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Abstract

We give a pedagogical introduction to the dynamics of ND2 supersymmetric
systems in four dimensions. The topic ranges from the Lagrangian and the Seiberg–
Witten solutions of SU.2/ gauge theories to Argyres–Douglas CFTs and Gaiotto
dualities.

This lecture note is a write-up of the author’s lectures at Tohoku University,
Nagoya University, and Rikkyo University.
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0 Introduction

The study of ND2 supersymmetric quantum field theories in four-dimensions has
been a fertile field for theoretical physicists for quite some time. These theories
always have non-chiral matter representations, and therefore can never be directly
relevant for describing the real world. That said, the existence of two sets of
supersymmetries allows us to study their properties in much greater detail than
both non-supersymmetric theories and ND1 supersymmetric theories. Being able
to do so is quite fun in itself, and hopefully the general lessons thus learned
concerning ND2 supersymmetric theories might be useful when we study the
dynamics of theories with lower supersymmetry. At least, the physical properties
of ND2 theories have been successfully used to point mathematicians to a number
of new mathematical phenomena unknown to them.

These words would not probably be persuasive enough for non-motivated people
to start studying ND2 dynamics. It is not, however, the author’s plan to present here
a convincing argument why you should want to study it anyway; the fact that you
are reading this sentence should mean that you are already somewhat interested in
this subject and are looking for a place to start.

There have been many important contributions to the study of ND2 theories
since its introduction [1]. The four most significant ones in the author’s very
personal opinion are the following:

• In 1994, Seiberg and Witten found in [2, 3] exact low-energy solutions to ND2
supersymmetric SU.2/ gauge theories by using holomorphy and by introducing
the concept of the Seiberg–Witten curves.

• In 1996–1997, the Seiberg–Witten curves, which were so far mathematical
auxiliary objects, were identified as physical objects appearing in various string
theory constructions of ND2 supersymmetric theories [4–6].

• In 2002, Nekrasov found in [7] a concise method to obtain the solutions of
Seiberg and Witten via the instanton counting.

• In 2009, Gaiotto found in [8] a huge web of S-dualities acting upon ND2
supersymmetric systems.

xiii
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The developments before 2002 have been described in many nice introductory
reviews and lecture notes, e.g. [9–17]. Newer textbooks also have sections on
them, see e.g. Chap. 29.5 of [18] and Chap. 13 of [19]. A short review on the
instanton counting will be forthcoming [20]. A comprehensive review on the newer
developments since 2009 would then surely be useful to have, but this lecture note is
not exactly that. Rather, the main aim of this lecture note is to present the same old
results covered in the lectures and reviews listed above under a new light introduced
in 2009 and developed in the last few years, so that readers would be naturally
prepared to the study of recent works once they go through this note. A good review
with an emphasis on more recent developments can be found in [21, 22].

The rest of the lecture note is organized as follows. Chapters 1–3 are there to
prepare ourselves to the study of ND2 dynamics.

• We start in Chap. 1 by introducing the electromagnetic dualities of U.1/ gauge
theories and recalling the basic semiclassical features of monopoles.

• In Chap. 2, we construct the ND2 supersymmetric Lagrangians and studying
their classical features. We introduce the concepts of the Coulomb branch and
the Higgs branch.

• In Chap. 3, we will first see that the renormalization of ND2 gauge theories
are one-loop exact perturbatively. We also study the anomalous R-symmetry of
supersymmetric theories. As an application, we will quickly study the behavior
of pure ND1 gauge theories.

The next two chapters are devoted to the solutions of the two most basic cases.

• In Chap. 4, we discuss the solution to the pure ND2 supersymmetric SU.2/
gauge theory in great detail. Two important concepts, the Seiberg–Witten curve
and the ultraviolet curve,1 will be introduced.

• In Chap. 5, we solve the ND2 supersymmetric SU.2/ gauge theory with one
hypermultiplet in the doublet representation. We will see again that the solution
can be given in terms of the curves.

Chapters 6 and 7 are again preparatory.

• In Chap. 6, we give a physical meaning to the Seiberg–Witten curves and
the ultraviolet curves, in terms of six-dimensional theory. With this we will
be able to guess the solutions to SU.2/ gauge theory with arbitrary number

1The concept of the Seiberg–Witten curve was introduced in [2]. The concept of the ultraviolet
curve, applicable in a general setting, can be traced back to [4], see Fig. 1 there. As also stated there,
it was already implicitly used in [23–25]. In [8], the ultraviolet curve was used very effectively to
uncover the duality of ND2 theories. Privately, the author often calls the ultraviolet curve as the
Gaiotto curve, but this usage would not be quite fair to every party involved. In view of Stiegler’s
law, the author could have used this terminology in this lecture note, but in the end he opted for a
more neutral term ‘the ultraviolet curve’, which contains more scientific information at the same
time. The author could have similarly used ‘the infrared curve’ for the Seiberg–Witten curve. As
there is no bibliographical issue in this case, however, the author decided to stick to the standard
usage to call it the Seiberg–Witten curve.

http://en.wikipedia.org/wiki/Stigler's_law_of_eponymy
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of hypermultiplets in the doublet representations. This chapter will not be
self-contained at all, but it should give the reader the minimum with which to
work from this point on.

• Up to the previous chapter, we will be mainly concerned with the Coulomb
branch. As the analysis of the Higgs branch will become also useful and
instructive later, we will study the features of the Higgs branch in slightly more
detail in Chap. 7.

We resume the study of SU.2/ gauge theories in the next two chapters.

• In Chap. 8, we will see that the solutions of SU.2/ gauge theories with two or
three hypermultiplets in the doublet representation, which we will have guessed
in Chap. 6, indeed pass all the checks to be the correct ones.

• In Chap. 9, we first study the SU.2/ gauge theory with four hypermultiplets in
the doublet representation. We will see that it has an S-duality acting on the
SO.8/ flavor symmetry via its outer-automorphism. Then the analysis will be
generalized, following Gaiotto, to arbitrary theories with gauge group of the form
SU.2/n.

We will consider more diverse examples in the final three chapters of the main
part.

• In Chap. 10, we will study various superconformal field theories of the type first
found by Argyres and Douglas, which arises when electrically and magnetically
charged particles become simultaneously very light.

• In Chap. 11, the solutions to SU.N / and SO.2N / gauge theories with and
without hypermultiplets in the fundamental or vector representation will be
quickly described.

• In Chap. 12, we will analyze the S-duality of the SU.N / gauge theory with 2N
flavors and its generalization. Important roles will be played by punctures on the
ultraviolet curve labeled by Young diagrams with N boxes, whose relation to
the Higgs branch will also be explained. As an application, we will construct
superconformal field theories with exceptional flavor symmetriesE6;7;8.

We conclude the lecture note by a discussion of further directions of study in
Chap. 13. We have two appendices:

• In Appendix A, we explicitly compute the weak-coupling expansion of the
prepotential of pure SU.2/ theory obtained in Chap. 4, and see that it agrees with
the prepotential as obtained by instanton computation, which we explain very
briefly.

• In Appendix B, we list various ND2 theories we encounter in this lecture note
in one place, and summarize their constructions.

The inter-relation of the sections within this lecture note is summarized in Fig. 1.
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Fig. 1 Interdependence of sections of this lecture note

Prerequisites, Disclaimer, and Acknowledgments

A working knowledge of ND1 superfields is required; we set up our notation in
Chap. 2. Similarly, a reader should know one-loop renormalization and perturbative
anomalies, and should have at least heard about instantons and monopoles, although
we give a quick summary and references. No prior knowledge of string theory or
M-theory is assumed, but a reader should be open to the concept of theories defined
in spacetime whose dimension is larger than four. Unless otherwise stated, we use
the common physics convention of calling SU.N / whatever gauge group whose
gauge algebra is su.N /, etc.

Signs and powers of i in the terms in the Lagrangian are not completely
consistent or correct, but the overall ideas presented in the lecture note should be
alright. The author is sorry that he used the same letter i for the imaginary unit and
for the indices, and the same letter � for the theta angle and for the supercoordinates.
In general, readers are encouraged to read not just what is written, but what should
be written instead. Presumably there are many other typos, errors, and points to be



References xvii

improved. The author would welcome whatever comments from you, so please do
not hesitate to write an email to the author at yuji.tachikawa@ipmu.jp.

The deficiencies concerning citations are most obvious, as the number of relevant
papers is immense. The author is quite sure that he cited too much of his own papers.
Other than that, the author at least tried to give a few pointers to recent papers
from whose references the interested readers should be able to start exploring the
literature. The author is open to add more references in this lecture note itself, and
any reader is again encouraged to send emails.

This lecture note is based on the author’s lectures at Nagoya University and
Tohoku University on 2011 and at Rikkyo University on 2013. The author thanks
the hosts in these three universities for giving him the opportunity to present a
review of the ND2 supersymmetric dynamics using new techniques. He also thanks
the participants of these lectures for giving him many useful comments along the
course of the lectures. The author’s approach to this topic has been formed and
heavily influenced by the discussions with various colleagues, and most of the new
arguments in this note, except for those which are wrong, should not be credited
to the author. Ofer Aharony, Lakshya Bhardwaj, Chi-Ming Chang, Jacques Distler,
Sheng-Lan Ko, John Mangual, Satoshi Nawata, Vasily Pestun, Futoshi Yagi and
an anonymous referee gave helpful comments on the draft version of this lecture
note. Simone Giacomelli, Brian Henning, Greg Moore, Tatsuma Nishioka, Jun’ya
Yagi and Kazuya Yonekura in particular read the draft in detail and suggested many
points to be improved to the author. It is a pleasure and indeed a privilege that the
author can thank them. Finally, the author would like to thank Teppei Kitahara, who
helped the author preparing the figures, without which this lecture note would lose
much of its value.

The author also thanks the right amount of duties associated to his position,
with which he cannot concentrate any longer on cutting-edge researches but still
has some time to summarize what he already knows. In particular, he thanks
various stupid faculty meetings he needs to participate, during which time he drew
most of the figures on his laptop. The readers should therefore thank the overly
bureaucratic system prevalent in University of Tokyo, which made this lecture note
materialize. This work is supported in part by JSPS Grant-in-Aid for Scientific
Research No. 25870159 and in part by WPI Initiative, MEXT, Japan at IPMU, the
University of Tokyo.
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Chapter 1
Electromagnetic Duality and Monopoles

The electromagnetic duality of the Maxwell theory, exchanging electric and mag-
netic fields, plays a central role in this lecture note. It is therefore convenient to
review it here, without the extra complication of supersymmetry. The basic features
of magnetic monopoles will also be recalled.

1.1 Electric and Magnetic Charges

Consider a U.1/ gauge field, described by the gauge potential A D A�dx� and the
field strength F D 1

2
F��dx� ^ dx� , where F�� D @Œ�A��. This is invariant under the

gauge transformation

A ! AC ig�1dg (1.1.1)

where g is a map from the spacetime to complex numbers with absolute value one,
jgj D 1. We can write g D ei	 with a real function 	, and we then have a more
familiar

A ! A� d	; (1.1.2)

but it will be important for us that 	 can be multi-valued, so that we identify

	 � 	C 2
: (1.1.3)

Consider a field �, with the gauge transformation given by

� ! gn� (1.1.4)

© Hindustan Book Agency 2015
Y. Tachikawa, N D 2 Supersymmetric Dynamics for Pedestrians, Lecture Notes
in Physics 890, DOI 10.1007/978-3-319-08822-8__1
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2 1 Electromagnetic Duality and Monopoles

We require here that g specifies the transformations of all fields in the system
uniquely. Then n needs to be an integer; fractional powers are not uniquely defined.

The covariant derivative given by

D�� D @�� C inA��; (1.1.5)

and the kinetic term jD��j2 is gauge-invariant. We write the action of the gauge
field as

SMaxwell D
Z
d4x

1

2e2
F��F��: (1.1.6)

The coefficient 2 in the denominator is slightly unconventional, but this choice
removes various annoying factors later. Then the force between two particles
obtained by quantizing the field � is proportional to e2n2. In phenomenological
literature the combination en is often called the electric charge, but in this lecture
note we call the integer n the electric charge. It might also be tempting to rescale
F to eliminate the factor of e2 from the denominator above. But we stick to the
convention that the periodicity of 	 is 2
 , see (1.1.3).

An electric particle with charge n in the first quantized setup, Wick-rotated to the
Euclidean signature, couples to the gauge field via

S D in
Z
L

dx�A� (1.1.7)

whereL is the worldline. The integrality of n in this approach can be seen as follows.
Due to the periodicity of 	 (1.1.3), the line integral

R
dx�A� is determined only up

to an addition of an integral multiple of 2
 . Inside the path integral, eiS needs to be
well defined. Then n needs to be an integer.

Adding (1.1.6) and (1.1.7) and writing down the equation of motion for A�, we
see that

Z
S2

4


e2
EE � d En D

Z
S2

4


e2
?F D 2
n; (1.1.8)

where Ei D F0i are the electric field components, S2 is the sphere at infinity,

? F D 1

2
.?F /��dx� ^ dx� (1.1.9)

where

.?F /�� D 1

2
����F

� (1.1.10)

is the dual field strength. We also use the notation QF D ?F interchangeably.
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Next, consider a space with the origin removed. Surround the origin by a sphere.
The gauge fields AN;S on the northern and the southern hemispheres are related by
gauge transformation:

AN D AS C ig�1dg (1.1.11)

on the equator. Then we have

Z
S2
F D

Z
N

FC
Z
S

F D
Z

equator
.AN�AS/ D

Z �D2


�D0
d	

d�
d� D 2
m; (1.1.12)

where m is an integer. We call m the magnetic charge of the configuration. The
energy contained in the Coulombic magnetic field diverges at the origin; but you
should not worry too much about it, as the quantized electric particle also has
a Coulombic electric field whose energy diverges. They are both rendered finite
by renormalization. When m is nonzero, the configuration is called a magnetic
monopole. Usually we simply call it a monopole.

Put a particle with electric charge n, and another particle with magnetic charge
m on two separate points. The combined electric and magnetic field generate
an angular momentum around the axis connecting two points via their Poynting
vector, see Fig. 1.1. A careful computation shows that the total angular momentum
contained in the electromagnetic field is „nm=2, which is consistent with the
quantum-mechanical quantization of the angular momentum.

More generally, we can consider dyons, which are particles with both electric
and magnetic charges. If we have a particle with electric charge n and magnetic
charge m, and another particle with electric charge n0 and magnetic charge m0, the
total angular momentum is „=2 times

nm0 � mn0: (1.1.13)

We call this combination the Dirac pairing of two sets of charges .n;m/ and .n0; m0/.

Fig. 1.1 Angular momentum
generated in the presence of
both electric and magnetic
particles. The straight,
dashed and double arrows are
for electric fields, magnetic
fields and Poynting vectors,
respectively
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1.2 The S and the T Transformations

The Maxwell equation is given by

@Œ�F��� D 0; @�F�� D 0 (1.2.1)

or equivalently in the differential form notation by

dF D d?F D 0: (1.2.2)

This set of equations is invariant under the exchange

F $ ?F: (1.2.3)

In terms of the electric field EE and the magnetic field EB , which we schematically
denote by F D . EE; EB/, the transformation does

F D . EE; EB/ �! ?F D . EB;� EE/ �! ?2F D .� EE;� EB/: (1.2.4)

This operation is often called the S transformation.
To preserve the quantization of the electric and magnetic charges (1.1.8),

(1.1.12), the dual field strength FD and the dual coupling eD need to be defined
so that

FD D 4


e2
?F ;

4


e2
4


e2D
D 1: (1.2.5)

Under this transformation, the charge .n;m/ is transformed as

particle 1 .n;m/
S�! .�m; n/;

particle 2 .n0; m0/ S�! .�m0; n0/;
Dirac pairing nm0 � n0m D �mn0 � .�m0/n:

(1.2.6)

Note that the Dirac pairing is preserved under the operation.
Let us suppose that we have a neutral real scalar field � and the action of the

U.1/ gauge field is given by

1

2e.�/2
F��F�� C �.�/

16
2
F�� QF��: (1.2.7)
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The Maxwell equation is now

@Œ�F��� D 0; (1.2.8)

@�

�
4


e.�/2
F�� C �.�/

2

QF��
�

D 0: (1.2.9)

Decompose F D . EE; EB/ as before. The equations above show that the magnetic
field satisfying the Gauss law is still EB, but the electric field satisfying the Gauss
law is now the combination

EEconserved D 4


e.�/2
EE C �.�/

2

EB: (1.2.10)

Therefore, we have

Z
S2

EB � d En D 2
m;

Z
S2

EEconserved � d En D 2
n (1.2.11)

where m and n are the integers introduced in Sect. 1.1. This shows an interesting
fact: let us change � adiabatically to change �.�/. As n is an integer, it cannot
change. Therefore, EE gets a contribution proportional to �.�/ EB to keep EEconserved

fixed. This is called the Witten effect [1].
The S transformation, then, exchanges . EE/conserved and EB . The dual gauge field

strength FD should then be

FD D 4


e.�/2
?F � �

2

F (1.2.12)

so that Eq. (1.2.9) should just be

@Œ�FD;��� D 0: (1.2.13)

We find that Eq. (1.2.8) becomes

@�

�
4


eD.�/2
FD;�� C �D.�/

2

QFD;��

�
D 0 (1.2.14)

where eD.�/, �D.�/ are given by

�D.�/ D � 1

�.�/
(1.2.15)
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where

�.�/ D 4
i

e.�/2
C �.�/

2

; �D.�/ D 4
i

eD.�/2
C �D.�/

2

: (1.2.16)

This combination �.�/ is called the complexified coupling.
We also know that, quantum mechanically, �.�/ and �.�/ C 2
 cannot be

distinguished, since the change in the integrand of the Euclidean path integral is

exp

�
i

Z
d4x

1

8

F�� QF��

�
(1.2.17)

which is always one.1 We call it the T transformation. This does change EEconserved

by adding EB , however. Equivalently, it changes the set of charges .n;m/ as follows:

particle 1 .n;m/
T�! .nCm;m/;

particle 2 .n0; m0/ T�! .n0 Cm0; m0/;
Dirac pairing nm0 � n0m D .nCm/m0 � .n0 Cm0/m:

(1.2.18)

We see that the Dirac pairing of two particles remain unchanged. On the complexi-
fied coupling �.�/, it operates as

�.�/old
T�! �.�/new D �.�/old C 1: (1.2.19)

The transformations S and T generates the action of SL.2;Z/ on the set of charge
.n;m/:

S D
�
0 �1
1 0

�
; S

�
n

m

�
D
��m
n

�
; S� D �1

�
(1.2.20)

T D
�
1 1

0 1

�
; T

�
n

m

�
D
�
nCm

m

�
; T � D � C 1: (1.2.21)

In general the action on � is the fractional linear transformation

�
a b

c d

�
2 SL.2;Z/ W � ! d� C b

c� C a
: (1.2.22)

1Strictly speaking this is only true on a spin manifold. Note that
R
d4x.8
/�1F�� QF�� D



R
.F=2
/2 D 


R
c1.F /

2. On a spin manifold, the intersection form is even, and the last
expression is an integral multiple of 2
 . For the subtlety on non-spin manifolds, see [2].
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1.3 ’t Hooft-Polyakov Monopoles

Here we summarize the features of magnetic monopoles which we will repeatedly
quote in the rest of the lecture note. For a detailed exposition of topics discussed in
this subsection, the readers should consult the reviews such as [3,4], or the textbook
[5]. The review by Coleman [6] is also very instructive.2

1.3.1 Classical Features

Consider an SU.2/ gauge theory with a scalar in the adjoint representation, with the
action

S D
Z
d4x

1

g2

�
1

2
trF��F�� C trD�ˆD�ˆ

�
: (1.3.1)

The field ˆ is a traceless Hermitean 2 � 2 matrix.
Consider the vacuum where

ˆ D
�
a 0

0 �a
�
: (1.3.2)

When a ¤ 0, the SU.2/ gauge symmetry is broken to U.1/. Indeed, the vev (1.3.2)
commutes with a gauge field strength of the form

F�� D
 
F

U.1/
�� 0

0 �F U.1/
��

!
(1.3.3)

where F U.1/
�� is a U.1/ gauge field strength normalized as in Sect. 1.1. Note that the

quanta of off-diagonal components of the scalar field ˆ have electric charge ˙2
under this U.1/ field, as can be found by expanding the covariant derivative.

We are considering a gauge theory; therefore the field ˆ does not have to be
given exactly as in the right hand side of (1.3.2). Rather, we just need that ˆ has
eigenvalues ˙a. Then we can consider a configuration of the form

ˆ.x/ D xi
i

jxj f .jxj/a (1.3.4)

2Unfortunately this review is not in the compilation “Aspects of Symmetry”. A French translation
by R. Stora is also available as [7], which was typeset much more beautifully than the version in
[6].
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where i D 1; 2; 3 and f .r/ is a dimensionless function such that

lim
r!0

f .r/ D 0; lim
r!1f .r/ D 1: (1.3.5)

At the spatial infinity, the vev of ˆ is conjugate to (1.3.2), and therefore this
configuration can be thought of as an excitation of the vacuum given by (1.3.2).

The unbroken U.1/ within SU.2/ is along ˆ. A more general definition of the
U.1/ field strength F U.1/

�� , at least when r � 0, is then the combination

F U.1/
�� WD 1

2a
trF��ˆ: (1.3.6)

In the region r � 0, let us try to bring the configuration (1.3.4)–(1.3.2) by a gauge
transformation. This can be done smoothly except at the south pole, by using the
gauge transformation

expŒi
'

2
.�1 sin � C 2 cos �/�; where

Ex
jxj D .cos'; sin' cos �; sin ' sin �/:

(1.3.7)

This gives a gauge transformation around the south pole given by

i.�1 sin � C 2 cos �/ D expŒ�i�3� � .i2/: (1.3.8)

As � goes from 0 to 2
 , we see that the U.1/ field F U.1/
�� has the magnetic charge

m D 1, and therefore is a monopole. This was originally found by ’t Hooft and
Polyakov. Note that its Dirac pairing with the particle of the field ˆ is 2, which is
twice the minimum allowed value.

Let us evaluate the energy contained in the field configuration. The kinetic energy
is 1=g2 times

Z
d3x ŒtrBiBi C trDiˆDiˆ� D

Z
d3x

�
tr.Bi �Diˆ/

2 ˙ 2 trBiDiˆ
�

(1.3.9)

� ˙2
Z
d3x trBiDiˆ D ˙2

Z
d3x@i trBiˆ

(1.3.10)

D ˙2
Z
S2
d En � tr EBˆ (1.3.11)
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where the final integral is over the sphere at the spatial infinity, which according to
(1.3.6) evaluates to ˙2.2a/.2
m/, where m is the magnetic charge. Therefore we
have the bound

(energy of the monopole) � 4


g2
.2a/jmj (1.3.12)

This is called the Bogomolnyi-Prasad-Sommerfield (BPS) bound. The inequality is
saturated if and only if

Bi D ˙Diˆ; (1.3.13)

which is called the BPS equation. This fixes the form of the function f .r/ in (1.3.4).

1.3.2 Semiclassical Features

Given such an explicit monopole solution, there is a way to construct other solutions
related by the symmetry. First, the configuration (1.3.4) has a center at the origin of
the coordinate system. We can shift the center of the monopole at an arbitrary point
Ey of the spatial R3. These give three zero-modes.

Another zero mode is obtained by the gauge transformation:

ei˛ˆ=a (1.3.14)

Note that a gauge transformation which vanishes at infinity is a redundancy
of the physical system, but a gauge transformation which does not vanish at
infinity is considered to change the classical configuration. For general ˛, this
transformation (1.3.14) changes the asymptotic behavior of Fij.x/, but for ˛ D 
 ,
the transformation (1.3.14) trivially acts on the fields in the adjoint representation.
Therefore ˛ is an angular variable 0 	 ˛ < 
 .

The semiclassical quantization of the monopole involves the Fock space of non-
zero modes, together with a wavefunction  . Ey; ˛/ depending on the zero modes
Ey and ˛. The wavefunction along Ey represents the spatial motion of the center of
mass of the monopole. The wavefunction along ˛ represents the electric charge of
the monopole, which can be seen as follows.

By comparing (1.3.14) with (1.3.3) and (1.3.6), we see that the unbroken U.1/
global gauge transformation by ei' shifts ˛ by

˛ ! ˛ C ': (1.3.15)
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Recall that a state j i with electric charge n behaves under the U.1/ global
transformation by ei' by

j i ! ein' j i: (1.3.16)

Now, as ˛ is a variable with period 
 ,  .˛/ can be expanded as a linear combination
of ei2d˛ where d is an integer. Under (1.3.15) the wavefunction changes as in
(1.3.16) with n D 2d , therefore we see that the monopole state with this zero-mode
wave function has the electric charge 2d .

Summarizing, the combination of the electric charge and the magnetic charge
.n;m/we obtain from the semi-classical quantization has the form .n;m/ D .2d; 1/

where d is an integer. This was found originally by Julia and Zee: once we quantize
the ’t Hooft-Polyakov monopole, we not only have a purely-magnetic monopole but
a whole tower of dyon states, with d D �1 to C1.

Finally let us consider the effect of the fermionic zero modes in the ’t Hooft-
Polyakov monopole (1.3.4). First let us consider two Weyl fermions �, Q� in the
adjoint representation, with the Lagrangian

tr N�Dı�C tr NQ�Dı Q�C c.tr�Œˆ; Q��C tr N�Œˆ; NQ��/: (1.3.17)

We regard both the gauge potential in the covariant derivativeD and the scalar field
as backgrounds, and decompose �, Q� into eigenstates of the angular momentum.
The lower bound of the orbital angular momentum is given by the Dirac pairing,
which is „ here. The spinor fields have spin „=2. Therefore the state with lowest
angular momenta has spin „=2. When the coefficient c takes a value in a certain
range, it is known that there is a pair of zero modes b˛ where ˛ D 1; 2 the spinor
index of the SO.3/ spatial rotation. The semiclassical quantization promotes them
into a pair of fermionic oscillators

fb˛; b�ˇg D ı˛ˇ: (1.3.18)

This creates four states starting from one state j i from the semiclassical quantiza-
tion of the bosonic part:

$ b
�
1 j i $ b

�
1b

�
2 j i

j i $ b
�
2 j i $ : (1.3.19)

This counts as one complex boson and one fermion.
Suppose we introduce another pair �0, Q�0 of the adjoint Weyl fermions. Then we

will have another pair of fermionic oscillators b 0̨ . Together, they generate 24 D 16

states, consisting of one massive vector (with three states), four massive spinors
(with eight states) and five massive scalars.
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Next, consider having 2N Weyl fermions ai in the doublet representation where
a D 1; 2 and i D 1; : : : ; 2N , with the Lagrangian

N iD
ı
 i C c0. ai ˆ.ab/ bi C N ai ˆ.ab/ N bi /: (1.3.20)

Note that the Lagrangian has an SO.2N / flavor symmetry acting on the index i .
The electric charge of the quanta of  , Q with respect to the unbroken U.1/

is now 1. Then the Dirac pairing is „=2. Tensoring with the intrinsic spin „=2,
we find that the minimal orbital angular momentum is 0. It is known that for a
suitable choice of c0, this fermion system has zero modes �i , i D 1; : : : ; 2N .
After semiclassical quantization, it becomes a set of fermionic operators with the
commutation relation

f�i ; �j g D ıij: (1.3.21)

This is the commutation relation of the gamma matrices of SO.2N /. Monopole
states are representations of �i ’s, meaning that they transform as a spinor represen-
tation of the flavor symmetry SO.2N /.

Fields in a doublet representation of the SU.2/ gauge symmetry has an another
effect. Namely, in the gauge zero mode (1.3.14), ˛ D 
 gives the matrix

��1 0

0 �1
�

(1.3.22)

which acts nontrivially on the fields in the doublet representation. Then the
periodicity of the gauge zero mode ˛ is now 2
 , and the wavefunction along the
˛ direction can now be ein˛ for arbitrary integer n. Therefore, the electric charge n
can either be even or odd. The operators �i come from the modes of the fields in the
doublet representation, and therefore it changes the electric charge by ˙1.

We can define the flavor spinor chirality � by

� D �1�2 � � ��2N ; (1.3.23)

by which the spinor of SO.2N / can be split into positive-chirality and negative-
chirality spinors. The action of the operators �i changes the chirality of the flavor
spinors. Combined with the behavior of the U.1/ electric charge we saw in the
previous paragraph, we conclude that the parity of the U.1/ electric charges of the
monopole states is correlated with the chirality of the flavor spinor representation.
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Chapter 2
ND2 Multiplets and Lagrangians

2.1 Microscopic Lagrangian

2.1.1 ND1 Superfields

Let us now move on to the construction of the Lagrangian with ND2 supersym-
metry. An ND2 supersymmetric theory is in particular an ND1 supersymmetric
theory. Therefore it is convenient to use ND1 superfields to describe ND2 systems.
For this purpose let us quickly recall the ND1 formalism. In this section only, we
distinguish the imaginary unit by writing it as i.

An ND1 vector multiplet consists of a Weyl fermion �˛ and a vector field A�,
both in the adjoint representation of the gauge group G. We combine them into the
superfieldW˛ with the expansion

W˛ D �˛ C F.˛ˇ/�
ˇ CD�˛ C � � � (2.1.1)

where D is an auxiliary field, again in the adjoint of the gauge group. F˛ˇ D
i
2
�

ˇ

P� N� P�
˛F�� is the anti-self-dual part of the field strength F�� .

The kinetic term for a vector multiplet is given by

Z
d2�

�i

8

� trW˛W

˛ C cc: (2.1.2)

where

� D 4
i

g2
C �

2

(2.1.3)

© Hindustan Book Agency 2015
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is a complex number combining the inverse of the coupling constant and the theta
angle. We call it the complexified coupling of the gauge multiplet. Expanding in
components, we have

1

2g2
trF��F

�� C �

16
2
trF�� QF �� C 1

g2
trD2 � 2i

g2
tr N�@ı�: (2.1.4)

We use the convention that trT aT b D 1
2
ıab for the standard generators of gauge

algebras, which explain why we have the factors 1=.2g2/ in front of the gauge
kinetic term. The � term is a total derivative of a gauge-dependent term. Therefore,
it does not affect to perturbative computations. It does affect non-perturbative
computations, to which we will come back later.

An ND1 chiral multiplet Q consists of a complex scalar Q and a Weyl fermion
 ˛ , both in the same representation of the gauge group. In terms of a superfield we
have

Q D Q
ˇ̌
�D0 C 2 ˛�

˛ C F�˛�
˛ (2.1.5)

where F is auxiliary. The coefficient 2 in front of the middle component is
unconventional, but this choice allows us to remove various annoying factors ofp
2 appearing in the formulas later. The chiral multiplet Q1;::: can be in an arbitrary

complex representation R of the gauge group G. The Lagrangian density is then

Z
d4�Q�j eV

a�a
i
j Qi C

Z
d2�W.Q/C cc: (2.1.6)

where V is the vector superfield, �aij is the matrix representation of the gauge
algebra, andW.Q/ is a gauge invariant holomorphic function of Q1;:::.

The supersymmetric vacua is obtained by demanding that the supersymmetry
transformation of various fields are zero. The nontrivial conditions come from

ı�˛ D 0; ı ˛ D 0 (2.1.7)

which give

Da D 0; Fi D 0: (2.1.8)

By solving the algebraic equations of motion of the auxiliary fields, we find

Q
�

Nj �
Nj i
a Qi D 0;

@W

@Qi

D 0: (2.1.9)
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2.1.2 Vector Multiplets and Hypermultiplets

An ND2 vector multiplet consists of the following ND1 multiplets, both in the
adjoint of the gauge groupG:

$ �˛ $ A� ND1 vector multiplet;
ˆ $ Q�˛ $ ND1 chiral multiplet:

(2.1.10)

Here, the horizontal arrows signify the ND1 sub-supersymmetry generator manifest
in the ND1 superfield formalism, and the slanted arrows are for the second ND1
sub-supersymmetry.

One easy way to construct the second supersymmetry action is to demand
that the theory is symmetric under the SU.2/ rotation acting on �˛ and Q�˛. A
symmetry which does not commute with the supersymmetry generators is called
an R-symmetry in general. Therefore this SU.2/ symmetry is often called the
SU.2/R symmetry. It is by now a standard technique to combine the supersymmetry
manifest in a superfield formalism and an R-symmetry to construct a theory with
more supersymmetries, see e.g. [1] for an application. It is also to be kept in mind
that there can be and indeed are ND2 supersymmetric theories without SU.2/R
symmetry: there can just be two sets of supersymmetry generators without SU.2/
symmetry relating them, see e.g. [2, 3]. That said, for simplicity, we only deal with
ND2 supersymmetric systems with SU.2/R symmetry in this lecture note.

The Lagrangian is then

Im �

4


Z
d4� trˆ�eŒV;��ˆC

Z
d2�

�i

8

� trW˛W

˛ C cc: (2.1.11)

The ratio between the prefactors of the Kähler potential and of the gauge kinetic
term is fixed by demanding SU.2/R symmetry.

An ND2 hypermultiplet1 consists of the following fields:

$ Q $  ND1 chiral multiplet
Q � $ QQ� $ ND1 antichiral multiplet

(2.1.12)

They are both in the same representationR of the gauge group. Therefore, the ND1
chiral multiplets Q and QQ are in the conjugate representations of the gauge group.
We demand again that the theory is symmetric under the SU.2/ rotation acting on
Q and QQ�, to have ND2 supersymmetry.

For definiteness, let us consider G D SU.N / and Nf hypermultiplets Qa
i , QQi

a

in the fundamental N -dimensional representation, where a D 1; : : : ; N and i D

1There is a stupid convention that we use a space between ‘vector’ and ‘multiplets’ to spell
“vector multiplets”, but not for “hypermultiplets”. Colloquially, hypermultiplets are often just
called hypers.
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1; : : : ; Nf . This set of fields is often called Nf flavors of fundamentals of SU.N /.
The gauge transformation acts on them as

Qi ! eƒQi; QQi ! QQie�ƒ (2.1.13)

where ƒ is a traceless N � N matrix of chiral superfields; the gauge indices are
suppressed.

The Lagrangian for the hypermultiplets is

c

Z
d4�.Q�i eV QiC QQie�V QQ�

i /Cc0.
Z
d2� QQiˆQiCcc:/C.

Z
d2��ij

QQjQiCcc:/

(2.1.14)

where the gauge index a is suppressed again. The existence of SU.2/R symmetry
fixes the ratio of c and c0: it can be done e.g. by comparing the coefficients ofQi� 

from the first term and of QQi Q� from the second term. We find the choice c D c0
does the job. In the following we take c D c0 D 1 unless otherwise mentioned. The
SU.2/R symmetry also demands that the mass term �ij satisfies Œ�; ��� D 0. Then
� can be diagonalized, and consequently the mass term is often written as

X
i

Z
d2��i QQiQi C cc: (2.1.15)

As another example, let us consider the case when we have a hypermultiplet
.Z; QZ/ in the adjoint representation, i.e. they are both N � N traceless matrices.
The following discussion can easily be generalized to arbitrary gauge group too.
When the hypermultiplet is massless, the total Lagrangian has the form

Z
d2�

�i

8

� trW˛W

˛ C cc:C Im �

4


Z
d4� trˆ�eŒV;��ˆ

C Im �

4


Z
d4�.Z�eŒV;��Z C QZe�ŒV;�� QZ�/C Im �

4


Z
d2� QZŒˆ;Z�C cc:

(2.1.16)

where we made a different choice of c D c0 in (2.1.14). This Lagrangian clearly
has SU.3/F flavor symmetry rotating ˆ, Z and QZ. This commutes with the ND1
supersymmetry manifest in the superfield formalism. We also know that this theory
has an SU.2/R symmetry rotating Z and QZ�. These two symmetries SU.3/F and
SU.2/R does not commute: we find that there is an SO.6/R symmetry, acting on

Reˆ; Imˆ;ReZ; ImZ;Re QZ; Im QZ: (2.1.17)
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Note that SO.6/R can also be regarded as SU.4/R, as SO.6/ and SU.4/ have the
same Lie algebra. Then the SU.4/R symmetry acts on the four Weyl fermions

�; Q�; ; Q (2.1.18)

in the system, where � and Q� are in the ND2 vector multiplet, and  , Q are in
the ND2 hypermultiplet. We conclude that this system has in fact ND4 supersym-
metry, whose four supersymmetry generators are acted on by SU.4/R ' SO.6/R.
The argument here is another application of the combination of the manifest and
non-manifest symmetries in the superfield formalism.

We can add the mass term
R
d2��Z QZ C cc: to (2.1.16). This preserves the

ND2 supersymmetry but it breaks ND4 supersymmetry. The resulting theory is
sometimes called the ND2� theory.

Before closing this section, we should mention the concept of half-
hypermultiplet. Let us start from a full hypermultiplet .Qa; QQa/ so that Qa and QQa

are in the representationsR, NR, respectively. WhenR is pseudo-real, or equivalently
when there is an antisymmetric invariant tensor �ab, we can impose the constraint

Qa D �ab QQb (2.1.19)

compatible with ND2 supersymmetry, which halves the number of degrees of
freedom in the multiplet. The resulting multiplet is called a half-hypermultiplet in
the representationR. We will come back to this in Sect. 7.2.

2.2 Vacua

The combined system of the vector multiplet and the hypermultiplets has the
Lagrangian which is the sum of (2.1.11) and (2.1.14). The supersymmetric vacua
are given by the following conditions.

First, the variation of the D auxiliary fields gives

1

g2
Œˆ�;ˆ�C .QiQ

�i � QQ�
i

QQi/
ˇ̌
traceless D 0; (2.2.1)

where X jtraceless for an N �N matrix is defined by

X jtraceless D X � 1

N
trX: (2.2.2)

We use the convention that a scalar is multiplied by a unit matrix when necessary.
Second, the variation of the F auxiliary field of ˆ gives

Qi
QQi
ˇ̌
traceless D 0 (2.2.3)
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and the F auxiliary fields of Qi , QQi give

ˆQi C �
j
i Qj D 0; QQiˆC �ij

QQj D 0 (2.2.4)

for all i . The total scalar potential is a weighted sum of absolute values squared of
(2.2.1), (2.2.3) and (2.2.4).

So far we only used the supersymmetry condition with respect to the ND1
supersymmetry manifest in the superfield notation. By massaging the cross terms
between the first term and the second term of (2.2.1) and combining them with the
squares of (2.2.4), we can re-write the total scalar potential as a weighted sum of the
following objects. First, we have one term purely of ˆ:

Œˆ�;ˆ� D 0: (2.2.5)

Second, we have terms purely of Q and QQ: one is

.QiQ
�i � QQ�

i
QQi/
ˇ̌
traceless D 0 (2.2.6)

and another is (2.2.3). Finally, we have terms mixing ˆ and Q, which are (2.2.4)
together with

ˆ�Qi C ��
j
i Qj D 0; QQiˆ� C ��ij

QQj D 0: (2.2.7)

Note that (2.2.5) and (2.2.6) are the SU.2/R singlet and triplet parts of Eq. (2.2.1),
respectively. Furthermore, Eq. (2.2.6) together with the real and the imaginary parts
of Eq. (2.2.3) form the triplet of SU.2/R. Finally, Eqs. (2.2.4) and (2.2.7) transform
as a doublet of SU.2/R.

Let us summarize. We first demanded that one ND1 sub-supersymmetry is
unbroken in (2.2.1), (2.2.3) and (2.2.4). We found the equations satisfied are auto-
matically SU.2/R invariant, and therefore we see that all the ND2 supersymmetry
is automatically unbroken.

One easy way to have supersymmetry is to demand (2.2.5) and set Q D QQ D 0.
This subspace of the supersymmetric vacuum moduli is called the Coulomb branch,
since there usually remain a number of Abelian gauge fields in the infrared.

When the mass terms �ij are nonzero, it is not straightforward to discuss other
vacuum configurations in general. When �ij D 0, there is another class of vacuum
configurations, given by just demanding (2.2.6) and (2.2.3), and setting ˆ D 0.
This is called the Higgs branch. Some people in the field reserve the word the Higgs
branch for the branch where the gauge group is completely broken, but theoretically
the Higgs branch as defined here behaves more uniformly under various operations.

The branches with when both the hypermultiplet scalars Q, QQ and the vector
multiplet scalars ˆ are nonzero are called the mixed branches.

From (2.2.5) we see thatˆ can be diagonalized in the supersymmetric vacua. For
definiteness let G D SU.2/. Then ˆ D diag.a;�a/. When a ¤ 0 this breaks the
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gauge group to U.1/. As there is a Coulomb field remaining in the infrared, these
vacua are called the Coulomb branch. Let us compute the mass of the resulting
W-bosons. From

1

g2
tr jD�ˆj2 D 1

g2
tr.@�ˆC ŒA�;ˆ�/

2 (2.2.8)

we have a term

1

g2
trŒA�; hˆi�2 (2.2.9)

in the Lagrangian, which gives a mass to the vector field. Writing

A� D
�
A0 W C
W � �A0

�
�

; (2.2.10)

we find
" 
0 W C

�

0 0

!
;

�
a 0

0 �a
�#

D �2a
 
0 W C

�

0 0

!
: (2.2.11)

The kinetic term in our convention is trF��F��=.2g2/, and therefore this gives the
mass

MW D j2aj: (2.2.12)

The mass terms of the fieldsQi , QQi for fixed i are

QQiˆQi C �i QQiQi D . QQi
1;

QQi
2/

�
a C �i 0

0 �aC �i

��
Qi
1

Qi
2

�
: (2.2.13)

Therefore we have

MQi;1 D jaC �j; MQi;2 D j�aC �j: (2.2.14)

We studied the classical mass of the monopole in this model in (1.3.12) when
� D 0. In general, this is given by

Mmonopole D j2�aj: (2.2.15)

Classically, there is a general inequality for the mass of a particle

M � jna Cm.2�a/C
X
i

fi�i j (2.2.16)
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where n, m, fi are the electric, magnetic and flavor charges of the particle. Here the
i -th flavor charges are associated to the symmetry

Qi ! ei'iQi ; QQi ! e�i'i QQi: (2.2.17)

This inequality, called the Bogomolnyi-Prasad-Sommerfield (BPS) bound, persists
in the quantum system, once quantum corrections are taken into account to a and
2�a. Let us study this point next.

2.3 BPS Bound

The general ND2 supersymmetry algebra has the following form

fQI
˛;Q

� NJ
P̌g D ıI

NJ P��
˛ P̌; (2.3.1)

fQI
˛;Q

J
ˇ g D �IJ�˛ˇZ: (2.3.2)

Here I D 1; 2 are the index distinguishing two supersymmetry generators, and Z
is a complex quantity which commutes with everything. Let us take the coordinate
system where

P� D .M; 0; 0; 0/: (2.3.3)

This choice breaks the Lorentz symmetry SO.3; 1/ to the spatial rotation SO.3/,
which allows us to identify the undotted and the dotted spinor indices. Let us then
define

.'/Q˛ D 1p
2
.Q1

˛ C e�i'0˛
P̌
Q�2

P̌/ (2.3.4)

for which we have

f.'/Q˛;
.'/Q

�

ˇg D ı˛ˇ.M � Re.e�i'Z//: (2.3.5)

In general, if there is an operator a satisfying fa; a�g D c with a constant c, c is
necessarily non-negative. Indeed, take a ket vector j i then

ˇ̌
a�j iˇ̌2 C jaj ij2 D h jaa�j i C h ja�aj i D ch j i; (2.3.6)

meaning that c � 0. From (2.3.5), then, we see

M � Re.e�i'Z/ (2.3.7)
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for all '. Choosing ' D ArgZ, we find the inequality

M � jZj: (2.3.8)

In general, the multiplet of the supertranslationsQI
˛ andQJ �

˛ generates 24 D 16

states in the supermultiplet. When the inequality (2.3.8) is saturated, c in Eq. (2.3.6)
for a˛ D .ArgZ/Q˛ is zero, forcing the operators .ArgZ/Q˛ themselves to vanish.
Then the supertranslations only generate 22 D 4 states. Such multiplets are called
BPS, and those multiplets with 16 states under the action of supertranslations
are called non-BPS. A BPS state is rather robust: under a generic perturbation,
the number of states in a multiplet can not jump. Therefore the BPS state will
generically stay BPS.

What is this quantity Z, which commutes with everything? A quantity com-
muting with everything is by definition a conserved charge. When the low-energy
theory is a weakly-coupled U.1/ gauge theory, Z is a linear combination of the
electric charge n, the magnetic charge m, and the flavor charges fi . We define the
coefficients appearing in the linear combination to be a, aD and �i in the quantum
theory:

Z D na C maD C
X
i

�ifi : (2.3.9)

When the theory is weakly-coupled, we can identify a to be the diagonal entry of
the field ˆ, aD to be 2�a, and �i to be the coefficients of the mass terms in the
Lagrangian, by comparing the quantum BPS mass formula (2.3.8) and its classical
counterpart (2.2.16). In the strongly-coupled regime, there is no meaning in saying
that a is the diagonal entry of a gauge-dependent field ˆ. Rather, we should think
of (2.3.9) as the definition of the quantity a.

2.4 Low Energy Lagrangian

Let us consider a general effective Lagrangian which describes U.1/n gauge fields
in the infrared. Let us denote n U.1/ vector multiplets by

$ �˛ $ A� ND1 vector multiplet
a $ Q�˛ $ ND1 chiral multiplet

(2.4.1)

with additional scripts i D 1; : : : ; n. A general ND1 supersymmetric Lagrangian
is given by

1

8


Z
d4�K. Nai ; aj /C

Z
d2�

�i

8

� ij.a/W˛;iW

˛
j C cc: (2.4.2)
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Note that we allowed the Kähler potential and the gauge coupling matrix to have
nontrivial dependence on ai .

We demand the existence of the SU.2/R symmetry rotating �˛ and Q�˛ to
guarantee the existence of ND2 supersymmetry. The kinetic matrix of Q�˛ is

1

4


@2K

@ai@ Naj (2.4.3)

and that of � is

Im � ij

2

D � ij � N� ij

4
i
: (2.4.4)

Equating them, we have

� ij � N� ij

i
D @2K

@ai @ Naj : (2.4.5)

Taking the derivative of both sides by ak , we have

@

@ak

� ij

i
D @3K

@ak@ai @ Naj : (2.4.6)

The left hand side is symmetric under i $ j , and the right hand side is symmetric
under k $ i . Therefore, at least locally, � ij can be integrated twice:

� ij D @2F

@ai @aj
(2.4.7)

for a locally holomorphic function F.a/. We define

aiD D @F

@ai
; (2.4.8)

then we have

K D i. NaiDai � NaiaiD/: (2.4.9)

A Kähler manifold with this additional structure is often called a special Kähler
manifold. With supergravity, a slightly different structure appears. To distinguish
from it, it is also called a rigid special Kähler manifold. The same geometry is also
called a Seiberg–Witten integrable system, or a Donagi–Witten integrable system.
See e.g. [4–6] for a review. In this context, the fields ai and aiD are called the special
coordinates.
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The notations ai and aiD can be justified as follows. Suppose we have a
hypermultiplet Q, QQ charged under the i -th vector multiplet only. It has the
superpotential

W D Qai QQ; (2.4.10)

which gives the mass

MQ D jai j: (2.4.11)

Therefore, ai is indeed the coefficient appearing in (2.3.9). To justify the notation
aiD , write down the Lagrangian for the bosons in components:

Im � ij

4

@� Nai@�aj C Im � ij

8

F�� iF

��
j C Re � ij

8

F�� i QF��

j : (2.4.12)

Generalizing the argument in Sect. 1.2, the dual electromagnetic field FD is given
by

FD
i
�� D Im � ijF�� j C Re � ij QF�� j ; (2.4.13)

in terms of which the kinetic term of the gauge fields is

1

8


�
Im �D ijFD

i
��FD

�� j C Re �D ijFD�� i QFD�� j
	

(2.4.14)

where

�D ij D .���1/ij: (2.4.15)

Then we find

1

4

Im � ij@� Nai @�aj D 1

4

Im �D ij@� NaiD@�ajD (2.4.16)

where aD is as defined in (2.4.8). This means that we have the dual ND2multiplets

$ �D˛ $ AD� ND1 vector multiplet
aD $ Q�D˛ $ ND1 chiral multiplet

(2.4.17)

where AD� is the gauge potential of FD�� introduced above, with additional
superscripts i .

We introduced the prepotential F in a rather indirect manner in this section, by
saying that the kinetic term of the U.1/ vector multiplets (2.4.2) should be given by
(2.4.7) and (2.4.9). This can be better understood using ND2 superspace, since it is
known that the prepotential is the Lagrangian density in the ND2 superspace. This
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is similar to the situation where the Kähler potential gives the Lagrangian density in
the ND1 superspace.

Recall that the multiplets (2.4.1) can be summarized in ND1 superfields

ˆi D ai C 2 Q�i˛�˛ C � � � ; Wi D �˛ i C F˛ˇ�
ˇ C � � � : (2.4.18)

We can introduce another set of supercoordinates Q�˛ to combine them:

ˆi D ˆi C2W˛ i
Q�˛ D ai C2 Q�˛ i�˛ C2�˛ i Q�˛ C2F˛ˇ i�

.˛ Q�ˇ/ C� � � : (2.4.19)

Then the SU.2/ R-symmetry rotating � and Q� acts on the two sets of supercoordi-
nates �˛ and Q�˛ .

Now, take an arbitrary holomorphic function of n variables F.a1; : : : ; an/, and
consider its integral over the chiral ND2 superspace:

Z
d2�d2 Q�F.ˆ1; : : : ;ˆn/C cc: (2.4.20)

It is clear that this gives rise to the structure (2.4.7) for the gauge kinetic matrix. To
obtain the Kähler potential (2.4.9) one needs to study the structure of the constraints
and the auxiliary fields of the ND2 superfields, see e.g. Sect. 2.10 of [7]. The non-
Abelian microscopic action (2.1.11) has the prepotential F.ˆ/ D 1

2
� tr ˆ2.
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Chapter 3
Renormalization and Anomaly

In the last chapter we constructed the Lagrangian of ND2 supersymmetric field
theories. Before going into the analysis of their dynamics, we would like to recall a
few basic methods here, namely one-loop renormalization and anomalies.

3.1 Renormalization

Recall the one-loop renormalization of the gauge coupling in a general Lagrangian
field theory:

E
d

dE
g D � g3

.4
/2

�
11

3
C.adj/ � 2

3
C.Rf /� 1

3
C.Rs/

�
: (3.1.1)

Here, E is the energy scale at which g is measured, and we use the convention that
all fermions are written in terms of left-handed Weyl fermions. ThenRf andRs are
the representations of the gauge group to which the Weyl fermions and the complex
scalars belong, respectively. The quantity C.�/ is defined so that

tr �.T a/�.T b/ D C.�/ıab (3.1.2)

where T a are the generators of the gauge algebra and �.T a/ is the matrix in the
representation �, normalized so that C.adj/ is equal to the dual Coxeter number. For
SU.N /, we have

C.adj/ D N; C.fund/ D 1

2
: (3.1.3)
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In an ND1 gauge theory, the equation simplifies to

E
d

dE
g D � g3

.4
/2
Œ3C.adj/� C.R/� (3.1.4)

or equivalently

E
d

dE

8
2

g2
D 3C.adj/ � C.R/; (3.1.5)

where R is the representation of the chiral multiplet. In an ND2 gauge theory, one
adjoint chiral multiplet ˆ is considered to be a part of the vector multiplet. Then
we have

E
d

dE

8
2

g2
D 2C.adj/ � C.R/; (3.1.6)

where R is now the representation of the ND1 chiral multiplets describing the
hypermultiplets of the system. If one has one adjoint hypermultiplet, consisting
of two ND1 chiral multiplets A and B , we have zero one-loop beta function.
When the mass terms for A, B are zero, the system in fact has a further enlarged
supersymmetry, and is the ND4 super Yang–Mills. When the mass term is nonzero,
it is called the ND2� theory.

In a supersymmetric theory, the coupling g is combined with the theta angle �
and enters in the Lagrangian as

Z
d2�

�i
8

� trW˛W

˛ C cc: (3.1.7)

where � is given by

� D 4
i

g2
C �

2

: (3.1.8)

We call this � the complexified gauge coupling.
We can consider � to be an expectation value of a background chiral superfield.

There is a renormalization scheme where the superpotential remains a holomorphic
function of the chiral superfields, including background fields whose vevs are the
gauge and superpotential couplings [1]. We call it Seiberg’s holomorphy principle.

In this scheme, the one-loop running coupling at the energy scale E can be
expressed as

�.E/ D �UV � b

2
i
log

E

ƒUV
C � � � (3.1.9)
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where b is the rational number appearing on the right hand side of (3.1.5) or (3.1.6).
Note that the coupling � starts from 1=g2, and therefore the n loop diagram would
have the dependence g2.n�1/. The constant shift as in the imaginary part in (3.1.9)
is then a one-loop effect.

Perturbation theory is independent of the � angle, since F�� QF�� is a total
derivative, although of a gauge-dependent quantity. Therefore the n loop effect is
a function of .Im �/1�n, which is not holomorphic unless n D 1. We conclude that
the running (3.1.9) is one-loop exact in the holomorphic scheme. We find that the
combination

ƒb D Ebe2
i�.E/ (3.1.10)

is invariant to all orders in perturbation theory. We call this ƒ the complexified
dynamical scale of the theory.1 Note that ƒ is a complex quantity, and can be
considered as a vev of a background chiral superfield.

This one-loop exactness does not necessarily mean that the physical gauge
coupling, which controls the scattering process for example, is one-loop exact. In the
holomorphic scheme in generic ND1 supersymmetric theories, we have nontrivial
wave-function renormalization factors Zij

Z
d4�Z

Nij .E/Q�

Ni e
V Qj (3.1.11)

which need to be taken into account by a further field redefinition to compute
physical scattering amplitudes. This is known to produce further perturbative
contributions to the physical running of the gauge coupling. For more on this point,
see e.g. [2].

For ND2 supersymmetric theories, however, one can make a stronger statement.
We assume that there is a holomorphic renormalization scheme which is compatible
with the existence of SU.2/R symmetry. Then, the structure of the Lagrangian is
restricted to be of the form (2.1.11) for the vector multiplets and of the form (2.1.14)
for the hypermultiplets. We consider � as the vev of a background field. Then, on
the vector multiplet side, one finds that we cannot have nontrivial wavefunction
renormalization factors ZNij as in (3.1.11) in the vector multiplet Lagrangian
(2.1.11). On the hypermultiplet side, the coefficient c0 in (2.1.14) is not renormalized
in the holomorphic scheme. Since c D c0, the Kähler potential is not renormalized.
Therefore, there is no renormalization in the hypermultiplet Lagrangian (2.1.14).

Then, in particular when b D 0, the beta function is zero to all orders in
perturbation theory. This makes the system conformal, and the value of � becomes

1A redefinition of the form ƒ ! cƒ by a real constant c corresponds to a redefinition of the
coupling of the form 1=g2 ! 1=g2 � c0 where c0 is another constant, or equivalently g2 !
g2 C c0g4 C � � � . Therefore this is a redefinition starting at the one-loop order, keeping the leading
order definition of g2 fixed. In this lecture note, we do not track such finite renormalization of the
coupling very carefully.
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an exactly marginal coupling parameter. The non-perturbative corrections will
induce finite renormalization, but are not thought to introduce any additional infinite
renormalization.

For example, the ND4 super Yang–Mills is automatically superconformal,
with one exactly marginal coupling. Another example with b D 0 is ND2
supersymmetric SU.N / gauge theory with 2N hypermultiplets in the fundamental
representation. Indeed, in (3.1.6), we have C.adj/ D N and C.R/ D 2 � 2N � 1=2.

3.2 Anomalies

3.2.1 Anomalies of Global Symmetry

Non-abelian gauge theories have an important source of non-perturbative effects,
called instantons. This is a nontrivial classical field configuration in the Euclidean
R
4 with nonzero integral of

16
2k WD
Z
R4

trF�� QF��: (3.2.1)

In the standard normalization of the trace for SU.N /, k is automatically an integer,
and is called the instanton number. The theta term in the Euclidean path integral
appears as

exp

�
i
�

16
2
trF�� QF��

�
: (3.2.2)

Therefore, a configuration with the instanton number k has a nontrivial phase ei�k.
Note that a shift of � by 2
 does not change this phase at all. Therefore, even in a
quantum theory, the shift � ! � C 2
 is a symmetry.

Using

trF��F�� D 1

2
tr.F�� ˙ QF��/2 � trF�� QF�� � � trF�� QF��; (3.2.3)

we find that
Z
d4x trF��F�� � 16
2jkj (3.2.4)

which is saturated only when

F�� C QF�� / F˛ˇ D 0 or F�� � QF�� / F P̨ P̌ D 0 (3.2.5)
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depending on the sign of k. Therefore, within configurations of fixed k, those
satisfying relations (3.2.5) give the dominant contributions to the path integral. The
solutions to (3.2.5) are called instantons or anti-instantons, depending on the sign
of k.

In an instanton background, the weight in the path integral coming from the
gauge kinetic term is

exp

�
� 1

2g2

Z
trF��F �� C i

�

16
2

Z
trF�� QF ��

�
D e2
i�k: (3.2.6)

We similarly have the contribution e2
i N� jkj in an anti-instanton background. The
fact that we have just � or N� , instead of more complicated combinations, is related
to the fact that in the instanton background in a supersymmetric theory, ı� P̨ D
F P̨ P̌�

P̌ D 0 assuming the D-term is also zero, and thus the dotted supertranslation is
preserved. Similarly, the undotted supersymmetry is unbroken in the anti-instanton
background.

Now, consider charged Weyl fermions  ˛ coupled to the gauge field, with the
kinetic term

N P̨D�
� P̨˛ ˛: (3.2.7)

Let us say  ˛ is in the representation R of the gauge group. It is known that the
number of zero modes in  ˛ minus the number of zero modes in N P̨ is 2C.R/k. In
particular, the path integral restricted to the k-instanton configuration with positive
k is vanishing unless we insert k additional  ’s in the integrand. More explicitly,

hO1O2 � � � i D
Z
ŒD �ŒD N �O1O2 � � � e�S D 0 (3.2.8)

unless the product of the operators O1O2 � � � contains 2C.R/k more  ’s than N ’s.
This is interpreted as follows: the path integral measures ŒD � and ŒD N � contain
both infinite number of integrations. However, there is a finite number, 2C.R/k, of
difference in the number of integration variables. Equivalently, under the constant
rotation

 ! ei' ; N ! e�i' N ; (3.2.9)

the fermionic path integration measure rotates as

ŒD � ! ŒD �eC1i'C2C.R/ki';

ŒD N � ! ŒD N �e�1i' :
(3.2.10)
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When combined, we have

ŒD �ŒD N �!ŒD �ŒD N �e2C.R/ki'DŒD �ŒD N � exp

�
2C.R/'

i

16
2

Z
trF�� QF��

�
:

(3.2.11)

This can be compensated by a shift of the � angle, � ! �C2C.R/'. As we recalled
before, the shift � ! � C 2
 is a symmetry. Therefore, the rotation of the field  
by exp. 2
i

2C.R/
/ is a genuine, unbroken symmetry.

3.2.2 Anomalies of Gauge Symmetry

In ND2 gauge theories, fermions always come in non-chiral representations.
Indeed, the fermions in the vector multiplets are always in the adjoint, the ND1
chiral superfields in a full hypermultiplet is a sum of a representation R and its
conjugate NR, and a half-hypermultiplet counts as an ND1 chiral superfield in a
pseudo-real representationR. Therefore there are no perturbative gauge anomalies.

One needs to be careful about Witten’s global anomaly [3], though, as this can
arise even for real representations. It is known that a Weyl fermion in the doublet
of gauge SU.2/ is anomalous, due to the following fact. When we perform the path
integral of this system, we first need to consider

ZŒA�� D
Z
ŒD ˛i �ŒD N P̨ i �e� R N D�� (3.2.12)

where i D 1; 2 is the SU.2/ doublet index. To perform a further integration overA�
consistently, we need

ZŒA�� D ZŒAg��; Ag� D g�1A�g C g�1@�g: (3.2.13)

for any gauge transformation g W R4 ! SU.2/. These maps are characterized by

4.SU.2//. It is known that


4.SU.2// D 
4.S
3/ D Z2: (3.2.14)

Let g0 W R4 ! SU.2/ be the one corresponding to the nontrivial element in this Z2.
Then it is known that

ŒD ˛i �ŒD N P̨ i �
g0�! �ŒD ˛i �ŒD N P̨ i � (3.2.15)

resulting in

ZŒAg0� � D �ZŒA��; (3.2.16)

thus making the path integral over A� inconsistent.
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In general 
4.G/ D Z2 if G D Sp.n/, and 
4.G/ D 1 otherwise. Therefore
Witten’s global anomaly can be there only for Weyl fermions in a representation R
under gauge Sp.n/. A short computation reveals that there is an anomaly only when
C.R/ is half-integral.

Witten’s anomaly is always Z2 valued in four dimensions. Therefore full
hypermultiplets are always free of Witten’s global anomaly. The danger only exists
for half-hypermultiplets of gauge Sp.n/. For example, one cannot have odd number
of half-hypermultiplets in the doublet representation of gauge SU.2/, or more
generally, one cannot have half-hypermultiplets in a pseudo-real representation R
of gauge Sp.n/ such that C.R/ is half-integral.

3.3 ND1 Pure Yang–Mills

3.3.1 Confinement and Gaugino Condensate

As an example of the application of what we learned in this section, let us consider
the ND1 pure supersymmetric Yang–Mills theory with gauge group SU.N /. The
content of this section will not be used much in the rest of the lecture note.

This theory has just the vector multiplet, with the Lagrangian

L D
Z
d2�

�i
8

� trW˛W

˛ C cc:; W˛ D �˛ C F˛ˇ�
ˇ C � � � (3.3.1)

The one-loop running of the coupling is given by

E
@

@E
�.E/ D 3N; (3.3.2)

and therefore we define the dynamical scale ƒ by the relation

ƒ3N D e2
i�UVƒ3N
UV : (3.3.3)

We assign R-charge zero to the gauge field, and R-charge 1 to the gaugino �˛ .
The phase rotation �˛ ! ei'�˛ is anomalous, and needs to be compensated by
� ! � C 2N'. The shift of � by 2
 is still a symmetry, therefore the discrete
rotation

�˛ ! e
i=N�˛; � ! � C 2
 (3.3.4)

is a symmetry generating Z2N . Note that under this symmetry,ƒ defined above has
the transformation

ƒ ! e2
i=.3N/ƒ: (3.3.5)
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This theory is believed to confine, with nonzero gaugino condensate h�˛�˛i.
What would be the value of this condensate? This should be of mass dimension 3
and of R-charge 2. The only candidate is

h�˛�˛i D cƒ3 (3.3.6)

for some constant c. The symmetry (3.3.5) acts in the same way on both sides by
the multiplication by e2
i=N . Assuming that the numerical constant c is non-zero,
this Z2N is further spontaneously broken to Z2, generatingN distinct solutions

h�˛�˛i D ce2
i`=Nƒ3 (3.3.7)

where ` D 0; 1; : : : ; N �1. Unbroken Z2 acts on the fermions by �˛ ! ��˛ , which
is a 360ı rotation. This Z2 symmetry is hard to break.

It is now generally believed that this theory has these N supersymmetric vacua
and not more. For other gauge groups, the analysis proceeds in the same manner,
by replacing N by the dual Coxeter number C.adj/ of the gauge group under
consideration. For example, we haveN � 2 vacua for the pure ND1 SO.N / gauge
theory.

3.3.2 The Theory in a Box

It is instructive to recall another way to compute the number of vacua in the ND1
pure Yang–Mills theory with gauge groupG, originally discussed in [4]. We put the
system in a spatial box of size L � L � L with the periodic boundary condition in
each direction. We keep the time direction as R. By performing the Kaluza–Klein
reduction along the three spatial directions, the system becomes supersymmetric
quantum mechanics with infinite number of degrees of freedom.

The box still preserves the translation generators P� and the supertranslations
Q˛ unbroken. We just use a linear combination Q of Q˛ and Q�

˛, satisfying

H D P0 D fQ;Q�g: (3.3.8)

We also have the fermion number operator .�1/F such that

f.�1/F ;Qg D 0: (3.3.9)

Consider eigenstates of the HamiltonianH , given by

H jEi D EjEi: (3.3.10)
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In general, the multiplet structure under the algebra of Q, Q�, H and .�1/F is of
the form

$ Q�jEi $ .Q�Q � QQ�/jEi
jEi $ QjEi $ (3.3.11)

involving four states. When QjEi D 0 or Q�jEi D 0, the multiplet only has
two states. If QjEi D Q�jEi D 0, the multiplet has only one state, and E is
automatically zero due to the equality

EhEEi D hEjH jEi D hEj.QQ�CQ�Q/jEi D jQjEij2CjQ�jEij2: (3.3.12)

We see that a bosonic state is always paired with a fermionic state unless E D 0.
This guarantees that the Witten index

tr e�ˇH .�1/F D tr
ˇ̌
ED0.�1/F (3.3.13)

is a robust quantity independent of the change in the size L of the box: when a
perturbation makes a number of zero-energy states to non-zero energy E ¤ 0, the
states involved are necessarily composed of pairs of a fermionic state and a bosonic
state. Thus it cannot change tr.�1/F .

Therefore, we can compute the Witten index in the limit where the box size L is
far smaller than the scale ƒ�1 set by the dynamics. Then the system is weakly
coupled, and we can use perturbative analysis. To have almost zero energy, we
need to have F�� D 0 in the spatial directions, since magnetic fields contribute
to the energy. Then the only low-energy degrees of freedom in the system are the
holonomies

Ux; Uy; Uz 2 SU.N /; (3.3.14)

which commute with each other. Assuming that they can be simultaneously
diagonalized, we have

Ux D diag.ei�
x
1 ; : : : ; ei�

x
N /; (3.3.15)

Uy D diag.ei�
y
1 ; : : : ; ei�

y
N /; (3.3.16)

Uz D diag.ei�
z
1 ; : : : ; ei�

z
N /: (3.3.17)

together with gaugino zero modes

�˛D1
1 ; : : : ; �˛D1

N ; �˛D2
1 ; : : : ; �˛D2

N (3.3.18)
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with the condition that

X
i

�xi D
X
i

�
y
i D

X
i

� z
i D 0;

X
i

�˛D1
i D

X
i

�˛D2
i D 0: (3.3.19)

The wavefunction of this truncated quantum system is given by a linear combination
of states of the form

�
˛1
i1
�
˛2
i2

� � ��˛`i`  .�xi I �yi I � z
i / (3.3.20)

which is invariant under the permutation acting on the index i D 1; : : : N . To have
zero energy, the wavefunction cannot have dependence on �x;y;zi anyway, since the
derivatives with respect to them are the components of the electric field, and they
contribute to the energy. Thus the only possible zero energy states are just invariant
polynomials of �s. We find N states with the wavefunctions given by

1; S; S2; : : : ; SN�1 (3.3.21)

where S D P
i �

˛D1
i �˛D2

i . They all have the same Grassmann parity, and contribute
to the Witten index with the same sign. Thus we foundN states in the limit of small
box, too.

The construction so far, when applied to other groups, only gives 1 C rankG
states. For example, let us consider for G D SO.N / for N > 4. Then the method
explained so far only gives bN=2c C 1 states

1; S; S2; : : : ; S bN=2c; (3.3.22)

and does not agree with C.adj/ D N � 2 when N � 7. This conundrum was
already pointed out in [4] and resolved later in the Appendix I of [5] by the same
author.2 What was wrong was the assumption that three commuting matrices Ux;y;z
can be simultaneously diagonalized as in (3.3.17). It is known that there is another
component where they cannot be simultaneously diagonalized into the Cartan torus.
For SO.7/, an example is given by the triple

U .7/
x D diag.C C � � � C �/; (3.3.23)

U .7/
y D diag.C � C � C � �/; (3.3.24)

U .7/
z D diag.� C C C � � �/: (3.3.25)

2It is a sad state of affairs that a problem reported in such an important paper as [4] was not resolved
for 15 years by any other physicist. It seems that people in our field rely too much on the author of
[4, 5].
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These three matrices might look diagonal, but not in the same Cartan subgroup. This
component adds one supersymmetric state. Then, in total, we have .b7=2cC1/C1D
5 D 7 � 2, reproducing C.adj/.

For larger N , one can consider Ux;y;z given by the form

Ux D U .7/
x ˚ U 0

x; Uy D U .7/
y ˚ U 0

y; Uz D U .7/
z ˚ U 0

z ; (3.3.26)

whereU 0
x;y;z are in the Cartan subgroup of SO.N�7/. Applying the analysis leading

to (3.3.21) in both components, i.e. in the component where Ux;y;z are in the Cartan
subgroup of SO.N /, and in the component where Ux;y;z has the form (3.3.26), we
find in total

.bN=2c C 1/C .b.N � 7/=2c C 1/ D N � 2 (3.3.27)

zero-energy states, thus reproducing C.adj/ states. This analysis has been extended
to arbitrary gauge groups [6, 7].
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Chapter 4
Seiberg–Witten Solution to Pure SU.2/ Theory

We are finally prepared enough to start the analysis of the simplest of non-Abelian
ND2 supersymmetric theory, namely the pure SU.2/ gauge theory. We mainly
follow the presentation of the original paper [1], except that we use the Seiberg–
Witten curve in the form first found in [2], which is more suited to the generalization
later.

4.1 One-Loop Running and the Monodromy at Infinity

The pure SU.2/ theory contains only an ND2 vector multiplet for the SU.2/ gauge
group, with its Lagrangian given by (2.1.11). For reference we reproduce it here:

L D Im �

4


Z
d4� trˆ�eŒV;��ˆC

Z
d2�

�i

8

� trW˛W

˛ C cc: (4.1.1)

A supersymmetric vacuum is classically characterized by the solution to the D-
term constraint

Œˆ�;ˆ� D 0: (4.1.2)

This means that ˆ can be diagonalized by a gauge rotation. Let

ˆ D diag.a;�a/: (4.1.3)

Roughly speaking, the gauge coupling � runs from a very high energy scale
down to the energy scale a according to the one-loop renormalization of the SU.2/
theory. Then the vev a breaks the gauge group SU.2/ to U.1/. There are massive
excitations charged under the unbroken U.1/, but they will soon decouple, and the
coupling remains almost constant below the energy scale a. This evolution is shown
in Fig. 4.1.
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Fig. 4.1 Schematic drawing
of the running of the coupling

Let us describe it slightly more quantitatively. Our normalization of the U.1/
Lagrangian and the gauge coupling was given in (1.2.7) and (1.2.16), which we
reproduce here:

1

2e2
F U.1/
�� F U.1/

�� C �

16
2
F U.1/
��

QF U.1/
�� ; and �U.1/ D 4
i

e2
C �

2

: (4.1.4)

In the broken vacuum, the low-energy U.1/ and the high-energy SU.2/ are related
as in (1.3.3), which we also reproduce here

F SU.2/
�� D diag.F U.1/

�� ;�F U.1/
�� /: (4.1.5)

Plugging this in to the high-energy Lagrangian (4.1.1) and comparing the definitions
of �s, we find

�U.1/ D 2�SU.2/: (4.1.6)

This relation gets modified by the quantum corrections.
Let us denote by �.a/ the low-energy coupling of the U.1/ gauge field when the

vev is given by (4.1.3), and by �UV the high-energy coupling of the SU.2/ gauge
field at the high-energy renormalization point ƒUV . The one-loop running (3.1.6)
then gives

�.a/ D 2�UV � 8

2
i
log

a

ƒUV
C � � � (4.1.7)

D � 8

2
i
log

a

ƒ
C � � � (4.1.8)

where we defined

ƒ4 D ƒ4
UVe

2
i�UV : (4.1.9)

The dual variable aD can be obtained by integrating (4.1.8) once, and we find

aD D � 8a

2
i
log

a

ƒ
C � � � : (4.1.10)
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As long as we keep jaj � jƒj, the coupling �.a/ remains weak, and the
computation above gives a reliable approximation.

A gauge-invariant way to label the supersymmetric vacua is to use

u D 1

2
htr�2i D a2 C � � � (4.1.11)

where � � � are quantum corrections. Let us consider adiabatically rotating the phase
of u by 2
:

u D ei� juj; � D 0 � 2
 (4.1.12)

We have a 7! �a. From the explicit form of aD we find aD ! �aD C 4a. We
denote it as

.a; aD/ ! .a; aD/

��1 4

0 �1
�
: (4.1.13)

The mass formula of BPS particles is

M D jna C maDj D
ˇ̌
ˇ̌.a; aD/

�
n

m

�ˇ̌
ˇ̌ : (4.1.14)

Therefore, the transformation (4.1.16) can also be ascribed to the transformation of
the charges:

�
n

m

�
!
��1 4

0 �1
��

n

m

�
: (4.1.15)

We call this matrix

M1 D
��1 4

0 �1
�

(4.1.16)

the monodromy at infinity. The situation is schematically shown in Fig. 4.2. The
space of the supersymmetric vacua, parametrized by u, is often called the u-plane.

In our argument, the matrix (4.1.13) could have had non-integral entries, as we
read the matrix elements off from an approximate formula of a and aD . However,
the transformation (4.1.15) should necessarily map integral vectors to integral
vectors, which guarantees that the matrix (4.1.15) is integral. Not only that, this
transformation is just a relabeling of the charges and should not change the Dirac
pairing

nm0 � mn0 D det

�
n n0
m m0

�
(4.1.17)
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Fig. 4.2 Monodromy at
infinity

which measure the angular momentum carried in the space when we have two
particles with charges .n;m/ and .n0; m0/, respectively. A transformation given by

�
n

m

�
! M

�
n

m

�
(4.1.18)

affects the Dirac pairing as

det

�
n n0
m m0

�
! detM det

�
n n0
m m0

�
: (4.1.19)

Therefore,M should necessarily has unit determinant. A 2 � 2 integral matrix with
unit determinant is called an element of SL.2;Z/. It is reassuring that the matrix
(4.1.16) satisfies this condition.

4.2 Behavior in the Strongly-Coupled Region

Let us study what is going on in the strongly coupled region which is the interior
of the u-plane. There needs to be at least one singularity in this interior region to
realize the monodromyM1 of holomorphic functions a and aD . So, most naively,
we would expect the structure as in Fig. 4.3. Where will the singularity be? Here the
discrete unbroken U.1/ R-symmetry of the system is useful. Recall our ND2 theory
has an SU.2/R symmetry. Classically, we can also consider a U.1/R symmetry with
the standard R-charge assignment given as follows:

R D 0 A

1 � �

2 ˆ

: (4.2.1)

Different components in the same supersymmetry multiplet have different charges,
and therefore this is an R-symmetry.

Quantum mechanically, the rotation

� ! ei'�; (4.2.2)
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Fig. 4.3 Naive guess which
does not work

is anomalous, but can be compensated by

�UV ! �UV C 8'; (4.2.3)

as we learned in Sect. 3.2.1.
Therefore ' D 
=4 is a genuine symmetry, which does

� ! � C 2
; ˆ ! e
i=2ˆ: (4.2.4)

This generates a Z4 discrete R-symmetry of the system. In the low-energy variables,
it acts as

�IR ! �IR C 4
; u ! �u: (4.2.5)

Then, if there is a singularity at u D u0, there should be another at u D �u0:
Therefore, if there is only one singularity, it is at u D 0.

If this were really the case, we would find that �.a/ is given by

�.a/ D � 8

2
i
log

a

ƒ
C f .a/: (4.2.6)

where f .a/ is a meromorphic function whose only singularity is at a D 0.
This does not sound right, however. The coupling is given by Im �.a/, which is
the imaginary part of a holomorphic function. Then, it has no lower bound, and
therefore it becomes negative for some value of a. This means that the coupling
g2 is negative there, and the system becomes unstable. For example, supposing
f .a/ D 0, the imaginary part is negative when jaj is small enough. We conclude
that our assumption of having just one singularity at u D 0 was too naive.

The next simplest possibility is then to suppose that there are two singularities
at u D ˙u0, see Fig. 4.4. The only scale in the system is the dynamical scale ƒ,
therefore u0 should be given by cƒwhere c is a number. Denoting the monodromies
around two singularitiesM˙, we should have

M1 D MCM�; (4.2.7)
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Fig. 4.4 Next guess which
turns out to be correct

Fig. 4.5 The relation
between M

C

and M
�

since the path going around the infinity of the u-plane is topologically the same
as the path which first goes around u D �u0 and then around u D u0. As two
singularities are exchanged by a symmetry, the monodromies around them should
be essentially the same, except for the relabeling of the charges. Or equivalently,
they should be conjugate

M� D XMCX�1 (4.2.8)

by an SL.2;Z/ matrix X . Note that this matrix X can be thought of a half-
monodromy associated to the symmetry operation (4.2.5), see Fig. 4.5.

A solution to these equations is given by

MC D STS�1 D
�
1 0

�1 1
�
; M� D T 2STS�1T �2 D

��1 4
�1 3

�
(4.2.9)

where S and T were given in (1.2.20), (1.2.21). Note that we have

X D T 2; (4.2.10)

which is roughly compatible with the fact that the discrete R-symmetry (4.2.5) shifts
�IR by 4
 .
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4.3 The Seiberg–Witten Solution

Let us construct holomorphic functions a and aD satisfying these monodromies
explicitly. Note that a holomorphic function is uniquely determined by its singu-
larities. Therefore, if we find a candidate with the correct properties around the
singularities and at infinity of its domain of definition, it is necessarily the correct
answer itself, assuming that we identified the singularities correctly. Therefore, it
suffices to construct a candidate and then check that it satisfies the conditions.

4.3.1 The Curve

We first introduce two auxiliary complex variables x and z, and then we consider an
equation

† W ƒ2z C ƒ2

z
D x2 � u: (4.3.1)

We consider this equation as defining a complex one-dimensional subspace of a
complex two-dimensional space of x and z.1 As the equation changes as we change
u, the shape of this subspace also changes. This complex one-dimensional object is
called the Seiberg–Witten curve.2 A differential

� D x
dz

z
; (4.3.2)

called the Seiberg–Witten differential, plays an important role later.3

The space parametrized by z is important in itself. We add the point at z D 1 to
the complex plane of z, or equivalently, we regard z to be the complex coordinate of
a sphere. We denote this sphere by C , and call it the ultraviolet curve of this system.
The variable x as a function of z has four square-root branch points, see Fig. 4.6.

Then the curve† is a two-sheeted cover of C ,

†
2W1�! C; (4.3.3)

1Our usage of .z; x/ for the coordinates follows the convention of [2]. Using .t; v/ for what we call
.z; x/ is also common, which comes from [3].
2It is real two-dimensional, and therefore it is a surface from a usual point of view. Mathematicians
are strange and they consider one-dimensional objects curves, whether it is complex one-
dimensional or real one-dimensional.
3The symbol � were for adjoint fermions up to this point, but we use � mainly for the differential
from now on, unless otherwise noted.
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Fig. 4.6 The ultraviolet
curve C of pure SU.2/ theory

Fig. 4.7 The sheets of the
Seiberg–Witten curve † of
pure SU.2/ theory

see Fig. 4.7. We then draw two one-dimensional cyclesA, B on the curves as shown
in the figures, and we declare that

a D 1

2
i

I
A

�; aD D 1

2
i

I
B

�: (4.3.4)

Let us check that the functions a.u/ and aD.u/ thus defined satisfy physically
expected properties. First, let us compute �.a/:

�.a/ D @aD

@a
D @aD=@u

@a=@u
: (4.3.5)

The u derivatives can be computed in the following way:

@a

@u
D
Z
A

@

@u
� D

Z
A

dz

xz
(4.3.6)

@aD

@u
D
Z
B

@

@u
� D

Z
B

dz

xz
(4.3.7)

where the u derivative within the integral is taken at fixed z. The differential ! D
dz=.xz/ is finite on †, even at apparently dangerous points z D 0, z D 1 or at
x D 0. For example, when x D 0, z � c C c0x2 for some constants c and c0. Then
dz=.xz/ � .2c0=c/dx.

Given an open path on the curve † from a fixed point P0, we find a map from
the endpoint of the path to another complex plane

t D
Z P

P0

!: (4.3.8)
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Fig. 4.8 The Seiberg–Witten curve † of the pure SU.2/ theory, when smoothed out, is a torus

As shown in Fig. 4.8, the curve † is mapped to a parallelogram in the complex
plane, bounded by the lines which are the images of the cycles A and B . Now, any
holomorphic mapping such as (4.3.8) preserves the angles. Therefore, the image of
the cycle B is always to the left of the image of the cycle A. Then

�.a/ D @aD=@u

@a=@u
D
R
B

dz=.xz/R
A

dz=.xz/
(4.3.9)

takes the values to the left of the real axis, and therefore

Im �.a/ > 0; (4.3.10)

which guarantees that the coupling squared g2.a/ is always positive. This complex
number �.a/ is called the period or the complex structure of the torus.

4.3.2 The Monodromy M1

Let us check the curve (4.3.1) reproduces the monodromy we determined from
physical considerations. Write the curve† as

z C 1

z
D x2

ƒ2
� u

ƒ2
: (4.3.11)

From this we see that when juj � ƒ2, we find two branch points z˙ of the function
x.z/ around

zC � �u=ƒ2; z� � �ƒ2=u: (4.3.12)

We also have branch points at z D 0 and z D 1, and we take the branch cuts to run
from z D 0 to z D z�, and from z D zC to z D 1.
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We put the A-cycle at jzj D 1. Then the integral over it is very easy: x ' p
u

around jzj D 1, and therefore

a D 1

2
i

I
x

dz

z
' p

u: (4.3.13)

As for the B-cycle integral, the dominant contribution comes when the variable z is
not very close to the branch points. The variable x can be again approximated byp

u ' a, and therefore

aD D 2

2
i

Z z
�

z
C

x
dz

z
' 2 � 2
2
i

Z 1

u=ƒ2
a

dz

z
' � 8a

2
i
log

a

ƒ
: (4.3.14)

From these two equations we find that a and aD defined via the curve † have the
correct monodromy around u � 1,

M1 D
��1 4

0 �1
�
: (4.3.15)

By a more careful computation, we can explicitly find corrections to (4.3.14),
or to its derivative �.a/. From the form of the curve (4.3.1), it is clear that the
corrections can be expanded in powers of ƒ2, but in fact they are given by powers
of ƒ4. We find

�.a/ D � 8

2
i
log

a

ƒ
C

1X
kD0

ck

�
ƒ

a

�4k
(4.3.16)

where ck are dimensionless rational numbers. We now know the terms hidden as � � �
in (4.1.8). This expansion can be understood for example by introducing Qz D ƒ2z.
Then the curve is Qz C ƒ4=Qz D x2 � u, and we can compute a, QaD by considering
ƒ4=Qz as a perturbation to the leading-order form of the curve Qz D x2 � u.

Let us interpret these corrections in the powers of ƒ4. From (4.1.9), we
know that the term ƒ4k carries the phase eik�UV where �UV is the theta angle.
It corresponds to a configuration with instanton number k, as we learned in
(3.2.6). This expansion explicitly demonstrates that the only perturbative correction
to the low-energy coupling �.a/ is from the one-loop level, and there are non-
perturbative corrections from the instantons. An honest path-integral computation
in the instanton background should reproduce the coefficients ck . For the one-
instanton contribution c1 this was done in [4]. It was later extended to all k in [5,6].
Summarizing, we see that various quantities are given by a combination of a one-
loop logarithmic contribution plus instanton corrections. It is now known that they
agree to all orders in the instanton expansion, thanks to the developments starting
from [5]. In Appendix A, we compute the coefficients ck directly from the curve,
and see that they agree with the results from microscopic instanton computation.
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4.3.3 The Monodromies M˙

Let us next study the monodromy around the strongly-coupled singularities. Taking
a look at (4.3.11) again, it is clear that when z C 1=z D ˙2 we have a rather
special situation. When u D 2ƒ2, the two branch points collide at z˙ D �1, and
when u D �2ƒ2, they collide at z˙ D C1. These are the singularities u D ˙u0
introduced in Fig. 4.4.

Let us study the behavior close to u D u0 D 2ƒ2 as an example. We let u D
2ƒ2 C ıu. Then the branch points are at

z˙ � 1 / ˙p
ıu: (4.3.17)

The close up of the branch points z˙ and the cyclesA,B are shown in Fig. 4.9. When
we slowly change the value of u around u D 2ƒ2, two branch points z D z˙ are
exchanged. This modifies the cycle A as shown in the figure, which is equivalent to
the original cycleAminus the cycleB . The cycleB is clearly unchanged. Therefore
we have

a ! a � aD; aD ! aD (4.3.18)

or equivalently, the monodromy is

MC D
�
1 0

�1 1
�
; (4.3.19)

reproducing (4.2.9).

Fig. 4.9 Monodromy action on cycles around the monopole point
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Let us study the physics at u D u0 D 2ƒ2. We perform the S transformation
(1.2.20)

a0 D �aD; a0
D D a (4.3.20)

exchanging the electric and magnetic charges. These are given as functions of u by

a0 D c.u � u0/; a0
D D a0

2
i
log c0.u � u0/ (4.3.21)

where c and c0 are two constants, from which we find

�D.a
0/ D @a0

D

@a0 � C log a0

2
i
: (4.3.22)

Note that a0 sets the energy scale of the system. The result shows the same behavior
as the running of the coupling of an ND2 supersymmetric U.1/ gauge theory
with one charged hypermultiplet, consisting of ND1 chiral multiplets .Q; QQ/. The
superpotential coupling is then

Z
d2�Qa0 QQ: (4.3.23)

Writing

�D D 4
i

g2D
C �D

2

; (4.3.24)

we find

gD ! 0 (4.3.25)

as we approach u ! u0. The mass of the quantum of Q is given by the BPS mass
formula to be

mass of quantum of Q D ja0j D jaDj: (4.3.26)

Therefore, we identify the charged chiral multiplet Q as the second quantized
version of the monopole in the original theory. The monopoles, which were very
heavy in the weakly coupled region, are now very light.

The behavior at u D �u0 is easily given by applying the discrete R-symmetry
(4.2.5). As we map by T 2, we find that the very light particles now have electric
charge n D 2 and magnetic charge m D 1, i.e. they are dyons. From these reasons,
the point u D u0 D 2ƒ is often called the monopole point, and the point u D �u0 D
�2ƒ the dyon point.
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4.4 Less Supersymmetric Cases

Before continuing the study of ND2 systems, let us pause here and see what we can
learn about less supersymmetric theories from the solution of the pure ND2 SU.2/
theory. A general Lagrangian we consider in this section is given by

.

Z
d2�

�i
8

� trW˛W

˛Ccc:/C Im �

4


Z
d4�ˆ�ˆC .

Z
d2�

m

2
trˆ2Ccc:/C .��˛�

˛ Ccc:/

(4.4.1)

The setup is ND2 supersymmetric when m D � D 0. When we let jmj ! 1, we
decouple the chiral superfieldˆ, and we end up with ND1 pure SU.2/ theory which
we discussed in Sect. 3.3. Next, by letting j�j ! 1, we decouple the gaugino � and
recover pure bosonic Yang–Mills.

4.4.1 ND1 System

First let us consider the ND1 system. When m is very small, the term m trˆ2 can
be considered as a perturbation to the ND2 solution we just obtained. In terms
of the variable u, the term

R
d2�m trˆ2 is � R

d2�mu, and therefore the F-term
equation with respect to u cannot be satisfied unless u is at the singularity. There is
no supersymmetric vacuum at generic value of u.

When u is close to u0 D 2ƒ2, there are additional terms in the superpotential
given by

Z
d2�Qa0 QQ D

Z
d2�c.u � u0/Q QQ (4.4.2)

where the constant c was introduced in (4.3.21). Together with the term
R
d2�mu,

the F-term equations with respect to u, Q and QQ are given respectively by

m D cQ QQ; .u � u0/ QQ D 0; .u � u0/Q D 0: (4.4.3)

Then we find a solution at

u D u0; Q QQ D m=c: (4.4.4)

The vacuum is pinned at u D u0, and there is a nonzero condensate of the
monopole Q QQ D m=c. A similar argument at u D �u0 says that there is another
supersymmetric vacuum given by

u D �u0; Q0 QQ0 D m=c (4.4.5)

whereQ0, QQ0 are the dyon fields.



50 4 Seiberg–Witten Solution to Pure SU.2/ Theory

Summarizing, we found two supersymmetric vacua at u D ˙u0, where
monopoles or dyons condense, concretely realizing the idea that the confinement
is given by condensation of magnetically-charged objects, see Fig. 4.10.

Recall that the anomalously broken continuous R-symmetry

ˆ ! ei'ˆ; (4.4.6)

can be compensated by the

�UV ! �UV C 4': (4.4.7)

Applying it to the Lagrangian (4.4.1), we see that

mhtrˆ2i D �i
2


htrW ˛W˛i (4.4.8)

with which we find

h�˛�˛i / ˙2
imƒ2 DW ˙ƒ3
ND1: (4.4.9)

It is important to keep in mind that the right hand side contains ei�UV=2 as the phase.

Fig. 4.10 Vacua for the
softly broken ND1, ND0
theories
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We now take the limit m ! 1 keeping ƒND1 fixed. This should give the pure
ND1 SU.2/ Yang–Mills theory. It is reassuring to find that we also see two vacua
here, as in Sect. 3.3.

4.4.2 Pure Bosonic System

Let us now make � ¤ 0, keeping j�j 
 jƒND1j. In this limit, the effect of the
gaugino mass term ��˛�

˛ is given by the first order perturbation theory, and the
vacuum energy is given by

V / Re.˙�ƒ3
ND1/ / ƒ4

ND0 Re.˙ei�UV=2/: (4.4.10)

This was first pointed out in [7].
We see that two degenerate vacua of the ND1 supersymmetric theory are

split into two levels with different energy density, corresponding to monopole
condensation and dyon condensation, respectively. A slow change of �UV from 0

to 2
 exchanges the two levels, which cross at �UV D 
 . So there is a first-order
phase transition at �UV D 
 , at least when j�j is sufficiently small.

It is an interesting question to ask if this first order phase transition persists in
the limit j�j ! 1, i.e. in the pure bosonic Yang–Mills theory. Let us give an
argument for the persistence. The idea is to use the behavior of the potential between
two external particles which are magnetically or dyonically charged as the order
parameter [8].

First let us consider the dynamics more carefully. Two branches differ in the
types of particles which condense: we can call the branches the monopole branch
and the dyon branch, accordingly. In our convention, the charges of the particles
are .n;m/ D .0; 1/ and .2; 1/, respectively. The charge of the SU.2/ adjoint fields,
under the unbroken U.1/ symmetry, is .2; 0/ in our normalization. As there are
no dynamical particles of charge .1; 0/, the charge .0; 1/ of the monopole is twice
that of a minimally allowed one. The charge of this external monopole can then be
written as .n;m/ D .0; 1=2/.

Consider first introducing two external electric particles with charge .n;m/ D
.1; 0/. In both branches, the electric field is made into a flux tube by the condensed
monopoles or dyons. The flux tube has constant tension, and cannot pair-create
dynamical particles, since all the dynamical particles have charge .˙2; 0/. There-
fore the flux tube does not break, and the potential is linear. The electric particles
with charge .1; 0/ are confined.

Instead, let us consider introducing external monopoles into the system, and
measure the potential between the two. At � D 0, we can assume, without loss
of generality, that the monopole branch has lower energy. There are dynamical
monopole particles with charge .n;m/ D .0; 1/ condensing in the background. Let
us introduce two external monopoles of charge .n;m/ D .0; 1=2/. The magnetic
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field produced by the external particles with charges .n;m/ D .0; 1/ is screened
and damped exponentially. The potential between them is then basically constant.

Instead, consider introducing two external particles with charge .1; 1=2/ into
the monopole branch. The dynamical monopole cannot screen the electric charge,
which is then confined into a flux tube. The potential between them is linear and
they are confined.

We can repeat the analysis in the dyon branch. The behavior of the potential
between external particles can be summarized as follows:

.0; 1=2/ .1; 1=2/

Monopole branch Screened Confined

Dyon branch Confined Screened

These two behaviors are exchanged under a slow continuous change of � from 0 to
2
 . Therefore, there should be at least one phase transition. It would be interesting
to confirm this analysis by a lattice strong-coupling expansion, or by a computer
simulation.

4.5 SU.2/ vs SO.3/

At this point, it might be useful to discuss a rather subtle point concerning the
Seiberg–Witten curve of the theory which depends on the precise choice of the
gauge group to be SU.2/ or SO.3/. This subsection can be skipped on a first reading.

In this section, our choice of the charges has been that

.n;m/ D .1; 0/ (4.5.1)

represents an electric doublet in SU.2/,

.n;m/ D .0; 1/ (4.5.2)

represents a ’t Hooft-Polyakov monopole associated to the breaking SU.2/ ! U.1/.
That said, the dynamical particles in the theory all has the charge of the form

.n;m/ D .2k;m/ (4.5.3)

for some integers k and m. Furthermore, as we do not have any dynamical fields in
the doublet of SU.2/, we can consider an external monopole with charge

.n;m/ D .0; 1=2/: (4.5.4)
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This still satisfies the Dirac quantization condition with respect to any of the
dynamical particles in the theory, whose charges are given by (4.5.3).

Correspondingly, the monodromy matrices

M1 D
��1 4

0 �1
�
; MC D

�
1 0

�1 1
�
; M� D

��1 4
�1 3

�
(4.5.5)

all had an integral multiple of 4 in the upper right corner.
Therefore, we can do the following. We define rescaled electric and magnetic

charges via

.n0; m0/ D .n=2; 2m/ (4.5.6)

and still the monodromy are still integer valued:

M 01 D
��1 1

0 �1
�
; M 0C D

�
1 0

�4 1
�
; M 0� D

��1 1
�4 3

�
: (4.5.7)

The BPS mass formula is now

jna C maDj D jn0a0 Cm0a0
D j where .a0; a0

D/ D .2a; aD=2/ (4.5.8)

and correspondingly, the new A and B cycles are related to the old ones via

A0 D 2A; B 0 D B=2: (4.5.9)

The respective Seiberg–Witten curves, as quotients of the complex plane as in
Fig. 4.8, are given in Fig. 4.11.

The standard interpretation is that the Seiberg–Witten curve with cyclesA and B
as the curve for the pure SU.2/ theory, and that the Seiberg–Witten curve with cycles
A0 D 2A and B 0 D B=2 as the curve for the pure SO.3/ theory. The difference
manifests in a rather subtle manner.

At the monopole point, with SO.3/ gauge group, the monodromy is M 0C given
above. This means that the charge of the light particle there is 2 with respect to the

Fig. 4.11 Various choices of the Seiberg–Witten curves. From the left to right: the pure SU.2/
theory, the pure SO.3/ theory, and the choice in [1]
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low-energy U.1/ field: the entry �4 in the lower left corner is given by the square of
the charges. This is due to the fact that the periodicity of low-energy U.1/ is reduced
by a factor of two, as it is embedded in SO.3/ rather than SU.2/. The monopole has
.n0; m0/ D .0; 2/ and the g.c.d. of n0 and m0 is two.

At the dyon point, the monodromy M 0� is still conjugate to

�
1 1

0 1

�
, that is, the

light dyon has charge 1 with respect to the U.1/. The dyon has .n0; m0/ D .1; 2/ and
the g.c.d. of n0 and m0 is one. Therefore one loses the physical equivalence of the
monopole point and the dyon point. These subtle differences affect the system more
drastically when the system is put on R

3 � S1 or more complicated manifolds.
Another interesting fact is that this combinationM 01,M 0C, andM 0� is exactly the

same as the monodromy matrices of that of the SU.2/ theory with three massless
flavors, which we discuss in Sect. 8.5. Still, the physics of the pure SO.3/ theory
and the SU.2/ theory with three massless flavors are drastically different, as we will
learn later. This shows an obvious point that the structure of the Coulomb branch
alone does not fix the entire theory.

Finally, we should mention that in the very original paper on the pure SU.2/
theory [1] another curve is used, which had 2A and B as two cycles, as shown in
Fig. 4.11. This choice is adapted to the spectrum of the dynamical particles (4.5.3),
but it is now known to be a not very well motivated when we consider the theory on
nontrivial manifolds and the properties of line operators. Therefore, it is advisable
to stick to either the pure SU.2/ curve or the pure SO.3/ curve, given as the first two
entries in Fig. 4.11.
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Chapter 5
SU.2/ Theory with One Flavor

Our next task is to study ND2 supersymmetric SU.2/ gauge theory with one
hypermultiplet in the doublet representation. This is often called the SU.2/ theory
with one flavor, or more simply Nf D 1. We will see that all the methods employed
in the last chapter are readily adapted to this theory, too. We again follow the
presentation of the original paper [1], but we use the Seiberg–Witten curve in a
form more suitable for the generalization later. Appendix C of [2] is a good source
where many different forms of the Seiberg–Witten curves of SU.2/ theories are
summarized.

5.1 Structure of the u-Plane

5.1.1 Schematic Running of the Coupling

In terms of ND1 chiral multiplets, the hypermultiplet consists of two SU.2/
doublets Qa and QQa where a D 1; 2 is the SU.2/ index. There is an ND1
superpotential

W D Qˆ QQC �Q QQ (5.1.1)

where � is the bare mass of the hypermultiplet. Classically, ˆ D diag.a;�a/
together with Q D QQ D 0 still gives supersymmetric vacua. With nonzero a, the
gauge group is broken to U.1/, and the physical mass of the fields Q and QQ can be
found by explicitly expanding the superpotential above:

W D .Q1;Q2/

�
a 0

0 �a
�� QQ1

QQ2

�
C �.Q1;Q2/

� QQ1

QQ2

�
: (5.1.2)
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We see that the masses are

j˙a ˙ �j (5.1.3)

where we allow all four choices of signs.
In general, the BPS mass formula is

mass � jna C maD C f�j (5.1.4)

where f is the charge under the U.1/ flavor symmetry, under which Q has charge
1 and QQ has charge �1.

From the one-loop running of the coupling constant, we find

�.a/ D 2�UV � 6

2
i
log

a

ƒUV
C � � � (5.1.5)

D � 6

2
i
log

a

ƒ1

C � � � (5.1.6)

in the ultraviolet region. Here we defined

ƒ6
1 D ƒ6

UVe
4
i�UV (5.1.7)

where the subscript 1 is a reminder that we are dealing with the Nf D 1 theory.
From this, we can determine the monodromyM1 at infinity acting on .a; aD/:

M1 D
��1 3

0 �1
�

(5.1.8)

exactly as in the pure SU.2/ case.
To study the strong coupling region of the system, let us first consider two

extreme cases. When j�j is very big, we expect the running of the coupling to be
given roughly as in Fig. 5.1. Namely, at around the scale j�j, the fields Q and QQ
decouple, and the system effectively becomes the pure SU.2/ gauge theory, which
we studied in the last chapter. Correspondingly, the structure of the u-plane in the
region juj 
 j�2j should be effectively the same with that of the pure SU.2/ theory,
with two singularities at u D ˙2ƒ2

0.

Fig. 5.1 Schematic running
of the coupling of Nf D 1

theory, when
jƒj � jaj � j�j
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A rough relation between ƒ0 and ƒ1 can be read off from the schematic graph
of the running coupling shown in Fig. 5.1. The rightmost segment in the graph is
given by

�.E/ D � 6

2
i
log

E

ƒ1

(5.1.9)

and the middle segment in the graph, representing the effectively pure SU.2/
theory, is

�.E/ D � 8

2
i
log

E

ƒ0

: (5.1.10)

Equating these two values at E D �, we obtain

ƒ4
0 D �ƒ3

1: (5.1.11)

In addition, we know from (5.1.3) that the quanta of one component ofQ and QQ
become very light when ˙a � �. This should produce a singularity in the u-plane
at around u ' �2. We therefore expect that the u-plane to have three singularities,
as shown in Fig. 5.2. Note that local physics at the three singularities, at u ' �2 and
at u ' ˙2ƒ2

0, is always just U.1/ gauge theory with one charged hypermultiplet.
In the other extreme when � D 0, we can make use of the discrete R symmetry.

The standard R-charge assignment is as follows:

R D 0 A

1 � �

2 ˆ

;

R D �1  Q

0 Q QQ�

1  
�

QQ

: (5.1.12)

The rotation

� ! ei'�;  Q; QQ ! e�i' Q; QQ (5.1.13)

Fig. 5.2 Singularities on the
u-plane when m � ƒ
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Fig. 5.3 Singularities on the
u-plane when m D 0

is anomalous, but can be compensated by

�UV ! �UV C 6': (5.1.14)

Therefore ' D 2
=6 is a genuine symmetry, which does

� ! � C 2
; ˆ ! e2
i=3ˆ; u ! e4
i=3u: (5.1.15)

This guarantees that singularities in the u-plane should appear in triples, related by
120ı rotation. A minimal assumption is then to have exactly three singularities, as
shown in Fig. 5.3. Having three singularities is consistent with our previous analysis
when j�j was very big. We expect that the situation in Fig. 5.2 will smoothly change
into the one in Fig. 5.3 when � is adiabatically changed.

5.1.2 Monodromies

Let us denote the monodromies around each of the three singularities byM1;2;3, see
Fig. 5.4. Clearly, we should have

M1 D M3M2M1 (5.1.16)

where M1 was given in (5.1.8). As the three singularities are related by discrete
R-symmetry, they should be conjugate. For example, as shown in Fig. 5.5, we expect
M2 D YM1Y

�1. A solution is given by

M2 D T �1M1T
1; M3 D T �2M1T

2; (5.1.17)

together with

M1 D STS�1 D
�
1 0

�1 1
�
: (5.1.18)
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Fig. 5.4 Monodromy of
Nf D 1

Fig. 5.5 Relation of M1, M2

AsM1 found here is the same asMC found in the pure case (4.2.9), the local physics
close to the singularity is also the same, i.e. it is described by an ND2 U.1/ gauge
theory coupled to one charged hypermultiplet. The same can be said forM2 andM3.
For the pure case, we saw that the light charged hypermultiplet in this low energy
U.1/ description was a monopole in the original description. Is the same true in
this case? It is easier to give a definitive answer when j�j is very big. Then, the
two singularities in the strong coupled region have the same physics as that of the
pure SU.2/ theory, and thus we should have light monopoles and dyons there. At
the third singularity u ' �2, one component of the doublet hypermultiplet .Q; QQ/
becomes very light. For all three singularities, the low-energy description is that of
a U.1/ gauge theory coupled to one charged hypermultiplet.

By gradually decreasing � to be zero, these three singularities become the three
singularities related by the discrete R symmetry. At this stage, it is not possible to say
which of the three was originally the one whose light particle came from the doublet
hypermultiplet and which two of the three were the ones with monopoles and dyons.
This loss of the distinction between the hypermultiplets which were elementary
fields and the hypermultiplets which came from solitons such as monopoles or dyons
is somewhat surprising to an eye trained in the classical field theory. We will see this
more explicitly below, in Fig. 5.10.

5.2 The Curve

Let us now construct the holomorphic functions a.u/, aD.u/ satisfying the mon-
odromies determined above. It is again done by using the Seiberg–Witten curve,
which is given in this case by
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† W 2ƒ.x � �/
z

Cƒ2z D x2 � u (5.2.1)

with auxiliary complex variables z and x, together with the Seiberg–Witten differ-
ential

� D x
dz

z
: (5.2.2)

We dropped the subscript 1 fromƒ to lighten the notation.
Again, we add a point z D 1 and regard z as a complex coordinate on the sphere

C . This is the ultraviolet curve. The variable x is now a function on it, see Fig. 5.6.
Note that z D 0 is no longer a branch point; indeed, the local behavior of x there
is now

xC � 2ƒ

z
� �CO.z/; (5.2.3)

x� � C �CO.z/: (5.2.4)

Note also that � has a residue �� at z D 0. The curve † is a two-sheeted cover of
C shown in Fig. 5.7. We define cycles A and B as shown, and then the functions
a.u/ and aD.u/ are given by

a D 1

2
i

I
A

�; aD D 1

2
i

I
B

�: (5.2.5)

The proof Im �.a/ > 0 goes exactly as in the pure case. The curve † can be
mapped to a parallelogram within a complex t plane by

R P
P0
@�=@u D R P

P0
dz=.xz/,

Fig. 5.6 The ultraviolet
curve of SU.2/ Nf D 1

theory

Fig. 5.7 The sheets of the
Seiberg–Witten curve of
SU.2/ Nf D 1 theory
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Fig. 5.8 The smoothed-out torus of the curve of the SU.2/ Nf D 1 theory

see Fig. 5.8. The poles with residues ˙� of � are denoted explicitly in the figure.
When a closed cycle L on the torus winds the A cycles n times, B cycles m times,
and the poles f times, the integral of � is then

1

2
i

I
L

� D na C maD C f�; (5.2.6)

just as in the BPS mass formula (5.1.4).
Let us check that the curve correctly reproduces the running of the coupling in

the weakly-coupled region. For simplicity, set � D 0, and assume juj � jƒj. We
put the A cycle at jzj D 1. We easily find

1

2
i

I
A

x
dz

z
� p

u (5.2.7)

as before. As for the B integral, two branch points are around z � ƒ=
p

u and one
branch point is around z � u=ƒ2. The dominant contribution to the integral is then

1

2
i

I
B

x
dz

z
� 2

2
i

Z ƒ=
p

u

u=ƒ2
a

dz

z
D � 6

2
i
a log

a

ƒ
: (5.2.8)

Then we find

�.a/ D @aD

@a
D � 6

2
i
log

a

ƒ
; (5.2.9)

reproducing the running (5.1.6).
Let us next check that the curve correctly reproduces the singularity structure on

the u-plane. The branch points of the function x.z/ can be determined by studying
when the equation of †, given in (5.2.1), has double roots. The equation for the
branch points is given by
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z3 C uz2

ƒ2
� 2�z

ƒ
C 1 D 0: (5.2.10)

The singularity in the u-plane is caused by two of the branch points of x.z/ colliding
in the ultraviolet curve C with the coordinate z. This condition can be found by
taking the discriminant of the equation of z above, giving

u3 � �2u2 C 9ƒ3�u C 27

4
ƒ6 � 8ƒ3�3 D 0: (5.2.11)

When � D 0, this equation simplifies to u3 C 27
4
ƒ6 D 0, giving the solutions

u D cƒ2; e2
i=3cƒ2; e4
i=3cƒ2 (5.2.12)

for a constant c, reproducing Fig. 5.3.
When j�j � jƒj, Eq. (5.2.11) can be solved by making two separate approxima-

tions. Assuming u is rather big, we can truncate the equation to just u3 � �2u2 � 0,
finding a singularity at

u � �2: (5.2.13)

Next, assuming u is rather small, we find ��2u2 � 8ƒ3�3 � 0 giving

u � ˙
p

�8ƒ3�: (5.2.14)

Together, they reproduce Fig. 5.2. From this, we find that the effective pure SU.2/
theory in the region juj 
 j�j has the dynamical scale

ƒ2
0 �

p
ƒ3�: (5.2.15)

This agrees with what we saw in (5.1.11).
It is instructive to study another way to derive the singularity at u � �2 from the

curve. We would like to take the approximation jƒj 
 j�j. To facilitate to take the
limit, we introduce Qz D z=ƒ in (5.2.1) and find

2.x � �/
Qz Cƒ3Qz D x2 � u: (5.2.16)

Now the limit is easy to take: we just find

2.x � �/
Qz D x2 � u: (5.2.17)
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Fig. 5.9 The schematic
change in the Seiberg–Witten
curve when u ! �2

Then it is clear that when u D �2, the equation can be factorized to

.x � �/.x C �� 2

Qz / D 0; (5.2.18)

therefore it represents two sheets intersecting at a point. When u ¤ �2, two sheets
are connected smoothly. The change is schematically shown in Fig. 5.9. We learned
that the singularity at u � �2 arises essentially from the structure 2ƒ.x � �/=z in
the curve.

5.3 Some Notable Features

Let us see how three singularities on the u-plane move as we change �, by solving
(5.2.11). An example is shown in Fig. 5.10. On the right, the path in the � space
is given. On the left, the three singularities for a given � is shown with three dots
marked by 4, � and �, connected by a light-gray triangle. As � moves along
a semicircle with constant, large j�j, the quark point u � �2 rotates the u-plane
once. At the same time, the monopole point and the dyon point of the effective pure
SU.2/ theory rotates by 90ı, as we see from (5.2.14). Now we make j�j decrease
first; all three singularities come close to the origin of the u-plane. Finally, we make
j�j come back to the same semicircle again. As can be seen in the figure, this
process exchanges the quark point and the monopole point. We learned that, using
the strongly-coupled region, we can continuously change a quark into a monopole.

Finally, let us study the discriminant of Eq. (5.2.11) itself, which is given by

�3 C 27

8
ƒ3 D 0: (5.3.1)

Take � D �3ƒ=2 as an explicit choice. Then there is one singularity in the u-plane
at u D �15ƒ2=4, and two singularities collide at u D 3ƒ2. In the curve, we find that
the branch points of x.z/ consist of one at z D 1 and three colliding at z D �1.
See Fig. 5.11. From the curve, we immediately see that a D aD D 0, since the
integration cycles shrink. Using the BPS mass formula, we see that both electrically
charged particles and magnetically charged particles are simultaneously becoming
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Fig. 5.10 Motion of the singularities on the u-plane

Fig. 5.11 Two out of three singularities can collide on the u-plane. Then three branch points
collide on the ultraviolet curve

very light. This is a rather unusual situation for an eye trained in the classical
field theory. Semiclassically, the magnetically charged particles come from solitons,
which are always parametrically heavier than the electrically charged particles
which are quanta of elementary fields in the theory. We will study this system in
more details Chap. 10.
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Chapter 6
Curves and 6d ND.2; 0/ Theory

We have seen that the low energy dynamics of the SU.2/ pure gauge theory and
the SU.2/ gauge theory with one flavor can both be expressed in terms of the
complex curves (4.3.1), (5.2.1). The aim of this chapter is to explain that these two-
dimensional spaces can be given a physical interpretation.

The ideas which will be presented in this chapter were originally obtained by
exploiting various deep properties of string theory and M-theory, namely Calabi-
Yau compactifications, brane constructions, and string dualities. The approach
using Calabi-Yau compactifications goes back to [3–5] and the brane construction
approach was introduced in [9]. Learning these constructions definitely helps in
understanding ND2 supersymmetric dynamics, and vice versa. This lecture note is
not, however, the place where you can learn them.

The presentation here is analogical rather than being logical, and the author
intentionally tried to phrase it in such a way that the knowledge of string theory
and M-theory required to read it is kept to the minimum. Anyone interested in more
details should refer to the original articles, or the reviews such as [2, 6] and Sect. 3
of [1].

6.1 Strings with Variable Tension

Recall the BPS mass formula of the pure theory of a particle with electric charge n
and magnetic chargem,

M � jna C maDj D j
Z
L

�j (6.1.1)

where L is a cycle on the curve which goes around n times along the A direction
andm times along the B direction. The basic idea we employ is to take this equation
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Fig. 6.1 Variable-tension
strings. Its tension is
controlled by f .s/ D R s

P0
�

seriously: we regard the four-dimensional particle as arising from a string wrapped
on the cycle L. Then � is something like the tension of the string. In this section we
introduce a factor of 2
i in the definition of �, to lighten the equations.

To make this idea more concrete, suppose a six-dimensional theory which has
strings as its excitation,1 and assume this theory is on a two-dimensional space
C times the four-dimensional Minkowski space R

1;3. Further assume that the
tension of the string depends on these extra-dimensional directions. Namely, let us
assume that there is a locally-holomorphic one-form � such that the tension of an
infinitesimal segment of a string, parameterized by s, is given by

j�j WD j �
ds

jds; (6.1.2)

see the left hand side of Fig. 6.1. There, the two-dimensional space is taken to be a
torus for definiteness.

A string looks like a particle from the point of view of the uncompactified four
dimensions, and its mass is given by the integral of its variable tension:

M D
Z
L

j�j (6.1.3)

The right hand side can be bounded below using an integral version of the triangle
inequality:

Z
L

j�j � j
Z
L

�j: (6.1.4)

1Some of the young readers who just started learning string theory might wonder at this point:
aren’t relativistic Lorentz-invariant string theories only possible in 26 dimensions if bosonic, and
in 10 dimensions if supersymmetric? The catch is that the standard arguments in the textbooks
assume that the interaction among strings is perturbative.
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The inequality can be visualized by considering the curve in the complex plane
defined by

f .s/ D
Z s

P0

� (6.1.5)

parameterized by s, where P0 is a fixed point on the cycleL. Then the left hand side
of (6.1.4) is the length of the parameterized curve f .s/, while the right hand side
is the distance between the end-points of f .s/, see the right hand side of Fig. 6.1.
Then clearly the former is longer than the latter, and the equality is attained only
when the line f .s/ itself is a straight line. Or equivalently

Arg
�

ds
D constant: (6.1.6)

When the cycle L is topologically trivial, the image of the function f .s/ is itself
a loop, and the right hand side of (6.1.4) is zero. When the cycle L is nontrivial,
the image of the function f .s/ can be an open segment. As � is holomorphic, the
difference between the two ends of the segment only depends on the topology of
the cycle L. Say L wraps the A-cycle n times and the B-cyclem times. Combining
(6.1.3) and (6.1.4), we find

M � jna C maDj (6.1.7)

where a, aD are defined by the relations

a D
Z
A

�; aD D
Z
B

�: (6.1.8)

This reproduces the BPS mass formula (6.1.1). We learned furthermore that the
inequality is saturated only when (6.1.6) is satisfied. Therefore we regard (6.1.6) as
the BPS equation for the string excitation.

6.2 Strings with Variable Tension from Membranes

6.2.1 General Idea

One might say strings with variable tension is slightly weird. One way to realize this
variation of the tension in a natural manner is to consider that the extra-dimensional
space C which have two dimensions is further embedded in a four-dimensional
ambient space X , and there are two sheets of † covering C separated in the
additional directions of X . We then furthermore suppose that there is a membrane
extending along two spatial directions plus one temporal direction, which can have
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Fig. 6.2 How the
variable-tension string arises
from higher dimensions

ends on the sheets of†. The situation is depicted in Fig. 6.2. Let z be the coordinate
of C , and X has complex coordinates .z; x/. Then two sheets of † define two
functions x1.z/ and x2.z/. Then, a membrane with constant tension jdxj ^ jd log zj,
suspended between two sheets, can be regarded as a string with variable string
whose tension at a given value of z is given by

(tension at z) �
ˇ̌
ˇ̌
ˇ
Z x1.z/

x2.z/
dx ^ d log z

ˇ̌
ˇ̌
ˇ D

ˇ̌
ˇ̌x1 dz

z
� x2 dz

z

ˇ̌
ˇ̌ : (6.2.1)

Denoting �i.z/ D xidz=z, we find that

(tension at z) � j�.z/j where �.z/ D �1.z/� �2.z/: (6.2.2)

In M-theory, there are indeed higher-dimensional objects with these properties.
We consider an eleven dimensional spacetime of the form

R
3;1 �X � R

3: (6.2.3)

M-theory has six-dimensional objects called M5-branes. We put one M5-brane on

R
3;1 �† � f0g (6.2.4)

where† � X is the curve, and 0 is the origin of the additionalR3. This gives a four-
dimensional theory. M-theory also has three-dimensional objects called M2-branes,
which can have ends on M5-branes. We can take one M2-brane on

R
0;1 � disc � f0g (6.2.5)

where R
0;1 � R

3;1 is the worldline of a particle in the four-dimensional spacetime,
and the disc � X has its boundary on † as depicted in Fig. 6.2. For more details on
this point, the reader should start from the original paper [7].

It is also useful to regard the intermediate situation when we regard the system
as a six-dimensional one on R

3;1 � C . This six-dimensional theory is known as the
6d ND.2; 0/ theory of type SU.2/.
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6.2.2 Example: Pure SU.2/ Theory

Let us apply this higher-dimensional idea to the curve (4.3.1) of the pure SU.2/
theory concretely. For easy reference we reproduce the curve here:

† W ƒ2z C ƒ2

z
D x2 � u: (6.2.6)

We consider † to be embedded in a four-dimensional space X . Given a point z on
C , we find two x coordinates by solving the quadratic equation above, as depicted
on the left hand side of Fig. 6.3. Let the solutions be ˙x.z/. As the point z moves
on C , they form two sheets of the curve †, see the right hand side of Fig. 6.3. The
coordinate x always appears as a way to describe the one-form on C giving the
tension, so it is convenient to multiply them always by dz=z, and say that two sheets
have coordinates ˙� D x.z/dz=z. We use this convention from now on.

We can now consider a ring-shaped membrane suspended between the two sheets
over the A cycle, see Fig. 6.3. Note that the tension as a string on C is 2�, and the
mass is given by

M � j2
Z
A

�j D j2aj: (6.2.7)

We can minimize the tension by solving (6.1.6), which give rise to a configuration
with the mass

M D j2aj: (6.2.8)

Note that this has the correct mass to be a W-boson, which has electric charge n D 2

in our normalization, which is for the triplets of SU.2/. It is also to be noted that
there is no way to have a membrane whose mass is given by

M 0 D jaj; (6.2.9)

Fig. 6.3 W-boson as a string and as a suspended membrane
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because there is simply no way to suspend the membrane to have just one ends over
the A-cycle. Therefore, this higher-dimensional reasoning has more explanatory
power than just regarding the curve † as an auxiliary object producing the
holomorphic functions a.u/ and aD.u/with the correct monodromy properties. This
procedure knows that there is no dynamical particle with electric charge n D 1 in
this system.

Next, we can consider a disc-shaped membrane suspended between the sheets of
† so that they have endpoints over the branch points zC, z� of C , see Fig. 6.4. By a
similar reasoning as above, the mass of this membrane is

M D 2j
Z z

C

z
�

�j D j
Z
B

�j D jaDj: (6.2.10)

This is a correct mass formula for the monopole, whose magnetic charge is m D 1.
In terms of a variable-tension string on C , it is to be noted that this corresponds to
an open string, ending at the points where the tension 2� becomes zero.

We can also connect the two branch points z˙ by going around the phase
direction of z, as shown in Fig. 6.5. As shown there, the membrane is topologically
the sum of the two configurations considered so far, and we find that the mass of
this configuration is

M D j2aC aDj: (6.2.11)

Fig. 6.4 Monopole as a string and as a suspended membrane

Fig. 6.5 Dyon as a string and as a suspended membrane. Note that it automatically has the charge
aD C 2a, not aD C a
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This is the correct mass formula for the dyon, with the electric charge n and the
magnetic m given by .n;m/ D .2; 1/. By going around n times when we connect
the branch points, we see that there are dyons with mass j2na C aDj for integral n.
We also see there is no way to connect the branch points to have dyons with mass
j.2nC 1/aC aD j, which is compatible with the field theory analysis in Sect. 1.3.

6.3 Self-duality of the 6d Theory

Now we found that a single type of objects, the membrane of M-theory or
equivalently the string of 6d ND.2; 0/ theory, gives rise to both electrically charged
objects such as W-bosons and magnetically charged objects such as monopoles, see
Figs. 6.3 and 6.4. To get a handle of this property, let us first recall basic features of
charged particles in four dimensions, see Fig. 6.6.

In a first-quantized framework, an electric particle sitting at the origin of
the space, extending along the time direction t , couples to the electromagnetic
potential via

Z
worldline

A (6.3.1)

which creates a nonzero electric field Ftr ¤ 0 where

F D dA (6.3.2)

and r is the radial direction. The equations of motion are

dF D d?F D 0 (6.3.3)

outside of the worldline. Note that in four dimensional Lorentzian space, we have
?2 D �1 acting on two-forms. Therefore we cannot impose the condition ?F D F .

Let us consider a theory described by a two-form B in six dimensions, to which
a string couples via the term

Z
worldsheet

B: (6.3.4)

Fig. 6.6 Charged things in
4d and 6d
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Let us say that the string extends along the spatial direction s and the time direction
t . This configuration creates a nonzero electric field Gtsr, where r is again the radial
direction. The equations of motion are

dG D d?G D 0 (6.3.5)

outside of the worldsheet. Here ? is the six-dimensional Hodge star operation,
given by

.?G/��� D ����˛ˇ�G
˛ˇ� : (6.3.6)

In six dimensions with Lorentzian signature, ?2 D 1 acting on three-forms, so
we can demand the equations of motion of the form

dG D 0; G D ?G: (6.3.7)

Then a worldsheet extending along the directions t and s has both nonzero electric
field Gtsr and nonzero magnetic field G�� at the same time.

Now, let us put this theory on a two-torus with coordinates x5;6, and consider
strings wrapped along each of the directions, as shown in Fig. 6.7. Denote the 6d
three-form field-strength by GABC, where A; : : : are indices for six-dimensional
spacetime. We can extract four-dimensional two-forms by considering

F�� WD G6��; FD �� WD G5��: (6.3.8)

The 6d self-duality G D ?6 G translates to the equality

FD D ?4 F: (6.3.9)

Fig. 6.7 Electric and
magnetic particles from
a single type of objects in 6d
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Fig. 6.8 The boundaries of
the membranes for a W-boson
and a monopole intersect at
two points

Therefore, the single self-dual two-form field in 6d gives rise to a single U.1/ field
strength.

Now, the string wrapped around x6 has nonzero G6tr and G5�� , and therefore
it has nonzero Ftr . Therefore this becomes an electric particle in four dimensions.
Similarly, the string wrapped around x5 has nonzeroG5tr andG6�� . Therefore it has
nonzero F�� , meaning that it is a magnetic particle in four dimensions.

In the concrete situation of the pure SU.2/ theory, W-bosons and monopoles
arise from the membranes as shown in Fig. 6.8. We see that the boundaries of
the membrane for a W-boson and the boundary of the membrane for a monopole
intersect at two points. In general, the Dirac pairing as particles in the four-
dimensional spacetime can be found in this way by counting the number of
intersections, once signs given by the orientation are included.

6.4 Intermediate 5d Yang-Mills Theory and Its Boundary
Conditions

6.4.1 Five-Dimensional Maximally-Supersymmetric
Yang-Mills

We have so far considered the situations where we put the six-dimensional theory on
a two-dimensional space, with coordinates x5 and x6, say. We can take a limit where
the x5 direction is much larger than the x6 direction. Then we can first compactify
along the x6 direction and consider an intermediate five-dimensional theory, see
Fig. 6.9. This is believed to give the maximally supersymmetric 5d Yang-Mills
theory with gauge group SU.2/.

A string wrapped around the x6 direction gives rise to a massive electric particle,
and a string not wrapped around the x6 direction becomes a massive magnetic string.
This agrees with a basic feature of the 5d Yang-Mills theory where SU.2/ is broken
to U.1/: First, we have massive W-bosons which are electric. Second, the standard
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Fig. 6.9 5d maximally supersymmetric Yang-Mills from 6d. A W-boson and a monopole-string
are depicted there

monopole solutions of 4d gauge theory can be regarded as a solution in 5d gauge
theory, by declaring that there is no dependence of the fields on the additional fifth
direction. Then the solutions should be now regarded as representing a magnetic-
monopole-string.

6.4.2 ND4 Super Yang-Mills

By imposing periodic boundary condition in the x5 direction, we have the situation
of Fig. 6.10. We are compactifying the maximally supersymmetric Yang-Mills in
five dimensions on S1. We therefore should obtain 4d ND4 super Yang-Mills
theory. The ultraviolet curve C itself is now a torus T 2. Let the complex structure
of this T 2 be � . The Seiberg–Witten curve † consists of two parallel copies of this
torus embedded inX , separated by 2� in the x direction, where � is now a constant.

We can consider a cycle Ln;m in C , wrapping n times in the x6 direction and m
times in the x5 directions. Then we can consider a ring-shaped membrane over this
cycle, which gives rise to particles of masses

Mn;m D 2jna C maDj (6.4.1)

where

a D
Z
A

�; aD D
Z
B

� D �a: (6.4.2)

The particles with .n;m/ D .1; 0/ are W-bosons, and the particles with .n;m/ D
.0; 1/ are monopoles. The peculiar feature of this theory is that the monopoles and
the W-bosons both come from ring-shaped membranes. In fact, from the 6d point
of view, the distinction of the two directions of the torus is completely arbitrary.
Then this theory with a given value of � D �0, and the theory with another value of
� D �1=�0 are the same after the exchange of the W-bosons and the monopoles.
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Fig. 6.10 ND4 SYM from 6d. A W-boson and a monopole are depicted there

Indeed they match the property of the ND4 supersymmetric SU.2/ Yang-Mills.
This theory is conformal and has an exactly marginal coupling � . In the semi-
classical region, the ratio of the mass of the monopole to that of the W-boson is
j� j. The ND4 supersymmetric SU.2/ Yang-Mills has four Weyl fermions in the
adjoint representation. The semiclassical quantization of the monopole solution in
this situation, as was recalled briefly in Sect. 1.3, makes the monopole states into
a massive ND4 vector multiplet. This makes it possible to exchange it with the
W-boson, which is also in a massive ND4 vector multiplet. In general we expect
that there is a massive ND4 vector multiplet with mass jnaCmaDj, for any coprime
pair of integers .n;m/. This should arise from a semi-classical quantization of
charge-mmonopole background. This is the celebrated conjecture of Sen [8].

6.4.3 ND2 Pure SU.2/ Theory and the Nf D 1 Theory

The curve of the pure ND2 SU.2/ theory

ƒ2

z
Cƒ2z D x2 � u (6.4.3)

and the curve of the ND2 SU.2/ theory with one flavor

2ƒ.x � �/

z
Cƒ2z D x2 � u (6.4.4)

can be given a similar interpretation. The point is to take x5 D log jzj and x6 D
Arg z, and compactify along the x6 direction first, see Fig. 6.11.

Let us first consider the pure theory. The term on the left hand side,ƒ2=z, should
be regarded as a boundary condition ‘terminating’ the fifth direction x5, although
x5 D log jzj formally extends to �1. The bulk of the five dimensional theory
is maximally supersymmetric. The resulting four-dimensional theory is ND2, and
therefore the boundary breaks half of the supersymmetry, without doing much other
than that. A boundary condition which preserves half of the original supersymmetry
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Fig. 6.11 Pure and Nf D 1 SU.2/ theories via 5d construction

is called a half-BPS boundary condition. Then we see that the termƒ2=z represents
a half-BPS boundary condition of the 5d theory. The term ƒ2z is obtained by the
flip x5 $ �x5, and therefore should represent the same boundary condition. In the
end, we see that the system is a compactification of the maximally supersymmetric
SU.2/ Yang-Mills on a segment, terminated by two boundary conditions breaking
half of the supersymmetry, realizing 4d pure SU.2/ Yang-Mills.

Next, let us consider the one-flavor theory. The term ƒ2z is the same as the
pure case, so it should give the same half-BPS boundary condition. The boundary
condition at z � 0 is different: now we have a term of the form ƒ.x � �/=z. This
should mean that one hypermultiplet with the mass � in the doublet of SU.2/ lives
on this boundary, coupling to the bulk five-dimensional gauge multiplets.

6.4.4 The SU.2/ Theories with Nf D 2; 3; 4

From this interpretation, it is easy to get the 6d realization of SU.2/ theory with
Nf D 2; 3; 4 flavors, namely the theory with Nf D 2; 3; 4 hypermultiplets in the
doublet representation. In terms of ND1 chiral multiplets, we have .Qa

i ;
QQi
a/ for

a D 1; 2 and i D 1; : : : ; Nf , with the superpotential

X
i



Qiˆ QQi C �iQi

QQi
�

(6.4.5)

where �i are mass terms.
Let us start with the Nf D 2 theory. We know how to introduce one

hypermultiplet in the doublet at the boundary on the side z D 0. To do the same
on the side z D 1, we just a change of variables z $ 1=z. We end up with the setup
shown on the left-hand side of Fig. 6.12, with the curve given by

2ƒ.x � �1/
z

C 2ƒ.x � �2/z D x2 � u (6.4.6)

with the Seiberg–Witten differential � D xdz=z.
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Fig. 6.12 Nf D 2 theory

The same curve can be rewritten using another variable z0 D .x � �2/z=.2ƒ/:
.x � �1/.x � �2/

z0 C 4ƒ2z0 D x2 � u: (6.4.7)

But now we can consider x0
5 D log jz0j, x0

6 D Arg z0 to reduce first to a theory
on C 0 parameterized by z0, and then to a five-dimensional theory on a segment
parameterized by jz0j. In this interpretation, the boundary condition on the z0 D 1
side is the same one in the pure SU.2/ case. Therefore, the boundary condition
on the z0 D 0 side given by the term .x � �1/.x � �2/=z should be the half-
BPS condition such that two hypermultiplets in the doublet of SU.2/ live on the
boundary.

The description of the system is not complete until we give the one-form �

describing the variable tension. In (6.4.6) it is 2
i� D xdz=z and in (6.4.7) it is
2
i�0 D xdz0=z0. Both are obtained by integrating dx ^ d log z D dx ^ d log z0, see
(6.2.1). The two differentials are not quite equal, however:

�0 � � D 1

2
i
xd log

z0

z
D 1

2
i
xd log.x � �2/: (6.4.8)

The difference is independent of u, and its non-zero residue is �2 at x D �2. This
means that, given a cycle L on the Seiberg–Witten curve†, we have

I
L

�0 �
I
L

� D k�2 (6.4.9)
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Fig. 6.13 Nf D 3 theory and Nf D 4 theory

where k is an integer. Recall that the BPS mass formula is governed by the expansion

I
L

� D na C maD C f1�1 C f2�2 (6.4.10)

where f1;2 are flavor charges, see (2.3.9). Therefore, the choice between the two
Seiberg–Witten differentials � and �0 affects the mapping of the flavor charge f2
and the cycle L, but not much else. In general, a change in the Seiberg–Witten
differential by a form which is independent of u and whose residues are integral
linear combinations of the hypermultiplet masses are safe. We will encounter them
repeatedly later.

Now that we have a boundary condition representing the existence of two doublet
hypermultiplets, it is easy to guess the curve of the Nf D 3 theory and Nf D 4

theory. We just have to combine various boundary conditions which we already
found, as in Fig. 6.13. For the Nf D 3 theory we find

.x � �1/.x � �2/
z

C 2ƒ.x � �3/z D x2 � u; (6.4.11)

and for the Nf D 4 theory we find

f � .x � �1/.x � �2/

z
C f 0 � .x � �3/.x � �4/z D x2 � u (6.4.12)

where we put complex numbers f and f 0. One of them can be eliminated by a
rescaling of z.

Our next task is to check that the curves thus obtained via the 6d construction
have the correct properties to describe the respective four-dimensional theories.
Before proceeding, we need to learn more about the Higgs branch of ND2 theories
in general.
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Chapter 7
Higgs Branches and Hyperkähler Manifolds

So far we only considered the branch of the moduli space of the supersymmetric
vacua where the scalar ˆ in the vector multiplet is nonzero, and all the hypermulti-
plets are zero. Instead let us consider a branch whereˆ D 0, but the hypermultiplet
scalars are nonzero. This branch is called the Higgs branch.

7.1 General Structures of the Higgs Branch Lagrangian

First, recall a general ND1 theory containing only scalars and fermions. Such a
theory can be described by the Lagrangian

Z
d4�K. N̂ Nj ; ˆi / D gi Nj @��i@� N� Nj C � � � (7.1.1)

where

gi Nj D @2K

@�i @ N� Nj
: (7.1.2)

This defines a Kähler manifold. In particular, the manifold is naturally a complex
manifold. This fact is almost implicit in our formalism, since the chiral multiplets
are by definition complex valued. It is instructive to recall why this was so: we have
the basic supersymmetry transformation

ı˛� D  ˛; ı
�

P̨ ˛ D i
�

˛ P̨@�� (7.1.3)
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A convention independent fact is that ı˛ı P̨ acting on a complex scalar involves
a multiplication by i . In terms of the real and imaginary parts of �, we can
schematically write this fact as

ı
�

P̨ı˛
�

Re�
Im�

�
D 

�

P̨˛@�I
�

Re�
Im�

�
(7.1.4)

where the matrix

I D
�
0 1

�1 0
�

(7.1.5)

has the property I 2 D �1. This is the crucial matrix defining the complex structure
of the scalar manifold of an ND1 theory.

Now, let us consider an ND2 theory consisting of scalars and fermions only.
Note that this means that there are no ND2 vector multiplets. This theory has two
sets of ND1 supersymmetries ıiD1;2˛ . In addition,

ı.c/˛ WD c1ı
1
˛ C c2ı

2
˛ (7.1.6)

also generates an ND1 sub-supersymmetry when jc1j2 C jc2j2 D 1. Applying the
argument in the last paragraph for this ND1 subalgebra, we find that there are
matrices

I .c/ D Ian
a; na D . Nc1; Nc2/a

�
c1
c2

�
(7.1.7)

which always satisfy

.I .c//2 D �1: (7.1.8)

Note that na are real and jn1j2 C jn2j2 C jn3j2 D 1, i.e. they are on S2. Denoting
.I; J;K/ WD .I1; I2; I3/ for simplicity and expanding (7.1.8), one finds the relations

I 2 D J 2 D K2 D �1; IJ D K D �JI; JK D I D �KJ; KI D J D �IK:
(7.1.9)

This commutation relation of I , J andK is that of a quaternion. A manifold with an
action of quaternion algebra on its tangent space is called a hyperkähler manifold.
Therefore we found that the scalar manifold of an ND2 theory without massless
vector multiplets is hyperkähler.

Note that the SU.2/R symmetry acts on the doublet .c1; c2/, which is restricted
to live on the three-sphere jc1j2 C jc2j2 D 1. The map (7.1.7) from this .c1; c2/ to
na is the standard Hopf fibration S3 ! S2, and the index a transforms as the triplet
of SU.2/R.
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Combining with the analysis in Sect. 2.4, we see that general low-energy ND2
theory has an action of the form

Z
d2�

�i

8

� ijW˛iW

˛
j C cc:C

Z
d4�Kv. Na Nj ; ai /C

Z
d4�Kh. NqNt ; qs/ (7.1.10)

such that Kh. NqNt ; qs/ gives a hyperkähler manifold and that there is a prepotential
F.ai / giving � ij and Kv via the standard formulas (2.4.7)–(2.4.9).

Note that the hypermultiplet side and the vector multiplet side are completely
decoupled. The dependence on the UV gauge coupling is implicitly there in
the vector multiplet side. This means that the hypermultiplet side cannot receive
quantum corrections depending on the gauge coupling.

7.2 Hypermultiplets Revisited

Let us revisit the structure of the full and half hypermultiplets introduced in
Sect. 2.1.2 from the viewpoints here. First, let us recall the types of irreducible
representations of compact groups:

complex if R 6' NR ;

real if R ' NR :

(
strictly real if the invariant tensor ıij is symmetric,

pseudo-real if the invariant tensor �ij is antisymmetric.
(7.2.1)

In a non-supersymmetric theory with a number of real scalars �i , i D 1; : : : ; n,
they can have an action of the flavor symmetry F or the gauge symmetry group G
if there are real n � n matrices T a, a D 1; : : : ; dimG representing the Lie algebra
of G:

F;G Õ R
n: (7.2.2)

This representation clearly has an invariant symmetric tensor ıij as it acts on n real
scalars with a kinetic term ıij@��

i@��
j . The representation is therefore strictly real.

In an ND1 supersymmetric theory with a number of real scalars �i , i D 1; : : : ; n

together with n=2Weyl fermions, the supersymmetry requires existence of a matrix
I with I 2 D �1. The actions of the flavor symmetry F and the gauge symmetry G
need to commute with this matrix I :

F;G Õ R
n Ô I: (7.2.3)

We can declare that a complex number a C bi acts on the real scalars by the
matrix a C bI. Then the space of scalars becomes a complex vector space, and the
symmetries act on them preserving the complex structure. So there are m D n=2
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chiral multiplets ˆs , s D 1; : : : ; m, and both F and G are represented on them in
terms ofm�m complex matrices representing their Lie algebras. We can summarize
the situation in the following way:

F;G Õ C
m: (7.2.4)

In an ND2 supersymmetric theory with a number of real scalars �i , i D 1; : : : ; n

together with n=2Weyl fermions, the supersymmetry requires existence of matrices
I , J , K with the commutation relations (7.1.9). The actions of the flavor symmetry
F and the gauge symmetry G need to commute with I , J , K:

F;G Õ R
n Ô I; J;K: (7.2.5)

We can declare that a quaternion aCbiCcjCdk acts on the real scalars by the matrix
aCbICcJCdK. Then the space of scalars becomes a quaternionic vector space, and
the symmetries act on them preserving the quaternion structure. This requires n to
be automatically a multiple of four, n D 4` Both F and G are represented on them
in terms of `� ` quaternion matrices representing their Lie algebras. Summarizing,
we have

F;G Õ H
` (7.2.6)

where H is the skew-field of quaternions.
As quaternions are not quite common among physicists, we usually just use aCbI

to think of the real scalars as complex scalars. Then we have a complex vector space
of dimension 2`, and we have 2` complex scalarsˆs , s D 1; : : : ; 2`, acted on by the
flavor symmetry F and the gauge symmetry G in a complex representation QR. The
matrix JCiK then determines an 2`�2` antisymmetric matrix �st, which is invariant
under the action of F and G. This means that QR is a pseudoreal representation:

F;G Õ C
2` Ô �st (7.2.7)

This is the half-hypermultiplet in representation QR, introduced briefly at the end of
Sect. 2.1.2.

From this point of view, a half-hypermultiplet is more elementary than a full
hypermultiplet, which is given as follows. Take an arbitrary complex representation
R of F � G of dimension m. Let i D 1; : : : ; m be its index. We have an invariant
tensor ıi Nj . Let QR D R˚ NR. It has an index s D 1; : : : ; n; N1 : : : ; Nn, and automatically
has an antisymmetric invariant tensor

�st; �ij D �Ni Nj D 0; �i Nj D ıi Nj D �� Nj i : (7.2.8)

Then the half-hypermultiplet based on this representation QR is the full hypermulti-
plet in the representationR.
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Concretely, consider four real scalars. This system has a natural symmetry
SO.4/ ' SU.2/l � SU.2/r . Add two Weyl fermions, with a natural symmetry
SU.2/l . Then the total system has an ND2 supersymmetry where the SU.2/R
symmetry of the ND2 algebra is the SU.2/r acting on the scalars. The symmetry
SU.2/l can be used as either a flavor or a gauge symmetry. This whole system
consists of just one full hypermultiplet, or one half-hypermultiplet in the SU.2/l
doublet.

Next, let i D 1; : : : ; n and a D 1; : : : ; m the indices for U.n/ and U.m/
symmetries, respectively. Then, ND1 chiral multiplets Qi Na, QQNia form an ND2
hypermultiplet, in the bifundamental representation of U.n/� U.m/. When U.n/ is
regarded as a gauge symmetry, U.m/ becomes the flavor symmetry.

Another typical construction is to take i D 1; : : : ; 2n to be an index for Sp.n/
symmetry and a D 1; : : : ; m to be that for SO.m/ symmetry. Consider ND1 chiral
multipletsQia. Regard the pair of indices ia as a single index s D .ia/, running from
1 to 2nm. This system has an antisymmetric invariant tensor �st D �.ia/.jb/ D Jijıab,
thus they make up a hypermultiplet with the symmetry Sp.n/� SO.m/, commuting
with the superalgebra. When Sp.n/ is made into a gauge symmetry, SO.m/ becomes
the flavor symmetry, and vice versa. This explains the fact that when there are
n hypermultiplets in the vector representation of gauge SO.m/, we have Sp.n/
flavor symmetry, and when there are m half-hypermultiplets in the fundamental
representation of gauge Sp.n/, we have SO.m/ flavor symmetry.

7.3 The Hyperkähler Quotient

Let us come back to the study of the Higgs branch. The equations defining it were
given in Sect. 2.2 for the case of SU.N / gauge theory with Nf flavors, see (2.2.3)
and (2.2.6). Let us write them down for the general case.

Consider an ND2 gauge theory with gauge group G and a hypermultiplet
.Qi ; QQi/ in the representationR. Here the index i D 1; : : : ; dimR is for the hyper-
multiplet and we use the index a D 1; : : : ; dimG for the adjoint representation. The
Higgs branch is given by

8̂
<
:̂
.QiQ�

j � QQ�i QQj /T
aj
i D 0

ReQi QQjT
aj
i D 0

ImQi QQjT
aj
i D 0

9>=
>;
.
.identification by the gauge group/ (7.3.1)

where T aji is the matrix of the algebra of G in the representationR.
There is no massless vector multiplet remaining in the generic point of the

Higgs branch. From the general analysis in the preceding sections, we know
that they form a hyperkäher manifold. The construction (7.3.1) is known as the
hyperkähler quotient construction in the literature both in mathematics and in
physics, and found originally in [1]. The real dimension of any hyperkähler manifold
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is always a multiple of four. Let us check this in this situation. Suppose the original
hypermultiplets consist of 4m real scalars. The D-term condition imposes dimG
real constraints, for each I , J andK . Then we make the identification by the action
of G. Therefore we have

4m� 3 dimG � dimG D 4.m� dimG/ (7.3.2)

real dimensions after the quotient.
If we are only interested in the holomorphic structure, we can drop the D-term

equation and instead perform the identification by the complexified gauge group

n
Qi QQjT

aj
i D 0

o .
.identification by the complexified gauge group/: (7.3.3)

Note that this is a more natural form in the ND1 superfield formulation, if we do
not put the vector superfield into the Wess-Zumino gauge. The basic idea to show
the equality of (7.3.3) with (7.3.1) is to minimize jDj2 within each of the orbit
of the complexified gauge group. The minimization condition then gives D D 0,
recovering (7.3.1). This rough analysis also shows that, more precisely speaking,
we need to remove the so-called unstable orbits in (7.3.3), in which there is no point
where jDj2 is minimized.

In this approach, we start from 2m complex scalars. We then imposes dimG
complex constraints and then perform the identification by the action of GC, the
complexified gauge group, removing dimG complex dimensions. We end up with

2m � dimG � dimG D 2.m � dimG/ (7.3.4)

complex scalars in the quotient. This is compatible with what we just found in
(7.3.2). If we count the quaternionic dimension, we just have the formula

m � dimG: (7.3.5)

7.3.1 U.1/ Gauge Theory with One Charged Hypermultiplet

Let us consider two examples. First, take an ND2 U.1/ gauge theory with two
hypermultiplets .Qi ; QQi/ with charge ˙1. Here i D 1; 2. We have m D 2 and
dimG D 1 in the expressions above, so we expect a complex two-dimensional
Higgs branch. First, let us determine the Higgs branch explicitly. The F-term
equation is

Q1
QQ1 CQ2

QQ2 D 0: (7.3.6)
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Then we have

.Q1; QQ1/ D .z; Qzt/; .Q2; QQ2/ D .Qz;�zt/ (7.3.7)

for some complex numbers z, Qz and t . Then the D-term equation jQ1j2 C jQ2j2 �
j QQ1j2 � j QQ2j D 0 says

jzj2 C jQzj2 D jt j2.jzj2 C jQzj2/: (7.3.8)

Therefore we see jt j D 1. We can use the U.1/ gauge rotation to eliminate t almost
completely, by demanding

Arg z D Arg.Qzt/: (7.3.9)

This still does not fix the U.1/ gauge transformation given by the multiplication by
�1 onQi , QQi , sending the pair .z; Qz/ to .�z;�Qz/. We conclude that the Higgs branch
is given by

C
2=Z2 D f.z; Qz/ 2 C

2g=.z; Qz/ $ .�z;�Qz/: (7.3.10)

A not-quite-accurate schematic description is given in Fig. 7.1.
Let us use the complex description (7.3.3) to obtain the same Higgs branch in

a different way. Instead of identifying points connected by the complexified gauge
group, we can just consider combinations of coordinates which are invariant under
it. In this case,Qi has charge C1 and QQi has charge �1. Then, the gauge invariants
are Qi

QQj , for arbitrary choices of i and j . We need to impose

Q1
QQ1 CQ2

QQ2 D 0; (7.3.11)

too. In total, we find three combinations

A D Q1
QQ2; B D Q2

QQ1; C D iQ1
QQ1 D �iQ2

QQ2: (7.3.12)

They satisfy one obvious relation

AB D C2: (7.3.13)

With three variables A, B , C and one relation above, we have complex two-
dimensional space. This is the Higgs branch.

Fig. 7.1 Not a very accurate
depiction of C2=Z2
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This description can also be found starting from the definition of C
2=Z2 in

(7.3.10). Combinations of z, Qz invariant under .z; Qz/ $ .�z;�Qz/ are

A D z2; B D Qz2; C D zQz (7.3.14)

which satisfy the same relation (7.3.13). Therefore they are the same spaces as
complex manifolds.

7.3.2 SU.2/ Gauge Theory with Two Hypermultiplets
in the Doublet

As the second example, consider ND2 SU.2/ gauge theory with Nf full hypermul-
tiplets in the doublet representations. In terms of ND1 chiral multiplets, we have

Qa
i ;

QQi
a .a D 1; 2I i D 1; : : : ; Nf / (7.3.15)

As the doublet and the anti-doublet representations are the same for SU.2/ gauge
theory, we can denote them also as

Qa
I ; .a D 1; 2I I D 1; : : : ; 2Nf / (7.3.16)

which makes SO.2Nf / flavor symmetry more manifest.
We have 4Nf complex scalars and dim SU.2/ D 3. Then the complex dimension

of the Higgs branch is

4Nf � 2 � 3: (7.3.17)

So we do not have the Higgs branch for Nf D 1, and expect a Higgs branch with
complex dimensions 2, 6, 10 for Nf D 2; 3; 4, respectively. Let us study the case
Nf D 2 in more detail.

Gauge-invariant combinations of Qa
I are

MIJ D Qa
IQ

b
J �ab: (7.3.18)

The left hand side is automatically anti-symmetric under the exchange of I and J .
The F-term equation is

Q
.a
I Q

b/
J ı

IJ D 0: (7.3.19)

For SO.2Nf / D SO.4/, we can split an antisymmetric matrixMIJ of SO.4/ into
the self-dual and the anti-self-dual parts. Equivalently, using SO.4/ ' SU.2/u �
SU.2/v, MIJ splits into the triplet M.˛ˇ/ of SU.2/u and the triplet M. P̨ P̌/ of SU.2/v,
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where ˛; ˇ D 1; 2 and P̨ ; P̌ D 1; 2 are doublet indices of SU.2/u;v respectively.
The index I itself can be thought of a pair of indices: I D .˛ P̨ /. Then the
hypermultiplets we are dealing with can be written as

Qa˛ P̨ ; a; ˛; P̨ D 1; 2 (7.3.20)

which makes the existence of SU.2/3 symmetry manifest. Then

M˛ˇ D Qa˛ P̨Qbˇ P̌�ab� P̨ P̌
; (7.3.21)

M P̨ P̌ D Qa˛ P̨Qbˇ P̌�ab�˛ˇ (7.3.22)

are the self-dual and the anti-self-dual parts of MIJ, respectively. The F-term
equation can be written as

Qa˛ P̨Qbˇ P̌�˛ˇ� P̨ P̌ D 0: (7.3.23)

Using this description, it is not very hard to check that

M˛ˇM�ı�
˛� �ˇı D 0; (7.3.24)

M P̨ P̌M P� Pı�
P̨ P� � P̌ Pı D 0; (7.3.25)

M˛ˇM P̨ P̌ D 0: (7.3.26)

The structure becomes clearer by defining

A D M11; B D M22; C D M12 D M21I (7.3.27)

X D MP1P1; Y D MP2P2; Z D MP1P2 D MP2P1: (7.3.28)

The relations (7.3.24) and (7.3.25) give

AB D C2; XY D Z2; (7.3.29)

whereas the relation (7.3.26) mean that two vectors .A;B; C / and .X; Y;Z/ cannot
be both nonzero at the same time.

Therefore we see that the Higgs branch has the structure schematically described
in Fig. 7.2: there are two copies of C2=Z2, described respectively by the variables
A;B;C and X; Y;Z. When the vacuum is on one of the C

2=Z2 described by one
set of variables .A;B; C /, the other variables are forced to be zero, and vice versa.
Therefore two copies of C2=Z2 can be said to share the origin, where all of A;B;C
and X; Y;Z are zero. The Higgs branch has complex dimension two, as expected.
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Fig. 7.2 Not a very accurate
depiction of C2=Z2 ^ C

2=Z2

Recall we decomposed the flavor symmetry SO.4/ into SU.2/u � SU.2/v. The
vectors .A;B; C / and .X; Y;Z/ are triplets under SU.2/u and SU.2/v, respectively.
Therefore, the flavor parity of O.4/  SO.4/ exchanges the two copies of C2=Z2
composing the Higgs branch.
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Chapter 8
SU.2/ Theory with 2 and 3 Flavors

8.1 Generalities

In this section and next, we consider SU.2/ gauge theory with Nf flavors, with
Nf D 2; 3; 4. In terms of ND1 chiral multiplets, we have .Qi ; QQi/ for i D
1; : : : ; Nf with the superpotential

X
i



Qiˆ QQi C �iQi

QQi
�

(8.1.1)

where �i are bare mass terms. With all �i are the same, there is a U.Nf /
symmetry acting on the indices i of Qi and QQi . On the Coulomb branch with
ˆ D diag.a;�a/, the physical masses of the hypermultiplets are given by

j ˙ a˙ �i j: (8.1.2)

With �i D 0, we can combineQi and QQi into

.qaI /ID1;2;:::;2Nf D .Qa
1 ; : : : ;Q

a
Nf
; �ab QQ1

b; : : : ; �
ab QQNf

b / (8.1.3)

with SO.2Nf / symmetry. In this notation the superpotential is

/ �IJqaIˆabq
b
J ; where � D

 
0 1Nf

1Nf 0

!
: (8.1.4)

Since �IJ is a symmetric matrix, the flavor symmetry acting on the indices
I;J is SO.2Nf /. Equivalently, we have 2Nf half-hypermultiplets in the doublet
representation of SU.2/.

© Hindustan Book Agency 2015
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Classically, introducing an odd number of half-hypermultiplets in the doublet
of SU.2/ is all right, with SO.odd/ flavor symmetry. However, such a theory
would have odd number of Weyl fermions in the doublet, and is plagued quantum
mechanically by Witten’s global anomaly, as reviewed in Sect. 3.2.1. Therefore, for
SU.2/ gauge group, we can only consider an even number of half-hypermultiplets
in the doublet, or equivalently, an integral number of full-hypermultiplets in the
doublet.

The one-loop running of this theory in the ultraviolet region jaj � j�i j is

�.a/ D 2�UV � 2.4�Nf /

2
i
log

a

ƒUV
C � � � (8.1.5)

which can further be rewritten as, when Nf ¤ 4,

D �2.4�Nf /

2
i
log

a

ƒ
where ƒ4�Nf D ƒ

4�Nf
UV e2
i�UV : (8.1.6)

We guessed the form of the curves of these theories in Sect. 6.4.4. The results
were given in (6.4.6), (6.4.11), (6.4.12) for Nf D 2; 3; 4 respectively. The aim of
this section and the next section is to perform various checks that they do reproduce
expected properties, and to study strong coupling dynamics using them. In this
section we deal with Nf D 2 andNf D 3. The caseNf D 4 opens up a whole new
field, to which Chap. 9 is dedicated.

8.2 Nf D 2: The Curve and the Monodromies

Let us start with the SU.2/ with Nf D 2 flavors. The Seiberg–Witten curve was
guessed in (6.4.6), which we repeat here:

† W 2ƒ.x � �1/
z

C 2ƒ.x � �2/z D x2 � u (8.2.1)

with the Seiberg–Witten differential � D xdz=z. The ultraviolet curve C is still just
an S2, shown in Fig. 8.1.

Fig. 8.1 The curve of
Nf D 2 theory
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When juj � jƒ2j; j�i j2, we can estimate the line integrals easily. First, we put
the A-cycle at jzj D 1. Using x ' p

u around there, we have

a D 1

2
i

I
A

x
dz

z
' p

u: (8.2.2)

The positions of the branch points of x.z/ on the curve C can also be easily
estimated: there are two around z ' p

u=ƒ and two more around z ' ƒ=
p

u.
Then we see

aD D 1

2
i

I
B

x
dz

z
' 2 � 2
2
i

Z 1

p
u=ƒ

a
dz

z
' � 4

2
i
a log

a

ƒ
: (8.2.3)

From this we can compute �.a/ D @aD=@a, which reproduces the one-loop running
(8.1.6).

Let us next study the structure of the singularities on the u-plane. When �1;2 �
ƒ, the gauge coupling is rather small around the energy scale �1;2. Then we expect
that when

u ' �2i for i D 1; 2 (8.2.4)

one component of .Qi ; QQi/ become very light, producing a singularity. Below the
scale of �1;2, the theory is effectively equivalent to pure SU.2/ theory, which should
have two singularities where either monopoles or dyons are very light. In total we
expect that there are four singularities on the u-plane, see Fig. 8.2.

This structure can be checked starting from the curve (8.2.1) by studying its
discriminant, which is left as an exercise to the reader. Here we study the massless
case �1 D �2 D 0 in detail. The Seiberg–Witten curve for the massless case is
simply

x2 � 2ƒ.z C 1

z
/x � u D 0: (8.2.5)

Then we see that four branch points of x.z/ meet in pairs when u D 0 or u D �4ƒ2

as depicted in Fig. 8.3.

Fig. 8.2 The u-plane for
Nf D 2
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Fig. 8.3 The curve of Nf D 2 theory degenerates when u D 0 or u D �4ƒ2

Fig. 8.4 The u-plane for massless Nf D 2

Explicitly, when u D 0 they meet at z D ˙i and when u D �ƒ2 they meet
at z D ˙1. There are no other singularities on the u-plane, so we see that when
�1 D �2 D 0 the u-plane has the structure shown in Fig. 8.4. At each of u D 0,
u D �ƒ2, two pairs of branch points of x.z/ collide. This means that each of u D 0,
u D �ƒ2 should be considered as two singularities on the u-plane. This situation
was shown in Fig. 8.4 by putting almost overlapping two blobs at u D 0; �ƒ2. In
total there are four singularities, matching what we found above for �1;2 � ƒ. Let
us denote the monodromies around various closed paths as shown in Fig. 8.4.

The monodromy M1 at infinity can be found from the explicit form of a, aD
found in (8.2.2), (8.2.3) to be

M1 D
��1 2

0 �1
�
: (8.2.6)

The monodromy MC around u D 0 can be found by following the motion of the
branch points when we make a slow change along the path u D �ei� for a very small
� from � D 0 to � D 2
 . The pair of branch points exchanges positions as shown
in Fig. 8.5. We see that the B cycle remains the same, while A is sent to A � 2B ,
thus generating

MC D
�
1 0

�2 1
�

D ST2S�1: (8.2.7)

We see that

M1 D MCM� (8.2.8)
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Fig. 8.5 Monodromy action on cycles for Nf D 2

Fig. 8.6 The curve of Nf D 2 theory degenerates when u D 0 or u D �ƒ2, the second
description

with

M� D TMCT �1: (8.2.9)

Before proceeding, it is instructive to use another description of the curve to find
the same u-plane structure. The curve was given in (6.4.7). When massless, this just
becomes

x2

z
Cƒ2z D x2 � u: (8.2.10)

The branch points collide when u D 0 or u D �ƒ2 as before, but it looks rather
different on the ultraviolet curve, as shown in Fig. 8.6.

Note that � diverges at z D 0 and z D 1 independent of u. One branch point of
x.z/ on the ultraviolet curve moves as u changes, and this point hits either z D 0

or z D 1 at u D 0 or u D �ƒ2 respectively. It is left to the reader to recover the
monodromiesM˙ from this latter view point.



96 8 SU.2/ Theory with 2 and 3 Flavors

8.3 Nf D 2: The Discrete R-Symmetry

Let us now study the discrete R-symmetry. We assign the charges under continuous
R-symmetry to be given by

R D 0 A

1 � �

2 ˆ

;
R D �1  I

0 qI
: (8.3.1)

The rotation

� ! ei'�;  I ! e�i' I (8.3.2)

is anomalous, but can be compensated by

�UV ! �UV C 4': (8.3.3)

Equivalently, the dynamical scale ƒ transforms as

ƒ2 ! e4i'ƒ2: (8.3.4)

Therefore ' D 
=2 is a genuine symmetry, which does

�UV ! �UV C 2
; ˆ ! �ˆ; u0 ! u0 (8.3.5)

where u0 D htrˆ2=2i. The reason why we put a prime to the symbol u here will be
explained shortly. Unfortunately this does not tell us much about the structure on
the u0-plane, as it acts trivially on it.

We can perform a slightly subtler operation. Consider the action on the hyper-
multiplets given by

.qID1; q2; q3; q4/ 7! .�qID1; q2; q3; q4/; (8.3.6)

. ID1;  2;  3;  4/ 7! .� ID1;  2;  3;  4/: (8.3.7)

So far we always said that the flavor symmetry is SO.2Nf / D SO.4/. This operation
is a flavor parity action

diag.�1;C1;C1;C1/ 2 O.4/  SO.4/: (8.3.8)

Recall that in an SU.2/ k-instanton background, the number of zero-modes of  ID1
is just k. Then the operation (8.3.7) multiplies the path integral measure by .�1/k .
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This means that the parity part of the classical flavor symmetry O.4/ is anomalous.
That said, as we have a term ei�k in the integrand of the path integral, we can
compensate it by the shift � ! � C 
 .

Then, we can combine phase rotations (8.3.2), (8.3.3) with ' D 
=4 and the
flavor parity (8.3.7) to have a genuine unbroken symmetry. Summarizing, this is a
combination of two actions: the first one is

� ! � C 
; ˆ ! iˆ; u0 ! �u0 (8.3.9)

and the second one is

� C 
 ! � C 2
; qID1 ! �qID1;  ID1 ! � ID1: (8.3.10)

In total this is a Z4 symmetry acting on the u-plane by Z2.
At the first sight this looks contradictory with the structure of the u-plane found

in Fig. 8.4: the two singularities are at u D 0 and u D �ƒ2. The way out is to set

u D u0 � ƒ2

2
: (8.3.11)

This illustrates a subtlety which is often there in the non-perturbative analysis
of field theories. Naively, u is defined to be htrˆ2=2i. But a composite operator
needs to be defined with care, by carefully performing the regularization and the
renormalization. As there are almost no divergence between two chiral operators
in a supersymmetric theory, it is relatively safe to do this for chiral composite
operators, although one still needs to take care of the point splitting between
two gauge-dependent chiral operators, which is known as a source of Konishi’s
anomaly [1], for example. At least perturbatively, we can take the holomorphic
scheme and that uniquely fixes the regularization and the renormalization of chiral
composite operators to all orders in perturbation theory. There still is, however, non-
perturbative ambiguity in the definition of the scheme. In our present case, u andƒ2

both have mass dimension two and has charge 2 under the continuous broken R-
symmetry, therefore they tend to mix. When we guessed the curve in Sect. 6.4.4,
we did not take the discrete unbroken R-symmetry into account, thus there was a
discrepancy between the u appearing in the curve and the u0 which was constructed
by definition to transform nicely under the discrete R-symmetry.

We learned that the low energy behavior at u D 0 and u D �ƒ2, or equivalently
at u0 D ˙ƒ2=2 is related by the discrete R-symmetry combined with the flavor
parity. Let us study them in more detail. We know that the monodromy at u D 0 is
given by (8.2.7). Let us say aD � cu close to u D 0, where c is a constant. Applying
the S transformation once, we see that the running of the dual coupling is

�D.E/ ' C 2

2
i
logE (8.3.12)
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where E � cu sets the energy scale. Compare this with the running of the dual
coupling (4.3.22) at the monopole point of the pure SU.2/ theory. The factor 2 in
the numerator comes from the lower-left entry ofMC in (8.2.7), or more physically
from the fact that two pairs of the branch points simultaneously collide as shown in
Fig. 8.3. In general, when a U.1/ gauge theory is coupled to several hypermultiplets
with charges given by qi , the running is given by

� ' C
P

i q
2
i

2
i
logE (8.3.13)

Then we can conclude uniquely that there are two hypermultiplets with charge
1. This can be seen from the higher-dimensional perspective: there are disk-
shaped membranes as in Fig. 6.4 for each pair of colliding branch points. They
become massless when the branch points do collide, thus providing two charged
hypermultiplets.

8.4 Nf D 2: The Moduli Space

We studied in Sect. 7.3 that U.1/ gauge theory with two charge-1 hypermultiplets
has a Higgs branch of the form C

2=Z2. Together with the u-plane describing
the Coulomb branch, we can visualize the totality of the supersymmetric vacuum
moduli space as shown in Fig. 8.7. Note that two singular points on the u-plane
where Higgs branches meet are exchanged by the discrete R-symmetry and the
flavor parity.

Fig. 8.7 Quantum moduli space of the Nf D 2 theory
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Compare this with the classical moduli space of SU.2/ theory with Nf D 2

flavors. The Coulomb branch is still described by u D trˆ2=2. When ˆ D 0, we
can go to the Higgs branch; we studied this system in Sect. 7.3 too, where we saw
that it is given by C

2=Z2 ^ C
2=Z2. We can visualize them as in Fig. 8.8.

In Sect. 7.1, we argued that the local metric of the Higgs branch cannot be
corrected by the gauge dynamics. We see here that the quantum dynamics can still
split the point where two copies of C2=Z2 meet the u-plane; the argument in that
section is not applicable at the points where the metric is singular.

Recall that there is a flavor symmetry SO.4/ ' SU.2/A � SU.2/B , so that
SU.2/A;B acts separately on the two copies of C2=Z2. Then, after non-perturbative
correction, SU.2/A acts on the hypermultiplets at u0 D ƒ2=2 and SU.2/B at
u0 D �ƒ2=2. This is consistent with the action of the flavor parity exchanging
u0 D ˙ƒ2=2, recall (8.3.7).

We learned in Sect. 1.3 that the monopole in this type of theories transforms as
the spinor representation of the SO.2Nf / flavor symmetry. Here the spinor of SO.4/
is the fundamental doublet of SU.2/A or SU.2/B , and they are indeed interchanged
by the flavor parity. This is consistent with what we have found so far.

Before closing this section, let us discuss what happens when we turn on a small
but nonzero � D �1 D �2. This breaks the SO.4/ D SU.2/A � SU.2/B flavor
symmetry to SU.2/A, say. Correspondingly, we can check that the two singularities
sitting at the same point u D �ƒ2 splits into two, by directly performing the analysis
of the discriminant of the curve. We are still left with one point on the u-plane where
two singularities still collide, and the local monodromy around it is unchanged from
MC. There, we have a Higgs branch of the form C

2=Z2. The resulting structure is
shown in Fig. 8.9. When � is continuously made large, eventually the situation is
better described as a special case of Fig. 8.2 with � D �1 D �2. Namely, the gauge
coupling at the scale � is still very weak, and the classical Lagrangian analysis is
valid. The superpotential is

Fig. 8.8 Classical moduli space of the Nf D 2 theory
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Fig. 8.9 The moduli space of Nf D 2 theory when �1 D �2

.Q1
i ;Q

2
i /

�
�C a 0

0 �a C �

� 
 QQi
1;

QQi
2

�
(8.4.1)

and therefore when a D �, the components .Q2
i ;

QQi
2/ for i D 1; 2 remain

massless. The gauge group is broken from SU.2/ to U.1/, and we have two charge-1
hypermultiplets, producing a Higgs branch of the form C

2=Z2.

8.5 Nf D 3

The curve for SU.2/ theory with Nf D 3 flavors was guessed in (6.4.11):

† W .x � Q�1/.x � Q�2/
z

C 2ƒ.x � Q�3/z D x2 � u: (8.5.1)

We see that � diverges at z D 0; 1;1 independent of u, and there are four branch
points which move as u changes, see Fig. 8.10. The reason we put tildes above the
mass parameters will become clear soon.

Let us check the behavior when juj � j�i j2; jƒj2. Two branch points are at
z � O.1/ and another branch point is at

p
u=ƒ. We now put the A-cycle around

jzj D c, where 1 
 c 
 p
u=ƒ. Then we see that the integral is given as before by

a D 1

2
i

I
A

x
dz

z
' p

u: (8.5.2)
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Fig. 8.10 The curve of
Nf D 3 theory

Fig. 8.11 The u-plane of
Nf D 3 theory, for equal
masses

The B-cycle integral can be approximated by

aD � 2

2
i

Z 1

p
u=ƒ

a
dz

z
' � 2

2
i
a log

a

ƒ
: (8.5.3)

From this we find

�.a/ D @aD

@a
D � 2

2
i
a log

a

ƒ
; (8.5.4)

thus reproducing the field-theoretical one-loop computation (8.1.6).
When �1 D �2 D �3 D � and j�j � jƒj, the coupling at the scale � is still

small, and the classical analysis using the superpotential (8.4.1) is almost valid. We
expect that around a ' �, i.e. when u ' �2, the gauge group SU.2/ is broken to
U.1/ with three charge-1 hypermultiplets. This point on the u-plane counts as three
singularities, since when �1;2;3 are slightly different, they should be at three slightly
different points u ' �2i . When juj 
 j�j2, the theory can be effectively described
by pure SU.2/ gauge theory, which have the monopole point and the dyon point. In
total we expect five singularities on the u-plane, see Fig. 8.11.

We would like to study the massless case,� D 0. Here, we cannot just set Q�i D 0

in the curve (8.5.1).1 We already saw that, whenNf D 2, the vev u can mix with the
one-instanton factorƒ2. Here, withNf D 3, the one-instanton factor isƒ and it can
mix with any neutral chiral dimension-1 operator. The curve makes only U.3/ flavor
symmetry manifest. The mass parameter corresponding to the U.1/ flavor symmetry
is neutral, chiral, and of dimension 1. Therefore there can be a mixing of the form

Q�i D �i C cƒ (8.5.5)

1The author thanks Kazuya Yonekura for pointing this out.
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where c is a constant. Here, we fix the untilded mass parameter �i to transform
linearly under the Weyl symmetry �i ! ˙�i of the SO.2Nf / D SO.6/ flavor
symmetry.

To determine c, we set

. Q�1; Q�2; Q�3/ D .��C cƒ;�C cƒ;�C cƒ/ (8.5.6)

and study the singularities in the u-plane. This is just the SO.6/ flavor Weyl
transform of the SU.3/ flavor symmetric choice of masses, therefore three out of
five singularities on the u-plane should still collide as in (8.11). By an explicit
computation, one finds that this happens only when c D 1.

Finally we can set � D 0. The curve is now

.x �ƒ/2
z

C 2ƒ.x �ƒ/z D x2 � u: (8.5.7)

There is an u-independent branch point of x.z/ at z D 1. Two other branch points
move with z, and are at the solutions of

ƒ2z2 �ƒ2z C u �ƒ2 D 0: (8.5.8)

The branch points collide when u D ƒ2 or u D .5=4/ƒ2:

• When u D .5=4/ƒ2, two u-dependent branch points meet at z D 1=2. The local
physics there is just U.1/ gauge theory with one charged hypermultiplet.

• When u D ƒ2, one branch point moves to z D 0 and the other branch point
collides with the u-independent branch point at z D 1. From the general analysis
we know that there are five singularities on the u-plane, therefore this point
should count as four colliding singularities, see Fig. 8.12.

The monodromy at infinity is

M1 D
��1 1

0 �1
�
: (8.5.9)

Fig. 8.12 The u-plane of
massless Nf D 3 theory
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Denoting the monodromies around u D ƒ2, u D .5=4/ƒ2 byMC andM�, we have

M1 D MCM�; MC D
�
1 0

�4 1
�
; M� D

��1 1
�4 3

�
�
�
1 �1
0 1

�
:

(8.5.10)

By going to the S-dual frame at u D ƒ2, we find that the running of the dual
coupling is

�.E/ D C 4

2
i
logE (8.5.11)

where the scale is set by E � .u � ƒ2/. Comparing with (8.3.13), the low energy
physics can be guessed to be a U.1/ gauge theory, coupled either (1) to just one
charge-2 hypermultiplets or (2) to four charge-1 hypermultiplets.

Recall that the classical theory has a Higgs branch. The choice (1) does not
have a Higgs branch at u D ƒ2. It does not have one at u D .5=4/ƒ2 either. The
Higgs branch should be preserved by the quantum correction, and thus this choice
is ruled out.

The choice (2) does have a Higgs branch at u D ƒ2. We have four charge-1
hypermultiplets coupled to the U.1/ gauge multiplet. Then the complex dimension
of the Higgs branch is 2 �4�2 �1 D 6. This is acted on by the SU.4/ flavor symmetry
rotating four hypermultiplets.

Classically, we have three hypermultiplets in the doublet of SU.2/. Then the
complex dimension of the Higgs branch is 4 � 3 � 2 � 3 D 6. This agrees with
the computation above. Recall that three hypermultiplets in the doublet of SU.2/
count as six half-hypermultiplets of SU.2/ doublet, with SO.6/ flavor symmetry.
As SO.6/ ' SU.4/, we see that the symmetry of the Higgs branch also agrees. We
should recall that the monopole in this theory transforms as the spinor representation
of the SO.2Nf / flavor symmetry. In our case the spinor of SO.6/ is the fundamental
four-dimensional representation of SU.4/. This is also consistent with our choice
that at u D ƒ2 there are four charged hypermultiplets electrically coupled to the
dual U.1/. By a more detailed analysis we can check that the Higgs branches agree
as hyperkähler manifolds.

Reference

1. K. Konishi, Anomalous supersymmetry transformation of some composite operators in SQCD.
Phys. Lett. B135, 439 (1984)



Chapter 9
SU.2/ Theory with Four Flavors and Gaiotto’s
Duality

In this chapter we start with the analysis of SU.2/ gauge theory withNf D 4 flavors.
We will see that it can naturally generalized to the analysis of a whole zoo of theories
with the gauge group of the form SU.2/n. The discussions basically follow the first
half of the seminal paper [2].

9.1 The Curve as �2 D �2.z/

Let us consider SU.2/ gauge theory with four doublet hypermultiplets with masses
�1;2;3;4. In the very high energy region, the one-loop running is given by (8.1.6),
which is just

�.a/ D �UV : (9.1.1)

From this we learn a distinguishing feature of the Nf D 4 theory compared to the
theories with less flavors: it has a dimensionless parameter �UV . When Nf < 4, the
bare coupling �UV was combined with the scaleƒUV to form the dynamical scaleƒ,
which just set the overall scale of the theory.

Now suppose the gauge coupling is small at the ultraviolet. Equivalently, suppose
�UV has a large positive imaginary part. Further suppose �1;2;3;4 are all of the same
order, � �. Then the coupling at the energy scale � � is small, and the semiclassical
analysis is OK. We see that when a � ˙�i , or equivalently when u � �i

2, the low-
energy limit is described by U.1/ gauge theory with one charged hypermultiplet.
Far below this scale, the theory is effectively the pure SU.2/ theory, which has the
monopole point and the dyon point. Then the u-plane schematically has the structure
shown in Fig. 9.1.

© Hindustan Book Agency 2015
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Fig. 9.1 The u-plane of
Nf D 4 theory

Fig. 9.2 The u-plane of
massless Nf D 4 theory

When �1;2;3;4 D 0, we can consider the R-symmetry with the charge assignment

R D 0 A

1 � �

2 ˆ

;
R D �1  I

0 qI
: (9.1.2)

This is not anomalous. Then the only sensible point to have a singularity in the u-
plane is at the origin, where six singularities in the generic case collide, see Fig. 9.2.
The coupling is given by �UV everywhere,

a D p
u; aD D �UVaD: (9.1.3)

Therefore the monodromyM1 at infinity is just

M1 D
��1 0

0 �1
�
: (9.1.4)

It looks relatively uninteresting. We will see however that there is a lot of interesting
physics going on when we study the dependence on �UV .

The curve of the Nf D 4 theory is given by

† W f
. Qx � Q�1/. Qx � Q�2/

Qz C f 0 � . Qx � Q�3/. Qx � Q�4/Qz D Qx2 � u (9.1.5)
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Fig. 9.3 The curve of
Nf D 4 theory

where f and f 0 are complex numbers, whose ratio will eventually be related to �UV .
The differential is Q� D Qxd Qz=Qz. The reason for additional tildes will become clear
later.

The structure of the function Qx.Qz/ over the ultraviolet curve C which is a sphere
with coordinate z is shown in Fig. 9.3. The differential Q� always diverges at Qz D 0,
1, and at the two solutions Qz D c1;2.f / of f=Qz C f 0Qz D 1. These points do not
move when u is changed. There are four additional branch points where Qx.z/ is
finite, connected by dots in the figure to make branch cuts explicit.

Let us rewrite the curve in a more illuminating way. We first rescale the
coordinate z to set f 0 D 1. We then collect terms with the same power of Qx:

.1 � Qz � f

Qz / Qx2 � ~ Qx � ~0 D 0 (9.1.6)

where ~;~0 are some complicated expressions, which readers should fill in. We
divide the whole expression by .1 � Qz � f=Qz/, and find

Qx2 � | Qx � |0 D 0: (9.1.7)

We note that | and |0 have poles at the two solutions c1;2.f / of 1 � z � f=z D 0.
Here it is instructive to spell out |, which is given by

| D �f � . Q�1 C Q�2/=Qz C . Q�3 C Q�4/Qz
1 � Qz � f=Qz : (9.1.8)

Defining x D Qx � |=2, we have

x2 � } D 0 (9.1.9)

where } now has double poles at c1;2.f / due to the completion of the square.
Instead of Q� D Qxd Qz=Qz we will use � D xd Qz=Qz henceforth. Note that

Q� � � D |
2

d Qz
Qz D �1

2

f � . Q�1 C Q�2/=Qz C . Q�3 C Q�4/Qz
1 � Qz � f=Qz

d Qz
Qz : (9.1.10)

This is independent of the Coulomb branch modulus u, and its residues are all linear
combinations of Q�i . We encountered in (6.4.8) a similar shift of � by a one-form
which is independent of u and whose residues are given by the mass terms only.
Such shift only amounts to a re-definition of the flavor charge and the mass terms,
and does not affect the physics, as discussed there.
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Fig. 9.4 A step in the derivation of the curve in the Gaiotto form

Now we define the coordinate z D Qz=c1.f / so that the double poles are at z D q

and 1 for jqj < 1, see Fig. 9.4. The final form of the curve is then:

�2 � �2.z/ D 0; �2.z/ D P.z/

.z � 1/2.z � q/2
dz2

z2
(9.1.11)

where P.z/ is a quartic polynomial, as can be seen by re-following the change of
variables starting from (9.1.5). The explicit expression of P.z/ in terms of u, f and
Q�i is not very important, however.

The quadratic differential �2.z/ has double poles at z D 0; q; 1;1. To see this
for z D 1, set w D 1=z. Then dz2=z2 D dw2=w2. This has poles of order two when
w D 0, i.e. when z D 1. We identify this dimensionless parameter q as a function
of the UV coupling �UV .

9.2 Identification of Parameters

9.2.1 Coupling Constant

Let us first see concretely how q and �UV are related, see Fig. 9.5. This can be done
by computing a and aD assuming jqj 
 1. As always, we put theA-cycle at jzj D c,
where jqj 
 c 
 1. Then we easily have

a D 1

2
i

I
A

x
dz

z
� p

u: (9.2.1)

The branch points of � are near 1 and q anyway, and therefore

aD D 1

2
i

I
B

x
dz

z
� 1

2
i
2

Z q

1

a
dz

z
D 2a

2
i
log q: (9.2.2)

Then

�U.1/ D @aD

@a
' 2

2
i
log q; (9.2.3)
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Fig. 9.5 In SU.2/ Nf D 4, q
is related to the UV coupling

or equivalently

q � e2
i�UV (9.2.4)

in the limit of weak coupling; note our convention that �U.1/ � 2�UV . This relation
is often written as

qC D e2
i�UV ;C (9.2.5)

with an equality. This should be regarded as a nonperturbative definition of the
renormalization and regularization scheme of �UV . Here we added a subscript C
to both q and �UV , in order to emphasize that the coupling qC is given by the data
on the ultraviolet curve C .

Another common nonperturbative definition of the UV coupling constant is to
use the low-energy U.1/ coupling �U.1/ in the limit when the Coulomb vev is very
large juj � j Q�i j:

�UV;† WD 1

2
lim

juj!1
�U.1/ (9.2.6)

This should isolate the SU.2/ coupling whose running is stopped at a very large
scale given by the Coulomb vev, and can be read off from the complex structure of
the Seiberg–Witten curve †. That is why we used the subscript † here. Let us also
define

q† D e2
i�UV;† : (9.2.7)

This is also a perfectly good scheme, related to the one in (9.2.5) via a finite
renormalization.

To explicitly determine the finite renormalization, we note that the Seiberg–
Witten curve † in the juj ! 1 limit is just the torus which is a double-cover
of C branched at z D 0; 1; qC ;1. Then �U.1/ in (9.2.6) is given by the complex
structure of this †. From a basic result in the theory of elliptic functions, we find

qC D �.�U.1// D �2.q
2
†/
4

�3.q
2
†/
4

D 16q† � 128q2† C 704q3† � 3072q4† C � � � : (9.2.8)

This means that �UV;C and �UV;† are related by a constant shift of its imaginary part
plus instanton corrections.

For more extensive discussions on the non-perturbative finite renormalization,
see e.g. Sects. 3.4 and 3.5 of [5].
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9.2.2 Mass Parameters

Next, let us study mass parameters. Recall that � has mass dimension 1, as its
integral give the mass of BPS particles. This means that the five coefficients of
the quartic polynomial P.z/ are of mass dimension two. We can identify these
five coefficients with some combinations of five parameters �iD1;2;3;4 and u. The
physical mass parameters are the residues at the poles of �. Fixing �i fixes four
linear combinations of the coefficients of P.z/. The sole linear combination which
does not change the coefficients of the double poles at z D 0; q; 1;1 can be
identified with the parameter u. Explicitly, we can write

�2.z/ D P0.z/

.z � q/2.z � 1/2
dz2

z2
C u

.z � 1/.z � q/
dz2

z
(9.2.9)

where P0.z/ is independent of u.
Let us now go back to the original curve and study the poles of �. We can

compute them from (9.1.5) rather easily when the system is weakly coupled,
jqj 
 1. The residues are � Q�1;2 at z D 0 and � Q�3;4 at z D 1. When we
went from Qx to x, we subtracted |=2 from x. We see that the residues are given by

˙�1 � �2
2

at z D 0; ˙�3 � �4
2

at z D 1;

˙�1 C �2

2
at z D q; ˙�3 C �4

2
at z D 1

(9.2.10)

where

�i D Q�i CO.q/: (9.2.11)

The variables Q�i enter rather naturally the Seiberg–Witten curve we guessed in
Sect. 6.4.4, whereas the variables �i enter the BPS mass formula. We see that they
are related by a finite renormalization.

To understand the combinations in (9.2.10) better, it is helpful to consider the
ND1 superpotential. With four doublet hypermultiplets, we have

W D
X
i

.Qiˆ QQi C �iQi
QQi/: (9.2.12)

We combine .Qi ; QQi/ for i D 1; 2; 3; 4 to qI with I D 1; : : : ; 8. Then the same
term becomes

W / qaI q
b
Jˆabı

IJ C qaI q
b
J �ab�

IJ (9.2.13)
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where �IJ is a constant matrix with SO.8/ antisymmetric index:

�IJ D
� ��1
�1

�
˚
� ��2
�2

�
˚
� ��3
�3

�
˚
� ��4
�4

�
(9.2.14)

Under the decomposition

SO.8/  SO.4/ � SO.4/ ' SU.2/A � SU.2/B � SU.2/C � SU.2/D; (9.2.15)

the entries of SO.8/ antisymmetric matrix (9.2.14) decomposes to

SU.2/A SU.2/B SU.2/C SU.3/D
diag.˙�1��2

2
/ diag.˙�1C�2

2
/ diag.˙�3C�4

2
/ diag.˙�3��4

2
/

(9.2.16)

which are exactly the residues we found in (9.2.10) at z D 0; q; 1 and D 1,
respectively. We can regard then that the singularity at z D 0 carries the SU.2/A
symmetry, and that the residue of � there is the mass parameter associated to this
SU.2/A symmetry; similarly for SU.2/B at z D q, SU.2/C at z D 1, and SU.2/D at
z D 1.

We call these structures the punctures. From the 6d point of view, we consider
a puncture at z D 0 as a four-dimensional object extending along the Minkowski
space R

3;1, which somehow carries an SU.2/ flavor symmetry on it. We will see
various other types of punctures below. To distinguish this one from them, we will
call this a regular SU.2/ puncture.

9.3 Weak-Coupling Limit and Trifundamentals

Let us now take the limit q ! 0 to decouple the gauge SU.2/, see Fig. 9.6. On the
left hand side, we have a sphere parameterized by z, with four points at z D 0; q; 1

and 1. On the right hand side, we have two spheres, parameterized by z0 and z00. We
put the pointsA,B ,G on the first sphere, at z0 D 0, 1 and 1, and then the pointsG0,
C , D on the second sphere, at z00 D 0, 1 and 1. Then we glue the neighborhoods
of G and G0 by declaring

z0z00 D q: (9.3.1)

Fig. 9.6 Weakly-coupled limit of SU.2/ Nf D 4
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Fig. 9.7 The ultraviolet
curve of the trifundamental,
together with the BPS paths
representing hypermultiplets

Defining z D z00, we see that four points A;B;C;D are exactly as in the first
description. In this limit, around the tube connecting G and G0, � ' ˙adz=z. Then
in the sphere containingA, B and G, we have three singularities, with residues of �
given by

˙ �1 C �2

2
; ˙�1 � �2

2
; ˙a; (9.3.2)

each corresponding to the symmetry SU.2/A, SU.2/B and SU.2/G , respectively.
Here SU.2/G was originally the gauge symmetry.

We were talking about the Nf D 4 theory. Then each of the sphere with three
punctures should be associated to the Nf D 2 hypermultiplet system, see Fig. 9.7;
note that this is not coupled to any gauge group. Let us recall the structure of the
hypermultiplets again. We start from two hypermultiplets .Qa

i ;
QQi
a/ in the doublet of

SU.2/, i D 1; 2 and a D 1; 2. We combine them to qaI , a D 1; 2 and I D 1; : : : ; 4,
making SU.2/� SO.4/ symmetry manifest. We then decompose the SO.4/ index I
into the pair .˛; u/ where ˛ D 1; 2 and u D 1; 2: we have the trifundamental qa˛u.
The mass term for this hypermultiplet is

�abqa˛uqbˇv�
˛ˇ�uv C Q�˛ˇqa˛uqbˇv�

ab�uv C O�uvqa˛uqbˇv�
ab�˛ˇ; (9.3.3)

where

�ab D a diag.1;�1/; Q�˛ˇ D �1 � �2

2
diag.1;�1/; O�˛ˇ D �1 C �2

2
diag.1;�1/:

(9.3.4)

Then .a; b/ are the indices for SU.2/G , .˛; ˇ/ for SU.2/A, and .u; v/ for SU.2/B .
The physical masses of these fields are given by

˙ a ˙ �1 � �2

2
˙ �1 C �2

2
D f˙a˙ �1;˙a ˙ �2g: (9.3.5)

which are the masses for the two doublets of SU.2/ with bare masses �1;2.
The curve of the system, shown in Fig. 9.7 is given by

�2 � �.z/ D 0; (9.3.6)
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where �.z/ has the asymptotic behavior

�.z/ � Q�2
z2

dz2; � O�2
.z � 1/2 dz2; � �2

w2
dw2 (9.3.7)

at z D 0, z D 1, z D 1 respectively. Here w D 1=z as always, and we set � D a,
Q� D .�1 � �2/=2 and O� D .�1 C �2/=2. Note that these asymptotic conditions
uniquely fix the quadratic differential �.z/ to be

�.z/ D �2z2 C . O�2 � Q�2 � �2/z C Q�2
z2.z � 1/2 dz2 (9.3.8)

As was discussed before, the BPS particles of this system can be found by solving
the BPS equation (6.1.6)

Arg
�

ds
D ei� (9.3.9)

for a given � . As �.z/ given above has two branch points only, the solution to the
BPS equation should start from one and end on the other. A computer simulation
shows that there are always four and only four such solutions, corresponding to the
hypermultiplets with masses given in (9.3.5).

9.4 Strong-Coupling Limit

So far we mainly considered the weak coupling limit q ! 0. Instead, consider
sending q ! 1, as shown in Fig. 9.8. We immediately find that the strong coupling
limit q ! 1 is the weak coupling limit q0 D 1=q ! 0 of a similarly-looking
SU.2/ gauge theory with four flavors. Note however that the role of the singularities
B and C are exchanged.

Fig. 9.8 A strongly-coupled limit of SU.2/, Nf D 4
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Originally, we had four flavors with masses

˙ �1; ˙�2; ˙�3; ˙�4: (9.4.1)

The residues of � at the punctures were then

˙ �A; ˙�B; ˙�C ; ˙�D (9.4.2)

with

�A D �1 � �2
2

; �B D �1 C �2

2
; �C D �3 C �4

2
; �D D �3 � �4

2
:

(9.4.3)

The original masses �i are

�1 D �A C �B; �2 D ��A C �B; �3 D �C C �D; �4 D �C � �D:

(9.4.4)

Now the singularities B and C are exchanged. Then, the masses �0
i of the four

hypermultiplets of the theory with the coupling q0 D 1=q are instead given by

�0
1 D �A C �C D �1 � �2

2
C �3 C �4

2
; (9.4.5)

�0
2 D ��A C �C D ��1 � �2

2
C �3 C �4

2
; (9.4.6)

�0
3 D �B C �D D �1 C �2

2
C �3 � �4

2
; (9.4.7)

�0
4 D �B � �D D �1 C �2

2
� �3 � �4

2
: (9.4.8)

The original masses (9.4.1) can be thought of as the weights of the vector
representation of SO.8/. The dual masses ˙�0

i are then the weights of the spinor
representation of SO.8/.

The dual quarks, therefore, transform in the spinor representation of the flavor
SO.8/ symmetry. We can identify these dual quarks as the monopoles in the original
description. This can be seen by slowly changing the value of q, following how
various paths on the sphere change, see Fig. 9.9. Originally, the path connecting
branch points close to the singularity B and D was a monopole. Recall also
that the semiclassical quantization of the monopole gave us a multiplet in the
spinor representation of the flavor symmetry SO.2Nf / as we saw in Sect. 1.3. In
the limit q ! 1, these monopoles become excitations whose paths are totally
contained in the sphere on the right. They are now the quark hypermultiplets in the
trifundamental, as shown in Fig. 9.7.
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Fig. 9.9 Monopoles and
quarks are exchanged

Fig. 9.10 W bosons also
come from monopoles

The same manipulation also shows that the SU.2/ W-bosons in the dual descrip-
tion came from monopoles in the original description, see Fig. 9.10. Therefore
it is important to keep in mind that the dual SU.2/ gauge multiplet is not the
same physical excitation as the original SU.2/ gauge multiplet. Note also that this
monopole has twice the magnetic charge of the monopole which became the dual
quarks.

There is also a limit where the singularity B approaches the singularity C ,
q ! 1. This is again equivalent to a weakly-coupled SU.2/ gauge theory with
four flavors, but with the role of the singularities are permuted, see Fig. 9.11. The
four mass parameters of the hypermultiplets are now given by

�00
1 D �A C �D D �1 � �2

2
C �3 � �4

2
; (9.4.9)

�00
2 D ��A C �D D ��1 � �2

2
C �3 � �4

2
; (9.4.10)
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Fig. 9.11 Triality

�00
3 D �C C �B D �3 C �4

2
C �1 C �2

2
; (9.4.11)

�00
4 D �C � �B D �3 C �4

2
� �1 � �2

2
: (9.4.12)

These are the weights of the conjugate spinor representation of SO.8/.
Therefore, we learned that the strong-weak duality of the SU.2/ gauge theory

with four flavors,

q $ q0 D 1=q $ q00 D 1 � q (9.4.13)

are accompanied by the exchange of the representations of the SO.8/ flavor
symmetry,

(9.4.14)

where V , S , C are eight dimensional irreducible representations (vector, spinor,
conjugate spinor) of SO.8/. These exchanges of three irreducible eight dimensional
representations are induced by the outer automorphism, and are known as the triality
of the group SO.8/, whose Dynkin diagram is also shown in Fig. 9.11. This triality
was originally found in [4]. The exposition in this subsection followed the one given
in [2].

The Higgs branch of this system can be studied in any of these descriptions.
Originally we have hypermultiplets qaI , where a D 1; 2 and I D 1; : : : ; 8. The
gauge invariant combination is

MŒIJ� D qaI q
b
J �ab: (9.4.15)
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In the dual, we have hypermultiplets Qq Qa
QI , where Qa D 1; 2 are for dual SU.2/ and

QI D 1; : : : ; 8 are for the spinor representation of the SO.8/ flavor symmetry. The
basic gauge invariant is then

QMŒ QI QJ � D Qq Qa
QI Qq Qb

QJ �Qa Qb: (9.4.16)

BothMŒIJ� and QMŒ QI QJ � are in the adjoint representation of SO.8/, and can be naturally
identified using the outer automorphism of SO.8/. We can check that the constraints
satisfied byMŒIJ� and QMŒ QI QJ � are invariant under the outer automorphism. This shows
that the Higgs branch are the same as complex spaces.

9.5 Generalization

9.5.1 Trivalent Diagrams

The trifundamental hypermultiplet consisting of ND1 chiral multiplets qa˛u for
a; ˛; u D 1; 2 played the central role in the analysis so far. Let us introduce a
shorthand notation for it, by representing it by a trivalent vertex with labelsA, B , C
as in Fig. 9.12, signifying the symmetries SU.2/A, SU.2/B , SU.2/C , acting on the
indices a, ˛, u respectively.

The ultraviolet curve for this system is given by a sphere with three puncturesA,
B , C , and the Seiberg–Witten curve is given by

† W �2 � �.z/ D 0 (9.5.1)

where �.z/ is given by the condition that the coefficients of the double poles are
given by �2A, �2B , �2C at each of the puncturesA;B;C , as in (9.3.7).

Fig. 9.12 Trivalent diagrams and corresponding ultraviolet curves
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Fig. 9.13 Triality, using trivalent diagrams

Now, the SU.2/ theory with four flavors can be obtained by taking two copies of
trifundamentals, and coupling an SU.2/ gauge multiplet to them. We denote it by
taking two trivalent vertices, and connecting them by a line, as shown in Fig. 9.12.
We put the exponentiated coupling q on the connecting line.

Starting with this trivalent diagram, we can easily write down the Lagrangian of
the theory. The free parameters in the theory are the mass parameters �A;B;C;D and
the UV coupling q. The ultraviolet curve of this system is given by a sphere with
four puncturesA, B , C , D, and the Seiberg–Witten curve is given by

† W �2 � �.z/ D 0 (9.5.2)

where �.z/ is given by the condition that its residues are given by �2X at each of
the punctures X D A;B;C;D as in (9.2.10). The triality of the SU.2/ theory with
four flavors, shown already in Fig. 9.11, can be depicted in terms of the trivalent
diagrams as in Fig. 9.13.

This way, we can regard the trivalent diagram as a shorthand to represent the
UV Lagrangian. The Seiberg–Witten solution to this given UV Lagrangian theory
is given just by replacing each trivalent vertex with a three punctured sphere, and
a connecting line with a connecting tube. This is a surprisingly concise method to
obtain the Seiberg–Witten solutions to ND2 gauge theories.

9.5.2 Example: Torus with One Puncture

Let us see a few examples. First, take one trivalent vertex, and connect two out of
the three lines by an edge, see Fig. 9.14. We start from a trifundamental described by
ND1 chiral multiplets qa˛u, but we couple the same SU.2/ gauge multiplet to the
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Fig. 9.14 SU.2/ with adjoint plus one free hyper

index a and ˛. Then the combination .a; ˛/ is in the tensor product of two spin-1=2
representations. Therefore we can split it into a triplet and a singlet, with additional
index u D 1; 2:

qa˛u ! q0
iu; q

00
u ; (9.5.3)

where i D 1; 2; 3 is the index for the triplet of SU.2/.
In total, we just have one full hypermultiplet in the triplet, and another full

hypermultiplet in the singlet which is completely decoupled. Therefore this is
essentially the ND2� SU.2/ theory, or equivalently the ND4 SU.2/ theory with
mass deformation to the hypermultiplet in the adjoint representation. The adjoint
mass � is associated to the remaining one SU.2/ flavor symmetry.

Its Seiberg–Witten solution is given by connecting two punctures of a three-
punctured sphere by a tube. As shown in Fig. 9.14, the ultraviolet curve is a torus
with one puncture. The Seiberg–Witten curve is then

�2 � �.z/ D 0 (9.5.4)

where z is now a coordinate of the torus, which we take to be the complex plane with
the identification z � z C 1 � z C � . As the origin of the coordinate is arbitrary, we
put the puncture at the origin. The �.z/ is given by the condition that it has a double
pole with a given strength at z D 0. This uniquely fixes the form of �.z/ to be

�.z/ D .�2}.zI �/C u/dz2 (9.5.5)

where} is the Weierstraß function, and u is the Coulomb branch vev u D htrˆ2i=2.
Now it is clear that the theory at the coupling given by � and the same theory at

the coupling given by � 0 D �1=� are equivalent after exchanging the monopoles
and the adjoint quarks. The space of the coupling can be identified with the moduli
space M1 of the tori, i.e genus-1 Riemann surfaces, which is given by

M1 D H= SL.2;Z/ (9.5.6)

where H is the upper half plane where � takes the value in, and SL.2;Z/ is
the modular group exchanging the edges of the torus. The duality group can be
identified with the modular group.
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9.5.3 Example: Sphere with Five Punctures

As another example, take three trivalent vertices and connect them as shown in
Fig. 9.15. The leftmost trivalent vertex counts as Nf D 2 flavors for SU.2/1, and
the rightmost one counts as Nf D 2 flavors for SU.2/2. In addition, we have a
hypermultiplet coming from the central trivalent vertex, qaiu where a is for SU.2/1
and i is for SU.2/2. The remaining index u D 1; 2 is an index for the flavor
symmetry. In older literature it was more customary to denote this hypermultiplet
charged under SU.2/1 � SU.2/2 using ND1 chiral multiplets .Qi

a;
QQa
i / which are

Qi
a D qajuD1�ij; QQa

i D qbiuD2�ab: (9.5.7)

This is usually called the bifundamental multiplet charged under SU.2/1 � SU.2/2.
The Seiberg–Witten solution to this theory is easily found, as shown in Fig. 9.15.

We start from three spheres, described by complex coordinates z1, z2, and z3. The
punctures A;B are at z1 D 0; 1; the puncture C is at z2 D 1; the punctures D;E
are at z3 D 1;1, respectively. To connect z1 D 1 and z2 D 0, we introduce
w1 D 1=z1 and require the relation w1z2 D q0. This simply means that we have
via z1 D q0z2. Similarly, by connecting z2 D 1 and z3 D 0, we have z2 D qz3.
Now we introduce z D z3 to describe the coordinate on the resulting sphere with
five punctures. Then the punctures are at z D 0, qq0, q, 1 and 1, each representing
an SU.2/ flavor symmetry which we call SU.2/A;B;C;D;E respectively. The gauge
couplings of SU.2/1 � SU.2/2 can be identified with q and q0.

Let us denote the mass parameters associated to the flavor symmetries by
�A;B;C;D;E . The Seiberg–Witten curve is

�2 � �.z/ D 0 (9.5.8)

where �.z/ needs to satisfy the asymptotic behavior

�.z/ � �2X
z2X

dz2X (9.5.9)

Fig. 9.15 An SU.2/2 theory and its curve
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where zX for X D A;B;C;D;E is a local coordinate on the ultraviolet curve such
that the punctureX is at zX D 0. From the conditions at A, B , C ,D, we find that �
is given by

�.z/ D P.z/

z2.z � 1/2.z � q/2.z � qq0/2
dz2 (9.5.10)

where P.z/ is a polynomial. To impose the condition at E , we go to the coordinate
w D 1=z. For �.z/ to behave as � dw2=w2, P.z/ can have terms of up to z6. We
see that �.z/ has seven coefficients. Five combinations are mass parameters, and
two linear combinations that do not shift the coefficients of the double poles are
the Coulomb branch parameters u D htrˆ2i=2 and u0 D htrˆ02i=2 of two gauge
multiplets SU.2/1;2. From the Seiberg–Witten solution, we see that this theory has
strong-weak coupling dualities where five flavor symmetry groups SU.2/A;B;C;D;E
can be arbitrarily permuted, with an appropriate change of the couplings .q; q0/ of
the two gauge groups. This extended duality was first found in [1].

9.5.4 Example: A Genus-Two Surface

As the third example, let us take two trivalent vertices and connect them with three
edges. There are two topologically distinct ways to do this, as shown on the left
hand side of Fig. 9.16.

Fig. 9.16 Two SU.2/3 theories and their curves
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The upper theory is an SU.2/l � SU.2/m � SU.2/r gauge theory. There are half-
hypermultiplets which are in

3 ˝ 2 ˝ 1; 1 ˝ 2 ˝ 3 (9.5.11)

and one full hypermultiplet charged under SU.2/m. Note that the trivalent-graph
construction does not allow us to consider theories with non-zero mass term for this
last full hypermultiplet. The lower theory is an SU.2/1�SU.2/2�SU.2/3 theory with
two half-hypermultiplets in the trifundamental representation. Again, the trivalent-
graph construction does not allow us to introduce non-zero mass term for this full
hypermultiplet in the trifundamental.

The Seiberg–Witten solution is again easily obtained. To obtain the ultraviolet
curve, we replace two trivalent vertices with three-punctured spheres, and connect
pairs of punctures with tubes. We see that both are given by a smooth genus-2
surface. The Seiberg–Witten curve is a further double cover given by

�2 � �.z/ D 0 (9.5.12)

where z is a complex coordinate of the genus-2 surface, and �.z/ is a smooth
quadratic differential on it. The space of quadratic differentials on a fixed genus-2
surface is complex three dimensional, which we identify with the Coulomb branch
vevs ui D htrˆ2i i=2.

Now it is clear that we can continuously deform the upper theory to the lower
theory by tuning the gauge couplings. The non-perturbative space of couplings can
be identified with the moduli space M2 of genus-2 Riemann surfaces, which is
complex three dimensional. The duality group is identified with the mapping class
group G2 of the genus-2 surface, and M2 D T2=G2 where T2 is the Teichmüller
space of the genus-2 Riemann surface, compare the genus-1 case (9.5.6).

Now a somewhat surprising mathematical fact is that T2 is equivalent to three
copies of the upper half plane H

3 in the smooth sense, but not in the holomorphic
sense1:

T2 ' H
3 in the smooth sense;

T2 6' H
3 in the holomorphic sense:

(9.5.13)

Naive perturbative analysis tells us that the space of the couplings of SU.2/3 is just
three copies of the upper half plane:

.�1; �2; �3/ 2 H
3 (9.5.14)

1The author thanks Jacques Distler for very illuminating discussions on this point.
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including the complex structure. Therefore, we find that the non-perturbative
corrections can make a rather drastic change in the complex structure of the
parameter space of supersymmetric theories.

9.5.5 The Curve and the Hitchin Field

We learned that writing the Seiberg–Witten curve in the form

† W �2 � �.z/ D 0 (9.5.15)

is very useful for the understanding of the system. This way of presenting the
curve is closely related to the so-called Hitchin system on the ultraviolet curve C .
Explaining this technique would make another lecture note. A starting point for the
reader is e.g. Sect. 3 of [3].

Let us at least present a very crude aspect of it. We consider a meromorphic one-
form '.z/ which is a traceless 2 � 2 matrix. Then, we can form an equation of the
form

det.� � '.z// D 0 (9.5.16)

for a one-form �. Identifying (9.5.15) and (9.5.16), we find

1

2
tr '.z/2 D �.z/: (9.5.17)

This matrix field '.z/ is called the Hitchin field.2 It is possible to understand the
existence of such a complex adjoint field on the ultraviolet curve using string duality,
but explaining it is outside the aim of this lecture note.

The condition on the field �.z/ at a puncture at zX D 0 associated to a mass term
�X was given in (9.5.9):

�.z/ D �2X
dz2X
z2X

C (less singular terms): (9.5.18)

This translates to the condition for the Hitchin field '.z/ given by

'.z/ �
�
�X 0

0 ��X
�

dzX
zX

C (less singular terms): (9.5.19)

2Hitchin himself called '.z/ the Higgs field, but the author thinks this terminology is rather
confusing in the ND2 supersymmetric context, as '.z/ controls the physics of the Coulomb
branch, not of the Higgs branch.
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Here, the symbol A � B means that A and B are conjugate, in the sense that there
is an invertibleN �N complex matrix g such that A D gBg�1.

Now, let us consider what happens when we turn off �X to zero. In the
description (9.5.18), we find that the boundary condition becomes

�.z/ D c
dz2X
zX

C (less singular terms) (9.5.20)

for some constant c. In the description (9.5.19), it is not that the residue just becomes
a zero matrix. We note that

�
�X 0

0 ��X
�

�
�
�X 1

0 ��X
�

(9.5.21)

as long as �X ¤ 0, and we can take the limit �X ! 0 on the right hand side. This
means that the massless limit results in the boundary condition of the form

'.z/ �
�
0 1

0 0

�
dzX
zX

C (less singular terms): (9.5.22)

Using (9.5.17), one finds that this reproduces the condition (9.5.20).
At this stage, one might not find the advantage of using '.z/ instead of �.z/ very

much. It turns out, however, that when we discuss a generalization to SU.N / gauge
theories or gauge theories with more complicated gauge groups, it turns out to be
crucial.

9.6 Theories with Less Flavors Revisited

We found that writing the Seiberg–Witten curve of the Nf D 4 theory in the form

�2 � �.z/ D 0 (9.6.1)

helps greatly in understanding the structure of the duality. Let us apply this idea to
the curves for theories with less number of flavors, Nf < 4.

9.6.1 Rewriting of the Curves

First, consider the curve of the pure theory,

ƒ2

z
Cƒ2z D x2 � u; with � D x

dz

z
: (9.6.2)
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Fig. 9.17 SU.2/ theories with less flavors

In terms of �, this can be written as

�2 � �.z/ D 0; �.z/ D .
ƒ2

z
C u Cƒ2z/

dz2

z2
: (9.6.3)

We see that the quadratic differential �.z/ has singularities worse than those in the
Nf D 4 theory: they now have order three poles at z D 0 and D 1. We can
depict the situation of the curve as in the upper row of Fig. 9.17. There, the roman
numeral III shows that �.z/ has a third order pole at the puncture. The singularities
of �.z/ with higher poles form a new class of punctures, which we call wild SU.2/
punctures.

As an extension of the trivalent diagram encoding the UV Lagrangian, let us
introduce the notation that an edge stands for an ND2 SU.2/ vector multiplet, and
the black square at one end means that we do not introduce any hypermultiplet. Then
the translation from the diagram representing the UV Lagrangian to the ultraviolet
curve can be simply seen, as also shown in Fig. 9.17. Second, consider the curve of
the Nf D 1 theory,

2ƒ. Qx � �/

z
Cƒ2z D Qx2 � u; with Q� D Qx dz

z
: (9.6.4)

This can be written as

�2 � �.z/ D 0; �.z/ D .
ƒ2

z2
� 2ƒ�

z
C u Cƒ2z/

dz2

z2
(9.6.5)

where � D xdz=z is shifted from Q�. We find that the singularity at z D 0 changes to
a pole of order 4. The Lagrangian and its Seiberg–Witten solution can be concisely
summarized as in the lower row of Fig. 9.17. The edge stands for an SU.2/ gauge
group. A black square on one side means that we do not have any hypermultiplet
there. A pale blob on another side means that we introduce one hypermultiplet in the
doublet. The solution is obtained by associating to a black square by a sphere with a
third order pole, denoted by III, and by similarly associating to a pale blob a sphere
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with a fourth order pole, denoted by IV, and finally connecting them by a tube. Note
that a fourth order pole has its own SU.2/ flavor symmetry and an associated mass
parameter.

Summarizing, we consider a sphere with a regular puncture and a wild puncture
of pole order III as an empty theory, and a sphere with a regular puncture and a
wild puncture of pole order IV as a theory of decoupled doublet hypermultiplet,
as shown in Fig. 9.17. Connecting the regular punctures with a tube, we find the
ultraviolet curves of less flavors.

9.6.2 Generalization

This generalization allows us to find the Seiberg–Witten solutions to a huge class of
ND2 theories whose gauge group is a product of copies of SU.2/. For example,
consider a UV Lagrangian theory with gauge group SU.2/4 described by the
left hand side of Fig. 9.18. In words, we first take three copies of bifundamental
hypermultiplets,

Qaiu; Q0
us˛; Q00̨

xm: (9.6.6)

We showed in the figure how the indices are assigned to the edges of the trivalent
diagram. We emphasized the edges corresponding to the dynamical gauge groups by
making them thicker. In words, the indices a; i;m are for SU.2/A;B;C flavor symme-
tries. An SU.2/ gauge multiplet couples to the index u, with exponentiated coupling
constant q, another SU.2/ gauge multiplet to the index ˛, with exponentiated
coupling constant q0. We introduce another SU.2/1 gauge multiplet which couples
to the index s corresponding to the black square, and finally another SU.2/2 gauge
multiplet which couples to the index x, with additional Nf D 1 hypermultiplet
.Q0000

x; QQ0000x/. We can write down the Lagrangian if required, but now we see how
concise the trivalent diagram summarizes its structure.

Its Seiberg–Witten solution can be immediately obtained. It is given by

�2 � �.z/ D 0; (9.6.7)

Fig. 9.18 An SU.2/4 theory and its curve
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where �.z/ has three order two poles, one order three pole and finally an order four
pole. Putting them at z D 0; 1; z0, z1 and at 1 respectively, we see that �.z/ has
the form

�.z/ D P.z/

z2.z � 1/2.z � z0/2.z � z1/3
dz2 (9.6.8)

where P.z/ is a polynomial. To have an order four pole at w D 1=z D 0, P.z/
is seen to be a degree-9 polynomial. Among the ten coefficients, three are mass
parameters for SU.2/A;B;C flavor symmetry, one is the scale of SU.2/1 for the black
blob, another is the scale of SU.2/2, and another for the mass parameter of the
additional Nf D 1 flavor for SU.2/2. The four remaining linear combinations can
be identified with the four Coulomb branch parameters ui D htrˆ2i =2i. This is not
a conformal theory: there are two dynamical scalesƒ andƒ0. Still, we immediately
see from the structure of the ultraviolet curve that there are S-dualities exchanging
the three regular punctures at A, B and C .

References

1. P.C. Argyres, A. Buchel, New S-dualities in N D 2 supersymmetric SU.2/ � SU.2/ Gauge
theory. J. High Energy Phys. 11, 014 (1999). arXiv:hep-th/9910125

2. D. Gaiotto, N D 2 dualities. J. High Energy Phys. 1208, 034 (2012). arXiv:0904.2715
[hep-th]

3. D. Gaiotto, G.W. Moore, A. Neitzke, Wall-crossing, Hitchin systems, and the WKB approxima-
tion. Adv. Math. 234, 239–403 (2013). arXiv:0907.3987 [hep-th]

4. N. Seiberg, E. Witten, Monopoles, duality and chiral symmetry breaking in N D 2 supersym-
metric QCD. Nucl. Phys. B431, 484–550 (1994). arXiv:hep-th/9408099

5. J. Song, 4d/2d correspondence: instantons and W-algebras. Ph.D. thesis (2012). http://thesis.
library.caltech.edu/7103/

http://arxiv.org/abs/hep-th/9910125
http://arxiv.org/abs/0904.2715
http://arxiv.org/abs/0907.3987
http://arxiv.org/abs/hep-th/9408099
http://thesis.library.caltech.edu/7103/
http://thesis.library.caltech.edu/7103/


Chapter 10
Argyres–Douglas CFTs

In this chapter, we come back to the observation made at the end of Sect. 5.2 that
there is a very singular point of the Coulomb branch of the Nf D 1 theory. We
study the physics at that point and its generalizations.

10.1 Nf D 1 Theory and the Simplest Argyres–Douglas CFT

Let us come back to the curve of SU.2/ gauge theory with Nf D 1 flavor again:

† W 2ƒ.x � �/

z
Cƒ2z D x2 � u: (10.1.1)

With a generic choice of ƒ and �, there are three singularities on the u-plane. As
we saw at the end of Sect. 5.2, two singularities collide at u D 3ƒ2 when we set
� D � 3

2
ƒ, see Fig. 10.1. When u � 3ƒ2, three branch points of x.z/ collide at

z D �1. Then, both the A-cycle and the B-cycle defining a and aD can be taken
to be small loops around z D 0. This guarantees that both a and aD are small.
Therefore we simultaneously have very light electric and magnetic particles. Such
a point on the Coulomb branch is called the Argyres–Douglas point. This was first
identified in the case of pure SU.3/ theory in [1], and extended to SU.2/ theories
with flavors in [2].

The monodromyMAD1 around u D 3ƒ2 can be found in various ways. One is to
multiply the monodromies of the two colliding singularities of the Nf D 1 theory.
Another is to follow how the three branch points move. Setting u D 3ƒ2 C ıu, we
find that the three branch points are at zC1 / ıu1=3. This determines how the cycles
are mapped, resulting in the monodromy. In either method, we find

MAD1 �
�
1 1

�1 0
�
: (10.1.2)
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Fig. 10.1 Argyres–Douglas point of Nf D 1 theory

The transformation on the low energy coupling by MAD1 is

� 7! � 0 D 1

1 � �
: (10.1.3)

Note that � D e
i=3 is a fixed point of this transformation; by an explicit
computation, we can check that � � e
i=3 / ıu1=3. We find that the coupling is
pinned at this strongly-coupled value.

The low energy limit is believed to be conformal. To isolate the physics in this
limit, let us take

z D �1C Qız; x D �ƒCƒıx; u D 3ƒ2 Cƒ2 Qıu; � D �3
2
ƒCƒ Qı�:

(10.1.4)

and assume all variables prefixed with ı to be very small. It turns out that it is more
useful to introduce further redefinitions

Qız D ız � .ız/2; Qıu D ıu � 2ı�� 2ıx C .ız/2; Qı� D ı�C ıx: (10.1.5)

Let us now plug the relation (10.1.5) into the Nf D 1 curve (10.1.1). Expanding
it to the third order in ız, we find the curve of the form

.ıx/2 � ıu D �.ız/3 C 2ı�ız: (10.1.6)

The differential is

� D x
dz

z
� ıxdız: (10.1.7)

As the integral
R
� gives the mass of BPS particles, � itself should have the scaling

dimension 1. The relation (10.1.6) means that the scaling dimensions Œıx� and Œız�
should satisfy

Œıx� W Œız� D 3 W 2: (10.1.8)



10.1 Nf D 1 Theory and the Simplest Argyres–Douglas CFT 131

This fixes the scaling dimensions of all the variables involved:

Œıx� D 3

5
; Œıx� D 2

5
; Œıu� D 6

5
; Œı�� D 4

5
: (10.1.9)

Note that the mass dimension, or equivalently the scaling dimension at the ultravio-
let of the operator u D trˆ2=2 was 2. We find that the anomalous dimension is of
order one, reducing Œıu� significantly.

As we are taking the limit ıu ! 0, we are zooming into the neighborhood of
the u-plane around u D 3ƒ2. In the limit, we can think of the low energy theory
to be described by a theory with only a singularity at ıu D 0, as shown on the
left hand side of Fig. 10.2. We call the resulting theory the Argyres–Douglas CFT
ADNf D1.SU.2//.1

Let us revisit this limiting procedure from the 6d point of view. We first write the
originalNf D 1 curve in the form �2 � �.z/ D 0. Recall that �.z/ has one order-3
pole and one order-4 pole, as was studied in Sect. 9.6 and shown in Fig. 9.17. We
also have three branch points of �.z/ on generic points. Suppose that we tune the
parameters carefully so that two poles of �.z/ collide:

�.z/ � .
P3.z/

.z � �/3
C P4.z/

z4
/dz2 D P7.z/

.z � �/3z4 dz2 ! Q7.z/

z7
dz2 (10.1.10)

where Pd , Qd are generic polynomials of degree d at this stage. We end up
having just one singularity with an order-7 pole, as shown on the right hand side
of Fig. 10.2. To have no singularity at z D 1, we see that Q7.z/ should be in fact
of degree 3:

Fig. 10.2 Argyres–Douglas theory ADNf D1.SU.2//

1Unfortunately, there is no accepted universal naming system for Argyres–Douglas theories in the
literature. In this lecture note the author tries to provide one which might be more cumbersome
than the ones in the literature but more explicit in distinguishing various constructions.
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�2 D c C c0z C �z2 C uz3

z7
dz2: (10.1.11)

By the coordinate transformation z ! z=.az � b/, we can set c D 1 and c0 D 0. We
then have

�2 D 1C �z2 C uz3

z7
dz2: (10.1.12)

As the left hand side is of scaling dimension 2, we see that Œz� D �2=5, and we
conclude

Œ�� D 4

5
; Œu� D 6

5
(10.1.13)

which agree with what we found above. Note that the variable z is auxiliary, and
therefore there is no reason for its dimension to match.

In general for any conformal field theory, any dynamical scalar operatorO should
have scaling dimension larger than or equal to one:

ŒO� � 1; (10.1.14)

and the equality is only attained when O describes a free decoupled scalar
boson. Then the operator u with Œu� D 6=5 is a genuine operator in the theory
ADNf D1.SU.2//. The object � is regarded as a parameter conjugate to u in
the following sense. In an ND2 theory, we can consider a deformation of the
prepotential

Z
d4�F !

Z
d4�.F CmO/: (10.1.15)

Here, d4� is the chiral ND2 superspace integral we briefly mentioned at the end
of Sect. 2.4, O is an operator and m is a parameter multiplying it. In an ND2
superconformal theory, the combination mO therefore needs to have a scaling
dimension 2. Then we should have

Œm�C ŒO� D 2: (10.1.16)

We see that the pair � and u satisfies this condition, see (10.1.13). We therefore
regard � as the deformation parameter corresponding to the operator u.
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10.2 Argyres–Douglas CFT from the Nf D 2 Theory

Consider the curve of the Nf D 2 theory,

2ƒ.x � �/

z
C 2ƒ.x � �/z D x2 � u (10.2.1)

where we set the masses of the two flavors the same. We can also use the curve of
the alternative form

.x � �/2
z

C 4ƒ2z D x2 � u: (10.2.2)

Its moduli space for generic � was shown in Fig. 8.9.
When � D 0, two singularities without the Higgs branch attached collide.

Instead, let us tune the parameter � so that the singularity with the Higgs branch
collides with a singularity without, see Fig. 10.3. For definiteness let us use the first
form of the curve. Then this collision happens when � D 2ƒ, at u D 4ƒ2. The
four branch points then collide at z D 1. We find that the monodromy around the
resulting singularity is

MAD2 �
�
0 1

�1 0
�
; (10.2.3)

acting on the coupling as

� ! � 0 D �1
�
: (10.2.4)

The strong coupling value � D i is the fixed point of this transformation, and the
low-energy coupling approaches this value when we let u ! 4ƒ2.

Expanding the variables as before,

z D 1C ız; x D 2ƒC ıx; u D 4ƒ2 C ıu; � D 2ƒC ı�; (10.2.5)

Fig. 10.3 Argyres–Douglas point of Nf D 2 theory
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we find that the curve in the limit is

.ıx/2 C ıu D .ız/4 C ı�ız2 C��ız (10.2.6)

with the differential � � ıxdız. Here we reinstated a small difference�� D �1 �
�2 between the bare masses �1, �2 of two doublet hypermultiplets. Demanding �
to have scaling dimension 1, we see that

Œıx� D 2

3
; Œız� D 1

3
: (10.2.7)

Then we find

Œıu� D 4

3
; Œı�� D 2

3
; Œ��� D 1: (10.2.8)

We see again that Œıu� C Œı�� D 2, and therefore ı� is a deformation parameter
corresponding to the operator ıu. �� is a mass parameter for the non-Abelian
flavor symmetry SU.2/F . In general, in a conformal theory, a non-Abelian flavor
symmetry current J a should have scaling dimension 3. The ND2 supersymmetry
relates it to the mass term, which is given for a Lagrangian theory by the familiar
term Q QQ and has scaling dimension 2. Therefore, the non-Abelian mass parameter
of ND2 superconformal theory should always have scaling dimension 1. Our
computation of Œ��� is consistent with this general argument. We call this resulting
theory ADNf D2.SU.2//.

Let us study the limiting procedure of the Nf D 2 theory from the 6d point of
view. Before taking the limit, the curve in the first form (10.2.1) was �2 D �.z/
with two order-4 poles of �.z/. We collide them, and we end up with a singularity
of order 8. Just as in the analysis before, we conclude that the curve in the limit is
given by

�2 D 1C �z2 C��z3 C uz4

z8
dz2: (10.2.9)

We easily see that Œz� D �1=3. Then we find the same scaling dimensions as
in (10.2.8).

The curve in the second form (10.2.2), when written as �2 D �.z/, had two poles
of order 2, and another of order 3. At the two order-two poles, the residues of xdz=z
are ˙.�1 C �2/=2 and ˙.�1 � �2/=2, respectively. Let us collide an order-2 pole
with the residue ˙.�1 C �2/=2 and an order-3 pole to form a pole of order 5. We
end up having a �.z/ with one pole of order 5, say at z D 0, and another pole of
order 2, with the residue ˙.�1 � �2/=2, see Fig. 10.4. The curve in the limit can
also be easily found:

�2 D 1C ı�z C ıuz2 C .
�1��2
2
/2z3

z5
dz2 (10.2.10)
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Fig. 10.4 Argyres–Douglas theory ADNf D2.SU.2//

The last coefficient was fixed by the condition at z D 1. Demanding � to have
scaling dimension 1, we see that Œz� D �2=3, and

Œı�� D 2

3
; Œıu� D 4

3
: (10.2.11)

It is reassuring to find the same answer.

10.3 Argyres–Douglas CFT from the Nf D 3 Theory

The special limit of Nf D 3 theory can be found in exactly the same way. We start
from the curve (8.5.1)

.x � � �ƒ/2
z

C 2ƒ.x � � �ƒ/z D x2 � u (10.3.1)

with the same mass for three flavors. On the u-plane, we have one singularity with
the Higgs branch, and two singularities without. We tune � so that singularity with
the Higgs branch collides with another without, in a way that their monodromies do
not commute. See Fig. 10.5.

The monodromy around the resulting singularities is

MAD3 D
�
0 1

�1 �1
�

(10.3.2)

with the action on the coupling given by

� 7! � 0 D �� C 1

�� : (10.3.3)

The fixed point is at � D e
i=3.
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Fig. 10.5 Argyres–Douglas point of Nf D 3 theory

Fig. 10.6 Argyres–Douglas theory ADNf D3.SU.2//

In the 6d description, we had two poles of order two and one pole of order four.
We collide an order-2 pole and an order-4 pole, ending up with a pole of order six,
see Fig. 10.6. The curve is then

�2 D 1C ı�z C �0z C ıuz2 C .
�1��2
2
/2z3

z6
dz2 (10.3.4)

The differential � has scaling dimension 1. Then Œz� D �1=2, and we find

Œı�� D 1

2
; Œıu� D 3

2
; Œ�0� D 1; Œ��� D 1; (10.3.5)

where we defined �� D �1 � �2. Two parameters �0 and �� are of scaling
dimension 1, and we identify them with the mass parameters associated to the SU.3/
flavor symmetry. We also see Œı�� C Œıu� D 2 again. We call this resulting theory
ADNf D3.SU.2//.
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10.4 Summary of Rank-1 Theories

10.4.1 Argyres–Douglas CFTs from SU.2/ with Flavors

So far we studied the Argyres–Douglas CFTs which were obtained by special limits
of SU.2/ gauge theories with Nf D 1; 2; 3 flavors. The data of these and other
related CFTs are summarized in Table 10.1. The Argyres–Douglas CFTs are the first
three rows of the table. The fourth row is for the SU.2/ theory withNf D 4massless
flavors. The next two rows are for slightly different classes of theories. Namely,
if we consider SU.2/ theory with more than four flavors or U.1/ theory with
nonzero charged hypermultiplets, they are infrared free, see (8.1.5) and (8.3.13).
They appeared repeatedly as a local behavior close to a singularity on the u-plane.

In Table 10.1 we also tabulated the dimension of the Higgs branch. Let us
quickly recall how they are obtained. We know ADNf D1.SU.2// does not have
one, since its parent theory SU.2/ with Nf D 1 does not have one either. For
ADNf D2.SU.2//, we consider SU.2/ with Nf D 2 with a U.1/mass term. Then the

Table 10.1 Data of various rank-1 CFTs

Name Monodromy Flavor Œu� # dimH.Higgs/

ADNf D1.SU.2//

 
1 1

�1 0

!
6/5 2

ADNf D2.SU.2//

 
0 1

�1 0

!
SU.2/ 4/3 3 1

ADNf D3.SU.2//

 
0 1

�1 �1

!
SU.3/ 3/2 4 2

SU.2/ Nf D 4

 
�1 0

0 �1

!
SO.8/ 2 6 5

SU.2/ Nf > 4

 
�1 4�Nf

0 �1

!
SO.2Nf / Nf C 2 2Nf � 3

U.1/ with N flavors

 
1 N

0 1

!
SU.N / N N-1

MN.E6/

 
�1 �1
1 0

!
E6 3 8 11

MN.E7/

 
0 �1
1 0

!
E7 4 9 17

MN.E8/

 
0 �1
1 1

!
E8 6 10 29

# is the number of singularities colliding at u D 0, and dimH Higgs is the quaternionic dimension
of the Higgs branch, i.e. the real dimension =4
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Higgs branch is C
2=Z2, whose quaternionic dimension is 1. For ADNf D3.SU.2//,

we consider SU.2/ with Nf D 3. With a U.1/ mass term, its Higgs branch can
be found by studying a point u D �21 D �22 D �23 in a weakly-coupled theory.
The physics there is just U.1/ with three charged hypermultiplets, with the Higgs
branch of quaternionic dimension 2. For free SU.2/ theory withNf � 4 flavors, the
quaternionic dimension is just 2Nf �dim SU.2/, and similarly for U.1/ theory with
N flavors it is given just by N � dim U.1/. One funny feature is that we see

dimH.Higgs branch/ D h_.flavor symmetry/� 1 (10.4.1)

for the first six rows, where h_.G/ is the dual Coxeter number, which is also a
contribution to the one-loop running C.adj/ from the adjoint representation of G.
These theories have just one Coulomb branch modulus, and the low-energy theory
on a generic point on the Coulomb branch is just a free U.1/ theory. Such theories
are called rank-1.

10.4.2 Exceptional Theories of Minahan–Nemeschansky

We have not discussed the theories listed in the remaining three rows. One way to
motivate them is to refer to a classical mathematical result of Kodaira. At a given
point on the u-plane, we have the ultraviolet curve C and the Seiberg–Witten curve
†. The curve† is a torus, whose shape is parameterized by its complex structure � ,
which depend holomophically on u. Therefore we have a fibration of torus over the
complex plane with the coordinate u. The u-plane together with the fiber † forms a
complex two-dimensional space X .

Kodaira classified the possible types of singularities of such fibrations, and the
first six rows of Table 10.1 is an exact copy of part of that classification. The
terminologies are of course different, since he was a mathematician and we are
studying ND2 gauge theories. Kodaira’s classification had three more rows in
addition to the first six rows, which motivated people that there should be three
additional theories corresponding to them. The Seiberg–Witten curves for these
were constructed first by Minahan and Nemeschansky in [3, 4].

In the mathematical language, a singularity in the torus fibration creates a
singularity in the total space X of complex dimension two. It is locally of the
form C

2=� where � is a finite subgroup of SU.2/. They have a natural ADE
classification, and we can associate a Lie groupG� , see Table 10.2.

Mathematicians associate this group G� purely mathematically to a torus
fibration, and we see that they are exactly the flavor symmetries of the gauge
theories, at least to the first six. Mathematicians have associated exceptional groups
E6;7;8 to the last three cases. It was thus quite tempting that the putative theories
which correspond to the last three rows have these exceptional groups as the
flavor symmetries. From the feature (10.4.1) relating the flavor symmetry and the
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Table 10.2 Finite subgroups � of SU.2/ and simply-laced Lie groupsG� . Here, Dn is the dihedral
group acting on the regular n-gon, T , O, I, are the tetra-, octa-, and icosahedral groups, and the hat
above them are the lift from SO.3/ to SU.2/. The resulting group OT is called the binary tetrahedral
group, for example

� Zn ODn�2 OT OO OI
G� SU.n/ SO.2n/ E6 E7 E8

dimension of the Higgs branch, it is also tempting to guess the dimension of the
Higgs branch of these theories. We call these CFTs MN.E6/, MN.E7/ and MN.E8/,
respectively.

Note that it is rather hard to have an exceptional flavor symmetry in a classical
Lagrangian ND2 theory. We already know a general form of the Lagrangian: the
superpotential as an ND1 theory is forced to be

X
i

Z
Qiˆ QQi; (10.4.2)

and it is possible to check explicitly that the flavor symmetry visible in the ultraviolet
is a product of SU, SO and Sp groups [5]. Therefore, if the exceptional symmetries
are to appear, they need to arise via strong-coupling effects. Once the reader comes
to Sect. 12.4 of this note, s/he will find exactly how this happens in the field theory
setting.

Another way to construct the theories listed in the table uniformly is to use Type
IIB string theory and its non-perturbative version F-theory. This approach originates
in [6] for SU.2/ with four flavors. For the general case, see e.g. [7]. The Seiberg–
Witten curves of these rank-1 theories can be constructed most uniformly in this
approach, see e.g. [8].

The type IIB string theory is ten-dimensional, and it has objects called 7-branes
and 3-branes, where a p-brane extends along p spatial direction and one time
direction. Let us say the spacetime is of the form

R
1;3 � R

2 � R
4: (10.4.3)

Put a 7-brane in the subspace

R
1;3 � f0g � R

4 (10.4.4)

and a D3-brane in the subspace

R
1;3 � fug � f0g: (10.4.5)



140 10 Argyres–Douglas CFTs

There are various types of 7-branes in F-theory, corresponding to Kodaira’s
classification. They can all be obtained by taking a number of the simplest of the 7-
branes, called .p; q/ 7-branes, separated along the R2 direction and collapsing them
at one point. Then the low-energy theory on the D3-brane gives the corresponding
ND2 theories.

Due to its tension, one .p; q/ 7-brane creates deficit angles 
=6. With n .p; q/
7-branes collapsed to a point, the remaining angle is 1 � n=12 of 2
 . From this the
scaling dimension of u can be computed to be

u D 12

12 � n ; (10.4.6)

which explains an interesting pattern in Table 10.1. These 7-branes obtained by
collapsing a number of .p; q/ 7-branes has a gauge symmetry F living on its eight-
dimensional worldvolume. From the point of view, this gauge symmetry F on the
7-brane becomes a flavor symmetry. The D3-brane can be absorbed into this 7-
brane as an instanton in the internal R4 direction of (10.4.4). Then, the Higgs branch
should be given by the one instanton moduli space of the group F . The k-instanton
moduli space of a group F has quaternionic dimension kh_.F /� 1, explaining the
relation (10.4.1).

10.4.3 Newer Rank-1 Theories

So far we saw that the structure of rank-1 theories closely follows that of the Kodaira
classification, listed in Table 10.1. Before going further, it should be mentioned that
there are even more rank-1 theories, first found through the analysis of S-dualities of
various gauge theories in [9]. Their properties are reviewed from the point of view
of the 6d construction in Sect. 7 of [10].

10.5 More General Argyres–Douglas CFTs: XN and YN

Let us switch gears and consider other Argyres–Douglas CFTs obtained from more
complicated gauge theories with gauge group of the form SU.2/n. As an example,
consider a rather complicated theory with gauge group SU.2/4 studied at the end
of Sect. 9.6. By performing the same limiting procedure we did in the SU.2/ theory
with Nf D 1; 2; 3, we can consider the theory described by �2 � �.z/ D 0 where
�.z/ can have poles of very high order. The examples shown in Fig. 10.7 have either
just one pole of order 13 or one order-9 pole and an order-11 pole. They describe
complicated 4d ND2 supersymmetric conformal field theories.

Let us introduce names to these theories. The XN theory is the superconformal
field theory corresponding to a sphere with one regular puncture and a puncture with
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Fig. 10.7 A higher Argyres–Douglas theory

Fig. 10.8 The theory XN and the theory YN

an order-N pole, and the YN theory is the superconformal field theory corresponding
to a sphere with just a puncture with an order-N pole, see Fig. 10.8. As can be seen
from Figs. 10.2, 10.4 and 10.6, we know

Y7 D ADNf D1.SU.2//; Y8 D ADNf D2.SU.2// D X5; ADNf D3.SU.2// D X6:

(10.5.1)

Also, recall the construction of the SU.2/ theory with one flavor given in
Fig. 9.17. There, a sphere with a regular puncture and a puncture of pole order 3
served as an empty boundary condition, and a sphere with a regular puncture and a
puncture of pole order 4 behaves as a free hypermultiplet in the doublet of SU.2/.
Equivalently, we see

X3 D an empty theory; X4 D free hypermultiplet in the doublet of SU.2/:
(10.5.2)

We depicted them in the first row of Fig. 10.9.
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Fig. 10.9 Ordinary and wild gauge theories

More generally, we can have a two-punctured sphere with poles of arbitrary order
N and N 0. One example with N D 6 and N 0 D 5 is shown in the second row of
Fig. 10.9. It can be understood as an SU.2/ gauge theory with somewhat unusual
matter contents, described by two strongly-interacting CFTsXN andXN 0 . Note that
an order-2 pole always carries an SU.2/ flavor symmetry, and therefore the XN
theory always has an SU.2/ flavor symmetry. The SU.2/ gauge symmetry coming
from the tube couples these two theories. This type of gauge theory with XN as part
of its matter contents is often called a wild gauge theory.

It is straightforward to find the running of the coupling of this theory. Assume a
is very big, as always. The branch points of �2 D �.z/ is around where

ƒ2

zN
dz2 � udz2

z2
or ƒ2zN

0

dz2 � udz2

z2
: (10.5.3)

Then they are around

z� �
�
ƒ

a

�2=.N�2/
; zC �

� a
ƒ

	2=.N 0�2/
: (10.5.4)

We find

aD � 2

2
i

Z z
�

z
C

x
dz

z
� � 2

2
i
.

2

N � 2 C 2

N 0 � 2
/a log

a

ƒ
: (10.5.5)

This means that the one-loop running is given by

ƒ
d

dƒ
� D 2

2
i
.bN C bN 0 � 4/ (10.5.6)
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Fig. 10.10 The running of the coupling measures the two-point correlator of the currents

where

bN D 2 � 2

N � 2
: (10.5.7)

The contribution to the one-loop running from one doublet hypermultiplet is
given by b D 1. Then this bN can be roughly thought of as an effective number
of doublet hypermultiplets, carried by the theory XN . More precisely, bN measures
the coefficient of the correlator of the symmetry current j� of the SU.2/ flavor
symmetry, see Fig. 10.10. As shown there, for SU.2/ with flavors, the running of
the gauge coupling is caused by the loop of gauge multiplets (shown as wavy lines)
or of hypermultiplets (shown as straight lines) coupled to the gauge fields via the
SU.2/ current operator j�. Then the contribution to the one-loop running measures
hj�j�i. The fact that the XN theory contributes bN times a free flavor does means
that

hj�j�iXN D bN hj�j�ifree hyper in a doublet of SU.2/: (10.5.8)

Recall that X3 is just empty and X4 is one free hypermultiplet in the doublet of
flavor SU.2/. Our general formula correctly reproduces b3 D 0 and b4 D 1.

In the next chapter we will see that a singular limit of the pure SU.N / gauge
theories becomes the theory YNC4, whereas a singular limit of the pure SO.2N /
gauge theories becomes the theory XNC2. We will also see that SU.N / gauge
theories with two flavors have a singular limit given by XNC3.
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Let us denote the Argyres–Douglas CFTs obtained from the pureG gauge theory
as ADNf D0.G/, and the Argyres–Douglas CFTs obtained from the SU.N / with two
flavors as ADNf D2.SU.N //. Then we can succinctly express these equivalences as

ADNf D0.SU.N // D YNC4;
ADNf D0.SO.2N // D XNC2;
ADNf D2.SU.N // D XNC3:

(10.5.9)

We have already seen in (10.5.1) that ADNf D2.SU.2//, the Argyres–Douglas
theories arising from SU.2/ with Nf D 2 flavors, is equivalent to both X5 and Y8.
This coincidence is a manifestation of the equivalence SU.4/ ' SO.6/ from the
point of view of (10.5.9). Also, consider the pure SO.4/ theory, which is two copies
of the pure SU.2/ theory. Its most singular point is where both copies are at the
monopole point, thus realizing two free hypermultiplets. Indeed, this has an SU.2/
flavor symmetry, and is a doublet under it, realizing the fact

ADNf D0.SO.4// D X4 D a free hypermultiplet in the doublet of SU.2/:
(10.5.10)

These equations are rather interesting to the author, in the sense that they are
equalities among the quantum field theories, not among the physical quantities in
a single quantum field theory.
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Chapter 11
Theories with Other Simple Gauge Groups

We have spent so many pages to study ND2 gauge theories with gauge group
SU.2/. In this chapter we move on to the analysis of larger gauge groups. We will
first study SU.N / gauge theories in some detail, and then go on to the case SO.2N /.
We also analyze the Argyres–Douglas CFTs obtained from these gauge theories,
and show that they are given by the theories XN and YN introduced in Sect. 10.5.
We close the chapter by briefly mentioning the Seiberg–Witten solutions to theories
with other gauge groups in Sect. 11.6.

The curves that will be presented in this chapter might not be in the form most
commonly found in the older literature. The relation between them would also be
explained in Sect. 11.6.

11.1 Semiclassical Analysis

Let us consider SU.N / gauge theory with Nf hypermultiplets in the fundamental
N -dimensional representation. The ND2 vector multiplet consists of the ND1
adjoint chiral multipletˆ and the ND1 vector multipletW˛ , bothN �N matrices.
The hypermultiplets, in terms of ND1 chiral multiplets, can be written as

Qa
i ;

QQi
a; a D 1; : : : ; N I i D 1; : : : ; Nf : (11.1.1)

One branch of the supersymmetric vacuum is given by the condition

Œˆ;ˆ�� D 0: (11.1.2)

This means that ˆ can be diagonalized. We denote it by

ˆ D diag.a1; : : : ; aN /;
X

ai D 0: (11.1.3)
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Let us consider a generic situation when ai ¤ aj for all i ¤ j . Then the gauge
group is broken from SU.N / to U.1/N�1. The W-boson mass is given by

MW D jai � aj j (11.1.4)

for the W-boson coming from the entry .i; j / of the N � N matrix. As for
the monopole, it is known that the ’t Hooft-Polyakov monopole solution for the
breaking from SU.2/ to U.1/ can be directly regarded as a solution for the breaking
from SU.N / to U.1/, by choosing 2 � 2 submatrices of N � N matrices, given by
picking the entries at the positions .i; i/, .i; j /, .j; i/ and .j; j / for i ¤ j . The
masses are then

Mmonopole D j�UV.ai � aj /j: (11.1.5)

The one-loop running is

E
d

dE
� D 1

2

.2N �Nf /: (11.1.6)

Then the theory is asymptotically free when 0 	 Nf < 2N . The dynamical scale is
then

ƒ2N�Nf WD ƒ
2N�Nf
UV e2
i�UV : (11.1.7)

When Nf D 2N , the theory is asymptotically conformal, and �UV is a dimension-
less parameter in the quantum theory.

When there are flavors, the ND1 superpotential in this vacua is

X
i

.Qiˆ QQi � �iQi
QQi/ D

X
i

.Q1
i ;Q

2
i ; : : : ;Q

N
i /

0
BBB@

a1 � �i
a2 � �i

: : :

aN � �i

1
CCCA

0
BBB@

QQi
1QQi
2
:::
QQi
N

1
CCCA : (11.1.8)

Then we have one massless charged hypermultiplet component whenever we have
ai � �s D 0 for some i and s.

In the strongly-coupled quantum theory, the definition of ai as the diagonal
entries of the gauge-dependent quantity ˆ does not make much sense. Instead, as
we did in the case of SU.2/ gauge theory, we define ai as the complex numbers
entering in the BPS mass formula:

M � jniai Cmia
i
D C

X
s

fs�s j (11.1.9)
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where .ni ;mi / are the electric and the magnetic charges under U.1/N�1 infrared
gauge group, and fs are the flavor charges. We can also consider gauge-invariant
combinations of ˆ defined as

xN C u2x
N�2 C � � � C uN�1x C uN WD hdet.x �ˆ/i (11.1.10)

where x is a dummy variable. For N D 2, we had ˆ � diag.a;�a/ and therefore
u2 D �a2 up to quantum corrections. Similarly, for general N , uk is the degree
k elementary symmetric polynomials of the variables a1, . . . , aN up to quantum
corrections. Our task then is to determine the mapping between .u2; : : : ; uN / and
.a1; : : : ; aN / including the quantum corrections.

11.2 Pure SU.N/ Theory

11.2.1 The Curve

Without further ado, let us introduce the Seiberg–Witten curves. First, the Seiberg–
Witten curve for the pure SU.N / theory is given by

† W ƒN

z
CƒN z D xN C u2x

N�2 C � � � C uN (11.2.1)

with the differential � D xdz=z as always. The ultraviolet curve C is just a sphere
with the complex coordinate z. At each point on the ultraviolet curve z, we have N
solutions to the equation above. Therefore,† is an N -sheeted cover of C .

Let us check that this curve reproduces the semiclassical behavior. We introduce
variables ai via

xN C u2x
N�2 C � � � C uN D

Y
i

.x � ai /: (11.2.2)

We declare the A-cycle on the ultraviolet curve to be the unit circle jzj D 1. As
the Seiberg–Witten curve is anN -sheeted cover, we can lift this curve to each sheet,
which we call the cycle Ai . Assume we are in the regime jai j � E independent of
i , and E � ƒ. Then, we can approximately solve (11.2.1) by

xi D ai CO.ƒ/: (11.2.3)

It is more convenient to regard � D xdz=z itself to be the coordinate of the sheets.
Then we have

�i D ai
dz

z
CO.ƒ/: (11.2.4)
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Fig. 11.1 W-boson of the SU.N / theory

The situation is shown in Fig. 11.1. The integral of � on the cycle Ai is easy to
evaluate:

ai WD 1

2
i

I
Ai

� D ai CO.ƒ/: (11.2.5)

Now we can suspend a ring-shaped membrane suspended between the i -th sheet
and the j -th sheet. The mass of this object is

j 1

2
i

I
Ai

� � 1

2
i

I
Aj

�j D j 1

2
i

I
A

.�i � �j /j D jai � aj j: (11.2.6)

This reproduces the mass of the W-boson.
To see the monopoles, we need to understand the structure of the branching

of the N -sheeted cover † ! C . It is convenient to regard the combination y D
ƒN.z C 1=z/ as one coordinate. Then, Eq. (11.2.1) can be thought of determining
the intersections of the graph of the polynomial

y D P.x/ D xN C u2x
N�2 C � � � C uN (11.2.7)

and a horizontal line

y D ƒN .z C 1

z
/ (11.2.8)

as shown in Fig. 11.2. Of course the figure needs to be complexified, but the reader
should be able to get the idea.

As is apparent, two out of N sheets meet at .N � 1/ values of y D ƒ.z C 1=z/,
each of which becomes a pair zi̇ of branch points on the z-sphere with zC

i z�
i D 1.

Note that the i -th sheet and the .i C 1/-st sheet meet at this pair of branch points.
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Fig. 11.2 There are .N � 1/

pairs of branch points in
SU.N / pure theory

Fig. 11.3 Monopoles of
SU.N / pure theory

Then we can suspend a disk-shaped membrane between this pair of branch points,
as shown in Fig. 11.3.

In the semiclassical regime when jai j � jEj � jƒj, we have

jzC
i j � EN

ƒN
; jz�

i j � ƒN

EN
: (11.2.9)

We call the path connecting zC
i and z�

i as Bi . Then

Mmonopole D j 1

2
i

Z
Bi

.�i � �iC1/j (11.2.10)

� j.ai � aiC1/
1

2
i

Z EN =ƒN

ƒN =EN

dz

z
j (11.2.11)

� j.ai � aiC1/
2N

2
i
log

E

ƒ
j: (11.2.12)

This reproduces the mass of the monopole, by identifying

�.E/ D 2N

2
i
log

E

ƒ
: (11.2.13)

This correctly reproduces the one-loop running of the pure SU.N / theory.
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11.2.2 Infrared Gauge Coupling Matrix

Let us check that our curve satisfies the condition that the coupling matrices of
the low-energy U.1/N�1 theory is positive definite. For this purpose we need to
understand the geometry of the Seiberg–Witten curve† better. This is anN -sheeted
cover of C with 2N �2 branch points zi̇ of order 2 and 2 branch points z D 0;1 of
order N . The genus g of † is then determined by the Riemann-Hurwitz formula1:

	.†/ D N	.C / � .2N � 2/� 2.N � 1/ (11.2.14)

where 	.†/ D 2�2g and 	.C / D 2 are the Euler number of the respective surfaces.
We find g D N � 1. The basis of the 1-cycles consists of .2N � 2/ cycles Ai and
QBi , i D 1; : : : ; N � 1, where the intersections are given by

Ai � Aj D 0 D QBi � QBj ; Ai � QBj D ı
j
i : (11.2.15)

Here the dot product counts the number of intersections (including signs) of two
one-cycles. The resulting set of cycles is shown in Fig. 11.4.

Figures 11.3 and 11.4 are drawn in a rather different manner. The cycles fromA1
to AN�1 can be directly identified. We have

AN D �A1 � A2 � � � �AN�1 (11.2.16)

as far as the line integral of holomorphic forms are concerned. Correspondingly, the
variables ai as defined in (11.2.5) are not linearly independent, and we have

aN D �a1 � � � � � aN�1: (11.2.17)

Fig. 11.4 Cycles Ai and QBi on the Seiberg–Witten curve of the pure SU.N / theory

1This is not hard to derive. Let us say we triangulate the curve C with V vertices, E edges and
F triangles so that the branch points are all at the vertices. We have 	.C/ D V � E C F . We
can just lift the edges and triangles to †: we have NE edges and NF triangles. The vertices are
however less than NV . At each vertex pi let the degree of the branching be degpi . Then there are
NV�P.degpi�1/ vertices in the triangulation of†. We end up 	.S/ D N	.C/�Pi .degpi�1/.
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The combination Bi � BiC1 in Fig. 11.3 intersects with Ai positively and with
AiC1 negatively. Then, we see

Bi � BiC1 D QBi � QBiC1: (11.2.18)

Equivalently, QBi is a closed one-cycle completing the open path Bi in a way
independent of i . Then we define

aiD WD 1

2
i

I
QBi
� (11.2.19)

on the curve. Let us consider

� ij WD @aiD
@aj

D Xik
D .X

�1/jk (11.2.20)

where

Xk
i WD @ai

@uk
; X

jk
D WD @a

j
D

@uk
: (11.2.21)

Defining

!k D @

@uk
�
ˇ̌
ˇ
constant z

; (11.2.22)

we find

� ij D Xik
D .X

�1/jk where Xk
i D

I
Ai

!k; X
jk
D D

I
QBj
!k: (11.2.23)

It can be checked that !2;3;:::;N form a basis of holomorphic non-singular one-forms
on †. The matrix � ij formed this way is known mathematically as the period matrix
of †, and is known to satisfy

� ij D �j i ; Im � ij is positive definite: (11.2.24)

From the first condition, we see that there is locally a function F.ai / such that

aiD D @F

@ai
; � ij D @2F

@ai @aj
: (11.2.25)

This justifies that we identify ai , aiD defined this way with the ai appearing in the
low-energy description of U.1/N�1 gauge theory. The inverse gauge coupling matrix
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is given by Im � ij, whose positive definiteness is guaranteed by the mathematical
relation (11.2.24).

11.3 SU.N/ Theory with Fundamental Flavors

11.3.1 Nf D 1

Next, consider the SU.N / theory with one flavor .Q; QQ/ of bare mass �. The curve
is given by

† W ƒN�1.x � �/

z
CƒN z D xN C u2x

N�2 C � � � C uN : (11.3.1)

Recall that in the semiclassical analysis we saw that a light charged hypermultiplet
arises when ai � �. Let us check that the curve written above reproduces this
behavior.

First, we introduce ai as before, and consider the semiclassical regime when all
jai j is far larger than jƒj. The A-cycle on the ultraviolet curve was jzj D 1 as before.
Then we find ai � ai CO.ƒ/ just as was in the case of the pure theory.

To see additional singularities in the weakly-coupled region, define Qz D z=ƒN�1.
The curve is then

x � �

Qz Cƒ2N�1Qz D xN C u2x
N�2 C � � � C uN ; (11.3.2)

which can be approximated by

x � �

Qz D xN C u2x
N�2 C � � � C uN D

Y
.x � ai / (11.3.3)

in the extremely weakly coupled limit. The equation factorizes and the curve
separates into two when ai D �; otherwise the curve is a smooth degree-N covering
of the z sphere. This shows that when ai D �, a one-cycle on the Seiberg–
Witten curve shrinks, and the membrane suspended there produces a massless
hypermultiplet, see Fig. 5.9.

The one-loop running can also be checked. The branch points zC
i in the large z

region is unchanged, as the structure of theNf D 1 curve in the large z region itself
is unchanged from the pure curve. Then

zC
i � .E=ƒ/N : (11.3.4)



11.3 SU.N / Theory with Fundamental Flavors 153

In the small z region, the branch points are around whereƒN�1x=z and P.x/ are of
the same order. Assuming jxj � jai j � jEj, we see

z�
i � .ƒ=E/N�1: (11.3.5)

Then the monopole has the mass

Mmonopole D j 1

2
i

Z
Bi

�j (11.3.6)

� j.ai � aiC1/
1

2
i

Z EN =ƒN

ƒN�1=EN�1

dz

z
j (11.3.7)

� j.ai � aiC1/
2N � 1
2
i

log
E

ƒ
j: (11.3.8)

This gives

�.E/ D 2N � 1
2
i

log
E

ƒ
(11.3.9)

as it should be.

11.3.2 General Number of Flavors

More generally, we can consider the curve given by

† W ƒN�NL QNL
iD1.x � �i/

z
C zƒN�NR

NRY
iD1
.x � �0

i /

D xN C u2x
N�2 C � � � C uN�1x C uN (11.3.10)

whereNL;NR 	 N . WhenNL D NR D N , we need to introduce complex numbers
f , f 0 as in the curve of SU.2/ with four flavors, (9.1.5):

† W f �
QN
iD1.x � �i/

z
C f 0 � z

NY
iD1
.x � �0

i /

D xN C u2x
N�2 C � � � C uN�1x C uN : (11.3.11)

We also need to distinguish the mass parameters in the curve and the mass
parameters in the BPS mass formula, carefully studied in Sect. 9.2 for SU.2/ with
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four flavors. In the following we mainly discuss the case with less than 2N � 1

flavors.
Consider the case when �i and �0

i are all small. Further, consider the regime
where jai j � ƒ. As always we find ai D ai CO.ƒ/. The branch points are at

jzC
i j � EN�NR

ƒN�NR ; jz�
i j � ƒN�NL

EN�NL : (11.3.12)

Then we find

Mmonopole � j.ai � aiC1/
1

2
i

Z EN�NR =ƒN�NR

ƒN�NL=EN�NL

dz

z
j (11.3.13)

� j.ai � aiC1/
2N � .NL CNR/

2
i
log

E

ƒ
j; (11.3.14)

and therefore the one-loop running is

�.E/ D 2N � .NL CNR/

2
i
log

E

ƒ
: (11.3.15)

In the other regime when j�i j; jai j � ƒ, we can use the redefining trick to
find singularities on the Coulomb branch. For example, defining Qz D z=ƒN�NL , the
curve is

QNL
iD1.x � �i/

Qz CQzƒ2N�NR�NL
NRY
iD1
.x � �0

i / D xNCu2x
N�2C � � � CuN�1xCuN :

(11.3.16)

Then the limit ƒ ! 0 can be taken, which gives

QNL
iD1.x � �i/

Qz D
NY
iD1
.x � ai /: (11.3.17)

This means that whenever ai D �s for some i and s D 1; : : : ; NL, the curve
splits into two, because the equation can be factorized. The same can be done for
the variable w D 1=z. Then we also find singularities when ai D �0

s for some
i and s D 1; : : : ; NR. In total, these reproduce the semiclassical, weakly-coupled
physics of SU.N / theory with Nf D NR CNL hypermultiplets in the fundamental
representation. The situation is summarized in Fig. 11.5.

We have a sphere C described by the coordinate z. The curve† is an N -sheeted
cover of C . We have one M5-brane wrapping †. We call the 6d theory living on C
the ND.2; 0/ theory of type SU.N /. Roughly speaking, it arises fromN coincident
M5-branes.
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Fig. 11.5 SU.N / theory
with flavors

Consider Arg z as the sixth direction x6, and log jzj as the fifth direction x5.
Reducing along the x6 direction, we have a 5d theory on a segment. The 5d theory
is the maximally supersymmetric Yang-Mills theory with gauge group SU.N /. The
term

ƒN�NL QNL
iD1.x � �i/

z
(11.3.18)

in the curve can be thought of defining a certain boundary condition on the left
side of the fifth direction. We regard it as giving NL hypermultiplets in the SU.N /
fundamental representation there. Similarly, the term

zƒN�NR
NRY
iD1
.x � �0

i / (11.3.19)

is regarded as the boundary condition such that NR fundamental hypermultiplets
there. By further reducing the theory along the fifth direction, we have SU.N / gauge
theory with Nf D NL CNR fundamental hypermultiplets in total. We saw that the
effect of the boundary conditions becomes noticeable around when

log jzRj � .N �NR/ log
E

ƒ
< 0; log jzLj � .N �NL/ log

ƒ

E
> 0:

(11.3.20)

In the five dimensional Yang-Mills, we have monopole strings, which have ends
around jzRj and jzLj. From the four-dimensional point of view, log jzLj=jzRj then
controlled the mass of the monopoles, which then gave the one-loop running of the
theory.
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Note that from the four-dimensional point of view, the split of Nf into NR and
NL is rather arbitrary. In fact, by redefining z, we can easily come to the form of the
curve given by

ƒ2N�Nf QNf
i .x � �i /
z

C z D xN C u2x
N�2 C � � � uN (11.3.21)

where we defined �NLCi WD �0
i . In this form the symmetry exchanging allNf mass

parameters is manifest.
From the higher-dimensional perspective, it is however sometimes convenient

to stick to the situation where the equation of the Seiberg–Witten curve † is of
degree N regarded as a polynomial in x. This guarantees that † is always an N -
sheeted cover of the ultraviolet curve C . Numerically, this condition means that the
boundary condition such as (11.3.18) and (11.3.19) also has degrees less than or
equal to N . This imposes the constraint N � NL;R, and therefore 2N � Nf . This
is the condition that the theory is asymptotically free or asymptotically conformal.

11.4 SO.2N/ Theories

Now let us quickly discuss the SO.2N / gauge theories.

11.4.1 Semi-classical Analysis

The vector multiplet scalar ˆ is an 2N � 2N antisymmetric matrix. Let us denote
the hypermultiplets by .Qa

i ;
QQi
a/ where a D 1; : : : ; 2N and i D 1; : : : ; Nf . We

consider the branch of the supersymmetric vacuum given by

Œˆ;ˆ�� D 0: (11.4.1)

As ˆ is antisymmetric, the outcome of the diagonalization is

ˆ D diag.a1; : : : ; aN ;�a1; : : : ;�aN /: (11.4.2)

In general the gauge group is broken to U.1/N . The gauge invariant combination is
given by

x2N C u2x
2N�2 C u4x

2N�4 C � � � C u2N D det.x Cˆ/ (11.4.3)
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where x is a dummy variable. Note that the odd powers automatically vanish due to
the antisymmetry. In fact QuN defined by the condition

u2N D QuN 2; QuN D a1a2 : : : aN (11.4.4)

is also invariant under SO.2N / but not under O.2N /.
The W-bosons have masses

j ˙ ai ˙ aj j (11.4.5)

for i ¤ j . Similarly, the monopole has the mass

j�.˙ai ˙ aj /j: (11.4.6)

By expanding the superpotential

X
i

.Qiˆ QQi C �iQi
QQi/; (11.4.7)

classically we find that there is a massless hypermultiplet charged under one of U.1/
gauge fields when �s D ˙ai for some i and s.

The one-loop running is given by

ƒ
d

dƒ
� D � 1

2
i
.2.2N � 2/� 2Nf /: (11.4.8)

Therefore the theory is asymptotically free for Nf < 2N � 2, and is asymptotically
conformal when Nf D 2N � 2.

11.4.2 Pure SO.2N/ Theory

The Seiberg–Witten curve of the pure theory is given by

x2.
ƒ2N�2

z
Cƒ2N�2z/ D x2N C u2x

2N�2 C u4x
2N�4 C � � � C u2N (11.4.9)

with the differential � D xdz=z. This is a 2N -sheeted cover of the ultraviolet
curve C , which is just a sphere with the complex coordinate z. By solving the
equation, one finds 2N local solutions ˙xi .z/. Correspondingly, we define ˙�i D
˙xi .z/dz=z.
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Fig. 11.6 W-boson of the SO.2N / theory

Let us study the weakly-coupled regime. We introduce ai by

x2N C u2x
2N�2 C u4x

2N�4 C � � � C u2N D
NY
iD1
.x2 � ai 2/: (11.4.10)

The regime we are interested in is when jai j � jƒj.
We draw the A-cycle on the ultraviolet curve at jzj D 1, see Fig. 11.6. On the

A-cycle, Eq. (11.4.9) can be solved approximately to give

xi .z/ D ai CO.ƒ/: (11.4.11)

We lift the A-cycle on C to the sheets of †. We have N pairs of cycles ˙Ai . Then

ai D 1

2
i

I
Ai

� D 1

2
i

I
�i D ai CO.ƒ/: (11.4.12)

We can now suspend ring-like membranes between sheets. They clearly have masses

j˙ai ˙ aj j: (11.4.13)

We find that we need to impose the constraint that M2-brane cannot be suspended
between the i -th sheet and the .�i/-th sheet, to forbid the W-boson with mass
j˙2ai j. As for the monopoles, the branch points are at around

zC �
�
E

ƒ

�2N�2
; z� �

�
ƒ

E

�2N�2
: (11.4.14)

Then the monopole mass can be approximately computed as in the case of SU.N /
gauge theory: we find

� j.ai � aj / 1

2
i

Z zC

z�

dz

z
j D j.ai � aj /2.2N � 2/

2
i
log

E

ƒ
j: (11.4.15)
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From this we see that the running coupling is

�.E/ D 2.2N � 2/
2
i

log
E

ƒ
; (11.4.16)

correctly reproducing the one-loop analysis.
Let us study the low-energy coupling matrix � ij. The branch points are at z D

0;1 together with N pairs on generic places of the z-sphere. At z D 1, there are
N �2 solutions behaving as x � z1=.2N�2/ and two solutions behaving as x � z�1=2.
Therefore it counts as a branch point of degree 2N � 2 and another of degree 2. The
structure of the branching at z D 0 is the same. Next, consider one of N pairs of
branch points of these latter type. When the sheets i and j meet there, the sheets �i
and �j meet at the same time. Slightly moving them apart, we find that there are
4N branch points of degree 2 in total. Using the Riemann-Hurwitz theorem, we see

	.†/ D 2N	.C /� 2.2N � 3/� 2 � 4N: (11.4.17)

Therefore the genus of the Seiberg–Witten curve is g D 2N � 1. Therefore, the
independent 1-cycles on † can be labeled as QA1, . . . , QA2N�1 and QB1,. . . , QB2N�1
with the intersection

QAi � QAj D 0 D QBi � QBj ; QAi � QBj D ı
j
i : (11.4.18)

Note that the curve† has the symmetryZ2 acting by x ! �x. Under this symmetry,
the differential is odd: � ! ��. Correspondingly, only the 1-cycles L odd under
this Z2 action can have

H
L
� ¤ 0. The cyclesAi for i D 1; : : : ; N obtained by lifting

the A-cycle on the ultraviolet curve C to † are indeed odd. The period matrix � ij

computed as in (11.2.23) is an .2N �1/� .2N �1/matrix, which is symmetric and
whose imaginary part is positive definite. By restricting to the subspace odd under
Z2 action, we end up having N � N matrix, which is again symmetric and whose
imaginary part is positive definite.

11.4.3 SO.2N/ Theory with Flavors in the Vector
Representation

The curve of the SO.2N / theory with one hypermultiplet in the 2N -dimensional
representation is

x2.
ƒ2N�4.x2 � �2/

z
Cƒ2N�2z/ D x2N C u2x

2N�2 C u4x
2N�4 C � � � C u2N :

(11.4.19)
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Let us just see that there is a singularity in the Coulomb branch when ai D ˙� for
some i . As always, we assume jai j; j�j � jƒj , make the redefinition Qz D z=ƒ2N�4
and take the limit of the curve:

x2
.x2 � �2/

z
D x2N C u2x

2N�2 C u4x
2N�4 C � � � C u2N : (11.4.20)

This equation is factorized when ˙ai D � or ai D 0 for some i . The latter choice
does not fit the assumption that jai j � jƒj. Then we find the singularities when
˙ai � � in the weakly-coupled region.

In general, the curve of the SO.2N / withNf D NR CNL hypermultiplets in the
vector representation is given by

x2.
ƒ2.N�NR�1/QNR

iD1.x2 � �2i /

z
Cƒ2.N�NL�1/z

NLY
iD1
.x2 � �0

i
2//

D x2N C u2x
2N�2 C u4x

2N�4 C � � � C u2N : (11.4.21)

Strictly speaking, this is only for NL CNR < 2N � 2. When NL D NR D N � 1,
we need to put two complex numbers f and f 0 instead of the powers of ƒ, much
as in (11.3.11) for the case of the SU.N / theory with 2N flavors.

Let us check the one-loop running when �i D �0
i D 0. Assume jai j � jƒj. As

always we find ai D ai C O.ƒ/. The branch points on the ultraviolet curve are at
around

zC �
�
E

ƒ

�2N�2�2NL
; z� �

�
ƒ

E

�2N�2�2NR
: (11.4.22)

Then the monopole mass can be approximately computed as in the case of SU.N /
gauge theory: we find

�
ˇ̌
ˇ̌
ˇ.ai � aj /

1

2
i

Z zC

z�

dz

z

ˇ̌
ˇ̌
ˇ D

ˇ̌
ˇ̌.ai � aj /2.2N � 2 � 2.NL CNR//

2
i
log

E

ƒ

ˇ̌
ˇ̌ :

(11.4.23)

From this we see that the running coupling is

�.E/ D 2.2N � 2/� 2.NL CNR/

2
i
log

E

ƒ
; (11.4.24)

correctly reproducing the one-loop analysis. Again, the condition that the theory is
asymptotically free or conformal is related to the fact that the left hand side of the
equation of the curve has lower degree than or equal degree to the right hand side.



11.5 Argyres–Douglas CFTs 161

11.5 Argyres–Douglas CFTs

Let us study the most singular point in the Coulomb branches of the theories we
analyzed in this section.

11.5.1 Pure SU.N/ Theory

First, take the curve of the pure SU.N / theory:

ƒN

z
CƒN z D xN C � � � C uN (11.5.1)

with the differential � D xdz=z. We set z D 1C ız, uN D 2ƒN C ıuN and take the
limit where both ız and ıuN are very small. We find

c ız2 D xN C u2x
N�2 C � � � C ıuN (11.5.2)

where c is an unimportant constant. The differential is now given by � D xdız �
ızdx. Introducing Qz D 1=x, we find that the curve in this limit can be written as

c �2 D 1C u2Qz2 C u3Qz3 C � � � C QuN QzN
QzNC4 d Qz2: (11.5.3)

Note that it has the same form as the curve we saw in Sect. 10.5, which arose from
considering the curve

�2 D �.Qz/ (11.5.4)

where �.Qz/ is a quadratic differential with one pole of order N C 4, see Fig. 11.7.
This is the same as the theory YNC4 introduced in Fig. 10.8. We have

ADNf D0.SU.N // D YNC4: (11.5.5)

Demanding that � has scaling dimension 1, we find that

Œuk� D 2k

N C 2
: (11.5.6)

Fig. 11.7 The most singular
point of pure SU.N / theory
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Note that we have Œuk� C ŒuNC2�k� D 2. At this point it is instructive to recall our
discussions around (10.1.14). We consider the prepotential deformation

Z
d4�ukuNC2�k (11.5.7)

where d4� is the chiral ND2 superspace integral. As Œuk� 	 1 	 ŒuNC2�k� when
k 	 N C 2 � k, we consider uk is the deformation parameter for the physical
operator uNC2�k .

Take the simplest case N D 3. We have the theory with one operator with Œu3� D
6=5 and a corresponding parameter with Œu2� D 4=5. These are the same as those
of the Argyres–Douglas CFT which arose from SU.2/ with one flavor; in fact the
curve and the differential are completely the same:

ADNf D0.SU.3// D Y7 D ADNf D1.SU.2//: (11.5.8)

11.5.2 SU.N/ Theory with Two Flavors

Next, consider SU.N / theory with two flavors. The curve is

.x � �1/
ƒN�1

z
C .x � �2/ƒ

N�1z D xN C � � � C uN : (11.5.9)

We already studied the case N D 2, so let us set N > 3. Then we expand as

uN�1 D 2ƒN�1 C ıuN�1; z D 1C ız (11.5.10)

and take the limit where ız, ıuN�1 and �1;2 are all small. The curve is

c .x � �1 C �2

2
/ız2 C c0 .�1 � �2/ız D xN C � � � C uN�2x2 C ıuN�1x C uN

(11.5.11)

with the differential � D xdız � ızdx. Here c and c0 are unimportant constants.
We now define x0 by x D x0 � .�1 C �2/=2, shift ız by ız ! ız � .c0=c/.�1 �

�2/=.2x
0/, and introduce Qz D 1=x0. The curve is now

�2 D 1C Qu1Qz C Qu2Qz2 C � � � C QuN QzN C . Q�1 � Q�2/2QzNC1

QzNC3 d Qz2: (11.5.12)

Here we absorbed various unimportant numerical constants into the definition of
variables with tildes.
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Fig. 11.8 The most singular
point of SU.N / theory with
two flavors

This is the curve �2 D �.z/ with � having one pole of order N C 3 and another
of order 2, see Fig. 11.8. This is the theory XNC3 introduced in Fig. 10.8. We have

ADNf D2.SU.N // D XNC3: (11.5.13)

The most singular point of SU.N / theory with odd number of flavors gives an ND2
CFT, analyzed in [1,2]. The most singular point of SU.N / theory with even number
of flavors Nf � 4 does not give an ND2 CFT, as we will see in Sect. 12.4.4.

11.5.3 Pure SO.2N/ Theory

Next, take the pure SO.2N / theory

x2.
ƒ2N�2

z
Cƒ2N�2z/ D x2N C u2x

2N�2 C � � � C u2N : (11.5.14)

Take

u2N�2 D 2ƒ2N�2 C ıu2N�2; z D 1C ız (11.5.15)

and go to the limit where ıu2N�2, ız are both small. The curve is

c ız2 D x2N�2 C � � � C ıu2N�2 C u2N
x2

(11.5.16)

where c is an unimportant constant. The differential is given by � D xdız � ızdz.
In terms of Qz D 1=x2, the curve is

c �2 D 1C Qu2Qz C � � � C Qu2N�2QzN�1 C u2N QzN
QzNC2 d Qz2: (11.5.17)

This is again the curve �2 D �.z/ with � having one pole of rather high orderN C2
and another of order 2, see Fig. 11.9. Therefore we find

ADNf D0.SO.2N // D XNC2: (11.5.18)
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Fig. 11.9 The most singular
point of SO.2N / theory

Now, SU.4/ and SO.6/ have the same Lie algebra. Using (11.5.5) and (11.5.18),
we find

Y8 D ADNf D0.SU.4// D ADNf D0.SO.6// D X5: (11.5.19)

Using (11.5.13), we find that these are also equivalent to ADNf D2.SU.2//. This set
of equivalences explains what we saw in (10.5.1).

11.5.4 Argyres–Douglas CFTs and the Higgs Branch

The SU.2/ theory with Nf D 2 flavors has a Higgs branch of the form C
2=Z2, but

the pure SU.4/ theory does not have it in the ultraviolet. We just claimed

ADNf D0.SU.4// D ADNf D2.SU.2//: (11.5.20)

How is this compatible? The discussion below summarizes the content of [3].
Note that the limiting Argyres–Douglas theory has an operator u of scaling

dimension 4/3, a corresponding parameter m of scaling dimension 2=3 and an
additional mass parameter �1 � �2 of scaling dimension 1. When we realize it as
a limit of the SU.2/ theory with Nf D 2 flavors, clearly the low energy theory has
just one U.1/ multiplet and �1 � �2 is an external parameter.

When we realize the same theory as a limit of the pure SU.4/ theory, however,
originally the low energy theory has U.1/3 vector multiplet, and three Coulomb
branch parameters u2, u3 and u4. We saw that ıu2 has scaling dimension 2/3, ıu4
scaling dimension 4/3, and ıu3 is of scaling dimension 1. Therefore, we see that the
mass parameter�1��2 of the limiting Argyres–Douglas theory is now promoted to
the vev ıu3 of a U.1/ multiplet in this realization. Equivalently, the U.1/ subgroup
of the SU.2/ flavor symmetry of the limiting theory is weakly dynamically gauged,
thus removing the Higgs branch.

Similarly, we saw here that the pure SO.8/ theory and the SU.3/ theory with
Nf D 2 flavors both give rise to the CFT X6. In Sect. 10.5, we also learned
that SU.2/ theory with Nf D 3 flavors also has a point on the Coulomb branch
where the low energy limit is described by the same theory X6, see (10.5.1).
The situation concerning their Higgs branches can also be studied similarly as
above. The limiting theory itself has an operator u of scaling dimension 3/2, a
corresponding deformation parameterm of dimension 1/2, and two mass parameters
�1 � �2 and �1 � �3 for the SU.3/ flavor symmetry. This is most clearly seen in
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the description as a point on the Coulomb branch of the SU.2/ theory with Nf D 3

flavors.
In terms of SU.3/ theory with Nf D 2 flavors, we have two Coulomb branch

operators u2, u3, the mass parameterm for the U.1/ part of the flavor symmetry, and
the mass parameter for the SU.2/ part �1 � �2. We see that u2 and u3 has scaling
dimensions 1 and 3=2 respectively, m has scaling dimension 1=2, and �1 � �2 has
dimension 1. Then we see that U.1/ subgroup of the flavor symmetry SU.3/ is
weakly gauged. The vev of this weakly-gauging U.1/ vector multiplet is u2.

In terms of pure SO.8/ theory, we have four Coulomb branch operators u2, u4, u6
and u8, but as we discussed above, u8 D Qu24. Close to the Argyres–Douglas point, we
see that u2, u4, u3 and Qu4 has scaling dimensions 1=2, 1, 3=2 and 1 respectively. We
see that U.1/2 subgroup of the flavor symmetry SU.3/ is weakly gauged by the two
U.1/ vector multiplets with scalar components u4 and Qu4. The action of the outer
automorphism S3 of SO.8/ on the dimension-1 operators u4 and Qu4 are generated
by the parity operation Qu4 ! �Qu4 and a 120ı rotation acting on the u4-Qu4 plane.
This is exactly how the Weyl group of the flavor symmetry SU.3/ acts on the two
mass parameters �1, �2, �3 with �1 C �2 C �3 D 0. Therefore we see that the
outer-automorphism symmetry of SO.8/ can be identified with the Weyl group of
the SU.3/ flavor symmetry.

11.6 Seiberg–Witten Solutions for Various Other Simple
Gauge Groups

Let us close this chapter by very briefly mentioning the Seiberg–Witten solution of
various other gauge theories. First, let us copy the solutions for SU.N / and SO.2N /
with Nf flavors. The Seiberg–Witten curve for SU.N / with Nf flavors was

ƒN

z
C zƒN�Nf

NfY
iD1
.x � �i/ D xN C u2x

N�2 C � � � C uN�1x C uN (11.6.1)

and the Seiberg–Witten curve for SO.2N / with Nf flavors was

x2

2
4ƒ2N�2

z
Cƒ2N�2�2Nf z

NfY
iD1
.x2 � �i 2/

3
5

D x2N C u2x
2N�2 C u4x

2N�4 C � � � C u2N : (11.6.2)

Here, for simplicity, we dropped the flavor terms multiplying 1=z on the left hand
sides. For the full expressions, see (11.3.10) and (11.4.21), respectively.
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Without derivations, we present here the Seiberg–Witten curves for other clas-
sical gauge groups. The Seiberg–Witten curve for SO.2N C 1/ with Nf flavors
is

x
h
ƒ2N�1

z1=2
Cƒ2N�1�2Nf z1=2

QNf
iD1.x2 � �i

2/
i

D x2N C u2x2N�2 C u4x2N�4 C � � � C u2N ; (11.6.3)

and the Seiberg–Witten curve for Sp.N / with Nf flavors is

ƒ2NC2

z1=2
C 2c Cƒ2NC2�2Nf z1=2

NfY
iD1
.x2 � �i

2/

D x2.x2N C u2x
2N�2 C u4x

2N�4 C � � � C u2N / (11.6.4)

where c2 D ƒ4NC4�2Nf QNf
iD1.��2i /. The differential is always just � D xdz=z. We

again dropped the flavor terms multiplying 1=z on the left hand sides.
The curves so far can be always written as

F.x/

z
C z QF .x/ D P.x/ (11.6.5)

for some polynomials F.x/, QF .x/ and P.x/. In the older literature, it is more
common to find the curve and the differential in the form

y2 D P.x/2 � 4F.x/ QF .x/; � D x

2
d log

P.x/ � y

P.x/C y
: (11.6.6)

To relate (11.6.5) and (11.6.6), note that Eq. (11.6.6) implies that the combination

�˙ D 1

2
.P.x/˙ y/ (11.6.7)

satisfies

�C C �� D P.x/; �C�� D F.x/ QF .x/: (11.6.8)

Comparing with (11.6.5), we find

�C D F.x/

z
; �� D z QF .x/: (11.6.9)

This also explains the differential given in (11.6.6).
This older form is mathematically easier to deal with in certain situations,

because the branch cut of the function y.x/ is at most of order 2. Mathematically,
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such Riemann surfaces are called hyperelliptic, and have a few special properties
compared to more general Riemann surfaces. That said, the forms we use in the rest
of the lecture note is much more physical and usually more useful.

A good summary of the curves for classical gauge groups listed above can be
found e.g. in [4]. For exceptional gauge groups, the situation is more complicated.
Although one can write the Seiberg–Witten curve, it is more natural to study the
Seiberg–Witten geometry, which is a complex three-dimensional space, fibered over
the ultraviolet curve C . A very nice presentation for the pure theory can be found in
[5]. With matter hypermultiplets, a modern reference is [6].
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Chapter 12
Argyres–Seiberg–Gaiotto Duality for SU.N /
Theory

12.1 S-Dual of SU.N/ with Nf D 2N Flavors, Part I

12.1.1 Rewriting of the Curve

We learned in the last chapter that the curve of SU.N / theory with 2N flavors is
given by:

QN
iD1. Qx � Q�i/

Qz C f

NY
iD1
. Qx � Q�0

i /Qz D QxN C Qu2 QxN�2 C � � � C uN (12.1.1)

where f is a complex number; the differential is Q� D Qxdz=z. This theory is
superconformal, and f is a function of the UV coupling constant �UV . We would
like to understand the strong-coupling limits of this theory.

As we did in Chap. 9, it is convenient to rewrite the curve in terms of the Seiberg–
Witten differential �, to the form

�N C �2.z/�
N�2 C � � � C �N .z/ D 0: (12.1.2)

We start from (12.1.1). First we gather terms with the same power of Qx:

.1 � 1

Qz � f Qz/ QxN C ~1 QxN�1 C ~2 QxN�2 C � � � C ~N D 0 (12.1.3)

where

~1 D
P Q�i

Qz C f Qz
X

Q�0
i : (12.1.4)
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We divide the whole equation by .1� 1=Qz�f Qz/ and define x D QxC ~1=.1� 1=Qz�
f Qz/=N . We now have

xN C |2x
N�2 C � � � C |N D 0 (12.1.5)

where |k has poles of order k at two zeros Qz1;2 of 1 � 1=Qz � f Qz D 0, due to the
shift from Qx to x. We set z D Qz=Qz1 so that one zero is now at 1, and another is at
q D Qz2=Qz1.

Introducing� D xdz=z, we have an equation of the form (12.1.2); �k.z/ has poles
of order at most k at z D 0, q, 1 and 1. Consider the case when all Q�i and Q�0

i are
generic, and assume q 
 1. Then it is straightforward to determine how � behaves
close to each of the singularity. As we are solving a degree-N equation, we have N
residues at each singularity. They are given by

�1; �2; : : : ; �N�1; �N ; z� 0;

�; �; : : : ; �; .1 �N/�; z� q;

�0; �0; : : : ; �0; .1 �N/�0; z� 1;

�0
1; �

0
2; : : : ; �

0
N�1; �0

N ; z� 1:

(12.1.6)

Here

�i D Q�i � 1

N

X
i

Q�i CO.q/;
X

�i D 0I (12.1.7)

� D 1

N

X
i

Q�i CO.q/ (12.1.8)

and similarly for the �0
i , �

0. Note that �i and � are the mass parameters which enter
the BPS mass formula. We found that they are related to the parameters Q�i via a
finite renormalization.

When N D 2, the structure of the residues at all four punctures were of the same
type, as they are all given by .m;�m/. For N > 2, we see that the structure of the
residues at z D 0;1 and the structure at z D q; 1 are different. The former is of the
form .m1; : : : ; mN / with

P
mi D 0, and the latter is of the formm.1; 1; : : : ; 1�N/.

It is also instructive to consider the completely massless case, when we have
Q�i D Q�0

i D 0 for all i . The original curve is just

xN

z
C f xN z D xN C u2x

N�2 C � � � C uN : (12.1.9)

After the same manipulation as above, we find

�k.z/ D uk
.z � q/.z � 1/

dzk

zk�1 : (12.1.10)
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Therefore,

�k.z/ has poles of order k � 1 when z D 0;1;

�k.z/ has poles of order 1 when z D q; 1:
(12.1.11)

We observe here again that the behavior of the poles are all the same when N D 2,
while the behavior at z D 0;1 and the behavior at z D 1; q are distinct when
N > 2.

We have 2N mass terms in the system. First of all we split them into N mass
terms encoded in the region z � 0, and another N mass terms in the region z � 1.
Correspondingly, we started from the flavor symmetry U.2N / and decomposed it
into U.N / � U.N /. We further decompose each of U.N / into SU.N / and U.1/.
Combined, we use the decomposition of the flavor symmetry of the form

U.2N /  U.N /�U.N / ' ŒSU.N /A�U.1/B�� ŒU.1/C �SU.N /D�: (12.1.12)

The residues of � at the puncture A at z D 0 and those at the punctureD at z D 1
encode the mass terms for SU.N /A;D respectively, whereas those at the puncture B
at z D q and those at the puncture C at z D 1 encode the mass terms for U.1/B;C ;
compare (12.1.6).

We then say that the singularity at z D 0 carry the SU.N / symmetry, the one at
z D q carry the U.1/ symmetry, and similarly for those at z D 1, D 1. We can
visualize the situation as in Fig. 12.1. We call the punctures at z D 0;1 the full
punctures, and those at z D q; 1 the simple punctures. In the 6d viewpoint, these
are four-dimensional defect objects extending along the Minkowski R3;1, and they
carry respective flavor symmetries on them.

When N D 2, the original symmetry is not just U.2/ but SO.4/. Accordingly,
the split U.2/ ' SU.2/ � U.1/ is enhanced to the following structure

SO.4/  SU.2/ � SU.2/
[ D [

U.2/  SU.2/ � U.1/
(12.1.13)

and therefore the distinction of the types of punctures is gone.

Fig. 12.1 The ultraviolet
curve of SU.N / theory with
2N flavors
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Fig. 12.2 Weakly coupled limit

12.1.2 Weak-Coupling Limit

Clearly f � q � e2
i�UV in the weak coupling region, see Fig. 12.2. When the
coupling is extremely weak, we can think that the four-punctured sphere on the left
is composed of two three-punctured spheres. In the tube region connecting the two,
the behavior of � is essentially given just by

�k.z/ � uk
dzk

zk
: (12.1.14)

Writing

Y
.x � ai / D xN C u2x

N�2 C � � � C uN ; (12.1.15)

we find that the residues of � in the tube region is given by a1; : : : ; aN . Therefore,
we find full punctures after we split off two spheres.

The resulting three-punctured sphere has one simple puncture and two full
punctures. Therefore it should carry U.1/ � SU.N / � SU.N / symmetry. The
four-punctured sphere represents the SU.N / theory with 2N flavors. The tube
region carries the SU.N / vector multiplet. Then each three-punctured sphere just
represents N flavors, i.e. hypermultiplets .Qa

i ;
QQi
a/ where a; i D 1; : : : ; N . Then

two SU.N / symmetries can be identified with those acting on the index a and i
respectively, and the U.1/ symmetry is such that Q has charge C1 while QQ has
charge �1.

The ultraviolet curve of the SU.N / theory with 2N flavors, shown in Fig. 12.1,
is composed of two copies of this three-punctured sphere. The 2N hypermultiplets
are split into N hypermultiplets .Qa

i ;
QQi
a/ charged under SU.N /A and U.1/B , and

another N hypermultiplets .Q0a
i ;

QQ0i
a/ charged under SU.N /D and U.1/C .

12.1.3 A Strong-Coupling Limit

Let us consider what happens when q ! 1. As shown in Fig. 12.3, it just
ends up exchanging the puncture B and C , at the same time redefining the
coupling q via q0 D 1=q. This means that this strongly-coupled limit turns out
to be another weakly-coupled SU.N / gauge theory with 2N flavors. This time,



12.2 SU.N / Quiver Theories and Tame Punctures 173

Fig. 12.3 S-duality of SU.N / 2N flavors

Fig. 12.4 Another limit of SU.N / 2N flavors

the 2N hypermultiplets are split into N hypermultiplets .qai ; Qqia/ and another N
hypermultiplets .q0a

i ; Qq0i
a/, but notice that the firstN are charged under SU.N /A and

U.1/C while the second N are charged under SU.N /D and U.1/B . As we learned
for the case of the SU.2/ theory with four flavors in Sect. 9.4, the new quarks are
magnetic from the point of view of the original theory.

We would like to understand the limit q ! 1 too. We need to split the four-
punctured sphere as shown in Fig. 12.4. But the configuration of punctures are not
what we already know: we have two full punctures on one side, and two simple
punctures on the other side. We need to study more about the 6d construction before
answering what happens in the limit.

12.2 SU.N/ Quiver Theories and Tame Punctures

12.2.1 Quiver Gauge Theories

To this aim, we introduce a new diagrammatic notation for ND2 gauge theories.
This notation is related to but distinct from the trivalent one introduced in Sect. 9.5.

A diagram is composed of squares and circles with integers written in them, and
edges connecting squares and circles. A square with N stands for a U.N / flavor
symmetry, and a circle withN an SU.N / gauge symmetry. An edge connecting two
objects with N and M written within them represents a hypermultiplet .Qa

i ;
QQi
a/

where i D 1; : : : ; N and j D 1; : : : ;M . They are in the tensor product of the
fundamental representation of SU.N / and SU.M/, and is called the bifundamental
hypermultiplet. Such a diagram specifies an ND2 gauge theory. This class of
theories is often called quiver gauge theories.

The simplest cases are when all the squares and circles have the same number
N written in them, see Fig. 12.5. The first one in the figure is just a bifundamental
hypermultiplet. The second one is the SU.N / theory with 2N flavors. The last one
is an SU.N /1 � SU.N /2 theory, so that
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Fig. 12.5 SU.N / quiver theory

• there is a bifundamental hypermultiplet for SU.N /1 � SU.N /2, and
• there are N fundamental hypermultiplets for SU.N /1, and
• there are N fundamental hypermultiplets for SU.N /2:

Note that both SU.N /1 and SU.N /2 have zero beta function.
Their Seiberg–Witten solutions can be obtained by combining the knowledge we

acquired so far. Namely, each edge corresponds to the bifundamental hypermultiplet
of SU.N / � SU.N /, which we know to come from a three punctured sphere of 6d
theory of type SU.N /, with two full punctures and one simple puncture. All we
have to do then is to prepare one such sphere for each edge, and connect pairs of full
punctures by tubes. For example, the Seiberg–Witten solution for the third theory in
Fig. 12.5 is given by

�N C �2.z/�
N�2 C � � � C �N .z/ D 0 (12.2.1)

where �k.z/ has five singularities, such that two at z D 0, D 1 are full and the other
three at z D 1; q and qq0 are simple.

For simplicity, let us assume that all the mass parameters are zero. Then, from the
condition of the order of the poles of the singularities given in (12.1.11), the fields
�k.z/ are uniquely fixed to be

�k.z/ D u.1/k z C u.2/k
.z � 1/.z � q/.z � qq0/

dzk

zk�1 : (12.2.2)

The reader should check that it has the correct behavior at z D 1. This theory
is superconformal, as both SU.1/1 and SU.2/2 have zero one-loop beta function.
This is reflected by the fact that the variables appearing in the Seiberg–Witten
curve (12.2.1) can be assigned scaling dimensions in a natural way. The differential
� should have scaling dimension one, since its integral gives the BPS mass formula:
Œ�� D 1. We then set Œz� D 0 and Œ�k� D k. This means that u.iD1;2/k should be two
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Fig. 12.6 SU.N / plus adjoint: the ND2� theory

Coulomb branch operators with scaling dimension k. Indeed, we are dealing with an
SU.N /2 gauge theory which is superconformal, and there are exactly one Coulomb
branch operator of scaling dimension k for k D 2; : : : ; N .

12.2.2 ND2� Theory

A rather degenerate situation arises when we take just one bifundamental hyper-
multiplet .Qa

i ;
QQa
i / and couple one SU.N / gauge multiplet to both indices, see

Fig. 12.6. The N � N hypermultiplet components now behave as an adjoint
representation plus a singlet. The singlet part is completely decoupled, and therefore
the theory is essentially the SU.N / gauge theory with an adjoint hypermultiplet.
When massless this is the ND4 super Yang–Mills, whereas it is called ND2�
theory when massive. The Seiberg–Witten solution can then be obtained by taking
a three-punctured sphere and connecting the two full punctures. We end up having
a torus with one simple puncture. This solution was first found in [1], to which the
readers should refer for details.

12.2.3 Linear Quiver Theories

So far we learned how to solve gauge theories shown in Fig. 12.5. They have the
gauge group

SU.N / � � � � � SU.N / � � � � � SU.N / (12.2.3)

with bifundamentals between adjacent SU.N / groups, and additional N flavors
each for the first and the last SU.N / groups. All SU.N / groups have zero beta
function.

Let us consider a slight generalization of this class of theories. The gauge group
is of the following form

SU.N /�� � ��SU.N /�SU.Nk/�SU.Nk�1/�� � � SU.N2/�SU.N1/: (12.2.4)
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We put the bifundamental hypermultiplets between adjacent SU.N / and SU.N 0/.
Such gauge theories are often called linear quiver gauge theories, since the gauge
factors are arranged in a linear fashion.

Here, we introduce additional flavors for every SU group, so that they all have
zero beta functions. Define N0 D 0 and NkC1 D N . Then the condition we need to
impose is

Ni�1 CNiC1 C ni D 2Ni ; i D 1; : : : ; k (12.2.5)

where ni is the number of additional fundamental hypermultiplet for SU.Ni/. Since
ni � 0, we have si � siC1 where si D Ni �Ni�1. Clearly

PkC1
iD1 si D N .

A decreasing sequence of integers s1 � s2 � � � � � skC1 whose sum is N is
called a partition of N . Then we can phrase our finding here by saying that this
type of gauge theory can be characterized by a partition of N . A partition can be
graphically represented by a Young diagram. Here we draw it by arranging boxes
so that the widths of the rows are given by si . Examples are shown for N D 4 on
the left hand side of Fig. 12.7. There, additional ni flavors are shown by connecting
a box ni to a circle Ni .

Fig. 12.7 SU.N / tame punctures
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What is the Seiberg–Witten solutions of this class of theories? There are a few
independent methods to arrive at the solutions. Originally they are obtained using a
configuration of branes in type IIA string theory and lifting it to M-theory [2]. We
now also have a field theoretical derivation in terms of instanton computation [3]. In
this subsection, we just state the results, and give a few justification. We will come
back to this point in more details in Sect. 12.5.

The Seiberg–Witten solution is obtained by the following procedure. First,
consider a sphere of 6d theory of type SU.N /, realizing the theory where all Ni
is equal to N . It was given by the Seiberg–Witten curve of the form

�N C �2.z/�
N�2 C � � � C �N .z/ D 0: (12.2.6)

As explained above, we have two full punctures and a number of simple punctures.
We then replace one full puncture at z D 1 with a new type of puncture labeled
by the Young diagram, see the right hand side of Fig. 12.7. These new types of
punctures, together with the simple and the full punctures introduced already, are
called tame SU.N / punctures.

The change of the type of the puncture is the change of the structure of the
singularities of the fields �k.z/. We can also write the curve (12.2.6) as

det.� � '.z// D 0 (12.2.7)

where '.z/ is a meromorphic one-form which is a tracelessN �N matrix, as we did
for the SU.2/ case in Sect. 9.5.5. Then �k.z/ is given by an elementary symmetric
degree-k polynomial combination of the eigenvalues of '.z/. Then the structure of
the singularities of �k.z/ can be described also by the structure of the residue of
'.z/.

12.2.4 Tame Punctures

We already saw a full puncture carries the flavor symmetry SU.N /, and a simple
puncture U.1/. To correctly reproduce the flavor symmetry of the total theory, the
singularity at z D 1 labeled by the Young diagram s1 � s2 � � � � � skC1 needs to
be associated to the flavor symmetry

SŒU.n1/ � U.n2/ � : : :U.nk/� (12.2.8)

where the SŒ� � � � means that we remove the diagonal U.1/ of the following unitary
gauge groups.

The description becomes complete once we describe how the fields �k.z/ behave
at this new puncture. When the hypermultiplets are all massless, the rule is given as
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Fig. 12.8 The Young diagram shown here has .si / D .4; 2; 2/, .�k/ D .1; 1; 1; 1; 2; 2; 3; 3/,
.pk/

8
kD1 D .0; 1; 2; 3; 3; 4; 4; 5/ and .ti / D .3; 3; 1; 1/. The standard convention is to use the

column heights .ti / to label punctures

follows. Given a Young diagram with row widths s1 � s2 � � � � , define pk D k��k
where

.�1; �2; : : : ; �N / D .1; : : : ; 1„ ƒ‚ …
s1

; 2; : : : ; 2„ ƒ‚ …
s2

; : : : ; / (12.2.9)

Then �k.z/ should have a pole of order pk at the puncture. For an example, see
Fig. 12.8.

In terms of the N � N matrix-valued one-form '.z/ the statement is somewhat
simpler. Namely, the residue of '.z/ at the puncture should be given by

Res '.z/ � Js1 ˚ Js2 ˚ � � � ˚ Jsk (12.2.10)

where Js is an s � s Jordan block:

Js D

0
BBBBB@

0 1

0 1

0 1

: : :
: : :

0

1
CCCCCA

„ ƒ‚ …
s

: (12.2.11)

It is a good exercise to check that the pole orders pk of �k.z/ can be reproduced by
plugging in (12.2.10) into (12.2.7) and comparing it with (12.2.6).

When the hypermultiplets are massive, the rule goes instead as follows. Take the
same Young diagram, but describe it with column heights t1 � t2 � � � � tx where x
is the number of columns. Then � should haveN residues with following structure:

.�1; : : : ; �1„ ƒ‚ …
t1

; �2; : : : ; �2„ ƒ‚ …
t2

; : : : ; / (12.2.12)

where we need to impose
X

ti�i D 0: (12.2.13)

This is equivalent to say that the residue of the matrix-valued one-form '.z/ should
be conjugate to a diagonal matrix with entries given by (12.2.12).
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We identify these residues with the mass parameters associated to the flavor
symmetry (12.2.8). There are ni mass parameters �.i/a , a D 1; : : : ; ni for each
U.ni /. We then make the identification

.�
.1/
1 ; : : : ; �

.1/
n1

I�.2/1 ; : : : ; �.2/n2 I � � � I�.k/1 ; : : : ; �.k/nk / D .�1; �2; : : : ; �x/:

(12.2.14)

Note that
P
ni equals the number of columns x. The individual ni corresponds to

the number of columns of a certain given height, say h, then there is an index a such
that

ta D taC1 D � � � D taCni�1 D h: (12.2.15)

Then the Weyl group of the U.ni / flavor symmetry can be identified with the
permutation of the columns of height h.

It is conventional in the ND2 literature to label the punctures using column
heights .ti /. The full puncture is then associated to the Young diagram .1; 1; : : : ; 1/,
and the simple puncture has the Young diagram .N � 1; 1/. We can indeed check
that the general formulas (12.2.9) and (12.2.12) reproduce (12.1.6) and (12.1.11).
Note also that the puncture of type .N / does not have poles at all. This corresponds
to an absence of the puncture.

Let us apply this general discussion to the particular case N D 2 which we
discussed extensively in Chap. 9. There, we introduced a different diagrammatic
notation using trivalent vertices, reflecting special properties of SU.2/, see Fig. 12.9.
In the current approach, we see that both the full puncture and the simple puncture
for N D 2 have the Young diagram .1; 1/, thus losing the distinction. The only
other type of puncture is .2/, which corresponds to the absence of puncture in the

Fig. 12.9 SU.2/ tame punctures
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first place. Therefore the construction in this section does not give anything new for
N D 2.

12.2.5 Tame Punctures and the Number of Coulomb Branch
Operators

Let us check that the prescription described above reproduces the expected number
of Coulomb branch operators. Compare, for example, the first and the fourth rows
of Fig. 12.7. The Seiberg–Witten solutions are both given by

�4 C �2.z/�
2 C �3.z/�C �4.z/ D 0: (12.2.16)

In both cases, �k.z/ has one full puncture at z D 0 and five simple punctures at
z D zi . The puncture at z D 1 changes types. For the theory at the first row, the
puncture at z D 1 is a full puncture, where �k.z/ has poles of order k � 1. This
determines the fields �k.z/ to be given by

�k.z/ D u.1/k C u.2/k z C u.3/k z2 C u.4/k z3Q5
i .z � zi /

dzk

zk�1 : (12.2.17)

Note that the degree of the polynomial in the numerator is fixed by the order of the
pole at z D 1. We identify u.i/k as the dimension-k Coulomb branch operator of the
i -th SU.4/ gauge group.

Now change the type of the puncture at z D 1. The allowed order of the pole
there is reduced by �k as given in (12.2.9). In this particular case, the orders of
the poles for �2.z/, �3.z/, �4.z/ are reduced by 0, 1, 2 respectively. This reduces
the degree of the polynomials in the numerator of (12.2.17) by 0, 1, 2 respectively,
resulting in

�2.z/ D u.1/2 C u.2/2 z C u.3/2 z2 C u.4/2 z3Q5
i .z � zi /

dz2

z
(12.2.18)

�3.z/ D u.1/3 C u.2/3 z C u.3/3 z2Q5
i .z � zi /

dz3

z2
(12.2.19)

�4.z/ D u.1/4 C u.2/4 zQ5
i .z � zi /

dz4

z3
: (12.2.20)

We identify u.i/k as a dimension k Coulomb branch operator for the i -th gauge
group. We see that the third gauge group now has the Coulomb branch operators
of dimension 2 and of dimension 3, and that the fourth gauge group only has the
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Coulomb branch operator of dimension 2. This agrees with our claim that the gauge
group is now SU.4/ � SU.4/ � SU.3/� SU.2/.

This analysis of the number of the Coulomb branch operators can be extended to
arbitrary N and to arbitrary Young diagram. By a straightforward but somewhat
cumbersome combinatorial computation we see that the pole structure (12.2.9)
reproduces the structure of the gauge group as given in (12.2.4).

12.2.6 Tame Punctures and the Decoupling

Now let us study what happens when we make the coupling of the last gauge
group in (12.2.4) very weak. When we completely turn off the coupling, we lose
the last gauge group SU.Nk/. The new last gauge group is SU.Nk�1/, which is
now coupled to Nk C nk�1 hypermultiplets in the fundamental representation.
Note that Nk of them originally came from the bifundamental hypermultiplet for
SU.Nk�1/ � SU.Nk/.

This process for the quiver tail characterized by the Young diagram .3; 1/ is
shown on the right hand side of Fig. 12.10. In terms of the ultraviolet curve, turning
off the coupling of the last gauge group corresponds to splitting off the last two
punctures. When we completely decouple the gauge group, we find a new puncture
emerging. The type of this new puncture can be determined by the rule explained
above, from the resulting gauge theory with one less gauge group. In this case, the
newly appearing puncture on the left has the Young diagram .2; 1; 1/. The decoupled
three-punctured sphere on the right hand side represents one hypermultiplet in the
doublet representation of SU.2/. We intentionally do not discuss the new puncture
arising on this decoupled three-punctured sphere on the right; for more details, see
[4, 5].

We can continue the process. Decoupling the next gauge group, the Young
diagram becomes .1; 1; 1; 1/, i.e. the full puncture. The situation is shown in

Fig. 12.10 Decoupling one
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Fig. 12.11 Decoupling the next

Fig. 12.12 Another example of decoupling

Fig. 12.11. The decoupled three-punctured sphere on the right hand side represents
two hypermultiplets in the triplet representation of SU.3/.

Note that SU.3/ gauge group before the complete decoupling can be thought of
as gauging the SU.3/ subgroup of the SU.4/ flavor symmetry of the full puncture, as
shown in the second row of the figure. This splits four fundamental flavors coupled
to SU.4/ into a set of three flavors and an additional one flavor. The SU.3/ gauge
group makes the first three into the bifundamental hypermultiplet of SU.4/�SU.3/,
and one flavor remains to couple just to SU.4/ on the upper row.

Another example of decoupling process for the puncture of type .2; 2/ is
shown in Fig. 12.12. The decoupled three-punctured sphere on the right hand side
represents an empty theory.
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12.3 S-Dual of SU.N/ with Nf D 2N Flavors, Part II

12.3.1 For General N

Now we have learned enough techniques to understand the S-dual of SU.N / theory
with 2N flavors, see the first row of Fig. 12.13. Originally, we have a sphere with
four punctures: two at z D 0, 1 are full punctures, and two at z D q, 1 are simple
punctures. We would like to understand the limit q ! 1. We end up decoupling
two simple punctures from the other two. We already learned what happens in this
decoupling process.

The simple puncture is a puncture of type .N � 1; 1/. Decoupling two of them,
we generate a puncture of type .N � 2; 1; 1/. This puncture has a flavor symmetry
SU.2/ � U.1/ when N > 3, and SU.3/ when N D 3. The behavior of the duality
when N D 3 is somewhat more peculiar than the other cases. In any case, there
is an SU.2/ symmetry exchanging the last two columns of height 2, and a weakly-
coupled dynamical SU.2/ group gauges this SU.2/ symmetry. There is in addition
one flavor in the doublet representation for this SU.2/ gauge group coming from the
almost decoupled sphere on the right, see the last row of Fig. 12.13.

The question is the nature of the sphere on the left hand side. It has three
punctures: two are full punctures, and one is of type .N � 2; 1; 1/. Assuming all
the mass parameters are zero, we can determine the behavior of fields �k.z/ easily,
as the pole structure at z D 1 is .p2; p3; : : : ; pN / D .1; 2; : : : ; 2/. We see that

�2.z/ D 0; �k.z/ D uk
.z � 1/k�1zk�1 dzk: (12.3.1)

Fig. 12.13 S-dual of SU.N / with 2N flavors, explained
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Fig. 12.14 Strange theory of
Chacaltana-Distler, RN

This theory has one dimension-k operator for each k D 3; 4; : : : ; N . The flavor
symmetry is at least SU.N /� SU.N / associated to the full punctures, and SU.2/�
U.1/ associated to the puncture of type .N � 2; 1; 1/. Call this funny conformal
field theory RN , for which we introduce a graphical notation as in Fig. 12.14.
In the original theory, the symmetry SU.N / � SU.N / � U.1/ was part of the
flavor symmetry SU.2N / rotating the whole 2N hypermultiplets in the fundamental
representation. We then need to demand that this theory RN has a larger flavor
symmetry

SU.2N / � SU.2/  ŒSU.N / � SU.N / � U.1/� � SU.2/: (12.3.2)

We finally have the S-duality statement:

SU.N / theory with 2N flavors at the strong coupling q ! 1

,

weakly-coupled SU.2/ gauge multiplet coupled to one doublet and to the RN theory.
(12.3.3)

This general statement was found by Chacaltana and Distler in [4]. We know that
the dual SU.2/ gauge coupling has zero beta function. Applying the analysis as in
Sect. 10.5, we find that the SU.2/ flavor symmetry of the RN theory contributes to
the running of the SU.2/ coupling as if it has effectively three hypermultiplets in the
doublet. Equivalently, we have

hj�j�iRN D 3hj�j�ifree hyper in a doublet of SU.2/ (12.3.4)

where j� is the SU.2/ flavor symmetry current. See Fig. 12.15.

12.3.2 N D 3: Argyres–Seiberg Duality

When ND3 we can say a little more about this duality. This was originally found
by Argyres and Seiberg in [6]; the presentation here follows that given by Gaiotto
in [7].

Now the puncture of type .N � 2; 1; 1/ D .1; 1; 1/ is a full puncture. Therefore
the theory R3 is given by a sphere with three full punctures, see Fig. 12.16. The
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Fig. 12.15 The SU.2/ flavor symmetry current of the RN theory

Fig. 12.16 S-duality of SU.3/ with six flavors involves the theory MN.E6/

structure of �k.z/ is already given in (12.3.1). Therefore, this theory has just one
Coulomb branch operator, of dimension 3.

We know that there is an enhancement of the flavor symmetry SU.3/ � SU.3/
associated to two full punctures to SU.6/, as in (12.3.2). We have three full
punctures. Therefore, it should be that the flavor symmetry F of this theory should
be such that we have the following diagram

F  SU.6/ � SU.2/
[ [

SU.3/ � SU.3/� SU.3/  SU.3/ � SU.3/ � U.1/ � SU.2/
(12.3.5)

for any choice of two out of three SU.3/s. Fortunately, there is unique such F , that
is E6, see Fig. 12.17. There, on the left, we introduce a diagrammatic notation for
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Fig. 12.17 The theory MN.E6/ D R3 D T3

this theory. On the center and on the right, we have the extended Dynkin diagram of
E6 with one node removed.1 We clearly see subgroups SU.3/3 and SU.6/� SU.2/.
We already saw above that this theory has only one Coulomb branch operator, and
its dimension is three. This nicely fits the feature of a rank-1 superconformal theory
announced to exist in Sect. 10.4. This is equivalent to Minahan–Nemeschansky’s
theory MN.E6/.

We conclude that we have the following duality:

SU.3/ theory with six flavors at the strong coupling q ! 1

,

weakly-coupled SU.2/ gauge multiplet coupled to one doublet
and to the theoryMN.E6/ of Minahan–Nemeschansky.

(12.3.6)

We can give a few more checks to this duality. The first one concerns the
current two-point functions. Firstly, we computed the current two-point function for
the SU.2/ flavor symmetry in (12.3.4). Then the whole E6 flavor currents, which
include the SU.2/ ones, should have the same coefficient in front of the two-point
function. Note that SU.6/ flavor symmetry of the SU.3/ gauge theory with six
flavors is also a subgroup of this E6 flavor symmetry. Therefore, we should have

hj SU.6/
� j SU.6/

� iSU.3/; Nf D6 D 3hj�j�ifree hyper in the fundamental of SU.6/: (12.3.7)

This is indeed the case, since the left hand side can be computed in the extreme
weakly-coupled regime, where they just come from three hypermultiplets in the
fundamental representation of SU.6/.

The second check is about the Higgs branch. The SU.3/ theory with six flavors
has a Higgs branch of quaternionic dimension

3 � 6 � dim SU.3/ D 10: (12.3.8)

Let us perform the computation in the dual side. The theory MN.E6/ has a Higgs
branch of quaternionic dimension 11, as we tabulated in Table 10.1. We have a

1There is a general theorem for any G stating that there is always a maximal subgroup whose
Dynkin diagram is given by the extended Dynkin diagram of G minus one node.
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doublet of SU.2/ in addition, and we perform the hyperkähler quotient with respect
to SU.2/ gauge group. Therefore the quaternionic dimension is

11C 2 � dim SU.2/ D 10; (12.3.9)

which agrees with what we found above in the original gauge theory side. Here
we only compared the dimensions, but they can be shown to be equivalent as
hyperkähler manifolds, see [8].

12.4 Applications

12.4.1 TN

We can now have some fun manipulating punctures. For example, consider a gauge
theory with gauge group SU.N /N�2, with bifundamental hypermultiplets between
consecutive groups, together withN additional fundamental hypermultiplets for the
first and the last one, see the first row of Fig. 12.18. The Seiberg–Witten solution is
easily given: it is given by a sphere of type SU.N / theory, with two full punctures
and N � 1 simple punctures. We go to a duality frame where we decouple all of
these N � 1 simple punctures. Applying the decoupling procedure we learned in
Sect. 12.2, we find that we generate a quiver tail with gauge group

SU.N � 1/� SU.N � 2/ � � � � SU.2/; (12.4.1)

with bifundamental hypermultiplets between two consecutive groups and one
doublet for the last SU.2/. The first SU.N � 1/ gauges an SU.N � 1/ subgroup
of the flavor symmetry SU.N / of the puncture of type .1; 1; : : : ; 1/, i.e. the full
puncture.

In this way, we can construct a theory described by a sphere with three full
punctures. This is called the TN theory, see Fig. 12.19. Note that R3 D T3. As we

Fig. 12.18 Duality producing TN theory
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Fig. 12.19 The TN theory

have three full punctures, the flavor symmetry is at least SU.N /3. WhenN D 3, we
saw above that this flavor symmetry enhances to E6. When N � 4, there are more
than one gauge group in the original gauge theory. Therefore, we do not have an
enhancement from SU.N /� SU.N / to any other group. This matches with the fact
that there is no group containing SU.N /3 such that SU.N /2 enhances to SU.2N /
when N � 4. Putting the punctures at z D 0; 1;1, we see that �k has the form

�k D u.1/k C � � � C u.k�2/
k zk�3

zk�1.z � 1/k�1 dzk: (12.4.2)

Therefore this theory has one Coulomb branch operator of dimension 3, two
Coulomb branch operators of dimension 4, . . . , andN�2Coulomb branch operators
of dimensionN .

Now we can take two copies of this TN theory and couple them by an SU.N /
gauge multiplet. In the 6d construction, we just have four full punctures on the
sphere. Therefore, we have the S-duality structure exactly as in SU.2/ theory with
four flavors, exchanging all four punctures, see Fig. 12.20. In fact, T2 theory is just
the trifundamental hypermultipletQijk.

12.4.2 MN.E7/

Next, consider the duality shown in Fig. 12.21. We end up with a three-punctured
sphere with two full puncture and one puncture of type .2; 2/. In the original gauge
theory, we have six fundamental flavors coupling to the SU.4/ gauge multiplet
with SU.6/ flavor symmetry. To construct the ultraviolet curve, we split these six
flavors into four flavors and two flavors, and applied the rule shown in the third row
of Fig. 12.7. Therefore, we see that the theory represented by the three-punctured
sphere have a flavor symmetry F of the form

F  SU.6/ � SU.3/
[ [

SU.4/ � SU.2/ � SU.4/  SU.4/ � SU.2/ � U.1/ � SU.3/
: (12.4.3)
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Fig. 12.20 S-duality of coupled copies of TN theory

Fig. 12.21 Duality producing the MN.E7/

Thankfully, there is a unique such group F , that is E7, see Fig. 12.22. We can
of course compute the number of Coulomb branch operators this theory has, by
studying �k.z/. Here, let us try a different procedure. Originally, we had the gauge
group SU.4/ � SU.2/. Therefore, the numbers of the Coulomb branch operators of
dimension 2,3,4 were respectively 2; 1; 1. On the dual side, the quiver tail contains



190 12 Argyres–Seiberg–Gaiotto Duality for SU.N / Theory

Fig. 12.22 The theory MN.E7/

Fig. 12.23 Duality producing the MN.E8/ theory

SU.3/�SU.2/, which has two operators of dimension 2 and one operator of dimen-
sion 1. The theory represented by the three-punctured sphere should account for
the difference. Therefore there is just one Coulomb branch operator, of dimension
4. This again fits the feature of a rank-1 superconformal theory announced to exist
in Sect. 10.4. This is equivalent to Minahan–Nemeschansky’s theory MN.E7/. We
can also check the agreement of the current two-point functions and the dimensions
of the Higgs branch, as we did at the end of Sect. 12.3.2.

12.4.3 MN.E8/

Generalizing this to the E8 symmetry is by now rather straightforward. We perform
the duality as shown in Fig. 12.23. In the dual side, we have a three-punctured sphere
with one full puncture, another of type .2; 2; 2/, and of type .3; 3/. We see that the
flavor symmetry F of the theory should satisfy

F  SU.5/ � SU.5/
[ [

SU.2/ � SU.3/ � SU.6/  SU.2/ � SU.3/ � U.1/ � SU.5/
: (12.4.4)
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Fig. 12.24 E8 theory

This nicely fits the structure of Minahan–Nemeschansky’s theory MN.E8/, see
Fig. 12.24. Checks of various properties are left as an exercise to the reader.

12.4.4 The Singular Limit of SU.N/ with Even Number
of Flavors

Finally, let us study a non-conformal example. Consider SU.N / theory with Nf D
2n flavors, with N > n. The curve is

ƒN�nQn
iD1.xC�C�i/

z
CƒN�n

nY
iD1
.xC�C Q�i/nz D xNCu2x

N�2C � � � CuN

(12.4.5)

with the differential � D xdz=z. Here we demanded
P

i �i C Q�i D 0 and split the
U.1/ mass term as �. Clearly something happens when uN�n D 2ƒN�n around
z � 1. This point was first considered in [9]. The correct physics was first discussed
in [10]. We will see below that the low-energy limit is an infrared-free SU.2/ gauge
theory coupled to the theories Rn and XN�nC4.

To study the infrared behavior, we let

uN�n;old D 2ƒN�n C uN�n;new; z D 1C ız (12.4.6)

and assume the scaling

�i � �; uN � �n; uN�1 � �n�1; : : : ; uN�nC2 � �2; (12.4.7)

and

u2 � �02; u3 � �03; : : : ; uN�nC2 � �0N�nC2: (12.4.8)

We then need to assume

�0N�nC2 � �2: (12.4.9)
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In particular we have

� 
 �0 
 1: (12.4.10)

In the region x � �, we can approximate the curve (12.4.5) as

ƒN�nQn
iD1.x C �C �i/

z
CƒN�n

nY
iD1
.x C �C Q�i/z

D .2ƒN�n C uN�n/xn C uN�nC2xn�2 C � � � C uN (12.4.11)

with the scaling (12.4.7). When this is written as a degree-n equation for x, the
coefficient of the xn term is given by

ƒN�n

z
CƒN�nz � 2ƒN�n � uN�n (12.4.12)

In the limit � ! 0, two zeros of (12.4.12) collide at z D 1. This is exactly the
situation we studied in Sect. 12.3 for SU.n/ theory with 2n flavors in the q ! 1

limit. We see that we generate the Rn theory coupled to SU.2/ gauge group; the
operator uN�nC2 is now regarded as the Coulomb branch vev of this SU.2/. The
parameters �i and Q�i are now the mass parameters for the SU.2n/ symmetry of the
Rn theory.

In the region x � �0, the curve (12.4.5) can be approximated as

c ız2 D .xN�n C u2x
N�n�2 C � � � C uN�nC1

x
C uN�nC2

x2
/; (12.4.13)

where the differential � D xdız and c is an unimportant constant. We already
encountered this in Sect. 11.5; this is the curve describing the Argyres–Douglas
point of SU.N � nC 1/ theory with two flavors. Equivalently, we called this theory
XN�nC4 in Sect. 10.5.

Summarizing, we see that the limiting theory has the structure given in Fig. 12.25.
Namely, there is a weakly-coupled SU.2/ gauge group, connecting the region x � �

given by a sphere of 6d theory of type SU.n/, representing the Rn theory, to the

Fig. 12.25 The most singular point of SU.N / with Nf D 2n flavors
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region x � �0, given by a sphere of 6d theory of type SU.2/, representing the theory
XN�nC4.

In the intermediate region �0 � x � �, the curve is just

ız2 � uN�nC2
x2

(12.4.14)

with � D ızdx � p
uN�nC2dx=x. We see that there is an SU.2/ gauge group, with

a � 1

2
i

I
ız

dx

x
� p

uN�nC2: (12.4.15)

The dual coordinate aD is then given roughly by

aD � 2

2
i

Z x��

x��0

p
uN�nC2

dx

x
� 2

2
i
a log

�

�0 : (12.4.16)

Using a � � and the relation (12.4.9), we see

aD D 2

2
i

N � n

N � nC 2
a log a C � � � : (12.4.17)

Recall that the running is given by

aD � 2

2
i
.4 �Nf /a log a C � � � (12.4.18)

for SU.2/ theory with Nf flavors. This system then effectively has

Nf D 5N � 5nC 8

N � nC 2
> 4: (12.4.19)

The SU.2/ is now infrared free. Note that this is correctly the sum of the effective
number of flavors of the RN theory and the XN�nC4 theory, as computed already.
Indeed, it is 3 for the RN theory, and 2.N � n C 1/=.N � nC 2/ for the XN�nC4
theory, see (12.3.4) and (10.5.8), respectively.

12.5 Tame Punctures and Higgsing

In Sect. 12.2, we introduced punctures on the ultraviolet curve labeled by Young
diagrams in a rather ad hoc manner. Examples for SU.4/ case were shown in
Fig. 12.7. In this last subsection of the note, we would like to study the meaning of
the Young diagram in slightly more detail. For example, how should we understand
the process of changing the full puncture to the simple puncture, i.e. the puncture
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Fig. 12.26 Change of the type of the puncture

of type .3; 1/, shown in Fig. 12.26? We will use this particular example of changing
the full puncture .1; 1; 1; 1/ to the simple puncture .3; 1/ as a concrete example
throughout this section. The extension to the general punctures should be left as an
exercise to the reader. The content of this section is based on an unpublished work
with Francesco Benini, done sometime between 2009 and 2010.

The Seiberg–Witten curves are both given by

�4 C �2.z/�
2 C �3.z/�C �4.z/ D 0: (12.5.1)

In both cases, �k.z/ has one full puncture at z D 0 and five simples punctures at
z D zi . For the first, the puncture at z D 1 was full and for the second, it is a simple
puncture, of type .3; 1; 1/.

For the first, the fields �k.z/ are given by

�k.z/ D u.1/k C u.2/k z C u.3/k z2 C u.4/k z3Q5
i .z � zi /

dzk

zk�1 : (12.5.2)

For the second, they are given by

�2.z/ D u.1/2 C u.2/2 z C u.3/2 z2 C u.4/2 z3Q5
i .z � zi /

dz2

z
;

�3.z/ D u.1/3 C u.2/3 z C u.3/3 z2Q5
i .z � zi /

dz3

z2
;

�4.z/ D u.1/4 C u.2/4 zQ5
i .z � zi /

dz4

z3
:

(12.5.3)

Here, u.i/k is the dimension-k Coulomb branch operator of the i -th gauge group, and
the way to determine them from the pole structure was described around (12.2.17).

It is clear that �k.z/ in (12.5.3) is obtained by setting u.3;4/4 D u.4/3 D 0 in (12.5.2).
We will explain below that we can start from the first theory, set the Coulomb branch
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Fig. 12.27 Assignment of
new names to the fields

parameters to this subspace, and then move to the Higgs branch, realizing the second
theory.

To facilitate the analysis of the Higgs branch, we introduce new names to the
bifundamentals, see Fig. 12.27. We name the rightmost SU.N / flavor symmetry
SU.N /0, and the gauge groups SU.N /iD1;2;3;::: from the right to the left. Introduce
an auxiliary N -dimensional complex space Vi for each of them. For each consecu-
tive pair SU.N /iC1 � SU.N /i , we have a bifundamental hypermultiplet .Qa

b;
QQb
a/

where a D 1; : : : ; N and b D 1; : : : ; N are the indices for SU.N /iC1, SU.N /i
respectively. We regard Qa

b as a linear map Ai W Vi ! ViC1 and QQb
a as a map in

the reverse direction Bi W ViC1 ! Vi . Note that each pair .Ai ; Bi / comes from one
of the several three-punctured spheres comprising the ultraviolet curve, as shown in
the figure. Let us say that there are k three-punctured spheres in total.

Let us introduce the notation

M 0
i WD BiAi ;

0Mi WD AiBi : (12.5.4)

We will use the trivial identity

trM 0
i
n D trBiAi � � �BiAi D trAiBi � � �AiBi D tr 0Mi

n (12.5.5)

repeatedly below.
Note that trMi WD trM 0

i D tr 0Mi is the mass term for the i -th U.1/ flavor
symmetry, which can be naturally associated to the simple puncture of the i -th three-
punctured sphere. We also have two other gauge invariant combinations, namely

M 0
0jtraceless WD M 0

0 � 1

N
trM0;

0Mkjtraceless WD 0Mk � 1

N
trMk: (12.5.6)

M 0
0jtraceless is an adjoint of SU.N / flavor symmetry associated to the full puncture

of the rightmost sphere, at z D 1. Similarly, 0Mkjtraceless is an adjoint of the SU.N /
flavor symmetry at the puncture z D 0.

Now, we would like to make a local modification at the puncture z D 1,
by giving a non-zero vev to the adjoint field M 0

0jtraceless. Other gauge-invariant
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combinations trMi for i D 1; : : : ; k and 0Mkjtraceless are ‘localized’ at other
punctures. So we choose to keep them zero.

The F-term relation from the adjoint scalar in the gauge multiplet for SU.N /i is

M 0
iC1jtraceless D 0Mi jtraceless: (12.5.7)

As we are imposing the condition trMi D 0, we can drop the tracelessness condition
and just say

M 0
iC1 D 0Mi: (12.5.8)

Then we have the following relations:

trM 0
0
n D tr 0M0

n D trM 0
1
n D tr 0M1

n D � � � D trM 0
k
n D tr 0Mk

n D 0 (12.5.9)

for arbitrary n.
This means that the gauge-invariant combinationM 0

0, transforming in the adjoint
of the SU.N / flavor symmetry, is a nilpotent matrix. They can be put in the Jordan
normal form by a complexified SU.N / rotation:

M 0
0 D Jt1 ˚ Jt2 ˚ � � � ;

X
i

ti D N (12.5.10)

where Jt is the Jordan cell of size t ,

Jt D

0
BBBBB@

0 1

0 1

0 1

: : :
: : :

0

1
CCCCCA

„ ƒ‚ …
t

: (12.5.11)

We again found a partition .ti / of N . We argue below that this partition .ti / is
exactly the Young diagram labeling the punctures introduced in Sect. 12.2. To study
the effect of the vev (12.5.10), we need to find a choice of hypermultiplet fields
.Ai ; Bi / solving the F-term and the D-term relations.

To write down such a choice, it is useful to introduce a further diagrammatic
notation, see Fig. 12.28. AnN -dimensional vector space V hasN basis vectors. Let
us denote them by a column of N dots. A matrix whose entries are 0 or 1, from
V to V 0 can be represented by a set of arrows connecting the a-th dot for V to the
b-th dot for V 0 if and only if the .a; b/-th entry of the matrix is 1. In the center of
Fig. 12.28 we denoted a Jordan block J4 of size 4. The rightmost diagram of the
same figure is for a projector to the last two basis vectors.

For concreteness, letN D 4, and give a nilpotent vev toM 0
0 of type .3; 1/, namely

it is given by J3 ˚ J1. A solution to the F-term relations are given in Fig. 12.29.
There, we see that the unbroken gauge group is now SU.4/�SU.4/�SU.3/�SU.2/.
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Fig. 12.28 A graphical
notation for matrices

Fig. 12.29 A particular point
on the Higgs branch

In general, a solution to the F-term relations can be constructed as follows. Let us
say we would like to set M 0

0 D X , whereX is in a Jordan normal form. We identify
the vector spaces V0 D V1 D V2 D � � � . Let us introduce the notation Wi D ImXi

and denote the projector to Wi by PWi . We then set

A0 D X; A1 D XPW1; A2 D XPW2; : : : (12.5.12)

and take

B0 D PW1 ; B1 D PW2 ; B2 D PW3; : : : : (12.5.13)

Clearly, the remaining gauge group is of the form

� � � � SU.N3/ � SU.N2/ � SU.N1/ (12.5.14)

where

Ni D N � dimWi D N � rankXi : (12.5.15)

Define si D Ni � Ni�1. A short combinatorial computation shows that when
X has the type described by a Young diagram whose i -th column from the left
has height ti , the sequence .s1; s2; : : :/ is such that si is the width of the i -th row
from the bottom. This is exactly the rule we already introduced in Sect. 12.2 for
the gauge group. Now let us determine the massless matter content of the resulting
theory.

An indirect but fast way to determine the matter content is as follows. We started
from a superconformal theory without any parameters. After the Higgsing, the
only parameter with mass dimensions is the vev of the hypermultiplet fields. By
the general decoupling of the hypermultiplet and the vector multiplet side of the
Lagrangian, which we discussed in Sect. 7.1, we see that there cannot be any mass
terms or dynamical scales in the low-energy theory after the Higgsing. Therefore,
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the resulting theory is also superconformal. We already determined Ni , and we
can only have bifundamental fields or fundamental fields. This shows that SU.Ni /
should have exactly

ni D 2Ni �NiC1 �Ni�1 (12.5.16)

fundamental hypermultiplets in addition.
Of course this result can also be obtained by a direct computation of the mass

terms of the various fields in the system. Note that originally, there is an ND1
superpotential trAiˆiBi and trBiˆiC1Ai where ˆi is the adjoint scalar of the
SU.N /i vector multiplet. As we gave vevs to some components to Ai and Bi , we
see that certain components of hypermultiplets scalars and vector multiplet scalars
pair up, due to the three-point couplings. One example is shown in Fig. 12.30. There,
the vev of A1 represented by a down-left arrow gives a mass term of a component
of the vector multiplet scalar of the gauge group for V2 and a component of B1.

We see that always a bifundamental in SU.NiC1/ � SU.Ni / remains massless.
But from a careful analysis of the mass terms, we see that sometimes more charged
hypermultiplets remain massless. For example, as shown in Fig. 12.31, the whole
bifundamental between V3 and V2 remains massless. At V2, SU.4/ is broken to
SU.3/. Therefore, from the point of view of the unbroken SU.4/ at V3, we see there
are an SU.4/ � SU.3/ bifundamental together with a fundamental of SU.4/. This
can be generalized to see that the number of additional fundamental hypermultiplets
of SU.Ni/ is given by (12.5.16).

In Sect. 12.2, we said that the puncture at z D 1 carries all the flavor symmetry
associated to the additional ni fundamental hypermultiplets attached to SU.Ni/.
This sounded somewhat counter-intuitive, since the flavor symmetry SU.ni / looks
more associated to the i -th node. Now we understand the physical mechanism
operating here. Let us take the puncture of type .3; 1/ again for concreteness, see
Fig. 12.32. The vev X D M 0

0, which is from our rule is given by X D J3 ˚ J1,
is invariant under the U.1/ rotation acting on the three basis vectors, as denoted by
black dots in the figure. This symmetry, if unaccompanied by the gauge rotation,

Fig. 12.30 Mass terms
generated for scalar fields

Fig. 12.31 Remaining fields
after the Higgsing
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Fig. 12.32 Flavor symmetry
assignment

does not fix the Higgs vevs hAii and hBii. To make the symmetry compatible
with the Higgs vev, we need to rotate at the same time all the other basis vectors
connected from the original black dots by the arrows representing Ai and Bi .

We see that the Higgs vevs identify the U.1/ flavor symmetry rotating three basis
vectors of V0 and the U.1/ flavor symmetry rotating the last basis vector of V3.
After the Higgsing, this latter U.1/ symmetry is exactly the flavor symmetry carried
by the additional one fundamental hypermultiplet of SU.4/ at V3, denoted by the
filled triangle in the figure. This analysis can be generalized to arbitrary types of
punctures.

Summarizing, we found a new interpretation of the punctures introduced in
Sect. 12.2. Such a puncture can always be obtained from the full puncture, by
first choosing the Coulomb branch vevs to the right subspace, and then giving
a nilpotent vev to the hypermultiplet combination M 0

0 which transforms in the
adjoint of the flavor SU.N / associated to the full puncture. The vev given to M 0

0

causes some of the other hypermultiplet fields Ai , Bi for i > 0 to have non-
zero vevs, breaking the original gauge group � � � � SU.N / � SU.N / � SU.N / to
� � � � SU.N3/ � SU.N2/ � SU.N1/.
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Chapter 13
Conclusions and Further Directions

In this lecture note, we first discussed the Lagrangian of ND2 supersymmetric
gauge theory, and then studied the Coulomb and Higgs branches of SU.2/ gauge
theories with various number of flavors. Two related concepts, the Seiberg–Witten
curve and the ultraviolet curve played very important roles along the way. We then
analyzed what happens when Coulomb branch vevs or exactly-marginal coupling
parameters are finely tuned. Sometimes the limit was described by a dual weakly-
coupled gauge theory, as was the case with SU.2/ theory with four flavors. Most
often, however, we saw that we end up with new superconformal field theories, of
Argyres–Douglas-type or of Gaiotto-type.

For example, we saw the theories ADNf D1;2;3.SU.2// and MN.E6;7;8/ in
Sect. 10.4, the theories XN and YN in Sect. 10.5, RN in Sect. 12.3 and TN in
Sect. 12.4. More and more ND2 superconformal theories are being discovered,
see e.g. [1–3]. This means that, to fully understand the interrelations of ND2
supersymmetric systems, we cannot restrict our attention to just ND2 theories
composed of vector multiplets and hypermultiplets.

The topics we covered in this lecture note are only a tip of a huge iceberg that
is the study of ND2 dynamics, and there are many other further directions of
research. Let us list some of them.1 First, we can put an ND2 theory on a nontrival
manifold:

• Using the topological twisting, it can be put on an arbitrary manifold [4]. When
the manifold is compact, the partition function is equivalent to what is known
as the Donaldson invariant to mathematicians. Applying the Seiberg–Witten
solution in the case of pure SU.2/ theory, Witten introduced a new mathematical
invariant, now called the Seiberg–Witten invariant [5], which revolutionized four-
dimensional differential geometry 20 years ago.

1The author did not try to be exhaustive and comprehensive here, and just cited a few recent ones.
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• We can put it on S1. Then the theory is effectively three-dimensional. As was first
analyzed in [6], the Coulomb branch as a three-dimensional theory is naturally a
fibration over the Coulomb branch as a four-dimensional theory. The 3d Coulomb
branch is hyperkähler, and has the structure of a classical integrable system with
finite degrees of freedom. This integrable system was originally introduced in
[7]. For modern developments, see e.g. [8].

• On the so-called � background. Very roughly speaking, it involves a forced
rotation of the entire Euclidean system on R

4 around the origin. The spacetime
is effectively compact and we can define the partition function, which is usually
called Nekrasov’s partition function. For a recent comprehensive discussion, see
e.g. [9]. In a certain limiting case, it is found in [10] that it gives rise to a quantized
integrable system which is a quantized version of the Donagi–Witten integrable
system.

• On a round or deformed S4. The spacetime is compact and the partition function
can be computed exactly, see e.g. [11–13]. The partition function is also known to
be related to 2d conformal field theories on the ultraviolet curve, see e.g. [14,15].

• On S1 �S3. The partition function is called the superconformal index, and gives
rise to 2d topological field theories on the ultraviolet curve. It also has a deep
relation to various important orthogonal polynomials, see e.g. [16, 17].

• Other backgrounds can also be considered. See [18] for S2 � S1 �R. A study of
ND1 theories on T 2 �S2 can be found in [19], and surely ND2 systems can be
similarly considered there.

Second, we can study dynamical excitations and externally-introduced operators of
these theories:

• We have seen how we can read off the number of BPS-saturated particle types
from the 6d construction. The number is an integer and therefore it cannot usually
change, but it does jump at certain loci in the Coulomb branch. This is called
the wall-crossing and is an intensively-studied area, see e.g. [20]. The resulting
spectrum can often be summarized using a diagram, called the BPS quiver. This
point of view was originally introduced in the context of ND2 supergravity in
[21]. For more recent developments, see e.g. [22–24].

• Instead of dynamical particles, we can introduce worldlines of external objects.
These are called line operators. See e.g. [25, 26].

• Once we allow the introduction of external line operators, there is no reason not
to introduce higher-dimensional external objects. When they have two spacetime
dimensions, they are called surface operators. A Seiberg–Witten curve can be
defined intrinsically as the infra-red moduli space of a surface operator [27].
Another interesting recent paper worth studying is [28].

• We can then consider objects with three spacetime dimensions. This is an external
domain-wall. A recent study can be found e.g. in [29].

On these topics, the review [30] is a great source of information, although the review
itself is meant for mathematicians.
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Third, the method described in this lecture note is not yet powerful enough to
solve arbitrary ND2 gauge theories. Many 4d ND2 theories do come from the 6d
ND.2; 0/ theory, but there are also many which presently do not. Therefore we
should also study alternative approaches.

• The 6d construction itself needs to be developed further. For tame punctures,
further discussions can be found in e.g. [31–33] and for wild punctures, more
can be found in [34, 35].

• A 6d construction of 4d ND2 theory can always be uplifted to Type IIB string
theory on a non-compact Calabi-Yau manifold, which is a fibration over the
ultraviolet curve. Even when the non-compact Calabi-Yau is not a fibration over
a curve, Type IIB string theory on it often realizes a 4d ND2 field theory, and
this gives an alternative to find the solution to the ND2 systems, see e.g. [36,37].

• The ND2� theories, i.e. ND4 super Yang–Mills deformed by a mass term for
the adjoint hypermultiplet, have been long solved for general gauge group G
[38]. Somewhat surprisingly, when G ¤ SU.N /, there is no known explicit
string theory or M-theory construction of these solutions. This clearly shows how
primitive our current understanding is.

Fourth, there are many properties of ND2 theories which are satisfied by all
known examples, but we do not currently have any way to derive them. It would be
fruitful to devise new methods to study these properties. Let us list a few questions
in this direction.

• The chiral operators on the Coulomb branch of the ND2 gauge theories are
clearly always freely generated. For example, in an SU.N / gauge theory, it is
generated by tr�k , (k D 2; : : : ; N ), which have no nontrivial relations. Exper-
imentally, all the non-Lagrangian theories obtained from the 6d construction
still satisfy this property: the Coulomb branch operators are freely generated.
The author conjectures this is in fact a theorem applicable to every ND2
supersymmetric systems.

• In [39], it was argued that there is a non-zero lower bound in the change in
the central charge a along the RG flow between two ND2 superconformal field
theories. Is there are more rigorous derivation of this fact?

• Is it possible to characterize the whole zoo ofND2 theories itself? As an analogy,
consider all the representation of SU.2/. If we allow only the direct sum, we need
all irreducible representations to construct all possible representations. If we also
allow the tensor product and the extraction of an irreducible summand, we only
need the two-dimensional irreducible representation to generate all others.
We can pose a similar question forND2 theories. If we allow only weak gauging,
what kind of generalized matter contents, i.e. hypermultiplets and other ‘irre-
ducible’ strongly-coupled theories, are needed to generate all the ND2 theories?
If we also allow the strongly-coupled limit, S-duality, and decomposition into the
constituent parts, how much do we need? What ‘percentage’ of the theories can
be obtained via 6d, string or M-theory constructions?
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ND2 theories that are complete (in a certain technical sense) were classified in
[23], and ND2 weakly-coupled gauge theories were classified in [40]. These are
however but two tiny steps into the vast space of all possible ND2 theories. The
theories we saw in this lecture note are summarized in Appendix B.

Finally, the author would like to emphasize that even such innocent looking
gauge theories as

• ND2 supersymmetric SU.7/ gauge theory with a hypermultiplet in the three-
index anti-symmetric tensor representation, or

• ND2 supersymmetric SU.2/3 gauge theory with a massive full hypermultiplet
in the trifundamental, .Qaiu; QQaiu/

have not been solved yet. He would be happy to offer a dinner at the Sushi restaurant
in the Kashiwa campus to the first person who finds the solution to either of the two
theories. There are many other ND2 gauge theories without known solutions, as
listed in [40]. So this field should be considered still wide-open.

Hopefully, those readers who came to this point should be at least moderately
equipped to tackle these and other recent articles on ND2 supersymmetric theories.
It would be a pleasure for the author if they would continue the study and contribute
to extend the frontier of the research.
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Appendix A
Prepotential and the Instanton Computation

In Sect. 4.3, we learned how to obtain a, aD of the pure SU.2/ theory in terms
of the Seiberg–Witten curve. By integrating aD twice, we can then determine the
prepotential F.a/ concretely. In this appendix, we first perform this computation,
and then explain very briefly how the same prepotential can be obtained from a
microscopic path-integral calculation.

A.1 Prepotential from the Curve

The curve of the pure SU.2/ theory was given in (4.3.1), which we reproduce here:

ƒ2z C ƒ2

z
D x2 � u; (A.1.1)

with the differential � D xdz=z. Then a and aD are determined via

a D 1

2
i

I
A

�; aD D 1

2
i

I
B

�: (A.1.2)

From this, we should determine F.a/ such that aD D @F=@a. The low-energy
coupling is �.a/ D @aD=@a. In (4.3.16), we obtained the form of the weak-coupling
expansion of �.a/. Integrating twice, we see that F.a/ has the expansion

2
iF.a/ D �4a2 log
a

ƒ
C

1X
kD1

dk
ƒ4k

a4k�2 (A.1.3)

where dk are purely numerical numbers. Let us determine them explicitly, follow-
ing [1].
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For this, we use the so-called renormalization group relation

2
iƒ
@

@ƒ
F.a;ƒ/ D 4u (A.1.4)

derived originally in [3]. This relation can be proved in various ways. One
immediate way is to see that

2
iƒ
@

@ƒ
D 4

@

@�UV
(A.1.5)

due to (4.1.9), where we keep the UV regulator ƒUV . Recall that the prepotential
at the ultraviolet scale is F.�/ D .�UV=2/ tr�2, see the end of Sect. 2.4. Then, the
relation (A.1.4) is just the statement

@

@�UV
hF i D 1

2
htr�2i D u: (A.1.6)

If one prefers, we can show the relation (A.1.4) from (A.1.2) purely mathemati-
cally. Let us start from the obvious relation

.ƒ
@

@ƒ
C a

@

@a
/F D 2F: (A.1.7)

Using this, we find

@

@u
ƒ
@

@ƒ
F D @

@u
.2F � a @

@a
F / D a

@aD

@u
� @a

@u
aD (A.1.8)

D 1

.2
i/2

�I
A

�

I
B

@

@u
� �

I
A

�

I
B

@

@u
�

�
: (A.1.9)

Now � D xdz=z is a differential of the second kind (i.e. meromorphic with zero
residue, and @�=@u D �dz=.2xz/ is a differential of the first kind (i.e. holomorphic).
Then we can use the reciprocity law of Riemann to compute it, see e.g. Sect. 2.3 of
[2]. Namely, the second-order pole of � is at z D 0 and 1. At both points, w WD 1=x

is a good local coordinate, and we have the expansion

� D x
dz

z
D �2dw

w2
C � � � ; @

@u
� D � dz

2xz
D dw C � � � : (A.1.10)

Therefore we have

@

@u
ƒ
@

@ƒ
F D 4

2
i
; (A.1.11)

proving (A.1.4).
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Let us now come back to the computation of the coefficients dk in (A.1.3). Let
u D a2. Then

a.a/ D 1

2
i

I
A

� D 1

2
i

I
A

.

1X
lD0
.z C 1

z
/l

.�1/l .2l/Š
.1 � 2l/.lŠ/222l

ƒ2l

a2l�1
/
dz

z
(A.1.12)

D a

1X
kD0

ƒ4k

a4k
1

.1 � 4k/24k
.4k/Š

.2k/ŠkŠkŠ
: (A.1.13)

Now, plug in the expansion (A.1.3) into the relation (A.1.4). We have the relation

a2.1C
1X
kD1

kdk
ƒ4k

a4k
/ D a2: (A.1.14)

The relations (A.1.13) and (A.1.14) together are sufficient to determine dk recur-
sively. The first few terms are

d1 D 1

2
; d2 D 5

64
; d3 D 3

64
; d4 D 1469

32768
; : : : : (A.1.15)

A.2 Prepotential from the Instanton Computation

Let us present here, another computation of the same prepotential, from a more
microscopic point of view. This computation can be phrased entirely in terms of the
path integral of the pure SU.2/ gauge theory [4]. Essentially the same calculation
can be phrased more physically using a closely-related five-dimensional field theory.
This is the approach we take here. The presentation here will be very brief; for more
details, readers are referred to [7].

A.2.1 The � Background

We start from the fact that given a four-dimensional ND2 supersymmetric gauge
theory with gauge group G and hypermultiplets in the representation R of G, we
can also consider a five-dimensional supersymmetric gauge theory with the same
gauge group G and hypermultiplets in the same representation R, such that when
we compactify this theory on S1 with radius ˇ and then take the zero-radius limit
ˇ ! 0, we recover the original four-dimensional theory.
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Fig. A.1 Schematic drawing
of the five-dimensional �
background

We consider this five-dimensional theory on the so-called � background, which
is obtained as follows. We first regard R

5 as C
2 � R, with coordinates .z1; z2; x5/

where z1;2 are complex and x5 is real. We then make an identification

.z1; z2; x5/ � .z1e
iˇ�1 ; z2e

iˇ�2 ; x5 C ˇ/: (A.2.1)

To preserve supersymmetry, we need to accompany this identification (A.2.1) with
an SU.2/R rotation

diag.eiˇ.�1C�2/=2; e�iˇ.�1C�2/=2/ 2 SU.2/R: (A.2.2)

We can also choose to perform a gauge rotation by

eiˇEa 2 G (A.2.3)

where Ea is an element in the Lie algebra of G, when we make the identifica-
tion (A.2.1). See Fig. A.1 for a schematic drawing of this system.

The fifth direction of this spacetime is ˇ, and this comes with a rotation of the
R
4 side by the angle ˇ�1;2. When we regard x5 as the time direction, the system are

forced to rotate, and any excitations far from the origin of C2 cost a lot of energy.
This makes the system effectively of finite volume, of size � 1=.�1�2/. Therefore
the system has a finite partition function Z.�1;2; �UV I Ea/ and its logarithm behaves
as

logZ.�1;2; �UV I Ea/ D 1

�1�2
F.�UV I Ea/C terms less singular in �1;2: (A.2.4)

where F is the free energy per volume of the system. Here, we define �UV using the
five-dimensional coupling constant gUV5, which we define so that the gauge kinetic
term is of the form

Z
dx5

Z
d4x

1

2gUV5
2

trF��F��: (A.2.5)

By first integrating over x5 which produces a factor of ˇ, we find

�UV D ˇ
4
i

gUV5
2
: (A.2.6)
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A basic fact is that this free energy F equals the prepotential:

2
iF.�UV I Ea/ D F.�UV I Ea/ D lim
�1;2!0

�1�2 logZ.�UV I Ea/: (A.2.7)

By taking a controlled limit ˇ ! 0, we can then extract the prepotential of a purely
four-dimensional theory. This universal fact about any ND2 theory can be derived
in various ways, see [4] or the Appendix of [6].

A.2.2 Reduction to Supersymmetric Quantum Mechanics

This reformulation might sound cumbersome, but the nice thing is that the compu-
tation of the prepotential is now reduced to that of the partition function Z of the
system in the � background (A.2.1), which can be done in much the same way by
reducing the system to supersymmetric quantum mechanics, as we did in Sect. 3.3.2
when we analyzed pure ND1 gauge theories in a box. Note that we regard the extra
dimension x5 as the time direction t here.

The total partition function Z is a product of the perturbative part Zpert and the
non-perturbative partZnon-pert. The first part just reproduces the leading logarithmic
term in (A.1.3), and the way it is reproduced is itself quite interesting, but we
do not reproduce it here. Instead, let us concentrate on the non-perturbative part,
Znon-pert. To compute this, one can restrict to the lowest-energy states in each
topological sector, as in Sect. 3.3.2. From (A.2.5), we see that the energy of a gauge
configuration has the contribution

Z
d4x

1

2gUV5
2

trF��F��; (A.2.8)

which is bound from below by 8
2jkj=gUV5
2 as we saw in (3.2.4), where k is the

instanton number.
Therefore, the only classical field configuration that contributes to the computa-

tion ofZ is such that at every constant time surface t D const, we have an instanton
configuration. As the instanton number k is an integer, this cannot change as we
move along time. However, there is a continuous family of instanton with fixed k,
and therefore the shape of the instanton can vary. Denote byMk the parameter space
of this continuous family. This is known as the instanton moduli space. Then, given
a point p 2 Mk, we have an instanton solution F��.x1;2;3;4Ip/ for �; � D 1; 2; 3; 4.
As the time t D x5 changes, the shape of the instanton changes. In other words,
we have a path p.t/ in Mk . Then the five-dimensional action (A.2.5) becomes
approximately

Z
dt
Z
d4x

1

2gUV5
2

trF��F�� D
Z

dt.
8
2

2gUV5
2

CGIJ.p/@tp
I .t/@tp

J .t//

(A.2.9)
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where the first term and the second term on the right hand side come from the terms
on the left hand side with spacetime indices �; � without 5 or with 5, respectively.
Here, the index I D 1; : : : ; dimMk is for the local coordinates of Mk , and GIJ.p/

is the metric on Mk.
For G D SU.2/, the moduli space Mk is known to be a 4jkj dimensional space.

Then, the system for a given k reduces to a supersymmetric quantum mechanics of
a point particle moving in Mk; the action of the bosonic part is given in (A.2.9).
This is essentially a Born-Oppenheimer approximation; a significant fact is that in a
supersymmetric background, this approximation is in fact exact.

Around (3.2.4), we explained that an instanton with k � 0 and k 	 0 preserves
a different supercharge. Due to this, only instantons with k � 0 contribute to the
computation of Z; those with k 	 0 contribute to NZ. From these considerations, we
have the following formula:

Znon-pert D
1X
kD0

Zk (A.2.10)

Here,Zk is the partition function of the supersymmetric quantum mechanics onMk

whose bosonic part has the action (A.2.9). As the first term of (A.2.9) just gives a
constant shift of energy, it is useful to separate it by writing

Zk D e2
i�UVk QZk (A.2.11)

where QZk is the partition function of the supersymmetric quantum mechanics on
Mk where the lowest energy state has zero energy.

A.2.3 Concrete Computations

Let us compute Zk . We start from the simplest case k D 0. In this case, the
moduli spaceM0 is just a single point, and a point particle moving in a point cannot
do much. There is just one-dimensional Hilbert space with zero Hamiltonian, and
therefore we have

Z0 D 1: (A.2.12)

Next, let us consider k D 1. In this case, the instanton moduli space is C
2 �

.C2=Z2/. Here, the first C2 specifies the center of mass of the instanton on C
2. An

SU.2/ instanton with k D 1 is further specified by a size �, which is a non-negative
real number, and a gauge direction in the group manifold. As gauge fields are valued
in the adjoint representation, the gauge direction takes values in the SO.3/ group
manifold, which is S3=Z2. Combined with the size �, they parameterize C2=Z2.
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Introduce coordinates .z1; z2/ for C2 and .u; v/ for C2=Z2, with an identification
.u; v/ ' �.u; v/. Under the angular rotation by ˇ�1;2, they are affected as

.z1; z2; u; v/ 7! .eiˇ�1z1; �iˇ�2z2; e
iˇ.�1C�2/=2u; eiˇ.�1C�2/=2v/: (A.2.13)

The actions on z1 and on z2 come directly from the definition; the actions on u and
v are more subtle. Under the gauge rotation

diag.eiˇa; e�iˇa/ 2 SU.2/; (A.2.14)

z1;2 are unchanged and

.u; v/ 7! .eiˇau; e�iˇav/: (A.2.15)

These data are sufficient to compute Z2. First, let us consider the contribution
from the degrees of freedom on the motion described by z1 2 C. The supersym-
metric wavefunctions are holomorphic functions of z1 (times a non-holomorphic
Gaussian factor which are irrelevant in our analysis). The state whose wavefunction
is zn1 gets multiplied by einˇ�1 by the spatial rotation. Therefore, the trace of this
element over this part of the Hilbert space is

1X
nD0

einˇ�1 D 1

1 � eiˇ�1
: (A.2.16)

Similarly, the motion described by z2 gives a factor 1=.1� eiˇ�2/. The motion along
u; v would give, similarly, a factor

1

1 � eiˇ..�1C�2/=2Ca/
1

1 � eiˇ..�1C�2/=2�a/ (A.2.17)

if it were not for the identification .u; v/ ' .�u;�v/. Among the wavefunctions
unvm for n;m non-negative integers, only those with even n C m are compatible
with this identification. Therefore, the correct contribution from the motion along u
and v is

X
n	0; m	0; nCmWeven

einˇ..�1C�2/=2Ca/eimˇ..�1C�2/=2�a/

D 1C eiˇ.�1C�2/

.1 � eiˇ.�1C�2C2a//.1 � eiˇ.�1C�2�2a// : (A.2.18)

Finally, we should not forget that there is a contribution from the constant shift of
the energy as in (A.2.11).
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Combined, we find that the one-instanton contribution is

Z1 D e2
i�UV
1

1 � eiˇ�1
1

1 � eiˇ�2
1C eiˇ.�1C�2/

.1 � eiˇ.�1C�2C2a//.1 � eiˇ.�1C�2�2a// :
(A.2.19)

Let us consider how we can take the four-dimensional limit ˇ ! 0. The
denominator of (A.2.19) is of order ˇ4; therefore, to take a sensible limit of Z1,
we must assume that

e2
i�UV � ˇ4: (A.2.20)

This is compatible with the one-loop running (4.1.9) of �UV , by identifying ˇ�1 D
ƒUV . Indeed, we should consider the five-dimensional description goes to an
effectively four-dimensional one around the energy scale inverse to the radius of
the x5 direction. Let us decide to take the ˇ ! 0 limit fixing

ƒ4 WD ˇ�4e2
i�UV : (A.2.21)

Then we find

Z1 ! ƒ4 1

2

1

�1

1

�2

1

.�1 C �2/=2C a

1

.�1 C �2/=2� a : (A.2.22)

Plugging it into (A.2.7), we find the instanton contribution to the prepotential to this
order:

2
iFnon-pert D lim
�1;2!0

�1�2 log.1C e2
i�UVZ1 C � � � / D 1

2

ƒ4

a2
C � � � : (A.2.23)

We find that we reproduce the same coefficient d1 D 1=2 as in (A.1.15), but we
cannot claim victory here, as in this casual derivation, there is no way to tell a priori
the instanton factor ƒ4 on the curve side and the corresponding factor ƒ4 on the
instanton computation side are the same. Instead, this serves as a confirmation that
ƒ4 D ƒ4.

Therefore, to really see the agreement, we need to go further. Much more pages
are needed to explain how to perform this computation, but the result can be written
down in a combinatorial formula given below:

QZk D
X
Y1;Y2

2Y
n;mD1

Y
s2Yn

1

1� eiˇ.�LYm.s/�1C.AYn .s/C1/�2Cam�an/

Y
t2Ym

1

1 � eiˇ..LYn .t/C1/�1�AYm.s/�2Cam�an/ : (A.2.24)
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Fig. A.2 Definition of the arm length and the leg length, given a box s in a Young diagram. AY .s/
and LY .s/ are the numbers of white and black circles, respectively

Here, the sum runs over pairs .Y1; Y2/ of Young diagrams with the number of total
boxes being k, s 2 Y denotes that s is a box in a Young diagram Y , and finally the
functions AY .s/ and LY .s/ are the arm length and the leg length of the box s in a
Young diagram Y , as given in Fig. A.2.

It is a good exercise to reproduceZ1 given in (A.2.19) from this general formula;
the contributing pairs of diagrams are . ; 0/ and .0; /. To compute Z2, one needs

to sum over five pairs . ; 0/, . ; 0/, . ; /, .0; /, .0; /; you will find that

Z2 ! ƒ8 .8.�1 C �2/
2 C �1�2 � 8a2/

�21�
2
2..�1 C �2/2 � 4a2/..2�1 C �2/2 � 4a2/..�1 C 2�2/2 � 4a2/

(A.2.25)

in the limit ˇ ! 0.
Plugging it again into (A.2.7), we find the instanton contribution to the prepoten-

tial to this order:

2
iFnon-pert D lim
�1;2!0

�1�2 log.1CZ1 CZ2 C � � � / (A.2.26)

D lim
�1;2!0

�1�2

�
Z1 C .Z2 � 1

2
Z1

2/C � � �
�

(A.2.27)

D 1

2

ƒ4

a2
C 5

64

ƒ8

a6
C � � � ; (A.2.28)

where we also took the limit ˇ ! 0 to go from (A.2.27) to (A.2.28). We
indeed reproduce d2 D 5=64 we already saw in (A.1.15). Using any computer
algebra system one likes, it is straightforward to check that the coefficients dk as
determined from the curve (A.1.15) and those as determined from the instanton
formula (A.2.24) always agree. A general mathematical proof was given e.g. in [5].
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Appendix B
The Zoo of ND2 Theories

In this lecture note, we have seen many four-dimensional ND2 theories. The aim
of this appendix is to summarize them in a single place, since many of them are
gradually introduced along the way and appear in scattered places.1

Unfortunately, we cannot present a coherent classification of all the theories
involved, as our understanding of the totality of ND2 theories is yet quite
inadequate. However, we will already be able to see some pattern: there are many
standard infinite series, together with some ‘exceptional’ ones. Furthermore, some
of the first members of the infinite series accidentally become equal to each other.
This is just as in the classification of the simple Lie algebras: there are four infinite
series Ak D SU.kC1/, Bk D SO.2kC1/, Ck D Sp.k/ and Dk D SO.2k/,
together with exceptionals E6;7;8, F4 and G2. There are accidental coincidences
such as A1 D B1 D C1, B2 D C2, A3 D D3, and some of the exceptionals can
be naturally continued below, so that E5 D D5 and E4 D A4.

B.1 Gauge Theories

Let us first discuss Lagrangian gauge theories. As we discussed extensively in
Chap. 2, a Lagrangian ND2 supersymmetric theory is basically specified by

• a gauge groupG, which can be a product of many simple factors
• and the (half)-hypermultiplet in a representation R of G.

In addition, we have one complexified gauge coupling for each simple factor of the
gauge group G, and we can add mass terms for the hypermultiplets.

1The author thanks Simone Giacomelli for helping him prepare this chapter.
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218 B The Zoo of ND2 Theories

In order for the theory to be UV-complete, i.e. to be defined at every energy scale,
the one-loop beta function as defined in (3.1.6) needs to be non-negative. This puts
a constraint on the possible hypermultiplet representationR givenG. For simple G,
the list of all such allowed representations are known for quite some time [10,11,14].
The classification for semi-simple G was done in [2].

A typical gauge theory with semi-simple G is obtained as follows. Take a graph,
consisting of vertices and edges. For each vertex v, introduce a gauge multiplet
SU.Nv/, and for each edge e connecting vertices v and v0, introduce a bifundamental
hypermultiplet of SU.Nv/� SU.Nv0/. Given a graph, one can find an assignment of
the number of colors Nv such that

• the theory is asymptotically free if and only if the graph is a finite Dynkin
diagram � , and

• the theory is superconformal if and only if the graph is an affine Dynkin diagram
O� .

These are often called quiver gauge theories, of type � or O� , respectively, and were
systematically analyzed first in [13].

More generally, we can start from a possibly non-Lagrangian theory T with a
flavor symmetry F . We can then pick a subgroupG � F , and try to couple a vector
multiplet with gauge group G to the theory T . As long as the coefficient of the
two-point function of the current of G, defined as in (10.5.8), is not too big, the
combined system should make sense at every energy scale. Such combined system
can be called a semi-Lagrangian system, in the sense that we have both a part T for
which we do not have a Lagrangian and the vector multiplet part for which we do
have a Lagrangian. Below, we do not explicitly list such semi-Lagrangian systems.

B.2 6d Constructions

In this lecture note, the Seiberg–Witten solutions of Lagrangian gauge theories are
almost always phrased in terms of a certain 6d ND.2; 0/ supersymmetric theory
compactified on the ultraviolet curve, as explained in Chap. 6. We mainly focused
on the 6d theory obtained from N M5-branes: this is the 6d ND2 theory of type
SU.N / D AN�1. In addition, it is known that there are 6d ND.2; 0/ theories of
type SO.2N / D DN and E6, E7 and E8.

B.2.1 Types of 6d ND.2 ; 0/ Theories

For theories of type A1, we saw in Chap. 9 that a field �.z/ on the 6d worldvolume,
so that the Seiberg–Witten curve is given by �2 D �.z/. We also saw there that
we can introduce various punctures on the ultraviolet curve, giving poles of various
orders to the field �.z/. For theories of type AN�1, we saw in Chap. 12 that there
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are fields �2.z/, . . . , �N .z/. Again, we discussed there various punctures on the
ultraviolet curve, that introduce poles of various orders to the field �2;:::;N .z/. Note
that the field �.z/ for type A1 corresponds to �2.z/ in a more general notation.

We discussed 6d theories of type DN implicitly in Sect. 11.4. There, we used
the worldvolume fields �2.z/, �4.z/, . . . , �2N�2.z/ and �2N .z/. But it is known that
the last one should be viewed as a square of another field: �2N .z/ D Q�N .z/2. For
theories of typeEn, we have worldvolume fields �i .z/ where i runs over the degrees
of invariants of the Weyl group of type En. In particular, the one with the highest i
has i D 12, 18, 30 for E6, E7, E8, respectively. Note that for 6d theory of any type
G, the worldvolume field �i .z/ with highest i has i D h_.G/, where h_ is the dual
Coxeter number.

B.2.2 Punctures of the 6d Theory

A tame puncture is a puncture such that the pole of �i .z/ is of order less than
or equal to i . A wild puncture is one such that at least one of the pole of �i.z/
is of order larger than i . Tame/wild punctures are also called regular/irregular
punctures. Possible types of tame punctures for any type are classified, see [7]. As
discussed in Sect. 12.2, we saw that for type AN�1, a tame puncture is labeled by a
partition ofN . Regard a partition .t1; : : : ; tk/with a nilpotent matrix with the Jordan
block decomposition (12.5.10) specified by this partition. Then, for 6d theory of an
arbitrary type G, a tame puncture is labeled by a nilpotent element of the complex
Lie algebra of G, up to conjugation by the complexified adjoint action of G. One
particular nilpotent element which always exists for anyG is the zero element itself.
The corresponding puncture is called the full puncture, and has an associated flavor
symmetry G. For G D AN�1, this was explained in detail in Sect. 12.2.

Possible types of wild punctures are not studied as well, although there is a work
on type Ak theories [16]. One special type of wild puncture is known to exist for
any type, and is specified by the orderN of the pole for �i.z/ with i D h_.G/. Call
this a standard wild puncture of order N . By definition, N > h_.G/. For G D A1,
this is the type of punctures we discussed rather extensively in Sect. 10.5. In the
figures in that section, we denoted those punctures by labeling it by the pole order
in a roman numeral.

B.2.3 Basic Building Blocks

With this preparation, we can construct a rather large class of 4d ND2 theories, by
taking the following steps:

• Choose the type G D AN ; DN , E6;7;8 of the 6d theory.
• Pick a ultraviolet curve C on which to put this 6d theory.
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• Pick a collection of tame and wild punctures, labeled by various data, on C .
• Go to the low-energy limit to decouple the higher-dimensional ingredients.

Four-dimensional theories obtained in this manner are called theories of class S in
the literature.

When C has of high genus or there are many punctures, we can chop the
ultraviolet curve C . In general, this process produces two full punctures at the place
we cut the curve C . A reverse process is to couple a vector multiplet G to the
diagonal G subgroup of the two G flavor symmetries at the two full punctures. For
G D AN�1 this process was described at length in Chap. 12.

Repeating this process, we find that any class S theories can be obtained by
coupling the following basic ingredients by gauge multiplets:

1. A sphere with three tame punctures, or
2. A sphere with one tame and one wild puncture, or
3. A sphere with one wild puncture.

The theories in the first class are called tinkertoys and extensively studied in [5,
6, 8, 9]. For type AN�1, we discussed some examples of them in Chap. 12. When
three punctures are all full punctures, the theory is often denoted by TG , and when
G D AN�1, we also call it the TN theory, following [12]. All the other tinkertoys
are obtained by giving an appropriate Higgs vev to the TG theory, as we discussed
in Sect. 12.5.

The theories in the second and the third classes are not studied as well. For
type A1, we discussed them in Sect. 10.5 under the names XN and YN . A natural
generalization of XN and YN exists for any type:

• the theory XN.G/, obtained from a sphere of 6d theory of type G, with a full
puncture and a standard wild puncture of order N ,

• the theory YN .G/, obtained from a sphere of 6d theory of type G, with a single
standard wild puncture of order N .

These notations are not at all standard in the literature. In the notation of [3], we
have

XN.G/ D DN�h_.G/.G/: (B.2.1)

In Sects. 11.2 and 11.4.2, we saw the Seiberg–Witten solution of pure G gauge
theory for G D SU.N / and SO.2N /. In general, when G D AN�1, DN or E6;7;8,
the solution of the pure G gauge theory was found in [15], and their results can be
phrased in our language in the following way. Namely, the theory Xh_.G/C1.G/ is
an empty theory with G symmetry. Take two copies of them, and couple a G vector
multiplet to their full punctures. We have pureG gauge theory, and its 6d realization
is a sphere with two standard wild punctures of order h_.G/ C 1. The Argyres–
Douglas points of these pure theories can be easily obtained by colliding two wild
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singularities, as we did in Sect. 10.5 for typeA1. Two standard wild punctures merge
into a single standard wild puncture of order 2h_.G/C 2. Therefore, we find that

ADpure.G/ D Y2h_.G/C2.G/: (B.2.2)

In Sect. 11.5, we learned that

ADpure.SU.N // D YNC4.A1/; ADpure.SO.2N // D XNC2.A1/: (B.2.3)

Therefore we see that there are coincidences of XN.G/, YN.G/ with different N
and G.

It is known that the quiver theories of type A, OA, D and OD can be obtained in
this 6d construction. It is currently not known if the quiver theories of type E and
OE can be obtained in this manner.

B.3 Other Stringy Constructions

There are two additional classes of constructions of ND2 theories, that utilize string
theory. One is the F-theory construction briefly explained in Sect. 10.4.2; another is
to use Type IIB string on a singular Calabi-Yau manifold.

B.3.1 F-Theoretic Construction

F-theory is a version of Type IIB string theory where the axiodilaton � is allowed
to have nontrivial SL.2;Z/ monodromy, generated by 7-branes. N D7-branes
carry AN�1 gauge symmetry, and N D7-branes on top of an O7-plane carry DN

symmetry. In addition, there are 7-branes which carry flavor symmetry A0;1;2 and
E6;7;8. This additional type of 7-branes with flavor symmetry A0;1;2 is often called
7-branes of type H0;1;2, to distinguish it from the usual D7-branes.

Now, we take the spacetime to be

R
1;3 � C � C

2; (B.3.1)

and pick a 7-brane of type G D H0;1;2 or E6;7;8 and put them at

R
1;3 � f0g � C

2: (B.3.2)

Finally we introduce k D3-branes at

R
1;3 � f0g � f0g: (B.3.3)
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Let us denote the resulting ND2 theory by F.G; k/. As we already explained in
Sect. 10.4,

ADNf Dn.SU.2// D F.Hn�1; 1/ (B.3.4)

for n D 1; 2; 3, and

MN.En/ D F.En; 1/ (B.3.5)

for n D 6; 7; 8. The theories F.G; k/ with k > 1 are higher-rank versions of these
theories. There are k Coulomb branch operators in the theory F.G; k/, representing
the motion of k D3-branes along the direction C in (B.3.1). The Higgs branch
of F.G; k/ describes the process where D3-branes become instantons along C

2

in (B.3.1) on the 7-brane, and therefore is given by the k-instanton moduli space
of the groupG.

This construction can be further generalized by replacing the direction C
2

in (B.3.1), (B.3.1) by an ALE orbifold C
=� , the possible type of which was already

listed in Table 10.2. These theories are not studied yet.
In Chap. 12 and in particular in Sect. 12.4, we already discussed that MN.E6/ D

T3 and that MN.E7;8/ can also be represented as a three-punctured sphere. The
realization of F.E6;7;8; k/ for general k as a tinkertoy was given in [1].

B.3.2 Type IIB on a Singular Calabi-Yau

The final construction we explain in this note goes as follows. Type IIB string theory
on a compact Calabi-Yau manifold with complex dimension 3 gives rise to four-
dimensional ND2 supergravity system. This setup was studied in great detail in
relation to the celebrated mirror symmetry. Here we try to make the Calabi-Yau
non-compact, to let the gravity decouple. To have something non-trivial in the end,
we want to make the Calabi-Yau space singular. An easy way to describe a singular
Calabi-Yau space of complex dimension 3 is to write down an equation with four
complex variables, e.g.

x2 C y2 C z2 C w2 D 0; (B.3.6)

which is called the conifold. Type IIB string theory on this conifold geometry is
known to produce just one free hypermultiplet.

There are many types of such singular Calabi-Yau geometry. For example, it can
be used to describe quiver gauge theories associated to arbitrary Dynkin diagrams
[13]. Instead, let us discuss here the Calabi-Yau geometries which would give non-
Lagrangian theories.

For this purpose, let us start our discussion from singular Calabi-Yau geometries
of complex dimension two instead of three. Such geometries are known to be
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Table B.1 Simply-laced Lie
groups G� and the
corresponding singularities
C
2=� as equations with three

variables

G� x2 C P.y; z/ D 0

SU.n/ x2 + y2 + zn D 0

SO.2n/ x2 + y2z + zn�1 D 0

E6 x2 + y3 + z4 D 0

E7 x2 C y3 C yx3 D 0

E8 x2 C y3 C z5 D 0

exhausted by the ALE orbifold C
2=� , listed in Table 10.2. It is known that all

these singularities C
2=� can be written as an equation in three variables, shown

in Table B.1. It always have the form x2 C P�.y; z/ D 0.
Now, define Calabi-Yau geometries of complex dimension three labeled by a pair

.G�;G�0/ by

P�.x; y/C P�0.z;w/ D 0: (B.3.7)

For example, the conifold geometry (B.3.6) corresponds to a pair .A1; A1/. By
abusing the notation, we denote the ND2 theory obtained by putting Type IIB string
theory on the geometry labeled by .G;G0/ by the same symbol .G;G0/. This class
of theories was introduced and studied in [4]. Obviously, we have

.G;G0/ D .G0; G/: (B.3.8)

In addition, the equalities

.D4; A3/ D .E6; A2/; .E8; A3/ D .E6; A4/ (B.3.9)

are manifest, just by writing down the geometries (B.3.7).
Note that the 6d ND.2; 0/ theory of type G� can also be obtained from putting

Type IIB theory on C
2=� . Therefore, the class of models discussed in Sect. B.2

can also be obtained by putting Type IIB theory on a Calabi-Yau geometry of
complex dimension three, which is a fibration of deformed C

2=� singularities over
the ultraviolet curve C . The theories .G;G0/ introduced here instead uses a pair, but
when G0 D Ak, they can be related to the 6d construction of typeG:

.G;Ak/ D Y2h_CkC1.G/: (B.3.10)

Combined with (B.2.2), we see

ADpure.G/ D Y2h_C2.G/ D .G;A1/: (B.3.11)

When we further set G D AN�1, the equality becomes

ADpure.AN�1/ D Y2NC2.AN�1/ D .AN�1; A1/ D .A1; AN�1/ D YNC4.A1/:
(B.3.12)
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Further letting G D A1, we see that .A1; A1/ corresponds to the most singular
point of the pure SU.2/ theory, i.e. the monopole point representing a single
hypermultiplet. This is consistent with what we said below (B.3.6).

When we set G D DN in (B.3.11), we have

ADpure.DN / D Y4N�2.DN / D .DN ;A1/ (B.3.13)

but we saw in (B.2.3) that this is also equal to XNC2.A1/, which is denoted by
DN.A1/ in [3], as we mentioned in (B.2.1).

There are a few other accidental equivalences of the theories introduced so far in
this section. But the full discussion of such coincidences should probably be better
done after we have a clearer idea of the entirety of the zoo of ND2 theories in
general.
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