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Supervisors’ Foreword

Heat management has been, since the mid-2000s, the main factor preventing
the increase in clock speed and, therefore, the increase in raw computing power
in commodity CPUs. This, together with transistors having entered deeply the
sub-20 nm feature size, makes understanding heat transport in semiconductors at
the nanoscale crucial for the improvement of processor performance.

The study of heat transport has provided landmark results, most notably Fourier
analysis stemming from Joseph Fourier’s study of heat conduction. While phe-
nomenological descriptions have been available for few centuries, it was not until
the advent of quantum mechanics that microscopic expressions for the heat trans-
port coefficients became available. In metals, electrons are responsible for the main
contribution to thermal conductivity. For semiconductors and insulators, all heat
conduction is due to atomic lattice vibrations or, more precisely, to their quantum
counterparts: phonons.

Drawing analogies with the behavior of monoatomic gases and electrons,
microscopic theories for the behavior of phonons in solids were elaborated.
Together with the Boltzmann Transport Equation (BTE), a statement of the con-
tinuity equation in the six-dimensional position–momentum space, all the elements
were in place to calculate lattice thermal conductivities. However, the highly
nonlinear character of the BTE and the lack of knowledge of the proper description
of the phonon scattering rates prevented (and, to some point, still prevent)
straightforward solutions.

In situations where the momentum conservation of the scattering processes is
dominant, the description of the heat transport can become very difficult. Peierls
was the first to notice that the anharmonic collisions can be split into two different
subsets with a very different character. On one side, normal scattering conserves the
momentum of the distribution, while on the other side umklapp scattering does not
conserve it. He pointed out that only by accounting for these differences heat
transport can be properly described.

Following Peierls’ point of view, in 1966, Guyer and Krumhansl proposed a
different approach to solve the linearized BTE (LBTE), based on the observation
that the phonon distributions that were not affected by normal scattering processes
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(eigenvectors of the normal-process collision operator in their parlance) constituted
a very convenient basis set for the analysis of the LBTE. From their development,
they found that, when normal processes were much more frequent than resistive
(umklapp, mass defect, boundary, etc) ones, there appeared terms beyond Fourier in
the heat transport equation, leading to hydrodynamic flow behavior.

Three decades later, and starting from extended irreversible thermodynamics
(EIT) considerations, Casas and Jou arrived to similar expressions. While this initial
standpoint meant that hydrodynamic behavior need not be limited to the case where
normal collisions dominate, this is at the cost of foregoing any direction for the
computation of the coefficients appearing in the expressions.

Following the paths of Guyer and Krumhansl and in light of EIT, de Tomás and
Alvarez developed a framework known as kinetic–collective model (KCM) to
describe thermal transport as a combination of the usual kinetic distribution of
phonons and a new collective regime appearing when the normal scattering rate is
high. From the proper combination of these two fluxes, thermal transport can be
described on any material.

These developments remained relatively unnoticed until 5–6 years ago, when a
new generation of experiments probing heat transport at small length and timescales
showed that upholding Fourier’s law even at such small scales led to unphysical
conclusions, such as an anisotropy of the thermal conductivity in Si, or to an
arbitrary suppression of the contribution of a range of phonons for periodic
nanostructures.

It is in this context that the work presented by Pol Torres in his thesis has
improved our understanding of the field of thermal transport in semiconductors, and
is a significant step forward with respect to the state of the art in the topic. After
demonstrating the predictive power of the KCM for a wide range of semiconductors
in a parameter-free description, Pol’s thesis describes in a very comprehensive way
that heat transport at the nanoscale becomes hydrodynamic, propagating quite like a
viscous fluid, with vorticity and friction-like behavior. The thesis introduces a
generalization of Fourier’s law including a hydrodynamic term coming from a
collective behavior in the phonon ensemble. This has made it possible to reinterpret
in a unifying way the recent experiments pointing at the breakdown of Fourier’s
law, showing that hydrodynamic heat transport is a behavior pervading in semi-
conductors when the characteristic length and time scales are reduced. As an
additional feature of high interest, the formalism developed in this work is easily
implementable in a Finite Element Method (FEM) code, which makes it specially
amenable for the simulation of heat flows in complex and realistic 3D semicon-
ductor nanostructures.

Bellaterra, Spain F. X. Alvarez Calafell
2017 X. Cartoixà Soler
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Abstract

In this work, thermal transport is analyzed from the bulk to the nanoscale under
different approaches using first principles. On one side, the bulk thermal conduc-
tivity is studied in the general kinetic–collective framework, where the Boltzmann
Transport Equation (BTE) for phonons is solved under the Guyer and Krumhansl
(GK) model and maximizing the entropy of the system. This solution is known as
kinetic–collective model (KCM). On one side, the KCM, which splits the thermal
conductivity into a kinetic and a collective contribution, has allowed obtaining the
thermal conductivity of a large number of semiconductors, with excellent agree-
ment to experimental results. On the other side, for reduced size samples, two
approaches have been considered. In the first case, the GK boundary approach
considers the boundaries as a microscopic scattering mechanism in the kinetic
regime, while in the collective contribution their effects are included from a
hydrodynamic basis. The limitation of this approach for complex geometries has
prompted the development of the second case: a full hydrodynamic thermal
transport framework. A hydrodynamic thermal transport equation has been devel-
oped based on the combination with the GK model and the extended irreversible
thermodynamics (EIT) framework and using a general hydrodynamic slip boundary
condition. This has allowed to use the hydrodynamic KCM equation in finite
elements’ calculations to study complex geometries. Finally, an analysis of the
phonon spectrum and its importance to deal with transient transport regimes is
included.

Comparisons of the KCM results with other current solutions concerting all the
topics dealt in this work are discussed.

Parallel to the development of the hydrodynamic model, the KCM expressions
from the kinetic–collective boundary approach as well as hydrodynamic parameters
have been implemented in an open-source code. Sharing the model as a tool to
predict thermal transport phenomena will allow bridging the physics of the heat
transport from the microscopic to the macroscopic point of view.
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Chapter 1
Introduction

Most of the daily life devices and electronic tools have components based on semi-
conductor materials. These have been traditionally used for a wide range of appli-
cations, from transistors to photovoltaic or thermoelecric energy sources [1–4]. The
industry associated to all these tools is in constant research to improve their devices.
Such improvement can only be achieved from the proper knowledge of the physics
involved in their operation. In recent years, the technology industry has evolved to the
nanotechnology world in an attempt to reduce the size of the devices to dimensions
as small as allowed by manufacturing. This change has awoken new research lines
in the field of physics, chemistry or even in medicine [5–8], where nanoparticles can
be used to detect or even remove cancerous cells. The problem that this reduction
has faced is that the properties of materials at these new scales have turned out to be
different from those at larger scales. For that reason a proper study atmicro/nanoscale
has become a key issue.

When the size of the materials is reduced, new phenomena like quantum confine-
ment, enhancement of boundary effects or appearance of correlations can appear [9–
11]. In the specific case of heat transport, the reduction of the device to the nanoscale
has significantly reduced energy dissipation, making the evacuation of heat a new
challenge [12]. The consequent increase of temperature in the working devices has
an important effect on its efficiency and can reduce the performance. Therefore, a
model able to predict the behavior of the heat transport at all time and length scales
has become nowadays an important topic of research. The proper knowledge of heat
will have an influence in the description of the rest of the physical properties and
will reduce the time and the human and economic resources from the design point
of view.

The attention that a proper knowledge of the heat transport has received during
the present technological revolution is the main motivation to write this work. Here
a wide overview of the evolution of the study of thermal transport from the first
description given by Fourier until more recent approaches based on full solutions
of the Boltzmann Transport Equation (BTE) [13] (derived for gas molecules in a
first stage by Ludwig Boltzmann in 1872) and phonon hydrodynamics [14–17] is
provided. The theoretical models and experimental results discussed in this disserta-
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2 1 Introduction

tion will allow the readers to identify the main drawbacks that appear when studying
several experimental setups and find the best way to face the problem through the
different proposed models. There are two main different approaches that can be used
to face the thermal transport phenomena at the nanoscale, microscopic and macro-
scopic [18, 19]. The first approach consists in obtaining the microscopic magnitudes
describing the behavior of the participating heat carriers, while the second one con-
sists in obtaining the relations between the thermodynamic magnitudes that describe
the system, such as the temperature and the heat flux.

As a first approach the system is described by the use of phonons, an analog to
the photons, used to describe the quantization of the lattice vibration. In this case,
the energy of this pseudo-particle is �ω, where � is the reduced Planck constant
and ω the vibration frequency. The study of phonon properties and the interactions
between them and with boundaries or impurities allow to determine the magnitudes
that describe the thermal behavior of the material. In the microscopic approach this
can be done from theHamiltonian of the system. From it, magnitudes like the thermal
conductivity, the specific heat or the heat flux relaxation time can be obtained. These
magnitudes can be determined combining the properties calculated from quantum
mechanics with expressions for the distribution function of the carriers obtained
from the solution of the BTE. In the last years the numerical capabilities of computer
clusters have made this approach possible, achieving very remarkable results.

From a macroscopic point of view heat transport has been always considered a
phenomenon of diffusion defined by three macroscopic magnitudes, the heat fluxQ,
the temperature T and the thermal conductivity κ of the material. When a tempera-
ture gradient is applied to a certain sample, a heat flux will appear from the hot side
to the cold one in order to achieve thermal equilibrium. This theory was first pro-
posed by Joseph Fourier in his book Théorie analytique de la chaleur [20] in 1822.
Considering heat transport as a diffusion phenomenon, this can be simply expressed
through the Fourier lawQ = −κ∇T . In order to study the thermal transport in mate-
rials of macroscopic dimensions (i.e. bulk), with simple geometries and under slow
heating conditions (with a hot and a cold sink), the use of Fourier’s law is completely
valid. But in recent years, thanks to the high technological capability to prepare more
reduced and complex experimental setups, the failure of the Fourier law has been
observed under certain conditions. The conclusion of these experiments is that the
effective thermal conductivity of small samples is lower as its characteristic length
(i.e thickness, length, heater dimensions, etc.) is reduced. Macroscopically, this phe-
nomena can be partially explained from the inclusion of new correction terms to
the transport equation. Memory and non-local effects have been proposed also with
remarkable results in the framework of phonon hydrodynamics [12, 16, 21–24]. The
simplicity of this approach, in a form of a differential equation similar to that of
Navier–Stokes used for a fluid, has allowed to solve it analytically for quite simple
geometries like a cylinder or a thin film, obtaining then an effective thermal conduc-
tivity (ETC) equation [25, 26]. In more complex situations it can be solved using
finite elements methods, which can be implemented easily in a numerical code.

The microscopic and macroscopic approaches are not independent. While it is
possible to introduce all the relevant microscopic information into a very large
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Hamiltonian and try to solve the transport equations directly, its complexity can
make the computational memory space and time required to obtain a single solu-
tion very large. This means that the combination with macroscopic approaches like
phonon hydrodynamics, finding symmetries and conservation laws of the system
can allow simplifying the problem and obtaining a very good approximation in less
computational time. If the error of approximating the problem to a simpler one by
using a conservation law is of the same order as the errors introduced in practical
numerical solutions of the microscopic approach, the latter can bemore useful, as the
computational resources can be drastically reduced. In addition, another benefit of
macroscopic formulations is that they can give a deeper physical insight as the ther-
modynamic parameters can be easily observable, and thus can show the appearance
of new phenomena that can be hidden in the complexity of microscopic approaches.

The connection between macroscopic and microscopic approaches is the key goal
of statistical physics [19]. This has been extensively developed for equilibrium sit-
uations in the last century and high predictability has been achieved. In contrast,
obtaining a reliable solution far from equilibrium is not an easy task. When large
thermodynamic inhomogeneities appear in a sample, the distribution of the heat car-
riers becomes very complex. Spatial and temporal dependences appear in the system
andmemory and non-localities are needed for their correct description. The concepts
of memory and non-local effects refer to situations where the state of the system at a
certain time depends on its previous state (memory), and in addition it can also depend
on the state of the surroundings of the position under study (non-locality). To find
the microscopic connection in these situations a proper thermodynamic framework
is necessary. In the last years, this combination has allowed studying the contribu-
tion of the independent heat carriers and determining that there are more transport
regimes besides the diffusive one, like the superdiffusive (quasiballistic) transport or
the phonon hydrodynamics [14–17]. The former emerges from the wide distribution
of the mean free paths (distance between collisions) of phonons and their relation
with the length of a sample. The second, first derived by Guyer and Krumhansl [14,
15] in the middle of the last century, but forgotten until the beginning of the present
one, appears due to a collective behavior of the phonons.

On the study of nanoscale samples, which is the focus of the current research in
several topics, a formulation of a new equation generalizing the Fourier law valid
at the nanoscale is pursued. Its generalization is currently studied through the full
solution of the BTE. The main problem of this equation is its extreme complexity
due to the number of coupled differential equations that must be dealt with to have
an exact solution. This forces the use of simplifications based on physical grounds
in order to obtain some approximate solutions to study the thermal transport in a
simpler way but without losing reliable physical information.

In order to study the thermal transport of semiconductors, in this work the Kinetic
Collective Model (KCM) is proposed as a framework to simplify the BTE and as a
generalization of Fourier’s law including memory and non-local effects to describe
heat transport at small size and time scales [21, 27, 28]. This model has its origin in
the aim to merge two theories. From one site, the “Kinetic” word makes reference to
the microscopic belief that phonons behave independently from each other, as stated
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in analogy with Boltzmann in his kinetic theory of gases [13]. Then the interactions
of each phonon with the boundaries of the system are also independent. On the
other site, the “Collective” word tries to catch the essence of a more macroscopic
effect emerged from a global interaction of phonons acting as a whole, leading to
the appearance of a hydrodynamic-like heat flow. Therefore, here the collectivity
of phonons interacts together with the boundaries. From experimental observations,
it can be deduced that none of the two limits alone can explain the experiments;
thus a theory combining both situations seems a useful tool to study the thermal
transport in real samples. In this framework, the KCM splits thermal conductivity
into a kinetic and a collective regime. In the first regime, the contribution of each
phonon to the thermal conductivity is independent from the other ones, and the total
kinetic contribution is the direct sum of all of them. In the collective regime a global
interaction due to the momentum conservation of certain phonon collisions takes
place and therefore its total contribution can be seen as the summation of resistances
in parallel.

This dissertation is organized as follows. First, in Chap. 2 thermal transport is
introduced from current solutions of the BTE for phonons to recent heat transport
formulations based on superdiffusive and hydrodynamic regimes. In Chap.3, the first
principles framework used to obtain phonon properties from a microscopic point of
view is introduced, and the equations of thermal transport in the KCM are detailed.
In addition, computational details of ab initio calculations are also discussed. In the
following chapters, the KCM framework is applied to the study of thermal transport
in different systems and compared to other current solutions. In Chap. 4, the thermal
conductivity of bulkmaterials is studied. InChap.5, systems fromnano tomicrometer
characteristic size like nanowires and thinfilms are considered for the studyof thermal
conductivity. In this case, solutions are provided from a kinetic-collective boundary
approach based on Guyer and Krumhansl’s derivation, and from a full hydrodynamic
model. The transport properties in transient regimes and the phonon spectrum of the
presented samples is discussed in Chap.6. Finally, in Chap.7 complex experiments
where diffusive heat transport can not be applied are studiedwithin the hydrodynamic
KCM framework, before summarizing the conclusions in Chap. 8.
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Chapter 2
Thermal Transport

A common way to understand the heat transfer is by considering that energy is trans-
ferred by a quantum called phonon. A phonon is a pseudo-particle with energy �ω
and crystalline momentum �q obtained from the solution of the equations of motion
of the atoms in a periodic crystal lattice. With this building blocks the first picture
of thermal transport is that of phonons moving randomly at their constant group
velocity in a Brownian motion. The macroscopic consequence of this microscopic
picture is a diffusive heat transport governed by the Fourier law. This law has been
successfully used in the last two centuries, but in the last decades divergences from
classical behavior at reduced time and length scales have been observed. The first
approach to understand these deviations was using an effective thermal conductivity
depending on the characteristic length of the samples, but still relying in the Fourier
equation. This approach has also been overtaken in the last years usingmore advanced
techniques. Some examples are ultra-fast laser techniques measuring the effective
thermal conductivity using heaters with different sizes or working at different exci-
tation frequency ranges [1–7]. In these new setups an explicit generalization of the
Fourier law should be used because the effective thermal conductivity approach does
not provide good results. In consequence, other transport phenomena such as ballistic
transport, superdiffusive regime or collective flow have appeared [8–12].

Different proposals that have tried to modify the diffusive behaviour from the
microscopic point of view through a change in the collisions relaxation times. In
situations where Fourier law is applicable, these models are able to predict the ther-
mal conductivity with excellent performance, but in non-homogeneous situations
the anharmonic nature of the phonon collisions makes it difficult to find reliable
results. Some of the proposed explanations are based on kinetic models considering
anisotropy or using phonon suppression functions, but none of them seems fully sat-
isfactory. The difficulty to explain these experiments from a classical kinetic point
of view [7, 12] has prompted the emergence of new proposals based on including
memory or non-locality like superdiffusive or hydrodynamic models.
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From amicroscopic point of view, at reduced time and spatial scales the Truncated
Lévy Flight (TLF)model has emerged in recent years as a framework to describe heat
transport [9, 10]. The TLF model is able to capture the coexistence of ballistic and
diffusive heat transport that can appear when the sample size and/or temporal scale
is reduced. Parallel to the microscopic formulation, in the last half of the past century
some authors [12–15] have established a description from a hydrodynamic point of
view. In this case the phonons behave like a fluid, emerging the so-called phonon
hydrodynamics. This formulation allows defining a hydrodynamic heat transport
equation in which boundary conditions can be imposed in order to solve complex
geometry systems. While the thermal conductivity of an infinite material can be
computed from amechanical formulation, for real systems is more suitable the use of
hydrodynamic heat transport due to the finite sizes. In addition, this formalism allows
to account for memory and non-local effects able to reproduce recent experimental
observations of deviations from Fourier heat transport [1–7].

In this chapter the differentmodels used to obtain the thermal evolution of a system
using first principles magnitudes are introduced. The separation of conserving and
non-conserving momentum collisions is shown to be key in order to predict the
thermal conductivity in bulk materials.

To avoid mix-up in the present work Q = (Qx , Qy, Qz) is used for the heat flux
and q = (qx , qy, qz) is used for the phonon wave vector.

2.1 Boltzmann Transport Equation

When studying thermal transport, phonons have been widely used as energy carriers.
In equilibrium, the distribution function of such pseudo-particles is the Bose-Einstein
distribution, which gives information about the number of phonons in momentum
space

n0qν
(ω, T ) = 1

e�ωq/κBT − 1
, (2.1)

where qν denotes a phonon with wave vector q and branch ν with frequency ωq. T
is the equilibrium temperature and kB and � are the Boltzmann and reduced Planck
constants respectively.

Equation (2.1) shows that in equilibrium the description of the system can be
achieved by using a single thermodynamic magnitude T , but, when the system is
perturbed from its equilibrium state, the phonon distribution changes and inhomo-
geneities and temporal evolution appear.

In 1892, LudwigBoltzmann introduced his kinetic theory of gases [16] to describe
the evolution of the distribution function in these situations. This equation is called
since then the Boltzmann Transport Equation (BTE). Out of equilibrium the distribu-
tion function will evolve due to two mechanisms. First, the presence of mechanical
or thermodynamic forces in the system generates inhomogeneities. Second, the col-
lisions of the phonons among themselves and with other particles will tend to restore
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the equilibrium. The temporal evolution of the distribution function is described by
balancing both effects (

dnq
dt

)
drift

=
(

∂nq
∂t

)
scattering

. (2.2)

The general form of the drift operator in the phonon basis is

(
dnq
dt

)
drift

≡ ∂nq
∂t

+ vq
∂nq
∂r

+ F
∂nq
∂v

, (2.3)

where vq is the group velocity of the mode q and F the force that particles experience
due to external fields.Opposite to electrons, phonons cannot be influencedbyexternal
forces, and the last term is not necessary.

In this representation the drift operator is diagonal and consequently the most
important complexity of the BTE lies in the collision term. This depends on the type
of collisions that are considered. It includes products of the distribution function of
the particles involved in the collision, having at least an incoming and an outgoing
phonon. This makes this term non-linear and renders its solution extraordinarily
difficult. In the case of phonons the most complex collision term is the anharmonic
phonon-phonon scattering. It includes at least three phonons. In this case, the collision
term has the form:

(
∂nq
∂t

)
scatt

=
∫ ∫

[nqnq′(nq′′ + 1) − 1

2
nq(nq′ + 1)(nq′ + 1)]�q,q′,q′′

dq′dq′′

(2π)3
,

(2.4)
where �q,q′,q′′ is the transition probability of the collision of two phonons q and q′
giving an outgoing phonon q′′.

As a non-linear integro-differential equation, the ability to solve the BTE depends
on the simplifications used. A very useful approach when the perturbation is not very
large is the linearization.

2.1.1 Linearization of the BTE

The linearized BTE (LBTE) is the equation obtained from the linearization of the
perturbation. The distribution function can be expressed as the equilibrium term and
a deviation from it

nq = n0q + �nq . (2.5)

The deviation from equilibrium can be expressed in first order of certain perturbation
A as:

�nq = ∂nq
∂εq

∂εq

∂A
∇∇∇A · �r = ∂nq

∂εq
�q = n0q(n

0
q + 1)

kBT
�q , (2.6)
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where �q accounts for the deviation from equilibrium. In the simplest situation, A
can be just the temperature T and Fourier transport is obtained by solving the LBTE.
In more complex cases, the perturbation can also depend on the heat flux Q and
Fourier transport is no longer valid to describe the heat transport in all situations.
With a little algebra, using Eqs. (2.5)–(2.6) in the scattering operator (Eq. (2.4)), an
expression of the collision term as a function of the deviation from equilibrium can
be obtained [17]:

(
∂nq
∂t

)
scatt

=
∫ ∫

[�q − �q′ − �q′′ ]Pq,q′,q′′
dq′dq′′

(2π)3
, (2.7)

where Pq,q′,q′′ is the equilibrium transition rate. This change simplifies enormously
the equation as the product of distributions disappears. This makes Eq. (2.1) linear
and consequently can be written in matrix form. Despite of this, the diagonalization
of the LBTE is still complex. Simplifying the solution of the scattering operator by
choosing the best basis to work with has been the focus of great efforts in the last
decades.

2.2 Solutions to the LBTE

The linearization of the BTE allows to express the LBTE in operator form as:

Dn = Cn , (2.8)

where n corresponds to the phonon distribution function and D and C are the drift
and collision operator respectively. The solution of the LBTE should be obtained
by inverting the drift or the collision operators, that is, obtaining the eigenstates and
eigenfunctions of

n = D−1Cn or n = C−1Dn . (2.9)

The rank of both matrices is related to the number of modes in the system, which
is an overwhelming number. Obtaining an analytic solution to the equation is not
possible unless some simplification is used, as done in early studies [18]. Recently,
several numerical approaches have been tried to obtain the exact solution through
numerical inversion due to the tremendous improvements achieved in computer per-
formance [19, 20]. Despite of these advances, the high complexity of the direct
solution hides the physical insight. For that reason, more sophisticated simplified
approaches, like the Kinetic Collective Model (KCM) described in next sections,
can be really valuable.
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2.2.1 Relaxation Time Approximation

To solve the problem due to the non-diagonal form of the collision term, the Relax-
ation Time Approximation (RTA) assumes that the rate at which a phonon q relaxes
does not depend on the non-equilibrium situation of the phonons colliding with
it. In the case of the three phonon collisions this implies nq′ = n0q′ and nq′′ = n0q′′ ,
and only the phonon q is displaced from equilibrium nq = n0q + �nq. Under these
considerations the BTE becomes diagonal and can be expressed as:

vq∇n0q = −nq − n0q
τq

, (2.10)

where
1

τq
= �q

∫ ∫
Pq,q′,q′′

dq′dq′′

(2π)3
. (2.11)

Equation (2.10) states that when a phonon is excited, the distribution function
relaxes to equilibrium as �nq(t) = �nq(t0)e−t/τq in a characteristic time τq inde-
pendent of the rest of the distribution. This equation is diagonal in the q space for the
drift and collision operators. This makes the LBTE very easy to solve. The solution
obtained is:

nq = n0q + τqvq∇n0q . (2.12)

By using the microscopic definition of the heat flux Q = 〈�ωvq〉 and the Fourier
law Q = −κ∇∇∇T , the thermal conductivity can be expressed as a frequency integral
over all the phonons:

κi, j =
∫

�ωviqv
j
qτq

∂n0q(ω)

∂T
D(ω)dω , (2.13)

where T is the temperature and D(ω) the density of states (DOS). Notice that
�ω∂n0q(ω)/∂T represents the mode specific heat Cv .

A problem with the classical RTA is that it assumes that all collisions are able
to relax the distribution function to equilibrium. This is not true, as conservation
laws like those of energy and momentum are involved in the transition rates between
modes. Being more specific, a subgroup of three phonon collisions are known to
conserve the crystalmomentumof the distribution. These processes are called normal
(N) collisions. When only N collisions are considered, the distribution function
should relax to a form keeping constant the total momentum of the distribution.
Callaway already noticed this effect, and added an additional term to the thermal
conductivity integral to remove the contribution of such processes [18, 21]. As will
be discussed later, the large amount of experimental data obtained in recent years
for different materials, shapes and heating conditions have made it necessary to
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improve this approach. In this sense, four main contributions have appeared: the
iterative solution of phonon BTE, two direct solutions of the phonon LBTE and the
KCM. The first three proposed solutions (known as full solutions) can provide exact
solutions of LBTE for bulk samples from a kinetic theory viewpoint. The latter has
been introduced from a hydrodynamic basis to account for the shape and size effects
that can not be studied in an easy way just from a kinetic theory.

The main difference between the KCM and the other mentioned current solutions
is that the former imposes strictly the momentum conservation of N collisions and
uses relaxation times generalized from the RTA maintaining the simplicity of such
approximation. In this case, in contrast to the classical RTA, it is necessary to dis-
tinguish between momentum conserving and non-conserving collisions. In the other
cases the collision operator is expressed in its full form and consequently the com-
plexity increases. Equivalent results for the thermal conductivity are obtained in all
the recent formulations.

2.2.2 Iterative Solution of BTE (I-BTE)

An improvement of the RTA solution has been developed by Li et al. [22] by an
iterative procedure. In this proposal, the collision term of the step i + 1 is obtained
from the distribution function of the step i in an iterative process

(
∂nq
∂t

)(i+1)

scatt

=
∫ ∫

[�(i)
q − �

(i)
q′ − �

(i)
q′′ ]Pq,q′,q′′

dq′dq′′

(2π)3
. (2.14)

The iterative BTE (I-BTE) starts from the RTA relaxation time as a zeroth-
order solution (�(0)

q′ = �
(0)
q′′ = 0 and �(0)

q �= 0). The relaxation time in each step
is τ (1)

q = τ (0)
q (1 + �(0)

q ), where τ (0)
q = τRT A includes terms of n0q, n

0
q′ and n0q′′ , while

�q includes the ones corresponding to �nq, �nq′ and �nq′′ from Eq. (2.6). Using
Eq. (2.10) it is direct to obtain the non-equilibrium distribution function of the first
iteration:

n(1)
q = n0q − vqτ

(1)
q ∇n0q . (2.15)

In a second step a new relaxation time τ (2)
q = τ (1)

q (1 + �(1)
q ) is calculated from the

previous distribution function n(1)
q and the relaxation time τ (1)

q . The iterative process
is repeated until convergence is achieved τ (i)

q − τ (i−1)
q < ε, with ε a convergence

threshold close to 0.
This method allows to account properly for the effect for N collisions, removing

their contribution to the thermal resistance.
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2.2.3 Direct Solution of LBTE

Laurent Chaput [19] has solved in a direct procedure the LBTE (D-LBTE) for bulk
systems in the frequency domain.

In first place, it is required to recover the term ∂nq
∂t from Eq. (2.3), neglected in

previous solutions

(
dnq
dt

)
scatt

= ∂n1q
∂t

+ vq
∂n0q
∂r

, (2.16)

where n1q is the first order deviation from equilibrium (nq ≈ n0q + n1q). Notice that
the drift operator is only applied on the equilibrium distribution function. To obtain
a symmetric collision matrix, the scattering term is written as:

(
∂nq
∂t

)
scatt

= −
∑
q′

�′
q,q′n1q′

sinh(xq′/2)

sinh(xq/2)
, (2.17)

where xq ≡ �ωq/kBT . Using the ansatz fq ≡ n1qsinh(xq/2), the LBTE in the Fourier
space is:

− iωfq(ω) + xq
4T sinh(xq/2)

vq = −
∑
q′

�′
q,q′fq′(ω) . (2.18)

At this point it is necessary to use crystal symmetries to reduce the calculation
to the irreducible Brillouin zone (IBZ). From now on, k will have the same role as
q but in the IBZ. Using the symmetry properties of vq, �′

q,q′ and fq′(ω), as well as
rotations R of the isogonal point group of the crystal g and the multiplicity wk of
each phonon k, the LBTE is expressed as

xq
4T sinh(xq/2)

√
wk

|g| v
α
k = −i

∑
βk′

(�̃′
αk,βq′ − iωδk,k′Pαβ

k′ )

√
wk′

|g| f β
k′ . (2.19)

|g| is the cardinal of the isogonal point group,Pαβ
k = wk

|g|
∑

R Rαβδk,Rk and �̃′
αk,βq′ =√

wkwk′
|g|

∑
R′ R′

αβ�k,R′k′ . α and β denote Cartesian indices and the delta function

ensures energy and momentum conservation. From the definition of energy flux and
the Fourier law it is obtained the thermal conductivity tensor in a compact matrix
notation

καβ(ω) = 2kBT 2

V
〈 f (ω)|[I(α,β) + I(β,α)] × (�̃ − iωP)| f (ω)〉 , (2.20)
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where V is the volume of the IBZ and Iγk,γ′k′ = δk,k′
∑

R RαγRβγ′ . The commuta-
tion relation [Iαβ, �̃ − iωP] = 0, and the use of Iαβ = Itβα and Iαβ(�̃ − iωP) =(
Iβ,α(�̃ − ωP)

)t
makes possible to diagonalize [Iαβ + Iβα]|er 〉 = ir (α,β)|er 〉 and

�̃|er 〉 = ωr |er 〉. Finally the dynamical thermal conductivity is reduced to

καβ(ω) =
∫

ραβ(ω′)
ω′ − iω

dω′ , (2.21)

where ραβ(ω′) is the spectral density defined from the eigenvectors ir (α,β) and the
projection of the final distribution function on |er 〉 [23]. This expression allows to split
the thermal conductivity into a real and an imaginary part, helpful to study frequency-
dependent experiments. Moreover, it can be used for steady state calculations. For
fast frequency variations, the use of the equilibrium distribution function in the drift
term can lead to wrong results. A full complete treatment of the drift operator is
required in such cases [13, 24].

As can be seen from Eq. (2.21), from this definition of thermal conductivity it is
neither possible to define a carrier velocity nor a relaxation time. This is because in
this solution the scattering matrix is not diagonalized.

2.2.4 Relaxon Solution of the LBTE

Thediagonalization of the full collision scattering operator, instead of neglecting non-
diagonal terms like in RTA, allows obtaining eigenvectors that can be understood as
collective phonon excitations, that are linear combination of phonons. These collec-
tive excitations are known as relaxons in the present approach. The relaxation time to
the equilibrium function corresponds then to the inverse of the relaxon eigenvalues.

The direct digonalized solution of the LBTE (R-LBTE) developed by Andrea
Cepellotti andNicolaMarzari [20] starts from the classicalBTE in absence of external
forces:

∂n0q
∂T

(
∂T (r, t)

∂t
+ vq∇T (r, t)

)
+ ∂�nq(r, t)

∂t
+ vq∇(�nq(r, t))

= − 1

V

∑
q′

�qq′�nq′(r, t) ,

(2.22)

where the changes

�̃qq′ = �qq′

√√√√n0q′(n0q′ + 1)

n0q(n
0
q + 1)

and �ñq = �nq(n
0
q(n

0
q + 1))−1/2 (2.23)
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are required in order to obtain a diagonalizable real symmetric scattering matrix.
In this case the eigenvectors (relaxons) are θα

q and the real eigenvalues (relaxation

times) 1/τα
q . The scalar product for this basis is

〈
α|α′〉 ≡ 1/V

∑
q θα

qθα′
q . Then, the

BTE can be written as:
√

C

kBT 2

(
∂T (r, t)

∂t
〈0|α〉 + ∇T (r, t)V0α

)
+ ∂ fα(r, t)

∂t

+
∑
α′

Vαα′∇ fα′(r, t) = − fα(r, t)
τα

,

(2.24)

where C is the specific heat at temperature T and Vαα′ = 〈
α|vq|α′〉 is a coupled

velocity for the perturbed distribution, except for the equilibrium term V0α that
defines the relaxonvelocity. fα corresponds to the relaxonoccupation number defined
from �ñq = ∑

α fαθα
q . As the scattering operator only acts on the deviation from

equilibrium, the n0q distribution is not an eigenvector. For that the unitary vector

θ0q =
√

n0q(n
0
q+1)�ωq√
kbT 2C

is introduced.

This procedure allows a relevant improvement from prior solutions of the BTE
in computing thermal conductivity. In contrast, diagonalizing the scattering matrix
renders the drift term very complicated and then second order expressions like second
sound are difficult to be defined. To obtain a diagonal drift operator as well, it is
necessary to set ∇ fα = 0, losing consequently part of information. This condition
implies homogeneous perturbation, i.e., the solutions are obtained considering a
constant homogeneous temperature gradient. In addition, it is considered steady
state (∂/∂t = 0) and small deviations from equilibrium. In that case, the obtained
thermal conductivity is:

ki j = C
∑

α

Vi
αV

j
ατα , (2.25)

where the similarity with classical expressions is clear but instead of phonon veloc-
ities and relaxation times are those defined for relaxons.

2.2.5 Kinetic Collective Model

The lack of validity of the classical RTAapproximation can be improved by theKCM,
developed in recent years by C. de Tomás and F.X. Alvarez [25, 26]. The KCM is
derived from the exact solution to the LBTE proposed by Guyer and Krumhansl [13],
based on the splitting of the collision operator in N and resistive (R) processes
(C = N + R) when calculating the scattering matrix.

In the R-LBTE approach, in order to obtain the distribution relaxation time the
full collision matrix C is diagonalized. As N processes do not contribute directly
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to thermal resistance but redistribute momentum over all the phonon distribution, a
suitableway to solve theLBTE in their presence is by using the basis that diagonalizes
theN scattering collision operator. Contrary toR processes,N scattering can not relax
the distribution functions to equilibrium. Following this reasoning, in KCM only the
N operator is diagonalized and the LBTE is solved in the basis of such eigenvectors.
This provides a set of equations that define a moment space related to different order
perturbations of the phonon distribution function. In this framework, the momentum
basis (eigenvectors) in the KCM is split into three elements: |η0〉, |η1〉, and |η2〉 [13]:

|η0〉 = μx[2sinh(x/2)]−1, where x ≡ �ω

kBT
, and (2.26)

|η1i 〉 = λi qi [2sinh(x/2)]−1 , (2.27)

where qi is the component i of a reciprocal wave vector and |nμ〉 are the eigenvectors.
|n0〉 obtained from the phonon energy �ω represents the zero order moment (the
energy ε or local temperature). |n1〉 determined from the crystalline momentum �qi
corresponds to the first order moment (i.e. heat flux Q). The second order moment
(i.e. flux of the heat flux Q(2)) and higher orders are gathered into |η2〉 [13].

According to the KCM not all the energy is carried kinetically by independent
collisions, but part of this energy is carried by collective modes, which have their
origin in the different effect of N collisions in front of the R ones. The collective
behavior appears as a result of a coupling of modes generated through N processes.
As a consequence, phonons of different modes perform as a whole R collisions.
Therefore all modes share the same collision mean free time (MFT), the so-called
collective MFT, τc. In Fig. 2.1 a sketch of both transport regimes is represented,
where it can be appreciated that in the kinetic regime each phonon has its own
velocity while in the kinetic one it is constant of all of them. These phenomena allow
to split the thermal conductivity into a kinetic and a collective contribution weighed

Fig. 2.1 Sketch of the kinetic and collective transport regimes [25]. The arrows represent the
phonon velocity
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by a switching factor � ∈ [0, 1] measuring the relative importance of the N versus
R scattering:

κT = κK + κC = κ̂K · (1 − �) + κ̂C · � , (2.28)

where the effect of N processes is included in �, which determines the contribution
of each transport regime, kinetic and collective. The hatˆindicates the limit situation.

In addition, the diagonalization done in KCM allows solving the LBTE with-
out complicating drastically the form of the drift operator, in contrast to previous
solutions [19, 20, 22]. This will allow studying complex experiments from a hydro-
dynamic framework (see Chap.7).

Guyer and Krumhansl Derivation

The derivation of KCM from Guyer and Krumhansl starts from the operator form of
the BTE:

Dn(q, r, t) = (N + R)n(q, r, t) , (2.29)

where n corresponds to the phonon distribution function and D = (∂/∂t) + v∇r∇r∇r is
the drift operator in absence of external forces. The previous equation can be solved to
nth-order in a suitable basis in the N process collision vector space for each moment
representation of the distribution function. Guyer and Krumhansl show explicitly
these basis related to the zero and first order moment (see Eqs. (2.26)–(2.27)), and
perform the development of Eq. (2.29) in matrix form for isotropic dispersionless
media. The BTE is symmetrized by using the change n∗ = n2sinh(x/2). The total
distribution function is then:

|n∗〉 =
∑

μ

aμ(r, t)|ημ〉 , (2.30)

where ai are the coefficients for each deviation. Using this basis, the BTE can be
expressed as:

⎡
⎣
⎛
⎝0 0 0
0 R∗

11 R∗
12

0 R∗
21 N ∗

22 + R∗
22

⎞
⎠ −

⎛
⎝ D00 D10 0

D10 D11 D12

0 D21 D22

⎞
⎠
⎤
⎦ ·

⎛
⎝a0
a1
a2

⎞
⎠ =

⎛
⎝0
0
0

⎞
⎠ , (2.31)

where θi j = 〈i |θ| j〉, being θ any of the previous operators (D,R,N) and i, j the
order of the distribution function. The first line of the equation defines the energy
conservation

∂a0
∂t

+ v∇a1 = 0 , (2.32)
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where v = (vx , vy, vz) is the phonon velocity vector. The second line defines the
momentum conservation, which combined with the third line (higher order moment)
can be expressed as:

D11a1 + D10a0 = [
R∗
11 − (R∗

12 − D12)(N
∗
22 + R∗

22 − D22)
−1(R∗

21 − D21)
]
a1 .

(2.33)
The definition of the drift operator elements can be found elsewhere [13]. From this
equation the quantity in brackets can be defined as the phonon momentum relaxation
operator:

τ = [
R∗
11 − (R∗

12 − D12)(N
∗
22 + R∗

22 − D22)
−1(R∗

21 − D21)
]−1

. (2.34)

For simplicity steady state (D11 = D22 = ∂/∂t → 0 ) and homogeneous medium
(D12 and D22 vanish) is assumed, then:

τ =
[
R∗
11 − R∗

12

N ∗
22 + R∗

22

R∗
21

]−1

. (2.35)

Once defined the phonon relaxation time, the thermal conductivity can be
expressed in its usual form:

κi j =
∑
q

Cqv
i
qv

j
qτq . (2.36)

The main complexity to compute the thermal conductivity from the exact solution
of the BTE comes from the calculation of the terms R∗

21, R
∗
22 and N ∗

22. Knowing that
R∗
12 = R∗

21 and studying the limit conditions when N∗ → ∞ and N∗ → 0 some
approximations can be done [13]. The scattering terms can be then expressed as:

(R∗
12)

2 = R∗
11

[
R∗
11 − (1/(R∗−1)11)

]
where (2.37)

(R∗−1)11 → 〈1|τR(q)|1〉 , (2.38)

R∗
11 → 〈1|τR(q)−1|1〉 , (2.39)

R∗
22 ≈ R∗

11 and (2.40)

N ∗
22 → (1/τN ) . (2.41)

Notice that τN is already an integrated value while τR(q) is a wave vector depen-
dent magnitude. In Sect. 3.4 details of these calculations are provided. With these
definitions, Eq. (2.35) can be expressed as:
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τ = 〈1|τR(q)|1〉
[

τN + 〈1|τR(q)−1|1〉−1

τN + 〈1|τR(q)|1〉
]

. (2.42)

At this point, the terms can be rearranged as:

τ = 〈1|τR(q)|1〉
(
1 − 1

1 + τN
〈1|τR(q)|1〉

)
+ 〈1|τR(q)−1|1〉−1 1

1 + τN
〈1|τR(q)|1〉

,where

1

1 + τN
〈1|τR(q)|1〉

= � , 〈1|τR(q)|1〉 = τK and 〈1|τR(q)−1|1〉−1 = τC . (2.43)

� is the switching factor and τK and τC the kinetic and collective relaxation times
respectively. Finally the thermal conductivity can be expressed in a simple form:

κT = 1

3
Cvc

2 [τK (1 − �) + τC�] = κ̂K · (1 − �) + κ̂C · � , (2.44)

where c = |v|.
The derivation of the model until Eq. (2.36) allows solving the LBTE exactly

including all the terms of the perturbed distribution function. A simple calculation
of the thermal conductivity can be done by some approximations (Eqs. (2.40) and
(2.41)) in the calculation of the scattering rates. Such approximation, reducing high
order perturbation to first order, introduces an error that should be evaluated carefully,
specially for complex experiments. On contrary this allows removing properly the
contribution of N processes to thermal resistance and gives a clear picture of thermal
transport. As N processes does not contribute to thermal resistance, in the ideal
situation where only N processes are present, the thermal conductivity should be
infinite [17]:

R → 0; N �= 0 then κ → ∞ . (2.45)

This is obtained as the kinetic and collective thermal conductivity depend only on R
processes, and consequently it is infinite when only N scattering exists.

Maximization of the Entropy Derivation

The derivation of the KCM can be also done from the principle of maximization of
entropy [25]. The microscopic entropy for a non-equilibrium distribution of phonons
is:

Sq
kB

= nqlnnq − (nq − 1)ln(nq − 1) , (2.46)

where Sq is the entropy of the mode q.
It is clear that momentum conserving processes do not contribute to thermal

resistance, but contribute indirectly to the thermal conductivity in the way that such
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processes mix the different vibration modes affecting the drift-collision balance.
Knowing this, when theN processes are negligible, thismixing is low and the entropy
balance must be achieved individually, but in the other case, all modes are mixed and
this balance must be fulfilled globally. The balance equations for the scattering and
the drift operators can be expressed accordingly as:

Ṡq|scatt = �q

T

∂nq
∂t

∣∣∣∣
scatt

and Ṡq|drift = Q2
q

κqT 2
(2.47)

for the kinetic regime, and

Ṡq|scatt =
∫

�q

T

∂nq
∂t

∣∣∣∣
scatt

dq and Ṡq|drift = Q2

κT 2
(2.48)

in the collective regime, where in the latter the heat flux Q and the thermal con-
ductivity κ are already integrated magnitudes. From these expressions the thermal
conductivity in each regime as a function of the phonon mode q can be expressed as:

κK ,q = Q2
q

T�
∂nq
∂t

∣∣∣∣
scatt

and (2.49)

κC = Q2

T 2
∫ �q

T
∂nq
∂t

∣∣∣∣
scatt

dq
(2.50)

for the kinetic and collective regime respectively. Knowing that Q = ∫
Qqdq =∫

�ωqvqnqdq, where the distribution function is nq = n0q + �qn0q(n
0
q + 1)/kBT . If

the deviation from equilibrium is�q = cqq, the thermal conductivity in each regime
can be expressed as:

κK = 1

3

∫
�ωτqc

2
q

∂n0q
∂T

dq (2.51)

κC = 1

3

(∫
cqq

∂n0q
∂T dq

)2
∫ q2

�ω
1
τq

∂n0q
∂T dq

, (2.52)

where it can be observed that in a similar way as found in the derivation from Guyer
and Krumhansl, the kinetic term has a direct integral of the relaxation time while in
the collective term the inverse appears. Notice that in the integrals of Eqs. (2.51) and
(2.52) the variables c and q denote the modulus of v and q, and have been derived
assuming isotropic media. In Sect. 3.4 these expressions will be generalized for all
systems.
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Fig. 2.2 Resistive and total
KCM relaxation times

It is important to notice that, although the KCM uses relaxation times obtained
assuming nq′ = n0q′ and nq′′ = n0q′′ as done in the RTA, the splitting of N and R
processes in the scattering operator and the projections to higher order perturbations
(|n2i 〉) captures properly the anharmonic effects that contribute to thermal transport.

Figure2.2 shows the effect of N collisions in the resistive phonon distribution.
It can be observed the effect of N scattering in the MFT through �; reduces the
contribution to the total thermal conductivity of low frequency phonons (acoustic),
while increasing it for the optical ones [26]. The reduction of the contribution of
the low energy phonons has been introduced extensively by including the N scatter-
ing as a resistive process, as done in the classical RTA. This widely known wrong
assumption [18] can lead good results when collective effects are not important and
high frequency phonons do not contribute significantly to thermal resistance, but can
lead to physical misrepresentations. For that reason is more appropriate to use better
approaches like full solutions or KCM, where the change in the relaxation times due
to N scattering has a more suitable entropic interpretation.

2.3 Thermal Transport Beyond Fourier

It has been observed in recent experiments using fast or large gradient excitations
at micro/nano scale that not all thermal transport can be explained by the Fourier
law [1–7].

Diffusive transport is valid when the mean free path (MFP) is significantly shorter
than the characteristic length of the sample. In this description it is assumed that
phonons suffer enough scattering to be considered as moving in Brownian motion.
When the sample under study has a sizemuch smaller than the phononMFP, phonons
travel through the sample without suffering any scattering event. This process is
known as ballistic transport and in such circumstances the measured thermal con-
ductivity is smaller than the bulk one due to the reduced τq (see Eqs. (2.51)–(2.52)),
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Fig. 2.3 Sketch of Brownian motion, Lévy flight and ballistic transport [27]

in contrast of what would be expected from electronic ballistic transport theory. Due
to the large range of time and space scales that spans the relaxation of phonons
there is a transition range between pure diffusive and ballistic transport where part of
the phonons still suffer scattering while others remain traveling ballistically. These
different transport regimes can be observed in Fig. 2.3.

From the kinetic point of view, phonon transport phenomena is based on con-
sidering that phonons are independent. From this point of view it is logical to think
that non-local transport can be obtained by adding the different contribution of dif-
fusive and ballistic particles depending on the sample scale. Despite of this, recent
experiments performed in transient regimes by means of Time Domain Thermore-
flectance (TDTR) have revealed that dynamics of energy transport in actual materials
is much more complex than this. Conservation laws and thermodynamic constraints
should be included in the picture. Their effect is to modify the relaxation processes
of individual phonons in a way that they are no longer independent. In these circum-
stances it is expected that memory and non-local effects can be observed. Phonon
hydrodynamics through the Kinetic Collective Model (KCM) [28] and superdiffu-
sivity through Truncated Lévy Flights (TLF) [29] have been two models proposed
to understand this transition.

2.3.1 Kinetic Models and Conservation Laws

Solving theBTE in anon-homogeneous situation is a very difficult task.Theproblems
of diagonalizing the collision term discussed in the previous sections are added to
the problem that each point of the sample can have different temperature and heat
flux. This makes that problem impossible to solve exactly and the use of approximate
methods becomes necessary.

By using a kinetic model an approximate solution can be obtained by solving on
a frequency basis the LBTE and then calculating the contribution of each mode. But
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to have a chance to solve it, a simplification of the collision term should be used. In
the RTA approximation the LBTE takes the form

dn(ω, x, t)

dt
+ vω · ∇n(ω, x, t) = −n(ω, x, t) − n0(ω)

τω
. (2.53)

The problemwith Eq. (2.53) is that the relaxation times τω used are obtained under
the simplification approach of linealization and phenomenological diagonalization
without taking the energy and momentum conservation laws under consideration.
Letting the different modes evolve independently as the kinetic assumption states,
these conservation laws are not guaranteed.

Additionally, the energy conservation is present in all type of collisions (impuri-
ties, boundaries, anharmonicities,...), and themomentumconservation is only present
in the case of N collisions. When N collisions are relevant, both conservation laws
should be imposed.1

In thework done byCollins et al. [30] Eq. (2.53) is combinedwith the conservation
of energy

∫ ∫
n0dωdμ =

∫ ∫
ndωdμ , (2.54)

where μ = cosθ. Equation (2.54) states that the amount of energy stored in the non-
equilibrium distribution function should be the same as that of the relaxed distribu-
tion.

Notice that Eq. (2.54) is a global constraint on the phonon individual transport.
This means that each phonon is effectively influenced by the rest of the distribution
function in a collective way. The inclusion of the energy conservation changes the
contribution of the different modes in the conductivity that can be calculated as a
suppression function acting on the bulk values.

The full solution of LBTE includes N scattering inside the relaxation times, but
detailed calculations of their effects in terms of position and time are lost in current
solutions based on direct diagonalization or iteration. In contrast, although by using
the RTA the conservation laws are not satisfied, approximate results can be obtained.
If energy and momentum conservation laws are imposed in a more rigorous way as
done in the KCM formalism better results can be achieved.

The complexity of having a new equation for the momentum should be balanced
by a different simplification. This is done by analyzing the possible forms of the
distribution function. In a kineticmodel, the distribution function can take an arbitrary
complexity because the modes behave independently. In the KCM, the distribution
function is a combination of only two different moments, the zero-order and the first-
order moment. Moments of higher order than one are assumed to be non-observable
because all the collisions (even N collisions) destroy them. This procedure reduces

1At this point we stress the use of the word relevant, and not dominant. With this we indicate that
momentum conservation should be included whenever N collisions have an effect and not only
when they dominate the transport.
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the complexity of theLBTE.Thefinal combinationmakes theKCMabetter approach
in non-homogeneous situations.

When the LBTE is solved in the presence of boundaries, conservation laws also
have an important role. When N collisions are important, the effect of the bound-
ary on a specific mode is noticed on the rest of the modes. In kinetic models, the
Fuchs–Sondheimer approach [31] has been widely used to include the effect of the
boundaries [30]. But once again, this is done on an independent mode basis and the
results can be significantly improved by KCM considering the momentum conser-
vation in a rigorous way.

2.3.2 Memory and Non-local Effects

The inclusion of momentum conservation can be generalized to any order. The
Extended Irreversible Thermodynamics (EIT) formalism [32] shows the path to this
generalization of transport equations. In Fourier diffusive transport, the heat transport
and the thermal energy are related by

Q(r, t) = −κ∇∇∇T . (2.55)

When thermal transport is evaluated at times or sizes of the order of the MFT or
MFP of the heat carriers, the previous relation is no longer valid. In such situations
there appear non-local phenomena where the heat flux in one point at a certain time
depends on the heat flux of its surroundings and at earlier times. These are known as
spatial and temporal memory effects.

In last decades D. Jou et al. have developed a full framework to deal with thermal
transport in the presence of non-local and memory effects viewpoint [14, 15, 33].
From the EIT the evolution equations of the heat transport can be expressed at
different moment orders [14, 32, 34]:

ė = −∇Q(1) , (2.56)

τQ̇(1) + Q(1) = −κ∇∇∇T + ∇ · Q(2) , (2.57)

τ(2)Q̇(2) + Q(2) = −�2(2)∇Q(1) + ∇ · Q(3) , (2.58)

τ(3)Q̇(3) + Q(3) = −�2(3)∇Q(2) , (2.59)

where e is the internal energy, Q(1) = Q is heat flux, Q(2) the flux of the heat flux,
and Q(3) represents a higher order flux. The parameters �(i) and τ(i) correspond to
different order characteristic lengths and relaxation times.
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2.3.3 Phonon Hydrodynamics

Reducing the second moment equation, Eq. (2.57), to the first moment equation,
Eq. (2.58), for Q̇(2) = 0 and Q(3) = 0 one obtains:

τQ̇
(1) + Q(1) = −κ∇∇∇T + �2(2)(∇2Q(1) + 2∇∇∇∇ · Q(1)) . (2.60)

This is a general hydrodynamic heat flux equation that includesmemory (time deriva-
tive term) and non-local effects (laplacian term). This equation can be derived as well
from the Guyer and Krumhansl solution of the BTE [13]. This is not strange as both
formalisms are developed in the basis of moments.

Considering steady state Q̇ = 0, strong geometric effects (spatial variations ofQ
are higher thanQ itself)Q � �2∇2Q, and neglecting the term 2∇∇∇∇ · Q(1), Eq. (2.60)
reduces to ∇2Q = κ0/�

2∇∇∇T . The latter expression is analogous to Navier–Stokes
equation doing the analogyQ ⇔ v, T ⇔ p and η ⇔ �2/κ0, where v is the velocity,
p the pressure and η the shear viscosity. This analogy is the responsible of the
emergence of the so-called phonon hydrodynamics. For simplicity �(2) = �. The
solution of Eq. (2.60) under these circumstances for a cylindrical geometry leads to
a parabolic profile for the cross section flux:

Q(r) = κ0�T

4�2L
(R2 − r2) , (2.61)

which integration with non-slip conditions (v = 0, i.e. zero tangential flux on the
wall) leads the Poiseuille-like equation for the heat flow:

Q(h) = κ0πR4

8�2
�T

L
. (2.62)

Equation (2.62) allows defining an effective thermal conductivity as:

κeff = κ0R2

8�2
= κ0

8Kn2
, (2.63)

where Kn = �/R is the Knudsen number. R and L are the radius and length of the
sample. Notice that this expression has been derived in analogy to the flow in a
pipe, then it is only valid for cylindrical geometries, i.e. wires. The dependence of
κeff ∝ R2 is a result of imposing non-slip condition at the walls. This is in contrast to
experimental results where κeff ∝ R for small samples, where R � �. This effect can
be captured by including a slip boundary condition. A simple way to include a slip
condition in the boundaries to account for roughness effects is by using a boundary
condition like

QB = C�

(
∂Q

∂r

)
r=R

, (2.64)



26 2 Thermal Transport

Fig. 2.4 Heat flux profile with slip boundary condition [34]

where C is a parameter that might depend on the geometry and the roughness
(Maxwell boundary condition), related to the reflectivity and the diffusivity of the
surface. Following the previous analogy with hydrodynamics, the effective thermal
conductivity with slip boundary conduction leads to [15]:

κeff = κ0

8Kn2
[1 + 4CKn] . (2.65)

The same derivation for a thin film gives:

κeff = κ0

12Kn2
[1 + 6CKn] . (2.66)

It can be noticed that now, for small samples where R � �, Kn � 1, Eqs. (2.65)
and (2.66) lead to a linear dependence of R on the thermal conductivity. When the
size of the sample (L) is smaller than the phonon characteristic length (�), the effect
of the boundary is not felt just in a small region close to the surface (Knudsen layer
∼ �), but it can have influence on the whole sample. In this situation, due to the
linearity of the heat flux equations (Eqs. (2.60) and (2.64)), it can be assumed that
the local longitudinal heat flux is Q(r) = Q(r) + QB .

Figure2.4 shows how the addition of a slip boundary condition like Eq. (2.64)
provides a non-zero flux on the walls in a certain X − Y region.

The previous developments open the door to a new way to study heat flux from a
hydrodynamic framework from Eq. (2.60), and through the use of suitable boundary
conditions QB .

2.3.4 Non-local Effects in the KCM

The heat flux equations in the KCM leads to a generalization of Fourier’s law includ-
ing non-local terms. The KCM is derived up to 2nd-moment of the distribution
function following the solution of the BTE proposed by Guyer and Krumhansl
(Eq. (2.30)). This expansion allows, additionally, to fulfill the momentum conserva-



2.3 Thermal Transport Beyond Fourier 27

tion for N processes. Doing so, hydrodynamic effects appear due to the reduction of
the 2nd-moment equation into the 1st ordermoment, leading consequently to a gener-
alized set of equations suitable for heat transport calculations at the micro/nanoscale.
These effects in the KCM framework can be reproduced in a kinetic-collective
approach or full hydrodynamic model, as detailed in Chap.5.

From Guyer and Krumhansl, heat transport equations for each transport regime,
kinetic and collective, can be derived. To do that it is necessary to recover the terms
D12 = D21 from the drift operator (see Eq. (2.30)) [13]. The derivation is done for an
isotropic system. To study both regimes can be defined the limiting cases R∗ � N∗
(kinetic regime) and N∗ � R∗ (collective regime). The momentum conservation
equation in the kinetic case leads to:

a1 = 〈1|R∗−1|1〉D10(1 + O(D) + ...)a0 →
Q = −1

3
Cvc

2τK (1 + O(D) + ...)∇∇∇T .
(2.67)

In the collective regime, where N∗ � R∗ :

R∗
11a1 = D10a0 + (DN∗−1D)a1 + ... →

Q = −1

3
Cvc

2τC∇∇∇T + τC 〈1|c∇∇∇N∗−1c∇|1〉Q + ... .
(2.68)

From the latter equations, the first order heat transport in each transport regime
can be expressed as:

Q = −κ̂K∇∇∇T , (2.69)

that is the Fourier law, valid for the kinetic regime, where the boundary effects are
simply included in τK as a Matthiessen’s rule, and

τ
dQ
dt

+ Q = −κ̂C∇∇∇T + �̂2C(∇2 + 2∇∇∇∇·)Q (2.70)

defines a hydrodynamic heat flux equation in the collective regime, where �̂2C =
〈c2τN 〉〈τC 〉/5 in the isotropic case.

If higher orders are considered when R∗ � N∗, momentum conservation can be
expressed as:

Q = −1

3
Cvc

2τK∇∇∇T + τK 〈1|c∇∇∇R∗−1c∇|1〉Q + ... , (2.71)

and therefore:
Q = −κ̂K∇∇∇T + �̂2K (∇2 + 2∇∇∇∇·)Q , (2.72)
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where �̂2K = 〈c2τR〉〈τR〉/5 in the isotropic case. Equation (2.72) for kinetic thermal
transport can be obtained as well through gray medium models, where the crystal is
idealized by a single phonon relaxation time and MFP.

A simple 1D analysis of a two phonon channel of the BTE leads to a heat trans-
port solution that includes non-local effects [27, 29]. Here it is analyzed the single
pulse response P(ξ, s) in the Fourier–Laplace domain of P(x, t). Using as a starting
premise a low frequency channel (1), that governs the thermal conductivity κ0, and
a high frequency one (2), which governs the heat capacity Cv , and considering large
time scales compared to the phonon MFT |s|τ1,2 � 1:

P(ξ, s) �
[
s + D0ξ

2

1 + ξ2�2
(1)

]−1

, (2.73)

where �(1) corresponds to the MFP of the low frequency phonon, and D0 is the
thermal diffusivity. The inverse Fourier transformation of Eq. (2.73) imposing the
initial condition P(ξ, t = 0) = 1 leads to:

(
1 − �2

(1)
∂2

∂x2

)
∂P(x, t)

∂t
= −D0

∂2P(x, t)

∂x2
. (2.74)

Using the energy conservation relation ∂Q(x, t)/∂x + ∂P(x, t)/∂t = δ(x)δ(t),
and knowing that (from the starting premise) P � Cv,(2)�T and κ0 � Cv,(2)D0:

Q(x, t) − �2
(1)

∂2Q(x, t)

∂x2
= −κ0

∂�T (x, t)

∂x
, for t � τ . (2.75)

From this derivation it is clear the analogy between Eqs. (2.72) and (2.75) obtained
from the two different approaches.

2.3.5 Superdiffusive Transport

Steady state thermal conductivity of several pure group IV semiconductorswithweak
N scattering processes can be explained properly from a pure diffusive kinetic model.
In contrast, experimental transient measurements have shown that semiconductor
alloys can exhibit a great frequency dependence when heated from an alternate
current source with a modulated frequency [27]. Through this procedure phonons
of different energy can be excited independently at time scales τmod of the order of
the phonon MFT and new phenomena can be studied. This kind of experiments has
revealed that in alloys quasiballistic transport is present at certain time scales that can
span several orders of magnitude. In addition, this superdiffusive regime can be also
observed when the length scales of the sample are comparable to the phonon MFP.
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These phenomena can be studied by means TDTR imaging, which is able to capture
the temporal and spatial response of energy impulses in the cross-plane direction of
a sample.

The Maxwell–Cattaneo equation is usually used to describe ballistic to diffusive
transition:

τ
∂2T

∂t2
+ ∂T

∂t
= χ∇2T , (2.76)

which gives temperature T in terms of time t , where τ is the MFT of phonons and χ

is the thermal diffusivity of the sample. In the diffusive regime τ ∂2T
∂t2 � ∂T

∂t and the

diffusion equation is recovered . When the inertial terms are important τ ∂2T
∂t2 � ∂T

∂t
and the wave equation is obtained. Equation (2.76) assumes that the transition from
diffusive to ballistic transport occurs at the same time for all the phonons. This
assumption is far from reality. The MFP or MFT spectral representations of thermal
conductivity reveals that each phonon has its own MFP and MFT [8]. A correct
treatment in this case would be to solve Eq. (2.76) for each mode, but the number of
calculations will increase excessively. A more suitable way to study this transition
is the TLF model.

Ballistic Transport

As it has been introduced, when phonons travel ballistically, there are no scattering
events and thus these phonons do not contribute to thermal resistivity as expected
from a diffusive framework. In this situation, the contribution to thermal conductivity
of each ballistic phonon κq(�q) = Cv,q�qvq will be limited for the sample size,
and then the contribution will be κq(Leff) = Cv,qLeffvq. As in ballistic transport
Leff < �q, the measured thermal conductivity will be smaller than the intrinsic one
(κq(Leff) < κq(�q)).

Figure2.5 shows the accumulated thermal conductivity for bulk silicon (Leff =
∞), 830nm thinfilmand56nmnanowire in theKCM.Aswill be shown inSect. 3.3.4,
the effective length for a thin film is Leff = 2.25h, then in this case Leff = 1.8µm.
It can be observed that the phonons with a MFP larger than Leff travel ballistically
through the sample and do not contribute to thermal conductivity.

The Truncated Lévy Flight Model

The TLF is the generalization of the kinetic transport taking into account that energy
carriers are not independent but related by the energy conservation. This, in combi-
nation with the large range of carriers MFP/MFT, defines the transition from a pure
superdiffusive Lévy regime to a regular diffusion one. In TLF, the effect of different
time scales is captured by quantifying the deviation from the diffusive behavior at
short time scales using a fractal exponent (α) that captures the scaling of the mean-
square displacement (MSD) of the thermal energy with time [9]. The diffusive to
ballistic transition is described by using calculated parameters from the scaling law
of the accumulated thermal conductivity in terms of MFP [29].

Anomalous behavior of the heat transport equation can be generalized in the
fractional dimension defined by the TLF model [35]. The relation between heat flux
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Fig. 2.5 Accumulated thermal conductivity as a function of mean free path (MFP) for silicon
samples with different size Leff

and thermal energy including memory and non-local effects in 1D can be expressed
with fractional integro-differentiation operators as:

∂βP(x, t)

∂tβ
= Dαβ

∂αP(x, t)

∂|x |α , (2.77)

where P(x, t) denotes the thermal energy density (single pulse response in the real
space), which in a pure diffusive regime is P0(x, t) = Cv,0T , being Cv,0 the specific
heat and T the temperature. α and β are the fractal space and time dimensions of the
superdiffusion transport regime respectively.

In alloys like SiGe or InGaAs it has been observed a reduction of the thermal
conductivity up to a 50% in a frequency from 1–10 MHz [29]. This reduction is
due to the presence of phonons with MFP larger than the thermal penetration length
(d = √

κ/πCv f ) of the heat source. The superdiffusive Lévy regime defined in such
situations canbe expressed by a superlinear time evolution of theMSDσ(t) ∼ tβ(1 <

β < 2) in a transport space with fractal dimension α(1 < α < 2), where β = 3 − α.
The Brownian motion corresponds to a stochastic process with fractal dimension
α = 2, while the fractal dimension that governs the transport in a ballistic regime is
α = 1.

A direct way to interpret the α and β parameters is through the accumulated
thermal conductivity function. Its shape as a function of the MFP and MFT can
be directly related to the fractal exponents knowing that κ(�, τ ) ∼ (�, τ )γ , where
γ = 2 − α.
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The TLF model is studied from the response P of a single pulse on a sample that
obeys the BTE under RTA. This response analyzed in the Fourier–Laplace domain,
with ξ and s being the spacial and temporal transformed variables, takes the form:

P(ξ, s) =
∑

q Cv,q�q(ξ, s)∑
q

Cv,q

τq
[1 − �q(ξ, s)]

, (2.78)

where

�q(ξ, s) = 1 + sτq
(1 + sτq)2 + ξ2�2

q
. (2.79)

The single pulse response can be understood in the Fourier–Laplace domain as
P(ξ, s) = CδT (ξ, s), where C is the total specific heat. From this, the MSD of
the thermal energy is σ2 = −∂2P(ξ, s)/∂ξ2 at ξ = 0. This magnitude provides the
average spacial extent of the thermal field, equivalent to the thermal penetration
length in a diffusive regime. When the temporal scale of the heating source is much
faster than the phonon relaxation time (s → ∞) theMSD is σ2(t) = v̄2t2, where v̄ is
a mean phonon velocity. This limit represents the ballistic regime. On the other hand,
when the temporal scales are slow compared with τ , the phonons can scatter and a
diffusive regime with σ2(t) = 2Dt is recovered. Notice that in the diffusive regime
the distribution tends to a Gaussian energy density with variance 2Dt , while in the
ballistic limit tends to aLorentzian. The transition between both regimes is smooth for
materials like silicon, while for alloys, where transport is dominated by independent
collisions with alloying atoms, this transition have a definite slope that scales as
σ2 ∼ tβ . The energy transport in such situation, known as Lévy stable process, is
stochastically equivalent to a random walk with fractal dimension α < 2. The pulse
response in this intermediate region can be expressed as P(ξ, s) � 1/(s + Dα|ξ|α),
where Dα is a fractional diffusivity. If this response is reexpressed as P(ξ, s) �
[s + ψ(ξ)]−1, in the limit s → 0:

ψ(ξ) = ξ2

∑
q

Cv,q�
2
q

τq[1+ξ2�2]∑
q

Cv,q

1+ξ2�2

, (2.80)

where ψ(ξ)/ξ2 represents the spacial evolution of the fractal diffusivity Dα. The
thermal conductivity can be expressed equivalently as:

κ(ξ, s) =
∑
q

Cv,q

∑
q

κq

1+ξ2�2
q∑

q
Cv,q

1+ξ2�2
q

. (2.81)

Figure2.6 represents the temporal evolution of the heat transport through the
normalized MSD. A superdiffusive regime governed by a fractal exponent can be
appreciated. In the time space, there is a transition from a ballistic regime at very
small times (t < 10−12 s), whereσ2 ∼ t2, to a diffusive regimeσ2 ∼ t for t > 10−8 s.
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Fig. 2.6 Renormalized mean squared displacement (MSD) obtained from the BTE for Si, SiGe
and InGaAs [29]

In InGaAs and SiGe, this transition can be expressed by σ2 ∼ tβ , while in Si there is
a smooth transition. The lack of a definite slope for the case of silicon and the relation
of the fractal exponents to the dominant scattering mechanism will be discussed in
Sect. 6.2 in the KCM framework. From a general point of view, it can be observed
that in the diffusive limit α → 2 and β → 1, while in the ballistic limit α → 1 and
β → 2.

In Sect. 7.4 non-local effects will be analyzed, which in modified Fourier mod-
els as well as in the TLF are included as extra term that contributes as a thermal
boundary resistivity (TBR) in the interface between the heating metal contact and
the semiconductor sample rms.

2.4 Thermal Boundary Resistance

In a sample composed of two or more layers of different materials in contact there
appears a mismatching between the different crystalline structures. This is a typical
case in samples heated though a metallic contact. If heat flows through the interface,
the incoming flux is reduced due to a resistance induced by the crystalline mismatch.
This is known as Kapitza resistance or TBR. This effect has been widely studied
in recent years from frequency dependent measurements of thermal conductivity
[5, 9].

From an effective Fourier model it is required to change the value of rms for each
pump modulation frequency in order to fit the experimental data of TDTR experi-
ments [5]. On contrary, the TLF, which properly distinguishes interfacial dynamics
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Fig. 2.7 Frequency dependence of thermal boundary resistance (TBR) rms fromTDTRexperiments
and comparison to a conventional (Fourier) and TLF model at room temperature [9]

from nearby quasiballistic heat flow suppression, is able to reproduce the experimen-
tal data with a single value of TBR [9].

In Fig. 2.7 the TBR from a conventional (Fourier) and TLF model is represented.
It can be observed that for the Al/InGaAs interface, the rms value depends strongly
on the modulation frequency when studied from a Fourier standpoint. This has been
also reported for the Al/Si interface for instance [5]. In contrast, when using the TLF
model, the TBR effects can be interpreted with a single value rms = 4.23 nKm2/W.

As mentioned in the previous section, the effects of TBR will be discussed in
Sect. 7.4.

2.5 Thermal Measurements

All the theoretical models explained above to study thermal conductivity are devel-
oped in order to understand experimental evidence. For this suitable ways to deter-
mine experimentally the thermal conductivity and other thermal properties become
also necessary. The easiest and oldest way to measure the thermal conductivity of
a sample is to impose a constant heat flux, which will create a thermal gradient
on the sample. Then measuring the variation of the temperature as a function of
the heat flux and applying the Fourier law (Q = −κ∇∇∇T ), the thermal conductivity
can be obtained. This kind of measurement can be used in steady state and small
temperature gradients, so thermal conductivity can be treated as a constant value.
Actually, thermal conductivity varies with the temperature and can also vary with
the frequency and orientation of the applied thermal gradient, so this expression
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is restricted to few situations. To account for different crystal orientations tensor
expressions are required. In addition, thermal conductivity measurement through
this procedure introduces an error due to heat losses by blackbody radiation [36].

Recently, improved and more accurate measurement techniques have appeared,
like the 3ω method [37] or time/frequency domain ultrafast spectroscopies [38]. In
this group, TDTR have emerged as a powerful tool to measure the thermal conduc-
tivity as a function of time for samples in complex geometries.

2.5.1 3ω Method

The 3ω method is a thermal conductivity measurement technique based on the mea-
sure of the third harmonic of an alternate voltage from an AC frequency signal ω
applied on a sample (I = I0sinωt). This electric current creates a temperature fluc-
tuation on the sample that leads to a voltage fluctuation response. This response is
directly related to thermal conductivity through [37]:

V3ω ≈
√
2I 3RR′L
π4κS

, (2.82)

where L and S are the length and the cross section of the sample, and the electrical
resistance is given by R = R0 + R′(T − T0). R′(T ) = ∂R/∂T and κ is the thermal
conductivity of the sample.

This technique reduces the error produced by infrared radiation, specially for
small samples below 10−4 m [39]. Therefore 3ω method is a useful tool for thermal
conductivity measurements of thin films and nanowires [37].

2.5.2 Time/Frequency Domain Thermo-Reflectance

TDTR has become one of the conventional techniques to characterize the thermal
properties of thinfilmmaterials [38]. TDTR is a contactless optical pump-probebased
on heating the sample using pulsed laser (pump signal) of frequency fmod (typically
fmod ∼ 10 MHz). The beam heats a metal transducer deposited in the sample, and
the diffusion of this heat along the sample is directly related to its thermal con-
ductivity. The reflectivity of the sample is also affected by the temperature, then a
delayed laser probe signal measures the change of thermoreflectance, proportional to
the transient thermal decay of the sample with picosecond resolution. By modulat-
ing the pump signal using electro-optic modulator (EOM), the thermal penetration
depth d = √

D/(π fmod) can be changed, where D is the thermal diffusivity. The
signal is detected using a lock-in amplifier tuned to the modulation frequency. The
characteristic times measured with this technique are given by τmod = 1/(2π fmod).
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Notice that the expression for the thermal penetration length is based on Fourier heat
equation and it may need to be revisited in non-Fourier transport regime.

This technique is also specially useful to measure the frequency-dependent ther-
mal conductivity observed in some materials [38] as well as transient transport
regimes [29].

In frequency domainmethods (FDTR), instead ofmeasuring the response between
temporal delayed pump and probe signals, the response of different modulated fre-
quency signals is measured. This procedure avoids possible mechanical motion
between pump and probe signals in TDTR.

2.5.3 Phonon Measurements

The most general ways used to measure phonon information are by inelastic neutron
scattering and by Raman spectrometry. The former enables to measure the phonon
dispersion relations of semiconductor materials. The latter is used for the measure-
ment of phonon linewidth of individual zone-center phonons.

When a beam of neutrons interacts with a crystal it suffers a scattering process.
In an inelastic collision, the energy and the momentum of the beam will change,
therefore analyzing the outgoing beam information about the process occurred can
be obtained. From the difference of energy and momentum the dispersion relations
(ω(q)) can be obtained along certain high symmetry directions [40].

In Raman scattering light is used instead of neutrons. The incident beam is inelas-
tically scattered by a surface and changes its polarization due to the creation or
annihilation of vibrational modes. The energy conservation of the light will provide
information of the process occurred. If the frequency is reduced a phonon is created
or excited (Stokes process); on contrary, if it increases, a phonon is annihilated or
relaxed (anti-Stokes process). From the line width of the intensity peaks at each fre-
quency, the phonon lifetime (τ ) can be obtained as the inverse of the full width at
half maximum (FWHM). A drawback of this method is that only phonons of similar
wave vector to that of the incoming beam will interact.

Another method to measure phonon lifetimes is by successive light pulses. A
principal beam is focused to the sample while a small part of it is split. The split part
is delayed a certain amount of time and then refocused to the principal beam.Once the
principal beam interacts with the sample it creates a phonon excitation. These excited
phonons will decay in a characteristic time τ . The delayed beam when interacts with
the surface with active phonon modes will suffer backscattering depending on that
population. Therefore the intensity of this backscattering can be related with the
number of active modes and its decay time can be estimated [41].
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2.6 Thermoelectric Properties

The thermal conductivity of bulk materials is key for the study of thermoelectric
materials. A dimensionless parameter ZT known as figure ofmerit gives the capacity
of a material to work as thermoelectric:

ZT = σS2T

κe + κL
, (2.83)

where σ is the electric conductivity, S the Seebeck coefficient, T the temperature,
and κe and κL the electronic and lattice (phononic) thermal conductivity respectively.
The product σS2 is also defined as the power factor. From this equation it is clear
that the lower the thermal conductivity the higher the efficiency.

In addition to a proper knowledge of thermal properties, to finally determine the
goodness of a material as a thermoelectric, other properties need to be calculated, all
of them related to electronic properties. Although this is not the main topic of this
work, a brief summary is done to establish a complete picture.

2.6.1 Electronic Properties

It is well known that the main contribution of the thermal conductivity comes from
phonon interactions, but in semiconductors with high level of doping, small band gap
or metals, electrons can also have a large, or even predominant, contribution to heat
transport. When this occurs there is a clear split of the total thermal conductivity in
two terms κ = κL + κe. As a good approach, the Widemann-Franz law provides an
empirical expression of the electronic contribution to thermal conductivity κe from
the value of the electronic conductivity σ:

κe = LTσ , (2.84)

where L is the Lorentz number and T the temperature. In most cases as a first approx-
imation of such contribution L = 2.44 · 10−8 W�/K−2 is treated as a constant. This
valuemight depend on scatteringmechanisms, thenmore accurate resultswill require
a deeper study of L depending on the material and the temperature.

Amore accurate calculation of the electronic contribution to thermal conductivity
from the BTE for electrons can be done by using [42]:

κe,αβ = κ0
αβ − T vα j (σ

−1
e )l jvlβ , (2.85)
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where

κ0
αβ = 1

e2c T V

∫
σe,αβ(Ee) · (Ee − μ)2

[
−∂ f 0μ (T, Ee)

∂Ee

]
dEe . (2.86)

α and β are Cartesian coordinates for the tensorial magnitudes. f 0μ (T, Ee) is the
Fermi-Dirac distribution function, and (σ−1

e )l jvlβ = Sjβ is the Seebeck coefficient,
being

vαβ = 1

ecT V

∫
σe,αβ(Ee) · (Ee − μ)

[
−∂ f 0μ (T, Ee)

∂Ee

]
dEe . (2.87)

ec is the electron charge, μ the chemical potential, Ee the total energy of electron, V
the volume, and σe,αβ the electrical conductivity:

σe,αβ = 1

V

∫
σe,αβ(Ee)

[
−∂ f 0μ (T, Ee)

∂Ee

]
dEe , (2.88)

where

σe,αβ(Ee) = 1

N

∑
i,k

e2cτe,i,kuα(i,k)uβ(i,k)
δ(Ee − Ee,i,k)

dEe
. (2.89)

The subindex i refers to a band index, while k is the electronwave vector. The phonon
relaxation time τe can be calculated from its scattering matrix in a similar way as can
be done for phonons (see Sect. 3.3.5). A full description can be found elsewhere [17].

All the previous set of equations (Eqs. (2.84)–(2.89)), together with the lattice
contribution to thermal conductivity, allow the calculation of the figure of merit ZT
of a thermoelectric material.

2.7 Note on Phonon Drag

In some circumstances, when electron-phonon interaction is important, the lattice
vibrations can contribute to the electron movement in the crystal, increasing then
the electric conductivity and therefore the Seebeck effect and the thermoelectric per-
formance. The quasiparticle associated to a electron-phonon interaction is known as
polaron. Phonon drag can be understood as a thermal flux originated from the bal-
ance of momentum added by electron-phonon interactions and destroyed by phonon-
phonon processes [43].

Recently some efforts have been done in order to quantify the phonon drag con-
tribution to the Seebeck coefficient [43]. A way to evaluate this effect is by com-
paring thermal measurements of bulk and nanowires of a material. As phonon drag
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is quenched by boundary scattering, a comparison of such measurements will allow
quantifying its effect in bulk samples.

In a general case, the Seebeck coefficient defined from the Mott relations, can be
split into a diffusion and a phonon drag term, S = Sdiff + Sp-d. Solving the BTE for
electrons including electron-phonon interactions it is possible to find approximate
expressions for both contributions [43]:

eT Sdiff =
∫ ∞
0

∂ f 0k
∂E τk,ev

2
q,x D(E)(E − EF )dE∫ ∞

0
∂ f 0k
∂E τk,ev2

q,x D(E)dE
= 〈E − EF 〉 , (2.90)

where D(E) is the electronic density of states, vq,x the electron velocity and EF the
Fermi energy level. In this case it is assumed that phonons are in equilibrium (nq =
n0q), and only electrons are out of equilibrium ( fk = f 0k + ∂ f 0k

∂E �e), where �e ∝ k
measures the deviation from equilibrium. In real processes, the electrons can receive
momentumand relax throughphonon-phonon interactions. In these cases, the phonon
distribution is also displaced from equilibrium a certain magnitude �ph ∝ q, then

nq = n0q − ∂n0q
∂ε

�ph . The contribution of the terms regarding �ph will thus provide
the magnitude of the phonon drag:

eT Sp-d =
1
2k3

∫ ∞
0 τev

2
x

∂ f0
∂E D(E)dE · ∫ 2kc

0
�phCv(ω)

�e−p f0(ω/2c)dω∫ ∞
0 τev2

x
∂ f0
∂E D(E)dE

, (2.91)

where c is the phonon velocity, Cv(ω) the mode specific heat, k = |k|, and �ph and
�e−p are the phonon and polaron MFT respectively. In the derivation of Eq. (2.91)
it has been assumed that �ph �= f( f ). This assumption is valid for weak electron-
phonon interaction. For strong interactions there will appear couplings between f
and n that will no longer allow splitting S into their two contributions.

Equation (2.91), even though is an approximation, suggests that longer phonon
MFP and shorter polaron MFP will contribute to improve the Seebeck effect.
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Chapter 3
First Principles Calculations

Since the development of quantum mechanics, big efforts have been done in order to
implement such knowledge for computational modeling. This has allowed predicting
experimental results with an incredible accuracy.

In this work, quantum mechanics will allow calculating the total energy of a
system with a certain amount of atoms through the corresponding Hamiltonian, and
afterwards a wide range of properties related to this total energy.

First principles calculations only require to define the atoms, specifically their
type and position. In this work a full ab initio framework [1] is used to compute the
total energy of different systems in order to study thermal transport.

Large amount of systems can be modeled using ab initio techniques, but not all
have the same computational cost. The number of atoms and the expected spatial
variation of the wave functions are themain parameters that determine the simulation
time.

3.1 Total Energy Calculations

Ab initio calculations start by calculating the total energy of the system. For that
purpose, the so-called many-body problem consists in obtaining the total energy and
forces on each atom of a system with many interacting electrons. Therefore, in order
to compute the total energy it will be necessary to solve the Schrödinger equation:

Hψ = Eψ , (3.1)

that relates the Hamiltonian H of the solid applied on its wave function to the total
energy E .
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The general expression for a Hamiltonian H under a constant external potential
φ0 is:

H = φ0 + T + H2 + H3 + · · · , (3.2)

where T is the kinetic energy and H2 + H3 + · · · are n-body crystal interaction
potential terms. H = T + H2 is defined as the harmonic Hamiltonian, where T =
Ke + Kn is the sumof the kinetic energy operator of the electrons and the nucleus, and
H2 = Ue−e +Ue−n +Un−n give the potential energy for electron-electron, electron-
nucleus and nucleus-nucleus interaction.

The high number of variables force the use of some approximations and simpli-
fications to solve Eq. (3.1) [1, 2].

3.1.1 Born–Oppenheimer Approximation

The Born–Oppenheimer approximation allows separating the electronic and nuclear
contribution in the many-body wave function due to the large difference in their
respective masses. Moreover, the fact that the forces acting on the particles are
the same makes possible to consider a gas of electrons in movement in a static
configuration of cores. Then, Kn andUn−n are taken as parametrized magnitudes and
the Hamiltonian is reduced to the electron kinetic energy and the electron-electron
and electron-ion interaction:

H = T +Ue−e +Ue−n , where T = − �
2

2m
∇2 . (3.3)

3.1.2 Hartree–Fock Approximation

Under the Born–Oppenheimer approximation, the interaction potential H2 can be
written as a summation over all the electrons of the solid:

H2 =
∑

i

[U (ri ) + Wi (ri )] , (3.4)

where U (ri ) is the potential energy by the nuclei felt by an electron at ri , and
Wi (ri ) the interaction potential with the field created by the other electrons. When
this electron-dependant potential is approximated by the potential from the whole
electron cloud, including itself, it is known as the Hartree approximation:

H =
∑

i

Hi =
∑

i

[
− �

2

2m
∇2 +U (ri ) + WH (ri )

]
, (3.5)



3.1 Total Energy Calculations 43

where

WH (ri ) =
∫

n(r′)
|ri − r′|d

3r′ (3.6)

and the solution can be written as a product of the monoelectronic wave functions
ψ = ψ1 · ψ2 · ... · ψn , being Hiψi = Eiψi the independent solutions that provides
the total energy of the system as E = ∑

i Ei .
However, due to the fermionic nature of the electrons, the system must be anti-

symmetric under the exchange of two electrons. Thus, requiring the solutions to be
single Slater determinants, as opposed to simple wave function products, adds a non-
local exchange term to the potential felt by electrons, accounting for the reduction of
the energy of the electronic system caused by the anti-symmetry of the wave function
E → E − EX . This is the Hartree–Fock approximation.

3.1.3 Density Functional Theory (DFT)

Hohenberg and Kohn [3] proved that there is a one-to-one correspondence between
the external (i.e. non-purely electronic) potential acting on an electron gas and its
ground state charge density. Moreover, they showed that the ground state charge den-
sity is the one that minimizes a universal (but unknown) energy functional depending
only on the charge density, not the wave functions. Shortly after, Kohn and Sham [4]
made the ansatz that the total energy of the gas of electrons can be calculated formally
by an ancillary system of non-interacting electrons, related to the original many-body
problem, moving in an effective non-local potential due to the other electrons.

The exchange-correlation energy EXC is the contribution to the electronic energy
of the system defined as the difference of many-body energy and the energy in the
Hartree approximation:

EXC(n) = T − Ti (n) +Ue−e − EHartree(n) , (3.7)

where Ti (n) is the kinetic energy of an independent electron and

EHartree(n) = 1

2

∫ ∫
n(r)n(r′)
|r − r′| d3rd3r′ (3.8)

is the Hartree energy. Unfortunately, the exact form of EXC(n) is not known.
The minimization of the total energy functional of the non-interacting problem, in

terms of the constituent wave functions leads to an equivalent set of self-consistent
one-electron equations known as Kohn Sham (KS) equations. The eigenvalues of
these equations will lead to the total electronic energy of the system, and they are
related to the spectrum of the true many-body system. The KS equations are:
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[−�
2

2m
∇2 +U (r) + W (r) + VXC(r)

]
ψi (r) = Eiψi (r) , (3.9)

where VXC corresponds to the exchange-correlation potential.
From a computational point of view, these set of equations must be solved self-

consistently, iterating from a trial electronic density minimizing the total functional
energy until convergence is achieved.

Local Density Approximation and Generalized Gradient Approximation

Even the simplification reached using DFT, an approximate expression for the
exchange-correlation energy for the one-electron set of equations is required. If the
variation in the electronic density expected to be slow, the Local Density Approx-
imation (LDA) can be used. LDA assumes that EXC at the point r is equal to the
exchange-correlation energy per electron εXC in a homogeneous electron gas with
the same density of the electron gas at the point r:

ELDA
XC (n) =

∫
εXC(n)n(r)d3r , (3.10)

where n(r) = ∑
i |ψi (r)|2 is the electronic density.

When LDA overestimates EXC , the Generalized Gradient Approximation (GGA)
provides amore accurate solution. This approximation expands the electronic density
in terms of its magnitude and its gradient to correct for variations of the electronic
density away from r:

EGGA
XC (n) =

∫
εXC(n,∇∇∇n)n(r)d3r . (3.11)

Pseudopotential Approximation

Most of the physical properties of solids are much more dependent on the valence
electrons than on the core ones. The substitution of the full electron-ion potential by
a weaker potential that deals only with the valence electrons, removing the core elec-
trons and ionic potential, allows expanding the wave functions into a smaller set of
plane waves that computationally greatly simplifies the solution of the Schrödinger
equation. When using pseudopotentials, it is necessary to ensure the accuracy of the
exchange correlation energy by having equal values of the integrals of the squared
amplitudes of the pseudo and real wave functions outside the core. Such pseudopo-
tentials are known as norm-conserving pseudopotentials.

To generate a pseudopotential it is necessary to perform all-electrons energy calcu-
lations for a single atom and then assure that a parametric form of the pseudopotential
with suitable parameters provide the same wave functions beyond a cutoff radius rc
(typically 2–3 times the core radius), and the same eigenvalues as the all-electrons
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Fig. 3.1 Sketch of a
pseudopotential and
all-electrons functions [1]

atom. In Fig. 3.1 the convergence of the pseudopotential function to the all-electron
value beyond rc is represented.

The generation of pseudopotentials must be made consistently with the XC func-
tional that will be used. In the present work, pseudopotentials generated for use with
the GGA as parametrized by Perdew, Burke and Ernzerfhof (PBE) or for use with
the LDA as parametrized by Perdew and Zunger will be employed.

3.1.4 Periodic Supercell and Bloch’s Theorem

Despite of the simplifications done to reduce the complexity of solving the total
energy problem, it is necessary to face the problem of infinite number of non-
interacting electrons in a static potential of an infinite number of ions. That means
that is required to calculate infinite wave functions expanded on an infinite basis
set. This problem can be solved by generating a periodic system that reproduces the
original one using the Bloch’s theorem. For simplification let us define the potential
as V (r) = U (r) + W (r) + VXC(r).

Figure 3.2 represents a supercell created by repetition of a cubic cell by using
translational symmetry. For an ideal crystal V (r) must have the periodicity of the
Bravais lattice, then V (r) = V (r + R), R being a real space lattice vector. This
condition must be accomplished as well for the probability density of the stationary
states:

|ψi (r + R)|2 = |ψi (r)|2 . (3.12)

Then a general solution ψi (r) = eiqru(r) leads to:

ψi (r + R) = eiqRψi (r) , (3.13)

known as Bloch’s theorem, where q is a reciprocal space vector.
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Fig. 3.2 Cubic supercell created by a 3 × 3 × 3 repetition of a conventional diamond-like 8 atoms
cell

From the previous concepts, the definition of ψq(r) in the reciprocal space from
the Fourier transform

ψq(r) = eiqruq(r) =
∑

G

C(q − G)ei(q−G)r (3.14)

allows expressing the Schrödinger equation as a simple linear system of equations:

[
�
2|q − G|2

2m
− Eq

]
C(q − G) +

∑

G′′
V (G′′ − G)C(q − G′′) , (3.15)

where G and G′′ are reciprocal lattice vectors and the coefficients C are unknown
values to be determined from the equations.

3.1.5 Perturbation Theory

The solution of several real physical problems that require total energy calculations
many times have to be treated inside perturbation theory. This requires introducing
a perturbation term E(n,λ), where n is the charge density and λ the perturbation
parameter. The perturbed energy can be expanded in series and the total energy can
be found to the n-th order truncation of such perturbation:

E(n,λ) = E0(n) + ∂E(n,λ)

∂λ
λ + 1

2!
∂2E(n,λ)

∂λ2
λ2 + 1

3!
∂3E(n,λ)

∂λ3
λ3 + · · · .

(3.16)
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Baroni, Giannozzi and Testa [5] used the perturbation theory in the DFT framework
(Density Functional Perturbation Theory, DFPT), making it possible to compute
anharmonic properties of semiconductors [6] from ab initio techniques.

3.2 Interatomic Force Constants

In order to calculate the total energy from the Hamiltonian Eq. (3.1), once all approx-
imations are done, it is necessary to choose a pseudopotential able to reproduce the
interaction terms defined above. The forces between atoms obtained provide the
interatomic force constants (IFC), from which the terms of the crystal Hamiltonian
can rewritten:

H2 = 1

2!
∑

lk,α

∑

l ′k ′,β

φlk,l ′k ′
αβ ulkα u

l ′k ′
β and (3.17)

H3 = 1

3!
∑

lk,α

∑

l ′k ′,β

∑

l ′′k ′′,γ

φlk,l ′k ′,l ′′k ′′
αβγ ulkα u

l ′k ′
β ul

′′k ′′
γ , (3.18)

whereφαβ corresponds to the harmonic force constants, andφαβγ to the anharmonic
ones. α β and γ are Cartesian indices to refer the direction of the displacement ulk

(the perturbation) of the atom k in the unit cell l. Notice that all the magnitudes are
defined in real space. In the same nomenclature, the kinetic energy term is expressed
as:

T = 1

2

∑

lk,α

mk[u̇lkα ]2 . (3.19)

To obtain the total energy of the system from the IFC analytic methods are required.
For accurate calculations of the IFC a proper choice of the length of the atomic

displacement is important. To calculate harmonic IFCs, the displacement should
be small enough to avoid anharmonic contributions. In contrast, to account for the
anharmonic effects these displacements have to be longer.

3.2.1 Harmonic Force Constants

The harmonic force constants correspond to the terms φαβ(lk, l ′k ′) defined in the
totalHamiltonian of the system.These values can be obtained bydoing displacements
of two atoms (or one atom in two different directions) of the cell and calculating the
total energy. The usual treatment of these magnitudes is to perform the calculations
in the reciprocal space:
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φk,k ′
αβ (q,q’) =

∑

l,l ′
φlk,l ′k ′

αβ eiqR
l

eiq
′Rl′

, (3.20)

whereRl is the atomic positionR of the unit cell l. Then the harmonic force constants
are calculated as:

φk,k ′
αβ (q,q’) = ∂2E

∂ukα(q)∂uk
′

β (q’)
, (3.21)

where
uk(q) =

∑

l

ulkeiqR
l

(3.22)

are the atomic displacements in the reciprocal space. Notice that now the atomic
displacements are expressed in the reciprocal space as a Fourier transform of the
displacement in the real space.

From the harmonic force constants the eigenvalue equation can be written, whose
solution provides the phonon frequencies and eigenvectors, i.e. the dispersion rela-
tions (DR): ∑

βk ′

1√
mkmk ′

Dk,k ′
αβ (q)ek

′
β (q) = ω2ekα(q) , (3.23)

where mk and mk ′ are the masses of the displaced atoms, ω the eigenvalue (i.e. the
frequency), e(q) the eigenvectors, and Dαβ the dynamical matrix:

Dk,k ′
αβ (q) =

∑

l ′
φ0k,l ′k ′

αβ eiqR
l′

. (3.24)

From the calculation point of view, to obtain the harmonic IFC it is enough to do one
displacement for each of the different type of atom in the unit cell.

3.2.2 Anharmonic Force Constants

The anharmonic force constants are those of higher order interaction than the har-
monic ones. Derivation of the expressions are given for third order anharmonic IFC.
Extension to higher orders can be easy obtained from the presented equations. The
third-order derivatives of the total energy provide the third-order IFC from which
phonon-phonon scattering rates can be obtained:

φk,k ′,k ′′
αβγ (q,q’,q”) = ∂3E

∂ukα(q)∂uk
′

β (q’)uk ′′
γ (q”)

. (3.25)
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In the last decade Esfarjani et al. [7] have developed the computational implemen-
tation of the calculation of harmonic and anharmonic IFC. To calculate anharmonic
force constants in a supercell, the number of the interacting neighbors has to be
limited, otherwise the number of calculations will be manually or computationally
unachievable. Even doing this restriction, no less than interactions up to the third
neighbor must to be considered if accurate anharmonic IFCs are desired. In this case
the number of interactions still remain very high. Additional constrictions to reduce
the number of calculations are based on the symmetry of the systems. Expressions of
the constrictions are given for the IFC in the real space definition [8]. Higher order
perturbation will require extra constrictions [7, 8]. These are important to capture
anharmonicity at high temperature or low pressure systems.

(a) Invariance Under Permutation of Indices

From its definition, a force constant is a derivative of the total energy with respect to
a perturbation (see Eqs. (3.21) and (3.25)), then its value is independent on the order
of differentiation:

φlk,′lk ′
αβ = φl ′k ′,lk

βα . (3.26)

The same expression can be extended to higher orders.

(b) Invariance Under Arbitrary Translation of the System

The invariance of the force constants under an arbitrary translation of the system is
known as acoustic sum rule (ASR). The ASR can be written mathematically as:

∑

l ′k ′
φ0k,l ′k ′

αβ = 0 ∀ (αβ, k) and (3.27)

∑

l ′′k ′′
φ0k,l ′k ′,l ′′k ′′

αβγ = 0 ∀ (αβ, k, k ′′) , (3.28)

for the harmonic and anharmonic force constants respectively.

(c) Invariance Under Arbitrary Rotation of the System

In analogy to the translation invariance, the IFC are invariant under an arbitrary
rotation of the system.

∑

l ′k ′
φ0k,l ′k ′,l ′′k ′′

αβγ (rl
′′k ′′

δ )εγδν + φ0k,l ′k ′
γβ εγαν+

φ0k,l ′k ′
αγ εγβν = 0 ∀ (αν, l, kk ′) .

(3.29)

The latter equation is expressed using Einstein summation notation, where εαβγ is the
antisymmetric Levy-Civita tensor. The term (rl

′′k ′′
δ ) corresponds to the component δ

of the vector from the origin to the atom k ′′ in the unit cell l ′′.

(d) Other Symmetries
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Other symmetries depending on the crystal point/space group may help to reduce the
number of force constants to be calculated, like lattice translation, rotation or mirror.
For a certain mirror or rotation symmetry operation S:

φlk,l ′k ′
αβ =

∑

α′β′
φlk,l ′k ′

α′β′ Sαα′
Sββ′

(3.30)

in the case of second order forces. For low symmetry crystals extra constraints on
elastic constants can be used [9].

3.2.3 Calculation Methods

There are two main methods to obtain the IFC, the 2n+1 theorem and finite differ-
ences method. Both of them make use of the invariance described above to compute
only the minimal set of perturbations able to produce all the IFC for calculation of
harmonic and anharmonic properties.

(a) Finite Difference Method

To obtain an approximate expression of the energy on the atoms once the system
is perturbed under a displacement, a suitable treatment is to do a Taylor expansion
of the energy respect to the displacement. When only one atom is displaced, in real
space:

E(δulkα ) ≈ E(0) + ∂E

∂δulkα
δulkα + 1

2

∂2E

∂2δulkα
(δulkα )2 , (3.31)

where δulkα is an small displacement of the atom lk in the direction α and E(0) the
energy in the relaxed state. For two atoms displaced:

E(δulkα , δul
′k ′
β ) ≈ E(0) + ∂E

∂δulkα
δulkα + ∂E

∂δul
′k ′
β

δul
′k ′
β

+1

2

∂2E

∂2δulkα
(δulkα )2 + 1

2

∂2E

∂2δul
′k ′
β

(δul
′k ′
β )2 + ∂2E

∂δulkα ∂ul
′k ′
β

δulkα δul
′k ′
β .

(3.32)

To make use of the Taylor expressions of the energy, the harmonic force constants
(Eq. (3.21)) can be rewritten in the real space as:

φlk,l ′k ′
αβ = ∂

∂ulkα

∂E

∂ul
′k ′
β

= ∂

∂ulkα
Fl ′k ′

β . (3.33)

Theprevious expression represents a change in the force constant in the component
α of an atom lk when an atom l ′k ′ is displaced a distance δu in the direction β. The
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simplest case to calculate the harmonic IFC is to consider lk = l ′k ′ and α = β, then
rearranging terms from Eq. (3.31) and its opposite E(−δukα):

φlk,l ′k ′
αβ = ∂Flk

α

∂ulkα
≈ Flk

α − Flk−α

2δulkα
. (3.34)

Equation (3.34) is enough to compute the whole dynamical matrix. For the anhar-
monic IFC an analog treatment can be done:

φlk,l ′k ′,l ′′k ′′
αβγ = ∂

∂ulkα

∂2E

∂ul
′k ′
β ul ′′k ′′

γ

. (3.35)

Then making use of Eqs. (3.31) and (3.32) and its opposites E(−δulkα ) and
E(−δulkα ,−δul

′k ′
β ) with a little algebra:

φlk,l ′k ′,l ′′k ′′
αβγ ≈ ∂

∂ulkα

El ′k ′l ′′k ′′
βγ + El ′k ′l ′′k ′′

−β−γ − Elk
β − Elk

−β − El ′′k ′′
γ − El ′′k ′′

−γ + 2E(0)

2δul
′k ′
β δul ′′k ′′

γ

,

(3.36)
where the terms ∂El ′k ′l ′′k ′′

βγ /∂ulkα = Fl ′k ′l ′′k ′′
βγ (α, lk) refers to the force that feels the

component α of the atom lk when the atom l ′k ′ is displaced δu in the direction β
(δul

′k ′
β ) and the atom l ′′k ′′ is displaced in the direction γ (δul

′′k ′′
γ ).

The total energy calculations involved in the previous equations can be done in
the DFT framework.

(b) 2n+1 Theorem

The use of DFT together with perturbation theory leads to the density functional
perturbation theory (DFPT), able to compute harmonic and anharmonic couplings
[10]. The 2n+1 theorem of DFPT establishes the relationship of the (2n+1)-order
energy derivatives to the first n-th order eigenfunctions of a system. Then, to obtain
at least 3rd order energy derivatives to compute anharmonic effects (Eq. (3.31)) just
the first derivatives of the charge density are required, which can be expressed as
well using the perturbation theory as:

n(r,λ) = n0(r) + ∂n(r)
∂λ

λ + 1

2!
∂2n(r)
∂λ2

λ2 + 1

3!
∂3n(r)
∂λ3

λ3 + · · · . (3.37)

Treating the atomic displacements as a perturbation of the system λ, the linear
response ∂n(r)/∂λ will provide the third derivatives of the energy. To do that it is
necessary to do self-consistent calculations as a function of the atomic displacements.
Phonon energies are also obtained with this methodology.

In some special cases like for calculation of phonon dispersion of metallic or
magnetic systems, orwhen using ultrasoft pseudopotentials, the use of directmethods
becomes more suitable.
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3.3 Phonon Scattering Mechanisms

When a perturbation in energy (or temperature) or in crystal momentum is inducted
in a crystal, the phonon population becomes displaced from the equilibrium one.
Due to the interaction of phonons with boundaries, impurities and other phonons,
such population relaxes to the equilibrium one in a characteristic time, known as the
phonon lifetime.

The phonon scattering processes govern the dynamics of a crystal. Independent
phonon oscillations correspond to harmonic vibrations of the lattice that provide the
dispersion relations. Regarding anharmonic vibrations, 3-phonon scattering mecha-
nisms have been proved to be enough to compute the thermal conductivity of pure
bulk semiconductors. When impurities and/or boundaries are present in the sample
extra scattering mechanisms need to be included in the calculations.

3.3.1 Fermi Golden Rule

To find the probability of a transition from an initial state Ei to a final state E f it is
necessary to use Fermi’s Golden Rule (FGR):

� = 2π

�

∑

f

|〈i |H| f 〉|2δ(Ei − E f ) , (3.38)

where theHamiltonianH can be as generic as desired. The delta function δ(Ei − E f )

corresponds to the conservation of the energy between the initial and final state. For
anharmonic processes Hanharm = H3, defined in Sect. 3.1.

3.3.2 3-Phonon Scattering Rates

When a system is perturbed from its equilibrium the atomic positions starts to vibrate
and there appear linear combinations of vibration modes. Some of these vibrations
can interact with a probability that depends on the well known FGR. All of these
interactions between phonons must conserve the energy between the initial and final
states, but the crystalline momentum �q can be conserved or not. When in a collision
the momentum is conserved is defined a normal (N) process, otherwise is called
umklapp (U) process.1 Moreover two other kinds of processes can occur, one phonon
interacting with another to produce a final single phonon (type 1) or one phonon that
splits into two phonons (type 2).

1Strictly speaking, umklapp collisions also conserve crystalline momentum, but a non-zero vector
of the reciprocal lattice must be used to bring back the final momentum to the first Brillouin zone.
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Fig. 3.3 Top: Feynman diagram of type 1 and type 2 processes. Bottom: Sketch of phonon-phonon
scattering processes

The quantum of energy for a phonon is defined as E = �ω, then the conservation
of energy:

ωq = ωq′ + ωq′′ or ωq + ωq′ = ωq′′ . (3.39)

The conservation of momentum for N processes is:

q = q’ + q” or q + q’ = q” , (3.40)

while for U processes:

q = q’ + q” + G or q + q’ = q” + G , (3.41)

where G is a reciprocal lattice vector.
From Fig. 3.3, when q”0 is inside the first Brollouin Zone (1BZ) G = 0 and a N

process (q”0=q”) occurs. On the contrary, when q”0 is outside the 1BZ, the process
is re-expressed in a 1BZ equivalent q-vector q” and becomes an U process.

To define properly the N and U processes it is important to have the 1BZ zone
centered at q = (0, 0, 0), the so-called � point. With these premises, it is considered
that N and U processes are only properly defined in the 1BZ of the primitive cell
centered at �, otherwise the splitting N-U can be different.

For simplicity of notation let’s use the sub/super index q
q to indicate the dependence

of a magnitude on a phonon mode and capital q to denote the phonon wave vector.
The goal of calculating the scattering rates is to obtain the relaxation time of each
process as:

τq = 1

2�q
, (3.42)
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where here �q represents the scattering rate, and can be split into two types of
processes:

�q = �q′q′′
q + �

q′′
qq′ . (3.43)

The first term corresponds to type 1 processes and the second to type 2. � is the
transition rate of each process, which is defined in terms of the scattering matrix:

�q′q′′
q = π

2�2Nq

∑

q′q′′
|V q′q′′

q |2(1 + nq′ + nq′′)δ(ωq − ωq′ − ωq′′) (3.44)

�
q′′
qq′ = π

�2Nq

∑

q′q′′
|V q′′

qq′ |2(nq′ − nq′′)δ(ωq + ωq′ − ωq′′) . (3.45)

V q′′
qq′ is the 3-phonon transition matrix, n the Bose–Einstein distribution function for

eachmode and δ(ω) is aDirac delta. Nq refers to the number ofq-points considered in
the mesh sampling over the Brillouin zone. The factor 1/2 in Eq. (3.44) is introduced
to avoid counting twice the same process q = q’ + q” = q” + q’. Notice that the
selection of the q-points will determine if the process is N or U. One can determine
N or U scattering rate by doing the summation over all the q,q’,q” that fulfill the
condition that G = 0 (N) or G 
= 0 (U) (see Eqs. (3.40) and (3.41)).

At this point, the calculation of the scattering matrix in the reciprocal space can
be expressed in terms of anharmonic IFC described in previous sections:

V (qq′q′′) =
(

�

2

)3/2 ∑

k

∑

l ′k ′

∑

l ′′k ′′

∑

αβγ

φ0k,lk ′,lk ′′
αβγ eiq

′Rl′ eiq
′′Rl′′

· eqαe
q′
β e

q′′
γ√

mkmk ′mk ′′ωqωq′ωq′′
,

(3.46)

where e and ω are the eigenvectors and the eigenvalues for each mode obtained from
the solution of the dynamical matrix and mk the mass of the atom in the position
k. The term of the Fourier transform eiqRl for the basis atom has been ommited as
R = 0. In the latter expression, the summation in k goes over all the atoms of the
primitive cell, and k ′ and k ′′ over all the number of selected neighboring cells l ′, l ′′.

From symmetry conditions one can see that |V q′q′′
q | = |V q′′

qq′ | = |V (qq′q′′)| then:

�q = π

2�2Nq

∑

q′q′′
|V (qq′q′′)|2[(1 + nq′ + nq′′)δ(ωq − ωq′ − ωq′′)

+2(nq′ − nq′′)δ(ωq + ωq′ − ωq′′)] .

(3.47)

From a computational point of view, the conservation of energy determined by
the delta function can be expressed as a Gaussian or Lorentzian function, where a
smearing parameter ε must be included in order to determine the restriction of the
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condition. This parameter should be modified with the mesh sampling, the finer the
mesh, the smaller the smearing:

δGaussian(x) = e−( x
ε )2

ε
√

π
, δLorentzian(x) = 1

π

ε
2

x2 + ( ε
2 )

2
. (3.48)

Instead of using a Gaussian or Lorentzian approaches, the relaxation time can be
also determined from the imaginary part of the phonon propagator self-energy �(q)

of 3-phonon scattering process [11, 12]:

�(q) = 1

2�2Nq

∑

q′q′′
|V (qq′q′′)|2

·
[
1 + nq′ + nq′′

ωc − ωq′ − ωq′′
+ 2(nq′ − nq′′)

ωc + ωq′ − ωq′′

]
,

(3.49)

where ωc = ωq − iε, being ε a smearing factor depending on the q-point mesh, as
found for in the Gaussian or Lorentzian cases. Then, as �(q) = �′(q) − i�′′(q),
τq = 1/2�′′(q). Notice that �′′(q) = �q.

Another way to compute the 3-phonon scattering rates is by means the improved
tetrahedron method. In this method the Brillouin zone is sampled by tetrahedrons
and linear interpolation is done to compute the phonon eigenvalues [13]. The main
advantage of this method is that it is not required to define an smearing value, as
done in the Gaussian and Lorentzian functions.

As pointed out, the number of selected neighbors is important to capture the
anharmonicity of the crystal, but is not the only important parameter. As a good
approximation to reproduce for instance the thermal conductivity of semiconductors
it is valid to use the Bose–Einstein equilibrium distribution function to compute the
transition scattering matrix. In recent experiments [14–20] where ultrafast heating
or huge temperature gradients are employed this approximation is no longer valid as
the deviation from equilibrium is important.

An analogous derivation can be done to compute the electron relaxation time
τe required for the calculation of the electrical conductivity σe and the electrical
thermal conductivity κe. In analogy with phonons, while the process q → q′q′′ is
expressed as n(1 + n′)(1 + n′′), for electrons the process k → k′k′′ is expressed as
f (1 − f ′)(1 − f ′′), where f is the electron occupation number. In equilibrium, f0
is the Fermi-Dirac distribution function.

3.3.3 Mass Variation Scattering

In real crystals there exists a certain number of imperfections that can scatter phonons.
Boundaries, grain boundaries and dislocations are someof them, but themost relevant
mechanisms for highly crystalline solids are the ones due tomass variations. Its origin
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relies basically in impurities, different isotopic concentrations and different atomic
species like in the case of alloys. This scattering rate can be also derived from the
FGR. To do that it is necessary to know the expression of the perturbed Hamiltonian
due to mass variations. An expression given by Klemens [21, 22] and Tamura [23]
is:

H = 1

2
δM

(
dr
dt

)2

, (3.50)

where r is the atomic position. If the interaction is elastic, then the energy and the
crystalline momentum are conserved. Moreover, if cubic symmetry is considered,
then from the FGR [23]

� I
q = π

4Nq
ω2
q

∑

q′
δ(ωq − ωq′)

∑

s

γ(s)|e∗(s,q′)e(s,q)|2 , (3.51)

where

γ(s) =
∑

i

fi (s)

(
1 − mi (s)

Ms

)2

(3.52)

is the mass fluctuation factor. fi is the fraction of the i th isotope with mass mi and
Ms = ∑

i fimi (s) the averaged mass.
Notice that Eq. (3.51) does not have any spatial dependence, then after a little

algebra themass variation impurity scattering can be expressed in terms of the density
of states D(ω) in a very simple way [24]:

τ−1
I = π

6
γ(s)D(ω)ω2 . (3.53)

Notice that all these magnitudes are calculated and no free parameters are used.
The alloy relaxation time needs a more detailed discussion. In single species

crystals the mass defect term describes the variability in isotopic abundance but in
alloys it should also account for the variability in the force and lattice constants [21].
In this case it is necessary to redefine the fluctuation factor:

γ(s) = 1

12
γ2
M +

(
1√
6
γc2 −

√
2

3
QGγR

)2

, (3.54)

where

γα =
∑

i

xi

(
αi − ᾱx

ᾱx

)2

(3.55)

is the coefficient of variance of mass(M), squared velocity (c2) or impurity radius
(R), being αi the value for the isotope/species i and ᾱx the averaged value over all
the atoms. Q is a factor that depends on the type of the impurity (for substitution
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Q = 4.2 [21]) and G is the Grüneisen parameter. This parameter relates the change
in the phonon frequency with the volume of the crystal, and can be obtained from
first principles as:

Gq = − 1

6ωq

∑

k

∑

l ′k ′

∑

l ′′k ′′

∑

αβγ

φ0k,lk ′,lk ′′
αβγ

· eq∗
α eq

′
β√

mkmk ′
eiq

′Rl′ rl
′′k ′′

δ .

(3.56)

As done by Capinski et al. [24], in Eq. (3.53), instead of the Debye approxima-
tion, the density of states (DOS) obtained from the full dispersion relations (DR) at
stoichiometry x , D(ω) is used. As expected, the second and third terms reduce to
zero for pure silicon or germanium and the isotopic mass defect corresponding to
the first term is the only one remaining.

3.3.4 Boundary Scattering

A widely extended way to account for the individual collisions of phonons with
the boundaries in a certain geometry is to use Casimir’s expression [25] τb(ω) =
Leff/v(ω). This expression acts as a limiter for phonons with a mean free path (MFP)
vτ longer than Leff. Different simple geometries can be studied with this expression
using that Leff is the diameter for wires, 1.12l for rods (i.e. rectangular cross section
beams), where l = √

l1 · l2, and 2.25h for thin films,where h is the film thickness [26]
(Fig. 3.4).

In kineticmodels theway to includeCasimir’s expression for boundary effects is to
add it through the Mathiessen rule τK = (1/τint + 1/τB)−1, where τint correspond to
the intrinsic relaxation times (umklapp and impurity). Boundary effects becomemore
important as the temperature decreases. At low temperatures the umklapp scattering
decreases drastically, as atomicmovements are decreased, and then its relaxation time
becomes huge. In contrast, Casimir’s expressions is independent of temperature. At
these temperatures low energy phonons dominate the thermal conductivity.

Figure 3.5 shows all the relaxation times involved in thermal transport at T = 3 K
and the experimental thermal conductivity of silicon. As can be observed in Fig. 3.5

Fig. 3.4 Sketch of typical sample geometries. From left to right: wire, film and rod
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Fig. 3.5 Left: Umklapp (U), normal (N), impurity (I) and boundary (B) relaxation times for silicon
at T = 3 K and Leff = 2.8 mm. Right: Silicon experimental thermal conductivity [27]

left, at low temperatures it is clear that the boundary scattering relaxes much faster
than the other mechanisms. Figure 3.5 right shows the temperature dependence of
the thermal conductivity and the specific trend at low temperatures. In the KCM
framework, at low temperatures � → 0 and therefore the total thermal conductivity
tends to the kinetic one (κT → κK ). AsκK = Cvv

2
xτ , and the dominantmechanism is

the boundary τ → τB = Leff/vx , thus κT = Cvvx Leff. The phonon velocity and the
effective length are temperature independent, then κT only depends on temperature
through the specific heat. It is well known that at low temperatures Cv ∝ T 3, then
κT ∝ T 3.

The geometry effects have been also studied in terms of the dimensionless
Knudsen number (Kn = �/L), where �i is the intrinsic phonon MFP and L the
length of the sample. Two expressions are given by Zang [28] to express the effec-
tive thermal conductivity for wires and thin films for small and high Knudsen values.
In this case, L refers directly to the diameter for wires and to the thickness for films,
without any proportionality constant.

For high Knudsen Kn > 5:

κeff

κbulk
= 2Kn − 1

Kn2 + 2Kn − 1
for films , (3.57)

κeff

κbulk
= 4Kn − 1

4Kn2 + 4Kn − 1
for wires . (3.58)

For small Knudsen Kn < 1 it is possible to use the same expression for wires and
films: κeff

κbulk
= m

m + 1
for Kn < 1 , (3.59)

where m = 3 for films and m = 4/3 for wires.
Figure 3.6 shows Zang’s expressions in comparison with Casimir’s expression

rewritten in terms of κeff/κbulk for wires and films. Notice that as Zang’s expres-
sions are only defined for Kn > 5 and Kn < 1, therefore interpolation is required
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Fig. 3.6 Normalized effective thermal conductivity as a function of the Knudsen number. Dashed
lines represent logarithmic interpolation for 1 >Kn> 5. Analogy with Casimir’s expressions are
written for comparison

in between. Even the trend for films and wires is similar in both derivations, small
differences can be appreciated in the region from Kn = 0.1 to Kn = 10.

In Chap.5 boundary effects are studied from a kinetic-collective approach and
from a full hydrodynamic framework.

3.3.5 Electron-Phonon Scattering

Dealing with highly doped semiconductors having a carrier concentration above
1017 cm−3 or metals, the electron-phonon interaction can be a source of scattering
events that contribute to the reduction of the thermal conductivity [29]. In a vibrating
lattice, atoms are displaced from its equilibrium position, and then the effective
electrostatic potential that an electron feels is altered [30].

An analog treatment to the one found for 3-phonon scattering can be done consid-
ering the Fermi-Dirac distribution function for electrons. In this case the conservation
of energy and momentum is also applicable:

�qλ = π

�

∑

mn,k

|gλ
mn(q,k)|2 · [ fnk(1 − fmk+q)nqλδ(εmk+q − εnk − �ωqλ)

− fnk(1 − fmk−q)(nqλ + 1)δ(εmk−q − εnk + �ωqλ)] ,

(3.60)
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where f ,k and n,q are the electron and phonon distribution functions and wave
vectors respectively, ε the electron energy, and gλ

mn the transitionmatrix. Details of the
matrix elements can be found elsewhere [29, 30]. This contribution can be added to
the phonon-phonon scattering rate in order to compute the total thermal conductivity.
In the case of electron-phonon collisions, the momentum conservation also allows
distinguishing betweenN andU processes [30] q + k = k’ + G or q = k + k’ + G,
for G = 0 or G 
= 0, again restricting the definition to the 1BZ of the primitive cell
centered at �.

A simplifiedway to compute the contribution of phonon-electron interactionwith-
out the need of calculating all the collision matrix is using [31]:

κe−p = 27LT I 24
ρe(TD/T )6π2z2e

, (3.61)

where L is theLorentz number,ρe the electrical resistivity, TD theDebye temperature,
ze the number of free electrons per atom and

In =
∫ TD/T

0

xnex

(ex − 1)2
dx , with x ≡ �ω

kBT
. (3.62)

Notice that Eq. (3.61) does not allow distinguishing between normal and umklapp
processes, in contrast to Eq. (3.60).

As it has been shown in Sect. 2.7, the electron-phonon interaction has a contribu-
tion to the Seebeck coefficient (S). Therefore improvement of this termwill lead to an
increase of the figure of merit (ZT ). A subject of future study could be to observe if
a collective transport regime emerged from dominant N electron-phonon interaction
can be relevant to improve S and consequently the thermoelectric performance.

3.4 Ab initio KCM Expressions

In a general situation the thermal conductivity is a complex calculation including
different order relaxation times. The Kinetic Collective Model (KCM) offers a way
to calculate the total thermal conductivity by imposing momentum conservation in
the normal scattering term of the collision matrix. This allows splitting the total
thermal conductivity into a kinetic and a collective contribution:

κT (T ) = κ̂K (T ) · (1 − �) + κ̂C(T ) · � = κK (T ) + κC(T ) , (3.63)

where the hat ˆ indicates the maximum possible contribution of each regime and:

�(T ) = �N (T )

�N (T ) + �R(T )
, (3.64)
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where�N (T ) and�R(T ) are averagedN and resistive (R) scattering rates. The kinetic
and collective terms have two main differences. The first is the way to calculate the
total mean free time of the participating scattering mechanisms, and the second is the
form to include boundary effects in the calculations. In this sectionwill be considered
the first aspect. The inclusion of boundary effects will be treated in Chap.5. Here, the
KCM transport equations, as derived from Guyer and Krumhansl [32] and extended
to anisotropic systems (see Appendix A) together with the maximization of entropy
derivation [26], are presented.

The expressions for the calculations of the thermal conductivity can be calculated
as a summation over all themodesq in the first Brillouin zone or by doing a frequency
integral accounting for the density of states D(ω) of each mode2:

1

NqV0

∑

q

→
∫ ωmax

0
D(ω)dω , (3.65)

where Nq is the number of q-points in the mesh sampling and V0 the volume of
the unit cell. This procedure (when applicable) will reduce the computational time
by binning the modes in a dω fraction with its respective weight determined by the
DOS.

For the sake of simplicity, the different projections of the phonon distribution
function in the momentum space found in the KCM equations in terms of Cq,i are
defined as:

Cq,i =
(q
ω

)i
Cq , for i = 0, 1 , (3.66)

and

Cq,i =
(
q ⊗ q
ω2

)
Cq , for i = 2 . (3.67)

These terms appears as a generalization of the Debye dispersionless approximation
used in the original derivation of Guyer and Krumhansl [32] (see Appendix A).
Notice that Eq. (3.67) for i = 0 is the mode specific heat Cq.

Using the summation over q, the kinetic contribution is defined as:

κ̂K (T ) = 1

NqV0

∑

q

Cq,0vq ⊗ vqτq,R , (3.68)

where
τ−1
q,R = 2�q,R = 2(�q,I + �q,U ) (3.69)

is the total resistive relaxation time of the mode q, calculated through the addition of
the impurity τI and umklapp τU scattering rates times, intrinsic of each material. The

2This assumption is only valid for isotropic systems.
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considered intrinsic processes are those that do not depend on geometry nor external
effects. From the definition of the kinetic thermal conductivity, the kinetic mean free
time (MFT) can be directly expressed as:

τ̂R(T ) = κ̂K (T )∑
q Cq,0vq ⊗ vq

=
∑

q Cq,0vq ⊗ vqτq,R∑
q Cq,0vq ⊗ vq

. (3.70)

The other contribution to the total thermal conductivity κT , the collective contri-
bution, is calculated as:

κ̂C(T ) = 1

NV0

∑
q Cq,1vq ⊗ ∑

q Cq,1vq
∑

q Cq,2τ
−1
q,R

, (3.71)

where the collective MFT is an average over the whole distribution:

τC(T ) =
∑

q Cq,2
∑

q τ−1
q,RCq,2

. (3.72)

The N scattering involved in the calculation of the switching factor � defined in
Eq. (3.64) is:

�N (T )−1 =
∑

q �−1
q,NCq,0∑
q Cq,0

, (3.73)

and the resistive scattering rate is nothing but �R(T ) = (2τ̂R(T ))−1.
From the previous expressions, the total relaxation time per mode in the KCM is

defined as:

τT (q, T ) = τ̂q,K · (1 − �) + τ̂C(T ) · � = τq,K + τC(T ) . (3.74)

Notice that the collective MFT is already an integrated value that is constant for all
the modes. This contribution is the responsible of the enhancement of the optical
modes [33], as shown in Fig. 2.2. In analogy, the total temperature dependent MFT
will be:

τT (T ) = τ̂K (T ) · (1 − �) + τ̂C(T ) · � = τK (T ) + τC(T ) . (3.75)

These MFT in the KCM framework correspond to the so-called collectons. Similar
to relaxons, the collectons are a linear combination of phonons.
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3.4.1 Note on Matthiessen’s Rule

It has been reported in recent works that Matthiessen’s rule approximation may fail
in some materials [34–37], specially at low temperatures [34]. The total thermal
conductivity computed from individual relaxation times will overestimate the real
thermal conductivity computed froma full collisionmatrix including all the scattering
mechanisms:

1

κT
≤ 1

κ1
+ 1

κ2
. (3.76)

As pointed out by Cepellotti et al., the major failure of this approximation comes
from the splitting ofN andU processes and adding the thermal conductivity obtained
from their individual contributions.3 In the KCM, N processes do not contribute to
the thermal conductivity, but they play an important role through the switching factor.
Therefore this failure is not present in the KCM.

3.5 Calculation Methodologies

The study of material properties through ab initio calculations can be performed
by lattice and molecular dynamics. In lattice dynamics simulations, the Newton’s
movement equations are solved analytically assuming harmonic vibrations and fixed
positions. In this kind of simulations, thus, crystalline materials with high symmetry
are required in order to allow the use of periodic conditions to solve the equations.
To account for atomic interactions a potential obtained under perturbation theory is
required, which should include anharmonic terms to compute temperature effects.

Lattice dynamics simulations based on the solution of the BTE have achieved
in the last decade great importance as can be computed in a full first principles
framework, thus avoiding fitting parameters. Good agreement between experimental
data and ab initio calculations has been achieved [38–41].

Molecular dynamics is a calculation approach used to study material properties
by numerically integrating the classical Newton equations. This approach consists
in a simulation of an atomic system that uses analytical potentials (like Lennard-
Jones or Stillinger–Weber) to account for the interaction between atoms, allowing
the study of time-dependent phenomena like first order phase transitions, or the
efficient computation of thermodynamic quantities.

The equilibrium structure is determined by an initial random guess of the velocity
of the particles and averaging over long time intervals at a fixed temperature and
pressure. To control these two latter parameters, a Nose-Hoover thermostat and a
Berendsen barostat can be used, respectively [31]. Then from the force acting on
each atom, the acceleration is determined and the velocity is estimated at each time

3We want to remark that N processes alone must not contribute to the thermal resistance as are
momentum conserving collisions.
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step. From these parameters it is possible to calculate the heat flux at each time and
position using:

Q = d

dt

N∑

i=1

ri Ei , (3.77)

where ri is the atomic position and Ei its respective energy excluding the site energy.
The thermal conductivity can be computed using the Green–Kubo relations:

κ = 1

kBT 2V

∫ ∞

0
〈Q(t + τ )Q(t)〉 dτ , (3.78)

where the thermal conductivity κ is related to the heat flux autocorrelation func-
tion 〈Q(t + τ )Q(t)〉. V and T are the volume and temperature of the calculation
respectively. Another way to compute the thermal conductivity is by determining
the heat flux under an external temperature gradient and using the Fourier law (non-
equilibrium molecular dynamics (NEMD)).

3.6 System Modeling

As explained in previous sections, a wrong choice of the potential or number of atoms
could lead to a very time expensive or high computational cost calculation. The use
of pseudopotentials in the framework of the total energy pseudopotential method
does not require such amount of information (i.e. memory) as the real potential of
each atom (Fig. 3.1).

The scheme from Fig. 3.7 shows the standard calculation procedure for total
energy calculations, where Vion is the ionic potential obtained by summing the prod-
uct of the structure factor S(G) and the pseudopotential over all species of atoms.

Starting from a trial function of the electronic density, expressions for VH and VXC

are constructed. From these potentials the Kohn–Sham equations are solved and the
eigenstates of the system are obtained. These eigenstates generate a new electronic
density, which normally differs from the trial one. If both are the same, the solution
is self-consistent and the total energy is computed. On the contrary, from the new
electronic density new VH and VXC are calculated and the process is repeated until
the starting electric density is the same as the final one up to some predetermined
tolerance.

In order to obtain accurate results able to obtain the correct properties of a crystal,
some convergence tests, not just self-consistency, have to be done.

Equilibrium Lattice Constant

To find the equilibrium lattice constant that minimizes the energy of the system it
is necessary to perform several total energy calculations varying the lattice constant
until find the one that leads to the minimum total energy for the system (Fig. 3.8).
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Fig. 3.7 Work flow of ab initio calculations [1]

Fig. 3.8 Total energy versus lattice constant for a 2-atoms silicon primitive cell
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Fig. 3.9 Total energy versus q-point grid sampling for a 2-atoms silicon primitive cell

Fig. 3.10 Total energy versus kinetic energy cutoff for a 2-atoms silicon primitive cell

This parameter will correspond to the minimum of the curve in an energy-lattice
constant plot.

Convergence Criteria

The electronic states and the total energy of the system are calculated in a special set
of q points in the Brillouin Zone using a homogeneous Monkhorst-Pack grid. Good
performance is obtained for insulators and semiconductors with broad grids, while
for semi-metals and metals a denser grid is required in order to define the Fermi
surface more accurately. For self-consistent calculations, the total energy should
converge as the density of the grid increases (Fig. 3.9).

Kinetic Energy Cutoff

In theory, the electronic wave functions must be expanded in an infinite plane-wave
basis set, but computationally this is impossible. Taking into account that the plane
waves coefficients in Bloch’s theorem for the lower kinetic energy states are the
important ones, the basis set can be truncated to a certain energy value. The total
energy of the system should converge as the cutoff energy is increased (Fig. 3.10).
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3.6.1 Alloy Simulation

Some important properties of materials can be found not in pure materials but in
alloys. In the case of two well known thermoelectric materials like Si and Ge, an
important reduction of thermal conductivity is found in the alloy Si1-xGex for germa-
nium concentrations higher than x = 0.05. The computational simulation of alloys
is done mainly by two procedures, the Virtual Crystal Approximation (VCA) and
the random distribution of impurities.

(a) Virtual Crystal Approximation

TheVCA is employedwhen the total energy pseudopotential calculations framework
is used. This technique uses a mixture of the pseudopotential of the two compounds
that forms the alloy in the desired composition [42]. Once the new pseudopotential
is obtained the calculation is done in the same way as described in Sect. 3.1.

(b) Random Distribution of Impurities

Alloy can be also simulated by generating supercells with random substitutions of
a certain number of impurities to the desired alloy composition. Calculations for a
fixed number of impurities need to be done with different distributions and average
the results in order to improve the procedure. A big enough supercell is required for
these simulations to avoid the interaction of defects with the ones of the neighboring
supercell. A convergence test can be done increasing the supercell size maintaining
the impurity ratio until the total energy converges.

The simulation of defects (vacancies) in a cell can be done in the same way as the
random distribution of impurities but instead of substituting the atom, removing it.

This kind of alloy simulations are more suitable for molecular dynamics simula-
tions where large systems can be implemented. This way the distribution of alloying
atoms or defects can be more arbitrary and does not require to run as much different
simulations and averaging.

A comparison of the phonon scattering rates, relaxation times and the density of
states using both techniques can be obtained elsewhere [43].

An improvement of this technique are the special quasirandom structures (SQS’s)
[44]. In this case, it is demonstrated that for a finite number of periodic cells, there
exist specific configurations that improve the results instead of completely random
configurations. The selection criteria has a physical meaning, for example using that
generally distant atoms contribute less to the total energy than the closer ones.

Another technique used for the simulation of alloys is the so-called cluster expan-
sion [45], which allows rapid evaluation of different configurations in order to obtain
averaged properties.
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3.7 Computational Methods

In this section the general workflow used for the KCM ab initio calculations of
thermal properties is detailed.

The ab initio methods allow calculating the harmonic properties of the crystal,
such as the dispersion relations and density of states, as well as anhamonic properties
from the interatomic force constants.All these calculations can be donewith available
software such as Quantum ESPRESSO [6] or VASP package [46–49].

The first step is to describe the crystal under study. In this case, parameters such
as an initial guess of lattice constant based on the experimental value, cell structure
and atomic masses need to be specified. In a second step, it is necessary to choose
a suitable pseudopotential and run convergence tests to find the lattice parameter
that minimizes the total energy of the system. Once this parameter is obtained the
supercell can be created. The size of the supercell will be determined by the total
number of atoms. As explained, in ab initio lattice dynamics simulations the time
and memory of the simulation is determined by the number and type of atoms. A
reasonable supercell will have around 100–200 atoms. Tests on computational time
and memory use can be done in order to determine the most suitable supercell.

A second step is to determine the harmonic properties of the crystal. This will
allow knowing the phonon band structure.

Once the harmonic information of the crystal is known, in order to study thermal
transport it is necessary to obtain anharmonic IFC from small atomic displacements.
To determine the number of displacements and the atoms involved it is necessary to
establish a cutoff radius. This value will determine the number of neighbors involved
in the calculation. This procedure can be done directly by open source codes such
as ALAMODE [50] or Phono3py [51]. Depending on the desired cutoff radius,
the number of interactions will be determined and reduced according to the crystal
symmetries (see Sect. 3.2). For each of these displacements will be required to find
the total energy of the system in order to obtain the IFC. It is recommended to use a
supercell at least twice the size of the cutoff radius [7].

The last step prior to compute the thermal properties of the system is to deter-
mine the 3-phonon interaction scattering rates according to Eq. (3.43). ALAMODE
and Phono3py can calculate directly the scattering matrix in order to obtain the
phonon relaxation times. For the calculation of the thermal properties, ALAMODE
has already as an output the thermal conductivity under the Relaxation TimeApprox-
imation (RTA). In the case of Phono3py in addition to RTA, the direct solution of
the BTE (D-LBTE) is also available.

In the KCM, the computation of thermal properties requires the splitting of N
and U processes. This has been manually implemented in both ALAMODE and
Phono3py codes to test the model. Recently Phono3py has included the option of
this splitting in the source code. The ab initio KCM equations (Sect. 3.4) have been
implemented in an open source code and uploaded to be used as a post-processing tool
of Phono3py outputs in order to calculate the thermal conductivity and hydrodynamic
parameters.
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Fig. 3.11 KCM thermal transport program example [52]

In Fig. 3.11 an example of the output of the KCM script developed to compute
thermal properties of semiconductors from first principles is shown [52]. From this
program it can be obtained the thermal conductivity for bulk materials as for reduced
size samples using the kinetic-collective boundary approach (seeChap. 5). In addition
the accumulated thermal conductivity as a function of the frequency and mean free
path (MFP) can be obtained, as well as temperature dependent relaxation times and
non-local length to be used in a full hydrodynamic model.

3.7.1 Calculation Tips

In the calculations of IFCs using the direct method in a supercell it is preferable to
use a cubic supercell. This will simplify the identification of the crystal symmetries.
In addition, a cubic supercell is more suitable for an isotropic choice of neighboring
atoms in the calculation of anharmoinic IFC.

In the calculation of the thermal conductivity in the KCM it is required to split
N and U processes. As defined above, the differentiation of this processes is related
to the 1BZ. Therefore depending on the choice of the cell used in for the sampling
of the reciprocal space this splitting can be slightly different. Even though in the
general definition of N and U processes it is not taken into account, the proper way
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Fig. 3.12 Primitive and
conventional representation
the diamond-like cell for
silicon. The dark blue atoms
represent the atoms of the
basis

Fig. 3.13 First Brillouin
zone (1BZ) and irreducible
Brillouin zone (IBZ) for the
cubic conventional 8-atoms
cell (right) and for the
primitive 2-atoms cell (left)
of the FCC structure. Green
and red lines denotes the
projection of q on the XY
and XZ planes respectively

to define them is in the 1BZ of the primitive cell, otherwise the choice of N and U
processes will be arbitrary.

In Fig. 3.12 the primitive cell and a conventional cell for silicon are represented
in order to observe the different shape in each case. In Fig. 3.13 is represented the
sampling of the reciprocal space in the primitive and conventional cells shown in
Fig. 3.12. As expected, the reciprocal space of the rhombic primitive cell has a dif-
ferent shape as the one for the cubic conventional one.

The N and U relaxation times as a function of frequency are represented in
Fig. 3.14. As can be observed, even though the shape is quite similar in both cases,
small differences can be appreciated. For simple structures this might not have a
relevant effect in the calculation of thermal conductivity, but in complex cells the
difference could be higher. Therefore it is always recommended to dealwith primitive
cell when using KCM to have well defined N and U processes.
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Fig. 3.14 Normal and
umklapp relaxation times
calculated from a 2-atoms
FCC primitive cell and
8-atoms conventional cell for
silicon. The umklapp
relaxation time is multiplied
by ×1000 to easier
differentiation
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Chapter 4
Thermal Transport of Bulk
Semiconductors in the KCM

In Chap.2 the Kinetic Collective Model (KCM), a framework that allow describing
the phonon heat transport in solids including non-local and memory effects, has
been presented. It has been shown how to obtain the relaxation times that determine
the propagation of the different phonons on a sample as correction from the values
obtained from the Relaxation Time Approximation (RTA).

In Chap.3 a set of equations and techniques allowing to calculate the magnitudes
involved in the transport properties from ab initio have been described. In a first stage,
itwas explainedhow toobtain from theharmonic interactions of the lattice the phonon
dispersion relations (DR) and mode velocities. On a second step, anharmonic effects
allow calculating the phonon relaxation times for the different phonon collisions.

In this chapter, ab initio techniques are used in the KCM to describe the thermal
conductivity avoiding any fitting parameter.

First, thermal conductivity of several well known diamond-like bulk semiconduc-
tors as Si, Ge, C (diamond) and GaAs are calculated in a wide range of sizes and
temperatures, showing good agreement with experimental data without the use of
any fitting parameter. The study is extended to other structures different from classi-
cal diamond-like crystals, like lead telluride (PbTe) or more complex materials such
as α-quartz (SiO2) or bismuth telluride (Bi2Te3).

On a second part theKCM is applied to study the thermal conductivity of Si1−xGex
and InxGa1−xAs alloys. The calculated thermal conductivities match well with the
experimental data at different alloy concentrations. The model shows that impurity
concentrations as little as 0.4% effectively suppress the collective contribution to the
thermal conductivity in Si1−xGex , while in InxGa1−xAs, non-negligible collective
contribution (15%) is present at all alloy concentrations. The study shows the sig-
nificance of proper inclusion of N processes even in alloys for accurate modeling of
the thermal transport.

Finally graphene has been also calculated in the KCM to study a sample material
where collective regime is dominant. The correct prediction of kinetic alloys and
collective graphene shows the strength of the KCM.
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The results are compared with conventional pure kinetic models and is shown that
the split of the thermal conductivity in a kinetic and collective contribution allows to
understand some discrepancies with experimental data of those models.

4.1 Dispersion Relations and Density of States

To obtain the DR of the studied materials, information about the unit cell and atomic
masses is required. In the present case, for Si, Ge, C, a FCC bravais lattice with
2 atoms in the basis is defined, known as diamond structure. In this case the basis
consists on one atom in the position (0, 0, 0) and the other at (1/4, 1/4, 1/4). For
GaAs, Ga is in (0, 0, 0) while As in (1/4, 1/4, 1/4). In the case of the alloys, the
virtual Si1−xGex atom behaves in the same way of Si for instance, but with the mass
of the defined stoichiometry x . On the other side, InxGa1−xAs behaves like GaAs,
where the place of Ga is occupied by a virtual atom InxGa1−x . PbTe has a NaCl
structure, that is a FCC with 2 atoms in the basis, one at (0, 0, 0) and the other at (0,
1/2, 0). In the case of more complex structures, α-quartz has an hexagonal cell with
9 atoms and Bi2Te3 an hexagonal cell with 15 atoms. The different studied structures
can be observed in Fig. 4.1.

All the ab initio magnitudes required for the calculations of DR and density
of states (DOS) detailed in Sect. 3.2 are calculated from first principles using the
Quantum ESPRESSO package [2] and VASP package [3–6].

Fig. 4.1 Crystal structures of the different studied materials obtained with XCrySDen [1]
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Fig. 4.2 Dispersion relations of silicon, germanium, diamond and gallium arsenide along high
symmetry directions. Dots represent experimental data from [11–13]

For Si, Ge, C, GaAs and the alloys Quantum ESPRESSO has been used,
which implements Density Functional Theory (DFT) [7, 8] under the Local Den-
sity Approximation (LDA) in the parametrization of Perdew and Zunger [9]. Core
electrons were accounted for with norm-conserving pseudopotentials of the Von
Barth-Car type [10]. Plane waves were cut off at an energy of 60 Hartree. Born
effective charges, which account for the electrons shared in the covalent bond in
polar materials, and dielectric tensor were employed for GaAs to account for its
polar behavior. The calculations have been carried on a 3 × 3 × 3 supercell with 216
atoms generated from the conventional 8-atoms cell. The harmonic and anharmonic
interatomic force constants (IFC) have been calculated in a 4 × 4 × 4 q-point grid.

Figure4.2 shows the DR of the studied pure semiconductors. As one can observe,
the DR for silicon and germanium are quite similar despite differences in the maxi-
mum frequency value. For diamond, the optical branches achieve frequencies as high
as 40THz due to the small mass of the atoms. The lighter the atom, the higher the
maximum frequency.

The DR of gallium arsenide have one important difference compared to the above
materials. At the gamma point (�) there is a splitting of the optical branches that
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Fig. 4.3 Density of states of silicon, germanium, diamond and gallium arsenide

is not observable in the other studied materials. The origin of such behavior is the
effect of the Born charges appeared as a consequence of its polar nature.

From theDR it is possible to calculate theDOS for eachmaterial through a binning
of the frequencies of each branch in a frequency region dω. Figure4.3 shows theDOS
obtained from the DR shown in Fig. 4.2. Direct correlation can be observed from the
shape of the DR and DOS. The zones in the DR where there is more concentration
of occupied bands corresponds to the higher concentration of states in the DOS.

For the calculation of Si1−xGex and InxGa1−xAs alloys the Virtual Crystal
Approximation (VCA) described in Sect. 3.6.1 has been used. At each composi-
tion x , the lattice parameter was adjusted until the pressure was less than 0.1kbar.
Solution of the ensuing dynamical matrix provides the DR and transport parameters.
In this case the DR will have a similar shape as found in the previous cases, as the
crystal cell is the same. While Si1−xGex will have DR similar to those of Si and
Ge, InxGa1−xAs will have the shape of GaAs, again with the splitting of the optical
branches at the � point due to its polar behavior.

Figures4.4 and 4.5 show the DOS for the Si1−xGex and InxGa1−xAs alloys for
different alloy concentrations x . It can be observed how the DOS of each stoichiom-
etry has a similar shape but the maximum achievable frequency is reduced as the
total mass is increased.

In the case of PbTe and more complex materials as α-quartz and Bi2Te3 the
calculations have been done using VASP under the LDA. LDA pseudopotentials in
the parametrization of Perdew and Zunger are used [14]. Plane waves are cut off
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Fig. 4.4 Density of states for different Si1−xGex alloys ranging from silicon to germanium with
increments of x = 0.1 in the germanium concentration

Fig. 4.5 Density of states for different InxGa1−xAs alloy concentration

Fig. 4.6 Dispersion relations along high symmetry directions and density of states of PbTe

at 300eV. For the simulations of PbTe is used a 4 × 4 × 4 cubic cell, for α-quartz
a 6 × 6 × 3 supercell with 972 atoms, and for Bi2Te3 a 3 × 3 × 1 supercell of 135
atoms. For the computation of DR, DOS and IFC has been used a 4 × 4 × 4 q-point
grid in the first case, a 4 × 4 × 2 for α-quartz and 3 × 3 × 1 for Bi2Te3.

Figure4.6 shows the DR and DOS of PbTe. It can be observed that, although is a
FCC structure with 2 atoms in the basis as in the previous studied cases, the shape
of both representations is quite different. This is caused by the different basis of
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Fig. 4.7 Dispersion relations along high symmetry directions and density of states of α-quartz

Fig. 4.8 Dispersion relations along high symmetry directions and density of states of Bi2Te3

each crystal structure. In Fig. 4.7 the same plot is done for α-quartz. In this case, the
primitive cell has 9 atoms, therefore 27 phonon bands will appear. An appreciable
feature of this material is the appearance of a gap larger than 5THz.

In Bi2Te3 to obtain the DR and DOS is used a hexagonal conventional cell of 15
atoms instead of the trigonal one of 5 atoms. This is more suitable for the generation
of a symmetric supercell for next anharmonic ICF calculations.
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This cell will provide 45 phonon branches (Fig. 4.8). In this case, as well as in
α-quartz, the high mass of the atoms are responsible for the low energy phonons, in
the opposite way as pointed out for diamond in Fig. 4.3.

4.2 Scattering Rates and Mean Free Times

To compute the thermal conductivity, in addition to the DR and DOS, which pro-
vide the phonon velocities and number of phonon modes, it is necessary to obtain
the phonon collision relaxation times. Such relaxation times are obtained from the
phonon scattering rates through the collision matrix.

In the KCM, the phonon relaxation times are obtained by a combination of two
contributions, the kinetic and the collective relaxation times. These are two different
averages of the resistive scattering mechanisms present in the sample. The linear
combination is calculated through the switching factor �, including normal (N)
scattering as defined in Sect. 3.4, Eqs. (3.74)–(3.75).

The originality of KCMapproach is that the relaxation times are based on the RTA
but splittingN and umklapp (U) processes. From this, the KCM can be understood as
a generalization of theRTA. In addition, this generalization allows including the effect
of the conservation laws on the thermal transport. The connection of conservation
laws with the changes in the relaxation times allows a deeper understanding of the
underlying physics despite of the simplicity of the approach.

The calculation of the relaxation times requires to obtain a set of anharmonic IFC
to generate the collision matrix (see Sect. 3.3). This step requires a large number
of calculations. For cubic cells it is possible to use the same supercell as used in
the calculation of the DR. Calculations of the interactions up to 3rd neighbors have
been performed to compute second and third order force constants. N andU phonon
relaxation times are obtained through the anharmonic IFC. A 40 × 40 × 40 q-point
grid is used for phonon Brillouin zone sampling in such calculations, while a 160 ×
160 × 160 mesh is used for a finner DOS calculations. For this purpose the open
code package ALAMODE [15] is used, where splitting of N and U events has been
manually implemented in the code. Extrapolation of the latter values has been done
for low frequencies in the DOS mesh sampling.

From Fig. 4.9 the relaxation times of each of the acoustic and optical branches of
silicon can be observed. It is interesting to compare the ab initio resultswith analytical
expressions τ = A · ωn . This kind of analytical expressions were used previously of
the implementation of the first principles calculations in an achievable computational
time [16, 17]. Nowadays analytical expressions for the relaxation times can be used
as a good approximation for fast calculations or even to obtain results at very low
frequencies, where the required computational resources are still very high, as shown
in Sect. 6.3.

For Bi2Te3 and α-quartz the N and U three phonon scattering relaxation times
are calculated using Phono3py [18] in a 24 × 24 × 8 and 20 × 20 × 20 q-point grid
sampling respectively.
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Fig. 4.9 Umklapp (left) and normal (right) silicon relaxation times calculated from first principles
in a 40 × 40 × 40 q-point grid at 300K. Solid lines represent analytical expressions

Fig. 4.10 Umklapp (left) and normal (right) bismuth telluride relaxation times calculated from first
principles in a 24 × 24 × 8 q-point grid at 300K. Indexation has been omitted to avoid mix-up.
Colors are considered to show the trend of the different branches

For diamond-like semiconductors the trend of the N and U relaxation times are
very similar as they are strongly dependent of cell structure. For more complex mate-
rials like Bi2Te3 the frequency behavior can be significantly different. In Fig. 4.10
are represented the N andU relaxation times for Bi2Te3. As it can be observed, there
is a huge dispersion in the relaxation time of each branch in terms of frequency. This
behavior makes it complicated to define an analytic expression able to fit the data as
has been found for the previous semiconductors. Despite of this drawback, approx-
imate calculations in terms of frequency can be done by averaging the relaxation
time in a fraction dω. More accurate results can be obtained through a full q-mode
calculation, but from a computational point of view access to low frequency phonons
is still complicated.

Finally, in addition to the N and U relaxation times, for real bulk materials its is
also necessary the relaxation time corresponding to the impurity/mass defect scatter-
ing events. Using Eqs. (3.51) or (3.53) from Sect. 3.3 in a q or ω-mode respectively
the isotope scattering can be directly calculated. Figure4.11 shows the impurity
relaxation time for the studied pure samples corresponding to natural isotopic con-
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Fig. 4.11 Impurity relaxation time for Si, Ge, C, Ge, PbTe, α-quartz and Bi2Te3 as a function of
frequency in a 20 × 20 × 20 q-point grid

centration. As can be observed, at low frequencies the trend is τI ∝ ω−4. From
Tamura’s expression Eq. (3.53) there is a dependence τ−1

I ∝ D(ω)ω2, where D(ω)

is the DOS. At low frequencies D(ω) ∝ ω2, therefore it is clear that τI ∝ ω−4. In
Sect. 6.2 the influence of this scattering event in the transient response of thermal
conductivity of alloys is discussed.

4.3 Kinetic Slowdown

In theRTAN processes are treated equivalent toR ones. Therefore, the total relaxation
time obtained under this approximation can be expressed as:

τRT A(ω) = 1
1

τR(ω)
+ 1

τN (ω)

. (4.1)

As in most cases τN < τR (specially at low frequencies), τN dominates, and the
obtained relaxation time is lower than considering only resistive collisions. A reduc-
tion of the resistive effects is necessary but not sufficient to obtain the thermal con-
ductivity. The KCM may have an explanation of why the thermal conductivity in
the classical RTA seems to indicate that N scattering is acting as a resistive colli-
sion. Having a look at the KCM expression, the total relaxation time is expressed
as τKCM(T ) = τ̂K (T ) · (1 − �) + τ̂C(T ) · �, where τ̂K (T ) · (1 − �) = τK (T ) and
τ̂C(T ) · � = τC(T ) are the kinetic and collective contributions to the total relaxation
time. The hatˆdenotes the limiting cases. Developing the kinetic contribution term:

τK = τ̂K (T ) · (1 − �) = τ̂K (T ) ·
(
1 − 1

1 + τN (T )

τ̂K (T )

)
= 1

1
τ̂K (T )

+ 1
τN (T )

, (4.2)
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Fig. 4.12 Temperature
dependent relaxation times
for bulk silicon

where τ̂K (T ) = τR(T ). Notice the similarities between the kinetic relaxation time τK
and τRT A. The main difference is that in one case it is an integrated value depending
only on the temperature, while in the other it is a frequency dependent magnitude.
From this, it can be observed that in the KCM the factor that produces the reduction
of the contribution of resistive terms is (1 − �). This effect is the so-called kinetic
slowdown, which can be observable in the relaxation times (see Fig. 2.2) but also
directly in the thermal conductivity (see Fig. 4.16). This reduction of the mean free
time (MFT) is a consequence of the appearance of a collective regime. In addition,
from τKCM(T ) it can be observed that the total relaxation time requires an extra
contribution τC(T ). In systems where τN > τR , � → 0 and τRT A ≈ τKCM = τ̂K
provides a good approximation. On the contrary, when τN � τR , the contribution of
τC is relevant and the RTA underestimates the thermal conductivity [19].

The effect of N processes on the relaxation times in the RTA and KCM for
bulk silicon is represented in Fig. 4.12. It can be observed that for temperatures
above 150K, τRT A is equivalent to τK , while at lower temperatures they are slightly
different. This is not strange as, although the expressions are quite similar, in one
case the addition of N and R processes is done prior to integration and in the other
case afterwards. As, at low temperatures, thermal transport is dominated by low
frequency phonons (where N scattering dominates), the failure of the RTA is higher
in this region. At 300K, for instance, the kinetic slowdown induced by (1 − �) in
the KCM gives a value very close to the one obtained under the RTA. In this case,
it can be also noticed that the non-negligible collective contribution τC(T ) makes
the total relaxation time in the KCM slightly higher than in the RTA. This difference
will be more remarkable in materials where N processes are more dominant, like
diamond.

In the frequency domain, the kinetic slowdown is represented in Fig. 4.13. Here
the kinetic (resistive, i.e. umklapp and impurity/mass defect) and collective relax-
ation times, which give the total KCM relaxation time (τ (ω) = τ̂K (ω) · (1 − �) +
τ̂C(T ) · �) are compared to RTA. Notice that the collective relaxation time is also
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Fig. 4.13 Frequency
dependent relaxation times
for bulk silicon. Comparison
of RTA, KCM, kinetic
(resistive) and collective
relaxation times from
Alamode [15]

resitive but frequency independent (see Sect. 3.4). From this figure the effect of � in
reducing the contribution of the low frequency resistive phonons is clear. In addition,
it is observable that the RTA in this region provides similar relaxation times. What
the RTA is not able to reproduce properly is the enhancement of optical phonons.
This effect is caused by the collective contribution τ̂C · �. As in the high frequency
region τC > τK , the total relaxation time is dominated by the collective term. This
contribution makes the RTA underestimate the thermal conductivity of silicon by
∼20W/mK [19]. In addition, this is the reason why in Fig. 4.12 τRT A < τKCM .

As have been shown, the incorrect inclusion of the N processes as resistive in the
RTA gives a reduction of the thermal conductivity that must be interpreted correctly
based in the KCM formalism. Otherwise wrong results will be obtained in cases
where N scattering is dominant. Also, the use of the � factor allows quantifying
exactly the reduction of the thermal conductivity due to N effects. This information
is completely lost using RTA or with full solutions, as in the latter case only a single
value of relaxation time or thermal conductivity is obtained, in contrast to the KCM.

4.4 Thermal Conductivity of Bulk Materials

The thermal conductivity of bulk materials have been calculated using the KCM ab
initio relaxation times shown in Sect. 4.2 and the thermal transport equations from
Sect. 3.4.

The model has been tested successfully using integrations with averaged fre-
quency and q dependent expressions. While for the latter case it is necessary to
increase the grid point sampling until achieve convergence, the former allows easy
extrapolation to low frequencies with suitable expressions (see Sect. 6.3).
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Table 4.1 Values of lattice parameter, mass defect term γ for natural bulk group IV and III-V
semiconductors

Material Lattice parameter [Å] γ [adim]

Silicon 5.401 20.01 · 10−5

Germanium 5.775 58.7 · 10−5

Diamond 3.573 7.54 · 10−4

Gallium Arsenide 5.547 γGa = 1.97 · 10−4, γAs = 0

Fig. 4.14 Thermal conductivity of bulk silicon, germanium, diamond and gallium arsenide in terms
of temperature [20–23]

4.4.1 Group IV and III-V Semiconductors

Table4.1 shows the values of the parameters concerning the calculations of thermal
conductivity.

The calculated thermal conductivities of KCM compared to experimental mea-
surements for bulk Si, Ge, diamond and GaAs samples in a range of temperatures
are plotted in Fig. 4.14. Good agreement is obtained between predictions and exper-
imental data without any adjustable parameter. Similar results for bulk samples have
been reported using the iterative solution of the BTE [24]. As discussed in Sect. 4.3,
in samples where N scattering is important, like diamond or graphene, RTA under-
estimates the thermal conductivity [25], as the collective contribution is neglected
in this approach. Notice that the experimental data have a finite size of the order of
∼10−3 m, therefore boundary effects can be noticed at low temperatures.

The dependence of � on temperature and size could be key to interpret experi-
ments at different temperatures and sizes [26, 27]. Indeed, the collective contribution,
which is the contribution to heat transport due to momentum conservation, is proba-
bly responsible for the hydrodynamic behavior proposed recently to describe thermal
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Fig. 4.15 Switching factor � for Si, Ge, GaAs and C in terms of temperature. Left: bulk. Right:
Leff = 2.8mm

conduction in recent works [28, 29]. Then, hydrodynamic effects are expected to be
relevant for finite values of �.

Figure4.15 shows the switching factor for the presented group IV and III-V semi-
conductors as a function of temperature. In the left plot is represented the�bulk, where
no boundary effects are included, which represents the intrinsic collective behavior.
If boundary scattering does not limit the thermal transport, at low temperatures the
thermal conductivity tends to infinite, as N scattering dominates. This dominance of
N effects at low temperatures is also reflected in�bulk. From this representation it can
be observed that when no boundaries are considered the collective behavior becomes
more important as the temperature decreases. This increase is due to the fact that at
low temperatures, although anharmonicities decrease, theN scattering is dominant in
front of U processes. In recent theoretical works it has been reported the appearance
of a hydrodynamic behavior at low temperatures in 2D materials like graphene [28,
29], in agreement with the behavior predicted by �bulk. It is expected that when
materials intrinsically exhibit collective behavior, as found in silicon or diamond,
hydrodynamic heat flux equations can be used with suitable boundary conditions to
compute the thermal conductivity as a function of temperature and size [30].

The �bulk representation allows in addition to observe that the range where the
impurity scattering has more impact on the thermal transport is around 20–100K for
the presented samples. It is also interesting to see the high value of�bulk for diamond
in the range of 70–300K due to the dominance of N processes.

In real samples, even though are named bulk, boundary effects are present, and
can be noticed at low temperatures. Boundary scattering is resistive, and its inclusion
on the resistive time will change the value of �. In Fig. 4.15 right it can be observed
that for finite sizes near to bulk values (Leff = 2.8mm) the collective contribution
to thermal conductivity goes to zero as the temperature decreases due to boundary
effects.As boundary scattering is independent of the temperature, at low temperatures
itwill dominate the thermal transport.At intermediate temperatures, around100K the
samples exhibit a transition from a kinetic (� = 0) to a collective (� = 1) transport
regime, where boundary effects begin to loose importance in front of impurity and
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Fig. 4.16 Kinetic and collective contributions to thermal conductivity of Leff = 1mm diamond in
terms of temperature. Experimental data from [22]

3-phonon scattering. When the temperature is increased � tends to saturate to a
fixed value. In this region the collective contribution to thermal conductivity has its
maximum value. In the next chapter it will be described in detail the effects of the
boundaries on the collective regime through the � factor.

From Fig. 4.15 it can be observed that the reduction of the kinetic contribution
(kinetic slowdown) at 300K is around 50% for the presented materials (� ∼ 0.5).
Despite of this significant value of�, the collective contribution to thermal conductiv-
ity is less than 10% for Si, Ge and GaAs. In contrast, in diamond such contribution is
up to 16% of the total thermal conductivity. This means, that the effect ofN processes
in this material has a higher impact, not just by reducing the kinetic contribution but
leading a significant collective one. Even though in Si, Ge and GaAs the collective
contribution to thermal conductivity is not as important as in C, the high � indicates
that hydrodynamic effects are expected to be observed at reduced scales.

The kinetic and collective contributions to thermal conductivity of Leff = 1mm
diamond as a function of temperature are represented in Fig. 4.16. It can be observed,
that skipping the low temperature range where due to the finite size the boundary
dominates, there is an important collective contribution to thermal conductivity in
the whole range, being ∼400W/mK at 300K.

4.4.2 Other Pure Structures

Regarding bulk materials, other structures as PbTe with different basis of that
diamond-like materials, α-quartz and Bi2Te3 has been also studied in the ab ini-
tio KCM framework.

Bismuth Telluride

The low thermal conductivity of Bi2Te3 has made of this material a valuable ther-
moelectric, having a figure of merit around ZT ∼ 1 in its bulk form and achieving
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Table 4.2 Values of lattice parameter and mass defect term γ for natural bismuth telluride. The
lattice vectors correspond to the conventional hexagonal cell

Material Lattice parameter [Å] γ [adim]

Bismuth telluride a1 = (4.35, 0, 0)
a2 = (−2.18, 3.77, 0)
a3 = (0, 0, 29.86)

γBi = 0, γT e = 2.84 · 10−4

Fig. 4.17 Thermal conductivity of bulk bismuth telluride. Solid black line represents the total
thermal conductivity. The filled green line accounts for the kinetic contribution and the filled red
zone for the collective contribution. Experimental data from [32]

values up to 1.4 at reduced dimensions [31]. Recently it has been reported that first
principles calculations of high anharmonic crystals may require to consider the tem-
perature dependence of theBorn-Oppenheimer potential energy surface [31]. Despite
of this, LDA pseudopotentials at T = 0K have demonstrated also to provide good
results [14]. Table4.2 shows the parameters used for the ab initio calculations.

For the calculation of the thermal conductivity of bismuth telluride, due to its
anisotropy, the thermal conductivity tensor will not be diagonal and with the same
values for each component, as found in Si or Ge for instance. In this case it is not
possible to do the classical simplification of vq ⊗ vq → 1/3c2. It will be necessary to
compute the whole tensor to determine the thermal conductivity of each component.

The thermal conductivity κXX of Bi2Te3 is represented in Fig. 4.17. Good agree-
ment between experimental data and the KCM prediction is obtained. As can be
observed, the collective regime has only a small contribution at low temperatures,
being less than 10% at 300K. In contrast, the kinetic slowdown caused by the effect
of N processes reduces the kinetic contribution up to a 53% (� = 0.53).

The low thermal conductivity of bulk Bi2Te3 has its origin on the high U scatter-
ing rates at low frequencies. As the U scattering rate increases the relaxation time
decreases. Therefore, as κ ∝ τU , the thermal conductivity will be small. Comparing
Figs. 4.9 and 4.10, it can be observed how in silicon the U relaxation time increases
as τU ∝ ω3 at low frequencies, while for Bi2Te3 the exponent is clearly smaller than
2. This explains the huge difference of thermal conductivity between both materials.
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Table 4.3 Values of lattice parameters and impurity terms γ for natural PbTe and α-quartz. The
lattice vectors corresponds to the NaCle and hexagonal cell respectively

Material Lattice parameter [Å] γ [adim]
Lead telluride 6.57

a1 = (4.87, 0, 0)
γPb = 1.94 · 10−5, γT e =
2.84 · 10−4

α-quartz a2 = (−2.43, 4.22, 0)
a3 = (0, 0, 5.37)

γSi = 2.01 · 10−4, γO =
3.36 · 10−5

Lead Telluride and α-Quartz

Another test of themodel has been done to calculate the thermal conductivity of PbTe
andα-quartz. In the case ofα-quartz, due to its high asymmetry, the thermal transport
will strongly depend on the crystal direction. Although the available experimental
data for the YY and Z Z components is quite old [33], a broad comparison can be
done with the KCM prediction. The values used for the ab initio simulations are
shown in Table4.3.

In Fig. 4.18 the KCM prediction of thermal conductivity in terms of temperature
for PbTe and α-quartz is represented. Good agreement with the experimental data in
both cases can be observed. The small disagreement found in α-quartz can have sev-
eral explanations. As the crystal structure has very low symmetry, this can affect to
the first principles calculations. A deeper study of convergence of all the parameters
used for the calculations, as well as larger supercell is required in order to achieve
better results. More recent experimental data will also help to compare with the the-
oretical predictions. The low thermal conductivity of this materials can be attributed
to the flatness of the phonon bands, which lead to small phonon velocities.

In the case of PbTe, α-quartzYY and α-quartzZ Z the kinetic slowdown is 50, 48
and 55% respectively. Despite of the high �, the collective contribution to thermal
conductivity in both materials is ∼1, ∼6 and ∼0.4% respectively.

Fig. 4.18 Thermal
conductivity of PbTe and
α-quartz predicted by KCM.
Experimental data from [33,
34] for α-quartz and PbTe
respectively
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4.4.3 Alloy Thermal Conductivity

Pure semiconductors can have significant collective effects while alloys, due the
high impurity scattering, are mainly kinetic. In the KCM, the splitting of the thermal
conductivity in two contributions is able to describe properly the transition from a
pure material to an alloy, in contrast to pure kinetic approaches.

The calculations for alloy samples require the use of mixed pseudopotentials
using the VCA and the special treatment of the alloy scattering term described in
Sect. 3.6.1.

TheDR,DOS, IFC and different scattering terms have been computed for different
alloy concentrations x . For Si1−xGex , such calculations have been carried in theVCA
for x = 0.0025, 0.004, 0.01, 0.04, 0.1, 0.2, 0.4, 0.5, 0.82 and for InxGa1−xAs at
x = 0.01, 0.15, 0.3, 0.53 compositions. Interpolation has been used in the latter case
for smaller and intermediate concentrations.

In Fig. 4.19 the lattice parameter and the alloy term γ for Si1−xGex in terms of
the Ge concentration x is represented. As can be observed, as the Ge concentration
increases, both the lattice parameter and the alloy term increases as well. As it is
expected, the lattice parameter continue increasing until achieve the value of pure
germanium. In contrast, the alloy term increases until an alloy concentration of∼50%
and then starts to decrease, defining an inverse parabolic shape.

Figure4.20 shows the KCM prediction of the thermal conductivity for Si1−xGex
and InxGa1−xAs rods at 300K.One observes that theoretical predictions (black lines)
agree with experimental data for Si1−xGex . For InxGa1−xAs some inconsistencies
between old published bulk experimental data [35, 39] can be noticed, reporting
values smaller than5W/mK, and recent 1.6µmthinfilmsmeasurements of 5.5W/mK
for In0.53Ga0.47As at 300K [40].The recent data suggests that bulk values are expected
to be higher than 5.5W/mK. Note that collective thermal transport (red region) is

Fig. 4.19 Lattice parameter
and alloy term � for
Si1−xGex alloy as a
function of germanium
concentration x
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(a) (b)

Fig. 4.20 Thermal conductivity of Leff = 7mm rods in terms of alloy concentration x at 300K
for a Si1−xGex and b InxGa1−xAs. Green and red filled zones denote the kinetic and collective
contributions to the thermal conductivity respectively. The black solid line is the total thermal
conductivity. Insets represent magnifications at low impurity concentrations.Experimental data for
Si1−xGex are from [35–37]. GaAs experimental data are taken from [23] and the first principles
model from [38]

only important for very pure materials close to x = 0, being mostly destroyed with
impurity fractions as low as 0.4 and 4% for Si1−xGex and InxGa1−xAs respectively.

From the insets it can be appreciated that although the kinetic contribution can
describe most of the concentration range, it is not able to explain the conductivity
near the pure region x ∼ 0, where the collective term contributes almost up to a
10% of the thermal conductivity [41]. It is the correct treatment of N processes, as
done by KCM or iterative and full solution methods, that provides good predictions
at all concentrations. These results show that a proper description of the collective
contribution is necessary to understand the large drop in thermal conductivity at small
impurity concentrations. In the case of InxGa1−xAs, it is visible that the reduction of
the collective contribution when the alloy concentration is increased is not that sharp
as found in Si1−xGex . This is a consequence of the difference of the strength of the
alloy scattering in each sample: the isotopic mass variation term in Si1−xGex alloys
is several times larger than in InxGa1−xAs alloys (see Sect. 6.1).

A magnitude that quantifies differences between Si1−xGex and InxGa1−xAs is
the � factor, represented in Fig. 4.21. For pure materials like Si and GaAs values of
�Si ∼ 0.52 and �GaAs ∼ 0.49 at 300K are obtained. When the alloy concentration
is increased this value decreases fast below 0.1 for Si1−xGex , with a minimum of
∼0.04 around Si0.7Ge0.3. In contrast, in the case of InxGa1−xAs the reduction of
� is smoother, decreasing from 0.49 → 0.15 for In concentrations going from x =
0 → x = 0.3. Since the larger the value of � the larger the collective contribution,
the sharper change of � in Si1−xGex alloys as impurity increases translates into a
sharper drop in conductivity, as displayed in Fig. 4.20.
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Fig. 4.21 Switching factor
� corresponding to
Fig. 4.20a, b showing the
transition to a
kinetic-dominant regime as
impurity increases

A second issue to be pointed out, is that as a consequence of N scattering, do
not only appear a collective contribution to thermal conductivity but also causes the
slowdown of kinetic modes (kinetic slowdown). The pure kinetic term k̂k is thus
reduced by a factor (1 − �). Since the minimum values of � displayed in Fig. 4.21
are 0.04 for Si1−xGex and 0.15 for InxGa1−xAs, this correction amounts at least a
4% and a 15%, respectively. In general, according to these calculations, it will be
more important in InxGa1−xAs than in Si1−xGex .

It is important to notice, that although full solutions can provide the exact value
of thermal conductivity, as KCM, the contribution of N effects can not be directly
quantified. In contrast, the splitting of the thermal conductivity in a kinetic and a
collective contribution in the KCM allows quantifying easily such contribution.

4.5 Graphene

In the study of bulk samples, the KCM has been applied in graphene, a trending topic
2D material, although intrinsically it is a zero bandgap semiconductor. Moreover,
even though is a 2D material, the calculation of the thermal conductivity do not
require to apply any boundary condition.

Table4.4 and Fig. 4.22 show the crystal parameters and structure of graphene
respectively used for the first principles calculations. As done with the other mate-
rials, first of all is required to calculate the DR, DOS and IFC. From Table4.4 can
be observed that despite of being a 2D material it is specified a z component. That is
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Table 4.4 Values of lattice parameter and mass defect term γ for natural graphene. The lattice
vectors correspond to the primitive cell with lattice parameter a = 2.4678Å

Material Lattice parameter ·a[Å] γ [adim]
Graphene a1 = (1, 0, 0)

a2 = (0.5, sin(2π/3), 0)
a3 = (5, 0, 0)

7.39 · 10−5

Fig. 4.22 Crystal structure of graphene obtained with XCrySDen [1]

because the available ab initio softwares requires this parameter in order to create a
supercell. In these calculations a 6 × 6 × 1 supercell with 72 atoms has been used.
Notice that the distance z(a3) must be larger than the other two dimensions in order
to avoid interaction of the atoms from the upper sheet when calculating IFC. The
harmonic and anhamornic IFC have been computed in a 3 × 3 × 1 q-point mesh
sampling.

The ab initio calculation of the thermal conductivity of graphene requires to scale
the output value to the real volume. As it can be observed in Eqs. (3.68) and (3.71),
the thermal conductivity is normalized by the volume. As in the cell generation it is
used a large z component to avoid undesired interactions, the larger the parameter
the smaller the thermal conductivity. To obtain the final value of lattice thermal
conductivity it is necessary to rescale this value to the interlayer distance of the bulk
material, graphite in this case.

Figure4.23 shows the DR and DOS of graphene. As the primitive cell has 2 atoms
in its basis, the DR representation shows 6 phonon bands.

The thermal conductivity of a graphene monolayer with natural isotopic impu-
rity concentration is shown in Fig. 4.24. The electronic contribution of intrinsic
graphene has been measured to be around κe ∼ 10W/mK at 300K [43]. This value
has been removed as a constant contribution at all temperatures to compare to the
KCM prediction. For high doped graphene such contribution can achieve values of
κe ∼ 300W/mK at 300K [44]. It can be observed that KCM provides a close predic-
tion to experimental data within the error bars. A proper inclusion of the temperature
dependent electronic contribution will help to improve the predictions. In this figure
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Fig. 4.23 Dispersion relations and normalized density of states of graphene monolayer

Fig. 4.24 Thermal conductivity of graphene monolayer in therms of temperature. Experimental
data are taken from [42]

it is clear that in the thermal transport of graphene the collective regime plays an
important role. At 300K the contribution of the collective regime to the thermal
conductivity is of 42%, and increases as the temperature goes down. This is due to
the dominance of N scattering in front of the resistive mechanisms, having � ∼ 0.7
at 300K. In agreement with KCM, the importance of collective effects on graphene
has been recently proposed in several works to understand its thermal transport
[28, 29].

Despite of the high importance of graphene for several electronic applications,
its performance as a thermoelectric material is poor as intrinsically has no gap and
high thermal conductivity. Other monolayer materials like phosphorene can be more
suitable for this purpose [45].
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From the present results obtained for graphene, it is clear that collective effects
are important in order to understand its thermal transport. Therefore, a model able
to quantify exactly the contribution of this collective effects, as done by KCM, is
appropriate to study this kind of materials.

4.6 Thermal Conductivity in Other Models

The solution of thermal conductivity provided by the ab initio KCM has been com-
pared with other models presented in Sect. 2.2.

In Fig. 4.25 the predictions of the thermal conductivity as a function of temper-
ature of the different presented models for natural bulk silicon and diamond are
represented. As can be observed all the recent solutions provide good approximation
to experimental data. It can be observed that the RTA slightly underestimates the
experimental value of the thermal conductivity in the whole temperature range for
silicon, while for diamond underestimates up to 27%.

Differences between KCM and other models can be due to the expansion of the
non-equilibrium distribution function. In general approaches it is used that the non-
equilibrium distribution function is expanded to the first order in energy n = neq +
n1(ε) (0th-moment of the distribution) or first order in momentum n = neq + n1(q)

(1st-moment of the distribution). This procedure accounts for the conservation of
energy of the whole distribution but the momentum conservation is not globally
imposed. The action ofN scattering in the distribution can not be properly accounted
because this scattering mechanism can not relax the 1st-moment (heat flux) and
the 2nd-moment (flux of the heat flux) is directly affected. In contrast, the KCM,
regarding the approximation done to calculate the relaxation times, is derived up to
nth-moment of the distribution function. This expansion allows in addition to fulfill

Fig. 4.25 Left: Thermal conductivity of natural bulk silicon as a function of temperature for RTA,
I-BTE [46], D-LBTE [47], R-LBTE [48] and KCM. Right: Thermal conductivity of natural bulk
diamond as a function of temperature for RTA, I-BTE [46], D-LBTE and KCM using q-mode
integration
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the momentum conservation globally. Doing so, hydrodynamic effects appear due to
the reduction of the 2nd-moment equation to the 1st-moment, leading consequently
to a generalized set of equations for the micro/nanoscale heat transport.

From a computational point of view, the energy and momentum conservation
can also affect the solutions obtained by I-BTE, D-LBTE and R-LBTE. In first
place, the energy conservation is imposed mathematically by a delta function. As
explained in Sect. 3.3, this delta function is computed by a Gaussian or Lorentzian
function or in a tetrahedron method, therefore, the energy conservation is never
exactly fulfilled, even though the weight can be very small. In addition, having a
phonon distribution function n � n0 + � · n0(n0 + 1)/kBT , the scattering matrix
element derived by Ziman [49] in Eq. (3.44) for the process of annihilation of one
phonon can be expressed as:

�i ∝ (�i,1 − �i,2 − �i,3) , (4.3)

where i refers to energy or momentum for instance. In the case of the energy, �i ∝ ε
and for themomentumconservation�i ∝ q. Therefore forN processes�i ≡ 0 for the
energy andmomentum. The fact that this is not exactly fulfilled due to computational
restrictions can have consequences in the calculation of any parameter derived from
the scattering matrix, like the thermal conductivity.

In the KCM the energy and momentum conservation is always fulfilled because,
as this is a known premise, it is directly imposed in the scattering matrix. In Fig. 4.26
the scattering matrix solved in the KCM is represented. As can be observed, the
scattering matrix is split in two terms, referring to N and resistive (R, umklapp and
impurity/mass defect) processes. Thefirst element of the diagonal (red square) of each
matrix corresponds to the energy conservation, and the secondone (blue square) to the
momentum conservation. As can be observed inside squares, the energy conservation
is directly imposed in both terms. In addition, it can be noticed that the momentum
conservation for N processes (blue square) is also imposed, as expected.

In the precise case of dealing with the full scattering matrix, when N collisions
are dominant, the null value in the matrix element can carry problems on the diago-
nalization. In such cases this matrix element will fluctuate around the zero and the
diagonal matrix is not invertible. Computationally this will create a divergence on
the solution.

In Fig. 4.27 the solution of the D-LBTE from 20–1000K compared with KCM
solutions including spurious terms is represented. The series of KCM simulations

Fig. 4.26 Collision operator split in normal and resistive processes. Each line of the matrix corre-
sponds to a different moment of the distribution function
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Fig. 4.27 Thermal conductivity of natural bulk natural diamond as a function of temperature for
D-LBTE obtained from Phono3py [18], KCM and altered solutions

for different values f · �N , where f = 1, 10−1, 10−2, 10−3, −10−1, −10−2, −10−3

represents the effect of include a value f · �N where must be a zero according to
Fig. 4.26.As it can be observed above 150K this spurious terms do not have any effect
on the thermal conductivity, but at lower temperatures, where N processes become
more important, create divergences on the solution of the thermal conductivity. This
kind of divergences are also observable in the D-LBTE solution (unstable region).

Regarding iterative methods to solve the BTE, it has been demonstrated that a
wrong choice of the initial guess for the relaxation times can lead to divergences [48].
This can happen when the initial guess is very far from the real value. As the starting
point is the classicalRTA relaxation time, inmaterialswhereN is important, this value
is far from the real one. This can happens in materials like diamond or graphene for
instance. In such situations amore suitable starting point could be theKCMrelaxation
times, which are quite close to the real value and can provide fast convergence.
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Chapter 5
Low Dimension Thermal Conductivity
in the KCM

When studying thermal transport, low dimension systems are of great importance.
Once the size of a sample is reduced, thermal properties are different from those
expected for bulk materials. In the case of thermal conductivity, boundary effects at
reduced sizes induce a reduction of the thermal transport.

The most common way to introduce boundary effects has been to limit the contri-
bution of phonons through Casmir’s model [1]. In recent years the evolution of the
technology has allowed to synthesize samples of small size up to few nanometers,
where the boundary effects in thermal transport need a more complex treatment.

The KCM gives a new approach to the problem of boundary effects with respect
to the viewpoint of pure kinetic models, where only individual boundary scattering
processes can be accounted. Although the latter models with adjustable parameters
can provide good fits to experimental data at the nanoscale, the relaxation times used
at small scales still need to be modified with respect to the ones used in bulk [2].

From the general Guyer and Krumhansl kinetic-collective boundary approach in
the KCM, a kinetic treatment of the boundary effects through the Matthiessen’s rule
of the Casimir’s term in the kinetic regime is used. In contrast, for the collective
regime contribution, the use of a form factor F gives a Poiseuille-like profile to the
heat flux. Using this model, good predictions for small samples can be achieved.

Additionally, a full KCM hydrodynamic model is used to study thermal transport
at the nanoscale. This approach shows that a hydrodynamic model with suitable
boundary conditions can also provide remarkable agreement with the experimental
data at low dimension scales.

5.1 Kinetic-Collective Boundary Approach

In Chap.4 boundary effects have been neglected. To include size effects in the clas-
sical KCM formulation it is required to treat the kinetic and collective regime inde-
pendently. In the kinetic term, boundary effects are included, as usual, through the
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Matthiessen’s rule using Casmir’s expression τB = Leff/v [1], where Leff is the char-
acteristic size of the sample and v the phonon velocity. In the collective contribution
phonons behave like a whole defining a hydrodynamic flow, therefore boundary
conditions should be equivalent to the ones felt in a system like the flow in a pipe.
Boundary effects in the collective regime are determined by a form factor F(Leff)

obtained by solving a hydrodynamic heat flux equation with non-slip boundary con-
ditions (QB(R) = 0) [3]. This form factor, which depends on the effective length of
the sample is expressed as:

F(Leff) = 1

2π2

L2
eff

�2

(√
1 + 4π2

�2

L2
eff

− 1

)
, (5.1)

where Leff = dwire is the diameter in the case of wires, Leff = 2.25h for thin films,
with h the film thickness, and Leff = 1.12

√
A for square rods of cross section A. In

this case � denotes the phonon mean free path (MFP) in the collective regime limit
τN � τR , which can be expressed as �2 = 〈v2τN 〉〈τC 〉 [4]. Notice that the factor 1/5
in the collective characteristic length appears only in the isotropic dispersionless
approximation [4].

Using the previous boundary condition in the collective regime (Eq. (5.1)), the
collective contribution to thermal conductivity will be κC = κ̂C · � · F . From this
derivation one can do calculations of thermal conductivity for bulk and simple geome-
tries like wires, films and rods using:

κT = κB
K · (1 − �) + κC · � · F . (5.2)

From Fig. 5.1 it can be observed that the kinetic boundary effects reproduce a
homogeneous flow where the heat flux is the same in the whole cross section of the
sample. In contrast, in the collective regime the hydrodynamic boundary condition
reproduces the parabolic profile observed in a Poiseuille flow. As explained, while

Fig. 5.1 Heat transport profile sketch to identify the contribution of kinetic and hydrodynamic
boundary effects



5.1 Kinetic-Collective Boundary Approach 103

Fig. 5.2 Thermal conductivity of silicon thin films and nanowires in terms of temperature [5, 6]

boundary scattering τB is included through the Mathiessen’s rule in the kinetic con-
tribution, the form factor F(Leff) describes size effects in the collective term. Thus,
in the calculation of τc only umklapp (U) and impurity scattering processes are con-
sidered. In bulk materials τB → ∞ and, F(Leff) = 1, then the thermal conductivity
only depends on intrinsic scattering events.

5.1.1 Group IV and III-V Semiconductors

The thermal conductivity of several bulk semiconductormaterials has been studied in
Chap.4. In the present section the thermal conductivity of silicon nanowires and films
is studied using the kinetic-collective boundary approach for reduced size samples.

Figure5.2 shows the KCM predictions of the thermal conductivity for silicon
nanowires and films. Good predictions are obtained for both type of samples at sizes
bigger than Leff=50nm. The strong reduction observed in the experimental data of
the 22nm NW could be associated to an enhancement of the boundary effects due to
the high roughness of the surface. This effect is not captured in the simple specular
and diffuse scattering model used in the present approach. While in the case of thin
films, good predictions have been obtained in previousworks as a function of size [7],
the KCM is pioneer on predictions of silicon nanowires as a function of tempera-
ture and size using a parameter-free approach. Some normal(N)-as-resistive based
descriptions like classical RTA have also provided good fits to data at the nanoscale
by including a form factor and by using different isotopic scattering relaxation times
from the bulk ones [2, 8]. In contrast, in KCM the use of a diffuse-specular scattering
and hydrodynamic model in the kinetic and collective terms, respectively, allows to
make nanoscale predictionswithoutmodifying bulk parameters. In this case, the form
factor F is derived ensuring the conservation of energy and momentum of the whole
phonon distribution [3, 9], in contrast to form factors derived from N-as-resistive
standpoints.

The value of �, as defined in Eq. (3.64), for bulk silicon, 2.8mm rod, 830nm
thin film and 56nm nanowire in terms of temperature is represented in Fig. 5.3. The
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Fig. 5.3 Switching factor �

for bulk silicon, 2.8mm rod,
830nm film and 56nm wire
as a function of temperature.
The purple region indicates
the effect of the impurity
scattering

dependence of � on size and temperature can be directly obtained by examining
how resistive (R) and N processes change as those parameters are modified. Since
the boundary scattering τB has been introduced in the resistive term τ B

R , as size
is reduced, the rate of boundary collisions increases (and so the R collision rates),
meanwhileN scattering rates do not change.As a result, as size is reducedR collisions
become dominant and the parameter� tends to zero. The observed reduction of� as
the temperature decreases has the same origin: at low temperatures, anharmonicities
become less important in front of boundary and impurity scattering rates, which
are temperature independent, and this reduces the collective contribution. At high
temperatures, � increases in all cases tending to a constant value. The bulk value
�bulk, which represents the intrinsic collective behavior, has been also included in
Fig. 5.3 for comparison. It can be observed that at low temperatures, if boundary
scattering did not limit heat transport, thermal transport would be dominated by the
collective regime due to the dominance of N processes in front of the R ones.

5.1.2 Bismuth Telluride

A set of different wire diameter Bi2Te3 nanowires has been studied in the KCM
framework. Bulk Bi2Te3 has already a very low thermal conductivity, therefore it
is expected a higher reduction when the diameter is decreased. For that propose
Muñoz et al. [10] have synthesized well oriented nanowires along a specific low
conductivity direction [1 1 0], with perfect stoichiometry, high density, and high
crystal quality.

For the calculation of the thermal conductivity along a certain direction it is
necessary to project the phonon velocity towards the desired orientation. In the case
of hexagonal Bi2Te3 cell, the direction [1 1 0] corresponds to the normalized vector
v=(sin(2π/3), 0.5, 0).
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Table 5.1 Experimental total and lattice thermal conductivity for bismuth telluride nanowires at
300 K [10]

Wire diameter [nm] Total thermal conductivity
[W/mK]

Lattice thermal conductivity
[W/mK]

300 ± 75 1.78 ± 0.46 1.72 ± 0.48

52 ± 5 0.72 ± 0.37 0.53 ± 0.4

45 ± 4 0.58 ± 0.47 0.36 ± 0.51

25 ± 4 0.52 ± 0.35 0.18 ± 0.38

Fig. 5.4 Thermal conductivity at 300K of Bi2Te3 nanowires and a thin film [1 1 0] oriented. Leff
corresponds to the diameter for the wires and 2.25h for the film. Experimental data are taken
from [10]

The experimental thermal conductivity of Bi2Te3 nanowires is shown in Table5.1.
The total thermal conductivity corresponds to the direct experimental measurement.
To determine the lattice thermal conductivity, the electronic contribution has been
removed usingWiedemann–Franz lawwith a constant Lorentz number of L = 2.44 ·
10−8 W�/K2. The electrical conductivity of the samples, necessary to determine
the electronic contribution, is of the order of σe ∼ 104 S/m at 300K [11].

Figure5.4 shows the experimental and predicted by KCM thermal conductivity
for a set of nanowires ranging from 300 to 25nm. A 4 µm thick film is used as
reference. The predicted values agree with the experimental data within the error
bars. It can be observed that as the wire diameter is reduced the thermal conductivity
decreases significantly until 0.18 ± 0.38W/mK for the 25 ± 4nm wire.

For the present samples, the grain size was estimated to be ∼10µm [10]. Since
boundary scattering limit the phonons with MFP larger than the wire diameter (D �
10 µm), the estimated grain size does not affect the thermal conductivity.
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Fig. 5.5 Thermal
conductivity in terms of
temperature for Si1−xGex at
different alloy concentration
x . Experimental data are
taken from [12]

Comparing the micro/nano Bi2Te3 samples and bulk, one can realize that it is nec-
essary to have very small crystalline samples in order to have a thermal conductivity
smaller than the bulk one.

5.1.3 SiGe Alloys

In addition to silicon nanowires, Si1−xGex nanowires have been also studied in
the KCM in the kinetic-collective boundary approach. Si1−xGex alloys are of great
interest for thermoelectric applications, as in their bulk form they already have a very
low thermal conductivity. Therefore it is expected to find an even better performance
in reduced samples.

The results from Fig. 5.5 show that the kinetic-collective approach of boundary
effects is not enough to predict the whole trend of the thermal conductivity in terms
of temperature, even though at room temperature good agreement is obtained. As can
be observed, the general trend defined by the present approach tends to flatten the
temperature profile from quite low temperatures, while experimental data features a
slower increase with a different slope. Therefore it seems that the kinetic-collective
approach as defined in the present case is not enough to describe the temperature
profile of thermal conductivity for these highly kinetic samples.

5.2 Hydrodynamic KCM Approach

In recent years hydrodynamic heat transport has emerged as a promising approach
in order to predict the thermal conductivity of semiconductors at small scales [13–
16]. Phonon hydrodynamics, introduced in Sect. 2.3, allows to explore the study of
thermal transport of reduced size systems like nanowires or thin films. This approach
may help to study some micro/nano samples where other models fail.
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In Sect. 3.3 boundary effects have been introduced from a kinetic point of view.
In the previous section, the KCM has dealt with kinetic boundary effects in the
kinetic regime andwith hydrodynamic derived conditions in the collective one. In this
section, a full hydrodynamic equation, able to describe mixed kinetic and collective
regimes, is used to predict the thermal conductivity of nanowires. This allows to use
suitable boundary conditions to have into account the geometry of each sample under
study. In small samples, where their characteristic size is of the same order or smaller
than the characteristic phonon MFP, the effect of roughness has been demonstrated
also to have an imporant impact on the thermal conductivity [2]. In these cases,
expressions including geometric parameters accounting for surface roughness are
required.

5.2.1 KCM Heat Flux Equations

Despite of the richness of works that have proposed generalizations of the Fourier
law, up to now none of these models allows reproducing the experimental results at
all scales and different geometries. The lack of a model tested in a sufficiently wide
range of experimental situations supposes, on one hand, a theoretical challenge to
physicists. On the other hand it is an important drawback to engineers, who need
valid equations to determine the behavior of their designs prior to fabrication.

Here a generalized equation that is able to reproduce several of the discrepancies
from theFourier lawobserved in different experiments up to now [17–23] is proposed:

τ
dQ
dt

+ Q = −κ∇∇∇T + �2(∇2Q + 2∇∇∇∇∇∇ · Q) , (5.3)

where τ , κ and � are bulk (i.e. without considering any boundary effect) total relax-
ation time, thermal conductivity and non-local length respectively. This is the so-
called hydrodynamic KCM equation. The value of � determines the non-local range
in phonon transport and is related to the viscosity (i.e. friction) that the phonon
distribution notices.

The main advantage that the hydrodynamic KCM offers in front of kinetic models
is that starting from the hydrodynamic equation (Eq. (5.3)) avoids to solve directly
the LBTE for phonons, which is quite complicated for complex geometries such
as multilayer or 3D structures, for instance. To do these calculations in KCM for
any geometry it is necessary to define the parameters in the hydrodynamic equation
that merges both limits, kinetic and collective. The derivation of Eq. (2.60) done by
Guyer andKrumhansl is done studying the limiting casewhereN processes dominate,
τN � τR . In this limit, corresponding to the collective regime (i.e. � = 1), the non-
local length is �̂2C = 〈v2τN 〉〈τC 〉. The hat ˆonly indicates that it is a limit situation.
To have a global hydrodynamic equation, the kinetic limit τN 
 τR (i.e. � = 0)
has been studied in the KCM framework. In this case the non-local length tends
to �̂2K = 〈v2τR〉〈τR〉. From the KCM equations, where the thermal conductivity is
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Fig. 5.6 Sketch of
roughness parameters

calculated as an interpolation through� between the kinetic and the collective limits
(see Eq. (2.28)), the non-local length can be generalized as:

�2 = �̂2K · (1 − �) + �̂2C · � = �2K + �2C . (5.4)

The generalized non-local length together with the total thermal conductivity and
relaxation time expressed as τ = (1 − �) · τK + � · τC , define all the parameters
of hydrodynamic KCM equation. This equation, together with suitable boundary
conditions, can be solved by finite elements to study thermal properties in complex
geometries.Calculating the temperature dependenceof τ ,κ and � fromfirst principles
complex experimental setups can be predicted, where boundary effects need to be
introduced as boundary conditions. Further extensions of Eq. (5.3) can be done by
considering a dependence of the thermal conductivity on the temperature gradient
as κ(∇∇∇T ) or considering the effect of Lévy flights.

5.2.2 Effective Thermal Conductivity

In the present work, in collaboration with CRM, the KCM hydrodynamic equation
Eq. (5.3) has been solved analytically by splitting the radial and axial components of
the flux in a cylindrical geometry [24]. Doing so, a generic expression of the effective
thermal conductivity (ETC) is obtained:

κeff

κ0
=

(
1 − 2Kn I1(Kn−1)

I0(Kn−1) + C I1(Kn−1)

)
, (5.5)

where Iν represents themodified Bessel function of first kind. In this case Kn = �/R,
where � is the non-local length and R is the wire radius. The parameter C that
determines the specular and diffuse scattering will be related to the geometry of the
roughness, represented on Fig. 5.6.

General Hydrodynamic Boundary Conditions

In order to solve analytically the KCM hydrodynamic equation, Eq. (5.3), some
boundary conditions are necessary. As stated, the generic solution of the effective
thermal conductivity has been done by spitting the heat flux in radial (v) and axial
(w) componentsQ(v,w). The most general boundary conditions that can be applied
are:
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v|r=0 = 0 , v|r=R = 0 , (5.6)

∂w

∂r
|r=0 = 0 , w|r=R = −KnC

∂w

∂r
|r=R , (5.7)

where C �= 0 is a slip boundary parameter depending on the roughness of the sur-
face. A general value used for the slip condition is C = 1. To capture the variation of
the slip condition in temperature, it can be generalized. When C = 0 the flux at the
boundary is zero but for C > 0 the flow is not completely removed at the boundary.
For very rough surfaces, the specularity is very low, this means that the flux at the
boundary tends to zero, and in that case C → 0. On the contrary, when the spec-
ularity increases, the flux does not notice the boundary and C → ∞. The C value
can thus be determined by the comparison between the wavelength of the phonons
and the average height of the roughness. At high temperatures the wavelength of
the phonons is small and consequently the specularity is reduced, while at low tem-
peratures the averaged wavelength increases and the phonons notice more specular
boundary effect. To avoid the use of C as a fitting parameter, it is calculated from
the microscopic information. As the interaction of the carriers with the boundary
depends on the specularity of the surface, the slip parameter C will depend on these
collisions. To model this behavior the slip coefficient can be expressed as [14]:

C(T ) = 1 + p(T )

1 − p(T )
, (5.8)

where p(T ) is the specularity defined from the ratio of the roughness height � (see
Fig. 5.6) and the mean wavelength of the phonon distribution at each temperature,
λ(T ) [25]:

p(T ) = e
−π

(
4π�
λ(T )

)2

. (5.9)

The mean wavelength of the phonon distribution can be calculated from the mean
wave vector q(T ) as λ(T ) = 2π/q(T ), where:

q(T ) =
∑

q Cqqq∑
q Cq

, (5.10)

being Cq the mode specific heat and qq the wave vector.
Under the previous conditions, if the surface is purely diffuse, p = 0 and C = 1.

On contrary, when the surface is purely specular p = 1 and C → ∞. Thus, C ∈
[1,∞) determines the behavior of the surface. Notice that in none of the two limits
a zero flow at the boundary (C = 0) is obtained. The heat flow at the boundary is
an average between those phonons moving towards the surface and those leaving it.
The boundary condition only acts on those leaving, making impossible to completely
destroy the incoming flow. To get values lower than C = 1 it is required to include
backscattering. In this situation, if phonons leaving the surface backward generate a
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flux in the oposite direction of those going forward, the average fluxwill be destroyed.
A generalization of Eq. (2.64) in this case could be [15]:

QB = C�

(
∂Q

∂r

)
r=R

− α�2
(

∂2Q

∂r2

)
r=R

, (5.11)

where α measures the intensity of the backscattering and will depend on the rough-
ness. This phenomena appears only in the presence of very large roughness and will
not be considered in this work.

5.2.3 Hydrodynamic Thermal Transport in Nanowires

The hydrodynamic KCM equation (Eq.5.3) has been applied to study the thermal
transport of several nanowire samples. In this case it has been used to predict the
thermal conductivity of silicon nanowires. The solution can be obtained equiva-
lently from the ETC solution or by direct computation in a finite elements software
using the general boundary conditions defined in Eqs. (5.6) and (5.7), with C as
defined in Eq. (5.8). To obtain this parameter, a small roughness has been consid-
ered, � = 0.4 Å. On one side, the hydrodynamic model has been applied to silicon
nanowires, where already the kinetic-collective boundary approach has shown good
performance. On the other side, as Si1−xGex alloys are not so well predicted by the
latter approach, it has been tested on the hydrodynamic model in order to improve
the prediction.

The time derivative term accounting for memory effects has been neglected, as
the present study only considers steady state.

The hydrodynamicKCMonly requires intrinsic (i.e. bulk) properties to be used. In
the case of silicon, the bulk thermal conductivity, non-local length and total relaxation
time as a function of temperature are represented in Fig. 5.7.

Fig. 5.7 Thermal conductivity, non-local length and relaxation time of bulk silicon as a function
of temperature
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Fig. 5.8 Thermal
conductivity of silicon
nanowires as a function of
temperature with full
hydrodynamic KCM. Sketch
of three hydrodynamic
regions is overhead.
Experimental data from [6]

Full hydrodynamic KCM predictions for silicon nanowires of 115, 56 and 37nm
are represented in Fig. 5.8. The upper red line represents the intrinsic thermal con-
ductivity, which is used as an input. From this value, applying boundary conditions
the thermal conductivity of the wires is calculated. Good agreement with the experi-
mental data for the three samples in the whole temperature range can be observed. In
the case of the 56nm wire, the small underprediction below 100 K could be caused
by a wrong assumption of the impurity scattering, as natural isotope concentration
has been assumed in all cases.

In the hydrodynamic KCM approach, the characteristics of the hydrodynamic
regime are determined by the value of the non-local length �, through the Knudsen
number (Kn = �/L).WhenKn→ 0, the hydrodynamic behavior is not important and
the Fourier law is recovered. On the contrary, when the Kn→ ∞, the hydrodynamic
behavior is important and Eq. (5.3) including non-local effects is needed.

In Fig. 5.9 different heat flux profiles are represented as a function of the slip
condition for a cylindrical geometry. As can be observed, when Kn → ∞ the profile
flattens and can be interpreted as a Fourier model. This effect is similar to the trend
of � at low temperatures in the KCM when boundary effects are included: � → 0.
In this situation a pure kinetic framework can be used. Notice that both Fourier and
Guyer–Krumhansl equations are continuous equations. This leads to believe that an
effective Fourier law can be used to interpret the hydrodynamic equation in certain
limits.

In the case of Si1−xGex alloys, the kinetic-collective approach of boundary effects
is not enough to reproduce the whole temperature trend (see Fig. 5.5). To improve
this, the full hydrodynamic KCM approach has been used to predict the temperature
profile of the presented Si1−xGex alloys.

In the case of silicon nanowires, as indicated previously the bulk thermal con-
ductivity was used as an input. This means that there is no a priori limitation of
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Fig. 5.9 Effective heat flux profile for different values of slip condition in a wire

Fig. 5.10 Thermal
conductivity of Si1−xGex
nanowires as a function of
temperature for different
diameters and concentrations
x . Experimental data are
taken from [12]

phonon transport. This premise was not enough to reproduce the experimental data
for Si1−xGex alloys. Doing that, the temperature profile was the same as found in the
kinetic-collective approach (see Fig. 5.5). To fully reproduce the temperature trend in
this case the thermal conductivity in the input file needed to be limited by the length
of the wire. Phonons with MFP longer than the length of the sample are removed.

Figure5.10 shows the thermal conductivity as a function of temperature for x =
0.1, x = 0.19, and x = 0.41 Si1−xGex wires of different diameter. It can be observed
that the finite elements solution is able to reproduce the experimental data in thewhole
temperature range.

The good agreement between the experimental data and the KCM hydrodynamic
approach shows that the hydrodynamic heat flux can be a useful framework to model
the thermal transport at the nanoscale. To improve the model, the limitation of the
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thermal conductivity due to the wire length found in Si1−xGex alloys should be
included as a boundary condition to solve the hydrodynamic equation. This effect
might be due to Lévy Flights or other not considered non-local effects that should
be studied in future work.

5.3 Boundary Effects in Other Models

In addition to the treatment of boundary effects done by KCM, both in the kinetic-
collective approach and in the hydrodynamic approach, other models have also pro-
posed ways to deal with the boundary effects beyond Casimir’s expression.

The iterative solution of the Boltzmann Transport Equation (I-BTE), introduced
in Sect. 2.2, can also include size effects for the case of nanowires (NW) through an
exponential suppression function based on Fuchs–Sondheimer works [26], aiming
reproducing a Poiseuille profile, as done in the KCM. In this case, the relaxation time
for the iteration (i) considering pure diffuse scattering can be expressed as:

τ (i)
q = τ (i−1)

q (1 + �(0)
q )

(
1

Sc

∫
Sc

(1 − e−|(r−rb)/τ (i−1)vq|)dS
)

, (5.12)

where r and rb denote the cartesian coordinate in thewire and the border respectively,
and Sc the cross section of theNW.While theBTEcan be solved exactly iteratively for
bulk materials, the inclusion of boundary effects makes it necessary to approximate
the relaxation times by its averaged values τ̄q and �̄q over the cross section of the
wire.

Cepellotti et al. recently have done as well a hydrodynamic boundary approach to
their relaxon solution of the LBTE (R-LBTE) [27]. In this case, in order to obtain a
suitable expression for the heat transport it is required to obtain a linear combination
of relaxons, with occupation numbers di and solve the LBTE. The solution for a
cylindrical geometry leads to:

di = d∞
i (1 − e−(y±W/2)/λ(y)

i ) , (5.13)

where di in the boundaries are considered null. W represents the wire diameter, d∞
i

the bulk occupation numbers andλ
(y)
i are the eigenvalues of the friction lengthmatrix

�
(y)
αβ that account for boundary effects. It can be noticed the analogy of the friction

length with the non-local length used in the KCM and in turn its analogy with the
viscosity of a fluid.

Similarities between the latter equation and the solution obtained from I-BTE in
Eq. (5.12) can be observed. In both cases there is an exponential reduction depending
on the distance towards boundaries.
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In the case of the R-LBTE solution including boundary effects it is required to
obtain a linear combination of relaxons (that already are a linear combination of
phonons) in order to find a basis to solve the problem.

A third way to introduce boundary effects in kinetic models is though a phonon
suppression function S that removes the contribution of MFP (�) larger than the
characteristic size (L) of the sample [28]:

κeff =
∑
q

S

(
�q

L

)
κq(�) . (5.14)

The shape of the suppression function is dependent of the geometry of the system,
which can be obtained analytically for simple geometries. For complex geometries
a hydrodynamic-based approach with general boundary conditions would be more
suitable (see Chap.7).

The success of KCM on solving the thermal transport of nanowires (see Sect. 5.2)
shows that simply using the moment basis of two well known tangible magnitudes
as temperature T and heat flux Q (see Sect. 2.2.5) is enough to solve the thermal
transport at reduced scales.

Figure5.11 presents a comparison of KCM and I-BTE [29] calculations of the
thermal conductivity from bulk to 22nmwires at 300 K. KCM provides good predic-
tions without any fitting parameter for wires as small as 56nm. The overprediction
of the smallest wires, as seen in Fig. 5.2, could be associated to an increased rough-

Fig. 5.11 Theoretical predictions and experimental data for thermal conductivity of silicon wires
at T=300 K as a function of the wire diameter. Kinetic (green), collective (red) an total thermal
conductivity (black solid line) predicted by KCM and iterative BTE predictions from [29](blue
dashed line). Experimental data (symbols) are taken from [6, 30]
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ness effect [2, 31]. This behavior has also been observed for thin films at similar
scales [7]. The green zone in Fig. 5.11 displays the kinetic contribution to thermal
conductivity, namely κK . The difference between the black line and the green zone is
the collective contribution (red zone), κC . While the agreement to the experimental
data using only kinetic transport is good for the smallest diameters (where the red
zone vanishes), for bigger sizes a collective contribution appears. This explains the
convergence of κT to κK for small samples displayed in Fig. 5.11.

The boundary effects as included in the I-BTE and R-LBTE frameworks can be
used to compute the thermal conductivity in wires as a function of its diameter.
The shape reproduced by their equations will reproduce a curved heat flux profile
similar to the one found in the KCM approach based in a hydrodynamic formulation.
The main drawback of these analytic equations is that are still limited to very simple
geometries like wires or thin films. In contrast, a full hydrodynamic model will allow
the study of thermal transport of more complex geometries from finite elements
simulations, as shown in Chap.7.
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Chapter 6
Phonon Spectrum and Transient
Regimes in the KCM

The goal of reduce the device sizes and obtain faster performance has caused that
recent experiments are moving the focus to measurements at short length and time
scales [1–7]. This makes it necessary to have a model which is able to work in the
transient regime between diffusive and ballistic heat transport. Such models would
depend strongly on the phonon mean free paths (MFP) and mean free times (MFT).
For that reason, models able to provide a deeper insight on the different transport
phenomenawould become a suitable tool for such experiments.Works along this line
have demonstrated that pure kinetic models are not enough to understand thermal
conductivity at short length and time scales [5, 7]. A collective or hydrodynamic
flow has been used to explain the origin of the non-monotonous dependence of the
thermal boundary resistance as a function of the size of the heating source arising
from ultrafast laser heating experiments [7]. Also theoretically, collective transport
has been successfully used to understand first principles results on graphene thermal
transport [8, 9], where normal (N) scattering plays an important role. All seems to
point out that models including collective effects will be necessary in next years in
order to analyze these new experiments.

These results open the door to discuss how the precise combination of kinetic
and collective contributions to heat transport could provide a useful framework to
interpret recent complex experiments displaying non-Fourier behavior.

6.1 Phonon Spectrum

In the last years, several works have pointed out the importance of long MFP (i.e.
low frequency) phonons in thermal conductivity. It is widely accepted that these
phonons have a very important contribution to heat transport, but current Density
Functional Theory (DFT) calculations seem to provide larger contributions by long
MFP phonons than the experimental observations [10, 11]. The origin of this effect is
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the finite q-pointmesh sampling of theBrillouin zone achievable computationally. To
be able to predict correctly the thermal conductivity from such ab initio calculations,
Akhiezer damping has been proposed. This macroscopic relaxation mechanism has
been phenomenologically used to reduce the first principles obtained MFT as an
extra scattering mechanism in the Matthiessen’s rule [11]. In the KCM framework
alternative explanations to account for the reduction in the contribution of low fre-
quency phonons to thermal conductivity are proposed based on the effects of the
collective regime and on the calculation of low energy relaxation times.

To give a detailed overview of the phonon spectrum in the KCM framework,
four different types of samples will be studied. In first place, the most commonly
studied semiconductor, silicon; second, two typical thermoelectric alloys, Si1−xGex
and InxGa1−xAs; third, low thermal conductivity compounds, Bi2Te3, PbTe and α-
quartz, and finally graphene.

6.1.1 KCM Phonon Spectrum of Si

As explained in Sect. 3.4, a suitable way to run fast thermal transport calculations is
by binning the q-mode values in ω dependent parameters with a weight determined
by the density of states (DOS).

Figure 6.1 shows the averaged frequency dependent relaxation times for Leff =
2.8 mm and Leff = 115 nm silicon at 50 and 300 K. Notice that the reduction of
the parameters to an averaged frequency dependent magnitude still maintains the
same trend observed in the direct calculation (Fig. 4.9). From this figure it can be
observed that as the temperature is increased theN and umklapp (U) relaxation times
are reduced, i.e., the distribution relaxes faster to equilibrium. In addition, it is evi-
denced that the boundary and impurity/mass defect relaxation times are temperature
independent. The boundary effects accounted from Casmir’s expression depend on
the frequency through the velocity, while the impurity/mass defect scattering does

Fig. 6.1 Normal, umklapp, impurity and boundary relaxation times for Leff = 2.8 mm and Leff =
115 nm silicon at 50 and 300 K in terms of frequency
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Fig. 6.2 Kinetic and collective mean free times (MFT) for Leff = 2.8 mm and Leff = 115 nm
silicon at 50 and 300 K in terms of temperature

so through the DOS. From the individual relaxation times, a MFT can be defined
as the time between collisions in a transport phenomena. In the KCM two transport
regimes are defined, kinetic and collective. In the kinetic regime all phonons interact
individually and therefore all processes can be arranged in a frequency dependent
MFT through the Matthiessen’s rule. In contrast, in the collective regime, the effect
of N processes acts like a glue between phonons and a single frequency-independent
MFT is defined for all of them. In Fig. 6.2, the MFT of both transport regimes for
Leff = 2.8 mm and Leff = 115 nm silicon at 50 and 300 K is represented. For big
size samples the boundary effects in the kinetic regime are only visible at very low
frequencies, while in nano/micro samples this effect flattens the MFT curve even
at intermediate frequencies. The completely straight line of the collective regime
(red line) highlights its frequency independent behavior. In addition, there are no
differences between small and thick samples in this regime, as boundary effects do
not affect to the relaxation time but the collective thermal conductivity as an external
form factor F (see Eq. (5.2)).

Figure 6.3 top displays the kinetic and collective thermal conductivity accumu-
lation function (TCSD) predicted by KCM for bulk silicon in terms of frequency
at 300 K, where it can be observed that both contributions span the whole range of
the spectra. While at low frequencies the kinetic regime dominates, the collective
contribution becomes more important at high frequencies. From the thermal conduc-
tivity accumulation function (TCAF) it can be observed that phonons with frequency
lower than 2 THz contribute to 40% of the thermal conductivity. On the other side,
phonons with frequency higher than 6 THz contribute up to a 20%. A direct corre-
spondence with the MFP spectral distribution (Fig. 6.3 bottom) can be done through
this representation. Figure 6.3 bottom shows the MFP in terms of frequency for the
kinetic and collective terms. From the KCM, �K (ω, T ) = vτK is the kinetic MFP,
and �C(T ) = v̄τC is the collective MFP, where

v̄ =
∑

q vqCq
∑

q Cq
(6.1)
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Fig. 6.3 Top: Thermal conductivity spectral distribution (TCSD) in terms of frequency for bulk
silicon at T = 300 K. Filled curves are the kinetic and collective contributions to TCSD. Blue line
represents the total thermal conductivity accumulation function (TCAF), that is, the integral of
TCSD. The green line represents the kinetic thermal conductivity, thus the difference between both
is the collective contribution. Bottom: Mode kinetic and collective MFP in terms of frequency

is the mean phonon velocity (independent of ω). vq and Cq are the phonon mode
velocity and specific heat respectively. It is important to notice that while the kinetic
MFP is different for all the modes, the collective MFP is the same for all of them. An
effective MFP (blue asterisk) has been included to show the effect of the collective
phonons from a pure kinetic point of view, where �eff(ω, T ) = �K (ω) · (1 − �) +
�C(T ) · �. From this representation it can be appreciated a reduction of the MFP of
long MFP phonons at low frequencies and an increase for the smaller ones at high
frequencies [12]. This effect caused by the collective regime is a consequence of the
energy and momentum conservation of the whole distribution introduced through
� [13].

In Fig. 6.4 the accumulated thermal conductivity in terms of MFP for bulk silicon
at 300 K is represented to show the differences between KCM and current kinetic
models. It can be observed that, in contrast to the other presented models, in the
KCM the larger MFP phonon that contributes to κ is �K ∼ 20 µm, in agreement
with experimental observations [11]. This is due to the fact that for low frequency
phonons, the use of Han’s expressions [15] provides a τ−1

U ∝ ω2 dependence for the
U processes instead of the widely used approximation τ−1

U ∝ ω3. Note that the use
of an analytical expression allows avoiding the over/underestimations provided by
the limited grid in DFT calculations at these frequency ranges [10].
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Fig. 6.4 Thermal
conductivity accumulation
function (TCAF) in terms of
MFP for bulk silicon at T =
300 K in the KCM compared
to that of Li et al. [14] and
Jiang et al. [11]. KCM
predictions for 830 nm film
and 56 nm wire are also
included

A characteristic feature of the KCM accumulation function is the appearance of
a step at the collective MFP, �C . From Fig. 6.4 it can be seen that while the kinetic
contribution spans all the distribution, the collective one occurs only at a fixed MFP,
�C ∼ 20 nm for natural silicon at 300 K. The height of this step is proportional to
the value of � and, as the switching factor depends on the size of the sample, it will
be different for each Leff, according to Fig. 5.3. Comparing the curves for different
sizes (56 nm nanowire, 830 nm thin film and bulk) in Fig. 6.4 it can be concluded
that the TCAF of a sample can not be obtained by just removing from the bulk curve
the contribution of phonons with MFP larger than its characteristic length Leff [16].

The position of the step at �C in the TCAF can be related to a characteristic
non-local scale � (see Eq. (4.2.1)) that is associated with hydrodynamic effects like
Poiseuille flow or second sound. A direct detection of this step would be difficult
for small samples because at these scales � is small. The calculated non-local scale
for silicon at 300 K is � ∼ 190 nm. Recent experiments carried on bulk silicon by
Hoogeboom–Pot et al. [7] show that collective effects appear when characteristic
scales of the order of 102 nm are considered in the experiment. Although this scale
is in agreement with the obtained non-local length �, deeper study is required to
understand properly the origin of this non-local effect. It is important to remark
that the consequences of collective effects on the measured thermal conductivity
will depend on each experimental setup. This experiment is discussed in detail in
Sect. 7.1.

The phonon spectrum of the other studied group IV and III-V semiconductors
present the same general features as shown for silicon. In the case of diamond for
example, as the collective contribution to thermal conductivity is higher, the height
of the step corresponding to this contribution in the accumulation function in terms
of MFP will be larger.
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Fig. 6.5 Thermal conductivity accumulation function (TCAF) for Si0.99Ge0.01 (left) and
In0.01Ga0.99As (right) for Leff = 7 mm rods at T = 300 K. Blue dashed line represents the total
TCAF. The kinetic contribution to the thermal conductivity κK (green dashed line) is reduced the
factor (1-�) as compared to the pure kinetic conductivity κ̂K (black line). The red region denotes
the collective contribution. Although the collective term κC may be small for 1% alloy samples,
the kinetic transport is significantly slowed down due to normal processes

6.1.2 KCM Phonon Spectrum of Si1−xGex and InxGa1−xAs

In order to observe differences between pure semiconductors and alloys, the kinetic
and collective contributions to thermal conductivity in terms of frequency for Leff =
7 mm Si1−xGex and InxGa1−xAs at 300 K are presented in Fig. 6.5.

Figure 6.5 displays the TCAF for the two presented alloys at x = 0.01, showing
a significant slowing down of the kinetic transport. This reduction of the kinetic heat
transport due to N collisions is obtained in the classical RTA approach through the
inclusion of N scattering as a resistive mechanism in the Matthiessen’s rule. The
present model thus helps to understand why, when� is small, the RTA is expected to
work. Notice that KCM offers a more general framework for accounting the effects
of N scattering, namely, the reduction of kinetic transport (kinetic slowdown), and
the existence of a collective heat transport.

In Fig. 6.6 the phonon spectral distribution of the thermal conductivity at two
common alloy concentrations Si0.82Ge0.18 (top) and In0.53Ga0.47As (bottom), at 300K
and Leff = 7 mm is shown. The green region represents the kinetic and the red one
the collective contribution to thermal conductivity respectively. The general trend
of the spectral distribution is the same as found in silicon but having a smaller
contribution of the collective regime in the whole frequency range. In contrast, the
accumulation function is remarkably different. While in silicon the contribution of
modes below 2 THz had a contribution of 40% to the total thermal conductivity, for
the two presented alloys this contribution is up to 90%. In addition, the contribution of
phonons with a frequency higher than 6 THz is almost negligible in both alloys. The
insets in Fig. 6.6, representing a magnification of the high frequency region, show
that only in the case of In0.53Ga0.47As appears a small (but insignificant) collective
contribution to the thermal conductivity at high frequencies.
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Fig. 6.6 Thermal
conductivity spectral
distribution (TCSD) and
thermal conductivity
accumulation function
(TCAF) in terms of
frequency for Si0.82Ge0.18
(top) and In0.53Ga0.47As
(bottom) for Leff = 7 mm
rods at T = 300 K. Filled
curves are the kinetic and
collective contributions to
TCSD. Inset: High frequency
magnification of TCAF

Fig. 6.7 Thermal
conductivity accumulation
function (TCAF) for natural
Si and Si0.82Ge0.18 at 300 K
and Leff = 7 mm
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From a microscopic point of view, collective and kinetic contributions should
have very different transient behavior. This can be shown by noticing that while each
mode has a different MFP in the kinetic regime, the collective MFP is the same
for all of them. Figure 6.7 shows the MFP accumulation function for Si0.82Ge0.18,
In0.53Ga0.47As and natural Si at 300 K with Leff = 7 mm. It can be observed that
for Si0.82Ge0.18 (dashed light green) the main contribution to κT comes from large
MFP phonons, with an important contribution of those bigger than 100 µm. On the
other hand, for silicon all the contribution to κT comes from phonons with MFP
smaller than ∼20 µm, larger phonons does not affect. In the case of In0.53Ga0.47As
it is found an intermediate behavior. A jump in the cumulative thermal conductivity
due to collective effects can be seen clearly for silicon at the MFP of ∼20 nm. In
contrast, the contribution of the collective phonons to thermal conductivity in the
alloys is almost negligible. Accordingly, a definite slope can be observed in the
TCAF. Notice that this does not mean that N scattering is not important, as kinetic
slowdown is still present.
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Present results from Figs. 6.6 to 6.7 agree with recent works pointing on the
direction that long MFP phonons are important to predict the thermal conductivity
in alloy samples [17–19]. In kinetic transport regimes, as found in alloys and in
the kinetic contribution of pure samples, the phonon distribution spans all the MFP
range. On the contrary, the collective contribution found in pure samples, appearing
as a result of the momentum conservation of N processes, contributes as a single
step. From the phonon contribution to thermal transport at each frequency and/or
MFP useful information of the experimental observations of transient phenomena
can be obtained.

As shown in previous articles, silicon has an important collective behavior [12,
20, 21]. The non-negligible collective contribution to κT in a single MFP found
in silicon [21] could be a reason behind the non-definite slope in the total thermal
conductivity contribution. Figure 6.7 shows how the addition of the collective term
to κK in silicon causes the appearance of a non-definite slope in κT . If the MFP
information is obtained by the reconstruction through a kinetic model this behavior
can not be appreciated.

Information of the thermal conductivity in terms of frequency andMFP for kinetic
and collective regimes separately is key to understand the behavior of an specific
sample.

6.1.3 KCM Phonon Spectrum in Low κ Compounds

TheKCMhasbeenused to study the thermal conductivity of low thermal conductivity
compounds as Bi2Te3, PbTe and α-quartz, showing good agreement to experimental
data (see Sect. 4.4). Now, the phonon spectrum is studied to get more information
about the different contributions to thermal conductivity.

In the case of Bi2Te3, Fig. 6.8 shows the TCAF and the TCSD for a 4 µm film
and two wires of 300 and 25 nm at 300 K. It can be observed that the size reduction
has a deep effect on the contribution of low frequency phonons to the thermal con-
ductivity. In addition, a strong decrease of the high frequency phonon contribution
can be noticed in the case of the 25 nm NW. The TCAF representation shows that
phonons with frequencies lower than 1012 rad/s have a small contribution to thermal
conductivity for the presented samples. The major contribution in all cases comes
from phonons with frequencies of 6 × 1012 rad/s and forward.

The decrease of the thermal conductivity contribution at low frequencies from
Fig. 6.8 can be attributed to a reduction of the MFP of the acoustic phonons due
to boundary scattering effects. This effect becomes more important for the smallest
samples as the surface to volume rate is increased. Notice that even at diameters
as small as 25 nm the suppression of low frequency modes is not complete. This
indicates that boundary scattering does not block totally the thermal conductivity
even at these extremely reduced sizes. In addition it can be observed that the main
contribution to thermal conductivity comes from phonons with a frequency higher
than 1013 rad/s. Therefore there is a significant contribution of optical modes.
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Fig. 6.8 Spectral and
accumulated thermal
conductivity for a 4 µm film,
300 and 25 nm wires of
Bi2Te3 at 300 K. Top:
Spectral thermal
conductivity as a function of
frequency. Bottom:
Accumulated thermal
conductivity as a function of
frequency

Fig. 6.9 Top: First
principles normal and
umklapp relaxation times for
PbTe as a function of
frequency. Bottom: Thermal
conductivity accumulation
function (TCAF) in terms of
frequency

According to the mode velocity obtained from the dispersion relations (DR) and
Fig. 6.8, the higher contribution to thermal conductivity comes from phonons with
MFP smaller than 1.5 nm. It is interesting to notice that for silicon, in contrast, more
than 50% of the contribution is due to phonons with MFP smaller than 1 µm.

In Fig. 6.9 the N and U relaxation times (top) and TCAF (bottom) for PbTe in
terms of frequency are represented. As can be observed, theU relaxation time follows
the trend τU ∼ ω−3 predicted by Herring [22], while for τN ∼ ω−1.5, slightly lower
than the expected τN ∼ ω−2 for diamond-like materials. This might be caused by the
different atomic basis of the FCC structure. In the TCAF representation a smooth
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Fig. 6.10 Top: First
principles normal and
umklapp relaxation times for
α-quartz as a function of
frequency. Bottom: Thermal
conductivity accumulation
function (TCAF) in terms of
frequency for α-quartzYY
and α-quartzZ Z

increase of the thermal conductivity from 0.2 THz can be observed. As pointed out
in Sect. 4.4, in PbTe the collective contribution to thermal conductivity is κC ∼ 1%,
therefore it is not observable. The significant effect represented in this figure is the
kinetic slowdown. As�PbTe(300 K) = 0.5, the kinetic contribution κ̂K is significantly
reduced (50%).

In the case of α-quartz, Fig. 6.10 shows the N and U relaxation times (top) and
TCAF (bottom) in terms of frequency. From the relaxation time it can be observed that
there is an important dispersion of values due to the high number of phonon branches,
27 in this case. From the TCAF important differences between κ(ω)YY and κ(ω)Z Z
can be observed. While κ(ω)YY shows a smooth increase of the thermal conductivity
from 0.2 THz, similar to that found in PbTe (Fig. 6.9 top), in κ(ω)Z Z there is a huge
contribution of low frequency phonons. It can be observed that phonons with less
than 1 THz provide more than 95% of the total thermal conductivity. This is caused
by the different phonon mode velocity in each direction. In addition, while for α-
quartzZ Z the collective contribution is negligible (0.4%), in α-quartzYY a collective
contribution of 6% due to high frequency phonons is observable.

6.1.4 KCM Phonon Spectrum of Graphene

In addition to the studied 3D samples, here the phonon spectrum and the thermal
conductivity accumulation functions for graphene are presented.
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Figure 6.11 shows the first principles relaxation times for graphene. The red line
corresponds to the impurity scattering with natural isotope concentration, and the
green and blue ones the N and U relaxation times respectively. The visible splitting
of the scattering mechanisms corresponds to different vibrational modes. From this
representation it is clear that the N scattering dominates at medium and low fre-
quencies. While at high frequencies all the scattering mechanisms have a relaxation
time of the same order, at medium and low frequencies the differences between the
N scattering and the other mechanisms is more than one order of magnitude. This
dominance ofN processes indicates that there will be a high importance of collective
effects, and therefore phonon hydrodynamics will dominate the transport, as reported
in recent works [8, 9].

The TCAF for graphene is represented in Fig. 6.12. Here the contributions of
the kinetic and collective regime to thermal conductivity are represented. It can be
observed that the kineticmodes have a contribution of almost 60%at low frequencies.
In contrast, the collective modes contribute up to a 40% from frequencies higher than
1 THz. The visible step at low frequencies of the accumulation function is due to the
limited grid sampling.

Fig. 6.11 Phonon relaxation
times for graphene. τI
corresponds to the impurity
relaxation time of natural
isotopic concentration, and
τU and τN to the umklapp
and normal relaxation times
obtained from first principles
respectively

Fig. 6.12 Spectral and
accumulated thermal
conductivity of natural
graphene as a function of
frequency
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6.2 Transient Regimes

Thediffusive transport in theKCMdealswith the heat transport from the point of view
of the dominance of resistive scattering processes over the non-resistive ones. On the
contrary, the ballistic transport is based on the differentiation of boundary scattering
versus the other scattering processes. Since the KCM has been applied successfully
in the diffusive regime, a next step is to see how the kinetic and collective regime
can give new insight in transient regimes from diffusive to ballistic transport.

At short time scales, transient regimes measured by means Time Domain Thermo
Reflectance (TDTR) have revealed that dynamics of energy transport in actual mate-
rials ismore complex than a broad distinction between ballistic and diffusive regimes.
Phonon MFP can span several orders of magnitude and the transition from ballistic
to diffusive is not at the same time or length scale for each mode. This means that
for a specific time scale, part of the phonons can be ballistic while other should
remain diffusive. This behavior leads to the appearance of a superdiffusive regime,
explained accurately byTruncatedLévyFlights (TLF) for highly kinetic samples [17]
(see Sect. 2.3). In materials where collective transport is important, like silicon, the
diffusive-ballistic transition behaves in a different way due to the emergence of a
collective regime. A careful study of MFP and frequency dependence of thermal
conductivity is needed in order to understand such phenomena.

The phonon spectral distribution of the thermal conductivity in the KCM com-
bined with the TLF formalism [17, 18] seems a suitable framework to deal with
the transition from diffusive to ballistic thermal transport in pure and alloy semi-
conductors. This transition from short to long time scales can be described by the
Maxwell–Cattaneo equation [23] τ∂2T/∂t2 + ∂T/∂t = χ∇2T , where τ is themean
characteristic time of phonon distribution and χ is the thermal diffusivity of the sam-
ple. Despite of this clear distinction, dynamics of energy transport in actual semi-
conductors is more complex. The Maxwell–Cattaneo equation is valid only when a
single characteristic time τ can be defined from the phonon distribution. This is only
possible in the collective regime, as all the modes share the same MFT. However, in
the kinetic-dominated regime this is not possible as theMFT of the different phonons
can span several orders of magnitude. Therefore the diffusive to ballistic transition
has a different time scale for each phonon mode.

As seen in Fig. 6.7 for alloys, all the modes span all the phonon distribution.
Therefore in high kinetic samples like alloys, the relaxation times of each mode
are different and the transition from ballistic to diffusive is at different times τ (ω).
As each phonon has its own MFP, the Maxwell–Cattaneo equation, which assumes
that the transition from diffusive to ballistic occurs at the same time for all the
phonons, can not be applied. A correct treatment in this case would be to solve
the Maxwell–Cattaneo equation for each mode, but the number of calculations will
increase drastically.

In Fig. 6.13 the effect of Lévy Flights in the spatial domain has been reproduced
in order to study the impact of collective transport. The kinetic expression of TLF
has been introduced in Sect. 2.3.5 Eq. (2.81). From the Laplace transformed of the
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Fig. 6.13 Fractal thermal
conductivity reproduced in
the KCM framework for
silicon at 300 K

steady state hydrodynamic KCM equation in the collective regime, neglecting the
term 2∇∇∇∇ · Q, the collective thermal conductivity is expressed as:

κ(ξ, T ) = κ(T )

1 + ξ2�C(T )2
. (6.2)

As it can be observed, in the kinetic regime, where � = 0 and the TLF model is
completely valid, there is a transition from diffusive to ballistic transport through a
superdiffusive (or quasiballistic) regime. In the collective regime, where� = 1, the
transition from diffusive to ballistic is very sharp, that means that there is a single
spatial scale that governs this transition. In intermediate regimes, where � ∈ (0, 1),
there is a transition from the TLF limit to the collective limit. When � increases
the superdiffusive region tends to flatten until is completely destroyed in the ideal
collective transport.

The spatial evolution of the thermal diffusivity for In0.53Ga0.47As and Si0.82Ge0.18
[17, 18] is represented in Fig. 6.14. In the case of alloys the transition to diffusive
to ballistic transport regime is clearly governed by a superdiffusive region with a
fractal exponent. It can be observed that the region with a superdiffusive behavior
with fractional exponent spans 4 orders of magnitude in time for Si0.82Ge0.18 while 3
orders for In0.53Ga0.47As. In Si the transition from pure ballistic to diffusive regime
seems to be smoother, as has been observed in Fig. 6.13.

In previous works [17, 18], the transient diffusive-ballistic behavior related to
the cumulative thermal conductivity slope by fractal superdiffusive exponents in
the TLF model appears to behave different in Si and Si1−xGex alloys. In Fig. 6.14
the emergence of a superdiffusive regime with exponent 1.34 for Si1−xGex alloy
can be observed, while in Fig. 6.13 for silicon (� ∼ 0.5), where collective phonons
are not negligible, there is a smoother transition from ballistic to diffusive regimes.
This behavior may be explained in terms of the different weight of the collective
contribution � shown in Fig. 4.21. As detailed in Fig. 6.13, the fractal behavior
is a kinetic phenomenon and, as the collective contribution increases, the temporal
window where this behavior can be probed shrinks.
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Fig. 6.14 Fractal diffusivity
defined from ψ(ξ)/ξ2 for
In0.53Ga0.47As and
Si0.82Ge0.18. Si0.82Ge0.18
curve is upscaled to ease the
visualization [17]. Three
scaling regions with different
exponents may be identified
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Fig. 6.15 Umklapp and
impurity/alloy
first principles relaxation
times for Si, In0.53Ga0.47As
and Si0.82Ge0.18 at 300 K

The origin of the different slopes pointed out previously in Figs. 6.7 and 6.14
can be observed in Fig. 6.15. As noticed by Vermeersch et al. [17], the slope of
the accumulation function can be related to the exponent of the dominant scattering
mechanism. To see this relation, Fig. 6.15 shows theU and impurity/alloy relaxation
times for Si, In0.53Ga0.47As, and Si0.82Ge0.18. It can be observed that U scattering
is dominant for silicon, which has a trend that goes from τ ∝ ω−3 to τ ∝ ω−2,
according to the first principles calculations and in agreement with Han’s expres-
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sions [24]. For Si0.82Ge0.18 and In0.53Ga0.47As the dominant scattering is the alloy
term with τ ∝ ω−4, although is stronger in Si0.82Ge0.18. This shows why both have
also the same exponent in the accumulation function but with different extents of the
superdiffusive region.

6.3 The Role of Low Energy Phonons

It has been already pointed out and observed from various representations of the
thermal conductivity as a function of frequency that low frequency phonons can
have relevant consequences on the calculations of thermal conductivity, especially
in alloys.

The low energy phonon calculations regarding thermal conductivity involve har-
monic and anharmonic terms. From an ab initio framework, while the harmonic
terms can be calculated without further complications for fine q-point mesh sam-
pling, the anharmonic ones require higher computational resources. The goodness of
such calculations are determined by the interatomic force constants (IFC) computed
from first principles. In order to obtain proper IFC, the modeling of the system and
the convergence of the different involved parameters should be tested accurately (see
Sects. 3.2 and 3.5).

In the calculation of the 3-phonon scattering rates, the access to low energy
phonons depends on the q-point mesh sampling. The finner the mesh, the lower
the available energy phonons. This makes very complex the access to anharmonic
information of very low frequency phonons from a computational viewpoint. If the
thermal conductivity is computed directly in a q-mode summation with a coarse
mesh sampling, the information of low energy phonons is neglected and could lead
to wrong results. In such situations, Akheizer damping has been introduced as an
extra relaxation time in order to avoid this effect [11]. As explained in previous chap-
ters, it is possible to average the q-mode information in order to deal with frequency
integrals. In this case, extrapolations for N and U relaxation times at low energy
phonons have been deduced analytically [15, 22, 24]. These expressions make it
easy to obtain such parameters even for extremely low frequencies, preventing thus
to lose the information from these phonons. Doing so, it is not required to introduce
any extra relaxation time in order to predict the experimental data.

ForN processes at low frequency Herring [22] demonstrated that theN relaxation
times have a τN ∝ ω2T 3 frequency and temperature dependence for diamond-like
structures. In the case of U processes, such dependence is more complex. Han and
Klemens [15, 24] deduced an expression to determine the relaxation time for different
transition processes at low frequencies: T + L → L and T + T → L , where L and
T indicate longitudinal and transverse branches respectively. In the case diamond-
like semiconductors the most common process is T + L → L , being the relaxation
time expressed in the continuum approximation as:
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Fig. 6.16 Umklapp relaxation times at 300, 100 and 50 K for natural silicon. Symbols represent
the ab initio values and lines Han’s expressions

τ−1
U,i = γ2
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where here γ is the Grüneisen parameter, ρ the material density and the subscripts
L and T refer to longitudinal and transverse modes. rc is the radius of the 1BZ
expressed as:

rc = R

(
G

2
− ωi

c

)

/

(
G

2

)

, (6.4)

where G = |G| = 4π/a and R = π/(
√
2a) for the [1 0 0] direction in a cubic cell,

being a the lattice parameter and c the sound velocity of the phonon i .
Figure 6.16 represents the ab initio U relaxation times and Han’s expression for

silicon at 300, 100 and 50 K using the density of silicon and its averaged γ calculated
from first principles in a 40×40×40 q-point grid. As can be observed, Han’s expres-
sion for T + L → L processes reproduces properly the ab initio calculated relaxation
times at intermediate-low frequency region and provides a good extrapolation at low
frequencies.

6.4 Relaxation Times from the Full Scattering Matrix

The linearized Boltzmann Transport Equation (LBTE) can be solved in different
ways, as has been introduced in Sect. 2.2. Depending on how it is solved, the total
relaxation time of distribution function of the heat carrier can be different.

Figure 6.17 compares the total relaxation time of the carrier distribution for silicon
and diamond in the Relaxation Time Approximation (RTA), the relaxaton solution
of the LBTE (R-LBTE) and KCMmodels obtained from first principles calculations
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Fig. 6.17 First principles total relaxation times for silicon (left) and diamond (right) under the
Relaxation Time Approximation (RTA), relaxon solution of LBTE (R-LBTE) and KCM models
from Phono3py

on Phno3py package [25]. Notice that in this figure carrier relaxation times are
compared, not just phonon relaxation times. In the case of the R-LBTE the heat
carriers have been defined as relaxons [26]. In analogy, in the KCM the heat carriers
are called collectons. From this figure it can be observed that in both KCM and
R-LBTE the relaxation times of the carriers at high frequencies are higher than the
phonon relaxation times in RTA. In the KCM this effect is attributed to collective
regime, which leads to an enhancement of the optical phonons [12] as shown in
Fig. 2.2. In addition, it can be observed that the relaxation times obtained in KCM
(collectons) and R-LBTE (relaxons) reproduce a similar trend. This suggests that as
well as in KCM, the full solution of the collision matrix also captures the effect of the
collective regime. This is expected as both models are solutions of the same phonon
LBTE. Finally, comparing the relaxation times for silicon and diamond, it can be
observed that the light atomic mass of the carbon atoms leads to a weak phonon
interaction, visible as a higher relaxation time.

In previous sections of this chapter it has been shown that high frequency phonons
do not have a remarkable contribution to the thermal conductivity in most cases,
except for diamond or graphene. Therefore direct consequences of the enhancement
of the optical phonons by the collective regime can not be analyzed, in general, from
the thermal conductivity of bulk materials. The enhancement of optical phonons
depends on the collective relaxation time τC as well as on the � factor. Those are
parameters that are only defined in the KCM framework. Therefore, even though
the relaxation time of the distribution function in other models can be similar, those
parameters can not be obtained and the origin of the mentioned enhancement is
hidden. As will be explained in Chap. 7, complex experiments can be reproduced by
the KCM hydrodynamic model. In this case, non-local parameters that are directly
related to the collective regime are required (see Eq. (5.2.1)).
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Chapter 7
Geometric Effects in Complex
Experiments

The use of complex geometries and heating conditions in recent experiments have
shown that Fourier law is not able to reproduce all the obtained results [1–7]. In
this line, the KCM equations for the heat flux including memory and non-local
effects have been proposed as an explanation for the observed behavior. This chapter
includes a novel work that combines experimental and theoretical research per-
formed in collaboration with the Birck Nanotechnology Center (West Lafayette,
USA), where steady state and transient heat transport have been studied on silicon
and In0.53Ga0.47As samples. In addition, the KCMprovides new explanations for two
recent published experiments that exhibit non-Fourier effects in 1- and 2-dimension
systems.

In materials where normal (N) scattering is important, such as Si, Ge, GaAs or
diamond, the KCM has been used to calculate the thermal conductivity of bulk and
in simple geometries like nanowires and thin films, from nanometer to micron scales
showing good agreement with experimental data [8]. In these simple geometries,
non-locality can be analytically integrated and included into a form factor F that
modulates the collective contribution to thermal conductivity depending on the sam-
ple size [8, 9]. In addition, the analytic solution of the hydrodynamic KCM equation
and the solution by finite elements have shown good results in such systems (see
Sect. 5.2).

In the present chapter more general geometries in situations where an analytic
solution is not available are studied. In these cases, it is required to use the hydrody-
namic heat flux equation presented in Sect. 5.2:

τ
dQ
dt

+ Q = −κ∇∇∇T + �2(∇∇∇2 + 2∇∇∇∇·)Q . (7.1)

The first terms on the left and the right sides of Eq. (7.1) define the classical Fourier
law.The second termon left hand side includes thermal inertia effects and is necessary
when the time variations are of the order of the heat carrier mean free time (MFT).
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In most semiconductors, this time is of the order of picoseconds, much smaller than
the characteristic time of many pump-probe experiments, which detect temperature
changes in 100s of picoseconds to nanosecond range. The second term on the right
side includes non-local effects and it depends on the non-local length �, which is of
the order of hundreds of nanometers for many semiconductors, as v ∼ 103m/s and
τ ∼ 10−12 s. As it will be shown, this term can dominate the observed non-Fourier
behavior. This term is analogous to the viscous term in the Navier-Stokes equations
of fluid mechanics, and it reflects the partial conservation of crystalline momentum
in N collisions. Notice that this term is not necessarily along the direction of the
temperature gradient and, as a result, the heat flux generated by Eq. (7.1) can not
be parallel to the temperature gradient, a behavior that can not be described by an
effective Fourier law. Obviously, Eq. (7.1) can not reproduce all the complexities of
the phonon spectrum and interactions, such as the Lévy flights [10], but, as shown
in this chapter, it can explain the main deviations from the Fourier law observed in
experiments.

7.1 1D Heat Propagation

The simplicity of 1D geometries allows comparing the hydrodynamic KCM results
with both experimental data and BTE solutions, where models can sometimes be
simplified and analytically solved. The hydrodynamic heat transport can be also
studied from a 1D spatially sinusoidal temperature pattern created on a silicon mem-
brane and left to return to equilibrium [3]. Johnson et al. obtain the effective thermal
conductivity in this setup by measuring the decay time of the patterned heat, known
as transient thermal grating (TTG). By combining Fourier law using an effective
thermal conductivity with the energy conservation the expected decay rate can be
obtained:

γ = κeffζ
2

C
, (7.2)

where ζ = 2π/L is the inverse scale length, L being the grating period and C the
specific heat. Standard Fourier theory predicts a constant thermal conductivity and
consequently a quadratic rise in the decay rate as a function of the inverse length
scale. Experimental data do not follow this prediction, showing a decrease of the
apparent effective conductivity with increasing values of ζ. One should note that
since a patterned heat source is created in the volume of the membrane, this does not
introduce an additional boundary in the system. Thus the use of a boundary relaxation
time is not justified to fit the results.

In this specific configuration a solution of Eq. (7.1) in 1D can be easily obtained in
the transformed Fourier space. The spatial derivatives of the heat flux in that equation
give a contribution equal to 3�2ζ2 in the left hand side. The decay rate is then:
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Fig. 7.1 Effective decay rate
as a function of the inverse
grating length scale:
experiments (symbols),
Fourier predictions with the
bulk heat conductivity (blue
line), the effective thin film
conductivity (red line) and
hydrodynamic KCM
predictions, Eq. (7.1) (green
line)

γ = κζ2/C

1 + 3�2ζ2
. (7.3)

The obtained 1D solution can not be applied to Johnsons’s [3] experiment for
a membrane of small thickness h much larger than �. In this case the transverse
coordinate must be taken into account in Eq. (7.1), and therefore the solution deviates
from the one-dimensional form. It can be shown (see AppendixB) that, for the small
values of �ζ that are relevant in the experiment, the effect of the transverse profile
is to substitute the bulk conductivity κ by the effective in-plane conductivity of the
membrane, κeff(h), and the parameter �2 by an effective value reduced in the same
proportion, �2eff = �2κeff/κ. In Fig. 7.1, the experimental results and the prediction of
Eq. (7.2) are plotted using the bulk value of the thermal conductivity and the KCM
prediction given by Eq. (7.1). The non-local length calculated from first principles
is � = 190nm.

Using the Boltzmann Transport Equation (BTE), a similar expression has been
obtained in which the reduction of the thermal conductivity is a consequence of
phonon suppression function eliminating phonons from the distribution when their
mean free path (MFP) was approximately larger than the grating period [3]. In the
case of Eq. (7.1), this factor has a hydrodynamic interpretation, that is to say, it is not
based on individual phonons but it describes the collective heat flow.

In higher spatial dimensions, Eq. (7.1) is quite useful as compared to the direct
solution of BTE since the vector nature of the heat flow is directly taken into account.
In 2D and 3D, BTE can only be solved in very simplified geometries extracting
a limited amount of information. Iterative solutions in general configurations are
computationally prohibitive as solutions may not be local in space. KCM offers the
possibility to solve Eq. (7.1) combined with the energy conservation law by using
a finite element approach. This avoids analytic matrix inversion and integration, in
contrast to kinetic approaches of BTE. It is necessary to complement the second-
order differential equation with appropriate boundary conditions to fix the heat flux



140 7 Geometric Effects in Complex Experiments

Fig. 7.2 Thermal grating simulations fromdifferentmodels. Left: Fuchs-Sondheimer (FS), spectral
monte carlo (MC), gray MC and effective mean free path (MFP) model [11]. Right: Hydrodynamic
KCM with different slip boundary conditions and non-local length � = 190nm

at the boundaries. Slip boundary conditions have been used in this approach (see
AppendixC).

The same grating experiment has been analyzed also by Zeng et al. for two set of
silicon membranes of 390nm thick [11]. In this work, different models are used in
order to interpret the results. On one side a spectral Monte Carlo (MC) simulation
with boundary scattering and on the other a grayMC and effectiveMFPmodel based
on phonon suppression functions.

In Fig. 7.2 the experimental data of thermal grating on silicon membranes and the
different models used to analyze them are represented. In the left plot the different
models used by Zeng et al. are shown. In addition, the Fuchs-Sondheimer (FS)
calculation, which neglects the effect of grating, shows the limit situation [12]. In
the right plot are represented the predictions of the hydrodynamic KCM model for
different slip boundary conditions and a non-local length of � = 190nm. Comparing
the different models it can be appreciated that KCM performs better than the other
models, as the decay for small grating periods above 3µm is well predicted for any
slip condition. The drop of the tail depends only on the non-local length �. Regarding
the exact value of the slip condition, as it has been mentioned in Sect. 5.2, it depends
on the characteristics of the roughness of the sample, therefore a deeper study is
required in order to obtain the exact value.

The better performance ofKCMcan be understood from a non-equilibrium frame-
work. Kinetic models, as the ones represented in Fig. 7.2 left, are solved from indi-
vidual phonon relaxation times τ (ω, T ) calculated from standard non-equilibrium
distribution functions where the perturbation only depends on a temperature gradient
A(∇∇∇T ) (see Sect. 2.1.1). In the present experimental setup it is clear that also exists
a heat flux gradient, therefore A(∇∇∇T,∇ · Q), then the relaxation times calculated
from the first approach alone are no longer valid. In the KCM, on the contrary, is
used a hydrodynamic equation with an integrated relaxation time τ (T ) for each tem-
perature. Although this relaxation time is calculated from a perturbation A(∇∇∇T ), the
hydrodynamic equation is derived from higher order perturbations (see Sect. 2.3.3)
regarding variations of the heat fluxQ. Thismakes the hydrodynamicKCMapproach
more suitable for these kind of experiments.
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Asmentioned by Zeng et al., the effectivemodels derived in their work are specific
for the studied geometry (a membrane) and can not be applied in other systems.
The hydrodynamic KCM equation, as include generic boundary conditions, can be
applied to any geometry when solved by finite elements.

7.2 2D Heat Propagation

As the second test of validity, Eq. (7.1) is used to describe a phenomenon that has
been observed by using several heating lines in a patterned configuration [1]. These
arrays are nickel heating lines of width L grown on a silicon substrate separated
periodically a distance 4L.

A laser generates a short heating pulse on the lines and their thermal decay is
measured using pump-probe techniques. The authors find amaximum in the effective
thermal boundary resistance (TBR) as L is reduced; that is, as the lines become closer
to each other, the effective TBR increases up to a point around 300nm, below which
it decreases. Then, for the closest lines, the substrate seems to evacuate energy better
than for lines slightly farther apart. This was interpreted so that, when the nanoscale
heat sources are close enough, collective effects among phonons from the different
heater lines increase dissipation efficiency. By using the finite element solution of
Eq. (7.1) (without any TBR), predictions of the hydrodynamic model for an isolated
heater line and for the periodic array of lines are obtained. Interestingly, the KCM
predicts an effect equivalent to the one attributed to an effective thermal resistivity in
the interface between the heater and the sample, i.e. the TBR. This effective thermal
resistivity is obtained as the best fit of a TBR to match the KCM decay curve when
using a Fourier law for the substrate. Figure7.3 shows that, by using a non-local

Fig. 7.3 Effective thermal resistivity as a function of the heater width L with periodicity 4L on top
of silicon. Black dots denote the effective resistivity needed by a Fourier law to fit the experimental
data [1]. Red and blue dots correspond to the values of the effective resistivity in a Fourier model
needed to reproduce theKCMdecay curves for a single line and a periodic array of lines, respectively.
The blue zone corresponds to the error in the KCM with periodic configuration
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length � = 190nm the hydrodynamic model is able to predict the experimental data
for line widths larger than 300nm. The advantage of the hydrodynamic model with
a fixed � is that it avoids the need to fit by hand the effective resistivity for each
sample. Also, the fact that the value for the non-local length for this experiment is
the same the one used to describe the previous experiment on silicon from Sect. 7.1
supports the consistency of the model.

When the heating line width decreases below a value around 300nm the KCM
model fails, as it provides a monotonic increase of the effective resistivity. This
behavior is not amended by considering an array of heater lines instead of a single
line, since the model predictions are the same in both cases (no cooperative behavior
among lines is predicted by the KCMmodel in its present form). However, the KCM
can give some insight on the decay of the effective thermal resistivity at small sizes
observed in the experiment. On one side, this behavior may be related to some exper-
imental observations found in the next experiment on silicon and will be discussed in
Sect. 7.3. On the other hand, the cooperative behavior appeared with multiple heat-
ing lines seems to has its origin on the thermal expansion of the metal heating lines.
As this effect has not been implemented yet in the current version of the model, no
differences are appreciable between single and multiple lines.

7.3 Steady State and Transient Heat Transport

This study consists in an experiment in whichmetal lines are deposited on a semicon-
ductor substrate and they are heated using an electrical current. By using gold heater
lines of different widths fabricated using electron beam lithography, features smaller
than the phonon characteristic MFP are obtained. This study has been performed
with different size heating lines on top of silicon and In0.53Ga0.47As.

In Fig. 7.4 the experimental setup used for thermal imaging of silicon and
In0.53Ga0.47As is represented. The figure reproduces the exact configuration for
In0.53Ga0.47As, where an InP layer is also observable. In the case of silicon, the
configuration is just formed by a single layer of silicon of 500µm. On the top of the
sample, a 20nm insulating layer of Al2O3 is deposited. Samples are heated through
the metal heating lines by Joule effect applying an alternating current. This heat-
ing lines, of 90nm thickness, are deposited on the top of Al2O3 through a small
5nm layer of Ti for adhesion proposes. The amount of heat deposited on the line
is determined by a two contact voltage measurement and the temperature rise can
be independently measured using the resistance of the metal lines or through the
temperature field on the substrate using Time Domain Thermoreflectance (TDRT)
(more details about the experimental setup are provided in Ref. [13]). The silicon
samples do not have the sensor golden line, therefore in the In0.53Ga0.47As case a
step in the temperature profile near to the heating line, not appearing in the silcon
samples, will be appreciated.

Equation (7.1) combined with the energy balance equation can be solved through
finite elements for this specific geometry to give the temperature profiles measured
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Fig. 7.4 Experimental setup of TDTR imaging [13]

by TDTR. In Figs. 7.5 and 7.6, the KCM steady state solution for the cross section
temperature profile on and around the metal lines on top of silicon is compared with
experimental data. Notice that the nominal (i.e. bulk) value of thermal conductiv-
ity for silicon is 124W/mK. This indicates a small impurity content in the sample,
which will have an impact on the calculation of the non-local parameters. The agree-
ment of the hydrodynamic KCM model with experiments is remarkable. It can be
observed that for 1µm and 400nm width lines the hydrodynamic model is able to
predict the temperature profile in the whole spatial range by using the bulk thermal
conductivity and a non-local parameter of � = 293nm. Notice that this parameter
does not correspond to the one used in pure silicon samples. For the 200nm heating
line, the KCM using bulk properties overestimates the heater temperature. In order
to fit all the temperature profile is necessary to use a thermal conductivity value of
κ = 170W/mK, larger than the reported bulk values. This can be caused by the leak
of inclusion of superdiffusive effects in themodel or other effects related to a possible
dependence of the thermal conductivity on the temperature gradient (κ(∇T∇T∇T )).

It is interesting to compare the KCM solution to that obtained from an effective
Fourier approach. From Figs. 7.5 and 7.6 it can be observed that by using Fourier’s
law to interpret the data it is not possible to completely explain the full temperature
distribution. Using the nominal conductivity, the tail of the profile can be predicted
but the heater temperature is underestimated. On the other hand, if a lower effective
thermal conductivity (adjusted) is used to reproduce the increase in the heater tem-
perature, the tail is over-predicted. These theoretical predictions are in agreement
with previous works [6] where a non-isotropic thermal conductivity for in-plane and
out of plane directions are used in order to describe the observed thermal profiles in
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Fig. 7.5 Temperature profile of TDTR measurement on silicon with a 1µm (left) and 400nm gold
heating line (right)

(a)

(b)

(c)

Fig. 7.6 a Temperature profile of TDTR measurement on silicon with a 200nm gold heating line.
b 2D temperature profile for the 200nm line based on KCM, and superposed heat flux vector Q
(red arrows) with the minus temperature gradient −∇∇∇T (grey arrows). c Color representation of
the angle between Q and −∇∇∇T . The finite elements simulations have been done using COMSOL
Multiphysics [14]

similar setups. However, required anisotropy of thermal conductivity is unphysical
for diamond-like crystals, whereas KCM can predict the data assuming an isotropic
thermal conductivity [13].

The observed lower temperatures near the heat source, as compared to Fourier
prediction, can be explained based on the properties of the non-local term in Eq. (7.1).
The hydrodynamic behavior of the heat flux can be observed in the details in
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(a)

(b)

Fig. 7.7 TDTR imaging for a 10 and 2µmheating lines on In0.53Ga0.47As [13]. a Full cross section.
bMagnification of the zone close to the heater

Fig. 7.6b, c. Using the vector identity ∇2Q = ∇∇∇(∇Q) − ∇ × (∇ × Q) in a steady
situation (∇Q = 0) it can be seen that the heat flux is, in general, not parallel to the
temperature gradientQ = −�(∇∇∇ × ω) − κ∇∇∇T , where ω = ∇ × Q is the vorticity of
the heat flux. Near the edge of the heater the incoming heat flux, which initially has
only y component Qy , changes along the x direction when it enters into the substrate
generating a vorticity ωz = ∂Qy/∂x . This vorticity is confined to a layer of the order
of � near the interface, and will give a rotational contribution to the heat flux Qr

x =
−�∂ωz/∂y. This contribution to the heat flux is opposite to the conduction term Qc

x =
−κ∂T/∂x , producing an effective reduction of local temperature. Such information
is lost if the description is reduced from 2D to 1D imposing a cylindrical symmetry,
in which case an increase in the thermal boundary resistance needs to be introduced
[2, 6]. This effect has been discarded experimentally to be due to diffraction by doing
thermoreflectance imaging measurements with different wavelengths.

A recent work on electric transport in graphene has reported a similar response
of the electric resistivity attributed to electron viscosity phenomena [15].
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In comparison with the experiment analyzed in Sect. 7.2, KCMproperly describes
the stationary temperature profiles for heater lines larger than 400nm. However,
for the 200nm width line (Fig. 7.6a) it was necessary to increase the bulk thermal
conductivity as κeff = 1.4κ in order to fit the temperature profile. Therefore, in the
setup of Sect. 7.2, for heating lines smaller than 300nm it can be expected the need to
increase the thermal conductivity in order to fit the data. Pure KCMmodel is able to
describe both experiments at linewidths larger than 300nmand requiresmodification
of the thermal conductivity at smaller sizes. Actually using the same factor κeff =
1.4κ, the value obtained for the effective resistivity (3.5 ± 0.4nKm2/W) predicts the
experimental data (3.8 ± 0.3 nKm2/W) within the error bars. The substrate seems to
evacuate heat faster than expected from the current formulation of the model.

Going back to the 3D setup, similar results to those found for silicon are also
observable in Fig. 7.7 for In0.53Ga0.47As. Now, the experimental configuration corre-
sponds exactly to Fig. 7.4. As has been observed for silicon, TDTR shows enhanced
heat transport adjacent to junctions at distances of the order of its non-local length
� ∼ 120nm. Again, the Fourier model, even adjusting the thermal conductivity is
not able to reproduce the whole trend. From the magnification of the zone close to
the heater, it can be appreciated that both nominal and adjusted Fourier overpredict
the thermal conductivity, while the hydrodynamic model provides good agreement
in all the cross section. In agreement with the observations for silicon, the heat flow
around large heating lines (W >1, µm) is well predicted by nominal Fourier. On
contrary, the reduced size devices are better predicted by the KCM hydrodynamic
model.

Figure7.8 shows the transient response for 500, 400 and 200nm heating lines
on In0.53Ga0.47As. Experimental data (dots) are compared with Fourier theory with
adjusted thermal conductivity and the KCMhydrodynamicmodel. It can be observed

Fig. 7.8 Temporal response of different width heating lines on In0.53Ga0.47As [13]. Dots represent
exprimental data and lines finite elements simulations
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that the rise in temperature is well predicted in both models for the two bigger
devices. On the other hand, for the smallest device themodified Fourier underpredicts
considerably the temperature rise. In addition it can be observed a faster cooling than
the predicted by the Fourier theory in all cases. In this sense, the hydrodynamicmodel
provides a better agreement for all devices, even though small discrepancies still exist,
especially for the smallest device.

7.4 Effective Modeling of KCM

In this chapter the hydrodynamic KCM has been applied to explain different exper-
iments on thermal transport. Here, the effect of the hydrodynamic heat transport
governed by the term �2∇Q is studied from the point of view of an effective thermal
conductivity and compared with the effects of TBR and anisotropy.

In Fig. 7.9 the effective thermal conductivity obtained for the experiment on silicon
detailed in the Sect. 7.3 is presented. To obtain an effective thermal conductivity
value from the KCM solution, it is assumed the Fourier law, and therefore from the
obtained flux Q and the temperature gradient∇∇∇T in each point the effective thermal
conductivity is obtained as κeff = −|Q|/∇∇∇T . As it can be observed, close to the
heater the effect of the viscosity term is to reduce the effective thermal conductivity.
Far to the heater, the effect of this term disappears and the bulk thermal conductivity
is recovered. The observed reduction of the thermal conductivity near to the heater
can be assimilated to a TBR. For this propose a simulation of the same setup in
In0.53Ga0.47As using a Fourier model and including an extra layer between the heater
and the substrate has been done. In this case, the thermal conductivity of the layer
and its thickness H will determine the value of its resistivity as rms = H/κL .

Figure7.10 shows the solution obtained by the KCM and the effective Fourier
including an adjusted TBR. It can be observed that the inclusion of a TBR can

Fig. 7.9 Effective thermal
conductivity obtained from a
Fourier representation of the
KCM solution
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Fig. 7.10 Temperature profile on In0.53Ga0.47As for W=200nm, W=400nm and W=10µm.
Bottom right: 2D temperature profile with KCM and Fourier+TBR superposed with heat flux
vector Q (red arrows) and minus temperature gradient −∇∇∇T (white arrows)

Table 7.1 Values of effective thermal conductivity and TBR for different width heating lines on
In0.53Ga0.47As

Width 200nm 500nm 10µm

KCM/Fourier KCM/Fourier KCM/Fourier

κeff [W/mK] 8.1/8.1 6.1/6.1 5.3/5.3

TBR [nKm2/W] 0/35.8 0/33.7 0/9.2

reproduce the same trend found by the KCM and in agreement with the experimental
data. Table7.1 contains the values used to reproduce these data. As it can be observed,
both models need to adjust the thermal conductivity for small heater widths. On the
other hand, while in the KCM a constant value of � = 150nm is used for all the
samples, the TBR in the Fourier model needs to be adjusted for each sample. In
addition, the values required for the TBR are very large compared to the reported
AMM/DMM values [10, 16]. In the 2D temperature profile it can be observed that,
while in the KCM the heat flux and minus gradient of T are not always parallel, in
the Fourier model have always the same direction.
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Fig. 7.11 Best anisotropic
fit to experimental
In0.53Ga0.47As temperature
profile with W=500nm

Finally, due to recent attempts to explain Fourier failures from an anisotropic
point of view in isotopic systems [6], an anisotropic Fourier model has been used to
reproduce the In0.53Ga0.47As experimental data. In this case, different in plane and
out of plane thermal conductivity values have been adjusted in order to obtain the
best fit.

The anisotropic Fourier model that fit the temperature on the center of the
heater and on the top of the sensor is represented in Fig. 7.11. The values used
are κInGaAs,I P = 1.1W/mK and κInGaAs,OP = 11.7W/mK. As it can be observed,
even though the temperature at the heater and the sensor are correct, the trend of the
temperature profile far from the center does not correctly reproduce the experimen-
tal data. It is not strange that an anisotropic model fails to predict experiments in
isotropic crystals such as In0.53Ga0.47As or silicon.
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Chapter 8
Conclusions

A novel contribution of this work has been to develop the equations of Guyer and
Krumhansl (GK) in a first principles framework considering the maximization of
the entropy to obtain a fully predictive model to compute the thermal conductivity
of semiconductors. These equations have been combined with Extended Irreversible
Thermodynamics (EIT) to obtain a hydrodynamic equation to describe the heat flux
beyond the Fourier law including non-local and memory effects able to reproduce
recent experiments under ultra-fast heating or high temperature gradients. All these
set of equations to describe the thermal conductivity and heat flux is what conforms
the Kinetic Collective Model (KCM) framework.

The collective behavior has been introduced as a fundamental piece to understand
the thermal conductivity when normal (N) scattering plays an important role. This
new transport mechanism is combined with the kinetic transport in the KCM, pro-
viding a way to calculate the thermal conductivity without treating normal scattering
as a resistive mechanism, in contrast to N-as-resistive approaches like in the classical
Relaxation Time Approximation (RTA).

The importance of collective behavior in a specific sample is determined by the
parameter �, calculated from the ratio of normal to resistive scattering rates. As
boundary scattering is included in the resistive term, when size is reduced � → 0,
and also vanishes at low temperatures. In bulk samples, where boundaries are not
considered, the collective behavior is relevant at all temperatures, becoming more
important as temperature decreases. Since the collective regime is expected to be
the responsible for the appearance of hydrodynamic effects, for finite values of �

hydrodynamic equations can be used to study heat transport.
By using first principles calculations, KCM has provided good agreement with

experimental data for a large number of samples without free parameters. They
include several bulk materials and micro/nano silicon films and wires in a wide range
of temperatures. While thermal conductivity of some samples can be predicted by
RTA, KCM additionally provides good predictions for bulk diamond and silicon
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nanowires thanks to the correct treatment of normal processes and the form factor
used in the collective regime to account for boundary effects.

Regarding bulk samples, the role of normal scattering in heat transport of alloys
has been also analyzed. Thermal conductivity values derived from the KCM for
Si1−xGex and InxGa1−xAs alloys show good agreement with experimental data and
previous calculations. Without introducing any fitting parameters, the proper combi-
nation of kinetic and collective transport can accurately predict thermal conductivity
at low alloy concentrations. Impurity concentrations as little as 0.4% almost elim-
inate the collective contribution in Si1−xGex , while in InxGa1−xAs, the collective
contribution is strongly reduced, but not completely removed, at 4% concentrations.
This insight could be useful when addressing phenomena such as phonon drag or
dopant effects in semiconductor thermoelectrics. Moreover, while the impact of col-
lective transport on steady-state thermal conductivity of bulk alloys is negligible at
most concentrations, the role of normal scattering is always important by slowing
down the kinetic transport, thus reducing thermal conductivity by 4–15% at room
temperature. The latter effect can have a big impact on the analysis of ultrafast ther-
mal transport at small length scales. The slowing down of the kinetic modes have
been reported to be also relevant in all the studied samples for finite values of �,
reducing the kinetic contribution up to 50% in most cases.

On the study of low dimension samples two approaches have been used. On one
side, the GK kinetic-collective approach has been applied successfully to several
silicon and Bi2Te3 samples. In this approach, phonons larger than the sample char-
acteristic size are limited in the kinetic regime while a hydrodynamic form factor
accounts for the boundaries in the collective one. A full hydrodynamic approach
derived from GK and EIT have also shown good performance on silicon and has
improved the prediction for Si1−xGex nanowires of different impurity concentra-
tions.

From the phonon spectral analysis the contribution to the thermal conductivity of
each heat carrier in terms of frequency and mean free path (MFP) has been obtained.
While high frequency carriers have a significant contribution for pure materials, low
frequency ones are the responsible of heat transport in alloys.

The role of low energy phonons has been demonstrated to be important in order to
compute the thermal conductivity and to analyze the thermal conductivity accumula-
tion function in terms of MFP. KCM supplies an explanation for the reduction of the
contribution of longMFP phonons based on the effect of the collective regime and the
calculation of low frequency relaxation times. In addition, in the KCM accumulation
function the emergence of a collective characteristic length provides information of
the scales where deviations from Fourier can be relevant, which is not visible from
classical representations. Moreover, the dependence of � on the characteristic size
Leff changes the shape of this function, and therefore override the general belief
that the thermal conductivity for a certain size Leff can be obtained by removing the
contribution from phonons with MFP greater than it.

The spectralMFP information has allowed to study the transient response between
diffusive and ballistic regimes. It is shown that the collective regime, where phonons
share the same MFP, narrows the spatial window of superdiffusive heat transport. In
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addition, the slope of the accumulation function has been correlated to the dominant
scattering mechanism.

The study of complex experimental setups has evidenced that the hydrodynamic
KCM thermal transport equation can explain the observed deviations from Fourier
law in nanoscale devices with several geometries. The model using intrinsic material
properties is able to describe the different studied experiments up to scales larger than
200 nm. The hydrodynamic transport includes a non-local term � resembling viscous
friction in fluids, thus increasing the resistance of heat to flowas size becomes smaller.
It has been shown that this increased resistance produces the sameeffect as an increase
of thermal boundary resistance (TBR) as size is reduced. Then, experiments which
have been interpreted by considering a size-dependent TBR may be reinterpreted as
a hydrodynamic effect. The hydrodynamic view has the advantage of predicting the
thermal response using a single non-local length, �, instead of fitting the TBR for
each experiment.

In summary, the collective regimedefined inKCMintroduces relevant information
on phonon transport that could be useful to describe experiments where non-Fourier
behavior has been reported, as in high temperature gradients or ultra-fast experi-
ments using pump-probe and/or thermoreflectance setups. The hydrodynamic KCM
has been applied successfully to general 3D geometries, where BTE approaches are
hard to implement. Its implementation via a finite elements method could be directly
combined with current tools used in nanoelectronics device modeling and optimiza-
tion. In addition, this new model could lead to a better understanding of the heat
transport from microscopic to macroscopic scales and help to a deeper study of the
microscopic interpretation of the TBR.



Appendix A
Generalization of the KCM Equations

In certain systems where differences between normal and umklapp processes are
relevant or the symmetries of the crystal are complex, the Debye approximation
used in the first formulation of the model—where homogeneity and isotropy are
assumed [1]—is no longer valid. Some discrepancies to experimental data can appear
in such situations.

In order the improve the solution, some terms need to be reformulated. In the
first case, the normalization constant λ from 〈1|1〉, previously defined as λ2 =
3kB�

2c2/Cv , takes the form:

λ2
i j = �

2kB
∑

q

(
qi⊗q j

ω2
q

)
x2q

exq
(exq−1)2

, (A.1)

where xq = �ωq/kBT . Notice that the denominator represents themode specific heat
corrected by a term (qi ⊗ q j/ω

2
q).
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Appendix B
Hydrodynamic Heat Flow in Two Dimensions

Amajor difference between the Fourier law and the hydrodynamic heat flux equation,
Eq. (6.1), is that the heat flux provided by the latter is not, in general, parallel to the
temperature gradient. In addition, it may contain a non vanishing vorticity. This
behavior can not be seen in purely one-dimensional systems, but it can already be
observed in two-dimensional ones. Here a general solution for the heat flux given
by Eq. (6.1) is provided, making explicit this behavior. This solution also yields a
general expression for the decay time in grating experiments.

In two dimensions, thermal magnitudes are functions of the x ,y coordinates only.
The heat flux has two components,Q = (Qx , Qy), which are the solution ofEq. (6.1):

[(
1 0
0 1

)

− �2
(
3∂2

x + ∂2
y 2∂x∂y

2∂y∂x ∂2
x + 3∂2

y

)] (
Qx

Qy

)

= −
(

κ 0
0 κ

) (
∂x T
∂yT

)

, (B.1)

where the time derivative and 2∇∇∇∇∇∇ · Q have been neglected. Separable solutions in
which the dependence on the spatial coordinates are of the form:

T,Q ∝ ei(mx x+my y) , (B.2)

with m = (mx ,my) a possibly complex wave vector. Substituting Eq. (B.2) into
Eq. (B.1) gives:

[(
1 0
0 1

)

− �2
(
3m2

x + m2
y 2mxmy

2mymx m2
x + 3m2

y

)] (
Qx

Qy

)

= −iκT

(
mx

my

)

. (B.3)

The matrix on the left hand side of this equation has two eigenvalues, μαand
μβ . From one side, μα = 1 + 3m2�2 has eigenvectors parallel to m, and can be
expressed as Qα = im� = ∇∇∇�, where � is a scalar function with potential heat
flux, and therefore non-rotational, andm = |m|. From the other side,μβ = 1 + m2�2

has eigenvectors normal to m, and can be expressed as Qβ = iz × mψ = z × ∇∇∇ψ.
z is the unit vector normal to the xy plane, and the scalar ψ is analogous to the
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stream function in fluid mechanics. This heat flux has non-vanishing curl ∇ × Qβ =
z∇2ψ = −zm2ψ. Then it is qualitatively different from the heat flux in Fourier theory.

It can be observed that the right hand side of Eq. (B.3) is an α eigenvector. Then,
expressing the total heat flux Q as a combination of the two eigenvectors, Q =
Qα + qβ = im� + iz × kψ, two equations can be obtained from Eq. (B.3):

(1 + 3m2�2)Qα = −κiTm and (B.4)

(1 + m2�2)Qβ = 0. (B.5)

Since both equations are uncoupled they can be solved independently. From
Eq. (B.4) the potential � is obtained:

� = − κT

1 + 3m2�2
. (B.6)

Equation (B.6) suggests that the potential part of the heat flux, Qα, is obtained
from the temperature gradient through an effective heat conductivity, λeff = κ/(1 +
3m2�2).

The time evolution of the temperature profile depends on Qα only, as it can be
seen from the energy conservation law:

cv

∂T

∂t
+ ∇ · Q = 0 , (B.7)

where cv is the specific heat per unit volume. Noting that ∇ · Qβ = 0 and ∇ · Qα =
−m2� and using Eq. (B.6), is obtained:

cv

∂T

∂t
+ κm2

1 + 3m2�2
T = 0 . (B.8)

The temperature profile decay can be obtained directly from Eq. (B.8) as

γ = κm2/cv

1 + 3m2�2
. (B.9)

For a purely one dimensional initial profile, T (x, y, t = 0) = sin(ζx), in an
unboundedmedium in the X and Y directions having that Eq. (B.9) leads to Eq. (B.7).
However, if this initial profile is imposed in a membrane of smaller thickness in the
Y direction, a dependence of the solution on the transverse coordinate will appear,
which needs to be taken into account through a different value from 0.

The rotational contribution to the heat flux can be described through the stream
function. From Eq. (B.5), equation for ψ is obtained as:

(1 + m2�2)ψ = 0 , (B.10)
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which shows that the stream function is not vanishing only ifm2 = −1/�2. Therefore
some components ofm must be complex. Assuming that mx = ζ is real, then my =
±i

√
ζ2 + 1/�2 , having

ψ ∝ eiζx±β(ζ)y ,where β(ζ) =
√

ζ2 + 1/�2 . (B.11)

This function decays exponentially in a length of the order of β−1. The vorticity,
which is proportional to ψ, also decays in a length of order of β−1.

Finally, for a complete determination of the heat flux, the differential equations in
Eq. (B.1) must be supplemented with suitable boundary conditions. Each condition
imposed on the components of the heat flux will introduce a coupling between the
potentialQα and rotationalQβ contributions to the flux. According to the definitions
of � and ψ, the components of the heat flux are given by

Qx = ∂�

∂x
− ∂ψ

∂y
and (B.12)

Qy = ∂�

∂y
+ ∂ψ

∂x
. (B.13)



Appendix C
Longitudinal Heat Transport in a Thin Film

A membrane of width h described by the coordinate y ∈ [−h/2, h/2] with finite
extension along the X direction and an initial temperature profile T (x, y, t = 0) =
sin(ζx) is considered.

The evolution of the system for t > 0 is given by Eqs. (B.1) and (B.7) together
with boundary conditions at both surfaces of the film, y = ±h/2:

• Insulating boundary conditions, Qy(y ± h/2) = 0. According to Eq. (B.13):

∂�

∂y
|y=±h/2 + ∂ψ

∂x
|y=±h/2 = 0 . (C.1)

• Slip boundary condition, Qx = C�∂Qx/∂y, where C is a slip coefficient, and the
orientation towards the interior of the film is taken as positive in the derivative;
this slip condition is analogous to the one employed in hydrodynamics [1]. Using
Eq. (B.12) leads to:

∂�

∂x
|y=±h/2 − ∂ψ

∂y
|y=±h/2 = ±C�∇2ψ|y=±h/2 . (C.2)

To obtain the right hand side of this equality it has been used that the first
boundary condition, Qy = 0 at y = ±h/2, applies to all x values, so ∂Qy/∂x =
0 = ∂2�/∂x∂y + ∂2ψ/∂x2 at the boundaries. The solution to this problem can be
obtained as a combination of the previously obtained separable solutions. According
to the symmetry of the problem, the contributions to the temperature field must be
of the form

Tm(x, y, t) = Ame
−γmtsin(ζx)cos(my y) , (C.3)

where the decay rate γm is given by Eq. (B.9) with m2 = ζ2 + m2
y . The differential

equation fixes this temporal dependence for the functions Tm , and also for �m .
According to Eq. (B.6):
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�m(x, y, t) = Bme
−γmtsin(ζx)cos(my y) , (C.4)

with Bm = −κAm/(1 + 3m2�2). The form ψm , according to Eq. (B.11) and the sym-
metries of the problem, is

ψm(x, y, t) = Dm(t)cos(ζx)sinh(βy) . (C.5)

The time dependence of Eq. (C.5) will be fixed by the boundary conditions. The
first boundary condition Eq. (C.1) gives

Dm(t) = −Bme
−γmt

my

ζ

sin(myh/2)

sinh(βh/2)
. (C.6)

Using the second boundary condition given by Eq. (C.2), the following relation
is obtained:

my tan(myh/2) = −ζ2

β

tanh(βh/2)

1 + C
2β�

tanh(βh/2)
. (C.7)

This is an eigenvalue for the magnitude my . There is an infinite number of real
solutions formy : given that the right-hand-side of the equation is negative, there will
be a solution in each of the intervals myh/2 ∈ [(n − 1/2)π, nπ], n = 1, 2, . . . The
decay rate for the nth solution increases with n, because m2 = ζ2 + m2

y . However,
there exists also an imaginary solution, my = iα, with α determined by

αh

2
tanh(αh/2) =

(
ζh

2

)2 tanh(βh/2)
βh
2 + Ch

2� tanh(βh/2)
. (C.8)

The solution given by Eq. (C.8) provides the eigenfunctionwith the slowest decay,
since m2 = ζ2 − α2 takes the smallest value:

γ = κζ2

cv

1 − α2/ζ2

1 + 3�2ζ2(1 − α2/ζ2)
. (C.9)

Therefore, the change of the decay rate from the bulk expression, Eq. (B.9), due
to the finite thickness of the film can be absorbed in a ζ-dependent modification of
coefficients κ and �2 through the same factor, f = 1 − α2/ζ2. The effect of the finite
thickness is thus to reduce the decay rate as compared to the unbounded case; this is
what expected from the viscous-like term in the hydrodynamic heat flux equation.

AsEq. (C.8) shows,α is a function of h, � and ζ, and then, for dimensional reasons,
the functional form of the correction factor f is f (ζh, h/�). In the experiments, the
values of ζh are always very small (smaller than∼ 0.1), so that this quotient is nearly
independent of ζ (see Fig.C.1):
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Fig. C.1 Correction coefficient f as a function of ζh for different values of h/� and for boundary
conditions C = 0 (left) and C = 1 (right). For the experimental range, ζh < 1, the value of f
remains approximately constant

limζh→01 −
(

α

ζ

)2

= 1 − (
2�

h
)

tanh(h/2�)

1 + C tanh(h/2�)
≡ f0(h/�) . (C.10)

In the experimental interval:

γ = κeffζ
2/cv

1 + 3�2eζ
2

, (C.11)

with κeff = κ f0(h/�) and �2eff = �2 fo(h/�) = �2κeff/κ. The change in the decay rate
can be described through the use of an effective reduced conductivity κeff and an
effective non-local length �eff. In all the applications a general slip condition C = 1
is used, which is related to the specularity of boundaries [1].
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