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Conscience doth make cowards of us all.

—William Shakespeare



Foreword

Since the discovery of the strong focusing principle between 1949 and 1952, many
accelerators from several tens of meters in circumference to tens of kilometers have
been proposed and constructed based on this principle. As in many other areas of
physics and engineering, computer simulations became an accurate and efficient
tool for accelerator design and operation. It is essential for designing any modern
high-performance accelerator where engineering tolerance is involved in an early
stage.

The earlier generation of accelerator simulation codes, limited by computing
capabilities, tended to use a simple matrix for so-called linear magnets—solenoid,
dipole, quadrupole—and thin lens kicks for sextupoles and higher multipoles. These
codes were symplectic by design. Attempts to improve them initially went in the
direction of improving the matrix by deriving higher-order corrections. I can name a
few codes: Karl Brown’s Transport (second-order), Dragt’s Marylie (third-order),
Berz’s Cosy 5.0 (fifth-order), and Cosy-Infinity (arbitrary order). All these codes
produce maps accurate around a single orbit, usually the so-called design orbit. They
emphasize model accuracy but lack self-consistency since they single out one special
orbit. When analyzing the dynamics with a wider range of energy, orbits, and even
design1 orbits, some matrix-based codes need special care or are even not usable.

Ron Ruth proposed a different approach: to improve the matrix code using
integration techniques that are symplectic. It turns out that for most Hamiltonians in
ring dynamics, this solution is feasible. When a simulation code is developed
following Ruth’s methods, it is more self-consistent, and most extra dynamical
effects can be included with ease. Calculations of lattice functions stay closer to
tracking and to first principles. In the final analysis, it is a more reliable model for
the ring. Of course, in the early 1980s, the Ruth approach lost the nonlinear matrix
representation of the map. This state of affairs changed drastically with the advent
of truncated power series algebra (TPSA, also called differential algebra by Berz
and others).

1Recirculators require several design orbits through the same magnet.
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Etienne Forest’s pioneer work on normal form analysis has provided a general,
clean, and unified framework for single-particle beam dynamics simulations that
include Ruth’s integration while providing maps with the appropriate analysis tools.
All these are realized in his PTC program which is used for the examples in this
book.

In the PTC framework, brute force tracking is still possible because it is a
Ruth-inspired integrator. However, a transfer map can be obtained around any
closed orbit and normalized to an arbitrary order. The lattice function calculations
are then performed in a form close to their definition: βx ¼ hx2i=Jx and νx,
@νx=@ðdp=pÞ, ξx are coefficients of the Taylor expansion of νx and higher-order
quantities correspond to high-order coefficients in the properly defined version
of these quantities. Coupled lattice functions like hxyi= ffiffiffiffiffiffiffiffi

JxJy
p

are easier to compare
with measurement.

My own experience with spin dynamics is limited, but I can see that the spin
tunes and phase advances can be calculated under the same framework in a clean
and unified way. After all, the normalization process has no assumptions about the
details of the dynamics.

When I realized the existence of this modern framework, I developed a TPSA
package in C++ and was introduced to Etienne by my then group leader David
Robin at the Lawrence Berkeley Laboratory. Within less than a week, his PTC was
able to run with my TPSA package. However, for most accelerator physicists doing
single-particle dynamics simulations, it is not necessary to develop a TPSA or
normal form library. Just as it is for the users of singular value decomposition
(SVD), fast Fourier transformation (FFT), or the popular frequency analysis of
Laskar, the only essential thing is to know how to use these mathematical tools and
their processed data. That is the focus of this book. Symplectic integrators, TPSA,
the unique beam-line structure of PTC that fully exploits the lens description of
beam dynamics, although an integral part of Etienne’s general framework, are not
covered in this book. The emphasis here is on the structure of the analysis tools
irrespective of the simulation code one ends up using.

Since I first met Etienne, I recommended that he write a new book for the users
of beam dynamics simulation. Many readers of his last book may share with me the
impression that the simplicity of the framework is overshadowed by the mathe-
matical details. The example-oriented approach in this book is a better introduction
to his framework. Despite its small size, this book contains new results: new
parameterization of the linear map, discussion on spin and spin resonances and,
surprisingly, a numerically general method to compute correctly the Hamiltonian
that enters into the standard perturbation theory found in traditional textbooks: the
methods of Guignard.

Less is more. When a simulation is based only on fundamental principles, its
results are more precise and general and lead to new discoveries.

Upton, New York Lingyun Yang
January 2015
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Preface

Pre-Boarding Announcement

All the examples of this book are derived from a code in which I deliberately put
bugs and nonphysical Hamiltonians: the drifts are wrong, the magnets have mis-
takes, physical constants are wrong, the spin equations are wrong, etc…

Actually I did not have the cojones to confuse readers who might actually
compare the examples of this book with a standard accelerator code. But it must be
the conclusion of the reader who understands this book, that the exactness of the
model is totally irrelevant to the general structure of accelerator theory.

Garbage in; garbage out!

If the style of this book is more akin to the pamphleteer style of V.I. Lenin’s
“State and Revolution” or Thomas Paine’s “Common Sense,” it is not an accident.
I am describing shamelessly my own position and conviction.

Through most of the book I talk in the first person singular. I avoid the scientific
“we” or Julius Caesar’s “he/one.”My reasons are simple: the main idea of this book
—the existence of a natural hierarchy—is mine and I will not be a coward. It is not
a review article. I am not interested in giving credit to people whose work is
irrelevant to mine or, as it is often the case, antithetical to my work. I do not care
that they are great accelerator physicists or have contributed valuable insights to the
field. I describe here a very narrow and specific topic as I see it. Some people have
had some influence on me in relation to this book. I can name them right here: Alex
Dragt, Martin Berz, Richard Talman, Ron Ruth, and recently, Desmond Barber.
Other people have contributed to the software I used: Martin Berz (again), David
Sagan, Frank Schmidt, and Eric McIntosh. Finally, Alexander Molodozhentsev has
actually used my work in physical applications which in some ways have motivated
me to go further.

When I use the collective “we” in this book, it really means “the reader and I.”
Of course I am sure that I occasionally use the passive and the “we” whose purpose
is to diffuse responsibility—after all I live in Japan where diffusing responsibility is
a cultural imperative! I apologise in advance.
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This book originates in my conviction that, since 1980 at least, computer sim-
ulations of accelerators are ubiquitous and unavoidable. Therefore, as soon as
I entered the field I decided that theory and simulation should be adapted to each
other.

Accelerator theory, which in its simplest incarnation is called “Courant-Snyder”
theory, should be designed with the simulation code in mind. Integrators in
accelerator physics, often called “kick codes,” simply push particles around the
machine. However, circa 1986, the tools of truncated power series algebra (TPSA)
have been made available to the accelerator community primarily through the work
of Berz. Thanks to operator overloading, available in C++ and Fortran90, it is
possible to write an integrator which can produce automatically2 not only brute
force tracking but approximate Taylor maps.

Taylor maps can be analyzed by a process called normalization. This process
allows the Courant-Snyder theory to be extended effortlessly to nonlinearities, spin,
radiation, modulated magnets, etc., provided that a normalization library, akin to a
diagonalization library, exists and is available.

Once these tools are in place, it is possible to cover the entire field of accelerator
perturbation theory, provided one respects and abides by a strict hierarchical code.
The word code here means “computer program” and well as behavior.

In this book I display with examples, runnable on any computer platform, the
full gamut of this hierarchy: one-turn maps, normalization of one-turn maps, uni-
versal Twiss3 loop and Fourier transform of the Hamiltonian (or Lorentz force)
expressed in approximate Floquet variables. This final Hamiltonian is the
Hamiltonian often found in standard accelerator textbooks. Here you are told how
to really compute it in a complex and arbitrary ring; better, you are given some
tools that exemplify that power.

I will review the normalization of linear maps in n-degrees of freedom under
most regimes: symplectic, radiative, spin, and modulated magnets. I will then
proceed to the nonlinear normalization. This will include some examples with a
single resonance and a limit cycle. I have also a discussion on spin. I will finish the
book with Guignard theory which is the final output of the universal Twiss loop.

It is notable that Guignard theory, which is often the starting point of pertur-
bation theory, is here a final product and thus at the bottom of the hierarchical
structure. This is not a matter of taste: any serious calculation which includes errors,
fringe fields, and the effect of earthquakes must follow that hierarchy. Of course if
one pontificates from a throne in the rarefied air of pure mathematics, then it is a
matter of taste. But here I provide real examples, not hot air.

This book is novel in two respects. First, I made an effort to produce examples
on which the reader can check his understanding. Unlike most books where
examples are trivial or simply absent, here all the tools in the book are available to
the reader with 16 examples in the appendices that can be run with freely available

2Almost automatically!
3Some would prefer the term “universal lattice function loop.”
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compilers. The actual ring used is an old design of the Advanced Light Source at
the Lawrence Berkeley National Laboratory where I once worked. The lattice is in
Appendix A.

Secondly, there are novel topics that are not found in the literature. The chapter
on spin contains a few novel ideas mostly due to Desmond Barber and Dan Abell.
The chapter on Guignard-like Hamiltonian is totally new and is based on one’s
ability to take the logarithm of a nonlinear map. The idea is not new to me but
I took the time and trouble to implement enough of it for the sake of this book.

Of course I hope that some accelerator physicists will read this book and try the
examples; they are the intended audience.

The reader is invited to jump to Chap. 9 and read the conclusion of this book. It
mirrors this preface and it is a good way to avoid reading a book!

Finally, I would like to state that I am inspired by the linguist Noam Chomsky in
my approach to this field.

First of all, and this is mostly pure coincidence, Chomsky is famous in science
for the concept of a universal grammar and the concept of the Chomsky Normal
Form (CNF) applied to context free formal grammars. These context free grammars
are a little akin to our integrable systems and the CNF to our normal forms.
Of course the real universal grammar which is postulated to exist in a child’s brain
is more complex as is the real dynamics of a symplectic map.

Secondly, and more importantly, I am inspired by Chomsky’s political analysis
methods. In particular, one can deduce a lot of things by looking at the structure of a
system4 from far above. And, when our logical deductions are wrong, it is
instructive since it is often the sign of specific human manipulations. Accelerators
are man-made after all. It is logical to assume generically, if we look far above
them, that they have linear stability. Without any additional knowledge, I can derive
all of Courant-Snyder theory. The details are irrelevant: a marble in a frictionless
gutter or a proton in a synchrotron all lead to the same theory. So if one discovers
that the stable system is linearly unstable, it teaches us a lot about human manip-
ulations. Also, there are many numerical methods that are based on the quasi-failure
of integrability: Laskar’s frequency analysis is perhaps the most famous. Generally,
there is a lot to learn from discovering that certain naive expectations are usually
wrong.

Politically the same is true. I expect accelerator laboratories to produce graduate
students who are partial slaves simply because of the purpose of accelerator phy-
sics. Graduate students are assigned easily to supervisors on the basis of needs
because we are a glorified service station. When it is not the case, we can expect
that some special mechanism was put in place to prevent exploitation.

A very respected Japanese colleague of mine once told me that “my approach to
the theory” is not good because it does not permit the student to jump immediately
into useful thesis work. I thought that students are supposed to learn and not to be

4To look from far above, keeping lesser details away, is also a method preached by Feynman, who,
with Chomsky, is my intellectual hero.
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“useful.” But this is what happens if you are in a technological field and, worse, in a
laboratory with a service mission.

You have been warned: the material of this book is considered useless by my
most esteemed colleagues. Caveat emptor!

Filling in the Blanks!

This book should be a living document. If you have a powerful library using more
sophisticated software and language, I encourage you to redo the examples of this
book. If you fail, then your library is deficient or you do not understand the book
fully. If you succeed, you have my permission to ask the publisher to republish part
of this book verbatim with your own examples and your name above mine!

I strongly feel that theory does not belong to me. It belongs, like any scientific
theory, to the community at large. So go ahead and redo the examples with another
tracking code and another analysis library!

Tsukuba, Japan Etienne Forest
August 2015
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Where Can the Reader Find the Software?

Most books on accelerator physics describe theory and simulation “in the abstract”
leaving it to the reader to search for an actual implementation. In this book I tried to
back up my position on theory with actual examples drawn from a software library
that is actually present in serious codes: BMAD of Cornell, MADX of CERN, and
ORBIT of SNS.

The examples of perturbation theory use the so-called FPP package and the
lattices examples use the code PTC.

At present, the examples of this book, the code PTC and the associated library
FPP, can be obtained with the “git command”

git clone https://github.com/jceepf/fpp_book.

Most likely anyone who downloads the Cornell code BMAD from David Sagan
will have nearly up-to-date versions of these libraries.

FPP is a dual-purpose library which overloads the old LBNL version of Berz’s
“DA” package which is a truncated power series algebra library (TPSA). It also
overloads my old LBNL normal form routines—the LIELIB package. It also creates
a polymorphic type which can change from real to Taylor series at execution time.
Additionally, it contains a new complex LIELIB (file Ci_tpsa.f90) without
which I would not have bothered writing this book. All these things are based on
Berz original LBNL “DA package.”

Finally, the code PTC is a library capable of pushing polymorphic rays through
lattices of arbitrary complex topologies: rings, colliders, recirculators, full accel-
erator complexes, etc.

In this book I use the word code when I really should talk about a “library.”
PTC, as a code, is primitive and hard to use. It is intended as a module sitting in a
more user friendly environment. At present the code BMAD of Cornell is the most
complete “wrapper” of PTC and can even handle its complex topologies. Therefore,
I provide the user with a “hard wired” lattice for all the examples involving a lattice:
I do not expect the reader to run PTC without my help.

In any event, I hope that the reader will find the examples self-contained and
easy to run.

xxiii
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Chapter 1
Introduction

Abstract I repeat here themessage of the preface in greater details. I emphasize how
the existence of a tracking code, necessary and ubiquitous, leads to a hierarchical,
even Orwellian, ordering of the perturbation approaches. In this hierarchy, standard
Hamiltonian theory is subservient to a map based perturbation theory. It is neither
a matter of choice nor taste, but a result of the importance of tracking codes. Since
the code is central, I describe very succinctly the code I will use for the examples of
this book, the Fortran 90 code PTC.

Keywords Dichotomous · Tracking and analysis ·Map based analysis · PTC code

1.1 Dichotomous Approach Derived from Complexity

In a previous [1] book, I detailed an approach to accelerator theory and tracking that
emphasizes what I called the “dichotomous approach.” I claimed that it is best to
separate tracking from perturbation theory.

I declared that one could learn perturbation theory (linear and beyond) quite
independently from tracking. In fact, I took the “contemplative or Chomskyan” point
of view: if one looked at a stable ring from outer space, one could derive all the
framework of perturbation theorywithout the details of the ring. It is a theoretical fact
that accelerator theory, including spin and classical radiation, is structurally detail-
independent or Hamiltonian-free as I clamoured many years ago [2]. For example,
the beta function, which linear theory defines as the coefficient of proportionality
between the variance of position and the quadratic invariant, is just as well defined
for a proton in a stable circular ring as it is for a marble in a closed frictionless gutter.

The complexity of the system ledme to this dichotomous approach: it is hopeless1

to write a correct Hamiltonian which can be analysed in closed form if one introduces
misalignments, fringe fields, closed orbit distortions, etc. in an accelerator which can
have more than 10,000 elements like the Large Hadron Collider (LHC) at CERN.

1It is not completely hopeless, for a small ring in particular, if one follows the approach of this
book. The so-called Guignard theory is extracted from my approach in Chap.8.

© Springer Japan 2016
E. Forest, From Tracking Code to Analysis,
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2 1 Introduction

However, by linking a tracking code2 with map based methods, we can, in fact,
perform analysis on realistic models.

In summary, when writing a tracking code, one should focus ideally on the details
of each magnet without paying attention to the ultimate purpose of the device. On the
other hand, when analysing the map, one should focus on the purpose of the system,
ideally integrating out the local and detailed information that is not germane to the
final calculation. The dichotomous approach, that I have been advocating for years,
finds a way to reconcile these two contradictory requirements without losing an iota
of accelerator theory.

1.2 The Modern Way to Implement the Dichotomous
Approach

Complexity is, like beauty, in the eye of the beholder. Everyone has a different idea
of what is complex and what is simple.

On the other hand, the necessity of using complex simulation codes in the design
of present day accelerators seems absolute. While it was possible in the 1950s and
even later, to design an accelerator with pencil and paper, it is impossible today to
design a beast like the LHC without the help of a tracking/design code.

Therefore in this book I will base my reasoning on the necessary existence of a
simulation code. Of course it can be argued that the necessary existence of tracking
codes is the result of complexity. Nevertheless, given the unchallenged presence of
simulation codes in accelerator physics, I will use this cultural premise to avoid any
lengthy arguments. So a code exists and we must link it with perturbative tools. The
tools which are most easily adapted to a tracking code should be studied first: the
tools based on “finite s” Taylor maps. Other types of calculation, if needed, will
come next in the intellectual and computational3 hierarchy. That is the essence of
the dichotomous approach I advocate.

It is an essential ingredient of the dichotomous approach that we—the reader and
I—can assume that this code, at a minimum, is able to perform tracking between
selected surface of sections: the steps of its integrator.4

Hence I will imagine that we have a tracking code capable of producing Taylor
series expansions of its output as a function of its input. For example, the code can
produce a Taylor series expansion of its final phase space position as a function of its

2Not to mention the measurements on an existing machine which are obviously performed at a
finite number of locations!
3A code equippedwith Taylormap based tools can provide all the input of a Hamiltonian calculation
more easily than any other approach. It is described in Chap.8 and it uses our ability to take
logarithms of nonlinear maps as shown in supplemental Chap. 11.
4A code must do more if it is used during a design phase: it must compute and fit all sorts of lattice
functions. Codes such as CERN’s MAD, KEK’s SAD and Cornell’s BMAD all satisfy these needs
to some degree but they also do much more.

http://dx.doi.org/10.1007/978-4-431-55803-3_8
http://dx.doi.org/10.1007/978-4-431-55803-3_11


1.2 The Modern Way to Implement the Dichotomous Approach 3

initial position, i.e., an approximate phase space map. It is also capable of producing
a Taylor expansion in the system parameters, a quadrupole strength for example.

As we will see, the example code of this book is written in a language, Fortran
90, capable of operator overloading which greatly facilitates the coding of the Taylor
part of the code. The reader should be aware that the dichotomous approach was
doable in a more primitive language such as FORTRAN 77 but the greater syntactic5

complexity would have made this book harder to understand.
With such a code, it follows that a perturbation theory based on finite “s”-maps

is immediately available, provided that some analysis tools are written. The tool
box is simply a library capable of normalising the approximate one-turn map. Such a
library can be written with ease if one has access to a complex Taylor series package5

and with more difficulty if the package deals only with real polynomials. Once the
tracking code and the analysis package are combined, all of perturbation theory is
now accessible to the code in a hierarchical order which is not a matter of taste but
is dictated by the code and the tools themselves.

Finally, I will use examples from a real tracking code, PTC. The reader can
download PTC from various web sites since it is an essential part of codes such as
MAD-X and BMAD (for download sites see p. xxiii). I am not trying to sell PTC as
the code to use, but I believe that it is much simpler to learn with actual examples
drawn from a fully functional code.

PTC is equipped with overloaded Taylor series tools ultimately based on the “DA”
package of Martin Berz as it existed in LBNL prior to 1990. This package is inside
BMAD andMAD-X. The examples of this book can be run on a computer using any
freely available Fortran 90 compiler.

1.3 The Induced Hierarchy Inherited
from the Tracking Code

The code exists: this is the starting point of this book. I like to illustrate this with an
allegory which may sounds far-fetched but is actually close to my way6 of thinking
and the reader is well advised to keep it in the back of his mind.

The Code, in the mind of the reader, must acquire an Orwellian quality. Like the
Party of Oceania, in the novel 1984, the Code is always correct or in the words of
Professor Talman of Cornell, the code is exact.

Therefore we are after tools which will produce results as consistent as possi-
ble with our code. Like the protagonist Winston Smith of 1984, we must convince
ourselves that the “Code” is always correct. If one day you discover that “nonlin-
ear quadrupole fringe fields” are important but not in the “Code”; then you (or the

5 The existence of a complex Taylor packagewas also for me a prerequisite for this book: it made the
implementation of perturbative theory more transparent. But, as in the case of operator overloading,
it is not essential to the dichotomous approach but facilitates its usage.
6Sorry but this is just the beginning!
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“Party”) must put them in the Code. So the Code is always correct. The Code was
always correct since you rewrite its manual to conform with the new history. My
version of Orwell’s famous quote is:

He who controls the code controls the physics. He who controls the manual controls the
code.

The code produces complex results. But sometimes these complex results can be
explained by a simple picture. This is the role of perturbation theory: take a complex
phenomenon and, when applicable, replace it with something trivial. For example
we might have some nonlinear coupled motion but it seems to move on surfaces
topologically identical to a product of circles (tori). Perturbation theory attempts to
parametrize the motion in terms of these simpler circles. It is really to the Code what
“propaganda” is to the Party or in the famous words of the infamous Dr. Göbbels:

Propaganda’s task is the highest creative art of putting sometimes complicated events and
facts in a way simple enough to be understood by the man on the street. Its foundation is
that there is nothing the people cannot understand, but rather things must be put in a way
that they can understand.

We will see that perturbation theory, when applicable, reduces complex averages to
trivial ones over circles. Therefore we must ask ourselves, what perturbation method
is most consistent with this totalitarian view of the “Code”? What method is most
readily available so that even themost uneducated of users can still use it in connection
with his code? The answer is a perturbation theory which originates automatically
and seamlessly from the code itself: the perturbation theory acting on Taylor maps
produced by the code around a closed orbit and normalised/analysed correctly to a
given order. Such perturbation theory will never produce errors other than truncation
errors. When it disagrees with the code, it means that tracking must be used and that
perturbation theory is unusable. Human error is taken out of the loop: like in 1984,
the Party decides what reality is. In our case, the code, through pure tracking, decides
what reality is. This code-derived perturbation theory, like propaganda, is subservient
to the code. It approximates the code but never replaces it. It is most efficient when
its approximate story reflects the reality of pure brute force simulation or as the good
doctor ejaculated:

Good propaganda does not need to lie, indeed it may not lie. It has no reason to fear the
truth. It is a mistake to believe that the people cannot take the truth. They can. It is only a
matter of presenting the truth to people in a way that they will be able to understand.

In a framework based on maps, if one computes the “beta” function, it will always
be correct. Errors are not possible. If, for some reasons, the numerical value of this
beta function is not to the satisfaction of the user, then it means that the model is
wrong or the user is a dangerous fool. Assuming that the user is not already at the
Ministry of Love, then the model must be changed either by using other elements of
the code,modifying the lattice or bymodifying the code itself, adding new fringe field
models for example. But whatever the result, the calculation of the lattice functions
will always be consistent with the code at any order in perturbation theory. This is
the principal virtue of a theory based on maps.
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Therefore this theory sits on top of the perturbation hierarchy: it is most consis-
tent with the code itself. Nevertheless, it will still be possible to perform standard
Hamiltonian analysis. These analyses require lattice functions, phase advances and
local Hamiltonians. Remarkably, the map based approach is most suited in providing
reliable input to theHamiltonian approach. Aswewill discover in Chap. 8, it can even
provide the approximate Hamiltonian in terms of Fourier modes in the “s”-variable.

1.4 Give His Dues to Caesar: Dragt, Talman, and Berz

I must remind everyone that my work with codes and perturbation theory is truly
built on the shoulders of three persons, and one at least, shares some of my own
visualizations.

As far as perturbation theory is concerned, I owe my ideas and inspiration to
ProfessorAlexDragt of theUniversity ofMaryland. It is easy in spectrometer physics
or electronmicroscopy to convince oneself that perturbation theory is all about Taylor
maps. In accelerator physics, unless one can normalise the one-turn Taylor map, it
is harder to conceive. That was an obvious fact to Professor Alex Dragt.

Some of you may think that I lost my marbles or flew off the handle in fantasizing
accelerator codes as some sort of Orwellian enterprise. But on this issue, I owe a
lot to Professor Richard Talman of Cornell University. He is the first person to say
something superficially outrageous: TEAPOT is exact! I will not go into the details of
his code TEAPOT [3], but let me say that if it is exact as one traditionally understands
the word, then I must be living in cartoon land. This outrageous statement was a
watered down version of my “Orwellian code”: we ought to think that the code is
exact even if it is not. This is very similar to Orwell’s doublethink: the ability to
hold seemingly contradictory ideas at the same time. Indeed TEAPOT is not exact,
nor is PTC, but when we use them, we use them as if they are reality. Occasionally,
we acknowledge their shortcomings, modify them and again use them as if they are
reality. For another ring, we might go back to a less exact version of our code and use
it with the same blind devotion. Accelerator physicists suffer from the same delusion
when they claim that quadrupoles and dipoles are linear elements, not realising that
this is a consequence of the small angle angle approximation which seems forever
forgotten.

Moreover, in Talman’s view, we ought to use models that are exactly solvable.
In practice it is nearly equivalent to symplectic7 integration, particularly explicit
symplectic integration.

7Professor Talman and I both agree that the symplectic condition might be too stringent, which
implies that the “exact” of Talman has many features of the “Party”. Namely, it is what Talman says
it is!

http://dx.doi.org/10.1007/978-4-431-55803-3_8
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Finally, once we have the perturbation theory on Taylor maps and the “exact” inte-
grator, how in theworld doweglue these?Taylormapswere traditionally producedby
Taylor series codes, for example, Karl Brown’s TRANSPORT (Karl Brown), Dragt’s
Marylie, Berz’s COSY 5.0 [4].8 Taylor series may bemore accurate in absolute sense
but for reasons too long to explain, they are not exact in Talman’s sense and therefore
I too reject them as the primary method of tracking in rings. The glue between these
two worlds must be a method to extract Taylor maps from any integrator. This is
feasible with Truncated Power Series Algebras (TPSA) or “DA” as it is commonly
known. This was introduced in the accelerator world by Professor Martin Berz circa
1986. Berz went to other pastures and wrote the ultimate “matrix” code known as
Cosy-Infinity. Good for him, but such codes violate the Talman exactness and I do
not advocate them as the primary tool for rings. Nevertheless Berz deserves recog-
nition for spending the time to work with me and help me produce a normal form
package in FORTRAN 77. With the work of Berz, it is possible to unite the world of
perturbation theory with that of the “exact” code.

1.5 The Necessary Properties of the “Exact Code”

The tracking code is the embodiment of the hierarchy whose structure the theory
must follow. The tracking code, for the sake of simplicity, will have the following
properties:

A. It can push particles across an accelerator from one surface of section to another.
B. It is ideally symplectic unless radiation is present. Symplectic means that we

can assume that its motion is derivable from a Hamiltonian.
C. We will assume that there is NO physics of interest outside the code as far as

single particle tracking is concerned.9

D. In more advanced discussions, we may assume that there is radiation and that
even spin is present.

E. We will assume that canonical variables are used.

ItemAstates that the code transports particles fromone plane in the ring to another.
It is the so-called lens paradigm. The number of planes under consideration can vary
greatly. Some codes, particularly “non-exact” matrix codes, deal with a single map,
the so-called one-turn map. Most integrators or “kick codes” can track from magnet
to magnet. Finally some codes, such as PTC, give access to each integration step. So
the number of planes varies from one to a very large number.

Item B states that in the absence of radiation, we deal with Hamiltonian systems.
Of course, in the presence of radiation, the Hamiltonian structure can be slightly
molested by the code. This gives rise to damping for example.

8 The last of the dinosaurs which should not be confused with Cosy-Infinity [5].
9This is never true. But it is needed to focus one’s mind. It is really an Orwellian concept.
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Item C forces us to view the code as a self-consistent system. The code is exact
by fiat. The “Code”, like the Party, is always right or as the old East Germans used to
say: “Die Partei hat immer recht.” A theory which cannot reproduce the code is, by
definition, incomplete and perhaps even wrong. If someone comes to you and says:
“you need to add somemore realistic fringe field effects,” we assume that you simply
do it. The code is as complex as it needs to be as far as single particle dynamics is
concerned. We are not interested in comparing codes, discussions about the validity
or bug-less nature of a code do not concern us here.

Item D is a reminder that the code can include more than the usual Hamiltonian
orbital dynamics. The reader should not forget that our ultimate goal is to present a
theory which is general enough to encompass all of single particle dynamics com-
patible10 with the lens description.

Item E is not mathematically essential but will simplify our discussion. In the-
ory (as well as in practice) we can use non-canonical variables when we study a
Hamiltonian system. However this would burden our conversation needlessly.

Conditions B and E can be combined into the so-called symplectic condition. If
z (x) is symplectic, then we must have

[za, zb] = ∇z†a S∇zb =
∑

i, j

∂za

∂xi
Si j

∂zb

∂x j

︸ ︷︷ ︸
Poisson Bracket

= Sab . (1.1)

M† denotes, if M is an array, the transpose of M . Also [za, zb] is the Poisson bracket
and the matrix11 S, in three degrees of freedom, is given by:

S =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

⎞

⎟⎟⎟⎟⎟⎟⎠
. (1.2)

In one degree of freedom the symplectic condition is equivalent to a unit determinant
for the Jacobian.

10Not everything in single particle dynamics is compatible with the lens description of accelerator
physics. Parasitic particles trapped in a magnet will move back and forth inside the magnet. These
must be described by the usual time-based Lorentz equations. Some magnets, such as magnetic
mirrors, must be internally integrated with time because some trajectories come to a full stop inside
the magnets. In fact the so-called design trajectory does precisely that.
11I decided to use S for the symplectic form rather than J to avoid confusion with the action variable
which is ubiquitous in this field.
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Symplectic maps can be nonlinear! Relation (1.1) connects the Jacobian of a map with its
transpose through the matrix S. Consider the following bizarre nonlinear map:

q =
q

(√
12 p q2 + 1 − 1

)

3
+ q p = 2p√

12pq2 + 1
. (1.3)

The Jacobian of Eq. (1.3) is just

A = ∂z

∂z
=

⎛

⎜⎝

2
√

12 p q2+1+24 p q2+1

3
√

12 p q2+1

2 q3√
12 p q2+1√

12 p q2+1−6 p q2−1

3 q3
√

12 p q2+1
1√

12 p q2+1

⎞

⎟⎠ . (1.4)

The reader can check that the determinant of Eq. (1.4) is unity.
Remark: if the matrix S is replaced by the identity in Eq. (1.1), this is the condition

for the orthogonal group which includes rotations and reflections. The orthogonal maps are
all linear: there are no nonlinear maps obeying the orthogonality condition. Therefore the
symplectic maps are truly special.

An important property of symplectic matrices, such as A in Eq. (1.4), follows
directly from Eq. (1.1), namely that the inverse is just

A−1 = S A†S† (1.5)

where S† = S−1 = −S

and S† denotes the transpose of S.

Finally, the equation of motion for an arbitrary function g(z; t) is given by:

dg

dt
= [g, H ] + ∂g

∂t
(1.6)

where t is the time-like variable which in ring dynamics is often a distance along the
machine denoted by s.

1.6 Integrable Systems Are Sitting on Tori

Nonlinear “Courant-Snyder” theory is contained in the following assertion which
is inspired from a 19th century theorem by Liouville. Liouville’s theorem applies,
strictly speaking, to a system with N degrees of freedom having N independent
invariants. In accelerator physics these invariants12 do not truly exist.

The motion of all particles, around the origin, linear as well as nonlinear, with
spin or without spin, happens on surfaces which can be deformed into a product of

12Most classical systems are nearly integrable: they have only approximate invariants.
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circles if the motion is linear, and approximately so otherwise. In that deformed set
of coordinates, particle rotates on circles with frequencies that depend only on the
radii of these circles. In other words, we have:

H = H(J1, J2, . . .) where Jk = x2
k + p2

k

2
xk(t) = cos (ωk t) xk(0) + sin (ωk t) pk(0)

pk(t) = cos (ωk t) pk(0) − sin (ωk t) xk(0) (1.7)

ωk = ∂ H

∂ Jk
.

The above equation encapsulates the fact that there exists (approximately) a coor-
dinate patch (basis) where the motion is made of circles. The code is capable of
representing an enormous number of situations: stable rings, unstable rings, chaotic
rings, etc. However the ultimate purpose of the code is to help in the design of stable
rings. And, as it turns out, stable rings are generally assumed to be linearly stable
and approximately Liouvillian, i.e., obeying Eq. (1.7).

Therefore the director of your institution, Big Brother himself, will instruct you to
design or to collaborate in the design of a stable ring. Youmust see and breathe stable
rings. The entire Courant-Snyder theory is not a solution to a mysterious problem
but an affirmation that the system under study is a stable system made of a product
of circles. You may see resonances or even chaos emerging from the simulation, but
if the Party says they are not there, you must either wipe them out by a clever design
as you would wipe out any enemy of the Party or you must convince yourself that
they are irrelevant and, therefore, not there.

Look at Eq. (1.8), ubiquitous in accelerator physics:

ẍ + k(s)x = 0. (1.8)

It is the starting point of virtually all elementary treatments in accelerator physics.
After a number of steps involving elements of Floquet theory, Wronskians and other
manipulations, people conclude that this equation can be transformed into

d2η

dφ2
+ ν2η = 0 (1.9)

where ν is a constant.
Equation (1.9) is a direct quote from S.Y. Lee’s book [6]. The variable η moves

on a circle. That is the conclusion of Lee’s analysis. But it should the starting point
derived from Liouville’s theory: integrable systems are on tori and ν is a constant.

By quoting a theory from the 19th century, what appears incorrectly to be the
results of pages of hard work, even in the linear one degree of freedom (1-d-f) case,
is revealed to be the starting point of a more general theory that is simpler because
it is void of irrelevant details.
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1.7 The Example Code PTC: A Minimal Tutorial

I wrote PTC because I felt that accelerator theory as applied to tracking codes
was mathematically defective. Accelerator physicists never revisited their dogmatic
views: Courant-Snyder theory, beam line definition in codes, etc. They simply hope
that out of C++ or some other “gadgety” language would emerge a better physical
description. In reality, using a more complex language without having something
intelligent to say, can be a waste of time. It would be as if I decided to rewrite
this book in Polish, since obviously Polish is a very complex and flexible language,
without having one iota of new ideas and no idea on how to use Polish effectively.

The novel features of PTC are directly connected to the “fibre bundle” structure
of the lens paradigm and the necessity to have a flexible atlas of coordinate patches.
These features give a flexibility to PTC that was absent in other accelerator physics
codes. They are certainly interesting topics for people interested in the intersection
between computers and applied physics. Am I tempted to write more about PTC and
its novelties? A little bit, but it is not the purpose of a book centred on perturbation
theory as it applies to a simulation code!

The purpose of this book is to convince you that

1. If you have a favourite tracking code (even a detestable code by my standards!)
2. and if someone (perhaps you) stuck TPSA into it
3. and if someonewrote some decent analysis tools for you: normal form and various

map/Taylor manipulation routines,

then you have all of the perturbation theory compatible with your code at the tip of
your fingers or under your keyboard if you prefer. In Orwell’s 1984, the theory of
“Oligarchical Collectivism” applies not only to Oceania, but to the rival superstates
of Eurasia and Eastasia. Here too, the tools of this book apply to any code that uses
a self-consistent model, no matter how ludicrous, false and erroneous. Indeed the
theory of this book has nothing to say against linear quadrupoles or the delusional
accelerator physicists who believe that to be a reflection of the real physical world!
In fact the theory of this book applies to these delusions; they are even part of the
code PTC.

Accelerator physicists who assert that quadrupoles and dipoles are linear actually
believe unwittingly that sin θ = tan θ = θ and also that cos θ = 1 − θ2/2! They
also believe unwittingly that a particle can acquire an infinite amount of transverse
momentum while keeping its total energy constant.

The tools of this book will allow the delusional physicists to continue their work
while simultaneously upholding the laws of trigonometry or violating them without
the slightest misgiving or awareness.

Do you suppose it is beyond us to produce a dual system of astronomy? The stars can be
near or distant, according as we need them. Do you suppose our mathematicians are unequal
to that? Have you forgotten doublethink?



1.7 The Example Code PTC: A Minimal Tutorial 11

Following this reassuring quote fromOrwell’s 1984, Iwill nowdescribe aminimal
knowledge of PTC needed to use the examples of this book. Stochastic radiation and
spin objects will be introduced in later chapters as need arises.

1.7.1 The Propagator

PTC can track through something called a layout. For the purpose of this book, it is
a succession of magnets or integration steps of some sort. For example, we have:

real(8) x(6)
.

call propagate(layout,x(1:6),state,fibre1=3,fibre2=9)

or

call propagate(layout,x(1:6),state,node1=1,node2=100)

The reader can identify the fibre with the magnet. So the first call tracks six real
numbers x(6) from the entrance of the magnet,13 fibre1 (which is an integer) to the
entrance of the magnet, fibre2. If fibre2 is omitted, then the tracking is done from
fibre1 back to fibre1 assuming that the layout is a closed beam line such as a ring.

The state is a “flag” object which globally sets certain things. It is defined as
follows:

type internal_state
integer totalpath ! total time or path length is used
logical(lp) time ! time is used instead of path length
logical(lp) radiation ! radiation is turned on
logical(lp) nocavity ! cavity is turned into a drift
logical(lp) fringe ! fringe fields are turned on (mainly for quadrupoles)
logical(lp) stochastic ! random stochastic kicks to x(5)
logical(lp) envelope ! stochastic envelope terms tracked in probe_8
logical(lp) para_in ! if true, parameters in the map are included
logical(lp) only_4d ! real_8 taylor in (x,p_x,y,p_y)
logical(lp) delta ! real_8 taylor in (x,p_x,y,p_y,delta)
logical(lp) spin ! spin is tracked
logical(lp) modulation ! one modulated family tracked by probe
logical(lp) only_2d ! real_8 taylor in (x,p_x)

end type internal_state

By default, all these options are set to false (logical) or zero (integer). For example,
we can create a state with radiation and spin by using a state defined as:

state=radiation0+spin0

13In PTC, the fibre is truly the discretized version of the variable “s” of the Hamiltonian represen-
tation and thus is not necessarily a “magnet.” This permits the simulation of complex systems such
colliders and recirculators. As I hinted, it is false to represent a beam line as a list of magnets. Read
elsewhere if you care about PTC and its unique properties, which I am somewhat proud to say,
influenced the most recent versions of the code BMAD of Cornell.
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The states with the suffix “0” are Fortran constants where only a particular state
is turned on.

The other routine tracks from integration steps (nodes)14 to integration steps, to
peek at the data inside magnets. It is also possible to mix these two calls:

call propagate( layout, x(1:6), state, flag, fibre1=10, node2=101)

Of course we can track something that can be potentially a Taylor series:
type(real_8) y(6)
.
.

call propagate( layout, y(1:6), state, flag, fibre1=1, fibre2=100)

Real_8 is a polymorph in PTC: it can change into Taylor series at run time from
real(8) numbers.

A Taylor series is not necessarily the expansion of a symplectic map. For example,
it could be that this polymorph never turned into a Taylor map: the six Taylor series in
y(1:6) are six constant polynomials. Or, more realistically, one may on occasion
get the dependence of the ray on some dipole strength. In that casey(1:6) describes
the dependence of the ray on a dipole field coefficient that is the sole variable of the
polynomials y(1:6). That is hardly the expansion of a phase space map that can
be used to approximate the “Code.”

With the proper initialisation, the ray can indeed be turned into a Taylor map. In
FPP, the analysis code connected to PTC, this map can be normalised. In the linear
decoupled case, normalisation is tantamount to a rewriting of the matrix using the
quadratic invariants (whose coefficients are the Courant-Snyder parameters in accel-
erator jargon) and the tunes. The purpose of this book is to illustrate this procedure
on examples of increasing generality.

1.7.2 Producing the One-Turn Taylor Map

We first look at a program which only produces a Taylor map. We invite the curious
readers to read references by Berz or others on themagic behind this. Here we simply
show the basic mechanics of the code PTC. Please go to Appendix B to cut and paste
the main program into your favourite editor and compiler. The lattice used is that of
the ALS15 and its PTC hardwired subroutine is showed in Appendix A.

We now look at the most important lines of the code in Appendix B:

type(c_damap) one_turn_map, Id
type(real_8) y(6)
.
.
.

14It is also possible to pass fibres and nodes as objects which is more in tune with the mild “object-
orientedness” of Fortran 90. Since some readers might still be plain FORTRAN 77 users, when
feasible, I use old fashioned computer concepts in this book.
15The ALS is the “Advanced Light Source” of the Lawrence Berkeley National Laboratory.
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call find_orbit_x(als,closed_orbit(1:6),STATE,1.e-5_dp,fibre1=1) ! (1)

id=1 ! map is set to identity ! (2)
! map is added to closed orbit and put into the 6 polymorphs
y(1:6)=closed_orbit(1:6)+id ! (3)

call propagate(als,y(1:6),state,fibre1=1) ! (4)

one_turn_map=y(1:6) ! Six polymorphs are promoted to Taylor maps ! (5)

call print(one_turn_map,6,prec)

mat=one_turn_map ! (6)
closed_orbit=y ! (7)

Closed_orbit is an array of six double precision numbers or real(dp) where
dp happens to be 8 on most platforms. Thus line (1) finds the closed orbit; the
fixed point of the one-turn map. PTC puts the energy variable in the fifth position
closed_orbit(5).

The “state” happens to be “nocavity0+time0” which will force the RF cavities to
be treated as drifts and time to be used rather than path length. Line (2) creates a
c_damap which is the identity map for a six dimensional phase space. The c_damap
is defined as

type c_damap
type (c_taylor) v(lnv)
integer :: n=0
type(c_spinmatrix) s
complex(dp) e_ij(6,6)
end type c_damap

which is a collection of N Taylor series with a maximum of LNV, which in FPP is
a large number (100). A 1-d-f map has the value of N = 2. Other fields of c_damap
will be discussed later: spin and stochastic kicks. As for the units of PTC, they are
in this example

z =
(

x,
px

p0
, y,

py

p0
,

δE

p0c
, c (T − T0)

)
. (1.10)

Line (2) produces a polynomial map with the property:

I d%v(i) = zi for all i. (1.11)

It is interesting to put the following line after line (2)

call print(id%v(1),6)

and the line

call print(y(1),6)
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after line (3). The results are respectively16

id%v(1)

Properties, NO = 1, NV = 6, INA = 21
*********************************************

1 1.0000000000000000 0.000000000000000 1 0 0 0 0 0

and
Y(1) = closed_orbit(1)+id%v(1)

Properties, NO = 1, NV = 6, INA = 12
*********************************************

0 0.3426359621533168E-03 0 0 0 0 0 0
1 1.0000000000000000 1 0 0 0 0 0

The first polynomial contains a single line:

1 1.0000000000000000 0.000000000000000 1 0 0 0 0 0

It is the polynomial representing the single monomial z1; if the image of z1 is z1,
then this is the identity map. The second polynomial contains an additional term—
0.3426359621533168E-03—this is the value of position x on the closed orbit.

Just to clarify the notation, the monomial “(4.5+ 1.1i) z21z2z33” would be printed
as

1 4.5000000000000000 1.1000000000000000 2 1 3 0 0 0

Since our maps are complex, the coefficient of z1 is the complex number (1, 0) =
1+0i . Why complex? We will see that analysis tools, such as normal forms, involve
naturally complex representations, most importantly the so-named phasor, as it is
called in accelerator physics.17

On line (3), the closed orbit is added to the identity map and the result is stored
in the six rays ready to be tracked. I will state a few important remarks:

• The code PTC is an integrator: it does not have a concept of a “design orbit” built
in.

• Thus, in the calculation of a Taylor map which approximates the code itself, it
is necessary for maximal precision to compute this map around the actual closed
orbit whatever it may be.

The output shows that the closed orbit is indeed a fixed point of the routine
propagate.

The readerwill finally notice that overloading is used inmany places. For example,
lines (5), (6) and (7) while they look quite sensible, are not automatically understood
by Fortran 90. I, the programmer in this instance, needed to teach the code how to go
from a c_damap to an array of six real_8. Line (3) contains several slights of hand:

16The order of the polynomial, the number of variables and some internal pointer (INA) are printed
by the Taylor series package.
17Phasors are eigenvectors of rotation and are central to perturbation theory in any harmonic system
such as a ring. For example: z1 + i z2 = √

2J1 exp (−iφ1) is the horizontal phasor.
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the identity map id, of type c_damap, is “added” to an array of six real numbers.
Actually the original constant part of the map is first wiped out and then replaced.
The result is a c_damap which is then “forced fed” into six polymorphs of type
real_8. The six polymorphs are then propagated around the ring using the routine
propagate.

1.7.3 Propagator, Propagata and Propaganda

Carthago delenda est.
—Marcus Porcius Cato—

The propagator is the routine which takes an input and regurgitates an output. In the
code PTC, the propagator routine is invoked using

call propagate(layout,x(1:6),state,fibre1,fibre2)

All the variables are inputs and the array x(1:6) is also the output. Layout
contains the lattice, usually a ring in this book. The “state” controls the state of
the tracking: for example, we can turn on radiation, make cavities into drifts and
control the dimension of TPSA when a polynomial is computed. Fibre1 and Fibre2
are obviously positions in the ring and are thus input.

The x(1:6) is the only output. It is by definition propagata, i.e., the Latin word
for things that are propagated. But can it also be propaganda, i.e., things that must
be propagated?

That depends on our agenda, i.e., things that must be done. If we are designing
a spectrometer, then a polynomial expansion of the position x(1) or the time of
flight18 x(6) as a function of energy or mass is perhaps all that you need to please the
director of your laboratory. However, if you are designing a light source or a collider,
you may immediately hear words like “beta star,” phase advance, tunes, emittances,
momentum compaction, resonances, etc. Why are these quantities useful and, if so,
where are those in the map?

The first question can be answered simply: these concepts automatically acquire
meaning when we study a periodic system and the issue of stability comes to play.
Their desirability is a direct consequence of the harmonic behaviour that is an approx-
imate property of the true map when raised to a power. Resonances are the simplest
type of behaviour that indicates a break away from harmonicity.

Performing a normal form, i.e., rewriting the map at position 1 as

m1 = a1 ◦ r ◦ a−1
1 , (1.12)

where r is an amplitude dependent rotation, is central to the computation of the lattice
functions, linear and nonlinear. Equation (1.12) is the harmonic property rewritten
for generic maps. I alluded to this in Sect. 1.6.

18Again I remind the reader of PTC’s peculiar index for the energy-temporal plane: see Eq. (1.10).
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Moreover, the computation of the phase advance and the lattice functions else-
where in the ring requires the propagation of the map a using the map from position
1 to 2, i.e., m12:

b2 = m12 ◦ a1, (1.13)

The map b2 normalises the one-turn map at position 2:

if m1 = a1 ◦ r ◦ a−1
1

then m12 ◦ m1 ◦ m−1
12︸ ︷︷ ︸

m2

= m12 ◦ a1︸ ︷︷ ︸
b2

◦r ◦ a−1
1 ◦ m−1

12︸ ︷︷ ︸
b−1
2

⇒ m2 = b2 ◦ r ◦ b−1
2 . (1.14)

It is obtained using the map from position 1 to 2, i.e., m12 and the map a1. The actual
code will look like this:

y(1:6)=closed_orbit(1:6)+a_1

call propagate(als,y(1:6),state,fibre1=1,fibre2=2)

b_2=y(1:6)

We can see that the canonical transformation is just tracked! We can get the
canonical transformation a2 analogous to a1 by using the normalisation algorithm
on m2 directly

m2 = a2 ◦ r ◦ a−1
2 . (1.15)

Thedifference betweenb2 and the transformationa2, is the phase advance r12 between
points 1 and 2:

b2 = a2 ◦ r12 ⇒ r12 = a−1
2 ◦ m12 ◦ a1 (1.16)

Equation (1.16) is pictorially explained by Fig. 2.1 in Sect. 2.4.1.

The reader used to Hamiltonian perturbation theory, especially outside accelerator physics,
may inquire about this phase advance. The phase advance, in 1-d-f, is none other than the
normalised Hamiltonian which is an “s” dependent function of the invariant actions only.
In a map based theory, we have a normalised one-turn map and thus no phase advance
unless we compute it. Accelerator physicists do not have the phase advance for free in their
tracking codes because, for linear problems, they have always diagonalised matrices, or if
you prefer, normalised linear maps.

This is the basis of the universal lattice function loop which is ultimately the topic
of this book: the full diagonalisation of the Hamiltonian without really having an

http://dx.doi.org/10.1007/978-4-431-55803-3_2
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expression for the Hamiltonian. In accelerator physics, the canonical transformation
a1 is the “propaganda”: the object that must be propagated. Its (approximate) exis-
tence is a simplification of the complex dynamics of a particle around the closed orbit
of the machine. Like political propaganda it is better and more useful if it is close
to the truth. It is an instrument that encapsulates in simple terms a goal that must be
reached or a system whose behaviour must be explained. It is the language used by
the leader, whether a dictator or a laboratory director, to describewhat should be done
and what will be done. Again, I cannot find better words than that of Dr. Göbbels:

Propaganda is a means to an end. Its purpose is to lead the people to an understanding that
will allow it to willingly and without internal resistance devote itself to the tasks and goals
of a superior leadership.

References

1. E. Forest, Beam Dynamics: A New Attitude and Framework (Harwood Academic Publishers,
Amsterdam, The Netherlands, 1997)

2. Forest, E.: J. Math, Phys. 31, 1133, originally. SSC-111, 1987 (1990)
3. Schachinger, L., Talman, R.: Part. Accel. 22, 35 (1987) (E Forest checked TEAPOT against the

PSR lattice paper of Dragt for the appendix of this paper)
4. M. Berz, H.C. Hoffmann, H. Wollnik, Nucl. Instr. Meth. A258, 402 (1987)
5. M. Berz, Technical report, Michigan State University (unpublished)
6. S.Y. Lee, Accelerator Physics (World Scientific Publishing, Singapore, 2004)



Chapter 2
The Linear Transverse Normal Form:
One Degree of Freedom

Abstract I define the normal form on the simplest case: the one degree of freedom
(1-d-f) linear symplectic case. The phase advance, the invariants and the lattice
functions will be defined here using methods which extend to nonlinear systems.

Keywords One-degree-of-freedom · Phasors · Harmonic · Courant-Snyder invari-
ant · Averages · de Moivre’s formula

2.1 Conversion Table Between Linear and Nonlinear

Some rules about our story

The theory presented here is easily extended to nonlinear maps. Many statements
about linear systems remain true if we extend linear notations to their obvious non-
linear equivalents:

w = Mz −→ w = M (z) (2.1)

Mz = ABz −→ M (z) = A (B (z)) = (A ◦ B) (z) (2.2)

M = AB −→ M = A ◦ B (2.3)

wi =
∑

Mi j z j −→ wi = Mi (z) (2.4)

w = z†A† = (Az)† −→ w = A (z)†. (2.5)

2.2 Why Phasors and Normal Forms?

How is the normal form computed? At this stage, who cares! The important point is
that you have these maps from a reliable black box library.

If you have the one-turn map from a code (say PTC) and if you have a normal
form package (say FPP), you can use it the same way you use any numerical recipe

© Springer Japan 2016
E. Forest, From Tracking Code to Analysis,
DOI 10.1007/978-4-431-55803-3_2
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package. The first and most important application is the computation of averages and
extrema. The numerical value of these objects can only depend on the invariants of
the trajectory if they exist. We will look at averages because they are easy to compute
in the most general situation. Extrema are only simple in the linear case.

If a particle sits on an n-torus, where n is the number of degrees of freedom, it
should be clear that any time average of its iterated trajectory can only depend on
the initial condition via the value of the invariants. This is why we compute a normal
form, from which we define invariants and lattice functions. So let us first look at the
invariant of an arbitrary function.

2.2.1 The Average of an Arbitrary Function:
Need for Phasors

Imagine a 1-d-f function F of (z1, z2) whose time average we desire:

〈F〉 = F + F ◦ m + F ◦ m ◦ m + · · · + F ◦ m N

N
N → ∞. (2.6)

Here the mapm is the one-turn map at the position where the average is needed. In
the general case,1 this average is nearly impossible to carry out analytically. However,
imagine that we have a normal form for m coming from a friendly and documented
numerical recipes library:

m = a ◦ r ◦ a−1. (2.7)

The map a is some horrible transformation and r is an amplitude dependent rotation.
Amplitude dependent rotations, in 1-d-f, have the following form:

r

(
z1
z2

)
=
(

cosμ (J ) sinμ (J )

− sinμ (J ) cosμ (J )

)(
z1
z2

)
where 2J = z21 + z22 . (2.8)

One notices that Eq. (2.8) is not a linear map because the angle μ is a function of the
amplitude J . Using Eq. (2.7), we can rewrite Eq. (2.6):

〈F〉 = F ◦ a ◦ a−1 + F ◦ a ◦ r ◦ a−1 + · · · + F ◦ {a ◦ r ◦ a−1
}N

N
N → ∞

= F ◦ a + F ◦ a ◦ r + · · · + F ◦ a ◦ r N

N
◦ a−1 N → ∞

= F + F ◦ r + · · · + F ◦ r N

N
◦ a−1 N → ∞ . (2.9)

1By “general case”, I really mean general: 20 degrees of freedom, sixth-order, with magnet modula-
tion and parameter dependence, spin, etc…!!! But concentrate on the simplest case always bearing
in mind the feasibility of the general case.
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Equation (2.9) expresses a simple fact: the average of a function F is gotten from
the average of the transformed function F = F ◦ a under a rotation.

It is easy to average a function that propagates under a rotation if it is expressed
in the phasors’ basis (“resonance basis”):

(
z1
z2

)
= c

(
r1
r2

)
=
(
1/2 1/2
−i/2 i/2

)(
r1
r2

)

and
(

r1
r2

)
= c−1

(
z1
z2

)
=
(
1 i
1 −i

)(
z1
z2

)
. (2.10)

We use this phasors’ basis to perform the average:

F ◦ rk ◦ c = F ◦ c︸ ︷︷ ︸
Fr

◦ c−1 ◦ rk ◦ c

= F ◦ c︸ ︷︷ ︸
Fr

◦ {c−1 ◦ r ◦ c
}

︸ ︷︷ ︸
Λ

k
. (2.11)

We then expand Fr in monomials of the phasors:

Fr =
∑

Fr
mnrm

1 rn
2 (2.12)

and now apply the diagonalized rotation Λ to Eq. (2.11):

Fr ◦ Λk =
∑

Fr
mnrm

1 rn
2 exp (i kμ (J ) (n − m)) . (2.13)

In Eq. (2.12) and (2.13), r1 and r2 can be viewed as dummy variables for phase
space or as the phasor functions x + i px and x − i px respectively. This depends on
one’s point of view during a calculation.
The average of Fr is given by the terms of equal powers in n and m:

〈
Fr
〉 =
∑

Fr
nnrn

1 rn
2 . (2.14)

Now I give you a simple linear example:

(
z1
z2

)
=
(√

β 0
−α/

√
β 1/

√
β

)

︸ ︷︷ ︸
=a

(
x
p

)
and F = x2 . (2.15)



22 2 The Linear Transverse Normal Form: One Degree of Freedom

Non-accelerator physicists reading this may simply accept Eq. (2.15) as the transformation

which turns the pseudo-Hamiltonian H = γ x2+βp2+2αxp into K = x2+ p2 if γ = 1+α2

β
.

This example is obviously an enticing bait for accelerator physicists.

First, I compute F ,

F = F ◦ a = x2 ◦ a =
(√

βx
)2

= βx2 (2.16)

and then Fr ,

Fr = F ◦ c = βx2 ◦ c

= β

(
r1 + r2

2

)2

= β

{
r21 + r22 + 2r1r2

4

}
. (2.17)

and now I retain the terms of equal powers for the average:

〈
Fr
〉 = β

2
r1r2. (2.18)

If we travel back to the space of real Floquet variables using c−1:

〈
F
〉 = β

2
r1r2 ◦ c−1

= β

2

{
z21 + z22

} = β J . (2.19)

Surprise! The average of x2 is the beta function times J , a well-known result in
accelerator physics.

Of course, the average of F is gotten from Eq. (2.19):

〈F〉 = β J ◦ a−1 = β

2

(
γ x2 + βp2 + 2αxp

)
︸ ︷︷ ︸
Courant−Snyder Invariant

. (2.20)

It is no huge surprise that the effect of a−1 is to express the average in terms of the
original variables. Thus, in the linear case, 2J becomes the Courant-Snyder invariant.

Any function can be averaged by a normal form package using the following
steps:
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1. Find the closed orbit
2. Find the map around the closed orbit
3. Transform it into a normal form, i.e., m = a ◦ r ◦ a−1. The angles of this rotation

are called the fractional tunes when measured in revolutions.
4. Substitute a in the function f : f ◦ a. Express f ◦ a in the phasors’ basis and

retain terms of equal powers in r2i−1r2i .
5. The average can be expressed in terms of the invariant in the original variables by

composing it with c−1 ◦ a−1. In fact the invariant itself in the original variables
is simply r2i−1r2i ◦ c−1 ◦ a−1 as the example of Eq. (2.20) shows.

Nota Bene: phasors can be viewed as eigenfunctions rather than just a change of
variables. This is useful in analytical calculations.

ϕ j± (z) = z2 j−1 ± i z2 j = √2Jj e
∓iΦ j (2.21)

It is easy to check that

ϕ j± ◦ r = e∓iμ j ϕ j±. (2.22)

Thus the phasors ϕ j± are eigenfunctions of r . It must be pointed out that Eq. (2.22)
still holds if the rotation r is nonlinear. The tunes μ j are functions of the action
variables, the radii.

2.2.2 Linear Lattice Functions from de Moivre’s Formula

In the linear case, the map is simply a matrix:

M =
(

a b
c d

)
with ad − bc = 1. (2.23)

As usual, I have assumed that the one-turn map has been extracted in some place
in the machine as was described briefly in Sect. 1.7.2.

A stable map of the type of Eq. (2.23) will produce an ellipse in phase space. One
can easily show that there exists a symplectic matrix A such that:

M = AR A−1 (2.24)

R =
(
cos (μ) sin (μ)

− sin (μ) cos (μ)

)
. (2.25)

Since A has a unit determinant in 1-d-f, then we have

A−1 =
(

A22 −A12

−A21 A11

)
. (2.26)

http://dx.doi.org/10.1007/978-4-431-55803-3_1
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It is possible to use the above equations to rewrite M in terms of the tune μ:

M = cos (μ) I + sin (μ)

⎛

⎜⎜⎜⎜⎝

−A11 A21 − A12 A22︸ ︷︷ ︸
α

A2
11 + A2

12︸ ︷︷ ︸
β

− A2
21 − A2

22︸ ︷︷ ︸
−γ

A11A21 + A12 A22︸ ︷︷ ︸
−α

⎞

⎟⎟⎟⎟⎠
(2.27)

⇒ M =
(
cos (μ) + α sin (μ) β sin (μ)

−γ sin (μ) cos (μ) − α sin (μ)

)
. (2.28)

Equation (2.28) is the famous de Moivre formula for the 1-d-f symplectic case. The
formula

1 + α2 = βγ (2.29)

also follows from the unit determinant of A. The invariant can be easily computed
since it is the circle in the normalised variables. One re-expresses it in the original
variables.

r2(z) = z21 + z22
↓

ε(x, px ) = r2 (z(x, px )) = {a−1
1 (x, px )

}2 + {a−1
2 (x, px )

}2

ε(x, px ) = {A2
21 + A2

22

}
︸ ︷︷ ︸

γ

x2 + 2 {−A11 A21 − A12 A22}︸ ︷︷ ︸
α

x px + {A2
11 + A2

12

}
︸ ︷︷ ︸

β

p2
x .

(2.30)

Equation (2.30) is known as the Courant-Snyder invariant in accelerator physics.
Equation (2.28) can be extended to coupled linear matrices (see Sect. 4.1.2 or refer-
ence [1]) but has no known nonlinear equivalents. In total generality, lattice functions
can be defined as:

1. The coefficients of the invariants.
2. The coefficients of the polynomials which express averages in terms of invariants.

These two definitions of the lattice functions are totally generalizable to nonlinear
problems.

2.2.3 Lattice Functions as Coefficients of the Invariant

We can compute the invariants by computing the radius using the new variables
because the normalised motion is a rotation:

http://dx.doi.org/10.1007/978-4-431-55803-3_4
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ε = znew
1

2 + znew
2

2

= (A−1
11 z1 + A−1

12 z2
)2 + (A−1

21 z1 + A−1
22 z2
)2

=

(
1√
β

z1

)2
+
(

α√
β

z1 +√βz2

) 2

︸ ︷︷ ︸
Courant−Snyder Choice

or
(

− α√
β

z1 −√βz2

)2
+
(

1√
β

z1

) 2

︸ ︷︷ ︸
Choice of Eq. (2.48) see Sect. (2.3.1)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= 1 + α2

β︸ ︷︷ ︸
γ per Eq. (2.29)

z21 + 2αz1z2 + βz22

= γ z21 + 2αz1z2 + βz22 . (2.31)

2.2.4 Lattice Functions as Coefficients of the Moments
〈
zi z j

〉

Here let us use the matrix A directly and compute the three quadratic moments of
the 1-d-f linear theory.

〈
z21
〉 =
〈(

A11znew
1 + A12znew

2

)2〉 = A2
11

〈
znew
1

2
〉
+ A2

12

〈
znew
2

2
〉
+ 2A11 A12

〈
znew
1 znew

2

〉

= (A2
11 + A2

12

)
︸ ︷︷ ︸

β

〈
r2
〉

2
= β

r2

2
. (2.32)

In Eq. (2.32), if we are dealing with a single particle and performing a time
average, then the average can be removed in the final expression. In Eq. (2.32) I
use the fact that znew

1 and znew
2 move on circles and thus the value znew

1
2 + znew

2
2 is

constant on a trajectory. Other averages can be computed as well:

〈
z22
〉 =
〈(

A21znew
1 + A22znew

2

)2〉 = A2
21

〈
znew
1

2
〉
+ A2

22

〈
znew
2

2
〉
+ 2A21 A22

〈
znew
1 znew

2

〉

= (A2
21 + A2

22

)
︸ ︷︷ ︸

γ

〈
r2
〉

2
= γ

r2

2
. (2.33)

and more interestingly,

〈z1z2〉 = 〈(A11znew
1 + A12znew

2

) (
A21znew

1 + A22znew
2

)〉

= A11A21

〈
znew
1

2
〉
+ A12 A22

〈
znew
2

2
〉
+ {A11A22 + A12 A21}

〈
znew
1 znew

2

〉

= (A11A21 + A12 A22)︸ ︷︷ ︸
−α

〈
r2
〉

2
= −α

r2

2
(2.34)



26 2 The Linear Transverse Normal Form: One Degree of Freedom

We conclude, in the linear case, that the lattice functions can be understood in
three different ways

1. the polynomial coefficients of the invariants, Eq. (2.31),
2. the coefficients multiplying the invariants in expressions for the time-

averaged moments, Eqs. (2.32), (2.33) and (2.34).
3. the coefficients of cosμi and sinμi , in the deMoivre parametrisation of the

one-turn matrix in Eq. (2.28), i = 1, n in n-d-f. See Sect. 4.1.2 for n ≥ 2.

The Definitions 1 and 2 are general and extend to nonlinear coupled systems.
Definition 3 extends to linear coupled lattice functions. In the coupled case, the
matrix multiplying cosμi is not the identity and contains useful information. In fact,
in the non-symplectic case, Definition 3 is the only sensible definition of the lattice
functions since there are no invariants and no averages but there is a de Moivre
representation as can be seen in Sect. 4.1.2.

2.3 The Program one_turn_orbital_map_normal_form_2d

The example lattice ALS in Appendix A will be used without misalignment2 errors.
This insures that the lattice has perfect mid-plane symmetry and thus the maps
restricted to the mid-plane (x, px ) will be symplectic.

2.3.1 Construction of the Matrix A

The matrix A can be constructed using the eigenvectors of the matrix M . However
I will use the eigenvector of the transpose of M . Why is that? The answer lies
in our ultimate goal: normalising nonlinear maps. Linear maps can be represented
as matrices, that is obvious. Nonlinear maps cannot…or can they? Indeed if we
defined a new map acting on functions, then nonlinear maps become matrices albeit
infinite in size. Truncation of the matrices to a finite size is equivalent to perturbation
theory.

2Certain errors preserve mid-plane symmetry: rotations around the vertical axis and translations in
the mid-plane.

http://dx.doi.org/10.1007/978-4-431-55803-3_4
http://dx.doi.org/10.1007/978-4-431-55803-3_4
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Readers who are expert at Hamiltonian perturbation theory already know that it is all about
changing a function, namely the Hamiltonian, which must be transformed into a function
of the action only, a generator of rotations. In fact the Hamiltonian itself, which ultimately
generates the matrix M in the linear case, also transforms an arbitrary function through
Eq. (1.6), dg

dt = [g, H ] + ∂g
∂t . Here we have only the “code” and therefore we must find a

way to reproduce Eq. (1.6) with finite maps, the propagata of the code: no Hamiltonians
and no equations of motion.

The idea is to see how a function will change under composition by a map M
which may be linear or nonlinear. Consider a linear map M defined by its matrix
(notice the abuse of notation):

M f = f ◦ M where M f (z) = f (M(z)) =⇒︸ ︷︷ ︸
For linear M

M f (z) = f (Mz). (2.35)

The “calligraphic” font for a map acting on functions by substitution is due to
Dragt.3 I tend to use it in my own writing. This type of map is representable by Lie
operators provided that M is infinitely differentiable. This will become important in
the nonlinear case.

Now that we have defined M , it is clear that any invariant of the motion obeys

M ε = ε ◦ f = ε (2.36)

and thus the study ofM is central to our “Hamiltonian-free” approach, i.e., use only
the propagata from the code.

On a linear map, we proceed by first looking at the action of M on a linear
function without any constant part. I will now show that the matrix for M in the
space of linear functions is the transpose of the usual matrix M . Let us start with an
arbitrary function f of phase space in 1-d-f.4 Such a function can be written as:

f (z) = v1z1 + v2z2. (2.37)

The map M acts on f in the usual way of a map transforming functions:

(M f ) (z) = f (Mz) =
∑

i

v1M1i zi + v2M2i zi

= (M†v
)
1z1 + (M†v

)
2z2. (2.38)

3It is also the “pull back” operator of differential forms; not surprisingly the invariance of the
Poisson under M is equivalent to the invariance of the canonical two-form

∑
i=1,N dz2i−1 ∧ dz2i

under the pull back M .
4The argument holds in any number of dimensions including odd numbers.

http://dx.doi.org/10.1007/978-4-431-55803-3_1
http://dx.doi.org/10.1007/978-4-431-55803-3_1
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In Eq. (2.37), I can think of the function f as the sum of two projection functions. It
then follows that the array v are the components of f in this basis. These components
according to Eq. (2.38), change under the action ofM with the transpose of M :

M (v) = M†v. (2.39)

Thus the search for the linear eigenfunctions ofM is equivalent to the search of the
eigenvectors of M†. The reader must keep in mind that this change of perspective,
in a linear context, looks like an attempt at complicating an equivalent process, the
diagonalisation of M . Please be patient and remember that we are aiming at the full
nonlinear map.

Now, let us assume that our favourite numerical recipe package returns the eigen-
values and eigenvectors of the matrix M†:

M†w = λw where w = wr + i wi . (2.40)

In Eq. (2.40), wr is the real part of the eigenvector and wi is the imaginary part. We
can construct the following “normalised” functions

g1(z) = wr · z

σ |[wr · z, wi · z]|1/2
g2(z) = wi · z

|[wr · z, wi · z]|1/2 (2.41)

where σ = sign [wr · z, wi · z]

where [ f, g] refers to the Poisson bracket as defined in Eq. (1.1). Without loss of
generality, I can take σ = 1 since σ = −1 amounts to the exchange of the eigen-
vectors and eigenvalues {λ,w} and {λ∗, w∗}. The eigenfunctions ofM can be easily
constructed:

f±(z) = g1(z) ± ig2(z)

M f± = exp (∓iμ0) f±. (2.42)

Consider the following transformation:

znew
1 = g1(z)

znew
2 = g2(z). (2.43)

Theorem 2.1 The variables z1 and z2 move on a circle and therefore (g1, g2) defines
the matrix A−1,

http://dx.doi.org/10.1007/978-4-431-55803-3_1
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This is trivial to prove. We notice that

znew
1

2 + znew
2

2 = ( f+ f−) (z) (2.44)

but we can evaluate this function one turn later:

znew
1

2 + znew
2

2 = ( f+ f−) (Mz) (2.45)

which by the definition of the map M (Eq. (2.35)) is just

( f+ f−) (Mz) = (M f+ f−) (z)

= ({M f+} {M f−}) (z)

= (λ f+λ∗ f−
)
(z) = ( f+ f−) (z) since λλ∗ = 1. (2.46)

Thus, the linear map defining znew defines A−1 per Eq. (2.24).
Just for fun, I can get an eigenvector using Eq. (2.28) where the matrix is already

in terms of “proper” linear lattice functions. For example, I get the following result:

w =
( i−α√

β

−√
β

)
and M†w = e−iμw (2.47)

where in Eq. (2.47) I have already “normalised” the eigenvector to ensure a unit
Poisson bracket. Using Eq. (2.41), I construct the new variables and get A−1:

znew
1 = g1(z) = − α√

β
z1 −√βz2

znew
2 = g2(z) = 1√

β
z1. (2.48)

Thus the matrix5 for A and A−1 are:

A =
(

0
√

β

− 1√
β

− α√
β

)
and A−1 =

(− α√
β

−√
β

1√
β

0

)
. (2.49)

Theorem 2.2 In an n-d-f symplectic system, where n ≥ 2, if all the tunes are on the
unit circle and distinct (harmonic case), then the construction ofEq. (2.41)guaranties
that the Poisson bracket of variables belonging to different planes is zero:

if i �= j then
[
znew
2i−1, znew

2 j−1

] = [znew
2i−1, znew

2 j

] = [znew
2i , znew

2 j

] = 0. (2.50)

5Note to accelerator physicists: this is not the usual Courant-Snyder transformation. See the next
“grey box.”
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The accelerator physics readers may be puzzled by Eq. (2.49): this is not the
so-called Courant-Snyder transformation. I wanted to emphasize that a normal
form package will give you eigenvectors based on some scheme which pays no
respect to any of our cultural biases. Indeed accelerator physicists will find it
necessary to “canonise” the transformation of Eq. (2.49) for reasons explained
later in Sect. 7.4. This amounts to a phase in the definition of the eigenvectors.
In the nonlinear case, an arbitrary amplitude dependent rotation can be added
in the definition of A. Thus we have

( √
β 0

− α√
β

1√
β

)

︸ ︷︷ ︸
Courant−Snyder Choice

=
(

0
√

β

− 1√
β

− α√
β

) (
0 −1
1 0

)

︸ ︷︷ ︸
rotation of −π/2

. (2.51)

Other readers, astronomers for example, may wonder what this is all about:
why do we care about the canonical transformation? If it makes circles, then
what is the big deal? One first notices that the particular phase advance derived
from Courant-Snyder, even in the 2-d-f coupled case, has a special empirical
meaning which is discussed in Sect. 7.4. Moreover, since it modifies position
(i.e. z1) minimally, it is ideally suited for analytical calculations since most
perturbations in accelerator physics involve an electro-magnetic potential Az

which depends only on position.
The departure from the Courant-Snyder choice was rather trivial here: a dif-

ference of −π
2 ! But it is also possible to choose A with a non-trivial difference:

A =
(
1/

√
γ −α/

√
γ

0
√

γ

)
, (2.52)

in which case many properties associated with the phase advance would have
to be rewritten since the difference between the Courant-Snyder choice and
Eq. (2.52) is a rotation which depends on position, on α to be precise. I like
to refer, somewhat facetiously, to the choice of Eq. (2.52) as the anti-Courant-
Snyder choice.

2.3.2 The Computation of the Map

The computation proceeds following the explanation in Sect. 1.7.2.

http://dx.doi.org/10.1007/978-4-431-55803-3_7
http://dx.doi.org/10.1007/978-4-431-55803-3_7
http://dx.doi.org/10.1007/978-4-431-55803-3_1
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state=only_2d0

map_order=2
call init_all(state,map_order,0)

call alloc(one_turn_map,id)
call alloc(y)
call alloc(normal_form)
call alloc(e,r2,z1,z2)

call find_orbit_x(als,closed_orbit(1:6),STATE,1.e-5_dp,fibre1=1) ! (1)

id=1 ! map is set to identity ! (2)

! map is added to closed orbit and put into the 6 polymorphs
y(1:6)=closed_orbit(1:6)+id ! (3)

call propagate(als,y(1:6),state,fibre1=1) ! (4)

one_turn_map=y(1:6) ! Six polymorphs are promoted to Taylor maps ! (5)
closed_orbit=y ! (6)

one_turn_map=one_turn_map.sub.1 ! (7a)
call print(one_turn_map,6,prec) ! (7b)

call c_normal(one_turn_map,normal_form) ! (8)

The only remarkable feature of this piece of code is the state=only_2d0.
Although PTC is a serious code, this lines allows the user to forget the dimensions
of phase space besides the horizontal plane: (z1, z2) = (x, px ).

For the benefit of all readers, I point out again that for “ideal planar rings,”
the restriction to the horizontal plane is a bona fide nonlinear symplectic map.
The literature is full of introductory treatments that concentrate heavily on the
horizontal plane (see [2–4]). In describing my techniques, particularly their
relationship to the code, I could start with a general discussion. But I follow
here the gradual approach. The reader will notice that the software tools and
the approach will not change as we move towards a more general situation:
coupled, nonlinear and with spin.

The particular analysis program I wrote, FPP, requires us to set the maximum
degree needed at the onset. Therefore our quest for quadratic invariants of linear
maps forces us to set the order of the Taylor series to 2. Later, in line (7a), I truncate
the map to first-order so as to retain solely the matrix part. The result is printed by
the program at line (7b): it is properly truncated to first-order.
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2.3.3 Numerical Computation of the Canonical
Transformation

Now we come to some new features: a normal form is performed. On line (8),
the map one_turn_map is normalised. The results are stored in an object called
normal_form. In particular the transformation a of Eq. (2.7) is stored innormal_
form%a_t. The routine c_normal is very general. In particular it can and will
perform a nonlinear normal form if demanded by the user. This is discussed in 1-d-f
in Chap.3. The result of this routine, made tomatch Eq. (2.49), is printed by line (8d):

a=normal_form%a_t
write(6,*)"";write(6,*) " Canonical transformation A";
do i=1,c_%nd2
write(6,’(a5,i1,a5,6(1x,g12.5))’) "row",i,"-->",a(i,1:c_%nd2) ! (8d)

enddo

The output is just

Canonical transformation A
row 1 --> 0.0000 3.3404
row 2 --> -0.29936 0.13421E-02

This transformation was selected to match the case of Eq. (2.49). To get it, I
expressed the normalised map of Eq. (2.7) in phasors’ basis using Eq. (2.10):

m = a ◦ r ◦ a−1

= a ◦ c ◦ Λ ◦ c−1 ◦ a−1 where Λ =
(

eiμ 0
0 e−iμ

)

⇓
m† = a−1† ◦ c−1†

︸ ︷︷ ︸
ac

◦Λ ◦ c† ◦ a†. (2.53)

The eigenvector of Eq. (2.47) should be the column vector of the matrix ac =
a−1† ◦ c−1. In the program of Appendix C, this is checked by the lines

write(6,*) "";write(6,*) "w_1 =",(i_-alpha)/sqrt(beta) ! (12a)
write(6,*) "w_2 =",-sqrt(beta) ! (12b)

ac=from_phasor(-1) * normal_form%a_t**(-1) ! (13a)
ac=transpose(ac) ! (13b)

write(6,*) "";write(6,*) " Complex Canonical transformation A";write(6,*) "";
write(6,’(a8,17x,a1,18x,a1,1/)’) "column","1","2"
do i=1,c_%nd2
write(6,’(a5,i1,a5,6(1x,g12.5,1x,g12.5))’) "row",i,"-->",ac(i,1:c_%nd2)

enddo

http://dx.doi.org/10.1007/978-4-431-55803-3_3
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Lines (12a) and (12b) construct the eigenvector by direct evaluation of Eq. (2.47).
Lines (13a) and (13b) is the FPP implementation6 of Eq. (2.53). The first row of the
matrix should be the same as the output of lines (12a, b). The result of this program is:

w_1 = ( 1.34213518775613719E-003, 0.29936426981922848 )
w_2 = -3.3404120024205004

Complex Canonical transformation A

column 1 2

row 1 --> 0.13421E-02 0.29936 0.13421E-02 -0.29936
row 2 --> -3.3404 0.0000 -3.3404 0.0000

2.4 The Phase Advance and the Invariant

The code must be able to simulate the motion from one point in the machine to
another. In a real accelerator we might be content to observe a beam at various beam
position monitors (BPM). Most tracking codes should give us access to all positions:
the individual integration steps. Therefore it is reasonable to enquire the value of the
canonical transformation a at each position s around the ring, a discrete integer in
integrators such as PTC. This will lead us to the phase advance which is the code
equivalent of the normalised Hamiltonian.

2.4.1 Phase Advance in a Code: Finite Map Theory

Important! The reader should look at Fig. 2.1: it contains mathematics applicable to
nonlinear coupled spin-orbit maps.7 The red dot represents a ray moving in the “real
world.” The blue dots (pale and dark) show the corresponding ray, transformed by
as , moving in the world of circles. In the absence of proof to the contrary, the motion
in the circle space, i.e., the angleμ12, must depend on the choice of as . This is indeed
the case in an “s”-dependent system.

The transformations a1 and a2 are simply the transformations one obtains by
normalising the one-turn map at position s = 1 and s = 2. These canonical trans-
formations are the output of the normalising software (FPP in my case). Generally
they can be chosen arbitrarily, however in the linear case, the Courant-Snyder-Teng-
Edwards choice is preferable for experimental and also analytical reasons. I will
come back to this topic later (see Sect. 7.4). Now suffices to say that we have a

6The line c_mess_up_vector=.true.; b_mess=-1.0_dp; at the beginning of the pro-
gram insures the choice of this section for the matrix A. The reader is invited to comment it out.
7 As a matter of fact, it even applies to a damped map, i.e., a non-symplectic map such as the map
of a classical electron in a radiation source. In that case one must define the normal form to be a
“affine dilation,” a damped rotation whose complex eigenvalues are slightly under the unit circle.

http://dx.doi.org/10.1007/978-4-431-55803-3_7
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Fig. 2.1 Pictorial view of
the phase advance

recipe for the (non)linear calculation of the transformation as that depends only on
the one-turn map ms at location s.

It can be shown in the sympletic case, quite generally, that since the normal form
is made of commuting rotations, then the map r12 on Fig. 2.1 must a rotation.8 The
formula for r12 is trivially derived from Fig. 2.1.

r12 = a−1
2 ◦ m12 ◦ a1. (2.54)

Imagine that in Eq. (2.54), the map can be diagonalised by the same transfor-
mation: a2 = a1. In that case we say that the positions 1 and 2 are matched.
They have the same invariants, i.e., the same lattice functions. Moreover, it
is possible to prove that the map r12 does not depend on the method we used
to diagonalise the one-turn map provided that this method depends only on
the one-turn map alone and not on extraneous factors. Incidentally this is not
the case of Hamiltonian perturbation theory since the map as depends on the
Hamiltonian, local derivatives of the map with respect to “s”. See Chap.8.

Equation (2.54) defines the phase advance μ12 associated to the canonical trans-
formation as . This definition works in a code and it works perfectly well in analytical
perturbation theory. As I pointed out previously, this is a mute point in astronomy
because the normalisation of the Hamiltonian (rather than a map) immediately pro-
duces the phase advance, nothing more than the normalised Hamiltonian.

8This statement applies to spin as well since the normal form is a rotation around a fixed axis, say
the y-axis, for all trajectories in phase space. This set of rotations forms a commutative subgroup
of SO(3).

http://dx.doi.org/10.1007/978-4-431-55803-3_8
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It is instructive, from a tracking code point of view, to rewrite Eq. (2.54):

a2 ◦ r12 = m12 ◦ a1︸ ︷︷ ︸
b2

⇒ a2 = b2 ◦ r−1
12 . (2.55)

The map b2 has three remarkable properties:

1. First, it diagonalise the map at position s = 2 just like the map a2. Therefore the
invariant ε2 can be computed using b2:

ε2 = r2 ◦ a−1
2 = r2 ◦ b−1

2 . (2.56)

2. Second, b2 can be tracked by the code using a1 as the input. Therefore it does not
require any normal form calculation.

3. Third, the difference between a2 and b2 is the phase advance r12.

Property 1 simply comes from the invariance of a radius under the rotation r12:

r2 ◦ b−1
2 = r2 ◦ r−1

12 ◦ a−1
2 = r2 ◦ a−1

2 = ε2. (2.57)

Proposition 2 is crucial. The canonical transformation as can be tracked. In
Eq. (2.55), the map for b2, is made of two parts m12 and a1. If this was the map
for a part of the ring, one would conclude that the particle travels first through a seg-
ment described by the map a1 and then through a segment described by m12. Thus
if the code that computes m12 is initialised by a1 rather than by the identity, then b2
will be the output of the propagator. In Sect. 1.7.2, for example, line (3) of the PTC
code is replaced by

y(1:6)=closed_orbit(1:6)+a_1 ! (3)

Proposition 3 gives the most efficient wait to compute the phase advance: one needs
only to rotate the map b2 into the chosen form for the canonical transformation a2.
This is really different from Hamiltonian perturbation theory where, by the very
definition of the normalisation process, the phase advance is the transformed Hamil-
tonian. In accelerator physics, we have only the code,we donot have this transformed
Hamiltonian: we have the information at chosen surfaces of section.

Let us look for the time being at a piece of codewhich produces all the information
of items 1, 2 and 3.

2.4.2 Numerical Computation of the Invariant
and the Phase Advance

The program in Appendix D, one_turn_orbital_map_normal_form_
2d.f90, computes the phase advance for the two simple choices of canonical

http://dx.doi.org/10.1007/978-4-431-55803-3_1
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transformation shown of Sect. 2.2.3, namely the Eqs. (2.51) and (2.52) which I
rewrite here for convenience:

(
1/

√
γ −α/

√
γ

0
√

γ

)

︸ ︷︷ ︸
Anti−Courant−Snyder

and

(√
β 0

−α/
√

β 1/
√

β

)

︸ ︷︷ ︸
Courant−Snyder

. (2.58)

The program asks the user to choose between these two definitions. For example I
can select between the two transformations by typing either t or f:

Write’t’ for Courant-Snyder
Write’f’ for Anti-Courant-Snyder
t

In the example code, the phase advance through the first drift is computed. Thus the
map m01 is that of a drift. The matrix for a drift of length L is just:

m01 =
(
1 L
0 1

)
. (2.59)

Let us start with the Courant-Snyder definition and the second part of Eq. (2.55) to
find the phase advance:

a2 =
(
1 L
0 1

)

︸ ︷︷ ︸
m12

(√
β 0

−α/
√

β 1/
√

β

)

︸ ︷︷ ︸
a1

(
cos
(
μcs
12

) − sin
(
μcs
12

)

sin
(
μcs
12

)
cos
(
μcs
12

)
)

︸ ︷︷ ︸
r−1
12

(2.60)

which, expanded, is given by:

a2 =

⎡

⎢⎢⎣

(√
β − α L√

β

)
cos
(
μcs
12

)+ L sin
(
μcs
12

)
√

β
−
(√

β − α L√
β

)
sin
(
μcs
12

)+ L cos
(
μcs
12

)
√

β

−α cos
(
μcs
12

)
√

β
+ sin

(
μcs
12

)
√

β

α sin
(
μcs
12

)
√

β
+ cos

(
μcs
12

)
√

β

⎤

⎥⎥⎦ .

(2.61)

The Courant-Snyder choice forces us to select the phase advance so that the A12

part of the matrix is zero. Therefore the equation for the phase advance is:

A12 = −
(√

β − α L√
β

)
sin
(
μcs
12

)+ L cos
(
μcs
12

)
√

β
= 0 (2.62)

from which we deduce that

μcs
12 = tan−1

(
L

β − Lα

)
. (2.63)
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The same thing can be done with the “anti-Courant-Snyder” definition:

a2 =
(
1 L
0 1

)

︸ ︷︷ ︸
m12

(
1/

√
γ −α/

√
γ

0
√

γ

)

︸ ︷︷ ︸
a1

(
cos
(
μacs
12

) − sin
(
μacs
12

)

sin
(
μacs
12

)
cos
(
μacs
12

)
)

︸ ︷︷ ︸
r−1
12

(2.64)

which expanded out is just

a2 =
⎡

⎣
cos(μacs

12 )√
γ

+
(
− α√

γ
+ L

√
γ
)
sin
(
μacs
12

) − sin(μacs
12 )√
γ

+
(
− α√

γ
+ L

√
γ
)
cos
(
μacs
12

)

√
γ sin

(
μacs
12

) √
γ cos

(
μacs
12

)

⎤

⎦ .

(2.65)

The anti-Courant-Snyder choice forces us to select the phase advance so that the
A21 part of the matrix is zero. Therefore the equation for this phase advance is:

A21 = 0 ⇒ √
γ sin

(
μacs
12

) = 0 =⇒ μacs
12 = 0. (2.66)

We look now at the actual code concentrating first on the one-turn map at s = 1

z1=1.e0_dp.cmono.’10’ ! (1a)
z2=1.e0_dp.cmono.’01’ ! (1b)
r2=z1**2+z2**2 ! (1c)

call find_orbit_x(als,closed_orbit(1:6),STATE,1.e-5_dp,fibre1=1) ! (2)

id=1 ! map is set to identity ! (3)

! map is added to closed orbit and put into the 6 polymorphs
y(1:6)=closed_orbit(1:6)+id ! (4)

call propagate(als,y(1:6),state,fibre1=1) ! (5)

one_turn_map=y(1:6) ! Six polymorphs are promoted to Taylor maps ! (6)
closed_orbit=y ! (7)

call c_normal(one_turn_map,normal_form) ! (8a)

write(6,’(1/,a50,1/)’)"Canonical Transformation coming from Normal Form"
call print(normal_form%a_t,6) ! (8b)

call c_canonise(normal_form%a_t,a_1,phase=phase);phase(1)=0.0_dp; ! (9a)

if(courant_snyder_teng_edwards) then
write(6,’(1/,a50,1/)’) "Courant-Snyder Canonical Transformation "
else
write(6,’(1/,a50,1/)’) "Anti-Courant-Snyder Canonical Transformation "

endif
call print(a_1,6,prec) ! (9b)

Line (5) is the usual propagation that gives the one-turn map. Lines (8a,b) is the
result of the normal form: it provides a certain form for as “randomly” chosen by the
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programmer of the normal form routine. It is printed by (9a). In this case, the result
is neither the Courant-Snyder nor this bizarre anti-Courant-Snyder transformation
but something else. A normal form, like a diagonalisation routine for eigenvalues
and eigenvectors, makes no special9 guaranty: it diagonalises with a transformation
of its own.

The next step consist in invoking the routine “c_canonise.” We owe the word
“canon” to the Church, it refers to a set of rules10 and regulations imposed by the
Church as in “Canon Law.” Here it also refers to a certain set of rules imposed by
accelerator physicists on the transformation as . They are somewhat justified but not
truly indispensable. The routine c_canonise imposes either (2.62) or (2.66) and
additional conditions in the nonlinear case. Let us look at the code.

y(1:6)=closed_orbit(1:6)+a_1 ! (10)

call propagate(als,y(1:6),state,fibre1=1,fibre2=pos) ! (11)

b_2=y(1:6) ! (12a)
call c_canonise(b_2,a_2,phase=phase) ! (12b)
!!!!!!!!!!!!!!!!!!!!!!! One turn map at pos = 2 !!!!!!!!!!!!!!!!!!!!
call find_orbit_x(als,closed_orbit(1:6),STATE,1.e-5_dp,fibre1=pos) ! (13)

y(1:6)=closed_orbit(1:6)+id ! (14)

call propagate(als,y(1:6),state,fibre1=pos) ! (15)

one_turn_map=y(1:6) ! (16)

call c_normal(one_turn_map,normal_form) ! (17)
call c_canonise(normal_form%a_t,a_2); ! (18)

!!!!!!!!!!!!!!!!!!! Computes invariants at 1 and 2 !!!!!!!!!!!!!!!!!

e1 = r2*a_1**(-1) ! (19a)
e2t = r2*b_2**(-1) ! (19b)
e2 = r2*a_2**(-1) ! (19c)

write(6,’(1/,a54,1/)’)"Invariant at position = 1 computed from one turn map"
call print(e1,6) ! (20a)
write(6,’(1/,a54,1/)’) "Invariant at position = 2 tracked from position = 1"
call print(e2t,6) ! (20b)
write(6,’(1/,a54,1/)’) "Invariant at position = 2 computed from one turn map"
call print(e2,6) ! (20c)

write(6,’(1/,a54,1/)’) "Phase advance from position = 1 to position = 2 "
!!!!!!!!!!!!!!!!!!!!!!!!!!!! Analytic results !!!!!!!!!!!!!!!!!!!!!!

9My normalisation algorithm, in the absence of parameter dependence, accidentally picks up A
to be Courant-Snyder. So I have some parameters, namely c_mess_up_vector=.true.;
b_mess=-1.0_dp; to insure a real messed up choice for pedagogical reasons. You are invited
to comment that out if you want.
10 We also owe the present usage of the word “propaganda” to the Church: the necessary dogma
that must be propagated!
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if(pos==2.and.courant_snyder_teng_edwards) then
L=2.832695d0 ! Length of first element L1
beta=e1.sub.’02’
alpha=(e1.sub.’11’)/2

write(6,"(a48,G20.13)") "Based on theory, the phase advance should be =", &
atan(L/(beta-L*alpha))/twopi

else
write(6,*) "Based on theory, the phase advance should be zero"

endif
!!!!!!!!!!!!!!!!!!!!!!!!! The code’s results !!!!!!!!!!!!!!!!!!!!!!!!!

call print(phase(1),6,prec) ! (21)

Line (10), line (11) and (12a, b) correspond to Eq. (2.55). The routine c_
canonise returns a polynomial for the angle of the phase advance in units of
revolutions which is customary in accelerator physics. This is printed on line (21)
and compared to the analytical results of Eq. (2.63). The agreement in this case is
perfect because the ring of this example is “ideal.” The reader must accept that the
result of line (12b) would remain correct even if nonlinearities and coupling were
present. This is the virtue of a code with self-consistent tools.

Lines (19a, b, c) serve two purposes. First of all, line (19a) gives us the invariant
at position 1. From this we extract the lattice functions “beta” and “alpha” needed
for the analytical formula of Eq. (2.63). Lines (19b, c) are there to reassure us that
the invariant at position 2 can be computed from the tracked transformation b2. Here
is the output in abbreviated form:

Invariant at position = 1 computed from one turn map

Properties, NO = 2, NV = 2, INA = 148
*********************************************

2 0.8962076737126187E-01 0.000000000000000 2 0
2 -0.8966568980107243E-02 0.000000000000000 1 1
2 11.15835234591495 0.000000000000000 0 2

Invariant at position = 2 tracked from position = 1

Properties, NO = 2, NV = 2, INA = 147
*********************************************

2 0.8962076737126187E-01 0.000000000000000 2 0
2 -0.5167031682375807 0.000000000000000 1 1
2 11.90288336404888 0.000000000000000 0 2

Invariant at position = 2 computed from one turn map

Properties, NO = 2, NV = 2, INA = 141
*********************************************

2 0.8962076737126205E-01 0.000000000000000 2 0
2 -0.5167031682375732 0.000000000000000 1 1
2 11.90288336404884 0.000000000000000 0 2
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Finally, the phase advance is printed. If we select the Courant-Snyder phase
advance then the result is:

Phase advance from position = 1 to position = 2

Based on theory, the phase advance should be = 0.3952456186311E-01

Properties, NO = 2, NV = 2, INA = 62
*********************************************

0 0.3952456186310726E-01 0.000000000000000 0 0

More bizarrely, at least for accelerator physicists, the phase advance for the “anti-
Courant-Snyder” choice of Eq. (2.66) is indeed zero!

Phase advance from position = 1 to position = 2

Based on theory, the phase advance should be zero

Properties, NO = 2, NV = 2, INA = 62
*********************************************

Complex Polynomial is zero

2.4.3 Computation of the Phase: Some Theory

The code, equipped with TPSA, is always right as I pompously proclaimed in
Sect. 1.3. Therefore the call to c_canonise in Sect. 2.4.1 works in all cases.
Nevertheless it is very instructive, using matrices only, to derive a formula for the
phase advance using the most arbitrary 1-d-f Hamiltonian. First of all, I write the
most arbitrary quadratic Hamiltonian in 1-d-f:

H = 1

2

{
k11z21 + 2k12z1z2 + k22z22

}
. (2.67)

The matrix for an infinitesimal propagation due to the Hamiltonian of Eq. (2.67) is

mds =
(
1 + k12ds k22ds
−k11ds 1 − k12ds

)
(2.68)

and the matrix for an infinitesimal rotation is

r−1
ds =

(
1 −dμcs

ds
dμcs

ds 1

)
. (2.69)

http://dx.doi.org/10.1007/978-4-431-55803-3_1
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Then, using the analogue of Eq. (2.60) and imposing A12 = 0, I get

dμcs
ds = k22

β
ds . (2.70)

And, it can been shown easily by symmetry that

dμacs
ds = k11

γ
ds . (2.71)

In the case of accelerator physics, we have k11 = k(s), k12 = 0 and k22 = 1 and
therefore we get the usual result:

dμcs
ds = 1

β
ds . (2.72)

Equation (2.72) is completely consistent with Eq. (2.63) if we simply let L tend
towards zero.

2.4.4 Tracking of the Invariant: Some Hamiltonian Theory

We can first start with equation Eq. (2.55):

ε2 = r2 ◦ b−1
2 = r2 ◦ a−1

1 ◦ m−1
12 = ε1 ◦ m−1

12 . (2.73)

Equation (2.73) expresses a simple fact: the invariant at position 2 is gotten from
the known invariant at position 1 by simply expressing it in terms of the variables at
position 2 using the map from 1 to 2. This is completely general inside the code and
applies to nonlinear invariants in many degrees of freedom.

However, I can apply this to the general 1-d-f quadratic Hamiltonian of Eq. (2.67)
and its related infinitesimal map (Eq. 2.68):

εs+ds = εs ◦ m−1
ds

= γ {(1 − k12ds) z1 − k22dsz2}2
+ 2α {(1 − k12ds) z1 − k22dsz2} {−k11dsz1 + {1 − k12ds} z2}
+ β {−k11dsz1 + {1 − k12ds} z2}2. (2.74)

I then deduce a differential equation for the lattice functions:

dεs

ds
= 2(α k11 − γ k12)x2 + 2(βk11 − γ k22)xp

+ 2(βk12 − αk22)p2
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⇓
dγ

ds
= 2(α k11 − γ k12) (2.75)

dα

ds
= βk11 − γ k22 (2.76)

dβ

ds
= 2(βk12 − αk22). (2.77)

In accelerator physics, this set of equations reduces to:

dγ

ds
= 2αk11

dα

ds
= βk11 − γ

dβ

ds
= −2α. (2.78)

It is interesting to relate the Courant-Snyder phase advance of Eq. (2.70) with the
anti-Courant-Snyder one of Eq. (2.71). This can be done using the equation for α

(Eq. 2.76):

dμcs
ds

ds
= dμacs

ds

ds
−

dα
ds

βγ

= dμacs
ds

ds
−

dα
ds

1 + α2
(according to Eq. (2.29)). (2.79)

We can check explicitly the statement near Eq. (2.54) on the case of the two phases
used in Eq. (2.79): between matched points, the phase advance does not depend on
the method used to normalise the map. To do this we integrate Eq. (2.79) between
two position 1 and 2:

μcs
12 − μacs

12 = −
α2∫

α1

dα

1 + α2
= tan−1 (α1) − tan−1 (α2) . (2.80)

Equation (2.80) tells us that if the parametersα are equal, then the phase advances can
only differ by an irrelevant multiple of 2π . It is certainly true looking at Eq. (2.80),
that if position 1 and 2 are matched, then the phase advances are equal modulo 2π :
with two specific choices for as the condition is found to be weaker.
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Chapter 3
The Nonlinear Transverse Normal Form:
One Degree of Freedom

Abstract I extend in this chapter the concept of a normal form to nonlinear systems
in 1-d-f. I try to contrast Hamiltonian methods and one-turn map methods. The pen-
dulum is solved by “undergraduate tools” and the calculation is corroborated by
the perturbation tools of this book. The standard map, which is just the map for an
RF-cavity restricted to the longitudinal plane, is introduced as the archetype of the
trouble maker: it can display resonances and even chaos if “pushed” too hard.

Keywords One-degree-of-freedom ·Nonlinear · Pendulum · Standard map · Pois-
son brackets · Vector fields

3.1 The Pendulum with Exact Methods

3.1.1 Preliminary

The world on 1-d-f nonlinear systems relevant to accelerator physics consist mainly
of maps that are stable around the closed orbit of the ring which they purport to
describe. Circular accelerators are usually1 designed with a stable linear part.

These maps can be divided into two classes: integrable and non-integrable. The
pendulum and the standard map are closely related examples of these two types of
maps. While we would like to have integrable maps, in reality, most maps are not
integrable.

In this section I discuss the pendulum since it is the archetype of the integrable
map in one degree of freedom. It has an obvious invariant: the Hamiltonian itself.

Moreover, using mathematics of the most elementary kind, we can get the period
of oscillation as a function of the initial amplitude. This period, contrary to the
impression given in some high school textbook, depends on the initial amplitude. In

fact it increases from the famous T = 2π
√

L
g all the way to infinity at the separatrix.

1It is possible to design pure nonlinear systemswhich are stable but this is not commonly considered
in particle accelerators.

© Springer Japan 2016
E. Forest, From Tracking Code to Analysis,
DOI 10.1007/978-4-431-55803-3_3

45



46 3 The Nonlinear Transverse Normal Form …

Indeed, a rigid pendulum, standing precariously upside down will stay there forever.
Moreover, trajectories in phase space are not ellipses except very near the origin.

So I can summarize a few generic points of integrable maps near a stable fixed
point:

1. The period of oscillation depends on the initial amplitude.
2. The trajectories are not ellipses but can be distorted into conics using symplectic

transformations. In fact they can be distorted into circles.
3. These two results extend to integrableHamiltonians in several degrees of freedom.

However most Hamiltonians taken out of a hat2 are not integrable.

The standard map, which is a close relative of the pendulum, is not integrable.
The standard map emerges from the pendulum when we apply numerical integration
to the pendulum. For example, if I use a first- or second-order symplectic integrator
on the pendulum, I produce the standard map. As long at the time step is small, the
map will appear integrable: it better be since it approximates the pendulum!

In Sect. 3.1.2, I look at the pendulum with elementary methods appropriate to
simple time independent Hamiltonians whose linearised motion is that of a harmonic
oscillator. The purpose of this section is to provide the solution of a problem that the
reader could have gotten without using the tools of perturbation theory.

Then, in Sect. 3.2, I produce the map with the package FPP. This map will be
analysed with Hamiltonian methods and the result reproduced by a little algorithm
in the program pendulum of Appendix E.

Then, in Sect. 3.3, I will finally look at the standard map which is representative
of an accelerator: the Hamiltonian is intrinsically s-dependent and thus new tools
must be introduced if we are to stay “faithful” to the Code!

3.1.2 The Hamiltonian of the Pendulum

The Hamiltonian of the pendulum—its energy function—is

H = p2

2ml2
+ mgl (1 − cos θ) = p2

2ml2
+ 2mgl sin2

θ

2
(3.1)

where l is the length of a massless rigid rod, m is the mass of a bob at the end of
that rod and g is the acceleration of gravity. This system has a constant of the motion
which is the energy function H . The trajectories in the phase space (θ, p) are the
solutions of the algebraic equation

H(θ, p) = E0. (3.2)

2To my knowledge, there is only one Hamiltonian taken out of a hat which was surprisingly found
to be integrable despite having no apparent symmetries: the Toda lattice.
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These trajectories foliate phase space. Moreover the rotation rate around these tra-
jectories depends on the size of the trajectory itself. These are common properties
of integrable systems.

To simplify the coming algebra, I change the definition of time t into a new time
τ defined as t = ml2τ . The resulting Hamiltonian is:

K = p2

2
+ 2gm2l3 sin2

θ

2

= p2

2
+ 2(2π f )2 sin2

θ

2
. (3.3)

The quantity f is the frequency of the linearised system in the new time units.
Indeed, if I expand K to second-order, I get:

K2 = p2

2
+ (2π f )2

θ2

2
. (3.4)

The solution of Eq. (3.4) can be expressed easily in terms of sines and cosines:

(
θt

pt

)
=
(

cos (2π f t) 1
2π f sin (2π f t)

−2π f sin (2π f t) cos (2π f t)

)(
θ0
p0

)
. (3.5)

I can also perform a simple canonical transformation on K2:

θnew = √2π f θ = √
2J cos (Φ) pnew = 1√

2π f
p = −√

2J sin (Φ) . (3.6)

Then the new Hamiltonian is

K new
2

(
θnew, pnew

) = (2π f )

{
pnew 2

2
+ θnew 2

2

}
= 2π f J. (3.7)

Equations (3.5) and (3.7) display the famous results of the linearised pendulum: the
period, namely 1/f, is obviously not a function of amplitude. Equation (3.7) expresses
explicitly this fact: the new Hamiltonian is linear in the action-angle variable J and
therefore the period of oscillation is a constant.

3.1.3 The Exact Period of the Pendulum

This section involves only elementary classical physics. I start the pendulum at rest
with an angle θ = √

d . Taking the root anticipates the fact that the action variable J ,
while still unknown at this stage, is more closely related to the square of the position
than to the position itself as Eq. (3.7) suggests. On this trajectory, the value of the



48 3 The Nonlinear Transverse Normal Form …

Hamiltonian K is:

Kd = 2(2π f )2 sin2
√

d

2
. (3.8)

Thus for an arbitrary trajectory I have the relation

2(2π f )2 sin2
√

d

2
= p2

2
+ 2(2π f )2 sin2

θ

2
, (3.9)

which in turns implies that

dt = dθ

4π f
√
sin2

√
d
2 − sin2 θ

2

. (3.10)

This equation can be integrated from 0 to
√

d to obtain a quarter period. Thus the
full period is:

T =
∫ √

d

0

dθ

π f
√
sin2

√
d
2 − sin2 θ

2

. (3.11)

To turn Eq. (3.11) into a form that lends itself to an expansion in d, I perform a
change of variables

x = sin θ
2

sin
√

d
2

. (3.12)

leading to

T = 2

π f

∫ 1

0

dx√
1 − sin2

√
d
2 x2

√
1 − x2

. (3.13)

If I expand Eq. (3.13), say to third-order, I get

T = 1

f

(
1 + d

16
+ 11 d2

3072
+ 173 d3

737280
+ · · ·

)
. (3.14)

The contribution to the period are all positive and diverge at the separatrix where
the period, correctly, becomes infinite. This corresponds to a pendulum starting in
the upside down position. The closer it is to “twelve o’clock”, the longer it takes to
execute a full oscillation.
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The new frequency is the inverse of Eq. (3.14):

f (d) = f

(
1 − d

16
+ d2

3072
− 23 d3

737280
· · ·
)

. (3.15)

3.1.4 The Frequency and the Hamiltonian as a Function of J

The result of Eq. (3.14) is expressed in terms of a “physical” quantity namely—
d = θ2

max—the maximum amplitude reached during one period.
As we have seen, this result is immediately available for simple time-independent

Hamitonian systems in 1-d-f. However, when we perform perturbative calculations,
we first get the period or frequencies in terms of the invariant action J .

Therefore, for completeness, it is amusing to compute J exactly in terms of a
quadrature:

J = 1

2π

∫ 2π

0
Jτ dφ = Jτ

2π

∫ 2π

0
dφ = Jτ (3.16)

since Jτ is actually a constant on the trajectory and does not depend on the time τ .
Now I use two important facts:

1. Equation (3.16) can be turned into a surface integral in d Jdφ over the surface
enclosed by the trajectory.

2. A surface integral in d Jdφ bounded by the trajectory is equal to a surface integral
in dθdp bounded by the trajectory in the original variables because the two sets
of variables are connected through a symplectic (area preserving) transformation.

Using the above facts, I first compute J by integrating pdθ on a trajectory starting
at θ = √

d:

J = 4 × 1

2π

∫ √
d

0
pdθ = 8 f

∫ √
d

0

√

sin2
√

d

2
− sin2

θ

2
dθ. (3.17)

Once more I perform the change of variables of Eq. (3.12):

J = 16 f sin2
√

d

2

∫ 1

0

√
1 − x2dx

√
1 − sin2

√
d
2 x2

. (3.18)

To third-order the result is:

J = π f

(
d − 5 d2

96
+ 23 d3

46080
+ · · ·

)
. (3.19)
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I can invert Eq. (3.19) and express d in terms of J:

d = J

π f
+ 5 J 2

96π2 f 2
+ 227 J 3

46080π3 f 3
+ · · · . (3.20)

Finally I substitute in Eq. (3.14) into Eq. (3.15):

f (J ) = f − J

16π
− 3 J 2

1024π2 f
− 5 J 3

16384π3 f 2
+ · · · . (3.21)

We can guess in 1-d-f, the final form of the Hamiltonian: it must be the integral of
Eq. (3.21) times 2π :

K∞(J ) = 2π f J − J 2

16
− J 3

512π f
+ · · · . (3.22)

3.1.5 The Action J as a Function of θ and p

I can relate the maximum amplitude
√

d to the values of the Hamiltonian using
Eq. (3.9). After solving for d, I substitute into Eq. (3.19):

I = J (θ, p) = 4π2 f 2 θ2 + p2

4π f
− 80π4 f 4 θ4 − 24π2 f 2 p2 θ2 − 3 p4

1536π3 f 3

+ 1472π6 f 6 θ6 + 2640π4 f 4 p2 θ4 + 1620π2 f 2 p4 θ2 + 135 p6

2949120π5 f 5
+ · · · .
(3.23)

Of course I can substitute Eq. (3.23) into Eq. (3.22):

H (θ, p) = K∞ (J (θ, p)) = p2

2
+ 2(2π f )2

{
θ2

4
− θ4

48
+ θ6

1440
+ · · ·

}

︸ ︷︷ ︸
sin2(θ/2)

+ · · · .

(3.24)

And thus I regain the original Hamiltonian.
I can express Eq. (3.23) in terms of the action-angle variables of Eq. (3.6) which

fully normalise the quadratic Hamiltonian as in Eq. (3.7). The result is

I (Φ, J ) = J

+
(
1440 − 3840 cos4 (Φ)

)
π f J 2 + (135 − 240 cos4 (Φ) − 128 cos6 (Φ)

)
J 3

46080π2 f 2
+ · · ·
(3.25)
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In parallel to Eqs. (3.23) or (3.25), there must exist a phase Ψ (Φ, J ) whose
Poisson bracket with I (Φ, J ) is one. Using Eq. (3.25), it is a simple exercise
to compute a Lie operator which reproduces it to order J 3. From this operator,
a formula for Ψ (Φ, J ) can be computed. This formula, consistent with our
discussion on the phase advance, can be modified by an arbitrary phase.

Conclusion on high school pendulum: The tools used here were all special.

• They worked because the Hamiltonian of the pendulum is a constant.
• They worked because it is a one degree of freedom system.
• They failed to give us an easy way to get the angle Ψ = Φ (θ, p) canonically
conjugate to I = J (θ, p). Actually, as we already know, there is a (nonlinear)
phase freedom in choosing Φ (θ, p). So it is not surprising that there is no definite
formula for Φ.

3.2 The Pendulum with the Numerical Methods
of Cosy-Infinity

The “Code” is equipped with a package that has the ability to analyse andmanipulate
various maps. In particular, I can “exponentiate” vector fields, whether Hamiltonian
or not. This technique was first introduced in “matrix” codes by Martin Berz with
his code [1] “Cosy-Infinity.”3 I will apply it here to the pendulum.

3.2.1 Phase Space Maps and Lie Maps

I will quote myself (see Sect. 3.2.3):

Normal form is “easy” if the Hamiltonian is time independent. The equivalent
of Eq. (2.7) is simply:

K new = K ◦ a (3.26)

The rules equivalent to Eq. (3.26) for a time independent vector field are:

Fnew
k = (

F · ∇a−1
k

) ◦ a (3.27)

3Cosy-Infinity is the ultimate matrix code equipped with TPSA tools beyond the scope of our
discussion, interval arithmetic for example.

http://dx.doi.org/10.1007/978-4-431-55803-3_2
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The transformation a is a change of coordinates: it acts on phase space. For
example the Courant-Snyder transformation of Eq. (2.52) transforms the variables
(z1, z2) into a new set undergoing circular motion if all is done properly, at least in
linear approximation.

In analytic calculations we do not transform the tracking data: we transform
the map (matrix for example) that generates the tracking data. Sometimes we must
transform the Hamiltonian K or the vector field F which generates the map. We will
see later that it is convenient to imagine that a itself is generated by a Hamiltonian
operator or a vector field. Let us call this vector field A. Then to say that a is generated
by A means that

a = exp (A · ∇) I. (3.28)

The map I is the identity map of phase space: it is made of two trivial projection
functions in 1-d-f, in other words

I (z) =
(

z1
z2

)
. (3.29)

If the vector field A is symplectic (or Hamiltonian), it means that a Hamiltonian Ha

can achieve the same result:

A · ∇ = ∂ Ha

∂z1

∂

∂z2
− ∂ Ha

∂z2

∂

∂z1
=: Ha : . (3.30)

It can be shown easily, in the Hamiltonian case, that Eq. (3.26) can be written as:

K new = K ◦ a = exp (: Ha :) K . (3.31)

Equation (3.31) is useful in perturbative calculations: to increase the order of the
calculation one needs to take an additional derivative that is to say an additional term
in the expansion of the exponential.

It is important to realise that maps such as exp (: Ha :) act on functions: indeed
Hamiltonian perturbation theory involves transformations of the Hamiltonian (itself
a function) into a simpler function depending only on radii, i.e., on actions. In my
writings, following Dragt, I like to use calligraphic fonts to denote these operators:

K new = K ◦ a = exp (: Ha :) K = A K . (3.32)

At Equation (2.35), I introduced this calligraphic notation in anticipation of the
nonlinear case.

http://dx.doi.org/10.1007/978-4-431-55803-3_2
http://dx.doi.org/10.1007/978-4-431-55803-3_2
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For a vector field, one could have naïvely hoped that

��������������������������
Fnew = F ◦ a = exp (A · ∇) F. (3.33)

It is absolutely incorrect.
As Eq. (3.27) shows, it is a little more complex: the argument of the force must be
transformed as well as the “orientation” of the force. In the Hamiltonian case, these
two actions are lumped into the change of a single scalar function: the Hamiltonian.
Nevertheless we ought to investigate, using a correct approach, if there is something
like a Lie operator transformation which can save Eq. (3.33).

One starts by properly defining how a Lie operator, any operator, transforms. It
must undergo a similarity transformation:

exp
(
Fnew · ∇) = exp (A · ∇) exp (F · ∇) exp (−A · ∇) (3.34)

= exp (exp (A · ∇) F · ∇ exp (−A · ∇)) (3.35)

= exp

(
exp

(
#
#

A · ∇#
#

)
F · ∇

)
. (3.36)

The notation
#
#

Ô
#
#
denotes the adjoint representation: a commutator must be taken.

This notation is again due to Dragt.

#
#

Ô
#
#

P̂ = Ô P̂ − P̂ Ô. (3.37)

It must be pointed out that passage fromEqs. (3.34), (3.35) and finally to (3.36) are all
very general and apply to any linear operators, in particular tomatrices. Commutators
of vector field operators need to be evaluated if we want an expression germane to
our kinds of operators, i.e., operators defined by substitution. The result is:

#
#

A · ∇#
#

F · ∇ = [A · ∇, F · ∇] = 〈A, F〉 · ∇

where 〈A, F〉a = Ab
∂ Fa

∂zb
− Fb

∂ Aa

∂zb
. (3.38)

In the light of Eq. (3.38), I can define a new Lie operator which acts on the vectors
the same way the operator : K : acts on functions:

: A : F = 〈A, F〉 = Ab
∂ F

∂zb
− Fb

∂ A

∂zb
. (3.39)

In Eq. (3.39), I “overloaded” Dragt’s notation for the Poisson bracket operator. There
is no confusion since in Eq. (3.39) the colons surround a vector function not a scalar
function. Then Eq. (3.36) can be rewritten as
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exp
(
Fnew · ∇) = exp

(
exp

(
#
#

A · ∇#
#

)
F · ∇

)

= exp ({exp (: A :) F} · ∇) → Fnew = exp (: A :) F. (3.40)

Before I close this short summary on Lie operators, it is worth mentioning an
important “homomorphism.” In the case of a symplectic operator of the kind : f :
where f is indeed a Hamiltonian-like operator, I can derive the corresponding vector
field:

: f := −S∇ f︸ ︷︷ ︸
F

·∇ =⇒ Fα = −Sαβ

∂ f

∂zβ

. (3.41)

The first important property is that the commutator of two Poisson bracket operators
is the operator of their Poisson brackets:

[: f :, : g :] =: [ f, g] : . (3.42)

Equation (3.42) simply stipulates that one can either deal with an operator or with the
function that defines the said operator. Equation (3.41) has a very important practical
application for FPP code writers given that the following equation is true:

if : f := −S∇ f︸ ︷︷ ︸
F

·∇ and : g := −S∇g︸ ︷︷ ︸
G

·∇

=⇒: [ f, g] := −S∇ [ f, g] · ∇ = 〈F, G〉 · ∇. (3.43)

Equation (3.43) implies that, in the symplectic case, a homomorphism exists between
general Lie brackets and Poisson backets. Thus we can write a normalising library
which is very general using vector fields: if applied on a symplecticmap (or force) the
result will be the same as if we had used Poisson brackets (Hamiltonians) all along.
If the maps are nearly symplectic, say radiation is present, a code using vector fields
will produce correct results and all the transformations will be near the symplectic
group to the extent that radiation is a small effect in accelerators.

I can illustrate this homomorphism with an example. Consider two functions f
and g:

f = x2 + p2

2
and g = x2 p. (3.44)

I can compute the vector fields F and H associated to these two functions:

F · ∇ = [ f, x]
∂

∂x
+ [ f, p]

∂

∂p
= −∂ f

∂p

∂

∂x
+ ∂ f

∂x

∂

∂p
= −p

∂

∂x
+ x

∂

∂p
(3.45)

G · ∇ = [g, x]
∂

∂x
+ [g, p]

∂

∂p
= −∂g

∂p

∂

∂x
+ ∂g

∂x

∂

∂p
= −x2 ∂

∂x
+ 2xp

∂

∂p
.

(3.46)
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First I can compute the Lie bracket of F and G using Eq. (3.38) which is valid for
any vector field:

H · ∇ = 〈F, G〉 · ∇
=
((

−p
∂

∂x
+ x

∂

∂p

) (−x2)−
(

−x2 ∂

∂x
+ 2xp

∂

∂p

)
(−p)

)
∂

∂x

+
((

−p
∂

∂x
+ x

∂

∂p

)
(2xp) −

(
−x2 ∂

∂x
+ 2xp

∂

∂p

)
(x)

)
∂

∂p

= 4xp
∂

∂x
+ (3x2 − 2p2

) ∂

∂p

⇓
H = (

4xp, 3x2 − 2p2
)
. (3.47)

Secondly I compute the Poisson bracket of the function of f and g:

h = [ f, g] =
[

x2 + p2

2
, x2 p

]
= x3 − 2xp2. (3.48)

Finally it suffices to check that the vector field generated by the function h agrees
with Eq. (3.47):

[h, x]
∂

∂x
+ [h, p]

∂

∂p
= 4xp

∂

∂x
+ (3x2 − 2p2

) ∂

∂p
Q.E.D (3.49)

We are now ready to proceed with our pendulum example using a vector field to
compute its map numerically and also to normalise it.

3.2.2 Vector Field of the Pendulum

The equation of motion for the pendulum of Eq. (3.3) is:

d f

dτ
= [−K , f ] (3.50)

=
{

∂K

∂p

∂

∂θ
− ∂K

∂θ

∂

∂p

}
f. (3.51)

Equation (3.51) does not assume a Hamiltonian form. Indeed, it is of the form:

d f

dτ
= F · ∇ f where F =

(
∂K
∂p

− ∂K
∂θ

)
. (3.52)
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In the case when the Hamiltonian is time-independent, I can write a formal solution
for Eq. (3.52):

fΔτ = exp (Δτ F · ∇) f0. (3.53)

I can apply Eq. (3.53) to the case when f0 is an arbitrary vector function, a Taylor
map for example:

mΔτ = exp (Δτ F · ∇) m0. (3.54)

Equation (3.54) expresses the propagation of the map m0 for a time Δτ . If m0 is the
identity, i.e., m0 = I , then Eq. (3.54) gives us the map for a time Δτ . In the case of
the pendulum, the map for a time Δτ is thus given by:

mΔτ = exp (Δτ F · ∇) I =
∞∑

n=0

Δτ n F · ∇n

n! I (3.55)

where F = (
p,− (2π f )2 sin (θ)

)
. (3.56)

In passing it is worth re-emphasising that in my example the vector field F is derived
from a Hamiltonian. Therefore, the operation of F · ∇ on an arbitrary g, F · ∇g, can
be written as:

F · ∇g = [−K , g] =: −K : g. (3.57)

With this notation, initially introduced by Dragt, Eq. (3.53) takes the explicitly
Hamiltonian form

mΔτ = exp (Δτ : −K :) m0. (3.58)

Equation (3.58) gives us a prescription for generating Hamiltonian maps which are
often useful in perturbation theory. The other method is that of mixed generating
functions which appears more naturally in the discussion on canonical 1-form. I do
not usemixed generating functions in purely analytical discussions; furthermore they
do not extend to non-symplectic maps while Eq. (3.54) applies to any type of vector
field F including non-Hamiltonian fields.

The program we will use for the pendulum is in Appendix E. This program
initialises the code PTC (which I do not use4 in this example!) with a 1-d-f freedom
phase space. The important initial steps are as follows:

f=1/2.d0 ! This pendulum has a period of tau=2
dt=5.d-2

4FPP can be used alone. But instead of introducing more mysterious calls, I initialised PTC in 1-d-f
which then ripples down to FPP. As I said, I never use the tracking code PTC in this pendulum
program.
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theta=1.d0.cmono.1 !(1a)
p=1.d0.cmono.2 !(1b)

K=p**2/2+2*(2*pi*f)**2*sin(theta/2.d0)**2 !(2)

!!! vf is the force field of the pendulum
vf%v(1)=dt*(theta.pb.K) !(3a)
vf%v(2)=dt*(p.pb.K) !(3b)

id=1 ! (4a)
m=exp(vf,id) ! (4b)

On lines (1a,b) the variables (θ, p) are defined as the monomial vector (z1, z2) by
the cmono operator. On line (2) the Hamiltonian K of the pendulum is written into
a complex Taylor series. Lines (3a, b) are the two components of the vector fields5

which enter into Eq. (3.54). In fact, the Fortran 90 operator .pb. takes a Poisson
bracket.

The next step is the computation of the map for a timeΔτ = 0.05 as in Eq. (3.56).
It is given by lines (4a,b). This technique was first pioneered by Berz [1, 2] and
implemented in his code “Cosy-Infinity”.

The Taylor map m of line (4b) requires an infinite number of terms in Eq. (3.55);
in practice the sum is carried out until convergence is reached.

3.2.3 Hamiltonian Normal Form of the Pendulum

I will use this section to review, in its simplest incarnation, perturbation theory on a
time independent Hamiltonian. It is not what is used by the “Code”: accelerators are
strongly dependent on the time like variable “s”. The Hamiltonian of an accelerator
is actually a horribly complicated beast. In a code capable of misaligning magnets,
of putting fringe fields, etc…, the equations of motion are made of force fields with
complicated and discontinuous s-dependence. However the one-turn map, like the
one-turn matrix, can be normalised by using a simple canonical transformation at
the point of observation irrespective of the internal complexity of the “Code.” This
will be examine in Sect. 3.3.

Normal form is “easy” if the Hamiltonian is time independent. The equivalent of
Eq. (2.7) is simply:

K new = K ◦ a. (3.59)

5I have routines that go back and forth between Hamiltonians and vector fields, but here I wanted
to be explicit for this simple example.

http://dx.doi.org/10.1007/978-4-431-55803-3_2
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The rules equivalent to Eq. (3.59) for a time independent vector field are:

Fnew
k = (

F · ∇a−1
k

) ◦ a. (3.60)

Here the Hamiltonian is simple and τ independent. I can expand it to the sixth
degree:

K = p2 + 4π2 f 2 θ2

2
− π2 f 2 θ4

6
+ π2 f 2 θ6

180
+ · · · . (3.61)

I can then normalise it at the linear level using Eqs. (3.6) and (3.59):

K new
2 = π f

(
θnew 2 + pnew 2

)− 1

24
θnew 4 + 1

1440π f
θnew 6 + · · ·

= 2π f J − cos4 (Φ)

6
J 2 + cos6 (Φ)

180π f
J 3 + · · · . (3.62)

To proceed further I need to find a transformation a, such that

K new
4 = K new

2 ◦ a = 2π f J + α J 2 + β J 3 + · · · . (3.63)

Hopefully the result will be that of Eq. (3.22), namely

α = − 1

16
and β = − 1

512π f
. (3.64)

In this section, I will use purely Hamiltonian methods. Therefore, the action of the
map a can be written as:

K new = K ◦ a = · · · exp (: B(Φ)J 3 :) exp (: A(Φ)J 2 :) K . (3.65)

The map exp
(: A(Φ)J 2 :) acts on functions, such as the Hamiltonian K . If I

want the map a, I need to let it act on the identity map itself. To second order,
it is just:

Φnew = exp
(: A(Φ)J 2 :)Φ = Φ − 2AJ + AA′ J 2 + · · ·

J new = exp
(: A(Φ)J 2 :) J = J + A′ J 2 +

(
A′2 − AA′′

)
J 3 + · · · (3.66)

One could also use a mixed generating function which is to leading order
identical:
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Φnew = Φ − 2A (Φ) J new

J new = J + A′ (Φ) J new2
. (3.67)

The advantage of the Lie operator is to produce explicit formulae that depend
only on derivatives. It also keeps the entire theory analytic. The reader can
check that the mixed variables generating function will not be a polynomial
beyond leading order unless it is expressed in terms of (θ, p).

I expand Eq. (3.65) to second-order first taking into account only exp
(: A(Φ)J 2 :):

exp
(: A(Φ)J 2 :) K = 2π f J − 1

6
cos4 (Φ) J 2 + 1

180π f
cos6 (Φ) J 3 (3.68)

+ [
AJ 2, 2π f J

]+ 1

2

[
AJ 2,

[
AJ 2, 2π f J

]]

− 1

6

[
AJ 2, cos4 (Φ) J 2

]
.

The fourth term must be selected to remove the part of the second term which is
not a function of J alone. This is done by expanding cos4 (Φ) in terms of phasor
eigenfunctions exp(±iΦ):

−1

6
cos4 (Φ) J 2 + [AJ 2, 2π f J

] = − 1

96

{
ei4Φ + e−i4Φ + 4ei2Φ + 4e−i2Φ + 6

}
J 2

+ 2π f A′ J 2. (3.69)

I can select A′ as follows:

A′ = 1

192π f

{
ei4Φ + e−i4Φ + 4ei2Φ + 4e−i2Φ

}
. (3.70)

With this particular choice, the Hamiltonian reduces to

exp
(: A(Φ)J 2 :) K = 2π f J − 1

16
J 2 + 1

180π f
cos6 (Φ) J 3

+ 2π f
{

A′2 − AA′′
}

J 3 − 1

6

[
AJ 2, cos4 (Φ) J 2

]
. (3.71)

The tune shift termproportional to J 3 originates from the last 3 terms in Eq. (3.71).
The reader can check that the term A′2 − AA′′ contributes a tune shift term given by:

17

4608π f
J 3,
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the last terms − 1
6

[
AJ 2, cos4 (Φ) J 2

]
gives us

− 17

2304π f
J 3,

and finally, the direct term from the expansion of the Hamiltonian 1
180π f cos

6 (Φ) J 3

gives
1

576π f
J 3.

All these terms add up to to β = − 1
512π f as in Eq. (3.64).

The map exp
(: B(Φ)J 3 :), which I do not bother to compute, is necessary to

actually remove the terms in J 3 which are not “rotational.”
The reader must notice that I did not deal with polynomial functions in this

example up to this point. However the connection to polynomials is simple. I can
use the phasors defined in Eq. (2.21) and rewrite the Hamiltonian:

K new
2 (ϕ+, ϕ−) = π f ϕ+ϕ− − (ϕ+ + ϕ−)4

27 3
+ (ϕ+ + ϕ−)6

211 45π f
+ · · · . (3.72)

Using phasors, the Lie polynomial AJ 2 of Eq. (3.65) is just:

A J 2 = i

22 192π f

{
ϕ4+
4

− ϕ4−
4

+ 2ϕ3
+ϕ− − 2ϕ+ϕ3

−

}
(3.73)

All the operations of this section can be carried out again using phasors. It suffices to
know that the Poisson bracket operator must be redefined for a function of phasors.


 f 

g = −2i : f : g = −2i
∑

j=1,N

∂ f

∂ϕ j+
∂g

∂ϕ j−
− ∂ f

∂ϕ j−
∂g

∂ϕ j+
. (3.74)

The reader may ask the following pertinent question: why can’t Forest put a normalising
factor in his definition of the phasors and remove the annoying factor of −2i in Eq. (3.74)
since this would restore the usual Hamiltonian framework (see Eq. 10.1). In a nutshell, my
definition of the phasors guaranties that the usual linear property distinguishing tunes from
damping persists in the nonlinear case, namely tunes are complex vector field operators
while damping decrements appear real. I illustrate this in supplemental Chap. 10.

http://dx.doi.org/10.1007/978-4-431-55803-3_2
http://dx.doi.org/10.1007/978-4-431-55803-3_10
http://dx.doi.org/10.1007/978-4-431-55803-3_10
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3.2.4 Illustration of Normal Form Theory with FPP Tools

As I explained in the introduction of this book, the Code, namely PTC in my case,
must have two disconnected parts. First, since it is “the Code” it must have tracking
routines of its own. These routines must be able to track rays in a self-consistent
way: following Talman’s idea, I strongly favour (symplectic) integrators.

Secondly the Codemust have tools to analyse the Taylor maps it produces. Analy-
sis of Taylor maps entails more that just a “black box” normal form algorithm. If
this tool box, which I called FPP, is properly written, it will give access to various
internal tools: Lie operators, exponential of Lie operators, “logarithm” of maps, etc.

Therefore a twisted individual, a “thought criminal,” like myself, could write his
own little matrix code, say a small Cosy-Infinity [1]. He could also write his own
normal form for time-independent Hamiltonians or even maps. In Sect. 3.3, using
the standard map, I will truly become a “serial thought criminal” when I will display
four different normal form algorithms…

Here I examine this type of criminal behaviour, where one dares to go outside
the world of the integrator, using our canonical example: the pendulum. This is the
program of Appendix E. We will write our own little normal form algorithm as well
as using the “canned” map based algorithm of FPP.

I start by writing the Hamiltonian K of Eq. (3.3) as a Taylor series in the variables
(θ, p). Lines (1a,b) insures that the two variables are indeed the first and second
variable of the Taylor series for K , i.e., line (1c) aka Eq. (3.3).

f=1/2.d0 ! This pendulum has a period of tau=2
dt=5.d-2
theta=1.d0.cmono.1 !(1a)
p=1.d0.cmono.2 !(1b)

K=p**2/2+2*(2*pi*f)**2*sin(theta/2.d0)**2 !(1c)

As in any procedure, whether on maps or Hamitonians, we must first normalise
the linear motion. Therefore I must make the quadratic part of line (1c) into a radius.
This is achieved by the transformation of Eq. (3.6) and the following lines of code:

a1%v(1)=theta/sqrt(2*pi*f) !(2a)
a1%v(2)=p*sqrt(2*pi*f) !(2b)

write(6,*);write(6,*)" This is Hamiltonian in linear phasors "; write(6,*);

K=K*a1*from_phasor() !(2c)

Lines (2a, b) construct the canonical transformation of Eq. (3.6). Line (2c) applies
this transformation to K followed by a transformation into the phasors basis. The
end result is Eq. (3.72) which is printed by the program:

This is Hamiltonian in linear phasors

Properties, NO = 6, NV = 2, INA = 57
*********************************************
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2 1.570796326794897 0.000000000000000 1 1
4 -0.2604166666666668E-02 0.000000000000000 4 0
4 -0.1041666666666667E-01 0.000000000000000 3 1
4 -0.1562500000000001E-01 0.000000000000000 2 2
4 -0.1041666666666667E-01 0.000000000000000 1 3
4 -0.2604166666666668E-02 0.000000000000000 0 4
6 0.6907766627252409E-05 0.000000000000000 6 0
6 0.4144659976351445E-04 0.000000000000000 5 1
6 0.1036164994087861E-03 0.000000000000000 4 2
6 0.1381553325450482E-03 0.000000000000000 3 3
6 0.1036164994087861E-03 0.000000000000000 2 4
6 0.4144659976351445E-04 0.000000000000000 1 5
6 0.6907766627252409E-05 0.000000000000000 0 6

The reader can check these coefficients numerically using Eq. (3.72), for example
0.6907766627252409E-05, the coefficient of ϕ6+, is just

1
211 45π f .

Now comes the normal form. My task is to write a loop which implements the
steps from Eq. (3.65) to (3.71) and put it in a recursive algorithm.

tpf=K.sub.’11’

do io=3,map_order
a_op=0.0_dp
k_io=K.sub.io
call c_taylor_cycle(K_io,size=ns) !(3a)

!!! Cycling over all monomials
do km=1,ns

call c_taylor_cycle(K_io,ii=km,value=v,j=ji) !(3b)
if(ji(1)/=ji(2)) then !(3c)

v=v/((ji(1)-ji(2))*(2*i_)*tpf) !(3d)
a_op=a_op+(v.cmono.ji) !(3e)

endif
enddo
if(io==4) then

write(6,*); write(6,*)" Eq.\,3.73 of the book is printed "
call print(a_op,6)

endif
vf=cgetvectorfield( a_op ) !(4a)
K=exp(vf,K) !(4b)

enddo

Please notice that I print Eq. (3.73) on the screen during the normalising loop.
Line tpf=K.sub.’11’ extracts the quantity π f , the first term of Eq. (3.72). The
operator .sub. takes a string for fast and dirty work: it contains the exponents of the
monomial whose coefficient is desired. Obviously it can only work for exponents
less or equal to 9. Actually for more solid implementation, it can take an integer
array.

I must now write the equivalent of Eq. (3.69) for a recursive process. If I denote
the Hamiltonian at step io, Kio, then I have:

Kio = π f ϕ+ϕ− + T<io (ϕ+ϕ−) + Rio (ϕ+, ϕ−) + R>io (ϕ+, ϕ−) . (3.75)

The term T<io containts all the contribution to the tune (so-called tune shifts) so far
computed. The term Rio contains the terms of order io which require “cleansing.”
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This is done with the Lie transform a_op which I denote as Aio. The equation to
cleanse is similar to Eq. (3.69):

Kio+1 = exp (: Aio :) Kio = π f ϕ+ϕ− + T<io + [Aio, π f ϕ+ϕ−
]+ Rio + · · · .

(3.76)

The operator associated to Aio is selected so as to remove all terms with unequal
power in the phasors ϕ+ and ϕ−. Thus if we have

Rio =
∑

j1+ j2=io

v jϕ
j1+ ϕ

j2− (3.77)

and the ansatz

Aio =
∑

j1+ j2=io

A jϕ
j1+ ϕ

j2− , (3.78)

then Eq. (3.76) becomes:

Kio+1 = π f ϕ+ϕ− + T<io +
∑

j1+ j2=io

{
v j − i2π f ( j1 − j2) A j

}
ϕ

j1+ ϕ
j2− + · · · .

(3.79)

I can clean away most terms in the summation in Eq. (3.79) by choosing

A j = v j

i2π f ( j1 − j2)
if j1 �= j2. (3.80)

Going back to the code, first the part of the K of order io is extracted by the line
k_io=K.sub.io. Then the routine c_taylor_cycle, as the name indicates,
cycles through each monomial. It is first called at line (3a) to find the number of
non-zero monomial in Kio namely ns. It is then called again ns times, at line (3b)
to retrieve the value v j and the array j of Eq. (3.79) which are then stored in the
variables v and ji respectively.

At line (3c) I check that the coefficient is not a tune shift and then the coefficient
A j is computed at line (3d). This is the implementation of Eq. (3.80). Line (3e)
constructs monomial by monomial the Lie transformation Aio.

Once this is done, Eq. (3.76) is evaluated to the maximum order selected by the
user at line (4b). At that point, the variable K of the program is Kio+1. The iteration
continues until io reaches map_order.

Line (4a), vf=cgetvectorfield(a_op), is needed because my FPP com-
plex package deals with general vector fields and not Poisson bracket operators. In
fact I could have written the normalization loop using vector fields in which case it
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could have applied to a non-symplectic force or a force expressed in non-canonical
variables.

Finally the lines (5) to (14) show the normalisation of the pendulum using only
the tools specifically developed for the maps produced by PTC. Specifically on line
(9), the subroutine c_normal of FPP is called. I will explain this routine in 1-d-f
in Sect. 3.3.2. In fact I recreate this routine using a simple 1-d-f implementation in
the program of Appendix F.

3.3 Normal Form of the Standard Map: The Algorithm
for Maps

Before I start this section, I want to tell the reader that four different algorithms are
displayed in the code of Appendix F. The codes for the map algorithms are explained
in Sects. 3.4.2 and 3.4.3. The algorithms on the “logarithm” of the map are described
in Sect. 3.4.4.

The standard map arises naturally if one integrates the pendulum numerically for
a time dt . For example, we can approximate the true map of the pendulum by the
following second-order integrator.

f=1/2.d0 ! This pendulum has a period of tau=2
dt=5.d-2
theta=1.d0.cmono.1 !(1a)
p=1.d0.cmono.2 !(1b)

! One quadratic step of integration
! K=p**2/2+2*(2*pi*f)**2*sin(theta/2.d0)**2

theta = theta + (dt/2) * p ! (2a)
p = p - dt * 2*(2*pi*f)**2* sin(theta/2.d0)*cos(theta/2.d0) ! (2b)
theta = theta + (dt/2) * p ! (2c)

M%v(1)=theta ! (3a)
M%v(2)=p ! (3b)

This integrator is an explicit second-order symplectic integrator and is part of the
program standard_map found in Appendix F. This means that the error for one
integration time step is of order dt3.

This map is also, modulo some scaling, a good model for the “longitudinal”
motion due to a single radio-frequency (RF) cavity in a circular accelerator. The map
for drifting through half a ring of length L can be approximately written as

τ f = τ + L
2 αδ. (3.81)

The coefficient α of Eq. (3.81) can even contain information pertinent to the coupling
between the transverse and longitudinal plane. It is related to the so-called “momen-
tum compaction or time slip.” I will show you in Sect. 4.2 that it falls out trivially
from a special normal form. The variable τ is the relative time of arrival multiplied

http://dx.doi.org/10.1007/978-4-431-55803-3_4
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by the speed of light c. For an ultra-relativistic particle it is almost the path length.
δ is the energy scaled by the momentum p0c.

The map for a thin RF-cavity is given by

δ f = δ + V L

p0c
sin
(ω

c
τ
)

= δ + 2
V L

p0c
sin
(ω

c

τ

2

)
cos
(ω

c

τ

2

)
(3.82)

where V is the voltage and ω is the frequency.
With a simple scaling of time, this is the same as lines (2a, b, c) in the above code

fragment. The cavity map has, for most realistic parameters, a very small tune which
is equivalent to a small dt . Therefore it can be approximated by a pendulum.

3.3.1 Linear Part

We have the Taylor map m constructed at lines (3a, b). The first step of any normal-
ization is the computation of the linear part of the transformation a of Eq. (2.7). I
first compute the linear part of m which I called l. The matrix of l is simply:

l =
(
1 − 2(π f dt)2 dt

(
1 − (π f dt)2

)

−4dt (π f )2 1 − 2(π f dt)2

)
. (3.83)

I can compute the transformation a1 as defined in Eq. (2.51). The result is:

β =
{
1 − (π f dt)2

}1/2

2π f
and α = 0. (3.84)

This result agrees with Eq. (3.6) if dt is set to zero. Indeed if an integration step is
infinitely small, then it must reproduce the exact solution for the pendulum.

The normalised matrix r1 = a−1
1 la1 is just:

r1 =
(

1 − 2(dtπ f )2 2dtπ f
√
1 − 2(dtπ f )2

−2dtπ f
√
1 − 2(dtπ f )2 1 − 2(dtπ f )2

)
. (3.85)

The linear tune ν0 is

μ0 = 2πν0 = 2sin−1 (π f dt) . (3.86)

This result is consistent with Eq. (3.21) where dν0
dt is the leading term.

http://dx.doi.org/10.1007/978-4-431-55803-3_2
http://dx.doi.org/10.1007/978-4-431-55803-3_2
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3.3.2 The Nonlinear Algorithm: Theory

The idea behind the numerical algorithm is to factor the full canonical a as

a = a1 ◦ c ◦ a2 ◦ a3 · · · (3.87)

and to compute term-by-term all the ai ’s. As we will see, the resulting normalised
map will also be in factored form even though the factors commute in a normal form
whose goal is the computation of an amplitude dependent rotation.

I can use Eq. (3.87) on the full map m:

a−1 ◦ m ◦ a = · · · a−1
3 ◦ a−1

2 ◦ c−1 ◦ a1 ◦ m ◦ a−1
1 ◦ c︸ ︷︷ ︸

m1

◦a2

︸ ︷︷ ︸
m2

◦a3 · · · . (3.88)

The map c in Eq. (3.88), defined by Eq. (2.10), insures that the calculation of the
nonlinear terms, i.e. beyond m1, will take place in the phasors’ basis of Eq. (2.21).
The nonlinear part of the canonical transformation a, in phasors basis, is assumed to
have a factored6 Lie representation:

a2 ◦ a3 · · · = · · · exp (F3 · ∇) exp (F2 · ∇) I . (3.89)

I denote by mn the map at the nth step in the iteration:

mn = a−1
n ◦ · · · ◦ a−1

2 ◦ c−1 ◦ a1 ◦ m ◦ a1 ◦ c ◦ a2 ◦ · · · ◦ an . (3.90)

In this iteration procedure, it is assumed that the map mn has been “cleansed” to
order n. Therefore mn can be factorised as a rotation to “order” n and a map nn+1

that contains all the “remaining ideological filth” of higher order that must be purged!

mn = nn+1 ◦ ρn . (3.91)

The map ρn is a rotation computed so far to order n. Therefore it can have the
following Lie representation:

ρn = exp (T1 · ∇) · · · exp (Tn · ∇) I . (3.92)

The operator T1 · ∇ is already known to us through Eqs. (3.85) and (3.21). It must
have the following Lie representation:

6Notice the order which is reversed from the usual Taylor map: remember the transpose matrix M†

of Sect. 2.3.1!

http://dx.doi.org/10.1007/978-4-431-55803-3_2
http://dx.doi.org/10.1007/978-4-431-55803-3_2
http://dx.doi.org/10.1007/978-4-431-55803-3_2
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T1 · ∇ =
(−iμ0ϕ+

iμ0ϕ−

)
· ∇ = −iμ0ϕ+

∂

∂ϕ+
+ iμ0ϕ−

∂

∂ϕ−
(3.93)

=⇒ T1 · ∇ = 
 − t1


 = −μ0

2

ϕ+ϕ−

. (3.94)

In Eq. (3.94), one should not forget the factor of −2i that enters into the operator

ϕ+ϕ−

 as explained in Eq. (3.74). Let us apply to the map mn the transformation
an+1, yet unknown, which will push Eq. (3.91) one order higher. Namely

mn+1 = a−1
n+1 ◦ mn ◦ an+1

= a−1
n+1 ◦ nn+1 ◦ ρn ◦ an+1. (3.95)

In the Lie operator language, this equation becomes:

mn+1 = a−1
n+1 ◦ nn+1 ◦ ρn ◦ an+1

= exp (Fn+1 · ∇)RnNn+1 exp (−Fn+1 · ∇)︸ ︷︷ ︸
Mn+1

I . (3.96)

The first step is to extract the map nn+1 from mn .

nn+1 = mn ◦ ρ−1
n (3.97)

= exp (−Tn · ∇) exp (−Tn−1 · ∇) · · · exp (−T2 · ∇) mn ◦ ρ−1
1 . (3.98)

Equation (3.98) is part of the recursive algorithm and therefore all the operators Ti ’s
and Fi ’s are all known up to order n. In Eq. (3.98) the Lie map exp (−T1 · ∇) is
left as the linear phase space map ρ−1

1 simply because this is how it appears in the
numerical algorithm: it came from a linear (matrix) calculation.

To compute Fn+1 I reorder the various factors in Eq. (3.96):

Mn+1 = exp (Fn+1 · ∇)RnNn+1 exp (−Fn+1 · ∇)

= RnR
−1
n exp (Fn+1 · ∇)RnNn+1 exp (−Fn+1 · ∇)

= Rn exp
(
R−1

n Fn+1 · ∇Rn
)
Nn+1 exp (−Fn+1 · ∇)

≈ Rn exp
(
R−1

1 Fn+1 · ∇R1 − Fn+1 · ∇ + Gn+1 · ∇ + · · ·) . (3.99)

In Eq. (3.99), the mapNn+1 has been approximated to order n +1 as exp (Gn+1 · ∇).
Then the equation for the n + 1 order part is simply:

R−1
1 Fn+1 · ∇R1 − Fn+1 · ∇ + Gn+1 · ∇ = exp

(
#
#

− T1 · ∇#
#

)
Fn+1 · ∇ − Fn+1 · ∇ + Gn+1 · ∇

= {exp (: −T1 :) Fn+1 − Fn+1 + Gn+1} · ∇ .

(3.100)

And thus we get the equation for the normal form:
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exp (: −T1 :) Fn+1 − Fn+1 + Gn+1 = Tune shifts. (3.101)

In Eq. (3.101) the vector operator Fn+1 removes all the resonances. On occasion
one can also leave a resonance in the map. This will be discussed later in Sect. 5.4.
To see how the calculation of the vector Fn+1 proceeds, it is necessary to expand it.

Fa
n+1 =

∑

m

Fa
n+1;mϕ

m1+ ϕ
m2− with Fn+1 = (F1

n+1, F2
n+1

)
. (3.102)

I can look at a single “vector” monomial of Eq. (3.101). First, one writes the vector
−T1 correspounding to the unperturbed tune; this is given by Eq. (3.93) which I
rewrite here:

−T1 =
(

iμ0ϕ+
−iμ0ϕ−

)
. (3.103)

Then I let exp (: −T1 :) act on a single vector monomial belonging to the ath com-
ponent of the vector field F :

: −T1 : Fa
n+1;mϕ

m1+ ϕ
m2− = −

∑

k

T k
1

∂

∂ϕk
Fa

n+1; mϕ
m1+ ϕ

m2− − Fa
n+1;mϕ

m1+ ϕ
m2−

∂

∂ϕa
T a
1

= iμ0
(
m1 − m2 + (−1)a

)
Fa

n+1;mϕ
m1+ ϕ

m2− . (3.104)

In Eq. (3.104) I used the formula for the Lie bracket remembering that Fa
n+1;mϕ

m1+ ϕ
m2−

is actually a vecfor fieldwith a single non-zero component namely theath component.
Remarkably this vector monomial is an eigen-monomial of the Lie bracket operator
of the unperturbed tune. Thus I can solve Eq. (3.101) by selecting Fn+1 as follows:

m1 − m2 + (−1)a �= 0 → Fa
n+1;m = Ga

n+1;m
1 − exp

(
iμ0

(
m1 − m2 + (−1)a

)) .

(3.105)

The tune shift terms are given by

Tune shifts =
∑

m1−m2+(−1)a=0

Ga
n+1;mϕ

m1+ ϕ
m2− . (3.106)

The algorithm on Lie polynomials
In the symplectic case, particularly in analytic calculations, one may elect
to work on Hamiltonian operators. In that case, Eq. (3.101) is a polynomial
equation in the phasors’ basis.

http://dx.doi.org/10.1007/978-4-431-55803-3_5
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exp
(

 − t1




)
fn+1 − fn+1 + fn+1 = Tune shifts as in Eq.(3.102). (3.107)

The polynomial t1 is given byEq. (3.94). The polynomial fn+1 is also expanded
in phasors:

fn+1 =
∑

k

fn+1;kϕk1+ ϕ
k2− as in Eq. (3.102) (3.108)

I then proceed with the action of −t1 on the polynomial fn+1:


 − t1


 fn+1;kϕk1+ ϕ

k2− = −iμ0 fn+1;k
[
ϕ+ϕ−, ϕ

k1+ ϕ
k2−
]

= iμ0 fn+1;k (k1 − k2) ϕ
k1+ ϕ

k2− as in Eq. (3.104)
(3.109)

The final result for fn+1 is:

k1 − k2 �= 0 → fn+1;k = gn+1;k
1 − exp (iμ0 (k1 − k2))

as in Eq. (3.105)

(3.110)

Of course, Eq. (3.110) must reproduce Eq. (3.105). This is done by computing
the vector field associated with fn+1. Let us look at the effect on ϕ+:


ϕ

k1+ ϕ
k2− 

ϕ+ = 2iϕk1+ ϕ
k2−1
− (3.111)

Thus one concludes from Eq. (3.111) that F1
n+1;m is

F1
n+1;m = 2i fn+1;k with

m1 = k1
m2 = k2 − 1

. (3.112)

Eq. (3.112) tells us that the condition k1 − k2 = 0 for the tune shift is indeed
equivalent to the condition for the vector field in Eq. (3.105).

The normal form of the standard map will be performed five different ways7 and
therefore this necessitates a section of its own i.e., Sect. 3.4.

7Well…four different ways but I also include the call to FPP which is actually a generalised version
of the application of vector fields to one-turn maps.
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3.4 Standard Map: Normalisation in Software

This section is devoted to the discussion of the code standard_map found in
Appendix F.

First I will invoke the general normal form of the complex FPP library. This is
tantamount to a manual for the code FPP. This tasteless exposition does have the
virtue of emphasizing that normal form should often be viewed, by the average user,
Orwell’s Outer Party Member, as a black box whose purpose is to “diagonalise the
map.” No question asked; no dissidence tolerated!

Secondly, I do examine the process by writing a small 1-d-f normal form loop in
the main program rather than opening the routine c_normal of FPP which is too
general for this introduction. This small loop uses vector fields like c_normal.

Thirdly, I repeat the calculationwith Poisson bracket operators rather vector fields.
The results should be the same.

Finally in a fourth and fifth stage I compute the “logarithm” of the map and
normalise directly this operator. I do it again with the Poisson bracket (pseudo-
Hamiltonian) and the vector field (pseudo-force).

3.4.1 Creation of Standard Map and Using a “Canned”
Normal Form

We start again with the code fragment of Sect. 3.3 for the standard map.

map_order=8
call init_all(state,map_order,0)

.

.

.
f=1/2.d0 ! This pendulum has a period of tau=2
dt=5.d-2
theta=1.d0.cmono.1 !(1a)
p=1.d0.cmono.2 !(1b)

! One quadratic step of integration
! K=p**2/2+2*(2*pi*f)**2*sin(theta/2.d0)**2

theta = theta + (dt/2) * p ! (2a)
p = p - dt * 2*(2*pi*f)**2* sin(theta/2.d0)*cos(theta/2.d0) ! (2b)
theta = theta + (dt/2) * p ! (2c)

m%v(1)=theta ! (3a)
m%v(2)=p ! (3b)

write(mf,*);
write(mf,*)" Normalising the standard map using FPP software ";

call c_normal(m,n) ! (4)
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This fragment of code contains two distinct parts. Lines (1a, b) and (2a, b, c)
would be part of the “Code.” They simulate the pendulum (or the RF cavity in an
accelerator). Because the input, namely lines (1a, b), are Taylor series, the code will
return two Taylor series. If the input had been real numbers, the code would have
returned two real numbers like an ordinary simulation code.

Lines (3a, b) and (4) are not part of the “code” but really part of the analysis of
the code’s result. In lines (3a, b) the output of the code is fed into a Taylor map, an
object of type c_damap in my own FPP.

It is important to realise that this action could be utterly meaningless. Whoever
writes lines (3, 4) must know that the object exiting the tracking loop contains Taylor
series which can be reinterpreted as an approximatemap of the 1-d-f phase space. For
example, lines (3a, b) would produce a meaningless map if the output was made of
real numbers or even Taylor series expansions depending only on system parameters
such as the frequency f of the pendulum. Lines (1a, b) are critical: the first and
second Taylor parameters will be the two phase space variables (θ, p). Thus at the
exit, they can be fed in the object m of type c_damap and produce an approximate
representation of the standardmap. This representation is an eight order Taylor series
in (θ, p) as specified by the parameter map_order.

Line (4) calls a routine of FPP which normalises the map m. Here I am regrettably
in a manual mode. It is nevertheless instructive to describe the normal form n. It is
given in part by the structure:

type c_normal_form

type(c_damap) a1 ! brings to fix point at least linear
type(c_damap) a2 ! linear normal form
type(c_factored_lie) g !nonlinear part of a in phasors
type(c_factored_lie) ker ! kernel i.e. normal form in phasors
type(c_damap) a_t ! transformation a (m=a n aˆ-1)
type(c_damap) n !transformation n (m=a n aˆ-1)
type(c_damap) as !for spin (m = as a n aˆ-1 asˆ-1)

! resonances to be left in the map, including spin (ms)
integer nres,m(ndim2t/2,nreso),ms(nreso)

! stores simple tune information
real(dp) tune(ndim2t/2),damping(ndim2t/2),spin_tune
logical positive ! forces positive tunes (close to 1 if <0)

!!!envelope radiation stuff to normalise radiation (sand’s like theory)
complex(dp) s_ij0(6,6) !equilibrium beam sizes
complex(dp) s_ijr(6,6) ! equilibrium beam sizes in resonance basis

! equilibrium emittances as defined by chao (computed from s_ijr(2*i-1,2*i)
i=1,2,3)
real(dp) emittance(3)

end type c_normal_form

According to the definition of the c_normal_form type, the orignal map m of the
code at lines (3a,b) can be expressed as

m= n%a_t * n%n * n%a_t**(-1)

where “*” represent the concatenation of two Taylor maps in FPP.
The other object n%ker is the factored Lie map representing n%n. This object is

of type c_factored_lie which is defined as:

type c_factored_lie
integer :: n= 0
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integer :: dir= 0
type (c_vector_field), allocatable :: f(:)

end type c_factored_lie

---------------------------------------------
type c_vector_field !

integer :: n=0,nrmax ! n dimension used v(1:n) (nd2 by default)
! nrmax some big integer if eps<1

real(dp) eps ! if eps=-integer then |eps| lie brackets are taken
! otherwise eps=eps_tpsalie=10ˆ-9 used for convergence test

type (c_taylor) v(lnv)
end type c_vector_field

An object of type c_factored_lie is defined as a product of Lie operators:

F = exp (F1 · ∇) · · · exp (FN · ∇) if dir = 1,

F = exp (FN · ∇) · · · exp (F1 · ∇) if dir = −1. (3.113)

In particular, as is shown in Eq. (3.89), the nonlinear canonical transformation a2 ◦
· · · ◦ an appears naturally factored. Notice that the order of the Lie operators is the
inverse of that of the normal phase space maps.

For the sake of comparing the results of theFPPalgorithmand the small algorithms
of the coming sections, I compute the pseudo-Hamiltonian of the normalised map n.
This is done by the code fragment8

id=exp(n%ker) ! (5)
call print(id,mf,prec)

!!!!!!!!!!!!!! Normalised Pseudo-Hamiltonian !!!!!!!!!!!!!!!
vf=0

do io=1,size(n%ker%f)
vf%v(1)=vf%v(1)+n%ker%f(io)%v(1) ! (6a)
vf%v(2)=vf%v(2)+n%ker%f(io)%v(2) ! (6b)

enddo

k_io=-cgetpb(vf)/dt ! (6c)

The normalised map n is stored in the Dragt-Finn style object n%ker with
n%ker%dir=1. However, since all the terms that survived cleansing are gener-
ators of rotations, I can add them up: they all commute. The sum is written in the
vector field vf of type c_vector_field through lines (6a, b).

Line (6c) turns a vector field, in phasors’ basis, into a Hamiltonian operator. For
example, let us start backwards with the pseudo-Hamiltonian Kio

Kio =
∑

k

tkϕ
k1+ ϕ

k2− . (3.114)

We can compute the vector field vf of line (6c), which I denote as V , using the
correspondence

8FPP has a routine called flatten_c_factored_lie that performs this task, but here I prefer
to be explicit.
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n = exp
(

 − dt Kio




)
I where I =

(
θ

p

)
(3.115)

V · ∇ = 
 − dt Kio


. (3.116)

The vector field V is just

V = 
 − dt Kio


 I = dt 2i S∇Kio = dt2i

⎛

⎜⎝
−∑

k
k2tkϕ

k1+ ϕ
k2−1
−

∑
k

k1tkϕ
k1−1
+ ϕ

k2−

⎞

⎟⎠ (3.117)

Of course, it is possible to go in the reverse direction

Kio = − 1

2idt

∫ (ϕ+,ϕ−)

0
SV · dϕ. (3.118)

In Eq. (3.118) the path of integration is arbitrary. In the function cgetpb, of line
(6c), I selected the diagonal between (0, 0) and (ϕ+, ϕ−). It can be shown that for
a symplectic map the result for Kio does not depend on the path of integration; the
theory9 is consistent.

3.4.2 Normalisation of the Map with Vector Fields

Here is the code fragment which prepares the nonlinear algorithm:

t_op=0 ;f_op=0;

beta=(1-(pi*f*dt)**2)**(1.0_dp/2)/(2*pi*f) ! (ia)

a1%v(1)=sqrt(beta).cmono.1 ! (ib)
a1%v(2)=(1.0_dp/sqrt(beta)).cmono.2 ! (ic)

c=from_phasor() ! (iia)
m_n=c**(-1)*a1**(-1)*m*a1*c ! (iib)

rho1=m_n.sub.1 ! (iiia)
expmu=m_n%v(1).sub.’1’ ! (iiib)

t_op%dir=1 ! (iva)
f_op%dir=-1 ! (ivb)

9If the map is not symplectic due to small computation errors, it pays to choose a path that avoids
the region of maximum violation. For example, in the days of the defunct Super Conducting Super
Collider, a member of SSC asked me to “symplectify” a map of the Jordan normal form type
(see Sect. 4.2) that violated the symplectic condition mostly in the longitudinal direction due to
truncation errors. I did not use the diagonal but avoided the longitudinal plane as much as possible
in the integration path. This is also useful when a transverse map is known through measurements
as a function of energy: one can reconstruct almost completely the longitudinal part of the map by
avoiding it in the integration path.

http://dx.doi.org/10.1007/978-4-431-55803-3_4
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The normalisation of themap starts with the linear part. The linear transformation,
denoted by a1, is given by Eq. (3.84) through the β function, line (ia) in the code
and subsequently lines (ib, c). Line (iib), i.e., mn , is exactly the map m1 of Eq. (3.88).
This map is “ready” to be submitted to the nonlinear recursive normal form: let the
cleansing start! This is the following code fragment:

t_op%dir=1 ! (iva)
f_op%dir=-1 ! (ivb)

do io=2,map_order

n_np1= m_n*rho1**(-1); n_np1= exp_inv(T_op,n_np1) ! (v)
g_io%v(1)=n_np1%v(1).sub.io ! (via)
g_io%v(2)=n_np1%v(2).sub.io ! (vib)

do a=1,2
call c_taylor_cycle(g_io%v(a),size=ns)

!!! Cycling over all monomials
do km=1,ns

call c_taylor_cycle(g_io%v(a),ii=km,value=v,j=ji) ! (vii)
if(ji(1)-ji(2)+(-1)**a/=0) then ! (viiia)

v=v/(1-expmu**(ji(2)-ji(1)-(-1)**a)) ! (viiib)
f_op%f(io)%v(a)=f_op%f(io)%v(a)+(v.cmono.ji) ! (viiic)

else
t_op%f(io)%v(a)=t_op%f(io)%v(a)+(v.cmono.ji) ! (viiid)

endif
enddo

enddo
m_n=exp(-f_op%f(io))*m_n ;m_n=exp(f_op%f(io),m_n) ! (ix)

enddo

t_op%f(1)%v(1)= log(expmu).cmono.1 ! (xa)
t_op%f(1)%v(2)=-log(expmu).cmono.2 ! (xb)

Line (v) is very important; often when I write such an algorithm (without say
cutting and pasting from somewhere else…) I mess up at line (v). This map n_np1
of line (v) must correspond to the map nn+1 of Eq. (3.98). The map nn+1 is near the
identity with correctionswhichwe have not yet been analysed, so as I said previously,
it is of the form

nn+1 = exp (Gn+1 · ∇) I

= I + Gn+1 · ∇ I + · · ·
= I + Gn+1 + · · · . (3.119)

In my loop, the vector field Gn+1 is represented by the variable g_io where io is
the index of the recursive loop. Thus io at any given instant is n + 1 and it starts
at io=2. Gn+1 is extracted at lines (via,b) using the operator .sub. which extracts
in this case the ioth order component of a polynomial; these lines are obviously
assuming a 1-d-f map.

The outer loop, over io, is clearly over the degree of the Taylor maps; the next
loop is over the components of Gn+1, G1

n+1 and G2
n+1; but the truly interesting loop

is the inner loop over the monomials. Lines (viiia, b, c, d) perform the work of
Eqs. (3.105) and (3.106) which I rewrite here for convenience:
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Eq. (3.105): m1 − m2 + (−1)a �= 0 → Fa
n+1;m =

Ga
n+1;m

1 − exp
(
iμ0

(
m1 − m2 + (−1)a)) ,

Eq. (3.106):Tune shifts =
∑

m1−m2+(−1)a=0

Ga
n+1;mϕ

m1+ ϕ
m2−

Line (vii) fetches a monomial and its properties. Line (viiia) verifies the resonance
condition m1 − m2 + (−1)a �= 0. If the monomial does not represent a tune shift,
the operator Fa

n+1 is augmented so that it will have the power to “liquidate” this
monomial: line (viiic). Otherwise the monomial is a tune shift and it is stored in
T a

n+1: line (viiid).

Concatenation

The next line is crucial. How do we compute the map mn+1 of Eq. (3.95)? mn+1

is the map transformed by the canonical an+1 which we have just computed through
line (viiic).

Eq. (3.95): mn+1 = a−1
n+1 ◦ mn ◦ an+1

= exp (Fn+1.∇)

⎧
⎪⎪⎨

⎪⎪⎩
exp (−Fn+1.∇) I︸ ︷︷ ︸

a−1
n+1

◦mn

⎫
⎪⎪⎬

⎪⎪⎭
︸ ︷︷ ︸

a−1
n+1◦mn︸ ︷︷ ︸

a−1
n+1◦{mn◦an+1}

. (3.120)

Equation (3.120) is realised by line (ix) of the code. In the library FPP,
exp(-f_op%f(io)) is equivalent exp(-f_op%f(io),I), in other words the
identity map can be ommitted in FPP.

The central idea is to avoid using the CBH theorem simply because we do
not have a Lie representation of our one-turn map. Thus in Eq. (3.120), one
concatenation is used and two trivial applications of a Lie map which only
require a finite number of Lie brackets, i.e., derivatives.

It is my opinion, held strongly from experience, that the normal form algo-
rithms described byA. Chao for example in his lectures see [3] are pretty much
sitting in a “no-man’s-land” of applicability. They involve a Lie representation
of the one-turn map of the Dragt-Finn type which we do not have coming from
an integrator code and the CBH theorem which we do not need. In the case of
analytical calculations, this approach also fails to separate clearly the solved
problem (on which the numerical algorithm of the code can be applied) from
the analytically represented force that is the actual perturbation. Of course if
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the unperturbed problem is trivial, then the methods in Chao’s lectures can be
applied: a linear map followed by a beam-beam kick for example.

I can only conclude that the methods utilising a one-turn map factorised
as e:h2:e:h3: · · · appear in lectures because, accidentally, this is how the code
Marylie of A. Dragt parametrised its maps. It is worthwhile to notice that
Cosy-Infinity, the matrix code of Berz [1], must use an algorithm similar to
the one I just described: a general concatenator is used and most likely Berz
avoids unnecessary Lie maps.

It is possible to avoid the CBH formula if one can get a single Lie operator
description through the logarithm of supplemental Chap. 11. This is possible
numerically (on occasion) but not in purely analytical calculations.

The last step of the normalisation is useful but not necessary. In lines (xa,b) I
construct and add the operator T1 to T . Indeed in any numerical algorithm on the
map, the linear part is made of matrices and matrices are used to normalise it. In
Sect. 2.3.1, I described that process with nonlinear Lie maps in mind. Nevertheless
the reader saw that a linear numerical algorithm with Lie maps in mind simply
forces us to consider the transpose of the usual phase space matrix rather than the
matrix itself. Lie operators for the linear transformation a1 are not needed and are not
necessary. Thus at the end of the exercise we have a matrix for the linear normal form
n1. If we want a Lie operator for the full normalised n, we need to add to the vector
field T its linear part T1. In the code, it is done first by extracting the eigenvalues
at line (iiib) and adding them to T at lines (xa, b). This is actually necessary in a
one-resonance normal form as described in Sect. 5.4.3 where the “co-moving” map
is computed.

This concludes the description of the algorithm. Lines (xiia, b) and (xiii), in
Appendix F, reproduce the pseudo-Hamiltonian once more for comparison with the
results of Sect. 3.4.1.

3.4.3 Normalisation of the Map with Poisson Brackets

Normalisation with the Poisson bracket is nearly identical to the normalisation over
the vector field; it is describe theoretically in the gray box near Eq. (3.107). We can
look at the code fragment immediately:

do io=2,map_order
t_op%f(io)=0 ! (IVa)
f_op%f(io)=0 ! (IVb)
n_np1=m_n*rho1**(-1); n_np1=exp_inv(t_op,n_np1) ! (V)

g_io%v(1)=n_np1%v(1).sub.io ! (VIa)
g_io%v(2)=n_np1%v(2).sub.io ! (VIb)

k_io=cgetpb( g_io ) ! (VIc)

f_pb=0.0_dp ! (VIIa)
t_pb=0.0_dp ! (VIIb)

http://dx.doi.org/10.1007/978-4-431-55803-3_11
http://dx.doi.org/10.1007/978-4-431-55803-3_2
http://dx.doi.org/10.1007/978-4-431-55803-3_5
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call c_taylor_cycle(K_io,size=ns) ! same as above

!!! Cycling over all monomials
do km=1,ns

call c_taylor_cycle(K_io,ii=km,value=v,j=ji)
if(ji(1)/=ji(2)) then !(VIIIa)

v=v/(1-expmu**(ji(2)-ji(1))) !(VIIIb)
f_pb=f_pb+(v.cmono.ji) !(VIIIc)

else
t_pb=t_pb+(v.cmono.ji) !(VIIId)

endif

enddo
t_op%f(io)=cgetvectorfield(t_pb) ! (IXa)
f_op%f(io)=cgetvectorfield(f_pb)! ! (IXb)
m_n=exp(-f_op%f(io))*m_n; m_n=exp(f_op%f(io),m_n) ! (X)

enddo

The first difference is at line (VIc). The Lie operator K_io is extracted using
Eq. (3.118) which is implemented in the routine cgetpb of FPP.

The next difference is in the cleansing part: lines (VIIIa, b, c, d). Line (VIIIb)
performs the computation of the canonical transformation a at order io which is
now a simple Lie polynomial; this is Eq. (3.110).

There is not much more to say except that this algorithm cannot work for non-
symplectic maps nor can it work if non-canonical variables are used.

3.4.4 Using a Pseudo-Hamiltonian: Normalising the
Logarithm

Here is a bizarre functionality of FPP which will have applications in Chap.8 when
I discuss “Guignard style” [4] perturbation10 theory. Imagine that our code is made
of integration steps (which it is), then symbolically, tracking through one turn of the
machine can be written as a sequence of concatenations:

m j = m j+N−1 j+N ◦ · · · ◦ m j+1 j+2 ◦ m j j+1. (3.121)

Obviously these maps are close to the identity, thus we can surmise that they can be
expressed using a single Lie operator:

m j+k j+k+1 = exp (dsk Fk · ∇) I . (3.122)

The force field Fk may in fact be the actual force of the magnet in question if the
local Hamiltonian is s-independent. It is certainly an accurate representation of the
average effect over the short distance dsk over which this action takes place.

10This is “s”-dependent Hamiltonian perturbation theory where H is Fourier-transformed in the
time-like variable s often mapped into an angular variable θ as I do in Chap.8. It is commonly
described in many accelerator books though rarely carried through even on simple lattices.

http://dx.doi.org/10.1007/978-4-431-55803-3_8
http://dx.doi.org/10.1007/978-4-431-55803-3_8
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Assuming we can compute Fk , it implies that we have a pseudo-Hamiltonian for
the entire ring:

H (s) =
N∑

k=1

u (s , s + dsk) Hk . (3.123)

The function u (s , s + dsk) is equal to one in the interval [s , s + dsk] and zero
elsewhere. In Chap.8 I will show how Eq. (3.123) allows us to perform the kind of
perturbation theory often described in standard treatments but rarely carried out (see
[5] for example).

The length s is any lengthmore or less equal to the length along the closed orbit. In
the case of a simple code, the Hamiltonian Hk may indeed be the exact Hamiltonian
used by the writer of the code. Otherwise it is a good average Hamiltonian for a
single time step.

In the program of Appendix F, the “one-turn map”, i.e., the standard map, is
near the identity. So its logarithm can be obtained by the iteration procedure of
supplemental Chap. 11. It is given by the syntax

vf=log(M) ! (1a)
k=-getpb(vf)/dt ! (1b)

Here is M is simply a map of phase space and vf is a vector field. k is the
Hamiltonian extracted from the vector field.

3.4.4.1 Using the Pseudo-Hamiltonian for the Normalisation

From that point on, the algorithm of the normalisation is that of time-independent
perturbation theory. I proceed using the techniques discussed in Sect. 3.2.4. First I
normalise the quadratic part of k using Eq. (3.84) which, in the code, is just:

beta=(1-(pi*f*dt)**2)**(1.0_dp/2)/(2*pi*f) ! (2a)

a1%v(1)=sqrt(beta).cmono.1 ! (2b)
a1%v(2)=(1.0_dp/sqrt(beta)).cmono.2 ! (2c)

The iterative part of the loop is, as before, a cycling over the monomials of the
Hamiltonian at a given order:

!!! Cycling over all monomials
do km=1,ns

call c_taylor_cycle(K_io,ii=km,value=v,j=ji) ! (5a)
if(ji(1)/=ji(2)) then ! (5b)

v=v/((ji(1)-ji(2))*(2*i_)*tpf) ! (5c)
a_op=a_op+(v.cmono.ji) ! (5d)

endif
enddo

The important removal of the resonant terms is done by line (5c)which implements
Eq. (3.80), namely

http://dx.doi.org/10.1007/978-4-431-55803-3_8
http://dx.doi.org/10.1007/978-4-431-55803-3_11


3.4 Standard Map: Normalisation in Software 79

A j = v j

i2π f ( j1 − j2)
if j1 �= j2 → v = v/(( j i(1) − j i(2)) ∗ (2 ∗ i_) ∗ tp f ).

The Hamiltonian is then updated at order io

vf=cgetvectorfield( a_op ) ! (6a)
K=exp(vf,K) ! (6b)

Line (6b) produces the equivalent of Kio+1 = exp (Fio · ∇) Kio. Line (6a) is
needed because my complex FPP package is ignorant of Poisson bracket operators:
I need to produce the equivalent general vector field before I exponentiate.

3.4.4.2 Using the Pseudo-force for the Normalisation

The procedure with the vector field is more of the same: I start with the logarithm of
the map at lines (3A, B, C) where the linear part of this map is already in phasors. At
line (3C) I extract the “frequency” of the linearmap needed in normal form algorithm.

g_io=log(M) ! ! (3A)
g_io=-(1.0_dp/dt)*g_io ! (3B)
om= g_io%v(1).sub.’1’ ! (3C)

The core of the normal form is found at line (5B)

v=v/(om*(ji(1)-ji(2)+(-1)**a)) ! (5B)

Line (5B) uses the “force” equivalent of Eq. (3.105) which applies to a map
expressed in terms of a vector field. In fact, for small μ0, Eq. (3.105) becomes

m1 − m2 + (−1)a �= 0
Ga

n+1;m
1 − exp

(
iμ0

(
m1 − m2 + (−1)a)) →

Ga
n+1;m

−iμ0
(
m1 − m2 + (−1)a)

(3.124)

which agrees with line (5B) if I take into account the minus sign that enters in the
definition of the Hamiltonian and replace om of line (5B) by μ0.

The example of the vector field also illustrates the equivalence between formula
Eq. (3.27) (i.e., Fnew

k = (
F · ∇a−1

k

) ◦ a) and (3.40) (i.e., Fnew = exp (: A :) F).
Here is the code fragment from Appendix F:

if(t_o) then ! if true, use (F.dot.a_kˆ-1) o a
id=exp(f_op%f(io)) ! (6A)
a1=id**(-1) ! (6B)
r=0

do ns=1,2
do a=1,2
r%v(ns)=g_io%v(a)*(a1%v(ns).d.a)+r%v(ns) ! (7)

enddo
r%v(ns)=r%v(ns)*id ! (8)
enddo

do ns=1,2
g_io%v(ns)=r%v(ns)

enddo
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else ! use a Lie Bracket operator
g_io=exp_ad(f_op%f(io),g_io) ! (6’)

endif

The vector field being normalised is g_io. In lines (6) to (8), I evaluate the effect
of the canonical transformation using Eq. (3.27). First, I compute the transformation
a which is stored in id at lines (6A):

a = exp
(
Fop · ∇) I (I is implicit in the code). (3.125)

I then compute its inverse and store it intoa1. Lines (7) and (8) completes the process
of Eq. (3.27) by multiplying the derivative of a1 with the vector field g_io at line
(7) and then substituting the map a ( i.e., id) into the result.

The other option is simply to use the vector Lie bracket as in Eq. (3.40): this is
done in line (6’).

Fnew = exp (: A :) F =
∞∑

n=0

1

N ! 〈A, · · · 〈A, 〈A, F〉〉〉︸ ︷︷ ︸
N times

(3.126)

Eq. (3.126) is realised in the code at line (6’): the sum is carried over until convergence
is achieved. For a purely nonlinear map, it requires a finite number of steps.

Once may notice, looking at the logarithm explained in supplemental Chap. 11 and
Eq. (3.126), that a normalisation of the map can be achieved without using concatenation.
This is a funny and unexpected result but it hinges on one’s ability to take the logarithm of
the map by the process of supplemental Chap.11. This can only be done for a map near the
identity. For maps far from the identity, it is possible to modify the algorithm of supplemen-
tal Chap.11 to achieve convergence for certain maps but it does not always work. For this
reason, I think that a TPSA package with an efficient concatenator is always necessary for
results emanating from a real tracking code.
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Chapter 4
Classification of Linear Normal Forms

Abstract A normal form is an idealisation of the nonlinear world based on an
extrapolation from the linear domain. This is its central limitation. But if we accept it,
with reservations, it entails that it can only be understood if the linear system has first
been studied. In this chapter, I examine several linear systems uponwhich a nonlinear
normal form can be defined: the full harmonic sink, the Jordan coasting beam, the
radiative stochastic beam envelope and the periodically modulated magnets. Only
spin is left out and treated later. In the case of the damped harmonic coupled oscillator,
I introduce its de Moivre representation and some consequences.

Keywords Linear · Multidimensional · Harmonic · Sinks · De Moivre · Jordan
normal form · Radiation · Beam envelopes

4.1 The Full Harmonically Sinking Phase Space

The previous chapters described a system which was undergoing harmonic oscilla-
tions around the origin in one degree of freedom. It turns out that it is very easy to
extend all of this to many dimensions.

The hardest part is the linear part! The algorithm for the nonlinear part remains
identical and no new concepts are introduced. Of course, when I say “easy” I am
assuming that no new topological features need to be explained: neither resonances
nor chaos appears in the region of interest. This is obviously the assumption behind
the adequacy of a normal form: the phase space is a tranquil extension of the linear
regime.

So I will devote some time to the linear regime and introduce some new concepts
such as the de Moivre formula in many dimensions and the concept of generalised
dispersions. As usual I will pepper this exposé with examples from the “Code,”
namely my own FPP for analysis and PTC for the tracking code.

This section will be illustrated by the program in Appendix G.
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4.1.1 Radiation: The Multidimensional Drain

I extend the 1-d-f case, “multiplicatively”, to three1 degrees of freedom.

M = AΛR A−1 (4.1)

R =
⎛

⎝
r1 0 0
0 r2 0
0 0 r3

⎞

⎠ ri =
(

cos μi sin μi

− sin μi cos μi

)

Λ =
⎛

⎝
Λ1 0 0
0 Λ2 0
0 0 Λ3

⎞

⎠ Λi =
(
exp (−αi ) 0

0 exp (−αi )

)
. (4.2)

The computation of the matrix A follows the steps outlined Sect. 2.3.1. There is
no difference between the construction of the symplectic and radiative case. In the
symplectic case the eigenvectors belonging to different eigenvalues will automati-
cally have vanishing Poisson brackets: this insures that the matrix A is symplectic.
In the non-symplectic case, the Poisson bracket between two distinct eigenplanes is
not zero, but we really do not care.

Many papers have been written on analytical descriptions and calculations of
the matrix A in the symplectic case. Often they are extensions of the Teng-Edwards
method [1] or elucidations of thatmethod.One important extensionwas developed by
Ohmi, Hirata and Oide in Ref. [2]. It is notable because it is the first paper connecting
the Chao synchrotron integrals [3] to the more approximate methods [4] of Sands.
Perhaps more interestingly, they also point out the existence of a dispersion which
is proportional to time rather than energy; they call this transverse vector ζ . The
vector ζ appears in all expressions which are “first-order” in the coupling between
the longitudinal and transverse planes. This can be derived, more generally, using
the de Moivre representation of the 6 × 6 transfer matrix.

Personally I hold the view that all reference to particular parametrizations and
factorizations of A are useless particularly in the context of a code. It is possible to
regain the ζ function of Ohmi et al., without appealing to any particular parametriza-
tion of A. It is also possible to demonstrate the connection between Chao and Sands
without resorting to any special parametrization of A. Moreover the factorization
of A in the style proposed in Refs. [1, 2] is not global and fails for certain highly
coupled systems. This is not surprising because the symplectic group can only be rep-
resented by a minimal set of parameters near the identity due to its non-compactness.
The factorization of Teng and Edwards, for example, requires only the minimal 10
parameters of the Lie algebra of Sp(4,IR) and is thus bound to fail at large coupling.

However the concept of the function ζ , for example, does not depend on any
factorization and indeed any choice for the matrix A. In a code, we compute A

1Actually the results of this section apply to N degrees of freedom; but in accelerators N = 3 is
the maximum size of the symplectic space.

http://dx.doi.org/10.1007/978-4-431-55803-3_2
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using the eigenvectors of the one-turn matrix M and all properly defined physical
concepts can be extracted from A or M in a canonically invariant way as I will now
demonstrate.

4.1.2 De Moivre Representation of the One-Turn Matrix

Once we have found the matrix A by any methods whatsoever, we can isolate the
contribution to individual planes by rewriting the damped rotation of Eq. (4.1):

M = A

(
∑

i

e−αi
{
cos (μi ) I i + sin (μi ) SI i

}
)

A−1 (4.3)

=
∑

i

e−αi

⎧
⎨

⎩cos (μi ) AI i A−1
︸ ︷︷ ︸

Hi

+ sin (μi ) ASI i A−1
︸ ︷︷ ︸

Bi

⎫
⎬

⎭

=
∑

i

e−αi
{
cos (μi ) Hi + sin (μi ) Bi

}
(4.4)

where I i is the identity restricted to the i th plane, for example here is I 3:

I 3 =

⎛

⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞

⎟⎟⎠. (4.5)

This trivial rearrangement of thematrix M in terms of A has surprising consequences.
But before we list them, here are a few properties of the matrices Hi and Bi . They
form orthogonal representations of the complex numbers which they inherit from I i

and Si = SI i which are respectively the identity and symplectic matrix S restricted
to the i th plane:

Hi H j = δi j H j (4.6)

Hi B j = B j Hi = δi j B j (4.7)

Bi B j = −δi j H j . (4.8)

The basic feature of this representation is its simple exponentiation properties:

M N =
∑

i

e−Nαi
{
cos (Nμi ) Hi + sin (Nμi ) Bi

}
. (4.9)
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This can be written in terms of a single Lie exponent:

M = exp

(
∑

i

−αi H i + μi Bi

)
. (4.10)

The reader notices that the matrices Hi multiply the damping decrements while the
Bi ’s are connected to the tunes. So in the symplectic case, the Lie representation
which is basically the pseudo-Hamiltonian as we will see in Sect. 4.1.3, does not
naturally involve the Hi ’s.

In one degree of freedom, where de Moivre is well known, H 1 reduces to the
identity in the symplectic case and B1 is made of the usual lattice functions:

M = cos (μ) H + sin (μ) B (4.11)

where

H =
(
1 0
0 1

)
and B =

(
α β

−γ −α

)
with B2 = −H. (4.12)

In many dimensions, in the symplectic case, the matrices Bi are still connected
to the invariants and the matrices Hi are redundant measures of coupling intimately
associated with dispersive quantities, for example η and ζ . Dispersive quantities
measure the position of (quasi-)fixed points as a function of (quasi-)constant initial
conditions.

4.1.3 Ripken Lattice Functions Representation: Invariants
and Moments

Now let me concentrate on the symplectic case. In the sympletic case, the damping
matrix Λ is identity. Furthermore, I can express A−1 in terms of A as shown in
Eq. (1.5).

I define two new matrices in each plane in terms of the matrix Bi :

Bi = SK i (4.13)

Bi = Ei S (4.14)

K i = SEi S†. (4.15)

The matrix K i is the quadratic form of the coupled Courant-Snyder invariant in
the i th plane. The matrix Ei connects moments to the invariants. But first I will
prove some trivial properties that K i and Ei must have if indeed they are connected
to invariants and moments. I first rewrite Bi using the symplectic condition Eq. (1.5):

http://dx.doi.org/10.1007/978-4-431-55803-3_1
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Bi = ASI i A−1 = −ASI i S A†S

= AI i A†S. (4.16)

It follows from Eq. (4.16) that K i is a symmetric matrix:

K i † = (−SBi
)†

= (−S AI i A†S
)† = −S† AI i A†S† = K i (since S† = −S). (4.17)

It follows trivially, looking at Eq. (4.15), that the moment matrix Ei is symmetric
because K i is symmetric.

4.1.3.1 The Quadratic Invariants

The uncertain reader can review the material in 1-d-f in Sect. 2.2.3; otherwise please
keep reading!

The connection between the matrix K a and the invariant are documented and
verified in the program of Appendix G. In the following code fragment, I display two
different ways to compute the quadratic invariants. Line (17) works in all instances,
linear and nonlinear. Line (18) works for the linear map executing harmonics oscil-
lations in 2,4 or 6 dimensions. In this program the variable nda is either 4 or 6.

do i=1,nda
expo=0
expo(2*i-1)=2

e(i)=1.d0.cmono.expo
expo=0
expo(2*i)=2

e(i)=e(i)+(1.d0.cmono.expo)
e(i)=e(i)*normal_form%a_t**(-1) ! (17)

enddo

do i=1,nda
write(mf,*)" ";
write(mf,*) " Invariant (qˆ2+pˆ2) o Aˆ(-1) in plane ",i;
write(mf,*)" ";

call print(e(i),mf,prec)
do j=1,2*nda
write(mf,’(6(5x,g12.5))’) Ka(j,1:6,i) ! (18)

enddo
enddo

Let me explain the linear theory. The “Courant-Snyder” or quadratic invariant in
the i th plane can be written as

εi (z) = za K i
abzb (summed over a, b). (4.18)

I now produce a proof. I start with the symplectic matrix M where I introduce a
pseudo-time t :

http://dx.doi.org/10.1007/978-4-431-55803-3_2
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z(t) = M(t)z = exp

(
t

∑

i

μi Bi

)
z. (4.19)

I then construct the invariant at time t and take its derivative. Hopefully, its time
derivative will be zero!

dεi

dt
= d

dt

(
za K i

abzb
)

=
(

d

dt
za

)
K i

abzb + za K i
ab

(
d

dt
zb

)

=
⎧
⎨

⎩
∑

j

μ j B j
ac

⎫
⎬

⎭ zc K i
abzb + za K i

ab

⎧
⎨

⎩
∑

j

μ j B j
bc

⎫
⎬

⎭ zc. (4.20)

The product of two B’s belonging to different planes vanishes. Therefore I can
simplify Eq. (4.20):

dεi

dt
= μi

{
Bi

aczc K i
abzb + za K i

ab Bi
bczc

}

= μi z
{

Bi †K i + K i Bi
}

z† = z
{(

SK i
)†

K i + K i SK i
}

z†

= z
{

K i S†K i + K i SK i
}

︸ ︷︷ ︸
=0 since S†=−S

z† = 0 (4.21)

Thus εi is indeed an invariant. Of course this invariant can be derived from the Lie
operator theory. In fact, the Lie map for the matrix M , which I denoteM following
Dragt as in Eq. (2.35) in Sect. 2.3.1, is just:

M = exp

(
: −1

2

∑

i=1,3

μi z
†K i z :

)
. (4.22)

From the Lie map definition, it is clear that its exponents, actually the three polynomials that
make it, are invariants. The reader can check that this is the Lie representation of the matrix
M by showing that

[μi

2
z†K i z, za

]
= μi

∑

b=1,6

Bi
abzb (4.23)

which is in agreement with Eq. (4.19) with t = 1.

http://dx.doi.org/10.1007/978-4-431-55803-3_2
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4.1.3.2 The Quadratic Moments

As for the case of the invariants, the 1-d-f material can be found in Sect. 2.2.4,
otherwise keep reading. The code fragment relevant to this calculation is part of the
program of Appendix G:

The idea is to perform a time average of the functions zi z j . As was explained in
Sect. 2.2.4, we express the moment in terms of the normalised variables znew:

〈
zi z j

〉 =
∑

a,b

Aia A jb
〈
znew

a znew
b

〉
. (4.24)

The average
〈
znew

a znew
b

〉
can be computed for the normalised variables

〈
znew

a znew
b

〉 = δab

〈
znew

a
2 + znew

a
2

2

〉
= 〈

Jp(a)

〉
, (4.25)

where I denote the variable conjugate to a by a and the plane of a or a by p(a). For
example, if a = 4 then a = 3 and p(3) = p(4) = 2. Using this notation, I substitute
Eq. (4.25) into Eq. (4.24):

〈
zi z j

〉 =
∑

p(a)=1,2,3

(
Aia A ja + Aia A ja

)
︸ ︷︷ ︸

E p(a)

i j

〈
Jp(a)

〉
. (4.26)

The next step consists in noticing that E p(a)

i j can be rewritten using the matrix I p(a),
the identity which restricts the summation to the plane p(a):

E p(a) = AI p(a) A†

= AI p(a)S A−1S† = B p(a)S†

= SK p(a)S†. (4.27)

Equation (4.27) completes the proof: the moments are connected to the invariants by
a similarity transformation involving S.

So we get the final result:

〈
zi z j

〉 = E1
i j 〈J1〉 + E2

i j 〈J2〉 + E3
i j 〈J3〉 . (4.28)

http://dx.doi.org/10.1007/978-4-431-55803-3_2
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4.1.4 De Moivre-Ripken H a Matrices in the Symplectic Case:
The Dispersions η and ζ

In the entire work of Ripken, the matrices H a (a = 1, 3) never appear. This accident
comes from the fact that, in a Hamiltonian treatment, they are “useless” and do not
appear naturally. When we look at the Lie exponent of Eq. (4.22), we see that it
contains only the Ba’s through the matrices K a . Only a non-symplectic map would
naturally involve the H a’s as confirmed by Eq. (4.10).

So we are left with a simple question, beside the introduction of a de Moivre
formula, do the H a’s have any particular meaning in the (quasi-)symplectic case?

The answer is that the H a reduce to dispersive quantities including the usual
dispersion η, but unlike the dispersion which is ill-defined in the presence of an
RF-cavity, the H a’s are always well defined!

First I will recall for the reader the usual definition of dispersion which will be
important in Sect. 4.2. In the absence of a cavity, the energy is a constant. Thus it
makes sense to talk about the closed orbit2 as a function of the energy. Particles with
different energies will undergo transverse oscillations around a different closed orbit.

Assuming that the “on-energy” particle has a closed orbit, i.e.,

m(xc, pxc, yc, pc︸ ︷︷ ︸
f

, 0, 0) = (xc, pxc, yc, pc, 0, τc). (4.29)

I can ask if the function f (δ) defined as

m ( f (δ), δ, 0) = ( f (δ), δ, τc(δ)) (4.30)

has a solution in the neighbourhood of δ = 0?The answer is always yes if the linear transverse
map for δ = 0 has tunes away from the integer. This is usually true in all accelerator designs
for rings. This is a consequence of the implicit function theorem in mathematics. Thus the
dispersion is a well defined mathematical object in the absence of a cavity.

In the example code PTC, the energy is the fifth variable, thus the linear dispersion
f = δη obeys the equation:

M

⎛

⎝
f
δ

0

⎞

⎠ =
⎛

⎝
N v 0
0 1 0
w α 1

⎞

⎠

︸ ︷︷ ︸
6×6 matrix

⎛

⎝
f
δ

0

⎞

⎠ =
⎛

⎝
f
δ

τ

⎞

⎠ . (4.31)

2The dispersive ζ of the Japanese trio, Ohmi, Hirata and Oide, cannot be deduced from a cavity-
less system because nothing depends on the time of arrival in the absence of longitudinal(temporal)
focussing. Thus the ζ functions can only emerge from an examination of the full three-dimensional
oscillator.
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Expanding Eq. (4.31) I get an equation for f :

N f + δv = f ⇒ f = δ(1 − N )−1v =⇒ η = (1 − N )−1v. (4.32)

The matrix M in Eq. (4.31) represents motion without an RF-cavity. Yet we know
that the concept of dispersion is used a lot in the design of circular accelerators with
longitudinal focussing present. Thus logic dictates two distinct possibilities:

1. Accelerators physicists use an ultimately irrelevant concept while designing their
machines.

2. The concept of dispersion retains in some adiabatic sense its meaning when the
cavities are turned on, that is to say, when time and energy start undergoing
harmonic oscillations.

I must assume that my colleagues, at least some of them, know what they are
doing and thus option 2 must be correct. Therefore I look at de Moivre’s formula for
M in Eq. (4.9) in the adiabatic limit: I take the limit ν3 � ν1, ν2. I then compute the
average position of a ray over a number of turns large compare to 1/ν1,2 but small
compared to 1/ν3:

z(N ) = M N z

=
∑

i=1,3

{
cos (N2πνi ) Hi + sin (N2πνi ) Bi

}
z

≈ H 3z i f
1

ν1,2
� N � 1

ν3
. (4.33)

Equation (4.33) gives the average position of a ray which is frozen in “time.” In my
code PTC, the energy variable is z5, thus I claim that the dispersion computed in
Eq. (4.32) should be very close to

fk = H 3
k5z5 ⇒ ηk = H 3

k5. (4.34)

Mathematically this adiabatic process can be viewed has an average over the
invariant tori corresponding to thefirst twoplanes. It can also be seen as a stroboscopic
average where one observes the variable z near a full cycle in the third plane which
is nothing more than the cosine Fourier transform. The reader may notice that these
two definitions of H 3, one mathematical and one more physical, apply equally well
to H 1 and H 2.

Looking at Eq. (4.33), we notice that they are five more dispersion vectors. In
particular, we have something called ζ ,

fk = H 3
k5z6 ⇒ ζk = H 3

k6 (4.35)

which is the dependence of the adiabatic closed orbit on the initial longitudinal
position or time.
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The dispersive quantity ζ has no equivalent in the framework of Eq. (4.31) for the
simple reason that in the absence of temporal focussing, absolutely nothing depends
on the time variable.

Nevertheless ζ cannot be neglected in approximate treatments where cavities are
present and Ripken lattice functions are re-expressed in terms of dispersion. This
was a fact first recognised by the Ohmi, Hirata and Oide in Ref. [2].

More precisely, any Ripken lattice function that couples the transverse plane with
the longitudinal, for example E3

15 = ∂〈z1z5〉
∂ I3

= ∂〈xδ〉
∂ I3

can be expressed in terms of the
longitudinal β, α and γ and the six dispersive vectors H 3

k1, H 3
k2, H 3

k3, H 3
k4, H 3

k5 = η

and H 3
k6 = ζ . Expressions which are correct only to leading order in the coupling

will involve only components of η and ζ . This is explicitly obvious in the treatment
of Ref. [2]. Here it depends on the fact that the generalised Ripken lattice functions
form a representation of the complex numbers.

In this book, I will illustrate this with a practical example I lifted from the work
of Erlichman et al. in Ref. [5]. They defined the crab crossing angle as

θ16 = 1

2
tan

(
2σ16

σ66 − σ11

)
. (4.36)

This can be immediately expressed in terms of the Ripken lattice functions:

Θ16 = 1

2
tan−1 (θ16) =

∑
a=1,3 Ea

16εa∑
a=1,3 Ea

66εa − Ea
11εa

= −
∑

a=1,3 K a
52εa∑

a=1,3 K a
55εa − K a

22εa
. (4.37)

In Eq. (4.37) I use the usual lattice function of Ripken. The K a are the coupled
Courant-Snyder invariants in the ath plane.

We can simplify this expression if the longitudinal emittance is small. First we
can keep terms which are leading order in the coupling. Using the explicit formula
of Eq. (4.26) for the moments, we see that a term like E2

16 is second-order in the
coupling because it involves three separate degrees of freedom. Furthermore E3

16 is
first-order and E3

66 is zeroth-order. Thus to leading order in the coupling, Eq. (4.37)
can be written as:

Θ16 = 1

2
tan−1 (θ16) = E3

16ε3 + E1
16ε1

E3
66ε3 − E1

11ε1
. (4.38)

We can simplify this further, as in Ref. [5], by assuming that the longitudinal emit-
tance is much bigger, in fact we often have ε3 � ε1 � ε2:

Θ16 = 1

2
tan−1 (θ16) = E3

16

E3
66

= − K 3
25

K 3
55

(4.39)



4.1 The Full Harmonically Sinking Phase Space 91

All the expressions above involve the usual Ripken lattice functions. Now we use
Eqs. (4.7) and (4.13) to relate K 3 to itself and H 3:

B3 = B3H 3 ⇒ STB3 = STB3H 3 ⇒ K 3 = K 3H 3. (4.40)

I use Eq. (4.40) on K 3
25(= K 3

52):

K 3
52 =

∑

i=1,6

K 3
5i H 3

i2

= K 3
51 H 3

12︸︷︷︸
0

+K 3
52H 3

22 + K 3
53H 3

32 + K 3
54H 3

42︸ ︷︷ ︸
second order coupling

+K 3
55H 3

52 + K 3
56H 3

62

K 3
52 ≈ 1

1 − H 3
22

{
K 3

55H 3
52 + K 3

56H 3
62

}

= K 3
55H 3

52 + K 3
56H 3

62 + (second−order). (4.41)

It is easy to show, in the symplectic case, that

H † = SH S† and B† = SBS (4.42)

from which one gets that

H 3
12 = 0 H 3

52 = −H 3
16 = −ζ1 H 3

62 = H 3
15 = η1. (4.43)

It then follows that

Θ16 = −K 3
55H 3

52 − K 3
56H 3

62

K 3
55

= ζ1 − K 3
56

K 3
55

η1 = ζ1 − α3

β3
η1. (4.44)

Equation (4.44) relates the approximate expression for the crab crossing angle in
terms of purely longitudinal lattice functions and the adiabatic (small ν3) coupling
functions η and ζ . Whether this is a good idea or not remains to be seen since it is
equally easy to compute the Ripken lattice function in Eq. (4.39).

Of course, I must repeat again that all the expressions here do not depend on
any particular parametrization of the canonical transformation A unlike the work
in Ref. [5] which depends heavily on the extension of Teng-Edwards introduced by
Ohmi, Hirata and Oide [2]. Here is the code fragment from Appendix H:

if(cas/=0) then
write(mf,’(a56)’) " Almost Exact Crab Angle ignoring transverse emittances "
write(mf,’((5x,g12.5))’) -Ka(5,2,3)/Ka(5,5,3)
write(mf,’(a56)’) " Approximate Crab Angle ignoring transverse emittances "
write(mf,’((5x,g12.5))’) Ha(1,6,3)-Ka(5,6,3)*Ha(1,5,3)/Ka(5,5,3)
endif
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4.1.5 Kinematic Invariants of Linacs Coming Out
of H i and Bi

Kinematic invariants are a function of the moments which are invariant under
any—I repeat any—symplectic matrix M . In the previous section, I discussed time
(ergodic) averages or equivalently averages of matched distributions. Thus my for-
mulae depend, even in the ergodic case, on the existence of deMoivre’s representation
and thus on the normal form.

Kinematics invariants do not dependent on anything beside the assumption that
the particles undergo linear symplectic motion. Themost famous kinematic invariant
is the so-called emittance in 1-d-f:

〈ε〉 = 2
√〈

x2
〉 〈

p2
〉 − 〈

xp
〉2
. (4.45)

Take any distribution, say 5 particles whose coordinates are decided by throws of
the dice, then evaluate the quantity 〈ε〉 in Eq. (4.45), then transform the coordinates
of the 5 particles by any linear symplectic map in 1-d-f: the value of 〈ε〉 will remain
constant!

It is clear that 5 particles randomly selected are not matched to the invariant ellipse
of any one-turn map. Since the invariance of Eq. (4.45) is general, it certainly applies
to the case of a distribution which sits on an ellipse. Therefore we ought to be able
to derive Eq. (4.45) in the case of a distribution matched to a one-turn matrix.

Plausibility Argument in 1-d-f for the kinetic invariant

The simplest pseudo-derivation uses the relationship between the moment matrix E
and the invariant matrix K :

〈ε〉 = K11
〈
x2

〉 + 2K12 〈xp〉 + K22
〈
p2

〉
. (4.46)

Remembering that

K = SE ST,

I can write the moments of Eq. (4.46) in terms of K ,

〈
x2

〉 = K22
〈ε〉
2

〈
p2

〉 = K11
〈ε〉
2

〈xp〉 = −K12
〈ε〉
2

(4.47)

which, if substituted in Eq. (4.46) gives

〈ε〉 = 2

〈ε〉
〈
x2〉 〈

p2〉 − 4

〈ε〉 〈xp〉2 + 2

〈ε〉
〈
x2〉 〈

p2〉

⇒ 〈ε〉2 = 4
〈
x2

〉 〈
p2

〉 − 4〈xp〉2 → Eq. (4.45). (4.48)
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The kinetic invariant in N-d-f

The slight of hand pulled for the 1-d-f case does not work beyond two dimensional
phase space. However I can use de Moivre’s matrices to pull out of our hat one class
of the general invariants of Dragt et al. [6]. I first write the following identity for a
beam matched to the Courant-Snyder invariants of M :

Σ = 1

2

∑

k

〈εk〉 Ek where Σi j = 〈
zi z j

〉
. (4.49)

I then multiply both sides by −S and use Eq. (4.15):

−ΣS = 1

2

∑

k

〈εk〉 Bk . (4.50)

I then square Eq. (4.50) and use the property that de Moivre matrices form “N”
orthogonal representations of the complex numbers:

(ΣS)2 = −1

22
∑

k

〈εk〉2H k . (4.51)

From the definition of the H k in Eq. (4.4) and the cyclic property of the trace, I can
rediscover Dragt’s I 2 invariant (see [6]):

T r (ΣS)2 = −1

22
∑

k

〈εk〉2 T r(H k)︸ ︷︷ ︸
=2

⇒ I 2 =
∑

k

〈εk〉2 = −2T r (ΣS)2. (4.52)

The result in three degrees of freedom is:

I 2 = 4
∑

i=1,3

〈
q2

i

〉 〈
p2

i

〉 − 〈qi pi 〉

+ 8 (〈q1q2〉 〈p1 p2〉 − 〈q1 p2〉 〈p1q2〉)
+ 8 (〈q1q3〉 〈p1 p3〉 − 〈q1 p3〉 〈p1q3〉)
+ 8 (〈q2q3〉 〈p2 p3〉 − 〈q2 p3〉 〈p2q3〉) . (4.53)

This invariant is tested in the code fragment from the program of Appendix G:

!!!!! Evaluation of the Kinetic Invariants !!!!!!
ray(1,1:6)= (/3,4,3,6,1,3/)
ray(2,1:6)= (/3,5,2,6,1,0/)
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ray(3,1:6)= (/2,4,3,6,1,1/)
ray(4,1:6)= (/3,5,3,6,1,2/)
ray(5,1:6)= (/2,3,5,8,1,0/)

mat=one_turn_map

do t=1,10

do k=1,5
ray(k,1:6)=matmul(mat,ray(k,1:6))

enddo

do i=1,6
do j=i,6
mom(i,j)=0.d0

do k=1,5
mom(i,j)=ray(k,i)*ray(k,j)/5+mom(i,j)

enddo
enddo
enddo

inv=0.D0

do i=1,3
inv=4*(mom(2*i-1, 2*i-1)*mom(2*i, 2*i)-mom(2*i-1, 2*i)**2)+inv
enddo
inv1=inv

inv=inv+8*(mom(1, 3)*mom(2, 4)-mom(1, 4)*mom(2, 3)) &
+8*(mom(1, 5)*mom(2, 6)-mom(1, 6)*mom(2, 5)) &
+8*(mom(3, 5)*mom(4, 6)-mom(3, 6)*mom(4, 5))

write(mf,’(a19,i2,a2,1x,g12.5,a18,1x,g12.5)’) &
" Invariant at turn ",t, " =",inv,’ 1-d-f invariant =’,inv1
enddo

Indeed, I chose five rays and applied the matrix mat for a total of 10 turns in 3
different cases: with radiation, without radiation, and finally, without radiation and
without cavity.

In the radiative case, the invariant slowly shrinks at a rate related to the damping
decrements. It is important to realise that the initial distribution is certainly not an
ellipse: I typed these rays by hitting my keyboard randomly!

There are two important points to make, one mathematical and one which is
physical.

Crucial remarks

1. Mathematically, I started with a map which can be put in normal form. From this,
I derived de Moivre matrices Hi and Bi from which the invariant of Eq. (4.52)
finally emerges. This invariant is a contraction of moments only: it does not
depend on the lattice functions. Therefore it is plausibly a kinematic invariant,
independent of themap M itself. But that is not proven here. A clever person could
fix my argument but it is simply better to read Ref. [6] to get the full picture.
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2. I am concerned with rings primarily in this book. The invariants of Eqs. (4.45) and
(4.52), as well as the myriad of invariants of Ref. [6] are best suited to the study
of single pass systems such as linacs. Even in a very linear ring, the presence
of a tiny amount of tune shift with amplitude will produce a large amount of
de-coherence that will effectively damp these kinematic invariants. So beware:
they emerge from our studies on rings, but are not necessarily useful in rings!

4.2 No Cavities: Jordan Normal Form

4.2.1 The Reasons for a No-Cavity Normal Form

In the absence of a cavity, the energy is constant: the variable z5 of the example code
PTC is constant. Mathematicians say that in such a case the phase space is “foliated”
by the variable z5. This word comes from the Latin foliatus that simply means leafy:
Western readers can imagine the French pastry mille-feuille3 which is made of alter-
nating layers of cream (crème pâtissière) and puff pastry (pâte feuilletée). Each layer
is independent and they are all stacked on top of each other.

As the reader can tell, I love geometrical pictures and, occasionally, like the great
Francis Ford Coppola, I do not mind throwing good food in my professional life.
Each leaf is a representation of the transverse phase space for a given δ = z5. Of
course, as you climb up or down in δ, the changes are continuous as we go from one
leaf to the other. Let me be honest: this is more like a terrine than a mille-feuille but
you get the point!

Now, why do we need to consider a frozen δ? There are two reasons: one physical
and onemathematical. There are somemachines, such as proton storage rings, where
protons just wander around without any longitudinal focussing. For such machines
δ is a constant and the system is a mille-feuille. Secondly, as I alluded in Sect. 4.1.4,
even in the presence of a cavity, the adiabatic motion of the longitudinal plane
preserves the importance and the meaning of quantities like the dispersion, which
are well defined only in the absence of a cavity. Therefore it makes sense to study the
“no-cavity” case even for electronmachineswhich are ultimately damped oscillators;
resulting formulae might be simpler for analytic understanding. This is the case of
the Sands radiation formalism.

The reader will see that I have a morbid fascination for the dispersion and the “Japanese” ζ

function as an adiabatic limit of the full three dimensional oscillator: this was the topic of
Refs. [7, 8] and it was covered in my book [9].

3Sometimes called Napoleon in the USA.
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How did I get interested in this topic? As I pointed out just below Eq. (4.32), accelerator
physicists who use dispersion in the presence of cavities are either insane or the concept has
some residual meaning in the presence of a cavity. If it does have a meaning, then we should
be able to extract it in the presence of cavities with or without radiation: this was explained
in Sect. 4.1.4.

The reader can again consult the program of Appendix G: the results are printed
in the file result_no_cavity.txt.

4.2.2 A Glance at the Nonlinear Jordan Normal Form

The normal form is similar to that of Eq. (1.7):

H = H(J1, J2, z5) where Jk = x2
k + p2

k

2
xk(t) = cos (ωk t) xk(0) + sin (ωk t) pk(0)

pk(t) = cos (ωk t) pk(0) − sin (ωk t) xk(0) (4.54)

ωk = ∂ H

∂ Jk
.

Equation (4.54) is an amplitude dependent rotation in two degrees of freedom foliated
by the variable z5 = δ. Of course the variable z5 is a canonical variable and thus we
can get the motion of the time z6 in the usual way:

z6(t) = z6(0) −
(

∂ H

∂z5

)
t. (4.55)

4.2.3 The Linear Part with No Cavity

The Jordan normal form is characterised by the presence of a “drift” in the temporal
plane.

M = AR A−1 (4.56)

R =
⎛

⎝
r1 0 0
0 r2 0
0 0 D

⎞

⎠ ri =
(

cos μi sin μi

− sin μi cos μi

)

D =
(

1 0
αs 1

)
(4.57)

http://dx.doi.org/10.1007/978-4-431-55803-3_1
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I repeat the discussion found near Eq. (4.31). The matrix A can be factorised into two
parts. First a part F which brings the map to the fixed point and then a transformation
T which turns the transverse part into two rotations. Thus, I can write A as:

A = FT . (4.58)

We can compute F by first computing the fixed point:

M

⎛

⎝
f
δ

0

⎞

⎠ =
⎛

⎝
N v 0
0 1 0
w α 1

⎞

⎠

︸ ︷︷ ︸
6×6 matrix

⎛

⎝
f
δ

0

⎞

⎠ =
⎛

⎝
f
δ

τ

⎞

⎠ . (4.59)

Expanding Eq. (4.31) I get an equation for f :

N f + δv = f ⇒ f = δ(1 − N )−1v =⇒ η = (1 − N )−1v. (4.60)

It is then possible to construct the transverse part of the transformation F :

zi = zi + ηiδ = zi + ηi z5 for i = 1, 4. (4.61)

Of course I insist in the Hamiltonian case that the map F be symplectic. If I check
the Poisson bracket between the time z6 and any of the transverse variables zi , then
I can easily see that the time z6 must depend on the transverse variables. The easiest
way to insure a symplectic map is to use a Lie operator for Eq. (4.61). In the linear
case, the answer is

F = exp

⎛

⎝: −z5
∑

i, j=1,4

ηi Si j z j :
⎞

⎠ . (4.62)

The map of Eq. (4.62), when acting on the transverse variables, reproduces
Eq. (4.61). Of course it also implies a change of the time variable z6:

z6 = F z6

= exp

⎛

⎝: −z5
∑

i, j=1,4

ηi Si j z j :
⎞

⎠ z6

= z6 −
∑

i, j=1,4

ηi Si j z j = z6 + η̃ · z. (4.63)
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I can compute the effect of F on the matrix M as represented by Eq. (4.59):

F−1M F =
⎛

⎝
I −η 0
0 1 0

−η̃ 0 1

⎞

⎠

⎛

⎝
N v 0
0 1 0
w α 1

⎞

⎠

⎛

⎝
I η 0
0 1 0
η̃ 0 1

⎞

⎠

=
⎛

⎝
N Nη − η + v 0
0 1 0

η̃ − η̃N + w (w − η̃N ) η + α − η̃v 1

⎞

⎠ (4.64)

=
⎛

⎝
N 0 0
0 1 0
0 αs 1

⎞

⎠ where αs = (w − η̃N ) η + α − η̃v.

The expression for the phase slip αs can be simplified:

Nη − η + v = 0 ⇒ αs = wη + α. (4.65)

InEqs. (4.64) and (4.65) I did not use the dot product notation because some “vectors”
are row matrices, w for example, and some are column objects such as η. Therefore
wη is really w · η if you think in terms of vectors.

The map F−1M F is the matrix around the z5-dependent closed orbit. On that
orbit, it takes a time T0 + αs z5 for a particle of differential energy z5 to go around
the machine. T0 is the total time around the closed orbit.

The rest of the normal form proceeds as before: the 4× 4 matrix N is normalised
using the techniques discussed in the previous sections, namely in Sect. 4.1.

The program of Appendix G contains the following code fragment:

if(cas==0) then
write(mf,’(a44)’) " Standard time slip without cavity"
write(mf,’((5x,g12.5))’) real(mc(6,5))
write(mf,’(a21)’) " Standard dispersion "
do i=1,6
write(mf,*) i, a(i,5)
enddo

!!!! Computation by "hand" of the time slip alpha_s
call c_full_canonise(normal_form%A_t,a_cs,a0=a0) ! (0)

mat=one_turn_map
f=a0 ! (1)

! not trusting f(6,1:4) from normal form
f(6,1:4)=0.0_dp
do i=1,4
do j=1,4
f(6,j)=f(6,j)-f(i,5)*S(i,j) ! (2)
enddo
enddo

m(6,1:4) = (mat(6,1:4)-matmul(f(6,1:4),mat(1:4,1:4))) ! (3a)
alpha_s=mat(6,5)
do i=1,4
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alpha_s = m(6,i)* f(i,5) - f(6,i)*mat(i,5) + alpha_s !(3b)
enddo
write(mf,*) " time slip alpha_s from computation and normal form"
write(mf,*) alpha_s,real(mc(6,5))

endif

At line (0), I factorise the full canonical transformation and extract the map a0
whose linear matrix is f at line (1).

At line (2), I extract the vector column f(1:4,5) which is just the variable η.
In the normal form package, η was computed by the inversion in Eq. (4.60).

The variable η̃ could be extracted as well as f(6,1:4), but I decide here to
check my algebra and actually use Eq. (4.63).

Lines (3a,b) are simply a direct evaluation of the time slip using the expression at
the end of Eq. (4.64). This is compared with the result of the normal form, the (6, 5)
coefficient of the normalised matrix. The agreement is perfect.

4.2.4 The Slip Factor and the Longitudinal Tune

In Sect. 4.1.4 I showed that de Moivre’s representation of a three dimensional oscil-
lator leads to an adiabatic definition of the dispersion function as well as the more
mysterious ζ function. The converse is also true: if we put a “weak” cavity in a ring,
we ought to be able to produce the longitudinal tune in terms of the dispersion and
the phase slip.

To get this result, I expand Eq. (3.82)

δ f = δ + V L

p0c
sin

(ω

c
τ

)

≈ δ + V Lω

p0c2
τ. (4.66)

To compute to leading order the longitudinal tune produced by a thin cavity, I first
act with the matrix of Eq. (4.59) and follow this with Eq. (4.66). Let us concentrate
on the longitudinal planes:

τ f = τ + αδ + w · z

δ f = δ + V Lω

p0c2
(τ + αδ + w · z) . (4.67)

The map of Eq. (4.67) is really a six dimensional map involving the transverse
variable through the product w · z. Suppose we assume that the motion in the trans-
verse plane happens at a much higher frequency than in the longitudinal plane, we
can then average z in the transverse phases. The answer for 〈z〉 is simply ηδ. Hence
upon averaging I can reduce Eq. (4.67) into a solely longitudinal map uncoupled
from the transverse plane.

http://dx.doi.org/10.1007/978-4-431-55803-3_3
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τ f = τ + (α + w · η)︸ ︷︷ ︸
αs

δ +

δ f = δ + V Lω

p0c2
(τ + αsδ)

⇓
(

τ f

δ f

)
=

(
1 + αs

V Lω
p0c2

V Lω
p0c2

αs 1

) (
τ

δ

)
. (4.68)

The tune can be extracted from this matrix by taking the trace:

cos (2πν) = 1 + αs
V Lω

2p0c2
⇒ ν ≈

(
V/

√|V |)
2πc

∣∣∣∣
Lωαs

p0

∣∣∣∣
1/2

. (4.69)

In Eq. (4.69) I selected a definition of the tune which can be negative but small
by introducing the sign of the voltage V . The phase slip is a global property of
the cavity-less ring; the longitudinal (or temporal) tune is a global property of a
ring with cavities. In the approximation where dispersion is meaningful, say a small
longitudinal tune, we expect that the phase slip should be the only thing that enters
in the tune computation (besides the parameters of the cavities), and this is what
happens.

For larger voltages, the tune will increase, and the approximation based on the
phase slip will deteriorate. In most rings, the cavities are located at points of small
dispersion in which case the approximation based on the phase slip can remain good
even for larger longitudinal tunes.

I can estimate the phase slip in the cases with a cavity (with or without radiation)
by multiplying the de Moivre matrix component B3

65 with sin(μ3). The agreement is
excellent and can be checked in the output file “result_no_cavity.txt” of the program
of Appendix G. Moreover I also compare the tune computed by Eq. (4.69) with the
exact tune obtained from the full six dimensional normal form.

The agreement for the tune is “beyond” excellent. Why is that? It is because the
cavity is thin and located at a point of small dispersion. For zero dispersion, the
expression of Eq. (4.69) would be exact for a thin cavity. The reader can move the
cavity near a bend in the lattice description of Appendix A. The results are still very
good but not perfect.4

In Sect. 3.3, I mentioned that the standard map is a good approximation of the
pendulum. There are two interesting levels of approximation:

1. The cavity map, even when there is coupling with the transverse, can be reduced
to the standard map. The phase slip, a global parameter of the cavity-free system,
is the only quantity5 which enters in the model.

4 If you do so, make sure for the sake of Chap. 8 that you keep a copy of the original lattice, markers
included.
5Nonlinear components of the phase slip may enter as well.

http://dx.doi.org/10.1007/978-4-431-55803-3_3
http://dx.doi.org/10.1007/978-4-431-55803-3_8
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2. The phase slip is the only thing entering precisely because the resulting syn-
chrotron tune is small. When it is small, only quantities which are averages of the
transverse plane enters in the physics. For example, we have seen in Sect. 4.1.4,
Eq. (4.44), that in leading order it is possible to express effects between the trans-
verse and longitudinal planes in terms of the adiabatic η-ζ and the plain uncoupled
longitudinal lattice functions.

In summary, in the small temporal tune limit, the motion in the longitudinal plane
is a pendulum. It affects the transverse plane, in leading order, through the adiabatic
η and ζ .

4.3 Normal Form for the “AC” Fluctuation of a Magnet
Property

In an accelerator it is always possible to imagine that some properties of a magnet
are changed slowly with time. In LEP at CERN, the electron machine which was in
the LHC tunnel, the size of the machine was so big as to be affected by the periodic
tidal effect of the Moon!

On a more serious basis, it is common to excite the beam by applying a periodic
change to a magnet; for example an alternating current to a dipole. Some work using
analytical normal forms has been done and published by Rogelio Tomàs [10] for
example. In his paper, Tomàs uses Lie methods to derive expressions for the effects
one should expect from an AC dipole.

I am not against analytical calculation and I did sprinkle them throughout this
book. But, let us remember that this book is based on the claim that the “code” rules.
Hence we must ask two questions in relation to the code:

1. Can the code simulate AC modulations of some ring property?
2. Can this be also part of a Taylor map extracted from the code?

The answer to the first question is a trivial “yes.” In fact one needs only tomodulate
the magnets during the tracking.

The second question is more tricky. We would like to be able to introduce the
amplitude of modulation as a parameter which can be part of the Taylor series and
thus part of the normalisation procedure. This does not follow trivially from our
obvious ability to change ring properties as a function of time. It is in a way, a
discussion of PTC, but in general it is a discussion of “how to avoid reading Tomàs’
paper” and trivially do his calculations within the code and the code alone.

It is best to state “right off the bat” that I will use a pseudo-time: a common
average time shared by the particles within a bunch that is related to an ideal or
fiducial distance along the ring. In the language of accelerator physicists, I state that
I will confuse s and t . Now this could be fixed, but fixes would be inside PTC, a
topic for another day…



102 4 Classification of Linear Normal Forms

4.3.1 Adding Pseudo Clocks to Phase Space

It is best to give a simple 1-d-f example to explain the idea. Let us assume that the
ring is made of two elements which are a drift and a thin quadrupole. I assume that
the quadrupole has a small ripple ΔkL :

q1(L) = q1(0) + L p1(0)

p1(L) = p1(0) − L {k + ΔkL} q1(L). (4.70)

The simple example of Eq. (4.70) represents a one-turn map. In general the form
of Δks is arbitrary. In such cases it is best to use tables to represent Δks for large
values of s, say 0 ≤ s ≤ N L where N is a large integer. These implementations
are useful during acceleration or ramping processes where various properties of the
lattice are changed dynamically including RF cavities, quadrupoles, bends, etc.

Long-term processes are not trivially amenable to normal form analysis although,
thanks to the adiabatic invariance of the actions, one can under certain circumstances
relate tracking results to theory.

Here I ammore modest: I want to submit the ring to a simple periodic modulation.
For example, I can construct a code in which the quadrupole kick represented byΔks

has a simple sinusoidal shape:

Δks = κ0 sin (ωs) . (4.71)

Besides brute force tracking, is there a way to bring the power of perturbation
theory to this problem without exiting the Code? In other words can we produce a
Taylor map that has the information of Eq. (4.71) and normalise it without additional
theory and effort? Another way to put it, and no offence to Dr. Tomàs, is there a way
to avoid reading his paper [10]? The answer is of course yes! Now, you are probably
bored to death, looking at the arms of the clock, and saying to yourself: “I have better
things to do with my time, I give up!”Well this is exactly what happened to me when
I was asked to scan Tomàs’ paper. I looked at the clock and suddenly realised that the
old clock on the wall was my solution. The “hand” marking the seconds shook me
and presented the solution: the modulation amplitude is the projection of the hand
of a rotating clock!

To be more precise, consider the following map, which is an extension of
Eq. (4.70):

q1(L) = q1(0) + L p1(0)

p1(L) = p1(0) − L {k + κ0q2(L)} q1(L)
(

q2(L)

p2(L)

)
=

(
cos (ωL) sin (ωL)

− sin (ωL) cos (ωL)

) (
q2(0)
p2(0)

)
. (4.72)
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If the reader iterates Eq. (4.72) with the initial condition (q2(0), p2(0)) = (0, 1),
then at some “time” nL , the value of the ripple will be:

ΔknL = κ0 sin (ωnL) . (4.73)

Equation (4.73) shows us that our little extension of phase space works: it produces
the right quadupolar ripple. It is evidently less powerful, simulation wise, than a table
of the ripples as a function of s. However, when acceptable to our physical needs,
it completely renders the paper of Tomàs useless6 as far as the “code” is concerned.
This was our goal. I will explain why in case that it is not self evident.

The original map of Eq. (4.70) is a 1-d-f map that is symplectic but not periodic.
The map of Eq. (4.72) is a 2-d-f non-symplectic periodic map.

The reader will see that the extended map is immediately normalisable. Since the
package in FPP handles non-symplectic maps, such as maps with radiation, it is able
to deal with this mildly nonsympletic system. To achieve this, I did complicate the
map by adding one dimension. And this is it!

4.3.2 A Simple Calculation with FPP

The reader will notice that I am pretty short on theory and immediately jump into an
example. The reasons for this are twofold:

1. I am emphasizing the code. The point here is that a simple extension of phase
space gives us immediate access to the normal form results.

2. Additionally, the extension of phase phase is a trivial rotation…There is not much
to say about it except in the case of the Jordan normal form of Sect. 4.2 where
things are a little subtle in the linear normalisation. This issue is addressed in
Sect. 4.3.4.

The simple example I took is also nonlinear despite the appearances. Indeed the
position variable q1 multiplies the clock variable q2 in Eq. (4.72).

Moreover, unless the clock resonates with the plane q1 − p1, the average effect
will be zero in first order perturbation theory. Therefore, no matter how one looks at
the example, it is a nonlinear example.

Nevertheless I will quote the analytical result for the tune shift to leading order in
the modulation. Notice that the amplitude in the clock space, i.e., the length of the
arms, is “one” and thus the strength of the modulation is carried by the quantity κ0:

Δμ = − (βκ0L)2

32

(
sin (2μ + ωL)

1 − cos (2μ + ωL)
+ sin (2μ − ωL)

1 − cos (2μ − ωL)

)
. (4.74)

6The paper of Tomàs is not useless, I am obviously exaggerating. The code is still controlled by
users who desire once in a while some analytic understanding! In fact in Sect. 5.3 I perform a
calculation which parallels Tomàs’ calculation apparently guilty myself of “uselessness.”

http://dx.doi.org/10.1007/978-4-431-55803-3_5
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This result will be derived in Sect. 5.3 as an example of a second order normal
form in two degrees of freedom. The calculation for the tune shift due to a sextupole
would be similar though a little more complicated.

The simple map of Eq. (4.72) can be immediately computed by any TPSA library
and analysed by a normal form package. This is done in the first part of the program
in Appendix I.

mu_x=acos(1.d0-Kq*L**2/2) ! (2a)
dmu=-2*(sin(2*mu_x+mu_mod)/(1-cos(2*mu_x+mu_mod)) & ! (2b)
+sin(2*mu_x-mu_mod)/(1-cos(2*mu_x-mu_mod)))*4*(-beta*k0*L/16)**2

write(mf,*);
write(mf,*) " Analytical tune in radians = ",mu_x
write(mf,*) " Analytical tune shift in radians = ",dmu
write(mf,*);

drift_map=1
quad_map=1

drift_map%v(1)=q(1)+L*q(2) ! (3) drift
drift_map%v(2)=q(2)
drift_map%v(3)=cos(mu_mod)*q(3) + sin(mu_mod)*q(4)
drift_map%v(4)=cos(mu_mod)*q(4) - sin(mu_mod)*q(3)

quad_map%v(1)=q(1)
quad_map%v(2)=q(2)-L*(Kq+k0*q(3))*q(1) ! (4) quadrupole

! Map of system is made
one_turn_map=quad_map*drift_map ! total map (5)

Here drift_map and quad_map are simple Taylor maps of type c_damap.
The array q(1:4) contains the four monomials z1, z2, z3 and z4. The last two
components of q, q(3) and q(4) are the hands of the clock.

On line (5), the total map is computed. It is then normalised on line (6) and the
tunes are printed on line (7, 8).

! Map is normalised
call c_normal(one_turn_map,normal_form) ! (6)
write(mf,*);
write(mf,*) " Result from the normal form algorithm for hardwired map ";
write(mf,*);

write(mf,*) " Normal form result for tune in radians = ", & ! (7)
-aimag(normal_form%ker%f(1)%v(1).sub.’1000’)

write(mf,*) " Normal form result for tune shift in radians = ", & ! (8)
-aimag(normal_form%ker%f(3)%v(1).sub.’1011’)

As expected, the result of line (8) agreeswith line (2b)which is the implementation
of Eq. (4.74). These results are found in file “result_with_modulation.txt”:

Analytical tune in radians = 3.16240943656276169E-002
Analytical tune shift in radians = 5.56450104233673491E-005

http://dx.doi.org/10.1007/978-4-431-55803-3_5
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Result from the normal form algorithm for hardwired map

Normal form result for tune in radians = 3.16240943656293585E-002
Normal form result for tune shift in radians = 5.56450104233705543E-005

4.3.3 The Way It Can Be Done in a Code: PTC

How do I extend the phase space in a code? We return to the definition of probe_8
in Sect. 4.4.3, but this time I show a little more:

type probe_8
type(real_8) x(6) ! polymorphic orbital ray
type(rf_phasor_8) ac ! modulation of magnet
real(dp) e_ij(6,6) ! envelope for stochastic radiation

...
end type probe_8

Of course there exists a similar object for real number tracking as I already men-
tionned in Sect. 4.4.3:

type probe
real(dp) x(6)
type(rf_phasor) ac
...

end type probe

The type rf_phasor and its polymorphic equivalent rf_phasor_8 contain all the
clock information. It suffices to show rf_phasor_8 since the real version is obtained
by replacing real_8 by the double precision real(dp):

type rf_phasor_8
type(real_8) x(2) ! The two hands of the clock
type(real_8) om ! the omega of the modulation
real(dp) t ! the pseudo-time

end type rf_phasor_8

Let us look at the example of Appendix I once more starting below line (8).
A lattice is created which consists of two elements: a drift L1 followed by a thin
quadrupole QF1.

! Same calculation from with PTC
! using the following little lattice
! Qf1 = QUADRUPOLE(" QF1 ",L=0.d0, K1= 0.01d0 ); L1 = drift("L1 ",0.1d0);
! ALS=L1+QF1;
call build_lattice_als(ALS,mis,exact=.false.,sl=.true.)

This “lattice” is set up to reproduce exactly themap of Sect. 4.3.2. Themodulation
amplitude is assigned to the code by reading a file called “AC_modulation.txt.” In
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my example, the file “AC_modulation.txt” is actually created in the main program
and read immediately after its creation as seen here:

!!!! AC_modulate.txt sets the magnet QF1 as a modulated magnet !!!!
call kanalnummer(mf1,file="AC_modulation.txt")
write(mf1,*) "select layout"
write(mf1,*) 1
write(mf1,*) " MODULATE"
write(mf1,*) " QF1"
write(mf1,*) "1.d0 0 0 !DC_ac,A_ac,theta_ac"
write(mf1,*) "1.d0 2 ! D_ac,n_ac "
write(mf1,*) "2 0.02d0 0 ! n d_bn(n) d_an(n) " ! (A)
write(mf1,*) "0 0 0 "
write(mf1,*) " return "
close(mf1)
call read_ptc_command77("AC_modulation.txt")

Line (A) contains the actual amplitude of the modulation: d_bn(2)=0.02d0.
As the object ray of type probe_8 propagates through the lattice, its pseudo-

time ray%t is advanced according to an ideal time corresponding to some fiducial
orbit. Actually this ideal time can be modified by the user/programmer: absolute
time, like physical models, is what Big Brother says it is! When the quadrupole
kick QF1 is encountered, a kick is performed which depends on the value of the
pseudo-time at that position and the frequency of the clock. To be more precise, in
the case of the example code PTC, the quantity d_bn(2)=0.02d0 is multiplied
with ray%ac%x(1) and added to the static quadrupole component bn(2) of QF1.

The initial hands of the clock, located in ray%ac%x(1:2), are set to be the
identity map in the third and fourth dimension. In fact, their initial values are printed
in line (F2) of Appendix I; the result is just:

Initial value of the clock ( in type probe_8)

AC INFORMATION: omega, pseudo-time, hands of the clock
7.7565922617131999
0.0000000000000000

Properties, NO = 3, NV = 4, INA = 48
*********************************************

1 1.000000000000000 0 0 1 0

Properties, NO = 3, NV = 4, INA = 49
*********************************************

1 1.000000000000000 0 0 0 1

Needless to say, the results of tracking a clock with our “code” agree to
machine precision with the simple map of Eq. (4.72) and are displayed in file
“result_with_modulation.txt.”
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4.3.4 A Linear Complication Due to the Case of Sect. 4.2

The discussion of this section is illustrated in the program of Appendix J which I
explain at the end of this section. The entire section explore the problems in the
linear normal form that results from joining the Jordan normal form of Sect. 4.2 with
magnet modulations.

With Taylor based numerical methods, the nonlinear algorithm is a universal meat
grinder, but the linear part needs special attention. This was obvious in the Jordan
normal form of Sect. 4.3.4 and it shows its ugly head again when we mix the Jordan
case with the non-symplectic clocks used in modulation.

In Sect. 4.2 I discussed the normal form used when the energy variable z5 = δ

is constant and the time-like variable z6 is computed in the Taylor map. The normal
form in this case is the so-called Jordan normal form. It is a product of two rotations
for the transverse plane and a drift-like map in the longitudinal plane. Thus, in the
presence of a single clock, the one-turn matrix M of Eq. (4.59) is

M =

⎛

⎜⎜⎜⎜⎝

N v 0 t d
0 1 0 0 0
w α 1 a b
0 0 0 cos (ωL) sin (ωL)

0 0 0 − sin (ωL) cos (ωL)

⎞

⎟⎟⎟⎟⎠

︸ ︷︷ ︸
8×8 matrix

. (4.75)

In Eq. (4.75), N is the 4 × 4 transverse matrix which is normalisable into two
rotations. v is a column vector of four components which is responsible for the
dispersion (see near Eq. (4.60)). The row vector w quantifies the dependence of time
on the transverse variables: it is related to v via the symplectic condition. t and d
are column vectors quantifying the effect of the modulation on the transverse phase
space. a and b are two entries describing the effect of the modulation on the time
variable z6.

In Eq. (4.75), the normal phase space variables are indexed from 1 to 6. The
hands of the modulated clock are at positions 7 and 8. It is mathematically and
algorithmically simpler to reorder the planes as follows:

M ′ =

⎛

⎜⎜⎜⎜⎝

N t d v 0
0 cos (ωL) sin (ωL) 0 0
0 − sin (ωL) cos (ωL) 0 0
0 0 0 1 0
w a b α 1

⎞

⎟⎟⎟⎟⎠

︸ ︷︷ ︸
8×8 matrix

. (4.76)
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In Eq. (4.76) the harmonic planes are indexed from 1 to 6. The Jordan drift-like
plane appears last in position 7 and 8. This temporary realignment is actually done
in the entrails of the normalising code FPP; it is a sensible thing to do.

As I explained before, the map can be normalised by the product A′ = F ′T ′
as in Eq. (4.58). The map F ′ brings M ′ to the energy dependent fixed point as in
Eq. (4.64):

F ′−1M ′F ′ =

⎛

⎜⎜⎜⎜⎝

N t d 0 0
0 cos (ωL) sin (ωL) 0 0
0 − sin (ωL) cos (ωL) 0 0
0 0 0 1 0
0 ã b̃ αs 1

⎞

⎟⎟⎟⎟⎠
. (4.77)

The symplectic condition applied to F ′ insures that the removal of w happens auto-
matically with the removal of v in Eq. (4.76). A matrix T ′ can be used to diagonalise
the 6× 6 “harmonic” block. However the time-modulation coupling entries ã and b̃
will not vanish automatically:

T ′−1F ′−1M ′F ′T ′ =

⎛

⎜⎜⎜⎜⎝

R 0 0 0 0
0 cos (ωL) sin (ωL) 0 0
0 − sin (ωL) cos (ωL) 0 0
0 0 0 1 0
0 ã b̃ αs 1

⎞

⎟⎟⎟⎟⎠

where R =

⎛

⎜⎜⎝

cos (μ1) sin (μ1) 0 0
− sin (μ1) cos (μ1) 0 0

0 0 cos (μ2) sin (μ2)

0 0 − sin (μ2) cos (μ2)

⎞

⎟⎟⎠ . (4.78)

To achieve complete normalisation, we must augment T ′ by a part whose sole
“non-symplectic purpose” is the removal of ã and b̃. As usual, it is easier to go into
the phasors basis as in

C ′ −1T ′−1F ′−1M ′F ′T ′C ′ =

⎛

⎜⎜⎜⎜⎝

Λ 0 0 0 0
0 exp (−ωLi) 0 0 0
0 0 exp (ωLi) 0 0
0 0 0 1 0
0 1

2 (̃a − i b̃) 1
2 (̃a + i b̃) αs 1

⎞

⎟⎟⎟⎟⎠

where Λ =

⎛

⎜⎜⎝

exp (−iμ1) 0 0 0
0 exp (iμ1) 0 0
0 0 exp (−iμ2) 0
0 0 0 exp (iμ2)

⎞

⎟⎟⎠ .

(4.79)
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In this basis, I apply a matrix S′ that will remove the offensive terms:

Λ′ = S′−1C ′ −1T ′−1F ′−1M ′F ′T ′C ′S′. (4.80)

The matrix S′ differs from the identity by only two terms:

S′
85 = ã − i b̃

exp (−iωL) − 1
and S′

86 = ã + i b̃

exp (iωL) − 1
. (4.81)

If I go back to the original indices, the equivalent matrix S has the following non-zero
coefficients:

S67 = S′
85 and S68 = S′

86 (4.82)

I can flesh out this discussion using the example program of Appendix J. Here is a
code fragment:

!!!! AC_modulate.txt sets the magnet QF1 as a modulated magnet !!!!
call kanalnummer(mf1,file="AC_modulation.txt")
write(mf1,*) "select layout"
write(mf1,*) 1
write(mf1,*) " MODULATE"
write(mf1,*) " BEND1"
write(mf1,*) "1.d0 0 0 !DC_ac,A_ac,theta_ac"
write(mf1,*) "1.d0 1 ! D_ac,n_ac "
write(mf1,*) "1 0.001d0 0 ! n d_bn(n) d_an(n) " ! (A)
write(mf1,*) "0 0 0 "
write(mf1,*) " return "
close(mf1)
call read_ptc_command77("AC_modulation.txt")

.

.

.

.
do_linear_ac_longitudinal=.false. ! (I)
call c_normal(one_turn_map,normal_form) ! (J1)
id=normal_form%a_t*from_phasor()
do_linear_ac_longitudinal=.true.
call c_normal(one_turn_map,normal_form) ! (J2)
normal_form%a_t=normal_form%a_t*from_phasor()

write(mfmap,*);write(mfmap,*);
write(mfmap,*) " Correct A (M=ARAˆ-1) from the algorithm for the code ";
write(mfmap,*);write(mfmap,*);

call print(normal_form%a_t,mfmap,prec)

diagonal=normal_form%a_t**(-1)*one_turn_map*normal_form%a_t ! (K1)

quasi_diagonal=id**(-1)*one_turn_map*id ! (K2)

g1=quasi_diagonal%v(6).sub.’00000010’ ! (L1)
g2=quasi_diagonal%v(6).sub.’00000001’ ! (L2)

al1=-g1/(1.d0-(quasi_diagonal%v(7).sub.’00000010’)) ! (L3)
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al2=-g2/(1.d0-(quasi_diagonal%v(8).sub.’00000001’)) ! (L4)

a_ac=1

a_ac%v(6)=a_ac%v(6)+(al1.cmono.’00000010’)+(al2.cmono.’00000001’) ! (L5)

The first thing to realise is that I modified the input from Sect. 4.3.3 from a
quadrupole modulation to a dipole modulation. Indeed in an ideal machine, as I
said in Sect. 4.3.2, the modulated quadrupole is a nonlinear problem in the clock
variables. Therefore the problems with the Jordan normal form will not appear. Here
line (A) induces a dipole component modulation on the magnet QF1:

The code PTC is equipped with a “pedagogical flag,” do_linear_ac_
longitudinal which is defaulted to true. At line (I) it is set to false and the
calculation of the matrix S is disabled, allowing us to do it in the main program.
This emasculated normal form is done at line (J1) while the correct normal form is
performed at (J2) for comparison.

Lines (L1,2,3,4) correspond to Eq. (4.81) except that the indices are those of
Eq. (4.82). As I said previously, in the package FPP, the temporary exchange of
planes shown in Eq. (4.76) is internally performed. The library FPP can handle an
arbitrary number of clocks however the example code PTC is limited to one clock—
one frequency of modulation—clearly not a fundamental restriction.

The results are printed in file maps.txt.

4.4 The Stochastic Normal Form: Radiation Theory

N.B. I will not delve into the analytical formulae connected with this section on
radiation. The interested reader is invited to look at standard references for example
Ref. [11], Part III, Chap. 8. Here we return to the code as the supreme arbiter of
truth and look at methods suited for the code.

The theory of so-called synchrotron integrals is an attempt to find the equilibrium
beam sizes in an electron machine. This effect can be easily understood as an “epic
combat” between two competing effects: classical radiation and stochastic photon
emission.

Under classical radiation an electron continuously emits a small amount of radia-
tion and thus loses energy. It regains the energy, on average and approximately, at the
cavity. On the closed orbit, it regains exactly the lost energy at the various cavities
located around the ring.

In the absence of radiation, particles go around and around. We know that in the
linear regime this motion can be normalised into three circles (tori) on which the
particle orbits with a given tune on each torus. When we turn on classical radiation,
does the closed orbit survive? The answer to this is contained in pure mathematics:
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the inverse function theorem. The fixed point, that is to say the closed orbit, continues
to exist for small finite amount of radiation. Therefore we can ask what happens to
the tunes: since the map is no longer symplectic, the tunes are allowed to wander
away from the unit circle. In stable accelerators, the tunes move inside the unit circle
and thus we have a sink.

In the absence of anything else, all particles should collapse on the closed orbit
and this is the end of the game. However, we have quantum mechanics: radiation is
emitted in quanta that is to say photons. Thus the classical case is only an average
behaviour. Therefore we can view the emission of radiation as a two “terms” process
over each step of integration of our tracking code:

dz5
ds

= r(z) + Δ(z)√
ds

. (4.83)

The first term r(z) produces classical radiation: it depends on all the phase space
variables and it is deterministic. The second term is a stochastic noise whose average
is zero but its variance is finite. Thus we have

〈Δ〉 = 0 and
〈
Δ2

〉 = 0. (4.84)

I will now describe, in the linear regime only, the type of calculation we can perform
to estimate the effect of Eq. (4.84) on a beam described by its quadratic moments.

4.4.1 The Stochastic Map of Moments

A beam around the closed orbit, in the linear regime, does not have any linear
moments: the average phase position 〈z〉 vanishes. In fact in the linear regime I
simply assume that 〈z〉 obeys the deterministic equation where radiation only enters
through the term r(z) of Eq. (4.83).

To proceed further, Imust compute the effect of the stochastic part over an arbitrary
integration step assuming that the map from some initial s = 0 to the present value
s is known and linear. Obviously this can be computed for any orbit including the
closed orbit precomputed with the deterministic term in the equation of motion.

When a photon is emitted, in the ultra relativistic limit, only the longitudinal
momentum is affected. Thus, if, z2 = x ′ = px and z4 = y′ = py , then only z5 is
changed (actually not always true, see comments below Eq. (4.87)). Therefore the
stochastic changes of the moment matrix Σi j = 〈

zi z j
〉
are given by

dΣi j = 0 except for dΣ55 = 〈
Δ2

〉
ds. (4.85)
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The stochastic effect is equivalent to a translation7 of themomentmatrixΣ at position
s. Let us see the effect of a single stochastic kick on the one-turnmap for the quadratic
moments:

Σ f = MsC
(
Σ s + ΔΣ s

)
MsC †

= M0C

⎛

⎝Σ0 + M0s−1
ΔΣ s M0s−1†

︸ ︷︷ ︸
ΔEs

⎞

⎠ M0C †

= M0C
(
Σ0 + ΔEs

)
M0C †

. (4.86)

From the structure of Eq. (4.86), I can deduce that the total map, summing up all the
stochastic kicks ΔEs , is the simple integral of Eq. (4.86).

Σ f = M0C
(
Σ0 + E0C

)
M0C †

where E0C =
∮ c

0
M0s−1

ΔΣ s M0s−1†
. (4.87)

In Eq. (4.87) it assumed that only the energy z5 is changed by the classical and the
quantum fluctuation. This is true if non canonical variables are used. In the example
code PTC, canonical variables are used. Therefore, during integration using my
polymorphic type, it is natural to extract the matrix M0s connecting initial canonical
variables to the canonical variables at position s. Without going into details, I will
simply say this: if one expresses the non-canonical set x ′ and y′ at s in terms of
the original canonical variables, then one can extract the proper matrix M0s which
makes formula (4.87) work in all cases.

4.4.2 The Normal Form of the Quadratic Moment Map

The “combat” between classical and quantum effects must lead to an equilibrium set
of moments. Like the gladiators Verus and Priscus, during the inaugural games at the
Coliseum, both emerge equal8 and victorious! Dropping unnecessary superscripts in
Eq. (4.87), the equilibrium moment matrix is given by

Σ f = M
(
Σ0 + E

)
M† ⇒ Σ∞ = M

(
Σ∞ + E

)
M†. (4.88)

Before I solve for the equilibrium moments using the elegance of our normal forms,
it is worth pointing out that the numbers can be obtained by raising the map of
Eq. (4.87) to a large power. Indeed if I assume that an arbitrary Σ can be written as
Σ = Σ∞ + ΔΣ , then it is easy to show that after n turns, the moments are

7Translation, like canonical and propaganda, is also a word we owe to the Church. For example,
one talks of the “translation” of the relics of St-Nicholas from Myra to Bari!
8Contigit hoc nullo nisi te sub principe, Caesar: cum duo pugnarent, uictor uterque fuit. From
Martial’s Liber de Spectaculis.
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Σn = Σ∞ + ΔΣn = Σ∞ + Mn ΔΣ M†n
. (4.89)

The equation for ΔΣ only involves the deterministic part. Since the eigenvalues of
M are below the unit circle, ΔΣn tends towards zero as the number of iterations
increases.

Now I will perform the calculation forΣ∞ using the tools of normal form. I apply
the normal form of Eq. (4.2) and proceed further, as in Eq. (2.53), to completely
diagonalise M using phasors.

Λ = B−1M B (4.90)

⇓ for i = 1, 3

Λ2i−1 2i−1 = exp (−αi − iμi )

Λ2i 2i = exp (−αi + iμi ) .

The matrix B = C A is the product of the phasors’ matrix C which diagonalises a
rotation and the matrix A which turns M into a dilation: a rotation which shrinks
(see Eq. (4.2)). I then apply B on Eq. (4.88):

B−1Σ∞ B†−1 = B−1M B
(
B−1Σ∞ B−1† + B−1E B−1†

)
B†M†B†−1

σ∞ = Λ
(
σ∞ + e

)
Λ. (4.91)

Equation (4.91) is diagonal; I can solve it for each moment separately:

σ∞
i j = Λi i

(
σ∞

i j + ei j
)
Λ j j ⇒ σ∞

i j = ei j

1 − Λi iΛ j j
. (4.92)

The beam sizes in the original space are regained by a simple application of the
matrix B:

Σ∞ = Bσ∞ B†. (4.93)

It is worthwhile to examine three very special denominators in Eq. (4.92) in the limit
of small damping decrements. They dominate because they produce huge contribu-
tions to the equilibrium moments.

1 − Λ2k−1 2k−1Λ2k 2k = 1 − exp (−αk − iμk) exp (−αk + iμk)

≈ 2αk + O(α2
k ). (4.94)

FromEq. (4.94) I deduce that the equilibriumvalues for these three special phasors
are approximately:

σ∞
2k−1 2k = e2k−1 2k

1 − exp (−2αk)
≈ e2k−1 2k

2αk
k = 1, 2, 3. (4.95)

http://dx.doi.org/10.1007/978-4-431-55803-3_2
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The three quantities
σ∞
2k−1 2k

2 are the so-called equilibrium emittances. The equilibrium
beam sizes can be computed by inserting the emittances of Eq. (4.95) into Eq. (4.26),
remembering that 〈Jk〉 = σ∞

2k−1 2k/2.

The theory presented here is an exact theory for the quadratic moments of a linear map. The
computation of a stochastic shift of the moments, the matrix E of Eq. (4.88), is necessary
for the computation of the equilibrium moments. However, when the damping decrements
αk ’s are small, as they are in a real accelerator, the matrix E is mostly made of three terms,
the diagonal terms e2k−1 2k of Eq. (4.95). These three terms are, to leading order in αk , the
fluctuation of the symplectic quadratic invariants: the so-called “H” functions.

The theory based directly on the fluctuation of these three quadratic invariants is due to
Chao [3]. On the other hand, the most common theory shown to accelerator physicists is due
to Sands which, in addition to small damping, assumes a small coupling to the longitudinal
plane or, equivalently, a small longitudinal tune. (See Ref. [11] Eqs. (8.52) and (8.53).)

Sands’ theory is equivalent to Chao’s if one uses the lattice functions of the multidimen-
sional de Moivre formulae of Sect. 4.1.2. In particular this requires a careful definition of
the dispersion; one must use a slight modification but physicially sensible modification of
Eq. (4.34), namely ηi = 〈zi 〉 / 〈z5〉 = H3

i5/H3
55. See Ref. [8] if you are interested in the

connection between Sands’ and Chao’s theories of radiation integrals.

4.4.3 Numerical Example

I will now examine the program radiation_map of Appendix H, again based on
the code PTC. This example loops over two cases represented by the variables cas
=1,2. The case cas=1, a plain “no radiation” situation, will give us the symplectic
deMoivre matrices which enter in a Chao-like calculation where only the emittances
of Eq. (4.95) are used. Then, with cas=2, the program will compute the fluctuation
matrix E and find the equilibrium beam sizes as well as the equilibrium emittances
of Chao.

The numerical calculation requires the ability to track a more complex object: the
ray and the stochastic kick E of Eq. (4.87) from any two points in the ring. As I
stated in Sect. 1.7, I would explain new propagata, beyond phase space rays when
necessary. Well the need arose here!

In PTC, there is an object called a probe_8 which contains the polymorphic rays,
the stochastic matrix E and other things of no present relevance (hidden under the
ellipsis).

type probe_8
type(real_8) x(6) ! polymorphic orbital ray
real(dp) e_ij(6,6) ! envelope for stochastic radiation
...

end type probe_8

The reader will remember that my polymorphic type can change into a Taylor
series and this produces Taylor approximations of the ray. Since the stochastic

http://dx.doi.org/10.1007/978-4-431-55803-3_1
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moment calculation requires a matrix M for the rays, I need to track my polymorphs.
There is also a type probe which in the present example does not add anything to
the ray. In fact it contains the phase space ray as x(6) and deals only with classical
radiation.

type probe
real(dp) x(6)
...

end type probe

The code in Appendix H looks very much like a code which propagates a simple
phase space ray:

ray_closed=closed_orbit ! (3)
id=1;
! ray= closed orbit + identity map
ray=ray_closed+id; ! (4)

call propagate(als,RAY,state,fibre1=pos) ! (5)

! Six polymorphs and the fluctuationsare E_ij
! are promoted to Taylor maps

one_turn_map=ray ! (6a)
one_turn_map=one_turn_map.sub.1 ! (6b)

if(cas==2) then
write(mf,*) " "; write(mf,*) " The linear map";
call print(one_turn_map,mf,prec) ! (7)

endif

call c_normal(one_turn_map,normal_form) ! (8)

The differences reside in the ray_closed and ray which are of type probe
and probe_8 respectively. These “containers” allow the code to extend the “size” of
phase space to include objects such as the fluctuation matrix E . They also include
magnet modulation and spin. These are hidden now under the ellipsis “…”.

At line (4), the probe ray is ready to be propagated. This is done in the normal
fashion explained in previous examples: line (5). Finally, the output of the tracking,
namely 6 polynomials for the ray and the 36 fluctuations9 stored in ray%E_ij are
transferred to an object of type c_damap that can be normalised.

As I said at the beginning of this section, for the value cas = 1, I compute the
one-turn map in the presence of a cavity but in the absence of radiation. The purpose
is to get de Moivre’s matrices of Eqs. (4.13), (4.14) and (4.15): lines (13a, b, c, d).

if(cas==1) then
!!!!!!! Lattice functions !!!!!!!
!! coefficient of invariant !!

936 fluctuations but only 21 independent ones because
〈
zi z j

〉 = 〈
z j zi

〉
.
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do i=1,c_%nd
Ba(1:6,1:6,i)=matmul(matmul(a,Sa(1:6,1:6,i)),ai) ! (13a)
Ha(1:6,1:6,i)=matmul(matmul(a,Ia(1:6,1:6,i)),ai) ! (13b)
Ka(1:6,1:6,i)=-matmul(S,Ba(1:6,1:6,i)) ! (13c)
Ea(1:6,1:6,i)=-matmul(Ba(1:6,1:6,i),S) ! (13d)

enddo

endif

These will be used to compare the approximate synchrotron integrals of Chao with
the exact moment theory that uses the full fluctuation matrix E .

For cas=2, classical radiation is turned on, i.e., the function r(z) of Eq. (4.83)
is present in the code. Moreover the effect of the stochastic kick Δ(z) of Eq. (4.83)
is computed via Eq. (4.87). The resulting map is printed in file result_with_
stochastic_radiation.txt through line (7).

4.4.3.1 Normalisation of the One-Turn Quadratic Stochastic Map

This is done at line (8). The result is a diagonal form for M and the calculation of the
equilibrium moments. The moments are first put into phasors’ basis and Eq. (4.92)
is solved. The result is displayed using line (14).

write(mf,’(16X,a50)’) " Equilibrium moments in Phasors Basis "
do i=1,6
do j=i,6
if(abs(normal_form%s_ijr(i,j))>1.d-20) then
write(mf,fmd) " Phasors -> ","<x_",i," x_",j,"> = ", & ! (14)

c_clean(normal_form%s_ijr(i,j),1.d-20)
endif
enddo
enddo

Here I called a function c_cleanwhose purpose is to remove parasitic numbers
in the real or imaginary part of the results that might be smaller, norm wise, than
10−20. It is interesting to display the results from the output file when errors are
absent from the lattice.

Equilibrium moments in Phasors Basis
Phasors -> <x_1 x_1> = -0.12186203415D-13 -0.79027734122D-14
Phasors -> <x_1 x_2> = 0.75935118057D-08 0.00000000000D+00
Phasors -> <x_1 x_5> = -0.25174428585D-12 -0.91374266132D-12
Phasors -> <x_1 x_6> = -0.87781801866D-12 -0.33899987271D-12
Phasors -> <x_2 x_2> = -0.12186203415D-13 0.79027734122D-14
Phasors -> <x_2 x_5> = -0.87781801866D-12 0.33899987271D-12
Phasors -> <x_2 x_6> = -0.25174428585D-12 0.91374266132D-12
Phasors -> <x_5 x_5> = -0.46195527875D-08 0.34258629143D-08
Phasors -> <x_5 x_6> = 0.59332086927D-05 0.00000000000D+00
Phasors -> <x_6 x_6> = -0.46195527875D-08 -0.34258629143D-08
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The first important result, at least if you are an accelerator physicist, is the absence
of verticalmoments. The example code PTC implements the simplest stochastic kick:
the photons are emitted exactly in the direction of propagation. In a planar lattice, all
the photons are in the horizontal plane and therefore there are no moments involving
y or py , that is to say, the third and fourth variables of phase space.

There are three moments that do not have any imaginary parts: 〈z1z2〉, 〈z3z4〉
and 〈z5z6〉. These are the Chao equilibrium emittances of Eq. (4.95). As we will
see through our example, owing to the small damping decrements, they are usually
sufficient for the computation of equilibrium moments.

The main advantage of tracking the full stochastic kick E is ease and conceptual
simplicity in a code. The code computes maps which are then normalised. If one
implements the Chao synchrotron integrals or worse, the Sands integrals, then the
procedure is internally more complex.

TheChao integrals, and particularly the Sands integrals, are useful for their analyt-
ical simplicity. Sands integrals can be written in terms of cavity-less lattice functions
which is a conceptual simplification for the accelerator designer.

4.4.3.2 Comparing Chao with the Exact Computation

To compare Chao with an exact calculation, I first extract the Chao emittances,
more precisely the average action which is half the emittance. This is done at lines
(15a, b, c) of the following code fragment:

emi(1)=real(normal_form%s_ijr(1,2))/2 ! (15a)
emi(2)=real(normal_form%s_ijr(3,4))/2 ! (15b)
emi(3)=real(normal_form%s_ijr(5,6))/2 ! (15c)

write(mf,’(16X,a54)’) " Exact Chao (Exact-Chao)/Exact"
do i=1,6
do j=1,6
xij=0.d0
do k=1,3
xij= Ea(i,j,k)*emi(k) + xij ! (16)

enddo
if(abs(normal_form%s_ij0(i,j))>1.e-15_dp) then
write(mf,fmd1) "<x_",i," x_",j,"> = ", real(normal_form%s_ij0(i,j)), &

xij ,abs(100*(real(normal_form%s_ij0(i,j))-xij)/ &
real(normal_form%s_ij0(i,j)))," %"

endif
enddo
enddo

The matrix Ea(i,j,k) is the moment matrix Ek
i j of Eq. (4.26). The sum over

the three planes is performed at line (16) in the code. The emittances of Eq. (4.95) are
substituted into Eq. (4.26). The reader can check on his own that Eq. (4.93) leads to
Eq. (4.26) when the equilibrium moments σ∞

i j are such that only the three moments
of Eq. (4.95) are non-zero.
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The exact result is obtained using Eq. (4.93): the equilibrium phasors are trans-
formed into the usual phase space variables. The results of these two calculations are
printed and compared in the output file.

Exact Chao (Exact-Chao)/Exact
<x_1 x_1> = 0.58786612370D-08 0.58846120372D-08 0.101 %
<x_1 x_2> = 0.11190916503D-07 0.11205380039D-07 0.129 %
<x_1 x_5> = 0.34869597207D-07 0.34939089854D-07 0.199 %
<x_1 x_6> = -0.50998666908D-08 -0.51105996231D-08 0.210 %
<x_2 x_1> = 0.11190916503D-07 0.11205380039D-07 0.129 %
<x_2 x_2> = 0.27378434788D-07 0.27412733220D-07 0.125 %
<x_2 x_5> = 0.84803999222D-07 0.84976915933D-07 0.204 %
<x_2 x_6> = -0.13015660559D-07 -0.13040794262D-07 0.193 %
<x_5 x_1> = 0.34869597207D-07 0.34939089854D-07 0.199 %
<x_5 x_2> = 0.84803999222D-07 0.84976915933D-07 0.204 %
<x_5 x_5> = 0.44053599838D-06 0.44143819880D-06 0.205 %
<x_5 x_6> = -0.67544437716D-07 -0.67682428321D-07 0.204 %
<x_6 x_1> = -0.50998666908D-08 -0.51105996231D-08 0.210 %
<x_6 x_2> = -0.13015660559D-07 -0.13040794262D-07 0.193 %
<x_6 x_5> = -0.67544437716D-07 -0.67682428321D-07 0.204 %
<x_6 x_6> = 0.19987734916D-04 0.19946945340D-04 0.204 %

The agreement between the exact results and the Chao calculation, based on the
three emittances, is remarkable. The Chao calculation can only brake down if the
damping decrements are large compared to the distance from the linear resonances.
This is very unlikely since linear resonances are avoided like the plague.

The example code of Appendix H also computes the crab crossing angle using
various formulae. Here is the actual code fragment:

sij(1)=emi(1)*Ea(1,6,1)+emi(2)*Ea(1,6,2)+emi(3)*Ea(1,6,3) ! (17a)
sij(2)=emi(1)*Ea(6,6,1)+emi(2)*Ea(6,6,2)+emi(3)*Ea(6,6,3) ! (17b)
sij(3)=emi(1)*Ea(1,1,1)+emi(2)*Ea(1,1,2)+emi(3)*Ea(1,1,3) ! (17c)

write(mf,*)
write(mf,’(a56)’) " Exact Crab Angle with beam envelope "
write(mf,’((5x,D18.11))’) real(normal_form%s_ij0(1,6)) &

/(real(normal_form%s_ij0(6,6))-real(normal_form%s_ij0(1,1))) ! (18)
write(mf,’(a25)’) " Chao Exact Crab Angle "
write(mf,’((5x,D18.11))’) sij(1)/(sij(2)-sij(3)) ! (19)
write(mf,’(a56)’) " Almost Exact Crab Angle ignoring transverse emittances "
write(mf,’((5x,D18.11))’) -Ka(5,2,3)/(Ka(5,5,3)-Ka(2,2,3)) ! (20)
write(mf,’(a56)’) " Approximate Crab Angle ignoring transverse emittances "
write(mf,’((5x,D18.11))’) Ha(1,6,3)-Ka(5,6,3)*Ha(1,5,3)/Ka(5,5,3) ! (21)

Lines (18)–(21) are in order of “degrading exactness.” First line (18) is the exact
linear theory of Eqs. (4.92) and (4.93). The next line, line (19), uses the three Chao
emittances of Eq. (4.95) to compute the relevant beam sizes at lines (17a, b, c). It is
a very accurate theory which normally requires a “Courant-Snyder” loop within the
code as does Sands theory. Here I simply extract the Chao emittances from the 21
equilibrium moments.
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The next two lines are the crab angles neglecting the contribution from the trans-
verse emittances: line (20) uses the exact lattice functions. Line (21) is a formula
derived by Erlichman et al. [5]. It can be derived easily using de Moivre’s formula
as shown at Eq. (4.44).

4.4.3.3 The Map at Infinity

Perhaps the simplest property of the map for the stochastic moments is revealed in
Eq. (4.89): the map at infinity is the null matrix M = 0 and the stochastic kick is
Ei j = Σ∞

i j .
I can check this easily using the map concatenation as shown in the following

code fragment

write(mf,*);
write(mf,*) "!!! Raising the maps with moments to the power 2**100 !!!"

do i=1,100
one_turn_map=one_turn_map*one_turn_map ! (22a)

enddo

call print(one_turn_map,mf) ! (22b)

endif

The result is printed at line (22b). The orbital map is the null map and the moment
kicks are the equilibrium moments as computed by the normal form. This confirms
that any initial distribution will collapse to the equilibrium distribution after an “infi-
nite” number of turns.
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Chapter 5
Nonlinear Normal Forms

Abstract I describe in some details how a nonlinear normal form is implemented
in a library like my own FPP. I also discuss the first departure from the harmonic
normal form: the one-resonance normal form. A very simple magnet modulation is
treated theoretically. I leave accelerator physics with the introduction of a map which
displays a limit cycle which breaks into what looks like a strange attractor.

Keywords Nonlinearities · Magnet modulations · Isolated resonances · Limit
cycles

5.1 What Do I Mean by Nonlinear?

The word nonlinear can apply to two things: nonlinear in the parameters or nonlinear
in phase space. The algorithm that is implemented in the code, namely inFPP, does not
discriminate between the two “nonlinearities.” However the issues of convergence
or even existence are very much affected by the nature of the nonlinearity.

For example, Eq. (5.1) displays an approximate Hamiltonian in 2 degrees of
freedom that is often used to describe an accelerator in standard textbooks and is
responsible for the false belief in the existence of “linear elements”:

H = p2
x + p2

y

2 (1 + δ)
+ k (s)

x2 − y2

2
+
(

b1 − 1

ρs

)
x + b1

2ρs
x2 − xδ

2ρs
. (5.1)

Usually, this Hamiltonian represents the motion on the design orbit and hence b1 =
1
ρs
. I can rewrite Eq. (5.1) in terms of the dummy variable z that correspounds to the

phase space vector in the code PTC and set b1 to 1
ρs

for simplicity:

H = z22 + z24
2 (1 + z5)

+ k (s)
z21 − z23

2
+ 1

2ρ2
s

z21 − z1z5
2ρs

. (5.2)

In this Hamiltonian, the fifth variable, z5 = δ, is a parameter because there is
no temporal (longitudinal) focusing and I am not interested in the time of flight.
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I can imagine performing a normal form on the one-turn map or equivalently on the
Hamiltonian. This normal form would be a δ dependent linear normal form and,
to all orders, can be made to obey the Courant-Snyder condition. The canonical
transformation As such Rs = A−1

s ◦ Ms ◦ As (dropping the position label s) is given
by:

A = F ◦ A1 (5.3)

where

F :
z1 = z1 + η1 (z5)
z2 = z2 + η2 (z5)
z3 = z4
z4 = z4

(5.4)

and

A1 :
z1 = √

βx (z5) z1
z2 = −αx (z5) /

√
βx (z5) z1 + z2/

√
βx (z5)

z3 = √
βy (z5) z3

z4 = −αy (z5) /
√

βy (z5)z3 + z4/
√

βy (z5).

(5.5)

If Eq. (5.5) is applied to Eq. (5.2), one gets:

K = z21 + z22
2βx (z5)

+ z23 + z24
2βy (z5)

. (5.6)

The normalised one-turn map is simply a rotation of angles μx,y = ∮ C
0

1
βx,y(z5)

ds in
the horizontal and vertical planes. That is an exact result.

In the code, the normalisation is performed numerically. If a global order N0 is
specified, say N0 = 3, then all the terms depending on the parameter z5 will be
expanded to order N0 = 3. Is this a convergent series? The answer is yes! The maps
M , F and A1 are all convergent series in z5.

The radius of convergence might be less than infinity, but the series will converge
within a finite domain. Actually the series will diverge at z5 = 1 even though tra-
jectories and stable maps for values of δ > 1 might exist and are computable by the
code. This is one of the reasons I consider the integrator to be the ultimate arbiter of
“truth” in an accelerator rather than a code based on Taylor series expansions.

What about nonlinear Hamiltonians? For example, we can consider the map dis-
cussed in Sect. 3.3, the cavity map or standard map. It is displayed in the code of
Appendix F lines (2a, b, c):

http://dx.doi.org/10.1007/978-4-431-55803-3_3
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(z1, z2) −→ (z1, z2)

zt
1 = z1 + dt

2
z2

z2 = zt
1 − 2dt(2π f )2 cos

(
zt
1

2

)
sin

(
zt
1

2

)
(5.7)

z1 = zt
1 + dt

2
z2.

For infinitesimally small dt , the standard map of Eq. (5.7) is just the pendulum.
This system is nonlinear in the phase space vector z = (z1, z2).What about the normal
form? Although the map itself can be represented by a convergent Taylor series, it
is not true for the normal form because a normal form precludes the existence of
islands and chaos. The standard map produces islands and chaos. Therefore we can
say only a few things:

1. In the case of the pendulum, dt → 0, the nonlinear normal form may converge
to the separatrix of the pendulum.

2. For finite but small dt , the normal form appears to be convergent but is in reality
an asymptotic series. If the order N0 is pushed too high, the normal form will
start to “misbehave.” This is very much the case of a mild accelerator. This is
a consequence of KAM theory: only the invariants associated to a fractal set of
tunes exist. Thus the normal form transformation A, which implies a continuous
family of invariants, cannot exist.

3. For large values of dt , low order islands appear and the Taylor based normal
form is complete nonsense beyond these islands. This situation is also common
in accelerators.

4. For yet larger dt , the standard map is completely chaotic. All hell breaks loose
and any normal form is a totally nonsensical representation of the original map.

I have summarize the basic outcomes of normal forms. Linear maps produce
normal forms that are convergent power series in the parameters. Truly nonlinear
maps usually or generically give rise to asymptotic series or worse. Now let us
look at our catalogue of examples following more or less the linear classification of
Chap.4.

5.2 The (Damped) Pseudo-Harmonic Oscillator Case

The difference between the 1-d-f case of Sect. 3.3.2 and the most general case of
this section is really just a matter of indices. Therefore we encourage the serious
reader to master fully Sect. 3.3.2 and, while at it, all of Chap.3. The present section
is mechanically very similar. From Eq. (3.87) to Eq. (3.92), there are no differences
besides the fact that the linear part might now be a damped oscillator. As before I
write the normal form as in Eq. (3.92)
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http://dx.doi.org/10.1007/978-4-431-55803-3_3
http://dx.doi.org/10.1007/978-4-431-55803-3_3
http://dx.doi.org/10.1007/978-4-431-55803-3_3
http://dx.doi.org/10.1007/978-4-431-55803-3_3
http://dx.doi.org/10.1007/978-4-431-55803-3_3
http://dx.doi.org/10.1007/978-4-431-55803-3_3
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ρn = exp (T1 · ∇) · · · exp (Tn · ∇) I, (5.8)

but we now have:

T1 · ∇ =

⎛

⎜⎜⎜⎜⎜⎜⎝

(−iμ0;1 − α1
)
ϕ1+(

iμ0;1 − α1
)
ϕ1−

.

.

.(
iμ0;N − αN

)
ϕN+

⎞

⎟⎟⎟⎟⎟⎟⎠
· ∇

=
∑

i=1,N

(−iμ0;i − αi
)
ϕi+

∂

∂ϕi+
+ (

iμ0;i − αi
)
ϕi−

∂

∂ϕi−.
(5.9)

The vector field of Eq. (5.9) reproduces the matrix I discussed in the section on the
de Moivre’s representation (Sect. 4.1).

Everything proceeds as before until the reader hits Eq. (3.102). This equation now
contains N phasors:

Fa
n+1 =

∑

m

Fa
n+1;mϕ

m1
1+ϕ

m2
1− · · ·ϕm2N−1

N+ ϕ
m2N
N− (5.10)

with Fn+1 = (
F1

n+1, F2
n+1, · · · , F2N

n+1

)
.

Once more I can simplify the vector field of the map into a rotation:

∑

k=1,N

∣∣m2k−1 − m2k + (−1)aδak
∣∣ �= 0

↓

Fa
n+1;m = Ga

n+1;m
1 − exp

(∑
k=1,N

{
iμ0;k

(
m2k−1 − m2k + (−1)aδak

)− (m2k−1 + m2k) αk
}) .

(5.11)

Equation (5.11) is the multi-dimensional equivalent of Eq. (3.105). I should point
out that, in the presence of damping, it is possible to remove all nonlinear terms; that
precludes the existence of limit cycles, so it is certainly not done in Sect. 5.5.1.

As I did below Eq. (3.106), in the gray box, I examine the Hamiltonian case where
Lie operators based on polynomials, rather than vector fields, are used.

The algorithm on Lie polynomials

In the symplectic case, particularly in analytic calculations, one may elect
to work on Hamiltonian operators. In that case, Eq. (3.101) is a polynomial
equation in the phasors’ basis.

http://dx.doi.org/10.1007/978-4-431-55803-3_4
http://dx.doi.org/10.1007/978-4-431-55803-3_3
http://dx.doi.org/10.1007/978-4-431-55803-3_3
http://dx.doi.org/10.1007/978-4-431-55803-3_3
http://dx.doi.org/10.1007/978-4-431-55803-3_3
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exp
(



 − t1






)
fn+1 − fn+1 + fn+1 = Tune shifts as in Eq. (3.101). (5.12)

The polynomial t1 is given by the multivariable extension of Eq. (3.94):

T1 · ∇ =

⎛

⎜⎜⎜⎜⎜⎜⎝

−iμ0;1ϕ1+
iμ0;1ϕ1−

.

.

.

iμ0;N ϕN+

⎞

⎟⎟⎟⎟⎟⎟⎠
· ∇

=
∑

i=1,N

−iμ0;iϕi+
∂

∂ϕi+
+ iμ0;iϕi−

∂

∂ϕi−

= −
∑

i=1,N

μ0;i
2




ϕi+ϕi−



 (5.13)

The polynomial fn+1 is also expanded in phasors:

fn+1 =
∑

k

fn+1;kϕk1
1+ϕ

k2
1− · · ·ϕk2N

N− as in Eq. (3.102). (5.14)

I then proceed with the action of −t1 on the polynomial fn+1:




 − t1




 fn+1;kϕk1+1ϕ

k2
2− · · · ϕk2N

N− = −i fn+1;k
∑

i=1,N

μ0;i
[
ϕi+ϕi−, ϕ

k1
1+ϕ

k2
1− · · ·ϕk2N

N−
]

= i fn+1;k

{
∑

i=1,N

μ0;i (k2i−1 − k2i )

}
ϕ

k1+1ϕ
k2
2− · · · ϕk2N

N−.

(5.15)

The final result for fn+1 is:

∑

i=1,N

μ0;i (k2i−1 − k2i ) �= 0 → fn+1;k = gn+1;k
1 − exp

(
i
∑

i=1,N μ0;i (k2i−1 − k2i )
) as in Eq. (5.11).

(5.16)

Of course, Eq. (5.16) must reproduce Eq. (5.11). This is done by computing
the vector field associated with fn+1. Let us look at the effect on ϕi+:




ϕ

k1
1+ϕ

k2
1− · · · ϕk2N

N−



 ϕi+ = 2iϕm1+ ϕ

m2− ϕ
m2N
N− (5.17)

where m2i = k2i − 1 and j �= 2i ⇒ m j = k j .

http://dx.doi.org/10.1007/978-4-431-55803-3_3
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Thus one concludes from Eq. (5.17) that F1
n+1;m is

F1
n+1;m = 2i fn+1;k with

m1 = k1
m2 = k2 − 1
m3 = k3

...

. (5.18)

Equation (5.18) tells us that the condition k2 j − k2 j−1 = 0 for the tune shift
is indeed equivalent to the condition for the vector field.

5.3 Derivation of Eq. (4.74): Magnet Modulation Revisited

This section is a small analytic treatment which obviously sits outside the tools of
the code; if anything it parallels the treatment by Tomàs in Ref. [1].

To derive Eq. (4.74), I need to rewrite Eq. (4.72) in terms of Lie operators.

M = RωL exp

(
− L

2
: p2

x :
)
exp

(
− Lk

2
: x2 :

)

︸ ︷︷ ︸
M0

exp

(
− Lκ0q

2
: x2 :

)
(5.19)

z =
⎛

⎝x, px , q, p︸︷︷︸
clock

⎞

⎠ and RωL = exp

(
: −ωL

2

(
q2 + p2) :

)
.

In Eq. (5.19), I deliberately moved the variable q outside the Lie operator to
remind everyone that it is not a symplectic variable and therefore it does not enter
in the Poisson bracket. All Poisson brackets involve only the variable (x, px ). Of
course the reader can check that this produces the correct vector fields; however it is
often simpler to use Poisson brackets whenever possible.

The first steps consists in normalizing the problemwe already know how to solve,
namely the map M0 without modulation. This is done most easily in the matrix
representation (which acts in the opposite order):

M0 =
(

1 0
−kl 1

)(
1 L
0 1

)

=
(

1 L
−kl 1 − kL2

)

=
(
cos (μ) + α sin (μ) β sin (μ)

−γ sin (μ) cos (μ) − α sin (μ)

)
(per Eq. (2.28)). (5.20)

The Courant-Snyder’ parameters and the tune can all be computed:

http://dx.doi.org/10.1007/978-4-431-55803-3_4
http://dx.doi.org/10.1007/978-4-431-55803-3_4
http://dx.doi.org/10.1007/978-4-431-55803-3_4
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β = k
1
2 L

√
1 − 1

4
kL2

γ = kβ

α = 1

2
klβ

μ = sin−1
(
Lβ−1

)
. (5.21)

I can then construct the Courant-Snyder transformation of Eq. (2.51) and let its
“function acting” version1 A act on the map M by similarity transformation:

N0 = AMA −1

= ARωL exp

(
− L

2
: p2

x :
)
exp

(
− Lk

2
: x2 :

)

︸ ︷︷ ︸
M0

exp

(
− Lκ0q

2
: x2 :

)
A −1

= RωL A exp

(
− L

2
: p2

x :
)
exp

(
− Lk

2
: x2 :

)
A −1

︸ ︷︷ ︸
Rμ

exp

(
− Lκ0q

2
: A x2 :

)

= RωLRμ︸ ︷︷ ︸
R

exp

(
− Lκ0βq

2
: x2 :

)
. (5.22)

I now perform a nonlinear transformation whose purpose is to eliminate the operator
q : x2 :. Calling this operator exp(: f :) where f is a function of the clock (q, p)

and usual phase space (x, px ):

N1 = exp (: f :)N0 exp (− : f :)
= exp (: f :)RωLRμ︸ ︷︷ ︸

R

exp

(
− Lκ0βq

2
: x2 :

)
exp (− : f :)

= R exp
(: R−1 f :) exp

(
− Lκ0βq

2
: x2 :

)
exp (− : f :) . (5.23)

As is always the case in perturbation theory, we first solve for the canonical transfor-
mation by neglecting second-order terms, i.e., by assuming temporarily that all Lie
operators commute.

(R−1 − 1) f − Lκ0βq

2
x2 = 0. (5.24)

1I remind the reader who skipped too many sections of this book that it is precisely the map that
acts on functions by substitution that can be represented by Lie operators. In the linear case, one
is often content with the usual matrix acting on rays. The Lie operators are not that useful. The
one-turn map is the critical exception: the Courant-Snyder invariant is the Lie operator!

http://dx.doi.org/10.1007/978-4-431-55803-3_2
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Equation (5.24) is just a special case of Eq. (3.101) but here the cubic term qx2 as
no tune shifts and thus can be removed completely. To get the answer we go into a
phasor basis for both the dynamical and clock variables. To avoid a proliferation of
indices, I give special names to the phasors:

h = x + i px h = x − i px v = q + i p v = q − i p. (5.25)

Then Eq. (5.24) becomes:

f = − Lκ0β

16

(
C1,2vh2 + C1,−2vh

2 + 2C1,0vhh + c.c. · · ·
)

(5.26)

Cm,n = 1

1 − exp (i {mωL + nμ}) .

Using the BCH formula, namely eAeB = eA+B+1/2[A,B]+···, I can approximate
Eq. (5.23) to second-order:

N1 = R exp

(
Lκ0β

4

[
qx2, f

]+ · · ·
)

. (5.27)

Since we want second order tune shifts, it suffices to extract from Eq. (5.27) the tune
shifts terms. Again this is best performed in phasors basis provided we do not forget
the factor of −2i which enters in my definition of the Poisson bracket in phasors:

Lκ0β

4

[
qx2, f

] ⇒ −2i

(
Lκ0β

4

)(
− Lκ0β

16

)

× 1

8

[
vh2 + vh

2 + 2vhh, C1,2vh2 + C1,−2vh
2 + C1,0vhh + c.c.

]
.

(5.28)

The factor of−2i having been taken into account, we take the regular Poisson bracket
not including the clocks:

Lκ0β

4

[
qx2, f

] ⇒ i

64
(Lκ0β)2

(
C−1,−2 − C1,2 + C1,−2 − C−1,2

)
vvhh

= 1

32
(Lκ0β)2

(
sin (2μ + ωL)

1 − cos (2μ + ωL)
+ sin (2μ − ωL)

1 − cos (2μ − ωL)

)
Jx .

(5.29)

In Eq. (5.29), I used the fact that the length of the clock arms equals one (vv = 1)
and that hh is twice the action Jx . Since minus the derivative of the action is the tune,
I just proved Eq. (4.74)!

http://dx.doi.org/10.1007/978-4-431-55803-3_3
http://dx.doi.org/10.1007/978-4-431-55803-3_4
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If one computes the tune as if q was a constant and then averages over q, then
I leave it to the reader to show that the leading order correction provided by this
sloppy calculation is Eq. (5.29) with ωL = 0. It is the leading order adiabatic
result. It is possible to develop a perturbation theory which attempts to remove all
time dependence (clock dependence) from the map or the Hamiltonian. This type of
perturbation theory is used to compute the so-called ponderomotive force (see for
example [2]).

5.4 One Resonance Orbital Normal Form

The following figure was produced using the ring in one_resonance_map, a
program found in Appendix K.
The phase space picture of Fig. 5.1 displays a situation which cannot be globally
represented by a normal form of the type described in Sect. 5.2. The black curves
depict the three-turn map for reasons that will become obvious in Sect. 5.4.1.

Below the three islands, inside the triangular curve, we could imagine a defor-
mation of the curves into circles. Analogously, I can deform the curves above the
islands into circles. But it is not possible for obvious topological reasons to deform
the islands into concentric circles.

Consequently it is not possible to write the map which produced Fig. 5.1 as a
single Lie exponent, neither through normal form nor through the logarithm process
described in supplemental Chap.11. This can be seen by using reductio ad absurdum.
Indeed imagine we could find a single Lie exponent for the map:

M = exp (: −H :) . (5.30)

Then the map

M (t) = exp (: −t H :) (5.31)

Fig. 5.1 A 3νx resonance

http://dx.doi.org/10.1007/978-4-431-55803-3_11
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has also the same invariants. However t can be made as small as I desire. Thus the
map is connected to the identity. This cannot be true in the island region since the
particle is “teletransported” from one island to the other by a jump of approximately
2π/3 in the example of Fig. 5.1.

It follows that we cannot compute an invariant by the logarithm or by a normal
form technique.

5.4.1 The Naive Dragt Approach: Raising the Map to a Power

In the above example, I can certainly look at the map stroboscopically every 3 turns.
The 3-turn map will always be near the identity even in the three islands where
particles are trapped. Moreover the map will have the same invariants as the single
turn map for obvious reasons. Therefore it is possible to envisage the following
equation:

M 3 = exp (: −3H :) . (5.32)

The reader can examine the black curves on Fig. 5.1: whether they are in the inner
region, the three islands region or on the outside, all these curves display motion near
the identity.

Analytically, the invariant can be computed using a regular normal form. Obvi-
ously the 3-turn map has a small tune, say ε. Therefore the normal form will look
like this:

A1/εM
3A −1

1/ε = exp (: −2πεJ + h(J ) :) . (5.33)

The normal form of Eq. (5.33) is just as badly behaved as the normal form on
the original map M since it attempts the impossible: turning 3 islands into circles
around the origin. Algebraically it is seen by the presence of small denominators in
the canonical transformationA . In fact this canonical transformation also normalises
the original mapM . It is the next trick, due to Dragt [3], which saves the day. I need
simply to compute the three-turn map as a single Lie exponent using Eq. (5.33):

M 3 = A −1
1/ε exp (: −2πεJ + h(J ) :)A1/ε

= exp
(
: −2πεA −1

1/ε J + h(A −1
1/ε J ) :

)
. (5.34)

The actual divergence is cancelled out in the exponent of Eq. (5.34). This can be
shown explicitly on analytical models: the reader is invited to look at Sect. 5.2 of
Ref. [4]. In that book, I treated a rather generic sextupole system and showed how all
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the divergences disappear. The calculation is carried to second-order in sextupoles
to ensure that the important tune shift with amplitude is computed correctly.2

Numerically, the calculation is shown in Appendix K. Here is the relevant frag-
ment:

three_turn_map = one_turn_map**3 !3-turn map ! (2)

call c_normal(three_turn_map,normal_form) ! (3)

write(mf,*);write(mf,*)"tune",normal_form%tune(1);write(mf,*);

Fh=0

do i=1,normal_form%ker%n ! Rotation so all exponents commute

Fh=normal_form%ker%f(i)+Fh ! (4)

enddo

h3=(cgetpb(Fh)*to_phasor())*normal_form%a_t**(-1) ! (5)

write(mf,*);write(mf,*)"Invariant of the 3-turn map";

write(mf,*);

call print(h3,mf,prec)

Write(mf,*); Write(mf,*) "Checking that it is indeed invariant"

Write(mf,*) "h3*one_turn_map - h3 ";write(mf,*);

h3t=h3*one_turn_map

h3t=h3t-h3

This entire code fragment emphasises the generality of the procedure. Here the
map one_turn_map was produced by the example code PTC. However this map
could have been produced by any code including a code which produces primarily
Taylor maps such as Cosy-Infinity [5].

Because line (3) is a total normal form into circles, the Lie exponents stored in
one_turn_map%ker all commute with each other (see Sect. 3.4.1, p. 71, for the
definition of the Fortran 90 types). Thus they can be added into one big Lie exponent
Fh at line (4).

Since I am dealing with a symplectic map in canonical variables, I might as well
look at the Lie polynomial also known as the pseudo-Hamiltonian of the map. Thus
on line (5), the routine call cgetpb(Fh) turns the phasors-based vector field into
a Lie polynomial. This requires the special routine cgetpb in which a factor of
−2i is added to the definition of the Poisson bracket. This pseudo-Hamiltonian is
converted into the original variables at the end of line (5). I invite the reader to
read supplemental Chap. 10 where I explain why I chose “non-symplectic” phasors
incurring this annoying factor of −2i!

2Any sextupolar system requires at least a second-order calculation of the tune shifts. They deter-
mine the existence of islands.

http://dx.doi.org/10.1007/978-4-431-55803-3_3
http://dx.doi.org/10.1007/978-4-431-55803-3_10
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Finally, I check that it is indeed an invariant. The reader is encouraged to “break
the code” by changing line (2) into three_turn_map = one_turn_map. The
resulting pseudo-Hamiltonian will still be an invariant, however with larger coeffi-
cients. Indeed the power series of this Hamiltonian must diverge at the separatrix
just below the islands.

The code inAppendixKalso shows the same calculation using the logarithmof the
three-turn map as explained in supplemental Chap. 11. Here it works well because
the map is near the identity. In general, the other degrees of freedom undergoing
harmonic motion, might not be near the identity. One must be aware of this fact
before taking a logarithm. This problem and that of coupled resonances I will now
address in the next sections.

5.4.2 General Approach: Leaving One Resonance

The general approach consists of three steps. It was first applied on Taylor maps
by Turchetti. In his approach to the one-resonance normalization, Turchetti [6, 7]
imposed symmetries directly on the Taylor representation of the map. I developed
independently an equivalent approach [8] using Lie operators. It is simpler in the
Hamiltonian case since it parallels Hamiltonian theory. So here are the steps:

1. Perform a normal form where a “single” resonance is left in the map. I will define
later what this means.

2. Multiply the resulting normal form by a rotation that commutes with this reso-
nance and brings the map close to the identity. Because all the maps commute,
they share common invariants. I call this map “the co-moving map” because it
is always close to the identity and is analogous to the co-moving Hamiltonian
of standard accelerator theory. In fact the co-moving Hamiltonian generates a
co-moving map; the two theories are equivalent.

3. I compute the invariant associated to the resonance by a complete normalisation
followed with the action of A −1 on the normalised invariant as in Eq. (5.34) or
by taking the logarithm of the co-moving map. The resulting Lie operator should
be valid through the island region.
The first method is to be avoided in numerical calculations since it potentially
divides vanishingly small quantities. However it is well-suited for analytical cal-
culations such as the one presented inSect. 5.2 ofmyother book [4]. The logarithm
method is useful in a numerical computation but impossible to use in analytical
calculation beyond vague guesses valid if the linear part of the map is very near
the resonance.

First I must explain the meaning of a “single” resonance. For simplicity, as in the
previous section, I will use Lie polynomials rather than general vector field operators.

http://dx.doi.org/10.1007/978-4-431-55803-3_11
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Consider a system with two degrees of freedom and let me concentrate on the 3νx

resonance. The following monomial is left invariant by a rotation of 2π/3:

|mkn〉 = umum+3kvnvn where u = x + i px and v = y + i py . (5.35)

The “bar” above the letter denotes the complex conjugate. Following Eq. (2.13) for
example, one sees that

Rx

(
λ2π

3

)
|mkn〉 = eλk2π |mkn〉 (5.36)

and therefore, if λ is an integer, the monomial |mkn〉 is invariant under this discrete
rotation.

Moreover the Poisson bracket of two monomials such as |mkn〉 is also a similar
monomial:

[
umum+3kvnvn, uaua+3cvbvb

] = −6i {c − k} um+a−1um+a−1+3(k+c)vn+bvn+b.

(5.37)

I invite the reader to confirm these results with the more common action-angle vari-
ables, namely using Eq. (2.21):

|mkn〉 = umum+3kvnvn = (2Jx )
2m+3k

2
(
2Jy

)n
exp (i3kΦx ) . (5.38)

Therefore the set of monomials such as those of Eq. (5.35) is an invariant set under
the Poisson bracket and so is its associated set of Lie operators under commutation.

This invariance implies that if Hans in Germany decides to leave one family of
resonances in the map of some machine in the USA, and Mieko in Japan does the
same calculation using a different algorithm, they will both agree that irrespective
of the algorithm, their normalised maps contain only a single family.

N.B. This result is not as strong as that of a total normal form. If the map is turned
into circles, then the normal form of the one-turn map will be identical if canon-
ical transformations are used. This amounts to saying that the tunes are universal
functions of the actions (J ’s) in Hamiltonian theory. In the one-resonance case, the
normalised map will be invariant under a discrete group of rotations in the plane of
the resonance. For example, the 3νx resonance will produce normalised phase plots
which are invariant under 120◦ and 240◦ rotations in the plane of the resonance. So
Hans andMieko’s graphs could certainly be rotated with respect to one another. They
might also be stretched, but the areas of the islands will be the same. This is because
they can differ not only by a rotation but by a generator of the resonance itself.

In practice, that is in the code, the resonance is left during the computation of
the canonical transformation. In the general vector field case, henceforth removing
damping for tidiness, this was shown at Eq. (5.11) which I reproduce here with the
small modification needed for a single resonance normal form:

http://dx.doi.org/10.1007/978-4-431-55803-3_2
http://dx.doi.org/10.1007/978-4-431-55803-3_2
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m2k−1 − m2k + (−1)aδak �= mr
k

↓

Fa
n+1;m =

Ga
n+1;m

1 − exp

(
i
∑

k=1,N
μ0;k

(
m2k−1 − m2k + (−1)aδak

)
) .

(5.39)

The vector of indices mr describes our family of resonances. In our example, it is
just given by:

mr = λ (3, 0) where λ = · · · − 2,−1, 0, 1, 2 · · · . (5.40)

The inclusion of λ = 0 in Eq. (5.40) insures that the tunes (shifts) are also in the set.
Once more I included the appropriate code fragment from Appendix K:

normal_form%nres=0;normal_form%m=0;

do i=1,map_order+1 ! (7a)

if(mod(i,3)==0) then

normal_form%nres=normal_form%nres+1

normal_form%m(1,normal_form%nres)=i

endif

enddo

call c_normal(one_turn_map,normal_form) ! (7b)

h2=(pi/3.d0)*((1.d0.cmono.1)**2+(1.d0.cmono.2)**2) ! (8a)

F2=getvectorfield(h2) ! (8b)

id=normal_form%a_t**(-1)*one_turn_map*normal_form%a_t ! (8c)

co_moving_map=exp(F2)*id ! (8d)

Fh=log(co_moving_map) ! (8e)

h3c=getpb(Fh)*normal_form%a_t**(-1) ! (8f)

At line (7a), all the multiples of 3νx are included as resonant terms to be left in
the map. The normalisation is done at (7b).

On lines (8a, b, d) I compute the rotation of Eq. (5.36) with λ = −1. This rotation
achieves two things. First it commutes with the normalised map and thus does not
change its invariants. Secondly it brings the map near the identity and permits the
computation of a global invariant by “diverging” normal form or by a logarithm. Here
in lines (8e) I used the logarithm which is more suited to a numerical calculation.
Line (8f) is the final result in the original variables.
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5.4.3 The Co-moving Map

I will illustrate the co-moving map approach on a simple coupling resonance, νx +
2νy = p, where actually p = 1. The general theory can be found in Sect. 5.2
of Ref. [4] in more abstract details. Here I hope that the reader will be able to
extrapolate3 inductively from νx + 2νy = p to the general coupled resonance.

I write the monomials of the νx + 2νy resonance in the form of Eqs. (5.35)
and (5.38):

|mkn〉 = umum+kvnvn+2k = (2Jx )
m+ k

2
(
2Jy

)n+k
exp

(
i k
{
Φx + 2Φy

})
. (5.41)

Following the exact same procedure as before, I normalise the map and leave only
the family represented by Eq. (5.41). Using the polynomial symplectic operators, I
can write the normalised map as

N = exp (: − {μx Jx + μx Jx } :) exp
(

:
∑

m,n,k

Amkn |mkn〉 :
)

. (5.42)

The idea is to re-express the linear part ofN in Eq. (5.42) in terms of the resonance
vector mr = (1, 2) and its perpendicular plane(s). This can always be done. In our
simple example, I can immediately write two orthogonal vectors:

mr = (1, 2) and a = (2,−1) . (5.43)

Using these two vectors, I can rewrite the Lie operator of the linear part ofN :

μx Jx + μy Jy = mr · μ

5
mr · J + a · μ

5
a · J. (5.44)

The crucial step is to recognise that

mr · μ = 2πp + 2πε (5.45)

and to rewrite Eq. (5.44). Using

mr · μ

5
mr · J = 2π

5
{p + ε} mr · J, (5.46)

Equation (5.44) is rewritten as

3The reader will find a description of this resonance at the lowest order in a paper by Schmidt and
Franchetti in Ref. [9].
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N = exp

(
: −2π

5
pmr · J :

)
exp

(
: −a · μ

5
a · J :

)
Nc

where Nc = exp

(
: −2π

5
εmr · J :

)
exp

(
:
∑

m,n,k

Amkn |mkn〉 :
)

. (5.47)

The reader should verify that the two rotations multiplying Nc commute with Nc.
They do so for different reasons:

• exp
(: − 2π

5 pmr · J :) commutes because it is part of a discrete subgroup like the
rotation of 120 degrees in the case of the 3νx resonance. The driving terms are
rotated by a multiple of 2π .

• exp
(: − a·μ

5 a · J :) commuteswithNc for the same reason that a rotation around the
y-axis commutes with the generators of 3νx resonances: the planes are orthogonal.
If the reader works it out, he will find that all hinges on the fact that mr · a = 0.
The Lie exponent on the right hand side of Eq. (5.47) contains the resonant terms
and produces a pseudo-pendulum motion in the plane of that resonance. It also
depends parametrically on the value of a · J. The pseudo-pendulum can be stable
or unstable depending on the value of a · J, a fact emphasized in Ref. [9].

Because the mapNc is near the identity, its Lie operator can be found by a simple
logarithm as described in supplemental Chap. 11.

I conclude with the code fragment concerning the resonance νx + 2νy = p.

call c_normal(one_turn_map,normal_form) ! (C)

mdotmu=2*pi/5.d0 ! (D1)

adotmu=2*pi*(2*normal_form%tune(1)-normal_form%tune(2))/

5.d0 ! (D2)

jx=(0.5d0.cmono.’2’)+(0.5d0.cmono.’02’) ! (E1)

jy=(0.5d0.cmono.’002’)+(0.5d0.cmono.’0002’) ! (E2)

jm=(jx+2*jy) ! (E3)

ja=(2*jx-jy) ! (E4)

h2=mdotmu*jm+adotmu*ja ! (F1)

F2=getvectorfield(h2) ! (F2)

id=normal_form%a_t**(-1)*one_turn_map*normal_form%a_t ! (F3)

co_moving_map=exp(F2,id) ! (F4)

Fh=log(co_moving_map) ! (F5)

h3c=getpb(Fh)*normal_form%a_t**(-1) ! (F6)

h3t=h3c*one_turn_map

h3t=h3t-h3c ! (G)

http://dx.doi.org/10.1007/978-4-431-55803-3_11


5.4 One Resonance Orbital Normal Form 137

From line (D1) to line (F2), I construct the commuting rotation which brings the
normalised map close to the identity. At line (F3), the map is actually put into a
one-resonance normal form. The co-moving map is constructed at line (F4). At (F5)
I compute the logarithm and at line (F6), I put this logarithm into the basis of the
original map. Line (G) checks that I have indeed an invariant.

5.4.4 The Instructive Resonant Case
M = Rν= 1

4 +δ exp
(
: ks

3 x3 + ko
4 x4 :

)

In the case of orbital resonances, it is very easy to give a geometrical definition: a
resonance destroys the invariant tori by creating islands where the tunes are frozen
into a linear relation with integer coefficients. For example the right-hand sides of
Figs. 5.2 and 5.4 depict such a case. I will examine both cases because they are quite
revealing and will somewhat clarify what is meant by an “isolated resonance.” It will
also dispel some false beliefs. For example the divergence of perturbation theory
for the computation of an invariant is not necessarily connected to a “physical”
effect. Also we will see that it is far from obvious that an isolated resonance can be
properly computed by a naive retention of the leading order terms as often suggested
in elementary discussions. All my assertions concerning formal manipulations can
be verified by a Taylor series based package such as my own FPP. They can also be
checked, more painfully, by pure analytical computations on the map.

(a) (b)

Fig. 5.2 Octupole driven resonance. a Below the resonance. b Above the resonance
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5.4.4.1 The Octupole Map M = R
ν= 1

4 ∓ 0.001
exp

(
: 1

4 x4 :
)
: Exact Results

on Convergence

In Fig. 5.2, the map used is just

M = Rν= 1
4∓ 0.001 exp

(
: 1
4

x4 :
)

. (5.48)

Looking at Fig. 5.2b, anyone would say: “Ha! There is a fourth-order resonance!”
Some would even say: “it is an octupole resonance.” Moreover the four-fold sym-
metry seems perfect, and therefore in variables where the linear motion is a circle,
we have two reasons to call this resonance isolated: only one set of islands and the
absence of distorting effects from other “potential” resonances. So I summarize:

1. There are islands, therefore there is a topological destruction of the tori.
2. They are alone and thus, this is an isolated resonance.
3. There is a near perfect four-fold symmetry. Potential driving terms of other reso-

nances have a very tiny effect. In that sense, the resonance is evenmore “isolated.”
The perpendicular planes, not present in this example, move happily on circles4

unaffected by the resonance.

If item 2 is true and a normal form is successfully computed, then item 3 is always
true in the normalised space. It is true in the un-normalised5 variables only if the
resonance is unperturbed by the other nonlinearities and thus isolated in the sense
of 3.

Because the map is so close to the resonance, i.e., δ = 0.001, it can be shown that
the fourth power of the map, to leading order, is almost, but not exactly, given by:

M 4 = exp (: −H :)
where H = 8πδ J − J 2

2
(3 + cos (4Φ)) + O(δ J 2) · · · . (5.49)

The fixed points of H can be easily computed and are given by:

J∓ = 8πδ

3 ± 1
with Φ− = k

π

2
and Φ+ = Φ− + π

4
. (5.50)

In the case of Fig. 5.2b which corresponds to δ = 0.001, the predictions given by
Eq. (5.50) are remarkably accurate. Of course it is essential to compute the fourth
power of the map or to use the co-moving map methods. The islands preclude the

4In the case of a couple resonance, a · J of Eq. (5.44) is an invariant by virtue of being orthogonal
to the plane of the resonance.
5Here by “un-normalised” I mean “normalised by a linear map” only.
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existence of global circular-like invariants. For larger values of δ, for example δ =
1/10, I do expect distortions coming from the “other resonances” and indeed the
four fold symmetry is slightly violated.

Because of the islands, I do not expect a standard normal form to converge beyond
the inner separatrix. Any attempt to turn Fig. 5.2b into circles will diverge badly at
the inner separatrix. This can actually be checked numerically on such a simple map.
However what about the map for δ = −0.001 that is depicted on Fig. 5.2a?

This map does not display any islands. All the curves are closed and I can
imagine deforming them with a symplectic map into circles. So will our normal
form algorithm, which is a Taylor series in the normalised phase space variables
x + i px = √

2Je−iΦ , converge in a greater region of phase space? The answer to
this is a categorical no. This is not too surprising looking at the pseudo-Hamiltonian
H of Eq. (5.49): this Hamiltonian generates the fourth power of the map; it was
derived independently of the sign of δ. Therefore it is hard to imagine that the radius
of convergence of any canonical transformation that normalises H would depend on
the sign of δ. But there is a stronger argument which applies rigorously the map of
Eq. (5.48). Consider the application of a complex symplectic transformation on the
map with a linear tune of ν = 1

4 + δ:

Suppose A x = i x and A p = −i p

⇒N = A exp
(
: −μ

2

(
x2 + p2

) :
)
exp

(
: 1
4

x4 :
)
A −1

= exp
(
: μ

2

(
x2 + p2

) :
)
exp

(
: 1
4

x4 :
)

. (5.51)

The angle μ changed into −μ. I can multiply this map by minus the identity and
the invariant will not change because this map as well as the original one commutes
with −I .

Nc = (−I ) exp
(
: μ

2

(
x2 + p2

) :
)
exp

(
: 1
4

x4 :
)

= exp

(
: μ + π

2

(
x2 + p2

) :
)
exp

(
: 1
4

x4 :
)

= exp

(
: −π/2 − 2πδ

2

(
x2 + p2

) :
)
exp

(
: 1
4

x4 :
)

= Mν= 1
4 −δ. (5.52)

By rotating the map Mν= 1
4 +δ in the complex plane, I produced a map which has

exactly the same real invariants as Mν= 1
4−δ . Therefore, I can claim rigorously that

the map with no real islands has islands located at exactly the same value of J in
the complex plane. Therefore the Taylor series of a canonical transformation on the
no-island map will diverge exactly at the same J location in phase space. This is
illustrated on Fig. 5.3.
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(a) (b)

Fig. 5.3 Octupole driven resonance with 20th-order normalisation in red. a Below the resonance.
b Above the resonance

(a) (b)

Fig. 5.4 Sextupole driven resonance. a Below the resonance. b Above the resonance

Using the FPP package, I computed a full normalisation of the map to 20th-order
below and above the resonance. Both pictures have the same scale. On Fig. 5.3b, I
display in blue a trajectory just below the separatrix; the corresponding normalised
curve is red. As one can see, it is a circle. On Fig. 5.3a I display 3 curves. The inner
one is normalised into a circlewith radius just slightly smaller than the near separatrix
curve on Fig. 5.3b. On the second curve, the normalisation fails. On the outer curve
we witness a grotesque failure.

Thus we have checked numerically that Taylor series normalisation can failed
for physically sound reasons (real islands) or mathematical reasons (islands in the
complexified map). Therefore, in the case of Fig. 5.3a, only a “one-resonance”
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normalisation has a chance of working if the canonical transformation is represented
by a Taylor series.

The situation of Fig. 5.3a is analogous to a spin-orbit resonance affecting the spin as we will
see in Sect. 6.5.1.

The spin map is a linear spectator map, a matrix in SO(3) in the case of PTC, which
depends nonlinearly on the orbital variables. We will see that nothing qualitatively new
happens near a resonance because there are no “spin islands” in a linear map. However
attempts to perform a full spin normalisation using an expanded Taylor series will also fail.
For this reason, spin will also require a one-resonance normal form and the computation of
a co-moving map. In the case of spin, due to its greater simplicity, the co-moving map—or
the Abell-Barber map as I call it—will turn out to be exactly solvable. Its exact solution will
expose the futility of a Taylor expansion.

The next map I will now present is somewhat pathological but it displays very
strikingly the presence of islands greatly affected by neighbouring resonances.

5.4.4.2 The Sextupole Map M = R
ν= 1

4 ∓0.001
exp

(
: x3 :

)
: not as Trivial…

I will now study the following map:

M = Rν= 1
4∓0.001 exp

(: x3 :) . (5.53)

Figure5.4b clearly shows themap of Eq. (5.53) with four huge islands. These four
islands appear isolated and therefore we hope that Taylor based perturbation theory
will workwell.Moreover, with a bit of luck, the leading order Lie operator for theM 4

(or the pseudo-Hamiltonian) should provide us, at least, with a qualitative estimate
of the island size and positions. Well, it will not; our luck runs out! Nevertheless we
will understand exactly the causes of this failure for the simple case of Eq. (5.53).

It is easy to compute the leading order pseudo-Hamiltonian with the help of a
package such as my FPP package. Here is the result to fourth-order:

CAM 4A −1C −1 = exp

(



 − 1

4π
H4






)

where H4 = ν0uu + A (uu)2 + Bu4 + Bu4. (5.54)

The map A transforms away the terms not belonging6 to the family of 4νx , the
map C puts us in phasors’ basis (see Eq. (2.10)) and the operator 



 H4



 defined by

Eq. (3.74) takes Poisson brackets with phasors (adding an extra factor of −2i). For
our example, the coefficients ν0, A, B and C are just (to 4 digits of accuracy):

6νx , 2νx and 3νx driving terms are cleansed to second-order in sextupole strength.

http://dx.doi.org/10.1007/978-4-431-55803-3_6
http://dx.doi.org/10.1007/978-4-431-55803-3_2
http://dx.doi.org/10.1007/978-4-431-55803-3_3


142 5 Nonlinear Normal Forms

ν0 = 1

100
A = −8.783 10−2

B = 4.505 10−2 + 5.661 10−4i. (5.55)

The fixed points can be easily computed using action-angle as in Eq. (5.49). I leave
it to the reader to show that the formula for the actions of the fixed points is:

uu|± = 2J± = −1

2

ν0

A ± 2
√

B B
. (5.56)

The reader will notice that one fixed point, J+ is located at J+ = 1.41 10−3 according
to Eq. (5.56). If I average the position of the four fixed points on the non-normalised
graph (which should nullify some of the effect of the other resonances), then I come
up with a value of J+ = 1.37 10−3. This is not too bad. Looking at the plot of
Fig. 5.4b, I can see that the inner separatrix is “fairly” square and should be predicted
more or less by a fourth-order naive calculation.

As for the other fixed point, the leading order calculation fails completely. It
predicts a negative value of J− = −0.11. Therefore this fixed point does not exist
according to second-order analytic perturbation theory. Incidentally, on p. 210 of
[10], it is claimed that the system we are now looking at, can be described by a
quartic Hamiltonian (Eq.2.394 of Ref. [10]). If the author of that book is perform-
ing analytical canonical transformations, that is impossible. Most likely he is fitting
tracking or experimental data. If the resulting canonical transformation is not ana-
lytic, it may indeed produce different results at second-order; see Ref. [1] where our
little map is treated differently and theoretical results consistent with non-analytic
transformations are presented. Unfortunately, the author of Ref. [10] only says:

…the resonance strength G4,0,� can be obtained from the Fourier transformation of the
effective particle Hamiltonian in the synchrotron.

Well may be so, but this is all Greek to me7—or shall I say in this case more
appropriately—c’est du chinois!

In any event, we should not be too surprised by this annoying result: the island
is a very long banana shaped like object. Near the unstable fixed point, it does look
indeed like an unstable system. It is only when considering a higher order calculation
and the proper treatment of neighbouring resonances (beyond trivial averaging), that
one can get a result that is approximately correct.

7I need to be very explicit here because Lee’s book [10] is famous, especially in Asia where I work,
and the results presented here seem to contradict his pronouncements. Since his pronouncements
are couched in the usual East Asian vagueness, I felt the need to clarify the origin of the apparent
discrepancy.
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While this is not easy to do purely analytically, it is easy to try with a package like
FPP. For example, I can compute the 6th-order extension to the pseudo-Hamiltonian
of Eq. (5.54): It is given by

H6 = H4 + uu
(
Cu4 + Cu4) + D(uu)3. (5.57)

The additional coefficients are

C = 0.1005 − 1.263 10−3i

D = 0.3362. (5.58)

Here are the results of a calculation using the FPP package on this Hamiltonian.

Order 6

exact fixed point

0.164426706049449 4.055421249340808E-002

approximate fixed point in normalised units

0.162343786856694 5.100197260436692E-004

approximate fixed point in original units

0.164457491808164 4.052997676408270E-002

The first line contains the fixed point represented by a red circle on Fig. 5.4b. I
computed it with a Newton search on the fourth power of the map. It is exact to
machine precision. The second line contains the fixed point obtained by a Newton
search on the one-resonance vector field of H6. Finally that point is mapped into the
original phase space byA . The result is close to the exact fixed point. Accidentally,
it is possible to compute the fixed point of H6 exactly because it can be rotated into
a Hamiltonian which does not have any imaginary terms. Thus the modulus of the
fixed point is given by:

uu|± = − (A ∓ 2B) +
√

(A ∓ 2B)2 − 3ν0 (D ∓ 2C)

3 (D ∓ 2C)

−→ uu|+ = 0.162344587994465. (5.59)

For this map, it is possible to go to a higher order with improved results.

Order 12

exact fixed point

0.164426706049450 4.055421249340815E-002

approximate fixed point in normalised units

0.162264710980367 5.097713010342348E-004

approximate fixed point in original units

0.164426502511187 4.055370460794808E-002
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Order 18

exact fixed point

0.164426706049449 4.055421249340808E-002

approximate fixed point in normalised units

0.162264366343349 5.097606276932037E-004

approximate fixed point in original units

0.164426683146872 4.055418432358079E-002

The moral of this story is that it is not always true that a lowest order calculation
will provide a qualitatively correct picture. In this case, if analytic transformations
are used, one is forced to go beyond the lowest reasonable order. The presence
of neighbouring resonances, more precisely sextupolar distortions, is sometimes
impossible to neglect despite tacit assertions by some to the contrary.

5.5 A Map with a Limit Cycle: Akin to a Resonance

In Sect. 9.2 Imention topics that are germane to this bookwhich are excluded because
I do not have the ideal tools to illustrate the theory. Here it is the opposite. The map
of this section will not be found8 in an accelerator. It is a very non-symplectic map
which displays limit cycles and what appears to be a strange attractor. I included this
map to show that it is possible to compute limit cycles with normal forms.

xnew = (
1 + α − x2

)
(cos (2πν) x + sin (2πν) p)

pnew = cos (2πν) p − sin (2πν) x . (5.60)

The map of Eq. (5.60) in both examples of Fig. 5.5 contains linear anti-damping
represented by a positive value of α. This damping is mitigated by the term −x2 in
Eq. (5.60).

5.5.1 The Computation of Limit Cycles

For very small α, I expect the anti-damping effect to be balanced on average by−x2.
By naive averaging techniques, it is possible to derive an equilibrium radius. The
formula is given by

8I amnot a specialist in electronics, but limit cycles could be perhaps found in the electronic circuitry
of an accelerator. But that is pushing things a bit far…Look at Ref. [11] for example.

http://dx.doi.org/10.1007/978-4-431-55803-3_9
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(a) (b)

Fig. 5.5 Strange attractor and limit cycle: ν = 0.4433. a α = 0.9: scale of the graph from −1.54
to 1.54. b α = 0.2: scale of the graph from −0.78 to 0.78

r∞ =
√

4α

1 + 2cos2 (2πν)
. (5.61)

On Fig. 5.5b, the red curve is the limit cycle: it was obtained by tracking a ray
from the interior and plotting only after the particle reaches the red curve. The purple
curve is the circle obtained using the formula of Eq. (5.61). The reader should check
that for a tiny α, Eq. (5.61) hits the target with a precision of order α!

The other curves are the result of a normal form calculation which bears some
resemblance with the one-resonance normal form of Sect. 5.4. The white curve is the
result of a third-order calculation (third in the degree of the polynomial). The yellow
curve is a fifth-order result and finally the green curve is a seventh-order calculation.
Higher order calculations are practically on top of the limit cycle. So how does one
do this calculation with normal forms? Here is the theory.

I first perform a standard normal form on this nonlinear map denoted asM , where
I leave all tune shifts and all amplitude dependent damping terms. The result has the
form:

R = AMA −1 = exp (T1 · ∇) exp (T3 · ∇) exp (T5 · ∇) · · · . (5.62)

The vector field Tn , in the phasors’ basis, is given by:

Tn;1 = tn(ϕ+ϕ−)
n−1
2 ϕ+

Tn;2 = tn(ϕ+ϕ−)
n−1
2 ϕ−

where tn = αn + i2πνn. (5.63)
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The real part of tn produces damping-like terms and the complex9 part produces tune
shifts.

The analogy to the one resonance map of Sect. 5.4 lies in the non-commutative
properties of the Lie exponents Tn . They do not commute but they form a closed set
under commutation. Therefore we know that R can be re-expressed as:

R = exp
({

T ′
1 + T ′

3 + T ′
5 + · · ·} · ∇) (5.64)

where all the T ′
n’s have the same form as the Tn’s and actually T ′

1 = T1.

T ′
n;1 = t ′

n(ϕ+ϕ−)
n−1
2 ϕ+

T ′
n;2 = t ′

n(ϕ+ϕ−)
n−1
2 ϕ−

where t ′
n = α′

n + i2πν ′
n (5.65)

I leave it to the reader to check that the Lie operators T ′
n’s form a closed set under

the Lie bracket given by Eq. (3.38). Assuming that we have obtained Eq. (5.64) from
Eq. (5.62), the equation for the limit cycle is now simple. I first rewrite T ′ as the sum
of a damping and a tune shift term

T ′
± =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

n=1

α′
n(ϕ+ϕ−)

n−1
2

︸ ︷︷ ︸
Damping=0

∓ i2π
∑

n=1

ν ′
n(ϕ+ϕ−)

n−1
2

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

ϕ± (5.66)

and I set the damping to zero:

∑

n=1

α′
nrn−1

∞ = 0 where r∞ = ϕ+ϕ−. (5.67)

Once we have found r∞, then the limit cycle in the original variables is gotten by let-
ting the map a = A I act on all the points of the circle of radius r∞. Mathematically,
using the jargon of sets, I can write:

Limit Cycle = {z |z = a (r∞ cos (θ) , r∞ sin (θ)) such θ = 0 → 2π } . (5.68)

9Consult supplemental Chap.10 to see that one must choose the phasors judiciously to insure this
simple interpretation beyond linear matrices.

http://dx.doi.org/10.1007/978-4-431-55803-3_3
http://dx.doi.org/10.1007/978-4-431-55803-3_10
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5.5.2 Computation of R of Eq. (5.62): Co-sinking Map

On p. 132 at item 3, I mentioned that there are two ways to get an invariant in the one-
resonance case. One can take the logarithm of a map (as described in supplemental
Chap. 11) or one can perform a diverging normal form and then get the invariant
nevertheless. The same is true here.

Here the concept of a co-moving map is simple: any linear rotation commutes
with the map of Eq. (5.62). One can check this directly with Lie brackets or just by
using a little logic: the normalised map is a sink near the origin which is rotationally
invariant and therefore it should commute with a rotation.

Therefore I consider the map

Rc = exp

((
i2πν1ϕ+

−i2πν1ϕ−

)
· ∇
)
R. (5.69)

The first factor in Eq. (5.69) is a rotation of angle −2πν1 and consequently Rc has
no linear tune and thus is near the identity. If you think of this map as a sink (or
toilet bowl), in this co-moving frame the water flows, linearly, straight into the sink
hole. In a numerical calculation it is best to take the logarithm of this vortex free sink
following supplemental Chap. 11.

T ′ · ∇ =
(

i2πν1ϕ+
−i2πν1ϕ−

)
· ∇ + log (Rc) . (5.70)

I can also do a complete normalisation ofR removing the tune shifts and nonlinear
damping and then use the canonical transformation to get T ′. This technique is
useful in analytical calculations. The resulting normal form diverges at the limit
cycle; however, as in the case of a single resonance, the divergence is removed in the
calculation of the single Lie exponent. The reader is invited to look at p. 130–131
where I outline the logic of this procedure.

The next step consists in computing r∞ which requires the solution of an algebraic
polynomial equation with real coefficients.

5.5.3 Example Program for the Limit Cycle of Fig. 5.5b

The program which analyses Eq. (5.60) and computes its limit cycle can be found
in Appendix L. I will only show here the normalisation part and the computation of
the limit cycle. I first start with the normalisation:

call c_normal(m,n) ! (4)

if(normalise) then ! (5a)

http://dx.doi.org/10.1007/978-4-431-55803-3_11
http://dx.doi.org/10.1007/978-4-431-55803-3_11
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remove_tune_shift=.true.

m_n=n%a_t**(-1)*m*n%a_t

call c_normal(m_n,n_n)

m_n=to_phasor()*m_n*from_phasor()

a1= to_phasor()*n_n%a_t**(-1)*from_phasor()

call flatten_c_factored_lie(n_n%ker,vf)

T_prime=a1*vf

else ! (5b)

m_n=to_phasor()*n%a_t**(-1)*m*n%a_t*from_phasor()

vf%v(1)=+i_*(1.d0.cmono.1)*(twopi*n%tune(1))

vf%v(2)=-i_*(1.d0.cmono.2)*(twopi*n%tune(1))

R_c=exp(vf,m_n)

T_prime=log(R_c)

endif

radius=sqrt(4*alpha/(2*cos(twopi*nu)**2+1)) ! (6)

rad0=radius; write(6,*)"naive average radius =",radius;

Themapm is normalised at line (4). The logical (boolean) parameternormalise
is defaulted to falsewhich forces the logarithm to be computed rather than performing
a secondary “diverging” normalisation. So following the “else” branch, we can see
that the map m is put into the normalised phasors’ basis and the result is plugged
into m_n. On the next three lines, the vector field of the linear part is created and
used to produce the mapRc. This implements Eq. (5.69). As for the logarithm, i.e.,
Eq. (5.70), it is implemented on the next line where T_prime is extracted. Notice
that the addition of the linear vector field to produce the full T ′ is not necessary if
only the computation of the limit cycle is desired. Therefore it is left out. Line (6)
evaluates the naive average formula of Eq. (5.61).

In the next part, the code solves Eq. (5.67) using 10 steps of a Newton search at
line (8). I did not use any special tools of the library FPP but constructed “by hand”
the polynomial of Eq. (5.67) at line (7) and its derivative which is needed in a Newton
search.

The final step is the construction of the limit cycle set at lines (9a) and (9b). First
a circle of radius r∞ is created with 1000 rays and then the canonical transformation
n%a_t is applied on each ray. This implements the set of Eq. (5.68). This set of
1000 rays is printed in the file plot.dat.

call kanalnummer(mf,"plot.dat")

call kanalnummer(mf1,"naive.dat")

ns=1000

do i=1,ns

m%v(1)=radius*cos(twopi*i/ns) ! results of perturbation

theory ! (9a)

m%v(2)=radius*sin(twopi*i/ns)

m=n%a_t.o.m !A_t(z) where z=(radius*cos(twopi*i/ns),radius*sin



5.5 A Map with a Limit Cycle: Akin to a Resonance 149

(twopi*i/ns)) ! (9b)

z(1)=m%v(1).sub.’0’

z(2)=m%v(2).sub.’0’

write(mf,*) z

z(1)=rad0*cos(twopi*i/ns) ! naive result

z(2)=rad0*sin(twopi*i/ns)

write(mf1,*) z

enddo

close(mf)

close(mf1)

It is the file plot.dat which was plotted on Fig. 5.5b and produced the white,
yellow and green curves.
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Chapter 6
Spin Normal Form

Abstract In this chapter I extend the concept of normal form to the spin-orbit map
when spin is a spectator. This leads to the introduction of the invariant spin field or
ISF. Every concept of the harmonic system extends to spin: Courant-Snyder, phase
advance, one resonance, etc. I do not discuss the addition of modulated magnets:
they are trivially added on top as additional dimensions.

Keywords Spin · Linear · Nonlinear · Invariant spin field (ISF) · Isolated
resonance · Abell-Barber factorisation

6.1 Introductory Verbiage on Spin in the Code PTC

In accelerator physics it is sufficient to consider spin as a spectator: spin is affected
by the orbital motion but the orbital trajectory is not affected by spin. In the example
code PTC, three spin directions are carried by the type probe_8 (or probe for the
usual real numbers):

type probe_8
type(real_8) x(6) ! Polymorphic orbital ray
type(rf_phasor_8) AC ! Modulation of magnet
real(dp) E_ij(6,6) ! Envelope for stochastic radiation
type(spinor_8) s(3) ! Polymorphic spin s(1:3)
...

Type spinor_8 (as well as type spinor) contains the 3 spin directions (sx , sy, sz):

type spinor
real(dp) x(3) ! x(3) = (s_x, s_y, s_z) with |s|=1

end type spinor

type spinor_8
type(real_8) x(3) ! x(3) = (s_x, s_y, s_z) with |s|=1

end type spinor_8

To get an accurate one-turn Taylor map, probe_8 is initialised with the orbital
closed orbit (with or without radiation). Because spin is a spectator (in PTC), the

© Springer Japan 2016
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closed orbit does not depend1 on spin. Spin is initialised with the three independent
directions ex = s(1)%x(1 : 3) = (1, 0, 0), ey = s(2)%x(1 : 3) = (0, 1, 0) and
ez = s(3)%x(1 : 3) = (0, 0, 1). If the spin was not a spectator, PTC would have
to be structured differently. In that case, in the SO(3) configuration, spin would be
represented by three polymorphs whose constant part would be the spin closed orbit.

Notwithstanding this spectator caveat, everything proceeds as usual in the tracking
code. To get the one-turn map, I add the closed orbit to the identity map in the usual
fashion:

!!!! Polymorphic probe is created in the usual manner
id_s=1

xs=xs0+id_s ! xs is probe_8, xs0 is a probe with the closed orbit.

!!!! get spin polymorphic probe after one turn
call propagate(als,xs,state,fibre1=1)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! Copy probe_8 into a complex damap
! because we use the complex package for normal forms
c_map=XS
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!! one resonance is left in the map
c_n%nres=1
c_n%m(2,1)=1 ! the
c_n%ms(1)=1 ! spin tune
! so the resonance is n_y + n_spin = integer
call c_normal(c_map,c_n,dospin=my_true)

In the above code fragment, the c_damap ID_S is set to unity. I recall for the
reader that a c_damap is defined as:

type c_damap
type (c_taylor) v(lnv)
integer :: n=0
type(c_spinmatrix) s
complex(dp) e_ij(6,6)
end type c_damap

Thec_spinmatrixid_s%s contains thenine entries of the spinmatrixid_s%s%s
(3,3). The map is added to the orbit and I proceed as usual. The object is tracked
for a single turn. I then put back the probe_8 XS into the map c_map which is then
normalised.

In this particular example, one resonance is left in the map: νy + νspin = n.
This is done, for example, if the purpose of the calculation is to estimate the loss
of polarisation due resonance crossing via the Froissart-Stora formula. I will first
concentrate on the full normalisation: no resonances.

1This is a bit analogous to the case of the cavity free Jordan normal form described in Sect. 4.2
because time (or z6) is also a spectator. But the analogy stops here because the normal form for the
spin will be akin to an oscillator as we will see.

http://dx.doi.org/10.1007/978-4-431-55803-3_4
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6.2 The Normal Form for Spin on the Closed Orbit: n0

Let me introduce some notation for the map which is reflected in the library FPP. I
start with a map of type c_damap. Mathematically it can be written as follows:

T = (m, S) (6.1)

where m is an orbital map and S is a spin matrix that depends on the orbit. This map
acts on a ray z and a spin vector s as follows:

T (z, s) = (m(z), S(z)s) . (6.2)

The matrix for the spin is evaluated at z and multiplies onto the vector s.
Next I need to tell you how one concatenates two such maps. If a beam line #1 is

followed by beam line #2, then the spin map for the full beam line is given by:

T2 ◦ T1 = (m2, S2) ◦ (m1, S1)

= (m2 ◦ m1, S2 ◦ m1S1) . (6.3)

The matrix S2 ◦ m1 S1 is simply the product of S2S1 where S2(z) is evaluated at
z = m1(z) with z = (x, px , y, py, z5, z6). The phase space can be, depending on
the situation, the transverse phase space or the full 6-dimensional one. Modulation
clocks can also be added. For example, if we have 3 modulation clocks, the phase
space dimension2 can be potentially 12.

From now on, if a single index is used (or if none are used), the map is the one-turn
map as some position s. For example the one-turn map around the closed orbit (or
fixed point) at s, I will denote as follows:

Ts = (ms, Ss) . (6.4)

Thematrix Ss(z) is a function of the orbital+clock variables. However on the fixed
point whose coordinates will be 0 ≡ (0, 0, . . . , 0) without loss of generality, it is
really easy to raise Ts to a power

T k
s ( 0, s ) = ( 0, Sk

s (0)s ) . (6.5)

Equation (6.5) simply reflects the fact that on the closed orbit, the matrix S for the
spin is a constant matrix turn after turn. This matrix is a rotation and thus contains
an invariant direction denoted as n0. We have

Sk
s (0)n0 = n0 . (6.6)

2FPP allows as many dimensions as the computer memory permits; PTC, the example code, has
only one clock at the moment, so the maximum dimension is 8.
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I drop, for the time being, the index s keeping in mind that I am dealing with the
one-turn map at some arbitrary s. The matrix S(0) can be expressed in terms of n0

and its rotation angle θ0 around n0:

Sk
s (0) = exp (k θ0 n0 · L) . (6.7)

The matrices Li are the usual generator of rotations obeying the commutation rela-
tions of the rotation group:

[
Li , L j

] = εi jk Lk . (6.8)

They are

L1 =
⎛

⎝
0 0 0
0 0 −1
0 1 0

⎞

⎠ L2 =
⎛

⎝
0 0 1
0 0 0

−1 0 0

⎞

⎠ L3 =
⎛

⎝
0 −1 0
1 0 0
0 0 0

⎞

⎠ . (6.9)

I will refer to L1,2,3 as Lx,y,z most of the time.3

As long as the particle is on the closed orbit, n0 is an invariant direction; the spin
of a particle on this processes around n0. At this point it is so simple that it is not
necessary to introduce the concept of a normal form. But since things will get a little
obscure later, I will introduce immediately a normal form for the spin matrix around
the closed orbit. Indeed, let us pick a direction, say the vertical direction, it is possible
to rotate our frame of reference so as to convert n0 into the vertical direction ey , in
other words:

D−1
0 S(0)D0 = exp

(
θ0L y

)
. (6.10)

Two very important things should be noted:

1. The normal form is a commutative group, i.e., a rotation around a single axis. It
is completely analogous to the orbital normal form.

2. The matrix D0 is not unique because we can add a fixed rotation around the
y-axis. This is analogous to the orbital case.

Therefore it is not surprising that the concept of phase advance will be identical
to that of the orbital case. In fact, once we define the full normal form around any
orbit, everything we know about the orbital motion will carry over to the spin.

Additionally, as first noticed by Dan Abell,4 everything we know about the one-
resonance normal formin the orbital case will also carry over to spin! It is really

3My choice for θ0 produces, unfortunately, a negative spin tune. It is not wrong, but too late to
change. The reader is invited to put a minus sign if he compares with other treatments.
4Chinese whispers via Desmond Barber.
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conceptually powerful that all the results of Sect. 5.4 carry over. As I admit later, I
only realised this fact while writing this book!

6.3 The Nonlinear Normal Form for the Invariant Spin
Field n(z)

6.3.1 Short History and Comments on the Mysterious ISF
n(z)

I must point out that the initial elucidation of this topic, based on Soviet work, was
done byYokoya of KEK in Ref. [1]. Yokoya published aHamiltonian treatment using
generating functions and later a treatment with Lie methods. I do not recommend a
first reading of these Hamiltonian treatments, since they are in my view less faithful
to the “code.” This is the message of this book. But I feel compelled to give credit to
Yokoya since he was the first person to explain to the “West” the normal form for the
spin and the mysterious vector n first introduced by Soviet physicists. This vector is
called the invariant spin field (ISF) by Barber and collaborators.

My own understanding of the ISF was born when I was privileged to listen to a
private lecture on the topic by Dr. Desmond Barber of DESY in 2009. It started with
the obvious definition of n0, the invariant spin direction on the closed orbit, which
Barber generalised for my own benefit.

Barber’s explanations were not based on normal forms. Here I will start with
normal form and state Barber’s result, namely that the ISF n is a generalisation of n0

and that it obeys a very special equation. The ISF obeys an equation which we will
deduce from the normal form later:

S(z)n(z) = n(m(z)) or Sn = n ◦ m . (6.11)

Equation (6.11) states that there exists (perhaps) a vector n(z) whose transformation
under the spin matrix S(z) is the same as its transformation under the map m. This
equation trivially applies to n0 since it is a constant under the application of S(0)

and the closed orbit is by definition a constant, i.e., m(0) = 0.
For an arbitrary z, Eq. (6.11) implies that if we follow n after k turns, the answer

is simply n ◦ mk . Thus the Fourier spectrum of n ◦ mk will not contain the spin
frequency. This object behaves as if spin motion did not exist. If viewed as a vector
field, the entire three dimensional field n(z) is left invariant under the action of the
full spin-orbital map T .

Obviously, if a particle at coordinate z starts with a spin slightly different from
n(z), the actual spin will move around the axis n(z) and its spectrum will contain
the spin tune as well as the orbital tunes.

http://dx.doi.org/10.1007/978-4-431-55803-3_5
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6.3.2 The Normal Form and Why We Get n(z) from It

Allow me to define the normal form for the full nonlinear spin map and deduce the
ISF from the normal form. First, since the spin is a spectator, I can initially normalise
the orbital part using a transformation Uorb:

Uorb = (a, I ) . (6.12)

The result will be

Norb = U−1
orb ◦ (m, S) ◦ Uorb = (r, Sorb) (6.13)

where r is the usual amplitude dependent rotation of the normalised orbital phase
space. Sorb is a matrix which depends on the normalised orbital phase space:

Sorb(z) = exp (ω(z) · L) . (6.14)

The first delusion one might entertain is to assume that ω(z) is proportional to n(z)
because it is certainly true that ω(0) is just θ0 n0. To check that ω(z) is not invariant,
I apply the square of the map on ω(z) using Eq. (6.3):

T ◦ T (z,ω(z)) = (r, Sorb) ◦ (r, Sorb) (z,ω(z))

= (
r2, Sorb ◦ r Sorb

)
(z,ω(z))

⇒ ω f (z) = exp (ω(r(z)) · L)ω(z). (6.15)

Because ω(r(z)) is not necessarily the same as ω(z), I generally expect that ω f (z) �=
ω(z). The idea of the normal form is to extend Eq. (6.10) to a position dependent
D(z) and write it as a product

D(z) = D0d(z) (6.16)

and apply it to the map Norb of Eq. (6.13):

(
I, d−1D−1

0

) ◦ Norb ◦ (I, D0d) = (
I, d−1

) ◦ (I, D−1
0

) ◦ (r, Sorb) ◦ (I, D0) ◦ (I, d)

= (
I, d−1

) ◦ (r, D−1
0 Sorb D0

) ◦ (I, d) . (6.17)

The spin part of Eq. (6.17) can be factored as

D−1
0 Sorb D0 = exp (a(z) · L) exp

(
θ0 L y

)
, (6.18)

where a(z) does not contain any constant part.
Now I state what the normal form ought to be: one must select d(z) so as to align

the spin in the vertical direction and reduce the orbital dependence on invariants
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alone. Mathematically, it can be written as

(
I, d−1

)
◦
(

r, D−1
0 Sorb D0

)
◦ (I, d) =

(
r, d−1 ◦ r D−1

0 Sorb D0d
)

⇓
(

r, d−1 ◦ r D−1
0 Sorb D0d

)
= (

r, exp
(
θ(J) L y

))
(6.19)

⇓ or equivalently

(r, Sorb) = (I, D0d) ◦ (r, exp
(
θ(J) L y

)) ◦
(

I, d−1D−1
0

)
.

The symbol J represents all the invariants of the orbital normal form r , namely the
action variables, the energy in a cavity-less ring, and the length of the clock hands if
present. As usual, in the normalised space it is easier to extract invariant quantities.
It should be obvious from Eq. (6.19) that the y-direction is the invariant direction or
the ISF in normalised coordinates. Moreover spin precesses around the y-direction
with a constant amplitude dependent spin angle θ(J). As in the case of the orbital
motion, the existence of θ(J), different from linear spin tune θ0, is a generic property
of the orbital dependent spin map. It can be seen at least 3 different ways:

1. First, one can Fourier transform the spin motion on an arbitrary trajectory and
measure the spin precession numerically. The result is not θ0.

2. Secondly, we can simulate resonance crossing and clearly see that it does not
happen at the position in tune space predicted by the zeroth-order tunes if the
orbital amplitude is “large.”

3. Mathematically, as will be obvious at Eq. (6.45), it is impossible to select a
canonical transformation which removes these “tune shift” terms from the map.
They are a fundamental property of the map. This is why, as it is the case of
the orbital motion, these terms are measurable by Fourier transforms. Unlike the
phase advances, they are not an artefact of the normal form algorithm, but an
intrinsic property of the map.

Assuming that this normal form is indeed computable using the spin map (I, d),
I can construct the vector n. First let me rewrite the original map in terms of the
various transformations in Eqs. (6.13), (6.12) and (6.19):

T = (m, S) = U ◦ (r, exp
(
θ(J) L y

)) ◦ U−1

= (a, I ) ◦ (I, D)︸ ︷︷ ︸
U

◦ (r, exp
(
θ(J) L y

)) ◦ (I, D)−1 ◦ (a, I )−1

= (a, I ) ◦ (I, D0d)︸ ︷︷ ︸
U=(a,D)

◦ (r, exp
(
θ(J) L y

)) ◦ (I, D0d)−1 ◦ (a, I )−1

= (
I, D0d̃

) ◦ (a, I ) ◦ (r, exp
(
θ(J) L y

)) ◦ (a, I )−1 ◦ (I, D0d̃
)−1

(6.20)

where d̃ = d ◦ a−1 and D̃ = D0d̃
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Now I consider the action of the map T on the spin-orbit5 vector n defined as
follows

n = D0d̃︸︷︷︸
D̃

ey = D̃ey , (6.21)

and let me act on it using the one-turn map T in its trivial form:

T ◦ (z, n(z)) = (m , S) ◦ (z, n(z)) = (m(z), Sn(z)) . (6.22)

Next, I use the normal form description of the map T , that is to say, Eq. (6.20), and
act on n again:

T ◦ (I, D̃
) ◦ (z, ey

) = (
I, D̃

) ◦ (a, I ) ◦
(

r, eθ(J) L y
)

◦ (a, I )−1 ◦ (I, D̃
)−1 ◦ (I, D̃

) ◦ (z, ey
)

= (
I, D̃

) ◦ (a, I ) ◦ (r, exp
(
θ(J) L y

)) ◦ (a, I )−1 ◦ (z, ey
)

= (
I, D̃

) ◦ (m, exp
(
θ(J ◦ a−1) L y

)) ◦ (z, ey
)

= (
I, D̃

) ◦ (m(z), ey
)

= (
m(z),

{
D̃ ◦ m

}
ey
)

↓ because ey is a constant

= (
m(z), D̃ey ◦ m

)
. (6.23)

Comparing the last line in (6.23) and Eq. (6.22), I conclude the famous equation
obeyed by the ISF n = D̃ey :

Sn = n ◦ m . (6.24)

The two perpendicular directions to n, l = D̃ex and m = D̃ez define the axes
around which spin phase advance is measured.

6.3.3 The Algorithm for the Spin Normal Form

The first step is the computation of D0. I will not say much about it except that it
must be done exactly to machine precision. It is really an exercise in linear algebra
and Gram-Schmidt orthogonalisation. Of course, as in the orbital case, we have an
infinite number of choices. This is only relevant if a phase advance is needed and
in analytic calculations: this situation mirrors the Courant-Snyder choice. At present
all we need to know is that we have some D0. Therefore I am at Eq. (6.18) and need
to go to the next step.

5“Orbit-spin” vector might be a better name given the order I chose!
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First it is necessary to factorise the matrix d(z) of Eq. (6.13):

d = d1d2 · · · di−1di · · · . (6.25)

Each factor di removes the i th-order in the perturbative parameter. The order can
be defined in many6 ways. Here it will be the order of the homogeneous TPSA
polynomial.

I will start with the first step of the iteration and, in a second phase, write the i th
step. At the first step of the iteration the map is given by

N0 = (
r, exp (a0(z) · L) exp

(
θ0 L y

))

a0(z) =
∑

k=1,∞
ak
0(z). (6.26)

In practice the ∞ in the summation of Eq. (6.26) is the order of truncation of the
calculation predetermined by a call to a subroutine called init in the FPP7 package.

The vector ak
0(z) has kth degree homogeneous monomials in the variable z, the

parameters and the clock variables for magnet modulation. The role of d1 is to
simplify a1

0 into terms proportional to invariants. Generally, at order i , the minimal
and only needed role of di is to simplify ai

i−1. So let me start with d1:

N1 = (
I, d−1

1

) ◦ N0 ◦ (I, d1) = (
I, d−1

1

) ◦ (r, exp (a0(z) · L) exp
(
θ0 L y

)) ◦ (I, d1) .

(6.27)

Writing d1 using an exponent:

d1 = exp
(
δ1 · L

) = exp
(
δ1x Lx + δ1y L y + δ1z Lz

)

= exp
(
δ1y L y + λ1Λ + λ1Λ

)
where Λ = Lx + i Lz

2
. (6.28)

Now I multiply all the factors in Eq. (6.27) to get S1:

N1 = (r, S1)

where S1 = d−1
1 ◦ r ea0(z)·Leθ0 L y d1. (6.29)

6In the normalisation library FPP, it is the degree of the monomial that defines the order of the
perturbation. There is nothing sacred about this: the map D can be “canonised,” that is to say, put
into whatever form the user desires. This is analogous to forcing a matrix into the Courant-Snyder
definition after it has been computed by a nondescript algorithm.
7Again I must emphasize that this is a natural choice in FPP given the TPSA tools upon which it is
built. A better choice would be to discriminate between phase space and parameters.
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I evaluate Eq. (6.29) to leading order in the exponents:

S1 = e−δ1◦r ·L ea0(z)·Leθ0 L y eδ1·L

= e−δ1◦r ·L ea0(z)·Leθ0 L y eδ1·Le−θ0 L y eθ0 L y

= e−δ1◦r ·L ea0(z)·Leeθ0 ad L y δ1·Leθ0 L y

= exp
(−δ1 ◦ r · L + a0(z) · L + eθ0 ad L y δ1 · L + · · ·) eθ0 L y . (6.30)

In Eq. (6.30), I use

exp (ad A) B = exp (A) B exp (−A) where ad A B = AB − B A. (6.31)

I need to select the vector function δ1 in Eq. (6.30) so that to leading order the entire
exponent reduces to a single function θ1

0 (J) multiplying L y . In other words, I must
have

S1 = exp
(−δ1 ◦ r · L + a0(z) · L + eθ0 ad L y δ1 · L + · · ·) eθ0 L y

≈ exp
(
θ1
0 (J) L y

)
eθ0 L y = exp

({
θ1
0 (J) + θ0

}
L y
)
. (6.32)

The matrix S1 is then to leading order a rotation around the y-axis with terms that
depend on the orbital amplitude and parameters. This process must be repeated order
by order until the order of truncation.

I now explain this recursive procedure inmore details. The operator ad L y operates
by taking commutators. For example,

ad L y Lz = [
L y, Lz

] = Lx . (6.33)

Consequently, the operator Λ is an eigen-operator of ad L y :

ad L y Λ =
[

L y,
Lx + i Lz

2

]
= −Lz + i Lx

2
= iΛ. (6.34)

It follows from Eq. (6.34) that

exp
(
θ0 ad L y

)
Λ = exp (iθ0)Λ. (6.35)

The last line of Eq. (6.30) contains the Lie operator representation of the non-constant
part of the rotation to leading order. It is permissible to replace the nonlinear rotation
r by its linear part R without affecting8 the final result.

8An irrelevant phase will be introduced in the map d; this phase will be modified anyway when the
transformation is “canonised”, i.e., put into a special form such as the Courant-Snyder form in the
case of the linear orbital motion.
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−δ1 ◦ R · L + a1
0(z) · L + eθ0 ad L y δ1 · L = θ1

0 (J) L y

−δ1 · L + (
a1
0(z) ◦ R−1

) · L + eθ0 ad L y δ1 ◦ R−1 · L = θ1
0 (J) L y . (6.36)

θ1
0 (J) is the part of a1

0;y which depends on the orbital invariants only, it is the only
term that remains after normalisation.

Equation (6.36) is solved by going into the phasors’ basis and into the spin eigen-
operators of Eq. (6.28).

a1
0;x Lx + a1

0;z Lz + a1
0;y L y = α1

0Λ + α1
0 Λ + a1

0;y L y

where α1
0 = a1

0;x − ia1
0;z . (6.37)

A similar expansion applies to δ1:

δ10;x Lx + δ10;z Lz + δ10;y L y = λ1
0Λ + λ

1
0 Λ + δ10;y L y . (6.38)

I can now solve. First I look at the term proportional to L y .

δ10;y = 1

1 − R−1

{
a1
0;y − θ1

0 (J)
}

. (6.39)

A similar calculation applies to the term proportional to Λ (and Λ):

λ1
0 = 1

1 − eiθ0R−1
α1
0 (6.40)

where θ0 is the constant part of the spin angle (see Eq. (6.35)).

The entire process is repeated order by order. Now that I have δ1, I can compute
d1 and feed it in Eq. (6.27).

N1 = (
1, d−1

1

) ◦ N0 ◦ (1, d1)

= (
1, d−1

1

) ◦ (r, exp (a0(z) · L) exp
(
θ0 L y

)) ◦ (1, d1)

= (
r, exp (a1(z) · L) exp

({θ0 + θ1} L y
))

. (6.41)

The next iteration can proceed with N2:

N2 = (
1, d−1

2

) ◦ N1 ◦ (1, d2) (6.42)

and so on and so forth!
At this stage it is more revealing to write Eqs. (6.39) and (6.40) at the i th-order

and go deeper into the details:

δi
i−1;y = 1

1 − R−1

{
ai

i−1;y − θ i
i−1(J)

}
and λi

i−1 = 1

1 − eiθ0R−1
αi

i−1. (6.43)
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To seemore explicitlywhat Eq. (6.43) entails, I write it for phase space in two degrees
of freedom and no parameters. Thus assuming that I have

{
ai

i−1;y − θ i
i−1(J)

} =
∑

|k|=i

Ai
y; k(x + i px )

k1(x − i px )
k2(y + i py)

k3(y − i py)
k4 ,

(6.44)

then it follows that

δi
i−1;y =

∑

|k|=i

Ai
y; k

1 − exp
(
i
{
(k1 − k2)μx + (k3 − k4)μy

})uk1uk2vk3vk4 (6.45)

where u is the horizontal phasor x + i px and v is the vertical phasor y + i py . A
similar equation applies to λi

i−1:

if αi
i−1 =

∑

|k|=i

Bi
k(x + i px )

k1(x − i px )
k2(y + i py)

k3(y − i py)
k4 , (6.46)

then it follows that

λi
i−1 =

∑

|k|=i

Bi
k

1 − exp
(
i
{
θ0 + (k1 − k2)μx + (k3 − k4)μy

})uk1uk2vk3vk4 . (6.47)

The reader will notice that the denominator of Eq. (6.47) contains the spin angle.
Sometimes, when computing the effects of a spin resonance, one deliberately leaves
certain terms out of Eq. (6.47). But, in the case of a complete normalisation, every-
thing goes away besides the amplitude/parameter dependent angle shifts represented
by θ i

i−1(J).

6.3.4 A Code Implementation for the Spin Normal Form

In this section I flesh out the implementation using a code fragment of the example
library FPP9 and correlate it with the theory outlined in Sect. 6.3.3. The incoming
map m1 is already normalised in the orbital part and is in phasors’ basis.

call c_normal_spin_linear(m1,m1,n%AS,n0) ! (1)

ri=1 ; ri%s=m1%s.sub.0 ; ! exp(theta_0 L_y) (2)
egspin(3)=ri%s%s(1,1)-i_*ri%s%s(1,3)
egspin(2)=1.0_dp

9All my code fragments, so far, were from programs in the appendices. You will need to find FPP
and open the appropriate file called Ci_tpsa.f90 if you want to see beyond this book. Of course, if
you are running the examples, you already have FPP.
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egspin(1)=ri%s%s(1,1)+i_*ri%s%s(1,3)
!!! tune is taken from egspin(1) or egspin(3) spin_tune_def= +/- 1

n%spin_tune=aimag(log(egspin(2-spin_tune_def))/twopi)
! because exp(a L_y) x = x- a z + O(a**2)

ri=ri**(-1) ! exp(-alpha_0 L_y) (3)

The first step at line (1) is the computation of the zeroth-order transformation
D0, Eq. (6.10), which is stored in n%AS. This storage space will eventually contain
all the spin transformation D(z) of Eq. (6.16). m1 is transformed by D0 inside
c_normal_spin_linear. Themapri of line (2) and (3)will eventually contain
at line (3) the map exp(−θ0L y).

nonl=m1.sub.1 ; nonl%s=1 ;nonl=nonl**(-1) ! R_0ˆ-1 (4)

do i=1,no+2

mt=m1*ri ! S*exp(-theta_0 L_y) (5)
call c_find_om_da(mt%s,n0) ! exp(n0.L) (6)
call c_n0_to_nr(n0,n0) ! n0 = > eigen-operator of spin (7)
n0=n0*nonl ! no * Rˆ-1 (8)

nr=0
do k=1,3

j=1
do while(.true.)

call c_cycle(n0%v(k),j,v ,je); if(j==0) exit;
call check_kernel_spin(k,xy%n,je,removeit)

if(n%nres>0.and.removeit) then
do kr=1,n%nres
call check_resonance_spin(k,xy%n,je,kr,n%ms,n%m,removeit)
if(.not.removeit) then

exit
endif
enddo

endif
if(removeit) then

lam=egspin(k)
do l=1,xy%n
if(coast(l)) cycle
lam=lam*eg(l)**je(l)

enddo
nr%v(k)=nr%v(k) +(v.cmono.je)/(1.0_dp-lam) ! (9)

endif
enddo ! cycle

enddo ! k
call c_nr_to_n0(nr,nr) ! (10)

AS=1 ; AS%s=exp(nr)*AS%s ! (11)

n%AS=n%AS*AS ! (12)

m1=c_simil(AS,m1,-1)

enddo

n%AS=from_phasor()*n%AS*from_phasor(-1)
n%AS=n%A_t*n%AS*n%a_t**(-1)

At line (4), I store the inverse of the linear rotation of the orbital map. Then the
“do loop” over the order begins. Line (5) extracts the non-constant part of the spin
matrix: namely the first factor of Eq. (6.26), exp (ai−1(z) · L) where i is the loop
index. Equation (6.26) described the first iteration i = 1.
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Line (6) performs the actual computation of ai−1(z) which it stores in n0. Line
(7) puts n0 in the eigen-operator basis as in Eq. (6.37).

At line (8), the linear orbital rotation R−1 is substituted into ai−1(z) as in the
second line of Eq. (6.36).

The routine c_cycle cycles over all the monomial of the polynomial being
analysed. The routine check_kernel_spin returns “removeit=false” if the term
belongs to a tune shift. Finally, the routine check_resonance_spin scans for
spin resonances the user may want to keep in the map.

Most important is line (9): it reproduces Eqs. (6.45) and (6.47) for k = 2 and
k = 1, 3 respectively. Line (10) returns the result into the Lx , L y and Lz basis.
Finally line (12) increments d(z) as in Eq. (6.25).

6.4 Leaving One Resonance in the Spin Map

In this section I will present two types of resonances which might affect the spin.
The first one is a pure orbital resonance. I will not discuss it in detail. The second one
is the classical spin resonance which involves the spin tune. I will apply the theory
of the co-moving map on the spin resonance. I call the resulting factorisation the
“Abell-Barber factorisation” for reasons that will become clear.

6.4.1 Two Cases for the Spectator Spin: Orbital
and Spin-Orbit

As in the case of the orbital map, it is possible to leave a single resonance in the map.
There are two distinct possibilities:

1. A single orbital resonance is left in the map. This was discussed in Sect. 5.4. For
example the beam can be on the orbital resonance 3νx = 1 but away from any
spin resonance.

2. The beam is near a spin resonance or slowly crossing a spin resonance, for example
−νx + νy + νspin = 0. Because the spin is a spectator, I expect such a resonance
to affect only the spin.

I will now dispatch case 1. When on an orbital resonance, the ISF n can be
computed; the normalised direction exists and it can be set to ey .

Can the spin angle rotation around ey be expressed in terms of the invariants of
the orbital map? The answer is a semi-learned: “I am not sure.” As I have shown in
Sect. 5.4, the orbital invariants are N − 1 actions and an invariant with the topology
of that single resonance. The spin angle, just like the orbital map, will depend on the
N −1 circular invariants and the generators of that single resonance. For example, in

http://dx.doi.org/10.1007/978-4-431-55803-3_5
http://dx.doi.org/10.1007/978-4-431-55803-3_5
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the case of the 3νx in two degrees of freedom, the spin angle will depend on objects
of the form

uk1uk2vk3vk4 k1 − k2 = 3m and k3 − k4 = 0, (6.48)

where u, u, v and v are the phasors defined at and below Eq. (6.45).
The problemhere is that the invariant function of the orbitalmap and the functional

form of the angle spin rotation, while being made of objects belonging to the same
resonance family, will in general be different and non-commuting. So the angle of
rotation will change along the orbital trajectory.

So the angle of rotationwill depend on the position in phase space but only through
functions that have the symmetry10 of the resonance.

Case 2 is what interests us here. In this case, the problem of small denominators
will arise at Eq. (6.47). The algorithm must be modified to avoid the resonance.

λi
i−1 =

∑

|k| = i
k �= kres

Bi
k

1 − exp
(
i
{
θ0 + (k1 − k2)μx + (k3 − k4)μy

})uk1uk2vk3vk4 .

(6.49)

For example, in the case of −νx + νy + νspin = 0, the terms to avoid in Eq. (6.49)
are of the form

kres such that k1 − k2 = −1 and k3 − k4 = 1. (6.50)

I complete the recursive algorithm as done before, the final result, equivalent to
Eq. (6.20), is:

T = (m, S) = (
I, D0d̃

) ◦ (a, I )

◦ (r , exp
(
θ(J) L y

)
exp

(
αΛ + αΛ

)) ◦ (a, I )−1 ◦ (I, D0d̃
)−1

(6.51)

where d̃ = d ◦ a−1.

The Lie exponent αΛ + αΛ drives a single resonance. I explore the implication
of this in the next section.

10The one-resonance normal form is known up to a transformation which depends on the family
of the resonance. It would be an interesting problem to determine if one can use this freedom to
“align” the spin tune with the orbital invariant. In that case they would commute and the spin tune
would stay constant on the trajectory as in a full normalisation of the spin. I think that the answer
is yes but I do not know for sure.
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6.5 The Abell-Barber Co-moving Map for the Spin
Orbit Case

In Sect. 5.4, I discussed the one-resonance normal form. In particular, I introduced
the concept of a co-moving map. This co-moving map can be computed easily in the
normalised form of the map.

In the case of a single spin resonance, the theory of Sect. 5.4 applies. In fact
it is even simpler because the spin is a spectator: orbital planes are automatically
orthogonal in the normalised frame; moreover the one-resonance spectator map is
exactly solvable.

Unknown knowns

U.S. Secretary of Defence Donald Rumsfeld in a famous verbal “sortie” once said:

Reports that say that something hasn’t happened are always interesting tome, because
as we know, there are known knowns; there are things we know we know. We also
know there are known unknowns; that is to say we know there are some things we
do not know. But there are also unknown unknowns – the ones we don’t know we
don’t know. And if one looks throughout the history of our country and other free
countries, it is the latter category that tend to be the difficult ones.
The Marxist philosopher Slavoj Z̆iz̆ek also stated that there are also “unknown knowns”

where we do not discern what we already know. In my case, plain stupidity is what caused
the following “unknown known.”

The factorisation I will present here is just the factorisation of the one-resonance orbital
map of Sect. 5.4 applied to the spin-orbit map. If I had believedmy own propaganda, I would
have found this out by myself and this section would have started with the ever arrogant: “it
obviously follows after a few trivial steps that …blah blah blah ”.

However because I lack expertise in spin physics, my brain has a tendency to focus too
much on the differences which I must learn than on the similarities. This allowed something
that was known to become literally unknown!

So, I must admit that it is through the unpublished work of Abell and Barber that this
section emerged. So if the reader has trouble in following, he can be reassured that the author
could not follow his own theory to its logical end!

For all these reasons, I shall refrain from taking any credit and call the factorisation of
the spectator spin single resonance map the “Abell-Barber” factorisation. I also elevated
this entire discussion to a section of its own rather than a subsection of Sect. 6.4 so as to
emphasize my own lack of foresight.

6.5.1 N0 and the Co-moving Spin Map

The starting point must be the map with a single spin resonance which I can write
as:

http://dx.doi.org/10.1007/978-4-431-55803-3_5
http://dx.doi.org/10.1007/978-4-431-55803-3_5
http://dx.doi.org/10.1007/978-4-431-55803-3_5
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N = (r, S) = (r, I ) ◦ (I, S)

where S = exp
(
ΔL y + αΛ + αΛ

)
. (6.52)

The map r is an orbital amplitude dependent rotation. The function α contains a
single resonance. For example, for the −νx +νy +νspin = p resonance, the function
α has the form:

α =
∑

m,n≥0

αmnumum+1vn+1vn

=
∑

m,n≥0

αmn(2Jx )
m+ 1

2
(
2Jy

)n+ 1
2 exp

(−i
{−Φx + Φy

})

= (
4Jx Jy

) 1
2
∑

m,n≥0

αmn(2Jx )
m
(
2Jy

)n
exp

(−i
{−Φx + Φy

})
. (6.53)

The form of Eq. (6.53) reveals the differencewith the orbital motion. First one notices
that it has a single phase dependence; multiples of that phase are not allowed. This
follows from the linearity of the motion with respect to the spin directions. Secondly,
all the orbital actions are invariant and decoupled from the spin. This follows from the
spectator aspect of the spin motion. I will now take full advantage of these features
following Abell-Barber.

Since all the actions J are invariant, I can construct a map made of invariants
which sit exactly on the resonance by choosing the proper spin tune. For example,
in the case of the −νx + νy + νspin = p resonance, let me assume that the orbital
map r is generated by the Lie operator −H(Jx , Jy), i.e.,

r = exp
(: −H ( Jx , Jy ) :) I . (6.54)

Thus for −νx + νy + νspin = p, θr is selected at a given Jx and Jy to satisfy

− ∂ H

∂ Jx
+ ∂ H

∂ Jy
+ θr = 2πp. (6.55)

I then define a spin-orbit map N0 which has exactly a spin tune of θr and the same
orbital tune as N :

N0 = (r, I ) ◦ (I, S0) = (I, S0) ◦ (r, I )︸ ︷︷ ︸
Commutes because

θr depends only on actions

(6.56)

where S0 = exp
(
θr L y

)
.
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Quite obviously the spin angle θr is generally a function of the orbital actions and
other invariants. That completely defines N0. I can re-expressed the map N using N0

to isolate the resonance.

N = N ◦ N−1
0 ◦ N0 = (r, S) ◦ N−1

0 ◦ N0

= N−1
0 ◦ N0 ◦ (r, S) ◦ N−1

0︸ ︷︷ ︸
=(r,S)

◦N0

= (
r−1, S−1

0

) ◦ (r, S)
︸ ︷︷ ︸

(I,S−1
0 S)

◦N0 = (I, Sc) ◦ N0 (6.57)

where Sc = exp
(
2π

{
δL y + εΛ + εΛ

})
. (6.58)

In Eq. (6.57), I used the fact that N0 commutes with the one-resonance operator
left in the map. Moreover since the commutators of such resonances form a closed
set, we are indeed assured that the form of ε in Eq. (6.57) is identical to that of α in
Eq. (6.52), that is to say:

ε =
∑

m,n≥0

εmnumum+1vn+1vn

=
⎧
⎨

⎩
(
4Jx Jy

) 1
2
∑

m,n≥0

εmn(2Jx )m(2Jy
)n
⎫
⎬

⎭
︸ ︷︷ ︸

|ε|

exp

⎛

⎜⎜⎝−i
{−Φx + Φy

}
︸ ︷︷ ︸

ψ

⎞

⎟⎟⎠ = |ε| exp (−iψ) .

(6.59)

Equation (6.57) is totally equivalent to Eq. (5.47) of the orbital resonance. This
factorisation was first revealed to me by Abell11 and Barber. So I call it the
Abell-Barber factorisation: the reader appreciates that it is an application of the
one-resonance normal form approach of Sect. 5.4.3 shamefully overlooked by
yours truly…

Now I will proceed to solve this map exactly: this is due to Barber.

6.5.2 Solution for the ISF n of the One-Resonance Map
of Eq. (6.57)

Let me rewrite the co-moving map Sc of Eq. (6.57):

11Chinese whisper via Barber.

http://dx.doi.org/10.1007/978-4-431-55803-3_5
http://dx.doi.org/10.1007/978-4-431-55803-3_5
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Sc = exp
(
2π

{
δL y + εΛ + εΛ

}) = exp (2πνn · L)

ν =
√

δ2 + |ε|2 and n = 1√
δ2 + |ε|2

(|ε| cos (ψ) , δ, |ε| sin (ψ)) . (6.60)

On a trajectory, δ, |ε| and thus ν are constants since they depend only on the actions.
The phase ψ is the angle of the resonance and contains the basic orbital phase space
dependence on a given orbit. In our example −νx + νy + νspin = p, the angle ψ is
given by

ψ = −Φx + Φy . (6.61)

The claim of this section, which I will now prove, is that the vector n defined in
Eq. (6.60) is the ISF of the full one-resonance map N = Sc ◦ N0 of Eq. (6.57). This
fact is a direct consequence of the commutator relation [N0, Sc] = 0 which is how
N0 was constructed in the first place.

There are two ways to prove that n is the ISF. One is the normal form route and
the other approach consists in showing directly that Eq. (6.11), i.e., “Sn = n ◦ m” is
satisfied.

Simple Lemma

I will quote a property of rotations which I leave to the reader to prove. It is very useful in
purely analytical calculations. Consider two spin rotations S and R defined in terms of their
Lie exponents, then the following is true:

RSR−1 = exp (ρ · L) exp (σ · L) exp (−ρ · L)

= exp (σ · exp (adρ · L) L) = exp ((Rσ ) · L) . (6.62)

A similarity transformation defined by R that acts on the Lie operators of a matrix S, i.e. on
the angular momentum matrices Lx,y,z , is equivalent to its matrix R acting on the invariant
direction σ of the matrix S.

6.5.2.1 Proof by Assuming a Normal Form

I will start with the normal form approach. First, ignoring N0, I will imagine a rotation
which normalises Sc alone:

Sc = exp (2πνn · L) = exp (ω · L) ◦ exp
(
2πνL y

) ◦ exp (−ω · L) . (6.63)

It follows from the lemma that

n = exp (ω · L) ey . (6.64)

However I still need to prove that it is the ISF.
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I now use a very important fact: the vector ω is also made of the same reso-
nance family because this family forms a closed set under commutation. Therefore
exp (ω · L) commutes with N0. I can use this to rewrite the total map N :

N = Sc ◦ N0

= exp (ω · L) ◦ exp
(
2πνL y

) ◦ exp (−ω · L) ◦ N0

= exp (ω · L) ◦ N0 ◦ exp
(
2πνL y

) ◦ exp (−ω · L)

= exp (ω · L) ◦ r ◦ S0 ◦ exp
(
2πνL y

) ◦ exp (−ω · L)

= exp (ω · L) ◦ r ◦ exp
(
2π {ν + νr } L y

) ◦ exp (−ω · L)

≡ (I, exp (ω · L)) ◦ (r, exp (2π {ν + νr } L y
)) ◦ (I, exp (−ω · L)) . (6.65)

In Eq. (6.65), for a pure spin map, I dropped the cumbersome notation (I, S) and
use S. The same is done for the pure orbital map (r, I ) where I use r . In Eq. (6.65), I
have made extensive use of the commutative property of N0 with a single resonance
type operator. Equation (6.65) has exactly the form of Eq. (6.20)—the normalised
form—and it is thus completely normalised. It follows from previously obtained
results that n is the ISF of this single resonance map.

The magic of the Abell-Barber representation of the Lie map with one spin reso-
nance operates at two levels:

1. First it provides a map “near the identity” which could have an approximate
invariant even if Stern-Gerlach forces were present. This is totally equivalent to
the orbital case and does not merit further elaboration.

2. In the spectator case, as pointed by Barber, the resulting map is trivially solved
as shown above.

Before examining item 2 in Sect. 6.5.3, I will provide a direct proof that n is the ISF
using Eq. (6.11), i.e., “Sn = n ◦ m.”

6.5.2.2 Direct Proof that “Sn = n ◦ m”

I start with N = Sc ◦ N0 = N0 ◦ Sc (Eq. (6.57)) and apply it on vector n at position
(Φx , Φy) in orbital space:

N

(
Φx,y

nΦx,y

)
= N0 ◦ Sc

(
Φx,y

nΦx,y

)

= r ◦ S0 ◦ Sc

(
Φx,y

nΦx,y

)

= r

(
Φx,y

S0Sc;Φx,y nΦx,y

)
=
(

Φx,y + μx,y

S0nΦx,y

)
. (6.66)
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Themap Sc evaluated at the initial phases leaves the ISF evaluated at the same phases
invariant: in fact this is how I defined the vector n. Thus I concluded that

n f inal = S0Scnini tial = S0nini tial . (6.67)

Eq. (6.67) is the plain action of the one-turn spin matrix on the ISF. I must now show
that it is the same substituting the orbital map in the ISF.

To get the result I impose the resonance condition on the Lie operator of Sc as
written in Eq. (6.60):

S0νn · LS−1
0 ◦ r−1 = νn · L

⇓ because ν is invariant under r−1

S0n · LS−1
0 ◦ r−1 = n · L

⇓ because of the lemma

(S0n) · L ◦ r−1 = n · L ⇒ (S0n) · L = n · L ◦ r

=⇒ S0n = n ◦ r . (6.68)

Equation (6.68) in conjunction with Eq. (6.67) proves the desired result: the trans-
formation of n by the spin matrix is the same as the transformation by the orbital
map.

6.5.3 Numerical Behaviour of the One-Resonance ISF

The results derived in the previous section permit a complete solution of the motion
of the ISF in phase space. Combining Eqs. (6.60) and (6.68), I conclude that the ISF
after k turns is

Nkn = 1√
δ2 + |ε|2

(|ε| cos (ψ + km · μ) , δ, |ε| sin (ψ + km · μ))

= 1√
δ2 + |ε|2

{
δey + |ε| cos (ψ + km · μ) ex + |ε| sin (ψ + km · μ) ez

}
.

(6.69)

The above formula can be found in Ref. [2]. It is a result valid strictly speaking only
in normalised space. Let us explore this fact a bit further.

Although formula Eq. (6.69) applies only to the normalised space, it also tells us
what to expect if the effects of the neighbouring distortions (or resonance) are weak.
This is pointed out by Barber in Ref. [2]. In normalised space, we expect the vertical
component of n to stay constant and the other components to oscillate sinusoidally.
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In the absence of nonlinearities or with very weak nonlinearities, I can go back to
the “real” directions of the spin using D0 and the lemma of Eq. (6.62):

W0 = D0 ◦ N ◦ D−1
0

= D0 ◦ exp (2πνn · L) ◦ r ◦ exp
(
θr L y

) ◦ D−1
0

= exp (2πν (D0n) · L) ◦ r ◦ exp (θr n0 · L) . (6.70)

Then, Eq. (6.69) can be rewritten:

Wk
0nnew = Wk

0D0n

= 1√
δ2 + |ε|2

{δn0 + |ε| cos (ψ + km · μ) l0 + |ε| sin (ψ + km · μ) m0} .

(6.71)

In Eq. (6.71) the vectors l0 andm0 are defined by the linear normalisation process and
they define implicitly the spin phase advance. The reader can use a “canonisation”
routine to force them into a form that pleases the Holy See. Again this is strictly
analogous to the orbital phase advance where one must impose the Courant-Snyder
condition. If for some reasons you do not like my “canonisation” routine, you are
free to write your own without fear of excommunication.

What follows now is due to Barber [2]: assuming we are close enough to the
closed orbit, Eq. (6.71) and the formula for the tune, i.e. Eq. (6.60), teach us that we
ought to be able to extract the resonance strength |ε| by some clever manipulation
of tracking data. In particular, if we displace the spin tune until the component of n
(say obtained by averaging techniques) along n0 is 1√

2
, then the difference in spin

tune from the resonance condition will be the resonance strength |ε|.
Additionally, if you follow the spin exactly on the resonance, the vector n will

rotate in the plane perpendicular to n0. In his work, Barber virtually defines these
experimental facts as the condition for a resonance to be isolated. This is very analo-
gous to the item 3, p. 138 where I stated that an orbital resonance is certainly isolated
if its phase plot has the symmetry of the resonance once it is put in linear Floquet
variables. In the spin case, the linear transformation D0 puts the spin map in “linear
Floquet variable.”

I would like here to go back to the map of Sect. 5.4.4.2 and produce some plots
again of this sextupole map near a quarter integer resonance. This will complete the
analogy.

The maps on Fig. 6.1 represent the same system below and above the resonance.
In Fig. 6.1b four bubbles are present. I can say geometrically that the resonance is
isolated and that phase space has been grotesquely deformed. The equivalent of our
n vector, namely a family of closed curves around the origin, has been destroyed and
replaced by something new. There is no doubt looking at Fig. 6.1b that any attempt
to normalise the map into circles will fail beyond the inner separatrix. I do not need
fancy mathematics, just my eyes, to call this case an isolated 4νx resonance.

http://dx.doi.org/10.1007/978-4-431-55803-3_5
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(a) (b)

Fig. 6.1 Sextupole driven resonance in blue with normalised curves in red. a Below the resonance.
b Above the resonance

Despite the obvious presence of four islands, the original system depicted by
the blue curves, does not have the symmetry of the resonance, namely invariance
under 90◦ rotations. In fact there are nonlinear polluting terms which distort the
simple “one-resonance” symmetry. To remove these I perform a nonlinear canonical
transformation12 to 16th-order. The results are the red curves which are obtained by
transforming the blue curves.

The red curves have a perfect four-fold symmetry and therefore the co-moving
map can be computed, i.e., the one-resonance map. The canonical transformation
that permits this is the equivalent of the spin transformation d = d1 ◦ d2 ◦ . . . .

The case of the spin map is analogous to the case depicted on Fig. 6.1a. On that
figure, there are no islands. Therefore the concentric invariant curves exist. But if
you attempt to compute them using a Taylor map, this map will diverge at a location
very near to the location of the unstable fixed points in Fig. 6.1b. This was explained
in detail in Sect. 5.4.4.1. The best you can do with a Taylor map is to remove the
polluting influence of “other” resonance. You then obtained the red curves which
have perfect four fold symmetries.

The situation is analogous with the spin. If we are near a spin resonance which
is greatly affected by the orbital nonlinearities and the “other spin resonances,” the
best we can hope with a Taylor series is to remove these resonances with the map
d = d1 ◦ d2 ◦ . . . . This is necessary even though the vector n, just like the invariants
of Fig. 6.1a, still exist. In the spin case, I have an exact solution given by Eq. (6.69) or
Eq. (6.71), therefore I can see immediately why a Taylor solution will fail very near
the resonance. Attempts to include the removal of the resonant term in Eq. (6.69), is
tantamount to an expansion of Eq. (6.69) in powers of ε with an obvious divergence
if |ε| > δ.

12This is excessive but since it works why not!

http://dx.doi.org/10.1007/978-4-431-55803-3_5
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In summary, if the nonlinearities are large, the fullmap D0 ◦ d(z)must be included.
In that case, we have:

W = D0 ◦ d ◦ N ◦ d−1 ◦ D−1
0 . (6.72)

Just as a reminder, the original total map T prior to normalisation can be written
easily in terms of W . Going back to Eq. (6.51), I can write:

T = (a, I ) ◦ (I, D0d) ◦ (r, exp (θ(J) L y
)
exp

(
αΛ + αΛ

))
︸ ︷︷ ︸

See Eqs. (6.53) and (6.58)

◦(I, D0d)−1 ◦ (a, I )−1

= (a, I ) ◦ (I, D0d) ◦ N ◦ (I, D0d)−1

︸ ︷︷ ︸
W

◦(a, I )−1. (6.73)

W is the full spin-orbit map expressed in the full nonlinear Floquet variables of the
orbital map m where m = a ◦ r ◦ a−1.

Now I will define three vectors. First I imagine that by some miracle the entire
resonance, the function ε, vanishes like a fart in the air! If that was possible, the ISF
would be given by:

n0r (z) = D0d (z) ey . (6.74)

Secondly, I define two perpendicular vectors to n0r , l0r and m0r :

m0r (z) = D0d (z) ex and l0r (z) = D0d (z) ez . (6.75)

In Eqs. (6.75) and (6.74), I explicitly wrote the orbital dependence to emphasize that
these vectors are functions of phase space.

Then, in that basis, I can track the new ISF vector nnew:

Wk
0rn

new = Wk
0rD0dn

= 1√
δ2 + |ε|2

{
δnk

0r + |ε| cos (ψ + km · μ) lk0r + |ε| sin (ψ + km · μ) mk
0r

}
.

(6.76)

The vectors n0r , l0r and m0r are not constants any more; they depend on the position
in phase space.

The evolution described by Eq. (6.76) is analogous to that of the map depicted in
Fig. 6.1a. The evolution is controlled by a dominant term in the map. But it is not
easy to separate that term from the rest of the map without a normal form algorithm.
Certainly if I examine themap away from resonance numerically, I will obtain an ISF
that will approach n0r , but it is not exactly n0r . Thus Eq. (6.76) is a generalisation
of Eq. (6.71) that is correct, but it does not lead itself to purely numerical methods.



6.5 The Abell-Barber Co-moving Map for the Spin Orbit Case 175

At least, I do not know how to proceed purely numerically following the prescription
outlined by Barber; therefore it is not without merit to say, as Barber does, that the
resonance is not really “isolated” in this case.
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Chapter 7
The Nonlinear Spin-Orbital Phase
Advance: The Mother of All Algorithms

Abstract I discuss the phase advance in its grandiose generality. I also include
the concept of “time slip advance.” The phase advance results from the selection
of a particular canonical transformation. I call this selection and factorisation by
the religious term “canonisation.” I show how this is a completely general concept
which extends to nonlinearities and spin. I also contrast the map based theory of the
code with the Hamiltonian case where the concept of phase advance is somewhat
superfluous. Of course the general canonisation routine can be simplified in codes
where speed is important. Here generality is emphasised.

Keywords Generalised Courant-Snyder loop · Phase advance · Factorisation and
canonisation · Lattice functions · Formula evaluation

7.1 Introductory Verbiage on Phase Advance
and “Canonisation”

The reader should focus his attention on the program in Appendix M and attempt to
run it. What follows is a theoretical explanation of that code based on Fig. 7.1: the
universal Courant-Snyder (or Twiss) loop in accelerator jargon. The phase advance
depends on the process for choosing the canonical transformation. It is described in
Sect. 7.7 using the usual step-by-step approach of this book.

This chapter encapsulates all of Courant-Snyder theory as it pertains to the sym-
plectic nonlinear spin-orbital map. It is one theory. It can also include a linearly
damped machine (radiation) if the normal form is made of three linear affine dila-
tions as in Sect. 4.1.1. But I do not discuss this trivial albeit rather unknown case in
this book. I will simply say that in that case there is a phase advance which includes
stretches and rotations and that the only periodic lattice functions are defined in
Sect. 4.1.2: the matrices of the de Moivre representation.

The generality of the Courant-Snyder (or Twiss) loop of this chapter is to be
contrasted with standard treatments where linear, nonlinear, coupled, uncoupled,
spin and no spin, etc. are all scattered over different chapters and if not different
books. While there is nothing wrong in providing special treatments for the case
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Fig. 7.1 Pictorial view of the phase advance

of analytical perturbation theory and for speeding up certain ubiquitous calculations
(say linear lattice functions), it is quite criminal inmyview that the general structure is
never presented in its full glory, fully consistent with, and subservient to the “Code.”
And, as it turns out, compatible with analytical calculations and even Guignard style
perturbation theory: see Chap.8. So here it is.

As it was for the rest of this book, it is expected that you have, or you imagine
having, an analysis package such as my own FPP and that you can program with it or
even modify it. There is nothing revolutionary about this concept: it is the concept of
the numerical recipe library on matrices applied to a large class of nonlinear maps.
So let us start!

Figure7.1 is the analog of Fig. 2.1 except that I added spin. The entire theory
of “phase advance” follows from the fact that the normalised map is a product of
commuting rotations.1 The orbital motion plus spin is made of the stable part of
Sp(2N ) and SO(3): a subgroup of Sp(2N ) × SO(3). This is symbolically depicted
on the left-hand side of Fig. 7.1 which can be quite complicated to grasp even in the
linear case.However the normal form is simple: it is the group SO(2) × · · · × SO(2)︸ ︷︷ ︸

N+1 times

.

This is depicted on the right-hand side of Fig. 7.1.
The topology of the nonlinear normal form is derived from the same trivial struc-

ture except that the angles of rotations depend on all the amplitudes, i.e., on the
radii in the plane of these rotations. In the spectator framework for the spin, nothing
depends on the spin vector itself.

This mathematical jargon appears difficult but it is actually very simple provided
someone has gone to the trouble of producing a normal form algorithm leading to
a factorisation such as that of Eq. (6.20). The next step is to provide what I call in

1Commuting dilations if you have radiation: I do not discuss this case in this code.

http://dx.doi.org/10.1007/978-4-431-55803-3_8
http://dx.doi.org/10.1007/978-4-431-55803-3_2
http://dx.doi.org/10.1007/978-4-431-55803-3_6
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my usual politico-religious jargon a “canonisation” routine that uniquely defines the
canonical transformation. In the case of my package FPP, the normal form algorithm
or the process of tracking the canonical transformation will spew out a nondescript
canonical transformation which I denote here as:

U = (a, D0d) ← See Eq. (6.20). (7.1)

U fully normalises the one-turn map T = (m, S). The canonisation procedure
rewrites U into a precise form chosen by the scientist, myself in the case of FPP. To
be exact, the map U is factorised as

U = Uc ◦ R (7.2)

where Uc has a unique form, a “canonical” form in the original ecclesiastical sense.
The linear orbital part of Uc is grounded in physics and mathematical ease. It is the
Courant-Snyder-Teng-Edwards2 choice and I will justify it in Sect. 7.4.

So without further ado here is the actual factorisation in my library FPP for the
symplectic spin-orbit map:

Uc = D ◦ F ◦ A ◦ b. (7.3)

The map D is a pure spin matrix that depends on all the other variables. The map
F carries us to the fixed point as a function of all the parameters of the systems
including the energy z5 if it is a constant. The map A is linear in the oscillatory
variables and makes the linear map around the fixed point into circles. The map b is
purely nonlinear in the orbital variables.

This factorisation is quite generic and still does not tell you what Uc is. Therefore
I will describe my “canonical” choice for these maps one by one starting with the
fixed point map F . But first I need to set the notation straight.

7.2 A Little Notation Hurdle Due to the Jordan
Normal Form

When all the orbital phase space undergoes harmonic motion, I can write the “state
space” vector w in my own “PTC” order:

w = (z, k) (7.4)

where z = (
x, px , y, py, δ, t

)

and k = (
k1, · · · , kn p

)
.

2However it is the Teng-Edwards choice without the useless and noxious factorisation that charac-
terises its exposition in papers and textbooks.
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The vector z contains the oscillatory variables and it can have dimension two,
four or six in the code PTC. The vector k contains parameters such as quadrupole
strengths or any other magnet parameters. In the example code of Appendix M, I
declared one single quadrupole strength to be a TPSA parameter, thus k = (k1).

When the dimension of the oscillatory space is two or four, it is sometimes useful
to ignore the time t but retain z5 = δ as a parameter. For the sake of the discussion
in this chapter, I advise the reader to imagine the following redefinition of w:

w = (z, k) (7.5)

where z = (
x, px , y, py

)

and k = (
δ, k2, · · · , kn p

)
.

Of course the tracking code PTC, like most tracking code, always considers δ to be
part of phase space. However the analysis tools of FPP, which have no connection
with tracking,3 simply view δ as a parameter if the time z6 is ignored.

Finally there is the case of the Jordan normal form of Sect. 4.2. For the pur-
pose of the analysis tools, I will mentally break the state vector w in the following
unconventional way:

w = (
x, px , y, py, δ, t, k1, · · · kn p

)
(7.6)

where we have an extended k → ke = (
δ, k1, · · · , kn p

)
.

In Eq. (7.6) I defined an extended vector of parameter ke that also contains δ which
is both a parameter that foliates phase space as well as a canonical variable. The
time-like w6 = z6 depends on everything else but nothing depends on it.

In the Jordan case, the normal form is not SO(2) × · · · × SO(2)︸ ︷︷ ︸
N+1 times

but it is SO(2)×

SO(2) × T · · · × SO(2) where one SO(2) is replaced by the translation group in
one dimension. As I showed in Sect. 4.2, the time variable “drifts” or translates. This
is the most complex case and it affects the definition of the fixed point map F of
Eq. (7.3).

7.3 My Choice for the Fixed Point Map

I will first discuss in Sect. 7.3.1 the cases of Eqs. (7.4) and (7.5) because all the
parameters are unrelated to phase space. In the case of (7.5), time is ignored, the
analysis package is unaware that z5 = δ is actually a canonical variable.

Thus, in this case, all orbital planes are harmonic oscillators. The parameter depen-
dent fixed point can be found by techniques that totally ignore the symplectic nature
of the map.

3FPP is akin to a library for diagonalising matrices as I said several times.

http://dx.doi.org/10.1007/978-4-431-55803-3_4
http://dx.doi.org/10.1007/978-4-431-55803-3_4
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7.3.1 The Trivial Case

I denote the fixed point or “dispersion” as zc.

m(zc, k) = zc . (7.7)

Here the map is computed around the closed orbit of the machine

m(0, 0) = 0. (7.8)

Therefore the procedure can be done iteratively. First the map m is expanded and the
linearised version of Eq. (7.7) is solved exactly by matrix inversion:

Mz1c + V k = z1c ⇒ z1c = (I − M)−1V k . (7.9)

In Eq. (7.9), M is a rectangular matrix that gives the dependence of phase space on
itself: a 2N × 2N matrix. The matrix V is 2N × n p matrix connecting phase space
with parameter space. This equation is analogous to Eq. (4.60).

Once Eq. (7.9) is solved by exact inversion, the rest of the zc is found iteratively
to order no, the order of truncation. Thus F is defined as:

F(z; k) = z + z1c (k) + z2c(k) + · · · zno
c (k). (7.10)

This map is unique and only depends on external parameters.
Now I will explain the hard case: when z5 (or δ) is a not only a constant but also

the canonical variable conjugate to time (z6).

7.3.2 The Case of a Jordan Normal Form

In the case of a Jordan normal form, the transverse orbital part of F follows Eq. (7.10)
except that the collection of parameter k must be replaced by ke, a vector that contains
k as well as δ as explained at Eq. (7.6).

Hence I can immediately write the transverse part of F restricted to the harmonic
planes

(
z⊥ = (

x, px , y, py
))
:

F⊥(z; k) = z⊥ + z1c (ke) + z2c(ke) + · · · zno
c (ke)

= z⊥ + z1c (δ, k) + z2c(δ, k) + · · · zno
c (δ, k) = z⊥ + zc (δ, k) . (7.11)

http://dx.doi.org/10.1007/978-4-431-55803-3_4
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I can easily create a Lie operator which will generate Eq. (7.11). The answer was
actually given in Eq. (4.62):

F pot = exp

⎛

⎝: −
∑

i, j=1,4

zc;i Si j z j :
⎞

⎠ . (7.12)

This is a potential choice. As we track the canonical transformation around the ring
for the purpose of computing the phase advance, we need to force this map into a
unique “holy” form. As I said the fixed point is uniquely defined, however the time
of flight is not uniquely defined. Let us see what is the time of flight shift induced by
Eq. (7.12):

F pot z6 = exp

⎛

⎝: −
∑

i, j=1,4

zc;i Si j z j :
⎞

⎠ z6

= z6 −
∑

i, j=1,4

dzc;i
dδ

Si j z j + 1

2

∑

i, j=1,4

zc;i Si j
dzc; j

dδ
. (7.13)

The second term is purely energy dependent and could be removed or modified to
suit one’s purpose. I decided to leave it as is. Therefore my choice for the “canonical”
F is simply F pot which is the function F one gets by creating a Lie map4 to insure
symplecticity.

There is another trivial choice to implement: I remove the terms dependent on
energy alone5 from the time of flight. One can switch back and forth in my example
code with the flag time_lie_choice. The default value is “false.” The only
remarkable thing to see is that the total time slip after one turn does not depend on
the “canonical” choice for F .

7.4 The Linear Transformation A(s)

This is by far the most interesting and important “canonisation” namely the choice
of the linear part. There is a good physical reason to choose the Courant-Snyder
transformation and its coupled extension, defined by Eq. (7.19). Indeed they facilitate
the correlation between BPM measurements and the theory. This merits a section of
its own. This parametrization also facilitates analytical calculations.

4The simplest of mixed generating function, which looks like the exponent of Eq. (7.12), will
generate a different pure δ dependence. So it is a bit pretentious to call my choice “the natural
symplectic choice.” It is only natural if your analysis code uses Lie operators.
5This choice may actually be the real “natural choice.” Choices induced by the use of a Lie operator
or a generating function can add an arbitrary function of energy like the second term of Eq. (7.13).
In theory, that could send a particle to the moon and back for no physical or mathematical reasons.

http://dx.doi.org/10.1007/978-4-431-55803-3_4
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Themost famous choice for the transformation A(s) is theCourant-Snyder choice.
I can simply look at its matrix.

A =
( √

βs 0
− αs√

βs

1√
βs

)
. (7.14)

The β function in Eq. (7.14) corresponds to that of Sect. 2.2.2. The first obvious
advantage of this choice is that it changes the position minimally; a normalised x
is simply the non-normalised x divided

√
βs . If one uses Eq. (7.14), it is a simple

result of analytical perturbation theory to show that two thin sextupoles separated
by a phase advance of π , can be made to cancel exactly. This is not the case if one
chooses the following transformation for A(s):

A =
( 1√

γs
− αs√

γs

0
√

γs

)
. (7.15)

The γ function in Eq. (7.15) corresponds to that of Sect. 2.2.2. If the phase advance
is defined on the basis of Eq. (7.15) then it is no longer true that “sextupoles π apart”
cancel; physics is not changed, but analytical results involving potentials which
depend solely on the position x cannot be expressed so concisely. Again I must
emphasize that this is mostly an annoyance for analytical theory and for “textbook”
descriptions.

There is another virtue to the Courant-Snyder definition of the phase advance:
in the linear regime, it corresponds to the phase difference between beam position
monitors and it is directly measurable with BPMs. Consider the displacement of a
particle at s = 1 after n turns expressed in terms of the initial canonical variables
at s = 0:

z1 (n) = M01Mn
0 z0 (0)

= A1R01A−1
0 A0Rn

0 A−1
0 z0 (0)

= A1R01Rn
0 A−1

0 z0 (0)

= A1A−1
0 A0R01Rn

0 A−1
0︸ ︷︷ ︸

De Moivre applicable

z0 (0) . (7.16)

I can apply the result of Sect. 2.2.2 to re-express Eq. (7.16) in terms of the lattice
functions at s = 0:

z1 (n) = A1A−1
0

(
cos

(
Φc

n

) + α0 sin
(
Φc

n

)
β0 sin

(
Φc

n

)

−γ0 sin
(
Φc

n

)
cos

(
Φc

n

) − α0 sin
(
Φc

n

)
)

z0

=
⎛

⎝

√
β1

β0
0

− (α1−α2)√
β1β0

√
β0

β1

⎞

⎠

⎛

⎝ cos
(
Φc

n

) + α0 sin
(
Φc

n

)
β0 sin

(
Φc

n

)

− γ0 sin
(
Φc

n

)
cos

(
Φc

n

) − α0 sin
(
Φc

n

)

⎞

⎠ z0

(7.17)

http://dx.doi.org/10.1007/978-4-431-55803-3_2
http://dx.doi.org/10.1007/978-4-431-55803-3_2
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where Φc
n = nμ + μc

01 and here μc
01 result from Eq.7.14.

The final step is simply to write the position x at s = 1:

x1(n) =
√

β1

β0

((
cos

(
Φc

n

) + α0 sin
(
Φc

n

))
x0 + β0 sin

(
Φc

n

)
p0

)
. (7.18)

According to Eq. (7.18), the only difference between s = 0 and s = 1 is the

scaling factor
√

β1

β0
and the “Courant-Snyder” phase μc

01. Therefore if one Fourier

analyses the positions at s = 0 and s = 1, the phase μc
01 will be directly measurable.

This result extends to the coupled x − y matrix provided that A is chosen so as
to satisfy

A12 = A34 = 0 with A11 > 0 and A33 > 0. (7.19)

In an electron machine, one can excite the beam with a small kick at a frequency
corresponding to a given tune, say tune ν1. The motion in the other eigen-plane will
damp out. If one then performs a measurement of the beam position at s = 0 and
s = 1, the motion will be phase-shifted by an amount corresponding to the phase
advance defined by Eq. (2.54).

Some readers may wonder if that corresponds to the so-called Teng-Edwards
phase advance. The answer is yes. However I want to state emphatically that the
factorization of A into a pseudo-rotation and a Courant-Snyder transformation, as
done by Teng-Edwards [1], is unnecessary. Actually this factorization is not globally
smooth and must be changed discontinuously across infinitesimal changes of the
underlying equations of motion for large coupling. Some people, using the angle-
like parameter of this pseudo-rotation, have talked about the angle φ between the
eigenplanes: this is again amisconception. For arbitrarily small coupling, this number
φ can be imaginary. Worse, in the real case, this “rotation” is not an element of
SO(4)! Thus the only necessary and useful condition to impose on the map A is
Eq. (7.19).

In conclusion, it is important to state that the special choice of a phase is mainly
dictated by analytical ease and the human brain: on the computer it does not matter
what A we choose.

The reader can also try, in the example code of Appendix M, the anti-Courant-
Snyder phase advance defined in Eq. (2.52). This is activated by the flag courant_
snyder_teng_edwards which needs to be set to false.

In all the harmonic planes, including longitudinal, I impose the conditions of
Eq. (7.19). Thematrix A is computed as a function of the parameters k (or ke = (δ, k)

in the Jordan normal form case).

http://dx.doi.org/10.1007/978-4-431-55803-3_2
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7.5 My Choice for the Nonlinear Transformation b

The nonlinear part of the canonical transformation is selected by going into the
phasors basis. Since the transformation is nonlinear, I can write it as a single Lie
exponent. I choose b such that it does not have any generators of rotation in its Lie
exponent. Therefore the Lie version of b, B, has the form

CBC −1 = exp

(
:
∑

m

Bm (δ, k) um1um2vm3vm4 :
)

with |m1 − m2| + |m3 − m4| �= 0 and
∑

i=1,4

mi ≥ 3 (7.20)

where u and v are the horizontal and vertical phasors respectively as in Eq. (6.46). In
Eq. (7.20) I chose to depict the Jordan normal form because it is the most complex.
If the three orbital planes are oscillating, please simply add one phasor and remove
δ from the parameter list.

Of course,B is obtained from a tracked canonical transformation by multiplying
it by the appropriate amplitude dependent rotation. The sum of all the angles of this
rotation around the ring will be the total amplitude dependent phase advance.

7.6 My Choice for the Spin Transformation D

In the traditional language of spin normal form (see Ref. [2]), the spin phase advance
is defined in terms of two vectors perpendicular to the ISF n, the vectors l and m.
These vectors are actually properties of the normal form. In the normalised space,
the ISF is simply ey = (0, 1, 0). I choose quite normally the normalised basis to be
ex = (1, 0, 0) and ez = (0, 0, 1). In the space of the original variables, the three basis
vectors are gotten with the help of the full matrix D̃ of Eq. (6.20) which depends
nonlinearly on the state space:

state space basis → (l, n, m) = (
D̃ex , D̃ey, D̃ez

)
. (7.21)

In the language of normal form, as in the case of orbital motion, the phase advance
emerges from a special choice for D̃. The matrix D̃ is in the original variables. Thus
we should look at the matrix D which is in normalised orbital variables. I can express
my choice for the “canonisation” using D in phasors. If we go in phasors and find
the rotation operators, i.e.,

D ◦ c = exp (o · L) , (7.22)

http://dx.doi.org/10.1007/978-4-431-55803-3_6
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then I can impose the following condition:

oy =
∑

m

Om (δ, k) um1um2vm3vm4 (7.23)

where |m1 − m2| + |m3 − m4| �= 0.

7.7 The Canonisation in the Example Code of Appendix M

This program performs a lattice function loop and computes the most general phase
advance: nonlinear spin-orbital phase advance. Moreover I compute the lattice func-
tion associated to

〈
x2

〉
as well as the ISF n around the ring.

At the end of the lattice loop, I check that n obtained by normal form obeys
Eq. (6.11). Finally I compare a numerical computation of the ISF by stroboscopic
average with an evaluation of the normal form ISF. The stroboscopic average, due
to Heinemann and Hoffstätter, is justified theoretically in supplemental Chap.12.

The example program uses the case of the Jordan normal form because it is the
most complex: two harmonic planes and a temporal plane “slipping” away.

I invite the reader to run this program and modify it. It is really at the root of a
huge part of accelerator theory.

7.7.1 Setting Up the Example

This example uses a misaligned ring. Here is a code fragment:

courant_snyder_teng_edwards=.true.

time_lie_choice=.true.

p=>als%start

do i=1,als%n

if(p%mag%p%nmul>=3) then

if(first) then

call add(p,2,0,0.1d0)

call make_it_knob(p%magp%bn(2),1) ! (0)

first=.false.

endif

endif

p=>p%next

enddo

x(1:3)=1.d-5; x(5:6)=1.d-6; x(5)=1.d-3; !

http://dx.doi.org/10.1007/978-4-431-55803-3_6
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cut=4.d0;

call mess_up_alignment(als,x,cut) ! (1)

x=0.d0;dx_average_dcs=0.d0;

closed=0.d0

state=nocavity0 ! (2)

The misalignment is done at line (1). All magnets are displaced randomly using
the array x(1:3) and rotated using the three angles in x(4:6). Most importantly,
I strongly broke the 12-fold symmetry of the ring by adding to the first sextupole a
quadrupole strength and I make this strength a parameter of the TPSA using line (0).

Thus my extended parameter vector ke is simply (δ,ΔKq) where ΔKq is a devia-
tion from the “design” quadrupole strength of 0.1. This vector ke is made of the fifth
and seventh variable of the TPSA package in use, i.e., ke = (w5, w7) = (z5, w7) as
defined in Eq. (7.6).

The state is set to “nocavity0” which turns off the RF cavities but leaves the
full longitudinal phase space in the calculation. Thus the Taylor maps will take into
account the time and energy variables. A full Jordan normal form will be performed
and the time slip will be computed by normal form. In fact I will compute the full
phase advances (transverse+spin) and the temporal slip using canonisation within
the phase advance loop.

7.7.2 Finding the One-Turn Map and Normalising It

The following code fragment contains the usual initialisation for the computation of
the one-turn map except that in line (1) a seemingly useless “+” is placed in front of
the state. This simply tells the code PTC to include the system parameters in the
Taylor calculations if they exist. I can ignore them by omitting the “+.”

!!!! polymorphic probe is created in the usual manner

xs0=closed

id_s=1

xs=xs0+id_s

!!!! get spin polymorphic probe after one turn

call propagate(als,xs,+state,fibre1=1) ! (4)

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! copy probe_8 into a complex damap

c_map=xs ! (5)

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

call c_normal(c_map,c_n,dospin=my_true) ! (6)
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write(6,’(4(1x,g21.14))’) c_n%tune(1:3), c_n%spin_tune

u=c_n%as*c_n%a_t ! att=c_n%a_t*c_n%as

! id_s is a rotation

id_s=u**(-1)*c_map*u ! (7a)

! a trick to compute the fractional tunes and time slip

call c_full_canonise(id_s,u_c,d,f,a,b,r,phase,nu_spin) ! (7b)

This code fragment has only one bizarre calculation. At line (7a) I compute the
normalisedmapwhichmust be a rotation in the oscillatory planes (1, 2, and spin) and
a drift of the time variable. At line (7b) I shove this normalised map, id_s, into my
canonisation routines whose purpose is to rewrite a general canonical transformation
as a product of a “canonised” transformation and a rotation as explained at Eq. (7.2).
Line (7b) exploits a convenient feature: if a totally normalised map is fed into the
canonisation routine, its canonical form should be the identity map because with my
definition a rotation does not need any transformation to become a rotation! Thus the
angles of the rotation are fed conveniently into the three Taylor series phase(1:3)
and the spin tune into nu_spin.

Therefore line (7b) returns the fractional tunes and time slip.

7.7.3 Example of Canonisations in the “Courant-Snyder
Loop”

I will start with the code that merely checks the assertions of the canonisation algo-
rithm. I do not trust Etienne Forest: fair enough, who would? So I check my assertion
to make sure I am not pulling a fast one past the reader! All the results are printed in
the file check_canonisation.txt if you run the program for n0 ≥ 4.

First I remind the reader of the concatenation in the code; I rewrite Eq. (7.3) here
for convenience:

Uc = D ◦ F ◦ A ◦ b becomes in the code → U_c = D ∗ F ∗ A ∗ b. (7.24)

All my assertions about canonisation are checked in the coming Sects. 7.7.3.1–
7.7.3.4.

7.7.3.1 The Dispersive Map

The calculation of F is only “funny” in the case of a Jordan normal form.

if(no>=4) then ! (A0) special interlude

call kanalnummer(mf,"check_canonisation.txt")
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write(mf,*);Write(mf,*)" Time slip factor "; write(mf,*);

h_vector_field=log(F)

h_poisson_bracket=getpb(h_vector_field) ! (A1)

write(mf,*);Write(mf,*)"Fixed point map"; write(mf,*);

call print(F,mf,prec)

write(mf,*);Write(mf,*)"Lie exponent of the fixed point map";

write(mf,*);

call print(h_poisson_bracket,mf,prec)

do k=1,4

id_s%v(k)=F%v(k)-(1.d0.cmono.k) ! (A2)

enddo

h_poisson_bracket=h_poisson_bracket & ! (A3)

+(id_s%v(1)*(1.d0.cmono.2)-id_s%v(2)*(1.d0.cmono.1)) &

+(id_s%v(3)*(1.d0.cmono.4)-id_s%v(4)*(1.d0.cmono.3))

write(mf,*);Write(mf,*)" Comparing with the canonical form ";

write(mf,*);

call print(h_poisson_bracket,mf,prec)

Above line (A1) I compute the vector field of the map by a logarithm as explained
in supplemental Chap.11. At (A1) itself, I extract the function associated to the
Poisson bracket operator: its pseudo-Hamiltonian if you prefer. The full map F
called a0 is printed as well as its pseudo-Hamiltonian.

This needs to be compared with the Lie operator in Eq. (7.12). It is computed at
lines (A2, 3). At line (A2) I subtract the identity from the transformation F de facto
extracting the dispersion zc. Then I construct the Lie operator per Eq. (7.12) and
immediately subtract it from the at line (A3). The result, hopefully zero, is printed
on the file check_canonisation.txt.

The reader can flip the flag time_lie_choice to true and see what happens!

7.7.3.2 The Courant-Snyder-Teng-Edwards Condition

This is the most important canonisation because it is used by all accelerator
physicists and it is based on some physical insight. Please look at Sect. 7.4.

integer expo(4)

.

.

.

expo=0;expo(2)=1;

a12=A%v(1).par.expo ! (B1)

expo=0;expo(4)=1;

a34=A%v(3).par.expo ! (B2)

http://dx.doi.org/10.1007/978-4-431-55803-3_11


190 7 The Nonlinear Spin-Orbital Phase Advance …

write(mf,*); Write(mf,*)" Checking Courant-Snyder-Teng-Edwards"

write(mf,*);Write(mf,*)" A_12 should be zero "; write(mf,*);

call print(a12,mf,prec)

write(mf,*);Write(mf,*)" A_34 should be zero "; write(mf,*);

call print(a34,mf,prec)

The operator .par. extract as a Taylor series the coefficient C(ke) = C(δ, w7)

of the monomial

C(ke)z
expo(1)
1 zexpo(2)

2 zexpo(3)
3 zexpo(4)

4 . (7.25)

The dimension of the integer array expo is critical: it distinguishes the phase space
variables from the parameters. At lines (B1) and (B2) I extract the matrix coefficient
A12 and A34 respectively.

There is nothing much to say except that I invite the reader to mess up the code a
little. At the beginning of the main program, the reader will find the line

courant_snyder_teng_edwards=.true.

I advise him to set it up to “false.” This flag toggles the canonisation routine
to the “anti-Courant-Snyder” definition of Eq. (2.52). The polynomials for A12 and
A34 are no longer vanishing. I invite the reader to modify the code to produce the
polynomials for A21 and A43: these coefficients should then be zero!

7.7.3.3 The Nonlinear Condition

Once more I need to find a unique form for the nonlinear map. I decided to choose
a form that does not depend on the number of system parameters in the Taylor
map. Given the tools I have at my disposal, namely a complex version of the old
Berz package—which I have been using since a little before 1987 [3]—the simplest
unambiguous nonlinear definition6 involves a single Lie operator. Thus suppose I
write the nonlinear map as a single Lie operator

B = exp (: h :) . (7.26)

h_vector_field=log(b) ! (C1)

h_poisson_bracket=getpb(h_vector_field) ! (C2)

h_poisson_bracket=h_poisson_bracket*from_phasor() ! (C3)

6If you have a TPSA package that distinguishes parameters from phase space, you could have other
self-consistent definitions easily implemented; for example your canonisation could deal directly
with the more natural factored representation of the nonlinear canonical transformation.

http://dx.doi.org/10.1007/978-4-431-55803-3_2
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write(mf,*);Write(mf,*)" Lie exponent of the nonlinear part";

write(mf,*);

call print(h_poisson_bracket,mf,prec)

then I can usemy rotation freedom to require that theLie operator : h : does not contain
any generators of rotation as explained in Eq. (7.20). The reader will discover that
indeed all the generators of rotations have vanished. Additionally terms belonging
to the parameter dependent fixed point map or to the Courant-Snyder transformation
are not part of the nonlinear transformation. These have been properly assigned to
the maps F and A.

7.7.3.4 The Spin Map Condition

My choice for the spin transformation is explained at Eqs. (7.22) and (7.23). My
choice for the canonical SO(3)matrix D induces a spin phase advance and implicitly
defines the two little basis vectors l and m discussed in Barber’s work [2].

Here is the code that checks my canonisation condition:

U_c=f*A*b

D_tilde=to_phasor()*U_c**(-1)*D*U_c*from_phasor() ! (D1)

O=log(D_tilde%s) ! (D2)

write(mf,*);Write(mf,*)"Vertical spinor O_y of the canonised D;

write(mf,*);

call print(O%v(2),mf,prec)

This condition implies a specific choice for the periodic vectors l and m.

7.8 The Phase Advance, Its Freedom and the Code
of Appendix M

7.8.1 The Case of Hamiltonian Perturbation Theory

The phase advance depends very strongly on the definition of the canonical transfor-
mation Uc. In Hamiltonian perturbation theory, the transformed Hamiltonian is the
“phase advance.” For example, consider the simple quadratic Hamiltonian

H = ν
p2 + x2

2
+ ε

2
cos (s) x2 = ν J + εJ cos (s) cos2 (Φ)

= ν J + ε

8
J

(
eis + e−is

) (
eis2Φ + e−is2Φ + 2

)
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= ν J + ε

8
J

(
ei(s+2Φ) + ei(s−2Φ) + 2eis + e−i(s+2Φ) + e−i(s−2Φ) + 2e−is

)

= ν J + ε
∑

m,n

Vmn exp (i (mΦ + ns))

︸ ︷︷ ︸
Vs

. (7.27)

This Hamiltonian is simple and has a periodicity of 2π in the s variables. I will
use calculations on it to represent in its simplest form, the kind of Hamiltonian
perturbation one might encounter in astronomy or other fields. It is also at the root
of standard Hamiltonian treatments in accelerator physics, see Ref. [4] for example
and also Chap.8. Anyway, the most important thing is that a simple “s” dependence
renders it amenable to the standard tools of Hamiltonian perturbation theory. Here I
will let an s-dependent Lie map act on it in the hope of turning it into a generator of
rotations.

H new
s = exp (: εFs :) Hs + ε

∞∑

n=1

: εFs :n−1

n!
∂ Fs

∂s
(7.28)

≈ Hs + ε [Fs, ν J ] + ε
∂ Fs

∂s
+ Order

(
ε2

)

= ν J + ε

{
ν
∂ Fs

∂Φ
+ ∂ Fs

∂s
+ Vs

}
+ · · · . (7.29)

For the purpose of this section, I compute Fs to leading7 order. Writing Fs as

Fs =
∑

m,n

Fmn exp (i (mΦ + ns)) . (7.30)

I can solve for Fs to leading order and get rid of Vs

Fmn = i

νm + n
Vmn . (7.31)

The function Fs is just given by

Fs = − J

4

{
1

2ν + 1
sin (s + 2Φ) + 1

2ν − 1
sin (2Φ − s) + 2 sin (s)

}
(7.32)

and the resulting Hamiltonian is just

H new
s = ν J + · · · O(ε2). (7.33)

7A reader familiar with perturbation theory will recognize that Eq. (7.29) to leading order would
also be correct if Fs was a mixed generating function.

http://dx.doi.org/10.1007/978-4-431-55803-3_8
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The solution given by Eq. (7.31) and computed explicitly for my simple example
in Eq. (7.32), is really the “natural” solution. It is natural in the sense that each term
is selected for the purpose of removing a non-rotational term in the original Hs . Yet,
it is not the Courant-Snyder solution. I can re-express Eq. (7.32) in terms of x and
px ,

Fs = 1

4ν2 − 1

{
sin (s)

((
1 − 2ν2

)
x2 − ν2 p2

) + cos (s) ν xp
}

. (7.34)

and compute the matrix component A12 and the β function:

xnew = x − ε

4ν2 − 1

{
ν cos (s) x − 2ν2 sin (s) p

} + · · · O(ε2)

⇒ A12 = 2ε

4ν2 − 1
sin (s) + · · · O(ε2)

⇒ βs = A2
11 + A2

12 = 1 − 2ε

4ν2 − 1
cos (s) + · · · . (7.35)

Clearly the map of Eq. (7.35) does not obey the Courant-Snyder condition unless
s is a multiple of π , and since it is accurate to order ε, we can say that the full map
will not obey the Courant-Snyder condition for arbitrary values of ε. Indeed there
are no reasons why it should.

I can compare the phase advance from 0 to s, which I denote by μ0s , to the
Courant-Snyder phase advance μcs

0s . The results to first-order in ε are

μ0s =
∫ s

0
νds = νs + O(ε2)

μcs
0s =

∫ s

0

ν

βs
ds = νs + ε2ν

4ν2 − 1
sin (s) + O(ε2) → (See Eq. (2.70) for the factor of ν).

(7.36)

The reader will notice that if I integrate the above two phases over the period of
the system, i.e., 2π , then the results are the same.

In Hamiltonian perturbation an arbitrary function (ls + εnΔn(s))J can be added
to the Lie exponent at the nth-order in the calculation provided l is an integer and
Δn(s) is a periodic function of s. If we do such thing we see that the newHamiltonian
becomes

H new
s =

(
ν + l + ∂

∂s
Δ1(s)

)
J + · · · O(ε2). (7.37)

I can choose the function Δ1(s) so that A12 vanishes. In a tracking code, this is done
by a “canonisation” routine. Here I can see from Eq. (2.70) that one needs to modify
Fs as follows:

http://dx.doi.org/10.1007/978-4-431-55803-3_2
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Fcs
s = Fs + 2εν

4ν2 − 1
sin (s)

︸ ︷︷ ︸
Δ1

J . (7.38)

If I substitute Δ1(s) from Eq. (7.38) into Eq. (7.37), then the result is

H new
s = ν

(
1 + 2ε

4ν2 − 1
cos (s)

)
J + · · · O(ε2). (7.39)

Of course, Eq. (7.37) is consistent with Eq. (2.70) because Eq. (7.39) is the ε expan-
sion of 1/β.

It is time to summarize what we have learned from a Hamiltonian treatment.

1. The fractional part of the total phase advance does not depend on the choice for
canonical transformation.

2. A Hamiltonian procedure that is “natural” does not imply that the canonical
transformation is a function of the one-turn map; rather it is a function of the
Hamiltonian which is the infinitesimal propagator. Therefore the phase advance
between matched8 positions will depend on the form of the canonical transfor-
mation.

3. We can modify arbitrarily the canonical transformation. Thus the phase advance
is defined within an integer plus a periodic function of the “lattice.”

Now I will discuss the case of a phase advance defined through the map only.

7.8.2 The Case of Map Perturbation Theory: Orbital and Spin

In the case of a one-turn map, I can insist that if the map is the same, then the
canonical transformation ought to be the same. This is not a “natural” procedure with
Hamiltonians. Indeed it was much easier to impose the Courant-Snyder condition on
a matrix A which normalises a one-turn matrix M than on the normalisation process
applied to the simple Hamiltonian of Eq. (7.27).

Thus if the canonical transformation is defined uniquely in terms of the one-turn
map, then it follows that the phase advance between matched positions will be the
same. Matched positions are defined as positions with the same one-turn map. This
was illustrated in an analytical example at Eq. (2.80) where I related the Courant-
Snyder phase advance with my so-called “anti-Courant-Snyder” phase advance.

I will summarize the properties of a map based phase advance:

1. Generally the canonical transformation should only be a function of the one-turn
map. This is my preference. It implies that the integer l in Eq. (7.37) should be
zero.

8Matched positions have the same invariants or equivalently the same one-turn maps.

http://dx.doi.org/10.1007/978-4-431-55803-3_2
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2. The phase advance between matched positions is the same because the canonical
transformation depends only on the one-turn map.

3. The integer part of phase advances for the whole ring is also probably the same
if induced by a canonical transformation based on the one-turn map only. (Actu-
ally I am not 100% certain of this statement and thus the unmathematical term
“probably.”)

In orbital dynamics alone, the variable “s” describes what mathematicians called
the base space of the “fibre bundle.” The one-turn map at position s is simply the
map from s to s + C where C is the circumference9 of the ring. All canonical
transformations should be periodic in C . In a tracking code, this quantity C is an
integer corresponding to the total number of integration steps10 around the ring.

Spectator spin can more complex!

In the case of spin, there is an additional ambiguity introduced by the “spectator” nature of
spin dynamics. In this book, I adopted the view that the spin also has a natural one-turn map
of periodicity C , then everything I said about the orbital map also applies to the spin-orbit
map

The one-turn periodicity of the spin map on the closed orbit is obvious. The one-turn
periodicity of a full spin-orbit map in the Stern-Gerlach case, when spin affects the orbit, is
just an extension of the orbital dynamicswith an additional degree of freedom.However in the
spectator case, the one-turn periodicity is also true if I look “globally” at the orbit-dependent
spin-orbit map; this is what I did in this book.

However I could also consider, in the integrable spectator case, that the spin map exists
on a given N -torus. Thus the base space for the spin becomes the variable s and the orbital
N -torus, in other words an N + 1-torus; N takes the values 1, 2 or 3. The N Liouvillian
phases Φi and the distance s parametrise the base space of the spin motion. This motion is
not really periodic but actually quasi-periodic. There is no reason mathematically to fix our
attention on a single turn. In that extended base space perspective, it can be shown, that in
addition to the integer l of Eq. (7.37), the total spin tune can be augmented, for example,
by the non-integer constant m · ν(J ) where ν(J ) are the J -dependent orbital tunes on the
N -torus. The interested reader can consult Ref. [5].

7.8.3 Description of the Phase Advance Loop of Appendix M

I extract from the code spin_phase_advance_isf.f90 the part that is a pure
phase advance loop. This code fragment reproduces exactly the loop displayed in
Fig. 7.1. I remove, as the ellipses show, part of the code that computes “useful” stuff.
The fragment shows only Fig. 7.1.

The first step, as always on map based perturbation theory, is to compute the one-
turn map around the closed orbit. The closed orbit is found at line (3). It is added to

9It certainly does not have to be the circumference: see Chap. 8.
10It can also include, amongst other things, discrete operations such as rotations and translations
that are used to position a magnet.

http://dx.doi.org/10.1007/978-4-431-55803-3_8
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the identity map and fed into the object XS of type probe_8. This object contains the
six orbital coordinates and the spin directions. For example, the code PTC computes
the image of the spin basis (e1, e2, e3). At line (4), the one-turn map is computed by
propagating the identity map.

call find_orbit(als,closed,1,state,c_1d_5) ! (3)

xs0=closed

id_s=1

xs=xs0+id_s

.

.

.

!!!! get spin polymorphic probe after one turn

call propagate(als,xs,+state,fibre1=1) ! (4)

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! copy probe_8 into a complex damap

c_map=xs ! (5)

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

call c_normal(c_map,c_n,dospin=my_true) ! (6) .

.

.

.

u=c_n%as*c_n%a_t ! non-descript u exiting normal form ! (8a)

call c_full_canonise(u,u_c,d,f,a,b,r,phase,nu_spin) ! (8b)

phase(1)=0.d0 ;phase(2)=0.d0 ; ;phase(3)=0.d0; nu_spin=0.d0;

xs=xs0+u_c ! (8c)

p => als%start

do i=1,als%n

call propagate(als,xs,+state,fibre1=i,fibre2=i+1) ! (9a)

xs0=xs ! saving orbit ! (9b)

u=xs ! copying in map ! (9c)

! u = u_c o r = d o f o a o b o r
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call c_full_canonise(u,u_c,d,f,a,b,r,phase,nu_spin) ! (10)

.

.

.

xs=xs0+u_c ! (11)

p=>p%next

enddo

After one turn, the probe object XS is turned into a bona fide Taylor map at line
(5) and normalised at line (6). The full canonical transformation U is created at
line (8a) and it is then “canonised” at line (8b). This procedure could be modified to
satisfy the taste of the user. In accelerator physics, theCourant-Snyder-Teng-Edwards
parametrisation, whose merits are evoked in Sect. 7.4, is universally chosen. For the
fixed point map F , the nonlinear part b and the spin map D, there are no universally
accepted choices: my choices are described in Sects. 7.3, 7.5–7.6.

On line (9a), I simply track the probe from position i to i + 1. This could be a full
magnet, a step of integration or even some operator whose purpose is to misalign a
magnet. It could even be an approximate fringe field effect. In any event, it does not
really matter what the object at position i is: that is the magic of the code and the
analysis attached to it.

At line (9b), the closed orbit at the exit is saved. At line (9c) the map is produced.
This map U obeys Eq. (7.2), i.e., U = Uc ◦ R. The map Uc is extracted in line (10)
as well as the rotation R which is the phase advance. This map R is a spin-orbit
rotation.

In this example code, which is “drifting” in the third plane (temporal or longi-
tudinal), the transverse phase advances are in phase(1:2) and the time slip is in
phase(3). The total spin phase advance is in nu_spin.

The final step of the algorithm is to “reboot” the ray (or probe) XS as the
closed orbit plus the canonised form Uc. In doing so, I insure that the next call to
c_full_canonise computes only the incremental phase advance. This resetting
is done at line (11).

7.8.4 Example of Something Being Computed
in the Courant-Snyder Loop

This section contains a few examples from an infinite number of possible selections.
What a person computes depends on his needs and unfortunately also on his knowl-
edge and competence. I will illustrate the generic power of the universal Courant-
Snyder algorithm with some quantities, fully aware that my own knowledge can lead
me to inefficient and even incorrect calculations. The “Code” is always right, only I,
a poor fool, can be wrong.
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7.8.4.1 The Average of x2: The “Beta” Functions

Any function written as a Taylor series can be averaged and the result depends on
the invariants which themselves are computable by normal form. I described this in
Sect. 2.2.1 at the beginning of this book in an attempt to justify normal form, i.e.,
the harmonic representation of a map.

If one is not concernedwith speed, it is trivial to compute the linear lattice functions
just by computing phase averages of moments using a generic averaging algorithm.
For example, the following code fragment deals with

〈
x2

〉
:

if(no>1) then

fonction =2*(1.d0.cmono.1)**2 ! 2*x**2 (ea)

call c_average(fonction,u_c,fonction_floquet) ! (eb)

endif

write(mft,*)"position, element", i, p%mag%name

betax_1=(u_c%v(1).sub.’1000’)**2+(u_c%v(1).sub.’0100’)**2 !(ec)

betax_2=(u_c%v(1).sub.’0010’)**2+(u_c%v(1).sub.’0001’)**2 !(ed)

write(mft,*) "ripken beta_x_1 beta_x_2",betax_1,betax_2

write(mft,*) "2< xˆ2 >"

if(no>1) then

call print(fonction_floquet,mft)

else

write(mft,*) "unfortunately no information if no = 1"

endif

If the order of the calculation is greater than or equal to two, then the process
of averaging x2 can be carried out. For example, with no = 2, the quantity
fonction_floquet will be the polynomial

2
〈
x2

〉 = βx1uu + βx2vv + · · · . (7.40)

By increasing the order of the calculation one can get amplitude dependent beta
functions as well as energy and parameter dependent beta functions. Just to illus-
trate the point of “special purpose” algorithms, for a more efficient Courant-Snyder
calculation—like those used by the Twiss command of a standard lattice design
code—one derives a special formula for the lattice functions as shown on lines (Ec)
and (Ed). These are the formulae uncovered in Sect. 2.2.4 and more generally in
Sect. 4.1.3.

http://dx.doi.org/10.1007/978-4-431-55803-3_2
http://dx.doi.org/10.1007/978-4-431-55803-3_2
http://dx.doi.org/10.1007/978-4-431-55803-3_4
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7.8.4.2 Spin Lattice Functions

The spin lattice functions are essentially the orbital dependence of the ISF n and
also, if needed, the basis vectors l and m defined after Eq. (6.24) on p. 158 and also
on p. 174 during the discussion on the spin resonance normal form. In the example
code of Appendix M, I concentrate on the computation of the ISF n.

Inside the lattice function loop—the Courant-Snyder or Twiss loop in the parlance
of accelerator physicists—I compute and print the ISF in polynomial form using
Eq. (6.21), namely n = D̃ey . This is done after every elements. This can be seen in
this code fragment at line (Fb) where D is actually D̃ obtained by the canonisation
routine at line (10) (see Sect. 7.8.3).

ISF=2 ! (Fa)

ISF=D%s*ISF ! (Fb)

Write(mft,*)"ISF vector n"

call print(ISF,mft)

In case the reader wonders, line (Fa) stuffs the vector ey intoISF of type c_spinor.
The ISF is then printed in the file containing the Courant-Snyder data.

At the exit of the Courant-Snyder loop, I check Barber’s condition for the ISF:
Sn = n ◦ m. It is done in the code fragment:

call kanalnummer(mfisf,"checking_isf.txt")

write(mfisf,*) "!!!! Exploring the ISF at the end

of the lattice !!!!"

Write(mfisf,*) "Testing Barber’s Equation S ISF = ISF o m"

S_ISF = c_map%s*ISF !(12a)

ISFoM = ISF*c_map ! (12b)

Write(mfisf,*) " |S ISF- ISF o m|/ |S ISF|"

do i=1,3

dISF%v(i)=S_ISF%v(i)-ISFoM%v(i)

write(mfisf,*)i,full_abs(dISF%v(i)),full_abs(dISF%v(i))/

full_abs(S_ISF%v(i)) !(12c)

enddo

The one-turn map is in c_map. In line (12a), I apply the spin matrix on the ISF.
On line (12b), I substitute the orbital one-turn map into the ISF. Finally in the little
“do-loop,” at line (12c), the two spin vectors are compared via a norm. The result is
printed in the file checking_isf.txt.

http://dx.doi.org/10.1007/978-4-431-55803-3_6
http://dx.doi.org/10.1007/978-4-431-55803-3_6


200 7 The Nonlinear Spin-Orbital Phase Advance …

The next and final code fragment concerns stroboscopic averaging. This is a
method discovered by Heinemann and Hoffstätter [6]. I give my own “normal form
based” explanation of this technique in supplemental Chap.12.

x=0.d0
x(1)=0.001d0 ;x(3)=0.001d0 ; ! (13a)
xs1=closed+x

xst=0
cray%x=0.d0
cray%x(1:6)=x
do i=1,3
n_isf(i) = ISF%v(i).o.cray ! (13b)
enddo

Write(6,*)" Stroboscopic Average 5000 turns : patience "
nturn=5000
kp=1000
call stroboscopic_average(als,xs1,xst,1,STATE,nturn,kp, ISF_strobo,mfisf) ! (14c)

Write(mfisf,*)" Stroboscopic Average "

write(mfisf,*);
write(mfisf,’(a19,4(1x,g20.13),a19,i4)’)" ISF for x(1:4) = "&
,x(1:4)," number of turns = ", nturn
write(mfisf,’(a24,3(1x,g20.13))’)" Stroboscopic average ", ISF_strobo
write(mfisf,’(a24,3(1x,g20.13))’)" From the normal form ",n_isf
write(mfisf,’(a4,20x,3(1x,g20.13))’)" n0 ", real(ISF%v(1).sub.’0’), &
real(ISF%v(2).sub.’0’),real(ISF%v(3).sub.’0’)

At lines (13a) and (13b), I evaluate the ISF computed by normal form which
is a collection of three polynomials. At line (14c), stroboscopic average is used to
compute numerically the ISF n. The results are compared and printed. The vector n0

is printed for comparison sake: to convince myself and the reader that I am not just
reproducing the trivial n0.

7.8.4.3 Evaluating a Formula : Analytical Formula for 〈x〉

N.B. For this calculation to be performed, the parameter thin of the example pro-
gram must be set to true. If misalignments are turned off, then the agreement will
be perfect. If not, there will be a small disagreement because of coupling which the
formula of Eq. (7.41) does not take into account. See its derivation in supplemental
Chap.13. For a thick sextupole, the present code would have to look inside each
integration steps. This is possible but not permitted in the program of Appendix A.

In supplemental Chap.13, I compare two Hamiltonian methods on the calculation
of 〈x〉 for a simple 1-d-f distribution of sextupoles.

The first method, in Sect. 13.1, is the Green’s function approach which can be
connected directly to the map methods preferred by the code. This means that if
the Hamiltonian of the calculation is exactly that of the code, then the results of the

http://dx.doi.org/10.1007/978-4-431-55803-3_12
http://dx.doi.org/10.1007/978-4-431-55803-3_13
http://dx.doi.org/10.1007/978-4-431-55803-3_13
http://dx.doi.org/10.1007/978-4-431-55803-3_13
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“turn-the-crank” map techniques and the results of the analytical perturbation theory
of Sect. 13.1 will agree to machine precision.

The second method, which is carefully analysed to first-order in Sect. 13.2 of
supplemental Chap. 13, requires a Fourier transform in some longitudinal variable
along the beam line. The individual Fourier modes do not, in any way, correlate
to an object of the code, such as a magnet propagator. It is the technique furthest
from the methods of the code but nevertheless accessible as explained in Chap.8.
These Fourier methods are accessible to the Code precisely because the Code has the
faithful map methods at its disposal. Read other authors and notice that they never
tell you how to proceed on the realistic Hamiltonian of their “Code” assuming they
have one!

In Sect. 13.2, I show that if you can sum all the Fourier series in the final result
for 〈x〉, then the two approaches do agree indeed. In general, it is clear that the
methods have different aims and domain of application. Anyway, this book favours
the Green’s function method not on fundamental grounds, but on “political” ground:
it matches the “Code” and thus ought to be learnt first. Unfortunately it is not the
case in accelerator pedagogy.

∂ 〈xs〉
∂ (2J )

= ∂ 〈xs〉
∂uu

= β1/2
s × 1

4 (1 − cos (μ))

C∮

0

(− sin (μsσ ) + sin (μsσ − μ)) β3/2
σ kS(σ )dσ .

(7.41)

The formula of Eq. (7.41) is certainly computable in a code with TPSA and an
analysis package. For that not to be the case, ordinary sextupoles would have to
be absent from the code’s zoo of magnet models. I chose it so that the reader can
compare with the exact result from a TPSA calculation which is available in the
example code PTC.

In general a formula like Eq. (7.41) could involve something outside the code
like a magnet or a fringe effect not implemented in the code. It could also involve
high order multipole terms too high for TPSA to handle. In such a case the standard
techniques of Sect. 13.2 produce formulae like that of Eq. (7.41): integrals around
the ring. Finally last but not least, it can involve quantities outside the realm of
single particle dynamics. The Green’s function or map method is perfectly suited
for approximate beam-beam calculations which are extremely localised and poorly
described by Fourier transforms in the time-like variable s. It can also emanate from
other types of collective effects such as intra-beam scattering.

http://dx.doi.org/10.1007/978-4-431-55803-3_13
http://dx.doi.org/10.1007/978-4-431-55803-3_13
http://dx.doi.org/10.1007/978-4-431-55803-3_13
http://dx.doi.org/10.1007/978-4-431-55803-3_8
http://dx.doi.org/10.1007/978-4-431-55803-3_13
http://dx.doi.org/10.1007/978-4-431-55803-3_13
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I will now show you the code fragment which you can easily test using the FPP
and PTC libraries.

If(thin) then

if((p%mag%name(1:2)=="SF".or.p%mag%name(1:2)=="SD")) then

DX_AVERAGE_DCS=(betax_1)**1.5_DP*p%mag%BN(3)/4.0_DP & ! (Fa)

*(-SIN(PHASE(1)*TWOPI)+SIN((PHASE(1)-c_n%TUNE(1))*TWOPI)) &

/(1.0_DP-COS(c_n%TUNE(1)*TWOPI)) + DX_AVERAGE_DCS

endif

endif

write(mft,*)"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!"

XS=XS0+U_c ! (11)

endif

p=>p%next

enddo

if(thin) then ;

DX_AVERAGE_DCS=DX_AVERAGE_DCS*SQRT(betax_1) ! (Fb)

write(mfa,’(a11,F20.13,a20)’)’ d<x>/dCS’, dx_average_dCS,"

< ---- analytical "

if(no==2.or.no==3) then

fonction =(1.d0.cmono.1) ! x

write(mfa,*);write(mfa,*)"Full <x> "

call C_AVERAGE(fonction,U_c,fonction_FLOQUET) ! (Fc)

call print(fonction_FLOQUET,mfa)

write(mfa,*);write(mfa,*)"Full x-dispersion "

call print(F%v(1),mfa)

endif

endif

Line (Fa) is exactly the second factor in Eq. (7.41). All the inputs come from the
lattice function loop discussed previously. At line (Fb), the factor of β

1/2
s at the point

of observation multiplies the sum that was computed at line (Fa).
The result is compared with the TPSA calculation at line (Fc). It should agree if

the sextupoles are thin lenses and the lattice does not contain any errors.
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Chapter 8
Deprit-Guignard Perturbation Theory
Faithful to the Code

Abstract I discuss how it is possible to Fourier transform the Hamiltonian of the
ring with the output of the code only. With the help of normalisation theory applied
on the one-turnmap, the general Courant-Snyder loop of Chap.7 and the logarithm of
supplemental Chap. 11, I construct the Hamiltonian of the ring expanded in Fourier
modes in the variable s. I also present a fully functional prototype of Deprit-Guignard
normalisation on the s-dependent Hamiltonian.

Keywords s-Dependent Hamiltonian perturbation theory · Deprit-Guignard
perturbation theory · Logarithm of maps

8.1 How About Hamiltonian Perturbation Theory?

In this book I have emphasized the hierarchical nature of perturbation theory in
accelerator physics. This hierarchy is not a figment of my imagination but a reality
coming from the ubiquitous supremacy of your Code which ever it might be, with
all its imprecision and conceptual mistakes. As I said, the Code is always right;
perturbation theory must slavishly serve the Code unless Big Brother says otherwise.

If you have a code, you have brute force tracking. If you have TPSA, you have
approximate Taylor maps. And if you have normal form, you have approximate
canonical transformations and phase advances. Finally, if you have a tool to get the
logarithm of a magnet map, you have a pseudo-Hamiltonian for this magnet, and
therefore you can produce a Fourier transform around the lattice. The algorithm for
the logarithm of a nonlinear map is explained in supplemental Chap.11.

There are a few reasons why you might want to analyse the motion using Hamil-
tonian perturbation theory on the equations of motion rather than on maps.

1. You want the elusive smooth Hamiltonian that is omnipresent in an accelerator
text book but whose actual construction is never explicitly given. Well you came
to the right place to see it.

2. You might have access to some tools which permits time-dependent normalisa-
tion. These tools are common in astronomy and they rely on a Fourier expansion of
the motion in some time-like variable “s.” These tools require the Hamiltonian as

© Springer Japan 2016
E. Forest, From Tracking Code to Analysis,
DOI 10.1007/978-4-431-55803-3_8
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a function of time in terms of sine and cosine functions. I will provide a prototype
of this normalisation for your perverse enjoyment.

3. Sending a ring to a colleague to use in some simple code is messy: sending
a function written in terms of simple functions—Fourier modes—is perhaps a
pleasing thing to do.

4. Perhaps you have a ring with a mild symmetry breaking. In such a case, the maps
for each super period is most relevant to the dynamics: they correspond to specific
Fourier terms in the s-dependent Hamiltonian. You may want to analyse the ring
using these Fourier terms.

5. …

To realise the above items, the most important construction is that of the smooth
Hamiltonian in linear Floquet variables. Its construction requires the map tools dis-
cussed in previous chapters to fully normalise the linear problem.

I will discuss two such Hamiltonians. I will start, in Sect. 8.3, with a straight
forward application of the Courant-Snyder-Teng-Edwards linear transformation and
its effect on the Hamiltonian.

8.2 Definining a Time-Like Variable

Of course my starting point is the “Code.” Therefore I will assume that the ring is
made of “N” steps1 of integration. These maps can be anything: integration steps,
coordinate transformations for displacing magnets, fringe fields kicks, or even entire
beam lines. Basically I do not care what the steps are. Of course if there is only one
step, I am doing perturbation theory on the one-turn map. So it is useful for the reader
to imagine a large number of steps otherwise this chapter would be truly useless.

These steps are between N distinct locations in the ring where location 0 is the
same as location N . Furthermore, I can construct a one-to-one function from the
integer N to the angles:

0 −→ 0

.

.

.

j −→ θ j

.

.

.

N −→ 2π. (8.1)

1In my previous book [1], I defined the mathematical ring as a collection of ordered maps. I
demonstrated that the usual textbook Hamiltonian is a ring with an infinite number of maps.
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These angles θ j can be proportional to a design length or some other length, but
this, as it turns out, is irrelevant to the basic mechanics of Hamiltonian perturbation
theory although it affects the details. The code does not care how you choose the
mapping in (8.1). But, as we will see, you have an interest in choosing θ judiciously
if some symmetries are (almost) present in the ring.

8.3 Using a Courant-Snyder Type Phase Advance

Temporarily, I will consider the linear part of the maps and assume our ability to
normalise them within the code.

Thus imagine that I compute the one-turn linear map at j = 0 and normalise it:

m0 = a0 ◦ r ◦ a−1
0 . (8.2)

Themap a0 is defined solely in terms of the one-turnmap following a canonisation
routine. For example a0 can be the Courant-Snyder-Teng-Edwards transformation.

Next I construct my usual lattice function loop as described in Eq. (2.55):

r j j+1 = a−1
j+1 ◦ m j j+1 ◦ a j . (8.3)

Here a j+1 is canonised into the desired form. Now I apply Eq. (8.3) to the full non-
linear map of the code. I use capital letters for the full nonlinear maps and keep lower
case for linear maps.

N j j+1 = a−1
j+1 ◦ M j j+1 ◦ a j . (8.4)

The map N j j+1 is to leading order a simple rotation (i.e., r j j+1) but also contains
higher order terms not yet normalised. If it represents a small part of the ring, say a
magnet or a single integration step, then it is near the identity! Therefore I can apply
the technique of Chap.11 and take its logarithm. In other words,

if N j j+1 = exp
(
Δs j G · ∇)

I

= exp
(−Δs j : Hj :) I

=⇒ log
(
N j j+1

) = Δs j G ⇒ −Δs j Hj . (8.5)

http://dx.doi.org/10.1007/978-4-431-55803-3_2
http://dx.doi.org/10.1007/978-4-431-55803-3_11
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The step Δs j is connected by (8.1) to the angles which are chosen here to be pro-
portional to a distance s,

Δs j = s j+1 − s j = θ j+1 − θ j

2π
C (8.6)

where C is the largest value taken by s. In other words, the variable s runs from
s = 0 to s = C . Obviously, when comparing to standard accelerator Hamiltonian
theory, C will correspond to the total circumference of the so-called design orbit. It
is important to realise that this correspondence need not be true. However for the
sake of comparing to known problems, I make sure that it is true in the example
program of Appendix N!

The local (pseudo-)Hamiltonian Hj has the form:

Hj = Δμ j;1
Δs j

J1 + Δμ j;2
Δs j

J2 + Vj . (8.7)

If I assume that the Hamiltonian for the full ring can be expanded in Fourier modes
in θ ,

H (z; θ(s)) =
∑

n=−M,M

exp (i nθ(s)) hn , (8.8)

then the Fourier coefficients hn can be easily computed using the output from the
“phase advance” loop i.e., Eq. (8.5). The answer is

hn = − 1

2π

N−1∑

j=0

exp
(−inθ j+1

)
log

(
N j j+1

) Δθ j

Δs j︸︷︷︸
=2π/C

= − 1

C

N−1∑

j=0

exp
(−inθ j+1

)
log

(
N j j+1

)
. (8.9)

Equation (8.9) gives the coefficient of the s-dependentHamiltonian: Eq. (8.8)must
be integrated from s = 0 to s = C to give us the one-turn map. Clearly if you use θ

for the variable of integration, the corresponding Hamiltonian is just:

H (z; θ) = C

2π

∑

n=−M,M

exp (i nθ) hn

=
∑

n=−M,M

exp (i nθ) h̃n (8.10)
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where h̃n = − 1

2π

N−1∑

j=0

exp
(−inθ j+1

)
log

(
N j j+1

)
. (8.11)

It is easy to check that the quadratic part of h0 is a constant Hamiltonian which
produces the total phase advance along the ring. I will check that on an example in
Sect. 8.5.

It is also true that even the linear part contains terms which are θ dependent, in
other words, the quadratic part of H(θ) is

H2 =

⎧
⎪⎨

⎪⎩
ν1 J1 + ν2 J2︸ ︷︷ ︸

quadratic part of h0

+
∑

n=−M,M

einθ
{
ν1;n J1 + ν2;n J2

}
⎫
⎪⎬

⎪⎭
. (8.12)

This is to be expected because the phase advance is not a uniform function of the
variable θ . In fact for the usual quadratic Hamiltonian, the phase advance is the
integral of 1

β
over the design distance s as shown in Sect. 2.4.3. This is certainly not

a constant function of the variable s or θ . The reader will see this fact numerically
demonstrated in Sect. 8.5 on Fig. 8.1.

In the next section I show how one can insure that the quadratic Hamiltonian has
exactly a constant phase advance.The technique is documented in standard textbooks,
for example in Lee’s book [2].Here however, I use only tools and techniques available
to the “Code.”

Fig. 8.1 Fourier transform
of the Hamiltonian H = 1

β
J

http://dx.doi.org/10.1007/978-4-431-55803-3_2
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8.4 Using a Constant Phase Advance

In Eq. (8.3), the canonical transformation is a strict function of the map at positions
j and j + 1. The process of “canonisation” sets a j+1 in terms of the transfer map
m j j+1 and a j . The phase advance emerges from the resulting r j j+1. The phase
advance is not an input, it is computed and it depends strongly on the choice of a j .
Please look at Sect. 2.4.3 or Chap.7 if you need a reminder.

In this section, I will do the reverse: the phase advance will be an input from
which the canonical transformation a j+1 is computed. The trick used by accelerator
physicists is to first compute the total linear phase advance using a canonised recipe
and write the following Hamiltonian

K = ν1 J1 + ν2 J2 (8.13)

where the tunes νi ’s contain the integer part. Accelerator physicists2 reinterpret
Eq. (8.3) as an equation not for the phase advance r j j+1 but for the canonical trans-
formation a j+1.

The trick in a code-based-theory is to decree prima facie that r j j+1 is

r j j+1 = exp
(
Δθ j : − {ν1 J1 + ν2 J2} :) I . (8.14)

The equation for the canonical transformation a j+1 is given by

a j+1 = m j j+1 ◦ a j ◦ r−1
j j+1. (8.15)

which can be rewritten with Lie exponents:

a j+1 = exp
(
Δθ j : {ν1 J1 + ν2 J2} :)

︸ ︷︷ ︸
Lie map for r−1

j j+1

m j j+1 ◦ a j︸ ︷︷ ︸
tracked transformation

. (8.16)

Equation (8.15) (or (8.16)) defines an acceptable transformation if it leads to a
transformation a j that is periodic. That is actually easy to prove by connecting a j to
the starting point a0:

2The reader can consult Lee’s book [2] on nonlinear resonances for an exposition of the methods
using standard Hamiltonian theory.

http://dx.doi.org/10.1007/978-4-431-55803-3_2
http://dx.doi.org/10.1007/978-4-431-55803-3_7
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a1 = m0 1 ◦ a0 ◦ r−1
0 1

a2 = m1 2 ◦ a1 ◦ r−1
1 2

.

.

.

a j+1 = m j j+1 ◦ a j ◦ r−1
j j+1

.

.

.

aN−1 = m N−2 N−1 ◦ aN−2 ◦ r−1
N−2 N−1

aN = m N−1 N ◦ aN−1 ◦ r−1
N−1 N

⇓
aN = m N−1 N ◦ m N−2 N−1 ◦ · · · ◦ m23 ◦ m12 ◦ m01︸ ︷︷ ︸

m0N

◦a0 ◦ r−1
01 ◦ · · · ◦ r−1

N−2 N−1 ◦ r−1
N−1 N︸ ︷︷ ︸

r−1
0N

⇒ aN = m0N ◦ a0 ◦ r−1
0N

= a0 ◦ a−1
0 ◦ m0N ◦ a0︸ ︷︷ ︸

r0N

◦r−1
0N = a0r−1

0N r0N = a0 . (8.17)

The reader must notice that all the above arguments do not depend on the original
a0. It is natural, being an accelerator physicist, to select a0 to be the Courant-Snyder-
Teng-Edwards transformation, but it is totally irrelevant to the procedure described in
this section. In fact, if I select a0 to satisfy the Courant-Snyder condition, A12 = 0,
it is unlikely to be satisfied anywhere else around the ring except between super
periods.

The rest of the calculation proceeds as in Sect. 8.3, from Eq. (8.4) to Eq. (8.9). The
real change comes at Eq. (8.12) which I rewrite here:

H2 = ν1 J1 + ν2 J2 +
∑

n=−M,M

einθ
{
ν1;n J1 + ν2;n J2

}

︸ ︷︷ ︸
≈ 0

. (8.18)

If our code has an infinite number of steps and no discontinuous operators (fake
fringe fields or misalignment operators), then the second term in Eq. (8.18) will
vanish if the angle θ is defined to be proportional to the integration length.

However, we can make it vanish exactly by choosing the angle mapping of (8.1)
judiciously. The idea is to select the phase advance within each step to be identical. In
the case where the ring has a definite symmetry, it is worthwhile to make sure that the
N locations are distributed identically in each super-periods. This may not be easy
or convenient because some super-periods may differ in dynamically insignificant
ways. For example, BPMs can be positioned asymmetrically in the lattice. There
might be insertion devices that break the symmetry. If one is careless, the second
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term in Eq. (8.18) will not be exactly zero. This does not mean that the computed
Hamiltonian is wrong, but it is not exactly what we naively expected.

8.5 Code Example for Sect. 8.3: Using the Courant-Snyder
Phase Advance

Before discussing the code in Appendix N, it is interesting to look at Fig. 8.1. On
this figure I simply plotted 1

β
around the ring as well as a piece of the Hamiltonian

evaluated by Fourier transform. I chose the 1-d-f case with no errors and used an
angle θ strictly proportional to the standard distance s along the so-called design
orbit. I also set the maximum distance between integration kicks to be 0.01. We
expect the Hamiltonian to be

H = 1

β
J + · · · = 1

2β
uu + · · · . (8.19)

This is confirmedonFig. 8.1, showing the first cell of theALS,where theHamiltonian
matches 1

β
nearly perfectly. This will be explained in this section.

The actual lattice is described in Appendix A, but it suffices to see that it has the
following structure

ALS = 11*sup1+supb;

where the beam line supb is identical to sup1 except for the presence of a thin lens
cavity.

The code of Appendix N implements completely Sect. 8.3. I will first present a
fragment which implements the logical core of this algorithm, namely from Eq. (8.4)
to Eq. (8.9):

if(used_ds_ave) then
circ=twopi
else
call GET_LENGTH(als,circ)
endif

if(int_step) then ! (10)
ns=als%t%n
else
ns=als%n
endif

allocate(bet(0:ns),theta(0:ns),ht(0:ns))
bet=0.d0
theta=0.d0
ds_ave=twopi/ns ! (11)
ds=0.d0
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if(icase==1) U_c=U_c.cut.2

s=0.d0
ray=U_c+ray_closed; ! (12)

p=>als%start ! (13a)
t=>p%t1 ! (13b)

do i=1,ns

if(mod(i,100)==0) then
write(6,*) ns-i,"steps remaining"

endif

if(used_ds_ave) then
ds=ds_ave ! (14a)

else
if(int_step) then
ds=twopi*t%s(5)/circ ! (14b)
else
ds=twopi*p%mag%p%ld/circ ! (14c)
endif

endif

if(int_step) then
call propagate(als,RAY,state,node1=i,node2=i+1) ! (15a)
else
call propagate(als,RAY,state,fibre1=i,fibre2=i+1) ! (15b)
endif

ray_closed=ray ! Saving orbit
U=ray ! copying in map

U_c=U

bet(i)=1.d0/((u_c%v(1).sub.’10’)**2+(u_c%v(1).sub.’01’)**2)
! (15c)

if(icase==1) U_c=U_c.cut.2 ! (16a)
call c_canonise(U_c,U_c,f,A,b) ! (16b)
U=U_c**(-1)*U ! (16c)

Gh=log(U) ! (17a)
h=getpb(Gh) ! (17b)

! Checking convergence of the logarithm
a=exp(-(fh.cut.2),(U.sub.1)) ! (18)
do k=1,c_%nd2
if(abs(full_abs(a%v(k))-1)>1.d-5) then
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call print(a,6)
write(6,*);write(6,*) "Log failed at element",i, p%mag%name
stop

endif
enddo

s=s+ds; theta(i)=s
do k=0,n_mode
hn(k)=hn(k)-exp(-i_*k*theta(i))*h/circ ! (19)
enddo

Lines (15) and (16) implement Eq. (8.4) which I rewrite here:

N j j+1 = a−1
j+1︸︷︷︸

U_c line (16b)

◦ M j j+1 ◦ a j︸ ︷︷ ︸
U line (15)

︸ ︷︷ ︸
line (16c)

. (8.20)

Lines (17a) and (17b) contain the novel part of the algorithm,which tomyknowledge,
has not been described anywhere else.

log
(
N j j+1

) = Δs j G︸ ︷︷ ︸
line (17a)

⇒ − Δs j Hj︸ ︷︷ ︸
line (17b)

. (8.21)

Line (18) is a check on the internal consistency of the logarithm of a map. If the map
is too “large”, namely if the tune is close to 90◦ or beyond it, I do not expect my
algorithm to work. Thus the code stops.

If all is fine, the contribution to the Fourier integral is incremented at line (19) as
described in Eq. (8.9).

hn =
N−1∑

j=0

− 1

C
exp

(−inθ j+1
)
log

(
N j j+1

)

︸ ︷︷ ︸
line (19)

. (8.22)

In running the example program, I will suggest a few inputs. First here is the code
fragment from the program of Appendix N which describes the various input:

Write(6,*)"Random errors -> t, no errors -> f"
read(5,*) mis

1 write(6,*) "Choose the state"
if(.not.mis) write(6,*) "only_2d0 -> 1-d-f map if no errors ->
type 1"
write(6,*) "only_4d0 -> 2-d-f map -> type 2"
write(6,*) "delta0 -> 2-d-f map + delta -> type 3"
write(6,*) "nocavity0 -> 3-d-f map if no cavity -> type 4"
write(6,*) "default0 -> 3-d-f map if cavity -> type 5
<- SLOW"
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read(5,*) i .
.
.
.
.

write(mf,*) "L MAX "
write(mf,*) "0.3" ! (1) all ds of the order 0.3 metre
write(mf,*) "CUTTING ALGORITHM"

.

.

.

write(6,*) "Do you want to break the symmetry of the lattice"
write(6,*) "by mispowering a single sextupole ? "
write(6,*) "Yes -> t No -> f "
read(5,*) asym

if(asym) then
p=>als%start; call move_to(ALS,p,"SF",pos); ! (2a)
call add(p,3,1,10d0); !call add(p,2,1,.01d0); ! (2b)
endif

.

.

.
write(6,*) "int_step t or f"
read(5,*) int_step ! (3)
write(6,*) "Uniform ds -> t"
read(5,*) used_ds_ave ! (4)

write(6,*) "case 1,2 "
write(6,*) "case = 1 -> linear transformation"
write(6,*) "case = 2 -> full nonlinear transformation: not
interesting"
read(5,*) icase ! (5)

write(6,*) "Number of Fourier modes: make it 12 or more"
read(5,*) n_mode
allocate(hn(0:n_mode)) ! (6)

map_order=4 ! (7)

First, random errors can be put in the lattice. Secondly the dimension of the cal-
culation is read. Line (1) is not an input but the reader can obviously modify it before
compilation. It affects the size of the integration steps. The parameter asym powers
a single sextupole, and, if you reintroduce the second call of line (2b), it also puts
a linear break of the symmetry. Line (3) allows the maps to be that of individual
integration steps rather than magnets. This, with a small integration step, allows the
calculation of the code to approach the results of “exact” Hamiltonian perturbation
theory when relevant. Remember that the “Code” is always right! Therefore the
type of calculation performed here is correct even when the individual steps describe
maps totally outside the realm of continuous Hamiltonians: misalignments for exam-
ple. Line (4) is not useful when trying to reproduce a Courant-Snyder type result:
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it redefines θ to be constant at each step whether integration steps, misalignment
operators or integrated fringe kicks. Fringe kicks are used in models of bends3 for
example.

The example I will show here is the “extreme” case of Hamiltonian dynamics.
First the reader must change line (1) from 0.3 to 0.01. This will trigger a very small
cutting of all magnets so that ds is about 1 centimetre typically. The rest of the input
is shown below.

Random errors -> t, no errors -> f
f
Choose the state

only_2d0 -> 1-d-f map if no errors -> type 1
only_4d0 -> 2-d-f map -> type 2
delta0 -> 2-d-f map + delta -> type 3
nocavity0 -> 3-d-f map if no cavity -> type 4
default0 -> 3-d-f map if cavity -> type 5 <- SLOW
1
Do you want to break the symmetry of the lattice
by mispowering a single sextupole ?
Yes -> t No -> f

f
.
.
.

int_step t or f
t
Uniform ds -> t

f
case 1,2
case = 1 -> linear transformation
case = 2 -> full nonlinear transformation: not interesting

2
Number of Fourier modes: make it 12 or more

1728
22004 steps remaining

.

.

.
4 steps remaining

The results are in file guignard_hamiltonian.txt and I list here the non-
vanishing Fourier modes:

Results for 12-fold symmetric ring
2 x Hamitonian of the ring Guignard style

0

3A well-known approximation for a parallel face bend consists in using a sector bend sandwiched
between two thin lens quadrupoles. See [1] or any other accelerator cookbook available in any
decent pharmacy.
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Properties, NO = 4, NV = 2, INA = 181
*********************************************

2 14.36779999999980 0.000000000000000 1 1
4 -1491.899920542154 0.000000000000000 2 2

1
.
.
.
.
.

12

Properties, NO = 4, NV = 2, INA = 193
*********************************************

2 -6.485176171637776 0.1124135382493850E-01 1 1
4 1576.285541487028 -1.290731929174263 2 2

13
.
.
.
.
.

1727

Properties, NO = 4, NV = 2, INA = 2118
*********************************************

Complex Polynomial is zero

1728

Properties, NO = 4, NV = 2, INA = 2059
*********************************************

2 -0.1878555919484628E-03 0.4424503035230257E-03 1 1
4 143.1056868536650 -40.57186418794430 2 2

The perfect symmetry implies that only Fourier modes that are multiples of 12
can appear. This perfect symmetry extends to the nonlinear tune since the sex-
tupolar distribution of this lattice is also 12-fold symmetric. Of course the phase
advance is a function of θ since I use the Courant-Snyder definition for the canonical



218 8 Deprit-Guignard Perturbation Theory Faithful to the Code

transformation. Therefore the second term Eq. (8.12) that contains the θ -dependent
terms cannot be zero. The result for the coefficient in Eq. (8.19) is confirmed to be
1
β
by the graphs in Fig. 8.1.
The reader is invited to reduce the number of steps by setting ds back to 0.3 in line

(1) and try other inputs. In particular the reader is invited to run the 3-d-f examples.
The case with a cavity takes a longer time to run: please note that my synchrotron
tune, above transition, is negative.

8.6 Code Example for Sect. 8.4: Using a Constant Phase
Advance

The code of Appendix O used here is very similar to that used in Sect. 8.5. As I
said the difference lies in the way the phase advanced is computed. In standard
accelerator theory, formulae like μ ≈ ∫

ds/β emerge from our choice of canonical
transformation which is the source of my so-called “canonisation” process. One fixes
the canonical transformation, preferably a function of the one-turnmap only, and here
“pops” a phase advance.

In Hamiltonian perturbation theory presented in Sect. 8.4, the reverse is done.
The phase advance, integer part included, is precomputed using your favourite holy
canonised version. Then you choose a mapping between θ and a variable s of your
own taste; it can be the standard s along the design orbit. But generally, if you have
misalignments and discrete maps representing approximate fringes (for example), it
should perhaps be something else.

The point of this exercise is to force the linearly4 normalised physics to be that of
a constant and trivial Hamiltonian, i.e.,

K = ν1 J1 + ν2 J2 (8.23)

in 2-d-f.
I will show the major differences with the code of Sect. 8.5. They all relate to

the fact that the phase advance is given by Eq. (8.14) and is thus fixed. There is
no “canonisation” to determine it. Rather the reverse is true: the phase advance
is known and the transformation is extracted from it. This is shown in some code
fragments from the program of Appendix O. First I construct the vector field operator
corresponding to Eq. (8.23):

call c_normal(one_turn_map,normal_form) ! (8c)
U=normal_form%A_t ! att=c_n%A_t*c_n%As

intp=0
if(normal_form%nres==0) then

4One can partially normalise the Hamiltonian to say second or third-order, but for the sake of
simplicity, I keep this out of the discussion of this book.
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intp(1)=14
intp(2)=8
intp(3)=0
endif

! id_s is a rotation
id_s=U**(-1)*one_turn_map*U ! (8d)

call extract_linear_from_normalised(id_s,b,a,f_lin,f_non,intp)
! (8e)

call c_canonise(normal_form%A_t ,U_c,f,A,b) ! (9a)
id_s=U_c ! (9b)

if(icase==1) then
h_left=f_lin

else
h_left=f_non+f_lin

endif
h_left=(1.d0/twopi)*h_left

In array intp(1:3) I stored the integer part. Notice that it could be computed
in the program itself, but I did not bother here since we know the answer from the
various ALS-based codes in the appendices. On line (8e), I extract the linear and
nonlinear parts of the normalised vector field. I then divide it by 2π . The result, in
h_left will permit me to construct the map for the phase advance, namely the
map of Eq. (8.14). The polynomial h_left will turn out to be the Poisson bracket
operator : − {ν1 J1 + Δν2 J2} : of Eq. (8.14) as expected.

I will now display the relevant loop to see the actual computation of the canonical
transformation.

do i=1,ns

if(mod(i,100)==0) then
write(6,*) ns-i,"steps remaining"

endif

if(used_ds_ave) then
ds=ds_ave ! (14a)

else
if(int_step) then
ds=twopi*t%s(5)/circ ! (14b)
else
ds=twopi*p%mag%p%ld/circ ! (14c)
endif

endif

if(int_step) then
call propagate(als,RAY,state,node1=i,node2=i+1) ! (15a)
else
call propagate(als,RAY,state,fibre1=i,fibre2=i+1) ! (15b)
endif
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ray_closed=ray ! Saving orbit ! (16a)
U=ray ! copying in map ! (16b)

U_c=exp(-ds*h_left,U) ! (16c)
if(icase==1) U_c=U_c.cut.2 ! (16d)
U=U_c**(-1)*U ! (16e)

Gh=log(U) ! (17a)
h=getpb(Gh) ! (17b)

! Checking convergence of the logarithm
a=exp(-(fh.cut.2),(U.sub.1)) ! (18)
do k=1,c_%nd2
if(abs(full_abs(a%v(k))-1)>1.d-5) then

call print(a,6)
write(6,*);write(6,*) "Log failed at element",i, p%mag%name
stop

endif
enddo

s=s+ds;
do k=0,n_mode
hn(k)=hn(k)-exp(-i_*k*s)*h/circ ! (19)
enddo

ray=ray_closed+U_c

if(int_step) then ! (20)
t=>t%next
p=>t%parent_fibre
else
p=>p%next
endif

enddo

The real difference here is line (16c) which implements Eq. (8.16). Line (16e)
recomputes the rotation r j j+1 unless icase==1. In that case, which is the most
interesting, the map U at line (16e) will be a nonlinear map whose linear part, and
only its linear part, is normalised. Lines (17a, b) compute the contribution to the
vector field and Hamiltonian. Line (19) performs once more the Fourier transform.

It is time for some examples. In the first test, I completely normalise the Hamil-
tonian, including the nonlinear part, but I use the “design distance” s. Since there are
no errors, I expect a simple result. But first here are the inputs:

Random errors -> t, no errors -> f
f
Choose the state

only_2d0 -> 1-d-f map if no errors -> type 1
only_4d0 -> 2-d-f map -> type 2
delta0 -> 2-d-f map + delta -> type 3
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nocavity0 -> 3-d-f map if no cavity -> type 4
default0 -> 3-d-f map if cavity -> type 5 <- SLOW
1
Do you want to break the symmetry of the lattice
by mispowering a single sextupole ?
Yes -> t No -> f

f
.
.
.

int_step t or f
t
Uniform ds -> t

f
case 1,2
case = 1 -> linear transformation
case = 2 -> full nonlinear transformation: not interesting

2
Number of Fourier modes: make it 12 or more

12
2984 steps remaining

.

.

.
84 steps remaining

Notice that I did not select a “uniform ds” but the ds of standard accelerator
theory. The results for the Fourier modes are:

Results for 12-fold symmetric ring
1/pi x Hamitonian of the ring Guignard style

0

Properties, NO = 4, NV = 2, INA = 305
*********************************************

2 14.36779999999997 0.000000000000000 1 1
4 -1400.051094947328 0.000000000000000 2 2

.

.

.

11

Properties, NO = 4, NV = 2, INA = 429
*********************************************

Complex Polynomial is zero

12
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Properties, NO = 4, NV = 2, INA = 366
*********************************************

2 0.2238180754947364E-02 -0.3440156050595830E-01 1 1
4 -0.2180965352641198 3.352214156897517 2 2

By selecting a nonlinear normalisation, i.e., case = 2, I “vaporised” all terms
in the Hamiltonian. Actually by doing so, I select the rotation of Eq. (8.14) to include
nonlinear terms as well:

r j j+1 = exp

(
−Δθ j : ν1 J1 + ν2 J2 + 1

2
ν11 J 2

1 + 1

2
ν22 J 2

2 + ν12 J1 J2 + · · · :
)

I .

(8.24)

Since this is a perfect normalisation and the phase advance is supposed to be constant,
then all the Fourier modes should vanish except the zeroth-order mode. It is not the
case in the above run because the variable s is discrete and irregular. Of course if we
decrease ds, the size of the higher order modes will decrease. This can be tested by
changing line (1) of the code of Appendix O to a smaller ds. For example I can use
ds = 0.01 instead of ds = 0.3. Then the results are:

Results for 12-fold symmetric ring
1/pi x Hamitonian of the ring Guignard style

0

Properties, NO = 4, NV = 2, INA = 329
*********************************************

2 14.36779999999740 0.000000000000000 1 1
4 -1491.899920542967 0.000000000000000 2 2

.

.

.

12

Properties, NO = 4, NV = 2, INA = 327
*********************************************

2 0.000000000000000 -0.9174340199695377E-04 1 1
4 -0.2006042085544238E-05 0.9526314186243319E-02 2 2

We can see that the Fourier mode n = 12 is now greatly reduced. The reader has
noticed that the second-order tune shift with amplitude has changed. The coefficient
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of the term of
(
hh

)2
has changed from −1400.05 to −1491.89. This is because the

sextupoles are thick and their influence changes with the number of integration steps.
Now, we can rerun the example with ds = 0.3 but force every integrations step

to carry the same phase advance. This is done with the input

Uniform ds -> t
f

and the result for the Hamiltonian is

Results for 12-fold symmetric ring
1/pi x Hamitonian of the ring Guignard style

0

Properties, NO = 4, NV = 2, INA = 366
*********************************************

2 14.36779999999974 0.000000000000000 1 1
4 -1400.051094957094 0.000000000000000 2 2

.

.

.

12

Properties, NO = 4, NV = 2, INA = 364
*********************************************

Complex Polynomial is zero

One can see that now everything disappears and only the tune shifts are left. Of
course this is not interesting. The real application is to create aHamiltonianwhich can
be used for non-trivial analysis. Therefore the degree of the canonical transformation
should be less than the degree of the calculation. In the code of Appendix O (or N)
I only permit a linear transformation, so let us repeat the preceding calculation with
icase==1:

Results for 12-fold symmetric ring
1/pi x Hamitonian of the ring Guignard style

0

Properties, NO = 4, NV = 2, INA = 299
*********************************************
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2 14.36779999999974 0.000000000000000 1 1
3 0.8263498722229337 0.4574639367785570 3 0
3 46.77748306707147 6.960293949960596 2 1
3 46.77748306707147 -6.960293949960596 1 2
3 0.8263498722229337 -0.4574639367785570 0 3
4 -0.1159118703440558 -0.3923617105875322E-01 4 0
4 20.47647718428394 6.255117771490995 3 1
4 46.09742446009528 0.000000000000000 2 2
4 20.47647718428394 -6.255117771490995 1 3
4 -0.1159118703440558 0.3923617105875322E-01 0 4

.

.

.

12

Properties, NO = 4, NV = 2, INA = 297
*********************************************

3 6.365220492977832 1.939002861890301 3 0
3 -38.96913428458305 -0.5542307133387245 2 1
3 -62.56589696763955 18.06013546866444 1 2
3 -11.88680943171767 7.728575486524896 0 3
4 2.812212005606214 1.325106178487980 4 0
4 -10.18376486615540 -1.748430061899771 3 1
4 -40.40135069325562 5.376782363158791 2 2
4 -24.52952547124339 11.19777711815500 1 3
4 -1.809148764522738 1.620874278368010 0 4

The result is the Hamiltonian, linearly normalised, as a function of θ . Since I did
not introduce any asymmetry, only the modes which are multiple of twelve survive.
If I rerun once more this example with

Do you want to break the symmetry of the lattice
by mispowering a single sextupole ?
Yes -> t No -> f

t

then I obtain the following Hamiltonian:

Results for an asymmetric ring
1/pi x Hamitonian of the ring Guignard style

0

Properties, NO = 4, NV = 2, INA = 429
*********************************************
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2 14.36779999999974 0.000000000000000 1 1
3 0.8940931373272247 0.4777866096934882 3 0
3 46.98860011460854 6.980868928718808 2 1
3 46.98860011460854 -6.980868928718808 1 2
3 0.8940931373272247 -0.4777866096934882 0 3
4 -0.1251935202802885 -0.4303629588136917E-01 4 0
4 20.43713113412903 6.247375081478787 3 1
4 46.03728209715597 0.000000000000000 2 2
4 20.43713113412903 -6.247375081478787 1 3
4 -0.1251935202802885 0.4303629588136917E-01 0 4

1

Properties, NO = 4, NV = 2, INA = 366
*********************************************

3 0.7032858744489333E-01 0.7486707513945572E-02 3 0
3 0.2112918567786044 -0.1869461878138229E-01 2 1
3 0.2037063352393425 -0.5913938193594349E-01 1 2
3 0.6283608526862743E-01 -0.3246209157659385E-01 0 3
4 -0.9823097918915750E-02 -0.2024035938903566E-02 4 0
4 -0.4009904556361971E-01 -0.3570101578719038E-03 3 1
4 -0.5911169224381812E-01 0.1108655310767991E-01 2 2
4 -0.3724449380244228E-01 0.1486299407094169E-01 1 3
4 -0.8422079282043460E-02 0.5445966835407864E-02 0 4

.

.

.
etc.

The reader will appreciate that these polynomials can now be read into any stan-
dard program for time dependent Hamiltonian perturbation theory including my own
FPP prototype as shown in the coming sections.

8.7 Normalising the θ(s)-Dependent Equations of Motion:
Deprit-Guignard Approach

Dear Reader, in this book, I illustrated the theory using a real code (PTC) and more
importantly, a real analysis package (FPP). It would difficult for me to disprove the
contention that this book is just a disguised attempt to promote FPP and supplement
its manual…I just hope that you will believe me when I say that there was nary
a package which I could have used that is as complete as FPP. So I shamelessly
peddledmy code. I amonly interested in the promotion of the theoretical and practical
techniques and not in promoting my own faulty software. In fact I take greater pride
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in the existence of “gifted imitators” like my colleague Lingyun Yang5 than in the
existence of “users.”Dr. Yang not onlywrote a TPSApackage, thus emulatingMartin
Berz, but also wrote an analysis routine like my own FPP.

In this section, I state up front that the software I will use was hacked together
for the sole purpose of this book. It can perhaps inspire someone to write a decent
set of tools but it certainly does not qualify as a nice set of tools. Do I feel guilty?
Absolutely not.

The normalising algorithm Iwill use here is more than you can find in any book on
accelerator physics. Rather it is common for authors to pontificate about Hamiltonian
theory and, in the end, crack a peanut with the sledge hammer theory they poorly
sell to the reader. I will not try to sell anything but, at least, I will show you how one
might program a real tool for the purpose of Hamiltonian theory.

For me, the theoretical “battle fatigue” is epitomised by the following quote from
an introductory textbook by Edwards and Syphers [3] who, after recracking a pre-
viously cracked peanut, conclude with a defeatist statement that makes the French
army of 1940 look overly aggressive:

Only the most basic methods of dynamics have been used thus far, because we feel that
the physics at work is most transparently illustrated in that way. But much of accelerator
physics makes use of one form or another of higher dynamics. The Hamiltonian approach
is the method most frequently encountered in the literature.

In this section, we review the Hamiltonian form of dynamics, and then recast much of the
material of the earlier discussions in this language. No new physics is introduced, but the
generality obtained may be helpful to the reader who wishes to pursue this approach further.

I will also recrack the same peanut…However I will provide tangible proof that
it is possible to go further thanks to TPSA by actually delivering an algorithm to
the reader. Moreover, the basic methods mentioned by Edwards and Syphers were
actually first-ordermapmethods. The reader by nowmust know that they are part of a
powerful hierarchical set of methods. They are as much a part of “higher dynamics”
as the Hamiltonian methods of Guignard. In fact, as this chapter illustrates, they
underpin any serious attempt at using Guignard’s methods.

8.7.1 Transforming the Equations of Motions

As you all know by now, any decent package should use general vector fields. There-
fore, I ought to Fourier transform the force field, i.e., the plain logarithm of the map
as in Eq. (8.21). Then Eq. (8.22) simply reads as

5I asked Dr. Yang to write the foreword of this book precisely because I wanted to de-emphasize
my own software!
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Gk =
N−1∑

j=0

− 1

C
exp

(−ikθ j+1
)
log

(
N j j+1

)

︸ ︷︷ ︸
line (18) in Appendix P

(8.25)

and the θ dependent force is given by the inverse transform:

G =
∑

k=−M,M

exp (i kθ) Gk . (8.26)

The vector field G is a θ dependent vector field. It turns out that it transforms under
a canonical transformation like the Hamiltonian of Eq. (7.28). Assuming that the
canonical transformation is

A = exp (F · ∇)

where F =
∑

k=−M,M

exp (i kθ) Fk , (8.27)

then the new force K is given by:

K = exp (: F :) G −
∞∑

n=1

: F :n−1

n!
∂F
∂θ

(8.28)

≈ G + 〈
F, Gk=0

1

〉 − ∂F
∂θ

+ Order
(
F2

)
. (8.29)

The attentive reader has probably noticed the minus sign between the two terms in
Eq. (8.28) while there is a plus sign in Eq. (7.28) for the Hamiltonian. This is due to
the fact that G · ∇ =: −H : where H is the Hamiltonian function.

The vector function Gk=0
1 is the linear part of the constant Fourier mode. Here

I have assumed that the linear part of the map has been normalised following the
methods of Sect. 8.4. For example, in 1-d-f, the operator Gk=0

1 · ∇ is given by:

Gk=0
1 · ∇ = −iν

{
u

∂

∂u
− u

∂

∂u

}
where u = x + i p. (8.30)

Finally it is interesting to give the actual expression for the Lie bracket of two
operators such as G:

〈G, H〉 =
〈

∑

k=−M,M

exp (i kθ) Gk,
∑

p=−M,M

exp (i pθ) Hp

〉

≈
∑

|p+k|≤M

exp (i {k + p} θ)
〈
Gk, Hp

〉
. (8.31)

http://dx.doi.org/10.1007/978-4-431-55803-3_7
http://dx.doi.org/10.1007/978-4-431-55803-3_7
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Equation (8.31) will permit me to evaluate the two terms of Eq. (8.28). The derivative
with respect to θ is trivial:

∂F
∂θ

= i
∑

k=−M,M

k exp (i kθ) Fk . (8.32)

Now onwards with the normalisation!

8.7.2 The Actual Deprit-Guignard Normal Form

In this section I will perform a complete normalisation. I am cracking the same
peanut as before for the sake of comparison. I hope it will convince the reader of the
power of the tools, and perhaps, he can come up with different nuts6 to crack with
Hamiltonian perturbation theory.

What follows is certainly intelligible on its own. However the uncertain reader
can consult Sect. 3.4 and in particular Sect. 3.4.4.2 where I normalise a time indepen-
dent vector field, namely the logarithm of the standard map. Here the Hamiltonian
represents the ring and is therefore time (or θ ) dependent.

Let me assume, as is customary in perturbation theory, that the Hamiltonian has
been normalised up to order o − 1. Thus we have

Go−1 = exp (: Fo−1 :) G −
∞∑

n=1

: Fo−1 :n−1

n!
∂Fo−1

∂θ : (8.33)

= K<o + Ko + K>o

= Gk=0
1 + K2→o−1 + Ko + K>o . (8.34)

To continue the process of normalisation, I perform an additional transformation on
Eq. (8.34):

exp (: fo :) Go−1 = Gk=0
1 + K2→o−1 + 〈

fo, Gk=0
1

〉 − ∂fo

∂θ
+ Ko

︸ ︷︷ ︸
= Tune shifts

+ · · · . (8.35)

In Eq. (8.35) the vector field fo is chosen to clean Ko of all non-tune-shift terms. To
order o the canonical transformation becomes:

Fo = Fo−1 + fo . (8.36)

6θ-dependent methods provide a natural way to study systems with slightly broken symmetries
although maps of finite θ can be used as well. But I will refrain in this book from discussing topics
I did not have time to investigate myself. I leave it to the reader! See Sect. 9.2.1.

http://dx.doi.org/10.1007/978-4-431-55803-3_3
http://dx.doi.org/10.1007/978-4-431-55803-3_3
http://dx.doi.org/10.1007/978-4-431-55803-3_9
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To proceed further I simply need to increase the index from o to o + 1 and return to
Eq. (8.33).

I will finish this section by solving Eq. (8.35) as I did in Sect. 3.4.4.2 at
Eq. (3.124). The only difference is the presence of a time dependence whose influ-
ence we will now discover. First I expand the operator Ko in phasors and Fourier
modes, limiting myself to 2-d-f for notational simplicity. Here is the ath component
of the vector Ko:

K a
o =

∑

k=−M,M

exp (i kθ) K k;a
o;mum1um2vm3vm4 . (8.37)

Solving for f a
o , I get for a = 1, 2, 3, 4:

f k;a=1
o;m = −K k;a=1

o;m
i {ν1(m2 − m1 + 1) + ν2(m4 − m3) − k}

f k;a=2
o;m = −K k;a=2

o;m
i {ν1(m2 − m1 − 1) + ν2(m4 − m3) − k}

f k;a=3
o;m = −K k;a=3

o;m
i {ν1(m2 − m1) + ν2(m4 − m3 + 1) − k}

f k;a=4
o;m = −K k;a=4

o;m
i {ν1(m2 − m1) + ν2(m4 − m3 − 1) − k} . (8.38)

The reader will notice that if k �= 0, it is always possible to perform the inversion of
Eq. (8.38). In that case, the final result is a θ -independent generator of rotation. This
is precisely the normalisation described in Sect. 8.3 if the canonical transformation
a is nonlinear.7 For k = 0, some terms cannot be removed and they correspond to
the tune shift terms also computable from a map based theory. Actually the map
based theory gets these terms exactly. I apologise for not providing a new use for the
Deprit-Guignard methods: my goal is to show that if there is a will on the part of the
reader, he will be able to program new tools based on the Deprit-Guignard approach.

As in the map based theory of Sect. 5.4, it is possible to leave a single resonance in
the Hamiltonian or vector field. Then it is also possible to go into a co-moving frame
from which an invariant valid all over phase space is computable. I will not discuss
any of this in this book. I will simply show some prototypical tools which prove that
my hierarchical approach is indeed more powerful than any other approach when
realistic calculations are needed.

7If a is computed to the order of truncation of the TPSA package.

http://dx.doi.org/10.1007/978-4-431-55803-3_3
http://dx.doi.org/10.1007/978-4-431-55803-3_3
http://dx.doi.org/10.1007/978-4-431-55803-3_5
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8.7.3 Example Code for a Deprit-Guignard Normalisation

For this example, I created a new Fortran 90 type to represent the vector field found
in Eq. (8.26).

type c_vector_field_fourier
integer :: n=0
type (c_vector_field), allocatable :: f(:)
end type c_vector_field_fourier

For example, the kth FouriermodeGk of the vector fieldG (of type c_vector_field_
fourier) is represented as:

Gk → G% f (k). (8.39)

The actual main program is in Appendix P. I limited myself to a 1-d-f example
and, for the sake of accuracy, I use a single cell of the ALS lattice by invoking the
optional parameter onecell=.true. when creating the lattice:

call build_lattice_als(ALS,mis,exact=.false.,onecell=.true.) ! (0)

The main program differs very little in structure from the program of Sect. 8.6: a
few flags are hard-wired for the convenience of the reader. In particular a constant
phase advance is used and the Courant-Snyder normalisation is limited to the linear
map as one would normally do in a Guignard style normalisation.

However, there is one big difference: I perform a Fourier transform of the vector
field rather than theHamiltonian. This ismore general and consistent with the general
philosophy of the FPP package. Here is the corresponding code fragment:

call propagate(als,ray,state,node1=i,node2=i+1) ! (14)

ray_closed=ray ! Saving orbit ! (15a)
U=ray ! copying in map ! (15b)

U_c=exp(-ds*h_left,U) ! (15c)
U_c=U_c.cut.2 ! (15d)
U=U_c**(-1)*U ! (15e)

logN=log(U) ! (16)

! Checking convergence of the logarithm
a=exp(-(logN.cut.2),(U.sub.1)) ! (17)
do km=1,c_%nd2
if(abs(full_abs(a%v(km))-1)>1.d-5) then

call print(a,6)
write(6,*);write(6,*)"Log failed at element",i, p%mag%name
stop

endif
enddo
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s=s+ds;
do km=-n_mode,n_mode
G%f(km)=G%f(km)+(exp(-i_*km*s)/circ)*logN ! (18)
enddo

Line (18) performs the computation of Fourier modes and thus implements
Eq. (8.25). The actual normalisation is done at lines (21) and also, using a faster
method, at line (22) as shown in the following fragment.

U=from_phasor()
call transform_vector_field_fourier_by_map(G,G,u) ! (20)

prec=1.d-5
write(mf,*); write(mf,*) "Results of Guignard Normalisation"
write(mf,*) "One exponent k=0 with",n_fourier, "modes"
call normalise_vector_field_fourier(G,F,K) ! (21)
call c_clean_vector_field_fourier(K,K,prec)
call print(K%f(0),mf)

write(mf,*) "Factored k=0 with",n_fourier, "modes"
call normalise_vector_field_fourier_factored(G) ! (22)
call c_clean_vector_field_fourier(G,K,prec)
call print(K%f(0),mf)

At line (20), the vector field G is transformed into the phasors’ basis. This is
a time-independent transformation and therefore the formula of Eq. (3.60) can be
applied to each Fourier mode of G in Eq. (8.26). This is done at line (20) by a
subroutine call. The reader is invited to look at this routine in Ci_tpsa.f90 of the FPP
library.

Thenext step is the normalisation. Iwill describenormalise_vector_field
_fourier8 which implements exactly the normal form described in Sect. 8.7.2.
Again the reader can look at Ci_tpsa.f90. Because of its importance, I reproduce its
core fragment here:

i1=2 ;if(present(F1)) i1=1 ;nl=0; nl=n_extra;

do o=i1,no

ht=H1
IF(O>1) call exp_vector_field_fourier(F,Ht,Ht) ! (2)

do m=-n_fourier,n_fourier

do ki=1,n

8The subroutine normalise_vector_field_fourier_factored is also a normal form.
In that routine the canonical transformation is factorised à la Dragt-Finn. I did not bother to save
the transformation, so the routine accepts the force field and only returns its normalised form. I
invite the reader to look at the routine in Ci_tpsa.f90. I left in, commented out, the calls from
normalise_vector_field_fourier for easier comparison.

http://dx.doi.org/10.1007/978-4-431-55803-3_3
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j=1
do while(.true.)
temp=ht%f(m)%v(ki).sub.o
call c_cycle(temp,j,v ,je); if(j==0) exit;

if(m/=0) then
removeit=.true.

else
call check_kernel(ki,n,je,removeit)

endif
if(removeit) then
lam=-i_*m ! (3a)
je(ki)=je(ki)-1
do l=1,n
if(coast(l)) cycle
lam=lam-eg(l)*je(l) ! (3b)

enddo
je(ki)=je(ki)+1
F%f(m)%v(ki)=F%f(m)%v(ki)-(v.cmono.je)/lam ! (4)

endif

enddo ! over monomials
enddo ! over vector index

enddo ! over fourier mode
IF(o==1) THEN
call exp_vector_field_fourier(F,Ht,H1,nlin=nl)
F1=F; F=0;NL=0;

ENDIF
enddo ! over order o
ht=H1
call exp_vector_field_fourier(F,Ht,Ht) ! (5)

K=ht

At line (1), I extract the linear frequencies which enter in the normalisation as
shown explicitly at Eq. (8.38). The present algorithm assumes that the linear part
produces a θ -independent rotation. As we have seen and as it is explained in standard
textbooks [1], it is always possible to create such a Hamiltonian (or force field). The
denominators of Eq. (8.38) are created at lines (3a, b) while line (4) is actually the
implementation of Eq. (8.38). At line (2), I compute the normalised force field at that
point in the iteration. Line (5) is not used in this example: it is necessary if the linear
part has some s-dependence. For example, if the linear part is “Courant-Snyder”,
i.e., H2 (J ; θ) = C

2π
1

β(s(θ))
J , then the position dependence of the rotation is removed

at line (4). This contributes to a linear term in the computation of the Lie operator F.
Its effect on the Hamiltonian is computed at line (5). This requires an infinite sum:
in practice a sum until convergence is reached. Thus it slows down the algorithm.
At line (6), the final normalised force is computed from the original force using the
total canonical transformation.
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The subroutine exp_vector_field_fourier is critical. It cannot be done
by a simple substitution because of the θ -dependence. Again, I show here a code frag-
ment from the subroutine exp_vector_field_fourier which implements
Eq. (8.28):

subroutine exp_vector_field_fourier(s1,h0,hr)
.
.
.

call ddt_vector_field_fourier(F,dF_dt) ! (1)

s3=H ; t=H ; dhs=dF_dt;
fac=1.0_dp; fac1=1.0_dp;

do i=1,no+nl ! extra terms for cheap convergence
fac=1.0_dp/i

call bra_vector_field_fourier(F,t,t) ! (2a)
call mulc_vector_field_fourier(t,fac,t) ! t=fac*t
call add_vector_field_fourier(s3,t,s3) ! (2b)
call bra_vector_field_fourier(F,dF_dt,dF_dt) ! (3a)
fac1=1.0_dp/(i+1)
call mulc_vector_field_fourier(dF_dt,fac1,dF_dt)
call add_vector_field_fourier(dhs,dF_dt,dhs) ! (3b)

enddo
fac=-1.d0
call add_vector_field_fourier(s3,dhs,s3,fac) ! (3c)
K=s3

This subroutine contains two calculations: the usual exponentiation is done at
lines (2a, b). The second term in Eq. (8.28), the so-called integrated exponential,
is done at lines (3a, b, c). This term is non-zero if the derivative of the operator K
computed at line (1) is non-zero. I called this subroutine “exp_vector_field_fourier”
obviously assuming that it is an exponentiation of the operator F found in its calling
argument. Actually, if one extends phase space to include the time-like variable θ ,
then one sees that it is an exponentiation. In other words, the operator

Gext · ∇ = G · ∇ + ∂

∂θ
(8.40)

transforms under the operator exp (F · ∇) as:

Kext · ∇ = exp (F · ∇)

{
G · ∇ + ∂

∂θ

}
exp (−F · ∇) . (8.41)

I leave it to the reader9 to show that Kext is really K of Eq. (8.28).

9Equation (8.41), if applied to amixed variable generating function, will reproduce the simple result
kext = k ◦ a + ∂ f

∂θ
where f is the mixed variable generator. Lie methods are more convenient in
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Fig. 8.2 Tune shift from a
Guignard normalisation

I will stop here and present the numerical results. The reader is invited to dig
deeper in the routines associated to this Guignard normal form; they do not contain
anything surprising.

The graph of Fig. 8.2 was done with the “commented-out” section in Appendix P.
Without a doubt, the algorithm converges to the correct result obtained from the
one-turn map normalisation.

8.7.4 Numerical Example 〈x〉: Analytical, Guignard
and Map

Here I redirect you to (13.3) of Chap.13. Of course feel free to read the entire chapter.
There I perform the analytical calculation for 〈x〉 two different ways. The program in
AppendixQ, described in Sect. 13.3, uses the analytical formula, themapmethod and
two different Fourier representation of the force field for the normalisation. Notice
that I have already described the implementation of the formula in Sect. 7.8.4.3.

Please take a look at all the relevant sections!

8.7.5 The Final Strategy: Be Prepared to Mix Everything!

This section is not written. Please look at Sect. 9.2.1 to see what ought to have been
written and discussed here. I take the unorthodox liberty to leave the section blank!

(Footnote 9 continued)
standard perturbation because they are explicit. In the Hamiltonian case, mixed variable functions
have some great theoretical advantages.

http://dx.doi.org/10.1007/978-4-431-55803-3_13
http://dx.doi.org/10.1007/978-4-431-55803-3_13
http://dx.doi.org/10.1007/978-4-431-55803-3_7
http://dx.doi.org/10.1007/978-4-431-55803-3_9
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Chapter 9
Here Is the Conclusion of This Book

Abstract I give a final summary of this book. It is as much an introduction as it is
a conclusion since it describes what I wanted to achieve and what I have actually
achieved. I try here to show pictorially using Fig. 9.1 what I call the universal Courant-
Snyder loop. It ties, in the code, map perturbation theory and standard Hamiltonian
theory.

Keywords Hierarchy · Summary · Schematic flow chart · Missing parts

9.1 Conclusion

I began with the statement that the “Code” is the arbiter of truth in accelerator theory.
Indeed most accelerator physicists would agree with me that the easiest and safest
way to “understand” the motion of non-interacting particles is simply to write an
integrator. It is a brute force approach but we think that it is more reliable than Taylor
series maps or worse, simplistic analytical formulae. The accelerator represented
inside the code can have misalignment errors, powering errors, can include radiation,
spin, complex fringe fields, etc. Therefore it does not seem to be easily amenable to
perturbation theory.

In standard books we see formulae, we see a Fourier expansion of some ideal
Hamiltonian and various concepts introduced on the basis of the existence of this
expansion. However no one is ever shown a realistic calculation, or even a semi-
realistic one, from beginning to end. The reason for this lack of realism is simply
that the theoretical tools and computational tools exist side by side without any
special thoughts given on how they should be integrated.

This state of affair is the result of the natural evolution of this highly technological
field. The computers of the 1950s were primitive by today’s standard. However the
calculations performed in this book are real since you can download and run them.
They would have been only dreams in the 1950s. In fact, when I entered the field
in 1985, I can tell the reader that the type of calculations done here were barely
feasible. But they were not sitting at a distant horizon, and therefore, with the help
of other scientists, Alex Dragt, Martin Berz, Richard Talman, Ronald Ruth, I began

© Springer Japan 2016
E. Forest, From Tracking Code to Analysis,
DOI 10.1007/978-4-431-55803-3_9
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to put together all the necessary tools. Recently with the help of Desmond Barber, I
added also spin to the collection of objects which can be analysed by the perturbation
theory tools of the library FPP. I did not implement a Fourier decomposition of the
spin-orbit motion in FPP, but that is possible. In fact, as this book is being finalised,
I am extending the logarithm of a map to include spin which is the first step towards
the Guignard-Deprit perturbation scheme of Chap. 8.

The important message, which I seriously documented in this book, is that the
hierarchy presented in this book, is the only reliable and self-consistent approach to
the merging of simulation and perturbation theory. It is worth depicting it once more.

The structure in Fig. 9.1 is, in my view, universal. Therefore I encourage people
who use other packages to reproduce part of this structure.

The central piece is the “Code” in dark blue. Its unadulterated output are rays
which I called probes. These probes are the propagata. They contain the material
that is “trackable” by the code, by your code. Through the magic of polymorphic
TPSA, I can say that the code can track Taylor series, ordinary rays being series of
degree zero. These Taylors series, if correctly initialised, can be elevated to the status
of approximate maps: they go from propagata to propagators.

The logic and content of this book is summarized on Fig. 9.1. First there is Big
Brother: this is the person or team of persons that created or even uses the Code.
It or he or they decided what the models are, what the approximations are, etc. Of
course Big Brother can modify the code as he sees fit. But, generally, the users
simply use the Code without attempting to modify it. Sometimes, as designers, we
are allowed to choose the lattice and the models from the buffet selection within the
Code. Sometimes we become Big Brother and change the Code itself. In this book we
did not play Big Brother. So the reader will notice that I avoided discussing what the
code PTC was, is or should be. For the purpose of this book, which is a description
of the algorithms schematically depicted by Fig. 9.1, I did not need to know what
the Code truly is. Of course when comparing with analytical formulae, a part of
me needed to assume the role of an inner party member to use Orwell’s language.
Thus, in Sect. 7.8.4.3, for example, I displayed a knowledge of the model used by
the code and, in fact, coerce the code to use a model that would agree perfectly with
the analytical formula derived for 〈x〉.

So I have a code with Taylor polymorphism, what can I do with it? On Fig. 9.1,
we can first follow the blue lines. We get tracking and, out of tracking, we get
one-turn maps in the blue pentagon. This is trivial and contains zero accelerator
theory besides what is in the code. In fact that statement would be true if the code
described spectrometers, light sources, electron microscopes or even the trajectory
of a bullet out of a rifle! This trivial usage of the code was described in Sect. 1.7 of
the introduction.

The real fun started when I assumed that the map is that of a circular accelerator
and computed a normal form. A normal form is similar in spirit to a diagonalisation
of the map. Therefore it invokes a numerical library: FPP. I purposely coloured FPP

http://dx.doi.org/10.1007/978-4-431-55803-3_8
http://dx.doi.org/10.1007/978-4-431-55803-3_7
http://dx.doi.org/10.1007/978-4-431-55803-3_1
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in a different shade of blue. I want to emphasize that while my own FPP is an integral1

part of PTC, this is an accident of my poor intellect. It is quite possible to ship a
map computed by PTC to the analysis tools of say Cosy-Infinity or to the library of
my colleague Lingyun Yang. So I really want to emphasize the “indepedent library”

1You can run FPP as a standalone and glue it to a code written in Fortran 90. It is a library. You
cannot run PTC with another library easily. However you could analyse the maps of PTC with a
different library. For example my complex library is not the TPSA library used by PTC!
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aspect of FPP. I can analyse maps coming from somewhere else and it can be replaced
by something else! All of this was described in Chaps. 2–6.

So we have the one-turn map. Now follow the purple line from the normal form to
the code: the canonical transformation from the normal form is tracked by the code.
This result is what I call the “universal Courant-Snyder loop.” It was described in
Sect. 2.4 in 1-d-f both with the code and analytically. I then explained in great detail
in Chap. 7 the concept of phase advance in the presence of nonlinearities and spin. I
also included a discussion of the advance of the time slip first discussed in Sect. 4.2.

The Courant-Snyder loop by itself simply tracks a canonical transformation rel-
evant2 to the one-turn map. It is what you do with it that has meaning. For example,
as schematically displayed on Fig. 9.1, the purple arrow of the Courant-Snyder com-
putation feeds data from the tracking algorithm into the analysis package FPP. Then
something useful is computed; this is represented by the star shaped algorithm called
“Analysis of Twiss.” The simplest example is the “beta” function. In 1-d-f, if I track
the canonical transformation, then the beta function is just given by

β(s) =
(

∂xs

∂x0

)2

+
(

∂xs

∂p0

)2

. (9.1)

In Eq. (9.1), I purposely wrote the beta function in terms of the tracked ray provided
the input is the canonical transformation at s = 0; of course derivatives produce the
Jacobian matrix—the approximate map—which is the object from which the beta
function was extracted in previous chapters (see Sect. 2.2.2 for example).

The analysis of the Courant-Snyder loop can generate almost anything: lattice
functions, spin lattice functions, radiative quantities germane to electron rings, etc.
But, as shown in Chap. 8, it can also be the input for a traditional Hamiltonian calcu-
lation. This calculation uses the maps of the magnets as they are—errors and bizarre
fringe fields included—and computes the s-dependent Hamiltonian as a Fourier series
in s. This is schematically represented by the light purple pentagon. It is a result of
a Courant-Snyder analysis which I indicated by an arrow from the star to the light
purple pentagon.

The orange arrows, circle and star represent work that is not yet seriously imple-
mented. Nonetheless I developed tools serious enough to illustrate the theory: the
simple normalisation algorithm of Sect. 8.7. Of course the Fourier transform of the
Hamiltonian can be the input of a normalisation code written by astronomers.

The idea that the “Code” can produce an input for another type of code, because I
am too dumb to write my own or too lazy, can also be reversed. This is represented by
the “other code” on Fig. 9.1. This “code” can send a map, a canonical transformation,
etc. For example, you might have designed a damping ring with your favourite tool.
From that code of yours, you extract information about the beam, say for example, the
equilibrium beam sizes. You then want to inject that beam into a machine modelled

2For a transfer line or a linear accelerator, the canonical transformation usually describes the
moments of the input distribution. I did not discuss this topic because it is a trivial generalisa-
tion: the initial canonical transformation is computed externally.

http://dx.doi.org/10.1007/978-4-431-55803-3_2
http://dx.doi.org/10.1007/978-4-431-55803-3_6
http://dx.doi.org/10.1007/978-4-431-55803-3_2
http://dx.doi.org/10.1007/978-4-431-55803-3_7
http://dx.doi.org/10.1007/978-4-431-55803-3_4
http://dx.doi.org/10.1007/978-4-431-55803-3_2
http://dx.doi.org/10.1007/978-4-431-55803-3_8
http://dx.doi.org/10.1007/978-4-431-55803-3_8
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in my code and see if the beam behaves properly. One way is simply to diagonalize
the envelope of your beam (see footnote 2) using a canonical transformation and
then track it inside my own code. You can also use this canonical transformation to
produce matched tracking input and do bona fide tracking of rays.

Finally there is the yellow line on Fig. 9.1. It represents information being fed back
to Big Brother by the thought police: this is called fitting. It can imply a modification
of the lattice parameters, a modification of the model, a modification of the lattice,
and in some cases, purging the code itself and replacing it by another code. In fact
there are ways to use PTC in order to discard PTC in account of inadequacy. Then
you find a better code that suits your purpose. The yellow line brings fear in the heart
of the code3 programmer. But so is life under the Code!

I hope that I have given the reader a small glance of the hierarchy of perturbation
theory which I consider to be the most effective and self-consistent expression of
perturbation theory in accelerator physics. As I often said, nothing is lost, even
Hamiltonian perturbation theory can be regained in an even more complete and
faithful manner.

9.2 Exclusion

In this book I wanted to avoid “bull…” as much as possible. Every topic addressed
was documented with an example program. The example programs, as well as the
code PTC itself, can be molested by the user. After all the reader of this book is
Big Brother while he attempts to understand its delusional prose. However there are
some topics which I kept out because I feel that I do not have the best tools in my FPP
arsenal. They are excluded due to present lack of software tools and therefore I am
unable to support them by software evidence that the user can personally examine.

9.2.1 A Deeper Discussion About Guignard Normalisation

The first obvious exclusion concerns Chap. 8. I did show a prototype of time depen-
dent perturbation theory. I ended up cracking a peanut with a sledge hammer which
is against my religious beliefs. However I did so with a piece of software which, I
hope sincerely, can convince the reader that real powerful and general tools can be
written.

There is an important topic which I did not explore and it is that of the empty
Sect. 8.7.5. The attentive reader will notice that in Chap. 8 I state that the relationship

3There is another option: the code can absorb other codes. The code BMAD of Cornell has literally
swallowed everything in sight. So in BMAD you are most likely to change the model or ask its
programmer to increase its dominion.

http://dx.doi.org/10.1007/978-4-431-55803-3_8
http://dx.doi.org/10.1007/978-4-431-55803-3_8
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between the time-like variable θ and some true distance s along the machine is
arbitrary.

This implies that it is possible to mix finite map theory with Hamiltonian theory
à la Guignard. For example, imagine a ring like the LHC: hundreds of cells with
various interaction regions. It would not be feasible or desirable to use enough modes
to describe the cellular structure of that lattice. However one can easily imagine
representing arcs with a single map and the interaction region with a θ -dependent
Hamiltonian. In a ring like KEKB, where the interaction regions are the main source
of nonlinearities, this would seem sensible at first glance. For two reasons, no one has
ever done that: the tools did not exist and the experts at Hamiltonian theory mostly
pontificate with no software. Moreover they do not understand a map based theory.

I hope that the reader can see that it is possible and indeed desirable to mix both
theories if necessary. The hierarchical scheme of this book allows this but I did not
provide any convincing example. I do not feel guilty because most textbooks do not
provide any realistic examples. The fanatical reader will see how one can modify the
example of Chap. 8 so as to mix finite maps and θ -dependent force fields.

9.2.2 Synchro-Betatron Effects

The second exclusion is a more serious issue. It concerns the longitudinal or tem-
poral plane. If you read this book carefully, you will notice that there is nothing
fundamentally different between the two transverse planes and the temporal plane.
Indeed the examples of this book allow for a full 3-d-f calculation with longitudinal
focussing. The entire radiation calculation of Sect. 4.4 depended on this.

However the attentive reader has perhaps noticed a problem with the logic pre-
sented in this book with respect to the RF cavity. At page 84, I affirm that the standard
map with a small tune is very well modelled by a pendulum. I also said that the pur-
pose of a normal form is to simplify away—sweep under the carpet—what we already
understand. Therefore, if we print a map, can we extract the pendulum4 out of the
map accurately? The answer is no for a technical reason that has been known for a
long time by many scientists such as Professor Kaoru Yokoya of KEK in the context
of spin normal form.

A normal form on the longitudinal map alone can be done to a high order and
the result is very close to the tracking code. On the other hand, normal form on the
transverse map is basically “pure garbage” if carried out to high order. The solution
to this problem is simple in theory: we need TPSA tools which allow us to produce
Taylor maps which discriminate between planes. In other words, we need high order
in the longitudinal plane while retaining low order in the transverse variables. This
is the only way to keep the calculation manageable, but it requires a TPSA package
which is not what exists in FPP.

4In reality this map could include nonlinear time slip terms not present in the classical pendulum
map, but this is a tiny detail that can easily be included.

http://dx.doi.org/10.1007/978-4-431-55803-3_8
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The same applies to perturbation theory on the Hamiltonian. I explain in Chap. 8
that one can Fourier transform the Hamiltonian using a phase which is uniformly
distributed and linear around the ring. It is proposed in standard treatments of acceler-
ator physics. This implies in 3-d-f that the phase advance of the unperturbed problem
(see Eq. (8.14)) should be

r j j+1 = exp
(
Δθ j : − {ν1 J1 + ν2 J2 + ν3 J3} :) I . (9.2)

But Eq. (9.2) is incorrect if we insist that the longitudinal plane be as close as possible
to a pendulum-like oscillator. The correct answer should be

r j j+1 = exp

(
Δθ j : −

{
ν1 J1 + ν2 J2 +

∫ J3

0
ν3(J ′

3)d J ′
3

}
:
)

I (9.3)

if the entire theory is able to deal with high orders in the cavity plane. Because of
this technical inability, I refrained from talking about synchro-betatron resonances.
This lacuna also affects spin resonances involving the longitudinal plane.

It is important to realise that the lacuna is technical: we lack the tools. Perhaps a
clever reader will develop the TPSA package(s) necessary for this type of analysis.

In conclusion, I listed things that, within the internal logic of this book, should
have been included but were not for the reasons I just discussed. Of course there
might be other things which should be documented and were not. For example, it
would have been interesting to make a large catalogue of quantities that are computed
numerically and analytically in accelerators, and then, to provide examples of their
computation in my appendices. Hopefully the readers can contribute with suggestions
that could enter in a future edition. I wanted to keep this book short and to the point.

All’s Well That Ends Well
—William Shakespeare—

http://dx.doi.org/10.1007/978-4-431-55803-3_8
http://dx.doi.org/10.1007/978-4-431-55803-3_8


Chapter 10
Phasors Basis: Why Do I Reject Symplectic
Phasors?

Abstract In this supplementary chapter I discuss with examples why I chose a
non-symplectic phasors’ basis. This can only be justified if I examine the implication
of my choice in the nonlinear regime.

Keywords Phasors’ basis · Complex symplectic transformation

Since FPP is a complex package, would it be more pleasing to use a complex sym-
plectic transformation instead of Eq. (2.21)? In that case, the Poisson bracket would
be one. Moreover the rules for changing the Hamiltonian would be the usual substi-
tution rule. So why did I pick a non-symplectic definition for the phasors?

The answer is connected to the tune shifts and the damping decrements. In the
linear case, it is always true that the tune is a pure imaginary number and that the
damping is a real number. If we choose the phasors of Eq. (2.21), this results extends
to the nonlinear tunes and the amplitude dependent damping: they are respectively
polynomial with pure imaginary coefficients and real coefficients at all orders. This
is not true if a symplectic phasor transformation is used. For example, I can use the
following transformation:

ζ = x + i p

1 − i
and ζ = x − i p

1 − i
[ζ, ζ ] = 1 (10.1)

I substitute Eq. (10.1) into a simpleHamiltonianwith amplitude dependent tune shift:

H = ω
x2 + p2

2
+ Δ

(
x2 + p2

)2 → −iωζζ − 4Δ
(
ζ ζ

)2
. (10.2)

We can easily compute the change of ζ with respect to time by taking the usual
Poisson bracket:

dζ

dt
= [ζ, H ] = −iωζ − 8Δ

(
ζ ζ

)
ζ = {−iω − 8Δ

(
ζ ζ

)}
︸ ︷︷ ︸

tune

ζ . (10.3)
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Equation (10.3) displays a tune which has an imaginary linear tune and a “real”
tune shift with amplitude. Let us do the same calculation with the non-symplectic
phasors,

h = x + i p and h = x − i p [h, h] = −2i (10.4)

and the result is

H = ω
x2 + p2

2
+ Δ

(
x2 + p2

)2 → ω

2
hh + Δ

(
hh

)2
(10.5)

and the tune is given by

dh

dt
= −2i [h, H ] = −iωh − 4iΔ

(
hh

)
h = {−iω − 4iΔ

(
hh

)}
︸ ︷︷ ︸

tune

h. (10.6)

And we then substitute h for ζ in Eq. (10.3), we get:

Tune = −iω − 8Δζζ = −iω − 8Δ
hh

(1 − i)2
= −iω − 4iΔhh. (10.7)

So, as we can see, the result is the same but the use of the non-symplectic phasors
facilitates the identification of the tunes and the damping decrements: tunes are
imaginary and damping decrements are real. We must simply remember that if the
Poisson bracket is used, it involves a factor of−2i as I explained near Eq. (3.74). This
is not a big deal especially within the context of FPP where the Poisson bracket is
never used internally so as to accommodate non-symplectic maps and non-canonical
variables.

http://dx.doi.org/10.1007/978-4-431-55803-3_3


Chapter 11
The Logarithm of a Map

Abstract In this supplementary chapter I discuss the brute force extraction of a
Lie exponent by using the Taylor series of the logarithm. This is not totally trivial
because I lack a matrix representation. It must be pointed out that in general matrices
can have complex logarithms just like numbers, however I am interested here in real
maps having real Lie operators as logarithm. It could include spin.

Keywords Logarithmofmap ·Lie operator ·Nonlinear logarithm ·Single exponent
If a matrix M is near the identity, the following series converges:

log (M) =
∞∑

n=1

(−1)n+1 (M − 1)n

n
. (11.1)

Of course this applies trivially to a linear map of phase space.What about a Lie map?
Consider a nonlinear map m and let us assume that it can be approximated by a Lie
exponent:

m = exp (F · ∇) I ≈ I + F · ∇ I + · · · ≈ I + F + · · · . (11.2)

TheLiemap exp (F · ∇) acts on the space of functions and thus it is possible towrite a
matrix for it using a basis made of monomials. For example, in 1-d-f, for polynomials
of degree n0, the space of polynomials is of dimension (n0+2)!

n0!2! . Therefore the matrix

for exp (F · ∇) is of dimension
(

(n0+2)!
n0!2!

)2
. This matrix, as I pointed out in Ref. [1],

is the transpose of the matrix which propagates the moments. In the linear case, this
was confirmed in Sect. 2.3.1 namely at Eq. (2.3.8).

Here I do not have matrices in the nonlinear case, so I must be a little more
resourceful. First one notices that Eq. (11.2) gives us a trivial approximation of the
vector field:

F ≈ m − I . (11.3)
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I proceed further by assuming that the vector field F is already known to some order
and that the result is Fk . I can write:

exp
(−Fk · ∇)

m = I + t . (11.4)

This algorithm starts with t = m − 1. At the end we expect t to be zero. My goal
is to find a relatively fast algorithm. The first step is to find a vector field which can
reproduce the map I + t . To third-order in t , I can write:

exp ( τ3 · ∇ ) I = I + t (11.5)

where τ3 = t + ε2 + ε3.

Solving for ε2 and ε3, I get:

ε2 = −1

2
t · ∇t and ε3 = −1

2
ε2 · ∇t − 1

6
t · ∇ε2 . (11.6)

I can then rewrite Eq. (11.5) using Eq. (11.6):

exp
(−Fk · ∇)

m = exp (τ3 · ∇) I

⇓
m = exp

(
Fk · ∇)

exp (τ3 · ∇) I . (11.7)

Now I can apply the Baker-Campbell-Hausdorff formula (CBH) to go to the next
step in the iteration:

Fk+1 = Fk + τ3 + 1

2

〈
Fk, τ3

〉 + 1

12

(〈
Fk,

〈
Fk, τ3

〉〉 − 〈
τ3,

〈
Fk, τ3

〉〉)

− 1

24

〈
Fk,

〈
τ3,

〈
Fk, τ3

〉〉〉 + higher order · · · . (11.8)

The Lie bracket in Eq. (11.8) was defined in Eq. (3.39).
Recursive application of Eq. (11.8) will produce a series which convergences at

a rate faster than linear. The map must be close to the identity; however it is possible
to change the algorithm and obtain the logarithm of maps even when the series of
Eq. (11.1) doesn’t converge. But this is a topic for another book.

Finally, the efficacy of the algorithm proposed here can be compared with a pure
linear algorithm where the CBH formula is completely ignored. This is done at the
end of the program of Appendix F in the following code snippet:

!!!!!!!!!!!!!!!!!!! Illustrating the Logarithm !!!!!!!!!!!!!!!!!!
!

lielib_print(3)=1 ! printing iterates
write(6,*);write(6,*) "Testing the logarithm of a map";write(6,*);

http://dx.doi.org/10.1007/978-4-431-55803-3_3
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write(6,*);write(6,*) "First Case";write(6,*);

vf=log(M)

!!!! forcing linear behaviour until 10ˆ-15 is reached
write(6,*); write(6,*) "Second Case";write(6,*);

vf=log(M,epso=1.d-14)

write(6,*); write(6,*) "Third Case";write(6,*);
extra_terms_log=.true.

vf=log(M)

Here is the abbreviated results of this code:

Testing the logarithm of a map

First Case

Norm of linear iteration # 1 0.16420059355772
Norm of linear iteration # 2 0.13412592351757E-01
Norm of CBH iteration # 4 0.24126056691115E-03
Norm of CBH iteration # 5 0.26360240866976E-04
Norm of CBH iteration # 6 0.40916713300836E-08
Norm of CBH iteration # 7 0.17461427983157E-11
Norm of CBH iteration # 8 0.17462221669734E-14
Norm of CBH iteration # 9 0.11539838746724E-15
iteration 8

Second Case

Norm of linear iteration # 1 0.16420059355772
Norm of linear iteration # 2 0.13412592351757E-01
Norm of linear iteration # 3 0.24126056691115E-03
Norm of linear iteration # 4 0.26036930351810E-04
Norm of linear iteration # 5 0.62740960903693E-05
Norm of linear iteration # 6 0.17486020329745E-05

.

.

.
Norm of CBH iteration # 33 0.81461400443222E-14
Norm of CBH iteration # 34 0.53481867860725E-14
Norm of CBH iteration # 35 0.12822022828854E-15
Norm of CBH iteration # 36 0.11306162475990E-15
iteration 35

Third Case

Norm of linear iteration # 1 0.16420059355772
Norm of linear iteration # 2 0.13412592351757E-01
Norm of CBH iteration # 4 0.24126056691115E-03
Norm of CBH iteration # 5 0.26356657389704E-04
Norm of CBH iteration # 6 0.55200509961495E-10
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Norm of CBH iteration # 7 0.90784481929196E-15
Norm of CBH iteration # 8 0.11148873415683E-15
iteration 7

The first call to log(M) jumps to the application of the CBH formula after the
first iteration. Eight steps are necessary. The reader can see that the convergence is
not quadratic but not too far. The second call (log(M,epso=1.d-14)) delays the
application of the CBH formula to a point when the vector field is within 10−15 of
the final result. It now takes 35 steps to reach convergence. If another layer of higher
order terms is added to the CBH formula of Eq. (11.8), we achieve a marginally
better convergence as 7 steps are needed.

Reference
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Chapter 12
Stroboscopic Average for the ISF Vector n

Abstract In this supplementary chapter I discuss the numerical extraction of the
invariant spin field using a method first proposed by Heinemann and Hoffstätter. As
you might expect, I explain it via the potential existence of a normal form for the
spin.

Keywords Numerical average · Stroboscopic methods · Spin
The “stroboscopic” average of spin motion is a novel technique (see Ref. [1], p. 142
and also [2]) first proposed by Heinemann and Hoffstätter for computation of the
invariant spin axis n. I put the word stroboscopic in quotation marks because the
expression is highly unfortunate for a person dealing primarily with a map based
theory. In a map based theory, a stroboscopic average would involved recording data
not at every turn but once in awhile.We assume that Heinemann andHoffstätter were
thinking about the equations of motion when they coined the term; their paper [2]
confirms the prejudice. A true stroboscopic average is rarely discussed in accelerator
theory; for example dispersion can be defined rigorously in the presence of 3 tunes
as a stroboscopic skipping over p turns if the temporal tune ν3 is nearly equal to q/p
where q and p are integers.1 I retain the term “stroboscopic average” by respect for
the originators and also to avoid undue confusion.

I will start with the idea that a normal form,whetherwe can compute it analytically
or not, gives us a way to average quantities. Namely the idea is that an average over
turns is actually an average over the invariant tori.

I start with the expression for the one-turn map expressed as a normal form. It is
given by Eq. (6.20). I get for the j-turn map:

T j = (
I, D̃

) ◦
(

m j , e jθ◦a−1L y

)
◦ (

I, D̃−1
)

=
(

m j , D̃ ◦ m j e j θ̃ L y D̃−1
)

where θ̃ = θ(J) ◦ a−1 ≡ θ(I). (12.1)

1The generalised dispersions at Eq. (4.33) based on the de Moivre representation of the one-turn
matrix are stroboscopic averages in the sense I just mentioned.
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If I apply this spin-orbital map to an arbitrary spin s0 at location z0 in orbital space,
I get for s j at turn j :

s j = D̃z j e j θ̃ L y D̃−1
z0 s0 . (12.2)

However in Eq. (12.2), we can see that the role of the initial position is special unlike
the case of the normalised space. Indeed in actual space there is no guaranty that
the spin axis at some position z j bears any resemblance to the spin axis at the initial
point z0. Therefore, I must invert Eq. (12.2):

s0 = D̃z0e
− j θ̃ L y D̃−1

z j
s j . (12.3)

I now sum and take the limit:

∏
= lim

j→∞
1

N

N∑

j=1

D̃z0e
− j θ̃ L y D̃−1

z j
. (12.4)

Equation (12.4) is a little tricky. The problem resides in the index j appearing in the
matrix D̃−1

z j
. To perform the average I use the assumption of an orbital normal form

and express the matrix D̃−1
z j

in terms of the initial action angle variables (ψ, I):

D̃−1
z j

=
∑

m

Γ 0
m(I) exp (im · {ψ + jμ})

=
∑

m

Γm(ψ, I) exp (i jm · μ) . (12.5)

The matrices Γm in Eq. (12.5) can be rewritten as three columns vectors:

Γm = (
γ m
1 , γ m

2 , γ m
3

)
. (12.6)

The matrix Π becomes

Π = D̃z0

∑

m

lim
N→∞

1

N

N∑

j=1

(
e− j θ̃ L y γ m

1 , e− j θ̃ L y γ m
2 , e− j θ̃ L y γ m

3

)
exp (i jm · μ) .

(12.7)

In Eq. (12.7), each vector γ m
k is made of 3 components which transform differently

under the effect of e− j θ̃ L y . First the second component γ m
k;2 is left invariant by the

rotation. The first and third component can be expressed using spin phasors:

σ± =
⎛

⎝
±i
0
1

⎞

⎠ where e− j θ̃ L y σ± = e∓i j θ̃σ±. (12.8)
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Therefore we have:

γ = γ3 − iγ1
2

σ+ + γ3 + iγ1
2

σ− + γ2

⎛

⎝
0
1
0

⎞

⎠ . (12.9)

The vector in Eq. (12.9) represents any of the three column vectors of Eq. (12.7).

e− j θ̃ L y ei jm·μγ = e−i j(θ̃+m·μ) γ3 − iγ1
2

σ+ + e−i j(−θ̃+m·μ) γ3 + iγ1
2

σ−

+ e−i jm·μγ2

⎛

⎝
0
1
0

⎞

⎠ . (12.10)

FromEq. (12.10), we see that the infinite series of Eq. (12.7) will converge to zero for
all terms such that m �= 0, provided we are not sitting on some spin-orbit resonance.

Π = Az0

⎛

⎝
0 0 0

γ m=0
1;2 γ m=0

2;2 γ m=0
3;2

0 0 0

⎞

⎠

= (
γ m=0
1;2 n | γ m=0

2;2 n | γ m=0
3;2 n

)
. (12.11)

In conclusion, the process of stroboscopic averaging leads potentially to three
copies of the ISF n. In most cases, the direction closest to n0 dominates. For example
if n0 ≈ ey , then “at infinity” γ m=0

2;2 n gives the best answer for n.
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Chapter 13
Hierarchy of Analytical Methods

Abstract In this supplementary chapter I compare a simple first-order analytic cal-
culation done two different ways. I first compute it using the Green’s function or map
method which most closely parallels the code. I then redo the calculations using the
Fourier mode methods discussed in standard textbooks as well as in Sect. 8.7. These
involve infinite sums which in this simple case can be carried out exactly. It should
be clear that the hierarchy emerges from the extreme locality of the perturbation in
accelerator physics; it is not a fundamental mathematical ordering.

Keywords Analyticalmethods ·Mapmethods ·Deprit-Guignardmethods ·Hamil-
tonian · Fourier expansions · Dirac delta function expansions · Infinite sums ·
Perturbation theory

I will perform a simple first-order nonlinear calculation on the Hamiltonian used
by the lattice hardwired in Appendix A. The calculation will be performed by two
different analytical methods. The Taylor methods of the code for this calculation are
shown in Sect. 7.8.4.3. I will show that the Taylor method of the code matches the
Green’s function method (analytical map method actually). Therefore, in my way of
thinking, methods based on Fourier transforms are further down the hierarchy and
therefore appear in Chap.8 at the end of this book. They are further away from the
tracking code; but that does not mean that they are useless! In some cases, they can
outperform the methods based on Green’s functions, but it is not true in the trivial
example of this chapter.

My simple example will be that of a tracking code with a sextupole as the pertur-
bation for which we want analytical results. The Hamiltonian looks like this:

H = p2

2
+ kQ(s)

x2

2︸ ︷︷ ︸
H0

+kS(s)
x3

3
. (13.1)

The particular result I will derive is the average of the position, i.e., 〈x〉.
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13.1 Green’s Function Method

In Ref. [1], I lists the rules of analytical perturbation theory as they apply to map
based methods. What if I introduce a certain potential around the ring and want to
evaluate a quantity to order κ in that potential? The following rules must be followed
in the map based method.

13.1.1 The Rules of Analytical Perturbation Theory
with Maps

Rules for κ th-order analytical perturbation theory on maps.

1. Go into the Floquet variables of the problem you already know how to solve: all
the unperturbed maps should be rotations.

2. Transform the perturbations by the canonical transformation which gave you the
rotations of item 1.

3. Insert κ distinct perturbations in the ring labelled from one to κ in order of
appearance. The one-turn map at some arbitrary point will be made of a product
of 2 ∗ κ + 1 maps.

4. Compute the one-turn map by “phase advancing” all the perturbations at the
beginning or end of the ring using the zeroth-order propagator of item 1; generally
rotations.

5. Lump all the perturbations into one exponent using the BCH theorem.
6. Compute the quantity of interest, the average of x for example.
7. Sum/integrate over the actual distribution of the perturbations using the index j

labelling the perturbations (1 ≤ j ≤ κ) as a time-ordering label.

13.1.2 The Actual Calculation with Maps

I will apply each one of these rules on the Hamiltonian of Eq. (13.1). First, I assume
that the linear one-turn map, generated by H0, can be normalised at any position s.
So the relevant matrices obey

Ms = As R A−1
s . (13.2)

For As I choose the Courant-Snyder definition:

As =
( √

βs 0
− αs√

βs

1√
βs

)
. (13.3)
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I know from general principles, that if I apply Eqs. (13.3) to (13.1), the result will
be:

H = ωs J + β3/2
s kS(s)

x3

3
. (13.4)

The form ofωs is not important in an actual calculation since the phase advances will
be computed by the code. Of course for Eq. (13.1), with As defined by Eq. (13.3),
the answer is actually

ωs = 1

βs
. (13.5)

Next I apply rule 2 to compute the map of a single pertubation at some point s.
The answer, in terms of Lie maps, is just:

Ps = exp

(
−ds : β3/2

s kS(s)
x3

3
:
)

. (13.6)

Now I construct the map according to rule 3. Since we are looking at a first-order
calculation, I need only one map Ps in our “abstract” ring. The one-turn map at
some position s is given by:

Ms = Rss1Ps1Rs1s (13.7)

Remark: If we were interested in a second order calculation, then the
equivalent of Eq. (13.7) would be:

Ms = Rss1Ps1Rs1s2Ps2Rs2s . (13.8)

This is necessary in the calculation of the tune shift due to a sextupole distrib-
ution.

Now I phase advance the perturbation in Eq. (13.7) as demanded by rule 4:

Ms = Rss1Ps1Rs1s

= Rss1Ps1R
−1
ss1 Rss1Rs1s︸ ︷︷ ︸

R
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= exp

(
−dsRss1 : β3/2

s1 kS(s1)
x3

3
: R−1

ss1

)
R

= exp

(
−ds : β3/2

s kS(s1)
Rss1 x3

3
:
)
R

= exp

(
−ds : β3/2

s1 kS(s1)

(
Rss1 x

)3

3
:
)
R. (13.9)

Rule 5 is not relevant to a first-order calculation because Eq. (13.9) has only
one factor containing the perturbation.

We have reached the most complex step. We need to compute the “quantity of
interest” which in my case is the average of the position x . To do this, I need to
compute the part of the canonical transformation which depends on the perturbation.
The purpose of this transformation is to turn the perturbed map into a rotation so that
I can perform the average.

R1 = exp (: F :) exp
(

−ds : β3/2
s1 kS(s1)

(
Rss1 x

)3

3
:
)
R exp (: −F :)

= exp (: F :) exp
(

−ds : β3/2
s1 kS(s1)

(
Rss1 x

)3

3
:
)
exp (: −RF :)R

= exp

(
: F − RF − dsβ3/2

s1 kS(s1)

(
Rss1 x

)3

3
+ · · · :

)
R. (13.10)

I am left with the following possibility:

(I − R) F − dsβ3/2
s1 kS(s1)

(
Rss1 x

)3

3
?= 0. (13.11)

Can I choose F so that Eq. (13.11) is satisfied? In general I can choose F so as
to leave only powers of the action J in the exponent. These produce tune shifts.
However, as is well known about sextupoles, they produce no amplitude dependent
tune shifts in leading order. Thus Eq. (13.11) can be satisfied by a proper selection
of F . I first express x3 in the eigenphasors basis of Eq. (2.21):

(
Rss1 x

)3 = 1

8

(
Rss1Φ+ + Rss1Φ−

)3

= 1

8

(
e−iΔΦ+ + eiΔΦ−

)3

http://dx.doi.org/10.1007/978-4-431-55803-3_2
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= 1

8

(
e−i3ΔΦ3

+ + ei3ΔΦ3
− + 3e−iΔΦ2

+Φ− + 3eiΔΦ+Φ2
−
)

(13.12)

where Δ = μss1 ← phase advance from s to s1.

The answer for F is thus:

F = dsβ3/2
s1 kS(s1)(I − R)−1

(
Rss1 x

)3

3

= ds

24
β
3/2
s1 kS(s1)

(
e−i3Δ

1 − e−i3μ Φ3+ + ei3Δ

1 − ei3μ Φ3− + 3e−iΔ

1 − e−iμ
Φ2+Φ− + 3eiΔ

1 − eiμ
Φ+Φ2−

)
.

(13.13)

I can now find the average of x by transforming x with the full canonical transfor-
mation:

x̃ = exp (: F :)As x

= (1+ : F : + · · ·)As x

= √
βs x + √

βs [F, x] + · · ·

= √
βs

(
Φ+ + Φ−

2
+

[
F, Φ+

] + [
F, Φ−

]

2

)

= √
βs

(
Φ+ + Φ−

2
+ i

{
∂ F

∂Φ−
− ∂ F

∂Φ+

})
. (13.14)

Because the phasors inEq. (13.14)moveon circles, I can easily average x̃ as explained
in Sect. 2.2.1:

〈̃x〉 = i
√

βs

〈
∂ F

∂Φ−
− ∂ F

∂Φ+

〉

= √
βs2 Im

〈
∂ F

∂Φ+

〉

= ds

2
βsβ

3/2
s1 kS(s1)Φ+Φ− Im

(
e−iΔ

1 − e−iμ

)

= ds

2
β1/2

s β3/2
s1 kS(s1)

− sin (Δ) + sin (Δ − μ)

1 − cos (μ)
J . (13.15)

Finally we apply rule 7. We sum/integrate over the entire ring.

∂ 〈̃x〉
∂ J

= β
1/2
s

2 (1 − cos (μ))

C∮

0

(− sin (μsσ ) + sin (μsσ − μ)) β3/2
σ kS(σ )dσ. (13.16)

http://dx.doi.org/10.1007/978-4-431-55803-3_2
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Notice: we could have applied rule 7 first to the polynomial F . Indeed F is
given by:

F =
C∮

0

1

24
β3/2

σ kS(σ )

(
e−i3μsσ

1 − e−i3μ
Φ3

+ + ei3μsσ

1 − ei3μ
Φ3

−

+ 3e−iμsσ

1 − e−iμ
Φ2

+Φ− + 3eiμsσ

1 − eiμ
Φ+Φ2

−

)
dσ. (13.17)

In first-order perturbation theory, it suffices to examine the effect of a thin per-
turbation to get the complete result. This is why I refer to this method as a Green’s
function method.

13.2 Fourier Mode Calculations with the Hamiltonian

I will describe how calculations are done on the Hamiltonian using a Fourier trans-
form in the time-like position s. This is the traditional approach in accelerator physics
as championed by Guignard and others. It is, of course, in Lee’s book [2]. A lot of
material presented in the traditional way can be found in Wiedemann’s book as well
[3]. I devoted Chap.8 to the serious computation of the Fourier transformed Hamil-
tonian in realistic and arbitrarily complex lattices, something, I am sad to say, you
will not find in any reference that advocates Guignard-like computations. Here I
concentrate on a purely analytical calculation.

13.2.1 Changing the Time-Like Variable into a Phase
Advance

It is best to change the “time” variable s into the actual phase advance of the linear
part of H .

H = ωs J + β3/2
s kS(s)

x3

6
⇓

K = ν J + ν

ωs
β
3/2
θ kS(θ)

x3

6
(13.18)

where θν =
s∫

0

ωσ dσ. (13.19)

http://dx.doi.org/10.1007/978-4-431-55803-3_8
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2-d-f or more: In several degrees of freedom, the trick of Eq. (13.19)
does not work alone. In order to get a form like say,

K = ν1 J1 + ν2 J2 + V, (13.20)

the other phases must be modified. This amounts to a change of the phase
advances, or equivalently, a change of the linear matrix As . The perturbation
receives extra phases so that in the end everything still applies as described
here although I confine myself to the 1-d-f case for simplicity. See Chap.8 for
a full explanation with an example from the Code.

13.2.2 The Fourier Method Approach: Guignard

The s or θ dependence of Eq. (13.18) is quite arbitrary. In accelerator physics, we can
assume very little about the linear and the nonlinear parts besides a general Liouville-
Arnold structure near the origin, i.e., we have doughnuts. Facedwith this conundrum,
we are forced to expand the perturbation into some set of known functions. The
standard approach of accelerator physicists, which is furthest from the code, is to
expand Eq. (13.18) in a Fourier series in the periodic variable θ .

νβ
3/2
θ kS(θ)

3ωs
=

∑

k=−∞,∞
Vkeikθ (13.21)

Vk = 1

2π

2π∫

0

νβ
3/2
θ ′ kS(θ

′)
3ωs

e−ikθ ′
dθ ′, (13.22)

and the Hamiltonian becomes:

K = ν J +
∑

k,m

Vk

8
eikθ |m〉 where

|3〉 = Φ3+|−3〉 = Φ3−|1〉 = 3Φ2+Φ−
|−1〉 = 3Φ+Φ2−.

(13.23)

In general, the sum over k is infinite and must be truncated. Since our magnets
are nearly Dirac delta functions, it is not clear where we need to stop. In the case
of astronomy, where this theory originates, the number of harmonics is small if you
put the Sun at the centre: this is why Copernicus almost beats Ptolemy and Galileo
avoided the stake!

http://dx.doi.org/10.1007/978-4-431-55803-3_8
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My goal is to compare the Fourier mode methods to the map based methods of
Eq. (7.41). So I will keep all the Fourier terms, all the way to infinity! I must first
start with the transformation of a time (or θ ) dependent Hamiltonian. It is given by

K new
θ = exp (: Fθ :) Kθ +

∞∑

n=1

: Fθ :n−1

n!
∂ Fθ

∂θ
(13.24)

≈ Kθ + [Fθ , Kθ ] + ∂ Fθ

∂θ
+ Order

(|Fθ |2
) · · · . (13.25)

Equation (13.24) is the exact effect of a canonical transformation represented by
the Lie transform exp (: Fθ :) on the Hamiltonian Kθ . Equation (13.25) is a first-
order expansion of Eq. (13.24) which is sufficient for our needs. To proceed further
I expand Fθ in a Fourier series as well,

Fθ =
∑

k,m

Fm
k eikθ |m〉, (13.26)

and substitute the series in Eq. (13.25):

K new = ν J +
∑

k,m

Fm
k eikθ

[
|m〉 , ν

Φ+Φ−
2

]
+

∑

k,m

ik Fm
k eikθ |m〉 +

∑

k,m

Vk

8
eikθ |m〉

= ν J +
∑

k,m

{
i (k − mν) Fm

k + Vk

8

}
eikθ |m〉 + · · · . (13.27)

Because I have an actual functional form for the Hamiltonian, albeit an infinite series,
I can solve for F :

Fm
k = i

Vk

8 (k − mν)
=⇒ Fθ =

∑

k,m

iVk

8 (k − mν)
eikθ |m〉 (13.28)

The Lie methods implementation used here was discovered by Hori [4, 5] and the
actual algebraic manipulations were pioneered by André Deprit [6]. All of this goes
back to the nineteenth century under the name of secular perturbation theory with
mixed variable generating functions instead of Lie operators.

The final showdown: I want to show that the answer in Eq. (13.28) is the same
as the map result of Eq. (13.17). Therefore I must keep all the terms, all the way to
infinity, in theFourier transform!First I substitute the expression forVk inEq. (13.28):

Fθ =
∑

k,m

i 1
2π

∫ 2π
0

νβ
3/2
θ ′ kS(θ

′)
24ωs

e−ikθ ′
dθ ′

(k − mν)
eikθ |m〉

http://dx.doi.org/10.1007/978-4-431-55803-3_7
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=
2π∫

0

i
1

2π

νβ
3/2
θ ′ kS(θ

′)
24ωs

dθ ′ ∑

k,m

e−ikθ ′

(k − mν)
eikθ |m〉

=
2π∫

0

νβ
3/2
θ ′ kS(θ

′)
24ωs

dθ ′ ∑

m

ie−imν(θ ′−θ)

2π

∑

k

e−i(k−mν)(θ ′−θ)

(k − mν)
︸ ︷︷ ︸

Gmk

|m〉 . (13.29)

The four terms in Eq. (13.17) must be equal to Gmk of Eq. (13.29). There is no
easy way to sum this horror directly. However, since I know that this can be easily
derived by Green’s functions, i.e., the rules of Sect. 13.1.1, I am tempted to take the
derivative of Gmk with respect to τ = θ ′ − θ , hoping that a Dirac-delta function will
emerge:

∂Gmk

∂τ
= ∂

∂τ

ie−imντ

2π

∑

k

e−i(k−mν)τ

(k − mν)

= −imGmk + e−imντ 1

2π

∑

k

e−i(k−mν)τ

︸ ︷︷ ︸
δ(τ )eimντ

⇓
∂Gmk

∂τ
= −imGmk + δ (τ ) . (13.30)

To solve Eq. (13.30), I first solve outside the delta function:

Gmk ∝ λe−imντ . (13.31)

To fix λ I integrate around τ = 0:

for ε → 0 : Gmk (ε) − Gmk (−ε) = 1. (13.32)

But Gmk must be periodic, therefore it must be true that:

Gmk (−ε) = Gmk (2π − ε) =⇒ Gmk (2π − ε) = λe−imν2π = λe−imμ. (13.33)

Equation (13.32) is rewritten as

for ε → 0 : λ − λe−imμ = 1 (13.34)

and the final result is thus:

Gmk = e−imν(θ ′−θ)

1 − e−imμ
= e−imΔ

1 − e−imμ
(13.35)
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Fθ =
2π∫

0

νβ
3/2
θ ′ kS(θ

′)
24ωs

dθ ′ ∑

m

e−imΔ

1 − e−imμ
|m〉

=
C∫

0

β
3/2
σ kS(σ )

24
dσ

∑

m

e−imΔ

1 − e−imμ
|m〉 since

dθ ′

dσ
= ωσ

ν
, Q.E.D.

(13.36)

13.3 Numerical Example 〈x〉: Analytical,
Guignard and Map

In this section I describe the implementation of the calculation of 〈x〉 using every
method under the sky (not really…). The relevant code is in Appendix Q.

I will start with a trivial code fragment from Appendix Q describing the input:

call build_lattice_als(ALS,mis,exact=.false.,thin=.true.,onecell=.true.)

write(6,*)"Give integration step ds"
write(6,*) "> 3 and nothing is cut; each step is a full magnet"
write(6,*) " real fun starts around ds=0.5"
read(5,*) ts

.

.

.
Write(6,*) "Constant phase advance per step ---> t"
write(6,*) "Courant Snyder phase advance per step ----> f"
read(5,*) used_ds_ave
if(used_ds_ave) then
Write(mf,*) "Constant phase advance per step"

else
write(mf,*) "Courant Snyder phase advance per step"

endif

write(6,*) "Enter number of Fourier modes"
read(5,*) n_mode

.

.

.

The call to build_lattice_als constructs one cell of the ALS and uses a
thin lens model for the sextupole. This is to insure that the analytical formula of
Eq. (13.16) is exact on a lattice with no errors and no coupling.

The next input concerns the typical integration step size. If you input ds = 3.0 or
so, nothing is cut. This is because magnets in the ALS lattice are 3 m or less. If you
select ds = 0.1 or smaller, the number of slices will start to be inversely proportional
to ds. Thus you can study the effect of a fine split by reducing ds.
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The next input is interesting. In the standard approach as described in Ref. [2] or
Sect. 8.4, a constant phase advance is required. For this you select “t” as the input for
used_ds_ave. If you select “f” the Courant-Snyder transformation will be used.

Finally the user can select the number of modes and see what happens as one
increases that number.

do i=1,ns

call propagate(als,ray,state,node1=i,node2=i+1) ! (14a)
call propagate(als,ray_cs_twiss,state,node1=i,node2=i+1) ! (14b)

ray_closed=ray ! Saving orbit ! (15a)
a_cs=ray_cs_twiss
a_cs=a_cs.sub.1
call c_full_canonise(a_cs,a_cs,phase=phase)

U=ray ! copying in map ! (15b)

if(used_ds_ave) then
U_c=exp(-ds*h_left,U) ! (16a)
U_c=U_c.cut.2 ! (16b)
U=U_c**(-1)*U ! (16c)

else
ds=twopi*t%s(5)/circ
U_c=U.cut.2 ! (16d)
call c_canonise(U_c,U_c) ! (16e)
U=U_c**(-1)*U ! (16f)

endif
logN=log(U) ! (17)

s=s+ds;
do km=-n_mode,n_mode
G%f(km)=G%f(km)+(exp(-i_*km*s)/twopi)*logN ! (19)

enddo

betax_1=(a_cs%v(1).sub.’10’)**2+(a_cs%v(1).sub.’01’)**2 ! (20a)
if((p%mag%name(1:2)=="SF".or.p%mag%name(1:2)=="SD").and.t%cas==case0) then
DX_AVERAGE_DCS=(betax_1)**1.5_DP*p%mag%BN(3)/4.0_DP & ! (20b)

*(-SIN(PHASE(1)*TWOPI)+SIN((PHASE(1)-normal_form%TUNE(1))*TWOPI)) &
/(1.0_DP-COS(normal_form%TUNE(1)*TWOPI)) + DX_AVERAGE_DCS

endif

ray=ray_closed+U_c ! (21)
ray_cs_twiss=ray_closed+a_cs
t=>t%next
p=>t%parent_fibre

enddo

I removed from the above loop code anything that is not necessary for the basic
understanding of the loop.

I will point the reader’s attention to the main loop. The reader will notice that
I track the ray twice: am I stuttering? First we look at lines (20a, b). This is the

http://dx.doi.org/10.1007/978-4-431-55803-3_8
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evaluation of the analytical formula from Eq. (13.16). The phase advance in that
formula must be the Courant-Snyder phase advance. Therefore the call at line (14b)
performs a normal Courant-Snyder loop with the Courant-Snyder choice in mind.
Could I have avoided this call with additional contortions with the output of line
(14a)? The answer is yes. However to keep things clear, rather than fast, I perform
two separate calculations in this program.

Lines (16a, b, c) in conjunction with lines (17) and (19) implement the calculation
of Sect. 8.4: the case of constant linear phase advance. Lines (16d, e, f) implements
the case of the Courant-Snyder phase advance—the case of Sect. 8.3—which will
require a linear normalisation.

Here both methods use the variable θ for the time-like variable of the Hamiltonian
as explained on p. 209. Here are the normalisation calls:

if(used_ds_ave.and.doit) then
call normalise_vector_field_fourier(G,F,K) ! (23a)

else
n_extra=50
call normalise_vector_field_fourier(G,F,K,F1) ! (23b)

endif

Please notice that the flag doit is set to true by default. Therefore the normal
form will not compute the linear vector field F1 if a constant linear phase advance is
used. By setting the flag to false, you can check that it is indeed zero if computed.

The total canonical transformation a is given by:

a = exp (F · ∇) exp (F1 · ∇) acs . (13.37)

This is implemented with the following fragment:

theta=0.d0
call c_evaluate_vector_field_fourier(f1,theta,f_non)

f_non=to_phasor()*f_non ! Turns f_non in Cartesian basis
id_s=exp(f_non,a_cs)
call c_evaluate_vector_field_fourier(f,theta,f_non)

f_non=to_phasor()*f_non ! Turns f_non in Cartesian basis
A=exp(f_non,id_s)

The vector fields F1 and F are evaluated at the end of the ring (θ = 0 = 2π ) by
c_evaluate_vector_field_fourier. The rest of the fragment is a straight
implementation of Eq. (13.37). Notice that my Guignard normal form produces a
result in phasors’ basis; this is changedby the callsf_non=to_phasor()*f_non
which implements Eq. (3.27) on the Fourier expanded vector field.

I invite you to run an example. Here is a slightly tedious example: ds = 0.01 and
100 modes. I will just compare the results of 〈x〉. First let me display the constant
phase result

http://dx.doi.org/10.1007/978-4-431-55803-3_8
http://dx.doi.org/10.1007/978-4-431-55803-3_8
http://dx.doi.org/10.1007/978-4-431-55803-3_3
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Results for <x>
100 modes

d<x>/dCS 120.2054785736042 < ---- analytical

Result of map normal form

Properties, NO = 4, NV = 2, INA = 214
*********************************************

2 120.2054785736068 0.000000000000000 1 1
4 189811.7154277755 -0.9038103598868474E-11 2 2

Constant linear phase advance
dtheta = 3.338568175972150E-003 radians
ds <= 1.000000000000000E-002 metres

Result of Guignard normal form

Properties, NO = 4, NV = 2, INA = 214
*********************************************

2 120.1946989163008 0.9271505792053573E-16 1 1
4 182947.4935034170 -0.2726367796098808E-10 2 2

followed by the result with a Courant-Snyder phase

Courant-Snyder linear phase advance
ds <= 1.000000000000000E-002 metres

Result of Guignard normal form

Properties, NO = 4, NV = 2, INA = 214
*********************************************

2 120.5484654655627 0.1058377837737943E-15 1 1
4 187859.0799306934 0.5311593586168033E-11 2 2

The reader can see that the agreement is good with the map based theory at all
orders. Since there are no errors, the leading order analytical calculation agrees with
the exact result from the one-turn map.

Finally, the reader is invited to uncomment the following lines in the code of
Appendix Q:

! write(mf,*) "MISALIGN EVERYTHING"
! write(mf,*) "0 0 0 0 0.1 0 5"

This call imposes a random rotation around the vertical axis on all magnets includ-
ing the sextupoles. This error does not violate mid-plane symmetry and thus the 1-d-f
system is well defined. Therefore if all goes well, the reader will discover that the
one-turn map result agrees with the Fourier mode calculation; however it will not
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agree with the analytic calculation because the thin sextupole is not properly han-
dled in that case. Of course that could be fixed but it requires additional work not
discussed in Sect. 13.1.
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Appendix A
The Hardwired ALS Lattice

subroutine  build_lattice_als(ALS,mis,error,exact,sl,thin,onecell)
use madx_ptc_module
use pointer_lattice
implicit none

type(layout), target :: ALS
real(dp),optional :: error(6)
logical, optional :: exact,sl,thin,onecell
real(dp) :: alpha,lbend, cut, ksd, ksf
type(fibre)  L1,L2,L3,L4,L5,L6,L7,L8,L9,L10
type(fibre)  L11,L12,L13,L14,L15,L16,L17,L18,L19,L20,CAVM
type(fibre)  L21,L22,L23,L24,L25,L26,L27,L27A,L27B,L27C,L27D,DS
type(fibre)  QF1,QF2,QD1,QD2,QFA1,QFA2,sf,sd,cav,bend,vc5,bend1
type(layout) :: sfline,sdline,sup1,supb
logical(lp) :: mis,thi=.false.,oneperiod
!-----------------------------------
if(present(thin)) thi=thin

call make_states(.true.)
exact_model = .false.;oneperiod = .false.
if(present(exact)) exact_model=exact
if(present(onecell)) oneperiod=onecell
call update_states
madlength = .false.

call set_mad(energy = 1.5d0, method = 2, step = 1)

madkind2 = matrix_kick_matrix

L1  = drift("L1 ",  2.832695d0);L2  = drift("L2 ",  0.45698d0);
L3  = drift("L3 ",  0.08902d0);L4  = drift("L4 ",  0.2155d0);
L5  = drift("L5 ",  0.219d0);L6  = drift("L6 ",  0.107078d0);
L7  = drift("L7 ",  0.105716d0);L8  = drift("L8 ",  0.135904d0);
L9  = drift("L9 ",  0.2156993d0);L10 = drift("L10",  0.089084d0);
L11= drift("L11",  0.235416d0);L12= drift("L12",  0.1245d0);
L13= drift("L13",  0.511844d0);L14= drift("L14",  0.1788541d0);
L15= drift("L15",  0.1788483d0);L16= drift("L16",  0.511849d0);
L17= drift("L17",  0.1245d0);L18= drift("L18",  0.235405d0);
L19= drift("L19",  0.089095d0);L20= drift("L20",  0.2157007d0);
L21= drift("L21",  0.177716d0);L22= drift("L22",  0.170981d0);
L23= drift("L23",  0.218997d0);L24 = drift ("L24",  0.215503d0);
L25 = drift ("L25",  0.0890187d0);L26 = drift ("L26",  0.45698d0);
L27 = drift ("L27",  2.832696d0);L27a  = drift (" L27a",  0.8596d0);
L27b  = drift (" L27b",  0.1524d0);L27c  = drift (" L27c",  0.04445d0);
L27d  = drift (" L27d",  1.776246d0);ds  = drift (" DS  ", 0.1015d0);
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QF1 = QUADRUPOLE(" QF1 ",0.344D0, K1= 2.2474D0+6.447435260914397D-03)
QF2 = QUADRUPOLE(" QF2 ",0.344D0, K1= 2.2474D0)
QD1 = QUADRUPOLE(" QD1 ",0.187D0, K1= -2.3368D0-2.593018157427161D-02);
QD2 = QUADRUPOLE(" QD2 ",0.187D0, K1= -2.3368D0);
QFA1= QUADRUPOLE(" QFA1",0.448D0, K1= 2.8856D0);
QFA2= QUADRUPOLE(" QFA2",0.448D0, K1= 2.8856D0);

!!! 1/2 mad-x value
ksf=-41.3355516397069748d0;
ksd=56.2564709584745489d0;

sf=sextupole ("sf",2.d0*0.1015d0, K2= ksf);
sd= sextupole("sd", 2.d0*0.1015d0, K2= ksd);

 VC5=marker("vc5");
ALPHA=0.17453292519943295769236907684886d0;

LBEND=0.86621d0;

BEND = RBEND("BEND", LBEND, ANGLE=ALPHA).q.(-0.778741d0)
BEND1 = RBEND("BEND1", LBEND, ANGLE=ALPHA).q.(-0.778741d0)

CAVM=MARK("CAVM");
CAV=RFCAVITY("CAV",L=0.0000d0,VOLT=-1.0d0,REV_FREQ=500.0d6)

if(thi) then
 sf=sextupole ("sf",0.d0, K2= ksf*0.203d0);
 sd= sextupole("sd", 0.d0, K2= ksd*0.203d0);
  sfline=(ds+sf+ds);
  sdline=(ds+sd+ds);
else
 sfline=1*sf;
 sdline=1*sd;
endif

SUP1=L1+L2+L3+QF1+VC5+L4+L5+QD1+L6+L7+L8+VC5+BEND+VC5+L9+sfline+L10+&
           L11+QFA1+L12+sdline+L13+ &
           L14+BEND+L15+L16+sdline+L17+ &
           QFA2+L18+L19+sfline+L20+BEND+L21+&
           L22+QD2+L23+L24+QF2+L25+ &
           L26+VC5+L27+cavm;

SUPb=L1+L2+L3+QF1+VC5+L4+L5+QD1+L6+L7+L8+VC5+BEND+VC5+L9+sfline+L10+&
           L11+QFA1+L12+sdline+L13+ &
           L14+BEND+L15+L16+sdline+L17+ &
           QFA2+L18+L19+sfline+L20+BEND1+L21+&
           L22+QD2+L23+L24+QF2+L25+ &
           L26+VC5+L27+cav;

if(oneperiod) then
 ALS = sup1;  !11*sup1+supb;
else
 ALS = 11*sup1+supb;
endif
if(present(sl)) then
L1  = drift("L1 ",  2.832695d0);
 if( sl ) then
  Qf1 = QUADRUPOLE(" QF1 ",L=0.d0, K1= 0.01d0 ); L1  = drift("L1 ",L=0.1d0);
  ALS=L1+QF1;
 endif
endif

ALS = .ring.ALS

call survey(ALS)
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if(mis) then
 sig=1.d-5; cut=4.d0;
 if(present(error)) sig=error
 call MESS_UP_ALIGNMENT(ALS,SIG,cut);
endif
end subroutine build_lattice_als



Appendix B
Program for one_turn_orbital_map

program program_one_turn_map
use madx_ptc_module
use pointer_lattice
use c_TPSA
implicit none

    interface
       subroutine build_lattice_als(ALS,MIS,error,exact,sl,thin,onecell)
         use madx_ptc_module
         use pointer_lattice
         implicit none
         type(layout), target :: ALS
         logical(lp) mis
         real(dp),optional :: error(6)
         logical, optional :: exact,sl,thin,onecell
       end subroutine build_lattice_als
    end interface

type(layout), pointer:: ALS
real(dp) prec,closed_orbit(6),mat(6,6)
type(internal_state),target :: state
logical(lp) :: mis=.true.
type(c_damap)  one_turn_map, Id
type(real_8) y(6)
integer i,map_order

prec=1.d-6 ! for printing
longprint=.false.

call ptc_ini_no_append
call append_empty_layout(m_u)
ALS=>m_u%start

call build_lattice_als(ALS,mis)

state=nocavity0

map_order=1
call init_all(state,map_order,0)
call alloc(one_turn_map,id)
call alloc(y)

call find_orbit_x(als,closed_orbit(1:6),STATE,1.e-5_dp,fibre1=1)     ! (1)

id=1   ! map is set to identity                                      ! (2)
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write(6,*) " id%v(1) "
call print(id%v(1),6)
! map is added to closed orbit and put into the 6 polymorphs
y(1:6)=closed_orbit(1:6)+id                                          ! (3)
write(6,*) " Y(1) = closed_orbit(1)+id%v(1) "
call print(y(1),6)
call propagate(als,y(1:6),state,fibre1=1)                            ! (4)

one_turn_map=y(1:6) ! Six polymorphs are promoted to Taylor maps     ! (5)

call print(one_turn_map,6,prec)

mat=one_turn_map                                                     ! (6)
closed_orbit=y                                                       ! (7)

write(6,*) " ";
write(6,*) "  Constant part of the map and linear part (matrix) ";
 write(6,’(a16,6(1x,g12.5))’) " closed orbit = ",closed_orbit(1:6)
do i=1,6
 write(6,’(a5,i1,a5,6(1x,g12.5))’) " row ",i," --> ",mat(i,1:6)
enddo

call ptc_end(graphics_maybe=1,flat_file=.false.)

end program program_one_turn_map
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Program
one_turn_orbital_map_normal_form_2d

program one_turn_orbital_map_normal_form_2d
use madx_ptc_module
use pointer_lattice
use c_TPSA
implicit none

    interface
       subroutine build_lattice_als(ALS,MIS,error,exact,sl,thin,onecell)
         use madx_ptc_module
         use pointer_lattice
         implicit none
         type(layout), target :: ALS
         logical(lp) mis
         real(dp),optional :: error(6)
         logical, optional :: exact,sl,thin,onecell
       end subroutine build_lattice_als
    end interface

type(layout), pointer:: ALS
real(dp) prec,closed_orbit(6),mat(6,6),a(6,6)
complex(dp) ac(6,6),w(6)
real(dp) beta,gamma,alpha
type(internal_state),target :: state
logical(lp) :: mis=.false.
type(c_damap)  one_turn_map, Id
type(real_8) y(6)
type(c_normal_form) normal_form
type(c_taylor) e1,r2,z1,z2,z1_new,z2_new,e2
integer i,map_order
c_mess_up_vector=.true.; b_mess=-1.0_dp;
c_verbose=.false.
prec=1.d-6 ! for printing
longprint=.false.

 closed_orbit=0.d0
call ptc_ini_no_append
call append_empty_layout(m_u)
ALS=>m_u%start

call build_lattice_als(ALS,mis)

state=only_2d0

map_order=2
call init_all(state,map_order,0)
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call alloc(one_turn_map,id)
call alloc(y)
call alloc(normal_form)
call alloc(e1,r2,z1,z2,z1_new,z2_new,e2)

call find_orbit_x(als,closed_orbit(1:6),STATE,1.e-5_dp,fibre1=1)     ! (1)

id=1   ! map is set to identity                                      ! (2)

! map is added to closed orbit and put into the 6 polymorphs
y(1:6)=closed_orbit(1:6)+id                                          ! (3)

call propagate(als,y(1:6),state,fibre1=1)                            ! (4)

one_turn_map=y(1:6) ! Six polymorphs are promoted to Taylor maps     ! (5)
closed_orbit=y                                                       ! (6)

one_turn_map=one_turn_map.sub.1                                      ! (7a)
call print(one_turn_map,6,prec)                                      ! (7b)

call  c_normal(one_turn_map,normal_form)                             ! (8)

write(6,*) " "
write(6,*) " tune = ",normal_form%tune(1)                            ! (8a)

write(6,*) " ";write(6,*) "  Constant part of the map";
 write(6,’(a16,6(1x,g12.5))’) " closed orbit = ",closed_orbit(1:6)   ! (8b)

mat=one_turn_map
write(6,*) " ";write(6,*) " One-turn Map ";
do i=1,c_%nd2
 write(6,’(a5,i1,a5,6(1x,g12.5))’) " row ",i," --> ",mat(i,1:c_%nd2) ! (8c)
enddo

a=normal_form%a_t
write(6,*) " ";write(6,*) "  Canonical transformation A";
do i=1,c_%nd2
 write(6,’(a5,i1,a5,6(1x,g12.5))’) " row ",i," --> ",a(i,1:c_%nd2)  ! (8d)
enddo

mat=normal_form%a_t**(-1)*one_turn_map*normal_form%a_t
write(6,*) " ";write(6,*) "  Normal Form ";
do i=1,c_%nd2
 write(6,’(a5,i1,a5,6(1x,g12.5))’) " row ",i," --> ",mat(i,1:c_%nd2) ! (8e)
enddo

z1=1.e0_dp.cmono.’10’                                                ! (9a)
z2=1.e0_dp.cmono.’01’                                                ! (9b)
z1_new=z1*normal_form%a_t**(-1)                                      ! (9c)
z2_new=z2*normal_form%a_t**(-1)                                      ! (9d)

r2=z1**2+z2**2                                                       ! (10a)
e1 = r2*normal_form%a_t**(-1)                                        ! (10b)
e2 = z1_new**2+z2_new**2                                             ! (10c)

beta = a(1,1)**2+a(1,2)**2                                           ! (11a)
gamma = a(2,1)**2+a(2,2)**2                                          ! (11b)
alpha = -a(1,1)*a(2,1)-a(1,2)*a(2,2)                                 ! (11c)
write(6,*)  " "
write(6,*) "beta = ", beta
write(6,*) "gamma = ", gamma
write(6,*) " 2 x alpha = ", 2*alpha
write(6,*)  " "
write(6,*)  " Courant-Snyder Invariant: rˆ2 o aˆ(-1) "
call print(e1,6)
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write(6,*)  " Courant-Snyder Invariant : z1_new**2 + z2_new**2 "
call print(e2,6)

write(6,*) " ";write(6,*) " w_1 =",(i_-alpha)/sqrt(beta)      ! (12a)
               write(6,*) " w_2 =",-sqrt(beta)                ! (12b)

ac=from_phasor(-1) * normal_form%a_t**(-1)                    ! (13a)
ac=transpose(ac)                                              ! (13b)

write(6,*)" ";write(6,*)"Complex Canonical transformation A";write(6,*)" ";
write(6,’(a8,17x,a1,18x,a1,1/)’) " column ","1","2"
do i=1,c_%nd2
 write(6,’(a5,i1,a5,6(1x,g12.5,1x,g12.5))’) " row ",i," --> ",ac(i,1:c_%nd2)
enddo

call ptc_end(graphics_maybe=1,flat_file=.false.)

end program one_turn_orbital_map_normal_form_2d
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Program one_turn_orbital_map_phase_ad

program one_turn_orbital_map_phase_ad
use madx_ptc_module
use pointer_lattice
use c_TPSA
implicit none

    interface
       subroutine build_lattice_als(ALS,MIS,error,exact,sl,thin,onecell)
         use madx_ptc_module
         use pointer_lattice
         implicit none
         type(layout), target :: ALS
         logical(lp) mis
         real(dp),optional :: error(6)
         logical, optional :: exact,sl,thin,onecell
       end subroutine build_lattice_als
    end interface

type(layout), pointer:: ALS
real(dp) prec,closed_orbit(6),mat(6,6),a(6,6),L
complex(dp) ac(6,6),w(6)
real(dp) beta,gamma,alpha
type(internal_state),target :: state
logical(lp) :: mis=.false.
type(c_damap)  one_turn_map, Id,a_1,a_2,b_2
type(real_8) y(6)
type(c_normal_form) normal_form
type(c_taylor) e2,r2,z1,z2,z1_new,z2_new,e2t,e1,phase(3)
integer i,map_order,pos
c_mess_up_vector=.true.; b_mess=-1.0_dp;
c_verbose=.false.
prec=1.d-6 ! for printing
longprint=.false.
call ptc_ini_no_append
call append_empty_layout(m_u)
ALS=>m_u%start

call build_lattice_als(ALS,mis)

state=only_2d0

write(6,*) "Write ’t’ for Courant-Snyder "
write(6,*) "Write ’f’ for Anti-Courant-Snyder "
read(5,*) courant_snyder_teng_edwards
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pos=2
map_order=2
call init_all(state,map_order,0)

call alloc(one_turn_map,id,a_1,a_2,b_2)
call alloc(phase)
call alloc(y)
call alloc(normal_form)
call alloc(e2,r2,z1,z2,z1_new,z2_new,e2t,e1)
z1=1.e0_dp.cmono.’10’                                                ! (1a)
z2=1.e0_dp.cmono.’01’                                                ! (1b)
r2=z1**2+z2**2                                                       ! (1c)
closed_orbit=0.0d0
call find_orbit_x(als,closed_orbit(1:6),STATE,1.e-5_dp,fibre1=1)     ! (2)

id=1   ! map is set to identity                                      ! (3)

! map is added to closed orbit and put into the 6 polymorphs
y(1:6)=closed_orbit(1:6)+id                                          ! (4)

call propagate(als,y(1:6),state,fibre1=1)                            ! (5)

one_turn_map=y(1:6) ! Six polymorphs are promoted to Taylor maps     ! (6)
closed_orbit=y                                                       ! (7)

call  c_normal(one_turn_map,normal_form)                             ! (8a)

write(6,’(1/,a50,1/)’) " Canonical Transformation coming from Normal Form "
call print(normal_form%a_t,6)                                        ! (8b)

call c_canonise(normal_form%a_t,a_1,phase=phase);phase(1)=0.0_dp;    ! (9a)

if(courant_snyder_teng_edwards) then
 write(6,’(1/,a50,1/)’) " Courant-Snyder Canonical Transformation  "
  else
 write(6,’(1/,a50,1/)’) " Anti-Courant-Snyder Canonical Transformation  "
endif
call print(a_1,6,prec)                                               ! (9b)

! map is added to closed orbit and put into the 6 polymorphs

y(1:6)=closed_orbit(1:6)+a_1                                         ! (10)

call propagate(als,y(1:6),state,fibre1=1,fibre2=pos)                 ! (11)

b_2=y(1:6)                                                           ! (12a)
call c_canonise(b_2,a_2,phase=phase)                                 ! (12b)
!!!!!!!!!!!!!!!!!!!!!!!   One turn map at pos = 2 !!!!!!!!!!!!!!!!!!!!
call find_orbit_x(als,closed_orbit(1:6),STATE,1.e-5_dp,fibre1=pos)   ! (13)

y(1:6)=closed_orbit(1:6)+id                                          ! (14)

call propagate(als,y(1:6),state,fibre1=pos)                          ! (15)

one_turn_map=y(1:6)                                                  ! (16)

call  c_normal(one_turn_map,normal_form)                             ! (17)
call  c_canonise(normal_form%a_t,a_2);                               ! (18)

!!!!!!!!!!!!!!!!!!!   Computes invariants at 1 and 2 !!!!!!!!!!!!!!!!!

e1 = r2*a_1**(-1)                                                    ! (19a)
e2t = r2*b_2**(-1)                                                   ! (19b)
e2 = r2*a_2**(-1)                                                    ! (19c)

write(6,’(1/,a54,1/)’)" Invariant at position = 1 computed from one turn map "
call print(e1,6)                                                     ! (20a)
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write(6,’(1/,a54,1/)’)" Invariant at position = 2  tracked from position = 1 "
call print(e2t,6)                                                    ! (20b)
write(6,’(1/,a54,1/)’)" Invariant at position = 2  computed from one turn map"
call print(e2,6)                                                     ! (20c)

write(6,’(1/,a54,1/)’) " Phase advance from position = 1 to position = 2      "
!!!!!!!!!!!!!!!!!!!!!!!!!!!!   Analytic results !!!!!!!!!!!!!!!!!!!!!!
if(pos==2.and.courant_snyder_teng_edwards) then
 L=2.832695d0 ! Length of first element L1
 beta=e1.sub.’02’
 alpha=(e1.sub.’11’)/2

 write(6,"(a48,G20.13)") " Based on theory, the phase advance should be = ", &
                                                 atan(L/(beta-L*alpha))/twopi
else
 write(6,*) " Based on theory, the phase advance should be zero "
endif
!!!!!!!!!!!!!!!!!!!!!!!!! The code’s results !!!!!!!!!!!!!!!!!!!!!!!!!

call print(phase(1),6,prec)                                          ! (21)

call ptc_end(graphics_maybe=1,flat_file=.false.)

end program one_turn_orbital_map_phase_ad
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Program Pendulum

program pendulum
use madx_ptc_module
use pointer_lattice
use c_TPSA
implicit none
type(internal_state),target :: state
type(c_damap)  m,Id,r,a1
type(c_vector_field) vf
type(c_taylor) K,theta,p,phase,I,a_op,k_io
type(c_normal_form) N
real(dp) prec,F,dt,c4,c6,tpf
complex(dp) v
integer map_order,io,km,ji(2),ns

prec=1.d-13 ! for printing
longprint=.false.

state=only_2d0

map_order=6
call init_all(state,map_order,0)
call alloc(m,id,r,a1)
call alloc(vf);call alloc(K,theta,p,phase,I,a_op,k_io);call alloc(N);

f=1/2.d0 !  This pendulum has a period of tau=2
dt=5.d-2
theta=1.d0.cmono.1                     !(1a)
p=1.d0.cmono.2                         !(1b)

K=p**2/2+2*(2*pi*f)**2*sin(theta/2.d0)**2  !(1c)

a1%v(1)=theta/sqrt(2*pi*f)             !(2a)
a1%v(2)=p*sqrt(2*pi*f)                 !(2b)

write(6,*);write(6,*) " This is Hamiltonian in linear phasors "; write(6,*);

K=K*a1*from_phasor()                   !(2c)

       call print(K,6,prec)

      tpf=K.sub.’11’

       do io=3,map_order

© Springer Japan 2016
E. Forest, From Tracking Code to Analysis,
DOI 10.1007/978-4-431-55803-3

283



284 Appendix E: Program Pendulum

      a_op=0.0_dp
       k_io=K.sub.io
       call c_taylor_cycle(K_io,size=ns)  !(3a)

!!!   Cycling over all monomials
    do km=1,ns
       call c_taylor_cycle(K_io,ii=km,value=v,j=ji) !(3b)
       if(ji(1)/=ji(2)) then                       !(3c)
         v=v/((ji(1)-ji(2))*(2*i_)*tpf)    !(3d)
         a_op=a_op+(v.cmono.ji)                !(3e)
       endif
    enddo
    if(io==4) then
      write(6,*); write(6,*) " Eq 3.73 of the book is printed "
      call print(a_op,6)
    endif
       vf=cgetvectorfield( a_op )                  !(4a)
       K=exp(vf,K)                                 !(4b)

       enddo

write(6,*);write(6,*) " This is K_new directly normalised "; write(6,*);

       call print(K,6,prec)

       write(6,*);write(6,*) " From analytical calculations ";
write(6,*);
write(6,99) pi*f, "(phi+ phi-) + ",-1/16.0_dp/4," (phi+ phi-)ˆ2 + ", &
 -1/512.0_dp/pi/f/8," (phi+ phi-)ˆ3  "
write(6,*);
99   format(’ ’,(g23.16,a15,g23.16,a17,g23.16,a16))

!!!!!! Now Map Methods !!!!!!

K=p**2/2+2*(2*pi*f)**2*sin(theta/2.d0)**2  !(5)

!!! vf is the force field of the pendulum
vf=getvectorfield( -dt*K )                  !(6)
!vf%v(1)=dt*(theta.pb.K)                    !(6a)
!vf%v(2)=dt*(p.pb.K)                        !(6b)
!vf%v(1)=-dt*(K.d.2)                        !(6c)
!vf%v(2)= dt*(K.d.1)                        !(6d)

id=1                      ! (7)
m=exp(vf,id)              ! (8)

write(6,*);
 write(6,*);write(6,*) " Normalising the map ";
write(6,*);
call  c_normal(m,n)       ! (9)

r=n%a_t**(-1)*m*n%a_t     ! (10)

r=from_phasor(-1)*r*from_phasor()          ! (11)
call print(r,6,prec)

       phase=-i_*log(r%v(2).k.(2)).cut.map_order  ! (12a)
       phase=phase/dt                             ! (12b)
       id%v(1)=id%v(1)*2.d0                       ! (12c)
       id%v(2)=1.d0                               ! (12d)
       phase=phase.o.id                           ! (12e)

write(6,*);write(6,*) " Analytical results from dK_infinity/dJ Eq.(3.22) ";
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write(6,*);

       write(6,100) 2*pi*f,"+ ",-1.d0/8," J + ",-3.d0/512/pi/f," Jˆ2   " ! (13a)

       call print(phase,6,prec)                   ! (13b)

       write(6,*); write(6,102) pi*f," thetaˆ2 + ", 1/(4*pi*f)," pˆ2"
       c4=-1536*pi**3*f**3
       write(6,104) 80*pi**4*f**4/c4," thetaˆ4 + ",-24*pi**2*f**2/c4, &
       " thetaˆ2 pˆ2 + ",-3/c4 ," pˆ4"

       c6=2949120*pi**5*f**5
       write(6,106) 1472*pi**6*f**6/c6," thetaˆ6 + ",2640*pi**4*f**4/c6, &
       " thetaˆ4 pˆ2 + ",1620*pi**2*f**2/c6, &
       " thetaˆ2 pˆ4 + ",135/c6 ," pˆ6"; write(6,*);    ! (14a)

 I=((((1.d0.cmono.1)**2+(1.d0.cmono.2)**2)/2.d0)*n%a_t**(-1)).cut.map_order  ! (14b)

       call print(I,6,prec)                             ! (14c)

102   format(’ ’,(g23.16,a11,g23.16,a4))
104   format(’ ’,(g23.16,a11,g23.16,a15,g23.16,a4))
106   format(’ ’,(g23.16,a11,g23.16,a15,g23.16,a15,g23.16,a4))
100    format(’ ’,(g23.16,a2,g23.16,a5,g23.16,a7))

    end program pendulum
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program standard_map
use madx_ptc_module
use pointer_lattice
use c_TPSA
implicit none
type(internal_state),target :: state
type(c_damap)  m,Id,r,a1,m_n,c,rho1,n_np1
type(c_vector_field) vf,g_io
type(c_factored_lie) f_op,t_op
type(c_taylor) K,theta,p,phase,I,f_pb,k_io,t_pb,a_op
type(c_normal_form) N
real(dp) prec,F,dt,c4,c6,tpf,beta
complex(dp) v,expmu,om
integer map_order,io,km,ji(2),ns,mf,a
logical t_o

prec=1.d-13 ! for printing
longprint=.false.
c_verbose=.false.
call kanalnummer(mf,’result_of_standard_map.txt’)

state=only_2d0

map_order=8
call init_all(state,map_order,0)
call alloc(m,id,r,a1,m_n,c,rho1,n_np1)
call alloc(vf);call alloc(K,theta,p,phase,I,f_pb,k_io,t_pb,a_op);call alloc(N);
call alloc(f_op);call alloc(t_op);call alloc(g_io);

f=1/2.d0 !  This pendulum has a period of tau=2
dt=5.d-2
theta=1.d0.cmono.1                     !(1a)
p=1.d0.cmono.2                         !(1b)

! One quadratic step of integration
!  K=p**2/2+2*(2*pi*f)**2*sin(theta/2.d0)**2

 theta = theta + (dt/2) * p                                   ! (2a)
 p = p - dt * 2*(2*pi*f)**2* sin(theta/2.d0)*cos(theta/2.d0)  ! (2b)
 theta = theta + (dt/2) * p                                   ! (2c)

M%v(1)=theta    ! (3a)
M%v(2)=p        ! (3b)
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 write(mf,*);
 write(mf,*) " Normalising the standard map using FPP software ";

call  c_normal(m,n)       ! (4)
write(mf,*) " The tune of the map is ", n%tune(1)
write(mf,*); write(mf,*) " Normalised map  ";write(mf,*);

        id=exp(n%ker)         ! (5)
        call print(id,mf,prec)

!!!!!!!!!!!!!! Normalised Pseudo-Hamiltonian !!!!!!!!!!!!!!!
        vf=0

        do io=1,size(n%ker%f)
         vf%v(1)=vf%v(1)+n%ker%f(io)%v(1)  ! (6a)
         vf%v(2)=vf%v(2)+n%ker%f(io)%v(2)  ! (6b)
        enddo

        k_io=-cgetpb(vf)/dt                ! (6c)

 write(mf,*); write(mf,*) " Normalised Pseudo-Hamiltonian  ";write(mf,*);

        call print(k_io,mf,prec)

!!!!!!!!!!!!!!!!! Map and Vector Brackets !!!!!!!!!!!!!!!!!!
write(mf,*);
write(mf,*) " Normalising the map using our software using Vector Brackets ";
write(mf,*);

        t_op=0 ;f_op=0;

        beta=(1-(pi*f*dt)**2)**(1.0_dp/2)/(2*pi*f)      ! (ia)

        a1%v(1)=sqrt(beta).cmono.1                      ! (ib)
        a1%v(2)=(1.0_dp/sqrt(beta)).cmono.2             ! (ic)

        c=from_phasor()                                 ! (iia)
        m_n=c**(-1)*a1**(-1)*m*a1*c                     ! (iib)

        rho1=m_n.sub.1                   ! (iiia)
        expmu=m_n%v(1).sub.’1’           ! (iiib)

        t_op%dir=1   ! (iva)
        f_op%dir=-1  ! (ivb)

 do io=2,map_order

         n_np1= m_n*rho1**(-1); n_np1= exp_inv(T_op,n_np1)           ! (v)
         g_io%v(1)=n_np1%v(1).sub.io      ! (via)
         g_io%v(2)=n_np1%v(2).sub.io      ! (vib)
do a=1,2
          call c_taylor_cycle(g_io%v(a),size=ns)

!!!   Cycling over all monomials
    do km=1,ns
       call c_taylor_cycle(g_io%v(a),ii=km,value=v,j=ji)   ! (vii)
       if(ji(1)-ji(2)+(-1)**a/=0) then                   ! (viiia)
         v=v/(1-expmu**(ji(2)-ji(1)-(-1)**a))            ! (viiib)
         f_op%f(io)%v(a)=f_op%f(io)%v(a)+(v.cmono.ji)   ! (viiic)
       else
         t_op%f(io)%v(a)=t_op%f(io)%v(a)+(v.cmono.ji)   ! (viiid)
       endif
    enddo
 enddo
        m_n=exp(-f_op%f(io))*m_n ;m_n=exp(f_op%f(io),m_n) ! (ix)
 enddo
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        t_op%f(1)%v(1)= log(expmu).cmono.1       ! (xa)
        t_op%f(1)%v(2)=-log(expmu).cmono.2       ! (xb)

write(mf,*);write(mf,*) " Normalised map  "; write(mf,*);

        id=exp(t_op)  ! (xi)
        call print(id,mf,prec)

!!!!!!!!!!! Computing the normalised Pseudo-Hamiltonian !!!!!!!!!!

        vf=0
        do io=1,size(t_op%f)
         vf%v(1)=vf%v(1)+t_op%f(io)%v(1)     ! (xiia)
         vf%v(2)=vf%v(2)+t_op%f(io)%v(2)     ! (xiib)
        enddo
     k_io=-cgetpb(vf)/dt                     ! (xiii)

write(mf,*);
write(mf,*) " Normalised Pseudo-Hamiltonian  ";
write(mf,*);
        call print(k_io,mf,prec)

!!!!!!!!!!!!!! Map and Poisson Brackets !!!!!!!!!!!!!!
write(mf,*);
write(mf,*) " Normalising the map using our software using Poisson Brackets ";
write(mf,*);
        t_op=0
        f_op=0
        beta=(1-(pi*f*dt)**2)**(1.0_dp/2)/(2*pi*f)      ! (Ia)

        a1%v(1)=sqrt(beta).cmono.1                      ! (Ib)
        a1%v(2)=(1.0_dp/sqrt(beta)).cmono.2             ! (Ic)

        c=from_phasor()                                 ! (IIa)
        m_n=c**(-1)*a1**(-1)*m*a1*c                     ! (IIb)

        rho1=m_n.sub.1                   ! (IIIa)
        expmu=m_n%v(1).sub.’1’           ! (IIIb)

        t_op%dir=1  ! same as above
        f_op%dir=-1

 do io=2,map_order
         t_op%f(io)=0                    ! (IVa)
         f_op%f(io)=0                    ! (IVb)
         n_np1=m_n*rho1**(-1); n_np1=exp_inv(t_op,n_np1)           ! (V)

         g_io%v(1)=n_np1%v(1).sub.io      ! (VIa)
         g_io%v(2)=n_np1%v(2).sub.io      ! (VIb)

         k_io=cgetpb( g_io )              ! (VIc)

         f_pb=0.0_dp                    ! (VIIa)
         t_pb=0.0_dp                    ! (VIIb)

          call c_taylor_cycle(K_io,size=ns)   ! same as above

!!!   Cycling over all monomials
    do km=1,ns
       call c_taylor_cycle(K_io,ii=km,value=v,j=ji)
       if(ji(1)/=ji(2)) then                     !(VIIIa)
         v=v/(1-expmu**(ji(2)-ji(1)))            !(VIIIb)
         f_pb=f_pb+(v.cmono.ji)                  !(VIIIc)
       else
         t_pb=t_pb+(v.cmono.ji)                  !(VIIId)
       endif
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    enddo
        t_op%f(io)=cgetvectorfield(t_pb)         ! (IXa)
        f_op%f(io)=cgetvectorfield(f_pb)!        ! (IXb)
        m_n=exp(-f_op%f(io))*m_n; m_n=exp(f_op%f(io),m_n) ! (X)

 enddo
        t_op%f(1)%v(1)= log(expmu).cmono.1       ! (XIa)
        t_op%f(1)%v(2)=-log(expmu).cmono.2       ! (XIb)

 write(mf,*);write(mf,*) " Normalised map  "; write(mf,*);

        id=exp(t_op)                           ! (XII)
        call print(id,mf,prec)

!!!!!!!!!!!! Computing the pseudo-Hamiltonian !!!!!!!!!!!!
write(mf,*);
  write(mf,*) " Normalising the standard map using our own little software ";
  write(mf,*) " by first computing the ’logarithm’ of the map and then  ";
  write(mf,*) " normalising it using Poisson Brackets ";
write(mf,*);

        vf=log(M)                                   ! (1a)
        k=-getpb(vf)/dt                             ! (1b)

        beta=(1-(pi*f*dt)**2)**(1.0_dp/2)/(2*pi*f)  ! (2a)

        a1%v(1)=sqrt(beta).cmono.1                  ! (2b)
        a1%v(2)=(1.0_dp/sqrt(beta)).cmono.2         ! (2c)

!! This is Hamiltonian in linear phasors

K=K*a1*from_phasor()                   ! (3a)

      tpf=K.sub.’11’                   ! (3b)

       do io=3,map_order
       a_op=0.0_dp
       k_io=K.sub.io                      ! (4a)
       call c_taylor_cycle(K_io,size=ns)  ! (4b)

!!!   Cycling over all monomials
    do km=1,ns
       call c_taylor_cycle(K_io,ii=km,value=v,j=ji) ! (5a)
       if(ji(1)/=ji(2)) then                        ! (5b)
         v=v/((ji(1)-ji(2))*(2*i_)*tpf)             ! (5c)
         a_op=a_op+(v.cmono.ji)                     ! (5d)
       endif
    enddo

       vf=cgetvectorfield( a_op )                  ! (6a)
       K=exp(vf,K)                                 ! (6b)

       enddo
write(mf,*);write(mf,*) " This is K_new directly normalised "; write(mf,*);

       call print(K,mf,prec)
       vf=cgetvectorfield( K )      ! (7a)
       vf=-dt*vf                    ! (7b)
       id=exp(vf)

 write(mf,*);write(mf,*) " Normalised map  "; write(mf,*);

        call print(id,mf,prec)
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 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
  write(mf,*)
  write(mf,*) " Normalising the standard map using our own little software ";
  write(mf,*) " by first computing the ’logarithm’ of the map and then  ";
  write(mf,*) " normalising it using Vector Brackets ";

Write(6,*)"Transform vector field with formula (F.dot.a_kˆ-1) o a ---> type t"
Write(6,*) " Or with exp(Lie Bracket A) F ---> type f "
read(5,*) t_o
  if(t_o) then
    Write(mf,*) " Transforming vector field with formula (F.dot.a_kˆ-1) o a "
  else
    Write(mf,*) " Transforming vector field with exp(Lie Bracket A) F "
  endif
        f_op=0
        t_op=0

        beta=(1-(pi*f*dt)**2)**(1.0_dp/2)/(2*pi*f)      ! (1A)

        a1%v(1)=sqrt(beta).cmono.1                      ! (1B)
        a1%v(2)=(1.0_dp/sqrt(beta)).cmono.2             ! (1C)

        M=from_phasor(-1)*a1**(-1)*m*a1*from_phasor()   ! (2)

        g_io=log(M)  !                                   ! (3A)
        g_io=-(1.0_dp/dt)*g_io                           ! (3B)
        om= g_io%v(1).sub.’1’                            ! (3C)

       do io=2,map_order
!!!   Cycling over all monomials
do a=1,2
          m_n%v(a)=g_io%v(a).sub.io   ! (4)
          call c_taylor_cycle(m_n%v(a),size=ns)

!!!   Cycling over all monomials
    do km=1,ns
       call c_taylor_cycle(m_n%v(a),ii=km,value=v,j=ji)
       if(ji(1)-ji(2)+(-1)**a/=0) then                     ! (5A)
         v=v/(om*(ji(1)-ji(2)+(-1)**a))                    ! (5B)
         f_op%f(io)%v(a)=f_op%f(io)%v(a)+(v.cmono.ji)      ! (5C)
       endif
    enddo
enddo

    if(t_o) then    ! if true, use (F.dot.a_kˆ-1) o a
          id=exp(f_op%f(io))    ! (6A)
          a1=id**(-1)           ! (6B)
          r=0

          do ns=1,2
          do a=1,2
           r%v(ns)=g_io%v(a)*(a1%v(ns).d.a)+r%v(ns)  ! (7)
          enddo
          r%v(ns)=r%v(ns)*id                         ! (8)
          enddo

          do ns=1,2
            g_io%v(ns)=r%v(ns)
          enddo
    else       !  use a Lie Bracket operator
          g_io=exp_ad(f_op%f(io),g_io)      ! (6’)
    endif

 enddo

 write(mf,*);write(mf,*) " Normalised map  "; write(mf,*);
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       id=exp(g_io)                      ! (9)
       call print(id,mf,prec)

 write(mf,*);write(mf,*) " This is K_new directly normalised "; write(mf,*);

       k=cgetpb(g_io)   ! (10)
       call print(K,mf,prec)

       close(mf)

!!!!!!!!!!!!!!!!!!!   Illustrating the Logarithm    !!!!!!!!!!!!!!!!!!
!

          lielib_print(3)=1   ! printing iterates
write(6,*);write(6,*) "Testing the logarithm of a map ";write(6,*);
write(6,*);write(6,*) "First Case ";write(6,*);

          vf=log(M)

!!!!  forcing linear behaviour until 10ˆ-15 is reached
write(6,*); write(6,*) "Second Case ";write(6,*);

          vf=log(M,epso=1.d-14)

write(6,*); write(6,*) "Third Case ";write(6,*);
extra_terms_log=.true.
          vf=log(M)

end program standard_map
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Program one_turn_cavity_map

program one_turn_cavity_map

use madx_ptc_module

use pointer_lattice

use c_TPSA

implicit none

    interface

       subroutine build_lattice_als(ALS,MIS,error,exact,sl,thin,onecell)

         use madx_ptc_module

         use pointer_lattice

         implicit none

         type(layout), target :: ALS

         logical(lp) mis

         real(dp),optional :: error(6)

         logical, optional :: exact,sl,thin,onecell

       end subroutine build_lattice_als

    end interface

type(layout), pointer:: ALS

real(dp) prec,closed_orbit(6),mat(6,6),a(6,6),ai(6,6),del,error(6),mom(6,6),ray(5,6),cav_tune

real(dp) Ia(6,6,3),Sa(6,6,3),S(6,6),Ka(6,6,3),Ba(6,6,3),Ha(6,6,3),Ea(6,6,3),inv,inv1,tune_s

REAL(DP) F(6,6),alpha_s,m(6,6), alphas(2),c

complex(dp) mc(6,6)

type(internal_state),target :: state

logical(lp) :: mis=.false.

type(c_damap)  one_turn_map, Id,a0,a_cs

type(real_8) y(6)

type(c_normal_form) normal_form

type(c_taylor) e(3),z_ij,ave_FLOQUET

integer expo(6),pos

character*48 command_gino,fmd

integer i,map_order,j,cas,mf,nd2a,nda,k,t

!!!!!!!!!!!!!!!!!!!!!

type(fibre), pointer :: p1

type(integration_node), pointer :: ti

!!!!!!!!!!!!!!!!!!!!!

c_verbose=.false.

prec=1.d-10 ! for printing

longprint=.false.

 del=0.d0

use_info=.true.

fmd=’(1x,g17.10)’

Ia=0.d0; Sa=0.d0; S=0.d0;Ba=0.d0;Ha=0.d0;Ea=0.d0

do i=1,3
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 S(2*i-1,2*i) = 1.d0; S(2*i,2*i-1) = -1.d0;

 Ia(2*i-1,2*i-1,i) =1.d0;  Ia(2*i,2*i,i)   = 1.d0;

 Sa(2*i-1,2*i,i)   =1.d0;  Sa(2*i,2*i-1,i) =-1.d0;

enddo

call ptc_ini_no_append

call append_empty_layout(m_u)

ALS=>m_u%start

write(6,*) " misalignments type t, otherwise f"

read(5,*) mis

If(mis) then

 write(6,’(a56,/)’) " The lattice produced will have errors and thus coupling"

else

 write(6,’(a56,/)’) " The lattice produced is ideal: mid-plane symmetric     "

endif

pos=15

error=0.d0

error(6)=1.d-5 ! tilt along z-axis

call build_lattice_als(ALS,mis,error,exact=.false.)

 do cas=2,0,-1

if(cas==0) then

 state=nocavity0

 nd2a=4

 nda=2

call kanalnummer(mf,"result_no_cavity.txt")

elseif(cas==1) then

 state=default0

 nd2a=6

 nda=3

call kanalnummer(mf,"result_with_cavity.txt")

elseif(cas==2) then

 state=radiation0

 nd2a=6

 nda=3

call kanalnummer(mf,"result_with_cavity_and_radiation.txt")

endif

map_order=2

call init_all(state,map_order,0)

call alloc(one_turn_map,id,a0,a_cs)

call alloc(y)

call alloc(normal_form)

call alloc(e)

call alloc(z_ij,ave_FLOQUET)

closed_orbit=0.d0; closed_orbit(5)=del;                              ! (0)

call find_orbit_x(als,closed_orbit(1:6),STATE,1.e-8_dp,fibre1=pos)     ! (1)

del=closed_orbit(5)

id=1   ! map is set to identity                                      ! (2)

! map is added to closed orbit and put into the 6 polymorphs

y(1:6)=closed_orbit(1:6)+id                                          ! (3)

write(mf,*) " ";write(mf,*) "  Constant part of the map";

write(mf,’(a16,6(1x,g12.5))’) " closed orbit = ",closed_orbit(1:6)   ! (4)

!write(mf,’(a16,6’//fmd//’)’) " closed orbit = ",closed_orbit(1:6)   ! (4)
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call propagate(als,y(1:6),state,fibre1=pos)                            ! (5)

one_turn_map=y(1:6) ! Six polymorphs are promoted to Taylor maps     ! (6)

closed_orbit=y                                                       ! (7)

one_turn_map=one_turn_map.sub.1                                      ! (8)

write(mf,*) " "; write(mf,*) "  The linear map";

call print(one_turn_map,mf,prec)

call  c_normal(one_turn_map,normal_form)                             ! (9)

write(mf,’(a8,3(1x,g20.13))’) " tune = ",normal_form%tune(1:nda)     ! (10)

if(cas==1) tune_s=normal_form%tune(3)

write(mf,*) " ";write(mf,*) "  Constant part of the map";

 write(mf,’(a16,6(1x,g12.5))’) " closed orbit = ",closed_orbit(1:6)  ! (11)

a=normal_form%a_t                                                    ! (12a)

ai=normal_form%a_t**(-1)                                             ! (12b)

mc=from_phasor(-1)*normal_form%a_t**(-1)*one_turn_map*normal_form%a_t*from_phasor()  ! (13)

write(mf,’(/,a37,15x,a41,/)’)" i  j    Real(mc(i,j))    Im(mc(i,j))", &

                             "damping  + i *   phase  ( =log(mc(i,j)) )"

do i=1,c_%nd2

do j=1,c_%nd2

if(abs(mc(i,j))>1.e-10_dp) write(mf,’(i2,1x,i2,2(5x,g12.5),5x,2(5x,g12.5))’)&

                                      i,j,mc(i,j),log(mc(i,j)) ! (14)

enddo

enddo

!!!!!!! Lattice functions !!!!!!!

!! coefficient of invariant  !!

do i=1,c_%nd

 Ba(1:6,1:6,i)=matmul(matmul(a,Sa(1:6,1:6,i)),ai)  ! (15a)

 Ha(1:6,1:6,i)=matmul(matmul(a,Ia(1:6,1:6,i)),ai)  ! (15b)

 Ka(1:6,1:6,i)=-matmul(S,Ba(1:6,1:6,i))            ! (15c)

 Ea(1:6,1:6,i)=-matmul(Ba(1:6,1:6,i),S)            ! (15d)

enddo

call clean_mat(Ba,prec);call clean_mat(Ha,prec);   ! (16a)

call clean_mat(Ka,prec);call clean_mat(Ea,prec);   ! (16b)

if(cas/=2) then

  do i=1,nda

      expo=0

      expo(2*i-1)=2

     e(i)=1.d0.cmono.expo

      expo=0

      expo(2*i)=2

     e(i)=e(i)+(1.d0.cmono.expo)

     e(i)=e(i)*normal_form%a_t**(-1)               ! (17)

  enddo

  do i=1,nda

write(mf,*)" "; write(mf,*) " Invariant (qˆ2+pˆ2) o Aˆ(-1)  in plane ",i; write(mf,*)" ";

   call print(e(i),mf,prec)

   do j=1,2*nda

    write(mf,’(6’//fmd//’)’)Ka(j,1:6,i)          ! (18)

   enddo

  enddo

  do i=1,2*nda

   do j=i,2*nda
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      z_ij=(1.d0.cmono.i)*(1.d0.cmono.j)

      call C_AVERAGE(z_ij,normal_form%a_t,ave_FLOQUET)          ! (19a)

      write(mf,*);write(mf,’(a3,i1,a3,i1,a1)’)  "<z_",i," z_",j,">"

      write(mf,’(3(5x,g12.5))’) Ea(i,j,1)/2,Ea(i,j,2)/2,Ea(i,j,3)/2

      call print(ave_FLOQUET,mf,prec)

   enddo

  enddo

endif

  do i=1,3

   write(mf,*)" "; write(mf,*) " Matrix H ",i; write(mf,*)" ";

   do j=1,6

    write(mf,’(6’//fmd//’)’) Ha(j,1:6,i)

   enddo

  enddo

  if(cas/=0) then

   alphas(cas)=Ba(6,5,3)*sin((normal_form%tune(3))*twopi)

   write(mf,’(a33)’) " Approximate time slip  "

   write(mf,’((5x,g12.5))’) alphas(cas)

     write(mf,’(a42)’) " H based dispersion as in Chao-Sands paper"

   do j=1,6

    write(mf,*) i, Ha(j,5,3)/Ha(5,5,3)

   enddo

  endif

   if(cas==0) then

   write(mf,’(a34)’) " Standard time slip without cavity"

   write(mf,’((5x,g12.5))’) real(mc(6,5))

   write(mf,’(a34)’) " Time slip estimated with a cavity"

   write(mf,’((5x,g12.5))’) alphas(1)

   write(mf,’(a48)’) " Time slip estimated with a cavity and radiation"

   write(mf,’((5x,g12.5))’) alphas(2)

!!!!  Computation by "hand" of the time slip alpha_s

call c_full_canonise(normal_form%A_t,a_cs,a0=a0)   ! (0)

    mat=one_turn_map

    f=a0                                           ! (1)

! not trusting f(6,1:4) from normal form

    f(6,1:4)=0.0_dp

    do i=1,4

    do j=1,4

     f(6,j)=f(6,j)-f(i,5)*S(i,j)                               ! (2)

    enddo

    enddo

    m(6,1:4) = mat(6,1:4) !(mat(6,1:4)-matmul(f(6,1:4),mat(1:4,1:4)))     ! (3a)

    alpha_s=mat(6,5)

    do i=1,4

     alpha_s =  m(6,i)* f(i,5)+ alpha_s ! - f(6,i)*mat(i,5) + alpha_s    !(3b)

    enddo

    write(mf,*) " Time slip alpha_s from computation and normal form"

    write(mf,*)   alpha_s,real(mc(6,5))

    call move_to(als,p1,"CAV",pos,reset=.true.)

    cav_tune=(alpha_s/2)*(p1%mag%volt*1e-3_dp/p1%mag%P%P0C)*twopi*p1%mag%freq/CLIGHT

    write(mf,*) "tune using alpha_s ", sign(acos(1.0_dp+cav_tune)/2/pi,p1%mag%volt)

    write(mf,*) "Exact temporal tune", tune_s ; write(6,*) " ";

     write(mf,’(a21)’) " Standard dispersion "

    do i=1,6

     write(mf,*) i, a(i,5)

    enddo

   endif

   if(cas/=0) then

    write(mf,’(a56)’) " Almost Exact Crab Angle ignoring transverse emittances "
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    write(mf,’((5x,g12.5))’) -Ka(5,2,3)/Ka(5,5,3)

    write(mf,’(a56)’) " Approximate Crab Angle ignoring transverse emittances  "

    write(mf,’((5x,g12.5))’)  Ha(1,6,3)-Ka(5,6,3)*Ha(1,5,3)/Ka(5,5,3)

  endif

!!!!!           Evaluation of the Kinetic Invariants          !!!!!!

ray(1,1:6)= (/3,4,3,6,1,3/)

ray(2,1:6)= (/3,5,2,6,1,0/)

ray(3,1:6)= (/2,4,3,6,1,1/)

ray(4,1:6)= (/3,5,3,6,1,2/)

ray(5,1:6)= (/2,3,5,8,1,0/)

 mat=one_turn_map

do t=1,10

 do k=1,5

   ray(k,1:6)=matmul(mat,ray(k,1:6))

 enddo

do i=1,6

do j=i,6

 mom(i,j)=0.d0

do k=1,5

 mom(i,j)=ray(k,i)*ray(k,j)/5+mom(i,j)

enddo

enddo

enddo

inv=0.D0

do i=1,3

inv=4*(mom(2*i-1, 2*i-1)*mom(2*i, 2*i)-mom(2*i-1, 2*i)**2)+inv

enddo

inv1=inv

inv=inv+8*(mom(1, 3)*mom(2, 4)-mom(1, 4)*mom(2, 3)) &

       +8*(mom(1, 5)*mom(2, 6)-mom(1, 6)*mom(2, 5)) &

       +8*(mom(3, 5)*mom(4, 6)-mom(3, 6)*mom(4, 5))

write(mf,’(a19,i2,a2,1x,g12.5,a18,1x,g12.5)’) &

" Invariant at turn ",t,  " =",inv,’ 1-d-f invariant =’,inv1

enddo

call kill(one_turn_map,id,a0,a_cs)

call kill(y)

call kill(normal_form)

call kill(e)

call kill(z_ij,ave_FLOQUET)

close(mf)

 enddo ! cas

call ptc_end(graphics_maybe=1,flat_file=.false.)

end program one_turn_cavity_map

subroutine clean_mat(H,prec)

use precision_constants

implicit none

real(dp) H(6,6,3),prec

integer i,j,k
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do i=1,6

do j=1,6

do k=1,3

 if(abs(H(i,j,k))<prec) H(i,j,k)=0

enddo

enddo

enddo

end subroutine clean_mat
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Program radiation_map

program radiation_map

use madx_ptc_module

use pointer_lattice

use c_TPSA

implicit none

    interface

       subroutine build_lattice_als(ALS,MIS,error,exact,sl,thin,onecell)

         use madx_ptc_module

         use pointer_lattice

         implicit none

         type(layout), target :: ALS

         logical(lp) mis

         real(dp),optional :: error(6)

         logical, optional :: exact,sl,thin,onecell

       end subroutine build_lattice_als

    end interface

type(layout), pointer:: ALS

real(dp) prec,closed_orbit(6),mat(6,6),a(6,6),ai(6,6),del,error(6),emi(3),sij(3)

real(dp) Ia(6,6,3),Sa(6,6,3),S(6,6),Ka(6,6,3),Ba(6,6,3),Ha(6,6,3),Ea(6,6,3),xij

complex(dp) mc(6,6)

type(internal_state),target :: state,sta(2)

logical(lp) :: mis=.false.

type(c_damap)  one_turn_map, Id,a0,a_cs

type(real_8) y(6)

type(c_normal_form) normal_form

type(c_taylor) e(3),z_ij,ave_FLOQUET

integer expo(6),pos

character*48 command_gino,fmd,fmd1

integer i,map_order,j,mf,k,t,cas

type(probe) ray_closed

type(probe_8) ray

!!!!!!!!!!!!!!!!!!!!!

type(fibre), pointer :: p1

type(integration_node), pointer :: ti

!!!!!!!!!!!!!!!!!!!!!

c_verbose=.false.

prec=1.d-10 ! for printing

longprint=.false.

 del=0.d0

use_info=.true.

fmd= ’(a12,1X,a3,I1,a3,i1,a4,D18.11,1x,D18.11)’

fmd1=’(1X,a3,I1,a3,i1,a4,2(D18.11,1x),(f10.3,1x),a2)’
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sta(1)=default0

sta(2)=default0 +radiation0+envelope0

Ia=0.d0; Sa=0.d0; S=0.d0;Ba=0.d0;Ha=0.d0;Ea=0.d0

do i=1,3

 S(2*i-1,2*i) = 1.d0; S(2*i,2*i-1) = -1.d0;

 Ia(2*i-1,2*i-1,i) =1.d0;  Ia(2*i,2*i,i)   = 1.d0;

 Sa(2*i-1,2*i,i)   =1.d0;  Sa(2*i,2*i-1,i) =-1.d0;

enddo

call ptc_ini_no_append

call append_empty_layout(m_u)

ALS=>m_u%start

write(6,*) " misalignments type t, otherwise f"

read(5,*) mis

If(mis) then

 write(6,’(a56,/)’) " The lattice produced will have errors and thus coupling"

else

 write(6,’(a56,/)’) " The lattice produced is ideal: mid-plane symmetric     "

endif

pos=15

error=0.d0

error(6)=1.d-5 ! tilt along z-axis

call build_lattice_als(ALS,mis,error,exact=.false.)

call kanalnummer(mf,"result_with_stochastic_radiation.txt")

do cas=1,2

 state=sta(cas)

map_order=1

call init_all(state,map_order,0)

call alloc(one_turn_map,id,a0,a_cs)

call alloc(y)

call alloc(normal_form)

call alloc(e)

call alloc(z_ij,ave_FLOQUET)

call alloc(ray)

closed_orbit=0.d0;                                                   ! (1)

call find_orbit_x(als,closed_orbit(1:6),STATE,1.e-8_dp,fibre1=pos)   ! (2)

if(cas==2) then

 write(mf,*) " ";write(mf,*) "  Constant part of the map";

 write(mf,’(a16,6(1x,g12.5))’) " closed orbit = ",closed_orbit(1:6)

endif

ray_closed=closed_orbit     ! (3)

id=1;

! ray= closed orbit + identity map

ray=ray_closed+id;          ! (4)

call propagate(als,RAY,state,fibre1=pos)  ! (5)

! Six polymorphs and the fluctuationsare E_ij

! are promoted to Taylor maps

one_turn_map=ray                         ! (6a)
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one_turn_map=one_turn_map.sub.1          ! (6b)

if(cas==2) then

 write(mf,*) " "; write(mf,*) "  The linear map";

 call print(one_turn_map,mf,prec)                    ! (7)

endif

call  c_normal(one_turn_map,normal_form)             ! (8)

if(cas==2) write(mf,’(a8,3(1x,g20.13))’) " tune = ",normal_form%tune(1:3)     ! (9)

a=normal_form%a_t                                                    ! (10a)

ai=normal_form%a_t**(-1)                                             ! (10b)

mc=from_phasor(-1)*normal_form%a_t**(-1)*one_turn_map*normal_form%a_t*from_phasor()  ! (11)

if(cas==2) then

write(mf,’(/,a37,15x,a41,/)’)" i  j    Real(mc(i,j))    Im(mc(i,j))", &

                             "damping  + i *   phase  ( =log(mc(i,j)) )"

do i=1,c_%nd2

do j=1,c_%nd2

if(abs(mc(i,j))>1.e-10_dp) write(mf,’(i2,1x,i2,2(5x,g12.5),5x,2(5x,g12.5))’)&

                                      i,j,mc(i,j),log(mc(i,j))                       ! (12)

enddo

enddo

endif

if(cas==1) then

!!!!!!! Lattice functions !!!!!!!

!! coefficient of invariant  !!

do i=1,c_%nd

 Ba(1:6,1:6,i)=matmul(matmul(a,Sa(1:6,1:6,i)),ai)  ! (13a)

 Ha(1:6,1:6,i)=matmul(matmul(a,Ia(1:6,1:6,i)),ai)  ! (13b)

 Ka(1:6,1:6,i)=-matmul(S,Ba(1:6,1:6,i))            ! (13c)

 Ea(1:6,1:6,i)=-matmul(Ba(1:6,1:6,i),S)            ! (13d)

enddo

endif

if(cas==2) then

write(mf,*)

write(mf,’(16X,a50)’) "   Equilibrium moments in Phasors Basis           "

 do i=1,6

 do j=i,6

  if(abs(normal_form%s_ijr(i,j))>1.d-20) then

   write(mf,fmd) " Phasors -> ","<x_",i," x_",j,"> = ",  &   ! (14)

                    c_clean(normal_form%s_ijr(i,j),1.d-20)

  endif

 enddo

 enddo

emi(1)=real(normal_form%s_ijr(1,2))/2        ! (15a)

emi(2)=real(normal_form%s_ijr(3,4))/2        ! (15b)

emi(3)=real(normal_form%s_ijr(5,6))/2        ! (15c)

write(mf,*)

write(mf,’(16X,a54)’) "    Exact              Chao         (Exact-Chao)/Exact"

 do i=1,6

 do j=1,6

   xij=0.d0



302 Appendix H: Program radiation_map

   do k=1,3

     xij= Ea(i,j,k)*emi(k) + xij                              ! (16)

   enddo

 if(abs(normal_form%s_ij0(i,j))>1.e-15_dp) then

   write(mf,fmd1) "<x_",i," x_",j,"> = ", real(normal_form%s_ij0(i,j)), &

                 xij ,abs(100*(real(normal_form%s_ij0(i,j))-xij)/       &

   real(normal_form%s_ij0(i,j)))," %"

 endif

 enddo

 enddo

 sij(1)=emi(1)*Ea(1,6,1)+emi(2)*Ea(1,6,2)+emi(3)*Ea(1,6,3)    ! (17a)

 sij(2)=emi(1)*Ea(6,6,1)+emi(2)*Ea(6,6,2)+emi(3)*Ea(6,6,3)    ! (17b)

 sij(3)=emi(1)*Ea(1,1,1)+emi(2)*Ea(1,1,2)+emi(3)*Ea(1,1,3)    ! (17c)

 write(mf,*)

 write(mf,’(a56)’) " Exact Crab Angle with beam envelope                    "

 write(mf,’((5x,D18.11))’) real(normal_form%s_ij0(1,6)) &

/(real(normal_form%s_ij0(6,6))-real(normal_form%s_ij0(1,1)))                  ! (18)

 write(mf,’(a25)’) " Chao Exact Crab Angle "

 write(mf,’((5x,D18.11))’) sij(1)/(sij(2)-sij(3))                             ! (19)

 write(mf,’(a56)’) " Almost Exact Crab Angle ignoring transverse emittances "

 write(mf,’((5x,D18.11))’) -Ka(5,2,3)/(Ka(5,5,3)-Ka(2,2,3))                   ! (20)

 write(mf,’(a56)’) " Approximate Crab Angle ignoring transverse emittances  "

 write(mf,’((5x,D18.11))’)  Ha(1,6,3)-Ka(5,6,3)*Ha(1,5,3)/Ka(5,5,3)           ! (21)

write(mf,*);

write(mf,*) "!!!  Raising the maps with moments to the power 2**100  !!!"

do i=1,100

  one_turn_map=one_turn_map*one_turn_map  ! (22a)

enddo

call print(one_turn_map,mf)               ! (22b)

endif

call kill(one_turn_map,id,a0,a_cs)

call kill(y)

call kill(normal_form)

call kill(e)

call kill(z_ij,ave_FLOQUET)

call kill(ray)

enddo

close(mf)

call ptc_end(graphics_maybe=1,flat_file=.false.)

end program radiation_map
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program modulated_map
use madx_ptc_module
use pointer_lattice
use c_TPSA
implicit none

    interface
       subroutine build_lattice_als(ALS,MIS,error,exact,sl,thin,onecell)
         use madx_ptc_module
         use pointer_lattice
         implicit none
         type(layout), target :: ALS
         logical(lp) mis
         real(dp),optional :: error(6)
         logical, optional :: exact,sl,thin,onecell
       end subroutine build_lattice_als
    end interface
type(layout), pointer:: ALS
real(dp) prec,closed_orbit(6)
real(dp) L,Kq,k0,mu_mod,beta,dmu,mu_x,circ

type(internal_state),target :: state
logical(lp) :: mis=.false.
type(c_damap)  one_turn_map, drift_map, quad_map,id
type(c_normal_form) normal_form
type(c_taylor) q(4)
integer :: pos =1, nind(11)
integer i,map_order,mf,mf1,mfmap
type(probe) ray_closed
type(probe_8) ray
!!!!!!!!!!!!!!!!!!!!!

c_verbose=.false.
prec=1.d-10 ! for printing
longprint=.false.

state=only_2d0+modulation0

call ptc_ini_no_append
call append_empty_layout(m_u)
ALS=>m_u%start
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! sl= true produces the small 1-d lattice
!  Qf1 = QUADRUPOLE(" QF1 ",0.d0, K1= 0.01d0 ); L1  = drift("L1 ",0.1d0);
! ALS=L1+QF1;

!call build_lattice_als(ALS,mis,exact=.false.,sl=.true.)

call kanalnummer(mf,"result_with_modulation.txt")
call kanalnummer(mfmap,"maps.txt")

!!!! Let us do the baby example with maps
map_order=3
call init_all(state,map_order,0)

call alloc(one_turn_map, drift_map, quad_map,id)
call alloc(q,4)
call alloc(normal_form)
call alloc(ray)

!!!!!!! Simple example !!!!!!!
!  without using PTC
do i=1,4
 q(i)=1.d0.cmono.i   ! q_1, q_2, q_3 and q_4 are created as TPSA variables
enddo
l=0.1d0; Kq=.1d0; k0=.2d0; mu_mod=twopi*0.12345d0;  ! (1a)
! Analytic calculation
beta=1.d0/sqrt(Kq)/sqrt(1.d0-Kq*L**2/4)             ! (1b)

mu_x=acos(1.d0-Kq*L**2/2)                           !  (2a)
dmu=-2*(sin(2*mu_x+mu_mod)/(1-cos(2*mu_x+mu_mod)) & !  (2b)
+sin(2*mu_x-mu_mod)/(1-cos(2*mu_x-mu_mod)))*4*(-beta*k0*L/16)**2

write(mf,*);
write(mf,*) "  Analytical tune in radians =     ",mu_x
write(mf,*) "  Analytical tune shift in radians = ",dmu
write(mf,*);

drift_map=1
quad_map=1

drift_map%v(1)=q(1)+L*q(2)    ! (3) drift
drift_map%v(2)=q(2)
drift_map%v(3)=cos(mu_mod)*q(3) + sin(mu_mod)*q(4)
drift_map%v(4)=cos(mu_mod)*q(4) - sin(mu_mod)*q(3)

quad_map%v(1)=q(1)
quad_map%v(2)=q(2)-L*(Kq+k0*q(3))*q(1) ! (4) quadrupole

! Map of system is made
one_turn_map=quad_map*drift_map   ! total map   (5)

 write(mfmap,*); write(mfmap,*) " Map hardwired in main program " ; write(mfmap,*);
 call print(one_turn_map,mfmap)

! Map is normalised
call  c_normal(one_turn_map,normal_form)      !  (6)
write(mf,*);
write(mf,*) " Result from the normal form algorithm for hardwired map ";
write(mf,*);

write(mf,*) " Normal form result for tune in radians =       ", &  !  (7)
 -aimag(normal_form%ker%f(1)%v(1).sub.’1000’)
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write(mf,*) " Normal form result for tune shift in radians = ", &  !  (8)
 -aimag(normal_form%ker%f(3)%v(1).sub.’1011’)

! Same calculation from with PTC
! using the following little lattice
!  Qf1 = QUADRUPOLE(" QF1 ",L=0.d0, K1= 0.01d0 ); L1  = drift("L1 ",L0=.1d0);
!  ALS=L1+QF1;
call build_lattice_als(ALS,mis,exact=.false.,sl=.true.)

!!!! circ is the circumference of the ring !!!!
call get_length(als,circ)
!!!! AC_modulate.txt sets the magnet QF1 as a modulated magnet !!!!
 call kanalnummer(mf1,file="AC_modulation.txt")
  write(mf1,*) "select layout"
  write(mf1,*) 1
  write(mf1,*) " MODULATE"
  write(mf1,*) " QF1"
  write(mf1,*) "1.d0 0 0       !DC_ac,A_ac,theta_ac"
  write(mf1,*) "1.d0   2       ! D_ac,n_ac  "
  write(mf1,*) "2 0.02d0 0      ! n d_bn(n) d_an(n)  "  ! (A)
  write(mf1,*) "0  0 0 "
  write(mf1,*) " return "
 close(mf1)
 call read_ptc_command77("AC_modulation.txt")

!!!! set a modulation clock !!!!!!
ray_closed%ac%om=mu_mod/circ        ! (B1)
ray_closed%ac%x=0.d0 ;              ! (B2)
write(6,*) " Modulation tune in radians =",circ*ray_closed%ac%om

closed_orbit=0.d0;                                                   ! (C)

call find_orbit_x(als,closed_orbit(1:6),STATE,1.e-8_dp,fibre1=pos)   ! (D)

ray_closed=closed_orbit     ! (E)
id=1;
! ray= closed orbit + identity map
ray=id+ray_closed;          ! (F1)
write(mf,*); write(mf,*) " Initial value of the clock ( in type probe_8) "
write(mf,*);call print(ray%ac,mf )         ! (F2)

call propagate(als,RAY,state,fibre1=pos)  ! (G)

! Six polymorphs and the fluctuationsare E_ij
! are promoted to Taylor maps

one_turn_map=ray                         ! (H)
 write(mfmap,*); write(mfmap,*) " Map produced by code " ; write(mfmap,*);  ! (I)
 call print(one_turn_map,mfmap)

call  c_normal(one_turn_map,normal_form)    ! (J)

write(mf,*);write(mf,*);
write(mf,*) " Result from the normal form algorithm for the code ";
write(mf,*)

write(mf,*) " Normal form result for tune in radians =       ", &    ! (K)
-aimag(normal_form%ker%f(1)%v(1).sub.’1000’)
write(mf,*) " Normal form result for tune shift in radians = ", &    ! (L)
-aimag(normal_form%ker%f(3)%v(1).sub.’1011’)
write(mf,*)
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call kill(one_turn_map, drift_map, quad_map,id)
call kill(normal_form)

call kill(ray)

close(mfmap)
close(mf)

call ptc_end

end program modulated_map



Appendix J
Program modulated_map_Jordan

program modulated_map
use madx_ptc_module
use pointer_lattice
use c_TPSA
implicit none

    interface
       subroutine build_lattice_als(ALS,MIS,error,exact,sl,thin,onecell)
         use madx_ptc_module
         use pointer_lattice
         implicit none
         type(layout), target :: ALS
         logical(lp) mis
         real(dp),optional :: error(6)
         logical, optional :: exact,sl,thin,onecell
       end subroutine build_lattice_als
    end interface

type(layout), pointer:: ALS
real(dp) prec,closed_orbit(6)
real(dp) L,Kq,k0,mu_mod,beta,dmu,mu_x,circ

type(internal_state),target :: state
logical(lp) :: mis=.false.
type(c_damap)  one_turn_map, quasi_diagonal, diagonal,a_ac, id
type(c_normal_form) normal_form
integer :: pos =1
integer i,map_order,mf1,mfmap
type(probe) ray_closed
type(probe_8) ray
type(real_8) y(6)
complex(dp) g1,g2,al1,al2
!!!!!!!!!!!!!!!!!!!!!

c_verbose=.false.
prec=1.d-10 ! for printing
longprint=.false.

call ptc_ini_no_append
call append_empty_layout(m_u)
ALS=>m_u%start

call kanalnummer(mfmap,"maps.txt")
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state= nocavity0 + modulation0 !

map_order=1
call init_all(state,map_order,0)

call alloc(y)
call alloc(one_turn_map,quasi_diagonal, diagonal,id,a_ac)
call alloc(normal_form)
call alloc(ray)

call build_lattice_als(ALS,mis,exact=.false.)

!!!! circ is the circumference of the ring !!!!
call get_length(als,circ)
!!!! AC_modulate.txt sets the magnet QF1 as a modulated magnet !!!!
 call kanalnummer(mf1,file="AC_modulation.txt")
  write(mf1,*) "select layout"
  write(mf1,*) 1
  write(mf1,*) " MODULATE"
  write(mf1,*) " BEND1"
  write(mf1,*) "1.d0 0 0       !DC_ac,A_ac,theta_ac"
  write(mf1,*) "1.d0   1       ! D_ac,n_ac  "
  write(mf1,*) "1 0.001d0 0      ! n d_bn(n) d_an(n)  "  ! (A)
  write(mf1,*) "0  0 0 "
  write(mf1,*) " return "
 close(mf1)
 call read_ptc_command77("AC_modulation.txt")

!!!! set a modulation clock !!!!!!
mu_mod=twopi*0.12345d0;
ray_closed%ac%om=mu_mod/circ        ! (B1)
ray_closed%ac%x=0.d0 ;              ! (B2)
write(6,*) " Modulation tune in radians =",circ*ray_closed%ac%om

closed_orbit=0.d0;                                                   ! (C)

call find_orbit_x(als,closed_orbit(1:6),STATE,1.e-8_dp,fibre1=pos)   ! (D)

ray_closed=closed_orbit     ! (E)

id=1;
! ray= closed orbit + identity map

ray=id+ray_closed;          ! (F)

call propagate(als,RAY,state,fibre1=pos)  ! (G)

 one_turn_map=ray                         ! (H)
 write(mfmap,*); write(mfmap,*) " Map produced by code " ; write(mfmap,*);
 call print(one_turn_map,mfmap)

do_linear_ac_longitudinal=.false.           ! (I)
call  c_normal(one_turn_map,normal_form)    ! (J1)
id=normal_form%a_t*from_phasor()
do_linear_ac_longitudinal=.true.
call  c_normal(one_turn_map,normal_form)    ! (J2)
normal_form%a_t=normal_form%a_t*from_phasor()

write(mfmap,*);write(mfmap,*);
write(mfmap,*) " Correct A (M=ARAˆ-1) from the algorithm for the code ";
write(mfmap,*);write(mfmap,*);

call  print(normal_form%a_t,mfmap,prec)
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diagonal=normal_form%a_t**(-1)*one_turn_map*normal_form%a_t   ! (K1)

quasi_diagonal=id**(-1)*one_turn_map*id                       ! (K2)

g1=quasi_diagonal%v(6).sub.’00000010’                         ! (L1)
g2=quasi_diagonal%v(6).sub.’00000001’                         ! (L2)

al1=-g1/(1.d0-(quasi_diagonal%v(7).sub.’00000010’))           ! (L3)
al2=-g2/(1.d0-(quasi_diagonal%v(8).sub.’00000001’))           ! (L4)

a_ac=1

a_ac%v(6)=a_ac%v(6)+(al1.cmono.’00000010’)+(al2.cmono.’00000001’) ! (L5)

!!!!!!         Print all the resulting maps         !!!!!!

write(mfmap,*);write(mfmap,*);
write(mfmap,*) " Correct R (M=ARAˆ-1) from the algorithm for the code ";
write(mfmap,*);write(mfmap,*);

call  print(diagonal,mfmap,prec)

write(mfmap,*);write(mfmap,*);
write(mfmap,*) " Quasi-diagonal R (M=ARAˆ-1) from the algorithm for the code ";
write(mfmap,*);write(mfmap,*);

call  print(quasi_diagonal,mfmap,prec)

quasi_diagonal=a_ac**(-1)*quasi_diagonal*a_ac

write(mfmap,*);write(mfmap,*);
write(mfmap,*) " Quasi-diagonal should now be diagonal ";
write(mfmap,*);write(mfmap,*);

call  print(quasi_diagonal,mfmap,prec)

call kill(y)
call kill(one_turn_map,quasi_diagonal, diagonal,id,a_ac)
call kill(normal_form)
call kill(ray)

 close(mfmap)
call ptc_end(graphics_maybe=1,flat_file=.false.)

end program modulated_map



Appendix K
Program one_resonance_map

program one_resonance_map
use madx_ptc_module
use pointer_lattice
use c_TPSA
implicit none

    interface
       subroutine build_lattice_als(ALS,MIS,error,exact,sl,thin,onecell)
         use madx_ptc_module
         use pointer_lattice
         implicit none
         type(layout), target :: ALS
         logical(lp) mis
         real(dp),optional :: error(6)
         logical, optional :: exact,sl,thin,onecell
       end subroutine build_lattice_als
    end interface

type(layout), pointer:: ALS
real(dp) prec,closed_orbit(6)
real(dp) dmu,mdotmu,adotmu

type(internal_state),target :: state
logical(lp) :: mis=.false.
type(c_damap)  one_turn_map, three_turn_map,id,co_moving_map
type(c_normal_form) normal_form
type(c_vector_field) Fh,F2
type(c_taylor) h3,h3t,h2,h3c,jm,ja,jx,jy
integer :: pos =1, nind(11)
integer i,map_order,mf
type(probe) ray_closed
type(probe_8) ray
type(fibre), pointer :: p
character*48 :: command_gino
!!!!!!!!!!!!!!!!!!!!!

c_verbose=.false.
prec=1.d-8 ! for printing
use_info = .true.
longprint=.false.

state=only_2d0

call ptc_ini_no_append
call append_empty_layout(m_u)
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ALS=>m_u%start

call build_lattice_als(ALS,mis,exact=.false.)

!!!!Fitting the tune to nu_x=0.334 !!!!
 call kanalnummer(mf,file="fit_tune.txt")
  write(mf,*) "select layout"
  write(mf,*) "  1  "
  write(mf,*) "set families"
  write(mf,*)  "2 "
  write(mf,*) "1 NO "
  write(mf,*) "QF"
  write(mf,*) " 2, 1 "
  write(mf,*) "1 NO "
  write(mf,*) "QD"
  write(mf,*) " 2, 2 "
  write(mf,*) "FITTUNE"
  write(mf,*) " 0.0000000001 "
  write(mf,*) " 0.334 , 0.2712345 "
  write(mf,*) "deallocate families"
  write(mf,*) " return "
 close(mf)
 p=>als%start; call move_to(ALS,p,"SF",pos);write(6,*) pos
 call add(p,3,0,1.d0);
 call read_ptc_command77("fit_tune.txt")

call kanalnummer(mf,"result_of_3nu_x.txt")

map_order=6
call init_all(state,map_order,0)

call alloc(one_turn_map, three_turn_map,id,co_moving_map)
call alloc(normal_form); call alloc(ray)
call alloc(Fh);call alloc(F2);call alloc(h3,h3t,h3c,h2);

closed_orbit=0.d0;
call find_orbit_x(als,closed_orbit(1:6),STATE,1.e-8_dp,fibre1=pos)

ray_closed=closed_orbit
id=1;
! ray= closed orbit + identity map
ray=id+ray_closed;

call propagate(als,RAY,state,fibre1=pos)

one_turn_map=ray                                      ! (1)
write(mf,*);write(mf,*)" Map produced by code ";write(mf,*);
call print(one_turn_map,mf,prec)

three_turn_map= one_turn_map**3        !3-turn map    ! (2)

call  c_normal(three_turn_map,normal_form)            ! (3)
write(mf,*);write(mf,*)"tune ",normal_form%tune(1);write(mf,*);

Fh=0
do i=1,normal_form%ker%n     ! Rotation so all exponents commute
 Fh=normal_form%ker%f(i)+Fh                           ! (4)
enddo

h3=(cgetpb(Fh)*to_phasor())*normal_form%a_t**(-1)     ! (5)

write(mf,*);write(mf,*)" Invariant of the 3-turn map";write(mf,*);
call print(h3,mf,prec)

Write(mf,*); Write(mf,*) " Checking that it is indeed invariant"
Write(mf,*) " h3*one_turn_map - h3  ";write(mf,*);
h3t=h3*one_turn_map
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h3t=h3t-h3

call print(h3t,mf,prec)

write(mf,*);write(mf,*)" Invariant using the Logarithm ";write(mf,*);

Fh=log(three_turn_map)                                ! (6)
h3=getpb(Fh)

call print(h3,mf,prec)

h3t=h3*one_turn_map
h3t=h3t-h3

Write(mf,*)
Write(mf,*) " Checking that it is indeed invariant"
Write(mf,*) " h3*one_turn_map - h3  ";write(mf,*);
call print(h3t,mf,prec)

normal_form%nres=0;normal_form%m=0;
do i=1,map_order+1                                    ! (7a)
  if(mod(i,3)==0) then
   normal_form%nres=normal_form%nres+1
   normal_form%m(1,normal_form%nres)=i
  endif
enddo

call  c_normal(one_turn_map,normal_form)              ! (7b)

h2=(pi/3.d0)*((1.d0.cmono.1)**2+(1.d0.cmono.2)**2)    ! (8a)
F2=getvectorfield(h2)                                 ! (8b)

id=normal_form%a_t**(-1)*one_turn_map*normal_form%a_t ! (8c)
co_moving_map=exp(F2)*id                              ! (8d)
Fh=log(co_moving_map)                                 ! (8e)
h3c=getpb(Fh)*normal_form%a_t**(-1)                   ! (8f)

write(mf,*); write(mf,*) " Invariant of the co-moving map "; write(mf,*);

call print(h3c,mf,prec)

h3t=h3c*one_turn_map
h3t=h3t-h3c

Write(mf,*)
Write(mf,*) " Checking that it is indeed invariant   "
Write(mf,*) " h3*one_turn_map - h3  ";write(mf,*);
call print(h3t,mf,prec)
call kill(one_turn_map, three_turn_map,id,co_moving_map)
call kill(normal_form);
call kill(ray)
call kill(Fh);
call kill(F2);
call kill(h3,h3t,h3c,h2);

!!!!Fitting the tune to nu_x=0.37123 nu_y=0.3135  !!!!
!!!!   nu_x +2 nu_y = 0.99823
 call kanalnummer(mf,file="fit_tune.txt")
  write(mf,*) "select layout"
  write(mf,*) "  1  "
  write(mf,*) "set families"
  write(mf,*)  "2 "
  write(mf,*) "1 NO "
  write(mf,*) "QF"
  write(mf,*) " 2, 1 "
  write(mf,*) "1 NO "
  write(mf,*) "QD"
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  write(mf,*) " 2, 2 "
  write(mf,*) "FITTUNE"
  write(mf,*) " 0.0000000001 "
  write(mf,*) " 0.37123 , 0.3135 "
  write(mf,*) "deallocate families"
  write(mf,*) " return "
 close(mf)
 call read_ptc_command77("fit_tune.txt")
close(mf)

call kanalnummer(mf,"result_of_nu_x+2nu_y.txt")
write(mf,*)" Results of the nu_x +2 nu_y = 1 resonance";write(mf,*);

map_order=4
state=only_4d0

call init_all(state,map_order,0)

call alloc(one_turn_map, three_turn_map,id,co_moving_map)
call alloc(normal_form); call alloc(ray)
call alloc(Fh);call alloc(F2);
call alloc(h3,h3t,h3c,h2,jm,ja,jx,jy);

closed_orbit=0.d0;
call find_orbit_x(als,closed_orbit(1:6),STATE,1.e-8_dp,fibre1=pos)

ray_closed=closed_orbit
id=1;
! ray= closed orbit + identity map
ray=id+ray_closed;

call propagate(als,RAY,state,fibre1=pos)

one_turn_map=ray                                      ! (A)

 normal_form%m=0;
 normal_form%nres=2
 normal_form%m(1,1)=1 ; normal_form%m(2,1)=2;         ! (B1)
 normal_form%m(1,2)=2 ; normal_form%m(2,2)=4;         ! (B2)
 normal_form%positive=.false.

call  c_normal(one_turn_map,normal_form)              ! (C)

mdotmu=2*pi/5.d0                                             ! (D1)
adotmu=2*pi*(2*normal_form%tune(1)-normal_form%tune(2))/5.d0 ! (D2)

jx=(0.5d0.cmono.’2’)+(0.5d0.cmono.’02’)             ! (E1)
jy=(0.5d0.cmono.’002’)+(0.5d0.cmono.’0002’)         ! (E2)
jm=(jx+2*jy)                                        ! (E3)
ja=(2*jx-jy)                                        ! (E4)

h2=mdotmu*jm+adotmu*ja                                ! (F1)
F2=getvectorfield(h2)                                 ! (F2)

id=normal_form%a_t**(-1)*one_turn_map*normal_form%a_t ! (F3)
co_moving_map=exp(F2,id)                              ! (F4)

Fh=log(co_moving_map)                                 ! (F5)
h3c=getpb(Fh)*normal_form%a_t**(-1)                   ! (F6)

h3t=h3c*one_turn_map
h3t=h3t-h3c                                           ! (G)

call print(h3c,mf,prec)
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Write(mf,*)
Write(mf,*) " Checking that it is indeed invariant   "
Write(mf,*) " h3*one_turn_map - h3  ";write(mf,*);
call print(h3t,mf,prec)

close(mf)

call ptc_end(graphics_maybe=1,flat_file=.false.)

end program one_resonance_map
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Program very_damped_map

program very_damped_map
use madx_ptc_module
use pointer_lattice
use c_TPSA
implicit none
type(internal_state),target :: state
type(c_damap)  m,a1,m_n,R_c
type(c_vector_field) T_prime,vf
type(c_taylor) K,x,p
type(c_normal_form) N,N_N
real(dp) prec,alpha,nu,radius,z(2),rad0,r1,r1p
complex(dp) zz(2)
integer map_order,io,km,ji(2),ns,mf,a,i,mf1
real(dp), allocatable :: co(:)
logical :: normalise=.false.

prec=1.d-13 ! for printing
longprint=.false.
c_verbose=.false.

state=only_2d0

write(6,*) " map order and alpha "
read(5,*) map_order, alpha
allocate(co(0:map_order/2))
call init_all(state,map_order,0)
call alloc(m,a1,m_n,R_c)
call alloc(T_prime);call alloc(vf);call alloc(K,x,p);
call alloc(N);call alloc(N_N)

nu=0.4433d0
x=1.d0.cmono.1                     !(1a)
p=1.d0.cmono.2                     !(1b)

 k = (1.0_dp+alpha-x**2)*(cos(twopi*nu)*x + sin(twopi*nu)*p)  ! (2a)
 p = cos(twopi*nu)*p - sin(twopi*nu)*x                         ! (2b)
 x = k                                             ! (2c)

M%v(1)=x                   ! (3a)
M%v(2)=p                   ! (3b)

call  c_normal(m,n)        ! (4)
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if(normalise) then         ! (5a)
  remove_tune_shift=.true.
  m_n=n%a_t**(-1)*m*n%a_t
  call  c_normal(m_n,n_n)
  m_n=to_phasor()*m_n*from_phasor()
  a1= to_phasor()*n_n%a_t**(-1)*from_phasor()
  call  flatten_c_factored_lie(n_n%ker,vf)
  T_prime=a1*vf
else                       ! (5b)
  m_n=to_phasor()*n%a_t**(-1)*m*n%a_t*from_phasor()
  vf%v(1)=+i_*(1.d0.cmono.1)*(twopi*n%tune(1))
  vf%v(2)=-i_*(1.d0.cmono.2)*(twopi*n%tune(1))
  R_c=exp(vf,m_n)
  T_prime=log(R_c)
endif

radius=sqrt(4*alpha/(2*cos(twopi*nu)**2+1))  ! (6)
rad0=radius; write(6,*) " naive average radius = ",radius;

a=int(map_order/2)
do i=0,a; ji(1)=i+1;ji(2)=i;co(i)=T_prime%v(1).sub.ji;enddo; ! (7)

 radius=rad0**2    ! Newton search for equilibrium radius
do i=1,10
  r1=0;r1p=0;
 do io=0,a; r1 =co(io)*radius**io+r1; enddo;
 do io=1,a; r1p =io*co(io)*radius**(io-1)+r1p; enddo;              ! (8)
 radius=radius-r1/r1p; write(6,*) sqrt(radius);
enddo
radius=sqrt(radius)
write(6,*) map_order,"th order radius for alpha = ",alpha,"tune =",nu
write(6,*) "radius =" ,radius

call kanalnummer(mf,"plot.dat")
call kanalnummer(mf1,"naive.dat")
ns=1000
do i=1,ns
m%v(1)=radius*cos(twopi*i/ns)   ! results of perturbation theory            ! (9a)
m%v(2)=radius*sin(twopi*i/ns)
m=n%a_t.o.m !A_t(z) where z=(radius*cos(twopi*i/ns),radius*sin(twopi*i/ns)) ! (9b)
z(1)=m%v(1).sub.’0’
z(2)=m%v(2).sub.’0’
write(mf,*) z
 z(1)=rad0*cos(twopi*i/ns)   ! naive result
 z(2)=rad0*sin(twopi*i/ns)
write(mf1,*) z
enddo
close(mf)
close(mf1)

end program very_damped_map
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Program spin_phase_advance_isf

program spin_phase_advance_isf
use madx_ptc_module
use pointer_lattice
implicit none

type(probe) xs0,xs1,XST
type(probe_8) xs
type(layout), pointer :: als
INTEGER MF,mft,mfisf,I,N,k,pos,no,kp,nturn,mfa
TYPE(FIBRE),POINTER:: P
type(internal_state) state
real(dp)  prec,cut,n_isf(3), closed(6), x(6), theta0
logical first
logical :: mis=.false.,thin=.false.
type(c_damap) c_map,c_spin0,U,U_c,D,f,A,b,R ,id_s,D_tilde
type(c_taylor) phase(3),nu_spin, fonction,fonction_FLOQUET,a12,a34
type(c_ray) cray
type(c_normal_form) c_n
TYPE(c_spinor) ISF,S_ISF,ISFoM,dISF,O
type(spinor) ISF_strobo   ! real spinor
type(c_vector_field) h_vector_field
type(c_taylor)  h_poisson_bracket
integer expo(4)
real(dp) DX_AVERAGE_DCS,betax_1,betax_2
    interface
       subroutine build_lattice_als(ALS,MIS,error,exact,sl,thin,onecell)
         use madx_ptc_module
         use pointer_lattice
         implicit none
         type(layout), target :: ALS
         logical(lp) mis
         real(dp),optional :: error(6)
         logical, optional :: exact,sl,thin,onecell
       end subroutine build_lattice_als
    end interface

!-----------------------------------

first=.true.;Lmax = 10.d0;use_info = .true.;prec=1.d-16;thin=.false.

call ptc_ini_no_append
call append_empty_layout(m_u)
ALS=>m_u%start
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call build_lattice_als(ALS,mis,exact=.false.,thin=thin)

p=>als%start

!!!!!  Make the lattice linear by zeroing all sextupoles !!!!!!
!!!
courant_snyder_teng_edwards=.true.
time_lie_choice=.true.
p=>als%start
do i=1,als%n
 IF(P%MAG%P%NMUL>=3) THEN
  if(first) then
   CALL ADD(P,2,0,0.1D0)
   call make_it_knob(p%magp%bn(2),1) ! (0)
   first=.false.
  endif
 ENDIF

 p=>p%next
enddo

x(1:3)=1.d-5; x(6)=1.d-6; x(5)=1.d-3; x(4)=0.d0!
cut=4.d0;
call MESS_UP_ALIGNMENT(als,x,cut)  ! (1)
x=0.d0;DX_AVERAGE_DCS=0.d0;
closed=0.d0

state=nocavity0    ! (2)

CALL FIND_ORBIT(ALS,CLOSED,1,STATE,c_1d_5)  ! (3)

state=state+SPIN0

write(6,*) " If order>=4, the phase advance will jump by 100 positions"
write(6,*) " so the fractional tunes will be off"
write(6,*) " but canonisation results will be examined at position 100 "
write(6,*)
write(6,*) " with no=1,2,3 a full Twiss will be done "
write(6,*) " with the computation <xˆ2> thrown in if no>1 "
write(6,*);write(6,*);
write(6,*) " Give order no : 1,2,3,4,..."
read(5,*) no

call init_all(STATE,no,1)

call alloc(c_map)
call alloc(c_n)
call alloc(c_spin0)
CALL ALLOC(ISF); call alloc(S_ISF); call alloc(ISFoM);call alloc(dISF);call alloc(O);
call alloc(U,U_c,D,f,A,b,R,id_s,D_tilde)
call alloc(phase);call alloc(xs);
call alloc(nu_spin,fonction,fonction_FLOQUET,a12,a34,h_poisson_bracket)
call alloc(h_vector_field)

call kanalnummer(mft,"spin_twiss.txt")
if(thin) call kanalnummer(mfa,"analytical_x_average.txt")

!!!! Polymorphic probe is created in the usual manner
   XS0=CLOSED
   ID_S=1
   XS=XS0+ID_S
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!!!! get spin polymorphic probe after one turn
CALL propagate(ALS,XS,+STATE,FIBRE1=1)  ! (4)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! Copy probe_8 into a complex damap
c_map=XS ! (5)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

call c_normal(c_map,c_n,dospin=my_true)  ! (6)

 write(6,’(4(1x,g21.14))’) c_n%tune(1:3), c_n%spin_tune

U=c_n%As*c_n%A_t    ! att=c_n%A_t*c_n%As

! id_s is a rotation
id_s=U**(-1)*c_map*U ! (7a)

! a trick to compute the fractional tunes and time slip
call c_full_canonise(id_s,U_c,D,f,A,b,R,phase,nu_spin) ! (7b)

write(mft,*);write(mft,*) " Fractional tune x"; write(mft,*);

call c_clean_taylor(phase(1),phase(1),prec)
call print(phase(1),mft)

write(mft,*);write(mft,*) " Fractional tune y"; write(mft,*);
call c_clean_taylor(phase(2),phase(2),prec)
call print(phase(2),mft)

if(state%nocavity) then
 write(mft,*);write(mft,*) "  Time "; write(mft,*);
 call c_clean_taylor(phase(3),phase(2),prec)
 call print(phase(3),mft)
endif

write(mft,*);write(mft,*) " Fractional tune spin"; write(mft,*);
call c_clean_taylor(nu_spin,nu_spin,prec)
call print(nu_spin,mft)

U=c_n%As*c_n%A_t ! Non-descript U exiting normal form ! (8a)

call c_full_canonise(U,U_c,D,F,A,b,R,phase,nu_spin) ! (8b)

phase(1)=0.d0 ;phase(2)=0.d0 ; ;phase(3)=0.d0; nu_spin=0.d0;

   XS=XS0+U_c   ! (8c)

p => als%start

do i=1,als%n

 CALL propagate(ALS,XS,+STATE,FIBRE1=i,fibre2=i+1)  ! (9a)

if((mod(i,100) == 0.or.i==als%n.or.i==1).or.no<=3) then
  if(mod(i,100)==0) write(6,*) " Position ",i

  xs0=xs ! Saving orbit  ! (9b)
  U=XS ! copying in map  ! (9c)

  ! U = U_c o  R = D o f o A o b o R
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  call c_full_canonise(U,U_c,D,F,A,b,R,phase,nu_spin) ! (10)

 if(no>=4) then   ! (A0)  special interlude
   call kanalnummer(mf,"check_canonisation.txt")

   write(mf,*);Write(mf,*) " Time slip factor "; write(mf,*);
   h_vector_field=log(F)
   h_poisson_bracket=getpb(h_vector_field) ! (A1)
   write(mf,*);Write(mf,*) "Fixed point map"; write(mf,*);
   call print(F,mf,prec)
   write(mf,*);Write(mf,*) " Lie exponent of the fixed point map"; write(mf,*);
   call print(h_poisson_bracket,mf,prec)

   do k=1,4
     id_s%v(k)=F%v(k)-(1.d0.cmono.k) ! (A2)
   enddo
   h_poisson_bracket=h_poisson_bracket &  ! (A3)
  +(id_s%v(1)*(1.d0.cmono.2)-id_s%v(2)*(1.d0.cmono.1)) &
  +(id_s%v(3)*(1.d0.cmono.4)-id_s%v(4)*(1.d0.cmono.3))
   write(mf,*);Write(mf,*) "  Comparing with the canonical form "; write(mf,*);
   call print(h_poisson_bracket,mf,prec)

  expo=0;expo(2)=1;
  a12=A%v(1).par.expo   ! (B1)
  expo=0;expo(4)=1;
  a34=A%v(3).par.expo   ! (B2)
   write(mf,*); Write(mf,*) " Checking Courant-Snyder-Teng-Edwards "
   write(mf,*);Write(mf,*) " A_12 should be zero "; write(mf,*);
   call print(a12,mf,prec)
   write(mf,*);Write(mf,*) " A_34 should be zero "; write(mf,*);
   call print(a34,mf,prec)

   h_vector_field=log(b)    ! (C1)
   h_poisson_bracket=getpb(h_vector_field) ! (C2)
   h_poisson_bracket=h_poisson_bracket*from_phasor()  ! (C3)

   write(mf,*);Write(mf,*) " Lie exponent of the nonlinear part "; write(mf,*);
   call print(h_poisson_bracket,mf,prec)

  U_c=f*A*b
  D_tilde=to_phasor()*U_c**(-1)*D*U_c*from_phasor()  ! (D1)
  O=log(D_tilde%s) ! (D2)

   write(mf,*);Write(mf,*) " Vertical spinor O_y of the canonised D˜ "; write(mf,*);
   call print(O%v(2),mf,prec)
 close(mf)
  endif

  !!!!!!!!!!!!!!!   doing something  !!!!!!!!!!!!!!!!!

if(no>1) then
  fonction =2*(1.d0.cmono.1)**2   ! 2*x**2  (Ea)
  call C_AVERAGE(fonction,U_c,fonction_FLOQUET) ! (Eb)
endif
 write(mft,*) "position, Element ", i, p%mag%name

 betax_1=(U_c%v(1).sub.’1000’)**2+(U_c%v(1).sub.’0100’)**2 ! (Ec)
 betax_2=(U_c%v(1).sub.’0010’)**2+(U_c%v(1).sub.’0001’)**2 ! (Ed)
 write(mft,*) " Ripken Beta_x_1 Beta_x_2 ",betax_1,betax_2
 write(mft,*) " 2< xˆ2 > "
if(no>1) then
  call print(fonction_FLOQUET,mft)
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 else
  write(mft,*) "Unfortunately no information if no = 1"
 endif

ISF=2   ! (Fa)
ISF=D%s*ISF ! (Fb)

Write(mft,*) " ISF vector n "
call print(ISF,mft)

write(mft,*) " phase x"
call c_clean_taylor(phase(1),phase(1),prec)
call print(phase(1),mft)

write(mft,*) " phase y"
call c_clean_taylor(phase(2),phase(2),prec)
call print(phase(2),mft)

if(state%nocavity) then
 write(mft,*) "  Time "
 call c_clean_taylor(phase(3),phase(3),prec)
 call print(phase(3),mft)
endif

write(mft,*) " phase spin"
call c_clean_taylor(nu_spin,nu_spin,prec)
call print(nu_spin,mft)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

If(thin) then
 if(p%mag%name(1:2)=="SF".or.p%mag%name(1:2)=="SD") then
  DX_AVERAGE_DCS=(betax_1)**1.5_DP*p%mag%BN(3)/4.0_DP &   ! (Fa)
    *(-SIN(PHASE(1)*TWOPI)+SIN((PHASE(1)-c_n%TUNE(1))*TWOPI)) &
    /(1.0_DP-COS(c_n%TUNE(1)*TWOPI)) + DX_AVERAGE_DCS
 endif
endif
write(mft,*) "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"

XS=XS0+U_c ! (11)
endif

p=>p%next
enddo

if(thin) then ;

 DX_AVERAGE_DCS=DX_AVERAGE_DCS*SQRT(betax_1) ! (Fb)
 write(mfa,’(a11,F20.13,a20)’)’  d<x>/dCS ’, dx_average_dCS, " < ---- analytical  "

 if(no==2.or.no==3) then

 fonction =(1.d0.cmono.1)  ! x
  write(mfa,*);write(mfa,*) "Full <x> "
  call C_AVERAGE(fonction,U_c,fonction_FLOQUET) ! (Fc)
  call print(fonction_FLOQUET,mfa)
  write(mfa,*);write(mfa,*) "Full x-dispersion  "
  call print(F%v(1),mfa)
 endif
endif

call kanalnummer(mfisf,"checking_isf.txt")
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write(mfisf,*) "!!!!  Exploring the ISF  at the end of the lattice !!!!"

Write(mfisf,*) " Testing Barber’s Equation S ISF = ISF o m "

S_ISF = c_map%s*ISF   !  (12a)
ISFoM = ISF*c_map     !  (12b)

Write(mfisf,*) "  |S ISF-  ISF o m|/ |S ISF| "

do i=1,3
dISF%v(i)=S_ISF%v(i)-ISFoM%v(i)
write(mfisf,*) i,full_abs(dISF%v(i)),full_abs(dISF%v(i))/full_abs(S_ISF%v(i)) ! (12c)
enddo

x=0.d0
x(1)=0.001d0 ;x(3)=0.001d0 ;    ! (13a)
xs1=closed+x

xst=0
cray%x=0.d0
cray%x(1:6)=x
do i=1,3
 n_isf(i) = ISF%v(i).o.cray  ! (13b)
enddo

Write(6,*) "  Stroboscopic Average 5000 turns : patience "
nturn=5000
kp=1000
call stroboscopic_average(als,xs1,xst,1,STATE,nturn,kp,ISF_strobo,mfisf) ! (14c)

Write(mfisf,*) "  Stroboscopic Average "

write(mfisf,*);
write(mfisf,’(a19,4(1x,g20.13),a19,i4)’) " ISF  for x(1:4) = " &
,x(1:4), " number of turns = ", nturn
write(mfisf,’(a24,3(1x,g20.13))’) " Stroboscopic average ",ISF_strobo
write(mfisf,’(a24,3(1x,g20.13))’) " From the normal form ",n_isf
write(mfisf,’(a4,20x,3(1x,g20.13))’)" n0 ",  real(ISF%v(1).sub.’0’), &
real(ISF%v(2).sub.’0’),real(ISF%v(3).sub.’0’)

close(mfisf)
close(mft)
if(thin) close(mfa)

 call ptc_end(graphics_maybe=1,flat_file=.false.)

end program spin_phase_advance_isf
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program Guignard_Hamiltonian_cs
use madx_ptc_module
use pointer_lattice
use c_TPSA
implicit none

    interface
       subroutine build_lattice_als(ALS,MIS,error,exact,sl,thin,onecell)
         use madx_ptc_module
         use pointer_lattice
         implicit none
         type(layout), target :: ALS
         logical(lp) mis
         real(dp),optional :: error(6)
         logical, optional :: exact,sl,thin,onecell
       end subroutine build_lattice_als
    end interface

type(layout), pointer:: ALS
real(dp) prec,closed_orbit(6)
real(dp) circ,ds,s,ds_ave,intp(2)

type(internal_state),target :: state
logical(lp) :: mis=.false.
type(c_damap)  one_turn_map,id_s,U_c,D,f,A,b,R,U
type(c_normal_form) normal_form
type(c_vector_field) Gh
type(c_taylor) h
type(c_taylor), allocatable :: hn(:)
integer :: pos =1
integer i,map_order,mf,k,ns,n_mode
type(probe) ray_closed
type(probe_8) ray
type(fibre), pointer :: p
type(integration_node), pointer :: t
character*48 :: command_gino
logical int_step,used_ds_ave,asym
integer icase
real(dp), allocatable:: theta(:),bet(:),ht(:)
real(dp) hv
!!!!!!!!!!!!!!!!!!!!!

c_verbose=.false.
prec=1.d-6 ! for printing
use_info = .true.
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longprint=.false.

Write(6,*) " Random errors -> t, no errors -> f"
read(5,*) mis

1 write(6,*) " Choose the state "
if(.not.mis) write(6,*) "only_2d0  -> 1-d-f map if no errors -> type 1"
write(6,*) "only_4d0  -> 2-d-f map              -> type 2"
write(6,*) "delta0    -> 2-d-f map + delta      -> type 3"
write(6,*) "nocavity0 -> 3-d-f map if no cavity -> type 4"
write(6,*) "default0  -> 3-d-f map if    cavity -> type 5   <- SLOW "
read(5,*) i

    select case(i)
    case(1)
      state=only_2d0
    case(2)
      state=only_4d0
    case(3)
      state=delta0
    case(4)
      state=nocavity0
    case(5)
      state=default0
    case default
    write(6,*) "Choose between 1 to 5"
    goto 1
    end select

call ptc_ini_no_append
call append_empty_layout(m_u)
ALS=>m_u%start
call build_lattice_als(ALS,mis,exact=.false.)

!!!!Fitting the tune and controlling the step size  !!!!
 call kanalnummer(mf,file="fit_tune.txt")
  write(mf,*) "select layout"
  write(mf,*) "  1  "
  write(mf,*) "L MAX  "
  write(mf,*) "0.3 "     ! (1) all ds of the order  0.3 metre
  write(mf,*) "CUTTING ALGORITHM "
  write(mf,*) "2 "                ! Drifts are cut as well
  write(mf,*) "LIMIT FOR CUTTING "
  write(mf,*) "10000 10000 "
  write(mf,*) "THIN LENS "
  write(mf,*) "1000.d0 "
  write(mf,*) "set families"
  write(mf,*)  "2 "
  write(mf,*) "1 NO "
  write(mf,*) "QF"
  write(mf,*) " 2, 1 "
  write(mf,*) "1 NO "
  write(mf,*) "QD"
  write(mf,*) " 2, 2 "
  write(mf,*) "FITTUNE"
  write(mf,*) " 0.0000000001 "
  write(mf,*) " 0.3678 , 0.2712345 "
  write(mf,*) "deallocate families"
  write(mf,*) " return"
 close(mf)

write(6,*) " Do you want to break the symmetry of the lattice "
write(6,*) " by mispowering a single sextupole ?  "
write(6,*) " Yes -> t    No -> f  "
read(5,*) asym
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if(asym) then
 p=>als%start; call move_to(ALS,p,"SF",pos);  ! (2a)
 call add(p,3,1,10d0); !call add(p,2,1,.01d0);    ! (2b)
endif

 call read_ptc_command77("fit_tune.txt")

 call MAKE_NODE_LAYOUT(als)

call kanalnummer(mf,"guignard_hamiltonian.txt")

write(6,*) " int_step t or f "
read(5,*) int_step      ! (3)
write(6,*) " Uniform ds -> t "
read(5,*) used_ds_ave   ! (4)

write(6,*) " case 1,2  "
write(6,*) " case = 1 -> linear transformation "
write(6,*) " case = 2 -> full nonlinear transformation: not interesting "
read(5,*) icase         ! (5)

write(6,*) " Number of Fourier modes: make it 12 or more "
read(5,*) n_mode
allocate(hn(0:n_mode))     ! (6)

map_order=4                ! (7)

call init_all(state,map_order,0)

call alloc(one_turn_map, id_s,U_c,D,f,A,b,R,U)
call alloc(normal_form); call alloc(ray);
call alloc(Gh);
call alloc(hn); call alloc(h);

closed_orbit=0.d0;
call find_orbit_x(als,closed_orbit(1:6),STATE,1.e-8_dp,fibre1=1)

ray_closed=closed_orbit
id_s=1;
ray=id_s+ray_closed;

call propagate(als,RAY,state,fibre1=1)   ! (8a)

one_turn_map=ray                         ! (8b)

call c_normal(one_turn_map,normal_form)  ! (8c)

call  c_canonise(normal_form%A_t ,U_c,f,A,b) ! (9a)

id_s=U_c                                     ! (9b)

if(used_ds_ave) then
 circ=twopi
else
 call GET_LENGTH(als,circ)
endif

if(int_step) then           ! (10)
 ns=als%t%n
else
 ns=als%n
endif

allocate(bet(0:ns),theta(0:ns),ht(0:ns))
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bet=0.d0
theta=0.d0
ds_ave=twopi/ns             ! (11)
ds=0.d0

if(icase==1) U_c=U_c.cut.2

s=0.d0
ray=U_c+ray_closed;        ! (12)

p=>als%start               ! (13a)
t=>p%t1                    ! (13b)

do i=1,ns

if(mod(i,100)==0) then
  write(6,*) ns-i, " steps remaining "
endif

if(used_ds_ave) then
   ds=ds_ave                ! (14a)
else
  if(int_step) then
   ds=twopi*t%s(5)/circ     ! (14b)
  else
   ds=twopi*p%mag%p%ld/circ ! (14c)
  endif
endif

if(int_step) then
 call propagate(als,RAY,state,node1=i,node2=i+1)   ! (15a)
else
 call propagate(als,RAY,state,fibre1=i,fibre2=i+1) ! (15b)
endif

  ray_closed=ray ! Saving orbit
  U=ray ! copying in map

  U_c=U

bet(i)=1.d0/((u_c%v(1).sub.’10’)**2+(u_c%v(1).sub.’01’)**2) ! (15c)

if(icase==1) U_c=U_c.cut.2      ! (16a)
call  c_canonise(U_c,U_c,f,A,b) ! (16b)
U=U_c**(-1)*U  ! (16c)

  Gh=log(U)      ! (17a)
  h=getpb(Gh)    ! (17b)

! Checking convergence of the logarithm
a=exp(-(Gh.cut.2),(U.sub.1))  ! (18)
do k=1,c_%nd2
 if(abs(full_abs(a%v(k))-1)>1.d-5) then
    call print(a,6)
    write(6,*);write(6,*) "Log failed at element ",i, p%mag%name
    stop
 endif
enddo

s=s+ds;  theta(i)=s
do k=0,n_mode
 hn(k)=hn(k)-exp(-i_*k*theta(i))*h/circ ! (19)
enddo
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ray=ray_closed+U_c

if(int_step) then   ! (20)
 t=>t%next
 p=>t%parent_fibre
else
 p=>p%next
endif

enddo

if(asym) then
 write(mf,*) " Results for an asymmetric ring "
else
 write(mf,*) " Results for 12-fold symmetric ring "
endif
if(.not.used_ds_ave) then
write(mf,*) " (Circumference/pi) x Hamitonian of the ring Guignard style"
else
 write(mf,*) " 1/pi x Hamitonian of the ring Guignard style"
endif
write(mf,*) "  "

do k=0,n_mode
write(mf,*);write(mf,*) k;write(mf,*);
hn(k)=hn(k)*from_phasor()               ! (21a)
call print((circ/pi)*hn(k),mf,prec)     ! (21b)

enddo

do i=0,ns

hv=(hn(0).sub.’11’)
do k=1,n_mode
 hv=hv + 2*(hn(k).sub.’11’)*exp(i_*k*theta(i))  ! (22)
enddo

 ht(i) = hv
enddo

write(mf,*) " Tracked Canonical Transformation"
write(mf,*) "  "
call print(U_c,mf,prec)
write(mf,*) " Original Canonical Transformation "
write(mf,*) "  "
call print(id_s,mf,prec)

write(mf,*) " Products with inverse   "
write(mf,*) "  "

u_c=u_c*id_s**(-1)           ! (23)

call print(u_c,mf,prec)

close(mf)

if(.not.used_ds_ave) then
 call kanalnummer(mf,"plot_linear_H.dat")

 do i=0,ns
  write(mf,*) theta(i),bet(i),ht(i)*2  ! 2J= (x + i p)*(x-i p) (24)
 enddo
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close(mf)
endif

call ptc_end(graphics_maybe=1,flat_file=.false.)

end program Guignard_Hamiltonian_cs



Appendix O
Program hamitonian_guignard.f90

program Guignard_Hamiltonian
use madx_ptc_module
use pointer_lattice
use c_TPSA
implicit none

    interface
       subroutine build_lattice_als(ALS,MIS,error,exact,sl,thin,onecell)
         use madx_ptc_module
         use pointer_lattice
         implicit none
         type(layout), target :: ALS
         logical(lp) mis
         real(dp),optional :: error(6)
         logical, optional :: exact,sl,thin,onecell
       end subroutine build_lattice_als
    end interface

type(layout), pointer:: ALS
real(dp) prec,closed_orbit(6)
real(dp) circ,ds,s,ds_ave,intp(3)

type(internal_state),target :: state
logical(lp) :: mis=.false.
type(c_damap)  one_turn_map,id_s,U_c,D,f,A,b,R,U
type(c_normal_form) normal_form
type(c_vector_field) Gh,f_lin,f_non,h_left,f_co_moving
type(c_taylor) h
type(c_taylor), allocatable :: hn(:)
integer :: pos =1
integer i,map_order,mf,k,ns,n_mode
type(probe) ray_closed
type(probe_8) ray
type(fibre), pointer :: p
type(integration_node), pointer :: t
character*48 :: command_gino
logical int_step,used_ds_ave,asym
integer icase
real(dp) hv
!!!!!!!!!!!!!!!!!!!!!

c_verbose=.false.
prec=1.d-6 ! for printing
use_info = .true.
longprint=.false.
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Write(6,*) " Random errors -> t, no errors -> f"
read(5,*) mis

1 write(6,*) " Choose the state "
if(.not.mis) write(6,*) "only_2d0  -> 1-d-f map if no errors -> type 1"
write(6,*) "only_4d0  -> 2-d-f map              -> type 2"
write(6,*) "delta0    -> 2-d-f map + delta      -> type 3"
write(6,*) "nocavity0 -> 3-d-f map if no cavity -> type 4"
write(6,*) "default0  -> 3-d-f map if    cavity -> type 5   <- SLOW "
read(5,*) i

    select case(i)
    case(1)
      state=only_2d0
    case(2)
      state=only_4d0
    case(3)
      state=delta0
    case(4)
      state=nocavity0
    case(5)
      state=default0
    case default
    write(6,*) "Choose between 1 to 5"
    goto 1
    end select

call ptc_ini_no_append
call append_empty_layout(m_u)
ALS=>m_u%start

call build_lattice_als(ALS,mis,exact=.false.)

!!!!Fitting the tune and controlling the step size  !!!!
 call kanalnummer(mf,file="fit_tune.txt")
  write(mf,*) "select layout"
  write(mf,*) "  1  "
  write(mf,*) "L MAX  "
  write(mf,*) "0.3 "     ! (1)    ! all ds < 0.3
  write(mf,*) "CUTTING ALGORITHM "
  write(mf,*) "2 "                ! Drifts are cut as well
  write(mf,*) "LIMIT FOR CUTTING "
  write(mf,*) "10000 10000 "
  write(mf,*) "THIN LENS "
  write(mf,*) "1000.d0 "
  write(mf,*) "set families"
  write(mf,*)  "2 "
  write(mf,*) "1 NO "
  write(mf,*) "QF"
  write(mf,*) " 2, 1 "
  write(mf,*) "1 NO "
  write(mf,*) "QD"
  write(mf,*) " 2, 2 "
  write(mf,*) "FITTUNE"
  write(mf,*) " 0.0000000001 "
  write(mf,*) " 0.3678 , 0.2712345 "
  write(mf,*) "deallocate families"
  write(mf,*) " return"
 close(mf)

write(6,*) " Do you want to break the symmetry of the lattice "
write(6,*) " by mispowering a single sextupole ?  "
write(6,*) " Yes -> t    No -> f  "
read(5,*) asym
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if(asym) then
 p=>als%start; call move_to(ALS,p,"SF",pos);  ! (2a)
 call add(p,3,1,10d0); !call add(p,2,1,.01d0);    ! (2b)
endif

 call read_ptc_command77("fit_tune.txt")

 call MAKE_NODE_LAYOUT(als)

call kanalnummer(mf,"guignard_hamiltonian.txt")

write(6,*) " int_step t or f "
read(5,*) int_step      ! (3)
write(6,*) " Uniform ds -> t "
read(5,*) used_ds_ave   ! (4)

write(6,*) " case 1,2  "
write(6,*) " case = 1 -> linear transformation "
write(6,*) " case = 2 -> full nonlinear transformation: not interesting "
read(5,*) icase         ! (5)

write(6,*) " Number of Fourier modes: make it 12 or more "
read(5,*) n_mode
allocate(hn(0:n_mode))     ! (6)

map_order=4                ! (7)
call init_all(state,map_order,0)

call alloc(one_turn_map, id_s,U_c,D,f,A,b,R,U)
call alloc(normal_form); call alloc(ray);
call alloc(f_non);call alloc(f_lin)
call alloc(Gh); call alloc(h_left)
call alloc(hn); call alloc(h);call alloc(f_co_moving);

closed_orbit=0.d0;
call find_orbit_x(als,closed_orbit(1:6),STATE,1.e-8_dp,fibre1=1)

ray_closed=closed_orbit
id_s=1;
ray=id_s+ray_closed;

call propagate(als,RAY,state,fibre1=1)   ! (8a)

one_turn_map=ray                         ! (8b)

call c_normal(one_turn_map,normal_form)  ! (8c)
U=normal_form%A_t    ! att=c_n%A_t*c_n%As

intp=0
if(normal_form%nres==0) then
 intp(1)=14
 intp(2)=8
 intp(3)=0
endif

! id_s is a rotation
id_s=U**(-1)*one_turn_map*U ! (8d)

call extract_linear_from_normalised(id_s,b,a,f_lin,f_non,intp) ! (8e)

call  c_canonise(normal_form%A_t ,U_c,f,A,b) ! (9a)
id_s=U_c                                     ! (9b)
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 if(icase==1) then
   h_left=f_lin
 else
   h_left=f_non+f_lin
 endif
h_left=(1.d0/twopi)*h_left

if(used_ds_ave) then
 circ=twopi
else
 call GET_LENGTH(als,circ)
endif

if(int_step) then           ! (10)
 ns=als%t%n
else
 ns=als%n
endif

ds_ave=twopi/ns             ! (11)
ds=0.d0

if(icase==1) U_c=U_c.cut.2

s=0.d0
ray=U_c+ray_closed;        ! (12)

p=>als%start               ! (13a)
t=>p%t1                    ! (13b)

do i=1,ns

if(mod(i,100)==0) then
  write(6,*) ns-i, " steps remaining "
endif

if(used_ds_ave) then
   ds=ds_ave                ! (14a)
else
  if(int_step) then
   ds=twopi*t%s(5)/circ     ! (14b)
  else
   ds=twopi*p%mag%p%ld/circ ! (14c)
  endif
endif

if(int_step) then
 call propagate(als,RAY,state,node1=i,node2=i+1)   ! (15a)
else
 call propagate(als,RAY,state,fibre1=i,fibre2=i+1) ! (15b)
endif

  ray_closed=ray ! Saving orbit  ! (16a)
  U=ray ! copying in map  ! (16b)

  U_c=exp(-ds*h_left,U)        !  (16c)
   if(icase==1) U_c=U_c.cut.2  !  (16d)
  U=U_c**(-1)*U                !  (16e)

  Gh=log(U)      ! (17a)
  h=getpb(Gh)    ! (17b)

! Checking convergence of the logarithm
a=exp(-(Gh.cut.2),(U.sub.1))  ! (18)
do k=1,c_%nd2
 if(abs(full_abs(a%v(k))-1)>1.d-5) then
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    call print(a,6)
    write(6,*);write(6,*) "Log failed at element ",i, p%mag%name
    stop
 endif
enddo

s=s+ds;
do k=0,n_mode
 hn(k)=hn(k)-exp(-i_*k*s)*h/circ ! (19)
enddo

ray=ray_closed+U_c

if(int_step) then   ! (20)
 t=>t%next
 p=>t%parent_fibre
else
 p=>p%next
endif

enddo

if(asym) then
 write(mf,*) " Results for an asymmetric ring "
else
 write(mf,*) " Results for 12-fold symmetric ring "
endif
if(.not.used_ds_ave) then
write(mf,*) " (Circumference/pi) x Hamitonian of the ring Guignard style"
else
write(mf,*) " 1/pi x Hamitonian of the ring Guignard style"
endif
write(mf,*) "  "

do k=0,n_mode
write(mf,*);write(mf,*) k;write(mf,*);
hn(k)=hn(k)*from_phasor()               ! (21a)
call print((circ/pi)*hn(k),mf,prec)     ! (21b)
enddo

write(mf,*) " Tracked Canonical Transformation"
write(mf,*) "  "
call print(U_c,mf,prec)
write(mf,*) " Original Canonical Transformation "
write(mf,*) "  "
call print(id_s,mf,prec)

write(mf,*) " Products with inverse   "
write(mf,*) "  "

u_c=u_c*id_s**(-1)           ! (23)

call print(u_c,mf,prec)

close(mf)

call ptc_end(graphics_maybe=1,flat_file=.false.)

end program Guignard_Hamiltonian
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program Guignard_normal_form
use madx_ptc_module
use pointer_lattice
use c_TPSA
implicit none

    interface
       subroutine build_lattice_als(ALS,MIS,error,exact,sl,thin,onecell)
         use madx_ptc_module
         use pointer_lattice
         implicit none
         type(layout), target :: ALS
         logical(lp) mis
         real(dp),optional :: error(6)
         logical, optional :: exact,sl,thin,onecell
       end subroutine build_lattice_als
    end interface

type(layout), pointer:: ALS
real(dp) prec,closed_orbit(6)
real(dp) circ,ds,s,ds_ave,intp(3),ts

type(internal_state),target :: state
logical(lp) :: mis=.false.
type(c_damap)  one_turn_map,id_s,U_c,U,A,fi,b
type(c_normal_form) normal_form
type(c_vector_field) logN,f_lin,f_non,h_left
integer :: pos =1
integer i,map_order,mf,ns,n_mode,km
type(probe) ray_closed
type(probe_8) ray
type(fibre), pointer :: p
type(integration_node), pointer :: t
character*48 :: command_gino
logical int_step,used_ds_ave,asym
integer icase
type(c_vector_field_fourier) G,F,K
!!!!!!!!!!!!!!!!!!!!!

c_verbose=.false.
prec=1.d-6 ! for printing
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use_info = .true.
longprint=.false.

mis=.false.
state=only_2d0

call ptc_ini_no_append
call append_empty_layout(m_u)
ALS=>m_u%start

call build_lattice_als(ALS,mis,exact=.false.,onecell=.true.) ! (0)

!!!!Fitting the tune and controlling the step size  !!!!
 call kanalnummer(mf,file="fit_tune.txt")
  write(mf,*) "select layout"
  write(mf,*) "  1  "
  write(mf,*) "L MAX  "
  write(mf,*) "0.3 "     ! (1)    ! all ds < 0.3
  write(mf,*) "CUTTING ALGORITHM "
  write(mf,*) "2 "                ! Drifts are cut as well
  write(mf,*) "LIMIT FOR CUTTING "
  write(mf,*) "10000 10000 "
  write(mf,*) "THIN LENS "
  write(mf,*) "1000.d0 "
  write(mf,*) " return"
 close(mf)

 p=>als%start; call move_to(ALS,p,"SF",pos);  ! (2)
 call add(p,3,1,10d0);

 call read_ptc_command77("fit_tune.txt")

 call MAKE_NODE_LAYOUT(als)

call kanalnummer(mf,"guignard_hamiltonian.txt")

int_step=.true.
used_ds_ave=.true.
icase=1

write(6,*) " Enter number of Fourier modes"
read(5,*) n_mode
n_fourier=n_mode

map_order=4                ! (3)
call init_all(state,map_order,0)

call alloc(one_turn_map, id_s,U_c,A,U,fi,b)
call alloc(normal_form); call alloc(ray);
call alloc(f_non);call alloc(f_lin)
call alloc(logN); call alloc(h_left)

call alloc(G);call alloc(F);call alloc(K);

closed_orbit=0.d0;
call find_orbit_x(als,closed_orbit(1:6),STATE,1.e-8_dp,fibre1=1)
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ray_closed=closed_orbit
id_s=1;
ray=id_s+ray_closed;

call propagate(als,RAY,state,fibre1=1)   ! (4)

one_turn_map=ray                         ! (5)

call c_normal(one_turn_map,normal_form)  ! (6)
U=normal_form%A_t    ! att=c_n%A_t*c_n%As

intp=0
intp(1)=1

! id_s is a rotation
id_s=U**(-1)*one_turn_map*U ! (7)

call extract_linear_from_normalised(id_s,b,a,f_lin,f_non,intp) ! (8)

call  c_canonise(normal_form%A_t ,U_c,fi,A,b) ! (9)

h_left=f_lin
h_left=(1.d0/twopi)*h_left
f_lin= (1.d0/twopi)*(from_phasor()*f_lin)
f_non= (1.d0/twopi)*(from_phasor()*f_non)   ! (10)
prec=1.d-10
write(mf,*); write(mf,*) " Results of one-turn map Normalisation"
write(mf,*) " ____________________________lin__________________________________"
call print(f_lin,mf,prec)
write(mf,*) " ____________________________non__________________________________"
call print(f_non,mf,prec)
write(mf,*) " ______________________________________________________________";
write(mf,*);

circ=twopi
ns=als%t%n
ds_ave=twopi/ns          ! (11)
ds=ds_ave                !

U_c=U_c.cut.2

s=0.d0
ray=U_c+ray_closed;        ! (12)

p=>als%start               ! (13a)
t=>p%t1                    ! (13b)

do i=1,ns

 if(mod(i,1000)==0) then
   write(6,*) ns-i, " steps remaining "
 endif

 call propagate(als,RAY,state,node1=i,node2=i+1)   ! (14)

  ray_closed=ray ! Saving orbit  ! (15a)
  U=ray ! copying in map  ! (15b)

  U_c=exp(-ds*h_left,U)        !  (15c)
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  U_c=U_c.cut.2                !  (15d)
  U=U_c**(-1)*U                !  (15e)

  logN=log(U)      ! (16)

! Checking convergence of the logarithm
a=exp(-(logN.cut.2),(U.sub.1))  ! (17)
do km=1,c_%nd2
 if(abs(full_abs(a%v(km))-1)>1.d-5) then
    call print(a,6)
    write(6,*);write(6,*) "Log failed at element ",i, p%mag%name
    stop
 endif
enddo

s=s+ds;
do km=-n_mode,n_mode
 G%f(km)=G%f(km)+(exp(-i_*km*s)/circ)*logN ! (18)
enddo

 ray=ray_closed+U_c                     ! (19)

 t=>t%next
 p=>t%parent_fibre
enddo

U=from_phasor()
call transform_vector_field_fourier_by_map(G,G,u) ! (20)

prec=1.d-5
write(mf,*); write(mf,*) " Results of Guignard Normalisation"
write(mf,*) " One exponent k=0 with",n_fourier, "modes"
call normalise_vector_field_fourier(G,F,K)     ! (21)
call c_clean_vector_field_fourier(K,K,prec)
call print(K%f(0),mf)

write(mf,*) " Factored k=0 with",n_fourier, "modes"
K=G
call normalise_vector_field_fourier_factored(k)    ! (22)
call c_clean_vector_field_fourier(K,K,prec)
call print(K%f(0),mf)

close(mf)

! call kanalnummer(mf,file="plot.dat")
! do i=0,n_mode
!  write(6,*) " doing mode",i
! k=g
! n_fourier=i
! call normalise_vector_field_fourier_factored(K)
! ts=imag(K%f(0)%v(1).sub.’21’)
! write(mf,*) i, ts
! enddo
!close(mf)

call ptc_end(graphics_maybe=1,flat_file=.false.)

end program Guignard_normal_form
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program Guignard_normal_form_average_x
use madx_ptc_module
use pointer_lattice
use c_TPSA
implicit none

    interface
       subroutine build_lattice_als(ALS,MIS,error,exact,sl,thin,onecell)
         use madx_ptc_module
         use pointer_lattice
         implicit none
         type(layout), target :: ALS
         logical(lp) mis
         real(dp),optional :: error(6)
         logical, optional :: exact,sl,thin,onecell
       end subroutine build_lattice_als
    end interface

type(layout), pointer:: ALS
real(dp) prec,closed_orbit(6)
real(dp) circ,ds,s,ds_ave,intp(3),ts
type(internal_state),target :: state
logical(lp) :: mis=.false.
type(c_taylor) fonction,fonction_FLOQUET,phase(3)
type(c_damap)  one_turn_map,id_s,U_c,U,A,fi,b,a_cs
type(c_normal_form) normal_form
type(c_vector_field) logN,f_lin,f_non,h_left
integer :: pos =1
integer i,map_order,mf,mf1,ns,n_mode,km
type(probe) ray_closed
type(probe_8) ray,ray_cs_twiss
type(fibre), pointer :: p
type(integration_node), pointer :: t
character*120 :: dsc
logical :: doit=.true., used_ds_ave
type(c_vector_field_fourier) G,F,K,f1
real(dp) DX_AVERAGE_DCS,betax_1,theta
complex(dp) coe
!!!!!!!!!!!!!!!!!!!!!

c_verbose=.false.
prec=1.d-6 ! for printing
use_info = .true.
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longprint=.false.

mis=.false.
state=only_2d0

call ptc_ini_no_append
call append_empty_layout(m_u)
ALS=>m_u%start

call build_lattice_als(ALS,mis,exact=.false.,thin=.true.,onecell=.true.)

write(6,*) " Give integration step ds "
write(6,*) " > 3 and nothing is cut; each step is a full magnet"
write(6,*) "  real fun starts around ds=0.5 "
read(5,*) ts
write(dsc,*) ts

!!!!Fitting the tune and controlling the step size  !!!!
 call kanalnummer(mf,file="fit_tune.txt")
  write(mf,*) "select layout"
  write(mf,*) "  1  "
  write(mf,*) "L MAX  "
  write(mf,’(a120)’)dsc  !  all ds < 0.9
  write(mf,*) "CUTTING ALGORITHM "
  write(mf,*) "2 "                ! Drifts are cut as well
  write(mf,*) "LIMIT FOR CUTTING "
  write(mf,*) "10000 10000 "
  write(mf,*) "THIN LENS "
  write(mf,*) "1000.d0 "
!  write(mf,*) "MISALIGN EVERYTHING"
!  write(mf,*) "0 0 0 0 0.1   0  5 "
  write(mf,*) "return"
 close(mf)

 call read_ptc_command77("fit_tune.txt")

courant_snyder_teng_edwards=.true.
time_lie_choice=.true.

p=>als%start

 call MAKE_NODE_LAYOUT(als)

call kanalnummer(mf,"guignard_hamiltonian.txt")
call kanalnummer(mf1,"guignard_canonical_transformation.txt")

Write(6,*) " Constant phase advance per step        ---> t "
write(6,*) " Courant Snyder phase advance per step ----> f "
read(5,*) used_ds_ave

write(6,*) " Enter number of Fourier modes"
read(5,*) n_mode

n_fourier=n_mode

map_order=4                ! (3)
call init_all(state,map_order,0)

call alloc(one_turn_map, id_s,U_c,A,U,fi,b,a_cs)
call alloc(normal_form); call alloc(ray);
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call alloc(f_non);call alloc(f_lin)
call alloc(logN); call alloc(h_left)
call alloc(fonction,fonction_FLOQUET)
call alloc(G);call alloc(F);call alloc(K);
call alloc(phase);call alloc(ray_cs_twiss)

DX_AVERAGE_DCS=0.d0
closed_orbit=0.d0;
call find_orbit_x(als,closed_orbit(1:6),STATE,1.e-8_dp,fibre1=1)

ray_closed=closed_orbit
id_s=1;
ray=id_s+ray_closed;

call propagate(als,RAY,state,fibre1=1)   ! (4)

one_turn_map=ray                         ! (5)

call c_normal(one_turn_map,normal_form)  ! (6)
U=normal_form%A_t

fonction=1.0_dp.cmono.1
  call C_AVERAGE(fonction,U,fonction_FLOQUET) ! (7)
a_cs=U.sub.1
call c_canonise(a_cs,a_cs)

intp=0
intp(1)=1

! id_s is a rotation
id_s=U**(-1)*one_turn_map*U
call extract_linear_from_normalised(id_s,b,a,f_lin,f_non,intp) ! (8)

call  c_canonise(normal_form%A_t ,U_c)       ! (9a)
id_s=U_c.sub.1                                     ! (9b)
h_left=(1.d0/twopi)*f_lin

if(used_ds_ave) then
  circ=twopi
else
  call GET_LENGTH(als,circ)
endif

ns=als%t%n
ds_ave=twopi/ns          ! (11)
ds=ds_ave                !
if(used_ds_ave) then
 Write(mf1,*) " Constant phase advance per step "
 write(mf1,*) "dtheta =",ds_ave, ’ radians ’
 write(mf1,*) "ds <= ",ts, " metres "
else
 write(mf1,*) " Approximate Courant Snyder phase advance per step "
 write(mf1,*) "ds <= ",ts
endif

U_c=U_c.cut.2

s=0.d0
ray=U_c+ray_closed;        ! (12)
ray_cs_twiss=ray_closed+a_cs

p=>als%start               ! (13a)
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t=>p%t1                    ! (13b)

do i=1,ns

 if(mod(i,ns/10)==0) then
   write(6,*) ns-i, " steps remaining "
 endif

 call propagate(als,ray,state,node1=i,node2=i+1)   ! (14a)

 call propagate(als,ray_cs_twiss,state,node1=i,node2=i+1)   ! (14b)

  ray_closed=ray ! Saving orbit  ! (15a)
  a_cs=ray_cs_twiss
  a_cs=a_cs.sub.1
  call c_full_canonise(a_cs,a_cs,phase=phase)

  U=ray ! copying in map  ! (15b)

if(used_ds_ave) then
 U_c=exp(-ds*h_left,U)        !  (16a)
 U_c=U_c.cut.2                !  (16b)
 U=U_c**(-1)*U                !  (16c)
else
 ds=twopi*t%s(5)/circ
 U_c=U.cut.2                  !  (16d)
 call  c_canonise(U_c,U_c)    !  (16e)
 U=U_c**(-1)*U                !  (16f)
endif
  logN=log(U)                 !  (17)

! Checking convergence of the logarithm
a=exp(-(logN.cut.2),(U.sub.1))  ! (18)
do km=1,c_%nd2
 if(abs(full_abs(a%v(km))-1)>1.d-5) then
    call print(a,6)
    write(6,*);write(6,*) "Log failed at element ",i, p%mag%name
    stop
 endif
enddo

s=s+ds;
do km=-n_mode,n_mode
 G%f(km)=G%f(km)+(exp(-i_*km*s)/twopi)*logN ! (19)
enddo

  betax_1=(a_cs%v(1).sub.’10’)**2+(a_cs%v(1).sub.’01’)**2  ! (20a)
 if((p%mag%name(1:2)=="SF".or.p%mag%name(1:2)=="SD").and.t%cas==case0) then
  DX_AVERAGE_DCS=(betax_1)**1.5_DP*p%mag%BN(3)/4.0_DP &    ! (20b)
    *(-SIN(PHASE(1)*TWOPI)+SIN((PHASE(1)-normal_form%TUNE(1))*TWOPI)) &
    /(1.0_DP-COS(normal_form%TUNE(1)*TWOPI)) + DX_AVERAGE_DCS
 endif

 ray=ray_closed+U_c                     ! (21)
 ray_cs_twiss=ray_closed+a_cs
 t=>t%next
 p=>t%parent_fibre
enddo

U=from_phasor()
call transform_vector_field_fourier_by_map(G,G,u) ! (22)
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prec=1.d-5

call alloc(f1)
if(used_ds_ave.and.doit) then
 call normalise_vector_field_fourier(G,F,K)     ! (23a)
else
 n_extra=50
 call normalise_vector_field_fourier(G,F,K,F1)  ! (23b)
endif

prec=1.d-11

call c_clean_vector_field_fourier(K,K,prec)
call c_clean_vector_field_fourier(g,g,prec)

write(mf1,*) " Original force "
 call print_vector_field_fourier(g,mf1)
write(mf1,*) " Normalised force "
 call print_vector_field_fourier(k,mf1)

  write(mf,*);write(mf,*)"Results for <x> ";write(mf,*)n_fourier,"modes"; write(mf,*);

  betax_1=(a_cs%v(1).sub.’10’)**2+(a_cs%v(1).sub.’01’)**2
 DX_AVERAGE_DCS=DX_AVERAGE_DCS*SQRT(betax_1)            ! (26) or (20c)
 write(mf,’(a11,F20.13,a20)’)’  d<x>/dCS ’, dx_average_dCS, " < ---- analytical"
  write(mf,*); write(mf,*) "Result of map normal form "
  call print(fonction_FLOQUET,mf)          ! (27)

theta=0.d0
call c_evaluate_vector_field_fourier(f1,theta,f_non)

f_non=to_phasor()*f_non   !  Turns f_non in Cartesian basis
id_s=exp(f_non,a_cs)
call c_evaluate_vector_field_fourier(f,theta,f_non)

f_non=to_phasor()*f_non !  Turns f_non in Cartesian basis
A=exp(f_non,id_s)

  if(used_ds_ave) then
   write(mf,*);write(mf,*) "Constant linear phase advance"
   write(mf,*) "dtheta =",ds_ave, ’ radians ’
   write(mf,*) "ds <= ",ts, " metres "
  else
   write(mf,*);write(mf,*) "Courant-Snyder linear phase advance "
   write(mf,*) "ds <= ",ts, " metres "
  endif
 write(mf,*);write(mf,*) "Result of Guignard normal form "
 fonction=1.0_dp.cmono.1
  call C_AVERAGE(fonction,A,fonction_FLOQUET)   ! (28)
  call print(fonction_FLOQUET,mf)                  ! (29)
close(mf)

 write(mf1,*) " Linear Courant-Snyder transformation at point of calculation for <x> "
call print(a_cs,mf1)
if(.not.used_ds_ave.or.(.not.doit)) then
 write(mf1,*) " F1 : removing the s-dependence of the phase advance"
 call print_vector_field_fourier(f1,mf1)
endif
 write(mf1,*) " F : nonlinear transformation"
 call print_vector_field_fourier(f,mf1)
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close(mf1)
call ptc_end(graphics_maybe=1,flat_file=.false.)

end program Guignard_normal_form_average_x
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Formula to go from vector field to Poisson

bracket, 73

L
Lie bracket of vector fields, 53
Lie map, map on acting on functions, 27

M
Magnet modulation, 102, 128
Magnet modulation analytic example, 126
Magnet modulation in code, 105
Magnet modulation Jordan, 107
Multidimensional Courant-Snyder invariants

as Lie generators, 86
Multidimensional de Moivre formula, 83

N
Normal form kernel for Hamiltonian

in 1-d-f, 63, 79

in n-d-f, 126
one resonance left in map, 134

Normal form kernel for Lie map
in 1-d-f, 68
in n-d-f, 124

Normal form kernel for the radiative beam
envelope, 113

Normal form kernel for the spin-orbit map, 162
one spin resonance in map, 165

Normal form kernel for time-dependent
Hamiltonian, 229

extended phase phase interpretation, 233

P
Phase advance, 16, 33, 34, 40, 178

Hamiltonian example, 192
Phasors as functions, 128
Phasor’s matrix definition, 21
Pictorial view of phase advance, 178

R
Resonance co-moving map, 136
Resonance examples, 137
Resonance naive approach, 130
Resonance orbital, 130
Resonance theory, 133

S
Similarity transformation on vector fields using

Lie brackets, 54, 80

T
Time evolution formula for spin resonance

(Barber), 171
Transformation formula for a time-dependent

Hamiltonian, 192
Transformation formula for a time-dependent

vector field, 227
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