
dependent rates. In the above equation, the first term is reminiscent of the Liouville–
von Neumann equation (see Sect. 1.1 in Chap.1) and describes a reversible unitary
evolution in the system of interest. In contrast, the second term containing the Lind-
blad operators introduces an irreversible component, which is decomposed in a set
of K different processes, each of them occurring with respective rate γk . Indeed the
Lindblad master equation (2.29) provides a physical picture of the evolution con-
sisting of a smooth dynamics punctuated by different irreversible transformations,
occurring at rates γk . This interpretation will be developed in more detail when we
introduce the quantum trajectory formalism in Sect. 2.5.

The problem of finding the most general form of a CPTP master equation was
investigated by Gorini, Kossakowski and Sudarshan [9], and by Lindblad [8]. They
first derived Eq. (2.29) for the case of time-homogeneous equations, that is, when the
generatorLt is time-independent. In this case theCPTPmapsEt(ρ(t0)) = exp(L(t −
t0))ρ(t0) form a one-parameter semigroup, i.e. they satisfy the divisibility condition
EtEs = Et+s, andTr[ÔEt(ρ(t0))] is a continuous function of t for any density operator
ρ(t0) and Hermitian operator Ô [11]. From now on, we will focus on this simpler
case.

As in the Kraus operator-sum decomposition, the Lindblad operators {L̂k}Kk=0 in
Eq. (2.29) are not unique. They obey the same unitary freedom relation Eq. (2.15),
replacing the Kraus operators M̂k by

√
γk L̂k . Analogously, by requiring the Lindblad

operators to be linearly independent, a Lindblad master equation can be derived with
at most N 2 elements, N being the dimension of the open system Hilbert space. In
addition, Eq. (2.29) is invariant under the transformation
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L̂k → L̂k + lk , Ĥ → Ĥ − i

2

K∑

k=1

γk

(
l∗k L̂k − lk L̂

†
k

)
+ r, (2.30)

where lk are arbitrary complex coefficients, and r is a real number. The latter property
implies that it is always possible to choose traceless Lindblad operators [10].

Two further important properties of the evolution generated by a completely pos-
itive semigroup Et = eL(t−t0) (with time-independent generator L) are:

• There exists always one invariant state π , such that L(π) = 0. This is a conse-
quence of the properties of CPTP maps, which, as stated before, have always at
least one fixed point Et(π) = π . If the invariant state π is unique we call it steady
state, and the semigroup Et is strictly contractive (see Sect. 2.1.1), implying

lim
t→∞Et(ρ(t0)) = π. (2.31)

• If the set of Lindblad operators L ≡ {L̂Kk=1} is self-adjoint, that is, the adjoint of any
operator L̂k is also in the set L, and all the elements [L̂k , Â] �= 0 for any arbitrary
operator Â except Â = 1̂, hence the semigroup is relaxing [25] (see also [1]). In
such case we say that the Lindblad operators {L̂k}Kk=1 come in pairs, a condition
which will be proven very useful in discussing the thermodynamics generated
from Lindblad master equations in Part III of this thesis.

2.2.2 The Born–Markov Master Equation

In many situations of interest a Markovian master equation in Lindblad form,
Eq. (2.29), can be obtained from microscopic models taking into account the global
dynamics of system and environment, and then tracing over the environmental
degrees of freedom. This kind of approach requires however to perform approxi-
mations in order to guarantee that the dynamics is well described by a Markovian
stochastic process. Herewewill sketch a general microscopic derivation of the gener-
ator of quantum dynamical semigroups for an open system continuously interacting
with its surroundings in the weak coupling limit.

We start with the Hamiltonian

Ĥtot(t) = Ĥ + ĤE + Ĥint(t), (2.32)

where Ĥ is the Hamiltonian of the open system, ĤE is the environment Hamiltonian,
and Ĥint(t) represents the interaction between them. We will assume for simplicity
that Ĥtot is time-independent, and that the global system is closed, following a unitary
evolution given by the Liouville–von Neumann equation starting at t = 0. In the
interaction picture with respect to Ĥ0 ≡ Ĥ + ĤE , the global evolution reads
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dρI
tot(t)

dt
= − i

�
[Ĥ I

int(t), ρ
I
tot(t)], (2.33)

where Ĥ I
int(t) = e

i
�
Ĥ0t Ĥinte− i

�
Ĥ0t , and ρI

tot(t) = e
i
�
Ĥ0tρtot(t)e− i

�
Ĥ0t are the total

Hamiltonian and the global density operator at time t respectively in the interac-
tion picture (see Sect. 1.1). For ease of notation we will neglect from now on the
superscript I denoting interaction picture operators.

Equation (2.33) may be rewritten in the integral form

ρtot(t) = ρtot(0) − i

�

∫ t

s=0
ds [Ĥint(s), ρtot(s)]. (2.34)

If we introduce again Eq. (2.34) into Eq. (2.33) and take the trace over the environ-
ment, we get

dρ(t)

dt
= − i

�
TrE

(
[Ĥint, ρtot(0)]

)
− 1

�2

∫ t

0
ds TrE

(
[Ĥint(t), [Ĥint(s), ρtot(s)]]

)
,

where ρ(t) = TrE[ρtot(t)] is the density operator of the open system (in interaction
picture). This is still an exact equation. However, in order to proceed we need to
introduce some approximations. First, we assume that system and environment are
initially uncorrelated, that is ρtot(0) ≈ ρ(0) ⊗ ρE , where ρ(0) is the initial density
operator of the open system, and ρE the environment density operator. In addi-
tion, we assume that the interaction Hamiltonian (in interaction picture) verifies

TrE
(
[Ĥint, ρtot(0)]

)
= 0. This second condition is not restrictive as one can always

redefine Ĥ0 such that it is verified, by including an extra Hamiltonian term only
acting on the system Hilbert space [11]. This implies that the first term in the above
equation can be neglected.

Furthermore, an important approximation should be taken at this point, called the
Born approximation. It assumes that the open system only affects very weakly the
state of the reservoir during the evolution, so that we can replace

ρtot(s) ≈ ρ(s) ⊗ ρE, (2.35)

inside the integral term in the above equation. It is important to notice that this
approximation does not imply that we neglect the correlations built up between
system and environment, but only that they do not affect appreciably the reduced
system dynamics. Furthermore we will perform a first Markov-like approximation
by replacing ρ(s) by ρ(t), which requires the integrand to be only non-zero in a
small region around s ∼ t. Implementing the three above approximations we obtain
an integro-differential equation which is local in time

dρ(t)

dt
= − 1

�2

∫ t

0
ds TrE

(
[Ĥint(t), [Ĥint(s), ρ(t) ⊗ ρE]]

)
, (2.36)



74 2 Open Quantum Systems Dynamics

called the Redfield equation, which is still not strictly Markovian [10, 11]. We need
to perform a further Markov approximation by substituting s by t − s inside the inte-
grand of Eq. (2.36), and letting the upper limit of the integral go to infinity [10]. Doing
this, we obtain a Markovian master equation with time-independent coefficients
[10, 11]

dρ(t)

dt
= − 1

�2

∫ ∞

0
ds TrE

(
[Ĥint(t), [Ĥint(t − s), ρ(t) ⊗ ρE]]

)
, (2.37)

which gives us the evolution of the open system density operator ρ with a limited
resolution on a coarse-grained time axis. The various approximations leading to
Eq. (2.37) are usually termed the Born–Markov approximation. They can be physi-
cally justified in the case of a large environment with a continuous energy spectrum
over a wide range ��ω as we explained at the beginning of the section. The crucial
point is the separation of the time scales, τρ � τc, where τρ is the characteristic time
scale of the open system dynamics in the interaction picture, and τc the characteristic
decay time for the environment correlation functions [10], which also characterizes
the generation of correlations between system and environment [23]. However, it
is important to stress that Eq. (2.37) is not necessarily the generator of a dynamical
semigroup and therefore is not guaranteed that it can be written in Lindblad form
(2.29) [7].

In order to ensure that Eq. (2.37) describes a CPTP dynamics we usually need to
perform a final secular approximation, consisting of a kind of rotating wave approx-
imation (RWA) in which one averages over rapidly oscillating terms. At this point
we assume without loss of generality the interaction Hamiltonian (in Schrödinger
picture) to be of the form

Ĥint = �

I∑

i=1

Âi ⊗ Êi, (2.38)

where Âi and Êi are ∀i = 1, 2, . . . , I Hermitian operators acting on the system and
environment degrees of freedom respectively. We then proceed by decomposing Ĥint

into eigenoperators of the system Hamiltonian, whose spectral decomposition reads
Ĥ = ∑

l εl�̂εl . We define

Âi(ω) ≡
∑

l,l′
δ(εl′ − εl − �ω) �̂εi Âi�̂εl′ , (2.39)

where δ(ε′ − ε − �ω) is the Dirac delta function selecting all possible transitions in
the system spectrum with a fixed energy difference �ω. Those operators fulfill

[Ĥ , Âi(ω)] = −�ωÂi(ω), [Ĥ , Â†
i (ω)] = �ωÂ†

i (ω),

with Â†
i (ω) = Âi(−ω), and [Ĥ , Â†

i (ω)Âi(ω)] = 0. Furthermore they obey the com-
pleteness relation

∑
ω Âi(ω) = Âi. In terms of those operators the interaction Hamil-
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tonian (2.38) in interaction picture reads

Ĥint(t) = �

∑

i,ω

e−iωt Âi(ω) ⊗ Êi(t), (2.40)

being Êi(t) = e
i
�
Ĥ0t Êie− i

�
Ĥ0t the environment operators in interaction picture. In

many cases of interest, by making explicit also the eigenoperator decomposition
of the reservoir observables Êi (with respect to ĤE), one can directly perform a
RWA in the Hamiltonian (2.40) by neglecting rapidly oscillating terms, leading to a
Markovian master equation (2.37) which can be directly written in Lindblad form.
This is the case when considering e.g. radiation-matter interaction throughout the
Jaynes–Cummings–Paul model [26, 27].

Otherwise theRWAcan be performed inside the integrand of Eq. (2.37) as follows.
Introducing Eq. (2.40) into the master equation (2.37) we arrive at

dρ

dt
=

∑

ω,ω′

∑

i,j

ei(ω
′−ω)t�ij(ω)

(
Âj(ω)ρÂ†

i (ω
′) − Â†

i (ω
′)Âj(ω)ρ

)

+ h.c., (2.41)

where h.c. denotes the hermitian conjugate of the first term, and we have defined

�ij(ω) ≡
∫ ∞

0
dseiωsTrE[Êi(t)Êj(t − s)ρE], (2.42)

the one-sided Fourier transform of the environment correlation functions, TrE[Êi(t)
Êj(t − s)ρE] with an associated characteristic decay time τc ∼ �/�ω. In some cases
the correlation functions are homogeneous in time, meaning that TrE[Êi(t)Êj(t −
s)ρE] = TrE[Êi(s)Êj(0)ρE] and ensuring that the functions �ij(ω) are time indepen-
dent. This is the case of environments such that [ĤE , ρE] = 0, the thermal equi-
librium reservoir being the most important and paradigmatic case. However, more
exotic states of the environment may present time-varying coefficients, as in the
case of a squeezed thermal reservoir. For those cases one may split Eq. (2.42) into
time-dependent and time-independent parts [10]. Assuming homogeneous correla-
tion functions, we can now easily perform the secular approximation by neglecting
in Eq. (2.41) the terms with ω′ �= ω. This approximation is justified when the time
scale of the intrinsic (isolated) system is small compared to the time scale asso-
ciated to the interaction with the reservoir, τs ∼ 1/|ω′ − ω| � τρ . In this case the
non-secular terms (ω′ �= ω) oscillate very rapidly during the time over which ρ(t)
varies (in interaction picture), and can be neglected [10]. This implies that Eq. (2.41)
transforms into

dρ

dt
=

∑

ω

∑

i,j

�ij(ω)
(
Âj(ω)ρÂ†

i (ω) − Â†
i (ω)Âj(ω)ρ

)
+ h.c.
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Finally, it is convenient to decompose the Fourier transforms of the reservoir cor-
relation functions into two terms �ij(ω) = 1

2γij(ω) + iχij(ω), where the first one is
always positive, and the second one are the entries of an Hermitian matrix

γij(ω) ≡ �ij(ω) + �∗
ji(ω) =

∫ ∞

−∞
dseiωs〈Êi(s)Êj(0)〉 (2.43)

χij(ω) ≡ 1

2i

(
�ij(ω) − �∗

ij(ω)
)

.

Rearranging terms we obtain the master equation in interaction picture

dρ(t)

dt
= − i

�
[ĤLS , ρ(t)] + D(ρ(t)), (2.44)

where we defined the Hermitian operator

ĤLS ≡
∑

ω

∑

i,j

� χij(ω)Â†
i (ω)Âj(ω), (2.45)

often called the Lamb shift Hamiltonian, which introduces a (small) renormalization
on the unperturbed energy levels of the open system induced by the coupling to the
environment; [Ĥ , ĤLS ] = 0. The second term in Eq. (2.44) is a super-operator usually
called the dissipator, which takes the form

D(ρ) ≡
∑

ω

∑

i,j

γij(ω)

(

Âj(ω)ρÂ†
i (ω) − 1

2
{Â†

i (ω)Âj(ω) , ρ}
)

. (2.46)

The Markovian master equation in Eq. (2.44) describes a CPTP dynamics, as can be
directly seen by rewriting it in Lindblad form. This can be done by simply diago-
nalizing the matrices γij(ω), which are positive by virtue of Bochner’s theorem [10].
Turning back to the Schrödinger picture Eq. (2.44) reads

dρ(t)

dt
= − i

�
[Ĥ + ĤLS , ρ(t)] + D(ρ(t)), (2.47)

which is the final form for the CPTP Markovian master equation. In practical appli-
cations the Lamb shift Hamiltonian ĤLS is usually neglected, as the weak coupling
limit ensures that the energy shift is small compared to the eigenvalues {εl} of Ĥ . One
can also include a counter-term in the original system Hamiltonian in order to cancel
the Lamb shift contribution. However a proper calculation of the Lamb shift Hamil-
tonian requires the use of renormalization theory and relativistic quantummechanics
[11].
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2.3 Dissipative Qubits and Harmonic Oscillators

Here we present some relevant examples of Markovian master equations with a
wide range of applicability in the study of open quantum systems. They are based
on the prototypical systems introduced in Sect. 1.2, namely, the qubit system and
the quantum harmonic oscillator. In the first example we discuss the relaxation of
a qubit system in the presence of a bosonic reservoir (harmonic oscillators) in the
optical regime, where a CPTP Markovian master equation is obtained even in the
case of a squeezed reservoir. We start with an interaction Hamiltonian in the RWA,
and show that the result is the same when the whole interaction term is considered
after the secular approximation (see the above Sect. 2.2.2). In the second example
we consider an harmonic oscillator interacting with the bosonic reservoir now from
a collisional approach, which is well suited for quantum information and quantum
thermodynamic studies (see e.g. Refs. [28, 29]). When the RWA or the secular
approximation is carried out, we obtain a very similar master equation than for the
qubit case. However, in some important regimes this approximation fails leading to
a non-CPTP Markovian master equation, as in the case of the so-called quantum
Brownian motion, which we discuss as a third example. Other relevant (simple)
examples of Markovian master equations can be found in textbooks covering open
quantum systems, such as the one-atom maser [24], the spin-boson model [30],
quantum dots interacting with fermionic reservoirs [11], or dynamical models of
quantum measurements [10, 11].

2.3.1 Qubit Relaxation in a Bosonic Environment

Let us start by considering a qubit system (two-level atom) with Hamilton operator
Ĥ = �ωσ̂ †σ̂ , σ̂ ≡ |0〉 〈1| being its lowering operator and satisfying {σ̂ , σ̂ †} = 1.
The system interacts with a bosonic reservoir (e. g. electromagnetic radiation).
The reservoir is described as an infinite collection of uncorrelated bosonic modes
(harmonic oscillators) spanning a continuous frequency spectrum with Hamiltonian
ĤE = ∑

k ��k b̂
†
k b̂k , where [b̂k , b̂†k ′ ] = 1̂Eδk,k ′ , and b̂k and b̂†k being the annihilation

and creation operators for mode k. The qubit and the reservoir modes interact via the
Jaynes–Cummings Hamiltonian, which in interaction picture reads

Ĥint =
∑

k

�gk(σ̂ b̂†ke
−i(ω−�k )t + σ̂ † b̂ke

i(ω−�k )t) (2.48)

where gk is the coupling strength between the qubit and the mode k in the reservoir.
The interaction (2.48) results from performing the RWA on the Hamiltonian describ-
ing the interaction between the two-level atom and the radiation field in the dipole
approximation (see e.g. [2, 24]). Introducing Eq. (2.48) into the Redfield equation
(2.36)
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dρ(t)

dt
= �1(σ̂ ρ(t)σ̂ † − σ̂ †σ̂ ρ(t)) + �2(σ̂

†ρ(t)σ̂ − σ̂ σ̂ †ρ(t))

+ �3 2σ̂ ρ(t)σ̂ + h.c., (2.49)

where we have used σ̂ 2 = 0, and defined the following four coefficients, similar to
the ones in Eq. (2.42):

�1 ≡
∫ t

0
ds

∑

k

g2k e
i(ω−�k )(t−s)(N�k + 1),

�2 ≡
∫ t

0
ds

∑

k

g2k e
−i(ω−�k )(t−s)N�k ,

�3 ≡
∫ t

0
ds

∑

k

g2k e
−i(ω−�k )(t+s)M ∗

�k
, (2.50)

with N�k ≡ Tr[b̂†k b̂kρE] andM�k ≡ Tr[b̂2kρE]. Next, we take the continuous limit by
defining the spectral density of the reservoir

J (�) ≡
∑

k

g2k δ(� − �k), (2.51)

that characterize the number of modes in the reservoir interacting with the system
with a given strength. The spectral density allows us to replace the sum in Eq. (2.50)
by an integral over the reservoir frequencies:

�1 =
∫ t

0
ds

∫ ∞

0
d� J (�)ei(ω−�)(t−s)(N�k + 1),

and analogously for coefficients�2 and�3. In the above expression N̂� is the number
operator of the reservoirmodewith frequency�. Taking the upper limit t → ∞ in the
above integrals (Markov approximation) and using

∫ ∞
0 dse−ixs = πδ(x) − iP(1/x),

P being the Cauchy principal value, we can split the coefficients into two terms
�i ≡ 1

2γi + iχi, where

γ1 =
∫ ∞

0
d�J (�) 2πδ(ω − �)(N� + 1) = 2π J (ω)(Nω + 1),

γ2 =
∫ ∞

0
d�J (�) 2πδ(ω − �)N�〉ρE = 2π J (ω)Nω,

γ3 =
∫ ∞

0
d�J (�) 2πδ(ω − �)M ∗

� = 2π J (ω)M ∗
ω , (2.52)

and the coefficients χi only enter in the Lamb-shift Hamiltonian (see below). In the
above equations we see how the Markov approximation implies the selection of the
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resonant frequency in the reservoir as the dominant contribution for the damping
coefficients γi.

Introducing all the coefficients back in Eq. (2.49) and rearranging terms we finally
obtain

ρ̇ = − i

�
[ĤLS , ρ] + γ0M

∗
ω σ̂ρσ̂ + γ0Mωσ̂ †ρσ̂ †

+ γ0(Nω + 1)

(

σ̂ ρσ̂ † − 1

2
{σ̂ †σ̂ , ρ}

)

+ γ0Nω

(

σ̂ †ρσ̂ − 1

2
{σ̂ σ̂ †, ρ}

)

. (2.53)

The above Markovian master equation equation describes the relaxation of the qubit
system in contact with a (generalized) bosonic reservoir characterized by the damp-
ing coefficient γ0 ≡ 2πJ (ω), which depends on the density of states at the qubit
frequency ω, the mean number of quanta in the reservoir’s resonant mode, 〈N̂ω〉ρE ,
and its second-order coherences 〈M̂ω〉ρE . In the derivation we implicitly assumed
〈b̂k〉ρE = 0 for all modes k in the reservoir. The Lamb-shift Hamiltonian introduces
a renormalization of the qubit frequency ω given by

ĤLS = ��LS σ̂
†σ̂ , with �LS ≡ P

∫ ∞

0
d� J (�)

2〈N̂�〉ρE + 1

� − ω
, (2.54)

which depends on the mean number of quanta in the reservoir [31].
It is important to notice that we could also derived the master equation (2.53) by

considering the complete dipole approximation without the RWA in the interaction
between the qubit and the environment, Ĥint = ∑

k �gk(σ̂e−iωt + σ̂ †eiωt)(b̂ke−i�k t +
b̂†ke

i�k t). This corresponds to a Hamiltonian of the form (2.38) with a single term,
where it is easy to identify two system eigenoperators {Â(ω)} corresponding to fre-
quencies ±ω (see Sect. 2.2.2)

Â(ω) = σ̂ , Â(−ω) = σ̂ †, (2.55)

and the reservoir operator B̂ = ∑
k gk(b̂ke

−i�k t + b̂†ke
i�k t). Calculating the reservoir

correlation functions �ij(ω) (in this case i = j = 1 as the interaction Hamiltonian
only contains a single term), and splitting it in homogeneous and non-homogeneous
in time parts [10], the above Markovian master equation (2.53) is recovered.

Let us now consider some particular cases of Eq. (2.53). Probably the most natural
case to begin with is assuming that the reservoir is in thermal equilibrium, ρE =
e−βĤE/ZE , at inverse temperature β = 1/kBT . The mean number of quanta in the
thermal reservoir with frequency ω reads Nω = (eβ�ω−1)−1 ≡ nth, andMω = 0 (see
Sect. 1.2.3). Turning back to the Schrödinger picture, the master equation (2.53) then
reads
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ρ̇ = − i

�
[Ĥ , ρ] + γ0(nth + 1)

(

σ̂ ρσ̂ † − 1

2
{σ̂ †σ̂ , ρ}

)

+ γ0nth

(

σ̂ †ρσ̂ − 1

2
{σ̂ σ̂ †, ρ}

)

≡ − i

�
[Ĥ , ρ] + Lth(ρ), (2.56)

where we have neglected the frequency shift introduced by the Lamb-shift Hamil-
tonian. This equation is written in Lindblad form by identifying the two Lindblad
operators: L̂↓ = √

γ0(nth + 1) σ̂ and L̂↑ = √
γ0nth σ̂ †. Here the Hamiltonian term

describes thephase evolutionof thequbit systemwhile the superoperatorLth accounts
for the dissipative effects induced by the thermal reservoir, consisting of two pro-
cesses. The first one in the upper line of Eq. (2.56) associated to L̂↓, is the spontaneous
and stimulated emission of quanta �ω from the qubit to the reservoir by performing
a jump from its excited state |1〉 to the ground state |0〉 ∝ L̂↓ |1〉, and occurring at a
rate γ↓ = γ0(nth + 1). In analogy, the second line in (2.56) associated to L̂↑ corre-
sponds to the stimulated absorption of quanta �ω from the reservoir while producing
a jump in the qubit from the ground |0〉 to the excited level |1〉 ∝ L̂↑ |0〉, a process
which occurs at rate γ↑ = γ0nth. The interplay of these two processes, whose rates
are related by a detailed balance relation γ↓ = e−β�ωγ↑, implies the thermalization

of the qubit in the long time run, π = e−βĤ/Z , with [Ĥ , π ] = Lth(π) = 0. It is easy
to see that, in the thermal equilibrium state, the populations of the two levels are
such that the two processes become equally probable. In the limiting case in which
the temperature of the reservoir vanishes T → 0, we have nth → 0, and spontaneous
emission becomes dominant. As a consequence, the steady state of the qubit tends
to the ground state π → |0〉 〈0|.

An important generalization of the above situation results from including the
coherent driving of the qubit by a nearly resonant classical field, a model which is
known as resonance fluorescence (the case of an isolated qubit system driven by a
classical field has been considered in Sect. 1.2.2). If the intensity of the classical field
is weak compared to the qubit frequency ω, it can be neglected in the derivation of
the interaction picture master equation, and simply added at the end, when turning
back to the Schödinger picture [11]. In such case we obtain the following master
equation in Schrödinger picture

ρ̇ = − i

�
[Ĥ + Ĥf(t), ρ] + γ0(nth + 1)

(

σ̂ ρσ̂ † − 1

2
{σ̂ †σ̂ , ρ}

)

+ γ0nth

(

σ̂ †ρσ̂ − 1

2
{σ̂ σ̂ †, ρ}

)

, (2.57)

where Ĥf(t) = ��R
(
σ̂ †e−iωf t + σ̂ eiωf t

)
/2, being ωf the frequency of the field and

�R the Rabi frequency. The master equation Eq. (2.57) is known as the resonance
fluorescence master equation, which describes the damping of the Rabi oscillations
due to the reservoir. The steady state solution is however no longer diagonal in the
Ĥ eigenbasis. For the strictly resonant case, ωf = ω, one can obtain the following
steady state values for the excited level population and coherence [10]:
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Fig. 2.3 Population of the excited level and coherence (inset plot) in the steady state of the resonance
fluorescence master equation, Eq. (2.58), as a function of the ratio between the Rabi frequency �R
and the damping rate γ0 for different values of the (scaled) reservoir’s inverse temperature. The
different lines correspond to β = {0.5, 1.0, 2.0, 7.0}/�ω from bottom to top in the right side of the
plot. On the other hand, maximum coherence is attained when �R = γ0(2nth + 1)/

√
2

〈σ̂ †σ̂ 〉π = γ 2
0 nth(2nth + 1) + �2

R

γ 2
0 (2nth + 1)2 + 2�2

R

,

〈σ̂ 〉π = iγ0�Re−iωt

γ 2
0 (2nth + 1)2 + 2�2

R

, (2.58)

which are plotted in Fig. 2.3. Pumping from the coherent classical field increases
the excited level population 〈σ̂ †σ̂ 〉π � 〈σ̂ †σ̂ 〉th and the presence of coherence in the
steady state produces the rotation of the qubit state in the XY-plane of the Bloch
sphere at constant frequency ω. Notice that when �R → 0 we recover the thermal
equilibrium state.

The thermal reservoir case can be further generalized by considering a squeezed
thermal reservoir, for which

ρE =
∏

k

Ŝk

(
e−βĤE/Z

)
Ŝ
†
k , (2.59)

Ŝk(rk , θk) being the squeezing operator for mode k with e parameters rk and θk (see
Sect. 1.2.5). In this situation, the expectation values change to Nω = cosh(2r)nth +
sinh2(r), and Mω = −(2nth + 1) sinh(r) cosh(r)eiθ , r and θ being the squeezing
parameters of the resonant mode [10]. In this case, the extra terms in Eq. (2.53)
come into play, generating a transient enhancement of the qubit coherence [terms
〈σ̂ 〉ρ(t) and 〈σ̂ †〉ρ(t)] before its final suppression, and modifying the populations of



82 2 Open Quantum Systems Dynamics

the steady state as if it were at a higher temperature [19, 32]. The master equation
Eq. (2.53) can be rewritten as

ρ̇ = − i

�
[Ĥ , ρ] + γ0(nth + 1)

(

R̂ρR̂† − 1

2
{R̂†R̂, ρ}

)

(2.60)

+ γ0nth

(

R̂†ρR̂ − 1

2
{R̂R̂†, ρ}

)

,

with R̂ = cosh(r)σ̂ − sinh(r)eiθ σ̂ †. We can easily identify here the Lindblad oper-
ators L̂− ≡ √

γ0(nth + 1)R̂, and L̂+ ≡ √
γ0nthR̂†, associated to correlated jumps

between the ground and the excited states of the qubit.

2.3.2 Bosonic Collisional Model

Now we move to the case in which our system of interest is an harmonic oscillator,
represented for instance by an electromagnetic field mode in a cavity or more gen-
erally by a bosonic mode. The Hamilton operator of the system reads Ĥ = �ωâ†â,
where [â, â†] = 1 are respectively the annihilation and creation operators of the
mode. The environment is considered again to be composed by a bosonic reser-
voir with Hamiltonian ĤE = ∑

k ��k b̂
†
k b̂k , with [b̂k , b̂†k ′ ] = 1Eδk,k ′ (see the previous

example). Let us assume the interaction Hamiltonian between the system and the
reservoir (in interaction picture) to be in the RWA

Ĥint =
∑

k

�gk i
(
â b̂†ke

−i(ω−�k )t − â† b̂ke
i(ω−�k )t

)
, (2.61)

to be compared with Eq. (2.48). As in the previous example, this interaction is a good
approximation in the weak coupling regime for optical frequencies, which implies
that the characteristic frequency of the system is much larger than the decay rate
[11]. Following the same steps as in the qubit system example, we obtain a master
equation similar to Eq. (2.53) for the relaxation of the harmonic oscillator in a general
environment.However, in this casewe develop a collisionalmodelwhichwill provide
a more intuitive picture of the dynamical evolution. This represents a generalization
of the model we recently reported in Ref. [33] for the study of the thermodynamical
features of the squeezed thermal reservoir (see Chap.10).

In the collisional model, the system bosonic mode interacts at random times,
given by some rate R, with a generic mode k of the bosonic environment once at
a time during some small interval τ . It is convenient to introduce the Hamiltonian
of a single reservoir’s mode k, ĤE(�k) = ��k b̂

†
k b̂k . In each collision we assume

that the bosonic mode interacts with a different reservoir mode, which may have
a different frequency, depending on the reservoir density of states, ϑ(�k), which
characterizes the number of modes with a given frequency �k . Let us specify the
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interaction Hamiltonian (2.61) to account for the interaction with a single mode
in the reservoir, Ĥint = i�gk(âb̂

†
ke

−i�k t − â†b̂kei�k t), with �k = ω − �k . Assuming
again weak coupling, gkτ � 1 ∀k, the unitary evolution governing a single collision
occurring at time t, reads, in the interaction picture:

ÛI (t + τ, t) = T̂+ exp

(

− i

�

∫ t+τ

t
dt1Ĥint(t1)

)

, (2.62)

where T̂+ is the time-ordering operator. The evolution of the two-mode (total) density
matrix can be expanded up to second order in the coupling using the Dyson series
(see Sect. 1.1):

ρtot(t + τ, t) � ρtot(t) − i

�

∫ t+τ

t
dt1[Ĥint(t1), ρtot(t)]

− 1

�2

∫ t+τ

t
dt2

∫ t2

t
dt1[Ĥint(t2), [Ĥint(t1), ρtot(t)]]. (2.63)

The first order commutator reads

[Ĥint(t1), ρtot(t)] = i�gk
(
[âb̂†k , ρtot(t)]e−i�k t1 − h.c.

)
, (2.64)

and the second-order one

[Ĥint(t2), [Ĥint(t1), ρtot(t)]] = −�
2g2k ( [â†b̂k , [â†b̂k , ρtot(t)]]

ei�k (t1+t2) − [â b̂†k , [â†b̂k , ρtot(t)]]ei�k (t1−t2) + h.c.). (2.65)

The reduced evolution in the system and in the reservoir mode, can be obtained by
partial tracing Eq. (2.63) over the corresponding degrees of freedom.We also assume

ρtot(t) = ρ(t) ⊗ ρ
(k)
E , i.e. the system mode always interacts with a ‘fresh’ reservoir

mode k in the same state. The master equation can be constructed from the following
coarse-grained derivative for the system mode. During some small interval of time
δt � R−1 (but δt � τ ), for which at most one interaction occurs:

ρ(t + δt) = Rδt ρ(t + τ) + (1 − Rδt)ρ(t), (2.66)

where ρ(t) = TrE[ρtot(t)]. That is, with probability Rδt the system interacts with a
bosonic mode in the reservoir and with the complementary probability, 1 − Rδt, it
is unaltered (we stress that we are working in the interaction picture). Therefore we
have

ρ̇(t) � 1

δt
[ρ(t + δt) − ρ(t)] = R[ρ(t + τ) − ρ(t)].

This is valid when the reservoir modes always have the same frequency �k , but if
we want to take into account that the reservoir contains many frequencies, the above
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equation should be averaged over the reservoir density of states:

ρ̇(t) � R
∑

k

ϑ(�k)[ρ(t + τ) − ρ(t)]. (2.67)

Performing the time integrals, the partial trace, and defining the following reservoir
expectation values:

〈b̂k〉ρ(k)
E

= D�k 〈b̂†k〉ρ(k)
E

= D∗
�k

〈b̂2k〉ρ(k)
E

= M�k 〈b̂†2k 〉
ρ

(k)
E

= M ∗
�k

(2.68)

〈b̂†k b̂k〉ρ(k)
E

= N�k 〈b̂k b̂†k〉ρ(k)
E

= N�k + 1

we obtain the following preliminary form for the master equation

ρ̇ = − i

�
[�Ĥ , ρ] + [ε∗â − εâ†, ρ] (2.69)

+ �e

(

âρâ† − 1

2
{â†â, ρ}

)

+ �a

(

â†ρâ − 1

2
{ââ†, ρ}

)

− �s

(

â†ρâ† − 1

2
{â†2, ρ}

)

− �∗
s

(

âρâ − 1

2
{â2, ρ}

)

,

where we identified the decay factors charactering the time scales of emission/
absorption processes and squeezing:

�e ≡ Rτ 2
∫ ∞

0
d�J (�)sinc2(τ�/2)(N� + 1)

�a ≡ Rτ 2
∫ ∞

0
d�J (�)sinc2(τ�/2)N� (2.70)

�s ≡ Rτ 2
∫ ∞

0
d�J (�)sinc2(τ�/2)M�e

i�(2t+τ),

together with the driving amplitude-like coefficient

ε ≡ Rτ
∑

k

gkϑ(�k)sinc(τ�k/2)D�k e
i�k (t+τ/2), (2.71)

and the reservoir-induced frequency shift

�Ĥ = R

∫ ∞

0
d�J (�)

τ

�
{â†â(sinc(τ�/2) cos(τ�/2) − 1)

+ 1 − sinc(τ�/2)
(
2N (�)(cos(τ�/2) − 1) + eiτ�/2

)}, (2.72)
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whose first term induces a renormalization of the mode frequency, and the second
one shifts the zero-point energy. In the above equations we have introduced the
reservoir spectral density, defined here as J (�) = ∑

k g
2
kϑ(�k)δ(� − �k), and took

the continuum limit. As a consequence, we drop the subscripts k in the reservoir
frequencies�k and related quantities, e.g.� ≡ ω − �. Notice that the three integrals
in Eq. (2.70) are weighted by the function sinc2(τ�/2). As this factor is highly
peaked around � = 0 (that is � = ω), it acts as a Dirac delta function (δ(τ�/2))
when integrating over the reservoir frequencies, meaning that the effect of detuned
modes in the reservoir is very weak in comparison with the resonant ones [24]. This
implies:

�e � Rτ 2J (ω)(Nω + 1) ≡ γ0(Nω + 1)

�a � Rτ 2J (ω)Nω ≡ γ0Nω (2.73)

�s � Rτ 2J (ω)Mω ≡ γ0Mω

andweobtain an effective decay rateγ0 = Rτ 2J (ω) characterizing the global system-
reservoir interaction dynamics, proportional to the density of resonant modes in the
reservoir. We note that this approximation is justified when the time-scale of the
intrinsic (isolated) system dynamics τs ∼ 1/ω is small compared with the inter-
action time between system and environment, τs � τ , in analogy to the secular
approximation introduced in Sect. 2.2.

We end upwith the followingMarkovianmaster equation in the interaction picture

ρ̇ = − i

�
[�Ĥ , ρ] + [ε∗â − εâ†, ρ] (2.74)

+ γ0(Nω + 1)

(

âρâ† − 1

2
{â†â, ρ}

)

+ γ0Nω

(

â†ρâ − 1

2
{ââ†, ρ}

)

− γ0M
∗
ω

(

âρâ − 1

2
{â2, ρ}

)

− γ0Mω

(

â†ρâ† − 1

2
{â†2, ρ}

)

.

Aswe can see the structure of the equation is the same as in the qubit case, Eq. (2.53),
replacing the lower and raising operators of the qubit system by the creation and
annihilation operators of the cavity mode. However, we see that here the terms in the
last two lines retain the anticommutator part previously vanishing due to σ̂ 2 = 0, and
its sign has changed due to the different relative phase introduced in the interaction
Hamiltonian (2.61). Furthermore in this case we considered the reservoir to have
non-zero initial averages 〈bk〉ρE , which implies the inclusion of a driving-like term
with amplitude ε.

By particularizing the reservoir statewe can obtain different versions of themaster
equation. We just consider here the case of a squeezed thermal reservoir, as it will
be be of particular interest in later chapters. The reservoir density operator is in
this case ρE = ∏

k ŜkρthŜ
†
k , Ŝk(rk , θk) being the squeezing operator for mode k and

ρth = e−βĤE/ZE the equilibrium thermal (Gibbs) state (see Sect. 1.2.5). We hence
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obtain the master equation coefficients

Nω = cosh(2r)nth + sinh2(r), Mω = − sinh(r) cosh(r)(2nth + 1)eiθ ,

and ε = 0. In the above expressions r and θ are the squeezing parameters of the
resonant mode in the reservoir, however one may alternatively assume that all the
modes in the reservoir have the same squeezing parameters [33]. Themaster equation
(2.74) then can be rewritten in the Schrödinger picture as

ρ̇ = − i

�
[Ĥ , ρ] + γ0(nth + 1)

(

R̂ρR̂† − 1

2
{R̂†R̂, ρ}

)

+ γ0nth

(

R̂†ρR̂ − 1

2
{R̂R̂†, ρ}

)

, (2.75)

where we have defined R̂ ≡ cosh(r)â + sinh(r)eiθ â† = ŜâŜ†, and Ŝ(r, θ) = exp
(r(â2e−iθ + â†2eiθ )/2) the squeezing operator acting on the system. As in the case
of the qubit, it is easy to check that the above master equation is in Lindblad form
(see Sect. 2.3.1). However, in contrast to the previous case, the steady state of the
dynamics is no longer diagonal in the system energy eigenbasis. This stationary state
is in fact the squeezed thermal state

π = Ŝ
e−βĤ

Z
Ŝ†. (2.76)

The different properties of this anomalous relaxation process are analyzed from
a thermodynamical point of view in Chap. 10. It is also interesting to notice that
Eq. (2.75) can be mapped to the case of a Bogotified mode with Hamilton opera-
tor ĤB ≡ �ωR̂†R̂ in weak contact with a traditional thermal reservoir. This prop-
erty can be easily checked by introducing the squeezed frame ρ → Ŝ†ρŜ and
Ĥ → ŜĤ Ŝ† = ĤB.

2.3.3 Quantum Brownian Motion

In the preceding examples the fast evolution of the coherent inner systemdynamics, as
compared with the relaxation characteristic time scales, allowed us to perform either
the RWA or the secular approximation to obtain CPTP Markovian master equations.
This condition is usually satisfied by optical systems, but not in other scenarios
such as in solid state physics. A paradigmatic case in which the RWA cannot be
performed is the quantum Brownian motion, as described by the Caldeira–Legget
model [34]. In theweak-coupling limit and for high temperatures aMarkovianmaster
equation can be derived for this model, but otherwise the non-Markovian character
of the dynamical evolution needs to be addressed with more powerful techniques,
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such as generalized quantum Langevin equations, or the Feynman–Vernon influence
functional [10, 35].

Consider a single Brownian particle of mass m and position and momentum
operators x̂ and p̂, trapped in a potential V (x̂). The corresponding Hamiltonian reads

Ĥ = p̂2

2m
+ V (x̂). (2.77)

The environment of the particle ismodeled as a large reservoir of harmonic oscillators
in thermal equilibrium (bath) with Hamiltonian

ĤE =
∑

n

��k

(

b̂†k b̂k + 1

2

)

=
∑

k

�̂k

2Mk
+ Mk

2
�2

k Q̂k , (2.78)

where [b̂, b̂†k ′ ] = 1̂Eδkk ′ are annihilation and creation operators, and [�̂k , Q̂k ′ ] =
i�1̂Eδkk ′ canonical momentum and position operators. Notice that, in contrast to
previous examples, we explicitly consider here the masses of the reservoir harmonic
oscillators and include the zero point energy term (see Sect. 1.2.3). We stress that
both models of the environment are equivalent and that we adopt this approach here
just for historical reasons.

In this model, the particle position x̂ and that of the bath’s oscillators X̂k are
coupled through the interaction Hamiltonian

Ĥint = −
∑

k

gk x̂Q̂k = −x̂B̂k , (2.79)

where gk represents the coupling strength of the particle to the harmonic oscillator
k in the reservoir, and we identify B̂ = ∑

k gk Q̂k as the global bath operator coupled
to the open system. Furthermore we may include a counter-term which compensates
for the renormalization of frequencies appearing later in the form of a Lamb-shift
Hamiltonian term (see Sect. 2.2.2)

Ĥc−t = x̂2
∑

k

g2k
2Mk�

2
k

, (2.80)

which acts only on the Hilbert space of the particle.
Assuming a factorized initial condition, weak coupling between the Brownian

particle and the bath, and that the bath is at a high temperature, we can obtain a
Markovian master equation which cannot be written in Lindblad form, and is not
completely positive (CP). Let us start from theBorn–Markovmaster equation derived
in Sect. 2.2.2 in Schrödinger picture
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dρ(t)

dt
= − i

�
[Ĥ + Ĥc−t, ρ(t)] (2.81)

− 1

�2

∫ ∞

0
dτ TrE([Ĥint, [Ĥint(−τ), ρ(t) ⊗ ρE]])]),

with ρE = e−βĤE/ZE , β = 1/kBT being the inverse temperature of the bath. In the
above expression Ĥint(t) is the interaction Hamiltonian in interaction picture. In the
following, operators with an explicit time dependence are expressed in the interaction
picture (see Sect. 1.1). After rearranging terms in Eq. (2.81) we obtain the following
most convenient form of the master equation [10]

dρ(t)

dt
= − i

�
[Ĥ + Ĥc−t, ρ(t)] (2.82)

+ 1

�2

∫ ∞

0
dτ

(

i
ξ(τ )

2
[x̂, {x̂(−τ), ρ(t)}] − ν(τ)

2
[x̂, [x̂, ρ(t)]]

)

,

where we defined the dissipation and noise kernels respectively as

ξ(τ ) ≡ iTrE([B̂, B̂(−τ)]) = 2�

∑

k

g2k
2Mk�k

sin(�kτ), (2.83)

ν(τ) ≡ TrE({B̂, B̂(−τ)}) = 2�

∑

k

g2k
2Mk�k

(2b̂†k b̂k + 1) cos(�kτ).

As in the previous examples, we may consider now the continuous limit by intro-
ducing the spectral density function of the reservoir, which in this case is defined
as

J (�) ≡
∑

k

g2k
2Mk�k

δ(� − �k). (2.84)

The spectral density is assumed to be a continuous and smooth function function of
�. The dissipation and noise kernels can be hence rewritten as

ξ(τ ) = 2�

∫ ∞

0
d� J (�) sin(�τ), (2.85)

ν(τ) = 2�

∫ ∞

0
d� J (�) coth(β�ω/2) cos(�τ). (2.86)

From the above equations it becomes clear that the specific form of the spectral den-
sity J (�)may strongly affect the properties of the master equation through the noise
and dissipation kernels. The usual approach assumes the so-called Ohmic spectral
density, depending linearly on� for low frequencies, i.e. in the vicinity of the system
frequency ω. Furthermore, one assumes a high-frequency cutoff � � ω in order to
account for the system frequency renormalization induced by the interaction of the
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Fig. 2.4 Plots of the Lorentz–Drude JL−D(�) and triangular JT (�) spectral density functions in
Eqs. (2.87) and (2.88) respectively as a function of the environment frequencies �. The cutoff
frequency � = 10 corresponds to the dotted line, and the spectral densities are scaled in units of
2mγ0/π

systemwith far detuned oscillators of the environment [10]. An example of a spectral
density function fulfilling the above required characteristics is

JL−D(�) = 2mγ0

π
�

�2

�2 + �2
, (2.87)

which contains a Lorentz–Drude cutoff function. Another simpler example is given
by a triangular function with a sharp cutoff at frequency �

JT (�) = 2mγ0

π
� �(� − �), (2.88)

where�(x) is theHeaviside step function taking the value 1 for x > 1 and 0 for x � 0
(see Fig. 2.4). This Ohmic spectral density gives rise to a frequency independent
damping at rate γ0, which is usually determined phenomenologically.

Taking into account the above considerations and approximating x̂(−τ) ≈ x̂ −
τ p̂/m, the master equation in Eq. (2.82) becomes

dρ(t)

dt
= − i

�
[Ĥ + Ĥc−t, ρ(t)] + iR

2�2
[x̂, [x̂, ρ(t)]] (2.89)

− 1

2�2

(
i� [x̂, {p̂, ρ(t)}] + D [x̂, [x̂, ρ(t)]] − F [x̂, [p̂, ρ(t)]]) ,

where we have introduced the coefficients
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R ≡
∫ ∞

0
dτ ξ(τ ) = 2�

∑

k

g2k
2Mk�

2
k

, F ≡
∫ ∞

0
dτ

τ

m
ξ(τ ), (2.90)

� ≡
∫ ∞

0
dτ τ ξ(τ ) = 2m�γ0, D ≡

∫ ∞

0
dτ ν(τ ) = 4mγ0/β,

and we have used the properties
∫ ∞
0 dτ sin(�τ) = P(1/�), P being the Cauchy

principal value, and
∫ ∞
0 dτ τ sin(�τ) = −∂�

∫ ∞
0 dτ cos(�τ) = −π∂�δ(�) [10].

The (Lamb-shift) term accompanying the coefficient R in Eq. (2.89) can be rewritten
as [x̂, [x̂, ρ]] = [x̂2, ρ] and hence cancels with the counter-term Ĥc−t in Eq. (2.80).
Furthermore, we stress that the coefficient � is related to the damping of the particle
motion, while the terms D and F , which are temperature dependent, describe fluctu-
ations induced by the thermal bath. The first one,D, leads to diffusion in momentum
and the second one, F , to the so-called anomalous diffusion [11]. We also stress that
Eq.2.89 can be obtained from the Redfield master equation [Eq. (2.36) in Sect. 2.2.2]
leading to the same form (2.89) but with time-dependent coefficients, by taking the
asymptotic expressions, t → ∞.

The anomalous diffusion coefficient F depends also on the cutoff frequency �,
and hence requires a specific shape for the spectral density to be calculated. Taking
the Ohmic spectral density with Lorentz–Drude cutoff in Eq. (2.87) one obtains in
the high temperature limit kBT � �� [10]

F ≈ 4γ0
β�

(2.91)

and hence the anomalous diffusion term differs from the momentum diffusion by a
factorω/�. As this factor is very small (recall thatwe assumeω � �) the anomalous
diffusion term can be neglected in the high-temperature limit, leading to theCaldeira–
Legget master equation [34]

dρ(t)

dt
= − i

�
[Ĥ , ρ(t)] − iγ0

�
[x̂, {p̂, ρ(t)}] − 2mγ0

β�2
[x̂, [x̂, ρ(t)]]. (2.92)

This corresponds to a non CPMarkovian master equation which cannot be written in
Lindblad form. The first dissipative term describes the loss of the particle’s kinetic
energy, and the second one the gain [11]. However, a minimal modification allows
us to obtain a CP master equation from Eq. (2.92). It consists in adding a further
term, namely −(γ0β/8m)[p̂, [p̂, ρ]], which is small in the high-temperature limit,
�ω � kBT , and hence can be safely included in this regime. By defining a single
Lindblad operator of the form [10]

L̂ ≡
√

4m

β�2
x̂ + i

√
β

4m
p̂, (2.93)

we may rewrite Eq. (2.92) in Lindblad form as
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dρ(t)

dt
= − i

�
[Ĥ , ρ(t)] + L̂ρ(t)L̂† − 1

2
{L̂†L̂, ρ(t)}, (2.94)

describing CPTP Markovian dynamics.

2.4 Open Many-Body Systems

In the previous section we have seen various examples of dissipative quantum sys-
tems whose dynamics can be expressed in the form of a Markovian master equation.
However, the three considered cases were single quantum systems (qubit system or
harmonic oscillator) coupled to a reservoirwhich plays the role of the environment. In
this section we consider the case of a many-body system, consisting of different pro-
totypical interacting subsystems, dissipating and decohering into the environment.
This is a natural and necessary extension of the single open system case, which
allows the study of more general configurations. We are interested in the emergence
of collective quantum phenomena in realistic (non-isolated) extended systems, such
as sub-radiance and super-radiance [23, 36, 37], subdecoherence [38], synchroniza-
tion [39–42], or quantum phase transitions [43–48]. Open many-body systems are
present in a wide range of situations of physical, chemical, or biological interest,
and can be often controlled or simulated in the laboratory with high precision (see
the reviews [49, 50] on quantum simulation and references therein). Some relevant
examples also include the possibility of controlling and engineering dissipation, as
recently reported in trapped ion configurations [51, 52], cold quantum gases [51, 53,
54], or Josephson junction arrays [55].

When considering many-body systems the modeling of dissipation and decoher-
ence processes results more involved than in the single body case. One may for
instance consider that each unit of the composite system is coupled to a totally
independent environment, such as in the initial models of decoherence in quantum
computers [56], in the first studies of entanglement dynamics in composite open
systems [57, 58], or as in cavity optical modes [4, 5]. However, another possibility
is to consider the different bodies in the open system to be coupled to the same
environment, a situation which may lead to different time-scales for decoherence
and dissipation depending on the relation between the properties of the environ-
ment and the spatial extension of the many-body system [38, 59–63]. This latter
possibility, usually called common or collective dissipation and decoherence, has
attracted much attention due to their potential applications to quantum information
and quantum computing [64–67].

2.4.1 Common Versus Independent Environmental Action

In the next, we provide a simple model to illustrate the differences that may arise in
the environmental action on a composite quantum system depending on the interplay
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between the spatial scale of the open system and the properties of the environment.
Consider for instance two quantum systems in a spatially extended configuration,
characterized by Hamiltonians Ĥi with associated Hilbert spacesHi for i = 1, 2. We
assume that the two subsystemsdonot interact directly, and then the totalHamiltonian
of the system under consideration reads

Ĥ =
∑

i=1,2

Ĥi. (2.95)

We further assume that the composite system interacts with an environment with
Hamilton operator ĤE . We model the coupling between system and environment
with a general term of the form

Ĥint =
∑

i=1,2

∑

k

λik Âi ⊗ Êk , (2.96)

where i runs over the two subsystems. We have introduced system Hermitian opera-
tors Âi acting onHi, and orthogonal Hermitian operators Êk , such that [Êk , Êl] = 0
for k �= l (they could be for instance operators of different bosonic modes in a ther-
mal bath), affecting each subsystem throughout the different coupling strengths λik .
These coupling terms would in general depend on the different (classical) positions
in space of each subsystem, denoted as �ri. Notice also that, for simplicity, we have
assumed a single operator of each subsystem coupled to the environment.

As a first approximation, we may introduce a spatial scale ξE above which the
couplings λik start to depart from each other depending on i, as assumed in Ref. [59],
for non-interacting environmental operators Êk . This means that one can compare the
distance between the system components with the distance ξE . If the two subsystems
are close enough in space, |�r1 − �r2| � ξE , then the couplings to the baths are similar,
λk ≡ λ1k ≈ λ2k and the two subsystems feel the same environmental action

Ĥint ≈
∑

i

Âi ⊗
∑

k

λk Êk =
∑

i

Âi ⊗ Ê, (2.97)

where Ê = ∑
k λk Êk . On the other hand, if |r1 − r2| � ξE , each subsystem is coupled

to different operators Êk of the environment and they feel a different noise (see the
schematic representation of Fig. 2.5). However, this simplified description turns out
to be incorrect or insufficient in many cases of interest, as it becomes clear when
considering structured environments [68].

The differences between common or independent environmental action can be
better understood by considering the Born–Markov master equation reported in
Sect. 2.2.2 within the secular approximation

dρ

dt
=

∑

ω

∑

i,j

�ij(ω)
(
Âj(ω)ρÂ†

i (ω) − Â†
i (ω)Âj(ω)ρ

)
+ h.c., (2.98)
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Fig. 2.5 Schematic representation of a two-body quantum system dissipating and decohering into
the environment. In the simplest case, depending on the spacial distance between the two systems
|�r1 − �r2| and the spatial scale ξE , the systems would feel an independent or a correlated noise

where here the indices i, j = 1, 2 refer to the two subsystems of the composite open
system. Here we introduced the environment correlation functions

�ij(ω) ≡
∫ ∞

0
dseiωs

∑

k

λ∗
ikλjkTrE[Êk(t)Êk(t − s)ρE], (2.99)

which explicitly depend on the coupling constants {λik} between subsystem i and
environmental operator k. The correlation functions for i = j correspond to self-
dissipation of each subsystem by direct contact with the environment, while the
terms i �= j are cross-dissipative terms indirectly coupling the dynamics of the two
subsystems. Recall that the environment operators Ê(t) correspond to the interaction
picture with respect to Ĥ + ĤE .

A more rigorous analysis of the transition between common or independent envi-
ronmental action focus on the behavior of the correlation functions (2.99). It has been
shown that, for isotropic dispersion of the bath modes (e.g. electromagnetic radation
in free space), a spatial scale ξE arises, such that [61, 63, 68]

�ij(ω) ≈ �(ω) ∀i, j when |�ri − �rj| � ξE,

�ij(ω) ≈ δij�(ω), when |�ri − r̂j| � ξE . (2.100)

That is, for intrasystem distances greater than ξE , the only terms that survive in the
master equation (2.98) are those describing the dissipation or decoherence of each
subsystem as if it were coupled to an independent separate environment, while for
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distances smaller than ξE , the environment induces an indirect coupling between
the subsystems. On the other hand, for non-isotropic dispersion relations (as those
appearing in some structured environments), the transition between the two limit
cases of common or independent noise can be more intricate. In such cases the use
of the spatial scale ξE is not justified, as collective dissipation can ideally arise above
any distance [68].

2.4.2 Coupled Dissipative Harmonic Oscillators

We have seen that different forms of dissipation can arise in spatially extended sys-
tems, a case which is not usually treated in textbooks. Therefore we devote this
section to the derivation of the master equation for a set of coupled harmonic oscil-
lators dissipating into a thermal environment (thermal bath). Our aim is to obtain
Markovian master equations for both cases of common and independent dissipation,
which we will call common bath (CB) and separate baths (SB) respectively. The
dynamical modeling which we develop here will be used in Part II of the thesis.

Consider an arbitrary set of N harmonic oscillators with different natural fre-
quencies, unit masses, and arbitrary coupling between them. The Hamiltonian of
such system reads:

Ĥ = 1

2

N∑

i=1

(
p̂2i + ω2

i x̂
2
i

) +
N∑

i<j

λij x̂i x̂j (2.101)

where x̂i and p̂j are the canonical position and momenta operators of the harmonic
oscillators, satisfying [x̂i, p̂j] = i�δij. It is convenient to express Eq. (2.101) in matrix
form:

Ĥ = 1

2

(
pT1 p + xTH x

)
(2.102)

where xT = (x̂1, . . . , x̂N ) and H contains the topological properties of the set, i.e.
the (squared) natural frequencies of oscillators in the diagonal elements, Hii = ω2

i ,
and the coupling strengths in the off-diagonal onesHij = λij.

Following the previous discussion, the environment is considered as either con-
sisting of N independent bosonic thermal baths (SB case), or just by a single bath
(CB case)

Ĥ (SB)
E =

N∑

k=1

∞∑

α=1

(
�̂2 (k)

α

2M (k)
α

+ M (k)
α

2
�̃2 (k)

α Q̂2 (k)
α

)

(2.103)

Ĥ (CB)
E = 1

2

∞∑

α=1

(
�̂2

α

Mα

+ Mα

2
�̃2

αQ̂
2
α

)

(2.104)
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where [Q̂(k)
α , �̂

(l)
α′ ] = i�δα,α′δk,l1̂, Q̂(k)

α and �̂(k)
α being the corresponding position

and momenta operators for the α bosonic mode in the i-th thermal bath. Here and in
the following, we will use greek subscripts when labeling the reservoir(s) bosonic
modes. The coupling between the open system and the environment is bilinear in
the position, and, while for separate baths each harmonic oscillator is connected to
a different bath, in the case of the common bath, coupling is present through the
system center of mass:

Ĥ (SB)
int =

∑

i

∞∑

α=1

g(i)
α

(
x̂i ⊗ Q̂(i)

α

)
, (2.105)

Ĥ (CB)
int =

∑

i

x̂i ⊗
∞∑

α=1

gαQ̂α. (2.106)

Notice that the SB interaction term may be written as Ĥ (SB)
int = ∑

i Âi ⊗ B̂i where
system and bath operators Âi ≡ x̂i and B̂i ≡ ∑

α g
(i)
α Q̂(i)

α can be identified for each
term in the sum over the oscillators. On the other hand, in the CB case the interaction
Hamiltonian can be written as a single product Ĥ (CB)

int = Â ⊗ B̂ by identifying Â ≡
∑

i x̂i and B̂ ≡ ∑
α gαQ̂α . In any case the constants g(i)

α model the coupling of the
reservoir modes with the open system, and can be related to the spectral density
function of the baths Ji(�) ≡ ∑

α(g(i)2
α /�̃α)δ(� − �̃α).

A simpler picture of this many-body open system can be obtained by considering
the normal mode basis of the set of oscillators, which is obtained by diagonalization
of its Hamiltonian Ĥ . This problem reduces to the diagonalization of the matrixH in
Eq. (2.102), which can be formally done by introducing the canonical transformation

x̂i =
N∑

j=1

fijX̂j, p̂i =
N∑

j=1

fijP̂j. (2.107)

This transformation can be alternatively expressed in matrix form as x = f X, and
p = f P. We stress that the change of basis matrix, f , must be orthogonal (f T = f −1)

since it is a canonical transformation. If we now substitute the new set of coordinates
in the original Hamiltonian (2.102) we have

xT H x = XT f T H f X = XT � X, (2.108)

pT 1 p = PT f T 1 f P = PT 1 P, (2.109)

and then the diagonalmatrix� = f THf contains the squared normalmodes frequen-
cies�2

i . In the normalmode basis, the complete form of the open systemHamiltonian
is transformed into a set of uncoupled harmonic oscillators with frequencies �i, that
is
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Ĥ = 1

2

N∑

i

(
P̂2
i + �2

i Q̂
2
i

)
. (2.110)

and the interaction Hamiltonians for SB and CB hence take the new forms

Ĥ (SB)
int =

N∑

i,j=1

∞∑

α=1

fij g
(i)
α

(
X̂j ⊗ Q̂(i)

α

)
, (2.111)

Ĥ (CB)
int =

N∑

j=1

∞∑

α=1

κj gα

(
X̂j ⊗ Q̂α

)
. (2.112)

Examining the above equations we observe that in the SB case we can redefine
the bath operators such that again Ĥ (SB)

int = ∑
j Âj ⊗ B̂′

j with B̂′
j ≡ ∑

i

∑
α fijg

(i)
α Q̂(i)

α ,
meaning that each normalmode couples to a separate bosonic reservoirwith redefined
canonical positions for each reservoir mode. On the contrary, for the CB case we
obtain that each normal mode of the system couples with different strengths to the
thermal reservoir through the coefficients κj = ∑

i fij, that takes into account all the
topological (geometry, coupling strengths, frequencies . . .) characteristics of the open
system. In Fig. 2.6 we provide a schematic representation of the SB and CB cases in
terms of the normal modes of the open system.

2.4.2.1 Separate Baths Master Equation

We are now in position to derive Markovian master equations for CB and SB in the
normal mode basis. Consider first the case of SB, for which we use the interaction
Hamiltonian Ĥ (SB)

int in Eq. (2.111). Assuming an initial product state for system plus
reservoir(s), and using Born–Markov approximations in Sect. 2.2.2 we have that the
evolution of the system reduced density matrix is, in the Schrödinger picture:

dρ

dt
= − i

�

[
Ĥ , ρ

]
− 1

�2

∫ t

0
dτ

∑

l,k

[Clk(τ )(Âl Âk(−τ)ρ − Âk(−τ)ρÂl)

+ Ckl(−τ)(ρÂk(−τ)Âl − ÂlρÂk(−τ))], (2.113)

Âk(τ ) denoting interaction picture operators.We have introduced here the correlation
functions Clm(τ ) = Tr[B̂l(τ )B̂mρE] with ρE = e−βĤE/ZE the thermal equilibrium
(Gibbs) state at inverse temperature β = 1/kBT . Let us define

CC
lk (τ ) ≡ Clk(τ ) − Ckl(−τ), CA

lk(τ ) ≡ Clk(τ ) + Ckl(−τ),

which allows us to rewrite the master equation (2.113) as
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Fig. 2.6 Schematic representation of the dissipative couplings of the N normal modes of the open
system with frequencies �1, . . . , �N in a the SB situation, where each normal mode is equally
coupled to an equivalent thermal bath at the same inverse temperature β, and b the CB case, in
which all the normal modes couple to the common bath with different strengths, κi for i = 1, . . . ,N ,
depending on the natural frequencies and couplings of the original oscillators

dρ

dt
= − i

�

[
Ĥ , ρ

]
− 1

�2

∫ t

0
dτ

∑

l,k

(
CC
lk (τ )

2
[Âl, {Âk(−τ), ρ}]

+CA
lk(τ )

2
[Âl, [Âk(−τ), ρ]]

)

. (2.114)

As long as we pursue a master equation in the normal mode basis, we must compute
the system and bath operators by using the interaction Hamiltonian in Eq. (2.111).
The correlation functions read

Clk(τ ) =
∑

i

flifkiCi(τ ), with

Ci(τ ) = �

∑

α

g2(i)α

2�̃(i)
α

(
ei�̃

(i)
α τ + 2n̂(i)

α cos(�̃(i)
α τ )

)
, (2.115)
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where n̂(i)
α is the number operator ofmodeα of the i-th thermal bath, andwenotice that

Clk(τ ) = Ckl(τ ). With the help of these expressions we can compute the correlation
functions

CC
lk (τ ) =

∑

i

flifki (Ci(τ ) − Ci(−τ)) =
∑

i

flifkiiξi(τ ), (2.116)

CA
lk(τ ) =

∑

i

flifki (Ci(τ ) + Ci(−τ)) =
∑

i

flifkiνi(τ ), (2.117)

where we introduced the dissipation and noise kernels (see the Brownian motion
model in Sect. 2.3), that could be expressed in terms of the spectral density function
as

ξi(τ ) ≡ �

∫

d� Ji(�) sin(�τ), (2.118)

νi(τ ) ≡ �

∫

d� Ji(�) cos(�τ) coth

(
β��

2

)

. (2.119)

Introducing the correlation functions in the expression for the master
equation (2.114), and using that the free evolution of the system operators is given

by Âk(−τ) = X̂k cos(�kτ) − P̂k
�k

sin(�kτ), we can rearrange terms to obtain

dρ

dt
= − i

�
[Ĥ , ρ] +

∑

lk

Dlk [ρ]. (2.120)

Here we have introduced the super-operator Dlk [ρ](t) defined as

Dlk [ρ](t) ≡ − 1

2�2
(−iRlk(t) [X̂l, {X̂k , ρ}] + i�lk(t) [X̂l, {[P̂k , ρ}]

+ Dlk(t) [X̂l, [X̂k , ρ]] − Flk(t) [X̂l, [P̂k , ρ]]),

with the time-dependent coefficients

Rlk(t) ≡
∫ t

0
dτ

∑

i

flifki cos(�kτ) ξi(τ ), (2.121)

�lk(t) ≡
∫ t

0
dτ

∑

i

flifki
sin(�kτ)

�k
ξi(τ ), (2.122)

Dlk(t) ≡
∫ t

0
dτ

∑

i

flifki cos(�kτ) νi(τ ), (2.123)

Flk(t) ≡
∫ t

0
dτ

∑

i

flifki
sin(�kτ)

�k
νi(τ ). (2.124)
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By taking the Markovian limit, i.e. t → ∞ in the time integrals appearing in
Eqs. (2.121)–(2.124), and integrating over the bath frequencies, we obtain time-
independent coefficients. The frequency renormalization of the normal modes is
given by the coefficient

Rlk = −�

2

∑

i

flifki

[

P

(
Ji(�)

� − �k

)

+ P

(
Ji(�)

� + �k

)]

, (2.125)

P denoting the principal value of Cauchy, which will be neglected since it can be
incorporated into the original Hamiltonian Ĥ .

In addition we obtain

�lk = �π

2

∑

i

flifki
Ji(�k)

�k
= δlk

�π

2

J (�k)

�k
, (2.126)

Dlk = �π

2

∑

i

flifki Ji(�k) coth

(
β��k

2

)

= δlk
π

2
J (�k) coth

(
β��k

2

)

, (2.127)

Flk =
∑

i

flifki

∫ ∞

0
dτ

sin(�kτ)

�k
νi(τ )

= δlk

∫ ∞

0
dτ

sin(�kτ)

�k
ν(τ), (2.128)

where in the second equality we have assumed identical thermal baths with the
same spectral density Ji(�) = J (�). Using the time-independent coefficients in
Eqs. (2.126)–(2.128), we finally obtain the following Markovian master equation
for separate baths in the normal mode basis

dρ

dt
= − i

�
[Ĥ , ρ] − 1

2�2

∑

k

(i�k [X̂l, {[P̂k , ρ}] + Dk [X̂l, [X̂k , ρ]],

− Fk [X̂l, [P̂k , ρ]]), (2.129)

with damping coefficients �k ≡ �kk , momentum diffusion coefficients Dk ≡ Dkk ,
and anomalous diffusion Fk ≡ Fkk , as given by Eqs. (2.126)–(2.128). We notice that
the dissipative terms in the abovemaster equation describe the independent damping,
diffusion and anomalous diffusion processes obtained previously in the quantum
Brownian motion model in Sect. 2.3.

It is also important to stress that the Markovian master equation Eq. (2.129), as
the Brownian motion master equation (2.89) in Sect. 2.3, is not in Lindblad form,
and hence complete positivity is not guaranteed, meaning that the evolution may be
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unphysical for some specific initial conditions and values of the parameters. In order
to obtain a CPTP dynamics we would need to perform a further approximation in
Eq. (2.129),whichwe call strongRWA, and is analogous to the secular approximation
introduced in the previous section.

2.4.2.2 Common Bath Master Equation

Consider now the case of CB, and hence the interaction Hamiltonian Ĥ (CB)
int in

Eq. (2.111). Following the same lines than in the SB case, themaster equation (2.113)
now reads

dρ

dt
= − i

�

[
Ĥ , ρ

]
− 1

�2

∫ t

0
dτ [C(τ )(ÂÂ(−τ)ρ − Â(−τ)ρÂ)

+ C(−τ)(ρÂ(−τ)Â − ÂρÂ(−τ))], (2.130)

where we have a single operator for the open system and the bath, Â = ∑
j κjX̂j and

B̂ = ∑
α gαQ̂α , leading to the bath correlation function

C(τ ) ≡ Tr[B̂(τ )B̂ρE] = �

∑

α

g2α
2

�̃α

(
ei�̃ατ + 2n̂α cos(�̃ατ )

)
. (2.131)

Defining as in the previous case CC(τ ) ≡ C(τ ) − C(−τ) = iξ(τ ) and CA(τ ) ≡
C(τ ) + C(−τ) = ν(τ), we obtain similar expressions for the dissipation and noise
kernels of the bath

ξ(τ ) = �

∫

d� J (�) sin(�τ), (2.132)

ν(τ) = �

∫

d� J (�) cos(�τ) coth

(
β��

2

)

, (2.133)

with the spectral density function J (�) ≡ ∑
α(g2α/�̃α)δ(� − �̃α).

Using the above expressions and rearranging terms we arrive to the master equa-
tion for the common bath in the normal mode basis:

dρ

dt
= − i

�
[Ĥ , ρ] − 1

2�2

∑

ij

(−iRij(t) [X̂i, {X̂j, ρ}] (2.134)

+ i�lk(t) [X̂l, {[P̂k , ρ}] + Dij(t) [X̂i, [X̂j, ρ]] − Fij(t) [X̂i, [P̂j, ρ]]),

where the coefficients are now defined by
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Rij(t) ≡
∫ t

0
dτ κiκj cos(�jτ) ξ(τ ), (2.135)

�ij(t) ≡
∫ t

0
dτ κiκj

sin(�jτ)

�j
ξ(τ ), (2.136)

Dij(t) ≡
∫ t

0
dτ κiκj cos(�jτ) ν(τ ), (2.137)

Fij(t) ≡
∫ t

0
dτ κiκj

sin(�jτ)

�j
ν(τ), (2.138)

to be compared with those of Eqs. (2.121)–(2.124). In the Markovian limit t → ∞
these coefficients read

�ij = κiκj
�π

2

J (�j)

�j
, Dij = κiκj

�π

2
J (�j) coth

(
β��j

2

)

,

Fij = κiκj

∫ ∞

0
dτ

sin(�jτ)

�j
ν(τ), (2.139)

andwemay again neglect the frequency renormalization termsRij leading to a Lamb-
shift-likeHamiltonian. ExaminingEq. (2.139)we note that, in contrast to the SB case,
for CB we have no longer independent channels of dissipation for each normal mode
of the open system, but they become coupled by means of the master equation coef-
ficients with i �= j. This fact is expected from the arguments presented in Sect. 2.4.1.
We also notice that the self-dissipation channels (i = j) in the Markovian limit are
the same than in the SB case, except for the appearance of the effective couplings
κ2
i , modifying the strength of the environmental dissipative action over each normal
mode. Therefore, when the symmetries present in the (original) open system lead
to vanishing effective couplings κi = 0, the corresponding normal mode (i) is pro-
tected from the environmental action, a situation which is not possible in the case of
identical SB. Those features are going to be exploited in Part II of this thesis, where
we analyze in detail the emergence of dynamical effects such as synchronization
phenomena, or the characteristics of the evolution of quantum correlations between
pairs of oscillators of the open system under dissipation.

2.5 Quantum Trajectories

In this section we introduce the formalism of quantum trajectories, also called the
quantum jump approach, which allows us the introduction of a detailed stochastic
description of the evolution of open quantum systems,more complete than themaster
equation approach previously studied. The concept of a quantum trajectory is closely
related to the Kraus operator decomposition of CPTP maps introduced in Sect. 2.1.2,
and consequently to the generalizedmeasurement frameworkpresented inSect. 1.3.2.
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A quantum trajectory can be considered as the path which the (pure) state of an open
quantum system follows over time conditioned to a “record” of events occurring
during the evolution. This path is generated by a continuous sequence of random
quantum operations modifying the state of the system, and generally differing from
one trajectory to another, much as the evolution generated by a large succession of
selective quantum measurements occurring at infinitesimal intervals of times.

The quantum trajectory formalism was first introduced in the context of quantum
optics by different groups [3, 69–73], both as a physical process resulting from
continuous monitoring of an open quantum system which undergoes quantum jumps
induced by environmental action, and also as a powerful simulation tool allowing
numerical computation of complicated problemswhere themaster equation approach
is intractable (for reviews see [74, 75]). The formalism can be applied to any open
quantum system whose evolution is described by a Markovian master equation in
Lindblad form, which, as wewill see below, can be unraveled by splitting the average
dynamics in a set of randomquantumprocesses generating the stochastic trajectories.

Quantum trajectorymethods are ubiquitous in atomic physics and quantumoptics,
and they have been applied to tackle laser cooling [72, 76, 77], cascaded quantum
systems [78], or the quantum delta-kicked rotor [79] among others [74, 75]. The
quantum jumps in which the formalism is based can be traced back to the origins of
quantum theory in the ideas of Bohr, but its real existence has been also the subject
of strong criticism from long time ago, as manifested e.g. by Schrödinger in 1952
in a paper entitled “Are there quantum jumps?” [80, 81]. The first observations of
quantum jumps had to wait for the development of single particle experiments, which
were finally performed in ion trapped setups in the middle 1980s [82–84]. The more
recent development of novel quantum non-demolition measurements allowed the
precise generation, record, and manipulation of quantum trajectories in real time
with applications in quantum state generation and control [11, 85–90].

2.5.1 Continuous Measurements and Quantum Jumps

Consider as in Sect. 2.2 the splitting of time into a sequence of small time steps
where generalized measurements are performed. The measurement at any time step
can be described by a CPTP map E with a prescribed Kraus representation of M
measurement operators, namely {M̂m}M−1

m=0 . Let us assume that ρ(t) is the density
operator of the system at an arbitrary time t. Hence, after one time step of small
duration dt the (unconditional) state of the system, averaging over possible results,
changes to

ρ(t + dt) =
∑

k

Ek(ρ(t)) =
∑

m

M̂m(dt)ρ(t)M̂ †
m(dt). (2.140)

Wewant this concatenation ofmaps to describe a continuous evolution,which implies
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lim
dt→0

ρ(t + dt) − ρ(t)

dt
≡ ρ̇(t) = finite, (2.141)

when considering that the time dt during which the measurement is performed is
infinitesimal. Therefore we need the state ρ(t + dt) to be only infinitesimally differ-
ent from ρ(t), which can be done by setting the following form for the measurement
(Kraus) operators [11]

M̂0(dt) = 1 − dt

(

R̂/2 + i

�
Ĥ

)

, (2.142)

M̂k(dt) = √
dt L̂k , for k = 1, 2, . . . ,M − 1. (2.143)

Here Ĥ and R̂ are Hermitian but otherwise arbitrary operators, and we have also
introduced the generic set of operators {L̂k}, which are only required to obey

∑

k

L̂†k L̂k = R̂. (2.144)

Under these conditions, we obtain that the trace preserving condition is fulfilled

M−1∑

m=0

M̂m(dt)†M̂m(dt) = 1 − dtR̂ + dt
∑

k

L̂†k L̂k + O(dt2) = 1,

up to first order in dt. Moreover, the above Eq. (2.140) then reads

ρ(t + dt) = M̂0(dt)ρ(t)M̂0(dt)
† + dt

∑

k

L̂kρ(t)L̂†k (2.145)

= ρ(t) − i

�
[Ĥ , ρ(t)]dt +

∑

k

L̂kρ(t)L̂†k − 1

2
{L̂†k L̂k , ρ(t)},

implying that Eq. (2.141) reproduces the Lindblad form [c.f. Eq. (2.29) in Sect. 2.2.1].
Let us now focus on the action of the measurement (or Kraus) operators in

Eqs. (2.142) and (2.143) over the system state. We assume the state of the system at
time t to be pure and given by σt = |ψ〉t 〈ψ |t . The result of the measurement at time
t occurring during the infinitesimal time interval dt takes the different values m = 0
or m = k for k = 1, . . . ,M − 1 with probabilities

P0(t) = Tr[M̂ †
0 M̂0σt] = 1 − dt〈R̂〉t, (2.146)

Pk(t) = Tr[M̂ †
k M̂kσt] = dt〈L̂†k L̂k〉t, (2.147)

where it can be easily verified that P0(t) + ∑
k Pk(t) = 1 ∀t. Notice from the above

expressions that, as long as dt is very small, in almost all of the infinitesimal time
intervalswewill get as outcome of themeasurementm = 0,while the other outcomes
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m = k will occur very rarely. In the first case the state of the system changes as

|ψ〉(0)t+dt = M̂0(dt)

P0(t)
|ψ〉t = |ψ〉t − dt

(
i

�
Ĥ + R̂ − 〈R̂〉t

2

)

|ψ〉t , (2.148)

which corresponds to a smooth evolution. It is important to notice that this evolution
is not unitary due to the presence of the operator R̂. Indeed the probability of obtain-
ing two consecutive m = 0 results would be P0(t + dt) = P0(t) + dt2(σ 2(R̂)t −
i〈[Ĥ , R̂]〉t)/�, which increases with the fluctuations in the operator R̂. For instance,
in the relevant case in which Ĥ and R̂ commute, P0(t + dt) = P0(t) unless |ψ〉t is
a superposition of energy eigenstates, meaning that no evolution occurs at all, c.f.
Eq. (2.148). Otherwise the above operation will produce the progressive damping of
the (superposition) states.

On the other hand, when the outcome of the measurement results to be m = k,
the back-action induces a change in the system given by

|ψ〉(k)t+dt = L̂k
√

〈L̂†k L̂k〉t
|ψ〉t , (2.149)

which corresponds to an abrupt change usually referred to as a quantum jump. In
the relevant case in which [Ĥ , L̂k ] = ±�ωL̂k , this jump corresponds to the sudden
absorption or emission of a quantum of energy �ω by the system. Notice that those
equations are easily extended to the case of mixed states σt by applying the general-
ized measurement formalism introduced in Sect. 1.3.2, where the arbitrary form for
the state of the system conditioned to a measurement result was given in Eq. (1.107).
Here we will still maintain the assumption of a pure quantum state |ψ〉t for reasons
that will become obvious later.

In conclusion, we obtained that the conditioned system evolutionwhen the contin-
uous measurement is performed, consists of large periods of smooth evolution given
by Eq. (2.148) and associated to the outcome m = 0, while at some random times a
jump associated to outcome k occurs (with ratePk(dt)/dt), and the state of the system
suddenly changes according to Eq. (2.149). In the continuous measurement language
the outcomem = 0 is regarded as the null result of themeasurement, while outcomes
m = k are called detections [11]. A simple physical example of continuous measure-
ment is given by photodetection of the light emitted by a damped single-mode cavity
in a thermal reservoir at zero temperature (see Sect. 2.3.2), which may be described
by only two outcomes m = {0, 1} [3]. In such case the null measurement m = 0 cor-
responds to no photons being detected, and the outcomem = 1 describes the clicks on
the detector when a photon is emitted by the cavity at some (rare) random times (see
Fig. 2.7). The corresponding measurement operators are M̂0 = 1 − dt(iω + γ0/2)N̂
inducing the damping of superpositions in the Fock basis, and L̂1 = √

γ0â, which
produces the annihilation of one photon in the cavity when the detector clicks. Here
γ0 is the exponential decay rate of photons in the cavity.
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Fig. 2.7 In the top panels we can appreciate a a sample trajectory of the mean number of photons
in a single-mode cavity initially prepared in the Fock state |10〉, and b the average over 10,000
trajectories reproducing the exponential decay predicted by the master equation formalism (here
2κ ≡ γ0). The bottom panel shows experimental sample trajectories for a damped microwave field
in an ultrahigh-Q Fabry–Perot cavity cooled at 0.8K and sensed by circular Rydberg atoms of
rubidium. The microwave field is prepared to contain n = 5 (left) and n = 7 (right) photons. From
Refs. [3] (top) and [91] (bottom)

2.5.2 Stochastic Schrödinger Equation

The above description of the selective continuous measurement can be used to con-
struct a stochastic equation ofmotion generating trajectories for the system evolution,
conditioned to the measurement outcomes obtained at any time during the dynamics.
In order to construct such equationwe need first to introduce the number of detections
corresponding to each outcome k different from the null result up to time t during
the dynamical evolution, which we denote by Nk(t). We then define the infinitesimal
stochastic increment dNk(t) which obeys

dNk(t)dNl(t) = δkldNk(t), (2.150)

E[dNk(t)] = 〈M̂ †
k (dt)M̂k(dt)〉t = dt〈L̂†k L̂k〉t, (2.151)

where E[dNk(t)] denotes the classical expectation value of the stochastic quantity
dNk(t) over many realizations of the process. The quantities dNk(t) are stochastic
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numbers taking either the value zero or one when a jump of type k is detected (notice
that no more than one increment dNk(t) can be one at the same time). Their classical
expectation value coincides with the probability of detecting a quantum jump of type
k, that isPk in Eq. (2.146). Notice that this probability is of the order of the time-step,
dt, and hence the stochastic sequence of jumps corresponds to a Poisson process.

The stochastic increments dNk(t) allow us to write the conditioned evolution of
the system during the interval [t, t + dt] as an Itô stochastic differential equation.
Considering the increment d |ψ〉 ≡ |ψ〉t+dt − |ψ〉t , and assuming that the system
starts in a pure state |ψ〉0 at the initial time t0, we can construct the evolution as the
sum of two components depending on the value of the increments dNk(t)

d |ψ〉t = dt[1 −
∑

k

dNk(t)]
(

− i

�
Ĥ + 〈R̂〉t − R̂

2

)

|ψ〉t

+
∑

k

dNk(t)

⎛

⎝ L̂k
√

〈L̂†k L̂k〉t
− 1

⎞

⎠ |ψ〉t . (2.152)

Thismeans that,when none of the increments are one, that is, if no jumpoccurs during
dt, only the first term survives and the system evolves according to the smooth change
in Eq. (2.148). On the other hand, if some of the stochastic increments takes the value
1, meaning that a jump of type k has been detected during dt, the evolution is just
given by the corresponding sharp change in Eq. (2.149).

The above stochastic differential equation can be further simplified by using the
rule dNk(t)dt = O(dt2), meaning that any of the stochastic increments are at least of
order dt. We then obtain

d |ψ〉t = dt

(

− i

�
Ĥ + 〈R̂〉t − R̂

2

)

|ψ〉t

+
∑

k

dNk(t)

⎛

⎝ L̂k
√

〈L̂†k L̂k〉t
− 1

⎞

⎠ |ψ〉t . (2.153)

which is usually known as a Stochastic Schrödinger equation. The solutions of this
equation are the so-called quantum trajectories, which can be fully characterized by
the initial state |ψ〉0, and the measurement recordR = {(k1, t1), (k2, t2), . . . , (kj, tj),
. . . , (kJ , tJ )} containing the type of the jumps kj occurred during the evolution,
together with the times tj at which they have been detected.

The solutions of the stochastic Schrödinger equation (SSE) (2.153) can be con-
structed with the help of the measurement operators introduced in the previous
section. Using the record R of the J jumps detected during the evolution between t0
and t, we can calculate the probability of a trajectory to occur as

P(R, t) = 〈ψ0|T̂ †
R(t, t0)T̂R(t, t0)|ψ0〉 (2.154)



2.5 Quantum Trajectories 107

where we defined the following trajectory operator generating the correct measure-
ment record

T̂R(t, t0) ≡ Ûeff(t, tJ )L̂kJ . . . Ûeff(t2, t1)L̂k1Ûeff(t1, t0). (2.155)

In the expression of the trajectory operator above we introduced

Ûeff(t, s) ≡ exp[− i

�

(
Ĥ − i�R̂

)
(t − s)] (2.156)

which corresponds to a non-unitary drift operator governing the effective smooth
evolution of the system when no jumps are detected. This operator can be obtained
by concatenating the operators of the null evolution M̂0 in Eq. (2.142). Following
this notation, the solution of the SSE (2.153) can be finally written as

|ψ〉t (R) = T̂R(t, t0)√
P(R, t)

|ψ〉0 . (2.157)

If we now take the classical average over trajectories, we recover the density operator
describing the unconditional state evolution

E[|ψ〉 〈ψ |t (R)] = ρ(t) (2.158)

which obeys the same Markovian master equation in Lindblad form

dρ(t)

dt
= − i

�
[Ĥ , ρ(t)]dt +

∑

k

L̂kρ(t)L̂†k − 1

2
{L̂†k L̂k , ρ(t)}. (2.159)

It must be stressed that, despite we assumed the initial state of the system to be
pure, the same results can be obtained for the case of an initial mixed state ρ0. In
such case the SSE derived in Eq. (2.153) transforms into a stochastic master equation
(SME) of the form [73]

dσt = − i

�
[Ĥ , σt]dt −

(
1

2
{R̂, σt} − 〈R̂〉tσt

)

dt

+
∑

k

dNk(t)

(
L̂kσt L̂

†
k

〈L̂†k L̂k〉t
− σt

)

, (2.160)

where now σt = T̂R(t, t0)σ0T̂R(t, t0)†/P(R, t) being the probability of the trajectory
P(R, t) = Tr[T̂R(t, t0)†T̂R(t, t0)σ0], and ρ(t) = E[σt]. This is an alternative way to
introduce a stochastic differential equation for the system evolution more suited to
describe situations in which extra sources of noise are considered, arising e.g. by an
inefficient detection of the apparatus [92].
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2.5.3 Master Equation Unraveling

In the previous section we have seen that a continuous measurement scheme,
expressed in terms of a CPTP map equipped with a Kraus representation leads to
quantum trajectories generated by the stochastic differential equation (2.153), whose
average converges to a Markovian master equation in Lindblad form. Here we will
take the other way around, i.e. we start with a generic Lindblad master equation and
develop the corresponding trajectory description.

Consider a quantum system weakly interacting with its surroundings and whose
dynamical evolution is given by

dρ(t)

dt
= − i

�
[Ĥ , ρ(t)]dt +

K∑

k=1

L̂kρ(t)L̂†k − 1

2
{L̂†k L̂k , ρ(t)}, (2.161)

Ĥ being the Hamilton operator of the open system. As long as the dynamics is CP,
we can always split the evolution into an infinite sequence of CPTP maps, E, gov-
erning the evolution along infinitesimal time intervals dt as defined in Eq. (2.140). In
addition, the selection of a specific set of Kraus operators {M̂m(dt)}Mm=1 for the map
provides, following Sect. 2.1.2, a physical interpretation of the dynamics consisting
in different random operations induced by the environment, and occurring with prob-
abilities pm(dt) = 〈M̂ †

m(dt)M̂m(dt)〉t . We call this selection of the Kraus operators for
the maps an unraveling of the master equation (2.161), which is in turn related to a
specific monitoring scheme of the environment generating the quantum trajectories
(see Sect. 2.1.3).

One option is to choose a Kraus representation for the map consisting of
M = K + 1 operators, M̂0(dt) and {M̂k(dt)}Kk=1 as the ones introduced in Eqs. (2.142)
and (2.143). This will of course give us the SSE in Eq. (2.153), or equivalently the
SME in Eq. (2.160) if the initial state of the system is not considered to be pure. How-
ever, exploiting the symmetries of the master equation (2.161) may lead to different
unravelings corresponding to other measurement schemes. In Sect. 2.2.1 we have
seen that any master equation in Lindblad form is invariant under the transformation
(2.30), which leads to rewrite Eq. (2.161) as

dρ(t)

dt
= − i

�
[Ĥ ′, ρ(t)]dt +

K∑

k=1

L̂′
kρ(t)L̂′†

k − 1

2
{L̂′†

k L̂
′
k , ρ(t)}, (2.162)

with the new operators

Ĥ ′ = Ĥ − i�

2

K∑

k=1

(
l∗k L̂k − lk L̂

†
k

)
+ �r, L̂′

k = L̂k + lk , (2.163)
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for lk arbitrary complex coefficients, and r a real number. Applying now the identi-
fication in Eqs. (2.142) and (2.143) for the new defined Hamiltonian and Lindblad
operators we obtain:

M̂0(dt) = 1 − dt

(
i

�
(Ĥ + �r) + 1

2

∑

k

L̂†k L̂k + 2L̂k l
∗
k + |lk |2

)

,

M̂k(dt) = √
dt

(
L̂k + lk

)
. (2.164)

The corresponding probabilities for the operations to occur are then

P0(dt) = 1 − dt
∑

k

〈L̂†k L̂k + |lk |X̂k + |lk |2〉t, (2.165)

Pk(dt) = dt 〈L̂†k L̂k + |lk |X̂k + |lk |2〉t, (2.166)

where we defined X̂k ≡ L̂ke−iϕk + L̂†ke
iϕk by expressing lk = |lk |eiϕk . Following the

same lines as in the previous sections we can obtain a new SSE in the form

d |ψ〉t = dt

(

− i

�
(Ĥ + �r) + 〈R̂〉t − R̂

2
+

∑

k

|lk |( 〈X̂k〉
2

− L̂k)

)

|ψ〉t

+
∑

k

dNk(t)

⎛

⎝ L̂k + lk
√

〈L̂†k L̂k + |lk |X̂k + |lk |2〉t
− 1

⎞

⎠ |ψ〉t . (2.167)

where again R̂ ≡ ∑
k L̂

†
k L̂k , and the stochastic increments obey the same properties

as in Eq. (2.152) with the replacement L̂k → L̂k + lk .
Equation (2.167) describes different trajectories from the previously derived SSE

(2.153) for the same open system dynamics as given by the master equation (2.161).
This shows how the quantum trajectory formalism depends on the details of the
environmental modeling, which may be interpreted in terms of different protocols
to monitor the system evolution. In the above general scheme, we may identify the
observable beingmeasured in the open system by looking at the classical expectation
value for the stochastic increments [11]

E[dNk(t)]
dt

= 〈L̂†k L̂k + |lk |X̂k + |lk |2〉t (2.168)

describing the “clicks” of the detector in the continuous measurement interpretation.
This becomes clearer for the damped cavity field mode. In such case the transfor-
mation L̂′

1 = L̂1 + l = √
γ0(â + α) where α = |α|eiϕ , can be seen as a displacement

of the cavity field mode. This can be performed by means of homodyne detection
of the cavity output light, which consists in mixing of the output light with a strong
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coherent field |α〉 in a low-reflectivity beam-splitter before it is detected [11]. In such
case the output signal would be

E[dN1(t)]/dt = γ0(〈â†â〉t + |α|2) + √
2γ0|α|〈X̂ϕ〉t, (2.169)

where |α|2 � 〈â†â〉t , that is, the detectormeasures a constant signal γ0|α|2 plus a sec-
ond term proportional to the field quadrature in the ϕ direction 〈X̂ϕ〉t (see Sect. 1.2.4)
and a very small contribution from direct detection of the photons in the cavity,
γ0〈â†â〉t .

Turning to the general case, it is also important to stress that, when |lk | → ∞, the
expected number of jumps E[dNk(t)] = Pk(t) in the time interval dt becomes very
large, allowing us to obtain a diffusive limit by approximating the Poisson process
by a Gaussian (or Wiener) process. Following Ref. [4] we can formally perform
this approximation by defining new stochastic processes Wk(t) for each type of
jump

|lk | dWk(t) ≡ dNk(t) − E[dNk(t)] (2.170)

which correspond toWiener stochastic increments obeying

dWk(t)
2 = dt, E[dWk(t)] = 0. (2.171)

Fig. 2.8 Results from monitorization of a superconducting charge (transmon) qubit coupled to
a cooper waveguide cavity. In the top panels individual integrated measurement signals of the
amplified cavity field quadrature Vm (green lines) and other measurement traces used to reconstruct
the state tomographically (lighter colors) are shown. The inset shows the instantaneousmeasurement
voltage, and the gray region shows the standard deviation. The lower panels display quantum
trajectories of the qubit obtained from the measurement analysis (dotted lines) and tomographically
reconstructed (solid lines). Left and central columns correspond to Z-measurements in the qubit
while the right column has been obtained using φ-measurements. Picture from Ref. [89]
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Replacing it in the SSE (2.167) and assuming lk real for simplicity, we obtain in the
limit lk → ∞ the diffusive stochastic Schrödinger equation

d |ψ〉t = dt

[

− i

�
(Ĥ + �r) − R̂

2
+

∑

k

〈X̂k〉t
2

(

L̂k − 〈X̂k〉t
2

)]

|ψ〉t

+
∑

k

dWk(t)

(

L̂k − 〈X̂k〉t
2

)

|ψ〉t , (2.172)

from which the master equation (2.161) can be again derived by taking the classical
expectation value ρ(t) = E[|ψ〉 〈ψ |t] and using the properties (2.171). In the con-
tinuous limit the point processes defined by counting the different jumps during the
evolution are transformed in the monitoring of continuous signals with white noise
[11]

Jk(t) ≡ lim
|lk |→∞

dNk(t) − |lk |2dt
|lk |dt = 〈X̂k〉t + ξk(t), (2.173)

where ξk(t) = dWk(t)/dt is the white noise term. This corresponds to a continuous
measurement of the quantity X̂k . In Fig. 2.8 we show an example of the generated
quantum trajectories for the case of continuous monitoring of a qubit system inside
a cavity through the detection of one of the cavity field quadratures in a recent
experiment [89].
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Chapter 3
Quantum Thermodynamics

In Chaps. 1 and 2 we provided an introduction to fundamental concepts of open
quantum systems theory and discussed their dynamical description. As we have pre-
viously commented, open quantum systems theory constitutes nowadays a general
framework which successfully contributes to the research in many branches deal-
ing with quantum phenomena, such as quantum optics, condensed matter physics,
chemical physics, or quantum information science. Its unified and modern view over
the dynamics and properties of quantum systems, makes it, in addition, a prominent
tool in the development of emerging fields such as quantum thermodynamics.

Quantum thermodynamics can be considered as a rapidly evolving research field,
focusing on various thermodynamical aspects of quantum mechanical systems and
processes in nonequilibrium situations [1]. Its main subject of study is the behav-
ior of quantities such as heat, work, or entropy in microscopic quantum systems
(including individual particles), where thermal and quantum fluctuations may com-
pete, and quantum effects come into play. As an interdisciplinary field, it feeds from
different communities and backgrounds, such as stochastic thermodynamics [2, 3],
many-body physics [4] or quantum information theory [5], contributing to different
issues from the characterization of thermalization and equilibration processes to the
analysis of the performance of small quantum thermal machines, passing through
the investigation of the link between information and thermodynamics.

The intimate connection between the laws of thermodynamics and their quantum
origin comes backs to the very beginning of the quantum theory. Indeed, the consis-
tency with thermodynamical laws was the key point to the introduction of Planck’s
law for blackbody ration in 1900 [6], and the subsequent quantization of the elec-
tromagnetic field in 1905 [7]. Since then, an intense theoretical activity has been
devoted to study this connection, some examples being the pioneering introduction
of heat engines based on the three-level maser [8, 9], or the different efforts in deriv-
ing thermodynamic behavior from quantum mechanics (see e.g. Refs. [10–12]). The
interest on a thermodynamic analysis of quantum processes and features has redou-
bled in the last decade, boosted by the success of stochastic thermodynamics -dealing
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with small (classical) systems out of equilibrium at the level of single trajectories-,
quantum information theory, and the rapid development of experimental techniques
for high-precision manipulation and control of quantum systems.

In this chapter we aim to provide an introduction to the emerging framework
of quantum thermodynamics while presenting an over-view of some popular topics
under current investigation. In particular, two of them will be of major importance
to the research developed in this thesis: quantum fluctuation relations, and quantum
thermal machines (corresponding to Parts III and IV of the thesis respectively). In
both cases, the machinery of open quantum systems theory introduced in the previ-
ous chapters will provide us the necessary tools to extend the classical (stochastic)
description of small systems to the quantum regime. This however requires to identify
classical notions such aswork or heat in a purely quantummechanical scenario, a task
which often has been proven difficult or controversial [13–15], as well as the incor-
poration of information into the nonequilibrium thermodynamic framework [16].
Furthermore, we will provide a brief overview about other current topics in quan-
tum thermodynamics not directly addressed in this thesis, such as thermalization
and equilibration processes, and the development of resource theories for quantum
thermodynamics.

This chapter begins with a review of some important thermodynamical con-
cepts in Sect. 3.1, such as the laws of thermodynamics, the stochastic description
of thermodynamic processes, and the link between information and thermodynam-
ics. Section3.2 is dedicated to introduce the so-called fluctuation theorems, a set of
universal relations governing the statistics of different thermodynamical quantities,
originally introduced in the classical regime.We discuss the necessary elements com-
monly assumed in its extension to the quantum regime, and discuss some of the most
important known results. In Sect. 3.3 we discuss different small quantum thermal
machines composed by elementary quantum systems performing some useful ther-
modynamic task. We will split them using two main criteria: machines operating in
cycles versus continuous operation devices, and machines requiring external driving
versus autonomous thermal machines. Finally, in Sect. 3.4, we briefly introduce the
reader to some other important topics in quantum thermodynamics: thermalization
and equilibration of quantum isolated many-body systems, and the resource theory
of thermal operations.

3.1 Principles of Thermodynamics

Thermodynamics was fist developed in the 19th century as a phenomenological
theory concerning the relations between macroscopic observables, or state vari-
ables, such as volume V , pressure p, temperature T , or magnetization M , in systems
composed by a large number of degrees of freedom (of the order of N ∼ 1024).
These macroscopic systems are described within the theory by state functions, like
the internal energyU or the thermodynamic entropy Sth, rather than by the Hamilton
function (or operator in the quantum mechanical case), providing relations between
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macroscopic observables in equilibrium. The simplicity of themathematical descrip-
tion used in thermodynamics is therefore in contrast with the complexity of the pro-
cesses occurring at the atomic scale and the large number of degrees of freedom
needed to describe a macroscopic object. The key point of this simple description
comes from the large time required to perform macroscopic measurements, in com-
parison with the characteristic time scales at which molecular dynamics takes place,
detecting only the average behavior of microscopic degrees of freedom through a
reduced set of quantities [17].

Thermodynamic systems are usually classified in terms of the allowed exchange
processes with their surroundings, the boundaries of the system. In this sense a
system can be: completely closed if neither matter nor energy are exchanged, closed
if it exchanges energy but not matter, and open if it exchanges both of them. Notice
the differencewith the classification introduced in open quantum systems theory, that
considers a system to be closed if it is completely isolated, and open if it interacts
with an environment. In general we will use this second classification during the
thesis, while explicitly stressing the meaning of the thermodynamic classification
when needed.

A particularly fundamental state of a system is its thermal equilibrium state, in
which the number of independent state variables becomes a minimum. In such state
the internal energy U (T, V, Nk) and the thermodynamic entropy Sth(T, V, Nk) are
completely specified by the temperature T , the volume V , and the amounts of chem-
ical constituents Nk of the system. The existence of equilibrium states is taken in
thermodynamics as a fundamental fact of experience [12]: after some relaxation time
any completely closed system (not exchanging energy nor matter with its surround-
ings) reaches an equilibrium state. This spontaneous evolution is due to irreversible
processes, such as heat conduction or chemical reactions. Once it is reached, the state
variables of a system do not change spontaneously any more, and no macroscopic
flows of heat or matter are observed. If two or more systems interact exchanging
energy and/or matter theywill eventually reach an equilibrium state as defined above,
sharing a uniform and common temperature. Furthermore, if two systems A and B
are in thermal equilibrium, and a third system C is in thermal equilibrium with sys-
tem A, then it follows that B and C are also in thermal equilibrium. This transitivity
property of equilibrium states is the so-called zeroth law of thermodynamics [18].

Thermodynamic processes are defined via the change in time of one or more
state variables of a system. Those changes are produced by both the interaction of
the system with its surroundings, and the action of some external agent through the
variation in time of some control parameter λ(t). When the variation of the con-
trol parameter is infinitely slow, we say that the process is quasi-static, while if it
takes a negligible amount of time to occur we say it is instantaneous. Furthermore,
if no external action occurs, we say that the process is spontaneous. A fundamen-
tal classification of thermodynamic processes is the following. We call a reversible
process, a process for which the state of the system is infinitesimally close to an
equilibrium state with its surroundings during the entire evolution. In a reversible
process, the system and its surroundings will be returned to their original states if
the sequence of values adopted by the external parameter, i.e. the so-called protocol
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� = {λ(t) ||tini � t � tfin}, is reversed in time. In contrast, irreversible processes
occurs when the state of the system departs from equilibrium during the time evolu-
tion, generating a permanent change in the environment even if the system turns back
to its original state by reversing the protocol�. Reversible processes are implemented
by starting with a thermodynamic system in equilibrium with its surroundings and
implementing a quasi-static variation of the control parameter, such that the changes
produced by the external agent make the system only depart infinitesimally from the
equilibrium state. Intuitively, the system reaches equilibrium more quickly than the
control parameter changes. However, notice that reversible processes just correspond
to idealized hypothetical processes (implicitly assumed to always exist), but as long
as any change of the control parameter occurs at a finite speed, all processes are
truly irreversible. It is also worth stressing that, although all reversible processes are
quasi-static, the converse it not always true [17].

Furthermore, depending on the type of contact of the system with its environment
and the nature of the later, we may classify thermodynamic processes as:

• Isothermal processes: here system and the environment can exchange energy
and matter but the temperature of the system is maintained constant during the
process. Common examples of isothermal processes are melting, evaporation, or
other phase changes when occurring at constant pressure.

• Isochoric processes: the system can exchange energy but no matter with its sur-
roundings, and the process is performed at constant volume. This is the case e.g. of
the heating or cooling of a liquid inside a closed container with non-zero thermal
conduction.

• Adiabatic processes: in such processes the system cannot exchange energy nor
matter with the environment, except for the work performed by the external agent
(see below). Adiabatic processes sometimes occur when a physical process takes
place so rapidly that there is no time enough to exchange energy with the environ-
ment. It is worth mentioning that the word adiabatic here has a different meaning
than in standard quantum mechanics, where it reefers to a slow perturbation of an
isolated quantum system, and is hence more related to the concept of a quasi-static
process.

3.1.1 The First Law of Thermodynamics

While conservation of mechanical energy (kinetic plus potential) was well known at
the beginningof the 19th century, itwas only after the contributions of J.R. vonMayer,
J. P. Joule, and H. von Helmholtz, that the equivalence of a plethora of phenomena
(mechanical work, heat, electricity, magnetism and chemical transformations) was
established through the unique concept of energy in the second half of the 19th
century [18].

In a thermodynamic process as those introduced above, the changes in the internal
energy�U of the system between initial and final equilibrium states, can be split into
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Fig. 3.1 Schematic diagram showing the meaning of the first law of thermodynamics. The changes
in internal energy �U of the thermodynamic system can be decomposed into two energetic con-
tributions, the work W coming from the control of an external agent (blue arrow), and heat Q
exhausted by the environment in an uncontrollable way (red arrow)

two contributions, called heat and work, which represent two different and process-
dependent sources of energy. The heat Q represents the energy introduced into the
system in an uncontrolledway, associated to the energy exchangedwith thermal baths
or equilibrium reservoirs. On the other hand, the work W represents a controllable
(and hence useful) energy source, which is associated to the action of an external
agent on the system via a control parameter λ(t). The first law of thermodynamics
asserts the conservation of energy:

�U = Q + W, (3.1)

where Q and W , unlike �U , are process dependent. A schematic representation of
the first law is depicted in Fig. 3.1.

In quantum thermodynamics, the first law can be stated by identifying the internal
energy with the average energy of a quantum system, as defined by the expectation
value of its (time-dependent) Hamiltonian Ĥ(λ(t)). If the system is in a generic state
ρ(t), at an arbitrary time t , its internal energy reads [1]

U (t) ≡ Tr[ρ(t)Ĥ(λ(t))]. (3.2)

Therefore, in any process starting at time tA in state ρA with the control parameter
at point λA, and ending at time tB in state ρB with the control parameter in λB , the
change in internal energy becomes

�U = UB −UA = Tr[ρB Ĥ(λB)] − Tr[ρA Ĥ(λA)]. (3.3)
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This change in average energy can be then ascribed to heat and work contributions

Q ≡
∫ B

A
δQ =

∫ tB

tA

Tr

[
dρ(t)

dt
Ĥ(λ(t))

]
dt, (3.4)

W ≡
∫ B

A
δW =

∫ tB

tA

Tr

[
ρ(t)

d Ĥ(λ(t))

dt

]
dt, (3.5)

where one recovers Eq. (3.1). In an open quantum system, the work contribution
corresponds to the total change in the average energy introduced in the global system
(open system+ environment) by the external modification of the Hamilton operator.
Indeed, by denoting ρtot(t) the total density operator at time t in the Schrödinger
picture, and the total Hamiltonian as Ĥtot(t) = Ĥ(λ(t)) + ĤE + Ĥint, with time-
independent environmental and interaction terms, we have that the change in the
total energy is

d

dt
Tr[ρtot(t) Ĥtot(t)] = Tr

[
ρtot(t)

d Ĥtot(t)

dt

]
= Ẇ , (3.6)

where the first equality follows from Tr[Ĥtotρ̇] = 0 by exploiting the Liouville–von
Neumann equation (1.5) (see Sect. 1.1) and the second one by performing the partial
trace over the environmental degrees of freedom. Analogously, an interpretation of
the heat Q in Eq. (3.4) can be obtained from Tr[Ĥtotρ̇] = 0, as it implies

Q̇ = −TrE [ĤE ρ̇E ] − Tr[Ĥintρ̇tot], (3.7)

and the heat can be interpreted as the energy transferred from the environment (first
term) and interaction degrees of freedom (second term). Notice that in the common
situation of weak coupling between system and environment the second term can be
neglected.

As can be seen from definitions (3.3)–(3.5), the change in internal energy only
depends on the initial and final states of the system, while work and heat are pro-
cess dependent, that is, they depend on the specific path followed by the control
parameter from λA to λB . Henceforth in an infinitesimal process the exact differen-
tial dU = δQ + δW , splits into two terms, δQ and δW , which are not, in general,
exact differentials [1]. This implies that in a cyclic process in which ρB = ρA, and
Ĥ(λB) = Ĥ(λA), we always have �U = 0, but work and heat are in general non-
zero, fulfilling Wcyc = −Qcyc.

3.1.2 The Second Law of Thermodynamics

The origins of the second law of thermodynamics go back to the pioneering analysis
of Sadi Carnot on the power and efficiency of heat engines in 1824 [19], moti-
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vated by the spread of the steam engine during the industrial revolution. Carnot
identified the flow of heat as a fundamental process required for the generation of
work [18]. He introduced the condition of maximum work extraction of an idealized
heat engine operating cyclically between a difference of temperatures. This condi-
tion corresponds to the case in which all the operations performed by the machine
are reversible. Under such conditions, assuming no further leaks of heat, a cyclic
operation of the machine may reach a maximum efficiency given by

W

Qhot
� ηC = 1 − Tcold

Thot
, (3.8)

where W refers to the work extracted in a cycle, Qhot is the heat absorbed from the
higher temperature reservoir at Thot in the cycle, and Tcold � Thot is the temperature
of the cold reservoir acting as a heat sink.Carnot efficiency establishes a fundamental
limitation on the performance of ideal heat engines solely based on the temperature
ratio of the reservoirs and independent of the specific model of the engine. However,
it should be pointed out that Carnot’s analysis was based on the old theory of heat,
which considered heat as an indestructible quantity not fulfilling the first law. Its
work, while passing mostly unnoticed during decades, was essential to the later
introduction of the concept of (thermodynamic) entropy [20] and the formalization
of the second law of thermodynamics by Rudolf Clausius and Lord Kelvin (see e.g.
Ref. [18]).

As we have seen before, there are many ways to operate a thermodynamic process
from some equilibrium state A to some other equilibrium state B. Each of these
different paths will provide different values for the work and the heat entering the
system during the process. Among all those paths there always exists at least one
idealized path, corresponding to a reversible process, for which, as stated before,
the system is always infinitesimally close to an equilibrium state. Indeed there exist
in general infinitely many reversible paths connecting the two states A and B. The
existence of reversible paths leads us to define the thermodynamic entropy, a concept
as fundamental and universal as energy, entering the theory as a state function. It has
been first defined through its change in a reversible process by Clausius in 1865 [20]

�Sth ≡
∫ B

A

δQrev

T
, or

∮
δQrev

T
= 0, (3.9)

where �Sth = SB
th − SA

th is the change in entropy from point A to B, and δQrev is the
heat absorbed by the system in a differential step of the process when it is reversible.
Recall that the thermodynamic entropy is a quantity that only depends on the initial
and final states of the process and not on the specific reversible path followed. Then
the quantity dS = δQrev/T becomes an exact differential. Notice that if the process
is, in addition, isothermal, we just obtain �Sth = Q/T .

However, a generic thermodynamic process does not necessarily follow a
reversible path [see Fig. 3.2a]. In such situation we have dS � δQ/T , or
equivalently:
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(a) (b)

Fig. 3.2 a Schematic pressure-volume diagram for processes connecting the two equilibrium states
A and B. A reversible process is depicted as the solid green line, while two irreversible processes
are represented by the red dashed lines. b Schematic picture of the thermodynamic entropy equality
(3.11). The changes in thermodynamic entropy of the system, �Sth, are viewed in part as coming
from the environment through energy and matter exchange. The entropy production hence refers to
the increase in thermodynamic entropy of the system not accounted by the flow �eSth

�Sth �
∫ B

A

δQ

T
, or

∮
δQ

T
� 0. (3.10)

The above inequalities are usually referred to as the Clausius inequality for arbitrary
and cyclic processes respectively. Again, for isothermal processes the expressions
simplify to �Sth � Q/T . We stress that the equality case is only fulfilled for a
reversible process.

A modern formulation of the second law is expressed by introducing a split of
�Sth in Eq. (3.9) into two terms [18]:

�Sth = �iSth + �eSth, (3.11)

which are respectively called entropy production and entropy flow. The entropy flow
term �eSth corresponds to the changes in entropy of the system due to the exchange
of energy and matter with the surroundings [see Fig. 3.2b]. For a system which only
exchanges energy in a process connecting the equilibrium states A and B it reads:

�eSth ≡
∫ B

A

δQ

T
, (3.12)

which can be either positive or negative (it has positive sign when heat flows into the
system). On the other hand, the entropy production term is the change in entropy of
the system due to irreversible processes within the system. This second contribution
is non-negative by virtue of the second law (3.10):

�iSth = �Sth −
∫ B

A

δQ

T
� 0. (3.13)
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Notice that this equality substitutes the second law inequality. It was first intro-
duced by Clausius who referred to �iSth as the so-called uncompensated heat [20].
In a cyclic process for which the net change of entropy is zero, we have �iSth =
− ∮

δQ
T � 0, meaning that for the system to return to its initial state, the entropy

produced during the irreversible process has to be discarded through the expulsion
of heat to the surroundings, hence increasing the entropy of the environment, or
more generally the universe. Indeed, when the environment is considered to be a
thermal reservoir, which maintains its state even if it exchanges energy or matter
with the system, the entropy flow term is identified with the entropy decrease in the
environment, i.e. �eSth = −�SE

th . Consequently, following Eq. (3.13), the entropy
production can be identified with the sum of the thermodynamic entropy changes in
system and surroundings, �iSth = �Sth + �SE

th � 0. This leads to the formulation
of the second law as the non-decrease of the sum of the changes in entropies of a
system and its exterior, or, as summarized by Clausius: “The entropy of the universe
approaches a maximum” [18]. Notice the importance of this statement as it leads to
the distinction between future and past, and hence the existence of an arrow of time.

3.1.3 Statistical Mechanics and Entropy

While 19th century thermodynamics focusedon equilibriumproperties and reversible
transformations, being principally a theory of states, in the 20th century nonequilib-
rium processes were progressively analyzed and incorporated into the theory [18].
Using the concepts of entropy production and entropy flows, the predictable power
of thermodynamics was extended to the description of irreversible process, from
thermoelectric phenomena to dissipative structures such as convection patterns in
fluids. The development of non-equilibrium thermodynamics has been made possi-
ble thanks to the introduction of statisticalmechanics, which established a connection
between thermodynamic properties and molecular dynamics, providing a physical
interpretation of the concept of entropy [17]. Furthermore, the random motion of the
molecules induces fluctuations in all thermodynamic quantities, and the interaction
with the surroundings makes the system to be continuously subjected to perturba-
tions, leading naturally to work with probabilities. These fluctuations are extremely
small in macroscopic equilibrium systems (∼1/

√
N ) and they can be neglected in

normal circumstances. However, this is no longer the case e.g. when approaching
the critical point in systems presenting phase transitions, when the size of the sys-
tems under description scales down, or when the motion of single molecules can be
observed by an intelligent being able to use this information (Maxwell’s demon).

The introduction of statistical mechanics comes back to the kinetic theory of
gases, created to explain the equilibrium properties of dilute gases from their under-
lying molecular dynamics. In this formalism the basic concept is the probability
distribution, ρ(x, v, t), to find a molecule at position x , with velocity v at time t .
When assuming only binary collisions between the gas molecules, this distribution
adopts the form of the well-known Maxwell–Boltzmann distribution as obtained by
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Boltzmann in 1871. In doing so, he also considered the probability ρ(E), to find a
molecule with energy E , obtaining

ρ(E) ∝ ϑ(E)e−E/kBT , (3.14)

where ϑ(E), called the density of states, is the number of different states in which
the molecule has energy E [18]. Nevertheless, the scope of statistical mechanics is
broader, being a central topic the explanation of the concept of entropy [17]. In a
macroscopic system there exist many microscopic states compatible with the few
macroscopic parameters used as state variables in its thermodynamic description.
This feature is valid both in classical and quantum frameworks. In an isolated system,
it might seem at a first sight that, if the system is in one of such particular states, this
state should be maintained forever, evolving according to the Schrödinger equation.
However, as we have pointed in Chaps. 1 and 2, no physical system is truly isolated.
Even more, if the system is macroscopic, the energy differences between quantum
states become extremely small, and the inner interactions will induce transitions
between the quantum states [17].

Within classical statistical mechanics this complicated plethora of phenomena
is simplified by assuming rapid random microscopic transitions, and takes as a
fundamental postulate the assignment of equal probabilities to all the permissible
microstates, as specified by the positions and velocities of all particles in the system
(x, p) ≡ {�xi , �pi }Ni=1, compatible with a given macrostate, that is, the state defined
by the macroscopic variables like internal energy U , the volume V or number of
particles N . This applies for systems that do not exchange energy or matter with
the exterior. The second basis of statistical mechanics is the identification of ther-
modynamic entropy with the (logarithm of the) number of available microstates
	(U, V, N ), also due to Boltzmann

Sth = kB ln	(U, V, N ), (3.15)

where the Boltzmann constant, kB , ensures the agreement with the Kelvin scale of
temperature [17]. This implies that in the equilibrium state, 	(U, V, N ) is maxi-
mum. This is usually considered as the second fundamental postulate of statistical
mechanics.

Statistical mechanics aims to explain macroscopic variables by averaging over
ensembles of microscopic states. The probability of the system to be within [x, x +
dx] and [p, p + dp] at some particular time reads

P(x + dx, p + dp, t) = dxdp ρ(x, p, t) (3.16)

where ρ(x, p, t) is known as the phase space density of the system at time t , and
dxdp is a phase-space cell. The internal energy of the system can be defined as the
ensemble average of the Hamiltonian of the microscopic system H(x, p)
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U =
∫

dxdp ρ(x, p, t)H(x, p), (3.17)

to be compared with Eq. (3.2). The number of microstates 	(U, V, N ) can be hence
related to a hypersurface in phase space with energy H(x, p) = U in a constrained
region of volume V [21]. Analogously to the internal energy, one can define ensemble
averages for any suitable microscopic observable O(x, q) in correspondence to a
macroscopic quantity O .

Importantly, Gibbs expressed the entropy of a system as the average of the quantity
s(x, p, t) ≡ −kB ln ρ(x, p, t), that is

S(x, p, t) =
∫

dxdp ρ(x, p, t)s(x, p, t)

= −kB

∫
dxdp ρ(x, p, t) ln ρ(x, p, t). (3.18)

Notice that the von Neumann’s definition of entropy constitutes an extension of
the Gibbs entropy to the quantum case. It is worth stressing here that macroscopic
phenomenological thermodynamics can only correctly describe the macrostate of
a system when it is in equilibrium, as nonequilibrium states cannot in general be
described by a small set of macroscopic measurable variables, henceforth Eq. (3.15)
can only describe the thermodynamic entropy in equilibrium states. In contrast, Gibbs
entropy can be defined as well for nonequilibrium states, reducing to Boltzmann’s
expression [Eq. (3.15)] when we assign equal probabilities to all microstates.

3.1.4 Helmholtz and Nonequilibrium Free Energy

A third way to state the second law of thermodynamics in Eq. (3.10) comes from the
introduction of the (equilibrium) Helmholtz free energy of a system in equilibrium
at temperature T , defined as F ≡ U − T Sth. In this case the second law establishes
a bound on the work that can be extracted in any isothermal process connecting two
equilibrium states

T�iSth = W − �F � 0, or Wext ≡ −W � −�F, (3.19)

where we have used Eq. (3.9) for constant temperature T , and the first law Q =
�U − W . This expression can be further extended to nonequilibrium initial and final
states, which makes it particularly important for the development of information and
quantum thermodynamics [16]. In particular, in the quantum regime we introduce
the nonequilibrium free energy of a quantum system with Hamiltonian Ĥ in state ρ,
with respect to a thermal reservoir at temperature T as

F(ρ, Ĥ , T ) ≡ U − kBT S(ρ), (3.20)
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Fig. 3.3 The nonequilibrium state ρ can be transformed into a thermal equilibrium state ρ0 while
extracting a maximal amount of work as given by Eq. (3.21). A protocol which accomplish this task
consists of a first instantaneous quench of the Hamilton operator Ĥ0 → Ĥρ ≡ kBT ln ρ, followed
by a quasi-static isothermal transformation which returns the Hamilton operator back to Ĥ0 (in the
quantum case this will be described by an adiabatic Markovian master equation [24]). This is in
contrast to the irreversible relaxation ρ → ρ0 occurring by directly putting the system in contact
with the thermal reservoir. Picture taken from Ref. [16]

where againU = Tr[ρ Ĥ ] is the (average) internal energy of the quantum system, and
S = −Tr[ρ ln ρ] is the von Neumann entropy introduced in Sect. 1.1.6. We notice
that the nonequilibrium free energy in Eq. (3.20) can be defined as well for classical
systems by replacing the von Neumann entropy by the Shannon entropy [16]. It has
been shown that the maximum work that can be extracted from a quantum system
starting in an arbitrary nonequilibrium state ρ, with Hamiltonian Ĥ0, by using a
thermal reservoir at temperature T , is bounded by the nonequilibrium free energy
change [16, 22, 23]

Wext � F(ρ, Ĥ0, T ) − F(ρ0, Ĥ0, T ), (3.21)

leaving the system at the end of the process in state ρ0 at thermal equilibrium with
the reservoir. In Fig. 3.3 a generic way of performing this operation is illustrated.

The second law of thermodynamics for isothermal processes (in the sense of the
presence of a single thermal reservoir at fixed temperature) connecting two generic
nonequilibrium states ρA and ρB with same Hamiltonian Ĥ reads [16, 23]

T�iSth = W − �F � 0, (3.22)
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where W is the work performed during the process, and we have denoted by
�F = F(ρB, Ĥ , T ) − F(ρA, Ĥ , T ) the change in nonequilibrium free energy as
defined in Eq. (3.20).

Notice that we have written the thermodynamic entropy as Sth using a dif-
ferent notation than the one employed for the Gibbs entropy S(x, p, t), and the
von Neumann entropy S(ρ) in Sect. 1.1.6. The von Neumann entropy coincides
with the thermodynamic entropy for equilibrium thermal states (or Gibbs states),
ρth = exp(−β Ĥ)/Z with Z = exp(−βF) the partition function, when multiplied
by the Boltzmann constant kB , that is, kB S(ρth) = Sth. However, more care must be
taken in nonequilibrium situations. The von Neumann entropy is usually considered
to represent the nonequilibrium extension of the thermodynamic entropy in quan-
tum thermodynamics [1, 5] (as well as the Gibbs entropy is widely used in classical
statistical mechanics) and, although this identification has been demonstrated to be
correct in different nonequilibrium scenarios (see e.g. Refs. [12, 16, 25–27]), its
equivalence in arbitrary situations is still a controversial issue in both classical and
quantum cases [28–33]. We stress that, for the identification to be correct, one needs
to demonstrate the existence of reversible processes connecting the nonequilibrium
initial and final states, for which Eq. (3.9) [or equivalently Eq. (3.22)] is fulfilled
when using the von Neumann entropy. In Chap. 8 we analyze various expressions for
the entropy production (3.13) in open quantum systems based on the von Neumann
entropy.

3.1.5 The Third Law of Thermodynamics

Walther Nernst completed the fundamental laws between 1906 and 1912 by noticing
that the changes in thermodynamic entropy of all isothermal processes tends to
zero when the temperature approaches zero. Planck reformulated this principle in a
stronger way by stating that the entropy of any system in equilibrium tends to zero as
its temperature approaches zero (when the system has a non-degenerated minimum
energy state) [17]

Sth → 0 when T → 0K . (3.23)

This is known as the third law of thermodynamics, the Nernst heat theorem [18]
or Nernst postulate [17]. Notice that the theorem provides an absolute scale for the
thermodynamic entropy, making it a well defined quantity for any thermodynamic
state.

Furthermore, the third law of thermodynamics has implications in the attainability
of the absolute zero temperature. In particular, it sets that no adiabatic process (in
the thermodynamic sense) initiated at T �= 0 can reach T = 0. This is because the
adiabat S = 0 coincide with the isotherm T = 0, and we have that two adiabats
can never cross each other [17]. The third law is hence sometimes formulated as
the unattainability of absolute zero temperature for any process in a finite number of
operations and at a finite time, as was first pointed by Nernst [34] (see also Ref. [35]).
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Fig. 3.4 Schematic entropy-temperature diagrams for cooling processes ABC in which a absolute
zero is attainable and b absolute zero is unattainable. The curves p1 and p2 represent different
values of the external control parameter p (e. g. the pressure in the case of a gas), S ≡ Sth is the
thermodynamic entropy and T the temperature. Nernst heat theorem implies situation (b) for which
an infinite number of cooling processes is needed in order to reach absolute zero temperature.
Picture obtained from Ref. [35]

This is indeed probably the most popular formulation of the third law nowadays. In
Fig. 3.4 this statement is illustrated in terms of a cooling process represented in the
entropy-temperature diagram. It should be further pointed that the unattainability
formulation does not implies itself that the thermodynamic entropy tends to zero at
T → 0, but only that the changes in entropy vanish in this regime [35].

In the context of quantum thermodynamics, it has been pointed that the full
quantum treatment of matter can shed light into the relation between the above
two formulations of the third law [25, 36]. In particular, the Nernst heat theorem
has been largely studied in Ising models and lattice systems with generalized fer-
romagnetic many-body interactions [37, 38] and the role of degeneracy has been
discussed. More recently it has been checked for a harmonic oscillator coupled to a
general heat bath [39, 40]. On the other hand, the third law has been also explored in
its dynamical form in the context of quantum thermal machines (see Sect. 3.3 for an
introduction to quantum thermal machines). Four-stroke [41] and swap-based [42]
Otto refrigerators, as well as continuously driven [43] and autonomous fridges [44,
45] have been analyzed, and different power laws for the decrease of the refrigeration
heat current when the temperature approaches zero have been reported. However,
non-Markovian models have been also introduced leading to refrigeration at a con-
stant rate in the limit T → 0, hence challenging the unattainability principle [46].
Furthermore, other formulations of the third law taking into account e.g. the size
of the reservoir, or the energy needed to perform cooling, have been discussed in
the context of purification of quantum states and information erasure for quantum
information tasks [36, 47–51]. In Chap.11 we will provide a new formulation based
on the Hilbert space dimension of multilevel autonomous quantum fridges.
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3.1.6 Thermodynamics and Information

The link between information and thermodynamics is as old as the thermodynamic
theory itself, going back to the gedanken (thought) experiment proposed by James
Clerk Maxwell in 1871, and today known asMaxwell’s demon (for a review see Ref.
[52]). Maxwell imagined a little intelligent being (the demon) able to acquire infor-
mation about the positions and velocities of the molecules of two gases at different
temperatures, in containers of equal volume separated by a rigid wall equipped with
a tiny door which can be opened or closed at will. The demon can control the door to
let the fast (hot) particles of the gas at the cold temperature be transferred to the gas
at the hot temperature when they approach the wall. Analogously it can also let the
slow (cold) particles of the hot gas pass to the cold gas [see Fig. 3.5a]. In this way, he
can make the hot gas hotter and the cold gas colder without any work invested, hence
challenging the second law of thermodynamics. Maxwell’s demon pointed at two
important characteristics involving thermodynamic laws, which have been largely
investigated. First, the second law of thermodynamics seems to be only a statistical
principle of large systems which holds almost all the time [52], but events defeating
the law can happen at the microscopic scale. Second, the inclusion of information
seems to modify the energetic restrictions imposed by the second law [16].

The recognition of the thermodynamic significance of information is due to Léo
Szilárd, who proposed another thought experiment in 1929 consisting in a cyclic
engine that uses information to performwork, and today known as the Szilard engine
[54]. In this case the working substance of the engine is a single-molecule gas which
starts in a container of given volume V0, in thermal contact with a reservoir at tem-
perature T [see Fig. 3.5b]. The demon starts by rapidly introducing a piston splitting
the container in half, each one of volume V0/2. Subsequently, the demon ‘measures’
in which half the particle is contained, and moves the piston inducing a reversible
expansion to the other side until the volume turns back to the initial value V0. The
piston can then be removed and the cycle starts again. As long as introducing and
removing the piston costs no work (as it can be done reversibly [55]), the net effect
of the cycle is the extraction of work in the isothermal reversible expansion, which

Fig. 3.5 a Cartoon representing the Maxwell’s demon setting obtained from Ref. [53] and b
Szilard’s engine cycle in four steps starting from the top-left panel (see main text)
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equals the heat absorbed from the reservoir, Wext = Q = kBT ln 2. This produces a
decrease of entropy in the reservoir �SE

th = −Q/T = kB ln 2. This machine hence
apparently contradicts Eq. (3.10), or the equivalent formulation: ”It is impossible to
construct an engine which will work in a complete cycle, and convert all the heat it
absorbs from a reservoir into mechanical work” (Ref. [18], p. 103).

The proposal of Leó Szilárd has been analyzed in detail during decades, high-
lighting different possible drawbacks of the scheme and clarifying the origin of
the entropy decrease [53]. Although Szilárd already pointed out that an increase of
entropy in the measurement process must compensate the entropy reduction in the
reservoir in order to save the second law, he did not mention the role of the demon’s
memory [52]. A popular resolution of the paradox is due to Charles Bennett [56]
who argued that the demon’s memory retaining the information about the chamber
in which the one-molecule gas is in, must be reset (or erased) to truly close the cycle,
while acquisition of information can be done reversibly. In his derivation, Bennett
invoked Landauer’s erasure principle [57], which sets that the logical erasure of one
bit of information, in a system in contact with a thermal reservoir at temperature T ,
requires a minimum dissipation of heat:

Qeras � kBT ln 2. (3.24)

This minimum amount of heat is known as Landauer’s bound, and must be compen-
sated by an equal amount of invested workWeras = Qeras if one wants to maintain the
internal energy of the working substance constant. Therefore, turning to the Szilard
engine, we have that the work extracted in the reversible expansion of the cycle must
be spent to reset the memory at the end, implying that the overall gain of work in
the whole cycle is (at most) zero. Landauer’s principle establishes the connection
between logical irreversibility and energy dissipation in computing processes, argu-
ing that information is always stored in physical devices, and consequently it needs
to be considered as physical. The increasing ability to control systems at the single
particle level has made possible the experimental verification of Landauer’s bound
[58], while Szilard-like engines are also being implemented nowadays in the labora-
tory using as working substances a colloidal Brownian particle [59, 60] or a single
electron [61, 62]. Furthermore, other devices operating as a Maxwell demon have
been recently experimentally realized in a photonic setup [63], or an autonomous
version in capacitively coupled single-electron devices [64].

The quantum version of the Szilard engine has been studied in Refs. [65, 66], from
where the classical results can be recovered. Furthermore, Landauer’s principle can
be straightforwardly extended to the quantum domain by considering the erasure of
a general quantum state, ρ, to be reset into a ready-to-measure fixed pure state, |0〉,
with same internal energy. In this case we obtain Qeras � kBT S(ρ), where S(ρ) is
the von Neumann entropy. Again the dissipated heat can be seen as work externally
invested in the operation. Indeed a simple calculus using Eq. (3.21) shows that this
is indeed the change in nonequilibrium free energy during the process [16] (see also
Refs. [67, 68])

Weras � �F = kBT S(ρ). (3.25)
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We stress that here the meaning of the word “erasure” in the transformation from
a high-entropy state ρ to the pure state |0〉, comes from historical reasons, while
it is related to a decrease in the uncertainty about the state (i.e. an increase in the
information about the state). It is alsoworth stressing that Eq. (3.25)must bemodified
in the case inwhich the system, sayS, to be erasedwith the transformationρS → |0〉S,
shares correlations with a further ancilla, whose local state ρA ≡ Tr[ρSA] is not
changed during the process [1]. Notice that this is completely equivalent to the
above erasure process from the local point of view, while now Eq. (3.25) generalizes
to [69]

W � kBT S(S|A), (3.26)

that is, work can be extracted from the consumption of quantum correlations if
the relative entropy S(S|A) = S(ρSA) − S(ρA) is negative, as it is the case for a
certain subset of bipartite entangled states (see Ref. [70] and Sect. 1.4). A general
protocol obtaining the maximum amount of work is presented in Ref. [69]. The
thermodynamics of quantum feedback processes has been also investigated [71, 72]
including the role of quantum correlations in different setups [73–76]. Finally we
point that the verification of Landauer’s principle in a fully quantum system has been
recently reported in Ref. [77], and extensions to the case of finite-size reservoirs [51],
nonequilibrium reservoirs [78], or probabilistic erasure [79] are currently important
topics of research.

3.2 Fluctuation Theorems

In the past decades there has been an increasing interest in applying thermodynamics
to small systems of microscopic or even nanoscopic size, and extendedmore recently
to the quantum regime. Individual molecules became accessible to high-precision
manipulation and measurement in the laboratory, while simulation techniques for
molecular systems were established. As a consequence, small-scale thermodynam-
ics attracts a multidisciplinary interest from biology, chemistry and physics [80].
When the size of the systems under consideration scales down, fluctuations become
important, and nonequilibrium situations appear everywhere. In order to describe
such situations, the inclusion of fluctuations in the nonequilibrium thermodynamic
description is mandatory, a task which has been first accomplished within the frame-
work of stochastic thermodynamics [2, 81].

The laws of thermodynamics, as they apply to macroscopic objects, are blurred
when considering the random motion of small particles, continuously colliding
with the particles of their environmental surroundings, and one may expect they
to hold only on average [80]. However, an interesting first law like energy balance
can also be stated for individual stochastic trajectories of microscopic objects, and
entropy can also be defined at this level. Furthermore, the study of the fluctuations
in the microscopic versions of work, heat and entropy, have led to the discovery of
universal relations called fluctuation theorems (FT) which introduce precise con-
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straints on the statistics followed for those quantities. Among the most popular fluc-
tuations relations are the Jarzynski relation [82, 83], the Crooks work theorem [84],
and the integral fluctuation theorem for the total entropy production introduced by
Seifert [85], who followed and extended the pioneering work of Evans, Cohen and
Morris [86]. They refined our understanding of irreversibility and the second law of
thermodynamics, substituting the usual inequalities for average quantities by equali-
ties for the microscopic based ones [80]. Stochastic thermodynamics and fluctuation
theorems are introduced in the following sections.

The development of quantum thermodynamics passes through the extension of
the different fluctuation theorems to the quantum regime. On the other hand, impor-
tant issues concerning the nature of quantum work and heat arise when dealing with
quantum systems [13, 87, 88], and the trajectory concept is indeedmisleading unless
quantum measurements are considered (see Sect. 2.5). This motivates the introduc-
tion of a framework which we call the two measurement protocol (TMP) from which
some of the most important fluctuation theorems can be derived both for isolated
and open quantum systems [3, 89]. Deriving the fluctuation theorems without the
TMP framework as well as developing extensions to nonequilibrium situations in
which quantum features or finite-size effects can be naturally incorporated, consti-
tute nowadays important challenges [90–96]. Part III of this thesis is dedicated to
present our contributions in this active and promising field of research.

3.2.1 Stochastic Thermodynamics

Stochastic thermodynamic describes the thermodynamic behavior of small systems
driven out of equilibrium in a framework which incorporates the fluctuations induced
by the environment. The framework combines the stochastic energetics introduced
by Sekimoto [97], allowing the formulation of the first law of thermodynamics
for stochastic trajectories, and the definition of entropy for fluctuating trajectories
[85] leading to different results refining the second law of thermodynamics [2].
It extends statistical mechanics to nonequilibrium situations and it has been sat-
isfactorily applied to isothermal processes followed by microscopic systems from
biopolymers to single electron transistors.

Following classical statistical mechanics, we can describe a single particle (or few
of them) in phase space by specifying its position and momentum (x, p) = {�x, �p}.
The Hamiltonian function of the particle is H(x, p, λ), where we introduced the
external control parameter λ(t), responsible of driving the system out of equilibrium.
When a particular protocol for the external parameter is applied,� = {λ(t)|t0 � t �
τ }, the particle will evolve subjected to the externally applied force while interacting
randomly with its surrounding environment, assumed to be a thermal reservoir (or
heat bath) in equilibrium at a well defined temperature T . The system evolution is
assumed to be described by Langevin dynamics
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ẋ = p/m, ṗ = F(x, λ) − γ p/m + ξ(t), (3.27)

where F(x, λ) = −∂x V (x, λ) + f (x, λ) is a systematic force with conservative
contribution from the potential V (x, λ) and a directly applied non-conservative
force f (x, λ), m is the mass of the particle, and γ0 the friction coefficient. The
stochastic term ξ(t) describes the thermal noise with 〈ξ(t)〉 = 0 and correlation
〈ξ(t1)ξ(t2)〉 = 2Dδ(t1 − t2), D being the diffusion constant. A paradigmatic model
is the overdamped regime of the above dynamics, reducing to

ẋ = μF(x, λ) + ξ(t), (3.28)

where μ = 1/γ0 is the mobility. This regime occurs when the particle mass is big
m � γ0�t , �t being the resolution of the coarse-grained evolution, or equiva-
lently when the friction is high γ0 � �t/m. Prototypical systems obeying the over-
damped Langevin equation are colloidal microscopic particles, molecular motors,
and some magnetic and electric circuits at low intensities. Here it is assumed that the
Einstein relation holds, D = μkBT , meaning that the noise is not affected by the
time-dependent force [2]. For simplicity we considered a single degree of freedom
x . In the case of multiple degrees of freedom, x and F become vectors, and D and
μ become tensors possibly depending on x [98].

The dynamical evolution generates stochastic trajectories in phase-space, denoted
as γt ≡ (xt , pt ). As long as the interactions with the environment are of random
nature, for a given protocol�wewill obtain different trajectories in different realiza-
tions. Therefore, the physical properties of the system at the trajectory level become
stochastic variables, which can be described through an appropriate probability dis-
tribution. The ensemble of trajectories is characterized by the phase space distribution
ρ(x, p, t) denoting the probability to find the particle with position x andmomentum
p at time t . It evolves according to a Fokker–Planck equation, which in the case of
the overdamped colloidal particle reads

∂tρ(x, t) = −∂x j (x, t), (3.29)

with j (x, t) = μF(x, λ)ρ(x, t) − D ∂xρ(x, t), the current. We recall that in the
overdamped regime the momentum of the particle, p, becomes superfluous and has
been neglected from the expressions. In some situations, if the system can only
occupy discrete states, Eq. (3.29) is replaced by a Markovian master equation of the
type

ṗm =
∑
n

Wm,n pn (3.30)

where pm is the probability of the system for to be in state m, and Wm,n are the
elements of the so-called stochastic matrix, with the property

∑
m Wmn = 0, which

ensures the conservation of probability [81].
Thefirst lawof thermodynamics is extended to the trajectory level bydecomposing

the internal energy change
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�u[γ ] ≡ H(xτ , pτ , λτ ) − H(xt0 , pt0 , λt0), (3.31)

where γ ≡ {γt }τt0 denotes the whole trajectory from t0 to τ , into heat and work
contributions as

q[γ ] ≡
∫ τ

t0

(
∂x H(x, p, λ)ẋt + ∂pH(x, p, λ) ṗt

)
dt,

w[γ ] ≡
∫ τ

t0

∂λH(x, p, λ)λ̇dt, (3.32)

fulfilling �u[γ ] = w[γ ] + q[γ ]. In isolated systems the dynamics of the particle is
governed by the Hamilton equations of motion, which imply q[γ ] = 0 for any tra-
jectory γ , and hence�u[γ ] = w[γ ]. For open systems governed by the overdamped
Langevin equation, Sekimoto [97] identified explicit expressions for the (non exact)
differentials of work and heat along trajectories [98]

-dw = ∂λV (x, λ)λ̇dt + f (x, λ)dx, -dq = −F(x, λ)dx, (3.33)

recovering the first law of thermodynamics at the differential level du = -dw + -dq =
V̇ (x, λ)dt . When integrating those expressions, Stratonovich rule has to be used, for
which the usual rules of differential calculus apply. For the case of discrete systems,
the driving modifies the energy of the states εm(λ(t)) and the trajectory consists of
abrupt jumps occurring at random times {t1, t2, ..., tJ } where the state of the system
changes m(γ ) = {m0 → m1,m1 → m2, ...,mJ−1 → mJ } [81]. Heat and work are
defined as

q[γ ] ≡
J−1∑
j=0

εm j+1(t j+1) − εm j (t j+1), (3.34)

w[γ ] ≡
J∑

j=0

εm j (t j+1) − εm j (t j ), (3.35)

where tJ+1 ≡ τ and we have �u[γ ] ≡ εmJ (τ ) − εm0(t0) = q[γ ] + w[γ ].
When sampling trajectories from some initial phase space density ρ(x, p, t0) and

applying the protocol �, the averages of quantities defined at the trajectory level can
be recovered by assigning to each trajectory a weight, which for Eq. (3.28) reads

p[γ |γt0 ] = N exp

(
−

∫ τ

t0

dt[(ẋ − μF)2/4D + μ∂x F/2]
)

, (3.36)

where N is a normalization factor [2]. This allows us to calculate the average of any
trajectory dependent quantity given by a functional O[γt ] as
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〈O[γt ]〉 =
∫

dxdp
∫

dγt O[γt ] p[γ |γt0 ] ρ(x, p, t0). (3.37)

Such averages over trajectories coincide with the same quantities calculated from
the Fokker–Planck equation (3.29) (see details in Ref. [2]).

The last important ingredient in the thermodynamic description is the identifica-
tion of entropy at the trajectory level and the formulation of the second law. The
stochastic or trajectory entropy was introduced by Seifert [85] and reads

st ≡ −kB ln ρ(γt , t), (3.38)

where ρ(x, p, t) is evaluated along the trajectory γt . The definition is similar for the
discrete case, where st = −kB ln pm(γt ) [81]. Notice the similarity in both cases with
the Gibbs entropy introduced in Sect. 3.1. In addition, the entropy increase in the
medium (the thermal reservoir) during the trajectory γ is given by

�sm[γ ] ≡ −q[γ ]/T, (3.39)

which corresponds to (minus) the entropy flow to the system, as introduced in
Sect. 3.1. Employing the Fokker–Planck equation (3.29), and the later definitions, the
entropy production rate during a stochastic trajectory of the overdamped Langevin
equation reads

ṡi[γt ] ≡ ṡt + ṡm[γt ] = −∂tρ(x, t)

ρ(x, t)

∣∣∣∣
γt

+ j (x, t)

D ρ(x, t)

∣∣∣∣
γt

ẋ, (3.40)

which at the ensemble level becomes [2]

Ṡi =
∫

dx
j (x, t)2

D ρ(x, t)
� 0. (3.41)

Finally, in the case of discrete systems, the ensemble expression for the entropy
production rate is [99]

Ṡi = kB
∑
m,n

Wm,n pn ln
Wm,n pn
Wn,m pm

� 0, (3.42)

which is zero if and only if the detailed balance condition is satisfied

Wm,n pn = Wn,m pm . (3.43)

We stress that the above expression for the entropy production rate is consistent
with the identification of the entropy flow entering the system as the heat divided by
temperature [81, 99].
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3.2.2 Classical Fluctuation Theorems

A major achievement of stochastic thermodynamics has been the formulation of
precise equations governing the statistics of thermodynamical fluctuating quantities
in processes arbitrarily far from equilibrium. Those relations are known as fluctua-
tion theorems (FT) and generalize the second law of thermodynamics in the form
of equalities [80]. In the context of the simulation of sheared fluids, Evans, Cohen
and Morris [86] proposed in 1993 that the second law may be generalized consider-
ing the probabilities of obtaining fluctuations increasing or decreasing the entropy
production (see also Ref. [100]). In a nonequilibrium steady state of a thermostatted
system, the statement can be formulated as

P(−�is) = P(�is) e
−�is, (3.44)

where P(�is) is the probability distribution for obtaining a particular value for the
entropy production, such that 〈�is〉 = −Q/T , the heat transferred to the thermal
reservoir divided by its temperature. This would imply that the occurrence of nega-
tive entropy production events, although being not forbidden, is exponentially less
probable than the occurrence of their positive counterparts. The result is an overall
entropy production at the ensemble level which is always positive, 〈�is〉 � 0. Fur-
ther statistical properties of P(�is) can be derived as well from the above fluctuation
theorem [101]. The fluctuation theorem in Eq. (3.44) is usually called the steady-state
fluctuation theorem, as it applies for systems in steady states observed for long times
(the time should be greater than the decorrelation time). It was first proven to hold for
deterministic thermostatted systems in Ref. [102], and then extended to Langevin
dynamics [103], and general stochastic processes described by Markovian master
equations [104]. However, the fluctuation theorem in Eq. (3.44) requires the identi-
fication of the entropy production �is in the setup of interest, which is not always a
simple task. Furthermore, its scope could not surpass steady-state dynamics until the
introduction of a general expression for the nonequilibrium entropy of the system at
the stochastic level by Seifert [85] (see below).

Nevertheless, other fluctuation theorems were developed in the meanwhile. Prob-
ably the most famous one is the Jarzynski equality [82, 83], which had the merit to
link the statistics of the work performed in small systems driven out of equilibrium in
contactwith a thermal reservoir, with its equilibriumproperties. The setup considered
by Jarzynski is the following. Consider a system that starts in thermal equilibrium
with its surroundings at temperature T and can be driven through the variation of a
parameter λ controlling the Hamiltonian of the system H(λ). The parameter starts in
position λ(t0) ≡ λA, and the state of the system is given by the canonical distribution,
ρA ≡ e−βH(λA)/ZA. Then it is varied, perhaps abruptly, following a specific protocol
� = {λ(t)} which drives the system arbitrarily far from equilibrium, while still in
contact with its surrounding environment (even if the coupling is strong [105]). At
some point τ the driving is stopped, acquiring a final fixed value λ(τ) ≡ λB , and the
system is let to relax back to equilibrium with the thermal environment, ending at
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ρB ≡ e−βH(λB )/ZB . During this process, an amount of work w[γ ] is performed due
to the driving, as defined in Eq. (3.32). Repeating the process many times with the
same driving protocol �, a probability distribution P(w) can be further obtained.
Jarzynski equality states that

〈e−βw〉 = e−β�FAB = ZB

ZA
, (3.45)

where 〈e−βw〉 ≡ ∫
dwP(w)e−βw, and �FAB = FB − FA is the difference of

Helmholtz free energies between the final and initial equilibrium states.
Equation (3.45) has been obtained using a great variety of deterministic and

stochastic evolutions (see Ref. [80] and references therein). In fact, since the equality
is also valid for isolated evolution and the work is performed through the degrees
of freedom affected by the external parameter lambda, we conclude that Jarzynski
equality holds for any reduced dynamics containing those degrees of freedom, either
deterministic, stochastic, Markovian or non-Markovian, etc. The only requirement is
that the global isolated system is initially in equilibrium at temperature T . It is also
worth stressing that Eq. (3.45) remains valid even if the system does not equilibrate
with the thermal environment at the end of the protocol, as this final step occurring at
constant λ does not contribute to the work [2]. Nonetheless the final thermalization
is required to give a specific meaning to Eq. (3.45) in terms of the entropy produced
in the process. Jarzynski equality has been experimentally tested reversibly and irre-
versibly stretching a single molecule of RNA immersed in an aqueous solution at a
temperature of 208 to 301K [106].

From Eq. (3.45), and using Jensen’s inequality, 〈ex 〉 � e〈x〉, we obtain

〈wdiss〉 = 〈w〉 − �FAB � kBT ln〈e−β(w−�FAB )〉 = 0, (3.46)

where again 〈w〉γ ≡ ∫
dwP(w)w, andwe recover the average formof the second-law

inequality, 〈wdiss〉 � 0, in terms of the work performed to drive a system between two
equilibrium states [Eq. (3.19)]. Here if the driving is quasi-static we have reversible
conditions, 〈w〉 = �FAB . Jarzynski equality therefore refines Eq. (3.46), establishing
a universal property of the statistics of irreversible work [80]. Furthermore, we stress
that Jarzynski’s result is of remarkable practical utility. Determining the free energy
landscape F(λ) of a system usually requires the realization of reversible (infinites-
imally slow) processes which are difficult to implement. Instead, using Eq. (3.45),
one can easily obtain free-energies of equilibrium states by measuring the work per-
formed in arbitrary protocols overcoming experimental difficulties [106–109], that
is

− kBT ln〈e−w/kBT 〉 = �FAB . (3.47)

The results put forward by Jarzynski were later refined by Crooks in 1999 [84],
who derived for stochastic, microscopically reversible dynamics, the fluctuation
theorem for the work statistics in Eq. (3.48) below. In the general configuration intro-
duced above for the Jarzynski equality, Crooks considered together with the forward
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Fig. 3.6 a Experimental reconstruction of the (non-Gaussian) work probability distribution of a
colloidal particle in a time-dependent nonharmonic potential applied throughout the light pressure
of optical tweezers, while using total internal reflection microscopy to determine the trajectories.
In the inset the logarithm of the ratio of the probability to find trajectories with work −w to
those with work w is plotted. The figure has been obtained from Ref. [110]. b Illustration of
work probability distributions in the forward process ρF (W ) ≡ P(w), and in the backward process
ρR(−W ) ≡ P̃(−w). The two probability distributions intersect at �F according to Eq. (3.48).
Picture obtained from Ref. [111]

process, taking ρA into ρB through the driving protocol �, also the backward (or
reverse) process, in which the time-reversed protocol �̃ ≡ {λ(τ + t0 − t)} is applied
to the equilibrium state ρB , letting the system re-equilibrate at the end to ρA. In this
backward process, trajectories γ̃ are generated obeying a different probability distri-
bution for the work P̃(w). Crooks fluctuation theorem relates the work probability
distributions in forward and backward processes [84]:

P(w)

P̃(−w)
= e−β(w−�FAB ). (3.48)

In contrast to the FT in Eq. (3.44), both Eqs. (3.48) and (3.45) are valid for arbitrary
times, falling in the class known in the literature as transient fluctuation theorems.
Furthermore, one usually refers to the fluctuation theorems in the formofEq. (3.45) as
integral fluctuation theorems, while Eqs. (3.44) and (3.48) are usually called detailed
fluctuation theorems. Crooks fluctuation theorem has been experimentally tested in
Refs. [110, 112–116]. In Fig. 3.6a we show an example of one of such tests using
a colloidal particle trapped by optical tweezers and subjected to a time-dependent
nonharmonic potential.

Crooks fluctuation theorem corresponds to a refinement of the second law of
thermodynamics, which applied to the sequence of forward and backward processes
closing a cycle reads

〈w[γ ]〉 + 〈w[γ̃ ]〉 � 0, (3.49)

that is, no net (average) work can be extracted from single thermal reservoir by cyclic
operation [111]. Indeed Eq. (3.48) implies that the mean of P(w) is always located
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at the right of the mean of P̃(−w), while the two distributions intersect at the point
�FAB (see Fig. 3.6). Furthermore, one can easily derive the Jarzynski equality from
Eq. (3.48) by integrating over trajectories

∫
dw P(w)e−β(w−�FAB ) =

∫
dw P̃(−w) = 1, (3.50)

as long as P̃(−w) is a well defined probability distribution.
Another important result closely related to Crooks fluctuation theorem is the rela-

tion between physical and information-theoretical measurements of irreversibility
[117, 118]

〈wdiss〉 = 〈w〉 − �FAB = kBT D(ρ||ρ̃), (3.51)

where D(ρ||ρ̃) is the Kullback–Leibler divergence [119] (or relative entropy as
introduced in Sect. 1.1.6) between the system densities in forward and backward
processes, either in path space [117] or phase-space [118]. The densities ρ(x, p, t)
and ρ̃(x,−p, t) have to bemeasured at the same intermediate but otherwise arbitrary
time. Equation (3.51) implies that dissipation results from the difference between the
two distributions, being zero if and only if they are equal [118].

We notice that in the processes introduced above, the dissipative work
wdiss[γ ] = w[γ ] − �FAB is proportional to the entropy production in the forward
process connecting the two equilibrium states ρA and ρB , as 〈wdiss〉 = T�iS. How-
ever, fluctuation theorems can be extended to more arbitrary situations, such as
transitions between steady states [120, 121], thermal systems starting in arbitrary
initial states [85], or nonequilibrium feedback control [59, 122], among others (see
e.g. Ref. [123] and the review [2]), in which the entropy production is expressed
in more general terms. This is also the case of the nonequilibrium equality (3.51)
which has been shown to hold in a generalized form for a variety of initial conditions
[124]. A particularly important generalization of the work fluctuation theorem was
derived by Seifert in [85], who proved the integral transient fluctuation theorem for
the total entropy production in driven systems governed by the overdamped Langevin
equation (3.28) and general stochastic dynamics

〈e−�is〉 = 1. (3.52)

The key point in the derivation is the identification of the entropy production over
single trajectories

�is[γ ] = �s[γ ] + �sm[γ ], (3.53)

resulting from the stochastic entropy change in the system �s[γ ] = sτ − st0 as
defined in Eq. (3.38), and from the entropy change in the medium, �sm[γ ] =
−q[γ ]/T . The fluctuation theorem in Eq. (3.52) remains valid for arbitrary ini-
tial and final states, i.e. we do not need to assume an initial equilibrium state with
the reservoir at temperature T , nor a final equilibration step at the end of the pro-
tocol. Instead, the backward process may be initialized by using the phase space
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distribution of the system reached at the end of the forward driving protocol, as
given by the corresponding Fokker–Planck or master equation [85]. The integral
theorem (3.52) has been experimentally checked in Ref. [125] for a two-level system
realized as an optically driven defect center in diamond, and more recently for a
single-electron box in the presence of different thermal baths [126].

Another kind of detailed fluctuation theorems for the entropy production has been
also derived by Esposito and Van den Broeck in Refs. [99, 123, 127]. Under general
Markovian [99, 123] or Fokker–Planck [127] dynamics, they obtained a detailed
version of theorem (3.52):

P(�is)

P̃(−�is)
= e�is . (3.54)

In this theorem, the entropy production is identifiedwith the log-ratio of the sampling
probabilities of forward trajectories γ in the forward process P[γ ], and backward
trajectories γ̃ in the backward (time-reversed) one P̃[γ̃ ], that is

�is[γ ] ≡ ln
P[γ ]
P̃[γ ] = �s[γ ] + �sm[γ ], (3.55)

which equals expression (3.53) when considering that the initial condition of system
in the backward process is the final state of the forward one at the end of the trajectory
γ . The entropy production in the backward process is analogously defined as

�is[γ̃ ] ≡ ln
P̃[γ ]
P[γ ] = −�is[γ ], (3.56)

which however does not equals Eq. (3.53) for the backward process, as the stochastic
entropy �s has not definite parity under time-reversal [2]. We also notice that the
above FT inEq. (3.54) differs from the fluctuation theorem inEq. (3.44). In the former
case it relates the probability distribution of forward P(�is) and backward protocols
P̃(−�is), while in the later case the fluctuation theorem relates the two tails of the
same distribution P(�is). In general Eq. (3.44) is a much stronger statement than
Eq. (3.54), implying infinitely many integral fluctuation theorems for antisymmetric
functions of �is [128]. In Refs. [99, 123, 127] the authors complement the detailed
fluctuation theorem in Eq. (3.54) for the total entropy production with the derivation
of two further detailed fluctuation theorems for the so-called non-adiabatic and
adiabatic entropy productions

�is[γ ] = �is
na[γ ] + �is

ad[γ ], (3.57)

each of them corresponding to the entropy production associated to a different way
to bring the system out-of-equilibrium: by means of external driving (non-adiabatic)
and by imposing nonequilibrium environmental conditions (adiabatic). Notice that
the term adiabatic is employed here in the dynamical sense. The fluctuation theorems
for the non-adiabatic and adiabatic entropy production are obtained by introducing
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a dual dynamics derived from the original one, which can be also time-reversed.
Following similar methods as for the total entropy production fluctuation theorem,
they obtained

P(�isna)

P̃D(−�isna)
= e�isna ,

P(�isad)

PD(−�isad)
= e�isad , (3.58)

where PD denotes the probability in the dual dynamics, and P̃D the probability in
the time-inverted dual dynamics, also called dual-reverse dynamics. The fluctuation
theorems for the adiabatic and non-adiabatic entropy production constitute a further
refinement of the second law for nonequilibrium steady states. They also generalize
previous notions introduced in this context as the house-keeping heat and excess
heat [129], corresponding respectively to the heat dissipated in order to maintain a
nonequilibrium steady state, and the heat dissipated when the system is driven far
from that state.

3.2.3 Quantum Fluctuation Theorems

We have seen some of the most important fluctuation theorems derived for both
deterministic and stochastic dynamics in the classical regime. At this point we turn
back our view to quantum systems, in which extensions of the above fluctuation
theorems are highly desirable. However, a number of difficulties arise when consid-
ering the extension of the concepts introduced in stochastic thermodynamics to the
quantum regime. The first one is the absence of the same notion of trajectory. As
we have seen in Sect. 2.5 quantum trajectories can be defined, but they require the
introduction of quantum measurements to monitor the system, which in turn intro-
duces a back-action on the system being measured. Consequently, in most quantum
extensions of fluctuation theorems, projective measurements are introduced at the
beginning and at the end of the process of interest [3, 89]. We call this framework the
two measurement protocol (TMP). Within this approach, work fluctuation relations
such as the Jarzynski equality and the Crooks fluctuation theorem in both isolated
[130–133] and open systems [132, 134–139], as well as various fluctuation theorems
for heat and matter exchange in nonequilibrium steady states [105, 136, 140–147],
have been derived (see also the reviews [3, 89]). This approach is in contrast with
alternative attempts to derive work fluctuation theorems through the expectations of
a work operator [13, 87, 148].

We will first discuss the case of work fluctuation theorems for isolated quantum
systems and then consider open systems. In this context, a process in the TMP
framework consists in assuming at time t0 the state of the system to be given by some
initial density operator ρt0 , and Hamiltonian Ĥ(λ) depending on the external control
parameter λ. A first projective measurement of the energy is hence performed in the
system, corresponding to measuring the Hamiltonian
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Ĥ(λA) =
∑
n

E A
n |E A

n 〉〈E A
n |, (3.59)

where λA ≡ λ(t0). This measurement induces a collapse of the system state to one of
the pure states |E A

n 〉 corresponding to outcome n. In analogy with the classical case,
the control parameter is then varied following a prescribed protocol � = {λ(t)}τt0 ,
the evolution being given by some unitary operator Û� as in Sect. 1.1.4. At time
τ the driving is fixed, λB ≡ λ(τ) and a second measurement of the Hamiltonian is
performed

Ĥ(λB) =
∑
m

EB
m |EB

m 〉〈EB
m |, (3.60)

obtaining some outcome m and the final state |EB
m 〉. A backward process can

be defined as well by inverting the previous sequence (and the driving proto-

col) while measuring the time-reversed Hamiltonian ˜̂H(λB) = �̂Ĥ(λB)�̂† and
˜̂H(λA) = �̂Ĥ(λA)�̂

†, �̂ being the time-reversal anti-unitary operator in quantum
mechanics (see Sect. 1.1.4). For the backward process we choose as initial condi-
tion some arbitrary initial state denoted ρ̃t0 . In the present setup trajectories can be
defined by the outcomes of initial and final measurements, γ = {n,m}, together with
the driving protocol �. According to Born rule, those trajectories are sampled with
probability

Pγ = pn|〈EB
m |Û�|E A

n 〉|2, (3.61)

where pn ≡ Tr[ρt0 |E A
n 〉〈E A

n |] is the probability to obtain outcome n in the initial
projective measurement. In the backward process the inverse trajectory γ̃ = {m, n}
associated to the same measurement results and time-reversed driving protocol �̃ =
{λ(t0 + τ − t)}τt0 analogously reads

P̃γ̃ = p̃m |〈E A
n |�̂†Û�̃�̂|EB

m 〉|2, (3.62)

with p̃m = Tr[ρ̃t0�̂|EB
m 〉〈EB

m |�̂†] and Û�̃ the unitary governing the time-reversed
dynamics. Furthermore, as long as the system is isolated, the work in a trajectory γ

can be identifiedwith the change in energy of the system as given by themeasurement
outcomes:

wγ = EB
m − E A

n . (3.63)

Analogously the work performed in the reverse trajectory generated in the backward
process can be computed as

wγ̃ = E A
m − EB

n = −wγ . (3.64)

At this point it is important to notice the intimate relation between the probabilities
of forward and backward trajectories
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Pγ

P̃γ̃

= pn
p̃m

× |〈EB
m |Û�|E A

n 〉|2
|〈E A

n |�̂†Û�̃�̂|EB
m 〉|2 = pn

p̃m
, (3.65)

where the second term above cancels by applying the microreversibility principle
for non-autonomous systems derived in Sect. 1.1.4, i.e. using Û� = �̂†Û †

�̃
�̂. If we

now denote by P(w) ≡ ∑
n,m Pγ δ(w − wγ ) the probability to obtain work w in the

forward process, and P̃(w) ≡ ∑
n,m P̃γ̃ δ(w − wγ̃ ) the probability to obtain work w

in the backward one, it follows that

P̃(−w) =
∑
n,m

P̃γ̃ δ(w − wγ̃ ) =
∑
n,m

p̃m
pn

Pγ δ(w − wγ ). (3.66)

The Crooks fluctuation theorem, also called Tasaki–Crooks fluctuation theorem in
the quantum context [89], follows from this expression by assuming that the initial
states of the system in forward and backward processes are thermal equilibrium states
at some inverse temperature β:

ρt0 = e−β Ĥ(λA)

ZA
, ρ̃t0 = �̂

e−β Ĥ(λB )

ZB
�̂†, (3.67)

which implies pn = e−βE A
n /ZA and p̃m = e−βEB

m /ZB . Inserting the expressions for
pn and p̃m in Eq. (3.66) we obtain

P̃(−w) = ZA

ZB

∑
n,m

e−β(EB
m−E A

m )Pγ δ(w − wγ )

= ZA

ZB
e−βw P(w) = e−β(w−�FAB ) P(w), (3.68)

and the Crooks fluctuation theorem in Eq. (3.48) is recovered. In the last step we
used the thermodynamic relations linking the Helmholtz free energy with the parti-
tion function FA = −kBT ln ZA and FB = −kBT ln ZB . The derivation of Eq. (3.68)
may be complemented with various remarks. First, we have explicitly seen that the
Crooks fluctuation theorem follows from two key ingredients: the microreversibility
principle for non-autonomous systems and the shape of the Gibbs thermal states.
This feature has been widely stressed in the literature [3, 89]. Second, contrary to
previous derivations [3, 89], we do not require the Hamiltonian of the system to
be invariant under time reversal, [�̂, Ĥ(λ)] = 0, at the price that the initial state
of the backward process has to be time-reversed, c.f. Eq. (3.67). Third, the assump-
tion of initial thermal equilibrium states implies the access to a thermal reservoir at
inverse temperature β, to which the system has to be coupled in order to prepare the
initial states. Fourth, integrating the work probability distributions at both sides of
Eq. (3.48), Jarzynski equality [Eq. (3.45)] immediately follows.
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We notice that in Ref. [89] a complementary derivation of Crooks fluctuation
theorem and Jarzynski equality is provided. It is based on the characteristic function
of work, defined as the Fourier transform of the work probability distribution

G(u) =
∫

dw eiuw P(w), (3.69)

which contains full information about the statistics of the work w. Talkner et al.
showed that in the present case it acquires the form [133, 149]

G(u) = Tr[Û †
�e

iu Ĥ(λB )Û�e
−(iu+β)Ĥ(λA)]/ZA. (3.70)

For the probability work distribution in the backward process one can analogously
define a characteristic function G̃(u) = ∫

dw eiuw P̃(w). These two characteristic
functions are related as a consequence of microreversibility, obeying

ZA G(u) = ZB G̃(−u + iβ). (3.71)

Finally, applying the inverse Fourier transform, the Crooks fluctuation theorem is
recovered [89]. This approach is of very practical utility as avoiding the reconstruc-
tion of the probability distribution of work by projectivemeasurements is of technical
importance in the experimental test of fluctuation relations [150, 151]. Instead, dif-
ferent schemes to measure the characteristic function of work G(u) based on inter-
ferometric schemes have been proposed [152–154]. It is also worth stressing that
the Crooks fluctuation theorem has been experimentally tested in the full quantum
regime only recently in a liquid-state NMR platform [155], where the work probabil-
ity distributions have been assessed indirectly through the characteristic function of
work (see Fig. 3.7). The Jarzynski equality has been also tested recently in a single
171Yb+ ion trapped in a harmonic potential using projective measurements [156],
following the proposal presented in Ref. [157].

The derivation of the Crooks fluctuation theorem and the Jarzynski equality can
also be extended to the case of open quantum systems in contact with thermal reser-
voirs, both for weak or strong coupling with the environment [89]. In the open system
situation the total Hamilton operator reads

Ĥtot(λ) = ĤS(λ) + ĤE + Ĥint, (3.72)

ĤS(λ)being theHamilton operator of the systemdefined as in the isolated case, ĤE =∑
ν εn|εν〉〈εν | for the reservoir with eigenvalues {εν}, and Ĥint for the interaction

term. An important assumption here concerns the dependence on the external control
parameter λ, which we assumed to enter only in the system Hamiltonian [158]. The
global system is considered to be isolated, and hence we may apply the above TMP
to the present situation. However, nowwe are interested inmeasuring simultaneously
the local Hamiltonians of system and environment. A trajectory consists in this case
in four outcomes γ = {n, ν,m, μ}, where we include the outcomes ν and μ for the
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Fig. 3.7 Experimental data for the reconstructionof the characteristic functionofwork (left column)
and the work probability distribution (right column) of forward (red) and backward (blue) processes
in the experiment reported in Ref. [155]. There, the 13C and 1H nuclear spins of a chloroform-
molecule sample are respectively used as the system driven by a resonant radio-frequency pulse, and
ancilla for the reconstruction of the characteristic functions by measuring the x and y components
of its transverse magnetization. Picture taken from Ref. [155]

energy measurements in the reservoir at the beginning and at the end of the driving
protocol, respectively. The probability to obtain a trajectory γ reads in this case

Pγ = pn,ν |〈EB
m | ⊗ 〈εμ| Û� |E A

n 〉 ⊗ |εν〉|2, (3.73)

where pn,ν is the probability to obtain outcomes n and ν in the initial energymeasure-
ment, and Û� is generated by the global Hamiltonian Ĥtot(λ). The energy changes
in the system �E , and in the thermal reservoir �ε, for the protocol � defined as in
the previous case, are:

�Eγ = EB
m − E A

n , �εγ = εμ − εν. (3.74)

If we assume weak-coupling between system and reservoir the energy associated to
the interaction term Ĥint becomes negligible, and the total energy change in the global
system (the work externally performed) becomes the sum of system and reservoir
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changes, wγ = �Eγ + �εγ . Furthermore we can identify the heat with the energy
changes in the reservoir as qγ = −�εγ , recovering the first law (energy balance)
[89]

�Eγ = wγ + qγ . (3.75)

Following the same prescriptions as in the isolated case, one can hence obtain the
joint probability distribution for the system energy changes and heat P(�E, q), with
corresponding characteristic function

G(u, v) =
∫

d(�E) dq ei(u�E+vq) P(�E,q), (3.76)

and analogously for the backward process leading to P̃(�E, q) and G̃(u, v). Fur-
thermore, we assume thermal equilibrium initial states of forward and backward
process as in Eq. (3.67), where Ĥ is replaced by the total Hamiltonian Ĥtot, and we
denote YA and YB the total partition functions at the beginning and end of the protocol
� respectively. Importantly, the weak coupling assumption implies that the global
equilibrium initial state approximately factorizes (see Ref. [138])

ρt0 = e−β Ĥtot(λA)

YA
≈ e−β ĤS(λA)

ZA
⊗ e−β ĤE

ZE
, (3.77)

where ZA = Tr[e−β ĤS(λA)] and ZE = Tr[e−β ĤE ]. This implies that the probabil-
ity of outcomes in the initial measurement becomes pn,ν = e−β(E A

n +εν )/ZAZE , and
analogously for the initial state of the backward process, ρ̃t0 , we have p̃m,μ =
e−β(EB

m+εν )/ZB ZE , with ZB = Tr[e−β ĤS(λB )]. The above relations, together with the
microreversibility principle, are the key points to obtain the following relation, anal-
ogous to Eq. (3.71):

ZA G(u, v) = ZB G̃(−u + iβ,−v + −iβ), (3.78)

which immediately implies [89]

P(�E, q)

P̃(−�E,−q)
= eβ(�E−q−�FAB ), (3.79)

�FAB = −kBT ln(ZB/ZA) being the system free energy difference. Finally, per-
forming a change of variable �E → w = �E − q, the right-hand side of Eq. (3.79)
becomes eβ(w−�FAB ), and integrating both P(w, q) and P̃(−w,−q) over the heat q,
the Crooks fluctuation theorem is finally obtained [89]. We stress that the weak cou-
pling assumption can be overcome by performing global measurements of the total
Hamiltonian Ĥtot(λ) at the beginning and at the end of the processes, together with
the key identification of the system partition function Z(λ) ≡ Tr[e−β Ĥtot(λ)]/ZE �=
Tr[e−β ĤS(λ)] in general [139].
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Along with the quantum extension of Jarzynski equality and Crooks fluctuation
theorems, the Seifert integral fluctuation theorem for the entropy production has
been also extended to the quantum regime in Ref. [159]. Assuming an open quantum
system weakly coupled to a thermal reservoir at inverse temperature β, the TMP is
implemented as in the case of the Crooks fluctuation theorem above. However, in this
case the initial state of the open system is arbitrary, while the local measurements
performed on the system Hamiltonian are replaced by measurements on the system
density operator itself, obtaining eigenvalues ρ t0

n and ρτ
m respectively. On the other

hand, energetic measurements of the reservoir Hamiltonian are preserved in order to
keep trace of the heat dissipated. In this setting, the (information) entropy production
for a single realization can be defined as

�γ ≡ �sγ − βqγ , (3.80)

with �sγ = sτ − st0 = − ln ρτ
m + ln ρ t0

n the stochastic entropy change in the system,
and qγ = −(εμ − εν) the heat entering the system from the thermal reservoir accord-
ing to Eq. (3.75). In analogy to the classical case, here the term −βqγ ≡ �smγ can be
interpreted as the entropy change in the medium (or minus the entropy flowing into
the system). Hence following the same lines as in the Crooks fluctuation theorem
for open quantum systems, the authors derive the joint probability distribution for
entropy changes in system and reservoir P(�s, βq), which performing the variable
change �s → � and integrating over βq gives

P(�) =
∑

m,n,μ,ν

Pγ δ(� − �γ ). (3.81)

The integral fluctuation theorem can be derived from microreversibility and the nor-
malization property of the density operator [159]

〈e−�〉 =
∫

d� e−� P(�) =
∑

m,n,μ,ν

Pγ = 1. (3.82)

We finally stress that the classical fluctuation theorems generalizing the Jarzynski
equality and the Crooks fluctuation theorem to include feedback control [122], have
been extended as well to the quantum regime [160]. Furthermore, a quantum fluctu-
ation theorem capturing the role of classical correlations in heat exchange processes
has been also recently derived in Ref. [161].

In Chaps. 7 and 8 we will develop further fluctuation theorems for the entropy
production extending the results presented in this section. In particular, we will
be interested in obtaining expressions for the entropy production that overcome
the limitations imposed by the presence of a thermal environment, allowing more
general quantum states for the surroundings leading to nonequilibrium steady states
or multiple conserved quantities. In this context our aim is to extend the integral
and detailed fluctuation theorems for the entropy production to the quantum case
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and to more arbitrary nonequilibrium situations. On the other hand, we will also
investigate the general split of the entropy production in adiabatic and non-adiabatic
contributions and the cases for which the detailed fluctuation theorems presented in
the classical case [99, 123, 127] hold for general quantum evolutions described by
CPTP maps.

3.3 Quantum Thermal Machines

A second important branch of quantum thermodynamics is the description and analy-
sis of the operation of small quantum thermal machines. A quantum thermal machine
is generally intended as a small quantum system operating between different reser-
voirs and possibly subjected to external driving, which performs a thermodynamic
task such as work extraction, refrigeration, pumping heat, or information erasure.
When the thermodynamic task operated by the machine is work extraction from a
difference of temperatures, we call it a heat engine. Analogously, if the operation
consists in pumping heat into the hotter body of the configurationwe call themachine
a heat pump, and if the heat is extracted from the coldest body, it will be referred to as
a fridge. Finally, if the task performed by the machine consists in erasing information
in the Landauer’s principle sense (see Sect. 3.1.6), we will call it an eraser.

The first proposal of a quantum thermal machine is due to Scovil and Schultz-
DuBois, who proposed in 1959 to view the three-level maser as a quantum heat
engine [8]. This machine may reach Carnot efficiency at the verge of population
inversion in the signal transition of the maser. Its operation can be further reversed to
obtain a refrigerator, which can also reachmaximumefficiency [162]. Inspired by this
pioneeringwork, different models for power-driven heat engines and refrigerators, as
well as absorption thermal machines based on lasers and masers have been discussed
in the following decades [9, 163–167], while lasing cooling techniques were in
parallel developed and implemented in the laboratory [168].

The different models of thermal machines, which can be ultimately reduced to
one or few two-level systems, three-level systems or harmonic oscillators, present
many common features [169–173]. They provide an ideal platform to study quantum
thermodynamics from a theoretical point of view [12], where the role of quantum
effects in the performance of the devices can be also addressed in many situations of
interest [5]. Furthermore, theymay be of practical importance in biological processes
[174], quantum state preparation andmetrology [175, 176], or for the implementation
of future quantum technologies such as quantum computers [177]. Quantum heat
engines can operate in cycles where themachine follows several steps, called strokes,
in which it can be in contact with different reservoirs or manipulated by means of
external driving [1, 178, 179]. On the other hand, they can operate continuously in
their steady state regime [171]. They can be further classified as machines with time-
dependent fields or external driving, or autonomous machines that function without
any external control (see e.g. Refs. [45, 167, 180, 181]).
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Recent proposals of quantum heat engines include quantum Otto cycles on single
trapped ions or atoms [182, 183], optomechanical setups [184, 185], or driven super-
conducting qubits [186]. A Stirling cycle in a nanomechanical system controlled by
optical fields has been proposed in Ref. [187], and a SWAP engine implemented in
solid state platforms in Ref. [188]. Other interesting proposals are thermoelectric
devices using ultracold atoms [189], hybrid micro-wave cavities [190], or Josephson
junctions [191]. Autonomous realizations of quantum thermal machines have been
also recently proposed, e.g. quantum absorption refrigerators using four quantum
dots [192], an atom-cavity system [193], or circuit-QED architectures [194, 195].
Other proposals comprise refrigerators driven by sunlight [196, 197], a heat engine
generating steady-state entanglement [198], a three-level thermal machine powered
by a nonequilibrium electromagnetic field [199], or a rotor heat engine implemented
in an optomechanical system [200].

In the following we will introduce one of the most important four-stroke cycles
operated in quantum heat engines, namely, the quantum Otto cycle, which has been
recently implemented in the laboratory using a single ion in a Paul trap [183]. We
will discuss the performance of the cycle and its main properties when the working
substance consists of a finite level system or a single bosonic mode. Furthermore, we
will also analyze a simple model for an autonomous quantum heat engine consisting
of a pair of qubits operating in steady state conditions between two thermal reservoirs
at different temperatures and a third quantum system acting as a load [180, 181, 201].
Finally, we will discuss the different configurations leading to genuine quantum
features affecting (is some cases dramatically) the performance of quantum thermal
machines.

3.3.1 Quantum Otto Cycle

Otto cycles are widely used in most common macroscopic heat engines, such as the
internal combustion engine. The quantum version has been discussed e.g. in Refs.
[178, 182, 202, 203]. In the quantum Otto cycle the working substance performs
four strokes, namely, two isochoric processes and two isentropic processes.

Let us consider two thermal reservoirs at temperatures T1 and T2, with T2 � T1.
We denote the state of the generic quantum working substance performing the cycle
at the fourth points between the strokes as ρA, ρB , ρC and ρD , respectively. Its
Hamiltonian Ĥ(λ) is considered to be externally controlled through the variation
of a control parameter λ. The cycle starts with the working substance in thermal
equilibrium with the reservoir at the lower temperature T1 and control parameter at
λ1, that is,

ρA = e−β1 Ĥ(λ1)

Z1
, (3.83)
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with β1 = 1/kBT1 and Z1 the partition function. The first stroke A → B is an
isentropic compression with the working substance detached from the reservoirs,
during which the control parameter is changed, Ĥ(λ1) → Ĥ(λ2). This operation
can be described by means of a unitary operator ÛA→B , and the state of the working
substance at point B simply reads ρB = ÛA→BρAÛ

†
A→B . In this step there is no heat

exchange with the reservoirs, while the external driving performs a work

WA→B = Tr[ρB Ĥ(λ2)] − Tr[ρA Ĥ1]. (3.84)

The second stroke B → C is an isochoric process in which the Hamiltonian of the
working substance is kept fixed at Ĥ(λ2). The working substance is here put in
contact with the reservoir at T2, until it reaches the thermal equilibrium state

ρC = e−β2 Ĥ(λ2)

Z2
, (3.85)

with β2 = 1/kBT2 and Z2 the partition function. In this stroke, all energy changes
in the working substance are due to heat absorption from the reservoir involving an
entropy flow

QB→C = Tr[(ρC − ρB)Ĥ(λ2)], �eSB→C = QB→C/T2. (3.86)

The third stroke C → D corresponds to an isentropic expansion, where the work-
ing substance is again detached from the reservoirs, and the control parameter is
modulated back to its original value, Ĥ(λ2) → Ĥ(λ1). The system state changes to
ρD = ÛC→DρCÛ

†
C→D while performing a work

WC→D = Tr[ρD Ĥ(λ1)] − Tr[ρC Ĥ2]. (3.87)

Finally, the cycle is closed by means of the forth stroke D → A, corresponding to
the second isochoric process occurring at fixed position of the control parameter, and
letting the system relax back toρA in contactwith the thermal reservoir at temperature
T1. The heat entering the system in this last stroke and its corresponding entropy flow
are given by

QD→A = Tr[(ρA − ρD)Ĥ(λ1)], �eSD→A = QD→A/T1. (3.88)

In Fig. 3.8 we show a picture of the recent experiment by Roßnagel et al. [183]
implementing a Quantum Otto cycle single ion.

Using the above expressions for work and heat along the cycle, we notice that the
first law of thermodynamics adopts the form

�Ucycle = WA→B + QB→C + WC→D + QD→A = 0, (3.89)
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Fig. 3.8 The quantum Otto heat engine recently implemented in the laboratory by Roßnagel et al.
[183]. A single ion inside a linear Paul trap with tapered geometry (A, B) generates work to drive
harmonic oscillations in the axial position of the ion (C) by performing a quantum Otto cycle (D).
Hot and cold reservoirs are engineered by using electric-field noise and laser cooling respectively.
In (D) we can identify the pictographs at the corners with the states ρA (bottom-right), ρB (bottom-
left), ρC (upper-left) and ρD (upper-right) introduced in the text for the ideal case. The points with
error bars correspond to the real cycle performed by the ion. Red and blue shaded areas correspond
to heating and cooling processes. Picture taken from Ref. [183]

and the total work extracted in the cycle can be hence defined as

Wext ≡ −WA→B − WC→D = QB→C + QD→A. (3.90)

A basic condition for the functioning of the heat engine is a positive work extraction
Wext � 0, obtained from the heat absorbed by the hot reservoir QB→C � 0. By look-
ing at Eqs. (3.84) and (3.87), we can maximize the work extracted in the isentropic
expansion, A → B, and minimize the one wasted in the isentropic compression,
C → D. As both processes are isentropic, we notice that maximum work can be
extracted in the cycle by ensuring the states ρB and ρD being of Gibbs form, because
these minimizes the energy for fixed entropy. That is

ρB ≡ e−β∗
1 Ĥ(λ2)

Z∗
1

, ρD ≡ e−β∗
2 Ĥ(λ1)

Z∗
2

, (3.91)

for some arbitrary parameters β∗
1 and β∗

2 . The isentropic strokes in such case cor-
respond to quasi-static modulation of the working substance energy eigenstates,
such that the quantum adiabatic theorem can be applied (see also Chap.10). On the
other hand, the refrigerator condition implies heat extraction from the cold reser-
voir QD→A � 0, at the price of external input work Win ≡ −Wext � 0. Analogous
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arguments lead to the same conclusion for the quasi-static modulation of the control
parameter when maximizing the heat extracted from the cold reservoir.

The energetic efficiency of the cycle operated as a heat engine can be defined as
the ratio between the total work output and the heat absorbed from the hot reservoir

ηengine ≡ Wext

QB→C
= 1 − QD→A

QB→C
. (3.92)

The efficiency of refrigerators are instead typically measured by the so-called coeffi-
cient of performance (COP), given by the ratio between the heat extracted from the
cold reservoir, divided by the work input in the cycle:

ηfridge = QD→A

Win
. (3.93)

We now discuss the performance of the cycle using the second law of thermody-
namics. It can be stated as the positivity of the entropy production in the cycle

�iScycle = �Scycle − �eScycle � 0, (3.94)

where �Scycle = 0, and �eScycle = �eSB→C + �eSD→A. Inserting the expressions
of the entropy flows during the isochoric strokes, Eqs. (3.86) and (3.88), we obtain

− QD→A

T1
− QB→

T2
� 0, (3.95)

which, by using the first law in Eq. (3.89) can be rewritten in the two following
equivalent forms

Wext �
(
1 − T1

T2

)
QB→C , Win �

(
1 − T1

T2

)
QD→A. (3.96)

These two relations imply Carnot bounds for the efficiency of the heat engine and
fridge configurations for any quantum working substance

ηengine � 1 − T1
T2

= ηcarnot, ηfridge � T2
T2 − T1

= η−1
carnot. (3.97)

However, it is important to notice that reaching Carnot efficiency means as well
that the work extracted in a cycle vanishes. Indeed, in quantum Otto engines with
quasi-static isentropic strokes, the work extracted in a single cycle vanishes at such
conditions in all known models [178, 182, 202, 203]. Henceforth a figure of merit
for practical applications is the efficiency at maximum power. For the Otto cycle
operating as a heat engine with quasi-static driving in the isentropic strokes, and in
the high-temperature limit, the efficiency at maximum power is given by the well-
known Curzon–Ahlborn formula [204]
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ηCA = 1 −
√
T1
T2

. (3.98)

This has been checked in Refs. [182, 203] for the case of a quantum harmonic
oscillator as working substance. Finally, in the recent proposal of Ref. [205], the
quasi-static strokes of the Otto cycle are replaced by finite-time processes generating
the same final states, usually called shortcuts to adiabaticity [206], while in Ref. [207]
the effects of inner friction due to finite-time transformations and disorder effects in
the quantum Otto cycle have been explored.

3.3.2 Autonomous Thermal Machines

Autonomous quantum thermal machines function in steady state conditions via
thermal contact to heat baths at different temperatures, powering different thermo-
dynamic operations without the need of any external driving. Some examples of
autonomous thermal machines are small quantum absorption refrigerators, which
use only two thermal reservoirs, one as a heat source, and the other as a heat sink, in
order to cool a system to a temperature lower than that of either of the thermal reser-
voirs. Models for autonomous thermal machines have been provided for a three-level
system [8, 167], two two-level systems [169, 180], or three harmonic oscillators [45],
among others [52, 208–210]. The efficiency of these machines has been investigated
[8, 211, 212], and quantum effects, such as coherence and entanglement, were shown
to enhance their performance [169, 213–216].

The basic quantum absorption fridge composed by a three-level system, whose
transitions are weakly coupled to three different heat reservoirs at different temper-
atures, is analyzed in detail in Chap.11. There, its fundamental function is analyzed
together with possible extensions to multilevel setups. Furthermore, the fluctuations
in this basic fridge configuration are studied in Chap.9 as an application of quantum
fluctuation theorems developed in Chaps. 7 and 8. Here we will instead discuss a
similar model for an autonomous heat engine introduced in Refs. [181, 217], where
the external classical driving field arising in the prototypical three-level amplifier
[171] is substituted by a fully quantum system consisting of an infinite ladder of
energy levels which acts as a weight (see Fig. 3.9).

Theheat engine is composedbyapair of two-level systems (or qubits) describedby
the basis states {|0〉1, |1〉1} and {|0〉2, |1〉2}, and Hamilton operators Ĥ1 = E1|1〉〈1|1
and Ĥ2 = E2|1〉〈1|2 respectively. Each qubit is coupled to a different thermal reser-
voir at temperature T1 and T2 respectively as depicted in Fig. 3.9. Taken together, the
two qubits form a four-level system with tensor-product basis states

{|0〉1|0〉2, |1〉1|0〉2, |0〉1|1〉2, |1〉1|1〉2}, (3.99)
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Fig. 3.9 Model of quantum heat engine discussed in the text. The machine is composed by two
qubits with energy spacings E1 and E2, which are in thermal contact with reservoirs at temperatures
T1 and T2. Work extraction from an external driving field is substituted by a quantum weight
consisting of an infinite energy ladder with spacing Ew = E2 − E1. Picture taken from Ref. [181]

and corresponding energy eigenvalues {0, E1, E2, E1 + E2}. Each qubit is assumed
to be in thermal equilibrium with its respective reservoir, ρ1 = e−β1 Ĥ1/Z1 and ρ2 =
e−β2 Ĥ2/Z2, with β1 = 1/kBT1 and β2 = 1/kBT2. This implies that the populations
of the four-level system are given by

p00 = 1

Z1Z2
, p10 = e−β1E1

Z1Z2
, p01 = e−β2E2

Z1Z2
, p11 = e−β1E1−β2E2

Z1Z2
.

The inner transition of the four level system plays an important role in the model,
and will be called the virtual qubit of the machine. The ratio of its populations obeys
the following Gibbs ratio [181]

p01
p10

= e−βvEv , with βv ≡ E2

Ev
β2 − E1

Ev
β1, (3.100)

where Ev ≡ E2 − E1 and the so-called (inverse) virtual temperature, βv, has been
introduced. Remarkably βv can take negative values when E2β2 � E1β1, i.e. for the
ratio between the temperatures of the reservoirs sufficiently large T2 � (E2/E1)T1.
When this condition is met, the virtual qubit levels of the machine show population
inversion, a feature which facilitates work extraction from the reservoirs.

As commented before, to achieve work extraction without external manipulation
of the machine, a quantum weight is provided, in such a way that lifting the weight
corresponds to work extraction. The weight is modeled by an unbounded ladder
system with energy levels equally spaced and resonant with the virtual qubit of the
machine

Ĥw =
∞∑

n=−∞
nEv|n〉〈n|w. (3.101)
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The interaction between machine and weight is given by the following interaction
Hamiltonian

Ĥint = g
∞∑

n=−∞
|0〉〈1|1 ⊗ |1〉〈0|2 ⊗ |n〉〈n + 1|w + h.c. (3.102)

This interaction term allows the conversion between a quantum of energy E2 into two
quanta E1 and Ew, together with the opposite process. Furthermore, it is assumed
weak coupling with the weight, such that g � Ew. The idea of the model is hence to
recoil work from the spontaneous heat flow from the hot to the cold reservoirs, pro-
moting transitions |0〉1|1〉2|n〉w → |1〉1|0〉2|n + 1〉w through the population inversion
condition.

In Ref. [169] an open system model is provided to describe the operation of the
heat engine in the steady state limit. It is given by the following phenomenological
master equation for the global density operator of the machine and the weight

ρ̇ = − i

�
[Ĥ1 + Ĥ2 + Ĥw + Ĥint, ρ] +

2∑
i=1

γ0
(
ρ th
i ⊗ Tri [ρ] − ρ

)
, (3.103)

where the dissipative terms induce (in absence of the interaction term) an asymptotic
decay of the machine’s qubits to their respective thermal states ρ th

i , at a constant
decay rate γ0. This kind of master equation has been used to model the dynamics of
small thermal machines e.g. in Refs. [169, 180, 211, 215]. In the limit t → ∞ this
model produces a constant raising of the weight, and heat flows from the hot and
cold reservoirs given by

Ẇ ≡ d

dt
〈Ĥw〉 → αEv(p01 − p10), (3.104)

Q̇1 ≡ d

dt
Q1 → −αE1(p01 − p10), (3.105)

Q̇2 ≡ d

dt
Q2 → αE2(p01 − p10), (3.106)

where α = g2γ0
2g2+γ 2

0
is a model-dependent constant. We stress that p10 and p01 are the

populations of the virtual qubit in equilibrium conditions as given above. As long as
population inversion implies p01 � p10, heat is absorbed from the hot reservoir at
temperature T2, and released to the cold one at temperature T1 while extracting work
which is stored in the weight. The first law of thermodynamics is easily checked to
hold in the configuration

Q̇1 + Q̇2 = Ẇ . (3.107)

Furthermore, we notice that the extracted power and the heat fluxes at steady state
fulfill the condition
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Ẇ : Q̇1 : Q̇2 = Ev : −E1 : E2, (3.108)

from which the efficiency of the heat engine can be obtained [181]

ηengine = Ẇ

Q̇2
= 1 − E1

E2
= ηcarnot

(
1 − −βv

β1 − βv

)
. (3.109)

In the last equality we used Eq. (3.100) in order to rewrite the machine efficiency in
terms of the inverse virtual temperature βv. As can be seen from the above expression
the heat engine can reach Carnot efficiency when βv → 0−, a condition achieved for
vanishing population inversion p01 → p10, when the transitions

|0〉1|1〉2|n〉w → |1〉1|0〉2|n + 1〉w (3.110)

allowed by the interaction Hamiltonian in Eq. (3.102), becomes only infinitesimally
more probable than the opposite transitions

|1〉1|0〉2|n + 1〉w → |0〉1|1〉2|n〉w. (3.111)

We again notice that this implies vanishingly small energy fluxes trough themachine,
c.f. Eqs. (3.104)–(3.106). Furthermore, the following equality between the entropy
flows from the environment holds

− β2 Q̇2 − β1 Q̇1 = −βvẆ � 0, (3.112)

which follows from Eqs. (3.100) and (3.108) [181]. Henceforth, when Carnot con-
ditions are imposed, βv → 0−, we recover the classical reversibility conditions for
the entropy flows between the reservoirs

β2 Q̇2 → −β1 Q̇1. (3.113)

Finally, we notice that in the steady state operation, the weight continuously
increases its energy and spreads at a rate [181]

d

dt
σ 2(Ĥw) = E2

w

(
α(p01 + p10) − α′(p01 − p10)

2
)
, (3.114)

with α′ = 2g4γ0(g2 + 2γ 2
0 )/(2g2 + γ 2

0 )3 a second constant depending on the
machine couplings and we recall that σ 2(Ĥw) stands for the variance of Ĥw. This
makes a big difference with models using an external driving field, in which work
is defined as the output energy in the classical driving field, which experience no
back action in the process. Indeed, the definition of work we use here becomes con-
troversial itself, as the weight may increase its entropy while storing energy, and
hence degrades the quality of the energy stored (other related issues concerning
work definitions are discussed in the recent Ref. [88]). This happens for instance
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if the weight starts its evolution in an eigenstate |n0〉w. In such case its motion is
similar to a biased random walk [181] and hence the entropy of the weight per-
manently increases according to Eq. (3.114). This problem may be avoided if the
weight starts the evolution in some specific state such that it does not increase its
entropy during the machine operation, nor build up correlations with it. In such case
the entropy production of the setup in the steady state would be simply given by
Eq. (3.112).

The idea of considering a quantum weight to quantify work in thermodynami-
cal tasks has been further explored recently. For instance in Ref. [22] a continuous
quantumweight was used to derive a maximumwork extraction protocol for individ-
ual quantum systems in nonequilibrium states with the help of a thermal reservoir.
Further results indicate that implementation of optimal protocols would require a
coherent resource, which for infinite-ladder weights can be used catalytically [218]
(see also Ref. [219]). Work extraction with a weight has been also considered in the
strong-coupling regime in Ref. [220]. Furthermore, in Ref. [221] it has been argued
that any unitary can be approximately performed in a quantum system by means of a
time-independent global Hamiltonian by using a weight and an ideal quantum clock.
Nevertheless, the use of an ideal quantum clock has been shown to be problematic
due to the fact that it would require an infinite amount of energy for its fabrica-
tion [222]. Considering instead non-ideal (finite-sized) clocks introduces non-trivial
tradeoffs between the accuracy of the operations that can be implemented and their
energetic costs [222].

3.3.3 Quantum Effects in Thermal Machines

So far we have considered the basic functioning of small quantum thermal machines
operating between thermal reservoirs at different temperatures. We have seen that
the framework of quantum thermodynamics applies, and expressions for the heat
fluxes and efficiencies analogous to the classical case are obtained. However, some
fundamental questions arise at this point. Is there something specifically quantum,
apart from the energy level quantization, in the functioning of the thermal machines?
How quantum effects like coherence or quantum correlations affect the performance
of the machine? Is there any quantum advantage?

A great effort to answer the above questions is being undertaken nowadays in the
current research on quantum thermodynamics. Quantum effects have been shown to
enhance the power or efficiency of thermalmachines under threemain circumstances:

(i) The substitution of the traditional thermal reservoirs by more general nonequi-
librium environments with quantum properties. This path started with the pio-
neering work of Scully et al. on the photo-Carnot engine driven by quantum
fuel [223], and proliferated in the last decade with different analysis of ther-
mal machines powered by coherent [224–226], correlated [227] or squeezed
thermal reservoirs [213, 228–230].
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(ii) The introduction of external control operations inducing coherence or correla-
tions in the working substance of the machine, which henceforth operates in
genuinely quantum nonequilibrium conditions. This has been shown to be the
case of the prototypical three-level amplifier driven by an external classical field
[173], but also feedback engines using quantummeasurements in specific basis
[76, 216, 231]. In this class we may also include thermal machines operating
quantum enhanced finite-time strokes [205, 232].

(iii) The induction of a quantum nonequilibrium state in the working substance by
means of degeneracies in the Hamiltonian of the machine. In this third modality
we find heat engines profiting from noise-induced coherence [233–235], or the
entangled absorption refrigerator studied in Ref. [181].

Circumstances (ii) and (iii) may in general lead to an enhancement in themachines
performance in terms of power, that is, work (or heat in the case of fridges) can be
extracted at a higher rate by using coherence or correlations in the working sub-
stance [173, 181, 216, 233, 235]. This power enhancement appears in some regimes
of operation and may consequently lead to greater efficiencies at non-reversible con-
ditions [231, 232, 234], but the (classical) Carnot bound still holds in these situations
[236]. A different scenario is provided in the case (i) as the incorporation of nonequi-
librium reservoirs may lead to alterations in the bounds imposed by the second law
of thermodynamics [237]. In such cases both power and maximum efficiency can be
enhanced by using quantum resources provided by the environment. In this thesis
we will investigate circumstance (i) for the case of the squeezed thermal reservoir in
Chap.10. Therewe provide a complete derivation ofmaximumefficiency bounds and
power output, demonstrating that the corresponding enhancements are induced by a
genuine entropy exchange between the working substance and the nonequilibrium
reservoir.

We finally comment that quantum effects in thermodynamical setups have been
also investigated in non-cyclic operations. In this context the amount of work which
can be drawn from quantum correlations such as entanglement or quantum discord
has attracted a great attention (see e.g. Refs. [69, 73, 75, 238, 239]). Work extraction
from coherence has been considered under different scenarios [22, 240], while its
role in optimal projection processes has been recently investigated [241]. In addi-
tion, enhancements due to the presence of entanglement or coherence in single-shot
refrigeration protocols are under current investigation [214, 215].

3.4 Other Topics in Quantum Thermodynamics

In this last section we briefly introduce some other important topics of current
research in quantum thermodynamics, namely, equilibration and thermalization in
isolated quantum systems, and resource theories. Our aim is to provide a qualitative
overview over some important results in the corresponding topics without entering
into technical details. Although those topics are not specifically covered in this thesis,
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their close relation to the field makes them susceptible to profit from the results of
the research presented here. For more information we refer the reader to two recent
reviews on quantum thermodynamics [1, 5] as well as to two more specific ones
focusing on equilibration and thermalization issues [4, 242].

3.4.1 Equilibration and Thermalization

As we have seen in Sect. 3.1, a fundamental assumption in macroscopic phenomeno-
logical thermodynamics is the spontaneous evolution to an equilibrium state for
any system not exchanging energy nor matter with its surroundings. Furthermore,
following statistical mechanics, in such equilibrium state the different allowed con-
figurations, i.e. the possible states compatible with given constraints, occur with
equal probabilities (see Sect. 3.1). From the point of view of quantum mechanics,
isolated systems are represented by pure states at all times, a fact that seems to be in
strong contradiction with statistical mechanics. Therefore it would be highly desir-
able to reconcile foundational aspects of statistical mechanics with the underlying
time-reversible evolution of quantum systems. These issues have recently experi-
mented a renewed attention, motivated by the improvements in experimental tech-
niques to handle quantum systems with many degrees of freedom, the increase of
computer power and the introduction of computational techniques for the simulation
of quantum systems, and the introduction new mathematical methods from quantum
information theory [242].

One first kinematic viewpoint has been adopted by using typicality arguments in
order to replace the equal a priori probabilities postulate of statistical mechanics.
In Refs. [243, 244] it is shown that by looking only at a small subsystem of an
isolated quantum system, its state is indistinguishable from the state predicted by
the equal a priori probabilities postulates for almost all pure states of the global
isolated system. In other words, if the pure states of the global system, say |ψ〉 ∈ H,
are randomly sampled according to the Haar measure (uniform distribution) in the
Hilbert spaceHR ⊆ H allowed by some restriction R (e.g. a given energy), then the
state of the subsystem, ρS = TrE [|ψ〉〈ψ |] ≈ 	S , where TrE denotes the partial trace
over the subsystem complementary to S (i.e.H = HS ⊗ HE ) and	S = TrE [1R/dR]
is the equal a priori probability state given the restriction R [243]. Nonetheless, as
pointed in a recent review [5], the use of typicality for sampling states in HR is
not physically motivated, as most of those states can be never generated from local
symmetric Hamiltonians arising in nature in reasonable times, thus the search for
extended notions of typicality constitutes an open problem in the field (see Ref. [5]
and references therein for a more detailed discussion on this topic).

On the other hand from a dynamical viewpoint, a first important question is to
consider the equilibration dynamics of local observables and subsystems of isolated
quantum systems, even if the specific form of the equilibrium state is not approached.
As long as an isolated quantum system follows time-reversible unitary evolution
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|ψ(t)〉 = e− i
�
Ĥ t |ψ(0)〉 ∈ H (3.115)

Ĥ = ∑
k Ek�̂k being the spectral decompositionof theHamiltonian (�̂k = |E〉k〈E |k

being projectors on the energy eigenstates {|E〉k}), recurrences in the state of the
system immediately follow. This is in apparent contradiction with the H -theorem,
stating that entropy always grows over time and systems spontaneously equilibrate.
Nevertheless it results that this contradiction can be solved to a large extend by
considering the dynamical properties of local observables and deriving dynamical
typicality statements [5]. It is useful to introduce in this context the time-averaged
state

ω = lim
τ→∞

1

τ

∫ τ

0
drρ(t) =

∑
k

�̂k |ψ(0)〉〈ψ(0)|�̂k, (3.116)

which just corresponds to the dephased version of the initial pure state |ψ(0)〉 in the
energy basis. In this context, a subsystem S, where again H = HS ⊗ HE , is said
to equilibrate on average if its reduced state verifies ρS(t) = TrE [|ψ(t)〉〈ψ(t)|] ≈
ωS ≡ TrE [ω]. More precisely, this statement is fulfilled when [5]

lim
τ→∞

1

τ

∫ τ

0
T (ρS(t), ωS) � 1, (3.117)

where T (ρ, σ ) is the trace distance as introduced in Sect. 1.1.7. This has been shown
to be indeed the case [245] when the Hamiltonian Ĥ has a small number of degen-
erate energy gaps [246]. The physical meaning of this condition is that it excludes
Hamiltonians with no interaction part between the subsystem S and the environ-
ment E , as they contain a high number of degenerate energy gaps. This condition
also provides some general bounds on the equilibration times. More recent results
provide a stronger statement asserting that any local observable of the subsystem
S passes almost all the time very close to the value generated by ωS , fluctuating
around it, provided the initial state does not assign large populations to few energy
levels [242]. An alternative form of equilibration that has been found in several
models [247, 248] is the equilibration during intervals. This kind of equilibration
means that local observables of the reduced system are close to the equilibrium state
T (〈 ÂS〉t ,Tr[ ÂSω]) � 1 for all times t inside an interval after a known relaxation
time and before the recurrence time. Another important result from the point of view
of the foundations of statistical mechanics in the equilibration context is the max-
imum entropy principle derived in Ref. [249], which states that if the expectation
value Tr[ρ Â] of an operator Â equilibrates on average, it equilibrates towards its
time average, given by

lim
τ→∞

1

τ

∫ τ

0
Tr[ρ(t) Â] = Tr[ω Â], (3.118)
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where ω in Eq. (3.116), is the unique state that maximizes the von Neumann entropy
given all conserved quantities. This implies that the unitary dynamics of isolated
quantum systems alone gives rise to a kind of maximum entropy principle [242].

A secondmain question investigated from the dynamical point of view is thermal-
ization of subsystems in isolated quantum setups. In its stronger form, thermalization
is the emergence of Gibbs states as the local equilibrium states of the subsystem.
The definitions of thermalization in this context can however exhibit some technical
differences. Some general requisites in stronger order have been introduced in Ref.
[242]:

• Equilibration is a necessary condition for thermalization.
• The equilibrium state of a small subsystem should be independent of the initial
state of that subsystem.

• The equilibrium expectation value of local observables should be almost inde-
pendent on the initial state of the rest of the system, but only depend on some
‘macroscopic properties’ such as the energy density.

• The equilibrium state should be approximately diagonal in the energy eigenbasis
of a suitably defined ‘self-Hamiltonian’.

• Ultimately, one would like to recover that the equilibrium state is in some sense
close to the Gibbs thermal state.

In order to introduce the different approaches to thermalization, it is illustrative
to explicitly consider the expectation value of a local observable ÂS of a small
subsystem S of the compound S + E . Following Ref. [1]:

〈ψ(t)| ÂS|ψ(t)〉 =
∑
k

|ck |2〈Ek | ÂS|Ek〉 (3.119)

+
∑
k,m

c∗
mcke

i(Em−Ek )t 〈Em | ÂS|Ek〉,

where the initial state is |ψ(0)〉 = ∑
k ck |Ek〉, and the coefficients ck are assumed

to be non-zero only in a small band around some given energy E0 [1]. If energies
are non-degenerate, the long time average of this expectation will be given by the
first term of Eq. (3.119), which needs to be independent of the coefficients |ck |2.
As explained in Ref. [1] this can happen in three ways. The first one is called the
eigenstate thermalization hypothesis (ETH), which in its simplest version demands
that the quantities 〈Ek | ÂS|Ek〉 equal the thermal average of Â at the mean energy Ek

[5]. In such case 〈Ek | ÂS|Ek〉 factorizes and the coefficients |ck |2 will sum up to one.
There exist however different variants of the ETH in the literature, in particular not
requiring a non-degenerate Hamiltonian [242]. A second approach towards the prob-
lem of thermalization independent of the ETH consists inmaking strong assumptions
concerning the energy distribution of the initial state. In this case, thermalization on
average has been rigorously proven for both spin and fermionic systems assuming a
suitably weak coupling condition between the subsystem and its environment [242].
Turning to Eq. (3.119), this means demanding the coefficients ck to be constant and
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non-zero for a subset of indices k, or requiring the coefficients ck to be uncorrelated
with respect to 〈Ek | ÂS|Ek〉 [1].

However, if the system has sufficiently many local conserved quantities, that is, if
it is integrable, thermalization is not expected. In such case the constants of motion
prevent that the subsystem reaches the Gibbs state. On the contrary, one may expect
the systemwill reach amaximally entropy state given the locally conserved quantities
[4]. This is a so-called generalized Gibbs ensemble (GGE) [250, 251], which has
been shown to correctly describe the properties of the equilibrium state ofmany-body
quantum systems after a quantumquench under a variety of circumstances [247, 252–
258]. The explicit construction of the GGE for general interacting integrable models
remains an open problem, while it has been also shown to fail in non-integrable
models [4]. Furthermore, several quantum many-body systems exhibit a so-called
pre-thermalization [259], that is the apparent equilibration to some meta-stable state
in a short time scale, before the system finally relaxes to a state indistinguishable
from the thermal state. This has been shown e.g. in almost-integrable systems and
continuous models of coupled Bose–Einstein condensates [4].

3.4.2 Resource Theories in Quantum Thermodynamics

Resource theories of quantum thermodynamics are inspired by other resource
theories from quantum information, such as the resource theory of entanglement,
asymmetry, purity or quantum coherence (see Ref. [260] for a review on quantum
resource theories). The general idea of such theories is to quantify quantum resources
by introducing a state space S, and a set of allowed operations T. There will be states
that can be obtained using the allowed operations T from any initial state, which are
called free-resources, and states which cannot. Those later states are hence consid-
ered a resource in the theory. The idea is that extra operations can be performed when
provided a resource, which is consumed in this process. However, if the resource is
not consumed, we may refer to it as a catalyst, as it can be used to perform otherwise
impossible operations (or to aid in those operations) infinitely many times.

Following Ref. [5], state transformations ρ → σ , for ρ, σ ∈ S are characterized
inside the theory by means of some functions f (ρ, σ ) which determine whether
the transformation is possible or not. For example if ρ → σ ⇒ f (ρ, σ ) � 0, then
f (ρ, σ ) � 0 is a necessary condition for the state transformation ρ → σ . Analo-
gously if f (ρ, σ ) � 0 ⇒ ρ → σ , then f (ρ, σ ) � 0 is a sufficient condition for the
state transformation. A monotone of the resource theory is a function m such that

f (ρ, σ ) = m(ρ) − m(σ ) � 0, (3.120)

is a necessary condition for the state transformation [5].
The adoption of a resource theory perspective in thermodynamics comes back

to the ideas of Lieb and Yngvason [261] and was firstly introduced in a quantum
setting by Janzing et al. [262]. In this case the set of states are all quantum states
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of systems equipped with a fixed Hamiltonian Ĥ , and the allowed operations T

are thermalization to a fixed background temperature T , and global unitaries Û
conserving the energy, that is, [Û , Ĥ ] = 0.1 In this resource theory the free-resource
states are the Gibbs thermal states ρth(β) = e−β Ĥ/Z , with β = 1/kBT and Z the
partition function, and the allowed transformations are called thermal operations

T(ρ) = Tr p[Û (ρ ⊗ ρth)Û
†], (3.121)

where here an ancillary system in the free-resource state ρfree is used, and Tr p denotes
the partial trace over any arbitrary subsystem. In Ref. [263] a monotone of the
resource theory of thermal operations has been shown to be the (nonequilibrium)
free energy introduced in Sect. 3.1, and the optimal rate of a transformation ρ → σ

for a system with Hamiltonian Ĥ is given by

R(ρ → σ) = F(ρ) − F(e−β Ĥ/Z)

F(σ ) − F(e−β Ĥ/Z)
. (3.122)

Other versions of the free energy apply for the single-shot scenario [263, 264],
assuming that a single copy of the state is provided and experiments cannot be
repeated.

In order to check that Gibbs thermal states are well-defined free-resources in the
theory, one may prove that they are useless. This can be done by using the notion of
passive states [265]. A state is called passive if there is no unitary Û which decreases
the energy Tr[ρ Ĥ ] > Tr[ÛρÛ † Ĥ ] [5]. Passive states are all diagonal in the energy
basis showing decreasing populations for increasing energy. Nevertheless, a stronger
notion of passivity can be also considered in the case inwhichmany ancillary systems
in the same state can be used as well

Tr[ρ Ĥ ] > Tr[Ûρ⊗nÛ † Ĥ ], (3.123)

where here Û is a unitary acting globally on the many copies. If it is still not possible
for any Û to fulfill Eq. (3.123), then the state ρ is called completely passive. It turns
out that only the Gibbs thermal states ρth(β) = e−β Ĥ/Z are completely passive. This
remains true even if we further allow themany copies to have different Hamiltonians,
which justifies the use of arbitrary ancillary systems in Gibbs states as free-resources
[5].

When the allowed fixed Hamilton operators for the systems of interest are fully
degenerate, this framework reduces to the resource theory of noisy operations [266],
for which the free-resource is the maximally mixed state, the allowed operations
reduce to unital CPTP maps, T(1) = 1, and the monotone reduces to the von Neu-
mann entropy S(ρ) [267]. Analogously to this case, onemay think that the set of ther-

1We notice that some works allow for unitaries preserving energy only on average, i.e. Tr[Ĥρ] =
Tr[ĤÛρÛ ] (see e.g. Ref. [22]), which may require a restriction on the states ρ as noticed in Ref.
[218].
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mal operations can be substituted by the set of Gibbs-preserving maps, T(ρth) = ρth.
Indeed any thermal operation preserves the Gibbs state. However, it turns out that
Gibbs-preservingmaps allow transformationswhichmay be not always implemented
by just thermal operations [268], as for instance the transformation

|1〉 → 1√
2
(|0〉 + |1〉), (3.124)

in a qubit system with Hamiltonian Ĥ = E |1〉〈1|. Indeed, thermal operations itself
cannot create nor manipulate coherence [269], but they need access to an extra
source providing it. A coherence reservoir may be hence introduced as the weight
of the previous section, i. e. a doubly infinite ladder system with Hamiltonian Ĥc =∑∞

n=−∞ nE |n〉〈n| in some coherent state such as

|φ〉c(l, L) = 1

L

l+L∑
n=l

|n〉. (3.125)

This kind of coherent reservoir is affected by back-action when interacts with other
systems, which causes the state to spread over the energy ladder. Nonetheless, it has
been shown that its coherence properties needed to implement operations are, remark-
ably, unaltered [218]. This leads to think about coherence as a catalytic resource
which can be used to perform arbitrary unitary operations on a system [218, 221]. If
the coherence reservoir is instead providedwith a ground state, this catalytic property
is partially lost and one should require some input energy (but no coherence) in order
to use it again.

Another related point of the theory concerns the use of catalysts. That is, the use
of arbitrary systems in nonequilibrium states σC which helps to perform impossible
transition between states ρS → σS while turning back to its original state at the end
of the transformation

ρS ⊗ ωC → σS ⊗ ωC . (3.126)

This is called in the literature exact catalysis, since the final state of the catalyst
exactly coincides with the original one. The study of exact catalysis yielded the
derivation of a family of second-laws for the one-shot regime [270]. However, in the
prototypical case of many copies, the inclusion of exact catalysis does not modify the
usual second law of thermodynamics in terms of the nonequilibrium free energy. If
instead of exact catalysis one considers the case in which the catalyst after operation
is ε-close to its original state

ρ ⊗ ωC → σSC , with T (TrS[σSC ], ωC) � ε, (3.127)

it results that one can achieve arbitrary transformations for arbitrary small ε if all
(arbitrary large) catalyst are allowed [270]. On the other hand, by imposing restric-
tions on the energy and dimension of the catalyst, the free energy constrains can be
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recovered [271]. Furthermore, limitations imposed by finite-size effects in general
transformations has been also recently analyzed in Ref. [27].

Generalizations of the present framework to include the case of time-dependent
Hamiltoniansmaybe achievedby introducingquantum clocks in the directionpointed
in Refs. [221, 222]. This would be a very desirable extension of the resource theory of
thermal states because thermodynamics is mostly based on time-dependent Hamilto-
nians implementing driving protocols, as we have already seen in this chapter. Other
generalizations of the resource theory of thermal states are nowadays being pro-
posed in order to include more conserved quantities such as the number of particles
or the momentum in the theory, and more general reservoirs in generalized Gibbs
ensembles [272–274]. It should be then interesting to consider how those theories
are affected when the reservoirs have some quantum property such as squeezing or
quantum correlations in comparison with the classical case.

Finally, we point out the interesting case of combining different resource theories
such as the resource theory of entanglement and the resource theory of thermal states.
Elaborating hybrid theories are important e.g. in determining the costs of information
processing tasks in a thermodynamic framework. In the following we mention some
examples commented in the review [5], in which the combination of entanglement
theory and thermodynamics has lead to fruitful results. It has been for instance
shown that when starting in Gibbs thermal states, the generation of correlations has
an average input energy cost which depends on the temperature [275, 276], reading
for a bipartite state AB

Wcorr � kBT I (ρAB), (3.128)

when a thermal bath at temperature T can be used in the process. As mentioned pre-
viously, other references studied the work which can be extracted from correlations.
In particular, it has been shown that the restriction to the set of LOCC amounts to
associate a work value to quantum discord [73]

W = kBT δ(ρAB), (3.129)

obtained in a Maxwell demon configuration in which work extraction from local
or global agents are compared. Another interesting result coming from Ref. [239]
states that the capacity to store work in the purely form of correlations differs in the
quantum and classical cases, and scales with the systems dimension N as

Wclassical

Wquantum
= 1 − O(N−1). (3.130)

Those results can only be obtained when allowing global unitaries to change the total
average energy of the systems of interest. Reproducing those results in this frame-
work requires again the introduction a well-behaved weight providing (or recoiling)
energy in order to guarantee that the global unitary acting on the system and weight
preserves the total energy. A different point of view is taken when investigating the
generation of quantum correlations directly from thermal resources, as is the case
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of the small thermal machine introduced in Ref. [169]. In order to fully incorporate
such configurations, more general resource-like theories are needed, including e.g.
free access to two different temperatures. This may allow us to operationally char-
acterize quantum information from a thermodynamic perspective in a more general
scenario than the isothermal case.
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Part II
Quantum Synchronization Induced by

Dissipation in Many-Body Systems



Chapter 4
Transient Synchronization
and Quantum Correlations

In Chaps. 1 and 2 we provided an introduction to the most important concepts and
general methods employed in the description of open quantum systems. In particular,
we introduced the central concept of quantum correlations as a characteristic trait of
quantum mechanics, responsible of a rich and striking phenomenology which has
fascinated scientists from over almost one century ago (see Sect. 1.4). Nowadays
quantum correlations are considered the basic resource in modern applications of
quantum information and quantum computation, while still being the central subject
of a wide range of fundamental research. The detailed dynamical study of quan-
tum correlations in open systems plays an important role, as the understanding of
the mechanisms creating, preserving, or destroying quantum correlations becomes
a topic of major importance when exploring the quantum-to-classical boundary [1].
The dynamics of quantum correlations in few-body open systems such as entangle-
ment has been investigated during decades (for a review see [2]), while quantum
discord has been only more recently considered [3–9].

Moreover, the generation of large quantum correlations have been recognized as
an indicator of the presence of other interesting phenomena, such as quantum phase
transitions [10–12]. The other way around has been also explored: for example the
presence of entanglement may be revealed by internal energy [13] or by deviations
in the scaling of a solid heat capacity [14]. In this chapter we report our results
in establishing a connection between the phenomenon of mutual synchronization
and the presence of robust quantum correlations.1 In order to do it, we consider a
fundamental quantum system, two detuned interacting quantum harmonic oscillators
dissipating into the environment. We will carry out a dynamical analysis using the
methods developed in Sect. 2.4. In the following, we show how the emergence of
synchronous dynamics in the system due to the presence of common dissipation
is accompanied by the robust, slow decay of quantum discord. On the other hand,

1The results in this chapter have been published in Ref. [15].
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in the case of independent dissipation for the system components, quantum discord
and synchronization quickly disappear.

The chapter is structured as follows. We start in Sect. 4.1 by introducing the
phenomenon of synchronization and discussing previous works considering it in
quantumsystems. InSect. 4.2wecharacterize our systemstudy, twodetunedquantum
harmonic oscillators dissipating into the environment, together with their dynamical
description depending on the form of the dissipation. We identify in Sect. 4.3 the
conditions leading to this spontaneous phenomenon, showing that the ability of the
system to synchronize is related to the existence of disparate decay rates. In Sect. 4.4
we further show that the existence of such disparate decay rates is accompanied by
robust quantum discord and mutual information between the oscillators, preventing
the leak of information from the system into the environment. Further, we dedicate
Sect. 4.5 to analyze the dependenceon initial conditions, showing that theydonot play
a significant role. Some conclusions about this first study are presented in Sect. 4.6.
Further technical details on themaster equation and the equations ofmotion employed
for describing the dynamics can be found in Appendix.

4.1 Synchronization Phenomena and Previous Works

Synchronization phenomena, from its first scientific description in the 17th century
by Christiaan Huygens [16], have been observed in a broad range of physical, chem-
ical and biological systems under a variety of circumstances [17]. The development
of a general framework for the description of the phenomenon beyond the specific
details of each system, allow us to distinguish between different types of synchro-
nization (complete, phase, lag, . . .). In some instances, synchronization is induced
by the presence of an external forcing or driving which acts as a pacemaker. This is
usually called entrainment, as it typically occurs when the influence of one among
several oscillatory objects is unidirectional, and can be considered as an external
periodic driving producing synchronization to its own frequency. Some examples of
entrainment can be found in circadian rhythms, radio-controlled clocks or artificial
pacemakers [18]. In other circumstances, synchronization appears spontaneously as
a mutual cooperative behavior of different elements, which when coupled start to
oscillate at a common frequency. This last case is the most relevant from the complex
systems point of view since it appears as an emergent phenomenon that takes place
as a consequence of the mutual influence between the elements, despite their natural
differences. We will refer to this type of synchronization as spontaneous, mutual
or collective synchronization. The simplest description of collective synchronization
can be given in terms of coupled self-sustained oscillators, while it has been found
in many different systems such as relaxation oscillator circuits, networks of neurons,
hearth cardiac pacemaker cells or fireflies that flash in unison [19]. A key ingredient
for it to appear is dissipation, which is the responsible for collapsing any trajectory
of the system in phase space into a lower dimensional manifold.
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Synchronization has also been studied in the quantum world in the case of
entrainment induced by an external driving. Some interesting examples are dissi-
pative driven two-level systems [20], a kicked particle falling in a static field [21],
or nanomechanical beam oscillators [22]. Difficulties in addressing quantum spon-
taneous synchronization come from the fact that in linear oscillators, amenable to
analytical treatment, dissipation will lead to the death of the oscillations after a
transient. On the other hand, nonlinear oscillators can be considered, but then one
needs to invoke different approximations limiting an insightful treatment. Here we
take a first step towards the understanding of quantum spontaneous synchroniza-
tion, showing that it is possible to fully characterize synchronization during the
transient dynamics in an harmonic, i.e. linear, system. We find indeed that synchro-
nization can arise even in absence of nonlinear dynamics depending on the dissipa-
tion. Different groups have recently approached this subject considering the synchro-
nization of nano/microscopic systems susceptible of having quantum behavior, such
as optomechanical cells [23], or micro [24] and nanomechanical oscillators [25]. In
such cases, synchronization is studied by focusing on first-order momenta (mean val-
ues of position and momentum). However, this provides just a classical description
of synchronization, while in order to go beyond, we must take into account higher
order moments characterizing the quantum fluctuations of the system and the full
correlations between the oscillatory objects.

4.2 Two Dissipative Harmonic Oscillators

In this chapter we consider two coupled quantum harmonic oscillators dissipating
into the environment [26–28]with different frequencies [29],which is arguably one of
the most fundamental prototypical models. Current experimental realizations in the
quantum regime include nanoelectromechanical structures (NEMS) [30], optome-
chanical devices [31–33], or separately trapped ions whose direct coupling has been
recently reported [34, 35]. The system Hamiltonian for unit masses is

ĤS = p̂21
2

+ p̂22
2

+ 1

2
(ω2

1 x̂
2
1 + ω2

2 x̂
2
2 ) + λx̂1 x̂2, (4.1)

where |λ| < ω1ω2 (as required for an attractive potential) and we allow for frequen-
cies diversity, i.e. ω1 �= ω2. The free Hamiltonian is diagonalized by a rotation in the
x̂1 and x̂2 plane

X̂− = cos θ x̂1 − sin θ x̂2,

X̂+ = sin θ x̂1 + cos θ x̂2, (4.2)
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θ being the angle that gives the eigenvectors (or normal modes) {X̂±} as a function
of the coupling: tan 2θ = 2λ/ω2

2 − ω2
1. Applying the same rotation in Eq. (4.2) to p̂1

and p̂2, we can rewrite the system Hamiltonian in the normal modes basis

ĤS = 1

2

∑

i=±
P̂2
i + �i X̂

2
i , where [X̂ j , P̂i ] = i�δi, j (4.3)

which corresponds to a pair of uncoupled harmonic oscillators with frequencies

�2
± = 1

2

(
ω2
1 + ω2

2 ±
√
4λ2 + (ω2

2 − ω2
1)

2

)
. (4.4)

We consider the two different dissipation scenarios introduced in Sect. 2.4: in the
first one, the oscillators couple to independent (but equivalent) separate baths (SB)
[36, 37]. In the second one, the two oscillators equally couple to the same common
bath (CB). As we have discussed in Sect. 2.4, these two scenarios emerge in extended
environments. In the simplest case of dissipation into isotropic surrounding media
(e.g. electromagnetic radiation in free space), the transition occurs for some distance
ξE depending on the system frequency and on the environment dispersion [38, 39].
If the ξE is smaller than the distance between the two oscillators, they would feel
independent (uncorrelated) environmental noise (SB scenario). In the opposite case,
both oscillators would feel the same noise fluctuations and hence the environment
can be considered to be common (CB scenario).

We model the first case, SB, by considering two equivalent bosonic thermal baths
independent of each other:

Ĥ (1)
B =

∑

α

��̃α

(
b̂(1)†

α b̂(1)
α + 1

2

)
,

Ĥ (2)
B =

∑

α

��̃α

(
b̂(2)†

α b̂(2)
α + 1

2

)
. (4.5)

The operators b̂iα(b̂i†α ) annihilate (create) an excitation with energy ��̃α over the αth
mode of the i th thermal bath. The interaction Hamiltonian between the oscillators
and the environments is

Ĥ SB
I =

2∑

i=1

∑

α

gα x̂i ⊗ Q̂(i)
α , (4.6)

where Q̂(i)
α =

√
�/2�̃α(b̂(i)

α + b̂(i)†
α ), and the coupling coefficients gα are related to

the spectral density J (�) of the baths through J (�) ≡ ∑
α δ(� − �α)g2α/�̃α . We

assume Ohmic environments (see Sect. 2.3) with a Lorentz–Drude cut-off function,
whose spectral density is given by
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J (�) = 2γ0
π

�
�2

�2 + �2
, (4.7)

where γ0 controls the coupling strength between oscillators and bath, and we assume
for the cutoff frequency � = 50ω1. On the other hand, in the case of CB, we have
a single bosonic reservoir with Hamiltonian given by Eq. (4.5). For the interaction
Hamiltonian between the system and the environment we assume the form

ĤCB
I =

∑

α

gα x̂+ ⊗ Q̂α, (4.8)

where x̂+ = x̂1 + x̂2. The spectral density of the bath is that of Eq. (4.7), with the
same parameters γ0 and � introduced before.

Master equations for both SB and CB have been compared also analyzing entan-
glement decay time in Ref. [29] where both the similarity of the frequencies of the
oscillators and the coupling strength were shown to contribute to preserve entangle-
ment for CB, leading to asymptotic entanglement in the case of identical frequencies
[26, 27, 40–42]. The transition from SB to one CB underlies the capability of entan-
glement generation discussed in Ref. [43], and a physical implementation of the
latter has been proposed in Ref. [44]. Following Ref. [29], the system dynamics is
described by a master equation valid in the weak coupling limit between system and
environment, without rotating wave approximation [45]. Even if the obtained master
equation has the same form as the exact one [28], the coefficients are approximated
for weak coupling. This equation for strong coupling can lead to unphysical values
for the reduced density, and violation of positivity can appear at low temperatures
and for certain initial states [45]. In the following we restrict our analysis to weak
coupling, γ0 = 0.01ω2

1, where we never encounter any unphysical dynamics. This
is consistent with the fact that actually deviations of this master equation from one
in the Lindblad form (preserving positivity) are small for high temperatures (here
T = 10k−1

B �ω1).
Particularly useful to understand the physical behavior of the oscillators dissipa-

tion is themaster equation in the basis of the normalmodes of the systemHamiltonian
(see Sect. 2.4), valid for both SB and CB:

dρ(t)

dt
= − i

�
[ĤS, ρ(t)] − i

2�2

∑

i, j


̃i j [X̂i , {P̂j , ρ(t)}] (4.9)

− 1

2�2

∑

i, j

D̃i j [X̂i , [X̂ j , ρ(t)]] + 1

2�2

∑

i, j

F̃i j [X̂i , [P̂j , ρ(t)]],

for i, j = {+,−}. Here the damping, diffusion and anomalous diffusion coefficients,
{
̃i j , D̃i j , F̃i j } respectively, are different for CB and SB (see AppendixA.1). The
terms i = j are related to the dissipation of each normal mode by direct contact with
the bath(s) while the terms i �= j are related to indirect channels of dissipation.
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In the following we will first focus in the second order moments to gain insight
into the noise dynamics and assume initial vacuum states. On the other hand, we will
consider non-vacuum initial states conditions and the relevant first-order dynamics
later when discussing classical synchronization. From the master equation (4.9) we
obtain the following equations ofmotion for the second-ordermoments of the normal
modes:

d〈X̂i X̂ j 〉
dt

= 1

2

(
{X̂i , P̂j } + {X̂ j , P̂i }

)
, (4.10)

d〈P̂i P̂j 〉
dt

= − 1

2
(�2

i 〈{X̂i , P̂j }〉 + �2
j 〈{X̂ j , P̂i }〉)

− (
̃i,i + 
̃ j, j )/�〈P̂i P̂j 〉 − 
̃i,−i/�〈P̂j P̂−i 〉
− 
̃ j,− j/�〈P̂i P̂− j 〉 + D̃i, j , (4.11)

d〈{X̂i , P̂j }〉
dt

= 2〈P̂i P̂j 〉 − 2�2
j 〈X̂i X̂ j 〉 + F̃i, j

− 
̃ j, j/�〈{X̂i , P̂j }〉 − 
̃ j,− j/�〈X̂i P̂− j 〉. (4.12)

An important observation is that actually the results shown in the following do not
depend on the specific choice of this master equation. In particular, in AppendixA.2
we compare our results with those from a master equation in the Lindblad form,
obtained by a rotating wave approximation. Within this approximation the master
equation is known to be in the Lindblad form [45, 46] and we find almost exactly the
same results as with the master equation (4.9). Therefore, the phenomena predicted
in the following do not depend on the specific details of the master equation.

4.3 Synchronization

The dynamical behavior of the oscillators can be analyzed through their average
positions, variances and correlations, as we deal here with Gaussian states. The
presence of a CB or of two (even if identical) SB leads to different friction terms in
the dynamical equations of both first-order and second-ordermoments with profound
consequences.We remind that forCBonly the positions sum x̂+ = x̂1 + x̂2 is actually
dissipating and this does not coincide with X̂+ unless the oscillators are identical.

Figure4.1a shows the variance dynamics of two oscillators starting from two
vacuum squeezed states. To quantify synchronization between two functions f (t)
and g(t), we adopted a commonly used indicator, namely the Pearson indicator of
synchronization

C f,g(t,�t) = δ f δg√
δ f 2 δg2

, (4.13)



4.3 Synchronization 185

Fig. 4.1 a Temporal evolution of second-order moments 〈x̂21 (t)〉 (red line) and 〈x̂22 (t)〉 (black
line) for ω2 = 1.4ω1 and λ = 0.7ω2

1 starting from squeezed states for CB and b synchronization
C〈x̂21 〉,〈x̂22 〉(t,�t) (being�t = 15ω−1

1 ) forCB (blue) andSB (green) for temperature T = 10�ω1/kB .

The insets show synchronization values |C〈x̂21 〉〈x̂22 〉| varying ω2/ω1 and λ/ω2
1 at t = 300ω−1

1 . Here
and for the rest of the chapter we set γ = 0.01ω1. The initial state is separable with squeezing
parameter r = 2 and r = 4, respectively, in the two oscillators

where the bar stands for a time average f = ∫ t+�t
t dt ′ f (t ′) with time window �t

and δ f = f − f . For ‘similar’ evolutions |C | ∼ 1, while it decreases to zero for dif-
ferent dynamics. The position variances for CB [Fig. 4.1a] show a transient dynamics
without any similarity, also in anti-phase (C〈x̂21 〉〈x̂22 〉 < 0), before reaching full syn-
chronization [Fig. 4.1b].

A comprehensive analysis shows that this behavior is actually robust consider-
ing (i) different initial conditions, (ii) any second-order moments of the two oscil-
lators (either of positions x̂1,2 or momenta p̂1,2, or any arbitrary quadrature) and
(iii) a whole range of couplings and detunings. Regarding (i), an important
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observation is that, while in an isolated system the dynamics is strongly determined
by the initial conditions, this is not the case in presence of an environment. After a
transient (in which the initial conditions have an important role), we actually find
synchronization independently on the initial state, implying that detuning and oscil-
lators coupling are the only relevant parameters. The full analysis (iii) for CB allows
us to conclude that synchronization arises faster for nearly resonant oscillators and
that the deteriorating effect of detuning can be proportionally compensated by strong
coupling, as represented in the CB inset of Fig. 4.1b.

Moving now to the case of separate baths, a completely different scenario appears.
The quality of the synchronization is generally poor (small |C |), not improving in
time and dependent on the initial condition. The full parameters map for |C | is shown
in the SB inset of Fig. 4.1b. In this case the oscillators do not synchronize in spite of
their coupling even considering long times when, finally, the system thermalizes.

The appearance of a synchronous dynamics only for CB can be understood con-
sidering the time evolution of the second moments. The time evolution of the vector
R of all the 10 second moments can be written in a compact matrix form as

Ṙ = MR + N, (4.14)

where the matrix M governing the time evolution [29] (see also AppendixA.1)
has complex eigenvalues {μi } (i = 1, . . . , 10), named in the following dynamical
eigenvalues. Their real and imaginary parts determine the decays and oscillatory
dynamics of all second-order moments and variances. As shown in Fig. 4.2a when
λ = 0, all the eigenvalues are along the line −0.01 and for increasing coupling — in
the case of one CB— they move in the complex plane taking on three different real
values.On the other hand, for SBall dynamical eigenvalues have similar real parts that
remain almost unchanged when varying parameters. Hence for SB the ratio between
themaximumand theminimumeigenvaluesRe(μM)/Re(μm) ≈ 1 is almost constant
for all parameters while for CB and for parameters for which synchronization is
found [CB inset in Fig. 4.1b], Re(μM)/Re(μm) << 1 as shown in Fig. 4.2b. In this
parameters regime, after a transient time, only the least damped eigenvector survives
then fixing the frequency of the whole dynamics of the moments. As a consequence
of this mechanism, synchronization is observed considering the expectation values
of any quadrature of the oscillators as well as higher order moments.

We obtain an approximated analytical estimation of time scales by considering the
master equation in the eigenbasis [Eq. (4.9)] of the free Hamiltonian, Eq. (4.1). As we
commented previously, both master equations for common and separate baths have
the same expression in the case of detuned oscillators and the nature of dissipation
(CB or SB) only appears in the form of the damping coefficients. By eliminating the
oscillating terms in the dynamics in the interaction picture, one obtains that, within
this approximation, the decay rates of 〈P̂2±〉 are given by


̃SB
−− = cos2 θ 
11 + sin2 θ 
22 − cos θ sin θ 
12,


̃SB
++ = cos2 θ 
22 + sin2 θ 
11 + cos θ sin θ 
12, (4.15)
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Fig. 4.2 a The 10 dynamical eigenvalues μi in the complex plane for CB. We used ω2/ω1 = 1.31
and then increase the coupling from λ = 0 (blue dots) to λ = 0.9ω2

1 (dark triangles). Notice that for
λ = 0 the eigenvalue with Re(μi ) = −0.01 and Im(μi ) = 0 is degenerated. The arrows highlight
the emergence of disparate real components for the eigenvalues leading to a separation of time
scales for the decay of the normal modes. b Ratio between minimum and maximum eigenvalue
Re(μm)/Re(μM ) for CB as a function of ω2/ω1 and λ/ω2

1

for SB, while for CB:


̃CB
±± = (cos θ ± sin θ)(cos θ 
11 ± sin θ 
22) +

+ (1 ± 2 sin θ cos θ) 
12, (4.16)

where θ is the previously defined diagonalization angle of ĤS , and 
11,22,12 appear
in the original master equation (see AppendixA.1). These approximated decays for
the variances, together with their average (
̃−− + 
̃++)/2 (for 〈P̂+ P̂−〉), for a CB
and SB do agree very well with the real parts of the dynamical eigenvalues (see
AppendixA.2).

As mentioned before, synchronization (for CB) is observed looking at both the
dynamics of first-order and second-order moments and, as a matter of fact, the ratio
between minimum and maximum dynamical eigenvalues is the same in both cases.
Still our interest is in the second-ordermoments due to their relevance for the quantum
information shared by the oscillators. As a further remark, inspection of first-order
moments dynamics allows us to establish connectionswithwhat is known in classical
systems [17]
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d〈 p̂1〉
dt

= − ω2
1〈x̂1〉 − λ〈x̂2〉 − (
11 + 
12)〈 p̂1〉 − (
22 + 
12)〈 p̂2〉,

d〈 p̂2〉
dt

= − ω2
2〈x̂2〉 − λ〈x̂1〉 − (
11 + 
12)〈 p̂1〉 − (
22 + 
12)〈 p̂2〉.

Twostudied scenarios for classical synchronization are the ‘diffusive’ couplingwhere
both oscillators dampings depend on the difference of the velocity and the ‘direct’
coupling where each one depends on the velocity of the other [17]. The quantum
harmonic oscillators here considered for CB display in their first-order moments a
‘diffusive’ coupling up to a change of sign and this explains the anti-phase character
of their synchronization.

4.4 Quantum Correlations

Once established the conditions for the emergence of synchronization,we explore this
phenomenon focusing on information aspects, through mutual information shared
by the oscillators and their quantum correlations. In particular, the total correla-
tions between the oscillators are measured by the mutual information I (1 : 2) =
S(�1) + S(�2) − S(�) where S stands for the Von Neumann entropy, and �1(2) is the
reduced density matrix of each harmonic oscillator (see Sect. 1.4.2). As we explained
in Sect. 1.4.3, a possible partition of correlations into quantum and classical parts
that has lately received great attention is given by the quantum discord [47–49]. It

reads δ(1 : 2) = min{�̂i }
[
S(�2) − S(�) + S(�1|{�̂i })

]
with the conditional entropy

defined as S(�1|{�̂ j }) = ∑
i pi S(�1|�̂i

),�1|�̂i
= �̂i��̂i/pi being the densitymatrix

after a complete measurement {�̂ j } on the second oscillator and pi = Tr12(�̂i�).
Here we use quantum discord as a measure of the quantum correlations between the
two oscillators by numerical computation of the Gaussian discord [50, 51] through
the covariance matrix V12, and minimizing over single mode generalized Gaussian
measurements (see details in Sect. 1.4.3).

Dissipation degrades all quantum and classical correlations [52]. Nevertheless,
important differences are found when comparing CB and SB for the same parame-
ters choice. In Fig. 4.3 we show a fast decay of the total (a) as well as quantum (b)
correlations for SB. On the other hand, for CB we find that, after a short transient,
both mutual information and discord oscillate around an almost constant value and
their decay is nearly frozen. For these parameters and a common environment, the
oscillators synchronize and C〈x̂21 〉〈x̂22 〉 = 0.95 at t ∼ 270ω−1

1 . The robustness of quan-
tum correlations in long times for synchronizing oscillators in a CB and the deep
differences with the case of SB is surprising also because their respective asymptotic
values are really similar for detuned oscillators. In other words, the upper CB curve
in Fig. 4.3a or b will eventually thermalize converging to a value very similar the one
obtained for SB, while strong differences in the asymptotic values actually appear
only in the case of identical oscillators [26, 40]. As a further result, the effect of
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(a)

(b)

Fig. 4.3 Logarithmic plot of mutual information (a) and discord (b) for common (CB) and separate
baths (SB). The exact time evolutions of both quantities are shown in gray while the thick blue and
thick yellow lines correspond to their filtered versions (using a Gaussian filter) which eliminates
rapid oscillations. Here we used ω2 = 1.05ω1 and λ = 0.3ω2

1 in both plots

increasing the temperature is mostly on the asymptotic state while the main features
of the dynamics described here are still observed.

We now focus on the case of CB to look for specific quantum features of the
synchronization in different parameters regimes. The comparison of mutual infor-
mation and discord in cases in which there is synchronization or the system dis-
sipates without having time to synchronize is given in Fig. 4.4 (upper and lower
curves, respectively) where we filter out the fast oscillations to highlight the decay
dynamics. For small coupling and large detuning, discord (shown in Fig. 4.4 for
λ/ω2

1 = 0.3, ω2/ω1 = 1.4) and mutual information are rapidly degraded. In this
case, when t = 200ω−1

1 there is not synchronous dynamics and C〈x̂21 〉〈x̂22 〉 ∼ 0. On the
other hand, for strong coupling or for small detuning, synchronization occurs fast:
for λ/ω2

1 = 0.8, ω2/ω1 = 1.05 C〈x̂21 〉〈x̂22 〉(t = 200ω−1
1 ) ∼ 1. In this case, after a short

transient, the dynamics of discord is almost frozen and it remains robust against
decoherence. Exploring different parameter regimes we conclude that fast decay of
classical and quantum correlations is found in cases in which there is no synchro-
nization while the emergence of synchronization accompanies robust correlations
against dissipation (frozen decay). The inset in Fig. 4.4 represents the value of the
discord after the fast decay (here for t = 300ω1−1) where it is expected to be already
in the plateau. There is a rather suggestive similarity with the synchronization ‘map’
for CB, shown in the inset of Fig. 4.1b. Considering that also entropy shows in this
regime a slow growth, we conclude that synchronized oscillators are characterized
by a reduced leakage of information into the environment.

One might wonder if the presence of a synchronous dynamics has any effect
on entanglement as, in contrast to pure states, mixed states with large quantum
correlations can even have vanishing entanglement [53, 54]. The presence of the
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Fig. 4.4 Evolution of the discord for common bath and parametersω2/ω1 = 1.05, λ = 0.8ω2
1 (blue

dashed line A) and ω2/ω1 = 1.4, λ = 0.3ω2
1 (green solid line B). The inset represents the quantum

discord at time t = 300ω−1
1 for CB as a function of ω2/ω1 and λ/ω2

1

environment for oscillators with different frequencies leads to a complete loss of
entanglement in finite short times unless the couplings to the CB are ‘balanced’ [29].
In the general case of detunedoscillators, even for large coupling, entanglement decay
is typically faster than the time scales at which the system reaches synchronous
dynamics both for CB and SB, mostly at this temperature (T = 10k−1

B �ω1). Still,
longer survival times for entanglement in CB are found for small detunings and
strong couplings [29].

4.5 Dependence on Initial Conditions

We mentioned before that initial conditions do not play any important role in
the appearance of synchronization. Indeed synchronous dynamics of the moments
appears when an eigenmode dominates because of its slow dissipation rate and this
goes beyond the specificity of the choice of the initial state. However the details of the
dynamics do depend on the latter as we illustrate for the following initial conditions
for the two oscillators

1. Separable vacuum state:
ρ = |0〉〈0| ⊗ |0〉〈0|. (4.17)

2. Two-mode squeezed states:

ρ = Û12(r) (|0〉〈0| ⊗ |0〉〈0|) Û †
12(r), (4.18)

where Û12(r) = exp
[
−r(â†1 â

†
2 − â1â2)/2

]
and âi (â

†
i ) are the usual annihilation

(creation) operators.
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3. Separable squeezed state:

ρ = Û1(r1)|0〉〈0|Û †
1 (r1) ⊗ Û2(r2)|0〉〈0|Û †

2 (r2), (4.19)

with Ûi (ri ) = exp
[
−r(â†2i − â2i )/2

]
.

Quantum correlations (δ(1 : 2)) depend on the initial condition in the sense that
more or less of the latterwill be present.However, after the short transient, they always
reach a plateauwhere information leakage to the environment is hugely reduced.Both
information leakage reduction and synchronization are part of the same underlying
phenomenon: that of a dissipation channel being much slower than the other. This
behavior is seen in Fig. 4.5 where quantum correlations and the synchronization
indicator are displayed for different initial conditions. We must further stress here
that, since the asymptotic thermal state has δ(1 : 2) ∼ 10−4, the plateau is expected
to be very long.

(a)

(b)

Fig. 4.5 a Pearson indicator of synchronization C〈x̂21 〉,〈x̂22 〉(t,�t)with�t = 15ω−1
1 and b decay of

quantum correlations for different initial conditions in the case of common bath: Separable squeezed
state with squeezing parameters r1 = 2 and r2 = 4 (green solid lines), separable vacuum state (red
dotted lines), and an entangled two-mode squeezed state (black dashed lines) with squeezing r = 2.
Here we employed ω2/ω1 = 1.1 and λ = 0.8ω2

1
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4.6 Conclusions

Our analysis of the dynamics of dissipative quantum harmonic oscillators allows
us to establish under which conditions synchronization appears. This phenomenon
can appear in rather different forms but, to the best of our knowledge, it is the first
time that it is reported during the transient dynamics of a (quantum or classical)
system coupled to an environment and relaxing towards equilibrium. The emergence
of synchronization is explained in terms of different temporal decays governing
the system evolution and related to a separation between the eigenvalues of the
matrix generating the dynamics. Indeed, we trace synchronization in second-order
moments from the existence of a slowly decaying eigenmode and find approximated
expressions for the variances decay coefficients in very good agreement with the real
parts of the dynamical eigenvalues. We find that synchronization arises in presence
of a common bath but not for separate ones, while it could be of interest to study
the transition between so different scenarios [38, 43, 55–58]. An extensive analysis
considering different parameters shows that a synchronous dynamics for common
bath is degraded when increasing the detuning or weakening their direct coupling
with the ratio shown in Fig. 4.1b (CB inset). The relevant parameters are λ/ω2

1 and
ω2/ω1 being the dependence on initial conditions actually weak.

We have then characterized mutual synchronization from a quantum information
perspective. In order to do that, the dynamics of mutual information and quantum
discord have been explored for different regimes of parameters. Our results indicate
a signature of transient synchronization in the information shared by the oscillators:
discord and mutual information are more robust when the oscillators synchronize. In
spite of the fact that after thermalizing the asymptotic discord is negligible both for
CB and SB, the decay towards this equilibrium value is clearly frozen in presence
of synchronization. In this case, total and quantum correlations display a very slow
decay (plateau) and the leak of information into the bath is reduced.

The identification of the conditions for the occurrence of synchronization and its
connection with quantum correlations reported here provide the path towards exten-
sions such as the study of arrays and networks, in which the presence of many normal
modes in the dynamics opens a broader landscape with a richer phenomenology for
synchronization phenomena. This is partially addressed in Chap.5 for a system of
three harmonic oscillators dissipating into a common environment, andmore system-
atically explored in the general case of an arbitrary network of harmonic oscillators
in Chap.6, together with the analysis of the role of different environments. Another
interesting direction for future investigation would be the exploration of eventual
connections with biological systems, in which synchronization is a widespread phe-
nomenon.

Different perspectives arise when turning to the definition of synchronization in
the quantum realm. For instance in Ref. [59] phase and complete synchronization
are discussed, and the ultimate bounds on the complete synchronization of quantum
systems imposed by the uncertainty principle has been reported. An extension of
such concepts has been also very recently proposed in Ref. [60]. For a recent review



4.6 Conclusions 193

on the different measurements employed to measure quantum synchronization in
different systems see Ref. [61].

Finally, from the experimental point of view, we stress that there have been few
recent experiments showing the emergence of mutual synchronization in the average
position and momenta (first order moments) in nanomechanical resonators coupled
via a photonic resonator [62], and arrays of silicon nitride micromechanical oscilla-
tors coupled through an optical radiation field [63]. Autonomous coupled microelec-
tromechanical oscillators [64], and anharmonic nanoelectromechanical resonators
[65] have been also shown to display mutual synchronization. Finally, a phase-
coherent regime in the oscillations of snowflake optomechanical crystals conforming
an array has been predicted [66]. However, experiments testing the quantum signa-
tures of synchronization and its relations to classical and quantum correlations have
not been reported yet to date.

Appendix

A.1 Master Equation Details

The master equation describing the evolution of the reduced density matrix of the
system of two different oscillators, up to the second order in the coupling strength,
has been derived in Sect. 2.4 of Chap.2 both for common and separate baths in the
normal modes basis. Here we show that this is equivalent to the master equation in
the original basis reported in Ref. [29]. We also stress that the exact master equation
at all coupling orders has the same structure as the one reported here, the difference
being in the form of its coefficients [28, 45]. For weak coupling this equation is a
very good approximation to the exact one. Furthermore, in the following appendix
we show that the full evolution almost perfectly matches that of a master equation
obtained by a rotating-wave approximation, the latter having Lindblad form.

A.1.1 Separate Baths

As stated in Sect. 4.2, the normal modes of ĤS are expressed in terms of the original
position and momentum operators of the oscillators as

X̂− = cos θ x̂1 − sin θ x̂2, P̂− = cos θ p̂1 − sin θ p̂2, (A.1)

X̂+ = sin θ x̂1 + cos θ x̂2, P̂+ = sin θ p̂1 + cos θ p̂2, (A.2)

with tan 2θ = 2λ/ω2
2 − ω2

1. The system eigenfrequencies �± are always different
due to the coupling
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2�2
± = ω2

1 + ω2
2 ±

√
4λ2 + (ω2

2 − ω2
1)

2. (A.3)

Neglecting energy renormalization, the master equation in the original basis
reads [29]

dρ(t)

dt
= − i

�
[ĤS, ρ(t)] − i

2�2

2∑

i, j=1


i j [x̂i , { p̂ j , ρ(t)}] (A.4)

− 1

2�2

2∑

i, j=1

Di j [x̂i , [ p̂ j , ρ(t)]] + 1

2�

2∑

i, j=1

Fi j [x̂i , [ p̂ j , ρ(t)]],

where the damping and diffusion coefficients are


i j = 2�

∫ τ

0
dτ βi j (θ, τ )

∫ ∞

0
d�J (�) sin(�τ), (A.5)

Di j = 2�

∫ τ

0
dτ αi j (θ, τ )

∫ ∞

0
d�J (�) cos(�τ) coth

(
��

2kBT

)
, (A.6)

Fi j = 2�

∫ τ

0
dτ βi j (θ, τ )

∫ ∞

0
d�J (�) cos(�τ) coth

(
��

2kBT

)
, (A.7)

with T the temperature of the bath, and

α11(θ, τ ) = cos2 θ cos(�−τ) + sin2 θ cos(�+τ), (A.8)

α22(θ, τ ) = α11(π/2 − θ, τ ), (A.9)

α12(θ, τ ) = sin(2θ)

2
(cos(�+τ) − cos(�−τ)), (A.10)

α21(θ, τ ) = α12(θ, τ ), (A.11)

β11(θ, τ ) = cos2 θ
sin(�−τ)

�−
+ sin2 θ

sin(�+τ)

�+
, (A.12)

β22(θ, τ ) = β11(π/2 − θ, τ ), (A.13)

β12(θ, τ ) = sin(2θ)

2

(
sin(�+τ)

�+
− sin(�−τ)

�−

)
, (A.14)

β21(θ, τ ) = β12(θ, τ ). (A.15)

Now introducing the normal modes, Eq. (A.1), into the master equation (A.4), we
obtain Eq. (4.9) in Sect. 4.2, with the redefined coefficients:
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D̃SB
−− = c2D11 + s2D22 − 2csD12,

D̃SB
++ = s2D11 + c2D22 + 2csD12,

D̃SB
+− = cs(D11 − D22) + (c2 − s2)D12 = 0,

F̃ SB
−− = c2F11 + s2F22 − 2csF12,

F̃ SB
++ = s2F11 + c2F22 + 2csF12,

F̃ SB
−+ = F̃ SB

+− = cs(F11 − F22) + (c2 − s2)F12 = 0,


̃SB
−− = c2
11 + s2
22 − 2cs
12,


̃SB
++ = s2
11 + c2
22 + 2cs
12,


̃SB
−+ = 
̃SB

+− = cs(
11 − 
22) + (c2 − s2)
12 = 0, (A.16)

being c = cos θ and s = sin θ . Once these coefficients are used instead of those
coming from a common bath, the equations of motion are formally identical to
those in Eqs. (4.10)–(4.12). Notice that these expressions reproduce the coefficients
reported in Eq. (2.126) for the derivation of the master equation in the normal modes
basis when we identify the following basis-change matrix

f =
(

cos θ sin θ

− sin θ cos θ

)
, where

(
x̂1
x̂2

)
= f

(
X̂−
X̂+

)
. (A.17)

A.1.2 Common Bath

Neglecting again energy renormalization, the master equation in the original basis is
now [29]

dρ(t)

dt
= − i

�
[ĤS, ρ(t)] − i

2�2

2∑

i=1

γi [x̂+, { p̂i , ρ(t)}] (A.18)

− 1

2�2

2∑

i=1

di [x̂+, [ p̂i , ρ(t)]] + 1

2�2

2∑

i=1

fi [x̂+, [ p̂i , ρ(t)]],

with coefficients γi = 
i i + 
12, di = Dii + D12 and fi = Fii + F12, being 
i j , Di j

and Fi j defined before. When implementing the change into the normal modes basis,
Eq. (A.18) transforms into Eq. (4.9), but the coefficients are modified as follows
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D̃CB
−− = (c − s)(cD11 − sD22) + (1 − 2sc)D12,

D̃CB
++ = (c + s)(cD11 + sD22) + (1 + 2sc)D12,

D̃CB
+− = 1

2
(c2 − s2)(D11 + D22 + 2D12) + sc(D11 − D22),

F̃CB
−− = (c − s)(cF11 − sF22) + (1 − 2sc)F12,

F̃CB
++ = (c + s)(cF11 + sF22) + (1 + 2sc)F12,

F̃CB
−+ = (c − s)(cF22 + sF11) + (c2 − s2)F12,

F̃CB
+− = (c + s)(cF11 − sF22) + (c2 − s2)F12,


̃CB
−− = (c − s)(c
11 − s
22) + (1 − 2sc)
12,


̃CB
++ = (c + s)(c
11 + s
22) + (1 + 2sc)
12,


̃CB
−+ = (c − s)(c
22 + s
11) + (c2 − s2)
12,


̃CB
+− = (c + s)(c
11 − s
22) + (c2 − s2)
12, (A.19)

being again c = cos θ and s = sin θ . We finally recall that the above expressions can
be obtained as well by direct derivation of the master equation in the normal mode
basis as we reported in Sect. 2.4.

A.2 Independent Decay Rates

The normal modes (A.1)–(A.2) diagonalize the Hamiltonian of the system ĤS

but are still indirectly coupled through the heat bath(s) as can be seen fromEqs. (4.10–
4.12). This means that the normal modes cannot be considered as independent chan-
nels for dissipation. Yet, if we rewrite their master equation in interaction picture,
we can neglect fast oscillating terms, as usual in the rotating wave approximation.
That is, elimination of exponents like exp(±i(�+ + �−)t) due to their highly oscil-
latory behavior in comparison with the overall slower dynamics [46]. If we take
this approach to the extreme, we can also eliminate terms which also rotate more
slowly, those like exp(±i(�+ − �−)t), and only keep non-rotating terms. Finally,
this procedure leads to an effective total decoupling of the normal modes, which
then dissipate independently to the heat bath(s) with the decay rates 
̃CB±± and 
̃SB±±
[Eqs. (4.15) and (4.16)]. In some sense this time averaging approximation can be seen
as renormalizing all dissipation coefficients having mixed indices +− (and −+) to
zero, hence rendering the master equation as a tensor product of two independent
evolutions.

This could seem a bit too far fetched, but comparison of the full dynamics and this
approximation seems to be quite accurate as clear form Fig. 4.6, where we compare

̃CB±± and their average with the three different values of Re(μi ).

Inspection of these analytical expressions when varying system parameters, con-
firms that the normalmodes decays for SB have all similar real parts (being in general

12 small and 
11 � 
22), while for a CB the decays can be significantly different
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Fig. 4.6 The rates 
̃CB++, 
̃CB−−, fromEq. (4.16) in Sect. 4.2, and (
̃CB++ + 
̃CB−−)/2 (dots) are compared
with the (three different) real parts of the dynamical eigenvalues Re(μi ) (continuous line) in the
case of common bath. Here ω2/ω1 = 1.31

Fig. 4.7 Synchronization (a) and discord (b) obtained from the complete master equation (4.9) in
Sect. 4.2, are compared with the values obtained after the rotating wave approximation as described
in the text in the case of common bath. Here ω2/ω1 = 1.4, and λ = 0.7ω2

1

(a factor 20 in Fig. 4.6). This difference between decay rates can be up to several
orders of magnitude for parameters where synchronization appears faster. Synchro-
nization is therefore linked to imbalanced dissipation rates of the normal modes,
allowing the mode which survives longer to govern the dynamics. Within the dis-
cussed approximation, its frequency is found to be 2�− with �− the previously
defined frequency of the normal mode X̂−. This is independent of bath coefficients,
and we find very good agreement with the exact frequency.

It can be easily seen that the rotating wave approximation described in this
Appendix leads to (CB and SB) master equations in Linblad form. In spite of for-
mal differences with Eq. (4.9), we actually find a very good agreement between
their dynamical evolutions. In Fig. 4.7 we show that, in the limit of weak coupling
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here considered, predictions for synchronization and discord are actually almost
indistinguishable. Maximum deviations in this case are at least two order of magni-
tude smaller than the represented quantities. As expected, larger deviations are found
for strong coupling.
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Chapter 5
Noiseless Subsystems
and Synchronization

In the previous chapter we have seen that common dissipation leads to the emergence
of mutual synchronization between two oscillators, and we have also shown its rela-
tion with the slow decay of quantum correlations. Furthermore, this phenomenon is
stronger the closer the natural frequencies of the oscillators are, as in the limiting case
of equal frequencies only the normal mode corresponding to the center of mass posi-
tion, X̂+ = (x̂1 + x̂2)/2, couples to the environment, while the other normal mode,
the relative position X̂− = (x̂1 − x̂2)/2, is effectively uncoupled from any environ-
mental action, leading to asymptotic entanglement between the two oscillators [1–5].
When a subsystem of a larger many-body system is effectively uncoupled from the
environment due to symmetries in its interaction, we call it a noiseless subsystem
(NS) [6]. Other authors refer to it as a decoherence-free subsystem or subspace (DFS)
[7], as its dynamics is unitary and preserves any initial coherence.

In this chapter we show how to obtain NSs in a system of three harmonic oscil-
lators and bypass decoherence independently of the bath properties.1 We consider
different frequencies, couplings and boundary conditions for the harmonic oscilla-
tors, in the presence of a common bath. We also analyze how, by using these NSs,
quantum correlations like entanglement can persist (by two different mechanisms)
in the asymptotic limit of the dynamical evolution. In this three-body scenario, we
explore synchronization phenomenon and its connection to the presence of robust
quantum correlations, extending the analysis performed in Chap. 4.We find that even
for three different oscillators, a variety of regimes emerge for different parameters.

The chapter is organized as follows. We start in Sect. 5.1 motivating our work in
the context of prevention of decoherence and dissipation in open quantum systems.
In Sect. 5.2 we introduce the model for the system of three harmonic oscillators
dissipating into a common bath, in terms of the normal modes of the system. For
certain particular values of the system’s parameters (and independently of the bath

1The results presented in this chapter have been published in Ref. [8].
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characteristics), one of several normalmodes can be protected from decoherence.We
find analytically these conditions in Sect. 5.3, introducing some specific cases that are
analyzed in more detail. In Sect. 5.4 deviations of the NSs conditions are considered.
This leads to dynamical relaxation of the system that converges towards a thermal
state. We conclude with Sect. 5.5 summarizing our main results. In AppendixA.1 we
provide further technical details of the calculation of the asymptotic entanglement
and the equations of motion for the Markovian transient dynamics.

5.1 Prevention of Decoherence and Dissipation

Prevention of decoherence and dissipation in open quantum systems is a fundamental
condition for the presence of quantum phenomena in warm macroscopic everyday
world. Decoherence has been extensively studied from the early 1980s [9, 10] to
the present, providing a natural explanation to the quantum-to-classical transition
induced by monitoring the environment (for a list of reviews see for instance [11–
14]). Indeed decoherence and the leak of information to the environment have been
identified as major obstacles in quantum processing of information and construc-
tion of quantum memories [15]. Different mechanisms to avoid decoherence have
been discussed in recent years, including strategies to engineer it for applications
[16–18]. Furthermore, some macroscopic systems from photosyntetic marine algae
[19] to metal carboxylates [20], which can present quantum correlations at high tem-
peratures, suggest that avoiding a complete quantum-to-classical transition can also
occur inherently in natural phenomena. The mechanisms that produce such survival
or even construction of coherence and correlations at large time scales remain almost
unclear, but different theoretical strategies have been proposed in order to predict it,
mostly motivated in the context of quantum computation [21–26].

In this context, one of the strategies to bypass decoherence is exploiting dynam-
ical symmetries in the system-environment interaction. In order to generate unitary
evolution in a certain subspace of the Hilbert space of an open system, a common dis-
sipation where several units equally couple to the same environment (see Sect. 2.4)
has been first used in a two-qubit system [23, 27–31] and later extended to mul-
tiple qubits [32–34] and continuous variable systems [1–3, 5, 35–41]. A general
framework has been developed with several contributions (see, for example, [7],
and references therein) agglutinating the main concepts of decoherence-free sub-
spaces and subsystems (DFSs) [24], noiseless subsystems (NSs) [6], ormore recently,
information-preserving structures (IPSs) [26]. DFSs and NSs have been experimen-
tally tested and realized in the lab [42–45], and reservoir engineering techniques [46]
has been proposed to obtain them [17, 47].

In this chapter we extend previous studies in the context of continuous vari-
able systems, exploring the vaster landscape offered by three coupled harmonic
oscillators in the search for NSs, in comparison with the simpler case of two oscilla-
tors already considered inChap. 4. Previousworks ondissipative harmonic oscillators
reported that in presence of identical frequencies and couplings between oscillators,
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the symmetry of the collective motion can lead to the effective decoupling from the
bath of some normal modes [1–3, 36, 38]. In addition, the consideration of different
frequencies [5, 40] or couplings [39] opens a huge field of possibilities which is
instead less studied and understood. The natural step of considering three harmonic
oscillators beyond the symmetric configuration of identical oscillators already pro-
vides much more phenomenological richness, while at the same time allows for
analytic treatment and gives valuable intuition when pursuing a further extension to
the case of N oscillators.

5.2 Three Oscillators in a Common Environment

We start with a Hamiltonian describing three coupled quantum harmonic oscillators
with arbitrary frequencies and coupling constants. For simplicity we suppose unit
masses:

ĤS = 1

2

3∑

i=1

(
p̂2i + ω2

i q̂
2
i

) +
∑

i< j

λi j q̂i q̂ j , (5.1)

where p̂i and q̂i represent, respectively, the momentum and position operators of
each harmonic oscillator ([q̂i , p̂ j ] = i�δi j ). This equation is conveniently expressed
in quadratic matrix form as

ĤS = 1

2

(
pT 1 p + qTH q

)
, (5.2)

where I is the identity (3 × 3) matrix, we have introduced the vectors pT =
( p̂1, p̂2, p̂3), qT = (q̂1, q̂2, q̂3), andH contains all the parameters of the system, i.e.
the squared frequencies and couplings between oscillators. We will only considerH
with positive eigenvalues, so as to have bounded states (attractive potential).

The environment is introduced by equally coupling each oscillator of the system
to the same thermal bath (see Sect. 2.4), which is described by an infinite collection
of independent bosonic modes:

ĤB = 1

2

∞∑

α=1

(
�̂2

α + �̃2
α X̂

2
α

)
, (5.3)

where [X̂α, �̂β] = i�δαβ 1̂. We will use throughout the paper Greek subscripts to
refer to bath modes, while Latin ones are reserved for system oscillators (i, j) and
normal modes (k, n). The system-bath interaction reads

ĤI =
N∑

i=1

q̂i

∞∑

α=1

λα X̂α, (5.4)
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with a factorized form ĤI = Ŝ ⊗ B̂ of an operator Ŝ acting only on the system’s
Hilbert space, and B̂ acting on the environment one. As usual, this type of interaction
yields a renormalization of the frequencies that wemay include directly in our model
by performing the change [48]

ω2
i → ω2

i +
∑

α

λ2
α

2�̃2
α

. (5.5)

The normal modes basis of the system, Eq. (5.2), is obtained after a canonical
transformation of the system operators through the orthogonal basis-change matrix
F:

q̂i =
N∑

k=1

Fik Q̂k , p̂i =
N∑

k=1

Fik P̂k, (5.6)

which diagonalizes H (qTHq = QT�Q). Here � = FTHF is a diagonal matrix
containing the squared frequencies of the normal modes, �n with n = 1, 2, . . . , N .
In this basis HS now represents the Hamiltonian for a N = 3 uncoupled harmonic
oscillators, or normal modes, related with the original (natural) modes by F. Hence-
forth we can rewrite the system Hamiltonian as

ĤS = 1

2

N∑

n=1

(
P̂2
n + �2

n Q̂2
n

)
, (5.7)

and the interaction Hamiltonian of Eq. (5.4) as

ĤI =
3∑

n=1

κn Q̂n

∞∑

α=1

λα X̂α. (5.8)

Notice from comparison between Eqs. (5.4) and (5.8), that even if the oscillators are
coupled with the same strength to the bath center of mass,

∑
α λα X̂α , the couplings

of the normal modes positions, Q̂n , to the bath center of mass, are not homogeneous,
but given by

κn ≡
N∑

i=1

Fin. (5.9)

These effective couplings κn only depend on the canonical transformation, i.e. on the
system’s parameters and arrangement defined byH. This suggests a strategy to pro-
tect one or more normal modes from the environment action based on proper tuning
of the system parameters {ω1, ω2, ω3} and {λ12, λ23, λ13}. Our analysis in Sect. 5.3
addresses this point while deviations form the condition of vanishing effective cou-
pling of a system normal mode and the environment are explored in Sect. 5.4.
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We mention that while here we focus on the case of three coupled harmonic
oscillators, the description in terms of effective couplings is rather general and applies
for arbitrary networks of N harmonic oscillators, as we show in Chap.6. The case of
a common bath for all oscillators in the system corresponds to situations where the
correlation length in the environment is larger than the system size. This assumption
is not crucial for our discussion, although any other choice would produce different
specific analytic expressions. Finally, we have seen in Chap.4 that the case of a
separate bath for each oscillator yields equal decoherence for all normal modes and
therefore neither NSs nor synchronization.

Furthermore, the equal coupling of each system oscillator to the bath might seem
an arbitrary restriction. Imagine for example that each oscillator is at a different
distance from the common heat bath, leading to an interaction

ĤI =
3∑

i=1

γi q̂i

∞∑

α=1

λα X̂α, (5.10)

where the different oscillators feel a coupling of strength 0 ≤ γi ≤ 1,with
∑

i γi = 1.
The immediate consequence is that the effective couplings become

κn =
3∑

i=1

γiFin. (5.11)

Here we will consider γi = 1, but the unbalanced case would be solved following
exactly the same procedure as we outline in the next section.

5.3 Noiseless Subsystems and Asymptotic Properties

In this section we discuss the conditions to achieve noiseless subsystems with dis-
sipation avoided in one or two of the system’s normal modes. The properties of our
system are specified completely by the matrixH appearing in Eq. (5.2):

H =
⎛

⎝
ω2
1 λ12 λ13

λ12 ω2
2 λ23

λ13 λ23 ω2
3

⎞

⎠ (5.12)

and we aim to derive the set of conditions for the system parameters leading to one
or two normal modes decoupled from the environment, i.e. whose effective coupling
κn is zero.

Let us consider a normal mode δ with normal frequency �δ . The eigenvalue
problem is expressed adequately by
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(H − �2
δ1) Cδ = 0, (5.13)

involving three equations, one for each of the components of the vector Cδ =
(F1δ,F2δ,F3δ)

T with Fi j defined in Eq. (5.6). The condition for normal mode δ

to be non-dissipative (out of the bath influence) leads to a constraint as follows

κδ = 0 ⇔ F1δ + F2δ + F3δ = 0. (5.14)

From Eqs. (5.13), (5.14) and the normalization condition, we can obtain analyt-
ically Cδ , �δ with a further constraint for the system parameters. In other words,
not all parameter choices lead to NSs, but it is possible for some configurations of
frequencies and couplings of the set of three oscillators (satisfying some constraint).

The normal mode δ in terms of the system parameters reads

Cδ = c

⎛

⎝
λ13λ12 + λ23(�

2
δ − ω2

1)

(�2
δ − ω2

2)(�
2
δ − ω2

1) − λ2
12

λ13λ23 + λ12(�
2
δ − ω2

3)

⎞

⎠ (5.15)

where c is the normalization constant. Applying Eq. (5.14) we can obtain its eigen-
frequency �2

δ as:

�2
δ =

(
ω2
1 + ω2

3

2

)
−

(
λ12 + λ23

2

)
(5.16)

±
√

�2 +
(

λ12 + λ23

2

)2

+ �(λ23 − λ12) + λ13(λ13 − λ12 − λ23),

where � ≡ (ω2
1 − ω2

3)/2. Therefore, by defining the quantities:

� ≡ (ω2
1 + ω2

3)/2 − ω2
2, (5.17)

R ≡ − (λ12 + λ23) /2

±
√

(� + (λ12 + λ23)/2 − λ13)
2 + 2�(λ13 − λ12), (5.18)

the constraint relation (κδ = 0) ensuring a one-mode NS reads:

2λ12λ23R + λ13(λ
2
12 + λ2

23) + λ2
13(R + �)

− (R + �)(R − �)(R + �) = 0. (5.19)

The above Eq. (5.19) is one of our main results, and represents a hypersurface in the
d-dimensional parameters space [being d = (N + 1)N/2 = 6 for N = 3 oscillators]
whereby a normal mode is allowed to evolve freely and without dissipation. Such
manifold is restricted to regions in which the normal mode frequency �δ is real and
positive, and the normalization constant, c in Eq. (5.15), is well defined. It is worth
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noting that looking only to non-dissipative modes (imposing the condition κδ = 0)
has been crucial in order to solve analytically the above equations. Otherwisewe have
to deal with complicated expressions involving third order equations corresponding
to the general expression for a normal mode in Eq. (5.13).

Therefore, when Eq. (5.19) is fulfilled, we obtain a NS composed by (at least)
a single normal mode that is effectively uncoupled to the reservoir. This could be
performed artificially by tuning one of the d = 6 parameters of H, such as, for
instance, the natural frequency of one oscillator. In experimentswhere it is possible to
control the local potentials, such as ions confined to individual traps, thismodification
should be rather straightforward (see e.g. [49]). It should be stressed that noisemodels
for ion traps typically favor a SB interpretation in terms of fluctuating uncorrelated
surface dipoles [50, 51], though other microscopic models based on charge diffusion
[52] in the electrode surface question whether the bath’s correlation length could in
fact be larger than the distance of the ion to the electrode. For the moment, this is an
open problem.

Configurations in which a NS consisting of two normal modes is produced can
also be obtained analytically in the specific case of three oscillators. Indeed, we find
that, when two normal modes uncouple from the environmental action, the third one
must necessarily coincide with the center of mass (c. m.) of the system. Explicitly,
the condition for the center of mass being a normal mode is:

(H − �2
c.m.1) Cc.m. = 0 ⇔ �2

c.m. = ω2
i +

∑

j �=i

λi j (5.20)

∀i = 1, 2, 3, and whereCc.m. = (1, 1, 1)T /
√
3. The latter constraint can be captured

in the next two relations that have to be fulfilled simultaneously by the system param-
eters:

ω2
1 = ω2

2 + λ23 − λ13, (5.21)

ω2
3 = ω2

2 + λ12 − λ13. (5.22)

Furthermore, since we want to remain in the domain of attractive potentials, we have
to restrict ourselves to regions of the parameter space where �2

c.m. = ω2
1 + ω2

3 −
ω2
2 + 2λ13 > 0.
In order to see the scope of the conditions (5.19), (5.21), and (5.22) we give

in the following some examples of configurations in which a NS of one or two
modes is produced. We consider simple situations in which the six-dimensional
parameter space is reduced, first by assuming two of the three natural frequencies to
be equal (ω ≡ ω1 = ω3 �= ω2), and, second, considering two of the three couplings
equal (λ ≡ λ12 = λ23 �= λ13). This is sufficient to obtain some different scenarios
appearing in open an closed chains configurations, as is schematically shown in
Fig. 5.1.

Let us start from the case of two equal frequencies (ω ≡ ω1 = ω3 �= ω2). Then
the quantities defined in Eq. (5.19) are simply � = 0, � = ω2 − ω2

2 and R =



208 5 Noiseless Subsystems and Synchronization

Fig. 5.1 Different configurations for a chain of three coupled oscillators in which a NS of one (a–d)
or two (e–f) normal modes is predicted. The tilde on parameters indicates a fixed value depending
on the other non-tilted ones as described in the text

{−λ13, λ13 − λ12 − λ23}, the latter implying two different consistent solutions to
Eq. (5.19). The first one is λ12 = λ23, and the second one ω2 = ω̃2, with

ω̃2
2 = ω2 + 2λ13(λ12 + λ23 − λ13) − 2λ12λ23

λ12 + λ23 − 2λ13
. (5.23)

Both conditions can be simultaneously fulfilled as well. In this case we would have

λ12 = λ23 ≡ λ, λ = ω2 − ω2
2 − λ13 ≡ λ̃0, (5.24)

which satisfies Eqs. (5.21) and (5.22). Therefore this defines a two-mode NS. These
three situations correspond respectively to configurations in Fig. 5.1a (λ12 = λ23),
Fig. 5.1b (ω2

2 = ω̃2
2) and Fig. 5.1f (λ = λ̃0). It is worth noting that the configuration

in Fig. 5.1a is valid also for the closed chain (λ13 �= 0), as well as the one in Fig. 5.1b
for the open chain (when λ13 = 0).

On the other hand, by assuming two equal couplings we have three different
solutions: λ = 0, and λ = λ̃±. The first one is trivial, accounting for a separated pair
of coupled oscillators, together with an uncoupled one. The second solution allows
for the situations in Fig. 5.1c, d, defined by:

λ̃± = λ13 ±
√

(ω2
2 − ω2

1)(ω
2
2 − ω2

3). (5.25)

Finally, when ω1 = ω3, λ13 = 0, and λ = ω2 − ω2
2 = λ̃0, we have a two-mode NS

solution [Fig. 5.1e].
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The presence of one or two non dissipating normal modes prevents the full ther-
malization of the system in the long time run.On the contrary, it leads to an asymptotic
state whose features are analyzed in the following, focusing on entanglement and on
quantum synchronization between the oscillators.

5.3.1 Asymptotic Entanglement

When a NS is enabled, decoherence can be prevented in the system leading to
asymptotic entanglement that would be absent in the thermal state. As a measure
of entanglement between a pair of oscillators, we will use the well known logarith-
mic negativity which is computable for bipartite Gaussian states [53, 54] as is our
case (see Sect. 1.4.1 in Chap.1)

EN = max{0,− log ν−}, (5.26)

where ν− is the minimum symplectic eigenvalue of the partial transposed covariance
matrix ṼAB , corresponding to time reflection of one party.With the help of the general
expressions, we can calculate analytically the asymptotic entanglement when a NS
is produced.

Here we present our results for the external pair of oscillators in open chain
with equal couplings to the inner one, λ12 = λ23 ≡ λ, and frequencies ω1 = ω3 ≡
ω �= ω2. We consider first the case when only one of the three normal modes is
not subjected to dissipation [Fig. 5.1a], and second the case when only one of them
is dissipating [Fig. 5.1e], by imposing λ = λ̃0. The details of the calculations are
reported in AppendixA.1. As initial condition for the natural oscillators we choose
a squeezed separable vacuum state given by

〈q̂2
i (0)〉 = �

2 ωi
e−2ri , 〈 p̂2i (0)〉 = �ωi

2
e2ri , (5.27)

where any other first-order or second-order moments are zero.

5.3.1.1 One-Mode NS

As a paradigmatic example of the case in which there is one frozen normal mode,
let us consider the configuration given in Fig. 5.1a. As for the initial condition, ω1 =
ω3 ≡ ω in Eq. (5.27), and we will assume the same squeezing factor for the external
pair, i.e. r1 = r3 ≡ r , while the squeezing in the central oscillator r2 will be irrelevant.

Normal modes coupled to the environment will reach a thermal equilibrium state
asymptotically, whose variances are given by
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〈Q̂2
k〉th = �

2�k
coth

(
��k

2kBT

)
,

〈P̂2
k 〉th = ��k

2
coth

(
��k

2kBT

)
, (5.28)

while the uncoupled one evolves freely. The asymptotic covariance matrix of the
external oscillators can be obtained by expressing the second-order moments of the
natural oscillators in terms of the normal modes. Then we substitute respectively
the asymptotic expressions corresponding to the frozen mode (not coupled to the
bath) or the thermalized ones. This yields the following analytical expression for the
entanglement:

EN = max{0, E0 + �E(1 + cos(2ωt))}, (5.29)

that is defined by a minimum value E0 and an oscillatory term with amplitude �E
and frequency 2ω

E0 ≡
{
r − r+

0 for r ≥ 2rc
r−
0 − r for r < 2rc

}
(5.30)

�E ≡
{
2rc for r ≥ 2rc
2r for r < 2rc

}
(5.31)

where rc ≡ (r+
0 + r−

0 )/4 and the critical values are defined by the following expres-
sions

r+
0 ≡ 1

2
log(4λ2σQ), r−

0 ≡ − 1

2
log(4λ2σP). (5.32)

Coefficients σP and σQ depend both on the bath’s temperature and on the system
parameters via the shapes and frequencies of the dissipative normal modes as can
be seen in their definition in AppendixA.1 [Eq. (A.10)]. Note that while decoupling
of normal modes from the bath is a temperature independent feature, the amount of
entanglement generated depends on it via the thermalized degrees of freedom.

The presence of asymptotic entanglement between the external pair of oscillators
in a symmetric chain (independent of the frequency of the central one, but depending
on the temperature and initial squeezing) is illustrated in Fig. 5.2. The minimum
entanglement E0 is plotted both for low (left panel) and high temperatures (right
panel) in the relevant squeezing ranges. Different regions are distinguished in the
map and are labeled following Paz and Roncaglia notation in Ref. [3]: sudden death
is reached (SD), the asymptotic state consisting of an infinite sequence of sudden
death and revivals (SDR) and finally, when non-zero entanglement is present at all
times [no sudden death (NSD)].

An asymptotic entangled state with strictly EN > 0, can be generated both when
r > r+

0 (> 2rc) or equivalently when r < r−
0 (< 2rc) with different origins. In the

first case (r > r+
0 ) the entanglement oscillates between r − r+

0 and r + r−
0 and the

initial squeezing in the natural oscillators is employed as a resource to generate an
entangled state, while the bath contribution r+

0 acts as a source for its degradation.
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Fig. 5.2 Minimum entanglement E0 generated in the asymptotic limit between external oscillators
of the chain in configuration in Fig. 5.1a for low temperatures (left panel) and high temperatures
(right panel). The different phases (SD, SDR and NSD) are bounded by the two critical values r±

0
(separating NSD phase from SDR phase) and −r−

0 (separating SDR from SD) that are represented
by continuous white lines. The dotted line corresponds to 2rc and the dashed colored one to (r+

0 −
r−
0 )/2. We have set ω2 = 1.2ω and λ = 0.6ω2

It is interesting to see that r+
0 is strongly dependent on the bath’s temperature while

the system parameters play a secondary role, only important at low temperatures.
Indeed when temperature increases (T � ω) sudden death of entanglement can be
only avoided by increasing r to be greater than

r+
0 → 1

2
log

(
4λ2Tω

(
c2+
�2+

+ c2−
�2−

))
= 1

2
log(T ) + ct. (5.33)

On the other hand, the amplitude of the oscillations in this case is �E = 2rc, that
has a very weak dependence on temperature, quickly reaching a constant value when
increasing the temperature

�E → 1

4
log

(
ω2

(
c2+
�2+

+ c2−
�2−

)
(c2+ + c2−)−1

)
. (5.34)

The second case (r < r−
0 ) only appears at low temperatures (of order 0.1k−1

B �ω).
Here entanglement oscillates around r−

0 + r with amplitude 2r . This means that
introducing no squeezing in the initial state leads to a constant entanglement at r−

0 ,
while adding squeezing (a resource in the former case) makes entanglement tend
to a SDR phase by widening its oscillatory amplitude. We stress that the fact that
thermalization can lead to entanglement at low temperatures is well known [55].

Finally, we can relate critical values r±
0 with the uncertainty induced by the envi-

ronment in the virtual oscillator ˆ̃q = (q̂1 + q̂3)/
√
2 position and momentum, which

corresponds to the center of mass of the external oscillators of the chain:
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〈 ˆ̃q2〉th = e2r
+
0 /2ω, 〈 ˆ̃p2〉th = ωe−2r−

0 /2 . (5.35)

This reveals that when r−
0 > 0, a squeezing in momentum is generated (� p̃ < ω/2),

yielding entanglement as we have commented above. However, note that we have
never a minimum uncertainty state with r+

0 > r−
0 for all temperatures and physical

regimes of the system parameters. Indeed, the uncertainty relation can be expressed
for the virtual oscillator, ˆ̃q, as

�q̃ � p̃ = er
+
0 −r−

0

2
>

1

2
. (5.36)

The quantity rc can be also related with virtual oscillator uncertainties in position
and momentum as e−rc = � p̃/ω�q̃ < 1.

In the left panel of Fig. 5.2, we can see the two regions in which E0 > 0 (NSD
phases): the big one at the left top corner corresponding to entanglement generation
by using the initial squeezing in the external oscillators as a resource (once r > r+

0 ),
and the small left bottom island, that represents the environment yielding entangle-
ment via the squeezing generated in ˆ̃q when r < r−

0 . The SDR phase is centered
around 2rc (white dotted line) for low temperatures, and their amplitude is given by
the separation of the dashed colored line (r+

0 − r−
0 )/2 from the zero squeezing axis.

For temperatures greater than that for which r−
0 = 0 (cross point between the dot-

ted and dashed lines), they interchange their roles acting now (r+
0 − r−

0 )/2 (dashed
colored line) as the center of the SDR region, and 2rc as the amplitude. The SD
phase is bounded by the quantity r+

0 − 4rc = −r−
0 , corresponding to the case in

which E0 + 2�E < 0, and thus no entanglement is present in the asymptotic limit.
For high temperatures (right panel) we can see how 2rc reaches a constant value
while the pronounced curvature in the SDR region reveals that we can always obtain
robust entanglement by increasing the squeezing parameter r logarithmically with
temperature.

We have to point out that our results resemble those obtained in Ref. [3] for
two resonant harmonic oscillators. There, a similar entanglement phases diagram
has been found, and the same two different mechanism for entanglement generation
appear. In that context, both oscillations and the appearance of the low temperatures
NSD phase were attributed to non-Markovian effects, while here follow by simply
considering a final asymptotic (Gibbsian) state for the normal modes coupled to
the bath (that can be reproduced by a Markovian Lindblad dynamics as is pointed
in Sect. 5.4). Moreover, the presence of a third oscillator in the system, allows for
manipulation of the width of entanglement phases at low temperatures (specially the
low squeezings NSD one) by tuning the free system parameters ω2 and λ.
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5.3.1.2 Two-Modes NS

Let us now consider the case in which two modes become decoupled from the bath.
In particular, we focus on the configuration in Fig. 5.1e. This is indeed a symmetric
open chain configuration as before, but nowwe have a special value of the couplings,
λ = λ̃0, leading to a larger NS. The calculation is similar to the previous one, while
nowonly one of the normalmodes thermalizes, and the other twohave a free evolution
decoupled from the bath. This leads to a less compact expression for the asymptotic
entanglement between the external oscillators of the open chain (more details are
reported in AppendixA.1). Still, a similar phase diagram can be found in this case by
numerical evaluation of logarithmic negativity fromEq. (A.12) in AppendixA.1. Our
results are shown in Fig. 5.3 in the same range of squeezing and temperatures as in the
previous (one mode NS) case. For low temperatures (left panel) the low temperature
low squeezing NSD island of Fig. 5.2, that corresponds to the environment acting
as a resource for entanglement generation, disappears, since the bigger one expands
to low squeezing. Degradation of resources by the environmental action here is
not sufficient to prevent entanglement production even in the non-squeezed (r = 0)
case for T < Tc, since actually the mode ε is also contributing to entanglement
generation. On the other hand, the entanglement phases shows the same structure for
high temperatures (right panel), where the only difference resides in the attenuated
growth for entanglement when r increases (see color bars).

Notice that all the expressions have been calculated in the limit of weak cou-
pling, assuming a final Gibbs state for decohered eigenmodes and free evolution
for nondecohered ones. Of course this situation can only be perturbative, since for
stronger coupling to the bath the eigenmodes become increasingly coupled among
them, through second-order processes mediated by the bath. This necessarily leads
to decoherence of all eigenmodes, at a low rate though.
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Fig. 5.3 Minimum entanglement in the asymptotic limit between external oscillators of the chain in
the two-mode NS configuration in Fig. 5.1e for low temperatures (left panel) and high temperatures
(right panel). The different phases (SD, SDR and NSD) are bounded by the continuous white lines
obtained by numerical evaluation. We have set ω2 = 1.2ω
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5.3.2 Quantum Synchronization

In this section we analyze the dynamics of the system showing the existence of a
parametermanifoldwhere the harmonic oscillators oscillate in phase, synchronously,
in spite of having different natural frequencies. The possibility to have synchroniza-
tion in this system is important for two reasons: (i) this phenomenon has been largely
studied in classical non-linear systems but we show that, for dissipation in a common
bath, it can arise even among harmonic oscillators; (ii) few attempts have been done to
extend it to the quantum regime, and we show here that one can have robust quantum
correlations in a synchronous steady state accompanied by asymptotic entanglement.

In Chap.4, we actually considered the phenomenon of mutual synchronization
extended to the quantum regime, where two coupled harmonic oscillators with differ-
ent frequencies, were studied during their relaxation towards a thermal equilibrium
state. Synchronization was reported in first-order and second-order moments, char-
acterizing the full dynamics for Gaussian states, during a long transient and accom-
panied by the robust preservation of quantum correlations (as measured by quantum
discord) between oscillators. Two oscillators dissipating in a common bath are actu-
ally preserving asymptotically their entanglement and retaining a larger energy than
in the thermal equilibrium state only if they are identical [5]. In this (symmetric) case
they also evolve towards a synchronous asymptotic state.

When three elements are considered, we have shown above that the symmet-
ric chain can reach an asymptotic regime with entanglement between the external
oscillators, independently on the frequency of the central one. Then asymptotic syn-
chronization between the external pair is also expected. Beyond this symmetric case,
more interesting is the possibility offered by a chain to freeze all the oscillators out
of the thermal equilibrium state when their frequencies are all different, as discussed
below.

As we commented previously, the long time dynamics of our system can be
straightforwardly calculated by assuming that normal modes which are coupled to
the bath get thermalized,while uncoupled ones have a free evolution. This is sufficient
to analyze the presence of synchronization in the asymptotic state. Quantum mutual
synchronization appears always in one-mode NSs among natural oscillators linked
by the non-dissipative mode, as long as they have an asymptotic dynamics with
only one oscillatory contribution. Phase or anti-phase synchronization at the non-
dissipating normal frequency is possible in first-ordermoments depending on the sign
of their Fmatrix coefficients [Eq. (5.6)], while only in-phase synchronization occurs
for second-order moments at twice the frequency of first-order ones. Let us illustrate
it in some situations and compare with the time evolution of 〈q2

i 〉 ∀i = 1, 2, 3
(Fig. 5.4) when considering simple Markovian dynamics in the weak coupling limit
(see Sect. 5.4 below).

Consider first the specific case of an open chain with equal couplings and frequen-
cies in the external oscillators [corresponding to situation in Fig. 5.1a]. The form of
the non-dissipative normal mode is Cδ = (1, 0,−1)T /

√
2, and hence synchroniza-

tion will emerge only between external oscillators in anti-phase for position and
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Fig. 5.4 Evolution of position variances for each oscillator in the open chain (see legend) for a con-
figuration in Fig. 5.1a where a one-mode NS is generated (ω = 1.3ω2 , λ = 0.4ω2

2) synchronizing
the external oscillators at 2ω; b configuration in Fig. 5.1c where a different one-mode NS is gener-
ated (ω1 = 1.2ω2 , ω3 = 1.3ω2 , λ = 0.4ω2

2) producing synchronization in all pairs of oscillators
at 2�ε; and c configuration in Fig. 5.1e where a two-mode NS is generated (ω = 1.3ω2 , λ = λ̃0)
and synchronization is lost. Bath parameters for the simulation are in all cases T = 10k−1

B �ω2,
γ0 = 0.07ω2

2 and � = 50ω2

momentum at frequency �δ = ω (the normal mode frequency) and for the second-
ordermoments (necessarily in-phase and at 2ω). The central oscillator instead decays
into the thermal equilibrium state, its initial oscillations being suppressed in the long
time dynamics. This case is shown in Fig. 5.4a, where synchronization appears after a
transient only for the external oscillators of the open chain,while the central oscillator
looses oscillation amplitude.

In the latter case synchronization appears between identical unlinked (λ13) oscilla-
tors in a symmetric chain [Fig. 5.1a]. More peculiar is the case in which all oscillators
have different frequencies and eventually couplings. In the case of Fig. 5.1c, we actu-
ally have that the non-dissipative mode involves all the three oscillators
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Cε = cε(ω
2
3 − ω2

2 , ω2
3 − ω2

2 − λ̃± , λ̃±)T , (5.37)

with �ε =
√

ω2
2 + λ̃±. This can actually give rise to synchronous dynamics of all

the oscillators, in spite of the difference in their natural frequencies. Since one of
the components has different sign than the other two in Cε, two of the oscillators
first moments will synchronize in-phase between them, and in anti-phase with the
third one. In Fig. 5.4b a total synchronization is produced involving all three (differ-
ent) oscillators, consistently with the fact that the non-dissipative normal mode, ε,
involves all three oscillators.

A different situation is produced when we have a two-mode NS, since two oscil-
latory contributions are present in the asymptotic limit of the natural oscillators.
Here synchronization is only possible when the two normal modes frequencies
are the same. An example is the open chain with a two-mode NS [see Fig. 5.1e],
where apart from the previous non-dissipative modeCδ , actually the collective mode

Cε = (1,−2, 1)T /
√
6 with frequency�ε =

√
2ω2

2 − ω2 does not dissipate either. In
this case, synchronization is destroyed by the presence of the mode ε, and it can be
only recovered when �ε equals �δ , i.e. in the trivial case of independent (λ = 0)
identical oscillators (ω2 = ω). Lack of synchronization as well as a multimode oscil-
lation are shown in Fig. 5.4c.

The initial state employed for simulations is a squeezed separable vacuum state,
where the squeezing parameters have been chosen to be different (r1 = 2, r2 = 2.5
and r3 = 3). In general, we have tried to avoid special initial conditions that could
have filtered just one normal mode into the dynamics.What we discussed is therefore
the emergence of synchronization as a dynamical process when considering more
general initial states, leading to robust conclusions.

The scenarios here discussed allow to establish the effect of having a NS with
one or two modes in the configurations of open chains [Fig. 5.1a, e]. The same
analysis can be extended to other cases, where a different normal mode is uncoupled
from the environment. For instance, the configurations in Fig. 5.1c, d, admit only
one non-dissipative normal mode that involves the three oscillators, producing then
a collective synchronization of the chain.

5.4 Thermalization and Robustness of Quantum
Correlations

Creation of NSs is a powerful tool to avoid decoherence and produce synchronized
dynamics as we have seen in the previous sections. However, the conditions leading
to NSs are satisfied only in some parameter manifolds. It is relevant analyze the
effect of deviations from these couplings and frequencies, that could also arise from
the difficulty of experimental tuning. In this case, dissipation is present in all normal
modes, and the effective couplings of Eq. (5.8) are all different from zero. Henceforth
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a thermal equilibrium state is finally reached in all the degrees of freedom in the long
time run of the dynamical evolution.

In absence of NS, entanglement is lost after a finite time. Although the asymptotic
state is simply the Gibbs state, damping dynamics of the normal modes with different
decoherence and relaxation time scales is present, producing a rich behavior in which
synchronization or high quantum correlations may emerge during a large transient
before the final thermalization of the system. These effects have been reported in
Chap.4 in the case of two harmonic oscillators, where disparate decay rates between
the two normal modes is produced for small deviations from the resonant case.

A dynamical description of the system weakly interacting with the environment
reveals the central influence of the effective couplings in the relaxation time scales of
the different normal modes. By using the general Born and Markov approximations
as well as an initial product state we may easily obtain a Markovian master equation
for the reduced density matrix of the open system in the normal modes basis (see
Sect. 2.4). The resulting equation is not of the Lindblad form, thus complete positivity
(CP) is not guaranteed [56]. This issue can be solved in two different ways, either
considering a rotating wave approximation (RWA)

x̂i x̂ j → âi â
†
j + â†i â j , (5.38)

in the interaction Hamiltonian (5.4), or performing a strong-type RWA in the
non-Lindbladian master equation by eliminating oscillatory terms of the form
exp(±i(�i ± � j )t) that appear in the interaction picture. The latter is the onewewill
pursue. The advantages of this method not only reside in obtaining a master equa-
tion in Lindblad form (thus CP), but also in that dynamical evolution can be solved
analytically. However, an exhaustive analysis in the case of two harmonic oscillators
shows a very well agreement between results using the original non-Lindbladian
master equation and the strong RWA here used (see AppendixA.2 in Chap.4). The
Markovian master equation for the evolution of the reduced density matrix for a
common bath in the strong RWA is then

dρ(t)

dt
= − i

�
[ĤS, ρ(t)]

− 1

4�2

3∑

n=1

i�n

(
[Q̂n, {P̂n, ρ(t)}] − [P̂n, {Q̂n, ρ(t)}]

)

+ Dn

(
[Q̂n, [Q̂n, ρ(t)]] − 1

�2
n

[P̂n, [P̂n, ρ(t)]]
)

. (5.39)

Here �n and Dn are constant coefficients (by virtue of the Markov approximation)
accounting for the damping and diffusion effects respectively. Note that under this
approximation, each normal mode is dissipating separately to the bath, i.e. they have
independent decay rates. The bath has been considered to be in thermal equilibrium
at temperature T , and to be composed by a continuum of frequencies character-
ized by a spectral density J (�) ≡ ∑

α δ(� − �̃α)λ2
α/�̃α . For simplicity it has been
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considered to be Ohmic with a sharp cutoff J (�) = 2γ0
π

� �(� − �), where �(x)
is the Heaviside step function, � is the largest frequency present in the environ-
ment (cutoff frequency) and γ0 is a constant quantifying the strength of system-
environment interaction (thus in the weak-coupling limit we have always γ0 � �i

∀i = 1, 2, 3). This assumptions leads to the following definitions of the master equa-
tion coefficients

�n = κ2
n

�π

2

J (�n)

�n
= �γ0 κ2

n , (5.40)

Dn = κ2
n

�π

2�
J (�n) coth

(
��n

2kBT

)
= �γ0 κ2

n�n coth

(
��n

2kBT

)
,

where we also assume �i < � ∀i = 1, 2, 3. The equations governing the second-
order moments of the normal modes from the master equation (5.39) are reported in
AppendixA.2.

In this context, the ratio between the two smallest decay rates, defined as

R ≡ �0

�1
= κ2

0

κ2
1

, (5.41)

provides important information about the dynamics of the system. This is in fact
one of the central figures (but not the only one) in order to predict the robustness of
correlations between oscillators or the emergence of synchronization as we will see
in the following. In presence of disparate decay rates (R << 1), a large time interval
appears between thermalization of the two modes with largest damping coefficients
(strongly-damped modes) and thermalization of the mode with the smallest one
(weakly-damped mode). This produces the emergence, after a transient, of a long
interval in which the weakly-damped mode is effectively the only one present in the
dynamics, hence producing the synchronization between pairs of oscillators linked
by this normal mode, and the slow decay of quantum discord between these pairs.
On the other hand, when the decay rates are similar (R ∼ 1), the different modes
are present for all times inhibiting synchronization, and the survival of correlations
associated to one of the modes for long times is lost. These phenomena will be next
exemplified in the scenario of an open chain with equal couplings (λ12 = λ23 ≡ λ).

In Fig. 5.5we represent R showing broad regions inwhich aweakly-dampedmode
exists (white regions) near the NSs manifolds corresponding to the configurations in
Fig. 5.1a (dashed line), c (dashed-dotted hyperbola), e (the crossing point). Out of
these regions, there is no separation of scales for the decay rates (blue regions), and
all rates become progressively similar. We point out that the blue region wrapping
the diagonal in Fig. 5.5, acts as boundary for the two white ones, since a different
mode (with radically different shape) is weakly-damped in each white region. The
coupling λ is related to the position of the dashed-dotted hyperbola by Eq. (5.25) and
the width of white regions, making them broader as λ increases, and tighter when it
decreases.
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Fig. 5.5 Map of R in Eq. (5.41) for λ = 0.4ω2
2 as a function of the open chain frequencies. Dashed

and dashed-dotted lines represent the non-dissipative parameters manifolds of Fig. 5.1a, c, respec-
tively. The right panel is a zoom of the vicinities of the two-mode NS cross point in the left panel

5.4.1 Quantum Correlations

Even if out of theNS conditions entanglement suffers a sudden death, other indicators
such as quantum discord can remain robust in regions with disparate decay rates
(R << 1) (as in the case of two detuned oscillators in Chap.4). By using an adapted
measure of discord for Gaussian bipartite states [57, 58] (see Sect. 1.4.3 in Chap.1),
we observe the existence of a plateau in the dynamical evolution of discord between
single pairs of oscillators, which are linked by aweakly-damped normal mode. More
precisely, in the white region of Fig. 5.5, close to the dashed-dotted hyperbola, the
weakly-damped mode links the three natural oscillators, producing a plateau in the
evolution of discord for all pairs. Moving to the tighter white region, close to the
dashed diagonal line, theweakly-damped mode only involves the external oscillators
pair of the open chain, leading to a slowly decaying discord only for this pair of
oscillators. On the contrary, in blue regions, no plateau is observed for discord,
reaching in shorter times the value corresponding to the thermal equilibrium state
for each pair of oscillators.2

Figure5.6 shows time evolution of discord in logarithmic scale for the three pairs
of oscillators (see colors) for a selection of parameters close and far away from the
dashed-dotted hyperbola [Fig. 5.6a, b respectively]. The initial condition has been
taken to be a squeezed separable vacuum state with same squeezing parameters as in
Fig. 5.4 and will be kept for further simulations. A Gaussian filter has been employed
to eliminate fast oscillations (original quantities are plotted in gray), in order to make
it easier to identify the plateau characterizing discord robustness, as in Chap.4.

As already seen for asymptotic entanglement, the effect of increasing the bath’s
temperature is, in general, a degradation of quantum effects. It is therefore important
to see how robustness of discord is a feature also present in hotter environments.
The main effect when increasing T is that the final thermal state displays lower

2Notice that quantum discord between pairs of oscillators in a global Gibbs state is non-zero due
to the coupling between them.



220 5 Noiseless Subsystems and Synchronization

0 50 100 150 200 250 300
ω2t

10−6
10−5
10−4
10−3
10−2
10−1
100

δ i
j

(a)

i, j = 1, 2
i, j = 2, 3
i, j = 1, 3

0 50 100 150 200 250 300
ω2t

10−6
10−5
10−4
10−3
10−2
10−1
100

δ i
j

(b)

i, j = 1, 2
i, j = 2, 3
i, j = 1, 3

Fig. 5.6 Time evolution of discord between pairs of oscillators for the three pairs in the open
chain (see legend) in two different regions of Fig. 5.5. We set λ = 0.4ω2

2, ω3 = 1.6ω2 and change
ω1. a Near the dashed-dotted hyperbola (ω1 = 1.1ω2) and b far away from it (ω1 = 1.9ω2). The
exact time evolutions are shown in grey while the thick color lines (solid, dashed and dashed-
dotted) represent the filtered ones (see text). Bath parameters for the simulations are T = 10k−1

B �ω2,
γ0 = 0.07ω2

2 and cutoff frequency � = 50ω2

correlations, implying that the amount of discord that can be maintained in a robust
way diminishes. In Fig. 5.7 we show the evolution of discord for a pair of linked
oscillators (1, 2) when T is increased by factors 3 and 6 [the other parameters are
as in Fig. 5.6a]. While the plateau is present for all temperatures and their (negative)
slope is very similar, a lower amount of discord is now generated in the short initial
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Fig. 5.7 Time evolution of discord for a pair of linked oscillators (1, 2) of the open chain for
different bath temperatures (see legend). We have set λ = 0.4ω2

2,ω3 = 1.6ω2 and ω1 = 1.1ω2. The
rest of bath parameters has been kept γ0 = 0.07ω2

2 and � = 50ω2
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transient, producing a shift of the curves to lower values (notice that oscillations
are increased by the logarithmic scale of the plot). This degradation by temperature
effects can be avoided by increasing the squeezing in the initial separable vacuum
state, similarly to the case of entanglement presented in Sect. 5.3.1.

5.4.2 Synchronous Thermalization

With respect to the emergence of synchronization for pairs of oscillators when the
NS is lost, we have to point out that, when thermalizing, the system reaches a sta-
tionary state where oscillations are suppressed. We therefore restrict our analysis to
a transient (which becomes longer the more we approach one of the NS conditions)
where oscillations in the first-order and second-order moments are still present in the
dynamics. In this situation synchronization of first-order and second-order moments
can be estimated quantitatively by using the Pearson indicator C introduced in the
previous chapter [Eq.4.13]. When evolutions are phase or anti-phase synchronized
we will obtain |C | ∼ 1, while for very different dynamics we will obtain a value of
C near to zero.

Figure5.8 shows the synchronization indicator C〈q2
i 〉,〈q2

j 〉 with position variances

of (a) the external pair of oscillators i, j = 1, 3 and (b) for i, j = 1, 2 of the open
chain with identical couplings and varying the external oscillators frequencies (in
the same range as in Fig. 5.5). We see immediately the high resemblance with the R
map of Fig. 5.5 and some interesting differences induced by the shape of the normal
modes. Effectively the external pair of oscillators (1, 3) synchronizes (C ∼ 1) in all
regions where disparate decay rates (R � 1) are predicted since these two oscillators
are linked by theweakly-damped normal mode in these regions [Fig. 5.8a]. As for the

Fig. 5.8 Absolute value of the synchronization indicator |C(t,�t)| for position variances (〈q̂2i 〉) for
a the external pair of oscillators (1, 3), and b a linked pair (1, 2). The synchronization factor is plotted
at time t = min{tmax, �

−1
0 } where tmax = 5000ω−1

2 (the maximum time used in the simulations) in
order to obtain a map in which oscillations were not yet suppressed. We have used �t = 15ω−1

2
and the same bath parameters as in former figures
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internal pair (1, 2), it does depend on theweakly-damped mode in the vicinities of the
dashed-dotted hyperbola where synchronization is actually found. On the other hand,
near the diagonal the weakly-damped mode approximates to Cδ = (1, 0,−1)/

√
2,

excluding the central oscillator from the induced collective motion. Consistently, the
(1, 2) pair [Fig. 5.8b] does not synchronize for ω1 ∼ ω2 (near the diagonal).

We finally point out that, as expected, the synchronization frequency is that of the
weakly-damped mode, �0, for the first-order moments (position and momenta), and
2�0 for the second-order momenta.

5.5 Conclusions

Decoherence in an open quantum system can be avoided or reduced by tuning the
system parameters in a common environment context. The shape of the interaction
Hamiltonian between system and bath can be used in order to engineer the protection
of some degrees of freedom from the environmental action. In this chapter we solved
the case of three coupled harmonic oscillators in contact with a bosonic bath in
thermal equilibrium, developing the necessary general relations so as to obtain a NS
composed by one or two non-dissipative normal modes.

Different open and close chain configurations have been explored, highlighting
the richer variety of NS configurations available when the dissipative system is
extended from two to three harmonic oscillators. For a symmetric open chain with
equal frequencies of the external pair of oscillators and same coupling, a closed
analytical expression for the asymptotic entanglement between the external pair (as
given by the logarithmic negativity) has been derived observing the appearance of
three different phases depending on temperature and squeezing of the initial state
(sudden death of entanglement, a infinite series of sudden death events and revivals
and asymptotic robust entanglement). Sudden death of entanglement can be avoided
for arbitrarily high bath temperatures by increasing the squeezing in the initial state
for both cases of one-mode or two-mode NS. Remarkably this critical squeezing
in order to avoid sudden death depends logarithmically on temperature. Asymptotic
robust entanglement is also reached for a small region of parameters corresponding to
low temperatures of the bath (T ∼ 0.1kB�ω) even in the absence of initial squeezing.
This small island of asymptotic entanglement has been previously reported in the
case of two identical oscillators [3] where it has been attributed to non-Markovian
dynamical effects. From our analysis it becomes clear that this is not the case, being
just produced by the thermalization in a subspace of the system. On the other hand,
multipartite entanglement in the strong local dissipation regime for the open chain
configuration has been recently explored in Ref. [59].

Other dynamical effects such as the emergence of synchronization of mean val-
ues and variances have been analyzed in different situations by simply assuming
relaxation to a thermal equilibrium state of the normal modes coupled to the envi-
ronment. Coherent oscillations appear when only a surviving normal mode is present
in the dynamics, inducing synchronization in the natural oscillators that depend on it.
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Interestingly, the parameter manifold leading to NSs include several not symmetric
configurations: for instance an hyperbolic relation among frequencies can be satisfied
for identical couplings in an open chain; in this case both asymptotic entanglement
and synchronization are predicted even if all the oscillators natural frequencies are
different, a possibility offered by a chain of three oscillators and absent in the case
of two.

Furthermore an analysis of situations in which the NS conditions are not accom-
plished at all has been performed. Indeed, important properties can be present
although, when deviating fromNS conditions, entanglement does not survive: robust
conservation of discord during a long transient dynamics and the emergence of syn-
chronous oscillations are found before thermalization. These effects are interpreted
in relation to disparate decay rates for the normalmodes, clarifying and extending our
previous results for the case of two dissipative oscillators in Chap. 4. As long as there
is a weakly-damped mode surviving among several strongly-damped modes, effects
such as robust discord and synchronization arise among the oscillators following this
normal mode. On the other hand, if this separation of damping time scales for the
normal modes does not exists, synchronization is lost and any initial discord quickly
decays to its asymptotic (small) thermal equilibrium value.

Our results for the system of three oscillators in presence of common dissipa-
tion may be implemented with ions in linear Paul traps by following the proposal in
Ref. [60]. Experimental realization of coupled harmonic oscillators appear in opti-
cal [61, 62] and superconducting [63, 64] cavities as well as trapped ions [65, 66]
or nanoelectromechanical resonators [67]. Three coupled elements architectures are
also known to allow for isochronous synchronization of semiconductor lasers with
delayed coupling or neuronal models [68]. While in this chapter we have focused
in specific cases of three oscillator configurations (in which calculations are greatly
simplified) the strategy provided here is rather general and applies straightforwardly
to other choices of system parameters that produce the decoupling of one or several
normal modes from the environment. The methods presented here may be extended
to more complicated systems such as disordered harmonic lattices or complex net-
works. This opens the possibility of an engineering of the normal modes of complex
quantum many-body systems in order to induce noiseless subsystems for its use e.g.
in quantum information or quantum computational tasks. The case of arbitrary com-
plex networks of dissipative harmonic oscillators is analyzed in Chap.6, where a
wide range of possibilities are shown, including different forms of dissipation taking
place across the system, selective protection against decoherence and dissipation of
clusters of oscillators in the network, or the induction of synchronized states in the
whole network to a common frequency by tuning a single parameter.
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Appendix

A.1 Analytical Derivation of Asymptotic Entanglement

As we pointed in Sect. 1.4.1, all the information about bipartite quantum correlations
for aGaussian continuous-variable state is condensed in its covariancematrix defined
through the ten second-order moments of q̂(A,B) and p̂(A,B) (in our case first-order
moments are initially zero). This bipartite covariance matrix defined for a system of
two oscillators A and B, can be written as

VAB =
(

α γ

γ t β

)
, (A.1)

where α, β and γ are (2 × 2) blocks: α(β) contains the second-order moments of
oscillator subsystem A (B), and γ contains correlations of both subsystems. The
minimum symplectic eigenvalue (of the covariance matrix corresponding to the par-
tially transposed density matrix), necessary to calculate the logarithmic negativity,
is given by

ν− =
√
1

2
(a + b − 2g −

√
(a + b − 2g)2 − 4s), (A.2)

with a = 4 det(α)/�
2, b = 4 det(β)/�

2, g = 4 det(γ )/�
2 and s = 16 det VAB/�

4.
Normalmodes coupled to the environmentwill reach in the asymptotic limit a thermal
state, given by the Gibbs distribution. For a normal mode (k), that is

ρ
(k)
th = e− Ĥk

kB T

Tr[e− Ĥk
kB T ]

, (A.3)

with Ĥk = 1
2

(
P̂2
k + �2

k Q̂
2
k

)
, yielding the second-order moments

〈Q̂2
k〉th = �

2�k
coth

(
��k

2kBT

)
,

〈P̂2
k 〉th = ��k

2
coth

(
��k

2kBT

)
, (A.4)

where �k is the corresponding frequency of the normal mode, and T the reservoir
temperature. On the other hand, the uncoupled modes evolve freely. This means that
the asymptotic covariance matrix can be calculated by expressing all second-order
moments of natural oscillators in terms of the normal modes, and then substituting
the asymptotic expressions corresponding to free modes or thermalized ones.

The covariance matrix in the asymptotic limit can be separated into three parts
corresponding to the contributions of each normal mode, which we call Vi , for
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i = 1, 2, 3. In terms of the blocks we have

α =
3∑

i=1

F2
Ai Vi , β =

2∑

i=1

F2
Bi Vi , γ = γ T =

2∑

i=1

FAiFBi Vi , (A.5)

where Vi can correspond either to a non-dissipative, or to a dissipative mode. For a
non-dissipative normal mode, say n, we have:

Vno−diss =
(

〈Q̂2
n〉 〈{Q̂n ,P̂n}〉

2
〈{Q̂n ,P̂n}〉

2 〈P̂2
n 〉

)
, (A.6)

and for a dissipative one, say k, we get

Vdiss =
( 〈Q̂2

k〉th 0
0 〈P̂2

k 〉th
)

. (A.7)

While elements in Vdiss are given by the expressions (A.4), those of Vno−diss are the
ones corresponding to a free evolution of an harmonic oscillator. This analysis gives
all the necessary elements in order to calculate the asymptotic entanglement for pairs
of oscillators in every particular situation, in which one or two of the normal modes
are uncoupled from the environmental action.

A.1.1 One-Mode NS

Consider the specific case of an open chain (λ13 = 0) in which we have two equal
frequencies (ω1 = ω3 ≡ ω) and two equal couplings (λ12 = λ23 ≡ λ �= 0) [Fig. 5.1a
in Sect. 5.3]. In this case we get only one normal mode decoupled from the bath. In
order to calculate the expression of the minimum symplectic eigenvalue, we have to
first calculate the elements of the three normal modes, that are shown here as vector
columns

Cδ = 1√
2

⎛

⎝
1
0

−1

⎞

⎠ , C± = c±

⎛

⎝
λ

�2± − ω2

λ

⎞

⎠ .

Here we have labeled the non-dissipative mode as δ and the other two modes as

{±}. Their corresponding frequencies are�δ = ω and�± =
√

(ω2
2 + ω2)/2 ± √

�,

defining � ≡ (
ω2
2−ω2

2 )2 + 2λ2, and c± being nothing but a normalization constant.
We can now obtain all the terms appearing in V±.

The initial condition given in Eq. (5.27), can be now rewritten in terms of the
non-dissipative normal mode as
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〈Q̂2
δ (0)〉 = �

2ω
e−2r , 〈P̂2

δ (0)〉 = �ω

2
e2r , 〈{Q̂δ, P̂δ}(0)〉 = 0,

and then their free evolution is given by

〈Q2
δ〉 = �

2ω
(e2r sin2(ωt) + e−2r cos2(ωt)),

〈P2
δ 〉 = �ω

2
(e−2r sin2(ωt) + e2r cos2(ωt)),

〈{Qδ, Pδ}〉 = 2� sinh(2r) cos(ωt) sin(ωt), (A.8)

where we have already used that �δ = ω. By substituting the above expressions in
Vno−diss [Eq. (A.6)] we can now obtain the expressions of the determinants a, b, g
and s. This yields for the minimum symplectic eigenvalue [Eq. (A.2)]:

ν−(t)2

2λ2
= G0 + G1 cos(2ωt) −

√
(G0 + G1 cos(2ωt))

2 − 4σPσQ, (A.9)

which is an oscillatory function with frequency 2ω. Here

G0 = (σQ + σP) cosh(2r), G1 = (σQ − σP) sinh(2r),

and the dependence on the bath temperature and on the shape of the dissipative
normal modes is given by

σP = �+
2ω

c2+ coth

(
�+
2T

)
+ �−

2ω
c2− coth

(
�−
2T

)
,

σQ = ω

2�+
c2+ coth

(
�+
2T

)
+ ω

2�−
c2− coth

(
�−
2T

)
. (A.10)

From Eq. (A.9), we can obtain the minimum entanglement (obtained for t = (2n +
1) π

2ω ; n = 1, 2, 3, . . .) and the maximum one (for t = (n + 1) π
ω
; n = 1, 2, 3, . . .)

in order to recover Eq. (5.29) with the proper definitions specified there.

A.1.2 Two-Mode NS

On the other hand, if we move to situation represented in Fig. 5.1e of Sect. 5.3 by
fixing λ = λ̃0 [see Eq. (5.25)], we have that the normal modes transform into

Cδ = 1√
2

⎛

⎝
1
0

−1

⎞

⎠ , Cε = 1√
6

⎛

⎝
1

−2
1

⎞

⎠ , Cc.m. = 1√
3

⎛

⎝
1
1
1

⎞

⎠ ,
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being the center of mass, Cc.m., the only dissipative mode. Their corresponding
frequencies are respectively

�δ = ω, �ε =
√
2ω2

2 − ω2, �c.m. =
√
2ω2 − ω2

2. (A.11)

Naturally, we have to restrict ourselves to the regime 2ω2
3 > ω > ω2

3/2 in order for
these quantities to be real and positive.

Keeping the same initial condition as in the previous case, we have that nothing
changes in the expression of the free evolution of mode δ [Eq. (A.8)], while the free
evolution of mode ε is given by

〈Q̂2
ε〉 = 2ω2 + ω

6�2
ε

�e2r sin2(�εt) + 2ω + ω2

6ωω2
�e−2r cos2(�εt),

〈P̂2
ε 〉 = 2ω + ω2�

2
ε

6ωω2
�e−2r sin2(�εt) + 2ω2 + ω

6
�e2r cos2(�εt),

〈{Q̂ε, P̂ε}〉 =
(
2ω2 + ω

3�ε

e2r − (2ω + ω2)�ε

3ωω2
e−2r

)
×

× � cos(�εt) sin(�εt).

We have assumed the same squeezing parameter r in the central oscillator of the
chain (notice that in the previous case the initial state of the central oscillator is not
relevant and then we did not specify it). Following the same procedure as above, we
calculate the expression for the minimum symplectic eigenvalue. It is worth noticing
that in this case we have two contributions to the determinants of the free type Vno−diss

[Eq. (A.6)], corresponding to the two non dissipative modes, and a single dissipative
one Vdiss [Eq. (A.7)], corresponding to the center of mass mode.

The minimum symplectic eigenvalue yields:

2ν−(t)2 = A0 + A1(t) −
√

(A0 + A1(t))
2 − B0 − B1(t) (A.12)

where we have defined the following quantities in order to simplify the expression.
The constant terms

A0 ≡ cosh(2r)
(
4(σQ + σP) + J+(�2

ε + ω2)
)
,

B0 ≡ 64σPσQ + 4(ω + ω2)
2

81ωω2
+ 32�εωJ+

3

(
ωσP

�ε

+ �εσQ

ω

)
,

and the oscillating terms
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A1(t) ≡ 4 cos(2ωt) sinh(2r)(σQ − σP)

+ J+ cos(2ωt) sinh(2r)(�2
ε + ω2)

+ J− cos(2�εt) cosh(2r)(�
2
ε − ω2)

− J− cos(2(�ε − ω)t) sinh(2r)
(�ε + ω)2

2

− J− cos(2(�ε + ω)t) sinh(2r)
(�ε − ω)2

2
,

B1(t) ≡ cos(2�εt)
32�εωJ+

3

(
�εσQ

ω
− ωσP

�ε

)
,

where different frequencies coming from the two non-dissipative modes are present.

We have used J± ≡ 1
12ω

(
e2r 2ω2+ω

�2
ε

± e−2r 2ω+ω2
ωω2

)
and the two bath-dependent func-

tions are now given by the contribution of the c.m. mode:

σP = �c.m.

6ω
coth

(
��c.m.

2kBT

)
,

σQ = ω

6�c.m.

coth

(
��c.m.

2kBT

)
. (A.13)

A.2 Equations of Motion for the Second-Order Moments

Aswe are interested in classical and quantum correlations of the system oscillators, a
description for the evolution of thefirst-order and second-ordermoments is necessary.
The equations of motion for position, momenta, and the variances can be obtained
from the Markovian master equation governing the dissipative dynamics, (5.39).
In analogy to the case of two oscillators (Chap.4) they can be indeed written in a
simple form as Ṙ = MR + N, whereR is a column vector, now containing the M =
(2N + 1)N for N = 3 independent second-order moments of the normal modes.
The matrixM condenses all the information about their dynamical evolution and N
determines the stationary values for long times (when Ṙ = 0). The dynamics of R
can be solved in terms of the eigenvalues of M:

{μi j } = {−�i + � j

2
± i

∣∣�i ± � j

∣∣}, i ≤ j (A.14)

where the i = j eigenvalues determine the evolution of 〈Q̂2
i 〉, 〈P̂2

i 〉 and 〈{Q̂i , P̂i }〉,
while the oneswith i �= j determine that of 〈Q̂i Q̂ j 〉, 〈P̂i P̂j 〉 and 〈{Q̂i , P̂j }〉. Note that
by virtue of Eqs. (5.40) and (A.14) the decay of the normalmodes is entirely governed
by the effective couplings mentioned above, thus differences in their magnitude
produce disparate temporal scales for the dissipation and diffusion of normal modes.
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We further stress that the stationary state of the dynamics is found to be (R∞ =
M−1N):

〈Q̂2
i 〉∞ = Di

2�i�
2
i

= �

2�i
coth

(
�i

2kBT

)
,

〈P̂2
i 〉∞ = Di

2�i
= ��i

2
coth

(
�i

2kBT

)
,

being all the other second-order moments equal to zero. Note that these expressions
for the asymptotic limit recover the thermal state of the system at the bath temperature
T given by the Gibbs distribution in Eq. (A.4).
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Chapter 6
Dissipative Complex Quantum Networks

Most of the classical literature about synchronization phenomena in networks deals
with self-sustained phase oscillators in Kuramoto-type models, or with identical
nonlinear oscillators studied through the master stability formalism [1]. We instead
continue focusing on synchronization during the relaxation dynamics of different
linear oscillators driven out of equilibrium and exploring the key role of dissipation.
A first step to characterize quantum spontaneous synchronization, considering quan-
tum fluctuations and correlations beyond the classical limit, has been considered
in Chap.4 where synchronization between one pair of damped quantum harmonic
oscillators has been reported. We have already seen that, depending on the damping,
a pair of oscillators with different frequencies can exhibit synchronous evolution
emerging after a transient, as well as robust (slowly decaying) non-classical corre-
lations [2]. This connection has been extended in Chap.5, where we showed that
synchronization may occur between three oscillators or in a single pair depending
on the symmetries of the system [3], discussing both transient and relaxation effects.

In this chapter we extend our analysis to the dynamical properties of arbitrary
networks of quantum harmonic oscillators dissipating into the environment.1 In par-
ticular, we focus in the spontaneous synchronization phenomena occurring in the
network and the possibility of preserving or even generating quantum correlations
between some of its components by engineering of its normal modes. This is a rele-
vant feature, as long as a first approximation to a great variety of controllable quantum
systems, such as electromagnetic modes [5–7], trapped ions [8, 9] or nanoelectrome-
chanical resonators [10], is given by a set of coupled quantum harmonic oscillators,
susceptible to experience spontaneous synchronization. Moreover, beyond physical
systems, there is an increasing awareness that quantum phenomena might play an
important role in terms of efficiency of biological processes [11–14].

As we pointed in Sect. 2.4, the form in which dissipation occurs in a spatially
extended system has deep consequences. We stress that the importance of symme-
tries present in the system-bath coupling has been recognized in many contexts. In

1The results presented in this chapter have been published in Ref. [4].
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classical systems, this fundamental issue was already discussed in the seminal work
of Lord Rayleigh analyzing damping effects on normal modes in vibrating systems
[15]. Indeed, the role of dissipation to reduce detrimental effects of vibrations is
fundamental in many areas of mechanical, civil and aerospace engineering [16, 17].
On the other hand, in the context of quantum systems, symmetries in the coupling
between qubits and the environment allow for decoherence-free subspaces [18],
entangled states preparation [19, 20] and dissipative quantum computing [21, 22].
When several dissipative quantum oscillators coupled in a network are considered
dissipation can act globally or locally (in a node) and, depending on the correla-
tion length in the bath with respect to the size of the system, a variety of surprising
phenomena are observed.

In the following sections, we show that the distribution and form of losses through
the network amounts to synchronous dynamics in spite of the nodes diversity, wit-
nessing the presence of robust quantum correlations asmeasured by quantum discord
and entanglement (see Sects. 1.4.1 and 1.4.3). More importantly, we find that syn-
chronization can actually be induced by local tuning of one (even newly attached)
oscillator of a generic (regular or random) network and derive precise conditions
for its emergence in both the whole network or in an arbitrary part of it. Stemming
both from the structure of the system and from the form of system-bath coupling we
further show the possibility to tune the system to configurations in which nodes do
not thermalize and relax into a synchronous and non-classical asymptotic state.

The chapter is organized as follows. In Sect. 6.1 we present our approach for mod-
eling dissipative networks of quantum harmonic oscillators, discussing the charac-
terization of synchronization phenomena occurring on it.We then consider the possi-
bility of collective synchronization of all the oscillators in the network by tuning one
of them in Sect. 6.2. In Sect. 6.3 we instead characterize the conditions for obtaining
synchronization only in a cluster of nodes embedded in the network. Furthermore,
we show in Sect. 6.4 how steady entanglement can be generated between unlinked
nodes by properly coupling them to a network. We finalize in Sect. 6.5 by presenting
our general conclusions and discussing the implications of our results. Some further
details can be found in Appendix.

6.1 Dissipation Mechanisms and Synchronization

We consider generic networks of N non-resonant, coupled quantum harmonic oscil-
lators, given by the Hamiltonian

ĤS = 1

2

(
pT1p + qTHq

)
(6.1)

where qT = (q̂1, . . . , q̂N ) is the vector of canonical position operators and p are
momenta, satisfying [q̂j, p̂k ] = i�δjk 1̂, and Hm,n = ω2

mδmn + λmn(1 − δmn) is the
matrix containing the topological properties of the network (frequencies ωm and
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couplings λmn). The eigenmodes (or normal modes) of the system, Q, result from
diagonalization of this Hamiltonian through the transformation matrix F, this is,
Q = FTq, which defines the diagonal matrix Ω = FTHF containing the (squared)
normal modes frequencies.

Any realistic model of the network needs to include also environment effects
[23–25] and different forms of dissipation can be envisaged for an extended net-
work. For example we may consider that all units dissipate into separate identical
baths (SB), Fig. 6.1a, as early decoherence models of quantum registers [26] or cav-
ity optical modes [23, 25]. Otherwise, we may assume that all the nodes feel a
“similar” dissipation (see Sect. 2.4). This common bath (CB) scenario, Fig. 6.1b, is
known to create decoherence-free subspaces [18], noiseless subsystems [27, 28],
and asymptotic entanglement [29–34], as we have analyzed in detail for a system of
three harmonic oscillators in Chap.5. A third, limiting, case of a local bath (LB) in
which a specific oscillator d dissipates much faster than any other node [Fig. 6.1b]
is also considered here.

In a microscopic description with independent oscillators modeling the environ-
ment, the system-bath interaction Hamiltonian for SB takes the form

Ĥ SB
I = −γ0

N∑

m=1

q̂mB̂
(m) , with B̂(m) =

∞∑

α=1

λαX̂
(m)
α , (6.2)

being γ0 the system-bath coupling strength (explicitly shown for the ease of under-
standing), X̂ (m)

α the position operators for each environment oscillatorα (representing
for instance a vibrational mode, or an optical one, etc…) of the bath B̂(m) in which
the network unit (m) is dissipating. As mentioned before, this situation occurs when
the coherence length of the environment is smaller than the spatial extension of the

Fig. 6.1 aNetwork of oscillators (represented by the network nodes) dissipating into separate baths
(SB, represented by the gray circles surrounding the nodes). Links, representing couplings, have
different strengths (lines thickness) and nodes have different natural frequencies (corresponding to
different colors as given in the color bar). b Network of oscillators dissipating into a common bath
(CB). c Network of oscillators with dissipation restricted to one node, local bath (LB)
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system. In the opposite case, a common bath is seen by all oscillators, resulting in
an interaction Hamiltonian

ĤCB
I = −γ0

N∑

m=1

q̂mB̂, (6.3)

and actually involving only the average position (here the center of mass) of the
network, Fig. 6.1b. Notice that in the normal modes basis

ĤCB
I = −γ0

∑

m

κmQ̂mB̂ , with κm =
∑

n

Fnm. (6.4)

The effective couplings κm are different and determined by characteristics of the
network such as topology, coupling strengths, and frequencies, encoded in the diag-
onalization matrix F. This is in stark contrast to the case of identical SB (6.2) where
all normal modes have equal effective couplings to the baths. To see this, notice that
we can transform the bath operators X̂ (m)

α to a new basis which exactly cancels the
transformation F; these new “oscillators” can be shown to have the same statistical
properties as the others, thus resulting in equivalent heat baths. Finally, the case of a
given node d dissipating much faster than any other is modeled by

Ĥ LB
I = −γ0q̂d B̂. (6.5)

This local bath (LB) situation does also lead to non-uniform environment interaction
in some of the normal modes with effective couplings κm:

Ĥ LB
I = −γ0

∑

m

κmQ̂mB̂ , with κm = Fdm. (6.6)

One of the key insights of our work comes from noting that the coupling of real
oscillators to the bath (taken here to be equal, γ0) differs from those of eigenmodes.
The latter are found to be γ0κm (with κCB

m = ∑
n Fnm, κSB

m = 1 and κLB
m = Fdm) mean-

ing that, except the SB situation, the eigenmodes have different decay rates. Then for
CB and LB only the least dissipative eigenmode will survive to thermalization, thus
governing the motion of all oscillators overlapping with it. It is then useful identify-
ing the less dissipating normal mode with smallest effective coupling, κσ , and also
the next one, κη, such that |κσ | ≤ |κη|.

A standard procedure allows us to obtain the evolution of the reduced density
matrix for the state of the system, this is, the network of different oscillators (see
Sect. 2.4). After a (post-trace) rotating wave approximation, the master equations in
the weak coupling limit for separate, common, and local baths are in the Lindblad
form, guarantying a well-behaved system dynamics. These equations are obtained
by generalization of the problem of two and three dissipative coupled oscillators
addressed in Chaps. 4 and 5. For the purpose of our analysis it is interesting to
consider the master equation in the normal modes basis
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dρ(t)

dt
= − i

�
[ĤS , ρ(t)]

− 1

4�2

∑

n

iΓn

(
[Q̂n, {P̂n, ρ(t)}] − [P̂n, {Q̂n, ρ(t)}]

)

+ Dn

(
[Q̂n, [Q̂n, ρ(t)]] − 1

Ω2
n

[P̂n, [P̂n, ρ(t)]]
)

(6.7)

where Ωn are the normal modes frequencies of ĤS . The damping and diffusion
coefficients read

Γn = κ2
n�γ0, Dn = κ2

n�γ0Ωn coth

(
�Ωn

2kBT

)
, (6.8)

for an Ohmic bath at temperature T with spectral density J (ω) = (2γ0/π)ω�(� −
ω), �(x) being the Heaviside step function, � � Ωn ∀n the frequency cutoff, and
κn the effective couplings [see Eqs. (6.4) and (6.6)]. With the appropriate definition
of the couplings, this equation is valid both for common and local bath, while for
SB we have: Γn = γ0 and Dn = γ0Ωn coth(

Ωn
2T ) i.e. we obtain the same damping

coefficient for all normal modes. The main differences between our three models of
dissipation reside in these expressions for the master equation coefficients that will
produce different friction terms in the equations of motion, determining collective or
individuals behaviors (the complete set of equations of motion is given in Appendix).
We stress that the choice of this master-equation representation is not critical for our
main conclusions, as in the case of two oscillators (see Appendix A.2 in Chap.4).

Knowledge of the normal modes of a complex network and of their dissipation
rates (or effective couplings) allows to fully characterize a large variety of phenom-
ena. Indeed this is a simple but powerful approach, even if diagonalization of the
problem needs to be performed numerically except in a few (highly symmetric) con-
figurations. By diagonalizing matrix F and system-bath interaction Hamiltonian we
obtain the conditions to have a dominating mode during a transient. This mode dis-
sipating most slowly, |κσ | < |κj| ∀j �= σ , is found either for CB or LB. Even more
important, it is possible to identify normal modes completely protected against dis-
sipation, which do not thermalize. Indeed, a normal mode σ is protected against
decoherence if κσ = 0. For a pair of oscillators interacting with a CB, this condition
is accomplished only in the trivial case of identical frequencies [31, 34] but this is
not the case when more than two nodes are considered [3]. We find that asymptotic
synchronized quantum states can then be observed even in random networks where
all nodes have different natural frequencies.

Full characterization of the quantum state evolution of the network comes from
moments of all orders of the oscillator operators q̂j and p̂j [25]. We start considering
the classical limit given by the expectation values of positions and momenta, in
virtue of Ehrenfest theorem [35]. For SB, average positions (and momenta) are
characterized by irregular oscillations before thermalization [Fig. 6.2a]. On the other
hand, for dissipation in CB and after a transient, regular phase locked oscillations
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Fig. 6.2 First order moments for initial conditions −〈q̂1〉 = 〈q̂3〉 = 1.0, 〈q̂2〉 = 0.0, and vanishing
momenta in the case of an open chain of three oscillators with ω1 = 1.2ω2, ω3 = 1.8ω2, non-
vanishing couplings λ12 = λ23 = 0.4 ω2

2, temperature T = 10k−1
B �ω2, γ0 = 0.07ω2

2, bath cutoff
50ω2, for SB (a) and for CB (b)

can arise, as shown in Fig. 6.2b. Synchronization between detuned nodes can be
found during a rather long and slow relaxation, like in the case of just one pair [2]
(see Chap.4). Further, the oscillations can remain robust even asymptotically if the
condition κσ = 0 is satisfied.

Beyond the classical limit given by average positions and momenta, let us now
consider the full quantum dynamics stemming from the evolution of higher moments
(see details in Appendix). At the microscopic level, quantum fluctuations also oscil-
late in time (even for initial vacuum states for which first order moments vanish at
any time). This collective periodic motion is associated to a slow energy decay and
witnesses the presence of robust quantum correlations against decoherence [24]. Our
approach points to a wide range of appealing possibilities in quantum networks. In
the following we show how a whole random network (or a part of it) can be brought
to a synchronized state retaining quantum correlations via local tuning of just one of
the nodes, or how two external oscillators can be linked to a random network leading
to their entanglement and locked oscillations.

Synchronization between two time series f (t) and g(t) can be characterized by
using the Pearson indicator Cf ,g already employed in Chaps. 4 and 5 [c.f. Eq. (4.13)].
For “similar” and in-phase (anti-phase) evolutions C ∼ 1 (−1), while it tends to
vanish otherwise.As a figure ofmerit for global synchronization in thewhole network
we look at the product (neglecting the sign) of this indicator for all pairs of oscillators
in the system.When the time series correspond to positions secondmoments we have

S = �i<j|C〈q̂2i 〉〈q̂2j 〉|. (6.9)

This collective synchronization factor S can reach unit value only in presence of
synchronous dynamics between all the pairs of oscillators in the network.
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6.2 Collective Synchronization by Tuning One Oscillator

Let us consider an Erdös–Rényi dissipative network [1] of oscillators with different
node frequencies, links and weights (Fig. 6.1). In the Erdös–Rényi random graph
model the network is constructed from a given number of nodes by choosing each of
the possible links between any pair of nodes with a fixed probability [36, 37]. Here
we further choose frequencies and coupling strengths randomly from a suitable range
of values. We focus on the relaxation dynamics of energy and quantum correlations.
The node dynamics is mostly incoherent and even if initializing the network in a non-
classical state, quantum correlations generally disappear due to decoherence [24].
Independently on the form of the network, for dissipation in SB, all nodes thermalize
on a time scale γ −1

0 [see Eq. (6.2)]. As anticipated before, this is not the case in the
presence of a dissipation acting not-uniformly within the network.

6.2.1 Common Dissipation Bath

In presence of CB, an arbitrary network of N nodes can reach a synchronized state
before thermalization if there is a weak effective coupling κσ . As a matter of fact
just by tuning one of the node frequencies, ωv, even maintaining fixed the rest of the
network frequencies {ωl �=v} and its topology (λij couplings) it is possible to decrease
the weakest coupling κσ . One may wonder from the important consequences of this
feature, as it means that an extra oscillator of properly selected frequency {ωl �=v}
(like a synchronizer) can be added to a random network, even if weakly coupled, and
it will lead to a collective synchronization of the whole system at some frequency
(Ωσ ), generally different from ωv. Fig. 6.3 displays the average global synchroniza-
tion and quantum correlations established in the network. Synchronization arises
after a transient across the whole network by tuning one of the frequencies ωv to a
particular value ω̄v, while it is not present when moving a few percent away from this
value. Equivalently one could have tuned one of the couplings λvv′ . In the following
we consider separately the case in which κσ is significantly smaller than the other
effective couplings and the case in which it vanishes.

Conditions for global synchronization follow from small ratio between the damp-
ing rates of the two slowest normal modes of the network R = κσ /κη → 0. Interest-
ingly, this is a necessary but not sufficient condition for collective synchronization.
This is due to the fact that the presence of a slowly dissipating normal mode needs to
be accompanied by a significant overlap between thismode (Q̂σ ), or virtual oscillator,
and all the real ones (q̂1, . . . , q̂N ). An analytical estimation of the synchronization
timemust hence take into account both the importance (overlapwith individual oscil-
lator) and decay of few normalmodes in the system. The contributions of the different
normal modes to the motion of second moments can be schematically written (for
the position) as
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〈q2n〉(t) = Fn0

2

2

e−Γ0tg0(2Ω0t) + Fn1

2

2

e−Γ1tg1(2Ω1t) (6.10)

+ Fn0Fn1

2
e− Γ0+Γ1

2 tg01(|Ω0 + Ω1|t, |Ω0 − Ω1|t) + . . .

and the damping coefficients Γi are labeled in increasing order 0, 1, 2, . . ., N , from
the minimum to the maximum (positive) value, while the gi functions represent
oscillating termswhose amplitude are determined by the initial conditions. Assuming
that Γ0 >> Γ1, that is R � 1, synchronization is achieved when the contributions
other than the first one can be neglected in this dynamical evolution. By equating the
maximum amplitudes of each normal mode contribution k = 1, 2, 3, . . . to the first
one (labeled by 0) we obtain the time for oscillator j to start oscillating at the less
damped frequency Ωσ

t(j) ≡ max
{k �=σ }

2
logFjk − logFjσ

Γk − Γσ

, (6.11)

where maximization is over all normal modes k different from the slowest one σ .
This expression corresponds to the minimum time for which the network oscillator
(j) starts oscillating at the synchronization frequency Ω0, the eigenfrequency of the
less-damped mode. Collective synchronization time hence corresponds to

tsync = max{j} {t(j)}, (6.12)

Fig. 6.3 a Time evolution of the collective synchronization factor S, and b quantum correlations
quantified by the discord between pairs of oscillators 〈δ〉 × 103, when varying one node frequency
ωv . Results are shown for a random network (connection probability p = 0.6) of 10 oscillators. Fre-
quencies of nodes are sampled from a uniform distribution from 0.9ω0 to 1.2ω0 and couplings from
a Gaussian distribution around−0.1ω2

0 with standard deviation 0.05ω
2
0. Collective synchronization

S and (averaged and filtered) discord δ are obtained considering all oscillator pairs of the network.
Dashed line identifies the frequency ω̄v for which κσ = 0. Continuous line in a corresponds to the
estimated synchronization time tsync
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Fig. 6.4 Collective synchronization S, ratio between the two smallest damping rates R and mean
discord between pair of oscillators 〈δ〉(×102) at long times (8000ω−1

0 ) for the same randomnetwork
of 10 oscillators and probability connection p = 0.6. The dashed line indicates the tuning value
ων = ω̄ν for which the mode σ decouples from the bath

that is, when even the last oscillator joins the synchronous dynamics dominated by
the less damped mode. Then phase-locking in the evolution of all oscillators, namely
in their (all order) moments, can arise before thermalization, when there is significant
separation between largest time decays Γη, Γσ , and overlap between slowest normal
modes and each system node. Global network synchronization obtained from the
full dynamical evolution and the estimated synchronization time tsync are in good
agreement, as seen in Fig. 6.3a.

We now look at the quantumness of the state in presence of collective synchroniza-
tion. Generally decoherence is independent of specific features such as the oscillation
frequency in a system [38]. Still, synchronization is a consequence of a reduced dis-
sipation in some system mode and indeed witnesses the robustness of quantum cor-
relations, as evident form the average quantum discord between pairs of oscillators
in the network, 〈δ〉, represented in Fig. 6.3b. For the same network, the ratio between
the two smallest damping rates R, the collective synchronization S in Eq. (6.9), and
average discord between pairs of oscillators 〈δ〉 at long times (t = 8000ω−1

0 ) can be
seen in Fig. 6.4. After a transient dynamics in which the couplings in the network
create quantum correlations [10], even when starting from separable states, discord
does actually decay to small values for ωv different from ω̄v (non-synchronized net-
work) while it maintains large values for the case of a properly tuned node (ωv ∼ ω̄v)
for which synchronization S reaches its maximum.

The case ωv = ω̄v, leading to κσ = 0, needs special attention. After a transient
all the nodes will oscillate at a locked common frequency, the one of the undamped
normal modeΩσ , which we call a frozenmode. As before [Eq. (6.11)], the possibility
to synchronize the whole network also requires a second condition, namely that the
undampedmode involves all the network nodes. The case inwhich the latter condition
applies only to some nodes is discussed below. When both the conditions

κσ =
N∑

k=1

Fkσ = 0, and Fkσ �= 0 ∀k, (6.13)
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are met, there is a frozen normal mode linking all oscillators. This leads to collective
synchronization in thewhole network and allows formutual information andquantum
correlations remaining strong even asymptotically, being orders of magnitude larger
than for the fully thermalized state, when synchronization is not present (Fig. 6.3).
The undampedmode gives actually rise to a decoherence-free dynamics for thewhole
system of oscillators where quantum correlations and mutual information survive.

The phenomena above are found for nodes dissipating at equal rates into a CB,
while in the presence of N independent environments (SB) all oscillators thermalize
incoherently, synchronization is not found, and decoherence times for all oscillators
are of the same order. As a final observation we mention the special case in which
the center of mass of the system is one of the normal modes; then there will be a
large decoherence-free subspace (corresponding to the other N − 1 modes) but no
synchronization will appear for a CB.

6.2.2 Local Dissipation Bath

Common and separate baths correspond to two extreme situations in which all oscil-
lators have equivalent interactions with the environment(s). We now consider the
case of a local bath, as a limit case in which one oscillator is dissipating stronger,
Fig. 6.1c. Here collective synchronization requires that the frozen normal mode σ

must not overlap with the dissipative oscillator (labeled by d ) while involving all the
other nodes (Fiσ �= 0 ∀ i �= d ). Then, synchronization of the whole network (except
for the dissipative oscillator) arises. This occurs when

Fdσ = 0, with Fdj �= 0 ∀ j �= σ, (6.14)

meaning that the undampedmode σ involves a cluster of oscillators not including the
lossy one. We find synchronization and robust quantum effects across the network
as for CB, with the difference that for LB the dissipating node is now excluded.

In Fig. 6.5awe show the ratioR between the twoweakest effective couplingswhen
varying the frequency in one node (ωv, v �= 1) comparing the cases of LB andCB.We
see that, depending on the frequency of the tuned node, the necessary condition for
synchronization R ∼ 0 can be satisfied in presence of both dissipation mechanisms.
Still, even for identical networks, the “tuned” node produces synchronization for
different frequencies (ωv) depending on whether dissipation takes place in a CB or
in a LB. We also find that for a largely detuned oscillator (|ωv − ωj| � 0 ∀j), the rest
of the network becomes rather insensitive to its frequency [see the behavior of R at
small and large frequencies in Fig. 6.5a]. This can be expected as for strong detuning
the respective dynamics of the N − 1 network and of the v oscillator tends to be
effectively decoupled, the latter becomingoneof the normalmodes.Wenotice that for
LB, in this large detuning limit, there is a normalmode v orthogonal to the dissipating
one (here node d ) so that it will not dissipate (κv = 0) leading to a vanishing ratio
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Fig. 6.5 a Ratio R between the less-damped modes for a random network (connection probability
p = 0.6) of 10 nodes coupled to a common bath (black continuous line) and coupled to a local bath
(orange dashed line) when the tuning frequency ωv is varied. b Collective synchronization factor S
for a local bath when the dissipative oscillator is included into the factor S (line labeled “global”)
or it is not included (line labeled “not d”). Other parameters are γ0 = 0.01ω2

0, T = 10k−1
b �ω0 and

� = 50ω0

R = κσ /κη. Still, this node will be frozen but there is no synchronization of a whole
cluster, as conditions Fdσ = 0 with Fdj �= 0 ∀ j �= σ are not satisfied.

Figure6.5b shows that the measure S indicates synchronization forωv = ω̄v when
it includes contributions from all nodes excluding the lossy one, while synchroniza-
tion is not evidenced when also this node is taken into account in the calculation of
S. Figure6.5b also shows that the time required for emergence of collective synchro-
nization is larger for local dissipation than for dissipation through the center of mass
(see CB in Fig. 6.3) by a factor of N , as expected as here we have one (instead of N )
dissipation channels.

6.3 Synchronization of Clusters and Linear Motifs

The possibility to synchronize a whole network, in presence of different dissipation
mechanisms, just by tuning one local parameter opens-up the perspective of control
that can be explored considering the dynamical variation of a control-node frequency.
In particular we find similar qualitative results both for random networks and for
disordered lattices consisting of regular networks with inhomogeneous frequencies
and couplings, being the latter largely studied in ultracold atomic gases [39]. Local
tuning to collective synchronization is not only a general feature of different kind of
networks but can also be established in motifs within the network. As we show in
the following, the system can be tuned to a partial synchronization, involving some
nodes of a network independently of the rest of it. Indeed, even if the whole system
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is coupled to a CB, we can identify the conditions for having a synchronized cluster,
like the 3-node linear motif considered in Fig. 6.6.

The main conditions for emergence of synchronization in a localized cluster of a
network can be derived as follows: first consider the existence of a normal mode Q̂σ

that involves only the cluster oscillators, i.e.

Q̂σ =
∑

k∈CM

Fkσ q̂k , Fkσ �= 0, (6.15)

where the cluster is denoted by the ensemble CM of M oscillators in the network.
We impose that this mode is a normal mode of the cluster by writing

(Ω2
σ − HM )Cσ = 0, (6.16)

where HM is the corresponding Hamiltonian matrix of the cluster CM , and Cσ is a
column vector containing the Fkσ coefficients of Eq. (6.15).

Now we can calculate (numerically in general and analytically for some partic-
ular situations) the coefficients of Cσ and the frequency Ωσ in terms of the cluster
parameters. This is done straightforwardly by using Eq. (6.16) and the orthonormal-
ity condition for CM . In order to have (asymptotically surviving) synchronization
for both common and local baths we have to impose κσ = 0, that yields to a relation
among the cluster coefficients. Then by tuning only one parameter of the cluster we
can obtain the desired synchronization. However note that in the case of a local bath
this later condition is nothing but stating that the oscillator which is locally coupled
to the bath cannot pertain to the cluster ensemble.

Finally we have to check that the normal mode which links the cluster involves
only the cluster oscillators and induces a collective motion in the cluster (when
κσ ∼ 0) different to the rest of the network, that is:

(Ω2
σ − H)Cσ = 0, (6.17)

wherewe completeCσ with zeros in the positions of oscillators others than the cluster
ones. Note that the last equation is equivalent to Eq. (6.16) when the next condition
is fulfilled: ∑

k∈CM

Fkσ λkj = 0 , ∀j /∈ CM , (6.18)

that fixes a relation for the couplings between the cluster and any other oscillator
outside. We can point out from the last equation that the cluster must be coupled
to any other oscillator at least by a pair of coupling terms. This analysis is valid
in general even when the cluster is considered to be the whole network. The only
variation in this case is that we do not have to ensure any more the condition (6.18)
as long as we do not consider anything outside the cluster.

InFig. 6.6weconsider the synchronizationof a three-oscillator linearmotif,C1, for
which analytical expressions can be derived (see the details in AppendixA.3). Here
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Fig. 6.6 a Synchronization factors SC and b average discord δC × 102 evaluated for linear
3-node motifs (hence the subindex C) in a random network (connection probability p = 0.6) of
15 oscillators (c). A tuned non-dissipative motif C1 composed by the three nodes a − c − b is
compared with another equivalent non-tuned motif C2 composed by nodes d − f − e. Frequencies
in the network are sampled from a uniform distribution from ω0 to 1.8ω0, and couplings with a
Gaussian distribution around −0.1ω2

0 with standard deviation 0.05 ω2
0. In order to avoid dissipation

in the a − c − b motif we have set ωc = 1.51 ω0, being λac = −0.09 ω2
0 and λbc = −0.11 ω2

0

two non-directly linked nodes a and b of the motif are asymptotically synchronized
through another one, here c, and this leads to a common oscillation dynamics along
the whole motif a-c-b. The condition for synchronization of the motif, namely its
dependence on a frozen normal mode with frequency Ωσ , reads from the above
expressions

λac

Ω2
σ − ω2

a

+ λbc

Ω2
σ − ω2

b

= −1. (6.19)

This case is an example of the general result stating that given any network, a
part of it (in our case a linear motif, C1) can be synchronized by tuning one of its
components, for instance a frequency or coupling of the motif. A key point is that
this is independent of the frequencies and links of the rest of the network, provided
the motif is properly embedded in the network. The links between C1 and the rest of
the network should satisfy

(
λac

Ω2
s − ω2

a

)
λaj +

(
λbc

Ω2
s − ω2

b

)
λbj + λcj = 0 , ∀j . (6.20)

This is equivalent to saying that a synchronized motif with robust quantum corre-
lations can preserve these features when linked to an arbitrary network, if some
constraints on the reciprocal links are satisfied. For instance, each node of the syn-
chronized motif needs to share with the rest of the network more than one link. In
Fig. 6.6 we compare the behavior of two linear motifs of a large network, where a
first motif C1 is synchronized, satisfying Eqs. (6.19)–(6.20) while the second one C2
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is not. After a transient a frozen mode tames the dynamics of C1, which then shows
a synchronous evolution and robust correlations. It can also be shown that quantum
purity and energy reach higher values of a stationary non-thermal state (see also
Chap.5). This is compared with the non-synchronized motif C2 whose dynamics
quickly relaxes to a thermal state. The case of a three oscillator chain is an example
showing the possibility to tune synchronization and quantum effects in amotif within
the network when the proper link conditions are satisfied.

6.4 Entangling Two Oscillators Through a Network

The same technique discussed in the previous section can be applied to the case
in which we aim to synchronize few, even if not directly connected, elements of a
network. But this does not mean that any set of nodes can be synchronized asymp-
totically. In fact, we find that for a CB we can only synchronize two different and not
directly linked (λab = 0) oscillators if we synchronize also other intermediate linked
elements (like in the linear motif example, Fig. 6.6) or when these two oscillators are
identical, which is the case that we discuss in the present section.

We consider the case of two identical oscillators (i.e. with ωa = ωb) prepared in
a separable state, with some local squeezing. They are not directly coupled (λab =
0) but are connected through an arbitrary network. In general they will dissipate
reaching the thermal state, but with the proper conditions we find an important
result: because their frequencies are identical it is possible to construct a frozen
normal mode involving only these two nodes, given by Q̂σ = Faσ q̂a + Fbσ q̂b,
with Faσ ,Fbσ �= 0 and this can be obtained, for instance, by a proper choice of their
coupling to the network. In other words, it is possible to have both oscillators relaxing
onto a frozen mode, so that they will be synchronized and will keep a higher energy
than otherwise.Most importantly, in this case entanglement can actually be generated
between oscillators initially in a separable state and remains high asymptotically.

In order to entangle the oscillators, their coupling to the rest of the network needs
to fulfill the following condition [similar to Eq. (6.20)]

∑

k=a,b

Fkσ λkj = 0, (6.21)

which is achieved by proper tuning of coupling strengths of the active links (j) with
the rest of the network λaj, λbj. As in Chap.5 we quantify entanglement throughout
the logarithmic negativity EN = max(0,− ln ν−), with ν− the smallest symplec-
tic eigenvalue of the partially transposed density matrix [40] (see also Sect. 1.4 in
Chap.1). In Fig. 6.7a and b we show the evolution of energy and entanglement of the
oscillators a and b when linked to a random network. As we see in Fig. 6.7c there is
not direct link between a and b (λab = 0) and the whole system dissipates in a com-
mon environment. The case where the oscillators a and b are coupled to the network
following the prescription (6.21) is compared to another case in which their links are
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Fig. 6.7 a Energy evolution and b entanglement (logarithmic negativity) between two nodes with
identical frequency ω0 [we call these nodes a and b and are plotted in red in the network displayed
in c]. The network is a random one (connection probability p = 0.6 of 15 oscillators and same
frequency and couplings distribution as in Fig. 6.6.We compare the situations inwhich the couplings
from the red nodes to the rest of the network (they are directly connected to other nodes called c
and d ) are properly balanced in order to avoid dissipation (λac = λbc = −0.15ω2

0 and λad = λbd =
−0.12ω2

0)with the case when this balance is perturbed (λac + 0.04ω2
0 and λad + 0.04ω2

0) .The third
line in b shows the entanglement between other two arbitrary oscillators in the situation in which
a and b are balanced

not properly balanced (we slightly change the coupling strengths). Both energy and
entanglement are shown to be sensitive to the structure of the reciprocal links and the
possibility to actually bring the added nodes into an entangled state that will survive
asymptotically is guaranteed by Eq. (6.21). The importance of this result is twofold:
in terms of applications it shows that it is possible to dynamically generate entangle-
ment between two non-linked nodes embedded in a random network by tuning their
connections to it, and on the other hand it enlarges the scenario for asymptotic entan-
glement generation through the environment. It is known that large entanglement
can be generated between far oscillators during a transient due to a sudden-switch
[10] or through parametric driving [41]. On the other hand, a common environment
leads to entanglement between a pair of spins [18] or oscillators [31]. In our case, the
network may be seen as a structured part of the reservoir, whose engineering allows
to dynamically produce entanglement between the otherwise uncoupled oscillators.

6.5 Conclusions

Our results on synchronization in dissipative harmonic networks and its optimization
give a flavor of all the possibilities that show up once the mechanism behind the
phenomenon is understood.At difference fromwidely considered self-sustained non-
linear oscillators, here we focused on a linear system showing synchronization after
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a transient for dissipation processes introducing inhomogeneous decay rates among
the system normal modes. A synchronous oscillation is predicted either in a long
transient during relaxation to the equilibriumstate or in a stationary non-thermal state,
extending the results in Chaps. 4 and 5. We considered the most significant examples
of systems exposed to collective dissipation (CB) and of a node of the network more
strongly exposed to dissipation (LB), displaying synchronous dynamics. On the other
hand, for independent environments (SB) on different nodes the resulting dynamics
remains incoherent even when increasing the strength of the reciprocal couplings in
the network.

The presence of synchronization in the whole or a part of the network witnesses
the survival of quantum correlations and entanglement between the involved nodes.
This connection between a coherent oscillation in the network and its non-classical
state is a powerful result in the context of complex quantum systems, considering the
abundance of this phenomenon. Indeed, the condition underlying synchronization
provides a strategy to protect a system subspace from decoherence. Our discussion
and methodological approach are general, but we show specific consequences of our
analysis, such as global or partial synchronization in a network through local tuning
in one node (synchronizer) as well as the possibility of connecting two nodes (not
linked between them) to a network and synchronize and entangle them, even starting
from separable states. Even if the reported results refer to random networks, our
analysis applies to generic ones, also including homogeneous and disordered lattices
and do not require all-to-all connectivity.

In some sense, tuning part of a network so that the rest of it reaches a synchronous,
highly correlated state can be seen as a kind of reservoir engineering, where here the
tuned part of the network would be a part of the reservoir. This is to be compared with
recent proposals of dissipative engineering for quantum information, where special
actions are performed to target a desired non-classical state [19–22]. In the context
of quantum communications and considering recent results on quantum Internet [42,
43], our study can offer some insight in designing a network with coherent informa-
tion transport properties. Furthermore, implications of our approach can be explored
in the context of efficient transport in biological systems [12, 13]. An interesting
methodological connection is also with transport through (classical) random net-
works [44]. On the other hand, our analysis, when restricted to the classical limit,
also gives some insight about vibrations in an engineering context, providing the
conditions for undamped normal modes and their effect [15–17]. This is at the basis
of the recent analysis of synchronization in closed systems reported in Ref. [45].

The formalism presented above could be applied in principle in more complex
settings such as the production of independently synchronized parts of the system
beating at different frequencies, or in the presence of more complicated dissipation
situations (for example several local baths of different strengths). Though probably
more difficult to analyze mathematically, the conceptual structure and the method-
ology to be followed in such cases is equivalent to that presented here.
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Appendix

A.1 Master Equation for Nodes

From the master equation in the basis of normal modes after the (post-trace) rotating
wave approximation, given in Sect. 6.1 [Eq. (6.7)] (see alsoAppendixA.2 inChap.5),
we can derive an equivalent expression turning to the basis of the original oscillators
by simply applying the change of basis matrix F, defined by diagonalization of H.
Rearranging terms one obtains

dρ(t)

dt
= −i[ĤS , ρ(t)] −

− 1

4�2

∑

jk

iΓ̃jk
([q̂j, {p̂k , ρ(t)}] − [p̂k , {q̂j, ρ(t)}]) +

+ D̃a
jk [q̂j, [q̂k , ρ(t)]] − D̃b

jk [p̂j, [p̂k , ρ(t)]]. (A.1)

Here we have introduced new master equation coefficients denoted by a tilde and
defined from the previous ones as

Γ̃jk =
∑

n

FjnFknΓn, (A.2)

D̃a
jk =

∑

n

FjnFknDn, (A.3)

D̃b
jk =

∑

n

FjnFkn
Dn

Ω2
n

. (A.4)

Those are valid for all the cases considered in the paper, namely, common bath, local
bath and separate baths, with the proper definitions of the untilded coefficients for
each case (see Sect. 6.1). Note however that for the case of separate baths (assuming
an Ohmic frequency spectral distribution with sharp cutoff in the bath) the damping
coefficients in the master equation reduce simply to Γ̃ij = γ δij, i.e. all the nodes in
the network dissipate through their own bath at the same rate, determined by the
equivalence of the separate baths. This further simplification in the case of separate
baths marks its difference from the common or local bath cases, producing a different
structure for the friction terms in the equations of motion, as we will see in the next
sections of this Appendix.



250 6 Dissipative Complex Quantum Networks

A.2 Equations for the First- and Second-Order Moments

For Gaussian states, the full dynamics of the oscillators is embedded in the first- and
second-order moments [25] and the former give the classical limit of this quantum
system, obtained neglecting quantum fluctuations. From the master equation we
obtain the evolution of the first-order moments

d

dt
〈Q̂n〉 = 〈P̂n〉 − Γn

2�
〈Q̂n〉, (A.5)

d

dt
〈P̂n〉 = −Ω2

n 〈Q̂n〉 − Γn

2�
〈P̂n〉, (A.6)

where the first term corresponds to the free evolution of uncoupled oscillators and
the second one is a damping term stemming from the influence of the bath. For the
second order moments we obtain the more complicated expressions:

d

dt
〈Q̂nQ̂m〉 = 1

2
〈{Q̂n, P̂m} + {P̂n, Q̂m}〉

−
(

Γn + Γm

2�

)
〈Q̂nQ̂m〉 + Dn

δnm

2Ω2
n

, (A.7)

d

dt
〈P̂nP̂m〉 = −Ω2

n

2
〈{Q̂n, P̂m}〉 − Ω2

m

2
〈{Q̂m, P̂n}〉

−
(

Γn + Γm

2�

)
〈P̂nP̂m〉 + Dn

δnm

2
, (A.8)

d

dt
〈{Q̂n, P̂m}〉 = 2〈P̂nP̂m〉 − 2Ω2

m〈Q̂nQ̂m〉

−
(

Γn + Γm

2�

)
〈{Q̂n, P̂m}〉, (A.9)

where the first two terms arise from the reduced motion of the free normal modes,
and the last ones are induced by the environmental action, which combines damping
and diffusion effects.

We also notice that a common environment gives rise to a rather symmetric damp-
ing, also known as diffusive coupling (apart from an irrelevant change of sign) [2].
This kind of diffusive coupling is a typical phenomenological assumption when syn-
chronization is modeled in classical systems [46]. This can be seen by looking at
the first order moments, for which we obtain different expressions in the case of
common, local and separate baths. In the first two cases we have

d

dt
〈q̂n〉 = 〈p̂n〉 − 1

2�

∑

k

Γ̃nk〈q̂k〉, (A.10)

d

dt
〈p̂n〉 = −ω2

n〈q̂n〉 −
∑

k

λnk〈q̂k〉 − 1

2�

∑

k

Γ̃nk〈p̂k〉. (A.11)
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while for the separate baths case the expression transforms into:

d

dt
〈qn〉 = 〈p̂n〉 − 1

2�
Γ̃ 〈q̂n〉, (A.12)

d

dt
〈p̂n〉 = −ω2

n〈q̂n〉 −
∑

k

λnk〈q̂k〉 − 1

2�
Γ̃ 〈p̂n〉. (A.13)

It is immediately seen that the presence of a common bath, a local bath or N separate
(even if identical) baths, leads to different friction terms in the dynamical equations.
While the damping of oscillators in the common and local bath cases depends on all
the network oscillators weighed by the effective couplings (κ2

n ) through the tilded
damping coefficients of Eq. (A.2), in the separate bath case each oscillator decays
independently from the rest of the network, being coupled only through the Hamil-
tonian part of the dynamical evolution.

A.3 Three-Oscillator Motif Details

Here we give the analytical expressions for the synchronization of the three-
oscillators linear motif, i.e. an open chain of three oscillators embedded in a bigger
network. We are able to give the specific parameter relations that have to be fulfilled
in order to obtain a non-dissipative mode, that is, to make the effective coupling for
a motif mode κσ = 0.

By solving Eq. (6.16) for this particular case, we obtain:

Faσ = C

(
λac

Ω2
σ − ω2

a

)
, (A.1)

Fbσ = C

(
λbc

Ω2
σ − ω2

b

)
, (A.2)

Fcσ = C, (A.3)

where C2 = 1/

(
1 +

(
λac

Ω2
σ −ω2

a

)2 +
(

λbc

Ω2
σ −ω2

b

)2
)
.

Now we can obtain a explicit expression for the effective coupling of the normal
mode Qσ to the heat bath:

κσ = C

(
1 + λac

Ω2
σ − ω2

a

+ λbc

Ω2
σ − ω2

b

)
, (A.4)

that enables a dissipation-free channel, i.e. no coupling with the bath (κσ = 0) when

λac

Ω2
σ − ω2

a

+ λbc

Ω2
σ − ω2

b

= −1. (A.5)
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This last condition gives another different expression for the synchronization fre-
quency in this regime:

Ω2
σ = ω2

a + ω2
b

2
− λac + λbc

2
(A.6)

±
√(

ω2
a − ω2

b

2

)2

+
(

λac + λbc

2

)2

− (ω2
a − ω2

b)(λac − λbc)

2
,

where we have to check that Ω2
σ is real and positive, i.e. that (ω2

a − ω2
b)

2 + (λac +
λbc)

2 > 2(ω2
a − ω2

b)(λac − λbc).
From the explicit expression of Ωσ and the previous equations, a consistency

relation for the selected natural frequencies and coupling of the a, b and c oscillators
follows by substituting the expression of Ω2

σ into the equation

Ω2
σ − ω2

c = λ2
ac

Ω2
σ − ω2

a

+ λ2
bc

Ω2
σ − ω2

b

, (A.7)

whose solution for λac, is

λac = λ2
bc − λbc(ω

2
a − ω2

b)

2λbc − ω2
a + ω2

c

(A.8)

±
(λbc − ω2

a + ω2
c )

√
λ2
bc − (ω2

a − ω2
b)(ω

2
b − ω2

c )

2λbc − ω2
a + ω2

c

,

corresponding to two different branches of solutions. These two bran-ches intersect
when we have that λbc = ω2

a − ω2
c or equivalently λac = ω2

b − ω2
c , in this case we

have the simpler relation for the couplings λac − λbc = ω2
b − ω2

a and here the mode
Q̂σ is degenerated, i.e. there are two non-dissipative normal modes with different
frequencies. It is worth noticing that when we have different branches it is necessary
to impose the condition λ2

bc > (ω2
a − ω2

b)(ω
2
b − ω2

c ) in order to obtain λac real.

References

1. A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno, C. Zhou, Synchronization in complex net-
works. Phys. Rep. 469, 93–153 (2008)

2. G.L. Giorgi, F. Galve, G. Manzano, P. Colet, R. Zambrini, Quantum correlations and mutual
synchronization. Phys. Rev. A 85, 052101 (2012)

3. G.Manzano, F.Galve,R.Zambrini,Avoidingdissipation in a systemof three quantumharmonic
oscillators. Phys. Rev. A 87, 032114 (2013)

4. G.Manzano, F. Galve, G.-L. Giorgi, E. Hernndez-Garcia, R. Zambrini, Synchronization, quan-
tum correlations and entanglement in oscillator networks. Sci. Rep. 3, 1439 (2013)

5. J.M. Raimond, M. Brune, S. Haroche, Reversible decoherence of a mesoscopic superposition
of field states. Phys. Rev. Lett. 79, 1964 (1997)



References 253

6. M. Bayindir, B. Temelkuran, E. Ozbay, Tight-binding description of the coupled defect modes
in three-dimensional photonic crystals. Phys. Rev. Lett. 84, 2140 (2000)

7. M. Mariantoni et al., Photon shell game in three-resonator circuit quantum electrodynamics.
Nat. Phys. 7, 287–293 (2011)

8. K.R. Brown, C. Ospelkaus, Y. Colombe, A.C. Wilson, D. Leibfried, D.J. Wineland, Coupled
quantized mechanical oscillators. Nature 471, 196–199 (2011)

9. M. Harlander, R. Lechner, M. Brownnutt, R. Blatt, W. Hansel, Trapped-ion antennae for the
transmission of quantum information. Nature 471, 200–203 (2011)

10. J. Eisert, M.B. Plenio, S. Bose, J. Hartley, Towards quantum entanglement in nanoelectrome-
chanical devices. Phys. Rev. Lett. 93, 190402 (2004)

11. E.M.Gauger, E. Rieper, J.J.L.Morton, S.C. Benjamin, V. Vedral, Sustained quantum coherence
and entanglement in the avian compass. Phys. Rev. Lett. 106, 040503 (2011)

12. G. Panitchayangkoon, D.V. Voronine, D. Abramavicius, J.R. Caram, N.H.C. Lewis, S.
Mukamel, G.S. Engel, Direct evidence of quantum transport in photosynthetic light-harvesting
complexes. Proc. Natl. Acad. Sci. 108, 20908–20912 (2011)

13. G.S. Engel, T.R. Calhoun, E.L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R.E. Blankenship,
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Part III
Quantum Fluctuation Theorems

and Entropy Production



Chapter 7
Fluctuation Theorems for Quantum
Maps

Part II of the thesis has been devoted to the study of dynamical properties of
dissipative quantummany-body systems, where we employed open quantum system
theory and its related quantum information tools in order to predict the emergence of
synchronization phenomena and unveil the behavior of quantum correlations. In the
remaining of the thesis we will turn our view to the nonequilibrium thermodynamic
properties of open quantum systems, using the full methods introduced in Chaps. 1
and 2.

In Chap.3 we introduced quantum thermodynamics as an emergent field at the
intersection of quantum information theory and small-scale thermodynamics. There
we stated that one of the major achievements of the latter is the introduction of
a thermodynamic description of single particles subjected to fluctuations in out of
equilibrium situations. In this context we have seen that one of the main fruitful tools
are a set of universal relations known as fluctuation theorems (see Sect. 3.2). Some of
them have been recently extended to the quantum realm, such as the Crooks fluctua-
tion theorem, the Jarzynski equality, or various fluctuation theorems for the exchange
of heat and particles between equilibrium reservoirs at different temperatures and
chemical potentials [1, 2]. Along the present Part III of the thesis, we present and
apply a systematic approach for the development of quantum fluctuation theorems
in open systems, which allows the reproduction of many previous results in a gener-
alized framework, while opening new possibilities for the study and understanding
of genuine quantum effects in thermodynamics.

Most of the fluctuation theorems developed for open quantum systems are based
on Hamiltonian dynamics, which require a microscopic model for the system, the
environment and their interaction. The most common framework assumes a two
measurement protocol (TMP) in which the whole system starting in equilibrium
conditions is measured before and after some relevant process occurs, the environ-
ment is composed by one of more equilibrium thermal reservoirs, the interaction
between system and environment is fixed and usually weak, and the driving operates
only on the open system [1] (see Sect. 3.2). Although this kind of framework has
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produced important results, it turns out that abandoning one or few of the above
assumptions in order to obtain generalized results constitutes in general a compli-
cated problem, which sometimes may lead to alterations in the results or directly
the breaking of the fluctuation theorems [3, 4] (see also Ref. [5]). Furthermore, the
inclusion of projective measurements on the whole thermal reservoir representing
the environment are unpractical. A promising alternative route is the development of
quantum fluctuation theorems for open system dynamics described by completely-
positive and trace-preserving (CPTP) maps, as they provide a compact description
of physical processes condensing the main effects of the environmental action in a
set of few relevant variables. As we have seen in Sect. 2.1, CPTP maps capture a vast
diversity of quantum dynamical evolutions, including arbitrary open system dynam-
ics such as decoherence, measurement, and thermal relaxation [6–9]. Consequently,
the thermodynamic analysis of processes described byCPTPmaps can be considered
as a major issue in the development of quantum thermodynamics [10–14].

In this chapter we present a new fluctuation theorem valid for a broad class of
quantum CPTP maps.1 It is based in the concept of a nonequilibrium potential, an
intrinsic fluctuating property of themapwhich allows the thermodynamic description
at the single trajectory level in most situations of interest. The chapter is organized as
follows. In Sect. 7.1 we review previous work in fluctuation theorems in the context
of CPTP maps, highlighting the limitations of previous approaches and the novel
features introduced here. Next, in Sect. 7.2 after a brief review of CPTPmaps and the
Kraus representation, we introduce the nonequilibrium potential and the dual-reverse
map, necessary to state the fluctuation theorem. In Sect. 7.3 we prove the general
theorem for single maps and for a series of concatenated maps. Some applications
are discussed in Sect. 7.4. Finally, in Sect. 7.5 we summarize our results and present
the main conclusions of the chapter.

7.1 Fluctuation Theorems, Unital Maps and Beyond

In recent years, there have been several derivations of fluctuations theorems for
specific classes of CPTP maps falling into two broad categories: detailed fluctua-
tion theorems for quantum trajectories and fluctuation theorems for thermodynamic
variables, such as work and entropy. Campisi et al. obtained a detailed fluctuation
theorem for a unitary, driven evolution punctuated by unital maps—maps for which
the identity matrix is invariant— [1, 16]. This work was followed and extended
by Watanabe et al. [17]. Quantum Markov semigroups were explored by Crooks
using a time-reversed or dual map [18], which was then applied by Horowitz et
al. to nonequilibrium quantum jump trajectories [13, 19]. An alternative, operator
formulation for driven Lindblad master equations was independently developed by
Chetrite and Mallick [20], and its equivalence to the quantum jump approach was
investigated by Liu [21, 22].

1Most of the results in the chapter have been published in Ref. [15].
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Fluctuation theorems for thermodynamic quantities in the TMP —where the
dynamics are described by the specific set of unital (or bistochastic) CPTP maps—
have also appeared in some recent works [23, 24] where unitality plays an equiv-
alent role as microreversibility do in closed evolutions. However, when non-unital
CPTP maps are considered the usual form of the fluctuation theorem is broken by
the appearance of a so-called correction [25]. In such case fluctuation theorems in
integral from have been derived

〈e−σ 〉 = a, (7.1)

where σ is some quantity of interest such as energy change, heat, or information-
theoretic entropy, and a is a process dependent correction factor [23, 25–27]. In
the following sections we will see that this correction factor can be abandoned by
means of a generalized detailed balance relation involving the quantum operations
in which the map can always be decomposed, i.e. by means of its Kraus operator-
sum representation. This allows us to derive a general fluctuation theorem in both
detailed and integral forms that includes and extends many of the previous results.
The quantity σ can then be given a clear interpretation as a trajectory version of the
entropy production [28] in most setups of physical interest. As a consequence, our
result also clarifies the minimal hypotheses needed to derive a fluctuation theorem
for quantum maps. Furthermore, our theorem is independent of the physical nature
of the process that induces the CPTP map. This is a relevant feature as it makes the
fluctuation theorem general enough to be applied to situations far from equilibrium,
like systems in contact with coherent or squeezed reservoirs [29–32].Moreover, such
a general result could be useful to analyze the thermodynamics of quantum processes
whose physical details are not completely known, such as decoherence or quantum
collapse.

In order to derive this general fluctuation theorem for CPTP maps, we introduce
the concept of a nonequilibrium potential, which is proportional to the logarithm of
the invariant density matrix associated to the map. This potential is the analogue of
the one used by Hatano and Sasa in a classical context [33], and it has been implicitly
used by Sagawa inRef. [11] for quantummaps aswell asYukawa [10] and Spohn [34]
for continuous-time quantum dynamics. It vanishes for unital maps and coincides
with the heat flow between the system and the reservoir in the case of thermalization
maps. For classical systems subjected to nonequilibrium constraints, this potential
allows one to split the entropy production into adiabatic and non-adiabatic contribu-
tions [see Eq. (3.57)], and is also a key ingredient to characterize the response of a
system to external time-dependent perturbations in the linear regime [35].

7.2 Quantum Operations and Dual-Reverse Dynamics

Consider a generic CPTP quantummap ρ → ρ ′ ≡ E(ρ) acting on the density matrix
ρ of a quantum system. As we have seen in Sect. 2.1, any CPTP map admits a
(non-unique) Kraus representation in terms of a collection of linear operators {M̂k}
as [7]
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E(ρ) =
∑

k

Ek(ρ) =
∑

k

M̂kρ M̂
†
k , (7.2)

with
∑

k M̂
†
k M̂k = 1̂ ensuring the trace-preserving property of the map E. If the

Hilbert space of the systemhas finite dimension N , there exists aKraus representation
for any map with at most N 2 operators. However, using more than N 2 operators is
sometimes necessary for a complete description of the physical process associated
to the map (as we will see below).

7.2.1 Quantum Trajectories and Unconditional States

The Kraus representation (7.2) is not just a mathematical way of writing the map; it
also provides a physical picture of the map as a set of random transformation of pure
states. A specific representation decomposes the map into a number of operations
Ek(ρ) = M̂kρ M̂

†
k . Each operation transforms a pure state |ψ〉 into a new pure state

|ψ ′
k〉 = M̂k |ψ〉

||M̂k |ψ〉|| , (7.3)

with probability pk(|ψ〉) ≡ ||M̂k |ψ〉||2 (
∑

k pk(|ψ〉) = 1). This picture extends to
mixed states of the form ρ = ∑

i pi |ψi 〉〈ψi |, which represents a classical ensem-
ble of pure states |ψi 〉 each sampled with probability pi (see Sect. 1.1). Thus, the
probability that operation k occurs is in general given by pk(ρ) = Tr[Ek(ρ)] and
the final state conditioned on this operation is ρ ′

k = Ek(ρ)/pk(ρ), c.f. Eq. (2.14) in
Sect. 2.1.2. If we know which operation Ek has occurred, then k can be seen as the
outcome of a generalized measurement and ρ ′

k as the conditional post-measurement
state of the system. If we do not know which operation took place (or we decide
not to incorporate that information into our description), then the state after the
transformation is ρ ′ = E(ρ) = ∑

k pk(ρ)ρ ′
k , usually referred to as the unconditional

post-measurement state, although the transformation given by the map ρ ′ = E(ρ)

does not necessarily imply any measurement and not even a specific Kraus represen-
tation. This setup defines an efficient generalizedmeasurement in quantummechanics
(see Sect. 1.3.3), more restrictive than generalized measurements where the observer
has access only to a function f (k) of the operation index k, which may not be
one-to-one [9].

A generic Markovian quantum evolution can hence be described by a concatena-
tion ofmapsEr withKraus operators M̂

(r)
k . For the initial stateρ(0), the unconditional

state evolves as

ρ(r) = ErEr−1 . . .E1ρ(0). (7.4)
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This density matrix ρ(r) can be interpreted as the average of the stochastic evo-
lution. If the initial state is pure ρ(0) = |ψ(0)〉〈ψ(0)|, then a stochastic trajectory
γ ≡ (k1, k2, . . . , kr ) is given by the operations kr that occurred in the application of
map Er and determines the evolution of the pure state

|ψ(r)〉 = M̂ (r)
kr

M̂ (r−1)
kr−1

. . . M̂ (1)
k1

|ψ(0)〉. (7.5)

Notice that this is an equivalent way of introducing quantum trajectories based on
the sequence of discrete processes generated by the operations Ek , analogue to one
introduced in the derivation of the stochastic Scrhödinger equation in Sect. 2.5.

7.2.2 Dual-Reverse Dynamics

Now consider a particular Kraus representation of a map E = ∑
k Ek , and suppose

that the map has a positive-definite invariant state π (not necessarily unique), i.e.,

E(π) = π. (7.6)

Notice that, as mentioned in Sect. 2.1.1, any CPTP map has always at least one
invariant state (or fixed point), but it is in general not guaranteed to be positive-
definite. For suchmaps, we introduce an auxiliary or dual-reversemap Ẽwith respect
to π and to a fixed, arbitrary unitary or anti-unitary operator Â. Inspired by Crooks,
we define this dual-reverse map through the equality [18, 19]2

Tr
[
Ek2Ek1(π)

] = Tr
[
Ẽk1 Ẽk2(π̃)

]
(7.7)

where π̃ ≡ Â π Â† is the invariant state transformed by Â. Equation (7.7) states that
the probability of observing the outcome k1 followed by k2 when we apply the map
twice to the invariant state π equals the probability of observing the reverse outcome
—k2 followed by k1— when the dual-reverse map is applied twice to π̃ . In this way,
the dual-reverse map induces a dynamics in the invariant state that is the reverse of
the original one. Following the derivation introduced by Crooks in Ref. [18], one can
prove that the Kraus operators of the dual-reverse map are given by

ˆ̃Mk ≡ Â π
1
2 M̂†

kπ
− 1

2 Â†. (7.8)

Trace preservation (
∑

k
ˆ̃M†
k

ˆ̃Mk = 1) follows immediately from E(π) = π , and
one can verify that the dual-reverse map preserves the invariant state Ẽ(π̃) = π̃ .

2Notice however that we are changing the nomenclature with respect to Ref. [18], in which the map
Ẽk is called the dual or time-reversed map. The reasons for this change will be specified in the next
chapter of this thesis.
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Henceforth, following Sect. 2.1, as the dual-reverse map can be written in Kraus
form and it preserves the trace, it is also completely positive (CP).

The inclusion of the operator Â in the definition of the dual-reverse map is not
mathematically necessary to derive the fluctuation theorem. In fact, Â does not appear
in the original definition by Crooks [18]. However, in some situations an appropriate
choice of the operator Â is needed to find a dual-reverse dynamics with a precise
physical interpretation or that is suitable of being implemented in the laboratory.
The customary choice is the time-reversal operator Â = �̂ that changes the sign of
odd variables, like linear and angular momenta. The time-reversal operator �̂ is an
anti-linear, anti-unitary operator, satisfying �̂2 = �̂†�̂ = �̂�̂† = 1 [36, 37]. For
instance, �̂ acts on a spinless particle by complex conjugation of the wave function
in the position representation. The need of �̂ in the definition of the dual-reverse
process is clear, for example, if the map is a unitary evolution, i.e., a map given
by a unique Kraus operator Û with Û † = Û−1. In that case the invariant state is
proportional to the identity matrix and the dual-reverse dynamics reads

ˆ̃U = �̂ Û † �̂†. (7.9)

The dual-reversemap is again a unitary evolution given by the unitary operator ˜̂U and
corresponds to the operational time reversal of the original unitary evolution given
by Û [38] (see Sect. 1.1.4). For instance, if Û is the evolution of a system under a
constant Hamiltonian Ĥ , Û = e−iĤ t/�, and Ĥ is time-reversal invariant, [Ĥ , �̂] = 0,

then ˜̂U = Û , i.e., the dual-reverse map is identical to the original one. On the other
hand, if the Hamiltonian depends on time according to some protocol, and Û is the

evolution between t = 0 and t = τ , then ˜̂U is the evolution that results when the
protocol is reversed (which is, in general, different from Û †).

The operator Â can also account for other transformations of the system state
that are necessary to exploit dynamical and static symmetries. In fact, this freedom
has a classical counterpart in fluctuation theorems that incorporate various symmetry
transformations [39–41].

7.3 Fluctuation Theorems

7.3.1 Nonequilibrium Potential and Detailed Balance

We now prove a general fluctuation theorem for a large family of CPTP maps. To
begin our introduction of these maps, let us focus on an important class of maps that
admit the following Kraus representation

M̂ ji = α j i |π j 〉〈πi |, (7.10)
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in terms of the eigenstates {|πi 〉} of the invariant density π , that is π |πi 〉 = πi |πi 〉.
Here the Kraus operators are labelled by two indices (i, j) that identify jumps or
transitions between eigenstates ofπ , i.e. |πi 〉 → |π j 〉, eachoccurringwith probability
||M̂ ji |πi 〉||2 = |α j i |2. Thesemaps are special in that a single application ofE destroys
any coherences between eigenstates ofπ in the initial stateρ, reducing the subsequent
action of the map to a classical Markov chain on the eigenstates {|πi 〉}. Therefore,
the dynamics induced by CPTP maps of the form (7.10) is essentially classical. On
the other hand, quantum effects arise if the Kraus operators are linear combinations
of the transition operators |π j 〉〈πi |, preserving coherences between eigenstates of
the invariant density matrix.

The family of maps that obey our fluctuation theorem go beyond the ‘classical’
case outlined above [Eq. (7.10)]. To be precise, we assign to each eigenstate |πi 〉,
whose strictly positive eigenvalue is denoted by πi , a nonequilibrium potential, sim-
ilar to the one used in the classical Hatano-Sasa theorem [33],

φi ≡ − ln πi . (7.11)

Then themaps that obey our fluctuation theorem are those where eachKraus operator
M̂k is a superposition of jump operators, all of them inducing the same change in
nonequilibrium potential �φk :

M̂k =
∑

i, j

mk
ji |π j 〉〈πi |, (7.12)

with mk
ji = 0 if φ j − φi �= �φk . That is, by measuring the operation M̂k we know

without uncertainty the change in the nonequilibrium potential, even though that
change could have occurred through a superposition of jumps.

One simple example of this construction is given in the context of a harmonic
oscillator coupled to an equilibrium reservoir of resonant two-level atoms at tem-
perature T [42] (see also the bosonic collisional model developed in Sect. 2.3.2). In
absence of external forces, the maps governing the harmonic oscillator evolution for
an infinitesimal time-step dt are Gibbs-preserving maps [43], for which the invariant
state is the equilibrium thermal state π = exp[−Ĥ/kT ]/Z being Ĥ = �ωâ†â the
Hamilton operator of the system. Furthermore, by measuring the reservoir, we are
able to detect jumps in the oscillator energy ladder as specified by theKraus operators

M̂↓ = √
dtγ↓â, M̂↑ = √

dtγ↑â†, (7.13)

with jump rates fulfilling γ↑ = e−�ω/kT γ↓. The absence of jumps is associated to
the operator M̂0 = 1 − dt[i Ĥ + 1

2 (γ↓â†â + γ↑ââ†)] (see Sect. 2.5). In this case,

following definition (7.11), the nonequilibrium potential is the energy of each Ĥ
eigenstate divided by kT , and the changes in the nonequilibrium potential �φ0 = 0
and �φ↓↑ = ±�ω/kT , correspond to the energy transferred to the reservoir as heat
divided by temperature (entropy transferred to the reservoir). Notice also that the
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jump operators are not of the ‘classical’ form (7.10) but (7.12), and in general do
not decohere superposition states in the energy basis, M̂↓↑(|n〉 + |m〉) ∝ |n ∓ 1〉 +
|m ∓ 1〉.

Turning to the general case, it is straightforward to check that condition (7.12) is
equivalent to

[M̂k, ln π ] = �φk M̂k

[M̂†
k , ln π ] = −�φk M̂

†
k (7.14)

and, consequently [M̂†
k M̂k, ln π ] = [M̂†

k M̂k, π ] = 0. These commutation relations
are similar to those satisfied by the Lindblad operators that appear in Davies’ the-
ory of systems weakly coupled to thermal baths (see Refs. [44–47] and Sect. 2.2).
They indicate that the pair M̂k , M̂

†
k act as ladder operators, inducing jumps between

the eigenstates |πi 〉 of π with a fixed change �φk in the nonequilibrium potential
φ. Finally, (7.12) ensures that the dual-reverse Kraus operators obey a generalized
detailed balance condition ˆ̃Mk = e�φk/2 ÂM̂†

k Â
† (7.15)

that can be obtained by plugging (7.12) into (7.8). One can also prove that the

form (7.12) is the only one for which the dual-reverse operators ˜̂Mk in Eq. (7.8)
are proportional to Â M̂†

k Â†. Remarkably, for maps with multiple invariant states
the quantities �φk do not depend on the specific invariant state π chosen to define
the nonequilibrium potential and the dual-reverse dynamics.3 In other words, the set
of values �φk associated to the Kraus representation Ek is a property of the map E.

7.3.2 Fluctuation Theorem for a Single CPTP Map

The basis of our fluctuation theorem is the proportionality between Kraus operators
and their dual-reverse counterpart in Eq. (7.15). This generalized detailed balance
condition connects the probability to observe a given jump, say k, with the probability
to observe the same jump in the dual-reverse dynamics. Specifically, suppose that
we initially prepare the system in the pure state |ψn〉, and then apply the map E,
registering the occurrence of the operation k. We then perform a quantum yes/no
measurement of the projector |ϕm〉〈ϕm |. The subscripts n and m are added to the
initial and final states so that later on we can consider measurements of arbitrary
observables with eigenstates |ψn〉 and |ϕm〉.

Now, let pm,k|n be the probability that given an initial state |ψn〉 we observe
operation k and the final state |ϕm〉, that is, the probability to observe the jump
|ψn〉 → |ϕm〉 under the action of M̂k . Let also p̃n,k|m be the probability to observe the

3F. Fagnola, private communication.
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inverse jump |ϕ̃m〉 → |ψ̃n〉, with |ψ̃〉 = Â|ψ〉, under the action of the dual-reverse

operator ˆ̃Mk . Using Eq. (7.15), the ratio of these two conditional probabilities is

pm,k|n
p̃n,k|m

= |〈ϕm |M̂k |ψn〉|2
|〈ψ̃n| ˆ̃Mk |ϕ̃m〉|2

= |〈ϕm |M̂k |ψn〉|2
|〈ψn|Â† ˆ̃Mk Â|ϕm〉|2

= |〈ϕm |Mk |ψn〉|2
|〈ψn|M̂†

k |ϕm〉|2
1

e�φk
= e−�φk . (7.16)

Equation (7.16) can be considered as a modified detailed balance relation for the
operation Ek and its dual-reverse Ẽk , which remarkably is independent of the initial
and final states. Notice thatwhen themap is unital, i.e.π = 1̂ and hence�φk = 0 ∀k,
the right-hand side of above equation equals unity and hence reduces to the one
obtained in Ref. [23], which is independent of the operation Ek .

Supposenow thatweprepare the system in the initialmixtureρi = ∑
n pin|ψn〉〈ψn|

and apply the map E. By measuring the initial state |ψn〉, the operation Ek and a
final state |ϕm〉 we obtain a trajectory (m, k, n) that is observed with a probabil-
ity pm,k,n = pm,k|n pin . We compare this to a dual-reverse process induced by the
map Ẽ applied to the initial state ρ̃f = ∑

m p̃fm |ϕ̃m〉〈φ̃m |. The dual-reverse trajectory
(n, k,m) is given as well by the initial state |ϕ̃m〉, the dual-reverse operation Ẽk and
the final state |ψ̃n〉, and it is observed with probability p̃n,k,m = p̃n,k|m p̃fm . The ratio
of the probability to observe a trajectory γ = n, k,m and the probability to observe
the reverse trajectory γ̃ = {m, k, n} in the dual-reverse process is then, from (7.16),

�γ ≡ ln
pn,k,m

p̃m,k,n
= σn,m − �φk, (7.17)

where σn,m ≡ − ln p̃fm + ln pin is a boundary term, only depending on the initial
state of the process ρi and the initial state of the dual-reverse ρ̃f . The quantity �γ

is a measure of how different the original and the dual-reverse trajectories are. In
particular, when the dual-reverse is the time reversed process (see below), �γ is a
measure of the irreversibility of the process for a given trajectory. In the following
we will show that it can be identified with an entropy production in many situations
of interest. The remarkable feature of Eq. (7.17) is that it splits�n,k,m into two terms,
one depending on the initial states of the process, as in generalized versions of the
fluctuation theorem for unitary dynamics [11], and the second one depending only
on the operation Ek by virtue of Eq. (7.16).

A (Jarzynski-type) integral fluctuation theorem immediately follows from Eq.
(7.17): 〈

e−�γ
〉 =

∑

n,k,m

pn,k,me
−�n,k,m =

∑

n,k,m

p̃m,k,n = 1, (7.18)

where 〈·〉 denotes the average over forward trajectories, pn,k,m . Finally by Jensen’s
inequality 〈ex 〉 ≥ e〈x〉, we have the second-law-like inequality
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〈�γ 〉 = 〈σn,m〉 − 〈�φk〉 ≥ 0. (7.19)

Here the boundary termσn,m averaged over forward trajectories leads to the following
entropic quantity

〈σn,m〉 = −
∑

n,k,m

pn,k,m ln p̃fm +
∑

n,k,m

ln pin

= S(E(ρi)) − S(ρi) + D(E(ρi)||Â†ρ̃fÂ), (7.20)

where D(ρ||σ) = −S(ρ) − Tr[ρ ln σ ] is the quantum relative entropy as introduced
in Sect. 1.1.6. The quantity (7.20) can then be interpreted as the increase in the entropy
of the system state due to the map action, S(E(ρi)) − S(ρi), plus the relative entropy
between E(ρi) and the (inverted) initial state of the backward process Â†ρ̃fÂ. On the
other hand, the average nonequilibrium potential change during the forward process
results in

〈�φk〉 =
∑

n,k,m

pn,k,m�φk =
∑

k

Tr[Ek(ρi)]�φk

= Tr[�̂(E(ρi) − ρi)] (7.21)

where the non-equilibrium potential operator is defined as �̂ ≡ − ln π , and we used
the property [�̂, M̂k] = M̂k�φk derived from condition (7.12). This implies that the
average potential change 〈�φ〉 can be expressed as the change in the expectation
value of the operator �̂ due to the map.

Equations (7.19) and (7.20) provide a general bound on the changes in the observ-
able �̂ induced by the action of the CPTP map E:

〈�φk〉 ≤ S(E(ρi)) − S(ρi) + D(E(ρi)||Â†ρ̃fÂ). (7.22)

As the relative entropy is non-negative, the right-hand side of this inequality min-
imizes for D(E(ρi)||Â†ρ̃fÂ) = 0, which corresponds to choosing the initial state
of the backward process as ρ̃f = ÂE(ρi)Â

†. The tighter bound 〈�φk〉 ≤ S(E(ρi)) −
S(ρi) is hence obtainedwhen choosing the finalmeasurements of the forward process
in the eigenbasis of E(ρi) and the backward process is initialized by just inverting
this state using Â. This suggests to interpret 〈�φk〉 as the entropy transferred from
the environment to the system during the map action. In Sect. 7.4 we will see how
inequality (7.22) [or equivalently (7.19)] extends the second law of thermodynamics
to many physical situations of interest, where the nonequilibrium potential changes
are associated to thermodynamic entropy flows.
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7.3.3 Fluctuation Theorem for Concatenated Maps

Our fluctuation theorems (7.17) – (7.18) can be easily extended to a concatenation of
CPTPmaps,� = ERER−1 . . .Er . . .E1,which is the case of generalMarkovquantum
evolution, unitary evolution punctuated by projective measurements, driven systems
in contact with thermal baths, etc. A trajectory now is given by the initial |ψn〉
and final states |ϕm〉 and the outcomes kr of all the measurements associated to
the maps r = 1, 2, . . . , R: γ = {n, k1, k2, . . . , kR,m}. Each map Er has a Kraus
representation, given by the operators M̂ (r)

k , and an invariant state π(r) for which the
dual-reverse map Ẽr and the nonequilibrium potential φ(r)

k are defined as in Eqs. (7.8)
and (7.11).

To derive the fluctuation theorem, we reverse the concatenation of maps. We
define the dual-reverse process as �̂ = Ẽ1 . . . Ẽr . . . ẼR−1ẼR (notice that, for R > 1,
in general, �̂ �= �̃, i.e., the dual-reverse process does not coincide with the dual-
reverse map of�). If each map obeys condition (7.12) [or, equivalently, (7.15)], then
we get the following symmetry relation

p(m, kR, . . . , k1|n)

p̃(n, k1, . . . , kR|m)
= |〈ϕm |M̂ (R)

kR
. . . M̂ (1)

k1
|ψn〉|2

|〈ψ̃n| ˜̂M (1)
k1

. . .
˜̂M (R)
kR

|ϕ̃m〉|2

= exp

[
−

R∑

r=1

�φ
(r)
kr

]
. (7.23)

A detailed fluctuation theorem can be now obtained by comparing the probability of
a trajectory γ = {n, k1, . . . , kR,m} in the forward process and the probability of the
inverse trajectory γ̃ = {m, kR, . . . , k1, n} in the dual-reverse process:

�γ ≡ ln
pγ

p̃γ̃

= σn,m −
R∑

r=1

�φ
(r)
kr

, (7.24)

with a corresponding integral fluctuation theorem that follows readily, like in Eq.
(7.18). Thus, for a concatenation of maps implemented in sequence, we merely have
to sum up the changes in the nonequilibrium potential along the trajectory. Notice
also that we effectively used a Kraus representation for the map� where each Kraus
operator was labeled with the sequence {k1, . . . , kR}, requiring possibly many more
than the necessary N 2 operators.

A clear interpretation of �γ arises if we consider the concatenation of the same
map E, acting on the stationary density matrix π , and the corresponding dual-reverse
process acting on π̃ . In this case pin = πn and p̃fm = πm , yielding

�γ = ln πn − ln πm −
R∑

r=1

�φ
(r)
kr

= 0 (7.25)
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for any trajectory γ . This is expected from the (modified) Crooks definition (7.7): the
original and the dual-reverse maps acting on π and π̃ , respectively, produce a trajec-
tory γ and its reverse γ̃ with identical probability. Therefore, � can be considered
as a measure of the distinguishability of the original and the dual-reverse process,
but also as a measure of how far the system is from the stationary state. These two
equivalent interpretations are familiar in thermodynamics when π is an equilibrium
state: the dual-reverse is the operational reverse process and �γ is the entropy pro-
duction which measures both irreversibility and departure from equilibrium [48]. In
more general situations, �γ is the part of the entropy production due to the fact that
the state of the system does not coincide with the stationary state. This can occur
in the transient from a nonsteady initial condition to the stationary state, or due to a
finite-speed driving. In such case,�γ is known as the nonadiabatic [49–51] or excess
[33, 52] entropy production, in contrast to the entropy production needed to maintain
the stationary state, which is often referred to as adiabatic or house-keeping entropy
production [53]. This connection will be clarified in the next chapter, in which we
investigate the decomposition of the total entropy production in a quantum process
into adiabatic and non-adiabatic contributions.

The fluctuation theorem stated in Eq. (7.24) exploits the dynamical symmetries
of the process through the dual-reverse map and the nonequilibrium potential, in the
same spirit as the detailed fluctuation theorem for processes connecting nonequilib-
rium states developed by Esposito and Van den Broeck [49–51]. Finally, the integral
theorem (7.18) is the quantum version of the Hatano-Sasa theorem [33], extending
the Jarzynski equality to nonequilibrium states. The corresponding second-law-like
inequality (7.19) extends to arbitrary boundary conditions the quantum Hatano-Sasa
inequality for concatenated CPTP maps proposed by Sagawa [11].

7.4 Applications

Despite their simplicity, the above fluctuation theorems include as special cases
many of the known quantum fluctuation relations, extends previous results to more
arbitrary situations, and can be used to obtain novel relationships. In the section,
we explain how these relations come about in our formalism. We first discuss the
boundary term σn,m and then apply the general theorem to different dynamics. Here
we specify Â = �̂, the anti-unitary time-reversal operator.

7.4.1 Boundary Terms

There are two common choices for boundary terms:

1. Reversible boundaries setting the initial state of the dual-reverse equal to the final
state of the forward process ρ̃f = ÂρfÂ

†, with ρf = ∑
m |ϕm〉〈ϕm |E(ρi)|ϕm〉〈ϕm |

and ρi being an arbitrary state.
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2. Equilibrium boundaries setting the initial state ρi of the forward process and the
initial state ρ̃f of the dual-reverse process as thermal equilibrium states.

Notice that, by selecting the initial states of the forward and dual-reverse processes,
we are also fixing the basis in which the quantum measurements are performed,
that is, the basis of the first (second) measurement of the forward (dual-reverse)
process corresponds to the eigenbasis of ρi(ÂρiÂ

†), and the basis of the first (second)
measurement of the dual-reverse (forward) to the one of ρ̃f(Â

†ρ̃fÂ).
In the first case, the boundary term

σn,m = − ln pfm + ln pin = sfm − s in (7.26)

is the increase of the stochastic or trajectory entropy [11, 19, 28, 42, 54]. Its aver-
age over forward trajectories yields the increase of von Neumann entropy during
the forward process, 〈σn,m〉 = S(ρf) − S(ρi), including the contribution due to the
application of the map E plus the average entropy increase due to the projective
measurement on the open system at the end of the process. This result follows from
Eq. (7.20) by noticing that in this case

D(E(ρi)||Â†ρ̃fÂ) = D(E(ρi)||ρf) = S(ρf) − S(E(ρi)). (7.27)

Notice that here the observable being measured at the end of the process is still arbi-
trary, a particular choice being an observable commuting with the density operator
after map action, which implies ρf = E(ρi) (see Sect. 1.3). This choice is relevant
from a theoretical point of view, but the resulting dual-reverse process is hard to
implement in general, except when the system is small enough to be prepared in an
arbitrary state (say, a few qubits or a harmonic oscillator).

The second choice, equilibrium initial states for the forward and dual-reverse
dynamics, is more interesting from an operational point of view, since the dual-
reverse dynamics can be easily implemented in the laboratory by equilibrating the
systemwith a thermal reservoir and reversing the protocol that drives theHamiltonian
[23, 37, 55, 56]. Let us suppose that, before applying any quantum map, the system
Hamiltonian is initially fixed Ĥi, whereas after the Hamiltonian is Ĥf . We further
take the initial state of the forward process to be equilibrium at inverse temperature
β, that is, ρi = eβ(Fi−Ĥi), where Fi is the corresponding free energy. Similarly, we
initialize the dual-reverse process in the final equilibrium at the same temperature,
ρ̃f = eβ(Ff−Ĥf ). Then

σn,m = β(E f
m − E i

n − Ff + Fi) ≡ β(�En,m − �F), (7.28)

where the {E i,f
l } are the eigenvalues of the initial and final Hamiltonians, respectively.
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7.4.2 Unital Work Relations

As a first example, we take our quantum map to be unital (or bistochastic [57]), that
is, the identity is an invariant state of the map, E(1) = � (although the identity may
not be the only one). Any unitary evolution Û is unital, Û1Û † = 1, and its dual-

reverse map is the time-reversal ˆ̃U = �̂Û †�̂†. The depolarizing channel acting on
finite dimensional systems introduced in Sect. 2.1.4 is also a unital map. Another
example of a unital map is the projective measurement of an observable but, more
generally, any minimally disturbing measurement is unital [9]. For these maps, the

Kraus operators are self-adjoint M̂†
k = M̂k , leading to dual-reverse operators ˆ̃Mk =

�̂M̂k�̂
†. Finally, pure decoherence is also implementedwith unitalmaps that remove

all the off-diagonal elements in a specified basis. For all unital maps or concatenation
of such maps, �φk = 0 for all k, and the fluctuation theorem only consists of the
boundary term.

Let us now consider a concatenation of unital maps as describing a physical
process. An important example is a process consisting of several unitary transfor-
mations induced by driven time-dependent Hamiltonians, punctuated by a number
of measurements and/or pure decoherence processes. In each map, energy can be
transferred to the system. We call the energy input into the system due to the driving
wdrive

γ , driving work, and wmeas
γ the energy input due to the measurements and/or

decoherence processes. Whereas the driving work wdrive
γ has a clear interpretation as

the energy supplied by driving, the origin of the energy input due to measurement
is still obscure. This energy transfer occurs, for instance, in a projective measure-
ment of an observable that does not commute with the Hamiltonian. In any case,
�En,m = wdrive

γ + wmeas
γ and, if we choose equilibrium initial states the boundary

term σn,m is given by (7.28) and

�γ = β(wdrive
γ + wmeas

γ − �F) = βwdiss
γ . (7.29)

The fluctuation theorem (7.24), therefore, reproduces the work fluctuation theorems
for unital processes derived in Refs. [1, 17, 23, 24] (see also [58, 59]). Notice that,
if we allow the system to relax to equilibrium after the maps have been applied,
then �γ equals the entropy production along the whole process and Eq. (7.19)
reproduces the second law inequality 〈�γ 〉 = β〈wdiss

γ 〉 ≥ 0 [60]. We stress that this
result is valid for any concatenation of unital maps. On the other hand, if we choose
the initial state of the dual-reverse process as the final state of the original process,
�γ = − ln(pfm/pin) = sfm − s in is just the change in stochastic entropy. When aver-
aged, the entropy production � becomes the change in the von Neumann entropy of
the system

�Ssys = 〈�γ 〉 ≥ 0, (7.30)
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whose positivity follows fromEq. (7.19). This provides an alternative thermodynamic
proof of thewell-knownproperty that unitalmaps can only increase the vonNeumann
entropy [8].

7.4.3 Thermalization and Heat

Another interesting example is a generic thermalization map [18] at inverse temper-
ature β = 1/(kBT ) (or Gibbs-preserving map [43]), that is, a map whose invariant
state is the equilibrium density matrix π = eβ(F−Ĥ), where Ĥ = ∑

j E j |e j 〉〈e j | is
the Hamiltonian of the system and F its free energy at temperature T . Thus, the
nonequilibrium potential is related to the energy as φ j = − ln π j = β(F − E j ).
To verify our fluctuation theorem, each Kraus operator M̂k must promote transi-
tions between energy eigenstates involving a given change of energy �Ek , that is,
M̂k = ∑

j i m
k
ji |e j 〉〈ei |, where the sum runs over pairs of energy eigenstates with the

same energy difference�Ek = E j − Ei . Now, since the energy is supplied by a ther-
mal reservoir, we can identify these energy exchanges as heat flowing from the reser-
voir, qk = �Ek , and the change in nonequilibrium potential is hence �φk = βqk .

The dual-reverse Kraus operators ˜̂Mk ∝ M̂†
k = ∑

j i m
k
ji |ei 〉〈e j | (for a time-reversal

invariant Ĥ ) induce the reverse transitions accompanied by the reverse flow of heat
q̃k = −qk , and thus can be identified with a Kraus operator in the original map.

One simple example of a Gibbs-preserving map acting on a single qubit system
with basis {|g〉, |e〉} and Hamilton operator Ĥ = E |e〉〈e| is the generalized ampli-
tude damping channel, for which a Kraus representation was given in Eq. (2.22) of
Sect. 2.1.4

M̂0 = √
p

(
1 0
0

√
1 − λ

)
, M̂1 = √

p

(
0

√
λ

0 0

)
, (7.31)

M̂2 = √
1 − p

(√
1 − λ 0
0 1

)
, M̂3 = √

1 − p

(
0 0√
λ 0

)
,

with p ≡ nth+1
2nth+1 and λ ≡ 1 − e−t/τR , nth = 1/(eβE − 1) being the mean number of

excitations in a thermal bosonic reservoir, and τR = 1/γ0(2nth + 1) a characteristic
relaxation time scale (see Sect. 2.1.4). Here the operators M̂0 and M̂2 corresponding
to continuous monitoring processes and inducing decoherence in the energy basis
produce a null change in the nonequilibrium potential, �φ0 = �φ2 = 0. On the
other hand, operators M̂1 and M̂3 correspond to jumps induced by the exchange of
an energy quantum E with the environment: from the excited to the ground state,
�φ1 = −βE , and from the ground to the excited state, �φ3 = βE . From Eq. (7.8)
and the fact that �̂Ĥ�̂† = Ĥ , we have that the Kraus operators for the dual-reverse
map are
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˜̂M0 = √
p

(
1 0
0

√
1 − λ

)
,

˜̂M1 = √
1 − p

(
0 0√
λ 0

)
,

˜̂M2 = √
1 − p

(√
1 − λ 0
0 1

)
,

˜̂M3 = √
p

(
0

√
λ

0 0

)
, (7.32)

which correspond to the time-reversed process in which jumps up are transformed
into jumps down and vice-versa. This simple example shows how our theorem is
able to link the physical picture provided by the Kraus representation (7.31) with
thermodynamics. Taking t � τR (λ � 1) the generalized amplitude damping chan-
nel describes the action of the environment during a a small time interval, which can
be used to model more general coarse-grained evolutions through the concatenation
of different maps.

Consider now a thermodynamic process formed by a concatenation of thermaliza-
tion steps induced by N distinct thermal reservoirs with inverse temperatures {βi }Ni=1
interspersed by unital transformations (unitary drivings, measurements or decoher-
ence). For this setup, the nonequilibrium potential changes during each step of the
evolution is either �φ

(i)
k = βi q

(i)
k or �φk = 0. If we choose the initial state of the

dual-reverse process as the final state of the original process [c.f. Eq. (7.26)], we
arrive at

�γ = sfm − s in −
N∑

i=1

βi q
(i)
γ , (7.33)

with q(i)
γ the total heat flow from the i th reservoir during the whole trajectory γ .

In this case, Eq. (7.24) gives a fluctuation theorem for the total irreversible entropy
production in the process [28, 61], and Eq. (7.19) results in

〈�γ 〉 = �Ssys −
N∑

i=1

βi 〈q(i)
γ 〉 ≥ 0, (7.34)

corresponding to the generalization of the Clausius inequality to many thermal reser-
voirs, and nonequilibrium initial and final states.

On the other hand, the equilibrium boundary terms are interesting when restricted
to one thermal reservoir, leading to

�γ = β(�En,m − �F − qγ ) = β(wγ − �F), (7.35)

where we have used the energy balance �En,m = wγ − qγ . Again, � equals the
entropy production along the whole process consisting of the map concatenation
followed by a thermal relaxation. The detailed and integral fluctuation theorems
following from the identification (7.35) are, respectively, the quantumTasaki-Crooks
and Jarzynski fluctuation theorems for thermal maps punctuated by unital maps.

As a final corollary, we point that the identification of nonequilibrium potential
changes with the heat transferred from the medium to the open system provides a
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general formulation of Landauer’s principle, valid for any Gibbs-preserving map E.
Recalling that 〈�φ〉 = 〈q〉/kT in Eq. (7.22) we immediately obtain

− 〈qγ 〉 ≥ kT [S(ρi) − S(E(ρi))] . (7.36)

This equation states that the heat dissipated into a thermal environment as a conse-
quence of the map, −〈qγ 〉, must be, at least, the reduction in the system’s entropy
(which can be identifiedwith changes in information processes such as erasure) times
kT [62–64].

7.4.4 Generalized Gibbs-Preserving Maps

All the results in the previous subsection can be extended to the more general class of
maps preserving generalized Gibbs ensembles [65, 66]. This kind of ensembles are
relevant in the study of the emerging thermalization properties of isolated quantum
many-body systems after a quantum quench [67–74]. Furthermore they are actually
attracting increasing attention in more general contexts including the study of work
fluctuations in arbitrary out-of-equilibrium integrable systems [75] or resource the-
ories and trade-off relations in processes concerning individual quantum systems
[76, 77]. A generalized Gibbs ensemble (GGE) can be defined by means of entropy
maximization for an extensive set of conserved quantities (or charges) { Î (α)} and
associated Lagrange multipliers {μα} [65, 77, 78]

ρGGE ≡ e− ∑
α μα Î (α)

Z
= e− ∑

α μα Î (α)−F (7.37)

where Z = Tr[exp(−∑
α μα Î (α))] is the partition functionwhich canbe alternatively

expressed bymeans of F ≡ − ln Z , an entropic quantity playing an analogous role to
the equilibrium free energy for the canonical ensemble [77]. Notice that the canonical
Gibbs ensemble is indeed recovered by setting the only conserved quantity to be
the energy Î (1) = Ĥ , the corresponding Lagrange multiplier being then the inverse
temperature μ1 = β.

We are interested in maps preserving the GGE, that is π = ρGGE, and admitting a
Kraus representation fulfilling our condition (7.12). A straightforward example can
be constructed by considering a reset-like operation of the form

E(ρ) = pρGGE + (1 − p)ρ (7.38)

which with probability p substitutes the state of the system by ρGGE, and with prob-
ability 1 − p leaves it untouched. For any such map one can construct a Kraus
representation E(ρ) = M̂0ρ M̂

†
0 + ∑

i j M̂i jρ M̂
†
i j with
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M̂0 = √
1 − p 1̂, M̂i j = √

p πi |πi 〉〈π j |, (7.39)

which are indeed of the form (7.10).
The nonequilibrium potential operator for the GGE (7.37) now reads

�̂ =
∑

i

φi |πi 〉〈πi | =
∑

α

μα

(
Î (α)

)
− F. (7.40)

Notice that for the simpler case inwhich [ Î (α), Î (α′)] = 0∀α, α′ weobtain nonequilib-
rium potential changes associated to each Kraus representation �φk = ∑

α

μα�I (α)
k , where �I (α)

k is the exchange in the charge α with the environment in
a jump k between the ρGGE eigenstates. This is for instance the case of the grand
canonical ensemble in which the two charges are the system Hamiltonian Î (1) = Ĥ
and the number of particles Î (2) = N̂ and their respective Lagrange multipliers are
the inverse temperature μ1 = 1/kBT and the chemical potential divided by temper-
ature μ2 = μ/kBT [76]. In more general situations with non-commuting charges,
�φk may not be decomposed as the previous sum, since the changes �I (α)

k may not
be well defined between jumps. This second kind of generalized Gibbs ensembles
corresponds e.g. to the case of harmonic oscillators in displaced or squeezed thermal
states (see Sects. 1.2.4 and 1.2.5), naturally emerging as steady states of the dynamics
when considering general reservoir dynamics as in Sect. 2.3.2.

We can now generalize our previous results by considering a thermodynamic
process in which the open system follows a sequence of GGE-preserving steps
interspersed by unital transformations (e.g. sudden quenches, measurements, ...).
Assuming the same invariant state for each step of the dynamical evolution and
initial reversible boundaries, we obtain

�γ = sfm − s in − �φγ = sfm − s in −
∑

α

μα�I α
γ , (7.41)

where we denoted by �φγ and �I α
γ the total changes during the whole sequence

γ , and in the last equality we considered commuting charges. In the later case, as
long as the quantities �I (α)

γ correspond to the total transfer of quantity I (α) from
the environment, we may immediately identify �φα as the entropy produced in
the medium. Equation (7.24) with Eq. (7.41) then provides detailed and integral
fluctuation theorems for the total entropy production in driven open systems with
commuting charges. When the charges do not commute or when the environment
consists of multiple reservoirs, the interpretation of the FT (7.24) may be more
involved and depends on the specific situation (see Chaps. 8 and 9). In any case, the
second-law-like inequality (7.19) introduces a trade-off relation between currents
valid for the general case

�Ssys ≥
∑

α

μα〈�I (α)
γ 〉, (7.42)

which coincides with the inequalities recently derived in Ref. [77].
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On the other hand, we may also consider equilibrium boundaries by replacing
the initial and final Gibbs distributions previously employed by generalized Gibbs
ensembles [75]. Consider now a process as above but for which the arbitrary set
of operators { Î (α)} appearing in Eq. (7.37) vary in time throughout the change of
some external control parameter. Let us denote { Î (α)

i } the initial charges when the
protocol is started and { Î (α)

f } their final value after the sequence of generalizedGibbs-
preserving and unital maps has been applied. In this case we assume for simplicity
that the set of charges commutes between each others at all times. We obtain for the
boundary term

σn,m =
∑

α

μα

(
I f(α)
m − I i(α)

n

) − �F, (7.43)

where I i(α)
n and I f(α)

m are, respectively, the eigenvalues of Î (α)
i and Î (α)

f . Adding the
nonequilibrium potential changes associated to jumps detected during the forward
process, the entropy production � can be written in the form

�γ =
∑

α

μαw
I (α)

γ − �F (7.44)

where we employed the first-law-like balance for the αth conserved quantity:

w I (α)

γ ≡ I f(α)
m − I i(α)

n − �I α
γ . (7.45)

Here w I (α)

γ corresponds to a generalized work notion for the quantity Î (α), taking
into account the changes in the charge induced by external driving, in contrast to
the changes induced by interaction with the environment akin to heat, �I α

γ (see also
Refs. [75, 77]). In this case Eqs. (7.24) and (7.18) represent generalized versions
of the Crooks theorem and Jarzynski equality for open quantum systems in a GGE
preserving environment and driven arbitrary far from equilibrium. They will be of
crucial relevance to describe irreversibility and work in quenched many-body sys-
tems with a set of conserved quantities, extending previous results for isolated driven
systems [75] to the open configuration. This extension is of great importance because
in typical configurations only (open) subsystems reach a GGE as steady state, while
the state of the global system remains pure at all times. Our formalism allows the
thermodynamic description of interacting subsystems while subjected to unital mea-
surements or further driving protocols. Finally Eq. (7.22) gives us a bound governing
the trade-off between the different conserved quantities. In particular for the case in
which energy is one of the conserved charges

β〈wγ 〉 ≥ �F −
∑

α

μα〈w I (α)

γ 〉, (7.46)

which predicts work extraction by means of externally fueling the open system with
other charges [79] (see also [80]).
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7.4.5 Lindblad Master Equations

Another illustration of our results are the Lindblad master equations that model the
Markovian dynamic evolution of open quantum systems (see Sect. 2.2). As intro-
duced in Sect. 2.2.1, a master equation in Lindblad form for the evolution of a quan-
tum system in some suitable interaction picture can be specified by an Hermitian
(Hamiltonian-like) operator Ĥ , and a collection of Lindblad operators {L̂k}Kk=1:

dρt

dt
= −i[Ĥ , ρt ] +

∑

k

D[L̂k]ρt ≡ Lρt , (7.47)

where the super-operator D is defined as

D[L̂]ρ ≡ L̂ρ L̂† − 1

2

(
L̂† L̂ρ + ρ L̂† L̂

)
. (7.48)

To make contact with our fluctuation theorem, we must introduce a master equation
unraveling introducing a trajectory description of the dynamics as in Sect. 2.5. The
solution to Eq. (7.47) can be obtained by concatenating a sequence of maps together
that evolve the system forward in small time steps dt :

E(ρt ) = (1̂ + Ldt)ρt = M̂0ρt M̂
†
0 +

K∑

k=1

M̂kρt M̂
†
k , (7.49)

with Kraus operators

M̂0 = 1̂ −
(
i Ĥ + 1

2

∑

k

L̂†
k L̂k

)
dt (7.50)

M̂k = L̂k

√
dt, 1 ≤ k ≤ K . (7.51)

This map has at least one invariant state π [47], obeying Lπ = 0.
To satisfy our fluctuation theorem, the Kraus operators {M̂k} must be of the form

(7.12) and verify the generalized detailed balance relations (7.15). Enforcing these
conditions on {M̂k}k≥1 immediately leads to a restriction on the Lindblad opera-
tors similar to (7.12). That is, each Lindblad operator must induce jumps between
invariant-state eigenstates, L̂k = ∑

j i m
k
ji |π j 〉〈πi |, where mk

ji = 0 for all i, j such
that � j − �i �= ��k . In this case, the generalized detailed balance relation (7.15)
holds: ˜̂Lk = e�φk/2 �̂ L̂†

k �̂†, k ≥ 1. (7.52)

As for the Kraus operators, if the Lindblad operator L̂k induces jumps where the
nonequilibrium potential change equals �φk , then they obey commutation relations
similar to (7.14):
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[L̂k, �̂] = −�φk L̂k, [L̂†
k, �̂] = �φk L̂

†
k, (7.53)

with �̂ = − ln π , and [L̂†
k L̂k, �̂] = [L̂†

k L̂k, π ] = 0.
Let us verify now whether M̂0 also satisfies our conditions. The dual-reverse

operator (7.8) reads:

˜̂M0 = �̂π
1
2

[
1̂ −

(
−i Ĥ + 1

2

∑

k

L̂†
k L̂k

)
dt

]
π− 1

2 �̂† (7.54)

Since [L̂†
k L̂k, π ] = 0, for our generalized detailed balance condition to hold, that is

˜̂M0 ∝ �̂M̂†
0 �̂

†, we must assume that [Ĥ , π ] = 0, forcing the invariant state to be
diagonal in eigenbasis of the Hermitian operator Ĥ . If Ĥ is the Hamilton operator
of the open system, an immediate consequence of this observation is that �φk must
correspond to jumps in the energy. Notice however that in many situations Ĥ = 1,
as Eq. (7.47) may be written in interaction picture with respect to the system and
environment Hamiltonians. In those situations we will obtain no restrictions in the
basis of the jumps. In any case we have

˜̂M0 = �

[
1̂ −

(
−i Ĥ + 1

2

∑

k

L̂†
k L̂k

)
dt

]
�̂† = �̂M̂†

0 �̂
† (7.55)

Thus, M̂0 satisfies our generalized detailed balance relations with �φ0 = 0, as one
would expect for a Kraus operator that does not induce transitions.

Consider now the following process. We run the Lindbladian evolution for an
interval of time [0, τ ], and measure some observables at time t = 0 and t = τ . In
this scenario, a trajectory γ = {n, k1, k2, . . . , kN ,m} is given by the initial and final
measurement outcomes, n and m respectively, and a set of jumps kl occurring at
times tl . Notice that the stochastic trajectory, as defined in the previous sections,
should contain a big number of instances kr = 0, i.e., corresponding to operation
M̂0, between jumps. However, these operations do not contribute to �γ and we can
omit them from the discussion. In this case,

�γ = σn,m −
∑

l

�φkl . (7.56)

With the entropic boundary conditions (7.26),we arrive at the quantumgeneralization
of the Hatano-Sasa theorem [33] for the nonadiabatic entropy production of Lindblad
master equations, as developed in Ref. [19]. Furthermore, if the final projective
measurement on the open system after the Lindbladian evolution is performed in its
eigenbasis, the average over trajectories yields

〈�γ 〉 = �Ssys − 〈�φγ 〉 = D(ρi||π) − D(ρf ||π), (7.57)
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where we denoted �φγ = ∑
l �φkl . This result coincides with the expression

first introduced by Spohn for arbitrary quantum dynamical semigroups [34], then
extended by Yukawa to driven quantum Markov processes [10]. The equivalence
between our trajectory picture and the average thermodynamic behavior has been
discussed in Ref. [13].

So far we have been treating the dissipation in the Lindblad master equation as
a whole. When the dissipation can be interpreted as coming from M distinct ther-
modynamic reservoirs (or Markovian noise processes), we can employ our formula
for the entropy production of concatenated maps (7.24) to arrive at a complemen-
tary formulation of the thermodynamics of the process. The effect of each of the M
reservoirs is captured in the dynamics by a separate collection of Lindblad operators
{L̂k,α}Kα

k=1, where α = 1, . . . , M labels the reservoir:

dρt

dt
= − i

�
[Ĥ , ρt ] +

∑

α

∑

k

D[L̂k,α]ρt . (7.58)

Similar to (7.49), we can implement the evolution of this equation over a small time
interval dt by a map, except now it is formed by a concatenation of intermediary
maps, E(ρt ) = EαM · · ·Eα1E0(ρt ), each arising from the different terms in Eq. (7.58).
The firstmapE0(ρt ) = ρt − (i/�)[Ĥ , ρt ]dt captures the unitary part of the dynamics
with a single Kraus operator M̂0,0 = 1̂ − (i/�)Ĥdt ; the subsequent maps describe
the dissipative reservoirs, whose Kraus operators are

M̂0,α = 1̂ −
(
1

2

∑

k

L̂†
k,α L̂k,α

)
dt (7.59)

M̂k,α = L̂k,α

√
dt, 1 ≤ k ≤ Kα. (7.60)

Notice that the exact sequence of maps Eα is immaterial as they all commute
to first order in dt . Crucially, each reservoir is assumed to have its own invari-
ant state, Eα(π(α)) = π(α) (or equivalently

∑
k D[L̂k,α]π(α) = 0), while the invari-

ant state of the map E0 is just the identity, 1. For example, a thermal reservoir
at inverse temperature β(α) would have the equilibrium Boltzmann density matrix
π(α) = eβ(α)(F (α)−ĤS) as invariant state, with ĤS the Hamilton operator of the open
system. The corresponding Lindblad operators must then induce jumps in that state,
L̂k,α = ∑

i, j m
k,α
j i |π(α)

j 〉〈π(α)
i |, to satisfy our generalized detailed balance relation

(7.16). As a result, the {M̂0,α}Mα=0 immediately satisfy the generalized detailed bal-
ance relations with�φ(α) = 0, which remarkably does not require the invariant state
of the whole Lindblad equation to commute with the generic Hermitian operator Ĥ .

Now, a trajectory for this setup corresponds to a list γ = {n, k1, k2, . . . , kN ,m}
given by the initial and final measurement outcomes, n and m, and a set of jumps kl
occurring at times tl in the αl reservoir. Notice that only one jump in one of the M
reservoirs can happen in any given dt , since the probability to observe two jumps is
negligible. The result from (7.24) is then
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�γ = σn,m −
∑

l

�φ
(αl )
kl

. (7.61)

This point of view allows us to treat multiple reservoirs at once, such as an engine
operating between hot and cold thermal reservoirs, each represented by a different
set of Lindblad operators [81]. Using the entropic boundary conditions (7.26), the
resulting average entropy production has long been known from the works of Spohn
and Lebowitz [82] andAlicki et al. [81], where again our version generically includes
the entropic cost of the final projective measurements on the open system.

It is remarkable that our fluctuation theorem can yield different results for �γ ,
depending on the resolution of the stochastic trajectory. For instance, in the case of
the system in contact with several thermal reservoirs, �γ is given by (7.61) if the
trajectory keeps track of the jumps induced by each reservoir separately. On the other
hand, if the trajectory only gives information about the jumps of the system in the
basis where the stationary density matrix of the entire Lindblad equation is diagonal,
we have (7.56). Consequently, for the samemap one can have both (7.56) and (7.61).
The distinction is the same as the difference between the fluctuation theorem for the
entropy production (7.61) and the non-adiabatic entropy production (7.56) [49–51]
as we will clarify in more detail in the next chapter.

We stress that condition (7.53) is fulfilled by almost all known examples of driven
Lindblad equations for systems weakly coupled to reservoirs. If the Hamiltonian
of the open system ĤS (not necessarily equivalent to the Hermitian operator Ĥ )
is constant, the weak coupling limit and rotating wave approximations results in a
Lindblad equation where the operators L̂ω, L̂†

ω are labelled by the Bohr frequencies
ω which are transition frequencies between the levels of the Hamiltonian, i.e, they
are of the form ω = ωi − ω j , for some pair of levels i, j with energies εi = �ωi

and ε j = �ω j , respectively (see Sect. 2.2.2 and the examples in Sect. 2.3). These are
ladder operators that lower and raise the energy levels, obeying the commutation
relations:

[L̂ω, ĤS] = �ωL̂ω, [L̂†
ω, ĤS] = −�ωL̂†

ω. (7.62)

Their commutator with the logarithm of the stationary density operator π can be
written as

〈πi |[L̂ω, ln π ]|π j 〉 = 〈πi |L̂ω|π j 〉 ln πi

π j
. (7.63)

For (7.53) to be satisfied it is sufficient that the ratio πi/π j = e f (�εi j ) is a function
of the energy difference �εi j = ε j − εi . In that case

[L̂ω, ln π ] = f (�ω)L̂ω, (7.64)

and �φω = f (�ω). In the case of a single thermal reservoir f (ε) = βε, and �φω

is the entropy flow to the reservoir (heat divided by temperature) associated to a
transition of frequency ω. Furthermore, the Lindblad operators will come in pairs
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{L̂ω, L̂−ω} such that ˆ̃Lω = L̂−ω ∝ L̂†
ω, and every jump can be undone. As a result,

the dual-reverse process is equivalent to the original process. This approach was
developed for work fluctuations theorems in Ref. [83] and heat fluctuations in Ref.
[84].

The preceding arguments can be naturally extended to the case of a time-dependent
Hermitian operator Ĥ(t) and time-dependent Lindblad operators L̂k(t), yielding an
instantaneous stationary state π(t) (or states π(α)(t)) [18, 85]. This is the case when
the open system Hamiltonian ĤS(t) = ĤS(λt ) is driven through the slow (not nec-
essarily quasi-static) change of a collection of external parameters λt , the Lindblad
operators and the Hermitian operator become parameterized by the external param-
eters L̂k(λt ) and Ĥ(λt ), and our generalized detailed balance relation will hold at
every time [8, 86, 87]. For fast periodic driving, Floquet theory can be used to derive
a Lindblad master equation [46]. This theory picks out as a preferred eigenbasis a
collection of time-periodic states, or Floquet states, each with a corresponding quasi-
energy or Floquet energy. The collection of Lindblad jumpoperators {L̂k} then induce
transitions between Floquet eigenstates of the periodic Hamiltonian leading again
to the generalized detailed balance relation (7.52) with �φk the change in Floquet
eigenvalues in the kth jump, which often corresponds to the heat exhausted into the
environment [46, 88]. Finally, we recall that our predictions can be used to recover
the fluctuation theorems derived for driven Markov dynamics presented in Ref. [19].

7.5 Conclusion

In this chapter we have presented a general fluctuation theorem, Eqs. (7.17) and
(7.18), for a large class of CPTP quantum maps and concatenations [Eq. (7.24)] that
verify the generalized detailed balance condition in Eq. (7.15). From these relations
many of the known quantum fluctuation theorems follow naturally. Included in this
family are classical fluctuation theorems for arbitrary stochastic maps, as such maps
are special cases of CPTP quantum maps where the dynamics remain diagonal in
a particular basis. The theorem exploits the dynamical symmetries of a process
and its dual-reverse and can be interpreted as a (generalized) quantum version of
the Hatano-Sasa theorem [33]. The most important characteristic of our theorem
is that it is fulfilled for general dynamics under simple conditions only depending
on the map, and consequently it can be applied to very arbitrary situations without
caring about the specific characteristics of the environment. When specialized to
maps induced by thermodynamic reservoirs, our results reproduce known quantum
fluctuation theorems for work and entropy production, extending preceding results
to more general situations such as generalized Gibbs-preserving maps.

We have extended the notion of the dual-reverse process, first introduced by
Crooks [18] as a time-reversal, and clarified its relationship with the time-reversal
process used by Campisi et al. and Watanabe et al. to derive fluctuation theorems
for unitary evolution punctuated by projective measurements [17, 37]. The relation
between those processes and the classical dual process used by Esposito and Van den
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Broeck to split the entropy production into an adiabatic and nonadiabatic contribution
[49–51] will be further clarified in the next chapter.

Our results also help to understand the peculiarity of unitalmaps regarding entropy
exchange, a fact already pointed out in Refs. [17, 23, 24, 26, 37]. The nonequilib-
rium potential associated to those maps is constant and therefore it does not appear
in the fluctuation theorem. The entropy production �γ in this case is only given by
the boundary terms, suggesting that unital maps can be induced without any entropy
exchange between the system and its surroundings. Thermalization at infinite tem-
perature is an obvious example, but decoherence or, equivalently, projective and
minimally disturbing measurements, are relevant examples of unital maps. In all
these cases, energy exchange between the system and its surroundings can occur, but
this energy exchange does not imply any entropy change in the environment.

For nonunital maps our work shows how quantum fluctuation theorems follow
both in detailed and integral versions in very arbitrary situations. We have seen that,
by including the nonequilibriumpotential as a fluctuating quantity, no correction term
is necessary, as we advanced in Sect. 7.1. The resulting quantity fulfilling the fluctua-
tion theorems,�γ , can then be given a clear interpretation as an entropy production in
most setups of physical interest, in contrast to σ in Eq. (7.1) which simply represents
a boundary term only depending on the initial states of the thermodynamic pro-
cesses [28]. Furthermore, from our general theorem we obtained a second-law-like
inequality, 〈�γ 〉 ≥ 0, establishing a general bound on the average nonequilibrium
potential changes during the application of a map in terms of information-theoretic
entropies, c.f. Eq. (7.22). The precise meaning of the entropy production � in our
theorem depends on the choice of the Kraus representation, and hence must be clari-
fied specifying the properties of the environment, which in turn determines the nature
of the nonequilibrium potential changes. In the next chapter we will further explore
the properties of the entropy production in general quantum processes and establish
connections between the framework developed here for CPTP maps, and a general
picture where the environment appears explicitly in the dynamical description.
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Chapter 8
Entropy Production Fluctuations
in Quantum Processes

In the preceding Chap.7, we derived a general fluctuation theorem (FT) in detailed
and integral form valid for a broad class of CPTP quantum maps, which model a
variety of quantum evolutions as we explained in more detail in Chap.2. In this
chapter we clarify and extend these previous results by considering together the
system and its surroundings. By tracing over the environment degrees of freedom, we
can then recover the quantummap description for the reduced open system dynamics.
Making use of general concepts in quantum measurement theory as introduced in
Sect. 1.3, quantum correlations (Sect. 1.4), and CPTPmaps theory (Sect. 2.1), wewill
be able to ascribe a precise meaning to the entropy production using von Neumann
quantum entropy.

Most of the research on quantum FT’s is only valid for equilibrium reservoirs
with a focus on the energy exchange between the system and the environment in
the form of heat and work [1, 2]. By contrast, classical FT’s have been formulated
more generally for generic Markov processes [3–5] (see also the review [6]) using
the entropy production instead of the heat and work, which are only meaningful in
physical situations where a system exchanges energy with equilibrium reservoirs. In
light of the success of classical FT’s, it is desirable to obtain complementary FT’s for
generic quantum dynamics. They could be of particular relevance, since quantum
mechanics allows for novel and interesting nonequilibrium environments of finite
size [7–9], as well as coherent [10, 11], correlated [12], or squeezed [13–15] thermal
reservoirs. Such environments can induce striking thermodynamic behavior, such
as tighter bounds on Landauer’s principle [16, 17], or be used to construct thermal
machines able to outperform Carnot efficiency and traditional regimes of operation
[18–20].

The task of deriving FT’s for generic quantum dynamics also implies a more
detailed characterization of entropy production in generic nonequilibrium quantum
contexts, a problem that has experimented a growing interest in recent years [19, 21–
30]. Nevertheless, the recent theoretical progress has not yet resulted in a satisfactory
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quantum microscopic framework from which entropy production can be adequately
characterized and interpreted in general nonequilibrium situations. Our results con-
tribute to the development of such a general framework by deriving average and
stochastic expressions for the total entropy production in system and environment
in a two measurement protocol (TMP) scheme. This setup then allows us to split
the entropy production into an adiabatic and a nonadiabatic contribution both ful-
filling independent FT’s, exactly as in classical stochastic thermodynamics [5, 31,
32]. However, contrary to what happens in classical systems, the split is not always
possible, and specific conditions on the processes are necessary.

We organize the chapter as follows. In Sect. 8.1 we introduce a thermodynamic
process for a generic bipartite system, that models a system and its environment. We
will define in this section the entropy production along the process and the concomi-
tant reduced system dynamics. We then develop a FT for this entropy production
in Sect. 8.2 using a time-reversed or backward thermodynamic process. In Sect. 8.3,
FT’s for the adiabatic and nonadiabatic entropy production are derived. Our results
are extended to arbitrary quantum trajectories as given by concatenations of CPTP
maps in Sect. 8.4. This is applied to the specific case of Lindblad Master Equations
in Sect. 8.5. Finally, we conclude in Sect. 8.6 with some final remarks.

8.1 Quantum Operations and Entropy Production

We start by introducing a generic process for a system interacting with some ancilla
or environment and possibly subjected to an external driving control. The process is
based on some initial and final measurements and a unitary evolution in between, as
depicted in Fig. 8.1. We focus on the dynamics of the global bipartite system (system
plus environment), but also in the reduced dynamics that affects the system and that
can be described as a CPTP map (see Sect. 2.1). For those dynamics we introduce
an entropy production based on the change of von Neumann entropy in the global
system.

8.1.1 The Process

Along the chapter we consider an isolated quantum system composed of two parts,
system and environment, with Hilbert spaceHS ⊗ HE . We will focus our attention
on the entropy production along the generic process depicted in Fig. 8.1, consisting
of initial and final local projective measurements that bracket a unitary evolution.
Notice that this corresponds to an extension of the generalized measurement process
introduced in Sect. 1.3.2. The outcomes of the measurements constitute a quantum
trajectory, which plays a crucial role in the formulation of FT’s, as we have seen in
Chap.7, and will further emphasize in Sects. 8.2 and 8.3.
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Fig. 8.1 Schematic picture of the forward process presented in the main text. System and environ-
ment start from an uncorrelated state ρS ⊗ ρE . A local measurement of observables with projectors
{P̂n, Q̂ν} is carried out, which does not alter the density matrix in the average evolution but selects
a pure state |ψn〉 ⊗ |χν〉 at the trajectory level. System and environment then interact with each
other and some external agent according to the unitary evolution Û�, ending in an entangled state
denoted as ρ′

SE . Finally, we repeat the measurements with arbitrary projectors {P̂∗
m , Q̂∗

μ.}. In the
last measurement quantum correlations in state ρ′

SE are erased, while the final state ρ∗
SE may still

have in general non-zero classical correlations. The reduced evolution of the system conditioned
to the measurement in the environment are described through the quantum operation Eμν (shaded
green area)

The process begins with the global system in an uncorrelated (product) state
ρSE = ρS ⊗ ρE , with local states defined by the spectral decompositions

ρS =
∑

n

pnP̂n, ρE =
∑

ν

qνQ̂ν, (8.1)

with eigenvalues pn and qν , and P̂n ≡ |ψn〉〈ψn|S and Q̂ν ≡ |χν〉〈χν |E (rank-1)
orthogonal projectors onto their respective eigenstates.

Our thermodynamic process begins at t = t0 by performing an initial projective
measurement on the system and environment, using the eigenprojectors in Eq. (8.1),
and obtaining outcomes n and ν. This measurement projects the system and envi-
ronment onto pure states |ψn〉〈ψn|S and |χν〉〈χν |E . Notice however that, when aver-
aging over measurement results, the state of the global system does not change
([P̂n ⊗ Q̂ν, ρSE ] = 0).

Subsequently, we drive the compound system during the time interval t = t0 to
t0 + τ , building up correlations between the system and environment. The corre-
sponding unitary operator Û� is generated by the total Hamiltonian Ĥ(t) = Ĥ(λt ),
which depends on time through an external parameter λt that we vary according to
a prescribed protocol � = {λt : t0 � t � t0 + τ }:

Û� ≡ T̂+ exp

(
− i

�

∫ t0+τ

t0

dt Ĥ(t)

)
, (8.2)

where T̂+ denotes the timeordering operator (seeSect. 1.1).As a result, the compound
system at time t = t0 + τ is described by the new density matrix
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ρ ′
SE = Û�(ρS ⊗ ρE )Û †

�. (8.3)

The reduced (or local) states of the system and the environment can be obtained by
partial tracing: ρ ′

S = TrE [ρ ′
SE ] and ρ ′

E = TrS[ρ ′
SE ] (see Sect. 1.3.2).

To complete the process, a second local projective measurement is performed at
time t = t0 + τ on both the system and environment. The measurements are charac-
terized by arbitrary orthogonal projectors (for simplicity we assume rank-1 projec-
tors), denoted as {P̂∗

m} and {Q̂∗
μ} with outcomes m and μ, corresponding to arbitrary

local observables in system and environment. In this case, the average global state is
disturbed, transforming into

ρ∗
SE =

∑

m,μ

(P̂∗
m ⊗ Q̂∗

μ)ρ ′
SE (P̂∗

m ⊗ Q̂∗
μ)

=
∑

m,μ

ρ∗
mμ(P̂∗

m ⊗ Q̂∗
μ). (8.4)

Notice that the average state after measurement in Eq. (8.4) is not a product state:
the final local measurements do not eliminate the classical correlations contained
in ρ∗

SE [33]. However, the measurement collapses the local states of the system

and environment into pure states |ψ∗
m〉〈ψ∗

m |S ≡ P̂∗
m and |χ∗

μ〉〈χ∗
μ|E ≡ Q̂∗

μ. Thus, the
spectral decompositions of the reduced states after the final measurement are

ρ∗
S ≡ TrE (ρ∗

SE ) =
∑

m

p∗
mP̂

∗
m,

ρ∗
E ≡ TrS(ρ∗

SE ) =
∑

μ

q∗
μQ̂

∗
μ. (8.5)

where p∗
m = ∑

μ ρ∗
mμ and q∗

μ = ∑
m ρ∗

mμ are the corresponding (classical) marginal
distributions.

8.1.2 Reduced Dynamics

The global manipulation described in the preceding section corresponds to a partic-
ular reduced dynamics of the system alone, whose thermodynamic analysis offers a
complementary perspective. This reduced dynamics is illustrated by the shaded area
in Fig. 8.1, which can be considered as an effective transformation of the state of the
system, ρS → ρ ′

S, described by the action of a quantum CPTP map E that admits a
Kraus representation [34]

ρ ′
S = E(ρS) =

∑

μ,ν

M̂μνρSM̂
†
μν, (8.6)



8.1 Quantum Operations and Entropy Production 289

with a set of Kraus operators M̂μν satisfying

∑

μ,ν

M̂†
μν M̂μν = 1. (8.7)

As discussed in Sects. 2.1.2 and 2.1.3, there existmanyKraus representations, {M̂μν},
that reproduce the reduced dynamics on the system. For our purposes a convenient
choice is given by

M̂μν = √
qν〈χ∗

μ|EÛ�|χν〉E . (8.8)

This specific representation retains the relevant details of the evolution of the
environment, relating unequivocally each Kraus operator M̂μν with the transition
|χν〉E → |χ∗

μ〉E in the environment as a result of initial and final local projective
measurements. This is a key point in order to describe the thermodynamics of the
process at the trajectory level, as we will see shortly. Notice that other Kraus repre-
sentations can be linked to the introduction of a local unitary operation ÛE acting
only on the environment just after the interaction with the system or, equivalently, to
performing the final projective measurement on the environment in a different basis
{ÛE Q̂

∗
μÛE }.

Let us finally define the quantum operation:

Eμν(ρS) = M̂μν ρS M̂†
μν, (8.9)

which describes the conditioned evolution of the systemwhen the environment starts
in the pure state |χν〉E and ends in the state |χ∗

μ〉E after measurement. The above
operation can be associated to a conditional state

ρS|μν = Eμν(ρS)

Pμν

, (8.10)

occurringwith probability Pμν = TrS[Eμν(ρS)]. Thereforewehave∑
μν PμνρS|μν =∑

μν Eμν(ρS) = E(ρS) = ρ ′
S, corresponding to a generalized measurement setup,

where the pair (ν, μ) can be considered as the outcome.

8.1.3 Average Entropy Production

We have so far introduced two levels of description for an open quantum system: the
global dynamics and the reduced dynamics. Each suggests a different thermodynam-
ics, which we analyze here by studying the variation in the von Neumann entropy
S(ρ) (see Sect. 1.1.6) along our process. It should be noticed that von Neumann
entropy coincides with the thermodynamic entropy for equilibrium states (setting
the Boltzmann constant kB = 1). Furthermore for the nonequilibrium states analyzed
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here, there are some situations where it can be also interpreted as a thermodynamic
entropy [35]. However, we will refrain from identifying S(ρ) with a thermodynamic
entropy in general, and refer to it simply as the entropy or the quantum entropy of
state ρ.

Along our thermodynamic process, the quantum entropy of the global system
changes as

	iSinc ≡ S(ρ∗
SE ) − S(ρSE ) � 0. (8.11)

We will refer to 	iSinc as the inclusive entropy production to distinguish it from the
entropy production when the system and the environment are separated at the end
of the process and the final classical correlations are lost (see below). The inclusive
entropy production is always non-negative, since the von Neumann entropy cannot
decrease in every projective measurement (see Sect. 1.3.1) and stays constant along
any unitary evolution, i.e., S(ρSE ) = S(ρ ′

SE ) � S(ρ∗
SE ).

Our analysis relies on taking account of the entropy production associated to the
classical and quantum correlations built up between our system and its surroundings.
The quantum mutual information, as defined in Sect. 1.4.2, assesses the total amount
of such correlations. For any arbitrary bipartite state σSE with reduced states σS and
σE , we will denote the mutual information

I (σSE ) ≡ S(σS) + S(σE ) − S(σSE ) = S(σSE ||σS ⊗ σE ), (8.12)

which becomes zero for product states σSE = σS ⊗ σE .
Let us denote 	SS = S(ρ∗

S) − S(ρS) and 	SE = S(ρ∗
E ) − S(ρE ) the local

entropy changes in system and environment during the whole process. Using rel-
ative entropies and mutual information, the inclusive entropy production 	iSinc can
be rewritten as

	iSinc = 	SS + 	SE − I (ρ∗
SE ) (8.13)

= 	Smeas
S + 	Smeas

E + I (ρ ′
SE ) − I (ρ∗

SE ) � 0

where we have used the definition of the quantum mutual information in Eq. (8.12),
and the fact that the initial state is uncorrelated. In the second equality, we introduced
the local entropy changes 	Smeas

S ≡ S(ρ∗
S) − S(ρ ′

S) and 	Smeas
E ≡ S(ρ∗

E ) − S(ρ ′
E )

which allow us to explicitly show the twomain consequences introduced by the local
projective measurements at the end of the protocol in entropic terms. The first one,
captured by the term 	Smeas

S + 	Smeas
E � 0, corresponds to entropy production due

to the disturbance induced by the final measurement in the local states ρ ′
S → ρ∗

S

and ρ ′
E → ρ∗

E . The second one, I (ρ
′
SE ) − I (ρ∗

SE ) � 0, is the erasure of the quantum
correlations in the stateρ ′

SE , due to the local character of themeasurements [36]. If the
final measurement is performed in the eigenbasis of the local states after interaction,
that is [P̂∗

m, ρ ′
S] = 0 and [Q̂∗

μ, ρ ′
E ] = 0, the first term vanishes and second one reduces

to the so-called measurement induced disturbance introduced by Luo in Ref. [37]
as a measure of the quantumness of correlations akin to discord [36]. Therefore the
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process is completely reversible, i.e. it generates exactly zero entropy production, if
and only if the global state after interaction ρ ′

SE is classical in the sense [37]

ρ ′
SE =

∑

m,μ

ρ ′
m,μP̂

′
m ⊗ Q̂′

μ, (8.14)

where we introduced the eigenprojectors {P̂′
m} and {Q̂′

μ} of the reduced states ρ ′
S =

∑
m,μ ρ ′

m,μP̂
′
m , and

∑
m,μ ρ ′

m,μQ̂
′
μ respectively. However, we notice that the tradefoff

between local and global disturbances should be examined in more detail in order to
obtain minimum (non-zero) entropy production, as given by Eq. (8.13).

Moreover, in most situations the classical correlations remaining after the final
measurement are irreversibly lost, with an entropic cost equal to the mutual informa-
tion I (ρ∗

SE ). This is case if we separate system and environment after the process and
all subsequent manipulations are local.1 The entropy production in those situations
is

	iS ≡ 	SS + 	SE = 	Smeas
S + 	Smeas

E + I (ρ ′
SE ) � 0. (8.15)

We will refer to 	iS as the non-inclusive entropy production or simply the entropy
production. Notice finally that 	iS � 	iSinc � 0, since the mutual information
I (ρ∗

SE ) is always non-negative.

8.2 Backward Process and Fluctuation Theorem

So far we have introduced our thermodynamic process and discussed possible def-
initions of the average entropy production in the whole setup. Our main goal here
is to find the corresponding stochastic entropic changes at the level of quantum tra-
jectories and the quantum FT’s that they satisfy. Most FT’s are based on the ratio of
the probability to find a trajectory in a process with the probability to find the time-
reversal trajectory when the process is run backwards in time [1, 2]. We, therefore,
need to define trajectories and the backward process associated to the one introduced
in the previous section (Fig. 8.1), which we will call the forward process.

A trajectory γ of the forward process is simply given by the outcome of the four
measurements, i.e., γ = {n, ν, μ,m}. This trajectory corresponds to the following
transition between pure states,

|ψn〉S ⊗ |χν〉E → |ψ∗
m〉S ⊗ |χ∗

μ〉E . (8.16)

Notice that, in virtue of our choice of the Kraus representation for the reduced
dynamics Eq. (8.8) a trajectory γ is also a trajectory of the reduced dynamics, where

1We also exclude here the possibility of further implementation of feedback protocols using local
measurements and classical communication of the results.
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the pair (ν, μ) now indicates the quantum operation affecting the system instead
of the initial and final states of the environment (which is otherwise hidden in the
reduced dynamics). The probability to observe that trajectory γ is hence

Pγ = pnqνTr[(P̂∗
m ⊗ Q̂∗

μ)Û�(P̂n ⊗ Q̂ν)Û
†
�]. (8.17)

To introduce the backward process, we make use of the anti-unitary time-reversal
operator in quantum mechanics, �̂ introduced previously (see Sects. 1.1 and 7.2).
This operator changes the sign of odd variables under time reversal, like linear and
angular momenta or magnetic field [38]. We will consider the separate time reversal
operators for system, �̂S, and environment, �̂E , as well as the one for the total
system �̂ = �̂S ⊗ �̂E .

The backward process is defined by implementing the control actions of the for-
ward process in reverse under the action of the time-reversal operator. Thus, we start
with an initial state of the form

ρ̃SE =
∑

m,μ

ρ̃mμ �̂SP̂
∗
m�̂

†
S ⊗ �̂E Q̂

∗
μ�̂

†
E (8.18)

As in the forward process, the first step at time t = t0 is a local measurement of the
family of projectors {�̂SP̂

∗
m�̂

†
S, �̂E Q̂

∗
μ�̂

†
E }. According to Eq. (8.18), the outcomes

m and μ are obtained with probability ρ̃mμ.
We then let the global system evolve under the Hamiltonian Ĥ(λt ) used in the

forward process, but inverting the time-dependent protocol to �̃ ≡ {λ̃t | t0 � t � t0 +
τ }, which follows exactly the inverse sequence of values for the control parameter
with respect to �. The evolution is thus given by the unitary transformation

Û�̃ ≡ T+ exp

(
− i

�

∫ t0+τ

t0

dt �̂Ĥ(2t0 + τ − t)�̂†

)
. (8.19)

Following Sect. 1.1.4 (see also [39, 40]), the microreversibility principle for non-
autonomous systems relates forward and backward unitary evolutions by:

�̂†Û�̃�̂ = Û †
� (8.20)

which is the key property we need for relating probabilities of trajectories γ and
γ̃ . Finally, at time t = t0 + τ we perform new local measurements on the system
and environment using projectors {�̂SP̂n�̂

†
S, �̂E Q̂ν�̂

†
E }. The outcome induces a

quantum jump
�̂|ψ∗

m〉S ⊗ |χ∗
μ〉E → �̂|ψn〉 ⊗ |χν〉E , (8.21)

and the corresponding backward trajectory γ̃ = {m, μ, ν, n} occurs with probability

P̃γ̃ = ρ̃mμTr[�̂
(
P̂n ⊗ Q̂ν

)
�̂†Û�̃�̂

(
P̂∗
m ⊗ Q̂∗

μ

)
�̂†Û †

�̃
]. (8.22)
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The FT now follows readily by comparing the probabilities (8.17) and (8.22),
using the microreversibility property (8.20) and the cyclic property of the trace. The
result is

	isγ ≡ ln
Pγ

P̃γ̃

= ln
pnqν

ρ̃m,μ

= σ S
nm + σ E

νμ − Ĩmμ, (8.23)

with the quantities

σS
nm = ln pn − ln p̃m, (8.24)

σ E
μν = ln qν − ln q̃μ, (8.25)

Ĩm,μ = ln ρ̃m,μ − ln p̃mq̃μ. (8.26)

The twofirst terms,σS
nm andσ E

μν , canbe interpreted as local boundary termsdepending
on the choice of the local states for system and environment at the beginning of
forward and backward processes, in analogy to the previous chapter (see Sect. 7.4)
and to entropyfluctuation theorems for the classical case [4]. In particular, if p̃m = p∗

m
and q̃μ = q∗

μ, then σS
nm = 	sSnm and σ E

νμ = 	sEνμ correspond to stochastic entropic
changes per trajectory in system and environment, as introduced in Refs. [4, 23, 24,
41, 42]. The third term, Ĩm,μ corresponds to the stochastic version of the mutual
information [43] in the initial state of the backward process, c.f. Eq. (8.18). From the
detailed FT in Eq. (8.23), we immediately have the integral version

〈e−	isγ 〉 =
∑

γ

Pγ e
−	isγ =

∑

γ

P̃γ̃ = 1. (8.27)

Furthermore, concavity of the exponential function (Jensen’s inequality) implies
〈ex 〉 � e〈x〉, yielding the second-law-like inequality

〈	isγ 〉 = 〈σ S〉 + 〈σ E 〉 − 〈 Ĩ 〉 � 0. (8.28)

The interpretation of	isγ depends on the choice of ρ̃SE , the initial global state of
the backward process. If we set reversible boundaries of the form ρ̃SE = �̂ρ∗

SE�̂†,
then ρ̃mμ = ρ∗

mμ, which implies Ĩm,μ = ln ρ∗
m,μ − ln p∗

mq
∗
μ ≡ I ∗

m,μ, and 	isγ is the
inclusive entropy production per trajectory. Its average

〈	isγ 〉 = −
∑

m,μ

ρ∗
mμ ln ρ∗

mμ +
∑

n

pn ln pn +
∑

ν

qν ln qν

= S(ρ∗
SE ) − S(ρS) − S(ρE ) = 	iSinc (8.29)

equals the inclusive entropy production defined in (8.11). If the initial condition
for the backward process is instead the uncorrelated state ρ̃SE = �̂(ρ∗

S ⊗ ρ∗
E )�̂†,

then ρ̃mμ = p∗
mq

∗
μ implying Ĩm,μ = 0, and	isγ = 	sSnm + 	sEνμ is the non inclusive

entropy production per trajectory, whose average yields the entropy production in
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Eq. (8.15)
〈	isγ 〉 = S(ρ∗

S) − S(ρS) + S(ρ∗
E ) − S(ρE ) = 	iS. (8.30)

For equilibrium canonical initial conditions both in the forward and in the backward
processes, the entropy per trajectory equals the dissipative work and one recovers
the celebrated Crooks work theorem and the original Jarzynski equality [40].

8.3 Adiabatic and Non-adiabatic Entropy Production

We now focus on the reduced dynamics. Our aim is to obtain FT’s involving only the
quantum trajectory defined in Sect. 8.2 and the initial and final states of the system.
To do that, we follow our previous work in Chap.7, where we derived a FT for
CPTP maps, basing on the dual dynamics introduced by Crooks in Ref. [44] and
the introduction of a nonequilibrium potential depending on the invariant state of
the map. Interestingly, the resulting FT goes beyond the one that we have obtained
considering the global dynamics, Eq. (8.23), and will reveal an interesting split of
the total entropy production per trajectory γ = {n, ν,m, μ} into two terms:

	isγ = 	is
a
μν + 	is

na
γ , (8.31)

the adiabatic entropy production 	isaμν which accounts for the irreversibility of evo-
lution in the stationary regime, and the non-adiabatic entropy production	isnaγ which
measures how far the system is from the stationary state of the dynamics.

We will apply the formalism discussed in Chap. 7 to E, the map governing the
reduced dynamics of our process, aswell as to themap corresponding to the backward
dynamics. We first need to introduce the reduced dynamics in the backward process,
which will be described by a new CPTPmap denoted by Ẽ. To do that, it is necessary
that the system and the environment start the backward process in an uncorrelated
state ρ̃SE = ρ̃S ⊗ ρ̃E , i.e., we have to impose Ĩmμ = 0 (see Eq. (8.26)). In that case,
similarly to our choice (8.8) for the forward process, a useful representation of Ẽ is

Ẽνμ(ρ̃S) = ˆ̃Mνμρ̃S
ˆ̃M†

νμ (8.32)

where the backward Kraus operators are given by

ˆ̃Mνμ =
√
q̃μ〈χν |E�̂

†
E Û�̃ �̂E |χ∗

μ〉E . (8.33)

Notice that here we have swapped the subscripts with respect to the definition of
the forward operators given by Eq. (8.8). This can be done since the pair (μ, ν) is
just a label of the Kraus operator. The choice in Eq. (8.33) means that the operation
Ẽνμ is equivalent to obtaining μ in the initial measurement of the backward process
followed ν at the end. Now, microreversibility (8.20) implies an intimate relationship
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between the forward and backward Kraus operators:

�̂
†
S

ˆ̃Mνμ�̂S =
√
q̃μ〈χν |EÛ †

�|χ∗
μ〉E = e−σ E

μν/2M̂†
μν. (8.34)

Forward and backward processes can then be completely associated to the maps
E, and Ẽ respectively, together with its initial condition for the system. Each one
induces an evolution onto the system characterized by trajectories. We can compute
the probability of observing a trajectory γ = {n, ν,m, μ} in the forward process or
its reverse γ̃ = {m, μ, ν, n} in the backward process as

Pγ = pnTr[P̂∗
m M̂μν(P̂n)M̂

†
μν], (8.35)

P̃γ̃ = p̃mTr[�̂SP̂n�̂
†
S

ˆ̃Mνμ(�̂SP̂
∗
m�̂

†
S)

ˆ̃M†
νμ]. (8.36)

Notice that constructing the log-ratio between Pγ and P̃γ̃ immediately gives the FT
for the total entropy production in Eq. (8.23) by virtue of the relationship (8.34).
In other words, Eq. (8.34) expresses the fundamental symmetry under time reversal
yielding the FT for the total entropy production.

8.3.1 The Dual-Reverse Process

In order to gobeyond theFT for the total entropyproduction,weproceed as inChap.7,
introducing the dual-reverse dynamics that reveals the irreversibility associated to a
mapwhen starting fromapositive-definite invariant stateπ = E(π). The dual-reverse
dynamics is defined as a map D̃(ρ) such that π̃ ≡ �̂Sπ �̂

†
S is an invariant state,

i.e., D̃(π̃) = π̃ . Furthermore, we require that when the map is applied several times
starting in the stationary state π̃ , it generates trajectories γ̃ distributed as P̃D(γ̃ |π̃) =
P(γ |π). Here the trajectories are given by γ = {n, (ν1, μ1), . . . , (νN , μN ),m} and
γ̃ = {m, (μN , νN ), . . . , (μ1, ν1), n}, corresponding to N applications of the maps.

Summarizing, in the stationary regime the dual-reverse generates the same ensem-
ble of trajectories as the forward process, but reversed in time. For instance, if themap
describes the dynamics of a system in contact with a single thermal bath (thermal-
ization), then the forward process generates reversible trajectories (indistinguishable
from their reversal) and the dual-reverse coincides with the forwardmap. In nonequi-
librium situations, the dual generically inverts flows. For instance, for a system in
contact with two thermal baths at different temperatures, the dual-reverse is usually
obtained by swapping the temperatures of the baths, hence inverting the flow of heat.

In any case, one can prove that a Kraus representation of the dual-reverse map is
given by the operators:

ˆ̃Dνμ = �̂S π
1
2 M̂†

μνπ
− 1

2 �̂
†
S. (8.37)
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Here again we have swapped the subscripts ν and μ with respect to the Kraus oper-
ators of the forward map in Eq. (8.8). Finally, the dual-reverse process is the dual-
reverse map complemented by a specific choice of the initial condition for the system
(the environment does not appear explicitly in the map, which acts only on the sys-
tem). The appropriate initial condition for the dual-reverse process is ρ̃S, i.e., the
same as in the backward one. Therefore we can now compute the probability in the
dual-reverse process to obtain the (reverse) trajectory γ̃ = {m, μ, ν, n} as

P̃ D
γ̃ = p̃mTr[�̂SP̂n�̂

†
S

ˆ̃Dνμ(�̂SP̂
∗
m�̂

†
S)

ˆ̃D†
νμ]. (8.38)

To obtain a FT from Pγ and P̃ D
γ̃

is necessary a condition of proportionality between

operators M̂†
μν , and

ˆ̃Dνμ, similar to the relationship (8.34) between M̂†
μν , and

ˆ̃Mνμ.
In the previous chapter, we found that a necessary and sufficient condition for

that proportionality is the following. We first define the nonequilibrium potential
�̂ = − ln π , from the invariant state π . Its spectral decomposition reads:

�̂ =
∑

i

φi |πi 〉〈πi | (8.39)

where φi = − ln πi , and πi and {|πi 〉} are, respectively, the eigenvalues and eigen-
states of the invariant density matrix π . Now we require that each Kraus operator
M̂μν is unambiguously related to a nonequilibrium potential change 	φμν .2 In the
invariant state eigenbasis:

M̂μν =
∑

i, j

mμν

i j |π j 〉〈πi | (8.40)

that condition is equivalent to:

mμν

i j = 0 whenever φ j − φi 
= 	φμν. (8.41)

As pointed in Chap.7 this condition does not imply single jumps between pairs
of π eigenstates, but it could account for any set of correlated transitions between
different pairs with same associated 	φμν . An extreme example are unital maps,
where π is proportional to the identity matrix. In that case, 	φμν = 0 and any
complex coefficientsmμν

i j satisfy Eq. (8.41). It can also be show that condition (8.41)

is equivalent to [�̂, M̂μ,ν] = 	φμ,ν M̂μ,ν . This alternative formulation of (8.41)
indicates that, when 	φk 
= 0, M̂k(λt ) can be interpreted as ladder operators in the
eigenbasis of the invariant state π .

Introducing condition (8.41) in Eq. (8.37), one easily derives the relationship
(7.15) in Chap.7 between the forward and the dual-reverse Kraus operators, which
here reads

2Note however that the converse statement is not necessarily true, i.e. we may have for different
values of μ and ν the same value of 	φμν
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�̂
†
S

ˆ̃Dνμ�̂S = e 	φμν/2M̂†
μν. (8.42)

Finally, inserting (8.42) in the expressions for the probability of trajectories
(8.35)–(8.38) we reproduce the FT derived in Chap.7 for the present setup:

	is
na
γ ≡ ln

Pγ

P̃ D
γ̃

= σS
nm − 	φμν. (8.43)

We call	isnaγ the non-adiabatic entropy production, following the terminology used
in classical stochastic thermodynamics [5, 31, 32]. Its precise meaning can be seen
by assuming that both the forward and dual-reverse process start the evolution in
its invariant states: π , and π̃ = �̂Sπ �̂

†
S. In such case, by construction, 	φμν =

	φmn = − ln πm + ln πn = σS
nm , and hence 	isnaγ = 0 ∀γ , that is, the forward and

the dual-reverse processes are time-symmetric, being any trajectory γ in the forward
process equally probable than its reverse γ̃ in the dual-reverse process. We conclude
that the non-adiabatic entropy production 	isnaγ then captures the irreversibility in
terms of time-symmetry breaking in any single trajectory γ due to the distance
between the actual state of the system and the invariant state π . Below we will
discuss the average version of the non-adiabatic entropy production in some cases,
clarifying its origin.

8.3.2 The Dual Process

Let us now apply the same procedure to the backward process. In this way, we will
obtain the dual-reverse of the backwardmap, whichwe simply call the dual mapD. If
condition (8.41) is satisfied, then, by virtue of (8.34), the backward Kraus operators
can be written as:

ˆ̃Mνμ = e−σ E
μν/2

∑

i, j

(mμν

i j )∗�̂S|πi 〉〈π j |�̂†
S =

∑

i, j

m̃νμ

i j |π̃ j 〉〈π̃i |

with m̃νμ

i j ≡ e−σ E
μν/2(mμν

j i )∗. We observe that, setting 	φ̃νμ = −	φμν , condition
(8.41) is recovered for the backward process. However, an additional requirement
to apply this theoretical framework is that π̃ = �̂Sπ�̂

†
S is an invariant state of the

backward map
Ẽ(π̃) = π̃ . (8.44)

This is not guaranteed by the definition of Ẽ, not even when the Kraus operators
are of the form (8.41). In particular, it is satisfied when the driving protocol is time-
symmetric, the Hamiltonian of the environment is invariant under time reversal, and
we perform the same measurements at the beginning and the end of the process on
the environment.
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Therefore, adding this extra assumption, we now obtain the dual operators D̂μν ,

applying transformation (8.37) to the backwardKraus operators ˆ̃Mνμ (with the role of
�̂S and �̂

†
S swapped). Similarly to (8.42), condition (8.41) on the backward operators

implies

�̂S D̂μν�̂
†
S = e	φ̃νμ/2 ˆ̃M†

νμ = e−	φμν/2 ˆ̃M†
νμ (8.45)

and, using Eq. (8.34),
D̂μν = e−(σ E

μν+	φμν)/2M̂μν. (8.46)

The dual process is given by the dualmapDwith initial condition ρS. The trajectories
generated by this process are distributed as

PD
γ = pnTrS

[
P̂∗
m D̂μνP̂n D̂

†
μν

]
, (8.47)

to be compared with the probability of obtaining the same trajectory, γ = {n, ν,

m, μ}, in the forward process.
Combining Eqs. (8.35) and (8.47), and using condition (8.34), we get a third FT:

	is
a
μν = ln

Pγ

PD
γ

= σ E
μν + 	φμν. (8.48)

where we call 	isaμν the adiabatic entropy production [5, 31, 32]. Notice that,
unlike the non-adiabatic entropy production, the adiabatic contribution is inde-
pendent of the measurement results performed on the open system, stressing the
fact that it is independent of its state. Indeed the adiabatic entropy production
	isaμν captures the complementary time-symmetry breaking in a trajectory γ not
accounted from by 	isnaγ . When the initial states of forward and dual processes are
the invariant state π , which implies 	φμν = 	φmn = σS

nm as before, we have that
	isaμν = σ E

μν + σS
nm = 	isγ ∀γ , i.e. the adiabatic entropy production becomes the

total entropy production 	isγ for any trajectory γ . On the other hand, the adia-
batic entropy production vanishes when the changes in the nonequilibrium poten-
tial become (minus) the changes in stochastic entropy of the environment, i.e.
	isaμν = −	φμ,ν . In that case the situation simplifies, being the forward process
equal to the dual process and the backward process equal to the dual-reverse.

8.3.3 Second-Law-Like Equalities and Inequalities

We have hence obtained two detailed fluctuation theorems for the adiabatic and non-
adiabatic entropy production, Eqs. (8.48) and (8.43) respectively, which contribute
the total entropyproductionper trajectory,	isγ = 	isaμν + 	isnaγ .Wecannowderive
integral FT’s for both contributions:
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〈e−	isna 〉 = 1, 〈e−	isa 〉 = 1, (8.49)

which follow from the detailed versions by averaging over trajectories γ . Finally,
convexity of the exponential function provides the following two second-law-like
inequalities as a corollary 〈	isnaγ 〉 ≥ 0 and 〈	isaγ 〉 ≥ 0.

As for the FT for the total entropy production (8.23), the meaning of these average
entropies becomes clearer if the initial condition of the backward process is speci-
fied. Setting reversible boundaries without correlations ρ̃SE = �̂(ρ∗

S ⊗ ρ∗
E )�̂†, the

averages of the adiabatic and non-adiabatic entropy productions defined by (8.42)
and (8.46) read

	iSna ≡ 〈	is
na
γ 〉 = 	SS − 〈	φ〉 ≥ 0, (8.50)

	iSa ≡ 〈	is
a
γ 〉 = 	SE + 〈	φ〉 ≥ 0, (8.51)

and the sum equals the total non-inclusive average entropy production 	iS in
Eq. (8.15).

It is interesting to notice that the average change of the nonequilibrium potential

〈	φ〉 =
∑

μ,ν

Pγ 	φμν =
∑

μ,ν

Tr[M̂μνρSM̂
†
μν]	φμν, (8.52)

can be alternatively written in terms of averages over the states of the system, ρ ′
S

and ρS if condition (8.41) is fulfilled. That condition implies [�̂, M̂μν] = M̂μν	φμν

(see Sect. 7.3), and introducing the commutator in (8.52), we obtain

〈	φ〉 =
∑

μ,ν

Tr
[[�̂, M̂μν]ρSM̂

†
μν

] = Tr[�̂ (ρ ′
S − ρS)], (8.53)

where we have used the cyclic property of the trace and Eq. (8.6). Therefore, the
average potential change 〈	φ〉 can be expressed as the change in the expected value
of the operator �̂ due to the map. Recall that, as commented in Sect. 7.3, the operator
�̂ acts on the Hilbert space of the systemHS, i.e., is a local observable on the system
which captures an effective thermodynamic action of the environment. Eqs. (8.50)
and (8.51) now provide upper and lower entropic bounds on the change in this key
quantity during the evolution

	SS � 〈	φ〉 � −	SE , (8.54)

which may be interpreted as the effective transfer of entropy from the environment
to the open system.

Furthermore, if the final measurement does not alter the state of the system, i.e.,
if ρ∗

S = ρ ′
S, or if the final measurement is just skipped, as it is the case when we

concatenate maps and the system is measured only after the whole concatenation
(see Sect. 8.4 below), we can write the average non-adiabatic entropy production in
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an appealing form:

	iSna = 	SS − 〈	φ〉 = Tr[ρ ′
S(ln ρ ′

S + �̂)] − Tr[ρ ′
S(ln ρ ′

S − �̂)]
= S(ρS||π) − S(ρ ′

S||π) � 0, (8.55)

where we have used the definition �̂ = − ln π of the potential operator in terms
of the invariant state π . Here we see that the non-adiabatic entropy production is
related to the distance between the state of the system and the invariant state π .
During the evolution, the state of the system can only approximate the invariant
state and the non-adiabatic entropy production is a measure of the irreversibility
in the system state associated to such convergence. In fact, inequality in Eq. (8.55)
follows from direct application of Ulhman’s inequality (monotonicity of quantum
relative entropy) holding for general CPTP evolutions [23, 45] (see Sect. 1.1). We
stress that this expression coincides with entropy production introduced by Spohn for
quantumdynamical semi-groups [46], andwith the non-adiabatic entropy production
appearing in Refs. [5, 24, 31, 32, 43, 47].

8.3.4 Multipartite Environments

The results obtained in this section and the formalism developed in the previous one
are applicable as well for the case in which the environment consists of a multipar-
tite system. The environment Hilbert space is here decomposed asHE = ⊗R

r=1 Hr ,
corresponding to R ancillas or reservoirs not interacting between them but only with
the open system. We assume the initial state of the environment is uncorrelated,
ρE = ρ1 ⊗ · · · ⊗ ρR , and that the measurements are performed locally in each envi-
ronmental ancilla. The local density operators of the environmental ancilla r at the
beginning and at the end of the process are

ρr =
∑

ν

q(r)
ν Q̂(r)

ν , ρ∗
r =

∑

μ

q(r)∗
μ Q̂(r)∗

μ , (8.56)

with eigenvalues q(r)
ν and q(r)∗

μ , and orthogonal projectors onto its eigenstates Q̂(r)
ν =

|χ(r)
ν 〉〈χ(r)

ν |E and Q̂(r)∗
μ = |χ(r)∗

μ 〉〈χ(r)∗
μ |E .

The generalization of the results is then straightforward by considering the same
steps and assumptions as before. The reduced system dynamics is again given by
Eq. (8.6), but the operators M̂μν now using collective indices

(μ, ν) = {(ν(1), μ(1)), . . . , (ν(R), μ(R))}, (8.57)

representing the set of transitions obtained in the projective measurements of all
environmental ancillas:
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|χ(r)
ν(r)〉E → |χ(r)∗

μ(r) 〉E for r = 1, . . . , R. (8.58)

That is, the Kraus operators of the forward process are given by

M̂μν =
(

R∏

r=1

√
q(r)

ν(r)

)
〈χ(1)∗

μ(1) . . . χ
(R)∗
μ(R) |EÛ�|χ(1)

ν(1) . . . χ
(R)

ν(R)〉E , (8.59)

and analogously for the Kraus operators of the backward process (8.33) we have

ˆ̃Mνμ =
(

R∏

r=1

√
q̃(r)

μ(r)

)
〈χ(1)

ν(1) . . . χ
(R)

ν(R) |E�̂
†
EÛ�̃�̂E |χ(1)∗

μ(1) . . . χ
(R)∗
μ(R) 〉E .

The key relation (8.34) necessary to obtain the fluctuation theorem for the total
entropy production (8.23) hence follows as well in this case, with a decomposition
of the environment boundary term

σ E
μν =

R∑

r=1

σ
(r)
μ(r)ν(r) , being σ

(r)
μ(r)ν(r) ≡ − ln q̃(r)

μ(r) + ln q(r)
ν(r) . (8.60)

The application of the above formalism introducing the dual and dual-reverse pro-
cesses follows immediately in the same manner, leading to the fluctuation theorems
for the adiabatic and non-adiabatic entropy production in detailed and integral ver-
sions, Eqs. (8.43), (8.48) and (8.49). The adiabatic entropy production per trajectory
and its average then read in this case:

	is
a
μν =

R∑

r=1

σ r
μ(r)ν(r) + 	φμν, (8.61)

	iSa =
R∑

r=1

S(ρ∗
r ) − S(ρr ) + 〈	φ〉 � 0, (8.62)

where in the averaged version we set again (uncorrelated) reversible boundaries,
ρ̃SE = �̂(ρ∗

S ⊗ ρ∗
1 ⊗ · · · ⊗ ρ∗

R)�̂†.

8.4 Concatenation of CPTP Maps

Up to now, we have considered a single interaction between system and environ-
ment of duration τ (see Eq. (8.2)). The CPTP map E describes the evolution of
the open system when the environment is measured before and after interaction.
This framework is well suited to be extended to the more general case of quantum
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trajectories [48] as we did for the fluctuation theorem introduced in Chap.7. In this
section we consider a collisional model, in which the system interacts sequentially
with the environment. The environment consists of many quantum ancillas which
interact once at a time with the system, while being monitored. Each single collision
between time t and t + τ , is described by a single CPTP map like E, but which now
can differ from one time to another (See Fig. 8.2). To be more specific, consider such
dynamics for an interval consisting in N 
 1 interactions. The map describing the
reduced dynamical evolution from t = 0 to t = Nτ , is then the concatenation

�̂ = E(N ) ◦ · · · ◦ E(l) ◦ · · · ◦ E(1), (8.63)

where, in particular, each map E(l) may have a different (positive-definite) invariant
state π(l).

As it is customary in the theory of open quantum systems to achieve a Markovian
evolution (see e.g. Sect. 2.3.2), we assume that the system interacts from time tl−1 ≡
(l − 1)τ to time tl ≡ lτ with a ‘fresh’ (uncorrelated) environmental ancilla in a
generic state

ρ
(l)
E ≡

∑

α

q(l)
α Q̂(l)

α . (8.64)

As in the single map case, the environment is measured before and after interaction
with the system by projective measurements. The outcomes of the measurements
are labeled νl and μl , respectively. They are specified by the rank-one projective
operators {Q̂(l)

νk
≡ |χ(l)

νl
〉〈χ(l)

νl
|} for the initial measurement and {Q̂(l)∗

μl
≡ |χ(l)∗

μl
〉〈χ(l)∗

μl
|}

for the final one. Under this conditions, each map in the concatenation can be written
as:

(a)

(b)

Fig. 8.2 a Schematic diagram of the maps concatenation introduced in the text, where projective
measurements on the system are only performed at the begging and at the end of the concatenation.
b Any operation E

(l)
μl ,νl in the concatenation consists in the interaction of the system with an envi-

ronmental ancilla in the state ρ
(l)
E via the unitary Û (l)

� depending on the protocol �l . The ancilla is
measured before and after interaction generating outcomes νl and μl respectively
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E(l)(·) =
∑

μl ,νl

M̂ (l)
μl ,νl

(·) M̂ (l)†
μlνl

(8.65)

M̂ (l)
μlνl

≡
√
q(l)

νl 〈χ(l)∗
μl

|Û (l)
� |χ(l)

νl
〉 (8.66)

where the unitary evolution Û (l)
� is given in Eq. (8.2) for t0 = tl−1. Here we consider

always the same total time-dependent Hamiltonian Ĥ(t), following an arbitrary driv-
ing protocol � = {λt | 0 � t � Nτ }. For convenience the latter can also be split into
N intervals; hence the partial protocol �l = {λt | tl−1 � t � tl} generates the unitary
operator Û (l)

� (Fig. 8.2).
A quantum trajectory in this context is defined as follows. At time t = 0 we

start with our system in ρS, which is measured with eigenprojectors {P̂n}, obtaining
outcome n. Then the sequence of maps �̂ defined in Eq. (8.63) is applied, obtain-
ing outcomes {μl , νl} from each of the l = 1, . . . , N pairs of measurements in the
environment. Finally at time t = Nτ the system is measured again with arbitrary
(rank-one) projectors {P̂∗

m} giving outcome m. A quantum trajectory is now com-
pletely specified by the set of outcomes, γ = {n, (ν1, μ1), . . . , (νN , μN ),m}, and
occurs with probability

Pγ = pn Tr[P̂∗
m E(N )

μN νN
◦ · · · ◦ E(1)

μ1ν1
(P̂n)]. (8.67)

Now we can apply the same arguments in previous sections to construct the three
different processes used to state the FT’s. For the initial state of the backward process,
we consider again an arbitrary initial state of the system ρ̃S = ∑

m p̃m�̂SP̂
∗
m�̂

†
S,

uncorrelated from the environment initial states ρ̃
(l)
E = ∑

α q̃
(l)
α �̂E Q̂

∗
α�̂

†
E , and apply

the sequence of maps

�̃ = Ẽ(1) ◦ · · · ◦ Ẽ(l) ◦ · · · ◦ Ẽ(N ), (8.68)

generating a trajectory γ̃ = {m, (μ1, ν1), . . . , (μN , νN ), n} which occurs with prob-
ability:

P̃γ̃ = p̃m Tr[�̂SP̂n�̂
†
S Ẽ(1)

ν1μ1
◦ · · · ◦ Ẽ(N )

νNμN
(�̂SP̂

∗
m�̂

†
S)]. (8.69)

Here the backward maps, Ẽ(l), and their corresponding operations, are defined from
each map E(l) in the concatenation �̂ by applying Eqs. (8.32) and (8.33).

Dual and dual-reverse maps and operations also follow from its definitions in
Sect. 8.3 when conditions (8.41) and Ẽ(l)(π̃ (l)) = π̃ (l) are met for each map in the
sequence. The probabilities of sampling trajectory γ in the dual process, and trajec-
tory γ̃ in the dual-reverse read

PD
γ = pn Tr[P̂∗

m D(N )
μN νN

◦ · · · ◦ D(1)
μ1ν1

(P̂n)], (8.70)

P̃ D
γ̃ = p̃m Tr[�̂SP̂n�̂

†
S D̃(1)

ν1,μ1
◦ · · · ◦ D̃(N )

νNμN
(�̂SP̂

∗
m�̂

†
S)], (8.71)
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where in the dual-reverse trajectories we took again the sequence of maps in inverted
order, this is, we applied D̃(1) ◦ · · · ◦ D̃(N ) over the system initial state ρ̃S.

Again, the Kraus operators for the backward, dual, and dual-reverse processes,
fulfill the set of operator detailed-balance relations:

ˆ̃M (l)
νμ = e−σ E

μl ,νl
/2

�̂SM̂
(l)†
μν �̂

†
S, (8.72)

ˆ̃D(l)
νμ = e 	φ(l)

μν/2 �̂SM̂
(l)†
μν �̂

†
S, (8.73)

D̂(l)
μν = e−(σ E

μl ,vl
+	φ(l)

μν )/2 M̂ (l)
μν, (8.74)

where the nonequilibrium potential changes are defined with respect to the invariant
state π(l) of each map E(l) as in the single map case:

	φ(l)
μν = − ln π(l)

μ + ln π(l)
ν . (8.75)

The set of Eqs. (8.72)–(8.74) immediately implies the detailed FT’s for quantum
trajectories

	is
na
γ = ln

Pγ

P̃ D
γ̃

= σS
nm −

N∑

l=1

	φ(l)
μlνl

, (8.76)

	is
a
γ = ln

Pγ

PD
γ

=
N∑

l=1

(
σ E

μlνl
+ 	φ(l)

μlνl

)
, (8.77)

	isγ = ln
Pγ

P̃γ̃

= 	is
na
γ + 	is

a
γ , (8.78)

where σS
nm = ln pn − ln p̃m is the boundary term in the system, and σ E

μlνl
= ln q(l)

νl
−

ln q̃(l)
μl

the boundary term in the l-th environmental ancilla.
From the detailed FT’s in Eqs. (8.76) and (8.77), their corresponding integral

versions and second-law-like inequalities follow immediately as a corollary. Con-
sidering reversible boundaries ρ̃S = �̂Sρ∗

S�̂
†
S and ρ̃

(l)
E = �̂Eρ

∗(l)
E �̂

†
E ∀l, we obtain

σS
nm = 	sSmn , and σ E

μlνl
= 	sEμlνl

is the trajectory entropy change in the environment
during the l-th map. Therefore we have

	iSna = 	SS −
∑

l

〈	φ(l)〉 � 0, (8.79)

	iSa =
∑

l

S(ρ
(l)∗
E ) − S(ρ

(l)
E ) + 〈	φ(l)〉 � 0. (8.80)

Finally, it is interesting to consider the expression of the average nonequilibrium
potential change during the whole sequence 〈	φ〉. By denoting ρS(tl) the reduced
state of the system at time tl
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〈	φ〉 =
N∑

l=1

〈	φ(l)〉 =
N∑

l=1

Tr[E(l)
μlνl

(ρS(tl−1))]	φ(l)
μlνl

=

=
N∑

l=1

Tr[�̂l
(
ρS(tl) − ρS(tl−1)

)], (8.81)

where �̂l = − ln π(l). The above expression can be decomposed into the following
boundary and path contributions:

〈	φ〉b = Tr[ρ ′
S�̂N ] − Tr[ρS�̂1], (8.82)

〈	φ〉p = −
N−1∑

l=1

Tr[ρS(tl)(�̂l+1 − �̂l)]. (8.83)

When all the maps in the concatenation have the same invariant state, �̂l+1 = �̂l ≡
�̂ ∀l, we obtain 〈	φ〉p = 0, while 〈	φ〉b = Tr[(ρ ′

S − ρS)�̂] and we recover the
expression for the single map case, c.f. Eq. (8.53). In the other hand the boundary
term only vanishes for cyclic processes, such that ρ ′

S = ρS, implemented by cyclic
concatenations with �̂N = �̂1. In this case 〈	φ〉b = 0 while 〈	φ〉p gives in general
a non-zero contribution.

8.5 Lindblad Master Equations

The generalization introduced in the last section can be applied to situations in which
a dynamical description is available, e.g. given by a Markovian master equation, for
which unravellings in terms of quantum trajectorieswere introduced in Sect. 2.5. This
case represents the limit in which an infinite number of maps, N → ∞, are applied
in infinitesimal time steps	t = tl − tl−1 → dt . The system density operator change
then becomes ρS(tl) − ρS(tl−1) → dρS in the continuous limit, and the map �̂ in
Eq. (8.63) can be described by a quantum dynamical semi-group (see Sect. 2.2).
Furthermore, in the general case, the steady state of the dynamics may depend on the
external control parameter λt , such that its modification prevents the system from
relaxation towards a steady state π(λt ). Here we will assume that at any infinitesimal
time interval the nonequilibrium potential remains constant at �̂(λt ) while changing
from one step to the next.

As in the previous chapter, we consider the system evolution to be given by the
following master equation in Lindblad form:

ρ̇t = − i

�
[Ĥ , ρ] +

K∑

k=1

(
L̂kρt L̂

†
k − 1

2
{L̂†

k L̂k, ρt }
)

≡ Lρt (8.84)
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where Ĥ(λt ) is an Hermitian Hamiltonian like term, and the set {L̂k ≡ L̂k(λt )} are
positive Lindblad operators, which generally may depend on the control parameter,
λt , describing jumps in some (possibly time-dependent) basis. When the driving is
frozen, λt ≡ λ∗, the above Lindblad master equation has at least one invariant state,
π∗, given by L(π∗) = 0 [49].

The stochastic description we provided in the previous section is here naturally
recovered within the formalism introduced in Sect. 2.5. The underlying idea is mon-
itoring the interactions with the environment to unveil the jumps induced by the
Lindblad operators {L̂k}, which now play the role of the Kraus operators in the CPTP
maps. An infinitesimal time evolution step of the dynamics provided by Eq. (8.84) is
here identified with a generic mapE in the sequence �̂ defined in Eq. (8.63) [omitting
the superscript (l) for the order in the sequence]:

ρt+dt =
(
1̂S + dtL

)
ρt ≡ E(ρt ) =

K∑

k=0

M̂kρt M̂
†
k (8.85)

for which a generic set of Kraus operators can be written as

M̂0(λt ) ≡ 1̂S − dt

(
i

�
Ĥ(λt) + 1

2

K∑

k=1

L̂†
k(λt )L̂k(λt )

)
(8.86)

M̂k(λt ) ≡ √
dt L̂k(λt ) k = 1, . . . , K . (8.87)

Notice that the map E have as invariant state the instantaneous steady-state of the
dynamics, πλ. Furthermore, as pointed in Sect. 2.5, this Kraus representation is not
unique for the open system dynamics because of the symmetry

Ĥ ′ = Ĥ − i�

2

K∑

k=1

(
l∗k L̂k − lk L̂

†
k

)
+ �r, L̂ ′

k = L̂k + lk, (8.88)

leaving invariant Eq. (8.84), but it is related to a specific detection scheme for the
jumps. The specific form of the set {L̂k}Kk=1 appearing in Eq. (8.84) hence fixes the
measurement scheme proposed in the previous section, that is, it implies a specific
choice on the local observables being monitored in the environmental ancillas at the
beginning and at the end of the system-environment interaction (though the set of
orthogonal projectors {Q̂ν} and {Q̂∗

μ}).
The Kraus representation (8.86) is based on a family of operations M̂k with

k = 1, . . . , K that induce jumps in the state of the system and occur with prob-
abilities of order dt , and a single operation M̂0 that induces a smooth evolution
in the state of the system and occurs with probability of order 1 (see Sect. 2.5).
This implies that the trajectories γ consists of a large number of zeros punctu-
ated by a few jumps M̂k with k = 1, . . . , K . An alternative way of describing
the trajectory is to specify the jumps k j and the times τ j where they occur, i.e.,
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γ = {n, (k1, τ1), . . . , (k j , τ j ), . . . , (kN , τN ),m}, where, as before, n and m denote
the outcomes of the initial and final measurements in the system. Jump k is given by
the operation Ek(ρ) ≡ M̂kρ M̂

†
k , whereas between two consecutive jumps at t j and

t j+1 is given by the repeated application of the operation corresponding to the Kraus
operator M̂0(λt ) in (8.86). This results in a smooth evolution given by the operator:

Ûeff(t j+1, t j ) = T̂+ exp

(
− i

�

∫ t j+1

t j

ds Ĥeff(λs)

)
, (8.89)

with an effective non-hermitian Hamiltonian that reads

Ĥeff(λt ) = Ĥ(λt ) − i�

2

K∑

k=1

L̂†
k(λt )L̂k(λt ). (8.90)

In this representation, the probability to measure a trajectory γ = {n, (k1, τ1), . . . ,
(k j , τ j ), . . . , (kN , τN ),m} is given by

Pγ = Tr[P̂∗
mUtf ,tNEkNUtN ,tN−1 . . . Ekl

... Ut2,t1Ek1Ut1,t0(P̂nρ0P̂n)], (8.91)

with Ut j+1,t j (ρ) = Ûeff(t j+1, t j )ρ Û †
eff(t j+1, t j ).

Consider now the backward dynamics. Here time-inversion of the global system
evolution correspond to a time-reversed version of the Lindblad master equation in
Eq. (8.84). As in the previous section, the backward process is generated by inverting
the sequence of operations together with time-inversion of each operation in the
sequence. The mapping producing an infinitesimal time-step in the time-reversed

dynamics, ρ̃t+dt = Ẽ(ρ̃t ), admits aKraus representation { ˆ̃Mk(λt )} analogous to (8.86)
and (8.87). Our previous analysis allows us to write these operators without knowing
any detail about the interaction between the system and the environment, since they
have to obey condition Eq. (8.34), that is:

ˆ̃M0 = e−σ E
0 /2�̂M̂†

0 �̂
†,

ˆ̃Mk = e−σ E
k /2�̂M̂†

k �̂
†. (8.92)

Imposing the backward maps to be trace-preserving,
∑

k
ˆ̃M†
k

ˆ̃Mk = 1, we obtain
σ E
0 = 0, and the consistency condition

K∑

k=1

(
L̂†
k L̂k − L̂k L̂

†
ke

−σ E
k

)
= 0. (8.93)

This is a completely general result: for any Lindblad master equation one can find
a set of numbers {σ E

k }Kk=1 such that (8.93) is fulfilled. The specific meaning of the
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quantities σ E
k was given in Eq. (8.25), which depends on the initial state of the

environment in the backward process. In practical applications this can be deduced
from the environmental modeling and the measurement scheme used to detect the
quantum jumps, leading to a specific set of Lindblad operators {L̂k}Kk=1 in the master
equation (8.84).

In many applications, the Lindblad operators come in pairs and the corresponding
pair of terms in the sum (8.93) cancel. This occurs if, for a specific pair of operators
{L̂ i , L̂ j }, we have L̂ i = √

�i L̂ and L̂ j = √
� j L̂†, being �i (λt ) and � j (λt ) some

positive rates, and L̂(λt ) some arbitrary (possibly time-dependent) system operator.
Then, the condition (8.93) implies σ E

i (λt ) = ln(�i/� j ) and σ E
j (λt) = ln(� j/�i ) =

−σ E
i (λt ).
As in the previous section, for any trajectory γ = {n, k1, . . . , kN ,m} gener-

ated in the forward process with probability Pγ , there exist a backward trajectory
γ̃ = {m, kN , . . . , k1, n} occurring in the backward process with probability P̃γ̃ . The
backward trajectory can here be identified by the times of successive jumps as well.
In this representation, the probability of trajectory γ̃ can hence be written as:

P̃γ̃ = Tr[�̂P̂n�̂
† Ũt1,t0 Ẽk1Ũt2,t1 ... Ẽkl ...

... ŨtN ,tN−1 ẼkN Ũtf ,tN (�̂P̂∗
mρtf P̂

∗
m�̂†)], (8.94)

where Ẽk(ρ̃) = ˆ̃Mk ρ̃
ˆ̃M†
k . The smooth evolution between jumps, here Ũt ′,t (ρ̃t ) =

Ũeff(t ′, t)ρ̃t Ũ
†
eff(t

′, t), is given by the operator

ˆ̃Ueff(t
′, t) = T̂+ exp

(
i

�

∫ t ′

t
ds �̂Ĥ †

eff(λ̃s)�̂
†

)
, (8.95)

where {λ̃t } now corresponds to the inverse sequence of values for the control param-
eter. It can be easily shown that the forward and backward smooth evolutions obey

the microreversibility relationship �̂† ˆ̃Ueff(t ′, t)�̂ = Ûeff(t ′, t)†.
At this pointweparticularize condition (8.41), necessary to decompose the entropy

production into adiabatic and non-adiabatic contributions. It can be written as:

[�̂, L̂k] = 	φk L̂k ; [�̂, L̂†
k] = −	φk L̂

†
k . (8.96)

These commutation relationships indicate that theLindbladoperators L̂k(λt )promote
jumps between the eigenstates of π(λt ) at any time of the dynamics. Furthermore,
as the condition must be fulfilled for the operator M̂0 in Eq. (8.86) as well, we
need [Ĥ ,

∑
k L̂

†
k L̂k] = [Ĥ , �̂] = 0, which in turn implies 	φ0 = 0. As explained

in Sect. 7.4 of the previous chapter, this means that the steady state of the dynamics
must be diagonal in the basis of the Hamiltonian term appearing in Eq. (8.84). This
is not very restrictive since in most situations the operator Ĥ is just the identity
operator, 1, when we move to an appropriate interaction picture. In second place, we
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recall that the fluctuation theorem for the adiabatic entropy production can be stated
when the backward maps Ẽ admit π̃λ ≡ �̂πλ�̂

† as an invariant state. We stress that
this condition is immediately fulfilled when the Lindblad operators come in pairs
{L̂ i , L̂ j }with L̂ i = √

�i/� j L̂
†
j as before. In such case the (inverted) Kraus operators

of the backward map also pertain to the forward map:

�̂† ˆ̃Mi�̂ = e−σ E
i /2M̂†

i = √
dte−σ E

i /2 L̂†
i = √

dt L̂ j = M̂ j ,

where we used Eq. (8.92), and hence:

∑

k

ˆ̃Mk�̂πλ�̂
† ˆ̃M†

k =
∑

k

�̂M̂kπλM̂
†
k �̂

† = π̃λ. (8.97)

In such circumstances, with the help of the instantaneous stationary state of the
dynamics π(λt ), the dual and dual-reverse processes can be constructed as well. For
the dual process, the probability of trajectory γ , PD

γ , can be calculated fromEq. (8.91)
by using the same map Ut ′,t for the no-jump time evolution intervals, and replacing
the operations Ek by the dual operationsDk(·) = D̂k(·)D̂†

k with corresponding Kraus
operators {D̂k} as defined in Eq. (8.46):

D̂k = e−(σ E
k +	φk )/2 M̂k . (8.98)

Analogously, for the dual-reverse process the probability of trajectory γ̃ , P̃ D
γ̃
, can

be constructed from Eq. (8.94) with Ũt ′,t for the no-jump evolution, and dual-reverse

operations D̃k = ˆ̃Dk(·) ˆ̃Dk with Kraus operators { ˆ̃Dk} as in Eq. (8.42):
ˆ̃Dk = e 	φk/2�̂ M̂†

k �̂
†. (8.99)

We further notice that in general D̂k 
= M̂k , and
ˆ̃Dk 
= ˆ̃Mk , this is, σ E

k 
= −	φk .
The above considerations let us reproduce the three detailed FT’s in Eqs. (8.76)–

(8.77), for quantum trajectories generated by Lindblad master equations:

	is
na
γ = ln

Pγ

P̃ D
γ̃

= σ S
nm −

N∑

l=1

	φkl (λtl ), (8.100)

	is
a
γ = ln

Pγ

PD
γ

=
N∑

l=1

(
σ E
kl (λtl ) + 	φkl (λtl )

)
, (8.101)

	isγ = ln
P(γ )

P̃γ̃

= σ S
nm −

N∑

l=1

σ E
kl (λtl ), (8.102)
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with 	isγ = 	isnaγ + 	isaγ . The integral versions of the three FTs follow readily

from the fact that P̃ D
γ , PD

γ , and P̃γ are well defined probability distributions.
In addition we may derive for this case the dynamical version of the second-law-

like inequalities, taking the continuous limit fromEqs. (8.79) and (8.80). Considering
reversible boundaries in the system such that ρ̃S = �̂(ρ ′

S)�̂† we obtain:

Ṡna = Ṡ − �̇ � 0, (8.103)

Ṡa = σ̇E + �̇ � 0, (8.104)

Ṡi = Ṡ + σ̇E � 0, (8.105)

where again Ṡi = Ṡna + Ṡa. We will refer to this quantities as the entropy production
rates, where Ṡ = −Tr[ρ̇t ln ρt ] is the derivative of the von Neumann entropy of
the system, �̇ = Tr[ρ̇t�̂(λt )] the nonequilibrium potential flow, and we obtain a
dynamical version of the boundary term in the environment

σ̇E (λt ) dt =
∑

kl

Tr[Ekl (ρt )]σ E
kl (λt ) (8.106)

= d

dt

[
	SE + D(ρ∗

E ||�̂†ρ̃E�̂)
]
dt.

Notice thatwhen reversible boundaries are chosen in the environment, �̂†ρ̃E�̂ = ρ∗
E ,

we simply obtain σ̇E (λt ) = ṠE , the rate at which the entropy of the environment
varies. On the other hand, if equilibrium conditions are considered, �̂†ρ̃E�̂ = ρE =
e−β ĤE /ZE , being ĤE the environment Hamiltonian and β = 1/kBT its inverse tem-

perature, we have σ̇E (λt ) = β d
dt

(
Tr[ĤE (ρ∗

E − ρE )]
)
, that is, we obtain the heat flow

dissipated into the environment divided by temperature. Both expressions coincides
when the environment is considered to be a thermal reservoir (or thermal bath),
i.e. a large system in thermal equilibrium for which ρ∗

E � ρE = e−β ĤE /ZE , and

hence ṠE � β d
dt

(
Tr[ĤE (ρ∗

E − ρE )]
)
. Finally, we stress that the above inequalities

(8.103)–(8.105) follow from the fact the FT’s apply for any single map applied at
infinitesimal time-step dt (Sect. 8.3). They guarantee the monotonicity of the aver-
age entropy production,	iS, and its adiabatic and non-adiabatic contributions,	iSna
and 	iSa during the whole Markovian evolution.

The physical interpretation of the adiabatic and non-adiabatic entropy production
nowbecomes clear. In a processwhere the initial state isπ(λ0) and the control param-
eter is quasi-statically modified, ρt � π(λt ). Therefore, the non-adiabatic entropy
production Ṡna � −Ṡ(ρt ||π(λt)) � 0 vanishes. This is in agreement with the clas-
sical non-adiabatic contribution introduced in Refs. [5, 31, 32]. On the other hand,
the contribution Ṡa is in general different from zero even if the driving is extremely
slow, which is the reason why it is called adiabatic. We finally provide the dynamical
versions of the nonequilibrium potential boundary and path terms:
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�̇b = d

dt

(
Tr[ρt�̂(λt )]

)
, �̇p = −Tr[ρt

˙̂
�(λt )], (8.107)

in analogy to the classical case [5, 31, 32].

8.6 Conclusions

In this chapter we have analyzed the (von Neumann) entropy production in gen-
eral processes embedded in a two measurement protocol, with local measurements
performed in both system and environment. We obtained three different fluctuation
theorems for the adiabatic, the non-adiabatic, and the total entropy production in
detailed and integral forms, which apply for quantum trajectories in different sit-
uations, generalizing to the quantum regime previous results reported for classical
Markov processes [5].

We first discussed how the total entropy production depends on both the classical
and the quantum correlations generated between system and environment, as they
are irreversibly lost when introducing quantum measurements, c.f. Eqs. (8.13) and
(8.15). The first expression Eq. (8.13) has been called inclusive entropy production
and measures the quantum correlations lost in the measurement process and the local
measurement-induceddisturbance. If the remaining classical correlations are also lost
hence the entropy production is called non-inclusive, and given in Eq. (8.15), which
corresponds to the prototypical identification as the sum of the entropy changes in
system and environment during the process.

In this context, we derived a fluctuation theorem in detailed Eq. (8.23) and integral
forms Eq. (8.27) by comparing the statistics of the local measurement results in
the process with its time-reversed version. This theorem is universal and includes
a double boundary term depending on system and environment initial states for
the process and its time-reverse, Eqs. (8.24) and (8.25), and a third one depending
on the initial correlations of the time-reverse process, Eq. (8.26). We also notice
that our theorem may be alternatively derived from previous versions of FT’s for
quantumsystems following unitary dynamics [2, 23] by introducing bipartite systems
and local measurements. Our main contribution here is hence the identification of
the quantity fulfilling the FT as the total entropy production per trajectory in both
inclusive and non-inclusive versions when taking adequate boundary conditions.
Our results then generalize the classical FT derived by Seifert in Ref. [4] for the total
entropy production to arbitrary (open) quantum dynamics.

Once derived the total entropy production per trajectory, we have identified
adiabatic and non-adiabatic contributions, accounting for different sources of irre-
versibility in processes with a steady state [5, 31, 32]. Extending the general formal-
ism introduced in Chap.7, we were able to link the global thermodynamics in system
and environment with the reduced thermodynamics experimented by the open sys-
tem. This required the introduction of three different thermodynamic processes: the
backward (or time-reverse) process, the dual process, and the dual-reverse process,
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as described by different CPTP maps and Kraus operators exploiting the symmetries
of the setup, c.f. Eqs. (8.34), (8.42) and (8.46). This allows the derivation of two
more FT’s, Eqs. (8.43), (8.48), and (8.49) and its identification with the adiabatic
and non-adiabatic entropy productions. Remarkably, those FT’s are not always ful-
filled but the map describing the open system dynamics must verify the condition
(8.41) and, additionally, the backward (or time-reverse) dynamics must preserve the
(inverted) invariant state of the original process (8.44). Those requirements are gen-
erally fulfilled by classical Markov dynamics but may lead to the breaking of the
entropy production decomposition in more general quantum processes. An example
of a situation in which the split is broken is given in the next chapter.

The results obtained for a process described by a single CPTP map have been
also extended to the case of concatenations Eqs. (8.76) and (8.77), in which the
different maps appearing in the sequence may have different invariant states, and to
quantum trajectories generated by unraveling the driven Lindblad master equation
(8.84). In the latter case we developed a general method to identify the environmental
entropy change during the trajectories induced by the quantum jumps associated to
the Lindblad operators (see Eq. (8.93) and below), which allowed us to recover the
FTs in Eqs. (8.100)–(8.102). The meaning of the terms adiabatic and non-adiabatic
become clear in this situation as the non-adiabatic contribution becomes zero for
quasi-static drivings following the instantaneous steady state of the dynamics.

In the next chapter we illustrate the results obtained here for three different and
relevant cases of quantum dynamical evolutions. We will specifically see the differ-
ences between the backward, the dual, and the dual-reverse process, and the resulting
expressions for the adiabatic, non-adiabatic and total entropy productions. Further-
more, we will show how the formalism developed in this chapter and the previous
one, provides a natural thermodynamical description, both at the trajectory and at
the averaged levels, of specific quantum processes when coherence comes into play.
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Chapter 9
Simple Applications of the Entropy
Production FT’s

In Chap.8 we analyzed the production of entropy in generic quantum processes by
explicitly identifying how the relevant environmental properties can be introduced
in a thermodynamic description. This allowed us to introduce the split of the total
entropy production into adiabatic and non-adiabatic contributions, together with the
derivation of FT’s for the three quantities when some general conditions are satisfied.

In this chapter we give three examples of relevant situations where those fluctua-
tion theorems for the entropy production can be applied. Our purpose is to clarify the
meaning of the concepts introduced above, as the backward, the dual, and the dual-
reverse dynamics in Sect. 8.3, the nonequilibrium potential, the specific meaning of
the entropy production split, and the conditions needed to obtain it. We first consider
the case of autonomous quantum thermal machines in Sect. 9.1, as composed by a
three-level system selectively coupled to three thermal reservoirs at different tem-
peratures. This example contains the necessary elements to interpret our results in a
simple thermal situation, in which quantum effects do not play a fundamental role.
Next we consider in Sect. 9.2 the case of resonant periodic modulation of an open
quantum system by means of a classical field. Here we will see how the entropy
production split is broken, discussing its consequences in energetic and entropic
terms. As a third example, we consider a Maxwell’s demon toy model in Sect. 9.3,
designed to study the interplay between purely informational quantities with ther-
mal properties. In addition, this configuration allows us to introduce nonequilibrium
thermal reservoirs and discuss the meaning of our formalism in this situation. Finally
in Sect. 9.4 we present some general conclusions.
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9.1 Autonomous Quantum Thermal Machines

We first consider an autonomous three-level thermal machine powered by three ther-
mal reservoirs at different temperatures [1–5] (see also Sect. 3.3). Each bathmediates
a different transition between the energy levels, {|g〉, |eA〉, |eB〉}. The Hamiltonian
of the system is

ĤS = �ω1|eA〉〈eA| + �(ω1 + ω2)|eB〉〈eB |, (9.1)

and the three possible transitions g ↔ eA, eA ↔ eB and g ↔ eB have frequency
gaps ω1, ω2, and ω3 ≡ ω1 + ω2, respectively. Each transition is weakly coupled
to a bosonic thermal reservoir in equilibrium at different inverse temperatures,
βr = 1/kBTr with r = 1, 2, 3, where we assume β1 � β3 � β2 for concreteness.
A schematic representation of the model is depicted in Fig. 9.1.

The dynamics of the three-level thermal machine can be described by a Lindblad
master equation, obtained in theweak coupling limit by applying standard techniques
from open quantum systems theory (see Sects. 2.2 and 2.3 in Chap.2). It reads

ρ̇t = − i

�
[ĤS, ρt ] + L1(ρt ) + L2(ρt ) + L3(ρt ), (9.2)

where ρt is the density operator of the three level system and Lamb-Stark shifts
have been neglected. The three dissipative terms in the above equation describe the
irreversible dynamical contributions induced by each of the three thermal reservoirs:

Fig. 9.1 Schematic diagram of a three-level thermal machine acting as a refrigerator. The three
transitions of the machine are weakly coupled to thermal reservoirs at temperatures β1, β2 and
β3, inducing jumps between the machine energy levels (double arrows). In a refrigeration cycle
the machine performs a sequence of three jumps |g〉 → |eA〉 → |eB〉 → |g〉, where it absorbs a
quantum of energy �ω1 from the cold reservoir, together with a quantum �ω2 from the hot one,
while emitting a quantum �ω3 into the reservoir at intermediate temperature
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Lr (ρt ) = �
(r)
↓

(
σ̂rρt σ̂

†
r − 1

2
{σ̂ †

r σ̂r , ρt }
)

+

+ �
(r)
↑

(
σ̂ †
r ρt σ̂r − 1

2
{σ̂r σ̂ †

r , ρt }
)

, (9.3)

where σ̂1 = |g〉〈eA|, σ̂2 = |eA〉〈eB | and σ̂3 = |g〉〈eB | are the ladder operators of the
three-level system, inducing jumps in the corresponding transitions r = 1, 2, 3. The
above Eq. (9.3) describes the emission and absorption of excitations of energy �ωr

to (or from) the reservoir r , at rates fulfilling detailed balance

�
(r)
↓

�
(r)
↑

= γr (nthr + 1)

γr nthr
= eβr�ωr , (9.4)

where nthr = (eβr�ωr − 1)−1 is the mean number of excitations of energy �ωr in
the reservoir r , and γr 	 ωr ′ ∀r, r ′ = 1, 2, 3, the spontaneous emission decay rate
associated to the transition.

The three average heat fluxes entering from the reservoirs associated to the imbal-
ance in emission and absorption processes, Q̇r = Tr[ĤSLr (ρt )], read:

Q̇1 = �ω1

(
�

(1)
↑ pg(t) − �

(1)
↓ peA(t)

)
,

Q̇2 = �ω2

(
�

(2)
↑ peA(t) − �

(2)
↓ peB (t)

)
,

Q̇3 = �ω3

(
�

(3)
↑ pg(t) − �

(3)
↓ peB (t)

)
, (9.5)

where pi (t) ≡ Tr[|i〉〈i |ρt ] for |i〉 = {|g〉, |eA〉, |eB〉} are the instantaneous popula-
tions of the machine energy levels,

∑
i pi (t) = 1. The first law of thermodynamics

in the model consequently reads

U̇S ≡ Tr[ĤSρ̇t ] = Q̇1 + Q̇2 + Q̇3. (9.6)

The master equation (9.2) describes the relaxation dynamics from any initial state
of the machine to the stationary state, π̇ = 0, reading:

π = πg |g〉〈g| + πeA |eA〉〈eA| + πeB |eB〉〈eB |, (9.7)

which is diagonal in the energy basis. For the simpler case in which γ1 = γ2 = γ3 ≡
γ , we obtain:

πg = [
eβ3�ω3

(
2eβ1�ω1+β2�ω2 − 1

) − eβ1�ω1+β2�ω2
]
/Zπ ,

πeA = [
eβ2�ω2

(
eβ1�ω1 − 2

) + eβ3�ω3
(
2eβ2�ω2 − 1

) ]
/Zπ ,

πeB = [
eβ3�ω3 + eβ1�ω1+β2�ω2 − 2

]
/Zπ , (9.8)
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where we defined

Zπ ≡ eβ2�ω2
(−2 + eβ1�ω1

) − 2

+ eβ3�ω3
(
2eβ2�ω2

(
1 + eβ1�ω1

) − 1
)
.

The present setup constitutes the simplest model of an ideal quantum absorption
heat pump and refrigerator, usually considered to operate at steady-state conditions
[3–5]. We now focus on the fridge configuration, but similar conclusions follow
as well in the heat pump mode of operation. The cooling mechanism exploits the
average heat flow entering from the reservoir at the hottest temperature T2, Q̇2 > 0,
to continuously extract heat from the reservoir at the lowest temperature T1, Q̇1 >

0, while draining Q̇3 < 0 to the reservoir at the intermediate temperature, T3 (see
Fig. 9.1). At steady state conditions, it can be easily checked that this is indeed the
case by properly tuning the energy level spacings [Eq. (9.10)]:

Q̇ss
1 = γ �ω1

	

Zπ

� 0, Q̇ss
2 = γ �ω2

	

Zπ

� 0, (9.9)

and Q̇ss
3 = −(Q̇ss

1 + Q̇ss
2 ) � 0, where Zπ � 0 and the quantity 	 ≡ (eβ3�ω3 −

eβ1�ω1+β2�ω2), remains positive when the following design condition is met:

ω2 �
(

β1 − β3

β3 − β2

)
ω1. (9.10)

Notice also that, when inequality (9.10) is inverted, we obtain 	 � 0, and the three
heat flows invert signs, hence generating a heat pumpmode of operation (see Fig. 9.2
below).

9.1.1 Quantum Trajectories and Entropy Production

We now apply our trajectory formalism to unravel the thermodynamics of the above
three-level thermalmachine at the stochastic level.We analyze the complete transient
dynamics of the model when the machine starts the evolution in some arbitrary initial
state, with respect to which the steady state regime is a particular case.

Let us start by identifying the operations introduced by the dynamics (9.2) for an
infinitesimal time-step dt . Following Sect. 8.5, the coarse-grained dynamical evolu-
tion is given by the action of a CPTP map E [Eq. (8.85)], with Kraus operators:

M̂0 = 1 − dt

⎛
⎝ i

�
ĤS + 1

2

3∑
r=1

∑
k=↓,↑

L̂(r)†
k L̂(r)

k

⎞
⎠ , (9.11)
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Fig. 9.2 Comparison between the inverse effective (or virtual) temperatures β ′
r (solid lines) and

the real inverse temperatures of the reservoirs βr (dashed lines) for r = 1, 2, 3 (blue, red, orange),
as a function of β1 when ω1 = �

−1, and ω2 = 1.5�−1. In the plot we stressed the two modes
of operation of the autonomous three-level machine separated by a dotted line corresponding to
the equality case in Eq. (9.10), implying reversible environmental conditions, 	isaγ = 0 ∀γ in
Eq. (9.28). In the refrigerator regime, the transition g ↔ eA is at an effective temperature colder
than the coldest reservoir, β ′

1 � β1, inducing heat extraction from it, while the other transitions
induce dissipation of heat to the reservoir at intermediate temperature, β2 � β ′

2, and absorption of
heat in the hotter one β ′

2 � β2. In the heat pump regime the three heat flows change its directions
as the previous inequalities become inverted

corresponding to the absence of jumps during dt , and:

M̂ (r)
↓ = √

dt L̂(r)
↓ =

√
dt �

(r)
↓ σ̂r , (9.12)

M̂ (r)
↑ = √

dt L̂(r)
↑ =

√
dt �

(r)
↑ σ̂ †

r , (9.13)

where L̂(r)
↓ and L̂(r)

↑ are the Lindblad operators promoting jumps down and up in the
transition r of the three-level system. Furthermore, the concatenation of the no-jump
operator, M̂0 between arbitrary times t and t ′, gives us [see Eq. (8.89)]:

Ûeff(t
′, t) = exp

(
− i

�
Ĥeff(t

′ − t)

)
, (9.14)

as the effective evolution operator between jumps along the dynamics, with
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Ĥeff = ĤS − (i�/2)
3∑

r=1

∑
k=↓,↑

L̂(r)†
k L̂(r)

k . (9.15)

A trajectory γ = {n, (k1, t1), . . . , (kN , tN ),m} generated by the master equation
(9.2) can be hence constructed as explained in Sect. 8.5. We start with the three-level
thermal-machine in an arbitrary initial state

ρ0 =
∑
n

pn|ψn〉〈ψn|, (9.16)

which is projectively measured in its eigenbasis {|ψn〉} obtaining outcome n at the
initial time, t0. Then we let the machine evolve while registering the sequence of
jumps induced by the operators M̂ (r)

↓ and M̂ (r)
↑ during some interval of time τ . In

this way, we obtain a sequence of N jumps {kl} at corresponding times {tl}. At the
final time tf = t0 + τ , the system is measured again, now using projectors in the
eigenbasis of ρtf = exp(Lτ)ρ0, that is

ρtf =
∑
m

p′
m |ψ ′

m〉〈ψ ′
m |, (9.17)

obtaining outcome m. Notice that here the stochastic jumps during the evolution
correspond to simple transitions between the energy levels {|g〉, |eA〉, |eB〉}, which
enforce the state of the system to lose all coherences in the energy basis after the
first jump. Therefore, the stochastic dynamics is mostly classical during the transient
dynamics.

The backward trajectory γ̃ = {m, (kN , tN ), . . . , (k1, t1), n}, represents the inverse
sequence of events with respect to γ , occurring in the backward process. Following
Sect. 8.5, we can construct the backward process by specifying the initial state [here
the inverted final state of the forward process, �̂ρtf �̂

†], and obtaining the operations
governing the time-reversed dynamics from its forward counterparts. The backward
map, Ẽ, can be obtained from the generalized detailed-balance relation in Eq. (8.92):

ˆ̃M0 = e−σ E
0 /2�̂M̂†

0 �̂
†,

ˆ̃M (r)
k = e−σ

Er
k /2�̂M̂†

k �̂
†, (9.18)

where {σ Er
k } are the boundary terms for the reservoir r = 1, 2, 3. Furthermore, by

noticing that the Lindblad operators in this case come in pairs, that is

L̂(r)
↓ =

√√√√�
(r)
↓

�
(r)
↑

L̂(r)†
↑ = eβr�ωr /2 L̂(r)†

↑ , (9.19)

we can easily determine the quantities {σ Er
k } from Eq. (8.93):

σ E
0 = 0, σ

Er
↓ = βr�ωr , σ

Er
↑ = −βr�ωr . (9.20)
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Notice that the jumps induced by the operators L̂(r)
↓ (L̂(r)

↑ ) in the forward trajec-
tories γ , are associated to the emission (absorption) of a quantum of energy �ωr

in the transition r = 1, 2, 3. Hence the boundary terms σ
Er
↓ (σ

Er
↑ ) can be interpreted

as the entropy produced (annihilated) in reservoir r , when a quantum �ωr of heat is
transferred to (from) the reservoir at inverse temperature βr . As long as the reservoirs
have been here assumed to be large systems at equilibrium state ρE during the whole
evolution, this corresponds to choosing an initial state for the environment in the
backward process of the form �̂†ρ̃E�̂ = ρE 
 ρ∗

E (see Sect. 8.5).
Introducing the expressions for σ

Er
k [Eq. (9.20)] into Eq. (9.18), we obtain the

Kraus operators of the backward map:

ˆ̃M (r)
↓ = √

dt ˆ̃L(r)
↓ = √

dt �̂L̂(r)
↑ �̂† = M̂ (r)

↑ ,

ˆ̃M (r)
↑ = √

dt ˆ̃L(r)
↑ = √

dt �̂L̂(r)
↓ �̂† = M̂ (r)

↓ , (9.21)

together with ˆ̃M0 = �̂M̂0�̂
† = M̂0 for the no-jump evolution. Indeed, by exploiting

the symmetries of the smooth no-jump evolution [see Eq. (8.95) and below], we

obtain ˆ̃Ueff = �̂Û †
eff�̂

† = Ûeff for the effective evolution operator describing the
dynamics between jumps in the backward process. From the above equations we
explicitly see that the forward and backward maps, E and Ẽ, are equivalent, while
the jumps up in the forward process are related with jumps down in the backward
process (and vice-versa). We also notice that, consequently, the backward map Ẽ

admits the time-reversed steady state π̃ = �̂π�̂† = π as an invariant state.
We next construct the dual and dual-reverse processes for the model. We note that

condition (8.96) is here fulfilled, together with (8.44). Indeed, the nonequilibrium
potential, 
̂ = − ln π , obeys [
̂, ĤS] = 0 and

[
̂, L̂(r)
k ] = 	φ

(r)
k L̂(r)

k , [
̂, L̂(r)†
k ] = −	φ

(r)
k L̂(r)†

k , (9.22)

where the nonequilibrium potential changes associated to each jump in the trajectory
read

	φ0 = 0, 	φr↓ = −β ′
r�ωr , 	φr↑ = β ′

r�ωr . (9.23)

Here thequantitiesβ ′
1 = ln

(
πg

πeA

)
/�ω1,β ′

2 = ln
(

πeA
πeB

)
/�ω2 andβ ′

3 = ln
(

πg

πeB

)
/�ω3

are effective inverted temperatures (or virtual temperatures [6, 7]) associated to each
of the transitions in the steady state π in Eq. (9.7). Each time a jump down is detected
in transition r , corresponding to the emission of a quantum of energy �ωr , an amount
β ′
r�ωr of entropy (heat divided by temperature) is transferred from the system to the

reservoir r (and vice-versa for the jumps up).
The Kraus operators for dual and dual-reverse maps, D and D̃, can be obtained

as well from Eqs. (8.98) and (8.99), by using Eqs. (9.20) and (9.23). They read:
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D̂(r)
↓ = √

dt e(β ′
r−βr )�ωr /2 L̂(r)

↓ ∝ M̂ (r)
↓ , (9.24)

D̂(r)
↑ = √

dt e−(β ′
r−βr )�ωr /2 L̂(r)

↑ ∝ M̂ (r)
↑ , (9.25)

ˆ̃D(r)
↓ = √

dt e−(β ′
r−βr )�ωr /2 L̂(r)

↑ ∝ ˆ̃M (r)
↓ , (9.26)

ˆ̃D(r)
↑ = √

dt e(β ′
r−βr )�ωr /2 L̂(r)

↓ ∝ ˆ̃M (r)
↑ . (9.27)

Notice that the dual and dual-reverse maps are similar to maps E and Ẽ respectively.
In particular, all the Kraus operators corresponding to the dual and dual-reversed
dynamics are proportional to the original ones, inducing the same jumps in the three-
level system, but at modified rates depending on the difference β ′

r − βr . Only when
β ′
r = βr for each r the dual process becomes equal to the forward process, and hence

the dual-reverse process equals the backward process (see Fig. 9.2).
As stressed in the previous chapter, Eq. (9.22) together with the backward map

having π̃ as an invariant state, are sufficient conditions to ensure the existence of the
three fluctuation theorems for the adiabatic, non-adiabatic and total entropy produc-
tions during trajectory γ . They explicitly read:

	is
a
γ =

3∑
r=1

(β ′
r − βr )q

(r)
γ , (9.28)

	is
na
γ = σS

nm −
3∑

r=1

β ′
r q

(r)
γ , (9.29)

	isγ = σS
nm −

3∑
r=1

βr q
(r)
γ , (9.30)

where we stress that σS
nm = − ln p′

m + ln pn = 	sSnm is the change in the entropy of
the system during the trajectory [8–12], and

q(r)
γ = �ωr (n

(r)
↑ − n(r)

↓ ), (9.31)

is the stochastic heat entering the system from reservoir r during the jumps, n(r)
↑ (n(r)

↓ )
being the total number of jumps up (down) in transition r . It is easy to check from the
above equations that	isγ = 	isaγ + 	isnaγ . Moreover, they provide us the following
interpretation of the entropy production decomposition in the model. The adiabatic
term, 	isaγ , captures the entropy produced in the process which does not modify the
local state of the machine. On the other hand, the non-adiabatic term accounting for
the entropy production generated in the relaxation of the system to the steady state
π , can be viewed as the entropy produced in the thermalization process of the three-
level machine if each transition were coupled to a thermal reservoir at temperatures
β ′
r , instead of βr , respectively.
Turning to the averaged behavior as given by the master equation (9.2), we can

calculate the average flow of nonequilibrium potential and the entropy changes in
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the reservoirs:

Ṡr =
∑
k=↑,↓

Tr[L̂(r)†
k L̂(r)

k ρt ]σ (r)
k = −βr Q̇r , (9.32)


̇r =
∑
k=↑,↓

Tr[L̂(r)†
k L̂(r)

k ρt ]	φ
(r)
k = β ′

r Q̇r , (9.33)

where we split in three parts the nonequilibrium potential flow 
̇ = 
̇1 + 
̇2 +

̇3 = −Tr[ρ̇t ln π ].

The entropy production rates hence read:

Ṡa =
∑
r

(β ′
r − βr )Q̇r � 0, (9.34)

Ṡna = Ṡ −
∑
r

β ′
r Q̇r � 0, (9.35)

Ṡi = Ṡa + Ṡna = Ṡ −
∑
r

βr Q̇r � 0, (9.36)

with Ṡ = −Tr[ρ̇t ln ρt ] the derivative of the von Neumann entropy of the three-level
machine. They show the same structure as the trajectory versions in Eqs. (9.28)–
(9.30).

Finally, notice that in the steady state we have Ṡna = 0, and the first law (9.6)
becomes

∑
r Q̇

ss
r = 0. This implies that the adiabatic entropy production rate in

Eq. (9.34) equals the total entropy production rate [Eq. (9.36)]:

Ṡa = Ṡi = (β3 − β2)Q̇
ss
2 − (β1 − β3)Q̇

ss
1 � 0, (9.37)

which rules the stationary heat fluxes passing through the system, and sets a bound
for the thermal machine efficiency in any regime of operation. Indeed, combining
Eqs. (9.37) and (9.6) we obtain that the efficiency of the refrigeration process, as
captured by the coefficient of performance (COP) [5], is bounded by

ε = Q̇ss
1

Q̇ss
2

� β3 − β2

β1 − β3
≡ εC (9.38)

where εC represents the Carnot COP, that is, the equivalent of the Carnot efficiency
for fridges [6]. The above bound can be alternatively obtained by noticing from
Eq. (9.9) that ε = ω1/ω2, and hence the bound ε � εC directly follows fromcondition
Eq. (9.10), ensuring that the machine is acting as a refrigerator. This means that the
Carnot COP can be reached by properly tuning the spacing of the transitions ω1

and ω2, i.e. approaching ω2 → ωC
2 = ηCω1 from above. In such case the stationary

currents tend to vanish, Qss
1 → 0 and Qss

2 → 0, and the entropy production rate
Ṡa → 0, a well-known feature of reversible ‘Carnot conditions’ characterized by
extreme slowness in the energy exchange processes.
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9.2 Periodically Driven Cavity Mode at Resonance

As a second simple example we consider a single electromagnetic field mode with
frequency ω in a microwave cavity with slight losses in one of their mirrors. The
losses of the cavity are produced by the weak coupling of the cavity mode to a
bosonic thermal reservoir in equilibrium at some inverse temperature β = 1/kBT .
In addition, an external laser of same frequency ω and weak intensity drives the
cavity mode producing excitations. The Hamilton operator for the system consists
of two terms, ĤS(t) = Ĥ0 + V̂S(t), the first one representing the Hamiltonian of the
undriven mode Ĥ0 = �ωâ†â and

V̂S(t) = i�(εâ†e−iωt − ε∗âeiωt ) (9.39)

describing the effect of the classical resonant laser field ε = |ε|eiϕε with amplitude
|ε| and phase ϕε (see Sect. 1.2). In Fig. 9.3 we show a schematic picture of the setup.

The reduced evolution of the cavity mode can be described by a Lindblad master
equation in the interaction picture with respect to Ĥ0, of the form [13]:

ρ̇t = − i

�
[V̂ , ρt ] + L(ρt ) (9.40)

where V̂ = i�(εâ† − ε∗â) is the driving Hamiltonian in the interaction picture, and
the dissipative part of the dynamics is assumed to take the form of the undriven case
(see Sect. 2.3)

L(ρ) = �↓
(
âρâ† − 1

2
{â†â, ρ}

)
+ �↑

(
â†ρâ − 1

2
{ââ†, ρ}

)

accounting for emission and absorption of photons by the cavity mode to (from) the
equilibrium reservoir at respective rates �↓ = γ0(nth + 1) and �↑ = γ0 nth. As usual

Fig. 9.3 Schematic picture of the setup. The intracavity mode Ĥ0 is externally driven by a resonant
laser field V̂S(t), while in weak contact with the environment at inverse temperature β, producing
the emission and absorption of photons
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nth = (e−β�ω − 1)−1 is themeannumber of excitations of frequencyω in the reservoir
at inverse temperature β, and γ0 is the spontaneous emission decay rate in absence
of driving. We require for consistency that γ0, |ε| 	 ω but |ε|/γ0 = constant, which
implies that terms |ε|γ → 0 can be safely neglected in the master equation. This
guarantees the decoupling of the dynamics induced by the driving laser and that
generated by the presence of the thermal reservoir.

The steady state of the dynamics (9.40) can be easily obtained analytically, result-
ing in the displaced thermal state

π = D̂(α)
e−β Ĥ0

Z0
D̂†(α) = e−β(Ĥ0−μX̂α)

Zα

(9.41)

where α ≡ 2ε/γ0, D̂(α) = exp(αâ† − α∗â) is the unitary displacement operator
in optical phase space, D̂(α)âD̂†(α) = â − α (see Sect. 1.2.4), and Z0 = Tr[exp
(−β Ĥ0)]. In the second equality, we have written the state π as a generalized Gibbs
ensemble (see our analysis of generalized Gibbs-preserving maps in Sect. 7.4) by
defining a Lagrange multiplier for the field ϕε induced by the external laser:

μ ≡ √
2�ω|α|, X̂α = 1√

2

(
âe−iϕε + â†eiϕε

)
, (9.42)

with [Ĥ0, X̂α] �= 0, and Zα = eβ�ω|α|2 Z0 in Eq. (9.41). In contrast to the undriven
case, here the cavity does not reach thermal equilibrium with the reservoir, as coher-
ences in the energy basis do not decay to zero, being connected with the work per-
formed by the external laser. The fact that the steady state π can be written as a gener-
alizedGibbs ensemble is a consequence of the presence of an extra conservedquantity
in global dynamics, the field quadrature X̂α . Notice also that the state π defines a
limit cycle (unitary orbit) in the Schrödinger picture by πS(t) = e− i

�
Ĥ0t π e

i
�
Ĥ0t ,

rotating in optical phase space, according to the free evolution i�π̇S = [Ĥ0, πS].
The energy balance during the evolution can be stated by noticing that the

total power input from the laser drive results Ẇ = Tr[ d ĤS

dt ρS], where ρS(t) =
e− i

�
Ĥ0t ρt e

i
�
Ĥ0t is the density operator of the cavity mode in the Schrödinger picture.

If we further identify the internal energy of the cavity mode as US = Tr[ĤSρS], the
first law of thermodynamics in this configuration just reads

U̇S = Ẇ + Q̇ = Tr

[
d ĤS

dt
ρS

]
+ Tr

[
ĤS

dρS

dt

]
, (9.43)

and therefore the heat flow is Q̇ = Tr[ĤS
dρS

dt ] = Tr[ĤSL(ρS)] in analogy to the
previous section. In the heat expression we used that the dissipative dynamics is
invariant when moving between the Sch-rödinger picture and the interaction picture
with respect to Ĥ0.
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9.2.1 Failure of the FT for Adiabatic Entropy Production

As in the previous example, we may explicitly construct the thermodynamic descrip-
tion for this model at the trajectory level. The master equation (9.40) provides us the
Kraus operators for the map E in Eq. (8.85):

M̂0 = 1 − dt

⎛
⎝ i

�
V̂ + 1

2

∑
k=↓,↑

L̂†
k L̂k

⎞
⎠ , (9.44)

for the no jump evolution, and

M̂↓ = √
dt L̂↓ = √

dt �↓ â, (9.45)

M̂↑ = √
dt L̂↑ = √

dt �↑ â†, (9.46)

for the jumps. The effective evolution between jumps, Ûeff(t ′, t) in Eq. (8.89), is
again given by Eq. (9.14) where the effective non-hermitian operator is in this case

Ĥeff(t) = V̂ − (i�/2)
∑
k=↓,↑

L̂†
k L̂k, (9.47)

and the trajectory γ = {n, (k1, t1), . . . , (kN , tN ),m} is constructed as in the previous
example by counting the jumps {L̂↓, L̂↑} induced by the reservoir and registering
the times at which jumps occurred.

The backward evolution is specified as well by Kraus operators for the backward
map, Ẽ, which can be obtained from the detailed balance relation (8.92) in Sect. 8.5
as in the previous example. As the forward dynamics, it is governed by a single pair
of Lindblad operators:

L̂↓ = √
�↓ â, L̂↑ = √

�↑ â†. (9.48)

The stochastic entropy change in the environment (again a thermal reservoir in equi-
librium) associated to each Kraus operator in Eqs. (9.44) and (9.45) is given by

σ E
0 = 0, σ E

↓ = β�ω, σ E
↑ = −β�ω. (9.49)

That is, when a jump down (up) occurs, the entropy in the environment increases
(decreases) by β�ω, associated to the emission (absorption) of a quantum of energy
�ω from the reservoir. Therefore, the Kraus operators for the backward map Ẽ read
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ˆ̃M0 = �̂M̂0�̂
† = M̂0,

ˆ̃M↓ = √
dt ˆ̃L↓ = √

dt �̂L̂↑�̂† = M̂↑,

ˆ̃M↑ = √
dt ˆ̃L↑ = √

dt �̂L̂↓�̂† = M̂↓, (9.50)

implying again that forward and backward maps, E and Ẽ, are equivalent.
However it is worth noticing that in this case the condition (8.41) needed for the

existence of a dual and dual-reverse dynamics is not fulfilled. Indeed the nonequi-
librium thermodynamic potential, from Eq. (9.41), reads in this case


̂ = − ln π = β D̂(α) Ĥ0 D̂
†(α) + ln Z0

= β
(
Ĥ0 − μX̂α

)
+ ln Zα, (9.51)

which does not obey the condition (8.96), because the Lindblad operators appearing
in the dynamics (9.40) do not promote jumps in the steady state basis, but in the
unperturbed Hamiltonian (Ĥ0) basis. This implies that we cannot associate a single
change in the nonequilibrium potential to each Lindblad jump operator. As a con-
sequence, the entropy production per trajectory cannot be decomposed in adiabatic
and non-adiabatic contributions, and the fluctuation theorems for the adiabatic and
non-adiabatic entropy production are not valid.

We indeed anticipate the breaking of the entropy production decompositionwhen-
ever the (possibly many) dissipative contributions to a dynamical evolution

ρ̇t = − i

�
[Ĥ , ρt ] +

∑
n

Ln(ρt ) ≡ L(ρt ) (9.52)

possesses a steady stateLn(π
(n)) = 0which does not commutewith the actual steady

state generated by thewhole dynamics, [π, π(n)] �= 0withL(π) = 0. This is a purely
quantum feature arising when coherences are introduced in the thermodynamical
description.

9.2.2 Implications to the Second-Law-Like Inequalities

Let us finally calculate the average total entropy production by obtaining the average
entropy change in the environment [Eq. (8.106)]

ṠE =
∑
k

Tr[Ek(ρt )]σ E
k /dt =

∑
k=↓,↑

Tr[L̂†
k L̂kρt ]σ E

k

= − β Tr[L(ρt )Ĥ0] = −β Tr[L(ρS)ĤS] = −β Q̇ (9.53)
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where in the second line we have safely neglected the contribution coming from
the driving term in the heat, that is Tr[L(ρS)ĤS] 
 Tr[L(ρS)Ĥ0], as |ε|γ → 0. The
average total entropy production rate [Eq. (8.105)] hence reads

Ṡi = Ṡ − β Q̇ = β(Ẇ − Ḟ) � 0, (9.54)

where Ḟ = U̇S − T Ṡ is the time derivative of the nonequilibrium free energy (see
Chap.3). In Eq. (9.54) the term Ẇ − Ḟ can be fully interpreted as a dissipative power,
i.e. the rate at which work is irreversibly dissipated in the process. We indeed note
that at steady state conditions we have U̇S = Ṡ = 0, and then Ṡi = βẆss � 0, that is,
work from the external drive is needed to maintain the nonequilibrium steady state
πS(t), producing entropy at a constant rate

βẆss ≡ β�ωTr[(εâ† + ε∗â)π ] = βμ
√
2|ε| � 0. (9.55)

On the other hand, even if the non-adiabatic entropy production cannot be defined
at the trajectory level, we can always calculate its averaged expression [see Eq. (8.55)
in Sect. 8.3], and then the non-adiabatic entropy production rate [14]:

Ṡna = − d

dt
D(ρt ||π) = Ṡ − β

(
U̇S − μẊS

)
� 0 (9.56)

where ẊS ≡ Tr[X̂α ρ̇t ] is the rate at which the cavity field is displaced in the external
field direction (as given by ϕε), until the steady state is reached 〈X̂α∞〉 = Tr[X̂απ ] =√
2|α|. The transient evolution of XS ≡ 〈X̂αt 〉 = Tr[X̂αρt ] is simply given by

ẊS = −γ0

2
(XS − 〈X̂α∞〉), (9.57)

that is, it exponentially converges to its steady state value. Therefore ẊS will be either
positive or negative during the evolution depending on the displacement of the initial
state. If 〈X̂α0〉 � 〈X̂α∞〉 then ẊS � 0 ∀t , and the system state increases its coherence
in the energy basis, while if 〈X̂α0〉 � 〈X̂α∞〉, we have ẊS � 0 ∀t and the coherence
decreases. It is worth noticing that the rate ẊS modifies the velocity at which the
system converges to the steady state, c.f. Eq. (9.56) but, like the work performed by
the external drive, does not produce any entropy change in the reservoir, which in
this model only exchanges heat with the cavity mode [see Eq. (9.53)]. This situation
can be understood in the framework of generalized Gibbs ensembles by looking
at the external drive as a coherent thermal reservoir at infinite temperature, which
exchanges both energy (work) and coherence (displacement in the field quadrature
X̂α) without modifying its entropy.



9.2 Periodically Driven Cavity Mode at Resonance 329

By using the expressions for the total and non-adiabatic entropy production rates
from Eqs. (9.54) and (9.56), the adiabatic entropy production rate may be defined as

Ṡa ≡ Ṡi − Ṡna = β(Ẇ − μẊS), (9.58)

proportional to the input power not being used to generate a displacement in the cavity
field. This quantity provides the correct expression for the entropy production in the
steady state, Ṡa → βẆss = −β Q̇ss � 0, corresponding to the input power dissipated
as heat to maintain the cavity field out of equilibrium. However, its positivity is
not guaranteed at arbitrary times. By noticing that Ẇ + μẊS = Ẇss holds, we can
explicitly evaluate the adiabatic entropy production rate as

Ṡa = βẆss + βμγ0

(
XS − 〈X̂α∞〉

)
, (9.59)

with XS = 〈X̂αt0
〉e−γ0t/2 + 〈X̂α∞〉(1 − e−γ0t/2) from Eq. (9.57). We notice that

Eq. (9.59) is negative for any initial transient for which μXS < μ〈X̂α∞〉 + Ẇss/γ0.
In particular, if the dynamics starts in any state diagonal in the Ĥ0 basis, this happens
for t < 2 ln(2)/γ0 (see Fig. 9.4). During this transient, the relaxation of the cavity
mode to its periodic steady state is boosted by the gain in ẊS on the top of the entropy
produced in the process, i. e. Ṡna � Ṡi.

In Fig. 9.4a we show the dynamical evolution of the three entropy produc-
tion rates, Eqs. (9.54), (9.56) and (9.58) when the cavity mode starts the evo-
lution in a Gibbs thermal state in equilibrium with the reservoir temperature,
ρS(t0) = exp(−β Ĥ0)/Z0. In this case, we find that the entropy of the mode is kept
constant during the evolution, Ṡ = 0 ∀t , which implies Ṡi = −β Q̇ � 0, and Ṡna =
β(μẊS − U̇S) � 0, while the adiabatic entropy production rate Ṡa = β(Ẇ − μẊS)

becomes negative in the initial transient dynamics.
The energetics of the relaxation process is shown in Fig. 9.4b. The cavity mode

absorbs energy at constant entropy from the external laser until the periodic steady
state is reached, U̇S = Ẇe−γ0t/2,where Ẇ = Ẇss(1 − e−γ0t/2) � 0,while dissipating
an increasing part of the input power as heat, Q̇diss ≡ −Q̇ = Ẇ (1 − e−γ0t/2) � 0.
At this point the input laser power starts to be fully dissipated into the reservoir,
i. e. Q̇ss = −Ẇss. We notice that the energy absorbed by the cavity mode during
the evolution is fully employed to generate the (unitary) displacement α, that is,
	US = μ	XS = �ω|α|2. However, the transient dynamics ruling this process is
far from being trivial. The cavity mode is always displaced (gaining coherence) at
a higher rate than energy, US = μẊS(1 − e−γ0t/2), in accordance with the positive
non-adiabatic entropy production rate. In addition, by comparing Figs. 9.4a and b the
energetic meaning of the adiabatic entropy production rate can be clarified. In the
initial transientwhere Ṡna < 0 the coherence gain surpass the input power, i.e.μẊS >

Ẇ , which in turn implies that the rate at which the cavity mode gains energy speeds-
up in this period ÜS > 0. At time γ0t = 2 ln 2, when Ṡa = 0, we have Ẇ = μẊS =
Ẇss/2, and U̇ peaks at its maximum. After this time, the adiabatic entropy production
rate is positive Ṡa > 0, implying μẊS < Ẇ , and U̇S decreases until it becomes
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zero in the long time run, when the periodic steady state is reached. In conclusion,
we obtained that the sign of the adiabatic entropy production rate spotlights the
acceleration in the internal energy changes of the cavity mode.

9.3 Squeezing in a Maxwell Fridge Toy Model

As a third example we envisage a model acting as a Maxwell demon in which coher-
ences can be naturally introduced in by nonequilibrium quantum reservoirs. The
model consist of a small thermal device operating between two resonant bosonic
reservoirs at different (inverse) temperaturesβr = 1/kBTr (r = 1, 2), and an external

(a)

(b)

Fig. 9.4 Time evolution of (a) adiabatic (Ṡa), non-adiabatic (Ṡna), and total (Ṡi) entropy production
rates represented by color solid lines, and (b) input power (Ẇ ), rate at which the cavitymode absorbs
energy (U̇S), and rate at which it gets displaced (ẊS). The cavity mode starts in equilibrium with

the thermal reservoir, ρ0 = e−β Ĥ0 Z , and the laser driving is suddenly switched on at t = 0 without
any energy cost, and during the whole evolution the entropy of the cavity mode does not change.
In the initial dynamical transient the adiabatic entropy production rate becomes negative, implying
Ṡna � Ṡi, while it tends to βẆss (dashed line) in the long time run [see Eq. (9.55)]. The sign of
the adiabatic entropy production rate is related to the interplay between the input power Ẇ and the
displacement rate ẊS. For the initial transient where ẊS � Ẇ , an acceleration of the rate at which
energy is absorbed by the cavity mode occurs (see the main text for more details). In the figure we
used the parameters ε = 0.02ω, γ0 = 0.01ω, and reservoir’s temperature T = 10k−1

B �ω



9.3 Squeezing in a Maxwell Fridge Toy Model 331

Fig. 9.5 Schematic diagram of theMaxwell refrigerator. Two reservoirs of resonant bosonic modes
at different (inverse) temperatures β1 � β2 exchange energy by inducing jumps between the degen-
erated energy levels of the external memory (M). Each time a quantum �ω of heat is transferred
from the hot (cold) to the cold (hot) reservoirs, the memory performs a collective jump to the left
(right) as given by the operator âL (âR)

memory system, M , in which information can be erased or stored (see Fig. 9.5). The
memory is a semi-infinite set of quantum levels {|0〉, |1〉, . . . , |n〉, . . .}with degener-
ated energies ĤM = 0 (conveniently set to zero), and ladder operators [âL , âR] = 1,
producing jumps between the degenerated levels to the left (âL ) or to the right
(âR = â†L ). The device is characterized by an interaction Hamiltonian term weakly
coupling the memory and the reservoir modes throughout a three-body interaction:

Ĥint = �g
(
âL b̂

†ĉ + âRb̂ ĉ†
)

(9.60)

where g 	 ω, being ω the natural frequency of the reservoir modes, with Hamilto-
nians Ĥ1 = �ωb†b and Ĥ2 = �ωc†c, and [b̂, b̂†] = 1 ([ĉ, ĉ†] = 1) ladder operators
of the two reservoir bosonic modes. The above interaction Hamiltonian preserves
energy and induces jumps on the memory to the left (right) when an energy quantum
is transferred from the reservoir 2 (1) to the reservoir 1 (2). The underlying idea of
the model is to profit from the heat flows induced by the environment throughout the
device in order to push the state of the memory as much as possible to its leftmost
level |0〉 (Landauer’s erasure), or alternatively, use the memory as a battery in order
to induce a heat flow against the constraints imposed by the environment (Maxwell
fridge).
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9.3.1 Thermal Reservoirs Case

Wefirst consider the case inwhich both reservoirs are ideal and at thermal equilibrium
at temperatures β1 � β2. The environmental bosonic modes are hence assumed to be
always in a Gibbs state. We are interested in the relaxation dynamics of this model
when starting from an arbitrary initial state in thememory. Using standard techniques
form open quantum system theory (see Sects. 2.2 and 2.3), one arrives to the next
master equation (ME) for the dissipative dynamics of the memory density operator:

ρ̇t = L(ρt ) =�←
(
âLρt âR − 1

2
{âRâL , ρt }

)

+ �→
(
âRρt âL − 1

2
{âL âR, ρt }

)
, (9.61)

where we neglected Lamb-Stark frequency shifts. The above equation describes
incoherent jump processes in the memory to the left at rate �←, and to the right at
rate �→, related to heat fluxes from reservoir 2 to reservoir 1, and from reservoir 1
to reservoir 2 respectively. We have

�← = γ0(n
th
1 + 1)nth2 , �→ = γ0(n

th
2 + 1)nth1 , (9.62)

being γ0 a constant depending on the interaction strength and nthr ≡ (eβr�ω − 1)−1

denotes the mean number of excitations of energy �ω in reservoir r . Notice that the
contact with the thermal reservoirs implies a detailed balance relation between jumps
to the left and jumps to the right in the memory

�←
�→

= e(β1−β2)�ω = eμ, (9.63)

where we introduced the parameter

μ ≡ (β1 − β2)�ω � 0. (9.64)

The memory steady state density operator [L(π) = 0] is, from the ME (9.61)

π = e−μN̂M

Z
, (9.65)

for which jumps to the left and jumps to the right are equally probable. Here
N̂M = âRâL is the number operator in the memory, and Z = Tr[exp(−μN̂M)] =
(1 − e−μ)−1. Therefore, the quantity μ fully determines the steady-state occupa-
tion in the degenerated energy levels of the memory, together with its entropy
S(π) = μ〈N̂Mπ

〉 + ln Z , being 〈N̂M 〉π = (eμ − 1)−1. Consequently, the greater the
temperature gradient between the reservoirs, the greater μ, the more peaked the dis-



9.3 Squeezing in a Maxwell Fridge Toy Model 333

tribution in the level leftmost, and the lower the entropy of the steady state. On the
contrary, if the temperatures of the reservoirs are very similar β1 → β2, we have
μ → 0, and the steady state of the external system approaches the fully mixed state.

This simple toy model has all the necessary elements to act as a Maxwell demon.
On the one hand, if the initial state of the memory is a low entropic state (in particular
if it has lower entropy than π ), the memory acts as an information battery powering
a flux of heat against the environment temperature gradient. This flow is maintained
until the memory reaches the steady state π , moment at which it should be replaced
with a fresh initial state if one wants to maintain the flow. On the other hand, if
the initial state is very mixed (it has greater entropy than π ), the device acts as
a Landauer’s eraser, which profits from the spontaneous heat flow from the hot
to the cold reservoirs to purify the memory. We notice that a different model for
a Maxwell refrigerator operating at steady state conditions, and showing the above
mentioned regimes, has been recently proposed byMandal and Jarzynski inRef. [15],
and extended to the quantum regime in Ref. [16].

Let us nowanalyze the full stochastic thermodynamics of themodel and its entropy
production. As in the previous examples, we start by identifying the following Kraus
operators for the map E in Eq. (8.85)

M̂0 = 1 − 1

2

∑
k=←,→

L̂†
k L̂k,

M̂← = √
dt L̂← = √

dt �← âL ,

M̂→ = √
dt L̂→ = √

dt �→ âR . (9.66)

In the above equations we identified a single pair of Lindblad operators, {L̂←, L̂→},
fulfilling

L̂← = √
�← âL , L̂→ = √

�→ â†L . (9.67)

Exploiting this fact in the trace preserving condition for the backward maps
[Eq. (8.93)], we obtain the following boundary terms in the environment associated
to each Kraus operator in Eq. (9.66)

σ E
0 = 0, σ E

← = μ, σ E
→ = −μ. (9.68)

As the environment is here again given by two uncorrelated thermal reservoirs in
equilibrium, the above quantities can be interpreted as the stochastic entropy changes
in the environment during the jumps. That is,when a jump to the left (right) occurs, the
entropy in the environment increases (decreases) by μ = (β1 − β2)�ω, associated
to the exchange of a quantum of energy �ω from the hot (cold) to the cold (hot)
reservoir.

The backward evolution is analogously specified by the backward map, Ẽ, with
Kraus operators reading
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ˆ̃M0 = �̂M̂†
0 �̂

† = �̂M̂0�̂
† = M̂0

ˆ̃M← = √
dt ˆ̃L← = �̂

√
dt L̂→�̂† = M̂→

ˆ̃M→ = √
dt ˆ̃L→ = �̂

√
dt L̂←�̂† = M̂←. (9.69)

As in the previous example, the forward and the backwardmaps are essentially equal,
and operations corresponding to a jump to the left in the forward process transforms
in a jump to the right in the backward process, and vice-versa.

Notice that the conditions for the adiabatic and non-adiabatic decomposition of
the entropy production hold. From the steady state (9.65) it is easy to see that the
Kraus operators in Eq. (9.66) are related with an unique change in the nonequilibrium
potential


̂ = − ln π = μN̂M + ln Z , (9.70)

that is, [
̂, L̂k] = 	φk L̂k for k = {←,→}, with associated potential changes

	φ0 = 0, 	φ← = −μ, 	φ→ = μ. (9.71)

On the other hand, Eq. (9.69) ensure that the map Ẽ has as invariant state π̃ = �̂π�̂†

as required to define the dual map (see Sect. 8.5). Comparing Eqs. (9.68) and (9.71)
we see that in this case the changes in the nonequilibrium potential produced by the
jumps exactly coincide with the decrease in stochastic entropy in the reservoirs, that
is	φ←,→ = −σ←,→. Thereforewe can conclude that the dual-reverse and backward
processes are exactly equal, and hence the dual process is just the original forward
one, which implies zero adiabatic entropy production per trajectory. A trajectory
γ = {n, k1, . . . , kN ,m} is again defined by the initial and final measurements on
the system performed in the instantaneous eigenbasis of ρt (with outcomes n and
m respectively) and the N jumps {kl}, registered at times {tkl } during the evolution.
The total entropy production per trajectory hence corresponds here to a single non-
adiabatic contribution

	is
na
γ = 	isγ = σS

nm − 	φγ

≡ σS
nm − (β1 − β2)qγ , (9.72)

which fulfills the detailed and integral fluctuation theorems. As in the previous exam-
ple, σ S

nm = ln p0n − ln ptm is the stochastic entropy change in the system, where p0n
and ptm are, respectively, the eigenvalues of ρ0 and ρt corresponding to outcomes n
and m. Notice that in the last equality of Eq. (9.72) we identified the net heat during
the trajectory, qγ , flowing from the cold to the hot reservoir

qγ = �ω(n→ − n←), (9.73)

where n→ (n←) is the total number of right (left) jumps detected during the trajectory
γ . The absence of adiabatic entropy production can be understood from the fact that
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in this model, any transfer of heat between reservoirs is achieved by means of jumps
in the memory, cf. Eq. (9.60). This implies that no heat can flow without modifying
the system density operator, and hence no entropy can be produced irrespective of
the local changes in the state of the memory ρ. As a consequence, any flow ceases
in the long-time run, when the steady state π is reached, blocking at this point the
heat transfer between the reservoirs.

The entropy production rate can be finally obtained by averaging over trajectories
[see Eqs. (8.105) and (8.103)]

Ṡi = Ṡ − μ〈ṄM 〉 = Ṡ − (β1 − β2)Q̇ � 0 (9.74)

where Ṡ = −Tr[ρ̇t ln ρt ], and Q̇ = Tr[ρ̇t�ωN̂M ] is the heat flow from the cold to
the hot reservoir. The second law inequality (9.74), can be now used to discuss the
performance of the two different regimes of operations of the device: Landauer’s
eraser and Maxwell refrigerator. In the first case we see that when Q̇ < 0, that is,
the heat flows spontaneously from the hot to the cold reservoir, the entropy in the
memory system is allowed to decrease, Ṡ < 0, until the entropy produced by the
spontaneous heat flow is compensated. The heat dissipated in the erasure process is
then lower bounded by

|Q̇| � (β1 − β2)
−1 |Ṡ|, (9.75)

corresponding to a manifestation of Landauer’s principle in our setting. On the other
hand, if Ṡ > 0, now the flux of heat can be inverted against the thermal gradient, Q̇ >

0, the cold reservoir is refrigerated at the price of entropy production in the memory
system. The performance of this Maxwell fridge is then analogously bounded by

Q̇ � (β1 − β2)
−1 Ṡ. (9.76)

9.3.2 Squeezed Thermal Reservoir Enhancements

Once the thermodynamic behavior of the model has been analyzed for the case of
ideal thermal reservoirs, we now move to the case of nonequilibrium reservoirs. We
replace the ideal thermal reservoirs at inverse temperatures β1 and β2, by squeezed
thermal reservoirs at the same temperatures, with additional parameters {r1, r2} and
{θ1, θ2}, characterizing the squeezing (see Sect. 1.2.5). Squeezing constitutes a useful
resource not only from the perspective of quantum information, with applications
in quantum metrology, imaging, computation, and cryptography [17], but also from
the perspective of quantum thermodynamics, for the design of enhanced thermal
machines [4, 18, 19].

In Sect. 2.3.2 of Chap.2 we derived the open system dynamics induced by a
squeezed thermal reservoir on a bosonic mode, which can be easily adapted to the
present situation. The master equation in Eq. (9.61) changes to
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ρ̇t = L∗(ρt ) = �−
(
R̂ ρt R̂

† − 1

2
{R̂† R̂, ρt }

)

+ �+
(
R̂†ρt R̂ − 1

2
{R̂ R̂†, ρt }

)
(9.77)

where R̂ is the ladder operator of a Bogoliubov mode defined by the canonical
transformation

R̂ ≡ âL cosh(r) + âR sinh(r) e
iθ = Ŝ(ξ)âL Ŝ

†(ξ), (9.78)

being ξ = reiθ , and Ŝ(ξ) = exp
(
r
2 [â2Le−iθ − â2Re

iθ ]) the squeezing operator on the
memory system, with θ ≡ θ1 − θ2 and r depending on the reservoir temperatures
and squeezing parameters (r1 and r2) thought the relation

tanh(2r) ≡ 2M1M2

(N1 + 1)N2 + (N2 + 1)N1
, (9.79)

whereMi ≡ − sinh(ri ) cosh(ri )(2nthi + 1) and Ni ≡ nthi cosh(2ri ) + sinh(ri ) for i =
1, 2. The above equation is only well defined for the right hand side taking values in
between −1 and 1, to which we will restrict from now on. We also stress that r → 0
when either r1 → 0 or r2 → 0.

The operators R̂ and R̂† in the master equation (9.77), promote jumps to the left
and to the right, respectively, between the states of the squeezed basis of the memory
system, {Ŝ(ξ)|0〉, . . . , Ŝ(ξ)|n〉, . . .}, at rates

�∓ = γ0

2
(δN ± (N2 − N1)) , (9.80)

where δN ≡
√

((N1 + 1)N2 + (N2 + 1)N1)
2 − 4|M1M2|2. It is worth noticing that

the rates �∓ no longer fulfill the detailed balance relation in Eq. (9.63) but now
�− = �+ eμ∗ with a new parameter

μ∗ ≡ ln

(
N1 sinh2(r) + N2 cosh2(r) + N1N2

N1 cosh2(r) + N2 sinh2(r) + N1N2

)
. (9.81)

This can be both greater or lower than μ depending on the squeezing parameters
{r1, r2} (inside the allowed range) of the two squeezed thermal reservoirs. In partic-
ular, it is worth noticing that μ∗ → μ only when both r1 → 0 and r2 → 0.

Crucially, the master equation (9.77) now induces the following steady state in
the long time run

π∗ = Ŝ(ξ)
e−μ∗ N̂M

Z∗
Ŝ†(ξ), (9.82)
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with μ∗ defined in Eq. (9.81), and Z∗ = Tr[e−μ∗ N̂M ] = (1 − e−μ∗)−1. This is equiv-
alent to a squeezed thermal state for the energyless memory system, with same
entropy than e−μ∗ N̂M /Z∗, but modified occupations in the degenerated levels, show-
ing second-order coherences in the N̂M basis (see Sect. 1.2.5). As in the example of
the driven cavity mode, the steady state π∗ in Eq. (9.82) can be rewritten as a gener-
alized Gibbs ensemble (see Sect. 7.4) π∗ ∝ exp[−μ∗(cosh(2r)N̂M − sinh(2r)Âθ )],
where we introduced the operator

ÂM ≡ −1

2

(
â2Re

iθ + â2Le
−iθ

) = 1

2

(
P̂2

θ/2 − X̂2
θ/2

)
, (9.83)

measuring the asymmetry between the conjugated memory quadratures in the
direction given by θ/2, [X̂θ/2, P̂θ/2] = i (see Eq. (1.75) in Sect. 1.2.4). Notice that
[N̂M , Âθ ] �= 0, so that π∗ corresponds to a generalized Gibbs ensemble with non-
commuting charges. We will return to the properties of the operator Âθ in Chap.10.

Following the trajectory formalism, the Kraus operators for the map E in the
forward process now read

M̂0 = 1 − 1

2

∑
k=−,+

L̂†
k L̂k,

M̂− = √
dt L̂− = √

dt �− R̂,

M̂+ = √
dt L̂+ = √

dt �+ R̂†. (9.84)

with the new Lindblad operators, {L̂−, L̂+}. Notice that the map E is a general-
ized Gibbs-Preserving map (see Sect. 7.4). The boundary terms in the environment
associated to the operators M̂k become

σ E
0 = 0, σ E

− = μ∗, σ E
+ = −μ∗. (9.85)

They can be interpreted again as stochastic entropy changes in the environment, as
they correspond to choosing ρ̃E = �̂ρE�̂†, ρE being a product of squeezed thermal
states in the two reservoirs. Here ρ∗

E 
 ρE follows from the fact that they are large
systems which do not substantially modify their state during the evolution. Notice
however that they have no longer a clear interpretation in terms of exchange of
energy quanta between the reservoirs, as in this case both energy and coherence
(or asymmetry) are exchanged between the reservoirs in each jump, producing (or
annihilating) an entropy quantum ±μ∗ in the whole environment. Yet, the Kraus
operators for the backward map fulfill the same structure than in the previous case

ˆ̃M0 = �̂M̂†
0 �̂

† = �̂M̂0�̂
† = M̂0,

ˆ̃M− = √
dt ˆ̃L− = �̂

√
dt L̂+�̂† = M̂+,

ˆ̃M+ = √
dt ˆ̃L+ = �̂

√
dt L̂−�̂† = M̂−, (9.86)
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and the conditions for the adiabatic and non-adiabatic decomposition of the entropy
production hold again. Indeed, from the steady state (9.82) the nonequilibrium poten-
tial now reads


̂ = − ln π∗ = μ∗ŜN̂M Ŝ
† + ln Z∗, (9.87)

which verifies [
̂, L̂k] = 	φk L̂k for k = {−,+}, being

	φ0 = 0, 	φ− = −μ∗, 	φ+ = μ∗, (9.88)

as required to develop the dual-reverse process. Moreover, the map Ẽ has as invariant
state π̃∗ = �̂π∗�̂† as required to define the dual process. Therefore, from Eqs. (9.85)
and (9.88) we see that also in this case the changes in the nonequilibrium potential
produced by the jumps exactly coincides with the decrease in stochastic entropy in
the reservoirs,	φ∓ = −σ∓, and hence the adiabatic entropy production is again zero
for any trajectory. This means that when the steady state π∗ is reached, no further
entropy production is needed in order to maintain the nonequilibrium steady state
π∗.

The average entropy production rate reads now

Ṡi = Ṡ − μ∗Tr[Ŝ(ξ)N̂M Ŝ
†(ξ)ρ̇t ] = (9.89)

= Ṡ − μ∗
�ω

(cosh(2r)Q̇ − sinh(2r)ȦM) � 0

where Q̇ = Tr[�ωN̂M ρ̇t ] is again the energy flux from the cold to the hot reservoir,
and ȦM ≡ −�ωTr[ Âθ ρ̇t ], with Âθ in Eq. (9.83). The later is a flow of second-order
coherences (asymmetry in the fluctuations) from the reservoirs (see Chap.10), obey-
ing an exponential law, ȦM = −γ0(AM − �ω〈 Âθ∞〉), where AM ≡ �ω〈 Âθt 〉, and
〈Aθ∞〉 = (1/2) sinh(2r) coth(μ∗/2) � 0 in the steady state π∗.

Comparing Eqs. (9.74) and (9.89) we see two main effects of reservoir squeezing.
The first one is the appearance of the parameterμ∗ instead ofμ, which implies that the
interplay between the energy flux from the cold to the hot reservoirs and the entropy
in thememory can bemodifiedwithout varying the temperature gradient. The second
one is the appearance of an extra entropy flow related to the exchange between system
and environment of the quantity Ȧ, proportional to the second-order coherences in
the memory system. This may induce an extra reduction (or increase) of the memory
entropy independently of the heat exchanged between the reservoirs. The two effects
have indeed a deep impact in the performance of the Maxwell demon device (see
Fig. 9.6). Tomake the discussion more precise, we will look at the machine operation
when the memory system starts in the state π and is then connected to the device
with the squeezed thermal reservoirs until it reaches the steady state π∗. The extra
increase in entropy and energy pumped from the cold to the hot reservoirs due to
reservoir squeezing read in this case
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Fig. 9.6 a Enhancements in the entropy erased −	Ssq in the memory, together with the (scaled)
heat flow from the hot to the cold reservoirs, −Q̇sq, as a function of the squeezing parameter r2,
in the case of no squeezing in the cold reservoir, r1 = 0. In the inset figure we show the change
in the parameter μ∗ characterizing the steady state of the memory. b Enhancements in the energy
extracted from the cold reservoir (blue line), together with the (scaled) entropy produced in the
memory 	Ssq (black line), the coherences flow to the memory 	AM (orange-dashed line), and
the maximum extractable heat from the second law-like inequality in Eq. (9.89), Q̇max (pink-dotted
line) as a function of the squeezing parameter r1, when both reservoirs are squeezed (r2 = 0.5). In
both plots we used β1 = 5/�ω, and β2 = 1.2/�ω

	Ssq ≡ S(π∗) − S(π) = μ∗
eμ∗ − 1

− μ

eμ − 1
+ ln

1 − e−μ

1 − e−μ∗
,

Qsq ≡ �ω
(〈NM 〉π∗ − 〈NM 〉π

) = �ω

eμ∗ − 1
− �ω

eμ − 1
. (9.90)

In Fig. 9.6a we show the break of the Landauer’s bound in Eq. (9.75) when the
device acts as a Landauer’s eraser, by just considering squeezing in the hot reservoir,
r2 > 0, while the cold one remains in a thermal state (r1 = 0). In this case we have
r = 0, meaning that the steady state in Eq. (9.82) reduces to

π∗ = exp(μ∗ N̂M)/Z∗, (9.91)
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with μ∗ � μ, which corresponds to a lower entropic state than π in Eq. (9.65).
Introducing squeezing only in the cold thermal reservoir we can therefore erase
a greater amount of entropy in the memory which overcomes the bound (9.75), at
the cost of inducing some more energy flowing from the hot to the cold reservoirs.

On the other hand, in Fig. 9.6b, we show the Maxwell refrigerator regime when
both reservoirs contain squeezing, r1, r2 > 2. In this case extra energy can be
extracted from the cold reservoir. The asymmetry induced in the memory state,
together with the modification of the parameter μ∗ are the responsible of allowing
refrigeration on the top of the entropy produced in the memory, overcoming again
the bound in Eq. (9.76) for the thermal reservoirs case.

9.4 Conclusions

In this chapter we have studied the decomposition of the total entropy production
into adiabatic and non-adiabatic contributions in three specific situations of interest:
an autonomous three-level thermal machine, a dissipative cavity mode resonantly
driven by a classical field, and a Maxwell’s demon toy model.

The first example illustrates the differences between adiabatic, non-adiabatic, and
total entropy production in a purely thermal situation [Eqs. (9.28)–(9.30) and (9.34)–
(9.36)].We have seen that the forward and backward processes in this case are equiv-
alent inverting the direction of the jumps. The dual and the dual-reverse processes
are very similar to the forward and backward ones, but the rates at which the dif-
ferent quantum jumps occurs are modified. The entropy changes in the environment
are the sum of the heat flow dissipated in each reservoir divided by its temperature
[see Eqs. (9.20) and (9.32)], and the changes in the nonequilibrium potential are,
analogously, the sum of the heat flowing into the system in each transition divided
by it effective (or virtual) temperature [Eqs. (9.23) and (9.33)]. The non-adiabatic
entropy production hence describes the entropy changes in the three-level machine
not accounted for by the entropy flow due to the heat absorbed in each transition at
its effective temperature. On the other hand, the adiabatic entropy production is the
sum of the irreversible heat exchanged between each reservoir and its corresponding
transition in the machine. Furthermore, we stress that the differences between the
actual temperatures of the reservoirs and the effective (virtual) temperatures of the
three-level machine transitions determine the direction of the heat flows in the steady
state (see Fig. 9.2), together with its performance properties, Eq. (9.38).

In the second example we discussed a configuration in which the adiabatic and
non-adiabatic decomposition of the entropy production is broken, and only the FT
for the total entropy production holds. The backward process is also equivalent to the
forward one, with the quantum jumps inverted in the time-reversed trajectories with
respect to the forward ones. The dual and dual-reverse processes cannot be defined in
the setup, as the condition for the Kraus operators in Eq. (8.96) is not fulfilled. This
break of the split will occur whenever the different dynamical contributions may
promote jumps between eigenstates of different system observables [see Eq. (9.52)
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and the discussion above]. This can be seen from the non-commutativity between the
unitary and dissipative contributions in the master equation (9.40), i.e. [V̂ , â†â] �=
0. As a consequence, the non-adiabatic entropy production rate, Eq. (9.56), which
measures the convergence of the system to its steady state, can be greater than the
total entropy production rate, Eq. (9.54). This implies a negative adiabatic entropy
production rate, Eq. (9.58), in some transient dynamics during which the cavitymode
experiences an accelerated energy gain (see Fig. 9.4).

Finally, the third example allowed us to apply our formalism in a simple setup
with a pure informational component, and in which nonequilibrium squeezed ther-
mal reservoirs can be easily introduced. We first explored the simpler case in which
a memory system controls the heat flow between thermal reservoirs at different
temperatures. We have seen that in this case the dual and the forward process are
exactly the same, and no adiabatic entropy production is generated. Equivalently the
backward and the dual-reverse processes coincide, with nonequilibrium potential
changes equivalent to (minus) the stochastic entropy changes in the environment
(see Eqs. (9.68) and (9.71)). This entropy changes are produced by the flow of heat
between the reservoirs at different temperatures. The total entropy production and
the non-adiabatic ones are hence equal in this case, Eq. (9.72), and from the corre-
sponding entropy production rate (9.74) the Landauer’s bound is recovered in the
model. As a second step we replaced the regular thermal reservoirs by squeezed
thermal reservoirs. Our formalism applies as well for this case. Now the entropy
changes in the environment are produced by the exchange of both energy and coher-
ences between the nonequilibrium reservoirs. This induces squeezing in the memory
system at the steady state (9.82), and modifies the total entropy production rate,
Eq. (9.89), which now includes a term proportional to the asymmetry induced by
the memory quadratures. The enhancements in the performance of the device due
to the squeezing in the reservoirs, Eq. (9.90), implies the energetic overtaking of the
Landauer’s bound as exemplified in Fig. 9.6.
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Part IV
Quantum Thermal Machines



Chapter 10
Thermodynamic Power of the Squeezed
Thermal Reservoir

The last part of this thesis is related to the performance of quantum thermalmachines.
Quantum thermal machines have been introduced in Chap. 3 as a topic which has
attracted increasing attentionwithin the new field of quantum thermodynamics. They
generically consist of small quantumdevices performing someuseful thermodynamic
task, such as refrigeration, heat pumping, or work extraction, while powered by out-
of-equilibrium thermodynamic or mechanical forces. Their importance comes from
the fact that they can be used to investigate fundamental questions related to the laws
of thermodynamics as well as being useful in practical applications.

One of themost interesting open questions concerning quantum thermalmachines
(and more generally quantum thermodynamics) is understanding the implications of
quantum features, such as quantum measurement [1–4], coherence [5–8], or quan-
tum correlations [9–14]. In this context, inspired by the breakthrough on the photo-
Carnot engine driven by quantum fuel by Scully et al. [5], different theoretical studies
recently focused on the implications for work extraction associated to nonequilib-
rium quantum reservoirs. In particular it has been shown that using coherent [15–
17], correlated [18], or squeezed thermal reservoirs [19–22], power and efficiency of
heat engines can be improved, even surpassing the Carnot bound. However, a gen-
eral framework providing a deeper understanding of such quantum nonequilibrium
phenomena is still an open challenge [23, 24].

In this chapter we will apply our analysis on the entropy production in quantum
processes developed in Chap.8 to clarify the role of nonequilibrium quantum reser-
voirs in work extraction.1 We stress that entropy production is one of the most fun-
damental concepts in nonequilibrium thermodynamics, which quantifies the degree
of irreversibility of a dynamical evolution [26]. For a quantum system relaxing to
thermal equilibrium at inverse temperature β = 1/kBT , it simply reads [27–29]:

�iS ≡ �S − βQ � 0 (10.1)

1Most of the results in the chapter have been published in Ref. [25].
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where �S is the change in the von Neumann entropy of the system, and Q is the
heat released from the reservoir. The positivity of the entropy production (10.1) is
a particular case of the second law. However, in more general situations, different
processes others than heat flows may produce an exchange of entropy between the
system and its surroundings, modifying (10.1). In Chap.9 we have already seen some
examples in which Eq. (10.1) is modified by the presence of coherences, yielding
new bounds on the performance of thermodynamic tasks.

Squeezing has been introduced in Sect. 1.2.5 as a property intimately related with
Heisenberg’s uncertainty principle: It is the result of reducing the variance of an
observable with respect to its conjugate (see also Ref. [30]). Nowadays it consti-
tutes a central tool in quantum information with several applications in quantum
metrology, computation, cryptography and imaging [31]. Most commonly consid-
ered squeezed states are coherent but also thermal ones have been largely studied
[32, 33]. Experimental realizations of squeezed thermal states range from micro-
waves [34] to present squeezing of motional degrees of freedom in optomechanical
oscillators [35, 36].

In Sect. 10.1 we explicitly address the characterization of the entropy production
for the case of a bosonic mode interacting with a single squeezed thermal reser-
voir. This analysis is then applied to discuss work extraction in two models of non-
autonomous quantum thermal machines (see Sect. 3.3). In Sect. 10.2 the maximum
irreversible work cyclically extractable from a single squeezed reservoir is obtained.
Further, in Sect. 10.3 we discuss an Otto cycle which can operate as a heat engine
converting the heat entering from both reservoirs into work at one hundred per cent
efficiency, or as a refrigerator pumping energy from the cold to the hot reservoir
while producing a positive amount of output work at the same time. It is important
to stress that our results do not contradict the second law of thermodynamics, which
is modified by the inclusion of squeezing as an available resource in the reservoir.
Indeed in Sect. 10.4 this point is developed by providing an interpretation of the
squeezed thermal reservoir as a source of free energy. An experimental proposal for
implementing our results is given in Sect. 10.5 by constructing on previous works on
a single-ion heat engine [37, 38]. The main conclusions of the chapter are presented
in Sect. 10.6, while some further technical details are provided in Appendix.

10.1 Thermodynamics of the Squeezed Thermal Reservoir

Consider a quantum system consisting of a single bosonic mode with Hamiltonian
ĤS = �ωâ†â, weakly dissipating into a bosonic reservoir ĤR = ∑

k ��k b̂
†
k b̂k , pre-

pared in a squeezed thermal state at inverse temperature β with squeezing parameter
ξ = reiθ (r � 0 and θ ∈ [0, 2π ]), see Sect. 1.2.5). In Sect. 2.3.2 we analyzed the
dynamical evolution of such a system throughout the development of a Markovian
collisional model, where the interaction between mode and reservoir in the rotating
wave approximation (RWA) reads
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Ĥint =
∑

k

igk(â b̂
†
k − â†b̂k). (10.2)

This yields an open system dynamics described by the following Lindblad master
equation in interaction picture

ρ̇t = L(ρt ) =
∑

i=±
R̂iρt R̂

†
i − 1

2
{R̂†

i R̂i , ρt }, (10.3)

where Lamb–Stark shifts have been neglected (an alternative derivation can be found
in Ref. [39]). The two Lindblad operators in (10.3) read:

R̂− = √
γ0(nth + 1) R̂, R̂+ = √

γ0nth R̂†, (10.4)

with R̂ = â cosh(r) + â† sinh(r)eiθ . This corresponds to the ladder operator of a
Bogoliubov mode R̂ = Ŝ(ξ) â Ŝ†(ξ) where

Ŝ(ξ) ≡ exp
( r

2
(â2e−iθ − â†2eiθ )

)
(10.5)

denotes the unitary squeezing operator on the systemmode. In additionwe introduced
γ0 the spontaneous emission decay rate and nth = (eβ�ω − 1)−1 the mean number of
bosons of energy �ω in a thermal reservoir at inverse temperature β.

The Lindblad operators R̂∓ in Eq. (10.4), promote jumps associated to the corre-
lated emission and absorption of bosons

R̂∓Ŝ(ξ)|n〉 → Ŝ(ξ)|n ∓ 1〉, (10.6)

which fit into the formalism for quantum fluctuation theorems developed in Chaps. 7
and 8. The steady state solution, L(π) = 0, is no longer diagonal in the ĤS basis

π = Ŝ(ξ)
e−β ĤS

Z
Ŝ†(ξ), (10.7)

with Z = Tr[e−β ĤS ]. Aswe already stressed in Sect. 1.2.5, the squeezed thermal state
π has the same entropy as the Gibbs state, but higher mean energy. A crucial prop-
erty is that its variance in the quadrature X̂θ/2 ≡ (â†eiθ/2 + âe−iθ/2)/

√
2 has been

squeezed by a factor e−r , while the variance of the conjugate quadrature P̂θ/2 (with
[X̂θ/2, P̂θ/2] = i) is multiplied by er . Notice that when turning to the Schrödinger
picture, the steady state (10.7) acquires a time-dependent phase inducing a rotation
in phase-space, which has to be accounted for in applications.

The Lindblad master equation (10.3) describes the relaxation from any initial
state of the mode to π . The irreversibility of the process is well captured by the
non-adiabatic entropy production introduced in Chap.8 (see also [40–43]):
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Ṡna ≡ − d

dt
D(ρt ||π) = Ṡ − �̇ � 0 (10.8)

where D(ρ||σ) = Tr[ρ(ln ρ − ln σ)] � 0 is the quantum relative entropy
(Sect. 1.1.6). The term �̇ = Tr[�̂ρ̇t ] defines the effective rate at which entropy is
transferred from the surroundings into the system throughout the nonequilibrium
potential, �̂ = − ln π . The positivity of Ṡna is always guaranteed for quantumdynam-
ical semigroups [40], while the emerging second-law-like inequality in Eq. (10.8),
has been derived in Sects. 7.4 and 8.5 as a corollary from the general fluctuation
theorem for quantum CPTP maps. Recall that the effective entropy flow �̇ becomes
zero for unital maps and reproduces the heat flow divided by temperature in the case
of thermalization or Gibbs-preserving maps. Remarkably, in this case it can further
be shown that it equals the rate at which entropy decreases in the reservoir during
the relaxation process, �̇ = −ṠE (see Appendix), so that we can identify Eq. (10.8)
with the total entropy production rate in system and environment during the process,
i.e. Ṡna = Ṡi = Ṡ + ṠE (see Sect. 8.3).

Using the steady state π in Eq. (10.7) we obtain:

�̇ = β Tr[Ŝ(ξ)ĤSŜ
†(ξ)ρ̇t ] = β

(
cosh(2r)Q̇ − sinh(2r)Ȧ

)
(10.9)

where we identify the heat flux entering the system from the reservoir as the energy
absorbedby the bosonicmode (no external driving), Q̇ = Tr[ĤSρ̇t ] = U̇S, andobtain
the extra non-thermal contribution:

Ȧ = �ωTr[ Âθ ρ̇t ] = −�ω

2
Tr[(â†2eiθ + â2e−iθ )ρ̇t ]. (10.10)

Rewriting Âθ = (1/2)( p̂2θ/2 − x̂2θ/2), we see that it measures the asymmetry in the
second order moments of the mode quadratures, which includes both the relative
shape of the variances and the relative displacements in optical phase space. From
the Lindblad master equation (10.3) we obtain (see details in Appendix)

Q̇(t) = −γ
(
US(t) − 〈ĤS〉π

)
, (10.11)

Ȧ(t) = −γ (A(t) − �ω〈 Âθ 〉π ), (10.12)

where US(t) = Tr[ĤSρt ], A(t) = �ωTr[ Âθρt ], and the expected value of Âθ in the
stationary state reads 〈 Âθ 〉π = sinh(2r)(nth + 1/2) � 0. Therefore, the evolution of
A(t) is rather simple: it increases (decreases) exponentially when the interactionwith
the reservoir induces (reduces the) asymmetry in the θ/2 phase-selected quadratures.
Analogously Q(t) = US(t) −US(0) increases (decreases) exponentially when the
energy in the initial state US(0) = 〈ĤS〉ρ0 is lower (greater) than in the steady state
〈ĤS〉π = �ω[cosh(2r)nth + sinh2(r)].

As an illustrative example of the entropic implications of the above asymme-
try flow, consider an initial state ρ0 with A(0) = 0, e.g. a Gaussian state without



10.1 Thermodynamics of the Squeezed Thermal Reservoir 349

displacement, but with diagonal elements in the ĤS basis as those in π , so that
〈ĤS〉ρ0 = 〈ĤS〉π . Clearly, during the relaxation to the steady state π , Ȧ > 0, while
Q̇ = 0, the uncertainty in X̂θ/2 is reduced with respect to the one in P̂θ/2 at constant
energy until the steady state is reached. In this case, according to (10.9), �� < 0,
meaning that entropy is transferred from the system to the reservoir. This entropy
flux indeed overcomes the entropy produced in the process, �iSna > 0, which cor-
responds to a net reduction in the system local entropy �S = �iSna + �� < 0.
That is, the bosonic mode is purified by contact with the squeezed thermal reservoir
without any (average) exchange of heat.

10.2 Extracting Work from a Single Reservoir

As a first consequence of reservoir squeezing, we point out the possibility of cyclic
work extraction from a single reservoir. This operation is forbidden by the second
law of thermodynamics in the thermal reservoir case. Nevertheless it becomes pos-
sible when including extra sources of coherence [5], neg-entropy [44], or additional
information reservoirs [45, 46]. We consider a two-stroke cyclic process operated as
sketched in Fig. 10.1a. In the first step we start with the state π in Eq. (10.7), and
Hamiltonian ĤS = �ωâ†â, implementing a unitary (isentropic) evolution Û , which
drives the system detached from the reservoir (e.g. by modulating the frequencyω(t)
as explained in Sect. 10.5). The bosonic mode ends up in some state ρ = ÛπÛ † with
the same Hamiltonian ĤS. In this process work can be extracted by the external driv-
ing Wout = Tr[ĤSπ ] − Tr[ĤSρ], while no heat is produced. In the second step the
system is put in contact with the squeezed thermal reservoir until it relaxes back
to π . This produces a heat flow entering from the reservoir, which equals the work
extracted in the first step, Q = Tr[ĤSπ ] − Tr[ĤSρ] = Wout, as required from energy
conservation. The entropy production in Eq. (10.8), integrated over a whole cycle,
yields −�� � 0. Using Eq. (10.9), we find:

Wout � tanh(2r)�A (10.13)

where �A = 〈A〉πS
− 〈A〉ρS

. Hence positive work may be extracted from the reser-
voir whenever �A > 0, e.g. by having ρS less squeezed than πS. Maximum work is
extracted by requiringρS = e−β ĤS/Z (whichmeans that Û = Ŝ†(ξ)), as itminimizes
the mean energy for a fixed entropy. In that particular case:

Wmax = �ω(2nth + 1) sinh2(r) � 0, (10.14)

which vanishes in the thermal case, r = 0, as expected. It is worth mentioning that
this process does not saturate inequality (10.13), meaning that it is not reversible, but
an amount�iSna = βWmax of entropy is produced in each cycle. Indeed reversibility
conditions (�iSna = 0) can only be achieved, following Eq. (10.8), in the trivial case
ρS = πS, implying Wout = �A = 0.
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10.3 Heat Engine with a Squeezed Thermal Reservoir

10.3.1 Optimal Otto Cycle

As a second application of interest we consider a quantum heat engine operating
between two reservoirs: a cold equilibrium thermal bath at inverse temperature β1,
and a hot squeezed thermal reservoir at β2 � β1 with squeezing parameter ξ = reiθ .
The bosonic mode performs a thermodynamic four-stroke cycle (Fig. 10.1b) as in
traditional quantum Otto cycles [47–49], while the isentropic expansion is allowed
to unsqueezed the mode.

Quantum Otto heat engines are characterized by the implementation on the work-
ing fluid of a four-stroke cycle in which isentropic and isochoric processes are alter-
nated. In the case of a bosonic mode, the isentropic (unitary) strokes are performed
by external modulation of the mode frequency. The isochoric steps are obtained by
keeping a constant frequency, while relaxing in contact with thermal reservoirs at
different temperatures. In such case, adiabatic modulation of the frequency leads to
both maximum work extraction and high efficiencies. This fact can be understood
from a simple argument: as long as the mode state before the isentropic stroke,
say ρi, is fixed by the previous thermalization step, the work extracted in the pro-
cess, Wstroke = Tr[Ĥiρi] − Tr[Ĥfρf ], is minimized when ρf (the state after modula-
tion) has minimum energy for a fixed entropy. This occurs when it has Gibbs form
ρf = exp(−β Ĥf)/Zf for some β, which is the case if the modulation is implemented
adiabatically.Moreover, the quantum friction in such case is zero, as the non-diagonal
elements of the mode state in its instantaneous Hamiltonian basis are zero during
the whole cycle. However, in the case of squeezed thermal reservoirs, the above sit-
uation is slightly modified. Here we will introduce a modification in the traditional
Otto cycle which maximizes the work extracted by applying the above argument to
this new situation (see also Ref. [24]). In contrast to Refs. [20, 23], we will require

(a) (b)

Fig. 10.1 Schematic diagrams of a the two-step protocol introduced to extract work from a single
squeezed reservoir and b the four-step Otto-like cycle operating between reservoirs at different
temperatures. The unitary Û1 represents the adiabatic frequency modulation from ω1 to ω2, while
Û2 represents the convolution of the unitary unsqueezing the bosonic mode, Ŝ†(ξ), followed by
adiabatic modulation from ω2 to ω1
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a isentropic stroke driving the state after relaxation in the presence of the squeezed
thermal reservoir to a perfect Gibbs state with respect to the final Hamiltonian at the
end of the stroke. This operation can be achieved by first unsqueezing the mode and
then applying regular adiabatic modulation, or by an unique taylored modulation
[50]. As a consequence, the power output defined as the work extracted in a single
cycle, see Eq. (10.19) below, divided by its duration is maximized.

We start with our system in point A, in equilibriumwith the cold thermal reservoir,

ρA = exp(−β1 Ĥ1)/ZA, (10.15)

being ZA = Tr[e−β1 Ĥ1 ], and the initial Hamiltonian is Ĥ1 = �ω1â
†
1 â1. During the

first step the system is isolated from the reservoirs, and its frequency adiabatically
modulated from ω1 to ω2 � ω1, without changing the populations of the energy
eigenstates. The density matrix at point B is

ρB = Û1ρAÛ
†
1 = exp

(

−β1
ω1

ω2
Ĥ2

)

/ZB (10.16)

where Û1 represents the adiabatic modulation, ZB = ZA, and the Hamiltonian
is changed to Ĥ2 = �ω2â

†
2 â2 during the process. The work extracted during this

isentropic compression is negative (external work is needed to perform it), and
reads WAB = Tr[Ĥ1ρA] − Tr[Ĥ2ρB] = −�(ω2 − ω1)n

(1)
th , where n(1)

th = (eβ1�ω1 −
1)−1. The Gibbs form of the state ρB minimizes the work lost in the compression
and, as long as the system is isolated, no heat is produced in this step. In the sec-
ond stroke, the bosonic mode is put in contact with the squeezed thermal reservoir
while the frequency stays constant, resulting in an isochoric process where the mode
relaxes to the steady-state

ρC = Ŝ(ξ) exp(−β2 Ĥ2) Ŝ
†(ξ)/ZC . (10.17)

The heat entering the system from the squeezed thermal bath in the relaxation is
QBC = Tr[Ĥ2ρC ] − Tr[Ĥ2ρB] = �ω2(n

(2)
th cosh(2r) + sinh2(r) − n(1)

th ), with n(2)
th =

(eβ2�ω2 − 1)−1. In addition, the reservoir induces an asymmetry in the θ/2 system
quadratures which, following Eq. (10.10), reads�ABC = �ω2 sinh(2r)(n

(2)
th + 1/2).

In the third stroke, the bosonic mode is again detached from the reservoirs, we
apply the unitary unsqueezing the mode, Ŝ†(ξ), and then we change its frequency
adiabatically back to ω1, as has been also considered in Ref. [24]. This process can
alternatively be done by a unique taylored modulation ω(t) [50]. The system state
at point D is then

ρD = Û2ρCÛ
†
2 = exp

(

−β2
ω2

ω1
Ĥ1

)

/ZD, (10.18)
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where Û2 represents the two operations, and ZD = ZC . Consequently, the work
extracted in this isentropic expansion reads WCD = Tr[Ĥ2ρC ] − Tr[Ĥ1ρD] =
�ω2[n(2)

th cosh(2r) + sinh2(r)] − �ω1n
(2)
th . The state ρD has been chosen to maxi-

mize the work extracted, as indicated by our previous example and Eq. (10.14).
The cycle is closed by putting the bosonic mode in contact with the cold thermal
reservoir, and hence relaxing back to ρA without varying its frequency. During the
last isochoric process, the heat transferred from the cold reservoir to the system is
QDA = Tr[Ĥ1ρA] − Tr[Ĥ1ρD] = �ω1(n

(1)
th − n(2)

th ). The total work extracted in the
cycle is given by the contributions of the two isentropic strokes:

Wout ≡ WAB + WCD = �(ω2 − ω1)(n
(2)
th − n(1)

th ) +
+ �ω2(2n

(2)
th + 1) sinh2(r), (10.19)

which is nothing but the sum of the work extractable from an ideal quantum Otto
cycle between two regular thermal reservoirs (first term), plus the work extractable
from a single squeezed thermal reservoir (last term), as given by Eq. (10.14). Notice
that Wout = QBC + QDA, as required by the first law.

In Fig. 10.2 we plot the work output of the cycle as a function of the frequency
modulation ω2 (in units of ω1) for different values of the squeezed parameter. As we
can see in the plot, the maximum power with respect to ω2 is no longer confined to
the low-frequency modulation region if moderate values of the squeezing parameter
are considered. This opens the possibility of increasing the power by frequency mod-
ulation. However the local maximum is placed at the same point as for the traditional
cycle for the high-temperature regime, given by ω2/ω1 =

√
β1[1 + 2 sinh2(r)]/β2

[20].

Fig. 10.2 Total work output,Wout, (in units of �ω1) generated in a single cycle as a function of the
frequency modulation, ω2/ω1, for different values of the squeezed parameter (from bottom to top)
r = (0.0, 0.5, 0.7, 0.8, 0.9). We used β1 = (�ω1)

−1 and β2 = 0.2(�ω1)
−1
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10.3.2 Regimes of Operation

The above introduced cycle presents different regimes of operation depending on the
squeezing parameter r and on the final frequency after modulation ω2, some of them
forbidden in the regular Otto cycle. They are summarized in the phase diagram of
Fig. 10.3.

• Region I corresponds to a regular heat engine, for which work is extracted from
the heat released by the hot (squeezed) reservoir, while dissipating some part in
the cold thermal one. In this regime, a small frequency modulation, ω2 � ω∗

2 ≡
ω1β1/β2 ⇔ n(2)

th � n(1)
th , guarantees Wout � 0, QBC � 0 and QDA � 0. The ener-

getic efficiency, defined as the total work output, Wout, divided by the input heat,
QBC , reads:

η = 1 − ω1

ω2

(
n(2)
th − n(1)

th

(2n(2)
th + 1) sinh2(r) + n(2)

th − n(1)
th

)

(10.20)

Fig. 10.3 Phase diagram with the four regimes of operation of the cycle (I, II, III, IV) as a function
of ω2 (in units of ω1) and r . The color scale corresponds to the energetic efficiency of the cycle
η = Wout/Qin as a heat engine, for β1 = (�ω1)

−1 and β2 = 0.2(�ω1)
−1, yielding ηc = 0.8. In the

right side the direction of the arrows represents the sign of the energy fluxes for each regime
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which differs from the traditional Otto cycle efficiency for adiabatic strokes,
ηq = 1 − ω1/ω2 [47]. Indeed the efficiency (10.20) can surpass Carnot efficiency,
η � ηc = 1 − β2/β1, for sufficient large squeezing, r � rc(ω2).
The Carnot line, rc(ω2) is defined by

sinh2(rc) = (
ω∗
2/ω2 − 1

)
(n(2)

th − n(1)
th )/(2n(2)

th + 1) (10.21)

when ω2 � ω∗
2, and depicted in Fig. 10.3 (white dashed line). Furthermore we

see from Eq. (10.20) that η → 1 when ω2 → ω∗
2 while maintaining a finite work

output in the cycle, Wout → �ω∗
2(2n

(2)
th + 1) sinh2(r), which is the same result as

in the single reservoir case.
• Region II (white area in Fig. 10.3) corresponds to the well-known case of a driven
refrigerator: external input work is needed to pump heat from the cold to the hot
reservoir (Wout � 0 and QBC � 0). Notice that for large frequency modulation,
ω2 � ω∗

2 ⇔ n(1)
th � n(2)

th , we have always a positive amount of heat extracted from
the cold reservoir, i.e. QDA � 0.

• Regions III and IV are the most striking regimes, implying refrigeration and work
extraction at the same time, as has been also independently suggested in Ref. [24].
From Eq. (10.19) one can obtain the conditions for Wout and QBC to vanish,
rw(ω2) and rq(ω2), respectively. Then r � rw(ω2) implies a positive amount of
output work, whereas the heat flux entering the hot reservoir, QBC , is positive
when r � rq(ω2). We then distinguish two regions (see Fig. 10.3). Region III is
the narrow strip between the two boundaries, rq � r � rw, where we obtain a
refrigerator producing a positive work output while pumping heat from the cold to
the hot reservoir (Wout � 0 and QBC � 0). Its energetic efficiency as a heat engine
is given by η = Wout/QDA = 1 − (ω2/ω1)[1 − sinh2(r)/ sinh2(rq)], which varies
from 0 to 1 between the two boundaries. Finally in region IV (r � rq), we obtain
a heat engine which absorbs heat from both reservoirs, transforming it into useful
work (Wout � 0 and QBC � 0) at efficiency η = Wout/Qin = 1, as guaranteed by
the first law. The explicit expressions for the curve rc and the boundaries rq and
rw are given by:

sinh2(rq) = (n(1)
th − n(2)

th )/(2n(2)
th + 1),

sinh2(rw) = (1 − ω1/ω2) sinh
2(rq), (10.22)

which are well defined for ω2 � ω∗
2 ensuring n(1)

th � n(2)
th and hence refrigeration

of the cold reservoir.

It is worth noticing that our results do not contradict the second law of thermo-
dynamics, when correctly generalized to this situation, Eq. (10.8). Indeed, it can be
written as the positivity of the entropy production for a single cycle of the engine:

�iScyc = −β1QDA − β2 [cosh(2r)QBC − sinh(2r)�ABC ] � 0, (10.23)
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which follows from Eq. (10.9). Using the explicit expressions of QBC , QDA and
�ABC for the cycle, we obtain that reversibility conditions (�iScyc = 0) can be
only reached when ω2 = ω∗

2 and r = 0, hence implying Wout = 0. Finally, when the
second law (10.23) is combined with the first law, Wout = QBC + QDA, we obtain
bounds on the energetic efficiency for the heat engine regimes, η � min(ηmax, 1.0),
where:

ηmax =

⎧
⎪⎪⎨

⎪⎪⎩

1 − β2

β1

(
cosh(2r) − sinh(2r)�ABC

QBC

)
(I)

1 − β1

β2 cosh(2r)
+ tanh(2r) �ABC

QDA
(III)

1 (IV)

As can be easily checked, ηmax → ηc when r → 0 in region I, while regions III and
IV disappear in such case. The above equation is exact and generalizes previous effi-
ciency bounds [20, 23] (only valid in the high-temperature limit) to any temperatures
and frequencies. The explicit formulas for ηmax are:

η(I )
max = 1 − β2

β1

(2n(2)
th + 1) − cosh(2r)(2n(1)

th + 1)

cosh(2r)(2n(2)
th + 1) − (2n(1)

th + 1)
, (10.24)

for our cycle operating in the regime ω2 � ω∗
2 (region I). Notice that it collapses to

Carnot efficiency, when r → 0. On the other hand, for region III we obtain:

η(I I I )
max = 1 − β1

β2 cosh(2r)
+ ω2

ω1

tanh(2r) sinh(2r)

2 sinh2(rq)
, (10.25)

only valid when ω2 � ω∗
2 and rw � r � rq . Finally we stress that in region IV we

have

η(I V )
max = η = Wout

QBC + QDA
= 1, (10.26)

which follows from energy conservation.
We show in Fig. 10.4 how the energetic efficiency η of our cycle, even when

working as a normal heat engine [Eq. (10.20)], can overcome the so-called gener-
alized Carnot efficiency obtained in Refs. [20, 23] by using the high-temperature
approximation (βi�ωi � 1 for i = 1, 2):

ηht = 1 − β2

β1[1 + 2 sinh2(r)] , (10.27)

which verifies ηht � ηc = 1 − β2/β1. In contrast, our general bound, ηmax � ηht,
obtained by applying the second law of thermodynamics in the full quantum regime,
cannot be surpassed in any case. A complementary interpretation of the generalized
second law in Eq. (10.23) in terms of the free energy released from the hot squeezed
thermal reservoir, is further given in the next section.
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Fig. 10.4 Comparison of the energetic efficiency of the heat engine, η, the maximum efficiency
allowed by the second law, ηmax, the Carnot efficiency, ηc, and the high-temperature generalized
Carnot efficiency, ηht , as a function of the squeezing parameter r . The high-temperature efficiency
fails to bound correctly the efficiency of the cycle for moderate values of the squeezing parameter.
Here we used ω2 = 3ω1 (i.e. ω2 < ω∗

2 = 5ω1, corresponding to region I) and again β1 = (�ω1)
−1

and β2 = 0.2(�ω1)
−1

10.4 Squeezing as a Source of Free Energy

Here we provide an interpretation of the squeezed thermal reservoir as a free energy
source, which enables work extraction in the quantum Otto cycle discussed in
Sect. 10.3. The nonequilibrium free energy, already introduced in Sect. 3.1, is a pow-
erful concept in nonequilibrium thermodynamics and specifically in thermodynamics
of information [51].We recall that it is defined as a property of a system in some arbi-
trary state ρ with Hamiltonian Ĥ , with respect to a thermal reservoir at temperature
T , as

F(T ) = 〈Ĥ〉ρ − kBT S(ρ), (10.28)

being S(ρ) the von Neumann entropy of the system state for the quantum case. The
most important property of the nonequilibrium free energy is that its variation mea-
sures the maximum work which can be extracted when letting the system equilibrate
to temperature T in an optimal way [7, 51] (see details in Sect. 3.1).

In order to apply this concept in our situation we proceed by using the fact that
the entropy transfer between system and reservoir equals the decrease in entropy in
the squeezed reservoir during the corresponding relaxation stroke of the Otto cycle,
that is ��BC = −�SR2 , as we show in Appendix. When this is combined with the
first law in the cycle,Wout = QDA + QBC , we can rewrite the second law inequality
in Eq. (10.23) as

Wout � �F2(T1), ηth ≡ Wout

�F2(T1)
� 1, (10.29)
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Fig. 10.5 Plot of the thermodynamic efficiency in Eq. (10.29) as a function of the frequency
modulation ω2 and the squeezing parameter r . The black thick lines represent the different regimes
of operation introduced in Sect. 10.3.2. We assumed the rest of the parameters as in Fig. 10.3

where �F2(T1) = QBC + kBT1�SR2 is the loss of (nonequilibrium) free energy
experimented by the hot squeezed thermal reservoir in a cycle, with respect to the
cold thermal reservoir at temperature T1. This allows to define a work extraction ther-
modynamic efficiency always bounded by 1, in contrast to the energetic efficiency
considered in the previous section. In Fig. 10.5 we provide a map for the thermody-
namic efficiency (10.29) analogous to the one analyzed for the energetic one in the
previous section. There, higher thermodynamic efficiencies are shown to be achieved
in regime I of operation, while unit thermodynamic efficiency is only approached
from r → 0 and ω2 → ω∗

2, corresponding to zero output work.
Furthermore, the input free energy from the squeezed thermal reservoir can be

decomposed into two separate contributions by using the explicit expression of the
entropy flow, Eq. (10.9)

�F2(T1) =
(

1 − T1
T2

)

QBC (10.30)

+ T1
T2

(
sinh(2r)�ABC − 2 sinh2(r)QBC

)
.

The two terms correspond respectively to the free energy available as a consequence
of the temperature gradient between two thermal reservoirs (first term), and the
one provided by the nonequilibrium squeezing effects (second term). The first term
is always positive when QBC > 0, meaning that free energy is available from the
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spontaneous flux of heat from a hot reservoir to a colder one. The second term, purely
due to squeezing in the reservoir, is instead positivewhen squeezing is present, r > 0,
and the following inequality is verified:

�ABC � tanh(r)QBC . (10.31)

This implies that the entropic flux of second order coherences from the squeezed
thermal reservoir [see Eq. (10.10)] acts as an independent source of free energy when
the above inequality is fulfilled, increasing thework that can be extracted in the cycle.
Furthermore it can be positive even if QBC � 0, and compensate the thermal term
(which in this case would be negative), in order to enable work extraction, as is the
case of region III of the phase diagram in Fig. 10.3.

10.5 Experimental Realization

The single trapped-ion Otto cycle proposed in Ref. [37] has been realized experi-
mentally in Ref. [38] only recently. There, a trapped ion in a tapered Paul trap is
subjected to adiabatic frequency modulations for the isentropic strokes of the cycle.
The thermalization strokes are implemented by laser cooling with variable detuning
(and thus final temperature). The same authors proposed theoretically to enhance
the cycle by having a hot bath which is squeezed [20], finding an increase of the
energetic efficiency at maximum power. The squeezed hot reservoir was effectively
implemented by rather having the ion thermalize and then squeezing it, resulting
thus in a final thermal squeezed state (as if the bath were squeezed). Such squeezing
operation consists in quenching the ion frequency from ω to ω + �ω “For a quarter
of the oscillation period”, then to ω − �ω “For another quarter, before it is returned
to its initial value” ω (notice that the authors of Ref. [20] are talking about periods
of different duration, since the frequency of oscillations differ by 2�ω, and this
has to be carefully accounted for in the experiment). This operation can be easily
understood from Fig. 1 in Ref. [52], by noting that suddenly increasing (decreasing)
the frequency squeezes (stretches) the x variance, while at constant frequency the
Wigner function just rotates at that frequency. Finally, the authors propose to output
the work of the cycle (done in the radial coordinate of the ion) into the axial coordi-
nate (the two motions are coupled due to the tapered geometry of the trap). In this
sense, the engine does work on the axial motion and the working substance is the
radial motion.

In our cycle, we are adding an extra step which tries to use the squeezing absorbed
from the hot reservoir to produce work. In terms of operations we could modify the
CD-branch (operation Û2 in Sect. 10.3.1), reversing the modulation, which would
remove the squeezing from the system. In thisway, though, theworkwould bewasted
into the frequency quencher (the electronics of the experiment). In order to profit from
the squeezing absorbed from the reservoir, we should be able to transfer it to some
fruitful target. One possibility is to wait for the axial-radial coupling to induce an
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exchange of squeezing until the axial absorbs all energy from the radial. The detailed
dynamics should be studied thoroughly to check for limitations, though. Another
possibility, seemingly involved, would be to transfer this squeezing to an optical
mode. This process has been considered in Ref. [53], where three electronic levels
of an ion trapped inside a cavity would be used to transfer the motional squeezing
to light squeezing of the cavity mode. A fiber collecting the output light from the
cavity could be used to transfer this squeezing to the target.

10.6 Conclusions

Squeezing is a quantum thermodynamic resource from which useful work can be
delivered. When squeezing is present in an otherwise thermal reservoir, it does not
only modifies the entropy flow associated to the heat, but induces an extra term
proportional to second order coherences [Eq. (10.10)] with a specific meaning.

The nonequilibrium second law-inequality, Eq. (10.8) with (10.9), introduces
remarkable modifications which may give rise to novel phenomena and applications
as squeezing-fueled batteries, multi-task (refrigerator, heat pump, and heat engine)
thermal machines, or a perfect heat-to-work transformer working at 100% efficiency.
The extra non-thermal contribution to the entropy transfer hints also at possible
erasure devices operating below Landauer’s limit (see e.g. the toy model discussed
in Sect. 9.3).

In this chapter the squeezed thermal reservoir has been considered as a given
thermodynamic resource. Consequently, we did not consider any extra energetic
or thermodynamic cost associated to its creation, in the same manner as thermal
reservoirs at different temperatures are considered as resources for the operation of
traditional heat engines. The thermodynamic cost for generating squeezing may in
general depend on the specific configuration employed, and has been investigated
e.g. in Refs. [50, 54].

Alternatively the squeezed thermal reservoir can be seen as a source of free energy
powering work extraction. This interpretation leads to a natural definition of the
thermodynamic efficiency of the engine, namely, the output work divided by the input
free energy, which is bounded by one by the positivity of the entropy production.

Finally, our results may be tested as in the recent experiment of a single-ion Otto
heat engine [20, 38], with an addedmodification to additionally exploit the squeezing
absorbed from the hot reservoir, as we detailed in Sect. 10.5.
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Appendix

A.1 Reservoir Entropy Changes

In the main text we claim that the effective entropy flow, �̇, appearing in the gen-
eralized second law inequality, Eq. (10.9) in Sect. 10.1, equals the entropy decrease
in the reservoir due to the interaction with the bosonic mode. We demonstrate here
this relation from the collisional model introduced in Sect. 2.3.2, where the system
bosonic mode interacts sequentially with a ‘fresh’ reservoir mode k in the same
squeezed thermal state at inverse temperature β, and squeezing parameter ξ = reiθ

with r � 0 and θ ∈ [0, 2π ]:

ρ
(k)
R = Ŝk(ξ)

e−β ĤR(�k )

ZR
Ŝ
†
k(ξ)

=
∑

ν

(
e−β��kν

ZR

)

Ŝk(ξ)|νk〉〈νk |Ŝ†k(ξ) (A.1)

where Ŝk(ξ) ≡ exp r
2 (b

2
ke

−iθ − b†2k eiθ ), stands for the squeezing operator on the
reservoir mode k, and in the last equality we decomposed the Gibbs state in its
Fock basis {|νk〉}. It’s easy to see from the above equation that the eigenvalues and
eigenvectors of ρ̂R are given by:

ε(k)
ν = e−β��kν

ZR
, |ε(k)

ν 〉 = Ŝk(ξ)|νk〉, (A.2)

i.e. the state ρ
(k)
R can be viewed as a classical mixture of squeezed Fock states |ε(k)

v 〉
with Boltzmann weights ε(k)

ν .
We can estimate the reservoir entropy change during the evolution by constructing,

analogously to what have been done for the system bosonic mode, a coarse-grained
time derivative by partial tracing Eq. (2.63) over the system degrees of freedom:

ρ̇
(k)
R � 1

δt
[ρ(k)

R (t + δt) − ρ
(k)
R ] = R [ρ(k)

R (t + τ) − ρ
(k)
R ] (A.3)

for the interaction of duration τ � g−1
k between system and a particular mode k in

the reservoir.
Using Eqs. (2.64) and (2.65) we obtain:

ρ̇
(k)
R = −i[�ĤR(�k), ρ

(k)
R ] + [ε∗

k 〈â〉t b̂†k − εk〈â†〉t b̂k, ρ(k)
R ]

+ ck〈ââ†〉t
(

b̂kρ
(k)
R b̂†k − 1

2
{b̂†k b̂k, ρ(k)

R }
)
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+ ck〈â†â〉t
(

b̂†kρ
(k)
R b̂k − 1

2
{b̂k b̂†k , ρ(k)

R }
)

− cke
−i�k (2t+τ)〈â2〉t

(

b̂†kρ
(k)
R b̂†k − 1

2
{b̂†2k , ρ

(k)
R }

)

− cke
i�k (2t+τ)〈â†2〉t

(

b̂kρ
(k)
R b̂k − 1

2
{b̂2k , ρ(k)

R }
)

, (A.4)

where 〈Ô〉t = TrS[Ôρt ] are the system expectation values at time t , and �k =
ω − �k . In the above equation we defined

εk ≡ R τ gk sinc(�kτ/2) ei�k (t+τ/2),

ck ≡ R τ 2g2k sinc
2(�kτ/2), (A.5)

together with the mode dependent frequency-shift in the reservoir

�ĤR(�k) ≡ R
g2kτ

�k

[
b̂†b̂ (sinc(�kτ/2) cos(�kτ/2) − 1) + 1

− sinc(�kτ/2)
(
2〈â†â〉t (cos(�kτ/2) − 1) + ei�kτ/2

) ]
,

which is analogous to the system frequency shift, and will be neglected as well.
Notice that Eq. (A.4) give us the average evolution of the reservoir modes k when
it interacts once at a time with the system at random times (as specified by the rate
R). However, we don’t know the frequency of the reservoir mode interacting with
the system in each collision, so we must assume that the system interacts with all
modes in the reservoir with certain probability, given by the density of states in the
reservoir ϑ(�k). Therefore the average reservoir entropy change due to the entropy
change in all reservoir modes during the evolution should read

ṠR =
∑

k

ϑ(�k)Ṡ
(k)
R = −

∑

k

ϑ(�k)TrR[ρ̇(k)
R ln ρ

(k)
R ]. (A.6)

In the following we introduce the explicit form of ρ
(k)
R as given in Eq. (A.1) into the

above expression for the average reservoir entropy change, and exploit Eq. (A.4).
We obtain:

ṠR = β
∑

k

ϑ(�k) TrR[ρ̇(k)
R Ŝk(ξ)ĤR(�k)Ŝ

†
k(ξ)] =

= −β TrS[ρ̇t Ŝ(ξ)ĤSŜ
†(ξ)] = −�̇ (A.7)

where the second line follows after a little of operator algebra, by expanding
Ŝk(ξ)ĤR(�k)Ŝ

†
k(ξ) and using Eqs. (A.4) and (10.3). As a hint, first notice that the

first order term in Eq. (A.4) does not contribute to the entropy. Secondly notice that
once the trace over the reservoir degrees of freedom have been performed, one can
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take the continuum limit over the reservoir spectra by introducing the spectral den-
sity, J (�), to recover the system master equation decay factors in Eq. (2.73) after
integrating over frequencies.

Henceforth the entropy flow entering the system during the evolution, as given by
�̇(t) = −Tr[ρ̇t ln π ], Eq. (10.9) in Sect. 10.1, is the average entropy lost in the the
reservoir in the sequence of collisions. This implies that the non-adiabatic entropy
production [41–43, 55], �iSna in Eq. (10.8), corresponds indeed the total entropy
produced in the process. In terms of the rates:

Ṡna ≡ − d

dt
D(ρt ||π) = Ṡ + ṠR � 0 (A.8)

where D(ρ||σ) = Tr[ρ(ln ρ − ln σ)] is the quantum relative entropy. As a conse-
quence the adiabatic (or house-keeping) contribution due to non-equilibrium external
constraints [41, 42] is always zero in the present case. An important consequence
of the above finding is that no entropy is produced in order to maintain the non-
equilibrium steady state π , Eq. (10.7), provided we have access to an arbitrarily big
ensemble of reservoir modes in the state ρR .

A.2 Equations of Motion

From theMaster Equation (10.3) in Sect. 10.1, one can derive the following equations
of motion for the expectation values of the Lindblad operators expectation values
and its combinations:

d

dt
〈R̂〉t = −γ0

2
〈R̂〉t (A.9)

d

dt
〈R̂2〉t = −γ0〈R̂2〉t , (A.10)

d

dt
〈R̂† R̂〉t = −γ0

(
〈R̂† R̂〉t − nth(ω)

)
. (A.11)

They can then be employed to explicitly asses the dynamics of the different contri-
butions appearing in the effective entropy flow, �̇ in Eq. (10.9). Indeed by rewriting

â = R̂ cosh(r) − R̂† sinh(r)eiθ , (A.12)

â† = R̂† cosh(r) − R̂ sinh(r)e−iθ , (A.13)

and substituting into the expressions Q̇(t) = U̇S(t) = Tr[ĤSρ̇t ] for the heat
flux entering from the reservoir, and Ȧ(t) = �ωTr[ Âθ ρ̇t ] with Âθ = − 1

2 (â
†2eiθ +

â2e−iθ ), for the extra non-thermal contribution, we obtain the following equations
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Q̇(t) = −γ0

(
Q(t) + 〈ĤS〉ρ0 − 〈ĤS〉π

)
,

Ȧ(t) = −γ0

(
A(t) − �ω〈 Âθ 〉π

)
. (A.14)

In the above equations we introduced the steady state expectation values 〈ĤS〉π =
�ωNω and 〈 Âθ 〉π = |Mω|, being π given in Eq. (10.7), with the reservoir expectation
values, Nω = 〈b̂†k b̂k〉ρR andMω = 〈b̂2k 〉ρR as defined in (2.74) for amodewith resonant
frequency �k = ω in the state ρR . We notice that both flows behave monotonically,
yielding to an exponential decay as discussed in Sect. 10.1.
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Chapter 11
Performance of Autonomous Quantum
Thermal Machines

In Chap.10 we investigated the effects of nonequilibrium squeezed quantum reser-
voirs in the performance of some non-autonomous quantum thermalmachines. Those
machines, in analogy to classical thermal machines, are operated in cycles consist-
ing of different strokes implemented by an external agent who performs or extracts
work. In contrast, the present chapter is devoted to the analysis of autonomous ther-
mal machines, where all the components can be explicitly modeled using time-
independent Hamiltonians, that is, without the need of any external driving [1–3].

An autonomous thermal machine consists of a set of quantum levels, some of
which are selectively coupled to different thermal baths as well as to an object to
be acted upon (see the example provided in Sect. 3.3). Various models of thermal
baths and thermal couplings can be considered and formalized via master equations,
which usually involve many different parameters, including coupling factors or bath
spectral densities, to precisely characterize the machine and its interaction with the
environment. In this context, the standardmethod is the derivation of a Lindbladmas-
ter equation from the microscopic Hamiltonian that includes the interaction between
the machine and various bosonic thermal reservoirs [1, 3–6]. Other approaches con-
sider more phenomenological models, as e.g. the reset model proposed in Refs. [2,
7–9] (see also the autonomous heat engine introduced in Sect. 3.3). Nevertheless,
the basic functioning of these machines can be captured in much simpler terms. In
particular, the notion of ‘virtual qubits’ and ‘virtual temperatures’ [8] (see also Ref.
[10]), essentially associating a temperature to a transition via its population ratio, was
developed in order to capture the fundamental limitations of the simplest machines.
Some of the features of the machine can be deduced from simple considerations
about its static configuration, i.e. without requiring any specific knowledge of the
dynamics of the thermalization process induced by contact with the baths. In the
following, we discuss the performance of general autonomous thermal machines
involving an arbitrary number of levels.1

1The results in this chapter have been published in Ref. [11].
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Exploiting the notions of virtual qubits and virtual temperatures, we characterize
fundamental limits of such machines, based on their level structure and the way they
are coupled to the reservoirs. This allows us to explore the relation between the size
of the machine, as given by its Hilbert space dimension (or equivalently the number
of its available levels), and its performance. We find that machines with more levels
can outperform simpler machines. In particular, considering fixed thermodynamic
resources (twoheat baths at different temperatures),we show that lower temperatures,
as well as higher cooling power, can always be engineered using higher dimensional
refrigerators. By characterizing the range of virtual qubits and virtual temperatures
that can be reached with fixed resources, we propose optimal designs for single-
cycle,multi-cycle and concatenatedmachines featuring an arbitrary number of levels.
Furthermore, our considerations lead to a formulation of the third law in terms of the
Hilbert space dimension of the machine: reaching absolute zero temperature requires
infinite dimension.

This chapter is organized as follows. We begin in Sect. 11.1 by discussing the role
of the swap operation as the primitive operation for the functioning of autonomous
quantum thermal machines, allowing an extremely simple characterization of their
performance in terms of virtual qubits and virtual temperatures. Section11.2 is
devoted to reviewing the basic functioning of a three-level quantum thermalmachine,
helping us to identify various resources and limitations when optimizing its design.
Higher dimensional thermal machines are presented in Sect. 11.3, where we point
out the existence of two different strategies for improving performance. The first
strategy consists in adding energy levels to the original thermal cycle, and is ana-
lyzed in detail in Sect. 11.4, while the extension to the case of multi-cycle machines
is presented in Sect. 11.5. The second strategy, based on concatenating three-level (or
qutrit) machines, is analyzed in Sect. 11.6. Furthermore, in Sect. 11.7 we discuss the
third law of thermodynamics in terms of Hilbert space dimension, while Sect. 11.8 is
devoted to characterizing the trade-off between the power and speed of operation of
the thermal machine, given an explicit model of thermalization. Our conclusions are
presented in Sect. 11.9. Further details of the calculations are given in AppendixA.

11.1 The Primitive Operation

Generally speaking, the working of an autonomous quantum thermal machine can
be divided into two steps which are continuously repeated. For clarity, we discuss
the case of a fridge powered by two thermal baths at different temperatures. In the
first step, a temperature colder than the cold bath is engineered on a subspace of the
machine, i.e. on a subset of the levels comprising the machine. This can be done
by selectively coupling levels in the machine to the thermal baths. The second step
consists in interacting the engineered subspace with an external physical system to be
cooled. We will consider a pair of levels of the machine to constitute our engineering
subspace, the population ratio of which can be tuned in order to correspond to a
cold temperature. Here we shall refer to this pair of levels as the virtual qubit, and
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Fig. 11.1 The different transitions of a thermal machine comprising an arbitrary number of levels
are selectively coupled to two thermal baths at inverse temperatures βc � βh (blue and red boxes).
This allows engineering an effective inverse temperature (the virtual temperature) βv in a inner
subspace of the machine (the virtual qubit). The virtual qubit (purple circle) then interacts via the
unitary swap operation Û with an external system (orange circle), changing its bias from ZS to Z ′

S
in the operation

its associated temperature as its virtual temperature [8]. Typically the virtual qubit
is chosen to be resonant with the system to be cooled in order to avoid non energy
conserving interactions. Notably, the swap operation between the virtual qubit and
the external physical system, can thus be considered as the primitive operation of
quantum fridges, andmore generally of all quantum thermalmachines (see Fig. 11.1).

Let us consider a machine comprised of n levels, with associated Hilbert spaceH
such that dimH = n, and Hamiltonian ĤM.Within this machine, we will refer to any
pair of levels (|k〉M and |l〉M ) as a transition, denoted Tk,l . Among the n(n − 1)/2
possible transitions, we focus our attention on a particular pair of levels |i〉 and | j〉
with populations λi and λ j and energies Ei and E j > Ei . Assume the transition Ti, j

is coupled to the external system to be cooled, hence representing the virtual qubit.
Here it will be useful to introduce two quantities to fully characterize the virtual
qubit, namely its normalization Nv and its (normalized) bias Zv defined by

Nv ≡ λi + λ j , Zv ≡ λi − λ j

Nv
. (11.1)

As we focus here on the case where the density operator of the machine is diagonal
in the energy basis,2 we may define the virtual temperature via the Gibbs relation
λ j = λi e−Ev/kBTv . That is

2More generally, one could also consider the case of virtual qubits with coherences.
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Tv ≡ Ev

kB ln
(
λi/λ j

) , (11.2)

where we defined Ev ≡ E j − Ei as the energy gap of the virtual qubit. The virtual
temperature is then monotonically related to the above introduced bias by

Zv = tanh(βvEv/2), (11.3)

where βv = 1/kBTv is the inverse virtual temperature. Notice that −1 � Zv � 1,
where the lower bound represents a virtual qubit with complete population inversion
(βv → −∞) and the upper bound corresponds to the virtual qubit in its ground state
|i〉M (βv → 0).

Next, the virtual qubit interacts with the physical system via the swap operation.
For simplicity, the physical system is taken here to be a qubit with energy gap Ev,
hence resonant with the virtual qubit. We denote the levels of the physical system
by |0〉S and |1〉S, with corresponding populations p0 and p1, and hence bias ZS =
p0 − p1 (note that NS = 1). The swap (energy-conserving) operation is given by the
unitary

Û = 1̂MS − |i〉〈i |M ⊗ |1〉〈1|S − | j〉〈 j |M ⊗ |0〉〈0|S
+ |i〉〈 j |M ⊗ |1〉〈0|S + | j〉〈i |M ⊗ |0〉〈1|S. (11.4)

The effect of the swap operation is to modify the bias of the physical system, which
changes from ZS to

Z ′
S = NvZv + (1 − Nv)ZS. (11.5)

The above equation can be intuitively understood as follows.With probability Nv, the
virtual qubit is available (i.e. the machine is in the subspace of the virtual qubit), and
the swap replaces the initial bias of the system with the bias of the virtual qubit. With
the complementary probability, 1 − Nv, the virtual qubit is not available, hence the
swap cannot take place and the bias of the system remains unchanged. Consequently,
the virtual temperature fundamentally limits the temperature the external system can
reach. A complete derivation of Eq. (11.5) can be found in AppendixA.

Finally, it is worth noticing that the virtual qubit must be refreshed in order to
ensure the continuous operation of the machine. Indeed, after interaction with the
system, the virtual qubit is left with the initial bias of the system, ZS, and must be
therefore reset to the desired bias, Zv, in order to continue operating. Moreover, the
setup can be straightforwardly generalized to the cooling of a higher dimensional
system. For systems featuring a single energy gap, e.g. harmonic oscillators, the
virtual qubit is coupled to all resonant transitions. For systems with several different
energy gaps, one will use one virtual qubit for each different energy gap.

Within this picture two different directions to improve the performance of a
machine emerge. The first consists in optimizing the properties of the virtual qubit
(Nv and Zv) in order to achieve the desired bias Z ′

S in the external system (Z ′
S → 1 in
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Fig. 11.2 The smallest
possible fridge comprising
three energy levels. We
denote couplings to βc by
(blue) downward arrows,
couplings to βh by (red)
upward arrows, and the
virtual qubit by an (orange)
arrow in the direction
consistent with the machine
(upward for the fridge,
downward for the heat
engine)

the case of a fridge), which represents the statics of the machine. The second consists
in optimizing the dynamics of the machine, in particular the rate of interaction with
the external system and the rate at which the virtual qubit is refreshed by contact with
the thermal baths. Crucially, whereas the dynamics is model dependent, the statics
is model independent, and hence a universal property of the machine.

In the following sections, we shall see how the performance of thermal machines
can be optimized in the presence of natural constraints, such as limits on the available
energy gaps or on the dimension of its Hilbert space. We focus primarily on the
statics: we will see that increasing the number of levels of the machine improves
the performance (for instance to be able to cool to lower temperatures). In the last
sections, we will move beyond purely static considerations, and discuss the interplay
between statics and dynamics. Again we find that machines with more levels can
lead to enhanced performance.

11.2 Warm-Up: Three-Level Machine

In order to better illustrate the main concepts, we start our analysis with the smallest
possible quantum thermal machine, comprising only three energy levels |1〉M , |2〉M
and |3〉M , working between two thermal baths at different temperatures. Thismachine
can be operated as a fridge or as a heat engine depending on which transitions are
coupled to the hot and cold baths. For simplicity, our presentation will focus on
the former. In this case, the transition T1,3 is coupled to the cold bath at inverse
temperature βc, while transition T2,3 is coupled to the hot bath at βh < βc. Finally,
the transition T1,2 is chosen to be the virtual qubit (see Fig. 11.2).

The operation of the three-level fridge can be understood as a simple thermal
cycle:

|2〉M βh−→ |3〉M βc−→ |1〉M . (11.6)
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inwhich a quantumof energy�E23 ≡ E3 − E2 is absorbed from the hot bathmaking
the machine jump from state |2〉M to |3〉M , followed by a jump from |3〉M to |1〉M
while emitting a quantum of energy �E13 to the cold bath. The cycle is closed by
swap of the virtual qubit, T1,2, with the external qubit to be cooled as described in
Sect. 11.1. This cycle involves 3 states, and is thus of length 3. It represents the basic
building block of the machine.

The fact that transitionsT1,3 andT2,3 are coupled to baths at different temperatures
will allow us to control the (inverse) temperature of the virtual qubit, βv. While
there exist many different possible models for representing the coupling to a thermal
bath, the only feature that we will consider here is that, after sufficient time, each
transition connected to a bath will thermalize. That is, in the steady-state of the
machine, the population ratio of a transition Ti, j coupled to a thermal bath, will be
equal to e−�Ei jβbath , where �Ei j is the energy gap of the transition, and βbath the
inverse temperature of the bath. Under such conditions, the inverse temperature of
the virtual qubit and its norm are given by

βv = βc + (βc − βh)

(
�E13

Ev
− 1

)
, (11.7)

Nv = 1 + e−βvEv

1 + e−βvEv + e−βc�E13
(11.8)

where Ev ≡ �E12 is the virtual qubit energy gap, chosen to match the energy gap
of the qubit to be cooled. Note that we have βv > βc (since �E13 > Ev), implying
that the machine works as a refrigerator.

At this point, one can already identify various resources for the control of the
virtual temperature βv. The first is the range of available temperatures, captured
by βc and βh. The second is the largest energy gap, �E13 coupled to a thermal
bath. Clearly if �E13 is unbounded, then we can cool arbitrarily close to absolute
zero, i.e. βv → ∞ as �E13 → ∞ while Nv → 1, implying Z ′

S → 1, c.f. Eq. (11.5).
However, it is reasonable to impose a bound on this quantity, which we label Emax.
From physical considerations, one expects that thermal effects play a role only up
to a certain energy scale. Indeed, as we have seen along Chap.2 a thermal bath is
characterized by a spectral density with a cutoff for high frequencies. This implies
the existence of an energy above which there exist a negligible number of systems
in the bath interacting with the machine. The coldest achievable temperature given
this maximum energy is then given by

βv = βc + (βc − βh)

(
Emax

Ev
− 1

)
. (11.9)

Asmentioned above, the three-level machine can also work as a heat pump or heat
engine, if one switches the hot and cold baths. Imposing again a maximum energy
gap, Emax, we obtain the following lower bound in the inverse virtual temperature
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βv = βh − (βc − βh)

(
Emax

Ev
− 1

)
. (11.10)

Notice that in this case βv < βh, that is, the virtual temperature is greater than the
temperature of the hot bath. Moreover, when βc/(βc − βh) < Emax/Ev, then βv < 0,
and the machine transitions from a heat pump to a heat engine (see the example in
Sect. 3.3).

11.3 Multi-level Machines

We have seen that imposing a bound on the maximum energy gap which can be
coupled to a heat reservoir, the performance of the simplest three-level machine
becomes limited through the range of accessible virtual temperatures. The general
question investigated below iswhetherwe can engineer colder temperatures (or hotter
ones, as well as achieving a greater population inversion) by usingmore sophisticated
machines.

Following Eq. (11.5), in order to optimize the effect the machine has on the
physical system, there are two important features the virtual qubit should have.
First, it should have a high bias Zv. Second, the norm Nv should be as close to
one as possible. Below we discuss different classes of multilevel machines, and
investigate the range of available virtual qubits as a function of the number of levels
n of the machine. First we will see that the range of accessible virtual temperatures
(or equivalently bias Zv) increases as n increases. Hence machines with more levels
allow one to reach lower temperatures, given fixed thermal resources. However, this
usually comes at the price of having a relatively low norm Nv for the virtual qubit,
which is clearly a detrimental feature. Nevertheless we will see that it is always
possible to bring the norm back to one by adding extra levels.

We will discuss two natural ways to generalize the three-level machines to more
levels, sketched in Fig. 11.3. The first one consists in adding levels and thermal cou-
plings in order to extend the length of the thermal cycle. In other words, while the
three-level machine represents a machine with one cycle of length three, we now
consider machines with a single cycle of length n (see Sect. 11.4). This will allow
us to improve both the bias Zv and the normalization Nv of the virtual qubit. We
first characterize the optimal single-cycle machine, which in the limit of large n,
approaches perfect bias (i.e. zero virtual temperature, or perfect population inver-
sion). However, while the norm Nv does not vanish, it is bounded away from one in
this case. We then show how the norm can be further increased to one by extending
the optimal single-cycle machine to a multi-cycle machine (Sect. 11.5). This proce-
dures requires the addition of n − 2 levels, while maintaining the same bias Zv. In
Fig. 11.4 we show the range of available virtual qubits (as characterized by its norm
Nv and bias Zv) as a function of the number of levels n, for single cycle machines
(green dots) and multi-cycle machines (blue dots).
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Fig. 11.3 Sketch of multi-level machines as discussed here. We consider several generalizations
of the simplest three-level machine (top left). We first discuss single cycle machine (top right),
which can then be extended to multi-cycle machines (bottom right). Second, we study concatenated
three-level machines (bottom left)

Next, in Sect. 11.6, we follow a second possibility which consists in concatenating
k three-level machines. The main idea is that the hot bath is now effectively replaced
by an even hotter bath or source of work, engineered via the use of an additional
three-level heat pump or heat engine. In the limit of k large, we can also approach a
perfect bias Zv and the norm Nv tends to one (see red dots on Fig. 11.4), similarly to
themulti-cycle machine. It is however worthmentioning that in this case themachine
has now n = 3k levels, while the multi-cycle machine used only a number of levels
linear in n.

The above results, which are summarized in Fig. 11.4, demonstrate that machines
with a larger Hilbert space can outperform smaller ones, which implies that the
Hilbert space dimension should be considered a thermodynamical resource. Note
that, for clarity, results are generally discussed for the case of fridges, but hold also
for heat engines mutatis mutandis.
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Fig. 11.4 Performance of machines as a function of dimension. The accessible virtual qubit, char-
acterized by the bias Zv and the norm Nv [see Eq. (11.1)], is shown for single cycle machine (green
dots), multi-cycle machine (blue dots), and concatenated three-level machines (red dots). As a
comparison we also show the machines discussed in Ref. [12] (purple dots). The dimension of the
machine (i.e. the number of levels) is indicated next to each point, for all machines except the three-
level; there, the number k of concatenated machines is given (hence the dimension is exponentially
larger, 3k )

11.4 Single-Cycle Machines

We start by discussing thermal machines featuring an arbitrary number of levels, n,
but only a single thermal cycle. We then define a n-level (thermal) cycle machine as
a quantum system with Hilbert space HM of dimension n, and Hamiltonian ĤM =∑n

j=1 E j | j〉〈 j |M , where every transition T j, j+1, is coupled to a thermal bath. It is
worth mentioning that the levels {| j〉M}, with 1 � j � n, are not necessarily ordered
with respect to its associated energies E j . We further denote the energy gap of the
transition T j, j+1 as �E j, j+1 = E j+1 − E j , and the temperature of the bath coupled
to this transition is labeled asβ j, j+1.We choose the transitionT1,n to correspond to the
virtual qubit of the machine, whose energy gap, Ev, obeys the following consistency
relation

Ev =
n−1∑

j=1

E j+1 − E j =
n−1∑

j=1

�E j, j+1. (11.11)

In the absence of any additional couplings, the machine approaches a steady state,
as each transition tends to equilibrate with the thermal bath to which it is coupled
(notice also that each level is involved in at least one thermal coupling). This implies
that the density matrix of the steady state must be diagonal in the energy basis, as
all off-diagonal elements decay away due to the thermal interactions. Additionally,
the populations of the two levels in each transition are given by the Gibbs ratio
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corresponding to the temperature of the bath. Labeling the population of the | j〉M
state as p j , we have

p j+1 = p j e
−β j, j+1�E j, j+1 for 1 � j � n − 1. (11.12)

The above n − 1 thermal couplings determine the ratios between all of the popula-
tions {p j }. Together with the normalization condition

∑
j p j = 1, this completely

determines the steady state of the machine.3 The virtual temperature corresponding
to transition T1,n can hence be obtained from

e−βvEv = pn
p1

= pn
pn−1

pn−1

pn−2
· · · p2

p1
, (11.13)

leading to the following result:

βv =
n−1∑

j=1

β j, j+1
�E j, j+1

Ev
. (11.14)

Similarly one may calculate the norm of the virtual qubit,

Nv =
(

1 + e−βvEv

1 + ∑n−1
j=1

∏k= j
k=1 e

−βk,k+1�Ek,k+1

)

. (11.15)

We are interested in the best single cycle machine, that is, the one which using
a limited set of resources, achieves the largest change in bias of the system acted
upon, Z ′

S − ZS, as given in Eq. (11.5). This corresponds to the one that achieves the
largest possible bias, Zv, together with the largest norm, Nv, given this optimized
bias. In what follows we determine the optimal single cycle machine with n levels,
given bath temperatures and bound on the energy of a coupled transition Emax.

11.4.1 Optimal Single-Cycle Machine

The optimal arbitrary single cycle fridge, sketched in Fig. 11.5, has a rather simple
structure. All but one of its transitions are at the maximal allowed energy, Emax.
Roughly, the first half of the transitions (starting from the upper state of the virtual
qubit) are all connected to the hot bath, while the second half of the transitions
are connected to the cold bath. A complete proof of optimality can be found in
AppendixA. Furthermore, explicit expressions for the inverse virtual temperature
and norms in this case can be easily obtained from Eqs. (11.14) and (11.15). For the

3If the cycle covers only a subspace of all the machine levels, then the populations are determined
with respect to the total population of the subspace.
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Fig. 11.5 Sketch of the
optimal single-cycle
refrigerator, for an even
number of levels n

case of a refrigerator with an even number of levels n, they read

β(n)
v = βc + (βc − βh)

(n
2

− 1
) Emax

Ev
(11.16)

N (n)
v = 1 + e−β(n)

v Ev

1−e− n
2 βcEmax

1−e−βcEmax + 1−e− n
2 βh Emax

1−e−βh Emax e−β
(n)
v Ev

, (11.17)

while for an odd number of levels n:

β(n)
v = βc + (βc − βh)

[(
n

2
− 1

2

)
Emax

Ev
− 1

]
, (11.18)

N (n)
v =

(
1 + e−β(n)

v Ev

) [ (
1 − e−βcEmax

)−1
(
1 − e−( n+1

2 )βcEmax

)

+ e−β(n)
v Ev

(
1 − e−βhEmax

)−1
(
1 − e−( n−1

2 )βhEmax

) ]−1
. (11.19)

The complete results including the case of heat engines are given inAppendixA.2.
Let us now discuss the performance of the optimal machine. As becomes apparent

from Eq. (11.16), the number of levels n is clearly a thermodynamical resource, as
it allows to reach colder temperatures. Indeed, one finds that the virtual temperature
is improved by a fixed amount whenever two extra levels are added, leading to an
enhancement (

β(n+2)
v − β(n)

v

)
Ev = (βc − βh) Emax. (11.20)
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This relation encapsulates the interplay between the resources involved in construct-
ing a quantum thermal machine - the range of available thermal baths {βc, βh}, the
range of thermal interactions (Emax), and the number of levels n. Remarkably, as the
inverse virtual temperature βv increases linearly with n, one can engineer a virtual
temperature arbitrarily close to absolute zero. Similarly, for a heat engine, one can
obtain a virtual qubit with arbitrarily close to perfect population inversion. This is
possible because as n increases, the norm of the virtual qubit does not decrease arbi-
trarily, but remains bounded below away from zero. Indeed from Eq. (11.17), the
norm asymptotically approaches a finite value

lim
n→∞ N (n)

v = (
1 − e−βcEmax

)
, (11.21)

which is, interestingly, independent of both βh and Ev.
Finally, we briefly comment on the efficiency [also often referred to as the coef-

ficient of performance (COP)] of the optimal single cycle machine. Here we adopt
the standard definition of the efficiency of an absorption refrigerator, that is, the ratio
between the heat extracted from the object to be cooled and the heat extracted from
the hot bath. This can be easily calculated by looking at a single complete cycle of
the machine. Imagine that a quantum Ev of heat is extracted from the external qubit
in the jump |1〉M → |n〉M produced by the swap operation. To complete the cycle,
the following sequence of jumps must necessarily occur:

|n〉M βh−→ · · · βh−→ |n/2 + 1〉M βc−→ |n/2〉M βc−→ · · · βc−→ |1〉M (11.22)

where n/2 − 1 energy quanta Emax of heat are absorbed from the hot bath while
releasing n/2 − 1 quanta Emax and one quantum Ev of heat to the cold bath. The
efficiency is hence given by the following expression for the single-cycle COP:

η
(n)
fridge = Ev(

n
2 − 1

)
Emax

= βc − βh

β
(n)
v − βc

, (11.23)

where the second equality follows by exploiting Eq. (11.16). Crucially, Eq. (11.23)
corresponds to Carnot efficiency for an endoreversible absorption refrigerator that is
extracting heat from a bath at the (inverse) temperature β(n)

v � βc � βh. That is, if the
object to be cooled (now an external bath) is infinitesimally above the temperature of
the virtual qubit (such that the virtual qubit cools it down by an infinitesimal amount),
then the efficiency (COP) of this process approaches the Carnot limit.

Note that such absorption refrigerators have the property that theCOPdecreases as
the temperature of the cold reservoir drops. In the present case, since β(n)

v decreases
linearly with n, the same dependence is found in the efficiency of the machine.
Intuitively, this makes sense, since the amount of heat drawn from the hot bath (per
cycle) increases linearly with n, while the heat extracted from the cold bath remains
constant (see Fig. 11.5).
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11.5 Multi-cycle Machines

We have seen that the optimal single cycle machine can enhance the virtual temper-
ature by increasing the number of levels n, but this also results in obtaining a norm
Nv relatively low. Hence, it is natural to ask if, by adding levels, the norm can be
brought back to unity while keeping the same virtual temperature. Below we will see
that this is always possible, and in fact, requires only (roughly) twice the number of
levels.

For clarity, we illustrate the method starting from the three-level fridge, which has
a virtual qubit whose norm is strictly smaller than 1. By adding a fourth level, we can
achieve Nv = 1, while maintaining the bias, Zv, as given by its virtual temperature
in Eq. (11.7). The fourth level is chosen specifically so that E4 = Ev + Emax, and the
transition T2,4 is coupled to the cold bath, as schematically depicted in Fig. 11.6a.
Hence by design, the new transition T3,4 has the same energy gap Ev as the original
virtual qubit T1,2. Furthermore, one can verify that both transitions possess the same
virtual temperature β(3)

v . In fact one can identify two three-level fridge cycles at
work in the new system, {|2〉M → |3〉M → |1〉M} and {|4〉M → |2〉M → |3〉M}. As
a consequence, one could also connect T3,4 to the external system that is to be
cooled. Since the two transitions can be coupled at the same time to the external
system, they will both contribute to the virtual qubit, which is now duplicated. The
norm of the (total) virtual qubit is obtained by summing the populations of each
transition (T1,2 and T3,4). As the two transitions include all four levels, we find that
Nv = p1 + p2 + p3 + p4 = 1.

Alternatively, one could view the four level machine as consisting of two real
qubits, HM = H1 ⊗ H2, as in Fig. 11.6b. One of these real qubits corresponds to
the virtual qubit, and hence it follows that its norm must be Nv = 1. We term this
procedure the virtual qubit amplification of a single cycle machine. Next, we show
explicitly how to perform the above construction starting from any n level single

Fig. 11.6 Starting from the three-level fridge, and adding a fourth level |4〉M , the norm of the virtual
qubit can be increased to Nv = 1, while maintaining the same bias Zv. This four-level fridge thus
outperforms the three-level fridge. b The four-level fridge viewed as a tensor product of the virtual
qubit, now becoming a real qubit since Nv = 1, and a simpler thermal cycle. Note the coupling to
the hot bath is now nonlocal, between the levels |0〉M ⊗ |e〉v and |1〉M ⊗ |g〉v
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cyclemachine. This requires the addition of n − 2 levels. This is themost economical
procedure possible, since the original n level cycle contains n − 2 levels which do
not contribute to the virtual qubit.

The general constructionworks as follows. Consider a single n-level thermal cycle
machine as described in Sect. 11.4: a set of n levels with corresponding energies E j

(1 � j � n), subsequent n − 1 transitions coupled to thermal baths at corresponding
inverse temperatures β j, j+1, and virtual qubit T1,n , where En − E1 = Ev. To amplify
the virtual qubit, one now adds n − 2 energy levels. Each new level is added in order
to form a virtual qubit with each level of the original cycle except for the virtual qubit
levels |1〉M and |n〉M [see Fig. 11.7]. The energy of the new levels must be chosen
such that

E j+n−1 = E j + Ev, (11.24)

where j runs from 2 to n − 1. The corresponding thermal couplings are chosen in
such a manner that the structure of the cycle from j = n to j = 2n − 2 is identical
to the structure from j = 1 to j = n − 1. Specifically, this means choosing

β j+n−2, j+n−1 = β j−1, j . (11.25)

Following this procedure we finish with a Hilbert space for the machine HM with
total dimension n′ ≡ dimH = 2(n − 1). One can verify that all the newvirtual qubits
(T1+ j,n+ j ) have the same virtual temperature βv as the original virtual qubit T1,n .
None of these transitions share an energy level, i.e. they are mutually exclusive, and
together they comprise all of the 2n − 2 levels present in the system. If every one
of these transitions is connected together to the external system, then the effective
virtual qubit reaches norm Nv = 1 as required. The inverse virtual temperature of
the multi-cycle fridge can hence be expressed in terms of the total number of levels
n′. For instance in the case of n even, we have:

Fig. 11.7 a Starting from a 5 level fridge, and adding 3 levels (dashed lines), the norm of the virtual
qubit can be boosted to Nv = 1 while maintaining the same bias Zv. b The resulting 8 level fridge
can be viewed as a tensor product of a 4−level cycle and the virtual qubit, which is now a real one
since Nv = 1
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β(n′)
v = βc + (βc − βh)

(
n′

4
− 1

2

)
Emax

Ev
. (11.26)

Note that, as in the simple case of amplifying the three-level machine, here too the
final machine can be viewed as a tensor product of an n − 1 level cycle and the virtual
qubit (which now becomes a real qubit since Nv = 1). In fact, this procedure also
allows one to easily convert a fridge into a heat engine and vice versa, as discussed in
AppendixA.3. The virtual qubit amplification procedure is schematically depicted
for the case of a 5-level fridge cycle in Fig. 11.7.

We also point out that the efficiency of themulti-cyclemachine is exactly the same
as that of the single cycle it is based upon. This follows from the fact the efficiency
is determined by the bias Zv, and does not depend on the norm Nv, c.f. Eq. (11.23)
(see also AppendixA).

Finally, we note that Ref. [12] presents a different construction for a multi-cycle
thermal machine. Compared to a three-level machine, this construction boosts the
norm of the virtual qubit to Nv = 1, but does not change the bias βv. In comparison,
our construction improves both the norm and the bias simultaneously and thus greatly
outperforms the former construction, as shown on Fig. 11.4.

11.6 Concatenated Three-Level Machines

As we commented previously, a different possibility for generalizing the simplest
three-level machine consists in concatenating several three-level machines. Here we
analyze this possibility by characterizing the virtual qubits achievable by concate-
nating k three-level machines as introduced in Sect. 11.2.

For simplicity we start with case of concatenating k = 2 three-level machines in
order to obtain a better fridge. The coupling between the two three-level machines
can be achieved considering a simple swap Hamiltonian coupling the transitions T(1)

2,3

and T
(2)
2,3:

Ĥint = g(|2, 3〉〈3, 2|M + h.c.), (11.27)

as shown on Fig. 11.8. Here the first three-level machine represents the actual fridge
while the second one works as a heat engine, replacing the hot bath on the transition
T

(1)
2,3. This corresponds to couplingT

(1)
2,3 to an effective temperaturewhich is hotter than

the temperature of the hot bath (or equivalently inverse temperature lower than βh),
resulting in a fridge with an improved bias Zv. Indeed the inverse virtual temperature
achieved by the concatenated three-level machine is found to be

β(2)
v = βc + (βc − βh)

Emax

Ev
, (11.28)
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Fig. 11.8 By concatenating two three-level machines, one obtains a better fridge, outperforming
the simple three-level fridge. Specifically, the new 6-level machine consists now a three-level fridge
(left) which is boosted via the use of a three-level heat engines (right). The role of this heat engine
is to create an effectively hotter temperature (hotter than Th) in order to fuel the fridge

which is colder than the virtual temperature of the simple three-level fridge [see
Eq. (11.9)]. Importantly, this enhancement has been achieved without modifying the
value of Emax, and considering the same temperatures βc and βh for the thermal
baths. Details about calculations are given in AppendixA.4.

The process may now be iterated, replacing the coupling of T(2)
2,3 to the cold bath

βc by a coupling to a third three-level fridge, effectively at a temperature colder than
βc, and so on, as sketched in Fig. 11.9. In this manner one can construct a machine
resulting of the concatenation of k three-levelmachines. Following calculations given
in AppendixA.4, we obtain simple expressions for the virtual inverse temperatures

β(k)
v =

{
βc + (βc − βh)

k
2
Emax
Ev

if k is even,

βc + (βc − βh)
(
k+1
2

Emax
Ev

− 1
)

if k is odd.
(11.29)

Again, we see that the virtual temperature approaches absolute zero as k becomes
large. Similarly for a concatenated heat engine, one can approach perfect inversion
(see details in Appendix).

Fig. 11.9 Concatenating many three-level machines
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Note that the above expressions are similar to those obtained for the virtual tem-
perature in the case of the single cycle machine. In particular setting k = n − 2 we
obtain exactly the same result. This correspondence can be intuitively understood
via the following observations. First, the single three-level machine is the same as
a 3-level cycle. Furthermore, the effect of replacing one of the thermal couplings in
a three-level machine by a coupling to an additional three-level system effectively
replaces one thermal coupling by two, thus increasing the number of thermal inter-
actions within the working cycle by one. For example, in the two three-level fridge
(Fig. 11.8), the effective thermal cycle is

|2, 2〉M βc−→ |2, 1〉M βh−→ |2, 3〉M Hint−−→ |3, 2〉M βc−→ |1, 2〉M . (11.30)

Although this is a cycle of length 5, the virtual temperature is only influenced by the
3 thermal couplings, because the coupling on the degenerate transition |2, 3〉M ↔
|3, 2〉M has zero energy gap [see Eq. (11.14)]. Since the thermal couplings are the
same as those in the optimal 4-level fridge single cycle, we get the same virtual
temperature. By induction, the concatenation of k three-level machines has the same
βv (and indeed the same thermal couplings within its working cycle) as the optimal
(k + 2)-level single cycle.

Finally, it is also important to discuss the behavior of the norm Nv of the vir-
tual qubit in order to characterize the performance of the concatenated machine.
Interestingly we find that Nv → 1 in the limit of large k. This can be intuitively
understood for the case of the concatenated heat engine, depicted in Fig. 11.9. As
k becomes large, the virtual temperature βv approaches −∞. Thus the population
ratio p1/p2 → 0, implying that p1 → 0. However, since T(1)

1,3 is coupled to a thermal
bath at βh, the population ratio p3/p1 equals e−βhEmax , implying that p3 → 0. Thus
in the limit k → ∞, the state of the first three-level system approaches the pure state
|2〉〈2|1, and thus Nv = p1 + p2 → 1. To understand the case of the fridge, consider
in Fig. 11.9 that the machine begins with the second three-level system instead of the
first one. This is now a fridge, where the virtual qubit is the transition T(2)

2,3. By a sim-
ilar analysis to the above, we find that the state of the three-level system approaches
|2〉〈2|2 in the limit k → ∞, and thus Nv → 1. It is instructive to observe that in
both cases, the concatenation of three-level machines takes the state of the original
three-level system closer to the state where all of the population is in the middle level
|2〉〈2|, which is both the ideal fridge with respect to T2,3, and the ideal machine with
respect to T1,2.

Therefore we can conclude that, again, increasing the number of levels, or equiv-
alently the dimension of the machine Hilbert space, n ≡ dimHM = 3k , the perfor-
mance is increased. Indeed, as k increase, the virtual qubit bias approaches Zv = 1
(or Zv = −1 for a heat engine), while its norm becomesmaximal, i.e. Nv → 1. How-
ever notice that in this case the dimension of the machine grows rapidly. Indeed the
inverse virtual temperature now grows only logarithmically with the total number of
levels, n. For instance when k is even we have:
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β(n)
v = βc + (βc − βh)

(
log3 n

2

)
Emax

Ev
(11.31)

to be compared with the multi-cycle fridge case in Eq. (11.26).

11.7 Third Law

The above results show that when the dimension of the Hilbert space of the thermal
machine tends to infinity, the virtual temperature can approach absolute zero even
though the maximal energy gap which is coupled to a thermal bath is finite. Never-
theless, an important point is that, in all the constructions given, for any finite n, the
lowest possible temperature is always strictly greater than zero. This can be directly
seen from the expressions for the inverse virtual temperature of the optimal single-
cycle machines, as given in Eq. (11.16). Therefore any single-cycle fridge requires
an infinite number of levels in order to cool to absolute zero.

Next,we notice that the lowest temperatures of any othermulti-cyclemachinewith
different virtual qubits working in parallel can achieve is bounded by the temperature
achieved in any of these cycles. This follows from the fact that the effect of multiple
cycles on the virtual qubit can be decomposed as a sumof the effect of each individual
cycle. Thus, the bound on the temperaturewe derive for single-cycle n levelmachines
holds for general machines with n levels.

Therefore we obtain a statement of the third law in terms of Hilbert space dimen-
sion. In particular, from (11.5) we see that the bias Zv (and therefore temperature)
and norm Nv of the virtual qubit determine to what temperature an external object
can be cooled down in a single (or multiple) cycles of a thermal machine. The fact
that the virtual temperature only approaches zero as the dimension of the thermal
machine approaches infinity shows that bringing an external object to absolute zero
requires a machine with an infinite number of levels. This is a static version of the
third law, complementary to previous statements [3, 13, 14], which is stated in terms
of number of steps, time, or energy required in order to reach absolute zero.

Finally, we note that in the case of the multi-cycle machine, since the norm of
the virtual qubit is unity, in a single swap operation the external object is brought to
exactly the temperature of the virtual qubit, c.f. Eq. (11.5). Thus, using a machine of
Hilbert space dimension n, we can cool an external object to the inverse temperature
(11.26), which corresponds asymptotically to the scaling

TS ∼ 1

n
, (11.32)

that is, the temperature scales inversely with the Hilbert space dimension.
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11.8 Statics Versus Dynamics for Single-Cycle Machines

So far, we have discussed improving the static configuration of the thermal machine
by increasing its dimension. This analysis characterizes the task of cooling (or heat-
ing) an external system via a single swap, a so-called single shot thermodynamic
operation. However, more generally we are interested in continuously cooling the
external system, as the latter is unavoidably in contact with its own environment, and
thus requires repeated swaps with the virtual qubit in order to maintain the cooling
(or heating) effect.

We have seen in Sect. 11.1 that after a single swap between the virtual qubit and the
external system, the bias of the virtual qubit Zv is switched with that of the external
system ZS. Thus the virtual qubit needs to be ‘reset’ before the next interaction is
possible, an operation which should require some time to be performed. This fact
hence introduces limitations on the power of the machines. The ‘time of reset’ will
depend in general on the thermalization model, which forces us to go beyond purely
static considerations. To illustrate this point we will discuss here the dynamics of the
single-cycle refrigerators.

Intuitively one may expect the time of reset of the virtual qubit increases as the
number of levels in the cycle increases, i.e. the larger the cycle of the machine,
the longer it takes the machine to perform the series of jumps reinitializing it. This
introduces the following trade-off. Previously we saw that machines with longer
cycles were able to achieve lower temperatures for a single swap. However, they
would also take longer to reset. Therefore in order to engineer a good fridge, one could
consider (i) a high dimensional fridge (i.e. a long cycle) achieving low temperatures

Fig. 11.10 Relationship between the steady-state virtual temperatureβsteadystate and the length of the
cycle n. We consider various equilibration timescales, τS = 1 (green, diamond), τS = 10 (orange,
square) and τS = 100 (blue, dot). All other parameters are kept fixed: timescale of all thermal
couplings of the cycle τβ = 1, bath temperatures βh = 0.05, βc = 0.2, and energies Emax = 2, and
Ev = 1 (as in Fig. 11.4)
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Fig. 11.11 Length of the optimal cycle Nopt versus the external system equilibration timescale τS
in logarithmic units. Other parameters are the same as in Fig. 11.10: τβ = 1, βh = 0.05, βc = 0.2,
Emax = 2, and Ev = 1

at slower rate, or (ii) a low-dimensional fridge achieving not as low temperatures,
but at a faster rate.

In order tofindoutwhich regime is better,we consider single-cycle fridges coupled
to thermal baths, as modeled by a Markovian master equation in Lindblad form (see
Sect. 2.2). Since the thermalization occurs here only on transitions, the specific details
of the model are not crucial, and all models (either simple heuristic ones [2, 7–9]
or those derived explicitly by microscopic derivations [1, 3–6]) lead to the same
qualitative conclusions.

We find that the relevant parameter is the timescale at which the external system
interacts with its environment τS. If this timescale is short, then the fridge has little
time to ‘reset’ the virtual qubit. Therefore a shorter cycle, that resets quickly, is
optimal in this case. If on the contrary the system timescale is long, there is more
time available in order to reset the virtual qubit. Thus a longer cycle, providing lower
temperatures, is preferable. This trade-off is illustrated in Fig. 11.10.

We also observe from Fig. 11.10 that, for given timescale τS, there is an optimal
length of the cycle. In Fig. 11.11, we plot the optimal length of the cycle for different
timescales. The optimal length appears to grow logarithmically with respect to τS for
slow timescales (compared with the relaxation time-scale of the machine transitions
τβ), while for fast timescales we observe that the optimal cycle has length 4. This
suggests that the simplest three-level machine is always outperformed.

11.9 Conclusions

Wediscussed the performance of quantum absorption thermalmachines, in particular
with respect to the size of the machine. Specifically, we considered several designs
of machines with n levels and described the static properties of the machine through
the range of available virtual qubits, which characterizes the fundamental limit of
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the machine. Notably, as n increases, a larger range of virtual temperatures becomes
available, showing that a machine with n + 1 levels can outperform amachine with n
levels. In this context, we proposed a design for quantum thermalmachines consisting
in a single cycle reaching optimal virtual temperatures for a virtual qubit consisting
in a single transition of the machine.

Moreover, we also discussed machines with multiple cycles running in parallel.
Here performance is increased, as the norm of the virtual qubit can be brought to
one, i.e. the virtual qubit becomes a real one. Finally, similar performance is achieved
for a design based on the concatenation of the simplest three-level machine. While
generally suboptimal in terms of performance, this design gives nevertheless a more
intuitive picture and may be more amenable to implementations, as the couplings
are simpler.

Furthermore, we have seen that in order to achieve virtual qubits with perfect
bias (i.e. achieving a virtual qubit at zero temperature, or with complete population
inversion), the required number of levels n of the machine diverges. This can be
viewed as a statement of the third law, complementary to previous ones. Usually
stated in terms of number of steps, time, or energy required in order to reach absolute
zero temperature, we obtain here a statement of the third law in terms of Hilbert
space dimension: reaching absolute zero requires infinite dimension.

Finally, we discussed the dynamical performance of autonomous thermal
machines, where a trade-off between the achievable virtual temperatures in the
machine and the time needed to operate emerges. By studying the particular case of
single cycle machines operating on a external qubit coupled to its own environment,
we found qualitative results on the scaling of the optimal length of the cycle in terms
of the external qubit relaxation timescale.

An outstanding question left open here concerns the performance of machines
where multiple single cycle machines or three-level machines run in parallel, i.e.
are coupled simultaneously to the external system. One may expect that the time
necessary to reset the machine is considerably decreased, providing potentially a
strong advantage over single-cycle machines. In particular, it would be interesting to
understand how to design the most effective machine, given a fixed number of levels
or equivalent building blocks (as well as constraints on the energy and temperatures).

Appendix

A.1 Swap Operation Details

This appendix elaborates on the swap as the primitive operation of quantum thermal
machines as introduced in Sect. 11.1 (see Fig. 11.1). Consider the setup involving an
external qubit system {|0〉S, |1〉S} with energy gap Ev, populations p0 and p1, and
hence bias ZS = p0 − p1. In order to modify the bias ZS (e.g. to cool the system),
the external qubit interacts with a virtual qubit (i.e. a transition Ti, j comprising the
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levels |i〉M and | j〉M within the thermal machine) which has the same energy gap as
the system, Ev = E j − Ei . The energy-conserving ‘swap’ interaction is described
by the unitary

Û = 1̂MS − |i〉〈i |M ⊗ |1〉〈1|S − | j〉〈 j |M ⊗ |0〉〈0|S
+ |i〉〈 j |M ⊗ |1〉〈0|S + | j〉〈i |M ⊗ |0〉〈1|S. (A.1)

The effect of the swap upon two real qubits would be to swap the states of the qubits
for one another (assuming the initial state as diagonal and uncorrelated). However,
this is not the case for one real and one virtual qubit, as we show presently.

We assume that the real qubit begins in a diagonal state

ρS ≡ 1 + ZS

2
|0〉〈0|S + 1 − ZS

2
|1〉〈1|S. (A.2)

For the virtual qubit the sum of the populations is not 1 in general, as the thermal
machine comprises many levels in thermal contact with the heat reservoirs, that is
Nv = pi + p j < 1. Assuming that the thermal machine state is block diagonal in the
virtual qubit subspace

ρM ≡ Nv

(
1 + Zv

2
|i〉〈i |M + 1 − Zv

2
| j〉〈 j |M

)
+ (1 − Nv)ρ

′
M ,

where ρ ′
M is an arbitrary (normalized) state of the remaining levels in the machine.

After applying Û , the final state of the external qubit system and the machine con-
taining the virtual qubit is

ÛρS ⊗ ρMÛ
† =

(
1 + ZS

2

)
Nv

(
1 + Zv

2

)
|0〉〈0|S ⊗ |0〉〈0|M

+
(
1 − ZS

2

)
Nv

(
1 + Zv

2

)
|0〉〈0|S ⊗ |1〉〈1|M

+
(
1 + ZS

2

)
Nv

(
1 − Zv

2

)
|1〉〈1|S ⊗ |0〉〈0|M

+
(
1 − ZS

2

)
Nv

(
1 − Zv

2

)
|1〉〈1|S ⊗ |1〉〈1|M

+ (1 − Nv)ρS ⊗ ρ ′
M , (A.3)

from which the final reduced state of the system is

ρ ′
S =

[
Nv

(
1 + Zv

2

)
+ (1 − Nv)

(
1 + ZS

2

)]
|0〉〈0|S

+
[
Nv

(
1 − Zv

2

)
+ (1 − Nv)

(
1 − ZS

2

)]
|1〉〈1|S. (A.4)
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Therefore, at the end of the protocol, the bias of the external qubit has been modified
to Z ′

S = NvZv + (1 − Nv)ZS, which implies a change

�ZS ≡ Z ′
S − ZS = Nv (Zv − ZS) . (A.5)

A.2 Optimalily Proof for Single Cycle Machines

In this sectionwe prove optimality of the single cyclemachine discussed in Sect. 11.4.
While there are several ways inwhich performance could be discussed, we aremainly
concerned here with optimality under the swap operation as given by Eq. (A.5). That
is, which machine achieves the largest change (A.5) in the bias of the external system
acted upon.

Consider an n-level (thermal) cycle machine as introduced in Sect. 11.4, where
all transitions are coupled to available temperatures, namely

βh � β j, j+1 � βc. (A.6)

Notice that intermediate (inverse) temperatures in between βc and βh can be obtained
by coupling the corresponding machine transition to both baths at the same time.
Furthermore, the energy gaps of the transitions are bounded by

− Emax � �E j, j+1 � Emax. (A.7)

We then proceed to determine the unique n-level cycle that minimizes the ratios
of the population of every level j in the cycle with respect to one of the levels of
the virtual qubit. This is then proven to be the optimal cycle. For clarity we detail
the proof for the case of the fridge, while the proof for the heat engine follows in a
similar way. Let us start by considering the population ratio:

p j

p1
=

j−1∏

k=1

e−βk,k+1�Ek,k+1 = exp

[

−
j−1∑

k=1

βk,k+1�Ek,k+1

]

. (A.8)

To minimize this ratio, one should maximize the summation above. We notice that
regardless of the values of any energy gap of the machine transitions �Ek,k+1, max-
imizing the sum requires picking the highest possible inverse temperature, βc, if the
energy gap is positive, and the smallest possible inverse temperature, βh, if the energy
gap is negative. Imposing this condition, one can then collect together the positive
and negative energy gaps to simplify the expression. Indeed by labeling the sum of
the positive energy gaps as Q j

+ and the sum of the negative ones as Q j
−, we obtain

p j

p1
= exp

[
−

(
βcQ

j
+ + βhQ

j
−
)]

. (A.9)
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Table A.1 Transition number and size to maximize the heat current Q j
+ associated to an arbitrary

level | j〉M with respect to the first energy level |1〉M , within a thermal cycle

No. transitions +Emax +δ j −(Emax − δ j ) −Emax

j,m even or odd j+m
2 − 1 1 0 j−m

2 − 1

j,m opposite
parity

j+m−1
2 0 1 j−m−3

2

In addition, we have the consistency relation

Q j
+ + Q j

− = �E1, j =
j−1∑

k=1

�Ek,k+1. (A.10)

This leads to rewrite Eq. (A.9) as

p j

p1
= exp

[
−βh�E1, j − (βc − βh) Q

j
+
]
. (A.11)

The ratio (A.9) can hence be minimized in two steps: first we find the optimum Q j
+

for a fixed value of �E1, j , and then we optimize over �E1, j . For a fixed energy
gap �E1, j , the minimum ratio is achieved when Q j

+ is as large as possible (since
βc − βh > 0). Recall that Q j

+ is the sum of positive transitions in the cycle from
|1〉M to | j〉M , each of which are bounded by Emax. Furthermore, also the number of
transitions at Emax is limited by the consistency relation (A.10). Optimizing for Q j

+
subject to these constraints results in values for the sizes and number of transition
in the cycle in the Table A.1, where we took a fixed �E1, j = mEmax + δ j , being
m ≡ �E1, j mod Emax.

In spite of the dependence on the optimum current Q j
+ upon the relative parities of

j andm, it is straightforward to verify that the optimum Q j
+ increases monotonically

w.r.t. �E1, j . Thus to complete the minimization of (A.11), one has to maximize
�E1, j . This proceeds in an analogous manner to the optimization of Q j

−, with the
major difference being that �E1, j must be chosen keeping in mind the consistency
condition in Eq. (11.11). The result is summarized in Table A.2.

Table A.2 Transition number and size to minimize the population ratio (A.11) of an arbitrary level
of the machine | j〉M with respect to the first energy level |1〉M , within a thermal cycle

No. transitions +Emax +Ev −(Emax − Ev) −Emax

j � n
2 j − 1 0 0 0

j > n
2 , n even n

2 − 1 1 0 j − n
2

j > n
2 , n odd n−1

2 0 1 j − n+1
2
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This completes the optimization of the ratio p j/p1. From Table A.2 we see that
there is a unique construction of the n-level cycle that simultaneously fulfils the
optimization criteria for all j : for all j � n/2 fix all of the transitions to be Emax,
next fix a transition to be Ev or −(Emax − Ev), depending on the parity of n, and
continue with all the remaining transitions fixed to be −Emax. Finally, connecting
all positive transitions to βc and negative transitions to βh, one arrives at the optimal
n-level cycle fridge, schematically depicted in Fig. 11.5. If we instead minimize the
ratios of populations to the excited state of the virtual qubit (p j/pn), we obtain the
optimal n-level cycle heat engine, which has the same arrangement of energy levels
as the fridge, but swapped temperatures (βc ↔ βh).

For completeness, we report the virtual temperatures β(n)
v achieved by the optimal

n-level cycle fridge and heat engine, together with its corresponding normalizations
N (n)
v . For the fridge configuration we obtain for n even

β(neven)
v Ev = βcEv + (βc − βh)

(n
2

− 1
)
Emax, (A.12)

N (neven)
v =

(
1 + e−β(n)

v Ev

) [ (
1 − e−βcEmax

)−1
(
1 − e− n

2 βcEmax

)

+ e−β(n)
v Ev

(
1 − e−βhEmax

)−1
(
1 − e− n

2 βhEmax

) ]−1
, (A.13)

while for n odd we have:

β(nodd)
v Ev = βcEv + (βc − βh)

[(
n − 1

2

)
Emax − Ev

]
, (A.14)

N (nodd)
v =

(
1 + e−β(n)

v Ev

) [ (
1 − e−βcEmax

)−1
(
1 − e−( n+1

2 )βcEmax

)

+ e−β(n)
v Ev

(
1 − e−βhEmax

)−1
(
1 − e−( n−1

2 )βhEmax

) ]−1
. (A.15)

In the other hand, for the case of the heat engine and n even

β(neven)
v Ev = βhEv − (βc − βh)

(n
2

− 1
)
Emax, (A.16)

N (neven)
v =

(
1 + e+β(n)

v Ev

) [ (
1 − e−βcEmax

)−1
(
1 − e− n

2 βcEmax

)

+ e+β(n)
v Ev

(
1 − e−βhEmax

)−1
(
1 − e− n

2 βhEmax

) ]−1
, (A.17)

and finally for a heat engine with n odd:

β(nodd)
v Ev = βhEv − (βc − βh)

[(
n − 1

2

)
Emax − Ev

]
, (A.18)

N (nodd)
v =

(
1 + e+β(n)

v Ev

) [ (
1 − e−βcEmax

)−1
(
1 − e−( n−1

2 )βcEmax

)

+ e+β(n)
v Ev

(
1 − e−βhEmax

)−1
(
1 − e−( n+1

2 )βhEmax

) ]−1
. (A.19)
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In the remainder of the section, we demonstrate some useful properties of the
optimal n-level cycle. In particular are interested in proving that it achieves the largest
change in the bias of an external qubit under the swap operation [see Eq. (A.5)]. We
first recall the technical definition of the optimal cycle above as the unique cycle that
minimizes the ratios of every single population p j to the ground state of the virtual
qubit p1 (fridge). In particular, this includes the population ratio of the virtual qubit
itself, that is pn/p1, which implies that the optimal cycle maximizes the bias Zv.
In addition, using

∑
j p j = 1, one can express the norm of the virtual qubit in the

useful form

Nv =
(

1 + e−βvEv

1 + ∑n
j=2 p j/pn

)

. (A.20)

Since the optimal cycle is the unique cycle that minimizes the denominator above,
the optimal cycle also achieves the highest norm Nv given the maximum bias Zv.
Expressing the population of the ground state of the virtual qubit as

p1 = 1

1 + ∑n
j=2 p j/pn

, (A.21)

it is clear that the optimal cycle also maximizes the population p1, which is equiv-
alently the maximal value of Nv(1 + Zv). Since the optimal cycle both maximizes
p1 and minimizes pn/p1, we may conclude that it maximizes the difference between
the populations:

p1 − pn = NvZv = p1

(
1 − pn

p1

)
. (A.22)

Equivalently, in the case of the heat engine, the optimal n-level cycle:

• minimizes Zv,
• maximizes Nv given the minimum Zv,
• maximizes pn = Nv(1 − Zv)/2,
• maximizes pn − p1 = −NvZv.

Wemay now prove that the optimal cycle achieves the largest change in the bias of
an external qubit via the swap operation. Labeling the norm and bias of the optimal
n-level fridge as {N+

v , Z+
v }, and that of an arbitrary n-level cycle as {Nv, Zv}, we

have

Zv � Z+
v , NvZv � N+

v Z+
v . (A.23)
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Thus for the swap using an arbitrary cycle,

�ZS <
N+
v Z+

v

Zv
(Zv − ZS) = N+

v Z+
v

(
1 − ZS

Zv

)
,

< N+
v Z+

v

(
1 − ZS

Z+
v

)
= N+

v

(
Z+
v − ZS

)
, (A.24)

and the change in the bias is upper bounded by the one achieved by the optimal fridge
cycle. One may also prove the analogous result involving the optimal engine cycle,
that is

ZS − Z ′
S = Nv(ZS − Zv) < N−

v

(
ZS − Z−

v

)
, (A.25)

where {N−
v , Z−

v } are the norm and bias of the optimal engine cycle.
Finally, we discuss on the efficiency of optimal n-level cycle thermal machines.

The customary definition for the efficiency of fridges, that is, the so-called coefficient
of performance (COP), is defined as the ratio between the heat drawn from the object
to be cooled to the heat drawn from the hot bath, while for the case of a heat engine,
it is defined as the ratio between the work extracted and the heat drawn from the hot
bath. We may here apply those definitions for the case of the n-level thermal cycle
as we already done in Sect. 11.2 for the three-level thermal machine. Notice that the
energy gap of the virtual qubit, Ev, represents both the heat drawn from the cold
bath in the case of a fridge, and the work extracted in the case of an engine, when
a complete cycle is achieved. Furthermore, every time the virtual qubit exchanges
Ev with an external system, it has to be reset by moving through the entire cycle.
Indeed, by applying (A.9) to the ratio of populations of the virtual qubit, one finds
that the virtual temperature is determined by the heat dissipated to the cold bath,
Qc, and drawn from the hot bath, Qh, in the course of a single cycle. Hence we can
identify the terms Q j

+ and Q j
− above with Qc and Qh respectively, for the case of

the fridge, and the opposite for the heat engine. One can thus re-express the inverse
virtual temperature of the thermal cycle in terms of the heat currents:

(fridge) β(n)
v Ev = βc (Qh + Ev) − βhQh, (A.26)

(engine) β(n)
v Ev = βhQh − βc (Qh − Ev) . (A.27)

Finally, solving for the efficiency η = Ev/Qh, one recovers the efficiencies of the
n-level thermal cycle:

η
(n)
fridge = βc − βh

β
(n)
v − βc

, η
(n)
engine = βc − βh

βc − β
(n)
v

. (A.28)

Notice that in both cases the efficiency falls off with increasing βv. Henceforth for
the case of the optimal n-level cycle, as the magnitude of β(n)

v increases linearly with
n, the efficiency η falls off inversely with n.
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A.3 Amplification Methods and Switching Regimes

The amplification of the norm of a virtual qubit (see Sect. 11.5) presents itself as a
novel method to amplify the norm N (n)

v of any n-level cycle to one; simply connect
its virtual qubit T1,n to an additional real qubit via a suitable interaction Hamiltonian,
and use the latter to interact with the external system.

To be more precise, consider that one has a single n-level cycle thermal machine,
whose virtual qubit, labeled by the states |1〉M and |n〉M , has an energy gap Ev

and a inverse virtual temperature β(n)
v . Then couple this transition to an additional

(real) qubit (labeled by |g〉v and |e〉v) with the same energy gap Ev via a swap-like
Hamiltonian

Ĥint = g (|1〉〈n|M ⊗ |e〉〈g|v + h.c.) . (A.29)

This arrangement is depicted in Fig.A.12a. Letting the global system equilibrate in
absence of the external object, the populations of the levels must satisfy

p(|1〉M ⊗ |e〉v) = p(|n〉M ⊗ |g〉v). (A.30)

But since pn/p1 = e−β(n)
v Ev for the n-level cycle machine, it follows that the real

qubit levels exhibit the same population ratio than the virtual qubit of the machine,
that is pev

pgv
= e−βvEv . (A.31)

Henceforth taking the additional (real) qubit as the new virtual qubit, we completed
the amplification procedure, since now Nv = 1.

One can do even more if the states |1〉M ⊗ |e〉v and |n〉M ⊗ |g〉v are coupled via a
thermal bath rather than an energy conserving interaction. In this case the two states
need not be degenerate. If the energy gap of the additional qubit is labeled as E ′

v, and
the two states above are coupled to some thermal bath at inverse temperature βbath,
as in Fig.A.12b, then the populations now satisfy

p1 pev
pn pgv

= e−βbath(E ′
v−Ev). (A.32)

Once again the virtual temperature of the n-level cycle obeys pn/p1 = e−βvEv , and
the virtual temperature β ′

v of the additional qubit may be determined by

β(n)′
v = β(n)

v
Ev

E ′
v

+ βbath

(
1 − Ev

E ′
v

)
, (A.33)

which canbemadegreater thanβ(n)
v by choosing E ′

v � Ev for any inverse temperature
of the thermal bath such that 0 � βbath < β(n)

v .
Finally, consider the case in which rather than coupling the states |1〉M ⊗ |e〉v

and |n〉M ⊗ |g〉v, one couples instead |1〉M ⊗ |g〉v and |n〉M ⊗ |e〉v to a thermal bath,
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Fig. A.12 Different methods for the amplification of the virtual qubit in an arbitrary cycle. a
Amplification that maintains the energy and bias of the virtual qubit. b Amplification that modifies
(possibly amplifies) the bias of the virtual qubit. c Amplification that flips the bias of the virtual
qubit

see Fig.A.12c. Similarly to the above, one may then determine the additional qubit
virtual temperature as

β ′
v = −βv

Ev

E ′
v

+ βbath(
Ev

E ′
v

+ 1). (A.34)

However, in this case the contribution of the original virtual temperature is multiplied
by−1. This effectively switches themachine from a fridge to an engine or vice versa!
Therefore given a n-level fridge cycle, one may switch to a heat engine and vice-
versa, by using the appropriate thermal coupling between the cycle and the additional
qubit.

A.4 Concatenated Three-Level Machines Details

In this section we consider the concatenation of three-level machines (see Fig.A.13),
and determine the bias Zv and norm Nv of the virtual qubit in its steady state (in
absence of the external object to be cooled). It is simpler to begin from the end of
the concatenation, and derive the state of the machine inductively. Consider the final
(rightmost) three-level system in Fig.A.13, ignoring it’s interaction with the penulti-
mate three-level system. It is just a single three-level fridge, and it’s populations are
completely determined by the two thermal couplings to the hot and the cold baths.
One now introduces a swap-like interaction between the uncoupled transition of the
final three-level system and the corresponding transition of the penultimate one, that
is

Ĥint = g(|1〉〈2|n ⊗ |2〉〈1|n−1 + h.c.). (A.35)

This interaction induces the transition of the penultimate qutrit T(n−1)
1,2 to have the

same population ratio as that of T(n)
1,2.
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Fig. A.13 Engine formed out of the concatenation of many three-level machines

If one also couples T(n−1)
1,3 to the hot bath (at βh), a second population ratio on the

penultimate three-level system becomes fixed, which implies that the populations of
its three levels are completely determined. The state is still diagonal and a product
state of the two three-level systems. Note that the same state of the penultimate three-
level system would have been found if one had simply assumed that in place of the
final three-level system, there was instead a thermal bath at the virtual temperature
of T(n)

1,2.
One may repeat this process inductively to determine the state of the first three-

level system in the sequence, and in turn the virtual temperature of the transition
T

(1)
0,1. The result is [see Eq. (11.29)]

β(k)
v =

{
βc + (βc − βh)

k
2
Emax
Ev

if k is even,

βc + (βc − βh)
(
k+1
2

Emax
Ev

− 1
)

if k is odd.
(A.36)

We stress that the inverse virtual temperatures for the engine are the same as above
with βc and βh switched. Note that the (inverse) virtual temperature of k concatenated
three-level systems is identical to that of the optimal k + 2-levels cycle thermal
machine, as given in Eq. (A.12)

Weare also interested in calculating the norm Nv of the virtual qubit.An interesting
freedom in the case of the single three-level machine is the choice of whether to have
the virtual qubit as the transition between the lower two levels T1,2 or T2,3 (modifying
the energies accordingly so that the energy gap is always Ev). We are especially
interested in the behavior of the norm as the number of concatenated three-level
systems becomes large (and βv approaches ±∞.) While this choice has no bearing
on the bias of the virtual qubit, it does affects its norm. In the fridge configuration,
the norm of the virtual qubit T2,3 is:

N (2,3)
v = 1 + e−βvEv

1 + e−βvEv + e−βvEve+βcEmax
, (A.37)

and hence limβv→+∞ N (2,3)
v = 1, while if we choose as the virtual qubit the transition

T1,2, we have
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N (1,2)
v = 1 + e−βvEv

1 + e−βvEv + e−βcEmax
, (A.38)

and limβv→+∞ N (1,2)
v = 1

1+e−βcEmax . Comparing the two above equations becomes
clear that it is advantageous to place the virtual qubit on the upper two levels. This
effect occurs in the opposite sense for the case of the heat engine. We find that the
corresponding norms for the case of lower and upper virtual qubits are respectively

N (2,3)
v = 1 + e+βvEv

1 + e+βvEv + e+βhEmax
, (A.39)

N (1,2)
v = 1 + e+βvEv

1 + e+βvEv + e+βvEveβhEmax
. (A.40)

This motivates the choice of T2,3 as the virtual qubit for the fridge, and T1,2 as the
virtual qubit for the engine we performed in Sect. 11.6. It is also worth noticing
that via this choice, in the limit n → ∞, both the three-level fridge and heat engine
approach the same state, that is a three-level system with all of its population in the
middle energy level.
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Chapter 12
Summary and Outlook

The three main topics in which this thesis has focused can be resumed as:

• (i) The emergence of synchronization phenomena induced by dissipation in har-
monic systems and their relation with quantum correlations.

• (ii) The thermodynamical properties of fluctuations in open quantum systems
undergoing general irreversible evolution.

• (iii) The characterization of different quantum resources in the performance of
small thermal machines operating either in autonomous or non-autonomous ways.

which coincide respectively with parts II, III and IV of the PhD thesis. In the fol-
lowing we provide a summary of our contributions in the three mentioned points,
together with the formulation of some open questions pointing possible paths for
future research.

12.1 Quantum Synchronization Induced by Dissipation
in Many-Body Systems

Large quantum correlations can be an indicator of the presence of quantum phase
transitions [1–3], while there have been proposals for revealing or even measur-
ing those correlations from other more accessible quantities acting as witnesses
[4, 5]. In part II of this thesis we explored the connection between the emergence of
spontaneous synchronization and the dynamical evolution of classical and quantum
correlations, as measured respectively by the quantum mutual information and the
quantum discord. Pursuing this objective we have demonstrated:

• (a) The possibility to have both transient or asymptotic synchronization in linear
systems induced by the proper dissipation.

© Springer International Publishing AG, part of Springer Nature 2018
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• (b) That the presence of synchronization implies the slow decay (transient
synchronization) or even the preservation (asymptotic synchronization) of classi-
cal and quantum correlations.

• (c) The possibility of engineering asymptotic synchronization, discord and entan-
glement in different clusters of a dissipative complex network by tuning one or
few local parameters.

The first case study has been presented in Chap.4 for an open system of two
interacting quantum harmonic oscillators with different frequencies. We compared
the cases in which the dissipation is modeled by two separate thermal baths with
identical properties and at the same temperature, or a common bath which couples
to the center of mass of the system. The main conclusion of this first approach is that
the common reservoir allows both for the emergence of transient synchronization
and for the slow decay of quantum and classical correlations over time characterized
by a plateau shape. In the long time limit the correlations eventually degrade to
those present in the Gibbs thermal state. The underlying mechanism responsible of
this effect is the generation of disparate decay rates for the normal modes of the
system [Eqs. (4.15), (4.16) and Fig. 4.2] as a result of the symmetry properties of the
system-bath coupling. This does not occur in the case of separate baths, displaying
a fast decay in all correlations and no synchronization even in the presence of strong
coupling between the oscillators (see Fig. 4.3). The same phenomenon has been later
reported in the case of spin synchronization through a common dissipative reservoir
(but not for a purely dephasing one) [6].

Exploring the role of the different frequencies and the coupling strength between
the two oscillators, we observed that both phenomena degrades for high detuning and
weak direct coupling strength. In the opposite limit, when the frequencies are exactly
equal, one of the two normal modes completely decouples from the environmental
action. In such case, a noiseless or decoherence-free subsystem [7–9] is obtained.
This may lead to high values for the entanglement between the oscillators, as studied
in Refs. [10–13].

In Chap.5 we have investigated the extension to the case of three interacting
harmonic oscillators in the presence of a common environment. We have identi-
fied specific symmetry conditions leading to noiseless subsystems (NS), that is,
when one or two normal modes of the system effectively decouple from the envi-
ronmental action. For the case of one normal mode we obtained the condition
in Eq. (5.19), representing an hypersurface in the d-dimensional parameter space
[d = (N + 1)N/2 = 6 for N = 3 oscillators]. The condition for two non-dissipative
normal modes has been also reported in Eq. (5.21). We then analyzed two spe-
cific open-chain configurations with equal frequencies in the external oscillators,
for which analytical expressions for the asymptotic entanglement (as given by the
logarithmic negativity) have been obtained, and used to construct the phase dia-
grams of Figs. 5.2 and 5.3. The parameter manifold leading to noiseless subsystems
includes several non symmetric configurations: for instance an hyperbolic relation
among frequencies can be satisfied for identical couplings in an open chain. This
allows both asymptotic entanglement and asymptotic synchronization even if all the
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oscillators natural frequencies are different, a possibility offered by a chain of three
oscillators and absent in the case of two (where only transient synchronization was
possible for detuned oscillators). From the analysis of different configurations and
general choices of parameters, we conclude that synchronization may not be always
a witness of the presence of quantum correlations: when the choice of parameters
is very close to a two-mode NS, synchronization degrades while quantum correla-
tions may still be slow decaying. However, the existence of transient synchronization
always ensure that the quantum mutual information and the quantum discord will be
slow decaying functions of time.

A further implication of the above results is that it is sufficient to tune a single
parameter of the system (oscillators frequencies or coupling strength between the
oscillators) to obtain a NS. Henceforth, one may engineer the parameters of a system
in order to obtain a desired NS in order to use it in quantum information or quantum
computational tasks. This option is fully explored in Chap.6, in which the case of
arbitrary complex networks of dissipative harmonic oscillators is analyzed. Extended
systems can dissipate in different ways across the structure and we have considered
the paradigmatic cases of independent losses, of a common bath to which all the
elements in the network equally couple, and the case of a local bath acting on a
single element of the network. Global or partial synchronization have been shown in
a random network through local tuning in one node (synchronizer) [see Eqs. (6.13),
(6.14) and Fig. 6.3, and Eqs. (6.19), (6.20) with Fig. 6.6], as well as the possibility of
entangle and synchronize two nodes (not linked between them) through a network,
even when starting from separable states [Eq. (6.21) and Fig. 6.7]. Our analysis can
be extended to more complex settings such as the production of independently syn-
chronized parts of the system beating at different frequencies, or in the presence of
more complicated dissipation situations (for example several local baths of different
strengths).

In some sense, tuning part of a network so that the rest reaches a synchronous,
highly correlated state can be seen as a kind of reservoir engineering, where here
the tuned part of the network play the role of an extension of the reservoir. Indeed,
this perspective has been recently adopted in Ref. [14] in which probing of the
spectral density, structure, and topology of harmonic networks are also considered.
This is to be compared with recent proposals of dissipative engineering for quantum
information, where special actions are performed to target a desired non-classical
state [15–18]. In the context of quantum communications and considering recent
results on quantum Internet [19, 20], our studies can offer some insight in designing
a network with coherent information transport properties. Furthermore, implications
of our approach can be explored in the context of efficient transport in biological
systems [21, 22]. Our analysis, when restricted to the classical limit, also gives
some insight about vibrations in an engineering context, providing the conditions for
undamped normal modes and their effect [23–25].
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12.2 Quantum Fluctuation Theorems and Entropy
Production

The research presented in this thesis contributes to the extension of fluctuation the-
orems to the quantum regime by:

• (a) Deriving general detailed and integral fluctuation theorems for nonequilibrium
systems in arbitrary initial states which evolve under the action of a broad class of
CPTP maps beyond the unital case.

• (b) Identifying a suitable form for the total (von Neumann) entropy production
in open quantum systems from an inclusive approach considering the interaction
between a quantum system and a general reservoir.

• (c)Developing a split of this total entropyproduction in adiabatic andnon-adiabatic
contributions (fulfilling independent fluctuation theorems) which, importantly,
only applies under specific symmetry conditions of themaps governing the dynam-
ical evolution.

• (d) Illustrating the applicability of our framework to understand relevant situations
in quantum thermodynamic setups, including those in which quantum effects play
a prominent role.

Contribution (a) has been developed in Chap.7, where we have shown how a gen-
eral fluctuation theorem both in detailed and integral forms [Eqs. (7.17) and (7.18)
respectively] can be derived for systems which evolve according to very arbitrary
CPTP maps. The maps fulfilling our theorem verify a detailed balance condition in
operator version [Eq. (7.15)] linking the Kraus operators of the map with the ones of
the map governing a suitable dual-reverse dynamics [26]. This includes general clas-
sical stochastic dynamics and quantum operations inducing jumps between eigen-
states of the invariant state of the dynamics, as well as some specific superpositions
of them.

The most important feature of our theorem is that it can be applied to arbitrary
situations without caring about the specific characteristics of the environment. When
specialized to maps induced by thermal reservoirs, our results reproduce known
quantum fluctuation theorems for work and different versions of the entropy produc-
tion. However, this can be extended as well to the case of reservoirs in generalized
Gibbs ensembles inducing the corresponding generalized Gibbs-preserving maps.
This includes as particular cases: heat and particle reservoirs, angular momentum
reservoirs, coherent thermal reservoirs, squeezed thermal reservoirs, or information
reservoirs.

The key point to derive our theorem has been the introduction of the nonequilib-
rium potential as a fluctuating quantity [Eq. (7.11)], which overcomes the efficacy
reductions previously pointed in the literature [27–30]. The resulting entropy produc-
tion for single trajectories, �, can then be interpreted a physical entropy production
in most situations of interest.

The characterization of entropy production in situations going beyond the assump-
tion of ideal equilibrium reservoirs constitutes an open challenge [31, 32], in which
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different approaches using quantum trajectories [33, 34], a phase-space perspective
[35] or feedback protocols [36] have been considered. In Chap.8we trace the induced
irreversibility in an otherwise general evolution, deriving an expression for the total
(von Neumann) entropy produced in the process [Eq. (8.13)]. This expression, called
the inclusive entropy production, measures the quantum correlations lost in the mea-
surement process plus the local measurement-induced disturbance on system and
environment. When the remaining classical correlations are further inaccessible, the
entropy production increases to give Eq. (8.15), which is just the sum of the entropy
changes in system and environment, and has been instead labeled non-inclusive.With
those definitions at hand we identified trajectory versions, which fulfill a universal
fluctuation theorem [Eqs. 8.23 and 8.27]. We notice that this fluctuation theorem is a
particular case of the one derived in Refs. [32, 37] for isolated systems when intro-
ducing the proper partition and the local measurements giving a precise meaning to
the entropy production, which is indeed the important point.

Once identified the total entropy production per trajectory we have addressed
point (c), that is, we develop its decomposition into adiabatic and non-adiabatic
contributions, accounting for different sources of irreversibility in processes with a
steady state [38–40]. This can be done for the non-inclusive version of the entropy
production, which allows relating the TMP approach to the CPTP maps formalism
developed in Chap.7. The split of the entropy production requires the introduction
of three different thermodynamic processes, namely, the backward (or time-reverse)
process, the dual process, and the dual-reverse process, which are described by three
different CPTP maps with their corresponding Kraus operators exploiting the sym-
metries of the setup, c.f. Eqs. (8.34), (8.42) and (8.46). Then fluctuation theorems for
the adiabatic [Eq. (8.48)] and non-adiabatic [Eq. (8.43)] entropy productions follow
(8.49).

The above results also extend to the case of concatenations of CPTP maps, where
the maps act in sequence also with different invariant states. Taking the continuous
limit leads to quantum trajectories generated by unraveling driven Lindblad master
equations like Eq. (8.84). In the latter case we developed a general method to identify
the environmental entropy changes during the trajectories induced by the quantum
jumps, allowing us to recover the fluctuation theorems [Eqs. (8.100)–(8.102)]. The
meaning of the terms adiabatic and non-adiabatic become clear in this situation, as
the non-adiabatic contribution becomes zero for quasi-static drivings following the
instantaneous steady state of the dynamics. Importantly, the fluctuation theorems for
the adiabatic and non-adiabatic entropy productions do not need to be always fulfilled
in the quantum case. Two conditions are needed: the maps must fulfill Eq. (8.41),
and the backward (or time-reverse) dynamics must preserve the (inverted) invariant
state of the original dynamics, Eq. (8.44). Those requirements are always fulfilled
for classical Markov dynamics, but may fail in the quantum case.

In order to clarify this and other issues concerning the abstract quantities intro-
duced in the derivations, we considered in Chap.9 three relevant examples which
constitute our contribution (d) above: an autonomous three-level thermal machine, a
dissipative cavitymode resonantly driven by a classical field, and aMaxwell’s demon
toy model. The first example is used to clarify the meaning of the adiabatic and non-
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adiabatic entropy productions as well as the backward, dual, and dual-reverse maps
in a simple but important setup.We indeed obtain expressions for the entropy produc-
tion [Eqs. (9.28)–(9.30)], reminiscent of phenomenological thermodynamics using
the local equilibrium approach at the average level [Eqs. (9.34)–(9.36)]. Our results
are compatible with the average thermodynamic description usually employed to
describe autonomous thermal machines operating at steady state conditions [41–43].
Moreover, we gain insight into the transient regime which may be explored e.g.
in relation to recent proposals of single-shot refrigeration in autonomous fridges
[44, 45].

The second example, a periodically driven cavity mode at resonance in contact
with a single thermal reservoir, has been selected to illustrate the lack of entropy pro-
duction split into (positive) adiabatic and non-adiabatic terms. In this case, only the
fluctuation theorem for the total entropy production is valid, while the adiabatic/non-
adiabatic entropy production split breaks down at the trajectory level. This has inter-
esting consequences: the non-adiabatic entropy production rate, measuring the rate
of convergence of the system to its steady state, may be boosted in comparison with
the total entropy production rate, which is proportional to the input power dissipated
into the thermal reservoir. As a consequence, a negative adiabatic entropy production
rate can emerge in the initial transient dynamics, and the cavity mode experiences
an accelerated energy gain. Moreover, this analysis predicts similar breaking of the
split whenever the different dynamical contributions in the dynamics promote jumps
between eigenstates of different system observables. The consequences of this quan-
tum effect are an open question for future research.

Our third example allows to relate information and thermodynamic effects. We
studied aMaxwell demon toymodel consisting of a semi-infinite array of degenerated
energy levels (called the external memory) monitoring the heat exchange of quanta
between two thermal reservoirs at different temperatures. Our framework provides a
meaningful interpretationof the thermodynamics in the setup inwhich thedirectionof
the flux of heat can be controlled bymeans of the entropy of the initial state introduced
in thememory. In this case the non-adiabatic entropy production and the total entropy
production are equal and provide a particular formulation of Landauer’s principle
[46–48]. Furthermore we show how this setup can be generalized by replacing the
thermal reservoirs by squeezed thermal ones. In such case, the flow of heat and
coherence between the reservoirs induce squeezing in the memory, which in turn
enhances the performance in different regimes surpassing the Landauer’s limit in
the thermal case. This example indicates the feasibility of our framework to deal
with information thermodynamics in quantum devices in more real situations, while
opening interesting questions about the use of genuine quantum resources to enhance
its performance.
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12.3 Quantum Thermal Machines

Different works in the literature have pointed that nonequilibrium quantum reservoirs
may be used to increase both power and efficiency of quantum thermal machines,
including coherent [49–52], correlated [53], or squeezed thermal reservoirs [54–57].
In this respect, equipped with the general findings for quantum fluctuation theorems
and entropy production developed in the previous chapters, we were in position to
address the thermodynamical consequences of nonequilibrium thermal reservoirs in
work extraction. This analysis has been carried out along Chap.10. In particular, we
focused on the case of the squeezed thermal reservoir. In contrast to part III of the
thesis, here we consider only the average thermodynamical behavior. We found that
the total average entropy production of a bosonic mode relaxing in the presence of
a squeezed thermal reservoir is due to a single non-adiabatic contribution, given by
Eq. (10.8). The entropy exchange term, as characterized by the nonequilibrium ther-
modynamic potential, between system and reservoir just equals the entropy decrease
in the reservoir, but differs from thepurely thermal configuration,�� = βQ. Instead,
it includes both energetic and coherence contributions, weighted according to the
value of the modulus of the squeezing parameter [Eq. (10.9)]. Analyzing the gen-
uine quantum entropy exchange term, Eq. (10.10), we found that it is proportional
to the asymmetry in orthogonal quadratures of the bosonic mode induced by the
squeezing in reservoir. Remarkably, this modifies the second-law inequality in such
a way that processes reducing the entropy of the system without exchanging heat are
now allowed. It also opens the possibility of work extraction from a single squeezed
thermal reservoir. In this respect, we designed a simple cyclic two-stroke protocol
consisting of unitary and relaxation steps which is optimized to irreversibly extract
a maximum amount of work. That is, work can be extracted from a single squeezed
thermal reservoir using the entropic contribution, which acts as a thermodynamical
resource.

These first results have been then applied to a more elaborated model of a four-
stroke quantum heat engine: a quantum Otto engine. We have analyzed in detail the
cycle and optimized it to profit from the squeezing effects. This has been done by
combining unitary unesqueezing of the mode with adiabatic frequency modulation
in the isentropic compression stroke. This possibility has also been independently
pointed in the work of Niedenzu et al. [58]. The consequences are important when
comparing to previous approaches [55, 59]. We found that new regimes of operation
emerge, as simultaneous refrigeration and work extraction, as well as perfect heat-to-
work conversion from both reservoirs. Using the entropy production approach we are
able to obtain general bounds on the energetic efficiency in all regimes, where previ-
ous expressions fail to bound the actual machine efficiency. Furthermore, the engine
power is no longer constrained to low-frequency modulation and, consequently, effi-
ciency at maximum power is just 1. An experimental realization of our findings is
proposed by building on the single-ion heat engine recently realized in the laboratory
[55, 60].



408 12 Summary and Outlook

Finally, we proposed an interpretation of the squeezed thermal reservoir as an
extra source of nonequilibirum free energy. We derived an exact expression for this
input free energy rate [Eq. (10.30)] with thermal and squeezing contributions, and
suggested the consideration of a thermodynamical efficiency for work extraction
always bounded by one, as follows from the expression of the entropy production
[Eq. (10.29)]. An interesting question raised from this fact is whether it is better to
use energetic or thermodynamic efficiency to characterize the performance of the
thermal machine. If one is just interested in work extraction and heat flows, the
energetic efficiency seems to be the correct quantity to use, but if one wants to keep
trace of all the resources invested in work extraction, the thermodynamic efficiency
should be used.

Most of the above results focused on the heat engine operation of themodifiedOtto
cycle. They may be complemented with an analysis of the refrigeration efficiency,
to be compared with the regular Otto cycle fridge reported in Ref. [57], the simple
power-driven refrigeration, and autonomous fridges. In addition, a comparison with
other kind of cycles such as Carnot-like cycles are appealing. In order to do that, one
must first address the implementation of reversible transformations for the bosonic
mode coupled to the squeezed thermal reservoir, a questionwe left for future research.
Finally, it should be also desirable a comparison of the performance enhancements
induced by the squeezed thermal reservoir and other nonequilibrium reservoirs, both
classical and quantum, as for instance the coherent thermal reservoir.

In the last Chap.11, we addressed the question of whether the performance of
small autonomous thermal machines coupled to two thermal reservoirs at differ-
ent temperatures can be enhanced by increasing the number of energy levels, or
in other words, the dependence of the performance of the machine on its Hilbert
space dimension. We developed a systematic way to evaluate the performance of this
kind of machines by focusing on its static properties once a small set of physically
motivated assumptions are considered. Several designs of thermal machines can be
compared on this basis. The key property we detected is the range of available vir-
tual qubits in the machine as characterized by its bias and normalization [Eq. (11.1)].
These properties delimit e.g. the minimum temperature achievable for fridges.

For the considered designs, we obtained that the performance of the machine can
be always increased by using additional levels, that is, the Hilbert space dimension
of the machine constitutes a thermodynamical resource. Among different designs,
we introduced quantum thermal machines consisting in a single cycle reaching opti-
mal bias (virtual temperatures) for a virtual qubit consisting in a single transition
of the machine. As a second step we then showed that those machines can be out-
performed by machines with multiple cycles running in parallel, which improve the
normalization of the virtual qubit. Finally, as an alternative model we considered
the concatenation of the simplest three-level machines. In the latter case, unless the
performance turns out to be suboptimal, they are more suitable to practical imple-
mentations.

Another important finding is that in all the considered models, the number of
levels diverge when trying to obtain a perfect bias. In the case of fridges, this is the
same as saying that a perfect zero temperature is achievable only by using a machine
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with infinite dimension.We notice that this can be seen as a statement of the third law
of quantum thermodynamics, alternative to previous ones using the number of steps
in the refrigeration process, the time needed to reach absolute zero, or the energy
invested in the cooling process (see e.g. Refs. [46, 61, 62]). This statement can be
made precise in the case of multi-cycle machines in which we obtained that the
minimum achievable temperature scales as T ∼ N−1, where N is the Hilbert space
dimension of the machine.

Finally, we explored the interplay between optimizing the performance of the
multi-levelmachines at the static level anddynamical features.As improvedmachines
will have an increasing number of levels, they will also need an increasing time to
be reset (thermalized with the baths) in order to perform continuous operation. We
considered a particular modeling to give us some qualitative understanding of this
tradeoff, in which the machine operates over an external two-level system coupled
to its own thermal reservoir. Results concerning the scaling of the length of the cycle
in terms of the relaxation time-scale of the external system have been obtained for
the single-cycle machines, showing that for fast relaxation time-scales the optimal
length of the cycle converges to the case of fourth levels. It would be also interest-
ing to consider the case of multiple single-cycle machines operating on the external
system in parallel, as they may potentially achieve a faster reseting of the machine.

Here we have reported the optimal design of a machine consisting in a single
cycle. However, an important question left open is the design of the optimal multi-
level thermal machine, that is, the one achieving better bias and normalization in the
virtual qubit by using the minimum possible number of levels. Our results indicate
that this machine would lie in between the single-cycle and multi-cycle cases.
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