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Abstract Isaiah (Shi) Shavitt (1925–2012) was a pioneer

in using digital computers to study chemical problems.

From the days of vacuum tube computers with no floating

point arithmetic to the days of massively powerful com-

puters, he showed how we could solve otherwise intracta-

ble chemical problems by making use of computers. He

started with a statistical mechanical problem and soon

switched to quantum mechanical problems. He and his

associates showed how the configuration interaction

method worked, both in terms of advantages and difficul-

ties. An early problem was the effect of tunneling on

kinetics calculations on an H3 potential energy surface.

Later problems included the p-electron excited states of

benzene and the lowest excited state of methylene. He

showed how spin-eigenfunctions could be used efficiently

in configuration interaction calculations instead of Slater

determinants. His leadership led to the Columbus suite of

programs put together with many collaborators.

Keywords Computational chemistry history � Isaiah

Shavitt � Configuration interaction � Electron correlation �
Graphical Unitary Group Approach � COLUMBUS

Programs

1 Introduction

Isaiah (Shi) Shavitt was born in Poland in 1925, immi-

grated to Palestine at a very early age, and was raised in

Haifa. He was educated at the Technion and Cambridge

University, earning a PhD in 1957. As a graduate student,

he learned to use digital computers. He soon set an

example by using high standards in computational work

and in writing about and evaluating such work. He per-

formed very careful calculations to extend and evaluate the

method of configuration interaction for molecules. He

wrote many extensive review articles on this method and

its evaluation and co-authored a book on electron

correlation.

2 Family

Isaiah (Shi) Shavitt (né Kruk) was born to Zvi and Chava

Kruk on July 29, 1925, in Kutno, Poland. In 1926, his

father immigrated to Palestine to establish a new life for his

family in Haifa. In 1929, his wife and son joined him there.
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Later, Shi changed his last name to Shavitt, which in

Hebrew means comet.

In 1957, Shi married Vera Neuwirth. Shi often said that

the best decision of his life was marrying Vera. They had a

daughter, Sharon, who married Steve Zimmerman. Both

Sharon and Steve have faculty positions at the University

of Illinois, starting in 1987 and 1985, respectively. They

have two daughters, Arielle and Ellie.

3 Career

Shi studied chemical engineering at the Technion (Israel

Institute of Technology) during 1945–1951. His studies

were interrupted by his service during 1948–1949 in

Israel’s War of Independence. Shi completed his BSc in

1950 and a Diploma in Engineering a year later, both

degrees in Chemical Engineering. He then decided to

change to theoretical chemistry and was awarded a British

Council Scholarship for Study in Britain to do so. He

earned his PhD at University of Cambridge in 1957 and

then returned to Israel. In his graduate work, he learned

computing on the EDSAC I, a primitive vacuum tube

computer that frequently required repeating calculations

just to ensure they were correct.

Short-term positions followed as a postdoctoral fellow at

the University of Wisconsin, a teaching position at Bran-

deis University, and a staff position at IBM Watson

Laboratory.

Long-term positions ensued. In 1962, he accepted a

faculty position at Technion, where he established his

research program and worked with several graduate stu-

dents. Then in 1967 he accepted a position as Research

Leader in the newly formed theoretical chemistry group at

Battelle Memorial Institute in Columbus, Ohio, adding an

adjunct professor position in the Chemistry Department at

Ohio State University a year later. After several years in

Columbus, Shi and Vera became US citizens. In 1981, he

left Battelle and became full time on the Ohio State Uni-

versity faculty. He retired at the end of 1994.

4 Postretirement science

In September 1995, Shi and the memory of his PhD

advisor, S. F. Boys, were jointly recognized by a confer-

ence in their names at St. Catharine’s College at Cam-

bridge University. Papers from this conference were

gathered in a festschrift [1], which included a paper

describing the Shavitt research group’s work up until that

time. Some of the attributes of this work were described [1]

as follows, ‘‘In an often skeptical community, his results

have the highest credibility. It is well-known that questions

of numerical accuracy and stability are always addressed in

his work and that he has instilled his standards in his stu-

dents and colleagues.’’ He was also noted [1] for his many

carefully done review articles, particularly nos. 11, 39, 66,

and 83 in his list of publications in the ‘‘Appendix.’’

He continued his work in retirement, including detailed

studies of the energy and dipole-moment surfaces of the

water molecule (no. 90), studies of the solvated proton in

water (nos. 92, 93), a description of the COLUMBUS

programs (many collaborators, no. 94), describing the

computer program system inspired by his unitary-group

work, studies of DNA base-pair binding (no. 100. 103), and

finally, a book with R. J. Bartlett (no. 104), describing the

theory and use of many-body methods in describing elec-

tron correlation in molecules. He spent several years

working on this book, during which he first sought equa-

tion-writing and diagram-producing software that met his

exacting standards for the manuscript.

In summarizing one component of Shi’s scholarly

impact, T. H. Dunning, Director of the National Center for

Supercomputer Applications (NCSA), recently noted, ‘‘It

was Shi and his generation that laid the foundation for the

use of digital computers to obtain rigorous solutions of the

electronic Schroedinger equation.’’

5 Final years

With their daughter Sharon and her husband Steve Zim-

merman both having faculty positions at the University of

Illinois, the Shavitts decided to obtain a second house near

them in order to increase their family enjoyment and sup-

port. After several years of splitting their time between the

locations, the Shavitts sold their Columbus house in 2001

and stayed full time in Illinois. Shi was appointed Adjunct

Professor of Chemistry at the University of Illinois in 1996.

Shi enjoyed completing the New York Times crossword

puzzle daily, loved traveling, limericks, and the poems of

Ogden Nash. He was an extraordinary scholar and intellect,

but humble, generous, and kind in his interactions with

students, colleagues, and anyone he met. He is remembered

as a loving and supportive husband and father, and a doting

grandfather. After fighting disease for several years, Shi

Shavitt died December 8, 2012.
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Abstract The goals of electronic structure theory are to

make quantitative predictions of molecular properties and

to provide qualitative insight into bonding as well as fea-

tures of potential energy surfaces. Oftentimes, the two

goals are at odds as an accurate treatment requires a

complicated wave function that obscures chemical insight.

The multifacet graphically contracted function (MFGCF)

method offers a new approach that allows both goals to be

addressed simultaneously. The recursive product structure

of the MFGCF wave function reduces the exponential

scaling of the exact wave function and allows the compu-

tation of molecular properties with polynomial scaling with

respect to system size. Additionally, the graph density

concept provides an intuitive tool for visualizing and ana-

lyzing the qualitative features of the wave function. In this

work, the graph densities for model systems are examined

to demonstrate their utility in analyzing the changes in

wave function character along potential energy surfaces

and near avoided crossings. Finally, we demonstrate that

the graph density exposes the structure of the exact wave

function for a system of noninteracting molecules as a

product of the fragment wave functions.

Keywords Multifacet graphically contracted function

method � Configuration interaction � Graphical unitary

group approach � Shavitt graph � Wave function analysis �
Graph density � Node density � Arc density

1 Introduction

At the heart of electronic structure theory lies the electronic

Schrödinger equation, and the ultimate goal of quantum

chemistry is the accurate and efficient computation of its

solutions: the energies and associated wave functions of the

electronic states of atoms and molecules. The graphical

unitary group approach (GUGA) of Shavitt [1–5] estab-

lishes a convenient representation for expansions of elec-

tronic wave functions in terms of spin-adapted

configuration state functions (CSFs). GUGA is based on the

unitary group approach in which an integer triple ða; b; cÞ of

a Paldus ABC tableau [6–9] defines the number of orbitals

n ¼ aþ bþ c, the number of electrons N ¼ 2aþ b, and the

spin quantum number b ¼ 2S. In GUGA, each node of a

Shavitt graph corresponds to a unique integer triple. The

Shavitt graph for a three-electron three-orbital doublet full-

CI wave function is shown in Fig. 1a. The tail node ð0; 0; 0Þ
represents the physical vacuum, and the head node repre-

sents the n, N, and S of the wave function. The vertical

levels in a Shavitt graph coincide with a specific sequence

of orbitals. The nodes between adjacent levels are con-

nected by arcs or steps, and the four possible step numbers

are d ¼ 0, 1, 2, and 3, each with ðDa;Db;DcÞ values of

ð0; 0; 1Þ, ð0; 1; 0Þ, ð1;�1; 1Þ, and ð1; 0; 0Þ respectively. Step

numbers d ¼ 0 and 3 denote empty and doubly occupied
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orbitals, respectively, while step number d ¼ 1ð2Þ corre-

sponds to a singly occupied orbital such that the cumulative

spin is increased(decreased) by Db ¼ �1. A walk along

arcs from the vacuum node to the head node defines a spin-

adapted CSF expansion term. The GUGA formulation has

been employed in several electronic structure packages for

configuration interaction (CI) and multiconfiguration self-

consistent field (MCSCF) calculations, such as GA-

MESS [10, 11] and MOLCAS [12], and notably in the

COLUMBUS Program System of Shavitt and coworkers [3,

13–15] within which the present work has been performed.

The energy (E) is of central importance in variational

electronic structure methods as a criterion for optimizing

the wave function parameters. In GUGA CI, the CSF

expansion coefficients (x) are obtained by solving the

eigenvalue equation Hx = E x using iterative diagonal-

ization techniques [16] that rely on the efficient evaluation

and use of the Hamiltonian (H) matrix elements between

CSFs [4]. Although the energy and its geometrical deriv-

atives are useful in predicting equilibrium and transition

state structures as well as energies of reactions and barrier

heights, the wave function itself is equally important as it

provides insight into the chemical and physical properties;

unfortunately, this utility of the wave function is oftentimes

obscured by the (possibly very) large number of parame-

ters. Thus, several techniques have been developed to

allow the efficient interpretation and visualization of

electronic wave functions. Most notably, the one-electron

reduced density matrix (1-RDM) may be used in popula-

tion analysis methods, such as those proposed by Mullik-

en [17] and Löwdin [18], to estimate gross atomic charges

and bond orders [19]. Relative to the canonical molecular

orbitals, the eigenvectors of the 1-RDM, the natural orbi-

tals, are more appropriate in some circumstances for cor-

related calculations and have been used in various CI [20–

24] and coupled-cluster [25–29] methods. Although chan-

ges in wave function character can be observed by exam-

ination of the 1-RDM matrix elements, the information

contained in the 1-RDM is highly contracted, and the

subtle details associated with spin-coupling in the wave

function are obscured.

In previous work, we introduced [30] and implemented

[31–33] a novel wave function analysis technique based on

Shavitt graphs. It is denoted as the graph density concept,

and it enables wave functions to be characterized and

compared in terms of nodes and arcs of the Shavitt graph.

The graph density technique arose in the context of our

graphically contracted function (GCF) method [30–41],

which opens up the possibility to compute astronomically

large CI expansions. For such wave functions, traditional

analysis approaches based on individual CSF coefficients

become intractable. However, the graph density concept is

generally applicable to any expansion length or form that

can be represented on a Shavitt graph. Thus, the graph

density concept offers a tool that complements existing

wave function analysis methods. Node densities contain

information related to both orbital occupations and spin-

coupling within the molecule, whereas the occupation

numbers do not contain information about spin-coupling.

For example, a singlet and triplet wave function can, in

principle, have the same natural orbitals and occupations,

whereas the graph densities of the two wave functions

would be distinct. Arc densities also contain information

that can aid the determination of the seniority quantum

number of the wave function [42]. Additionally, arc den-

sities are related to the one-orbital reduced density matrices
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Fig. 1 a Full-CI Shavitt graph for a three-electron three-orbital doublet

state. Nodes of the graph are labeled according to the integer triples

ðaj; bj; cjÞ. The slant of the arcs away from vertical increases with the

step number; d ¼ 0 is vertical, whereas d ¼ 3 has the largest slant.

b The graph density plot for the one-configuration SCF wave function

j/2
1/

1
2/

0
3i. The orbital levels are ordered according to orbital energy and

the nodes are labeled according to the contiguous indexing scheme

j ¼ 1; . . .;Nrow, where Nrow is the number of nodes in the Shavitt graph.

Arc(node) densities with appreciable values are green, while gray

indicates arcs(nodes) with negligible densities
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introduced to study orbital interaction in density matrix

renormalization group theory [43] using quantum infor-

mation theory [44, 45]. These one-orbital reduced density

matrices may be considered as contractions of the arc

densities and provide useful insight into changes in elec-

tronic structure along the potential energy surface [46] and

aid in the characterization of chemical bonds [47].

After a brief review of the GCF method and the com-

putation of graph densities in that context, we present wave

function analyses via graph densities along the potential

energy curves for the C2v insertion pathway for BeH2, the

dissociation of C2, and D2h and D4h dissociation paths of

H8. The purpose of the present work is to develop the

necessary background for interpreting graph densities and

to demonstrate their utility in analyzing the wave function.

Thus, to minimize the complexity, each example presented

herein considers valence-only correlation and employs

small basis sets that capture the essential features of the

wave function. Nonetheless, we emphasize that this analysis

approach is equally applicable to arbitrary wave functions.

2 Method

Within the GCF approach, the wave function is expressed

as

jwi ¼
XNGCF

M¼1

cM jMi; ð1Þ

where each GCF jMi is a multiconfigurational function

formally defined as a linear combination of all the CSFs

j ~mi comprising the underlying CI space

jMi ¼
XNCSF

m¼1

xMm j ~mi; ð2Þ

and the CSF expansion coefficients xMm are defined as

ordered products of arc factors aM

xMm ¼ a
M;dmj0 ;j1
j0;j1

a
M;dmj1 ;j2
j1;j2

. . .a
M;dmjn�1 ;jn

jn�1;jn
¼
Yn
p¼1

a
M;dmjp�1 ;jp

jp�1;jp
: ð3Þ

In Eq. (3), a
M;djp�1 ;jp

jp�1;jp
is a real fjp�1

by fjp matrix in which

fjp�1
(fjp) is the number of facets associated with node

jp�1(jp) in level p� 1(p). The superscript dmjp�1;jp
indicates

the step d that connects nodes jp�1 and jp that are touched

by the CSF j ~mi. In this way, the Shavitt graph plays a

central role in the mathematical structure of the resulting

wave function and in its dependence on the nonlinear arc

factor parameters. It is also important to recognize that an

arc of the Shavitt graph is shared by a possibly large

number of CSFs. Thus, whereas the number of linear CSF

coefficients scales exponentially ðOðnNÞÞ with system size,

the number of parameters in a GCF is proportional to the

number of arcs in the Shavitt graph and scales polynomially

ðOðN2nÞÞ with system size [30]. Because of the product

structure, the GCF basis function is also seen to be a matrix

product state [48] and is similar to the wave function An-

satz employed in spin-adapted density matrix renormal-

ization group methods [49, 50].

The linear coefficients c are obtained by solving the

generalized eigenvalue equation Hc = E Sc, where H and

S are the Hamiltonian and overlap matrices evaluated in

the GCF basis [34]. The arc factors a are optimized to

minimize the energy of a single state, or the weighted

average of the energies of several states [32]. Efficient

routines for computing overlap and Hamiltonian matrix

elements and evaluating derivatives of the state-specific

and state-averaged energies have been developed [32]. In

addition to enabling the efficient computation of the

quantities needed during the optimization, the GCF energy

is variational and size extensive in a localized orbital basis.

The variational flexibility of the GCF wave function may

be improved by increasing the size of the GCF expansion

basis in Eq. (1), increasing the number of facets associated

with the nodes of the Shavitt graph, or increasing both. In

our initial work every node was restricted to a single facet,

but preliminary results indicate that varying the number of

facets to form a multifacet GCF (MFGCF) while restricting

NGCF to be equal to the number of electronic states of

interest results in more flexible basis functions and in better

convergence [32].

The character of the wave function may be analyzed

through the graph density concept introduced in Ref. [30].

Formally, the node density of a particular node of the

Shavitt graph is equal to the sum of the squares of the CI

coefficients for those CSFs that pass through that node.

Thus, it is a measure of the importance of that node in

describing the wave function. Using an analogous argu-

ment, the arc densities quantify the importance of indi-

vidual arcs in the wave function. In fact, since the node

density is the sum of the arc densities leading to that node,

node densities may be considered to be contractions over

arc densities. From the formal definition of the node and

arc densities, it readily follows that the sum of the node

densities within any level of the Shavitt graph and the sum

of the arc densities connecting any two adjacent levels of

the Shavitt graph are both equal to unity for a normalized

wave function. The graphical representation of the node

and arc densities using graph density plots provides an

intuitive tool for analyzing the wave function. Within

these graphs, the magnitude of the node density is pro-

portional to the area of the circle representing the node.

Thus, the head and tail nodes are represented by circles
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with unit area. Arcs with ‘‘appreciable’’ densities above

some predefined threshold are represented by green lines,

and all other arcs with small densities are represented by

gray lines. The threshold is proportional to the maximum

arc density in the normalized wave function. In this work

the thresholds were 0.001 for all graph density plots. To

illustrate the graph density concept, consider the SCF

wave function for a three-electron three-orbital molecule

that consists of a single configuration with the first orbital

doubly occupied, the second orbital singly occupied, and

the highest energy orbital empty. The graph density plot

for this wave function is shown in Fig. 1b. For such a

wave function, only those three arcs that are consistent

with this occupation pattern have appreciable arc densities

and all remaining arc densities are zero. Thus, since the

node densities are contractions over the connecting arc

densities, it is readily seen that, at each level of the Shavitt

graph, there is a single node with unit node density. Note

that for wave functions with more than one dominant

configuration, several nodes and arcs within each level of

the Shavitt graph may acquire significant densities. Thus,

a significant ‘‘spread’’ in node and arc density within a

level indicates the multiconfigurational character of the

wave function.

For a GCF expansion, the density contributions can be

determined directly from the partial overlap matrices and the

arc factors. This allows graph density analysis of wave func-

tion expansions that are much larger than could be considered

with conventional approaches that rely on explicit summa-

tions of CSF contributions. For a normalized GCF wave

function, the node density Dk may be computed as [30, 32]

Dk ¼
XNGCF

M;N

cMcND
MN
k ¼

XNGCF

M;N

cMcNTr cMN
k

� �T
�cMN
k

h i
: ð4Þ

The partial lower-walk overlap matrix cMN
k measures the

overlap of all those CSFs that lead from the vacuum node

of the Shavitt graph to node k, while the partial upper-walk

overlap matrix �cMN
k determines the overlap of all those

CSFs that lead from the head node of the Shavitt graph to

node k. Since the CSF coefficients are expressed as pro-

ducts of the arc factor matrices in Eq. (3), the partial

overlap matrices may be computed recursively [30].

Assuming that every node of the Shavitt graph is charac-

terized by fmax facets, the recursive computation of all

matrices fcMN
k g and f�cMN

k g would scale as O Nrowf
3
max

� �
,

where Nrow is the number of nodes in the Shavitt graph and

scales as O N2nð Þ for full-CI wave functions. Thus, com-

puting the node densities for a GCF wave function with

NGCF expansion GCFs scales linearly with the number of

orbitals O N2
GCFN

2f 3
maxn

� �
. A similar analysis in terms of

transition arc densities reveals that evaluating arc densities

with GCF wave functions has a similar scaling. It is

noteworthy that the matrix product structure of the CSF

coefficients in Eq. (3) is not required for computing graph

densities and only facilitates their construction. Thus, the

graph density concept is equally useful in the interpretation

of traditional CI wave functions. However, in contrast to

these traditional CI expansions for which the computa-

tional cost of analysis increases exponentially with the

system size, the GCF wave function may be analyzed at

polynomial cost. Although the examples presented in this

work are small enough so that examining the qualitative

features of the wave functions from both the CSF and

graph density perspectives is tractable, the graph density

concept will afford the analysis of future GCF wave

functions for which the number of CSFs would be pro-

hibitively large. Graph densities of a given electronic state

at various points on a potential energy surface (PES) and

densities of various electronic states can be compared in

order to determine the essential differences in the wave

functions. Graph densities can be monitored along a reac-

tion path in order to characterize the changes in the wave

function associated with barriers, wells, and other PES

features.

3 Results

3.1 BeH2 C2v insertion pathway

The equilibrium geometry for collinear BeH2 and H2, as

well as the saddle point geometry are optimized at the

complete active-space self-consistent field (CASSCF) level

using the 1a2
1 2� 4a1; 1b1; 1� 2b2ð Þ4 active space. All

calculations employ Dunning’s cc-pVTZ basis sets [51,

52], and C2v symmetry is imposed by restricting the line

segment connecting the center of mass of H2 and Be to be

perpendicular to the H2 bond axis (Fig. 2). In terms of

(RBe�H2
, RH�H), where RBe�H2

is the distance between the

beryllium atom and the center of mass of molecular

hydrogen and RH�H is the separation between the two

hydrogen atoms, the equilibrium geometry of collinear

BeH2 is (0:0a0, 5:1142a0) and the transition state geometry

RH−H

RBe−H2

H H

BeFig. 2 Geometrical parameters

used to describe the potential

energy curve for the C2v inser-

tion pathway in BeH2. The

drawing is to scale for the

transition state geometry
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is given by (2:5024a0, 2:1507a0). The asymptotic H2

equilibrium bond distance is 1:4272a0. As in Ref. [53], the

reaction path is defined as two straight-line segments in

terms of RBe�H2
and RH�H . The first line segment passes

through the collinear equilibrium geometry, the transition

state geometry, and (R�Be�H2
; 1:4272a0), where R�Be�H2

¼
3:1133a0 is the intersection between the two line segments.

For RBe�H2
�R�Be�H2

, the second line segment is the hori-

zontal line (RBe�H2
; 1:4272a0).

The reaction Be 1Sð Þ þ H2
1Rþg
� �

! BeH2
1A1ð Þ along

the C2v path is interesting because the 11A1 ground state

involves the avoided crossing between the two closed-shell

configurations 1a2
12a2

13a2
1 and 1a2

12a2
11b2

2. The former

configuration dominates at large Be � H2 separations and

corresponds to the ground-state fragments Be 1Sð Þ and

H2
1Rþg
� �

, while the latter configuration is dominant near

the collinear equilibrium geometry. The 21A1 PES corre-

sponds to the reaction Be 1Pð Þ þ H2
1Rþg
� �

! BeH2
1A1ð Þ.

The shape of the 21A1 PES is more complex as it involves

three avoided crossings between the aforementioned

closed-shell configurations as well as the two open-shell

configurations 1a2
12a13a11b2

2 and 1a2
12a2

13a14a1. Thus, a

flexible wave function expansion is necessary to describe

the qualitative features of the PESs. State-averaged full-

valence CASSCF calculations were used to optimize the

1a1 core orbital and the 2� 4a1; 1b1; 1� 2b2ð Þ active

orbitals. Natural orbital resolution is imposed on the active

orbital space. The subsequent state-averaged MFGCF cal-

culations with NGCF ¼ 2 are carried out using the valence

orbitals and employ the 64 full-CI Shavitt graph. The

convergence of the MFGCF energy was examined by a

sequence of calculations with a fixed maximum number of

facets, fmax, for every node of the Shavitt graph. Future

developments will explore the possibility of dynamically

adjusting the number of facets for individual nodes of the

Shavitt graph in order to satisfy overall accuracy

requirements.

For both PESs, the MFGCF energies with fmax ¼ 2 are

within 2.1 mEh of the CASSCF results, and the MFGCF

energies with fmax ¼ 4 (Fig. 3) are exact. The graph density

plots in Fig. 4 demonstrate the changes in the electronic

structure of the two lowest energy 1A1 states. The core 1a1

orbital is excluded from the graphs. For the ground state,

the graph densities at the collinear equilibrium geometry,

RBe�H2
¼ 0a0, and near the asymptotic limit,

RBe�H2
¼ 4:5a0, show that the wave function is dominated

by a single configuration at either limit. It is also evident

that there is a significant change in the wave function

character, and the graph density at RBe�H2
¼ 2:5a0 displays

the mixed nature of the wave function. The graph density

plots for the excited state show a more complicated

structure. Near the collinear geometry the open-shell con-

figuration 1a2
12a13a11b2

2 dominates; however, for

RBe�H2
� 1:5a0, the closed-shell configuration 1a2

12a2
13a2

1

becomes important. The graph densities for the 11A1 and

21A1 electronic states are essentially identical near the

transition state geometry at RBe�H2
¼ 2:5a0. This is

because both states are dominated by the same closed-shell

configurations with nearly identical coefficient magnitudes

at that geometry (Table 1). After the avoided crossing

between the two closed-shell configurations, the 1a2
12a2

11b2
2

configuration is prominent in the 21A1 state until

RBe�H2
� 4:0a0. For longer RBe�H2

, the wave function

character is dominated by the open-shell configuration

1a2
12a2

13a14a1, which corresponds to the Be 1Pð Þ and

H2 Rþg
� �

dissociation fragments.

3.2 C2 potential energy surface

The carbon dimer has received considerable attention due

to its importance in interstellar chemistry and combustion

processes [54]. From a theoretical point of view, the car-

bon dimer is interesting because of its unusual bonding, its

complicated electronic structure even near the equilibrium

geometry, and the presence of several low-lying excited

states [55–59]. To assess the robustness of the state-aver-

aged MFGCF approach, the PESs for the three lowest

energy singlet electronic states of C2 were calculated on

the interval 1:5a0�RCC � 6:0a0, where RCC is the distance

between the two carbon atoms. State-averaged CASSCF

0 1 2 3 4 5 6 7

R
 Be-H

2
  (a

0
)

-15.8

-15.7

-15.6

-15.5

-15.4

E
 (

E
h)

1 
1
A

1

2 
1
A

1

Fig. 3 Potential energy surfaces for the 11A1 and 21A1 states of

BeH2 along the C2v insertion path. Symbols indicate the MFGCF

results (NGCF ¼ 2 and fmax ¼ 4) and lines denote the CASSCF

energies
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calculations with equal weights for the three lowest energy
1Ag states were used to optimize the core 1rg and 1ru and

the (2� 3rg, 1pu;x, 1pu;y, 2� 3ru, 1pg;x, 1pg;yÞ active

orbitals within the cc-pVTZ basis set [51]. Natural orbital

resolution is imposed on the active orbital space. State-

averaged full-valence MFGCF calculations with equal

weights for all states are performed with NGCF ¼ 3, and the

convergence of the MFGCF wave function is examined

through a series of calculations with 2� fmax� 5. The

lowest energy 1rg and 1ru orbitals are frozen in all

MFGCF calculations. Although dynamic correlation is

neglected, previous work has demonstrated that a full-

valence CASSCF approach captures the important quali-

tative features of the PESs for the three states considered

here [57].

In terms of the nonparallelity error (NPE), Fig. 5 shows

the accuracy of the MFGCF wave function as the maxi-

mum number of facets per node is systematically increased.

The NPE is defined as the difference between the maxi-

mum and minimum deviations of the MFGCF energy rel-

ative to the state-averaged CASSCF results. For the three

lowest energy singlet states, the CASSCF results are

reproduced with mEh accuracy for fmax ¼ 3, and the NPE is

\10 lEh for fmax ¼ 5. For all computed PESs, the maxi-

mum errors occur in the region 3:0a0�RCC � 4:5a0 and

are at least an order of magnitude larger than the minimum

errors that occur near the dissociation region. This is in

accord with the general observations from earlier studies

[32] using the MFGCF method. The results for the B1Dg

state are consistently more accurate than those for the 1Rþg
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Fig. 4 Graph density plots for the 11A1 and 21A1 states of BeH2 along the C2v insertion reaction path. RBe�H2
is defined as the distance between

Be and H2. Graph densities are computed from an MFGCF wave function with NGCF ¼ 2 and fmax ¼ 4

Table 1 BeH2 coefficients

Configuration RBe�H2
¼ 0:0a0 RBe�H2

¼ 2:5a0 RBe�H2
¼ 4:5a0

11A1 21A1 11A1 21A1 11A1 21A1

1a2
12a2

13a2
1

0.001 -0.000 -0.633 0.666 -0.947 0.024

1a2
12a2

11b2
2

0.985 -0.000 0.727 0.647 0.186 -0.184

1a2
12a13a11b2

2
0.000 0.974 0.004 -0.044 -0.021 0.010

1a2
12a2

13a14a1 0.000 -0.153 0.031 -0.047 -0.087 -0.960

Coefficients of the two dominant closed-shell and the two open-shell configurations in the 11A1 and 21A1 electronic states of BeH2 at selected

RBe�H2
. The coefficients are extracted from the NGCF ¼ 2 and fmax ¼ 4 MFGCF wave function. �0.000 indicates a small negative number
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states. Although the decrease in the NPE between fmax ¼ 4

and 5 for the B01Rþg state is smaller than expected, the NPE

for the state-averaged energy follows the typical trend.

Based on this, we believe that the unexpected shape of the

NPE for the B01Rþg state is not likely to be the result of the

optimization being trapped in a local minimum, but rather,

it is a consequence of the state-averaged approach for

computing excited-state energies.

The PESs obtained from the MFGCF wave function

with fmax ¼ 5 are shown in Fig. 6. For short bond distances,

the B01Rþg state is lower in energy than the B1Dg state;

however, by RCC ¼ 2:25a0, the energies of the two states

switch. By RCC ¼ 3:25a0, the energy of the B1Dg state is

below the energy of the X1Rþg state. It is also at this point

that the qualitative features of the PESs for the two 1Rþg
states start to display unusual features. As a result of an

avoided crossing, the energy of the X1Rþg state flattens out

while the PES of the B01Rþg state starts to increase more

steeply. As reported by Boschen et al. [59], this avoided

crossing results in a relatively inaccurate even-tempered

Gaussian fit to the PES. For RCC [ 5:5a0, the X1Rþg state,

in these state-averaged calculations, is once again below

the B1Dg state, and all three states dissociate to the ground-

state C 3Pð Þ fragments.

The complicated electronic structure of the X1Rþg and

B01Rþg states at selected bond lengths in terms of graph

densities is shown in Fig. 7. Contrary to the BeH2 system

where the ground-state wave function is dominated by a

single configuration near the collinear equilibrium geome-

try, there are several configurations that are important in

describing the X1Rþg state at RCC ¼ 2:25a0. In addition to

the restricted Hartree–Fock (RHF) configuration

2r2
g2r2

u1p
2
u;x1p

2
u;y (coefficient of 0.84), the coefficient of the

doubly excited configuration 2r2
g1p

2
u;x1p

2
u;y3r

2
g in the

MFGCF wave function for the X1Rþg state is 0.39. Such a

large coefficient for a molecule near its equilibrium

geometry is rather unusual. Although the coefficient mag-

nitudes of the two doubly excited configurations

2r2
g2r2

u1p
2
u;x3r

2
g and 2r2

g2r2
u1p2

u;y3r
2
g are negligible in the

X1Rþg wave function, these configurations account for

almost 80 % of the character of the B01Rþg wave function.

The difference in the character of the 1Rþg states is clearly

reflected by the wider distribution of significant node den-

sities for the B01Rþg state. For RCC � 3:25a0, the appearance

of the graph densities of the two 1Rþg states reverse, indi-

cating the drastic change in the wave function character

associated with the avoided crossing. Also note that for both

states, the densities for nodes with b 6¼ 0 or 2 are negligible

near the equilibrium bond distance, and the increased

magnitude of these node densities for RCC ¼ 6:0a0 indicate

the open-shell fragments are near the dissociation limit. At

the RCC ¼ 3:50a0 and RCC ¼ 6:0a0 geometries, the coeffi-

cient in the X1Rþg state of the 2r2
g2r2

u1p
2
u;x1p

2
u;y configura-

tion, which is dominant at RCC ¼ 2:25a0, is 0.29 and 0.19,

respectively. This small contribution is evident from the

small (4,0,1) node density in Fig. 7. Single reference

methods have difficulty describing accurately this ground-

state dissociation because of this drastic change in the

nature of the wave function.

For the B1Dg state, symmetry requires that the coeffi-

cient of the 2r2
g2r

2
u1p2

u;x1p
2
u;y configuration be zero. The
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vanishing densities of nodes ð4; 0; 0Þ and ð4; 0; 1Þ in the

graph density of the B1Dg state at RCC ¼ 2:25a0 shown in

Fig. 8 are consistent with this restriction. Although the

difference in character of the B1Dg and X1Rþg states is

apparent by inspection, this difference is less obvious upon

comparing the density plot of the B1Dg state to that of the

B01Rþg state since, at this geometry, the 2r2
g2r

2
u1p2

u;x1p
2
u;y

configuration is negligible in both states. Indeed, distin-

guishing these two states requires the inspection of the

coefficients for the 2r2
g2r2

u1p
2
u;x3r

2
g and 2r2

g2r
2
u1p

2
u;y3r

2
g

configurations in the MFGCF wave function. Within both

states, the magnitude of the coefficients should be the

same; however, the signs should be the same for the 1Rþg
states and opposite for the B1Dg state. In addition to

affording the identification of states with different sym-

metries, these coefficients can also serve as a measure of

the symmetry contamination in the approximate MFGCF

wave function. The magnitude of the symmetry error

defined by 2 jc1j � jc2jð Þ= jc1j þ jc2jð Þ, where c1 and c2 are

the coefficients of the aforementioned configurations, does

not exceed 10�3 for the entire B01Rþg PES. Although the

symmetry errors for the X1Rþg and B1Dg states remain

below this threshold for most of the PESs, the symmetry

errors peak near RCC ¼ 3:25a0 and 5:75a0. Not too

surprisingly, these bond distances correspond to points

along the PESs where the energies of the two states cross.

3.3 H8 model system

The H8 model of Jankowski et al. [60] consists of four

interacting stretched H2 molecules arranged in an
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Fig. 7 Graph density plots for the X1Rþg and B01Rþg states of C2 at RCC ¼ 2:25a0, 3:50a0, and 6:0a0. Graph densities are computed from an

MFGCF wave function with NGCF ¼ 3 and fmax ¼ 5
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Fig. 8 Graph density plot for the B1Dg state of C2 at RCC ¼ 2:25a0.

The graph density is computed from an MFGCF wave function with

NGCF ¼ 3 and fmax ¼ 5
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elongated octagon. All four molecular bond distances are

fixed at 2:0a0. Symmetric displacement of exactly two H2

molecules from opposite sides distorts the limiting D8h

regular octagonal configuration into various D2h elongated

octagonal configurations. The model parameter a measures

the displacement as shown in Fig. 9. This system has been

used extensively for benchmarking multireference coupled-

cluster methods [61–64]. The minimal basis set (MBS) of

Huzinaga [65] is employed in most studies and is used

herein. Investigations performed with double zeta and

double zeta plus polarization basis sets have concluded that

the MBS model captures all the essential features [66].

For the range 0\a� 1:0a0 the eight molecular orbitals

(MOs) in ascending energy order are 1a1g; 1b2u; 1b3u;

2a1g; 1b1g; 2b3u; 2b2u; and 2b1g. Throughout this range the
1A1g ground-state RHF wave function is 1a2

1g1b2
2u1b2

3u2a
2
1g.

This configuration dominates in the exact wave function

for 0:1a0� a; its coefficient is 0.83 at a ¼ 0:1a0 and 0.94 at

a ¼ 1:0a0. However, as a approaches 0 the 1b2u and 1b3u

MOs approach degeneracy, the highest occupied MO

(HOMO) 2a1g and the lowest unoccupied MO (LUMO)

1b1g become increasingly quasidegenerate, and the con-

figuration with a double excitation from the HOMO to the

LUMO 1a2
1g1b

2
2u1b2

3u1b2
1g becomes increasingly important.

The exact wave function is predominantly a two-configu-

ration wave function at a ¼ 0 with coefficients of magni-

tude 0.67 and opposite signs for 1a2
1g1b2

2u1b2
3u2a2

1g and

1a2
1g1b

2
2u1b

2
3u1b

2
1g.

Figure 10 contains a sequence of graph density plots

computed from MFGCF expansions that have been con-

verged to the full-CI limit. The order of levels in these

Shavitt graphs is the same as the MO order above. Of

particular interest are the node densities at the 2a1g level.

At a ¼ 0:0001a0 the densities of nodes ð4; 0; 0Þ and

ð3; 0; 1Þ are approximately equal showing the two-config-

uration character. At a ¼ 0:1a0 density has shifted from

ð3; 0; 1Þ to ð4; 0; 0Þ, and at a ¼ 1:0a0 the density at ð4; 0; 0Þ
is approaching unity indicating the single-configuration

character. Thus, the progression of node densities in the

RHH

8 7

3 4

α α

1

2

6

5

Fig. 9 The H8 model nuclear configurations and parameter defini-

tions. All four H2 molecular bond distances RHH are fixed at 2:0a0. a
is the displacement from a regular octagon to an elongated octagon of

D2h symmetry. The drawing is to scale for a equal to 1:0a0. In the

extended H8 model, all four H2 fragments are displaced symmetri-

cally from the center of mass along the D4h dissociation path

0

1a1g

1b2u

1b3u

2a1g

1b1g

2b3u

2b2u

2b1g

 0 1 2 3 4
le

ve
l

a

α = 1.0 a0

b= 

b= 

0

0

1

1

2

2

3

3

4

4

0

0

1

1

2

2

3

3

0

0

1

1

2

2

0

0

1

1

0

0

0

1a1g

1b2u

1b3u

2a1g

1b1g

2b3u

2b2u

2b1g

 0 1 2 3 4

le
ve

l

a

α = 0.1 a0

b= 0

b= 

0

0

1

1

2

2

3

3

4

4

0

0

1

1

2

2

3

3

0

0

1

1

2

2

0

0

1

10

0

1a1g

1b2u

1b3u

2a1g

1b1g

2b3u

2b2u

2b1g

 0 1 2 3 4

le
ve

l

a

α = 0.0001 a 0

b= 

b= 

0

0

1

1

2

2

3

3

4

4

0

0

1

1

2

2

3

3

0

0

1

1

2

2

0

0

1

1

0

0

=+1.000E+00

Fig. 10 Graph density plots for the ground state of the H8 model at

a ¼ 0:0001; 0:1, and 1:0a0
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figure reveals the fundamental change in the character of

the wave function. The graph density difference plots in

Fig. 11 highlight the shift in density. In the left-hand plot

the a ¼ 0:0001a0 density is subtracted from the a ¼ 0:1a0

density, and in the right-hand plot the a ¼ 1:0a0 density is

subtracted from the a ¼ 0:1a0 density. Significant positive

density differences are indicated in green, significant neg-

ative density differences are indicated in red, and small

differences of any sign are gray. The sum of the density

differences at any level equals zero. Thus, relatively greater

density for a ¼ 0:1a0 is green in both plots. The left-hand

plot shows density shifting to node ð3; 0; 1Þ in the a ¼
0:0001a0 wave function relative to the a ¼ 0:1a0 wave

function which indicates an increasing contribution of the

1a2
1g1b

2
2u1b

2
3u1b

2
1g configuration. In contrast, the right-hand

plot shows density shifting to node ð4; 0; 0Þ in the a ¼
1:0a0 wave function relative to the a ¼ 0:1a0 wave func-

tion which indicates an increasing contribution of the

1a2
1g1b

2
2u1b

2
3u2a

2
1g configuration.

3.4 Extended H8 model system

A straightforward extension of the H8 model of Jankowski

et al. [60] (see Sect. 3.3) is displacement of all four H2

molecules [64]. In particular to study size extensivity, all

H2 molecules are symmetrically displaced to infinity or as a

practical matter in this work to the D4h dissociation

geometry of a ¼ 994a0. A C1 localized orbital (LO) set

computed from the symmetrically orthonormalized atomic

orbitals [18] is employed. This set corresponds to the

orthonormal MOs that are closest in the least squares sense

to the atomic orbitals. Thus, these molecular calculations

are performed without a preliminary SCF or MCSCF

orbital optimization step. The order of levels in the Shavitt

graph is such that the LOs in each H2 are adjacent. Given

these conditions—noninteracting singlet fragments, a LO

basis set, and a fragment ordered Shavitt graph—a single

facet single GCF is formally size extensive. Figure 12

shows the graph density plot computed from a GCF

expansion with NGCF ¼ 1 and fmax ¼ 1 for the ground state

of one H2 in its LO set, and Fig. 13 contains the corre-

sponding plot from an analogous GCF expansion for the

ground state of H8 in this extended model with its LO set

and noninteracting H2 molecules. The H8 plot is clearly

composed of four H2 plots joined head to tail demon-

strating the product nature of the wave function, the gray

nodes in Fig. 13 have zero density verifying that the H2

fragments are noninteracting, and for these GCF expan-

sions the energy of the composite system H8 is

�4:411215155407Eh exactly four times that of the frag-

ment H2 energy calculated at �1:102803788852Eh.
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Fig. 12 Graph density plot for the ground state of a single H2 in the

extended H8 model using a localized orbital basis
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4 Conclusion

Among the goals of electronic structure theory are the

prediction of energies of reactions, relative energies of

conformers, and energies of electronic states, as well as

other molecular properties. As a result of the instanta-

neous repulsion between electrons, accurate predictions

demand a complicated wave function structure that often

obfuscates an equally important aspect of electronic

structure theory to provide qualitative chemical insight

into bonding and potential energy surface features. The

MFGCF method allows for both goals to be addressed

simultaneously.

The MFGCF method, in addition to offering the pos-

sibility of reducing the exponential scaling of the exact

wave function with system size, also affords the efficient

manipulation and analysis of the wave function. Although

the MFGCF wave function has a quite complicated

recursive structure, the underlying Shavitt graph coupled

with the graph density concept provides an intuitive

approach for analyzing the character of the wave function.

Since graph densities retain important information related

to the spin-coupling structure of the wave function, they

complement existing analysis methods based on the

density matrix or Mulliken and Löwdin populations. Even

though this concept may be employed with traditional

wave function methods, it is particularly useful in the

context of the MFGCF wave function as the recursive

construction of the graph densities scales polynomially

with system size.

In this work, the MFGCF method was applied to model

systems for studying the changes in wave function char-

acter from a graph density perspective. The graphical

nature of the analysis allows a very intuitive avenue for

visualizing the complex changes in the electronic structure.

To wit, for the extended H8 model, in which the four H2

molecule fragments are noninteracting, the product struc-

ture of the wave function in terms of fragment wave

functions is readily apparent and demonstrates the correct

behavior of the MFGCF wave function with system size.

For the systems studied, the sizes of the wave functions are

small enough so that the more detailed analyses of the

wave functions in terms of CSF coefficients are tractable.

The qualitative features inferred from the node and arc

densities are in good agreement with the quantitative

analyses based on CSF coefficients. Nonetheless, it should

be recognized that the graph density concept is not always

sufficient for a detailed analysis of a wave function. Since

the graph density is formally based on the magnitude of the

CSF coefficients, potentially important phase information

is lost. Near avoided crossings, such as in the BeH2 system

examined herein, two states may have nearly indistin-

guishable graph densities. To distinguish the X1Rþg and

B01Rþg states of C2 from the B1Dg states also requires a

more quantitative analysis of the wave function. In both

these cases, the actual CSF coefficients (including sign) are

needed. For larger systems, should the use of CSF or Slater

determinant coefficients be desirable, efficient routines for

extracting the coefficients of user-specified CSFs or Slater

determinants have been developed [32, 37].

The concept of graph density is not only a comple-

mentary wave function analysis tool, but also offers

possibilities for improving the optimization of the

MFGCF wave function parameters. In the current

approach, the number of facets for the individual nodes is

restricted to not exceed some user-specified value fmax.

Clearly, this is not the optimal approach as nodes that

contribute significantly to the wave function or that have

a more multiconfigurational nature may require more

facets than other nodes in order to achieve a specified

wave function accuracy. A method for identifying these

nodes during the optimization is needed. Algorithms

similar to the decimation procedure in density matrix

renormalization group methods [48–50] or concepts rela-

ted to node densities, namely natural facet densities, may

be used to develop reliable tools for identifying these

important nodes. Developments along these lines and the

implementation of an optimization method with dynamic

facet counts will be explored in future work.
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18. Löwdin PO (1950) J Chem Phys 18:365

19. Weinhold F (1998) In: Schleyer PVR, Allinger NL, Clark T,

Gasteiger J, Kollman PA, Schaefer HF III, Schreiner PR (eds)

Encyclopedia of computational chemistry. Wiley, Chichester,

pp 1792–1811

20. Ivanic J, Ruedenberg K (2002) Theor Chem Acc 107:220

21. Buenker RJ, Peyerimhoff SD (1974) Theor Chim Acta 35:33

22. Abrams ML, Sherrill DC (2002) J Chem Phys 118:1604

23. Shavitt I, Rosenberg BJ, Palalikit S (1976) Int J Quantum Chem

Symp 10:33

24. Barr TL, Davidson ER (1970) Phys Rev A 1:644

25. Klopper W, Noga J, Koch H, Helgaker T (1997) Theor Chem Acc

97:164

26. Sosa C, Geersten J, Trucks GW, Barlett RJ, Franz JA (1989)

Chem Phys Lett 159:148

27. Taube AG, Bartlett RJ (2005) Collect Czechoslov Chem Com-

mun 70:837

28. Landau A, Khistyaev K, Dolgikh S, Krylov AI (2010) J Chem

Phys 132:014109

29. DePrince AE, Sherrill DC (2013) J Chem Theory Comput 9:293

30. Shepard R (2005) J Phys Chem A 109:11629

31. Shepard R, Minkoff M, Brozell SR (2007) Int J Quantum Chem

107:3203

32. Shepard R, Gidofalvi G, Brozell SR (2014) The multifacet

graphically contracted function method: I. Formulation and

implementation. J Chem Phys (in press)

33. Shepard R, Gidofalvi G, Brozell SR (2014) The multifacet

graphically contracted function method: II. A general procedure

for the parameterization of orthogonal matrices and its applica-

tion to arc factors. J Chem Phys (in press)

34. Shepard R (2006) J Phys Chem A 110:8880

35. Shepard R, Minkoff M (2006) Int J Quantum Chem 106:3190

36. Brozell SR, Shepard R, Zhang Z (2007) Int J Quantum Chem

107:3191

37. Gidofalvi G, Shepard R (2009) J Comput Chem 30:2414

38. Gidofalvi G, Shepard R (2009) Int J Quantum Chem 109:3552

39. Brozell SR, Shepard R (2009) J Phys Chem A 113:12741

40. Shepard R, Gidofalvi G, Hovland PD (2010) Int J Quantum Chem

110:2938

41. Gidofalvi G, Shepard R (2010) Mol Phys 108:2717

42. Judd BR (1963) Operator techniques in atomic spectroscopy.

McGraw-Hill, New York

43. White SR (1992) Phys Rev Lett 69:2863

44. Rissler J, Noack RM, White SR (2006) Chem Phys 323:519
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Abstract We present in this paper a comprehensive study of

the various aspects of size extensivity of a set of unitary group

adapted multi-reference coupled cluster (UGA-MRCC) theo-

ries recently developed by us. All these theories utilize a Jez-

iorski–Monkhorst (JM) inspired spin-free cluster Ansatz of the

form jWi ¼Pl Xlj/licl withXl ¼ fexpðTlÞg, whereTl is

expressed in terms of spin-free generators of the unitary group

UðnÞ for n-orbitals with the associated cluster amplitudes.f:::g
indicates normal ordering with respect to the common closed

shell core part, j0i, of the model functions,f/lgwhich is taken

as the vacuum. We argue and emphasize in the paper that

maintaining size extensivity of the associated theories is con-

sequent upon (a) connectivity of the composites, Gl, con-

taining the Hamiltonian H and the various powers of T

connected to it, (b) proving the connectivity of the MRCC

equations which involve not only Gls but also the associated

connected components of the spin-free reduced density

matrices (RDMs) obtained via their cumulant decomposition

and (c) showing the extensivity of the cluster amplitudes for

non-interacting groups of orbitals and eventually of the size-

consistency of the theories in the fragmentation limits. While

we will discuss the aspect (a) above rather briefly, since this

was amply covered in our earlier papers, the aspect (b) and (c),

not covered in detail hitherto, will be covered extensively in

this paper. The UGA-MRCC theories dealt with in this paper

are the spin-free analogs of the state-specific and state-uni-

versal MRCC developed and applied by us recently.We will

explain the unfolding of the proof of extensivity by analyzing

the algebraic structure of the working equations, decomposed

into two factors, one containing the composite Gl that is

connected with the products of cumulants arising out of the

cumulant decomposition of the RDMs and the second term

containing some RDMs which is disconnected from the first

and can be factored out and removed. This factorization ulti-

mately leads to a set of connected MRCC equations. Estab-

lishing the extensivity and size-consistency of the theories

requires careful separation of truly extensive cumulants from

the ones which are a measure of spin correlation and are thus

connected but not extensive. We have discussed in detail, using

diagrams, the factorization procedure and have used suitable

example diagrams to amplify the meanings of the various

algebraic quantities of any diagram. We conclude the paper by

summarizing our findings and commenting on further devel-

opments in the future.

Keywords Unitary group adaptation � Size-extensive SS

and SU MRCC � Spin-free RDM � Spin-free cumulants �
Connectivity of cumulants � Spin correlation of cumulants

1 Introduction

Since a non-relativistic Hamiltonian, H, for the many-

electron problem is spin-free, it’s eigenstates are all

Rahul Maitra and Debalina Sinha have contributed equally to this
work.

Dedicated to the memory of Professor Isaiah Shavitt and published as

part of the special collection of articles celebrating his many

contributions.

R. Maitra � D. Sinha � S. Sen � D. Mukherjee (&)

Raman Center for Atomic, Molecular and Optical Sciences,

Indian Association for the Cultivation of Science,

Kolkata 700 032, India

e-mail: pcdm@iacs.res.in

Present Address:

R. Maitra

Frick Chemistry Laboratory, Department of Chemistry,

Princeton University, Princeton, NJ 08544, USA

123

Theor Chem Acc (2014) 133:1522

DOI 10.1007/s00214-014-1522-5

Reprinted from the journal 21

mailto:pcdm@iacs.res.in


characterized by fixed eigenvalues for the operator S2. This

is why it is conceptually and computationally convenient to

describe approximate eigenstates of H as a combination of

basis which are anti-symmetric functions with a fixed

eigenvalue of S2. There is an enormous literature describ-

ing the various spin-adaptation procedures for a many-

electron function. Among them, three methods, all group

theoretic in origin but using different groups, stand out as:

(a) permutation group (b) SU2 group and (c) unitary group.

Approaches based on these groups have been studied

extensively in the context of electron correlation problems,

in particular for configuration interaction (CI)-based for-

malisms. In spinorbital-based formalisms, the permutation

group [1–7] or SU2 [8] group adaptations fit in naturally in

a CI framework which requires spin adaptation of the CI

coefficients appearing in a linear manner in the wave

function. Both these approaches have found wide use. It is

rather difficult, however, to extend these spin adaptations

to a many-body formalism in a spinorbital basis using

nonlinear cluster Ansatz of the wave operator such as

expðTÞ. Even though spin adaptation can be achieved by

using proper coupling coefficients for the operators T , their

powers still lead to spin contamination. The Unitary Group

Approach (UGA), on the other hand, has the property that a

spin-free operator can be written in terms of spin-free

generators of the unitary group whose powers also remain

spin free. Hence, a coupled cluster representation of the

wave operator for a spin-free T is spin free. For developing

spin-free many-body theories, a unitary group approach

(UGA) is thus the most natural choice. We may mention

here that a UGA path to other nonlinear Ansätze for a wave

function has also been explored in recent years [9–12].

From now on, we will refer to the spin-free generators of

the unitary group as generators.

The application of unitary group to nuclear many-fer-

mion problem involving Hamiltonians which are spin and

iso-spin independent was developed by Moshinsky and

Seligman [13–15]. The spin-free formulation for the spin-

independent many-electron Hamiltonian was considered

earlier by Matsen [16, 17]. But it is only after the advent of

group theoretic simplifications for a Hamiltonian which is

spin independent (and having no additional quantum

number like iso-spin) via a unitary group approach by

Paldus [18], the concomitant graphical representation by

Shavitt [19, 20] of the unitary group adapted spatial

Gel’fand states and of the associated matrix elements of

generators between two Gel’fand states that the true rev-

olution in compact and efficient unitary group-based spin-

free theories was achieved. Subsequently, more efficient

and general formulae for matrix element evaluation were

developed, comprehensive accounts of which can be found

in Refs. [21, 22]. The advantages of the unitary group

formulation lie in the efficient evaluation of the possible

matrix elements involving generators for which, at the

current stage of development of quantum chemistry, there

are already very efficient computer codes [23–29] which

any new many-electron theory can embed in its own code

for its own unitary spin-adaptation strategy. UGA theories

have been utilized for CI [23], MCSCF [30–32] and spin-

free single CSF-based UGA CC [33, 34]. There was also a

prescient proposal for UGA-SUMRCC [33] using the

Jeziorski–Monkhorst (JM)-type multi-exponential Ansatz.

It is important to mention here that for any practical

implementation of a UGA scheme, one need not demand

that the n-electron CSF’s be adapted to UðnÞ. Rather, it is

expedient to demand that the CSF’s be adapted to the

subgroup of UðnÞ; uðnÞ ¼ UðncÞ � UðnaÞ � UðnvÞ, where

nc, na, and nv are, respectively, the number of core, active,

and virtual orbitals. This is simply due to the physical

requirement that the maximum invariance of an approxi-

mate function that one may practically impose is the

invariance of the function and the energy with respect to

separate unitary transformation among core, active, and

virtual orbitals. This was indeed done in the UGA CC

papers by Paldus and others [33, 34]. In particular, both

these papers have used the uðnÞ-adapted scalar tensor

generators in their choice of excitation operators. We also

point out two references [35, 36] in this context where

useful discussions of other UGA-based approaches and

their interrelation can be found. Reference [36] has also

presented in considerable detail a number of approximately

spin-adapted CC approaches and their relationship with

UGA CC. We also point out that Li and Paldus have

applied the UGA CC method to many problems (see e.g.,

Refs. 39–48 in [37]).

As emphasized in the first para of our introduction, a

spin-adapted formulation of any coupled cluster formalism

using spinorbital basis is beset by the problem of spin

contamination of the function for terms containing non-

linear powers of the cluster operators acting on the refer-

ence function. Nevertheless, progress was made in the

development of such spin adapted formalisms by imposing

on the wave function the constraint that the final function

be an eigen function of the total spin with a fixed eigen-

value [38, 39]. An approximate spin-adapted formulation

where the expectation value of S2 is constrained to a fixed

value corresponding to a given spin was considered

somewhat earlier [40]. Nooijen and Bartlett have proposed

a unitary group-based spin-adapted open-shell coupled

cluster for a single reference function [41]. We should also

mention the spin-adapted cluster (SAC) expansion for-

malism of Nakatsuji [42, 43] in this context. Here also, the

linear term of the cluster expansion of the wave function is

spin adapted although the full wave function is not.
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Unfortunately, all these developments are rather difficult to

generalize for a full exponential type of wave operator.

Recently, we have published the development and

implementation of unitary group adapted state specific (SS)

and state-universal (SU) multi-reference coupled cluster

theories which are called the UGA-SSMRCC [44, 45] and

UGA-SUMRCC theories [44, 46–48], respectively. This

paper will focus on an exhaustive treatment of the proof of

connectivity and eventually of extensivity of the MRCC

equations of the spin-free formulations of state-specific (SS)

[44, 45] and the state-universal (SU) [44, 46–48] variety. We

therefore mention in this context that our recent spinorbital-

based parent formulations are the most relevant, and we

would not dwell in this paper on other MRCC approaches.

The SUMRCC for complete active spaces in the spinorbital

basis was first formulated by Jeziorski and Monkhorst [51].

Generalization to encompass incomplete active spaces was

formulated later by Mukherjee [52, 53], Mukhopadhyay and

Mukherjee [54] and by Bartlett et al. [55, 56]. The state-

specific MRCC using the JM Ansatz in the spinorbital-based

theory was formulated by Mukherjee et al. [57–59], which

has been rather extensively used [60–62]. Study of impor-

tance of higher-rank excitations [63–65], parallelization

strategies [66, 67] as well as analytic gradients was done

subsequently by others [68]. There have also been multi-

reference equation of motion (MREOM) versions for the

state-specific theory [69–73]. For the sake of completeness,

we should mention that internally contracted MRCC theories,

using a single-wave operator, were also suggested [74–79] all

of which were formulated in spinorbital basis and thus were

not spin adapted. We will not discuss these formulations any

further since we are not going to discuss the spin adaptations

of these theories in this paper.

In the spin-free formulations of the UGA-MRCC theo-

ries, the use of CSFs entails that both the MRCC equa-

tions are in matrix form and the associated effective

Hamiltonians will involve various n-body spin-free

reduced density matrices (n-RDMs). n-RDMs are product

separable and hence not size-extensive. From now on, we

will refer to the spin-free RDMs as simply the RDMs.

When spinorbital-based RDMs are discussed, we will

explicitly indicate this. So, no confusions should arise. It is

non-trivial to establish the extensivity of both the cluster

operators and the effective Hamiltonian in spite of the

occurrence of these n-RDMs. This paper will briefly review

the formulation of the UGA-MRCC theories mentioned

above and will present a comprehensive account of the

aspects of connectivity which leads to extensivity.

Although in some of our earlier papers [47] we sketched

how size extensivity emerges after the cumulant decom-

position of the n-RDMs, we will present here a detailed and

thorough analysis of the underlying issues.

It will turn out that a proper understanding of the con-

sequence of connectivity in a spin-free formalism requires

a careful conceptual separation of three inter-related but

distinct properties: (a) Connected entities which are not

spatially product separable as happens for cumulants

describing spin correlation between spatially separable

fragments. (b) Connected entities which are spatially sep-

arable (i.e., matrix element of operators with mixed indi-

ces, simultaneously involving indices of orbitals belonging

to different groups), which vanish if the inter-group inter-

actions in the Hamiltonian are switched off. They are

necessarily size-extensive at any point on the potential

energy surface (PES). (c) Matrix elements of operators

which vanish when the system separates asymptotically

into non-interacting fragments; these are the size-consistent

operators when the orbitals are localized on different

fragments. As mentioned above, the connected entities

with property (a) can arise due to the spin-free nature of the

formalisms. If the system dissociates into non-interacting

fragments A and B, the total wave function W becomes an

anti-symmetrized product of the form A	AAB½WsA
A W

sB
B 
s,

where WsA
A and WsB

B are anti-symmetric fragment functions

of given spins sA and sB targeted by us as the corresponding

fragment functions. Due to the constraint that the fragment

functions have to be coupled to a given spin s, one intro-

duces spin correlation between the fragment functions

which only depends on the coupled spin s. The associated

cumulants do not have any dependence on the inter-frag-

ment separation. These cumulants have mixed orbital

indices on different fragments but appearing in a permuted

fashion like KvBuA
uAvB

, say, for a spin-free two-body cumulant.

This is a connected entity by construction in the sense that

such entities are non-factorizable into factors having no

orbitals in common. However, they will remain non-van-

ishing even for inifinite inter-fragment separation, even if

they are connected. In contrast, operators mentioned in

(b) above are both connected and spatially separable which

makes them vanishing and are the extensive entities we are

after. For entities of type mentioned in (b) above with

orbitals on different fragments, one gets the property (c),

and their vanishing nature for non-interacting fragments

will spell size-consistency.

The connecting threads in our developments will be as

follows:

1. Use of unitary group algebra to choose the model

space CSFs as Gel’fand states and compute the various

matrix elements of the generators between them.

2. Reduction of the expressions for the MRCC equations

to explicitly connected ones via the decomposition of

the n-RDMs into products of spin-free one-body

RDMs and spin-free cumulants [80–82] and establish
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the connectivity of the projection equations of our

MRCC formalisms.

3. Subsequent proof of size extensivity and consistency

of the theories.

The paper is organized as follows: In Sect. 2, we begin with

a brief résumé of the UGA-based MRCC theories devel-

oped by us and show the generic similarity in the algebraic

structure of their working equations. Section 2.1 presents

certain basic elements of the unitary group approach. This

serves two purposes: both to introduce the notations and

also to indicate the essential building blocks in a UGA-

based MRCC theory. Section 2.2 presents brief discussions

on the various UGA-MRCC theories developed by us, the

working equations and highlights their differences and

similarities. Moreover, we will emphasize here how the

working equations of the various theories can all be sub-

sumed under one set of equations which would facilitate the

analysis of connectivity and extensivity. Section 3 analyzes

the aspects of connectivity of the MRCC equations. In

particular, we emphasize that a complete proof of connec-

tivity is predicated by the connectivity of the operator

composites generated from the Hamiltonian and the cluster

operators from the associated wave operator as well as a

reduction of the MRCC equations involving the above

composites and spin-free cumulants, which necessitates

extensive algebraic manipulation via cumulant decompo-

sition of the n-RDMs. Section 3.1 begins with a brief

review of the aspects of the connectedness of the operator

composites, referring to our previous papers [44–48] for the

details. This subsection is one of the central portions of our

paper since it will also present the details of the connectivity

of the working equations brought out by the cumulant

decompositions of the n-RDMs. Section 3.2 addresses the

other major issue., viz. the proof of extensivity and con-

sistency of our two UGA-MRCC theories. Since our theo-

ries are not invariant with respect to the transformation of

active orbitals, it is imperative to use active orbitals local-

ized on different fragments to arrive at size-consistency

from a size-extensive theory. Section 4 presents the sum-

mary of our presentation, the conclusions, and also the

avenues for future development.

2 UGA-SUMRCC and UGA-SSMRCC formalism

2.1 The use of the unitary group in MRCC

Any spin-independent m-body operator can always be

expressed in terms of m-products of one-body generators of

the unitary group UðnÞ. With the spinorbital creation and

annihilation operators for orbitals p and q and the spin state

r, the one-body generators Ep
q can be defined as

Ep
q ¼

X
r

aypraqr ð1Þ

Using UGA, the spin-free part of an N-electron function with

n-orbitals can be chosen as a basis of a particular irreducible

representation (irrep) of the unitary group, UðnÞ. However,

as emphasized in references [33, 34], it is much more con-

venient to adapt the spin-free part of an N-electron function

to the irreducible representations of the subgroup uðnÞ.
Because of the availability of very efficient softwares (like

GAMESS [29]), we have chosen model function CSFs /l as

Gel’fand states adapted to UðnaÞ, since for a complete active

space the doubly occupied core function j0i belongs trivially

to the identity representation of UðncÞ. For a one-body

generator, the matrix elements like, h/ljEp
qj/mi, can be

conveniently computed via a Shavitt graph [19, 20]. In a

similar manner, any m-body generator can be evaluated.

The Gel’fand functions, /l, can be formally generated

by the action of ‘Gel’fand creators, fYlCk g on j0i, taken as

the ‘vacuum’ for the development:

j/li ¼ fYlCk gj0i
� j/l

C
k
i ð2Þ

The indices C and k, indicate to which component k of the

Gel’fand basis for irreducible representation, C, of the

unitary group UðnaÞ, the function /l belongs. From now

on, we will drop the indices C and k from our functions /l

for notational simplicity.

For our formulation, we will take all the generators

involved in our formulation as normal ordered with respect

to the core taken as the vacuum and are to be henceforth

generically denoted as fEp
qg, fEpr

qsg, etc., for one-, two-

body,… generators where the curly bracket indicates normal

ordering with respect to the core. Here, p, q, etc., are arbi-

trary orbital indices. The rewriting of the products of nor-

mal-ordered spin-free generators of the unitary group can be

done using a spin-free version of the Wick’s theorem (WT)

whose content was summarized by Kutzelnigg [49, 50].

The Hamiltonian and the cluster operators in our for-

mulation will also be written in normal order and hence

will involve normal-ordered generators. The Hamiltonian,

normal ordered with respect to a core j0i, has the structure:

H ¼ h0jHj0i þ fFcg þ fVg ð3Þ
where h0jHj0i is the unperturbed core energy, fFcg is the

core Fock operator:

fFcg ¼
X
p;q

hpjfcjqifEp
qg �

X
p;q

ffcgpqfEp
qg ð4Þ

whose elements are defined as

ffcgpq ¼ hpq þ
X
i2j0i

2v
pi
qi � v

ip
qi

� �
ð5Þ
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fVg is the two-body Coulomb operator in normal order and

is of the form:

V ¼ 1

2

X
pqrs

vprqsfEp
qE

r
sg �

1

2

X
pqrs

vprqsfEpr
qsg ð6Þ

The matrix element of the Hamiltonian, H, taken between

two Gel’fand states, /l and /m can be written as

h/ljHj/mi ¼ h0jHj0idlm þ
X
pq

fc
p
qh/ljfEp

qgj/mi

þ 1

2

X
pqrs

vprqsh/ljfEpr
qsgj/mi

ð7Þ

It is clear that the matrix elements of the one- and two-

body generators between Gel’fand states /l and /m gen-

erate one- and two-particle transition density matrix ele-

ments respectively: clm and Clm with appropriate indices:

clmpq ¼ h/ljfEp
qgj/mi ð8Þ

Clmpr
qs ¼ h/ljfEpr

qsgj/mi ð9Þ
Of course, if we know the transition density matrices for

the one-body generators, for all ðl; mÞ and all ðp; qÞ, then

not only the two-body transition matrices but also the

higher-body transition density matrices can be derived by

resolution of identity over all intermediate states k and

using simple matrix multiplication. For such a situation to

hold, obviously the space spanned by the Gel’fand states, k,

must be complete. In an MRCC setting, we choose an

active (or a model) space which may or may not be com-

plete with respect to distribution of active electrons in

active orbitals, which are partially occupied in some /l but

not in others. We have used in all our applications hitherto

the program system GAMESS [29] for getting the one-

particle transition density elements obtained using the

Graphical Unitary Group Approach (GUGA).

We conclude this subsection by summarizing our nota-

tion for the sections to come. We will denote the generic

labels of orbitals, as mentioned above, by p; q; . . ., etc., the

occupied by i; j; . . . the active by u; v;w; :::, and the virtuals

by a; b; :::, etc.

2.2 Working equations for UGA-MRCC theories

The Ansatz we have chosen for our unitary group-based

MRCC methods [45–48] is designed to closely mimic the

Jeziorski–Monkhorst (JM) Ansatz [51, 83] in order to

follow quite closely the developments in the analogous

non-spin-adapted theories. As mentioned, we choose a set

of Gel’fand states, /l, to denote the model functions. We

next introduce our spin-free JM-inspired Ansatz in Eq. (10)

for the wave operator Xl acting on /ls. Our choice differs

in two aspects from the traditional spinorbital-based JM

Ansatz. The Tls are written in terms of generators normal

ordered with respect to a suitable closed shell vacuum j0i.
The first difference is operationally manifest as Tls defined

using spatial orbitals which do not commute with each

other. The second difference arises due to our desire to

have naturally truncating working equations after a finite

power of T. This is accomplished by choosing Xl to be of

the following normal-ordered exponential form:

Xl ¼ fexpðTlÞg ð10Þ
Although we feel that a combinatoric spin-free cluster

expansion [84, 85] developed earlier in our group uses a

wave operator that incorporates all the essential aspects of

the analogous spinorbital-based JM Ansatz in a more

complete way, we have chosen to work with our normal-

ordered Ansatz which yields simpler equations and yet has

been found to be very good. This is despite the fact that it

misses some additional clusterings due to this normal

ordering of the Ansatz. We have used the Ansatz in Eq.

(10) for Xl for both our unitary group adapted state-uni-

versal MRCC (UGA-SUMRCC) [46] and the correspond-

ing state-specific MRCC (UGA-SSMRCC, also known as

UGA-MkMRCC) [45].

The parametrization for the wave function is thus:

jWki ¼
X
l

fexpðTlÞgj/liclk ð11Þ

In the SS formalism, we target only one function jWi, and

hence, the coefficients fclkg have no k dependence, and

thus, we drop the state index k. In the SU formalism, all

jWki states are targeted but the equations for obtaining the

amplitudes with whose connectedness we are concerned

have no dependence on fclkg.
We will use a shorthand notation fellg for a normal-

ordered generator inducing transition of j/li to a virtual

function jvlli. The operator fEg is labeled by string of

operators vacated and created, respectively. If a string of

orbital indices, collectively labeled as Il, is replaced by

another string of indices Al to convert /l to vl, the exci-

tation operator fellg is really nothing but the normal-ordered

product fEAl

Il
g, where the associated string is explicitly

specified in an abstract manner. The operators fEAl

Il
g are

neither linearly independent nor orthogonal in the sense of

producing linearly independent or orthogonal jvllis. We,

however, want for a particular truncation strategy of the

rank of the operator Tl only those operators that can be

classified into complete sets of Il of upto mc core orbitals

and ma active orbitals vacated and in Al of upto mv virtual

orbitals and m0a active orbitals created. Obviously,

mc þ ma ¼ mv þ m0a. In principle, one should choose for a

fixed choice of mc and mv all those operators needed to span
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the full scalar tensor space of uðnÞ. This fixes the highest

values of ma and m0a, as mmax
a , and m0max

a , given a fixed mv.

In practice, however, one does not necessarily have to

include all operators that are needed to span the full tensor

subspace corresponding to the replacement of mc core with

mv virtual orbitals. It is enough to chose all excitation up to

a certain ma and m0a which are less than mmax
a and m0max

a ,

respectively. We will use these excitation operators in our

Tl. They are still generally linearly dependent and one can

extract the corresponding linearly independent scalar tensor

generators of uðnÞ by group theoretic techniques as for

example what was done in references [33, 34]. In our

present formulation, in conformity with our earlier devel-

opments, we will use the set of operators Il and Al con-

taining up to some fixed ma and m0a. This will correspond to

a given truncation strategy of the rank of the cluster oper-

ators of Tl. Neither the proof of connectivity nor of ex-

tensivity, however, depends on the rank of truncation.

In order to eliminate the redundancy of the operators

fEAl

Il
g, we would introduce extra cluster operators as new

variables and would provide equations for them to resolve

the redundancy. The proof of the connectivity and exten-

sivity of the theory is simpler if such vlls are used. After the

conclusion of the proof, we would indicate how we could

have developed the corresponding UGA-based MRCC

theories with only linearly independent excitations in Tl. In

fact, once the size extensivity of our theories with linearly

dependent operators is established, we will discuss some

possible choice of the linearly independent scalar tensor

generators of uðnÞ. The principal goal of this paper is not

affected by whether we use linearly dependent or inde-

pendent operators. We will also indicate how the analysis

of the size extensivity provides us with some insight into

what could be a natural choice for the excited state mani-

fold and hence, the excitation operators, fellg.
Although the starting points for the UGA-SUMRCC and

UGA-SSMRCC are different, the equations ultimately

assume the same structure which we shall generally treat to

demonstrate both the connectivity and the size extensivity.

2.2.1 UGA-SUMRCC

The UGA-SUMRCC is a multi-root formalism, based on

effective Hamiltonians, starting from the Bloch equation.

The Bloch equation for our model space, with the projector

P, for the wave operator, X, is of the form:

HXP ¼ XPHeffP ð12Þ
where, X is chosen as

X ¼
X
l

fexp Tlgj/lih/lj ð13Þ

Heff is given by,

Heff ¼ ½PXP
�1
PHXP ð14Þ

If we choose a complete active space (CAS), the inter-

mediate normalization (IN), PXP ¼ P is used and as a

consequence, Heff ¼ HXP. For incomplete model spaces,

PXP 6¼ P and the expression of Heff in Eq. (14) must be

used [52–54]. Using our Ansatz in the Bloch equation, we

arrive at the working equation:

(15)

ð15Þ
where Wml is a closed operator which scatters from /l to /m.

fHlgex is the excitation component of the similarity trans-

formed Hamiltonian fexpð�TlÞH expðTlÞg which features

in what is called the ‘direct’ term and occurs identically in

the UGA-SSMRCC theory to follow. The second so-called

coupling term controls the mixing of the different model

functions in the Tl-determining equations 8l.

We write Eq. (15) in a compact notation as

hvlljGSU
l j/li ¼ 0 ð16Þ

where GSU
l is a composite connecting /l and vll containing

both the direct and coupling term:

ð17Þ
The superscript ‘SU’ has been used to distinguish the

structure of Gl for state-universal (SU) MRCC vis a vis the

state-specific (SS) MRCC theories to follow. For the details

of the derivation, we refer to our paper [46]. In our first

formulation [46–48], we wanted to apply the theory to

study excitation energies or excited states relative to a

closed shell ground state. For this, we chose the active

space to consist of active holes and particles and all pos-

sible h-p excited CSFs were generated for this choice. In

the terminology of Lindgren [86], such model spaces are

called quasi–complete model spaces (QMS), and it was

shown long ago by Mukherjee that the size extensivity of

an effective Hamiltonian theory with an incomplete model

space (IMS) including QMS requires that the customary

intermediate normalization (IN) be abandoned [52–54]. In

the general situation where a CAS is used, Heff ¼ PHXP,

and the equations are considerably simplified. Since we are

mainly concerned with the issue of size extensivity of the

theories, the modifications necessary to ensure size exten-

sivity, by abandoning IN for X, are minor in nature and are
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not particularly germane for our later discussions of size

extensivity.

2.2.2 UGA-SSMRCC

The UGA-SSMRCC is a single-root intruder-free MRCC

starting from the Schrödinger equation. In a way exactly

analogous to what was derived for the spinorbital-based

SSMRCC [57–59], there will be the necessity of invoking

sufficiency conditions to eliminate redundancy of the

number of cluster amplitudes, and there will appear both a

‘direct’ and a set of ‘coupling’ terms. On account of the

normal ordering of the UGA Ansatz, the direct term will

terminate exactly at the quartic power, while the highest

power of the coupling term will depend on the level of

truncation of the cluster operators and the rank of ~Hlm.

We have shown in our parent UGA-SSMRCC paper [45]

that there are two ‘natural’ ways of choosing the sufficiency

conditions, and each leads to a set of UGA-SSMRCC

equations for the cluster amplitudes which is inequivalent

with the other. However, a study of the numerical perfor-

mance of both the variants leads us to the conclusion that

they produce very close results and no criteria for choosing

one over the other can be established [44]. Since the version

A involves fewer terms and is simpler in structure, our

subsequent applications focused mainly on this alternative.

The target state jWi in our UGA-SSMRCC formulation

is sought to be obtained by the action of the wave operator

X on to the reference function jW0i ¼
P

l j/licl:

jWi ¼ XjW0i ¼
X
l

Xlj/licl ð18Þ

The Schrödinger equation for jWi is given by

HjWi ¼ EjWi ð19Þ
where H is written in normal order with respect to the core

function j0i as the vacuum, viz. Eq. 3.

Our working equations for the cluster amplitudes of the

set fTlg will be obtained by substituting the expression, of

Eq. (18) in Eq. (19):

fHg
X
l

expðTlÞ
� �j/licl¼E

X
l

expðTlÞ
� �j/licl ð20Þ

The normal ordering is with respect to the core j0i, taken as

the vacuum. At the stage of invoking sufficiency condi-

tions, analogous to the spinorbital-based SSMRCC, two

inequivalent paths present itself leading to what we call

sufficiency A and sufficiency B. These two alternatives,

then lead to the versions A and B alluded to above. The

reader is referred to our paper [45] for details leading to the

following working equations for the amplitudes of the

cluster operator fTlg:

ð21Þ
for the version A where

and

ð22Þ
for the version B. We will henceforth refer to the methods

as the UGA-SSMRCC-A and UGA-SSMRCC-B. Both

these Eqs. (21) and (22) can also be generally written as

hvlljGSS
l j/li ¼ 0 ð23Þ

where, GSS
l is either GA

l or GB
l :

(24)

ð24Þ

(25)

ð25Þ

Unlike in the spinorbital-based formulation, the UGA-

based MRCC theories use spin-free Gel’fand states /l as

the model functions and generate projection equations

leading from each model function /l to virtual functions

vll reachable by cluster operators Tl in a given truncation

scheme.

Depending on the theory, the operator GSU
l or GSS

l

sandwiched between vll and /l are different, but in each of

the versions, the matrix elements Ml
l of the corresponding

operator between vll and /l, written as h/ljfellgyGlj/li,
turns out to be a sum of certain amplitude terms (as

introduced in Eqs. (17), (24) and (25), involving compos-

ites of H and powers of fTlg, fTmg, etc., along with certain

RDMs of different ranks. Since the RDMs are factorizable

quantities, which can lead to disconnected terms in the

working equations, its not obvious at first sight that the

working equations are connected [45], and hence, the

theory does not manifestly appear to be size-extensive (the
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energies of individual non-interacting fragments are not

additively separable). We will present here a comprehen-

sive analysis to prove the extensivity of the working

equations.

3 Aspects of connectivity, size extensivity,

and size-consistency in the UGA-MRCC theories

Although we have mentioned in the earlier sections about

two distinct but inter-related aspects of size extensivity, it

is essential that we present these two separately. We will

then have a proper theoretical underpinning of these two

aspects. Since our working equations have the generic

structure:

Ml
l ¼ hvlljGlj/li � h/ljfellgyGlj/li ¼ 0 ð26Þ

,they involve ultimately a sum of composites generated by

the application of Wick’s theorem (WT) on the product

fellgyGl to generate various terms in normal order [87].

Unless the operators left uncontracted in such a term have

only active labels, the expectation value h/ljf:::gj/li will

vanish, and henceforth, we will consider only those terms

where the composites contain only active left uncontracted.

If a particular composite contains k number of active

indices destroyed and the same number of active indices

created, the expectation value h/ljf:::gj/li will generate a

k-RDM CðkÞll containing k-pairs of active orbitals with the

appropriate lower and upper active indices. These k-RDMs

are quasi-diagonal in the sense that for a fixed set of lower

indices, the upper indices can at most be the permutation of

the lower indices.

The proof of size extensivity of each term of Ml
l gen-

erated by WT is somewhat harder than all the previous

MRCC formalisms, since each term containing some k-

RDMs turns out to be a product of the specific RDMs and

one or other of the amplitudes gl of a particular term of Gl.

From Eqs. (15), (21) and (22), the amplitudes of the

composites Gl are connected if Tls are connected. The

labels on the corresponding k-RDMs, Ck, are not neces-

sarily connected in the composite, Ml
l, with the labels of

the G-block. The uncontracted active lines thus cannot

come entirely from the active orbitals of the G-block and

they may not have common orbital labels with the

uncontracted active operators in the G-block. Unlike the

amplitudes gl, the matrix elements of Ck are not connected

since these are multiplicatively separable operators. Hence,

the entire composite may not be connected.

As explained above, for proving the extensivity, we

need to proceed in two steps. In Sect. 3.1, we will establish

that the MRCC equations are connected if the cluster

operators and Gls are connected. In other words, we would

first show that the connectivity of the composite Gl, the

cluster amplitudes Tl and the MRCC equations are mutu-

ally compatible. Of course, we need finally to prove the

more stringent property that the cluster operators are not

only connected but also spatially extensive in the sense that

the cluster amplitudes labeled by a set of orbitals will all go

to zero if we keep these orbitals in two arbitrary groups and

switch off interaction between these groups (which

amounts to switching off the Hamiltonian matrix elements

with mixed inter-group indices). This issue is non-trivial

since several connected terms in the MRCC equations

would contain inter-group cumulants with mixed indices

which do not vanish if the interaction between these groups

is turned off. As we will discuss in Sect. 3.2, a certain class

of mixed cumulants, which we will call as inter-fragment

‘exchange’ cumulants, are nonzero due to spin correlations

only and they have no spatial dependence. These are the

connected composites of type (a) introduced in Sect. 1

which are connected but not spatially extensive. Since they

appear as a multiplicative factor with the matrix elements

of Gl, connectivity of the MRCC equations does not nec-

essarily guarantee extensivity.

In the next step, we analyze the structure of the various

terms generated after the application of the WT to the

matrix element Ml
l in our working equations and establish

that we can systematically eliminate the disconnected

portion of Ml
l, if we keep track of which components of the

composites containing Ck and Gl are connected. This

particular analysis requires the concept of cumulant

decomposition [75, 80, 88, 89] of the density matrix ele-

ments of Ck for various ranks k. Since the final working

equations are connected after the elimination of the dis-

connected terms, the cluster amplitudes of fTlg are con-

nected and are compatible with the connectivity of Gl.

In the final step, we will prove that the cluster operators

Tl, obtained from the solution of the MRCC equations, are

extensive as well which would establish the extensivity of

the formalisms. Since these theories are not invariant with

respect to the transformation of active orbitals, we need to

use orbitals localized on fragments to show their size-

consistency.

3.1 Connectivity of the operator composites

and of the MRCC equations

We briefly discuss first the issue of the connectivity of the

composite Gl for the various UGA-MRCC theories. Since

the connectedness of the Gl for the various theories has

been proven in detail in our papers on UGA-SUMRCC [46]

and UGA-SSMRCC formalisms [44], we would dwell on

this aspect rather briefly. On account of the underlying
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perturbative structure of these CC equations, the tl-

amplitudes are taken as connected and remain so provided

the working equations are connected. The connectivity of

the Gls can be discussed in two part: a) the ‘direct’ term

and b) the ‘coupling’ term. Needless to say the ‘direct’

term is identical for GSU
l , GA

l and GB
l . The expression is

explicitly connected because H and the powers of the

operator fTlg are contracted to form a connected com-

posite. Thus, if Tl is a connected operator, the composite

from the ‘direct’ term is also connected.

It is the ‘coupling’ term which is different for the three

Gls discussed above. Notably, the coefficients cl feature in

GA=B
l but not in GSU

l . We briefly touch upon the simplest

situation of GSU
l first and then go on to elucidate the

additional considerations arising from the occurrence of

cls. For the two schemes A and B, the connectivity of GA=B
l

can be inferred from their operator structures. The proof is

in line with what was invoked in the paper on spinorbital-

based SSMRCC theory [57–59].

Connectivity of the coupling term for GSU
l for the UGA-

SUMRCC hinges on several different aspects of connec-

tivity. For the coupling term, we note that

there are two parts of which is

explicitly connected. The connectedness of fexp�ðTl �
TmÞXmlg requires some deliberation. /m and /l may differ

by at least one orbital or /l and /m may have the same

orbital occupancy and either /l ¼ /m or they differ in the

spin coupling scheme of the active orbitals. The details

have been explained in our earlier paper [47].

For showing the connectivity of coupling term for GA
l

for the UGA-SSMRCC-A, we recall from Eq. (24) the

expression for GA
l :

(27)

ð27Þ
where we have interchanged now the second and third term

of Eq. (24) for the ease of further discussions.

As in UGA-SUMRCC, we consider only the coupling

terms (ie. the second and third terms). The second term in

GA
l is connected if the Tls are connected. The third term

can also be proven to be connected as follows. Since we are

dealing with a CAS and the coefficients fckg are

obtained as eigenvectors of the connected matrix

in the CAS, the ratio ½cm
cl

 can

always be expressed as

cm

cl
¼ h/mjfexpðrlÞgj/li ð28Þ

where, the rls are all connected operators. This ratio thus

consists of products of amplitudes of rl which can induce

transitions from /l to /m. The difference TmðlÞ � Tl in the

third term will be functionally dependent on all the active

orbitals by which /l and /m differ, or when the orbital

occupancies are the same, they will be dependent on all the

orbitals involved in the respective spin couplings. The term

TmðlÞ indicates those Tm whose action on /l is nonzero. In

either case, fexpð�Tl þ TmÞgexj/li will have common

orbital labels with the connected term

Hence, the operator GA
l is

connected if the Ts are connected. Essentially the same

argument holds good for the scheme B and we will not

elaborate on this further.

We now go on to show the connectivity of the working

equations which will follow from the cumulant decompo-

sition of the n-RDMs. To begin with, we would explicitly

write out the general structure of the working equations,

Eq. (26), by indicating the strings of operators involved in

Ml
l. For this purpose, we introduce a couple of new and

more general notations to explain our procedure and

illustrate, with example diagrams, the significance of the

various notations describing the entities entering the com-

ponents of Ml
l. Every jvlli ¼ fellgj/li can be uniquely

defined in terms of substitutions of a set of orbitals of the

CSF /l, involving at least one inactive orbital, hole, or

particle by another set. For any specific function vll, let us

assume fellg of this form:

fellg � fE
An
l

Inl
g ð29Þ

when vll is obtained from /l by replacing a string of

ordered n operators denoted by Inl with a similar ordered set

An
l. Both the strings Il and Al cannot simultaneously

contain only active labels. The operator Gl also consists of

a sum of various excitation operators of ranks m which can

be explicitly written as

Gl ¼
X

m;Bl;Jl

gml
Bm
l

Jml
fEBm

l

Jml
g ð30Þ

Then, the expression of Ml
l can be written in long hand as

Ml
l ¼

X
m;Bl;Jl

gml
Bm
l

Jml
h/ljfE

An
l

Inl
gyfEBm

l

Jml
gj/li ð31Þ

If we now write the matrix element h/ljfE
An
l

Inl
gyfEBm

l

Jml
gj/li

in normal order using WT and keep only the nonzero

entities, then we can write
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h/ljfE
An
l

Inl
gyfEBm

l

Jml
gj/li ¼ h/ljfE

Inl
An
l
gfEBm

l

Jml
gj/li

�
X

r;s;k;p;q

jrs
InlB

m
l

An
lJ

m
l
CðkÞ

p

q

ð32Þ

where, the term jrs
InlB

m
l

An
lJ

m
l

consists of various contractions, r in

number, contracting operators of fEAn
l

Inl
g with those in

fEBm
l

Jml
g. The rank k of C depends on the actual number of

active excitation/de-excitation operators in fEAn
l

Inl
g and

fEBm
l

Jml
g, but the maximum rank of k can be ðmþ n� rÞ. We

note here that all the inactive lines of fEAn
l

Inl
g and fEBm

l

Jml
g

must be contracted among themselves to have a non-van-

ishing contribution of the expectation value

h/ljfE
Inl
An
l
gfEBm

l

Jml
gj/li. In addition, several contractions with

active lines connecting the two operators may appear. For a

given number of contractions r, there would generally be

terms of various types depending on the number of particle,

hole, active particle, and active hole contractions. Also, for

a fixed number of such contractions, the connectivity

generated by the contractions would generally have dif-

ferent topologies. The various topologies are denoted by

the symbol s and the overall factor associated with all these

contractions for a given r and s is denoted by jrs. From now

on, we suppress the indices ‘
InlB

m
l

An
lJ

m
l

’ from jrs for brevity. We

remember that the uncontracted operators will only have to

be labeled by active indices in Ml
l. Depending on the

indices involved in jrs, the strings of the lower and upper

entries in C would be different which we have indicated by

the symbols q and p, respectively, in Eq. (32).

Introducing the notation,

�Mr
s

InlB
m
l

An
lJ

m
l
¼ jrsg

m
l
Bm
l

Jml
ð33Þ

then for a choice of the set of indices Jml and Bm
l we can

write

Ml
l ¼

X
r;s;p;q;m;Jml ;B

m
l

Pr
sj

r
sg

m
l
Bm
l

Jml
Cp
q

¼
X

r;s;p;q;m;Jml ;B
m
l

�Mr
s

InlB
m
l

An
lJ

m
l
Cp
q

ð34Þ

Here, Pr
s involves a sum over identical permutations among

the upper and lower indices of �Mr
s

InlB
m
l

An
lJ

m
l

with the same r and s

but involving in effect, different labels of contracted

operators. From now on, we will omit the permutation

operator Pr
s for the sake of simplicity of expression, but—

unless otherwise specified—such a summation over dif-

ferent selection of contracted labels will always be implied.

As an illustration of the various entities introduced

above, we take specific terms appearing in the projection

involving fellgy � fEl
lgy ¼ fEl

l g as shown in Fig. 1a–c,

i.e., we focus on one specific term �Mr
s

InlB
m
l

An
lJ

m
l
Cp
q in the sum of

the right side of Eq. (34).

The blue box on the left of each diagram is the de-

excitation operator fellgy ¼ fell g. The gray box denotes a

specific term of Gl of a given rank and a set of orbital

labels. The gray box is the specific amplitude, g, and the

entering and the leaving lines consist of the lower and

upper indices of the operator accompanying it. The com-

posites are the various terms obtained after the application

of the WT with some possible uncontracted operators

which must all be active lines. In Fig. 1a, the GðmÞ is of the

form Gax
iy ¼ gaxiy fEgaxiy . The contribution of Fig. 1a to Ml

l is

given by
P

xy 2gaxiy c
x
y, where the factor 2 is the entity jrs, and

in this case, there is only one possible contraction and the

value is 2 because of the loop. The uncontracted operators

contribute to the matrix element cxy. Similarly, Fig. 1b, c

contribute
P

xy 2gaxiy c
u
ydvx for projections involving de-

excitation fEiu
avg, jrs being 2dvx and

P
xy 2gaxiy C

xu
yv for de-

excitation fEiu
avg, jrs being 2. In our subsequent discussions,

we may often omit the distinguishing indices s; p; q for the

sake of brevity, particularly when we focus on one or more

specific terms.

We now motivate toward the cumulant decomposition

of the RDM Cp
q to discern which of the factors in the

various terms after cumulant decomposition are connected

to �Mr
s . Let us look at the connectivity of the three diagrams

in Fig. 1. In Fig. 1a, the lines labeled by i and a connect the

de-excitation and the G-block, and hence, the portion of the

Fig. 1a with the pair i and a is connected. The RDM cxydxy
resides entirely on the G-block and remains connected

because the G-block is connected. Hence, Fig. 1a is con-

nected. We call the connectivity where all pairs of lines on

the de-excitation part is completely contracted with those

coming from the G-block as connectivity of type (A). In

Fig. 1b, because of the diagonality of the density matrix

involving the labels u and y, they are equal and this is a

connected quantity too. We would henceforth call such

types of connectivity to be of type (B) where though the

indices are not completely contracted, they form density

matrices with active lines on the two vertices entering and

leaving separately on the de-excitation vertex and G block,

the term is connected because of the quasi-diagonality of

the density matrices. The diagram in Fig. 1c, on the other

hand, contains a two-body density matrix Cux
vy and—

although x and y are attached to the G-block—neither u nor

v are so attached and it is conceivable that this matrix

element of C will have a nonzero contribution even if the

pairs ðx; yÞ and ðu; vÞ belong to different molecular frag-

ments. Thus, this is a disconnected term. It is here that one
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needs the cumulant decomposition of the RDMs. The

cumulants [90] being non-product separable, are connected

which would allow us to discern connectivity or otherwise

of the resultant terms.

The general structure of the cumulant decomposition of

a spin-free RDM of given rank is discussed in some detail

in the Appendix. In our discussions here, we will make use

of the expressions explained therein and for the sake of

continuity of reading refer to the appendix for further

details. The cumulant decomposition of Cux
vy , a 2-body

RDM, is given by Eq. (35)

Cux
vy ¼ cuvc

x
y �

1

2
cxvc

u
y þ Kux

vy
ð35Þ

where Kux
vy is the spin-free cumulant, and the first two terms

are the direct and exchange factorized portions of Cux
vy ,

respectively. The three terms generated from Fig. 1c gen-

erated after the cumulant decomposition are shown in

Fig. 2.

The diagram of Fig. 2a is the ‘direct’ term coming from

the factorization of C and the density matrices cxy and cuv are

indicated by joining the appropriate labels ðx; yÞ and ðu; vÞ.
As mentioned above, the diagonality of the cs imply x ¼ y

and u ¼ v. Since there are no common labels between the

indices of the two cs, such a term is disconnected and the

density matrix element cuv factors out from the rest of the

connected composite. The diagram of Fig. 2b containing

the ‘exchange’ product is also similarly indicated. Again,

due to diagonality of c’s, x ¼ v and u ¼ y must be satisfied.

Since u and v on the de-excitation operator have common

indices with x and y on G, the term is connected due to the

connectivity of G-block. The diagram in Fig. 2c contains

the cumulant where the pair of active lines joined by the

solid red vertical rectangle indicates the two body K. Since

K is connected, Fig. 2c is also connected. Clearly, the

connectivity of Fig. 2b, c stems from a common origin: (1)

due to factorization in the exchange mode or (2) connected

through a K. In general, such connectivities where various

pairs of active lines joining the two vertices either via

exchange factorization or by higher-body cumulants or

both will be henceforth called as connectivity of type (C).

Our task is to show that the disconnected term in Fig. 2a

does not contribute to the projection equation involving

fEiu
avg while the terms coming from Fig. 2b, c do. We note

that the connected composite of Fig. 2a involves a de-

excitation operator of the form fEi
ag which is a subset of

the entire de-excitation operator fEiu
avg. We can interpret

the connected portion of the de-excitation fEav
iu g in Fig. 2a,

as fEi
agc. Similarly, since the entire composites of Fig. 2b,

c are connected, we will call the corresponding de-excita-

tion operator of the connected composite as fEiu
avgc.

We amplify the factorization of any diagram after

cumulant decomposition into a disconnected factor on the

de-excitation block and a connected composite by another

example with a diagram containing three pairs of active

lines forming a three-body RDM as shown in Fig. 3. Using

the expression in Eq. (86) and representing the various

terms diagrammatically using the convention introduced in

a

i

yvu

(b)(a)

a

i

x y

a

i

yvu x

(c)

Fig. 1 A few typical terms

contributing to the projection

equation corresponding to the

de-excitation operators eia (a)

and eiuav (b, c)
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Fig. 1, we present a set of diagrams some of which are

shown in Fig. 4. A common feature of all these diagrams is

the connectedness of the de-excitation vertex containing

the i and a with the G-block because of the connectivity of

the type (A). Figure 4a–c is the diagram in which active

lines of the pair on the de-excitation operator are con-

tracted among themselves, and the two pairs residing

entirely on the G-block are contracted among themselves in

the three possible ways: Fig. 4a has two direct contrac-

tions, Fig. 4b has the exchange contractions, and Fig. 4c

contains K2. The interesting aspect of these three diagrams

is that the various factorizations of the two pairs of active

lines residing entirely on the G-block can be regrouped to

generate a factorized term like cuvC
xw
yz . Figure 4a–c thus has

the disconnected part cuv since this contraction resides

entirely on the de-excitation and the rest of the composite

is connected. Figure 4d, on the other hand, is an exchange

diagram involving the pairs ðu; vÞ and ðx; yÞ which are,

respectively, coming from the de-excitation and the G-

block and the term then is connected because this spells

equality of the indices u and y and x and v, respectively.

The contraction of the pair w; z residing entirely on the G-

block is irrelevant for connectivity as long as the other two

pairs come from the de-excitation and the G-block,

respectively. Figure 4e is another connected term con-

taining K2
ux
vy . Since the K connects the pair ðu; vÞ and ðx; yÞ

residing on, respectively, the de-excitation and the G-

block, it is a connected term. Finally, we show another

connected diagram, Fig. 4f, containing K3,viz. K3
uxw
vyz . All

the diagrams in Fig. 4d–f are completely connected with

one-type (A) connectivity involving the indices i and a and

one-type (C) connectivity.

For the connected composites of Fig. 4, we have the

corresponding de-excitation operators fEi
agc for Fig. 4a–c

and fEiu
avgc for Fig. 4d–f.

In a similar vein, if several, m1 pairs (which includes

the case m1=1) of active lines appearing after the cumu-

lant decomposition come entirely from the de-excitation

operator, then all such terms of different types of con-

tractions among these pairs for every term of the rest of

the operators contracted in the same way can be

regrouped to form an m1-RDM with the respective active

labels residing entirely on the de-excitation operator.This

is the disconnected part which we want to factor out. For

each distinct matrix element of m1 RDM with fixed

labels, the rest of the diagram is connected. In addition,

there may also be n1 pairs of active lines residing entirely

on the G-block, and connected among themselves in all

possible ways, which can be summed back again to

generate an n1-RDM residing entirely on the G-block,

and hence, they are always connected due to their being

on the G-block.

x

a

i

u v

y

(a)

a

i

v

y

(b)

u

x

a

i

u v

yx

(c)

Fig. 2 Pictorial representation

of the diagrams generated from

Fig. 1c by the cumulant

decomposition of two-body

RDM. b, c Belong to the

connectivity class C, as

introduced in the text, while

a does not
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We are now in a position to rewrite the expression of

�Mr
s

InlB
m
l

An
lJ

m
l
Cp
q in terms of products of one-body density

matrices and cumulants obtained after cumulant decom-

position and classified according to various partitions as

described in the Appendix. A given Cp
q of rank k with

ordered upper and lower strings of length k denoted as p

and q is a sum of all terms where the upper and lower

strings are grouped in several ‘partitions’ Ni of lengths ki,P
i ki ¼ k and for each partition there is a definite con-

tribution of each term in the partition. For a given con-

nectivity of each term, there is a prefactor which depends

only on the connectivity. For a detailed description of the

various entities entering the partition we refer to the

Appendix and in particular the discussions following

Eq. (84).

For each term of �Mr
s

InlB
m
l

An
lJ

m
l
Cp
q, we now label the outgoing lines

of active indices on the de-excitation block, which forms the

disconnected piece as u1:::ukd and the corresponding lines

connected to the indices v1:::vkd for the lines entering from the

right. Similarly, the rest of the indices leaving and entering the

composite are labeled as ukd þ 1::: and vkd þ 1:::. The con-

tribution of the disconnected entity is really a sum of various

terms each of which is a product of various partitions with

appropriate selection from the upper and lower indices from

the strings u1:::ukd and v1:::vkd . Using Eq. (86) of Appendix,

the disconnected entity will have to be of the form:X
clkd

Pclkd
Dcl
kd
� CðkdÞpqqd ð36Þ

Similarly, the rest of the term in �Mr
s

InlB
m
l

An
lJ

m
l
Cp
q containing the

product of one-body density matrices and cumulants which

are connected, due to the connectivities of the form (A),

(B), and (C) can also be written asX
clkc

Pclkc
Dcl
kc
� CðkcÞpcqc ð37Þ

Since all the labels fug and fvg can be put in the outgoing

indices of C in many different ways, the entire expression

a

i

u v
yx

zy

Fig. 3 A typical diagram containing three pairs of active lines
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w

z

a

i

(f)

v

u

x

a

i

(e)

w z

v

u

x

y

a

i

(d)

w z

yx

vu

a

i

(c)

u v

w z

yx

z

y

a

i

(b)

u v

w

x

a

i

(a)

u v

w z

yx

Fig. 4 Pictorial representation of a few terms obtained by cumulant decomposition of three-body RDM as shown in Fig. 3. Please see the text for

details
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for �Mr
s

InlB
m
l

An
lJ

m
l
Cp
q for various labellings on C can be compactly

written as

�Mr
s

InlB
m
l

An
lJ

m
l
Cp
q ¼

X
kd ;kc

Pkc;kd jrsg
m
X
clkc

PclkcD
cl
kc

" # X
clkd

Pclkd
Dcl
kd

24 35
ð38Þ

where Pkc;kd interchanges groups of labels in u1:::ukd and

ukd þ 1:::: in all possible manner and exactly the same

interchange in v1:::vkd and vkd þ 1::::. Clearly, after the

action of Pkc;kd , �M::: can be written as

�Mr
s

InlB
m
l

An
lJ

m
l
Cp
q ¼

X
kd ;kc;pd ;qd ;pc;qc

jrsg
m

CðkcÞ
pc

qc

h i
CðkdÞ

pd

qd

h i
ð39Þ

�
X

kd ;kc;pd ;qd

Rr
s

InlB
m
l

An
lJ

m
l
CðkdÞ

pd

qd ð40Þ

In Eq. (39) above, the result of the action of Pkc;kd has

generated different strings ðpc; qcÞ and ðpd; qdÞ after the

interchange of the connected and disconnected labels.

Obviously, we can now reduce the number of labels on

the upper and lower strings of R by omitting the strings

pd and qd since they do not appear in the connected

composite R. In fact the entity R involves only those

subsets of Inl and An
l which together with the contractions

jrs and K and gðmÞ constitutes a connected composite due

to the connectivities discussed in point (A), (B), and (C)

above. If we introduce symbols Incl ðcÞ and Anc
l ðcÞ as the

subsets of Il and Al involved in the connected portion

RrðcÞ
s with the connectivity implied by the labels in the set

ðcÞ and of string length nc, then the expression Ml
l can be

written as

Ml
l ¼

X
r;s;pd ;qd ;m;kd ;nc2n;Jml ;Bm

l

Rr
s

Incl ðcÞBm
l

Anc
l ðcÞJml C

ðkdÞpd
qd ð41Þ

where, the sum runs over s, all possible contractions

between the de-excitation operators (Incl ðcÞ;Anc
l ðcÞ) with

those in (Jml ;B
m
l ).

We note here that because of the contractions r, the set

of lower and upper indices in R coming from Jml and Bm
l

would take on values dictated by the contractions. How-

ever, the strings thus modified would still be of length m

and we may denote them as Jml ðqÞ and Bm
l ðqÞ. Thus, we can

rewrite Eq. (41) as

Ml
l ¼

X
r;s;pd ;qd ;m;kd ;nc2n;Jml ðqÞ;Bm

l ðqÞ
Rr
s

Incl ðcÞBm
l ðqÞ

Anc
l ðcÞJml ðqÞC

ðkdÞpd
qd ð42Þ

The matrix elements CðkdÞ
pd

qd
obviously involves active

strings pd and qd left uncontracted from the set (Il;Al).

Since R depends entirely on the de-excitation operators

Incl ðcÞ and Anc
l ðcÞ, we no longer need the mnemonic l in its

definition. But instead, we can interpret R as a matrix

element involving a virtual CSF hvllðcÞl j ¼ h/ljfeI
nc
l ðcÞ
Anc
l ðcÞg of

rank necessarily lower than that of ll and the model CSF

/l of the type:

hvllðcÞl j ¼ h/lj e
Incl ðcÞ
Anc
l ðcÞ

n o
ð43Þ

so that, we can write,

Mll
l ¼

X
pd ;qd ;kd ;c;llðcÞ2ll

RllðcÞCðkdÞ
pd

qd ð44Þ

We now see that RðcÞ involves only connected quantities

involving a state llðcÞ as a de-excitation operator:

RllðcÞ ¼
X
m

h/lj½fEl
llðcÞgfEm

l g
j/licgm

�
X
m

h/lj½fEl
ll
gfEm

l g
j/licgm
ð45Þ

where the difference between an ordinary matrix element

M
ll
l and a connected matrix element RllðcÞ should be noted.

While M
ll
l contains both connected and disconnected

matrix elements, RllðcÞ contains connected matrix elements

only.

Introducing a connected matrix D with elements Dlm

defined as Dlm ¼ h/lj½fEl
llðcÞgfEm

l g
j/lic, the entities RllðcÞ

written as a column R can be expressed as

R ¼ Dg; ð46Þ
where g is the column of the entries gm.

We now start hierarchically upwards for all excitations

generating the various lls by singles, doubles, ... excita-

tions. Then for the single excitations l1l, the corresponding

Ms would have no disconnected components CðkdÞ. Hence,

it follows that:

M
l1l
l � Rl1lðcÞ ¼ 0 8l1l; l ð47Þ

Similarly, for all two-, three-body, ... excitations involving

only inactive orbitals, there cannot be any factorized C,

since there are only inactive orbitals in the pair ðIl;AlÞ.
Hence, for all inactive excitations, of excitation rank i, we

can write the matrix equation to be solved as

M
lil
l ¼ RlilðcÞ ¼ 0 8lil; l ð48Þ

We now consider the double, triples,…etc., excitations

involving active orbitals. Thus, the pair ðIl;AlÞ will con-

tain one or more active orbitals. Then, the quantity M in

such cases will be a sum of products of a one body R1 and a

C1 and a connected two-body quantity R2. Since all the

one-body Rs which equal the corresponding Ms have
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already been proved to be zero at the converged solution, it

follows that:

M
li
2l
l � R

la
2lðcÞ
l ¼ 0 8la2l ð49Þ

Proceeding hierarchically upwards, it then follows that:

Mla

l ¼ R
lalðcÞ
l ¼ 0 8lamu; l ð50Þ

which shows that our working equations are connected. In

a somewhat expanded form involving the matrix D, the

entire set of Eq. (50) can be written as

R ¼ Dg ¼ 0: ð51Þ
Incidentally, there is a more straightforward and a rather

naive way to show the connectivity of the working equa-

tions which throws additional light on the ranks of cumu-

lants that need to appear while using the cumulant

decomposition of the C-matrices. We simply substitute the

lower-body equations successively to write the product of

disconnected Cs on the de-excitation and the rest, where

the latter corresponds to a lower-body equation whose

value vanishes. For a typical case where the active to active

scattering in the projection operator is concentrated on one

fragment and the active to active scattering in a block is

concentrated on another fragment, we will present the

analysis of size extensivity by replacing the lower-body

equation in the higher-body equation in greater detail here.

Let us consider the block fawix g
Equation for ix! aw

Maw
ix � 2Ga

i c
x
w þ 2

X
uv

Gav
iuC

vx
uw �

X
uv

Gav
uiC

vx
uw þ 2

X
uv

Gav
iu d

w
v c

x
u

�
X
uv

Gav
ui d

w
v c

x
u þ 2

X
uvyz

Gavz
iuyd

w
v C

xz
uy þ 2

X
uvyz

Gavz
iuyC

vxz
uwy

�
X
uvyz

Gvaz
iuyd

w
v C

xz
uy �

X
uvyz

Gvaz
iuyd

w
z C

vx
uy �

X
uvyz

Gvaz
iuyC

vzx
uyw ¼ 0

ð52Þ
Equations for i! a

Ma
i ¼ Ra

i � 2Ga
i þ

X
uv

2Gav
iu c

v
u �

X
uv

Gva
iu c

v
u þ 2

X
uvyz

Gavz
iuyC

vz
uy

�
X
uvyz

Gvaz
iuyC

vz
uy ¼ 0

ð53Þ
Performing cumulant decomposition on some of the terms

of Eq. (52), we get:

Maw
ix � 2Ga

i c
x
w þ 2

X
uv

Gav
iu ½cvucxw � ð1=2Þcxucvw þ Kvx

uw


�
X
uv

Gav
ui ½cvucxw � ð1=2Þcxucvw þ Kvx

uw
 þ 2
X
uv

Gav
iu d

w
v c

x
uþ

�
X
uv

Gav
ui d

w
v c

x
u þ 2

X
uvyz

Gavz
iuyd

w
v C

xz
uy þ 2

X
uvyz

Gavz
iuy ½cvuczycxw

� 1=2czuc
v
yc

x
w � 1=2cxuc

v
wc

z
y � 1=2cxyc

z
wc

v
u þ 1=4czuc

x
yc

v
w

þ 1=4cxuc
z
wc

v
y þ Kvz

uyc
x
w þ Kzx

ywc
v
u þ Kvx

uwc
z
y � 1=2Kvx

ywc
z
u

� 1=2Kzv
ywc

x
u � 1=2Kzx

uwc
v
y � 1=2Kvz

uwc
x
y � 1=2Kzx

yuc
v
w

� 1=2Kvx
uyc

z
w þ Kvzx

uyw
 �
X
uvyz

Gvaz
iuyd

w
v C

xz
uy �

X
uvyz

Gvaz
iuyd

w
z C

vx
uy

�
X
uvyz

Gvaz
iuy ½cvuczycxw � 1=2czuc

v
yc

x
w � 1=2cxuc

v
wc

z
y

� 1=2cxyc
z
wc

v
u þ 1=4czuc

x
yc

v
w þ 1=4cxuc

z
wc

v
y

þ Kvz
uyc

x
w þ Kzx

ywc
v
u þ Kvx

uwc
z
y � 1=2Kvx

ywc
z
u

ð54Þ
which can be reorganized as

Maw
ix � cxw½2Ga

i þ 2
X
uv

Gav
iu c

v
u �

X
uv

Gav
ui c

v
u þ 2

X
uvyz

Gavz
iuyC

vz
uy

�
X
uvyz

Gvaz
iuyC

vz
uy
 þ 2

X
uv

Gav
iu ½�ð1=2Þcxucvw þ Kvx

uw


�
X
uv

Gav
ui ½�ð1=2Þcxucvw þ Kvx

uw
 þ 2
X
uv

Gav
iu d

w
v c

x
u

�
X
uv

Gav
ui d

w
v c

x
u þ 2

X
uvyz

Gavz
iuyd

w
v C

xz
uy2
X
uvyz

Gavz
iuy ½�1=2cxuc

v
wc

z
y

� 1=2cxyc
z
wc

v
u þ 1=4czuc

x
yc

v
w þ 1=4cxuc

z
wc

v
y

þ Kzx
ywc

v
u þ Kvx

uwc
z
y � 1=2Kvx

ywc
z
u

� 1=2Kzv
ywc

x
u � 1=2Kzx

uwc
v
y � 1=2Kvz

uwc
x
y � 1=2Kzx

yuc
v
w

� 1=2Kvx
uyc

z
w þ Kvzx

uyw

�
X
uvyz

Gvaz
iuyd

w
v C

xz
uy �

X
uvyz

Gvaz
iuyd

w
z C

vx
uy

�
X
uvyz

Gvaz
iuy ½�1=2cxuc

v
wc

z
y

� 1=2cxyc
z
wc

v
u þ 1=4czuc

x
yc

v
w þ 1=4cxuc

z
wc

v
y

þ Kzx
ywc

v
u þ Kvx

uwc
z
y � 1=2Kvx

ywc
z
u

� 1=2Kzv
ywc

x
u � 1=2Kzx

uwc
v
y � 1=2Kvz

uwc
x
y � 1=2Kzx

yuc
v
w

� 1=2Kvx
uyc

z
w þ Kvzx

uyw
 ¼ 0

ð55Þ
Replacing Eq. (53) in Eq. (55), we get:
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Maw
ix � 2

X
uv

Gav
iu ½�ð1=2Þcxucvw þ Kvx

uw


�
X
uv

Gav
ui ½�ð1=2Þcxucvw þ Kvx

uw
 þ 2
X
uv

Gav
iu d

w
v c

x
u

�
X
uv

Gav
ui d

w
v c

x
u þ 2

X
uvyz

Gavz
iuyd

w
v C

xz
uy

þ 2
X
uvyz

Gavz
iuy ½�1=2cxuc

v
wc

z
y

� 1=2cxyc
z
wc

v
u þ 1=4czuc

x
yc

v
w þ 1=4cxuc

z
wc

v
y þ Kzx

ywc
v
u

þ Kvx
uwc

z
y � 1=2Kvx

ywc
z
u

� 1=2Kzv
ywc

x
u � 1=2Kzx

uwc
v
y � 1=2Kvz

uwc
x
y � 1=2Kzx

yuc
v
w

� 1=2Kvx
uyc

z
w þ Kvzx

uyw

�
X
uvyz

Gvaz
iuyd

w
v C

xz
uy �

X
uvyz

Gvaz
iuyd

w
z C

vx
uy

�
X
uvyz

Gvaz
iuy ½�1=2cxuc

v
wc

z
y

� 1=2cxyc
z
wc

v
u þ 1=4czuc

x
yc

v
w þ 1=4cxuc

z
wc

v
y

þ Kzx
ywc

v
u þ Kvx

uwc
z
y � 1=2Kvx

ywc
z
u

ð56Þ
The terms in Eq. (56) are connected as it involves terms of

two types, viz. those containing cumulants which are

connected by definition and those containing exchange

densities involving the labels on the de-excitation as well

as those on the G-block. This implies

Maw
ix ¼ R

awðcÞ
ix ¼ 0: ð57Þ

This concludes the proof of our assertion that the working

equations Eqs. (21) and (22) are connected.

We note here that there is a subtle but significant aspect

of any connected formulation where the connectivity is

predicated by the connectedness of cumulants. In order to

effect cancelation of the disconnected Cpd
qd

and the lower-

body M which would invariably appear, it is obviously

necessary to include certain higher-body densities up to

rank mmax þ nmax in a given truncation scheme where a

maximum of nmax number of active lines enter the G-

blocks from the right and arbitrary pairs m of active pairs of

de-excitation operators up to some mmax. It then can so

happen that for an nmax active electron situation, all the

density matrices of rank greater than nmax are zero by the

Pauli exclusion principle. This essentially implies that the

numerical cancelation of the product of Cpd
qd

and the lower-

body equations will implicitly generate Ks of rank up to

mmax þ nmax. As is known, connectivity of cumulants

imparts the bizarre property of having non-vanishing val-

ues even when its rank exceeds the number of active

electrons. Thus, it is remarkable that while applying our

UGA-MRCC to the case of two active electrons, some of

the projection equations involving at least a pair of active

orbitals in the de-excitation would generate C3 which are

zero. However, if we include all G-blocks containing up to

two valence lines entering the G-block, then the numerical

cancelation of the disconnected terms will automatically

imply inclusion of K3. This is clearly manifest in Eq. (57),

even for the case of two active electrons. Thus, our analysis

above provides the vitally important insight that the K s of

rank greater than the number of active electrons are nec-

essary for maintaining size extensivity, in case we decide

to work with equations containing C’s, rather than product

of Ks. In particular, if we look for applications for states

with very few electrons, say two, then connectivity as well

as accuracy demands that we keep terms containing K3

(although the corresponding C3 matrix elements are all

zero).

A strategy, which we have adopted in practice in our first

papers [44–46], works with the parent UGA-MRCC equa-

tions themselves. Although they contain c and Cs of various

ranks, we carefully choose to include in the equations only

those terms in the higher-body equations, which on cumu-

lant decomposition of the C, would precisely yield terms of

the form Cpd
qd

times a connected M with all the terms of M

contained in the lower-body connected equation. Thus,

essentially we allow the higher-body working equations to

take care of the product of Cpd
qd

and of the M not to contribute

because of the lower-body equation set to zero. As an

example, if we include in every equation all the G-blocks

containing up to some fixed nmax number of active lines

entering the G-blocks from the right, then it automatically

follows that, after the factorization of terms like Cpd
qd

, the

lower-body connected factors M would also contain the G-

blocks where the numbers of active lines entering the G-

blocks can go up to nmax. This ensures numerical cancel-

ation of all the disconnected terms in the parent working

equations. As long as the constraint on the number of active

lines entering the G-blocks is maintained, we can take the

liberty of including in our working equations for the highest

rank of the Cs, m arbitrary pairs of active de-excitation

operators up to some mmax which are not connected to G in

anyway. This is precisely the way we have programed our

working equations in our actual applications [44–46].

It has not escaped our attention that instead of using the

de-excitation operators fEll
l gy if we use a modified oper-

ator f~Ell
l gy defined by:

f~Elnl
l gy ¼ fE

lnl
l gy �

X
kd

fEl
n�kd
l
l gyCðkdÞ ð58Þ

then the operator f~Ell
l gy, in effect, subtracts from fElnl

l gy all

subsets of kd pairs of active to active scatterings. Clearly, if

instead of projecting on to fEll
l gy had we projected by
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f~Ell
l gy, then all the disconnected density matrices of all

ranks residing entirely on the de-excitation operators would

have canceled out. This implies that it is more convenient

to choose the cluster operators in terms of amplitudes ~tll

and the operators f~Ell
l g. Interestingly, an operator fEll

l g0

defined in generalized normal ordering (GNO) with respect

to /l—introduced in a different context—has exactly the

same expression as f~Ell
l g. Cluster operators in GNO [75,

80, 88, 91, 92] with respect to CSFs and multi-reference

functions were introduced much earlier to generate

explicitly connected internally contracted multi-reference

(ICMRCC) theories [76–79, 88, 89, 92]. Our analysis

above implies that the UGA-MRCC theories would also

benefit greatly by a similar choice of the cluster operators.

In particular, it leads to a compact choice of linearly

independent excitation operators adapted to the direct

product group u for each fixed number mc and mv orbitals

involved in the excitation. We hope to return to this soon in

a forthcoming publication.

3.2 Proof of the extensivity and size-consistency

of the UGA-MRCC theories

In order to establish the extensivity of the UGA-MRCC

theories, it is necessary to prove the extensivity of the

cluster operators Tl. To prove this, we arbitrarily group all

the orbitals into two groups having some fixed number of

electrons in each group and equate the matrix elements of

Hamiltonian containing mixed inter-group indices as zero.

In such a situation, the total CAS function W0
CAS becomes

an anti-symmetrized product W0
CAS ¼

PAAB½W0sA
A W

0
B

sB 
s.
The corresponding spinorbital n-RDMs for such a function

can always be written as

cðnÞAB ¼ AAB½cðnAÞA cðnBÞB 
s ð59Þ

where cðnAÞA and cðnBÞB are each anti-symmetric with respect

to their own spinorbital indices. By summing over the spin

indices, the analogous decomposition of the corresponding

spin-free n-RDMs follows.

CðnÞAB ¼ PAB½CðnAÞA CðnBÞB 
s; ð60Þ
where PAB ia a sum of all possible permutations between

all the upper orbital indices of group A and group B

accompanied with prefactors for each permutation that

depends on the spin s. CðnAÞA and CðnBÞB are the RDMs cor-

responding to W0sA
A and W0sB

B , respectively. Using cumulant

decomposition of the entire density matrix, the CðnÞAB can be

written as a sum of products of cumulants with each

cumulant labeled by its own group indices and another sum

where each term will contain at least one cumulant with

mixed group indices. Of course, since the subsystems W0
A

and W0
B contain fixed number of electrons, the number of

indices in the lower and upper entries of each RDM should

not only be the same but also would contain indices of the

same set, i.e., they are quasi-diagonal. It is a straightfor-

ward matter to show that mixed cumulants with the same

entries of the indices in the upper and lower positions, the

so-called mixed direct cumulants, are zero from their very

definition. As an example, for a model space with two

active electrons coupled to a spin s and with orbitals uA and

vB in different subgroups CuAvB
uAvB
¼ 1. The corresponding

direct cumulant is zero:

KuAvB
uAvB
¼ CuAvB

uAvB
� cuAuAc

vB
vB

¼ 1� 1 ¼ 0
ð61Þ

In sharp contrast, the inter-group ’exchange’ cumulants

KuAvB
vBuA

would have a dramatically different property since

the corresponding 2-RDM CuAvB
vBuA

has the value ð�1Þs for

s ¼ 0; 1. We find in a straightforward manner that:

KuAvB
vBuA
¼ CuAvB

vBuA
þ 1

2
cuAuAc

v
BvB

¼ ð�1Þs þ 1

2

¼ 2ð�1Þs þ 1

2

ð62Þ

which is nonzero for s ¼ 0; 1. Thus, these mixed exchange

cumulants are connected but not extensive and arises

because of the constraint imposed on the overall function

W0 to be of a given spin s. This is also reflected on the

value of the cumulant which is explicitly dependent on the

value of s.

We utilize the above property of the inter-group direct

and exchange cumulants to prove the size extensivity of the

cluster amplitudes of Tl. We recall from Eq. (45) that each

term in R
lalðcÞ
l is summed over m, with excitations leading

from j/li to jvml i, and an accompanying amplitude gm of

Gl:

R
lalðcÞ
l ¼

X
m

h/ljfEla
l gyfEm

l gj/licgml ð63Þ

The entity h/lj:::j/lic is a very special connected scalar

product where there are no disconnected products of

cumulants residing entirely on the de-excitation operator.

Assuming that Tls are connected, the cumulants residing

entirely on the Gl block form a connected composite. The

only cumulants that can make a term in R
lalðcÞ
l size-inex-

tensive is where a mixed exchange cumulant appears

connecting the operators fEla
l gy and fEm

l g.
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As a result, if we separate the orbitals into two groups in

the limit of no inter-group interaction, then the only non-

zero terms are those in which either all orbitals in the term

are on A or on B or they have mixed exchange inter-group

cumulants. The matrix D of Eq. (46) in the non-interacting

limit has thus the following structure

DAA
AA 0 0 0

0 DBB
BB 0 0

0 0 0 DAB
BA

0 0 DBA
AB 0

2664
3775

This indicates that the set of MRCC equation (46) in the

limit of vanishing inter-group interaction decouples into set

of equations on each fragment only, denoted by sub-col-

umns g
AA

and g
BB

. There is also a set where size-inexten-

sive terms appear only because the corresponding DAB
BA and

DBA
AB are nonzero. The matrix elements of DAB

BA=D
BA
AB are all

nonzero for every set of mixed indices in AB in DAB
BA=D

BA
AB

since they contain at least one mixed exchange cumulant.

Interestingly, the matrix �DAB,

DAB ¼
0 DAB

BA

DBA
AB 0

" #

is non-singular since its determinant is given by:

det �DAB ¼ �det½DBA
ABD

AB
BA
 ¼ �det½DyABBADAB

BA
 ð64Þ

so that the possible set of trouble-makers, leading to non-

zero gAB=gBA, are of the form:

0 DAB
BA

DBA
AB 0

" #
gAB

gBA

� 	
¼ 0 ð65Þ

The non-singularity of DAB would imply

gAB ¼ 0 ð66Þ
gBA ¼ 0 ð67Þ
In effect set, gAB is the same as the set gBA. We have shown

them separately to facilitate the analysis. Equation (66) can

be taken as the set of equations determining TAB. The

corresponding equations for subgroup A and subgroup B,

respectively, satisfy:

DAA
AAgAA ¼ 0 ð68Þ

and

DBB
BBgBB ¼ 0 ð69Þ

We now prove that the cluster amplitudes of Tl are not

only connected but also extensive. To begin with, we of

course assume that there are three sets of T: TAA, TBB and

TAB, and all appear in a coupled manner in all the three

Eqs. (66), (68), and (69). The extensivity of T follows by

a close inspection of the algebraic structure of these

equations.

Let us first look at the nature of connectivity of the

matrix element of TAB as obtained from the solution of Eq.

(66). We note that the amplitudes gAB have no explicit

dependence on mixed cumulants and, indeed, of any

cumulants at all since cumulants appear only in the matrix

D. However, they may implicitly contain a cumulant since

Eqs. (66), (68) and (69) have couplings between the

operators TAA, TBB and TAB, though they contain intra-

group cumulants, KAA and KBB, which are harmless. In the

expression of amplitude gAB, this so-called leading term—

HAB having no T—is zero in the limit of vanishing inter-

group interaction. There is also a term in the equation for

the amplitude tABl , say, of the form DEAB
l tABl . The rest of the

terms collected in g0ABl will consist of all connected terms

involving HAA and all the Ts and also HBB and all the Ts.

For g0ABl to be nonzero, there has to be one TAB amplitude

since H cannot lead to inter-group coupling in the no

interaction limit. We now write the equation for the

amplitude tABl using the above consideration as

DEAB
l tABl þ g0ABl ¼ 0 ð70Þ

leading to,

tABl ¼ �
g0ABl
DEAB

l

ð71Þ

We can generate the amplitude via an iterative procedure

of the type

t
ABðpþ1Þ
l ¼ � g0ABðpÞl

DEAB
l

ð72Þ

where g0ABðpÞl is computed using the t amplitude of the p-th

iteration step. Since there is no first order tABl ,HAB being zero,

we start out with zero amplitudes for all TAB
m for all m. Since

the possible nonzero contribution to g0ABðpÞl can come only

from the contribution of t
ABðpÞ
l , it follows that tABl remains

zero in the successive iterations. It hence follows that all the

cluster amplitudes with mixed indices are zero for vanishing

inter-group interaction, and hence, TAB is zero.

We now consider the solution of Eq. (68) which can be

written in longhand as

DAA
l;l H

AA
l þ DAA

l;l DE
AA
l tAAl þ

X
m

DAA
l;mg

0AA
m ¼ 0 ð73Þ

so that we can set up the following iterative procedure as

t
AAðpþ1Þ
l ¼ � HAA

l

DEAA
l

�
P

m DAA
l;mg

0AAðpÞ
m

DAA
l;l DE

AA
l

ð74Þ

Now g0AAðpÞm is a connected composite containing either HAA
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or HBB with all TAA and TBB (TAB being zero), it follows that

g0AAm can come only from composite of HAA and powers of

TAA since no TBB can connect to HAA and no term con-

taining HBB can contribute to amplitudes of type AA. Thus,

all the cluster amplitudes TAA are localized on A and cannot

see the fragment B. The same analysis holds for the

amplitudes of TBB. We have thus proved that the cluster

operator T is extensive and the effective operator ~H

satisfies

~H ¼ ~HAA þ ~HBB ð75Þ
in the vanishing inter-group interaction limit.

Since our UGA-MRCC theories are not invariant with

respect to transformation among active orbitals, we need to

localize the orbitals on our target fragments A and B,

having fixed number of electrons nA and nB and fragment

spins sA and sB, in order to prove size-consistency. In that

case, all the arguments used above to prove the size ex-

tensivity carries through to the situation of vanishing inter-

fragment interaction and shows that Ts with mixed inter-

fragment indices are all zero. Since with localized repre-

sentation the Hamiltonian is also additively separable, it

follows in a straightforward manner that the effective

matrix ~H simply becomes a sum of ~HA and ~HB:

~H ¼ ~HA þ ~HB ð76Þ
which indicates E ¼ EA þ EB. There are two remarkable

consequence of the proof presented above. One is the

realization that at the fragmentation limit the MRCC

equations for each fragment are just the amplitude equa-

tions, Eq. (66). These equations do not depend on the value

of total spin s since the total spin enters the MRCC equa-

tions only via the mixed exchange cumulants. They,

however, depend on sA and sB since the intra-group

cumulants KAA and KBB depend on sA and sB, respectively.

This implies that at the fragmentation limit into two frag-

ments with nA and nB electrons and spins sA and sB,

respectively, the total fragment asymptote energy E

depends only on sA and sB and not on the total spin s. Thus,

all non-interacting composite functions AAB½WsA
A W

sB
B 
s for

all values of s ranging from jsA � sBj to jsA þ sBj will be

exactly degenerate. The second consequence is that at the

asymptotic limit, the amplitude equations, for example,

Eq. (66) and the projection equations Eqs. (68) and (69),

are equivalent.

We have verified by numerical applications along the

lines of [93] that both the consequences above hold good.

For ethylene, using orbitals localized on the two triplet

methylene fragments, the total energy at the fragmentation

limit is just the sum of two methylene triplet energies for

the three PES of singlet, triplet, and quintet ethylene with

errors of the order of a few lH. We will present all such

results in a comprehensive manner in a correspondence in

the near future.

We conclude this subsection with a brief discussion of

the strategy one may use for choosing only linearly inde-

pendent cluster operators in Tl. It is always better in this

case to use UðnÞ generators written in GNO [75, 80, 88, 91,

92], denoted as fEl
lg0. For excitation classes involving mc

core and ma active destructions and mv virtuals, and m0a
active creations, one may follow the strategy used by Li

and Paldus [33] for example. Another possibility is to take

pure excitation operators first with no spectator active

orbitals which are all linearly independent. The higher-rank

operators with spectator excitations can be chosen by

successive orthogonalization at each rank to those in the

lower rank starting with the pure excitations. Eventually,

the linearly independent excitation operators in GNO span

the same space when acting on the function j/li. Since our

analysis of extensivity relies on connectivity of MRCC

equations and of the special property of mixed exchange

cumulants, it is not imperative for us to resort to any group

theoretic argument of the type invoked by Jankowski et. al.

[34].

4 Summary and future outlook

In this paper, we have presented several aspects of the

unitary group adapted MRCCs of the state-specific and

state-universal type:

(a) We get rather compact working equations of MRCC

via the use of a Jeziorski–Monkhorst inspired

normal-ordered cluster Ansatz for the component

Xl ¼ fexp Tlg of the wave operator X which acts on

a spin-free model function /l where the f:::g
denotes normal ordering with respect to the common

core part j0i of the CSFs.

(b) The attendant MRCC equations are obtained as

matrix equations of a connected operator Gl

between the virtual functions vll and /l containing

a sum of terms involving the amplitudes of a

connected composite containing the Hamiltonian,

H, and the powers of the cluster operator, Tl
multiplied by the n-RDMs defined in the active

space. The connectivity of the cluster amplitudes

then hinges on factorization of the MRCC equations

via a cumulant decomposition of the n-RDMs into a

connected part containing the composite and certain

density matrices. This eventually leads us to a set of

modified MRCC equations containing connected

composites only. As a consequence, the cluster

operators are all connected.
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(c) We distinguish between cumulants which are con-

nected entities but not necessarily size extensive (in

the sense that they do not vanish if interactions

between the groups of orbitals entering simulta-

neously in a term are switched off) and size-

extensive entities which vanish in such situations.

(d) We show that exchange type of inter-group cumu-

lants are connected though not extensive and the rest

are extensive.

(e) Finally, we prove that in the limit of vanishing

interaction between two groups A and B of orbitals,

the MRCC equations for the mixed Ts reduce to just

the amplitude equations for connected composites

denoted as GAB
l . Since GAB

l s vanish for non-interact-

ing fragments, the amplitudes with mixed indices are

also zero. This leads to the extensivity of the

theories. For orbitals in localized fragments, this

also proves the size-consistencies of the theories.

(f) We also provide additional insights into reasonable

truncation strategies for the various spin-free n-body

cumulants, which we glean from an alternative way

of looking at the connectivity problem.

The aspects of size extensivity depend essentially on the

factorization of the MRCC equations into connected

composites multiplied by disconnected densities. The very

systematic nature of such factorization implies that suitably

modified excitation operators in defining the cluster oper-

ators Tl might be chosen in such a way that the discon-

nected densities will not appear at all. It is heartening to see

that such modified excitation operators are nothing but

some operators written in generalized normal ordering

(GNO) introduced quite some time ago in the context of

Internally Contracted MRCC [88, 89, 92] where the genesis

of the concept of normal ordering came from a different but

related motivation of an attempt to find operators in some

special normal ordering such that the average of such

normal-ordered operators have vanishing expectation value

with respect to a general multireference function. We will

use this unifying concept in all our future formulations both

for the multi-component wave operator-based theories with

Xl and for the internally contracted state-specific MRCC

with judicious use of normal ordering. We hope to come

back soon with such considerations in our forthcoming

publications.
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Appendix: Definition of spin-free RDMs

and the associated spin-free cumulants

The n-particle density matrices are not size-extensive, but

are instead product separable, just like the wave operator.

However, one can factorize any n-body density matrix in

spinorbital basis as anti-symmetrized products of 1-particle

density matrices and ‘cumulants’ which can be recursively

defined as the rank n of cn increases. For now, we denote

by u; v::::, etc., the active spinorbitals. For a CASSCF

function W0, all the core spinorbitals are fully filled in each

/l of W0, and hence, all the cns corresponding to a /l will

factor out as anti-symmetrized product of cna and cnc with

ðna þ ncÞ ¼ n, where na and nc are the number of valence

and core occupancies:

cn ¼
1

na!nc!
A½cnacnc 
 ð77Þ

Clearly, the indices in cna are all active whereas those in cnc
are all hole spinorbitals. cnc can always be written as an

anti-symmetric product of the nc 1-body density matrix

elements with hole labels:

cn ¼ A½c1bc1bc1b:::nc times
 ð78Þ
with appropriate hole orbital indices. We thus see that cnc is

completely product separable but for a general /l, which is

a multi-determinant function, cna is not necessarily so. One

can separate the product separable portion of cna via

cumulant decomposition where the cumulants are a mea-

sure of the extent of correlation beyond what is contained

in the factorizable portion including Fermi correlation. One

can introduce cumulants recursively in the following

manner:

c2
uv
wx ¼ cuwc

v
x � cuxc

v
w þ kuvwx

¼ A½cuwcvx
 þ kuvwx
ð79Þ

c3
uvw
xyz ¼ A½cuxcvycwz 
 þ A½cuxkvwyz 
 þ kuvwxyz ð80Þ

and so on [80].

The spin-free form of the above cumulant decomposi-

tion requires careful handling. One may imagine that a

straightforward spin-free form of the cumulant
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decomposition should be possible by an appropriate sum-

mation over spin indices for the same set of orbitals in the

upper and the lower array at the same place in the string.

However, some reflection indicates that a cumulant

decomposition involving only spin-free one-body reduced

densities and appropriate spin-free cumulants is not gen-

erally possible for a non-singlet /l, with a fixed Ms value.

Unless some spin-density matrix elements are introduced,

generation of a spin-free C is not possible. To circumvent

this difficulty, Kutzelnigg and Mukherjee defined an Ms

averaged ensemble density matrix [80]:

Cn
u1u2:::un
v1v2:::vn

¼ 1

2Sþ 1

XS
Ms¼�S;r1:::rn

Mscn
u1r1

u2r2
:::unrn

v1r1
v2r2

:::vnrn ð81Þ

where Mscn is the spinorbital n-body-reduced density matrix

for a given C with a given value of Ms. Since this is an

equally weighted sum of the n-RDMs for all Ms values, it

does not depend on Ms at all and is invariant under rotation

of the quantization axis. Kutzelnigg and Mukherjee dem-

onstrated that, with such spin-free density matrices, a

cumulant decomposition is possible which does not involve

spin densities.

A consequence of this definition above is that the spin-

free cuv can be defined as a sum of two spinorbital densities

cu"v" and cu#v# and can be written as

curvr ¼
1

2Sþ 1

X1=2

Ms¼�1=2

Mscurvr ð82Þ

For such Ms-averaged quantities, curvr for both up and down

spins are equal and hence each equals 1=2cuv . With such

simplifications, and introducing spin-free cumulants Kn in

a similar manner:

Ku1u2:::un
v1v2:::vn

¼ 1

2Sþ 1

Xs
Ms¼�s;r1:::rn

Msk
u1r1

u2r2
:::unrn

v1r1
v2r2

:::vnrn

�
X
r1:::rn

k
u1r1

u2r2
:::unrn

v1r1
v2r2

:::vnrn

ð83Þ

It follows that:

C2
uv
wx � Cuv

wx ¼ cuwc
v
x �

1

2
cuxc

v
w þ Kuv

wx
ð84Þ

From now on, we would take the indices u; v; :::, etc., as

orbitals and not spinorbitals.

In the general case of a k-body spin-free RDM, the

cumulant decomposition would require the concept of

partitions i of k labels with Ni as the length of the upper and

lower strings appearing in the products of Ks in this par-

tition. For the uniformity of notation, we would introduce

the notation K1 for c. The product of Ks are all connected

in each partition i due to connectivity of type (C). All the

terms contributing to the partition are connected among

themselves in a sense which is best explained by an

example. Let us consider a partition of length 4 with labels

as shown: ðu1u2u3u4

v1v2v3v4
Þ. Here the upper indices are labeled by

the index u and lower indices are labeled by the index v and

the numeral in the subscript indicates the column to which

each index belongs. If two terms from all the products of

cumulants generated have the connectivities as shown in

Figs. 5 and 6, then the connectivities of these two terms

can be inferred by following the type of pairings of the

upper and lower indices.

In Fig. 5, u1 and v2 are paired which indicates that u2

and v1 are also connected being the corresponding indices.

Columns 1 and 2 are thus connected. Further, since u2 and

v3, u3 and v4 and u4 and v1 are also connected, the entire

composite is connected. The overall contribution of this

term is 1
8
Ku1

v2
Ku2

v3
Ku3

v4
Ku4

v1
. The prefactor 1=8 depends entirely

on the type of connectivity of cross-contractions between

the four Ks. In Fig. 6, the pairing of u1 and v2 and u2 and v3

produce two Ks of rank 1, thereby connecting columns 1,2

and 3, and u3 and u4 shown in the box are a part of a two

body K, automatically making all four indices connected.

The overall factor of this term in given by1
2
Ku1

v2
Ku2

v3
Ku3u4

v1v4

The accompanying factor 1=2 again depends on connec-

tivity and rank of Ks.

Let us use indices ji ¼ 1 and ji ¼ 2 to indicate the dif-

ferent patterns of connectivity belonging to the same par-

tition i. The factors, accompanying every connectivity

symbolized as jiji , are ji1 ¼ �1=8 and ji2 ¼ �1=2,

u
1

v
1

u
2

v
2

u
3

v
3

u
4

v
4

Fig. 5 One mode of connectivity corresponding to partition i and

length Ni ¼ 4 with four c matrix elements

u
1

v
1

u
2

v
2

u
3

v
3

u
4

v
4

Fig. 6 Another mode of connectivity corresponding to partition i and

length Ni ¼ 4 where the pairs (u3; u4) and (v1; v4) form the upper

indices of a K2
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respectively. The factor jiji is unique to every ji and does

not depend on the connectivity of other partitions. We have

collected in Table 1 the quantities ji and jji for partitions of

length 2, 3, and 4. Instead of the diagrams like Figs. 5 and

6, we have used a compact algebraic notation to describe

the connectivity. In this notation, the connections involving

1�body RDM are denoted by uP � vQ to indicate the

connection of a u in the Pth column with a v in the Qth

column. Similarly, an n-tuple connection is indicated by

ðuk1
; uk2

; :::; uknÞ � ðvl1 ; vl2 ; :::; vlnÞ. This particular n-tuple

will generate a Kn where for an upper index k1 the

matching is with lower index l1. Using this notation, Fig. 5

has the connectivity [1–2, 2–3, 3–4, 4–1] and Fig. 6 has the

connectivity [1–2, 2–3, (3 4)–(4 1)].

Generally speaking, the total contribution DNi of a string

of operators of length Ni can be compactly written as

DNi ¼
X

ji¼patternNki

Pki ð
P

ki
Nki
¼NiÞK

Nkijiji ð85Þ

It is now straightforward to write the cumulant decompo-

sition of a k�body RDM. Let us assume that CðkÞ has a set

of upper and lower indices u1:::uk and v1:::vk, respectively.

We may then generate all possible terms of the cumulant

decomposition by first partitioning the set of u and v in all

possible manner with the restriction N1�N2�N3::: start-

ing with ðu1

v1
Þ. The value of the partition Ni, D

Ni , will be

labeled by unique ordered set of u and v and the overall

contribution of the first term of the cumulant will be PiD
Ni ,

where the upper indices u1:::uk and lower indices v1:::vk

appear consecutively in the C with all possible connectivity

in a given partition. Every pattern characterized by the set

fNig will be given a class symbol cl. The overall contri-

bution for every class cl will be generated by simultaneous

interchange of the same upper and lower indices in all

possible ways between the different partitions. Clearly the

possible permutations depend on the class cl and contri-

bution of all the terms of the class cl can be compactly

written as PclD
cl. The overall contribution of the CðkÞ can

be then compactly written as

CðkÞ ¼
X
cl

PclD
cl ð86Þ

with the identity permutation of Pcl as the unity operator

given by 1.
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Abstract Following a brief overview of the unitary group

approach (UGA) to the many-electron correlation problem,

focusing in particular on Shavitt’s contribution via his

graphical unitary group approach, we present a short

review of our earlier results for the evaluation of matrix

elements (MEs) of unitary group generators or products of

generators in the electronic Gel’fand–Tsetlin basis with the

help of spin-adapted second-quantization-like creation and

annihilation vector operators at the unitary group level.

This formalism is then extended to a spin-dependent case

that is required when accounting for relativistic effects by

developing explicit expressions for MEs of spin-orbital

creation and annihilation operators in terms of the standard

spin-adapted UGA basis. This leads naturally to a seg-

mentation of these MEs and enables the evaluation of spin-

dependent one-body operators while relying largely on the

segment values of the standard spin-independent UGA.

Keywords Unitary group approach (UGA) � Graphical

unitary group approach (GUGA) � Correlation problem �
Spin-dependent UGA

1 Introduction

This article is a tribute to the late Professor Isaiah Shavitt

who belongs to leading scientists of the second half of the

twentieth century in the field of atomic and molecular

electronic structure calculations. His seminal contributions

to the exploitation of Gaussian functions in both statistical

and quantum mechanics, to the evaluation of multicenter

integrals over the Slater functions, to the many-body per-

turbation theory (MBPT) and coupled-cluster (CC) meth-

ods, and most importantly, to the configuration interaction

(CI) methodology became a part of the quantum chemical

‘‘folklore.’’ He also carried out a number of important

applications providing accurate potential energy surfaces

for several small molecular species as well as a charac-

terization of excited states of various molecules, including

butadiene and benzene.

The senior author was fortunate to be counted among his

friends and to collaborate with him on a number of occa-

sions, benefiting from his vast experience in the design of a

sophisticated computer software and his intimate knowl-

edge of quantum chemical methodology and numerical

analysis. Thanks primarily to his CI expertise we have

collaborated, together with Jiřı́ Čı́žek, on the first ab initio

implementation of the CC method addressing, in particular,

the role of triexcited clusters [1]. The latter was the reason

for choosing the BH3 molecule for this purpose, since from

among the molecules for which the full CI (FCI) results

were available at the time its triexcited configurations were

most prominent, at least when described via the Slater-type

atomic orbitals. Professor Shavitt kindly provided not only

required integrals (via a small packet of punched cards),

but also special CI results involving selected classes of

configurations for a more detailed comparison with the

corresponding CC results.

In handling of triexcited clusters, we employed a trun-

cated version of the general CC formalism that was based

on the importance of various cluster components as implied

by MBPT rather than involving all the terms of a given
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excitation order as it is done in the CCSDT method. In this

way, the diagrams whose contribution was a priori smaller

than a fraction of a lH (such as, e.g., powers of T1) could

be safely neglected. Our results clearly indicated the

potential of CC methodology as well as the importance of

connected triples versus disconnected ones, contrary to the

case for quadruples (as, again, implied a priori by MBPT).

In the domain of CI methodology, our close interaction

followed the formulation of the unitary group approach

(UGA) to the many-electron correlation problem by one of

us [2–5]. Professor Shavitt soon fell in love with this for-

malism and designed an ingenious graphical representation

[6–8] of the electronic Gel’fand–Tsetlin (G–T) basis as

described in terms of the so-called ABC or Paldus tableaux

(see below). This development ultimately resulted in his

graphical UGA (GUGA) version of UGA (for most recent

overviews of these approaches see [4, 9–13]).

Let us recall that the essence of UGA goes all the way back

to 1935 when Pascual Jordan (of Nazi disrepute) used U(1)

generators to represent one- and two-body Hamiltonians

[14]. In the late sixties, it was revived by Moshinsky in the

context of the nuclear many-body problem [15]. Here,

however, four-column irreducible representations (irreps)

are required in view of the presence of both the spin and

isospin. Consequently, the resulting rather complex for-

malism has never been implemented in actual applications

for nuclei, as far as we know (see, however, [16]).

In early seventies, one of us realized that the U(n)-based

formalism could be beneficial for the many-electron

problems, since in this case only two-column irreps are

involved. This led to a drastic simplification of the G–T

tableaux labeling of states that is based on the

UðnÞ � Uðn� 1Þ � � � � � Uð2Þ � Uð1Þ ð1Þ
chain of subgroups. In fact, the general subduction rules

(later called [17] ‘‘betweenness conditions’’) for U(m) �
U(m - 1) were formulated already by Weyl in the very last

chapter of the second edition of his seminal book [18]. It

was then a small but important step made by Gel’fand and

Tsetlin to realize [19, 20] that the highest weights for the

subgroups in the chain (1) will uniquely label the basis

vectors of general U(n) irrep spaces since U(1) is abelian

(for a brief outline see [13]). Moreover, these authors also

more or less ‘‘guessed‘‘ (as rumored) explicit expressions

for the generator matrix elements (MEs) [19, 20]. Later on,

Bair and Biedenharn [21] provided a detailed derivation

and a general formalism for U(n) calculus (see [22, 23]; for

a pedagogical review see [17]).

This rather formidable formalism can be, however,

drastically simplified when considering many-electron

systems by relying on the U(2n) � U(n) � U(2) chain. In

this case, we require only two-column U(n) irreps of the

highest weight hki ¼ h2a1b0ci � ða; b; cÞ with

a ¼ 1

2
N � S; b ¼ 2S; c ¼ n� a� b ¼ n� 1

2
N � S; ð2Þ

of dimension

dimða; b; cÞ ¼ bþ 1

nþ 1

nþ 1

a


 �
nþ 1

c


 �
; ð3Þ

considering the states of multiplicity (2S ? 1) involving

n orbitals and N electrons [2–5] (see also reviews in [9, 10,

13]). The basis vectors of its carrier space (or configurations)

may then be labeled by n 9 3 ABC tableaux [P] [2–5] (often

called Paldus or Gel’fand–Paldus or electronic G–T

tableaux; see, e.g., [6, 7, 9, 24–33]); [P] : || ai bi ci ||n 9 3,

whose rows ðai; bi; ciÞ; ai þ bi þ ci ¼ i label the irreps of

U(i) in the canonical subgroup chain (1) or, alternatively, by

the corresponding two-column Weyl tableaux [3] or, in fact,

by the two-columnDaDc tableaux, whereDxi ¼ xi � xi�1 and

Dxi ¼ 1� Dxi ði ¼ 0; 1; . . .; nÞ, with xn : x, x0 : 0,

x = a, b, and c. Clearly, Dai þ Dbi þ Dci ¼ 1. Another

convenient labeling uses the ternary step numbers di,

0 B di B 3 (see, e.g., [2, 3, 6, 7, 10, 11, 34])

di ¼ 1� 2Dai � Dci ¼ 2Dai þ Dci: ð4Þ
The general U(i) � U(i - 1) step thus involves at most

four subreps characterized by these step numbers. Thus, a

G–T basis can also be labeled by n-component d-vectors

d = {di}.

The entire basis can then be compactly represented by a

Shavit graph [6–8, 11]. This is a two-rooted graph

involving distinct rows of the ABC tableaux for each

subgroup U(i) (i ¼ 1; . . .; n) with one root representing the

highest weight (a, b, c) : (an, bn, cn) for U(n) and the

other one the trivial row (0, 0, 0) : (a0, b0, c0). The entire

graph is placed on a grid so that the slope of its edges

represents the relevant step numbers. Thus, each basis

vector or configuration is represented by a path intercon-

necting both roots. When evaluating MEs of generators or

products of generators, the bra and ket state paths coincide

outside the range indicated by the generator indices and

form a loop within that range. Shavitt then suitably split the

available expressions [2, 4] for the generator MEs into the

so-called segment values associated with different types of

bra and ket edges of his graph. This factorization is not

unique and can be done in several ways (see, e.g., [34–36]);

we must point out here that an often made statement that

the MEs of various U(n) generators ‘‘can be derived

entirely graphically‘‘ [37] within GUGA is misleading

since the key starting point here (see [11]) is simple

expressions for elementary generators as given in [2],

which cannot be derived within GUGA and follows most

naturally from the SU(2)-based approach representing the

corresponding Yamanouchi-Kotani states via Jucys-type

diagrams (see, e.g., [38]; see also [39] for a corresponding
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approach based on the SN group). Indeed, this is particu-

larly the case for an evaluation of MEs of a two-electron

part of the Hamiltonian [34] (see below).

Shavitt graphs thus provide a compact and transparent

representation of the entire electronic G–T basis, and the

related developments are referred to as the GUGA. It

facilitates the design of various strategies not only for the

full CI calculations (see, however, [40]), but also for a

configuration selection in truncated CI approaches, not to

mention the simplest introduction of the so-called distinct

row table (DRT) and various coding strategies based on the

matrix element-, integral-, or loop-driven algorithms [7, 9,

11]. The GUGA viewpoint thus led to the design of a

number of CI codes (see, e.g., [41–56]).

The most recent development that exploits GUGA

description of the electronic G–T basis is due to Shepard

and collaborators [57–63]. This is the so-called Graphically

Contracted Function CI Method that is based on nonlinear

variables called arc factors. This approach makes it pos-

sible to handle extremely large CI expansions exceeding

traditional ones by many orders of magnitude. The method

enables an efficient computation of energy gradients with

respect to the arc factors and the determination of their

optimal values. Most recently, the authors developed an

efficient recursive algorithm for computation of orbital-

level Hamiltonian matrices [62] that characterize the

dependence of the energy on nonlinear parameters associ-

ated with individual molecular orbitals and enable a com-

putation of gradients with respect to nonlinear arc factors.

At this point, it is worth recalling that the standard

UGA-based formalism has also been exploited in numerous

other applications other than large-scale CI calculations,

namely in MC-SCF approaches [44, 49, 64, 65], pertur-

bation theory [66], propagator method [67], and coupled-

cluster methods of both single-reference [68–82] and

multi-reference [83, 84] type, as well as in various other

investigations, such as quantum dots [85], in handling of

composite systems [86–89], valence bond (VB) approaches

[90–92], reduced density matrices (RDMs) [93, 94],

nuclear magnetic resonance (NMR) [95], or charge

migration in fragmentation of peptide ions [96, 97] (see

also [10, 98] for other references). We should also mention

numerous other innovations and extensions, such as Clif-

ford algebra UGA (CAUGA) [87, 99–103], bonded tableau

UGA [104], parafermi algebras [105], and related devel-

opments (see also [106]).

Finally, we should also emphasize that while GUGA is

extremely useful for providing an insight into the overall

structure of the electronic G–T basis and for the ME

evaluation in terms of segment values, it cannot provide the

actual algebraic expressions for these quantities per se, for

these rely on the actual representation theory for U(n).

There exist several independent approaches for this

purpose that often exploit not only the U(n) representation

theory, but also the related symmetric or permutation group

SN, as well as the spin-angular-momentum formalism of

SU(2). The U(n)-based approach exploits the tensor oper-

ator formalism of Baird and Biedenharn [21] or the Green-

Gould formalism [29–31, 33] based on polynomial identi-

ties for U(n) generators and the implied projection and

tensor operators. Some approaches exploit the SN repre-

sentation theory, either per se [26] or in conjunction with

the U(n) or SU(2) formalism (see, e.g., [39]). A particularly

useful form of the SU(2)-based formalism relies on the

graphical methods of spin algebras employing Jucys-type

diagrams [38] using the fact that the electronic G–T states

correspond to the Yamanouchi-Kotani coupling scheme

[15]. This approach was exploited by Paldus and Boyle

[34, 107, 108] for the derivation of the explicit expressions

for generator MEs, elucidating at the same time various

schemes of their partitioning into the segment values and

the choice of suitable phase factors. It turned out to be

particularly powerful for an optimal handling of the two-

electron operators [34] since it avoids a summation over

the intermediate states of the original Shavitt formulation

[7]. Yet another useful approach, exploited earlier by the

authors [35, 36, 89], introduced spin-adapted creation and

annihilation operators that in a certain way parallel those of

the standard second-quantization formalism (cf., however,1

[109–112]). This approach will be used in this paper as

well since it enables an easy extension to spin-dependent

operators.

Spin-dependent operators are no longer expressible as a

bilinear form in the orbital U(n) generators but, rather, in

terms of the spin-orbital U(2n) generators. An account of

spin-dependent effects that is based on spin-free correlated

wave functions thus requires an evaluation of MEs of U(2n)

generators or their products in standard U(n) electronic G–T

bases. This problem, which can be generally referred to as a

spin-dependent UGA approach, was addressed in several

earlier publications [32, 113–117]. In this paper, we apply to

this problem our earlier results [35, 36] that introduced spin-

free analogues of the standard spin-orbital creation and

annihilation operators, labeled as Cy or C, respectively. We

shall see that an exploitation of this formalism for spin-

dependent UGA offers a great methodological simplification

1 The concept of spin-adapted creation and annihilation operators,

referred to as spin shift or ‘‘up’’ and ‘‘down’’ creation and annihilation

operators, was employed in a series of papers by Mukhopadhyay and

Pickup [109–112] who attempted to generalize the standard, many-

body formalism by constructing spin-adapted one-body propagators

[109], configuration state functions [110, 112], hole-particle formal-

ism and Wick’s theorem [111], or MBPT [112] rather than aiming for

an efficient evaluation of unitary group MEs. In fact, their formulation

is not spin-free and their aim has been to avoid ‘‘the intricacies of the

unitary group’’ [110]. Consequently, their developments and aims are

very different from ours.
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by enabling an evaluation of MEs of U(2n) generators in the

U(n) electronic G–T bases as a product of segment level

expressions. With the exception of a few new top segment

values for spin-dependent operators, the same segment level

expressions that arise in the standard spin-independent UGA

method apply. In this paper, we focus on MEs of spin-

dependent one-body operators. Following a brief overview

of our formalism for spin-independent operators and of spin-

dependent UGA in Sects. 2 and 3, respectively, we address

the evaluation of MEs of standard spin-orbital creation and

annihilation operators in Sect. 4 and of the MEs of one-body

spin-dependent operators in Sect. 5. Section 6 then outlines

the relationship of spin-independent and spin-dependent

UGA, and brief conclusions are drawn in Sect. 7.

2 Spin-independent operators

We now briefly recall [35, 36] a few basic facts concerning

our U(n)-adapted second-quantization-like formalism for

the calculation of MEs of U(n) generators Eij satisfying the

commutation relations

½Eij;Ekl
 ¼ djkEil � dilEkj: ð5Þ
A vector operator W with components Wk then satisfies

½Eij;Wk
 ¼ djkWi; ð6Þ
and a general tensor operator Tl associated with the

U(n) irrep hli � l is defined by

½Eij; TlðWÞ
 ¼
X
V

l
V

� Eij
l
W

 �
TlðVÞ; ð7Þ

where V and W are Paldus or Weyl tableaux labeling

components of the tensor Tl and the basis of the carrier

space of l.

The key problem of the U(n) calculus is the evaluation

of MEs of tensor operators. Here one relies on the Wigner–

Eckart (W–E) theorem

m
W

� TlðVÞ k
U

 �
¼ hmkTlkki m

W

k l
U V

� �
; ð8Þ

where we assume the multiplicity-free case (which holds

for two-column irreps) with the first factor on the right-

hand side designating the reduced matrix element (RME)

and the second factor the U(n) Clebsch–Gordan (C–G) or

Wigner coefficient. It is also convenient to define

corresponding scaled quantities as

hmkTlkkiðsÞ ¼ hmkTlkki=cðk; l; mÞ; ð9Þ
m
W

k l
U V

� �ðsÞ
¼ cðk; l; mÞ m

W

k l
U V

� �
; ð10Þ

so that again

m
W

� TlðVÞ k
U

 �
¼ hmkTlkkiðsÞ m

W

k l
U V

� �ðsÞ
: ð11Þ

Setting cðk; l; mÞ ¼ hmkTlkki we thus have that

m
W

� TlðVÞ k
U

 �
¼ m

W

k l
U V

� �ðsÞ
: ð12Þ

Since the U(n) G–T basis relies on the canonical chain (1),

a C–G coefficient can be expressed as a product of the

UðmÞ � U(m - 1) isoscalar factors with m ranging from 1

to n. The scaled C–G coefficients are then given by a

product of scaled isoscalar factors.

We can now define a set of fundamental tensor operators

C
ry
i that transform as a basis for the simplest nontrivial

irrep h1 _0i � h10 � � � 0i [or (a, b) = (0, 1) using the two-

column irrep label for h2a1b0n�a�bi]

½Ejk;C
ry
i 
 ¼ dikC

ry
j ; ð13Þ

C
ry
i

k
U

 �
¼
X
W

kþ r
W

� Cry
i

k
U

 �
kþ r
W

 �
; ð14Þ

Cry
n

kn
kn�1

Wn�1


+
¼

kn þ r
kn�1

Wn�1


+

ð15Þ

with MEs in (14) given by the W–E theorem, Eq. (8),

kþ r

W

� Cry
i

k

U

 �
¼ hkþ rkCykki kþ r

W

�  k ð0; 1Þ
U i

�
; ð16Þ

and kn = kn-1 in (15) labeling the irreps of U(n) and

U(n - 1), respectively. The irrep hkþ ri is obtained by

adding a box in the Weyl tableau Wn-1 labeled by

n assuming that the state n is not occupied in Wn-1 of kn,
so that Cry

n adds label n in the rth column of Wn-1. Thus,

in the case of two-column tableaux, we have only two

fundamental vector operators, namely

C
1y
i : ða; bÞ ! ða; bþ 1Þ and

C
2y
i : ða; bÞ ! ðaþ 1; b� 1Þ:

ð17Þ

Thus, the first condition above, Eq. (13), implies that

C
ry
i is a U(n) vector operator with r designating the shift

component, while the last condition, Eq. (15), determines

the RME hkþ rkCykki: It is worth noting that the Cy

operators are similar to the fundamental Wigner operators

of Biedenharn, Louck and others [17, 21]. They both rep-

resent unit vector operators but differ in their RMEs, which

are equal to unity in the standard approach in which the

shift is defined via a row label rather than a column label

used here. The latter has the advantage of yielding an n-
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independent formalism for RMEs and C–G coefficients.

Choosing then a state in which the nth orbital is unoccupied

one finds the required RMEs [36]

hkþ rkCykki ¼ kþ r

k


  k ð0; 1Þ
k ð0; 0Þ

��1

¼ Nkþrfk
fkþr


 �1
2

; ð18Þ

where the quantity on the right-hand side of the first

equality sign is a UðnÞ � Uðn� 1Þ isoscalar factor and the

results of [35] for the U(n) isoscalar factors were employed

in the last equation. Here, Nl designates the particle

number (i.e., number of boxes) associated with the irrep l
and fk the dimension of l considered as an irrep of the

permutation group SNl (see [35]). The corresponding shifts

DðrÞ � r for r = 1 and r = 2 yielding the resulting

irreps (a, b) ? r are, respectively, (0, 1) and (1, -1), and

the corresponding RMEs are

hða; bþ 1ÞkCykða; bÞi ¼ ½ðbþ 1Þðaþ bþ 2Þ=ðbþ 2Þ
12;
hðaþ 1; b� 1ÞkCykða; bÞi ¼ ½ðaþ 1Þðbþ 1Þ=b
12:

ð19Þ

The U(n) C–G coefficients appearing in Eq. (16) may

then be factorized into a product of U(n) isoscalar fac-

tors (see Eqs. (145) and (154) of [35] and Eq. (24) of

[36]) the explicit expressions of which are given in

Table 1 of [36]. We also note that the MEs of corre-

sponding conjugate, annihilation-like operators Cr
i

transforming as a contragredient fundamental vector

representation, i.e., [Ekj, C
r
i ] = -dikCr

j , are given by

the conjugate of Eq. (14).

Now, the raising generators Eij (i\ j) represent the

vector operators of U(j - 1) since the commutation rela-

tions, Eq. (5), imply that ½Ekl;Eij
 ¼ dilEkj ð1� k; l� j� 1Þ,
so that U(j) MEs of Eij must be proportional to those of

C
ry
i ,

kj
W 0j

* Eij

kj
Wj

 �
¼ kj

k0j�1

* E kj
kj�1

 �
k0j�1

W 0j�1

* Cry
i

kj�1

Wj�1

 �
ð20Þ

or to the corresponding scaled quantities, where the

relevant proportionality factor can only depend on

U(j) and U(j - 1) irrep labels. This in turn leads to the

expression for Eij MEs in terms of scaled isoscalar factors

(note that x : xn, x = a, b, c)

ða; bÞ
W 0

� Eij

ða; bÞ
W

 �
¼

Yn
k¼j

dða0
k
;b0

k
Þ;ðak ;bkÞ

 !

 ðaj; bjÞ
ða0j�1; b

0
j�1Þ

* �����E ðaj; bjÞ
ðaj�1; bj�1Þ

���� �ðsÞ


Yj�1

k¼iþ1

ðak;bkÞ ð0;1Þ
ðak�1;bk�1Þ ð0;1Þ


  ða0k;b0kÞða0k�1;b
0
k�1Þ

�ðsÞ( )

 ðai;biÞ ð0;1Þ
ðai�1;bi�1Þ ð0;0Þ


  ða0i;b0iÞða0i�1;b
0
i�1Þ

�ðsÞYi�1

k¼1

dða0
k
;b0

k
Þ;ðak ;bkÞ:

ð21Þ
The MEs of products of two creation operators C

sy
i C

ry
j ,

and, similarly, of two annihilation operators, can be

expressed in terms of the symmetric and antisymmetric

tensors (see [36]). On the other hand, products of a creation

operator and an annihilation operator form adjoint tensor

operators. In view of the U(n) commutation relations (5),

the U(n) generators also represent adjoint tensor operators

of U(n) belonging to the irrep h1 _0�1i ¼ h10 � � � 0�1i that

are defined as follows

½Ekl;Aij
 ¼ dilAkj � dkjAil ðk; l ¼ 1; 2; . . .; nÞ: ð22Þ

The same relationship holds also for C
ry
i Cs

j ðr; s ¼ 1; 2Þ
operator products, so that it must hold that

Eij ¼
X
r;s

qr;sC
ry
i Cs

j ¼
X
s

C
sy
i C

s
j ; ð23Þ

the last equation holding since it can be shown that q ¼
kqrsk must be the 2 9 2 identity matrix [36]. Thus, the

MEs of U(n) generators Eij may be expressed via the MEs

of C
ry
i and Cr

j operators, which in turn leads to the

expressions for the generator RMEs in terms of isoscalar

factors

ðaj; bjÞ
ða0j�1; b

0
j�1Þ

* �����E ðaj; bjÞ
ðaj�1; bj�1Þ

���� �

¼
X
r

ðaj; bjÞ � r ð0; 1Þ
ðaj�1; bj�1Þ ð0; 1Þ


  ðaj; bjÞða0j�1; b
0
j�1Þ

!ðsÞ

 ðaj; bjÞ � r ð0; 1Þ
ðaj�1; bj�1Þ ð0; 0Þ


  ðaj; bjÞðaj�1; bj�1Þ
�ðsÞ

: ð24Þ

At this point, it is useful to emphasize the distinction

between the standard creation and annihilation operators

X
y
ir;Xir and the spin-adapted ones C

ry
i ;Cr

i in view of the

similarity with the well-known relation

Eij ¼
X
r

X
y
irXjr ð25Þ

that is exploited in UGA. In fact, this relationship extends

to general k-body operators (see Eq. (78) of [36]). In the

2-body case, we thus have
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eik;jl � EikEjl � djkEil ¼
X

r;s¼a;b
X
y
jrX
y
isXksXlr

¼
X

r;s¼1;2

C
ry
j C

sy
i C

s
kC

r
l : ð26Þ

We must emphasize, however, that this correspondence

between the vector operators Cy;C and the second-quan-

tization operators Xy;X is only a formal similarity: indeed,

the operators Cy and C act on the orbital group U(n) mod-

ules while the second-quantization operators Xy and X act

on the spin-orbital group U(2n). The real meaning of the

correspondence (26) is that we can either couple the

U(n) tensors Cy and C within the U(n) framework to obtain

higher rank U(n) tensors, like two-body operators (26) or

we can express these U(n) operators as spin contractions of

U(2n) operators.

The adjoint tensor operators are particularly useful in

handling of two-electron MEs and, as will be seen below,

also when dealing with spin-dependent operators. The

action of adjoint tensors Aij on a two-column U(n) irrep

(a, b) produces modules that are associated with irreps

given by the Littlewood-Richardson rule as a C–G series

ða; bÞ  h10 � � � 0�1i ¼ ða� 1; bþ 2Þ þ ð2� db;0Þða; bÞ
þ ðaþ 1; b� 2Þ þ � � �

ð27Þ
the dots indicating more than two-column irreps. Thus, the

four adjoint tensors C
ry
i Cs

j (r, s = 1, 2) are associated with

three different shifts: C
1y
i C2

j : ða; bÞ 7!ða� 1; bþ 2Þ;
C

2y
i C1

j : ða; bÞ7!ðaþ 1; b� 2Þ, and two zero-shifts C
jy
i Cj

j :

ða; bÞ7!ða; bÞ; ðj ¼ 1; 2Þ (assuming b = 0).

The multiplicity of zero-shift tensors complicates the

evaluation of MEs. We already know that a simple sum of

zero-shift operators gives the generator Eij, Eq. (23). We

thus have to find the other linear combination of these

tensor operators belonging to the zero-shift case. It is

shown in [36] that a convenient choice that enables a

segmentation of the resulting MEs is given by the operators

N
ðþÞ
ij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþ 3Þ=ðbþ 2Þ

p
C

1y
i C2

j ; ð28Þ

N
ð0Þ
ij ¼ ð1� db;0Þð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþ 2Þ=ð2bÞ

p
C

1y
i C1

j

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b=2ðbþ 2Þ

p
C

2y
i C2

j Þ; ð29Þ

N
ð�Þ
ij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþ 1Þ=b

p
C

2y
i C1

j ; ð30Þ
in addition to Eij (note that when b = 0 there is only one

zero-shift tensor operator).

An actual evaluation of MEs of two-body operators

heik;jli ¼ ða; bÞ
W 0

� eik;jl ða; bÞW

 �
reduces to a simple product

of MEs of the generators involved when their [i, k] and

[j, l] regions do not overlap, while for the overlapping case,

we have to distinguish different cases as outlined in Table

X of [34] (see also Table 8 of [36]). Again, the irrep labels

outside the general regions must coincide so that

ða; bÞ
W 0

� eik;jl ða; bÞW

 �
¼

Yn
m¼l

dða0m;b0mÞ;ðam;bmÞ

 !

 ðal; blÞ
W 0l

� eik;jl ðal; blÞWl

 � Yp�1

m¼1

dða0m;b0mÞ;ðam;bmÞ

 !
; ð31Þ

where m C l : max(i, j, k, l) and m\ p : min(i, j, k, l),

thus reducing the problem to U(l).

Evaluating the U(l)-based MEs of (31), we then have to

distinguish three nontrivial cases depending on the rela-

tionship between the indices of eik;jl, namely (1) i, j, k\ l,

(2) eil;jl and i, j\ l, and (3) elk;jl and j, k\ l, requiring

different so-called e - S, e - E, e - N, etc. connecting

factors
ðal; blÞ
ða0l�1; b

0
l�1Þ

� e ðal; blÞ
ðal�1; bl�1Þ
 �

X

, where X = A, S,

E, N, and G. For example, in the last case when

j, k\ l = i,

helk;jli ¼
ðal; blÞ
ða0l�1; b

0
l�1Þ

� e ðal; blÞ
ðal�1; bl�1Þ

 �
E

 ða0l�1; b
0
l�1Þ

W 0l�1

� Ejk

ðal�1; bl�1Þ
Wl�1

 �
þ ðal; blÞ
ða0l�1; b

0
l�1Þ

� e ðal; blÞ
ðal�1; bl�1Þ

 �
N

 ða0l�1; b
0
l�1Þ

W 0l�1

� NðjÞjk

ðal�1; bl�1Þ
Wl�1

 �
; ð32Þ

where j = ? , 0 or - is uniquely fixed by the irreps

(al, bl) and (al-1, bl-1) and involves both e - E and e -

N connecting factors. The explicit values of all these

connecting factors are given in Eq. (88) and Table 9 of

[36]. A general ‘‘segmented‘‘ form for two-body MEs is

then given by Eq. (109) of [36] together with the sub-

sequent points (1)–(6) and Eqs. (110)–(116).

3 Spin-dependent problem

Spin-dependent operators are required when we wish to

account for relativistic effects in atoms and molecules

[118, 119]. These effects can roughly be classified as

strong and weak ones. The relativistic corrections are

especially important in heavy atoms where they play a

particularly significant role when describing the inner

shells. In those cases, they have to be accounted for from

the start, usually relying on Dirac-Hartree-Fock method.

Fortunately, in most chemical phenomena, only valence

electrons play a decisive role and are satisfactorily
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described by the nonrelativistic Schrödinger equation.

Nonetheless, it is occasionally required to consider rela-

tivistic effects—even though they may play only a sub-

sidiary role—by accounting for spin-dependent terms

[120], such as the spin–orbit, orbit–orbit, spin-other-orbit,

and spin–spin interactions. Such terms may be required

when exploring the fine structure in high-resolution spectra

or in various other important phenomena [121], as the

intersystem crossing, phosphorescent lifetimes, molecular

pre-dissociation, etc. However, even when spin-dependent

forces are present in the Hamiltonian, the nonrelativistic

Schrödinger wave functions represent an excellent starting

approximation, so that these spin-dependent terms may be

taken care of by computing their expectation values in

terms of nonrelativistic wave functions (see, e.g., [122]).

The Hamiltonian of a many-electron system has the

following general form

Ĥ ¼ Ĥ0 þ ĤS ¼ Ĥ0 þ Ĥ
ð1Þ
S þ Ĥ

ð2Þ
S

¼ Ĥ0 þ
X
r

ĥ
ð1Þ
S ðrÞ þ

X
r\s

ĥ
ð2Þ
S ðrsÞ; ð33Þ

where Ĥ0 is the standard spin-independent Hamiltonian

and ĤS is a spin-dependent interaction which can be further

divided into the one- and two-body parts, Ĥ
ð1Þ
S and Ĥ

ð2Þ
S ;

respectively. In this paper, we shall concentrate on the one-

body part Ĥ
ð1Þ
S .

We recall that we employ 2n spin-orbitals jili
(i ¼ 1; 2; . . .; n; l ¼ 1

2
;�1

2
or a, b) given by products jiijli

of n orbitals jii and two spin functions jli (a ¼ 1
2

and

b ¼ �1
2
) as well as the associated fermion creation (X

y
il)

and annihilation (Xil) operators. Since Ĥ0 is spin-inde-

pendent, we can take a trace over the spin label l yielding

a spin-free formalism that may be described in terms of

spatial orbital U(n) generators Eij, Eq. (25),

Ĥ0 ¼
X
ij

hijzjjiEij þ 1

2

X
ijkl

hijjvjkliðEikEjl � djkEilÞ

¼
X
ij

zijEij þ 1

2

X
ijkl

vij;kleik;jl:

ð34Þ

The one-body spin-dependent terms may then be expressed

in terms of the spin-orbital U(2n) generators

Nil;jm ¼ X
y
ilXjm ð35Þ

as

Ĥ
ð1Þ
S ¼

X
i;j

X1=2

l;m¼�1=2

hiljĥð1ÞS jjmiNil;jm: ð36Þ

If the relativistic effects are weak relative to the kinetic

and Coulomb potential energies, we can start with a spin-

independent problem Ĥ0W ¼ EW and handle ĤS via MBPT.

The eigenstates of Ĥ0 are pure spin states with a good total

spin quantum number S that are often generated via CI

approaches based on UGA or GUGA. It is thus convenient to

extend efficient spin-independent UGA codes to those that

can also account for spin-dependent operators.

Thus, in dealing with spin-dependent problems, the

Uð2nÞ � U(n) � SU(2) adapted basis provides a natural

starting point. We shall designate its basis vectors that belong

to the totally antisymmetric representation [1N] of U(2n) by

½1N 
 k S

W MS

 �
� k

W MS

 �
; ð37Þ

representing simultaneously a standard G–T basis
k
W

 �
of

a two-column irrep k � ða; bÞ � h2a; 1b; 0n�a�bi of the

orbital group U(n) and a basis jSMSi of the spin group

SU(2). We can employ a shorthand notation on the right-

hand side of Eq. (37) since [1N] and S are fixed by relations

N = 2a ? b and S = b/2, Eq. (2). Moreover, since the

subduction of the irrep [1N] of U(2n) to the irreps of

U(n) and SU(2) is multiplicity-free, the notation of Eq. (37)

is unambiguous.

In view of the fact that the MEs of the spin-independent

Hamiltonian Ĥ0 in the basis (37) are diagonal with respect

to the spin labels, i.e.,

k0

W 0 M0S

� Ĥ0
k

W MS

 �
¼ dk0;kdS0;SdM0S;MS

k
W 0

� Ĥ0
k
W

 �
;

ð38Þ
the unperturbed, pure spin eigenstates of Ĥ0 are linear

combinations of the basis (37)

Wk ¼
X
W

Ck
W

k
W MS

 �
�
X
W

Ck
W

k
W

 �
: ð39Þ

The coefficients Ck
W being independent of the spin com-

ponent MS are completely determined by the spin-inde-

pendent UGA so that the key to the evaluation of

relativistic effects is the evaluation of MEs of spin-

dependent operators in the basis (37).

As we have seen above, the well-known Wigner-Eckart

theorem represents a powerful tool for the evaluation of

MEs. Thus, the MEs of any U(2n) tensor that may be

decomposed into the irreducible tensors of U(n) and SU(2)

can be expressed as a product of three factors: (1) the RME

that depends on the relevant tensors and irreps of U(2n),

U(n), and SU(2), (2) the U(n) C–G coefficient, and (3) the

SU(2) C–G coefficient. In a multiplicity-free case for

U(n) irreps, the U(n) C–G coefficients can be further fac-

torized into simple products of isoscalar factors, yielding

the ME segmentation formalism for spin-dependent oper-

ators. We shall see that this is exactly the case for one-body

operators (36).
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Finally, let us emphasize that in contrast to a spin-

independent case, the U(n) irreps in the Uð2nÞ � UðnÞ�
SU(2) bases are generally changed or shifted by U(2n)

operators. Thus, one-body spin-dependent operators can

change the total spin [or U(n) irrep label] by DS ¼ 0;�1

(or Db ¼ 0;�2) and two-body ones by DS ¼ 0;�1;�2 (or

Db ¼ 0;�2;�4) and thus take us out of the U(n) frame-

work. Nonetheless, as we have indicated above, the U(n)-

adapted creation (Cy) and annihilation (C) type operators—

that represent very useful tensors serving as fundamental

building blocks for various U(n) tensors—are also useful in

the spin-dependent U(2n) case. Indeed, since X
y
il (Xil) are

vector (contragredient vector) operators when acting on the

irrep modules of U(n), their MEs in the U(n) basis are

clearly related to those of C
ry
i (Cr

i ) operators. In view of

this fact, the MEs of one-body operators must be related to

those of C
ry
i Cs

j . The latter were carefully examined in [36]

and briefly reviewed above.

4 Matrix elements of spin-orbital creation

and annihilation operators

We first consider MEs of X
y
il and Xil operators in the

Uð2nÞ � UðnÞ� SU(2) adapted basis, Eq. (37). These

operators represent, respectively, vector and contragredient

vector operators of U(n) and SU(2), since

½Ek‘;X
y
il
 ¼ di‘X

y
kl; ½Ek‘;Xil
 ¼ �dikX‘l

ði; k; ‘ ¼ 1; 2; . . .; nÞ; ð40Þ
½Emx;Xyil
 ¼ dxlX

y
im; ½Emx;Xil
 ¼ �dmlXix

ðl; m;x ¼ �1=2; 1=2Þ; ð41Þ

where Emx is a SU(2) generator, Emx ¼
P

i X
y
imXix: In view

of the fact that the MEs of Xil operators are Hermitian

conjugates of those for X
y
il; we shall examine only the

latter. Using the Wigner–Eckart theorem, the MEs of X
y
il in

the basis of Eq. (37) can be expressed as

k0

W 0M0S

* Xyil k

W MS

 �
¼ hk0kXykki k ð0; 1Þ

W i

k0

W 0

� �ðsÞ
 S

1

2
MSljS0M0S

� �
; ð42Þ

where the first factor on the right-hand side is a RME of Xy

operator in the Uð2nÞ � UðnÞ� SU(2) basis, the second

one is a scaled U(n) C–G coefficient, and the third one is a

standard SU(2) C–G coefficient (see, e.g., [123–125]). In

general, the RME of Xy should depend on all the U(2n),

U(n), and SU(2) irreps that are involved in the bra and ket

vectors. However, as mentioned earlier, since the

U(2n) irrep [1N] is totally antisymmetric and the SU(2)

irrep is conjugate to that of U(n), we can label the RME

only by the U(n) irreps k and k0. The RMEs in Eq. (42) are

in fact scaled RMEs as are the U(n) C–G coefficients. Since

the latter have been examined previously and the SU(2)

C–G coefficients are well known, the only quantities that

remain to be determined are the RMEs.

As we have seen, the coupling k ð0; 1Þ ! k0 is

straightforward for the two-column irreps. Choosing k0 as

(a, b), there are only two possible couplings corresponding

to k = (a, b - 1) and (a - 1, b ? 1) and, thus, only two

nonvanishing RMEs which can be evaluated provided that

some specific MEs ofXy are known. To determine such MEs,

we express the Uð2nÞ � UðnÞ� SU(2) basis as a linear

combination of the U(2n) basis (i.e., Slater determinants),

employing Uð2nÞ � UðnÞ� SU(2) subduction coefficients

ða; bÞ
W MS

 �
¼
X
D

½1N 

D

 � ½1N 

D

� ða; bÞ
W MS

 �
: ð43Þ

The U(2n) basis vectors, labeled by D, are then fully

determined by the spin-orbitals involved. Thus, in order to

find the desired RMEs, we next consider the two relevant

subduction coefficients.

The U(2n) basis vectors D that can appear on the right-

hand side of Eq. (43) are given by products of N spin-

orbitals constituting corresponding U(n) and SU(2) basis

vectors, labeled by W and SMS, respectively, subject to a

condition that no spin-orbital appears more than once.

For example, suppose that the U(n) basis vector W con-

tains orbitals 1, 2, and 3 and the SU(2) basis element SMS

involves spin functions a, a, and b. Then the sum in

Eq. (43) contains three terms associated with spin-orbital

determinants j12�3j; j1�23j, and j�123j. Clearly, each doubly

occupied orbital must be associated with different spins.

Thus, the more doubly occupied orbitals are present in

the U(n) basis vector and the higher the spin component

MS, the simpler will be the expansion in Eq. (43).

Moreover, the values of subduction coefficients are

determined by singly occupied orbitals in the U(n) basis

vectors.

Let us choose the Uð2nÞ � UðnÞ� SU(2) basis vector in

Eq. (43) in such a way that all two-box rows of W are filled

with doubly occupied orbitals labeled 1; 2; . . .; a and all

one-box rows with singly occupied orbitals having labels

aþ 1; aþ 2; . . .; aþ b. Further, let MS = S, so that the

SU(2) basis contains (a ? b) spin functions a and a spin

functions b. With this choice, only one Slater determinant

that involves N(= 2a ? b) spin-orbitals 1a; 1b; . . .;
aa; ab; ðaþ 1Þa; . . .; ðaþ bÞa will be present in the sum on
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the right-hand side of Eq. (43). This immediately implies

the following simple subduction coefficient

ð44Þ

where a1 ¼ aþ 1; . . .; ab ¼ aþ b;D is the determinant

j1�1 � � � a�aa1 � � � abj, and D1 the determinant ja1 � � � abj. (Note

that for typographical reasons—here and in the following

text—we represent the U(2n) single-column Weyl tableaux that

label totally antisymmetric ket vectors by the corresponding

Slater determinants. We also drop the irrep labels since they are

implied by the explicit form of the Weyl tableau involved.)

The second useful case is slightly more involved. For

the SU(2) basis element, we again choose MS = S, but in

the U(n) basis vector, only the first (a - 1) rows of W will

be doubly occupied with orbitals labeled by 1 to (a - 1),

while the last two-box row and all the one-box rows will be

filled with singly occupied orbitals labeled a through

(a ? b ? 1) in such a way that the largest label appears in

the last box of the second column. We will show that the

subduction coefficient for the above choice of the U(n) and

SU(2) bases and the Slater determinant associated with the

spin-orbital set f1; �1; 2; �2; . . .; ða� 1Þ; ða� 1Þ; a; ðaþ
1Þ; . . .; ðaþ bÞ; ðaþ bþ 1Þg is given by

ð45Þ

where b1 = b ? 1, b2 = b ? 2, and D2 is the determinant

j1 2 � � � b1 b2j. Here, we have used the fact that the sub-

duction coefficients are independent of the (a - 1) doubly

occupied orbitals. Hence, the corresponding parts in the

U(n) and SU(2) Weyl tableaux are not shown, and all the

singly occupied labels are shifted by (a - 1).

Equation (45) can be proved by induction. We consider

first the simplest case of b = 1 when

1 2 a a
3 b

 �
¼ c1j1 2 �3j þ c2j1 �2 3j þ c3j�1 2 3j: ð46Þ

(Here, to simplify the notation, we omit boxes in the Weyl

tableaux of the irreps involved.) The unknown coefficients

c1, c2, and c3 can be easily determined by requiring that the

state is symmetric with respect to a transposition of the

orbital labels (1, 2), i.e.,

ð1; 2Þ 1 2 a a
3 b

 �
¼ 1 2 a a

3 b

 �
: ð47Þ

This implies that c1 = 0 and c2 = -c3. We thus get that

1 2 a a
3 b

 �
¼ 2�1=2 j1 �2 3j � j�1 2 3j
f g: ð48Þ

In fact, Eq. (48) holds for a general irrep (1, b), namely

ð49Þ

where b2 = b ? 2. Considering, next, the action of (2,3)

on Eq. (48), we get (see, e.g., Eq. (3–91a) or Table 4.4–2 of

[126])

ð2; 3Þ 1 2 a a

3 b

 �
¼ � 1

2

1 2 a a

3 b

 �
þ

ffiffiffi
3
p

2

1 3 a a

2 b

 �
¼ 2�1=2 �j12�3j þ j�123jf g: ð50Þ

This implies

1 3 a a
2 b

 �
¼ �

ffiffiffi
2

3

r
j1 2 �3j þ 1ffiffiffi

6
p j1 �2 3j þ 1ffiffiffi

6
p j�1 2 3j ð51Þ

or, equivalently,

1 3 a a
2 b

j1 2 �3j
� �

¼ �
ffiffiffiffiffiffiffiffi
2=3

p
: ð52Þ

In a completely similar way, we can obtain [again omitting

boxes for (a, b) = (1, 2)]

1 4 a a a
2 b
3

j1 2 3 �4j
* +

¼
ffiffiffiffiffiffiffiffi
3=4

p
: ð53Þ

Consequently, Eq. (45) can be proved by induction. It is

noticed that although Eq. (45) is derived for the irrep (1,b)

(i.e., a = 1), it holds for a general state of the irrep (a, b) in

which the first (a - 1) two-box rows are doubly occupied.

Using the above determined two subduction coefficients,

Eqs. (44) and (45), we can calculate the two required

RMEs of Xy operators. To obtain hða; bÞkXykða; b� 1Þi,
we consider the matrix element of Xyabaðab ¼ aþ bÞ. For

the bra
k0

W 0 M0S

�  in Eq. (42), we choose the state of

(a, b) appearing in Eq. (44) and for the ket state
k

W MS

 �
the state of irrep (a, b - 1) which results from the bra by

removing the box containing the largest label ab in the

U(n) tableau and the box with a in the SU(2) tableau. In
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view of Eq. (44), the sought ME equals to 1 and since in

this case both the corresponding scaled U(n) C–G coeffi-

cient (which equals to a scaled isoscalar factor in our case)

and the SU(2) C–G coefficient also equal to 1, we find that

hða; bÞkXykða; b� 1Þi ¼ 1: ð54Þ
To evaluate the second possible RME, hða; bÞk

Xykða� 1; bþ 1Þi, we carry out the following calculation

where a0 ¼ a� 1; a1 ¼ aþ 1; . . .; ab ¼ aþ b, K = ab?1 =

a ? b ? 1, etc. The first equality results from Eq. (42),

where in this case the corresponding scaled U(n) C–G

coefficient is equal to the scaled isoscalar factor. Note that

the ket in Eq. (55) is given by a single determinant [cf.,

Eq. (44)], while the bra is a linear combination of a number

of determinants. However, only one determinant, namely

j1�12�2 � � � a0 a0 a a1 � � � ab �Kj, contributes to the matrix ele-

ment, so that the corresponding Uð2nÞ � U(n) � SU(2)

subduction coefficient is given by Eq. (45). This fact

implies the second equality given by Eq. (55). In this

equation, the U(n) scaled isoscalar factor equals 1 (see

[36]) and the coupling coefficient of SU(2) isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2Sþ 1Þ=ð2Sþ 2Þp
(where 2S = b). This in turn implies

that

hða; bÞkXykða� 1; bþ 1Þi ¼ ð�1Þb: ð56Þ
This concludes derivation of the two required RMEs for the

Xy operators. The desired MEs of standard second-quanti-

zation creation and annihilation operators in the Uð2nÞ �
U(n) � SU(2) basis can now be obtained using Eqs. (42),

(54), and (56).

At this point, we recall that the scaled U(n) C–G coef-

ficients in Eq. (42) equal the MEs of the C� (or C) operators

(see Eq. (25) in [36])

k ð0; 1Þ
W i

k0

W 0

� �ðsÞ
¼ k0

W 0

� Cry
i

k
W

 �
; ð57Þ

where r is given by the condition kþ r ¼ k0. In other

words, Eq. (42) expresses the relationship between the

MEs of Xy (or X) operators in the Uð2nÞ � U(n) � SU(2)

basis and the MEs of C� (or C) operators in the U(n) G–T

basis.3333

5 Matrix elements of one-body spin-dependent

operators

The MEs of U(2n) generators Nil;jm, Eq. (35), in the U(2n)

. U(n) � SU(2) basis may be expresed in terms of MEs of

the X operators as follows

k0

W 0M0S

* Nil;jm
k

WMS

 �
¼
X

k00W 00M00
S

k0

W 0M0S

* Xyil k00

W 00M00S


+

 k00

W 00M00S

* Xjm
k

WMS

 �
: ð58Þ

Applying Eq. (42) and the fact that the scaled U(n) C–G

coefficients are equal to the MEs of the C operators,

Eq. (57), we get

k0

W 0M0S

* Nil;jm
k

WMS

 �
¼
X2

s¼1

hk0kXykk� sihkkXykk� si

 k0

W 0

� Cry
i Cs

j

k

W

 �
hðS� sÞ1

2
ðMS � mÞljS0M0Si

 hðS� sÞ1
2
ðMS � mÞmjSMSi; ð59Þ

where for r and s we require that k0 � DðrÞ ¼ k� DðsÞ
with the shifts Dð1Þ ¼ ð0; 1Þ and Dð2Þ ¼ ð1;�1Þ, while

S and S0 designate spins associated with the irreps k and k0,

(55)
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respectively. By an abuse of notation, the shifted spin label

S - s in the SU(2) coefficients designates S� DSðsÞ where

DSð1Þ ¼ 1
2

and DSð2Þ ¼ �1
2
. Moreover, we must require that

MS � m ¼ M0S � l lest the ME vanishes. Equation (59) may

be rewritten in a more compact form by employing the

known RMEs of the Xy operators and the SU(2) C–G

coefficients.

In the following, we always assume that k = (a, b) so

that k0 can equal (a - 1, b ? 2), (a ? 1, b - 2), or

(a, b). Let us first consider the case k0 ¼ ða� 1; bþ 2Þ;
i.e., DS ¼ 1. Since k0 � ða0; b0Þ ¼ ða; bÞ þ DðrÞ � DðsÞ we

must have that r = 1 and s = 2 so that ða; bÞ þ Dð1Þ �
Dð2Þ ¼ ða; bÞ þð0; 1Þ � ð1;�1Þ ¼ ða� 1; bþ 2Þ. The

resulting operator C
1y
i C2

j is related to the positive-spin-shift

adjoint tensor Nij
(?), Eq. (28), when acting on the (a, b) irrep

module (see also Eqs. (61a) or (73a) of [36]). We thus get

ða� 1; bþ 2Þ
W 0M0S

� Nil;jm
ða; bÞ
WMS

 �
¼ hða� 1; bþ 2ÞkXykða� 1; bþ 1Þi

 hða; bÞkXykða� 1; bþ 1Þi
ffiffiffiffiffiffiffiffiffiffiffi
bþ 2

bþ 3

r
 hðSþ 1

2
Þ1
2
ðMS � mÞljðSþ 1ÞM0Si

 hðSþ 1

2
Þ1
2
ðMS � mÞljSMSi

 ða� 1; bþ 2Þ
W 0

� NðþÞij

ða; bÞ
W

 �
: ð60Þ

We can now evaluate the product of the two RMEs, two

SU(2) C–G coefficients, and account for the factor in

Eq. (60) for the four possible cases of (lm) = (aa),

(bb), (ab), (ba) and define the resulting quantities as

NþðlmÞSMS
, so that

ða� 1; bþ 2Þ
W 0M0S

� Nil;jm
ða; bÞ
W MS

 �
¼ NþðlmÞSMS

ða� 1; bþ 2Þ
W 0

� NðþÞij

ða; bÞ
W

 �
: ð61Þ

These new quantities NþðlmÞSMS
, given in Table 1, are

functions of the spin labels (SMS) of the ket and (lm) labels of

the operator Nil;jm. The conditions S0 ¼ Sþ 1 [which is

implied by the irreps (a - 1,b ? 2) and (a, b)] and M0S ¼
MS � mþ lmust be satisfied lest the matrix elements vanish.

Next, when k0 ¼ ðaþ 1; b� 2Þ, the only possible choice

for r and s is r = 2 and s = 1, implying the negative-

spin-shift adjoint tensor N
ð�Þ
ij , Eq. (29), when acting on the

(a, b) irrep module (see also Eqs. (61c) or (73b) of [36]).

We then get an expression which is similar to Eq. (60). The

final result is

ðaþ 1; b� 2Þ
W 0M0S

� Nil;jm
ða; bÞ
W MS

 �
¼ N�ðlmÞSMS

ðaþ 1; b� 2Þ
W 0

� Nð�Þij

ða; bÞ
W

 �
; ð62Þ

where the N�ðlmÞSMS
coefficients are given in Table 1 for

the four possible cases of (lm). Again, M0S ¼ MS � mþ l.

Finally, when k0 ¼ ða; bÞ, both terms with r = s = 1 and

r = s = 2 on the right-hand side of Eq. (59) survive and the

MEs of both operators C
1y
i C1

j and C
2y
i C2

j are required. As has

been shown in [36], these operators can be expressed in terms

of the two zero-shift adjoint tensors, namely Eij and Nij
(0), as

implied by Eqs. (23) and (29). Inverting these relations, we

get (see also Eqs. (73c) and (73d) of [36])

C
1y
i C1

j ¼
b

2ðbþ 1ÞEij þ 1

bþ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðbþ 2Þ

2

r
N
ð0Þ
ij ð63Þ

C
2y
i C2

j ¼
bþ 2

2ðbþ 1ÞEij � 1

bþ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðbþ 2Þ

2

r
N
ð0Þ
ij ð64Þ

when acting on the (a, b) irrep module. Via a simple

manipulation, we can find expression for the required MEs

for the zero-spin-shift case in terms of those forEijandN
ð0Þ
ij , i.e.,

ða; bÞ
W 0M0S

� Nil;jm
ða; bÞ
WMS

 �
¼ dl;m

2

ða; bÞ
W 0

� Eij

ða; bÞ
W

 �
þN0ðlmÞSMS

ða; bÞ
W 0

� Nð0Þij

ða; bÞ
W

 �
;

ð65Þ

where the N0ðlmÞSMS
coefficients are given in Table 1.

Again, M0S ¼ MS � mþ l.

We can thus conclude that in the cases of spin-positive and

spin-negative shifts, the MEs of one-body spin-dependent

operators are given by the MEs of adjoint tensorsN
ðjÞ
ij ,j = ?

or -, and in the case of a zero-spin shift by the sum of MEs of

the generatorEij and the adjoint tensorN
ð0Þ
ij , as implied by Eqs.

(61), (62), and (65). The evaluation of MEs of Eij and N
ðjÞ
ij

operators was described in detail in [36]. There we have shown

that this may be achieved via a simple segment level products,

and all the required segment values were tabulated in [36]. We

thus find that a segmentation formalism applies even for MEs

of spin-dependent one-body operators. For example, assuming

that i\ j, the MEs in the zero-shift case are given by

ða;bÞ
W 0M0S

� Nil;jm
ða;bÞ
WMS

 �
¼ 1

2
dl;m
Yn
k¼j

dk0kkk
kj
k0j�1

* E kj
kj�1

 �(

þN0ðlmÞSMS

Yn
k¼jþ1

k0k
k0k�1

* N kk
kk�1

 � k0j
k0j�1

* N kj
kj�1

 �
Cy

)


Yj�1

k¼iþ1

kk ð0;1Þ
kk�1 ð0;1Þ


  k0k
k0k�1

!ðsÞ
ki ð0;1Þ
ki�1 ð0;0Þ


  k0i
ki�1

�ðsÞYi�1

k¼1

dk0kkk ;

ð66Þ
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where k0n ¼ kn ¼ ða; bÞ, and the required quantities, which

include RMEs of the U(n) generator (E), the N factors, the

N � Cy connecting factors, and the scaled isoscalar factors

for vector operators, can be found in Tables 2, 5, 7, and 1 of

[36], respectively.

6 A comparison of spin-dependent

and spin-independent UGA

The segmentation of MEs of spin-dependent one-body

operators is very similar to that for spin-independent two-

body operators. This is a very useful fact in view of an

actual implementation of this formalism, since it enables an

evaluation of MEs of spin-dependent one-body operators

by exploiting presently available UGA or GUGA codes.

We now compare both formalisms in greater detail.

The key to both ME evaluations are MEs of adjoint ten-

sors, N
ðjÞ
ij . We recall that the same tensors play an important

role when dealing with MEs of U(n) generator products in the

UGA spin-independent case. However, the U(n) generator

products cannot change the spin of U(n) irreps, while the

spin-dependent one-body operators do. This implies that

MEs of spin-dependent one-body operators are related to

MEs of generator products of a larger group, say U(n ? 1),

since the U(n ? 1) generators can change the spin at the

U(n) level as is the case for spin-dependent, one-body

operators. We thus derive below the relationships between

the MEs of U(n) N
ðjÞ
ij operators in the U(n) G–T basis and

the MEs of U(n ? 1) generator products

enþ1;j;i;nþ1 ¼ Eðnþ1ÞjEiðnþ1Þ � dijEðnþ1Þðnþ1Þ
¼ ei;nþ1;nþ1;j ¼ Eiðnþ1ÞEðnþ1Þj � Eij

ð67Þ

in the U(n ? 1) G–T basis.

While in Sects. 4 and 5, the MEs of spin-dependent

operators are derived strictly within the framework of the

U(n) group, as enabled by the formalism of our spin-

adapted creation and annihilation operators, the same MEs

can also be derived by relying on the standard Racah-

Wigner spin algebra and exploiting a larger U(n ? 1)

group. In fact, the use of a larger U(n ? 1) group follows

immediately when we employ graphical methods of spin

algebras (see [34]) as was done by Drake and Schlesinger

[39] (See also later work by these and other authors [37,

115, 116, 117]. Note, however, that in their latter work

[39], they have been unaware of our earlier work [34]

which employs graphical methods of spin algebras with

Yamanouchi-Kotani coupling scheme and Jucys-type dia-

grams, a formalism that is directly related to a U(n) for-

malism). The U(n ? 1)-based formalism (or even

U(n ? 2) [116]) for spin-dependent operators that was

based on Drake and Schlesinger’s developments was then

exploited by Yabushita et al. [37] and implemented in

actual GUGA codes. In contrast to our approach here, the

spin-algebra-based approach that relies on Racah-Wigner

calculus and that was employed by Yabushita et al. [37]

requires six steps in order to conform with the standard

UGA-based formalism, including an introduction of an

additional phase factor and a transformation to ‘‘real

spherical‘‘ spin functions to ascertain a real form of the

relevant matrix elements. The latter are automatically taken

care of in our approach since we systematically employ

unitary group formalism. On the other hand, Yabushita

et al. also implemented in their codes an adaptation to the

D2h point group and its subgroups [37].

Consider, first, MEs of N
ðþÞ
ij appearing on the right-hand

side of Eq. (61). To relate these MEs with those of the

U(n ? 1) generator products, we must construct the

U(n ? 1) bra and ket states in such a way that they have

identical irreps at the U(n ? 1) level but subduce to the

U(n) bra and ket states
ða� 1; bþ 2Þ

W 0

�  and
ða; bÞ
W

 �
,

respectively, at the U(n) level. This may be easily achieved

when we add one box with the orbital label (n ? 1) to the

second column of the Weyl tableau W 0 as well as to the first

Table 1 Coefficients required for the evaluation of MEs of spin-dependent, one-body operators, Eqs. (61), (62), and (65), for three possible

shifts, as functions of the SU(2) labels

lm NþðlmÞSMS
N0ðlmÞSMS

N�ðlmÞSMS

aa ð�1Þb ðS�þ1ÞðSþþ1Þ
2ðSþ1Þð2Sþ3Þ
h i1=2 ~db0

MS

½2SðSþ1Þ
1=2 ð�1Þb S�Sþ
2Sð2Sþ1Þ
h i1=2

bb ð�1Þbþ1 ðS�þ1ÞðSþþ1Þ
2ðSþ1Þð2Sþ3Þ
h i1=2 �~db0

MS

½2SðSþ1Þ
1=2 ð�1Þbþ1 S�Sþ
2Sð2Sþ1Þ
h i1=2

ab ð�1Þb ðSþþ1ÞðSþþ2Þ
2ðSþ1Þð2Sþ3Þ
h i1=2

~db0
S�ðSþþ1Þ
2SðSþ1Þ
h i1=2

ð�1Þbþ1 ðS��1ÞS�
2Sð2Sþ1Þ
h i1=2

ba ð�1Þbþ1 ðS�þ1ÞðS�þ2Þ
2ðSþ1Þð2Sþ3Þ
h i1=2

~db0
ðS�þ1ÞSþ
2SðSþ1Þ
h i1=2

ð�1Þb ðSþ�1ÞSþ
2Sð2Sþ1Þ
h i1=2

The following short-hand notation is used: S? = S ? MS, S- = S - MS, and ~db0 ¼ 1� db0, where S and MS designate the total spin and the spin

component in the ket vector
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column of the Weyl tableau W, yielding new bra fW 0 and

ket eW states that are associated with the irrep (a, b ? 1) of

U(n ? 1). Expressed in terms of the d-vector notation2,

Eq. (4), we expand the n-component d0(:W0) and d (:W)

vectors (corresponding to W 0 and W, respectively) to the

(n ? 1)-component vectors ~d0 and ~d by adding 2 to d0 and 1

to d as the (n ? 1)th component, respectively, i.e.,

fW 0 � f~d0g ¼ fd02g; eW � f~dg ¼ fd1g: ð68Þ
Employing Eq. (32) and Table 9 of [36] (see also

Eq. (92) of [36]) the U(n ? 1) ME of en?1,j;i,n?1 involving

G–T states of Eq. (68) can be expressed as a product of the

e�N connecting factor and the U(n) ME of N
ðþÞ
ij , namely

ða; bþ 1Þ
~d0

� enþ1;j;i;nþ1

ða; bþ 1Þ
~d

 �
¼ ða; bþ 1Þ
ða� 1; bþ 2Þ

� e ða; bþ 1Þ
ða; bÞ

 �
N

 ða� 1; bþ 2Þ
d0

� NðþÞij

ða; bÞ
d

 �
¼

ffiffiffiffiffiffiffiffiffiffiffi
bþ 1

bþ 2

r ða� 1; bþ 2Þ
d0

� NðþÞij

ða; bÞ
d

 �
: ð69Þ

This implies that

ða� 1; bþ 2Þ
d0 M0S

� Nil;jm
ða; bÞ
d MS

 �
¼ ~NþðlmÞSMS

 ða; bþ 1Þ
fd02g

� enþ1;j;i;nþ1

ða; bþ 1Þ
fd1g

 �
; ð70Þ

with ~NþðlmÞSMS
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðbþ 2Þ=ðbþ 1Þp

NþðlmÞSMS
values

listed in Table 2.

Similarly for the MEs of N
ð�Þ
ij that appear on the right-

hand side of Eq. (62), we add one box with the label

(n ? 1) to the first column of W 0 as well as to the second

column of W, obtaining new states eW 0 and eW of

the U(n ? 1) irrep (a ? 1, b - 1). Alternatively, in the

d-vector notation, we expand the d0 and d vectors to

(n ? 1)-component vectors ~d0 and ~d by adding 1 to d0 and 2

to d, respectively, i.e.,

f~d0g ¼ fd01g; f~dg ¼ fd2g: ð71Þ
The corresponding U(n ? 1) ME of en?1,j;i,n?1 is then

given by a product of the e�N connecting factor and a ME

of N
ð�Þ
ij in the U(n) basis. Relying again on Eq. (32) and

table 9 of [36] (see also Eq. (92) of [36]), we get

ðaþ1;b�2Þ
d0

� Nð�Þij

ða;bÞ
d

 �
¼

ffiffiffiffiffiffiffiffiffiffi
b

b�1

r
 ðaþ1;b�1Þ

~d0

� enþ1;j;i;nþ1

ðaþ1;b�1Þ
~d

 �
ð72Þ

and

ðaþ 1; b� 2Þ
d0 M0S

� Nil;jm
ða; bÞ
d MS

 �
¼ ~N�ðlmÞSMS

 ðaþ 1; b� 1Þ
fd01g

� enþ1;j;i;nþ1

ðaþ 1; b� 1Þ
fd2g

 �
; ð73Þ

where ~N�ðlmÞSMS
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b=ðb� 1Þp
N�ðlmÞSMS

, the values of

which are given in Table 2.

The bra and ket states in the MEs of N
ð0Þ
ij , appearing on

the right-hand side of Eq. (65), belong to the same irrep. In

principle, there exist several possibilities how to construct

the desired U(n ? 1) basis vectors. An obvious choice that

makes the orbital (n ? 1) either unoccupied or doubly

occupied in the bra and ket states does not lead, however,

to useful results. A better choice is to add one box labeled

with (n ? 1) to the first column of both bra and ket states,

which is always possible (note that it is impossible to add

an additional box to the second column when b = 0), i.e.,

to expand the d vectors as follows

f~d0g ¼ fd01g; f~dg ¼ fd1g; ð74Þ
obtaining basis states for the U(n ? 1) irrep (a,b ? 1).

Employing, again, Eq. (32) and Table 9 of [36], and noting

that in this case both the e�E and e�N connecting factors

are not zero, we get

2 Recall that for the U(n) electronic G–T bases, the G–T tableau, the

Weyl tableau, the Paldus tableau or the d-vector notation are all

equivalent and there is a one-to-one correspondence between them.

Table 2 Coefficients relating

MEs of spin-dependent, one-

body operators and spin-

independent, two-body

operators, Eqs. (70), (73), and

(76), for three possible shifts, as

functions of the SU(2) labels.

See footnote to Table 1 for the

notation convention used

lm ~NþðlmÞSMS

~N0ðlmÞSMS

~N�ðlmÞSMS

aa ð�1Þb ðS�þ1ÞðSþþ1Þ
ð2Sþ1Þð2Sþ3Þ
h i1=2 �~db0

MS

S ð�1Þb S�Sþ
ð2S�1Þð2Sþ1Þ
h i1=2

bb ð�1Þbþ1 ðS�þ1ÞðSþþ1Þ
ð2Sþ1Þð2Sþ3Þ
h i1=2 ~db0

MS

S ð�1Þbþ1 S�Sþ
ð2S�1Þð2Sþ1Þ
h i1=2

ab ð�1Þb ðSþþ1ÞðSþþ2Þ
ð2Sþ1Þð2Sþ3Þ
h i1=2 �~db0

½S�ðSþþ1Þ
1=2

S ð�1Þbþ1 ðS��1ÞS�
ð2S�1Þð2Sþ1Þ
h i1=2

ba ð�1Þbþ1 ðS�þ1ÞðS�þ2Þ
ð2Sþ1Þð2Sþ3Þ
h i1=2 �~db0

½ðS�þ1ÞS�
1=2

S ð�1Þb ðSþ�1ÞSþ
ð2S�1Þð2Sþ1Þ
h i1=2
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ða; bþ 1Þ
~d0

� enþ1;j;i;nþ1

ða; bþ 1Þ
~d

 �
¼ � 1

2

ða; bÞ
d0

� Eij

ða; bÞ
d

 �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b

2ðbþ 2Þ

s
ða; bÞ
d0

� Nð0Þij

ða; bÞ
d

 �
: ð75Þ

Substituting, finally, Eq. (75) into Eq. (65), we find that

ða; bÞ
d0M0S

� Nil;jm
ða; bÞ
dMS

 �
¼ 1

2
½dlm þ ~N

0ðlmÞSMS



 ða; bÞ
d0

� Eij

ða; bÞ
d

 �
þ ~N

0ðlmÞSMS

ða; bþ 1Þ
fd01g

� enþ1;j;i;nþ1

ða; bþ 1Þ
fd1g

 �
; ð76Þ

where ~N0ðlmÞSMS
¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðSþ 1Þ=Sp
N0ðlmÞSMS

, whose

values are given in Table 2.

7 Conclusions

We have shown that one-electron spin-dependent terms,

Eq. (36), in the electronic Hamiltonian, Eq. (33), may be

efficiently handled in much the same way as the standard

spin-independent two-electron (i.e., Coulomb) terms.

Indeed, as clearly implied by Eqs. (70), (73), and (76), the

MEs of spin-dependent one-body operators in the Uð2nÞ �
UðnÞ� SU(2) basis may be evaluated as MEs of spin-

independent two-body operators in a standard U(n ? 1)

electronic G–T basis (see also [37, 39]). Since the MEs of

generator products within the spin-independent UGA

approach are well known, the above presented develop-

ment should facilitate the implementation of the spin-

dependent UGA formalism. This opens a possible avenue

enabling us to handle spin-dependent MBPT terms via a

simple modification of the existing UGA and GUGA

codes, similarly as done by Yabushita et al. [37]. We

emphasize that all the required segment values may be

found in [36], and a few additional ones that are specific to

a spin-dependent case are given in Tables 1 and 2.
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Abstract In the present work, we propose an approach to

factorize the non-local exchange kernel into a sum of

separable terms. We exploit a discretized Fourier transform

of the 1/r operator, and we devise a method that allows us

to employ a manageable number of plane waves in the

Fourier expansion while still keeping necessary accuracy.

Resulting formulas are amenable for efficient evaluation on

graphics processing units (GPU) devices. We discuss the

GPU implementation for two-electron repulsion integrals

of the (gk|gk) type in the hybrid Gaussian and plane-wave

basis. Accuracy and speedups are demonstrated for several

practical calculations of electron scattering by cyclopro-

pane, benzene, and adamantane molecules. By that, we

want to show that evaluation of (gk|gk) integrals may cease

to be a bottleneck in electron scattering calculations. A

message to quantum chemists is that the combination of the

integral fragmentation and the use of GPU units is a gen-

eral tool which may improve performance of computa-

tional methods of different types.

Keywords Electron scattering � Exchange energy �
Plane-wave basis � Efficient evaluation of integrals �
GPU computing

1 Introduction

The stimulus for undertaking this study arose from our

urgent need to calculate efficiently exchange integrals in

electron-molecule scattering calculations. These integrals

are of the [g(1)k(1)|g(2)k(2)] type, where g and k symbols,

respectively, refer to Gaussians and plane-wave functions.

Lengthy evaluation of two-electron integrals in a mixed

Gaussian and plane-wave basis has been a bottleneck in the

scattering theory [1], and it hampers ab initio applications

to larger polyatomic molecules up to now. Incidentally, this

problem may also be topical for the mainstream quantum

chemistry. In 2002, F}usti-Molnár and Pulay [2] came up

with the idea that ‘‘modern computers have overcome the

severe memory limitations of their predecessors, and thus,

alternative basis sets such as plane waves are becoming

attractive alternatives.’’ Up to now, this statement applies

to Coulomb integrals only, whereas the exchange energy

has to be treated in a traditional way by using a Gaussian

basis set or by using a density functional theory (DFT)-type

functional. However, even for Coulomb integrals, a

Gaussian basis set cannot be substituted fully by a plane-

wave basis because compact molecular orbitals (core

orbitals) are not suited to be expanded in a plane-wave

basis. Therefore, F}usti-Molnar and Pulay [2] assumed for

molecular orbitals the expansion in a mixed Gaussian and

plane-wave basis

/iðrÞ ¼
X
l

cillðrÞ þ
X
p

cipkpðrÞ; ð1Þ

where the first sum refers to Gaussians and the second one

to plane-wave functions

kðrÞ ¼ 1

ð2pÞ3=2
eik�r: ð2Þ
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This leads to the expression for the Hartree–Fock energy

which contains also integrals in a mixed Gaussian and

plane-wave basis. Coulomb Hartree–Fock energy can be

now calculated in this way efficiently in an elegant manner

[2], but efficient evaluation of the exchange Hartree–Fock

energy remains still a problem. Although formulas for the

exchange integrals (gk|gk) have been available for a long

time [3–8], their use for Hartree–Fock calculations is not

profitable.

Since the dark age of ab initio calculations, efficient

evaluation of two-electron integrals has not cease to be a

hot topic. Many authors contributed to the progress in this

field by various approaches, but as stated explicitly in a

recent paper [9], 1/r12 in electronic Hamiltonians is still the

ultimate source of all technical and computational diffi-

culties in quantum chemistry. A tempting solution has been

to calculate the exchange energy by means of the DFT.

Actually, a practical DFT exchange potential was formu-

lated for use in scattering theory [10] prior to its wide-

spread use in quantum chemistry. This potential, called in

the literature Hara free-electron–gas exchange approxi-

mation (HFEGE), was later reexamined by Riley and

Truhlar [11]. They corrected some misprints in Hara’s

paper and suggested a modification of the Hara formula to

correct the large r behavior of the potential. They call their

formula asymptotically adjusted free-electron–gas

exchange approximation (AAFEGE). It has been believed

that the only manageable way of calculating electron

scattering in polyatomic molecules is by using local

exchange potentials. In spite of its utility and performance

[12], we show in the next section that local exchange

models result in an average approximation and neglect

anisotropy in electron density of asymmetric polyatomic

molecules. Hence, for applications to molecules, we rec-

ommend to use more rigorous approaches. In Sect. 3, we

show that with the actual computational facilities, it is

possible now to calculate exchange energy rigorously,

accurately, and efficiently. A few applications showing

performance and accuracy of our approach are presented in

Sect. 4.

As our primary interest is electron scattering, our pri-

mary objective was to find an efficient way of evaluation of

exchange integrals of the following special form

Nk1
Nk2

k1jVexð jk2Þ ¼
X
l

X
m

lk1jmk2ð ÞPlm; ð3Þ

as it is encountered in the scattering theory with a static-

exchange potential Vsx. The symbols k1 and k2 in Eq. (3)

stand for unnormalized plane-wave functions (2), Nk1
and

Nk2
are their normalization constants, l and m are symbols

for Gaussian basis functions, and Plm is a density matrix

element. However, our method is general and it can be

applied to any kind of two-electron integrals. Hence, in the

last section, we discuss possibility of how our approach

presented in Sect. 3 could be applied to Hartree–Fock and

post-Hartres–Fock calculations in a mixed Gaussian and

plane-wave basis as suggested by F}usti-Molnar and Pulay

[2] or in a pure Gaussian basis.

The past decade has seen a tremendous increase in the

use of graphics processing units (GPUs) in the field of

quantum chemistry. A number of quantum chemistry

methods have been ported recently to GPUs, including

Gaussian integral generation [13], Hartree–Fock [14], DFT

methods [15], perturbation theory [16], and coupled-cluster

methods [17, 18]. Existing scientific code must often be

entirely rewritten in Cuda or OpenCL programming

frameworks to run efficiently on GPU devices. In Sect. 3,

we demonstrate that present approach to computation of

two-electron repulsion integrals is amenable to GPU

evaluation without extensive code modifications. Instead,

we show that resulting two-electron integral formulas

reduce essentially to a simple Hermitian rank-k update that

can be conveniently computed on GPU cards by use of the

Cublas library. Furthermore, we also propose an algorithm

that allows to perform these calculations on arrays that do

not fit into limited GPU’s onboard memory.

2 Note on the use of density functional theory

in scattering calculations

Passage from the rigorous treatment to the DFT approach

can be symbolically expressed as

k1ð1Þð Kð1; 2Þj jk2ð2ÞÞ ! k1ð1Þð Vlexð1Þj jk2ð1ÞÞdð1� 2Þ;
ð4Þ

where the nonlocal K operator

Kð1; 2Þ ¼
Xocc

i

/ið1Þ
1

r12

/ið2Þ ð5Þ

is substituted by a local exchange Vlex operator. For a local

exchange potential Vlex, it holds that ðk1jVlexjk2Þ integrals

depend only on the difference of the wave vectors

K = k2 - k1 because

k1jVlexjk2ð Þ ¼
Z

e�ik1�rVlexðrÞeik2�rdr ¼
Z

VlexðrÞeiK�rdr:

ð6Þ
Hence for two different pairs of k1 and k2 vectors giving

the same K vector, we should get the same value of

ðk1jVlexjk2Þ: In Fig. 1, we keep the K vector fixed but vary

the k1 and k2 pair. HFEGE and AAFEGE (as examples of

Vlex) give straight lines, as they depend on fixed K vector,

but use of the Hartree–Fock exchange potential Vex (5)
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gives a different result. Figure 1 shows that local potentials

may give excellent results, but that situations are con-

ceivable where it need not be so. When scanning different

orientations and lengths of momentum vectors pair k1 and

k2 shown in Fig. 1, the exact exchange elements

ðk1jVexjk2Þ exhibit a nontrivial dependence but the local

exchange approximations (HFEGE and AAFEGE) are

constants. The two local exchange potentials tend to

underestimate the exchange interaction in absolute value

for k-values smaller than 2 a.u. and overestimate it for

higher k-values. In a way, their constant values can be

viewed as average values. Hence, it may be assumed that

their successful applications to atoms [19, 20] and diato-

mics [21] are due to spherical and near-spherical electron

distributions, respectively. To substantiate this assumption,

we carried out calculations on elastic collisions of electrons

with a helium atom and the cyclopropane molecule as a

representative of asymmetric polyatomic molecules. For

each target, the calculations were performed both with the

AAFEGE local potential and the potential evaluated rig-

orously. The results are presented in Fig. 2. The left panel

shows scattering results for electron scattering by cyclo-

propane at collision energy of 2.6 eV. The choice of col-

lision energy is based on the presence of weak A2
0 shape

resonance [22] that promotes an importance of short-range

exchange interaction. After comparison with experimental

data [22] (shown as circles), we conclude that the local

exchange model AAFEGE (green line) fails to reproduce

properly the experiment and exact exchange results (red

line). The situation is quite different for elastic electron

scattering by helium atom shown in the right panel of

Fig. 2. Results obtained by application of the AAFEGE

exchange potential follow closely both the experimental

data [23] and calculations with exact exchange.

3 Theory

We found inspiration for our work in the series of papers

by Gill et al. [9], in particular, their attempts to factorize

the Coulomb operator. This is done by approximations in

which the two-electron interaction is, in one sense or

another, ‘‘factorized.’’ In practice, it means to find a

suitable basis set that would simulate satisfactorily the

action of the 1/r12 operator by means of the following

expansion

1

r12

¼
X
i

/�i ðr1Þ/iðr2Þ: ð7Þ

We adopted a somewhat different strategy. We decided

to use the old idea of using the Fourier or Gaussian

cyclopropane
K

k1

Fig. 1 Exchange integrals ðk1jVlexjk2Þ calculated with the AAFEGE,

HFEGE, and ðk1jVexjk2Þ of exact exchange potentials for cyclopro-

pane as a function of a simultaneous increase in the norm and angle of

the k1 vector. Both vectors are constrained to lie in the CCC plane.

The k1 vector is stepwise increased and rotated as shown in the figure.

The k2 vector is adjusted to keep the K vector fixed at the value of

1 a.u. and oriented as shown in the figure

Fig. 2 Elastic differential cross

section for scattering of

electrons by cyclopropane (left

panel) and helium atom (right

panel). Collision energies are

2.6 eV (left panel) and 10 eV

(right panel). Present

calculations with exact

exchange interaction are

displayed by red curves while

the local AAFEGE exchange

model is shown by green

curves. The results are

compared to experimental data

for cyclopropane [22] and

helium [23], both displayed as
circles in respective panels
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transformation of the 1/r operator to obtain analytical for-

mulas for two-electron integrals [4, 5]. The same technique

can be also applied to (gk|gk) integrals to obtain the

respective formulas in complex arithmetics. Although

calculation of (gk|gk) integrals in this way is feasible, it is

more time-consuming than calculation of two-electron

integrals in a pure Gaussian basis. Hence to avoid this

lengthy calculation, we decided to use the Fourier

transform

1

r12

¼ 1

2p2

Z
1

k2
e�ik�r1 eik�r2 dk; ð8Þ

which permits us to use the strategy of factorization. If the

integral in Eq. (8) is expressed by means of numerical

quadrature

1

r12

¼ 1

2p2

X
pj

xpxje
�ikpj�r1 eikpj�r2 ; ð9Þ

we obtain

Nk1
Nk2

k1jVexjk2ð Þ ¼ Nk1
Nk2

1

2p2X
lm

X
pj

xpxj lk1kpj
� ��

mk2kpj
� �

Plm;
ð10Þ

where indices p and j, respectively, stand for radial and

angular quadrature, and xp and xj are weights of the grid

points. The notation (lk1kpj) denotes the overlap integral

between the gaussian l and a plane wave function

exp[i(k1 ? kpj)]. We rewrite Eq. (10) in a more compact

form as

Nk1
Nk2

k1jVexjk2ð Þ ¼
Xocc

i

X
lm

X
q

ak1

lq

� ��
ak2

mq

� �
cilcim; ð11Þ

where q is used as a collective index for grid points in the

numerical quadrature

q � pj ð12Þ
and where by collecting terms in Eq. (10), we obtained

ak1

lq ¼ Nk1

ffiffiffiffiffiffiffiffiffiffiffi
xpxj

2p2

r
lk1kpj
� �

: ð13Þ

Summation over l and m in Eq. (11) gives us the

exchange integral in a compact form

Nk1
Nk2

k1jVexjk2ð Þ ¼
Xocc

i

X
q

Ak1

iq

� ��
Ak2

iq

� �
; ð14Þ

where

Ak1

iq ¼
X
l

ak1

lqcil: ð15Þ

It might be expected that the numerical quadrature

would run into difficulties for small values of r, unless an

excessively large numerical quadrature would be used.

However, it turned out that even a moderately large

quadrature can give results with accuracy which is more

than sufficient for comparison with experimental scattering

data.

Choice of the numerical quadrature and its optimization

have received a great deal of attention (see for example

Refs. [24, 25] and references therein for older literature).

However, our literature search did not result in an

unequivocal decision what could be the best choice for our

purpose. After some experimentation, we found that a

scaled adaptive Laguerre quadrature with 15 grid points

can be used as an universal radial quadrature for low-

energy electron-molecule scattering calculations. The

radial points were obtained as scaled Laguerre grid points

ki ¼ x15;iR ð16Þ
where x15,i is the ith grid point in the 15-point Laguerre

quadrature and the scaling factor R was obtained as

R ¼ Rmax=x15;15 ð17Þ
with the fixed Rmax = 11 a.u. The weights were also scaled

as

xi ¼ wie
xiR; ð18Þ

where wis are weights of Laguerre grid points. The scaled

radial points ki were ordered in six ranges (0, 0.2), (0.2,

0.4), (0.4, 0.6), (0.6, 0.8), (0.8, 1.0), and (1.0, 11.0) and

assigned to Lebedev angular quadratures [26, 27] with 26,

50, 86, 110, 194, and 302 grid points, respectively. In the xy

notation of Chien and Gill [25], the quadrature may be

denoted as 262 501 861 1941 30210, indicating that x point

Lebedev grid was used for y successive radial points. Test

electron-molecule scattering calculations for electron

energies \20 eV showed that this numerical quadrature

with the total number of 3,402 grid points can be used as a

standard quadrature. It provides results for differential and

integral cross sections with the accuracy of four to five

significant digits. While it is sufficient for scattering cal-

culations, for most quantum chemical calculations, a higher

accuracy would be required and therefore, a more sys-

tematic optimization of the numerical quadrature should be

performed.

In Sect. 4, we present some tests on the performance and

accuracy achieved with our standard numerical quadrature.

When compared to calculations done with (gk|gk) integrals

evaluated rigorously, the time saving is considerable. Yet

the merits of the fragmentation approach were not fully

exploited. It can be noticed in Eq. (14) that the evaluation

of (gk|gk) integrals is reduced to multiplication of two long

vectors. This is an ideal task for general-purpose compu-

tation on graphics processing units (GPGPU). In Sect. 4,

we show that the computer time owing to the evaluation of

Theor Chem Acc (2014) 133:1466
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Ak
iq is marginal and hence, the computer time needed for

the evaluation of the exchange energy (3) is almost

exclusively due to the multiplication in Eq. (14). With

modern computers, we need not be anxious to watch

memory limitations. Nowadays, large Ak
iq arrays can be

kept in the computer memory. However, GPU devices

available so far provide less memory, typically 1–6 GB of

RAM. Therefore, we propose to distinguish the following

two cases:

1. Arrays Ak
iq and the resulting Hermitian matrix

ðk1jVexjk2Þ of Eq. (14) fit into GPU’s onboard

memory. In this case, the computational design is

reduced to a simple call to a blas3 function that

performs the Hermitian rank-k update, for example

function cublasCherk in Cublas implementation.

2. Arrays Ak
iq and ðk1jVexjk2Þ are too large to be stored

simultaneously in the GPU memory. For this case, we

devise to split the Hermitian matrix ðk1jVexjk2Þ into

Nb 9 Nb blocks as shown in Fig. 3. Then, the compu-

tation on GPU device is serialized to Nb (Nb ? 1)/2

steps going over shaded blocks of Fig. 3. The diagonal

blocks (dark shade) are calculated by the Hermitian

rank-k (update as in the case 1) and they require Nb

times smaller GPU memory allocation for Ak
iq array

and Nb
2 times smaller allocation for the resulting sub-

matrix of ðk1jVexjk2Þ: The off-diagonal blocks (light

shaded in Fig. 3) are just a result of a general matrix

multiplication implemented as a call to blas3 function

cublasCgemm in Cublas library. In case of the off-

diagonal blocks, the GPU device needs to keep two

segments of the Ak
iq array simultaneously, together with

the resulting block of ðk1jVexjk2Þ matrix. In the first

segment, the k index of Ak
iq array spans the rows k1 of

the computed off-diagonal block, while in the second

segment, the k index spans the columns k2 of the

computed block. Therefore, the GPU memory require-

ments for computation of the off-diagonal blocks

establish the necessary formula that defines the number

of blocks Nb (Nb ? 1)/2.

4 Performance and accuracy

Test calculations were performed for three molecules,

cyclopropane, benzene, and adamantane. First, we per-

formed geometry optimization of the three molecules by

Hartree–Fock calculations with a valence double-zeta basis

set with a single set of polarization functions [28]. This was

done with the purpose to save expansion coefficients of

occupied molecular orbitals for a subsequent evaluation of

Ak
iq terms [Eq. (15)] and for calculation of differential cross

sections. Details of our scattering calculations have been

k2

k1

Fig. 3 Splitting of the Hermitian matrix ðk1jVexjk2Þ into 4 9 4

blocks for serialized evaluation on a GPU device

Table 1 CPU time and speedup in calculations of the preselected sets

of exchange integrals ðk1jVexjk2Þ for cyclopropane C3H6, benzene

C6H6, and adamantane C10H14

C3H6 C6H6 C10H14

Rigorous calculation, t0 1,906 65,651 378,705

A terms, Eq. (15), tA 7 41 85

A*�A, Eq. (14), tAA 317 4,059 10,865

A*�A on GPU, Eq. (14), tAA,GPU 3.4 62 102

Speedup on CPUa 6 16 35

Speedup on GPUb 183 637 2,025

Execution times are given in seconds
a This is the ratio t0/(tAA ? tA)
b This is the ratio t0/(tAA,GPU ? tA)

Fig. 4 Angular dependence of the elastic differential cross section

for adamantane and incident electron energy of 10 eV. The red curve

is the result of calculation with factorized exchange integrals, whereas

crosses are data points for rigorous calculation
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described elsewhere [29]. Here, we only note that the

plane-wave basis sets were determined by Legendre–Gauss

and Lebedev quadrature as a result of discretization of

Lippmann–Schwinger equation [29, 30]. Incident electron

energy is set to 10 eV. The numbers of grid points was

stepwise increased until convergence was reached in the

calculated differential and integral cross sections. In

absolute value, the k vectors range from 0 to 12 a.u. and the

total numbers of k functions in the plane-wave basis sets

are 3,878 for cyclopropane, 12,456 for benzene, and 11,400

for adamantane.

The entries in Table 1 are timings for test calculations

done in three different ways. In the first one, the exchange

integrals were evaluated rigorously by means of complex

Shavitt functions Fn(z) [29]. The values of the Fn(z) func-

tions were not calculated explicitly but interpolated from a

precalculated table with a 2-D grid. In the other two, the

same way of fragmentation, represented by Eqs. (9)–(15),

was used, but they differ in a way of how the A*�A multi-

plication in Eq. (14) is performed, viz. if it is done on GPU

or not. It may be noticed in Table I that the time for the

evaluation of A terms is marginal compared to the time for

the A*.A multiplication. The size of the A array is (n, Nq,

Nk), where n is the number of occupied molecular orbitals,

Nq is the number of grid points in the expansion of 1/r12,

and Nk is the size of the plane-wave basis for the scattering

calculation. The traditional calculation with rigorous

evaluation of integrals scales as *N2, where N is the

number of atomic basis set functions, whereas the step

A*�A scales as * n for the same Nk and a fixed Nq. Hence,

the speedup increases with the size of the molecule and the

size of its atomic basis set. The respective speedup is

considerable, but the main merit of fragmentation is that it

leads to a simple A*�A form amenable to GPU treatment.

All the CPU execution times shown in Table 1 (first 3

rows) were obtained by using 12 cores of Intel Xeon 3 GHz

workstation. These times are compared to execution times

of a single CPU core code (row 4 of Table 1) where the

evaluation step shown in Eq. (14) was offloaded to Tesla

card M2090 with 512 cuda cores clocked at 1.3 GHz.

We should now inquire if the speedup achieved is not at

the expense of accuracy. For memory saving, we evaluate

the A terms in single precision which means that the

A*�A multiplication on GPU brings some loss in precision.

We found that this loss in precision was tolerable and that

the calculated cross sections were still accurate to 4–5

significant digits. As an illustration, we present in Fig. 4,

the angular dependence of the differential cross section for

elastic scattering of electrons by adamantane molecule

C10H14. We note that even for such a large multicenter

system results obtained by factorizing, the exchange kernel

(red line) are practically indistinguishable from rigorous

results obtained via Eq. (3).

It might be assumed that for the purpose of Hartree–

Fock and post-Hartree–Fock calculations, the exchange

integrals obtained by fragmentation should be calculated

with a higher accuracy than that one which was found

sufficient for scattering calculations. We decided therefore

to perform a test, the result of which is presented in Fig. 5.

In the left panel of Fig. 5, it is seen that the maximum error

is of about 20 lHartree. The right panel, however, shows

the maximum error as high as high 1 mHartree.

Fig. 5 Test on accuracy of computed ðk1jVexjk2Þ integrals. The

errors are plotted as differences in real parts of approximate

(evaluated by fragmentation) and exact integrals calculated for

cyclopropane. The k1 and k2 vectors are constrained to lie in the

CCC plane. In the left panel, k1 and k2 vectors are varied in the

perpendicular orientation; in the right panel, they are collinear
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Apparently, the quadrature assumed in this paper is not

large enough for high k-values with a small difference

vector K = k1 - k2. Hence, this small fraction of integrals

requires a special treatment.

5 Conclusions

We have shown that Fourier transform of the 1/r12 operator

and its numerical quadrature provides a tool for efficient

ab initio evaluation of exchange integrals of the (gk|gk)

type. It is every reason to believe that this new approach

eliminates the bottleneck in electron-molecule scattering

calculations and makes them so feasible for treatments of

considerably larger molecules than it was possible so far.

Calculation of exchange integrals for adamantane, which

lasted previously about 4 days and half, can now be

accomplished in 2 min on the same computer. The tech-

nique presented in this paper is general and can be also

applied to integrals of the (gg|gk) type which is the prin-

cipal computational task in the Schwinger multichannel

approach1. Presumably it may initiate a revival of Fūsti–

Molnar and Pulay’s idea2 because it eliminates their

problem with the evaluation of exchange integrals in a

mixed plane-wave and Gaussian basis. Perhaps it is also

worth considering to apply the fragmentation technique

presented in this paper to evaluation of two-electron inte-

grals in a pure Gaussian basis set. The principle compu-

tation task in Hartree–Fock and post-Hartree–Fock

methods is the evaluation of two-electron integrals over

molecular orbitals. By applying Eq. (9), they can be fac-

torized as

urusjutuuð Þ ¼ 1

2p2

X
q

uruskq

� � ffiffiffiffiffiffi
xq
p ffiffiffiffiffiffi

xq
p

kqutuu

� �
;

ð19Þ
where the overlap integrals ðuruskÞ are easy to evaluate.

The message of this paper to quantum chemists is that the

combination of the integral fragmentation and the use of

GPU hardware is a general tool applicable to computa-

tional methods of various types. Modern computers allow

to keep large blocks of fragmented one-electron integrals in

memory and hence efficient use of GPU for their multi-

plication. The only problem is to find a numerical quad-

rature that would be superior to ours in securing accuracy.
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Abstract The goal of a full configuration interaction (CI)

calculation in a flexible atomic orbital basis can be

approached rather closely for small molecular systems by

designating a set of reference configurations from which

only single- and double-orbital substitutions are allowed to

generate the many-electron basis. The present review dis-

cusses how configuration-driven algorithms can be applied

to form the corresponding Hamiltonian matrix representa-

tion from which approximate energy eigenvalues and

eigenvectors can be computed. Tables are constructed

which simplify the analysis of configuration relationships

that determine how a given interaction is calculated. This

Table-CI procedure eliminates the need for carrying out

lineup permutations of spin orbitals, which was one of the

major bottlenecks in early implementations of the mul-

tireference CI method. Although this approach is funda-

mentally variational in character, it can be easily combined

with perturbative techniques that allow one to approximate

the corresponding full CI energies to a high degree of

accuracy. The speed with which Hamiltonian matrix ele-

ments can be calculated makes it feasible to use the Direct

CI approach which requires that these values must be

recalculated in each iteration of the diagonalization pro-

cedure, thereby achieving a considerable increase in the

overall efficiency of the computations. The effects of spin–

orbit coupling and other terms in the relativistic

Hamiltonian have been incorporated in a straightforward

manner through the use of effective core potentials.

Keywords Configuration interaction (CI) � Full CI �
Multireference single- and double-excitation CI

(MRD-CI) � Condon rules � Slater determinants �
Table CI � Direct CI � Spin–orbit coupling

1 Introduction

Configuration interaction (CI) is a conceptually simple and

eminently practical method of obtaining approximate

solutions of the Schrödinger equation for atomic and

molecular systems. It has a high degree of applicability for

molecules when used in conjunction with the Born–

Oppenheimer clamped-nuclei approximation. In mathe-

matical terms, the CI method consists of forming a matrix

representation of the electronic Hamiltonian and then

determining its characteristic vectors. In the limit of a

complete set of basis functions (i.e., nearly complete set of

primitives), the result is equivalent to an exact solution of

the corresponding Schrödinger equation. From a compu-

tational point of view, the main problem is that the

dimension of the matrix representation is enormous for

even relatively small systems. Not surprisingly, this state of

affairs has led to a great deal of research with the twin

goals of achieving maximum accuracy with a minimum

outlay of computational expense. In addition, in order to

obtain maximum benefit from a given CI treatment, it is

important to also have the capacity of applying its results to

the calculation of numerous physical properties other than

energy such as transition probabilities and collision cross

sections that are often essential for a suitably quantitative

description of associated physical processes. The present
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part of the special collection of articles celebrating his many

contributions.
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work describes one such series of computer programs that

has been developed at the University of Wuppertal over the

past 35 years.

2 Multireference single- and double-excitation CI

The forerunner of CI is the self-consistent field (SCF)

method [1, 2]. A version that properly accounts for the

antisymmetry of the electronic wave function was devel-

oped independently by Fock [3] and Slater [4] shortly after

Schrödinger’s papers. It is characterized by an approximate

wave function that is a single determinant whose elements

are one-electron functions (spin orbitals). The latter

‘‘orbitals’’ are optimized under two conditions: minimiza-

tion of the energy expectation value and mutual orthonor-

mality. The method produces both the occupied orbitals

appearing in the determinant but also a potentially infinite

number of unoccupied functions that prove to be the basis

for the CI method. One can look upon a ‘‘Slater’’ deter-

minant formed by substituting unoccupied for occupied

one-electron functions as a representation of an excited

state of the molecular system. The possible applications to

spectroscopy were obvious.

The choice of orbitals to be included in the Slater

determinants was a subject of great interest. Heitler and

London [5] showed that one could obtain a relatively

compact description of the H2 molecule by employing the

valence bond method of electronic structure in which the

individual orbitals could have a high degree of overlap with

one another. The advantages of this method were particu-

larly evident in its description of dissociation processes. A

single-determinant calculation employing orthonormal

basis functions of the type produced by the Hartree–Fock

method was notably less effective for large H–H separa-

tions [6]. In particular, the molecular ground state function

did not correlate with the corresponding atomic limit in this

theoretical treatment. However, both basis sets consist of

four spin orbitals (two spatial functions multiplied with

a- and b-spins), which serve as equivalent basis sets for the

same (one electron) linear space. By making all possible

substitutions, it is possible to construct six two-electron

Slater determinants in each basis, which is referred to as

the full CI space. The corresponding CI treatments lead to

exactly the same energies and wave functions, as is also

evident from the fact that the two sets of many-electron

functions are related by a linear transformation and thus

must lead to the same set of characteristic vectors/eigen-

vectors as well as energy eigenvalues.

The above experience certainly demonstrates the

advisability of carrying out full CI calculations instead of

using only single determinants. The problem is that the

number of configurations grows factorially with both the

number of electrons in the system and the number of one-

electron functions, which are available for population in

the determinantal wave functions. The obvious compro-

mise is thus to include only a manageable subset of the

possible configurations in a given atomic orbital basis for

the purposes of constructing the Hamiltonian matrix. A

critical observation in this respect is that the use of an

orthonormal basis greatly limits the number of configura-

tions that have nonzero matrix elements with a specific

configuration such as that of the Hartree–Fock ground

state. Only configurations that differ by at most a double

excitation (substitution) from a given reference configura-

tion can interact directly with it (Condon rules) [7]. This

fact makes it sound as if one can just ignore triple and

higher excitations in the CI calculations and suffer no

significant loss of accuracy relative to the corresponding

full CI. It is easy to find cases where this conclusion fails,

however. For example, in many dissociative processes,

triply and quadruply excited configurations tend to gain

ever greater importance as the bond distances are stretched

beyond their equilibrium values. There are many more

triply excited configurations than singly and doubly excited

counterparts, so just expanding the CI space to include all

of the former also becomes quite impractical for all but the

smallest systems and basis sets.

Buenker and Peyerimhoff [8, 9] analyzed this situation

and found that the problem was not with the Condon rules

for matrix elements, but rather with the basic fact that there

are often secondary configurations that make large contri-

butions to the electronic wave function. They concluded

that a much more practical means of expanding the CI

space than increasing the maximum number of excitations

is simply to increase the number of leading configurations

from which singly and doubly excitations are allowed. This

meant that exploratory calculations had to first be carried

out with single-reference single- and double-excitation

spaces to identify such ‘‘reference’’ configurations on the

basis of their contribution to the final CI wave function. It

was also clear that one could further expand the treatment

to deal with more than one electronic state in the same

calculation. Indeed, it was found that excited configura-

tions generated on the basis of one state’s results often had

an unexpected impact on other states even though these

configurations differed formally by more than a double

excitation from the latter’s leading terms. A procedure was

thus developed by which a ‘‘common denominator’’ of

reference configurations was chosen on the basis of a series

of test calculations carried out for a representative series of

molecular conformations required for a comprehensive

treatment of a number of electronic states over the entire

potential surface of interest. This meant that reference

configurations also were included at a given molecular

geometry that had very little influence on the CI solutions
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for any of the key states. Nonetheless, the procedure has

the distinct advantage that it leads to formally the same CI

space at each geometry, thereby insuring that the computed

potential surfaces and wave functions are suitably contin-

uous over the geometric region of interest. It should be

noted, however, that the level of continuity is also affected

by the choice of orthonormal one-electron functions

employed to construct the configurations, so perfectly

continuous results are actually only possible if the full CI

space is treated in its entirety.

A word about notation is appropriate. The recommen-

dation in the 1974 study [8] was to employ a CI space that

consists of all single and double excitations with respect to

an unspecified set of main or reference configurations

{/m}. Quoting from the paper [8] on p. 35: ‘‘in this way the

class of configurations given explicit consideration can

more justifiably be restricted to all single- and double-

excitation species with respect to just the members of the

{/m} subset, since the set so generated includes most of the

important triple and higher excitation species (with respect

to the leading configuration) which judging from experi-

ence cannot safely be neglected’’. As the method came into

wider use, Shavitt [10] suggested to the author that one

should use the term ‘‘multireference’’ without hyphen to

designate the set of configurations from which the excita-

tion classes are generated. The designation ‘‘multireference

single- and double-excitation CI’’ came into common use

after this time, but as with other computational electronic

structure methods, there came a point where it was advis-

able to label it with an acronym. It was decided that in the

interest of compactness, there was no need to include

‘‘single’’ in the title of the method since it was obvious that

it would be counterproductive to exclude this excitation

class when all doubly substituted configurations were to

be added to the CI space. This concept led to the for-

mulation ‘‘multireference through double-excitation

configuration interaction’’ or simply MRD-CI that was

first used in print in 1978 [11]. The abstract of that paper

gives the definition as ‘‘multi-reference double-excitation

CI,’’ but the Introduction makes clear that ‘‘a suitably

flexible CI space would appear to consist of all singly and

doubly excited species relative to each of these dominant

terms.’’ In succeeding years, other authors have used the

acronym ‘‘MRSD-CI’’ to designate the same CI space,

i.e., making explicit the inclusion of single-excitation

configurations that is also implied in the term ‘‘MRD-

CI.’’ In summary, MRSD-CI is nothing more than a dif-

ferent designation for the CI space first introduced in

1974 by Buenker and Peyerimhoff [8] and should not be

construed to be anything different than what is meant by

MRD-CI.

One of the more subtle computational difficulties asso-

ciated with MRD-CI is how to avoid duplications among

the configurations that are generated from a given reference

space. The problem is that a given configuration can be in

the single- and double-excitation classes of more than one

reference. The solution is to generate the excitation classes

of one reference at a time. Each newly generated config-

uration is then first checked to see whether it is at least a

triple excitation relative to all previously considered ref-

erence species. Only in that case is the new configuration

included in the final MRD-CI space since otherwise it must

already be present there.

The main difficulty in dealing with the MRD-CI space in

general is naturally its large dimension for systems of even

moderate size and suitably flexible basis sets. It is clear

from the outset that a high percentage of the (test) con-

figurations generated from reference species of lesser

importance will have a minimal effect on the results. A

straightforward and effective way of dealing with this sit-

uation is to employ configuration selection based on the

Hamiltonian matrix elements of each generated configu-

ration with all of the reference configurations. The main

idea is that considerable time can be saved in this process

by ignoring the much larger group of matrix elements that

occur between test configurations. Two distinct approaches

to configuration selection were pursued: group selection

and individualized selection. The former possibility is

illustrated by Gershgorn and Shavitt’s Bk approximation

[12] in which a secular matrix is formed with the full

dimension of all reference and singly and doubly excited

configurations. Which configurations to include in the final

selected MRD-CI space is then based on the magnitudes of

eigenvector coefficients resulting from the diagonalization

of the latter matrix. Buenker and Peyerimhoff [8, 9]

advocated an individualized approach by which each test

configuration is evaluated on the basis of only its matrix

elements with the reference configurations. The advantage

of the individualized method is that it avoids diagonalizing

a large CI matrix to obtain its results, whereas the group

technique has the advantage of considering secondary

interactions that result because of a remixing of the refer-

ence configurations relative to the case when only the latter

are considered. The individualized approach had an addi-

tional advantage, however. As advocated in Ref. [9], it is

easily possible to use the information about test–reference

Hamiltonian matrix elements in a perturbation treatment to

obtain a reliable estimate for the unselected MRD-CI space

energies (energy extrapolation). It was found that the latter

method works best when more roots are considered in the

calculations than are actually sought from the treatment.

This method has been developed over the succeeding years

and is still used in the most recent versions of the Wup-

pertal MRD-CI programs. The energy results are also used

in conjunction with the Davidson correction [13] for higher

excitations not considered in the MRD-CI space itself.
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Comparison [14, 15] of such extrapolated energies with

their explicitly computed full CI counterparts [16] has

indicated a high degree of accuracy (within 1.0 kcal/mol)

with this combination of variational and perturbative

methods. One disadvantage of this approach is that no

comparably accurate means of extrapolating the properties

of the associated truncated MRD-CI wave functions has

ever been found. The fact that most interesting properties

such as dipole moments involve one-electron quantum

mechanical operators helps to minimize the negative con-

sequences of this state of affairs.

3 Configuration-driven Hamiltonian matrix formation:

Table CI

The definition of the MRD-CI space brings with it some

special problems that do not exist for single-reference CI

calculations. How these problems are handled computa-

tionally depends to a large extent on what method is used to

solve the corresponding secular equations through diago-

nalization of the corresponding Hamiltonian matrix. There

are two well-defined approaches for accomplishing the

latter goal: configuration-driven and integral-driven. In the

first case, one loops over pairs of configurations and

obtains the corresponding Hamiltonian matrix elements by

determining which electron repulsion and other one-elec-

tron integrals are required. By contrast, in integral-driven

methods, one loops over the aforementioned integrals and

determines the configuration pairs to which they contribute.

The latter approach makes use of methods developed in

nuclear physics. It is traditionally referred to as the

graphical unitary group approach (GUGA) and was intro-

duced in quantum chemistry by Paldus [17, 18] and Shavitt

[19]. GUGA is easiest to apply when the configuration

space is well defined, as is the case for a SD-CI calculation.

It becomes more challenging when several reference con-

figurations are used to generate an MRD-CI space, espe-

cially if they are chosen solely on the basis of their capacity

to make significant contributions to the electronic states of

interest. It was recognized early on that configuration

selection procedures, whether using individualized [8, 9] or

group [12] selection techniques, could not be handled

efficiently by GUGA. It was therefore decided that inte-

gral-driven MRD-CI algorithms are optimally applied by

solving secular problems for an un-truncated MRD-CI

space.

The situation is quite different for the configuration-

driven approach. In that case, there is no particular

advantage to having a simple relationship between the

various configurations in the many-electron basis. Such

algorithms merely compare configurations pairwise and

simply use Condon rules [7] to compute the corresponding

Hamiltonian matrix elements. It is important to understand

that a configuration as defined above is actually a linear

space, which is spanned by a basis of Slater determinants.

The size of the basis can be significantly reduced by

transforming to a basis of S2 eigenfunctions since the

Hamiltonian employed in a given theoretical treatment is

spin-independent. For the same reason, it is advantageous

to work exclusively with MS = S determinants. In princi-

ple, it is necessary to compute matrix elements between

each pair of Slater determinants on the way to completing

the matrix-element calculation for a given pair of config-

urations. This is the way that the first configuration-driven

CI programs actually were written. A large part of the work

was involved with what are called ‘‘lineup permutations.’’

The two determinants in a given comparison can only have

two unlike pairs of spin orbitals in order to have a nonzero

Hamiltonian matrix element. This means that the identical

spin orbitals need to be lined up in the two products,

leaving their unlike counterparts isolated in their respective

determinants. The permutation can lead to a change in sign

in the matrix element, and this has to be duly noted.

In carrying out the CI calculations, it is important to

develop a symbolic representation of the many-electron

configurations in terms of spatial orbitals and their occu-

pation. The actual basis functions for a given configuration

are symmetry-adapted linear combinations (SAFs) of Slater

determinants. The latter are simply assignments of a- and

b-spins to open shells [7]. The key point in such a proce-

dure is that for each open-shell type (supercategory) [20],

the same linear combinations can be employed for all such

configurations by constructing an isomorphic relationship

between the determinants in each case. The Hamiltonian

matrix calculation involves the above lineup permutations

followed by computation of the corresponding nonzero

interactions in terms of a relatively small number of elec-

tron repulsion integrals (g12). The resulting set of deter-

minantal matrix elements is then transformed to the SAF

basis. For this purpose, a double representation [21, 22] of

the SAFs in terms of p determinants and q spin-projected

determinants, respectively, is convenient (p is the number

of MS = S determinants and q is the corresponding number

of SAFs with the correct multiplicity). In this way, the

desired set of matrix elements over SAFs can be obtained

by evaluating pi qj determinantal matrix elements for the

ith and jth configurations rather than the generally larger

number (pi pj) where all determinants are considered

without projection.

It is clear that most of the lineup permutations can be

avoided by using the same spin assignments within deter-

minants for each configuration with the same number of

open shells. The matrix elements for different configuration

pairs therefore differ only by the g12 integrals needed for a

specific case. The main work in the calculations then is
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concentrated in deciding how the spatial orbitals in the two

configurations match up. A simple notation for illustrating

these relationships consists of placing the initial and final

occupation number for distinct orbitals in the same column,

but without making an entry where no such difference

exists, as shown in Table 1. There are obviously many

more cases for still higher-order excitations, but these can

be ignored because the corresponding Hamiltonian matrix

elements are zero in all cases by virtue of the Condon rules

[7] for orthonormal basis sets.

It is important to recognize that the relationships in

Table 1 are not dependent on the manner in which the

configurations are generated, i.e., by taking a specific

excitation class relative to some reference configuration.

There are 20 non-trivial cases, four for single excitations

and 4 9 4 = 16 for doubles. In addition, there is the

diagonal case where no orbital excitation is allowed. Of the

resulting 21 non-trivial cases in Table 1, more than half

can be combined effectively because they involve the same

matrix-element operations or are simply eliminated

because of the hermitian nature of the Hamiltonian. To

show this, it is useful to define a parameter K which

numbers the open-shell types for a given multiplicity;

specifically, K ¼ k
2
�Sþ 1, where k is the number of open

shells in the configuration. Each of the 21 cases is thus

characterized by a DK value, defined as the difference in

the supercategory numbers for the bottom (or right-hand)

configuration /r and the top (or left-hand) species /l in

each diagram (or simply half the difference in their

respective numbers of open shells). Because of the her-

mitian nature of the Hamiltonian, it is unnecessary to give

further consideration to examples in which DK\0.

Before going further with this analysis, it helps to con-

sider a specific example to illustrate how the above case

structure can be used to significantly reduce the size of the

computations. The case in question is labeled with P ¼ 4 in

Table 1. There are two closed-shell orbitals differentially

occupied (DK ¼ 0). Because determinants in such a con-

figuration pair already differ by a double excitation at the

level of spatial orbitals, it is clear that there must be a

perfect matching between open-shell spins in order to have

a nonzero interaction. The latter condition is only met once

for a given determinant Dr in /r, and when a standard

enumeration is adopted, it is clear that the number of the

specific determinant Dl in /l with which it interacts will be

the same as for Dr. This relationship obviously holds for

any P ¼ 4 case, regardless of which orbitals a and b are

differentially occupied in the two configurations. The value

of the matrix element is easily shown to be the exchange

integral Kab between these two closed-shell orbitals. In

short, once this simple relationship between two configu-

rations is recognized and the appropriate exchange integral

has been retrieved from core storage, the identity and

magnitude of all nonzero Hamiltonian matrix elements

between /r and /l is completely specified. The requisite

Table 1 Possible relationships between one-electron functions with

unequal occupation in configurations differing by single and double

excitations, respectively

Occupation numbers DK P No. of R

subcases

Single excitations 1

0

0

1

0 3 1

2

1

0

1

1 3 2

2

1

1

2

0 3 1

1

2

1

0

-1 – –

Double excitations 2

0

0

2

0 4 1

2

0

0

1

0

1

1 2 1

2

0

1

2

1

2

-1 – –

2

0

1

2

0

1

0 2 1

2

1

2

1

0

2

1 2 1

2

1

2

1

1

2

1

2

0 1 1

2

1

2

1

0

1

1

2

1 1 3

2

1

2

1

0

1

0

1

2 1 6

2

1

1

0

0

2

0 2 1

2

1

1

0

1

2

1

2

-1 – –

2

1

1

0

0

1

0

1

1 1 3

2

1

1

0

0

1

1

2

0 1 4

1

0

1

0

0

2

-1 – –

1

0

1

0

0

1

0

1

0 1 1

1

0

1

0

1

2

1

2

-2 – –

1

0

1

0

1

2

0

1

-1 – –

The first row of occupation numbers refers to /l and the second to /r

(see text for the definitions of DK, P, and R)
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SAF transformation can therefore proceed immediately

without ever making a lineup permutation among the open-

shell spin orbitals.

The situation is more complicated for the other excitation

relationships in Table 1. Nonetheless, there are many sim-

plifications in the computational procedure that can be

achieved by making use of the standard orders of determi-

nants described above. The only DK ¼ 2 case serves as a

good illustration [23]. In this instance, /r possesses four

distinct open shells (denoted a, b, c, d, with the orbital

numbers increasing from left to right). By definition of this

case, /l has two closed shells to balance the four open-shell

species. They are chosen among the four open-shell orbitals,

so there are six distinct possibilities (labeled as R = 1–6). All

other open and closed shells must be identical in the two

configurations in order to have a nonzero interaction between

pairs of determinants. Regardless of which pair of the a, b, c,

d orbitals is doubly occupied in /l, it is clear that (a) only

determinants Dl and Dr can interact for which all common

open-shell spins are identical and (b) when the latter condi-

tion is fulfilled, exactly two spin orbitals must be different. If

the latter spin orbitals are written schematically as

Dl : aa ab ba bb

Dr : ac bd ce dg;

it is seen that after permuting like spin orbitals to positions

in the same column, the Condon relationship can be

expressed as:

�ð Þ ac0 bd0

ce dg


 �
where c0 and d0 are the opposite spins of c and d, respec-

tively (since the latter were ‘‘cancelled out’’ as common

spin orbitals in Dl and Dr). According to the Condon rules

[7], the result corresponds to an interaction of

�ð Þ ac0 bd0

ce dx


 �
� ac0 bd0

dx ce


 �� 	
;

where the bracketed quantities denote electron repulsion

(g12) integrals.

After integration over the spin coordinates, the interac-

tion between Dl and Dr involves at most two spatial inte-

grals
a b

c d


 �
and

a b

d c


 �
, whereby the only allowed

linear combination coefficients are 0 and ±1 in each case.

In principle, one can expect 16 different spin combinations

c, d, e, g, but because of the restriction of DMS ¼ 0, the

number of possibilities reduces to only six (two a- and two

b-spins). For a given Dr, only one Dl species is capable of

an interaction, namely that with identical spin assignments

for all (if any) common open shells. All of the above

statements hold with only minor modifications if another

choice for the distinct closed shells in Dl is taken (a2c2,

etc.), with only the values of the linear coefficients and the

identity of the two basis integrals themselves changing

thereby. Six such cases can be distinguished and, as already

discussed, they are labeled with the index R, which defines the

relationship between non-identical closed and open shells in

/l and /r, respectively. Likewise, the six possible spin dis-

tributions in a givenDr are labeled with the index Z. By taking

the determinants in standard order, the value of Z depends on

where the four distinct open shells (a, b, c, d) are located in the

string of all such singly occupied orbitals.

In this connection, it is important to adopt a convention

in which the one-electron functions are numbered consec-

utively from 1 and the open and closed shells are separately

placed in increasing order. This ordering is then maintained

within each of the determinantal functions, which in turn

are also numbered consecutively from 1. If there are kr
open shells in /r, the number of distinct combinations for

the four non-identical species a, b, c, d is the combinatorial

number
kr
4


 �
. It is also convenient to define a parameter

Qr, which labels these different possibilities consecutively

from 1 as well. Schematically, one can think of performing

a permutation of the open shells in each Dr so that a, b, c,

d are placed immediately below the four positions assigned

to the non-identical closed shells in each Dl, while still

maintaining increasing order (separately) for both the

common and distinct open shells, respectively; hereafter,

the parity of this permutation will be referred to as W.

To show that the above definitions are purposeful, it is

helpful to consider the following. Once the permutation Qr

Table 2 Basis electron repulsion integrals and corresponding pairs

of linear coefficients for various combinations of R cases and c, d, e, g
spin assignments Z for the a, b, c, d open-shell orbitals

R case Basic integrals Linear coefficients for c d e g
Spin assignments

DK ¼ 2

P ¼ 1

Z ¼ 1

a a b b
Z ¼ 2

a b a b
Z ¼ 3

a b b a

1 a2b2

abcd

a b

c d


 �
;

a b

d c


 �
(-1, 1) (0, -1) (1, 0)

2 a2c2

abcd

a c

b d


 �
;

a c

d b


 �
(0, 1) (1, -1) (-1, 0)

3 a2d2

abcd

a d

b c


 �
;

a d

c b


 �
(0, -1) (1, 0) (-1, 1)

Note that R cases with opposite closed shells (e.g., a2b2 vs. c2d2) have

identical interactions for the same spin assignment Z; hence, cases for

R = 4–6 are not given explicitly. In addition, hole inversion of the c,

d, e, g spins for a given R case also causes no change in the inter-

action; hence, only three spin assignments are shown
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is specified for the excitation case under discussion

(DK = 2), the spin assignment Z for each Dr becomes

unambiguously characterized as well as the number of the

Dl species (in standard order) with which it interacts. The

magnitude of each nonzero Hamiltonian matrix element

can then be calculated by combining R with Z and W

because this information suffices to evaluate the linear

combination coefficients for the two basis g12 integrals.

The specific values for these coefficients and the identity of

the associated integrals are given in Table 2 for all 36

combinations of R and Z. For R = 2 and Z = 3, for

example, the following relationship between Dr and the Dl

(with identical common open-shell spins) with which it

interacts is found to be

Dl : a
2c2 aa ab ca cb

Dr : ac bd ce dg aa bb cb da:

Eliminating the two additional common spin orbitals

after permuting them to equivalent positions gives

� ab ca
bb da


 �
;

where the negative sign indicates a net parity change as a

result of the spin–orbital permutations. Integration over the

spin coordinates then translates into the interaction:

�1
a c

b d


 �
þ 0

a c

d b


 �
;

as indicated in Table 2 by the entry (-1, 0) for R = 2 and

Z = 3. The matrix element between Dl and Dr is thus

specified completely if the parity W is also known for Qr.

There is also a P = 1 case for both DK ¼ 0 and 1, as

indicated in Table 1. Note that for DK ¼ 1, there are two

cases with three R subcases, making the same number of

six subcases discussed for DK ¼ 2. Similarly for DK ¼ 0,

there are three P = 1 cases with a total of six R subcases.

The corresponding matrix-element calculation for the

P = 1 cases for both DK ¼ 0 and 1 can therefore be car-

ried out in a completely analogous manner as for DK ¼ 2.

A complete discussion of all the DK ¼ 0 and 1 cases is

given elsewhere [24, 25], including the computation of all

diagonal Hamiltonian matrix elements [24].

Because of the above considerations, it is possible to

completely avoid explicit comparisons between determi-

nants in evaluating Hamiltonian matrix elements in the

MRD-CI calculations. To begin with, it is convenient to

order the various configurations so that species with the

same number of open shells (same K) appear contiguously

in core storage. From the loop structure of the program, the

key DK value for each configuration pair is then known

prior to comparing their occupation numbers. In the DK ¼
2 case, there are only two possibilities, namely either the

configurations differ by a double excitation at the orbital

level or they do not. This information is obtained quite

easily by simply comparing orbital occupancies. Most

importantly, it requires no additional information con-

cerning spin assignments in the corresponding determi-

nants spanning the two configurations. A label P is again

defined to distinguish between the two possibilities; it has a

value of P = 1 for a double excitation and P = 0 when a

triple or higher excitation relationship exists (see Table 1

for P labels in all other non-trivial cases). In the event of a

double excitation, the foregoing analysis shows that /l

must possess two non-identical closed shells that are bal-

anced by four non-identical open shells in /r, and hence on

this basis, the values of two other labels, R and Qr, to be

defined below can be determined and then recorded on

what will hereafter be referred to as the configuration label

file A. For higher excitations, a single value of zero is

stored on this file, which distinguishes this case from the

non-trivial one (P = 1) because both R and Qr can only

have nonzero values. In addition, knowledge of the R value

for the P = 1 case coupled with the orbital numbers a, b, c,

d open shells (see Table 2) allows one to determine the

identity of the two basis electron repulsion integrals needed

for this interaction; the location of these integrals is then

recorded on a separate (integral) file in the form of block

numbers and addresses within a block [11]. Having made

these entries in the two files, the program then proceeds to

the consideration of the next pair of configurations and the

process is repeated. When all pairs of configurations are

dealt with in this manner, the next step is to convert the

integral labels into an ordered file B of electron repulsion

integrals by means of a sort procedure.

At the completion of the latter step, the final evaluation

of Hamiltonian matrix elements can begin by reading into

core storage a table containing information about the

structure of the determinantal basis functions in a given

pair of supercategories Kl and Kr. A separate table is

required for each value of Kr, DK, and S, but no more than

one of these needs be located in core storage at any one

time by virtue of the fact that all configurations with the

same number of open shells are stored continuously and the

program loop structure is arranged accordingly. For

DK = 2, such a table consists of
kr
4


 �
parts, each of

which is associated with a single value of Qr. If /r is

spanned by qr SAFs, each of these subtables consists of

2qr þ 1 entries, namely the parity W associated with a

given Qr permutation, and a value of Z (labeling one of the

six spin–orbital distributions) for each of the qr projected
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determinants PDr that form a basis for the associated linear

space as well as the number of the (only) Dl determinant

with which it makes a nonzero interaction. Combining Z

and W with the value of R stored in the configuration label

file A allows for a complete specification of the interaction,

as discussed above. Thus, by using the corresponding two

basis electron repulsion integrals on file B, it is possible to

compute the desired matrix elements for each of the qr
projected determinants PDr and its Dl partner. The trans-

formation to matrix elements in the SAF basis can then

proceed, and the results can be saved for later use in the

diagonalization step. The size of the DK = 2 table varies

with Kr and S and is seen to have
kr
4


 �
(2qr þ 1) entries

(see Table 3). The specific values contained therein depend

only on the choice of the standard order of determinants

(i.e., a series of spin–orbital permutations). Since these

positive integer values never exceed the number of Dl

determinants pl or 6 (Z), this information can be stored

quite compactly. Clearly, the effect of the tabulated

information is to bypass explicit comparisons of the indi-

vidual determinantal functions.

Very similar procedures have been worked out for all

the other excitation cases in Table 1, with only a slightly

modified structure for the corresponding tables for the

respective matrix-element evaluations. For DK ¼ 0 and 1,

there are several non-trivial cases (in addition to P = 1),

however, so in comparing the various configurations, more

distinctions must be made than for the DK ¼ 2 case con-

sidered explicitly above. Procedures for achieving this

objective are outlined in the following, while more detailed

discussion can be found in earlier papers [24, 25]. For

DK ¼ 1, the five cases listed in Table 1 are grouped into

two double-excitation interactions and one of single-exci-

tation type. The first of these is also characterized by two

basis integrals, just as for DK ¼ 2, and hence is also

referred to as P = 1; a total of six distinct relationships

among the non-identical open and closed shells in /r and

/l are possible, as specified by a corresponding R label.

Two different open-shell permutations need to be consid-

ered in this instance, however, designated by Qr and Ql,

and together characterized by a single parity value W. The

second DK = 1 case also corresponds to a double excita-

tion at the spatial orbital level (P = 2) but it requires only a

single basis integral of the type
a b

c c


 �
and is notably

less complicated than P = 1. Only two distinct R values

are needed, depending on whether there are two or one

non-identical closed shells in ul, and only Qr (not Ql) needs

to be specified on the configuration file A.

The remaining case (P = 3) is similar in many ways to

P = 2 (also two R subcases), with the important exception

that it involves only a single excitation at the orbital level

(Table 1). As a result, in addition to P, Qr, and R, it is

necessary to store the numbers of specific orbitals a and b

involved in the single excitation in each instance. Since

symmetry is considered explicitly in the program, the

irreducible representation label associated with these two

orbitals is also included on file A, making six parameters in

all; this number can be reduced to five by storing R in the

form of a sign for Qr (since there are two such values in

this instance and similarly for P = 2). On the integral

label, file addresses for the
a a

a b


 �
or

b b

b a


 �
species

need to be recorded as well as
c a

c b


 �
and

c a

b c


 �
for

each common open and closed shell in the two configurations.

The tabulated information is also somewhat more extensive

for P = 3, since both single and double excitations are pos-

sible at the determinantal level; for particular spin assignments

inDr, oneDl is related by a double spin–orbital distribution for

each common open shell, while for otherZvalues only a single

Dl can be found which is related by a single excitation. More

details may be found elsewhere [25].

For DK ¼ 0, the same three P cases can be distinguished

in Table 1, in addition to the case first discussed involving

a closed-shell to empty-shell double excitation (labeled

P = 4). Counting the strictly diagonal case (P = 5), which

can be treated separately from the other four non-diagonal

ones, the total number of distinct DK and P non-trivial

Table 3 Storage requirements (in bytes) for the various tables as a

function of the number of open shells k and number of SAFs qr for a

given supercategory (open-shell type) Kr (S is the total spin quantum

number)

Characterization of case Table size (bytes)

DK ¼ 2 p ¼ 1 kr
4


 �
� 2qr þ 1ð Þ

DK ¼ 1 p ¼ 1
kr � 2ð Þ � kr

3


 �
2qr þ 1ð Þ

p ¼ 2 kr
2


 �
� qr

p ¼ 3 kr
2


 �
1þ qr kr þ 2Sþ 1ð Þ½ 


DK ¼ 0 p ¼ 1 k

2


 �
þ 1

� 	
� k

2


 �
� 3qþ 1ð Þ

2

p ¼ 2 k þ 1

2


 �
� qþ 1ð Þ

p ¼ 3 k þ 1

2


 �
� 1þ 2k � qð Þ

p ¼ 4 None required

p ¼ 5 q k þ 1ð Þ þ 3 k2

4
� S2

� �h i
See Table 1 for definitions
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excitation relationships is nine; in the P = 5 case at the

determinantal level, both diagonal and double-excitation

pairings (but not single excitations) occur, whereby in the

latter case the interaction is always the negative of some

exchange integral [24].

4 Direct MRD-CI

The calculation of eigenvectors of the Hamiltonian matrix

is carried out within the context of the Davidson diago-

nalization method [26]. For this purpose, one needs a series

of starting vectors for each root to be determined. The

Hamiltonian matrix itself has dimension ND 9 N, where N

is the number of SAFs in the many-electron basis and ND is

the corresponding number of Slater determinants which

span the MRD-CI configuration space (ND [N). In the

matrix-element generation scheme described in the previ-

ous section, the basis functions are different for columns

and rows in this representation, with N PDb projected

determinants in the first case and ND Da Slater determinants

in the other. Accordingly, it is necessary to describe the

above starting vectors wi as two different linear combina-

tions of the basis functions, namely as

wi ¼ R að ÞcaiDa ¼ R bð ÞbbiPDb ð1Þ

The corresponding Hamiltonian matrix element between

wi and wj is thus

Hij ¼ \ R að ÞcaiDað ÞH R bð ÞbbjPDb
� �

[
¼ R að Þcia\DaHR bð ÞbbjPDb [
¼ R að ÞciaR bð Þbbj\DaHDb [
¼ R að Þciaraj

ð2Þ

In the original version of the MRD-CI programs [11], the

Hab matrix was first stored on an external file and the indi-

vidual matrix elements were read into core storage and mul-

tiplied with the appropriate bbj vector coefficients in Eq. (2).

The results were then accumulated in the corresponding

raj matrix elements until the entire Hab matrix had been

considered. The finalHmatrix on thewi basis was then formed

by scalar multiplication of the rj and the ci vectors. The Hij

matrix was then diagonalized, and the results were used to

generate more starting vectors to be used in subsequent iter-

ations of the Davidson procedure until sufficient convergence

for the eigenvectors and eigenvalues was obtained.

The above procedure has the disadvantage of requiring a

high percentage of computational time devoted to the

operations involved in reading the Hab matrix from exter-

nal storage in each iteration of the diagonalization. For

large matrices with dimensions exceeding 200,000, the

increase in I/O times begins to outweigh the advantage of

only calculating the matrix elements once. The increased

efficiency which is gained by the Table-CI technique

described in the previous section therefore makes it com-

putationally more effective to compute the matrix elements

in each iteration and thereby to avoid storing them on an

external file and reading them into core storage for the

computation of the r matrices. This approach is closely

related to the Direct CI technique [27] used in integral-

driven CI methods. It was implemented by Krebs and

Buenker in 1995 [28], and the comparison of computa-

tional times may be found in that reference. This general

method has also been employed in the configuration

selection scheme to improve the performance of the MRD-

CI programs in this application. The implementation of the

Direct CI procedure increased the range of the programs to

as many 106 SAFs. The standard version allows for the use

of 400 randomly chosen reference configurations to gen-

erate the MRD-CI space and up to 40 roots to be extracted

from the resulting secular equation.

To give an idea as to the practicality of such calcula-

tions, timing experiments have been carried out for the

CH3I system in an AO basis containing 135 primitive

Gaussians. Results have been obtained for all four Cs

symmetries for 18 roots in each case (14 active electrons in

the active space and 350 reference configurations). The

corresponding T = 0 MRD-CI spaces contain 200 million

SAFs on average, whereas the corresponding selected sets

have dimensions in the 500,000–600,000 range. An Intel

i5-750 computer has been employed with 2.67 GHz and

16 GB memory. Two passes are made at different thresh-

old values in the Davidson diagonalization procedure. The

calculations occupy the CPU with an efficiency of 99.9 %,

emphasizing the advantages of the Direct CI approach.

Typical CPU times are 50–130 min in the first pass to

obtain all 18 roots and 90–140 min in the larger second

pass.

For applications with a limited set of reference species,

another version has been constructed with the internal

contraction scheme [29]. The key restriction for this set of

CI programs is that a maximum number of 38 (referred to

as ‘‘internal’’) orbitals are allowed to be populated in these

configurations [30]. Because of the MRD-CI definition, it is

clear that no more than two other (‘‘external’’) orbitals can

be occupied in the corresponding configurations that are

generated by at most a double excitation relative to any one

of the reference species. It is important to reorder the

configurations, so that all those with the same occupation

of internal orbitals appear consecutively in the list. This

can be done using a conventional sort procedure by

assigning each configuration a unique number in a ternary

system (each orbital has either 0, 1, or 2 occupation), the

length of which is equal to the number of internal orbitals.
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All configurations with the same internal occupation are

referred to collectively as a ‘‘lane’’ in this procedure. If

there are two external electrons, such a lane will normally

be divided into two sublanes depending on whether two

open shells or one closed shell is occupied.

In a given Davidson iteration, one loops over pairs of

lanes and compares their respective internal occupations,

taking note of those orbitals with distinctive occupations.

There are only six possibilities for relative occupations: 1–0,

2–0 and 2–1, and the opposite cases for higher right-hand

occupation. Two arrays are defined which contain, respec-

tively, the number of the internal orbital and which of the

above six cases describes the occupation relationship. One

can find a maximum of four orbital mismatches, the details

of which are recorded in the above two arrays. The key point

is that the desired improvement in efficiency relative to the

previous Direct MRD-CI approach only occurs when there is

a minimum of internal orbitals. Each time, a configuration is

added to the reference set that adds one or more new internal

orbitals, and the result is inevitably a decrease in the sizes of

generated lanes, which in turn leads to a decrease in the

efficiency of the sorting procedure.

Once all the internal mismatches have been identified,

many of the P, R subcases in the Table-CI approach are

eliminated. As a result, inspection of the external orbitals

of the two configurations can be much more restrictive and

less time-consuming than in the original program with

randomly ordered configurations. The next step is to loop

over configuration pairs within the two sublanes under

consideration. At most two orbitals in each configuration

need to be considered in this case, so the process is notably

less time-consuming than when all internal orbitals need to

be scanned. After the external orbital comparisons, the final

step is to calculate the interaction if it is nonzero. From the

number and type of mismatches, it is easy to assign the

values of P and R, the Ql and Qr permutations, and the

corresponding basis integrals for each case. For single

excitations (P = 3), it is also necessary to compute the

addresses of the required four-index electron repulsion

integrals involving common open shells. Diagonal (P = 5)

cases only occur within the same sublane and can be

treated in a straightforward manner. Information about

timing comparisons for this method is available in a

companion publication [30].

5 Spin–orbit interaction

The treatment of molecules containing heavy atoms poses

special problems for CI methods because of the need to

consider relativistic effects in the electronic Hamiltonian.

If attention is restricted to low-lying states, it is quite useful

to employ an accurate representation of the inner-shell

electrons in the form of relativistic effective core potentials

(RECPs). The key requirement is that enough electrons are

maintained in the valence space such that the remaining

electrons are truly characterized as atomic core. The mul-

tireference CI approach is especially effective in this case

because of the high density of states usually found for such

systems. There is no particular difficulty in adding scalar

relativistic terms to the electrostatic Hamiltonian since they

are simply included with the nuclear attraction in the RECP

approach. The spin–orbit interaction requires special

attention, however, because it mixes states of different

spatial and spin symmetry. The Table-CI method can still

be applied for the calculations of matrix elements between

states of the same K–S symmetry, but one must revert to

the traditional approach in which explicit comparisons of

spin–orbital occupations are made in order to evaluate the

corresponding spin–orbit quantities. The use of RECPs has

distinct advantages in this respect as well. This is because

only one-electron interactions are included, i.e., between

valence electrons and the screened nuclei.

As a result, only configurations that differ by at most a

single excitation can have a nonzero interaction, thereby

greatly reducing the number of configuration pairs that

need to be considered explicitly.

In practice, only Abelian groups are employed in conven-

tional CI programs. The inclusion of spin–orbit coupling

forces the use of double groups, and this makes it necessary to

design distinctive treatments for systems with even and odd

numbers of electrons. The general treatment of symmetry in

the spin–orbit MRD-CI programs is discussed in an earlier

Ref. [31]. A major distinction is that it is no longer feasible to

restrict consideration to MS ¼ S determinants. In a typical

case, one needs MS = S determinants for one configuration

and MS ¼ S� 1 species for the other. Use of the Wigner–

Eckart theorem [32] helps to minimize the number of matrix

elements that need to be computed in each case.

The most straightforward means of applying the above

techniques is to form a matrix representation of the full spin–

orbit Hamiltonian in a basis of linear combinations of Slater

determinants. As discussed in Ref. [31], the dimension of the

corresponding secular equation is generally much larger than

in conventional MRD-CI calculations because of the fact that

functions of typically 10–15 different K–S symmetries must

be included in order to satisfactorily account for the effects of

spin–orbit coupling in a given application. Configuration

selection is quite effective in minimizing this problem by

restricting the number of many-electron functions to those that

interact at least moderately strongly (as determined through

the use of an appropriate threshold value).

One can avoid treating such large secular matrices in many

cases by employing basis functions that result from the

diagonalization of pure K–S Hamiltonian matrices. The

diagonal elements of the full spin–orbit Hamiltonian matrix
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are simply the K–S eigenvalues. They can be augmented with

perturbative corrections to better account for electron corre-

lation at this stage of the theoretical treatment. The corre-

sponding off-diagonal matrix elements are then obtained by

forming the spin–orbit matrix on the basis of ‘‘truncated’’

K–S eigenfunctions. Diagonalization then leads to the desired

mixing of the various K–S symmetries and the corresponding

approximate eigenvalues and eigenvectors of the full rela-

tivistic Hamiltonian including spin–orbit coupling. The

resulting functions are then used to compute dipole transition

moments and other properties of the system. One can look

upon this approach as a two-step procedure to include both

electron correlation and relativistic effects into the theoretical

description. It uses a relatively small number of highly corre-

lated functions as basis as opposed to the other technique that

employs quite large numbers of relatively simple (determi-

nantal) functions. Both methods are variational in nature since

their results are obtained in each case by matrix diagonaliza-

tion. The K–S eigenfunctions can be looked upon as a con-

tracted many-electron basis analogous to the linear

combinations of primitive Gaussian functions typically used as

atomic orbitals in forming the one-electron basis for both SCF

and CI calculations. Accordingly, the two-step procedure has

been designated as theK–S contracted spin–orbit CI (LSC-SO-

CI) method. It has been used extensively to describe the spectra

and electronic structure of diatomic molecules containing such

main group elements as Bi, Pb, Sb, Te, Ba, and I [31].

In the other method (MR-SO-CI), one uses what

amounts to a straightforward multireference description of

the electronic states except that (a) the spin–orbit operator

is included in the full Hamiltonian and (b) determinantal

functions of more than one K–S symmetry are included in

the many-electron basis. Its goal is to treat electron cor-

relation and relativistic effects on the same level. It is

implemented by forming r vectors directly as the Hab

matrix elements are computed, in complete analogy to the

Direct MRD-CI approach outlined in the previous section.

The resulting wave functions are then used to calculate

one-electron properties for use in analyzing the details of

the electronic spectra of the molecular systems. Altogether,

experience has shown that the LSC-SO-CI and MR-SO-CI

methods perform at nearly equivalent levels of accuracies

for systems with atoms not heavier than lead. The two-step

procedure is actually somewhat easier to optimize because

this merely involves the inclusion of more K–S eigenfunc-

tions in the contracted basis. A detailed review of calcu-

lated results of both methods is given in Ref. [31].

6 Conclusion

Since its introduction by Buenker and Peyerimhoff in 1974

[8, 9], the multireference single- and double-excitation

configuration interaction (MRD-CI) method has proven to

be an effective means of incorporating electron correlation

effects into theoretical treatments of molecular systems.

The present review has concentrated on the configuration-

driven approach for carrying out this type of calculation. Its

main advantage is the freedom it allows in both the choice

of reference configurations and the truncation of the

resulting CI space to be considered in the associated sec-

ular equations. A key advance for configuration-driven CI

algorithms is the Table-CI method. Its main purpose is to

totally avoid lineup permutations of spin orbitals that are

otherwise essential in determining excitation relationships

between the Slater determinants that form the many-elec-

tron basis for the CI calculations. A preliminary scan of

spatial orbital relationships for pairs of configuration suf-

fices to generate labels that are used to identify both the

appropriate table to be used as well as the four-index

electron repulsion integrals that are required to compute the

Hamiltonian matrix elements.

The role of Direct CI procedures to minimize the nec-

essary I/O operations in such calculations has also been

discussed and shown to have a significant impact in the

overall efficiency of the MRD-CI programs. Further

improvements are possible in certain cases by storing the

configurations in a way which emphasizes their occupation

of so-called internal orbitals, thereby greatly restricting the

scope of lineup permutations among spatial orbitals as

well. The use of relativistic effective core potentials

(RECPs) allows for the inclusion of spin–orbit effects in

the theoretical treatment as well as other scalar terms in the

Breit–Pauli Hamiltonian without relinquishing the essential

variational character of the MRD-CI method. The above

changes are especially important for the description of

molecules containing heavy atoms such as lead and

bismuth.
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Abstract The exact basis-set values of various thermo-

dynamic potentials of a molecule are evaluated by the

finite-temperature full configuration-interaction (FCI)

method using ab initio molecular integrals over Gaussian-

type orbitals. The thermodynamic potentials considered are

the grand partition function, grand potential, internal

energy, entropy, and chemical potential in the grand

canonical ensemble as well as the partition function,

Helmholtz energy, internal energy, and entropy in canon-

ical ensemble. Approximations to FCI that are accurate at

low and high temperatures are proposed, implemented, and

tested. The results of finite-temperature FCI and its

approximations are compared with one another as well as

with the results of finite-temperature zeroth-order many-

body perturbation theory, in which the Fermi–Dirac sta-

tistics is exact. Analytical asymptotic properties in the low-

or high-temperature limits of some of these thermodynamic

potentials are also given.

Keywords Configuration interaction � Thermodynamics �
Partition function � Temperature � Canonical ensemble �
Grand canonical ensemble � Fermi–Dirac statistics

1 Introduction

Late Dr. Isaiah Shavitt has been the champion of config-

uration-interaction (CI) theory [1–4], which is the first

systematically accurate, ab initio electron-correlated

molecular orbital (MO) theory. Although today its usage

may be diminished with the advent of coupled-cluster (CC)

theory [5], its predictions have overturned some experi-

mental conclusions [6, 7] and helped computational quan-

tum chemistry be accepted by a broader community of

chemists as a vital engine of chemical research.

The full configuration-interaction (FCI) method [8], in

particular, occupies a uniquely important position in

ab initio MO theory to this day, as it provides the exact

basis-set solutions of the Schrödinger equations of general

polyatomic molecules [9–26]. These solutions serve as

essential benchmark against which approximate ab initio

methods are calibrated and tested [27–38].

In no other fields are such benchmarks more needed than

in finite-temperature many-electron theories [39–45].

Although there is a well-established finite-temperature

extension to many-body perturbation (MP) theory described

in a number of textbooks [46–48], some authors [42–44, 49,

50] have questioned its correctness and proposed alternative

formalisms. It is desirable to establish systematic and con-

verging finite-temperature approximations based on CI, CC,

and MP theories and, to achieve this, it is imperative to first

know the exact converged limit at finite temperatures.

In this article, we present the formalism and algorithms

of finite-temperature FCI in either canonical or grand

canonical ensemble and implement them in the string-

based determinant algorithm with a view to helping

establish general finite-temperature many-electron theories.

Unlike zero-temperature FCI, the target quantity of finite-

temperature FCI is the (grand) partition function (rather
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than energy), from which various thermodynamic poten-

tials such as internal energy, entropy, Helmholtz energy,

and chemical potential can be derived. The different target

quantity (such as the partition function, which is a trace, as

opposed to the ground-state energy, which is an eigen-

value) suggests different approximations and two such

approximations (low- and high-temperature approxima-

tions) are proposed and implemented. Furthermore, finite-

temperature zeroth-order MP (MP0) method, in which

Fermi–Dirac statistics is exact, is implemented and com-

pared with finite-temperature FCI in grand canonical

ensemble. In this way, we establish the exact (FCI) and

most approximate (MP0) extremes of finite-temperature

many-electron theories in a Gaussian-type orbital, leaving

in-between to be elucidated by future studies.

2 Theory

2.1 Canonical ensemble

The partition function Q of a system of m non-interacting,

identical and thus indistinguishable molecules is given by

Q ¼ ðqelecqvibqrotqtransÞm
m!

; ð1Þ

where qelec; qvib; qrot, and qtrans are molecular partition

functions in the electronic, vibrational, rotational, and

translational degrees of freedom, respectively. We shall be

concentrating on qelec in this study.

In the canonical ensemble, that is, assuming the elec-

trical neutrality of each molecule, the molecular electronic

canonical partition function (now renamed Z) is given by

Z ¼ Tr½expð�bĤÞ
; ð2Þ
where b ¼ 1=kBT ; T is temperature and Ĥ is the molecular

electronic Hamiltonian. One atomic unit of temperature is

equal to 3.1577464 9 105 K. The trace is taken over the

whole basis-set Hilbert space, that is, the space spanned by

all N-electron Slater determinants with all possible spin

magnetic quantum numbers (Sz) of a given basis set. There

are 2nCN such determinants in total. The trace is invariant

to a unitary transformation of the many-electron basis. This

defines canonical finite-temperature FCI.

From Z, various thermodynamic potentials can be

derived, e.g., the Helmholtz energy F by

F ¼ � 1

b
ln Z; ð3Þ

and the internal energy U by

U ¼ � o
ob

lnZ ð4Þ

¼ Tr½Ĥ expð�bĤÞ

Z

: ð5Þ

These two are related to each other by

F ¼ U � TS; ð6Þ
where S is the entropy, which is also calculable as

S ¼ �kBTr½Ŵ ln Ŵ 
; ð7Þ
with

Ŵ ¼ expð�bĤÞ
Z

: ð8Þ

2.2 Grand canonical ensemble

Alternatively, in the grand canonical ensemble that allows

the number of electrons in each molecule to fluctuate, the

molecular electronic grand partition function (called N)

becomes

N ¼ Tr½expf�bðĤ � lN̂Þg
; ð9Þ
where l is the chemical potential and N̂ is the number

operator. The trace is taken over the whole basis-set Fock

space spanned by all zero- through 2n-electron Slater

determinants with all possible values of Sz, where n is the

number of the basis functions. There are 22n such deter-

minants in total. This defines grand canonical finite-tem-

perature FCI. This is a rather artificial construct for a small

molecule, but becomes meaningful for a condensed-phase

system viewed as a giant molecule.

The thermodynamic potentials derivable from N are the

grand potential X,

X ¼ � 1

b
lnN; ð10Þ

and the internal energy U,

U ¼ � o
ob

lnNþ l �N ð11Þ

¼ Tr½ðĤ � lN̂Þ expf�bðĤ � lN̂Þg

N

þ l �N; ð12Þ

where �N is the average number of electrons, which is also

derivable from N by

�N ¼ 1

b
o
ol

lnN ð13Þ

¼ Tr½N̂ expf�bðĤ � lN̂Þg

N

: ð14Þ

The grand potential and internal energy (when defined in

the same grand canonical ensemble) are related by

X ¼ U � TS� l �N: ð15Þ
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The entropy in the above equation is also written by Eq.

(7), but with the following Ŵ
0

instead of Ŵ:

Ŵ
0 ¼ expf�bðĤ � lN̂Þg

N
: ð16Þ

2.3 Fermi–Dirac statistics

When Ĥ is additively separable as in an independent-particle

model, the grand partition function N and its subordinate

functions become simplified, as is well-known [47]. The

zeroth-order Hamiltonian of the many-body perturbation

theory using the Møller–Plesset partitioning is one such case:

Ĥ0 ¼
X
p

�pp̂
yp̂; ð17Þ

where �p is the energy of the pth Hartree–Fock (HF)

spinorbital and p̂y and p̂ are creation and annihilation

operators, respectively, of an electron in the pth spinorbital.

Clearly, the Slater determinants composed of these HF

spinorbitals are the eigenstates of Ĥ0.

In the zeroth-order many-body perturbation (MP0) the-

ory using this Hamiltonian in the determinant basis ðfUigÞ,
we find

N0 ¼ Tr½expf�bðĤ0 � lN̂Þg
 ð18Þ

¼
X
i

Uij
Y
p

expf�bð�p � lÞp̂yp̂gjUi

* +
ð19Þ

¼
Y
p

½1þ expf�bð�p � lÞg
; ð20Þ

where p runs over all HF spinorbitals. Similarly, we can

simplify �N0 (subscript ‘‘0’’ corresponds to MP0) as

�N0 ¼
X
q

fq; ð21Þ

where

fq ¼
Tr q̂yq̂ expf�bðĤ0 � lN̂Þg� �

N
ð22Þ

¼
P

i Uijq̂yq̂
Q

p expf�bð�p � lÞp̂yp̂gjUi

D E
Q

p 1þ expf�bð�p � lÞg� � ð23Þ

¼ expf�bð�q � lÞgQp 6¼q½1þ expf�bð�p � lÞg
Q
p½1þ expf�bð�p � lÞg
 ð24Þ

¼ ½1þ expfbð�q � lÞg
�1; ð25Þ
which is identified as the Fermi–Dirac distribution function

[47].

The internal energy U0, entropy S0, and grand potential

X0 of MP0 can also be expressed in terms of fp:

U0 ¼
X
p

�pfp; ð26Þ

S0 ¼ �kB

X
p

fp ln fp þ ð1� fpÞ lnð1� fpÞ
� �

; ð27Þ

X0 ¼ U0 � TS0 � l0
�N0 ð28Þ

¼ 1

b

X
p

lnð1� fpÞ; ð29Þ

where the chemical potential l0 in MP0 is determined by

Eq. (21). In the last equality, we have used Eq. (21) as well

as the identity �p � l0 ¼ b�1 lnðf�1
p � 1Þ derivable from

Eq. (25). This defines finite-temperature MP0, where the

grand canonical ensemble is always implicit.

3 Computer algorithms

3.1 Exact method

The canonical and grand canonical finite-temperature FCI

and finite-temperature MP0 have been implemented in our

in-house determinant-based FCI code [51]. In it, a deter-

minant is computationally represented by two (a and b)

strings of bits, each bit specifying the occupancy of an a or

b spinorbital [15]. A wave function is expressed as a matrix

in the basis of these two strings, an element of which

contains the value of the corresponding CI coefficient. The

code has the computational ability to act various operators

(such as Ĥ and Ĥ0) on any wave function that is a linear

combination of determinants with an arbitrary number of

electrons.

To obtain Z; N, etc. within a given basis set, i.e., to

perform finite-temperature FCI, one in principle needs the

whole set of eigenvalues of Ĥ (see below, however, for

various approximations to avoid this). We have obtained it

for each of the molecules studied by diagonalization of the

Ĥ matrix either in the basis of all N-electron determinants

(canonical FCI) or in the basis of zero- through 2n-electron

determinants (grand canonical FCI) where n is the number

of basis functions:

Z ¼
X
Sz

X
i

WðN;SzÞi j expð�bĤÞjWðN;SzÞi

D E
ð30Þ

¼
X
Sz

X
i

exp �bEðN;SzÞi

� �
; ð31Þ

N ¼
X2n
N¼0

X
Sz

X
i

WðN;SzÞi j expf�bðĤ � lN̂ÞgjWðN;SzÞi

D E
ð32Þ
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¼
X2n
N¼0

X
Sz

X
i

expf�bðEðN;SzÞi � lNÞg; ð33Þ

where WðN;SzÞi is the ith FCI wave function with N electrons,

spin magnetic quantum number Sz, and energy E
ðN;SzÞ
i (in

the ascending order with i = 0 being the ground state). The

value of chemical potential l is determined by Eq. (14),

which is solved computationally by a bisection method.

The data referred to as ‘‘exact’’ in the subsequent section

are obtained in this way.

The finite-temperature MP0 can be carried out in two

ways. One is to run the same computational procedure as the

grand canonical finite-temperature FCI but using Ĥ0 instead

of Ĥ. The other is to directly evaluate semi-analytical for-

mulas based on the Fermi–Dirac statistics. We have verified

that these two procedures yield the same results.

The codes have also been checked for correctness in the

T = 0 and T ¼ 1 limits, where asymptotic values of

thermodynamic potentials are sometimes known analyti-

cally. The values of S obtained by Eqs. (6) and (7) have

been verified to agree with each other.

3.2 Low-temperature approximation

In the low-temperature (large-b) limit, the partition func-

tions are dominated by contributions from low-lying states,

which can be determined selectively and inexpensively by

the Davidson algorithm [11]. Hence, we propose approxi-

mating them by

Z �
X
Sz

XM�1

i¼0

WðN;SzÞi j expð�bĤÞjWðN;SzÞi

D E
ð34Þ

¼
X
Sz

XM�1

i¼0

exp �bEðN;SzÞi

� �
; ð35Þ

N �
X2n
N¼0

X
Sz

XM�1

i¼0

WðN;SzÞi j expf�bðĤ � lN̂ÞgjWðN;SzÞi

D E
ð36Þ

¼
X2n
N¼0

X
Sz

XM�1

i¼0

exp �b E
ðN;SzÞ
i � lN

� �n o
; ð37Þ

where M is the number of the lowest-lying N-electron

states with spin magnetic quantum number Sz that we

include in the approximate calculations. They are obtained

by the Davidson algorithm.

3.3 High-temperature approximation

In the high-temperature (small-b) limit, the summation

over states should not be truncated because all states can

contribute significantly. This, however, allows us to avoid

having to know all eigenstates when evaluating Z or N
because trace is invariant to a unitary transformation:

Z ¼
X
Sz

X
i

UðN;SzÞi j expð�bĤÞjUðN;SzÞi

D E
ð38Þ

N ¼
X2n
N¼0

X
Sz

X
i

UðN;SzÞi j expf�bðĤ � lN̂ÞgjUðN;SzÞi

D E
;

ð39Þ
where UðN;SzÞi is the ith determinant (not a FCI wave

function) with N electrons and spin magnetic quantum

number Sz.

Furthermore, smallness of b suggests the following

approximation for Z:

Z � expð�bEshiftÞ


XL
l¼0

1

l!

X
Sz

X
i

UðN;SzÞi jð�bĤshiftÞljUðN;SzÞi

D E
;

ð40Þ

where the summation over l is truncated after

l ¼ L; Ĥshift ¼ Ĥ � Eshift, and Eshift is an energy shift. The

value of Eshift is chosen so that the Taylor series of the

exponential is rapidly convergent. Computationally, the

summand can be obtained by acting �bĤshift recursively

on each determinant at a cost per summand comparable to

one cycle of the Davidson algorithm with l trial vectors. In

this work, we set Eshift at the HF energy. A high-temper-

ature approximation to N is defined analogously.

When this approximation is applied to lower tempera-

tures (larger b’s), not only does the error in Eq. (40) grow

for a given truncation order L, but also the Taylor series

oscillates so widely that its numerical evaluation becomes

unstable (due to, e.g., floating-point overflows). In addition

to using Eshift, we, therefore, invoke the imaginary-time

splitting scheme to stabilize the calculation. Using the

identity,

expð�bĤshiftÞ ¼ fexpð�DbĤshiftÞgNsplit ; ð41Þ
where b ¼ NsplitDb, we can rewrite Eq. (40) as

Z � expð�bEshiftÞTrGNsplit ; ð42Þ

ðGÞij ¼
XL
l¼0

1

l!
UðNÞi jð�DbĤshiftÞljUðNÞj

D E
: ð43Þ

The smaller value of Db as compared with b makes G well

behaved and more rapidly convergent with L. However,

this does not lead to a speedup in the overall calculation

because G needs to be raised to the Nsplitth power and Nsplit

is inversely proportional to Db. In this study, we use the

small fixed value of 0.01 a.u. for Db, which means that

Nsplit and thus the computational cost increases with b. For
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a large b, the cost can even exceed that of the exact method

involving diagonalization of the Hamiltonian matrix.

4 Results

We applied the finite-temperature FCI and MP0 to the FH,

N2, and F2 molecules with the STO-3G basis set using the

determinant-based implementations described above.

Additionally, the MP0 calculations were performed using

the semi-analytical expressions based on the Fermi–Dirac

statistics. In the N2 and F2 calculations, two 1s core orbitals

were excluded from FCI or MP0. The bond lengths were

0.9168 Å (FH), 1.0977 Å ðN2Þ, and 1.41193 Å ðF2Þ. The

reference wave functions were obtained by the HF calcu-

lations at 0 K in all cases.

The results for FCI calculations are given in Tables 1, 2,

3, 4, 5 and 6. The internal energy U, entropy S, and

chemical potential l of FH obtained with grand canonical

FCI calculations and its high- and low-temperature

approximations, canonical FCI calculations (when appli-

cable), and MP0 calculations (when applicable) are plotted

as a function of temperature in Figs. 1, 2 and 3. In the next

section, we discuss only the results of FH as a represen-

tative example. The numerical results for N2 and F2 are

recorded as benchmark with the hope of assisting the future

developments of finite-temperature many-electron theories.

The T ¼ 0 ðb ¼ 1Þ limits of l and thus N and X can be

inferred mathematically (see below), but not directly

obtained numerically; any value of l satisfies Eq. (14)

insofar as it falls between the lowest energy of the eigen-

state with more than �N electrons and the lowest energy of

the eigenstate with less than �N electrons.

5 Discussion

5.1 Internal energy

The internal energy U of FH is plotted as a function of

temperature T in Fig. 1. The grand canonical and canonical

FCI U agree with the zero-temperature FCI energy at T ¼
0 and increase monotonically with T toward two separate

high-temperature limits. That U has such upper bounds is

an artifact caused by the finite number (n) of basis func-

tions. The high-temperature limit of U in the canonical

Table 1 Finite-temperature canonical FCI results for the internal

energy U, entropy S, and Helmholtz energy F of FH

T=K U=Eh S=kB F=Eh

0 -98.596587 0 -98.596587

103 -98.596587 0.000000 -98.596587

104 -98.596583 0.000107 -98.596587

105 -98.178360 2.659028 -99.020425

106 -97.372775 3.782186 -109.35026

107 -92.851593 4.130703 -223.66334

108 -89.265025 4.188853 -1415.7974

109 -88.805385 4.189646 -13356.643

Table 2 Finite-temperature grand canonical FCI results for the

chemical potential l, internal energy U, entropy S, and grand

potential X of FH

T=K l=Eh U=Eh S=kB X=Eh

0 –a -98.596587 0 –a

103 0.124804 -98.596587 0.000000 -99.844630

104 0.134719 -98.596583 0.000113 -99.943772

105 0.295683 -98.049383 3.474720 -102.10659

106 3.859897 -96.945339 4.957688 -151.24440

107 46.86892 -92.055572 5.347656 -730.09520

108 504.6548 -88.487404 5.405959 -6847.0025

109 5091.666 -88.043292 5.406727 -68126.811

a See text for the T ¼ 0 limit

Table 3 Finite-temperature canonical FCI results for the internal

energy U, entropy S, and Helmholtz energy F of N2

T=K U=Eh S=kB F=Eh

0 -107.65253 0 -107.65253

103 -107.65253 0.000000 -107.65253

104 -107.65231 0.007905 -107.65256

105 -106.80732 6.187150 -108.76668

106 -104.83040 8.924848 -133.09375

107 -104.46698 8.987544 -389.08591

108 -104.42979 8.988190 -2950.8236

109 -104.42606 8.988196 -28568.385

Table 4 Finite-temperature grand canonical FCI results for the

chemical potential l, internal energy U, entropy S, and grand

potential X of N2

T=K l=Eh U=Eh S=kB X=Eh

0 –a -107.65253 0 –a

103 -0.077766 -107.65253 0.000000 -106.56381

104 -0.086530 -107.65230 0.008092 -106.44114

105 0.057735 -106.66945 7.189548 -109.75454

106 1.493091 -104.19035 10.47093 -158.25311

107 16.02414 -103.50558 10.58350 -663.00342

108 161.6121 -103.41861 10.58500 -5718.0610

109 1617.533 -103.40964 10.58501 -56269.651

a See text for the T ¼ 0 limit
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ensemble is the average of all N-electron eigenvalues of the

Hamiltonian. The corresponding limit in the grand canon-

ical ensemble is not so simple because of the nonzero

chemical potential in that limit, which will be discussed

below. A visible increase in U occurs at around 0:1Eh or

30,000 K. This may be compared with the lowest excita-

tion energy of 0:43Eh and the lowest ionization energy of

0:41Eh in this molecule.

The low-temperature approximations to U are system-

atically more accurate at a given temperature or remain

accurate up to higher temperature with increasing the

truncation parameter M. Note that M ¼ 1 means that the

calculation includes the single lowest state in each category

with the same N and Sz and hence more than one states in

Eqs. (35) or (37); this is why U in this approximation

varies with temperature.

The high-temperature approximations are also sys-

tematically more accurate with the truncation parameter

L, but being truncated Taylor series, they tend to

become unstable abruptly at one point. The imaginary-

time splitting scheme renders stability to this approxi-

mation and gives accurate estimates of U in the wide

range of temperature from 104 K to 107 K with just

L = 2. However, for this tiny problem, this scheme is in

fact more expensive at lower temperatures than FCI

itself and its practical utility is still questionable.

5.2 Entropy

The entropy S shows similar temperature dependence as U.

It increases monotonically from zero at T = 0 (Nernst’s

law) toward two separate high-temperature limits in the

grand canonical and canonical ensembles. Again, the upper

boundedness of S is an artifact of the finite-basis-set cal-

culations. The onset (0.1 Eh) of the rapid increase in

S coincides (in the order of magnitude) with the lowest

excitation energy. The value of S in the grand canonical

ensemble at a given temperature is always greater (much

greater at higher temperatures) than the corresponding

value in the canonical ensemble.

The high-temperature limit of S in the canonical

ensemble is simply kB ln 2nCN where 2nCN is the total

number of N-electron states. This formula can be derived

rigorously from Eqs. (7) and (8):

lim
b!0

Ŵ ¼ 1

Z
; ð44Þ

Table 5 Finite-temperature canonical FCI results for the internal

energy U, entropy S, and Helmholtz energy F of F2

T=K U=Eh S=kB F=Eh

0 -196.04960 0 -196.04960

103 -196.04960 0.000000 -196.04960

104 -196.04283 0.254178 -196.05088

105 -195.69811 3.953301 -196.95004

106 -195.09961 4.766222 -210.19335

107 -194.97673 4.787265 -346.58056

108 -194.96376 4.787489 -1711.0733

109 -194.96246 4.787492 -15356.065

Table 6 Finite-temperature grand canonical FCI results for the

chemical potential l, internal energy U, entropy S, and grand

potential X of F2

T=K l=Eh U=Eh S=kB X=Eh

0 –a -196.04960 0 –a

103 0.019696 -196.04960 0.000000 -196.40413

104 0.031682 -196.04282 0.254383 -196.62115

105 0.415872 -195.56021 4.841924 -204.57925

106 5.653602 -194.69582 5.989723 -315.42900

107 61.03663 -194.46728 6.027850 -1484.0175

108 615.6378 -194.44024 6.028318 -13184.977

109 6161.741 -194.43748 6.028323 -130196.37

a See text for the T ¼ 0 limit

Fig. 1 The internal energy (U) of hydrogen fluoride calculated with

grand canonical FCI/STO-3G and its various approximations as a

function of temperature (T). M is the number of states (in each group

of determinants with the same number of electrons and magnetic spin

quantum number) included in the low-temperature approximation.

L is the number of terms in the Taylor series expansion in the high-

temperature approximation, where the imaginary-time splitting is not

used unless otherwise noted. The plot of U from canonical FCI/STO-

3G is also superimposed
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where Z, in this limit, reduces to the number of N-electron

states, which is 2nCN .

lim
b!0

S ¼ �kBTr
1

Z
ln

1

Z

� 	
¼ kB ln Z ¼ kB ln 2nCN ; ð45Þ

where we have used Tr½1
 ¼ Z. For FH, substituting N ¼
10 and n ¼ 6, we obtain S ¼ kB ln 66 ¼ 4:18965kB at

T ¼ 1.

The high-temperature limit of S in the grand canonical

ensemble is not the simple logarithm of the total number of

states. To evaluate it, let us first write the high-temperature

limit of N as

lim
b!0

N ¼
X2n
N¼0

2nCN expðblNÞ ð46Þ

¼ f1þ expðblÞg2n � Nb¼0; ð47Þ
where 2nCN is the number of states with N electrons (the

number density). In the above, we have been able to get rid

of Ĥ in the definition of N (Eq. 9) since it is multiplied by

b, which is zero in the limit. We do not, however, eliminate

blN because l behaves like b�1 in this limit, rendering the

product ðblÞ nonzero even at b! 0. In the last equality,

we have used the well-known identity for a binomial

distribution:

ðaþ bÞm ¼
Xm
i¼0

mCia
ibm�i: ð48Þ

Equation (47) agrees with the grand partition function of

the Fermi–Dirac statistics in the b ¼ 0 limit (Eq. 20). This

is expected because the energies of the states no longer

matter in this limit and N is determined completely by the

numbers of N-electron states, which are the same between

FCI and MP0.

We can then analytically evaluate the average number of

electrons �N in the high-temperature limit as

lim
b!0

�N ¼ 1

b
o
ol

lnNb¼0 ð49Þ

¼ 2n expðblÞ
1þ expðblÞ : ð50Þ

This equation should be viewed as the condition by which

l in the high-temperature limit is determined, which yields

lim
b!0

l ¼ 1

b
ln

�N

2n� �N
: ð51Þ

Fig. 2 The entropy (S) of hydrogen fluoride calculated with grand

canonical FCI/STO-3G and its various approximations including

MP0/STO-3G as a function of temperature (T). M is the number of

states (in each group of determinants with the same number of

electrons and magnetic spin quantum number) included in the low-

temperature approximation. L is the number of terms in the Taylor

series expansion in the high-temperature approximation, where the

imaginary-time splitting is not used. The plot of S from canonical

FCI/STO-3G is also superimposed

Fig. 3 The chemical potential (l) of hydrogen fluoride calculated

with grand canonical FCI/STO-3G and its various approximations

including MP0/STO-3G as a function of temperature ðTÞ. M is the

number of states (in each group of determinants with the same

number of electrons and magnetic spin quantum number) included in

the low-temperature approximation. L is the number of terms in the

Taylor series expansion in the high-temperature approximation,

where the imaginary-time splitting is not used
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This justifies our earlier premise that l is asymptotically

inversely proportional to b in that limit.

Substituting these into Eqs. (7) and (16), we find

lim
b!0

W 0 ¼ expðblN̂Þ
Nb¼0

; ð52Þ

and

lim
b!0

S ¼ �kB

X2n
N¼0

2nCN

expðblNÞ
Nb¼0

ln
expðblNÞ

Nb¼0

ð53Þ

¼ �kBbl �N þ kB lnNb¼0 ð54Þ
¼ kB 2n lnð2nÞ � �N ln �N � ð2n� �NÞ lnð2n� �NÞf g:

ð55Þ
It is also straightforward to show that it is equal to

lim
b!0

S ¼ �kB2n f ln f þ ð1� f Þ lnð1� f Þf g; ð56Þ

where f ¼ f1þ expð�blÞg�1
is the high-temperature limit

of the Fermi–Dirac distribution function fp (Eq. 25). For

FH, with �N ¼ 10 and n ¼ 6, we obtain the T ¼ 1 limit of

S as 5:40673 kB (see Table 2).

The low-temperature approximations of S with a small

number (M) of states are rather poor, which is understand-

able given that S is the measure of the number of available

states. The approximations, however, rapidly improve with

increasing S and, with M ¼ 36, the agreement is accurate up

to 1 Eh or 300,000 K. The high-temperature approxima-

tions work well where S is nearly constant (above 107 K),

but break down at the first sign of variation in S.

Equation (47) explains why MP0 S0 reproduces grand

canonical FCI S at both T ¼ 0 and T ¼ 1 limits. In the

T ¼ 0 limit, S ¼ S0 ¼ 0 according to Nernst’s theorem. In

the T ¼ 1 limit, according to Eq. (47), the grand partition

function and thus S and l depend solely on the number

density 2nCN and not on state energies. Further, the number

density is common between grand canonical FCI and MP0,

which explains their same T ¼ 1 limits. In the interme-

diate temperatures, they differ from each other.

5.3 Chemical potential

The temperature dependence of l becomes large at the

same order of magnitude as the lowest excitation energy

(0.1 Eh or 30,000 K) and is linear with temperature at high

temperatures. This behavior has already been explained by

Eq. (51). This equation also indicates that whether l
increases or decreases with temperature is determined by

the numbers of basis functions ðnÞ and electrons ð �NÞ and is,

therefore, another computational artifact. When �N[ n; l
increases with temperature; otherwise, l decreases. In

physical reality or in a realistic calculation where n� �N; l
is expected to display the � lnð2nÞ=b behavior.

MP0 l0 having the same high-temperature asymptote as

grand canonical FCI l is also expected from the equiva-

lence of independent-particle and non-independent-particle

models in the high-temperature limit.

The zero-temperature limits of MP0 l0 and grand

canonical FCI l differ from each other. The values of these

quantities exactly at T = 0 are undefined. This can be

understood easily by inspecting the functional form of the

Fermi–Dirac distribution function fp in the case of MP0. It

is a Heaviside step function with the step occurring at l0.

Insofar as l0 falls between the energies of the highest-

occupied ð�HOMOÞ and lowest-unoccupied ð�LUMOÞ orbitals,

the physical description of the MP0 wave function at T = 0

is the same. Therefore, l0 is indeterminate within that

range. A similar situation applies to l; it is indeterminate in

the range between the lowest ð �N þ 1Þ-electron-state energy

ðEð �Nþ1Þ
0 Þ and the lowest ð �N � 1Þ-electron-state energy

ðEð �N�1Þ
0 Þ if they are the lowest-energy states with more than

�N electrons and less than �N electrons.

This is not to say that the limits of l0 and l as we

approach T = 0 from above are not known. They are indeed

the midpoints of the aforementioned respective ranges:

lim
b!1

l ¼ E
ð �Nþ1Þ
0 � E

ð �N�1Þ
0

2
; ð57Þ

lim
b!1

l0 ¼
�HOMO þ �LUMO

2
; ð58Þ

assuming that there is no degeneracy in the states involved

and the lowest-energy state with more than �N electrons has
�N þ 1 electrons and that with less than �N electrons has
�N � 1 electrons. This can be understood from the following

argument. In the b ¼ 1 limit, only these lowest-energy

states need to be considered in evaluating the average

number of electrons and determining l:

lim
b!1

�N ¼ ð
�N þ 1Þ exp½�bfEð �Nþ1Þ

0 � lð �N þ 1Þg
 þ ð �N � 1Þ exp½�bfEð �N�1Þ
0 � lð �N � 1Þg


exp½�bfEð �Nþ1Þ
0 � lð �N þ 1Þg
 þ exp½�bfEð �N�1Þ

0 � lð �N � 1Þg

: ð59Þ
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We do not need to consider �N-electron states because they

cannot shift the average number of electrons. It is

straightforward to confirm that this equation is satisfied by

Eq. (57). Equation (58) then follows from

E
ð �Nþ1Þ
0 ¼ E

ð �NÞ
0 þ �LUMO; ð60Þ

E
ð �N�1Þ
0 ¼ E

ð �NÞ
0 � �HOMO; ð61Þ

in MP0.

Both low- and high-temperature approximations are

rapidly convergent at the exact results for l for a wide

range of temperatures. The high accuracy of the low-tem-

perature approximations may be at least partly due to the

fact that only a few lowest-energy states dictate the value

of l.
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can be challenging for many reasons. For example, these 
systems generally have many low-lying valance electronic 
states in the vicinity of the ground state in many of the 
formal oxidation states of interest [ 1  –  3 ]. Furthermore, the 
valence molecular orbital space of such molecules becomes 
large and diffuse, making it challenging to assign orbitals 
to valence or core regions. Also, spin – orbit coupling effects 
can have a large impact on the nature of bonding and elec-
tronic excitations in these systems. 

 The ability to treat these molecular systems at a high level 
of accuracy requires large-scale computation. This problem 
is addressed in ab  initio  spin – orbit confi guration interaction 
( SOCI ) calculations. The massively parallel  SOCI  ( PSOCI ) 
code described here uses the so-called  one - step  procedure, 
a double-group symmetry-driven method where an effec-
tive spin – orbit operator is explicitly included in the Ham-
iltonian operator and evaluated in the context of the com-
plete confi guration interaction expansion (see Sect.  2 ). It has 
been argued that a determinant-based  SOCI  procedure is not 
necessarily more computationally expensive than a confi g-
uration state function ( CSF )-based approach in contrast to 
non-relativistic methods [ 4 ]. However, notwithstanding the 
possibility that the determinant method can be somewhat 
more expensive, this method maintains the ability to utilize 
highly fl exible lists of confi gurations and will continue to 
be applicable in addition to more effi cient methods such as 
the graphical unitary group approach ( GUGA ). The  PSOCI  
method differs from the  two-step  procedure of  Dolg  et al. [ 5 , 
 6 ] and the more compact approach of  Balasubramanian  [ 7 ] 
in which the spin – orbit contributions are acquired through a 
limited CI expansion and incorporated into the results of a 
larger non-spin – orbit CI. 

 The present implementation of the  SOCI  method, 
an extension of the  PSOCI  code of  Tilson  et al. [ 8 ], has 
as its goal the processing of  H -matrices of upwards of 

                     Abstract     An implementation of a massively parallel 
spin – orbit confi guration interaction ( PSOCI ) method is 
described. This is an extension of a conventional CI method 
that explicitly includes one-electron spin – orbit operators 
and certain scalar relativistic effects extracted from rela-
tivistic effective core potentials. The performance of the 
 PSOCI  code is analyzed on several large-scale computing 
platforms. 

   Keywords     Spin – orbit coupling    ·  Confi guration 
interaction (CI)    ·  Parallel spin orbit CI ( SOCI )    ·  Parallel 
computing    ·   Eigenanalysis     ·  Global arrays  

      1  Introduction 

 Having application codes available that can be used to cal-
culate spectroscopic and structural properties of a range of 
electronic states of heavy-element-containing molecules 
and that treat electron correlation, spin – orbit coupling and 
other relativistic effects in a manner that allows for sys-
tematic improvements is invaluable to their detailed under-
standing. Accurate theoretical models of such systems 
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50,000,000 – 500,000,000 double-group symmetry-adapted 
confi gurations on state-of-the-art parallel  supercomputers . 
Since it is based on the use of an electron confi gurations list, 
the ability to carry out  SOCI  calculations that include spe-
cifi c electron confi gurations permits the detailed study of the 
importance of electron correlation in such situations as curve 
crossings,  Rydberg  states, mixed V states, ion pair states, etc. 
The authors and others have published several studies on 
these cases, several of which are referred to below. 

  Alekseyev  et al. [ 9 ] have also developed code based on 
the  SOCI  method according to  Pitzer  and Winter [ 10 ] for 
which calculations of up to 1,000,000 double-group sym-
metry-adapted confi gurations have been reported. These 
authors concluded that the  SOCI  method is capable of 
accurate predictions of structures and spectra of heavy-ele-
ment-containing molecules. 

    2   Background 

 Procedures based on the use of relativistic effective core 
potentials ( RECPs ) that have been derived from all-electron 
ab  initio  numerical  Dirac  –  Fock  ( DF ) atomic wave functions 
can be used to reduce the number of electrons that must be 
treated explicitly. As a result, the number of electrons can 
be small enough that, in many instances, near-complete 
basis set, multi-reference singles plus doubles excitations 
( MRSD ),  SOCI  calculations incorporating spin – orbit cou-
pling operators and other relativistic effects become feasible 
[ 7 ,  11  –  13 ].  RECPs  and Gaussian basis sets for representing 
valence electrons have been reported for all of the elements 
from  Li  through Element 118 by  Christiansen ,  Ermler  et al. 
[ 14  –  20 ]. The  RECP  method is grounded in the fundamen-
tal tenet that atomic core and valence electrons can be for-
mally distinguished and, in fact, treated rigorously from fi rst 
principles as identifi able sets. In addition to distinguishing 
between atomic core and valence electrons, the effects of 
relativity should also be incorporated into  ECPs , especially 
for heavy elements. The high nuclear charge in heavy ele-
ments leads to tightly bound inner shell electrons whose 
confi nement increases their average kinetic energy such 
that relativistic effects are large. Relativistic effects on the 
valence electrons include (1) radial contraction and ener-
getic stabilization of  s  and  j  =  l  − 1/2,  l   >  0, atomic orbitals, 
often leading to bond shortening; (2) a concomitant radial 
expansion and energetic destabilization of  j  =  l +1/2 atomic 
orbitals, usually with somewhat smaller chemical effects, 
and (3) spin – orbit coupling of the  p ,  d ,  f  and higher angu-
lar momentum orbitals into  sublevels . As fi rst shown by Lee 
et al. [ 21 ], the use of  DF -based  RECPs  permits the incor-
poration of all of these effects into molecular electronic 
structure calculations through a one-electron operator that is 
added to the Hamiltonian operator for the valence electrons, 

and at the same time, reduces the computational problem 
such that only the valence electrons require an explicit theo-
retical treatment in the context of valence- subshell -only 
basis sets. The  RECPs  utilized in this report are due to Lee, 
 Ermler ,  Christiansen  and  Pitzer  ( LECP ) [ 21 ,  22 ]. 

 The  LECP   RECPs  are defi ned using shape-consistent, 
 nodeless  two-component  pseudospinors  [ 22 ] extracted 
from numerical two-component  DF  atomic  spinors  [ 23 ]. 
These  pseudospinors  are used to defi ne  RECPs  that are 
expressed as radially local one-electron operators in the 
context of atomic   jj  -coupling,  
      

 In Eq. ( 1 ), the projection operators |  ljm   >   <   ljm  | dictate 
that  U   RECP   be used in the context of a basis set of two-com-
ponent  Dirac   spinors .  U     LJ     

RECP    refers to the so-called residual 
 RECP  term, where  L  and  J  are taken as one larger than the 
largest angular momentum quantum numbers of the core 
electrons. These  RECPs  are calculated in numerical form, 
but are re-expressed as expansions in Gaussian-type orbit-
als ( GTOs ) to facilitate their use in molecular electronic 
structure codes that employ  GTO  basis sets for represent-
ing the valence electrons. 

 The  RECPs  are recast into the form of angular momen-
tum-averaged relativistic effective core potentials ( ARECPs ) 
that may be used in standard non-relativistic electronic 
structure procedures based on atomic   LS  -coupling.
     

with
      

 An important consequence of this averaging is the out-
growth of a spin – orbit operator [ 24 ], which was recast into 
the following form [ 10 ] 
     

where  s  and  l  are the spin and orbital angular momentum 
vector operators and
     

(1)

URECP = URECP
LJ (r) +

L−1∑
l=0

l+1/2∑
j=|l−1/2|

j∑
m=−j[

URECP
lj (r) − URECP

LJ (r)
]
|ljm > < ljm|.

(2)

UARECP = UARECP
L (r) +

L−1∑
l=0

l∑
m=−l[

UARECP
l (r) − UARECP

L (r)
]
|lm > < lm|

(3)UARECP
l = (2l + 1)−1

[
lURECP

l,l−1/2 + (l + 1)URECP
l,l+1/2

]
.

(4)

HSO = s ·

L∑
l=1

HSO
l

l∑
m′=−l

l∑
m=−l

|lm′><lm′|l|lm >< lm|

(5)HSO
l = [2/(2l + 1)]�Ul(r)
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 The Hamiltonian matrix used in the  SOCI  method 
adopted here is constructed in terms of matrix elements 
involving the  U   ARECP   and  H  SO  operators and determinantal 
wave functions. These wave functions are comprised of lin-
ear combinations of atomic orbitals (viz. contracted  GTOs ) 
molecular orbitals ( LCAO  – MOs) for valence electrons and 
are defi ned through standard   LS  -coupling-based multi-con-
fi guration-consistent fi eld ( MCSCF ) procedures. 

 The Hamiltonian operator for valence electrons  i  and 
atoms  c  with net charge on the nucleus  Z   c   ′  =  Z   c    −   Z   c ,core  
that is used to drive the  MCSCF  step of a calculation is (in 
a.u.),
      

 The resulting wave functions are eigenfunctions that 
transform as irreducible representations of the molecular 
point group. Thus, existing ab  initio  molecular structure 
codes can be used to calculate these  LCAO  – MO determi-
nantal wave functions. 

 Generation of the  PSOCI  solutions requires atomic 
orbitals ( AOs ) and molecular orbitals (MOs) from which 
the confi guration space may be generated and within which 
the solutions are obtained. The  AOs  are used for subse-
quent analyses such as a  Mulliken  population analysis [ 25 ]. 
For the purposes of  PSOCI , we typically orthogonalize the 
 AOs  using coeffi cients from an  MCSCF  procedure. These 
orbitals are all one-component orbitals generated without 
any spin – orbit coupling effects, although the  ARECPs  are 
included in the  MCSCF  procedure. 

  Pitzer  and Winter [ 10 ] defi ned a  SOCI  procedure in the 
context of double-group theory that leads to molecular 
wave functions that exhibit the proper intermediate angular 
momentum coupling for an electronic state. In this method, 
matrix elements with respect to  H  SO  are added to those for 
 H  val  to form a total Hamiltonian matrix from which  SOCI  
wave functions and energies are extracted as  eigensolu-
tions . The  SOCI  wave function for state K representing the 
valence electrons is
     

where the sum is over all Slater determinants D I  that con-
tribute to the double-group symmetry of the electronic 
state of interest. Each  D  I  is composed of  LCAO  – MOs. The 
intermediate angular momentum coupling inherent in the 

(6)�Ul(r) = URECP
l,l+ 1

2
(r) − URECP

l,l− 1
2
(r).

(7)

Hval =
∑

i

(
−

1

2
∇2

i −
∑

c

Z ′
c/rci

)

+
∑
i>j

1

rij
+

∑
c

UARECP
c +

∑
c>d

Z′
cZd

′/rcd .

(8)ΨK =
∑

CI DI

molecular  SOCI  wave function is coded into the CI coef-
fi cients of Eq. ( 8 ) by virtue of the presence of  H  SO  matrix 
elements in each element of the Hamiltonian matrix. That 
is, the fi nal  SOCI  wave function is an  eigenfunction  of the 
total electron angular momentum operator and transforms 
according to one of the irreducible representations of the 
molecular double group. 

    3   Implementation 

 The  PSOCI  code is a highly scalable version of the algo-
rithm that implements the previously described mathemati-
cal framework as suggested by  Pitzer  and Winter [ 10 ] and 
developed for parallel computers [ 8 ].  PSOCI  is written 
in C++ using a single program multiple data ( SPMD ) 
approach where the program utilizes a data-parallel like, 
loosely coupled, procedure. It employs Global Arrays [ 26 ] 
(GAs) for managing the distributed objects such as the 
Hamiltonian matrix and  SOCI  eigenvectors. The GA disk 
resident array ( DRA ) subsystem, based on  ChemIO  [ 27 ], 
is leveraged for the effi cient (optional) parallel movement 
of large data objects to disk. A parallel Davidson diago-
nalization procedure [ 28  –  30 ] is implemented in the base 
code with several layers of approximations incorporated, 
such as multiple (weaker) checks on convergence [ 30 ], and 
multistep thresholds. In particular, all vectors are fi rst con-
verged to a weaker set of convergence criteria. This is fol-
lowed by an iterative restart and subsequent convergence to 
the fi nal acceptance criteria based on energy changes and 
step sizes. The number of restarts may be selected by the 
user. In each cycle, the assumption is made that once a vec-
tor is converged, no retesting is performed. Improvement 
of the next vector is then begun. Of course, root swap-
ping and other effects will occur that potentially degrade 
the quality of prior estimates. However, this is a problem 
primarily limited to the fi rst (lower quality) iterative cycle. 
Prior to beginning a subsequent cycle with its concomitant 
tighter convergence criteria, all residuals are recomputed 
and every vector is re-inspected and improved if neces-
sary. A fi nal complete check is generated upon completion 
of the diagonalization. Adopting this approach allows the 
algorithm to defer many potential orthogonalization and 
residual computations, providing better overall runtime. 
For diffi cult to converge cases, the user may select an algo-
rithm that performs more rigorous checking at the expense 
of greater runtime. 

 The  SOCI  procedure incorporates the  U   ARECP   s  and  H  SO  s  
of  Eqs . ( 2 ) and ( 4 ). This permits the incorporation of core-
electron scalar relativistic effects and valence SO integrals 
prior to the  SOCI  procedure using standard non-relativ-
istic codes. The valence electrons that remain are repre-
sented by atom-centered, contracted Gaussian-type basis 
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functions ( CGTOs ). Of course, the use of these operators 
and basis sets entails certain approximations. First, the use 
of an  ARECP  precludes relaxation of the outermost elec-
trons incorporated into the  ARECP  core with changes in 
the valence region. The use of a polarizing potential tech-
nique to account for this interaction has been proposed and 
will be incorporated into future releases of our codes [ 31 ]. 
Alternatively, so-called small-core  RECPs  can be used to 
account for such effects in a direct manner. Second, cer-
tain contributions to the relativistic corrections are not pre-
sent. These include the  Breit  and Gaunt interactions, QED 
effects, and direct valence – valence electron relativistic 
effects. Most of these excluded terms are quite small and 
are comparable with bounds considered to be within chem-
ical accuracy (~1 kcal/mol). The  one-step   SOCI  technique 
used here is one of the few techniques where an appreciable 
amount of scalar relativistic and spin – orbit coupling effects 
can be incorporated into atomic and molecular calculations 
while also including large amounts of electron correlation. 

 The initial step of the  SOCI  procedure constructs a list 
of electron confi gurations using the COLUMBUS pro-
gram   cgdbg   [ 32 ]. This list includes all molecular orbital 
electron confi gurations (occupations) consistent with the 
chosen double-group representation. These spatial confi gu-
rations are processed as double-group symmetry-adapted 
functions as part of the  SOCI  procedure. Only the explic-
itly treated valence electrons are included in this list. The 
next step is the construction of MO integrals. These are 
generally derived using standard (non-SO coupled) multi-
confi guration self-consistent fi eld ( MCSCF ) methods, with 
the core-valance electron relativistic effects accounted for 
by the  ARECP  operator. Generating the MO integrals is a 
multistep process. In the following, specifi c programs that 
are part of the COLUMBUS Suite of Quantum Chemis-
try Programs [ 33  –  36 ] are indicated parenthetically. It is 
noted, however, that the  PSOCI  code is not strongly teth-
ered to any one particular MO generating system. The pro-
cess begins by computing the basis function integrals with 
respect to the valence Hamiltonian operator that includes 
the  U   ARECP   and the  H  SO  operators ( argos ), followed by 
the determination of optimized molecular orbitals from 
an  MCSCF  procedure (  mcscf  ) to calculate the MO coeffi -
cients. Using these MO coeffi cients, the  AO  integrals are 
transformed into integrals with respect to the MOs (  tran  ). 
These transformed integrals (from   tran  ) and the list of con-
fi gurations (from   cgdbg  ) are supplied to our  PSOCI  code 
for use in the calculation of  SOCI  wave functions and 
energies for a desired number of double-group symmetry 
electronic states. The resultant  SOCI  wave functions and 
density matrices and natural orbitals calculated therefrom 
are subsequently used to calculate one- electron properties 
( prop,  exptvl  ) and electric dipole transition moments (  tran-
mom  ) [ 37 ]. 

 A  PSOCI  calculation consists of two broad and dis-
tinct phases. Phase I is the computation of the Hamilto-
nian matrix.  H  (and associated indexing objects), which 
is stored into memory as large distributed arrays. The data 
are stored in a customized compressed sparse matrix data 
format that is distributed across processors. Only nonzero 
 H -matrix elements and associated indexing information are 
retained in these distributed objects. The construction of a 
matrix element  H   ij   is a simple confi guration-driven process 
with each core managing complete rows of  H . A (spatial) 
confi guration specifi es a unique electron occupation pat-
tern; that is, all double-group symmetry-adapted functions 
arising from a confi guration are treated as a block of work. 
Individual blocks indexed by pairs of spatial confi gurations 
are referenced in order to generate the  H -matrix. All valid 
spin projections are processed subject to differences in the 
number of excitations between confi gurations and the num-
ber of permutations to align confi gurations. MO integral 
magnitudes are used for screening when applicable. Checks 
for interactions that are identically zero are performed. 
Once an entire row is computed, the rows are uploaded to 
distributed storage using GA put operations. Computational 
load is balanced either using a simple shared counter style 
approach based on the GA read and increment method or 
using a static work method when using massive numbers of 
processors. The user may choose to pre-calculate all dou-
ble-group-adapted functions, store them into a GA object, 
and communicate to cores as needed or simply process 
the much smaller confi guration data as needed. Once con-
structed, the entire  H -matrix (and associated objects) are 
(optionally) stored to disk for restart purposes. Generally, 
data from all cores on a node are copied to one fi le, though 
this granularity can be modifi ed. Phase  II  involves calcu-
lating multiple eigenvectors of the  H -matrix for the desired 
number of roots (electronic states). A parallel Davidson 
method is currently employed [ 30 ]. Phases I and  II  are both 
computationally demanding (see below). 

 The  H -matrix construction proceeds by each node gen-
erating disjoint sub-blocks of the double-group-indexed 
matrix and storing this into a GA data space. Transfer of 
data can be fast to local memory and slower to non-local 
memory requiring appropriate data locality considerations 
in the algorithm. The algorithm begins by creating as large 
a GA object as possible given the amount of available dis-
tributed memory. At the end of the  H -matrix construction 
phase a complete, packed sparse matrix is stored in distrib-
uted memory using GAs on disk for restarting or archiving. 
The  H -matrix construction is a procedure that uses blocks 
over spatial (occupation) confi gurations in the context of 
the symmetries identifi ed in the  SOCI  method [ 10 ]. This 
results in a reasonably fast construction time, but renders 
the matrix in some arbitrary order that may not be optimum 
for the subsequent diagonalization step. 

Reprinted from the journal94



Theor Chem Acc (2014) 133:1564 

1 3

 The Phase  II  iterative diagonalization run time depends 
both on code performance and on the number of itera-
tions required to achieve convergence to a desired toler-
ance level. We are actively exploring better ways to load 
balance work within this phase when using massive num-
bers of processors as imbalances and sparse matrix band-
width effects become important. Static work agglomeration 
schemes analogous to so-called  supertasking  procedures 
developed for parallel  Fock  matrix construction [ 38 ] are 
being explored. As a consequence parallel performance is 
poorer than in Phase I. 

 The inter-process communication bandwidth for the 
matrix – vector product is the fundamental problem for 
Phase  II . For cases where the CI coeffi cient vector may 
be replicated, the performance is suffi cient to support sci-
entifi c research. However, when the CI coeffi cient vector 
must be distributed across multiple processors, the sparse 
matrix bandwidth, exacerbated by the spatial-confi guration 
generation scheme of  H , results in poorer performance in 
the diagonalization step. We are currently seeking to reduce 
the  H  bandwidth using (reverse)  CutHill  –  McKee  tech-
niques [ 39 ,  40 ] implemented for massively parallel distrib-
uted data based on the Global Arrays library. The process 
for reordering the  H -matrix, is expected to take about the 
same amount of time as to actually generate it. However, 
this additional time is expected to result in signifi cantly 
decreased diagonalization computation times. The func-
tionality for computing blocks of the H-matrix in line and 
retaining only matrix – vector products as part of the itera-
tive diagonalization has been incorporated into the code 
providing an option for not storing the H-matrix in mem-
ory. However, for this implementation within  PSOCI , the 
sparse matrix bandwidth is exposed for small problems, 
rendering the process fairly slow relative to the H-in-mem-
ory methods. 

 As in a conventional CI method,  PSOCI  must address 
the storage of the entire Hamiltonian matrix. The  H -matrix 
is sparse but still large enough that distributed memory is 
required. Specifi cally, for storage of the  H -matrix infor-
mation, a sparse matrix format is adopted that stores three 
objects. Symmetry allows storage of the lower triangle of 
all matrix objects. The store objects consist of the matrix 
of H elements, a matrix of column entries per row, and a 
vector of the number of row elements. The GA distributed 
memory space has a challenging characteristic; that is, one 
cannot dynamically allocate and  de -allocate memory from 
individual rows. Thus, once allocated, the global  H -matrix 
is fi xed in size. For problems of interest to our research 
group, we have explored estimated sparsity predictors to 
minimize global storage. 

 In Fig.  1  the number of nonzero interactions for each 
double group is displayed for the  H -matrix for  RuO  2+  
for a valence full CI plus singles ( VFCI -S) MRS  SOCI  

calculation. Values below 30 are not shown. The height of 
a point depicts the total number of nonzero values for the 
specifi ed spatial-confi guration pair. The diagonal blocks 
loosely correspond to J projections of 7, 5, 3 and 1. Only the 
unique elements of  H  are computed (lower triangle). The 
number of nonzero elements varies far more slowly than 
the matrix rank. A plateau is observed at 1,000 – 2,000 ele-
ments. Figure  2  displays a histogram of nonzero values for 
the entire  H -matrix. As the number of nonzero values for a 
particular confi guration pair generally fall far below 1,000, 
this would correspond to (1,000/607,245) or 0.16 %. A 

 Fig. 1       Depiction of the  SOCI  Hamiltonian matrix for the  RuO  2+  
MRS calculation. This  plot  indicates the number of nonzero double-
group confi guration interaction terms (height) versus the specifi ed 
confi guration pair (base). The total number of spatial confi guration 
is 607,965, and the total double-group symmetry-adapted function is 
6,078,210. The four  J  symmetries (1, 3, 5, 7) that mix for this prob-
lem are evident in the block nature of the block nature  

 Fig. 2       Histogram of nonzero  H -matrix elements for  RuO  2+   
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minor problem is evident. A small number of rows display 
a signifi cantly greater number of interactions; a pseudo-
scale-free type of behavior. Thus, simply assigning a GA 
space with rows suffi ciently large to account for these cases 
results in unnecessarily large GA array memory usage. To 
address this,  PSOCI  resorts to a dual array storage. As an 
example, for a selected molecular system the user may spec-
ify that  H  storage space is allocated with rows of size 1,500 
elements for the total number of columns. Then, additional 
GA arrays are defi ned that can accommodate a much larger 
row size, but for a small fraction of the number of columns. 
This approach works reasonably well.               

 Scaling as a function of numbers of nodes for a  PSOCI  
calculation on the  LiSr  molecule was followed. This is an 
11-electron system for which  MRSD   SOCI  calculations 
were carried out. The rank of the  H -matrix is 7,197,320, 
which was built from 1,891,760 spatial MO confi gurations. 
The slopes of time to solution versus numbers of nodes 
show nearly linear scaling at the largest number of cores. 
For example, the runtime on 1,000 nodes of the Texas 
Advanced Computing Center ’ s ( TACC )   Lonestar   system 
was 1,477 s, which may be compared with a very rough 
estimate of around 18 days if a single core was used. 

    4   Calculations 

 Several test problems have been selected for characteriza-
tion of the  PSOCI  performance. All calculations were per-
formed using  ARECPs  defi ned in   LS  -coupling (Eq.  2 ) and 
incorporate one-electron spin – orbit operators derived from 
the corresponding (  jj  -coupled)  RECPs  (Eq.  4 ). The remain-
ing valence electrons are represented by a conventional 
 CGTO  basis set in the context of the associated  ARECP . 
Results showing times for building Hamiltonian matrices 
and time per iteration for  eigenanalyses  thereof are shown 
for a series of test cases in Table  1 .  

 The Am 3+   PSOCI  calculation used the  LECP  so-called 
 Christiansen , Ross,  Ermler ,  Nash ,  Bursten  ( CRENB ) 
 ARECPs  and  GTO  basis set downloaded from the  EMSL  
Basis Set Exchange [ 41 ]. The calculation was at the  MRSD  
level of approximation. 

 The  RuO  2+  and  OsO  2+  calculations were carried out in 
the context of the  CRENB   ARECPs  and basis sets which 
were augmented by adding the aug-cc- pVDZ -PP basis, all 
obtained from the  EMSL  Basis Set Exchange [ 41 ] includ-
ing the published diffuse  GTFs  and two f-type  GTFs  from 
the aug-cc- pVDZ -PP as polarization functions [ 42 ,  43 ]. A 
correlation-consistent valence basis set was used for O and 
was generally contracted to triple-zeta. Two d-type func-
tions were added as polarization functions [ 42 ,  43 ]. The 
fi nal set may be designated [ Ru ,Os:7 s , 6 p , 5 d , 2 f /O:3 s , 3 p , 
2 d ] and contains a total of 86  CGTFs  representing the 20 
valence electrons of  RuO  2+  and  OsO  2+ . 

 In these calculations the molecular orbital (MO) basis 
sets were obtained through multi-confi guration self-con-
sistent fi eld ( MCSCF ) calculations that were constructed in 
the context of the 20 valence electrons. The MOs represent-
ing the eight 4 s  and 4 p  electrons of  Ru  2+  and eight 5 s  and 
5 p  electrons of Os 2+  were maintained as doubly occupied 
in all confi gurations, while a complete active space self-
consistent fi eld ( CASSCF )  MCSCF  procedure was carried 
out for the remaining  Ru  2+  4 d , 5 s , O s  2+  5 d , 6 s  and O 2 s  
and 2 p   subshells . Also, valence/valence contributions to the 
total wave function that come from the 5p  subshell  of  Ru  2+  
and 6 p  of Os 2+  are included via dynamic correlation in the 
subsequent CI calculations. All subsequent CI wave func-
tions maintain the size consistency built into the  MCSCF  
MOs, insuring that their asymptotic behavior is correct in 
the context of the molecular symmetry that was imposed. 

 These  MCSCF  MOs were used to form the basis for 
defi ning the  SOCI  calculations. The calculations corre-
spond to single (S) and double (D) electron excitations into 
all of the virtual (external) MOs that remained from the 

 Table 1        PSOCI  execution data 
on four architectures  

  a    National Energy Research 
Scientifi c Computing Center 
( NERSC )  Cray   XE 6 

  b     NERSC   Cray   XC 30 

  c    Texas Advanced Computing 
Center ( TACC ), Dell  Linux  
Cluster 

  d    Renaissance Computing 
Institute ( RENCI ) Dell  Linux  
Cluster 

  Machine    Calculation     H -matrix rank    Time (s) 
 Phase I  

  Time (s/ iter ) 
 Phase  II   

  No. cores  

  Hopper a     Am 3+     3,644,641    89    0.5    600  

  Hopper a      RuO  2+   VFCI     6,078,210    342    1.9    1,200  

  Hopper a      RuO  2+   MRSD     53,870,274    1,058    5.8    7,200  

  Hopper a      RuO  2+  MRS    2,047,170    63    0.5    1,200  

  Hopper a      RuO  2+   MRSD     479,036,418    6,217    N/A    65,536  

  Edison b      OsO  2+  MRS    2,047,170    189    1.0    2,400  

  Edison b      OsO  2+   MRSD     53,870,274    605    5.9    7,200  

  Hopper a      OsO  2+   MRSD     479,036,418    4,117    N/A    57,334  

   Lonestar  c      OsO  2+  MRS    6,078,210    622    N/A    1,536  

   Lonestar  c      InH  MRS    1,761,306    358    1.3    256  

  Hatteras d      InH  MRS    1,761,306    404    1.1    256  
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full basis set (MRS and  MRSD ). The  SOCI  wave function 
was constructed under the  C   2  2v   double group and included 
spatial confi gurations (occupations) constructed from a 
valence full  SOCI  ( VFCI ) representation of the  Ru  2+  4 d  
electrons and O valence electrons, maintaining the  Ru  2+  4 s  
and 4 p   subshells  as fully occupied. Results for  RuO  2+  and 
for analogous calculations for  OsO  2+  using the  CRENB  
 ARECP  and  H  SO  for Os are given in Table  1 . The confi gu-
ration lists defi ne the wave functions, which are eigenfunc-
tions of one of the irreducible representation of the  C   2  2v   
double group. The numbers of double-group-adapted con-
fi gurations, which defi ne the rank of the respective Ham-
iltonian matrices of each symmetry type, are shown in 
Table  1 . The time to construct the largest  H -matrix (rank 
479,036,418) due to  MRSD  calculations shown in Table  1  
was accomplished for  RuO  2+ , taking only about 1.7 h on 
65,536 cores of the Hopper system. This matrix proved to 
be diffi cult to diagonalize. It is noteworthy that the same 
rank  H -matrix for  OsO  2+  took only 1.1 h on the same 
number of cores. This was due to the higher sparsity of 
the  H -matrix because of more diffuse nature of the basis 
set, the compactness of the  MCSCF  MOs and the longer 
bond length. Methods to facilitate such a large diagonali-
zation are being examined. It was found that  H -matrices 
of rank 100-200 million could be treated using the current 
Davidson method, however. The smaller  MRSD  calculation 
for  RuO  2+ , H-matrix rank 53,870,274, took 0.3 h to build 
and was solved for 20 eigenfunctions in a few hundred 
iterations at 5.8 s/iteration on. Calculations at this level of 
approximation are relatively fast on 7,200 cores of a paral-
lel supercomputer using the  PSOCI  code. 

 Results for the lowest states of  Ru  +  and Os +  are shown 
in Table  2 . The table shows that, in keeping with the well-
known assessment of the method, when a large basis set 
is employed, reasonable accuracy for excitation energies 
is realized at the  MRSD  level. As shown in the table, this 
accuracy carries over to the spin – orbit split electronic states 
derived from  MRSD   SOCI  calculations.  

 The results for  InH  shown in Table  1  are for  MRSD  
 SOCI  calculations in the context of a small-core (36 core 
electrons)  ARECP  and H SO  [ 43 ]. The basis set consists of 
(7 s , 6 p , 5 d , 2 f /3 s , 3 p , 2 d )  CGTOs  for In and H, respec-
tively, and applies the  CRENB   ARECP  for a total of 86 
basis functions. The  AOs , MOs and transformed integrals 
were calculated and optimized using the  argos ,   mcscf   and 
  tran   programs of COLUMBUS. A confi guration space con-
sisting of 1,761,306 double-group functions of A 1  symme-
try was generated. Twenty  eigensolutions  were calculated. 
Properties of the ground state of  InH  calculated using the 
MRS and  MRSD   SOCI  wave functions that lead to the 
 H -matrix listed in Table  1  were calculated using the  SOCI  
wave functions. The results for dipole moment, harmonic 
frequency and equilibrium bond distance are shown in 
Table  3 . The calculated values are in close agreement with 
experiment and show clear improvement going from the 
MRS to  MRSD  level of approximation. Results from the 
relativistic CI procedure developed by  Balasubramanian  [ 7 ] 
mentioned above are shown for comparison.  

 For the purposes of comparison and consistency, our 
published results for Am 3+  [ 44 ] were recalculated with 
the  PSOCI  code.  H -matrix size and timing information for 
this calculation are shown in the fi rst row of Table  1 . We 
extended the study of Am 3+  to the halide cation  AmCl  + . 
Shown in Table  4  are results for the ground state of this 
cation at four levels of approximation. The  MCSCF  MOs 
were used to form the full set of valence confi gurations 
( CAS ). These  CAS  confi gurations were then used as the 
multi-reference set for the subsequent  MRSD   SOCI  calcu-
lations shown in the Table. The last row of Table  4  shows 

 Table 2        SOCI  excitation energies relative to  J  = 9/2 for  Ru  + ( 4  F ), 
Os + ( 6  D ) in cm  − 1   

  a    Moore [ 45 ] 

    7/2    5/2    3/2    1/2    E (a.u.)  

   Ru  +   CAS     1,765    2,973    3,839     NA      − 93.532  

   Ru  +  MRS    1,626    2,700    3,443     NA      − 93.536  

   Ru  +   MRSD     1,623    2,678    3,403     NA      − 93.662  

   Ru  +  Exp. a     1,523    2,949    3,108     NA      NA   

  Os +   CAS     3,819    5,167    6,686    7,671     − 90.213  

  Os +   MRSD     3,764    4,339    6,023    6,945     − 90.329  

  Os +  Exp. a     3,593    3,928    5,592    6,636     NA   

 Table 3        SOCI  properties of  InH  in the context of the  CRENB  
 ARECP  and SO operators  

  a    Multi-reference singles  SOCI  calculation 

  b    Multi-reference singles plus doubles  SOCI  calculation 

  c     Balasubramanian  [ 46 ]. (The  CRENB   ARECP  and SO operators 
were used.) 

  d     Huber  and  Herzberg  [ 47 ] 

  e    Total valence electron energy (a.u.) for the experimental bond dis-
tance ( R  exp  = 1.8383  Å ) 

  f    Dipole moment (D) at  R  exp  

  g     Mulliken  net charge at  R  exp  

  h    Harmonic frequency (cm  − 1 ) 

  i    Equilibrium bond length ( Å ) 

  Prop.    MRS a      MRSD  b      RCI  c     Exp. d   

  E  e  val       − 57.3327     – 57.4572     –      –   

    μ   f     0.63    0.53    0.43     –   

    δ    g  In      0.36    0.37     –      –   

    ω    e  
h      1,432    1,440    1,469    1,476  

   R   e  
i      1.860    1.837    1.823    1.838  
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the effect of the addition of the well-known Davidson cor-
rection to the  MRSD  energy. The convergence of the prop-
erties of  AmCl  +  to values of  D  e ,  R  e ,   ω   e , and   ω   e  x  e  is seen as 
a function of the increase in size of the CI space.  

    5   Conclusions 

 The code developed using the  SOCI  method runs in par-
allel using a distributed memory model and parallel I/O. 
It is noteworthy that the  MRSD   SOCI  method is able to 
construct a wave function that has the necessary fl exibility 
to properly model the products and reactants of a bond-
breaking process.  PSOCI  is capable of calculating scores of 
 eigensolutions  of high-rank (50 – 200 million) Hamiltonian 
matrices for large heavy-element-containing molecular sys-
tems. A parallel  Cuthill  –  McKee  [ 39 ] approach is currently 
being implemented to facilitate  eigenanalysis  for very large 
rank  H -matrices (~500 M) executing on thousands of pro-
cessors. The  PSOCI  code performs effi ciently on state-of-
the-art parallel  supercomputers . Finally, the  PSOCI  code 
has been incorporated into distributed  workfl ows  with 
dynamically allocated computation and networking, render-
ing it an effi cient and dependable platform for calculating 
accurate wave functions that are eigenfunctions of molecu-
lar double-group symmetry irreducible representations. 

 Run times for the reported test cases are due to paral-
lel computations, ranging from 256 through 65,536 cores. 
The choices of numbers of cores are functions of both the 
required distributed memory and desired run time. Compu-
tations that include 50 – 200 million double-group functions 
are straightforward to perform on the large systems as indi-
cated in Table  1 . These larger calculations are of a basis set 
size and wave function fl exibility that has been generally 
demonstrated to capture the necessary physics of a myriad 
of molecular problems. 
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      1  Introduction 

 With the rapid increase in computing power, fi rst-prin-
ciples simulations have become indispensable tools for 
understanding the molecular mechanisms that underlie 
macroscopic phenomena, especially for systems contain-
ing radioactive actinide and lanthanide elements for which 
experimental characterization may be quite expensive and 
hazardous. For systems containing heavy elements, it is 
necessary to take into account the large relativistic effects, 
both scalar and spin – orbit. The importance of spin – orbit 
interactions in chemical systems has been fi rmly estab-
lished [ 1  –  3 ]. The coupling of spin and orbital angular 
momentum in general will cause the splitting of spin mul-
tiplets, and this effect on the spectra is easily recognizable 
even at low  Z  values [ 4 ]. Radiationless transitions induced 
by spin – orbit interaction are one of the most common 
intramolecular interaction mechanisms. Such transitions 
frequently lead to  predissociation  in excited states [ 5  –  7 ]. 
For systems containing transition metals and even heavier 
lanthanide and actinide elements, the spin – orbit effects 
become particularly important, especially in situations 
where several closely spaced electronic states can be cou-
pled together by the strong spin – orbit interaction [ 8  –  12 ]. 

 The scalar relativistic effects can be adequately taken 
into account through various approximations that can easily 
be implemented in modern computational packages. The 
remaining diffi culties are the adequate and effi cient account 
of (1) the spin – orbit effects and (2) quite often the  multiref-
erence  character of the wave function, especially for sys-
tems with heavier elements like  f -electron systems, and the 

                     Abstract     We have implemented the unrestricted  DFT  
approach with one-electron spin – orbit operators in the 
massively parallel  NWChem  program. Also implemented is 
the analytic gradient in the  DFT  approach with spin – orbit 
interactions. The current capabilities include single-point 
calculations and geometry optimization. Vibrational fre-
quencies can be calculated numerically from the analyti-
cally calculated gradients. The implementation is based on 
the spin – orbit interaction operator derived from the effec-
tive core potential approach. The exchange  functionals  
used in the implementation are  functionals  derived for non-
spin – orbit calculations, including  GGA  as well as hybrid 
 functionals . Spin – orbit Hartree –  Fock  calculations can also 
be carried out. We have applied the spin – orbit  DFT  meth-
ods to the Uranyl aqua complexes. We have optimized the 
structures and calculated the vibrational frequencies of 
both ( UO  2  

2+ )  aq   and ( UO  2  
+ )  aq   with and without spin – orbit 

effects. The effects of the spin – orbit interaction on the 
structures and frequencies of these two complexes are dis-
cussed. We also carried out calculations for  Th  2 , and sev-
eral low-lying electronic states are calculated. Our results 
indicate that, for open-shell systems, there are signifi cant 
effects due to the spin – orbit effects and the electronic con-
fi gurations with and without spin – orbit interactions could 
change due to the occupation of orbitals of larger spin –
 orbit interactions. 
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associated multiplicity problem. When the spin – orbit effect 
is small compared with the spacing of the electronic states, 
the spin – orbit effect can often be treated with perturbative 
methods. For systems with strong spin – orbit interactions, 
the spin – orbit effect needs to be treated on the same foot-
ing as correlation effects variationally. The conventional 
way of treating the spin – orbit effect is spin – orbit confi gura-
tion interaction ( SOCI ), where the spin – orbit interaction is 
treated in the CI step, but such calculations are very expen-
sive [ 13 ,  14 ]. An alternative way is to include the spin – orbit 
effects within a density functional scheme, employing the 
common exchange – correlation  functionals . 

 Relativistic effects can be put into molecular elec-
tronic calculations in a variety of ways, ranging from full 
four-component wave function methods to semiempiri-
cal methods, as reviewed by  Pyykk ö   [ 15 ] and a number of 
subsequent reviews since then [ 16  –  23 ]. Several all-electron 
versions of fully relativistic four-component spinor-based 
 DFT  have been developed [ 24  –  26 ] and applied to systems 
containing heavy elements [ 27  –  29 ]. The relativistic effective 
core potential ( RECP ) method has been the most extensively 
used method, though, for two main reasons: (1) the effects 
of the inner-shell electrons, (which are the fastest moving 
electrons) whose major relativistic changes in orbital sizes 
and energies are propagated out to the valence region, are 
included in the core potentials, so only the valence electrons 
need to be treated explicitly; (2) many existing nonrelativ-
istic algorithms can be adapted to relativistic calculations 
using  RECPs . The scalar relativistic effects can easily be 
included in the major computational chemistry packages, 
and the major additional complication is the need to include 
the spin – orbit interaction for the valence electrons, which 
can be quite large even if the electron speeds are not large. 
In this work, we describe our implementation of spin – orbit 
interactions in the framework of  DFT  methods in the heav-
ily parallel computational chemistry package  NWChem . 
Our implementation includes spin – orbit interactions in the 
total energy calculations as well as analytical gradients with 
respect to nuclear coordinates for geometry optimization. 

 We have optimized the structures and calculated the 
vibrational frequencies of both ( UO  2  

2+ )  aq   and ( UO  2  
+ )  aq   

with and without spin – orbit effects. We also abstained the 
electron affi nity of ( UO  2  

2+ )  aq   with and without spin – orbit 
interactions. The effects of the spin – orbit interaction on 
the structures and frequencies of these two complexes are 
discussed. The effect of the spin – orbit effects on the cal-
culated energetics of molecular orbitals, in general good 
qualitative indicators of chemical reactivities and excited 
state properties, is discussed. We also carried out calcula-
tions for  Th  2 , and the effects of spin – orbit interactions on 
the low-lying electronic states, bond lengths, vibrational 
frequencies, dissociation energies and electronic confi gura-
tions will be discussed in detail. 

    2   Spin – orbit operator in relativistic core potential 
methods 

 The  RECP  method is an extension of the nonrelativis-
tic effective core potential approach [ 30 ], which has been 
reviewed by  Krauss  and Stevens [ 31 ].  RECPs  are obtained 
by several algorithms, particularly from wave functions 
from relativistic atomic calculations [ 32  –  34 ] and from fi t-
ting the energy results from all-electron atomic calculations 
[ 20 ]. Corresponding spin – orbit operators are obtained as 
part of the same process [ 22 ,  33 ] or by a separate process 
[ 35 ]. 

 In the procedure of  Christiansen  and co-workers [ 33 ], 
a  Dirac  –  Fock  atomic wave function is used as the start-
ing point. For each pair of  l ,  j  indices, the large-component 
radial function is used [ 32 ] to determine the  pseudoorbi-
tal  by the shape-consistent method [ 36 ]; it is defi ned to be 
equal to the valence radial function in the valence region 
and to decrease smoothly and  nodelessly  through the core 
region to the value of zero at the nucleus. The  pseudoor-
bital  is then used to defi ne the potential for that pair of  l ,  j  
indices. The electron repulsion interaction among valence 
electrons is removed from these potentials. 

 There is no need to explicitly include terms for direct rel-
ativistic effects, such as the dependence of mass on velocity, 
which are important only in the core region, in the valence-
electron Hamiltonian. These terms are included as a conse-
quence of using the  Dirac  –  Fock  wave functions. Thus, the 
Hamiltonian for the valence electrons is composed of the 
nonrelativistic Hamiltonian for the valence electrons plus 
the  RECPs , which include the effects of the core electrons 
as well as the relativistic effects on the valence electrons 
in the core region [ 37 ]. The  RECPs  thus represent, for the 
valence electrons, the dynamical effects of relativity from 
the core region, the repulsion of the core electrons, the spin –
 orbit interaction with the nucleus, the spin – orbit interaction 
with the core electrons, and an approximation to the spin –
 orbit interaction between the valence electrons [ 38 ], which 
has usually been found to be quite small, especially for 
heavier element systems [ 39  –  41 ]. The REP operators can 
be written as a summation of spin-independent potential and 
the spin – orbit operator, as written below, and the readers are 
referred to reference [ 39 ] for details.
     

     

      

(2.1)UAREP = UAREP
L (r) +

L−1∑

l=0

(
UAREP

l (r) − UAREP
L (r)

)
Ôl

(2.2)Hso = �s ·

L−1∑
l=1

2

2l + 1
�UREP

l
�lÔl

(2.3)�UREP
l = UREP

l+1/2(r) − UREP
l−1/2(r)
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 With the core potentials and spin – orbit operators given 
in the forms of  Eqs . ( 2.1 ) and ( 2.2 ), existing programs for 
nonrelativistic calculations can be adapted to include rela-
tivistic effects. In the literature, the coeffi cients of the spin –
 orbit potentials are  not  always defi ned in the same man-
ner. In our implementation of the spin – orbit interaction in 
 NWChem , the spin – orbit potential is defi ned as the   �UREP

l     
in ( 2.3 ) scaled by   2

2l+1   :
     

In the literature, the  Stuttgart  potentials [ 20 ] are defi ned 
as   �UREP

l     in ( 2.3 ) and, hence, have to be multiplied by 
  2
2l+1    to use in  NWChem . On the other hand, the so-called 
 CRENBL  potentials [ 42 ] in the published papers are 
defi ned as   l

2l+1�UREP
l     and, hence, have to be multiplied by 

  2l     (note, on the  CRENBL  Web site, the spin – orbit potentials 
already have been corrected with the   2l     factor). 

    3   Spin – orbit  DFT  with analytic gradients 

 With spin – orbit interaction, a one-electron spin – orbit inter-
action operator derived from relativistic  ECP  procedure is 
simply added to the  Kohn  – Sham Hamiltonian:
     

 h  0  is the one-electron Hamiltonian including kinetic, 
nuclear attraction and  RECP  operators. The spin – orbit 
interaction operator is given by
     

 v   c  and  v    xc    are the coulomb and correlation – exchange poten-
tials usually used in the spin-free case. 

 To solve the  Kohn  – Sham equation, a spinor basis that is 
composed of the direct product of the atomic basis func-
tions (usually Gaussian-type basis functions) and the one-
electron spin functions,   |aσ 〉   , where   |a〉    is the atomic basis 
function and   |σ 〉 = |α〉 and |β〉    are the one-electron spin 
functions. The molecular orbitals can be expanded as linear 
combinations of the spinor basis functions,
     

and satisfy the Hartree –  Fock  like equation,
     

The column matrix
     

(2.4)Uso =
2

2l + 1
�UREP

l

(3.1)Fφ = (h0 + hso + vc + vxc)φ = εφ

(3.2)hso = i�v · �s = ivxsx + ivysy + ivzsz.

(3.3)
|φ〉 =

∑
i,σ

Cσ
i |iσ 〉,

(3.4)F �C = S �Cε

(3.5)C =

(
Cα

Cβ

)
,

is molecular orbital expansion coeffi cients with  C    α    and 
 C    β    the   α   and   β   blocks corresponding to the   α   and   β   set of 
 spinors .  S  is the overlap matrix in the spinor basis   |aσ 〉    

and is block diagonal in   α   and   β  ,   S = (
Sαα 0
0 Sββ )   , with 

  Sαα
ij = Sββ

ij = 〈i|j〉   .   ε   is the diagonal matrix of the molecular 
orbital eigenvalues.  C  and  S  satisfy the  orthonormality  condi-
tions  C  +  SC  = 1, where  C  +  is the Hermitian conjugate of  C . 

 The density matrix
     

with
     

where the summation over  i  is over the molecular orbitals 
and the density matrix elements satisfy
     

The Hartree –  Fock  operator is given by
     

The spin-free matrix elements
     

and
     

are symmetric, and the spin – orbit matrix elements
     

are anti-symmetric. The total energy is given by
     

where
     

is the coulomb energy, and

(3.6)D =

(
Dαα Dαβ

Dβα Dββ

)

(3.7)Dαβ
ab =

∑
i

(
Cα

a,i

)∗
Cβ

b,i

(3.8)

Dαα
ab =

(
Dαα

ba
)∗, Dββ

ab =

(
Dββ

ba

)∗
, and Dαβ

ab =

(
Dβα

ba

)∗

(3.9)

F =

(
V0 + i

2 Vz + Vc + Vxc
1
2 Vy + i

2 Vx

− 1
2 Vy + i

2 Vx V0 − i
2 Vz + Vc + Vxc

)

(3.10)(V0)ab =

〈
a
∣∣∣ĥ0

∣∣∣b
〉

,

(3.11)
(
Vc,xc

)
ab =

〈
a
∣∣v̂c, v̂xc

∣∣b〉

(3.12)
(
Vx,y,z

)
ab =

〈
a
∣∣∣V̂x,y,z

∣∣∣b
〉

,

(3.13)

E = FD = V0
(
Dαα + Dββ

)
+ i

2 Vx(Dαβ + Dβα
)

+ 1
2 Vy(Dαβ − Dβα

)
+ i

2 Vz(Dαα − Dββ
)

+ Ec + Exc

(3.14)Ec = 1
2

∑
abcd

DabDcd(ab|cd)

Reprinted from the journal 103



 Theor Chem Acc (2014) 133:1588

1 3

     

is the correlation – exchange energy that depends on the 
form of the exchange – correlation functional used. If 
the exact Hartree –  Fock  exchange is used in place of the 
exchange – correlation functional, we recover the Hartree –
  Fock  theory with spin – orbit interaction. 

 For a Hamiltonian that depends on a parameter  X , in 
this case the nuclear coordinates, the analytic gradient of 
the energy with respect to the parameter can simply be 
obtained by differentiating the energy with respect to the 
parameter  X , based on the  Hellman  –  Feynman  theorem
     

Here, the superscript,  ( X ) , denotes differentiation with 
respect to the parameter  X .  W  is the energy-weighted den-
sity matrix resulting from the derivative of the overlap 
matrix with respect to the parameters;  W  is given by 3.17, 
and   σ   are the spin indexes:
      

    4   Spin – orbit  DFT  study of heavy element compounds 

 We have calculated the structural and electronic properties 
of  UO  2  

2+ (H 2 O) 5  and  UO  2  
+ (H 2 O) 5  using the  Stuttgart  small 

(3.15)Exc =
∑
ab

Dab
〈
a
∣∣v̂xc

∣∣b〉

(3.16)

E(X) = F(X)D = (V0)
(X)

(
Dαα + Dββ

)
+ i

2 (Vx)(X)
(
Dαβ + Dβα

)

+ 1
2 (Vy)(X)

(
Dαβ − Dβα

)
+ i

2 (Vz)(X)
(
Dαα − Dββ

)

+ (Ec)
(X) + (Exc)

(X) − WS(X)

(3.17)Wσσ
ab =

∑
i

εi(C
σ
ai)

∗Cσ
bi.

core  pseudopotentials  and associated spin – orbit interac-
tion operators [ 43  –  45 ]. The calculated U – O distances and 
U-water distances in the equatorial plane, with and without 
spin – orbit effects, for both  UO  2  

2+ (H 2 O) 5  and  UO  2  
+ (H 2 O) 5  

are listed in Table  1 . As seen from the table, for both 
 UO  2  

2+ (H 2 O) 5  and  UO  2  
+ (H 2 O) 5 , the U – O axial bonds are 

slightly longer by 0.001 and 0.002  Å , respectively, and 
the U-water distances are shorter by 0.004 – 0.006  Å , when 
spin – orbit effects are taken into account. Generally speak-
ing, shorter bond lengths are associated with higher vibra-
tional frequencies, indicating stronger bonding interactions. 
However, in the case of  UO  2  

2+ (H 2 O) 5  and  UO  2  
+ (H 2 O) 5 , 

the symmetric O – U – O vibrational frequencies turned out to 
be a few wave numbers higher even though the calculated 
bond lengths are slightly longer when spin – orbit interac-
tions are considered. The slightly longer U – O bonds can be 
attributed to the synergistic effects of the contraction and 
expansion of the  f  5/2  and  f  7/2  atomic spin – orbitals, which 
both participate in bonding interactions with O. The slight 
contraction of the equatorial water shell can be attributed to 
the reduced electrostatic interactions between the equato-
rial and axial oxygen.  

 As an example for an open-shell system, we carried 
out calculations for  Th  2 .  Th  clusters have been attract-
ing increasing attention due to potential nuclear energy 
applications. The calculated structural, electronic struc-
ture and energetic properties are summarized in Table  2 . 
We have identifi ed three low-lying electronic states with-
out spin – orbit interactions, the   sσ 2dπ3dσ 1dδ1sσ ∗1 5Φg,    
  sσ 2dπ4dσ 1sσ ∗1 3+

u     and   sσ 2dπ4sσ ∗2      1+
g     states, 

 Table 1       Calculated structural 
properties of  UO  2  

2+ (H 2 O) 5  and 
 UO  2  

+ (H 2 O) 5  and vibrational 
frequencies  

     UO  2  
2+ (H 2 O) 5      UO  2  

+ (H 2 O) 5   

  Without spin – orbit    With spin – orbit    Without spin – orbit    With spin – orbit  

  U – O distances ( Å )    1.748    1.749    1.806    1.808  

  U-water distances ( Å )    2.497 – 2.498    2.492 – 2.495    2.591 – 2.592    2.587 – 2.589  

  O – U – O symmetric(cm  − 1 )    942    945    843    845  

  O – U – O asymmetric (cm  − 1 )    1,028    1,032    898    903  

 Table 2       Calculated properties 
of  Th  2  dimer  

     Th  –  Th  distance ( Å )    Vibrational frequency 
(cm  − 1 )  

  Dissociation 
energy (kcal/mol)  

   No S.O.   

    sσ 2dπ4dσ ∗2   ,   1+
g        2.907    138    68.3  

    sσ 2dπ3dσ 1dδ1sσ ∗1   ,   5Φg       2.831    145    72.1  

    sσ 2dπ4dσ 1sσ ∗1   ,   3+
u        2.755    171    81.6  

   With S.O.   

    sσ 2dπ4dσ ∗2   ,   Ω   = 0    2.9076    143    67.8  

    sσ 2dπ4dσ 1dδ1   ,   Ω   = 3    2.669    196    76.8  

    sσ 2dπ4dσ 1sσ ∗1   ,   Ω   = 1    2.758    183    80.8  
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respectively. The lowest energy electronic state without 
spin – orbit interaction is found to be the   3+

u     state from 
the   sσ 2dπ4dσ 1sσ ∗1    electronic confi guration, followed by 
the   5Φg    state of the   sσ 2dπ3dσ 1dδ1sσ ∗1    confi guration and 
the   1+

g     state of the   sσ 2dπ4sσ ∗2    confi guration, 0.411 and 
0.574 eV above in energy, respectively. The three low-lying 
electronic states show progressively longer bond lengths 
and associated lower vibrational frequencies, as shown in 
Table  2 , indicating progressively weaker bonding interac-
tion, in going from states of lower energy to higher energy. 
Starting from the three low-lying electronic confi gurations 
obtained from non-spin – orbit calculations, we obtained 
three low-lying electronic states when spin – orbit interac-
tions are included. The lowest energy state is an   Ω   = 1 
state from the   3+

u     state of the   sσ 2dπ4dσ 1sσ ∗1    confi gu-
ration. The calculated bond length for this state does not 
show appreciable changes as shown in Table  2 , as the elec-
tronic confi guration remains the same with and without the 
inclusion of spin – orbit interactions. The highest energy 
state without spin – orbit, the   1+

g     state of the   sσ 2dπ4dσ ∗2    
confi guration, gives rise to an   Ω   = 0 state of this confi gura-
tion. Again, the bond length for this state remains almost 
the same as in the case of without spin – orbit interaction 
for the same reason. For these two cases, even though the 
calculated bond lengths do not show appreciable changes, 
the calculated vibrational frequencies show appreciable 
increase when the spin – orbit interactions are included, indi-
cating that inclusion of spin – orbit effects tends to make the 
potential energy curve slightly deeper. However, the case of 
  sσ 2dπ3dσ 1dδ1sσ ∗15Φg      5Φg    state is quite different. With 
the inclusion of the spin – orbit interactions, due to the much 
larger spin – orbit effect for the electrons in a  d δ   orbital 
than in a  s σ *  orbital, the dominant electronic confi guration 
becomes   sσ 2dπ4dσ 1dδ1   , giving rise to an   Ω   = 3 state with 
considerably shorter bond length and higher vibrational fre-
quency of 2.669  Å  and 196 cm  − 1 , compared with 2.831  Å  
and 145 cm  − 1  without spin – orbit, because a bonding  d δ   
orbital is occupied instead of an antibonding  s σ *  orbital. 
For all the three states considered here, we also calculated 
the dissociation energy to the lowest energy atomic asymp-
tote and the results are listed in Table  2 . As can be seen, 
the dissociation energy with and without spin – orbit for the 
fi rst two cases discussed above does not change much, but 
for the   sσ 2dπ4dσ 1dδ1      Ω   = 1 state, there is appreciable 
increase in the calculated dissociation energy, due to higher 
occupations of molecular orbitals with (negative) spin –
 orbit energies.  

 Our calculations identifi ed the   sσ 2dπ4dσ 1sσ ∗1      3+
u     

state as the ground state. The work of  Roos  et al. [ 46 ] 
identifi ed the   sσ 2dπ4dσ 1dδ1      3Δg    state as the ground state, 
with the   sσ 2dπ4dσ 1sσ ∗1      3+

u     as the third state higher 
in energy. As they also indicated, the fi rst state higher in 
energy, the   sσ 2dπ4dσ 2   ,   1+

u     state, is only 400 cm  − 1  higher 

in energy than the ground state identifi ed in their work. 
Of the three states considered here, the electronic con-
fi gurations differ in the occupation of the 7 s σ *,  6 d σ   and 
6 d δ   orbitals. Our calculations show that electronic states 
with occupation of the antibonding 7 s σ * orbital is lower 
in energy, instead of states with occupation of either the 
bonding 6 d σ   or 6 d δ   orbital. Even though our results might 
be counter intuitive, we provide two arguments that may 
be in favor of our results. First,  Roos  ’  results are obtained 
with  CASPT 2 calculations and the orbitals used in the per-
turbation calculations are obtained as the average orbitals 
that equally describe all possible states of the 8 electrons 
in 12 orbitals. The orbitals used may not be optimal for the 
states considered and thus may result in incorrect descrip-
tion of the orders of the correlated states. Secondly, in the 
atomic case, two electrons occupy the 7 s  atomic orbital, 
indicating that  d  orbital correlations are strong and elec-
trons may prefer to occupy the orbitals with 7s character. 
Nonetheless, we will rather not claim that our calculated 
results are necessarily correct in comparison with  Roos  ’  
work. Instead, we only want to point out that for  Th  2 , due 
to the very sensitive interplay of the strong correlation of 
the  d  electrons and the subtle bonding interactions of the 
7 s  and 6 d  orbitals, it is very challenging to determine the 
order of the low-lying electronic states. 

    5   Summary 

 We have implemented the spin – orbit  DFT  approach in 
the massively parallel  NWChem  computational chemistry 
code. The implementation makes use of the Global Array 
Tools, allowing for an effi cient parallel implementation. 
Our implementation is based on the  RECP  description of 
the scalar relativistic and the effective one-electron spin –
 orbit interaction operators. However, the implementation 
of the  SODFT  approach does not depend explicitly on the 
spin – orbit integrals and can be applied to one-electron 
spin – orbit interactions derived from all-electron schemes. 
The exchange  functionals  used in the implementation are 
 functionals  derived for non-spin – orbit calculations, includ-
ing  GGA  as well hybrid  functionals . Spin – orbit Hartree –
  Fock  calculations can also be carried out. The effect of 
using  functionals  developed for non-spin – orbit interactions 
in the case of spin – orbit interactions is diffi cult to quantify 
but is justifi ed by the good agreement with experimental 
results and all relativistic calculations, for example, in some 
of the works cited later in this paper. With this implemen-
tation, effi cient calculations of single-point energies, ana-
lytical gradients and geometry optimizations can be carried 
out in the  DFT  framework, taking into account the effective 
one-electron spin – orbit interactions. Since the implemen-
tation is based on the effi cient  parallelization  schemes of 
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 NWChem , scaling properties are similar to the calculations 
without the spin – orbit interactions. 

 In addition to computational effi ciency, spin-scalar and 
spin-dependent terms of the effective one-electron equa-
tions are treated on an equal footing with both the spin –
 orbit couplings and correlation effects treated simultane-
ously and variationally in the  SODFT  technique. In our 
 SODFT  procedure, the one-electron molecular  spinors  are 
determined in a fully unrestricted manner and the symme-
try-broken solutions ensure that proper dissociation lim-
its can be reached. The  SODFT  algorithm implemented 
in  NWChem  has been applied to a number of interesting 
problems, including both systems with heavy [ 12 ,  47 ,  48 ] 
and lighter elements [ 49 ,  50 ]. In their study of the effects of 
spin – orbit interaction on the spectroscopic constants (bond 
lengths, frequencies and dissociation energies) the heavy 
metal (sixth and seventh row elements) hydrides employing 
the spin – orbit  DFT  implemented in  NWChem , Lee et al. 
[ 49 ,  50 ] found that results obtained with the  ECP -based 
 SODFT  methods are similar to that from the all-electron 
relativistic density functional approaches and that the spin –
 orbit effects on the spectroscopic constants are in good 
agreement with two-component coupled-cluster singles 
and doubles with perturbative triples results calculated with 
the same  RECPs  and basis sets. Quite interestingly, strong 
effects from spin – orbit interactions on the vibrational 
frequencies of molecules with relatively light elements 
were revealed using the  SODFT  we have implemented in 
 NWChem  [ 49 ,  50 ]. In their study of ( CH  2 ) n XI ( n  = 1,2 
and X =  Br ,  Cl ) and similar systems, they have found that 
the nearly degenerate nonbonding orbitals of iodine can be 
split due to the inter-halogen interaction and that the spin –
 orbit interactions further mix these states. The effects of the 
spin – orbit interactions can be quite signifi cant for open-
shell cations even though the properties of the closed-shell 
neutrals may not be affected much, as shown here for the 
two systems considered. The implementation has been fur-
ther extended to include  ZORA  and Douglas –  Kroll  imple-
mentation of spin – orbit effects in  NWChem  [ 51 ], further 
extending the range of applications possible. Other imple-
mentations of spin – orbit  DFT  include the  ECP   SODFT  
recently implemented in  DIRACR  [ 52 ] and the commer-
cially available packages of all-electron  ZORA   SODFT  in 
 ADF  and  Turbomole  [ 53 ,  54 ], 
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Abstract A new recursive procedure is reported for the

evaluation of certain three-body integrals involving expo-

nentially correlated atomic orbitals. The procedure is more

rapidly convergent than those reported earlier. The for-

mulas are relevant to ab initio electronic-structure com-

putations on three- and four-body systems. They also

illustrate techniques that are useful in the evaluation of

summations involving binomial coefficients.

Keywords Three-body integrals � Binomial summations �
Exponentially correlated orbitals

1 Introduction

For electronic-structure computations involving exponen-

tially correlated orbitals in atomic systems, it is convenient

to generate the necessary integrals using recurrence

formulas. For three-body systems, the integrals in question

have the generic form

Cn1;n2;n12
ða; b; cÞ ¼ 1

16p2


Z

rn1�1
1 rn2�1

2 rn12�1
12 e�ar1�br2�cr12d3r1d

3r2;
ð1Þ

where r1 and r2 (with respective magnitudes r1 and r2) are

measured from a common origin (ordinarily the position of

one of the three particles), r12 ¼ jr1 � r2j, and the inte-

gration is over all values of r1 and r2. Though it may not at

first be obvious, the integral in Eq. (1) is symmetric under

all simultaneous permutations of its arguments and indices;

such permutations merely correspond to renumberings of

the particles, including the choice of the particle defining

the coordinate origin.

Conventional three-body energy computations require

the integrals Cn1;n2;n12
for a set of nonnegative integer val-

ues of n1, n2, and n12. Even for n1 ¼ n2 ¼ n12 ¼ 0 these

integrals are nonsingular, as can be seen by writing them in

terms of the relative coordinates r1, r2, and r12, and noting

that the volume element (after integrating out the angular

coordinates) is proportional to r1r2r12 dr1dr2dr12. A general

discussion of these three-body integrals can be found in

Ref. [1].

The Cn1;n2;n12
can be generated recursively, starting

from

C0;0;0ða; b; cÞ ¼ 1

ðaþ bÞðaþ cÞðbþ cÞ ð2Þ

and using a procedure developed by Sack et al. [2]. That

procedure involves the following formulas, in which the C,

B, and A are assumed to have arguments a; b; c,
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Cn1;n2;n12
¼ 1

aþ b
n1Cn1�1;n2;n12

þ n2Cn1;n2�1;n12
þBn1;n2;n12

� �
;

ð3Þ

Bn1;n2;n12
¼ 1

aþ c
n1Bn1�1;n2;n12

þ n12Bn1;n2;n12�1þAn1;n2;n12

� �
;

ð4Þ

An1;n2;n12
¼ dn1

ðn2þ n12Þ!
ðbþ cÞn2þn12þ1

; ð5Þ

where dn ¼ 1 if n ¼ 0 and zero otherwise. It is computa-

tionally stable to compute first the array A, then B, and

finally C.

For some atomic properties, and also in connection

with four-body recurrence schemes (vide infra) the C are

needed with one index equal to -1 but with the others

nonnegative, e.g., C�1;n2;n12
. Integrals of this type are

convergent, but the recurrence scheme using Eqs. (3)–(5)

cannot be used to increase an index of C from -1. One

method for recursive evaluation of these C�1;n2;n12
has

been presented both by the present author’s research

group [1] and by Korobov [3]; another method with more

rapid convergence is developed in the present

communication.

Recursive methods have also been reported for expo-

nentially correlated four-body atomic systems, where the

integrals have the generic form

In1;n2;n3;m1;m2;m3
ðu1; u2; u3;w1;w2;w3Þ

¼ 1

64p3

Z
rm1�1

1 rm2�1
2 rm3�1

3 rn1�1
23 rn2�1

13 rn3�1
12

 e�w1r1�w2r2�w3r3�u1r23�u2r13�u3r12 d3r1d
3r2d

3r3: ð6Þ

The integrals described by Eq. (6) are invariant under

particle permutations, which include not only permutations

of the indices 1, 2, 3 but also changes in the coordinate

origin, which correspond to permutations of the type

(w2 $ u2, w3 $ u3, n2 $ m2, n3 $ m3). The symmetry

group, isomorphic with that of the 6-j symbols, is the direct

product of the six-member group of permutations of (1, 2,

3) and the four-member group of origin changes. The net

result is that any one of the six indices of I can be brought

to the first index position.

Recurrence formulas for the so-called Hylleraas basis (in

which the parameters ui are zero) were published in 2004 by

Pachucki et al. [4]; that work was extended by the present

author in 2009 [5] to handle full exponential correlation

(general values of all the ui and wi). Both these sets of four-

body recurrence formulas require an initial integral I0;0;0;0;0;0
and various ‘‘boundary terms’’ of the form

I�;n2;n3;m1;m2;m3
¼ 1

64p3

Z
4pdðr23Þrm1�1

1 rm2�1
2 rm3�1

3 rn2�1
13 rn3�1

12

 e�wþ1r1�w2r2�w3r3�u2r13�u3r12 d3r1d
3r2d

3r3:

ð7Þ

The asterisk, introduced for this purpose in Ref. [4], indi-

cates that rn1�1
23 expð�u1r23Þ is to be replaced by 4pdðr23Þ.

Insertion of this Dirac delta function enables the integral of

Eq. (7) to be reduced to a three-body integral of the type

defined in Eq. (1):

I�;n2;n3;m1;m2;m3
ð; u2; u3;w1;w2;w3Þ ¼ Cm1;m2þm3�1;n2þn3�1

ðw1;w2 þ w3; u2 þ u3Þ:
ð8Þ

The vacant first argument of the above I reflects the fact that

this integral does not depend on the parameter u1. When used

for four-body recursion, the integrals of Eq. (8) appear only

under conditions such that at least one of m2 þ m3 and n2 þ
n3 is positive, so the integrals Cr;l;m will have indices that are

nonnegative, except for at most one index of value -1.

The initial integral, I0;0;0;0;0;0, can be evaluated in closed

form; a formula for it was first presented by Fromm and Hill

[6]. Improvements in the Fromm–Hill formula to illuminate

its singularity structure and facilitate its computation were

subsequently provided by the present author [7].

The recursive four-body formulas increased the impor-

tance of having good recursive methods for the three-body

exponentially correlated integrals with one index equal to

-1. An additional method for dealing with these integrals

was briefly sketched by the present author [5], but the

material there presented gave neither a full description of

the formula nor its method of derivation. The present

communication provides the missing derivation and dis-

cusses a class of finite summations that are relevant thereto.

2 Recurrence formulas for Cð�1; n2; n12Þ

A starting point for evaluation of Cð�1; n2; n12Þ is the

formula [1] for Cð�1; 0; 0Þ:

C�1;0;0ða; b; cÞ ¼ 1

b2 � c2
lnðaþ bÞ � lnðaþ cÞ½ 
: ð9Þ

We cannot use the procedure of Sack et al. to increase the

index -1, but we can use that procedure on the other

indices:
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C�1;n2;n12
¼ 1

bþ c
n2C�1;n2�1;n12

þ n12C�1;n2;n12�1 þGn2;n12

� �
ð10Þ

Here Gn2;n12
has definition

Gn2;n12
¼ � o

ob


 �n2

� o
oc


 �n12

G0;0; ð11Þ

with

G0;0 ¼ lnðaþ bÞ � lnðaþ cÞ
b� c

: ð12Þ

We have examined several alternative possibilities for the

evaluation of Gn2;n12
. If jb� cj is not too small, one can use

a variant of the procedure of Sack et al, corresponding to

the recurrence formula

Gn2;n12
¼ 1

b� c
n2Gn2�1;n12

� n12Gn2;n12�1þKn2;n12

� �
; ð13Þ

with

Kn2;n12
¼ dn2

dn12
lnðaþ bÞ � lnðaþ cÞ½ 


� d12ð1� dn2
Þðn2� 1Þ!

ðaþ bÞn2
þ d2ð1� dn12

Þðn12� 1Þ!
ðaþ cÞn12

:
ð14Þ

Here dn ¼ 1 if n ¼ 0 and zero otherwise. The use of Eq.

(14) is, however, limited by the fact that the formula for

Gn2;n12
becomes numerically unstable as b� c approaches

zero. One way of overcoming this difficulty, noted by

Korobov [3], is to use downward recursion in n2 or n12,

starting from a Gn2;n12
that is deemed negligible.

The alternative approach of Ref. [1] starts by writing

G0;0 as the following expansion:

G0;0 ¼ 1

b� c
lnðaþ bÞ � lnðaþ cÞ½ 


¼ � 1

b� c
ln
ðaþ bÞ � ðb� cÞ

aþ b

� 	
¼
X1
l¼1

1

l
ðb� cÞl�1

ðaþ bÞl :

ð15Þ

Applying the operator ð�o=ocÞn12 to Eq. (15), we get

G0;n12
¼
X

l[ n12

ðl� 1Þ!
lðl� n12 � 1Þ!

ðb� cÞl�n12�1

ðaþ bÞl : ð16Þ

We rewrite this equation in a form that causes the sum-

mation to start from zero:

G0;n12
¼
X1
l¼0

ðlþ n12Þ!
ðlþ n12 þ 1Þl!

ðb� cÞl
ðaþ bÞlþn12þ1

: ð17Þ

Then, applying ð�o=obÞn2 and using Leibniz’ formula for

repeated differentiation of a product, we first obtain

Gn2;n12
¼
Xn2

j¼0

ð�1Þj n2

j


 �X
l� j

ðlþ n12 þ n2 � jÞ!
ðlþ n12 þ 1Þðl� jÞ!

 ðb� cÞl�j
ðaþ bÞlþn12þn2�jþ1

:

ð18Þ

We next replace l by jþ k and note that the range of k is

ð0;1Þ. Also interchanging the order of the summations,

Eq. (18) becomes

Gn2;n12
¼
X1
k¼0

ðn2 þ n12 þ kÞ!
k!

ðb� cÞk
ðaþ bÞn2þn12þkþ1


Xn2

j¼0

ð�1Þj n2

j


 �
1

n12 þ jþ k þ 1
:

ð19Þ

The j summation is addressed in Appendix 1; its value,

from Eq. (40), isXn2

j¼0

ð�1Þj n2

j


 �
1

n12 þ jþ k þ 1
¼ n2!ðn12 þ kÞ!
ðn2 þ n12 þ k þ 1Þ! :

ð20Þ

Inserting this result, we reach

Gn2;n12
¼
X1
k¼0

n2!ðn12 þ kÞ!
k!ðn2 þ n12 þ k þ 1Þ

ðb� cÞk
ðaþ bÞn2þn12þkþ1

:

ð21Þ

It is evident that the variable involved in the expansion is

the dimensionless quantity s ¼ ðb� cÞ=ðaþ bÞ. This

approach is functionally equivalent to that of Korobov and

will therefore have the same convergence characteristics.

However, if Korobov’s formulas are to be used, it should

be noted that many are in error by a factor of 2.

For some purposes, it is desirable to have a more sym-

metric expansion, which we can achieve by defining

x ¼ ðbþ cÞ=2, y ¼ ðb� cÞ=2, and arranging for the

expansion variable to be y=ðaþ xÞ. With that set of vari-

ables, we have

G0;0 ¼ lnðaþ xþ yÞ � lnðaþ x� yÞ
2y

: ð22Þ

By a procedure similar to that used in Eq. (15), we can

bring G0;0 to the form
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G0;0 ¼
X1
k¼0

y2k

ð2k þ 1Þðaþ xÞ2kþ1
: ð23Þ

We now seek to construct the Gn2;n12
by applying Eq. (11).

To do so, we note that

� o
ob
¼ � 1

2

o
ox
þ o
oy


 �
; ð24Þ

� o
oc
¼ � 1

2

o
ox
� o
oy


 �
: ð25Þ

When these formulas are inserted in Eq. (11), we have, for

the case n2� n12,

Gn2;n12
¼ ð�1Þn2þn12

2n2þn12

o2

ox2
� o2

oy2


 �n12 o
ox
þ o
oy


 �n2�n12

G0;0:

ð26Þ

Applying binomial expansions to the compound factors in

Eq. (26),

Gn2;n12
¼ð�1Þn2þn12

2n2þn12

Xn12

l¼0

ð�1Þl n12

l


 �
o
ox


 �2n12�2l o
oy


 �2l


Xn2�n12

m¼0

o
ox


 �n2�n12�m o
oy


 �mX1
k¼0

y2k

ð2kþ1ÞðaþxÞ2kþ1
:

ð27Þ

When we carry out the indicated differentiations, we note

that nonzero contributions only result when k�l, so we

change the summation variable k to jþl, with j�0.

Evaluation of Eq. (27) then takes the form

Gn2;n12
¼
X1
j¼0

Xn2�n12

m¼0

Xn12

l¼0

ð�1Þlþm
2n2þn12

n12

l


 �
n2 � n12

m


 �

 ð2jþ n2 þ n12 � mÞ!
ð2j� mÞ!ð2jþ 2lþ 1Þ

y2j�m

ðaþ xÞn2þn12þ2j�mþ1
:

ð28Þ

The summation over l can now be evaluated. As shown in

Appendix 1 at Eq. (41), we have

Xn12

l¼0

ð�1Þl n12

l


 �
1

2jþ 2lþ 1
¼ n12!

2

1

jþ 1
2

ð Þn12þ1

: ð29Þ

The notation ðaÞn denotes the Pochhammer symbol, with

definition ðaÞ0 ¼ 1, ðaÞ1 ¼ a, ðaÞ2 ¼ aðaþ 1Þ, ðaÞn ¼
aðaþ 1Þ � � � ðaþ n� 1Þ for integers n[ 2. Alternatively,

ðaÞp ¼
Cðaþ pÞ
CðaÞ : ð30Þ

The use of Eq. (29) enables us to rewrite the formula for

Gn2;n12
as

Gn2;n12
¼ n12!

2n2þn12þ1

X1
j¼0

Xn2�n12

m¼0

ð�1Þm n2 � n12

m


 �

 ð2j� mþ n2 þ n12Þ!
ð2j� mÞ! jþ 1

2
ð Þn12þ1

y2j�m

ðaþ xÞn2þn12þ2j�mþ1
:

ð31Þ

The summation in Eq. (31) can now be reorganized to a

form that exhibits it as a power series in y=ðaþ xÞ. To do

so, set 2j� m ¼ r, with r ¼ 0; 1; 2; . . .. We must then

restrict m to nonnegative integers of the same parity as r,

and can write

Gn2;n12
¼ n12!

2n2ðaþ xÞn2þn12þ1


X1
r¼0

ð�1Þr ðn2þ n12 þ rÞ!
r!

Sðn2;n12;rÞ y

aþ x


 �r

;

ð32Þ

with

Sðn2;n12;rÞ¼
X
mr

n2�n12

m


 �
 1

ðrþ mþ1Þðrþ mþ3Þ � � �ðrþ mþ2n12þ1Þ :

ð33Þ

The notation mr indicates that m must be restricted to inte-

gers of the same parity as r.

To proceed further, we need to evaluate the summation

S. The evaluation requires a significant number of steps.

The result, developed in Appendix 2, takes the form

Sðn2;n12;rÞ¼ ð�1Þr2n2n2!

ðn2þn12þ1Þ! Fðn2þ1;�r; n2þn12þ2; 2Þ:

ð34Þ

The quantity Fða;b; c; xÞ is a hypergeometric function,

sometimes written 2F1ða;b; c; xÞ, with definition

2F1ða; b; c; xÞ ¼
X1
j¼0

ðaÞj ðbÞj
ðcÞj j!

xj: ð35Þ

The quantities ðpÞj are Pochhammer symbols, defined after

Eq. (29). For a general discussion of the functions 2F1, see
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Ref. [8]. Despite the appearance of Eq. (34), Sðn2; n12; rÞ is

not really transcendental; with the parameter values given

in that equation S reduces to a rational fractional form, so

the notation of that equation simply provides a convenient

and compact way of specifying the coefficients in the

expansion in Eq. (32). With this formula for S, the

expansion for Gn2;n12
becomes

Gn2;n12
¼ n2! n12!

ðn2þ n12þ 1Þ!
1

ðaþ xÞn2þn12þ1

X1
r¼0

ðn2þ n12þ rÞ!
r!

Fðn2þ 1;�r; n2þ n12þ 2; 2Þ y

aþ x


 �r

:

ð36Þ

We repeat the definitions: x¼ ðbþ cÞ=2, y¼ ðb� cÞ=2.

The expansion given by Eq. (36) should reflect the sym-

metry of the expansion variable; if we interchange n2$
n12 and simultaneously interchange b$ c; the value of G

should not change. This invariance can be demonstrated

using properties of the hypergeometric function; it can also

be seen from the explicit forms of the expansion coeffi-

cients. Writing

Gn2;n12
¼ n2! n12!

ðaþ xÞn2þn12þ1

X1
r¼0

ð�1ÞrCr

r! ðn2þ n12þrþ 1Þ
y

aþ x


 �r

;

ð37Þ

the first eight Cr are given in Table 1. The Cr have, under

the interchange n2 $ n12, the parity of r. Since y also has

this parity under b$ c, the individual terms in the

expansion of Gn2;n12
according to Eq. (37) also exhibit its

overall symmetry.

When b� c is small, the expansion of Eq. (37) con-

verges more rapidly than that of Eq. (21) due to the fact

that the expansion parameter in Eq. (37) is half as large as

that in Eq. (21). Moreover, as already pointed out, trun-

cated forms of Eq. (37) yield identical values under sym-

metry interchange, but the same is not true of Eq. (21). We

present in Table 2 one numerical example that illustrates

these observations.
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Appendix 1: Some binomial sums

Starting from the equation

Fðm; nÞ ¼
Z1

0

xmð1� x2Þn dx ¼
Xn
l¼0

n

l


 �
ð�1Þl

Z1

0

x2uþm dx

¼
Xn
l¼0

n

l


 � ð�1Þl
mþ 1þ 2l

;

ð38Þ

we evaluate Fðm; nÞ by identifying it as a beta function:

Table 1 Coefficients in the expansion of Gn2 ;n12
, Eq. (37)

C0 = 1

C1 = ðDnÞ
C2 = ðDnÞ2 þ ðRnÞ þ 2

C3 = ðDnÞ3 þ ½3ðRnÞ þ 8
ðDnÞ
C4 = ðDnÞ4 þ ½6ðRnÞ þ 20
ðDnÞ2 þ 3ðRnÞ2 þ 18ðRnÞ þ 24

C5 ¼ DnÞ5 þ ½10ðRnÞ þ 40
ðDnÞ3 þ ½15ðRnÞ2 þ 110ðRnÞ þ 184
ðDnÞ
C6 ¼ ðDnÞ6 þ ½15ðRnÞ þ 70
ðDnÞ4 þ ½45ðRnÞ2 þ 390ðRnÞ þ 784
ðDnÞ2

þ 15ðRnÞ3 þ 180ðRnÞ2 þ 660ðRnÞ þ 720

C7 ¼ ðDnÞ7 þ ½21ðRnÞ þ 112
ðDnÞ5 þ ½105ðRnÞ2 þ 1050ðRnÞ þ 2464
ðDnÞ3
þ ½105ðRnÞ3 þ 1470ðRnÞ2 þ 6384ðRnÞ þ 8448
ðDnÞ

Here ðRnÞ ¼ n2 þ n12 and ðDnÞ ¼ n2 � n12

Table 2 Computations of Gn2 ;n12
for a ¼ 8:0, b ¼ 2:0, c ¼ 3:0, using

Eqs. (21) or (37) at various truncations.

Eq. (21) Eq. (37)

4 terms

G2;3ða; b; cÞ 1.4418 19048 9 10-6 1.4412 84145 9 10-6

G3;2ða; c; bÞ 1.4411 92027 1.4412 84145

6 terms

G2;3ða; b; cÞ 1.4412 92139 1.4412 82326

G3;2ða; c; bÞ 1.4412 81243 1.4412 82326

8 terms

G2;3ða; b; cÞ 1.4412 82476 1.4412 82319

G3;2ða; c; bÞ 1.4412 82307 1.4412 82319

Exact result 1.4412 82319 1.4412 82319
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Fðm; nÞ ¼ 1

2
B

mþ 1

2
; nþ 1


 �
¼ Cð1

2
½mþ 1
ÞCðnþ 1Þ

2C 1
2
½2nþ mþ 3
ð Þ

¼ n!

2 1
2
½mþ 1
ð Þnþ1

:

ð39Þ

For definition of the beta function and a derivation of

Eq. (39), see Ref. [9]. Note also that the notation ðaÞp denotes

a Pochhammer symbol, defined immediately after Eq. (29).

Expressions of the form Fðm; nÞ are used twice in the

main text. Setting n ¼ n2 and m ¼ 2n12 þ 2k þ 1, Eqs. (38)

and (39) correspond to

Fðm; nÞ ¼
Xn2

l¼0

n2

l


 � ð�1Þl
2ðn12 þ lþ k þ 1Þ

¼ Cðn12 þ k þ 1Þ n2!

2Cðn2 þ n12 þ k þ 2Þ ¼
ðn12 þ kÞ! n2!

2ðn2 þ n12 þ k þ 1Þ! ;

ð40Þ

Equivalent to Eq. (20).

Setting n ¼ n12 and m ¼ 2j,

Fðm; nÞ ¼
Xn12

l¼0

n12

l


 � ð�1Þl
2jþ 1þ 2l

¼ n12!

2ðjþ 1
2
Þn12þ1

; ð41Þ

Equivalent to Eq. (29).

Appendix 2: Evaluation of Sðn2; n12; rÞ

Our starting point for the evaluation of Sðn2; n12; rÞ,
defined in Eq. (32), is to write it as an iterated integral. To

avoid unnecessary notational complexity, we make the

temporary definitions n ¼ n2 � n12, m ¼ n12. Thus,

Sðn2;n12;rÞ ¼
X
mr

n

m


 �
 1

ðrþ mþ 1Þðrþ mþ 3Þ � � � ðrþ mþ 2mþ 1Þ

¼
Z1

0

dzm zm

Zzm
0

dzm�1 zm�1

Zzm�1

0

� � �
Zz2

0

dz1 z1

Zz1

0

dz

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
mþ1�integrals


X
mr

n

m


 �
zrþm:

ð42Þ

Remembering that the index mr is to take only values of the

same parity as r, we evaluate the summation in Eq. (42),

obtaining

gðzÞ ¼
X
mr

n

m


 �
zrþm ¼ zr

2
ð1þ zÞn þ ð�1Þrð1� zÞn½ 
:

ð43Þ

We now insert the right-hand side of Eq. (43) into Eq. (42),

also reversing the integration order, reaching

Sðn2; n12; rÞ ¼
Z1

0

dz gðzÞ
Z1

z

dz1 z1

Z1

z1

� � �
Z1

zm�1

dzm zm:

ð44Þ

We now integrate (from right to left) over the zi. The zm

integration yields ð1� z2
m�1Þ=2; that over zm�1 produces

ð1� z2
m�2Þ2=ð2 � 22Þ; further integrations over zm�2 through

z1 give the overall result ð1� z2Þm=2mm!. Equation (44) is

thereby reduced to

Sðn2; n12; rÞ ¼ 1

2mþ1m!

Z1

0

dz zrð1� z2Þm

 ð1þ zÞn þ ð�1Þrð1� zÞn½ 


¼ 1

2mþ1m!

Z1

0

dz zr ð1þ zÞnþmð1� zÞm�
þð�1Þrð1þ zÞmð1� zÞnþm�:

ð45Þ

We continue by writing zr as its expansion in powers of

either ð1þ zÞ or ð1� zÞ, i.e., as one of

zr ¼
Xr
j¼0

ð�1Þr�j r

j


 �
ð1þ zÞj ¼

Xr
j¼0

ð�1Þj r

j


 �
ð1� zÞj:

ð46Þ

We insert these expressions into Eq. (45) in a way that

leads to

Sðn2; n12; rÞ ¼ ð�1Þr
2mþ1m!

Xr
j¼0

ð�1Þj r

j


 �


Z1

0

dz ð1þ zÞnþmþjð1� zÞm þ ð1� zÞnþmþjð1þ zÞm� �
:

ð47Þ

We next process Eq. (47) by carrying out nþ mþ j

integrations by parts, repeatedly differentiating the fac-

tors that were originally at powers nþ mþ j and inte-

grating the other factors. At each step the boundary

(integrated) terms vanish. The differentiations produce
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(for each term) a factor ðnþ mþ jÞ!, while the integra-

tions generate (in the denominator) the product ðmþ
1Þðmþ 2Þ � � � ð2mþ nþ jÞ: At each step the (-1) from

the integration by parts cancels against a similar quantity

from the integration or differentiation of the ð1� zÞ
factor. The overall result is

Sðn2; n12; rÞ ¼ ð�1Þr
2mþ1m!

Xr
j¼0

ð�1Þj r

j


 � ðnþ mþ jÞ!m!
ðnþ 2mþ jÞ!


Z1

0

dz ð1� zÞnþ2mþj þ ð1þ zÞnþ2mþj
h i

:

ð48Þ

The integral in Eq. (48) has the value

2nþ2mþjþ1=ðnþ 2mþ jþ 1Þ. Inserting that value, cancel-

ing m!, expanding the binomial coefficient, and replacing n

and m by the quantities they represent, we have

Sðn2; n12; rÞ ¼ ð�1Þr2n2

Xr
j¼0

ð�1Þjrj
ðr� jÞ!

ðn2 þ jÞ!
ðn2 þ n12 þ jþ 1Þ!

2j

j!
:

ð49Þ

Converting to Pochhammer symbols, Eq. (49) becomes

Sðn2; n12; rÞ ¼ ð�1Þr2n2n2!

ðn2 þ n12 þ 1Þ!
Xr
j¼0

ð�rÞj
ðn2 þ 1Þj

ðn2 þ n12 þ 2Þj
2j

j!
:

ð50Þ

Because ð�rÞj vanishes for j[ r; we can extend the sum-

mation in Eq. (50) to infinity, thereby causing the sum to

correspond to the definition of a hypergeometric function;

compare with Eq. (35). The result then reduces to Eq. (34).
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Abstract Schrödinger equation for harmonium and rela-

ted models may be transformed to the biconfluent Heun

equation. The solubility of this equation and its applica-

tions in quantum chemistry are briefly discussed.
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1 Introduction

The properties of exact solutions of Schrödinger equation

for the hydrogen atom and harmonic oscillator were of

fundamental importance for the formulation of theoretical

models of atoms, molecules and solids. The search for

other exactly solvable potentials resulted in the develop-

ment of several very general methods including the

factorization method of Hull and Infeld [1], the super-

symmetric formulation of quantum mechanics [2], and

closely linked to it concept of the shape-invariant potentials

[3]. In general, the exact wavefunctions corresponding to

these solutions were expressed in terms of some orthogonal

polynomials multiplied by factors deduced from the form

of the potential and from the asymptotic behavior of the

underlying differential equation at various limits (0 and1
in the case of spherical systems). It was also shown (see,

e.g., [2]) that for all known shape-invariant potentials and,

consequently, for most of exactly solvable equations, the

orthogonal polynomials are special cases of either conflu-

ent hypergeometric function 1F1ða; c; xÞ [4] or hypergeo-

metric function 2F1ða; b; c; xÞ [5, 6].

Endeavors to analytical solving quantum-mechanical

three-body problem have been taken since the earliest years

of quantum theory [7–9] and continue until now [10–16].

Bethe and Salpeter in their ‘‘Quantum Mechanics of One-

and Two-electron Atoms’’ state that The differential equa-

tion for the two-electron system is not separable. Unlike the

solutions for the hydrogen atom, the solutions for the

eigenfunctions and energy eigenvalues cannot be expressed

in closed analytic form [17]. This opinion seems to be not a

statement of a rigorous mathematical fact but rather an

expression of frustrations associated with numerous futile

attempts to achieve this task. Though in many aspects the

analytical theory of the helium atom reached significant

success, it is commonly recognized as a rather unrealistic

direction of development. Only a marginal minority of

quantum chemists, including the present authors, believes

that the analytical approach is promising and may lead to a

robust and accurate quantum chemical calculation protocol

for many-electron atoms and molecules.

In parallel to the central problem of the helium atom—a

system of three quantum particles interacting via Coulomb

forces—a search for exactly solvable three-particle prob-

lems led to several very interesting discoveries. Probably

the most important finding was the so-called Hooke atom

also referred to as harmonium. It was recognized in 1962

by Kestner and Sinanoğlu that the Schrödinger equation

describing two electrons interacting by the Coulomb forces

Dedicated to the memory of Professor Isaiah Shavitt and published

as part of the special collection of articles celebrating his many

contributions.

J. Karwowski (&)

Institute of Physics, Nicolaus Copernicus University,

87-100 Toruń, Poland
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and confined in a central harmonic (i.e., quadratic or par-

abolic) potential is separable [18]. The problem was shown

quasi-solvable analytically six years later by Santos [19]. In

quasi-exactly solvable systems, a single solution express-

ible in terms of a polynomial multiplied by asymptotic

factors may be obtained only for some specific values of

constants defining the potential. The results of Santos

remained unnoticed for several decades, and the same

system was rediscovered a quarter of a century later by

Taut [20], becoming a subject of numerous studies (see,

e.g., [19–24]). Some related systems, with modified

potentials, e.g., containing an additional linear term, were

also investigated and applied to the description of a variety

of phenomena [25–28].

Independently of the developments motivated by prob-

lems in quantum mechanics, mathematical studies of sec-

ond-order linear ordinary differential equations resulted

[29, 30] in formulations going far beyond the classical

equations belonging to the hypergeometric class [4–6]. To

the most interesting and hardly known in quantum chem-

istry equations belongs the class of the Heun equations [31]

known and studied since 125 years. A relatively recent

collection of works on this subject appeared in the pro-

ceedings of the Centennial Workshop on Heun’s Equation

[32]. Important monographs on this and related subjects

have been published by Slavyanov and Lay [29] and by

Ronveaux [30]. Among equations of the Heun class, the

most relevant in the context of harmonium is the bicon-

fluent Heun equation (BHE). It describes harmonium and

its more general form with an additional linear term. A

discussion of the relations between the BHE and the

Schrödinger equation for harmonium is the main subject of

this paper.

Hereafter, we use the following notation conventions: A

sans serif symbol (e.g., n; l; k) always corresponds to a

quantum number while the standard one j; k; l;m; n to an

integer index; T stands for a vector with elements tj;

ðsÞm ¼ sðsþ 1Þðsþ 2Þ � � � ðsþ m� 1Þ ð1Þ
is the Pochhammer symbol;

ðsÞm;a ¼ sðsþ aÞðsþ 2aÞ � � � sþ ðm� 1Það Þ ð2Þ
is the Pochhammer a-symbol (usually referred to in the lit-

erature [33] as the Pochhammer k-symbol); bac is the floor

function, i.e., the largest integer less than or equal to a.

2 Harmonium

Harmonium may be defined as a quantum three-body

problem described by the Schrödinger equation with har-

monic interactions between particles 1� 3 and 2� 3 and

the Coulombic interaction between particles 1� 2. The

problem is separable to three 3D equations also if the 1� 2

interaction is described by an arbitrary potential Vðr12Þ
which depends on the distance between the two particles

only [28]. The first equation corresponds to the free motion

of the center of mass. The second one describes the

oscillations of particle 3 and the center of mass of particles

1 and 2 (the spherical harmonic oscillator equation). The

third equation reads

hðrÞUnlml
ðrÞ ¼ EnlUnlml

ðrÞ ð3Þ
where r ¼ r1 � r2,

hðrÞ ¼ pðrÞ2
2l
þ VðrÞ þ lx2

2
r2; ð4Þ

r ¼ r12 ¼ jr1 � r2j; l is the reduced mass of particles 1 and

2 and x is a constant which depends on the parameters

characterizing the harmonic interactions between the par-

ticles (see, e.g., [28] for details). Eq. (3) is spherically

symmetric, and its solutions can be written as

Unlml
ðrÞ ¼ /nlðrÞ

r
Ylml
ðr̂Þ; ð5Þ

where /nlðrÞ is the radial part of the wavefunction and Ylml

denote the usual spherical harmonics in 3D.

Assuming

VðrÞ ¼ f
r
þ b r þ c; ð6Þ

where f; b and c are constants, and setting b ¼ �relx2;

c ¼ r2
elx

2=2, where re is a new constant introduced to

allow for an easy physical interpretation of the potential,

we may write the radial Schrödinger equation as

� 1

2l
d2

dr2
þ lðlþ 1Þ

2lr2
þ f

r
þ lx2

2
r � reð Þ2�Enl

� 	
/nlðrÞ ¼ 0: ð7Þ

Here, we see this equation as a result of exact separation of a

3-particle Schrödinger equation. Alternatively it can be

derived for a system of two particles interacting by the Cou-

lomb force and confined in a parabolic external potential.

If re ¼ 0, then the last equation describes harmonium

[19, 20, 24]. For re 6¼ 0, it corresponds to a harmonium-like

system in which the minimum of the parabolic potential is

shifted from r ¼ 0 to r ¼ re. This system, discussed in

detail by Ghosh and Samanta [26, 27], is referred to as

shifted harmonium. If x ¼ 0 and f\0, the equation

describes two interacting particles with opposite electric

charges (e.g., positronium or hydrogen atom) [24]. For x ¼
0 and f[ 0, it describes scattering of two particles with the

same sign of the charge. Finally, if f ¼ 0, we have a

spherical harmonic oscillator. For x[ 0, independently of

the values of the remaining parameters, all energies derived

from Eq. (7) are discrete. On the other hand, if x ¼ 0 and

f[ 0, then there are no discrete energy levels.
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After the substitutions

r ¼
ffiffiffiffiffiffiffiffiffiffi
2lx

p
r; re ¼

ffiffiffiffiffiffiffiffiffiffi
2lx

p
re; ð8Þ

Eq. (7) transforms to

� d2

dr2
þ kðk� 2Þ

4r2
þ

ffiffiffiffiffiffi
2l
x

r
f
r
þ r� reð Þ2

4
� Enl

x

" #
/nlðrÞ ¼ 0:

ð9Þ
where

k ¼ 2lþ 2 ð10Þ
is a quantum number used hereafter in parallel with l ¼
k=2� 1 in order to simplify the notation [34]. Square-

integrable solutions of Eq. (9) may be expressed as

/nlðrÞ	 r k=2 e�ðr�reÞ2=4 P k
n ðrÞ: ð11Þ

The functions P k
n ðrÞ are square integrable and orthonormal

with respect to the weight function (measure)

wðrÞ ¼ rke�ðr�reÞ2=2: ð12Þ
This means thatZ1
0

P k
n ðrÞP k

n0 ðrÞwðrÞ dr ¼ C dn;n0 ; ð13Þ

where C is a positive constant. Since /nlðrÞ	 r k=2 for r!
0;P k

n ð0Þ is finite. Therefore, without any loss of generality,

we set P k
n ð0Þ ¼ 1 as the normalization condition.

The equation for P k
n directly results from Eqs. (9) and

(11) and reads

d2

dr2
þ k

r
þ re � r


 �
d

dr
þ E k

n þ
kre � 2s

2r


 �� 	
P k
n ¼ 0;

ð14Þ
where

s ¼
ffiffiffiffiffiffi
2l
x

r
f ð15Þ

and the eigenvalue E k
n ðre; sÞ is related to the energy of the

system as

Enl ¼ x E k
n þ lþ 3

2


 �
: ð16Þ

The eigenfunctions

P k
n ðrÞ ¼ P k

n re; s; E k
n ðre; sÞ; r

� � ð17Þ
are square integrable in the sense of Eq. (13). The quantum

number n ¼ 0; 1; 2; . . . labels all consecutive eigenvalues

and eigenfunctions corresponding to fixed k; re and s.

Equation (14) has been extensively studied by two

independent communities. On one hand, the existence of

simple polynomial solutions of this equation, discovered

in connection with studies on electron correlation, moti-

vated numerous works in the community of quantum

chemists [18–28]. However, this equation is known in

mathematics since more than a century as the biconfluent

Heun equation and its properties were studied from both

purely mathematical perspective [29, 30, 35–38] and in the

context of its applications in different areas of physics

[39–41]. Very recently a brief review on its physical

applications has been published by Hortaçsu [42]. An

analysis of its application to modeling the behavior of two

interacting electrons in a uniform magnetic field and a

parabolic confinement was published several years ago by

Kandemir [34].

3 The traditional approach

In the traditional approach, motivated by the studies on

electron correlation problems, one looks for the polynomial

solutions of Eq. (14). To this aim, one expresses a solution

of Eq. (14) as a power series of r [19, 20]

P k
n re; s; E; rð Þ ¼

X1
m¼0

akm re; s; Eð Þ rm; ð18Þ

and then formulates conditions under which the expansion

terminates, i.e., P k
n is a polynomial. The normalization

P k
n ð0Þ ¼ 1 implies ak0 ¼ 1.

The substitution of the expansion (18) to Eq. (14) leads

to the following three-term recurrence relation

B0a
k
0 þ C1a

k
1 ¼ 0;

Ama
k
m þ Bmþ1a

k
mþ1 þ Cmþ2a

k
mþ2 ¼ 0;

m ¼ 0; 1; 2; . . .

ð19Þ

with

Am ¼ E �m; Bm ¼ ðmþ k=2Þ re� s; Cm ¼ mðmþ k� 1Þ:
ð20Þ

The recurrence relation (19) generates a p-th order poly-

nomial if it terminates at akp, i.e., if akp 6¼ 0 but

akpþ1 ¼ akpþ2 ¼ � � � ¼ 0. This condition may by satisfied if

Ap ¼ 0 (i.e. E ¼ p) and akm;m¼ 0;1; . . .;p fulfill the set of

homogeneous equations (19) for m¼ 0;1;2; . . .;p. This

implies that [Eq. (16)]

Epl ¼ x pþ lþ 3

2


 �
ð21Þ
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and

Wpþ1ðAp;B;CÞ ¼

B0 C1 0 � � � 0 0 0

A
p
0 B1 C2 � � � 0 0 0

0 A
p
1 B2 � � � 0 0 0

..

. ..
. . .

. . .
. ..

. ..
.

..

. ..
. . .

. . .
. ..

. ..
.

0 0 0 � � � A
p
p�2 Bp�1 Cp

0 0 0 � � � 0 A
p
p�1 Bp





¼ 0;

ð22Þ
where A

p ¼ fAp
0;A

p
1; . . .;A

p
p�1g;B ¼ fB0;B1; . . .;Bpg; C ¼

fC1;C2; . . .;Cpg;Ap
m ¼ p� m.

The determinant depends on s; re and k. Since k is fixed

by the selection of a specific angular momentum, Eq. (22)

imposes a relation s
p
j ¼ up

j ðreÞ; j ¼ 1; 2; . . .; pþ 1, between

s and re. Thus, for a given degree p of the polynomial and

for given re, we have a discrete set of pþ 1 values of s for

which the polynomial solutions exist. The wavefunctions

derived from this procedure are probably the only ones

known in the literature in which the r12 dependence

resulting from the Coulomb interaction between electrons

may be expressed exactly in a closed form [43].

Let us note that for given fs; re; kg, there exists a

complete orthonormal set of solutions of Eq. (14). If there

exists p for which the parameters fulfill Eq. (22), then for

one of these solutions E ¼ p and this solution is a poly-

nomial of degree p.

4 Biconfluent Heun equation

In the mathematical literature, the BHE in its canonical

form is usually expressed as [30, 35, 36]

x y00 þ 1þ a� b x� 2x2
� �

y0

þ c� a� 2ð Þ x� 1

2
dþ bð1þ aÞ½ 



 �
y ¼ 0: ð23Þ

It is a homogeneous, linear, second-order, differential

equation defined in the complex plane. In the two-dimen-

sional space of its particular solutions, one can choose a

solution which is finite at x ¼ 0. Then the second linearly

independent solution behaves at x ¼ 0 as x�a. The solution

finite at x ¼ 0 is usually denoted Nða; b; c; d; xÞ and refer-

red to as the biconfluent Heun function. It is usually

expressed as [30]

Nða; b; c; d; xÞ ¼
X1
m¼0

Amða; b; c; dÞ
ð1þ aÞm

xm

m!
; ð24Þ

where

A0 ¼ 1;

A1 ¼ 1

2
dþ bð1þ aÞð Þ;

Amþ2 ¼ ðmþ 1Þbþ 1

2
dþ bð1þ aÞ½ 



 �
Amþ1

� ðmþ 1Þðmþ 1þ aÞðc� 2� a� 2mÞAm:

ð25Þ

The substitutions

x ¼ r=
ffiffiffi
2
p
2 h0;1i;

a ¼ k� 1[ 0;

b ¼ �
ffiffiffi
2
p

re;

c ¼ 2 E þ kþ 1;

d ¼ 2
ffiffiffi
2
p

s;

ð26Þ

with all parameters real and s� 0; re� 0; E � 0, restrict the

domain of the equation to the real semiaxis and transform

Eq. (23) to Eq. (14). In the real semiaxis, we can set

Nða; b; c; d; xÞ ¼ P k; re; s; E; rð Þ ð27Þ
where P k; re; s; E; rð Þ is a formal solutions of Eq. (14)

which may be expressed as in Eqs. (18) and (24). By

construction, the normalization P k; re; s; E; 0ð Þ ¼ 1 is

retained. However, E is an independent parameter, and no

boundary conditions have been imposed for r!1. Using

the mapping between fa; b; c; dg and fk; re; s; Eg defined

by Eqs. (26), one can easily show the equivalence of the

recurrence relations (25) and (19). In particular, comparing

Eqs. (19), (24) and (26), we get

akm re; s; Eð Þ ¼ Am k� 1;� ffiffiffi
2
p

re; 2 E þ kþ 1; 2
ffiffiffi
2
p

s
� �

2m=2 m! ðkÞm
:

ð28Þ
The asymptotic behavior of Nða; b; c; d; xÞ for x!1 is

given by [35, 36]

Nða; b; c; d; xÞ	 Kða; b; c; dÞ x�ðcþ2þaÞ=2eb xþx
2

; ð29Þ
where Kða; b; c; dÞ is a constant. Using (26) and (27), we

can rewrite Eq. (29) in the limit r!1 as

P k; re; s; E; rð Þ	K k; re; s; Eð Þr�ðEþkþ1Þeðr�reÞ2=2: ð30Þ
By an inspection of Eqs. (12) and (13), we can see that

P k; re; s; E; rð Þ is not square integrable, unless

K k; re; s; Eð Þ ¼ 0: ð31Þ
The last equation plays the role of the quantization con-

dition which determines the eigenvalues. If E ¼ E k
n ðre; sÞ is

a root of Eq. (31), then

Enl ¼ x E k
n ðre; sÞ þ lþ 3

2


 �
ð32Þ
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and

P k; re; s; E k
n ðre; sÞ; r

� � ¼ P k
n ðrÞ; ð33Þ

are the square-integrable solutions of Eq. (14).

The structure of expansion (18) for two electrons in a

uniform magnetic field was studied by Kandemir [34]. In

particular, he reduced the recurrence relation to a closed-

form expression. Here, we present a more general analysis.

In this derivation, a graphical approach, based on the ideas

originally developed by Isaiah Shavitt in his graphical

unitary group approach (GUGA) [44, 45], proved to be

very useful.

4.1 Expansion coefficients

The recurrence relation (19) may be rewritten as

akm ¼ pm�1 a
k
m�1 þ tm�2 a

k
m�2; ð34Þ

where

pm ¼ � Bm

Cmþ1

; tm ¼ � Am

Cmþ2

: ð35Þ

Equation (34) may be represented by a diagram which

facilitates an easy derivation of a closed-form formula for

the coefficients of the expansion (18). It also helps to better

understand the structure of this expansion and shows

interrelations between specific coefficients. The diagram,

corresponding to m ¼ 6, is presented in Fig. 1. In order to

express a specific coefficient, say akm, in terms of pj; j ¼
0; 1; . . .;m� 1 and tj; j ¼ 0; 1; . . .;m� 2, one has to start

from the uppermost node corresponding to ak0 and move to

the lower levels of the graph along arcs taking all paths

connecting to the node akm, visiting each level only once.

The contribution from a given path is equal to the product

of quantities assigned to the arcs. In the right panel of

Fig. 1, these contributions are framed by the square boxes.

The value of akm is equal to the sum of contributions from

all paths. The left panel shows the directions according to

which we move along the diagram and, in the nodes, gives

the numbers of paths linking this specific node with the one

corresponding to ak0 (i.e., the number of terms in the

expression for a given coefficient akm). The structure of the

graph is self-explanatory, and its extension to larger values

of m is obvious.1

Using the graph, one can easily write explicit expression

for the coefficients akm, with ak0 ¼ 1 set by the normalization

condition. Then, we have

ak1 ¼ p0;

ak2 ¼ p1p0 þ t0;

ak3 ¼ p2p1p0 þ p2t0 þ p0t1;

ak4 ¼ p3p2p1p0 þ p3p2t0 þ p3p0t1 þ p1p0t2 þ t2t0; etc:

ð36Þ
By introducing

Qm ¼
Ym�1

j¼0

pj; Rj ¼ tj

pjpjþ1

; j ¼ 0; 1; 2; . . .;m� 2: ;

ð37Þ
we can rewrite Eqs. (36) as

akm re; s; Eð Þ ¼ Qm

Xbm=2c

n¼0

Smn ; ð38Þ

where

Sm0 ¼ 1;

Smn ¼
Xm�2n

j1¼0

Rj1

Xm�2n

j2¼j1
Rj2þ2 � � �

Xm�2n

jn¼jn�1

Rjnþ2ðn�1Þ; n�bm=2c

ð39Þ

a
0

a
1

p
0

p
1

a
2

a
3

a
4

a
5

a
6

p
3

p
4

p
5

t0

t2

t
4

t1

t3

p
2

1

1

2

3

5

13

8

Fig. 1 Graphical representation of three-step recurrence relations

exemplified by Eq. (19). In the left panel, the ways of constructing

paths in the graph and the number of terms in each akm;m ¼ 0; 1; . . .; 6
are shown. In the right panel, the arc values are given. See text for

details

1 One can easily see that the recurrence defined by Eq. (34) is

structurally identical to the recurrence defining the Fibonacci

numbers. Indeed, it is enough to set pm ¼ tm ¼ 1 for all m and

initialize this sequence as ak0 ¼ 1. The sequence of the Fibonacci

numbers may be produced by the diagram shown in the left panel of

Fig. 1 and the number of summands needed to compute the

coefficient akm is equal to the Fibonacci number Fm.
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The last equations may be expressed in a compact form

as

Sm0 ¼ 1;

Smn ¼
Yn
l¼1

Xm�2n

jl¼jl�1

Rjlþ2ðl�1Þ; j0 ¼ 0; n�bm=2c: ð40Þ

Let us note that the product represents n nested sums and is

non-commutative.

By the substitution of the explicit expressions (35), (37)

and (20), we get

Qm ¼ ð�1Þm
Ym�1

j¼0

Bj

Cjþ1

¼ ðkre=2� sÞm;re

m! ðkÞm
: ð41Þ

Similarly,

Rj ¼ �Aj Cjþ1

Bj Bjþ1

¼ � ðE � jÞðjþ 1Þðjþ kÞ
s� ðjþ k=2Þ reð Þ s� ðjþ k=2þ 1Þ reð Þ

ð42Þ
Note that Eqs. (34)–(40) are valid for an arbitrary three-

term recurrence relation, i.e., for all forms of the Heun

equation.

Three term recurrences are fulfilled by many quantities

related to BHE. In particular, Sm fulfill the following

recurrence:

Sm0 ¼ 1; Smn ¼ Sm�2
n�1 Rm�2 þ Sm�1

n : ð43Þ
Iterating this relation, we arrive at

Smn ¼
Xm�2

j¼bðn�1Þ=2c
S
j
n�1Rj: ð44Þ

The iteration terminates at j ¼ bðn� 1Þ=2c because

S2n�1
n ¼ 0. A three-term recurrence applies also to the

determinant Wp. If we set W0 ¼ 1 then, using the Laplace

formula, we get:

W1 ¼ B0W0;

W2 ¼ B1W1 � A0C1W0;

Wm ¼ Bm�1Wm�1 � Am�2Cm�1Wm�2:

ð45Þ

The last equation becomes identical with Eq. (34) if we

substitute

akm re; s; Eð Þ ¼ ð�1Þm WmðA;B;CÞ
C1C2 � � �Cm

¼ ð�1Þm WmðA;B;CÞ
m!ðkÞm

;

ð46Þ
where A ¼ fA0;A1; . . .;Am�2g. As one can easily see,

ð�1Þm WmðA;B;CÞ
C1C2 � � �Cm

¼ Vmð�T;PÞ; ð47Þ

where

Vmþ1ð�T;PÞ ¼

p0 1 0 � � � 0 0 0

�t0 p1 1 � � � 0 0 0

0 � t1 p2 � � � 0 0 0

..

. ..
. . .

. . .
. ..

. ..
.

..

. ..
. . .

. . .
. ..

. ..
.

0 0 0 � � � � tm�2 pm�1 1

0 0 0 � � � 0 � tm�1 pm




¼ 0;

ð48Þ
and T ¼ ft0; t1; . . .; tm�1g;P ¼ fp0; p1; . . .; pmg. Then, the

expansion coefficients are given by

akm re; s; Eð Þ ¼ Vmð�T;PÞ; m ¼ 0; 1; 2; . . .; ð49Þ
with V0 ¼ 1, and the recurrence relations (34) may be

rewritten as2

Vm ¼ pm�1Vm�1 þ tm�2Vm�2: ð50Þ
Let us define

Zl ¼
Xl
m¼0

Vmð�T;PÞ rm: ð51Þ

Since

Vlþ1 r
lþ1 ¼ Zlþ1 � Zl; ð52Þ

using Eq. (50), we get

Zlþ1 ¼ Zl 1þ pl rð Þ � Zl�1 pl � tl�1 rð Þr� Zl�2 tl�1 r
2;

ð53Þ
where Z0 ¼ 1 and Zq ¼ 0 if q\0.

4.2 Harmonium: the special case of re ¼ 0

In the case of harmonium re ¼ 0, i.e., the minimum of the

parabolic potential is located at r ¼ 0. In this case, the s-

dependence of the equations is much simpler since Bm ¼
�s for all values of m. As a consequence,

Rj ¼ �
qj
s2
; j ¼ 0; 1; 2; . . .;m� 2; ð54Þ

and

Smn ¼ ð�1Þn rmn
s2n

; n�bm=2c; ð55Þ

where

qj ¼ AjCjþ1 ¼ ðE � jÞðjþ 1Þðjþ kÞ; j¼ 0;1;2; . . .;m� 2;

ð56Þ
and

2 A large number of relations fulfilled by determinants, including the

ones used in this work, may be found in Refs. [46, 47].
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rm0 ¼ 1;

rmn ¼
Yn
l¼1

Xm�2n

jl¼jl�1

qjlþ2ðl�1Þ; j0 ¼ 0; n�bm=2c: ð57Þ

Now, Eq. (38) may be rewritten as

akm 0; s; Eð Þ ¼ sm

m!ðkÞm
Xbm=2c

n¼0

ð�1Þn rmn
s2n

ð58Þ

with the dependence on s explicitly shown. In the special

case of s ¼ 0, corresponding to the spherical harmonic

oscillator, the only nonzero contribution to Eq. (58) is

given by the term with n ¼ m=2. Thus, non-vanishing

coefficients correspond to m ¼ 2j; j ¼ 0; 1; 2; . . . and

ak2j 0; 0; Eð Þ ¼ r2j
j

ð2jÞ!ðkÞð2jÞ
; ð59Þ

where, according to Eqs. (56) and (57),

r2j
j ¼

Yj�1

n¼0

q2n ¼
Yj�1

n¼0

ðE � 2nÞð2nþ 1Þð2nþ kÞ: ð60Þ

Combining Eqs. (59) and (60), we get

ak2j 0; 0; Eð Þ ¼ ð�1Þjð�EÞj
j! 2j ðkþ 1Þ=2ð Þj

: ð61Þ

Equation (55) and the recurrence relations (43) and (44)

imply similar recurrences for rmn :

rm0 ¼ 1; rmn ¼ qm�2 r
m�2
n�1 þ rm�1

n ; ð62Þ
and

rmn ¼
Xm�2

j¼bðn�1Þ=2c
rjn�1 qj: ð63Þ

Equation (46) with re ¼ 0 is equivalent to Eq. (58) and,

depending on the circumstances using one or another may be

more convenient. In particular, comparing Eqs. (46) and (58), we

get the expansion of Wm, with re ¼ 0, in terms of powers of s:

WmðA;B;CÞ ¼
Xbm=2c

n¼0

ð�1Þnþm rmn sm�2n: ð64Þ

The recurrence relation (62) substituted to the last equation

results in Eqs. (45).

5 Odds and ends

5.1 Expansion at þ1

One can also expand solutions of BHE at þ1 and obtain

the so-called recessive Thomé solutions [29]. The recessive

Thomé solution (Eq. (3.1.14) of [29]) is given by

P½1
ðrÞ ¼ rE
X1
m¼0

bmr
�m: ð65Þ

with b0 ¼ 1 and

~B0b0 þ ~C1b1 ¼ 0;

~Ambm þ ~Bmþ1bmþ1 þ ~Cmþ2bmþ2 ¼ 0;

m ¼ 0; 1; 2; . . .

ð66Þ

where

~Am ¼ ðE �mÞðE �mþ k� 1Þ; ~Bm ¼�sþ reðE þ k=2�mÞ;
 ~Cm ¼m: ð67Þ

An analysis similar to the one leading to Eq. (46) results in

the following closed-form expression for the expansion

coefficients:

bm ¼ ð�1Þm
m!

Wmð ~A; ~B; ~CÞ: ð68Þ

5.2 Some special cases

The diagram representing three-term recurrence relations

may also illustrate the termination of the pertinent expan-

sions. For example, let akn 6¼ 0 for n\3, but ak3 ¼ t1a
k
1þ

p2a
k
2 ¼ 0. If we wish to construct a solution for which akm ¼

0 if m� 3 then also ak4 should vanish. But this is possible

only if t2 ¼ 0. If two consecutive coefficients (in this

example ak3 and ak4) vanish, all remaining ones with indices

larger than 4 also vanish. The condition ak3 ¼ 0 is referred

to as the closing condition and is equivalent to Eq. (22). In

general, if the expansion terminates at akp, i.e., akp 6¼ 0 but

akpþ1 ¼ akpþ2 ¼ � � � ¼ 0, then

tp ¼ 0 ð69Þ
and

akpþ1 ¼
ð�1Þpþ1

ðpþ 1Þ! ðkÞpþ1

Wpþ1ðA;B;CÞ ¼ 0 ð70Þ

The first of these conditions implies

Ap ¼ E � p ¼ 0; ð71Þ
which is equivalent to Eq. (21). The second condition reduces

to Wpþ1 ¼ 0. The following examples, corresponding to

cases known from the literature, illustrate the procedure. In

order to simplify the formulas, we set re ¼ 0 and l ¼ 1=2.

• p ¼ 0: In this case, the closing condition reduces

to B0 ¼ �s ¼ 0. Then, the solution corresponds to

p ¼ 0 states of the spherical harmonic oscillator.

Pk
0ðrÞ ¼ 1;E ¼ x ðkþ 1Þ=2, and x is an arbitrary

positive number.
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• p ¼ 1: In this case Pk
1ðrÞ ¼ 1þ B0r ¼ 1� sr. The

closing condition

B0B1 � A0C1 ¼ s2 � k ¼ 0 ð72Þ
leads to

x ¼ f2

k
: ð73Þ

and, consequently,

E ¼ f2 kþ 3

2k
: ð74Þ

Parameter f is arbitrary but x is defined by Eq. (73). In

the case of electron-electron interaction f ¼ 1 and,

thus, x ¼ 1=k and E ¼ ðkþ 3Þ=ð2kÞ.

5.3 Harmonic oscillator

The BHE transforms to the spherical harmonic oscillator

equation if s ¼ 0 and re ¼ 0. In this case pm ¼ 0 and the

three-term recurrence (34) simplifies to akm ¼ tm�2a
k
m�2. An

inspection of Fig. 1 shows that the only nonzero coeffi-

cients are ak0 ¼ 1; ak2 ¼ t0; a
k
4 ¼ t0t2; . . .; a

k
2n ¼ t0t2. . .t2n�2.

The condition for the termination of the recurrence is the

quantization condition and if ak2n is the last term of the

expansion then n ¼ n, where n is the principal quantum

number, and Ekn ¼ 2n, i.e., Enl ¼ x 2nþ ðkþ 1Þ=2ð Þ. The

explicit form of the expansion coefficients may be easily

obtained using Eqs. (35). We get

ak2j ¼
2�j ð�nÞj

j! ðkþ 1Þ=2ð Þj
: ð75Þ

One can see that this expression may also be obtained from

Eq. (61) upon the substitution E ¼ 2n. Thus,

Pk
nðrÞ ¼ 1F1 �n; kþ 1

2
;
r2

2


 �
; ð76Þ

as it should be for the spherical harmonic oscillator (see,

e.g., [48]).

6 Several remarks on the non-polynomial solutions

As it was already mentioned, the family of the Heun

equations, including the BHE, was studied by the mathe-

maticians since more than a century [29, 30, 35–38]. A

very rich bibliography of the texts published on the Heun

functions throughout the years has been collected in the

framework of The Heun Project: Heun functions, their

generalizations and applications created at the University

of Sofia [49]. In this section, some general results derived

in the mathematical literature are briefly discussed and

transformed to a form suitable for quantum chemical

implementations.

6.1 Some general properties BHE

The constant Kða; b; c; dÞ in Eq. (29) which determines the

asymptotic behavior of Nða; b; c; d; xÞ for x!1 is given

by [35, 36]

Kða; b; c; dÞ ¼ Cða; cÞJk aþ c
2

; b;
3a� c

2
; dþ b

c� a
2


 �
;

ð77Þ
where

Cða; cÞ ¼ Cð1þ aÞ
C a�c

2

� �
C aþc

2
þ 1

� � ; ð78Þ

Jkða; b; c; dÞ ¼
Z1
0

xk�1e�bx�x
2

Nða; b; c; d; xÞdx ð79Þ

and k ¼ ðcþ aÞ=2þ 1. The integral is absolutely conver-

gent in a rather narrow range of the parameters: 0\k\1þ
ðaþ cÞ=2 [35]. However, for our aims, the absolute con-

vergence is not necessary. Besides, in some cases, the

singularities which appear when the integral is divergent

determine the energy eigenvalues.

Using Eqs. (26), (27) and (77), we can express

K k; re; s; Eð Þ from Eq. (30) as

K k; re; s; Eð Þ ¼ ckðkÞ
X1
m¼0

akmðr0e; s0; E0ÞGre
ðkþ mÞ; ð80Þ

where

ckðkÞ ¼ CðkÞ 2k=2

Cðk� kÞCðkÞ e
�r2

e=2; ð81Þ

k ¼ k þ E þ 1;

r0e ¼ re;

s0 ¼ s� re ðE þ k=2þ 1Þ;
E0 ¼ �E � 2;

ð82Þ

and, according to Eqs. (3.462) and (3.478) of Ref. [50],

Gre
ðmÞ ¼

Z1
0

rm�1e�ðr�reÞ2=2dr

¼ CðmÞD�mð�reÞe�r2
e=4; if re 6¼ 0;

2m=2�1 Cðm=2Þ; if re ¼ 0:

(
; ð83Þ

where D�mð�reÞ is the parabolic cylinder function.

The coefficients akm in Eq. (80) can be expressed in a

closed form using Eq. (49). By the substitution of the

parameters defined in Eqs. (82), we get
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akmðr0e; s0; E0Þ ¼ Vm �T0;P0ð Þ; ð84Þ
where T

0 ¼ ft00; t01; . . .; t0m�1g;P0 ¼ fp00; p01; . . .; p0mg and

t0n ¼
E þ nþ 2

ðE þ kþ nþ 2Þðnþ 2Þ ; n¼ 0;1; . . .;m� 1;

p0n ¼
s� reðE þ k=2þ nþ 1Þ
ðE þ kþ nþ 1Þðnþ 1Þ ; n¼ 0;1; . . .;m:

ð85Þ

6.2 Harmonium

The formulas simplify if we set re ¼ 0, i.e., if we consider

harmonium. Then

G0ðkþ mÞ ¼ 2ðkþmÞ=2�1C
kþ m

2


 �
: ð86Þ

Thus,

G0ðkþmÞ ¼ 2ðkþmÞ=2�1

Cðk
2
Þ ðk

2
Þl; if m¼ 2l; l¼ 0;1;2; . . .;

Cðkþ 1

2
Þ ðkþ 1

2
Þl; if m¼ 2lþ 1:

8><>: ð87Þ

Let us denote d k
mðkÞ ¼ ckðkÞG0ðkþmÞ. Then, using the

duplication formula for the gamma function

CðkÞ ¼ 2k�1ffiffiffi
p
p C

k
2


 �
C

kþ 1

2


 �
; ð88Þ

we get

d k
mðkÞ ¼

ffiffiffi
p
p

CðkÞ
Cðk� kÞ


2jC

kþ 1

2


 ��1 k
2


 �
j

; if m¼ 2j; j¼ 0;1;2; . . .;

2jþ1=2C
k
2


 ��1 kþ 1

2


 �
j

; if m¼ 2jþ 1;

8>>>><>>>>:
ð89Þ

According to Eq. (58),

akm 0; s;�E � 2ð Þ ¼
Xbm=2c

n¼0

ð�1Þn ~rmn
sm�2n

m!ðkÞm
; ð90Þ

where ~rmn is determined in terms of

~qj ¼ �ðE þ 2þ jÞðjþ 1Þðjþ kÞ ð91Þ
rather than in terms of qj as defined in Eq. (56). Alternatively

we can express am in terms of determinantsVm using Eq. (84).

Integrals Jkða; b; c; dÞ fulfill the following recurrence

relation [35]:

ðcþ a� 2� 2kÞJkþ2 � 1

2
d þ bð2kþ 1� aÞð ÞJkþ1

þ kðk� aÞJk ¼ 0: ð92Þ

In some analyses, this recurrence relation may be very

useful. In terms of the parameters describing harmonium, it

reads

2ðE þ 3ÞJEþkþ3 þ
ffiffiffi
2
p

s� reðE þ 2Þð ÞJEþkþ2 � ðE þ kþ 1Þ
 JEþkþ1 ¼ 0 ð93Þ

As an example of interesting consequences of this relation

let us note that for k ¼ 2 and for arbitrary s and re, the

values of E for which condition JEþ4 ¼ 0 is fulfilled may

also be derived from JEþ3 ¼ 2JEþ5.

6.3 Spherical harmonic oscillator: the special case

of re ¼ 0 and s ¼ 0

If re ¼ 0 and s ¼ 0 then, according to Eqs. (59) and (90)

for m ¼ 2j; j ¼ 0; 1; 2; . . .

ak2j 0; 0;�E � 2ð Þ ¼ ð�1Þj ~r2j
j

ð2jÞ!ðkÞð2jÞ
ð94Þ

and a2jþ1 ¼ 0. According to Eqs. (60) and (91)

~r2j
j ¼ ð�1Þj

Yj�1

n¼0

ðE þ 2þ 2nÞð2nþ 1Þð2nþ kÞ: ð95Þ

Combining Eqs. (89), (94), (95) and using several times the

duplication formula (88), we get

Kðk; 0; 0; EÞÞ ¼
ffiffiffi
p
p
2k

Cð2c� 2aÞ 2F1ða; b; c; 1Þ
Cð1� 2aÞCðcÞ ; ð96Þ

where a ¼ E=2þ 1; b ¼ k=2; c ¼ ðkþ 1Þ=2. The hyper-

geometric function may be expressed by the gamma

functions using equation ([50], 9.122)

2F1ða; b; c; 1Þ ¼ CðcÞCðc� a� bÞ
Cðc� aÞCðc� bÞ : ð97Þ

After the substitution to Eq. (96) and some simple trans-

formations, we get a surprisingly simple expression

Kðk; 0; 0; EÞ ¼ C
kþ 1

2


 �
C �E

2


 ��1

: ð98Þ

The same result may be obtained by the straightforward

evaluation of Jk according to Eq. (79) with the Heun

function given by Eq. (76). Roots of equation

Kðk; 0; 0; EÞ ¼ 0 are equal to E ¼ 2n; n ¼ 0; 1; 2; . . .; and

the substitution of these roots to the appropriate expansion

gives the radial wavefunctions (76).

7 Final remarks

The quest of square-integrable analytical solutions of BHE,

apart of the mathematical interest, has been motivated by
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numerous applications in theory of atomic and molecular

structure. The applications range from the analysis of the

behavior of the wavefunction in the vicinity of the Cou-

lomb singularity [18, 20, 43] and the construction of the

exact density functionals ([51] and references therein) to

the studies on the dependence of the charge density dis-

tribution in a molecule on the masses of the constituent

particles [52, 53]. Until now, these applications are

restricted to the well-known polynomial solutions. An

extension to the non-polynomial ones is an interesting and

important challenge. Possibly, some further studies on the

properties of the solutions of BHE may result in tractable

algorithms for deriving the eigenvalues and deriving the

analytic forms of square-integrable non-polynomial solu-

tions. Maybe, by expressing the formal solution of BHE in

terms of the Sturm functions or the hypergeometric func-

tions rather than in powers of r; one could easily reduce the

set of solutions to the space of square-integrable functions.

Certainly, by using the Heun equation, we can see the

problem of harmonium from a wider perspective and get

new, powerful technical tools to study its properties.
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Abstract Electronic resonance state energies and photo-

ionization cross sections of atoms and molecules are cal-

culated with the complex basis function method by using

mixture of appropriate complex basis functions represent-

ing one-electron continuum orbitals and the usual real basis

functions for the remaining bound state orbitals. The choice

of complex basis functions has long been a central diffi-

culty in such calculations. To address this challenge, we

constructed complex Slater-type orbital represented by N-

term Gaussian-type orbitals (cSTO-NG) basis sets using the

method of least squares. Three expansion schemes are

tested: (1) expansion in complex Gaussian-type orbitals,

(2) expansion in real Gaussian-type orbitals, and (3)

expansion in even-tempered real Gaussian-type orbitals.

By extending the Shavitt–Karplus integral transform

expression to cSTO functions, we have established a

mathematical foundation for these expansions. To dem-

onstrate the efficacy of this approach, we have applied

these basis sets to the calculation of the lowest Feshbach

resonance of H2 and the photoionization cross section of

the He atom including autoionization features due to dou-

bly excited states. These calculations produce acceptably

accurate results compared with past calculations and

experimental data in all cases examined here.

Keywords Complex basis function method � Slater-type

orbital � Gaussian-type orbital � Least squares fitting �
Feshbach resonance � Autoionization

1 Introduction

With the advent of new experimental techniques for

spectroscopic measurements in the extreme ultraviolet and

X-ray [1] and new techniques for observing the dissociative

attachment of electrons to molecules [2, 3], the description

of metastable electronic states of anions and autoionizing

states of neutral molecules embedded in the electronic

continuum is becoming an increasingly important aspect of

the theory of excited molecular dynamics.

In contrast to the highly developed array of methods for

bound state electronic structure calculations in quantum

chemistry, generally applicable techniques for treating

metastable or pure continuum states of molecules are still

in a comparatively early stage of development. Most of the

available theoretical methods for describing such states are

adaptations of theoretical methods applicable only to small

molecules. The ones which promise to allow the extension

of the techniques of bound state quantum chemistry to

these problems are based on the so-called L2 basis expan-

sion methods. Among them, the complex scaling method

[4–7] and the complex basis function (CBF) method [8–12]

enable us to compute directly resonance energies (position

and widths) and also the analytic continued frequency-
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dependent polarizability for the calculation of photoioni-

zation cross sections. The Stieltjes moment method [13,

14] also employs the frequency-dependent polarizability

with L2 basis functions to extract bound-free transition

moments. The stabilization method [15–17] is the simplest

L2 basis function method to compute resonance positions

and sometimes even widths.

There is another class of theoretical methods for

dealing with continuum phenomena based on scattering

theory such as R-matrix theory [18], K-matrix theory [19,

20], the Schwinger variational method [21], and the

complex Kohn variational method [22]. These techniques

solve the Schrödinger equation with continuum boundary

conditions, and although they are more general, they are

limited to small molecules, particularly if they also

include ab initio treatments of electron correlation. One of

the advantages of the L2 basis expansion methods is that

they allow the adaptation of the existing techniques of

bound state theory to continuum problems and can

therefore potentially treat larger systems of chemical

interest. However, the choice of the appropriate basis

functions has been a persistent difficulty in these L2

methods. For example, Ruberti et al. [14] have discussed

a difficulty in using Gaussian-type orbitals (GTOs) with

the Stieltjes moment theory for describing photoionization

cross sections above certain energy.

Studies of basis functions for bound electronic states

have a long history, and many kinds of basis sets are now

available with various characteristics. However, there have

been only a limited number of studies of basis sets for

continuum states. In the R-matrix method [23], Nestmann

et al. [24] constructed a GTO set by fitting GTOs for a

neutral target and later Faure et al. [25] generalized the

fitting method to charged and neutral targets. Fiori et al.

[26] fitted GTOs to a distortion factor instead of wave

function itself. Kaufmann et al. [27] optimized GTOs to

represent Rydberg states and continuum states by maxi-

mizing overlap with target wave functions. The target of

the CBF method is not only just to represent continuum

wave functions, but also to analytically continue the

Hamiltonian and allow the calculation of complex-valued

energies corresponding to metastable states, or to calculate

the continuum contribution to the frequency-dependent

polarizability. Real-valued GTOs cannot be used directly

for these purposes. In the CBF method, our previous cal-

culations have used large numbers of basis functions, but

without choosing their parameters carefully to describe

continuum states. The difficulty of basis set choice has

prevented us from applying the method to a wealth of

interesting many electron problems. One of the motivations

of this study is to change the selection of complex orbital

exponents ‘‘from art to science’’ by using more physical

complex Slater-type orbitals (cSTOs).

One of the early studies of basis functions for bound

electronic structure was construction of the STO-NG basis

functions [28, 29], which are the Slater-type orbitals rep-

resented by the N-term Gaussian-type orbitals. In the

present paper, we construct basis functions for the CBF

method by extending such a basis set construction to a

complex version. The essential idea is to represent Slater-

type orbitals (STOs) with complex orbital exponents as a

linear combination of N-term complex GTOs (cGTOs),

called complex Slater-type orbital represented by N-term

Gaussian-type orbitals (cSTO-NG).

Among several methods previously developed to con-

struct STO-NG basis sets, we choose the method of least

squares for accuracy and convenience. There are two pos-

sibilities for constructing the cSTO-NG basis set: expansion

in terms of GTOs with complex orbital exponents or with

real orbital exponents. We call these two expansions cSTO-

NcG and cSTO-NrG, respectively. The latter basis function

is complex valued only because the contraction coefficients

are complex, and a favorable feature is that the time-con-

suming incomplete error function evaluations can be avoi-

ded. However, during the optimization of the real orbital

exponents for cSTO-NrG, we have encountered a linear

dependence problem. To circumvent this problem, we fur-

ther optimized the real orbital exponents with a constraint

that they make a geometric sequence, that is, their initial

value and ratio are optimized. Such basis set is called cSTO-

NreG, which stands for the expansion of N-term real even-

tempered GTOs [30]. We demonstrate the efficiency and

effectiveness of these cSTO-NG sets by calculating the

well-studied Feshbach resonance energy of (1ru)
2 H2 and

the photoionization cross section of He atom in energy

interval containing the doubly excited autoionizing states

below the first excited states of the cation.

In Sect. 2, we explain cSTO-NG and their optimization

procedure. In Sects. 3 and 4, applications to two-electron sys-

tems are described. Section 5 summarizes some conclusions.

2 Construction of cSTO-NcG and cSTO-NrG basis sets

2.1 cSTO and cGTO

The general definitions of STO and GTO functions are as

follows,

ws að Þ ¼ Ns að Þrn�1e�arYlm r̂ð Þ; ð1Þ
wg fð Þ ¼ Ng fð Þrn�1e�fr

2

Ylm r̂ð Þ; ð2Þ
where a and f are the respective orbital exponents. If these

are complex valued, ws(a) and wg(f) are denoted as cSTO

and cGTO, respectively. Since we intend to use these basis

functions within the framework of the CBF methods, the
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normalization constants Ns(a) and Ng(f) are determined by

the conditions,

ðwsðaÞ;wsðaÞÞ ¼ 1; ð3Þ
ðwgðfÞ;wgðfÞÞ ¼ 1; ð4Þ
where the round brackets stand for the so-called c-product

[7, 31] in which the integration over r is to be carried out

without complex conjugation,

ðw;/Þ ¼
Z

wðrÞ/ðrÞdr: ð5Þ

Two well-recognized advantages of STOs over GTOs in

the bound state calculations are for describing the cusp

behavior at the nucleus and the damping behavior in the

asymptotic region. We emphasize another advantage of

using cSTOs over cGTOs in representing continuum one-

electron orbitals with the CBF methods. These two types of

functions exhibit quite different oscillatory behaviors, as is

easily understood by separating their radial parts into the

real and imaginary parts as follows,

rn�1e�arre�iair ¼ rn�1r�arrfcosðairÞ � i sinðairÞg; ð6Þ
rn�1e�frr

2

e�ifir
2 ¼ rn�1r�frr

2fcosðfir2Þ � i sinðfir2Þg ð7Þ
where a = ar ? iai, and f = fr ? ifi. From Eq. (6), it is

clear that the radial part of cSTO shows an oscillation with

the wave number equals to �ai ¼ �Ima with the envelope

function of real STO, while that of cGTO in Eq. (7)

exhibits an oscillation of the wave number of

�fir ¼ �Imfr, which is not constant, but increases in

proportion to r. As we will explain in more detail later, we

intend to represent a continuum orbital, that behaves

asymptotically as eikr, where k is a complex wave number

for a resonance state calculation, and a real wave number

for a photoionization problem. Note that the target charge

is not explicitly considered in this simple argument. From

the preceding discussion, it is obvious that this behavior

can be expressed better with a cSTO, which has a func-

tional behavior of e�iair.
Considering the above three advantages of cSTO, a

cSTO-NG basis set is expected to show good performance

both in accuracy and computational cost. Moreover, their

orbital exponents a’s can be selected based on the physical

situation to be handled. As explained before, we can con-

sider various types of expansion in GTOs. The first two are

denoted as cSTO-NcG and cSTO-NrG. It is easily under-

standable that cSTO-NcG is better than cSTO-NrG for

accuracy, but cSTO-NrG is better for the computational

cost.

We can show the formal possibility of constructing

cSTO-NcG and cSTO-NrG basis sets by generalizing the

Gaussian-transform method for a 1s-STO of Kikuchi [32]

and Shavitt and Karplus [33, 34]

e�ar ¼ a
2
ffiffiffi
p
p
Z1
0

s�3=2e�a
2=4se�sr

2

ds: ð8Þ

Although they formulated and employed the above integral

transformation only for the real orbital exponents a and s in Eq.

(8), it is readily shown thata can take a complex value. First, we

note that this integral for the real integral variable s converges if

and only if |arg a|\p/4. This means that cSTO can be

expressed as an integral transformation of GTO as long as the

above condition is satisfied. Next, we change the integration

path for s from the real axis to a path in the complex plane using

Cauchy’s integral theorem. To see the condition for the

appropriate integral path, we consider the behavior of the

integrand at the asymptotic region and the origin. The respec-

tive convergence conditions at these points are as follows,

lim
jsj!1

j arg sj\p=2; ð9Þ

lim
jsj!0
j2 arg a� arg sj\p=2: ð10Þ

By combining the above two conditions and choosing the

integration path appropriately, we have obtained the inte-

gral relationship

e�ar ¼ a
2
ffiffiffi
p
p
Z
C

s�3=2e�a
2=4se�sr

2

ds ð11Þ

for |arg a|\ p/2. The subscript C stands for the integration

path extending to infinity and satisfying both Eqs. (9) and

(10). Equation (8) describes only 1s-STO, and its gener-

alization to basis functions with higher principle quantum

numbers n was given by Wright [35]. Using the same logic

and differentiating both sides of Eq. (11) n – 1 times with

respect to -a and by mathematical induction, the following

generalized formula can be obtained,

rn�1e�ar ¼ 1

2n
ffiffiffi
p
p
Z
C

s�ðnþ1Þ=2e�a
2=4sHn

a
2
ffiffi
s
p

� 	
e�sr

2

ds;

ð12Þ
where Hn [x] is the nth Hermite polynomial. Eq. (12) shows

that general cSTOs can be expressed as an integral trans-

formation of cGTOs. By changing the integration contour

appropriately and performing the integral with a quadrature,

we have relations that allow a cSTO to be represented in a

discrete set of cSTO-NrG and cSTO-NcG. Note that, in this

paper, we do not intend to use the above integral expressions

in actual calculations, but from these relations, we have a

mathematical foundation for the construction of both cSTO-

NrG and cSTO-NcG. As is described later, cSTO-NrG will

be constructed only for cSTO with a small argument of the

complex orbital exponents, while cSTO-NcG will be opti-

mized even with a large argument close to 90�.
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2.2 Method of least squares

The purpose of the calculation is to find the best {cj} and

{fj} such that

ws að Þ �
X
j

cjw
g fj
� �

: ð13Þ

Among several possible techniques for this purpose, we use

the least squares method [28, 29], and the parameters are

determined by searching for the minimum of the square error:

I a; cj
� �

; fj
� �� �¼hws að Þ�

X
i

ciw
g fið Þjws að Þ�

X
j

cjw
g fj
� �i
ð14Þ

Here and in what follows, the angle brackets denote the

ordinary scalar product; thus, the above square error is a

real quantity and can be expressed by using vector and

matrix notation as follows,

I½a; fcjg; ffjg
 ¼ wsðaÞjwsðaÞh i � c �m� c� �m� þ c� � Sc
ð15Þ

Sij ¼ wgðfiÞjwgðfjÞ
� �

; ð16Þ
mj ¼ wsðaÞjwgðfjÞ

� �
: ð17Þ

The expansion coefficients {cj} are linear parameters and

can be determined easily by linear algebra, that is, by

setting the first derivative of I with respect to {cj
*} zero,

oI
oc�
¼ �m� þ Sc ¼ 0 ð18Þ

Then, the optimum coefficients are determined as follows,

c ¼ S�1m� ð19Þ
and the square error can be expressed as follows,

I½a; ffjg
 ¼ wsðaÞwsðaÞh i �m � ðS�Þ�1m�: ð20Þ
The orbital exponents {fj} are nonlinear parameters, and

the optimization is not trivial. In general, fj are complex

valued and their real and imaginary parts must be indi-

vidually optimized. For this purpose, the Newton–Raphson

iteration method has been used.

One may need to optimize {fj} for each complex value a,

but there exists a scaling property, which simplifies the cal-

culation. This scaling property for complex basis functions is

an extension of the well-known one between real STOs and

real GTOs [28, 29] and can be expressed as follows,

I½jajei arg a; f aj j2fjg
 ¼ I½ei arg a; ffjg
: ð21Þ
Using this relation, one can obtain the optimum {fj0} for

any a from the optimum {fj} for a0 = exp i(arg a) with the

same argument by a simple scaling relation f0j ¼ jaj2fj: In

this study, optimum{fj} for a = exp(-ih) (h = 0�, 1�, …,

88�) are determined by the least squares method. The

determined basis sets will be used in the applications along

with the scaling property.

2.3 Calculation procedure

The Newton–Raphson optimization to determine the

complex basis exponents is started at h = 0�, for which

ws(a) is just the ordinary STO, whose GTO expansion was

studied by several workers in the early days of electronic

structure theory [28, 29]. Such a real parameter optimiza-

tion is easier than the complex-valued optimization needed

in this work. Once optimum {fj} at h = 0� is determined,

the optimization for the next value at h = 1� is carried out

by using the previously determined values as the initial

guess, and this procedure is continued up to h = 88�. The

optimization using many primitive cGTO (ex. cSTO-

10cG), in particular, is difficult task and needs some care.

We have used the analytic gradient and Hessian for the

Newton–Raphson method, with the trust region method for

step size evaluation using quadruple precision. The pro-

gram for these optimizations was developed using Math-

ematica 9.0 [36].

2.4 Results

We constructed cSTO-NcG and cSTO-NrG representations

for the 1s, 2p, and 3d cSTOs. As examples, the optimized

orbital exponents are shown in Fig. 1, where we plot (a) the

absolute values and (b) the arguments for 1s-cSTO-4cG,

(c) the real exponents for 1s-cSTO-4rG, and (d) the real

exponents for 1s-cSTO-4reG. In Fig. 1c, as h increases, the

calculated results for cSTO-4rG show two orbital expo-

nents f1 and f2 approaching each other, and at h = 30�,
they have the same value, implying that the primitive

GTOs become linear dependent and the iteration was

stopped. One way to overcome the problem is to impose a

constraint that {fj} makes a geometric series and leads us

to the cSTO-NreG set. Figure 1d shows that, although the

orbital exponents are obtained without linear dependence

from h = 0�–60�, at h = 65�, all the orbital exponents took

almost the same values and the iteration was stopped.

Although these linear dependence problems can be over-

come by using, for example, GTOs with different principle

quantum numbers such as 1s-, 3s-, and 5s-GTOs, in this

work, we only apply thusly optimized cSTO-NrG and

cSTO-NreG sets to determine the location of narrow res-

onances because for such calculations cSTOs with small h
values are sufficient. Figure 1a, b shows that construction

of cSTO-NcG is successfully carried out without a linear

dependence problem up to large angles h and we use the

cSTO-NcG set for the calculation of photoionization cross

sections, which need cSTOs having a large h. The orbital
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(a)

(b)

(c)

(d)

Fig. 1 Orbital exponents of

cGTOs optimized for 1s-cSTO-

4cG, 1s-cSTO-4rG, and 1s-

cSTO-4reG. a Absolute value of

1s-cSTO-4cG, b argument of

1s-cSTO-4cG, c real value of

1s-cSTO-4rG, d real value of

1s-cSTO-4reG. h is negative of

the argument of complex orbital

exponents of cSTO. In c, f1 and

f2 approach to the same value

and they become linear

dependent at h = 30�. In d, all

fj take similar values and

become linear dependent at

h = 65�
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exponents of other cSTO-NrG and cSTO-NcG show a

similar behavior.

In Fig. 2a–c, the radial parts of 1s-cSTO-4cG, 1s-cSTO-

4rG, and 1s-cSTO-4reG are compared with 1s-cSTO at

h = 25� and all the expansion schemes represent the

behavior of cSTO very well for this small angle. In Fig. 2d,

e, the radial parts of 3d-cSTO-4cG and 3d-cSTO-10cG at

h = 80� are compared with 3d-cSTO. This is a rather

surprising result, because as shown in Eqs. 6 and 7, cGTO

and cSTO show quite different oscillatory behaviors; cSTO

has a behavior with a constant wave number, while cGTO

has a behavior reflecting a linearly increasing wave

number.

Figure 3 shows that the minimized square errors defined

by Eq. (20) for the cSTO-NrG, cSTO-NcG, and cSTO-

NreG expansions for 1s-cSTO, from which one can see that

(a) (d)

(e)(b)

(c)

Fig. 2 Comparison of the radial functions of cSTO and cSTO-NG

constructed by the method of least squares. a 1s-cSTO-4cG, b 1s-

cSTO-4rG, c 1s-cSTO-4reG at h = 25�. d 3d-cSTO-4cG and e 3d-

cSTO-10cG at h = 80�. Solid lines and dashed lines describe cSTO-

NG and cSTO, respectively, and red lines and blue lines describe the

real part and the imaginary part, respectively
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as h increases, the square errors increase. As one can

expect based on the degree of parametric freedom, cSTO-

NcG is the most accurate and cSTO-NreG is the worst. The

calculated results for 2p-cSTO and 3d-cSTO behave in a

similar manner.

3 Application to autoionizing states

3.1 Method

We have applied the optimized cSTO-NcG, cSTO-NrG,

and cSTO-NreG sets to the 1Rþg doubly excited autoion-

izing states of H2 by the CBF method at the bond length of

1.4 a.u. The electronic wave functions are evaluated by the

complex CI method (CCI) [37]. This system is a simple

example of Feshbach resonance of electron-molecular ion

collision process and has been studied with various theo-

retical methods including CCI method. In the CCI method,

one uses a mixture of real and complex basis function sets,

and after determining appropriate one-electron orbitals by

solving, for example, the Roothan–Hartree–Fock equation,

one diagonalizes the complex symmetric Hamiltonian

matrix constructed from configuration functions as is done

in the ordinary CI method. The difference is that the matrix

element is evaluated by the c-product rule, under which the

Hamiltonian matrix is not Hermitian but complex sym-

metric, and the eigenvalues become complex valued [4].

To determine the resonance energy by the CCI method, one

varies variational parameter h contained in the complex

basis functions and calculates the excitation energy E(h) as

a function of h. In many cases, the common argument of

complex orbital exponents is used as h. If one can use a

complete basis set, the resonance energy would be

independent of h, but in practical calculation, the resonance

energy weakly depends on h because of incompleteness of

the basis set. The best variational parameter h to describe

the resonance energy is determined by requiring that E(h)

is stationary with respect to h,

dEðhÞ
dh
¼ 0: ð22Þ

The accuracy of the resonance energy critically depends on

the basis set; therefore, the basis functions must be chosen

carefully. We used 1s Gaussian of DZP from Huzinaga–

Dunning for rg and ru symmetries and two diffuse 1s

primitive GTOs with orbital exponents equal to 0.0411 and

0.0137 for only ru symmetry. Additionally, 2p Gaussian

with exponent 0.8 was used for rg, ru, pg, and pu sym-

metries and 2p Gaussians with exponents 0.2 and 0.05 are

used only for pg and pu symmetries. These 2p Gaussians

were added to describe angular correlation effects. These

are used as a real basis function set centered on the H atom

nuclei.

Previous studies [37, 38] of the 1Rþg doubly excited

autoionizing states of H2 show that the lowest resonance is

dominated by the s and d partial waves. Therefore, we use

three 1s-cSTO-NGs and three 3d-cSTO-NGs. As discussed

in Introduction, the selection of complex orbital exponents

is not an easy task at all, and in this work, we attempt to

propose a systematic way to select the orbital exponents for

cSTOs. A hint for the selection can be obtained by relating

the CBF method to the complex Kohn variation method

[22, 39]. In the latter method, the outgoing continuum

wave function is represented as a linear combination of L2

basis functions and a few non L2 functions satisfying the

outgoing asymptotic behavior. In the CBF method, only L2

functions are used; thus, additional basis functions need to

Fig. 3 Square error of 1s-

cSTO-NcG, 1s-cSTO-NrG, and

1s-cSTO-NreG as a function of

the argument of complex orbital

exponent for cSTO. Red, green,

blue, and pink marks represent

cSTO-NG (N = 4, 6, 8 and 10)

set, respectively. Empty circle,

filled square, and filled triangle

represent cSTO-NcG, cSTO-

NrG, and cSTO-NreG,

respectively. Only data without

the linear dependence problem

were shown. See the text for

details. The square errors for 2p-

cSTO-NG and 3d-cSTO-NG

sets exhibit a similar behavior as

that of 1s-cSTO-NG
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be included to satisfy the exact outgoing boundary condi-

tion as much as possible. As discussed in previous section

using Eq. 6, the imaginary part of a complex orbital

exponent of cSTO represents the wave number approxi-

mately and this feature can be used to guess the appropriate

orbital exponents. According to the previous studies [37,

40, 41], the resonance position of the 1Rþg doubly excited

autoionizing states of H2 is about 12.6 eV above the

H2
?(1srg) state at the bond length of 1.4 a.u. Then, the

wave number of the continuum orbital at the asymptotic

region is calculated as k0 = 0.96 a.u. If the imaginary part

of the exponent a0 of cSTO is equated to the wave number,

a relation a0j j sin h ¼ k0 is obtained. From this relation

alone, the orbital exponents cannot be determined; instead,

a common practice has been to have a set of {aj} and treat

h as a variational parameter. Because we have cSTO-NrG

sets only with small arguments and our preliminary cal-

culations with a larger number of cSTO-NcG basis func-

tions have stationary angles close to 20�, we have assumed

an argument of h = p/10 = 18� as a tentatively stationary

angle then we have obtained |a0| = 3.1066. Even though

the orbital exponent a0 is matched to the wave number at

h0, obviously only one cSTO is not enough to accurately

obtain the resonance energy, and two more cSTOs are

added to represent both of s-wave and d-wave in an even-

tempered manner such that an = a0R
n (n = -1, 0, 1). We

set the ratio R = 1.75 for 1s-cSTOs and R = 1.5 for 3d-

cSTOs.

The argument h for these cSTO-NG set has the same

value and is used as a complex scaling parameter for h-

trajectory. These cSTO-NG sets were located on the middle

of the molecule to describe the partial waves of continuum

wave function. The evaluations of the matrix elements and

SCF and CI calculations were carried out using complex

version of the COLUMBUS program. The details were

explained in references [10, 37, 42].

We calculated complex excitation energies with CISD,

namely Full CI with cSTO-NcG, cSTO-NrG, and cSTO-

NreG, and showed the energies in the complex energy

plane to make the h-trajectories. As mentioned before,

since the cSTO-NrG basis set for large h values is not

available, we have limited the use of cSTO-NrG only for

small h values. To determine the stationary point on the

complex energy plane, we fit the h-trajectory to a rational

fraction with the data {(e-ih, E(h))} and obtained the sta-

tionary point of the fitted rational fraction numerically.

3.2 Results

Figure 4 shows the h-trajectories and stationary points

using cSTO-NcG (N = 4,8,10) sets, cSTO-NrG (N = 8,10)

sets, and cSTO-10reG. The trajectories of cSTO-8cG,

cSTO-10cG, and cSTO-10rG show almost the same

behavior implying that these cSTO-NG sets represent

cSTO basis functions accurately in the calculations of the

complex eigenvalue problem of the electronic resonance

state. The trajectories of cSTO-8rG and cSTO-10reG

exhibit a little difference from that with cSTO-10cG but

still have a similar cusp behavior and suggest that cSTO-

8rG and cSTO-10reG are also useful basis functions for

determining resonance energies. Comparing the three types

of cSTO-10G sets, cSTO-10reG is the worst expansion,

and this is reflected in the above difference. The h-trajec-

tory obtained with cSTO-4cG shows a different shape, but

the stationary point thus obtained is located in a similar

energy region.

The resonance positions Er and widths C obtained are

summarized in Table 1 along with previous theoretical

results. Here, Er values were computed by subtracting the

energy of H2
?(1srg) calculated with the same basis set at

h = 0�. In spite of a smaller number of CBFs, the results

are in good agreement with previous theoretical results.

Note that, strictly speaking, the direct comparison of these

resonance energies is meaningful only if they are derived

from the same theoretical method.

The success of the cSTO-NrG and cSTO-NreG sets

means that the resonance energy can be computed by using

only real primitive basis functions and analytically con-

tinued to the complex energy plane by the complex con-

traction coefficients. This is good news for computational

efficiency. In the current computation, cSTO-NrG can be

used to compute the resonance position and width because

the Feshbach resonance of H2 is very narrow; however, it

seems difficult to treat more broad resonance with the

cSTO-NrG set.

4 Application to photoionization of He

4.1 Method

The next application is photoionization of He atom including

autoionization features by the CBF method and CCI (CISD)

method. In this subsection, the outline of this method is

described, but for more details, the reader is referred to ref-

erences [8–10]. In the dipole approximation, the total pho-

toionization cross section r(x) can be related to the

imaginary part of the frequency-dependent polarizability,

rðxÞ ¼ 4p
cx

Im aðxÞ; ð23Þ

aðxÞ ¼ � lim
2!þ0

hW 0ð Þ l
1

E 0ð Þ þ x� H þ i 2 l
 W 0ð Þi; ð24Þ

where W(0) and E(0) are the initial bound state and its

eigen energy and c, x, l are the light speed, photon
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energy, and velocity dipole operator, respectively. In this

study, we use dipole velocity operator as in our previous

work [43–45]. In the CBF method, the matrix element of

Green’s operator is approximated by eigenvalues {En}

and eigenfunctions {Un} of the Hamiltonian by means of

c-product

Un;HUmð Þ ¼ Endnm; ð25Þ
Un;Umð Þ ¼ dnm: ð26Þ

Using {Un} and {En}, the frequency-dependent polariz-

ability is approximated in the discrete representation

a xð Þ � �
X
n

d2
n

E0 þ x� En

: ð27Þ

In this formula, dn is a dipole transition moment

(Un, lW
(0)). In a many electron system, both {En} and

{Un} are obtained from complex CI calculations. Our tar-

get states contain autoionizing states which are described

with two-electron excited configurations. We have used the

same computer program used for H2 calculation.

As in the previous calculation of H2 autoionizing states,

basis set must be treated carefully. We employed a large set

(a) (d)

(b) (e)

(c) (f)

Fig. 4 Calculated results of h-

trajectory for the lowest 1Rg
?

resonance of H2 at bond length

of 1.4 bohr. Circles represent

calculated complex

eigenenergies with complex CI

using cSTO-NcG with a N = 4,

b N = 8, c N = 10, cSTO-NrG

with d N = 8 e N = 10, and

f cSTO-10reG. Solid line is the

curve of the rational fraction

fitted with these calculated

results. Cross is the stationary

point calculated from these

fitted rational fractions
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of even-tempered real GTOs (18s16p4d1f) from our pre-

vious work [43] to represent the bound state one-electron

orbitals. The continuum configurations with which the

autoionizing two-electron excited configurations have

configuration interactions are known to be of (1s,kp) type;

therefore, we intend to represent this kp one-electron

orbitals by solving the hydrogen atom 1s ? kp problem.

The one-electron orbital kp (Coulombic p-wave) of He at

xHe � 60 eV region can be approximated by that of H with

the photon energy of xH ¼ IH � IHe þ 60 eV � 1:3 Har-

tree with taking into account the difference in the ioniza-

tion potentials of H (IH) and He (IHe). Then, the five

complex orbital exponents {aj} of cSTOs were determined

by extending the procedure in Ref. [44], that is, they were

independently optimized variationally to stabilize the fre-

quency-dependent polarizability of the hydrogen 1s ? kp

problem with the photon energy x = 1.3 Hartree. One of

the five cSTOs with the orbital exponent closest to the real

axis in the complex a plane was essentially a real function

and was simply removed to avoid linear dependence with

the real GTOs explained above. The optimized complex

orbital exponents for the remaining four 2p-cSTO basis

functions are shown in Table 2 in a form of the absolute

value and the argument (rounded to integer). Each of the

four 2p-cSTO basis functions is represented by a 2p-cSTO-

NcG contracted basis function with the appropriate scaling

relation explained before. Since cSTO-NrG is not available

for higher h values, we have applied only cSTO-NcG basis

functions in this study.

4.2 Results

Figure 5 shows r(x) calculated using cSTO-4cG and

cSTO-10cG functions. These results show that the opti-

mized basis set for hydrogen provides good agreement with

experimental results not only at the optimized kinetic

energy but also at the neighborhood of this kinetic energy.

The autoionizing features are also well described in this

calculation. These results show the efficiency of both

optimized cSTO set and cSTO-NcG set. Comparing the

experimental cross sections with the two calculated results

using cSTO-4cG and cSTO-10cG basis sets, the differences

Table 1 Position Er and width C of the 1Rg
? autoionizing state of H2 molecule

References Method Er (eV) C (eV)

a CCI/cSTO-10cG 12.58 0.7044

a CCI/cSTO-10rG 12.59 0.7044

a CCI/cSTO-10reG 12.60 0.7037

a CCI/cSTO-4cG 12.62 0.8108

a CCI/cSTO-8cG 12.59 0.7211

a CCI/cSTO-8reG 12.63 0.7404

Yabushita and McCurdy [37] CCI/cGTO 12.60 0.7402

Yabushita and McCurdy [37] CMCSCF/cGTO 12.62 0.7347

Sajeev and Moiseyev [40] Reflection-free complex absorbing potential 12.56 0.617

Moiseyev and Corcoran [51] Complex scaling 12.86 1.21

Isaacson [41] Siegert eigenvalue (f2s = 0.48, f3s = 0.46)b 12.58 0.92

Isaacson [41] Siegert eigenvalue (f2s = f3s = 0.70)b 12.59 0.89

Isaacson [41] Siegert eigenvalue (f2s = f3s = 1.00)b 12.61 0.83

Morales et al. [52] Exterior complex scaling B-spline 12.74c 0.714d

Honigmann et al. [53] Complex coordinate 0.707d

Shimamura et al. [54] R-matrix 12.80 0.751

Hara and Sato [55] Projection operator 12.62 0.756

Sánchez [56] Projection operator B-spline 12.82d 0.735d

Hazi et al. [57] Projection operator CI-Ae 12.70 0.69

Hazi et al. [57] Projection operator CI-Be 12.70 0.65

Collins and Schneider [58] Linear algebra 0.699d

a Present work
b The Siegert eigenvalue method using different basis sets
c The energy was read from figure of Ref. [52], and the energy of H2

?(1srg) was taken from Wind [63]
d Value was read from the figure of each reference
e Projection operator and the Stieltjes moment method using different projection operators
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can be seen to be very small. This comparison suggests that

exact representation of the cSTO with cGTO is not very

important in the calculation of photoionization total cross

sections. This result is encouraging from the viewpoint of

computational cost because the use of cSTO-NcG with

smaller N can reduce the integral evaluation cost. Since the

total photoionization cross section is proportional to the

square of overlap of the initial bound state and the final

continuum state in the target region, thereby the behavior

of continuum orbital in the asymptotic region is not

important. Some details of this point were discussed for

hydrogen photoionization calculation in a previous study

[44].

The asymmetry line profiles of the (sp, 2n?) series

arising from the autoionizing states appear in the total cross

section in Fig. 5. The profiles are very similar to previous

theoretical [43, 46] and experimental results [47, 48]. For a

concrete comparison with other studies, we extracted the

resonance position Er, width C, and the shape parameter q

for the lowest autoionizing state (sp,22?) by fitting the

total cross section to the well-known Fano profile [49]

formula in a least squares sense.

rfitðxÞ ¼ ra
qþ eð Þ2
1þ e2

with e ¼ x� Er

C=2
: ð28Þ

The fitted parameters of Er, C, and q are in good agreement

with previous experimental and theoretical results, as

shown in Table 3.

5 Conclusion

In this paper, we have constructed three types of basis sets

contracted with primitive GTOs, namely cSTO-NcG,

cSTO-NrG, and cSTO-NreG. Among them, the cSTO-NrG

set was obtained only for the small arguments of the orbital

exponents of cSTOs, and some improvement would be

necessary if it is to be applied to the calculation of broad

resonances. All of these sets represent cSTO very well

especially for small arguments of cSTO exponents. The

calculation of the resonance position for H2 using cSTO-

NcG and cSTO-NreG produced very sharp h-trajectories,

and the resonance positions obtained are in good agreement

with previous studies. Calculation of He autoionization

represents experimental data very well. We have discussed

the selection procedures for the complex orbital exponents

for cSTOs based on the physical situations of the outgoing

Fig. 5 Calculation result of photoionization total cross section (Mb)

of He 1S(1s)2 ? 1P(1s)1(kp) as a function of photon energy in eV

using cSTO-4cG (solid line) and cSTO-10cG (dashed line). Exper-

imental data (circles) are from Samson [50]. The peaks are assigned

to the resonance states (sp, 22?), (sp, 23?), (sp, 24?), and so on

Table 2 Complex orbital exponents of cSTOs for cSTO-NcG set

used for the calculation of He autoionization

No. Absolute value Argument (�)

1 1.13513 17

2 1.33919 39

3 1.54996 63

4 1.64740 82

These are optimized complex orbital exponents of cSTOs for the

1s ? kp channel of hydrogen photoionization using velocity form at

x = 1.3 Hartree. Arguments are rounded to the nearest integer for

calculation convenience

Table 3 Resonance position Er, width C, and the Fano shape parameter q of the lowest 1P autoionizing state of He atom

References Method Er (eV) C (eV) q

a CCI/cSTO-4cG 60.155 0.0408 -2.68

a CCI/cSTO-10cG 60.152 0.0385 -2.83

Morita and Yabushita [43] CCI/cGTO 60.141 0.0358

Domke et al. [59] Experiment 60.147 0.037 -2.75

Morgan and Ederer [60] Experiment 60.151 0.038 -2.60

Ho [61] Complex scaling 60.153 0.0371

McCurdy and Martı́n [62] ECS B-spline 60.122 0.0373

Hamacher and Hinze [46] R-matrix 60.19 0.04019 -2.68

a Present work
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electron. A corresponding physical guide to selecting the

exponents of cGTOs is not obvious and that fact compli-

cates the selection of complex Gaussian exponents.

Expanding cSTOs in Gaussians is a way to address this

difficulty. Future application to larger molecules is

expected.
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Abstract A genetic ‘static–dynamic–static’ (SDS)

framework is proposed for describing strongly correlated

electrons. It permits both simple and sophisticated param-

eterizations of many-electron wave functions. One partic-

ularly simple realization amounts to constructing and

diagonalizing the Hamiltonian matrix in the same number

of many-electron basis functions in the primary (static),

external (dynamic) and secondary (static) subspaces of the

full Hilbert space. It combines the merits of both internally

and externally contracted configuration interaction as well

as intermediate Hamiltonian approaches. When the Ham-

iltonian matrix elements between the contracted external

functions, with the coefficients determined by first order

perturbation, are approximated as the diagonal elements of

the zeroth-order Hamiltonian H0, we obtain a multi-state

multi-reference second-order perturbation theory (denoted

as SDS-MS-MRPT2) that scales computationally with the

fifth power of the molecular size. Depending on how H0 is

defined, various variants of SDS-MS-MRPT2 can be

obtained. For simplicity, we here choose H0 as a multi-

partitioned Møller–Plesset-like diagonal operator. Further

combined with the string-based macroconfiguration tech-

nique, an efficient implementation of SDS-MS-MRPT2 is

realized and tested for prototypical systems of variable

near-degeneracies. The results reveal that SDS-MS-

MRPT2 can well describe not only standard benchmark

systems but also problematic systems. Taking SDS-MS-

MRPT2 as a start, the accuracy may steadily be increased

by relaxing the contraction of the external functions and/or

iterating the diagonalization–perturbation–diagonalization

procedure. As such, the SDS framework offers a very

powerful scenario for handling strongly correlated systems.

Keywords Strongly correlated electrons � Static–

dynamic–static � Minimal MRCI � Multi-state multi-

reference perturbation theory

1 Introduction

Given the remarkable progress in many-body theories,

accurate descriptions of electron correlation in molecular

systems of variable near-degeneracies are still challenging

and remain an active area of research. One framework that

has provided not only accurate results but also qualitative

insight is effective Hamiltonian (EH), based on which vari-

ous multi-reference (MR) or quasi-degenerate (QD) pertur-

bation theories (PT) have been proposed [1–26] in the past

(see Refs. [27] and [28] for careful comparisons). Yet, the

premises of MRPTs and QDPTs that electron correlation can

be separated into static and dynamic components and then

that they can respectively be treated variationally and per-

turbatively are not always justified. As a consequence, low-

order MRPTs and QDPTs usually depend strongly on the
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zeroth-order Hamiltonian as well as the model space. Even

spurious results may result occasionally. Going to higher

orders in the perturbation expansion may introduce more

problems than actually solved.

A more refined separation of static and dynamic correlation

invokes a process in which the dynamic correlation informs

(or provides feedback to) the static correlation. This produces

either explicitly or implicitly an intermediate effective Ham-

iltonian (IEH) [29–38], whose lowest few eigenpairs seek to

reproduce the exact eigenvalues and the projections of the

exact wave functions onto the model space, whereas the

remaining eigenpairs are of no particular significance. Such

IEH approaches are conceptually more sophisticated than the

EH-based MRPTs and QDPTs. Nevertheless, they are not free

of drawbacks. In particular, the improved description of the

static correlation comes at the expense of some of the dynamic

correlation. Moreover, the so-called intruder state problem is

effectively avoided only at lowest orders but raises its head

again in higher-order expansions of the IEHs.

All the above approaches stay within the ‘first static then

dynamic’ scenario, along with the use of ‘common orbitals

for all configurations.’ Since dynamic correlation is system

independent, whereas static correlation is system dependent,

an inverse scenario, viz., ‘first dynamic then static’ [39]

should also be possible, particularly when combined with the

idea of ‘different orbitals for different charge/spin distribu-

tions.’ Compared with the former, orbital relaxations arising

from dynamic correlation are here fully accounted for, such

that only few nearly degenerated and dynamically correlated

many-electron functions are necessary for an adequate

description. Yet, due to technical reasons related to the

evaluation of the Hamiltonian and metric matrix elements

over nonorthogonal determinants, we do not intend to further

explore this scenario here. Instead, we would like to suggest a

framework in which the static and dynamic contributions to

electron correlation are treated more equitably than in the

previous approaches that feature ‘common orbitals for all

configurations.’ The framework, characterized by ‘static–

dynamic–static (SDS) multi-state (MS),’ is genetic in the

sense that it permits whatsoever treatment of the dynamic

correlation as well as successive generations of both

dynamic and static multi-reference functions from the pre-

ceding generations. For instance, a second-order treatment of

the dynamic correlation leads naturally to SDS-MS-MRPT2,

which already combines the advantages of both internally

and externally contracted configuration interaction (CI) as

well as the IEH approaches. Taking SDS-MS-MRPT2 as a

start, the accuracy can steadily be increased by relaxing the

contraction of the secondary functions and/or iterating the

diagonalization–perturbation–diagonalization procedure.

The general features of the SDS framework are first

described in Sect. 2.1, where distinctions from existing

EH- or IEH-based MRPTs are also elucidated. The SDS-

MS-MRPT2 variant is then formulated in Sect. 2.2. While

any partitioning of the Hamiltonian can be adopted, only

the Møller–Plesset-like partitioning is considered here. The

implementation employs a novel hybrid of the macrocon-

figuration description [40] of electron distributions among

groups of orbitals and determinant strings [41–44] (cf.

‘Appendix’ section). As a first pilot application, several

well-studied model problems are investigated: the sym-

metric bond stretching of H2O (Sect. 3.1); the lowest sin-

glet-triplet energy gap of CH2 (Sect. 3.2); the entire

ground-state potential energy curve of LiF using a single

(multi-determinant) reference (Sect. 3.3); and the energy

separation between the lowest two singlet curves of LiF

(Sect. 3.4). While clearly not comprehensive, these sys-

tems represent prototypical problematic situations for

MRPTs. The size extensivity of SDS-MS-MRPT2 is also

explored numerically by taking dimers and trimers of H2 as

examples (Sect. 3.5). The account ends with a brief sum-

mary of the suggested method in Sect. 4.

2 Theory

2.1 Generality

The full configuration interaction (FCI) solutions of the

Schrödinger equation can generally be classified into three

sets in an energetic ascending order: NP low-lying nearly

degenerate (primary) states, NS intermediate (secondary)

states and NQ high-lying (external) states. Such a classifi-

cation holds for most molecular systems, especially those

with a reasonable gap between the lowest unoccupied and the

highest occupied molecular orbitals. It is just that the specific

values of NP; NS and NQ are case dependent. If NP is just one

and the state is well separated from the rest, the system is only

weakly correlated and can well be described by a single-

reference prescription. On the other hand, if NP is exceed-

ingly large, the system would be ultra-strongly correlated

and cannot be handled by standard approaches. What is

particularly interesting is the intermediate case, i.e., the

commonly called strongly correlated systems, with Np being

a limited number. The crucial issues are then: (1) how to

construct appropriate many-electron functions to mimic

such a general feature of the exact solutions and (2) how to

account for the contributions of such functions to the NP

states of primary interest.

To achieve the first goal, we begin with partitioning a

given set of spin orbitals fup : p ¼ 1; . . .;Ng into three

disjoint sets: (1) core (C), (2) active (A) and (3) virtual (V) of

dimensions nC; nA, and nV, respectively. Given the total

number of electrons (ne), we construct a model space M ¼

Theor Chem Acc (2014) 133:1481
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fUl : l ¼ 1; . . .; dMg that is spanned by the determinants Ul

in which the core spin orbitals are occupied and the

remaining na ¼ ne � nC active electrons are distributed in

the active spin orbitals in all possible ways. The determinants

can further be spin and spatially symmetrized to form con-

figuration state functions (CSF). This space is just the com-

monly called ‘complete active space’ [45] with na electrons

in nA orbitals, CAS(na; nA). Such a construction of the model

space is operationally very simple. Yet, such a space usually

contains too many functions that are energetically too high to

have appreciable weights in the target NP primary states. For

this reason and for more generality, a subset of fUlg, gov-

erned by, e.g., the expectation values hUljHjUli or gener-

ated from some macroconfigurations [40] (i.e., distributions

of na electrons in prescribed orbital groups), is to be chosen

as the reference space, MR ¼ fUm; m ¼ 1; . . .; dR� dMg. A

SA-MCSCF (state-averaged multi-configuration self-con-

sistent-field) can then be carried out within this space. The

lowest NP solutions fWð0ÞI ; I ¼ 1; . . .;NPg, which provide

either semi-quantitatively or qualitatively correct descrip-

tions of the Np exact states, are adopted to form the primary

subspace projected by the operator Pm,

Pm ¼
XNP

I

jWð0ÞI ihWð0ÞI j; Wð0ÞI ¼
XdR

l¼1

C
ð0Þ
lI Ul: ð1Þ

The remaining part (Ps) of MR is then designated as the

secondary space, viz.,

Ps ¼ P�Pm; P¼
XdR

l¼1

jUlihUlj ¼
XdR

K¼1

jWð0ÞK ihWð0ÞK j: ð2Þ

The second equality of P only arises if the entire MR space

is diagonalized, which is not necessary though. Since the

linearly independent singly and doubly excited CSFs

(determinants) fUqg relative to fUl 2MRg span exactly

the first-order interacting space [46, 47], it appears natural

to choose the NP first-order functions fWð1ÞI g as the external

functions for a minimal dynamic correction to fWð0ÞI g:

jWð1ÞI i ¼ Q1

1

E
ð0Þ
I � H0

Q1HjWð0ÞI i

¼
X
q2Q1

jUqiCð1ÞqI ; I ¼ 1; . . .;NP;
ð3Þ

Q1 ¼
X
q

jUqihUqj; ð4Þ

jUqi 2 jUa
i;li; jUab

ij;li; l ¼ 1; . . .dR; i; j 2 C� A[
n
 a; b 2 A� Vni; j; a; b 2 Ag: ð5Þ

Note that internal excitations (labeled only by active orbital

indices) that map one reference determinant into the

(incomplete) model space MR are excluded in the definition

of jUqi (5). Without loss of generality, the fWð1ÞI g functions

(3) can be Gram–Schmidt orthonormalized, leading to

jNð1ÞI i ¼
X
q2Q1

jUqi ~Cð1ÞqI ; hNð1ÞI jNð1ÞJ i ¼ dIJ : ð6Þ

As for a minimal set of secondary (buffer) states, there

exist two options. One is to take the fHI ¼ Wð0ÞNPþI ; I ¼
1; . . .;NPg functions from partial diagonalization of the

projected Hamiltonian PHP with P given in Eq. (2). The

other is to use the fHIg functions arising from the Gram–

Schmidt orthonormalization of the following functions

j ~HIi ¼ 1� Pm �
XNP

J

jNð1ÞJ ihNð1ÞJ j
 !

V jWð1ÞI i; V ¼ H � H0:

ð7Þ
That is, the action of the Hamiltonian on the first-order

functions fWð1ÞI ; I ¼ 1; . . .;NPg generates NP new functions

belonging to Pm; Ps or Q ¼ 1� Pm � Ps. Only those

belonging to Ps are retained here. Note that the fHIg
functions constructed in either way do not interact directly

with the primary functions fWð0ÞI g, i.e., hWð0ÞI jHjHJi ¼ 0.

This is because fWð0ÞI g are eigenvectors of the projected

Hamiltonian PHP. In other words, the interactions between

the primary and secondary states are treated variationally,

since they are, by assumption, energetically close to each

other.

The above considerations lead to the following Ansatz

for the wave functions of the NP low-lying states:

jWIi¼
XNP

J

CJI jWð0ÞJ iþ
XNP

J

CðJþNPÞI jNð1ÞJ iþ
XNP

J

CðJþ2NPÞI jHJi;

J¼1; . . .;NP: ð8Þ

Taking fWð0ÞI g; fNð1ÞI g and fHIg as independent functions,

the remaining task is just to solve the following 3NP-

dimensional eigenvalue problem

HC ¼ CE: ð9Þ
The so-proposed procedure has the following distinct

features:

1. Equations (8) and (9) define a minimal MRCI

approach, with the dimension being only 3NP. It is

both internally and externally contracted and further

augmented with secondary functions. For this reason,

the approach can be designated as ixc-MRCISD?s. By

replacing the summation over the compound index q

(i.e., fl; i; j 2 C� A [ a; b 2 A� Vni; j; a; b 2 Ag) in

Eq. (3) with fi; j 2 C [ a; b 2 Vg, Eq. (8) would

reduce to the doubly contracted MRCISD [48],
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provided that the primary functions fWð0ÞI g are fully

decontracted and the secondary functions fHIg are

discarded. By further replacing the summation over

fi; j 2 C [ a;b 2 Vg with fa; b 2 Vg alone, the

so-called externally contracted MRCISD [49, 50] can

be obtained. On the other hand, if fNð1ÞJ g are replaced

with uncontracted external singles and contracted

external doubles (i.e.,
P

l jUab
ij;liCð0ÞlJ ; i; j 2 C� A[

a; b 2 V), Eq. (8) would correspond to the internally

contracted MRCISD [51–54].

2. The approach is also related to MS-MRPTs [6–12] in

structure. This can be seen by setting CJI ¼ CðJþNPÞI
and CðJþ2NPÞI ¼ 0 in Eq. (8), leading to

W½1
I ¼
XNP

J

CJI Wð0ÞJ þ Nð1ÞJ

� �
: ð10Þ

The Hamiltonian matrix (9) correct to second order is

then of dimension NP, viz.,

H
½2

eff

� �
IJ
¼ 1

2
Wð0ÞI þ Nð1ÞI jHjWð0ÞJ

D En
þ Wð0ÞI jHjWð0ÞJ þ Nð1ÞJ

D Eo ð11Þ

¼ Wð0ÞI jHjWð0ÞJ

D E
þ 1

2
Nð1ÞI jHjWð0ÞJ

D En
þ Wð0ÞI jHjNð1ÞJ

D Eo
: ð12Þ

It is well known that such MS approaches do not have

the full flexibility for the revision of the components of

the wave function in the primary reference functions

and may additionally suffer from the (in)famous

intruder state problem. The situation can be improved

by further introducing the secondary functions fHIg,
i.e.,

~W½1
I ¼
XNP

J

CJI Wð0ÞJ þNð1ÞJ

� �
þ
XNP

J

CðJþNPÞIHJ ; ð13Þ

which leads to an IEH matrix of dimension 2NP:

~H
½2

eff

� �
IJ
¼ H

½2

eff

� �
IJ
; I; J ¼ 1; . . .;NP; ð14Þ

~H
½2

eff

� �
ðIþNPÞJ

¼ HI jHjNð1ÞJ

D E
;

~H
½2

eff

� �
IðJþNPÞ

¼ Nð1ÞI jHjHJ

D E
;

ð15Þ

~H
½2

eff

� �
ðIþNPÞðJþNPÞ

¼ HI jHjHJh i: ð16Þ

In view of Eq. (7), the ~HI (and hence HI) functions

are formally of second order, such that the couplings

hHI jHjNð1ÞJ i (15) are of fourth order. In contrast, if the

states fWð0ÞK ;K ¼ NP þ 1; . . .; 2NPg are taken for fHIg,

the couplings would be of second order. However,

such an argument is not really meaningful for both

fHIg and fNð1ÞI g are treated here as independent basis

functions. It will be shown later on that the two choices

of fHIg do give rise to similar results. Had all the

fWð0ÞK ;K ¼ NP þ 1; . . .; dRg states been taken for the

secondary states, which is usually the case for IEH

approaches such as GVVPT2 [16, 17], several side

effects may arise: (a) Such secondary states are usually

much more numerous than the target primary states

(i.e., dR � 2NP), and some of them may actually be

higher in energy than the external functions, thereby

losing the meaning of static correlation. Moreover, it

does not make physical sense to treat high-lying sec-

ondary states variationally but those external states of

lower energy perturbatively. (b) Probably more seri-

ously, due to the one-to-one fixed combination [i.e.,

Wð0ÞJ þ Nð1ÞJ in ~W½1
I (13)], the relaxation of the primary

states Wð0ÞI furnished by the secondary states is

accompanied with the reduction of dynamic correla-

tion, as compared with the intermediate normalization.

All such problems are avoided by treating the external

functions fNð1ÞI g as independent basis functions, the

key feature of the present approach. In sum, ixc-

MRCISD?s combines the merits of both internally and

externally contracted CI as well as IEH approaches.

Numerical results will reveal that the fWð0ÞI g; fNð1ÞI g
and fHIg functions do have decreasing weights in the

wave functions WI , thereby justifying the SDS

characterization.

3. The approach can progressively be extended to poten-

tially exact solutions. First of all, the first-order external

functions fjWð1ÞI ig can be partially decontracted. For

instance, those fUqg functions of coefficients larger than

a preset threshold can be treated as independent

functions. Alternatively, the fluctuation potential can

be separated into different classes according to the

number of electrons excited into or out of the active

space [13–15], so as to generate partially contracted

first-order functions. The extended set of secondary

functions can still be generated according to Eq. (7).

Secondly, after solving the eigenvalue problem (9), a

new generation of primary functions as linear combina-

tions of the original primary, external and secondary

functions can be obtained. The new generation of

external functions, which include triples and quadruples

relative to the original primary functions, can then be

generated by single and double excitations from the new

primary functions. The new generation of secondary

functions result again from Eq. (7). The procedure can

be continued to reach a desired accuracy. Since each new
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generation inherits optimal characteristics of the pre-

ceding generation, the procedure is genetic. Two other

options can further be considered: (a) instead of the first-

order determination of the external functions, any other

state-specific, internally contracted multi-reference

approach (e.g., multi-configuration coupled electron

pair approximation (CEPA) [55]) can be employed;

(b) an energy functional [56–59] that is approximately

size extensive can be used in place of the straight

eigenvalue problem (9).

In summary, unlike the existing EH- or IEH-based MRPTs,

which can also be described nominally as SDS methods,

the present approach is intrinsically a CI, yet with the

flexibility of using a variety of expansion vectors as well as

approximations for the Hamiltonian.

2.2 SDS-MS-MRPT2

The ixc-MRCISD?s approach defined by Eqs. (8) and (9)

is infinite order even though the contraction coefficients of

the external functions fjUqig are determined only to first

order. Computationally, it scales as the sixth power of the

molecular size N. To achieve an order N5 scaling, we

consider a second-order variant, denoted as SDS-MS-

MRPT2. Depending on how the zeroth-order Hamiltonian

H0 in Eq. (3) is defined, various variants of SDS-MS-

MRPT2 can be obtained. For simplicity, we consider here a

multi-partitioned (state-dependent) Møller–Plesset-

like [60] diagonal operator

HI
0 ¼

X
J2P
jWð0ÞJ iEð0ÞJ ðIÞ Wð0ÞJ j þ

X
q2Q
jUq

* +
Eð0Þq ðIÞhUqj;

ð17Þ
E
ð0Þ
J ðIÞ ¼ Wð0ÞJ jFI jWð0ÞJ

D E
; Eð0Þq ðIÞ ¼ UqjFI jUq

� �
; ð18Þ

where

FI ¼ ConstðIÞ þ
X
pr

�Ipa
y
prapr;

ConstðIÞ ¼ Wð0ÞI jHjWð0ÞI

D E
� Wð0ÞI jHI

0jWð0ÞI

D E
;

ð19Þ

Here, �Ip are the diagonal elements of the spin-averaged

Fock matrix f Ipq

f Ipq ¼ hpq þ
X
kl

ðpqjklÞ � 1

2
ðpljkqÞ

� �
cIlk;

cIlk ¼
X
r

Wð0ÞI jaykralrjWð0ÞI

D E ð20Þ

constructed with the quasi-canonical orbitals for state Wð0ÞI .

The state-dependent constant ConstðIÞ introduced to FI

(19) is merely to set a common energy reference for all the

CSFs (determinants). With the so-defined HI
0 (17) operator,

which leads to a barycentric zeroth-order energy [61], the

first-order functions fWð1ÞI g (3) can straightforwardly be

obtained without the need to solve a linear system of

equations. To achieve the desired OðN5Þ scaling, the

Hamiltonian matrix elements over Nð1ÞI are further

approximated as

HðIþNPÞðJþNPÞ ¼ Nð1ÞI jHjNð1ÞJ

D E
; I; J ¼ 1; . . .;NP ð21Þ

� 1

2
Nð1ÞI jHJ

0 jNð1ÞJ

D E
þ Nð1ÞJ jHI

0jNð1ÞI

D Eh i
ð22Þ

¼ 1

2

X
q2Q1

Eð0Þq ðIÞ þ Eð0Þq ðJÞ
h i

~C
ð1Þ
qI

~C
ð1Þ
qJ : ð23Þ

It is this step that reduces the previous ixc-MRCISD?s (9)

down to SDS-MS-MRPT2, which is no longer an upper

bound to FCI. However, SDS-MS-MRPT2 is still a CI-like

rather than a genuine perturbation approach.

3 Test calculations

3.1 H2O

The symmetric stretching of the OH bonds in water has

long been taken as a model problem for assessing the

ability of a method to describe variable near-degeneracies.

Although the earlier DZP model problem is still of interest,

the more recent FCI calculations [62] using a cc-pVDZ

basis set [63] provides a more thorough assessment, and it

is this set of calculations with which we compare. The

model space is spanned by all the Ms ¼ 0A1 irreducible

representation determinants that could be generated from

distributing the 8 valence electrons among the 6 valence

orbitals. The energetically lowest S ¼ 0 eigenfunction was

chosen as the primary space (N.B. Spin contamination was

monitored for this and all the other model problems of the

study, and was found to be less than 1 10�9 a.u.). The

lowest lying (i.e., oxygen 1s-like) molecular orbital was

also correlated in the SDS-MS-MRPT2 calculation. The

results for various geometries are given in Table 1. The

reference geometry has the hydrogens at (0., �1:515263,

-1.049898) a.u., with oxygen at the origin; the other

geometries are obtained by elongating simultaneously the

OH bonds by 1.5, 2., 2.5 and 3 times. It is seen that the

nonparallellity error (NPE, i.e., the difference between

the maximum and minimum deviations from FCI for the

calculated point energies) of SDS-MS-MRPT2 is rather

similar to that of GVVPT2 [16, 17]. This is very appealing

since SDS-MS-MRPT2 has a very simple structure,
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whereas GVVPT2 involves a sophisticated nonlinear

resolvent. For a better understanding of SDS-MS-MRPT2,

the coefficients of the primary, external and secondary

functions are further documented in Table 2. It is seen that

the coefficient of the primary vector (i.e., the CASSCF

wave function) does not vary appreciably with geometry

(i.e., from a high of 0.987, when the bonds are essentially

broken, to a low of 0.982, when the bonds begin to break),

while that of the external vector (i.e., the dynamic corre-

lation contribution) varies significantly (i.e., from a low of

0.159, at large geometry, to a high of 0.185, when the

bonds begin to break). The variation in the contribution

from the secondary space is comparable to that in the

external space. However, the maximum contribution from

the secondary (0.05 at 2Re) does not coincide with the

maximum from the external (0.185 at 1:5Re). These results

show that the secondary space plays a role even in prob-

lems as simple as the symmetric stretching of H2O, and its

contribution varies with geometry as does the contribution

from the external space.

To better elucidate the effects of the secondary space,

additional tortured calculations were performed on the first

excited state of H2O. At the reference geometry, the orbi-

tals were generated from a nonphysical SA–MCSCF cal-

culation with a relative weighting of 100:1 for the ground

and first excited states. While the results for the ground

state are unremarkable, examination of the first excited

state is interesting. The corresponding MCSCF and single-

state (SS) MRPT [i.e., Eq. (10) with NP ¼ 1] energies are

higher than the MRCISDTQ value (-75.860 427) by 0.417

and 1.050 a.u., respectively. The (intermediate normalized)

correlation vector length of SS-MRPT is as large as 3.198.

In contrast, SDS-MS-MRPT2 produces marked improve-

ment over MCSCF, with the energy higher than that by

MRCISDTQ by 0.355 a.u.. The SDS-MS-MRPT2 (unity

normalized) coefficients are 0.618, 0.124 and -0.776 for

the primary, secondary and external states. The situation

can certainly be improved by further iterations as discussed

before.

3.2 CH2

The adiabatic excitation of the ground state 3B1 of CH2 to

the first excited state 1A1 is one of the simplest models for

assessing the ability of a method to describe equitably

electronic states of different spins. The two states are sig-

nificantly different in nature: While 3B1 is well described

by a single determinant, 1A1 is profoundly two configura-

tional. The DZP FCI calculations [64] of Bauschlicher and

Taylor remain the standard. As in the FCI paper, we used

the modified DZP basis sets of Bauschlicher and Taylor,

which applies different polarization functions (triplet:

fd ¼ 0:74; singlet: fd ¼ 0:51) to a standard Huzinga–

Dunning DZ basis [65, 66]. We also used the same

geometries: H = (0., �1:871093, 0.82525) for 3B1 and

H=(0., �1:644403, 1.32213) for 1A1, with carbon at the

origin. The model spaces are spanned by all the Ms ¼ 1 and

Ms ¼ 0 determinants of B1 and A1 irreducible representa-

tions for the 3B1 and 1A1, respectively. The energetically

lowest S ¼ 1 and S ¼ 0 eigenfunctions were chosen as the

corresponding primary spaces. As in the Bauschlicher and

Taylor study, the carbon 1s-like lowest energy molecular

orbital was not correlated in the SDS-MRPT2 calculation.

As can be seen from Table 3, SDS-MS-MRPT2, using the

Table 1 Deviations (in a.u.) of CASSCF, GVVPT2, SDS-MS-MRPT2 and MR-CISD from FCI for symmetrically stretched H2O

FCIa CASSCF GVVPT2 SDS-MS-MRPT2b SDS-MS-MRPT2c MRCISD

1.0Re -76.241860 0.012157 0.011296 0.015994 0.017069 0.004425

1.5Re -76.072348 0.007331 0.005926 0.010293 0.012277 0.003937

2.0Re -75.951665 0.006353 0.005286 0.008499 0.010268 0.003208

2.5Re -75.917991 0.007336 0.007226 0.010022 0.010568 0.002837

3.0Re -75.911946 0.007742 0.007933 0.010692 0.010790 0.002753

NPE 0 0.039309 0.006010 0.007495 0.006801 0.001673

NPE nonparallelity error
a Ref. [62]

b With secondary functions defined by Eq. (7)
c Without secondary functions

Table 2 Coefficients of the SDS-MS-MRPT2 wave functions for

H2O as a function of geometry

CPrimary Cexternal Csecondary

1.0Re 0.984 0.178 -0.020

1.5Re 0.982 0.185 -0.040

2.0Re 0.983 0.175 -0.050

2.5Re 0.986 0.163 -0.029

3.0Re 0.987 0.159 -0.012
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spin-dependent analog of Eq. (20), does provide equitable

descriptions of the two states, such that the error in the

adiabatic excitation energy is very small (i.e., 0.5 kcal/mol)

and is even smaller than that (3.4 kcal/mol) by GVVPT2.

The underlying reason is that the relative importance of

primary, external and secondary contributions in SDS-MS-

MRPT2 is very similar for 3B1 and 1A1 (i.e., primary: 0.990

and 0.989; secondary: 0.141 and 0.147; external: -0.017

and -0.019).

3.3 The ground state of LiF

Thanks to the avoided crossing of the qualitatively ionic

configuration (at short internuclear distances) with the

asymptotic neutral configuration, the ground state 11Rþ

of LiF is difficult not only for single-reference methods,

but can even be for a single-state multi-reference

approach. The difficulty is compounded by the use of

modest active spaces, as found in the pioneering multi-

reference studies of Bauschlicher and Langhoff [67]. The

difficulty is exhibited in the abrupt change in the optimal

molecular orbitals appropriate for an ionic configuration

from those appropriate for a neutral configuration.

Because of this, a balanced treatment using orbitals from

a single-state method (even CASSCF used here) is

problematic even for variational approaches like

MRCISD. Of course, the difficulty can be addressed with

larger active spaces or with state averaging (i.e., a MS

approach).

The SDS-MS-MRPT2 calculations were performed

using the same basis set and active space as did Bau-

schlicher and Langhoff [67]. A ð9s4p=3s2pÞ double split

valence basis was used for lithium [68] and a

ð9s6p1d=4s3p1dÞ augmented polarized double split

valence basis was used for fluorine [65–67]. The model

space is spanned by all the MS ¼ 0A1 determinants can be

obtained by distributing the five 2p electrons of fluorine

and the 2s electron of lithium among the r (a1 in C2v

symmetry), p (b1 and b2), r� and p� orbitals. While the

current software cannot make full use of non-Abelian point

group symmetry, the MCSCF program ensures that only

the orbitals of correct K-quantum number were used. As in

the original Bauschlicher and Langhoff study, the ener-

getically lowest three orbitals were kept doubly occupied.

Since the FCI energy depends on the precise nature of such

core-like orbitals, FCI calculations were performed at all

the reported geometries. Indeed, the dependence of solu-

tions on the core orbitals is so severe for LiF that it persists

even for FCI. The FCI energies relative to its minimum are

plotted in Fig. 1, using the right ordinate. It is seen that the

FCI solution changes abruptly (i.e., discontinuously in the

first derivative) from one type of solution to the other at

slightly less than 11.8 a.u. For comparison, single-state

CASSCF predicts this change to occur close to 12.0 a.u.

Consequently, post-MCSCF perturbative treatments are

required to use the qualitatively wrong set of orbitals in the

interval between 11.8 and 12.0 a.u. Nonetheless, the pres-

ent SDS-MS-MRPT2 does predict a smooth curve with a

transition around 11.5 a.u., just like GVVPT2 which

guarantees the continuity. Since the agreement of SDS-

MS-MRPT2/GVVPT2 with FCI is so good, only the

deviations of SDS-MS-MRPT2/GVVPT2 from FCI are

plotted in Fig. 1, using the left ordinate. Also, plotted in

Fig. 1 are the results of calculations without the secondary

state. It can be seen that these calculations (olive squares)

essentially coincide with those using the second lowest

state as the secondary state, but are not in as good agree-

ment with those from the projected secondary state (7) or

GVVPT2. Note in passing that metastable solutions of

SDS-MS-MRPT2/GVVPT2 were also found beyond the

transition point (i.e., nonionic solutions at less than 11.5

a.u. and ionic solutions at greater than 11.5 a.u) that

qualitatively resemble the correct FCI curves.

Table 3 Deviations of CASSCF, GVVPT2, SDS-MS-MRPT2 and

MRCISD from FCI for the singlet and triplet energies (in a.u.) and

excitation energy (DE in kcal/mol) of CH2

FCIa CASSCF GVVPT2 SDS-MS-

MRPT2

MRCISD

3B1 -39.046260 0.080306 0.009966 0.015224 0.001332

1A1 -39.027183 0.081654 0.015408 0.016058 0.001379

DE 11.97 0.85 3.41 0.52 0.03

a Ref. [64]

Fig. 1 The FCI potential energy curve of 11Rþ LiF (black line, right

ordinate) and energy errors for GVVPT2 (blue line, left ordinate),

SDS-MS-MRPT2 with secondary states defined by the projection (7)

(red line, left ordinate), SDS-MS-MRPT2 with secondary states being

the NP þ 1 to 2NP solutions of the projected Hamiltonian PHP (olive

line, left ordinate) and SDS-MS-MRPT2 without secondary states

(olive squares, left ordinate). The crossover of the FCI ionic and

covalent solutions is indicated by the vertical line
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Further insight into the characteristics of the primary,

secondary and external functions of SDS-MS-MRPT2 can

be obtained by plotting their expectation values as a

function of the internuclear distance. It can be seen from

Fig. 2 that the values vary smoothly with geometry, except

for the ionic-covalent transition point, and corroborate the

protocol of treating the primary–external interactions per-

turbatively and the primary–secondary interactions varia-

tionally. Moreover, it is hardly surprising that qualitatively

different external (and secondary) functions are needed for

describing the ionic and covalent configurations.

We take the opportunity to demonstrate the orbital

effects by plotting the energy difference between

calculations using the two-state-averaged and single-state

CASSCF orbitals, see Fig. 3. It is seen that the changes in

the CASSCF energies are profound and highly variable, i.e.,

going from 15.3 mEh at the dissociation limit to a maximum

of 57.6 mEh at 4.5 a.u. The situation is markedly improved

by SS-MRPT2, whose maximum deviation from FCI is 16.0

mEh at 9.5 a.u. and minimum deviation is -1.0 mEh at the

dissociation limit. Yet, there still exists a broad peak around

the inversion point to be discussed below. In contrast, SDS-

MS-MRPT2 performs much better, with the variations in

the range only from -0.7 to 6.6 mEh and without sharp

features. It is interesting to note that even FCI has a weak

dependence on the orbitals, ranging from -0.1 to 1.2 mEh.

3.4 LiF excitation energies

The excitation energy from 11Rþ to 21Rþ of LiF as a

function of geometry is difficult to calculate accu-

rately [67]. The difficulty arises from several factors. First,

the excitation energies at short distances and near the

avoided crossing differ by two orders of magnitude (see

Fig. 4). Second, the region near the avoided crossing is

problematic because of the significantly different natures of

optimal orbitals for the ionic and covalent states (see

above). Third, the interplay between static and dynamic

correlation is subtle near the avoided crossing, to the extent

that a two-state SA-CASSCF treatment predicts a closest

approach distance displaced by over 3 a.u. from that of

FCI. Specifically, the FCI minimum excitation energy (ca.

3.6 mEh) occurs near 11.75 a.u., whereas that (ca. 21 mEh)

of SA-CASSCF is reached around 8.5 a.u. Consequently,

Fig. 2 Expectation values of primary (black), secondary (red) and

external functions (olive) as function of LiF bond length. The FCI

energy curve (blue dashed, right ordinate) and ionic-covalent

transition point are included for reference

Fig. 3 Difference between calculations using state-averaged and

single-state CASSCF orbitals for the energies of 11Rþ LiF. The FCI,

CASSCF, SS-MRPT2 and SDS-MS-MRPT2 results are in black, red,

blue and magenta, respectively

Fig. 4 Potential energy curves of 1,2 1Rþ LiF relative to the

minimum of the lowest curve. The 11Rþ (21Rþ) curves of FCI, SA-

CASSCF, SS-MRPT2 and SDS-MS-MRPT2 are in solid (dashed)

black, blue, olive and violet, respectively. Inset shows magnified view

of the region near avoided crossing
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the dynamic correlation must in some sense undo the

problems introduced by SA-CASSCF.

SA-CASSCF calculations, with an equal weight for the

two states, were performed to generate the orbitals for

subsequent SS-MRPT2, SDS-MS-MRPT2 and FCI calcu-

lations. It turns out that SS-MRPT2 not only fails to predict

the avoided crossing, but also produces an inverted order of

states for a range of distances (see Fig. 4, especially the

inset). Specifically, from ca. 9.0 to ca. 10.5 a.u., the SS-

MRPT2 state based on the second CASSCF wave function

is energetically lower than that based on the lowest

CASSCF wave function. In particular, the inversion

reaches a maximum of ca. 7 mEh near 9.5 a.u. As can be

seen from Fig. 5, SDS-MS-MRPT2 has a NPE of 13.0 mEh

for the gap over the entire range, which amounts to 5 % of

the FCI gap variation of 260.2 mEh. Moreover, there are

not any abrupt changes in the gap error. In contrast, the

NPE for SS-MRPT2 is three times larger (39.1 mEh) and

has a relatively sharp maximum. Even if one always chose

the lowest energy solution, which would result in two

geometries where the first derivatives are discontinuous,

the NPE would still be 31.8 mEh. The SA-CASSCF NPE

error for the gap is about twice as large (i.e., 76.9 mEh).

3.5 Numerical test of size extensivity

The so-called size extensivity, viz., the property of the

calculated energy to scale linearly with system size, is

highly desirable. Unfortunately, achieving this ideal is

difficult, especially for multi-reference approaches. A strict

enforcement of this property is generally accompanied by

additional approximations to the wave function [69].

Incorporating other desirable properties, such as smooth

and global dissociation curves, is generally accompanied

by some variational character, which in turn often intro-

duces or enhances size inextensivity. A pragmatic approach

is to view size inextensivity as yet another source of error

and to assess its magnitude and characteristics. It is this

approach that is adopted herein.

Consider an arrangement of multiple H2 molecules,

separated by sufficiently large distances such that interac-

tions between the monomers are negligible. For a size-

extensive method, the energy of a system composed of n

subsystems is exactly n times the energy of a single

monomer. To assess the characteristics of SDS-MS-

MRPT2, two H2 molecules were placed in parallel with

their centers separated by 40 a.u. Another system of three

H2 molecules was constructed similarly. The experimental

equilibrium distance was adopted for each monomer. The

model spaces were generated by constructing all the Rþg
determinants from the Ms ¼ 0 distributions of electrons

among the 1rg and 1ru molecular orbitals. The cc-pVDZ

basis set [63] was used. The SDS-MS-MRPT2 results with

and without the secondary states are given in Table 4.

Several observations can be made here. First, the size-ex-

tensivity errors (SEE) of SS-MRPT2 are fairly small (in the

sub-milihartree range), which are further reduced by an

order of magnitude by SDS-MS-MRPT2. Even in the worst

case, the SEEs of SDS-MS-MRPT2 are just dozens of

mircohartees. It appears that the final diagonalization step

of SDS for relaxing the dynamic correction to the original

static correlation tends to correct for SEE. Second, the

SEEs of SDS-MS-MRPT2 grow as neðne � 1Þ=2, following

the underlying MRPT2. Such functional dependence is also

similar to that of MRCISD, suggesting that coupled-

Fig. 5 Deviations of SA-CASSCF (black), SS-MRPT2 (red) and

SDS-MS-MRPT2 (blue) from FCI for the energy gap between 21Rþ

and 11Rþ of LiF

Table 4 SS-MRPT2, GVVPT2

and SDS-MS-MRPT2 energies

(in a.u.) of noninteracting H2

molecules

DE ¼ EððH2ÞnÞ � nEðH2Þ (in

mEh)
a With secondary functions
defined by Eq. (7)

b Without secondary functions

MRPT2 GVVPT2 SDS-MS-MRPT2

E DE E DE E DE

H2 -1.15990714 0 -1.15985885 0 �1:15991642a 0a

�1:15985632b 0b

ðH2Þ2 -2.31991288 -0.09861 -2.31982751 -0.10981 �2:31984155a �0:00870a

�2:31970817b 0:00447b

ðH2Þ3 -3.48001970 -0.29829 -3.47989228 -0.31573 �3:47977656a �0:02728a

�3:47955577b 0:01319b
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cluster-based corrections [56–58] can be employed to

reduce the SEE [59]. Third, the SEEs of SDS-MS-MRPT2

with and without secondary functions bracket the size-

extensive results. This suggests that it is possible to modify

SDS-MS-MRPT2 such that no SEE would arise regardless

of the treatment of dynamic correlation. Alternatively, the

SEEs could first be eliminated from the underlying

dynamic calculation, with better balanced choice of

H0 [70]. However, the already very small SEEs of SDS-

MS-MRPT2 raise the question whether such refinements

are of practical value at all. By contrast, it is more

straightforward to relax the contraction of the external

functions and/or iterate the diagonalization–perturbation–

diagonalization procedure, so as to improve steadily the

accuracy of SDS-MS-MRPT2.

4 Conclusions

A new framework for treating strongly correlated electrons

is suggested, which is related to, but more flexible than,

intermediate Hamiltonian approaches that follow a

sequence of first static, then dynamic and then again static.

It is unique in that it neither develops a final answer in a

space of the same dimensionality as the original unper-

turbed (contracted) reference functions (e.g., as do MS-

CASPT2 and MS-MCQDPT) nor expands to a final inter-

mediate Hamiltonian that has the same dimensionality as

the entire original model space (e.g., as does GVVPT2).

Instead, for NP reference functions, NP correlation func-

tions are generated, as are another NP functions in the

model space. That is, the final space is of dimension 3NP,

in which the Hamiltonian (or an approximation to it) is

represented and diagonalized. In essence, the external

vectors, generated in whatsoever way, are treated as inde-

pendent functions, such that the approach is best charac-

terized as a CI rather a genuine intermediate Hamiltonian

approach. In the SDS-MS-MRPT2 realization, the diagonal

(first order) external function block of the Hamiltonian is

approximated by a Møller–Plesset-like operator that

maintains the Oðn5Þ scaling of second-order perturbation

theory with system size. Yet, SDS-MS-MRPT2 is still a CI-

like rather than a perturbation approach.

Because of the flexibility and the controlled dimen-

sionality of the EH, the wave functions are both resilient to

small, unphysical denominators (which often plague

MRPTs) and retain the ability for static correlation to

respond to the effect of dynamic correlation. Indeed,

numerical tests on the acknowledged problematic avoided

crossing of the lowest two energy curves of LiF showed

that SDS-MS-MRPT2 did not require any level shifts of

either orbital or state energies. Of course, level shifts can

simply be introduced if a situation so requires. Numerical

tests on the symmetrically stretched H2O, the singlet-triplet

excitation energy of CH2, and the dissociation of LiF

showed that the performance of SDS-MS-MRPT2 is very

close to that of GVVPT2, which is rigorously continuous

and has previously been shown to be accurate. Moreover,

SDS-MS-MRPT2 reproduced faithfully the kink in the FCI

curve of the ground state of LiF, when the unusual choice

of active space inherent in the LiF model problem was

used. Although not strictly size extensive, the already very

small SEE of SDS-MS-MRPT2 can likely be cured by

simple modifications.

Last but not least, the suggested framework is general

and applicable to most, if not all, methods for treating

dynamic correlation. In particular, relaxing the contraction

of the external functions and/or iterating the diagonaliza-

tion–perturbation–diagonalization procedure would allow

for progressive accuracies.
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Appendix: String-based macroconfigurations

Since their introduction into quantum chemistry by

Knowles and Handy [41], representation of determinants as

separate strings of ms ¼ 1
2

(alpha) occupancies and ms ¼
� 1

2
(beta) occupancies have become well entrenched [42–

44]. This representation has several distinct advantages,

e.g., the simple coupling coefficients (either -1, 0 or 1) and

the compact independent indexing of alpha and beta strings

(i.e., pruned binomial trees). However, extension of this

concept, originally designed for FCI, to more complicated

calculations that have multiple groups of orbitals (e.g.,

MRCISD with core, valence and virtual orbitals) has gen-

erally been accompanied by a reduction in some of the

advantages of the original method. In the SDS framework

introduced in this work, including its MRPT2 realization,

there is a special need to limit excitations between partic-

ular groups of orbitals.

The partitioning of orbitals into arbitrary groups toge-

ther with assigning fixed number of electrons for each

group, i.e., a macroconfiguration ji ¼ G
N

j1
1

1 G
N

j2
2

2 . . .G
N

jg
g

g ,

has been shown to lead to both reliable means of generating

complete and incomplete model spaces and computational

efficiencies [40]. The advantages of articulating parts of

the Hilbert space with macroconfigurations and the

advantages of representing determinants with strings would

seem to be incompatible. However, we demonstrate that

this is not the case.

The critical insight that allows full use of both the

concepts of macroconfigurations and strings is the notion of
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spectator groups. Suppose that a class of excitations from a

set of ket determinants to another set of bra determinants

can be characterized as a one-electron excitation from

group Gj to Gi and another from Gl to Gk. A concrete

example is depicted in Fig. 6. In this example, there are

four orbital groups, corresponding to eight spin-orbital

groups. The indices of the generated strings within groups

Gk and Gi can be calculated straightforwardly as walks on a

(universal) pruned binary tree, as in the original work of

Knowles and Handy. The indices of the strings within Gl

and Gi are even simpler, as they can be generated

sequentially. The key to efficiency is that the product of the

resulting coupling coefficient multiplied by the two-elec-

tron integral [i.e., ðijjklÞ] is identical for every bra/ket pair

that shares identical walks in the spectator groups (i.e.,

groups 1, 3, 5 and 8 in the considered example). It can be

appreciated that the number of bras and kets sharing this

matrix element could be very large (e.g., if group 8 is the

beta excited orbitals and there are two electrons in this

group, then its contribution alone can be on the order of

10,000 for a modest molecule using a triple split valence

one-electron basis set).

Sharing the single matrix element by a truly large

number of bra/ket pairs can only occur if the indexing of

the bra and ket determinants can be done efficiently. This is

accomplished by precomputing the base index of each

group of the bra and ket macroconfigurations. For example,

each walk within group 3 is offset from the previous one by

the product of the total number of walks in group 2 mul-

tiplied by the total number of walks in group 1. Then,

fragments of walks up to and including group 3 can be

computed as the contribution from groups 1 and 3 added to

the contribution from group 2. Since the contributions from

groups 1 and 3 do not change as a result of the class of

excitations connecting the ket and bra macroconfigurations,

the sequence of contributions to the overall indices from

the spectator groups can be precomputed at the macro-

configuration level.

The described algorithm is clearly not dependent on the

number of spin-orbital groups. This allows one further

efficiency in that Abelian molecular point group symmetry

restrictions can be imposed at the macroconfiguration level,

provided that each spin-orbital group contain only spin

orbitals that transform as the same irreducible representa-

tion. In practice, this requires a sequestering of spin orbitals

for each group of occupation-restricted orbitals. For

example, if the CASSCF active orbitals transform as, say,

two of the irreducible representations of the molecule, then

four groups of spin orbitals would be generated.

The described algorithm is applicable to any partitioning

of the Hilbert space that can be represented as direct sum of

determinants generated from macroconfigurations. This

includes all finite-order PT, including multi-reference

variants, of present interest, as well as (multi-reference) CI

and CEPA methods. Consequently, the computational

realization was straightforwardly validated against well-

established computer programs.
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Abstract The singlet–triplet splittings of the di-radicals

methylene, trimethylene–methane, ortha-, meta- and para-

benzynes, and cyclobutane-1,2,3,4-tetrone have become

test systems for the applications of various multi-reference

(MR) coupled-cluster methods. We report results close to

the basis set limit computed with double ionization

potential (DIP) and double electron attachment (DEA)

equation-of-motion coupled-cluster methods. These di-

radicals share the characteristics of a 2-hole 2-particle MR

problem and are commonly used to assess the performance

of MR methods, and yet require more careful study unto

themselves as benchmarks. Here, using our CCSD(T)/6-

311G(2d,2p) optimized geometries, we report DIP/DEA-

CC results and single-reference (SR) CCSD, CCSD(T),

KCCSD(T) and CCSDT results for comparison.

Keywords Singlet–triplet separations �Methylene � DIP �
DEA � Benzyne � Multi-reference � Equation-of-motion

coupled-cluster

1 Introduction

The treatment of some classes of multi-reference problems

can be found by exploiting single-determinant reference

states composed of a different number of particles from that

of the MR target state, with subsequent addition or removal

of excess electrons to define the N-particle states of inter-

est. The idea originates in work by Nooijen and Bartlett [1]

on using the double ionization potential similarity trans-

formed equation-of-motion (DIP-STEOM-CC) and its

complementary double electron attached variant (DEA-

STEOM-CC). This was used to treat the vibrational fre-

quencies of ozone from a formally O3
-2 reference and

certain states of the NO dimer [2] relative to the closed

shell (NO)2
?2. An equation-of-motion coupled-cluster

method without the second similarity transformation of

STEOM, for adding (DEA) or removing (DIP) two elec-

trons from an underlying single-reference system has been

proposed [3–5] with planned extension to three (TIP/TEA)

[6, 7] or four (QIP/QEA). The method has several attrac-

tive features that make the approach worth pursuing. These

include the following:

1. The ansatz has a global extensive part, exp Tn�2ð Þ n� 2j i
based on a closed shell n ± 2 reference vacuum and a

local correlation intensive part, whose wave function is

wj i ¼ Rn�2 exp Tn�2ð Þ n� 2j i, where Rn�2 is the CI-like

right-hand eigenvector in EOM-CC. This has the

advantage that instead of asking a fully extensive MR-

CC method to account for dynamic and non-dynamic

correlation effects, the intensive part allows one to target

the usually local multi-reference behavior.

2. As long as the |n ± 2i reference is closed shell, the

target states are automatically spin-eigenfunctions. The

guarantee of a spin-eigenfunction is not always

achievable in most SR-CC or MR-CC methods.

3. The DIP/DEA-EOM-CC wavefunction is operationally

single reference making it as easy to apply as single-

reference CC, with no decisions for the user but basis

set, level of correlation and a choice of the one spatial

active orbital to doubly occupy in the n ? 2 vacuum
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(usually the LUMO), or to un-occupy in the n - 2

vacuum (usually the HOMO).

4. The DIP/DEA-EOM-CC is invariant to active orbital

rotations by virtue of the active orbitals being in either

the occupied or the unoccupied space.

5. Multiple states can be obtained from the EOM matrix

diagonalization providing excited states as well as the

ground state. So in the event that other occupied

orbitals in DIP or virtuals in DEA interact strongly

with the chosen active orbital, then that solution occurs

as well, and will appear as one of the eigenvectors.

This helps to confirm the particular orbitals that

manifest MR character and if there are more than

two, might suggest a subsequent TIP/TEA or QIP/QEA

calculation. The price paid for these attractive features

is that each stage of the calculation has to be

converged: first the SR-CC solution for the n ± 2

closed shell system, then the DEA/DIP-EOM solution

itself. Because of orbital dependence in these calcula-

tions, the DIP solution in particular can sometimes be

difficult to converge.

This contribution addresses single–triplet splitting in

di-radicals, which have been considered a proving-ground

for multi-reference methodologies. These include gen-

eralized SR-CC [8–10], renormalized CC [11–13],

KCCSD(T) [14–17], spin-flip [18–20] and hybrids like

reduced multi-reference [21–24]. There are also more

complete state-universal (SU) forms along with the state-

specific Brillouin-Wigner (BW) [25–28], Mk version [29–

32], or the internally contracted form [33, 34]. The singlet

states involved tend to manifest most of the multi-refer-

ence character, since they can vary from a two-determi-

nant open-shell singlet, for which there are other methods

available (TD-CCSD [35, 36]) to a GVB when a bond

starts to form, or to situations where all four determinants,

as shown below (see Fig. 1), could have a large role in

the wave function. The triplet, on the other hand, can

frequently be described well by standard ROHF or UHF

SR-CC using the high-spin determinant as the reference,

but here, both states are described with DIP/DEA. The

following outlines the theory and discusses its applica-

tions to singlet–triplet splittings (S-T splitting) in a vari-

ety of di-radicals.

2 Theory

The wavefunction ansatz for a potentially MR n-particle

state is

wkj i ¼ Rn�2
k exp Tn�2

� �
n� 2j i ð1Þ

The n ± 2 solution is a single-reference CC one, but for

n ± 2 electrons while the Rn�2
k

Rn�2 ¼ R rij ijf g þ raijk ayijk
n oh i

¼ Rn�2
2h þ Rn�2

3h1p ð2Þ

and

Rnþ2 ¼ R rab ayby
n o

þ rabci aybycyi
n oh i

¼ Rnþ2
2p þ Rnþ2

3p1h

ð3Þ
restores the n-particle solutions, by either removing or

adding two electrons to the underlying SR-CC solution,

Un�2
 � ¼ exp Tn�2

� �
n� 2j i ð4Þ

for the n ± 2 electrons. The operators are indicated in

normal order {}, with i, j, k,… indicating occupied orbitals

or holes and a, b, c,… particles or unoccupied orbitals.

Then inserting this ansatz into the Schrödinger equation

using the usual EOM-CC strategy, we obtain

�Hn�2Rn�2
k n� 2j i ¼ xkR

n�2
k n� 2j i ð5Þ

which provides the n-particle k-states of interest via

the EOM-CC diagonalization. The quantity �HN�2 ¼
exp �Tn�2ð ÞH expðTn�2Þ, is defined from the CC reference-

state wavefunction, Uðn�2Þ,

En�2
CC ¼ n� 2h j �Hn�2 n� 2j i ð6Þ

Qn�2 �Hn�2 n� 2j i ¼ 0: ð7Þ
In two steps, DIP/DEA-EOM-CC [3] provides solutions

for different k-states via matrix diagonalization with two-

orbital, two-electron MR character. To involve more

orbitals and electrons in a MR description, say 3 or 4,

requires the TIP/TEA and QIP/QEA extensions. Because

�Hðn�2Þ is non-Hermitian, there is also a left-hand eigen-

vector, n� 2h jLk �Hn�2 ¼ n� 2h jLkxk, which, unlike the

right-hand eigenvector, is not connected to �Hn�2. Both are

required in the treatment of properties. The treatment of

Fig. 1 Reference determinant
and achieved static correlation

in DIP-CCSD scheme
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properties in EOM-CC is well known [37], and the same

methods can be used for the DIP/DEA-EOM-CC solutions.

The above procedure is MR for the target states. For a

normal n-particle reference double anion state, as shown on

the left in Fig. 1, the HOMO is I and the LUMO is A.

Starting from the artificial closed shell nþ 2j i vacuum that

doubly occupies A (see Fig. 1), the DIP-EOM operator,

R̂DIP
k ¼ R̂n�2

k generates all four of the determinants that a

MR space would demand. As each of these determinants

will be weighted by the coefficients in the CI-like operator,

Rn�2
k , their contribution to the final wavefunction is deter-

mined by matrix diagonalization allowing any coefficient

to be as large as required in the MR description.

Analogously, an |n - 2i vacuum state would consist of

removing electrons from the HOMO (I) to define a ‘‘core’’

vacuum, and R̂DEA
k ¼ R̂nþ2

k produces the same four deter-

minants by adding two electrons in all possible ways into the

two quasi-degenerate orbitals. In these methods, the MR

space is naturally introduced after doing a SR-CC calcula-

tion for the n ± 2 problem. The size-extensive SR-CC result

handles dynamic correlation; the EOM diagonalization

properly introduces the intensive, or local, part of the cor-

related wavefunction to account for non-dynamic or static

correlation. The former pertains to the left–right correlation

for bond breaking subject to an incorrectly separating RHF

reference function, while the latter means the kind of cor-

relation required to get the multiplets of complicated open

shell systems like transition metal atoms right, of which

being a spin-eigenfunction is important.

If we started from a more traditional MR viewpoint, we

would add to the four determinants shown in Fig. 1, single and

double excitation to build a MR-CI wavefunction. The role of

the 3h1p term in Eq. 3 does exactly that for single excitations

of the two-hole MR space. So we view the rij as the coefficients

of the four-determinant MR space, c, with the raijkðrÞ corre-

sponding to additional single excitations (s) among these four

determinants, such that R = C?S. In principle, from the CI

part of the DIP ansatz, we could add 4h2p, 6h4p…., leading to

the full CI limit. The exponential part of the ansatz is SR-CC

theory, but for n� 2j i. Other recent work has numerically

considered 4h2p and 4p2 h terms beyond the 3h1p and 3p1h

terms considered above subject to an active orbital space [38].

Assuming no and nv are the number of occupied and virtual

orbitals, respectively, the 3h1p DIP-EOM and STEOM-

CCSD scales as n4
onv while the 3p1 h DEA-EOM and

STEOM-CCSD scales as n4
vno. The TIP, QIP … analogs

increase the 3h1p DIP and 3p1h DEA scaling by ðnonvÞp,
where p = 1 for TIP, p = 2 for QIP… of respectively.

The distinction between the CI part and the CC part is

pertinent. A response theory like EOM-CC focuses on the

ground state, with all other states being derived from the

ground state. These 3h1p terms would arise from the MR-CI

viewpoint for the target state. It turns out that these terms are

extremely important numerically, much more so than are the

reference-state triples contributions [5]. In Ref. [5], we

demonstrated that 3h1p terms are sufficient to account for

triples in the ground and target state. It also suggests the

alternative designation (MR)-EOM-DIP-CC, with the MR

space created by the DIP operator, but then single excitations

are taken among those functions as they would be in MR-

CIS, while the CC part of the problem can be restricted to just

CCSD. If 4h2p and 2 h4p terms are important, then this

addition would be analogous to MR-CISD.

There is no doubt that the large effects of single excita-

tions are mostly due to the need for orbital relaxation fol-

lowing the introduction of the n� 2j i vacuum. Any orbitals

can be used to build this vacuum state, so there is no unusual

dependence on actually using the ‘‘core’’ orbitals for DEA

cases, as other choices can work fine. Similarly, the use of

n ? 2 dianion orbitals are possible, though they would be

strongly discouraged for DIP calculations on the basis of

being unphysical, yet in modest basis sets they are sufficient.

The n-particle HF orbitals are generally superior to dianion

orbitals since some of the unphysical aspects that can occur

in the dianion orbitals are suppressed, but not all. Regardless

of orbitals choice, the SR-CC for the n ? 2 vacuum has to

offer the full CI description of the dianion in the limit, which

would be unphysical for most problems. But for many

applications the degree of coupling to the continuum can be

controlled in various ways with constraining potentials or

with continuum absorbing potentials, e.g., So, the choice of

orbitals is the first step. This is our argument in favor of

n-particle orbitals. The n-particle reference orbital can be

generated by a variety of ways. Our choices have been

n-particle system using fractional occupations (to better

account for near degeneracy), energetically close triplet

state’s orbitals, the unrestricted natural orbitals etc. The

working assumption for using n-particle orbitals is that if one

starts from n-particle orbitals and constructs a n ? 2 state,

the subsequent CC step would more easily provide the cor-

rect description for DIP calculations. Nevertheless, like other

problems where continuum effects would be formally

expected (finite field treatment of electric properties [39, 40]

and DFT for anions [41]), the fact that the solutions are

represented in a L2 basis also partially ameliorates the

problem. Nevertheless, we should be aware of this issue.

Prior wok considered several different orbital choices [3],

while future work will investigate the orbital dependence of

results more thoroughly.

3 Methodology

The geometries are optimized at the RHF-CCSD(T) [42–

44] /6-311??G(2d,2p) [45] level of theory for the singlet
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states and with its UHF counterpart for triplet states. The

one exception to this is the singlet state of para-benzyne,

whose complex electronic structure warrants special con-

sideration. The harmonic vibrational frequencies are com-

puted to verify that the optimized structures are minima

and to obtain the zero-point energies. In the case of para-

benzyne, the symmetry is lowered from D2h to the C2v

subgroup to obtain a symmetry broken reference state that

has partial diradical character (unpaired electrons localized

on carbon atoms at para-positions). This will be further

discussed in the section on benzynes. The single-point

energy calculations employ cc-pVDZ, cc-pVTZ and cc-

pVQZ basis sets [46]. Both the dication and neutral refer-

ence orbitals are used for DEA calculations, while for DIP

either neutral, dianion or Brueckner are used on a case by

case basis. The basis set limit results are obtained with the

two point extrapolation scheme [47, 48]. The optimized

geometries, the vibrational frequencies, CCSD, CCSD(T),

KCCSD(T) energies are obtained with the ACES II [49]

program while the DEA results are obtained with ACES III

[50]. Spherical basis functions are used.

4 Results and discussion

4.1 Methylene

The singlet–triplet splitting of the prototype diradical

methylene has been the subject of numerous studies [19,

51–61] and spurred a historically significant narrative of

the interplay between theory and experiment [51, 53].

Isaiah Shavitt’s role in this saga deserves special mention

[52]. The methylene radical has a triplet 3B1 ground state,

which is single-reference in nature. The electronic config-

uration of the Ms = 0 component of the 3B1 state is

3a1
1ab

1
1b

� �� b1
1a3a1

1b
� �

, but can be well described using

the Ms = 1 component 3a1
1ab

1
1a

� �
as a reference for SR-

CC. The corresponding singlet configuration 3a1
1ab

1
1b

� �þ
b1

1a3a1
1b

� �
gives a 1B1 state that is higher in energy than the

1A1 state (the state labeling corresponds to the C2v irre-

ducible representations (irrep.) with the x direction

belonging to the B1 irrep.). The singlet 1A1 state is partially

multi-reference in nature, represented in zeroth order by

two reference determinants, c1 3a2
1

� �þ c2ð2a2
1b

2
1Þ. The

experimentally measured singlet–triplet (S-T) splitting is

between the 1A1 and 3B1 states. All of this spectroscopic

information may be found in the aforementioned literature.

The most accurate experiments [62] measure the S-T

splitting of methylene with zero-point energy (ZPE) to be

8.998 ± 0.014 kcal/mol (T0) and the S-T splitting without

zero-point energies to be 9.215 kcal/mol (Te) (also see

Refs. [57, 63]). The computed ZPE correction at the

CCSD(T)/6-311??G(2d,2p) level is ?0.44 kcal/mol

(triplet having the larger ZPE correction). The computed

Born–Oppenheimer and relativistic corrections are -0.11

[64], -0.04 [56], respectively. Though there is little but

historical reason for freezing the core, when doing so there

is a core polarization correction of ?0.37 kcal/mol (triplet

has the larger core polarization effect) which we obtain at

the CCSD(T)/cc-pCV5Z level, also confirmed in previous

estimates [60]. Subtracting these corrections from the

experimental value, we obtain a frozen core value of

8.99 kcal/mol to offer an experimental analog that can be

compared with valence-only computed single-point ener-

gies. The often-quoted experimental value, 9.37 kcal/mol

is the all electron Te value subtracting only the Born–

Oppenheimer and relativistic corrections.

Unlike some prior MR-CC calculations on CH2 singlet–

triplet splitting calculations that relied on CISD/DZP [51]

geometries, we choose to obtain geometries for each state

as above. It has been shown that in general

CCSD(T) geometries on single-reference cases are accu-

rate to within 0.01 Å [47]. Obviously this estimated error

does not directly translate into the estimated errors for

systems that have MR character, but the general insensi-

tivity to small geometry changes should not affect the

results much—nonetheless we consider the effect. The

6-311??G(2d,2p) basis is approximately of the same

quality as cc-pVTZ in practice, but has some diffuse

functions, should they be necessary. There is indeed some

variation in the geometries of the singlet; the previously

used value of 1.118 Å is slightly longer than our 1.109 Å

value; the previous angle of 102.4� is slightly wider than

our 101.7�. For the triplet, our bond length is 1.077 Å,

compared to the previously reported 1.083 Å; the previous

angle of 132.4� is very slightly tighter than our 133.3�.
A collection of previously published S-T splitting using

various forms of MR-CC methods are presented in Table 1.

Our DEA-CCSD results along with CCSD, CCSD(T),

KCCSD(T) and CCSDT results obtained at the CCSD(T)/

6-311??G(2d,2p) geometry in various basis sets, are

shown in Table 2.

The S-T splitting is obtained as a difference of the two

separate individual energy calculations for the singlet and

triplet. Those individual singlet and triplet calculations do

not necessarily have to be by the same method, and in fact,

the majority of the results in Table 1 use composite

methods in which the singlet and triplet are treated by two

different methods (primarily the singlet as a MR state while

the triplet is SR). RMR indicates the reduced multi-refer-

ence approach of Li and Paldus [58]. The TD-CCSD of

Balkova and Bartlett [54], an early SU-CCSD application,

provides two roots simultaneously at each geometry. This

SU-CCSD calculation introduced GVB CCSD as a two-

determinant reference. The MR-BW is a state-specific MR

Theor Chem Acc (2014) 133:1514

123 Reprinted from the journal156



description, as is MR-Mk-CCSD. The latter is size-exten-

sive, but no invariant to active orbital rotations, while MR-

BW requires an a posterior extensivity correction.

The predicted energy differences differ from the

experimental results by up to 0.2 kcal/mol, despite basis

saturation. In the sense of agreement to experiment, the

two-determinant CCSD would appear to perform very well.

The TD-CCSD (GVB) SU-CCSD calculation done used a

large ANO basis. It appears to have the right mix of MR

character for the 1A1 and 3B1u states.

In Table 2, we show the new results as a function of

basis set. The DIP and DEA-EOM are direct methods in the

sense that they provide multiple roots at a given geometry,

but the differences shown reflect the two geometries

involved. Whereas CCSD is clearly off by[1 kcal/mol, the

basis set limit CCSD(T) is quite accurate. Though it is

expected that KCCSD(T) should be better than

CCSD(T) for MR problems [16, 17], we see little differ-

ence here. CCSDT is excellent regardless of the MR

character (a previously reported aug-cc-pVTZ CCSDT

result is 0.52 kcal/mol larger than the current extrapolated

value [66]). DEA-EOM-CCSD performs very well. DEA-

STEOM seems not to do as well as its EOM counterpart.

The most notable result is for DIP-EOM. Methylene is

sufficiently small that its dianion state, which at least has to

converge as a SR-CC (n ? 2) to start the procedure,

appears to fail as a function of basis, despite using n-par-

ticle HF orbitals instead of di-anion orbitals. For larger

molecules and smaller basis sets, the continuum effects

encountered in the description of the di-anion are amelio-

rated enough to successfully use the method, but apparently

not for methylene near the basis set limit, contrary to some

other results in the literature [38]. When we use their TZ2P

basis and the di-anion orbitals, the S-T gap is 6.0 eV. Using

UHF triplet orbitals (and the TZ2P basis), the DIP result is

10.8 eV consistent with their active space restricted value

(we note that the convergence of DIP equations with such

choices of orbitals is extremely slow, and in some cases, it

is difficult to achieve the desired strict levels of

convergence).

4.1.1 Trimethylenemethane (TMM)

The singlet–triplet splitting of TMM has been the subject

of numerous studies [19, 55, 58, 59, 67–73]. TMM has five

relevant quasi-degenerate spectroscopic states, 1A1, 1B2,
3A0(3B2), 1B1 and 3B1. The three lowest energy states are
3A0(3B2), 1A1 and 1B1. The experimentally measured sin-

glet–triplet splitting for TMM is between the 1A1 singlet

state and the 3A02 triplet state. The 1A1 state is C2v and

planar, and is best described by two-determinant electronic

Table 1 Methylene singlet–triplet splitting obtained with MR

methods (in kcal/mola)

3B1
1A1 Basis

cc-pVDZ cc-pVTZ cc-pVQZ cc-pV5Z

CCSDb RMR 12.04 10.42 9.84 9.74

SU-CCSDb RMR 12.20 10.71 10.17 10.08

SU-CCSDb SU-CCSD 12.04 10.52 9.92 9.76

CCSD Tð Þ2f RMR(T) 11.89 10.19 9.55 9.40

SU-CCSD(T)f
b RMR(T) 12.20 10.76 10.22 10.10

SU-CCSD(T)se
b RMR(T) 12.05 10.55 10.00 9.88

MR BWCCSDc 10.52 9.90 9.72

MR BWCCSDTc 10.18 9.51

TD-CCSDd 9.08d

FCIe 11.14e

Experimentf 8.99

a If only one method is listed for the two states, the same method is used twice

b Reference [58]; geometries come from Ref. [51], a CISD/DZP estimate. The

subscript se (size extensivity) indicate that disconnected off-diagonal Fock

matrix elements are ignored, while f means they are included. All our

CCSD(T) results for open shells use the procedure of Ref. [65] that is for-

mulated in spin-orbitals and thus does not require any further approximation

c Reference [55]

d The TD-CCSD calculations are done with a DZP basis set (for comparison

with full CI) and ANO basis set of Widmark et al. See Ref. [54] for details (the

cited result in the table is for ANO basis)

e This FCI result comes from Ref. [61], using the TZ2P basis set, freezing one

core orbital and the corresponding virtual

f This is based on the experimental result of Ref. [62], with computational

estimates of the nonadiabaticity and relativistic effects subtracted based on

refs. [56, 64], respectively. The zero-point energy differences are accounted for

in the experimental protocol. Our estimate of the core polarization comes from

CCSD(T)/cc-pCV5Z calculations

Table 2 Methylene singlet–triplet splitting at the CCSD(T)/6-

311??G(2d,2p) geometry (in kcal/mola)

cc-pVDZ cc-pVTZ cc-pVQZ 3–4 Extrap.

CCSD 12.8 11.2 10.6 10.2

CCSD(T) 12.1 10.3 9.7 9.19

KCCSD(T) 12.1 10.4 9.8 9.28

DIP-EOM-CCSD 10.3 7.4 5.5 4.1

DEA-EOM-CCSD 11.6 10.4 9.6 8.94

DEA-STEOM-

CCSD

14.0 12.6 12.2 11.8

CCSDT 11.8 10.1 9.5 9.00

Experiment-core-

ZPE-NDB

8.99

a Performed by the authors using CCSD(T)/6-311??G(2d,2p) for

geometries and frequencies. Core orbitals are kept frozen for energy

calculations. The largest T2 amplitudes of DIP and DEA calculations

of the singlet state are -0.0812 and -0.0710, respectively, and both

of them are HOMO–LUMO excitations
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configurations, a2
2 ? 2b1

2. The 3A02 state has D3h symmetry

and is commonly referred to as 3B2 in its Abelian subgroup

designation. In Fig. 2, we show our axes for the 1A1

structure and 3A02(D3h)/3B2 (C2v) structures, as these are the

relevant states for the experimentally observed singlet–

triplet splitting. In Tables 3 and 4, we compare our

CCSD(T)/6-311??G(2d,2p) geometries to other work.

It is not clear, a priori, which geometric estimate is best.

Clearly, the (10,10) active space of the CAS calculation

encapsulates the non-dynamic correlation in question, but

with a double-zeta basis set and no dynamic correlation.

Our CCSD(T) methodology is clearly superior in dynamic

correlation, and our basis set is superior, but it is unclear

how well it fares in ultimate accuracy. There have also

been prior studies using CCSD/cc-pVDZ geometries [58],

but these would be inferior to both current estimates. The

SF-DFT/6-31G(d) [19] geometries differ most widely from

the other two methodologies. The differences can be quite

significant; the lengths differ by 0.04 Å in SF-DFT com-

pared to MC-SCF(10,10) and CCSD(T). We note that there

is no consistent agreement between even any pair of

methods in describing the carbon–carbon bond lengths. It

would be of interest to see a carefully done MR-CC

geometry optimization to settle this question. As long as

such variation exists, doubt persists as to how much effect

the geometry will have on the electronic energies obtained

with multi-reference wavefunctions.

The experimental value for the singlet/triplet energy

difference is (T0) 16.1 ± 0.1 kcal/mol [68]. However, in

the literature, it is common to use a ‘‘derived experimen-

tal’’ value instead. There is some subtlety to ‘‘subtracting

out’’ the effect of zero-point energies (ZPE) on the elec-

tronic energy of the system. Some authors choose to sub-

tract off a calculated ZPE from the above experimental

value. In doing so, one assumes that the calculated geom-

etry and harmonic frequencies are the same as those in the

experiment. A commonly used estimate for the harmonic

Fig. 2 a 1A1 C2v structure b
3A02D3h structure. c Relationship

among the TMM states. The

primary axis is always the

z axis, perpendicular to the

plane of the molecule. The

x axis, in C2v, is the B1

irreducible representation

Table 3 The structure of 1A1 C2v state (bond lengths are in Ang-

stroms, and angles are in degrees)

CCSD(T)/

6-311??G(2d,2p)

MC-SCF(10,10)/

cc-pVDZ

SF-DFT/

6-31G(d)

Lengths (Å)

12 1.081 1.080 1.074

24 1.491 1.496 1.453

48 1.342 1.370 1.338

89 1.082 1.080 1.077

Angles

248 121.9 121.1 120.9

476 120.3 120.2 120.4

489 121.2 121.2 121.5

475 120.7 120.9 121.2

a The CCSD(T)/6-311??G(2d,2p) result is from the current study,

while the MC-SCF(10,10)/cc-pVDZ and SF-DFT/6-31G(d) are from

Refs. [19, 66], respectively. All lengths and angles are specified in

terms of the atom numbering scheme in Fig. 1. All dihedrals are zero

by the symmetry of the system in question

Table 4 The structure of 3B2 (C2v)/3A02(D3h) state (bond lengths are

in Angstroms and angles are in degrees)a

Lengths (Å) CCSD(T)/

6311??G(2d,2p)

MC-SCF(10,10)/

cc-pVDZ

SF-DFT/

6-31G(d)

C2C4 1.418 1.438 1.402

H8H9 1.081 1.081 1.076

a All lengths and angles are specified in terms of the atom numbering

scheme in Fig. 3. All dihedrals are 90� by the symmetry of the system

in question; all angles are 120� by symmetry (we note that some

authors have allowed a small relaxation from the symmetry-governed

angle, which never relaxed by more than 1�). References are the same

as given in Table 3 for the singlet geometry
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ZPE difference is Krylov’s SF-DFT/6-31G(d) estimate of

-2.03 kcal/mol, with the singlet ZPE being lower in

energy [19]. The harmonic CCSD(T)/6-311??G(2d,2p)

ZPE value is -4.00 kcal/mol (triplet state having larger

ZPE correction). The core polarization as calculated by

CCSD(T)/cc-pCVQZ is -0.7 kcal/mol (triplet state having

larger core polarization effect); we note how very large

both this and the methylene polarizations are! Neverthe-

less, our current best estimate of the ‘‘derived experimen-

tal’’ difference of purely electronic energies subject to

frozen core (Te) is 19.4 kcal/mol.

The 1A1 singlet state is qualitatively two-determinantal,

c1ðað2Þ2 Þ þ c2ð2bð2Þ1 Þ. There are some conflicting reports on

the nature of this state. Using CCSD(T), this is a second-

order saddle-point, in agreement with DFT and MC-SCF

calculations [67]. However, Krylov and coworkers find that

this is a minimum using SF-DFT [59]. Experimentally, this

state is observed to be a metastable intermediate to the

stable cyclic form [68]. We would write the electronic

configuration of the D3h
3A2 state in terms of the Abelian C2v

subgroup as 2b1
1aa

1
2a

� �
and assign the 3B2 designation. Also,

note that in D3h symmetry, the 1A1ðc1 a2
2

� �þ c2ð2b2
1ÞÞ and

1B2 2b1
1aa

1
2b� 2b1

1ba
1
2a

� �
states are degenerate. The 1/3B1

pair is a nonplanar C2v molecule of electronic configuration

ð5b1
2aa

1
2b� 5b1

2ba
1
2aÞ.

Table 5 lists various calculations of the electronic

energy difference using a plethora of many-body methods.

Given that basis set extrapolations have not been done

all reported energies in Table 5, it might vary within

*2 kcal/mol due to valence basis completeness. This says

nothing of the error intrinsic to imperfect geometries. The

MC-SCF(10,10) and CASPT2(10,10) calculations are

impressively accurate, as is SU-CCSD. The Brillouin-

Wigner estimates get disconcertingly worse with the

addition of triples. The SR-CCSDT result is close in the

small basis used. As shown in Table 6, our CCSDT in a cc-

pVTZ basis is 23.1 kcal/mol.

Our results are shown in Table 6. Compared to the

CCSDT value of 23.1 kcal/mol, the CCSD(T),

KCCSD(T) and DEA-CCSD would appear to have larger

errors. In this example, DEA-STEOM does well as DIP-

EOM, although as in methylene, the latter ceases to con-

verge in the QZ basis.

Since SF-DFT/6-31G(d) finds the 1A1 state to be a

minimum in conflict with the MCSCF and the current

CCSD(T) results, there are some questions about using this

geometry as the starting point for the S-T splitting calcu-

lations. Here, we have also studied the DEA, DIP and

CCSD(T) S-T splitting at the SF-DFT geometries with the

cc-pVTZ basis set to assess the effect of geometry on the

S-T splitting. The CCSD(T), DIP and DEA S-T splitting at

the SF-DFT geometry using the cc-pVTZ basis set are

Table 5 The singlet–triplet splitting of TMM computed with MR

methods (in kcal/mol)

3A2
1A1 DES-T

CCSDa RMR 30.6

CISDa 2RCISD 38.3

SU-CCSDa SU-CCSD 19.9

CCSD(T)fa RMR(T) 25.8

MCSCF(10,10)b 18.9

SF-CIS(D)b 20.6

CASPT(2) 19.1

4R BWCCSD itc 17.8

4R BWCCSDT-1ac 14.9

4R BWCCSDT-ac 15.6

SS-EOM-CCSD(MCSCF)d 19.8

Experiment-ZPE-coree 19.4

a From Ref. [56], CC bond lengths are optimized at CCSD(T)/cc-

pVTZ and 2R RMR CCSD(T)/cc-pVTZ (or RMR(T)/cc-pVTZ) for

singlet and triplet, respectively. The carbon–hydrogen bond lengths

are constrained to those given in Ref. [67]
b From Ref. [19], all calculations use cc-pVTZ on carbons, cc-pVTZ

on hydrogens with a geometry derived from SF-DFT/6-31G(d)
c Reference [55]. All calculations use cc-pVTZ with geometries from

CAS-SCF(4,4)/cc-pVDZ
d Reference [70]. The geometries are derived from CAS(4,4)/cc-

pVDZ reported in Ref. [71]
e The experimental value is given in reference 69; the CCSD(T)/6-

311??G(2d,2p) ZPE and the CCSD(T)/cc-pCVQZ core polarization

estimate from this study are used

Table 6 TMM singlet–triplet splittings at CCSD(T)/6-

311??G(2d,2p) geometries (in kcal/mol)a

cc-

pVDZ

cc-

pVTZ

cc-

pVQZ

3–4

Extrap.

CCSD 46 48 48 48

CCSD(T) 22.7 25.5 25.6 25.6

KCCSD(T) 28.5 30.6 31.0 31.3

DEA-EOM-CCSD 24.1 24.4 24.2 24.1

DEA-STEOM-

CCSD

19.4 19.8 20.1 20.3

DIP-EOM-CCSDb 21.5 21.1 20.8 20.6

DIP-EOM-CCSDc 19.0 18.9 N/C

CCSDT 21.8 23.1

Experiment-ZPE-

core

19.4

a Performed by the authors using CCSD(T)/6-311??G(2d,2p) for

geometries and frequencies. The singlet neutral orbital DIP-EOM-

CCSD/cc-pVQZ did not converge, and the CCSDT/cc-pVQZ is not

performed. The largest T2 amplitudes of DIP and DEA calculations of

the singlet states are -0.0357 and -0.04386, and both of them cor-

respond to HOMO–LUMO excitations. The nature of the reference

orbital (in the DIP case, n ? 2 or neutral orbitals) has no significant

effect on the magnitude of T2 amplitudes
b The reference (n ? 2) state uses doubly negative anion orbitals
c The reference (n ? 2) state uses singlet neutral orbitals
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26.3, 18.3, 23.4 kcal/mol, respectively. This shows that the

effect of geometry is rather small. However, the DIP

results, regardless of the nature of the orbitals that are used

to construct the n ? 2 vacuum, or the geometry used,

warrant additional comments. As expected, the 3B2 state is

well described by the DIP solution (the DIP vector pri-

marily consists of b2aa2b ? b2ba2a determinants) and

well behaved in terms of converging to the desired solu-

tion. The DIP solution of the 1A1 state correctly consists of

nearly equal weights of a2aa2b and b2ab2b determinants,

but the near degeneracy of these two orbitals (both occu-

pied in the n ? 2 vaccuum) render poor convergence

during the diagonalization step. It is also worth mentioning

that these problems are exacerbated as the basis set

becomes diffuse.

4.2 Benzynes

First let us consider the more complicated case of para-

benzyne. Para-benzyne is indeed infamous for its compu-

tational challenges [58, 72–74]. A description of its com-

putational difficulties has been given by Crawford et al.

[72]. To make matters worse, experimental research has

also come to contradictory conclusions [75, 76]. The

molecule is shown in Fig. 3 along with its associated

geometric parameters in Table 7. The singlet state is 1Ag

with the dominant configurations 6a2
g þ 5b2

2u, while the

triplet is 3B2u with configuration 6a
ð1Þ
g 5b2u

ð1Þ in D2h sym-

metry. This designation follows the axis specification in

Fig. 3.

The key features of the electronic structure of p-benzyne

are well established and only summarized here for com-

pleteness. The 6ag orbital and the 5b2u orbitals of p-ben-

zyne are more or less localized on both carbon radical

centers (numbers 1 and 4 in Fig. 3) and must be included in

the correct description of its electronic structure. The RHF

description, 6ag
2 (or 5b2u

2 ) leading to a 1Ag state, does not

reflect the true biradical nature since in this description

both electrons are localized at either of the two carbon

atoms. It is observed that such a reference, even with high

levels of correlation, does not yield the correct structure

and vibrational spectrum. However, by lowering the sym-

metry to C2v and switching to UHF, we can allow these two

orbitals to mix to obtain a better single-determinant

description. The CCSD(T) geometries and the vibrational

frequencies reported in this study are obtained in this

manner and are consistent with the previous findings.

However, there is a drawback. In addition to the fact that

the spatial symmetry is broken, the spin contamination of

this spin symmetry broken UHF reference is unusually

large, (ð2�Sþ 1Þ ¼ 2:83). This is because of the presence of

two closely lying triplet states (triplets arising from 6b2u

and 7b2u orbitals) that can mix. We note that the (2�Sþ 1)

of CCSD(T) is 2.12 compared to 2.83 of the reference UHF

state. This observation is consistent with findings in the

literature [72, 78]. However, in this particular case, it is

also important to note that the UHF reference (in C2v

symmetry) has large T1 amplitudes (those T1 amplitudes

are strictly zero by symmetry in D2h). The Brueckner ref-

erence eliminates large T1 amplitudes present in the sym-

metry broken solution. As further discussed below, the

Fig. 3 Para-benzyne in the canonical choice of axes consistent with

spectroscopy texts. The primary axis is always the z axis, perpendic-

ular to the plane of the molecule. The x axis, in D2h, is the B3u

irreducible representation. We use this same numbering scheme to

describe the lengths and angles of o-, m- and p-benzyne

Table 7 The geometry of p-benzyne, singlet followed by triplet

(bond lengths are in Angstroms, and the angles are in degrees)a

TCSCF-Mk-

CCSD/

cc-pVTZ

CCSD(T)/

cc-pVDZ

CCSD(T)/

6-311?

?G(2d,2p)

Lengths Å

12 1.363 1.390 1.377

23 1.430 1.427 1.418

CH 1.080 1.097 1.082

Angles

612 124.8 125.1 125.2

123 117.6 117.4 117.4

H23 118.4 120.2 119.7

Lengths Å

12 1.376 1.395 1.386

23 1.405 1.417 1.412

CH 1.081 1.098 1.083

Angles

612 127.0 126.3 126.4

123 116.5 116.8 116.8

H23 121.1 121.1 121.0

a All lengths and angles are specified in terms of the atom numbering

scheme in Fig. 3. The letter H is specified for the hydrogens, given

that they are all equivalent in this structure. The CCSD(T)/cc-pVDZ

[58] geometry differs significantly from our own. The Mk-CCSD

geometry derives from private communication [77]
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CCSD(T) and KCCSD(T) give improved S-T splitting for

p-benzyne when the Brueckner reference is used instead of

the symmetry broken UHF reference.

There are two reported experimental values for the

singlet–triplet splitting of para-benzyne. Wenthhold et al.

[76] estimate the splitting to be 3.8 ± 0.3 kcal/mol; Leo-

pold et al. [75] estimate the splitting to be 2.1 ± 0.4 kcal/

mol. The highest level calculations on the ZPE difference

are the current ones. We have performed geometry opti-

mizations and obtained harmonic vibrational frequencies

using CCSD(T)/6-311??G(2d,2p), producing a ZPE dif-

ference of 0.14 kcal/mol between the two states, with the

singlet having larger ZPE. The TC-SCF-Mk-CCSD/cc-

pVTZ geometry optimization of Allen et al. [77] is likely to

be the most trustworthy geometry yet available on this

heavily multi-reference system; yet, the broken-symmetry

CCSD(T) geometry produces a geometry in relatively close

agreement with it, thus giving confidence to our estimate of

the ZPE. Table 5 illustrates this concordance.

We briefly discuss meta-benzyne and ortho-benzyne

whose multi-reference quality is not so drastic. Figure 3

shows our numbering system for meta-benzyne, and Table 8

gives the geometries calculated in our work using CCSD(T)/

6-311??G(2d,2p) as well as TC-SCF-Mk-CCSD/cc-pVTZ.

The agreement between the two methodologies is extremely

high, excepting two singlet angles around the diradical

centers. This gives considerable confidence in the geome-

tries used. The meta-benzyne singlet is a C2v structure whose

wavefunction follows 1A1 symmetry; its triplet is also C2v

corresponding to 3B1. The electron configuration of the

triplet is 10a1
28b1

2 (the ZPE difference corresponding to a

CCSD(T)(2)/6-311??G(2d,2p) harmonic vibrational fre-

quency on the CCSD(T)/6-311??G(2d,2p) optimized

meta-benzyne structure yields a difference of 0.70 kcal/mol

with the triplet having larger ZPE).

Table 9 lists the values for the electronic energies cal-

culated using a variety of methodologies. There are, again,

different geometry sources. It is hard to infer whether the

errors from the commonly used CCSD(T)/cc-pVDZ

geometry influence the quality of these high-level single-

point energy calculations. We can see the drastic failures of

traditional CCSD in both cases (see the discussion below

for further insight into this behavior). RMR acting on the

para-benzyne singlet is also clearly insufficient, as it pre-

dicts the wrong ordering of states. RMR combined with

SU-CCSD underestimates the energy splitting significantly.

Table 8 Geometry of singlet and triplet state of meta-benzynea

TC-SCF-Mk-CCSD/

cc-pVTZ

CCSD(T)/

6-311??G(2d,2p)

Singlet

Lengths Å

12 1.363 1.378

2H 1.076 1.077

34 1.373 1.381

4H 1.080 1.082

45 1.397 1.406

5H 1.084 1.086

Angles

123 96.0 99.4

234 138.5 135.7

345 116.6 117.4

456 113.7 114.4

H61 120.8 120.5

Triplet

Lengths Å

12 1.379 1.385

2H 1.082 1.083

34 1.377 1.383

4H 1.080 1.081

45 1.397 1.404

5H 1.082 1.084

Angles

123 115.0 115.2

234 124.9 124.7

345 116.8 116.9

456 121.4 121.5

H61 122.4 122.3

a All bond lengths are in Å, and the angles are in degrees. All lengths

are described by numbered line segments corresponding to Fig. 2, as

are the angles. The letter H indicates the hydrogen atom as a line

segment point/angle vertex. All dihedrals are zero by symmetry.
Reference [77] gives the Mk-CCSD geometry

Table 9 Singlet–triplet splitting of ortho-, meta- and para-benzyne

using MR methodsa

Singlet triplet Ortho meta para

RMRa CCSD 33.4 13.8 -2.1

RMRa SU-CCSD 34.5 16.2 0.7

RMR(T)a CCSD(T)f 35.5 17.7 3.2

RMR(T)a CCSD(T)se 36.3 18.7 4.1

Expt. 1c 37.5 ± 0.3 21.0 ± 0.3 3.8 ± 0.3

Expt. 2b 37.7 ± 0.7 2.1 ± 0.4

Expt. 1—ZPEb 37.8 ± 0.3 20.4 ± 0.3 3.4 ± 0.3

a From Ref. [58], all calculations use a modified cc-pVTZ in which
the f functions on carbons and the d functions on hydrogens are

omitted. All geometries come from reference 72, which used unre-

stricted CCSD(T)/cc-pVDZ geometries and harmonic vibrational

frequencies for para-benzyne, and restricted CCSD(T)/cc-pVDZ for

the meta-benzyne’s geometries and harmonic vibrational frequencies.

The ZPE differences are -0.3, 0.7 and 0.3 kcal/mol respectively Ref.

[79]
b From Ref. [76]
c From Ref. [75]
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All the remaining computations of para-benzyne including

CCSD(T) tend to favor the Lineberger experiment, being

closer to 3.4 than 1.7 after removing the zero-point value.

The results obtained in the current study are reported in

Tables 9 and 10. In agreement with the literature, the

CCSD of p-benzyne predicts the wrong S-T ordering by

nearly 18 kcal/mol. However, the inclusion of perturbative

triples vastly improves the results by not only predicting

the correct S-T ordering but also predicting a S-T splitting

that is in close agreement with experiment. It is important

to note that these CCSD and CCSD(T) energy calculations

employ the RHF single-determinant reference. We have

already discussed the problems of using such a reference

for geometry optimization and vibrational frequency cal-

culations. Nevertheless, the RHF reference CC calculations

seem to yield correct S-T splitting after inclusion of the

perturbative triples.

One could also use the symmetry broken UHF reference.

With this partially correct zeroth-order description, the UHF-

CCSD seems to give a very small splitting with the correct

ordering (0.1 kcal/mol at cc-pVTZ). However, to make mat-

ters worse, the UHF-CCSD(T), in contrast to both UHF-

CCSD and RHF-CCSD(T), predicts the wrong ordering of

energy levels (for example, -0.5 kcal/mol at cc-pVTZ).

Another noteworthy anomalous behavior of p-benzyne is that

both UHF and RHF reference-based KCCSD(T) give a very

small incorrectly ordered S-T splitting. Two possible reasons

for this behavior are unusually large spin contamination (the

computed multiplicity (2�Sþ 1) at the CCSD and

CCSD(T) level are 2.21 and 2.12, respectively) and the large

T1 amplitudes. In fact, Brueckner-CCSD(T) with the UHF

reference (UB-CCSD(T)) yields the correct S-T ordering, and

the UB-CCSD(T) 2.5 kcal/mol splitting at cc-pVTZ is con-

sistent, albeit not as quantitative, with the experimental results

and those from MR methods (the average multiplicity of UB-

CCSD and UB-CCSD(T) are 2.17 and 2.10, respectively).

Since the multiplicity of UB-CCSD and UB-CCSD(T) are

nearly the same as the UHF-CCSD, we suspect that large T1

amplitudes present in the UHF-CCSD are primarily respon-

sible for the anomalous behavior). Furthermore, as shown in

Table 3, when Brueckner reference (RB or UB) is used,

KCCSD(T) follows the observed trend that it is in close

agreement with CCSD(T). We also believe that further

inclusion of correlation effects by more costly methods such

as CCSDT-3 or CCCSDT will also show the correct UHF

behavior. The DEA-CCSD of Table 10 below for para-ben-

zyne is conspicuously in agreement with the 3.4 kcal/mol

observation.

For meta-benzyne, given that methods in Table 9 have

not performed a basis set extrapolation, one may reason-

ably believe that all of the proposed methods may change

by *2 kcal/mol. The DEA-CCSD value is basis set

extrapolated in the valence space and is comparable to

other CC methods. It would seem that maybe the 2h4p

terms are needed to account for the remaining energy dif-

ference between DEA-CCSD’s 18.5 and experiment,

20.4 kcal/mol. The same logic applies for DIP-CCSD.

Among the three, o-benzyne is the simplest in terms of

its electronic structure. Being on adjacent carbon atoms,

the orbitals occupied by the lone pair electrons can interact

strongly to form well-separated pairs of bonding and

Table 10 Ortho-, meta- and para-benzyne singlet–triplet splittings

(in kcal/mol)a

cc-

pVDZ

cc-

pVTZ

cc-

pVQZ

3–4 Extrap.

Ortho

CCSD 28.6 30.6 31.3 31.8

CCSD(T) 33.8 37.0 37.4 38.0

KCCSD(T) 33.4 36.6 36.9 37.1

DEA-EOM-CCSD 33.5 36.1 36.9 37.5

DEA-STEOM-

CCSD

30.6 34.3 34.2 34.0

DIP-EOM-CCSD 37.5 42.6 46.3 49.0

Experiment-ZPE-

core

37.4 ± 0.3

37.5 ± 0.5

Meta

CCSD 9.9 10.5 10.7 10.8

CCSD(T) 20.4 22.1 22.4 22.7

KCCSD(T) 20.9 23.1 20.9 19.3

DEA-EOM-CCSD 17.1 18.3 18.4 18.5

DEA-STEOM-

CCSD

14.0 15.3 18.4 20.6

DIP-EOM-CCSD 18.0 19.7 18.3 17.3

Experiment-ZPE-

core

20.5 ± 0.3

Para

CCSD -17.8 -19.2 -19.5 -19.7

CCSD(T) 4.0 3.6 3.5 3.4

KCCSD(T) 1.9 2.3 2.4 2.5

DEA-EOM-CCSD 3.0 3.4 3.4 3.4

DEA-STEOM-

CCSD

4.9 4.6 4.3 4.0

DIP-EOM-CCSD 3.9 4.4 N/C

Experiment-ZPE-

core

4.4 ± 0.3

2.7 ± 0.4

a Performed by the authors using geometries from CCSD(T)/6-

311??G(2d,2p), harmonic frequencies CCSD(T)/6-311??G(2d,2p)

for para-benzyne; geometries come from CCSD(T)/6-

311??G(2d,2p), harmonic frequencies from MBPT(2)/6-

311??G(2d,2p) for meta-benzyne. Core orbitals are dropped for

energy calculations. For o-, p- and m-benzynes, the largest T2

amplitudes of DIP and DEA of the singlet state are -0.0621, -0.0385

and -0.0602, and -0.0833, -0.0766 and -0.0909, respectively. The

listed largest excitations are of HOMO–LUMO type
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antibonding orbitals, a characteristic of strong covalent

interactions. As such single-reference methods favor sys-

tems that are dominated by dynamic correlation effects,

they would be expected to perform well. This is evident

from the results in Tables 9 and 10. For example, o-ben-

zyne is the only isomer where the CCSD S-T splitting is

qualitatively correct. The basis set limit CCSD(T) results

are in near-perfect agreement with experiment. A desirable

feature of any MR method is that when the SR character

dominates, the result must approach the single-reference

limit.

4.2.1 Cyclobutane-1,2,3,4-tetrone (CO)4

The (CO)n (n = 1, 2, …) molecules are oligomers of car-

bon monoxide (CO). Simple molecular orbital theory

concepts yield the following qualitative picture of the

bonding of (CO)4. The LUMO of CO is a degenerate set of

p orbitals (designated as p*). The interaction of the 4 in

plane p* orbitals leads to a b2g orbital (in D2h symmetry

labeling of (CO)4), and the interaction of 4 out-of-plane p*

orbitals leads to an a2u orbital (only the two lowest energy

orbitals are of interest). The four HOMO r orbitals interact

to form four orbitals of form a2g, e1u, b1g orbitals. There is

no ambiguity about the fact that out of 8 electrons, 6 of

them occupy the a2g and e1u orbitals. The remaining 2

electrons have three possible orbital locations: b1g, b2g and

a2u. Among these three orbitals, b1g is the most antibond-

ing, and as a result, the 2 electrons prefer the b2g and a2u.

However, since both b2g and a2u originate from the

degenerate p* orbitals of CO, they nearly degenerate in

(CO)4 and orthogonal. So, Hund’s rule applies, and the

ground state is a triplet 3B1u. These conclusions based on

the qualitative MO arguments have been confirmed by

recent experiment by Wang et al. [80], who conclude that

the triplet is (T) 1.5 kcal/mol lower in energy than the

singlet. A comprehensive account of MO theory arguments

and theoretical calculations at the DFT and CCSD(T) lev-

els of theory S-T splitting of (CO)n series has been recently

presented by Borden et al. [81, 82].

In this study, we have optimized the geometry of both
1A1 and 3B1u state using the CCSD(T)/6-311G??(2d,2p)

level of theory while keeping the core electrons frozen for

the post-HF stage. The CC and CO bond lengths of the

singlet state are 1.559 and 1.187 Å, and the corresponding

CC and CO bond lengths of the triplet 3B1u state are 1.569

and 1.190 Å. The frequency calculation shows that at this

level of theory, the singlet state is a transition state and the

triplet state is a minimum. This is in contrast to the pre-

vious and our own DFT results which find both the singlet

and triplet geometries to be minima. Except in this feature,

it is interesting to note that the DFT geometries do not

significantly differ from the CCSD(T) geometries. For

example, MO6/cc-pVTZ CC and CO bond lengths for

singlet and triplet states are 1.547 and 1.172 and 1.550 and

1.180 Å, respectively. The CCSD(T)/6-311G??(2d,2p)

ZPE difference (triplet having a smaller ZPE) is 0.48 kcal/

mol.

The S-T splitting computed with a selected set of

methods is shown in Table 5. In this case, the ‘‘derived’’

experimental S-T splitting that can be directly compared

with the valence-only computed result is 1.19 kcal/mol.

The DIP calculations are repeated: one using the less

physically meaningful double anion reference orbitals and

the second the recommended n-particle HF orbitals. In an

exception to the generally observed trend that all the

Table 11 The S-T splitting of (CO)4
1A1 and 3B1u states (in kcal/

mol)a

cc-

pVDZ

cc-

pVTZ

cc-

pVQZ

3–4 Extrap.

CCSD 19.2 20.1 20.2 20.5

CCSD(T) 5.5 5.9 5.9 5.9

KCCSD(T) 6.4 7.0 7.0 7.0

CCSDT-3 4.5 4.9 4.8 4.8

DIP-EOM-

CCSDb
1.0 -1.6 -2.3 -2.8

DIP-EOM-

CCSDc
-2.9 0.9 0.3 -0.1

DIP-EOM-

CCSDd
3.0 1.3 0.7 0.3

DEA-STEOM-

CCSDe
3.9 2.4 1.6 1.1

DEA-EOM-

CCSDf
1.9 -0.4 -0.6 -0.8

DEA-EOM-

CCSDg
3.8 1.9 1.3 0.9

Experiment-

ZPE-core

1.5–0.48 ? 0.17 = 1.19

Experiment-

ZPE (for all

electron

calcs.)

1.5–0.48 = 1.02

a The largest T2 amplitudes of DIP and DEA calculations of the

singlet state are -0.0630 and -0.0813, respectively, and both of them

correspond to HOMO–LUMO excitations
b The reference (n ? 2) state uses doubly negative anion orbitals

(core orbitals are frozen)
c The reference (n ? 2) state uses doubly negative anion orbitals (all

electrons are correlated)
d The reference (n ? 2) state uses singlet neutral orbitals (core

orbitals are frozen)
e The reference (n - 2) state uses doubly positive cation orbitals

(core orbitals are frozen)
f The reference (n - 2) state uses doubly positive cation orbitals (all

electrons are correlated)
g The reference (n - 2) state uses singlet neutral orbitals (all elec-

trons are correlated)
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methods predict the correct S-T ordering, the former shows

the incorrect sign. As far as the S-T splitting is concerned,

we observe a wide variation among various methods. The

CCSD, CCSD(T) and KCCSD(T) behave uniformly as the

basis set quality is improved. However, both CCSD(T) and

KCCSD(T) overestimate the S-T splitting by nearly

4–5 kcal/mol (not surprisingly CCSD grossly overesti-

mates the splitting). The DIP with neutral orbitals is uni-

form as the basis set quality is improved, though they

underestimate the splitting by 0.7 kcal/mol. The DEA-

STEOM shows uniform convergence with basis set, and its

basis set extrapolated value along with that for the DEA-

EOM-CCSD using the recommended n-particle orbital is

perhaps best when compared to experiment. The DEA

results have the wrong sign for the first time in our expe-

rience (Table 11).

5 Conclusion

The DIP/DEA framework is proven to be able to correctly

treat difficult two-orbital two-electron, multi-reference

problems within a computationally effective single-refer-

ence framework. In choosing a single-reference charged

SCF, and adding/subtracting the appropriate particles to

return to the multi-reference system, we circumvent some

of the challenges of static or non-dynamic correlation,

though there are others as in the residual continuum effects

encountered despite the use of L2 basis in the choice of

dianion reference cases. Choosing such pathological mol-

ecules such as methylene, TMM and benzynes, and still

seeing substantial success, illustrates some of the suitability

of the methodology.
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Abstract Minimizing the energy of an N-electron system

as a functional of a two-electron reduced density matrix (2-

RDM), constrained by necessary N-representability con-

ditions (conditions for the 2-RDM to represent an ensemble

N-electron quantum system), yields a rigorous lower bound

to the ground-state energy in contrast to variational wave

function methods. We characterize the performance of two

sets of approximate constraints, (2,2)-positivity (DQG) and

approximate (2,3)-positivity (DQGT) conditions, at cap-

turing correlation in one-dimensional and quasi-one-

dimensional (ladder) Hubbard models. We find that, while

both the DQG and DQGT conditions capture both the weak

and strong correlation limits, the more stringent DQGT

conditions improve the ground-state energies, the natural

occupation numbers, the pair correlation function, the

effective hopping, and the connected (cumulant) part of the

2-RDM. We observe that the DQGT conditions are effec-

tive at capturing strong electron correlation effects in both

one- and quasi-one-dimensional lattices for both half filling

and less-than-half filling.

Keywords Two-electron reduced density matrix �
N-representability conditions � Strong electron correlation �
Hubbard models

1 Introduction

The authors are honored to dedicate this article in memory

of Isaiah Shavitt whose remarkable contributions trans-

formed electronic structure theory. Observables that

depend on pairwise interactions can be directly computed

with the two-electron reduced density matrix (2-RDM)

without the N-electron wave function [10, 36]. Integration

of the N-electron density matrix over all electrons save two

yields the 2-RDM

2Dð12; �1�2Þ ¼ N

2


 �Z
NDð12::N; �1�2::NÞd3::dN: ð1Þ

Minimization of the energy with respect to the 2-RDM

results in unphysical ground states because the variational

space of two-electron density matrices is larger than the set

of 2-RDMs that can be contracted from an ensemble N-

electron density matrix [52]. The constraints on the 2-RDM

to ensure a valid N-electron density matrix preimage are

known as N-representability conditions [8, 10, 12, 24].

While the set of necessary and sufficient constraints needed

to satisfy Eq. (1) was unknown until recently [39], an

approximate class of N-representability constraints has

been demonstrated to be sufficient for calculating ground-

state properties of the metal-to-insulator transition of

hydrogen chains [50], ground states and charge distribu-

tions of quantum dots [48], quantum phase transition [17,

49] dissociation channels, [33] and quantum lattice systems

[2–4, 20, 55–57].

Variational minimization of the energy as a functional

of the 2-RDM is expressible as a special convex optimi-

zation problem known as a semidefinite program [33, 37,

41, 42, 53, 58]. The convexity of the N-representable set of

2-RDMs ensures a rigorous lower bound to the ground-

state energy. Because the variational 2-RDM method
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generates large semidefinite programs, the second-order

interior-point methods must be exchanged for first-order

methods. We solve the semidefinite program by a bound-

ary-point method developed for RDMs [37]. The bound-

ary-point method is one to two orders of magnitude faster

than the first-order algorithm, previously applied to the

one-dimensional Hubbard model [20].

In this paper, we examine the electron correlation of

one-dimensional and quasi-one-dimensional Hubbard

models with two sets of approximate N-representability

conditions. While recent RDM calculations have examined

linear [20] as well as 4 4 and 6 6 Hubbard lattices [2,

57], there has not been an exploration of RDMs on quasi-

one-dimensional Hubbard lattices with a comparison to the

one-dimensional Hubbard lattices. How does the electron

correlation change as we move from a one-dimensional to a

quasi-one-dimensional Hubbard model? How are these

changes in correlation reflected in the required N-repre-

sentability conditions on the 2-RDM? One- and two-par-

ticle correlation functions are used to compare the

electronic structure of the half-filled states of the 1 10

and 2 10 lattices with periodic boundary conditions. The

degree of correlation captured by approximate N-repre-

sentability conditions is probed by examining the one-

particle occupations around the Fermi surfaces of both

lattices and measuring the entanglement with a size-

extensive correlation metric, the Frobenius norm squared

of the cumulant part of the 2-RDM [23].

2 Theory

In this section, we review the salient features of variational

reduced density methodology and discuss the approximate

N-representability conditions used in this work.

2.1 2-RDM method

In variational 2-RDM theory, the energy functional is

minimized with respect to the 2-RDM

E ¼ Trð2K 2DÞ; ð2Þ
where

2K
ij
kl ¼

1

N � 1
hikd

j
l þ h

j
l d

i
k

� �þ uklij ð3Þ

and

2D
ij
kl ¼ Trðâyi âyj âlâk; 2DÞ: ð4Þ

In Eq. (3), 2K
ij
kl are the elements of the reduced Hamil-

tonian matrix, in Eq. (4), 2D
ij
kl are the elements of the

2-RDM in a spin-orbital basis set, h and u are tensors

containing the one- and two-electron integrals, and the

â; ây
� �

are the fermionic annihilation (creation) operators.

The variational space in which the energy is minimized

can be constrained by a hierarchical set of N-represent-

ability constraints on the 2-RDM called ð2; pÞ-positivity

conditions. These constraints have recently been shown

when p ¼ r to form a complete set of N-representability

conditions [39] where r is the rank of the one-electron

spin-orbital basis set.

The ðp; pÞ-positivity conditions [31, 35] on the p-RDM

restrict the ðpþ 1Þ metric (or overlap) matrices of the form

M ¼ hwjĈĈyjwi ð5Þ

to be positive semidefinite where the operators Ĉ are linear

combinations of all possible products of p creation and/or

annihilation operators. A matrix M is positive semidefinite,

denoted by M � 0, if and only if all of its eigenvalues are

nonnegative. The three distinct (2,2)-positivity conditions

[8, 15, 31, 32, 35, 40, 60] are given by

2D � 0 ð6Þ
2Q � 0 ð7Þ
2G � 0; ð8Þ
where

2D
pq
ij ¼ hwjaypayqajaijwi ð9Þ

2Q
pq
ij ¼ hwjapaqayj ayi jwi ð10Þ

2G
pq
ij ¼ hwjaypaqayj aijwi: ð11Þ

Physically, the semidefinite conditions on the 2D; 2 Q, and
2G matrices restrict the probabilities of finding particle-

particle, hole-hole, and particle-hole pairs to be nonnega-

tive, respectively. Even though the nonnegativity con-

straints in Eqs. (6–8) are non-redundant, these matrices

contain equivalent information as each matrix can be

expressed in a one-to-one mapping of another by the fer-

mionic anticommutation relations. The (2,2)-positivity

conditions are often denoted as DQG. Contraction of the

positive semidefinite 2D; 2 Q, and 2G matrices generates

one-particle 1D and one-hole 1Q matrices that are also

positive semidefinite.

The (2,3)-positivity conditions [39] on the 2-RDM may

be formed by taking all convex combinations of the (3,3)-

positivity conditions that depend only on the 2-RDM. Here,

we consider two important (2,3)-positivity conditions,

proposed by Erdahl [12, 60]

T1 ¼ 3 Dþ3 Q � 0 ð12Þ
T2 ¼ 3 E þ3 F � 0; ð13Þ
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where

3D
qrs
ijk ¼ hwjâyqâyr âys âkâjâijwi ð14Þ

3E
qrs
ijk ¼ hwjâyqâyr âsâykâjâijwi ð15Þ

3F
qrs
ijk ¼ hwjâqârâys âkâyj âyi jwi ð16Þ

3Q
qrs
ijk ¼ hwjâqârâsâykâyj âyi jwi: ð17Þ

Previous investigations indicated that the T1 condition is

less important that T2 [16, 60], and therefore, it is excluded

from the approximate (2,3)-positivity conditions used in

this work. The (2,2)-positivity plus the T2 condition is

denoted in this work as DQGT.

2.2 Semidefinite programming

The computational implementation of the energy minimi-

zation with respect to the 2-RDM is formulated as a

semidefinite program (SDP). A SDP is a generalization of a

linear program where the objective variable is kept positive

semidefinite. The program is constructed by considering

the minimization of the linear energy functional in Eq. (2)

subject to constraints

min TrðK XÞ ð18Þ
such that TrðAiXÞ ¼ bi ð19Þ
X � 0; ð20Þ
where K and X are block matrix representations of the

reduced Hamiltonian and the reduced density matrices

K ¼

0 0 0 0 0

0 0 0 0 0

0 0 2K 0 0

0 0 0 0 0

0 0 0 0 0

0BBBBBB@

1CCCCCCA ð21Þ

and

X ¼

1D 0 0 0 0

0 1Q 0 0 0

0 0 2D 0 0

0 0 0 2Q 0

0 0 0 0 2G

0BBBBBB@

1CCCCCCA: ð22Þ

The constraint matrices Ai in Eq. (19) contain the map-

pings among 2D; 2 Q, and 2G, the contractions to 1D and
1Q, and the fixed-trace condition. Semidefinite programs

for quantum chemical Hamiltonians have been solved with

a variety of algorithms [27, 33, 37, 54, 60]. In this work, we

utilize the boundary-point method [26, 37], a type of

quadratic regularization method. The floating-point

operations and memory scaling for the boundary-point

method are r6 for DQG (DQGT r9) and r4 (DQGT r6),

where r is the rank of the one-electron basis set.

3 Model

The single-band ladder extension of the one-dimensional

Hubbard model [18, 19, 22] has been utilized as a minimalist

model to study spin-liquid behavior [11, 14, 43] and high-

temperature superconductors [1, 5, 21, 25, 44]. The ladder

model is a quasi-one-dimensional system with a fourfold

degenerate Fermi surface and correlations in two-dimensions.

3.1 Hamiltonian

The Hamiltonian of the ladder single-band model in posi-

tion space is defined as follows:

Ĥ ¼ t
X
n;k;r

ðâyn;k;rânþ1;k;r þ â
y
nþ1;k;rân;k;rÞ ð23Þ

þ t?
X
n;r

ðâyn;a;rân;b;r þ â
y
n;b;rân;a;rÞ ð24Þ

þ U
X
n

â
y
n;k;rân;k;râ

y
n;k;�rân;k;�r ð25Þ

where t is a parameter controlling transport between rungs of

the ladder, t? is a parameter controlling transport between

the two sides of a ladder’s rung, U is a parameter controlling

the one-site repulsion between electrons, the index n is the

rung number, the index k ¼ aðbÞ corresponds to a ladder leg,

and the index r indicates the spin of the electron created at

rung n on leg aðbÞ. We impose periodic boundary conditions

along the legs of the ladder forming a Hubbard ribbon.

3.2 Spin and spatial symmetry adaptation

One can take advantage of any spin or spatial symmetry in

the Hamiltonian by symmetry adapting the metric matrices

and thereby reducing the size of the 2-RDM to be opti-

mized [16]. For the ladder model, we transform the RDMs

to bonding and antibonding spaces and then Fourier

transform to take advantage of the translational symmetry.

We consider linear combination of creation and annihila-

tion operators to form two disjoint one-electron subspaces

âBn;r ¼
1ffiffiffi
2
p ân;a;r þ ân;b;r
� � ð26Þ

âAn;r ¼
1ffiffiffi
2
p ân;a;r � ân;b;r
� �

; ð27Þ

where âBn;r and âAn;r are annihilation operators for the

bonding and antibonding orbitals with spin r 2 fa; bg. The
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one-body part of the Hamiltonian divides into antibonding

ĤA and bonding ĤB parts:

Ĥ ¼ ĤA þ ĤB þ Ĥ intAB: ð28Þ
When expressed in the bonding and antibonding basis, the

interaction term decomposes into four two-body operators

representing inter- and intra-subspace pair scattering and

inter- and intra-subspace pair exchange.

Spatial symmetry is imposed in each one-electron space

by the Bloch transformation

Bân;r ¼ 1ffiffiffiffiffi
Nx

p
X
kb

e�ikbnâkb;r ð29Þ

Aân;r ¼ 1ffiffiffiffiffi
Nx

p
X
ka

e�ikanâka;r; ð30Þ

where âkb;r annihilates an electron with momentum kb in

the bonding band and âka;r annihilates an electron with

momentum ka in the antibonding band. The Hamiltonian

and 2-RDM can also be spin adapted. As discussed in Ref.

[16], because the three triplet blocks are equivalent in the

singlet case, each metric matrix has only two distinct spin

blocks defined by the folded operators

Ĉ
0;0
i;j;i� j ¼

1ffiffiffi
2
p ðâyi;aâyj;b þ â

y
j;aâ
y
i;bÞ ð31Þ

Ĉ
1;0
i;j;i\j ¼

1ffiffiffi
2
p ðâyi;aâyj;b þ â

y
j;aâ
y
i;bÞ: ð32Þ

These new Ĉ operators are substituted into Eq. (5) gener-

ating symmetric and antisymmetric parts of 2D and 2Q.

Spin symmetry adaptation of 2G and T2 can be achieved by

the same methodology [34]. The size of the 2-RDM can be

further reduced by additional symmetries [13, 56, 57], but

they have not been exploited in the present calculations.

4 Results

In Sect. 4.1, we compare the ground-state energies of the

2 4 ladder system at and below half filling from the

variational 2-RDM method with those from full configu-

ration interaction (FCI). Section 4.2 contains the analysis

of the 2 10 and 1 10 lattices through the a; b-two-point

pair correlation function, a measure of one-particle effec-

tive hopping, one-electron natural occupation numbers, and

the squared Frobenius norm of the cumulant (connected)

part of the 2-RDM. Results from 2-RDM calculations with

DQG and DQGT conditions are compared.

4.1 Energies of the Hubbard ladder

We report the errors in the ground-state energies from the

variational 2-RDM method for the 2 4 ladder Hubbard

model for a range of interaction strengths where t ¼ t? ¼ 1

a.u. Comparisons are made to the ground-state energies

from FCI. The FCI calculation determines the ground-state

energies by computing the lowest eigenvalue of the N-

electron Hamiltonian matrix in the basis of all possible

Slater determinants. In the FCI calculation, the spin orbitals

are products of a spin function (a or b) and a ‘‘spatial’’

orbital which can be defined either in the position repre-

sentation or in the momentum representation. All 2-RDM

calculations were optimized until the primal feasibility

norm was below 1:0 10�5 and the primal-dual gap was

below 1:0 10�4. In Fig. 1, the error in the ground-state

energy and the percentage of the correlation energy

recovered from the 2-RDM method with DQG and DQGT

conditions are reported for (a) hn̂i ¼ 1 and (b) hn̂i ¼ 3=4

fillings. In the case of half filling, the DQG and the DQGT

energies deviate at most from those from FCI by -0.74 and

(a)

(b)

Fig. 1 Absolute deviation of ground-state energy of the variational

2-RDM method with DQG and DQGT constraints and the percent

correlation defined as (ERDM � EHFÞ=ðEFCI � EHFÞ  100 are shown

for 2 4 lattices at (a) hn̂i ¼ 1 and (b) hn̂i ¼ 3=4
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-0.087 a.u., respectively. The maximum deviations occur

in the intermediate interaction regime U 2 ½4; 8
, where

there is a large degree of competition between delocal-

ization and localization. For the hn̂i ¼ 3=4 filling, the DQG

and DQGT conditions result in a larger absolute error than

all corresponding values at half filling, which is consistent

with previous observations in the literature [55] that cor-

related systems with an imbalance between the number of

particles and holes require more stringent N-represent-

ability constraints.

The 2-RDM can be expressed as the wedge product of

1-RDMs (unconnected) plus a cumulant (connected) part

[28, 29] denoted as 2D
2D ¼ 1 D ^ 1 Dþ 2 D; ð33Þ
where the ^ is the Grassmann wedge product [9, 30, 51].

The unconnected term captures the statistically indepen-

dent part of the electron pair probability. The energies from

the unconnected and connected components [20] are

E1 ¼ Tr½2K ð1D ^ 1 DÞ
 ð34Þ
E2 ¼ Tr½2K 2D
: ð35Þ
These energies as well as the Hartree–Fock mean-field

energy are plotted in Fig. 2. The Hartree–Fock energy

grows linearly as U is increased which is closely mirrored

by the unconnected piece. Consequently, all the correlated

information of the 2-RDM that results in localization is

contained in its connected part.

4.2 One- and two-particle correlations

The a; b-two-point pair correlation function for the 2 10

and 1 10 lattices is examined at half filling to explore the

variational 2-RDM method with DQG and DQGT

conditions. We can express the two-point spin-up, spin-

down correlation as

hn̂ian̂iþRbi � hn̂aihn̂bi; ð36Þ
where hn̂ai is the total density of a-electrons in the system

hn̂ai ¼ Na=ð2NLÞ; hn̂bi ¼ Na=ð2NLÞ: ð37Þ
This correlation function is an extension of the local dou-

ble-occupancy, hn̂i;an̂i;bi, which has been used to examine

the Mott transition of the Hubbard model defined on var-

ious lattices and temperatures [6, 7, 45, 59].

The pair correlation function probes the expectation of

an antiferromagnetic pair R-sites away from each other in

the long direction of the lattice. In the U ¼ 0 limit where

the a and b electrons are delocalized across the lattice, the

correlation function is zero for all values of R. As U is

increased, antiferromagnetic pairing becomes less favor-

able and order is induced. In Fig. 3a, b we plot the two-

Fig. 2 For the 2 4 lattice at hn̂i ¼ 1 the connected, unconnected,

and total energies from the variational 2-RDM method with DQGT

constraints as well as the Hartree-Fock total energies are shown

(a)

(b)

Fig. 3 The a;b-two-point pair correlation functions of the (a) 2 10

and (b) 1 10 lattices at half filling are computed as a function of R

from the variational 2-RDM method with DQGT where R is the

distance along each Hubbard strand between the pairs. Because of the

periodic boundary conditions, the correlation function values are

unique until the lattice inversion center at R ¼ 5
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particle correlation function as a function of R for repre-

sentative U values. The correlation function decays across

the lattice until the inversion center is reached. An expo-

nential fitting of the absolute value of the pair correlation

function, not shown, indicates that DQGT predicts a sim-

ilar decay on the one-dimensional and quasi-one-dimen-

sional lattices. In Fig. 4, we plot the absolute value of the

pair correlation function for U ¼ 12 from DQG and DQGT

to study the differences generated in the (a) ladder and (b)

linear lattices from approximate N-representability condi-

tions. In the ladder case, the results from DQG and DQGT

are in fairly close agreement while in the linear case, DQG

deviates significantly from DQGT.

We can use the effective hopping as a one-particle

correlation function. Defined in Eq. (38), the effective

hopping is the likelihood of transport normalized by the

non-interacting limit of the model

teff ¼
hâyirâjr þ â

y
jrâiriU

hâyirâjr þ â
y
jrâiriU¼0

: ð38Þ

For low U, where the kinetic energy has the largest energy

contribution, approximate N-representability conditions

underestimate the effective hopping (kinetic energy), and

at high U, where the repulsive interaction term dominates,

approximate N-representability conditions underestimate

the localization, which causes the effective hopping to be

overestimated. In Fig. 5a, we plot teff for the 2 4 lattice

calculated with DQG and DQGT compared against teff

from FCI. As expected, DQG yields a lower teff than FCI

before U ¼ 4 and a higher teff than FCI after U ¼ 4. The

effective hopping from DQGT shows a similar trend while

exhibiting a much smaller deviation from the FCI curve,

which reinforces the accuracy of the DQGT conditions for

lattices with strongly correlated electrons. We compare teff

from DQG and DQGT for the (b) 2 10 and (c) 1 10

lattices. Both the linear and ladder Hubbard models exhibit

the same underestimation of teff at low U and overesti-

mation of teff at high U. Figure 5d compares teff calculated

from DQGT for the linear and ladder models. The increase

in lattice dimension facilitates transport down the chain.

4.3 Natural occupation numbers and entanglement

We examine the one-electron occupation numbers of the

natural orbitals around the Fermi surface. The natural

orbitals are the eigenfunctions of the 1-RDM. Select

occupation numbers of the a-spin block of the 1-RDM in

the quasi-momentum basis are provided in Table 1. For

both lattices, the Na � 1 and Na occupation numbers cal-

culated with DQG are larger than the occupation numbers

with DQGT, and the Na þ 1 and Na þ 2 occupation num-

bers calculated with DQG are smaller than the occupation

numbers with DQGT. The difference between DQG and

DQGT occupation numbers is greater for the 2 10 lattice

than 1 10 lattice for all U values. Furthermore, the higher

degree of multireference character of the occupation

numbers when calculated with DQGT constraints indicates

that polyradical character induced by a transition to the

Mott insulating state is better captured by DQGT

conditions.

We measure correlation explicitly by calculating the

squared Frobenius norm of the cumulant portion of the

2-RDM 2D

jj2Djj2 ¼ Trð2Dy 2DÞ ð39Þ
as a function of system size and coupling. The squared

Frobenius norm of the cumulant [23] is size-extensive and

contains spin entanglement information not captured by the

correlation energy or von Neumann entropy. Using this

metric, we compare the degree of correlation in each ladder

system. In Fig. 6, we plot the norm-per-lattice site for the

(a) 2 10 and (b) 1 10 lattices at half filling. For the

(a) (b)

Fig. 4 The a;b-two-point pair correlation functions calculated with DQG and DQGT constraints are given for the (a) ladder 2 10 and

(b) linear 1 10 lattices at half filling hn̂i ¼ 1
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2 10 lattice, DQG predicts a significantly larger norm at

high U. In the case of the 1 10 lattice, DQG and DQGT

agree on the amount of correlation in the lattice.

5 Conclusion

Calculation of ground-state properties of strongly corre-

lated model systems is highly important for understanding

a plethora of condensed phase N-body physics. One of the

main limitations of wave function methodologies is the

exponential scaling of the Hilbert space with system size.

In exchange for the exponentially scaling N-particle wave

function, we have reviewed how to compute the ground-

state energy with respect to the polynomial scaling 2-RDM.

The variational 2-RDM has some key benefits: (1) it pro-

vides a lower bound to wave function methods, (2) can be

numerically implemented as a semidefinite program which

is solved with a polynomial scaling algorithm, and (3) and

gives easy access to pair correlation functions important for

characterizing condensed-matter systems.

We have demonstrated that the variational 2-RDM

method with moderate N-representability constraints can

be used to calculate the ground-state energies of ladder

Hubbard models accurately. In keeping with recent results

for 4 4 and 6 6 two-dimensional Hubbard models, we

(a) (b)

(c) (d)

Fig. 5 The effective hopping teff for the 2 4 lattice is calculated

with DQG, DQGT, and FCI. In (a), we plot teff for the 2 4 lattice

calculated with DQG and DQGT compared against teff from FCI. We

compare teff from DQG and DQGT for the (b) 2 10 and (c) 1 10

lattices. Both the linear and ladder Hubbard models exhibit the same

underestimation of teff at low U and overestimation of teff at high U.

Part (d) compares teff calculated from DQGT for the linear and ladder

models. The increase in lattice dimension facilitates transport down

the chain

Table 1 Natural-orbital occupation numbers of the a-spin block of

the 1-RDM in the quasi-momentum basis

Lattice Conditions U Na � 1 Na Na þ 1 Na þ 2

1 10 DQG 4 0.9022 0.8064 0.1936 0.0978

8 0.7828 0.6566 0.3434 0.2172

12 0.7114 0.6014 0.3986 0.2886

DQGT 4 0.8993 0.7895 0.2104 0.1008

8 0.7634 0.6291 0.3710 0.2366

12 0.6870 0.5812 0.4188 0.3130

2 10 DQG 4 0.8081 0.7667 0.2333 0.1919

8 0.6629 0.6280 0.3720 0.3371

12 0.6067 0.5827 0.4173 0.3933

DQGT 4 0.7863 0.6897 0.3103 0.2138

8 0.6338 0.5710 0.4290 0.3662

12 0.5811 0.5462 0.4538 0.4189
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observe that partial (2,3)-positivity (DQGT) conditions are

effective at capturing strong electron correlation effects in

both one- and quasi-one-dimensional lattices for both half

filling and less-than-half filling. We have found that certain

correlation functions can be accurately predicted with

(2,2)-positivity (DQG) conditions. Furthermore, 2-RDM

methods offer a way to analyze the correlation per site in a

lattice model with a size-extensive metric and give direct

access to occupation numbers. The 2-RDM methods

complement recently developed wave function-based

methods [46], and they may be useful in the context of

approximate embedding calculations [47]. In general, the

variational RDM method offers a new approach to studying

lattice models of varying topology and filling.
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Abstract The forward and reverse reactions Br ? H2-

O ? HBr ? OH are important in atmospheric and envi-

ronmental chemistry. Five stationary points on the potential

energy surface for the Br ? H2O ? HBr ? OH reaction,

including the entrance complex, transition state, and exit

complex, have been studied using the CCSD(T) method

with correlation-consistent basis sets up to cc-pV5Z-PP.

Contrary to the valence isoelectronic F ? H2O system, the

Br ? H2O reaction is endothermic (by 31.8 kcal/mol after

zero-point vibrational, relativistic, and spin–orbit correc-

tions), consistent with the experimental reaction enthalpy.

The CCSD(T)/cc-pV5Z-PP method predicts that the

reverse reaction HBr ? HO ? Br ? H2O has a complex

but no classical barrier. When zero-point vibrational

energies are added, the transition state lies 0.25 kcal/mol

above the separated products. This is consistent with the

negative temperature dependence for the rate constant

observed in experiments. The entrance complex is pre-

dicted to lie 2.6 kcal/mol below separated Br ? H2O. The

exit complex is predicted to lie 1.8 kcal/mol below sepa-

rated HBr ? OH.

Keywords Atmospheric chemistry � Water reactions �
Bromine atoms � OH radicals � Potential energy surfaces �
Ab initio computations

1 Introduction

Following the F ? H2O and Cl ? H2O reactions, the

Br ? H2O reaction would appear to come next in the quest to

understand the reaction mechanisms of the halogen atom-

water systems, X ? H2O ? HX ? HO (X = F, Cl, Br)

reactions. The Br ? H2O reaction has been widely studied

because Br atoms destroy ozone in the atmosphere [1, 2] and

because some brominated compounds play important roles

in combustion chemistry acting as fire retardants [3].

Much research has been directed toward the forward and

reverse Br ? H2O ? HBr ? HO reactions [4–15] because

it is a prototype for A ? BCD chemical reactions, and this

relatively simple chemical system displays interesting rate

constant complexity. Sims et al. [4] first reported that the

rate of the OH ? HBr reaction below 249 K and the rate

constants increase monotonically with decreasing temper-

ature from 295 to 23 K. The theoretical studies by Clary

et al. [5] in the same year predicted negative temperature

dependence in agreement with the experimental results [4].

Jaramillo et al. [7] later observed inverse temperature
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dependence for the OH ? HBr reaction at temperature

below 200 K using uniform supersonic flow reactors with

laser-induced fluorescence detection. Che et al. [8] used

crossed molecular beam techniques and found the reaction

cross section to decrease with increasing collision energy,

and they suggested no barrier for the OH ? HBr reaction.

Theoretically, Nitzamov et al. [6] studied the rate con-

stants and energy partitioning for the OH ? HBr reaction

via quasi-classical trajectories. Liu and coworkers [9]

predicted that the OH ? HBr reaction has a small barrier

(\1.0 kcal/mol, from CCSD(T)/6-311?G(2df,2p) single-

point energies), and their theoretical rate constants are

comparable with the experimental results [4, 11–14].

In 2013, Li et al. [15] used the ROHF-UCCSD(T)-F12

method with the aug-cc-pVTZ basis set and a frozen-core

(FC) approximation to study the characteristics of the three

X���H2O (X = F, Cl, Br) complexes, but no other station-

ary points in the potential surface were reported. Since the

reaction rate constants and their temperature dependence

are sensitive to the accuracy of the potential energy surface,

we will, in the present paper, adopt high-level ab initio

coupled-cluster methods along with correlation-consistent

cc-pV5Z-PP basis sets to study all stationary points on

the potential surface for the Br ? H2O ? HBr ? OH

reaction.

2 Computational methods

In this research, the coupled-cluster single and double

substitutions method with a perturbative treatment of triple

excitations CCSD(T) [16–18] was adopted based on

unrestricted Hartree–Fock reference wave functions. For

the CCSD(T) computations, the cc-pVDZ, cc-pVTZ, and

cc-pVQZ quality basis sets were used, where cc-pVnZ is an

abbreviation for the correlation-consistent polarized

valence basis sets of Dunning et al. [19–22]. With the

coupled-cluster methods used in this research, the core

orbitals are frozen. That is, the 1s-like molecular orbital is

frozen for O, while the 1s2s2p3s3p3d-like molecular

orbitals are frozen for Br.

In parallel computations, we adopted the relativistic

pseudopotentials (PPs) and the corresponding correlation-

consistent cc-pVnZ-PP basis sets for Br [23]. Therein, the

bromine inner core (1s22s22p6) is replaced by an energy-

consistent pseudopotential, which was adjusted to atomic

multiconfigurational Dirac–Hartree–Fock results [23].

With this cc-pVnZ-PP basis sets for Br, in our present

CCSD(T) study, the outer core-like molecular orbitals

(3s3p3d) are frozen. With the relativistic pseudopotentials,

we adopted basis sets as large cc-pV5Z-PP for Br, in

conjunction with the corresponding cc-pV5Z basis sets for

O and H.

The optimized geometries and resulting energies for the

reactants, entrance complex, transition state, exit complex,

and products were predicted. Harmonic vibrational fre-

quencies predicted at the same level (up to cc-pVQZ and

cc-pVQZ-PP basis sets) were used for the characterization

of stationary points and zero-point vibrational energies

(ZPVE). The CFOUR program of Stanton, Gauss, Harding,

Szalay, and coworkers was used for the coupled-cluster

computations [24]. Most DZ results are not shown in text,

but they are available in Supplementary Material.

3 Nonrelativistic results

We consider first the nonrelativistic predictions of this

research. Shown in Fig. 1 and Table 1 are the geometrical

structures and relative energies for the reactants, entrance

complex, transition state, exit complex, and products

involved in the title reaction, as optimized at the CCSD(T)/

cc-pVnZ, (n = D, T, Q) levels of theory. The harmonic

vibrational frequencies (cm-1) for all the stationary points

of the Br ? H2O ? HBr ? HO potential energy surface

are reported in Table 2. For comparison, the limited

available experimental results are also shown in Tables 1

and 2 [25–28]. Our ZPVE value for water (13.52 kcal/mol)

is easily tested. Barletta et al. [29] have determined the

exact ZPVE of water to be 4,638.31 cm-1, or 13.26 kcal/

mol. This means that there is an error of (13.52–13.26 =)

0.26 kcal/mol in our water ZPVE.

Compared with the available experimental geometrical

parameters, our theoretical results are in satisfactory

agreement. For example, the CCSD(T)/cc-pVQZ predicted

O–H distance (0.958 Å) and \H–O–H (104.1�) for H2O

are close to the experimental values O–H(re) = 0.9575 Å,

\H–O–H = 104.51� [30]. For the products OH and HBr,

the experimental bond distances are O–H(re) = 0.9697 Å

and H–Br(re) = 1.4144 Å [30], compared with our

CCSD(T)/cc-pVQZ results O–H(re) = 0.970 Å and H–

Br(re) = 1.420 Å.

It is seen in Fig. 1 that the CCSD(T) method shows the

Br ? H2O ? HBr ? HO reaction to endothermic by 28.0,

31.3, and 31.8 kcal/mol with the cc-pVDZ, cc-pVTZ, and

cc-pVQZ basis sets, respectively. The results appear to

show convergence approaching with the size of the basis

set. Further corrections to the classical endothermicity will

be discussed below. In the laboratory, only the reverse

reaction has yet been observed, i.e., BrH ? OH ? Br ?

H2O at a range of temperatures, from 48 to 224 K [7] and

230–360 K [13].

The entrance complex Br���H2O predicted by the

CCSD(T)/cc-pVQZ method lies 3.5 kcal/mol (without

ZPVE) below the separated reactants (Br and H2O). This

complex (Cs symmetry) involves a weak interaction
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between Br and H2O, similar to its analogues F���H2O [31]

and Cl���H2O [32]. This complex (Br���H2O) was not

reported in some earlier theoretical studies [6, 9], but it was

carefully examined in the recent research by Li et al. [15].

Using the ROHF-UCCSD(T)-F12 method, the latter

authors found the entrance complex to lie 3.5 kcal/mol

lower than Br ? H2O. It would have been good to see a

simple pattern of convergence with respect to basis set

from TZ to QZ to 5Z. However, the pseudopotential TZ/

QZ difference in the entrance complex well depth is

0.11 kcal/mol, but that for QZ/5Z is a bit larger, 0.12 kcal/

mol.

The barrier from the Br ? H2O side is predicted to be

31.6 kcal/mol at the CCSD(T)/cc-pVQZ level of theory.

The same theoretical method has been used to predict

reliable barriers for the F ? H2O [31] and Cl ? H2O [32]

Fig. 1 Stationary points on

nonrelativistic the Br ? H2O

potential energy surface.

Optimized geometrical

parameters for the structures of

the reactants, entrance complex,

transition state, exit complex,

and products are from the

CCSD(T) method with basis

sets cc-pVDZ, cc-pVTZ, and

cc-pVQZ, respectively. The

bond lengths and angles are in

angstroms and degrees,

respectively. Energies do not

include zero-point vibrational

corrections or spin–orbit effects

Table 1 Relative energies (in kcal/mol) for the stationary point of the reaction of Br with H2O using the CCSD(T) method, with the cc-pVnZ

(n = D, T, Q) basis sets, as well as the analogous cc-pVnZ(-PP) basis sets

cc-pVTZ cc-pVQZ Expt.

DE ?ZPVE ?SO DE ?ZPVE ?SO DH0 (T = 0 K)

CCSD(T)/cc-pVnZ

Br ? H2O 0.00 0.00 0.00 0.00 0.00 0.00 30.18, 30.97a

Entrance complex -3.57 -2.76 -2.76 -3.45 -2.62 -2.62

TS 31.41 27.73 31.24 31.64 27.84 31.35

Exit complex 27.98 24.76 28.27 28.77 25.34 28.85

HBr ? OH 31.27 26.91 30.42 31.80 27.45 30.96

cc-pVTZ(-PP) cc-pVQZ(-PP) cc-pV5Z(-PP)

DE ?ZPVE ?SO DE ?ZPVE ?SO DE ?ZPVE ?SO

CCSD(T)/cc-pVnZ(-PP)

Br ? H2O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Entrance complex -3.64 -2.82 -2.82 -3.54 -2.71 -2.71 -3.41 -2.59 -2.59

TS 31.83 28.06 31.57 32.07 28.29 31.80 32.36 28.58 32.09

Exit complex 28.63 25.37 28.88 29.39 26.09 29.60 29.85 26.56 30.07

HBr ? OH 31.88 27.51 31.02 32.38 28.02 31.53 32.70 28.33 31.84

The cc-pVnZ(-PP) basis sets have the 10 core electrons of bromine replaced by a relativistic effective potential. At each level of theory are

reported (a) DE based on electronic energies only; (b) DE plus zero-point vibrational energy (ZPVE) corrections; and (c) DE ? ZPVE cor-

rections ? spin–orbit (SO) corrections
a References [38–41, 43]
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reactions. The transition state is a first-order saddle point,

confirmed by the vibrational analysis with one imaginary

frequency, 974i, 714i, and 672i cm-1 at the CCSD(T)/cc-

pVDZ, CCSD(T)/cc-pVTZ, and CCSD(T)/cc-pVQZ levels,

respectively (Table 2). As can be seen from Fig. 1, there

are significant changes in the geometry (bond angles and

bond distances) from the entrance complex to the transition

state. This late transition state is a nonplanar structure with

C1 symmetry, with the departing O–H distance at the TS

stretching to 1.490 Å at the CCSD(T)/cc-pVQZ level. This

is 0.530 Å longer than the O–H distance in the entrance

complex (0.960 Å) or for the reactant (0.958 Å). Com-

pared with the nearly linear O–H–Br angle in the empirical

transition state reported in Ref. [6], our predicted value of

142� (Fig. 1) is quite different. However, our result is much

closer to those (147�, 149�, or 152�) at the MP2, BHLYP,

and MP4SDQ levels, respectively, obtained by Liu et al.

[9].

The exit complex Br–H���O–H for the Br ? H2O ?
HBr ? OH reaction is predicted to lie (31.8–28.8) =

3.0 kcal/mol below the products (separated HBr plus OH).

The internuclear separations H–Br and O–H for the exit

complex are very similar to those for the separated pro-

ducts HBr and OH, indicating this complex is a product-

like intermediate. Consequently, the harmonic vibrational

frequencies of O–H and H–Br in the complex (Table 2) are

close to those for separated HBr plus OH.

Figure 2 exhibits the similarities and differences

between our Br ? H2O potential energy surface and those

for the F ? H2O [31] and Cl ? H2O [32] systems. Like the

Fig. 2 Energetic comparison of stationary points for the F ? H2O,

Cl ? H2O, and Br ? H2O reactions with the CCSD(T)/cc-pVQZ

method. Energies do not include zero-point vibrational corrections or

relativistic or spin–orbit effects

Table 2 Nonrelativistic harmonic vibrational frequencies (cm-1) and zero-point vibrational energies (kcal/mol) for the stationary points of the

Br ? H2O ? HBr ? OH reaction

ZPVE (kcal/mol) Vibrational frequencies (cm-1)

x1 x2 x3 x4 x5 x6

CCSD(T)/cc-pVTZ

H2O 13.52 3,946 3,841 1,669

Entrance complex 14.33 3,924 3,818 1,662 255 251 113

TS 9.84 3,730 1,637 737 418 272 714i

Exit complex 10.30 3,731 2,597 371 249 156 98

HBr 3.80 2,660

OH 5.35 3,745

HBr ? OH 9.15

CCSD(T)/cc-pVQZ

H2O 13.52 3,951 3,844 1,659

Entrance complex 14.35 3,926 3,817 1,651 266 264 115

TS 9.72 3,733 1,692 713 406 255 672i

Exit complex 10.09 3,736 2,600 292 261 135 56

HBr 3.80 2,661

OH 5.36 3,750

HBr ? OH 9.16

Experimenta

H2O 13.47 3,943 3,832 1,649

HBr 3.79 2,649

OH 5.34 3,735

a Reactant and product experimental results shown for comparison [25–28]
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potential energy surfaces for F ? H2O and Cl ? H2O

systems, we see both an entrance complex and an exit

complex for Br ? H2O, with their geometries qualitatively

similar to those for the F ? H2O and Cl ? H2O systems.

For these systems in Fig. 2, all the three X���H2O entrance

complexes (X = F, Cl, Br) lie below the corresponding

reactants X ? H2O by 3.2 to 3.5 kcal/mol, while the

X–H���O–H exit complexes lie below the X–H ? O–H

products by 3.0–6.2 kcal/mol at the CCSD(T)/cc-pVQZ

level of theory.

However, there are major qualitative differences

between the three reactions. The Br ? H2O and Cl ? H2O

systems are endothermic reactions, as opposed to the

exothermic F ? H2O reaction. Thus, for the F ? H2O

system (like the more exhaustively studied F ? H2 reaction

[33, 34]), the reaction proceeds more readily in the forward

direction, while for the Cl ? H2O and Br ? H2O systems,

the reactions are much more likely to occur in the reverse

direction under normal conditions. Furthermore, the

Br ? H2O system is more endothermic energy than is

Cl ? H2O. We can also see that for the three halogen

atom-water reactions (X = F, Cl, Br), the relative energies

of the transition states are obviously different. The energy

barrier from the Br ? H2O side (31.6 kcal/mol) is higher

than that for the Cl ? H2O system (20.8 kcal/mol), and

much higher than that for the F ? H2O system (2.7 kcal/

mol). For the important reverse XH ? OH ? X ? H2O

reactions, the barriers from the XH ? OH side are 18.2,

2.4, and -0.2 kcal/mol for X = F, Cl, and Br, respec-

tively, predicted by the CCSD(T)/cc-pVQZ method. For

the HBr ? OH ? Br ? H2O reaction, the transition state

lies lower than HBr ? OH, leading to a negative tem-

perature dependence for the rate constants [4, 7].

Accordingly, the Br ? H2O reaction has a late transition

state with its geometry similar to the product HBr plus

OH, while the F ? H2O reaction has an early transition

state with its geometry similar to the reactant F plus H2O.

The transition state for the Cl ? H2O reaction lies in

between.

4 Scalar relativistic results

Pseudopotentials (PP) were originally proposed to reduce

the computational cost for the heavy atoms with the

replacement of the core orbitals by an effective potential.

Modern pseudopotentials implicitly include relativistic

effects by means of adjustment to quasi-relativistic Har-

tree–Fock or Dirac–Hartree–Fock orbital energies and

densities [35]. In the present research, we adopted Peter-

son’s correlation-consistent cc-pVnZ-PP (n = D, T, Q, 5)

basis sets [23] with the corresponding relativistic pseudo-

potential for the Br atom. The corresponding cc-pVnZ

(n = D, T, Q, 5) basis sets were used for the O and H

atoms. The optimized geometries and relative energies for

the stationary points are reported in Table 1 and Fig. 3, and

the harmonic vibrational frequencies and zero-point

vibrational energies are reported in Table 4.

The relativistic pseudopotential (PP) predictions are

close to the all-electron results. Of course, there are no

changes for H2O and OH, since no pseudopotential is used

for the oxygen atom. The change for the bond distance for

the product HBr is also small (\0.002 Å). For the entrance

complex, the Br���H2O distance is reduced by *0.01 Å,

while the O–H distance shows no change. For the exit

complex, no change is found for the O–H distance, a small

change (\0.002 Å) for the H–Br distance, and the change

of HO���HBr distance is\0.007 Å. For the transition state,

there is no change for O–H distance, a change (\0.006 Å)

for H–Br distance, and slightly larger changes

(0.008–0.012 Å) for Br–H���O–H distance.

The relative energies for the entrance complex predicted

by the cc-pVnZ-PP basis sets are almost the same as those

predicted by the all-electron cc-pVnZ basis sets, except for

cc-pVDZ-PP, which predicts a 0.1 kcal/mol deeper well.

The barrier associated with the transition state is predicted

a little higher (0.5 kcal/mol) by the PP basis sets. For the

exit complex, the relative energy is also slightly higher (by

0.6 kcal/mol). The reaction energy is also predicted higher

with the PP basis sets by 0.6 kcal/mol.

Table 3 Dipole moments (D, debye) from the CCSD(T) method with the cc-pVTZ-PP, cc-pVQZ-PP, and cc-pV5Z-PP basis sets for all the

stationary points of the Br ? H2O ? HBr ? OH reaction

cc-pVTZ-PP cc-pVQZ-PP cc-pV5Z-PP Expta

H2O 1.92 1.90 1.88 1.8546 ± 0.0040

Entrance complex 2.24 2.21 2.23

TS 1.77 1.69 2.36

Exit complex 2.53 2.51 2.51

HBr 0.87 0.83 0.82 0.8272 ± 0.0003

OH 1.67 1.67 1.67 1.655 ± 0.001

Reactant and product experimental results are also shown for comparison
a Ref. [42]
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Dipole moments for all the stationary points are shown

in Table 3, and these predictions will hopefully also be

useful for future experimental research. Good agreement

with experiment is found for the dipole moments of H2O,

HBr, and OH [42]. It is seen that the dipole moment is

largest (2.51 D) at the exit complex.

Table 4 lists the harmonic vibrational frequencies and

zero-point vibrational energies predicted by the PP basis

sets. Compared with the results in Table 2, the changes are

very small. For the entrance complex, most vibrational

frequencies are the same, except for small changes for the

two lowest frequencies. For the transition state, the

Fig. 3 Stationary points on the Br ? H2O potential energy surface.

Optimized geometrical parameters for the structures of the reactants,

entrance complex, transition state, exit complex, and products from

the CCSD(T) method with the relativistic basis sets cc-pVTZ-PP cc-

pVQZ-PP, and cc-pV5Z-PP, respectively. The bond lengths and

angles are in angstrom and degree, respectively. Energies include

both spin–orbit and zero-point vibrational corrections

Table 4 Relativistic vibrational frequencies (cm-1) and zero-point vibrational energies (kcal/mol) for the stationary points of the

Br ? H2O ? HBr ? OH reaction

ZPVE (kcal/mol) DZPVE (kcal/mol) Vibrational frequencies (cm-1)

x1 x2 x3 x4 x5 x6

CCSD(T)/cc-pVTZ-PP

H2O 13.52 0.00 (Same as in Table 2)

Entrance complex 14.34 0.82 3,924 3,817 1,662 259 254 115

TS 9.75 -3.77 3,730 1,677 728 416 269 678i

Exit complex 10.26 -3.26 3,732 2,590 367 243 150 96

HBr 3.79 2,649

OH 5.35 (Same as in Table 2)

HBr ? OH 9.14 -4.38

CCSD(T)/cc-pVQZ-PP

H2O 13.52 0.00 (Same as in Table 2)

Entrance complex 14.34 0.82 3,927 3,818 1,649 262 261 116

TS 9.74 -3.78 3,732 1,727 703 400 251 640i

Exit complex 10.22 -3.30 3,737 2,583 364 226 146 96

HBr 3.79 2,651

OH 5.36 (Same as in Table 2)

HBr ? OH 9.15 -4.37

Obtained from the CCSD(T) method with basis sets cc-pVTZ-PP and cc-pVQZ-PP, respectively. The column DZPVE reports the difference in

ZPVE between reactants (Br ? H2O) and the stationary point
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imaginary frequency changes from 974i to 940i cm-1

(DZ), from 714i to 678i cm-1 (TZ), and from 672i to 640i

cm-1 (QZ). For the exit complex, there are changes as

large as 72 cm-1, but the change for the ZPVE is still as

small as 0.1 kcal/mol.

5 Spin–orbit coupling

The scalar relativistic effects considered via pseudopoten-

tials involve only the core electrons. For the valence

electrons, spin–orbit (SO) coupling effects arising from the

heavy Br atom may be very important. Since we are

interested in the stationary points on the Br ? H2O

potential surface, the reliable evaluation of the spin–orbit

coupling becomes more straightforward. Recently, Czakó

has studied the related Br ? CH4 reaction [36]. He notes

that the SO correction is essentially quenched at the pro-

ducts (HBr ? CH3), exit complex, and even the late tran-

sition state (geometrically similar to the products). The SO

splitting between the ground and excited SO states of the

Br atom is known from experiment, namely 3,685 cm-1

[37]. Since the ground SO state (2P3/2) is fourfold degen-

erate and the excited SO state (2P1/2) is twofold degenerate,

the SO ground state lies below the spin-averaged (non-SO)

energy by 3,685/3 = 1,228 cm-1 = 3.51 kcal/mol. The

Br ? H2O reaction in our present study is analogous to the

Br ? CH4 reaction, and thus, the SO correction may be

readily evaluated, i.e., it actually increases the reaction

barrier by 1,228 cm-1 (3.51 kcal/mol). Our CCSD(T)/cc-

pVQZ(-PP) predicted Br ? H2O energy barrier after the

ZVPE and SO corrections will be 31.80 (=28.29 ? 3.51)

kcal/mol. With the same logic, the endothermic reaction

energy also increases to 31.53 (=28.02 ? 3.51) kcal/mol

(Table 1).

The evaluation of the experimental endothermicity of

our reaction requires some care. For the 0 K heats of for-

mation, we use the values of Ruscic et al. [38] for the H2O

(-57.10) and OH (8.85 kcal/mol) molecules. For HBr and

Br, the experimental heats of formation seem less secure

[39–41]. We chose the NIST values [40] of 26.74 (Br) and

-8.67 kcal/mol (HBr). With these assumptions, an exper-

imental endothermicity of 30.18 kcal/mol is deduced.

Using slightly different experimental heats of formation, de

Oliveira-Filho [43] finds a value of 30.97 kcal/mol. We

include both values in Table 1.

6 Conclusions

The present CCSD(T) studies provide reliable stationary

point information for the Br ? H2O ? HBr ? HO

potential energy surface, as well as zero-point harmonic

vibrational energies, vibrational frequencies, and dipole

moments. A classical barrier of 31.6 kcal/mol (with the all-

electron cc-pVQZ basis set) or 32.4 kcal/mol (with ECP

and cc-pV5Z-PP basis set for Br) from the Br ? H2O side

is predicted, and these values reduced to 27.8 (QZ AE) or

28.6 (5Z ECP) kcal/mol after the ZPVE corrections

(Table 1). The final energy barrier with SO correction

becomes 31.3 (QZ AE) or 32.1 (5Z ECP) kcal/mol. The 5Z

ECP relative energy with ZPVE and SO corrections for the

entrance complex is -2.6 kcal/mol and that for exit com-

plex is 30.1 kcal/mol. Compared with the analogous sys-

tems F ? H2O and Cl ? H2O, the Br ? H2O potential

energy surface has some very different features.

7 Addendum: comparison with de Oliveira-Filho,

Ornellas, and Bowman

After the completion of the present research, a beautiful

paper by de Oliveira-Filho et al. [43] appeared on the same

reaction. The methodology used by Oliveira-Filho is

somewhat different from ours. First, they used the

CCSD(T)-F12a/cc-pVTZ-F12 method for their most reli-

able structural predictions. Our most reliable structural

predictions were made with CCSD(T)/cc-pV5Z(-PP), with

the analogous DZ, TZ, and QZ basis set results included

test convergence. Thus, our structural predictions include

scalar relativistic effects, while those of Bowman do not.

Figure 4 compares our best geometry predictions with

the best predictions of de Oliveira-Filho [43]. For the

reactants, exit complex, and products, the bond distance

differences are negligible, no more than 0.001 Å. For the

entrance complex, the interatomic distances are the same to

within 0.002 Å. The transition state geometry should be the

most challenging. Even there, the largest difference in bond

distances is only 1.516–1.508 = 0.008 Å. At the transition

state, the dihedral Br–H–O–H angles are 54.2 and 53.3.

These two potential energy surfaces, computed completely

independently, are remarkably similar in terms of station-

ary point geometries.

Finally, we compare the 0 K stationary point energies

predicted by us and by Bowman and coworkers. In the

present research, the CCSD(T)/cc-pV5Z-PP energies are

appended with harmonic ZPVE corrections predicted at the

CCSD(T)/cc-pVQZ-PP method and with our spin–orbit

corrections (see above). In Bowman’s final energetics,

single-point energies were computed using a many-layered

composite scheme (see pages 708 and 709 of their paper)

including relativistic effects via the Douglas–Kroll method

and spin–orbit contributions using the Breit–Pauli operator.

Note that the energetics in Fig. 4 include both relativ-

istic and zero-point vibrational corrections. The most

obvious difference in the energetics occurs for the depth of
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the entrance complex well, the binding energy between the

Br atom and the H2O molecule. The classical binding

energy is 3.57 and 3.45 kcal/mol (Table 1), predicted by

the CCSD(T)/cc-pVTZ and CCSD(T)/cc-pVQZ methods,

respectively, in the present study. For comparison, Bow-

man’s analogous predicted binding energy is 3.40 kcal/mol

(36.01–32.61) by the CCSD(T)-F12a/cc-pVTZ-F12

method (Table 1 in ref. 43). In our research, after the

ZPVE and scalar relativistic corrections, the binding

energy becomes 2.59 kcal/mol (Table 1) predicted with the

CCSD(T)/cc-pV5Z-PP method. Note our assumption that

the spin–orbit correction would not affect this value, since

the Br atom in entrance complex is *3.0 Å far from the

H2O molecule. However, Bowman’s final corrected value

at the CCSD(T)-F12a/cc-pVTZ-F12 level is as small as

0.81 kcal/mol (based on Tables S1 and S2 in Supporting

Information of ref. 43). The difference is due to the fact

that the bromine atom spin–orbit coupling predicted in the

research of Bowman is significantly quenched at the

entrance complex. This seems counterintuitive (in the light

of the long Br���H distance of 3.08 Å), but Bowman’s

treatment of the spin–orbit interaction is far more sophis-

ticated than ours. The present 0 K heats of formation for

the transition state, exit complex, and products are higher

than those of Bowman by 1.14, 0.60, and 0.76 kcal/mol.

We predict the transition state to lie 0.25 kcal above the

products, while Bowman predicts the transition state to lie

below the products by 0.13 kcal/mol. Given the differences

in the theoretical methods, the agreement seems

satisfactory.
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Abstract A number of density functionals are bench-

marked for calculation of 1s core electron binding energies

for carbon, nitrogen, and oxygen nuclei in glycine, and for

comparison in the first-row hydrides methane, ammonia,

and water. The goal is to establish methods having

potential to aid the analysis of experimental X-ray photo-

electron spectra on compounds such as amino acids, DNA

nucleosides, and large polypeptides in various environ-

ments. Several promising density functionals are identified

that can reproduce experimental results within 0.2 eV on

average for the absolute binding energies and also for the

intramolecular and intermolecular shifts in the studied

molecules.

Keywords Quantum chemistry � Density functional

theory � Core electron binding energies � X-ray

photoelectron spectroscopy � Glycine

1 Introduction

Biomolecules on metal surfaces are being widely studied

for their practical applicability in areas such as biosensors

[1–5], organic semiconductors [6–10], and biocatalysis

[11–15]. X-ray photoelectron spectroscopy is a valuable

nondestructive tool in this area of research, as recently

demonstrated by its use to characterize the adsorption of

thymidine [16], histidine [17], and histidine tripeptide [17]

on gold and copper surfaces. To facilitate the interpretation

of such photoelectron spectra, we have initiated a project to

establish accurate and efficient methods for computation of

core electron binding energies (CEBEs) in amino acids,

DNA nucleotides, and polypeptides. As a first step, the

present paper benchmarks the performance of various

density functional methods for calculation of carbon,

nitrogen, and oxygen CEBEs in the model compound

glycine, and for comparison also in the first-row hydrides

methane, ammonia, and water.

Glycine is the smallest of the 21 amino acids that form

proteins [18]. It plays an essential role in living animals

[19, 20] and plants [21, 22] and has even been found in

space [23, 24] advocating the idea of panspermia. Its main

function in animals is to serve as a building block for

protein formation. Previous analyses of glycine in the gas

phase include several experimental investigations [25–27].

A computational [28] investigation of gas phase glycine

based on density functional theory showed an average

absolute deviation from the experimental [25] CEBEs of

just 0.2 eV, though the particular method used was later

declared obsolete because it depended on a fortuitous

cancelation of errors [29]. Shifts in the glycine CEBEs

from the gas phase have also been studied in neutral,

acidic, and basic solutions by means of X-ray photoelec-

tron spectroscopy and by theoretical methods [30].
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High accuracy in CEBE calculations can be reliably

achieved with ab initio post-Hartree–Fock methods. For

example, it was shown recently that the observed shifts of

carbon 1s photoelectron energies in some organic com-

pounds could be reproduced on average to within 0.03 eV

by means of Møller–Plesset many-body perturbation theory

and coupled cluster approaches [31]. However, such high

accuracy methods are generally too expensive to be applied

to large molecules.

The most promising approaches for efficient electronic

structure calculations on large molecules are generally

based on density functional theory with Kohn–Sham

orbitals [32–35]. The most efficient such method for CE-

BEs is based on Koopmans’ theorem, but this approach has

quite limited accuracy [36–39]. Better accuracy can be

obtained from calculations based on an effective core

potential [40–45], an equivalent core approximation [46–

48], a fractionally occupied transition state [49–52], or with

a DSCF approach [29, 31, 53–57]. Time-dependent density

functional theory is also widely used for CEBE calculation

[58–62], wherein the best results are usually given with

functionals having a long-range correction [63, 64].

A study using the DSCF approach for CEBEs of first-

row atoms in many small gas phase molecules found that

the quality of the results was very sensitive to the choice of

functional [29], with the best performance found corre-

sponding to a mean unsigned error (MUE) from experiment

of just 0.16 eV. Similar accuracy was also found for the

first-row atoms in gas phase thymine [65, 66].

In the present study, we use the DSCF approach with

Hartree–Fock and a wide variety of pure and hybrid density

functional approaches to study CEBEs in glycine, methane,

ammonia, and water. Each approach is evaluated for its

accuracy in reproducing experimental values for the absolute

CEBEs in all four molecules, as well as for the intramolecular

and intermolecular chemical shifts between like nuclei in the

same or different molecules. Several promising candidates are

found that can be recommended for future testing to establish

accurate and efficient methods for calculations of CEBEs and

their chemical shifts in large biomolecules.

2 Computational methods

Separate initial state and final core–hole state calculations

provided DSCF values of the CEBEs. The maximum

overlap method [67, 68] was used to prevent variational

collapse of the final hole state. This simply replaces the

usual aufbau criterion for occupying orbitals in each iter-

ation with a criterion that the occupied orbitals be selected

to overlap as much as possible with those of the previous

iteration. The Ahlrichs’ VTZ basis set [69] was used, based

on the very good results it provided in a recent MCSCF-

MRPT study of CEBEs in simple hydrides [39]. All cal-

culations were performed with the Q-Chem 4.0 program

[70, 71].

Hartree–Fock (HF) and a variety of exchange, correla-

tion, and hybrid functionals were considered in this study.

The local spin density approximation is represented by the

exchange functional S (Slater and Dirac 1930) [72] toge-

ther with the correlation functionals VWN (Vosko, Wilk,

and Nusair) [73], PZ81 (Perdew and Zunger) [74], and

PW92 (Perdew and Wang 1992) [75].

Generalized gradient approximation (GGA) functionals

examined in this work include the exchange functionals B

(Becke 1988) [76] and PW91 (Perdew and Wang 1991) [77,

78], together with the correlation functionals PW91 (Perdew

and Wang 1991) [77, 78], P86 (Perdew 1986) [79], and LYP

(Lee, Yang, and Parr) [80]. The correlation part of PBE

(Perdew, Burke, and Ernzerhof 1996) [81] was used as well

in the schemes PBEOP (PBE exchange with the reparamet-

rized one-parameter progressive correlation functional) [82]

and PBE0 (PBE hybrid with 25 % HF exchange) [83]. Other

hybrid schemes considered were B97 [84], B97-1 [85], B97-2

[86] (a family of Becke 1997 hybrids), BOP (Becke 1988

with the OP correlation functional) [82], B3PW91 [87],

B3LYP [88], and B3LYP5 [73, 76]. In addition, the empirical

density functional EDF1 [89] was utilized.

Meta-GGA functionals incorporate the Laplacian of the

electron density and generally depend on the electron

kinetic energy density. These features allow a systematic

improvement of results for many quantum chemical cal-

culations. We have used the exchange functional BR89

(Becke-Roussel 1989 represented in analytic form) [87, 90]

and the correlation functional B94 (Becke 1994) [90, 91].

Minnesota functionals tested are M05 [92], M05-2X [93],

M06-L [94], M06-HF [95], M06 [96], M06-2X [96], and

M11 [97]. Another global hybrid studied is BMK [98]. A

hybrid extension of the nonempirical exchange–correlation

TPSS (Tao, Perdew, Staroverov, and Scuseria) [99] and

functional TPSSh [100] is also examined.

Several range-corrected and asymptotically corrected

schemes have been studied as well. The long-range-cor-

rected functionals considered include lBOP [101] (a long-

range-corrected version of BOP) and the hybrids xB97 and

xB97X [102]. The asymptotically corrected exchange–

correlation potential considered is LB94, which is a linear

combination of an LDA exchange–correlation potential

and the LB (van Leeuwen and Baerends) [103] exchange

potential. Short-range-corrected functionals that were spe-

cifically formulated for the treatment of core-excited states

include SRC1 and SRC2 [104], which we have imple-

mented with the BLYP functional and a recommended set

of parameters for designing the shape of the long-range and

short-range Hartree–Fock components (SRC1: CSHF =

0.50, lSR = 0.56 a0
-1, CLHF = 0.17, lLR = 2.45 a0

-1;
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SRC2: CSHF = 0.55, lSR = 0.69 a0
-1, CLHF = 0.08,

lLR = 1.02 a0
-1) [104].

For purposes of discussion, the various functionals

considered are separated into seven categories, those being

HF, LSDA, GGA, hybrid GGA, meta-GGA, meta-GGA

hybrid, and range or asymptotically corrected functionals.

Results from a larger collection that further includes some

possible combinations that are mixed between the catego-

ries, for instance exchange LSDA ? correlation GGA,

exchange GGA ? correlation meta-GGA, etc., were also

calculated. Those mixed category results generally turned

out to be less promising and so are relegated to the Elec-

tronic Supplementary Material, where details of the

molecular geometries used are also documented.

3 Results and discussion

Table 1 lists experimentally measured values of the eight

absolute CEBEs under consideration, those being the three

carbon nuclei in methane and the methyl and carboxyl

carbons in glycine, the two nitrogen nuclei in ammonia and

glycine, and the three oxygen nuclei in water and the keto

and hydroxyl oxygens in glycine. Table 2 shows the seven

experimental values for the following intermolecular and

intramolecular chemical shifts between like nuclei.

Table 1 Experimental values for CEBEs of C, N, and O nuclei in

CH4, NH3, H2O, and glycine

Molecule Orbital Binding energy

measured (eV)

Experimental

references

[25, 105–108]

CH4 C 1s 290.83 Nordfors et al. [105]

Pireaux et al. [106]

NH3 N 1s 405.60 Jolly et al. [107]

H2O O 1s 539.91 Nordfors et al. [108]

glycine C (methyl

carbon) 1s

292.25 Slaughter et al. [25]

C (carboxyl

carbon) 1s

295.15

N 1s 405.58

O (keto

oxygen) 1s

538.2

O (hydroxyl

oxygen) 1s

540.0

Table 2 Experimental values for chemical shifts

Chemical shift Experimental value (eV)

DEC GlymethylC ;GlycarboxylC

� �
-2.90

DEOðGlyketoO;GlyhydroxylOÞ -1.75

DEC CH4;GlymethylC

� �
1.42

DEC CH4;GlycarboxylC

� �
4.32

DEN NH3;GlyNð Þ -0.02

DEO H2O; Glyketo Oð Þ -1.71

DEO H2O;GlyhydroxylO

� �
0.09

Table 3 MUE values in eV for CEBEs and chemical shifts computed

by HF and various density functionals

Type of DFT functional Density

functional

MUE for

CEBEs Chemical

shifts

HF HF 0.37 0.59

LSDA SPW92 3.84 0.26

SPZ81 3.76 0.26

SVWN 3.83 0.26

GGA BOP 0.12 0.17

BLYP 0.27 0.16

BP86 0.17 0.18

BPBE 0.35 0.19

BPW91 0.16 0.19

EDF1 0.32 0.17

PBEOP 0.12 0.17

PW91LYP 0.24 0.16

PW91P86 0.15 0.19

PW91PBE 0.38 0.19

PW91PW91 0.19 0.18

Hybrid GGA B3LYP 0.46 0.26

B3LYP5 0.35 0.26

B3PW91 0.15 0.27

B97 0.51 0.25

B97-1 0.68 0.27

B97-2 0.23 0.27

PBE0 0.20 0.30

Meta-GGA BR89B94 0.55 0.24

M06L 0.11 0.19

Meta-GGA hybrid BMK 2.04 0.35

M05 0.24 0.30

M052X 0.88 0.47

M06 0.26 0.32

M062X 0.26 0.42

M06HF 0.45 0.61

M11 0.92 0.94

TPSSh 0.31 0.18

Range or asymptotically

corrected

BLYP-SRC1 1.32 0.99

BLYP-SRC2 3.93 0.37

LB94 20.05 5.65

lBOP 0.52 0.35

xB97 0.60 0.35

xB97X 0.73 0.35
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Intermolecular chemical shifts

DECðCH4;GlymethylCÞ ¼ BEðC1s in CH4Þ
� BEðmethylC 1s in glycineÞ

ð1Þ
DECðCH4;GlycarboxylCÞ ¼ BE C 1s in CH4ð Þ

� BE carboxylC 1s in glycineð Þ
ð2Þ

DENðNH3;GlyNÞ ¼ BEðN 1s in NH3Þ
� BEðN 1s in glycineÞ ð3Þ

DEOðH2O;GlyketoOÞ ¼ BEðO 1s in H2OÞ
� BEðketoO 1s in glycineÞ ð4Þ

DEOðH2O;GlyhydroxylOÞ ¼ BE O 1s in H2Oð Þ
� BE hydroxylO 1s in glycineð Þ

ð5Þ
Intramolecular chemical shifts

DECðGlymethylC;GlycarboxylCÞ ¼ BE methylC 1s in glycineð Þ
� BE carboxylC 1s in glycineð Þ

ð6Þ
DEOðGlyketoO;GlyhydroxylOÞ ¼ BE ketoO 1s in glycineð Þ

� BE hydroxylO 1s in glycineð Þ
ð7Þ

Table 3 shows the MUEs from experiment for various

computational methods. A full listing of the computed CE-

BEs and chemical shifts for each computational method is

given in the Electronic Supplementary Material. The MUE

results are also shown graphically in Fig. 1, which is cut off

at 1 eV because methods having errors larger than that are of

little interest. The functionals in Fig. 1 are ordered primarily

according to the category and within each category accord-

ing to the accuracy of the CEBE calculation.

HF treatment gives only modest accuracy for the CE-

BEs, with a MUE of 0.37 eV, and even less accuracy for

the chemical shifts, with a MUE of 0.59 eV. The LSDA

functionals’ performance is not very good either, with

very large MUEs of almost 4 eV for the CEBEs, although

the chemical shifts are given fairly well with MUE of

0.26 eV.

The GGA category of functionals performs best over-

all. The BOP and PBEOP hybrids yield very good MUEs

of 0.12 eV for CEBEs and 0.17 eV for chemical shifts.

The BP86, BPW91, PW91P86, and PW91PW91 func-

tionals also all yield MUEs of less than 0.20 eV for both

CEBEs and chemical shifts. While the remaining GGA

functionals have MUEs of 0.24 eV or more for the CE-

BEs, the errors are systematic enough to cancel somewhat

in the chemical shifts, giving MUEs below 0.20 eV in all

cases.

Among the hybrid GGAs, B3PW91 and PBE0 have

MUEs of 0.20 eV or less for CEBEs, but these two along

with all the other hybrid GGAs have somewhat higher

MUEs of 0.25–0.30 eV for the chemical shifts.

The meta-GGA functional M06L performs very well,

with MUEs of 0.11 eV for CEBES and 0.19 eV for

chemical shifts, while the BR89B94 functional gives a high

MUE of 0.55 eV for the CEBEs.

None of the meta-GGA hybrids perform consistently

well, with MUEs for CEBEs all being 0.24 eV or more and

MUEs for chemical shifts all being 0.30 eV or more.

Perhaps surprisingly, the range-corrected methods per-

form poorly, with MUEs of 0.52 eV or more for CEBEs

and 0.35 eV or more for chemical shifts, and the asymp-

totically corrected LB94 functional performs very poorly

for both CEBEs and chemical shifts.

Unsurprisingly, we can conclude that a functional’s

good performance in the calculation of CEBEs almost

necessarily means a good description of chemical shifts,

but the converse is not true.

Fig. 1 MUE values for

calculated CEBEs and chemical

shifts
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4 Conclusion

A variety of pure and hybrid functionals has been studied for

DSCF calculation of CEBEs and chemical shifts of C, N, and

O nuclei in the first-row hydrides and glycine. Seven func-

tionals are found that perform consistently well, giving

MUEs of less than 0.20 eV for both CEBEs and chemical

shifts. These are the GGA functionals BOP, PBEOP,

PW91P86, BPW91, BP86, and PW91PW91 and the meta-

GGA functional M06L. These can all be recommended for

further study to identify suitable candidates for the inter-

pretation of photoelectron spectra of large biomolecules.
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Abstract As first noted by Dixon et al. (J Am Chem Soc

108:2461–2462, 1986), heavily fluorinated pyramidal

phosphorus compounds, e.g., FnPH(3-n) with n[ 1, invert

through a T-shaped transition state (edge inversion) rather

than the D3h-like transition states (vertex inversion) found

in the corresponding nitrogen compounds and less fluori-

nated phosphorus compounds. Subsequent studies by

Dixon and coworkers established that this is a general

phenomenon and has important chemical consequences.

But what is the reason for the change in the structure of the

transition state? Recent theoretical investigations have

resulted in the discovery of a new type of chemical bond,

the recoupled pair bond. In particular, it was found that

recoupled pair bond dyads account for the hypervalency of

the elements beyond the first row. In this paper, we show

that recoupled pair bond dyads also account for the exis-

tence of the edge inversion pathway in heavily fluorinated

phosphorus compounds and likely account for the presence

of the lower energy inversion pathways in pyramidal

compounds of other elements beyond the first row.

Keywords Edge inversion � Vertex inversion � Transition

state � Recoupled pair bond � Recoupled pair bond dyad �
Generalized valence bond (GVB) theory

1 Introduction

The structures, energetics and properties of molecules

formed from elements in the first row of the periodic table,

Li to Ne, can be dramatically different from those formed

from elements in the subsequent rows—the so-called first-

row anomaly. The anomaly manifests itself in a number of

ways, such as the inability of the first row p-block elements

to form hypervalent species. N and P are an example of this

anomaly: P is able to form hypervalent molecules such as

PF5 and PCl5, while N only forms NF3 and NCl3. Another

manifestation of the difference between N and P has drawn

quite a bit of attention. The ground states of NH3, NF3, PH3

and PF3 are all pyramidal, as expected. However, NH3,

NF3 and PH3 invert through a transition state with D3h

symmetry, while the transition state for inversion in PF3 is

T-shaped with C2v symmetry.

Investigations of the T-shaped pnictogen transition

states for inversion were inspired by the experimental

synthesis of the first molecule containing a T-shaped, tri-

coordinated hypervalent phosphorous structure, 5-aza-2,8-

dioxa-3,7-di-tert-butyl-l-phosphabicyclo[3.3.0]octa-3,6-diene

(ADPO) [1, 2]. Another hypervalent 10-P-3 compound,

an intermediate, was discovered by Lochschmidt and

Schmidpeter at approximately the same time [3]. Following

up on this discovery, Dixon and co-workers [4–8] explored

the structures of the transition states for inversion in

phosphorus compounds. They performed calculations on

PH3, FPH2, F2PH and PF3 and found that F2PH and PF3

have T-shaped transition states while FPH2 and PH3 have

D3h–like transition states. They pointed out that when

inversion occurs through a T-shaped structure, the lone pair

orbital is in the molecular plane, not perpendicular to the

plane as in the D3h-like transition states. Inversion through

a T-shaped transition state is referred to as edge inversion,
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while inversion through a D3h-like transition state is

referred to as vertex inversion.

Arduengo, Dixon and Roe experimentally verified the

edge inversion mechanism in a bi-cyclo[3.3.0] octane ring

system that is a saturated analog of ADPO by measuring

the barrier to inversion at the tricoordinated phosphorous

atom [5]. Although ADPO contains a T-shaped phosphorus

structure in its ground state, its saturated analog contains a

pyramidal phosphorus structure in its ground state and a

T-shaped phosphorus structure in its transition state. They

argued that the conjugated p system of ADPO stabilizes the

T-shaped structure while the saturated analog of ADPO is

not so stabilized. The electronic structure of all of these

molecules can be easily understood once one recognizes

the ability of phosphorous to form both covalent and re-

coupled pair bonds in simple tricoordinated molecules such

as PF3 [9], as will be shown in this paper.

Although edge inversion has been well established for

pyramidal molecules with central atoms beyond the first

row and with electronegative ligands, the reason for the

difference in inversion pathway upon fluorination has been

the subject of some debate. Both perturbation molecular

orbital arguments involving the HOMO–LUMO gap [10]

as well as pseudo-Jahn–Teller effects [11] have been used

to rationalize the T-shaped transition state structures. Woon

and Dunning, on the other hand, noted that the two axial

bonds in the transition state for inversion in PF3 closely

resemble those in the PF2(A2P) state, which has a recou-

pled pair bond dyad, and concluded that the ability of the P

atom to form a very stable recoupled pair bond dyad is the

source of this anomaly [9]. In fact, the formation of re-

coupled pair bonds is the basis for the bonding in hyper-

valent molecules, as shown in studies on SFn [12], PFn [9],

ClFn [13] and a number of related compounds. The

T-shaped transition state for inversion of PF3 should, in

fact, be considered hypervalent, even though it is tricoor-

dinated, because it possesses one of the hallmarks of hy-

pervalent compounds—a recoupled pair bond dyad.

In the present study, we systematically investigated the

ground and transition states for inversion of NH3, PH3 and

their F substituents, FnNH(3-n) and FnPH(3-n) (n = 1–3),

and show that other than PF3, F2PH is the only species with

a T-shaped transition state. Accurate predictions of the

structures and energies of the FnNH(3-n) and FnPH(3-n)

(n = 0–3) species were obtained by using coupled cluster

methods [14–17] with large correlation consistent basis sets

[18–21]. We then used generalized valence bond (GVB)

theory [22, 23] to obtain insights into the nature of the

bonding in these molecules and explain the similarities and

differences in the structural and energetic trends of the N

and P species.

The layout of the paper is as follows: Sect. 2 describes

the computational methods we used for this study,

including a brief overview of GVB theory; Sect. 3 presents

the optimized geometries and energetics for the ground and

transition states of FnNH(3-n) and FnPH(3-n), proposes the

three major questions we need to answer, analyzes the

GVB wave functions of related atoms and molecules, dis-

cusses the role recoupled pair bonding plays in the transi-

tion states and answers the questions raised; and finally, we

summarize our findings in Sect. 4.

2 Computational methods

The calculations presented in this study were performed

with the Molpro suite of quantum chemical programs

(version 2008.1 and 2010.1) [24]. In order to provide

accurate geometries and energetics, the structures, energies

and frequencies of the FnNH(3-n) and FnPH(3-n) molecules

were determined with single-reference restricted singles

and doubles coupled cluster theory with perturbative triples

[CCSD(T)] [14–17]. For geometry optimizations and

energies, augmented correlation consistent basis sets of

quadruple zeta quality (aug-cc-pVQZ) were used for the

first row atoms (H, N and F), and the corresponding

d-function augmented set [aug-cc-pV(Q ? d)Z] was used

for the second row P atom. For frequency calculations,

aug-cc-pVTZ basis sets were used for the first row atoms

and an aug-cc-pV(T ? d)Z basis set was used for the P

atom [18–21]. The frequency calculations were performed

at geometries optimized using the same basis sets. The

shorthand notation AVXZ (X = T, Q) will be used to

represent the sets of a specific quality (including the extra

d-function on the P atom). The frequency calculations

enabled us to conclusively identify the ground states (all

real frequencies) and transition states (one imaginary fre-

quency) for all of the species.

The inversion barrier for each molecule is calculated as

the difference between the electronic energy of the tran-

sition state and the ground state, i.e., it does not include the

zero point energy correction. We did this to focus on the

effect of the changes in the electronic structure of the

molecules upon inversion; the reader can easily correct

these numbers using the vibrational frequencies given in

the tables. Energies are quoted with two significant figures

after the decimal place for comparison with other theo-

retical calculations.

Multireference configuration interaction (MRCI) calcu-

lations based on valence complete active space self-con-

sistent field (CASSCF) wave functions with the quadruples

corrections (?Q) [25–30] were used to determine the

excitation energies of the N and P atoms using the AVQZ

basis set.

To characterize the nature of the bonding in the

FnNH(3-n) and FnPH(3-n) species, we used the generalized
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valence bond (GVB) method [22, 23]. The GVB wave

function is well suited to analysis of the bonding in mol-

ecules as it describes bond-breaking processes properly.

The GVB wave function is also inherently more accurate

than the Hartree–Fock (HF) wave function, including the

most important non-dynamical correlation effects repre-

sented in a valence CASSCF wave function. At the same

time, the GVB wave function is concise, offering a clear

physical picture of the electronic structure of a molecule

that is readily connected with those of the atoms or frag-

ments of which it is composed.

In the GVB framework, a covalent bond is formed by

singlet coupling two electrons in a pair of overlapping,

singly occupied GVB orbitals concentrated on the two

atoms involved in the bond. A recoupled pair bond, on the

other hand, results from a two-center, three-electron

interaction. Nevertheless, it is also easily described in GVB

theory because each electron has its own orbital [31]. The

recoupled pair bond dyad, which is of particular interest

here, is simply two singlet-coupled bonding pairs—one

from the original recoupled pair bond and the other from a

covalent bond formed with the electron left over from

forming the recoupled pair bond. The remarkable stability

of the recoupled pair bond dyad is a direct result of the

ionicity of these two bonds—a dyad is only found when the

two ligands are very ionic [32, 33]. The GVB orbitals,

orbital overlaps and spin coupling functions provide a

concise picture of the electronic structure of the molecule.

The fully variational GVB method is equivalent to the

spin-coupled VB method [34], and the CASVB [35–37]

program implemented in Molpro was used to perform the

calculations with the AVQZ basis sets.

The GVB/spin-coupled VB wave function for a molec-

ular system of na active electrons with total spin S and

projection M is:

WGVB

¼ â/d1/d1/d2/d2. . ./dnd
/dnd

ua1ua2. . .uana
abab. . .abHna

S;M:

ð1Þ
In the above equation, â is the antisymmetrizer; the set of

orbitals, {/di}, are the set of nd doubly occupied core and

valence orbitals, and the set of orbitals, {uai}, are the set of

na singly occupied active valence orbitals. The total num-

ber of electrons is Ne = 2nd ? na. The doubly occupied

valence orbitals do not directly participate in bonding,

although, as we shall see, they can affect which type of

bonds are formed. The active orbitals are distinct, singly

occupied and non-orthogonal orbitals. The spatial product

of orbitals in Eq. (1) is multiplied by a product of ab spin

functions associated with the doubly occupied orbitals

times a spin function, Hna
S;M , for the electrons in the active

orbitals. This spin function is a linear combination of spin

eigenfunctions, also known as spin basis functions, which

represent the unique ways in which the spins of the na
electrons in the active orbitals can be coupled to give a

total spin of S. Kotani spin functions [38] were used in our

study. The Kotani functions are orthogonal to each other,

and, therefore, the contribution of each spin function to the

total GVB wave function, the weight wk, is simply the

square of its coefficient.

We found that one of the spin eigenfunctions was

dominant for all of the molecular systems that we studied

here, and it is the perfect pairing (PP) function:

Hna
S;M;PP ¼

ðab� baÞffiffiffi
2
p ðab� baÞffiffiffi

2
p � � � ðab� baÞffiffiffi

2
p ð2Þ

As shown in Eq. (2), the perfect pairing spin function singlet

couples all of the active electrons into electron pairs. A pair

of singlet-coupled orbitals can describe a lone pair, in which

case the orbitals are highly overlapping and concentrated on

one atom. Or the orbital pair can describe a bond if the

orbitals are overlapping and concentrated on two atoms. The

GVB calculations for the states reported in this paper are all

6-in-6 calculations, i.e., there are six active electrons in six

GVB orbitals. All spin functions were included in the cal-

culations, although, as noted, the PP spin function was

always dominant (wPP = 0.91–0.99?). This means that

there are three pairs of singlet-coupled orbitals, or, since we

kept the lone pair orbitals doubly occupied in all calcula-

tions, three bonds in both the ground and transition states of

the FnNH(3-n) and FnPH(3-n) molecules.

3 Results and discussion

3.1 Similarities and differences in the FnNH(n–3)

and FnPH(3-n) (n = 0–3) ground states

and transition states for inversion

3.1.1 Molecular structures

The optimized structures and geometrical parameters of the

ground state (GS, X1A1) and transition state (TS, 1A1) of

all of the FnNH(3-n) and FnPH(3-n) (n = 0–3) molecules

are tabulated in Tables 1, 2, 3 and 4 and illustrated in

Fig. 1. The ground states of FnNH(3-n) and FnPH(3-n) are

pyramidal with the singly occupied 1s orbitals of H(2S) and

the singly occupied 2p orbitals of F(2P) forming normal

2-electron, 2-center covalent bonds with the three singly

occupied 2p and 3p orbitals on N(4S) and P(4S), respec-

tively. However, the inversion transition states fall into two

different structural categories. NH3, NF3 and PH3 have

planar transition states with D3h symmetry (hXYX = 120�).
The transition states of FNH2 and FPH2 are planar with C2v

symmetry and similar bond angles: hHNF = 114.0� and
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hHPF = 114.9�. The transition state of F2NH is also of C2v

symmetry with hHNF at 123.7�. These latter three C2v

transition states are, in fact, D3h-like and fall into the same

structural category as NH3, NF3 and PH3.

The transition states for F2PH and PF3, on the other hand,

are outliers. In the transition state for inversion of F2PH, the

central P atom and two of the F atoms, the axial F atoms, lie

almost on a straight line with hFPF = 169.8� and

hHPF = 84.9�. This quasi-linear structure is also present in

PF3, where the FPF axial angle is 176.0� and the angle

between the axial and equatorial F atom is 88.0�. These two

transition states are referred to as T-shaped transition states

as first characterized by Dixon and coworkers [4–8] and are

referred to as edge transition states in contrast to the tran-

sition states for the other six FnNH(3-n) and FnPH(3-n)

molecules, which are referred to as vertex transition states.

Table 1 The geometries, frequencies and total energies for the ground states (GS) of the FnNH(3-n) (n = 0–3) molecules from CCSD(T) cal-

culations with the indicated basis sets

RNH RNF hHNH hFNH hFNF x1 x2 x3 x4 x5 x6 E

NH3 AVTZ 1.015 106.4 1,063 1,672 1,672 3,463 3,592 3,592 -56.480527

AVQZ 1.013 106.5 1,059 1,674 1,674 3,476 3,606 3,607 -56.495733

FNH2 AVTZ 1.021 1.433 104.8 101.1 927 1,270 1,341 1,623 3,410 3,507 -155.541406

AVQZ 1.019 1.426 105.0 101.3 -155.582143

F2NH AVTZ 1.027 1.400 99.8 103.0 504 910 992 1,343 1,467 3,367 -254.621481

AVQZ 1.025 1.394 100.0 103.1 -254.687975

NF3 AVTZ 1.375 101.7 498 498 654 924 924 1,045 -353.714384

AVQZ 1.369 101.8 -353.806789

Distances are in Å, angles in degrees, frequencies in cm-1 and energies in Hartrees

Table 2 The geometries, frequencies and total energies for the inversion transition states (TS) of the FnNH(3-n) (n = 0–3) molecules from

CCSD(T) calculations with the indicated basis sets

RNH RNF hHNH hFNH hFNF x1 x2 x3 x4 x5 xi E

NH3 AVTZ 0.998 120.0 1,582 1,582 3,626 3,837 3,837 868 -54.471739

AVQZ 0.996 120.0 1,582 1,583 3,633 3,846 3,847 850 -56.487226

FNH2 AVTZ 0.996 1.385 132.0 114.0 1,078 1,189 1,552 3,674 3,898 1,148 -155.515766

AVQZ 0.995 1.381 132.0 114.0 -155.557208

F2NH AVTZ 0.998 1.352 123.7 112.6 493 1,092 1,171 1,336 3,786 1,373 -254.559030

AVQZ 0.997 1.348 123.7 112.6 -254.626575

NF3 AVTZ 1.343 120.0 420 420 802 1,313 1,313 1,192 -353.581416

AVQZ 1.338 120.0 -353.674851

Distances are in Å, angles in degrees, frequencies in cm-1 and energies in Hartrees. xi denotes the imaginary frequency associated with transition

state motion

Table 3 The geometries, frequencies and total energies for the ground states (GS) of the FnPH(3-n) (n = 0–3) molecules from CCSD(T) cal-

culations with the indicated basis sets

RPH RPF hHPH hFPH hFPF x1 x2 x3 x4 x5 x6 E

PH3 AVTZ 1.417 93.5 1,013 1,143 1,143 2,409 2,416 2,416 -342.699014

AVQZ 1.415 93.6 1,012 1,143 1,143 2,421 2,429 2,429 -342.710887

FPH2 AVTZ 1.420 1.613 92.1 97.7 809 927 975 1,138 2,378 2,383 -441.866170

AVQZ 1.419 1.607 92.1 97.8 -441.905727

F2PH AVTZ 1.424 1.591 95.6 98.8 354 841 848 971 1,023 2,344 -541.056075

AVQZ 1.423 1.585 95.7 98.9 -541.123513

PF3 AVTZ 1.572 97.4 344 344 484 862 862 894 -640.266595

AVQZ 1.567 97.5 -640.362060

Distances are in Å, angles in degrees, frequencies in cm-1 and energies in Hartrees
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The above observations lead to Question #1: What is the

cause of the differences in the structures of the transition

states of (F2NH, F2PH) and (NF3, PF3), as well as those of

(PH3, FPH2) and (F2PH, PF3)?

Besides the obvious structural differences, a closer

examination of the bond distances shows that for all of the

molecules that have D3h or D3h-like transition states, i.e.,

NH3, FNH2, F2NH3, NF3, PH3 and FPH2, the bond lengths

in the transition states are all shorter than the ground state

bond lengths. However, the differences in the bond lengths

in F2PH and PF3 do not follow the same simple pattern. For

F2PH, the PH bond distance is slightly shorter (D =

-0.010 Å) and the PF bond distances are significantly

longer (D = ?0.064 Å) in the transition state than in the

Table 4 The geometries, frequencies and total energies for the inversion transition states (TS) of the FnPH(3-n) (n = 0–3) molecules from

CCSD(T) calculations with the indicated basis sets

RPH RPF hHPH hFPH hFPF x1 x2 x3 x4 x5 xi E

PH3 AVTZ 1.380 120.0 1,017 1,017 2,597 2,676 2,676 1,098 -342.645628

AVQZ 1.379 120.0 1,023 1,023 2,605 2,684 2,684 1,096 -342.657904

FPH2 AVTZ 1.376 1.590 130.2 114.9 719 871 1,001 2,626 2,712 1,255 -441.785348

AVQZ 1.375 1.585 130.2 114.9 -441.825182

F2PH AVTZ 1.414 1.655(ax) 84.9 169.8 422 582 740 1,319 2,404 348 -540.975049

AVQZ 1.413 1.649(ax) 84.9 169.8 -541.040581

PF3 AVTZ 1.566(eq)

1.635(ax)

88.0 389 503 578 769 888 312 -640.182433

AVQZ 1.561(eq)

1.630(ax)

88.0 -640.276004

Distances are in Å, angles in degrees, frequencies in cm-1 and energies in Hartrees. xi denotes the imaginary frequency associated with transition

state motion. The labels, ‘‘eq’’ and ‘‘ax,’’ refer to the equatorial and axial bonds in F2PH and PF3

Fig. 1 Optimized geometries of

the FnNH(3-n) and FnPH(3-n)

(n = 0–3) ground states (GS,

X1A1) and the transition states

for inversion (TS, 1A1) obtained

from CCSD(T)/AVQZ

calculations. Bond distances are

in Å and bond angles in degree.

h corresponds to bond angle and

s corresponds to dihedral angle.

N is color coded in blue, P in

rusty orange, F in cyan and H in

gray
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ground state. For PF3, the transition state has two types of

PF bonds. The two axial PF bonds are much longer

(D = ?0.063 Å) than the ground state PF bond, and the

equatorial PF bond is slightly shorter (D = -0.006 Å) than

the ground state PF bond.

Table 5 summarizes the bond distance changes

between the ground state and transition state of all eight

molecules. The percentage changes with respect to the

bond lengths in the ground state are also listed (in

parentheses). The percentage change for molecules in the

D3h-like category ranges from -1.4 % to -3.1 %. On the

other hand, the percentage change for the PH bond in

F2PH is only -0.7 %, which is very close to the -0.4 %

change for the equatorial PF bond in F2PF. The per-

centage change for the axial PF bonds when n = 2 and

n = 3 is 4.0 %, which is larger than any of the differ-

ences in the other molecules. These data lead to Question

#2: Why do the bond distances of the D3h-like transition

states decrease and those of the T-shaped transition states

behave very differently?

3.1.2 Inversion barrier

Here, as noted in Sect. 2, the inversion barrier is defined as

the difference in the electronic energies of the transition

state and the ground state, i.e., we ignore differences in the

zero-point energies even though vibrational frequencies are

reported, because we want to focus on the variations in the

barriers caused by the changes in the electronic structure of

the molecules. Figure 2 shows the plot of the inversion

barrier with respect to n, the number of F atoms in the

molecule. When N is the central atom, the barrier height

increases monotonically from 5.34 to 82.79 kcal/mol as

n increases from 0 to 3. The rate of increase increases with

n as well, essentially doubling with each additional F atom:

10.31 kcal/mol from n = 0–1, 22.88 kcal/mol from

n = 1–2 and 44.26 kcal/mol from n = 2–3. When P is the

central atom, the barrier height increases from 33.25 kcal/

mol to just 54.00 kcal/mol as n increases from 0 to 3. The

rate of increase is 17.29 kcal/mol from n = 0–1, but only

1.50 kcal/mol from n = 1–2 and 1.96 kcal/mol from

n = 2–3. Thus, from n = 1–3, the change in the height of

the inversion barrier is vastly different in the N series than

in the P series: The total increase in the barrier height for

FnNH(3-n) is 77.45 kcal/mol while the barrier height

increase for FnPH(3-n) is less than a third of that,

20.75 kcal/mol. So Question #3 is: Why does the barrier

change very little from n = 1–3 in the FnPH(3-n) series,

instead of increasing dramatically like the FnNH(3-n) series

does?

As an aside, we did locate higher lying ‘‘transition

states’’ in both F2PH and PF3. The geometry of the D3h-like

transition state in F2PH is RPH = 1.375 Å, RPF = 1.571 Å

and hHPF = 124.8�. This structure lies 32.72 kcal/mol

above the lower transition state, at 84.76 kcal/mol. It is a

true transition state with only one imaginary frequency:

1,158.2i cm-1 (because of its high energy, we did not

follow the reaction path from this transition state to see

where it led). When PF3 is constrained to have a D3h

structure, RPF = 1.633 Å. The D3h structure lies

33.12 kcal/mol higher than the T-shaped transition state

Table 5 The changes in the bond lengths, DR, in FnNH(3-n) and FnPH(3-n) (n = 0–3), between the ground states (GS) and the inversion

transition states (TS): DR = R(TS) - R(GS), in Å

n DRNH(Å) DRNF(Å) DRPH(Å) DRPF(Å) DRPF(Å)

Axial Equatorial

0 -0.017 (-1.7) -0.036 (-2.5)

1 -0.024 (-2.4) -0.045 (-3.2) -0.044 (-3.1) -0.022 (-1.4)

2 -0.028 (-2.7) -0.046 (-3.3) -0.010 (-0.7) 0.064 (4.0)

3 -0.031 (-2.3) 0.063 (4.0) -0.006 (-0.4)

The percentage change with respect to the bond distance in the ground state is given in parentheses

Fig. 2 Computed inversion barriers for FnNH(3-n) and FnPH(3-n)

(n = 0–3) from CCSD(T)/AVQZ calculations. The inversion barrier

is the electronic energy difference between the transition state and the

ground state for each molecule without zero-point energy correction
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and 87.12 kcal/mol above the ground state PF3. However,

this configuration has three imaginary frequencies

(2 9 214i, 596i cm-1) and therefore is not a true transition

state.

3.2 p-Recoupled pair bonding in F2PH and PF3 and

s-recoupled pair bonding in the other molecules

In the last section, we posed three questions. In this section,

we show that the answers to all of these questions center on

the ability of the P atom to form recoupled pair bonds with

F and, more specifically, p-recoupled pair bond dyads with

two F atoms. In molecules other than F2PH and PF3, the

inversion transition states involve formation of s-recoupled

pair bond dyads.

3.2.1 GVB description of the N and P atoms

In order to understand the differences between FnNH(3-n)

and FnPH(3-n) (n = 0–3), we need to understand the dif-

ferences between the central atoms in these molecules.

Figure 3 presents the GVB orbital diagrams for the ground

and low-lying excited states of the N and P atoms. The

diagrams represent the valence electrons and orbitals. The

ground states of the N and P atoms are 4S states with three

singly occupied valence p orbitals in each atom. In the

N/P(4S) diagram, the big circle represents the valence s

orbital, the small circle represents the out-of-plane px
orbital, and the two dumbbell shapes represent the two in-

plane (py, pz) orbitals. The dots represent electron occu-

pations. The ground states of FnNH(3-n) and FnPH(3-n)

(n = 0–3) have three normal covalent bonds formed with

the electrons in these three singly occupied p orbitals. The

pyramidal structures of these molecules are a natural result

of the orientations of the three p orbitals in the atom.

Although the connection of the ground states of the N

and P atoms with the ground states of the FnNH(3-n) and

FnPH(3-n) molecules is straightforward, the transition states

do not correlate with the ground state atoms. Rather, they

correlate with the first excited (2D) states of the atoms. In

this state, one electron from a p orbital is excited into one

of the other p orbitals with the original p orbital no longer

occupied in the configuration (this is schematically repre-

sented by the configuration s2px
2py

1 or s2pz
2py

1 in Fig. 3).

Now, the atoms can form both covalent bonds (with the

singly occupied py orbital) as well as recoupled pair bonds

and recoupled pair bond dyads (with the s2 or p2 lone

pairs). The calculated excitation energy from the 4S state to

the 2D state is 55.33 kcal/mol for the N atom and

32.23 kcal/mol for the P atom (MRCI ? Q/AVQZ); these

numbers are to be compared to 54.97 and 32.48 kcal/mol

from the NIST Atomic Spectra Tables [39]. Because of this

energetic difference, recoupled pair bonds and recoupled

pair bond dyads in P will lie at much lower energies than

in N.

As noted above, there are two doubly occupied orbitals

in the 2D state, i.e., 2s2 and 2p2 for N and 3s2 and 3p2 for P

atom. Although these orbitals are doubly occupied in the

HF wave function, in the GVB wave function s2 and p2

lone pairs are each described by two singly occupied, non-

orthogonal lobe orbitals. Figure 4 shows the s and p GVB

lobe orbitals for the N(2D) and P(2D) states. The s lobe

orbitals of both atoms are very similar in shape and ori-

entation, although the P orbitals are more diffuse and span

a larger spatial region. The s lobe orbitals are well sepa-

rated spatially, residing on opposite sides of the central

atom, and have overlaps of only 0.768 (N) and 0.776 (P);

we refer to them as the sL and sR lobe orbitals. In the GVB

orbital diagrams 1a and 2a in Fig. 3, the sL and sR lobe

Fig. 3 HF and GVB diagrams for N and P atoms; n = 2 for N and

n = 3 for P atom. The subscripts ‘‘L’’, ‘‘R’’, ‘‘I’’ and ‘‘O’’ represent

left, right, inner and outer. The electrons in orbital pairs connected

with a red line are singlet coupled

Fig. 4 GVB orbitals and overlaps for the N(2D) and P(2D) states. A

red line means that the electrons in these singly occupied orbitals are

singlet coupled; the values of the orbital overlaps are given above the

line. Contours are ±0.10, ±0.15, ±0.20 and ±0.25. Red contour

represents positive, and blue contour represents negative orbital phase
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orbitals are connected with a red line, representing the fact

that they are singlet coupled.

On the other hand, the 2p lobe orbitals of N(2D) and the

3p lobe orbitals of P(2D) are very different. Both 2p lobe

orbitals on the N(2D) state look like p orbitals, one tighter

than the original 2pz orbital and the other one more diffuse.

They lie in the same spatial region, and we refer to them as

inner and outer lobe orbitals, 2pI and 2pO. In the N(2D)

GVB orbital diagram 1b in Fig. 3, these orbitals are rep-

resented with two dumbbell shapes, one inside of the other

with a red line connecting them. The 3p lobe orbitals of

P(2D), on the other hand, are distorted 3pz orbitals, with

one more concentrated on the left side of the P atom and

the other more concentrated on the right side; they have an

overlap of 0.839 and are referred to as 3pL and 3pR lobe

orbitals. In diagram 2b in Fig. 3, they are represented with

two half-dumbbell shapes connected with a red line.

Both of the lone pairs on the N and P atoms are

potentially available for recoupling to form bonds. How-

ever, the ease with which a lone pair can be recoupled is

dependent on two factors: (1) the spatial orientation of the

lobe orbitals and (2) the overlap of the orbitals. To form a

strong recoupled pair bond or recoupled pair bond dyad,

the lobe orbitals must be localized in different spatial

regions and the overlap of the lone pair orbitals must be

significantly less than one (the smaller, the better). It also

helps if the ligand is very electronegative, because this will

reduce the Pauli exchange-repulsion between the bonds (or

between the bond and the electron in the left over orbital)

formed by recoupling the lone pair [31].

As noted above, the N and P sL and sR orbitals are

spatially well separated and their overlaps, 0.768 (N) and

0.776 (P), are similar. So, s-recoupled pair bonds can be

formed in both N and P. The overlap between the N 2pI and

2pO orbitals (0.858) is slightly larger than that between the

P 3pL and 3pR orbitals (0.839), and both overlaps are much

larger than the overlaps between the (2sL, 2sR) and (3sL,

3sR) lobe orbitals. But, more importantly, the 2pI and 2pO

orbitals occupy essentially the same spatial region, while

the 3pL and 3pR orbitals are spatially separated. Therefore,

it is far more favorable for P to participate in p-recoupled

pair bonding than N. However, the (3pL, 3pR) orbitals of

the P atom are not as spatially separated as the (3sL, 3sR)

orbitals, so it will be more difficult to form recoupled

bonds with the 3p lone pair than with the 3s lone pair.

From the GVB orbital diagram of the P(2D) state in

Fig. 3, one can easily see that three strong bonds can be

formed: with the singly occupied (3sL, 3sR, 3py) orbitals in

2a and the singly occupied (3pL, 3pR, 3py) orbitals in 2b. In

2a, the remaining lone pair is an out-of-plane 3px lone pair,

and in 2b, it is an in-plane 3s pair. As will be demonstrated

and discussed in Sects. 3.2.2 and 3.2.3, with 2a, the

resulting structures of the transition states correspond to

that of the D3h-like structures, which have an out-of-plane

lone pair. With 2b, the resulting structures will be those of

the T-shaped transition states for inversion with an in-plane

lone pair. Since the lobe orbitals in 1a, 2a and 2b in the

N(2D) and P(2D) states have different properties than the

2p and 3p orbitals in the N(4S) and P(4S) states, the bonds

formed with these orbitals in the transition states will have

different lengths, strengths and spatial orientations than

those in the ground states.

Which lobe orbitals will be used to form bonds depends

on the strength of the resulting bonds as well as the

resulting interactions with the electrons in the other orbitals

in the molecule. In particular, we note that the formation of

bonds with the (3sL, 3sR, 3py) orbitals has a lone pair

perpendicular to the yz plane that will have repulsive

interactions with the lone pair orbitals in F that are also

perpendicular to the yz plane. This is not the case when

bonds are formed with the (3pL, 3pR, 3py) orbitals where

the lone pair lies in the molecular plane.

3.2.2 GVB orbitals of the transition states

As discussed above, the ground states of the eight mole-

cules in our study have three normal covalent bonds

formed by singlet coupling the singly occupied ligand

orbitals with the three singly occupied p orbitals of N(4S)

and P(4S). Figure 5 shows the GVB bonding orbitals of the

eight transition states, along with the doubly occupied lone

pair orbital. When there are equivalent bonds, the GVB

orbitals of only one bond are shown. The overlap between

the two orbitals that form a bond is also shown. The GVB

wave functions of all of the eight transition state molecules

are predominantly PP spin coupled with wPP ranging from

0.91 to more than 0.99.

NH3 and PH3 each have three equivalent bonds. Upon

bond formation, the orbitals on the two atoms polarize,

hybridize, expand or contract, delocalize, etc. in response

to the presence of the other atoms. However, it is clear that,

for instance, one of the orbitals participating in the NH

bond closely resembles the 2s lobe orbital of N shown in

Fig. 4, although with somewhat more 2p character than in

the N atom, and the other orbital resembles the 1 s orbital

of the H atom. The lone pair orbital is essentially the out-

of-plane 2px orbital in the N(2D) state. This is consistent

with the orbital diagram 1a in Fig. 3. The three equivalent

NH bonds result from resonance between the 2s-recoupled

pair bond dyad and the normal covalent bond with the 2py

orbital. The resulting structure has D3h symmetry because

this arrangement reduces the Pauli repulsion between the

three bonds, and so, the GVB orbitals on the N atom in the

NH3 transition state are resonance averages (hybrids) of the

two 2s lobe orbitals and the 2py orbital. The situation is

similar in PH3. The reason for the shorter bond distances in
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the transition states is that the orbitals on N and P have

large s orbital components in the transition states, and s

orbitals are closer to the nucleus than p orbitals, especially

for the P atom. Therefore, the bonds formed with these

orbitals are shorter than those formed with p orbitals in the

ground states (Question #2).

The N atom is more electronegative than the P atom, so

NH bonds are more polarized toward the N atom than PH

bonds. A result of this is that the three orbitals centered on

N have much higher overlaps (0.782) with each other than

do the three orbitals centered on P (0.442). This leads to

larger Pauli repulsion between the bond pairs in NH3. One

impact of this repulsive interaction is that the H 1s-like

bond orbital develops a node in the region of the N atom.

As a result, the overlap of the bond pair is smaller in NH3

(0.534) than in PH3 (0.813).

Upon a single substitution of H by F, the geometries do

not change much. But there are significant changes in some

of the orbitals. The N or P orbital involved in the bond to

the F atom has delocalized onto the F atom as would be

expected for a polar covalent bond. This delocalization

builds Nd?Fd- (Pd?Fd-) character into the GVB wave

function. The orbitals for the other two bond pairs resemble

those in NH3 and PH3. Due to the interaction with the out-

of-plane, doubly occupied 2px orbitals on F, the doubly

occupied, out-of-plane 2px and 3px lone pair orbitals on N

and P acquire antibonding character. Also, since F is very

electronegative, the overlaps between the orbitals on the

central atoms are reduced and the node in the H 1s-like

orbital in NH3 disappears upon F substitution. Regardless

of these small changes, the nature of the bonding orbitals

on the central atoms in FNH2 and FPH2 is similar to that of

NH3 and PH3: hybrids of an s-recoupled pair bond dyad

and a p-covalent bond.

Once another H atom is substituted with an F atom,

there are marked differences in the geometrical and orbital

structure of F2NH and F2PH. F2NH is very similar to

FNH2, although two F atoms pull more electron density

away from the central N atom than one F atom and the

orbitals are less dense around the N atom. The overlaps

between the bonding orbitals increase for both the NH and

NF bonds. The out-of-plane, doubly occupied 2px orbital

on N has acquired antibonding character on both F atoms,

evidence of increased repulsive interactions between the

electrons in the N lone pair and those in the doubly

occupied 2px orbitals on F. On the other hand, F2PH does

not resemble FPH2. The geometry of the transition state is

now T-shaped, and the lone pair orbital is no longer a 3px-

like orbital perpendicular to the molecular plane but a 3s

lobe-like orbital in the molecular plane. This latter orbital

has acquired a measure of antibonding character because of

the interaction of the electrons in this orbital with the

doubly occupied in-plane 2p orbitals on the F atom. In

addition, the orbitals participating in the axial FPF bond in

the F2PH transition state are 3p lobe orbitals instead of 3s

lobe orbitals.

The two axial PF bonds in F2PH are, in fact, a p-re-

coupled pair bond dyad (Question #1). The P–F bond

distance is very similar to that found in the A2P state of

PF2, 1.649 Å (F2PH) versus 1.639 Å (PF2), a molecule

Fig. 5 Selected GVB orbitals

and overlaps for the inversion

transition states of FnNH(3-n)

and FnPH(3-n) (n = 0–3). The

GVB calculations are 6-in-6

calculations. When two or three

bonds are equivalent, the two

GVB orbitals constituting one

bond are shown. The doubly

occupied orbital on the central

atom for each molecule is

shown following the GVB

orbitals. Contours are ±0.10,

±0.15, ±0.20 and ±0.25
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known to have a p-recoupled pair bond dyad [9]. This is the

reason for the unusual increase in the length of the PF axial

bonds between the ground and transition state: p-recoupled

pair bond dyads have bond distances that are significantly

longer than the corresponding covalent bonds [9, 12, 13,

31, 40]. In contrast, the P orbital participating in the

equatorial PH bond is the singly occupied 3p orbital (See

2b in Fig. 3). This bond is a normal polar covalent bond,

which leads to only a slight decrease in the bond length

(-0.7 % in Table 3) going from the ground state to the

transition state (Question #2). Note that the p-recoupled

pair bond dyad in F2PH is almost linear, hFPF = 169.2�, as

suggested in the orbital diagram 2b in Fig. 3, and as the

geometry of PF2(A2P) suggests (hFPF = 180�). This is due

to the dominant 3p character in the 3p lobe orbitals and the

repulsive forces between the two PF bonds, the PH bond

and the doubly occupied distorted 3s-like orbital. The

quasi-linear structure is consistent with our finding that

p-recoupled pair bond dyads are structurally rigid and

prefer nearly collinear arrangements [9, 12, 13, 31, 40].

When all of the H atoms are substituted with F atoms,

the NF3 transition state has three equivalent NF bonds and

D3h symmetry. The doubly occupied orbital is an out-of-

plane N 2px-like orbital with antibonding character on all

three F atoms. The overlap between the two bonding

orbitals constituting a NF bond increases from 0.697 in

F2NH to 0.721 in NF3 as more F atoms pull more electron

density into the bonding region. PF3 is similar to F2PH,

with the only difference being that the PH covalent bond in

F2PH becomes a PF polar covalent bond. The two axial

bonds are, again, a p-recoupled pair bond dyad formed with

the P 3p lobe orbitals. The axial PF bonds in PF3 are

similar in length to those in F2PH, 1.630 Å (PF3) versus

1.649 Å (F2PH) and are much longer than the PF bond in

the PF3 ground state (1.567 Å). For the equatorial bond, on

the other hand, the percentage change in the bond length is

just -0.4 % (0.006 Å), consistent with the equatorial PF

bond being a covalent bond formed with a 3p orbital.

Therefore, the seemingly random bond length changes in

F2PH and PF3 (Question #2) are, in fact, not random: The

p-recoupled pair bond dyads of the transition states have

much longer bond distances than the covalent bonds, and

the equatorial covalent bonds of the transition states are

only slightly shorter than the covalent bonds of the ground

states. The doubly occupied P orbital in PF3 is similar to

that in F2PH, a distorted 3 orbital with some antibonding

character associated with the F in-plane lone pairs.

3.2.3 Further comparison of s- and p-recoupled pair bond

dyads

The analysis of the GVB orbitals of (PH3, FPH2, F2PH,

PF3) shows that the dramatic change in the structures of the

transition states for F2PH and PF3 is a result of the for-

mation of a p-recoupled pair bond dyad in these species

(Question #1). In this section, we take a step back to

examine the triatomic molecules, because recoupled pair

bond dyads also exist in NH2, NF2, PH2 and PF2, although

in their excited states not in their ground states. Here, we

focus on PH2 and PF2 as two examples of s- and p-re-

coupled pair bond dyads.

The ground state of PH2 is a 2B1 state, bound by two

normal covalent bonds. The first excited state is a 2A1 state.

The 2A1 state derives from a linear 2P state that contains a

3s-recoupled pair bond dyad, and relaxes to a bent geom-

etry upon geometry optimization, incorporating additional

3p character into the P bonding orbitals. So let us compare

the recoupled pair bond dyad in the 2P and 2A1 states of

PH2 with the bonds in the PH3 and FPH2 transition states to

understand how the s-recoupled pair bond dyad evolves in

these species. Figure 6 shows the GVB orbitals in PH2,

PH3 and FPH2 that are centered on the P atom along with

the doubly occupied, out-of-plane 3p-like lone pair orbi-

tals. The PH2(2P) state has two 3s-like lobe orbitals as well

as singly and doubly occupied 3p(p)-like orbital on the P

atom. The 3s lobe orbitals are slightly delocalized onto the

H atoms compared to the 3s lobe orbitals in the P atom

(Fig. 4). In order to strengthen the bond and reduce the

repulsion between the electrons in these orbitals and

because mixing between (hybridization of) s and p orbitals

is facile, the 2P state rearranges to become a strongly bent

Fig. 6 GVB orbitals centered on the P atom for the linear PH2(2P)

configuration, the bent PH2(2A1) excited state, and for the transition

states for inversion in FPH2(1A1) and PH3(1A1)
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2A1 state with a bond angle of 121.8�, reducing the energy

by 19.66 kcal/mol. The 3p orbital is pushed away from the

two PH bonds, picking up 3s character. So the three singly

occupied P orbitals in the 2A1 state of PH2 are not pure 3s

lobe orbitals or 3p orbitals, but a mixture of the two.

However, their origins are clear.

The singly occupied P orbitals in the PH3 transition state

look very much like the corresponding orbitals in the

PH2(2A1) state. The doubly occupied out-of-plane orbital is

largely unchanged. The orbitals of the FPH2 transition state

are similar except that the P bonding orbital delocalizes

onto the F atom (consistent with the fact that the F atom is

more electronegative than the P atom), and the out-of-plane

lone pair orbital acquires antibonding character due to

repulsive interactions of the electrons in this orbital with

those in the F 2p orbital.

Similar comparisons for PF2, F2PH and PF3 are given in

Fig. 7. The ground state of PF2 is also a 2B1 state, and the

lowest-lying excited state is a 2P state. In PF2, in contrast to

PH2, the first excited state is linear. The PF2(2P) state

contains a 3p-recoupled pair bond dyad, a singly occupied

3p-like orbital and a doubly occupied polarized 3s lone pair

orbital (8a1) [9]. As noted previously, p-recoupled pair

bonds prefer linear or quasi-linear geometries [9, 12, 13, 31,

40]. Comparing the three molecules containing the p-re-

coupled pair bond dyad, one can see that the 3p-like lobe

orbitals remain largely unchanged. The biggest changes

occur for the 3p-like orbital and the doubly occupied 3s-like

orbital as the third bond forms in F2PH and F2PF. The 3p-

like P orbital localizes in the bonding region as the PH bond

forms and then delocalizes onto the more electronegative F

atom when the PF bond forms. The 3s-like orbitals gain

antibonding character and are pushed away from the cova-

lent bonds. Comparing Figs. 6 and 7, one can see the s-re-

coupled pair bond dyad is indeed much more structurally

flexible than the p-recoupled pair bond dyad.

As shown above, it is possible for the same central atom

to form different types of recoupled pair bonds and recou-

pled pair bond dyads. As shown in Fig. 4, the overlap

between the 3sL and 3sR lobe orbitals of the P atom is 0.776,

while the overlap between 3pL and 3pR is 0.839. Therefore,

it is much easier to form an s-recoupled pair bond than a

p-recoupled pair bond. In fact, forming a p-recoupled pair

bond dyad requires electronegative ligands, which separates

the two highly overlapping p lobe orbitals and reduces the

Pauli repulsion between the resulting bond pairs [31]. The H

atom is not sufficiently electronegative to recouple the P 3p2

lone pair. Therefore, the P(2D) state forms an s-recoupled

pair bond dyad with two H atoms and a p-recoupled pair

bond dyad with two F atoms. Although the F atom is also

able to recouple a 3s2 lone pair, an s-recoupled pair bond

dyad does not form in F2PH and PF3 because the P lone pair

orbital would then be perpendicular to the molecular plane,

resulting in strong Pauli repulsive interactions with the

electrons in the doubly occupied orbitals on the F atoms.

These repulsions are minimized if the lone pair on the P atom

is in a 3s-like orbital, which is polarized away from the F

atoms as is the case for the p-recoupled pair bond dyad.

Therefore, the p-recoupled pair bond dyad is preferred,

which gives rise to the low-barrier inversion pathways in

F2PH and PF3 (Question #3). Even though the lone pair on

the P atom is not involved in bond formation, it clearly

influences which types of bonds are formed.

3.3 Transition state formation pathways

To summarize the above GVB analysis of the transition

states, GVB diagrams of the pathways for forming the

inversion transition states of two representative molecules,

NF3 and PF3, are shown in Fig. 8. The NF3 transition state

goes through a pathway involving the formation of an

s-recoupled pair bond dyad. The two F atoms recouple the

2s2 electrons of N(2D) and form the NF2(2P) configuration,

which rearranges to the bent 2A1 state. The third F atom

forms a normal (polar) covalent bond with the singly

occupied orbital in the NF2(2A1) state, leading to the NF3

D3h transition state. The doubly occupied orbital on N is

perpendicular to the molecular plane. The three NF bonds

are equivalent as a result of the ease with which s and p

orbitals hybridize (mix). The very high barrier to inversion

in NF3 is, in large part, due to the strong repulsions

between the electrons in the lone pair orbital on the N atom

and those in the lone pair orbitals on the F atom.

Fig. 7 GVB orbitals centered on the P atom for the linear PF2(2P)

excited state and the transition states for F2PH(1A1) and PF3(1A1)
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The PF3 transition state goes through a p-recoupled pair

bond dyad pathway. The two F atoms recouple the 3p2 elec-

trons of P(2D) to form the PF2(2P) state. The third F atom then

forms a normal covalent bond with the remaining singly

occupied P 3p orbital, resulting in a T-shape transition state

structure. The lone pair orbital on P in PF3 is a distorted 3s-

like orbital polarized away from the F atoms in order to reduce

the repulsions between the electrons in this orbital and those

in the F lone pair orbitals. The collinear structure of the

p-recoupled pair bond dyad remains almost unchanged in the

process, with the dyad bonds bending slightly away from the

lone pair. Not only are the axial bond lengths nearly the same

in PF2(A2P) and PF3(1A1, TS), but the F2P–F ground and

transition state bond energies are nearly the same, which

means that the magnitude of the inversion barrier is nearly the

same as the energy difference between the PF2(X2B1) and

PF2(A2P) states, 54.00 versus 52.94 kcal/mol. This process is

illustrated in Fig. 9. The bond energy of the equatorial PF

bond in the transition state is 133.07 kcal/mol (the bond

energy reported in ref. [9] is incorrect), similar to the

134.13 kcal/mol bond energy of the covalent PF bond in the

ground state. Also, the energy lowering for forming a p-re-

coupled pair bond dyad from the atoms in PF2(A2P) is

206.45 kcal/mol, which is only 20.71 kcal/mol less stable

than forming the two covalent bonds in PF2(X2B1),

227.16 kcal/mol. In fact, as noted earlier, the strength of re-

coupled pair bond dyads is the reason for the existence of

hypervalent species such as PF5 [9] and SF6 [12].

4 Conclusions

In this article, we report accurate CCSD(T) calculations on

the ground and transition states for inversion of the

FnNH(3-n) and FnPH(3-n) (n = 0–3) molecules along with

a detailed analysis of the GVB wave functions for these

molecules at the calculated stationary points. All of the

molecules go through D3h-like transition states, except for

PF3 and F2PH, which have T-shaped transition states, a fact

first reported by Dixon and coworkers [4–8]. For all of the

molecules with D3h-like transition states, the bond dis-

tances are shorter than those in their ground states, a result

of the increased s character in the N and P bond orbitals in

the transition states. However, for F2PH and F2PF, the

transition state is T-shaped and the axial PF bonds are

much longer than those in the ground state, while the

equatorial PH and PF bonds are slightly shorter than those

in the F2PH and PF3 ground states.

Likewise, there is a dramatic difference in the depen-

dence of the barrier height for inversion as the number of F

atoms (n) increases. The height of the inversion barrier

height increases dramatically for the FnNH(3-n) series as n

increases, from 5.34 (NH3) to 82.79 (NF3) kcal/mol.

However, for the FnPH(3-n) series, the barrier height

increases substantially from n = 0 to n = 1

(33.25–50.54 kcal/mol), but thereafter it increases only

modestly (from 50.54 to 54.00 kcal/mol).

The explanation for the anomalous behavior of the F2PH

and PF3 molecules is simple. In the transition states of both

F2PH and PF3, the nearly collinear PF bonds are a result of

the formation of p-recoupled pair bond dyads. A hydrogen

atom is not sufficiently electronegative to recouple the lone

pair in the P(2D) excited state, and therefore, these bonds

are only found in F2PH and PF3. Formation of the p-re-

coupled pair bond dyads in the transition states of these two

Fig. 8 Formation pathway diagrams of the 1A1 inversion transition

states for NF3 and PF3

Fig. 9 Energy and bond length changes during the formation of the

ground state and inversion transition state of PF3, beginning with the

atoms. The energies are in kcal/mol, and bond distances are in Å
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molecules is favored because it minimizes the repulsion

between the electrons in the lone pair on P and those in the

lone pairs on the F atoms. Since a p-recoupled pair bond

dyad prefers a nearly collinear arrangement of the F–P-F

atoms, the transition states in F2PH and PF3 are T-shaped.

The lengthening of the axial PF bonds is a result of the

formation of p-recoupled pair bond dyads in F2PH and PF3,

while the third bond in each species is a covalent bond

similar to that in the ground state.

The ground state of F2PH and PF3 arises from the

addition of an H or F atom to the ground state of PF2, the

X2B1 state, while the T-shaped transition arises from the

corresponding additions to the first excited state of PF2, the

A2P state. The energy of the PF2(X2B1) and PF2(A2P)

states differs by 52.94 kcal/mol [9]. If the strengths of the

PH and PF bonds in the F2PH and PF3 transitions states are

similar to those in the ground states, as would be expected,

one would predict barrier heights close to this value, which,

indeed, is the case: 52.04 kcal/mol (F2PH) and 54.00 kcal/

mol (PF3). In addition, it should be noted that the lengths of

the covalent PH and PF bonds are similar in the ground and

transition states.

In summary, the transition states for NH3, FNH2, F2NH,

NF3, PH3 and FPH2 involve the formation of s-recoupled

pair bond dyads. Neither the H or F atoms are able to

recouple the 2p2 lone pair in the N(2D) state, so all of the

transition states in the FnNH(3-n) series possess s-recoupled

pair bond dyads (or hybrids thereof). H is not able to re-

couple the 3p2 lone pair of P atom, and thus, the PH3 and

FPH2 transition states also contain s-recoupled pair bond

dyads. Extensive mixing between the s-recoupled pair bond

dyad and the remaining covalent bond results in the

D3h-like transition state structures and vertex inversion

pathways. The F atom is sufficiently electronegative to

recouple both the 3s2 and the 3p2 electrons of the P atom,

but the p-recoupled pair bond dyad is preferred in F2PH

and PF3 over the s-recoupled pair bond dyad because the

repulsion between the out-of-plane lone pair on P and the

lone pairs on F is smaller in the former case. This leads to

much lower inversion barriers than expected for F2PH and

PF3 based on the trends in the FnNH(3-n) and the first two

members of the FnPH(3-n) series. The p-recoupled pair

bond dyad is rigid and stays almost collinear when other

bonds are formed, which results in the T-shaped transition

states and edge inversion in F2PH and PF3.

The T-shaped pnictogen structures in the ground state

and transition states of compounds such as ADPO and its

saturated analog also result from the formation of p-re-

coupled pair bond dyads by the pnictogen elements from

the second row and beyond. Factors that stabilize the

T-shaped structures of these compounds include electro-

negative ligands (facilitating the formation of the recoupled

pair bond dyad) and conjugated p system (allowing

delocalization into the space usually occupied by the lone

pair). Such compounds are expected to be widespread; their

chemistry has been reviewed in detail by Arduengo and

Stewart [2].

Acknowledgments This work was supported by funding from the

Distinguished Chair for Research Excellence in Chemistry and the

National Center for Supercomputing Applications at the University of

Illinois at Urbana-Champaign.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.

References

1. Culley SA, Arduengo AJ III (1984) J Am Chem Soc

106:1164–1165

2. Arduengo AJ III, Stewart CA (1994) Chem Rev 94:1215–1237

3. Lochschmidt S, Schmidtpeter A (1985) Z Naturforsch Teil B

40:765–773

4. Dixon DA, Arduengo AJ III, Fukunaga T (1986) J Am Chem Soc

108:2461–2462

5. Arduengo AJ III, Dixon DA, Roe DC (1986) J Am Chem Scc

108:6821–6823

6. Dixon DA, Arduengo AJ III (1987) J Chem Soc Chem Comm

2:498–500

7. Dixon DA, Arduengo AJ III (1987) J Am Chem Soc 109:338–341

8. Dixon DA, Arduengo AJ III, Lappert M (1991) Heteroatom

2:541–544

9. Woon DE, Dunning TH Jr (2010) J Phys Chem A 114:8845–8851

10. Clotet A, Rubio J, Illas F (1988) J Mol Struc (Theochem)

164:351–361

11. Creve S, Nguyen MT (1998) J Phys Chem A 102:6549–6557

12. Woon DE, Dunning TH Jr (2009) J Phys Chem A 113:7915–7926

13. Chen L, Woon DE, Dunning TH Jr (2009) J Phys Chem A

113:12645–12654

14. Purvis GD III, Bartlett RJ (1982) J Chem Phys 76:1910–1918

15. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989)

Chem Phys Lett 157:479–483

16. Knowles PJ, Hampel C, Werner HJ (1993) J Chem Phys

99:5219–5227

17. Watts JD, Gauss J, Bartlett RJ (1993) J Chem Phys 98:8718–8733

18. Dunning TH Jr (1989) J Chem Phys 90:1007–1023

19. Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys

96:6796–6806

20. Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358–1371

21. Dunning TH Jr, Peterson KA, Wilson AK (2001) J Chem Phys

114:9244–9253

22. Goddard WA III, Blint RJ (1972) Chem Phys Lett 14:616–622

23. Goddard WA III, Dunning TH Jr, Hunt WJ, Hay PJ (1973) Acc

Chem Res 6:368–376

24. MOLPRO is a package of ab initio programs written by Werner

HJ, Knowles PJ, Knizia G, Manby FR, Schütz M, Celani P,
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Abstract This study examines the radical nature and spin

symmetry of the ground state of the quasi-linear acene and

two-dimensional periacene series. For this purpose, high-

level ab initio calculations have been performed using the

multireference averaged quadratic coupled cluster theory

and the COLUMBUS program package. A reference space

consisting of restricted and complete active spaces is taken

for the p-conjugated space, correlating 16 electrons with 16

orbitals with the most pronounced open-shell character for

the acenes and a complete active-space reference approach

with eight electrons in eight orbitals for the periacenes.

This reference space is used to construct the total config-

uration space by means of single and double excitations.

By comparison with more extended calculations, it is

shown that a focus on the p space with a 6-31G basis set is

sufficient to describe the major features of the electronic

character of these compounds. The present findings suggest

that the ground state is a singlet for the smaller members of

these series, but that for the larger ones, singlet and triplet

states are quasi-degenerate. Both the acenes and periacenes

exhibit significant polyradical character beyond the tradi-

tional diradical.

Keywords Singlet–triplet splitting � MR-AQCC �
Unpaired electron density � Natural orbitals

1 Introduction

Over the past decade, there has been significant rise in

graphene research due to its potential application in

nanoelectronics [1] and organic semiconductors [2]. This

enthusiasm was triggered by the so-called scotch tape

isolation [3] performed in 2004 by Geim and Novoselov.

After isolating a one-atom-thick sheet of graphite, which

they would coin as ‘‘graphene,’’ many experimental and

theoretical groups began to explore the peculiar electronic

properties of this zero-bandgap semiconductor [4]. Quasi-

linear acenes (Fig. 1a) and two-dimensional nanoribbons

[5] (Fig. 1b) have been frequently used to investigate the

fascinating electronic properties of graphene. The synthesis

of quasi-linear n-acenes is possible up to 9-acene, but

beyond 5-acene, measures must be taken to overcome its

high reactivity. For hexacene, emersion in silicone oil

solution has been used by Ref. [6]. Heptacene has been
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photogenerated in a polymethyl methacrylate matrix [7].

Octacene and nonacene were kept at very low temperatures

(*30 K) in a solid argon matrix by Tonshoff and Bettinger

[8]. Additionally, although not preserving the true mole-

cules, significant substitution by bulky groups has been

used to stabilize the acenes [9].

Extensive theoretical work has been performed on ac-

enes [10–13] and graphene flakes [14–18] using density

functional theory (DFT) calculations. However, because of

the polyradical character of these systems, an unrestricted

approach had to be used [10] with concomitant spin con-

tamination, demonstrating the energetic instability of the

restricted DFT procedure [11]. Furthering this, Scuseria

et al. [12] used a spin-projected UHF (SUHF) to overcome

the deficiencies in a standard single-determinant HF

approach. As an alternative, the density matrix renormal-

ization group (DMRG) [19, 20] and the active-space vari-

ational two-electron reduced density matrix (2-RDM)

methods [21, 22] aim at an exact solution within a full

configuration space spanned by a limited basis set (minimal

or non-polarized double zeta basis sets) in the p space. The

spin-flip configuration interaction method [23] and coupled

cluster with singles, doubles, and non-iterative triples

CCSD(T) [24, 25] have been applied as well. Recently,

multireference averaged quadratic coupled cluster (MR-

AQCC) calculations [26], with all r molecular orbitals

(MOs) frozen, have been performed.

The extraordinary spin polarization and half-metallic

properties of zigzag graphene nanoribbons (GRN) (Fig. 1)

[5] have been demonstrated in many investigations based

on general considerations using Clar’s sextet theory [27,

28] and by explicit quantum chemical calculations using

DFT [14, 16, 18, 29], DMRG [19, 20], 2-RDM [21, 22],

and MR-AQCC methods [26]. Singlet–triplet (S-T) split-

ting gives important information about the radical character

of a compound. It was first estimated by Angliker et al. [6]

that the ground state of nonacene and beyond was a triplet

state. This estimate was based on the extrapolation of the

experimentally observed singlet–triplet splitting available

between benzene and pentacene to nonacene. But in 2010,

Tonshoff and Bettinger [8] concluded from the existence of

a finite optical band gap deduced from Vis/NIR spectros-

copy that nonacene was in fact a singlet, while, e.g., in

[30], EPR spectra for substituted nonacene were observed

indicating a non-singlet state. Additionally, several theo-

retical groups [19, 31–33] report S-T splittings for acenes

and S–S excitation energies have been examined as

well [34]. For a detailed discussion on these findings,

see Sect. 3.

The present study explores the spin symmetry and rad-

ical nature of graphene nanoribbons via quasi-linear acenes

as well as two-dimensional periacenes. There are two

questions this study seeks to answer: (1) What is the spin

state of the ground state of acenes and periacenes, and can

this knowledge then be used to extrapolate this to a larger

graphene nanoribbon? (2) What can be said about the

radical nature of graphene?

The first question posed is addressed with calculations

using multiconfigurational and multireference ab initio

methods. Multireference averaged quadratic coupled clus-

ter (MR-AQCC) [35] calculations are particularly useful

for large aromatic systems and radical systems [26, 36, 37],

of which the molecules in this study are both. This

approach aims at a compact representation of complicated

electronic wave functions by constructing a reference space

containing the most important quasi-degenerate configu-

rations (non-dynamical electron correlation) and repre-

senting the dynamical correlation by means of single and

double excitations [38]. Size extensivity contributions are

taken care of by the AQCC approach. To answer the sec-

ond question, an analysis of the radical nature of the acenes

is performed by two means: tracking the evolution of both

the natural orbital (NO) occupations with increasing chain

length and the total number of effectively unpaired elec-

trons (NU). The method for determining NU was first pro-

posed by Takatsuka et al. [39] and was further developed

by Staroverov and Davidson [40]. The methodology

eventually used in this paper comes from Head-Gordon

[41]. Additionally, we investigate the influence of freezing

the r orbitals on the NO occupations and the S-T splittings.

The effect of polarized basis sets on these quantities is

considered as well.

2 Computational methods

For the purposes of this study, the ‘‘zigzag’’ edge of the

acenes and periacenes is taken to be along the x-axis in the

x–y plane. The acenes were examined from n = 2–13,

n being the number of fused benzene rings in the chain.

Fig. 1 Structures a n-acene and b (ma, nz) periacene
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The periacenes were studied from (5a,2z) to (5a,5z), in

which m and n count the number of benzene rings along

each direction and a and z denote armchair and zigzag

boundaries, respectively (Fig. 1b). These molecules belong

to the D2h symmetry group, with b1u, b2g, b3g, au being the

irreducible representations that correspond to the p orbitals.

The geometries for the acenes and periacenes were taken

from Ref. [26], which had been optimized with second-

order Møller–Plesset perturbation theory [42] including the

resolution of the identity approach (RI-MP2) [43, 44] with

an SV(P) basis set [45] under D2h symmetry.

As a first option in constructing the multireference

wave function, a complete active-space (CAS) approach

was chosen. In this, eight electrons were correlated with

eight orbitals (two taken from each p symmetry). This

resulting CAS(8,8), although modified at times, was used

throughout the calculations of the periacenes. CAS self-

consistent field (CASSCF) calculations were performed to

determine the MOs. This CAS(8,8) was used as a refer-

ence space in constructing a multireference (MR)

expansion in configuration state functions (CSF) with all

single and double excitations [38]. This MR expansion

was used in two ways. The multireference averaged

quadratic coupled cluster (MR-AQCC) method [35] is our

preferred method in the reliable treatment of static and

dynamic electron correlation effects. In calculations of

higher triplet states, which were performed to determine

the symmetry of the lowest one, the MR-AQCC method

suffered from the problem of intruder states. In these

cases, and for the purpose of comparison with MR-AQCC

calculations on the lowest triplet state, the multireference

configuration interaction with singles and doubles (MR-

CISD) method was employed, also using the same con-

figuration space as for the MR-AQCC approach. To

account for quadruple and higher excitations, the renor-

malized Davidson correction [38, 46] (denoted ? Q) was

used as follows:

EQ ¼ ð1� c2
0ÞðECI � ESCFÞ

c2
0

ð1Þ

in which c2
0 is the sum of the squared coefficients of the

reference configurations in the MR-CISD expansion.

We found that the periacenes were well described by the

MR-AQCC/CAS(8,8) approach. In the case of the larger

members of the n-acene series (n larger than 8), a signifi-

cant number of intruder states appeared. This resulted in

configurations (mostly singly excited either from the dou-

bly occupied orbitals into the CAS or from the CAS to the

virtual orbital space) not included in the references. Con-

figurations exceeding a threshold of 0.01 in their weight in

the CSF expansion were considered intruder states. More-

over, in such cases, the reference space was not preserved

throughout the calculations. Consequently, the symmetry

numbering of the output natural orbitals (NOs) did not

correspond to that of the MOs used for the construction of

the reference space in the input. We therefore set up an

extended scheme as second option, in which the number of

internal orbitals was significantly increased. However,

including these orbitals as a CAS proved to be too costly.

Following the procedures used by Plasser et al. [26], a set

of active orbitals was introduced by moving some refer-

ence doubly occupied orbitals into the restricted active

space (RAS) from which only single excitations were

allowed in the process of constructing the references.

Similarly, auxiliary orbitals were introduced by moving

virtual orbitals into the auxiliary active space (AUX). Only

a single electron, at most, was permitted into the AUX. The

set of reference CSFs constructed from this RAS/CAS/

AUX scheme was then used to construct the entire CSF

expansion space by means of single and double excitations

as described above for the CAS(8,8) reference space.

The RAS is composed of orbitals that are generally in

the 1.84e–1.90e range for NO occupation. The number of

RAS orbitals used for n = 2–6 was n, and for n = 7–13,

six orbitals were maintained as in the 6-acene. Their con-

tribution to the reference space is greater than that of the

doubly occupied space, but less than that of the CAS.

Based on experience with the calculations on the singlet

state of the n-acenes [26], a CAS(4,4) was taken for all n,

correlating 4 electrons with 4 orbitals. These orbitals

exhibited the most pronounced open-shell character in the

CAS(8,8) calculation. They are, therefore, given the largest

weight in the reference space. The range of their NO

occupation is from 0.25e to 1.75e. The auxiliary space

(AUX) is the excitation space for the reference configura-

tions. The AUX orbitals generally have an NO occupation

of 0.07e–0.15e.

This calculation is referred to as RAS/CAS(4,4)/AUX in

the following. A total of 16 electrons/orbitals are used, at

most, in this reference space, as opposed to the 8 in the

CAS(8,8) reference space. This RAS/CAS(4,4)/AUX rep-

resentation is used at the MCSCF, MR-CISD, and MR-

AQCC levels. For the n-acenes, n = 9–11, one additional

configuration was added to the reference space to accom-

modate for a significant intruder state in the MR-AQCC

wave function.

In terms of molecular size, the most extended set of

calculations were performed by freezing all r orbitals and

using the 6-31G basis set [47]. Starting from a closed-shell

self-consistent field (SCF) calculation, all occupied and

virtual r orbitals were frozen by transforming the one- and

two-electron integrals into a new basis, keeping only the p
orbitals. The effect of the frozen r orbitals was folded into

effective one-electron Hamilton matrix elements according

to the formalism described by Shavitt [48]. To validate the

use of the 6-31G basis set and the freezing of r orbitals,
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two additional sets of calculations were performed for the

n-acenes up to n = 9. The first was identical to the scheme

outlined above, except a 6-31G* basis set [47] was used.

The second series of calculations also used a 6-31G* basis

set, but froze only the r core orbitals. In these calculations

though, a smaller reference space was chosen. For

n = 2–4, a CAS(4,4) was sufficient as a reference space,

which is the same CAS(4,4) as in the RAS/CAS(4,4)/AUX.

For n = 5, one orbital was added to both the RAS and the

AUX space based on their proximity to CAS occupations.

For n = 6–7, two RAS and AUX orbitals were added, and

an additional amount of r orbitals equal to the number of

1s core orbitals was frozen. This procedure was tested for

n = 7, and no significant deviation in S-T splitting energies

was found. This second calculation was only used up to

n = 7.

The effective unpaired electron densities and total

number of effectively unpaired electrons (NU) were com-

puted [39–41]. To avoid overemphasizing the contribution

of the natural orbitals (NOs) that are nearly occupied or

nearly unoccupied, we chose to use the nonlinear model

suggested in [41] where NU is given by

NU ¼
XM
i¼1

n2
i 2� nið Þ2 ð2Þ

in which ni is the occupation of the ith NO and M is the

number of NOs. In this, the open-shell character is given

the largest weight.

The orbital occupation scheme of the doubly occupied

orbitals was obtained by performing a DFT calculation

with the Becke–Perdew functional [49, 50] and a 6-31G*

basis set [47]. Geometry optimizations were performed

with the TURBOMOLE [51, 52] package, and all other

calculations use COLUMBUS [53–55].

3 Results

3.1 Singlet–triplet splitting

A direct product of all the p symmetries for D2h results

in the following symmetries for the triplet states: 3Ag,
3B3u, 3B2u, and 3B1g. The S-T splitting for the p-MR-

CISD ? Q/CAS(8,8)/6-31G calculation for each of these

symmetries (i.e., the excitation energies from the 11Ag

state to the respective lowest triplet state in these sym-

metries) is compared in order to determine the lowest

energy state. It is shown in Figs. 2 and 3 (Tables S1–2 in

the Supplementary Material contain the data in tabular

form; the same procedure has been followed for the other

figures showing S-T splittings) that the 3B3u state has the

smallest S-T splitting for all molecules. In light of this,

only the 3B3u symmetry was considered in the remaining

work.

The S-T splitting for the MCSCF, MR-CISD, and MR-

AQCC calculations for the acenes (Fig. 4, Table S3)

remains positive in all instances, indicating that the system

maintains singlet ground state character for these compu-

tational levels and all values of n investigated. However,

the relative theoretical–experimental error, as shown in

Table 1, shows that the p-MR-AQCC/RAS/CAS(4,4)/

AUX/6-31G results deviate by 0.27 ± 0.06 eV from the

experimental data [31, 56–59]. Correcting our results by

this value shows that our calculations predict 11-acene as

the first case where the triplet state is lower than the singlet

state, as it can be seen from S-T splitting of 0.26 in Table

S3. This value of n = 11 compares quite well with the

value of n = 9 deduced by Angliker et al. [6] from

Fig. 2 Singlet–triplet splitting of n-acenes (n = 2–9) with respect to

the 1Ag ground state using the p-MR-CISD ? Q/CAS(8,8)/6-31G

approach

Fig. 3 Singlet–triplet splitting of (5a,nz) periacenes (n = 2–5) with

respect to the 1Ag ground state using the p-MR-CISD ? Q/CAS(8,8)/

6-31G approach
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experimental data as mentioned above. The difference

between these two n values comes from a slight leveling

off of the MR-AQCC results (Fig. 4).

p-MR-CISD/6-31G and p-MR-CISD ? Q/6-31G cal-

culations have been performed for n = 12 and 13 with the

present RAS/CAS/AUX scheme, for which the MR-AQCC

calculation showed significant intruder states. It is inter-

esting to note that until n = 10, the former two methods as

well as MCSCF show very good agreement with the MR-

AQCC data, and only starting at n = 10, no further

reduction of the S-T splitting is observed for these meth-

ods. This good agreement with the MR-AQCC reference

data is partly due to the flexible reference configuration set,

but probably also due to error cancelation in computing the

energy difference between singlet and triplet states.

While it is possible that acenes maintain a singlet

ground state as n approaches infinity, they surely have

nearly degenerate singlet and triplet ground states. A

similar situation is present in the much larger periacene

system, in which the S-T splitting, as shown in Fig. 5

(Table S4), drops to nearly zero (0.05 eV) by the (5a,4z).

From DFT calculations, there is no clear consensus on the

spin multiplicity of the acenes beyond octacene. Houk et al.

[31] and Rayne et al. [32] show that nonacene is a triplet,

while Bendikov et al. [10] report a singlet state, at least

through decacene. Going beyond DFT, Casanova and

Head-Gordon [23] developed a single-reference (5A1) spin-

flip configuration interaction method that predicts a singlet

up to 20-acene, though the S-T splitting is nearly zero

(0.09 eV). MR-CISD was used recently with an S-T

splitting for decacene (Table 3 in Ref. [33]) consistent with

our MR-CISD values (Fig. 4, Table S3). DMRG calcula-

tions [19] have been interpreted to result in a small but

finite singlet–triplet gap. Hajgató et al. [25] concluded that

the S-T splitting in the large n limit would be around

0.17 eV and went later on [24] to show with single-refer-

ence CCSD(T) that this limit is *0.06 eV. Their study

included up to n = 11 in the acene series and gave an S-T

splitting for n = 11 of 0.31 eV. This value falls within the

same near-degeneracy that our adjusted MR-AQCC pre-

dicts. To our knowledge, there is no current experimental

S-T data for the periacene series. Additionally, we have

only found one other group [60] that reported theoretical

S-T data for periacenes. With R(U)B3LYP/3-21G, they

found a -0.33 eV S-T splitting for the (5a,5z) periacene,

indicating a triplet ground state. For the MR-AQCC/

CAS(8,8)/6-31G calculation, we find a splitting of 0.05 eV.

Accordingly, all these calculations strongly suggest that an

actual graphene nanoribbon has a ground state with nearly

degenerate singlet and triplet states.

The comparison between the basis sets (6-31G and

6-31G*) and the two different electronic systems (p-con-

jugated and total) for the linear acenes, as shown in Fig. 6

(Table S5), leads to the conclusion that the p-conjugated

system with a 6-31G basis set is quite adequate to describe

the S-T splitting for these molecules. There is virtually no

Fig. 4 Singlet–triplet splitting for n-acenes (n = 2–13) at four

different levels of theory using a p-RAS/CAS(4,4)/AUX reference

space and the 6-31G basis set in comparison with experimental data

Table 1 Average difference and standard deviation of the S-T

splitting (eV) between theory and experiment for the linear acenes

n = 2–6

Method Average ± standard

deviation

p-MCSCF/6-31G 0.48 ± 0.22

p-MCSCF/6-31G* 0.48 ± 0.18

Total-MCSCF/6-31G* 0.70 ± 0.13

p-MR-CISD/6-31G 0.41 ± 0.06

p-MR-CISD ? Q/6-31G 0.33 ± 0.13

p-MR-AQCC/6-31G 0.27 ± 0.05

p-MR-AQCC/6-31G* 0.29 ± 0.08

Total-MR-AQCC/6-31G* 0.40 ± 0.19

Fig. 5 Singlet–triplet splitting for (5a, nz) periacenes (n = 2–5) at

four different levels of theory with the r system frozen using a

CAS(8,8) reference configuration set
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difference in the relative S-T splittings for the three MR-

AQCC variants. This is true in particular for the larger

systems beyond pentacene where the three values are

always within an interval of 0.1 eV. Only the S-T splittings

computed at the MCSCF level deviate a bit from the MR-

AQCC results. Also, what can be seen from these graphs is

that a systematic error with respect to experiment, as

shown in Table 1, still arises in the MR-AQCC, regardless

of the basis or level of r–p correlation. Thus, it is not the

freezing of the r orbitals that leads to the error, and

accordingly, the SCF approach seems to be sufficient for

the description of the r system. While the MR-AQCC

corrects for the size extensivity issue present in MR-CISD,

it is likely the truncated nature of the calculations that still

causes this error.

3.2 Radical character

It is primarily the zigzag edge of graphene nanoribbons that

contributes to its high radical character. Nakada et al. [61]

showed analytically that there is a degenerate flat band near

the Fermi level on the zigzag edge, which is not present on

the armchair edge. Jiang et al. [15] went on to show that the

carbon atoms on the zigzag edge of a graphene nanoribbon

are more chemically reactive than those of a graphene

sheet, nanotube, and nanoribbon armchair edge, having a

bond dissociation energy at least 1.2 eV times higher than

any of them when bonded to hydrogen. The radical char-

acter of the system is examined via two means in this

paper: the NO occupation and effective number of unpaired

electrons.

3.2.1 NO occupation

The NO occupations are derived from the spin-averaged

one-electron density matrix, thus leading to a spectrum of

occupation from zero to two. This can be seen for the 3B3u

state for the acenes in Fig. 7 and for the 3B3u state for the

periacenes in Fig. 8. The HONO and LUNO for each

molecule can be recognized by the occupations closest to

one for the whole series. The acene series starts for n = 2

with a HONO/LUNO difference of about 0.56, which is

reduced to about 0.27. With increasing n, additional NO

occupations deviating from the limit values of zero and two

appear, indicating the evolving polyradical character. This

evolution of increasing radical character is analogous to the

one found for the lowest singlet state of acenes in the MR-

AQCC [26], DMRG [19], 2-RDM [21], and projected

Hartree–Fock calculations [12]. DMRG calculations on

larger acenes [20] show for the singlet state a HONO/

LUNO gap of *0.5e, which is classified by the authors as

single radical occupation being, in their conclusions, sim-

ilar to the just-mentioned other calculations. The singlet

and triplet NO occupation plots differ primarily for the

initial members of the acene series, which starts with

HONO/LUNO occupations for the singlet case close to

Fig. 6 Singlet–triplet splitting for the n-acenes computed at MCSCF

and MR-AQCC levels for three different cases: p-6-31G, p-6-31G*,

and total-6-31G* Fig. 7 Natural orbital (NO) occupations of the 3B3u state of n-acenes

(n = 2–11) obtained from p-MR-AQCC/RAS/CAS(4,4)/AUX/6-31G

calculations

Fig. 8 Natural orbital (NO) occupations of the 3B3u state of (5a,nz)

periacenes (n = 2–5) obtained from p-MR-AQCC/CAS(8,8)/6-31G

calculations
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zero and two, respectively, whereas in the triplet case, the

aforementioned open-shell NOs already appear at the very

beginning of the series. However, after a certain size of the

acene chain, the NO occupation graphs look very similar.

The same situation is seen with the periacenes in Fig. 3 of

Ref. [26] and Fig. 8. HONO/LUNO plots for the 11-acene

and (5a,5z) periacene for both the 1Ag and 3B3u states are

included in the supplementary material (Figures S1–4).

3.2.2 Effective number of unpaired electrons

In Fig. 9, the NU values (Eq. 2) for the singlet and triplet

states of the acene series are presented. The triplet curve

starts from a value of 2.4 for n = 2, which is consistent

with the strong open-shell character shown in Fig. 7. The

singlet state starts with closed-shell character, but then, it

rapidly catches up with the triplet state. It has been found

for a true biradical (the stacked tetracyanoethylene anion

dimer complex with two potassium cations as counter ions)

[62] that the NU values could be modeled by the HONO/

LUNO contributions alone. The situation is completely

different here. There is still a strong increase in NU even

after the HONO/LUNO contribution is deducted (Fig. 9).

A similar situation is found for the periacenes (Fig. 10). It

is interesting to note that the partial number of unpaired

electrons is almost identical for the singlet and triplet states

in all cases considered. This suggests similarities between

the many-particle wave functions in both cases and that the

single major difference lies in the frontier orbitals, which

are only in the triplet case necessarily occupied by unpaired

electrons. As soon as the singlet acquires radical character

its total NU reaches the value of the triplets. Plots of the

unpaired densities including a Mulliken population ana-

lysis are given in Figs. 11 and 12. The unpaired density is

always located on the zigzag edge. There is a specific

concentration on the center, but a delocalization over the

whole edge is visible.

Fig. 9 Effective number of unpaired electrons for the 1Ag and 3B3u

states of the n-acenes with and without the HONO and LUNO

included using the p-MR-AQCC/RAS/CAS(4,4)/AUX/6-31G method

Fig. 10 Effective number of unpaired electrons for the 1Ag and 3B3u

states of the (5a,nz) periacene series with and without the HONO and

LUNO included using the p-MR-AQCC/CAS(8,8)/6-31G method

Fig. 11 Unpaired electron

density for the 1Ag (top) and
3B3u (bottom) states of the

11-acene (isovalue 0.005 a.u.)

of the p-MR-AQCC/RAS(6)/

CAS (4,4)/AUX(6)/6-31G

calculation with individual

atomic populations computed

from a Mulliken analysis
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4 Conclusions

The purpose of this work was twofold: first, to determine

whether the ground state of graphene nanoribbons is a

singlet or a triplet and second, to qualify/quantify the

multiradical nature of these systems. This was accom-

plished by performing high-level ab initio multiconfigu-

rational and multireference calculations using the

COLUMBUS program on quasi-linear acenes and two-

dimensional periacenes. It is clearly seen that the validity

of the results of these calculations is independent of both

the basis set and the amount of correlated r electrons. For

both systems, a near-degeneracy of the singlet and triplet

states is found for sufficiently extended systems. For the

n-acene series, this happens at around n = 11. In partic-

ular, in the periacene case, the S-T splitting drops rapidly

to nearly zero eV by the (5a,4z). It is clear, however,

from the calculations that graphene is multiradical in

nature as the number of unpaired electrons increases with

chain length. As in the case of the singlet state, the

unpaired densities in the periacenes are concentrated

along the zigzag edges with only minor extension into the

inner parts of the nanosheet. The multiradical character of

the acenes and periacenes leads to very high reactivity,

which will be amenable to tuning, either by structural

defects or by heteroatoms. Further work will examine

various forms of defects in regard to their stability and

electronic properties.
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Abstract The optical properties of intra-4fN transitions

(f–f transitions) in lanthanide compounds are usually

insensitive to the surrounding environment due to the

shielding effect of the outer 5s and 5p electrons. However,

there are exceptional transitions, the so-called hypersensi-

tive transitions, whose oscillator strengths change sensi-

tively to a small change of the surrounding environment.

The mechanism of the hypersensitive transitions was

explained mostly with the dynamic-coupling (DC) model.

In this study, the oscillator strengths of hypersensitive

transitions in lanthanide trihalides (LnX3; Ln = Pr, Nd,

Pm, Sm, Eu, Tb, Dy, Ho, Er, Tm; X = Cl, Br, I) were

calculated by the multi-reference spin–orbit configuration

interaction (CI) method, and the origin of the hypersensi-

tive transition intensities was examined. To compare the

intensities derived from the DC model and from the

ab initio CI computations, we evaluated two Judd–Ofelt

intensity parameters: s2(dc) by the DC model and s2(ab) by

the CI computations. Although these two parameters

showed similar overall behaviors, their Ln dependences

were different, suggesting the involvement of other

mechanism(s) in s2(ab). Close examination of the spatial

distributions of the transition densities and the integrand of

the transition dipole moments (TDMs) suggested that the

Judd–Ofelt theory contributions were also involved in

s2(ab) with the opposite sign relative to the TDMs with the

DC model in all the hypersensitive transitions of LnX3.

Moreover, the different Ln dependences in s2(dc) and

s2(ab) were related to the different amount of the mixing of

ligand-to-metal charge transfer configurations into the

dominant 4fN configurations, especially for Eu and Tb.

Keywords f–f transition � Multi-reference spin–orbit

configuration interaction (MRSOCI) method � Transition

dipole moment � Judd–Ofelt theory � Dynamic-coupling

model � Charge transfer

1 Introduction

Lanthanide compounds have attracted attention due to

their potential applications as various materials. Their

intra-4fN electronic transition, the so-called f–f transition,

is one of the most discriminative properties and used

extensively for many optics, such as lasers, fibers, optical

displays, and biosensors [1–3]. The probability of photo

absorption is represented by oscillator strength, a dimen-

sionless quantity. The oscillator strengths of f–f transi-

tions are small, typically in the order of 10-6, reflecting

Laporte forbidden transitions, and their absorption and

emission spectra have sharp peaks in visible, near infra-

red, and near ultraviolet regions. Despite the usefulness of

these systems, there are only a few relevant ab initio

studies of the f–f transition intensities that explicitly

included ligand electrons [4–7] because these calculations

are difficult due to the importance of both relativistic and

electron correlation effects.
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Instead of ab initio calculations for entire molecular

systems, the f–f oscillator strengths have long been studied

extensively with the semi-empirical Judd–Ofelt (JO) theory

[8, 9], in which only the lanthanide electrons were

explicitly treated and the effects due to the ligands were

handled by the traditional crystal field theory. According to

this theory, Laporte forbidden f–f transitions become

allowed due to the odd parity components of crystal field

generated by the ligands, which induce the mixing between

4fN states and the opposite parity intra-metal excitation

configurations, such as 4fN-15d or 4fN-1g. When such

perturbed 4fN states are considered, the f–f oscillator

strengths can be evaluated in terms of three parameters, the

so-called JO intensity parameters sk (k = 2, 4, 6). Other

transition mechanisms, such as vibronic transitions due to

the coupling between electronic states and vibrational

modes, and magnetic dipole transitions cannot be neglected

for a general discussion of f–f transition intensities, espe-

cially in a centro-symmetric environment, in which all the

genuine electric dipole transitions are Laporte forbidden.

Although most of f–f oscillator strengths could be

explained with these mechanisms, there were still some

problems. The most famous example is ‘‘a hypersensitive

transition’’ [10], one of f–f transitions, which shows

exceptional behavior among various physical phenomena

caused by the 4f electrons. Excitation energies and transi-

tion intensities of typical f–f transitions are insensitive to

the surrounding environment because 4f electrons are

shielded by the closed-shell 5s and 5p electrons from

outside. However, the intensities of the hypersensitive

transitions change dramatically by a small change of sur-

rounding environment, while their excitation energies are

insensitive. Such transitions obey the selection rules of

|DJ| B 2, |DL| B 2, and |DS| = 0, which are identical to

those of electric quadrupole transitions and included in

those of electric dipole transitions caused by the odd parity

crystal field (|DJ| B 6, |DL| B 6, and |DS| = 0); however,

they are covering the outside of those of magnetic dipole

transitions (|DJ| B 1, |DL| = 1, and |DS| = 0) [11].

Therefore, the origin of hypersensitive transitions has been

discussed not from the aspect of magnetic transitions but

from electric transitions. The most notable example of the

hypersensitive transitions is lanthanide trihalide (LnX3) in

vapor phase [12, 13]. A typical example is the transition
4I9/2 ? 4G5/2 in Nd3? compounds. This oscillator strength

is as much as 530 9 10-6 for NdI3 in vapor phase com-

pared with the value of 5.6 9 10-6 in the LaF3 crystal

[12, 13].

Hypersensitive transitions are attractive and important

phenomena not only from the aspects of fundamental

chemistry but also on a practical side. Their characters,

such as the sharp peaks, invariance of the excitation

energies, and hypersensitivity of only the intensities, have

been widely used in optical materials in solids, solutions,

and molecules. They are very suitable for use as lumines-

cence probes, such as in vivo luminescence probes to

measure pH and the concentration of metal cations, neutral

molecules, anions, and so on [1–3, 14]. The luminescent

transitions that have large intensities obey the same

selection rule as the hypersensitive transitions for the

absorption. Therefore, to develop new luminescent mate-

rials, it is helpful to understand the detailed mechanism and

to develop an appropriate theoretical scheme of the quan-

titative quantum mechanical calculations.

Historically, hypersensitive transitions have been inter-

preted with modifying the JO theory [10, 15–37]. One of

the semi-empirical models based on the JO theory called

dynamic-coupling (DC) model [31–33] succeeded in

explaining the large hypersensitive transition intensities of

LnX3 molecules in vapor phase. In this model that had been

proposed originally in the theory of optical rotation [38,

39], the crystal field generated by the oscillating induced

dipole moments on the ligands was considered explicitly

by including the configuration mixing of intra-ligand

excitation configurations into 4fN wave functions. One nice

feature is that the f–f transition oscillator strengths in this

DC model can be written as in the original JO theory

formulation only by replacing the JO intensity parameters

sk with new ones sk(dc).

We have previously studied the oscillator strengths and

the JO intensity parameters of LnBr3 with ab initio method

and have clarified that the dominant mechanism of hyper-

sensitive transition intensities could be attributable to the

DC model and that the effects of f-d mixing, molecular

vibration, polarization shielding, and ligand-to-metal

charge transfer (LMCT) have a lesser importance [4, 5].

Through these works, the importance of LMCT effect

especially in EuBr3 [5] was pointed out; however, such

effect is still open to discussion.

In this study, we evaluate the oscillator strength of

hypersensitive transitions in LnX3 (X = Cl, Br, I) mole-

cules with the multi-reference spin–orbit (MRSO) CI

method and discuss the origin of hypersensitive transition

intensities, especially focusing on the Ln dependence,

halogen dependence, and also the effect of LMCT. To

compare our ab initio results and the semi-empirical con-

cepts, such as the JO theory and the DC model, we evaluate

the oscillator strengths and two kinds of JO intensity

parameters sk(dc) and sk(ab) in Sect. 4.1. These two

parameters sk(dc) and sk(ab), the details of which are

defined in Sect. 3 and Ref. [5], represent the contributions

only from the DC theory and those from all the effects

considered in the ab initio calculations, respectively. If the

origin of hypersensitive transition intensities can be

explained by the DC model alone, these two JO intensity

parameters sk(dc) and sk(ab) are expected to show similar
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behaviors. Though the halogen dependence of sk(ab) is

similar to that of sk(dc), the Ln dependence turns out to be

different. The different behaviors of these parameters

indicate that there exist non-negligible effects other than

the DC model. The relations between the JO theory effect

and other effects, such as the DC model, were investigated

previously based on the JO theory [40–44]. In these earlier

studies, each of physically distinct effects was considered

by including the corresponding type of perturbing config-

urations into the dominant 4fN wave functions. On the other

hands, our sk(ab) contains all the effects simultaneously, by

representing them as one-electron excitations from the

dominant 4fN wave functions. Therefore, our sk(ab) is

proportional to the square of the transition dipole moments

(TDMs) calculated with ab initio method MFI(ab).

This TDM can be decomposed as MFI(ab) = MFI(JO) ?

MFI(DC) ? MFI(LMCT) ? …, where MFI(JO) and

MFI(DC) are contributions considered in the JO theory

and the DC model, respectively, and MFI(LMCT) is that

from configuration mixings due to LMCT as discussed in

Ref. [5]. Therefore, sk(ab) must contain not only the

magnitude of each transition mechanism but also their

relative phases.

To analyze these contributions and their relative phases,

we take two different theoretical approaches. In Sect. 4.2,

as an extension of our previous decomposition analyses in

Refs. [4, 5], we focus on the TDMs, especially on the

integrands, to see the Ln dependence and ligand depen-

dence. Finally, the effect of LMCT configuration mixing is

discussed in Sect. 4.3, and the reason of the different

behaviors of sk(dc) and sk(ab), especially in EuX3, is

clarified.

2 Theory

We explain two semi-empirical theories that are used for

comparison of our ab initio results. It should be noted that

our ab initio calculations do not assume the crystal fields,

while most previous semi-empirical models employed

specific crystal fields to evaluate the f–f transition

intensities.

2.1 Judd–Ofelt theory

Judd [8] and independently Ofelt [9] presented treatises

about the calculation method for Laporte forbidden f–f

transition intensities of Ln systems with using coupling

scheme for angular momenta. The basic idea is that f–f

transitions can be allowed because of the mixing of

opposite parity configurations, such as 4fN-15d or 4fN-1g

states to 4fN states due to the presence of odd parity crystal

field generated by the ligands. In this theory [8, 9], the

oscillator strengths f between two 4fN multiplets 2S?1LJ and
2S0?1L0J0 are written as

f ¼ x
2J þ 1

X
k¼2;4;6

sk
2Sþ1LJ
�  UðkÞ  2S0þ1L0J0

 E 2 ð1Þ

where x is the excitation energy from 2S?1LJ to 2S0?1LJ,
2Sþ1LJ
�  UðkÞ  2S0þ1L0J0

 �
is the reduced matrix elements of

the k-th rank reduced tensor operators U(k). Here, sk
(k = 2, 4, 6) are called ‘‘JO intensity parameters’’ and can

be expressed as

sk ¼ 4pmecved

3�h
ð2kþ 1Þ

X
k

ð2k þ 1Þ�1
X
q

Akq

 2N2ðk; kÞ

ð2Þ
where Akq is the crystal field coefficient; N2(k, k) are the

parameters that contain excitation energies and transition

moments between 4fN and the opposite parity states, such

as 4fN-1d, 4fN-1g, and also continuum states; ved is the

Lorentz field correction, whose value is unity in vapor; and

me, c, ⁄ are the electron mass, the light speed, and the

reduced Planck constant, respectively.

In general, the parameters sk have been treated as

adjustable parameters and simply determined experimen-

tally only from Eq. (1), not from Eq. (2) [11, 14]. Three sk
parameters can be determined empirically from the

experimental data of oscillator strengths and the excitation

energies for at least three transitions. Once they are

determined, all the remaining oscillator strengths in the Ln

system can be evaluated from Eq. (1) by substituting the

values of sk, x, and the reduced matrix elements given in

Refs. [45–48]. In other words, the oscillator strength can be

divided into two parts, one is sk that is unique for the

compound and the other that depends only on the angular

momentum couplings for individual transitions. From a

viewpoint of analysis, these JO parameters sk are also

useful for measuring the hypersensitivity of f–f transition

intensities. Because the electronic states (2S?1LJ terms) of

the initial and the final states are generally different for

each Ln element, comparing the hypersensitivity for the

different Ln systems would be quite difficult, if it were

made only through comparing their oscillator strengths. In

contrast, the JO intensity parameters do not contain the

information of individual electronic structures, but they can

reflect only the hypersensitivity of the f–f transition

intensities. In this way, oscillator strengths of many Ln

systems have been successfully explained by the JO theory.

Moreover, the original JO theory has been extended and

generalized by many contributors to include electron cor-

relations [16, 23–25], relativistic effects [16, 24–30], and

magnetic dipole transitions [16, 49].

In spite of the utility of the JO theory, there were still

problems for the hypersensitive transition intensities. As
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long as the JO intensity parameters were treated as

adjustable parameters for experimental data, the JO theory

usually gave good agreement between experimental and

calculated dipole strengths even for hypersensitive transi-

tions. However, the original JO theory alone could not give

a theoretically sound explanation for the hypersensitivity.

The most severe problem was that if the JO parameters of

LnX3 molecules in D3h symmetry were evaluated with

ab initio methods in terms of Eq. (2), they were underes-

timated significantly compared to those from experimental

data [12, 13]. To reproduce the significantly large oscilla-

tor strength of LnX3 in D3h symmetry within static crystal

field model, symmetry reduction by vibration was consid-

ered [13, 20]. However, it was criticized [4, 17]. The vib-

ronic effect on the f–f transition intensities is negligibly

small because 4f electrons are not affected by surrounding

environment; thereby, the potential energy surfaces of 4fN

states have similar shapes [11, 14]. Therefore, only the

electronic transitions between the same vibrational quan-

tum states are allowed [4], and most f–f transitions

including hypersensitive transitions exhibit sharp peaks and

a negligibly small vibronic effect. Note that, as discussed in

Introduction, if Ln3? is in a centro-symmetric environment,

the zero-phonon electric dipole transitions are forbidden

and weak vibronic f–f transitions can be exposed [17, 42,

50–54]. However, according to the observation and theo-

retical calculation of octahedral ErCl6
3- system [54], the

sum of vibronic transition intensities for the hypersensi-

tive transition of Er3? (4I15/2 ? 4G11/2) is as small as

1 9 10-6. Therefore, the vibronic coupling effect cannot

be an origin of hypersensitivity even though it is essential

in centro-symmetric systems.

2.2 Dynamic-coupling model

To give an explanation for the notably large oscillator

strengths of hypersensitive transitions of LnX3, Mason and

Peacock et al. [31–33] proposed the ‘‘dynamic-coupling

model,’’ which was extended later for general cases by

Reid and coworkers [34–37, 43, 44]. In what follows, a

simple explanation of this model is provided by taking

LnX3 as examples. Let put a Ln3? cation on the origin and

consider an f electron whose position vector is r ¼ ðx; y; zÞ.
The electron is under the influence of the static crystal field

due to the three ligands X-, whose effects are considered in

the JO theory. In the case of LnX3 with D3h structure, the

lowest order crystal field generated by the point charges q

on the ligands is third order and can be expressed as

follows,

V
q
CFðrÞ ¼ C

q

R4
L

ðx3 � 3xy2Þ; ð3Þ

where C is a proportional constant and RL is the distance

between Ln and X.

Here, if the molecule is put in an oscillating electric field

due to light, the f electron receives additional perturbation

fields that contain not only the external electric field in

Eq. (3) but also that newly created by the oscillating

induced dipoles on the ligands. The latter field can act as a

strong time-dependent crystal field, in modern terminol-

ogy, an inhomogeneous near field [55]. The crystal field

generated by the induced dipole moments lind = aE on the

ligands due to the oscillating external electric field E can

be written as follows,

V
l
CFðrÞ ¼ �

aE
q
� rVq

CFðrÞ

¼ � 3aC

R4
L

fEx � ðx2 � y2Þ � Ey � 2xyg; ð4Þ

where a is the frequency-dependent polarizability of the

ligand, and Ex and Ey are the components of the oscillating

electric field E. Since the external electric field E is oscil-

lating, the crystal field generated by the induced dipole

moments is also oscillating. The two terms in Eq. (4) can be

regarded respectively as the Coulombic interaction between

the quadrupole component of x2–y2 on Ln and the field

gradient due to the x component of the induced dipoles on

the ligands, and the interaction between their components of

xy and y, as schematically shown in Fig. 1. In the oscillating

electric field, all the induced dipole moments are oriented in

the same direction, and their directions are altered after a

half cycle of the oscillation. Because the transition quad-

rupole moments between 4f orbitals of Ln are affected by

the time-dependent crystal field in Eq. (4), f–f transitions

can be induced resonantly. This coupling between the

transition quadrupole moment on Ln and the oscillating

induced dipole moments on the ligands is the physical

picture of the dynamic-coupling (DC). Note that this cou-

pling has a nonzero contribution only when the direct

Fig. 1 Nonzero Coulombic correlation between the metal ion

quadrupole moments and the ligand dipole moments in D3h LnX3

molecules
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product of the irreducible representations for the transition

quadrupole moments on Ln3? and the induced dipole

moments on the ligands contain the totally symmetric rep-

resentation in the point group of the complex [31, 32].

Therefore, the transition caused by the DC model is for-

bidden in the cases with the inversion symmetry.

To include the effect of the induced dipole moments on

ligands in the framework of the JO theory, Mason et al.

[31–33] considered the mixing of intra-ligand excitation

configurations into 4fN states. The initial and final 4fN

states in a Ln complex, neglecting overlap, are expanded to

the first order of perturbation as follows,

MaLg
 � ¼ Maj Lg

�þX
c;e

Mcj LeÞ
Mcð LejV Maj Lg

�
Ea þ Eg � Ec � Ee

MbLg
 � ¼ Mbj Lg

�þX
c0;e0

Mc0j Le0 Þ
Mc0ð Le0 jV Mbj Lg

�
Eb þ Eg � Ec0 � Ee0

;

ð5Þ
where V is the electrostatic potential between the charge

distribution of the Ln ion and that of each ligand; Mc and Le
are zero-order orthonormal eigenstates of the Ln ion and

single-ligand subsystems, respectively; and |McLe) is the

simple product function of Mc and Le [38]. Here, c = a, b

and e = g means the ground states of Ln and the ligand

sub-systems, respectively. The TDM between these per-

turbed 4fN states is represented by

MaLg
� r MbLg

 � ¼ MaLg
� r ðMÞ þ r ðLÞ MbLg

 �
¼
X
c0 6¼a

Ma rðMÞj jMc0 Þð Mc0Lg Vj jMbLg
� �

Eb � Ec0

þ
X
c 6¼b

Mc rðMÞj jMbÞð MaLg Vj jMcLg
� �

Ea � Ec

þ
X
e0 6¼g

Lg rðLÞj jLe0 Þ
� MaLe0 Vj jMbLg

� �
Eb þ Eg � Ea � Ee0

þ
X
e 6¼g

Le rðLÞj jLg
�� MaLg Vj jMbLe
� �

Ea þ Eg � Eb � Ee

:

ð6Þ
Here, the dipole operator r is divided into two contribu-

tions r(M) and r(L) which operate only within the Mc and Le
states, respectively, excluding the possibility of charge

transfer effect. Focusing on the matrix elements of dipole

operators in Eq. (6), the first and second terms, which

contain Ma rðMÞj jMc0ð Þ and Mc rðMÞj jMbð Þ, express intra-

metal excitations derived from the JO theory and the third

and fourth terms, which contain Lg rðLÞj jLe0
� �

and

Le rðLÞj jLg
� �

, express intra-ligand excitations derived from

the DC model. When the Coulombic potential between non-

overlapping transition charge distributions of Ma $ Mb and

Lg $ Le in (MaLe0|V|MbLg) and (MaLg|V|MbLe) is expanded

in terms of multipole expansion, the leading term is Cou-

lombic correlation of electric dipole moments in the ligands

and quadrupole moments in the Ln ion [31–33].

From these third and fourth terms in Eq. (6), the f–f

transition oscillator strengths can finally be represented in

terms of the JO type equation (Eq. 1). Only the formula of

the JO intensity parameter sk is changed as follows,

skðdcÞ ¼ 4pmec

3�h
vedðkþ 1Þ f CðkÞ

�� ��fD E2

4f r2
 4f� �2

Xkþ1

m¼0

ð2� dm0 Þ
X
L

aðLÞR�k�2
L Ckþ1

�m ðLÞ



2

ð7Þ

where hf kC(k)kf i is the reduced matrix element of the k-th

rank Racah tensor connecting the f-orbital functions,

h4f |r2|4f i is the squared radial expectation values of 4f

orbital of Ln, a(L) is the mean polarizability of the ligand

L, and C-m
k?1(L) is the (k ? 1)-th rank Racah tensor

depending on the ligand structure.

Here, as was already pointed out, it is noticed from the

values for matrix elements of irreducible tensor operators

[45–48] that the matrix elements of U(2) have notably large

values only in the hypersensitive transitions among possible

f–f transitions, whereas those of U(4) and U(6) are less

directly related to the hypersensitive transitions [10].

Therefore, it can be interpreted that the characteristics of

hypersensitivity are involved in the term of k = 2 in Eq. (7),

namely s2. In fact, the magnitude relation s2[[ s4, s6 holds

in LnX3 molecules in vapor phase [31, 32], and these

oscillator strengths can be evaluated only by the term of

k = 2 in Eq. (7). Comparison of the s2(dc) term for LnX3,

s2ðdcÞ ¼ 112pmec

15�h
ved 4f r2

 4f� �2


X3

m¼0

ð2� dm0 Þ
X
L

aðLÞR�4
L C3

�mðLÞ



2

: ð8Þ

and Eq. (4) implies that the effect of the crystal field due to

the oscillating induced dipole moments on the ligands is

represented in Eq. (8) as the sum of the squared term of

a(L) times RL
-4. Note, however, that this original DC model

neglects shielding effect due to the 5s and 5p closed sub-

shells of Ln ion and the mixing of LMCT configurations

into 4fN states. Later, the shielding effect was studied and

genuine sk value in Eq. (8) turned out to be typically

overestimated if the shielding factor was neglected [55,

56]. However, the latter LMCT mixings have not been

studied very well.

3 Calculation methods

Ab initio calculations are performed for LnX3 (Ln = Pr,

Nd, Pm, Sm, Eu, Tb, Dy, Ho, Er, Tm; X = Cl, Br, I) by the
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multi-reference spin–orbit configuration interaction

(MRSOCI) method using the COLUMBUS program

package [57, 58]. We use the model core potentials (MCPs)

by Sakai et al. The valence shells of MCP [59, 60] for Ln

are 4f5s5p, and those of MCP-DZPs [61, 62] are 3s3p for

Cl, 3d4s4p for Br, and 4d5s5p for I. We use (10s,7p,7d,6f)/

[5s,3p,4d,4f] basis sets for Ln [59, 60], (5s,5p,4d)/

[3s,3p,2d] basis set for Cl, and (9s,8p,8d)/[4s,4p,3d] basis

sets for Br and I [61, 62]. The geometries of LnX3 were D3h

with the experimental bond lengths [63]. The semi-

empirical one-body spin–orbit (SO) Hamiltonian is used

[64]. The value of effective nuclear charge Zeff(A) of each

atom A is determined to reproduce the experimental SO

splittings among the lower 4fN states of Ln3? and those

between 2P3/2 and 2P1/2 of neutral halogens. The one-

electron orbitals used for the MRSOCI calculations were

obtained by the state-averaged open-shell SCF method in

which the energy expression to be optimized is the

ensemble average energy derived from all the 4fN config-

urations with an equal weight as described in Ref. [65].

With this approach, symmetry-adapted one-electron orbi-

tals for LnX3 molecule in D3h structure are readily

obtained.

For the MRSOCI calculations, we generated all the

singly excited configuration state functions (CSFs)

obtained from all the possible 4fN reference configurations

of the complete-active-space (CAS) type. This means all

the singly excited configurations from 4fN5s25p6 of Ln3?

and also from valence (ns2np6)3 of (X-)3 to all the virtual

orbitals are included. For the diagonalization in the

MRSOCI calculation step, we use two schemes, one-step

and two-step diagonalization schemes, which were called

‘‘standard SOCI’’ and ‘‘contracted SOCI’’ methods [66] in

our previous study [5]. The one-step diagonalization

scheme, where the sum of spin-free and spin–orbit

Hamiltonian is diagonalized in the basis of all the CSFs

with all possible spin multiplicities, is used for PrX3,

EuX3, TbX3, and TmX3. For the other LnX3, we apply

the two-step scheme, where spin–orbit Hamiltonian is

diagonalized in the basis of the limited numbers of spin-

free electronic states obtained by the diagonalization of

spin-free Hamiltonian. We have confirmed [5] that the

excitation energies of hypersensitive transitions obtained

by these calculation schemes were in good agreement

with the experimental data and were almost independent

of X-.

To evaluate the two JO intensity parameters s2(ab) and

s2(dc), we apply different calculation schemes. For s2(ab),

we take the major k = 2 term of Eq. (1) and the smaller

terms of k = 4 and 6 are neglected by the reason explained

before. The ab initio intensity parameters s2(ab) are eval-

uated without relying on any crystal field treatments for X-

by substituting to Eq. (1) the values of MRSOCI excitation

energies, oscillator strengths, and the matrix element of

U(2) [45–48]. The DC model intensity parameters s2(dc) are

obtained by substituting to Eq. (8) experimental bond

length [63], squared radial expectation values of 4f orbital

of Ln3? determined by the state-average SCF method, and

the polarizability of X- obtained by the first-order SOCI

method.

In Sect. 4.2, the transition density and the integrand of

TDM are calculated for a pair of eigenstates which carry

the largest TDM as in the previous study [5]. The values

of the planar distribution functions of the transition den-

sities were calculated at 0.1 bohr intervals and then

integrated numerically over the perpendicular (z) direc-

tion. The values of the radial distribution functions of

integrands of TDMs were calculated at 0.1 bohr intervals

for radial part and p/180 radian intervals for angular part,

and then integrated numerically over the angular part. All

the integrations were performed with the Mathematica

program [67].

In Sect. 4.3, to express only valence spaces, we removed

some diffuse basis functions from the above basis sets and

kept only (8s,7p,7d,6f)/[3s,3p,4d,4f] basis sets for Ln,

(4s,4p)/[2s,2p] for Cl, and (8s,7p,7d)/[3s,3p,2d] for Br and

I as in Ref. [5].

4 Results and discussions

4.1 Oscillator strengths and Judd–Ofelt intensity

parameters of LnX3

The calculated oscillator strengths of hypersensitive tran-

sitions of LnX3 (X = Cl and I) are shown in Table 1 along

with those of LnBr3 obtained in Ref. [5]. They are in

reasonable agreement with the experimental ones [13] even

though the values are as small as from 10-6 to 10-4. The

JO parameters s2(dc) and s2(ab) were evaluated from these

results and shown in Fig. 2. Most parameters in s2(dc) are

common to all the LnX3 except for the squared radial

expectation values of 4f orbital of Ln h4f|r2|4fi and the

polarizability of the ligand a(L). The ligand dependence of

s2(dc) is reflected only by the frequency-dependent polar-

izability. However, in the case of LnX3, the frequency-

dependent polarizabilities can be approximated by the

frequency-independent ones, since the formal charge of

LnX3 is Ln3?(X-)3, and the excitation energies of X- with

the rare gas configurations are much higher than those of

the hypersensitive transitions of Ln3?. The values of fre-

quency-independent ones for halogen anions calculated

with the MCP method were a(Cl-) = 27, a(Br-) = 37 [5],

and a(I-) = 59 a.u, in reasonable agreement with the

experimental ones [68], a(Cl-) = 20, a(Br-) = 30, and

a(I-) = 47 a.u. As shown in Fig. 2, the s2(dc) value
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increases monotonically from X = Cl to I, because the

polarizability of halogen increases monotonically. A sim-

ilar ligand dependence is also seen in s2(ab) values, that is,

both s2(dc) and s2(ab) increase as halogen changes from Cl

to Br and to I.

Unlike the ligand dependence, the Ln dependences of

s2(dc) and s2(ab) are different especially between Eu and

Tb for all LnX3 series. The value of s2(ab) decreases within

the early Ln series and also within the late Ln series, but

increases between Eu and Tb, while s2(dc) decreases

monotonically. The origin of Ln dependence of s2(dc) is

explained only from the squared radial expectation values

of 4f orbital of Ln, whose value decreases monotonically

with the atomic number of Ln. As clarified in the previous

study, one of the reasons why s2(ab) values are smaller

than s2(dc) can be explained with the polarization shielding

effect by 5 s and 5p electrons of Ln [5]. However, the

different Ln dependences, especially between Eu and Tb,

cannot be explained only by the shielding effect. As

mentioned in Introduction, sk(ab) is proportional to (M FI

(JO) ? M FI (DC) ? M FI (LMCT) ? _)2 and can be

affected by these individual magnitudes and their relative

phases. Therefore, in the following section, the relation

between the effect of the DC model and other effects, such

as the effect of the JO theory and LMCT, will be studied to

examine the cause of different behavior of s2(dc) and

s2(ab). It should be noted that the easiest way to examine

the relation between these effects is to divide the TDM

based on the atomic orbital (AO) centers. In our previous

studies [4, 5], we investigated the weight of each contri-

bution and clarified that the DC model had dominant

contributions. However, these weights show basis set

dependence, especially for those matrix elements between

Ln and X3, and some ambiguity remains in the division of

the transition populations. Therefore, other theoretical

tools, which depend on the basis sets as little as possible,

are devised and applied in the following sections.

4.2 Spatial distribution of transition density

and integrand of transition dipole moment

4.2.1 Physical view of the electronic excitation

of hypersensitive transition

We next try to describe the hypersensitive transitions and

their intensities visually by using the transition densities

and the integrands of TDMs, because their values are less

Table 1 Oscillator strengths

f 9 106 (dimensionless) of

LnX3

a List of hypersensitive

transitions is taken from Ref.

[13]
b Experimental values are from

Ref. [13]
c These data are the same as

those in Ref. [5]

Ln 4fN Transitionsa f (LnCl3) f (LnBr3) f (LnI3)

Calc. Expl.b Calc.c Expl.b Calc. Expl.b

Pr 4f2 3H4 ? 3F2 27.8 15 36.1 20 74.9 40.0

Nd 4f3 4I9/2 ? 4G5/2 135.0 120 195.4 330 444.0 530.0

Pm 4f4 5I4 ? 5G2 104.7 – 125.3 – 260.0 –

Sm 4f5 6H5/2 ? 6F1/2 10.7 – 15.8 – 15.7 –

Eu 4f6 7F0 ? 7F2 7.7 – 9.2 – 10.6 –
7F0 ? 5D2 0.4 – 0.5 – 0.90 –

Tb 4f8 7F6 ? 7F5 4.8 – 6.0 – 10.0 –

Dy 4f9 6H15/2 ? 6F11/2 34.6 32 43.9 – 86.3 –

Ho 4f10 5I8 ? 5G6 138.7 178 174.6 – 358.5 500.0

Er 4f11 4I15/2 ? 2H11/2 18.7 34 28.3 58 67.9 95.5
4I15/2 ? 4G11/2 78.2 85 99.3 99 237.9 –

Tm 4f12 3H6 ? 3H4 8.2 – 9.6 12 14.7 10.7
3H6 ? 3F4 13.5 12 15.6 15.3 32.6 25.3

Fig. 2 JO intensity parameters s2(dc) and s2(ab) of LnX3 (X = Cl,

Br, I) as functions of the number of 4f electrons
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sensitive to the basis sets and helpful for understanding the

physical view of hypersensitive transitions and the origin

of their intensities. Firstly, we describe the physical view of

the electronic excitation of the hypersensitive transition by

using the one-electron transition density function qIFðrÞ
between the initial state WI and the final state WF of an N-

electron system which is defined as follows,

qIFðr1Þ ¼ N

Z
� � �
Z

WIðfrkrkgÞW�FðfrkrkgÞ dr2 � � � drNdr1 � � � drN :

ð9Þ
Here, frkrkg stand for the electron spatial and spin

coordinates collectively; thus, the above transition density

function is given as a function of the non-integrated spatial

variable r1. The initial and final electronic wave functions

WI and WF are calculated with the MRSOCI method.

Though the wave functions contain various spin multi-

plicities, the transition density function qIFðrÞ is indepen-

dent of spin coordinates. Note that our spin–orbit CI

implementation uses the so-called real spherical form of

spin functions [58]; therefore, in the actual computation,

we can avoid handling complex CI coefficients, and all the

quantities appearing in Eqs. (9–13) above and below are of

real values. To project the transition density function onto

the LnX3 molecular plane, Eq. (9) is integrated in a

direction perpendicular to the LnX3 molecular plane and a

two-dimensional transition density function D(x, y) is

obtained as follows,

Dðx; yÞ ¼
Z

qIFðx; y; zÞdz: ð10Þ

As an example, the planar distribution functions of the

transition densities D(x, y) of PrBr3 are shown in Fig. 3.

Because the irreducible representation of the transition that

carries the largest TDM is always degenerate E’, both com-

ponents denoted asD(x)(x, y) andD(y)(x, y) for the two kinds of

polarizations, called Type (x) and Type (y), respectively, of

D3h are shown, where their directions of the TDMs are x and y,

respectively. Both of the transition densities have large values

only around the position of Pr, which is located on the origin,

because the initial and final state wave functions in most f–f

transitions have reference (4fN) weights typically higher than

0.95. The shapes of D(x)(x, y) and D(y)(x, y) suggest that they

consists of transition quadrupole moments with components

of x2–y2 and xy, respectively.

To observe the distribution of D(x, y) around the halogen

atoms more closely, those in the three Br regions (1), (2),

and (3) are extended in Fig. 4. Here, the transition density in

regions (2) and (3) contains the components of the TDMs in

the direction to the origin, but in the case of Type (x), the

sum of these two y components cancels each other, while

that of the remaining x components remains and is shown as

arrows in (2) and (3) in this Fig. 4a. Similar cancellation

occurs in Type (y) component as well as shown in Fig. 4b.

Therefore, the transition moments on Br generate the crystal

fields in the directions of x and y for Type (x) and Type

(y) transitions, respectively. Recalling the coupling scheme

in the DC model mentioned in Sect. 2.2, the structures of the

transition density around the Pr and Br atoms in Fig. 4 are

quite similar to the structures shown in Fig. 1 for the DC

scheme caused by the periodically oscillating induced

dipole moments on the ligands. This similarity of structures

of the transition densities in Figs. 4 and 1 is not a coinci-

dence, but shows just two expressions for the same physical

phenomenon using the time-independent and time-depen-

dent languages, respectively.

4.2.2 Physical view of the intensity of hypersensitive

transition

Next, to observe the origin of the hypersensitive transition

intensities, we focus on the integrands of the TDMs. Once

these transition density functions are available, the x

component TDM, for example, can be obtained by the

following integrations,

MFI
x ¼

ZZZ
xqIFðrÞdr

¼
ZZ

xDðxÞðx; yÞdxdy: ð11Þ

The x times two-dimensional distribution function

xD(x)(x, y) has large values around the localized region of Ln

as shown in Fig. 5. However, from the shape of xD(x)(x, y),

the contribution from this region to the TDM becomes can-

celed out after the angular integration, and the contributions

only from the regions (1), (2), and (3) remain and become

relatively large.

Fig. 3 Planar distribution functions of transition densities D(x)(x,

y) and D(y)(x, y) of PrBr3. Those of hypersensitive transitions (E0)
whose x and y components of TDMs have large values are called as

Type (x) and shown in a, and Type (y) in b, respectively. Red and blue

areas represent positive and negative values, respectively. The x-

marks represent the positions of Br atoms
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From the above reason, we focus on the radial distri-

bution functions of the integrand of TDM, which can be

obtained by multiplying transition density and the dipole

operator x or y and integrating it over the angular part as

follows,

MFI
x ¼

ZZZ
r sin h cos/ð ÞqIFðr; h;/Þr2 sin hdrdhd/

¼
Z1
0

r2PðrÞ dr: ð12Þ

It should be noted that the shape of the radial distribu-

tion r2P(r) of Type (x) transition is exactly the same as that

of Type (y) transition. The radial distribution functions

r2P(r) of PrX3 (X = Cl, Br, I) are shown in Fig. 6. The

nuclei are located at the origin for Pr, r = 4.8 bohr for Cl,

r = 5.1 bohr for Br, and r = 5.5 bohr for I, respectively.

Here, the curves of r2P(r) are not smooth around the

position of the three halogen nuclei because the wave

functions vary sharply near the nuclei. Comparing these

functions suggests the general feature is independent of the

halogens, that is, the values of r2P(r) are negative in the

region of 0.8\ r\ 3.5 bohr and become positive and

larger around in the regions of 6\ r\ 8 bohr.

To examine these radial distribution functions more

closely, their integrand of TDM was decomposed into three

kinds of components based on the AO centers, which are

denoted as L for Pr and X for halogen, as follows,

r2PðrÞ ¼
XAO
s;t

r2Ps;tðrÞ

¼ r2PLLðrÞ þ r2PLXðrÞ þ r2PXXðrÞ : ð13Þ
and shown in Fig. 7. The area between the r2P(r) curve and

the horizontal axis expresses the value of TDM because it

can be obtained by the integration of r2P(r) over r as

Eq. (12) stands for, the region where r2P(r) has a positive

value has a positive contribution to the TDM, and vice

versa. This interpretation also applies to each of the

decomposed ones r2Ps,t(r). Therefore, the areas of r2PLL(r),

Fig. 4 Extended views of a D(x)(x, y) for Type (x) transition and

b D(y)(x, y) for Type (y) transition of PrBr3. The x-marks represent the

positions of Br atoms. The directions of arrows represent those of

transition moments on Br atoms. Because the values in the regions

(1–3) are too small, the scaled up views are shown in the surrounding

three squares. The values of distribution functions are given in a.u

Fig. 5 Planar distributions of xD(x)(x, y) of PrBr3 for Type (x) tran-

sition. Because the values in the regions (1–3) are too small, the

scaled up views are shown in the surrounding three squares. The

values of distribution functions are given in a.u

Fig. 6 Plots of the radial functions r2P(r) versus r (in a.u.). Green,

pink, and blue lines are those of PrCl3, PrBr3, and PrI3, respectively.

Three arrows represent the positions of halogen atoms

Theor Chem Acc (2014) 133:1517

123Reprinted from the journal 227



r2PLX(r), and r2PXX(r) represent the values of the sum of

the matrix elements of the transition dipole moment within

Ln, those between Ln and X, and those within X, respec-

tively. We have previously decomposed TDM based on the

AO centers and shown the results in Table 2 and Fig. 2 of

Ref. [5]. From that work, it is clear that the three areas

above mainly represent the sum of matrix elements of the

transition dipole moment between 4fN and intra-Ln exci-

tation CSFs, those between 4fN and ligand-to-metal charge

transfer (LMCT) excitation CSFs, and those between 4fN

and intra-ligand excitation CSFs, respectively. In other

words, the areas of r2PLL(r) and r2PXX(r) represent the

effects of the JO theory and the DC model, respectively.

From the above decomposition analysis of the TDM, it

is clear that the intra-ligand excitations have the largest

contribution to the TDM because the large values of r2-

P(r) in the region of 6\ r\ 8 bohr come from those of

r2PXX(r). Additionally, its contribution has the opposite

sign relative to the intra-Ln excitations because the areas of

r2PLL(r) and r2PXX(r) have opposite signs. It suggests that

the effect considered in the JO theory has an opposite sign

contribution against that considered in the DC model. This

sign relation has been pointed out in other studies based on

experiments [40] and semi-empirical calculations using the

crystal field theory [69, 70]. This relation is also consistent

with our previous analysis shown in Table 2 in Ref. [5].

The values of r2PLX(r) are very small in the region

between Ln and Br. They are positive near the ligand

positions (4\ r\ 6 bohr) and become negative in the

region outside the ligands (r[ 6 bohr). In the current CI

wave function, the basis functions on Ln have nonzero

population tail in the position of the ligands in a minute

measure. Therefore, the area of r2PLX(r) in the region of

r[ 4 bohr can be regarded as a part of the effect consid-

ered in the DC model. This result is consistent with the

fundamental assumption in the JO theory and the DC

model that the effect of orbital overlap between metal and

ligand, caused by back donation from X3 to Ln, namely

LMCT, was negligible. Note that at this point, we cannot

say unambiguously whether the effect of LMCT is

responsible for the difference in the Ln dependence

between s2(dc) and s2(ab), because what Fig. 7 shows is

just the contributions of nonzero matrix elements to the

total value of the TDM. The effect of LMCT configurations

will be discussed in Sect. 4.3.

Next, to examine the origin of the Ln dependence in the

TDM of the hypersensitive transition, r2P(r) for other

LnBr3 are shown in Fig. 8. Amazingly, the shapes of r2-

P(r) are very similar among all the LnBr3, even though the

scale size of y axis of each figure is very much different

reflecting the different magnitude of their oscillator

strengths. The similarity of the shape of r2P(r) suggests

that the contribution and relative phase of each effect, such

as the JO theory and the DC model, are quite similar

among all the LnX3 series. To sum up, all the hypersen-

sitive transition intensities for LnX3 series have the same

origins which are mainly explained by the DC model.

Additionally, both the ratio of the magnitudes and the

relative phase between the DC model and the lesser

important JO theory mechanism are also quite similar

among all the LnX3, even though the characters of their

initial and final states, such as the numbers of f electrons,

spin, and orbital angular momenta, are totally different.

4.3 Effect of ligand-to-metal charge transfer

In Sect. 4.2, the different behavior of s2(dc) and s2(ab)

especially between Eu and Tb could not be explained from

the shape of integrands of TDMs. One of the remaining

possibilities for the reason for the difference between these

two s2
0s is the LMCT configuration mixing whose TDM

matrix elements have almost zero values. Although the

contributions of LMCT configuration mixing, orbital

overlap, and covalency in the metal–ligand bonding to

hypersensitive transition intensities have been studied [20–

22, 71–76], their importance seems to be still open to

discussion.

Therefore, we discuss the effect of LMCT in a different

perspective. There are some difficulties for extracting LMCT

effects from the CI wave functions or the TDMs. Firstly, the

evaluation of the weights of LMCT mixing in CI wave

functions is difficult because most virtual MOs contained in

CSFs are delocalized between Ln and X. Secondly, the

amount of mixing of LMCT CSFs is too small to analyze

because the weight of the reference 4fN CSFs exceeds 95

percent. Therefore, to remove the dominant 4f components,

we focus on the Nocc 9 (Nact ? Nvir) rectangular block of

transition density matrix elements, where Nocc, Nact, and Nvir

are the numbers of the doubly occupied MOs, active MOs

(4f), and virtual MOs, respectively. This rectangular block

Fig. 7 Plots of the radial functions r2P(r) and its components versus

r (in bohr) for PrBr3. Red, blue, green, and black lines are those of

r2PLL(r), r2PLX(r), r2PXX(r) and their sum of r2P(r), respectively. The

arrow represents the position of Br-
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contains the relevant quantity associated with products of the

CI coefficients for the pairs of CSFs which are the reference

CSFs in WI and the one-electron excitation CSFs from the

occupied MOs to the (active ? virtual) MOs in WF. To

extract the amount of charge transfer effect from the rect-

angular block transition density matrix, ‘‘corresponding

orbital’’ [77] or ‘‘natural transition orbital’’ [78, 79] trans-

formation was carried out based on a singular value

decomposition concept. By using the corresponding orbitals,

we define a quantity, called c, the charge population change

on Ln averaged over individual hole-particle corresponding

orbital pairs. See Appendix for details. This c is expected to

have a larger value for a transition whose final state has a

larger LMCT weight.

The calculated values of c along with s2(ab) for LnX3

are shown in Table 2. We can confirm our idea that c has a

larger value for a transition whose final state has a larger

LMCT weight from its ligand dependence and Ln depen-

dence. Focusing on the ligand dependence of c for each Ln,

the c value increases with the atomic number of halogen

atom X. Generally, as halogen atom X becomes heavier,

the LMCT excited states appear in the lower energy region,

because their energy levels decrease as the electronega-

tivity of the ligand decreases [11, 80–83]. Therefore, the

amount of the LMCT character in the final states increases

with the atomic number of X, since the energy gap between

the LMCT states and the still lower-lying final state of the

hypersensitive transition becomes smaller. On the other

hand, focusing on the Ln dependence of c, it increases with

the atomic number of Ln except between Eu and Tb. It can

be understood by the energy levels of the LMCT excited

states. It is generally said that the energy levels of the

LMCT excited states in Ln systems become lowered from

Pr to Eu and once increased at Gd and then become low-

ered again from Tb to Tm [11, 80–83]. The reason of the

lowest energy levels of LMCT states of Eu is that the 4f

electron configuration of Eu3? becomes the 4f7 half-filled

configuration by accepting one electron from ligands [11,

80–83]. Therefore, the c value has the largest value for Eu

due to the smallest energy gap between the final state and

LMCT states. As discussed before, c has a larger value for

a transition whose final state has a larger LMCT character.

Next, we discuss the relation between TDMs and LMCT

weights in the final states of hypersensitive transitions by

using their indexes s2(ab) and c. As shown in Table 2,

s2(ab) decreases as c increases. To establish the origin of

this relationship, we remind the character of LMCT in the

LnX3 molecule. Among the LMCT CSFs, the major CSFs,

whose CI coefficients are the largest, are those for LMCT

from occupied orbitals of the X3 portion to 4f empty

orbitals of Ln. The TDMs between these LMCT CSFs and

the 4fN reference CSFs can be expressed as one-electron

matrix elements between the 4f orbitals and the occupied

orbitals of the X3 portion, and their values critically depend

on their orbital size. The radial expectation values of 4f

orbital of Pr3?, 3p orbital of Cl-, 4p orbital of Br-, and 5p

orbital of I- were calculated to be 1.0, 1.7, 1.9, and 2.3

bohr, respectively, in reasonable agreement with the rela-

tivistic ones by Desclaux [84], 1.1, 1.8, 2.1, and 2.5 bohr.

Considering the distances between Ln and the halogens

that are about 4.8–5.5 bohr, these 4f on Pr and the valence

p orbitals on X have little overlap. Therefore, TDMs

between these orbitals are negligibly small compared to

those for intra-ligand excitations within X3. By taking these

factors into account, the reason why s2(ab) of EuX3 has a

smaller value than that of TbX3 can be explained by the

fact that the relative importance of the intra-ligand exci-

tation CSFs is reduced by the increase of the ‘‘dark’’

LMCT CSFs, especially those from the occupied orbitals of

the ligands to the 4f orbitals of Ln.

Fig. 8 Plots of the radial

functions r2P(r) versus r (in

bohr) for LnBr3. (Ln = Nd, Pm,

Sm, Eu, Tb, Dy, Ho, Er, Tm).

The arrows represent the

positions of Br-
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As seen above, the values of TDMs and s2(ab) cannot be

explained by using only the DC model; the mixing of

LMCT CSFs to 4fN states should be considered simulta-

neously, even though the latter does not contribute to

intensity. Our suggestion is consistent with previous

assumptions in the JO theory and the DC model that the

orbital overlaps are neglected. However, several previous

studies explained that the intensities of hypersensitive

transitions increased with the magnitude of covalency [20–

22, 71–76]. In fact, their reasoning seems to be consistent

with the experimental facts, as long as the halogen anions

X- are concerned because both the covalency and the

polarizability increase as X becomes heavier. From the

above discussion, it is now clear that the genuine covalent

interaction between the orbitals of Ln and X is negligibly

small and only the polarizability increases the magnitude of

s2(dc) directory. Therefore, the previous explanation [20–

22, 71–76] is probably not ‘‘the right answers for the right

reasons,’’ but just connected unrelated characteristics of the

hypersensitivity.

To summarize the analysis given so far, the relative

phase between each contribution to the TDM is expressed

as

MFIðabÞ  ¼ MFIðDCÞ � MFIðJOÞ þ � � � ð14Þ
and the CSFs that represent LMCT from X3 to empty 4f

orbitals of Ln do not contribute to the intensity, but play a

role as ‘‘dark’’ states. This relation is applicable for most f–

f transitions of LnX3, which obey |DJ| B 2 and |DL| B 2,

because the s2 value is unique for the compound as

explained in Sect. 2.1. However, some transitions have

different picture due to the larger contributions from s4 and

s6. It can be confirmed by our previous analysis in Fig. 5 of

Ref. [4]. The ratios of contributions from the JO theory, the

DC model, and the overlap region between Ln3? and X-

are quite similar for most of the f–f transitions from the

ground state to lower-laying excited states. On the other

hands, the f–f transitions to higher excited states of PrBr3,

such as 3PJ (J = 0, 1, 2), had large contributions from the

JO theory which means 4f–5d mixing. The transitions to

higher excited states of TmBr3, such as 3PJ (J = 1, 2), had

large contributions from the overlap region between Tm3?

and Br-. The different behaviors of these two kinds of

higher excited states can be understood by considering the

larger configuration mixing of their 4fN-15d and LMCT

excited states, respectively. Here, it is important to note the

relation of the energy levels between the LMCT and

4fN-15d states. As explained before, the excitation energies

of the LMCT states become decreased from Pr to Eu and

once increased between Eu and Tb and then lowered again

from Tb to Tm [11, 80–83]. On the other hand, those of the

4fN-15d states are known to display an opposite behavior

and become increased from Pr to Eu and once lowered

from Eu to Tb and increased again from Tb to Tm [11, 80–

85]. Therefore, the excitation levels of the 4fN-15d states

are lower in PrBr3, and those of the LMCT states are lower

in TmBr3, which results in the large contribution from each

effect to the higher 4fN excited states. Going back to the

hypersensitive transitions, the difference in the LMCT

excitation energies across Ln has a more strong impact to

TDMs than that of 4fN-15d states, considering the behavior

of s2(ab). This phenomenon can be understood because the

LMCT excitation energies are lower than those of 4fN-15d

states, especially around EuX3. Taken altogether, the

behaviors of s2(ab) depend on the individual Ln systems

because the difference in the excitation energies between

the 4fN-15d and LMCT states heavily depends on the

systems. Therefore, it is clear that the mixing of LMCT and

intra-Ln excitation configurations also affects the intensi-

ties, and they must be considered simultaneously.

Table 2 Relation between the

weights of LMCT

configurations c in the final

states of hypersensitive

transitions, and s2(ab) 9 108

(cm) of LnBr3

Ln 4fN Transitions c s2(ab) c s2(ab) c s2(ab)

LnCl3 LnBr3 LnI3

Pr 4f2 3H4 ? 3F2 0.20 9.0 0.22 11.7 0.25 24.1

Nd 4f3 4I9/2 ? 4G5/2 0.25 6.9 0.28 10.0 0.32 22.7

Pm 4f4 5I4 ? 5G2 0.25 5.7 0.29 6.8 0.32 18.8

Sm 4f5 6H5/2 ? 6F1/2 0.30 4.5 0.33 6.7 0.35 13.2

Eu 4f6 7F0 ? 7F2 0.42 4.9 0.43 5.9 0.46 6.8
7F0 ? 5D2 0.64 1.8 0.69 2.6 0.72 4.7

Tb 4f8 7F6 ? 7F5 0.16 6.2 0.17 7.7 0.20 12.8

Dy 4f9 6H15/2 ? 6F11/2 0.24 6.8 0.25 8.6 0.28 16.8

Ho 4f10 5I8 ? 5G6 0.35 5.9 0.37 7.4 0.43 15.2

Er 4f11 4I15/2 ? 2H11/2 0.32 1.9 0.35 2.9 0.40 6.8
4I15/2 ? 4G11/2 0.35 4.4 0.38 5.6 0.43 13.4

Tm 4f12 3H6 ? 3H4 0.18 7.8 0.21 9.1 0.22 13.8
3H6 ? 3F4 0.19 2.5 0.29 2.9 0.24 6.1
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Additionally, we would like to point out the limitation of

the crystal field treatment from another aspect. Any f–f

transitions whose U(2) matrix elements are zero should not

have contributions form the DC model because their

intensities do not contain the contributions of s2. However,

as shown in Fig. 5 of Ref. [4], 3H4 ? 3P0,1 in PrBr3 and
3H6 ? 3F2,3, 1D2, 3P0–2 in TmBr3 have nonzero contribu-

tions from the DC model even though their U(2) matrix

elements are zero [45]. It indicates that the crystal field

treatment is not enough to represent all the f–f transition

intensities quantitatively, and the electrons in both Ln and

at least the nearby ligands have to be considered explicitly

through ab initio calculations.

5 Conclusion

In this work, we have studied the oscillator strengths of the

f–f hypersensitive transitions of LnX3 (Ln = Pr, Nd, Pm,

Sm, Eu, Tb, Dy, Ho, Er, Tm; X = Cl, Br, I) based on the

multi-reference spin–orbit configuration interaction

(MRSOCI) method. To compare the dynamic-coupling

(DC) model and our ab initio results, we calculated two

kinds of the Judd–Ofelt (JO) intensity parameters s2(dc),

which is derived from the DC model, and s2(ab), which

reflects all the effects considered in our ab initio calcula-

tions. Although these two parameters are in the same order

of magnitude and their halogen dependence is similar, their

Ln dependence is different, especially between Eu and Tb.

The reason of the similarity between s2(dc) and s2(ab) in

terms of the ligand dependence is that the dominant

mechanism is the dynamical polarization effects within the

ligands, and the reason of the different Ln dependence

between Eu and Tb is explained by the different amount of

the charge transfer from the occupied ligand orbitals to the

vacant 4f orbitals of Ln. Additionally, the JO mechanism

has a lesser and opposite sign effect relative to the

dynamical coupling mechanism, and this relation is com-

mon to all the LnX3 series.

As is clear from the formula of the JO intensity

parameter in the DC model (Eq. 7), the effect of the DC

model, in other words, the Coulomb correlation between

transition quadrupole moment of Ln and induced dipole

moment of ligands must be weakened in a system in which

the distances between Ln and the ligands are long. It can be

understood that this effect is one of the examples of near-

field effects, which have recently gained much attention in

the field of surface chemistry.

These findings will be applied for the future theoretical

calculations of realistic large systems containing Ln atoms,

for example, with the hybrid QM/MM approaches [86–88].

For such calculations, atoms or fragments in the nearby

ligands around Ln must be treated as the QM region and

cannot be treated as point charges because the intensities of

the f–f transitions are determined by the crystal field not

from point charges but from induced dipole moments on

the ligands. In addition, we should keep in mind that the

artificial extraction of the QM region sometimes causes

large errors in the amount of charge transfer which might

play a role as the dark state to the f–f transition intensities.
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Appendix: Definition of weight of LMCT

configurations c

In this appendix, we describe the detailed definition of c.

The Nocc 9 (Nact ? Nvir) rectangular block transition

density matrix T is translated to ‘‘diagonalized’’ rectan-

gular matrix by using the ‘‘corresponding orbital’’ [77] or

‘‘natural transition orbital’’ [78, 79] method as follows,

UþTV½ 
ij¼ kidij ð15Þ
where U ¼ ðu1; u2; . . .; uNocc

Þ and V ¼
ðv1; v2; . . .; vNactþNvir

Þ are the unitary matrices determined

by solving the following eigenvalue equations,

ðTTþÞui ¼ k2
i ui ði ¼ 1; . . .;NoccÞ

ðTþTÞvi ¼ k2
i vi ði ¼ 1; . . .;Nact þ NvirÞ

ð16Þ

Here, the new set of the occupied and (active ? virtual)

orbitals is obtained by using the unitary transformations,

and a pair of the orbitals whose matrix elements with

ðUþTVÞii ¼ ki are called the i-th hole-particle pair orbitals.

The importance of a particular hole-particle transition to

the overall rectangular matrix T is reflected in the magni-

tude of the associated eigenvalue ki
2.

Next, we define a quantity of charge transfer from

occupied orbitals of X3 in WI to active and virtual orbitals

of Ln in WF. This quantity, called c, is evaluated by

averaging the change of the Mulliken charge population on

Ln DpLni with the associated weight factor of ki
2 as follows,

c ¼
PNocc

i k2
i Dp

Ln
iPNocc

i k2
i

ð17Þ

This parameter c of LnX3 takes a positive value because

the amount of mixing of LMCT CSFs is much larger than

that of MLCT CSFs. This weight of ki
2 is a ‘‘diagonalized’’

transition density matrix element and has the information

of the products of the CI coefficients, i.e., those for the
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reference CSFs in WI times and those for one electron

excitation CSFs in WF. With these weight factors, param-

eter c represents the component of LMCT mixing in the

final state of the target transition.
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Abstract The charge, spin distribution and dipole

moments of the open shell molecules PF and PCl have been

analyzed using two variants of the Hirshfeld partitioning of

the electronic density. In the HI or iterative Hirshfeld

approach, one keeps the number of electrons on a given

atom in the molecule and proto molecule equal and does

not constrain the spin distribution in any way. In the spin-

adapted approach, one constrains both the charges and

spins on the in situ and proatoms to be equal. We find that

while allowing for both spin and charge equalization

results in a spin distribution that is different from that of the

conventional HI method, the behavior of the atomic spin

populations as a function of internuclear separation is

similar. Both methods predict that as the bond is formed,

the halogen gains a and looses b electrons with the con-

verse for P. These electron shifts are further broken down

into their r and p components and we find that while the a
electrons gained by the halogen are essentially all in the r
system, they come from both the r and p system of P. The

b electrons gained by P occupy both r and p densities, but

come essentially from the p system on the halogen. The

dipole moment curves are partitioned into their a and b
components and showing that the dipole due to the r spin

density has the polarity P?X- while that due to the b spin

density has the polarity P-X?, while the net dipole polarity

at equilibrium is P?X-, consistent with the spin-dependent

charge shifts described above.

Keywords Hirshfeld � Electron density � Phosphorous

halides � Dipole moments

1 Introduction

Recently we reported [1] on a study of the spin, charge

distribution and dipole moments of the open shell mole-

cules NF, NCl and NBr in their ground electronic
3R�ðms ¼ þ1Þ state using the iterative Hirshfeld (HI)

method [2, 3] to partition the spin density between the two

centers and examine the change in the number of a and b
electrons on the two centers as the chemical bond forms.

Subsequent to this study, Geldof et al. [4] have suggested

that while the HI method is appropriate for closed shell

systems, it leaves some ambiguity in the treatment of open

shell systems. In particular, they note that while the HI

method keeps the number of electrons on a given atom in

the molecule and promolecule equal, it provides no con-

straints on the spin of the atoms. To address this issue, they

proposed an extension to the HI method in which the

charges and spins on the in situ and proatoms are equal and

implemented this using the fractional occupation Hirsh-

feld-I (FOHI). Following up on this theme, we report

results on the open shell molecules PF and PCl in their

ground electronic state 3R�ðms ¼ þ1Þ, which allow for

both charge and spin equalization between the atoms in the

molecule and promolecule using a slightly different

implementation which we call the open shell HI or HIOS

approach and compare the results with the original HI

approach. We find that while allowing for both spin and

charge equalization (HIOS) results in a spin distribution

that is different from that of the conventional HI method,

the behavior of the atomic spin populations as a function of

internuclear separation is similar. We find that as the
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separated atoms come together, both the HI and HIOS

partitioning predict that the halogen gains a and looses b
electrons, and since the number of a and b electrons is

conserved, P gains b and looses a electrons. As a function

of internuclear separation, the changes are monotonic for

PF and essentially so for PCl. These electron shifts are

further broken down into their r and p components, and we

find that while the a electrons gained by the halogen are

essentially all in the r system, they come from both the r
and p system of P. The b electrons gained by P occupy

both r and p densities but come essentially from the p
system on the halogen. We find that the spin density cal-

culated with the HI method compares more favorably with

experiment than does those calculated with the HIOS

partitioning scheme.

Partitioning the charge and spin density as described

above allows one to interpret the molecular dipole moment

in terms of the charge and spin shifts on the constituent

atoms. The dipole moment curves are calculated for

internuclear separations ranging from the separated atoms

to equilibrium and are partitioned into their a and b com-

ponents. We find that the dipole due to the a spin density

has the polarity P?X-, while that due to the b spin density

has the polarity P-X?, while the net dipole polarity at

equilibrium is P?X-, consistent with the spin-dependent

charge shifts described above. Partitioning these spin-

dependent dipole moments into their charge and induced

atomic dipole components confirms that they are largely,

but not exclusively, determined by the charge distribution.

2 Previous work

Douglas and Frackowiak [5] first observed the electronic

spectra of PF and deduced the spectroscopic constants

(Re = 1.5897 Å, xe = 847 cm-1) of the ground X3R-

state. The bond length of PCl (X3R-) has been determined

to be 2.0146 Å by Minowa et al. [6] from the microwave

spectrum, while the vibrational frequency (551.4 cm-1)

was determined by Kanamori et al. [7] from its vibration

rotation spectrum. The spin density on P and the halogens

has been determined by Minowa et al. (PCl) [8] and by

Saito et al. (PF) [6] from the hyperfine coupling constants

obtained from the microwave spectra of the radicals.

While there are no experimental values for the dipole

moment of either radicals, there are several theoretical

predictions. Early SCF calculations by O’Hare and Wahl

[9] and O’hare [10] predicted 0.24 ea0 for PF with the

polarity P?F-. Subsequently, Nguyen [11] reported dipole

moments for both PF and PCl of 0.583 ea0 and 0.543 ea0,

respectively, using the UHF-MP2 method with a 6-31G**

basis. This was followed by calculations by Peterson and

Woods [12] using the CISD, CEPA-1 and CASSCF

methods and the contracted Gaussian basis sets

11s8p3d1f on P and 9s6p2d1f on F. They report dipole

moment functions and dipole moments at the experimental

equilibrium separation of 0.3479 ea0, 0.3350 ea0 and

0.2903 ea0, respectively. Latifzadeh and Balasubramanian

[13] used the SOCI approach with the contracted basis sets

7s6p3d on P and 4s3p2d on F and reported a dipole

moment of 0.409 ea0 at their calculated internuclear sep-

aration of 1.647 Å. Papakondylis et al. [14] studied several

states of PCl using a variety of ab initio methods and the

cc-pVTZ basis of Dunning et al. [15, 16] and reported

dipole moments for the SCF (0.416 ea0) and CISD

(0.3134ea0) calculations. Bravo and Machado [17] con-

structed dipole moment functions for PCl(X3R-) using a

MRSDCI function and reported dipole moments of

0.326ea0 and 0.331ea0 at R = 3.9a0 with the cc-pVTZ and

cc-pVQZ basis sets, respectively. de Brouckere [18] used a

MRCI approach and the aug-cc-pVQZ basis and reported

the dipole moment function between R = 2.4372 a0 and

Table 1 Calculated dipole moments of PF and PCl in the 3R� state

Molecules Method Basis R (a0) l (ea0)

P?X-

PF SCFa STO 3.0039 0.460

SCFb STO 2.9858 0.24

MP2c 6-31G** 3.0614 0.583

CASSCFd 11s8p3d1f/P

9s6p2d1f/F

3.0209 0.2903

CEPAd 11s8p3d1f/P

9s6p2d1f/F

3.0115 0.3350

SOCIe 7s6p3d/P

4s3p2d/F

3.109 0.409

MRCIf aug-cc-pvqz 3.0041 0.3163

SCFg aug-cc-pv5z (spdf) 2.9603 0.3263

CASSCFg aug-cc-pv5z (spdf) 3.0064 0.2948

MRCIg aug-cc-pv5z (spdf) 3.0283 0.3284

RCCSD(t)g aug-cc-pv5z (spdf) 3.0173 0.3135

PCl SCFh cc-pvtz 3.866 0.4162

CISDh cc-pvtz 3.847 0.3134

MRCIi cc-pvtz 3.9 0.326

MRCIi cc-pvqz 3.9 0.331

MRCIj aug-cc-pvqz

no g plus extra diffuse

3.830 0.338

MP2c 6-31G** 3.849 0.543

SCFg aug-cc-pv5z (spdf) 3.845 0.3649

CASSCFg aug-cc-pv5z (spdf) 3.890 0.2715

MRCIg aug-cc-pv5z (spdf) 3.844 0.2361

RCCSD(t)g aug-cc-pv5z (spdf) 3.832 0.2205

a Reference [9], b Reference [10], c Reference [11], d Reference [12],
e Reference [13], f Reference [18], g This work, h Reference [14],
i Reference [17], j Reference [19]
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4.50615 a0 and l = 0.3163 ea0 at the experimental equi-

librium separation. Da Silva-Neto et al. [19] reported

CASSCF/MRCI calculations on several states of PCl using

the aug-cc-pVQZ-g basis and reported a dipole moment

function for the ground state and an equilibrium dipole

moment of 0.338 ea0. These dipole moments are collected

in Table 1 along with our results (vide infra).

3 Computational details

We used the aug-cc-pv(5 ? d)z basis for P [20] and the

aug-cc-pv5z basis set for F and Cl [21], and in all calcu-

lations, we restricted the angular momentum on the basis of

spdf. This was primarily because the locally written codes

that performed the subsequent Hirshfeld analysis are lim-

ited to basis functions with these symmetries. We charac-

terized the molecules using the SCF, CASSCF, the

internally contracted mrci and the RCCSD(t) methods as

implemented in MOLPRO [22], and in all cases, we only

correlated the valence electrons. Table 2 compares our

calculated internuclear separations and vibrational fre-

quencies for each method with experiment, and Fig. 1

shows the potential energy curves for both PF and PCl at

the CASSCF and MRCI levels. In balance, the agreement

with the limited experimental data is satisfactory. We

anticipate that the small discrepancies between the

RCCSD(t) results and experiment are due to the omission

of core–valence correlation. In what follows, we will use

the charge and spin density matrices available from a

CASSCF calculation in MOLPRO to generate the charge

and spin densities used in the Hirshfeld analysis.

4 Preliminaries

The Hirshfeld analysis has been discussed previously [1,

2], so we will outline the process as it applies to the current

study. Hirshfeld [2] suggested that if one wanted to parti-

tion the molecular electron density among the constituent

atoms in a molecule, one does so by allotting density to

each atom in proportion to the density that atom would

have in the promolecule. For PCl, one would define the

density of the insitu P atom as gP ¼ g0
P

gproto

� �
g ¼ WPg, where

g is the calculated electron density in PCl and the pro-

molecule density, gpro ¼ g0
P þ g0

X , is the sum of the sepa-

rated neutral atom densities placed at the appropriate

nuclear positions in the molecule. The in situ number of

electrons on P is NP ¼
R
WPgdV . The arbitrariness of this

choice of promolecule has been noted by several authors

[23] and has been addressed by Bultinck et al. [3] who

described an algorithm for determining a unique promol-

ecule self-consistently. The algorithm is based on the

demonstration by Nalewajski et al. [24] that the Hirshfeld

atoms are the best in the Kulback-Lieber [25] information

theoretical sense if the density of an in situ atom integrates

to the number of electrons on the same atom in the pro-

molecule, which means the proatoms will be charged. See

also the earlier work of Nalewajski et al. [26] as well as

Ayers [27]. The in situ atomic densities obtained from this

algorithm are referred to as the Hirshfeld-I or HI densities.

As an example, consider PCl. At large separations, we

expect Cl to be negative and so we write the number

density for Cl and P in the proatoms as

gpaCl ¼ g0
Cl þ v g�1

Cl � g0
Cl

� �
and gpaP ¼ g0

P þ v gþ1
P � g0

P

� �
ð1Þ

where g0
Cl and g�1

Cl are the number densities for Cl0 and

Cl-1 with the corresponding interpretation for P, and v is a

positive number to be determined. The promolecule density

is then

Table 2 Calculated bond length and harmonic vibration frequency

for PF and PCl in the 3R� state compared with experiment

Methods PF 3R�ð Þ PCl 3R�ð Þ
Re (Å) xe (cm-1) Re (Å) xe (cm-1)

scf 1.5665 904 2.0349 551

casscf 1.5909 844 2.0586 515

mrci 1.6025 845 2.0342 543

rccsd(t) 1.5967 839 2.0279 544

experiment 1.5897a 846.8a 2.0146b 551.4c

a Reference [5], b Reference [6], c Reference [7]
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Fig. 1 Potential energy curves for the 3R� state of PF and PCl

calculated with the CASSCF (black curves) (12,8) and MRCI (red

curves) methods using the av5z basis
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gpm ¼ gpaCl þ gpaP ¼ g0
Cl þ g0

P þ vðg�1
Cl � g0

Cl þ gþ1
P � g0

PÞ:
ð2Þ

Note that the charge on the promolecule is conserved,

while the number of electrons on the Cl and P atoms in the

promolecule are

N
pa
Cl ¼

Z
g0

Cl þ vðg�1
Cl � g0

ClÞ
� �

dV ¼ N0
Cl þ v ð3Þ

and

N
pa
P ¼

Z
g0

P þ vðgþ1
P � g0

PÞ
� �

dV ¼ N0
P � v ð4Þ

and differ from those in the neutral free atoms by ±v. One

forms the weight factor

WClðvÞ ¼ g0
Cl þ vðg�1

Cl � g0
ClÞ

g0
Cl þ g0

P þ vðg�1
Cl � g0

Cl þ gþ1
P � g0

PÞ
ð5Þ

with the corresponding form for WP(v) and initially one

chooses v = 0, the traditional Hirshfeld selection, and

determines the atomic charges in the usual way. One then

updates the weight factor and proatom densities with v
equal to the absolute value of the atomic charges. Using the

updated weights and proatom densities, one determines a

new set of atomic charges and therefore an updated v and

so on. In our implementation, this happens to within 0.0001

electrons in fewer than nine iterations. The number of

electrons on the ith atom is then

NðiÞ ¼
Z

gidV ¼
Z

WiðvÞgdV : ð6Þ

When we partition the spin between the two atom (vide

infra), we define the density of a electrons on atom i as

NaðiÞ ¼
Z

gaidV ¼
Z

WiðvÞgadV ð7Þ

where ga is the computed a spin density, and Wi(v) is the

weight factor defined above. In what follows the electron

distributions determined as described above will be refer-

red to as the HI results.

The HIOS approach is very similar. One simply replaces

the weight factors WClðvÞ and WPðvÞ by the spin-dependent

factors WaClðvaÞ;WaPðvaÞ;WbClðvbÞandWbPðvbÞ and pro-

ceeds as above.

Using PCl as an example, one defines the a and b
densities of the proto atoms as

gpaaCl ¼ g0
aCl þ va g0

aCl � g�1
aCl

� � ð8Þ

gpabCl ¼ g0
bCl þ vb g0

bCl � g�1
bCl

� �
ð9Þ

gpaaP ¼ g0
aP þ va g0

aP � gþ1
aP

� � ð10Þ

gpabP ¼ g0
bP þ vb g0

bP � gþ1
bP

� �
ð11Þ

Then define the a and b densities of the promolecule as

gpma ¼ gpaaCl þ gpaaP and gpmb ¼ gpabCl þ gpabP ð12Þ
The a and b weight factors for Cl are

WaCl ¼ gpaaCl

gpma
and WbCl ¼

gpabCl

gpmb
ð13Þ

with similar definitions for P. The in situ density of the a
spin electrons on Cl is then

gmol
aCl ¼ gmol

a WaCl ð14Þ
One determines va by requiring that the number of a

spin electrons on the insitu Cl equals those in the

promolecule

Nmol
aCl ¼

Z
gmol
a WaCldV ¼ N

pa
aCl ¼

Z
gpa
aCldV

¼ N0
aCl þ va N0

aCl � N�1
aCl

� � ð15Þ
and so

va ¼
Nmol
aCl � N0

aCl

N0
aCl � N�1

aCl

ð16Þ

As with the HI method, one initially chooses va ¼ 0, forms

WaClðva ¼ 0Þ, calculates Nmol
aCl , updates WaClðvaÞ and iter-

ates until Nmol
aCl converges, to 10-4 which usually happens

within 10 or so iterations. This procedure insures that the

number of electron and their spins are equal on the atoms in

the molecule and the promolecule.

These integrals must be evaluated numerically and we

do so using the Euler–Maclaurin [26] method for the radial

integrations and the Gauss–Legendre [27] method for the

angular integration.

5 Charge and spin distribution

The wave functions for PF and PCl were calculated in C2v

symmetry with z as the C2 axis, and since the charge and

spin density matrices are symmetry blocked, we can write

the molecular density as a sum of a1, a2, b1 and b2 sym-

metries. We will define the b1 and b2 symmetries as p and

the a1 and a2 symmetries as r. Allotting the a2 symmetry as

r is arbitrary but has little effect on the r, p composition of

the valence orbitals. Using the spin and charge density

matrices available from the CASSCF calculations, we

constructed the a and b electron densities, and partitioned

these into their r and p components.

g ¼ ga þ gb ¼ gar þ gbr þ gap þ gbp ð17Þ
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Using the HI and HIOS weight factors, we partition the

electron density between the two centers. So, for example,

in the HI method, the number of b electrons of r symmetry

on P is given by NbrðPÞ ¼
R
WPgbrdV , while in the HIOS

method its NbrðPÞ ¼
R
WbPgbrdV :

The 3R� state of PF or PCl separates to P in its ground
4Su state and the halogen in its 2Pu state. At ? internuclear

separation, the 3R�ðms ¼ þ1Þ state of PX obtains when the

ms ¼ þ3=2 and þ 1=2 spin states of P couple with the

ms ¼ �1=2 and þ 1=2 spin states of the halogen, resulting

in the asymptotic CASSCF function

3R�ðR ¼ 1Þ �
¼ zXzPxPyP

ffiffiffi
3
p

2
baaa� 1

2
ffiffiffi
3
p ðabaaþ aabaþ aaabÞ


 � �
ð18Þ

where we only show the singly occupied atomic orbitals.

The resulting a spin (valence orbital) occupancy at ? is

then
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s1
Px

11=12
P y

11=12
P z

11=12
P s1

Xx
1
Xy

1
Xz

0:25
X ð19Þ

with the corresponding b spin occupancy

s1
Px

1=12
P y

1=12
P z

1=12
P s1

Xx
1
Xy

1
Xz

0:75
X ð20Þ

Note that the spin composition of the single electron in

the pz orbital on the halogen is 0.75b and 0.25a, while that

on the P atom is 11=12a and 1=12b. Clearly, at ?, the

halogen is rich in b spins, while P is rich in a spins.

With these asymptotic occupations, we can define the

shift in the number of electrons of a specific spin and

spatial symmetry on a given center via

NarðXÞ ¼ 0:25þ DNarðXÞ ð21Þ
NbrðXÞ ¼ 0:75þ DNbrðXÞ ð22Þ
NapðXÞ ¼ 2:0þ DNapðXÞ ð23Þ
NbpðXÞ ¼ 2:0þ DNbpðXÞ ð24Þ
NarðPÞ ¼ 11=12þ DNarðPÞ ð25Þ
NbrðPÞ ¼ 1=12þ DNbrðPÞ ð26Þ
NapðPÞ ¼ 11=6þ DNapðPÞ ð27Þ
NbpðPÞ ¼ 1=6þ DNbpðPÞ ð28Þ
where, for example, DNbpðXÞ represents the change in the

number of b electrons of p symmetry on the halogen rel-

ative to the number at R = ?.

6 Comparison of the HI and HIOS electron

distributions

Figures 2 and 3 compares the distribution of a and b spins

as a function of the internuclear separation, R for PF and

PCl. The distance dependence for both methods is similar

in kind but does differ in degree. Both methods show that

as the internuclear separation decreases, the halogen

(X) gains a and looses b electrons with the converse hap-

pening on P and since the number of a and b electrons is

constant, DNaðPÞ ¼ �DNaðXÞ and DNbðPÞ ¼ �DNbðXÞ
for all R. Both methods predict that the a electrons are

transferred from P to the halogen much earlier than the

corresponding b are transferred from the halogen to P.

Additionally, both predict that the halogen is negative with

the HIOS predicting it to be more so.

Figures 4, 5, 6 and 7 compare the spin flow for the HI

and HIOS methods broken down into their r and p com-

ponents. The r and p breakdown of the a spin distribution

in both molecules (Figs. 4, 6) for the two methods is

remarkably similar. Both methods predict that a electrons P

looses in the r system are going into the r system of the

halogen, an interatomic transfer, and also into the p system

of P, an intra-atomic transfer. This is most apparent at large

R where DNapðPÞ	DNarðXÞ and each is 	 � DNarðPÞ=2.

Note that all of the a electrons gained by the halogen are

going into the r system, which one might expect given the

asymptotic spin distribution (vide supra). Figures 4 and 6

compare the corresponding b spin distribution.

Turning to Fig. 5, we see that at large R, the increase in

the number of b electrons in the r system of P in PF is due

to an intra-atomic transfer from the Pp system which

continues until around R = 4.5 a0 at which point the
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number of b electrons in the r system of P levels off and

the bp electrons on F start to populate the bp system of P,

i.e., traditional back donation. Note that virtually all of the

b electrons lost from the halogen are from the p system.

Figure 7 shows the b electron shifts in PCl and they are

similar to those in PF, differing in degree rather than kind.

Table 3 summarizes the various electron distributions at

equilibrium for both systems.

7 Comparison with experiment

Saito et al. [8] observed the microwave spectrum of PF in

the X3R� state and from the observed magnetic coupling

constants calculated that the unpaired spin density was

91.3 % on P and 9.1 % on F. In a similar study of PCl,

Minowa et al. [6] calculated that 87.2 % of the unpaired

spin density was on P, while 14.1 % was on Cl. For PF, the

HI method predicts 93.1 % for P and 6.9 % for F and for

PCl, 89.9 % on P and 10.1 % on Cl, in reasonable agree-

ment with the experimental values. Interestingly the HIOS

Table 3 Equilibrium electron

distribution in the 3R� state of

PF and PCl calculated using the

HI and HIOS methods

PF PCl

F F P P Cl Cl P P

HI HIOS HI HIOS HI HIOS HI HIOS

DNar 0.500 0.481 -0.666 -0.646 0.388 0.375 -0.556 -0.538

DNap -0.086 -0.120 0.253 0.286 -0.008 -0.039 0.175 0.202

DNa 0.414 0.361 -0.413 -0.360 0.380 0.336 -0.379 -0.336

DNbr 0.009 0.063 0.159 0.107 -0.083 -0.023 0.250 0.188

DNbp -0.234 -0.183 0.066 0.014 -0.239 -0.190 0.073 0.026

DNb -0.225 -0.120 0.225 0.121 -0.322 -0.213 0.323 0.214

DN 0.189 0.241 -0.188 -0.239 0.058 0.123 -0.056 -0.122

Fig. 8 Dipole moment curves of PF and PCl in the 3R� state

calculated with the CASSCF and MRCI methods using the av5z basis
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partitioning predicts P(100.8 %) and F(-0.80 %) in PF and

(97.9 %) and Cl(2.1 %) in PCl; i.e., much more b electron

density on the halogen. Nguyen [11] estimated the spin

densities in these molecules using the UHF method with a

6-31??G** basis and found for PF, P(106.5 %),

F(-7.0 %) and for PCl, P(99 %) and Cl(1 %), also con-

siderably different from the experimental results and also

with a larger b electron density on the halogens. We are

exploring the predictions of the HI and HIOS partitioning

for spin densities in other open shell systems where

experimental data are known.

8 Dipole moment

The dipole moment functions for PF and PCl, calculated at

the CASSCF and MRCI levels, are shown in Fig. 8. There

is a significant difference between the CASSCF and MRCI

functions at large R but little difference around equilib-

rium. This is illustrated in Figs. 9 and 10, which show the

functions around the experimental equilibrium bond length

for a variety of methods. These curves are fit to a fourth-

order polynomial in (R - Rexp)/Rexp, and the results are

summarized in Table 4. In this table, l0 is the dipole

moment calculated at the experimental internuclear sepa-

ration, while l(Re) is the dipole moment at the calculated

Re for each method. To the best of our knowledge, the

dipole moment of either molecule has not been determined

experimentally but there have been a few theoretical esti-

mates all of which predict the polarity P?X- and these are

collected in Table 1. Also included for ease of comparison

are our l(Re) from Table 4. Comparing the results is dif-

ficult because no two calculations are identical, and as we

can see from Table 1, the dipole moments are very sensi-

tive to the bond length. It looks like the correlated wave

functions with a large flexible basis predict a dipole

moment for PF of *0.31 ea0. The results for PCl are a bit

more confusing. The MRCI calculations of da Siva-Neto

et al. [19] use the aug-cc-pvqz basis augmented with sev-

eral diffuse functions and predict a dipole moment of 0.338

ea0 at an Re of 3.830 a0, while our comparable calculations

using the aug-cc-pv5z (spdf) basis and the MRCI and

RCCSD(t) predict dipoles that are much smaller. We redid

our RCCSD(t) calculations using the da Siva-Neto basis

Table 4 Equilibrium dipole

moments of PF and PCl in the
3R� state, calculated at the SCF,

CASSCF, MRCI and

RCCSD(t) levels with the av5z

basis and fit to the polynomialP4
i¼0 ci ðR� ReÞ=Re½ 
i

PF 3R�ð Þ PCl 3R�ð Þ
scf casscf mrci rccsd(t) scf casscf mrci rccsd(t)

l0 -0.3905 -0.2938 -0.2980 -0.3079 -0.3172 -0.1850 -0.1972 -0.1941

l1 -1.4602 -1.2364 -1.2623 -1.2732 -4.7294 -3.9917 -4.0011 -3.9890

l2 0.0489 0.2269 0.1763 0.1225 0.0196 1.2111 1.1071 0.6073

l3 0.0432 0.1274 0.1154 0.0919 3.4848 17.2568 11.1129 7.8403

l4 -0.0343 0.0190 0.0089 -0.0097 -8.8157 -72.4101 -29.359 -6.0653

l(Re) -0.3263 -0.2948 -0.3284 -0.3135 -0.3649 -0.2715 -0.2361 -0.2205
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and found Re = 3.847 a0 and l = 0.2374 ea0, which are

similar to our tabulated results of 3.832 a0 and 0.2205 ea0,

still somewhat different from their reported values.

Figures 11 and 12 show the CASSCF dipole moment

functions of PF and PCl decomposed into their a and b spin

components. In both molecules, the long-range dipole

moment is entirely due to shifts in the a spin distribution

with P loosing a electrons to the halogen. At shorter

internuclear distances, the intermolecular shift of b elec-

trons begins and the P-X? polarity of lb begins to offset

the P?X- polarity of la.

Figures 13, 14, 15 and 16 compare the HI and HIOS

decomposition of the a and b spin dipoles into their in situ

atomic dipole and charge component, calculated via

li = li(X) ? li(P) ? qi(X)R where i = a or b and X = F

or Cl. From the decomposition of the a spins in Figs. 13

and 15, we see that a consequence of the halogens gaining

fewer a spins in the HIOS partitioning is that the induced

atomic dipoles due to the a spins must also be smaller since
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both the HI and HIOS partitioning must sum to the same

la. Figures 14 and 16 compare the partitioning of the b
spins in the two methods and there are fewer b spins lost by

the halogen in the HIOS partitioning, resulting in induced

atomic dipoles that are much larger than predicted by the

HI partitioning.

9 Summary

The charge, spin distribution and dipole moments of the

open shell 3R�ðms ¼ þ1Þ molecules PF and PCl have been

analyzed using two variants of the Hirshfeld partitioning of

the calculated electronic density: the iterative Hirshfeld

method (HI) and the iterative open shell method (HIOS).

We find the distance dependence of the charge and spin

exchange as the molecules form is similar in both methods

but differs in degree. Interestingly, the HI method is in

better agreement with the experimental spin densities. Both

methods predict that the dipole moment associated with the

a spin density has the polarity P?X,-while the polarity

associated with the b spin density is P-X?. The net polarity

at equilibrium is P?X-.
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Abstract Reactions at the edge of pyrene and circum-

coronene are studied using the B3LYP approach in con-

junction with the 4-31G and 6-31G** basis sets. The loss

of a C2Hn fragment from the edge of either molecule

requires more than 7 eV, which is much larger than for the

loss of an H atom. Some paths can be broken down into a

series of less energetic steps, but this does not change the

overall endothermicity of the process. The exception is a

path where a hydrogen atom adds to pyrene or circumco-

ronene. The resulting molecule rearranges to have a C2H2

side group, which is subsequently lost. This process has an

overall endothermicity of only about 2.5 eV. This path is

actually less endothermic than the loss of an H atom from

the same species.

Keywords DFT � Polycyclic aromatic hydrocarbon �
Loss of C2Hn

1 Introduction

Phenolic polymer ð�C6H3OHCH2�Þn is an important

component of most ablative heat shields. While much is

known about phenolic polymer, namely its curing and

pyrolysis, we are still lacking a detailed molecular-level

understanding of its pyrolysis. Such an understanding

would be very useful in attempts to improve the properties

of phenolic polymer for thermal protection systems. With

this in mind, molecular dynamics (MD) simulations and

ab initio calculations have been performed [1–4] to obtain a

molecular-level understanding of the pyrolysis of this

important system. These studies have yielded some useful

information about several important pyrolysis reactions,

namely those that lead to CO, H2, and H2O formation. One

limitation of the MD studies is that temperatures much

higher than those observed in experiment must be used in

order to observe any significant amount of chemical

activity, but temperatures that are too large must be avoi-

ded or mostly fragmentation occurs instead of polymer

cross-linking followed by the formation of fused rings. In

the MD studies where fragmentation is not a problem, the

growth of the fused-ring structures competes with ring

opening and loss of a C2Hn fragment, which reduces the

number of rings connected together. In essentially all of the

ring-opening reactions observed in the MD studies that we

investigated in detail, the ring opening was proceeded by

the addition or transfer of a hydrogen to the ring before it

opened.

Many pyrolysis reactions are similar in spirit to those

observed in combustion chemistry, where hydrogen atoms

can add to species and significantly change the chemistry.

The importance of H atom reactions in combustion has

been demonstrated by Melius and coworkers [5, 6]. For

example, they showed that the barrier for the fulvene to

benzene isomerization was reduced from 3.2 to 0.08 eV by

the addition of an H atom.

In this work, we perform a detailed study of the ring

opening and loss of C2Hn using the density functional
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theory (DFT) approach and a pyrene model (C16H10). We

do not include the OH group or the bridging CH2 group

present in phenolic polymer to simplify the model because

these groups are commonly lost from the polymer when the

ring opening occurs. The one exception is the path for loss

of CO, but this path has been reported previously [4]. We

fully characterize the paths by finding both minima and

transition states. The paths investigated are inspired by the

MD studies and chemical intuition.

Before reporting on our results, we should note that

there is an entirely different application where ring opening

and loss of C2Hn fragments are of interest, namely in the

destruction of polycyclic aromatic hydrocarbons (PAHs) in

the interstellar medium (ISM). From PAH mid-infrared

emission, it is known that they are common in our Galaxy

as well as other galaxies [7]. PAHs are believed to be

formed principally in the outflows of carbon rich stars by a

mechanism similar to their formation in oxygen-poor

flames on earth. However, much less is known about their

processing and destruction. PAHs are good absorbers of

UV radiation, and from their IR emission, it is known that

the excited state undergoes a rapid intersystem crossing to

the ground electronic state with a high level of vibrational

excitation [8]. MD simulations of a hot C54H18 molecule

show [9] that it can loose C2Hn fragments in a manner

similar to that found in our polymer simulations. Since the

average size of PAHs in the ISM are believed to be much

larger than pyrene, we extend our path studies to include

C54H18 as well as pyrene.

2 Models and methods

We used pyrene (C16H10) and circumcoronene (C54H18) as

our model systems. Pyrene is similar in size to the species

observed in our polymer pyrolysis studies and is suffi-

ciently small that it is possible to use a sizeable basis set.

C54H18 is consistent with the size of PAHs believed to exist

in the ISM, but its size requires the use of a smaller basis

set. The pyrene calculations in the small basis set are used

to calibrate the C54H18 results.

We used the hybrid B3LYP [10, 11] functional in con-

junction with the 4-31G or 6-31G** basis sets [12]. In our

previous study of polymer reaction paths [4], we found this

level of theory to be in good agreement with the more

accurate CCSD(T) approach. In that study, the average

absolute and maximum difference between the B3LYP/6-

31G** and CCSD(T)/cc-pVTZ calculations were 0.16 and

0.37 eV, respectively. We further note that calibration

calculations using the cc-pVQZ basis set in the

CCSD(T) calculations reduced the difference between the

B3LYP and CCSD(T) calculations. Thus, our B3LYP/6-

31G** calculations are expected to have an uncertainty of

approximately 0.5 eV. The agreement between the

6-31G** and 4-31G basis sets suggests that the B3LYP/4-

31G results have an uncertainty of approximately 0.8 eV.

However, as we show below, the difference between the

most favorable path and the other paths is several eV; thus,

our level of approximation is sufficiently accurate to

illustrate the difference between the possible reaction

paths.

The structures were fully optimized and the harmonic

frequencies computed using analytic derivatives. The har-

monic frequencies were used to characterize the stationary

points as minima or transition states. Since the paths that

we found were consistent with those observed in MD

studies, we did not check the paths using the intrinsic

reaction coordinate method, but rather displaced the tran-

sition state geometry in both directions along the imaginary

mode and performed a normal geometry optimization. In

all cases, the two optimizations recovered the reactants and

products associated with the transition state. The harmonic

frequencies, without scaling, were also used to compute the

zero-point energies. All of the DFT calculations were

performed using Gaussian 09 [13] or previous versions.

The interactive molecular graphics tool MOLEKEL [14]

was used for the visualization of the molecular structures

and the vibrational modes.

To minimize the computational effort, the paths were

first fully characterized using pyrene at the B3LYP/4-31G

level. Starting from the B3LYP/4-31G minima and tran-

sition states, the calculations were repeated using the larger

6-31G** basis set. The starting geometries for C54H18 were

created by modifying the C54H18 edge structure to corre-

spond to the pyrene B3LYP/4-31G minima and transition

states. This approach reduced the time required to optimize

the C54H18 structures and especially for locating the tran-

sition states, as all of the experimentation was performed

on the smaller system with the smaller basis set.

3 Computational results

The reaction pyrene!C14H8 þ C2H2 is endothermic by

7.3 eV, while the loss of an H atom is endothermic by only

4.8 eV. The energetics are very similar for C54H18. Given

the large energy difference between the loss of an H atom

and the loss of a C2H2 molecule, it seems unlikely that the

direct loss of a C2H2 can compete with the loss of an H

atom. The MD studies of both the polymer and C54H18

confirm that the loss of H is much more common than any

ring opening. Therefore, the ring opening and the edge

erosion by loss of CnHm groups from a PAH probably

occur through a sequence of events where the energy in a

given step is comparable with the loss of an H atom or by

some reaction that reduces the endothermicity.
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The first processes that we consider involve a series of

unimolecular reactions. They are shown in Fig. 1 and their

energetics are summarized in Table 1. Since the effect of

the zero-point energy (ZPE) is similar for both molecules

and both basis sets, we only report the results without ZPE for

the B3LYP/6-31G** approach. We give the energetics to

two places after the decimal to better show the small changes

between the pyrene and circumcoronene and between two

basis sets, but as noted above, our energetics are probably

uncertain to about 0.5 eV. The figure shows the energetics

for pyrene in the 6-31G** basis set. The first step is the shift

of a hydrogen atom from one carbon to the adjacent carbon to

produce A. The analogous product for circumcoronene is

shown in Fig. 1; this illustrates the correspondence between

the two molecules. This reaction is endothermic by 3.35 eV

and has a barrier of 3.50 eV. Molecule A can undergo two

possible reactions. The path with the lower barrier of the two

leads to the formation of a five-membered ring with a CH2

side group (molecule E). This species is 1.11 eV energeti-

cally higher than the starting material. The other path

involves a transfer of one of the hydrogens in the CH2 group

of molecule A to the adjacent carbon with three C–C bonds

along with the breaking of the C–C bond, which opens the

six-membered ring and leads to the formation of a C2H side

group (C). The loss of the C2H group to form Fþ C2H

requires the addition of 5.68 eV of energy. This path is

observed in our MD studies.

In addition to these two paths, we searched for a path to

break a C–C bond on the starting molecule to form a

CHCH side group. We were unable to find a molecule with

this structure that has a singlet ground state, but we did find

a triplet state with this structure (D). It is quite high in

energy, as is shown on the figure. The failure to find any

singlet structure of interest and the high energy of the

triplet state suggests that this path is not an important

process. Indeed we did not observe it in the MD studies.

The last path in this series that we found involved first

the transfer of a hydrogen to a carbon with three C–C

bonds to form structure B. This structure can convert to

structure C, with the C2H side group, through a transition

state involving a hydrogen transfer and C–C bond break-

ing. In addition to being less favorable than the other ring

opening process, we were unable to find this path using the

large basis set, but were able to find it for both the pyrene

and C54H18 models using the small basis set. This suggests

that this process is an artifact of the small basis set.

In Table 1, we explore the similarities of the pyrene and

C54H18 reactions for all three paths. We first note that the

pyrene results obtained using the 4-31G and 6-31G** basis

sets agree reasonably well except for the third path, where as

noted above, the first three stationary points from the small

basis set do not exist for the bigger basis set. A comparison of

the C54H18 and pyrene results obtained using the small basis

Table 1 Energetics (in eV) for paths shown in Fig. 1

Structurea C16H10 C54H18

Basis set 6-31G** 4-31G 4-31G

?ZPE No ZPE ?ZPE ?ZPE

Path for the loss of C2H

Start 0.00 0.00 0.00 0.00

TS Start to A 3.50 3.65 3.86 3.86

A 3.35 3.45 3.55 3.54

TS A to C 4.84 5.03 5.19 5.17

C 2.52 2.63 2.46 2.53

Fþ C2H 8.20 8.55 8.21 8.23

Path to form 5-membered ring

Start 0.00 0.00 0.00 0.00

TS Start to A 3.50 3.65 3.86 3.86

A 3.35 3.45 3.55 3.54

TS A to E 4.15 4.26 4.49 4.66

E 1.11 1.15 1.19 1.61

Possible alternative path for loss of C2H

Start 0.00 0.00 0.00 0.00

TS Start to B NAb NA 4.88 4.86

B NA NA 4.84 4.78

TS B to C NA NA 4.90 4.96

C 2.52 2.63 2.46 2.53

Fþ C2H 8.20 8.55 8.21 8.23

a ‘‘TS’’ denotes transition state and the structures are labeled as in the

figure
b We are unable to find these structures using the larger basis set,

which suggests that they are an artifact of the smaller basis set

Fig. 1 B3LYP/6-31G** reaction paths for the decomposition of

pyrene. The ‘‘T’’ indicates a triplet state. The ‘‘?’’ indicates that this

path could only be found at the B3LYP/4-31G level and therefore is

probably an artifact. The A structure for C54H18 is shown at the top

left and illustrates the relationship between the two molecules
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set show that they agree very well except for structure E ( i.e.,

the one containing the 5-membered ring) and the transition

state to form it, where the differences are much larger. The

pyrene structures are more stable because the smaller num-

ber of rings allow them to distort more and hence have a

larger stabilization energy.

The next series of reactions are summarized in Fig. 2

and Table 2. These involve the addition of a hydrogen

atom as the first step to form molecule G. This was moti-

vated by previous polymer MD studies, where H addition

preceded some ring opening reactions. This is a very

plausible step for PAHs in the ISM because of the large

excess of atomic hydrogen population and observations

that suggest the existence of PAH molecules with excess

hydrogens [15]. We have characterized two paths that can

occur after hydrogen addition. We should note that the

barriers for both of these processes are larger that the

energy required to remove the hydrogen and restore the

starting materials. Thus, most of the time that G is formed,

it dissociates back to the starting material, and this is what

we observe in our MD studies. However, some of the time

the reaction continues as shown in Fig. 2. The lower

energy path involves the H transfer from the CH2 group in

molecule G to the adjacent carbon that has three C–C

bonds to form molecule H with a barrier of 1.88 eV. This

structure can undergo a ring opening reaction to form

molecule J, with a barrier only slightly larger than its en-

dothermicity. The resulting product (J) has a C2H2 side

group that requires only 1.5 eV to be removed forming

Lþ C2H2. This is the final step in a reaction path that

overall requires only 2.51 eV to remove a C2H2 fragment

from pyrene plus a H atom.

The other path from the hydrogen addition product

(molecule G) opens the ring to form a C2H3 side group (I).

This path is only slightly less favorable. This species can

either loose a C2H3 group (Kþ C2H3), which is a very

endothermic reaction, or can transfer one of the terminal

hydrogen atoms back to the ring to form the structure with

the C2H2 side group (J). The path then continues as before.

As shown in Table 2, there is good agreement between

the large and small basis set results for pyrene and between

the pyrene and C54H18 models. In fact, the agreement is

better than observed for the reaction in Table 1. The

agreement between pyrene and circumcoronene suggests

that the very favorable energetics for this path will be

common for most PAHs.

The last set of pathways that we consider are shown in

Fig. 3, and the energetics are summarized in Table 3. Since

the C–H bond is the weakest in the PAHs, the loss of a

hydrogen is expected to occur before any ring opening

reactions occur. The loss of H is observed in the MD

simulations and believed to occur in the ISM. These paths

begin with the loss of an H atom forming molecule M,

which is endothermic by almost 5 eV. While this is a

sizeable energy, it is less than the cost of removing C2H2.

The next step is the transfer of a hydrogen atom to a carbon

bonded to three other carbons (O). This has a sizeable

Fig. 2 B3LYP/6-31G** reaction paths for the addition of one

hydrogen atom to pyrene and its subsequent decomposition

Table 2 Energetics (in eV) for paths shown in Fig. 2

Structure C16H10 C54H18

Basis set 6-31G** 4-31G 4-31G

?ZPE No ZPE ?ZPE ?ZPE

Path for the loss of C2H2

Start 0.00 0.00 0.00 0.00

G (C54H19) -1.38 -1.62 -1.29 -1.30

TS G to H 0.50 0.41 0.66 0.68

H -0.44 -0.67 -0.34 -0.34

TS H to J 1.26 1.12 1.32 1.32

J 1.04 0.86 1.08 1.12

Lþ C2H2 2.51 2.48 2.49 2.51

Alternative path for the loss of C2H2

Start 0.00 0.00 0.00 0.00

G -1.38 -1.62 -1.29 -1.30

TS G to I 1.00 0.84 1.06 1.08

I 0.82 0.64 0.87 0.89

TS I to J 1.22 1.20 1.29 1.39

J 1.04 0.86 1.08 1.12

Lþ C2H2 2.51 2.48 2.49 2.51

Path for the loss of C2H3

Start 0.00 0.00 0.00 0.00

G -1.38 -1.62 -1.29 -1.30

TS G to I 1.00 0.84 1.06 1.08

I 0.82 0.64 0.87 0.89

Kþ C2H3 5.52 5.58 5.62 5.64
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barrier. This species can open the ring to form a C2 side

group with only a small barrier (P). The loss of the C2 side

group from P which forms Rþ C2 requires considerable

energy.

An alternative path is to open the ring, forming a C2H

side group (N). This has a lower barrier and the product is

more stable than the product of shifting the hydrogen. The

loss of the C2H fragment from N yields Qþ C2H which is

even more endothermic than the loss of the C2 group. As

for the other reactions, the pyrene and C54H18 models agree

reasonably well as do the small and large basis set results.

4 Conclusions

We have considered several paths for pyrene to loose some

edge carbon atoms on the ground electronic state potential.

All of the reaction mechanisms are very endothermic

except for a path that first adds a hydrogen atom. These

species can rearrange by two paths to form a C2H2 side

group. The overall energetics for the loss of the C2H2 are

about 2.5 eV. This path is essentially driven by the strong

H-C bond energy in C2H2. We find that the results in the

small basis set are very similar to those in the large basis

set, thus supporting its use in the larger C54H18 model.

The lowest path is consistent with polymer MD simulations

where many of the ring opening events are proceeded by the

addition of an H atom that was lost from the same or another

polymer molecule. This reaction should be important at high

temperatures where free H atoms are found. At lower tem-

peratures, this mechanism should be less efficient as few H

atoms will exist; however, reactions where the H atom

transfers from another molecule are still possible, but the first

step is no longer as exothermic as in case of a free H atom. In

case of PAH molecules in the ISM, this H addition erosion

mechanism should be important in regions where there is a

significant hydrogen atom concentration, such as in PDRs.
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Abstract We have obtained accurate heats of formation

for the twenty natural amino acids by means of explicitly

correlated high-level thermochemical procedures. Our best

theoretical heats of formation, obtained by means of the

ab initio W1-F12 and W2-F12 thermochemical protocols,

differ significantly (RMSD = 2.3 kcal/mol, maximum

deviation 4.6 kcal/mol) from recently reported values

using the lower-cost G3(MP2) method. With the more

recent G4(MP2) procedure, RMSD drops slightly to

1.8 kcal/mol, while full G4 theory offers a more significant

improvement to 0.72 kcal/mol (max. dev. 1.4 kcal/mol for

glutamine). The economical G4(MP2)-6X protocol per-

forms equivalently at RMSD = 0.71 kcal/mol (max. dev.

1.6 kcal/mol for arginine and glutamine). Our calculations

are in excellent agreement with experiment for glycine,

alanine and are in excellent agreement with the recent

revised value for methionine, but suggest revisions by

several kcal/mol for valine, proline, phenylalanine, and

cysteine, in the latter case confirming a recent proposed

revision. Our best heats of formation at 298 K (DH�f ;298)

are as follows: at the W2-F12 level: glycine -94.1, alanine

�101.5, serine �139.2, cysteine �94.5, and methionine

�102.4 kcal/mol, and at the W1-F12 level: arginine

�98.8, asparagine �146.5, aspartic acid �189.6, gluta-

mine �151.0, glutamic acid �195.5, histidine �69.8,

isoleucine �118.3, leucine �118.8, lysine �110.0, phen-

ylalanine �76.9, proline �92.8, threonine �149.0, and

valine �113.6 kcal/mol. For the two largest amino acids,

an average over G4, G4(MP2)-6X, and CBS-QB3 yields

best estimates of �58.4 kcal/mol for tryptophan, and of

�117.5 kcal/mol for tyrosine. For glycine, we were

able to obtain a ‘‘quasi-W4’’ result corresponding to

TAEe = 968.1, TAE0 = 918.6, DH�f ;298 ¼ �90:0, and

DH�f ;298 ¼ �94:0 kcal/mol.

Keywords Thermochemistry � Amino acids �
Explicitly correlated methods � Density functional theory �
Ab initio

1 Introduction

Due to the increasing computational power provided by

supercomputers and recent advances in the development of

economical ab initio methods (e.g., advances in explicitly

correlated techniques [1–4]), high-level ab initio methods

have now been refined to the point where they are appli-

cable to biologically relevant systems (see Refs. [5–13] for

some recent studies). Proteinogenic amino acids are the
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most basic building blocks of proteins and play key roles in

protein structure and function. They also serve as precur-

sors of many biologically relevant molecules, such as

polypeptides, nucleotides, hormones, neurotransmitters,

and antioxidants [14]. Despite their importance, the

experimental gas-phase heats of formation of most of the

natural amino acids are not accurately known. Determi-

nation of these fundamental thermochemical quantities

may be important in understanding why nature chose these

molecules as fundamental biological building blocks—for

example, by comparing the relative stabilities of a- versus

b-amino acids [15, 16]. Accurate heats of formation for the

amino acids are also important from a theoretical point of

view, e.g., for the validation and parameterization of

computationally cost-effective procedures such as density

functional theory, semiempirical molecular orbital theory,

and molecular mechanics. In recent years, a large number

of theoretical studies were dedicated to obtaining thermo-

chemical properties of amino acids using high-level theo-

retical procedures [15–25].

In the present work, we obtain accurate theoretical

heats of formation for the lowest-energy conformers for

the 18 proteinogenic amino acids using the high-level,

ab initio W1-F12 and W2-F12 thermochemical proce-

dures [31]. These thermochemical procedures represent

layered extrapolations to the all-electron, relativistic

CCSD(T)/CBS energy (complete basis set limit coupled

cluster with singles, doubles, and quasiperturbative triple

excitations) and can achieve an accuracy in the sub-kcal/

mol range for molecules whose wave functions are

dominated by dynamical correlation [31, 32]. We use

these benchmark values to evaluate the performance of a

variety of Gn-type procedures [33] that were recently

used for obtaining accurate thermochemical properties of

amino acids [15–20].

The present paper also seeks to pay tribute to the sci-

entific achievements of Prof. Isaiah Shavitt (OBM) and

specifically to his seminal contributions to coupled cluster

theory [26], to the theory and development of Gaussian

basis sets [27], to accurate applied quantum chemistry

[28–30], and to computational biochemistry [5].

2 Computational details

Most calculations were run on the CRUNTCh (Computa-

tional Research at UNT in Chemistry) Linux farm at the

University of North Texas, on the high-performance com-

puting National Computational Infrastructure (NCI)

National Facility at Canberra, and on the iVEC@UWA

facilities. Some additional calculations were carried out on

the Faculty of Chemistry Linux farm at the Weizmann

Institute of Science.

The geometries have been optimized at the B3LYP/

A’VTZ level of theory [34–36] (where A’VTZ indicates the

combination of the standard correlation-consistent cc-pVTZ

basis set on hydrogen, [37] the aug-cc-pVTZ basis set on

first-row elements, [38] and the aug-cc-pV(T?d)Z basis set

on sulfur) [39]. All geometry optimizations and frequency

calculations were performed using the Gaussian 09 program

suite [40]. Benchmark relativistic, all-electron CCSD(T)/

CBS energies were then obtained by means of our recently

developed W1-F12 and W2-F12 thermochemical protocols

[31] using the Molpro 2012.1 program suite [41]. The

computational protocols of W1-F12 and W2-F12 theories

have been specified and rationalized in reference [31].

In W1-F12 theory, the Hartree–Fock component is

extrapolated from the VDZ-F12 and VTZ-F12 basis sets,

using the EðLÞ ¼ E1 þ A=La two-point extrapolation for-

mula with a = 5 (where L is the highest angular momentum

represented in the basis set, and VnZ-F12 denotes the cc-

pVnZ-F12 basis sets of Peterson et al. [42] which were

developed for explicitly correlated calculations). Optimal

values for the geminal Slater exponents (b) used in con-

junction with the VnZ-F12 basis sets were taken from ref-

erence [43]. The valence CCSD-F12 correlation energy is

extrapolated from the same basis sets, using the said two-

point extrapolation formula. Extrapolation exponents (a)

were taken from references [31, 43]. In all of the explicitly

correlated coupled cluster calculations the diagonal, fixed-

amplitude 3C(FIX) ansatz [45–47] and the CCSD-F12b

approximation [48, 49] are employed. The (T) valence cor-

relation energy is obtained in the same way as in the original

Weizmann-1 (W1) theory, [50] i.e., extrapolated from the

A’VDZ and A’VTZ basis sets using the above two-point

extrapolation formula with a = 3.22. The CCSD inner-shell

contribution is calculated with the core-valence weighted

correlation-consistent A’PWCVTZ basis set of Peterson and

Dunning, [51] while the (T) inner-shell contribution is cal-

culated with the PWCVTZ(no f ) basis set (where

A’PWCVTZ indicates the combination of the cc-pVTZ basis

set on hydrogen and the aug-cc-pwCVTZ basis set on car-

bon, and PWCVTZ(no f ) indicates the cc-pwCVTZ basis set

without the f functions). The scalar relativistic contribution

(in the second-order Douglas–Kroll–Hess approximation

[52, 53]) is obtained as the difference between non-relativ-

istic CCSD(T)/A’VDZ and relativistic CCSD(T)/A’VDZ-

DK calculations [54] (where A’VDZ-DK indicates the

combination of the cc-pVDZ-DK basis set on H and aug-cc-

pV(D?d)Z-DK basis set on heavier elements). The atomic

spin–orbit coupling terms are taken from the experimental

fine structure, and the diagonal Born–Oppenheimer correc-

tion (DBOC) is calculated at the HF/A’VTZ level of theory.

The zero-point vibrational energies (ZPVEs) are derived

from B2PLYP/def2-TZVPP harmonic frequencies (and

scaled by 0.9833, see Sect. 3.3).
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In W2-F12, the Hartree–Fock component is calculated

with the VQZ-F12 basis set. The valence CCSD-F12 corre-

lation energy is extrapolated from the VTZ-F12 and VQZ-

F12 basis sets, using the above two-point extrapolation for-

mula with a = 5.94. The quasiperturbative triples, (T),

corrections are obtained from standard CCSD(T)/VTZ-F12

calculations (i.e., without inclusion of F12 terms) and scaled

by the factor f = 0:987 EMP2�F12=EMP2. This approach

has been shown to accelerate the basis set convergence [31,

49]. The CCSD inner-shell contribution is calculated with

the core-valence weighted correlation-consistent

A’PWCVTZ basis set, while the (T) inner-shell contribution

is calculated with the PWCVTZ(no f) basis set. The scalar

relativistic, spin–orbit coupling, DBOC, and ZPVE correc-

tions are obtained in the same way as in W1-F12 theory.

The total atomization energies at 0 K (TAE0) are con-

verted to heats of formation at 298 K using the Active

Thermochemical Tables (ATcT) [55–59] atomic heats of

formation at 0 K (H 51.633 � 0.000, C 170.024 � 0.014, N

112.469 � 0.007, O 58.997 � 0.000, and S 65.709 �
0.036 kcal/mol), and the CODATA [60] enthalpy

functions, H298 � H0, for the elemental reference states

(H2ðgÞ ¼ 2:024� 0:000, C(cr,graphite) = 0:251� 0:005;

N2ðgÞ ¼ 2:072� 0:000;O2ðgÞ ¼ 2:075� 0:000, and

S(cr,rhombic) = 1:054� 0:001 kcal/mol), while the

enthalpy functions for the amino acids are obtained within

the rigid rotor harmonic oscillator (RRHO) approximation

from B3LYP/A’VTZ geometries and harmonic frequencies.

W1-F12 shows excellent performance for systems con-

taining first-row elements (and H). Specifically, for the 97

first-row atomization energies in the W4-11 dataset, [32]

W1-F12 attains a root mean square deviation (RMSD) of

0.19 kcal/mol relative to all-electron, relativistic

CCSD(T) reference atomization energies at the infinite

basis set limit. However, for second-row systems, it was

found that the performance of W1-F12 is significantly

degraded owing to shortcomings of the cc-pVDZ and cc-

pVDZ-F12 basis sets for second-row elements (see Ref.

[31] for details): for the 40 second-row atomization ener-

gies in the W4-11 dataset, RMSD actually exceeds 1 kcal/

mol. W2-F12 does not suffer from this problem and yields

similar RMSDs of 0.18 kcal/mol for first-row and 0.24

kcal/mol for second-row systems. (For further details, see

reference [31]). Thus, for the sulfur-containing amino acids

(cysteine and methionine) and for the small amino acids

(alanine, glycine, and serine), the heats of formation are

also obtained using W2-F12 theory.

The case of glycine is small enough (especially con-

sidering the Cs symmetry) that the result can be indepen-

dently verified using accurate thermochemical procedures

based on layered extrapolation of orbital basis sets, spe-

cifically the high-accuracy W4 method [68]. Full details of

the method are given in that reference and will not be

repeated here: suffice to say that for a set of molecules

where accurate experimental atomization energies are

available via ATcT, the RMSD from experiment is 0.10

kcal/mol [32, 68]. The largest-scale calculation involved

here, CCSD/aug’-cc-pV6Z, entails 1400 basis functions

and required 3 terabyte of scratch space, yet ran to com-

pletion within a day on a machine with a large solid-state

disk array. The CCSD(T)/aug’-cc-pV5Z calculation,

involving 910 basis functions, ran in under a day on 32

cores and 512 GB of RAM.

The heats of formation have also been obtained using

computationally more economical composite procedures,

namely the Gaussian-4 (G4) protocol [33, 63] and its

computationally more economical G4(MP2) and G4(MP2)-

6X variants [64, 65]. These calculations were performed

using the Gaussian 09 program suite [40]. The G4 and

G4(MP2) protocols are widely used for the calculation of

thermochemical properties and are applicable to relatively

large systems (of up to 20–30 non-hydrogen atoms). They,

generally, give RMSDs from experimental or high-accu-

racy theoretical thermochemical data of 1–2 kcal/mol [32,

63, 64]. For example, for the 454 experimental thermo-

chemical determinations of the G3/05 test set (including

heats of formation, ionization energies, and electron

affinities), [66] G4 and G4(MP2) attain RMSDs of 1.2 and

1.5 kcal/mol, respectively [63, 64]. For the set of 137 very

accurate theoretical atomization energies in the W4-11 set,

both procedures attain an RMSD of 2.0 kcal/mol [32].

Finally, we have also considered the performance of the

CBS-QB3 procedure [67] using Gaussian 09.

3 Results and discussion

3.1 Computational cost of the W1-F12 calculations

For systems consisting of more than eight non-hydrogen atoms

(with C1 symmetry), W1 theory [50] becomes prohibitively

expensive with current commodity server hardware. W1-F12

theory is an explicitly correlated version of the W1 method,

[50] which combines explicitly correlated F12 methods [1–4]

with extrapolation techniques in order to approximate the

CCSD(T)/CBS energy. Because of the drastically accelerated

basis set convergence of the F12 methods [42, 43], W1-F12 is

superior to the original W1 method, not only in terms of per-

formance but also in terms of computational cost [31]. For

example, the cpu times for calculating W1 and W1-F12

energies for a system containing 8 non-hydrogen atoms (with

C1 symmetry) are 595 and 163 h, respectively (both calcula-

tions ran on 8 Intel Xeon Sandy Bridge cores at 2.6 GHz). In

terms of disk space requirements, the W1 calculation used

about five times the amount of scratch disk (660 GB) that the

W1-F12 calculation required (126 GB).
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In the present work, we obtain W1-F12 energies for the

18 amino acids with up to 12 non-hydrogen atoms. Of

these, the largest amino acids are glutamic acid, glutamine,

and lysine (10 non-hydrogen atoms); histidine (11 non-

hydrogen atoms); arginine and phenylalanine (12 non-

hydrogen atoms). Considering the fact that none of the

amino acids (apart from glycine) have any spatial sym-

metry, these represent the largest W1-F12 calculations

reported to date. For example, the W1-F12 calculation for

arginine ran for 51 days on 6 Intel Nehalem 8837 cores at

2.67 GHz and used 253 GB of RAM and 1.1 TB of scratch

disk. Due to this very steep computational cost, we obtain

our best heats of formation for the two amino acids with

more than 12 non-hydrogen atoms (i.e., tryptophan and

tyrosine) with the Gn and CBS-QB3 methods [33, 67],

which have a significantly reduced computational cost. In

Sect. 3.4, we show that, relative to W1-F12 and W2-F12

heats of formation, G4, G4(MP2)-6X, and CBS-QB3 result

in RMSDs of 0.72, 0.71, and 1.01 kcal/mol, respectively,

i.e., near or below the threshold of ‘‘chemical accuracy’’

(traditionally arbitrarily defined as 1 kcal/mol).

3.2 W1-F12 and W2-F12 benchmark heats

of formation

Since W1-F12 and W2-F12 theories represent a layered

extrapolations to the CCSD(T) basis set limit energy, it is of

interest to estimate whether the contributions from post-

CCSD(T) excitations are likely to be significant for the

atomization energies of the amino acids. The percentage of

the total atomization energy accounted for by parenthetical

connected triple excitations, %TAEe[(T)], has been shown

to be a reliable energy-based diagnostic for the importance

of non-dynamical correlation effects [68, 74]. It has been

suggested that %TAEe[(T)] \ 2 % indicates systems that

are dominated by dynamical correlation, while 2 % \
%TAEe[(T)] \ 5 % indicates systems that include mild

non-dynamical correlation. %TAEe[(T)] values for the

amino acids are gathered in Table 1. The amino acids are

characterized by %TAEe[(T)] values ranging from 1.7

(leucine) to 2.5 % (histidine). Note also that in all cases, the

SCF component accounts for 69–77 % of the total atom-

ization energy. These values suggest that our all-electron,

non-relativistic, vibrationless benchmark atomization

energies should, in principle, be considerably closer than

1 kcal/mol of the atomization energies at the full configu-

ration interaction (FCI) basis set limit. For example, for

systems that are associated with similar %TAEe[(T)] values

in the W4-11 dataset [32], post-CCSD(T) contributions to

the atomization energy are 0.2 kcal/mol or less, although

somewhat larger values were found for benzene [75, 76].

Table 2 gives an overview of basis set convergence of

the CCSD-F12 component of the total atomization energy.

The magnitude of the valence CCSD-F12 correlation

component spans a relatively large range. For example, the

CCSD-F12/V{D,T}Z-F12 results extrapolated with

a = 3.67 (which was optimized to minimize the RMSD

over 137 first- and second-row systems in the W4-11

dataset [31]) extend from 272.48 (glycine) up to 701.76

(arginine) kcal/mol. The differences between the CCSD-

F12/V{D,T}Z-F12 results obtained with a = 3.67 (opti-

mized over the entire W4-11 set of small molecules) and

a = 3.38 (optimized over the subset of 97 first-row species

only) can get quite significant for these medium-sized

species, ranging from 0.25 kcal/mol for glycine to

0.71 kcal/mol for arginine. Note that these differences still

only correspond to about 0.1 % of the valence CCSD

correlation component. For comparison, for the systems in

the W4-11 dataset, the absolute differences between the

CCSD-F12/V{D,T}Z-F12 component extrapolated with

a = 3.67 and 3.38 are reduced to just 0.00–0.22 kcal/mol,

or 0.08 kcal/mol mean absolute—likewise, about 0.1 % of

the valence CCSD correlation component of the atomiza-

tion energy. Finally, using instead the extrapolation

Table 1 Diagnostics indicating the importance of post-

CCSD(T) contributions for the amino acids

Isomer %TAEe[SCF]a %TAEe[(T)]b

Alanine 71.4 1.99

Arginine 70.1 2.12

Asparagine 69.4 2.34

Aspartic acid 69.7 2.37

Cysteine 70.1 2.23

Glutamine 70.5 2.19

Glutamic acid 70.9 2.20

Glycine 69.6 2.17

Histidine 69.6 2.45

Isoleucine 73.7 1.73

Leucine 73.7 1.72

Lysine 72.3 1.83

Methionine 72.4 1.94

Phenylalanine 73.4 2.17

Proline 72.4 1.98

Serine 69.8 2.18

Threonine 71.0 2.05

Tryptophanc 76.6 1.85

Tyrosinec 76.5 1.76

Valine 73.1 1.79

Obtained from W1-F12 theory, unless otherwise indicated
a Percentages of the valence CCSD(T)/CBS atomization energy

accounted for by the SCF component
b Percentages of the valence CCSD(T)/CBS atomization energy

accounted for by the (T) component
c Obtained at the CCSD(T)/cc-pVDZ level of theory, see Ref. [32]

for further details
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exponent optimized by Hill et al. [43] (a = 3.144), which

was optimized over a smaller set of 14 absolute correlation

energies, results in atomization energies increased by 0.24

(glycine) up to 0.69 (arginine) kcal/mol over the values

with a = 3.38 (Table 2).

For five smaller amino acids (alanine, cystine, glycine,

methionine, and serine), we were able to obtain CCSD-F12/

VQZ-F12 energies. Table 2 gives the CCSD-F12/V{T,Q}Z-

F12 results extrapolated with a = 5.94 (used in W2-F12

theory [31]) and 4.596 (from Ref. [43]). For these systems,

the difference between the CCSD-F12/V{T,Q}Z-F12 con-

tributions extrapolated with a = 5.94 and 4.596 ranges

between 0.20 (glycine) and 0.34 (methionine) (Table 2). We

note that the error statistics over the 137 systems in the W4-

11 dataset are as follows: RMSD = 0.13, MAD = 0.10,

and MSD = 0.01 for a = 5.94, and RMSD = 0.15,

MAD = 0.11, and MSD = 0.08 kcal/mol for a = 4.596.

Peterson and Feller [44] obtained benchmarks extrapolated

from basis sets as large as aug-cc-pV8Z for a fairly large

sample of molecules that overlaps W4-11 and found that

CCSD-F12b/V{T,Q}Z-F12 tends to overestimate the

valence CCSD component on average: as they were using

a = 4.596, this is consistent with the present finding. (They

also report difficulties reaching 0.1 kcal/mol convergence

for CCSD-F12b energies with aug-cc-pV5Z basis sets: We

were only able to apply this basis set to glycine, and in any

case 0.1 kcal/mol is smaller than other potential error

sources in the present work).

For the five W2-F12 amino acids, the RMSDs for

CCSD-F12/V{D,T}Z-F12 with various choices of extrap-

olation exponent are 0.43 (a = 3.67), 0.14 (a = 3.38), and

0.24 (a = 3.144) kcal/mol. Taking the average between the

CCSD-F12/V{D,T}Z-F12 components extrapolated with

a = 3.38 and 3.144 results in an RMSD of 0.12 kcal/mol

and a mean signed deviation of only ?0.06 kcal/mol. We

thus use this averaged CCSD-F12/V{D,T}Z-F12

Table 2 Overview of the basis set convergence of the CCSD-F12 component of the total atomization energies for the amino acids (kcal/mol)

VDZ-F12 VTZ-F12 VQZ-F12 V{D,T}Z-F12 V{T,Q}Z-F12

3.67a 3.38b 3.144c Bestd 5.94a 4.596c

Alanine 327.84 334.23 335.98 336.10 336.41 336.71 336.56 ± 0.30 336.36 336.61

Arginine 683.07 697.54 701.76 702.46 703.15 702.80 ± 0.68

Asparagine 472.43 481.98 484.76 485.23 485.68 485.46 ± 0.45

Aspartic acid 448.56 457.12 459.61 460.03 460.44 460.23 ± 0.41

Cysteine 357.89 363.68 365.51 365.38 365.66 365.93 365.80 ± 0.27 365.91 366.17

Glutamine 534.06 544.83 547.97 548.50 549.01 548.75 ± 0.51

Glutamic acid 509.77 519.52 522.36 522.84 523.30 523.07 ± 0.46

Glycine 265.77 270.96 272.46 272.48 272.73 272.97 272.85 ± 0.25 272.80c 273.00

Histidine 570.49 582.21 585.63 586.20 586.76 586.48 ± 0.55

Isoleucine 514.53 524.49 527.40 527.88 528.35 528.12 ± 0.47

Leucine 513.54 523.49 526.39 526.87 527.34 527.11 ± 0.47

Lysine 581.62 593.25 596.65 597.21 597.76 597.49 ± 0.55

Methionine 478.88 486.87 489.21 489.20 489.59 489.97 489.78 ± 0.38 489.72 490.06

Phenylalanine 596.04 607.63 611.01 611.58 612.13 611.85 ± 0.55

Proline 428.78 437.25 439.72 440.14 440.54 440.34 ± 0.40

Serine 372.23 379.39 381.45 381.48 381.83 382.17 382.00 ± 0.34 381.90 382.20

Threonine 436.04 444.43 446.87 447.28 447.68 447.48 ± 0.40

Valine 452.54 461.33 463.89 464.32 464.73 464.53 ± 0.42

RMSDf 0.43 0.14 0.24 0.12

MADf 0.41 0.11 0.21 0.11

MSDf -0.41 -0.10 0.21 0.06

a Extrapolation exponent (a) from Ref. [31], optimized to minimize the RMSD over the entire W4-11 dataset
b Extrapolation exponent (a) from Ref. [31], optimized to minimize the RMSD over the first-row systems in the W4-11 dataset
c Extrapolation exponent (a) from Ref. [43]
d The values are the average between the CCSD-F12 components extrapolated with a = 3.38 and 3.144, the difference between these two

CCSD-F12 components may be regarded as a conservative error bar
e Extrapolating from the A’VQZ and A’V5Z basis sets with a = 3.0 results in a CCSD-F12 component of 272.94 kcal/mol
f Root mean square deviation (RMSD), mean absolute deviation (MAD), and mean signed deviation (MSD) relative to the CCSD-F12/

V{T,Q}Z-F12 results for 5 systems
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component in our final W1-F12 atomization energies. The

spread between the a = 3.38 and 3.144 values can be

considered a crude gauge of the uncertainty in the basis set

limit.

The component breakdowns of the W1-F12 and W2-F12

atomization energies are gathered in Table 3. The follow-

ing general observations may be noted:

• As pointed out above, the magnitude of the valence

CCSD-F12 correlation component runs a large gamut,

extending from 272.85 (glycine) up to 702.80 (argi-

nine) kcal/mol.

• The magnitude of the valence (T) correlation compo-

nent can be rather large, reaching 54.28 kcal/mol for

phenylalanine.

• The core–valence contribution approaches or exceeds

10 kcal/mol for the largest systems. Namely, it is 9.88

(arginine) and 11.68 (phenylalanine) kcal/mol.

• The DBOC contribution ranges from 0.28 (glycine) up

to as much as 0.72 (arginine) kcal/mol.

Comparison of the W1-F12 and W2-F12 results for ala-

nine, cystine, glycine, methionine, and serine reveals the

following:

• The HF/V{D,T}Z-F12 component systematically

underestimates the HF/VQZ-F12 basis set limit, namely

by 0.03 (glycine), 0.04 (alanine and cysteine), 0.05

(serine), and 0.08 (methionine) kcal/mol.

• Our best CCSD-F12/V{D,T}Z-F12 component overes-

timates the CCSD-F12/V{T,Q}Z-F12 component by

0.05 (glycine), 0.06 (methionine), 0.10 (serine), 0.20

(alanine) kcal/mol, and underestimates it by 0.11 kcal/

mol for cysteine.

• The valence (T) contribution from W1-F12 theory

systematically overestimates the W2-F12 results, spe-

cifically by 0.06 (cysteine), 0.13 (methionine), 0.17

(glycine), 0.20 (alanine), and 0.25 (serine) kcal/mol.

• The core–valence contribution from W1-F12 system-

atically underestimates the W2-F12 result, namely by

0.09 (glycine), 0.12 (alanine), 0.14 (serine), and 0.16

(cysteine) kcal/mol (we were not able to obtain the

core–valence contribution for methionine from W2-F12

theory).

• Overall, the TAEe from W1-F12 theory overestimates

the TAEe from W2-F12 theory by 0.11 (glycine and

methionine), 0.16 (serine), and 0.23 (alanine) kcal/mol,

and underestimates it by 0.30 kcal/mol for cysteine.

As noted in the ‘‘Methods’’ section, we were able to

‘‘cross-check’’ the result for glycine at the W4 level: the

lower-cost W2.2 level is obtained as a by-product. As seen

in Table 3, the SCF, CCSD, (T), core-valence, and rela-

tivistic components of the W2-F12 calculation are all in

excellent agreement with the W4 calculation, the

cumulative difference being just 0.04 kcal/mol. The

higher-order correlation steps, CCSDT(Q)/cc-pVTZ, and

CCSDTQ/cc-pVDZ are more problematic from a compu-

tational point of view, but their importance is typically

quite small for molecules dominated by a single reference

configuration (due to error compensation between ‘‘anti-

bonding’’ higher-order T3 and ‘‘bonding’’ T4 contributions

[68–73]). Absent a direct calculation, their importance can

be estimated by assuming that their contribution to the

following isodesmic reaction energy will be approximately

zero:

CH3COOHþ CH3NH2 ! glycineþ CH4 ð1Þ
From Table SI-II of Ref. [32], we find the post-CCSD(T)

contributions to the TAEs to be �0.05 kcal/mol for acetic

acid, �0.09 kcal/mol for methyl amine, and ?0.01 kcal/

mol for methane, leading to an estimated post-CCSD(T)

correction of �0.15 kcal/mol for glycine.

3.3 A note on zero-point vibrational energies (ZPVEs)

In view of the magnitude of the zero-point vibrational

energies (50–140 kcal/mol, see Table 4), some remarks are

due concerning their calculation. Ideally, one should obtain

them from accurate anharmonic force fields, and for small

molecules, this is indeed a practical option [68, 85, 91]. In

the present case, however, the computational cost would be

prohibitive with the computational resources at hand, and

multiplication of calculated harmonic frequencies with a

scaling factor kðZPVEÞ appropriate for zero-point vibra-

tional energies [50, 83, 84, 86, 90] is the only practical

option. As shown in Ref. [84], ZPVEs are typically almost

exact averages of one-half the sum of the harmonics and

one-half the sum of the fundamentals, the difference being

just ZPVE� ð1=4ÞPi xi þ mi ¼ G0 �
P

i Xii=4, where the

Xii are the diagonal anharmonicity constants and G0 is the

polyatomic counterpart of the small Y00 Dunham constant

[82] in diatomics. Consequently [50, 84, 90], the optimal

scaling factor for ZPVEs is almost exactly midway

between a kðxÞ suitable for harmonic frequencies (as an

approximate correction for systematic bias in the calculated

frequencies) and a kðmÞ suitable for fundamental frequen-

cies (which additionally seeks to approximately corrects

for anharmonicity). In fact, Alecu et al. [86] found for a

large variety of basis sets and ab initio and DFT methods

that kðxÞ=kðZPVEÞ ¼ 1:014� 0:002, which is almost

exactly the ratio of 1.0143 found by Perdew and coworkers

[87] between harmonic frequencies and ZPVEs derived

from experimental anharmonic force fields. Note that the

‘‘small’’ uncertainty of 0.002 on a ZPVE of 140 kcal/mol

still would translate to about 0.3 kcal/mol, and even that is

probably optimistic for the uncertainty in an individual
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molecule [88]. It has been argued earlier [91] (see also Ref.

[92]) that for organic and bio-organic molecules that are

‘‘well-behaved’’ from an electronic structure point of view,

the main factor limiting accuracy in computational ther-

mochemistry may well be the treatment of the nuclear

motion, rather than the electronic problem as such.

Computed zero-point vibrational energies for the amino

acids at various levels of theory (including those used in

the composite thermochemistry schemes compared in this

work) are listed in Table 4. In search of an alternative that

was more accurate than B3LYP yet still comparatively

affordable, we considered the B2PLYP double hybrid

functional [93] in conjunction with the def2-TZVPP basis

set [94] and optimized a kðxÞ scaling factor by minimizing

the RMSD for the HFREQ27 dataset [95] of accurately

known harmonic frequencies. As can be seen in Table 4,

the RMSD over the HFREQ27 set is only half that of

B3LYP and drops to 13.2 cm�1 if the anomalous F2

molecule is eliminated. (For comparison, the HFREQ27

RMSD for CCSD(T)/cc-pV(Q?d)Z is still 8.4 cm�1.) The

optimum scale factor kðxÞ ¼ 0:9971 is very close to unity,

and in conjunction with the ‘‘universal’’ ratio of 1.014

translated into kðZPVEÞ ¼ 0:9833. As a sanity check on

our procedure, we re-evaluated the kðZPVEÞ for B3LYP/6-

31G(2df,p) and B3LYP/6-311G(2d,d,p) and obtained

0.9858 and 0.9896, respectively, which agree to better than

3 decimal places with the ‘‘official’’ values used in G4

theory and CBS-QB3, respectively [63, 67].

It can be seen in Table 4 that the lower levels of theory

used for ZPVEs in G3(MP2) [61] and G3(MP2)B3, [62] can

Table 4 Dependence of computed ZPVEs (kcal/mol) on the level of theory

HF/

6-31G(d)

B3LYP/

6-31G(d)

B3LYP/

6-31G(2df,p)

B3LYP/

6-311G (2d,d,p)

B3LYP/

cc- pV(T?d)Z

B3LYP/

aug’-cc-

B3LYP/

def2- TZVPP

B2PLYP/

def2- TZVPP

G3,G3MP2 G3B3,

G3MP2B3

G4,G4MP2 CBS-QB3 W1 pV(T?d)Z

Scaling factora 0.8929b 0.9600c 0.9854d 0.9900e 0.9850f 0.9896g 0.9884g 0.9833g

HFREQ27 RMSD 88.1 74.2 39.1 34.0 34.6 30.9 31.9 16.2

(cm-1) w/o F2 86.1 73.7 36.1 33.4 32.2 27.9 29.2 13.2

Alanine 65.49 65.33 66.67 66.95 66.52 66.73 66.82 66.93

Arginine 135.38 134.90 137.67 138.21 137.38 137.92 137.99 138.18

Asparagine 83.29 82.91 84.67 85.04 84.43 84.61 84.77 84.81

Aspartic 75.42 74.74 76.40 76.78 76.19 76.41 76.51 76.55

Cysteine 66.21 65.78 67.07 67.43 66.97 67.16 67.25 67.37

Glutamic 92.52 91.94 93.99 94.41 93.75 94.01 94.14 94.20

Glutamine 100.08 99.83 101.85 102.35 101.63 101.99 102.07 102.13

Glycine 48.56 48.25 49.27 49.51 49.15 49.29 49.35 49.44

Histidine 98.15 97.65 99.83 100.23 99.61 99.97 100.07 100.02

Isoleucine 116.70 116.95 119.27 119.67 118.97 119.38 119.51 119.69

Leucine 116.63 116.91 119.14 119.60 118.90 119.30 119.45 119.68

Lysine 128.89 129.00 131.51 132.13 131.20 131.72 131.76 132.05

Methionine 100.66 100.42 102.35 102.79 102.12 102.54 102.59 102.81

Phenylalanine 115.16 115.18 117.60 118.10 117.47 117.94 117.97 117.86

Proline 87.94 87.91 89.70 90.09 89.54 89.86 89.95 89.92

Serine 69.18 68.74 70.29 70.65 70.07 70.22 70.37 70.49

Threonine 86.26 85.97 87.75 88.09 87.41 87.71 87.81 87.98

Valine 99.57 99.69 101.69 102.04 101.42 101.75 101.86 102.04

a Scaling factor kðZPVEÞ appropriate for ZPVEs. All scaling factors for harmonic frequencies kðxÞ ¼ 1:014kðZPVEÞ
b As specified in Ref. [61]
c As specified in Ref. [62]
d As specified in Ref. [63, 64]
e As specified in Ref. [67]
f As specified in Ref. [50]. Sometimes in molecules with ionic bonding character, the aug0-cc-pV(T?d)Z basis set is employed with the same

scaling factor: RMSD(HFREQ27) for that is 32.5 cm�1 including, and 29.9 cm�1 excluding F2

g Obtained in this work by minimizing the RMSD over the HFREQ27 [95] dataset. For B3LYP/cc-pV(T?d)Z, the same procedure leads

kðZPVEÞ ¼ 0.9892. For B2PLYP near the basis set limit, Ref. [95] has kðxÞ ¼ 0:997, which corresponds to kðZPVEÞ ¼ 0.983
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yield values several kcal/mol lower than the highest-level

method: the RMSD from B2PLYP/def2-TZVPP are 2.12 and

2.29 kcal/mol, respectively, compared to 0.33 and 0.14 kcal/

mol, respectively, for B3LYP/6-31G(2df,p) (scaled by

0.9854) as used by the G4 variants, and B3LYP/6-

311G(2d,d,p) as used by CBS-QB3. (The ‘‘2d’’ refers to the

use of an extra d function on second-row elements.) But also

B3LYP/cc-pV(T?d)Z scaled by 0.985, as used in W1- and

W1-F12 theory, appears to yield values that are too low, and

indeed kðZPVEÞ as obtained from the HFREQ27 set is

0.9892. For B3LYP with a basis set that is effectively at the

Kohn-Sham limit, kðZPVEÞ = 1.004 was found, which

corresponds to kðZPVEÞ = 0.99, and the database of Radom

and coworkers [90] likewise lists scaling factors near 0.99 for

B3LYP with large basis sets. While a scaling factor of 0.985

vs. 0.990 may rightly be considered a distinction without a

difference for small molecules (where anybody concerned

about 0.1 kcal/mol in a ZPVE should seriously consider an

accurate anharmonic ZPVE), the problem is much more

obvious in larger systems such as presently considered.

For one system, glycine, an anharmonic value of

49.438 kcal/mol is available due to Puzzarini and cowork-

ers [81], who combined CCSD(T)/CBS harmonic frequen-

cies with a DFT anharmonic force field. Fortuitously, our

scaled B2PLYP/def2-TZVPP value agrees to two decimal

places. As an additional observation, for ethane, the accu-

rate anharmonic ZPVE is 46.29 kcal/mol, [91] compared to

45.97 kcal/mol B3LYP/cc-pVTZ scaled by 0.985, 46.20

with a revised scaling factor of 0.99, and 46.33 kcal/mol at

the B2PLYP/def2-TZVPP level scaled by 0.9833.

3.4 Performance of Gn methods for the heats

of formation of the amino acids

In this Section we use our best heats of formation from W1-

F12 and W2-F12 theories (given in Table 3) to evaluate the

performance of a variety of composite thermochemical

Gaussian-n (Gn) procedures including G3(MP2), [61]

G3(MP2)B3, [62], G4, [63] G4(MP2), [64] and G4(MP2)-6X

[65]. Table 5 presents the deviations (Gn–Wn-F12) from our

benchmark Wn-F12 results, as well as the RMSD, mean

absolute deviations (MAD), and mean signed deviations

(MSD) for the Gn methods. Stover et al. [17] obtained

G3(MP2) heats of formation for the amino acids: except for

phenylalanine, cysteine, and methionine, the deviations

between their heats of formation and our reference values

exceed 1 kcal/mol. The mean signed deviation (MSD) of

1.90 kcal/mol being nearly equal to the RMSD of 2.25 kcal/

mol indicates a very systematic error. Simply switching to

G3(MP2)B3 cuts the MSD to 0.78 kcal/mol and the RMSD to

1.13 kcal/mol, while ‘‘upgrading’’ to G3B3 lowers these

numbers even further to 0.45 and 0.60 kcal/mol, respectively.

While both methods use MP2 rather than B3LYP reference

geometries, the entire G3 family suffers from underestimated

ZPVEs for the amino acids (Table 4), so apparently some of

that issue is absorbed by the empirical correction. Stover et al.

[17] also obtained G3(MP2) heats of formation via isodesmic

bond separation reactions. As expected this improves the

performance, with RMSD = 1.48 kcal/mol and a maximum

deviation of 2.40 kcal/mol for phenylalanine. We note,

however, that their CCSD(T)/CBS anchor value for the heat

of formation at room temperature of glycine, �92.6 kcal/

mol, is 1.5 kcal/mol lower than our W2-F12 value. If we

substitute the latter in their isodesmic reactions, their RMSD

plunges to just 0.47 kcal/mol.

We now turn our attention to the performance of the

Gaussian-4 family: G4, [63] G4(MP2), [64] and G4(MP2)-

6X [65]. The G4(MP2) procedure exhibits somewhat dis-

appointing performance, its RMSD = 1.80 kcal/mol plac-

ing intermediately between G3(MP2) and G3(MP2)B3.

The largest deviations are obtained for asparagine (2.48),

lysine (2.32), glutamine (3.15), and arginine (3.34 kcal/

mol), but all other deviations exceed 1 kcal/mol apart from

phenylalanine, cysteine, and methionine. The computa-

tionally more expensive ‘‘full’’ G4 procedure yields much

better performance with an RMSD of 0.72 kcal/mol, and

just three cases exceeding 1 kcal/mol (glutamine 1.39,

arginine 1.21, and lysine 1.37 kcal/mol). However, an

essentially identical RMSD = 0.71 kcal/mol is afforded by

the G4(MP2)-6X procedure, which involves the same

computational steps and cost as G4(MP2) but entails six

additional empirical scaling factors. Deviations larger than

1 kcal/mol are obtained for just four systems, namely

arginine (1.63), glutamine (1.63), asparagine (1.10), and

methionine (�1.02 kcal/mol). Finally, we note that the

CBS-QB3 method clocks in at RMSD = 1.01 kcal/mol.

Very recently, Ramabhadran et al. [21] determined the

enthalpies of formation of cysteine and methionine using

their connectivity-based hierarchy (CBH-n) approach [77,

78]. From their Table 3, the best enthalpies of formation

obtained for the lowest-energy conformer at the CBH-2

(isoatomic) rung using experimental heats of formation for

the reference species and CCSD(T)/6-311??G(3df,2p)

reaction energies are �96.1 (cysteine) and �104.3

(methionine) kcal/mol. From their Table 7, we calculate

conformer corrections of ?0.77 kcal/mol for cysteine and

?0.37 kcal/mol for methionine: The latter we actually use

in the present work, while the former is slightly less than

our own calculation of 0.81 kcal/mol. According to their

Table 9, the heats of formation after conformer correction

are �95.3 and �104.0 kcal/mol (the latter value presum-

ably after roundoff), both more exothermic than our W2-

F12 values (Table 3) of �94.5 and �102.4 kcal/mol. We

do note that some of the experimental data for reference

species used in Ref. [21] carry non-trivial uncertainties,

which could account for at least some of the discrepancy.
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3.5 Comparison with experiment

Comparison with experiment obviously entails thermal cor-

rections. The RRHO approximation will cause some errors,

the largest of which will be neglect of the population of the

various low-energy conformers. If we neglect the difference

between the rovibrational partition functions of the different

conformers, then the conformer contribution to the enthalpy

function hcf298 � HT¼298 � E0 is easily found as [96]

hcf298conf ¼
P

i xi expð�xiÞP
i expð�xiÞ where xi � Ei�E0

RT
ð2Þ

where the index i runs over the conformers. The effect of

accounting for different rovibrational partition functions in

the different conformers was considered in Ref. [96] for the

alkane conformers and is negligible compared to other

potential error sources in the present calculation, such as

the neglect of anharmonicity and the uncertainty in the

basis set extrapolation. Conformer energies were gathered

from published calculations in the literature [21–24, 81,

100–112]: these range from complete basis set

CCSD(T) studies for glycine [81] and alanine [24] to rel-

atively low-level MP2 or DFT calculations for some other

species. Details are given in the footnotes to Table 3.

Table 6 lists the available experimental gas-phase heats

of formation at 298 K (DH�f ;298). Our W2-F12 value for

alanine (�101.5 kcal/mol) is spot on the experimental

value of Dorofeeva and Ryzhova [97] (�101.5� 0.5 kcal/

mol) and still agrees to within mutual uncertainties with

that of da Silva et al. [15] (�101.9� 0.7). However, the

NIST chemistry WebBook [79] value (�99.1� 1.0 kcal/

mol) is clearly incompatible with our calculations.

Table 5 Performance of a selection of composite procedures of the Gn family for the calculation of heats of formation (Df H
�
298K , exclusive of

conformer correction) of the 18 amino acids in Table 3

CBS-QB3 G3(MP2)a G3(MP2)b G3(MP2)B3c G3B3c G4(MP2)c G4(MP2)-6Xc G4c

Alanine -0.41 1.74 1.24 0.48 -0.44 1.04 -0.02 0.25

Arginine 0.99 N/A 4.61 2.74 0.32 3.34 1.63 1.21

Asparagine -0.64 1.35 2.75 1.44 -0.55 2.48 1.10 0.67

Aspartic acid -1.70 0.58 1.28 -0.01 -1.55 1.64 0.09 0.20

Cysteine -0.75 1.71 0.91 0.05 0.03 0.39 0.15 0.47

Glutamine 0.20 N/A 3.11 2.04 0.06 3.15 1.63 1.39

Glutamic acid -0.91 1.08 1.58 0.29 -1.17 1.92 0.19 0.54

Glycine -0.46 N/A 2.69 0.76 -0.09 1.22 0.38 0.51

Histidine 0.24 N/A 4.26 1.27 0.06 1.60 0.44 0.29

Isoleucine 0.86 1.30 1.00 0.52 -0.43 1.21 -0.46 0.37

Leucine 1.02 1.54 1.14 0.69 -0.18 1.26 -0.41 0.49

Lysine 1.50 N/A 2.65 1.74 0.53 2.32 0.61 1.37

Methionine -0.54 1.17 0.27 -0.37 -0.37 -0.26 -1.02 -0.23

Phenylalanine 2.23 2.40 0.30 -0.47 0.29 0.68 -0.13 0.85

Proline 0.87 0.68 2.08 1.18 0.13 1.94 0.46 0.95

Serine -1.16 1.52 1.52 0.50 -0.75 1.47 0.11 0.39

Threonine -0.81 1.76 1.76 0.74 -0.73 1.86 0.34 0.58

Valine 0.39 1.52 1.12 0.47 -0.49 1.14 -0.32 0.31

RMSDc 1.01 1.48 2.25 1.13 0.60 1.80 0.71 0.72

MADc 0.87 1.41 1.90 0.88 0.45 1.61 0.53 0.62

MSDc 0.05 1.41 1.90 0.78 -0.30 1.58 0.27 0.59

LDc 2.23 2.40 4.61 2.74 -1.55 3.34 1.63 1.39

Phe Phe Arg Arg Asp Arg Arg, glu Glu

NDc 6 11e 14 6 2 15 4 3

The values listed are deviations (Gn–Wn-F12) from our benchmark W1-F12 and W2-F12 heats of formation (kcal/mol)
a From reference [17], obtained from isodesmic reactions
b From reference [17], obtained from atomization reactions
c This work
d RMSD = root mean square deviation, MAD = mean absolute deviation, MSD = mean signed deviation, LD = largest deviation, ND =

number of deviations (in absolute value) exceeding 1 kcal/mol
e Out of a total of 13 determinations
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Our W2-F12 heat of formation for cysteine (�94.2 kcal/

mol) suggests that the experimental value of Roux et al.

[19] should be revised downward by about 2.8 kcal/mol;

the recent study of Ramabhadran et al. [21] suggests even

further downward revision (vide supra). As for glycine, the

W2-F12 heat of formation (�94.1 kcal/mol from W2-F12,

�94.0 from quasi-W4) and the available experimental

values agree to within overlapping uncertainties. Specifi-

cally, our calculations are spot on the experimental value of

Dorofeeva and Ryzhova [97] (�94.1� 0.4 kcal/mol), just

slightly below the experimental value from the CRC

Handbook (�93.7 kcal/mol), and in the upper end of the

uncertainty band of the NIST WebBook value

(�93.3� 1.1 kcal/mol). Our W2-F12 value for methionine

(�102.4 kcal/mol) agrees well with the new measurement

of Roux et al. [18] (�102.8� 2.4 kcal/mol), and both

imply a downward revision of the NIST Chemistry Web-

book value (�98.8� 1.0 kcal/mol) by about 3–4 kcal/mol.

As for phenylalanine, our W1-F12 value (�76.9 kcal/mol)

suggests that the experimental value from the CRC

Handbook (�74.8 kcal/mol) should be revised downward

by about 2 kcal/mol. The W1-F12 values for proline

(�92.8 kcal/mol) and valine (�113.6 kcal/mol) suggest

that the experimental values should be revised downward

by about 5 kcal/mol (Table 6).

For the two largest amino acids, tryptophan and tyro-

sine, we were unable to calculate W1-F12 atomization

energies. At the G4, CBS-QB3, and G4(MP2)-6X levels,

respectively, we obtain heats of formation at 0 K for

tryptophan of �49.60, �47.87, and �48.77 kcal/mol, and

for tyrosine of �109.12, �108.58, and �108.49 kcal/mol.

At room temperature, the corresponding values are �59.98,

�58.27, and �58.98 kcal/mol for tryptophan and �118.56,

�118.03, and �117.78 kcal/mol for tyrosine. Averaging

over all three levels of theory, and adding in conformers

corrections for tryptophan of 0.71 kcal/mol [111] and for

tyrosine of 0.65 kcal/mol, we finally obtain estimated heats

of formation at 298 K of �58.37 kcal/mol for tryptophan,

and of �117.47 kcal/mol for tyrosine.

4 Conclusions

We have obtained benchmark heats of formation at the

CCSD(T)/CBS limit for the 20 natural amino acids. Our

best heats of formation at 298 K (DH�f ;298) are �101.5

(alanine), �98.8 (arginine), �146.5 (asparagine), �189.6

(aspartic acid), �94.5 (cysteine), �151.0 (glutamine),

�195.5 (glutamic acid), �94.0 (glycine, quasi-W4) or

�94.1 (glycine, W2-F12), �69.8 (histidine), �118.3 (iso-

leucine), �118.8 (leucine), �110.0 (lysine), �102.4

(methionine), �76.9 (phenylalanine), �92.8 (proline),

�139.2 (serine), �149.0 (threonine), and �113.6 (valine)

kcal/mol. These heats of formation are obtained at the W2-

F12 level for alanine, cysteine, glycine, methionine, and

serine, and at the W1-F12 level for all of the rest. For the

two largest amino acids, an average over G4, G4(MP2)-6X,

and CBS-QB3 yields best estimates of �58.4 kcal/mol for

tryptophan, and of �117.5 kcal/mol for tyrosine.

Uncertainties caused by issues with the zero-point

vibrational energy and the conformer corrections rival, and

probably exceed, those directly related to the electronic

structure treatment. The overall uncertainty is somewhat

difficult to quantify, but a semi-quantitative estimate would

range from about �0.5 kcal/mol for the smaller, to about

�1 kcal/mol for the larger, amino acids.

For glycine, by way of validation, we were able to

obtain a ‘‘quasi-W4’’ result corresponding to TAEe ¼
968:1;TAE0 ¼ 918:6;DH�f ;298 = �90.0, and DH�f ;298 =

�94.0 kcal/mol.

Our best theoretical values suggest that the experimental

gas-phase heats of formation from the NIST WebBook

should be revised downward by 2.4 (alanine), 0.7–0.8

(glycine), 3.2 (methionine), and 5.3 (proline) kcal/mol.

Similarly, we suggest that the experimental values from the

Table 6 Experimental gas-phase heats of formation at 298 K for the

amino acids (kcal/mol)

Df H
�
298K Expt.a Uncert. Best theor.b

Alanine -99.1 1.0 -101.5

-101.5c 0.5

-101.9d 0.7

-101.3e

Cysteine -91.4f 0.4 -94.2

Glycine -93.3 1.1 -94.1, -93.97h

-94.1c 0.4

-93.7e

Methionine -98.8 1.0 -102.4

-102.8g 2.4

Phenylalanine -74.8d,e -76.9

Proline -87.5 1.0 -92.8

Valine -108.8e -113.6

a Values are taken from the NIST chemistry WebBook, [79] unless

otherwise indicated
b From Table 3
c From Dorofeeva and Ryzhova [97]
d From da Silva et al. [15]
e From CRC Handbook [80]
f From Roux et al. 2010 [19]
g From Roux et al. 2012 [18]
h Quasi-W4 value including anharmonic ZPVE and estimated higher-

order correlation correction (see Table 3 and text)
i Note that in the CRC Tables, the value for L-alanine (111.4 kcal/

mol) seems to have been transposed with the value for b-alanine

(101.3 kcal/mol)
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CRC Handbook should be revised downward by 0.4 (gly-

cine), 2.0 (phenylalanine), and 4.8 (valine) kcal/mol. Our

best theoretical values are in good agreement with the

recently reported experimental values of Roux and

coworkers for alanine [15] and methionine, [18] but sug-

gest that their experimental value for cysteine should be

revised downward by 2.8 kcal/mol. Finally, our best the-

oretical values for alanine and glycine are in excellent

agreement with the recent values of Dorofeeva and Ryzh-

ova [97].

Using our W1-F12 and W2-F12 benchmark heats of

formation, we benchmark the performance of the empirical

composite Gn procedures. We obtain the following

RMSDs: 2.25 (G3(MP2)), 1.13 (G3(MP2)B3), 0.60

(G3B3), 1.80 (G4(MP2)), 0.71 (G4(MP2)-6X), and 0.72

(G4) kcal/mol. Particularly G4(MP2)-6X appears to offer

an excellent performance-to-computational cost ratio.

Finally, it appears that for W1- and W1-F12, the scaling

factor for the B3LYP/cc-pV(T?dZ)Z or B3LYP/aug’-cc-

pV(T?d)Z zero-point vibrational energy should be revised

upward to 0.990.

5 Supporting information

B3LYP/A’VTZ optimized geometries for the species con-

sidered in the present work (Table S1). Full references for

ref [40] (Gaussian 09) and ref [41] (Molpro 2010) (Table

S2). B2PLYP/def2-TZVPP harmonic frequencies for all

amino acids except tryptophan and tyrosine, and B3LYP/

aug’-cc-pV(T?d)Z frequencies for all amino acids.
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Note added in revision For nine of the amino acids, we were able to

compute correlation corrections to the DBOC at the CCSD/cc-pVDZ

level using the CFOUR package [98, 99]. (We have shown earlier [91]

that the correlation contribution to DBOCs converges very rapidly with

the basis set.) They uniformly reduce the DBOCs: values are Gly-0.10,

Ala -0.13, Ser -0.14, Cys -0.13, Asn -0.16, Asp -0.15, Pro -0.16,

Thr -0.17, and Val -0.18 kcal/mol. Linear regression through the

origin reveals that DBOC[CCSD] *0.642 DBOC[HF]: This suggests

TAE reductions of up to 0.26 kcal/mol (arginine) for the remaining

amino acids if correlation were included in the DBOC. Once again, this

highlights that the nuclear motion, rather than the clamped-nuclei

electronic structure, is the accuracy-limiting factor here.
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Abstract The equilibrium energies of the ~Xð1A1Þ,
~að3B1Þ, ~Að1B1Þ and ~Bð21A1Þ states of diiodomethylene

(CI2) and its atomization and dissociation energies in the

complete basis limit were determined by extrapolating

valence correlated (R/U)CCSD(T) and Davidson corrected

multi-reference configuration interaction energies calcu-

lated with the aug–cc–pVxZ (x = T, Q, 5) basis sets and

the ECP28MDF pseudopotential of iodine plus corrections

for core and core-valence correlation, scalar relativity,

spin–orbit coupling and zero-point energies. The geome-

tries and vibrational frequencies were obtained at the

CCSD and complete active space second-order perturba-

tion theory levels of theory with the cc–pVTZ basis. Spin–

orbit energies were computed in a large basis of configu-

rations chosen so as to accurately describe dissociation to

the 3P and 2P states of C and I, respectively. These com-

putations were extended to iodomethylene (CHI) and

iodomethylidyne (CI), resulting in small corrections to the

thermochemistry and the singlet–triplet gap of CHI com-

puted previously. The onset (T00) of the ~A ~X excitations

in CI2 is predicted to be 12,680 cm-1. The Renner–Teller

intersection is computed to have a substantially lower

energy (6.5 kcal mol-1) than the dissociation barrier on the
~A surface, thus internal relaxation via Renner–Teller cou-

pling is expected to be the dominant photochemical

channel. The predicted enthalpies of formation of CI2, CHI

and CI in their ground states at 0 K are 109.1 ± 1,

102.8 ± 1 and 132.9 ± 1 kcal mol-1, respectively. The

computed singlet–triplet gaps in CI2 and CHI are 11.1 and

4.4 kcal mol-1, respectively.

Keywords Iodocarbene � Enthalpy of formation �MRCI �
Singlet–triplet splitting � Renner–Teller effect � Electronic

excitation

1 Introduction

Carbenes are a fascinating class of chemical species! My

own interest in this area was first inspired by Shi Shavitt’s

seminar on methylene in 1979—the material presented was

subsequently published as a review article in Tetrahedron

[1]. It is a comprehensive summary of the most important

experimental and theoretical determinations of the geometry

and singlet–triplet splitting in methylene to date, i.e. 1984. I

have read that paper many times. Its clarity is typical of

Shavitt’s publications, where pioneering research was

beautifully presented and discussed. It is an honour to con-

tribute a piece of work on carbenes to this memorial issue that

honours the life and scientific contributions of Isaiah Shavitt.

Carbenes are prominent in synthetic and polymer

chemistry as well as in interstellar and atmospheric

chemistry [2–5]. The great interest stems largely from the

chemical differences between singlet and triplet carbenes,

particularly in their reactivity and rich spectroscopy and

photochemistry. The latter were recently discussed and

summarized in a review by Kable et al. [6]. Laser-induced

fluorescence (LIF) studies in particular have yielded a

wealth of structural and spectroscopic data as well as useful

information on the nature of the potential energy surface of

the excited ~A state, such as barriers to dissociation and
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Renner–Teller (RT) intersections. The latter occur at linear

geometries where the singlet ~X and ~A states become

degenerate (in the Born–Oppenheimer approximation). The

RT coupling of these states provides a relaxation mecha-

nism for carbenes in their excited singlet states via internal

conversion. The relative heights of the barriers to dissoci-

ation and linearity will therefore determine whether pho-

todissociation would occur.

The interesting and unusual properties of carbenes stem

from their open-shell electronic configurations, whereby

two non-bonding valence electrons occupy two near-

degenerate orbitals. The latter are effectively an in-plane

sp2 hybrid and an out-of-plane 2p atomic orbital on the

carbon atom. Thus, several near-degenerate electronic

states can arise. In the case of CI2 (as in all halocarbenes)

in the ~Xð1A1Þ ground state, the two electrons occupy the

same a1 molecular orbital, giving rise to a closed shell

configuration, whereas the excited ~að3B1Þ and ~Að1B1Þ states

correspond to triplet and singlet spin-coupled a1b1 config-

urations, respectively. The ~B state, observed recently in a

number of carbenes [6–9], is dominated by the b2
1 config-

uration. Although in many carbenes the singlet is the

ground state, there are exceptions. Most notably, in meth-

ylene, the 3B1 state lies 9.0 kcal mol-1 lower in energy

than the 1A1 state [10]. (In general, electronegative sub-

stituents give rise to singlet ground states, while electro-

positive substituents produce triplet ground states.)

Our group has already studied all the fluoro-, chloro-

and bromo-carbenes [11–16]. We used the complete active

space self-consistent field (CASSCF) method as well as

complete active space second-order perturbation theory

(CASPT2) and multi-reference configuration interaction

(MRCI) approaches to compute the geometries, force

constants, and vibrational frequencies of the (singlet) ~X and
~A states as well as the (triplet) ~a states. Our theoretical

studies of most of these carbenes were carried out specif-

ically to complement LIF studies that were pursued in our

laboratories by Kable et al. [6]. In addition to the deter-

mination of spectroscopic constants, the spectroscopic and

theoretical studies considered dynamics on the ~A surfaces,

i.e. whether photodissociation or internal conversion to the

ground state would occur.

Iodocarbenes represent an additional computational

challenge, inasmuch as spin–orbit coupling effects are

expected to be substantially more important than even in

bromocarbenes, given that the spin–orbit splitting in the

iodine atom is 21.7 kcal mol-1, roughly twice what it is in

Br (10.5 kcal mol-1) [17]. While in molecules there is

substantial orbital angular momentum quenching, as found

in our previous work [18] on CBr, CI, CHBr and CHI too,

the large spin–orbit stabilization that occurs, e.g. on C–I

bond breaking may actually result in a barrier to dissoci-

ation that could lie below the energy of the RT intersection.

Thus, spin–orbit coupling may not only affect the energy of

the barrier, but the qualitative photochemical behaviour of

an iodocarbene.

There is very little experimental information on iodo-

carbenes, thus high quality quantum chemical studies are all

the more important. The only spectroscopic data on iodo-

carbenes come from the negative ion photoelectron work of

the Lineberger group [19, 20] and more recently the fluo-

rescence excitation and emission spectroscopic studies of

CHI and CDI by Tao et al. [21, 22]. In particular, a value of

-1 ± 3 kcal mol-1 was deduced for the singlet–triplet gap

in CI2 from the photoelectron experiments [20], the nega-

tive value implying a triplet ground state. Subsequent

quantum chemical calculations by Hajgató et al. [23] and by

Hargittai et al. [24, 25], however, contradicted this, pre-

dicting that in CI2 the ground state is singlet, lying by

*9 kcal mol-1 below the triplet, in qualitative agreement

with earlier calculations [26–28]. CHI also has a singlet

ground state. The most recent computed value of the sin-

glet–triplet splitting is 3.70 kcal mol-1 [18], in good

agreement with the experimental lower bounds of 3.76 and

4.1 kcal mol-1, as determined by Tao et al. [21, 22]. Sim-

ilar values were obtained by Hajgató et al. [23] as well as in

several earlier computations [28–31].

This paper reports the results of quantum chemical

computations on the ~Xð1A1Þ, ~að3B1Þ, ~Að1B1Þ and ~Bð21A1Þ
states of CI2, including characterization of the barriers to

dissociation and to linearity and its atomization energy that

in turn enables the prediction of its enthalpy of formation.

Several additional excited states (3A2, 1A2, 3B2, 1B2, 3Pu

and 1Pu) that lie in the same region of energy as the ~A and
~B states are also characterized, although at a lower level of

theory than the latter. As in previous work of ours [16, 18]

and of other workers [32–34], the strategy is to obtain

accurate valence-correlated energies in a hypothetical

complete basis set (CBS) limit, which are further corrected

for core and core-valence correlation, scalar relativistic,

spin–orbit coupling, zero-point vibration and thermal

effects, as described below. This approach, when applied to

the heats of formation of CHBr and CBr [18], was found to

be of comparable in accuracy to the earlier work of Dixon

et al. [32] and of Oren et al. [33].

2 Theory and computational methods

The highest correlated level of theory employed for the

~Xð1A1Þ and ~að3B1Þ states is the singles and doubles coupled

cluster theory with perturbational treatment of triples, viz.
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(R/U)CCSD(T) [35–37], where (R/U) indicates that for the

triplet state, a restricted open-shell reference state is used,

but the coupled cluster equations are solved using the

unrestricted formalism [37–39]. For the ~Að1B1Þ, ~Bð2 1A1Þ
and higher states the (singles plus doubles) MRCI method

[40, 41] was used with Davidson’s correction [42] for

quadruple excitations, denoted MRCI ? Dav. The corre-

lation consistent basis sets of Dunning and co workers

[43–47], ranging from cc–pVTZ to aug–cc–pV5Z and

cc–pwCVQZ, have been employed in these calculations.

For iodine, the ECP28MDF small-core relativistic

pseudopotential (PP) was used (which accounts for the

1s2…3d10 core), along with the aug–cc–pVxZ-PP (x = T,

Q, 5) and cc–pwCVQZ–PP basis sets [47].

The geometries and frequencies of the singlet ground

and triplet ~að3B1Þ states were computed using the CCSD

method, while for all other states, including transition

states, CASPT2 [48–50] (with a full-valence CASSCF

reference) was employed, all using the cc–pVTZ basis sets,

along with the ECP28MDF PP for I with the appropriate

cc–pVTZ–PP basis [51]. No scaling was applied to the

computed frequencies.

The ~að3B1Þ � ~Xð1A1Þ adiabatic energy gap was calcu-

lated at the valence correlated (R/U)CCSD(T) as well the

MRCI ? Dav levels of theory, using the aug–cc–pVxZ

basis sets, where x = T, Q, 5. All other excitation energies,

including that of the ~Að1B1Þ  ~Xð1A1Þ transition, were

evaluated at the MRCI ? Dav level of theory. The inter-

nally contracted MRCI calculations are based on full-

valence (18 active electrons in 12 active orbitals) CASSCF

reference states and include all single and double excita-

tions from the valence orbitals. The total valence-corre-

lated energies of the various molecular states and of their

constituent atoms in their ground states were extrapolated

to the complete basis set (CBS, x = ?) limit, so CBS

limits of the adiabatic excitation and atomization energies

could be deduced. The x-3 extrapolation scheme [52] was

used, i.e. application of the equation

E xð Þ ¼ Aþ Bx�3 ð1Þ
where the constants A [=E(?)] and B are determined by

fitting the last two energies in a given sequence, e.g. x = 4,

5. The full CBS energies contain further corrections for

core–core and core-valence (CV) correlation, scalar rela-

tivistic effects and spin–orbit coupling.

The CV correlation contributions were computed at the

MRCI ? Dav level of theory using the cc–pwCVQZ basis

sets, where the CASSCF reference states were obtained by

employing an active space of six electrons in six active

orbitals. Unfortunately, MRCI calculations with a full-

valence CASSCF reference state with all electrons corre-

lated proved to be too demanding computationally, hence

the truncation of the active space. CV correlation correc-

tions for the ~X and ~a states were computed also at the

(R/U)CCSD(T) level of theory.

The scalar relativistic (SR) corrections were calculated

by the second-order Douglas–Kroll–Hess (DKH2) method

[53–57] at the (U/R)CCSD(T) or MRCI level of theory in

conjunction with the all-electron aug–cc–pVQZ–DK2 basis

sets that had been recently developed for iodine [58]. The

SR contributions, as computed here, account for the scalar

relativistic effects on carbon as well as corrections for the

PP approximation for iodine. Note, however, that the

Stuttgart–Köln PPs that are used in this work include Breit

corrections that are absent in the Douglas–Kroll–Hess

approach [58].

Spin–orbit (SO) interaction energies were calculated by

diagonalization of the SO Hamiltonian (containing both

electronic and SO coupling contributions) in a basis of

selected CASSCF or MRCI configurations [59]. In this

work, the SO matrix elements were computed using the

ECP28MDF PP for iodine and via the Breit–Pauli operator

for carbon. The SO energies will of course depend on the

number and type of basis states (configurations) that are

used to construct the SO matrix.

By way of illustration, let us consider iodomethylidyne

(CI) that has a 2P ground state. At the minimal level, the

SO splitting is described by considering the interaction

between the degenerate set of 2PðMS ¼ �1=2Þ configu-

rations. At the internuclear distance of 3.86 a0 (that is

approximately the equilibrium bond length), the doubly

degenerate eigenvalues are ±409 cm-1 relative to the

unperturbed ground state MRCI energy, i.e. corresponding

to a DELS of -409 cm-1 and a SO splitting of 818 cm-1.

Enlarging the set of basis states so that it includes all

doublet states that can be constructed from the 3P states

of C and 2P states of I, i.e. a total of nine distinct con-

figurations, each with a spin multiplicity of 2, results in a

SO energy lowering of -460 cm-1 and a splitting of

857 cm-1. Adding the nine quartet states to this set (i.e. a

total of 18 states) yields a SO lowering of -600 cm-1

and a splitting of 808 cm-1. However, as the data in

Fig. 1 shows, DELS now has the correct asymptotic

behaviour, i.e. at large R, the SO energy shift is that of an

I atom: *-2,300 cm-1. The inclusion of the extra states

that arise from the interaction of the 1S and 1D states of C

with the 2P state of I, i.e. a total of 36 states, results in

only a relatively small change to the energy which is now

659 cm-1 below the unperturbed energy. The corre-

sponding SO splitting is 841 cm-1. Except at short dis-

tances, the MRCI-18 and MRCI-36 values are essentially

the same, as shown in Fig. 1. Note that the CASSCF

results agree closely with the MRCI values. At the

equilibrium geometry in particular, the SO energy
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predicted by CASSCF-36 is -698 cm-1, just 29 cm-1

lower than the MRCI-36 value. It is worth noting that the

SO splitting is very stable, the maximum variation is just

23 cm-1. The analogous treatment of iodine oxide IO at

its equilibrium geometry has resulted in a SO splitting of

1,808 cm-1, in good agreement with the experimental

value of 2,091 cm-1 [60], as well as the computed values

of 1,683 cm-1 [61] and 1,827 cm-1 [47].

In the case of CI2, the aim was to include all singlet,

triplet and quintet states that arise from the interaction of

the 3P states of C and 2P states of the I atoms. In C2v

symmetry, this would correspond to 27 singlets, 54 triplets

and 27 quintets that would lead to a SO matrix of dimen-

sions 27 ? 54 9 3 ? 27 9 5 = 324. As MOLPRO cur-

rently has an upper limit of 200, the number of states was

reduced to include 27 singlets, 31 triplets and 16 quintets

by leaving out the high energy triplets and quintets. Test

calculations have shown that convergence is reasonably

rapid, so neglecting the high energy triplets and quintets is

unlikely to degrade the quality of the results. Furthermore,

all SO calculations on CI2 were carried out using CASSCF

wave functions, but replacing the CASSCF unperturbed

diagonal energies with CASPT2 energies, although the

effects of such a procedure on the SO energies are fairly

minor, *10 %.

For a clear and comprehensive discussion of SO cou-

pling in C2v molecules (in particular in methylene and di-

hydrides of other group IV atoms), the reader is referred to

the paper by Matsunaga et al. [62]. As explained there, the

SO-coupled components of a 3B1 state transform as A1, A2

and B2, since the three components of the triplet spin

functions (aa ? bb, aa - bb and ab ? ba) in a C2v

molecule transform as B1, B2 and A2, respectively. The SO-

coupled states are thus denoted 3B1(A1), 3B1(A2), 3B1(B2),

where the symbols in parentheses denote the total sym-

metry. Thus, SO coupling gives rise to mixing of the
3B1(A1) and 1A1(A1) states and an avoided crossing, as

demonstrated in the next section. (The singlet ab - ba
spin function transforms as A1.)

The heat of formation of CI2 in its ground state at 0 and

298 K was determined from computed enthalpies of

atomization and experimental heats of formation of the

atoms [17]. The atomization energies and enthalpies at

the specified temperatures were obtained from the full

(R/U)CCSD(T)/CBS energies of CI2 and its constituent

atoms, which include CV, SR, SO, zero-point and thermal

corrections.

All computations were performed using the MOLPRO

2009 [63] and MOLPRO 2012 [64] codes on the super-

computer facility of the National Computational Infra-

structure (NCI) National Facility at the Australian National

University, Canberra.

3 Results and discussion

3.1 The ~Xð1A1Þ, ~að3B1Þ and ~Að1B1Þ states of CI2

Qualitative potential energy surfaces representing the

dissociation

CI2
1A1;

3 B1;
1 B1

� �! CI ð2PÞ þ I 2P
� � ð2Þ

are shown in Fig. 2. These were computed at the CASPT2/

cc–pVTZ level of theory, with and without SO coupling

(with one C–I distance and the bond angle frozen at the

ground state equilibrium values, as given in Table 1). The

importance of SO coupling is obvious, especially close to

Fig. 1 Distance dependence of SO correction in iodomethylidyne

(CI) computed at MRCI/cc–pVTZ level of theory. The SO Hamil-

tonians were constructed in bases of 2, 9, 18 and 36 electronic states,

as indicated and as discussed in text. One set of results obtained at the

CASSCF level is shown for comparison (broken line)

Fig. 2 CI2: C–I distance dependence of total energies of lowest

electronic states with SO coupling (full lines) and without it (dotted

lines) computed at CASPT2/cc–pVTZ level of theory. The SO

energies were computed using CASSCF. The other C–I distance and

bond angle are kept fixed at their ground state equilibrium values, as

given in Table 1
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dissociation, as noted indeed for CI (see Fig. 1). Clearly, as

foreshadowed in the Sect. 1, SO coupling is responsible for

the presence of a (small) barrier to recombination on the
~Að1B1Þ surface. In the equilibrium regions, the distance

dependence of the SO energy in both CI2 and CI is quite

weak, so neglecting its effects on geometries and fre-

quencies is justified.

The bond angle dependence of the energies in CI2 is

illustrated in Fig. 3, computed at the CASSCF/cc–pVTZ

level for the lowest three electronic states (with the C–I

distances frozen at the triplet equilibrium values). SO

effects play a critical role in the singlet–triplet crossing

region. The lowest energy 1A1(A1) surface, obviously cor-

responding to the singlet ground state at angles smaller

than about 120�, morphs into the 3B1(A1) component of the

triplet as the bond angle increases, with no minimum in the

triplet region. The doubly degenerate 3B1(B2, A2) surface

has a minimum (essentially at the same geometry as the

triplet surface with no SO coupling) and this is then taken

as the equilibrium structure and energy of the triplet state.

The higher energy surface with A1 total symmetry corre-

sponds to a triplet to singlet morphing, which has a well-

defined minimum at *127�. This state has not been fully

characterized in this work.

The computed geometries, harmonic vibrational fre-

quencies of the ~Xð1A1Þ, ~að3B1Þ and ~Að1B1Þ states of CI2 as

well as of the two saddle points of interest on the ~A surface

are summarized in Table 1, where the ~a state is taken to be

the 3B1(B2, A2) state. A breakdown of the individual

energetic effects of the CBS extrapolation process, CV

correlation, scalar relativity, SO coupling and zero-point

energy are given in Table 2. The computed SO energies for

CI2 (along with CI and CHI) are listed in Table 3. The

energies of all stationary points on the potential energy

surfaces that are studied in this work are summarized in

Fig. 4.

As for carbenes in general, the most noticeable differ-

ences in the geometries of CI2 are the shorter bond lengths

and larger bond angles in the excited states than in the

ground state. These differences are reflected in the larger

stretching and lower bending force constants and fre-

quencies in the excited states. The computed geometries

and frequencies of the ground and lowest triplet states are

consistent with the theoretical literature values [23–25].

3.2 Singlet–triplet splitting in CI2 and CHI

The computed singlet–triplet splitting of 11.1 kcal mol-1

in CI2 is higher by *2.5 kcal mol-1 than what had been

calculated before [23–25]. This is partly due to the more

thorough treatment of basis set enlargement and CV cor-

Table 1 Computed geometries, harmonic vibrational frequencies, excitation and dissociation energies of CI2 (based on CBS energies from

Table 2)

~Xð1A1Þ ~að3B1Þ ~Að1B1Þ ~Að1DgÞ ~Að1B1Þ ~Bð2 1A1Þ
Eqm Eqm Eqm Linear Barrier to dissociation Linear

RC–I/Å 2.104 2.040 2.032 1.958 2.050, 2.871 1.959

h/� 112.1 132.6 133.5 180.0 119.2 180.0

x1/cm-1 512.9 427.6 367.5 221.7 97.9i 207.4

x2/cm-1 135.6 128.6 129.8 286.4i 69.1 32.1i

x3/cm-1 617.6 814.9 770.2 1,030.6 598.5 1,033.0

T00/cm-1 3,882 12,680 15,578 17,836 20,991

D0/kcal mol-1 49.7 38.6 13.5 5.2 -1.3 -10.3

Geometries and frequencies obtained at CCSD/cc–pVTZ ( ~X and ~a states) and CASPT2/cc–pVTZ (all other systems) levels of theory

Dissociation to CI ? I

Fig. 3 CI2: bond angle dependence of total energies of lowest

electronic states with SO coupling (full lines) and without it (dotted

lines) computed at CASSCF/cc–pVTZ level of theory. The C–I

distances are kept fixed at their triplet state equilibrium values
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relation in this work, that collectively result in a singlet–

triplet gap of 10.5 kcal mol-1, that is 1.3 kcal mol-1

higher than the CCSD(T) value of Hargittai et al. [24]

before SO correction. Now, depending on which value we

choose as the appropriate SO correction in the case of the

triplet state, the singlet–triplet splitting will increase

by *0.6 kcal mol-1 [3B1(B2, A2)] or decrease by

*0.8 kcal mol-1 [3B1(A1)] according to the data in

Table 3. However, as noted above, a stable structure exists

on the 3B1(B2, A2) surface, but not on the lowest 3B1(A1)

surface, except the one identified as the ~X½1A1ðA1Þ
 state.

In the author’s previous work [18] on CHI and CI, the

SO energy was computed using only the ~X, ~a and ~A states

of CHI and the two ground state doublets for CI. As dis-

cussed in Sect. 2, such a procedure for CI results in an error

Table 2 Computed contributions to atomization and adiabatic excitation energies, heats of formation and zero-point-corrected excitation

energies (in kcal mol-1) in CI2

Atomization from ~X state
3B1 / 1A1

1B1 / 1A1
1Dg -

1B1 linear 1A00 - 1B1 barrier 21A - 1A1

(R/U)CCSD(T) (R/U)CCSD(T) MRCI ? Dav MRCI ? Dav MRCI ? Dav MRCI ? Dav

aug–cc–pVTZ 118.52 9.91 33.61 11.07 16.51 56.12

aug–cc–pVQZ 121.57 9.98 33.36 10.41 17.96 55.18

aug–cc–V5Z 122.68 10.06 33.32 10.22 18.41 54.93

Extrap (aVT, aVQ) 123.80 10.02 33.18 9.93 19.01 54.49

Extrap (aVQ,aV5) 123.85 10.15 33.27 10.02 18.89 54.67

CV correlation 2.15 0.14 2.51 -2.07 0.38 4.16

Scalar relativity 0.05 0.07 0.09 0.03 -0.09 0.13

Spin–orbit coupl.a -12.12 0.59 0.39 0.32 -3.59 1.28

Zero point energy -1.81 0.15 0.00 -0.02 -0.86 -0.22

Total (CBS) 112.12 11.10 36.26 8.28 14.74 60.02

Df H
0
0

109.08 ± 1.0

Df H
0
298

109.27 ± 1.0

a Using experimental data [17] for C and I, and computed values for molecules (Table 3)

Table 3 Computed spin–orbit energies (cm-1)

DELS DELS

C 3P -24.7, -32.8a I 2P -2,299.9, -2,534.4a

CHI 1A0 (A0) -467.8 CI2
1A1 (A1) -863.3

CHI 3A00(A0) -358.1 CI2
3B1 (A1) -1,151.4

CHI 3A00

(A0, A00)
-264.8 CI2

3B1 (B2, A2) -658.4

CHI 1A00 (A00) -306.7 CI2
1B1 (B1) -727.7

CHI 1D
linear

-324.1 CI2
1Dg linear -615.8

CHI 1A00

barrier

-292.1 CI2
1A00 barrier -1,981.8

CI 2P -658.8 CI2 21A1 -416.9

CI2 calculations as described in text

CHI data computed at CASSCF/cc–pVTZ level of theory with CASPT2

unperturbed energies using all 36 states (singlets, triplets and quintets)

arising from C 3P, I 2P and H 2S atomic states

CI data computed at MRCI/cc–pVTZ level of theory using all 36 states

(doublets and quartets) arising from C 3P, 1D, 1S and I 2P atomic states

C and I data computed using C 3P, 1D, 1S and I 2P atomic states,

respectively

The symmetry labels in parentheses for the electronic states of CI2 and CI

represent the overall symmetries of the SO-coupled states
a Experiment, Ref. [17]

Fig. 4 Single point energies (in kcal mol-1) of important stationary

points on the CI2 potential energy surfaces. The relative energies on

the 1A1, 3B1, 1B1and 21A1 surfaces are CBS values as summarized in

Tables 1, 2 and 4 (and include zero-point correction). The equilibrium

energies of the 1,3A2, 1,3B2 and 1,3Pu states (on left of the diagram) are

from Table 4, computed at the MRCI ? Dav/cc–pVTZ level of

theory and do not contain zero-point correction
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of *250 cm-1. Thus, in addition to CI and CI2, the SO

energies of CHI have been also recomputed and are listed

in Table 3. As for CI2, in the case of triplet CHI, the lowest

local minimum is on the 3A00(A0, A00) surface; thus, the

appropriate SO correction is -264.8 cm-1, and therefore,

the SO component of the singlet–triplet gap is 467.8 -

264.8 = 202.9 cm-1, rather than -13.5 cm-1 that was

previously calculated [18]. Also, with the recent publica-

tion of the aug–cc–pVQZ–DK2 basis set for iodine [58], it

has become possible to calculate the DKH2 SR correction

that was previously neglected [18]. The resulting SR cor-

rection is 22.7 cm-1. With these corrections, the singlet–

triplet splitting becomes 4.4 kcal mol-1, which agrees well

with the experimental lower bound of 4.1 kcal mol-1 [22].

Until recently iodocarbenes such as CHI and CI2 were

believed to have triplet ground states, largely on the basis

of negative ion photoelectron spectroscopic studies [19, 20,

65]. Recent theoretical studies [18, 20, 23–25], including

the current one, have clearly contradicted this, as discussed

above. Moreover, the spectroscopic work of Tao et al. [21,

22] on CHI has confirmed that its ground state is indeed

singlet.

3.3 The ~Að1B1Þ  ~Xð1A1Þ excitation in CI2 and CHI

The ~Að1B1Þ  ~Xð1A1Þ excitation energy (T00) in CI2 is

predicted to be 12,680 cm-1. It is, as expected, between

that of CHI (10,500 cm-1 [22]) and CBr2 (15,093 cm-1

[66]), very close in fact to CHBr (11,972 cm-1 [67]). The

previous theoretical study on CHI and CHBr (using the

same methods as in this work) predicted excitation energies

that are 352 and 371 cm-1, respectively, higher than

experiment. (In the case of CHI, the computed excitation

energy needs to be increased by 64 ? 18 cm-1, because of

the revised SO and SR corrections, respectively.) Conse-

quently, we can confidently expect that the current pre-

diction for CI2 will not be in error by more than

*430 cm-1, i.e. *1.2 kcal mol-1.

The barrier to linearity on the ~Að1B1Þ surface (including

zero point corrections) has been computed to be

2,898 cm-1 that is 2,258 cm-1 below the barrier to dis-

sociation. Therefore, we may confidently expect CI2 to

undergo RT relaxation, as predicted also for CHI [18]. (The

SO corrections as computed here for CHI do not change

that conclusion.)

3.4 The ~Bð2 1A1Þ state of CI2

The ~Bð2 1A1Þ state of CI2, as in CHF [7, 8] and CHCl [9],

has a quasi-linear equilibrium geometry, whereby the vib-

rationally averaged structure in the double minimum

bending potential of the molecule is linear. The computed

CASPT2/cc–pVTZ potential generated with bond lengths

fixed at the linear geometry values, along with anharmonic

energy levels and wave functions (computed by the gen-

eralized finite element method [68]) are shown in Fig. 5.

The zero-point energy level lies just below the central

barrier height, but the corresponding wave function is fully

delocalized with only a small dip over the barrier. This

metastable state dissociates to CI ? I via a linear symmetric

transition state that lies *9 kcal mol-1 above the energy of

the ~B state. The imaginary frequency of this transition state

corresponds to the symmetric stretch. The top of the barrier

is a bifurcation point as there are two equivalent pathways

for bond breaking to occur. In CHF and CHCl, an alterna-

tive dissociation pathway corresponds to the formation of

HF or HCl plus a C atom [7–9]. The possibility of such a

process in CI2 was not investigated in this work.

3.5 The 1,3A2, 1,3B2 and 1,3Pu states of CI2

The work of Hargittai et al. [24] suggested that in addition to

the ~a state, there may be several low-lying triplet states, 3A2,
3B2 and 3Pu, although no energies were given. A study of

these states, along with the corresponding singlets, was

therefore carried out. The results, obtained at the

MRCI ? Dav/cc–pVTZ level of theory, are summarized in

Table 4 and in Fig. 4. The six states appear to lie in the

energy range of 39–63 kcal mol-1 above the ground state,

i.e. energetically overlapping with the ~A and ~B surfaces.

(Since the 1A2 state actually lies below the 21A1 state, the

label ~B should really be attached to the former.) The 1,3A2 and
1,3B2 states are dominated by …a1

2b1
1b2

1a2
2 and …a1

2b1
1b2

2a2
1

type configurations where a1, b1, b2 and a2 denote the highest

occupied orbitals of the specified symmetry. Relative to the
1,3B1 (…a1

1b1
1b2

2a2
2) states the above configurations thus rep-

resent b2 ? a1 and a2 ? a1 excitations of nominally iodine

Fig. 5 Bending potential of CI2 in ~Bð21A1Þ state, showing computed

anharmonic energy levels and wave functions of lowest two states.

(The amplitudes of the wave functions are indicated by the unscaled

y axis units, i.e. -2.0 to 2.5 au.)
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lone pair electrons. The 1,3Pu states are different, inasmuch

as they correspond to the excitation of a carbon p electron (a1

and b1 in C2v symmetry) to a low-lying antibonding rg
molecular orbital. It remains to be seen if any of these ‘new’

states could be observed spectroscopically or in photo-

chemical experiments.

3.6 The enthalpies of formation of CI2, CHI and CI

The computed atomization energy of CI2, as given in

Table 2, is 112.12 kcal mol-1, from which the heats of

formation at 0 and 298 K were calculated to be 109.1 and

109.3 kcal mol-1, respectively, with an estimated error of

±1 kcal mol-1. Spin–orbit coupling contributes -12.1 to

the atomization energy, which includes a molecular con-

tribution of 2.5 kcal mol-1, a definitely non-negligible

quantity. The above enthalpy of formation at 298 K is

consistent with the experimental value of

112.0 ± 14.3 kcal mol-1 [69] as well as with the G2 value

of 107.6 kcal mol-1 [31].

As discussed in Sect. 2, computing the SO energy of CI

using only the ground state doublets for CI results in

an error of *250 cm-1. With the best value computed in

this work (-659 cm-1) to replace that used previously

(-373 cm-1), the atomization energy that had been com-

puted [18] needs to be corrected by 0.82 kcal mol-1. With

this revision, plus the SR correction of 0.05 kcal mol-1,

also computed in this work, the enthalpies of formation of

CI become 132.9 ± 1 and 133.6 ± 1 kcal mol-1 at 0 and

298 K, respectively.

In the case of CHI, analogous corrections need to be

applied, due to the previous underestimation of the SO

energy [18] and the SR correction (which in this case is

only 0.01 kcal mol-1). The revised enthalpies of formation

of CHI are 102.8 kcal mol-1 at both 0 and 298 K.

4 Conclusion

The thermochemistry of CI2 and its spectral properties, as

for a range of other halocarbenes studied already, have

been characterized by quantum chemical methods using a

CBS approach in conjunction with the CCSD(T) and

MRCI ? Dav methods. Particular emphasis was placed on

the accurate prediction of SO corrections which are espe-

cially important in iodine-containing molecules. The pre-

dicted enthalpies of formation of CI2 in its singlet ground

state at 0 and 298 K are 109.1 ± 1 and 109.3 ±

1 kcal mol-1, respectively. The singlet–triplet splitting is

predicted to 11.1 kcal mol-1, which is substantially larger

than what had been computed for CHI (4.4 kcal mol-1).

The ~Að1B1Þ  ~Xð1A1Þ excitation energy (T00) in CI2 is

predicted to be 12,680 cm-1. In the ~A state, there is a small

barrier to dissociation, estimated to be 1.3 kcal mol-1

above the dissociation products CI ? I, whose existence is

entirely due to SO effects. The RT intersection is computed

to be 5.2 kcal mol-1 below the dissociation products; thus,

internal ~A! ~X conversion via RT coupling is expected to

be the dominant photochemical channel.
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Abstract The absorption and fluorescence properties of

the non-natural amino acid p-cyanophenylalanine (PheCN)

were examined using high-level ab initio methods and were

compared to those of natural amino acids phenylalanine

and tyrosine. Single-reference and multireference methods

were surveyed for their accuracy in predicting the excited

state energies and transition dipole moments of the chro-

mophores and the corresponding amino acids. The excita-

tion energies were found to be very similar between the

chromophores and the various conformers of the amino

acids for all three amino acids studied here, but the tran-

sition dipole moments and consequently the radiative

lifetimes were very sensitive to conformation. In agreement

with experimental data, PheCN is predicted to have

increased fluorescence intensity compared to phenylalanine

and the amino acid group is partly responsible for this

effect.

Keywords Excited states � Fluorescence � Amino acids �
Cyanophenylalanine � Tyrosine � Phenylalanine � Radiative

lifetime

1 Introduction

Fluorescence spectroscopy is an important tool for studying

proteins [23]. It has sensitivity and time-scale features that

can make it more attractive than absorbance spectroscopy

[40], and it is one of the most common methods used to

determine native protein structure, folding dynamics, and

other conformational changes [33]. Tryptophan is the most

popular amino acid to study with fluorescence because it

has the largest fluorescence quantum yield of the natural

fluorescent amino acids, and its fluorescence is sensitive to

its environment [5]. The use of natural amino acid fluo-

rophores is limited, however, because tryptophan is not

very common, and phenylalanine has low fluorescence

quantum yield.

Because of this limitation, non-natural amino acids

which have useful spectroscopic properties are utilized as

well. The use of non-natural amino acids has been shown to

be effective enough that several methods of incorporating

them into proteins have been developed [25]. Non-natural

amino acid analogs have been shown to be useful when

incorporated into natural proteins for the study of dynam-

ics, conformation, and binding [48]. The properties for

these synthetic amino acids can be tuned more specifically

than is possible if only considering natural amino acids.

Synthetic amino acids can also participate in Förster res-

onance energy transfer (FRET) as donors to tryptophan

[32]. FRET efficiency is inversely proportional to the sixth

power of the distance between donor and acceptor, so this

is a sensitive technique for measuring conformational

changes in a protein. Nitrile derivatives have also been

shown to have potential applications as probes of local

environment [13, 15].

p-Cyanophenylalanine (PheCN) is a fluorescent probe

shown to be a suitable spectroscopic tool for studying
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protein binding and formation [27, 36, 46]. It has three

absorption maxima in the ultra violet region at 233, 274,

and 280 nm, and has significantly increased molar

absorptivity compared to phenylalanine [47]. Along with

increased absorptivity, PheCN can be selectively excited at

240 nm in the presence of tryptophan [45]. Other advan-

tages of PheCN are that it has a fluorescence quantum yield

five times that of phenylalanine, it does not have a photo-

induced proton transfer which can complicate interpreta-

tion, and it does not disturb the natural protein structure

significantly [36, 47]. It shows an emission peak at 295 nm,

which is insensitive to excitation wavelength and envi-

ronment [35]. Its fluorescence quantum yield has been

shown to depend on the hydrogen bonding ability of its

environment, and lifetimes have been correlated with the

Kamlet-Taft a parameter of its solvent, a measure of the

ability of the solvent to be a hydrogen bond donor [35].

However, the radiative lifetimes are not correlated in the

same way, which suggests that non-radiative processes are

important for understanding the fluorescence behavior in

various solvents.

We have used high-level theoretical methods to better

understand the excited state properties of PheCN, and

compare to tyrosine (Tyr), and phenylalanine (Phe), as well

as their corresponding chromophores 4-cyanotoluene,

4-hydroxytoluene, and toluene. The systems studied in this

work are seen in Fig. 1. The objective of this work is both

to examine how structure affects the photophysical prop-

erties and to examine the performance of different levels of

theory on the description of these properties. The absorp-

tion and emission energies as well as the radiative lifetimes

were examined. The sensitivity of the excitation energies

and transition dipole moments on the inclusion of the

amino acid, the solvent, as well as the level of theory used

was also examined.

2 Methods

The geometries for the chromophores benzene, toluene,

4-hydroxytoluene, and 4-cyanotoluene were optimized

using second order Møller-Plesset perturbation theory

(MP2) and the cc-pVDZ basis set. Amino acid conforma-

tions were obtained using a Monte Carlo conformation

search and the semi-empirical AM1 method [9]. The

obtained geometries at the AM1 level were reoptimized at

the MP2/cc-pVDZ level. Geometries of solvated, zwitter-

ionic amino acids were optimized at the MP2/cc-pVDZ

level using a polarizable continuum model [8]. Excited

state geometries were optimized using second order per-

turbation theory corrections to configuration interaction

singles (CIS), specifically the CIS(2) method [22].

Excited state energies were calculated for the chro-

mophores using a variety of methods. The following sin-

gle-reference methods were used: CIS [11]; second order

perturbation theory corrections to CIS with either the res-

olution of identity approximation CIS(D) method (RI-

CIS(D)) [2] or CIS(2) [22]; the equation of motion coupled

cluster singles and doubles (EOM-CCSD) method [19, 44];

and time-dependent density functional theory (TDDFT)

with the B3LYP functional. In order to explore the effect of

non-dynamical correlation, multiconfigurational methods

were explored as well. In particular, the quasidegenerate

multiconfigurational second order perturbation theory

(MCQDPT) method [30] was used. Orbitals were obtained

using a two-state averaged complete active space self-

consistent field (CASSCF) approach with an active space

of (6,6) for toluene and hydroxytoluene and (8,8) for

4-cyanotoluene. Basis set effects were explored using a

variety of correlation consistent basis sets (cc-pVDZ, cc-

pVTZ, aug-cc-pVDZ, aug-cc-pVTZ). cc-pVDZ?diff indi-

cates the modified aug-cc-pVDZ basis set where diffuse

functions are only added to the heavy atoms and not

hydrogen.

The ‘‘surface and simulation of volume polarization for

electrostatics’’ [SS(V)PE] solvation model [6] was used to

calculate the excited states of solvated zwitterionic amino

acids in combination with the RI-CIS(D) method.

Excited state radiative lifetimes s01 for fluorescence

were calculated using the relationship s01 ¼ 1=A01 ¼
�0c

3x01

2p2m2
e f01n3

, where A01 is the Einstein coefficient, me is the

Fig. 1 Amino acids and their respective chromophores. a Lowest

energy conformers of amino acids at the MP2 level. b Lowest energy

conformers of amino acids at the AM1 level. c Chromophores of each

amino acid studied
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mass of the electron, n is the index of refraction which is

taken to be 1 in a vacuum, �0 is the permittivity of free

space, f01 is the oscillator strength, and x01 is the frequency

of the transition [23]. The frequencies of transitions for

absorption were determined at the CCSD/aug-cc-pVDZ or

MCQDPT/cc-pVDZ levels for the chromophores, while for

fluorescence, the Stokes shift found at the CIS(2)/cc-

pVDZ?diff level for the amino acids was subtracted from

the absorption frequencies. The oscillator strengths were

calculated from the transition dipole moments at the

CIS(2)/cc-pVDZ?diff level using the relationship

f01 ¼ 2

3
l2

01E, where E is the vertical excitation used in x01

and l01.

The conformational search was performed using Spartan

10 [49] and MP2 geometry optimizations using GAMESS

[34]. CASSCF transition dipole moments and MCQDPT

energies were also calculated with GAMESS. CIS(2)

calculations were performed with the Priroda 7 computa-

tional package [21]. Gaussian 03 was used to compute

the solvated cyanophenylalanine geometry [12]. RI-

CIS(D) and EOM-CCSD calculations were performed

using Q-Chem [37]. MacMolPlt [3] was used for

visualization.

3 Results and discussion

3.1 Comparisons with benzene

The chromophores of the amino acids studied here are

substituted benzene molecules. In order to get a better

qualitative idea of how the lower excited states originate,

we compare the excited states of benzene to the other

chromophores and discuss the effects of the substituents. A

methyl group has been added to each chromophore in the

Fig. 2 Vertical excitation

energies and oscillator strengths

of the lowest states of (top

panel) benzene, toluene,

4-cyanotoluene, and

4-hydroxytoluene and (bottom

panel) phenylalanine,

cyanophenylalanine, and

tyrosine at the CIS(D)/cc-pVDZ

level with transitions assigned

with natural orbitals at the CIS/

cc-pVDZ level and oscillator

strengths in parentheses. A

denotes an excited state

localized primarily on the amino

acid chain, while C denotes an

excited state localized on the

chromophore
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place of the amino acid. The HOMO and LUMO of ben-

zene are both degenerate orbitals, so the excitation

HOMO!LUMO leads to four states with two of them

being degenerate. The first two excited states of benzene

are dark non-degenerate B1u;B2u states with pp� character,

while the third is a bright and doubly degenerate E1u state.

The effect of the substituents is examined in Fig. 2 (top

panel) which shows that all chromophores have red shifted

absorption to the first excited state compared to benzene.

This can be explained by frontier molecular orbital (FMO)

theory [10]. The hydroxy group is an electron donating

substituent, while the cyano group is an electron with-

drawing group. FMO theory predicts that both the HOMO

and the LUMO are destabilized by the substituent which

creates a node between the ring and the substituent [10].

However, the relative stability of the HOMO versus the

LUMO determines the final shift in the excitation energy,

which in this case decreases. Substituent effects for the

methyl group are smaller than for the OH and CN sub-

stituents. The natural orbitals describing the excited states

in 4-cyanotoluene are shown in Fig. 3, where it is seen that

for the first four excited states, the majority of the density is

Fig. 3 Natural orbitals of the

excited states of cyanotoluene

obtained at the CIS/cc-pVDZ

level
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localized on the ring (these are the states mainly coming

from the benzene states), although there is some density on

the substituent. On the other hand, the fifth excited state is

primarily localized on the substituent. 4-Hydroxytoluene

also has states localized on the substituent. In this mole-

cule, S3 is a pr� transition localized on the hydroxyl group.

There are also effects observed from the symmetry

being reduced. The degenerate benzene states split in all

chromophores, with the gap being smallest for toluene. The

oscillator strength of the lowest dark state increases when

the symmetry of the benzene molecule is lost due to sub-

stituents. The effect is strongest in 4-hydroxytoluene. Quite

interestingly the lowest dark state in benzene becomes the

absorbing/fluorescent state in the chromophores present in

the amino acids.

The bottom panel of Fig. 2 shows the excited states for

the corresponding amino acids at the same level of theory.

Comparison between the chromophore and amino acid

excited states shows that the states localized on the chro-

mophore are not affected much by the addition of the

carbonyl and amino groups. However, a new state appears

as the second excited state which is localized on the amino

acid. This is the second excited state and is only about half

an eV above S1. It should be pointed out, however, that

these results are in the gas phase, and inclusion of the

solvent and the zwiterionic form of the amino acid moves

that state higher by about 0.5 eV according to our calcu-

lations (using the [SS(V)PE] solvation model).

In the following discussion, we focus on the S1 state

since this is the state from which fluorescence is observed.

3.2 Distribution of conformers of amino acids

Tables 1, 2 and 3 show energies and abundances at room

temperature of conformers of Phe, Tyr, and PheCN at the

AM1 and MP2 levels. The natural abundances of con-

formers can be important for characterizing fluorescence

properties if these properties are sensitive to the confor-

mation. Conformational distributions in the gas phase have

been studied theoretically and experimentally before for

Phe and Tyr [1, 7, 16, 17, 24, 28, 39, 41, 50], but not for

PheCN. For all three amino acids examined here, the

lowest energy conformers at the AM1 level favor hydrogen

bonding involving the O from the acid group and NH from

the amino group, while the lowest energy conformers at the

MP2 level have hydrogen bonding involving the OH from

the acid group and the N from the amino group. The

conformer predicted to be the lowest at the MP2 level has

less than 0.01% abundance at the AM1 level. The dis-

similarity between AM1 and MP2 populations shows that

the accuracy of ground state energies is important to

Table 2 Relative energies and Boltzmann distributions at room

temperature of Tyr conformers at AM1 and MP2 levels

Conformer AM1 (eV) AM1 distr. % MP2 (eV) MP2 distr %

M01 0.000 34.285 0.000 2.687

M02 0.005 27.779 -0.039 12.168

M03 0.025 13.063 0.048 0.422

M04 0.039 7.475 0.113 0.033

M05 0.040 7.172 0.062 0.243

M06 0.043 6.382 0.104 0.046

M07 0.067 2.505 0.049 0.398

M08 0.102 0.641 0.049 0.398

M09 0.110 0.474 0.085 0.097

M10 0.132 0.203 0.054 0.168

N01 0.214 0.008 -0.002 2.950

N02 0.232 0.004 -0.085 72.737

N03 0.241 0.003 0.183 0.002

N04 0.250 0.002 -0.009 3.826

N05 0.251 0.002 -0.009 3.826

Conformer names beginning with M have hydrogens from the car-

boxylic acid group pointed away from the amino group, while con-

formers beginning with N have carboxylic acid hydrogens pointed

toward the amino group. Energies are relative to the lowest AM1

conformer, M01

Table 1 Relative energies and Boltzmann distributions at room

temperature of Phe conformers at the AM1 and MP2 levels

Conformer AM1 (eV) AM1 distr. % MP2 (eV) MP2 distr. %

M01 0.000 30.111 0.000 3.672

M02 0.002 27.781 -0.039 17.1067

M03 0.024 11.894 0.047 0.583

M04 0.032 8.702 0.062 0.334

M05 0.034 8.031 0.103 0.067

M06 0.038 6.897 0.047 0.593

M07 0.063 2.551 0.047 0.593

M08 0.075 1.645 0.079 0.170

M09 0.097 0.689 0.086 0.131

M10 0.104 0.533 0.092 0.102

M11 0.104 0.527 0.083 0.143

M12 0.114 0.354 0.125 0.029

M13 0.127 0.213 0.070 0.242

M14 0.167 0.045 0.134 0.020

N01 0.204 0.011 -0.006 4.610

M15 0.224 0.005 0.178 0.004

N02 0.233 0.003 0.185 0.003

N03 0.234 0.003 -0.073 62.121

N04 0.242 0.002 -0.007 4.759

N05 0.260 0.001 -0.007 4.757

Conformer names beginning with M have hydrogens from the car-

boxylic acid group pointed away from the amino group, while con-

formers beginning with N have carboxylic acid hydrogens pointed

toward the amino group. Energies are relative to the lowest lying

AM1 conformer, M01
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determine the accurate distribution of conformers. The

lowest MP2 conformers found here agree with previous

theoretical studies of Phe by Huang et al. [16] and of Tyr

by Zhang et al. [50] which were both done using DFT at

the B3LYP/6-311??G** level. The Phe lowest conformer

also agrees with the experimentally observed one in the gas

phase using resonant two-photon ionization [24]. The

number of conformers detected experimentally varies by

experimental conditions, particularly the temperature. The

main focus of this work is not to thoroughly discuss con-

formation distribution, but rather to examine the sensitivity

of the excited state properties on the different conformers,

and we discuss this topic next.

3.3 Sensitivity of excitation energies and transition

dipole moments on conformers

The dependence of the excited state properties on the dif-

ferent conformers was examined by calculating the excited

states of several conformers at the CIS(D)/cc-pVDZ level.

Table 4 shows the excitation energies and magnitude of the

transition dipole moments for several conformers of

PheCN, Phe, and Tyr. The data indicate that the excitation

energy to the S1 state is not sensitive to the rotation around

the single bonds of the conformers analyzed since the

conformers differ in energy by at most 0.015 eV (approx-

imately 0.3 % effect). This small effect agrees with

experimental studies which also have shown that different

conformers of Phe and Tyr have origins varying by 0.02 eV

in the gas phase [28, 39]. On the other hand, the magni-

tudes of the transition dipole moments (l01) differ signifi-

cantly between conformers. The largest relative variation

between transition dipole moments of AM1 and MP2

conformers is observed with Phe which has the lowest

magnitude overall (ca. 50 % effect), although the differ-

ences between PheCN and Tyr conformers are also sig-

nificant (1–20 %). These results indicate that the excitation

energies (and thus absorption maxima and possibly fluo-

rescence maxima) are not sensitive to the amino acid

conformation, but the intensity of the absorption or emis-

sion is Snoek et al. [41] have also seen great variations in

the orientation of the transition dipole moment of the first

excited state of tyrosine depending on the conformer using

CIS calculations.

3.4 Vertical excitation energies and transition dipole

moments

3.4.1 Isolated chromophores

In the following discussion, we first focus on isolated

chromophores. Very accurate methods can be used for

these systems since they are smaller, and the effect of the

remaining amino acid will be examined later. The first

column of Tables 5, 6, and 7 lists the various methods

used, while the second column shows the vertical excita-

tion energies to S1 and the magnitudes of the corresponding

transition dipole moments found for each chromophore.

The effects of dynamical correlation are examined by

comparing CIS, CIS(D), CIS(2), and EOM-CCSD meth-

ods. The performance of TDDFT has also been examined.

CIS as expected predicts excitation energies that are in

general too high. Perturbation theory corrections at the

CIS(D) level lower the energies considerably, by ca. 0.8 eV

when compared to CIS using the same basis set. CIS(2)

does not perform as well. The effect of including dynam-

ical correlation at the EOM-CCSD level only lowers the

Table 3 Relative energies and Boltzmann distributions at room

temperature of PheCN conformers at AM1 and MP2 levels

Conformer AM1 (eV) AM1 distr. % MP2 (eV) MP2 distr. %

M01 0.000 35.146 0.000 8.949

M02 0.008 25.651 -0.033 32.266

M03 0.015 19.338 0.030 2.797

M04 0.028 11.702 0.091 0.255

M05 0.050 5.054 0.090 0.266

M06 0.076 1.825 0.132 0.053

M07 0.105 0.588 0.333 0.000

M08 0.110 0.489 0.094 0.231

M09 0.134 0.190 0.094 0.231

N01 0.225 0.005 0.033 2.481

M10 0.226 0.005 0.091 0.262

N02 0.244 0.003 -0.044 50.419

N03 0.267 0.001 0.041 1.788

N04 0.267 0.001 0.242 0.001

N05 0.276 0.001 0.293 0.000

Table 4 CIS(D)/cc-pVDZ

excitation energies in eV with

magnitudes of transition dipole

moments in atomic units in

parenthesis at the CIS level for

MP2 optimized geometries

Conformer E (l01)

Phe

N03 (MP2) 5.210 (0.1008)

M01 (AM1) 5.210 (0.0638)

Tyr

N02 (MP2) 4.977 (0.5849)

M01 (AM1) 4.984 (0.5777)

PheCN

N02 (MP2) 5.015 (0.2467)

N03 5.011 (0.2100)

M01 (AM1) 5.019 (0.2617)

M02 5.009 (0.2409)

M03 5.019 (0.2747)

M05 5.004 (0.2048)

M06 5.007 (0.2081)
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energies by less than 0.15 eV compared to CIS(D). The

TDDFT calculations using the B3LYP functional and the

aug-cc-pVTZ basis set predict energies which are within

0.02–0.06 eV of the CIS(D) energies when using the same

basis set. The effect of non-dynamical correlation mea-

sured through the use of MCQDPT is to decrease the

excitation energy by about 0.2–0.3 eV compared to CCSD

for almost all cases. The comparison, however, is not direct

since different basis sets have been used for the two

methods.

Basis set effects have also been examined systematically

using CIS(D) and a serious of the cc-pVnZ basis sets. The

results are plotted in Supporting Information. When the

energy is plotted as a function of 1/n, an extrapolation limit

can be reached. This is estimated to drop the energy from

the cc-pVDZ results by 0.13 eV, 0.18 eV, and 0.12 eV for

toluene, OH-toluene and CN-toluene, respectively. The

inclusion of diffuse functions is also very important for

calculating the S1 energy for all chromophores. Adding

diffuse functions to cc-pVDZ decreases the energy by 0.08

eV while adding them to cc-pVTZ decreases the energy by

0.03–0.04 eV.

Transition dipole moments are a lot more sensitive to

the level of theory. Basis sets are important for the tran-

sition dipole moments; however, the effect is more difficult

to monitor. Plotting the transition dipole moments versus

1/n in most cases gives non-monotonic behavior, so an

extrapolation is not possible. Diffuse functions are also

Table 5 Vertical excitation energies and transition dipole moments (in parenthesis) of toluene and Phe

Method Toluene S0 Phe S0 Toluene S1 Phe S1

CIS 6.027 (0.1517) 6.022 (0.1008) 5.712 (0.1878) 5.712 (0.0909)

CIS(D) 5.224 (0:1517Þa 5.210 (0:1008Þa 4.860 (0:0909Þa
CIS(D)/cc-pVTZ 5.144 (0:1640Þa 4.797 (0:2019Þa
CIS(D)/cc-pVQZ 5.117 (0:1667Þa
CIS(D)/aug-cc-pVTZ 5.099 (0:1497Þa 5.097 (0:0988Þa
B3LYP/aug–cc-pVTZ 5.160 (0.1125) 4.859 (0.1478)

CIS(2) 5.589 (0.0992) 5.677 (0.0620) 5.327 (0.1231) 5.324 (0.0869)

CIS(2)/cc-pVDZ?diff 5.686 (0.0975) 5.600 (0.0722) 5.242 (0.1292) 5.259 (0.0939)

CCSD/aug-cc-pVDZ 5.013 (0.0793) ð0:0576Þc 4.691 (0.1022) (0.0742)c

MCQDPT 4.717 (0:0525Þb ð0:0382Þc 4.357 (0.0644) (0.0468)c

Energies are in eV and transition dipole moments are in atomic units. Basis set used is cc-pVDZ unless otherwise specified. S0 corresponds to the

ground state equilibrium and the corresponding energies represent absorption maxima. S1 corresponds to the minimum on S1 and the energies

represent fluorescence maxima
a Transition dipole moments at the CIS level. b Transition dipole moments at the CASSCF level. c Extrapolated values from the chromo-

phore using the ratio of the transition dipole moments between chromophore and amino acid at the CIS(2)/cc-pVDZ?diff level

Table 6 S1 vertical excitation energies and transition dipole moments (in parenthesis) of 4-hydroxytoluene and Tyr

Method OH-toluene S0 Tyr S0 OH-toluene S1 Tyr S1

CIS 5.838 (0.6590) 5.846 (0.5849) 5.431 (0.7879) 5.383 (0.7445)

CIS(D) 4.982 (0.6590)a 4.976 (0.5849)a 4.511 (0.7445)a

CIS(D)/cc-pVTZ 4.884 (0.6613)a

CIS(D)/cc-pVQZ 4.849 (0.6557)a

CIS(D)/aug-cc-pVTZ 4.808 (0.6371)a 4.823 (0.5506)a

B3LYP/aug-cc-pVTZ 4.773 (0.5304) 4.401 (0.6106)

CIS(2) 5.366 (0.5822) 5.365 (0.5217) 4.927 (0.6751) 4.87 (0.6363)

CIS(2)/cc-pVDZ?diff 5.236 (0.5853) 5.263 (0.5106) 4.805 (0.6822) 4.78 (0.6328)

CCSD/aug-cc-pVDZ 4.754 (0.4435) (0.3869)c 4.368 (0.5304) (0.4920)c

MCQDPT 4.579 (0.2971)b (0.2591)c 4.280 (0.3654) (0.3390)c

Energies are in eV and transition dipole moments are in atomic units. Basis set used is cc-pVDZ unless otherwise specified. S0 corresponds to the

ground state equilibrium and the corresponding energies represent absorption maxima. S1 corresponds to the minimum on S1 and the energies

represent fluorescence maximal
a Transition dipole moments at the CIS level. b Transition dipole moments at the CASSCF level. c Extrapolated values from the chromo-

phore using the ratio the transition dipole moments between chromophore and amino acid at the CIS(2)/cc-pVDZ?diff leve
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very important for the transition dipole moments. The

transition dipole moment magnitudes at the CCSD level are

much smaller than the values obtained with more approx-

imate methods, often by a factor of 2 or more. Transition

dipole moments at the CASSCF level are even lower than

the CCSD ones. Transition dipole moments at the B3LYP

level are closer to those obtained with the CIS(2) method.

Diffuse functions cause an increase in transition dipole

moment, the opposite of what is seen with adding

correlation.

Our results compare well with previous CASPT2 cal-

culations on the chromophores of tyrosine and phenylala-

nine using a larger basis set [20, 31]. Previously reported

CC2 results on the amino acids phenylalanine and tyrosine

[18] are close to our CIS(D) values.

3.4.2 Effect of adding the amino acid side

The effect of the amino acid group is examined next. The

third column of Tables 5, 6, and 7 shows excitation ener-

gies and transition dipole moments of Phe, Tyr, and PheCN

at various levels of theory using the MP2 lowest energy

conformer. The energies of all amino acids are within 0.02

eV of their chromophores at every level of theory showing

a very small effect. This agrees with the discussion in Sect.

3.3.

The effect of the amino acid on the transition dipole

moments is not consistent for the various chromophores.

Table 7 shows that PheCN has a larger transition dipole

moment than cyanotoluene at all levels of theory. The

transition dipole moment for the chromophore is about

70 % that of PheCN. But the amino acid has a smaller

transition dipole moment for Phe and Tyr. All methods

surveyed showed similar effects of the amino acids com-

pared to the chromophores, so the shifts predicted are

consistent at the different levels of theory. The increased

transition dipole moment of PheCN compared to cyano-

toluene contributes to its fluorescence properties as will be

discussed in more detail in Sect. 3.7.

3.4.3 Solvation effect

The effect of solvation on PheCN was investigated by

using a polarizable continuum model. The zwiterionic form

of the amino acid is used in these calculations. The results

are shown on the fourth column of Table 7, where it can be

seen that the energy is not affected by solvation, in

agreement with experimental findings from Serrano et al.

[35]. The solvated amino acid is shifted 0.02 eV from the

gas phase at the CIS level and is not shifted at all at the

CIS(D) level. So, interestingly even the very different

charge distribution of the zwiterion does not have a big

effect on the energies. The CIS transition dipole moment

was increased by 54.6 % to 0.38145 a.u.

3.5 Fluorescence properties

In order to investigate fluorescence properties, we have to

examine the energies and transition dipole moments at the

S1 minimum of each chromophore and amino acid. The

geometries at the S0 and S1 minima can be seen in Fig. 4.

Distortions in geometry are similar in all molecules, which

is consistent with the fact that the character of the excited

Table 7 Vertical excitation energies with transition dipole moments (in parenthesis) of cyanotoluene and the lowest energy conformer of

cyanophenylalanine (PheCN) at the MP2 level

Method CN-toluene S0 PheCN S0 PheCN S0aq CN-toluene S1 PheCN S1

CIS 5.852 (0.1772) 5.835 (0.2467) 5.807 (0.3815) 5.542 (0.2103) 5.521 (0.2954)

CIS(D) 5.034 (0.1772)a 5.015 (0.2467)a 5.011 (0.3815)a 4.684 (0.2954)a

CIS(D)/cc-pVTZ 4.954 (0.1683)a

CIS(D)/cc-pVQZ 4.929 (0.1709)a

CIS(D)/aug-cc-pVDZ 4.947 (0.1928)a 4.941 (0.2803)a

CIS(D)/aug-cc-pVTZ 4.919 (0.1854)a

B3LYP/aug-cc-pVTZ 4.893 (0.1191) 4.601 (0.1332)

CIS(2) 5.504 (0.1328) 5.484 (0.1812) 5.150 (0.1335) 5.132 (0.2117)

CIS(2)/cc-pVDZ?diff 5.433 (0.1566) 5.424 (0.2157) 5.087 (0.1573) 5.079 (0.2472)

CCSD/aug-cc-pVDZ 4.869 (0.0846) (0.1164)c 4.553 (0.0966) (0.1519)c

MCQDPT 4.591 (0.0618)b (0.0851)c 4.255 (0.0739) (0.1161)c

Energies are given in eV and transition dipole moments are in atomic units. Basis set used is cc-pVDZ unless otherwise specified. S0 corresponds

to the ground state equilibrium and the corresponding energies represent absorption maxima. S1 corresponds to the minimum on S1 and the

energies represent fluorescence maxima.
a Transition dipole moments at the CIS level. b Transition dipole moments at the CASSCF level. c Extrapolated values from the chromo-

phore using the ratio the transition dipole moments between chromophore and amino acid at the CIS(2)/cc-pVDZ?diff level
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state is similar for all three molecules and is mostly

localized on the ring. The aromatic ring remains planar for

all molecules and expands at the S1 minimum as all the

bond lengths increase by ca. 0.02–0.04 Å. The bond

between the methyl group and the C1 carbon shortens by

0.01 Å in each S1 minimum. For hydroxytoluene and cy-

anotoluene the bonds between the C4 carbon and func-

tional group shorten by 0.02 Å.

The S1 minima were used for single point excited state

calculations using various levels of theory shown in

Tables 5, 6, and 7. The Stokes shift for toluene is between

0.30 eV and 0.36 eV for all the methods used. For Phe, the

Stokes shift is predicted to be similar to toluene. The

experimental Stokes shift in solution is 0.37 eV. The best

value is at the MCQDPT level which is 0.36 eV. PheCN

follows trends similar to Phe. Stokes shifts are between

0.29 and 0.35 eV with the chromophore and amino acid

being very similar. The experimental shift is 0.3 eV in

aqueous solution. Tyrosine and hydroxytoluene Stokes

shifts differ slightly as shown in Table 6 but are within 0.05

eV with the amino acid Stokes shift being larger. The

CCSD/aug-cc-pVDZ shift is 0.39 eV, while the MCQDPT

is 0.3 eV. The experimental value is 0.43 eV, in better

agreement with the CCSD value.

The magnitude of the transition dipole moments is larger

at the S1 minimum compared to that at the S0 minimum for

all chromophores and amino acids. As in the S0 geometries

l01 are affected by both method and basis set for all

chromophores, especially for cyanotoluene. Table 7 shows

that PheCN has a larger transition dipole moment than

cyanotoluene at all levels of theory.

3.6 Comparison with experimental results

We initially compare our results to gas phase electronic

spectra measured in a supersonic jet using laser-induced

fluorescence spectroscopy [28]. A comparison with gas

phase results is more applicable to our results. Further-

more, we use the origins obtained from the chromophores

at the highest levels of theory used here, since we have

demonstrated that the amino acid has negligible effect on

the energies. The theoretical adiabatic energies including

Zero Point Energy (ZPE) corrections and the experimental

origins corresponding to 0–0 transitions are shown in

Table 8. We use the adiabatic energies at the MCQDPT/cc-

pVDZ and CCSD/aug-cc-pVDZ levels with ZPE correc-

tions taken from MP2 and CIS(2) frequency calculations at

the S0 and S1 minima, respectively. The results agree well

with experimental origins for both Phe and Tyr. There are

no published gas phase spectra of PheCN to obtain origin

information. Table 8 shows that the errors for Tyr are less

than 0.1% for both methods. Errors for Phe are somewhat

Fig. 4 Geometries of chromophores toluene, cyanotoluene, and hydroxytoluene obtained at the MP2/cc-pVDZ level for the S0 minimum (top),

and at the CIS(2)/cc-pVDZ for the S1 minimum (bottom). Bond lengths are shown in Å

Table 8 Experimental origins of Phe and Tyr from Martinez et al.

[28] in eV compared to theoretical origins at the MCQDPT/cc-pVDZ

and CCSD/aug-cc-pVDZ levels for the chromophores

Species Exp. MCQDPT MCQDPT

diff (%)

CCSD CCSD

diff (%)

Phe 4.65 4.35 6.45 4.70 1.1

Tyr 4.40 4.38 0.45 4.42 0.39

PheCN 4.25 4.61
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larger when MCQDPT is used. The ZPE corrections lower

the origin by about 0.14–0.17 eV. The ZPE for the excited

state is somewhat lower than those for the ground state so

the overall effect is that adding ZPE lowers the adiabatic

energies.

We next compare absorption and fluorescence data in

aqueous solutions, where more data exist. Absorption and

emission data for all three systems are shown in Table 9.

The energies shown in Table 9 are those of the chromo-

phore at the MCQDPT and CCSD levels using again the

fact that the energies are not sensitive to the amino acid

group. The oscillator strengths, however, are sensitive to

the amino acid, so we tried to use the information we

obtained in our benchmark studies to estimate their value

more accurately. The oscillator strengths were calculated

using the equation f01 ¼ 2

3
l2

01E01 with E01 being the ver-

tical excitation energy used in Table 9 in hartree, l01 is the

transition dipole moments in atomic units shown in Tables

5, 6, and 7 and indicated with a superscript c. This is

obtained by scaling the chromophore transition dipole

moment at the CASSCF or CCSD level with the ratio of

amino acid to chromophore l at the CIS(2)/cc-pVDZ?diff

level. This approximation is most reasonable for PheCN

where this ratio does not vary much with the method.

These estimates were made to obtain our best theoretical

numbers and to use them to calculate fluorescence lifetimes

using the equation A01 ¼ 2p2m2
e f01n

3

�0c3x01

. The lifetimes are

then compared to experimental radiative lifetimes that are

extracted from the quantum yields and the total lifetimes

using the relationship QY = krad
ktot

where krad and ktot are the

rate constants for radiative and total decay.

The theoretical values for absorption and emission

maxima are very close to the experimental ones, espe-

cially at the MCQDPT level. The difference between

theoretical and experimental values is on average 0.1 eV.

The difference at the CCSD level is larger, around 0.3 eV

on average. Both theory and experiment predict that Phe

has the highest absorption and emission energy, while Tyr

and PheCN have similar absorption and emission values.

The radiative lifetimes have larger deviations between

theory and experiment. Again, MCQDPT performs better

than CCSD with the most accurate value being that of

Phe which is 23 % different from experiment. Even if

quantitative accuracy is not found, qualitative the values

agree with experiment, with Phe having the longest life-

time among the three amino acids and Tyr having the

shortest.

It should be kept in mind that comparison with

absorption and fluorescence maxima in aqueous solution is

not as straightforward as comparing to gas phase origins

which we did in Table 8. Even though our results indicate

that the energies in the gas phase are very similar to

aqueous solution, there are still other uncertainties present.

Specifically, a maximum on the spectrum does not neces-

sarily correspond exactly to the vertical excitation. With

that in mind, we can conclude that both MCQDPT and

CCSD describe these properties quite well.

There are more reasons why there are discrepancies in

radiative lifetimes. As we discussed earlier, these values

are very sensitive to the methods used, as well as the

environment. Furthermore, the transition dipole moments

are significantly different for various conformers of the

amino acids. The experimental findings are a weighted

average of the lifetimes for each conformer present, but

only one conformer for each amino acid was used in our

results. The conformational distributions are in the gas

phase and also very sensitive with respect to method. It is

likely that this distribution will be different in aqueous

solution. The transition dipole moment changed signifi-

cantly between gas phase and solution for PheCN. All these

facts indicate that getting an accurate value for l01 is very

challenging. As already mentioned, other workers have

also seen great variations in the transition dipole moment

of the first excited state of tyrosine depending on the

conformer [41]. Hashimoto et al. have found in 1?1

REMPI and LIF spectra that the lifetimes for gas phase

phenylalanine vary by up to a factor of three [14]. The

variation in transition dipole moment found here suggests

that these differences in conformer lifetimes observed by

Hashimoto et al. could be attributed to differences in

radiative lifetimes instead of variation in accessibility of

non-radiative decay pathways which is what they proposed

in their work.

Table 9 Experimental absorbance and fluorescence energies with

quantum yield (QY) and lifetimes from Tucker and Chen [4, 23, 35]

Exp. Eabsðf Þ Efluorðf Þ QY s0 srad

Phe 4.77 4.40 0.02 6.8 340

Tyr 4.51 4.08 0.14 3.6 26

PheCN 4.43 4.13 0.11 7.0 63

MCQDPT

Phe 4.72 (0.00017) 4.36 (0.00023) 263.4

Tyr 4.58 (0.00753) 4.28 (0.01205) 5.3

PheCN 4.59 (0.00081) 4.25 (0.00142) 45.5

CCSD

Phe 5.01 (0.00041) 4.69 (0.00063) 83.8

Tyr 4.75 (0.01743) 4.37 (0.02590) 2.4

PheCN 4.87 (0.00162) 4.55 (0.00257) 21.9

Theoretical results were calculated as described in the text. Energies

are in eV, and lifetimes in ns. Oscillator strengths (f) are given in

parenthesis
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3.7 What makes PheCN more fluorescent

The theoretical results reported here predict the experi-

mental trend between the amino acids. Addition of an OH

or CN substituent on the benzene ring increases the radi-

ative decay rate and decreases the radiative lifetime. Spe-

cifically, incorporation of the CN group in phenylalanine

decreases the radiative lifetime by a factor of 5–6 and this

is reproduced by the theoretical results. Tyrosine has an

even shorter radiative lifetime. It is interesting to examine

the source of these changes, as this is partly responsible of

the development of the non-natural amino acid as a fluo-

rescent probe. At the chromophore level, toluene and cy-

anotoluene have similar transition dipole moment

magnitudes as can be seen in Tables 5 and 7 with cyano-

toluene being only 1.2 times higher than toluene. On the

other hand, hydroxytoluene has a transition dipole moment

magnitude 6 times higher than that of toluene. So, the OH

substituent has a much stronger effect on the transition

dipole moment of the chromophore than the CN sub-

stituent. Quite interestingly, the effect of the amino acid is

quite important but has opposite trends for phenylalanine

compared to cyanophenylalanine. In phenylalanine, the

transition dipole moment decreases compared to the iso-

lated chromophore, while in PheCN, it increases. The net

effect is that the ratio of the transition dipole moments for

PheCN versus Phe is 2.5. Since the oscillator strength and

the radiative lifetimes depend on the square of the transi-

tion dipole moment, this leads to a ratio of about 6, which

is the same as the experimental observation. It seems that

small mixing of the wavefunctions of the np� state (S2 state

of the amino acids localized on the amino group) to the

wavefunction of the S1 pp� state can lead to such changes

in the transition dipole moments.

3.8 Conclusions

In this study, we have discussed excited state properties of

the two natural amino acids Phe, and Tyr and compared

them to non-natural amino acid PheCN. Both EOM-CCSD

and MCQDPT methods give quite good absorption and

emission energies, as well as origins, when compared to

experimental data available for Phe and Tyr. The origin for

PheCN is expected to be near 4.43 eV if differences

between experiment and theory are consistent.

Our results also show that the chromophores toluene,

4-cyanotoluene, and 4-hydrotoluene may be reliable used

to calculate excitation energies for the amino acids phen-

ylalanine, p-cyanophenylalanine, and tyrosine, respec-

tively, since the amino acid has minimum effect on these

energies. Comparison of benzene versus toluene in Fig. 2

indicates that these are more accurate chromophores to use

than benzene, phenol, and benzonitrile because the methyl

group affects excitation energies for most states.

The transition dipole moment, and therefore the oscil-

lator strengths, are sensitive to the inclusion of the amino

acid, conformation, method, and basis sets. This makes

accurate calculations involving the oscillator strengths

difficult to obtain. The oscillator strengths of the amino

acids qualitatively show their order of absorptivity and

lifetimes, but do not agree well with the experimental

lifetimes [4, 5, 35]. The sensitivity of these properties on

the conformers and the method contributes to the poor

agreement with experiment.

The calculations predict that the radiative rate of fluo-

rescence of PheCN is about six times larger than that of

Phe in agreement with experimental observations. This

agrees with the fact that PheCN is an improved fluorescent

probe compared to Phe. Interestingly, the amino acid

contributes to this increase in radiative rate. Even though

here we have examined the radiative decay of PheCN,

more theoretical work should be dedicated to non-radiative

decay channels on PheCN in order to obtain a more com-

plete picture of its properties. The non-radiative decay is

very sensitive to the solvent, and this should be taken into

account in any studies. Radiationless decay pathways for

the natural amino acids, dipeptides, and their complexes

with water have been investigated theoretically, and effi-

cient pathways for decay often involving proton transfer

have been identified [26, 29, 38, 42, 43]. It is very likely

that similar pathways are involved in the deactivation of

PheCN.
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Abstract Optimized geometries and energies, vertical

excitation energies and vibrational frequencies are reported

for nine cations MX3
?, with M = B, Al, Ga, and X = F,

Cl, Br. Density functional theory using long-range cor-

rected functionals, coupled cluster and multireference

configuration interaction methods were applied with triple-

zeta polarized basis sets. All cations were shown to be

distorted from the high D3h to the lower C2v symmetry due

to a strong pseudo Jahn–Teller effect. Geometry optimi-

zations lead to two 2B2 states, one with an X(axial)–M–X

angle above 120�, to give a structure with one short and

two long bonds (1S2L), the other having such angle below

120�, resulting in a structure with two short and one long

bond (2S1L). In most cases, the 1S2L structure was found

to be more stable than 2S1L, but the stabilization energies

of 1S2L and 2S1L differ by no more than 0.2 eV. There is

a saddle point at D3h symmetry. Adiabatic and vertical

ionization energies of MX3 are also reported. Good to

excellent agreement with available experimental data was

found.

Keywords Trihalide cations � Pseudo Jahn–Teller effect �
Double minima in C2v symmetry � Coupled cluster and

density functional calculations � Excitation energies �
Ionization potentials

1 Introduction

In the present series of studies, AX3 molecules and ions are

chosen which may be subject to the pseudo Jahn–Teller

effect [1], whereby the symmetry of a non-degenerate state

is lowered due to vibronic coupling with low-lying excited

states. With the highest symmetry of (nonlinear) AX3 sys-

tems being D3h, molecules are selected for which the lowest

state in D3h symmetry is not degenerate. If degenerate, first-

order Jahn–Teller splitting [2] will occur. Molecules with

22 valence electrons (VE), such as CO3, have in D3h sym-

metry the electron configuration … e04 e004, giving rise to a

non-degenerate 1A1
0 state. Systems with 19–21 VEs have a

degenerate ground state, with e00 partially occupied. With 23

VEs, examples are NO3 and CO3
-, and 24 VEs, examples

are NO3
- and CO3

2-, an a2
0 orbital is occupied, leading to a

non-degenerate lowest state. For systems with 25 (example

SO3
-) and 26 VEs (example SO3

2-), the next higher orbital

a1
0 is filled, and with 27 and 28 VE’s an a2

00 orbital is

occupied, in all cases leading to non-degenerate lowest

states in D3h symmetry. For more VEs, degeneracies will

occur. As demonstrated, AX3 systems with 22–28 VEs have

non-degenerate lowest D3h states and are therefore candi-

dates for studying the PJTE.

In the first paper of this series [3], trioxides with 22 and

23 VEs were studied. It was shown that the 22 VE trioxides

CO3, NO3
?, BO3

- and isovalent systems with the central

atom being Si, P and Al, have minima at both D3h and C2v

symmetry. The C2v minimum, at lower energy, results from

vibronic coupling of the 11A1
0 ground state with 1E’ excited

states via the e0 vibrational mode. For GeO3, AsO3
? and
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GaO3
-, however, only the C2v minimum remains. The 1A1

Jahn–Teller component of the excited 11E0 state has a

minimum in C2v symmetry at an O(axial)–A–O angle well

in excess of 120�, causing the C2v minimum.

The situation is quite different for 23 VE systems [3].

The trioxides with the lighter atoms, CO3
-, SiO3

-, NO3,

PO3 and SO3
?, have a 2A2

0 ground state in D3h symmetry

and are not subject to the PJTE. However, GeO3
-, AsO3

and SeO3
? have a double-well potential in C2v symmetry,

with a saddle point at D3h symmetry. A strong PJTE

interaction between the 2A2
0 lowest state and the 2E0 exited

states is encountered, due to lower excitation energies and

favorable q/qq matrix elements. In all cases investigated,

the lowest excited 2E0 state has a minimum at D3h sym-

metry, not at C2v symmetry as for the 22 VE systems.

In the second paper of this series [4], the structure of

BF3
? was investigated. The ground state of BF3

?, with 23

VEs, might be expected to be most stable in D3h symmetry,

such as in NO3 or CO3
-. While both BF3

? and NO3 have

in D3h symmetry a 12A2
0 ground state and low-lying

excited 2E0 states (at 1.16 eV for 12E0 of BF3
?, and 2.10 eV

for NO3; MRCI results), their structures are in fact quite

different. As Haller et al. [5] have shown, due to strong PJT

coupling the lowest state of BF3
? has C2v symmetry with a

minimum at an F(axial)-B–F angle of *108�. According to

ref [4], a strong PJTE actually leads to a double-well

potential, with minima at 134� (1S2L) and 106� (2S1L), the

latter being slightly lower in energy. There is a saddle point

at D3h symmetry. Astonishingly, density functional theory

(DFT) methods with common density functionals, such as

B3LYP and B3PW91, only obtain the 1S2L minimum at

the larger angle. Optimizations with non-hybrid functionals

such as BLYP and BPW91 settle on a D3h minimum only.

Long-range corrected functionals are required to cover

both minima, and to obtain results similar to Møller–

Plesset (MP) and coupled cluster (CC) values.

In the present paper, DFT, coupled cluster and mul-

tireference configuration interaction (MRCI) results will be

presented for MF3
?, MCl3

? and MBr3
?, where M = B, Al,

Ga, all cations having 23 VEs. Results for BF3
? from ref 4

will be included for comparison.

DFT, second-order MP (MP2) and coupled cluster cal-

culations with single and double substitutions and non-iter-

ative triple excitations CCSD(T) studies were performed by

Kaltsoyannis and Price [6] for the D3h and 2S1L minima of

BF3
? and AlF3

?. Using the B3LYP method, only a D3h state

was reported. Vibrational frequencies were not presented. In

combination with experimental studies, CCSD(T) calcula-

tions by Yang et al. [7] obtained a global 1S2L minimum for

BCl3
?. Transition structures were found at D3h and C2v

(2S1L) symmetries. They also reported adiabatic (IEad) and

vertical (IEvert) ionization energies for BCl3
?, as well as

vibrational frequencies for the 1S2L structure.

No theoretical results were found for the other systems.

Photoelectron and photoionization studies are available for

MF3, MCl3 and MBr3, providing ionization energies as

well as vertical excitation energies and some vibrational

frequencies for the corresponding cations in D3h symmetry.

2 Methods

The highest symmetry of (nonlinear) MX3
1 systems is D3h.

Due to the pseudo Jahn–Teller effect, distortion to C2v

symmetry occurs. In C2v symmetry, the bond angle a is

defined as X1–M–X2, where X1 lies on the symmetry axis.

DFT, time-dependent DFT (TD-DFT) and equation of

motion CCSD (EOM-CCSD) calculations were performed

with the Gaussian09 programs [8], using the long-range

corrected LC-B97D functional [9, 10] for DFT. With

common functionals, such as B3LYP, the 2S1L minimum

of BF3
? could not be obtained [4]. The basis set is

6-311?G(3df) for DFT, TD-DFT and EOM-CCSD.

Closed-shell and restricted open-shell CCSD (RCCSD)

and RCCSD(T) calculations were carried out with the

MOLPRO programs [11, 12], using the cc-pVTZ basis set.

Multi-reference configuration interaction (MRCI) calcu-

lations [13, 14] with single and double excitations were

conducted at optimized LC-B95D geometries, using the

valence triple-zeta plus double polarization basis set TZVPP

[15]. Calculations were done with ground state orbitals for

eight roots of each C2v irreducible representation (IR), at

configuration selection thresholds of 0.5, 0.2 and 0.1 lh. The

core orbitals (1s for B, 1s, 2s, 2p for Al, etc.) were frozen.

Starting at 0.5 lh with CAS(13,15) reference functions, at

0.2 lh and 0.1 lh, the reference space consisting of all

configurations with a coefficient c2 C 0.001 produced in the

previous step was used. In the final 0.1 lh step, about

1.3 9 106 configurations per IR were included for diago-

nalization, using about 180 reference functions per IR. The

final ‘estimated full CI energies,’ as given in the tables, were

obtained by applying to the diagonalized CI energies a

Davidson-type correction to account for higher excitations

[16, 17], and by extrapolating to zero threshold, using the

sum of multi-reference MP2 energies of discarded configu-

rations. MRCI energies for Fig. 1 were obtained at angles a
varying from 90� to 150�, in spaces of 10�, using the

respective LC-B95D optimized geometries.

3 Results

3.1 Geometries and energies of ground state

RCCSD(T) and LC-B97D results for geometries and ener-

gies of the MX3
? cations are shown in Table 1 (see Tables
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S1 and S2 in the supplementary information for more

details). For each system, geometries were optimized at D3h

symmetry for the lowest 12A2
0 state, and at C2v symmetry

for the lowest 12B2 state, starting with angles a below and

above 120�. Structures with a\ 120� have two short and

one long bonds (2S1L) and r1[ r2, whereas structures with

a[ 120� have one short and two long bonds (1S2L) with

r1\ r2. This is a consistent finding, also seen for the CO3

and CO3
- series [3]. The reason is eventual dissociation of

MX3
? to MX2

? (r2) ? X (r1) for a\ 120�, and to MX?

(r1) ? X2 (r2) for a[ 120�. MX2
? is linear. In all cases,

two C2v minima were found. In several instances, one of

them is associated with an imaginary frequency. For most

systems, the lowest frequency of the D3h structure was

calculated to be imaginary, indicating a saddle point.

The angles of the 2S1L states decrease (move further

below 120�) as the central atom gets heavier. For the

MF3
? series, the angles go from 106.18� to 98.26� to

96.30� (RCCSD(T) values). Understandably, for a given

X, the bond distances increase as one goes from BX3
? to

GaX3
?. The angles of the 1S2L states increase from

134.08� for BF3
? to 144.40� for AlF3

? to 146.30� for

GaF3
?. The same trends of decreasing/increasing angles

and increasing bond distances can be seen for the other

series.

In most cases, both C2v states are more stable than the

D3h state. Stabilization energies (with respect to the D3h

energy) increase within each series, e.g., from 0.49 eV for

BF3
? to 0.90 eV for AlF3

? to 1.32 eV for GaF3
?. The

stabilization energies of the two C2v minima are usually

very similar, differing by no more than 0.2 eV. In general,

the MX3
? cations are calculated to be more stable in the

1S2L structure. However, 2S1L is more stable for BF3
?

and GaF3
?. According to the BF3

? paper [4], all ab initio

methods (HF, MP2, CCSD, CCSD(T)) lead to BF3
? being

more stable in 2S1L. In the case of BCl3
? and BBr3

?, the

2S1L structure is calculated to be less stable than the D3h

isomer (positive sign). Such optimizations should have led

to D3h symmetry.

The optimized bond distances and angles obtained by

LC-B97D are very similar to those found by RCCSD(T).

Stabilization energies differ by up to 0.3 eV from

RCCSD(T) values, but again the differences between 1S2L

and 2S1L lie within 0.2 or even 0.1 eV. In most cases, 1S2l

is calculated to be more stable than 2S1L.

The CCSD(T)/6-311G* results of Kaltsoyannis and

Price [6] for BF3
? show a C2v minimum at 104.80�, with

B–F bond distances of 1.729 and 1.250 Å, lying 56.5 kJ/

mol (0.59 eV) lower than the D3h energy. The CCSD(T)/6-

311G* minimum of AlF3
? lies at 98.01�, being 91.5 kJ/

mol (0.95 eV) lower than the D3h value, whereas the

B3LYP/6-311G* C2v minimum was found at 109.13�,
0.90 kJ/mol (0.01 eV) lower than D3h. CCSD(T) calcula-

tions on BCl3
? by Yang et al. [7] found a global C2v

minimum at 132.2� (1S2L), with bond distances of 1.670

and 1.776 Å, lying 0.21 eV below the D3h state.

Table 1 RCCSD(T)/cc-pVTZ

(first line) and LC-B97D/6-

311?G(3df) (second line)

geometries and energies for

MF3
? to MBr3

? systems with 23

valence electrons, at D3h and

C2v (2S1L and 1S2L)

symmetries

Distances r in Å, angles a in

degree, energy differences

DE = E(C2v) - E(D3h) in eV

System D3h (12A2
0) 2S1L (12B2) 1S2L (12B2) DE 2S1L DE 1S2L

r r1 r2 a r1 r2 a

BF3
? 1.313 1.660 1.254 106.18 1.250 1.365 134.08 -0.49 -0.38

1.298 1.638 1.245 105.94 1.240 1.355 134.39 -0.33 -0.38

AlF3
? 1.667 2.004 1.608 98.26 1.602 1.722 144.40 -0.90 -0.90

1.635 1.911 1.589 99.56 1.582 1.695 144.07 -0.59 -0.84

GaF3
? 1.752 2.173 1.673 96.30 1.671 1.801 146.30 -1.32 -1.17

1.728 2.110 1.660 95.94 1.658 1.789 146.24 -1.23 -1.25

BCl3
? 1.727 1.845 1.695 112.38 1.670 1.776 132.10 ?0.44 -0.19

1.709 1.874 1.675 112.04 1.656 1.761 131.72 -0.21 -0.31

AlCl3
? 2.087 2.321 2.035 104.83 2.023 2.143 140.07 -0.31 -0.50

2.044 2.285 2.003 105.29 1.989 2.107 138.78 -0.53 -0.58

GaCl3
? 2.163 2.475 2.092 102.63 2.082 2.219 141.59 -0.51 -0.63

2.092 2.418 2.037 103.06 2.026 2.158 139.70 -0.85 -0.78

BBr3
? 1.886 1.973 1.960 113.20 1.831 1.935 131.61 ?0.05 -0.16

1.871 2.012 1.843 112.79 1.820 1.923 131.22 -0.16 -0.28

AlBr3
? 2.244 2.457 2.195 106.11 2.180 2.301 138.91 -0.21 -0.42

2.200 2.431 2.160 106.43 2.144 2.265 137.34 -0.43 -0.48

GaBr3
? 2.299 2.577 2.236 104.70 2.222 2.356 139.99 -0.34 -0.51

2.237 2.543 2.188 104.62 2.174 2.305 137.96 -0.68 -0.64
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3.2 Vertical excitation energies at D3h symmetry

and the pseudo Jahn–Teller effect

At D3h symmetry, the ground state of the MX3
? systems is

2A2
0 (with a ….e04 e00 4 a2

01 configuration). The lowest

excited state is 12E00 (e00 ? a2
0), followed by 12E0

(e0 ? a2
0), 12A2

00 (a2
00 ? a2

0) and at higher energies by

22E0 (lower e0 ? a2
0).

TD-DFT, EOM-CCSD and MRCI vertical excitation

energies (VEE) at D3h symmetry are presented in Table 2.

Energies calculated by different methods are similar. For

example, for BF3
? VEEs for 12E00 range from 0.88 eV

(MRCI) to 1.02 eV (EOM), for 12E0 from 1.16 eV

(MRCI) to 1.30 eV (TD), and for 22E0 from 4.20 eV

(MRCI) to 4.44 eV (EOM). From photoelectron spectra,

experimental VEEs are available for BF3
? [18], AlF3

?

[19], BCl3
? [20], AlCl3

? [21], BBr3
? [20, 22] and AlBr3

?

[21], as shown in Table 2. Experimental values for the Ga

compounds could not be found. As expected, the MRCI

values come closest to the experimental ones, with good

to excellent agreement. The MRCI values of BF3
? lie

within 0.15 eV of the experimental values obtained by

Romero et al. [18]. Good agreement is obtained for AlF3
?,

except that the experimental 4.64 eV could not be mat-

ched. The calculated VEEs of BCl3
? also lie within

0.15 eV of the experimental numbers, except for 12E0

(0.79 MRCI, 1.15 expt.). Good agreement is obtained for

AlCl3
? and AlBr3

? (maximal 0.2 eV deviation). For BBr3
?,

there is a discrepancy in 12E0, with 0.78 eV calculated by

MRCI, and 1.20 eV experimental, similar to the BCl3
?

deviation. The excitation energies of the lowest state are

very low, getting lower as the central atom gets heavier.

The lowest energy is obtained for the 12E0 state GaF3
?,

with a value of 0.07 eV.

The distortion of the MX3
? cations from the highest

symmetry D3h to C2v is caused by the pseudo Jahn–Teller

effect. Vibronic coupling of the 2A2
0 ground state with 2E0

excited states via an e0 vibrational mode causes a change

from D3h to C2v symmetry (e0 * E0 = A1
0, A2

0, E0). Dis-

tortion to C3v symmetry via the a2
00 vibrational mode would

in principle be possible by coupling of the ground state

with 2A1
00 excited states (a2

00 * A1
00 = A2

0), but there are no

low-lying 2A1
00 excited states, as Table 2 shows. One of the

criteria for strong vibronic coupling is a low excitation

energy.

MRCI potential curves for BF3
?, as function of the F–

B–F angle a (a = 120�: D3h, a = 120�:C2v) [Fig. 2 of ref

[4]], show shallow minima around 105� and 135� in the

potential curve of the ground state, in good agreement with

the calculated minima (Table 1), and a maximum (saddle

point) at 120�. They also display the Jahn–Teller splitting

of 12E0 into 12A1, with a minimum below 90�, and 22B2,

with a minimum close to 120�. At higher energies, 22E0

splits into 22A1, with a minimum around 110�, and 32B2,

with a minimum around 120�. With 22B2 and 32B2 mini-

mizing around 120�, the double minimum in the ground

state potential is caused by strong PJT interaction.

Table 2 Vertical excitation energies (eV) at D3h symmetry for tri-

halides MF3
? to MBr3

? with 23 valence electrons

12E00 12E0 12A2
00 22E0 12A1

0
(22E00)

Next
state

BF3
?

TD-DFT 0.94 1.30 3.18 4.26 5.19 11.36

EOM 1.02 1.20 3.34 4.44 5.66 11.60

MRCI 0.88 1.16 3.10 4.20 5.40 11.15

Expt. Ref. [18] 0.75 1.12 3.20 4.16 5.55

AlF3
?

TD-DFT 0.59 0.82 1.18 1.76 2.93 8.74

EOM 0.63 0.67 1.16 1.81 3.08 8.51

MRCI 0.39 0.60 1.12 1.62 2.83 8.22

Expt. Ref. [19] 0.65 1.62 4.64

GaF3
?

TD-DFT 0.23 0.12 0.96 1.45 3.25 6.69

EOM 0.34 0.06 0.92 1.51 3.30 6.60

MRCI 0.13 0.07 1.01 1.44 3.11 6.75

BCl3
?

TD-DFT 0.76 0.39 2.93 4.02 5.93 6.22

EOM 0.85 0.92 2.91 4.08 6.16 6.30

MRCI 0.71 0.79 2.66 3.82 5.94 6.22

Expt. Ref. [20] 0.63 1.15 2.59 3.87 6.11

AlCl3
?

TD-DFT 0.56 0.29 1.37 2.02 4.05 6.69

EOM 0.65 0.70 1.43 2.26 4.09 7.42

MRCI 0.50 0.68 1.29 2.07 3.82 6.66

Expt. Ref. [21] 0.46 0.72 1.32 2.03 3.96

GaCl3
?

TD-DFT 0.34 0.48 1.24 1.83 4.56 5.43

EOM 0.26 0.41 1.13 1.95 4.32 5.80

MRCI 0.34 0.35 1.08 1.89 4.11 5.39

BBr3
?

TD-DFT 0.65 0.18 2.64 3.70 4.91 5.85

EOM 0.79 0.83 2.70 3.83 5.05 5.45

MRCI 0.71 0.78 2.64 3.81 5.82 5.94

Expt. Ref. [20, 22] 0.62 1.20 2.43 3.58 6.12 6.63

AlBr3
?

TD-DFT 0.50 0.34 1.33 2.05 4.30 5.79

EOM 0.57 0.58 1.30 2.16 4.25 6.00

MRCI 0.48 0.63 1.27 2.08 4.02 5.75

Expt. Ref. [21] 0.62 0.83 1.46 2.26 4.32

GaBr3
?

TD-DFT 0.31 0.47 1.23 1.80 4.65 4.89

EOM 0.41 0.30 1.17 2.00 4.61 5.12

MRCI 0.31 0.35 1.13 1.92 4.34 4.67

TD-DFT, EOM-CCSD and MRCI results. Comparison with photo-
electron results. The lowest state in D3h symmetry is 12A2

0
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The PJT interaction between the ground state and the

excited states is much stronger for GaF3
?, as seen in the

MRCI potential curves, Fig. 1. Again, the ground state has

two C2v minima, around 96� and 146�, and a maximum at

120�. The energy difference between the maximum at 120�
and the minimum at 146� is 1.25 eV in LC-B97D and

1.17 eV in RCCSD(T), whereas the energy difference to the

minimum around 96� is 1.23 eV in LC-B97D and 1.32 eV in

RCCSD(T). As in the case of BF3
?, the Jahn–Teller states

22B2 and 32B2 have their minima around 120�. There is an

avoided crossing between 22B2 and 32B2 around 130�, as

confirmed by an exchange of leading configurations.

3.3 Vertical excitation energies at C2v symmetry

Vertical excitation energies for the 1S2L and 2S1L struc-

tures, calculated by TD-DFT and EOM-CCSD, using the

respective geometries are shown in Tables 3 and 4,

respectively. (A definite decision on which C2v isomer is

more stable cannot be made due to the small difference in

stabilization energies.) VEEs for the lowest excited state
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Fig. 1 MRCI potential curves for GaF3
? as function of the F1–Ga–F2

angle

Table 3 Vertical excitation

energies (eV) for trihalides

MF3
? to MBr3

? with 23 valence

electrons at optimized 1S2L

geometry

The ground state is X2B2. TD-

DFT and EOM-CCSD results

12A2 22B2 12B1 12A1 22B1 32B2 22A1 32A1

BF3
?

TD 1.37 2.84 2.86 3.06 5.34 5.61 5.97 7.51

EOM 1.40 3.12 3.11 2.97 6.02 6.27 6.19 8.51

AlF3
?

TD 1.57 2.70 2.93 3.31 5.52 5.50 4.60 6.84

EOM 1.60 2.75 3.01 3.19 – 6.31 4.67 7.72

GaF3
?

TD 1.51 2.31 2.83 3.12 6.27 6.29 4.77 6.88

EOM 1.52 2.32 2.75 2.85 – 6.54 4.67 7.16

BCl3
?

TD 1.09 2.42 2.37 1.90 4.55 5.00 5.52 6.12(B1)

EOM 1.03 2.03 2.06 1.97 3.94 4.57 5.22 6.21(B1)

AlCl3
?

TD 1.18 2.43 2.32 2.08 4.50 4.53 4.21 6.52

EOM 1.14 2.37 2.16 2.18 3.84 3.87 4.10 6.11

GaCl3
?

TD 1.15 2.15 2.24 1.85 4.81 4.87 4.31 5.56

EOM 1.14 2.16 2.11 2.09 4.03 4.08 4.20 5.82

BBr3
?

TD 0.92 2.12 2.08 1.68 4.05 4.55 5.10 5.10 (B1)

EOM 1.05 1.94 2.03 2.01 3.73 4.33 5.02 5.07 (B1)

AlBr3
?

TD 0.98 2.17 2.01 1.78 4.01 4.05 3.97 5.66

EOM 1.13 2.38 2.19 2.24 3.56 3.65 4.25 5.61

GaBr3
?

TD 0.95 1.92 1.94 1.58 4.24 4.31 4.00 4.75

EOM 1.13 2.21 2.12 2.14 3.66 3.75 4.24 4.96 (B1)
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12A2 of the 1S2L structures are in the 1–2 eV range, fol-

lowed by 22B2, 12B1 and 12A1 in the 2–3 eV range.

Oscillator strengths (not reported) are very low for all but

the 2A1 states.

The lowest excited state in 2S1L is 12B1, followed by

12A1. Both states have very low VEEs. The energy of 12B1

(transition from ground state is forbidden) ranges from

0.07 eV (GaCl3
?) to 0.47 eV (BF3

?, BCl3
?) in LC-B97D,

and from 0.14 eV (GaF3
?) to 0.64 eV (BBr3

?) in EOM-

CCSD. VEEs of 12A1 are still in the 1 eV range. Oscillator

strengths are very low, except for 2B2 excited states.

Comparison of the C2v excitation energies with D3h

values is quite interesting. 12E00 in D3h correlates with

12B1 ? 12A2 in C2v; 12E0 with 12A1 ? 22B2, and 12A2
00

with 22B1. For 1S2L, 12E00 in D3h splits into 12A2 ? 12B1,

with 12A2 having the lower energy, and 12B1 lying 1–2 eV

higher. Both states have energies above 12E00. On the other

hand, 12E0 splits into 12A1 ? 22B2, both having energies

higher than 12E0, with 12A1 and 22B2 energies differing by

about 0.5 eV or less. One or the other may be at lower

energy. The 12A2
00 state in D3h correlates with 22B1 in C2v.

The 22B1 energies are much higher than the corresponding

12A2
00 values.

The situation is somewhat different for the 2S1L VEEs.

The 12B1 component of 12E00 has VEE below that of 12E00,
whereas the 12A2 energy lies well above the 12E00 energy,

with differences between the 12B1 and 12A2 energies

amounting to 2–4 eV. The splitting between the 12A1 and

22B2 components of 12E0 is also quite high, 12A1 always

having the lower VEE. Due to such splitting, there are two

low-lying states 12B1 and 12A1, followed by a large gap in

excitation energies.

3.4 Vibrational frequencies at D3h and C2v symmetries

In Table 5, harmonic frequencies for the 1S2L and 2S1L

structures, calculated by LC-B97D/6-311?G(3df), are

displayed. Some experimental frequencies are known for

BF3
? [23], BCl3

? [7] and BBr3
? [24] from photoelectron

and photoionization spectra, as listed in Table 5. For BF3
?,

the frequencies are better assigned to 2S1L than 1S2L, but

for BCl3
? and BBr3

? to 1S2L, since in these cases, the

Table 4 Vertical excitation

energies (eV) for trihalides

MF3
? to MBr3

? with 23 valence

electrons at optimized 2S1L

geometry

The ground state is X2B2. TD-

DFT and EOM-CCSD results

12B1 12A1 12A2 22B2 22B1 22A1 32B2 32A1

BF3
?

TD 0.47 1.32 4.31 4.43 6.00 6.01 7.46 7.93

EOM 0.25 1.30 5.83 5.79 7.44 7.31 9.06 9.72

AlF3
?

TD 0.43 1.19 3.27 3.37 3.55 3.58 4.22 5.21

EOM 0.19 1.05 5.00 4.93 5.20 5.14 5.99 6.92

GaF3
?

TD 0.28 0.85 4.47 4.47 5.06 5.01 5.77 6.84

EOM 0.14 0.81 5.39 5.34 5.80 5.71 6.52 7.39

BCl3
?

TD 0.47 1.21 2.37 2.46 4.02 4.37 5.57 6.07

EOM 0.54 1.14 1.79 1.83 3.45 4.12 – 6.12

AlCl3
?

TD 0.26 1.12 2.89 2.97 3.33 3.38 4.35 5.86

EOM 0.28 1.19 2.61 2.57 3.01 3.10 4.08 5.56

GaCl3
?

TD 0.07 0.77 3.49 3.55 4.08 4.09 5.11 5.69

EOM 0.19 0.94 3.19 3.16 3.66 3.67 4.73 5.93

BBr3
?

TD 0.16 0.92 2.16 2.25 3.61 3.97 5.10 5.04

EOM 0.55 0.99 1.47 1.56 3.04 3.94 – 5.16

AlBr3
?

TD 0.15 0.89 2.43 2.54 2.90 2.99 3.93 5.71

EOM 0.28 1.14 2.14 2.12 2.61 2.83 3.80 5.56

GaBr3
?

TD 0.23 0.61 2.67 2.74 3.10 3.14 3.95 4.12

EOM 0.21 0.95 2.55 2.54 3.05 3.16 4.24 5.06
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harmonic frequencies are higher than the experimental

values, as is usually the case due to neglect of anharmonic

contributions. The most intense frequency b2 for the 2S1L

isomer of BF3
? is calculated to be 1,852 cm-1, experi-

mentally 1,791 cm-1; a1 for the 1S2L isomer of BCl3
? is

calculated as 1,137 cm-1, experimentally 1,090 cm-1, and

a1 for the 1S2L isomer of BBr3
? is calculated as 958 cm-1,

experimentally 930 cm-1. The suggestion that 1S2L is the

more stable isomer of BCl3
? and BBr3

? agrees with the

lower energy calculated for 1S2L, but contrasts the finding

for BF3
?, where the LC method predicts 1S2L to be more

stable (by only 0.05 eV). Imaginary frequencies (Table 5)

were obtained for the 2S1L isomers of AlF3
?, BCl3

?, BBr3
?

and AlBr3
?, and for the 1S2L isomer of GaCl3

?, in com-

plete agreement with the higher stabilization energies cal-

culated in the LC method for these isomers. For the

remaining four cations, both 1S2L and 2S1L have real

frequencies, although stabilization energies prefer one

isomer over the other, however, by very small amounts

(0.05 eV or less). Possible reasons for this outcome are

insufficient accuracy of the calculations or a double

minimum.

Harmonic frequencies at D3h symmetry, calculated by

the same method, are shown in Table S3 in the supple-

mentary information. In most, but not all cases, the lowest

frequency is imaginary, indicating that the cations are

unstable in D3h symmetry. As this is expected for all cat-

ions covered in this paper, it is assumed that the accuracy

of the calculations is not sufficient to properly resolve

shallow minima (see above). The frequencies decrease as

one goes from B to Al to Ga within a given group.

3.5 Adiabatic and vertical ionization energies

In Table 6, optimized geometries of neutral AX3 mole-

cules, as obtained by the RCCSD(T) method, are shown.

The bond distances for BF3 and AlF3 agree closely with

values obtained by Gutsev et al. [25], using the

CCSD(T) method with a 6-311?G(2d) basis set for B and

F, and the 6-311?G(3d) basis set for Al. RCCSD(T) values

for adiabatic (IEad) and vertical (IEvert) ionization energies

of BF3 to GaBr3 are also presented in Table 6. The cal-

culated values are in good to excellent agreement with

available experimental data [19, 21, 26–31], which were

taken from the compilation in NIST [32]. It is seen that

theoretical IEad values differ by no more than 0.2 eV from

the experimental ones, with the exception of AlCl3. How-

ever, the (older) experimental value for AlCl3 of

12.8 ± 0.5 eV is obviously in error, as it is higher than

IEvert (12.01 eV). The correct IEad for AlCl3 should be

close to 11.4 eV. Excellent agreement is seen for IEvert,

with several theoretical values differing by 0.03 eV or less

from the experimental ones. The largest deviation of

0.08 eV occurs for AlCl3. As mentioned in the Introduc-

tion, Yang et al. [7] obtained 11.61 eV for IEad of BCl3,

and 11.71 eV for IEvert.

As Table 6 shows, the IE values of MX3 are nearly

independent of the central atom, and closely reflect the

ionization energies of the halogen atoms. (The ionization

energy of F is about 17.4 eV, of Cl 13.0 eV and of Br

11.8 eV). This is understandable as the HOMO of MX3 is a

halogen lone pair orbital.

4 Discussion

In Table 7, optimized C2v bond angles and stabilization

energies with respect to the D3h saddle point are summa-

rized for the nine cations. In both the LC-B97D and

RCCSD(T) methods, two C2v geometries were optimized

for each system, with a potential maximum at D3h sym-

metry. Such results are indicative of strong pseudo Jahn–

Table 5 Harmonic frequencies m (cm-1) and IR intensities (km/mol)

for trihalides MF3
? to MBr3

? at 1S2L (first line) and 2S1L (second

line) geometry

b2
a a1 b1 b2 a1 a1

BF3
? expt.b 364 439 529 539 880 1,741

129 282 537 1,852 455 1,084

509.6 1,790.8 (1,790.8)

AlF3
? 166 362 190 500 685 1,103

-64 205 200 1,143 395 776

GaF3
? 73 349 149 366 670 887

54 174 155 933 278 750

BCl3
? expt.c 238 247 399 524 488 1,137

-145 233 418 1,097 381 699

194 209 1,090 (1,090)

AlCl3
? 103 185 153 328 400 753

14 137 163 758 306 473

GaCl3
? -39 172 114 213 386 558

53 119 121 584 214 431

BBr3
? expt.d 146 151 346 496 291 958

-121 141 364 892 252 583

930 (930)

AlBr3
? 71 109 131 256 240 616

-22 89 140 614 215 348

GaBr3
? 17 101 90 148 234 423

18 80 94 437 160 268

LC-B97D results. High IR intensities indicated in bold. Comparison

with experimental values
a Minus sign for imaginary frequency
b Experimental values, Ref. [23]
c Experimental values, Ref. [7]
d Experimental values, Ref. [24]
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Teller coupling, aided in part by very low excitation

energies. Table 7 shows that RCCSD(T) geometries (as

represented by the bond angle) are very similar to LC-

B978D values. Stabilization energies may be larger in one

or the other method, but they are again of similar magni-

tude. To the LC-B97D and RCCSD(T) results, taken from

Table 1, B3PW91 values have been added. As stated

before, and described in [4], methods with commonly used

density functionals such as B3PW91 and B3LYP com-

pletely miss the 2S1L minimum of BF3
?. Optimizations

starting at a low angle, for example 100�, end in Td sym-

metry. According to Table 7, the B3PW91 method also

fails to obtain the 2S1L minima of BCl3
?, BBr3

? and

AlBr3
?. For the other 2S1L isomers, B3PW91 shows a

minimum at an angle below 120�, which, however, is in

most cases higher than the RCCSD(T) or LC angle. For

example, in AlF3
?, the 2S1L angle is 98.26� in RCCSD(T),

99.56� in LC and 109.77� in B3PW91. Even in cases of

close geometry, such as in GaF3
?, the B3PW91 stabiliza-

tion energies are usually well below the values obtained

with the LC and RCCSD(T) methods. For the 1S2L iso-

mers, the B3PW91 geometries are similar to the LC and

RCCSD(T) results, but the stabilization energies are again

below the reference values. This shows that the failure of

common density functionals is not restricted to BF3
?, but

extends to all isovalent molecules covered in this paper.

In several, but not all cases, imaginary frequencies were

calculated for the less stable C2v isomer. According to the

LC-B97D results of Table 5, for BF3
?, GaF3

?, AlCl3
? and

GaBr3
?, none of the two C2v isomers has an imaginary

Table 6 Optimized geometries

(distances in Å) and energies

E (hartree) for neutral MX3

molecules at D3h symmetry

Adiabatic (IEad) and vertical

(IEvert) ionization energies in

eV. RCCSD(T)/cc-pVTZ results

MX3 D3h (11A1
0) IEad IEvert

MX3 r E Theor Exptl Ref. Theor Exptl Ref.

BF3 1.313 -324.190962 15.44 15.7 ± 0.3 [26] 15.94 15.96 [27]

AlF3 1.642 -541.443745 14.38 – 15.31 15.45 ± 0.02 [19]

GaF3 1.719 -2,222.489206 14.00 – 15.41 –

BCl3 1.747 -1,404.108654 11.44 11.64 [28] 11.65 11.62 [29]

AlCl3 2.083 -1,621.417917 11.43 12.8 ± 0.5 [30] 11.93 12.01 [21]

GaCl3 2.150 -3,302.726189 11.31 11.52 [31] 11.94 11.96 [21]

BBr3 1.909 -7,742.826068 10.40 10.51 ± 0.02 [28] 10.58 –

AlBr3 2.245 -7,960.146915 10.49 10.4 [21] 10.91 10.91 [21]

GaBr3 2.293 -9,641.470778 10.41 10.4 [31] 10.92 10.94 [21]

Table 7 Comparison of

optimized angles and energy

differences DE = E(C2v) -

E(D3h) obtained by LC-B97D,

RCCSD(T) and B3PW91

methods

The first line for each system

describes the 1S2L, the second

line the 2S1L structure

Optimized angles (deg) DE (eV)

LC CCSD(T) B3PW91 LC CCSD(T) B3PW91

BF3
? 134.39 134.08 132.45 -0.38 -0.38 -0.07

105.94 106.18 120.00 -0.33 -0.49 0.00

AlF3
? 144.07 144.40 142.83 -0.84 -0.90 -0.27

99.56 98.26 109.77 -0.59 -0.90 -0.01

GaF3
? 146.24 146.30 145.27 -1.25 -1.17 -0.54

95.94 96.30 96.58 -1.23 -1.32 -0.27

BCl3
? 131.72 132.10 129.58 -0.31 -0.19 0.01

112.04 112.38 120.00 -0.21 ?0.44 0.00

AlCl3
? 138.78 140.07 138.66 -0.58 -0.50 -0.15

105.29 104.83 115.51 -0.53 -0.31 0.00

GaCl3
? 139.70 141.59 139.96 -0.78 -0.63 -0.27

103.06 102.63 108.44 -0.85 -0.51 -0.02

BBr3
? 131.22 131.61 129.02 -0.28 -0.16 0.01

112.79 113.20 120.00 -0.16 ?0.05 0.00

AlBr3
? 137.34 138.91 137.56 -0.48 -0.42 -0.11

106.43 106.11 120.00 -0.43 -0.21 0.00

GaBr3
? 139.40 139.99 137.96 -0.64 -0.51 -0.20

104.62 104.70 112.75 -0.68 -0.34 -0.01
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frequency, and one may therefore conclude that these

cations have a double minimum in C2v symmetry. How-

ever, these conclusions have to be taken with caution, as

the appearance of imaginary frequencies differs with

method and basis set.

The difference between vertical and adiabatic ionization

energies should be close to the stabilization received by

distortion from D3h to C2v symmetry (since in D3h sym-

metry, the geometry of MX3 is about the same as that of

MX3
?). In cases of good agreement between calculated

and experimental IEs, experimental confirmation is given

to the calculated C2v structures of the MX3
? cations. For

example, GaBr3
? has a theoretical stabilization energy of

0.51 eV (RCCSD(T) value for 1S2L), compared with an

experimental difference between IEad and IEvert of 0.54 eV.

As the other isomer of GaBr3
?, 2S1L, has a calculated

stabilization energy of 0.34 eV, experimental data appear

to confirm that 1S2L is more stable than 2S1L.

Experimentally known vibrational frequencies indicate

that the 1S2L isomer of BCl3
? and BBr3

? is more stable

than the 2S1L isomer and that 2S1L of BF3
? is more stable

than 1S2L, in agreement with the calculated stabilization

energies.

The findings for MX3
? species with 23 VEs are to be

contrasted to those reported for XO3 molecules with 23

VEs, which were found to have a D3h structure for central

atoms from the first and second row, such as NO3 and PO3,

but a C2v double-well potential for central atoms from the

third row, such as AsO3, mainly due to lower excitation

energies [3].

5 Summary and conclusion

Nine cations MX3
?, with M = B, Al, Ga, and X = F, Cl,

Br, have been studied. All were shown to be distorted from

the high D3h to the lower C2v symmetry due to the pseudo

Jahn–Teller effect. In D3h symmetry, the lowest state 12A2
0

couples with low-lying excited 2E0 states via e0 vibrational

modes, causing distortion to C2v symmetry. Strong PJTE

coupling is aided by very low excitation energies to the

lowest 2E0 state, calculated—and in several cases experi-

mentally confirmed—to lie between 0.07 and 1.2 eV.

Geometry optimizations lead to two C2v states, both having
2B2 symmetry, one with an X(axial)–M–X angle above

120�, to give an 1S2L structure, the other having such

angle below 120�, resulting in an 2S1L structure. In all

cases, the stabilization energies between 1S2L and 2S1L

differ by no more than 0.2 eV, such that, within the

accuracy of the calculations, a clear decision on which

isomer is more stable cannot always be made. In some

cases, one or the other structure has an imaginary fre-

quency; however, again there is some ambiguity. Despite

this, based on the calculations and on some experimental

evidence, preference is given to the 1S2L structure as being

the more stable one for the majority of cations. An

exception is BF3
?, where all ab initio methods point to

2S1L being more stable [4].

Vertical excitation energies and harmonic vibrational

frequencies at D3h and C2v symmetries, as well as adiabatic

and vertical ionization energies of the neutral molecules,

are reported. Good to excellent agreement with a multitude

of experimental values was found.

The data supplied in this paper should help with

experimental verification of the appropriate structures. In

addition, ESR measurements might also be of use. Spin

densities for 1S2L isomers are mainly located on F2 and F3,

whereas they are concentrated on the axial F1 for 2S1L

isomers. Similarly, NMR studies might be able to distin-

guish between the two possible C2v structures.

Other MX3 systems, such as NF3 with 26 VEs, are

known to distort to C3v symmetry, due to coupling of 11A1
0

with a low-lying excited 11A2
00 state. More detailed studies

on NF3 and related systems are in progress.
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Abstract A computational investigation of anomeric

effects in piperidine rings bearing fluoro and trifluoro-

methyl substituents shows for both compounds the most

pronounced evidence of the anomeric effect, as expressed

as hyperconjugative delocalization of the nitrogen lone

pair, in structures with the substituent in the axial position

and the N–H bond in the equatorial position. This structure

is the lowest-energy structure in the fluoro case but not in

the trifluoromethyl case where there is an increased axial

penalty associated with the CF3 group. The anomeric effect

is characterized via geometrical evidence, natural bond

orbital analysis, electrostatic effects, and energetic criteria.

Computational results from a variety of levels of theory are

presented including CCSD(T) with complete basis set

extrapolation, B2PLYP-D, xB97XD, B97-D, M06-2X,

B3LYP, and MP2 allowing for a comparison of perfor-

mance. The CCSD(T)/CBS results are very well repre-

sented by either B2PLYP-D or xB97XD with moderate to

large basis sets (aug-cc-pVTZ or aug-cc-pVDZ). Hyper-

conjugation, electrostatic effects, and steric effects play a

role in the relative energetic ordering of the isomers

considered.

Keywords Stereoelectronic effect � Conformation �
Fluorine � Computational � Density functional theory

1 Introduction

Fluorine has long attracted attention as a useful substituent

for the modification of the properties of organic com-

pounds. Its small size, high electronegativity, and high

carbon–fluorine bond strength make possible significant

changes in polarity, solubility, reactivity, and metabolic

stability with minimal steric penalties [1]. While the

introduction of fluorine may not change the size of a

molecule appreciably, it can have a profound impact on its

shape and interactions with neighboring groups [2].

Fluorine participates in a number of subtle effects that

impact the conformational preferences of organic compounds

suggesting that the C–F bond has potential utility as a

molecular design tool by allowing for the systematic modifi-

cation of a compound’s folding, self-assembly, and molecular

recognition tendencies [3]. This can potentially be exploited in

the design of peptidomimetics, novel materials, polymers,

bio-inspired materials, engineered proteins, and therapeutic

agents [4–10]. The effects impacting conformational proper-

ties are stereoelectronic effects [11, 12] that result in the sta-

bilization of a particular geometry as in the gauche effect [13–

15] and the anomeric effect [16–21] (Fig. 1). Beyond con-

formational equilibria, stereoelectronic effects can play a role

in determining the course of reactions through stabilization of

particular transition state geometries [22, 23].

The anomeric effect has been the topic of much research

and has been reviewed extensively in the literature [11, 17–

Dedicated to the memory of Professor Isaiah Shavitt and published as

part of the special collection of articles celebrating his many

contributions.

Electronic supplementary material The online version of this
article (doi:10.1007/s00214-014-1491-8) contains supplementary
material, which is available to authorized users.

N. D. Erxleben � J. J. Urban (&)

Chemistry Department, United States Naval Academy,

572 Holloway Road, Annapolis, MD 21402, USA

e-mail: urban@usna.edu

G. S. Kedziora

Engility Corporation, Wright-Patterson AFB, OH 45433, USA

123

Theor Chem Acc (2014) 133:1491

DOI 10.1007/s00214-014-1491-8

Reprinted from the journal 301

mailto:urban@usna.edu


19, 21, 24–26]. Commonly offered explanations include

the concept of an energetically favorable participation of

the C–F r* orbital as an electron acceptor in a particular

geometry, for example, corresponding to an anti-periplanar

orientation of bonds, resulting in a preferred conformation,

although many alternative explanations exist [17]. Such

interactions have been described as a type of hyperconju-

gation. The IUPAC Compendium of Chemical Terminol-

ogy [27] states ‘‘In the formalism that separates bonds into

r and p types, hyperconjugation is the interaction of r-

bonds with a p-network’’ and that ‘‘the interaction between

filled p- or p-orbitals and adjacent antibonding r* orbitals

is referred to as negative hyperconjugation.’’ The Com-

pendium also uses what it terms ‘‘double bond-no-bond

resonance’’ structures of the type shown in Fig. 2, which

are prevalent in the literature on stereoelectronic effects

[11, 28, 29] to illustrate the definition of hyperconjugation.

The concept of hyperconjugation relies on a local orbital

picture of quantum chemistry that is consistent with the

common chemist’s view of Lewis structures. Natural bond

orbital (NBO) analysis [30] has been used to explain the

anomeric effect by showing a favorable interaction

between the heteroatom lone pair and the r* orbital of the

substituent bonded to the anomeric carbon [16, 31, 32].

This was done most recently by Freitas [33] for a series of

2-substituted tetrahydropyrans, who found that NBO ana-

lysis provides a coherent framework in which to analyze

the results, as we do in this report. Freitas points out that

steric, electrostatic, and hyperconjugative effects play a

role whether or not the anomeric effect is observed in his

calculations, and sometimes the hypercongjugative effect is

not the dominate factor in the preference of one isomer

over the other.

There has been an ongoing controversy regarding the

origin of the anomeric effect. Most recently, Mo denied the

importance of hyperconjugation based on block-localized

wavefunction (BLW) methods [24], arguing that delocal-

ization between different fragments containing the het-

eroatom atoms does not lead to an energy lowering. The

underlying assumption is that delocalization is equivalent

to hyperconjugation, and to prove that hyperconjugation is

not important only requires one to enforce localization and

show that the anomeric effect is still reproduced. However,

the localization enforced in the BLW calculations, based

on molecular fragments, is not the same as using the very

specific types of localized orbitals in NBO theory or other

local bonding theories based on atomic orbitals and

bonding orbitals. The BLW calculations show that electron

transfer between the fragments is not necessary to account

for the anomeric effect, which seemingly calls into ques-

tion the basic underlying assumptions of exactly what is the

anomeric effect in terms of physical properties or energy

decomposition and has spurred some interest in the recent

literature. The conclusion that hyperconjugation does not

play a role in the anomeric effect in 2-fluoro tetrahydro-

furan is contrary to findings of Freitas based on NBO

energy analysis [33].

In the BLW approach, deleting off-diagonal blocks of

the molecular orbital coefficient matrix enforces localiza-

tion, where the basis set expansion for each fragment

includes only those basis functions from the atoms in that

fragment. The interaction between the electrons in the

different blocks or fragments is included via the effective

Fock matrix [34]. Gianninetti et al. [35] used the same type

of block localizing method to eliminate basis set superpo-

sition error in intermolecular interaction calculations and

found that there is an electron transfer between nucleic acid

pairs using Bader charges [35], which indicates that

localization may not be fully enforced with this method.

Clearly, different conclusions may be drawn depending on

which definition of localization one uses. Other recent

work attempting to explain the origin of the anomeric

effect includes studies that do not employ localization but

rather decompose the energy of the total electron distri-

bution into various contributions [36–38]. These various

points of view often have conflicting conclusions about

how to explain the anomeric effect. Our work shows that

different points of view are not necessarily mutually

exclusive.

The purpose of this study is to examine the anomeric effect

in 2-fluoropiperidine (FP) and 2-trifluoromethylpiperidine

H

H

H

H

F

F

H

H

H

H

F

F

O

F

O F

Fig. 1 Gauche effect in 1,2-

difluoroethane (left) and the

anomeric effect in substituted

tetrahydropyrans (right)

X:-

N C
..

X

N C
+

Fig. 2 Double bond-no-bond resonance depiction of hyperconjuga-

tive delocalization of nitrogen lone pair density into C–X r*
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(TP) (see Fig. 3). A significant portion of the previous work on

the anomeric effect has focused on oxygen-based heterocycles

with less attention given to nitrogen-containing rings [25, 31,

32, 39]. We are interested in ascertaining the significance of

stereoelectronic effects in these systems and in making a

comparison between the fluorine and trifluoromethyl substit-

uents in the role of electron acceptor. We have chosen to

incorporate the –CH(F)–NH– and –CH(CF3)–NH– moieties

into a piperidine ring because of the conformational simplicity

that results and because it coincides with the well-studied

anomeric problem in the related pyranose systems. The

nitrogen atom in the piperidine ring also has an NH bond that

can be used to choose the direction of the nitrogen lone pair,

which allows investigation of the effect of the position on

stereoelectronic effects. We are also interested in establishing

the performance record for a variety of computational proto-

cols, including several density functional methods that were

not yet available or widely used when much of the work on the

anomeric effect was originally conducted.

1.1 Computational methods

The highest-cost and most reliable results reported here are

obtained from coupled-cluster theory including the popular

perturbative triples correction, CCSD(T) [40]. Also at the

higher end of the computational spectrum, but much less

costly than CCSD(T), three methods were chosen. These

include Møller-Plesset perturbation theory [41] at the MP2

level; Grimme’s double-hybrid method, B2PLYP-D [42],

which empirically combines MP2 with DFT and includes a

dispersion correction; and Head-Gordon’s xB97X-D [43]

long-range corrected non-local exchange functional. On the

more computationally efficient end of the spectrum, density

functional theory calculations have been performed using

Grimme’s B97-D [44] functional, Zhao and Truh-

lar’s M06-2X functional [45], and the popular B3LYP

functional [46]. Both Pople basis sets [6-31?G(d,p) and

6-311??G(d,p)] and Dunning correlation consistent basis

sets (cc-pVXZ [47] and aug-cc-pVXZ [48], where X = D,

T, Q, and 6) were employed.

Complete geometry optimization of structures I–IV

(Fig. 3) were conducted with several computational pro-

tocols including B2PLYP-D/aug-cc-pVDZ, B2PLYP-D/

aug-cc-pVTZ, xB97X-D/aug-cc-pVDZ, xB97X-D/aug-cc-

pVTZ, B97-D/6-31?G(d,p), B97-D/6-311??G(d,p),

M06-2X/6-31?G(d,p), M06-2X/6-311??G(d,p), B3LYP/

6-31?G(d,p), B3LYP/6-311??G(d,p), MP2/6-31?G(d,p),

MP2/aug-cc-pVDZ, MP2/aug-cc-pVTZ, using the Gauss-

ian 09 [49] program. Diffuse functions were included for

accurate non-bonded interactions and to reduce the basis

set superposition error. Frequency calculations were also

performed to characterize the stationary points found as

minima except for the 2-trifluoropiperidine system at

B2PLYP-D/aug-cc-pVTZ and MP2/aug-cc-pVTZ due to

the computationally intensive nature of the calculations.

Since no imaginary frequencies were seen in the corre-

sponding calculations employing the aug-cc-pVDZ basis

set with nearly identical geometries, the B2PLYP-D and

MP2 optimized structures with aug-cc-pVDZ were

assumed to also be true minima. Natural bond orbital

(NBO) analysis was performed using the NBO program

version 3.1 [50] built into Gaussian 09 [49].

The CCSD(T) calculations were performed with the

basis sets indicated in Tables 1 and 2 with NWChem 6.0

[51], GAMESS [52], and Gaussian 09 [49]. Energies at the

N N N

X

H

H
X X

H

N H

X

I II III IV

Fig. 3 Investigated isomers of

FP with X = F, and TP with

X = CF3

Table 1 CCSD(T) relative energies, in kcal/mol, for structuresa I–IV

of FP

I II III IV

CCSD(T)/CBS 4.90 4.01 4.96 0.00

CCSD(T)/cc-pVQZ 4.91 3.97 4.91 0.00

CCSD(T)/cc-pVTZ 4.87 3.87 4.72 0.00

CCSD(T)/aug-cc-pVTZ 4.97 4.05 4.94 0.00

a Geometries optimized at B2PLYP-D/aug-cc-pVTZ

Table 2 CCSD(T) relative energies, in kcal/mol, for structuresa I–IV

of TP

I II III IV

CCSD(T)/CBS 3.34 0.00 1.10 1.22

CCSD(T)/cc-pVQZ 3.37 0.00 1.06 1.29

CCSD(T)/cc-pVTZ 3.40 0.00 1.01 1.39

a Geometries optimized at B2PLYP-D/aug-cc-pVTZ
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complete basis set (CBS) limit (CCSD(T)/CBS) were

estimated by extrapolation of the correlation energy using

the two-point extrapolation scheme of Halkier and

coworkers [53] with the CCSD(T)/cc-pVTZ and CCSD(T)/

cc-pVQZ values. For the CBS estimate of the Hartree–

Fock energy, the cc-pV6Z energy was used.

2 Results

2.1 Relative energies of structures I–IV

The CCSD(T) relative energies of structures I–IV for FP

and TP are provided in Tables 1 and 2, respectively. The

relative energies in Tables 1 and 2 are taken from

B2PLYP-D/aug-cc-pVTZ geometries and very similar

results are obtained from the other geometries tested here

(see Supplemental Information). In addition to the

CCSD(T) results, a large variety of more approximate

computational protocols have been examined and the

results are detailed in Tables S1–S4 of the Supplemental

Information. All levels of theory find the lowest-energy

structures to be IV for fluoropiperidine and II for

trifluoromethylpiperidine.

For FP, at the CCSD(T)/CBS level (Table 1), structure

IV is stabilized by 4.01 kcal/mol over structure II followed

in stability by structure I at 4.90 kcal/mol and structure III

at 4.96 kcal/mol. Structures I and III, which both have the

nitrogen lone pair in the equatorial position, are nearly

identical in energy relative to structure IV. Comparison of

the CCSD(T)/cc-pVTZ and CCSD(T)/aug-cc-pVTZ results

in Table 1 reveals that inclusion of diffuse basis set func-

tions add about 0.1–0.2 kcal/mol to the relative energies of

isomers I–III, which indicates that the diffuse function

contributes to a further stabilization of structure IV relative

to the others. Increasing the number of polarization func-

tions from TZ to QZ increases the relative energies of I–III

by 0.1–0.2 kcal/mol.

For TP, at the CCSD(T)/CBS level (Table 2), structure

II with the nitrogen lone pair in the axial position and the

CF3 group in the equatorial position is the global minimum.

Structures III and IV are calculated to be very similar in

energy and roughly 1 kcal/mol above the ground state.

2.2 Comparison of computational methods

The deviations with respect to the CCSD(T)/CBS standard

energies in Table 1 for various methods for structures I–III

are summarized in Fig. 4 for FP. Mean unsigned errors

(MUE) for each approximate method and the individual

energy differences appearing in Fig. 4 are tabulated in the

Supplemental Information (Table S3). As expected, the

best agreement is seen with B2PLYP-D and xB97X-D

with the large aug-cc-pVTZ and aug-cc-pVDZ basis sets

with MUE values ranging from 0.07 to 0.31 kcal/mol.

Among the more approximate levels of theory that offer

greater computational efficiency, M06-2X provides an

MUE of only 0.22 kcal/mol with 6-311??G(d,p) or

6-31?G(d,p). B97-D produces an MUE with either basis

set of 0.74 kcal/mol. At the MP2 level, MUE of 1.14, 0.67,

Fig. 4 Errors in DE values

relative to structure IV, in kcal/

mol, compared to CCSD(T)/

CBS//B2PLYP-D/aug-cc-pVTZ

for structures I–III of FP
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and 0.24 kcal/mol are found as the basis set is increased

from 6-31?G(d,p) to aug-cc-pVDZ and then aug-cc-pVTZ,

respectively. It should be noted that a local minimum

corresponding to structure I is not found on the potential

energy surface with B3LYP at either 6-31?G(d,p) or

6-311??G(d,p) but is found with all other methods.

Figure 5 provides a plot of errors relative to the

CCSD(T)/CBS standard, across the set of three local

minima (I, III, and IV) for TP. The B2PLYP-D results with

either aug-cc-pVTZ or aug-cc-pVDZ are in good agree-

ment with the CCSD(T)/CBS standard with MUE values

(see Table S4 of the Supplemental Information) of only

0.08 and 0.12 kcal/mol, respectively. With xB97X-D, the

MUE increase slightly to 0.26 and 0.28 kcal/mol with aug-

cc-pVTZ and aug-cc-pVDZ, respectively. MP2 produces

good results with MUE of 0.20, 0.09, and 0.15 kcal/mol

with aug-cc-pVTZ, aug-cc-pVDZ, and 6-31?G(d,p),

respectively. B97-D results in MUE values of 0.84 and

0.69 kcal/mol with 6-311??G(d,p) and 6-31?G(d,p),

respectively. The MUE with M06-2X are 0.48 and

0.27 kcal/mol at 6-311??G(d,p) and 6-31?G(d,p),

respectively. B3LYP produces MUE of only 0.11 and

0.03 kcal/mol with 6-311??G(d,p) and 6-31?G(d,p),

respectively. Remarkably, B3LYP, which missed one local

minimum and produced relatively large errors for fluoro-

piperidine, produces DEs for the trifluoromethyl system

that are in close agreement with the CCSD(T)/CBS values.

For FP, the largest deviations from the CCSD(T) results

are seen with MP2/6-31?G(d,p), B97-D/6-311?G(d,p),

and B3LYP with either basis set. All of these methods

overestimate the relative energies of FP structures I–III.

For TP, the largest deviations are the underestimation of

the relative energies of I, III, and IV by B97-D with either

basis set and M06-2X with 6-311?G(d,p).

Table 3 contains thermochemical energies relative to the

lowest-energy isomer for structures I–IV using frequency

calculations performed at the B2PLYP-D level of theory

with aug-cc-pVTZ and aug-cc-pVDZ basis sets for

fluoropiperidine and with aug-cc-pVDZ for

Fig. 5 Errors in DE values

relative to ground-state structure

II, in kcal/mol, compared to

CCSD(T)/CBS for structures I,

II, IV of TP

Table 3 Thermochemical energies, in kcal/mol, for structures I–IV

of fluoropiperidine (FP) and trifluoromethylpiperidine (TP)

D(E ? ZPE) DE(298) DH(298) DG(298)

F-I 5.06a 5.13 5.13 4.93

4.74b 4.84 4.84 4.58

F-II 4.48 4.48 4.48 4.44

4.19 4.19 4.19 4.16

F-III 5.49 5.43 5.43 5.44

5.12 5.10 5.10 5.11

F-IV 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

CF3-I 3.10 3.09 3.09 3.14

CF3-II 0.00 0.00 0.00 0.00

CF3-III 0.99 1.01 1.01 0.97

CF3-IV 0.93 0.89 0.89 1.04

a Geometry optimization and frequency calculation at B2PLYP-D/

aug-cc-pVDZ
b Italicized values derived from geometry optimization and frequency

calculations at B2PLYP-D/aug-cc-pVTZ
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trifluoromethylpiperidine. B2PLYP-D has been shown to

perform well for vibrational frequencies using B2PLYP-D/

aug-cc-pVDZ [54]. The thermochemical results from the

fluoro compound show little difference, on the order of

0.3 kcal/mol, between the larger and smaller basis sets,

where the larger basis set results are specified in the itali-

cized rows, and, for both compounds, the thermochemical

corrections result in corrections to the relative energies that

are small in magnitude.

2.3 Assessment of the anomeric effect: energetic

criteria

Several authors [11, 17, 25] have used a scheme of the type

DDE = DEN - DEC to provide an energetic characteriza-

tion of anomeric effect magnitude where the DEN term is

the axial-equatorial energy difference in the heterocyclic

system (DEN = ENeq - ENax), and the DEC term is the

value for the corresponding monosubstituted cyclohexane

(DEC = ECeq - ECax). The magnitude of the anomeric

effect is thus expressed as DDE with a positive value

indicating that the relative stability of the axial conformer

is greater in the heterocyclic case (piperidine, in this work)

than in cyclohexane. The experimental energetic terms

used are often Gibbs’ free energies or enthalpies. But,

DE values from electronic structure calculations are also

commonly used [17, 25]. The data in Table 3 indicate that

the magnitude of thermochemical corrections is small in

these systems indicating DE values should provide mean-

ingful results. DDE values for fluoro and trifluromethylpi-

peridine at selected levels of theory are summarized in

Table 4. The DDE values obtained from additional levels

of theory can be found in the Supplemental Information

(Table S5).

The penalty, in free energy terms, for placing a sub-

stituent in the axial position of cyclohexane versus the

equatorial position is commonly termed the ‘‘A value’’ or

the ‘‘conformational energy’’ [55]. These are available in

the literature for a large variety of substituents with values

for the fluoro group reported to be from 0.25 to 0.42 kcal/

mol and from 2.4 to 2.5 kcal/mol for the CF3 group [56].

The DEC value corresponds to the negative of the A value.

A values derived from DEC values calculated at the var-

ious levels of theory are also provided in Table 4 and in

the Supplemental Information. Thus, the data in Table 4

(and S5) provide the magnitudes of the axial steric penalty

in cyclohexane for the fluoro and trifluoromethyl groups

in the form of the A values and the magnitude of the

anomeric benefit to axial occupation in the piperidine

systems in the form of the DDE values. Values for the

latter are presented for the two cases where the N–H bond

is equatorial (i.e., the nitrogen lone pair is axial) and the

N–H bond is axial.

All of the computational results in Table 4 are in good

agreement with the experimental A values of

0.25–0.42 kcal/mol for F and 2.4–2.5 kcal/mol for CF3,

especially considering that DE values are being compared

to DG values. The A value for the fluoro group has near

zero magnitude, and in two cases, MP2/6-31?G(d,p) and

M06-2X/6-311??G(d,p), a small negative value is

obtained (Table S5). The steric penalty in cyclohexane for

a CF3 group is far more significant. The highest levels of

theory employed here give results within a few tenths of a

kcal/mol of the experimental range of 2.4–2.5 kcal/mol.

The largest deviations are seen with B97D calculations and

the M06-2X/6-311??G(d,p) which produce values just

under 2 kcal/mol (Table S5).

For both the fluoropiperidine and trifluoromethylpiperidine

systems, the magnitude of the anomeric effect (DDE value) is

significantly larger in the case where the N–H bond is in the

equatorial position. This is consistent with the expectation that

the nitrogen lone pair can best delocalize into the axial C–F (or

C–CF3) bond when it occupies the axial position. At the highest

levels of theory, the DDE values range from 4.07 to 4.60 kcal/

mol with NH bond equatorial, but are only 0.10–0.57 kcal/mol

when the NH bond is axial (and the nitrogen lone pair is

equatorial). Given the small magnitude of the axial penalty for a

fluoro group, the conformational landscape of the fluoropi-

peridine system is dominated by the anomeric effect. B2PLYP-

D/aug-cc-pVTZ is in excellent agreement with the CCSD(T)/

CBSDDENHeq value, andxB97X-D/aug-cc-pVTZ produces

a slightly overestimated value.

Table 4 Cyclohexane A values and FP and TP anomeric energy

(DDE) values, in kcal/mol

FP TP

Aa DDE
NHeqb

DDE
NHaxc

A DDE
NHeq

DDE
NHax

CCSD(T)/CBS//

B2PLYP-D/aug-

cc-pVTZ

0.13 4.14 0.19 2.26 1.05 0.02

CCSD(T)/cc-

pVQZ//B2PLYP-

D/aug-cc-pVTZ

0.14 4.07 0.10 2.30 1.01 -0.01

B2PLYP-D/aug-cc-

pVTZ//B2PLYP-

D/aug-cc-pVTZ

0.17 4.13 0.38 2.24 1.14 0.12

xB97X-D/aug-cc-

pVTZ//xB97X-D/

aug-cc-pVTZ

0.28 4.42 0.57 2.13 1.17 0.08

a Axial–equatorial for cyclohexane bearing fluoro in FP case and

trifluoromethyl in TP case
b DDE = DEN - DEC with N–H bond equatorial (see text for further

explanation)
c DDE = DEN - DEC with N–H bond axial (see text for further

explanation)
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The results in Table 4 for the TP system illuminate the

underlying causes for the relative energies of structures I

through IV. In FP, structure IV is the lowest-energy structure

driven largely by the magnitude of the anomeric effect.

Although structure II is the lowest-energy structure for TP

(Table 2), there is still an anomeric effect involving the CF3

group at work. When the nitrogen lone pair is axial, the

magnitude of the anomeric effect as indicated by the

DDE NHeq values is 1.01–1.05 kcal/mol with CCSD(T) and

1.14–1.17 kcal/mol with B2PLYP-D and xB97X-D. How-

ever, it is outweighed by the magnitude of the steric penalty

for placing the large CF3 group in the axial position which is

2.13–2.30 kcal/mol for cyclohexane at those levels of the-

ory. Thus, modeling larger systems containing a trifluoro-

methyl group, such as trifluoroethylamine peptidomimetics,

requires computational techniques that adequately capture

the anomeric effect.

It should also be noted that it has been postulated that the

A values for cyclohexane provide an underestimation of the

axial penalty in oxygen or nitrogen-containing rings because

the latter involve a C–N (or C–O) bond that is shorter than a

C–C bond producing even greater 1,3-diaxial strain in the

heterocycle [11]. As with the FP system, the magnitude of

the anomeric effect is much smaller in TP when the nitrogen

lone pair is in the equatorial position (DDE NHax values).

2.4 Assessment of the anomeric effect: geometric

criteria

Table 5 contains geometrical parameters calculated at

B2PLYP-D/aug-cc-pVTZ for structures I through IV of

both compounds under study here. Analysis of this data

reveals trends that are consistent with what would be

expected due to a stereoelectronic effect involving delo-

calization of nitrogen lone pair electron density into the r*

of the C–F bond, or the corresponding C–CF3 bond in the

case of TP, as depicted in double bond-no-bond resonance

structures of Fig. 2. Structures where this effect is greatest

are expected to exhibit the longest C–F (or, C–CF3) bond

lengths and the shortest C–N bonds. For FP, structure IV

displays the longest C–F bond at 1.440 Å, and structure III

displays the shortest at 1.392 Å. Structure I has a longer C–

F bond than structure II with values of 1.408 and 1.395 Å,

respectively. The C–N bond lengths show the inverse

correlation that is expected from Fig. 2. Structure IV shows

the shortest C–N bond at 1.413 Å with the values of the

other structures, in increasing length, at 1.432 Å for I,

1.441 Å for II, and 1.443 Å for III. These bond length

changes are consistent with the notion that the lone pair

hyperconjugative delocalization is more pronounced when

the C–X bond is axial rather than equatorial and when the

nitrogen lone pair is axial versus equatorial. This leads to

the trend of IV[ I[ II[ III in decreasing stereoelec-

tronic effect due to an exchange of charge between the

nitrogen atom and the fluorine atom. Similar conclusions

can be drawn from the geometry data obtained at the other

levels of theory investigated here (see Supplemental

Information, Tables S6 and S7).

The double bond-no-bond resonance scheme invoked in

Fig. 2 implies geometrical changes beyond those noted

above in bond lengths. The delocalization of the nitrogen

lone pair into the C–X r* is expected to also involve a

Table 5 Dipole moments and selected geometrical features of FP and TP calculated at B2PLYP-D/aug-cc-pVTZ

la C–Fb C–Nb N–C–Fc a: H–(C–C)–Nd b: F–(N–C)–Cd

Fluoropiperidine

I 2.90 1.408 1.432 107.6 -26.4 36.6

II 2.69 1.395 1.441 107.4 29.7 -35.4

III 3.06 1.392 1.443 107.8 -30.8 -35.1

IV 1.40 1.440 1.413 111.3 26.9 35.1

la C–CF3
b C–Nb N–C–CF3

c a: H–(C–C)–Nd b: CF3–(N–C)–Cd

Trifluoromethylpiperidine

I 3.44 1.525 1.459 109.7 -29.2 32.0

II 3.06 1.517 1.455 109.3 29.3 -34.4

III 3.44 1.517 1.458 108.8 -30.3 -33.5

IV 1.76 1.529 1.451 113.8 27.2 30.2

a Dipole moment, in Debeye
b Bond length, in Ångstroms
c Bond angle, in degrees
d Improper dihedral angle, in degrees. See text for definition
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decrease in pyramidality (increase in planarity) at the N

and C sites shown in Fig. 2, consistent with increasing

s-character. Structure IV exhibits the widest N–C–X bond

angle with values of 111.3� for X = F and 113.8� for

X = CF3. Improper dihedral angles (i.e., those defined by

four points that are not contiguously chemically bonded)

have been defined to illustrate the degree of planarity at the

C and N centers of interest. For example, the degree of

planarity at a trigonal center A, surrounded with ligands, B,

C, and D, can be expressed by dihedral angle made by the

points B–(C–D)–A. The parentheses are meant to highlight

the fact that the central two atoms are not chemically

bonded to each other. A trigonal planar center has a value

of 0� for this angle. A typical pyramidal center such as the

nitrogen of ammonia has a value on the order of ±35� for

this angle. The values for two such angles, a at the N atom

and b at the C atom bearing the F or CF3, are in Table 5

where a is defined as the H–(C–C)–N improper dihedral

angle and b as the improper dihedral X–(N–C)–C with

X = F, CF3. The a values are smallest, indicating highest

degree of planarity at nitrogen, for structure IV and

increase in magnitude following the trend of

IV\ I\ II\ III in correspondence with the C–X and C–

N bond length variations. The b value is also of smallest

magnitude in structure IV for both compounds indicating

the greatest degree of planarity at the C bearing the F or

CF3. The expected pattern in b is followed for the fluoro

structures (i.e., IV\ I\ II\ III) but not for the CF3

compounds with structure II showing the largest (in mag-

nitude) b value.

Figure 6 shows the B2PLYP-D/aug-cc-pVTZ optimized

structure IV for both FP and TP. For both compounds, the

dipole moment for structure IV is significantly lower than

that of the other structures with a value of 1.40 D com-

pared to a range of 2.90–3.60 D for the fluoro case. With

trifluoromethylpiperidine, the dipole moment of structure

IV is 1.76 D and those for the other structures range from

3.06 to 3.44 D. Inspection of the 3D structures and dipole

moment vectors (Supplemental Information, Figure S1.)

suggests that a reasonable approximation of the molecular

dipole moment can be obtained from the sum of the C–F

(or C–CF3) and N lone pair dipole vectors. The charge on

the nitrogen atom is directional depending on where the

lone pair is pointing. Plots of the electrostatic potential

(ESP) mapped onto an electron density isosurface (Sup-

plemental Information, Figure S2) show the directionality

of the negative charge of the nitrogen lone pair in the

various structures. In structure IV, there is a negative

charge cloud pointing away from the fluorine lone pairs,

which reduces the dipole moment and leads to less elec-

trostatic repulsion. Structure I has a more negative charge

on the side of the piperidine ring where the fluorine is

situated, contributing to a longer dipole moment. Com-

paring the ESP for structures II and III also shows the

variation in the direction of the dipole moment is largely

based on the position and direction of the N lone pair and

the F lone pairs. Based on a detailed analysis of the geo-

metrical parameters taking into account the resonance

interaction in Fig. 2 and an analysis of the dipole moments

taking into account the ESP, we can conclude that there is

indeed an electrostatic explanation and a hyperconjugative

explanation for the anomeric effect and other stereoelec-

tronic effects in these substituted piperidines.

2.5 Assessment of the anomeric effect: natural orbital

analysis

To further examine hyperconjugation, NBO analysis [30,

57] was carried out on structures I–IV of both fluoropi-

peridine and trifluoromethylpiperidine. The key results at

the xB97X-D/aug-cc-pVTZ level are summarized in

Table 6. The nitrogen lone pair occupancy, nN, is lowest

for structure IV at 1.872 electrons for FP and 1.908 elec-

trons for TP. Since the nitrogen lone pair population is less

than two, we conclude that the endo-anomeric effect is

operative for structure IV, and we will show below that this

is due to hyperconjugation in the NBO analysis framework.

The NBO analysis provides second-order perturbative

estimates of specific donor–acceptor interactions in the

NBO basis. These are expressed in kcal/mol and represent

the stabilizing effect due to the interaction between filled

Lewis-type NBOs and non-Lewis (i.e., antibonding or

Rydberg) NBOs. The most significant interactions are lis-

ted as E(2) values for each structure of each compound in

Table 6. We are particularly interested in the delocalization

of the nitrogen lone pair into the CF r* of FP and the

corresponding C–CF3 r* of TP as they represent the anti-

periplanar interaction (see, for example, Alabugin et al.

[58] or Weinhold [30]). These two interactions are shown

in bold in Table 6. For FP, the structures with an axial

fluorine I and IV show the most significant amount of

nitrogen lone pair to C–F r* delocalization (nN ? rCF*).

This interaction ranks first in structures I and IV, but is a

much stronger interaction in structure IV where the E(2)

Fig. 6 B2PLYP-D/aug-cc-pVTZ optimized structure IV for fluoro-

piperidine (left) and trifluoropiperidine (right) viewed along the N–C

bond vector
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value is 29.01 versus 15.05 kcal/mol in structure I. In

structures II and III, with the C–F bond in the equatorial

position, the nN ? rCF* interaction drops in ranking to 7th

and 10th, respectively. Inspection of Table 6 reveals that a

number of delocalization interactions other than nN ?
rCF* are also important, especially in structures II and III.

Nitrogen lone pair delocalization into a C–H r* ranks first

in structure II, and fluorine lone pair lone pair delocaliza-

tion into the C–N r* ranks first for structure III. The large

E(2) value for the nN ? rCF* in structure IV indicates that

the hyperconjugation effect is most significant in this

structure as expected with the nitrogen lone pair and the

C–F bond are anti-periplanar to each other.

The ramifications of this stereoelectronic effect can be

further elucidated by examining the DE, DEnoCF, and

DEnostar values. The DE value is simply the difference in

the xB97X-D/aug-cc-pVTZ energies for each isomer,

whereas the DEnostar and DEnoCF incorporate NBO dele-

tions in the calculations. The DEnostar set of relative ener-

gies is the difference in energies obtained when all non-

Lewis-type interactions are removed from the calculation.

Thus, this value represents the conformational energy dif-

ferences for the perfectly localized (each Lewis NBO

doubly occupied) system. In other words, the stabilizing

effect due to delocalization is deleted from the calculation.

The DEnoCF* values are arrived at in a similar manner

except that only the specific nN ? rCF* interaction has

been deleted. In the absence of the nN ? rCF* interaction,

structure III, with an equatorial C–F bond and an equatorial

nitrogen lone pair, becomes the global minimum. The

relative energy of structure IV of FP rises significantly

when nN ? rCF* hyperconjugation is ignored resulting in

a DENoCF value of 13.32 kcal/mol above the global mini-

mum. The relative energy of structure I also increases upon

removal of the nN ? rCF* interaction.

When all hyperconjugative interactions are ignored

(DENoStar values), structure II becomes the lowest-energy

structure for FP. It is interesting to note that the ordering of

the structures based on their DENoStar values corresponds to

how we would order them based on our intuitive notion of

steric hinderance, where II and III are less hindered that I

and IV, since I and IV have the lone-pair-rich substituent in

Table 6 Natural bond orbital analysis results xB97X-D/aug-cc-pVTZ. See text for details

I II III IV

Fluoropiperidine

nN occupancy 1.891 1.910 1.914 1.872

E(2) (1)15.05 nN ? rCF* (1)10.34 nN ? rCH* (1) 9.63 nF ? rCN* (1) 29.01 nN ? rCF*

(2)9.89 nF ? rCC* (2) 9.84 nN ? rCH* (2) 9.51 nN ? rCC* (2) 9.50 nN ? rCH*

(3)9.05 nN ? rCC* (3) 9.77 nF ? rCN* (3) 9.37 nF ? rCC* (3) 9.39 nF ? rCN*

(4)7.65 nF ? rCN* (4) 7.67 nF ? C* (4) 8.31 nF ? C* (4) 5.80 rCH ? rCN*

(5)6.61 nF ? C* (5) 7.19 nF ? rCH* (5) 6.49 nF ? rCC* (5) 5.79 rCH ? rCN*

(6)6.27 nF ? rCC* (6) 4.72 nF ? rCC* (6) 5.06 nF ? rCH* (6) 5.22 nF ? rCC*

(7)5.80 nF ? rCH* (7) 4.36 nN ? rCF* (10) 4.06 nN ? rCF* (7) 5.21 nF ? C*

DE 4.75 4.14 5.04 0

DENoCF 7.35 4.55 0 13.32

DENoStar 5.09 0 2.94 4.3

Trifluoropiperidine

nN occupancy 1.916 1.916 1.921 1.908

E(2) (1) 14.39 nF ? rCF* (1) 14.53 nF ? rCF* (1) 14.23 nF ? rCF* (1) 14.26 nN ? rCC*

(2) 14.25 nF ? rCF* (2) 14.34 nF ? rCF* (2) 14.10 nF ? rCF* (2) 14.01 nF ? rCF*

(3) 13.39 nF ? rCF* (3) 13.76 nF ? rCF* (3) 14.02 nF ? rCF* (3) 13.61 nF ? rCF*

(4) 12.81 nF ? rCF* (4) 13.37 nF ? rCF* (4) 13.28 nF ? rCF* (4) 13.40 nF ? rCF*

(5) 11.85 nF ? rCF* (5) 11.28 nN ? rCH* (5) 11.45 nF ? rCF* (5) 12.43 nF ? rCF*

(6) 11.12 nF ? rCF* (6) 11.20 nF ? rCF* (6) 10.92 nF ? rCF* (6) 11.89 nF ? rCF*

(7) 10.14 nN ? rCC* (7) 10.65 nF ? rCF* (7) 10.45 nN ? rCC* (7) 11.83 nF ? rCF*

(8) 9.20 nN ? rCC* (8) 9.85 nN ? rCH* (8) 9.29 nN ? rCC* (8) 10.35 nN ? rCH*

(13) 7.35 nN ? rCC* (59) 1.82 nN ? rCC* (60) 2.00 nN ? rCC*

DE 2.99 0 0.94 0.96

DENoCC 6.95 0 1.07 10.13

DENoStar 6.31 0 2.4 6.23
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the more sterically hindered axial position. It appears that

III would be more sterically hindered than II, since in

structure III the nitrogen lone pairs and fluorine lone pairs

are near each other in the equatorial position, and we are

assuming based on VSEPR theory [59] that lone pairs have

a larger steric effect than hydrogen atoms. Isomer I is more

hindered than IV, because in I both sets of lone pairs are in

the axial position. Thus, based on this analysis, if steric

effects were the only ones contributing to the ordering of

the isomers, the order would be II\ III\ IV\ I, which is

the ordering based on DENoStar.

Table 6 also contains the E(2) values for donor–acceptor

interactions in trifluoromethylpiperidine (TP). In the case

of TP, the delocalization interaction that corresponds to the

nN ? rCF* stereoelectronic effect in FP is the nN ? rCC*

where the C–C bond of interest is between the ring carbon

and the carbon of the trifluoromethyl group. There are

other nN ? rCC* interactions possible involving carbon–

carbon bonds within the ring. The nN ? rCC* involving

the C–CF3 bond is shown in bold in Table 6. In structure

IV, this nN ? rCC* interaction is the most significant with

an E(2) value of 14.26 kcal/mol. It is ranked 13th for

structure I and drops to 59th and 60th in structures II and

III, respectively. Thus, in NBO terms, as with FP, hyper-

conjugation in TP is most significant in structure IV and

least significant in structures II and III with the CF3 group

in the equatorial position.

The results of the NBO deletion studies also mirror those

seen for FP. Deletion of the delocalization of the nitrogen

lone pair into the C–CF3 r* results in structure IV rising

significantly in relative energy as indicated by the DENoCC

value of 10.13 kcal/mol. Structure I also rises significantly in

energy, to 6.95 kcal/mol, upon removal of this delocaliza-

tion. When all hyperconjugative interactions are ignored, the

relative energies for TP are 6.31, 0.00, 2.40, and 6.23 kcal/

mol for structures I–IV, respectively. Similar to our analysis

of FP, the order of these energies corresponds to the order

based on the common understanding of steric hindrance as

typically presented in chemistry textbooks.

Structure II is the lowest-energy structure for TP in

contrast to FP where structure IV is lowest in energy.

However, the NBO analysis reveals that there is stabil-

ization due to hyperconjugation in TP as well. Structure IV,

the one favored by the anomeric effect, is not the lowest-

energy structure in TP. As stated above, the large steric

demand of the CF3 group creates too great a penalty for its

occupation of the axial position to outweigh the anomeric

effect. Structure IV has a relative energy of 0.96 kcal/mol

in TP with xB97X-D/aug-cc-pVTZ (Supplemental Info,

Table S2). But, the NBO deletion studies reveal that, in the

absence of the hyperconjugative delocalization of the

nitrogen lone pair into the C–CF3 r* orbital, it would be

significantly higher in relative energy.

Table 7 shows selected parameters derived from the

NBO partial atomic charges. For fluoropiperidine, the

negative charge on fluorine is greatest in structure IV. Also,

the enhancement in negative charge upon placing the fluoro

substituent into the axial position is greater when the

nitrogen lone pair is axial than when it is equatorial. In

going from structure II to structure IV, fluorine’s charge is

increased by 0.046 versus an increase of 0.021 in going

from structure III to I. The charge difference across the

C–F bond is also greatest in structure IV. These charac-

teristics are consistent with enhanced charge flow from

nitrogen to fluorine in structure IV. The charges on the

atoms in the CF3 group were summed in Table 7 to allow

for an analogous analysis for trifluoropiperidine. The same

trends are seen but the magnitude is much smaller. The CF3

group is most negative in structure IV (-0.034), and the

CF3 group exhibits a greater increase in charge in going

from II to IV than III to I. The charge difference across the

C-CF3 bond is also greatest in structure IV.

2.6 Aqueous solvation

The M06-2X/6-311??G(d,p) relative energies of struc-

tures I–IV for FP and TP in an aqueous environment, DEaq,

were determined by use of the polarized continuum solvent

model using the integral equation formalism variant (IE-

FPCM) as implemented in Gaussian 09 [60]. The results

are summarized in Table 8. The differences between the

total energies in the aqueous medium and in isolation are

reported in Table 8 as the hydration free energies, DGHyd,

for each structure. Comparison of the DEaq values to the

M06-2X/6-311??G(d,p) gas-phase relative energies,

DEgas, reveals that the same structures are found to be the

global minima in the aqueous phase as were seen in the gas

phase; structure IV for FP and structure II for TP. For both

compounds, structure IV is the least-well solvated with

DGhyd values that are smaller in magnitude than for the

Table 7 Selected parameters derived from NBO analysis partial

atomic charge xB97X-D/aug-cc-pVTZ

I II III IV

Fluoropiperidine

F Chargea -0.401 -0.383 -0.380 -0.429

C–F polarityb 0.784 0.783 0.777 0.803

Trifluoropiperidine

CF3 chargec -0.012 -0.000 -0.001 -0.034

C–CF3 polarityd 1.031 1.025 1.024 1.042

a Charge on F atom in electron units
b Difference in charge across C–F bond (qC - qF) in electron units
c Sum of atomic charges in CF3 group in electron units
d Difference in charge across C–CF3 bond (qC - qCF3) in electron

units
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other structures. This is consistent with the dipole moment

results reported above in Table 5. For both FP and TP,

structure IV has a significantly smaller molecular dipole

moment, which in turn results in a smaller aqueous

hydration free energy. There may also be local hydration

effects at work, such as explicit hydrogen bonding, which

is not considered in this work.

The fact that the stereoelectronic effect is most pro-

nounced in structure IV should result in greater negative

charge on the fluorine in that structure than in structures

I–III, and, correspondingly, greater positive charge on

nitrogen. Organic fluorine is a notoriously poor hydrogen

bond acceptor [61]. But, electron flow via the anomeric

effect could potentially increase the hydrogen bond

acceptor ability of fluorine, and the hydrogen bond donor

ability of the NH bond, in structure IV. Such electronic

rearrangement is accounted for the IEFPCM solvent model

via the underlying quantum mechanical description of the

solute. In addition, the results in Table 8 are derived from

complete geometry optimizations in the presence of the

continuum solvent model, and thus, any structural rear-

rangement in the aqueous medium is accounted for.

However, it is possible that structure IV is the least-well

solvated by a bulk aqueous medium but has local interac-

tions with individual water molecules that are enhanced

due to the flow of charge expected via the anomeric effect.

With the exception of the drop in magnitude of the DGHyd

values noted above for structure IV, the hydration free

energies among the remaining structures are very consis-

tent with values ranging from -4.31 to -4.70 kcal/mol for

FP and -3.61 to -4.04 for TP.

3 Conclusions

The anomeric effect in piperidine rings bearing a fluoro or

trifluoromethyl substituent at the anomeric carbon has been

examined with a variety of computational chemistry

approaches including benchmark-level CCSD(T)/CBS

calculations and several far more computationally eco-

nomical approaches. The anomeric effect in these systems

has been characterized by energetic, electrostatic, and

geometric criteria as well as through NBO analysis. The

results indicate a pronounced anomeric bias in both sys-

tems. The anomeric effect in the trifluoromethylpiperidine

system is masked by offsetting steric effects.

The results obtained here for the nitrogen heterocycle

supplement those available in the literature for the well-

studied oxygen-containing ring systems, provide a perfor-

mance assessment for several more recently developed

DFT approaches, allow for an assessment of participation

of the trifluoromethyl group in the anomeric effect, and

examine the impact of aqueous hydration on fluoro, and

trifluoromethyl-mediated anomeric effects. An advantage

of the piperidine systems is that the lone pair in the ring

atom can be in either the axial or equatorial position, which

allows us to test refined hypotheses about stereoelectronic

effects relating to the direction of the lone pair. NBO

analysis provides a coherent description of the anomeric

effect in these molecules that includes an important con-

tribution from hyperconjugation, which supports our

common understanding of stereoelectronic effects based on

Lewis structures. We observe that the position of the

nitrogen lone pair relative to the fluorine atom lone pairs is

an important factor in the electrostatic and steric interac-

tions in the isomers.

With the aug-cc-pVTZ and aug-cc-pVDZ basis sets,

very good agreement is seen between xB97X-D and the

B2PLYP-D double-hybrid approach and with CCSD(T)/

CBS extrapolated results. For fluoropiperidine, structure

IV, with the nitrogen lone pair anti-periplanar to the axial

fluorine, is found to be the lowest-energy structure. By

energetic, geometric, and NBO criteria, the anomeric effect

is greatest in structure IV. Qualitatively similar results are

obtained for the trifluoromethylpiperidine system but the

increased axial steric penalty for the larger CF3 group

results in structure II as the lowest-energy structure.

Among the less computationally demanding approaches

investigated here, M06-2X with 6-31?G(d,p) or

6-311??G(d,p) generally captures the salient results seen

with the higher levels of theory (see Supplemental

Information).

Calculations employing a continuum hydration model

indicate that structure IV, which shows the most pro-

nounced stereoelectronic effect, is also the least-well-sol-

vated structure. While this causes the other structures to be

lower in energy relative to the gas-phase results, it does not

change the identity of the lowest-energy structure in

aqueous media, which remains IV for fluoropiperidine and

II for trifluoromethylpiperidine as in the gas phase.

Table 8 Aqueous relative energies and hydration free energies at

M06-2X/6-311??G(d,p)

Structure

I II III IV

Fluoropiperidine (FP)

DEgas 4.93 4.37 5.23 0.00

DEaq 3.75 3.57 4.06 0.00

DGHyd -4.70 -4.31 -4.67 -3.51

Trifluoropiperidine (TP)

DEgas 2.70 0.00 0.88 0.64

DEaq 2.11 0.00 0.44 1.44

DGHyd -4.19 -3.61 -4.04 -2.81
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Abstract Ab initio MP2/aug’-cc-pVTZ calculations have

been carried out on complexes H2XPs:PtCX, for X = F, Cl,

OH, NC, CN, CCH, CH3, and H, in search of complexes

stabilized by P���P pnicogen bonds. These intermolecular

bonds arise when a pnicogen atom acts as a Lewis acid for

complex formation. Three sets of equilibrium structures

have been found on the H2XPs:PtCX potential surfaces.

Conformation A complexes have P���P r–r pnicogen

bonds, which involve the r systems of both P atoms.

Conformations B and C are stabilized by r–p pnicogen

bonds, which involve the r system of H2XP and the p
system of PCX. Binding energies of B and C complexes are

similar and are greater than the binding energies of the A

conformers. Charge transfer stabilizes A, B, and C con-

formers. In A complexes, the dominant charge transfer is

from the lone pair of PCX to the antibonding r*P–A

orbital of PH2X, with A the atom of X directly bonded to P.

For conformations B and C, the dominant charge transfer is

from the P=C p orbital to the r*P–A orbital of H2XP.

Although the binding energies of these complexes do not

correlate with the intermolecular P–P distances, both the

charge-transfer energies and the equation-of-motion cou-

pled cluster singles and doubles one-bond 31P–31P spin–

spin coupling constants do correlate with the P–P distances.

The largest coupling constants 1pJ(P–P) are found for

complexes with conformation A, due to the nature of the

r–r pnicogen bond and the dominance of the Fermi con-

tact term. For a given X, 1pJ(P–P) values are ordered

A[C[B.

Keywords Structures and binding energies �
Intermolecular interactions � r–r and r–p pnicogen

bonds � Charge-transfer energies � 31P–31P EOM-CCSD

spin–spin coupling constants 1pJ(P–P)

1 Introduction

Subsequent to the landmark 2011 paper of Hey-Hawkins

et al. [1], there have been many papers published on the

subject of intermolecular interactions through the forma-

tion of pnicogen bonds [2–32]. This bond arises when a

pnicogen atom (N, P, As) acts as a Lewis acid by accepting

a pair of electrons from a Lewis base. When two pnicogen

atoms participate in forming a bond, each acts as both an

electron-pair acceptor and an electron-pair donor. Most

studies of pnicogen bonds have involved the PH3 molecule

and its derivatives.

Recently, we asked to what extent a formally sp2-

hybridized P atom could participate in a P���P pnicogen

bond in complexes (H2C=PX)2 and H2C=(X)P:PXH2 for a

variety of substituents X [30, 32]. In the latter study, we

identified a series of complexes stabilized by pnicogen

bonds, which involve p electron donation by H2C=PX to

PH2X through the r-hole, and donation of the lone pair of

Dedicated to the memory of Professor Isaiah Shavitt and published as

part of the special collection of articles celebrating his many

contributions.
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PH2X to H2C=PX through the p-hole. To our knowledge,

this was the first time that pnicogen-bonded complexes

with a p electron donor and p-hole acceptor involving the

same p bond had been reported. We referred to this bond as

a p–r pnicogen bond to indicate that it is the p system of

one molecule and the r system of the other that interact. It

should be noted, however, that pnicogen bonds involving

p-electron donors or p-hole acceptors have been discussed

previously in the literature, but the p-donors and p-hole

acceptors are not the same p bond [7, 21, 29, 33, 34].

Since PH2X can form stable r–p pnicogen-bonded

complexes with H2C=(X)P, we decided to investigate a

related series of complexes in which PH2X interacts with

PCX, searching for both r–p and r–r pnicogen bonds.

This study yielded three different conformations of com-

plexes H2XP:PCX, for X = F, Cl, OH, NC, CN, CCH, CH3,

and H. In this paper, we report the equilibrium structures of

these complexes, their binding energies, bonding properties,

and 31P–31P spin–spin coupling constants.

2 Methods

The structures of the isolated monomers and the complexes

H2XP:PCX were optimized at second-order Møller-Plesset

perturbation theory (MP2) [35–38] with the aug’-cc-pVTZ

basis set [39]. This basis set is derived from the Dunning

aug-cc-pVTZ basis set [40, 41] by removing diffuse func-

tions from H atoms. Frequencies were computed to estab-

lish that the optimized structures correspond to equilibrium

structures on their potential surfaces. In addition, we

determined transition structures which are the barriers to the

interconversion of the B and C conformers of H2FP:PCF

and H3P:PCH. Optimization and frequency calculations

were performed using the Gaussian 09 program [42].

The electron densities of these complexes have been

analyzed using the atoms in molecules (AIM) methodology

[43–46] and the electron localization function (ELF) [47]

employing the AIMAll [48] and Topmod [49] programs.

The topological analysis of the electron density produces the

molecular graph of each complex. This graph identifies the

location of electron density features of interest, including

the electron density (q) maxima associated with the various

nuclei, saddle points which correspond to bond critical

points (BCPs), and ring critical points which indicate a

minimum electron density within a ring. The zero gradient

line which connects a BCP with two nuclei is the bond path.

The ELF function illustrates those regions of space at which

the electron density is high. MP2/aug’-cc-pVTZ atomic and

molecular charges have been obtained using the natural

bond orbital (NBO) method [50]. The stabilizing charge-

transfer interactions in these binary complexes have been

computed using the NBO-6 program [51].

Spin–spin coupling constants were evaluated using the

equation-of-motion coupled cluster singles and doubles

(EOM-CCSD) method in the CI (configuration interac-

tion)-like approximation [52, 53], with all electrons cor-

related. For these calculations, the Ahlrichs [54] qzp basis

set was placed on 13C, 15N, 17O, and 19F, and the qz2p basis

set on 31P and 35Cl. The Dunning cc-pVDZ basis set was

placed on all 1H atoms. Only 1pJ(P–P) coupling constants

are reported in this paper. The EOM-CCSD calculations

were performed using ACES II [55] on the IBM Cluster

1350 (Glenn) at the Ohio Supercomputer Center.

3 Results and discussion

In order to differentiate the two P atoms, we will refer to

them as Ps, the P atom that forms single covalent bonds in

PsH2X, and Pt for the triply bonded P in PtCX. Although

many minima may exist on the H2XPs:PtCX surfaces, we

have restricted our searches to regions that have structural

characteristics associated previously with complexes sta-

bilized by pnicogen bonds. We began by searching the

region in which the interaction involves the formation of a

r–r pnicogen bond. In the resulting conformation A

complexes, A–Ps���Pt–C approaches linearity, with A being

the atom of X directly bonded to Ps, and C the carbon of

PCX. We then investigated regions in which PCX interacts

through its p-electron system with PXH2 to form r–p
bonds. In conformation B complexes, a r–p pnicogen bond

forms in which A–Ps���C approaches linearity. In confor-

mation C, the r–p pnicogen bond has A–Ps���Pt approach-

ing linearity. These three conformations are illustrated in

Fig. 1. We did not search regions in which one H of PH2X

Fig. 1 H3P:PCH complexes with conformations A, B, and C. All complexes have Cs symmetry except for H2(CN)P:PCCN and

H2(CCH)P:PCCCH B which have C1 symmetry
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assumes a linear arrangement, since (PH2X)2 complexes

with H–P���P–A linear have significantly reduced binding

energies relative to the same complexes with A–P���P–A

linear [18, 23].

The binding energies of conformation A, B, and C

complexes are reported in Table 1. These are ordered

according to decreasing binding energies of conformation

C. All substituents X form B and C complexes stabilized by

r–p bonds. Conformation A complexes have P���P r–r
pnicogen bonds and are formed by all molecules except

those containing the more electronegative substituents F

and Cl. H2(OH)P:PCOH is a planar complex, but it has not

been included in this study since it is stabilized primarily

by an O–H���Ps hydrogen bond. Its binding energy of -

34.2 kJ/mol is significantly greater than the binding ener-

gies of the pnicogen-bonded complexes.

3.1 Conformation A complexes

The structures, total energies, and bond paths connecting

the two P atoms of conformation A complexes are reported

in Table S1 of the Electronic Supporting Material. Table 2

reports the binding energies, P–P distances, and the angles

Pt–Ps–A and Ps–Pt–C in these complexes. Of the three

conformations, the A complexes are the most weakly

bound, with binding energies ranging from -3.1 kJ/mol for

H2(CN)P:PCCN to -7.4 kJ/mol for H2(CCH)P:PCCCH.

Moreover, these binding energies are lower than the

binding energies of the corresponding complexes (PH2X)2

and H2C=(X)P:PXH2. For a given X, the intermolecular

P–P distances in A conformers decrease in the order H2-

XP:PCX[H2C=(X)P:PXH2[ (PH2X)2. As noted previ-

ously for complexes with r–r pnicogen bonds, A–P���P–

A’ arrangements tend to approach linearity. The Ps–Pt–C

alignment in conformation A complexes closely approa-

ches linearity, with the Ps–Pt–C angle varying between 175

and 179�. The Pt–Ps–A angle deviates to some extent from

linearity, with values between 158 and 167�.
Complexes with pnicogen bonds are stabilized by charge

transfer. The more favorable charge-transfer interaction

involves donation of the Pt lone pair of PCX to the r*P–A

orbital of PH2X. Charge-transfer energies range from

3.4 kJ/mol for X = CH3 to 9.4 kJ/mol when X = NC. In

contrast, charge transfer from the Ps lone pair of PH2X to

the r*P=C orbital of PCX is 2.5 kJ/mol when X = NC, and

1.4 or 1.5 kJ/mol for the remaining complexes. The pref-

erence for charge transfer from H2C=PX to PH2X was

observed previously in conformation A complexes [32].

The Pt(lp) ? r*P–A charge-transfer energies do not cor-

relate with the binding energies of these complexes, but do

correlate with the P–P distances, as can be seen in Fig. 2.

The data of Table 3 also indicate that the PH2X molecules

become slightly negatively charged in the complexes,

except for P(CH3)H2 which is uncharged. Both Ps and Pt are

positively charged in the monomers, and that positive

charge is reduced upon complexation. The positive charge

on Ps in conformation A complexes varies from 0.043e in

H3P:PCH to 0.576e in H2(NC)P:PCNC. The positive charge

on Ps decreases in the order:
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Fig. 2 Charge-transfer energies from PCX to PH2X (kJ/mol) versus

the P–P distance (R, Å) for conformation A, B, and C complexes.

Correlation coefficients R2 are 0.963, 0.992, and 0.990, respectively

Table 1 Binding energies (DE, kJ/mol) of complexes H2XP:PCX

with conformations A, B, and C

H2XP:PCX, X = DE(A) DE(B) DE(C)

Cl -16.4 -17.6

F -16.6 -15.6

CCH -7.4 -13.3 -14.7

OHa a -13.2 -14.2

NC -4.2 -12.0 -13.5

CN -3.1 -9.6 -10.6

CH3 -5.7 -12.6 -10.0

H -4.7 -8.7 -7.5

Ordered according to decreasing binding energy of conformation C

complexes
a This complex is stabilized primarily by an O–H���Ps hydrogen bond,

with a binding energy of -34.2 kJ/mol

Table 2 Binding energies (DE, kJ/mol), P–P distances (R, Å), and

Pt–Ps–A and Ps–Pt–C angles (\, deg) for conformation A complexes

H2XP:PCX, X = DE R(P–P) \Pt–Ps–A \Ps–Pt–C

CCH -7.4 3.594 163 179

NC -4.2 3.521 166 179

CN -3.1 3.649 167 176

CH3 -5.7 3.705 160 176

H -4.7 3.772 158 175
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NC � CN[CCH[H[CH3:

The positive charge on Pt varies from 0.479e in H2(CH3)-

P:PCCH3 to 0.617e in H2(CN)P:PCCN and decreases in a

similar order:

NC[CN[CCH[H[CH3:

For complexes with X = NC, CN, and CCH, the decrease

in the positive charge on Pt is noticeably greater than the

decrease in the positive charge on Ps.

3.2 Conformation B complexes

The structures, total energies, and bond paths of conformation

B complexes are given in Table S1 of the Electronic Sup-

porting Material. These bond paths connect Ps with PCX

through thep system at the P:C C atom. The classification as

conformation B is based on the C–Ps–A angles which range

from 161 to 177� and are closer to linearity than the corre-

sponding Pt–Ps–A angles. Conformation B pnicogen bonds are

r–p bonds, which involve ther system of PH2X and the P:C

p bond. The binding energies, P–P and Ps–C distances, and

C–Ps–A angles are reported in Table 4. The binding energies

of these complexes range from -8.7 kJ/mol for H3P:PCH to

–16.6 kJ/mol for H2FP:PCF. The ordering is consistent with

the ordering of conformation C complexes, except for H2-

(CH3)P:PCCH3, which has a noticeably higher binding energy

than its C counterpart. The Ps–C distances are always shorter

than the corresponding P–P distances, but once again, there is

no correlation between the binding energies and either the P–P

or the Ps–C intermolecular distances. Both linear and quadratic

trendlines have correlation coefficients R2 of 0.73.

Conformation B complexes are also stabilized by charge-

transfer interactions. Since the P:C bond is polarized

toward C, charge transfer occurs from the p bond at C

through the r-hole to Ps, and from the lone pair on Ps to Pt

through the p hole. In all complexes but one, the dominant

charge transfer is from the pP=C orbital of PCX to the r*P–

A antibonding orbital of PH2X, as can be seen from the data

of Table 5. The single exception is X = H, for which charge

transfer from the pP=C orbital of PCH to the r*P–H orbital

is 0.2 kJ/mol less stabilizing. Having the C–Ps–A angle

approach linearity is favorable for charge transfer from PCX

to PH2X. In addition, the Ps–Pt–C angles are acute, ranging

from 55 to 68�, thereby leading to shorter distances between

Ps and C, and facilitating charge transfer from the P=C p
bond, which is polarized toward C. The pP=C?r*P–A

charge-transfer energies vary from 3.6 kJ/mol for X = CH3

to 19.8 kJ/mol for X = F. Charge-transfer energies from the

lone pair on Ps to the p*P=C orbital range from 1.3 kJ/mol

for X = CCH to 10.0 kJ/mol for X = F. The pP=C?r*P–

A charge-transfer energies do not correlate with the binding

energies of conformation B complexes or with the Ps–C

distances, but do correlate with the intermolecular P–P dis-

tances, as shown in Fig. 2. The net result of charge transfer is

to produce a slightly negatively charged PH2X molecule,

except for PH2CH3 and PH3, and to reduce the positive

charge on Ps. The positive charge on Pt may increase or

decrease, as seen from the data of Table 5. Figure 3 illus-

trates the regions of high electron density involved in charge

transfer in H2FP:PCF conformation B.

3.3 Conformation C complexes

Table S1 of the Electronic Supporting Material reports the

structures, total energies, and molecular graphs for

Table 3 Charges on PH2X, changes in the charges on the P atoms (de, au), and charge-transfer energies (kJ/mol) for conformation A complexes

H2XPs:PtCX

H2XP:PCX, X = Charge on PH2X de(Ps)
a de(Pt)

a Pt(lp) ? r*Ps–A Ps(lp) ? r*Pt=C

CCH -0.003 -0.011 -0.014 6.4 1.4

NC -0.006 -0.017 –0.033 9.4 2.5

CN -0.003 -0.016 -0.028 5.6 1.5

CH3 0.000 -0.003 -0.003 3.4 1.5

H -0.001 -0.005 -0.007 3.9 1.4

a Both Ps and Pt are positively charged in the isolated monomers

Table 4 Binding energies (DE, kJ/mol), P–P and Ps–C distances

(R, Å), and C–Ps–A angles (\ , deg) for conformation B complexes

H2XP:PCH, X = DE R(P–P) R(Ps–C) \C–Ps–A

Cl -16.4 3.476 3.326 175

F -16.6 3.389 3.070 172

CCH -13.3 3.827 3.404 161

OH -13.2 3.516 3.251 175

NC -12.0 3.557 3.241 177

CN -9.6 3.941 3.426 165

CH3 -12.6 3.850 3.439 177

H -8.7 4.071 3.413 171

These complexes have Cs symmetry, except for H2(CN)P:PCCN and

H2(CCH)P:PCCCH which have C1 symmetry
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conformation C complexes. The bond paths connect Ps to

the p system of PCX, usually but not always at Pt. These

complexes are differentiated from the conformation B

complexes in so far as the Pt–Ps–A angles approach closer

to linearity than the corresponding C–Ps–A angles. The

values of the Pt–Ps–A angles are reported in Table 6 and

can be seen to vary between 166 and 176�. Table 6 also

shows that the Ps–C distances are still shorter than the P–P

distances, although the difference between them is much

less than found for conformation B complexes due to the

values of the Ps–Pt–C angles. These angles vary between

70 and 76�, and are therefore larger than the corresponding

angles in conformation B.

Table 6 also reports the binding energies of conforma-

tion C complexes. These energies range from -7.5 kJ/mol

for X = H to -17.6 kJ/mol for X = Cl. Conformation C

complexes are more stable than conformation B for 5 of 8

complexes, but the binding energies of B and C are similar,

differing by 1 to 1.5 kJ/mol. The single exception is con-

formation C of H2(CH3)P:PCCH3, which is 2.5 kJ/mol less

stable than B. The binding energies do not correlate with

the P–P distances.

Figure 3 illustrates the regions of high electron density

in H2FP:PCF conformation C. The regions associated with

the lone pair on Ps and the P=C p bond give rise to the

charge-transfer interactions. A charge-transfer pattern

similar to that observed for conformation B complexes is

found for conformation C. Charge transfer involves elec-

tron donation by pP=C to the r*Ps–A antibonding orbital

through the r-hole at Ps, and lone-pair donation by Ps to

the p*P=C orbital through the p-hole at Pt. As can be seen

from the data of Table 7, the pP=C?r*Ps–A charge-

transfer energies are significantly greater than the

Ps(lp) ? p*P=C energies and are also greater than the

corresponding pP=C?r*Ps–A energies of conformation B

complexes, except for H2FP:PCF which has the largest

charge-transfer energy among all complexes. Once again,

the pP=C?r*Ps–A charge-transfer energies correlate with

the P–P distances, as seen in Fig. 2. The net result of

charge transfer is to make PH2X negatively charged in the

Fig. 3 The ELF representations

of the regions of high electron

density in H2FP:PCF B and C

Table 6 Binding energies (DE, kJ/mol), P–P and P–C distances

(R, Å), and Pt–Ps–A angles (\, deg) for conformation C complexes

H2XP:PCH, X = DE R(P–P) R(Ps–C) \Pt–Ps–A

Cl -17.6 3.323 3.313 174

F -15.6 3.298 3.270 175

CCH -14.7 3.610 3.431 172

OH -14.2 3.432 3.360 171

NC -13.5 3.407 3.317 175

CN -10.6 3.639 3.428 176

CH3 -10.0 3.747 3.571 166

H -7.5 3.765 3.702 168

Table 5 Charges on PH2X,

changes in the charges on the P

atoms (de, au), and charge-

transfer energies (kJ/mol) for

conformation B complexes

H2XPs:Pt:CX

H2XP:PCX, X = Charge on PH2X de(Ps) de(Pt) pP=C ? r*Ps–A Ps(lp) ? p*P=C

Cl -0.011 -0.017 -0.003 14.4 5.1

F -0.005 -0.020 0.006 19.8 10.0

CCH -0.003 -0.005 0.005 4.3 1.3

OH -0.002 -0.007 -0.002 11.5 5.1

NC -0.007 -0.014 -0.002 11.0 5.6

CN -0.003 -0.010 0.014 3.7 1.5

CH3 0.003 -0.011 -0.010 3.6 3.4

H 0.002 -0.008 -0.002 4.2 4.4
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complex, decrease the positive charge on Ps, and increase

the positive charge on Pt.

B and C complexes are energetically and structurally

similar, since both are stabilized by pnicogen bonds

involving Ps of PH2X and the PCX p system. What is the

barrier for interconversion of these conformers? To answer

this question, we have optimized transition structures on the

H3P:PCH and H2FP:PCF surfaces. These structures have C1

symmetry, with the PCH and PCF molecules nearly per-

pendicular to the PH3 and PH2F symmetry planes, respec-

tively. The structures suggest that B and C are interconverted

by rotation of the PCH or PCF molecules about an axis which

connects Ps to the P=C p bond, and by accompanying

changes in the Ps–C and P–P bond lengths. For H3P:PCH, the

Ps–C bond length in the transition structure is similar to that

in C, while the P–P bond length increases. Both Ps–C and P–P

bonds are longer in the H2FP:PCF transition structure that

they are in both B and C. The interconversion of B and C via

rotation indicates that these complexes remain intact in the

transition state, with similar binding energies of –6.1 and

–6.9 kJ/mol, respectively. Relative to the less stable con-

former C, the barriers to converting C to B are 2.6 and 9.7

kJ/mol for H3P:PCH and H2FP:PCF, respectively.

3.4 31P–31P spin–spin coupling constants

31P–31P spin–spin coupling constants across pnicogen bonds

have been computed for complexes with conformations A,

B, and C. Table S2 of the Electronic Supporting Material

reports components of 1pJ(P–P). Although previous investi-

gations of 31P–31P coupling across pnicogen bonds suggest

that the Fermi contact term is an excellent approximation to

total 1pJ(P–P), we computed all terms, the paramagnetic spin

orbit (PSO), diamagnetic spin orbit (DSO), Fermi contact

(FC), and spin dipole (SD) terms for 12 H2XP:PCX com-

plexes. The largest differences between the FC terms and

total 1pJ(P–P) are found for complexes in which X is one of

the more electronegative substituents, namely F, Cl, and

OH. For these, the difference between the FC term and
1pJ(P–P) ranges from 2.0 to 5.8 Hz and arises primarily from

the contribution of the PSO term. For the remaining 9

complexes with Cs symmetry, PSO, DSO, and FC terms

were computed. The largest PSO contribution is 1.5 Hz for

X = NC, with the PSO terms for the remaining complexes

having absolute values less than 0.7 Hz. For the two con-

formation B complexes of C1 symmetry with X = CCH and

CN, only the FC terms were evaluated due to computational

expense. This can be justified by noting that the PSO terms

for the A and C complexes with these same substituents

have absolute values no greater than 0.1 Hz. In Table 8,

total 1pJ(P–P) values are reported for 12 complexes, and the

FC terms have been used to approximate 1pJ(P–P) for the

remaining complexes.

Table 8 reports the P–P distances and values of 1pJ(P–P)

for complexes H2XP:PCX with conformations A, B, and C.

For a given substituent X, the order of decreasing 1pJ(P–P)

Table 7 Charges on PH2X,

changes in the charges on the P

atoms (de, au), and charge-

transfer energies (kJ/mol) for

conformation C complexes

H2XPs:Pt:CX

H2XP:PCX, X = Charge on PH2X de(Ps) de(Pt) pP=C ? r*Ps–A Ps(lp) ? p*P=C

Cl -0.018 -0.019 0.020 17.2 5.1

F -0.012 -0.017 0.025 17.5 6.2

CCH -0.004 -0.013 0.018 7.3 1.0

OH -0.007 -0.010 0.019 11.8 4.1

NC -0.012 -0.023 0.021 14.3 2.7

CN -0.005 -0.023 0.022 7.4 0.7

CH3 -0.002 0.010 0.015 4.9 0.9

H -0.003 -0.004 0.012 4.8 1.5

Table 8 Intermolecular P–P

distances (R, Å) and 31P–31P

spin–spin coupling constants

(Hz) for H2XP:PCX complexes

with conformations A, B, and C

H2XP:PCX A B C

R(P–P) 1pJ(P–P) R(P–P) 1pJ(P–P) R(P–P) 1pJ(P–P)

X = Cl 3.476 41.1 3.323 116.7

F 3.389 54.3 3.298 119.7

CCH 3.594 157.6 3.827 16.9 3.610 49.4

OH 3.516 41.9 3.432 83.3

NC 3.521 209.4 3.557 31.9 3.407 86.8

CN 3.649 150.4 3.941 14.9 3.639 48.0

CH3 3.705 100.8 3.850 11.9 3.747 32.6

H 3.772 88.3 4.071 7.3 3.765 34.5
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is A[C[B. The large values of 1pJ(P–P) for confor-

mation A complexes may be attributed primarily to the

nature of the pnicogen bond, which is a r–r bond, and the

dependence of the dominant FC term on s-electron densi-

ties in both ground and excited states. The nature of the FC

term is also consistent with the reduced values of 1pJ(P–P)

for conformations B and C, since they are stabilized by

r–p pnicogen bonds which involve the p electrons of PCX.

That 1pJ(P–P) for a given X is greater for the conformation

C complex is consistent with the shorter P–P distances in

C, and with the A–Ps–Pt arrangement which approaches

linearity. Figure 4 presents plots of 1pJ(P–P) versus the P–P

distance for complexes with conformations A, B, and C.

The good correlation between these two variables is evi-

dent, with the second-order trendlines having correlation

coefficients R2 of 0.961, 0.995, and 0.976, respectively.

In a previous study, we compared coupling constants
1pJ(P–P) for conformation A complexes (PH2X)2, H2-

C=(X)P:PXH2, and (H2C=PX)2 with r–r pnicogen bonds.

We can now compare 1pJ(P–P) for the r–p pnicogen bonds

in conformations B and C of H2XP:PCX with 1pJ(P–P) r–p
bonds for conformation C complexes of H2C=(X)P:PXH2.

That comparison is illustrated in Fig. 5. The exponential

trendline for the entire set of points has a correlation

coefficient of 0.859. However, it is apparent from Fig. 5

that all of the points for conformation C complexes of

H2XP:PCX with A–Ps���Pt approaching linearity lie above

the trendline and have larger values of 1pJ(P–P) at each P–P

distance. Values for H2XP:PCX conformation B with

A–Ps���C linear and conformation C of H2C=(X)Pd:PsXH2

with A–Ps���Pd linear lie either on or below the trendline,

and have similar values at similar distances. The expo-

nential trendline for 1pJ(P–P) versus R(P–P) for these two

sets treated together has a correlation coefficient R2 of

0.958.

4 Conclusions

Ab initio MP2/aug’-cc-pVTZ calculations have been car-

ried out on a series of complexes H2XP:PCX, for X = F,

Cl, OH, NC, CN, CCH, CH3, and H, to identify and

characterize r–r and r–p pnicogen bonds. Three sets of

complexes have been identified.

1. Conformation A complexes are stabilized by P���P
r–r bonds. Of the three sets of complexes, the A

conformers are the most weakly bound, with binding

energies ranging from -3.1 to -7.4 kJ/mol. A

conformers are stabilized by charge-transfer interac-

tions, the more stabilizing of which arises from

transfer of the Pt lone pair of PtCH to the r*Ps-A

orbital of PsH2X, where A is the atom of X

directly bonded to P. Charge transfer from the lone

pair of Ps to the r*P=C orbital is a less stabilizing

interaction.

2. Conformation B and C complexes are stabilized by

r–p bonds, that is, bonds that involve interaction

between the r system of PH2X and the p system of

PCH. In both sets of conformers, the preferred

direction of charge transfer is from the p bond of

PCH through the r-hole to the r*P–A orbital of PH2X

and secondarily from the lone pair on Ps through the p-

hole to the p*P=C orbital.

3. Conformation B and C complexes have similar binding

energies, which range from -7.5 to -17.6 kJ/mol.

They are differentiated structurally in so far as B

complexes have A-Ps���C approaching linearity,

whereas C complexes have A-Ps���Pt approaching

linearity.

3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1
0

70

140

210

 A
 B
 C

1p
J(

P
-P

),
 H

z

   R(P-P), Å

Fig. 4 1pJ(P–P) versus the P–P distance for complexes with confor-

mations A, B, and C
Fig. 5 Coupling constants 1pJ(P–P) versus the P–P distances for r–p
pnicogen bonds in H2XP:PCX conformations B (red square) and C

(green triangle) and H2C=(X)P:PXH2 conformation C (blue dia-

mond). The symbol circle includes all complexes for which the best-

fit trendline is an exponential
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4. The binding energies of conformation A, B, and C

complexes do not correlate with the intermolecular

P–P distances. However, the dominant charge-transfer

energies in each set do correlate with the intermolec-

ular P–P distance.

5. EOM-CCSD 31P–31P spin–spin coupling constants
1pJ(P–P) correlate with the P–P distances in conforma-

tions A, B, and C. The largest coupling constants are

found for conformation A complexes, a result of the

nature of the r–r pnicogen bond and the dominance of

the Fermi contact term. For a given substituent X, the

ordering of 1pJ(P–P) is A[C[B[.
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Abstract This article describes the Ehrenfest method and

our second-order implementation (with approximate gra-

dient and Hessian) within a CASSCF formalism. We

demonstrate that the second-order implementation with the

predictor–corrector integration method improves the

accuracy of the simulation significantly in terms of energy

conservation. Although the method is general and can be

used to study any coupled electron–nuclear dynamics, we

apply it to investigate charge migration upon ionization of

small organic molecules, focusing on benzene cation.

Using this approach, we can study the evolution of a non-

stationary electronic wavefunction for fixed atomic nuclei,

and where the nuclei are allowed to move, to investigate

the interplay between them for the first time. Analysis

methods for the interpretation of the electronic and nuclear

dynamics are suggested: we monitor the electronic

dynamics by calculating the spin density of the system as a

function of time.

Keywords Ehrenfest method � CASSCF � Coupled

electron–nuclear dynamics � Charge migration � Charge

transfer

1 Introduction

Photoionization can create a coherent superposition of

electronic states and therefore initiates electronic dynamics

in atoms and molecules. Experiments on the latter are

particularly difficult to interpret as change in the nuclear

geometry is also expected. Indeed, the equilibrium geom-

etry of the ionized and neutral species are unlikely to be the

same. Therefore, the initial electron dynamics, that may

last up to a few femtoseconds, is then followed by the onset

of nuclear dynamics [1]. Theoretical methods are needed to

help understand the effects seen in attosecond laser

experiments (see, e.g., the reviews of Kling [2] and

Ivanov [3]).

Methods for non-adiabatic dynamics were the subject of

a recent special issue of J. Chem. Phys.; in particular, the

lead article of Tully [4] provides a current summary of the

state of the art. Quantum mechanical simulations are

expensive computationally. Reducing the number of

nuclear degrees of freedom of the system is sometimes

done to make the calculation feasible, but the validity of

this approximation is limited [5–7]. Conventional molec-

ular dynamics (MD) only allows one to simulate nuclear

motion on a single potential energy surface and therefore

does not describe non-adiabatic processes involving non-

radiative electronic transitions. Mixed quantum-classical

dynamics methods have been developed to address this

issue. In the Ehrenfest method, one propagates quantum

mechanically an electronic wavepacket consisting of a

superposition of electronic eigenstates by solving the time-

dependent Schrödinger equation; and one moves classi-

cally the nuclei integrating Newton’s equation of motion.

The feedback between the quantum electronic and classical

nuclear degrees of freedom is described in a mean-field

manner. This simplification allows one to study the
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Université de Nantes, 2 Rue de la Houssinière, BP 92208,

44322 Nantes Cedex 3, France

123

Theor Chem Acc (2014) 133:1505

DOI 10.1007/s00214-014-1505-6

Reprinted from the journal 325

mailto:mike.robb@imperial.ac.uk


electronic and nuclear dynamics independently and dis-

cover whether the motions of the electrons and the nuclei

are synchronous or asynchronous.

The Ehrenfest method is general and we have previously

used it for photochemistry [8] and electron transfer [9]. In

this article, we focus on the application of the Ehrenfest

method to the simulation of electron dynamics (and the

coupled nuclear dynamics) upon ionization in molecules.

We have recently shown [10] how charge migration and

charge transfer in benzene and 2-phenylethylamine cations

can be studied using the Ehrenfest method within a

CASSCF [11, 12]-like formulation. Charge migration is

defined at a fixed nuclear geometry and corresponds to

oscillations in the electronic density due the non-stationa-

rity of the electronic state. Charge transfer is a change in

the electronic density due to a change in the nuclear

geometry. In this work, after a review of the theory, we

present our approximate second-order CASSCF imple-

mentation of the Ehrenfest method. We show that a sec-

ond-order method augmented with a predictor–corrector

integration method (devised by Schlegel [13] and imple-

mented in the Gaussian program [14]), permits the use of

larger step sizes while conserving the total energy.

We apply our second-order Ehrenfest method to a model

system: benzene radical cation. Ionization of the neutral

from the degenerate HOMO/HOMO-1 leads to the Jahn–

Teller [15] effect in the cation. There is a peaked conical

intersection between the two lowest-energy eigenstates D0

and D1 at geometries with D6h symmetry. Figure 1 repre-

sents the surrounding ‘‘moat’’ of the conical intersection

seen from above. It contains several valence bond (VB)

resonance structures: three equivalent quinoid structures

that are minima (Min) and three antiquinoid structures that

are transition structures (TS). The degeneracy is lifted

along two directions: the gradient difference X1 and the

interstate coupling X2. In this system, there is the possi-

bility of charge migration/charge transfer around the ring.

2 The Ehrenfest approach: general theoretical

development

The Ehrenfest method has been extensively discussed in

the literature [16–26]. In this section, we review the

Ehrenfest formalism following the elegant derivation of

Tully [27]. Our aim is to explicitly state the approxi-

mations underlying the method and to discuss their

implications.

2.1 Separation of nuclear and electronic variables

We shall start with the non-relativistic time-dependent

Schrödinger equation, where r and R refer to the electronic

(fast) and nuclear (slow) variables, respectively

i�h
o
ot
Uðr;R; tÞ ¼HUðr;R; tÞ ð1Þ

In order to derive mixed quantum-classical dynamics, the

nuclear and electronic variables have to be separated. The

simplest possible form is a product ansatz:

Uðr;R; tÞ ¼ Wðr; tÞ � vðR; tÞ ð2Þ
The first approximation made in the Ehrenfest method is

thus the factorisation of the total wavefunction into a

product of electronic and nuclear parts. One deficiency of

the ansatz (2) is the fact that the electronic wavefunction

does not have the possibility to decohere: the populated

electronic states in Wðr; tÞ share the same nuclear wave-

packet vðR; tÞ by definition of the total wavefunction. De-

coherence here is defined as the tendency of the time-

evolved electronic wavefunction to behave as a statistical

ensemble of electronic states rather than a coherent

superposition of them [26]. The neglect of electronic de-

coherence could lead to non-physical asymptotic behaviors

in case of bifurcating paths. It is not expected to be a

problem here as we are interested in relatively short

timescale dynamics.

In order to simplify the appearance of the expressions at

a later stage of the derivation, a phase factor is introduced

for the total wavefunction and also some internal phase

factors for the two individual wavefunctions. More details

can be found here [27]. Inserting the ansatz (2) with the

additional phase factors into Eq. (1), multiplying on the left

by v�ðR; tÞ and W�ðr; tÞ and integrating over R and r gives,

respectively:

Fig. 1 Benzene radical cation resonance structures. The directions X1

and X2 are the gradient difference and the gradient of the interstate

coupling vector, respectively. The gradient difference direction X1

connects a pair of quinoid/antiquinoid forms by lowering the

symmetry from D6h to D2h. The motion along the gradient of the

interstate coupling vector X2 preserves only C2h and allows one to

move from one quinoid (or antiquinoid) structure to a ‘‘60� rotated’’

antiquinoid (or quinoid) structure. Note that for each quinoid or anti-

quinoid structure, there are actually two VB resonance structures with

the unpaired electron and the positive charge exchanged (this is

indicated by �/? interchange in each case)
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i�h
oWðr; tÞ

ot
¼ �

X
i

�h2

2me

r2
iWðr; tÞ

þ vðR; tÞjVn�eðr;RÞjvðR; tÞh iR�Wðr; tÞ
ð3Þ

i�h
ovðR; tÞ

ot
¼ �

X
I

�h2

2MI

r2
I vðR; tÞ

þ hWðr; tÞjHeðr;RÞjWðr; tÞir � vðR; tÞ
ð4Þ

The indices i and I refer, respectively, to the electrons and

the nuclei; me is used to denote the mass of an electron,

and MI is used to denote the mass of the nucleus I.

Vn�eðr;RÞ includes all inter-particle interactions (elec-

tron–electron, nucleus–nucleus and electron–nucleus), and

Heðr;RÞ is the electronic Hamiltonian for the nuclei fixed

at positions R.

To understand the consequence of using the ansatz (2),

let us, for instance, look closer at the second term on the

right hand side of Eq. (3). The interaction between elec-

trons at points r in space and nuclei at points R is weighted

by the probability that the nuclei are at these particular

points R. This is the effective potential experienced by the

electrons due to the nuclei. The corresponding remark can

be made about the second term on the right hand side of

Eq. (4). According to the set of coupled Eqs. (3) and (4),

the feedback between electronic and nuclear degrees of

freedom is described in a mean-field manner, in both

directions. In other words, both electrons and nuclei move

in time-dependent effective potentials obtained from

appropriate expectation values of the nuclear and electronic

wavefunctions, respectively.

2.2 Classical limit for nuclear motion

The Ehrenfest method is obtained by taking the classical

limit of Eqs. (3) and (4). To do that in Eq. (4), the nuclear

wavefunction is (exactly) rewritten in a polar coordinate

system in terms of an amplitude A and a phase S which are

both considered to be real and positive:

vðR; tÞ ¼ AðR; tÞ � exp
i

�h
SðR; tÞ


 �
ð5Þ

After inserting Eq. (5) in (4), the real parts on each side

can be equal:

oS
ot
þ
X
I

1

2MI

ðrISÞ2 þ hWðr; tÞjHeðr;RÞjWðr; tÞir

¼ �h2
X
I

1

2MI

r2
I A

A
ð6Þ

The classical limit is taken as �h! 0:

oS
ot
þ
X
I

1

2MI

ðrISÞ2 þ hWðr; tÞjHeðr;RÞjWðr; tÞir ¼ 0 ð7Þ

The resulting equation is isomorphic to the Hamilton–

Jacobi equation and is thus equivalent to Newton’s equa-

tion of motion, where PI ¼ rIS is the classical momentum

of nucleus I:

dPI

dt
¼ �rIhWðr; tÞjHeðr;RÞjWðr; tÞir ð8Þ

In Eq. (3), we can replace vðR; tÞ by a delta function at the

classical trajectory RðtÞ:

i�h
oWðr; t;RÞ

ot
¼ �

X
i

�h2

2me

r2
i þVn�eðr;RðtÞÞ

 !
Wðr; t;RÞ ¼Heðr;RðtÞÞ �Wðr; t;RÞ ð9Þ

Note that now the electronic wavefunction W depends

parametrically on RðtÞ through Vn�eðr;RðtÞÞ and thus

Heðr;RðtÞÞ. By treating the nuclear motion classically, we

lose the spatial delocalisation of the nuclei and their motion

is now described by a classical trajectory.

Equations (8) and (9) define the Ehrenfest method. It is

important to keep in mind that it succeeds in describing

nuclear motion if the potential energy surfaces of the var-

ious electronic states are similar in topology and ener-

gies [20]. However, in the case of weakly coupled

electronic states, the nuclear motion will be dominated by

the potential corresponding to the highly populated elec-

tronic state and regions of space accessible only on the

sparsely populated electronic state may not be explored

properly [28, 29]. One advantage of the Ehrenfest method

is that its applications and results do not depend on the

choice of basis functions (if complete) and can, in princi-

ple, be applied without choosing basis functions by

numerical integration of Eq. (9).

2.3 Non-adiabatic couplings

Expanding the electronic wavefunction in a basis of

orthonormal configurations f/lg or eigenstates f ~/lg gives:

Wðr; t;RÞ ¼
X
l

alðtÞ/lðr;RÞ ¼
X
l

clðtÞ ~/lðr;RÞ ð10Þ

In order to prove the presence of the non-adiabatic cou-

plings, it is convenient to use the eigenstate expansion.

Substituting expansion (10) into Eq. (9), multiplying on

the left by ~/�kðr;RÞ and integrating over r gives:

i�h
ockðtÞ
ot
¼ ckðtÞEkðRÞ � i�h

X
l

clðtÞ ~/kj
o
ot

~/l

� �
¼ ckðtÞEkðRÞ � i�h

X
l;J

clðtÞdJklðRÞ � _RJ

ð11Þ

with the non-adiabatic couplings dJklðRÞ ¼
R
~/�kðr;RÞ

rRJ
~/lðr;RÞdr and the eigenvalues Ek. Thus, if the
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electronic wavefunction is expanded in the adiabatic basis,

Eq. (11) gives the time-varying amplitudes along the

classical trajectory. The latter depends on the non-adiabatic

coupling terms. Note that the same equations define the

time-dependence of the electronic basis amplitudes for the

surface hoping method. Note that a similar expression can

be derived for the diabatic basis [27].

3 Implementation within a CASSCF formalism

We now describe our CASSCF implementation of the

Ehrenfest method that allows the electronic wavefunction

to be made of multiple states. An approximate second-

order method with a numerical fit procedure is used for the

propagation of the nuclei.

3.1 Quantum propagation of a CASSCF electronic

wavefunction

In practice, time is discretized and when integrating Eq. (9)

assuming a constant Hamiltonian over the time step, we

obtain:

Wðr; tn;RðtnÞÞ ¼ exp � i

�h
Heðr;RðtnÞÞ � ðtn � tn�1Þ


 �
Wðr; tn�1;Rðtn�1ÞÞ ð12Þ

The time-dependent electronic wavefunction is expanded

in the basis of configurations, here AðtnÞ is the vector

gathering the expansion coefficients at time tn defined in

Eq. (10). We use bold font to signify vectors and matrices.

AðtÞ ¼

a1ðtÞ
..
.

akðtÞ
..
.

0BBBBB@

1CCCCCA ð13Þ

Using matrix notation, Eq. (12) reads as:

AðtnÞ ¼ exp � i

�h
HeðtnÞ � ðtn � tn�1Þ


 �
Aðtn�1Þ ð14Þ

HeðtnÞ is the matrix representation of the electronic Ham-

iltonian in the basis of configurations at time tn. Using its

spectral resolution, it becomes:

AðtnÞ ¼ UðtnÞ exp � i

�h
DeðtnÞ � ðtn � tn�1Þ


 �
UyðtnÞ � Aðtn�1Þ

ð15Þ
U is the matrix containing the eigenvectors arranged as

columns. De is the matrix representation of the electronic

Hamiltonian in the basis of eigenstates: it thus contains the

eigenvalues fEkg on the diagonal and is zero elsewhere.

Both U and De are assumed to be constant over a time step,

and their value at time tn is used. If one expands DeðtnÞ as a

Taylor series around its value at time tn�1, one obtains to

first order:

DeðtnÞ ¼ Deðtn�1Þ þ dDeðtn�1Þ
dt

� ðtn � tn�1Þ ð16Þ

The electronic Hamiltonian is time-independent (no

external electric field), but it changes with time if the nuclei

are allowed to move. Hence, we have the following relation

(if it obeys the Hellmann–Feynman theorem):

dDe

dt
¼ rRDe � _R ¼ h ~/kjrRI

ðHeÞj ~/li � _R ð17Þ

We can now identify the derivative coupling (see

Sect. 2.3):

h ~/kjrRI
ðHeÞj ~/li ¼ h ~/kjrRI

~/li � ðEl � EkÞ
¼ dIklðRÞ � ðEl � EkÞ ð18Þ

The non-adiabatic couplings are, therefore, included in our

propagation of the electronic wavefunction by finite

differentiation.

We thus obtain a sequence of vectors corresponding to

the different steps:

Aðt0Þ ! Aðt1Þ ! � � � ! AðtnÞ ! � � � ð19Þ
The sequence of vectors may be obtained keeping the

nuclei fixed, in which case the basis of configurations f ~/lg
and also the basis of CASSCF eigenvectors do not change

with time. The matrices U and De are time-independent.

Alternatively, the sequence of vectors fAg may be

obtained in concert with nuclear motion. In the latter case,

at each step tn of the dynamics (or at each geometry of the

classical trajectory), a state-averaged (SA) CASSCF cal-

culation is done to update the electronic Hamiltonian

matrix He. One obtains a basis of CASSCF eigenvectors

fUjðtnÞg from its diagonalization and a set of SA optimized

orbitals from the solution of the SA-MCSCF equations.

Although we assume the configurations f/lg do not change

for the propagation of the time-dependent wavefunction,

the orbitals are in practice optimized at each step. This

strategy is reasonable if the active space is large enough so

that only small relaxations of the inactive orbitals occur.

The energy of the system is computed as the expectation

value of the electronic Hamiltonian:

EðtnÞ ¼ hWðr; tnÞjHejWðr; tnÞir ¼ AyðtnÞ �HeðtnÞ � AðtnÞ
ð20Þ

More conveniently, we can define a real time-dependent

vector M, by rotating the complex expansion coefficients

into real coefficients. The rotation must be performed in the

eigenstates basis for the energy to be preserved (see
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‘‘Appendix’’ for details). The energy can then be computed

without the need for complex algebra:

EðtnÞ ¼MyðtnÞ �HeðtnÞ �MðtnÞ ð21Þ
3.2 Classical nuclear trajectory

The nuclear geometry is updated at each time step, if

wanted, by integrating the equation of motion (8). This is

done using the Hessian-based predictor–corrector algo-

rithm designed by Hase and Schlegel [13]. We use the first

and second derivatives of the energy to make a local

quadratic approximation of the energy:

EðRÞ ¼ E0 þG0 � ðR� R0Þ þ 1

2
ðR� R0Þy �H0 � ðR� R0Þ

ð22Þ
where E0; G0 and H0 are the energy, the gradient and the

Hessian evaluated at R0, respectively. Newton’s equation

of motion on a quadratic surface is as follows:

dPI

dt
¼ �G0

I �
X
J

H0
IJðRJ � R0

JÞ ð23Þ

Note that unlike the energy, the gradient and Hessian cannot

be calculated using a real TD vector: They depend intrinsi-

cally on the relative complex phase of the electronic eigen-

states occupied (see ‘‘Appendix’’ for details on the gradient).

We now review the general approach to the gradient and

Hessian computations using the methods of Almlöf and

Taylor [30] and apply it specifically to the Ehrenfest

wavefunction. We also explain the approximations used in

computing the gradient and Hessian.

3.2.1 Gradient computation

The energy of a configuration interaction (CI)-like wave-

function depends on the large number of parameters that

define the wavefunction. Among them, the optimized

molecular orbital (MO) and CI coefficients depend on the

nuclear geometry. One constraint is that the MO coeffi-

cients remain orthonormal under the change in geometry,

which is possible using unitary transformations (a simpler

alternative to Lagrange multipliers). We introduce the

following notation: Superscripts denote partial derivatives,

while subscripts denote total derivatives. The expression

for the gradient is obtained by applying the chain rule to

the energy derivative with respect to a change in geome-

try [10, 30]:

ERI
¼ ERI þ ECCRI

þ EXXRI
� 1

2
EYSRI

ð24Þ

ERI is the Hellmann–Feynman term. It represents the

intrinsic dependence of the energy with respect to a change

in nuclear geometry. As the energy depends on parameters

that depend themselves on the nuclear geometry, one

obtains the non-Hellmann–Feynman terms: CRI
and XRI

are

the CI vector and MO rotation derivatives and EC and EX

are the corresponding energy derivatives. SRI
is the atomic

orbital overlap matrix, and Y is the symmetric matrix

arising from re-orthogonalization of the MO.

When the derivative is computed for an eigenvector Ui,

the C matrix corresponds to the rotation of the eigenvector

Ui with the remaining orthogonal vectors Uj 6¼i. Here, the

reference vector is chosen to be the TD vector of the pre-

vious step Aðtn�1Þ and the matrix C expresses AðtnÞ by a

rotation between Aðtn�1Þ and its orthogonal complements.

As we propagate the time-dependent wavefunction

assuming that the MO do not change, XRI
is neglected and

the gradient reads as:

ERI
¼ ERI þ ECCRI

� 1

2
EYSRI

ð25Þ

By differentiating the Newton–Raphson equation with

respect to nuclear motion, the derivative CI coefficients can

be written as:

CRI
¼ � ECC

� ��1
EC
RI
¼ � ECC

� ��1
ERIC � 1

2
ECYSRI


 �
ð26Þ

Note that Eq. (26) assumes a quadratic expansion of the

energy as a function of the CI parameters EðCÞ about a

minimum. This approximation results in some error in the

gradient. In practice, we also neglect the derivative due to

the complex phase of the CI expansion coefficients, i.e., we

calculate the matrix C by expressing the real vector MðtnÞ
by a rotation between Mðtn�1Þ and its orthogonal com-

plements. As we show in Sect. 4.2, these errors are cor-

rected via numerical fitting of the hypersurface along the

trajectory.

3.2.2 Hessian computation

In the present work, at each step, a CASSCF calculation is

done with state-averaged orbitals over two states. The

Hessian used in the integration of Newton’s equation of

motion is calculated for the highest of the two roots of the

SA calculation.

ERIRJ
¼ ERIRJ þ ECCRIRJ

þ ECRICRJ
þ ECRJCRI

þ ECCCRI
CRJ
þ ECXCRI

XRJ

� 1

2
ECYCRI

SRJ
þ EXXRIRJ

þ EXRIXRJ
þ EXRJXRI

þ EXXXRI
XRJ

þ EXCXRI
CRJ
� 1

2
EXYXRI

SRJ
� 1

2
EYRISRJ

� 1

2
EYRJSRI

þ 1

2
EYSRI

SRJ

� 1

2
EYSRIRJ

þ 1

4
EYYSRI

SRJ
� 1

2
EYCSRI

CRJ
� 1

2
EYXSRI

XRJ

ð27Þ
For an optimized SA-CASSCF wavefunction, EC ¼ 0 but

only the weighted average of the anti-symmetric
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Lagrangians will vanish:
P2

i¼1 xiE
XðiÞ ¼ 0. In addition,

we neglect the second derivative of the MO rotation matrix

with respect to nuclear distortion XRIRJ
. With these few

simplifications, the Hessian becomes:

ERIRJ
ðiÞ ¼ ERIRJ ðiÞ þ ECRJ ðiÞCRI

ðiÞ þ ECXðiÞCRI
ðiÞXRJ

� 1

2
ECYðiÞCRI

ðiÞSRJ

þ EXRI ðiÞXRJ
þ EXRJ ðiÞXRI

þ EXXðiÞXRI
XRJ

� 1

2
EXYðiÞXRI

SRJ
� 1

2
EYRI ðiÞSRJ

� 1

2
EYRJ ðiÞSRI

þ 1

2
EYðiÞSRI

SRJ
� 1

2
EYðiÞSRIRJ

þ 1

4
EYYðiÞSRI

SRJ
� 1

2
EYXðiÞSRI

XRJ
ð28Þ

The terms CRI
ðiÞ and XRI

are obtained by solving the

standard coupled-perturbed SA-MCSCF equations. These

are obtained by differentiating Newton–Raphson equations

with respect to a nuclear distortion:

x1E
XXð1Þ þ x2E

XXð2Þ x1E
XCð1Þ x2E

XCð2Þ
ECXð1Þ ECCð1Þ 0

ECXð2Þ 0 ECCð2Þ

0B@
1CA XRI

CRI
ð1Þ

CRI
ð2Þ

0B@
1CA

¼ �

x1 ERIXð1Þ � 1

2
EXYð1ÞSRI

� �
þ x2 ERIXð2Þ � 1

2
EXYð2ÞSRI

� �
ERICð1Þ � 1

2
ECYð1ÞSRI

ERICð2Þ � 1

2
ECYð2ÞSRI

0BBBBBB@

1CCCCCCA
ð29Þ

Using an optimized SA-CASSCF wavefunction to calcu-

late the Hessian for the time-dependent vector is a rough

approximation; again, we show in Sect. 4.2 that the

numerical fitting of the hypersurface along the trajectory

corrects most of the error.

3.2.3 Fifth order polynomial fit

The second-order method is used with the fifth order pre-

dictor–corrector integration scheme of Schlegel [13] in the

Gaussian program [14]. In this method, the quadratic

approximation (gradient, Hessian) at the current point R0 is

used in a predictor step to a predicted geometry Rp. Then

the energies, gradients and Hessians at geometries R0 and

Rp are fitted by a fifth order polynomial. The equations of

motion on this fitted surface are then integrated to give the

corrector step to the geometry Rc.

4 Application to coupled electron–nuclear dynamics

upon ionization

We apply our second-order Ehrenfest method to study the

coupled electron–nuclear dynamics of benzene upon

ionization. Because the nuclear geometry will be a non-

stationary point on the cation potential energy surfaces and

the electronic wavefunction will be a non-stationary state,

we expect some electron and nuclear dynamics to occur

after ionization. We use the Ehrenfest method to investi-

gate the interplay between the electronic and nuclear

dynamics.

The electronic structure is computed using the CASSCF

method. Using the standard 6-31G* basis set, we choose

the 6 p orbitals as active. The degenerate HOMO, HOMO-

1 and matching degenerate LUMO, LUMO?1 are needed

to recover the non-dynamic electron correlation. The

remaining pair of benzene p orbitals contributes to

dynamic correlation and has to be included for stability

(because of a large dynamic correlation effect).

4.1 Initial conditions

The initial conditions of the dynamics calculation (the

nuclear geometry and the electronic wavefunction) depend

on the state of the neutral species before ionization. The

absorption of a photon leading to ionization is itself

instantaneous so neither the electrons or the nuclei have

time to relax. We assume that the system was in its nuclear

and electronic ground state before ionization. In principle,

to mimic the initial nuclear wavepacket distribution and

obtain a realistic dynamics of the system, one must simu-

late many trajectories starting with sampled positions and

momentum of the nuclei. Here, our aim is to illustrate the

method using a single simulation with the initial nuclear

geometry close to the equilibrium geometry of the neutral

species, i.e., the minimum of its ground state, without

initial kinetic energy. The initial electronic wavefunction

will be a non-stationary state, i.e., a superposition of sev-

eral cationic eigenstates. We neglect the interaction with

the electric field and the interaction between the outgoing

electron and the cation. These approximations are reason-

able if a high-energy ultrashort pulse is used for the ioni-

zation so that the outgoing electron has a high kinetic

energy and moves rapidly away from the cation. In other

words, we assume the ‘‘sudden’’ removal of an electron.

In many studies [31–36] of the electronic dynamics

upon ionization, the initial electronic wavefunction is cre-

ated using the so-called single-channel sudden approxi-

mation [37–39]. This assumes the sudden removal of an

electron from a particular orbital. The initial superposition

of electronic eigenstates results therefore from electron

correlation only (in this case, from the CI expansion

used) [31]. This single-channel sudden approximation was

used in our previous work [10]. However, one can inves-

tigate a particular ionization channel independently of the

others only if they do not interfere: The valence ionization

channels are not well separated in energy so they will

Theor Chem Acc (2014) 133:1505

123 Reprinted from the journal330



interfere. We therefore choose to stay general: We assume

the ‘‘sudden’’ removal of an electron, but do not aim at

studying electronic dynamics following a single-channel

ionization. Relative weights and phases of the eigenstates

in the initial superposition are parameters that can be

investigated in numerical simulations. Experimentally,

they depend on the photon energy but also on the field

polarization for example.

We study the valence ionization of benzene. An

instantaneous photoionization experiment would be carried

out using a pulse of broad bandwidth which means that

several electronic states may be populated. However,

considering the energy gap between the first and second

excited states (more than 2 eV), we can assume that the

dynamics of the two lowest-energy electronic states will

not interfere with the dynamics on the second excited state

within the first few tens of femtoseconds. Our aim is to

model the dynamics resulting from populating the lowest

two eigenstates which would be part of any observed

dynamics. We thus choose the initial electronic wave-

function to be an equal mixture of the two lowest eigen-

states: jWðr; t ¼ 0Þi ¼ 1ffiffi
2
p jD0i þ jD1ið Þ. As we observed in

our first study [10], when the two eigenstates are exactly

degenerate (which is the case at the equilibrium geometry

of the neutral species), there is no charge migration.

Indeed, at exact degeneracy, any combination of the two

eigenstates is also an eigenstate, and therefore, it is a sta-

tionary electronic wavefunction. An alternative explanation

is the fact that the period of oscillation in charge migration

is inversely proportional to the energy gap; thus, if the

energy gap is zero, the period of oscillation is infinite,

which means there is no charge migration. We suggested in

our first study [10] to enhance charge migration by dis-

torting the initial geometry away from the conical inter-

section in order to lift the degeneracy. We decide to start

the ionization at a distorted geometry along the derivative

coupling vector. The same test calculation is used

throughout the rest of the article.

4.2 Conservation of energy

The accuracy in the integration of the equations of motion

is monitored by the conservation of energy. To illustrate

this, we run test calculations using two different integration

algorithms involving: approximate gradient computation

(Sect. 3.2.1) only, or approximate gradient and approxi-

mate Hessian computations with the fifth order polynomial

fit (Sects. 3.2.2 and 3.2.3). The results with approximate

gradient and approximate Hessian are not shown here as

we do not expect any improvement of the conservation of

energy (the Hessian is calculated for the upper eigenstate of

the SA-CASSCF calculation and not for the TD vector). In

addition, the computational cost of the Hessian-based

integrator using the polynomial fit is the same as without

the polynomial fit. We use a mass-weighted step size of

0:03 amu1=2bohr (about 0.3 fs). The trajectories are started

with no kinetic energy.

Figure 2 shows the error in the total energy as a function

of time for the different integration methods. We see

oscillations that become bigger and bigger with time when

using the approximate gradient only. Varying the step size

does not improve the conservation of energy (not shown)

which suggests that the error is more likely to come from

the approximations in the analytical gradient rather than the

integrator. The combination of approximate analytical

gradient and Hessian with a numerical fit decreases the

error significantly (below 2 10�4 kcal/mol for 50 fs).

Indeed, the error in the conservation of energy due to the

approximations made in the analytical expressions for

gradient and Hessian is corrected by fitting numerically the

potential energy surface. The difference in cost between

the two methods is essentially the computation of the

Hessian at each step: This can partly be eliminated if a

Hessian updating procedure is used (not explored here).

Figure 3 shows the total energy, the kinetic energy and

the potential energy during the 50 fs trajectory using the

fifth order polynomial fit (same simulation as in Fig. 2).

The total and potential energies have been shifted by the

initial potential energy so that they are plotted on the same

vertical axis. The variations in kinetic and potential ener-

gies exactly cancel each other. Therefore, we can safely use

step sizes as large as we use here (about 0.3 fs) using the
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Fig. 2 Error in conservation of energy. The error in the total energy is

compared for two different integration algorithms involving the

approximate gradient computation only, or the approximate gradient

and approximate Hessian computations using the fifth order polyno-

mial fit. The mass-weighted step size is 0:03 amu1=2bohr (about

0.3 fs). This illustrates how the polynomial fit performs significantly

better (error below 2 10�4 kcal/mol for 50 fs)
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fifth order polynomial fit and this is the integration algo-

rithm we choose for applications.

4.3 Analysis tools

The number of degrees of freedom increases with the size

of the system, and it becomes difficult to extract qualitative

trends from large amounts of data. Some efforts are nec-

essary in analyzing results and getting a physical picture.

Here, we suggest some ways to monitor electron and

nuclear dynamics during such a simulated trajectory. We

illustrate them with our model system, benzene radical

cation, but they could in principle be applied to other

systems where charge migration is initiated near a conical

intersection.

We suggest using Fig. 1 to represent both the electronic

and the nuclear dynamics. Indeed, the structures can refer

both to the nature of the electronic density and to the

nuclear geometry. Figure 4 is a schematic cross-section of

the conical intersection along the X1 direction shown in

Fig. 1. A set of optimized quinoid/antiquinoid structures is

presented with their respective spin densities and important

bond lengths. One can imagine the electronic character and

the nuclear geometry evolving synchronously in equilib-

rium or asynchronously during the trajectory.

4.3.1 Monitoring changes in the electronic structure

Benzene radical cation can adopt different electronic

characters during the simulation. The electronic wave-

function is, in theory, a superposition of several VB

structures and we would like to monitor its time-

dependence. One way to do it is to calculate its spin density

as a function of time. The spin density is defined as the

difference between the alpha density (density of electrons

with spin up) and the beta density (density of electrons with

spin down): jWSðtÞj2 ¼ jWaðtÞj2 � jWbðtÞj2. It allows one

to locate the unpaired electron within the molecule. The

spin density can be partitioned onto atomic sites using the

standard Mulliken population analysis. Figure 4 gives the

partitioned spin densities for the quinoid and antiquinoid

VB structures: The unpaired electron is located on the top

and bottom carbon atoms in the quinoid VB structure

shown in the figure, whereas it is delocalized onto the four

carbons on the sides in the antiquinoid VB structure. One

can thus assign a different spin density pattern to each VB

structure.

To follow the evolution of the electronic wavefunction,

its spin density is computed, partitioned onto the atoms and

can be decomposed in the space of the VB structures of the

moat at each step of the simulation. One can then plot the

electron dynamics trajectory on the moat diagram (Fig. 1)

where the structures represent exclusively the nature of the

electronic wavefunction in this case. Because each struc-

ture in Fig. 1 is a superposition of two resonance structures

where the unpaired electron and the positive charge are

interchanged, following the unpaired electron is equivalent

to following the positive charge. This is how we monitor

the ‘‘hole’’ dynamics.
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Fig. 3 Evolution of total, kinetic and potential energies during the

trajectory. The fifth order polynomial fit procedure is used with a

mass-weighted step size of 0:03 amu1=2bohr (about 0.3 fs). The

decrease of potential energy is compensated by a gain in kinetic

energy so that the total energy is perfectly conserved for over 50 fs

(error below 2 10�4 kcal/mol for 50 fs)
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Fig. 4 Schematic representation of the benzene radical cation D1=D0

crossing. This is a cross-section through the conical intersection along

X1 shown in Fig. 1. The quinoid structure (on the right) is a minimum

whereas the antiquinoid structure (on the left) is a transition structure

in the moat of the conical intersection. Mulliken atomic spin densities

are indicated in pink next to each carbon atom. Characteristic bond

lengths are indicated in blue. Note that for the quinoid or antiquinoid

structure, there are actually two resonance structures with the

unpaired electron and the positive charge exchanged (this is indicated

by þ=�)
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4.3.2 Monitoring changes in nuclear geometry

The question we would like to answer is whether nuclear

geometry and electronic wavefunction evolve in equilib-

rium or not; how synchronous or asynchronous the electron

and nuclear dynamics are. We are therefore interested in

the nuclear motion in the branching space of the conical

intersection. The nuclear trajectory can be plotted on the

same moat diagram (Fig. 1), but here, the structures rep-

resent the nuclear geometry exclusively (i.e., the pattern of

single bonds corresponding to longer bond lengths, versus

double bonds corresponding to shorter bond lengths, etc.).

By comparing the electronic dynamics with the nuclear

motion when both are represented in terms of VB struc-

tures, we can study how they differ.

4.4 Simulations with fixed nuclei and nuclei moving

In the first calculation, we propagate only the electronic

wavefunction without allowing the nuclei to move. This is

to study first ‘‘pure’’ charge migration. In the second cal-

culation, the nuclei are allowed to move along with the

propagation of the electronic wavefunction. In Fig. 5, the

spin densities partitioned onto the atoms are plotted as a

function of time in each case. The bottom half aims to

represent the corresponding evolution of both the

electronic character (in pink) and the nuclear geometry (in

blue) within the moat.

With fixed nuclei, we observe oscillation between a

quinoid and an antiquinoid VB structures with a total

period of about 10 fs. With nuclei moving, the electronic

dynamics is the same as with fixed nuclei during the first

2 fs but after that, the effect of the nuclear motion is not

negligible. Indeed, the pink arrow representing the elec-

tronic ‘‘trajectory’’ has the same initial direction but then, it

deviates because of the nuclear motion. Now, let us look at

the nuclear trajectory. The first blue arrow shows that the

initial direction of the nuclear trajectory is ‘‘pulled’’ by the

initial electronic character: The nuclear motion is driven by

the effective electronic potential so they move in a way that

minimizes the potential energy. In a classical picture, it

means adopting the geometry that is in equilibrium with the

electronic character. Then, the nuclear motion becomes

more difficult to interpret because it is driven by the

electronic potential but also by the kinetic energy built up.

Note that the initial dynamics of the electronic wavefunc-

tion and the nuclei are asynchronous (the pink and blue

arrows are not superimposed). At about 17 fs, both the

electronic and nuclear trajectories are in the bottom left

corner of the diagram and they both evolve toward the

right. Their dynamics become more synchronous. Indeed,

asynchronous dynamics of electrons and nuclei arise from

Fig. 5 Results of two Ehrenfest

simulations on benzene cation:

with fixed nuclei (left side) and

with nuclei moving (right side).

The top figures plot the

evolution of the Mulliken spin

densities as the function of time.

The electron and nuclear

motions are represented on the

bottom moat diagrams (the

nuclear geometry in blue and

the electronic character in pink).

With nuclei fixed, the electronic

character of the system between

a set of quinoid/antiquinoid

structures. With moving nuclei,

the oscillations in the electronic

character seem damped until the

nuclear geometry slowly

‘‘catches’’ the electronic

character
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the population of several electronic eigenstates. As the

trajectory decays onto the ground state, the residual elec-

tronic dynamics will be charge transfer, where the elec-

tronic and nuclear dynamics are synchronous.

5 Conclusion

The Ehrenfest method allows one to study coupled elec-

tron–nuclear dynamics by treating the feedback between

electronic and nuclear degrees of freedom in a mean-field

manner. The nuclear state (expressed as a single classical

trajectory) experiences an effective potential due to a time-

dependent superposition of electronic eigenstates. Using

this approach, we can study the evolution of a non-sta-

tionary electronic wavefunction for fixed atomic nuclei,

and where the nuclei are allowed to move, to investigate

the differences. So far, we have used it to study both charge

migration and charge transfer upon ionization of small

organic molecules. Our CASSCF implementation with a

second-order integration algorithm and an additional fifth

order polynomial fit allows us step sizes of the order of

0.3 fs (or 0:03amu1=2bohr) while keeping the error in

energy conservation below 0.0002 kcal/mol for dynamics

runs longer than 50 fs.

We choose benzene cation as a prototype because ion-

izing the neutral species leads to a Jahn–Teller degeneracy

between ground and first excited states of the cation. Note

that only illustrative simulations were presented here; one

must sample the positions and momentum of nuclei to

obtain a realistic dynamics of the system. Taking advan-

tage of the approximation of the Ehrenfest method, we can

analyze nuclear and electronic dynamics independently.

We monitor the electronic dynamics by calculating the spin

density of the system as a function of time. With nuclei

fixed, there is no electron dynamics in this case. However,

if we distort the geometry [10] away from the exact

degeneracy, we see ‘‘pure’’ charge migration: oscillations

in the spin density that we can correlate with particular

localized electronic structures, with a period depending on

the gap between the states initially populated. Close to a

conical intersection, the energy gap will be small and the

resulting electron dynamics will be on a femtosecond

timescale. Here, the oscillations in the spin density have a

period of 10 fs (see Fig. 5), so we can use relatively big

step sizes (0.3 fs). If we allow nuclear motion, we see

changes in the period of the electronic dynamics as the

nuclei start to couple.
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Appendix: Computation of the energy and the gradient

of a complex wavefunction

Energy computation

Let us consider the expansion of the TD wavefunction in

the eigenstate basis set as defined in Eq. (10) with complex

coefficients fckg. He is the electronic Hamiltonian oper-

ator and H its matrix representation in the eigenstate basis

with elements Hkl ¼ h ~/kjHej ~/li. The energy of the TD

wavefunction is computed as the expectation value of this

operator:

E ¼ hWjHejWi ¼
X
k

X
l

c�kclHkl ð30Þ

Note that in the eigenstate basis, Hkl ¼ 0 for k 6¼ l so the

double sum reduces to one. The energy expression then

reads:

E ¼
X
k

jckj2Ek ð31Þ

Here, we see that the energy depends only on the weight of

each eigenstate and not on their relative phase. From an

implementation point of view, instead of repeating the

operations for the real and imaginary components, we

create a real wavefunction that has the same energy and

using directly the machinery already programmed. For that,

one needs to rotate all the complex coefficients in the TD

vector expansion so that they are all real but conserving

their magnitude. So the energy evaluated with the vector

rotated to real is equal to the energy of the complex TD

vector. Note this is only true because the rotation is done in

the eigenstate basis. In general, we can compute the

expectation value of an operator with the wavefunction

rotated to real only if the operator is diagonal in the basis

set we do the rotation in.

Gradient computation

The Hellmann–Feynman term of the gradient is defined as

the partial derivative of the energy with respect to a nuclear

distortion RI . To consider the intrinsic dependence of the

energy, we assume an expansion in exact eigenstates. By

applying the product rule, we obtain:

ERI ¼
X
k

rRI
ðjckj2Þ � Ek þ

X
k

jckj2 � rRI
ðEkÞ ð32Þ

The second term on the right hand side is the average of the

gradient of each electronic eigenstate weighted by their
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occupation. It represents the change in potential energy

staying on the same potential, i.e. keeping the same

occupation on each electronic eigenstate. The first term

however is the change in potential energy due to change in

occupation of the electronic eigenstates because of non-

adiabatic transitions. To calculate the derivative of jckj2
with respect to a nuclear distortion, we can invoke the time

derivative by applying the chain rule:

ERI ¼
X
k

ojckj2
ot

1

_RI

� Ek þ
X
k

jckj2 � rRI
ðEkÞ ð33Þ

The time derivative of the norm squared of the expansion

coefficient jckj2 with respect to time can be obtained using

Eq. (11):

ojckðtÞj2
ot

¼ �
X
l;J

clðtÞc�kðtÞ þ c�l ðtÞckðtÞ
� � � dJklðRÞ � _RJ

ð34Þ
By inserting this in Eq. (33), it reads:

ERI ¼ �
X
k 6¼l

clðtÞc�kðtÞ þ c�l ðtÞckðtÞ
� � � dJklðRÞ � Ek

þ
X
k

jckj2 � rRI
ðEkÞ

ð35Þ

We see that the non-adiabatic coupling dJklðRÞ is present in

the term representing the change in energy due to elec-

tronic transitions. Using the relation dJklðRÞ ¼ �dJlkðRÞ
gives:

ERI ¼ �
X
k 6¼l

c�l ðtÞckðtÞ � dJklðRÞ � Ek � Elð Þ

þ
X
k

jckj2 � rRI
ðEkÞ ð36Þ

Using Eq. (18), it becomes:

ERI ¼
X
k 6¼l

c�l ðtÞckðtÞ � h ~/ljrRI
ðHeÞj ~/ki

þ
X
k

jckj2 � h ~/kjrRI
ðHeÞj ~/ki

ð37Þ

The Hellmann–Feynman term of the gradient is the

expectation value of the derivative of the Hamiltonian

operator. On one hand, the diagonal terms represent the

weighted average potential and they depend only on the

norms of the expansion coefficients. On the other hand, the

off-diagonal terms represent the change in energy due to

non-adiabatic transitions and they do depend on the relative

complex phase of the expansion coefficients. For this rea-

son, one can not construct a real wavefunction whose

gradient would be equal to the gradient of a complex

wavefunction.
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Abstract Photoisomerization of conjugated systems is a

common pathway for photomechanical energy conversion in

biological chromophores. There are many examples where

the local environment of the chromophore plays an important

role in determining the outcome of photoisomerization. We

have investigated the effect of simple steric and electrostatic

environments on the excited-state photodynamics of ethyl-

ene, a simple model for larger conjugated systems. Ab initio

electronic structure methods were combined with molecular

mechanical force fields to describe the ground and excited-

state potential energy surfaces of ethylene embedded in

electrostatic and steric environments. The time evolution of

the system following photoabsorption was modeled using

the ab initio multiple spawning (AIMS) method for quantum

dynamics. We introduce a new method for integration of the

equations of motion in AIMS, which detects conical inter-

sections automatically and then decreases the timestep

adaptively around them. Neither steric hindrance nor elec-

trostatics have a large effect on the excited-state lifetime,

even at effective pressures as large as 2 GPa. However, a

nearby point charge creates an electric field that stabilizes

one of two symmetry-related conical intersections, biasing

the reaction toward a particular photoisomerization pathway.

For the larger tetramethylethylene, where steric hindrance is

expected to be more pronounced, we also see no effect on the

excited-state lifetime. Our results suggest that electrostatic

interactions are more effective than steric hindrance in

modifying the course of excited-state reactions.

Keywords Isomerization � Nonadiabatic dynamics �
Surface hopping

1 Introduction

Conical intersections (CIs), points of true degeneracy

between different electronic potential energy surfaces

(PESs), are now understood to play a fundamental role in

photochemical dynamics [1–5]. These molecular geome-

tries act as doorways between different electronic PESs,

efficiently funneling population between different elec-

tronic states. In particular, inter-state population transfer

through CIs is a crucial step in many photoinduced isom-

erization reactions. In biological systems, chromophores

containing conjugated p-bond systems are a common site

for such processes. It is also increasingly apparent that

interaction of such chromophores with their local envi-

ronment plays an important role in determining their pho-

tochemistry [6–14]. In this work, we investigate the effects

of local environment on photoisomerization in ethylene to

better understand the mechanisms of this environment-

dependent tuning.
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Interactions of a chromophore with its local environ-

ment can be broadly decomposed into two categories:

steric and electrostatic effects. The precise interplay of

these effects in biological systems has been the subject of a

great deal of research and some controversy. Over the past

30 years, for instance, many broad mechanisms of protein

activity have been ascribed to steric strain [15–17]. How-

ever, later theoretical studies have disputed many of these

conclusions, finding that electrostatic interactions, in par-

ticular, play a more important role [6–14, 18–20]. Elec-

trostatic interactions are increasingly recognized as an

important factor in many realms of biochemistry [20–22].

As the basic building block for many conjugated mole-

cules, ethylene has long been of interest as a model for

photoisomerization dynamics. The photodynamics of iso-

lated ethylene after photoexcitation of an electron from the

HOMO (p) to the LUMO (p*) orbital have been the subject of

numerous theoretical [23–28], pump probe [29–31], and

Raman spectroscopy [32] studies. While ethylene is planar in

its ground state, thep ? p* excited state favors a twisted D2d

geometry. Interaction of this pp* state with a charge transfer

state of doubly excited character leads to the phenomenon of

‘‘sudden polarization,’’ [33–36] in which one of the methy-

lene groups pyramidalizes and the molecule acquires a large

dipole moment. This pyramidalization distortion also leads to

a set of CI geometries, resulting in rapid quenching to the

ground electronic state. In competition with this quenching, a

hydrogen atom can migrate from one side of the molecule to

the other, yielding ethylidene (HCCH3). Thus, the excited-

state reaction path can be roughly characterized by a brief

period of twisting motion about the C=C bond, followed by

pyramidalization and/or hydrogen migration, as depicted in

Fig. 1. There are CI geometries near both of the twisted/

pyramidalized and ethylidene regions, leading to very fast

quenching to the ground state. In fact, previous studies pro-

vide estimates of the excited-state lifetime ranging from 30 to

250 fs [5, 23, 27, 28, 31, 37, 38].

2 Methods

2.1 Hybrid QM/MM potential energy surfaces

While certain quantum chemical techniques can, in prin-

ciple, describe the full electronic structure of a system in

both ground and excited states, in practice these methods

are far too computationally expensive to describe a mole-

cule in a complex environment. Fortunately, in excited-

state photochemical problems, it is often true that the

electronically perturbed region is localized to a small, well-

defined chromophore. This separation of the system into

perturbed and unperturbed subsystems makes it amenable

to simulation by multi-resolution techniques. In particular,

while expensive quantum chemical simulations are neces-

sary to model the photochemically active subsystem, the

larger system can be modeled using much more efficient

molecular mechanical force fields, which provide reason-

able and inexpensive descriptions of the PESs of systems

near equilibrium. These two levels of theory can be com-

bined to generate a hybrid quantum mechanical/molecular

mechanical (QM/MM) PES. These QM/MM techniques

were initially developed by Warshel and Levitt to treat

bond rearrangement in calculations of enzyme docking

kinetics, [39] but QM/MM methods have subsequently

been the subject of much development and have found use

in a variety of chemical fields, including dynamics and free

energy calculations [40–44].

Here, the QM/MM Hamiltonian is written as an

approximation to the full electronic Hamiltonian:

Ĥel ffi ĤQM þ ĤMM þ ĤQM=MM; ð1Þ

where ĤQM represents the exact Hamiltonian for the QM

system, ĤMM the force field of the MM system, and

ĤQM=MM the interaction between the two systems. The

interaction term consists of Lennard-Jones and electrostatic

interactions between the two systems:

ĤQM=MM ¼ ĤLJ þ ĤES: ð2Þ
Dispersion and Pauli repulsion between the two systems

is modeled with a Lennard-Jones potential,

ĤLJ ¼
X

i2MM; j2QM

eij
r12
ij

R12
ij

� r6
ij

R6
ij

" #
; ð3Þ

where eij and rij are empirical parameters drawn from the

MM force field and Rij is the distance between the ith and

jth nuclear centers. The origin of this force is electronic;

the repulsive R-12 term, for instance, arises from Pauli

repulsion between electrons on the two atoms. However,

Fig. 1 Schematic mechanism for photodynamics of ethylene on the p ? p* excited state. After photoexcitation, twisting and pyramidalization

brings the molecule to an S1/S0 CI, and further hydrogen migration creates ethylidene

Theor Chem Acc (2014) 133:1506

123 Reprinted from the journal338



the form of the Lennard-Jones potential depends only upon

atomic positions and not electronic coordinates [45, 46]

From a practical standpoint, this means that the electronic

structure is not coupled to the MM system through the

Lennard-Jones potential.

The electrostatic interaction term, in contrast, does

include the electronic coordinates, and thus must be

included in the electronic structure calculation. This

interaction is given by

ĤES ¼
X

i2MM; j2QM

qiQj

Rij

þ
X
p

X
i2MM

qi

rp � Ri

 ; ð4Þ

where qi and Qj are the charges of the ith MM and jth QM

nuclei, respectively, and p indexes the electrons in the QM

system (with rp being the position of the pth electron).

For the MM system and QM/MM interaction, Lennard-

Jones parameters (Table 1) for argon were drawn from

Maitland et al. [47] and those for the ethylene atoms were

drawn from the AMBER ff99 force field [48]. For inter-

actions between distinct atom types, the Lennard-Jones r
parameter was chosen to be the arithmetic average of the

values for the two atom types, while the e parameter was

the geometric mean of the two values.

2.2 Ab initio electronic structure

The electronic wavefunction was evaluated using the state

averaged complete active space self-consistent field (SA-

CASSCF) method [49, 50], as implemented in the MOLPRO

[51] electronic structure package. We used the 6-31G**

basis set [52] and an active space of two electrons in two

orbitals with equally weighted averaging over the lowest

three singlet states, i.e., SA-3-CAS(2/2)/6-31G**.

We caution that this level of theory was chosen in part for

its computational efficiency; CASSCF does have some

deficiencies, and in particular is unable to describe dynamic

electron correlation. The PESs for ethylene from SA-3-

CAS(2/2) are qualitatively similar to the PESs from higher

level calculations, but dynamics calculations with higher

levels of theory (e.g., including perturbation theory correc-

tions with MS-CASPT2 [27] and/or including diffuse orbi-

tals to represent the Rydberg states [28]) suggest that there is

a tendency for SA-3-CAS(2/2) dynamics to overestimate the

importance of the ethylidene conical intersection.

2.3 Ab initio multiple spawning (AIMS) dynamics

The time evolution of the system was modeled using the

ab initio multiple spawning (AIMS) method for quantum

molecular dynamics. This method has been extensively

described elsewhere [53, 54]; we present only a brief

overview here. AIMS takes as its starting point a linear

combination of time-dependent Born–Oppenheimer states:

WAIMSðR; r; tÞ ¼
XNðtÞ
I¼1

cIðtÞvIðR; tÞ/NI
ðr;RÞ; ð5Þ

where vIðR; tÞ is a nuclear basis function and /NI
ðr;RÞ is

the electronic wavefunction on state NI . The nuclear basis

functions are minimum uncertainty wave packets, i.e., fro-

zen Gaussians [55], in each of the nuclear coordinates, and

their average positions and momenta are chosen to evolve

classically on their given potential energy surfaces. The

time evolution of the amplitudes of the basis functions

cIðtÞf g is determined by direct substitution of this wave-

function into the time-dependent Schrödinger equation. For

the results presented here, simulations begin with a single

basis function, with classical parameters sampled from

some initial distribution (typically a Wigner distribution for

the desired initial state, see below). However, when a wave

packet on a given PES enters a region of high nonadiabatic

coupling to a different PES, the number of basis functions

NðtÞ is expanded, and a basis function [with cIðtÞ ¼ 0] is

placed on the complementary PES. This dynamic ‘‘spawn-

ing’’ of new basis functions allows description of popula-

tion transfer between different PESs without a priori

assumptions about the nature of the dynamics. All dynam-

ical simulations were performed in our implementation of

AIMS with the MOLPRO [ electronic structure package [56].

At each timestep, the classical positions and momenta

for each trajectory basis function (TBF) are evolved from

time t to t þ Dt using the velocity Verlet integrator, while

the quantum mechanical amplitudes cIðtÞf g are evolved

from time t to t þ Dt using a second-order Runge–Kutta

integrator to solve the time-dependent Schrodinger equa-

tion. Computational efficiency dictates the choice of a large

timestep Dt, while accurate integration demands a timestep

small enough to capture the variation of the independent

variables (positions, momenta, and complex amplitudes).

Near conical intersections, the curvature of the PES can be

very large (in fact, the derivatives of the PES are discon-

tinuous at a CI). Furthermore, at conical intersections and

very weakly avoided crossings, the time-derivative cou-

pling exhibits a narrow and sharp spike, as described in

recent works on the accurate treatment of trivially unavo-

ided crossings in surface hopping simulations [57–59]. To

avoid ‘‘jumping over’’ this spike in the coupling, which

would cause large errors in the predicted population

Table 1 Lennard-Jones parameters for the Ar-solvated simulations

Interaction e/kcal/mol r/Å

C–Ar 0.143 1.91

H–Ar 0.061 1.70

Ar–Ar 0.239 1.91
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transfer, a very small timestep may be needed near CIs, but

in regions far from CIs such a small timestep would waste

computational effort.

To address this conflict, we developed an adaptive

timestep integration scheme. Simulations generally begin

with a larger timestep (for this system, 0.5 fs), suitable for

efficient integration of dynamics on typical regions of the

PES. The simulation adaptively reduces the size of the

timestep (we have found that reducing the timestep by a

factor of four works well) in regions near conical inter-

sections, as detailed in Fig. 2. Two tests are used to detect

the presence of conical intersections and weakly avoided

crossings: large derivative coupling values, and rapid

changes in the character of the electronic wavefunction.

If the derivative coupling at the center of a TBF, D(t),

rises above the predetermined spawning threshold Dspawn,

or the off-diagonal inter-state matrix elements of the

Hamiltonian are large, the smaller timestep is used to

accurately capture the expected spikes in the derivative

coupling. While this was found to improve our description

of nonadiabatic events, it nevertheless neglects situations in

which a TBF ‘‘jumps over’’ a high-coupling region in a

single timestep. Such situations can be corrected by

examining changes in the electronic structure.

In the vicinity of a CI (or weakly avoided crossing), the

electronic structure (and related quantities such as potential

energy and derivative coupling) varies rapidly with

molecular geometry. These rapid changes can be detected

by comparing the overlap of the electronic wavefunctions

at the current and previous timesteps [56]:

Sel
t;t�Dt ¼ /J r; �R t � Dtð Þð Þ j /J r; �R tð Þð Þh ir; ð6Þ

where /J r;Rð Þj i is the electronic wavefunction for the Jth

electronic state at nuclear position R, and �R tð Þ is the

centroid of the TBF at time t. A small overlap Selt;t�Dt

suggests both the presence of a CI and that the integration

timestep must be reduced to compensate for the rapid

variation of the electronic wavefunction. Note that,

although the PES, derivative coupling, and electronic

wavefunction are discontinuous at a point of true degen-

eracy between two states, the CI seam has dimensionality 2

less than the full dimensionality of the system. In practice,

a TBF will therefore never exactly encounter a point of

degeneracy and thus, given a small enough timestep, each

TBF’s electronic structure is expected to be continuous

from one timestep to the next. Therefore, if Selt;t�Dt falls

below a threshold (by default, 2-1/2, indicating that the

normalized overlap with the previous timestep is\50 %),

the timestep is discarded, and dynamics are restarted from

time t � Dt with a smaller timestep. This procedure allows

us to detect CI regions that would otherwise have been

‘‘jumped over’’ by a larger timestep.

This adaptive integration scheme also permits recovery

from numerical integration errors. Specifically, the pro-

gram will reject a timestep if the total wavefunction norm

changes by more than 5 % or if the classical energy of any

single TBF changes by more than 5 millihartree. In these

situations, as when a TBF jumps over an intersection, the

simulation is restarted from an earlier time and reintegrated

with the smaller timestep. Note that this scheme permits

recovery only from errors in integration of the classical and

quantum mechanical equations of motion; it cannot correct,

e.g., discontinuities in the calculated PESs or nonconver-

gence of the electronic structure. Note too that the quantum

mechanical energy (that is, the expectation value of the

Hamiltonian) is not monitored, and in fact is not neces-

sarily conserved for small basis sets [60].

In parallel to the spawning of new TBFs when neces-

sary, we also terminate TBFs which are no longer neces-

sary to describe population transfer. A given TBF is

marked for potential termination if it (a) has too little

population to trigger new spawning events or (b) has

reached the user-specified ‘‘target’’ electronic state, usually

the ground state. Because the TBFs are all coupled in the

solution of the complex amplitudes, it is only possible to

remove a TBF from the simulation (without ill effects) if

Time: t

Integrate from time t
to t+dtdt

Calculate overlap with 
previous electronic 

wavefunction

no

yes

Calculate new 
nonadiabatic 

coupling

and

?

yes

Reduce timestep

and repeat 
integration

no

Timestep done.
Time:

Fig. 2 Acceptance scheme for adaptive timestep integration
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the TBF has negligible matrix elements (both overlap and

Hamiltonian) with all TBFs which will remain in the

simulation. Therefore, we continue to propagate the TBFs

that are marked for potential deletion for an additional time

period (chosen to be 5 fs in the cases discussed here).

A TBF is removed from the simulation if and only if it is

both marked for deletion and has negligible overlap with

all other TBFs during this time period. Otherwise, it con-

tinues to propagate with the other TBFs. If further propa-

gation of a terminated TBF is desired (for instance, to

investigate the dynamics on the target state), it can later be

propagated, decoupled from the original simulation. This

dynamic pruning of unimportant trajectories leads to sig-

nificant computational savings, as well as automatic ter-

mination of simulations once all population has been

transferred to the target state.

2.4 Simulation details

As a simple model for steric interactions, we simulated the

photodynamics of ethylene microsolvated in a cluster of

1,200 argon atoms at 0 K (Fig. 3). The system was pre-

pared by randomly generating a cluster of 1,200 argon

atoms around an ethylene molecule at its ground state

minimum geometry, then optimizing the energy of the MM

system with the QM (ethylene) atoms held fixed. In order

to improve Lennard-Jones contact and exaggerate the

effects of steric hindrance, the system was confined with

half-harmonic restraints to a sphere of radius 19.7 Å, cor-

responding to an external pressure of approximately 2 GPa

(calculated using the internal virial P ¼ NkT
V
þ Fint�R

3V
, where

Fint are forces excluding those from the walls of the system

[61]). These simulations were also repeated with tetra-

methylethylene (TME), again in an attempt to exaggerate

any steric effects on the reaction. For comparison, the gas-

phase dynamics of ethylene and TME were also simulated.

To investigate the effect of an external electric field on

the photodynamics, a single point charge of magnitude

?0.25 qe was placed 3 Å from one of the carbon atoms

(Fig. 4). Both the ethylene molecule’s center of mass and

the position of the point charge were held fixed using the

RATTLE algorithm [62] to constrain their positions rela-

tive to one another.

The initial positions and momenta of the ethylene or

TME molecule in each simulation were sampled from a

Wigner transform of the ground state vibrational wave-

function in the harmonic approximation. Each set of initial

conditions was run as a single, independent simulation, i.e.,

using the independent first-generation approximation [63]

The number of independent simulations for each system is

shown in Table 2.

To determine the excited-state lifetime of each simu-

lated system, the time dependence of the average excited-

state population was fit to a ‘‘delayed exponential’’ of the

form

Fig. 3 Cross section of C2H4/Ar-cluster simulation geometry

Fig. 4 Top and side views of geometry used for C2H4 with a

surrounding point charge

Table 2 Excited-state lifetimes (with standard error from boot-

strapping) for ethylene in various environments

No of runs t0/fs s/fs

Gas-phase ethylene 200 24 ± 3 116 ± 9

Argon-solvated ethylene 80 29 ± 5 93 ± 11

Gas-phase TME 25 34 ± 11 276 ± 100

Argon-solvated TME 25 22 ± 10 237 ± 82

Ethylene w/point charge 200 16 ± 3 103 ± 8

The timescale for IVR is given by t0 and the time constant for non-

adiabatic transitions from S1 to S0 is given by s, as described in

Eq. (7)
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PS1
ðt; s; t0Þ ¼

1; t\t0

exp
t0 � t

s

� �
; t� t0

(
; ð7Þ

with fitting parameters t0 and s. Here, t0 represents the time

for ethylene to move from the Franck–Condon point to the

CI region, and s is the decay constant for population

transfer to the ground state. The time dependence of the

excited-state populations (averaged over all initial condi-

tions) for ethylene in the gas phase, Ar cluster, and with

surrounding point charge are shown in Fig. 5. The lifetimes

obtained from this data are summarized in Table 2, along

with standard error estimates obtained from a nonpara-

metric bootstrap over 10,000 samples [64].

3 Results

3.1 Argon cluster: steric influence of the surroundings

Previously published results from an initial study of ethylene

solvated in a 300-argon cluster suggested that the excited-

state dynamics were not perturbed by the argon environment

[56]. In this study, we have increased the size of the argon

cluster to 1,200 atoms, which more accurately replicates the

bulk properties of argon at the ethylene solvation site and

have investigated a high pressure of 2 GPa. Contrary to

initial expectations, but in line with previous results, solva-

tion in an argon cluster did not have any significant effects on

the excited-state dynamics of ethylene. We note that reor-

ganization of the argon cluster does not explain the lack of an

effect; the simulations were rerun with the argon atoms fixed

in place, which again produced no significant change in

either the lifetime or the branching ratios.

From frictional and steric hindrance considerations, one

might reasonably expect that solvation in a pressurized

argon cluster would slow or block the excited-state

dynamics, resulting in a longer electronically excited life-

time. As shown in Fig. 5, the lifetime is not significantly

affected for the photoisomerization of ethylene. Addition-

ally, we have characterized the excited-state reaction

mechanism by classifying the population transferred

according to the molecular geometry when nonadiabatic

effects are occurring. We use the scheme introduced by

Lischka et al. [26] to classify the molecular geometries as

pyramidalized or ethylidene-like. As shown in Fig. 6, the

introduction of the argon environment does not signifi-

cantly alter the amount of population transferred through

pyramidalized and ethylidene CIs, compared to the exci-

ted-state dynamics of isolated ethylene.

In order to better understand how the excited-state

dynamics can be unaffected by the surrounding pressurized

argon environment, we have explored the volume swept out

by photoisomerization and its relation to the cavity in the

solvent which houses the chromophore. We define a cavity

volume in analogy to conventional solvent-accessible vol-

ume calculations [65]. It is calculated as the union of all

points that can be occupied by a hydrogen atom’s van der

Waals (vdW) sphere without overlapping the vdW spheres

of the surrounding argon atoms, as shown in Fig. 7. The

chromophore-accessible volume of the ethylene cavities was

calculated for each of the 100 initial conditions generated.

This gives a mean cavity size of 26 ± 5 Å3 at the beginning

of dynamics. We also calculated the total volume swept out

by isomerization by carrying out the same procedure for

Fig. 5 Average excited-state (S1) population as a function of time

after photoexcitation, from AIMS SA-3-CAS(2/2) dynamics. The

three traces correspond to ethylene in a gas-phase (red, N = 200),

argon-solvated (orange, N = 80), or point charge (green, N = 200)

environment at 0 K. Error bars indicate estimated standard error. The

surrounding environment has little effect on the excited-state lifetime

for ethylene under the chosen conditions

Fig. 6 Amount of population transfer through different ethylene

conical intersection geometries, as classified by Lischka et al. Error

bars are bootstrap-estimated standard error. Solvation in highly

pressurized argon (orange, 1,200 Ar) shows no statistically significant

effect on the quenching mechanism compared to isolated ethylene

(red, Gas Phase). In contrast, the electric field from a surrounding

point charge (green, Point Charge) leads to suppression of population

transfer through ethylidene intersections and enhancement of popu-

lation transfer through pyramidalized intersections
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each timestep and defining the total volume as the union of

all solute cavities during the first 200 fs of the dynamics.

This leads to a total reaction volume of 96 ± 12 Å3, which

is significantly larger than the initial mean cavity size.

We monitored the solute–solvent distances during the

photodynamics and found that these often fall below the vdW

contact distance. This occurs because of a disparity in energy

scales; the energetic penalty from significant interpenetration

of the vdW spheres is much smaller than the energy scale of

the photodynamics. The excited-state dynamics involve

conversion of over 4 eV of potential into kinetic energy, or

about 0.2 eV per ethylene degree of freedom—an order of

magnitude greater than thermal energy at room temperature.

This change in energy scale opens up much of the previously

inaccessible volume. To illustrate this, we define a set of

effective vdW radii at which the Lennard-Jones repulsion

energy (Eq. 3) is 0.2 eV; these effective radii for the carbon

and hydrogen atoms are 30 % less than their conventional

values. Using these effective vdW radii leads to a reaction

volume of only 59 ± 7 Å3 swept out by the excited-state

dynamics of the isolated ethylene molecule. The effective

cavity volume given the amount of kinetic energy which will

be accumulated during the dynamics is thus large enough to

easily accommodate the reaction. In Fig. 8, we compare cross

sections of the ethylene molecule and nearest surrounding Ar

atoms using the usual vdW radii (left) and the effective vdW

radii (right). The openness of the solvent cavity is quite clear in

the latter case, which is the appropriate measure for an exci-

ted-state reaction.

Of course, the dynamics of ethylene have a limited spatial

extent, as they consist mostly of hydrogen motion. To

increase the spatial extent of the reaction, the hydrogens were

replaced with methyl groups, creating tetramethylethylene

(TME). The S1 photodynamics and S1/S0 MECIs for TME are

similar to those of ethylene (see Fig. 11)—hydrogen

migration, in which a methyl hydrogen transfers to an eth-

ylenic carbon and twisted-pyramidalized MECIs are

observed (3.2 and 3.8 eV below the Franck–Condon point,

respectively). However, population is also transferred to the

ground state through a pyramidalized C–C stretched inter-

section. We could not find a minimal energy CI of this type;

thus, these are higher energy points on the intersection seam.

Typically, the C–C stretched geometries leading to signifi-

cant population transfer had potential energies\1 eV below

the Franck–Condon point. Decay through this stretched

intersection appears to be kinetically favored, as the posi-

tions of the methyl groups are essentially unchanged from

their Frank–Condon point positions.

As with ethylene, Fig. 9 shows that we observe no signif-

icant change in the excited-state lifetime of argon-solvated

TME (relative to isolated TME). Furthermore, even when the

argon atoms are held fixed, the excited-state lifetime is neg-

ligibly affected. However, the insensitivity of the excited-state

lifetime says little about the excited-state mechanism. In

Fig. 10, we show the amount of population transferred

through three different types of intersections—hydrogen

migration, twisted-pyramidalized, and stretched C–C. A slight

increase in the propensity for population transfer through H

migration CIs is observed for TME in pressurized argon

compared to isolated TME. However, when the surrounding

argon atoms are held fixed, the change in the mechanism is

dramatic and nonadiabatic transitions through the stretched

intersection are strongly enhanced. This is consistent with the

expectation that motion of the methyl groups will be highly

restricted by the surrounding Ar.

In Fig. 11, we characterize the excited-state mechanism

in more detail, depicting the geometries associated with

nonadiabatic transitions. For each such transition leading to

population transfer to the ground electronic state, we

Fig. 7 Depiction of method used to define cavity volume. The cavity

is defined as the union of volumes of a probe sphere (corresponding to

a H atom in this case) such that the distance between the probe sphere

and any surrounding Ar atoms never exceeds the sum of the van der

Waals radii for the probe and Ar atoms

Fig. 8 Left cross section rendering of a representative geometry of

ethylene and nearest surrounding argon atoms using spheres corre-

sponding to vdW radii. Note that there appears to be little space for

large amplitude motion of the ethylene molecule. Right as above, but

with effective vdW radii scaled to incorporate the kinetic energy

accumulated by relaxation of the chromophore on the excited state.

Note that the cavity now appears quite open and there is ample space

for isomerization and hydrogen atom migration
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determine the distance of the ethylenic C–C bond and the

pyramidalization angle for the most pyramidalized ethyl-

enic carbon atom. Each geometry is then plotted as a dot

(colored according to the simulation it corresponds to:

isolated TME, pressurized argon cluster, or environment of

fixed argon atoms). Three clusters are easily distinguished

and circled, with representative geometries shown in the

insets. As discussed above, the presence of an argon

environment leads to more population decay through the H

migration intersections. Fixing the argon atoms further

enhances the decay through C–C stretched intersections

(which require little motion of the methyl groups).

3.2 Point charge: electrostatic influence

of the surroundings

The phenomenon of ‘‘sudden polarization’’ in the photo-

isomerization of ethylene provides a possible mechanism

for external control of the reaction through electrostatic

fields. Electrostatic control is already thought to play an

important role in the photoisomerization of larger conju-

gated chromophores; for instance, the retinal chromophore

demonstrates a marked bond selectivity in its photoiso-

merization processes in vivo, while showing no such bias

in solution or the gas phase. It has been proposed [14] that

this bond selectivity is a product of a charged protein

residue stabilizing the charge transfer state around a par-

ticular bond. Theoretical studies in our group and else-

where have also suggested that external stabilization of

charge transfer plays an important role in the in vivo

photoisomerization of the PYP chromophore [7, 8].

The location and magnitude of the point charge we use

here is similar to that of the charged residues in the binding

pockets of the mentioned biological chromophores. We

have previously shown that a positive charge stabilizes the

pyramidalized intersection about the carbon adjacent to the

point charge, while destabilizing the opposite intersection

(pyramidalized about the carbon furthest from the point

Fig. 9 Ground state population recovery after photoexcitation of

tetramethylethylene (TME) in isolation (red, N = 25), pressurized

argon cluster (orange, N = 25), and in an argon cluster with Ar atoms

held fixed (blue, N = 25). Within the error bars, the excited-state

lifetime is not significantly altered

Fig. 10 Characterization of the excited-state quenching mechanism

in TME for three different environments. The pressurized argon

cluster (orange, Ar) leads to enhancement of population transfer

through hydrogen migration (H Mig) intersections, compared to

isolated TME (red, Gas). Fixing the argon atoms in the cluster (blue,

Ar-Fixed) leads to a dramatic enhancement of population transfer

through C–C stretched intersections, which require little motion of the

methyl groups

Fig. 11 Depiction of molecular geometries where population transfer

occurs (i.e., ‘‘spawning geometries’’) for isolated TME (red, Gas),

TME in a pressurized argon cluster (orange, Ar), and for TME in a

pressurized argon cluster where the argon atoms are fixed (blue, Ar-

Fixed). Each dot corresponds to the ethylenic C–C distance and

pyramidalization angle around the most pyramidalized carbon atom at

the spawning geometry. Three clusters can be recognized (circled):

one corresponding to geometries that involve hydrogen migration, a

second corresponding to geometries that involve pyramidalization

about one of the ethylenic C atoms, and a third corresponding to

pyramidalization and stretching of the ethylenic C–C bond. The

presence of the argon environment leads to more nonadiabatic events

corresponding to H migration or C–C stretching (compared to isolated

TME). Fixing the argon atoms in the environment leads to an even

more dramatic shift toward electronic state quenching through

stretching of the C–C bond
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charge) [14]. In Fig. 12, we show the potential energy

curves for ethylene which is pyramidalized about the car-

bon atom closest to (positive pyramidalization angles) or

furthest from (negative pyramidalization angles) the point

charge. To generate this figure, the molecule is first twisted

by 90� about the C=C bond. These potential energy curves

are compared for isolated ethylene and ethylene sur-

rounded by a single point charge (as shown in Fig. 4). Two

intersections can be seen in each case (highlighted with

circles). In isolation, these two intersections are degenerate

by symmetry. In contrast, the surrounding point charge

stabilizes one of these and breaks the degeneracy.

Ab initio multiple spawning (AIMS) dynamics show that

the electric field creates a strong bias toward the adjacent

intersection, as shown in Fig. 13. More than twice as much

population flows through this intersection than through the

opposite intersection over the 250 fs of AIMS dynamics. The

presence of the point charge also leads to a slightly smaller

(but statistically significant) lag time before quenching to the

ground state begins (t0 in Table 2)—a result of the stabil-

ization of the intersection (and thus increased gradient of the

path leading to it after twisting, as shown in Fig. 12).

4 Discussion

We have used the AIMS method with ab initio QM/MM

potential energy surfaces to investigate the role of environ-

mental effects in the photoisomerization reaction of

ethylene. This serves as a useful prototype for unraveling the

general principles governing environmental effects in

photoisomerization, which is an important process in many

common biological chromophores. Steric hindrance was

found not to have any significant effects on the S1 dynamics;

the photodynamical energy scale reduces the effective dis-

tance of the vdW spheres, resulting in an effective cavity size

that easily permits the motions required for isomerization

and hydrogen migration. Replacing the hydrogen atoms with

bulky methyl groups leads to somewhat more noticeable

steric effects, but these are still quite minor. In contrast, the

charge transfer character of the reaction makes it amenable to

control through external electrostatic fields. Our simulations

suggest that a surrounding electric field can have a significant

effect on the outcome of photoisomerization. This is espe-

cially relevant for larger conjugated molecules like retinal

protonated Schiff base, where the surrounding electric field

could play a significant role in the bond selectivity of

photoisomerization [9, 11–14].

It is interesting that steric hindrance, normally an impor-

tant consideration in biological reactions, plays almost no

role in this case. This is due to the large amount of kinetic

energy which is accumulated on the excited state, i.e., the

energy of S1 at the Franck–Condon point is almost 4 eV

above the energy at the S1/S0 minimal energy conical inter-

section. For ethylene and TME, there is sufficient kinetic

energy liberated during the excited-state reaction to over-

come significant amounts of vdW repulsion (in the ethylene

case) and reorganize the surrounding solvent to increase the

cavity size (in the case of TME). The excitation energy

generally decreases as molecules become more highly

Fig. 12 Ground (dashed line) and excited-state (solid line) potential

energy curves for pyramidalization of twisted ethylene in isolation

(red) or in the presence of a positive point charge (green). Negative/

positive pyramidalization angles refer to pyramidalization about the

left/right carbon atom, which is furthest/closest to the point charge,

respectively. Conical intersections are circled, showing that the

intersections for pyramidalization about the left/right carbon atoms

are degenerate in isolation, but this degeneracy is broken in the

presence of the point charge

Fig. 13 Amount of population transferred (after 250 fs) from the

excited state to the ground state through conical intersections

corresponding to pyramidalization about the left/right carbon atoms

in ethylene. In the isolated molecule (red), these would be equivalent

by symmetry (and are indeed equivalent within the error bars which

are depicted). In the presence of a positive point charge (green), the

intersection which has pyramidalization about the carbon nearest the

point charge (right) dominates
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conjugated. Thus, the amount of kinetic energy accumulated

on the excited state will also decrease and the role of steric

effects may be more pronounced in longer conjugated mol-

ecules such as polyenes and retinal protonated Schiff base.

We have also introduced a new method to adaptively

decrease the timestep used for the AIMS simulations in the

vicinity of a conical intersection. This allows one to use

larger timesteps in regions far from conical intersections.

The method also automatically detects when the molecule

has traversed a conical intersection by monitoring the over-

lap of the electronic wavefunctions at successive timesteps.
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Abstract Dynamics of the multiple excited-state proton

transfer (ESPT) in clusters of 7-azaindole with up to five

water molecules was investigated with quantum chemical

methods. The ultrafast excited-state dynamics triggered by

photoexcitation was simulated with the algebraic dia-

grammatic construction to the second-order scheme. Mul-

tiple ESPT through a hydrogen-bonded network is

observed in the 100-fs scale. The probability of tautomer-

ization is anti-correlated with the maximum free energy

barrier in the excited state. An increasing number of water

molecules tends to reduce the barrier by strengthening the

hydrogen-bonded network. Barrierless reactions are found

already for clusters with four waters. In structures pre-

senting double hydrogen bond circuits, proton transfer

happens mostly through the internal circuit by triple proton

transfer. The overall role of the second hydration shell is of

stabilizing the network, facilitating the proton transfer in

the internal circuit. Proton transfers involving the second

hydration shell were observed, but with small probability

of occurrence. The proton-transfer processes tend to be

synchronous, with two of them occurring within 10–15 fs

apart.

Keywords On-the-fly dynamics simulation � Excited-

state proton transfer � Excited-state tautomerization �
Water-assisted proton transfer � Hydrogen bond

rearrangement � 7-Azaindole � ADC(2)

1 Introduction

Proton transfer plays crucial roles in a variety of chemical

and biological reactions [1–5] such as enol–keto tauto-

merization [6], proton transport via membrane-spanning

proteins [7, 8], and proton relay system in enzymes [8]. The

phototropic tautomerism of DNA base pairs, which has

attracted much interest due to its relation to UV-induced

gene mutation, has the excited-state proton-transfer (ESPT)

phenomena as the primary molecular step [9]. Generally, it

is specially challenging to monitor ESPT in natural

nucleobases and nucleobase pairs due to their conforma-

tional and spectroscopic complexity [10, 11]. In this con-

text, 7-azaindole (7AI, Fig. 1), a spectroscopically simpler

prototype for purine nucleobases [9], emerges as a good

alternative for basic sciences research. It has also been

claimed that 7AI can advantageously replace tryptophan,

customarily considered as the standard optical probe of

protein structure and dynamics [12–14]. As a result, ESPT

in 7AI monomer within small molecular clusters and in

bulk solvents has been extensively studied by experimen-

talists and theorists [9, 11, 15–38].
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It is well known that the isolated 7AI molecule cannot

undergo ESPT without assistance of solvent molecules

[39]. With cooperation of a single water molecule (Fig. 1),

the energy barrier required for tautomerization of 7AI is

considerably reduced in the ground and excited states as

reported by Chaban and Gordon [40, 41]. The barrier

heights for ESPT are even lower within clusters with two

waters [42].

When 7AI-water clusters are excited into the S1 band

origin, ESPT occurs slow [16, 17, 32]. For 7AI(H2O)3, for

instance, while the excited-state lifetime (an upper bound

to the ESPT time) is more than 10 ns at 00
0, it is reduced to

only 15 ps upon an energy excess of 300 cm-1 [43]. Ab

initio molecular dynamics (AIMD) simulations on

7AI(H2O)1,2 reported by Kina et al. [44] showed that the

excited-state transfer occurs about 50 fs after photoexci-

tation for *12,000 cm-1 energy excess.

7AI-water complexes with more than three waters have

received less attention because it is believed that such large

complexes cannot be directly involved in the tautomer-

ization. Moreover, these complexes are difficult to be

spectroscopically assigned due to the complexity of their

electronic [11] and vibrational [10] structures. 7AI with

four waters was studied by Folmer et al. [27] using ultrafast

pump–probe spectroscopy combined with theoretical cal-

culations. Their results revealed that the proton-transfer

rate increases compared to that of 7AI with two and three

waters. Their deuteration studies provided proof for the

occurrence of proton transfer (PT), although it was not

conclusively confirmed that the proton transfer resulted in a

complete tautomerization of the 7AI monomer. For even

bigger clusters of 7AI with five waters, there are no

experimental investigations available; only a theoretical

study was reported on the second hydration shell effect

[45].

Recently, Yu et al. [46] reported a theoretical investi-

gation of ESPT on clusters of 7AI with three water

molecules by using time-dependent density functional

theory (TDDFT), complete active space perturbation the-

ory to the second order (CASPT2) and coupled cluster with

approximated doubles (CC2). Their static calculations on

the first excited state suggested the possibility of hydrogen

bond rearrangement (HBR) of water molecules from a

bridged-planar isomer to a cyclic-nonplanar isomer, fol-

lowed by triple proton transfer. They also found out that

triple PT in the cyclic-nonplanar isomer is energetically

more favorable than the quadruple PT in the bridged-planar

isomer. It was concluded that all proton-transfer processes

follow a synchronous mechanism. (In their paper, they call

‘‘concerted’’ what we call ‘‘synchronous’’ in the present

work. This classification is discussed below in Sect. 3.2).

Furthermore, the barrier for HBR was found to be less than

1 kcal mol-1, consistent with the missing vibronic bands in

the resonance-enhanced multiphoton ionization (REMPI)

spectra for 7AI(H2O)3 [43]. Another recent theoretical

study using on-the-fly dynamics simulations was carried

out by our group for the multiple proton transfer in the first

excited state of 7AI in the clusters of methanol [15] and

mixed methanol–water [47] employing the algebraic dia-

grammatic construction to the second-order (ADC(2))

scheme. The results showed that the PT is completed in the

100-fs timescale and tends to be slower in methanol than in

water because of the lower polarity of the former.

Based on all those previous studies mentioned above,

especially the isomerization of 7AI(H2O)3 by Yu et al.

[46], it occurred to us that the ab initio molecular dynamics

simulations of 7AI(H2O)n with different isomers and dif-

ferent cluster sizes would be a very interesting way of

testing the reaction paths for ultrafast ESPT, specially the

role of the second hydration shell. Therefore, the purpose

of this work is to carry out a systematic study of ESPT

dynamics in 7AI(H2O)1–5 complexes. The main goals are

to determine the dynamic behavior of different water

clusters around 7AI, the dependence of the ultra-fast

excited-state tautomerization probability with the cluster

size, the effect of hydrogen bond arrangement for com-

plexes with the same number of water but different con-

formations, and the role played by water in different cluster

sizes.

2 Computational details

2.1 Ground-state calculations

Ground-state geometries of 7AI(H2O)n=1–5 complexes in

the gas phase were optimized with the second-order Møl-

ler–Plesset Perturbation Theory (MP2) with the resolution-

of-the-identity (RI) approximation for the electron repul-

sion integrals [48, 49]. The split valence polarized (SVP)
Fig. 1 Structure of 7AI with water molecules showing a first and

b first and second hydration shells
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[50] basis set was assigned to heavy atoms and hydrogen

atoms involved in the hydrogen-bonded network, whereas

the split-valence (SV(P)) [50] basis set was assigned to the

remaining hydrogen atoms in the complexes, as imple-

mented in the program package TURBOMOLE 5.10 [51].

The performance of this basis set was tested with com-

parisons to results computed with the TZVPP [52] basis

set. For 7AI(H2O)2, two isomers were investigated. For

7AI(H2O)3, three different isomers were determined based

on previous results by Pino et al. [43] and Yu et al. [46].

For 7AI(H2O)4, a cyclic isomer with two circuits was

chosen, corresponding to an isomer reported by Folmer

et al. [27] and Casadesus et al. [53]. Similarly, for

7AI(H2O)5, the cyclic complex with two circuits was

selected. This isomer has also been previously reported by

Fernandez-Ramos et al. [45]. All optimized structures were

confirmed to be minima on the ground-state surface by

normal-mode analysis.

2.2 Excited-state dynamics simulations

On-the-fly Born–Oppenheimer dynamics simulations on

the first excited-state (S1) potential energy surface were

carried out for the 7AI(H2O)1–5 complexes at RI-ADC(2)/

SVP-SV(P) level. The ADC(2) method, originally derived

using diagrammatic perturbation theory [54, 55], can be

expressed by the symmetric Jacobian AADC(2) =

�(ACIS(D?) ? ACIS(D?)�), where ACIS(D?) is the Jacobian

of the CIS(D?) coupled-cluster approximation [48]. The

ADC(2) excited-state energies correspond to the eigen-

values of the Jacobian, while the ground-state energy is

given by the MP2 method. ADC(2) has a computational

cost similar to that of coupled cluster to approximated

second order (CC2), with comparable accuracy [56].

ADC(2), however, possesses the distinct advantage over

CC2 of deriving from a Hermitian eigenvalue problem.

This increases its numerical stability in the case of quasi-

degenerate excited states and reduces the computational

effort required for the computation of molecular properties

and gradients. The current implementation of ADC(2) is

explained in Ref. [57], and the computation of its analytical

gradients is explained in Ref. [49]. Initial conditions were

generated using a harmonic oscillator Wigner distribution

for each vibrational normal mode, as implemented in the

NEWTON-X program package [58, 59] interfaced with the

TURBOMOLE program. Excitation into the entire S1 band

was allowed to provide enough energy to activate ultrafast

processes. Dynamics simulations in the first excited state

were carried out with the NEWTON-X program in mi-

crocanonical ensembles using Born–Oppenheimer energies

and gradients provided by RI-ADC(2) in the TURBO-

MOLE program. The nuclear motion of all atoms in the

complexes was treated classically and computed by

numerical integration of Newton’s equation by the Veloc-

ity Verlet algorithm [60, 61]. Fifty trajectories for each

complex and each different isomer—totalizing 400 trajec-

tories—were simulated with a time step of 1 fs. Trajecto-

ries were propagated for 300 fs, enough to cover the pre-

and post-PT regimes. A subset of five trajectories for one of

the three 7AI(H2O)3 isomers was extended up to 1,000 fs

to check the possibility of hydrogen bond rearrangement.

Furthermore, a statistical analysis was carried out to deliver

detailed geometric and energetic properties, which were

used to describe the time evolution of the reactions along

the hydrogen-bonded network.

Neither tunneling nor nonadiabatic effects were con-

sidered in this work. Tunneling could be discarded as our

focus was on the description of the ultrafast proton transfer

(sub-picosecond scale). Based on our previous investiga-

tions of these systems [15, 47], we did not expect occur-

rence of surface crossings that would demand a

nonadiabatic treatment. This was confirmed by the

dynamics results, which showed that the character of the S1

state was always a pp* excitation. The pp* character of the

S1 state implies that a proton—rather than a hydrogen

atom—is transferred. For having a hydrogen transfer, the

character of the S1 state would be pr* (see, for instance,

Ref. [62]). We did not observe diabatic changes between

pp* and pr* characters along the dynamics. The separa-

tion between these states is illustrated for one single tra-

jectory of 7AI(H2O)3 in Fig. S1 of the Supplementary

Material.

3 Results and discussion

3.1 Ground-state structures

The ground-state geometries of all complexes were opti-

mized at RI-ADC(2)/SVP-SV(P) level. Cartesian coordi-

nates for all structures discussed below are available in the

Supplementary Material. Figure 2 shows the ground-state

geometries of all three investigated isomers of 7AI(H2O)3.

Intermolecular hydrogen bonds of 7AI with water and

between water molecules are indicated by dashed lines.

The energies of these three isomers are less than

2.4 kcal mol-1 apart (see Table S1 in the Supplementary

Material), in good agreement with results reported by Yu

et al. [46] and Sakota et al. [18, 43]. The cyclic-nonplanar

(Fig. 2b) is the lowest energy structure, followed by the

bridged-planar (Fig. 2a) and then by the bicyclic-nonplanar

isomer (Fig. 2c). Dynamics starting from the cyclic-non-

planar isomer was specially set to test the HBR proposed

by Yu et al. [46].

The ground-state optimized geometry of 7AI(H2O)4 is

shown in Fig. 3a. There are other possible ground-state

Theor Chem Acc (2014) 133:1480
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structures, but only one candidate to exhibit two circuits for

the proton transfer was found. The first circuit includes the

two nearest waters (first shell), while the second circuit

includes all four waters. This structure, which can be

viewed as 7AI(H2O)2?2, is similar to the B3LYP results

reported by Casadesus et al. [53]. Based on Hartree–Fock

level optimizations, Folmer et al. [27] also reported a

7AI(H2O)2?2 structure. The orientation of the first water in

their work, however, is somewhat different from our result

and from that of Ref. [53].

The ground-state optimized structure of 7AI(H2O)5 as a

cyclic 7AI(H2O)2 with three additional water molecules is

illustrated in Fig. 3b. This structure, also previously

reported by Fernandez-Ramos et al. [45], was chosen to

investigate the effect of the second hydration shell. Like

the 7AI(H2O)4 complex, it has two circuits with a well-

formed hydrogen-bonded network of water molecules.

Proton transfer might occur either through circuit1,

involving two waters, or through circuit2, involving all five

waters.

The ground-state geometries of 7AI(H2O)1 and two

isomers with two waters, 7AI(H2O)1?1 and 7AI(H2O)2,

were also computed and further employed for initiating

dynamics simulation. Their optimized geometries are

shown in Fig. S2 of the Supplementary Material.

3.2 Excited-state dynamics simulations

On-the-fly dynamics simulations in the S1 excited state

were carried out for all 7AI(H2O)1–5 complexes described

above. The simulated trajectories were sorted into two

types of reaction: (1) ‘‘ESPT’’ when 7AI tautomerization is

complete within the simulation time (300 fs); and (2)

‘‘NT’’ (for ‘‘No tautomerization’’) when tautomerization

does not take place within the simulation time. The number

of trajectories in each type of reaction, the probability of

tautomerization (ratio between the number of ESPT tra-

jectories and the total number of trajectories), and the

average time of PT for each complex are summarized in

Table 1. The error bars for the statistical uncertainty are

Fig. 2 Three different isomers

of 7AI(H2O)3 optimized at RI-

ADC(2)/SVP-SV(P) level:

a bridged-planar, b cyclic-

nonplanar, and c bicyclic-

nonplanar. First row is top view

and second row is side view

Fig. 3 Ground-state geometries of a 7AI(H2O)4 and b 7AI(H2O)5

optimized at RI-ADC(2)/SVP-SV(P) level
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given for 90 % confidence interval. The PT distance,

averaged over all ESPT trajectories, is also given in

Table 1. The results are discussed in the next sections.

The PT time is defined as the time when the breaking

bond length averaged over all ESPT trajectories intersects

the average forming bond length. This is the same defini-

tion that we have used in our previous investigations [15,

63–65]. The PT mechanism can be assigned as either

synchronous, concerted or sequential depending on the

time lag between two consecutive PTs [66]. If the delay

time is shorter than about 10–15 fs, which corresponds to a

vibrational period of N–H and O–H stretching modes, the

PT processes are synchronous. Otherwise, they are either

concerted (a single kinetic step) or sequential (two distinct

kinetic steps via a stable intermediate). It will be concerted

if the PTs take place within the time of few N–H stretching

modes (roughly, less than 100 fs), and it will be sequential

if there is enough time to form a stable intermediate

([100 fs). Average time lags between each PT used to

classify the mechanisms are listed in Table S3 of the

Supplementary Material.

To test the performance of the SVP-SV(P) basis set, the

energy of points along a trajectory was recomputed with

ADC(2)/TZVPP. The results show only minor differences

between the two levels (\3 kcal mol-1) in the excited-state

energy profile (see Figure S3 of the Supplementary

Material).

3.2.1 7AI(H2O)3 complex

3.2.1.1 Bridged-planar isomer From 50 trajectories

starting at the bridged-planar isomer, three trajectories

showed 7AI tautomerization within 300 fs through a qua-

druple PT process (see Table 1). Triple ESPT after HBR

occurred in only one trajectory, but in later times as dis-

cussed below. Tautomerization did not occur in 46 trajec-

tories during the simulation time. Back PT reaction was

observed in 1 trajectory.

The structures along the proton-transfer pathway are

shown in Fig. 4, and average values of forming bonds,

breaking bonds, and energies for the three trajectories

following the quadruple ESPT reaction are shown in Fig. 5.

The PT process, represented by arrows in Fig. 4, can be

visualized as the following sequence of events (atom labels

are given in Fig. 2a): a normal (N) form is observed at time

0. The first proton (H1) moves from the pyrrole ring to O1

atom of the nearest water (PT1) at 69 fs (when N1���H1 and

O1���H1 bond distances are equal to 1.29 Å see Fig. 5a)

and right after that a proton is transferred from this water to

the second water (PT2) at 73 fs (O1���H2 and O3���H2

equal to 1.30 Å). The third proton is transferred from the

second water to the third water (PT3) at 79 fs (O2���H3 and

O3���H3 equal to 1.31 Å). Afterward, the forth proton

moves from the third water to N2 in the pyridine ring (PT4)

at 90 fs (O2���H4 and N2���H4 equal to 1.33 Å). After

completing the reaction, the complex separates. This

dynamic behavior is a sequence of synchronous PT pro-

cesses. In the first 100 fs, the relative energy difference of

S1–S0 (Fig. 5b) gradually decreases. After the tautomer-

ization is completed, the energy gap is still around

46 kcal mol-1, reflecting the planarity of the 7AI skeleton

during the simulation time.

A subset of five trajectories that ended without tauto-

merization was extended until 1,000 fs. One of these

Table 1 Summary of the

excited-state dynamics

performed at RI-ADC(2)/SVP-

SV(P): number of trajectories

showing 7AI tautomerization

(ESPT) or no tautomerization

(NT), tautomerization

probability, and average time to

complete the proton transfers

Average distances at the proton-

transfer time are given in

parenthesis (Å)
a HBR trajectory was included

neither in the probability nor in

the PT time analysis
b Quintuple ESPT trajectory
c Sextuple ESPT trajectories

were included in the probability

analysis, but not in the PT time

analysis

Complex Reaction Tautom. probability Time (fs)

ESPT NT PT1 PT2 PT3 PT4

7AI(H2O)1 12 38 0.24 ± 0.10 48

(1.34)

59

(1.39)

7AI(H2O)1?1 18 32 0.36 ± 0.11 91

(1.39)

96

(1.37)

7AI(H2O)2 20 30 0.40 ± 0.11 69

(1.28)

70

(1.28)

78

(1.31)

7AI(H2O)3-bridged-planar 3

1a

46 0.06 ± 0.06 69

(1.29)

73

(1.30)

79

(1.31)

90

(1.33)

7AI(H2O)3-cyclic-nonplanar 19 31 0.38 ± 0.11 77

(1.30)

91

(1.34)

99

(1.35)

7AI(H2O)3-bicyclic-nonplanar 30 20 0.60 ± 0.10 70

(1.27)

105

(1.30)

115

(1.34)

7AI(H2O)4 40

1b

9 0.82 ± 0.08 74

(1.27)

83

(1.31)

95

(1.29)

7AI(H2O)5 38

3c

9 0.82 ± 0.08 74

(1.27)

85

(1.33)

111

(1.27)
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trajectories exhibited HBR leading the bridged-planar to

cyclic-nonplanar isomer. After HBR, triple PT was initi-

ated. Snapshots of this trajectory are shown in Fig. S4. This

pathway has been previously proposed by Yu et al. [46].

Considering that the small tautomerization probability for

this isomer in the short timescale and the occurrence of

HBR in one of the extended trajectories, we may speculate

that this rearrangement may be a relevant pathway. Nev-

ertheless, simulation of a larger number of trajectories in

the long timescale would be needed to provide a quanti-

tative estimate of its importance.

3.2.1.2 Cyclic-nonplanar isomer 7AI tautomerization

through triple ESPT reaction took place in 19 out of 50

trajectories (38 % probability, Table 1), while no proton-

transfer reaction was observed in 31 trajectories. Back PT

reaction was also observed in 11 trajectories.

Snapshots illustrating the triple ESPT are displayed in

Fig. 6, and the atom numbering scheme given in Fig. 2b is

used to describe the dynamics. The values of the forming

and breaking bonds averaged over all ESPT trajectories are

given in Table 1 (see also Fig. S5 of the Supplementary

Material). Starting from the normal form (N) at time 0, the

PT process is summarized in the following steps: first, the

first proton (H1) departs from N1 to O1 (PT1) at 77 fs

(N1���H1=O1���H1 at 1.30 Å), and then, the second proton

(H2) of the first water moves from O1 to O2 (PT2) at 91 fs

(O1���H2=O2���H2 at 1.34 Å). Finally, the third proton

(H3) leaves the second water to the N2 in pyridine ring

(PT3) at 99 fs (N1���H1=O1���H1 at 1.35 Å). Tautomer-

ization is complete in 105 fs and it is followed by disso-

ciation of the complex.

There are 14 fs time lag between the first and the second PT

and 8 fs between the second and the third PT. This indicates

two synchronous processes. As in the previous complex, the

S1–S0 energy gap gradually decreases in the first 100 fs. After

that, the average energy difference is always slightly below

50 kcal mol-1, and no intersection between the two states is

approached within the simulation time.

3.2.1.3 Bicyclic-nonplanar isomer Thirty trajectories

exhibited 7AI tautomerization through triple ESPT reaction

(60 %, Table 1), 16 though O2 and 14 though O3 (see

numbering in Fig. 2c). Twenty trajectories showed no

Fig. 4 Snapshots of the 7AI(H2O)3-bridged-planar dynamics show-

ing the time evolution of the quadruple ESPT reaction through the

hydrogen-bonded network. Normal (N), proton transfer (PT), and

tautomer (T). Values correspond to the average over all quadruple

ESPT trajectories

Fig. 5 Average values over quadruple ESPT trajectories of the

7AI(H2O)3-bridged-planar isomer. a Average breaking and forming

of bonds showing time evolution. N1–H1 and O1���H1 in black, O1–

H2 and O3���H2 in red, O3–H3 and O2���H3 in blue, and O2–H4 and

N2���H4 in green. b Average relative energies of excited stated state

(S1), ground state (S0), and energy difference between S1 and S0 state

(S1–S0)
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tautomerization within the simulation time. Back PT

reaction was also observed in 6 trajectories.

Tautomerization in this complex can occur through two

symmetry-equivalent pathways, above and below the 7AI

plane. Snapshots of a trajectory are depicted in Fig. 7. The

first PT takes place at 70 fs (N1–H1=O1–H1=1.27 Å,

Table 1). The second PT occurs at 105 fs for a 1.34 Å O–H

distance. The third PT takes place at 115 fs for a 1.35 Å O–

H distance (Fig. S6 in the Supplementary Material).

There is a 35 fs time lag between the first and second PT

and 10 fs time lag between the second and third PT. The

relatively long time delay between the first and the second

PT can be attributed to a competition between O2 and O3

to receive the proton. H2 and H4 are pulled back and forth

toward O2 and O4, respectively, few times before the

transfer actually happens. This behavior implies that the

triple proton transfer correspond to a concerted process

followed by synchronous process.

3.2.2 7AI(H2O)4 complex

Tautomerization via circuit1 (Fig. 3a) occurred in 41 out of 50

trajectories (82 %, Table 1). It did not take place in nine

trajectories during the simulation time. One trajectory

exhibited quintuple ESPT reaction through four waters (cir-

cuit2). Back PT reaction was also observed in 17 trajectories.

The structures along the reaction pathway are shown in

Fig. 8. From our results averaged over the ESPT trajecto-

ries (see Fig. S7 in the Supplementary Material; atom

numbers given in Fig. 3a), the times for PT1

(N1���H1=O1���H1 at 1.27 Å), PT2 (O1���H2=O2���H2 at

1.31 Å), and PT3 (O2���H3=N2���H3 at 1.29 Å) are 74, 83,

and 95 fs, respectively. Time lags of 9 fs (between the PT1

and PT2) and 12 fs (between the PT2 and PT3) were

observed, corresponding to two synchronous processes.

For the single trajectory with quintuple ESPT reaction

via circuit2, the following events took place: proton

transfers from N1 of pyrrole to the first water (O1), then to

the second water (O3), then to the third water (O4), then to

the forth water (O2) and finally to N2 of pyridine. The

transfer times were 64, 78, 90, 95, and 104 fs, respectively.

Fig. 6 Snapshots of the 7AI(H2O)3-cyclic-nonplanar dynamics

showing the time evolution of the triple ESPT reaction through the

hydrogen-bonded network. Normal (N), proton transfer (PT), and

tautomer (T). Values correspond to the average over all triple ESPT

trajectories

Fig. 7 Snapshots of the 7AI(H2O)3-bicyclic-nonplanar dynamics

showing the time evolution of the triple ESPT reaction through the

hydrogen-bonded network. Normal (N), proton transfer (PT), and

tautomer (T). Values correspond to the average over all triple ESPT

trajectories
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3.2.3 7AI(H2O)5 complex

From 50 trajectories, 41 trajectories (82 %, Table 1)

showed 7AI tautomerization through circuit1 and circuit2

(see Fig. 3b), while no reaction was observed in 9 trajec-

tories within the simulation time. Thirty-eight trajectories

showed triple ESPT reaction through two waters (circuit1),

whereas only three trajectories exhibited the sextuple ESPT

reaction through five waters (circuit2). Back PT reaction

was also observed in 18 trajectories.

Details of the triple ESPT process are depicted in Fig. 9

and Table 1 (numbering shown in Fig. 3b; see also Fig. S8

of the Supplementary Material). Transfer times for PT1

(N1���H1=O1���H1 at 1.27 Å), PT2 (O1���H2=O2���H2 at

1.33 Å), and PT3 (O2���H3=N2���H3 at 1.27 Å), averaged

over ESPT trajectories, are 74, 85, and 111 fs, respectively.

Time lags of 11 fs (between the PT1 and PT2) and 26 fs

(between the PT2 and PT3) were observed, corresponding

to a synchronous process followed by a concerted process.

3.2.4 7AI(H2O)1, 7AI(H2O)1?1, and 7AI(H2O)2 complexes

The main aim of this work is to investigate the effect of the

second hydration shell on the ultrafast ESPT. Nevertheless,

for a matter of completeness, we have simulated the

dynamics of complexes with one and two water molecules

as well. The main results are reported in Tables 1, 2 and

Fig. 10b.

For 7AI(H2O)1, tautomerization occurs through a double

PT with 24 % probability. It is completed in less than

Fig. 8 Snapshots of the 7AI(H2O)4 dynamics showing the time

evolution of the triple ESPT reaction through the hydrogen-bonded

network. Normal (N), proton transfer (PT), and tautomer (T). Values

correspond to the average over all triple ESPT trajectories

Fig. 9 Snapshots of the 7AI(H2O)5 dynamics showing the time

evolution of the triple ESPT reaction through the hydrogen-bonded

network. Normal (N), proton transfer (PT), and tautomer (T). Values

correspond to the average over all triple ESPT trajectories
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100 fs (see Figs. S9 and S10 in the Supplementary

Material).

With two waters, we investigated the dynamics starting

from two isomers: a 7AI(H2O)1?1 isomer, where a single

water makes the bridge for double PT, while the second

water is in the second shell; and a 7AI(H2O)2 isomer,

where the two waters form a bridge allowing tautomer-

ization via triple PT.

Dynamics starting from the 7AI(H2O)1?1 isomer is very

similar to the single-water case. Tautomerization occurs

through double PT in less than 100 fs. The tautomerization

probability, however, tends to increase due to the network

stabilization caused by the external water. More details

about the dynamics results are given in Figs. S11 and S12

of the Supplementary Material.

In Ref. [47], we discussed the dynamics of 7AI(H2O)2 in

the context of the effect of water–methanol mixing. In the

present work, we extended the number of simulated tra-

jectories from 25 to 50, but the results remain, as expected,

essentially the same. Tautomerization occurs through triple

PT with 40 % probability. It is also completed within

100 fs. More details are given in Figs. S13 and S14 of the

Supplementary Material.

3.3 Comparative analysis

For each complex, energies of the ground (S0) and first

excited (pp*) states averaged over all ESPT trajectories

were computed along the reaction pathway for the fol-

lowing structures: initial tautomer (N), intermediary

structure for each PT (ISn), and final tautomer (T). These

average energies for the 7AI(H2O)3-bridged-planar isomer

are shown in Fig. 10a. For the other complexes, they are

plotted in Fig. S15-S21 of the Supplementary Material. For

each complex, the highest average energy barrier is given

in Table 2. The barriers computed in this way are, in fact,

an approximation to the free energy barrier obtained by

thermodynamic integration of independent trajectories [67]

following Gaussian reaction paths. They are in good

agreement with relative energies computed on the first

excited singlet electronic state using TD-B3LYP by Ca-

sadesus et al. [53]. A good agreement is also observed

between the barrier for 7AI(H2O)1 computed here

(6 kcal mol-1) and the zero-point-corrected energy bar-

rier computed with multi-reference perturbation theory

to second order (MRPT2) reported in Ref. [17]

(6.39 kcal mol-1).

The free energy barriers are nicely anti-correlated with

the tautomerization probabilities (Table 2; Fig. 10b): the

case with largest barrier, 7AI(H2O)3-bridged-planar

(17 kcal mol-1), has only 6 % probability, while the cases

with the smallest barriers, 7AI(H2O)4 and 7AI(H2O)5

(0 kcal mol-1), have 82 % probability of tautomerization.

In the two cases where double ESPT occurs, 7AI(H2O)1

and 7AI(H2O)1?1, the addition of one external water to

form the latter complex cuts the barrier by half, increasing

the tautomerization probability from 24 to 36 % (note,

however, that these values are within the error bar for a

90 % confidence interval). In the cases where triple ESPT

occurs, the clusters are arranged with 7AI(H2O)2?n

Table 2 Tautomerization probabilities and free energy barriers for

ESPT reactions in the excited state computed from the dynamics

simulations

Initial isomer Tautom.

probability

Barrier

(kcal mol-1)

ESPT

7AI(H2O)1 0.24 ± 0.10 6 D

7AI(H2O)1?1 0.36 ± 0.11 3 D

7AI(H2O)2 0.40 ± 0.11 3 T

7AI(H2O)3-bridged-planar 0.06 ± 0.06 17 Q

7AI(H2O)3-cyclic-nonplanar 0.38 ± 0.11 4 T

7AI(H2O)3-bicyclic-nonplanar 0.60 ± 0.10 2 T

7AI(H2O)4 0.82 ± 0.08 0 T

7AI(H2O)5 0.82 ± 0.08 0 T

D double, T triple, Q quadruple
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Fig. 10 a Average relative energies of the ground (S0) and the first

excited states (pp*) of 7AI(H2O)3-bridged-planar isomer. b Tauto-

merization probability versus free energy barrier for all complexes.

The labels aside each symbol indicate the number of water molecules

and the isomer
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(n = 0–3) structure. As explained above, triple ESPT

occurs through the two internal waters (circuit1), while the

n other external waters remain as spectators, contributing to

the overall stability of the hydrogen-bonded network. Once

more, the increase in the number of waters in the second

shell tends to reduce the barrier and increase the tauto-

merization probability. A saturation of this effect is

observed already for n = 2 (4 waters), when the process

becomes barrierless.

Most complexes share a common pattern: after photoex-

citation, it takes about 70 fs to trigger the PT process (see

Table 1). Exceptions are 7AI(H2O)1 and 7AI(H2O)1?1 which

have the PT triggered in 48 and 91 fs, respectively. In all cases,

as soon as the first PT is initiated, it facilitates a fast sequence of

proton transfers through the bridge until the tautomerization is

reached within about 100 fs. The PT times (Table 1) indicate

that synchronous processes take place in 7AI(H2O)1,

7AI(H2O)1?1, 7AI(H2O)2, 7AI(H2O)3-bridged-planar, 7AI

(H2O)3-cyclic-nonplanar, and 7AI(H2O)4. A sequence of

concerted then-synchronous-processes takes place in

7AI(H2O)3-bicyclic-nonplanar and a sequence of synchronous

then concerted processes takes place in 7AI(H2O)5.

As discussed in the introduction, spectroscopic results at

the S1 band origin [16, 32] imply much longer PT times

than those that we have described. The main reason for the

difference is that in our simulations, the whole S1 band is

excited, providing enough energy to overcome the tauto-

merization barriers. We have also seen that the tautomer-

ization probability is relatively small for clusters with up to

three waters, meaning that even with this excess of energy,

substantial fraction of the excited population should tau-

tomerize in longer timescales.

4 Conclusions

On-the-fly molecular dynamics simulations in the first

excited state of 7AI(H2O)1–5 complexes were carried out at

RI-ADC(2)/SVP-SV(P) level. The following conclusions

concerning the excited-state proton-transfer process and

the effect of the second hydration shell on it can be drawn

from our results:

• Multiple excited-state proton transfers through a hydro-

gen-bonded network are observed in the 100-fs scale.

• The probability of tautomerization is anti-correlated

with the maximum free energy barrier in the excited

state. This probability can be as low as 8 % and as high

as 82 %.

• An increasing number of water molecules tends to

reduce the barrier by strengthen the hydrogen-bonded

network. Barrierless reactions are found already for

clusters with four waters.

• In structures presenting double hydrogen bond circuits,

proton transfer happens mostly through the internal

circuit by triple proton transfer. Thus, the main role of

the second hydration shell is of stabilizing the network,

facilitating the proton transfer.

• Proton transfer occurs mostly in the original ground-

state conformation that the complex has at the time of

photoexcitation. We found, however, qualitative evi-

dence of sub-picosecond photoinduced hydrogen bond

reorganization of 7AI(H2O)3 from the bridged-planar to

cyclic-nonplanar isomer prior the proton transfer.

• Although rare, quintuple, and sextuple proton transfers

were observed. They are completed in about 100 fs.

• The proton transfer tends to be composed of synchro-

nous steps, with two of them occurring within 10–15 fs

apart.
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