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Preface

Green method, atom economy, and concise synthesis are terms frequently
mentioned in chemistry-related publications and presentations nowadays. Inspired
by the requirements of green and sustainable chemistry, considerable efforts have
been devoted to developing general and practical methods to construct complex
molecules by taking advantages of chemical reagents with diverse and tunable
reactivity. Haloalkynes, such as bromoalkynes, chloroalkynes, and iodoalkynes, are
a significant class of molecules that have these futures and been widely utilized in
organic synthesis.

This book summarizes the general methods to prepare haloalkyne reagents and
also presents the selected examples to highlight the progress on the development
and applications of convenient and concise synthetic approaches involving
haloalkynes. According to the reactive sites of haloalkynes involved in the trans-
formations, we classify these reactions into three types: (i) the transformations of
carbon–halo bond motif; (ii) the diverse functionalization of carbon–carbon triple
bond unit; and (iii) the reactions involving both carbon–halo bond motif and car-
bon–carbon triple bond unit. The emphasis is put on the reaction mechanism
aspects and the synthetic utilities of the obtained products.

The primary purpose of this book is to illustrate the diverse reactivities and
applications of haloalkyne reagents, to describe the experimental techniques
of these valuable transformations in detail, as well as to enlighten the researchers to
answer the unsolved problems in haloalkyne chemistry. This book should be useful
to researchers in organic and organometallic chemistry as well as catalysis from
both academia and industry. Significantly, doctorate students and postdoctoral
researchers should be motivated by these innovations in chemistry.
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Chapter 1
Introduction

Abstract Inspired by the demand of green and sustainable chemistry, modern
synthetic chemists have devoted to develop general and practical methods to
construct complex molecules. Due to the sp hybridization of the triple bond and the
connected halogen atom, haloalkynes, such as bromoalkynes, chloroalkynes and
iodoalkynes, have shown both controllable electrophilic and nucleophilic proper-
ties, rendering them highly versatile and robust synthons. As the immense use-
fulness of haloalkynes, impressive efforts have been devoted to this area in the past
decades and many novel chemical reactions have been developed. In this chapter,
we will introduce the physical property of haloalkynes, classify the reaction
intermediate types derived from haloalkynes, and also hope to give the readers a
comprehensive understanding of haloalkyne chemistry.

Keywords Green and sustainable chemistry � General and practical methods �
Haloalkyne chemistry � Controllable electrophilic and nucleophilic properties �
Versatile and robust synthons

The development of efficient and practical synthetic methods upon readily available
reagents to construct molecular complexity has greatly accelerated the advancement
of synthetic chemistry and related subjects. Inspired by the demand of green and
sustainable chemistry, modern synthetic chemists have devoted to develop general
and practical methods to construct complex molecules, as well as maximizing atom
economy and minimizing synthetic steps [1]. During the past few decades, con-
siderable progress has been achieved to fulfil these goals by taking advantages of
chemical reagents with diverse and tunable reactive properties. Among them,
haloalkynes, such as bromoalkynes, chloroalkynes and iodoalkynes, are a signifi-
cant class of molecules that have been widely utilized in organic synthesis [2].

Generally, haloalkynes, especially iodoalkynes, are good Lewis acids. In 1981,
Laurence and co-workers have demonstrated that the Lewis acidity of haloalkynes
could affect the vibrational spectra of these compounds [3]. In 2000, Goroff and
co-workers reported an unusual solvent effect, in which the solvent could signifi-
cantly change the 13C NMR chemical shift of iodoalkynes 1 and 2 (Table 1.1) [4].

© The Author(s) 2016
H. Jiang et al., Haloalkyne Chemistry, SpringerBriefs in Green Chemistry
for Sustainability, DOI 10.1007/978-3-662-49001-3_1
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Later, they confirmed that it was a general phenomenon. The chemical shift of C-1
in 1-iodo-2-phenylethyne (3) is 6.2 ppm in CDCl3, but moves to 17.7 ppm in
DMSO-d6 and 19.4 ppm in pyridine-d5 (Table 1.2) [5]. Computational evidences
indicated that this solvent effect came directly from polarization of iodoalkyne triple
bond in a Lewis acid-base complex with the solvent. It could predict that an
increase in the electron density at C-1 would lead to a decrease in chemical shift.

Due to the sp hybridization of the triple bond and the connected halogen atom,
haloalkynes show both controllable electrophilic and nucleophilic properties, ren-
dering them highly versatile and robust synthons. Traditionally, haloalkyne
reagents are served as a source of acetylides through metal-halogen exchange
(Scheme 1.1, A). Until 1943, Ott [6] disclosed that haloalkyne derivatives could
also be employed as equivalents of electrophilic acetylenic moiety, which would go
through an addition-elimination procedure upon the reaction with nucleophiles.
Importantly, the first enantioselective version was realized by Jørgensen [7] with
the treatment of a chiral phase-transfer catalyst in 2006 (Scheme 1.1, B).
Additionally, Boger [8] and Gevorgyan [9] reported respectively that haloalkynes
could serve as effective sources of the corresponding X+ ion or both X+ and
acetylide ions in the presence of organolithium species (Scheme 1.1, C and D).
Noteworthy, as the continuous efforts of Jiang’s group, the potential reactive
abilities of haloalkyne reagents became fully apparent along with the development

Table 1.1 13C NMR chemical shifts of 1 and 2 (in ppm)

Compound 1 in δ(A) δ(B) δ(C)

CDCl3 0.9 78.5 59.7

DMSO-d6 14.6 76.3 58.8

Compound 2 in δ(A) δ(B) δ(C, D)

CDCl3 1.9 78.8 58.8, 62.0

DMSO-d6 17.9 77.4 58.3, 62.7

Table 1.2 13C NMR chemical shifts of 3 formed Lewis acid-base complexes (in ppm)

Compound 3 in δ(A)

CDCl3 6.2

DMSO-d6 17.7

pyridine-d5 19.4

2 1 Introduction



of transition metal catalysis [2]. Generally, under the treatment of transition metal
catalysts, haloalkynes can be deemed as a dual functionalized molecule. Depending
on reaction conditions, several reaction intermediates, such as σ-acetylene-metal
complex (Scheme 1.1, Type I), π-acetylene complex (Scheme 1.1, Type II) and
halovinylidene-metal complex (Scheme 1.1, Type III) can be formed and undergo
further transformations to construct various of useful compounds. Additionally, the
reactive halogen substituents can be further functionalization, which permits the
rapid assembly of structural complexity. As the immense usefulness of haloalkynes,
impressive efforts have been devoted in this area in the past decades and many
novel chemical reactions have been developed [10].

In this book, we will classify the general methods to prepare haloalkyne reagents
and also present selected examples to highlight the progress on the development
and applications of convenient and concise synthetic approaches involving
haloalkyne reagents. The designed methods, as well as serendipitous observations
will be discussed with special emphasis on the mechanistic aspects and the syn-
thetic utilities of the obtained products, aiming to illustrate the potential applications
of haloalkyne chemistry in a wide spectrum of fields, including natural-product
synthesis, materials science, and bioorganic chemistry. Importantly, the general
procedure for each transformation of haloalkynes is described in detail. This book
should be useful to researchers in organic and organometallic chemistry as well as
catalysis both from academia and industry. Significantly, doctorate students, post-
doctoral researchers and young researchers should be motivated by these innova-
tions in chemistry. We hope this book could not only draw the blueprint of
haloalkyne chemistry, and help the readers to comprehensively know and under-
stand the diverse reactivities and applications of haloalkyne reagents, but also could
be used as a handbook for researchers to develop novel catalytic systems to answer
the unsolved challenges in haloalkyne chemistry and exploit new research areas.

Haloalkynes

XR

C(sp2)-X

C(sp)-X

Aryl Halide

Allyl Halide

Terminal Alkynes

Terminal Alkenes

A R (M-X Exchange)

B R Ott, Jørgensen
(Addition-Elimination)

C X Boger

D R and X Gevorgyan

XR + [M]

Type I

Type II

Type III

R [M] X

R X
[M]

C [M]
X

R

X = Cl, Br, I

Scheme 1.1 Potential reaction pathways of haloalkynes in transition metal catalysis
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Chapter 2
Preparation of Haloalkynes

Abstract Traditionally, haloalkynes were accessible through the deprotonation of
the corresponding terminal alkynes with a strong base, followed by trapping with a
halogenating reagent. During the past decades, several mild and convenient
methods have been developed, thus increasing the attractiveness of this class of
compounds in organic synthesis. Among which, the electrophilic bromination of
terminal alkynes with N-bromosuccinimide (NBS) and Ag catalyst is one of the
most commonly used methods for the preparation of bromoalkynes due to the mild
reaction conditions, high efficiency and simple manipulation. In this chapter, we
will detailedly describle the general and practical methods to prepare bromoalkynes,
chloroalkynes, and iodoalkynes.

Keywords Terminal alkynes � Ag catalyst � Bromoalkyne synthesis �
Chloroalkyne synthesis � Iodoalkyne synthesis

Haloalkynes were traditionally accessible through the deprotonation of the corre-
sponding terminal alkynes with a strong base, followed by trapping with a halo-
genating reagent. Recently, several mild and convenient methods have been
developed (Scheme 2.1), [1] thus increasing the attractiveness of this class of
compounds in organic synthesis. Among which, the electrophilic bromination of
terminal alkynes with N-bromosuccinimide (NBS) and Ag catalyst [2] is one of the
most commonly used methods for the preparation of bromoalkynes due to the mild
reaction conditions, high efficiency and simple manipulation (Scheme 2.2) [3].

General Procedure for the Synthesis of Bromoalkynes: To a solution of alkyne
(1 equiv) in acetone (0.2 mmol/mL) was added NBS (1.1 equiv) and AgNO3

(10 mol%) at room temperature with magnetic stirring. After 2–3 h, the reaction
mixture was diluted with hexanes (100 mL) and filtered off the crystals formed. The
filtrate was concentrated under reduced pressure and passed through a pad of silica
gel using hexanes as an eluent. The filtrate was collected and evaporated under
reduced pressure to afford a pure colorless oil of bromoalkyne.

General Procedure for the Synthesis of Chloroalkynes: To a solution of alkyne
(1 equiv) in CCl4 (2 mmol/mL) was added Cs2CO3 (1.1 equiv) and Bu4NCl (5 mol
%) at 70 °C with magnetic stirring. After 6–7 h, the reaction mixture was diluted

© The Author(s) 2016
H. Jiang et al., Haloalkyne Chemistry, SpringerBriefs in Green Chemistry
for Sustainability, DOI 10.1007/978-3-662-49001-3_2
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with hexanes (100 mL) and filtered off the crystals formed. The filtrate was con-
centrated under reduced pressure and passed through a pad of silica gel using
hexanes as an eluent. The filtrate was collected and evaporated under reduced
pressure to afford a pure colorless oil of chloroalkyne.

General Procedure for the Synthesis of Iodoalkynes: To a solution of alkyne (1
equiv) in acetone (0.2 mmol/mL) was added NIS (1.1 equiv) and AgNO3 (10 mol
%) at room temperature with magnetic stirring. After 2–3 h, the reaction mixture
was diluted with hexanes (100 mL) and filtered off the crystals formed. The filtrate
was concentrated under reduced pressure and passed through a pad of silica gel
using hexanes as an eluent. The filtrate was collected and evaporated under reduced
pressure to afford a pure colorless oil of iodoalkyne.

R Br R Cl R I

R COOH

NBS TBATFA

R R

NCS n-C4H9Li
THF/HMPT

1) EtMgBr
2) I2

R TMS R R

NBS
AgNO3

CCl4
K2CO3

KI, TBHP
MeOH

R R

R

R R TMS

NIS

AgNO 3

I2, DMAP

CH2Cl2

MeONa
I(Py)2 BF

4

CBr4/KOH

NBSAgNO
3

TBAF

DMF

Br

Br
R

Scheme 2.1 Preparation methods for haloalkynes

Br Br
BrMe

Me
Me

Br BrFMeO TIPS Br

EtO2C Br
Br

Cl

Cl
I

IEt

Scheme 2.2 Representative haloalkynes
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Chapter 3
Reactions of Haloalkynes

Abstract Haloalkynes are a significant class of molecules that have been widely
utilized in organic synthesis. In this chapter, we will describe representative
examples of haloalkynes, with particular attention paid to the reaction design and
mechanistic investigation as well as the general experimental procedures.
According to the reactive sites of haloalkynes involved in the transformations, the
reactions are classified to three types: (i) the transformations of carbon-halo bond
motif; (ii) the diverse functionalization of carbon-carbon triple bond unit; (iii) the
reactions involved both carbon-halo bond motif and carbon-carbon triple bond unit.
These transformations present a powerful tool for haloalkynes to construct
molecular complexity efficiently.

Keywords Haloakyne reagents � Diverse transformations � Reactive sites �
Reaction design � Mechanism investigation

In this chapter, the emphasis will be put on the reaction development of haloalk-
ynes. According to the reactive sites of haloalkynes involved in the transformations,
the reactions are classified to three types: (i) the transformations of carbon-halo
bond motif (Scheme 3.1, path A); (ii) the diverse functionalization of carbon-carbon
triple bond unit (Scheme 3.1, path B); (iii) the reactions involved both carbon-halo
bond motif and carbon-carbon triple bond unit (Scheme 3.1, path C). These
transformations present a powerful tool to construct molecular complexity effi-
ciently. Representative examples are described, with particular attention paid to the
reaction design and mechanistic investigation.

3.1 Transformations of Carbon-Halo Bond Motif

Alkyne motif is one of the most important and useful building blocks in natural
products, pharmaceuticals, as well as functional materials. Subsequently, the con-
struction of alkyne motif contained molecules has attracted considerable attention
during the past decades. Transformations of haloalkyne reagents based on the

© The Author(s) 2016
H. Jiang et al., Haloalkyne Chemistry, SpringerBriefs in Green Chemistry
for Sustainability, DOI 10.1007/978-3-662-49001-3_3
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highly reactive carbon-halo bond, could realize the facile synthesis of skeletons that
previously were unable or difficult to prepare.

3.1.1 Construction of Carbon-Carbon Bond

3.1.1.1 Construction of C(sp)–C(sp) Bond

Conjugated diynes, especially 1,3-diyne compounds, are of vital significance as
versatile building blocks in the synthesis of natural products, bioactive compounds,
as well as functional materials [1, 2]. Consequently, the construction of conjugated
diynes has attracted great attention for a long time.

C(sp)–C(sp) Homo-Coupling

Due to the importance of symmetrical 1,3-diyne compounds, they are usually
synthesized either by Cu-catalyzed homo-coupling reactions including Glaser
coupling [3], Eglinton coupling [4], Hay coupling [5, 6], and Pd-mediated
homo-coupling reactions [7] or other related modified methods [8]. In this context,
the homo-coupling of haloalkynes would provide an alternative route to access
1,3-diyne compounds. In 2003, Lee’s group [9] documented a highly efficient Pd0-
catalyzed homo-coupling reaction of 1-iodoalkynes to construct symmetrical
1,3-diynes under mild and simple reaction conditions. This reaction did not use
copper salts or other metal reagents and a base, and was conducted under an inert
atmosphere, thus preventing side reactions associated with the Glaser coupling
reaction in which O2 is usually used as the oxidant. Although the exact mechanism
of this homo-coupling reaction of 1-iodoalkynes was not clear yet, the author
proposed that the formation of dialkynylpalladium intermediate (1) through the
oxidative addition product of Pd0 to 1-iodoalkyne reacted with another
1-iodoalkyne, which then converted to the 1,3-diyne and iodine (Scheme 3.2).

General Procedure for Pd-Catalyzed Homo-Coupling Reactions of Iodoalkynes:
To Pd(PPh3)4 (4 mol%) was added a solution of 1-iodoalkyne (1 mmol) in dry N,N-
dimethylformamide (DMF) (2 mL) under a nitrogen atmosphere. After 2–5 h, the
mixture was poured into an aqueous saturated NaHCO3 solution (15 mL) and then
extracted with diethyl ether (15 mL × 3). The combined organics were washed with

CR X C CR X C CR X

Reactive Sites: Carbon-Halo Bond Carbon-Carbon Triple Bond Carbon-Halo Bond and
Carbon-Carbon Triple Bond

path A path B path C

Scheme 3.1 Reactive sites of haloalkynes
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brine (15 mL), dried with anhydrous MgSO4, filtered, and concentrated under
reduced pressure. The residue was purified by silica gel column chromatography to
give the corresponding 1,3-diyne.

Given the environmental and economical factors, the development of transition
metal-free reaction systems for the construction of 1,3-diynes is highly demanded.
In 2010, Jiang’s group [10] successfully developed an efficient synthetic method to
1,3-diynes from haloalkynes under the treatment of KI in DMF solvent. This
approach also featured both oxidant and base free (Scheme 3.3). Generally, better
yields of symmetrical 1,3-diynes were obtained from iodoalkynes than the corre-
sponding bromoalkynes. Both aromatic and aliphatic alkynyl halides could perform
this homo-coupling reaction smoothly under the standard reaction conditions. And
diverse functional groups on haloalkyne substrates, such as fluoro, chloro, hydro-
xyl, nitrile group could be tolerated. To the reaction mechanism, the author pro-
posed the involvement of iodoalkyne intermediate generated from the substitution
of bromoalkyne with KI, which might undergo two pathways for the obtained
1,3-diyne product. The iodoalkyne would be transformed to iodine- and
alkyne-radicals, which were then homo-coupled to deliver the symmetrical
1,3-diyne and iodine (Scheme 3.3, path A). Alternatively, the iodoalkyne inter-
mediate was decomposed to iodine and alkyne anion, followed by a redox process
to give the alkyne radical, which would undergo further transformation to afford the
final product (Scheme 3.3, path B).

General Procedure for KI-Mediated Homo-Coupling Reactions of Haloalkynes:
Haloalkyne (1 mmol) and KI (3 mmol) in DMF (2 mL) were stirred at 120 °C for
12 h in a Schlenk tube (25 mL). Water (8 mL) was added after the completion of the

IR
Pd(PPh3)4 (4 mol%)

DMF, rt, 5 h
R R

R = alkyl, aryl 8 examples
70-95% yields

R R

PdII R 2

Pd0

PdIIR I

IR

IRI2

1

Scheme 3.2 Pd-catalyzed homo-coupling reactions of iodoalkynes
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reaction, the aqueous solution was extracted with diethyl ether (15 mL × 3), and the
combined extracts were dried with anhydrous MgSO4, filtered, and concentrated
under reduced pressure. The residue was purified by silica gel column chro-
matography to give the corresponding 1,3-diyne.

C(sp)–C(sp) Cross-Coupling

Compared to symmetrical 1,3-diyne compounds, the synthesis of unsymmetrical
1,3-diynes is rather difficult, due to the competition of homo-coupling reaction.
Among the methods for the synthesis of unsymmetrical 1,3-diynes,
Cadiot-Chodkiewicz cross-coupling reaction is one of the most representative
examples [11]. In 2007, Jiang’s group documented a mild and environmentally
friendly method for the Cu-catalyzed Cadiot-Chodkiewicz coupling of bro-
moalkynols with terminal acetylenes in scCO2 utilizing NaOAc as base (Table 3.1)
[12]. Methanol, as a co-solvent, could improve the dissolution of inorganic salts in
scCO2 and facilitate the reaction rate. This new cross-coupling reaction system not
only tolerated a wide range of functional groups to deliver diverse unsymmetrically
substituted 1,3-diynes, but also avoided the employment of amine. However,
experiment results revealed that this transformation was sensitive to the pressure of
scCO2 and high reaction temperature.

General Procedure for Cu-Catalyzed Cross-Coupling Reactions of
Bromoalkynols: CuCl (5 mol%), AcONa (1.5 mmol), MeOH (1 mL), bromoalkyne
(1 mmol) and alkyne (1.2 mmol) were added to an autoclave vessel (15 mL) in

R X
KI (3 equiv)

DMF, 120 oC
R R

R = alkyl, aryl
X = Br, I

23 examples
50-99% yields

R + I

R + I

R + I2

R I

R Br

I

R R

path A path B

Scheme 3.3 KI-mediated homo-coupling reactions of haloalkynes
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sequence. Liquid CO2 was pumped into the autoclave by a cooling pump until the
desired pressure was reached then the autoclave was heated in an oil bath under
magnetic stirring for the desired reaction time. After the reaction was completed,
the autoclave was allowed to cool to 0 °C and CO2 was vented. The residue was
extracted with Et2O (20 mL). The extract was filtered and concentrated under
reduced pressure to give a residue that was purified by chromatography on a silica
gel column using light PE-EtOAc as eluent.

Later in 2014, Ranu and co-workers developed a novel protocol for C(sp)–C(sp)
cross-coupling of haloalkynes with pinacol ester of alkynyl boronic acid in dime-
thyl carbonate (DMC) using a commercially available and magnetically separable
CuFe2O4 nanoparticle catalyst. The reaction has a broad substrate scope and tol-
erates diverse functional groups. Importantly, the CuFe2O4 nanoparticle catalyst
was recycled more than 10 times with marginal loss of activity in subsequent runs
(Scheme 3.4) [13].

General Procedure for CuFe2O4 Nanoparticle Catalyzed Cross-Coupling
Reactions of Haloalkynes: A suspension of haloalkyne (1 mmol), pinacol ester of

Table 3.1 Cu-catalyzed cross-coupling reactions of bromoalkynols

BrR1 + R2

CuCl (5 mol%)
NaOAc (1.5 equiv)

MeOH, scCO2 (9 MPa)
40 oC

R1 R2

R1 = alkyl
R2 = alkyl, aryl, ester

21 examples
42-93% yields

CO2Et
HO

HO
HO

nC6H13

85% 83%87%

R X + Ar B
O

O
CuFe2O4 (5 mol%)

Cs2CO3, DMC

8 h, reflux
R Ar

Ph Ph
S

PhMeO

82% 82% 84%

Recyclable CuFe2O4 Nanoparticle 11 examples
46-84% yields

X = Br, Cl

Scheme 3.4 CuFe2O4 nanoparticle catalyzed cross-coupling reactions of haloalkynes
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alkynelboronic acid (1.5 mmol), Cs2CO3 (2 mmol), and CuFe2O4 (5 mol%) in
DMC (5 mL) was stirred at 100 °C (oil bath temperature) for 8 h under argon. The
reaction mixture was allowed to cool and extracted with ethyl acetate (20 mL × 3).
The organic extracts were washed with brine, dried with anhydrous Na2SO4, fil-
tered, and concentrated under reduced pressure. The product was obtained by flash
column chromatography.

Except for Cu catalysis, Pd complexes also serve as a powerful catalysts to con-
struct several conjugated diynes [14]. However, the competitive homo-coupling
process is still the major challenge in Pd-catalyzed C(sp)–C(sp) cross-coupling
reactions. In 2008, Lei’s group [15] reported an efficient method to synthesize
unsymmetrical 1,3-diynes which was promoted by Pd(dba)2 with a phosphine-olefin
ligand L (Scheme 3.5). This protocol realized the cross-coupling reaction of a wide
spectrum of terminal alkynes and haloalkynes, affording the corresponding conju-
gated diynes in good to excellent yields with high selectivity. Notably, one-pot
synthesis of symmetrical and unsymmetrical triynes was also achieved. Mechanistic
investigations indicated that the phosphine-olefin ligand could accelerate the
reductive elimination process in the catalytic cycle, thereby enhancing the selectivity.

BrR1 + R2

Pd(dba)2 (4 mol%)/L (4 mol%)
NEt3 (2 equiv), CuI (2 mol%)

DMF, rt, 2-9 h
R1 R2

R1 = alkyl, aryl
R2 = alkyl, aryl

16 examples
77-99% yields

R1 R2

PdII

Pd0Ln

PdIIR1 Ln

BrR1

CuR2CuBr

R2NEt3 + HNEt3Br

R1

R2

Br
Ln

PPh2

OL

Scheme 3.5 Ligand accelerated Pd-catalyzed cross-coupling reactions of bromoalkynes
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General Procedure for Ligand Accelerated Pd-Catalyzed Cross-Coupling
Reactions of Bromoalkynes: To an oven-dried Schlenk tube with a magnetic stir bar
were added Pd(dba)2 (4 mol%), L ligand (4 mol%), and CuI (2 mol%). DMF
(1 mL) was added via a syringe. The system was vacuumed with an oil pump at 0 °
C and filled with nitrogen, and this procedure was repeated five times. After the
mixture was stirred under nitrogen for about 10 min, alkyne (0.6 mmol) was added
via a microliter and stirred for another 5 min. 1-Bromoalkyne (0.5 mmol) was
added last via a microliter syringe. The system was stirred at room temperature for
10 h. Upon completion, brine (4 mL) was added, and the mixture was extracted by
ethyl acetate (3 mL × 3), and the combined extracts were dried with anhydrous
MgSO4, filtered, and concentrated under reduced pressure. The product was
obtained by flash column chromatography.

Later in 2012, Lei and co-workers developed a more efficient Pd0-catalyzed C
(sp)–C(sp) cross-coupling reaction of terminal alkynes with bromoalkynes.
Interestingly, the reaction could run at 100 mmol scale, and more than 99 % of the
cross-coupling product was obtained without any bromoalkyne homo-coupled
by-product. The key to the success of this transformation was the utilization of
TBAB (tetrabutylammonium bromide) as a stabilizer, which could prevent the
aggregation and precipitation of palladium catalyst. Even when the catalyst loading
was reduced to 0.01 mol%, the reaction could still proceed efficiently, and the
catalyst was kept active. Kinetic studies indicated that the reaction rate was not first
order to Pd catalyst via in situ IR spectroscopy, and only part of the Pd species was
employed to catalyze this C(sp)–C(sp) cross-coupling reaction. Importantly, pal-
ladium nanoparticles were observed in this reaction (Scheme 3.6) [16].

General Procedure for TBAB Stabilized Pd-Catalyzed Cross-Coupling
Reactions of Bromoalkynes: A mixture of haloalkyne (1 mmol), terminal alkyne
(1.5 mmol), TBAB (0.3 mol%), and CuI (0.2 mol%) in iPr2NH (5 mL) was stirred
under N2 at 70 °C for 5 min. Then Pd(OAc)2 (0.01 mol%) was added in one

BrR1 + R2

 iPr2NH, 70 oC, 12 h
R1 R2

R1 = alkyl, aryl
R2 = alkyl, aryl

22 examples
52-99% yields

Pd(OAc)2 (0.01 mol%)
TBAB (0.3 mol%), CuI (0.2 mol%)

 up to 100 mmol scale

HO HO
S
O

O
Me

N

HO
NH2

HO

HN Ts

HO

O
O Ph CN

85%59%52%

99% 99% 85%

Scheme 3.6 TBAB stabilized Pd-catalyzed cross-coupling reactions of bromoalkynes
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portion. After reaction completion, as indicated by TLC and GC, the mixture was
quenched with diluted hydrochloric acid (4 mL, 2 M), and the solution was
extracted with ethyl acetate (15 mL × 3). The organic layers were combined and
dried over sodium sulfate. The pure product was obtained by flash column chro-
matography on silica gel.

3.1.1.2 Construction of C(sp)–C(sp2) Bond

Functionalized cyclic and acyclic enynes are all-pervading subunits in a wide range
of natural products, functional materials and bioactive compounds [17]. To this
regard, the development of efficient and practical methods for the construction of
conjugated enyne molecules has become the subject of intensive investigation in the
area of synthetic and medicinal chemistry.

C(sp)–C(sp2) Cross-Coupling

In 1985, Suzuki and co-workers reported the synthesis of alkyenynes via
palladium-catalyzed cross-coupling reaction of 1-alkenylboranes with bromoalky-
nes (Scheme 3.7) [18]. This reaction was stereo- and regiospecifically, and the

+
R1

Br R3
R2

B(Sia)2 R1

R2

R3

Pd(PPh3)4 (1 mol%)
MeONa (1.4 equiv)

Benzene, reflux

5 examples
53-98% yields

Pd0L4

PdIIR3 Br

BrR3

L

L

PdIIR3 OMe
L

L

PdIIR3
L

L

R2
B(Sia)2

R1

MeONa

NaBrMeOB(Sia)2

R2
R1

R1

R2 R3

3

2

Scheme 3.7 Cross-coupling reaction of 1-alkenylboranes with bromoalkynes
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configurations of both the starting alkynylboranes and bromoalkynes were retained.
Mechanistic studies indicated that the transmetalation between an alkynylborane
and an alkoxypalladium(II) complex 3 generated through the metathetical dis-
placement of a halogen atom from the intermediate 2 with the base. Later, the
cross-coupling reactions of haloalkynes with activated alkenes have been broadly
investigated, such as alkenylboronic acid [19–21]. oragnozinc reagents [22, 23],
vinylstannanes [24–26]. Grignard reagents [27], vinylzirconocene [28, 29], and
vinylsiloxanes [30].

General Procedure for Palladium Catalyzed Cross-Coupling Reaction of 1-
Alkenylboranes with Bromoalkynes: A flask (50 mL) was charged with Pd(PPh3)4
(1 mol%), dry benzene (12 mL), and bromoalkyne (5 mmol) under a nitrogen
atmosphere. The reaction mixture was stirred for 30 min at room temperature, and
to the solution were added alkenylborane (6 mmol) and MeONa (7 mmol, 1 M in
MeOH). The reaction mixture was heated under reflux for 2 h and then treated with
aqueous NaOH (1.8 mL, 3 M solution) and H2O2 (1.8 mL of a 30 % solution) for
1.5 h at room temperature to remove the unreacted alkenylborane. The product was
extracted with hexane and dried over MgSO4. After the removal of the solvent, the
enyne product was purified by distillation.

Alternatively, the Sonogashira coupling, the cross-coupling reaction between
vinyl halides and terminal alkynes also represents one of the most widely used
strategies achieving the synthesis of functionalized enynes [31]. In this context, the
development of “Inverse Sonogashira Coupling”, the term which was first intro-
duced by Trofimov [32], has attracted more and more attention (Scheme 3.8) [33].
It stands as a complementary strategy for the synthesis of aryl/heteroaryl alkynes
through the direct alkynylation of unreactive C(sp2)–H bonds with readily available
haloalkynes. In 1992, Kalinin and coworkers firstly reported this type of alkyny-
lation reaction with a stoichiometric amount of CuI salt [34]. Later, Trofimov and
co-workers devoted great efforts in this area [35–42]. However, the major break-
through was achieved until 2007, as the first example of a transition metal-catalyzed
direct alkynylation of electron-rich N-fused heterocycles was promulgated by
Gevorgyan’s group (Scheme 3.9) [43]. A wide spectrum of indolizine,
pyrroloisoquinoline, pyrroloquinoline, and pyrrolooxazole derivatives could be
regioselectively alkynylated with different substituted bromoalkynes in the presence

Ar/
Het

X

Sonogashira Coupling

H R+

[M] or [TM]

Ar/
Het

R

Ar/
Het

H

Inverse Sonogashira Coupling

X R+

[M] or [TM]

Ar/
Het

R

Scheme 3.8 Development of
“Inverse Sonogashira
Coupling”
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of Pd catalyst. The alkynylpalladium intermediate 4, which is essential for con-
ceptual advance, generated through Pd0 catalyst oxidative addition into the C–Br
bond of bromoalkyne, exhibited the similar reactivity to that of arylpalladium
species 5, which is well known to undergo an electrophilic pathway in the process
of indolizine arylation. Subsequently, Gu [44], Chang [45], Jiang [46, 47], and Loh
[48] documented different cross-coupling partners with haloalkynes under palla-
dium catalysis.

General Procedure for Pd-Catalyzed Alkynylation of N-Fused Heterocycles: In a
glovebox under nitrogen atmosphere, to a Wheaton microreactor (5 mL) equipped
with a spin vane and screw cap with a polytetrafluoroethylene (PTFE) faced sili-
cone septum under nitrogen atmosphere were added heterocyclic substrate (1
equiv), Pd(PPh3)2Cl2 (3–5 mol%) and KOAc (2 equiv). The microreactor was
removed from the glovebox, bromoalkyne (1.3–1.8 equiv) and anhydrous toluene
(0.001–0.010 M) were successively added and the mixture was stirred until com-
pletion (as monitored by TLC and/or GC/MS). The solvent was removed under
reduced pressure and the residue was purified using flash-column chromatography
using hexane or hexanes/ethylacetate combination as eluent to afford pure
alkynyl-heterocycles.

Despite palladium catalysis, Piguel [49] reported a more efficient general pro-
cedure for the direct alkynylation of various heterocycles with copper-catalysis. The
author found out that the success of the copper bromide/dimethyl sulfide complex

N
H

+ Br R N

Pd(PPh3)4 (3 mol%)
KOAc (2 equiv)

PhMe, 30-80 oC
R

17 examples
50-90% yields

R = Ar, alkyneyl, alkyl, SiMe3, CO2Et

Pd0Ln

PdIILnBrR

BrR

4
PdIILnBrAr
5

N
H

N

H

PdII

RLn

BaseHBr

N Pd II
Ln

R

N
R

Scheme 3.9 Pd-catalyzed alkynylation of N-fused heterocycles
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lied in the better solubility compared that with the uncomplexed copper bromide,
which allowed it to coordinate immediately in the reaction medium. This method
did not need high dilution reaction condition. Especially, the minimal cost and
toxicity of copper catalyst could tolerate various oxazoles with different electron
property and structural diversity, and gave the coupling product in good yields
(Scheme 3.10). Notably, the azoles are with high pKa values (>30), while the
carbon-halo bond of the substrate could survive under the standard reaction con-
ditions. Additionally, the structure of the product was unambiguously confirmed by
single-crystal X-ray diffraction analysis.

General Procedure for Copper-Catalyzed Alkynylation of Azoles: A flame dried
tube under argon was charged with azole (0.69 mmol), CuBr·SMe2 (15 mol%),
DPE-Phos (15 mol%), tBuLi (1.38 mmol). Then bromoalkyne (1.38 mmol) was
diluted into dioxane (2 mL) and the solution was added to the medium. The tube
was sealed with Teflon cap and put in a pre-heated oil bath at 120 °C for 1 h. The
reaction mixture was diluted with ethyl acetate and water was added. This mixture
was extracted with ethyl acetate and the combined organic layers were put together
and dried over MgSO4. Solvents were removed under reduced pressure and the
crude was purified by flash chromatography on silica gel to afford the desired
product.

Based on the experimental results and previous literatures [50, 51], the authors
proposed the possible reaction mechanism as illustrated in Scheme 3.11. Firstly, the
deprotonation of oxazole lithium base, followed by lithium-copper transmetallation
to generate CuI intermediate 6. Subsequently, the oxidative addition of 6 to bro-
moalkyne gave the four-coordinated CuIII complex 7. Finally, the reductive elim-
ination led to the desired alkynylated product, and regenerated the catalytic CuI

Br R2

LiOtBu (2 equiv)
dioxane, 120 oC, 1 h

N
X

O
R1

+

CuBr.SMe2 (15 mol%)
DPEPhos (15 mol%) NX

OR1
R2

X = C, N
R2 = aryl, alkyneyl, alkyl, Si(iPr)3

20 examples
26-90% yields

N

O
Ph

Ph

N

OPh N

N

O
Si(iPr)3

Ph

N

OPh Ph

N

OPh Ph

NN

O
Ph

Ph
71%84%26%

73%73%89%

Scheme 3.10 Copper-catalyzed alkynylation of azoles
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species. Undoubtedly, the formation of CuIII complex 7 would compete with
activation of another oxaole, which would deliver the bis(oxazolte) CuI species 8,
and afforded the undersired bis(oxazole) dimer 9. Importantly, the steric hindrance
of the copper center favored the less sterically demanding haloalkyne, thus 7 was
formed preferentially. Finally, due to the solubility of dimethylsulfide complex and
the bulky steric hindrance effect of the ligand, the catalytic cycle was driven
towards the formation of the alkynylated product.

Later, Miura [52] and Das [53] independently realized the copper-catalyzed
alkynylation of 1,3,4-oxadiazoles. In the mean time, other transition metals, such as
nickel, were found to be suitable catalysts for the inverse Sonogashira coupling
reactions of haloalkynes [54]. These achievements in the area of direct alkynylation
reactions involving haloalkyne reagents open up new exciting opportunities for the
functionalization of diverse C(sp2)–H bonds.

The cyclization of alkynes bearing proximate nucleophilic centers promoted by
organopalladium complexes is an effective strategy for heterocyclic ring synthesis
[55]. This chemistry provides a direct method to the construction of functionalized
cycles through the regio- and stereoselective addition of a nucleophile to the
carbon-carbon triple bond with the generation of a vinylpalladium complex, which
could proceed diverse transformations (Scheme 3.12). Taking the advantages of this
strategy, Larock [56], Cacchi [57], and Yorimitsu [58] independently demonstrated
that nucleophilic addition triggered cross-coupling reaction of haloalkynes to
synthesize 3,4-disubstituted isoquinolines, 3-alkynylindoles and 1,2-disubstituted
cyclopentenes, respectively.

Alkynylation Reactions

Compared to cross coupling reactions, electrophilic ethynylation of carbon nucle-
ophiles is another attractive methodology to construct C(sp)–C(sp2) bonds. In 2002,

Br CuI
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N

O

N

OR1 R1

Br R2

CuIII
P

P

N

OR1

R2

Br

N

OR1
R2

6

7

8

9

Scheme 3.11 Proposed reaction mechanism
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Yamaguchi and co-workers reported GaCl3-catalyzed ortho-ethynylation of phe-
nols. Various substituted phenols were applicable to this method, and the turnover
number based on the catalyst (GaCl3) was between 8 and 10. The mechanism
studies indicated this catalytic ethynylation involved carbogallation of haloalkyne
and the formation of intermediate 10 under the effect of lithium salts. Interestingly,
the protonated product of intermediate 11 was not detected in the reaction mixture.
It seemed that β-elimination of 11 happened to be more rapid (Scheme 3.13) [59].
The author also applied this method to the ortho-ethynylation of silyl enol ethers

Nu

PdLn

R1
PdLn

R1

Nu

R1

PdLn

Nu

or

R2 X R2 X

R1

R1

Nu

or

R2

R2

Nu

Scheme 3.12 Pd-catalyzed nucleophilic addition triggered cross-coupling reaction

GaCl3
OH

HCl

OGaCl2

Cl SiEt3

OH Cl

GaCl2

SiEt3

OH SiEt3

OH

+ Cl SiEt3

OH SiEt3GaCl3 (10 mol%), BuLi (30 mol%)
2,6-di(t-butyl)-4-methylpyridine (10 mol%)

C6H5Cl, 120 oC, 3 h
R R

14 examples
62-90% yields

10

11

Scheme 3.13 GaCl3-catalyzed ortho-ethynylation of phenols
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[60] and anilines [61]. Later, Chatani [62, 63], and Chen [64] independently
reported palladium-catalyzed ortho-alkynylation of C(sp2)–H bond in benzenes
with different directing groups.

General Procedure for GaCl3-Catalyzed ortho-Ethynylation of Phenols: Under
an argon atmosphere, to a solution of phenol (10 mmol) in chlorobenzene (50 mL)
were added butyllithium (3 mmol, 1.6 M in hexane) and GaCl3 (1 mmol, 1 M in
methylcyclohexane) at 0 °C successively. The mixture was stirred for 10 min at
room temperature, and then 2,6-di(tert-butyl)-4-methylpyridine (1 mmol) and
chlorotriethylsilylethyne (10 mmol) were added. The mixture was heated at 120 °C
for 3 h. Water (25 mL) and THF (25 mL) were added, and the organic materials
were extracted with ethyl acetate, washed with water and brine, dried over MgSO4,
filtered, and concentrated in vacuo. The residue was purified by flash chromatog-
raphy over silica gel to provide the pure product.

On the other hand, the development of practical and efficient alkynylation
methods for functionalized acyclic enyne compounds is also highly demanded.
Undoubtedly, one of the most straightforward strategies to achieve this goal is the
direct addition of an “activated” alkyne to another alkyne. In this context, several
catalytic systems for alkynylstannylation [65], alkynylzirconation [66, 67],
alkynylboranation [68], and alkynylcyanation [69] have been developed
(Scheme 3.14a). In 2010, Jiang and coworkers revealed a Pd-catalyzed selective
intermolecular cross-coupling reaction between haloalkynes and internal alkynes,
delivering various halogenated enyne products through a new type of direct bro-
moalkynylation process (Scheme 3.14b) [70]. Condition optimization indicated that
PdII was crucial to the product formation, while Pd0 just impeded the reaction.
Reductive additives and inorganic bases would also retard the transformation.
However, air or organic oxidant did not interrupt the reaction. This approach was
found to have a broad substrate scope (Table 3.2). A wide range of haloalkynes,
including aryl-, alkynyl-, and trimethylsilyl- alkynyl bromides, were able to proceed

MR1 + R2 R3
Pd, Ni

M = Sn, Zr, B, CN

R2

M

R3

R1

1998 Shirakawa Alkynylstannylation

2002 Takashi Alkynylzirconation

2006 Suginome Alkynylboranation

2007 Nakao Alkynylcyanation

(a)

(b)

XR1 + R2 R3

X = Br, I

R2

X

R3

R1

2011 Jiang Haloalkynylation
Pd

Scheme 3.14 Strategies for the conjugated enyne synthesis. a Previous alkynylation strategies.
b Jiang’s strategy

22 3 Reactions of Haloalkynes



this bromoalkynylation reaction smoothly to afford the corresponding products in
good to excellent yields. Additionally, reasonable yields were achieved when this
reaction was extended to iodoalkynes instead of bromoalkynes. Importantly,
exclusively cis-addition products were obtained for symmetrical internal alkynes.
While the regioselectivity of the unsymmetrical disubstituted acetylenes was mainly
influenced by the functional groups in the internal alkynes.

General Procedure for Pd-Catalyzed Bromoalkynylation of Alkynes: To a
Schlenk tube (25 mL) was successively added Pd(OAc)2 (5 mol%), CH3CN (2 mL),
4-octyne (1 mmol) and haloalkyne (1.2 mmol). The resulting mixture was stirred at
30 °C for 8 h. Then, the mixture was filtered through a small amount of silica gel.
The filtrate was concentrated under reduced pressure, and the residue was purified
by silica gel preparative TLC (n-hexane) to give the desired product.

To gain some insight of the reaction mechanism, the authors performed some
control experiments with stoichiometric Pd catalysts and the major halogenated
products were identified to be originated from phenylethynyl halides [Scheme 3.15,
Eqs. (1) and (2)]. These results provided evidence of a mechanism that PdII species
underwent an unusual oxidative addition to phenylethynyl bromide, rather than a
direct halopalladation reaction of alkynes. Accordingly, the mechanism of this
transformation was initiated by the oxidative addition of PdII salt to bromoalkyne to
form the PdIV complex 12. Then, the cis-addition of 12 to internal alkyne afforded
the cis-alkynyl vinylpalladium intermediate 13, which underwent a reductive
elimination to deliver the brominated enyne product and regenerate the active PdII

catalyst (Scheme 3.15).
Yn-1-imines are an important class of compounds with novel π-system, which

have wide applications in functional materials [71]. In 2011, an elegant
three-component coupling reaction of arynes, isocyanides and bromoalkynes for the

Table 3.2 Pd-catalyzed bromoalkynylation of alkynes

nPr

nPr
Br

91%

nPr

nPr
Br

nPr

nPr
Br

79%

nPr

nPr
Br

HO

nPr

nPr
Br

Cl

nPr

nPr
Br

TMS

83%

77%65%

nC4H9

Br

O

65%

Br
Me

OH
Et

Br
Me

OH

72%

BrF

73%

3.1 Transformations of Carbon-Halo Bond Motif 23



synthesis of yn-1-imine compounds has been reported by Yoshida and co-workers
[72]. The benzyne was in situ generated from its precursor under the treatment of
KF/[18] crown-6. Importantly, this reaction adapted to broad substrate scope and
tolerated various functional groups (Scheme 3.16).

General Procedure for Three-Component Coupling of Arynes, Isocyanide and
Haloalkynes: A Schlenk tube equipped with a magnetic stirring bar was charged
with KF (0.6 mmol) and [18]crown-6 (0.6 mmol). The tube was evacuated at room

BrPh + nPr + PdCl2
CH3CN

30 oC, 6 h
Ph

nPr

nPr
Cl

Ph
nPr

nPr
Br

+ (Eq. 1)

1.2 equiv 1 equiv 1 equiv 10% (GC) 76% (GC)

IPh +nPr

nPr

nPr + PdBr2
CH3CN
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nPr

nPr
I
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+ (Eq. 2)
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Scheme 3.16 Three-component coupling of arynes, isocyanide and haloalkynes
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temperature for 1 h with stirring before addition of DME (1 mL) and a haloalkyne
(0.15 mmol) under an argon atmosphere. Then an isocyanide (0.23 mol), and aryne
precursor (0.3 mmol), and DME (1 mL) were added at 0 °C, and the resulting
mixture was stirring at 0 °C. Upon completion, the reaction mixture was diluted
with ethyl acetate and filtered through a Celite plug. The organic solution was
washed with brine three times and dried over MgSO4. Evaporation of the solvent
and followed by recycling preparative HPLC gave the desired product.

As to the mechanism, the authors believed that this reaction could be triggered
by the generation of zwitterion 14 (1,4-dipoles) from aryne and isocyanide.
Subsequently, the zwitterion 14 underwent nucleophilic attack on the carbon-bromo
bond of the bromoalkyne motif and provided the phenylacetylide 16 through the
bromine ate complex 15, followed by the carbon-carbon bond formation of 16 and
the nitrilium cation 17 to furnish the final yn-1-imine product (Scheme 3.17).

3.1.1.3 Construction of C(sp)–C(sp3) Bond

As the importance and diverse applications of alkyne units contained complex
molecules, the development of efficient and sustainable methods for the construc-
tion of C(sp)–C(sp3) bonds continues to be a challenging research topic in modern
organic chemistry. In this context, the development of practical methods to con-
struct C(sp)–C(sp3) bonds with haloalkynes attracted considerable attention [73–
79]. In this part, representative examples will be detailed discussed.

The coupling reaction of zinc-copper reagents with haloalkynes was one of most
efficient strategy to construct C(sp)–C(sp3) bonds. In 1998, Knochel’s group
reported that alkylborane could proceed transmetalation to the corresponding
organozinc coumpound under the treatment of diisopropylzinc reagent, and sub-
sequent transformation to the zinc-copper reagent with the addition of CuCN·2LiCl,
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KF 
[18]crown-6 tOctNC NtOct
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Ph
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Scheme 3.17 Proposed mechanism
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which could be captured by haloalkynes (Scheme 3.18) [80]. With the same
strategy, Knochel [81], Williams [82], and Burton [83] respectively documented
different zinc-copper reagents coupled with haloalkynes to construct C(sp)–C(sp3)
bonds.

General Procedure for Haloalkynes Captured the Zinc-Copper Reagent: A
BH3·THF solution (3 mmol) was slowly added to 1,2-diphenylcyclopentene
(2 mmol) in THF (10 mL) at 20 °C. After 10 min, the resulting solution was heated
at 50 °C for 3 h. The solvent and excess borane were removed under vaccum, and
the residue was treated with a solution of iPr2Zn (4 mmol) in ether at 25 °C for 4 h.
After removal of the solvent and excess of iPr2Zn under vacuum, the residue was
diluted with THF (10 mL). The black precipitate of zinc was removed by filtration,
and the filtrate was slowly treated at −90 °C with a solution of CuCN·2LiCl
(20 mol%) in THF and after 15 min with haloalkyne (6 mmol) in THF. The reaction
was allowed to warm to 25 °C and was quenched after 1 h with aq HCl (10 mL,
3 M) and extracted with ether. The crude product obtained after evaporation of the
solvent was purified by chromatography.

Until 2011, the first Pd-catalyzed diastereoselective cross-coupling reaction of
cyclohexylzinc reagents with bromoalkynes was reported by Knochel and
co-workers (Scheme 3.19) [84]. Interestingly, the 3-substituted cyclohexylzinc
reagent preferred to form cis-1,3-disubstituted cylcohexane derivatives, while
4-substituted cyclohexylzinc reagent favored to give trans-1,4-disubsituted
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1) iPr2Zn (2 equiv)
2) CuCN  2LiCl (20 mol%)

3)
Ph
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Scheme 3.18 Haloalkynes captured the zinc-copper reagent
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Scheme 3.19 Pd-catalyzed cross-coupling of cyclohexylzinc reagents with bromoalkynes
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cylcohexane derivatives. The high diastereoselectivity was assumed to be effected
by a selective transmetalation step between the respective alkynyl(bromo)palladium
complex and the cyclohexylzinc reagents, which led to the formation of the most
thermodynamically stable palladium intermediates. Subsequently, reductive elimi-
nation proceeded with the retention of configuration and delivered the corre-
sponding 1,3- and 1,4-disubstituted products. Later, they [85] and Baudoin [86]
reported palladium-catalyzed cross-coupling reactions of haloalkynes with
adamantylzinc reagents and α-zincated acyclic amines, respectively.

General Procedure for Pd-Catalyzed Cross-Coupling of Cyclohexylzinc
Reagents with Bromoalkynes: A dry and N2-flushed Schlenk tube (10 mL),
equipped with a magnetic stirring bar and a septum, was charged with a solution of
the respective alkynyl bromide (0.4 mmol), PdCl2 (2 mol%) and neocuproine
(4 mol%) in THF (1.5 mL) and cooled to −30 °C. A solution of the respective
cyclohexylzinc iodide in THF (0.5 mmol) was slowly added at this temperature.
The reaction mixture was stirred for 12 h. Then saturated aq. NH4Cl solution
(5 mL) was added. Phases were separated and the aqueous phase was extracted with
Et2O (20 mL × 3). The combined organic layers were washed with brine (10 mL)
and dried over Na2SO4. The solvents were evaporated and the alkynylated product
was purified via column chromatography on silica gel.

Grignard reagents could also coupled with haloalkynes [87]. In 2010, Cahiez
reported the first efficient and practical copper-catalyzed alkynylation reaction of
aryl and alkyl Grignard reagents [88]. This reaction has broad substrate scope and
tolerates diverse functional groups, even tertiary alkyl Grignard reagent could also
be used successfully. Notably, this reaction was highly chemoselective, and the key
to obtain satisfactory yields was the slow addition of the Grignard reagents to the
reaction mixture. Importantly, no Br/Mg exchange was observed in the arylation of
alkynyl bromides (Scheme 3.20).

R1 MgX + X R2

CuCl2 (3 mol%)
NMP (4 mol%)

THF, 0 oC
R1 R2

R1 = alkyl, aryl
X = Cl, Br
R2 = alkyl, aryl, TMS, Ester

25 examples
52-93% yields

nPentCl TMSMeO CO2MeF

nPentBut TMSt Bu t Bu

92%
65% 91%

84% 52% 85%

Scheme 3.20 Copper-catalyzed cross-coupling of Grignard reagents with haloalkynes
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General Procedure for Copper-Catalyzed Cross-Coupling of Grignard Reagents
with Haloalkynes: A dry and nitrogen flushed four-necked flask (100 mL) equipped
with a mechanical stirrer, a thermometer, a nitrogen inlet, and a septum was charged
with CuCl2 (3 mol%), N-methylpyrrolidinone (4 mol%), haloalkyne (10 mmol), and
THF (9 mL). After complete dissolution of the cuprous chloride (less than 30 min),
the reaction mixture was cooled to 0 °C and a solution of Grignard reagent
(12 mmol) was added with a syringe pump over a period of 45 min. At the end of
the addition, stirring was continued for 30 min at 0 °C then the reaction was
quenched with 1 N aqueous HCl solution (20 mL). The aqueous phase was
extracted with diethyl ether (20 mL × 3). The combined organic layers were dried
with MgSO4, filtered, and concentrated under reduced pressure. The crude residue
was purified by flash chromatography on silica gel.

On the basis of the experimental results and related literatures [89, 90], the
authors proposed a reasonable mechanism in Scheme 3.21. The catalytic cycle was
initiated by the generation of cuprate 18 from the Grignard reagent. Subsequently,
the haloalkyne reacted with 18 to afford the vinylcopper reagent 21 through the
complex 19/20 (carbocupration). Generally, 21 was generated via the reductive
elimination of metallacyclopropene 19. Finally, the unstable vinyl copper 21
underwent a β-halogen elimination to give the desired product and the organo-
cooper 22, which then reacted with another Grignard reagent to regenerate the
cuprate 18.

Besides organozinc reagents, Grignard reagents and zirconacyles [91], the more
environmental friendly strategy to construct C(sp)–C(sp3) bonds from haloalkynes
was the utilization of activated C(sp3)–H bonds. In 2007, Jørgensen and co-workers
reported the first asymmetric direct alkynylation of cyclic β-ketoesters with
haloalkynes under chiral phase transfer catalyst 23. A large number of alkynylating
reagents with chloride and bromide as the leaving groups and substituents such as
alkyl and allyl esters, amides, ketones, and sulfones were demonstrated to be
suitable substrates. Various cyclic β-ketoesters with different ring-sizes and also
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Scheme 3.21 Proposed
reaction mechanism

28 3 Reactions of Haloalkynes



including oxindoles were applicable to the standard reaction conditions. The cor-
responding optically active products were obtained in high yields with excellent
enantioselectivities (Scheme 3.22) [92].

General Procedure for Asymmetric Alkynylation of Cyclic β-Ketoesters: To a
sample vial equipped with a magnetic stirring bar was added β-ketoester
(0.2 mmol), o-xylene/CHCl3 (7:1, 1.3 mL), haloalkyne (0.26 mmol), and the cat-
alyst 26 (3 mol%). The mixture was stirred for s short time at ambient temperature
and was then placed at −20 °C. When the mixture had cooled, a cold solution of
33% aq. K2CO3 (0.6 mL) was added and the biphasic mixture was vigorously
stirred. Upon completion, the organic phase was collected, and the aqueous layer
was extracted with toluene two times. The combined organic fractions were loaded
onto a chromatography column and the alkynylated product was obtained.

Importantly, the authors isolated and characterized the counterion of the catalyst
and p-nitrophenolate by X-ray analysis, and they proposed a model of the
catalyst-substrate intermediate which might explain the observed enantioselectivity
of this organocatalytic enantioselective alkynylation reaction (Scheme 3.23).
Alkali-metal enolate 24, generated from the corresponding β-ketoesters by depro-
tonation with the bulk aqueous base, first underwent cation exchange with the chiral
phase transfer catalyst 23, which led to the organic soluable ammonium enolate 25
as a tight ion-pair. Due to the chiral environment provided by the ammonium motif,
the enolate 25 added to the haloalkyne in a highly enantioselective manner, and
formed the ammonium allenolate 26. The allenolate 26 would undergo elimination
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Scheme 3.22 Asymmetric alkynylation of cyclic β-ketoesters
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of X directly to deliver the desired alkynylated product or got protonated to afford
trisubstituted vinylic ester 27.

In 2011, taking advantages of C(sp3)–H activation [93–95], Chatani [96] and
co-workers documented the first alkynlation of unactivated C(sp3)–H bonds via
palladium(II/IV) process (Scheme 3.24a). Broad functional groups could be toler-
ated under the standard reaction conditions. Experiment results indicated that both
the quinolone and the NH group were essential for the reaction. Two years later,
Yu’s group [97] reported a palladium(0)-catalyzed alkynlation of C(sp3)–H bonds
using Pd0/NHC and Pd0/PR3 catalysts without the use of co-oxidants
(Scheme 3.24b).
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Scheme 3.23 The possible reaction mechanism
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Scheme 3.24 Pd-catalyzed alkynlation of unactivated C(sp3)–H bonds. a Chatani’s work: Pd(II)/
Pd(IV). b Yu’s work: Pd(0)/Pd(II)
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General Procedure for Pd-Catalyzed Alkynlation of Unactivated C(sp3)–H
Bonds (Chatani’s Work): To an oven-dried screw-capped vial (5 mL), N-
(8-quinolinyl)hexanamide (0.5 mmol), (bromoethynyl)triisopropylsilane
(0.75 mmol), Pd(OAc)2 (5 mol%), AgOAc (0.5 mmol), LiCl (0.5 mmol) and
toluene (1 mL) were added under a gentle stream of nitrogen. The mixture was
stirred for 15 h at 110 °C and followed by cooling. The mixture was filtered through
a Celite pad and concentrated in vacuo. The residue was subjected to column
chromatography on silica gel (eluent: hexanes/Et2O = 5/1 to 3/1) to afford the
desired alkynylated product.

General Procedure for Pd-Catalyzed Alkynlation of Unactivated C(sp3)–H
Bonds (Yu’s Work): Substrate (0.1 mmol), [Pd(allyl)Cl]2 (5 mol%), bis(adamantly)
imidazolium tetrafluoroborate (0.02 mmol), and Cs2CO3 (0.2 mmol) were weighed
in air and placed in Schlenk tube (50 mL) with a magnetic stir bar. The alkynyl
bromide (0.2 mmol) and Et2O (0.5 mL) were added, and the reaction vessel was
evacuated and backfilled with nitrogen three times. The reaction mixture was first
stirred at room temperature for 5 min and then heated to 85 °C for 8 h under
vigorous stirring. Upon completion, the reaction mixture was cooled to room
temperature. The solvents were removed under reduced pressure and the resulting
mixture was purified by silica gel packed flash chromatography column using
hexanes/EtOAc mixtures as the eluent.

Alternatively, the strategy of carbon-carbon bond cleavage could also be used to
construct C(sp)–C(sp3) bonds [98]. In 2013, Martin and co-workers reported the
reaction of Pd-catalyzed C(sp3)–C(sp3) bond cleavage of tert-cyclobutanols reacted
with bromoacetylenes, which gave γ-alkynylated ketones in good yields
(Scheme 3.25a) [99]. Later, Xu’s group demonstrated the decarboxylative alkyny-
lation of quaternary α-cyano acetate salts under copper catalysis (Scheme 3.25b)
[100].
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Scheme 3.25 The cleavage of C(sp3)–C(sp3) bond to construct C(sp)–C(sp3) bonds. a Martin’s
work: γ-alkynylation. b Xu’s work: decarboxylation

3.1 Transformations of Carbon-Halo Bond Motif 31



However, all the previous reported method to construct C(sp)–C(sp3) bonds with
haloalkynes, the halide motif was removed to the waste salts. In 2011, Jiang and
co-workers demonstrated the first example of highly selective Pd-catalyzed inter-
molecular alkynylation reaction of norbornene derivatives, delivering diverse
7-alkynyl norbornane adducts that could not be easily accessed via traditional
methods (Scheme 3.26) [101]. Outwardly, this unique transformation proceeded
through the direct cleavage of the alkynyl–halogen bond, and followed by the
constructions of C(sp)–C(sp3) and C(sp3)–halogen bonds, featuring excellent atom
economy. Their achievements in the synthesis of C7-functionalized norbornyl
alkynes products proved the compatibility of nonclassical norbornonium cation
with this catalytic system.

General Procedure for Pd-Catalyzed Synthesis of 7-Alkynyl Norbornanes: To a
Schlenk tube (25 mL) was successively added Pd(OAc)2 (5 mol%), CH3CN (2 mL),
norbornene (1.3 mmol) and haloalkyne (1 mmol). The resulting mixture was stirred
at 30 °C for 10 h. Then, the mixture was filtered through a small amount of silica
gel. The filtrate was concentrated under reduced pressure and the residue was
purified by silica gel preparative TLC (n-hexane) to give the desired product.

Base on their experimental results and previous reports [33, 102, 103], they
tentatively proposed the reaction mechanism (Scheme 3.27). Initially, the oxidative
addition of Pd0 or PdII species to haloalkyne generated a high-valent alkynylpal-
ladium complex, followed by cis-insertion to give intermediate 28. Subsequently,
the bridging Pd complex 29 was formed, and then the Pd catalyst was transferred to
the bridged carbon on the same side as the incoming alkyne, which led to the highly
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Scheme 3.26 Pd-catalyzed synthesis of 7-alkynyl norbornanes
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stereoselective formation of the alkylpalladium halide intermediate 30. Finally, the
reductive elimination afforded the brominated product and regenerated the active
catalyst species.

Interestingly, Tong’s group [104] also reported a Pd-catalyzed iodoalkynation of
norbornene with the employment of alkynyl iodides, which was found to be
strongly solvent dependent (Scheme 3.28). Polar solvents favored the unexpected
1,7-iodoalkynation adducts, while nonpolar solvents tended to the formation of
1,2-iodoalkynation products. The authors proposed a Pd0/PdII reaction mechanism,
in which the formation of the product was relied on the solvent effects.

3.1.2 Construction of Carbon-Nitrogen Bond

Ynamines and ynamides are modern functional motifs with increasing significance
that can easily and efficiently transfer to the nitrogen-containing compounds, pro-
viding access to privileged scaffolds widely existed in natural products, bioactive
molecules and functional materials [105–107]. Taking advantages of the develop-
ment of efficient methods for ynamide’s preparation, the chemistry of ynamide has
experienced rapid expansion during the past decade [108–111]. Particularly, the
amidative cross-coupling of haloalkynes and amines has emerged as one of the
most important strategies. Although the first example of ynamides were reported by
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Scheme 3.28 Pd-catalyzed iodoalkynation of norbornenes
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Viehe in 1972 [112], and the first synthesis of ynamides through metal-mediated
reactions was documented in 1985 by Balsamo and Domiano [113]. However,
limited progress [114] was achieved until 2003, Hsung et al. [115] disclosed the
first Cu-catalyzed ynamide formation reaction, which provided a straightforward
and atom-economical access to various ynamides (Scheme 3.29). Generally, CuCN
led to more consistent results overall, although no significant different results
appeared when CuI was used instead of CuCN. This coupling reaction tolerated
various types of haloalkynes, and provided a direct entry to chiral ynamides in good
yields. Later on, they developed a more efficient and practical catalytic system for
ynamides synthesis, with the utilization of inexpensive CuSO4·5H2O as catalyst
and 1,10-phenanthroline as the ligand [116, 117]. This protocol had a broad
functional group tolerance and was also applicable for intramolecular amidation
reactions, which could be applied to the construction of unique macrocyclic yna-
mides that contained up to 19-membered ring system (Scheme 3.30). Except for Cu
salts [118–125], other transition metals also presented their high reactivity for the
synthesis of ynamides. In 2009, Zhang’s group disclosed the first Fe-catalyzed
coupling of amides and alkynyl bromides [126]. It was announced that
FeCl3·6H2O, an environmentally friendly alternative to Cu salt, was also a practical
and efficient catalyst for ynamide synthesis (Scheme 3.31).

General Procedure for the Cu-Catalyzed Ynamide Formation Reactions: To a
reaction vial was added amide (1 mmol), K3PO4 (2 mmol), and CuCN (5 mol%).
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Scheme 3.29 Cu-catalyzed ynamide formation reactions
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Bromoalkyne (1 mmol) was then added in a solution of anhydrous toluene (10 mL)
followed by addition of N,N’-dimethylethylene diamine (0.1 mmol). The reaction
vial was sealed and placed in an oil bath at 110 °C for 15–24 h. The reaction was
followed with TLC, LCMS, and/or GCMS analysis. Upon completion, the reaction
mixture was filtered through a small bed of silica gel and concentrated under
vacuum. Purification of the residue by silica gel chromatography (gradient eluent:
0–50% EtOAc in hexane) afforded the corresponding ynamide products.

3.1.3 Construction of Carbon-Sulfur Bond

Acetylenic thioethers are an important class of compounds [127–129]. However,
multi-step synthesis is usually involved for their preparation [130]. In 1962, Miller
and co-workers developed a simple process to synthesize acetylenic thioethers from
haloalkynes and sodium thiolates via nucleophilic subsitution at an acetylenic
carbon (Scheme 3.32) [131]. The key factor for the success of this operation was the
utilization of aprotic solvent DMF as the solvent. Interestingly, the nucleophilic
displacement on these haloalkynes proved to be surprisingly facile even at −25 °C.
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Importantly, it proved that the nucleophilic substitution at an acetlyenic carbon is
possible.

General Procedure for the Synthesis of Acetylenic Thioethers: The solution of
sodium thiolate (1.02 equiv) and haloalkyne (1.0 equiv) in DMF (0.12 mmol/mL)
was mixed and stored at −30 °C in a stoppered flask which had been flushed with
nitrogen. If the reaction was slow, the temperature of the solution was raised to 25 °C
or higher if need be. Unnecessary heating appeared to reduce the yields of products.
On completion of the reaction, the solution was treated with ice and water and
extracted with ether to give the impure sulfides. Careful distillation gave the acet-
ylenic thioether products.

3.1.4 Construction of Carbon-Phosphorus Bond

Alkynyl-phosphorus compounds are an important class of triple bond-containing,
extremely versatile chemicals in modern synthetic chemistry, which are broadly
available for the preparation of structurally sophisticated phosphorus-containing
compounds [132]. In this context, the preparation of alkynyl-phophorus compounds
has attracted considerable attention over the past decades [133]. In 2014, Gao and
co-workers developed Cs2CO3-promoted one-pot synthesis of alkynylphophorus
from bromoalkynes or 1,1-dibromo-1-alkenes via carbon-phosphorus bond forma-
tion. Without base, 1,1-dibromo-1-alkenes could not convert to the desired product
under the standard reaction conditions [Scheme 3.33, Eq. (1)]. Mechanism investi-
gation indicated that 1,1-dibromo-1-alkene could be transferred to the corresponding
bromoalkyne under the treatment of base, and bromoalkyne was the reactive species
[Scheme 3.33, Eqs. (2) and (3)]. Subsequently, the addition of triethyl phosphate led
to the formation of quaternary phosphonium salt 31, with the release of bromide
group affording the phosphonium salt 32, which then underwent Michaelis-Arbuzov
type reaction to afford the alkynyl-phosphorus products (Scheme 3.33) [134].

General Procedure for the Synthesis of Alkynyl-Phosphorus Compounds: An
oven-dried Schlenk tube with Cs2CO3 (0.75 mmol) was evacuated and purged with
argon three times. A mixture of 1,1,-dibromo-1-alkene or bromoalkyne (0.5 mmol)
and P-nucleophiles (0.55 mmol) in toluene (1.5 mL) was added to the tube and
stirred at 120 °C for 24 h. The suspension was filtered and washed with EtOAc
(5 mL × 3). The combined solvent was removed under reduce pressure. The residue
was purified by silica gel chromatography using a mixture of petroleum ether and
ethyl acetate as eluent.

R1 X + R2SNa R1 SR2 + NaClDMF

X = Cl, Br 9 examples
30-70% yields

Scheme 3.32 Synthesis of acetylenic thioethers
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3.2 Transformations of Carbon-Carbon Triple Bond
Motif

Alkyne motif is one of the most reactive and useful fundamental units in synthetic
chemistry, which exhibits rich and tunable reactivity particularly under the treat-
ment of transition metal catalysts. Consequently, the diverse transformations of
alkyne motif contained molecules have attracted considerable attention during the
past decades [135]. Accordingly, transformations of haloalkyne reagents based on
the highly reactive carbon-carbon triple bond, could realize the facile synthesis of
frameworks that previously were unable or difficult to obtain.
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Scheme 3.33 Synthesis of alkynyl-phosphorus compounds
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3.2.1 Nucleophilic Additions

Due to the central role of heteroatom-contained olefins in biological systems and
pharmaceutical applications, the development of efficient and sustainable methods
to synthesize this class of compounds is a long-term task in the area of synthetic and
medicinal chemistry [136–139]. Among various protocols to achieve this goal, the
nucleophilic addition of haloalkynes represents a series of reactions with important
synthetic value to construct C(sp2)–X bonds.

3.2.1.1 Halogen Nucleophiles

Dihaloalkenes have emerged as one of the most versatile intermediates in organic
synthesis, especially in the transition metal-catalyzed cross-coupling reactions.
However, the traditional methods for the preparation of dihaloalkenes usually suffer
some limitations, such as poor selectivity and difficult purification [140–142]. In
2010, Jiang’s group documented the first example of a facile two-step synthesis of
(Z)-2-halo-1-iodoalkenes from simple terminal alkynes, delivering the desired
products in moderate to excellent yields with high regio- and stereoselectivities
(Scheme 3.34) [143]. This method was transition-metal free, and exhibited excel-
lent functional group compatibility. Additionally, the useful halo-iodoalkene
adducts could be easily transformed to the conjugated (Z)-haloenynes and

XR
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Ac2O, 120 oC, 6 h 

R

I X

23 examples
52-96% yields

R = aryl, alkyl
X = Cl, Br
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I Br
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I Cl I Br

95% 91% 86%
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H2O, 50 oC, 12 h
70%

Br
Pd(PPh3)2Cl2 (5 mol%)
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92%

F

F

I Br
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Scheme 3.34 Halogenation reaction of haloalkynes
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asymmetrical (Z)-enediynes in good yields through selective Sonogashira coupling
pathway. Later in 2012, Zhu and co-workers realized the hydrohalogenation of
alkynyl halides to construct (Z)-1,2-dihaloalkenes under palladium catalysis [144].

General Procedure for the Halogenation Reaction of Haloalkynes: The mixture
of haloalkyne (1 mmol), KI (1.5 mmol) and acetic anhydride (1.5 mL) were heated
at 120 °C for 6 h. Then, the mixture was allowed to cool to room temperature, and
water was added. The resulting mixture was extracted with ethyl acetate
(15 mL × 3), and the combined extract was dried with anhydrous MgSO4. The
solvent was removed under reduced pressure and the residue was separated by
column chromatography to give the desired dihaloalkenes.

Due to the unique physical and biological properties of fluorinated molecules,
the corresponding vinyl fluoride products were quite attractive for synthetic and
medicinal chemists [145–149]. Although the halide nucleoaddition to haloalkynes
have provided a diverse set of haloalkene derivatives, the incorporation of fluorine
atom into the final olefin products through transition metal catalysis is still a
challenging target. Rare effective methods are available for the transition
metal-catalyzed direct synthesis of simple fluoroalkene derivatives without addi-
tional functional sites [150]. In 2012, Jiang and coworkers revealed a one-pot
silver-assisted regio- and stereoselective bromofluorination reaction of terminal
alkynes (Scheme 3.35) [151]. The corresponding bromofluoroalkenes could be
obtained in high yields with excellent selectivity. It was found that the electron-rich
internal carbon-carbon triple bond was tolerated under the standard reaction con-
ditions. To gain further insight into the mechanism of the catalytic cycle, the
authors conducted some control experiments, such as the direct fluorination reac-
tions of haloalkynes. Gratifyingly, both bromoalkynes and chloroalkynes exclu-
sively afforded the fluorinated products in good yields. However, the iodoalkynes
transformed to the corresponding iodofluoroalkene and diiodofluoroalkene adducts
in a ratio of 2:1, due to the higher reactivity of iodoalkynes than bromoalkynes and
chloroalkynes. Notably, the stereoselective functionalization of bromide subunit
was successfully realized via Sonogashira or Suzuki coupling reactions. Thus, the
present synthetic protocol would be applicable to obtain the 1-fluoro-1,3-enyne
molecules that widely exist in numerous organic materials and biologically active
compounds.

General Procedure for Ag-Assisted Bromofluorination Reaction of Terminal
Alkynes: To a Schlenk tube was successively added NBS (1.1 mmol), AgF
(2.5 mmol), CH3CN (wet, 2 mL), and alkyne (1 mmol). The resulting mixture was
stirred at 80 °C for 10 h. Then, the mixture was allowed to cool to room temper-
ature, and filtered through a small amount of silica gel. The filtrate was concentrated
under reduced pressure and the residue was purified by silica gel preparative TLC
(n-hexane) to give the desired product.

According to the previous literatures [152, 153] and the obtained experimental
results, the authors tentatively proposed the possible reaction mechanism
(Scheme 3.36). Initially, the bromoalkyne intermediate was formed through the
Ag-promoted bromination of terminal alkynes. Subsequently, the Ag cation was
attacked by the triple bond of bromoalkyne to give a π-complex 33, which was then
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transferred to the corresponding vinylsilver intermediate 35 by trans-addition of
AgF to bromoalkyne. Finally, protonation of 35 afforded the final product and silver
oxide. The high regio- and stereoselectivities were proposed to be originated from
the back-side attack of the fluoride anion (34 to 35) as well as the bromide atom was
regarded as both an activating and regio-directing functional group. However,
another mechanism involving the formation of vinylsilver intermediate 35 through
the nucleophilic addition of fluoride to bromoalkyne could not be ruled out.
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Halogenated 1,n-dienes, another significant kind of structural building blocks,
are usually employed to construct biologically active and multifunctional com-
pounds [154–157]. In 2011, Zhu’s group documented an efficient and selective
method for the synthesis of (1E)- or (1Z)-1,2-dihalo-1,4-dienes via Pd-catalyzed
coupling of haloalkynes and allylic halides (Scheme 3.37) [158]. Interestingly, the
E/Z selectivity of the diene product could be switched by the addition of stoi-
chiometric lithium halides. With the same halopalladation strategy, they also
reported a Pd-catalyzed coupling approach of alkynyl halides with α,β-unsaturated
carbonyls [159] and 2,3-butadienyl acetates [160] for the synthesis of cis-
1,2-dihaloalkene and (1Z)-1,2-dihalo-3-vinyl-1,3-diene derivatives.

In 2013, Jiang’s research group reported Pd-catalyzed intermolecular
cross-coupling reactions for the stereoselective synthesis of functionalized 1,n-di-
enes in ionic liquids (ILs) [161]. The ionic liquids not only acted as a solvent in the
reaction, but also served as the excess halide ions source to control the Z/E
selectivity. A chain-walking mechanism for this transformation is tentatively pro-
posed in Scheme 3.38. Firstly, Pd complex was formed in situ in ILs and vinyl-
palladium intermediate 36 was generated by trans-halopalladation of the alkyne
moiety in the presence of excess halide ions in a polar solvent system.
Subsequently, 36 underwent alkene insertion to deliver the alkylpalladium species
37, followed by rapid β-H elimination and reinsertion to change the position of the
metal on the alkyl chain, affording the intermediate 38. Finally, a β-heteroatom
elimination gave the obtained dihalo-1,n-diene adduct.

R1 Br
+

X

Pd(OAc)2

CH2Cl2, 23 oC HOAc, 23 oC

Pd(OAc)2, LiX
Br

R1

X

X = Cl, Br

Br
X

R1

R1 X1

HOAc, 23 oC

Pd(OAc)2, LiX2

+ O

R3

R2 X1

X2

R1

R3

OR2

X1 = Cl, Br; X2 = Cl, Br, I
R1 = aryl, alkyl; R2, R3 = H, alkyl

30 examples
Z/E up to 98/2

R X C
OAc MeCN, 60 oC

Pd(OAc)2, LiBr
+

X
Br

R
19 examples

58-87% yields
Z/E > 98/2

R = aryl, alkyl
X = Cl, Br

Scheme 3.37 Pd-catalyzed synthesis of haloalkenes
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General Procedure for Pd-Catalyzed Synthesis of Functionalized Dihalo-1,n-
dienes: To a test tube (10 mL) equipped with a magnetic stirring bar were succes-
sively added haloalkyne (0.5 mmol), alcohol (0.6 mmol), palladium chloride (3 mol
%), ionic liquid (0.5 mL), HX (X = Cl, Br) (0.25 mL). The mixture was stirred under
the atmosphere of air at room temperature. After the reaction was completed, the
mixture was poured into ethyl acetate (30 mL). The organic layer was washed with
brine to neutral, dried over anhydrous MgSO4, concentrated in vacuum. Purification
of the residue on a preparative TLC afforded the desired products.

Additionally, saturated lactones are found in a wide range of synthetically
challenging and biologically significant natural products, which exhibit extraordi-
nary pharmaceutical and biological properties [162–164]. Taking the advantages of
halo-nucleopalladation, Jiang and coworkers realized the first example of
palladium-catalyzed intermolecular cascade annulation for the construction of
γ-lactones with regio- and stereoselectivity in ionic liquids (ILs) (Scheme 3.39)
[165]. Besides the broad substrate scope, their cascade annulation reaction tolerated
diverse functional groups. Significantly, all the obtained products were resulted from
trans addition under the standard reaction conditions. Interestingly, they also applied
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Scheme 3.38 Pd-catalyzed synthesis of functionalized dihalo-1,n-dienes
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their method to the reaction with but-3-enoic acid, and various β-lactones could be
successfully obtained under similar reaction conditions (Scheme 3.39) [165].

General Procedure for Palladium-Catalyzed Synthesis of β-, and γ-Lactones: To
a test tube (10 mL) equipped with a magnetic stirring bar were successively added
haloalkyne (0.25 mmol), the corresponding acid (0.3 mmol), palladium chloride
(3 mol%), ionic liquid (0.5 mL). The mixture was stirred under the atmosphere of
air at room temperature. After the reaction was completed, the mixture was poured
into ethyl acetate (30 mL). The organic layer was washed with brine to neutral,
dried over anhydrous MgSO4, concentrated in vacuum. Purification of the residue
on a preparative TLC afforded the lactone product.

Based on the current results and previous literatures [161, 166, 167], the authors
proposed the possible reaction mechanism, which was illustrated in Scheme 3.40.
Firstly, Pd complex was formed in situ in ILs and vinylpalladium intermediate 36
was generated by trans-halopalladation of the alkyne moiety in the presence of
excess halide ions in a polar solvent system. Subsequently, 36 underwent alkene
insertion. The vinylpalladium species coordinated to the oxygen atoms of the
hydroxyl group to generate the palladium/alkyl intermediate 39. Finally, a reductive
elimination gave the obtained lactone adduct and Pd0. Noteworthy, a silver mirror
was observed after the completion of the reaction. Hence, the resulting Pd0 was
further oxidized to PdII which would be involved the next catalytic cycle.
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Scheme 3.39 Palladium-catalyzed synthesis of β- and γ-lactones
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3.2.1.2 Boron Nucleophiles

As the diverse transformation abilities of organoborane compounds, the synthesis of
α-halovinylboranes attracted the attention of scientists early in 1967 [168]. Addition
of dicyclohexylborane to haloalkynes afforded the corresponding trans-α-
halovinylboranes, which could directly convert to the corresponding ketones.
Importantly, it was found out that trans-α-halovinylboranes were stable toward
alkyl group migration in THF solvent as evidenced by their conversion into cis-
vinyl halides upon hydrolysis with acetic acid (Scheme 3.41). With this protocol of
α-halovinylboranes, Brown [169] and Walsh [170] applied them into diverse
transformations.

General Procedure for the Synthesis of trans-α-Halovinylboranes: To a sus-
pension of dicyclohexylborane (30 mmol) in THF (60 mL) at 0 °C was added
haloalkyne (30 mmol). The reaction mixture was maintained for an additional
30 min at 20–30 °C, and then used directly for the next transformation.

3.2.1.3 Carbon Nucleophiles

The addition of carbon necleophiles to unsaturated bonds is a very important
strategy to construct carbon-carbon bond. In 2008, Nakamura and co-worker
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reported indium-catalyzed addition of 1,3-dicarbonyl compounds to 1-iodoalkynes
[171]. This reaction proceeded exclusively in a syn-fashion to give E-alkenyl iodide
in high yields. And the structure of the product was unambiguously determined by
X-ray crystallographic analysis. Importantly, the iodine atom not only served as an
activating group, but also as a direct group that controlled the regioselectivity of the
addition (Scheme 3.42). Later, Jiang’s group [172] documented the nucleophilic
addition of isocyanides to bromoalkynes via palladium catalysis, and Vadola [173]
realized the gold-catalyzed dearomative spirocyclization of aryl alkynoate esters.

General Procedure Indium-Catalyzed Addition of 1,3-Dicarbonyl Compounds to
1-Iodoalkynes: A mixture of 1,3-dicarbonyl compound (2 mmol), 1-iodoalkyne
(3 mmol), and In(NTf2)3 (5 mol%) in toluene (2 mL) was heated in the dark at
70 °C for 4 h. The mixture was filtered through a pad of silica gel and concentrated.
The crude product as purified by silica gel column chromatography to give the
desired product.

3.2.1.4 Nitrogen Nucleophiles

β-Halo enamines are not only important building blocks in functional molecules, but
also reactive intermediates for many chemical processes [174–176]. Undoubtedly,
the addition of nitrogen to haloalkynes is a convenient route to facile access β-halo
enamines. In 2013,Wang [177] and co-workers reported the silver-catalyzed addition
reaction of tetrazoles with bromoalkynes, delivering the β-halo enamine products in
good yields and excellent stereoselectivities. Control experiments indicated that N-
phenylcyanamide (40) was the reactive intermediate (Scheme 3.43). Importantly, the
β-halo enamine products could be further transformed to 2-arylindoles.

General Procedure for Ag-Catalyzed Synthesis of β-Halo Enamines: A reaction
tube (10 mL) was charged with tetrazole (0.5 mmol), bromoalkyne (0.75 mmol),
Ag2O (20 mol%) and DMSO (2 mL). The reaction vessel was placed in an oil bath.
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Scheme 3.42 Indium-catalyzed addition of 1,3-dicarbonyl compounds to 1-iodoalkynes
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After the reaction was carried out at 130 °C for 12 h, it was cooled to room
temperature, extracted with EtOAc (5 mL × 3). The organic layers were combined,
dried over MgSO4, and concentrated. The residue was purified by flash chro-
matography on silica gel to give the β-halo enamine product.

3.2.1.5 Oxygen Nucleophiles

The β-haloenol acetate subunits are of considerable significance in organic syn-
thesis and pharmaceutical chemistry [178–180]. It is striking, however, very few
catalytic methods have been developed to construct the OC=CX motif in one step
from simple terminal alkynes [181, 182]. In 2010, Jiang’s group reported the first
example of Ag-catalyzed alkyne difunctionalization reaction to afford the (Z)-β-
haloenol acetate derivatives with extremely high regio- and stereoselectivities
(Scheme 3.44) [183]. They proposed that the haloalkyne intermediate was first
generated and then the triple bond attacked the Ag cation to deliver a π-complex 41,
which was transferred to the corresponding σ-complex 42 through the nucleophilic
attack of acetic anion. Finally, protonation of 42 gave the desired β-haloenol acetate
product. Accordingly, the high regio- and stereoselectivities might be owing to the
stabilization effect of halogen atom to the Ag catalyst. Later, plenty of methods
have been developed for the nucleophilic addition of haloalkynes with diverse
oxygen nucleophiles, and delivered the corresponding β-haloenol [184, 185] or α-
haloketone [186, 187] derivatives in good yields.

General Procedure for Ag-Catalyzed Synthesis of (Z)-β-Haloenol Acetates: To a
test tube (10 mL) equipped with a magnetic stirring bar were successively added
terminal alkyne (1 mmol), NBS (1.2 mmol), acetic anhydride (2 mL), silver
tetrafluoroborate (5 mol%). The mixture was stirred at 120 °C for 12 h. Then the
solution was allowed to cool to room temperature, extracted with ethyl acetate
(15 mL × 3). The combined extracts were dried over anhydrous MgSO4, filtered
and concentrated in vacuum. The residue was purified by column chromatography
to give the haloenol acetate product.
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Scheme 3.43 Ag-catalyzed synthesis of β-halo enamines
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3.2.1.6 Sulfur Nucleophiles

The importance of β-halo alkenyl sulfides has made them attract the attention of
many scientists [188]. One of the most effective methods to access these com-
pounds is the hydrothiolation of haloalkynes. In 2014, Zhu’s group documented a
K2CO3-promoted hydrothiolation reaction of haloalkynes, producing β-halo alkenyl
sulfides in high yields with excellent regio- and stereoselectivities. This opera-
tionally simple and efficient protocol tolerated diverse functional groups
(Scheme 3.45) [189].

General Procedure for K2CO3-Promoted Hydrothiolation of Haloalkynes: To a
mixture of 2-mercaptopyridine (0.6 mmol) and K2CO3 (0.65 mmol) in EtOH
(2 mL) was added haloalkyne (0.5 mmol). After stirring at room temperature for
10 h, the reaction mixture was quenched with water, extracted with EtOAc, dried
over Na2SO4 and concentrated. Column chromatography on silica gel gave the β-
halo alkenyl sulfide products.
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Scheme 3.45 K2CO3-promoted hydrothiolation of haloalkynes
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3.2.2 Cycloadditions

Transition metal-catalyzed cycloadditions have demonstrated their great value in
the efficient construction of ring systems and complex skeletons [190, 191]. Due to
their electron-withdrawing properties, haloalkynes could potentially accelerate the
reaction rate of cycloaddition. In this context, transition metal-catalyzed cycload-
ditions of haloalkynes have attracted considerable attention. Additionally, the halide
moiety could be utilized for further decoration, providing an alternative protocol for
those cyclic structures difficult to access via direct cycloaddition procedure.

3.2.2.1 [2 + 2] Cycloaddition

The [2 + 2] cycloadditions between alkynes and alkenes are known to be an
efficient method for the construction of cyclobutene rings [192, 193]. In 2004,
Tam’s group developed the [2 + 2] cycloaddition of bicyclic alkenes with
haloalkynes under Ru catalysis (Scheme 3.46) [194]. Notably, the halide moiety
greatly improved the reactivity of the alkyne component in the cycloaddition
reaction. Importantly, the obtained cycloadducts could be transferred into various
products via nucleophilic addition, Suzuki coupling, and Sonogashira coupling.
Mechanism studies indicated that chloroalkynes reacted faster than bromoalkynes
in this cycloaddition [195, 196]. Later, Koldobskii [197, 198] reported the [2 + 2]
cycloaddition reaction of haloalkynes and vinyl ethers.

General Procedure for Ru-Catalyzed [2 + 2] Cycloaddition between
Norbornadiene and Haloalkynes: A mixture of nobornadiene (3–5 equiv), and
haloalkyne (1 equiv) in THF (0.5 mmol/mL) was added via a cannula to an
oven-dried screw-cap vial containing Cp*RuCl(COD) (10 mol%) under nitrogen.
The reaction mixture was stirred in the dark at 25–65 °C for 1–168 h. The crude
product was purified by column chromatography to give the cycloadduct.
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Scheme 3.46 Ru-catalyzed [2 + 2] cycloaddition between norbornadiene and haloalkynes
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In sharp contrast, the [2 + 2] cycloaddition of monocyclic alkenes with alkynes
continues to represent a synthetic challenge. In 2011, Jiang and coworkers dis-
covered that cyclooctene, a flexible alkene rather than the strained norbornene,
reacted with haloalkyne could lead to a four-membered ring system via [2 + 2]
cycloaddition pathway under mild conditions (Scheme 3.47, path B), while the
3-propynyl halide derivatives were not detected (Scheme 3.47, path A) [101]. This
approach was another representative example of haloalkynes for carbocycle for-
mation under Pd catalysis. Importantly, aromatic alkynyl bromides, with either
electron-donating or electron-withdrawing groups attached to the benzene rings,
were able to undergo the [2 + 2] cycloaddition smoothly and delivered the corre-
sponding cycloadducts in moderate to good yields. However, cyclododecene was
found to be completely ineffective under the optimized conditions, while cyclo-
heptene afforded an inseparable mixture including the Alder-ene products. These
observations indicated that the ring size of the cyclicalkene was crucial for the
formation of the desired cyclobutene derivatives.

General Procedure for the Cycloaddition of Haloalkynes and Cyclooctene: To a
Schlenk tube (25 mL) was successively added Pd(OAc)2 (5 mol%), CH3CN (2 mL),
cyclooctene (1.3 mmol) and haloalkyne (1 mmol). The resulting mixture was stirred
at 30 °C for 10 h. Then, the mixture was filtered through a small amount of silica
gel. The filtrate was concentrated under reduced pressure and the residue was
purified by silica gel preparative TLC (n-hexane) to give the desired product.

Additionally, a unique example was reported by Mikami in 2011 [199]. The
catalytic asymmetric [2 + 2] cycloaddition reaction of 1-iodoalkyne with ethyl
trifluoropyruvate was realized in the presence of a palladium catalyst 43. Although
the author only presented three substrates, this reaction indeed represented the first
example of catalytic asymmetric [2 + 2] cycloaddition reaction of haloalkyne with a
carbonyl group (Scheme 3.48).

General Procedure for Pd-Catalyzed Asymmetric [2 + 2] Cycloaddition
Reaction of 1-Iodoalkyne: To a solution of (S)-BINAP-PdCl2 (2 mol%) in CH2Cl2
(2 mL) was added AgSbF6 (2.2 mol%) at room temperature under argon atmo-
sphere. After stirring for 30 min, ethyl trifluoropyruvate (1 mmol) and iodoalkyne
(0.5 mmol) were added to the mixture at −20 °C for 12 h, and then the reaction
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mixture was directly loaded onto a short silica-gel column to remove the catalyst.
Purification by silica-gel chromatography gave the corresponding oxetene product.
And the enantiomeric excess was determined by chiral HPLC analysis.

3.2.2.2 [3 + 2] Cycloaddition

The Cu-catalyzed azide–alkyne [3 + 2] cycloaddition reaction has been widely
investigated in the field of synthetic and medicinal chemistry, polymer chemistry,
and materials science [200]. However, the efficiency and selectivity of this trans-
formation depend on the reactivity of in situ generated CuI acetylides. Therefore the
reaction partners are usually limited to terminal acetylenes, which provide only
1,4-disubstituted triazoles. In this regard, a general and practical protocol for the
regio-controlled construction of different substituted triazoles would be a valuable
complement to the “click chemistry”. One outstanding example is that the efficient
method reported by Hein and Fokin et al., for the chemo- and regioselective syn-
thesis of iodotriazoles from organic azides and iodoalkynes (Scheme 3.49) [201].
This reaction featured a broad substrate scope, excellent functional group and
solvent tolerance, and also remarkably high reaction rates. The employment of
TTTA as ligand was the key to achieve this transformation, because no reaction was
observed when TTTA was omitted, and the chemoselectivity as well as the
observed rate of the reaction were strongly dependent on the nature of the ligand.
As an additional benefit, the 5-iodo-1,2,3-triazole adducts are versatile synthetic
intermediates, which are amenable to further functionalization. Later, García-
Álvarez [202], Rowan [203], Zhu [204], and Díez-González [205] independently
reported the cycloaddition of azides with haloalkynes under copper catalysis.

General Procedure for Copper-Catalyzed Cycloaddition of Azides with
1-Iodoalkynes: CuI (5 mol%) and TTTA (5 mol%) were stirred in THF (4.5 mL) at
room temperature for 20 min, after which time a homogeneous solution was
obtained. Organic azide (1 mmol) and 1-iodoalkyne (1 mmol) were dissolved in
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THF (0.5 mL) and added in a single portion to the catalyst solution. The reaction
mixture was stirred for 45 min, and then quenched by adding 10% NH4OH solution
(1 mL). The volatile components were removed by evaporation, and the resulting
residue was suspended in water and diethyl ether. A precipitate formed upon vig-
orous stirring and was isolated by filtration to give the triazole as white powder.

Base on the experimental results and previous literatures [206, 207], the authors
outlined their mechanistic proposals in Scheme 3.50. In path A, firstly, σ-acetylide
complex 44 was formed. Then, key intermediate 44 coordinated to the proximal
nitrogen center and subsequent cyclization to afford the cuprated triazole 45.
Finally, copper exchanged with iodoalkyne via σ-bond metathesis to provide the
iodotriazole product and regenerate the acetylide 44. On the other hand in path B,
copper might activate the iodoalkyne through the formation of a π-complex inter-
mediate 46, which would engage the azide to deliver complex 47. Then the com-
plex 47 underwent cyclization through a vinyldiene-like transition state 48 to
produce the triazole product.

The isoxazole moiety is also an attractive pharmacophoric element which is
found in various useful therapeutic agents [208, 209]. The [3 + 2] cycloaddition of
nitrile oxides with haloalkynes is an efficient route to facile access halo substituted
isoxazole compounds, which could be further functionalized. Although this reaction
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was investigated early in 1989, it suffered limited substrate scope or poor yields
[210, 211]. In 2010, Browne and co-workers reported a thermally promoted
cycloaddition of iodoalkynes with in situ generated nitrile oxides from
chloro-oximes. This method has a broad substrate scope with respect to both
iodoalkynes and chloro-oximes, and delivered the corresponding isoxazole prod-
ucts in good yields with excellent regioselectivity (Scheme 3.51) [212].

General Procedure for the Cycloaddition of 1-Iodoalkynes and Nitrile Oxides:
The chloro-oxime (0.5 mmol), iodoalkyne (1 mmol), and DME (3 mL) were added
to a two-necked round-bottom flask, which was then equipped with a suba seal and
a condenser. The mixture was heated to 100 °C for 24 h with syringe pump addition
of a Na2CO3 aqueous solution (2.1 mL, 0.25 M in water). Then the reaction was
cooled, extracted with DCM, dried with MgSO4, filtered, and concentrated. The
residue was purified by column chromatography on silica gel.

Imidazo-containing motifs are versatile building blocks in natural products and
bioactive compounds that have great significance in the area of pharmaceuticals
[213, 214]. Undoubtedly, the intermolecular oxidative diamination of haloalkynes
via a transition metal-catalyzed nucleophilic addition/C–N bond formation cascade
process is an attractive approach to synthesize imidazo derivatives, in which the
reactive halogen substituent of the haloalkynes was retained. In 2012, Jiang and
co-workers revealed a new and direct approach to construct 2-halo-substituted
imidazo[1,2-a]pyridines through the Cu-catalyzed oxidative cyclization reaction of
o-aminopyridines and haloalkynes. Various 2-halo-substituted imidazopyridine,
imidazopyrazine and imidazopyrimidine products were obtained with high
regioselectivity under mild reaction conditions (Scheme 3.52) [215]. Furthermore,
the resultant 2-halo-substituted products could be easily functionalized via elegant
cross-coupling reactions. A highly conjugated structure 49 was successfully con-
structed after three-step synthesis. The practicality of this Cu-catalyzed oxidative
cyclization reaction exhibited its potential utilities for the construction of opto-
electronic materials (Scheme 3.53).
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General Procedure for Cu-Catalyzed of Synthesis of Imidazopyridine Structures:
A mixture of 2-aminopyridine (0.3 mmol), haloalkyne (0.2 mmol), and Cu(OTf)2
(20 mol%) was stirred in MeCN (2 mL) at 60 °C under an oxygen atmosphere for
12 h. Then, water (10 mL) was added to quench the reaction. The aqueous solution
was extracted with diethyl ether (10 mL × 3) and the combined organic layers were
dried with MgSO4, filtered and concentrated in vacuum. The residue was separated
by flash column chromatography on silica gel to give the imidazopyridine products.

Pyrroles represent an interesting class of nitrogen-containing heterocycles that
exhibit diverse therapeutic and biological activities [216–218]. Among them,
3-halo-substituted pyrroles are quite appealing as they provide a facile method for
the deravatization at the 3-position of pyrroles. However, the examples for their
efficient synthesis are still very rare. [219, 220]. In 2015, Jiang’s group documented
a novel palladium-catalyzed oxidative cyclization of bromoalkynes with N-alky-
lamines via cascade formation of C–N and C–C bond [221]. A wide spectrum of
3-bromopyrroles were obtained in moderate to excellent yields. Furthermore, the
resultant 3-bromopyrroles could be easily functionalized via elegant cross-coupling
reactions (Scheme 3.54).

General Procedure for Pd-Catalyzed of Synthesis of 3-Halo-Substituted
Pyrroles: N-Allylamine (0.2 mmol), bromoalkynes (0.2 mmol), PdCl2 (10 mol%)
and BQ (2 equiv) were added to a solution of toluene/DMSO (2 mL, v/v = 5/1). The
mixture was stirred under air at 110 °C. Upon completion, water (15 mL) was
added and the resulting mixture was extracted with ethyl acetate (15 mL × 2). The
combined organic phase was dried over Na2SO4, filtered and concentrated. The
residue was eventually purified by flash column chromatography on silica gel with
petroleum ether/ethyl acetate as eluent to afford the corresponding pyrroles.

On the basis of experimental data and previous reports [222, 223], a tentative
reaction mechanism for this transformation was proposed in Scheme 3.55. Initially,
the intermediate 50 was generated by the reaction of palladium(II) and N-allyamine.
Subsequently, an intermolecular cis-insertion of bromoalkyne into the N-Pd bond
gave the intermediate 51, which underwent 1,2-migratory insertion, delivering the
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species 52. A sequence of β-hydride elimination and isomerization afforded the
desired 3-bromopyrrole adducts. In the meantime, palladium(0) species was reox-
idized to palladium(II) species by BQ (1,4-benzoquinone).
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3.2.2.3 [4 + 2] and [2 + 2 + 2] Cycloadditions

Transition metal-catalyzed [4 + 2] cycloaddition represents one of the most
straightforward and efficient methods for the construction of six-membered rings
[224, 225]. Due to the diverse transformation of the carbon carbon triple bond motif,
haloalkynes have also exhibited their applications in transition metal-catalyzed
[4 + 2] cycloaddition reactions [226]. In 2005, Tam’s group [227] documented the
first example of cationic Rh-catalyzed intramolecular [4 + 2] cycloaddition reaction
of diene-tethered alkynyl halides (Scheme 3.56). The halide unit was found to be
compatible under this catalytic system. Significantly, the halogen-containing
cycloadducts could be converted into various products of synthetic usefulness.

General Procedure for Rh-Catalyzed [4 + 2] Cycloaddition of Diene-Tethered
Alkynyl Halides: Inside an inert atmosphere (Ar) Glove Box, [RhCl(COD)]2
(2.5 mol%) and AgSbF4 (5 mol%) was added to an oven-dried vial and dissolved in
acetone (3 mL). The reaction mixture was allowed to stir for 30 min and then added
to another oven-dried vial containing the diene-tethered alkynyl halide (0.2 mmol)
dissolved in acetone (6 mL). The reaction mixture was stirred at room temperature
for 30 min. The crude reaction mixture was purified by column chromatography
(EtOAc:hexanes = 1:9) to provide the desired product.

Additionally, another alternative method for the synthesis of six-membered rings
is the [2 + 2 + 2] cycloaddition reaction [228]. In 2009, Nicolaou et al. [229] firstly
reported the total synthesis of sporolides B, an unusual natural product isolated
from the marine actinomycete Salinospora tropica. Crucially, they forged the
chlorobenzenoid indane structural motif through a regio- and stereoselective
Ru-catalyzed intermolecular [2 + 2 + 2] cycloaddition reaction between two acet-
ylenic motifs, one of which bearing the chlorine residue (Scheme 3.57). This
excellent work showed the prominent potential application of haloalkyne deriva-
tives in the total synthesis of natural product.
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3.3 Transformations Involved Both Carbon-Halo Bond
and Carbon-Carbon Triple Bond Motif

The development of efficient and practical methods for the construction of
molecular complexity from simple and readily available reagents is an everlasting
research topic in synthetic chemistry. The transformations of haloalkynes, involving
both the carbon-carbon triple bond unit and the carbon-halo bond motif, have
provided a valuable strategy to access various useful compounds.

3.3.1 Initially Reacted at the Carbon-Halo Bond

Unsaturated heterocyclic compounds are important synthetic intermediate as well as
prevalent structural motifs found in natural and artificial molecules [230]. In 2008,
Urabe and co-workers reported 1,2-double amination of haloalkynes via copper
catalysis, a concise route for the synthesis of protected tetrahydropyrazines and
related compounds. This reaction exhibited reasonable generality for aliphatic and
aromatic haloalkynes, delivering the corresponding tetrahydropyrazines in good
yields (Scheme 3.58) [231].

General Procedure for Copper-Catalyzed Diamination of Haloalkynes: To a
mixture of N,N′-di(p-toluenesulfonyl)ethylenediamine (0.4 mmol), powdered
K3PO4 (0.8 mmol), and CuI (5 mol%) was added haloalkyne (0.4 mmol) in DMF
(4 mL), followed by N,N′-dimethylethylenediamine (0.1 mmol) under argon.

Scheme 3.57 [2 + 2 + 2] Cycloaddition of haloalkyne in natural product synthesis
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The mixture was stirred in an oil bath maintained at 110 °C for 4 h. After being
cooled to room temperature, the reaction mixture was diluted with water and
extracted with ethyl acetate. The combined organic layers were dried over Na2SO4

and concentrated in vacuo to give a crude oil, which was purified by column
chromatography on silica gel.

The author also proposed the reaction mechanism as outlined in Scheme 3.59.
Firstly, the alkynylation of sulfonamide gave the ynamide intermediate 53, then the
second amination of the acetylenic bond in 54 proceeded in a 6-endo-dig manner
under copper catalysis to give cuprate 54. Finally, protonation of the intermediate
54 provided the observed product and released the copper catalyst (path A).
Importantly, the formation of isomeric tetrahydroimidazole 58 via the cyclization of
5-exo-dig mode (56 to 57, path B) was not observed. Interestingly, when
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bromopropiolic acid derivatives were used, the 5-exo-dig type product could be
obtained in good yield under transition-metal-free conditions [232]. Upon the
diverse transformation abilities of ynamide, Jiang’s group realized the synthesis of
naphthalene-1,3-diamine derivatives from haloalkynes and amines under copper
catalysis [233].

Amides are one of the most prevalent functional groups in natural products,
pharmaceuticals, and polymers. In 2011, Jiang’s group revealed a mild and efficient
multi-component reaction for the construction of amides from bromoalkynes under
transition-metal free conditions, which provided a wide range of secondary and
tertiary amides in moderate to excellent yields (Scheme 3.60) [234]. The control
experiments indicated that the alkynyl bromide should first react with amine to
generate ynamine adduct and the isotopic labeling investigation clearly demon-
strated that the oxygen atoms of the amide products originated from water
[Scheme 3.60, Eqs. (1)–(3)]. Based on these observations, a mechanism involving
ynamine intermediate formation and nucleophilic addition process was proposed.
Later, they applied this method to construct thioamides [235].
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General Procedure for the Synthesis of Amides: The mixture of 1-bromoalkyne
(1 mmol) and amine (1.5 mmol) in water (2 mL) was stirred at 120 °C for 6 h in a
Schlenk tube (25 mL). Upon completion of the reaction, water (8 mL) was added to
the mixture. The resulting aqueous solution was extracted with diethyl ether
(15 mL × 3). The combined organic phase was dried with anhydrous MgSO4,
filtered and concentrated. The residue was purified by column chromatography to
give the corresponding amides.

3.3.2 Initially Reacted at the Carbon-Carbon Triple Bond

Benzo[b]furans, are versatile synthetic blocks and significant structural motifs of
natural products and potential drugs [236–238]. Due to their potential applications,
the development of practical and efficient synthetic methods is highly demanded. In
2011, Wang and co-workers reported a sequential, one-pot reaction of phenols with
bromoalkynes for the synthesis of benzo[b]furans [239]. This reaction tolerated
diverse functional groups, and delivered the corresponding benzo[b]furan products
in good yields. Importantly, the reaction intermediate could be isolated, and gave
the desired product in high yield under the standard reaction conditions
(Scheme 3.61).

General Procedure for the Synthesis of Benzo[b]furans: Under air atmosphere, a
sealable tube equipped with a magnetic stirrer bar was charged with phenol
(1.1 mmol), bromoalkyne (1 mmol), K2CO3 (2 mmol) and DMF (2 mL). The
rubber septum was then replaced with a Teflon-coated screw cap, and the reaction
vessel was placed in an oil bath at 110 °C for 12 h. Then PdCl2 (5 mol%) was added
and the reaction was performed at 130 °C for 6 h. After the reaction was completed,
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it was cooled to room temperature and diluted with ethyl acetate. The resulting
solution was directly filtered through a pad of silica gel using a sintered glass
funnel, and concentrated under reduced pressure. The residue was purified by
chromatography on silica gel to give the benzo[b]furan product.

Based on these observations, the author proposed the possible reaction mecha-
nism. Firstly, the intermolecular nucleophilic addition of phenol to bromoalkyne in
the presence of base formed the (Z)-2-bromovinyl phenyl ether 59. Then the
intermediate 59 reacted with Pd0 to give the PdII complex 60 via oxidative addition.
Subsequently, an intramolecular electrophilic aromatic palladation of 60 generated
the intermediate 61, which was followed by a reductive elimination to provide the
product and regenerate the Pd0 catalyst (Scheme 3.62).

Except for furan derivatives [240], benzoxazepine derivatives, a very important
kind of seven-membered ring, are the core building blocks with remarkable bio-
logical activities and pharmaceutical interests [241–243]. Unfortunately, multi-step
synthesis is necessary for their preparation, which usually prevents them from
constructing benzoxazepine analogues that are diverse in structure and electronic
property. In 2012, Jiang and co-workers documented a robust route for the con-
struction of substituted 4-amine-benzo[b] [1,4] oxazepines in a facile and conve-
nient manner. This Pd-catalyzed cascade transformation of o-aminophenols,
bromoalkynes and isocyanides underwent a selective C–O and C–N bond formation
procedure and delivered the desired products in good to excellent yields
(Scheme 3.63) [244].

General Procedure for Pd-Catalyzed Cascade Reaction for 4-Amine-benzo[b]
[1,4] oxazepines: Themixture of 2-aminophenol (0.5 mmol), Pd(PPh3)2Cl2 (5 mol%)
and PPh3 (10 mol%) in 1,4-dioxane (1 mL) was placed in a Schlenk tube. Then,
Cs2CO3 (1 mmol) and bromoalkyne (0.5 mmol) were added successively. The
mixture was stirred for five min at room temperature. Subsequently, isocyanide
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(0.6 mmol) was added in one portion. The resulting mixture was stirred at 80 °C for
2 h. Upon completion, the reaction mixture was extracted with ethyl acetate
(10 mL × 3), and the combined organic layers were dried over anhydrous MgSO4,
filtered and concentrated under reduced pressure. The residue was purified by silica
gel column chromatography (hexanes/EtOAc = 10/1) to give the corresponding
product.

According to the mechanistic investigations, a possible catalytic cycle for this
cascade reaction was illustrated in Scheme 3.64. Initially, nucleophilic addition of
o-aminophenols to bromoalkynes delivered 62, which underwent oxidative addition
to Pd0 species to form vinylpalladium(II) species 63. Subsequently, migratory

NH2

OH
R2

Br

+

N CR3

O

N

R2

Pd(PPh3)2Cl2 (5 mol%)
PPh3 (10 mol %), Cs2CO3 (2 equiv)

 1,4-dioxane, 80 oC
R1 R1

H
N R3

28 examples
47-98% yields

O

N

HN t-Bu

O

N

HN t-Bu

O2N

O

N

HN t-Bu

Cl

47%86% 90%

Scheme 3.63 Pd-catalyzed cascade reaction for 4-amine-benzo[b][1,4]oxazepines

Pd0L2

O

R2

NH2

R1 PdIIBrL2

O

R2

P
d IIB

rL
2

NH2

R1
N

R3

O

PdIIHN N

R2

R3

L L

R1

CNR3

HBr

Base

O

H
N

R2

N R3

R1O

N

R2

H
N R3

R1

63

64

O
OH

NH2

+

Br

R2R1

R2

Br

NH2

R1

62

Scheme 3.64 Proposed mechanism

62 3 Reactions of Haloalkynes



insertion of isocyanide and release of HBr under basic conditions gave the
eight-membered azapalladacyclic intermediate 64. Finally, reductive elimination
and isomerization provided the benzoxazepine product, as well as regenerating the
active Pd0 catalyst.

Besides oxygen, nitrogen [245] nucleophiles triggered cascade annulation
reactions of haloalkynes, carbon nucleophiles could also be used to construct cyclic
compounds. In 2014, Jiang’s group reported the first Pd-catalyzed annulation
reaction of bromoalkynes and isocyanides, which provided a direct and practical
route to a wide range of 5-iminopyrrolones with excellent reigoselectivity
[Scheme 3.65, Eq. (1)] [172]. This reaction could proceed smoothly under mild
reaction conditions, and broad functional groups could be tolerated. Intriguingly,
they observed the formation of 2,5-diimino-furan as side product, an isomer with
the same molecular weight as 5-iminopyrrolone [Scheme 3.65, Eq. (2)].
Systematically condition screening revealed that base and the reaction time were
crucial for the reaction pathway. CsF and longer reaction time (8–12 h) preferred
the formation of 5-iminopyrrolones, while K2CO3 and shorter reaction time (2 h)
were favored to deliver the 2,5-diimino-furan products [246]. Furthermore, the
resultant furans could readily undergo hydrolysis to give maleamide skeletons,
which might have further applications in synthetic and medicinal chemistry.

General Procedure for Pd-Catalyzed Synthesis of 5-Iminopyrrolones: A mixture
of Pd(OAc)2 (5 mol%), H2O (0.1 mL), DMSO (2 mL), isocyanide (3 mmol),
haloalkyne (1 mmol) and CsF (1.5 mmol) was added successively in Schlenk tube.
The mixture was stirred at 90 °C for 12 h. Upon completion of the reaction, the
mixture was cooled to room temperature, and the solution was filtered through a
small amount of silica gel. The solvent was removed under reduced pressure, and
the residue was purified by silica gel preparative TLC to give the desired
5-iminopyrrolones product.

General Procedure for Pd-Catalyzed Synthesis of 2,5-Diimino-furans: A mix-
ture of CsF (1.2 mmol), H2O (0.1 mL), DMSO (2 mL), isocyanide (2 mmol), and
bromoalkyne (1 mmol) was successively added in a Schlenk tube (25 mL). After
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stirring for 12 h at 90 °C, the starting materials were completely consumed as
monitored by TLC and GC-MS analysis. Then, the reaction mixture was cooled to
room temperature, filtered through a small amount of silica gel and concentrated.
The residue was purified by silica gel preparative TLC to give the bromoacrylamide
product.

A mixture of bromoacrylamide (0.2 mmol), isoacyanide (0.24 mmol), Pd(OAc)2
(5 mol%), K2CO3 (0.4 mmol) and DMSO (2 mL) were added successively in a tube
(10 mL). The resulting mixture was stirred at 90 °C for 2 h. Upon completion, the
reaction mixture was extracted with ethyl acetate (10 mL × 3), and the organic
layers were combined, dried over anhydrous MgSO4, filtered and concentrated
under reduced pressure. The residue was purified by aluminum oxide basic
preparative TLC to give the 2,5-diimino-furan product.

Based on these findings, the authors proposed the mechanisms of the two
reactions. For the synthesis of 5-iminopyrrolones (Scheme 3.66, left pathway), they
believed the procedure was first initiated by the oxidative addition of Pd0 species to
bromoalkyne affording alkynylpalladium complex 65, followed by migratory
insertion and nucleophilic addition of isocyanide delivered intermediate 66, in
which the nitrogen atom would simultaneously coordinate with the Pd center. Then
hydrolysis led to the release of HBr and 5-iminopyrrolone product was finally
constructed by the reductive elimination with the regeneration of Pd0 catalyst. As to
the 2,5-diimino-furan derivatives (Scheme 3.66, right pathway), they proposed that
the initial oxidative addition of Pd0 to bromoacrylamide provided the vinylpalla-
dium species 67, subsequent migratory insertion of isocyanide generated 68. Then,
the coordination of the amide oxygen atom with the PdII center gave intermediate
69. Finally, under the treatment of base, HBr would be eliminated to form complex
70, which underwent the reductive elimination to deliver the annulation adduct and
regenerated the active Pd0 catalyst. It was supposed that the different coordinated
type with Pd catalyst might be account for the one-pot reaction affording the N-
containing cyclization products, whereas the two-step procedure giving the O-
containing heterocycles.
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Chapter 4
Conclusions and Outlook

Abstract The above three chapters have highlighted the robust reactivity and
described the general preparation methods of haloalkyne reagents. Significantly,
efforts have been made in elucidating the mechanisms of these chemical processes,
which provide the researchers valuable insight of the haloalkyne compounds. In this
chapter, we will summarize the book and also point out some challenges that need
to be faced in the area of haloalkyne chemistry. We hope this book will not only
ignite the interest of readers to the field of haloalkyne chemistry, but also inspire the
researchers to answer the unsolved challenges and exploit new research areas of
haloalkyne chemistry.

Keywords Insight and understanding � Unsolved challenges � Haloalkyne
chemistry

This book has highlighted the robust reactivity and also summarized the general
preparation methods of haloalkyne reagents. The diverse reactivity of haloalkynes
allow these efficient transformations to deliver a variety of novel acyclic and cyclic
structures representing prevalent and significant frameworks as well as being useful
motifs for further transformations. Thus, haloalkynes have emerged as powerful and
versatile building blocks in a diverse spectrum of synthetic transformations
including natural product total synthesis. In addition, the efforts have been made in
elucidating the mechanisms of these chemical processes, which provide the
researchers valuable insight and understanding the reactivity of haloalkyne
compounds.

Despite the great progress that has achieved, many challenges still need to be
faced in the area of haloalkyne chemistry, such as, the catalytic asymmetric reac-
tions and the carbon nucleophilic addition reactions of haloalkynes, as well as the
development of more general, practical, efficient and green methods for the trans-
formation of haloalkynes to access valuable molecules. We hope this book will not
only ignite the interest of readers to the field of haloalkyne chemistry, but also
inspire the researchers to answer the unsolved challenges and exploit new research
areas of haloalkyne chemistry.
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