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Supervisor’s Foreword

So far, progress in our understanding of the early Universe has been driven by
observations using electromagnetic waves, such as visible light and, most impor-
tantly today, the Cosmic Microwave Background (CMB) radiation which was
emitted when the Universe was 300, 000 years old. However, this approach is
restricted because before that time, the Universe was opaque to electromagnetic
waves. Therefore, any signals from earlier times can only be observed indirectly
through their imprinted signatures on the CMB, galaxy distribution or other
properties of the current Universe. This is a serious limitation, because many
important questions in cosmology require information about the events during the
first nanosecond after the Big Bang.

There is still a lot of scope to exploit the whole electromagnetic spectrum better,
but in the long term, gravitational waves are likely to emerge as an increasingly
important new source of information about the early Universe. Gravitational waves
are vibrations of spacetime itself, predicted by Einstein’s theory of General
Relativity. Like electromagnetic waves, they travel at the speed of light, but they
interact very weakly with matter. Therefore the Universe has always been trans-
parent to them, and they can give a direct view to its very first moments. However,
this also makes it much harder to exploit them in practice. Indeed, gravitational
waves have not even been directly detected yet, although there is strong theoretical
and indirect evidence for their existence. One could therefore say that in gravita-
tional wave astronomy, we are still in the pre-Galilean era. With electromagnetic
waves, we can now make observations that Galileo could not have imagined, and
similarly, technological progress will eventually make serious gravitational wave
cosmology possible.

In this thesis Dr. Laura Bethke lays down some important pieces of groundwork
for the future progress of gravitational wave cosmology. The thesis begins with a
comprehensive and thorough introduction to the relevant aspects of inflationary
cosmology and the physics of gravitational waves, followed by original work on
two separate but related topics: Gravitational waves produced during inflation in
quantum gravity models, and gravitational waves produced at the end of inflation.
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The work in Section 2 was carried out under the supervision of Professor João
Magueijo during the first year of Dr. Bethke’s Ph.D. research. It uses the Ashtekar
variables of loop quantum gravity to calculate the spectrum of tensor modes, i.e.,
gravitational waves, produced during inflation, an early period of accelerating
expansion of the Universe. It is shown that in this case the tensor perturbations are
chiral, giving rise to a non-zero correlation between the CMB temperature and
B-mode polarisation, in contrast with conventional theories. This correlation is
potentially observable with future CMB experiments, and if detected, it will provide
an observational probe of quantum gravity. In spring 2014, there was already
considerable excitement about a possible detection of primordial B-mode polari-
sation by the BICEP2 experiment. Closer analysis showed that the signal was not of
cosmological origin, but there are many other existing or planned experiments
searching for B-modes, and therefore a real detection is possible even in the near
future.

Section 3 switches the attention to the dynamics at the end of inflation. When
inflation ended, the energy density that was driving the accelerating expansion was
rapidly released and heated the Universe up to a very high temperature. This
process, known as reheating, depends sensitively on the microscopic physics
responsible for inflation, and therefore it provides a way to distinguish between
different theories. The spectrum of gravitational waves produced during reheating
has been identified as a promising observable probe of this era. Based on work
carried out in collaboration with Daniel Figueroa (the University of Geneva) under
my supervision, Dr. Bethke demonstrates that the gravitational wave background
arising from reheating is anisotropic, meaning that the intensity of gravitational
waves will be different in different directions on the sky. The relative amplitude of
this anisotropy is high, making this effect potentially observable with future
gravitational wave experiments. This would provide a new, rich source of infor-
mation about fundamental physics and the microscopic origin of inflation.

The technological challenges in gravitational wave cosmology are massive.
Current experiments such as Advanced LIGO are mainly aiming for a simple
detection of gravitational waves. Whilst there are plans for more ambitious future
experiments such as a space-based gravitational wave observatory (due to be
launched by the European Space Agency in 2034), these will be mainly sensitive to
lower frequencies than predicted by typical theories of inflation. New technology
for detecting and measuring gravitational waves at higher frequencies will therefore
be needed, but there are some promising ideas being explored. Eventually these
practical obstacles will be overcome, and then the theoretical work presented in this
thesis will reach its full importance.

London Prof. Arttu Rajantie
February 2015
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Abstract

In this thesis, I will discuss two separate topics which are related to gravitational
wave production in the early universe.

The first part will focus on the tensor power spectrum from inflation, derived
using the Ashtekar variables of loop quantum gravity. This formalism is different
from the ordinary approach in that it uses a complex connection as the central
gravitational variable instead of the metric. Although the choice of variables should
not affect any classical results, it becomes vital when considering quantum
mechanical quantities like vacuum fluctuations. We will find that in this formalism,
the tensor power spectrum is chiral, which would lead to a non-zero TB correlator in
the CMB. Obtaining the full TB power spectrum would enable us to probe this
chirality and provide clues about the nature of gravity.

In the second part, I will consider gravitational waves produced from massless
preheating, during which the inflation transfers energy to a scalar field χ. If χ is
light, it acquires a scale invariant spectrum of perturbations from inflation. At the
time of preheating, the field will therefore have fluctuations on superhorizon scales
and take a different value in different parts of the observable universe. I will study
GW production for different initial values of χ numerically using 3D lattice sim-
ulations. The GW amplitude strongly depends on this initial value, leading to a GW
background that is anisotropic today, with relative fluctuations of order 1 %. In
general, anisotropies will occur in any model of preheating with a light scalar field,
and the characteristics should strongly depend on the model parameters. If a GW
background from preheating was measured in the future, it would provide a novel
way to distinguish between different inflationary scenarios.
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Chapter 1
Introduction

Do not look at stars as bright spots only. Try to take in the
vastness of the universe.

—Maria Mitchell

Cosmology is the study of the evolution of our universe, from the Big Bang to the
formation of galaxies. Out of its 13.6 billion year history, we understand all but the
first fraction of a second fairly well: As the universe expands and cools, it undergoes
a series of phase transitions, most notably electroweak symmetry breaking when the
weak gauge bosons acquire mass; when it is a few seconds old, the first elements are
formed during nucleosynthesis; after several tens of thousands of years matter rather
than radiation comes to dominate the energy density; 380,000years in the Cosmic
Microwave Background (CMB) is released; and all the while structure has been
forming due to the presence of small perturbations in the initial density distribution,
culminating in the formation of large structures like galaxies [1].

There are still many unsolved problems surrounding this vast era, like the origin
of baryon asymmetry [2], the nature of dark matter [3] and dark energy [4, 5].
However, most mysterious of all are the first few instants after the Big Bang, during
which the energy density was so high that we can never hope to probe such scales
directly. Instead, we need to understand how the universe we observe today could
have originated, and identify suitable models for this early period, which makes it a
fascinating playground for theoretical cosmologists.

Nowadays, the most accepted and widely popularised theory of the universe when
it was a tiny fraction of a second old is inflation, a period of rapid expansion. This
is driven by an as-yet unidentified source referred to as the inflaton, usually taken
to be one (or several) scalar fields or some scalar condensate. The idea of an infla-
tionary phase in the early universe was proposed independently by several physicists
between 1979 and 1980 [6–9]. Such a mechanism solves many mysteries that have
plagued cosmologists in the past, like the observed large scale homogeneity and
isotropy of our universe. Most importantly, it provides a seed for all the structure we
observe today. Proving whether inflation indeed occurred, and finding out exactly

© Springer International Publishing Switzerland 2015
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2 1 Introduction

how, could therefore shine light onto the age old question of how we came into exis-
tence. Furthermore, it could also provide one of very few ways to link observations
with theories of quantum gravity, as at no other time in our history will energies have
been high enough to probe the Planck scale, at which some new physics must leave
its mark.

To test the validity of inflation, cosmologists primarily resort to the analysis of
the CMB, the “leftover” radiation from the Big Bang. It was first discovered in 1964
[10] when Arno Penzias and Robert Wilson, using an antenna built to measure radio
waves, detected a uniform background of microwave radiation with a temperature
of 2.7K and a near-perfect blackbody spectrum. It was soon realised [11] that this
background corresponded to radiation that had cooled down due to the expansion of
the universe and was emitted very early on, at the recombination redshift z = 1100,
when the temperature was about a thousand times higher. Even earlier, the photons
were tightly coupled to the baryons, but at the time of recombination neutral atoms
formed and photons could eventually decouple from the plasma and free-stream to
us observing them today.

Itwas not until theCOBEsatellite [12]measured the backgroundmore precisely in
1992 (with the results vastly improved upon by later experiments like BOOMERanG
[13], WMAP [14] and Planck [15]), that cosmologists were able to observe the
tiny fluctuations (one part in a hundred thousand) in the CMB temperature. These
fluctuationsmust have been laid downduring the timeof inflation, and analysing them
could indirectly provide information about the conditions right after the Big Bang.
Cosmologists try to understand which models of inflation are viable by studying the
statistics of these photon perturbations. Despite the constraints from the most recent
data [16] there is still a vast number of scenarios that are compatible with the universe
weobserve. If the recent detection ofB-mode polarization of theCMBby theBICEP2
collaboration [17] turns out to be of primordial origin,1 it will enable us to constrain
the parameter space further, especially when confirmed by other experiments and
complemented with the polarization data from Planck. Still, it is unlikely that we
will be able to single out a model of inflation using CMB measurements alone.

Gravitational waves (GWs) could provide a new way of understanding the condi-
tions in the very early universe. Predicted by general relativity [19], they should arise
in a number of cosmological and astrophysical settings, particularly during inflation
and phase transitions shortly after. Whereas scalar perturbations of the metric during
inflation are the source of the density perturbations (and therefore structure), GWs
correspond to tensor perturbations [20]. These tensor modes have an impact on the
polarization of the CMB, but may also potentially be measured directly. Addition-
ally, GWs are produced from classical field inhomogeneities [21] by non-equilibrium
phenomena after inflation, for example during preheating.

1Note that at the time of writing this thesis, there was still no consensus on whether the BICEP2
team had actually detected gravitational waves. By now it is clear that their data cannot give us
conclusive evidence as their signal was dominated by galactic dust [18].
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So far, due to their low amplitude (a consequence of the weakness of the gravi-
tational force), no GWs have been directly detected yet. The first indirect evidence
was provided in 1974 from the energy loss of the Hulse-Taylor binary pulsar [22].
Two major experiments will attempt to directly measure GWs from astrophysical
sources in the near future, Advanced LIGO [23] (operational from 2015) and eLISA
[24] (launching in 2032). Neither of these will, most likely, be able to detect the cos-
mological signals that would tell us about the nature of the early universe, however
we can be hopeful that future generations of detectors might be up to the task.

Cosmology is a vast field and there are a number of good textbooks on the subject,
of which [1, 20, 25, 26] have been important in providing the physics background
of this thesis. In this introduction, I will give a general overview of Cosmology,
focussing on the aspects that are important for the work presented in Chaps. 2 and 3.

In Sect. 1.1, I will introduce key concepts of general relativity and describe how
the homogeneous universe can be described using the Friedmann equations. The
theory of inflation is the topic of Sect. 1.2, and I will explain its classical as well as its
quantum aspects. Section1.3 provides the link between inflation and the fluctuations
in the CMB we observe. In Sect. 1.4, I will describe reheating, a stage right after
inflation where most elementary particles were produced. I will finish by discussing
gravitational wave propagation, production and detection in Sect. 1.5.

The work carried out during my PhD is described in Chaps. 2 and 3. Generally
speaking, the focus of the thesis is on how to use gravitational waves as a tool
to uncover new physics. I will discuss two separate topics, one related to tensor
perturbations from inflation, the other to GWs produced during preheating.

In Chap.2, I will consider cosmological perturbation theory from the point of view
of loop quantum gravity, where different gravitational variables to the usual ones are
used. Although classically this does not make a difference, quantum mechanical
quantities are affected by this choice. I will show how this might lead to a chirality in
the power spectrum of tensor perturbations from inflation. This chirality could leave
a distinctive imprint on the polarization of the CMB, and we should soon be able to
test whether such an effect is actually present.

In Chap.3, I will focus on GWs produced during preheating, a non-equilibrium
stage after inflation where the inflaton decays to other fields. Using a model where
the inflaton is coupled to a light scalar, numerical simulations I carried out show
that the GW background from this time should be anisotropic on large scales today,
with relative fluctuations of order 1%. The characteristics of this anisotropy strongly
depend on the inflaton potential and its coupling to other fields, providing a novel
way of constraining inflationary models.

Throughout this thesis, I will use natural units where c = kB = � = 1. The
Planck mass will be denoted by MPl = 1/

√
G = 1.22 × 1019GeV/c2, and the

reduced Planck mass by mPl = 1/
√
8πG = 2.44 × 1018GeV/c2.

http://dx.doi.org/10.1007/978-3-319-17449-5_2
http://dx.doi.org/10.1007/978-3-319-17449-5_3
http://dx.doi.org/10.1007/978-3-319-17449-5_2
http://dx.doi.org/10.1007/978-3-319-17449-5_3
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1.1 The Homogeneous Universe

In this section I want to give the necessary mathematical background to describe the
universe on large scales, where it looks homogeneous and isotropic, and where its
expansion depends on the total matter content. I will start by introducing key aspects
of general gelativity in Sect. 1.1.1 and then discuss its application to Cosmology
in 1.1.2, highlighting the importance of the Friedmann equations. An accessible
introduction to general relativity which also covers its use in Cosmology is Sean
Carroll’s Spacetime and Geometry: An Introduction to General Relativity [21].

1.1.1 General Relativity and Einstein’s Equation

In GR, the force of gravity is a consequence of the curvature of spacetime. While in
Newtonian physics we can only describe how gravity affects the motion of matter,
in general relativity matter also dictates the geometry of spacetime itself [21]. This
mutual relationship is described by Einstein’s equation,

Gμν ≡ Rμν − 1

2
gμν R = 8πGTμν , (1.1)

where the energy-momentum tensor Tμν on the RHS describes the matter content,
and the LHS the geometry of spacetime (and therefore gravity) through the Ricci
tensor Rμν , which is a function of the metric tensor gμν and its derivatives [21].

General relativity has a rich underlying mathematical structure belonging to the
field of differential geometry. A very good and thorough treatment of GR in this
manner can be found in e.g. [19]. Luckily, in the context of Cosmology, we only need
a basic knowledge of differential geometry to carry out calculations; this includes
how tensors transform under coordinate transformations and how we can use the
metric to describe spacetime and its effect on test particles. I will collect these results
and their application to the universe we live in this section.

In GR, tensors are multi-linear functions defined on spacetime [21]. A rank (m, n)

tensor with m upper and n lower indices maps m dual vectors and n vectors to the
real numbers R. A vector field v = vμ(xν)∂μ and a dual vector field (one-form)w =
wμ(xν)dxμ are objects living on a manifoldM, where μ, ν = 1, . . . , dim (M) and
repeated indices are summed over according to the Einstein summation convention.
The components of the vector and one-formfields are vμ(xν), wμ(xν), while ∂μ, dxμ

are a particular choice of orthogonal (coordinate) basis vectors. Compare this to
ordinary three dimensional Euclidean space, where any vector field v(x, y, z) can
be written as v = ax̂ + bŷ + cẑ, where a, b, c are real functions and x̂, ŷ, ẑ are
orthogonal unit basis vectors.

We can act with vectors on dual vectors to obtain a real number and vice versa.
Rank zero and (1, 0) tensors therefore correspond to ordinary scalars and vectors,
respectively. Tensors can be manipulated using their components T μ1···μm

ν1···νn (xα)
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(where indices are raised and lowered using the metric tensor gμν or gμν) with
respect to a basis for the tangent space of the manifold, and I will usually refer to the
components simply as the tensor. A general tensor with m upper and n lower indices
transforms under a change of coordinates xα → xα′

as [21]

T μ′
1···μ′

m
ν ′
1···ν ′

n
(xα′

) = ∂xμ′
1

∂xμ1
· · · ∂xμ′

m

∂xμm

∂xν1

∂xν ′
1

· · · ∂xνn

∂xν ′
n

T μ1···μm
ν1···νn (xα) . (1.2)

Scalars (having no indices) do not change under a change of coordinates, φ′(xα′
) =

φ(xα).
Let us go back to the components of the Einstein equation (1.1). The metric

encodes the notion of distance in spacetime [21]. In particular, the line element

ds2 = gμνdxμdxν , (1.3)

measures the proper time dτ (where dτ2 = −ds2) experienced by an object moving
an infinitesimal distance dxμ in spacetime (this is in contrast to the coordinate time
dt , which depends on the coordinates used). Note that ds2 < 0 for timelike separated
points (ones within the lightcone, whose interior describes the causally connected
region), ds2 > 0 for spacelike separated points and ds2 = 0 for null separated points
(which are connected by a photon trajectory) [21]. Trajectories of particles through
spacetime can only connect timelike or null separated points, otherwise they would
have to travel at a speed faster than the speed of light, violating special relativity.

In curved space, partial derivatives alone cannot describe variations in tensorial
quantities between different coordinate patches. Instead, we need to define covariant
derivatives which act on vectors vα as

∇μvα = ∂μvα + �α
μνv

ν , (1.4)

where �α
μν is an object called the connection which ensures that the covariant deriv-

ative transforms as a tensor [21]. The connection chosen in GR is symmetric in the
lower indices (torsion free) and satisfies ∇αgμν = 0 (metric compatible). It is called
the Christoffel connection [21],

�α
μν = 1

2
gαβ(∂μgνβ + ∂νgβμ − ∂βgμν) . (1.5)

The connection can be used to build the Riemann curvature tensor Rα
βμν = ∂μ�α

νβ −
∂ν�

α
μβ +�α

μσ�σ
νβ −�α

νσ�σ
μβ . Rα

βμν and its contraction Rμν , the Ricci tensor, encode
the curvature of spacetime.

The energy-momentum tensor Tμν is conserved, ∇μT μν = 0 [21]. This relation
includes four separate conservation equations. According to Noether’s theorem [27],
any systemwith a symmetrywill have a corresponding conserved quantity. In the case
of GR, the theory is invariant under infinitesimal time and spatial translations, with
the former leading to energy conservation, ∇μT μ0 = 0, and the latter to momentum
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conservation, ∇μT μi = 0 [19]. These are continuity equations for the 00 and 0i
components of Tμν , which in flat space (where ∇μT μν = ∂μT μν = 0) can be
identified with the energy and momentum density, respectively.

In flat space with no gravity (where the laws of special relativity hold), the
appropriate metric is the Minkowski metric ημν which is diagonal with elements
(−1, 1, 1, 1). This form of the metric is important on scales where the expansion of
the universe can be ignored and the spacetime therefore looks flat.

In Cosmology, we will often be interested in the energy-momentum tensor of a
perfect fluid [20],

T μν = (ρ + P)uμuν + Pgμν , (1.6)

where uμ = dxμ/dτ is the normalized 4-velocity of the fluid, uμuμ = −1. In the
local rest frame where we can use the Minkowski metric, the 3-velocity vanishes,
ui = dxi/dτ = 0, and hence uμ = (1, 0). We can plug this into Eq. (1.6) to find
T 00 = ρ, T 0i = 0 (as it measures the momentum density, which is zero in the rest
frame) and T i j = Pδi j , so the fluid is isotropic. Otherwise, it would also contain an
anisotropic stress term �i j .

It will be useful to regard GR in the Lagrangian formulation (see e.g. [21]),
where Einstein’s equations can be derived by minimising the action. The action is a
functional that captures the dynamics of a physical system and is given by

S =
∫

d4x
√−gL , (1.7)

where d4x
√−g is the covariant volume element [28] (note this is just unity for the

Minkowski metric, i.e. the flat space volume is the familiar d3xdt). The Lagrangian
density L(�i ,∇μ�i ) depends on a field �i (xμ) and its derivatives and describes the
kinetic and potential energy of the system. We can get an equation of motion for the
field by minimising the action under infinitesimal changes in the field, δS = 0. In
GR, the action leading to the Einstein equation (1.1) is called the Einstein-Hilbert
action and is given by [21]

SH =
∫ √−gR d4x , (1.8)

where R is the Ricci scalar. Varying (1.8) with respect to the metric tensor would
actually only give you Eq. (1.1) with RHS = 0, as we have not yet included any
sources. To find the general expression, consider the Lagrangian [20]

L = 1

2
m2

PlR + Lmat , (1.9)

where Lmat is due to matter fields (where matter here refers to anything that is not
gravity). The energy-momentum tensor can be derived by minimising the action due
to Eq. (1.9) with respect to gμν , and we can then identify [20]
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Tμν = −2
∂Lmat

∂gμν
+ gμνLmat . (1.10)

1.1.2 The Friedmann Equations

The universe on large scales is homogeneous and isotropic, so the metric needs to
reflect these properties. The spacetime satisfying these properties is described by
the Friedmann-Robertson-Walker metric, FRW for short, which for general spatial
3-curvature k is given by (in spherical polar coordinates) [1]

ds2 = −dt2 + a2(t)

[
dr2

1 − kr2
+ r2d�2

]
, (1.11)

where d�2 = dθ2 + sin2 θdφ is the angular volume element.
The most recent CMB experiments have shown [14, 15] that we live in a flat

universe with k = 0, with dark energy making up around 68% of the energy density
budget (which could correspond to a positive cosmological constant � or a dynamic
field with negative pressure [25]), and about 27% of dark matter and 5% ordinary
matter. Therefore, we are mainly interested in the flat space version of the FRW
metric, which is usually expressed in Cartesian coordinates:

ds2 = −dt2 + a2(t)[dx2 + dy2 + dz2] . (1.12)

The coordinates x , y, z are comoving,meaning they donot changewith the expansion.
Physical distances are related to comoving ones as �r(t) = a(t)�x .

It will sometimes be useful to use conformal time η instead of ordinary coordinate
time, which is defined by dη = dt/a. This can be integrated to find the value of η at
a time t ′:

η(t ′) =
t ′∫

0

dt

a(t)
. (1.13)

We can then rewrite the FRW metric (1.12) as

ds2 = a2(η)ημνdxμdxν . (1.14)

We can assume that the energy-momentum tensor of the universe is decribed by a
perfect fluid, Eq. (1.6). As we live in an isotropic universe, the fluid’s rest frame
should coincide with the comoving coordinates in the FRW metric (1.12). From
the Einstein equations we obtain two equations describing the evolution of the scale
factor depending on the energy content of the universe, the Friedmann equations [20]:
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H2 =
(

ȧ

a

)2

= ρ

3m2
Pl

, (1.15)

Ḣ + H2 = ä

a
= −ρ + 3P

6m2
Pl

, (1.16)

where ρ contains the density of all species in the universe (like matter, radiation or
a cosmological constant term ρ� = m2

Pl� [20]), P is their pressure and the Hubble
rate H ≡ ȧ

a is an important physical length (time) scale in Cosmology.
The Friedmann equations can be combined into the continuity equation

ρ̇ = −3H(ρ + P) , (1.17)

which corresponds to energy conservation for adiabatic expansion, which is valid in
an isotropic universe [20].

Energy density and pressure can be related by an equation of state P = wρ, which
is a constant for ordinary species (but not for a scalar field) [29]. Specifically, w = 0
for matter (no pressure), w = 1/3 for radiation and w = −1 for a cosmological
constant [20]. Using the continuity equation, this implies ρM ∝ a−3 for the energy
density of matter (which dilutes as the volume of space grows), ρR ∝ a−4 for
radiation (where the extra factor of a can be undestood as a redshift), and the energy
density of � is constant. This means the evolution of the universe will consist of a
series of epochs as the different powers of the scale factor compete in the Friedmann
equations: first radiation domination, followed by matter domination and eventually
dark energy (�) domination when the matter has been sufficiently diluted by the
expansion.

Using the relation ρ(a), the Friedmann equation (1.15) can be integrated and we
obtain the evolution of the scale factor during the different epochs: a ∝ t2/3 for
matter domination, a ∝ t1/2 for radiation domination and a ∝ eHt for a universe
dominated by a cosmological constant �.

1.2 Inflation

This section is dedicated to introducing the theory of inflation, startingwith the initial
motivation for an accelerated stage of expansion to solve problems in the Big Bang
model of Cosmology in 1.2.1. I will then describe single-field slow-roll inflation as
the easiest possible implementation of the theory, Sect. 1.2.2. Having explored the
homogeneous inflaton field, I will outline in Sect. 1.2.3 how to proceed when fluctu-
ations are included and define the power spectra that encode the statistical properties
of the field. Before explaining how inflation can act as a seed for all structure through
the stretching of quantumfluctuations to cosmological scales (Sect. 1.2.5), I will need
to give some details on the canonical quantization procedure and its application to
curved spacetime in 1.2.4.
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1.2.1 The Horizon Problem

The Big Bang model of the universe is very successful at explaining how we come to
live in in expanding universe [25]. However, three separate observations show that
there is something missing in our understanding of the early universe [20]. The most
important one to understand conceptually is the horizon problem, so I will explain
its significance and how it can be resolved using inflation. At the end, I will briefly
mention the related flatness and monopole problems for completeness. For much
more detailed information about the theory of inflation, see [20] or [25].

A very important concept in Cosmology is the particle horizon, the distance trav-
elled by a photon between t = 0 to t ′ [25]. As for a photon ds2 = 0, using Eq. (1.11),
we can express this distance in comoving units as

η =
t ′∫

0

dt

a(t)
. (1.18)

As it has the same form as conformal time, we use the same symbol η to denote it.
Clearly this quantity must always increase (as a > 0), and points in space separated
by distances larger than the comoving horizon have non-intersecting past lightcones,
i.e. no signal could have ever been transmitted between them: the points are “causally
disconnected” [25] (although particles located at such points might come into causal
contact in the future as the comoving horizon grows, when enough time has passed
for photons from one particle to reach the other).

With this in mind, the uniformity of the CMB presents a mystery. Assume that the
universe has always been matter dominated, such that a = (t/t0)2/3 and H = 2

3 t−1,
where the subscript zero refers to quantities today and we normalise a0 = 1. We
can then derive the comoving distance a photon has travelled at scale factor a∗ using
Eq. (1.18):

η =
t∗∫

0

t2/30 t−2/3dt = 3t2/30 t1/3∗ = 2H−1
0

√
a∗ . (1.19)

Therefore, the comoving particle horizon at the time of recombination (when neutral
hydrogen starts to form and the universe ceases to be opaque), when a ≈ 1100, is a
factor of

√
1100 smaller than it is today. Indeed, you can show that points with an

angular separation ofmore than about 1◦ on the sky todaywere causally disconnected
at the time of recombination [20]. However, we observe the CMB to be close to
uniform on all scales. It seems very surprising that photons, free-streaming since
recombination, which come from regions that were separated by distances larger
than the particle horizon should just happen to be at nearly the same temperature,
although no physical process could have led them to equilibrate [20].

This problem can be resolved if, before the period of radiation domination, the
expansion occurred in an “unusual” manner, in which the increase of the particle



10 1 Introduction

horizon does not imply that the size of causally connected regions grows. This can
be achieved by a period of accelerated expansion where points in space move away
from each other so fast that a photon cannot traverse the distance between them.
Regions that were causally connected early on could therefore move out of “causal
contact”, so a signal transmitted from one point will not reach another point in the
region again until some time far in the future, when it has had enough time to traverse
the distance between them that has grown exponentially due to the expansion.

Thus, if initially causally connected regions have been stretched to a size larger
than the surface of last scattering (the surface in spacetime the CMB photons we
observe originated from), the uniformity of the CMB temperature is not surprising,
as the whole observable universe could have originated from a small homogeneous
patch [20].

To make this more mathematically rigorous, let me define the comoving Hubble
radius (aH)−1. This is a very important length scale in Cosmology, and is often
referred to simply as the (comoving) horizon. Note that unlike the particle horizon,
it is not an actual horizon, and the terminology can be confusing. We can rewrite
Eq. (1.18) in terms of this quantity,

η =
a′∫

0

d(ln a)
1

aH
. (1.20)

To understand the physical significance of the comoving Hubble radius, consider a
small amount of expansion for which the comoving particle horizon grows by an
amount �η = N (aH)−1, where N = � ln(a) is the number of e-folds of expansion
(which counts the factors of e the scale factor has grown by). The Hubble radius then
corresponds to the distance travelled by a photon while the universe expands by N
e-folds.

During matter and radiation domination, the comoving Hubble radius grows
monotonically, and is actually proportional to η [21]. However, if there is a stage
where (aH)−1 shrinks, so that photons traverse smaller and smaller distances during
the same amount of expansion, the particle horizon can still grow (with the main
contribution to the integral coming from early times) but the size of the region in
causal contact at the end of this phase is much smaller than it was initially.

As the particle horizon becomes very large early on if the comoving Hubble
radius shrinks, we have solved the horizon problem: At the time of recombination,
the particle horizon is much larger than the distance travelled by photons since then.
Therefore, when we observe the CMB, we see photons from a region whose spatial
extent was within the physical horizon, which means that they could have all been
at nearly the same temperature.

The condition for the comoving radius to shrink is equivalent to accelerated expan-
sion,

d

dt
(aH)−1 = d

dt

1

ȧ
< 0 ⇔ ä > 0 . (1.21)
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Inflationdescribes this periodof a shrinking comovingHubble radius.Before describ-
ing what conditions need to be satisfied to lead to this behaviour, let me mention the
other two problems inflation solves: the flatness and the monopole problem. For
a curved FRW metric (1.11) with k �= 0, the Friedmann equation (1.15) has an
additional term proportional to the curvature and can be rewritten as [20]

�(a) − 1 = k

a2H2 , (1.22)

where �(a) = ρ(a)/ρcrit(a) and ρcrit(a) is the density for a flat FRW universe. For
perfect flatness k = 0, we need �(a) = 1. However, without inflation, any small
deviation from flatness will be amplified with time as (aH)−1 grows. As we observe
near flatness today, this means that � must have been extremely fine tuned. Inflation
circumvents this as it drives� → 1 in Eq. (1.22)while the comoving horizon shrinks,
thus solving the flatness problem.

The monopole problem was actually one of the initial motivations for inflation
[9]. Grand unified theories predict the existence of unwanted relics such as magnetic
monopoles, which we do not currently observe. However, the fast expansion during
inflation can vastly reduce the density of these relics [20].

1.2.2 Single Field Slow-Roll Inflation

How canwe satisfy the conditions required for inflation? From the second Friedmann
equation (1.16) we see that accelerated expansion implies ρ + 3P < 0, i.e. we need a
material with negative pressure driving the expansion. Sato, Kazanas and Guth [7–9]
first realised that a scalar field with a specific form of the potential could satisfy this
condition. The Lagrangian for a scalar field φ(xμ) is given by [20]

Lφ = −1

2
∂μφ∂μφ − V (φ) . (1.23)

The stress-energy tensor for a scalar field can then be deduced using Eq. (1.10):

Tμν = ∂μφ∂νφ − gμν

(
1

2
∂αφ∂αφ + V (φ)

)
. (1.24)

We can derive an equation of motion for φ from the Euler-Lagrange equations, i.e.
from varying the action by δφ. This leads to a wave equation [26]

φ̈ + 3H φ̇ − ∇2φ + dV

dφ
= 0 . (1.25)
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For now, we will be concerned with a homogeneous field for which ∇iφ = 0, such
that it only depends on time, φ = φ(t). We can then locally go to a frame with
gμν = ημν , where the momentum density vanishes [20]. The 00 and i j components
of the stress energy tensor (1.24) can then be simply identified with the rest energy
density and pressure as in Sect. 1.1.1. This gives

ρφ = 1

2
φ̇2 + V (φ) , (1.26)

Pφ = 1

2
φ̇2 − V (φ) . (1.27)

From Eqs. (1.26) to (1.27) we see that we can satisfy the condition of negative
pressure if the potential energy dominates the kinetic energy, i.e. φ̇2  V (φ), for

which we obtain wφ = Pφ

ρφ
� −1. In the original models [7–9], this was achieved by

trapping the inflaton field in a falseminimum,with a large potential energy.While it is
trapped, the universe inflates, until the inflaton spontaneously tunnels to the genuine
global vacuum. However, it was found that this process could not happen in different
regions of the universe fast enough to be in agreement with observations [25].

The “new” slow-roll inflation scenario requires the scalar field to slowly roll down
a flat potential [30–32]. We need to satisfy two conditions: φ̇2  V (φ), to obtain
accelerated expansion, and |φ̈|  |3H φ̇|, |V,φ|, which ensures inflation lasts long
enough [29] by preventing the inflaton from simply rolling down to the bottom of its
potential. These conditions can be quantified by two slow-roll parameters [33],

ε = m2
Pl

2

(
V ′

V

)2

, η = m2
Pl

V ′′

V
, (1.28)

where primes denote differentiation with respect to φ and the slow-roll regime cor-
responds to ε, |η|  1.

Note that during slow-roll inflation, the Friedmann equation (1.15) reduces to

H2 � 1

3m2
Pl

V (φ) , (1.29)

which implies H ≈ const.when ε  1. This can be easily solved to give a(t) ∼ eHt

which is the solution for de Sitter spacetime [34], which describes a universe dom-
inated by a cosmological constant [1]. Obviously, as the exponential expansion has
to finish eventually, we cannot be in a pure de Sitter universe. Inflation ends when
the slow-roll conditions are not satisfied anymore, which happens when the inflaton
approaches the minimum of its potential. Any reasonable model of inflation needs
to provide a mechanism for the accelerated expansion to stop, which is referred to
as the graceful exit problem [26].

Let me give an example of what the slow-roll conditions imply for a specific
inflaton potential. The simple quadratic potential V = 1

2m2φ2 is still just about viable
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according to the most recent Planck data [16]. From the first slow-roll condition in
(1.28), we obtain φ > mPl, i.e. super-Planckian field values are needed for inflation
to occur. Furthermore, the second slow-roll parameter η implies m2

Plm
2  V . As the

potential dominates the energy density, using Eq. (1.29) we can express the potential
in terms of the Hubble rate which yields m2  H2. We see that the inflaton has to
be light compared to the Hubble rate for the slow-roll condition to be satisfied.

A useful quantity to consider is the number of e-foldings N (t), which measures
the amount of expansion during inflation. It is defined as

N (t) = ln
a(tend)

a(t)
=

tend∫

t

Hdt ≈ 1

m2
Pl

φend∫

φ

V

V ′ dφ , (1.30)

where the approximate equality holds during slow roll. This quantity is zero at the
end of inflation and N (t) therefore corresponds to the number of e-folds before the
end. To agree with observations, we need the total number of e-folds N tot � 60
in simple slow-roll models. This ensures that the largest currently observable scales
were inside theHubble horizon during inflation: The comovingHubble scale (aH)−1

today is e60 times larger than at the end of inflation [20], and comoving scales of order
of the current Hubble scale must have been subhorizon during inflation, providing a
lower bound for the number of e-folds [remember that during inflation, H = const.,
and therefore it does not appear in Eq. (1.30)].

1.2.2.1 General Models of Inflation

Although I will only consider simple, monomial potentials, let me very briefly give
an overview of the general classes of inflationary models that cosmologists study.

The simple single field models I just described were introduced by Linde [30]
and are referred to as chaotic inflation. In these scenarios, the initial conditions in the
universe are chaotic; in some regions the inflaton is displaced sufficiently far from
its minimum such that it can satisfy the slow-roll conditions and lead to accelerated
expansion [26]. The potential in this case can be either given by amonomial, V (φ) ∝
φp (where p is even due to symmetry and p ≤ 4 to ensure renormalizability), or

by an exponential, V (φ) ∝ exp

(√
2

p m2
Pl

φ

)
(where p > 1, such that the slow-roll

parameters are ε = η/2 = 1/p). These models require a minimum duration of
the inflationary phase of N = 60 e-folds and a super Planckian initial field value,
φstart � mPl [26]. Hence, they are referred to as large-field models.

Large field models suffer from the problem that at these scales there might be cor-
rection terms to the inflaton potential which could prevent inflation from happening
[35]. Therefore, models for which the inflationary phase happened at lower energy
scales were introduced. These include hybrid inflation, where two scalar fields are
present [36], or models inspired by supersymmetric theories [37].
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Except for providing a way to drive the expansion and to end it, all models of
inflation need to be consistent with the constraints from CMB measurements. Large
field models typically lead to the production of an observable amount of primordial
gravitational waves, see Sect. 1.2.5. This is in contrast to the small field models
motivated by high energy physics [20]. Although we do not currently understand
physics at super Planckian scales, theBICEP2 results [17] suggest that (modifications
of) chaotic inflation models could indeed be viable.

1.2.3 Beyond the Homogeneous Field Evolution

Although inflation was initially introduced as a way of solving the Big Bang puzzles
highlighted in Sect. 1.2.1, its main power and appeal lies in the fact that it can explain
the origin of the primordial fluctuations that were the seed of all structure, and
which we can still observe in the CMB [20]. To see this, we need to go beyond
the homogeneous description and consider inhomogeneous fluctuations around the
background, i.e. expand the inflaton field as:

φ(x, t) = φ(t) + δφ(x, t) . (1.31)

The homogenous part φ(t) (which is averaged over fluctuations and therefore inde-
pendent of position) is responsible for the de Sitter-like expansion of the universe,
whereas the fluctuations δφ(x, t) are coupled to the fluctuations in the metric around
the Friedmannian background.

In cosmological perturbation theory (see appendix A.1 for more details), we
expand the metric and energy-momentum tensor to first order in perturbations. Using
the SVT decomposition (appendix A.1), which describes how a general perturbation
in the metric can be split into scalars, vectors and tensors that all transform differ-
ently under rotations, we find that the scalar perturbations are directly coupled to the
perturbations δφ. Vector perturbations are not produced by inflation and decay [29],
while tensor perturbations correspond to GWs and are not coupled to the inflaton
[20]. Instead, they need a source with non-zero quadrupole moment (see Sect. 1.5.2)
which is related to a non-zero anisotropic stress in the energy-momentum tensor, not
present for a scalar field [25]. Similarly, no perfect fluid can act as source for GWs
[1].

1.2.3.1 Power Spectra

In the next two sections, I will explain how quantum vacuum fluctuations during
inflation can become “classical” once they leave the horizon and lead to a scale-
invariant spectrum of fluctuations. A power spectrum describes the amplitude of
different Fourier modes k of a field φ and is defined as an ensemble average of the
fluctuations [29]:



1.2 Inflation 15

〈φkφk′ 〉 = (2π)3δ(k + k′)Pφ(k) . (1.32)

The power spectrum is the Fourier transform of the real space correlation function,
〈φ(x)φ(y)〉 [29]. Themean fluctuations in all fields are zero on average, i.e. 〈φk〉 = 0,
as there should be equally many regions with higher or lower amplitude. The power
spectrum, on the other hand, gives you a statistical measure of the fluctuations as it
estimates the typical deviation from the mean you would expect for each mode. A
real field distribution is a realization of the statistical ensemble, and therefore drawn
from the probability distribution in (1.32) [20].

We can also define a dimensionless power spectrum (denoted by a curly P)

Pφ(k) = k3

2π2 Pφ(k) . (1.33)

This is directly related to the real space variance σ2
φ of the field and describes the

power per logarithmic k interval [29]:

σ2
φ ≡ 〈φ(x)2〉 =

∞∫

0

Pφ(k)d ln k . (1.34)

1.2.4 Canonical Quantization

In Sect. 1.2.5, I want to study the evolution of quantum fluctuations during inflation.
To do this, we need to use the standard approach of canonical quantization introduced
by Dirac [38]. It proceeds by promoting fields to operators that satisfy commutation
relations (defining an algebra) which makes it possible to define particle states in
terms of eigenstates of the Hamiltonian of the system.

1.2.4.1 Flat Background

Let me outline the quantization procedure for a scalar field φ(x, t) on a flat back-
ground first, before generalising it to a curved background (as needed in Cosmology)
in the next section. I will follow the very clear treatment in [28], working in the
Heisenberg picture where operators are time-dependent and states constant.

The Lagrangian Lφ of a scalar field is given by Eq. (1.23). Let us assume from
now on that we are dealing with a free field, which does not interact with other fields
or itself. In this case, the potential is V (φ) = 1

2m2φ2 [28]. The action (1.7) for a
scalar field on a flat background is then

S = 1

2

∫
d3xdt

[
φ̇2 − (∇φ)2 − m2φ2

]
. (1.35)
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Just like in classicalmechanics, we can use theHamiltonian instead of the Lagrangian
to describe the dynamics of the system. They are related by

H =
∫

d3x
[
πφ̇ − L]

, (1.36)

where π(x, t) ≡ ∂L
∂φ̇(x,t)

is the conjugate momentum density. Using Eq. (1.23), π = φ̇

and the Hamiltonian becomes

H = 1

2

∫
d3x

[
π2 + (∇φ)2 + m2φ2

]
. (1.37)

The equation of motion, derived by minimising the action or from Hamilton’s
equations, is just

φ̈ − ∇2φ + m2φ = 0 . (1.38)

We can expand the field in terms of Fourier modes,

φ(x, t) =
∫

d3k
(2π)3

eik·xφk(t) , (1.39)

and similarly for π(x, t). Substituting the Fourier space expansion into the equation
of motion (1.38), we find that the field satisfies the equation of a harmonic oscillator,

φ̈k + ω2
k φk = 0 , (1.40)

with frequency ω2
k ≡ k2 + m2. The reason it is useful to treat the problem in Fourier

space is that the different oscillators k decouple and are therefore independent of one
another [28].

To arrive at the quantum theory, we follow the same approach one would learn in
a quantum mechanics course when dealing with position and momentum operators
(see e.g. [39] for an introduction to quantummechanics in this manner): We promote
the field and its conjugate momentum to operators φ̂(x, t) and π̂(x, t) that need to
satify commutation relations

[
φ̂(x, t), π̂(y, t)

]
= iδ(x − y) , (1.41)

with all other commutators zero, and where the commutator is defined as [A, B] =
AB − B A. Note that as the field φ is real, in Fourier space the operators need to
satisfy φ̂†

k = φ̂−k. As the modes φ̂k behave like a harmonic oscillator, it is instructive

to define creation and annihilation operators a†
k and ak, where

ak =
√

ωk

2
φ̂k(0) + i

√
1

2ωk
π̂k(0) . (1.42)
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Plugging theFourier expansion (1.39) into (1.41),wefind that theyobey commutation
relations [

ak, a†
k′

]
= (2π)3δ(k − k′) . (1.43)

We can now perform the standard Fock space quantization [38], where the vacuum
|0〉 is defined as the state annihilated by ak (ak|0〉 = 0), and n-particle states are
defined by repeated application of the creation operator to the vacuum (where each a†

k
creates a particle with momentum k). The basis of the Fock space are eigenstates of
the number operator Nk = a†

kak, whose eigenvalues count the number of particles
with momentum k. The Hamiltonian (1.37), evaluated at t = 0 (as it does not
explicitly depend on time and is therefore conserved), can be expressed in terms of
the number operator as (ignoring an infinite “vacuum” energy contribution which is
not important in quantum field theory [28])

Ĥ =
∫

d3kωk Nk , (1.44)

which clearly shows that the vacuum |0〉 is the state with the lowest possible energy.
We could also define time dependent creation and annihilation operators. They

are similar to the expressions in Eq. (1.42) but are evaluated at a general t . The time
dependent and independent (for t = 0) operators are related by a†

k(t) = a†
keiωk t ,

ak(t) = ake−iωk t .
In light of this, we can consider quantization from a different but equivalent

viewpoint: Instead of expressing the annihilation and creation operators as linear
combinations of the field and its conjugate, we simply perform a mode expansion of
the field [28] as

φ̂k(t) =
[
v∗

k (t)ak + vk(t)a
†
−k

]
. (1.45)

The complex mode functions carry all the time dependence and satisfy the equation
of motion

v̈k + ω2
k vk = 0 , (1.46)

from Eq. (1.40). A general solution to this equation is given by

vk(t) = A
(
αkeiωk t + βke−iωk t

)
, (1.47)

where A is a normalization factor. Like the frequency ωk , the mode functions only
depend on the magnitude |k|, and the directional dependence is contained in the
factors ak, a†

−k, which can now be simply regarded as field amplitudes. Plugging the
mode expansion (1.45) into (1.39) we obtain (after changing variables from−k → k
in the second term)

φ̂(x, t) =
∫

d3k
(2π)3

[
v∗

k (t)akeik·x + vk(t)a
†
ke−ik·x] . (1.48)
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We can now postulate the CRs (1.43) for the amplitudes ak, a†
k. To achieve consis-

tency with the CRs for the field and its conjugate, Eq. (1.41), the mode functions
vk(t) need to satisfy the normalization condition [29]

v̇k(t)v∗
k(t) − vk(t)v̇∗

k(t) = i . (1.49)

Equation (1.46) is a second order differential equation for the complex mode func-
tions, so the normalization condition does not suffice to specify them completely. To
determine vk(t) uniquely, we can demand that the vacuum, defined by ak|0〉 = 0, is
an eigenstate of the Hamiltonian with minimal energy. This fixes the mode functions
to be [29]

vk(t) = 1√
2ωk

e−iωk t . (1.50)

Having found an expression for the mode functions, we can define vacuum fluctu-
ations of the fieldφ(x, t), by studying the expectation value 〈φkφk′ 〉 of Fourier modes
in the ground state. Using equation (1.45) and noting that ak|0〉 = 0, 〈0|a†

k = 0, we
obtain

〈φkφk′ 〉 = |vk(t)|2〈0|aka†
−k|0〉 . (1.51)

Using Eq. (1.43), this gives

〈φkφk′ 〉 = (2π)3δ(k + k′)|vk(t)|2 . (1.52)

1.2.4.2 Expanding Background

The approach involving mode functions is also used to quantize fields on a curved
background. Let us consider a flat (k = 0) Friedmann universe where the metric is
expressed using conformal time, Eq. (1.14). In these coordinates, themetric is related
to flatMinkowski space by a conformal transformation [28]. This already tells us that
the problem in a homogeneous isotropic curved background will be similar to the flat
situation we considered above, however there will be some important differences.

Noting that
√−g = a4 for thismetric, and that indices are now raised and lowered

with gμν = a2ημν , we see from simple substitution that the action (1.7) becomes

S = 1

2

∫
d3xdηa2

[
φ′2 − (∇φ)2 − m2a2φ2

]
, (1.53)

where a prime denotes differentiation with respect to to conformal time. To make
this look more like Eq. (1.35), define an auxiliary field χ ≡ aφ. Then, Eq. (1.53) can
be written as [28]

S = 1

2

∫
d3xdη

[
χ′2 − (∇χ)2 −

(
m2a2 − a′′

a

)
χ2

]
. (1.54)
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This looks exactly like the action for a field in flat spacetime, Eq. (1.35), except that
the effective mass m2

eff(η) = m2a2 − a′′
a is now time dependent. The equation of

motion for the Fourier modes χk derived from this action is given by [c.f. Eq. (1.40)]

χ′′
k + ω2

k χk = 0 , (1.55)

where the frequency ω2
k (η) = k2 + m2

eff(η) is time-dependent.
Due to the similarities in the form of the equations, we can follow the same steps

to quantization as for the flat case. We can start by performing a mode expansion for
χ̂(k, η) as done in Eq. (1.45), but the equation of motion for the mode functions now
has the time dependent frequency ωk(η).

The explicit time dependence in the action leads to complications when trying to
determine the mode functions. While the same normalization condition still holds
[28], the second condition, related to the choice of vacuum, does not give a well-
defined answer anymore. Like the action, the Hamiltonian for the field χ̂(x, η) is
now explicitly time dependent. Therefore, it cannot possess time independent eigen-
vectors. In particular, this means that there is no uniquely defined vacuum state.

Choosing the correct mode functions will depend on the problem at hand, and
there are approaches such as using the instantaneous vacuum state, defined at a
specific time, or the so-called adiabatic vacuum if the frequency ωk(η) varies slowly
[28]. Fortunately, in the case of inflation, the background space can be approximated
by de Sitter and there is a preferred choice for the mode functions, described by
the Bunch-Davies vacuum [40]. We will now consider the quantization of metric
perturbations during inflation.

1.2.5 Quantum Fluctuations During Inflation

Before deriving the mode functions (and therefore the vacuum fluctuations) of the
metric perturbations during inflation, let me make the following observation. While
in the previous section we quantized the “full” scalar field φ, ignoring its interaction
with the background, in the case of the inflaton we need to consider the homogeneous
field and its fluctuations separately. Consider equation (1.31). The background φ(t)
can be regarded as behaving completely classically; it simply drives the expansion
and determines the de Sitter-like background evolution. When deriving the quantum
fluctuations from inflation, we need to consider the inflaton fluctuations δφ(x, t),
which are related to the fluctuations in the metric through Einstein’s equation.

In linear perturbation theory, where the perturbations are small, we can ignore all
terms that are second order or higher. This is the approach used in Cosmology, and
hence the perturbations can be thought of living on a fixed, unperturbed spacetime,
as any backreaction effects would be of higher order in the perturbation [20].

To study quantum fluctuations during inflation, we consider the metric pertur-
bations as free fields propagating on a fixed FRW background [29]. The scalar
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perturbations of the metric are coupled to the inflaton perturbations δφ(x, t), and
we can pick different gauges to study them (see appendix A.1). After inflation, they
will induce density perturbations in the matter distribution and can therefore be
regarded as the source of all structure.

A simpler problem to consider are the tensor perturbations, as they do not couple to
inflaton perturbations [25]. As we will see explicitly in Sect. 1.5.1, the transverse and
traceless spatial metric perturbations hi j correspond to GWs. As GWs are the main
focus of this thesis, I will outline the quantization procedure in this case, deriving
a power spectrum of fluctuations of tensor modes. For completeness, I will give the
result for scalar modes at the end.

To quantize the tensor perturbations hi j , the Einstein-Hilbert action (1.8) in a
Friedmann universe needs to be expanded to second order [29]. Keeping only the
second order term yields [1]

S(2)
E H = m2

Pl

8

∫
dηd3xa2

[
(h′

i j )
2 − (∂l hi j )

2
]

. (1.56)

As the tensor field hi j contains two independent polarizations r = +,× (Sect. 1.5.1),
it is useful to transform to Fourier space where it can be expressed in terms of the
polarization tensor εr

i j (k), which satisfies ki εi j = 0, εr
i j (k)εr ′

i j (k) = 2δr,r ′ [41]:

hi j =
∫

d3k

(2π)3

∑
r

εr
i j (k)hr

k(η)eik·x . (1.57)

If we also define h̃r
k ≡ a

2mPlhr
k and substitute expansion (1.57) into the action (1.56)

we obtain [29]

S(2)
E H =

∑
r

1

2

∫
dηd3k

[
(h̃r

k
′)2 −

(
k2 − a′′

a

)
(h̃r

k)2
]

. (1.58)

The corresponding expression for the Hamiltonian is given by

H (2)
E H =

∑
r

1

2

∫
d3k

[
(h̃r

k
′)2 +

(
k2 − a′′

a

)
(h̃r

k)2
]

. (1.59)

The action (1.58) is the same as two copies of Eq. (1.54) in Fourier space, but with
no mass term. When quantizing the tensor perturbations, it is therefore the same
exercise as trying to quantize two massless scalar fields in curved spacetime. If we
expand the Fourier components in terms of creation and annihilation operators as in
Eq. (1.45), we find that the mode functions obey [1]

v′′
k +

(
k2 − a′′

a

)
vk = 0 . (1.60)
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This is known as theMukhanov equation. During inflation, we are in a quasi de Sitter
phase where H = ȧ

a = const. Changing to conformal time, this implies a′ = a2H
and integrating gives

a(η) = − 1

Hη
. (1.61)

Note that during de Sitter expansion, conformal time is negative, and becomes infinite
in the past when a → 0. Therefore, we can write a′′

a = 2
η2

and Eq. (1.60) becomes

v′′
k +

(
k2 − 2

η2

)
vk = 0 . (1.62)

In de Sitter space, there exists a preferred quantum state, the Bunch-Davies vacuum.
It is time independent and can therefore be used to determine unique mode functions
[28]. Let us construct them. In the far past, when |kη| � 1, the second term in
Eq. (1.62) becomes negligible. At these early times, all scales were far inside the
horizon and did not feel the curvature of spacetime, so we obtain the mode equation
for Minkowski space, Eq. (1.50) with ωk = k. The Bunch-Davies vacuum therefore
corresponds to the minimal excitation state in the far past [28]. This condition and
the normalization (1.49) are sufficient to determine themode functions uniquely. The
general solution of equation (1.62) gives the Bunch-Davies mode functions,

vk(t) = e−ikη

√
2k

(
1 − i

kη

)
. (1.63)

To determine the power spectrum, remember from equation (1.52) that we simply
need to calculate the modulus squared of the mode functions which in this case is
given by

|vk |2 = 1

2k3η2
(k2η2 + 1) . (1.64)

Equation (1.64) is defined for h̃r
k, however we are interested in the power spectrum

of the physical field hr
k = 2

amPl
h̃r

k:

〈ĥk(η)ĥk′(η)〉 = (2π)3δ(k + k′)4|vk(η)|2
a2m2

Pl

(1.65)

= (2π)3δ(k + k′) 2H2

k3m2
Pl

(1 + k2η2) , (1.66)

where in the second equality we used (1.61). The first line, Eq. (1.65), seems to
imply that fluctuations decay with time due to the presence of the factor a2. This is
true for any modes deep inside the horizon, with kη � 1: the mode h̃r

k, rescaled by
a, simply oscillates in a Minkowski vacuum, but the physical mode hr

k decays due



22 1 Introduction

to the expansion of the universe. The beauty of the de Sitter-like expansion during
inflation is that when the modes become superhorizon, kη  1, the second term
in (1.66) can be ignored and the spectrum of fluctuations approaches a constant (as
H � const). In terms of the dimensionless power spectrum (1.33),

Ph(k) = 4

m2
Pl

(
H

2π

)2

k=a H
. (1.67)

The total tensor power spectrum is actually twice this value as we have to take into
account both polarizations. Note that Eq. (1.67) needs to be evaluated at horizon
crossing, k = aH . H is a constant in pure de Sitter space, and therefore the power
spectrum would be perfectly scale-invariant, i.e. the same for any mode k exiting
the horizon at different times. However, in a slow-roll inflationary model, we only
have quasi de Sitter evolution, where H is not perfectly constant and therefore the
spectrum is slightly redshifted.Modes that exit the horizon earlier will have a slightly
larger amplitude, as H becomes smaller with time. This scale dependence is taken
into account by evaluating the spectrum at horizon crossing, so Eq. (1.67) can be
used to describe fluctuations from slow-roll inflation [29].

As the power spectrum is constant on scales kη  1, fluctuations “freeze out”
after they cross the horizon. This is related to the fact that on scales larger than the
Hubble scale (aH)−1, no causal physics should act [29]. We therefore do not have to
worry about their behaviour until they re-enter the horizon at a later time, long after
inflation. Moreover, the evolution during the de Sitter expansion makes it possible to
stretch quantum fluctuations to very large scales. The power spectrum in Eq. (1.67)
can therefore be regarded as a classical probability distribution for tensor modes
[29]. Understanding the quantum-to-classical transition is the subject of the field of
decoherence [42].

Although vacuum fluctuations are always present due to the uncertainty principle,
usually their amplitude is vanishingly small on large scales [1]. Only because of
the accelerated expansion, which leads to a shrinking comoving Hubble volume,
do we arrive at a situation where these quantum fluctuations can be stretched to
cosmologically relevant scales and retain their amplitude [28].

Inflation produces a nearly scale invariant spectrum of perturbations. I have shown
this explicitly for the tensor modes, but it is also possible to do the same exercise
for scalar perturbations. Unlike tensors, these couple to the inflaton perturbation,
so we will need to consider the spectrum of a quantity that contains both scalar
metric and inflaton perturbations. A gauge invariant choice is the comoving curvature
perturbation [29]

R = � + H

φ̇
δφ , (1.68)

where� is the metric perturbation corresponding to the gravitational potential in the
Newtonian gauge (see appendix A.1).R describes the spatial curvature on comoving
(constantφ) hypersurfaces, asmeasured by an observermovingwith the expansion of
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the universe. It is a useful quantity to consider as it is conserved outside the horizon,
even after the end of inflation when the inflaton (and hence its perturbation) has
decayed [20].

To find the power spectrum ofR from inflation, we can choose to quantize either
the metric or inflaton perturbations, depending on the gauge. The approach is similar
to the case of tensor perturbations, but the action now contains a mass term that
depends on the slow-roll parameter ε [29]. However, in the pure de Sitter limit,
where ε → 0, we again obtain the mode equation for a massless field (1.62). Even
for slow-roll inflation, we can use the Bunch-Davies mode functions: They are well
defined as long as the inflaton is a light field, m2 < H2, which is satisfied by
η  1 [28]. Note, however, that for a heavy field with m2 > H2, there would be
a mass term in equation (1.58) that can make the effective frequency positive [28],
resulting in oscillatory behaviour, rather than the freeze-out of modes as described
above.Hence, only light fields can acquire a scale-invariant spectrumof perturbations
during inflation.

The power spectrum of fluctuations for the comoving curvature perturbation is

PR(k) = H2

(2π)2

H2

φ̇2
k=a H

, (1.69)

where again we need to evaluate the Hubble rate at horizon crossing to take its time
dependence into account. Note that this can be derived in the spatially flat gauge,
where � = 0, from the power spectrum of inflaton fluctuations [29]:

Pφ(k) =
(

H

2π

)2

. (1.70)

Instead ofR, we could also have considered the curvature perturbation ζ on uniform
density hypersurfaces (for which δρ = 0). It is also gauge invariant and equal to −R
during slow-roll inflation [29]:

− ζ ≡ � + H

ρ̇
δρ . (1.71)

The curvature perturbations are also equivalent on superhorizon scales k  aH
where ζ = −R, as long as there are only adiabatic density perturbations [43], so
they can often be used interchangeably.

The scale dependence of the tensor and curvature power spectra can easily be quan-
tified by introducing spectral indices ns and nt for the scalar and tensor modes [20]:

ns − 1 ≡ d lnPR
d ln k

= 2η − 6ε , (1.72)

nt ≡ d lnPt

d ln k
= −2ε . (1.73)



24 1 Introduction

The second equality shows the value of the spectral indices in terms of the slow roll
parameters (1.28) when calculated in the slow-roll approximation. As they are very
small, this demonstrates the near scale invariance of the spectra.

It is also useful to define the tensor to scalar ratio [29]

r ≡ Pt

PR
= 16ε . (1.74)

In slow-roll inflation, scalars strongly dominate over tensors. The values of ns and
r are used to constrain inflationary models, with the most recent bounds by Planck
giving ns = 0.9603 ± 0.0073 and r < 0.11 [16].

While the spectrum of scalar modes has been extensively probed through CMB
temperature and polarization measurements (see next section), tensor modes from
inflation have remained elusive for a long time. Very recently, the BICEP2 collab-
oration [17] detected B-mode polarization of potentially primordial origin, which
remains to be verified by other experiments. Their analysis suggests a value of
r ≈ 0.2, however this has been obtained from only a small patch of sky over the
South Pole and will probably change when a full sky analysis is available, which
would also provide us with the full spectrum of tensor perturbations.

Tensor modes are a very useful tool in constraining models of inflation. From
Eq. (1.67) it is clear that the spectrum of tensor perturbations is directly proportional
to H2 and thereforePh ∝ ρ/m4

Pl from the Friedmann equation (1.15). Hence, it gives
you a direct measure of the energy scale of inflation and therefore the inflationary
potential, which dominates the energy density [25].

1.3 From Inflation to the Cosmic Microwave Background

In this section I want to give a very brief overview of what happens to the primordial
spectra after inflation. Studying this evolution in detail is a complicated field (rooted
in cosmological perturbation theory) and the subject of many Cosmology textbooks,
see e.g. [20, 25]. The scalar perturbations are the seed of all the structure we observe,
while both scalar and tensor modes will leave an imprint on the CMB anisotropies. In
particular, a specific pattern in the polarization of the CMB distribution, the B-mode,
can only be sourced by tensor perturbations and could therefore provide a direct
window into the study of gravitational waves from inflation.

1.3.1 Perturbations in Matter and Radiation

The power spectra for scalars and tensors derived in the previous section determine
the subsequent evolution of perturbations. Any quantity of cosmological interest
can be ultimately traced back to these initial conditions. After the inflaton decays
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(which is the subject of reheating, described inSect. 1.4), the presence of the curvature
perturbationRwill source density fluctuations in each particle species [20]: baryonic
matter, cold dark matter, neutrinos and photons.

The perturbations in the fields set up by the simplest slow-roll inflationary sce-
nario are adiabatic, which means that their number densities are perturbed by the
same factor [26], and Gaussian, so their Fourier components, like the vacuum fluc-
tuation, have independent probability distributions [20] (and we therefore only need
2-point functions to describe them). More complicated models of inflation can lead
to isocurvature perturbations and non-Gaussianity, but both of these features are
subdominant according to the most recent data [15].

We typically study the fluctuations in Fourier space, as for small perturbations dif-
ferent k modes will evolve independently [1]. Fourier modes behave very differently
depending on whether they are outside (frozen in) or inside the horizon (when causal
physics can affect them [25]). Particularly, perturbations that re-enter the horizon
(i.e. k modes with wavenumber k > aH ) during radiation domination will evolve
very differently to ones that enter during matter domination.

Another important epoch is the time of recombination around 380.000years after
the Big Bang, when neutral atoms can first form. Until this point, the photons and
baryons were tightly coupled [20], and the photons’ mean free path was very small as
they constantly Compton scattered off free electrons. At the time of recombination,
this mean free path increases until the photons completely decouple from the baryons
and free-stream to us today, where we observe them as the CMB. The position of
this event in spacetime is referred to as the surface of last scattering.

On very large scales, which were superhorizon at the time of recombination,
we can directly relate the fractional temperature perturbation in the CMB to the
primordial curvature perturbation R [20],

δT

T
= −1

5
R . (1.75)

However, on smaller scales fluctuations in the matter and radiation densities have
evolved and will not simply be related to the primordial spectra anymore. Instead, the
evolution is described using transfer functions T (t) [20, 25], which relate the power
spectrum of any field g(x) at time t to the primordial spectrum asPg(t) = T 2

g (t)PR.
The perturbations in the matter distribution are the seeds of all the structure we

observe, from stars to clusters of galaxies. These gravitationally bound object can
form when the density contrast δρ/ρ becomes large and the equations of motion
becomenon-linear, so cosmological perturbation theoryno longer holds. For photons,
on the other hand, radiation pressure prevents perturbations from gravitationally
collapsing [25]. The CMB fluctuations were therefore imprinted when the evolution
was still linear, which makes it possible to check the validity of the inflationary
paradigm by directly probing the primordial power spectra (and taking the transfer
functions into account).

The perturbations in the photon distributionmanifest themselves as fractional tem-
perature perturbation in the CMB, commonly denoted by 	(x, p̂, t) = δT/T [25].
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The photon distribution is mathematically more complicated than non-relativistic
matter, as it depends not only on time t and position x, but also the direction of
propagation of the photons p̂ (so the CMB is not only inhomogeneous, but also
anisotropic [25]). It makes sense to expand the photon distribution function in terms
of Legendre polynomials Pl to take care of the p̂ dependence [25]. Specifically,
defining k̂ · p̂ = cos θ, in Fourier space we get

	l(k, t) ≡ 1

2(−i)l

1∫

−1

d(cos θ)Pl(cos θ)	(k, cos θ, t) , (1.76)

so the full photon distribution can be expressed as an infinite series of moments
l. l = 0 is the monopole, l = 1 the dipole, l = 2 the quadrupole etc. When we
measure the CMB at our position (x0) today (t0), we can only probe the directional
dependence p̂. It is then useful to expand the perturbation in terms of spherical
harmonics instead. They enable us to expand the perturbation on a sphere [25], so
we can describe photons arriving at our positionwhich originated at the last scattering
surface. The amplitudes of each spherical harmonic are called themultipolemoments
and are given by [29]

alm =
∫

d�Y ∗
lm( p̂)	( p̂) . (1.77)

The label l of the spherical harmonics is related to the angular size θ of the perturbation
on the last scattering surface, θ ∼ π/ l [25], so largermultipoles probe smaller angular
scales.

The multipole moments fully characterise the perturbation. Their mean is zero,
while their variance 〈alma∗

l ′m′ 〉 = Clδll ′δmm′ describes the statistical properties of
the field, i.e. a typical realization of each multipole moment alm will be drawn from
a Gaussian centred around zero with variance Cl [25]. It does not depend on m
(which takes integer values between −l and l) due to the rotational invariance of the
background. The variance is related to the primordial power spectrum of curvature
perturbations (1.69) (which dominates over tensors),

Cl = 4π

∞∫

0

T 2
	(k, l)PR(k)

dk

k
, (1.78)

where T 2
	(k, l) is the transfer function for the temperature perturbations [20]. Equa-

tion (1.78) is the angular power spectrum of temperature fluctuations.
The angular power spectrum has been explored in great detail by WMAP [14]

and, with even higher angular resolution, by Planck [15], providing us with a wealth
of information about the early universe. The temperature power spectrum is domi-
nated by scalar perturbations and cannot be used to extract parameters characterising
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the tensor perturbations [20]. However, primordial tensor modes can be measured
through the CMB polarization [25], which I will discuss now.

1.3.2 CMB Polarization

Analysing the polarization of the CMB [44] is a complicated field, both from a
theoretical and experimental point of view. For a review, see e.g. [45]. Here I want
to discuss the main theoretical aspects of polarization, and describe the B-mode
polarization that provides a direct signature of gravitational waves [46, 47].

Recall that electromagnetic waves are transverse, which means that the direction
of the field oscillation (which determines the polarization) is orthogonal to the prop-
agation of the wave. The intensity (amplitude) of the wave will therefore only vary
in a plane orthogonal to the wave vector k. If the intensity is the same in any two
orthogonal directions in this plane, the wave is unpolarized, otherwise it is polarized.
The most general type of polarization is called elliptical, however there are two spe-
cial cases, circularly polarized waves (where the field amplitude vector traces out a
circle in the plane of oscillation) and linearly polarized waves (where the field vector
traces out a line) [48].

Before recombination, there is no reason for the photon background to be polar-
ized. However, upon decoupling, the photons’ mean free path increases and as long
as the photon distribution 	l(x, t) has a non-zero quadrupole moment (l = 2), the
wave becomes linearly polarized due to Thomson scattering with electrons [49]. Let
me explain this heuristically. Thomson scattering describes how the electric field
of the incoming wave excites the electron, which then emits a wave at the same
frequency in a different direction. The wave can only retain polarization transverse
to the outgoing direction, and will therefore not transmit any intensity in the field
component parallel to it, turning an initially unpolarized into a linearly polarized
wave.

In the case of the CMB, we do not deal with single plane waves but with a
background of photons, which scatter off electrons coming from all directions. It
turns out that a background that is either isotropic or only has dipole anisotropy will
not be polarized by Thomson scattering [25].

For simplicity, first consider two unpolarized light waves with equal intensity
coming fromorthogonal directions x̂ and ŷ, and scattering off an electron at the origin
that transmits radiation in the ẑ direction. The wave propagating towards the electron
in the−x̂ direction will retain polarization in the ŷ direction after scattering, whereas
the one from−ŷ will keep the x̂ component of polarization. Therefore, the transmitted
intensity is the same in both directions and the background remains unpolarized. We
arrive at the same conclusion for a background with dipole anisotropies, as photons
coming from opposite directions with different temperatures will average out. To
produce linear polarization, we need a quadrupolemoment in the photon distribution.
In this case, orthogonal directions are fundamentally different, and therefore the
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Fig. 1.1 A photon
distribution with a
quadrupole anisotropy can
be linearly polarized from
Thomson scattering with
electrons. Reprinted from
[45], with permission from
Elsevier

ε
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ε

transmitted intensity will have a preferred direction and the background becomes
polarized, see Fig. 1.1.

No further polarization will be induced after the photons have completely decou-
pled (except for late time polarization when the universe becomes reionized, which
leads to a reionization bump in the polarization power spectrum on large scales [50]).

Note that the polarization of the CMB is not very strong, only of the order of a
few percent [45], as the quadrupole during the tight coupling regime is small [25]:
Before decoupling, a photon’s mean free path is very short, so all the photons arriving
at a point x scattered from somewhere nearby. Therefore, they will all have nearly
the same temperature, and there is no strong directional dependence in the photon
distribution. This corresponds to a monopole perturbation 	0(x, t) (which is the
average over all directions). There is also a significant dipole contribution 	1(x, t)
as the electrons have a bulk velocity and the photons move with them. Monopole
and dipole of the fractional temperature distribution therefore dominate, however the
quadrupole is still big enough to lead to a measurable polarization signal.

It is straightforward to see why we need a quadrupole moment in the photon
distribution to produce polarizationwhenwe describe polarizationmathematically in
terms of Stokes parameters [48]. A polarized wave can be described by the intensity
tensor (with a basis of polarization vectors ε̂1, ε̂2) Ii j = 2〈EE†〉, where E is the
electric field vector of the polarized wave. Assuming it is moving in the ẑ direction,

E(t, z) = A1eiφ1ei(kz−ωt)ε̂1 + A2eiφ2ei(kz−ωt)ε̂2. (1.79)

The Hermitian matrix Ii j can be expanded in terms of Pauli matrices and written
as [25]

Ii j =
(

T + Q U − iV
U + iV T − Q

)
, (1.80)
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where the coefficients are the Stokes parameters [20]:

T = 〈A2
1 + A2

2〉 , (1.81)

Q = 〈A2
1 − A2

2〉 , (1.82)

U = 〈2A1A2 cos(φ1 − φ2)〉 , (1.83)

V = 〈2A1A2 sin(φ1 − φ2)〉 . (1.84)

The Stokes parameters satisfy T 2 = Q2 + U 2 + V 2, where T is the total intensity
(corresponding to the temperature), Q and U characterise linear polarization (with
magnitude P = √

Q2 + U 2, angle α = 1
2 tan(U/Q)) and V describes the degree

of circular polarization and is zero for linearly polarized waves (which have field
components that are in phase). When we perform a rotation by an angle ψ in the
polarization plane, I and V are invariant (scalars) but Q and U transform like a
spin-2 field (rotate by an angle 2ψ) [29]:

(
Q
U

)
→

(
cos 2ψ sin 2ψ

− sin 2ψ cos 2ψ

) (
Q
U

)
or Q ± iU → e2iψ[Q ± iU ] . (1.85)

To produce linear polarization, we therefore need an object with the same transfor-
mation properties as the spin-2 field (1.85). The quadrupole of the photon distribution
	2(k) depends on P2(cos θ) ≡ Y20(θ) fromEq. (1.76), i.e. the second order spherical
harmonic, which transforms as spin-2 [51]. It is therefore a necessary requirement for
the quadrupole moment of the photon distribution to be non-zero in order to produce
polarization from Thomson scattering.

To study what the strength of polarization is today, we need to integrate over all
incoming directions at each scattering location and consider all outgoing directions.
This calculation requires full use of the Boltzmann equations [25] and can be found
in [52–54]. As for the temperature fluctuations, we can define a polarization power
spectrum which shows the amount of polarization on different angular scales. As the
Q, U parameters are a spin-2 field, we cannot just use ordinary spherical harmonics,
but need to revert to spin-weighted spherical harmonics ±2Ylm(n̂) [52]. The field in
direction n̂ can then be expanded as:

[Q ± iU ](n̂) =
∑
lm

a±2,lm ±2Ylm(n̂) . (1.86)

Clearly, it would be preferable to describe polarization in terms of scalar quantities,
just like we do for δT/T . Indeed, we can perform a change of basis and define
spherical harmonic coefficients for two scalar quantities E(n̂) and B(n̂) [52, 53]:

aE,lm ≡ −1

2

(
a2,lm + a−2,lm

)
, aB,lm ≡ − 1

2i

(
a2,lm − a−2,lm

)
. (1.87)
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E-modes correspond to polarization fields whose strength varies parallel or perpen-
dicular to the polarization direction (like a curl-free electric field), whereas for B-
modes the variation is at 45◦ (like a divergence-free magnetic field). As scalars, they
are invariant under rotations, but only E is invariant under a parity transformation
while B changes sign.

The E/B decomposition is useful as you can show that scalars produce only E-
modes, whereas tensors produce both E and B [46, 47]. Heuristically, the reason
scalars and tensors produce different polarization types can be understood as fol-
lows (as explained in [25]): Scalar perturbations can be described by plane waves,
where the wave vector k determines the direction of propagation. There should be
rotational symmetry around this wave vector, and only the parity invariant E-modes
should be produced. Tensor perturbations, on the other hand, introduce an azimuthal
dependence into the photon distribution. This additional component affects the polar-
ization and we find that they can also give rise to a B-mode pattern, which changes
sign under a parity transformation.

The fields T , B and E completely describe the photon field and we can define
power spectra for each of them. We can use polarization alongside temperature
measurements to probe the CMB anisotropies. Unlike the temperature fluctuations
that interact with gravitational fields, the polarization pattern does not change after
production (except due to lensing [20]), as it can only be generated by scattering.

To describe the photon distribution statistically, we can use autocorrelations of
the three different fields, T T , E E and B B, and cross correlations. However, the
correlators T B, E B vanish by symmetry arguments (as B is odd under parity) and
only the T E cross power spectrum is non-zero [29]. The different angular power
spectra can be denoted as

C XY
l = 1

2l + 1

∑
m

〈a∗
X,lmaY,lm〉 X, Y = T, E, B . (1.88)

Note that there is a way to produce a non-zero T B and E B power spectrum: If
gravity was chiral, i.e. the two tensor polarizations (see Sect. 1.5.1) were different,
parity would be violated and the T B and E B correlators would not vanish [55]. It
could be easier to detect tensor modes through a measurement of the T B rather than
the B B power spectrum, as the amplitude of T is much bigger than that of B. A
chiral graviton from loop quantum gravity and its implication for the tensor power
spectrum are the subject of the work presented in Chap. 2.

Like the temperature power spectrum, the T E and E E spectra are both dominated
by the contribution from scalar modes [29]. Measuring the B-mode power spectrum,
on the other hand, enables us to directly probe tensor perturbations. While the E-
mode polarization has already been detected around 10years ago [14, 56], due to
the small value of r it is much more difficult to measure B-modes. They might have
finally been detected by BICEP2 [17], suggesting a value of r ≈ 0.2. This result will
need to be complemented by a full sky analysis of polarization, as performed by the

http://dx.doi.org/10.1007/978-3-319-17449-5_2
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Planck collaboration who are still due to release their results, as well as confirmed
by other experiments [57, 58].

Finally, a remark: It can be shown that gravitational lensing can distort an E-mode
into a B-mode pattern, with the effect peaking on scales l ∼ 1000 [59]. This will
affect the primordial B-mode spectrum due to tensors, but leaves it unaffected at
large scales. Lensing B-modes have recently been discovered for the first time by the
South Pole Telescope [60].

1.4 Reheating

Reheating describes the transition from the end of inflation, where the universe is
filled with an oscillating homogeneous field, to radiation domination. Except for
gravitational waves, the subject of Chap.3, we do not expect many cosmological
observables to have been directly affected by this process, making it one of the least
probed stages in the early universe.

For a long time, the detailed dynamics of reheating were not well understood and
the decay was described by a perturbative, effective theory. In 1994, Lev Kofman and
collaborators [61] developed the theory of preheating, whichwas studied analytically
in great detail and describes the early stages of the transition. In this section, I will
summarize the main aspects of the theory of reheating.

At the end of inflation, when the inflaton oscillates around the minimum of its
potential, we are faced with a problem: during the de Sitter-like exponential expan-
sion, the number density of all particle species reduced dramatically, as n ∝ a−3.
Therefore, the universe at the end of inflation is empty and cold, with all of the
energy stored in the homogeneous inflaton field. Somehow, we must recover the hot
Big Bang picture (which states that the universe after inflation should be in thermal
equilibrium) and all the particle species within it.

The idea of reheating, first discussed in [30], states that while the inflaton φ oscil-
lates about the minimum of its potential, it produces elementary particles. After
(almost) all of the inflaton energy has been transferred, the decay products ther-
malise at the reheating temperature Tr , motivating the name reheating (the prefix
“re”, however, is very misleading, as there was not necessarily a stage of thermal
equilibrium before reheating occurred). The physical mechanism leading to particle
production was described as a perturbative decay of inflaton particles (which make
up the homogeneous field condensate that drove inflation) into other particle species.
This process was studied in detail by [62, 63], where the reheating temperature (pro-
viding the initial condition for the hot Big Bang picture) for different models was
derived.

However, it was realised that the reheating process described in this manner pro-
ceeded very slowly and might never complete in some models, for which a lot of the
energy remained stored in the inflaton field [61]. The failure of the theory is related to
the fact that during the initial stage of reheating, the oscillating homogeneous infla-
ton should be regarded as a classical condensate, rather than a collection of single

http://dx.doi.org/10.1007/978-3-319-17449-5_3
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particles. If we think of the inflaton as a classical background, it can source quan-
tum fluctuations in the fields it couples to: The oscillations of φ result in parametric
resonant behaviour in the field fluctuations, leading to exponential growth of certain
momentum bands, and hence very efficient particle production.

This process was introduced in [61] and called “preheating”, to highlight that it
describes the initial stage of reheating. The model considered was that of an inflaton
with a quadratic potential V (φ) = m2φ2, coupled to a scalar fieldχ. It was found that
the parametric resonance starts off as broad (with a large range of amplifiedmomenta)
and many χ particles are produced, but eventually the resonance becomes narrow
and much less efficient. At some point, the resonance ceases and the perturbative
description becomes appropriate for the final stage of the decay process.

The analytical investigation of preheating was developed further in [64], where
the expansion of the universe and the backreaction of the created particles was taken
into account. Moreover, in [65] the model of massless preheating was studied, where
the inflaton potential is quartic, V (φ) = λφ4.

In Sect. 1.4.1, I will summarize the main aspects of the perturbative theory of
reheating and in 1.4.2 I will explain the physics of preheating, emphasising the
difference between narrow and broad resonance. These sections are primarily based
on the extremely thorough and well written account of reference [64]. Finally, I will
describe massless preheating in 1.4.3. This will be the model under consideration
when I describe gravitational wave production from preheating in Chap. 3.

1.4.1 Perturbative Reheating

For an inflaton field with a quadratic potential V (φ) = 1
2m2φ2, the homogeneous

background satisfies [recalling the equation of motion (1.25)]

φ̈ + 3H φ̇ + m2φ = 0 . (1.89)

During inflation, the friction term in H (which is approximately constant) dominates,
and the slow-roll conditions imply m  H . This is true as long as the field values
are sufficently large, φ > mPl [remember the Hubble rate is inversely proportional
to mPl, see Eq. (1.29)].

Inflation ends when φ becomes sub-Planckian and the condition m  H is no
longer satisfied, such that themass termdominates over the friction term inEq. (1.89).
Therefore, the inflaton behaves like a harmonic oscillator, with a decaying amplitude
�(t) due to the damping term H φ̇:

φ(t) ≈ �(t) sin(mt), �(t) ∼ mPl

mt
. (1.90)

http://dx.doi.org/10.1007/978-3-319-17449-5_3
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During this period (when averaging over several oscillations), the universe evolves
as if dominated by matter, so the energy density of the inflaton field decreases as
a−3.

Let us now consider couplings between the inflaton and other particles, specifi-
cally, the coupling to a scalar χ and a spinor (fermion) ψ. The scalar field represents
any bosons (which could be standard model or hidden sector particles) the inflaton
might couple to, including vector or higher spin fields. Not including gauge indices
will simplify the calculation dramatically, and should capture the relevant dynamics,
which will mainly depend on the coupling strength and the type of interaction (e.g.
cubic or quartic). The potential term in the Lagrangian is given by

V = V (φ) + 1

2
g2φ2χ2 + hψ̄ψφ . (1.91)

The coupling constants g, h must be small, as the dynamics during inflation should be
dominated by the inflaton. Small couplings to other fields can be written as radiative
corrections to the inflaton potential [66], which makes it possible to find limits on
the size of these couplings using the CMB constraints [16]. Typically, the coupling
constants need to satisfy g, h � 10−3 [67].

For a quadratic inflaton potential with a minimum at φ = σ,

V (φ) = 1

2
m2(φ − σ)2 , (1.92)

we can perform a field redefinition φ → φ + σ in the potential (1.91) such that
we obtain the usual quadratic term 1

2m2φ2 plus an additional cubic interaction term
−g2σφχ2. Considering the inflaton field as a coherent wave of φ-particles, there are
3-point interactions between the inflaton and the scalar and spinor fields, i.e. decay
processes φ → χχ,φ → ψψ, with cross sections [68]

�(φ → χχ) = g4σ2

8πm
, �(φ → ψψ) = h2m

8π
. (1.93)

We can see that perturbative decay is a slow process as the cross sections are propor-
tional to powers of the small coupling constants, g4 and h2. The corrections to the
inflaton potential can be taken care of by introducing a friction term, given by the
total cross section � = �(φ → χχ) + �(φ → ψψ), in the equation of motion:

φ̈ + 3H φ̇ + �φ̇ + m2φ = 0 . (1.94)

Reheating ends when the Hubble rate becomes smaller than �, which signals that the
expansion of the universe has become slow enough for the decay of the inflaton to
complete. The relativistic decay products then thermalise and the universe becomes
radiation dominated. The energy density at this point is
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ρφ(tr ) = 3�2m2
Pl = π2

30
g
T 4

r , (1.95)

where the second equality relates the energy density to the reheating temperature
(assuming thermal equilibrium), and g∗ is the number of relativistic degrees of
freedom [20].

1.4.2 Preheating and Parametric Resonance

Let us approach the problem of inflaton decay from a different point of view, and
consider the boson as a quantum field χ̂ interacting with a classical background φ(t)
(I will ignore fermions from now on, as they do not partake in the efficient paramteric
resonance, which is related to Bose condensation effects). We can expand the field
in Fourier space by using the standard mode expansion in terms of creation and
annihilation operators (c.f. Sect. 1.2.4),

χ(t, x) = 1

(2π)3

∫
d3k

(
âkχk(t)e

−ik·x + âk
†χ∗

k(t)e
ik·x) , (1.96)

where x and k are comoving quantities. Due to its interaction with the inflaton, χ
acquires a time dependent effective mass term meff = g2φ2(t), and the equation
of motion for its mode functions in an expanding background is given by (writing
Eq. (1.55) in terms of coordinate time)

χ̈k + 3H χ̇k +
(

k2

a2 + g2�(t)2 sin2(mt)

)
χk = 0 , (1.97)

where the solution for φ(t), Eq. (1.90), was used. Eq. (1.97) describes an oscillator
with a time-dependent frequency that changes periodically. This periodicity is the
source of parametric resonance.

Ignoring the expansion of the universe (by setting a = 1, which makes the ampli-
tude � time independent) and defining a new time variable z = mt , we can write
(1.97) as the Mathieu equation [69]:

χ′′
k + (Ak − 2q cos(2z))χk = 0 , (1.98)

where a prime denotes differentiation with respect to z and

Ak = k2

m2 + 2q , q = g2�2

4m2 . (1.99)

The properties of the Mathieu equation have been extensively studied [69], and
its solutions show parametric resonant behaviour: For certain resonant momentum
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bands �k, there exists a solution of (1.98) for which χk grows exponentially,

χk = exp (μk t) f (t) , (1.100)

where μk is the Floquet exponent and f (t) is a periodic function. An exponential
growth of the mode functions leads to an exponential growth in the occupation
number, as

nk ∼ |χk |2 ∼ exp (2μk t) . (1.101)

Therefore, particles are being produced very efficiently during parametric resonance.
The resonance parameter q determines the structure of the resonant bands as well

as the Floquet exponents. There are two very different regimes, narrow resonance
for q  1 and broad resonance for q � 1. I will study both cases separately.

1.4.2.1 Narrow Resonance

From the definition of q in (1.99), it is clear that we are in the narrow regime q  1
when g� < m. It was shown in [70] that in this case, resonance occurs for modes
A(n)

k ≈ n2, where n is an integer, and the width of each band is of order�A(n)
k ∼ qn .

Therefore, the first band A(1)
k = 1 ± q will dominate. The centre of this band

corresponds to k ∼ m, which indicates that two φ particles with mass m have
decayed to two χ particles of momentum k.

Although this looks like the case of perturbative decay, the actual process is
completely different, as the exponential amplification ofmodesmeans that the growth
rate is directly proportional to the number density of produced particles. Narrow
resonance can therefore be seen as a Bose condensation effect [1], for which the
production becomes more efficient the more particles have already been produced.

The maximal Floquet exponent, corresponding to the middle of the resonance
band (outside the band, μk becomes imaginary and therefore the field χ simply
oscillates), is given by μk = q/2. The smallness of q therefore leads to both a very
narrow resonance band and a small amplification exponent. The situation worsens
when we take the expansion of the universe into account: The inflaton amplitude
� then decays, making q even smaller and thus decreasing the width of the bands.
Also, modes can get redshifted out of the instability bands and simply oscillate.

Narrow resonance is therefore not an extremely efficient process, andwill actually
only occur if qm > 3H + � [64]. Otherwise, there is no resonant behaviour and the
decay happens perturbatively as in Sect. 1.4.1. As q decays with time faster than the
Hubble rate, narrow resonancewill inevitably become inefficient eventually, and thus
the final stages of reheating should always be described using perturbative methods.

Numerical simulations show [64] that during narrow resonance, for each oscilla-
tion of the inflaton, the growing mode χk = eμk t f (t) also oscillates one time. This
is very different to the broad resonance case I will consider now.



36 1 Introduction

1.4.2.2 Broad Resonance

The chaotic inflation model with a quadratic potential actually starts with a period of
broad resonance, forwhich q is very large, corresponding to a large (super-Planckian)
initial field amplitude �. Broad resonance is a lot more complicated than the narrow
case, and I will mainly describe it qualitatively as the proper analytical treatment is
very involved, see [64].

Let us initially ignore the expansion of the universe. Solving the Mathieu equa-
tion numerically shows that χk oscillates many times (during which the occupation
number remains constant) for each inflaton oscillation and only increases in ampli-
tude during the short periods when φ(t) crosses zero [64]. The fast oscillations in
χk occur as its effective mass mχ

eff = gφ(t) is much larger (as long as φ(t) is not
close to zero) than the mass of the inflaton m. Away from φ(t) = 0, the frequency
ω2 = k2+g2φ(t)2 therefore changes adiabatically, but when the inflaton approaches
zero, this condition ceases to be satisfied, i.e. ω̇ > ω2. At this point, the occupation
number density is not well defined, but stabilises to a higher level after adiabaticity
is restored.

During broad resonance, particle production occurs for momenta in the range

k2 � k2∗ ≡ gm�, (1.102)

during the time interval�t∗ ∼ k−1∗ for which the evolution is non-adiabatic. Clearly,
the range of amplified momenta is much larger than in the narrow resonance case,
making broad resonance a lot more efficient.

If we include the expansion of the universe, the upper bound k∗ becomes time-
dependent and decreases as �(t) decays. However, at the same time, more physical
momenta are redshifted into the resonant bands. More importantly, the expansion
changes the character of the resonance overall: As � decays, the change of the
frequencyω is not simply periodic anymore,whichmeans thatχk will have a different
phase each time the inflaton crosses zero. As shown in [64], this leads to the process
of stochastic resonance, for which the occupation number of the field χ can also
decrease after a zero crossing, but still grows overall.

Backreaction effects of the produced χ particles, as well as the rescattering of
χ particles which produce inflaton particles, need to be taken account in the full
treatment of parametric resonance, see [64] for details. In particular, these effects
will determine when broad resonance ends and narrow resonance takes over, after q
has become small.

1.4.3 Massless Preheating

I will now describe resonance in the case of massless preheating, where the infla-
ton has a quartic instead of a quadratic potential, making self-interactions possible.
Details about this model can be found in [65], which this section is based on.
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The potential for massless preheating is given by

V (φ,χ) = 1

4
λφ4 + 1

2
g2φ2χ2 . (1.103)

We will see that the resonance in this case strongly depends on the ratio of coupling
constants, g2/λ.

This theory is particularly interesting as it is scale invariant: as the coupling con-
stants λ and g are dimensionless, there is no physical length scale in the Lagrangian.
This is opposed to the case of a quadratic potential, where the mass m is dimension-
full. We will see that, assuming the background behaves like pure radiation, we can
arrive at an equation of motion for the scalar field fluctuations χk that is independent
of the scale factor, showing that the dynamics do not change as the universe expands.
Therefore, we can treat massless preheating like a problem in flat Minkowski space.
This simplifies the calculation andmeans that the characteristic dynamicswill remain
the same throughout, and the resonance only terminates due to backreaction effects.

1.4.3.1 Background Evolution

For a quartic potential, the equation of motion (1.25) for the homogeneous inflaton
field φ(t) becomes

φ̈ + 3H φ̇ + λφ3 = 0 . (1.104)

After the field amplitude has dropped below φ < mPl, the friction term in H becomes
subdominant and the inflaton starts oscillating. However, as opposed to the quadratic
potential case, the oscillations are not sinusoidal, but given by an elliptic cosine. To
see this, we need to make a conformal transformation ϕ = aφ and use conformal
time η (1.13), for which Eq. (1.104) becomes

ϕ′′ + λϕ3 − a′′

a
ϕ = 0 . (1.105)

It has been shown [71] that, averaged over many oscillations, a scalar field with a
quartic potential behaves like radiation, which implies a(η) ∼ η in conformal time.
Therefore, we can ignore the last term in (1.105) and arrive at the equation of motion
for a scalar field with a quartic potential in Minkowski spacetime,

ϕ′′ + λϕ3 = 0 . (1.106)

This can be rewritten as the equation for an elliptic function by defining a dimen-
sionless conformal time variable

x ≡ √
λϕiη , (1.107)
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whereϕi ≈
(

12m2
Pl

λ

)1/4

is the amplitude of the fieldϕ. The equality is approximate as

the background evolution is not exactly like in radiation domination, and therefore
the amplitude is actually weakly time dependent. Note that the amplitude of the
original field φ decays as 1/a ∼ t−1/2. The solution of (1.106) is given by

ϕ = ϕi f (x) = ϕi cn

(
x − x0,

1√
2

)
, (1.108)

where f (x) is an elliptic cosine, which is a harmonic expansion in terms of ordinary
cosines. The constant x0 will simply shift the phase of the oscillations and will be
ignored from now on. As for massless preheating we do not have simple sinusoidal
behaviour, there will be some interesting features in the analytical solution.

1.4.3.2 Fluctuations in the Field χ

The equation of motion of the fluctuations χk is given by

χ̈k + 3H χ̇k +
(

k2

a2 + g2φ(t)2
)

χk = 0 . (1.109)

Due to the quartic potential, the oscillating background φ(t) can also source inflaton
fluctuations. Their equation of motion has the same form as (1.109), but with the
term g2 replaced by 3λ:

φ̈k + 3H φ̇k +
(

k2

a2 + 3λφ(t)2
)

φk = 0 . (1.110)

Rescaling both fields by the scale factor, where Xk = aχk, and using the time
variable x from before we obtain

X ′′
k +

[
κ2 + g2

λ
cn2

(
x,

1√
2

) ]
Xk = 0 , (1.111)

ϕ′′
k +

[
κ2 + 3 cn2

(
x,

1√
2

) ]
ϕk = 0 , (1.112)

where κ = k/
√

λϕi is a dimensionless comoving momentum. Like in the massive
inflaton case, the fluctuations have an oscillatory mass term, which is now given by a
Jacobi cosine. The mode equation for the inflaton fluctuations is identical to the one
for the fluctuations Xk with g2/λ = 3, so we will not need to consider it separately.
Equation (1.111) is known is the Lamé equation [72]. It is determined by only two
parameters, the ratio of coupling constants g2/λ, and the comoving momentum κ.
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Note that the scale factor a has dropped out of the equations. This only hap-
pened because a universe dominated by a scalar field with a quartic potential behaves
approximately like radiation [71], which reduced the equation ofmotion for the back-
ground and fluctuations to one in Minkowski space (after a change of coordinates).
This is referred to as conformal invariance ofmassless preheating bymany references
[65, 73], but remember that the background evolution is not exactly conformally
invariant as the scale factor only satisfies a ∝ t1/2 to a very good approximation.

Like the Mathieu equation, for any choice of couplings g2/λ, the Lamé equation
has unstable solutions for some range ofκ. In thesemomentumbands, the fluctuations
grow exponentially as χk(τ ) = exp

[
μ(k, g2/λ)τ

]
f (τ ), where f (τ ) is a periodic

function and μ(k, g2/λ) is the Floquet exponent quantifying the strength of the
resonance.

However, the band structure in this case is a lot more unusual: the strength of the
resonance and the location and width of the amplified band �κ depends sensitively,
and in no way monotonically, on the ratio g2/λ. As opposed to the broad resonance
regime which corresponds to q > 1, a higher value of g2/λ does not necessarily
correspond to stronger amplification.

For certain values, given by g2/λ = n(n + 1)/2, where n is an integer, there is
only a finite number of resonant momentum bands (all other values have an infinite
number of instability bands, which is the also the case for the Mathieu equation).
Specifically, g2/λ = 1 (n = 1) and g2/λ = 3 (n = 3) have a single instability band,
as all higher ones shrink to nodes at this value. Moreover, long wavelength modes
are only amplified if the ratio g2/λ lies between these special integer values. In this
case, the first momentum band extends from κ = 0 to some maximum value κmax.
This is demonstrated for low values of g2/λ in Fig. 1.2, which shows the resonance
chart of the Lamé equation. Shaded regions signify instabilities, and darker colours
correspond to a larger exponent μκ.

1.4.3.3 Dynamics in Different Regimes

The solutions of the Lamé equation can be written in terms of transcendental Jacobi
functions [72]. These are quite complicated, and in [65] it was shown that for the
special values g2/λ = n(n + 1)/2 simple, closed form solutions can be obtained.
Other interesting cases are the limits g2/λ  1 and g2/λ � 1. For very small values
of g2/λ, the Lamé equation reduces to the Mathieu equation with a small value of q.
Therefore, we are in the narrow resonance regime, with resonance bands that have
a very small width. However, the expansion of the universe will not affect the band
structure, so the narrow resonance for massless preheating is more efficient than its
massive counterpart.

For large values of g2/λ, we find similar behaviour to that of the broad resonance
regime: The fluctuations χk oscillate many times for each inflaton oscillation,
and only increase in amplitude when the inflaton crosses zero. Furthermore, for
g2/λ → ∞, the width of the resonance band is directly proportional to g2/λ and
the characteristic exponent asymptotically approaches its maximum value μmax ≈
0.2377.
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Fig. 1.2 Stability chart of
the Lamé equation. Shaded
regions correspond to
unstable regions where
fluctuations grow. The
characteristic Floquet
exponent μ(k, g2/λ) is
greater for darker regions,
varying from μ ≈ 0.2
(darkest region), up to
μ ≈ 0.02 (lightest region), in
steps of �μ = 0.02

1.4.3.4 Terminating the Resonance

For massless preheating, due to the disappearance of the scale factor from the equa-
tions of motion, the resonance structure is not affected by the expansion of the
universe. The only way to terminate the resonance is due to the backreaction of
the produced particles (both χ and φ), which affect the potential of the oscillating
inflaton field. This leads to a restructuring of the resonance bands, and modes that
were initially amplified move out of the unstable region and start oscillating. This
can happen very fast if the instability band is narrow. The decay of the remaining
inflaton condensate then proceeds more slowly again, described by the perturbative
decay of Sect. 1.4.1.

1.5 Gravitational Waves

In this section I will give some mathematical background on gravitational waves:
I will describe why tensor perturbations correspond to GW degrees of freedom in
Sect. 1.5.1, how GWs are generated by sources in 1.5.2 and how much energy they
carry in 1.5.3. Finally, in Sect. 1.5.4 I will explain how to detect GWs directly.

I will mainly consider perturbations around flat spacetime. This makes the expres-
sions simpler and captures the important physical aspects of GWs. Note that the
Friedmann metric will always look approximately flat on scales much smaller than
the Hubble radius H−1 for which we can neglect the expansion of the universe [20].
Therefore, when we consider GW produced on subhorizon scales, they will initially
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behave as if they were in a flat background. However, they will be affected by the
expansion of the universe and redshifted [20], so a long time after their production
their initial amplitude will have decayed. I will give generalised expressions taking
the curved nature of the FRW metric into account when necessary.

1.5.1 Tensor Perturbations as Gravitational Waves

When gravitational fields are weak, we can use the framework of linearised gravity
where we write the metric as a fixed background with small perturbations around
it. Assuming a flat background for now, we write gμν = ημν + hμν , where hμν is
a small perturbation. Therefore, we only need to keep terms to linear order in hμν

when we determine the equations of motion from the Einstein equations.
In appendix A.1, I describe how the metric perturbation can be decomposed into

scalar, vector and tensor parts, see Eq. (A.1) (where we need to set a(t) = 1 for a
flat background). In Minkowski space, it can be shown [21] that only the traceless
tensor perturbation Ei j is a true propagating degree of freedom, while all the others
can be derived from it and the stress energy tensor by means of constraint equations.
This perturbation carries the degree of freedom corresponding to GWs, but to see its
wave nature it is useful to express the perturbed metric in the transverse gauge.

The diffeomorphism invariance of GR requires that physical observables (such
as the proper time or the Ricci scalar) do not depend on the choice of coordinates,
i.e. they are gauge invariant (see appendix A.1 for more details on selecting gauges
in Cosmology). To satisfy this, the full metric perturbation hμν needs to transform
under an infinitesimal change of coordinates xμ → xμ − ξμ as [21]

hμν → hμν + 2∂(μξν) . (1.113)

Choosing a specific transformation ξμ determines the gauge and enables us to set
certain metric perturbations to zero.

Consider the transverse gauge, for which the choice of ξμ ensures that Ei j,i = 0
and Bi,i = 0, so both vector and tensor perturbations are transverse [21]. As the
tensor perturbation Ei j is also traceless by definition, let us denote it as hTT

i j , where
the superscript TT refers to transverse and traceless. If we consider a situationwithout
a source (Tμν = 0), the linearised Einstein equations imply [21] that the metric
perturbations in Eq. (A.1) satisfy � = 0, Bi = 0, � = 0 and

�hTT
i j (x, t) = 0 , (1.114)

where � = ∂μ∂μ is the D’Alembertian operator. You can then simply write the full
metric perturbation as
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hTT
μν =

⎛
⎜⎜⎝
0 0 0 0
0
0 hTT

i j
0

⎞
⎟⎟⎠ , (1.115)

where the transverse and traceless tensor hTT
μν has equation of motion �hTT

μν = 0.

The solution of this equation is a plane wave, hTT
μν = Cμνeikαxα

, which satisfies
kμkμ = 0 (wavevector null) and kμCμν = 0 (wave propagation orthogonal to wave
polarization). Therefore, the tensor perturbations hTT

i j indeed behave like waves and
the first condition shows that they must propagate at the speed of light. For a wave
propagating in the z direction, i.e. kμ = (ω, 0, 0,ω), the second condition implies

Cμν =

⎛
⎜⎜⎝
0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

⎞
⎟⎟⎠ , (1.116)

where we defined h+ = C11, h× = C12. This shows that GWs have two separate
polarizations, denoted by plus and cross due to the way in which they distort test
particles. Due to the orthogonality condition kμCμν = 0, test particles will only be
perturbed in a direction orthogonal to the propagation direction of the wave. The
plus polarization (h× = 0) perturbs test particles in the same direction they were
separated in, whereas the cross polarization perturbs them at 45◦ to their original
separation, see Fig. 1.3.

In an expanding universe, the transverse and traceless tensor metric perturbations
are defined as

ds2 = −dt2 + a2(t)
[
δi j + hTT

i j

]
dxi dx j . (1.117)

In this case, the wave equation (1.114) acquires a drag term [29]:

ḧTT
i j (x, t) + 3HḣTT

i j (x, t) − 1

a2∇2hTT
i j (x, t) = 0 . (1.118)

Hence, the amplitude of GWs inside the Hubble volume will decay with time.

Fig. 1.3 The plus (left) and
cross (right) polarizations of
a GW. Figure reproduced
from [74]. © http://creativecommons.org/

licenses/by-nc-nd/2.0/de/deed.en

http://creativecommons.org/licenses/by-nc-nd/2.0/de/deed.en
http://creativecommons.org/licenses/by-nc-nd/2.0/de/deed.en
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1.5.2 Gravitational Waves Generated by Sources

We want to see how to calculate the propagating degrees of freedom of the metric in
the presence of sources. If Tμν �= 0, we cannot set �, Bi and � to zero. However,
there is a useful gauge in this case to describe the behaviour of gravitational waves.
Let us first define h̄μν = hμν − 1

2hημν , leading to a reversed trace, h̄ = −h. This
reduces to the original hμν in the TT gauge (which can be applied far away from
sources).

We will choose the Lorenz gauge in which we can set ∂μh̄μν = 0. Using this
condition, the linearised Einstein equation for the trace reversed perturbation is a
wave equation for each component with a source term [21],

�h̄μν = −16πGTμν . (1.119)

To solve this equation, we need to use a Green function G (xα − yα), which is the
solution of the d’Alembertian operator� for a delta function source. Equation (1.119)
can be expressed as

h̄μν = −16πG
∫

G
(
xα − yα

)
Tμν(y)d4y , (1.120)

where the retarded Green’s function (corresponding to waves travelling forward in
time) is [21]

G
(
xα − yα

) = − 1

4π|x − y|δ
[
|x − y| − (x0 − y0)

]
θ(x0 − y0) . (1.121)

Plugging Eq. (1.121) into (1.120) and integrating over y0 gives

h̄μν(t, x) = 4G
∫

1

|x − y|Tμν(tr , y)d3y , (1.122)

where t = x0 and tr = t −|x−y| is the retarded time. The disturbance for an observer
at (t, x) is the sum of contributions at points (tr , y), where tr is the coordinate time at
which the observers past light cone intersects the source located at a distance |x−y|.

To solve Eq. (1.122) analytically we need to make a few simplifying assumptions.
Consider a situation where we are measuring the wave far away from an isolated,
slow-moving source (in this regime, the energy-momentum tensor is negligible, so the
tensor perturbations behaves like a propagating wave as in the previous subsection).
Note that due to the Lorenz gauge condition we only need to solve for the space-like
components of h̄μν as the components h̄μ0 can be derived from them. Going through
a few steps of algebra (see e.g. [21]), we obtain the quadrupole formula,

h̄i j (t, x) = 2G

r

d2 Ii j

dt2
(tr ) , (1.123)
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where the quadrupole moment tensor is given by

Ii j (t) =
∫

yi y j T 00(t, y)d3y . (1.124)

The gravitational wave produced by an isolated source depends on the second time
derivative of the quadrupole tensor (so stationary or spherically symmetric objects
would not emit GWs), evaluated at the retarded time.

Compare this to the situation in EM, where electromagnetic radiation is produced
by the changing dipole moment of an object. A dipole moment cannot lead to grav-
itational radiation because of momentum conservation [26]. Therefore we need a
quadrupole moment in the source (which measures the shape of the system [21]) to
generate GWs. This fact, alongside the general weakness of the coupling of matter
to gravity, is why gravitational radiation is so much weaker than its electromagnetic
counterpart.

The component of the stress energy-tensor Tμν that is affected by the quadrupole
moment of a distribution is the traceless anisotropic stress �i j [25]. Furthermore,
as the GW degrees of freedom are also transverse, only the projection �TT

i j acts
as a source term for GWs. In an expanding universe, the wave equation of tensor
perturbations can generally be written Eq. (1.118) with a source term, given by the
TT part of anisotropic stress [75]:

ḧTT
i j (x, t) + 3HḣTT

i j (x, t) − 1

a2∇2hTT
i j (x, t) = 16πG�TT

i j . (1.125)

This expression is valid as long as one can regard the anisotropic stress as a pertur-
bation around a perfect fluid [76].

1.5.2.1 Sources of Gravitational Waves in Cosmology

The production of gravitational waves I have described in this section is a classical
process and very different in nature to the primordial gravitational wave background
from inflation (see Sect. 1.2.5). This background did not originate from a source,
but corresponds to quantum fluctuations in the metric field. These fluctuations were
stretched to superhorizon scales during the inflationary phase and result in a scale
invariant spectrum of tensor fluctuations.

In this section, I described the emission ofGWs by classical sources, due to a time-
varyingmatter distribution with a non-zero quadrupole moment. Gravitational waves
are hence produced during many astrophysical phenomena that involve colliding or
collapsing bodies, such as binary star systems, coalescing black holes or supernovae
(see [74] for a good review on astrophysical GWs). Depending on the details of the
system, the emitted GWs from these point sources will peak at specific frequencies.

There could also be stochastic gravitational wave backgrounds (travelling to us
fromall directions) from the early universe, produced bynon-equilibriumphenomena
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that carry a large amount of energy. Investigating the properties of these backgrounds
is an active area of research,which includes bubble collisions during phase transitions
[77–81], the creation [82], evolution [83, 84] and decay [85–87] of cosmic defects
networks and preheating [88–91], which is the subject of Chap.3.

1.5.3 Energy Carried by Gravitational Waves

It is natural to ask how much energy is carried by GWs, however calculating this
quantity is not easy. Firstly, in GR, there is no local definition of energy as we
can always transform to a frame where the perturbation is zero. Even in the case
of linearised gravity, it is not obvious what the energy-momentum tensor of the
gravitational field should be, as we cannot easily separate gravity from the metric
and put it into the right-hand side of Einstein’s equation [21].

In order to obtain an expression for the energy carried by GWs, we need to go to
higher orders in the expansion. To first order, we cannot feel the effects of gravity,
as the Ricci tensor measuring the curvature is zero [26] and test particles therefore
move in straight lines. Hence, we need to consider the Einstein equations to second
order (this is further motivated by the energy-momentum tensor of EM, which is also
quadratic in the fields).

We are interested in the GW energy far away from the source where the vacuum
Einstein equations apply. To second order, we can split the Riemann tensors on the
LHS of the Einstein equation (1.1) into two parts, one that is linear in the second
order perturbation h(2)

μν , and one that is quadratic in the first order perturbation h(1)
μν .

Bringing the second term onto the RHS, we can write this as [21]

R(1)
μν [h(2)] − 1

2
R(1)[h(2)]ημν = −

(
R(2)

μν [h(1)] − 1

2
R(2)[h(1)]ημν

)
. (1.126)

If we identify

tμν = − 1

8πG

(
R(2)

μν [h(1)] − 1

2
R(2)[h(1)]ημν

)
, (1.127)

Equation (1.126) is just the Einstein equation for the second order perturbation in the
metric, sourced by a gravitational energy-momentum tensor (1.127) that is quadratic
in first order perturbations.

This method clearly encodes how the perturbations affect space-time and
Eq. (1.127) it is therefore a well motivated choice for the energy-momentum tensor
of gravitational waves. Note, however, that tμν is not a true tensor and, more impor-
tantly, it is not gauge invariant [21]. It is however possible to find a gauge-invariant
measure of tμν by averaging over several wavelengths, as this circumvents the non-
locality of the description and makes it possible to capture the effects of curvature.
In the TT gauge, the averaged energy-momentum tensor can be written as [21]

http://dx.doi.org/10.1007/978-3-319-17449-5_3


46 1 Introduction

tμν = 1

32πG

〈
(∂μhTT

αβ)(∂νhαβ
TT)

〉
. (1.128)

The energy density of GWs is simply given by ρGW = t00. In principle, we can
calculate this quantity numerically, by solving Eq. (1.125) for an arbitrary source
and deriving the energy-momentum tensor (1.128) from hTT

μν .

1.5.4 Gravitational Wave Detectors

The direct detection of GWs is extremely difficult, and so far we have not been
successful in measuring a signal. An indirect detection has been achieved by Hulse
and Taylor [22], who observed the change in orbital period of a binary pulsar, which
exactly matches the energy loss due to gravitational waves predicted by GR.

Although the flux of energy of GWs can be substantial (which is why Hulse and
Taylor were able to observe the energy loss), it is very hard to measure their effect
directly [21], as GWs only couple very weakly tomatter. Asmentioned in Sect. 1.5.1,
a passing GWwill distort the shape of an object. Due to the coordinate invariance of
GR, this is a tidal effect, which cannot be measured locally [92].

A gravitational wave with amplitude h will lead to a fractional change in the size
of an object of order

�L

L
∼ h , (1.129)

which is called the strain. The maximum amplitude we can expect for typical astro-
physical sources is around h ∼ 10−21 (the smallness of h shows why the linearised
gravity approximation works so well). A gravitational wave of this amplitude would
result in a minuscule change �L ∼ 10−18 m over a length of 1km, which is nine
orders of magnitude smaller than the Bohr radius.

To be able to detect such tiny changes, modern GW detectors employ the methods
of laser interferometry. A standard interferometer consists of two arms at a 90◦ angle
to each other. Photons entering the tubes will travel through a beamsplitter which
sends them down different arms, where they are possibly reflected multiple times,
before recombining at a photodiode. The incomingphoton beams are in phase, and the
interferometer is set up in such a way that there will be no signal unless the outgoing
photons are out of phase. A passing GW would stretch one arm and lengthen the
other, and could therefore lead to such a phase shift [21].

The Advanced LIGO detector [23], which will start taking data in 2015, consists
of two interferometers, each with 4Km arms, based in Washington and Louisiana. It
is necessary to have several detectors to be able to localize GW sources in the sky.
LIGO actually collaborates with another experiment, VIRGO in Italy [93], and it is
hoped that a new GW detector will be built in India. The spatial configuration of
these four detectors would lead to very large sky coverage. GWs could therefore be
measured coming from nearly all directions in space [92].
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LIGOwill bemost sensitive to frequencies of the order of 100Hz, with amplitudes
down to h ∼ 10−23 [94]. It should be able to detect signals from the (non-spherical)
collapse of supernovae and the coalescence of neutron stars or black holes [21]. Its
main limitations will be due to the many sources of noise, including photon shot
noise (due to the random nature of emission by a laser), thermal noise and seismic
noise which is particularly important at low frequencies.

The eLISA project [24], which has been delayed multiple times and is supposed
to launch in 2032, is a space based interferometer, consisting of three spacecraft
carrying test masses and which are arranged as an equilateral triangle. The lengths of
the arms is very large, 5 million km, and eLISAwould therefore be sensitive to much
lower frequencies, between 10−4 and 1Hz, with amplitudes as low as h ∼ 10−24

[94]. As it is in space, it does not suffer from seismic noise, but will have an additional
error source due to inaccuracies in the arm length [21]. Low frequency sources of
GWs include certain binary systems and supermassive black holes [21].

While all current direct detectors are mainly aimed at measuring GWs from astro-
physical sources, there are many interesting sources of cosmological origin, as men-
tioned at the end of Sect. 1.5.2. The scale invariant background from inflation is
distributed over a vast frequency range, however its amplitude is at least five orders
of magnitude lower than the sensitivity of eLISA or LIGO [94]. A proposed space-
based detector that might be able to measure the primordial GW background directly
in the future is the Big Bang Observer (BBO) [95], which is a configuration of four
eLISA type detectors. It would be sensitive to a frequency range between eLISA
and LIGO, where no strong signals are expected from astrophysical sources. So far,
however, it is much easier to investigate the tensor modes from inflation through the
B-mode polarization [17].

For a first order phase transition happening at the electroweak scales, GWs are
produced in a range that might be detectable by eLISA [96]. Gravitational waves
from preheating, on the other hand, are produced at much higher frequencies and are
therefore not accessible by the current detectors [89]. High frequency detectors have
recently been proposed [97–99], however their sensitivity might not be sufficient to
detect cosmological GW backgrounds.
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Chapter 2
Chiral Tensor Power Spectrum
from Quantum Gravity

Quantum fluctuations that are produced during inflation freeze out after leaving the
horizon and can survive until today, as was described in Sect. 1.2.5. These fluctua-
tions, having been produced in the very early universe, might carry some information
about the quantum nature of gravity. The theory of loop quantum gravity does not
use the metric as its fundamental gravitational variable, but a (generally) complex
connection. Therefore, deriving the power spectrum of tensor perturbations in this
framework, which was done in Sect. 1.2.5 in the standard second order formalism,
could lead to a different result. Considering new variables to describe spacetime is
always interesting from a quantum mechanical point of view, as different quantum
theories can give rise to equivalent classical theories [1]. We cannot know from first
principles which description is the correct one, and experiments that involve quantum
mechanical observables like power spectra might be the only way of finding out.

I will first outline general principles of the canonical quantization of gravity in
Sect. 2.1, starting with the usual approach taken in quantum field theory, and then
describing the framework of loop quantum gravity. I will finish by comparing the
canonical and covariant approaches to quantization.

In the Sect. 2.2, I will describe different formalisms used in general relativity. In
particular, the tetrad formalism, the first order formalismwhich results in the Palatini
action, and the Ashtekar formalism which forms the basis of loop quantum gravity
will be discussed.

Section2.3 is based on work that has been published in [2, 3]. I will describe
how using the Ashtekar variables instead of the standard metric variables to find a
perturbed gravitational action during inflation leads to a chirality in the tensor power
spectrum, which could leave an observable signature in the CMB. Even though
the Ashtekar variables are motivated by loop quantum gravity, they are interesting
to study regardless of the success of the theory. If we were to observe a chiral
tensor spectrum, it might not necessarily mean that LQG is the correct description
of quantum gravity, but it would definitely give us insight into the quantum nature
of spacetime.

© Springer International Publishing Switzerland 2015
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2.1 Canonical Quantization of Gravity

In this section, I will briefly discuss the main aspects of quantum field theory (QFT),
especially regarding the quantization of gravity, before giving some background
on loop quantum gravity, highlighting its successes and shortcomings. I will finish
by stressing why it might be interesting for Cosmology to consider the Ashtekar
variables, which are motivated by the canonical theory of LQG, as the fundamental
variables describing spacetime.

2.1.1 Quantum Field Theory

Quantumfield theory is the union of quantummechanics and special relativity, where
instead of considering single particle states, we consider fields which are quantized
over a (typically) flat, Minkowski background [4].

When one first studiesQFT as an undergraduate, one probably learns how to quan-
tize a scalar field canonically, i.e. using the formalism of Sect. 1.2.4. The canonical
quantization procedure [5] has been very successful in the context of QFT, and is
used in particular to build the theory of quantum electrodynamics (QED), which has
made experimentally verified predictions with astonishing accuracy [6]. One con-
ceptual problem with the approach is the lack of manifest Lorentz invariance due to
the splitting of space and time, although the Feynman rules one derives to describe
interactions obey the Lorentz symmetry [4].

An alternative approach to quantization is the path integral formalism [7], which
uses the Lorentz invariant Lagrangian as its central dynamical variable. It also pre-
serves all other symmetries of the theory and is therefore more suited to treating
non-Abelian gauge theories like quantum chromodynamics (QCD) [6].

Although the two approaches lead to equivalent results, dependingon the situation,
one might be more suitable than the other [4], although the path integral formalism
is usually the method of choice for the most developed theory of quantum gravity to
date, string theory [1, 8].

In all realistic field theories, ultraviolet divergences arise; which means that at
very high energies certain quantities of interest become infinite. Using the procedure
of renormalization, we can deal with these divergences and arrive at a physically
meaningful theory [4, 6]. It is a well known fact that this procedure fails in the
case of gravity: When one tries to quantize the graviton field by treating it as a
perturbation around flat spacetime [4], divergences arise that cannot be renormalized.
This is probably not surprising; most field theories are effective in the sense that their
regime of validity does not extend to the highest energy scales [4]. For gravity itself,
it seems we cannot simply cut off the highest energy modes and ignore the nature of
spacetime at the Planck scale.

http://dx.doi.org/10.1007/978-3-319-17449-5_1
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2.1.2 Loop Quantum Gravity

Loop Quantum gravity is an attempt to find a quantum theory of gravity in the most
“conservative” [9] way: Its aim is to quantize gravity in a background independent
(as the background itself is quantized), non-perturbative manner, without resorting
to new physics like higher dimensions, supersymmetry or trying to arrive at a unified
description of all fundamental forces. This is in contrast to string theory, which
incorporates all these aspects and is also based on the standard QFT approach of
quantizing over a fixed, flat background spacetime. LQG, on the other hand, uses a
canonical quantization method.

In LQG, we do not want to consider gravitons propagating on a fixed background
as one would do in standard QFT, but rather define operators corresponding to space-
time itself. Therefore, the canonical variables should describe spacetime, and indeed
the metric was chosen as the central gravitational variable (with its conjugate being
related to the extrinsic curvature) in the first attempt of defining a canonical quantum
theory of gravity, the ADM formalism [10].

In all canonical theories of GR we need to satisfy a number of constraints, which
correspond to the quantum Einstein equations [11] and incorporate diffeomorphism
invariance. Appendix A.2 gives some background on Hamiltonian constrained sys-
tems, and the specific constraints arising in LQGare given in Sect. 2.3.2. In particular,
the Hamiltonian constraint, which corresponds to invariance under time translations,
on a quantum level leads to the Wheeler-DeWitt equation H|�〉 = 0 [12], where
the quantum Hamiltonian H acts on the “wave function of the universe” |�〉. It is
constrained to vanish to reflect the fact that there is no global time variable inGR (this
is simply the analogue of the Schrödinger equation in canonical quantum gravity).

Within the ADM formalism, it was very difficult to solve this constraint with
the chosen quantum operators. In 1986, Ashtekhar introduced a set of new variables
[13, 14], discussed in Sect. 2.2.3, where the central canonical variable is a connection,
and its conjugate a (densitised) metric field. Further work by [15, 16] led to the
definition of the loop representation (hence the name LQG): The actual variables
promoted to field operators were the holonomy (parallel transport around a closed
loop) of the connection, and a flux of the densitised metric [11]. Like the creation
and annihilation operators of particle states in Sect. 1.2.4, these operators create and
destroy “loop states”, quantum excitations of spacetime along a single loop [9] (the
idea of a loop basis was also used in the context of Yang Mills theory in terms of the
Wilson loop [17]).

This approach greatly simplified solving the constraint equations [18], especially
after work by Thiemann [19]. The Hilbert space these loop states live in has a basis in
terms of spin network states [20, 21]. It is possible to define area and volumeoperators
acting on these spin networks (which can be regarded as building blocks of spacetime
[9]) with discrete spectra [22, 23], showing that spacetime is fundamentally discrete
in LQG.

Kinematically, the theory is well developed: There exists a well defined scalar
product [24, 25] and matter can be coupled to the theory [26, 27]. Progress has also

http://dx.doi.org/10.1007/978-3-319-17449-5_1
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recently beenmade on identifying n-point functions [28], and therefore an expression
for the graviton propagator can be obtained [29]. However, the dynamics of the theory
are still not well understood and the low-energy limit that should yield GR has not
been established [30].

LQG also has some applications to other areas of physics. It provides a way
to calculate the Bekenstein-Hawking entropy [31] and has also spawned the field
of loop quantum Cosmology [32, 33]. Loop quantum Cosmology contains some
interesting results, including a possible mechanism for driving inflation [34], the
absence of singularities [35] and the replacement of the Big Bang by a Big Bounce
[36]. However, the approach I will take below is not comparable; I will only be using
the Ashtekhar variables, not the loop representation which is the foundation of the
LQG formalism.

2.1.3 Different Approaches in Quantum Gravity

In canonical quantum gravity spacetime has to be foliated into spacelike slices evolv-
ing in time to be able to define the canonical variables [10]. This introduces an
explicit time dependence which manifestly breaks Lorentz invariance. The initial
lack of covariance (invariance under general coordinate transformations) and the
related problem of defining dynamics are the main criticisms faced by this approach.

Although a path integral formulation of LQG now exists using spinfoams
[37, 38], it is still in its infancy and work remains to be done trying to link the
different formalisms [30]. Arguably the most successful attempt at trying to find a
fundamental theory of quantum gravity to date is string theory [1, 8], which is a
covariant approach and therefore does not suffer from the same problems as LQG
(although proponents of the latter theory will claim that on the other hand, string
theory does not address the principle of background independence in GR, needing
to define a fixed background [9]).

Of course, there are many other approaches to tackling the problem of quantum
gravity, for example causal dynamical triangulation [39] (which is similar in nature
to the spinfoam formalism) or causal set theory [40, 41], where the causal structure
of spacetime is taken as the most important physical ingredient.

While a mathematically consistent theory of quantum gravity would obviously
be a major breakthrough in theoretical physics, any consistent theory will suffer
from the problem that it seems impossible with current technology to make testable
predictions: The energy scales at which quantum gravity effects play a role are far
too high to be probed directly by experiment. Indirect evidence seems to be the
best we can hope for at the moment, and Cosmology is a great candidate to provide
just that. Clearly, the conditions right after the Big Bang were such that quantum
gravity effects must have played a central role, and they might have left an imprint
in the CMB through inflation, which explicitly describes how quantum fluctuations
become classical observables. Deriving the spectrum of tensor perturbations using
the Ashtekar formalism would provide a test for the predictive power of the theory.
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2.2 Different Formalisms for General Relativity

Usually, the protagonist of GR is the metric gμν , and the dynamics are defined by the
Einstein-Hilbert action (1.8). However, we can also describe gravitational degrees
of freedom using a formulation in terms of tetrads (which requires introducing the
language of differential forms), as described in Sect. 2.2.1. The content of this section
is based on section2.9 and Appendix J of [42]. I will continue by introducing the first
order formalism in 2.2.2,where themetric and connection are taken to be independent
initially, giving the Palatini action. Combining both of these ingredients makes it
possible to define the Ashtekar formalism in Sect. 2.2.3.

2.2.1 The Tetrad Formalism

It is sometimes useful, especially when trying to treat GR as a gauge theory, to use
a non-coordinate basis as opposed to the standard basis vectors dxμ, ∂μ. Motivated
by the fact that you can always define a local inertial frame in GR which looks flat,
consider the tetrad basis eI , I = 1 . . . 4, that satisfies ds2 = ηI J eI eJ , where ηI J

is the Minkowski metric. I is an “internal” index and transforms under the vector
representation of the Lorentz group SO(3,1) [43]. We can write the basis vectors eI

in terms of the old coordinate basis as

eI = eI
μdxμ , (2.1)

so the defining condition for the tetrad basis can be written in components as

gμν = ηI J eI
μeJ

ν . (2.2)

The spacetime indices, denoted by Greek letters, can be raised and lowered using
the metric gμν and transform by general coordinate transformations, while the inter-
nal indices, denoted by capital Latin letters, can be raised and lowered using the
Minkowski metric ηI J and transform by local Lorentz transformations. The compo-
nents satisfy orthogonality conditions,

eI
μeμ

J = δ I
J , eμ

I eI
ν = δμ

ν . (2.3)

We can also use the components eI
μ of the tetrad basis to relate the components of

a vector V in each basis:
V I = eI

μV μ . (2.4)

To be able to use covariant derivatives in this formalism, we need to define the
spin connection ωμ

I
J . The covariant derivative of some tensor AI

J is then given by

∇μ AI
J = ∂μ AI

J + ωμ
I

K AK
J − ωμ

K
J AI

K . (2.5)

http://dx.doi.org/10.1007/978-3-319-17449-5_1
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To obtain the defining relations for the spin connection and the curvature in the
tetrad basis, it helps to simplify expressions if we use the language of differential
forms. Let me define them and list some of their properties.

A differential p-form is a (0, p) antisymmetric tensor (i.e. a 0-form is a scalar, and
a one-form is a dual vector ω = ωμdxμ). The (components of the) wedge product
between a p-form A and q-form B is an antisymmetrised tensor product,

(A ∧ B)μ1...μp+q = (p + q)!
p!q! A[μ1...μp Bμp+1...μp+q ] . (2.6)

A basis for p-forms can be written using the wedge product as 1
p!dxμ1 ∧ . . .∧ dxμp .

A p-form A is then given by

A = 1

p! Aμ1...μp dxμ1 ∧ . . . ∧ dxμp , (2.7)

where the components Aμ1...μp are totally antisymmetric.
We will also need the exterior derivative which is an antisymmetrised partial

derivative that maps a p-form into a p + 1-form [42]:

(d A)μ1...μp+1 = (p + 1)∂[μ1 Aμ2...μp+q ]. (2.8)

Specifically, for zero and one-forms, i.e. a scalar φ and vector ω = ωμdxμ, the
exterior derivative is

(dφ) = ∂μφ dxμ , (dω) = ∂[μων]dxμ ∧ dxν . (2.9)

Since partial derivatives commute, and the exterior derivative is antisymmetric, we
have d(d A) = d2A = 0 for any p-form A.

An important property of the exterior derivative is its action on the wedge product
of two forms. If A is a p-form,

d(A ∧ B) = d A ∧ B + (−1)p A ∧ d B . (2.10)

Finally, one can use n-forms ω in n dimensions to define integration on the man-
ifold, specifically

∫
ω = ∫

ω0123dn x . As differential forms are completely antisym-
metrised, there is only one independent component for an n-form in n dimensions.

We can write the tetrad basis and the spin-connection as one-forms eI and ω I
J by

suppressing their spacetime indices. The Cartan equations provide defining relations
for the torsion and the Riemann tensor in the tetrad basis:

T I ≡ deI + ω I
J ∧ eJ , (2.11)

RI
J ≡ dω I

J + ω I
K ∧ ωK

J . (2.12)
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Note that RI
J is a two-form; it specifies the entire Riemann tensor (not the Ricci

tensor). It can be regarded as the field strength of the spin-connection [43]. The
Christoffel connection, Eq. (1.5), that is commonly used in GR is torsion-free and
ensures ∇αgμν = 0. The first property leads to Eq. (2.11) being zero, which gives a
condition for the spin connection in terms of the tetrad, and the second implies that
the spin connection must be antisymmetric, ωμ

I J = −ω
μ
J I .

The tetrad formalism actually makes calculating metric components, spin con-
nection and Riemann tensor a lot simpler than the usual coordinate approach. As we
will make use of them in Sect. 2.3, I will derive a tetrad basis and the associated spin
connection for a flat Friedmann background (see also Appendix J of [42]).

For a flat FRW metric (1.12) using conformal time, we have gμμ = a2 (no sum),
with all off-diagonal components zero. We need to satisfy Eq. (2.2), and clearly the
choice e00 = e11 = e22 = e33 = a does the job (any other choice will be related
to this by a local Lorentz transformation [42]). The four tetrad forms eI = eI

μdxμ,
I = 0, i , can then be written as

e0 = adη , (2.13)

ei = adxi . (2.14)

We can derive the components of the spin connection ω I
J using the torsion free

condition (2.11). First though, due to the antisymmetry ωI J = −ωJ I , we see that

ω0
0 = 0 , (2.15)

ω0
i = ωi

0 , (2.16)

ωi
j = −ω j

i , (2.17)

where we had to raise and lower indices with the Minkowski metric.
Let us solve Eq. (2.11) separately for the I = 0 and I = i components (which all

have the same form) using the solutions for the tetrad. To take the exterior derivatives,
regard the forms in Eqs. (2.13) and (2.14) as a product of a scalar and a one-form
and then use the product rule in Eq. (2.10) to obtain (remembering that d2 = 0)
de0 = a′dη ∧ dη = 0 and dei = a′dη ∧ dxi . For I = 0, the torsion free condition
then gives

aω0
i ∧ dxi = 0 , (2.18)

where I used ω0
0 = 0. For I = i , we obtain

a′dη ∧ dxi + aωi
0 ∧ dη + aωi

j ∧ dx j = 0 . (2.19)

The only solution compatible with the antisymmetry of the spin connection is to set
ωi

j = 0 as well, with the only non-zero component being ωi
0 = (a′/a)dxi = Hei

[42]. This clearly solves the torsion free conditions, Eqs. (2.18) and (2.19).

http://dx.doi.org/10.1007/978-3-319-17449-5_1
http://dx.doi.org/10.1007/978-3-319-17449-5_1
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2.2.2 The Palatini Formalism

We can rewrite the Einstein-Hilbert action (1.8) using tetrads (remember integration
over 4-forms is well defined in four dimensions). The result is [43]

SEH
(
gμν(e)

) = 1

2

∫
εI J K L eI ∧ eJ ∧ RK L (ω(e)) . (2.20)

This makes the internal gauge symmetry under local Lorentz transformation more
apparent [43]. Now, consider the following change in viewpoint: Instead of thinking
of the action as a function of the tetrad eI only, we can initially regard it as a function
of both eI and ω I

J , and keep metric and connection independent. The resulting
action,

SPK
(

eI
μ,ω I J

μ

)
= 1

2

∫
εI J K L eI ∧ eJ ∧ RK L(ω) , (2.21)

is called the Palatini-Kibble action [19]. Varying it with respect to the metric gives
the usual Einstein equations, and varying with respect to ω I

J shows that it is indeed
the spin connection ω(e) we defined, i.e. it satisfies the torsion-free Cartan equation
(2.11) and it is manifestly antisymmetric. This is also known as the first order for-
malism [44] as the equations of motion only contain first derivatives of metric and
connection, while the second order formalism of the Einstein-Hilbert action contains
second derivatives of gμν .

2.2.3 The Ashtekar Formalism

We canmake a further generalization of the Palatini action and add a term δI J K LeI ∧
eJ ∧RK L(ω), where δI J K L = δI [K δL]J . This term is compatiblewith the symmetries
and vanishes on-shell, when we use the equation of motion for the spin connection
ω(e) [43]. This gives the Holst action [45]

SH
(

eI
μ,ω I J

μ

)
=

(
1

2
εI J K L + 1

γ
δI J K L

)∫
eI ∧ eJ ∧ RK L(ω) , (2.22)

where the coupling constant introduces the Immirzi parameter γ. This parameter will
not appear in the classical theory; however, it does play a role in the quantum theory
as we will show later in Sect. 2.3, and also appears in the black hole entropy formula
derived for LQG [31].

The Holst action is the fundamental action of loop quantum gravity and can be
used to derive the new set of canonical variables in terms of a connection A and
its conjugate E , which is related to the metric. This choice greatly simplified the
constraint algebra [30] compared to the old ADM formalism [10]. We can write
Eq. (2.22) as [43]

http://dx.doi.org/10.1007/978-3-319-17449-5_1
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S(A, E, N , N a) = m2
Pl

γ

∫
d4x

[
Ȧi

a Ea
i − Ai

0Gi − N H − N a Ha

]
, (2.23)

where (A, E) are the canonically conjugated variables, and Ai
0, N and N a are

Lagrange multipliers for the first class constraints (see appendix A.2 for details on
constrained systems). The Hamiltonian H and the space diffeomorphism constraint
Ha encode the invariance of the action under time translations and spatial diffeo-
morphisms, and the Gauss constraint Gi generates SU(2) gauge transformations. As
we have made a specific choice for the time coordinate, the local Lorentz symmetry
is broken to a local SO(3)∼SU(2) symmetry transforming the objects Ea

i and Ai
a .

The canonical variables satisfy commutation relations [43]

{Ai
a(x), Eb

j (y)} = γ

m2
Pl

δb
aδi

jδ(x − y) . (2.24)

Specifically, E corresponds to the densitized inverse triad

Ea
i = det

(
e j

b

)
ea

i , (2.25)

where i = 1, 2, 3 is an internal index, and a = 1, 2, 3 a spatial index; and A to the
SU(2) connection (as opposed to a Lorentz connection) [43]

Ai
a = −1

2
εi jkω jk

a + γω0i
a , (2.26)

where ω I
J is the spin connection satisfying the torsion-free condition. Defining a

mapping (see [19], p.127)

ωi = −1

2
εi jkω jk , (2.27)

the connection can also be written as

Ai = ωi + γω0i . (2.28)

The original variables chosen byAshtekar [13]were defined for an Immirzi parameter
γ = ±i . They are special in the sense that the symmetry group of the connection can
be identifiedwith the self dual (SD) SU(2) subgroup of the Lorentz symmetry for γ =
i , and the anti-self dual (ASD) SU(2) for γ = −i [43]. These subgroups correspond
to the isomorphism between the complexified Lorentz group and SU(2)×SU(2).
Hence, I will refer to Ai as the SD connection if γ = i , and as the ASD connection
if γ = −i .
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2.3 Spectrum of Tensor Perturbations Using Ashtekar
Variables

In this section I will study the tensor perturbations and calculate their power spectrum
within theAshtekar formalism. First, I will identify the canonical variables, perturbed
to first order to describe metric perturbations, in Sect. 2.3.1.

The Hamiltonian description is discussed in 2.3.2: The constraints arising in the
Ashtekar formalism will be discussed and Hamilton’s equations will be derived for
the full and the perturbedvariables. Finally, Iwill derive the secondorderHamiltonian
describing the dynamics of gravitons (and therefore encoding tensor perturbations).
Although classically it reduces to the well-known result presented in Sect. 1.2.5, it is
still very instructive to carry out the calculation explicitly as a number of subtleties
need tobe taken into accountwhichhadnot beenpreviously identified in the literature.

In Sect. 2.3.3, I will expand the perturbation variables in Fourier space. As the
connection is complex, there will be separate positive and negative frequency modes
corresponding to gravitons and anti-gravitons,which are related by reality conditions.
I will end the section by deriving the commutation relations for the modes.

The quantum theory can then be discussed in Sect. 2.3.4. The Fourier spaceHamil-
tonian can be written in terms of graviton creation and annihilation operators which
are linear combinations of the metric and connection. Having identified these opera-
tors, we can set up a Hilbert space of graviton states. The states with negative energy
are not normalisable under the chosen inner product, which is fixed by the reality
conditions. Therefore, half of the graviton operators are unphysical and should be
removed, after which we are left with the usual two graviton polarizations. I will
show that after normal ordering, we obtain a chiral vacuum energy, the first real
novelty compared to standard perturbation theory.

The chirality will be explored in more detail in Sect. 2.3.5 where I will derive the
main result: The power spectrum of tensor perturbations in the Ashtekar formalism
is chiral, if the Immirzi parameter γ has an imaginary part. This would lead to a
non-zero TB correlator in the CMB and therefore potentially be observable.

I will finish by discussing the case of a purely real γ in Sect. 2.3.6 before
concluding. Note that in the following, in general a complex value of γ will be
considered, which can be split into a real and imaginary part,

γ = γR + iγI . (2.29)

It will sometimes be instructive to focus on the SD/ASD connection for which γ =
±i , or a purely imaginary γ, as these cases exhibit special behaviour. The case
of a purely real γ, which renders the connection real, will not be considered until
Sect. 2.3.6.

http://dx.doi.org/10.1007/978-3-319-17449-5_1
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2.3.1 The Canonical Variables

To study the tensor perturbations during inflation within the Ashtekar formalism, we
will consider the metric

ds2 = a2[−dη2 + (δab + hab)dxadxb] , (2.30)

where a = − 1
Hη for a de Sitter background and we have omitted the TT superscript

in the perturbation hab. Note that we will use the following index convention: I and
μ refer to 4D internal and space-time indices, respectively, while i, j, ... and a, b, ...

denote the corresponding 3D indices.
We need to express the perturbations in the tetrad basis to relate it to the Ashtekar

variables. To zeroth order, the metric is given by (see Sect. 2.2.1) eI
μ

(0) = aδ I
μ and

the non-zero spin connection forms are ωi
0
(0) = Hei .

Now consider a tetrad basis of the spacetime (2.30) including perturbations, eI =
eI (0) + δeI . Clearly, the time component is not perturbed, so we only care about the
triads ei . A solution for the triad components that satisfies the defining relation (2.2)
to first order (i.e. ignoring second order perturbations) is

ei
a = a

(
δi

a + 1

2
hi

a

)
. (2.31)

Instead of referring to the metric perturbation hab, we will simply write the pertur-
bation in the triad as

ei
a = aδi

a + δei
a . (2.32)

The inverse triad, which needs to satisfy Eq. (2.3) to first order is then given by

ea
i = 1

a
δa

i − 1

a2 δea
i . (2.33)

If we remember that δei
a is defined as the perturbation in the triad (2.32), we do not

need to distinguish between i and a indices and can simply raise and lower themwith
the Kronecker delta. Although this mixes internal group and spatial indices, we can
always unambiguously recover the initial perturbation δei

a . We will therefore refer to
the perturbed triad as δei j (and simply call it the metric), and the perturbed Ashtekar
connection as ai j . Note that with this convention δei j will turn out to be proportional
to the variable h̃r used in Sect. 1.2.5, whose mode functions v obeyed Eq. (1.62).

Like the unperturbed spin connection, its perturbation δω I
J must satisfy the con-

ditions (2.15), (2.16) and (2.17) due to antisymmetry. We need to expand the torsion
free equation (2.11) to first order in terms of δω I

J , δeI
J and the unperturbed quan-

tities ω I
J
(0) and eI (0)

J . For I = 0, we have to solve

ω0
i
(0) ∧ δei + δω0

i ∧ ei (0) = 0 , (2.34)

http://dx.doi.org/10.1007/978-3-319-17449-5_1
http://dx.doi.org/10.1007/978-3-319-17449-5_1
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where we only kept non-zero spin connection terms and used δe0 = 0. Similarly, for
I = i , we obtain

dδei + δωi
0 ∧ e0(0) + δωi

j ∧ e j (0) = 0 . (2.35)

Using the rules in Sect. 2.2.1, after some algebra we find

δω0
i = 1

a
δe′

i j dx j , (2.36)

δωi j = −2

a
∂[iδe j]k dxk , (2.37)

where we lowered spatial indices with the Kronecker delta.
We can now define the Ashteker variables perturbed to first order, Eqs. (2.25)

and (2.28). Using the background solutions for the triad and spin connection, the

definition of the perturbed triad in Eq. (2.33) and noting that det
(

e j
b

)
= a3, we

obtain

Ea
i = a2δa

i − aδea
i , (2.38)

Ai
a = γHaδi

a + ai
a

a
. (2.39)

The classical solution for the perturbed connection ai
a is given by the perturbed spin

connections, (2.36) and (2.37):

ai j = εikl∂kδel j + γδe′
i j . (2.40)

Note that this condition is only supposed to be satisfied on-shell, as initially we treat
metric and connection as separate variables according to the first order formalism.

To obtain the Poisson brackets for the perturbation variables (which will be pro-
moted to commutators when quantizing), we simply need to plug in expressions
(2.38) and (2.39) into the full Poisson brackets (2.24). This results in four Poisson
bracket terms of which only the last one is non-zero, which determines the Poisson
bracket for fluctuations as

{ai
a(x), δeb

j (y)} = − γ

m2
Pl

δb
aδi

jδ(x − y) . (2.41)

2.3.2 Hamiltonian Formalism

As we know that the Holst action (2.22) is classically equivalent to the ordinary
Einstein-Hilbert action (1.8), the perturbed Ashtekar variables must lead to an equa-
tion ofmotion for the tensor perturbations that is identical to the one youwould obtain

http://dx.doi.org/10.1007/978-3-319-17449-5_1


2.3 Spectrum of Tensor Perturbations Using Ashtekar Variables 65

in the second order formalism. The triad satisfies δei j = ahi j/2, which has the same
form as the field redefinition of the tensor modes in Sect. 1.2.5, h̃r

k ≡ a
2mPlhr

k, up to a
factor of mPl. It should therefore also obey the mode equation (1.62). We can obtain
the equation of motion for the perturbation δei j from Hamilton’s equations (derived
for the full Ashtekar variables) by keeping only the first order part. Later in this
section I will derive the same equations from a perturbed Hamiltonian instead.

The Hamiltonian constraint in the Ashtekar formalism for a general γ is given by
[19]:

H = m2
Pl

2

∫
d3x N Ea

i Eb
j

[
εi jk(Fk

ab + H2εabc Ec
k ) − 2(1 + γ2)K i[a K j

b]
]
. (2.42)

Let me define the new quantities appearing in (2.42): The field strength Fi of the
Ashtekar connection Ai is given by

Fi
ab = ∂a Ai

b − ∂b Ai
a + εi jk A j

a Ak
b , (2.43)

K i is the extrinsic curvature of the spatial surfaces,

K i
a = Ai

a − ωi
a(E)

γ
(2.44)

(on shell this becomes K i
a ≈ ω0i

a ) and N = 1/a2 is the lapse density. For a SD/ASD
connection, γ = ±i , the term involving the extrinsic curvature vanishes, greatly
simplifying the constraint.

We also need to take into account a Hamiltonian boundary term [46–48],

HBT = −m2
Pl

∫
d�a Nεi jk Ea

i Eb
j Abk . (2.45)

Although the boundary term is often ignored by imposing fall-off condition at infinity
[48, 49], this cannot be done in general, e.g. when using a plane wave expansion.
Therefore, it will turn out to be essential to include the boundary term in order to
recover the correct classical solution.

The full Hamiltonian has two other constraints [19] [as was shown in the Holst
action (2.22)], the Gauss constraint

Gi = Da Ea
i = ∂a Ea

i + εi jk A j
a Ea

k ≈ 0 , (2.46)

and the vector constraint
Vb = Ea

i Fi
ab ≈ 0 , (2.47)

which is a linear combination of the Gauss and diffeomorphism constraint. Both
constraints are satisfied by the background solution. It can be checked that they are

http://dx.doi.org/10.1007/978-3-319-17449-5_1
http://dx.doi.org/10.1007/978-3-319-17449-5_1


66 2 Chiral Tensor Power Spectrum from Quantum Gravity

also satisfied to first order using the perturbed variables (2.38) and (2.39). We will
usually not be concernedwith these constraints, as they do not encode the dynamics of
the theory, but I will comment on their significance when perturbing the Hamiltonian
to second order later.

2.3.2.1 Hamilton’s Equations

To derive Hamilton’s equations for the full Ashtekar variables, we need to make use
the Poisson brackets in Eq. (2.24) and remember the rule {A, BC} = {A, B}C +
B{A, C}. Hamilton’s equations for γ = ±i (where the terms proportional to (1+γ2)

in Eq. (2.42) can be ignored) take a fairly concise form:

Ai
a
′ = {Ai

a,H} = γNεi jk Eb
j

(
Fk

ab + 3

2
H2εabc Ec

k

)
, (2.48)

Ea
i

′ = {Ea
i ,H} = −γεi jk Db(N Ea

j Eb
k ) , (2.49)

where Da is the covariant derivative taken with the connection Ai . We can obtain
evolution equations for the perturbations by plugging Eqs. (2.38) and (2.39) into
(2.48) and (2.49) and expanding to first order. This gives the Hamilton equations for
the perturbations,

a′
i j = 2γH2a2δei j − γεinm∂namj , (2.50)

δe′
i j = 1

γ
(ai j − εinm∂nδemj ) . (2.51)

Hamilton’s equation for δei j is the same as (2.40), i.e. it simply encodes the torsion
free condition which must be satisfied on shell. Taking the derivative of (2.51), and
eliminating the time derivative of the perturbed connection through (2.50), makes it
possible to obtain a second order equation for δei j , independent of the connection:

δe′′
i j −

(
∇2 + 2

η2

)
δei j = 0 . (2.52)

This is the same as Eq. (1.62) in real space, proving that classically, the standard for-
malism of cosmological perturbation theory and the Ashtekar framework are equiv-
alent, at least for the case γ = ±i . Note that γ has dropped out of the equation, as it
should not affect any classical results.

The Hamiltonian (2.42) of the Ashtekar formalism has been chosen such that it
can be related to the ordinary Einstein-Hilbert action by a change of variables, for
any choice of γ. Therefore we know that Eq. (2.52) needs to hold in the general case
as well. This will help us in deriving Hamilton’s equations for the perturbations. For
a general γ, Hamilton’s equations, derived for the full Ashtekar variables, are a lot
more complicated than in the SD/ASD case. Taking the Poisson brackets with the

http://dx.doi.org/10.1007/978-3-319-17449-5_1
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Hamiltonian (2.42), we obtain the same expression as in Eqs. (2.48) and (2.49), plus
additional terms proportional to (1 + γ2):

Ai
a
′ = γNεi jk Eb

j

(
Fk

ab + 3

2
H2εabc Ec

k

)
− γ(1 + γ2)N Eb

j (K j
b K i

a − K j
a K i

b)

−m2
Pl(1 + γ2)

∫
d3yN Eb

j Ec
k {Ai

a(x),ω
j
[bω

k
c]} (2.53)

Ea
i

′ = −γεi jk Db(N Ea
j Eb

k ) + (1 + γ2)N (Ea
i Eb

j − Ea
j Eb

i )K j
b . (2.54)

The Poisson bracket {A,ω(E)} is a very long and messy expression, so the last term
of Eq. (2.53) is left unexpanded. As for the case γ = ±i , we can obtain the evolution
equations for the perturbations by substituting the definition of theAshtekar variables
into (2.53) and (2.54) and expanding to first order.

In the case of the triad, this yields the same expression as before, Eq. (2.51).
We would like to avoid having to work out Hamilton’s equation for ai j explicitly
as it would involve having to compute the unexpanded Poisson bracket in (2.53).
As we know that ei j needs to satisfy the equation of motion (2.52), we can actually
avoid doing the explicit calculation and simply use Eqs. (2.51) and (2.52) to deduce
Hamilton’s equation for the connection. It should contain the terms on the RHS of
Eq. (2.50) plus additional terms proportional to (1 + γ2), such that it reduces to
the old expression for γ = ±i . Carrying out these manipulations, we finally obtain
Hamilton’s equations for the perturbations for a general value of γ:

a′
i j = 2γH2a2δei j − γεinm∂namj + 1 + γ2

γ
εinm∂n(amj − εmkl∂kδel j ) , (2.55)

δe′
i j = 1

γ
(ai j − εinm∂nδemj ) . (2.56)

At first glance, it might seem odd that these expressions yield the same equation of
motion for the triad [Eq. (2.52)] as in the case γ = ±i , considering the connection
equation has acquired an additional term in 1+γ2 compared to Eq. (2.50). However,
this is necessary as terms proportional to 1+ γ2 do actually appear in the derivation
of the result for the γ = ±i case, where they can be set to zero. These terms must
be present in the case of general γ.

2.3.2.2 Second Order Hamiltonian

We have found the equations of motion for the perturbations by perturbing the full
Hamilton equations. However, to be able to quantize the theory, we need to identify
the perturbedHamiltonian. This exercise is not trivial; as wewill see in the following,
a fair number of subtleties need to be taken into account before arriving at the correct
result.

The perturbed Hamiltonian should contain tensor perturbations and encode the
dynamics of gravitons. Therefore, we know that the constraint H ≈ 0, which
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demonstrates the lack of dynamics, cannot apply to the perturbative Hamiltonian
which we would like to quantize. Let us think about the Hamiltonian to different
orders in the perturbative expansion.

The first order Hamiltonian is trivially zero (once the other constraints are used).
The second order Hamiltonian, on the other hand, includes two terms,

2H = 2
1H + 2

2H , (2.57)

where 2
1H contains products of first order perturbations, and 2

2H is linear in sec-
ond order perturbations in the triad and connection. Only the sum of these terms
vanishes on shell, 2H ≈ 0. We can therefore identify the first term, 21H, with the
dynamical Hamiltonian to second order, while the second term 2

2H simply encodes
the backreaction or compensation due to the non-linearity of the gravitational field,
which ensures that the Hamiltonian constraint is satisfied. Therefore, we will need
to calculate 2

1H to understand graviton dynamics.
Let me also stress that in the Ashtekar formulation, off-shell, the Hamiltonian

is not real, due to the presence of the complex Immirzi parameter γ. Of course,
imposing the constraints, the Hamiltonian becomes weakly zero and is therefore
manifestly real. However, as the constraint does not apply to the dynamical second
order Hamiltonian, 21H is indeed complex. The complexity of 21H will have an effect
on perturbation theory, and the novelties I will describe can be traced back to this
fact. Even though a complex Hamiltonian might seem strange, the quantum theory
we set up later (Sect. 2.3.4) will still be well defined. All classical results can be
recovered and the quantum Hamiltonian will turn out to be hermitian after fixing the
inner product.

Before proceeding, note that the other constraints are also not zero when con-
sidering only the second order part that is quadratic in first order perturbations.
Specifically, for the Gauss constraint we get

2
1Gi = −εi jka j

aδea
k 	= 0 . (2.58)

When deriving (2.42) from the usual ADM action, the Gauss constraint and the
torsion free condition are used [19]. Therefore, non-zero terms proportional to 2

1Gi

and 2
1T a will appear in the expression for 21H. However, it can be checked that these

additional terms result in a full divergence and can therefore be ignored.
By expanding the Hamiltonian (2.42) to second order we obtain:

2
1H = m2

Pl

2

∫
d3x

{
1

γ2 ai j ai j + 2εi jkδeli ∂ j akl − 2H2a2δei j δei j

+ 2

γ
Haδei j ai j − 2

1 + γ2

γ
Haδei j εikl (∂kδel j )

−1 + γ2

γ2

[
εikl (∂kδel j )ai j + εiklai j (∂kδel j ) − εiklε jmn(∂kδel j )(∂mδeni )

]}
,(2.59)
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where we kept the ordering as it appeared in the calculation, as it will affect the
quantization. Only the first four terms survive for γ = ±i . This expression is not
the correct perturbative Hamiltonian, however: it does not reduce to the Hamiltonian
(1.59) obtained for tensor perturbations in the second order formalism on shell, i.e.
when using the torsion free condition (2.40). This is due to two reasons.

First, we have not yet included the boundary term (2.45) at the same order and
level in perturbation theory (second order terms quadratic in first order variables). It
is given by

2
1HBT = m2

Pl

∫
d�i εi jkδel j alk . (2.60)

To make this into a volume instead of a surface integral, we use Stokes’ theorem [50]
which introduces a divergence,

2
1HBT = m2

Pl

2

∫
d3x 2εi jk∂i (δel j alk) , (2.61)

where we introduced factors of two to obtain the same pre-factor as in (2.59). The
derivative term can be split into two contributions, one of which cancels the second
term of Eq. (2.59) and the other is −2εi jk(∂ jδeli )akl .

The second issue ismore subtle and related to the termsproportional to H in (2.59).
There should not be any terms linear in the Hubble rate, as we want to rederive the
Hamiltonian for ordinary tensor perturbations, Eq. (1.59), where the only explicitly
time dependent term is a′′/a, which in de Sitter is given by 2/η2 = 2a2H2 and is
therefore quadratic in H .

To understand what has gone wrong, recall the perturbed expression for the triad
and connection:

Ai
a = γHaδi

a + ai
a

a
, (2.62)

Ea
i = a2δa

i − aδea
i . (2.63)

Instead of thinking of this as a zero order part plus a perturbation, you can also
regard it as a canonical transformation [51]: we have replaced variables (Ai

a, Eb
j )

with variables (ai
a, δeb

j ), which have the same symplectic structure as the original
variables (the fact that the Poisson brackets (2.41) have a minus sign compared to
(2.24) is related to the fact that we defined the perturbation δeb

j in the densitized
triad, not its inverse, initially. We could also absorb the minus sign into a field redef-
inition of the triad perturbation). Such a transformation can always be performed for
canonical systems, regardless of whether the new variables are small perturbations.
In this viewpoint, instead of “freezing” the background and considering spacetime
perturbations around it, we regard the perturbed variables as equivalent to the full
Ashtekar variables.

http://dx.doi.org/10.1007/978-3-319-17449-5_1
http://dx.doi.org/10.1007/978-3-319-17449-5_1
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If the canonical transformation is explicitly time dependent (which it is as a is a
function of time), the Hamiltonian in terms of the new variables, denoted by K, is
related to the old Hamiltonian by a generating function F [51]:

K = H + ∂F

∂η
. (2.64)

To obtain the correct Hamiltonian, in principal we therefore need to compute the
generating function. However, again it is possible to “cheat” slightly by using consis-
tency arguments instead of performing explicit calculations. We know that it should
be possible to deriveHamilton’s equations for the perturbations by taking the Poisson
brackets (2.41)with the (correct) perturbedHamiltonian to second order. By demand-
ing consistency with Eqs. (2.55) and (2.56), which were obtained from perturbing
the full Hamilton’s equations, we find that the appropriate generating function must
be

∂F

∂η
= −m2

Pl

γ

∫
d3x Haδei j

[
ai j − (1 + γ2)εikl∂kδel j

]
.

Adding this term to the Hamiltonian in (2.59) eliminates the second line, i.e. the
terms proportional to H . The final expression, taking the boundary term (2.61) into
account, is therefore:

He f f = m2
Pl

2

∫
d3x

[
1

γ2 ai j ai j − 2H2a2δei j δei j +
(
1 − 1

γ2

)
εikl(∂kδel j )ai j

−
(
1 + 1

γ2

)
εiklai j (∂kδel j ) +

(
1 + 1

γ2

)
εiklε jmn(∂kδel j )(∂mδeni )

]
. (2.65)

This corresponds to the effective perturbative Hamiltonian, which can be used to
quantize the theory in terms of graviton states.

By using the on-shell condition (2.40), we can derive the Hamiltonian in terms of
the triad only, remembering 2a2H2 = a′′/a:

He f f on−shell = m2
Pl

2

∫
d3x

[
δe′

i jδe′
i j + (∂kδei j )

2 − a′′

a
δei jδei j

]
. (2.66)

After identifying the two physical polarizations of the triad by using appropriate
mode expansions in the next section, it will be clear that this is exactly the same as
expression as (1.59), the second order Hamiltonian for tensor modes derived in the
second order formalism.

http://dx.doi.org/10.1007/978-3-319-17449-5_1
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2.3.3 Fourier Space Expansion

To be able to quantize the theory, we need to expand the perturbed variables in terms
of Fourier modes. However, we need to be careful that we perform this expansion
correctly, by taking into account two separate, but related points.

Firstly, note that in the Ashtekar formalism, the connection is initially complex
and we are not enforcing any reality conditions before quantizing. Therefore, we
must have graviton and anti-graviton modes in the expansion. This means that the
negative and positive frequencies in the field expansion are initially independent (so
compared to Eq. (1.45), we should have a different operator bk associated with the
second term). Secondly, we will make the common field theory choice stipulating
that the spatial vector k points in the direction of propagation for both positive and
negative frequency terms. The reality conditions will then identify gravitons and
anti-gravitons moving in the same direction, not in opposite directions.

This choice not always beenmade in previous literature on the subject, where non-
physical couplings between k and −k modes appeared in the physical Hamiltonian
inside the horizon [49, 52]. These should only be present outside the horizon, where
they represent the production of particle pairs by the gravitational field (with the
particles in each pair moving in opposite directions) [53].

We therefore make the following Fourier expansion:

δei j =
∫

d3k

(2π)
3
2

∑
r

εr
i j (k)ẽr+(k, η)eik·x + εr�

i j (k)ẽ†r−(k, η)e−ik·x ,

ai j =
∫

d3k

(2π)
3
2

∑
r

εr
i j (k)ãr+(k, η)eik·x + εr�

i j (k)ã†
r−(k, η)e−ik·x , (2.67)

where ẽr p(k, η) = er p(k)�e(k, η) and ãr p(k, η) = ar p(k)�
r p
a (k, η), and εr

i j are
polarization tensors. In a frame where the direction i = 1 is aligned with k, they are
given by [54]:

ε
(r)
i j = 1√

2

⎛
⎝ 0 0 0
0 1 ±i
0 ±i −1

⎞
⎠ . (2.68)

Equation (2.67) has the same form as the mode expansion for tensor perturbations
(1.57) performed in Sect. 1.2.5, but now with an additional negative frequency term
which is independent of the first, as required. The amplitudes ar p(k) and er p(k) have
two indices (in contrastwith someof the previous literature [49, 52]): r = ±1 for right
(R) and left (L) helicities, and p for graviton (p = 1) and anti-graviton (p = −1)
modes (which were not present in Eq. (1.57), where the tensor perturbations were
manifestly real).

We can assume that the amplitudes ar p and er p, which will correspond to anni-
hilation operators upon quantization, are equal, and the differences can be absorbed

http://dx.doi.org/10.1007/978-3-319-17449-5_1
http://dx.doi.org/10.1007/978-3-319-17449-5_1
http://dx.doi.org/10.1007/978-3-319-17449-5_1
http://dx.doi.org/10.1007/978-3-319-17449-5_1
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into the mode functions �e and �a . Imposing the on-shell condition we will find
that while �e is independent of helicity and graviton states, the mode functions for
the connection, �a(k, η), must carry an r, p dependence.

2.3.3.1 Mode Functions

As we have seen that the Ashtekar formalism is equivalent to the second order
formalism of Sect. 1.2.5, we know that the mode functions of the triad will satisfy
the equation of motion (1.62)

� ′′
e +

(
k2 − 2

η2

)
�e = 0, (2.69)

where ′ denotes differentiation with respect to conformal time. This has the Bunch-
Davies solution given in Eq. (1.62),

�e = e−ikη

2
√

k

(
1 − i

kη

)
. (2.70)

The boundary condition in the far past, |kη| � 1 , is

�(k, η) ∼ e−ikη . (2.71)

This shows that k can be regarded as the direction of propagation of the wave as the
exponentials in which k appears can be written in four-vector form as e−ikηeik·x =
eikμxμ

, kμkμ = 0.
Let us find an expression for the mode functions of the connection on-shell. We

need to plug the Fourier space expansion (2.67) into the classical solution of the
connection derived from the torsion free condition, Eq. (2.40). Making use of the
identity

εinl knε
(r)
l j = −irkε

(r)
i j , (2.72)

we find
�

r p
a = (γR + pγI )�

′
e + rk�e . (2.73)

This expression can be simplified inside the horizon (k|η| � 1), when the boundary
condition (2.71) holds:

�
r p
a = �ek (r − iγR + pγI ) , (2.74)

There is only a dependence on p if γ has an imaginary part and for a purely real γ,
�r

a would be the same for gravitons and anti-gravitons. This is to be expected, as

http://dx.doi.org/10.1007/978-3-319-17449-5_1
http://dx.doi.org/10.1007/978-3-319-17449-5_1
http://dx.doi.org/10.1007/978-3-319-17449-5_1
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Table 2.1 Relationship between helicity and duality states

r = + [R] r = − [L]

p = + [G] SD ASD

p = − [G] ASD SD

for a manifestly real theory we would not have needed to expand in terms of two
different operators ar+ and ar−, but just a single ar .

Before carrying on with the quantization of the perturbations, let us briefly inves-
tigate the relationship between the helicity states, labelled by r , and the duality states,
defined by γ = ±i . In this case, Eq. (2.74) becomes

�
r p
a = (r − i pγ)k�e . (2.75)

For an SD connection, iγ = −1, and the quantity in brackets is simply (r + p).
This is clearly zero if r and p have different signs. Therefore, the only components
of the connection that survive in the self dual case are the right handed (r = 1)
positive frequency of the graviton (p = 1) and the left handed (r = −1) negative
frequency of the anti-graviton (p = −1). The ASD connection has iγ = +1 and
therefore contains the remaining degrees of freedom, right handed anti-graviton and
left-handed graviton. The split of the states into SD and ASD parts is summarized in
Table2.1.

This analysis shows that helicity modes and duality modes do not align, i.e. the
SD connection carries both right and left-handed helicity states and similarly for the
ASD connection. This point has been highlighted in [55], but it requires performing
the correct Fourier space expansion including graviton and anti-gravitons states and
was therefore missed in [49, 52].

2.3.3.2 Reality Conditions

When we set up the Hilbert space of quantum states in Sect. 2.3.4, we will need
to impose reality conditions to relate graviton and anti-graviton states (and their
Hermitian conjugates), which will enable us to obtain the physical degrees of free-
dom. The reality conditions will eventually be used to fix the inner product, but it is
instructive to obtain the corresponding conditions on the operators.

The metric is real, δei j = δei j . Imposing this on the Fourier expansion, we find

er+(k) = er−(k) . (2.76)

Therefore, graviton and anti-graviton are identified for each polarization and each
mode k. This is a good check that the expansion in Eq. (2.67) is physically sensible,
as we do not get relations between different polarizations or wavevectors k and −k.
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On-shell, the triad therefore only needs one set of creation and annihilation operators
in its Fourier expansion.

For the connection, the torsion free condition and the reality condition are linked:
Although the connection can be complex, it must satisfy the torsion-free condition,
whichwill ensure that themetric is real. From the defining expression for theAshtekar
connection, Eq. (2.28), we know that

�Ai = ωi + γRω0i , (2.77)

Ai = γI ω
0i . (2.78)

There are two reality conditions for the connection, but we only need to impose one
as a constraint, as the dynamical evolution (described by Hamilton’s equations) will
make sure that the second condition is satisfied. Let us see what this implies for the
perturbations ai j . Using the solutions for the perturbed spin connection components,
Eqs. (2.36) and (2.37), we obtain

ai j + ai j = 2a
(
δωi j + γRδω0

i j

)
= 2εikl∂kδel j + 2γRδe′

i j , (2.79)

ai j − ai j = 2aiγI δω
0
i j = 2iγI δe′

i j . (2.80)

Using the expansion (2.67), in Fourier space this becomes

ãr+(k, η) + ãr−(k, η) = 2rkẽr+(k, η) + 2γRẽ′
r+(k, η) , (2.81)

ãr+(k, η) − ãr−(k, η) = 2iγI ẽ′
r+(k, η) , (2.82)

where ãr p = ar p�
r p
a and ẽr p = er p�e. The reality condition for the connection we

want to impose as a constraint should be non-dynamical, so let us eliminate the time
derivative of the metric by combining Eqs. (2.81) and (2.82):

iγ∗ãr+(k, η) − iγãr−(k, η) = 2rkγI ẽr+(k, η) . (2.83)

Its Hermitian conjugate is:

− iγã†
r+(k, η) + iγ∗ã†

r−(k, η) = 2rkγI ẽ†r−(k, η) , (2.84)

where we have used Eq. (2.76) to turn p = 1 into p = −1 on the RHS. This shows
that for each r and k there are two independent conditions upon the four operators
ar p(k) and er p(k). We will use them later when we define the inner product.

On shell, we can use the full torsion-free conditions, Eq. (2.73), which can be
written as a weak identity on the operators:

ãr−(k, η) ≈ rkẽr + γ∗ẽ′
r → ẽr (r − iγ∗)k , (2.85)

ãr+(k, η) ≈ rkẽr + γẽ′
r → ẽr (r − iγ)k , (2.86)
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where the latter expression is valid in the limit k|η| � 1, c.f. Eq. (2.74). These
identities will be useful later when deriving the graviton operators for this theory, as
they will show that one of the graviton modes is unphysical.

2.3.3.3 Commutation Relations

Before we can set up a quantum theory in terms of graviton operators we need to
define the commutation relations for the modes. To do this, we first promote the
Poisson brackets (2.24) and (2.41) of the connection and metric in position space to
commutators:

[
Ai

a(x), Eb
j (y)

]
= i

γ

m2
Pl

δb
aδi

jδ(x − y) , (2.87)

[
ai

a(x), δeb
j (y)

]
= −i

γ

m2
Pl

δb
aδi

jδ(x − y) . (2.88)

Note that these commutators have been derived from the fundamental Poisson brack-
ets of the Ashtekar variables and hence have not been gauge fixed yet, i.e. the TT
projection has not been carried out and we therefore have not identified the two
physical polarizations of tensor perturbations. The Fourier expansion (2.67), on the
other hand, assumed by construction that there are only two helicity states r = ±1.
It was shown in [56] that the appropriate form of the commutator (2.88), taking care
of the gauge fixing, is

[ai j (x), δekl(y)] = −i
γ

m2
Pl

Pi jkl(x − y) , (2.89)

where the delta function is replaced by a function Pi jkl(x) which takes care of the
TT projection and is given by

Pi jkl(x) =
∫

d3k

(2π)3

∑
r

εr
i j (k)εr�

kl (k)eik·x . (2.90)

To obtain the equivalent of Eq. (2.89) for modes, let us first consider the unpro-
jected commutator (2.88) again. Dropping the indices, we can split the metric and
connection into separate positive and negative frequency parts, δe = δe+ + δe−,
a = a+ + a−, which are given by

δe+(x, η) =
∫

d3k

(2π)
3
2

e+(k, η)eik·x , (2.91)

δe−(x, η) =
∫

d3k

(2π)
3
2

e−†(k, η)e−ik·x , (2.92)

and similarly for a.



76 2 Chiral Tensor Power Spectrum from Quantum Gravity

Therefore there are four terms in the commutator and, as is standard in QFT
[6], the only non-vanishing equal-time commutators must be given by positive and
negative frequency parts,

[a+(x), δe−(y)] = [a−(x), δe+(y)] = −i
γ

2m2
Pl

δ(x − y) . (2.93)

For the modes, this implies

[a+(k), e−†(k′)] = [a−(k), e+†(k′)] = −i
(γR + piγI )

2m2
Pl

δ(k − k′) , (2.94)

Taking expression (2.89) for the TT projected position space commutators into
account, we see that the operators we have defined in the Fourier expansion (2.67)
have commutation relation

[ãr p(k), ẽ†sq(k′)] = −i
(γR + piγI )

2m2
Pl

δrsδpq̄δ(k − k′) , (2.95)

where q = −q.
The dependence on δpq̄ shows that we only get non-vanishing commutators when

considering the positive frequency of one variable and the negative frequency of the
other. As before, when we considered the mode functions of the connection, there
is no p dependence if γI = 0, as for a real field there is no distinction between
gravitons and anti-gravitons.

2.3.4 Quantum Hamiltonian

We now have all the ingredients to set up the Hamiltonian in Fourier space which
will be the starting point for the quantum theory.Wewant to express it in the standard
form where it just reduces to a creation times an annihilation operator, counting the
number of states, c.f. Eq. (1.44). In our case, these stateswill be graviton states and the
operators will create and annihilate gravitons. As we have not imposed the torsion-
free condition yet, the graviton operators will be linear combinations of the metric
and connection, and only reduce to metric variables on-shell. Due to the complexity
of the Hamiltonian, this exercise is non-trivial. We will find twice as many particle
states as expected as well as unphysical particle production terms. However, once
the correct inner product has been identified, we will reproduce the expected form
of the Hamiltonian.

Note that from now on we will consider the inside horizon limit kη � 1 for
which terms in H can be neglected, as we are not interested in the behaviour of
tensor perturbations outside the horizon where they freeze out.

http://dx.doi.org/10.1007/978-3-319-17449-5_1
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Inserting the expansion (2.67) into (2.65) and making use of the relations

εr
i j (k)εs�

i j (k) = 2δrs , εr
i j (−k) = εr�

i j (k) , (2.96)

we obtain a lengthy expression for the Fourier space Hamiltonian:

He f f = m2
Pl

∫
d3k

∑
r

1

γ2

{

[
k2

(
γ2 + 1

)
ẽr+(k) − kr

(
γ2 + 1

)
ãr+(k)

]
ẽr+(−k)

+
[
k2

(
γ2 + 1

)
ẽr+(k) − kr

(
γ2 + 1

)
ãr+(k)

]
ẽ†r−(k)

+
[
k2

(
γ2 + 1

)
ẽ†r−(k) − kr

(
γ2 + 1

)
ã†

r−(k)
]
ẽr+(k)

+
[
k2

(
γ2 + 1

)
ẽ†r−(k) − kr

(
γ2 + 1

)
ã†

r−(k)
]
ẽ†r−(−k)

+
[
kr

(
γ2 − 1

)
ẽr+(k) + ãr+(k)

]
ãr+(−k)

+
[
kr

(
γ2 − 1

)
ẽr+(k) + ãr+(k)

]
ã†

r−(k)

+
[
kr

(
γ2 − 1

)
ẽ†r−(k) + ã†

r−(k)
]
ãr+(k)

+
[
kr

(
γ2 − 1

)
ẽ†r−(k) + ã†

r−(k)
]
ã†

r−(−k)

}
. (2.97)

2.3.4.1 Hamiltonian for γ = ±i

Before trying to make sense of this monstrosity, it is instructive to study the case of a
SD/ASD connection for which γ2 = −1. In this case, Eq. (2.97) reduces to a much
more tractable form:

He f f = m2
Pl

∫
d3k

∑
r

gr−(k)gr+(−k) + gr−(k)g†r−(k)

+g†r+(k)gr+(k) + g†r+(k)g†r−(−k) , (2.98)

where

gr+(k) = ãr+(k) , (2.99)

g†r+(k) = −ã†
r−(k) + 2kr ẽ†r−(k) , (2.100)

gr−(k) = −ãr+(k) + 2kr ẽr+(k) , (2.101)

g†r−(k) = ã†
r−(k) , (2.102)



78 2 Chiral Tensor Power Spectrum from Quantum Gravity

which can be identified as the the graviton (p = 1) and anti-graviton (p = −1)
creation and annihilation operators g†r p, gr p. Note that the creation and annihilation
operators for each index r, p are only hermitian conjugates of each after the reality
conditions (2.83) and (2.84) have been imposed.

Their commutation relations can be derived from Eq. (2.95):

[gr p(k), g†sq(k′)] = − iγ

m2
Pl

(pr)kδrsδpqδ(k − k′) . (2.103)

The Hamiltonian (2.98) has some unusual features. Firstly, for each k we find four
independent modes (r = ±1 and p = ± 1), instead of two as would be expected for
tensor perturbations. Half of these states have negative energy (those with iγ = pr ,
which leads to a minus sign in the commutator instead of the usual plus sign). For
example, for the SD connection γ = i the left “graviton” (r = −1 and p = 1) and
the right “anti-graviton” (r = 1 and p = −1) carry negative energy. Secondly, there
are unphysical production terms in the Hamiltonian (2.98) which couple k and −k
modes. These pump terms represent pair production [53], and should not be present
in the subhorizon limit k|η| � 1 where spacetime is approximately flat.

Both of these pathological features are not present for classical solutions, as they
vanish on-shell when imposing the conditions (2.85) and (2.86). For example, for
γ = i , the on-shell conditions imply aR− ≈ 0 and aL+ ≈ 0.When also imposing the
reality conditions such that we can consider the creation and annihilation operators as
hermitian conjugates of one another, g†r p = (

gr p
)†, we find that two of the operators

are eliminated. Only g†R+, g†L−, which create positive energy states, are non-zero.
Thus, the negative energy modes do not exist classically and you can check that the
pump terms also vanish.

Asmentioned previously, quantummechanicallywe do notwant to treat the reality
conditions as operator conditions but impose themon the inner product, which should
also remove the unphysical states from the Hilbert space. We will use a holomorphic
representation where we consider the states as analytic functions over the complex
domain as introduced by Bargmann [57].

As mentioned above, the reality conditions simply ensure that g†r p is indeed the
hermitian conjugate of gr p. This condition is sufficient to fix the inner product [49,
58, 59]. A holomorphic representation for wavefunctions � = 〈z|�〉 is defined as
one which diagonalises g†r p [57]:

〈z|g†r p|�〉 = zr p〈z|�〉 , (2.104)

where zr p(k) are complex eigenvalues. Similarly to the case of deriving the action
of the momentum operator on states when working in the usual position space rep-
resentation, we can derive the action of gr p from the commutator (2.103):

〈z|gr p|�〉 = −i
γ

m2
Pl

(pr)k
∂

∂zr p
〈z|�〉 . (2.105)
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We want to define an inner product in this representation. The decomposition of the
unity operator for the complex eigenvectors |z〉 is given by [59]

1 =
∫

dzdz̄eμ(z,z̄) , (2.106)

where eμ(z,z̄) is a positive integration measure (for the normal position representation
with eigenstates |x〉, it is just equal to 1). The inner product can then be written as

〈�1|�2〉 =
∫

dzdz̄eμ(z,z̄)�̄1(z̄)�2(z) . (2.107)

The defining condition of the hermitian conjugate of an operator is 〈�1|g†r p|�2〉 =
〈�2|gr p|�1〉, which can be used to derive an expression for the measure. Using
the defining relations for the creation and annihilation operators, Eqs. (2.104) and
(2.105), and the definition of the inner product (2.107), we obtain a differential
equation for μ(z, z̄):

iγ

m2
Pl

(pr)k
∂μ

∂ z̄r p
= zr p . (2.108)

This can be integrated to give

μ(z, z̄) =
∫

dk
m2

Pl

k

∑
r p

pr

iγ
zr p(k)z̄r p(k) , (2.109)

which fixes 〈�1|�2〉. The vacuum of this representation is defined by gr p�0 = 0
which gives

�0 = 〈z|0〉 = 1 , (2.110)

and particle states are monomials in the respective variables,

�n = 〈z|n〉 ∝ (g†r p)
n�0 = zn

r p . (2.111)

These states are not normalisable for iγ = pr , as in this case the measure is positive
and the exponential in (2.107) blows up. Hence, these states should be removed
from the physical Hilbert space and therefore their associated operators gr p should
not appear in the Hamiltonian. For γ = i , this only leaves two physical modes
g

ph
R = gR+ and g

ph
L = gL−.

For the SD connection we therefore obtain the physical Hamiltonian

Hph
e f f ≈ m2

Pl

∫
dk (g

ph
L g

ph
L

† + g
ph
R

†
g

ph
R ) . (2.112)

This looks like the standardHamiltonian for a harmonic oscillator, with the difference
that only the left handed graviton needs to be normal ordered and produces a vacuum
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energy. For the ASD connection only the right handed graviton produces vacuum
energy. Left and right handed gravitons are not on the same footing, and the theory is
chiral.Wewill explore this chirality inmore detail after finding the graviton operators
for general γ.

2.3.4.2 Hamiltonian for Complex Values of γ

Let us focus on the general Hamiltonian (inside the horizon) in terms of modes again,
Eq. (2.97). We need to identify linear combinations of metric and connection that
can act as graviton operators, equivalent to gr p and g†r p for γ = ±i . We want to end
up with two physical operators corresponding to the two independent polarizations,
however initially there should be four different operators. Two of them will be zero
on-shell, representing the unphysical modes, while the other two should commute
with them [c.f. Eq. (2.103)] and reduce to metric variables on-shell.

To find the general expression, consider the graviton operators for γ = ±i and
find linear combinations of them that satisfy these conditions. After some algebraic
manipulations that make use of the on-shell conditions (2.85) and (2.86), we can
identify suitable operators:

GrP+ = (r − iγ)gr+ − (r + iγ)gr−
−2γi

, (2.113)

GrP− = (r + iγ)gr+ − (r − iγ)gr−
−2γi

, (2.114)

where the new index P = P+,P− labels physical and non-physical modes. This
notation is used to avoid confusions with p = ±1 used for positive and negative fre-
quencies, and except for the cases of γ = ±i , the two indices do not align. Using the
on-shell conditions, we find that GrP− ≈ 0 and GrP+ ≈ 2rker as required, and you
can check that their commutator is zero. The index P = P+ = 1 therefore denotes
physical modes, which reduce to the metric classically (and quantum mechanically
will have positive energy and norm), and P = P− = −1 denotes modes that vanish
on-shell (and quantum mechanically will have negative energy and norm).

We can use the expressions in Eqs. (2.99) to (2.102) to write the new operators
GrP in terms of metric and connection variables.We can find expressions for the cre-
ation operators by demanding that they are hermitian conjugates of the annihilation
operators once the reality conditions (2.81) and (2.82) are imposed. The operators
and their commutators are listed in Table2.2.

The Hamiltonian (2.97) can be written in terms of the new graviton operators as

He f f = m2
Pl
2

∫
d3k

∑
r

−(1 + iγr)GrP+(k)GrP−(−k) − (1 − iγr)GrP−(k)GrP+(−k)

+(1 + iγr)GrP+(k)G†
rP+(k) + (1 − iγr)G†

rP+(k)GrP+(k)
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+(1 − iγr)GrP−(k)G†
rP−(k) + (1 + iγr)G†

rP−(k)GrP−(k)

−(1 − iγr)G†
rP+(k)G†

rP−(−k) − (1 + iγr)G†
rP−(k)G†

rP+(−k) . (2.115)

This is the generalization of Eq. (2.98). As before, there are too many graviton states
as well as unphysical pair production terms. They all vanish on shell where the
operator corresponding to P− is zero. We can now set up the Hilbert space, fixing
the inner product by requiring that the operators in Table2.2 are indeed hermitian
conjugates of one another.

Again, we use a holomorphic representation which diagonalises G†
rP , i.e.:

〈z|G†
rP |�〉 = zrP 〈z|�〉 . (2.116)

The commutation relations in Table2.2 determine the action of the annihilation
operators,

〈z|GrP |�〉 = P k

m2
Pl

∂

∂zrP
〈z|�〉 . (2.117)

This is formally very similar to the case γ = ±i , but note that the variables zrP are
not the same as before. Using the definition of the inner product Eq. (2.107), and the
same formal condition 〈�1|G†

rP |�2〉 = 〈�2|GrP |�1〉, we arrive at an expression
for the measure:

μ(z, z̄) =
∫

dk
m2

Pl

k

∑
rP

PzrP (k)z̄rP (k) . (2.118)

The vacuum state
�0 = 〈z|0〉 = 1 , (2.119)

and the particle states

�n = 〈z|n〉 ∝ (G†
rP )n�0 = zn

rP , (2.120)

have the same form as before (but are defined in terms of new variables zrP ). The
measure implies that states with P = P− = −1 are not normalisable and the

Table 2.2 Physical and unphysical graviton modes

Physical P = P+ = 1 Unphysical P = P− = −1

GrP+ = −r
iγ (ãr+ − k(r + iγ)ẽr+) GrP− = −r

iγ (ãr+ − k(r − iγ)ẽr+)

G†
rP+ = r

iγ (ã†
r− − k(r − iγ)ẽ†r−) G†

rP− = r
iγ (ã†

r− − k(r + iγ)ẽ†r−)[
GrP+ (k), G†

sP+ (k′)
]

= k
m2
Pl

δrsδ(k − k′)
[
GrP− (k), G†

sP− (k′)
]

= − k
m2
Pl

δrsδ(k − k′)
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operators corresponding to P− should be removed from the Hamiltonian. The
physical Hamiltonian for a general value of γ is therefore:

Hph
e f f ≈ m2

Pl

2

∫
dk

∑
r

[G ph
r G ph†

r (1 + irγ) + G ph†
r G ph

r (1 − irγ)] , (2.121)

where G ph
r = GrP+ .

2.3.4.3 Vacuum Energy

Only the first term in the physical Hamiltonian (2.121) needs to be normal ordered,
using the commutation relation in Table2.2. This leads to a chiral (r -dependent) term
corresponding to the vacuum energy, Vr ∝ 1 + irγ. The asymmetry in the vacuum
energy between the right- and left-handed gravitons is given by

VR − VL

VR + VL
= iγ . (2.122)

This equation is valid for any complex γ. There are a few points of interest to note.
If γ is purely imaginary and |γ| > 1, the vacuum energy Vr ∝ 1 + irγ of one
of the modes becomes negative. Negative vacuum energy is often associated with
fermionic degrees of freedom [60], but this will not be investigated further here.

More importantly, if γ has a real part the VE for each r is complex. When right
and left helicities are added together, however, we simply obtain VR + VL ∝ 1 +
iγ + 1 − iγ = 2, so the total vacuum energy is indeed real.

The reasonwe obtain a chiral, complex vacuum energy is because theHamiltonian
is not hermitian before normal ordering: Although it is real on-shell for any value
of γ (which does not appear in any on-shell expressions) and the graviton operators
themselves are hermitian, unless γ is imaginary, taking the hermitian conjugate of
the perturbative physical Hamiltonian (2.121) does not yieldH† = H.

Hermiticity is restored after normal ordering, when γ drops out of theHamiltonian
and is only present in the vacuum energy term. As the latter is not physically measur-
able (andwhen coupled to the Einstein equations, we need to consider the total which
is indeed real), this result might not be too concerning. However it might also imply
that it is more physical to consider only a purely imaginary γ or that we should use a
symmetric ordering for the Hamiltonian: When we first defined the Hamiltonian in
Eq. (2.42), we picked an ordering of the form E E F (the field strength contains con-
nection terms, which do not commute with metric terms). Knowing which ordering
in quantum mechanics is “correct” is an issue which can ultimately only be resolved
by experiment. It can be checked that using an E F E or 1

2 (E E F + F E E) ordering
would satisfyH = H† on and off-shell, for any value of γ. In this case there would
be no chirality in the vacuum energy. However, note that we would obtain the same
graviton operators regardless of ordering, and as will see now, chirality will still be
present in the vacuum fluctuations.
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2.3.5 Chiral Vacuum Fluctuations

The central gravitational variable in theAshtekar formalism is the connection, not the
metric,which can be seen from theHolst action (2.22). Therefore, the power spectrum
of tensor perturbations should be derived from the (TT-projected) perturbations of the
connection as opposed to the metric. As in the second order formalism, the Ashtekar
tensor perturbations will have an effect on the CMB fluctuations, especially on the
polarization. We will not need to worry about the exact normalization of the tensor
fluctuations, as we are mainly interested to see whether the complex nature of the
connection will play a role.

The analogous expression to the tensor power spectrum (1.65) is given by

〈0|A†
r (k)Ar (k′)|0〉 = Pr (k)δ(k − k′) , (2.123)

where Ar (k) represents Fourier space connection variables with handedness r , i.e.

Ar (k) = ãr+(k)e−ik·x + ã†
r−(k)eik·x . (2.124)

Note that we could have picked a different ordering in the 2-point function (2.123),
so in general we have to consider

A†A → αA†A + β AA† , (2.125)

with α+β = 1 and α,β > 0. As opposed to the vacuum energy, we will see that the
power spectrum (2.123), being a measurable variance, is always real and positive.

To compute the physical power spectrum, we need to relate the connection vari-
ables to the physical graviton modes labelled by P+ in Table2.2. As we need to go
on-shell to define physical states, we can use conditions (2.85) and (2.86) to express
the metric variables in terms of the connection:

ẽr+ = ãr+
k(r − iγ)

, ẽ†r− = ã†
r−

k(r + iγ)
. (2.126)

These relations can be subsituted into the equations for G†
rP+ , GrP+ in Table2.2,

which gives expressions for the physical connection modes a ph
r+ and a ph†

r− . The
remaining modes can be obtained by taking hermitian conjugates (as we are on-
shell, the reality conditions have been imposed). We find

a ph
r+ = r − iγ

2r
GrP+ , (2.127)

a ph†
r+ = r + iγ∗

2r
G†

rP+ , (2.128)

a ph
r− = r − iγ∗

2r
GrP+ , (2.129)

http://dx.doi.org/10.1007/978-3-319-17449-5_1
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a ph†
r− = r + iγ

2r
G†

rP+ . (2.130)

We can see that the physical connection modes depend solely on the graviton oper-
ators, so they will be the same for any ordering of the Hamiltonian. Plugging these
expressions into (2.124) we obtain for the two connection helicity states:

Aph
r (k) = r − iγ

2r
GrP+(k)e−ik·x + r + iγ

2r
G†

rP+(k)eik·x ,

Aph†
r (k) = r − iγ∗

2r
GrP+(k)e−ik·x + r + iγ∗

2r
G†

rP+(k)eik·x .

This means that the power spectrum (2.123) is given by (using GrP+(k′)|0〉 = 0)

〈0|Aph†
r (k)Aph

r (k′)|0〉 = Pr (γ)〈0|GrP+(k)G†
rP+(k′)|0〉 . (2.131)

We could eliminate the expectation value of graviton operators by using their com-
mutator to give us an expression in terms of delta functions. However, we are only
interested in the chiral dependence of the power spectrum Pr , which is given by

Pr (γ) = (r + iγ)(r − iγ∗)
4

= 1 − 2γI r + |γ|2
4

. (2.132)

If γI r < 0, Pr (γ) is obviously positive. Otherwise,

Pr (γ) ∝ 1 − 2|γI | + γ2
I + γ2

R = (1 − |γI |)2 + γ2
R , (2.133)

which is also positive for any complex γ. Therefore, the 2-point function is indeed
always real and positive, as required. The chiral asymmetry in the power spectrum
can be written as

PR − PL

PR + PL
= − 2γI

1 + |γ|2 , (2.134)

or, for a general ordering of the 2-point function as in (2.125),

PR − PL

PR + PL
= 2(β − α)γI

1 + |γ|2 . (2.135)

The chirality in the power spectrum of tensor fluctuations is the main new result of
this work, and a big difference to the standard second order formalism described
in Sect. 1.2.5 (which corresponds to the limit |γ| → ∞, for which the Holst action
reduces to the Palatini action).

We can see that if γ was purely real there would be no asymmetry in the vacuum
fluctuations for right and left gravitons. The chirality is related to the fact that for a
γ with an imaginary part the connection is a complex field and therefore we must
expand it in terms of graviton and anti-graviton modes. Note, however, that a real

http://dx.doi.org/10.1007/978-3-319-17449-5_1
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Fig. 2.1 Power spectrum
asymmetry as a function of a
generally complex Immirzi
parameter γ

part in the Immirzi parameter does affect the absolute value of the asymmetry due
to the factor |γ| in the denominator of (2.134). We can also see that for a completely
symmetric ordering of the 2-point function, α = β, the RHS of Eq. (2.135) is zero.
Hence, even if the Ashtekar formalism was the correct description of gravity, we
would not obtain a chiral power spectrum if γ was real or the ordering symmetric.
Not measuring chirality would therefore not be able to rule out the theory.

We can plot the power spectrum asymmetry (2.134) against the real and imaginary
parts of γ, see Fig. 2.1. It is obviously antisymmetric in γI , and the minimum and
maximum are at γ = ±i respectively which are the values that correspond to a
SD/ASD connection. They display themaximum chirality because the Palatini action
can naturally be split into a SD and ASD part [19]. The axis γI = 0 corresponds to
a real γ and therefore displays no asymmetry.

2.3.5.1 Measuring a Chiral Tensor Spectrum

As was mentioned in Sect. 1.3.2, in the absence of parity violation, the T B power
spectrum of the CMB would be zero. In the situation we have just considered, the
chirality of the power spectrum (2.134) breaks parity. The effect of parity violation on
the CMB power spectra was investigated in [61]. It was found that the ratio between
the quadrupole of the T B correlator (zero in standard cosmological approaches) and
the B B correlator is given by

CTB
2

CBB
2

≈ fPBα2 , (2.136)

where α2 ≈ 200 parametrises the relative strength between the T B and B B spectra
and fPB = 2 PR−PL

PR+PL
is the parity breaking parameter, which is zero if no chirality is

present. In our case, we therefore find

CTB
2

CBB
2

≈ 800
(β − α)γI

1 + |γ|2 , (2.137)

http://dx.doi.org/10.1007/978-3-319-17449-5_1
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for the ratio of tensor induced T B and B B quadrupole modes. Not only would
chirality render the T B correlator non-zero, it would also be easier to detect T B
rather than B B correlation (CTB

2 > CBB
2 ) for a wide range of values of γ, given

approximately by

1

800
< |γ| < 800 . (2.138)

BICEP2 has recently detected B-modes [62] that might have arisen due to tensor
perturbations from inflation, however we do not yet have tensor power spectra over
a large number of multipoles as the experiment only took data from a small patch of
sky. Although there was no hint of parity violation in their analysis so far, this might
change once the full power spectrum becomes available. It will therefore be possible
in the near future to constrain the model I have described. If the T B correlator is
consistent with zero, we know that for Ashtekar gravity to be correct, γ must be
either quite far from the range in Eq. (2.138) or real. If a chirality was detected, on
the other hand, it could indeed have originated from this mechanism.

2.3.6 A Purely Real γ

Before I conclude, let us quickly consider the case of a purely real theory for which
(γ) = 0. Although it will turn out that we can take the limit (γ) → 0 in all of our
main results to obtain the answer in the real theory, it is not initially obvious why this
would work, as a real theory is very different from a complex one. I will describe the
main differences and show why our results are still well defined in the real case.

A purely real theory would require Fourier mode expansions using operators ar

and er without a p index, as there is no need to consider separate sets of creation and
annihilation operators. We therefore would only get two modes for each k and r as
usual in the second order theory. As we ignore the p index, what used to be reality
conditions in the complex theory, where we related modes with different p, are now
just operator conditions, ẽr+ = ẽr− and ãr+ = ãr−. Similarly, the commutation
relations (2.95) have one less index and must be replaced by

[ãr (k), ẽ†s (k
′)] = −i

γ

2m2
Pl

δrsδ(k − k′) . (2.139)

The Hamiltonian, on the other hand, will still have the same form, as p = −1
modes always appear with a dagger and p = +1 modes without, see Eq. (2.97). This
enables us to define the same physical and unphysical graviton operators as before,
however without a p index on the RHS, e.g.

GrP+ = −r

iγ
(ãr − k(r + iγ)ẽr ) . (2.140)
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Note that as opposed to the complex case, were the graviton operators were only
hermitian conjugates of each other after the reality conditions had been imposed,
for the real theory the reality conditions are satisfied by the metric and connection
operators. Therefore, GrP and G†

rP are automatically conjugates of one another,
which can be trivially seen from their definitions.

We still have a non-physical mode, however, which can be eliminated by imposing
the torsion free condition which relates ar to er . As before, we can define a holo-
morphic representations and an inner product, which will show that the non-physical
modes have negative energy and should therefore be excluded. Our Hamiltonian and
Hilbert space will therefore have the same structure as for a general complex γ.
Hence, the real theory can be viewed as the limit (γ) → 0 in the sections above.

2.4 Conclusions

I have shown that using the Ashtekar formalism in cosmological perturbation theory
leads to a number of interesting results.

Classically, rederiving the second order Hamiltonian corresponding to tensor per-
turbations is far from trivial.We saw thatweneed to take boundary terms into account,
as well as regard the change from the full Ashtekar variables to the perturbations as
a canonical transformation in order to arrive at the correct form of the Hamiltonian.
I was then able to reproduce the standard result for the equation of motion of tensor
modes, as obtained in the second order formalism.

On the quantummechanical front there were several novelties. First of all, the fact
that the connection is complex makes the exercise a lot more involved than in the
usual case. We need to expand the fields in terms of positive and negative frequency
operators, which are related by reality conditions. These are not supposed to be
imposed on the operators, but only at the very end when choosing the inner product
of the Hilbert space. We can write the Hamiltonian in terms of graviton creation
and annhilation operators, which are linear combinations of metric and connection.
When fixing the inner product, we find that half of the operators are unphysical,
demonstrated by them being zero-on shell, when the torsion free condition relating
metric and connection is imposed. This also gets rid of unphysical coupling terms
between k and −k in the Hamiltonian.

As the connection is complex, so is the dynamical, perturbed Hamiltonian. This is
not a problem as we ensure actual observables are real by requiring the Hamiltonian
to be hermitian through the choice of inner product, at least after normal ordering.
The complexity of the Hamiltonian is, however, the origin of the chiral effects we
observe.

Before normal ordering, if γR 	= 0, theHamiltonian is not hermitian,which results
in an imaginary vacuum energy for each helicity. Non-hermitian Hamiltonians have
been studied before [63] and are not necessarily regarded as problematic. In our case,
the total vacuum energy for both helicities is real, and therefore the non-hermitian
nature might not be physically significant.
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The main result of this chapter is the chiral power spectrum of tensor perturba-
tions, which is described in terms of perturbed connection variables. This chirality is
present as long as γ is not purely real, and the strongest effect occurs for the SD/ASD
connection for which γ = ±i . The chirality in the power spectrum is a novelty com-
pared to the standard second order formalism, and demonstrates that using different
variables to describe spacetime does not necessarily lead to equivalent results.

A chiral graviton would break parity and therefore lead to a non-zero T B corre-
lator, which can be probed by CMBmeasurements. As the Planck collaboration will
release their polarization results later this year, it is only a matter of time until the
full power spectrum can be obtained, which will enable us to constrain the value of
the Immirzi parameter.

Although gravitational chirality can be produced in other ways [60, 64, 65], the
mechanismpresented here is by far the simplest. If a chiral tensor power spectrumwas
to be observed, it would hint at the Ashtekar formalism being the correct fundamental
description of gravity.
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Chapter 3
Anisotropic Gravitational Wave Background
from Massless Preheating

Reheating is one of the least understood periods in the early universe. While nearly
all the elementary particles we observe must have been produced during this period,
we still do not know for sure how the process occurred. Although reheating might
have an effect on the curvature perturbation [1], the main constraint to date comes
from the abundance of light elements which give bounds on the reheating temperature
after thermalisation [2]. However, as was shown in Sect. 1.4, the detailed preheating
dynamics strongly depend on the underlying model of inflation. Therefore, studying
observables that were affected by the reheating process would give us insight into
this period as well as inflation.

Gravitational waves are an ideal candidate to probe the period of reheating, and
therefore inflation, further. As mentioned in Sect. 1.5.2, they will be produced in
large quantities during preheating due to the presence of time-varying matter inho-
mogeneities, and their spectrum will peak at a scale that is characteristic of the
preheating dynamics.

If the background of GWs from preheating was to be measured, it would therefore
provide information about the inflaton potential, as well as the couplings of the infla-
ton to other matter fields, which cannot be easily be obtained in other ways. Unlike
the CMB fluctuations, GWs from preheating decouple right upon production (below
the Planck scale), due to their weak interaction with other matter [3]. Therefore,
they do not evolve on their journey towards us, and retain their spectral shape and
frequency (except for a redshift due to expansion), giving us a direct snapshot of
the very early universe. Even though it is currently not possible to directly measure
GW backgrounds from preheating, which peak at very high frequencies [4], it is still
important to characterise them, as they might become a vital tool of observational
Cosmology in the future.

In this section I will discuss GW production from massless preheating, in the
presence of a light scalar field. As this is a non-linear process, the problem will
naturally have to be solved numerically. I will show that this model leads to an
anisotropic background of GWs today, with relative fluctuations of the order of 1 %,
as was presented in [5, 6]. Such anisotropies could arise in any preheating scenario

© Springer International Publishing Switzerland 2015
L.B. Bethke, Exploring the Early Universe with Gravitational Waves,
Springer Theses, DOI 10.1007/978-3-319-17449-5_3

91

http://dx.doi.org/10.1007/978-3-319-17449-5_1
http://dx.doi.org/10.1007/978-3-319-17449-5_1


92 3 Anisotropic Gravitational Wave Background from Massless Preheating

where a light scalar field is present, providing a novel way to distinguish between
different inflationary models.

I will start by describing gravitational wave production from preheating and how it
can be studied numerically in Sect. 3.1, with particular focus on massless preheating.
I will also explain how to relate the frequency and energy density of the produced
GWs to their values today.

In Sect. 3.2, I will argue why the presence of a light scalar field, which acquires a
scale-invariant spectrum of perturbations during inflation, would result in anisotropies
in the GW background. The numerical algorithm and the parameters used in the sim-
ulations are the topic of Sect. 3.3, where I will show some results that demonstrate
the usual behaviour of the field dynamics and GW production during preheating.

In Sect. 3.4, I will show that the amplitude of GWs strongly depends on the initial
value of the preheating field χ. The main result is presented in Sect. 3.5, where I will
demonstrate that the GW background in this model has a scale invariant spectrum
of fluctuations, with anisotropies of the order of 1 %. I will discuss how this effect is
related to the field dynamics. Finally, I will conclude in 3.6 and give an outlook on
future work that could be done in this field.

Note that in this chapter, I will use the Planck mass MPl instead of the more
commonly used reduced Planck mass mPl, which differ by a factor of

√
8π. The

simulation code is based on the publicly available ClusterEasy [7], which introduces
dimensionless parameters that are rescaled in terms of the Planck mass. To make
comparison with the simulation results simpler, all other equations will also be given
in terms of MPl.

3.1 Gravitational Wave Production During Preheating

3.1.1 Studying Preheating Numerically

The analytic study of preheating presented in Sects. 1.4.2 and 1.4.3 is valid up to
the point where the system becomes non-linear. This happens when the backreac-
tion of the produced particles becomes large enough to induce correction terms in
the inflaton potential and eventually terminate the resonance. Although analytical
estimates of when this occurs have been obtained in [8, 9], as in any problem that
contains highly non-linear equations, the actual dynamics are best investigated using
numerical methods.

In the case of preheating, numerical simulations were first performed by [10],where
only a quartic self-coupling of the inflaton was considered. The classical field equa-
tion was solved numerically, and the quantum nature of the problem was taken care
of by setting up fluctuations in the modes φk as random initial conditions. In [11],
interactions with another scalar field were introduced and studied numerically, using
lattice field theory simulations where the fields are discretized on a regular lattice.

http://dx.doi.org/10.1007/978-3-319-17449-5_1
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These early numerical simulations gave new insight into the resonant behaviour for
different couplings and the dynamics after the onset of non-linearities.

The non-linear regime of preheating is particularly interesting, as it can lead to
the production of a large amount of gravitational waves: due to the amplification of
specific momentum modes during preheating, after enough energy has been trans-
ferred we are left with large, time-dependent inhomogeneities in the classical field
distribution which act as a source for gravitational waves.

Specifically, if a momentum k∗ is amplified, this results in field inhomogeneities
in configuration space of size L∗ ∼ 1/k∗ which introduce an anisotropic stress
term into the stress energy tensor, the transverse-traceless part of which acts as a
very efficient source of GWs, see Sect. 1.5.2. Although initially GWs are produced
on scales corresponding to the amplified momenta, eventually the inhomogeneous
configurations collide and break up into smaller inhomogeneities, which leads to
the production of GW on smaller scales k > k∗ [12]. After the fields relax and the
parametric resonance stops, we are left with a spectrum of GWs which is peaked
around k∗, and its shape will carry information about the generation process.

GW production during preheating is a highly non-linear process and therefore
needs to be studied numerically. This was first done in [13] and more recently in
[4, 14] for the simple chaotic inflation models considered in Sects. 1.4.2 and 1.4.3.
Furthermore, numerical simulations of gravitational wave production from hybrid
preheating [12] or due to fermions [15, 16] have also been performed.

Unfortunately, if the energy scale of inflation is high, gravitational waves from
preheating will peak at high frequencies f > 1 MHz today. At the time of production,
the causal horizon was much smaller than it is now, and no gravitational waves could
have been produced on scales larger than the horizon. Hence, it would be difficult
to measure them through the B-mode polarization of the CMB, as unlike the scale-
invariant tensor perturbations from inflation, they would only affect the very highest
multipoles. Instead, we need to resort to direct detection, however detector technology
so far is not sensitive to such high frequencies.

Figure 3.1 shows the sensitivity ranges of the currently proposed/operating detec-
tors, and clearly they do not coincide with the range predicted from preheating (see
Sect. 3.1.3 on how to obtain the frequency and energy density of GWs from preheat-
ing today). Note that high frequency detectors, capable of measuring signals around
100 MHz, have recently been proposed [17–19]. While their sensitivity is currently
too low to detect gravitational waves from preheating, there remains hope that detec-
tor technology could evolve to the extent where we are able to directly probe this
regime in the future.

3.1.2 Gravitational Waves from Massless Preheating

In the following sections, I will investigate the effect of a light scalar field χ, coupled
to the inflaton during preheating, on gravitational wave production. Numerically, it

http://dx.doi.org/10.1007/978-3-319-17449-5_1
http://dx.doi.org/10.1007/978-3-319-17449-5_1
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Fig. 3.1 The sensitivity ranges of detectors LIGO, eLISA and BBO, and the ranges at which
GW production from preheating peaks for different models. The straight line is the scale invariant
background from inflation. Figure reproduced from [4]. ©SISSA Medialab Srl. Reproduced by
permission of IOP Publishing. All rights reserved

will be easiest to do this for the massless preheating model with a quartic inflaton
potential,

V (φ,χ) = λ

4
φ4 + 1

2
g2φ2χ2 . (3.1)

Remember that this model is scale invariant (as the coupling constant is dimension-
less, it contains no fixed physical length scale, unlike a model with a mass term m2φ2)
which resulted in equations of motion that were independent of the scale factor. This
makes it particularly convenient for solving numerically on a lattice, as one does
not have to take the expansion of the universe into account when performing the
simulations and can therefore use a fixed lattice size that will cover the dynamical
range at all time steps.

A pure λφ4 model has been ruled out by the recent Planck data [20]. However,
we can modify the potential by including a non-minimal coupling of the inflaton
to gravity of the form ξφ2 R. For ξ < 0, this makes the model viable again as it
brings down the tensor to scalar ratio r [21]. If the high value of r suggested by [22]
is confirmed by other experiments, this means that even with a weak non-minimal
coupling |ξ| < 0.1 we can achieve consistency with the data. This term was not
included in the simulations as the B-mode discovery was too late to be accounted
for, however it should not strongly affect the results, as |ξ| is small and the term will
only be significant for large field values of φ during inflation.

The Lagrangian for two interacting scalar fields is

L = −1

2
∂μφ∂μφ − 1

2
∂μχ∂μχ − V (φ,χ) , (3.2)
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where V (φ,χ) is given by Eq. (3.1). The background field evolution can then be
written as [using Eq. (1.125)]

φ̈ + 3H φ̇ − 1

a2 ∇2φ + (λφ2 + g2χ2)φ = 0 , (3.3)

χ̈ + 3H χ̇ − 1

a2 ∇2χ + g2φ2χ = 0 . (3.4)

The evolution of the background is determined by the Hubble rate. This is given by
the Friedmann equation (1.15), where the total energy density is the sum of kinetic,
gradient and potential terms (which should be understood as spatially averaged)

H2 = 4π

3M2
Pl

[
φ̇2 + χ̇2 + (∇φ)2 + (∇χ)2 + 2V (φ,χ)

]
. (3.5)

Gravitational waves correspond to transverse and traceless tensor perturbations,
which I will simply refer to as hi j with ∂i hi j = hii = 0, dropping the TT superscript.
The full spatial metric is therefore given by

gi j = a2(t)(δi j + hi j ) . (3.6)

These tensor perturbations are sourced by �TT
i j , the TT part of the anisotropic

stress tensor, and their equation of motion in an expanding background is given
by Eq. (1.125),

ḧi j + 3Hḣi j − 1

a2 ∇2hi j = 16π

MPl
�TT

i j (φ,χ) . (3.7)

We need to determine the anisotropic stress tensor from preheating. We cannot expect
the scalar fields to behave like a perfect fluid, as the resonant amplification of momen-
tum bands makes the distribution very inhomogeneous. Therefore, �i j is not simply
a spatial perturbation around a perfect fluid background. However, it is reasonable
to define the anisotropic stress tensor as the full energy-momentum tensor minus the
isotropic stress, which is given by the background homogeneous pressure [14]:

a2�i j = Ti j − 〈P〉gi j , (3.8)

where gi j is the full metric including perturbations, the scale factor a2 comes from the
background FRW metric and we have only kept terms to first order in perturbations.
Using Eq. (1.24) for the energy-momentum tensor of both scalars, we find

�i j = 1

a2

[
∂iχ ∂ jχ + ∂iφ ∂ jφ + gi j (L − 〈P〉)] . (3.9)

Note that if we do not have a perfect fluid background, there should be an additional
term hi j

(
H2 + 2 ä

a

)
on the LHS of Eq. (3.7) coming from the perturbed Einstein

http://dx.doi.org/10.1007/978-3-319-17449-5_1
http://dx.doi.org/10.1007/978-3-319-17449-5_1
http://dx.doi.org/10.1007/978-3-319-17449-5_1
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equations [23]. This term ordinarily cancels with the isotropic pressure perturbation
P hi j of a perfect fluid [which you can see from the Friedmann equations, Eqs. (1.15)
and (1.16)] and therefore does not appear in the equation of motion of tensor per-
turbations. In this case, where the background is not determined by a perfect fluid,
we should include this term when we calculate hi j . However, as gravitational wave
production happens on subhorizon scales for which k � aH , we can ignore the
expansion of the universe and the additional term does not need to be taken into
account [24].

After applying the TT projection, the term proportional to the metric gi j in (3.9)
vanishes: This is because after the TT projection, only the tensor perturbation hi j

survives. As the term in brackets is also of order O(h) [recall Eq. (1.27)], this results
in a second order perturbation which can be neglected [12]. Therefore, the tensor
modes are simply sourced by the TT projection of the field gradients.

To study fluctuations, we need to write Eq. (3.7) in Fourier space. I will use the
following Fourier space convention:

f̃ (k, t) =
∫

d3x f (x, t)e−ik·x , (3.10)

f (x, t) =
∫

d3k
(2π)3 f̃ (k, t)eik·x . (3.11)

The equation of motion for the fluctuations is given by

ḧi j (t, k) + 3Hḣi j (t, k) − k2

a2 hi j (t, k) = 16π

MPl
�TT

i j (t, k) . (3.12)

It is easy to perform the TT projection of the source term in Fourier space by defining
a projector

�i j,lm(k̂) = Pil Pjm − 1

2
Pi j Plm, (3.13)

Pi j ≡ δi j − k−2ki k j . (3.14)

Using �i j,lm , we can write

�TT
i j (k, t) = �i j,lm(k̂)

∫
dx e−ikx 1

a2 [∂lχ ∂mχ + ∂lφ ∂mφ] (x, t) . (3.15)

This projection guarantess that �TT
i i (k, t) = ki�

TT
i j (k, t) = 0, ∀ k, t .

Using a field redefinition to express the wave equation (3.12) as one in flat space
which can be solved by a Green function G(k, t − t ′) (c.f Sect. 1.5.2), you find that
the perturbation hi j has solution [16]

http://dx.doi.org/10.1007/978-3-319-17449-5_1
http://dx.doi.org/10.1007/978-3-319-17449-5_1
http://dx.doi.org/10.1007/978-3-319-17449-5_1
http://dx.doi.org/10.1007/978-3-319-17449-5_1
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hi j (k, t) = 16π

M2
Pl

∫ t

ti
dt ′G(k, t − t ′)�TT

i j (k, t ′) , (3.16)

where the initial conditions are hi j (k, ti ) = ḣi j (k, ti ) = 0. However, I will show in
Sect. 3.3.1 that we do not actually need to know the Green function when performing
the numerical calculation.

The stress-energy tensor tμν of gravitational waves, which describes the energy
carried by them, is given by Eq. (1.28). The energy density ρGW = t00 can therefore
be written as

ρGW = M2
Pl

32π

1

L3

∫
d3x ḣi j (t, x)ḣ∗

i j (t, x) , (3.17)

where I have averaged over the lattice volume V = L3. WritingρGW = ∫ dρGW
d log k d log k,

we can define the spectrum of gravitational waves in Fourier space (where the addi-
tional factor of (2π)3 comes from the Fourier transform):

dρGW

d log k
≡ k3 M2

Pl

(4πL)3

∫
d�k

4π
ḣi j (t, k, k̂)ḣ∗

i j (t, k, k̂) , (3.18)

where d�k is the solid angle in k space. Later, I will calculate the total energy density
of gravitational waves, normalized to the critical energy density ρc,

�GW(t) = 1

ρc

∫ (
dρGW

d log k

)
d log k . (3.19)

3.1.3 Gravitational Wave Background from Preheating Today

In the simulations I will obtain spectra of gravitational waves, with a specific peak
momentum and energy density that can be obtained by integrating over all momenta.
However, to predict what the GW background would look like now, we need to relate
the frequency and energy to their values today. Due to the weakness of gravity, the
waves decouple upon production, so their frequency is simply redshifted,

f ≡
(

a

a0

)
k

2π
, (3.20)

where a and a0 are the scale factor at the beginning of gravitational wave production
and today, respectively, and k is the comoving wave number, related to the physical
wave number as k = kphys(t)a(t)/a.

We therefore need to find an expression for the ratio of the scale factors, which
will depend on two important stages, the end of gravitational wave production and the
onset of radiation domination after preheating. Expressing the scale factors in terms

http://dx.doi.org/10.1007/978-3-319-17449-5_1
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of the energy density at these times, you can obtain an expression for the frequency
today in terms of parameters defined at the time of preheating [16]:

f ≈
(

a∗
aRD

) 1−3w
4
(

a

a∗

)(
k

ρ
1/4∗

)
× 5 · 1010Hz , (3.21)

where quantities with an asterisk are evaluated at the end of gravitational wave
production and aRD is the scale factor at the onset of radiation domination. This is
the most general expression, valid for any equation of state w = P/ρ between t∗ and
tRD.

In the case of massless preheating, the background evolves like radiation (see
Sect. 1.4.3), which gives w = 1/3 and hence the first term of Eq. (3.21) is unity.
Furthermore, we can relate the energy density at the end of GW production to its
value at the beginning, as during RD a4ρ = a4∗ρ∗, cancelling the remaining scale
factors in (3.21).

The simulations described in the next sections begin at the end of inflation (for
which I set a = 1), and gravitational wave production starts very soon afterwards.
Therefore, we can write the energy density as dominated by the inflaton potential,
ρ = 1

4λφ4
i , where φi is the inflaton value at the beginning of the simulation. The

comoving momentum will be defined in units of
√

λφi, so I can write the frequency
today as

f ≈
(

k

ρ1/4

)
× 5 · 1010 Hz ≈ k√

λφi
λ1/4 × 7 · 1010 Hz . (3.22)

We will also need to relate the energy density �GW of produced gravitational
waves, Eq. (3.19), to its value �0

GW
today. Following similar arguments as for the

frequency, for massless preheating this is given by [16]:

h2�0
GW

= h2�rad

(
g0

g∗

)1/3

�GW , (3.23)

where g0 and g∗ are the number of relativistic degrees of freedom today and during
preheating, respectively, and h2�rad = 4 × 10−5 is the fractional energy density of
radiation today. Using g∗/g0 ≈ 100, we can therefore rewrite this as

h2�0
GW

≈ 9 × 10−6 �GW . (3.24)

As was mentioned in Sect. 1.5.4, GW detectors are sensitive to the amplitude
(strain) of the wave and not the energy density. They are related in terms of the
frequency as [3]

hGW( f )  1.263 × 10−18 1Hz

f

√
h2�0

GW
( f ) . (3.25)

http://dx.doi.org/10.1007/978-3-319-17449-5_1
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Even for a wave with a large energy density h2�0
GW

≈ 10−9 (see Fig. 3.1), if the
frequency is around 10MHz, this would imply a tiny amplitude of O(10−30), which
is the reason why GWs from the very early universe are so hard to detect.

3.2 Massless Preheating with a Light Scalar Field

In this section, I will describe the significance of preheating with a light scalar field χ
which varies on superhorizon scales. This variation will provide initial conditions for
the homogeneous field value χi to be used in the simulations, and therefore affects
the GW production in different preheating volumes.

3.2.1 The Separate Universe Approximation

In Sect. 1.2.5 I have argued that any light field (with a mass less than the inflationary
Hubble rate) will acquire a scale invariant spectrum of perturbations from inflation.
This is because fluctuations in such a field would freeze out after their comoving
modes exit the horizon, just like for the inflaton itself. In contrast, a heavy field is not
affected by the damping term due to H and would simply roll down to the bottom
of its potential.

In the case of massless preheating, the lightness of the field implies mχ = gφ < H .
The power spectrum of χ fluctuations is given by the same expression as the inflaton
spectrum, Eq. (1.70),

Pχ ≡ ∂〈χ2〉
∂ log k

 H2

4π2 , (3.26)

where the definition of the power spectrum as the power per logarithmic k interval,
Eq. (1.34), was used. We need to determine for which values of g the field χ is light,
such that it satisfies mχ = gφ < H , which depends on the value of the inflaton field.
At a time N e-foldings before the end of inflation, it is given by φ = √

N/πMPl [25].
Therefore, χ is light N e-foldings before the end of inflation if

m2
χ

H2 = 3g2φ2 M2
Pl

2πλφ4 = 3g2

2Nλ
� 1. (3.27)

In order for this to be the case for the largest observable scales, which left the
horizon N ∼ 60 e-foldings before the end of inflation, the couplings must satisfy
g2/λ � 2N/3 ∼ 40. We want the condition to be satisfied long enough for large
scale fluctuations of the field χ to be significantly amplified, as once the Hubble
rate falls below mχ, the field starts oscillating with a decreasing amplitude. In the

http://dx.doi.org/10.1007/978-3-319-17449-5_1
http://dx.doi.org/10.1007/978-3-319-17449-5_1
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simulations, the value g2/λ = 2 was chosen, which guarantees that χ is light apart
from the last few moments of inflation.

The lightness of the field ensures that χ will vary on superhorizon scales and
therefore take a different value in different preheating volumes. To accurately model
the preheating process, one should consider separate universes, each with a different
initial value χi. However, we can choose the same initial value φi for all of them,
as this will simply determine at what point in the inflaton’s evolution the simulation
starts.

Although the initial homogeneous value of χ is many orders of smaller than that
of the inflaton field (for χ to be subdominant during inflation) and is often set to zero,
it should not be ignored if χ is light as it will provide different initial conditions for
the separate universes.

To study the GW background from preheating, I will therefore consider a range
of χi values (as described in the next section), and perform separate lattice simu-
lations for each of them. The homogeneous field values will be superimposed with
subhorizon vacuum fluctuations.

For the choice of couplings g2/λ = 2, the homogeneous mode κ = 0 is within
the instability band, see Fig. 1.2. Hence, while initially the linear evolution proceeds
very similarly for the different preheating volumes, at the time the dynamics become
non-linear the homogeneous mode has been significantly amplified and will have a
strong impact on the evolution. Consequently, any quantity that depends on χi will
vary between different preheating horizon volumes.

What does this imply for the GW background from preheating today? With time,
the separate preheating volumes will come into causal contact as the comoving
horizon (aH)−1 grows, which is about 60 e-folds larger today than at the end of
inflation [25]. Therefore, there is a very large number of preheating patches in our
current Hubble volume.

Specifically, on Earth we observe GWs originating from a comoving spherical
shell of radius R ∼ 1/H0, with H0 the Hubble rate today, and any direction n̂ points
to a primordial preheating volume at r = Rn̂. These regions correspond to a tiny
angular size on the sky, much smaller than the 1◦ angular scales which correspond
to the size of the horizon at last scattering. Although this means that we cannot
distinguish between individual preheating volumes, the GW energy density, which
is a function of position, �GW(n̂) = �GW

[
χi(Rn̂)

]
, can vary on cosmological scales.

Hence, we expect the GW background from preheating with a light scalar field to be
anisotropic.

3.2.1.1 Impact of Light χ on Curvature Perturbations

Before describing which range of χi values we should consider, I want to comment
on the effect of preheating with a light scalar χ on the curvature perturbation.

The field fluctuations χk that are amplified during preheating represent an
isocurvature perturbation, i.e. they do not vanish on spatially flat hypersurfaces.
In [26] it was shown that such a contribution could have an effect on the curva-

http://dx.doi.org/10.1007/978-3-319-17449-5_1
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ture perturbation ζ, defined in Eq. (1.71). This can easily be seen within the separate
universe approximation. The difference in the evolution between different FRW vol-
umes affects ζ as δζ = δN [26], where N = ln a. As the evolution of each volume
will depend on the initial value χi, we can therefore expect a contribution towards
the total curvature perturbation from preheating.

This was first investigated by [27, 28], where a random contribution to δN was
observed which would manifest itself as white noise in the data. However, these
references neglected to include inhomogeneous modes in their simulations which
were taken into account by [1, 29, 30]. In particular, the more accurate simulations in
[1] demonstrated a highly non-Gaussian structure on top of a random background: for
certain periodically spaced values of χi, they observed spikes in δN which could have
a measurable effect on ζ that would contribute to cold spots in the CMB temperature.
This occurred for values of χi that resulted in a very large amplification of the
homogeneous mode of χ, much larger than the initial inflaton amplitude.

Clearly, it would be interesting to study the correlation between the curvature per-
turbation and the GWs produced during preheating. However, the numerical algo-
rithm I used, see Sect. 3.3.1, was not accurate enough to calculate the curvature
perturbation, which is related to changes in the scale factor of order O(10−5) [25]. I
will briefly comment on how the same field dynamics that lead to spikes might affect
the GW amplitude in Sect. 3.5.3.

3.2.2 Varying χi During Preheating

To calculate the GW background from preheating, we first need to determine what
range of χi values we can expect the GW background from preheating to have orig-
inated from. Since χi is a Gaussian random field with a scale-invariant spectrum
(3.26), it will have a non-zero average value in any given volume, even in the comov-
ing volume that corresponds to the currently observable universe. This is because
fluctuations that are much larger than the current horizon have been amplified by
inflation, as long as it lasted longer than the minimum 60 e-folds, which is likely.

The total range of amplified, comoving wavelengths extends from the Hubble
length at the end of inflation, k ∼ H∗ (well inside the horizon today), to the Hubble
length at the start of inflation, which probably corresponds to a superhorizon scale
much larger than our current horizon.

From the observational point of view, the wavelengths that are currently inside
the horizon, k � a0 H0, appear as inhomogeneous fluctuations, or anisotropies on the
sky. The variance σ2

χ of these fluctuations can be computed from the power spectrum
(3.26),

σ2
χ =

∫ H∗

a0 H0

dk

k
Pχ = H2∗

4π2 ln
H∗

a0 H0
= H2∗

4π2 N∗ , (3.28)

http://dx.doi.org/10.1007/978-3-319-17449-5_1
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where the ratio of the comoving Hubble horizon today, (a0 H0)
−1, to the one at the

end of inflation, H−1∗ (where I set a∗ = 1), is given by N∗ ∼ 60, the number of
e-folds of inflation after the largest observable scales left the inflationary Hubble
radius.

If inflation lasted longer than N∗ ∼ 60 e-folds, even larger scales were amplified
and χ will have varied on scales that are superhorizon now. The actual mean value
χi across the universe would be a particular realization drawn from a Gaussian
distribution with variance

〈χ2
i 〉 =

∫ a0 H0

(a H)start

dk

k
Pχ =

∫ H∗

(a H)start

dk

k
Pχ −

∫ H∗

a0 H0

dk

k
Pχ

= H2∗
4π2 (Ntot − N∗) , (3.29)

where Ntot = ln(1/astart) (remember H ≈ H∗ throughout inflation) is the total
number of e-foldings of inflation. A typical average field value across a volume as
large as our observable universe is then

χi ∼ H∗
2π

√
(Ntot − N∗) . (3.30)

Since the value of Ntot is unknown, I will consider the actual realization of χi within
our observable patch as a free parameter, simply restricted to χi > H∗/2π. In the
simulations, I will study the dependence of �GW on different values of χi, drawn from
a Gaussian distribution with the variance given in Eq. (3.28), and centred around a
mean value χi of order of Eq. (3.30).

3.3 Numerical Simulations

3.3.1 Numerical Algorithm

To study the GW production for different initial values χi, I performed simulations
on a 3d lattice with periodic boundary conditions, populated with the fields χ, φ and
the six tensor perturbation components hi j . The code I used is based on the publicly
available ClusterEasy [7], an MPI/C++ package performing lattice simulation of
interacting scalar fields in an expanding universe.

The numerical algorithm used to solve the differential equations is a second-
order leapfrog integrator where field values and their derivatives are stored at dif-
ferent times. Although this method is not as accurate as more popular fourth order
Runge-Kutta methods, its advantages are its simplicity and speed. In the case under
consideration, where we are interested in gravitational wave production, it is not nec-
essary to have an extremely accurate integrator. It can be checked that the solution is
stable by observing the evolution of quantities like the total energy (which should be
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conserved), and by ensuring that the chosen time step does not affect the results. The
difference in GW energy which will be a large O(1) effect, as opposed to measuring
the difference in scale factor within the δN formalism, which is O(10−5). Therefore,
to calculate curvature perturbations from preheating, a more accurate integrator is
needed, see [1].

To study the field evolution we need to solve discretized versions of the field
equations for the scalars, Eqs. (3.3) and (3.4), and the Friedmann equation (3.5). The
evolution of the scale factor is solely determined by the scalar fields, and I checked
that it indeed evolves as a ∝ t1/2, as if dominated by radiation. I will assume that each
separate preheating volume can be described by an FRW background metric. This is
justified as long as the lattice volume does not strongly exceed the comoving horizon
at the time which determines the spatial extent of causally connected regions. We
know that the variation in scale factor between different volumes is of order 10−5

[25], and should therefore not have a strong effect on the dynamics of the scalar
fields.

The evolution of the tensor perturbations, which determines the GW spectrum, is
given by Eq. (3.7). I chose not to include backreaction from the tensor perturbations
into the scalar field equations, as these were shown to be negligible for GW production
during preheating in [12]. We can see that this should be the case, as we know from
the Lagrangian (3.2), which contains the metric gμν in the derivative terms, that
they will appear as hi j∂iχ∂ jχ in the equation of motion for χ. As hi j is a small
perturbation, this is clearly negligible compared to the usual derivative term, and can
therefore be ignored.

To compute the spectrum (3.18), in principle, for each time step, we need to
perform the TT projection in Eq. (3.7), then go to Fourier space to solve the equation,
and finally transform back to coordinate space. Both the TT projection and the Fourier
transforms are non-local operations and therefore computationally very costly. To
avoid this, I followed the method introduced in [12], which makes use of the TT
projector �i j,lm defined in Eq. (3.13). We saw there that the solution of Eq. (3.7) can
formally be written in terms of a Green function, Eq. (3.16). This can be re-written
in terms of a function ui j (k, t), related to the tensor perturbation by the projection
operator,

ḣi j (k, t) = �i j,lm(k̂)u̇lm(k, t) . (3.31)

The solution of u̇i j is given by

u̇i j (k, t) ≡ 16π

M2
Pl

∫ t

ti
dt ′Ġ(k, t − t ′)�eff

i j (k, t ′) . (3.32)

I have introduced an effective anisotropic stress �eff
i j (k, t), which is the Fourier space

version of the unprojected source term

�eff
i j (x, t) ≡ 1

a2

[
∂iχ∂ jχ + ∂iφ∂ jφ

]
(x, t) , (3.33)
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c.f. Eq. (3.15). Having rephrased the equations in this manner enables us to avoid
having to perform the TT projection explicitly. Instead, during the simulation, at each
time step I solve the equation of motion for ui j in configuration space,

üi j + 3Hu̇i j − 1

a2 ∇2ui j = 16π

M2
Pl

�eff
i j (φ,χ) . (3.34)

Only at the times when we want to compute the GW spectrum (3.18), which is
determined by the time derivatives ḣi j , we Fourier transform u̇i j (x, t) to u̇i j (k, t),
and recover the real GW degrees of freedom ḣi j (k, t) by means of the projection in
Eq. (3.31).

To calculate the GW spectrum from the lattice simulation, we need to define a
discretized version of Eq. (3.17):

ρGW = M2
Pl

32π

1

N 3

∑
n

ḣi j (t, n)ḣ∗
i j (t, n) , (3.35)

where I used L3 = (Nδx)3, N being the number of lattice points per dimension
and δx = L/N the lattice spacing, and introduced the discrete position vector n =
(n1, n2, n3) where ni = 0, 1, . . . , N − 1. The discrete Fourier transform is defined
by

f (n) = 1

N 3

∑
n

e− 2πi
N ñ·n f̃ (ñ) , (3.36)

where ñ is the discrete momentum vector with integer entries ñi = − N
2 +

1, ..., 0, ..., N
2 . Using the discrete delta function

∑
n e− 2πi

N (ñ−ñ′)n = N 3δ(ñ − ñ′),
we can obtain Eq. (3.35) in Fourier space:

ρGW = M2
Pl

32π

1

N 6

∑
ñ

ḣi j (t, ñ)ḣ∗
i j (t, ñ) . (3.37)

To find a simple version of the discretized GW spectrum, it will be necessary to bin
the momentum space lattice into spherical layers of radius |ñ| and width 1, where |ñ|
takes integer values between 0, ...,

√
3N/2, and the largest radius corresponds to the

absolute value of the momentum vector
( N

2 , N
2 , N

2

)
. Following the steps outlined in

[31], we obtain

ρGW =
∑
|ñ|

[
dx6 M2

Pl

(4π)3L3 k3(|ñ|)
〈
ḣi j (t, |ñ|)ḣ∗

i j (t, |ñ|)
〉

R(ñ)

]
� log k , (3.38)

where we average over all discrete momenta in a shell R(ñ) = {ñ′ |ñ| ≤ |ñ′| ≤
|ñ| + 1}, k(|ñ|) = |ñ|δk, � log k = 1

k δk and the reciprocal lattice spacing is δk =
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kIR = 2π/L . The reciprocal lattice spacing corresponds to the smallest infrared
momentum, or largest wavelength, that fits into the lattice. The term in square brackets
in Eq. (3.38) gives the spectrum for each discrete momentum k(|ñ|) = |ñ|δk and is
calculated during the simulation. I will later plot spectra that have been normalized
by the critical energy density, which is just determined by the total energy density of
the scalar fields.

While the binning is necessary to obtain the power spectrum, to get an accurate
measure of the GW energy density ρGW , it is better not to evaluate it using (3.38),
but to calculate it in the Cartesian way, Eq. (3.37). This gives more accurate results
as it does not assume that points in the same shell at different lattice sites correspond
to the same momentum. In the following, the relative, total GW energy density �GW

was always calculated using the Cartesian approach.
Note that there are several ways of defining a discretized version of the projection

operator �i j,lm in Eq. (3.31) on a lattice, which depend on the discretization schemes
for lattice derivatives. The different projections were analysed in detail in [31]. In
the simulations, I used a real projector based on a neutral derivative scheme,

[∇i f ] (n) ≡ f (n + îδx) − f (n − îδx)

2δx
, (3.39)

where î is the unit vector in the i direction. Transforming to Fourier space, where

[̃∇i f ](ñ) ≡ −ikeff(ñ) f̃ (ñ), we can obtain the effective momentum corresponding
to the neutral derivative [31],

keff,i = sin(2πñi/N )

δx
. (3.40)

The discretized projector in Eq. (3.14) for neutral derivatives is therefore given by

Pi j (ñ) = δi j − keff,i keff, j

(keff)2 . (3.41)

You can check that this definition ensures the transversality and tracelessness of the
tensor perturbations when acting on them with �i j,lm . Although only the neutral
projector was used for the simulations presented below, I made sure that the results
were not affected by the choice of projector.

3.3.2 Choosing the Numerical Parameters

To carry out the simulations, it is necessary to specify a number of numerical para-
meters. Particularly, we need to specify a lattice size L (where the lattice volume is
given by L3) and the number of lattice points N .
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The lattice volume is a very important quantity. It should not be significantly big-
ger than the Hubble horizon at the time of preheating, as otherwise the assumption
of a uniform FRW background breaks down. More importantly, the lattice size deter-
mines the infrared momentum cutoff kIR = 2π/L , which corresponds to the largest
wavelength that can fit into the simulation box. As the value g2/λ = 2 is used, we
will need good IR coverage as long wavelength modes are amplified most strongly
in this model. However, due to causality, GW modes will not be produced on scales
larger than the horizon volume, and there will be a peak scale which depends on the
model parameters. Let me give an order of magnitude estimate of this value.

During massless preheating, the width of each amplified (dimensionless) momen-
tum band is given by [9]

�κ � 1√
π

(
g2

λ

)1/4

≈ 0.67 . (3.42)

where κ = k/
√

λϕi, see Sect. 1.4.3, and I have used g2/λ = 2. This is an analytical
estimate, valid for values g2/λ � 1, which becomes more accurate for larger values
of g2/λ. For g2/λ = 2, the smallest resonant mode is given by κ = 0, so Eq. (3.42)
gives the largest momentum value that is amplified by the resonance. From the
numerical solution in Fig. 1.2, you can see that for g2/λ = 2, the principal resonant
band seems to be bounded by �κ2 � 0.3, and thus the actual value width of the
resonance band is closer to �κ � 0.55.

Although the field fluctuations are amplified most strongly the smaller the value of
κ, the spectrum of fluctuations, which goes as k2|χk |2 ∼ k2e2μ(k), will peak at some
intermediate scale κ∗ between 0 and �κ, typically a fraction of �κ, κ∗ ∼ O(0.1).
The fluctuations in the inflaton, on the other hand, depend on the resonance for
g2/λ = 3, which does not amplify any large wavelengths, and will not affect our
choice of L .

The source of GWs, formed by products of fields, inherits the peak scale κ∗ ∼
O(0.1) of the field spectrum, as can be seen from Eq. (3.15):

�TT
i j (k, t) = �i j,lm(k̂)

1

a2

∫
dq ql qm χq(t)χ∗|k−q|(t) . (3.43)

As the tensor fluctuations are directly related to the anisotropic stress tensor through
Eq. (3.16), this peak scale will also translate to the spectrum of gravitational waves
dρGW
d log k (k, t) via Eq. (3.18).

To facilitate comparison with the dimensionless momentum κ, we define the
comoving lattice size in the same units, L̃ ≡ √

λφiL , where L is the physical lattice
size. We will see later that the value L̃ = 80, which corresponds to κIR ≈ 0.08, is
sufficient to capture the peak scale.

Note that the comoving Hubble volume at the beginning of our simulation, which
is determined by the Hubble rate H2

i = 8π
12M2

Pl
λφi, is 1/aH̃ ≈ 2 in dimensionless

program units (where I used the value of φi given below). This is quite a bit smaller

http://dx.doi.org/10.1007/978-3-319-17449-5_1
http://dx.doi.org/10.1007/978-3-319-17449-5_1


3.3 Numerical Simulations 107

than L̃ = 80, however the Hubble volume grows to scales larger than the horizon
volume before the system becomes non-linear.

While a large enough lattice spacing ensures good IR coverage, we also need to
have sufficient UV coverage, which improves with the number of lattice points N ,
which determines the lattice spacing as δx = L/N . This needs to be smaller than
any relevant length scale in the problem, which in our case is determined by the
inverse of the effective mass of the inflaton, m2

φ = λφ2. As all length scales are

rescaled by the mass
√

λφi, this implies that in program units we simply need to
satisfy δx̃ < 1. For a lattice volume of L̃ = 80, the choice N = 512 therefore led to
a sufficiently small δx̃ ≈ 0.16. For stability, the program requires [7] the time step
to satisfy δt < δx/

√
3 ≈ 0.1, and a value δt = 0.01 was used in the simulations.

I checked that these choices led to stable, trustworthy results by ensuring that the
total energy in the simulation box was conserved throughout the simulation to high
accuracy.

The value of the inflaton self-coupling was set to λ = 9 × 10−14, which is the
value that is required for consistency with WMAP data [32]. The only parameters
left to fix are the initial conditions for the fields.

At the start of every simulation, the scale factor was set to ai = 1, and the initial
amplitude of the homogeneous inflaton to φi = 0.342MPl, corresponding to the
value for which φ̇i = −H∗φi in the slow roll regime. Note that in the simulations,
all fields have been rescaled by the scale factor a and are given in units of φi.

The initial background value χi was chosen as described in Sect. 3.2.2. From
Eq. (3.5), the Hubble rate at the end of inflation (when the potential term dominates)
is given by

H2∗ ≈ 8πλφ4
i

12M2
Pl

 2.6 × 10−15 M2
Pl. (3.44)

Using N∗ ∼ 60 and Eq. (3.28), the variance of χi across the observable universe
is then σ2

χ  4 × 10−15 M2
Pl. Taking (Ntot − N∗) ∼ 100, the mean value of χi

in Eq. (3.30) is of order χi ∼ 10−7 MPl. In the simulations I made the specific
choice χi = 3.42 × 10−7 MPl. However, using the Monte Carlo reweighting method
explained in Sect. 3.5.1, the results could be extrapolated to other, neighbouring
values of χi.

To be able to model the parametric resonance, we also need to set up fluctuations
φk and χk . These are supposed to mimic quantum fluctuations on scales which are
subhorizon after inflation. I followed the approach of [10]: Consider each mode (φk ,
χk) as given by a complex number | fk |e+iϕk . The phases ϕk are randomly picked
from a uniform distribution between [0, 2π), while the amplitudes are set according
to a Rayleigh distribution with variance

〈| fk |2〉 = 1

2a2ωk
, ωk ≡

√
k2 + m2

f , (3.45)
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where the effective masses are m2
φ ≡ 3λφ2

i + g2χ2
i and m2

χ ≡ g2φ2
i . Hence, more

massive fields have smaller vacuum fluctuations and the amplitude is smaller for
higher momentum modes, which is physically sensible. We should not populate
Fourier modes up to arbitrary large momenta, but introduce a cutoff which needs be
larger than the peak of the GW spectrum. In the simulations, I used the value κ∗ = 2,
but checked that the choice of cutoff did not affect the results.

3.3.3 Simulating Gravitational Wave Production

Having specified all of the numerical parameters, we are now ready to look at the
results of the simulations.

Fig. 3.2 shows the evolution of the fields and their variances, and confirms the usual
behaviour of parametric resonance as described in 1.4.3. Initially, the amplitude of
φ is much larger than that of χ, but the oscillations of the former induce a resonant
growth of the χ fluctuations. This is shown very clearly by the variance term 〈χ2〉,
which grows exponentially fast from from τ = 0 to τ = 70, where τ is the rescaled
conformal time, dτ = (

√
λφi/a)dt . The variance in φ also grows due to its self-

interactions and coupling to χ, but its growth only starts at around τ = 40, once 〈χ2〉
has already been amplified by around six orders of magnitude. The energy transferred
from φ to χ is significant, so the (mean) amplitude of χ eventually reaches that of
φ, at about τ = 70, and the system becomes non-linear. At this point, backreaction

50 100 150 200
τ 

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

a2 φ2 ,a
2 χ2

φ mean
χ mean
φ fluctuations
χ fluctuations

Fig. 3.2 Evolution of the mean field amplitudes squared, a2〈φ〉2, a2〈χ〉2 and of their variances,
a2(〈φ2〉−〈φ〉2), a2(〈χ2〉−〈χ〉2). The exponential growth of fluctuations due to parametric resonance
can be clearly appreciated

http://dx.doi.org/10.1007/978-3-319-17449-5_1
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Fig. 3.3 Typical GW spectra from massless preheating with g2/λ = 2, shown at different time
steps as the amplitude grows. The highest curve (continuous line) corresponds to the final time
step of our simulation τ = 250, when the amplitude saturates. The peak of the spectrum is at
κ∗ ∼ O(0.1). The production of GWs increases significantly between τ = 70 and τ = 80, when
the system becomes non-linear and there is a transfer of power into smaller scales (higher momenta)

from the produced field fluctuations becomes important, reducing the amplitude of
the inflaton and terminating the resonance.

While GW production starts as soon as the first field inhomogeneities are intro-
duced due to the exponential growth of the χ fluctuations, it only becomes significant
when the dynamics are non-linear. Figure 3.3 shows the GW spectrum plotted at dif-
ferent time steps. The amplified momentum range extends over more than two orders
of magnitude, and the spectrum falls off in the UV which shows that it is not domi-
nated by lattice artefacts.

During the linear evolution up to τ = 70, the spectrum peaks at a scale κ∗ ≈ 0.25,
which is of O(0.1) as expected from the considerations in Sect. 3.3.2. During the
subsequent stage of non-linear evolution, from τ = 70 until τ = 100, the field
gradients become much larger, and consequently GWs are being produced with larger
intensity. Due to rescattering [9], power is transferred to higher momentum modes.
The GW production reaches an end at around τ = 150, however the amplitude
is not constant but oscillates slightly as the system enters into a turbulent regime
before equilibrating [12]. To obtain the final GW spectrum, it was therefore necessary
to average over a few oscillations. This ensured that the value of the calculated
gravitational wave energy density �GW is trustworthy.

The oscillations of the total GW energy density, obtained by summing over all
lattice momenta, is shown in Fig. 3.4. The plot shows the evolution of �GW for two
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Fig. 3.4 The total energy density of gravitational waves as a function of rescaled conformal time
τ for two different initial field values χi

values of χi. We can already see that the energy in both cases is very different, and
I will explore this in more detail in the next section. The oscillations in the GW
energy for χi = 3.5 × 10−7 MPl are quite large. However, this value is unusual in the
sense that it leads to an atypically large GW energy, as discussed more below. For
most values of χi, the magnitude of oscillations is of the order of the lower curve in
Fig. 3.4.

3.4 The Impact of χi on Gravitational Wave Production

The final amplitude of the GW spectrum for the values χi = 3.5 × 10−7 MPl (upper,
blue curves) and χi = 3.4 × 10−7 MPl (lower, black curves), chosen for purposes
of illustration, is shown in Fig. 3.5. The spectra were obtained from an average
over several time oscillations, as shown by the error bars. Before investigating the
difference between the two initial values, let me comment on the different types of
curves in Fig. 3.5, corresponding to different lattice volumes.

The dashed lines correspond to the fiducial choice of lattice size and number of
points per dimension (L̃, N ) = (80, 512), whereas the solid lines correspond to
(L̃, N ) = (160, 1024), ensuring the same UV coverage. For L̃ = 160, one can
clearly see a large drop in the IR, which shows that very long wavelength modes are
not excited, as expected from causality.

The runs with (L̃, N ) = (160, 1024) were computationally too expensive for my
purposes: as I want to calculate the GW background on cosmological scales, it was
necessary to perform several hundreds of simulations to get a statistical measure of
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Fig. 3.5 Final spectrum of GWs for χi = 3.4 × 10−7 MPl (upper, blue curves) and χi = 3.5 ×
10−7 MPl (lower, black curves), averaged over time oscillations. The error bars show the variation
due to this averaging. The solid curves are for L̃ = 160, N = 1024, and the dashed curves for
L̃ = 80, N = 512. The area underneath corresponds to the total fractional GW energy density
within a preheating Hubble domain

the anisotropy. However, I chose to run a few simulations with such a large lattice
volume to show that the spectra for N = 512 and N = 1024 are comparable. For the
majority of initial values, the total integrated GW amplitude from both cases agrees
to better than 1 %.

For the upper curves in Fig. 3.5, which have a very high amplitude (which is
actually one of the largest achieved values in the simulation, �GW  1.2 × 10−3,
see Fig. 3.8), the difference is a lot larger, around 15 %. However, we can see that
the higher resolution case (L̃, N ) = (160, 1024) leads to an even larger difference
between the two different initial values χi. Therefore, the effect I want to demonstrate,
which is the strong dependence of GW amplitude on the initial value, would clearly
persist (and even be enhanced) if even better lattice coverage was used.

These considerations show that the fiducial case (L̃, N ) = (80, 512), which
is used systematically in Sect. 3.5, is not dominated by lattice artefacts, and can
therefore be trusted. For lattices with N = 256, independently of the volume L̃ , it
was not possible to capture both the IR and UV behaviour sufficiently well at the
same time. Runs with (L̃, N ) = (> 80, 512) improved the IR coverage but would
require to upgrade to N = 1024 to keep sufficient UV coverage, which, as mentioned
before, was too costly computationally.
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The choice (L̃, N ) = (80, 512) therefore turned out to be the optimal one, repre-
senting a good compromise between a sufficiently large dynamical range, and low
enough memory usage and shorter duration of the runs.

Let me now comment on the difference between the two spectra in Fig. 3.5. While
during the early stages of the simulations the GW spectra evolve in the same way,
the homogeneous field value χ strongly affects the production at the time the system
becomes non-linear. The peaks of the spectra are located at the same scale κ∗  0.2,
as this is simply related to the value of the resonant momentum, determined by the
choice g2/λ = 2. However, the peak GW amplitude is very different (by about a
factor of four), even though the initial values χi are very similar.

As Fig. 3.5 shows a log-linear plot, the area underneath the curves corresponds to
the total fractional GW energy density within a preheating volume, which is clearly
also going to differ significantly between the two cases. This O(1) effect is much
larger than what could be naively expected.

One might worry that the difference in amplitude demonstrated in Fig. 3.5 could be
just a statistical effect related to the initial conditions for the UV modes. However,
I checked that the difference in GW amplitude due to statistical fluctuations (by
choosing different random seeds) is much smaller than the difference in amplitude
between different initial values. When I present the variation of GW energy for a
large range of χi later, the error bars due to the statistical fluctuation are included, see
Fig. 3.8. Clearly, it is very small compared to the actual effect. The final discrepancy in
amplitude of the GW spectra must therefore arise because of the different behaviour
of the fields sourcing the GWs, which is ultimately related to the initial amplitude
χi.

Because the GWs are sourced by field gradients, the homogeneous component
has no effect until the evolution becomes nonlinear. At this point, the energy in the
homogeneous mode is redistributed among other momenta. Different values of χi
will therefore create a different outcome in the spatial distribution of χ.

In Fig. 3.6, I show a time sequence of 2d snapshots of the 3d spatial distribution of
the field χ. Compared to Fig. 3.5, they were obtained for two different initial values
χi = 3.4 × 10−8 MPl (left panels) and χi = 1.0 × 10−8 MPl (right panels), but they
can be used to illustrate the physical reason for the difference in GW amplitude.
The GW energy density varies significantly between the simulations in Fig. 3.6,
�GW = 1.1 × 10−3 and �GW = 5.6 × 10−4.

The snapshots are taken at times during the non-linear evolution of the fields, in
�τ = 2 intervals between τ = 73 and τ = 79, just when the GW production is
strongest. Fig. 3.6 demonstrates very clearly that there is a correlation between the
gradients of χ and the amplitude of the produced GWs: for χi = 3.4 × 10−8 MPl,
the gradients and, consequently the GW amplitude, are higher than for χi = 1.0 ×
10−8 MPl. The physical reason for the sensitive dependence of the gradients of χ on
the initial value χi will be investigated in more detail in Sect. 3.5.3.
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Fig. 3.6 2d snapshots of the 3d distribution of χ at different times of the evolution during preheating,
from τ = 73 to τ = 79, the time when the GWs are being sourced most actively. The left panels
correspond to the case χi = 3.42×10−8 MPl, and the right panels to χi = 1.0×10−8 MPl. The color
coding is fixed during the evolution, though different between the two cases. However, the range of
χ values covered by the axis is the same in both cases, such that different colours describe the same
magnitude of difference in both cases. The correlation between the dynamics of the sources and
the amplitude of the GWs is clearly demonstrated by this sequence of snapshots: the gradients for
χi = 3.42 × 10−8 MPl are larger than for χi = 1.0 × 10−8 MPl, in correspondence with the higher
total amplitude of GWs, �GW = 1.1 × 10−3 and �GW = 5.6 × 10−4

3.5 Anisotropies in the GW Background from Massless
Preheating

I will now present the final result of this chapter: The variation of GW energy from
preheating on cosmological scales. To do this, it will first be necessary to introduce
the mathematical machinery used to analyse the large scale anisotropy in Sect. 3.5.1.
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In 3.5.2, I will quantify the relative anisotropy and show that it is of the order of
1 %. I will finish by describing how the field dynamics affect the gravitational wave
production during massless preheating in Sect. 3.5.3.

3.5.1 Toolkit for Computing Anisotropies

The amount of GW production strongly depends on the value of χi, as I have shown
explicitly in Sect. 3.4 for two values of χi. In the next subsection, I will present
the data from many simulations, each with a different χi amplitude drawn from the
appropriate random distribution. The dependence of �GW on χi turns out to be very
irregular, see Fig. 3.10. We will need to perform a statistical analysis of the data to
extract the anisotropy from the �GW(χi) dependence obtained from the simulations.
Hence, in the following I will provide a mathematical toolkit for such an analysis.

To begin with, let us assume a situation where �GW(χi) depends linearly on χi.
We will not need this to be the case in general (and as I mentioned, the dependence
is actually very irregular), but it will be instructive to study the linear relation as a
starting point. Normalizing the χi variations to the natural scale of the problem, H∗,
we can then write

�GW(χi) = c0 + c1
δχi

H∗
, (3.46)

with δχi ≡ χi − χi, where χi is the mean value over the currently observable
universe. The constants c0, c1 are dimensionless and completely characterise the
function �GW(χi) (under the linear assumption). From Eq. (3.46) one can easily see
that c0 can be identified with the mean amplitude of the GWs over the observable
universe, c0 ≡ �GW . We can then express the relative fluctuations of the GW energy
density as

δ�GW ≡ �GW − �GW

�GW

≡ c1

c0

δχi

H∗
. (3.47)

As these fluctuations are proportional to δχi, like χi they represent a nearly Gaussian
and scale-invariant random field. The power spectrum of δ�GW can then be directly
related to the power spectrum Pχ of χi by

PGW = c2
1

c2
0

Pχ

H2∗
= 1

4π2

c2
1

c2
0

, (3.48)

where we used Eq. (3.26). To measure fluctuations on the celestial sphere, it is better
to express them in terms of spherical harmonics {Ylm}. This makes it possible to
characterise the statistical properties of δ�GW in terms of an angular power spec-
trum, in the same way as one does for the CMB temperature anisotropies. We can
decompose the fluctuations in the GW energy density as
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δ�GW(n̂) =
∞∑

l≥1

+l∑
m=−l

glmYlm(n̂) , (3.49)

where glm = ∫
4π d�Y∗

lm(n̂)δ�GW(n̂) are (complex) coefficients weighting each
angular moment. The angular power spectrum Cl is defined as the ensemble average
of the coefficients,

〈
g∗

lmgl ′m′
〉 ≡ Clδll ′δmm′ , (3.50)

where the Kronecker delta δll ′δmm′ and the dependence of Cl on only l reflects
statistical isotropy. The Cl ’s are given by

Cl ≡ 2π

∫
d cos θPl(cos θ)C(cos θ) , (3.51)

where Pl(cos θ) are the Legendre polynomials, and C(cos θ) is the angular correlation
of the GW fluctuations at different directions in the sky n̂1 and n̂2:

C(cos θ) ≡ 〈δ�GW(n̂1)δ�GW(n̂2)
〉
, (3.52)

with n̂1 · n̂2 ≡ cos θ.
Equivalently, the angular correlation can be expressed as a linear sum in the Cl ’s

weighted as

〈
δ�GW(n̂1)δ�GW(n̂2)

〉 =
∞∑

l≥1

(2l + 1)

4π
Cl Pl(cos θ) . (3.53)

Because of the assumed linear relation between δ�GW and δχi in Eq. (3.47), the
angular power spectrum of the GW energy density fluctuations can be calculated
very easily.

Deriving the angular power spectrum Cl from the linear power spectrum PGW

is a standard exercise which is performed in e.g. [25], where it is used to compute
the temperature power spectrum on large angular scales (which corresponds to the
Sachs-Wolfe plateau). The relation is simply given by

l(l + 1)Cl = π

2
PGW = 1

8π

c2
1

c2
0

. (3.54)

When this calculation is performed for small l for the CMB fluctuations, it demon-
strates that on very large angular scales the power spectrum looks approximately
flat when multiplied by l(l + 1). This reflects the scale invariance of the primordial
power spectrum from inflation, as the largest scales were superhorizon at the time
of recombination and therefore had not evolved much. In our case, GWs decouple
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upon production and do not evolve inside the horizon, and the relation holds on all
angular scales.

From (3.54) we can see that as long as δ�GW is linearly dependent on δχi as
in Eq. (3.46), the coefficients c0 and c1 completely determine the angular power
spectrum. In the case of massless preheating we are considering, and generally in
any other scenario of preheating, the �GW(χi) relationship will not be linear. In [33] it
was discussed how to derive the angular power spectrum under these circumstances,
which motivated the approach I am going to describe.

To describe fluctuations on any angular scale independent of the functional form
of the relation �GW(χi), we need to compute the two-point correlation function of
the GW energy density originating from two points x and y. Due to isotropy, this
correlator can only depend on the separation |x − y|. It can be written as

〈
�GW(x)�GW(y)

〉 ≡
∫

dχxdχy P(χx,χy)�GW(χx)�GW(χy) , (3.55)

where P(χx,χy) is the joint probability distribution for the field values χx = χi(x)

and χy = χi(y) at the points x and y. Since these are Gaussian random fields, we
have

P(χx,χy) = 1

2π
√|G| e− 1

2
�δχT

G−1�δχ , (3.56)

where I defined the vector �δχ ≡ (χx − χi,χy − χi). The 2 × 2 covariant matrix G
and its inverse G−1, with determinant |G|, are given by

G ≡
(

Gx,x Gx,y
Gx,y Gy,y

)
, G−1 ≡ 1

|G|
(

Gy,y −Gx,y
−Gx,y Gx,x

)
,

(3.57)

with Gx,y ≡ 〈δχi(x)δχi(y)〉 the field correlator, and σ2
χ = Gx,x = 〈δχ2〉 the field

variance, which is given by Eq. (3.28). From the scale-invariant power spectrum
(3.26), on sufficiently large scales (ignoring the oscillating factor exp

[−ik · (x − y)
]
)

we can approximate the 2-point function as

Gx,y ≈ H2∗
4π2

[
ln (a0/|x − y|) − ln(a0 H0)

]
= H2∗

4π2 ln
[
(|x − y|H0)

−1
]
, (3.58)

where I integrated from horizon scales a0 H0, with H0 the Hubble rate today, up to
comoving subhorizon scales k = a0/|x − y|.

Scales larger than the Hubble volume are not considered, as we are evaluating
the 2-point function of fluctuations around the mean value χ̄i across the observable
universe. The correlator therefore goes to zero as we approach Hubble scales |x−y| ∼
1/H0, and is only well defined down to scales |x − y| ∼ a0/a∗ H∗ of the order of the
Hubble horizon at the end of inflation, for which the expression in Eq. (3.58) reduces
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Fig. 3.7 The full GW energy density correlator and its linearised version. The two results agree
very well on the largest currently observable scales, i.e. for small Gx,y/σ

2
χ values

to the field variance σ2
χ [which has the same high momentum cutoff k = H∗, see

Eq. (3.28)].
By obtaining the function �GW(χi) from lattice simulations, I computed the GW

energy density correlator (3.55) numerically. This is shown in Fig. 3.7 for χi =
3.42 × 10−7 MPl. Note that the correlator only depends on the distance |x − y|
through the ratio Gx,y/Gx,x = Gx,y/σ

2
χ.

In principle, one could use the numerical solution to compute the angular cor-
relation of the GW energy density between any two directions n̂1, n̂2 in the sky by
evaluating Eq. (3.55) at positions x = Rn̂1 and y = Rn̂2, with R ∼ H−1

0 the distance
to the ‘scattering surface’ at preheating where the GWs were emitted. From there we
could obtain the angular power spectrum Cl by means of Eq. (3.51).

In practice, this procedure can be cumbersome and, more importantly, since
�GW(χi) may be very irregular, it would be difficult to assess the accuracy in the
final amplitude of the Cl ’s. Instead, I will make use of the fact that on large scales
|x − y| � 1/H0, for which the logarithm in Eq. (3.58) is less than unity, the ratio

Gx,y

σ2
χ

� 1

N∗
 0.017 , (3.59)

is very small. As Fig. 3.7 shows, the correlator on these scales is very well approxi-
mated by a linear function. This is because on large scales we average over the small,
irregular fluctuations and only retain the smooth, underlying functional dependence.
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To simplify the analysis and to avoid having to compute the full correlation
function Eq. (3.55), we can therefore perform a linear Taylor expansion of the joint
probability distribution in powers of the field correlator normalized to the variance,
Gx,y/σ

2
χ. This gives

P(χx,χy) ∝ exp

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−
(δχ2

x + δχ2
y) − 2

(
Gx,y

σ2
χ

)
δχxδχy

2σ2
χ

[
1 −

(
Gx,y

σ2
χ

)2
]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.60)

≈ exp

(
− δχ2

x

2σ2
χ

)
exp

(
− δχ2

y

2σ2
χ

)⎡
⎣1 +

(
Gx,y

σ2
χ

)
δχxδχy

σ2
χ

+ O
(

Gx,y

σ2
χ

)2
⎤
⎦ .

Substituting this expansion into Eq. (3.55), we then obtain

〈
�GW(x)�GW(y)

〉  〈�GW(χi)〉2 +
〈
δχi�GW(χi)

〉2
σ2

χ

(
Gx,y

σ2
χ

)
+ O

(
Gx,y

σ2
χ

)2

,

(3.61)

where the expectation values on the right hand side are given by

〈�GW 〉 ≡
∫

dχi P(χi)�GW(χi) , (3.62)

〈
δχi�GW(χi)

〉 ≡
∫

dχi P(χi)δχi�GW(χi) , (3.63)

which need to be computed using the single-point probability distribution

P(χi) = 1√
2π σχ

exp

{
−1

2

(χi − χi)
2

σ2
χ

}
. (3.64)

Re-arranging the terms on the right-hand side of Eq. (3.61), we can write the equation
as

〈
�GW (x)�GW (y)

〉 
〈(

〈�GW 〉 +
〈
δχi�GW (χi)

〉
σ2

χ

δχi(x)

)(
〈�GW 〉 +

〈
δχi�GW (χi)

〉
σ2

χ

δχi(y)

)〉
.

(3.65)

This is precisely the form of Eq. (3.46), which was derived for a linear relationship
between the fluctuations in GW amplitude and those in the field χ. On large scales, the
linear Taylor expansion is a very good approximation to the full function, and hence
the expression obtained for the angular power spectrum derived for the linear relation,
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Eq. (3.54), should be valid for any functional dependence �GW(χ). Identifying the
coefficients as

c0 = 〈�GW 〉 , c1 = H∗
σ2

χ

〈
δχi�GW(χi)

〉
, (3.66)

we can use Eq. (3.54) directly to compute the angular power spectrum of the relative
GW energy density fluctuations:

l(l + 1)Cl = H2∗
8π

〈δχi�GW(χi)〉2

σ4
χ〈�GW 〉2 . (3.67)

This equation is one of the main results of this chapter. It is a master formula for the
angular power spectrum of the energy density fluctuations of any GW background
of cosmological origin, whose anisotropies originated from the modulation due to
an inflationary spectator field. It is valid on large angular scales for which the Taylor
expansion holds, which in any case dominate over small scales as the spectrum
decays as Cl ∼ 1/ l2. If detectable, the effect would therefore probably be easiest to
measure on the level of the quadrupole (l = 2), as the dipole might be dominated by
the motion of our galaxy.

We are now able to calculate the typical amplitude of fluctuations ∼ √
l(l + 1)Cl

for any value of χi, by simply evaluating the expectation values in Eq. (3.67) from
the results of a lattice simulation numerically.

3.5.2 Anisotropic Gravitational Wave Background

According to the considerations in Sect. 3.2.2, I chose a mean value χi = 3.42 ×
10−7 MPl across our observable universe, and a variance σ2

χ = 3.3 × 10−15 M2
Pl

within our current Hubble volume, to describe the range of initial χi values the GW
background from preheating is likely to have originated from.

Following the Monte Carlo method [34], I randomly chose N = 500 initial
values χ

j
i , j ∈ {1, . . . ,N } from the Gaussian distribution (3.64). To be exact, I

randomly picked 250 values χ
j
i and chose the remaining half to be the symmetric

value χ
j ′
i = 2χi−χ

j
i . This ensures that the mean of the distribution will be exactly the

required χi = 3.42×10−7 MPl, which reduces the error when computing expectation
values. This is necessary as there is only a finite sample of values so we would never
be able to obtain a perfect Gaussian distribution.

The Monte Carlo method has the advantage of making it easier to sample the
highly chaotic variation of the GW energy density �GW(χ

j
i ) without needing to use

a very small step size in χi, as well as simplifying the computation of the expectation
values in Eq. (3.67).
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Fig. 3.8 �GW for our sample of initial field values χi. The squares show the Gaussian ensemble
used for the analysis. The red error bars show the standard deviation between different seed values
for the same χi. The dotted line shows the GW energy density for a wider range of χi for illustration
purposes

For each χ
j
i , I performed one simulation run and evaluated the GW energy density

�GW(χ
j
i ), see Fig. 3.8. The black squares show the 500 initial values picked during

the Monte Carlo simulation, while the blue dotted line includes some smaller values
of χi to show the dependence over a larger range.

As the plot illustrates, �GW is highly dependent on χi, varying by as much as a
factor of five between nearby values, although there are some ranges of χi where the
dependence is much smoother. This irregular behaviour is in line with the chaotic
field dynamics observed when studying curvature perturbations [27, 28, 35], but the
amplitude of fluctuations is unexpectedly high.

The figure also shows the variation of �GW due to different random realisations
of the field fluctuations for two initial χi, illustrated by the tiny red error bars. The
magnitude of the error in these two cases is representative of the statistical error
in the GW energy density for any value of χi. It is clearly much smaller than the
variation of �GW between different values of χi, confirming that the effect is not
merely statistical fluctuation.

As I used a Monte Carlo method to choose the range of χ
j
i , the expectation values

in Eq. (3.67) can simply be approximated by averages over the sample,

〈�GW 〉 ≈ 1

N
∑

j

�GW(χ
j
i ),
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〈δχ�GW 〉 ≈ 1

N
∑

j

(χ
j
i − χi)�GW(χ

j
i ). (3.68)

Averaging over the 500 data points in Fig. 3.8 which correspond to χi = 3.42 ×
10−7 MPl, I obtained 〈�GW 〉 = (5.45 ± 0.13) × 10−4 and 〈δχ�GW 〉 = (3.0 ± 1.2) ×
10−12 MPl. Substituting these into Eq. (3.67) gives the amplitude of the angular power
spectrum of the relative fluctuations δ�GW = (�GW/�GW − 1) as

√
l(l + 1)Cl = 0.017 ± 0.003, (3.69)

where the errors are estimated by the bootstrap method [36]. This method provides
a useful way of measuring the uncertainty in expectation values calculated from
a single data set, by mimicking the process of obtaining new data from the same
probability distribution.

Assuming there are N data points in the original ensemble, for each bootstrap
sample N of these points are randomly selected, without avoiding double counting.
The expectation value is then calculated based on the current set of data points, and
the variance of many such bootstrap samples gives an estimate of the error in the
expectation value.

In this case, I used 1000 bootstrap samples of 250 randomly chosen symmetric

pairs χ
j ′
i ,χ j

i (to make sure that each bootstrap sample has the correct mean χi =
3.42 × 10−7 MPl) to calculate (3.68), and the variance of these samples gave an error
estimate of magnitude 0.003 for the amplitude of relative fluctuations.

The set of initial χi was generated by the Python random number generator,
using a Gaussian probability distribution with the chosen mean and variance. For
unknown reasons, the numerical value of the variance of the data set turned out
to be σ2 = 4.3 × 10−15 M2

Pl, which is significantly higher than the desired value
σ2

χ = 3.3 × 10−15 M2
Pl. To rectify this, I reweighted the data to resemble a sample

with a variance closer to the required one.
Reweighting [37] makes it possible to use Monte Carlo data belonging to a spe-

cific probability distribution to calculate expectation values for other, similar distri-
butions. Assume values x were drawn from a probability distribution p(x) and you
need to calculate the expectation value of an observable O from a slightly different
probability distribution function p′(x),

〈O〉′ =
∫

dxp′(x)O(x)∫
dxp′(x)

. (3.70)

We can re-express this in terms of the old probability distribution p(x) as

〈O〉′ =
∫

dxp(x)
p′(x)
p(x)

O(x)∫
dxp(x)

p′(x)
p(x)

= 〈r(x)O(x)〉
〈r(x)〉 ≡

∑
j r(x j )O(x j )∑

j r(x j )
, (3.71)
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where in the last step I used the fact that expectation values are simply sums for a
Monte Carlo data set, and where r(x) = p′(x)

p(x)
is the reweighting factor. Therefore,

to calculate expectation values from a slightly different probability distribution to
the original one, we can simply reweight each observable by r(x j ). As long as the
probability distributions are close to each other, i.e. 1

N

∑
j r(x j ) ≈ 1, this method

can be trusted.
The numerical data presented in Fig. 3.8 suggests a Gaussian probability distribu-

tion with mean χi and variance σ2. This needs to be reweighted to obtain the correct
variance σ2

χ = 3.3 × 10−15 M2
Pl, so we have to evaluate the expectation value (3.71)

for the probability distribution

p′(χi) = 1√
2πσ2

χ

exp

(
− (χi − χi)

2

2σ2
χ

)
. (3.72)

Note that the reweighting takes place for the whole sample (when calculating the
mean expectation value) and for each bootstrap sample (when estimating the errors).

By employing the method of reweighting, we can also use the Monte Carlo data
to calculate expectation values around different nearby mean values χ′

i (which cor-
responds to a χ background with a slightly different average across our observable
universe). These values will have a Gaussian probability distribution

p′(χi) = 1√
2πσ2

χ

exp

(
− (χi − χ′

i)
2

2σ2
χ

)
, (3.73)

where χ′
i is a different mean value to the one chosen in the simulations. The total

reweight factor is therefore

r(χ
j
i ) = σ

σχ
exp

[
− (χ

j
i − χ′

i)
2

2σ2
χ

+ (χ
j
i − χi)

2

2σ2

]
. (3.74)

We can use this procedure to calculate Cl from the expectation values in (3.68),
evaluated around the new probability distribution by use of Eq. (3.71). The solid
line in Fig. 3.9 shows the relative amplitude of angular fluctuations for different
mean values χi across our observable universe, where the red dot corresponds to our
original choice χi = 3.42 × 10−7 MPl. For the reweighted mean values, the error
bars in the fluctuations have been obtained by the bootstrap method, similarly to the
original value.

One point to note about the plot is that the reweighted data sets have an uncertainty
in the value of χ′

i, because once reweighted, the actual mean of each bootstrap sample
(all of which have a mean χi = 3.42×10−7 MPl before reweighting, due to the choice
of symmetric pairs) is slightly different to χ′

i, as we only have a finite number of
data points. The uncertainty in χ′

i becomes larger far away from the original mean,
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Fig. 3.9 The relative amplitude of the multipoles of the GW background as a function of the average
field value χi, calculated from Eq. (3.67). The red dot shows the amplitude for original mean value
χi = 3.42 × 10−7 MPl, and the curve shows values obtained by reweighting the same data

where we do not have enough coverage to simulate a probability distribution with
the chosen new mean. This is shown by the horizontal error bars in Fig. 3.9.

Due to this uncertainty, when computing expectation values as in Eq. (3.68), the
value of the chosen mean χ′

i was actually replaced by the reweighted value, which
ensures that the Monte Carlo averages are performed over the actual mean of the
sample. Again, this was done for the whole sample and each bootstrap sample sepa-
rately. Although I am taking this subtlety into account when calculating the angular
power spectrum, ignoring it (and simply using the chosen means χ′

i in all calcula-
tions) does not make a substantial difference to the final result, as the shift in mean
value due to reweighting is small.

For most of the range of χi presented in Fig. 3.9, the amplitude of the fluctuations
is above the one percent level, even within error bars. This is much higher than
the relative amplitude of fluctuations in the CMB which is of order 10−5. If the
fluctuations in the GW background had been tiny, we would never be able to detect
them. However, it is reasonable to hope that variations of order 1 % could be measured
by future GW detectors, although it is very hard to make any statement about their
sensitivity to anisotropies at the current stage.

Unfortunately, as mentioned at the beginning of this chapter, even before consid-
ering anisotropies, GWs from preheating are not within the sensitivity range of the
current main detectors, see Fig. 3.1. Let me demonstrate this for the results obtained
from my simulations. Using Eq. (3.22) and the typical dimensionless peak GW fre-
quency κ = 0.2 as shown in Fig. 3.5, we can obtain the frequency today:



124 3 Anisotropic Gravitational Wave Background from Massless Preheating

f ≈ 0.2 × (9 · 10−14)1/4 × 7 · 1010Hz ≈ 7.7 MHz . (3.75)

From Fig. 3.8, we can see that the average energy density is approximately �GW =
0.00075, and hence its value today is

h2�0
GW

≈ 6.8 · 10−9 . (3.76)

This energy density corresponds to the upper end of values in Fig. 3.1. This shows
that the value g2/λ = 2 leads to the production of a very large number of GWs,
which likely is related to the amplification of long wavelength modes which transfer
a lot of power into the field.

3.5.3 Field Dynamics

As described in Sect. 3.2.2, the mean value of χ across our observable universe, χi,
is a free parameter dependent on the total number of e-folds of inflation. To have
a complete picture of the anisotropies in the GW background, one should therefore
analyse a wider range of χi values than the one considered in the Monte Carlo
simulation.

In Fig. 3.8, I have already included the GW energy density for smaller values of χi,
and this data is reproduced in Fig. 3.10 on a logarithmic scale for illustrative purposes.
As it is reasonable to assume inflation lasted some number of e-folds longer than
the minimal required number of N∗ = 60, much smaller values of χi than presented
in Fig. 3.10 are very unlikely, as even with Ntot = 70 we would have at least an
expected value of order χi ∼ 3 × 10−8 MPl, see Eq. (3.30).

On the other hand, there could definitely be larger values of χi in our observable
universe if inflation lasted for a very long time. Due to limitations in computing
power (each run took about six hours on 64 processors, and I had to perform several
hundreds of them), I chose not to perform any simulations for larger values of χi.

The data presented in Fig. 3.10 reveals some non-trivial structure. In particular, the
GW energy density has an approximate log-periodic dependence on χi, with regions
of high, quickly varying GW amplitude alternating with regions of low amplitude.
To make this more apparent, I have also included a curve that shows the convolution
of the data with a Gaussian window function,

�̃GW(log χ) = 1√
2πσ2

w

∫
dδ e−δ2/2σ2

w�GW(log χ + δ) , (3.77)

where σ2
w = 0.05 is the spread of the window function. A log-periodic structure

in the field dynamics was predicted by [35] in the context of studying curvature
perturbations from massless preheating, and I will comment on it again at the end of
this section.
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Fig. 3.10 �GW plotted with logarithmic χi axis. The blue dot-dashed curve corresponds to the
convolution of the data with a Gaussian window function to make the periodic structure in log χi
more apparent

First, let me further elucidate the physical origin of the sensitive dependence of the
GW amplitude on χi, by studying the relationship between GW production and field
dynamics. As the source term for tensor perturbations is given by the field gradients,
four powers of which will appear in the equation for the GW power spectrum (3.18),
it is natural to ask which of the scalar fields is primarily responsible for the production
of GWs.

In Fig. 3.11 I have plotted the total power spectrum of GWs, as well as the power
spectrum obtained from using only φ or χ as a source of GWs (the total amplitude
will also contain cross terms between the fields). The plot shows that the GWs are
sourced primarily by the gradients of the χ field, which is not surprising, as the
inflaton fluctuations do not get amplified very strongly as we saw in Fig. 3.2. We can
therefore focus on the dynamics of χ in order to understand the physical origin of
the variation of the GW energy density.

In Ref. [35] it was observed that the evolution of the system during massless
preheating strongly depends on the relative phase of the homogeneous modes φ(t)
and χ(t) at the time the field dynamics become non-linear (i.e. when χ becomes
sufficiently large).

In particular, in some cases χ(t) acquires a very large amplitude compared to
the inflaton, leading to a spiky contribution to the curvature. Assume the inflaton
oscillates with period T during the linear stage. Initial χ configurations related by

χ′
i

χi
= eμnT , (3.78)
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Fig. 3.11 The GW amplitude from two different χi sourced by only φ, χ and both fields respectively

where n is an integer, will then evolve similarly, as the inflaton will have the same
phase at the time the system becomes non-linear (remember χ(t) ∝ eμtχi). In fact,
if there were no inhomogeneous modes at all, the behaviour of the fields would be
exactly the same for all χ′

i,χi related as in Eq. (3.78), as in this case only the phase
information matters.

As at the onset of non-linearities the inhomogeneous modes are still small, we
expect the field behaviour (and therefore the value of physical observables that depend
on it) to repeat periodically in the space of initial values χi. This was indeed observed
for curvature perturbations in [35]. I have found the same effect, but in the GW ampli-
tude: Regions of high GW amplitude repeat log-periodically, as shown in Fig. 3.10.

To quantify how the GW production and the dynamics of χ are related, I studied
how the maximum value the homogeneous field χ reaches during its evolution, χmax,
correlates with the amplitude of the final GW background. Indeed, χmax varies con-
siderably between different χi, indicating that the field dynamics proceed differently
depending on the initial value.

Obviously the GWs are not sourced by the homogeneous field itself, but rather by
its inhomogeneous modes. However, the latter are directly linked to the zero mode
due to the transfer of energy between them during the non-linear stage, and therefore
the correlation between χmax and �GW is meaningful. In Fig. 3.12, χmax is plotted
against the total amount of GW energy, for the same simulations as in Fig. 3.10.

For small χmax < 1MPl, we can see a clear correlation between the field dynamics
and GW production: the more energy is deposited into the χ field, the more GWs
are being produced. This agrees with the findings from Fig. 3.11, showing that χ is
responsible for the shape and amplitude of the GW spectra.
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Fig. 3.12 The correlation between the maximum amplitude of the homogeneous part of χ, χmax,
and the total GW energy in the simulation

For high χmax � 1.2MPl, the correlation seems to turn around, and less GW are
being produced, although due to the lack of data in this high χmax region, it is difficult
to make a proper quantitative statement. Using a smaller lattice, L̃ = 25, I was able
to find values of χi which led to a very high field value χmax � 5MPl, and for these
the GW amplitude was highly suppressed.

A potential reason for the suppression might be that for low enough χmax, the
homogeneous χ(t) field oscillates fast enough to transfer energy to the inhomoge-
neous modes during the time of GW production, thus sourcing more GWs when
more energy can be deposited. For very large χmax, however, χ(t) only does very
few oscillations, and most of the energy is stored in the homogeneous mode, thus
reducing the field gradients and correspondingly the amount of GW production.

The initial values that lead to a very large amplitude of χmax correspond exactly to
the field behaviour that correlated with non-Gaussian curvature spikes in [35]. This
suggests that a spike in the curvature is anti-correlated with the energy of gravitational
waves.

However, I was only able to obtain such high values of χmax for very small lattices
L̃ = 25, which do not accurately capture the peak of the GW spectrum. The reason
these scenarios occur very rarely for larger lattices is that the dynamics leading to
spikes are extremely sensitive to tiny variations in initial value, which are amplified
if we include longer wavelength modes. To be able to study these particular values,
a more accurate numerical method than the one used here is needed.

Therefore, no clear statement on the correlation between GW anisotropies and
non-Gaussian features in the CMB can be made at this point. However, note that if
spikes and GWs are actually anti-correlated, this effect would not be observable: The
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spikes only appear on very small angular scales, and therefore a suppression of the
GW amplitude across such a region would be completely washed out by the large
scale variation I described in the last section.

3.6 Conclusions and Outlook

Gravitational waves from preheating could provide an important tool to constrain the
coupling of the inflaton to other fields and its potential in the future. I have shown
that for massless preheating with a light scalar field, you would obtain an anisotropic
background of GWs with relative fluctuations of the order of 1 %.

The anisotropy is a result of two separate effects: The lightness of χ and the
amplification of long wavelength modes. The fact that χ is a light field is crucial for
the development of anisotropy. Only if long wavelength modes have been amplified
by inflation, will the initial value vary between different preheating volumes and
therefore modulate the dynamics in different parts of the sky.

The second criterion ensures that the homogeneous, k = 0 mode is amplified by
parametric resonance, and therefore the initial value χi will have a strong impact on
the non-linear dynamics and the production of GWs.

I checked that for coupling constants g2/λ for which k = 0 is not amplified
strongly, e.g. g2/λ = 3, 6, no effect was observed. This is because in these models,
the high momentum fluctuations end up dominating over the homogeneous field
evolution. However, this does not mean that we can only hope to observe an effect
in very few, fine-tuned cases: In more general models of preheating, which contain
a mass term and therefore a relevant length scale, the unstable momentum bands
change with time, and typically the k = 0 mode is amplified for at least part of the
resonance.

The strength of the anisotropy we observed clearly depends on the couplings of
the model. Quantifying the anisotropy for different preheating scenarios with a light
scalar field would give us new constraints on inflationary models, if we are able to
observe the GW background. Primordial gravitational waves could therefore act as
important probes of the early universe, alongside CMB measurements.

Although direct detection might still be a long way off, the study of CMB polariza-
tion demonstrates the constraining power of tensor fluctuations: If the result r ≈ 0.2
from BICEP2 [22] is confirmed, it would indicate that inflation indeed happened at
a very high energy (GUT) scale, and therefore simple, chaotic inflationary models
with monomial potentials become more viable again. It is therefore very important
to study the preheating dynamics in these scenarios.

An obvious extension to the work presented in this chapter is to consider the Higgs
field as the light scalar and couple it directly to the inflaton. The existence of the
Higgs has been confirmed by the LHC last year [38], with a mass m H ≈ 126GeV.
The Higgs is a complex SU(2) doublet, H = (h+, h0), with a potential term
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V (H) = λ

(
H† H − v2

2

)2

, (3.79)

where v = 246 GeV the minimum, giving λ = 0.13 at tree level.
The Higgs potential depends sensitively on the running of the Higgs self coupling

λ(μ) with energy scale μ. The measured value of the Higgs mass suggests that at at
high energies the potential turns around, and λ becomes negative as we approach the
Planck scale [39, 40], implying that the electroweak vacuum is metastable and there
is actually a deeper vacuum at higher field values. The fact that the Higgs potential
does not blow up also means that the Higgs will be a light field even at high energy
scales.

Stability of the EW vacuum (which requires λ > 0 all the way up to the Planck
scale) is still a possibility, however, if the value of the top mass (which has the
strongest influence on the running of the self-coupling) is a few sigma away from its
central value [40].

This model is therefore particularly interesting to consider, as we can take the
coupling λ to be a small, positive free parameter and investigate how it affects the
GW production. At high energies much larger than v, the Higgs potential (3.79)
reduces to a quartic self-interaction term. Assuming a quartic inflaton potential and a
quadratic coupling to the Higgs just as for the scalar field χ, this amounts to studying
a very similar situation as before, but with a different, characteristic anisotropic
background depending on the parameters.

This simple model ignores the coupling of the Higgs to standard model particles,
whose impact on GW production was studied in [41]. For a full picture of preheating
with the Higgs field, all of the couplings should be included and their impact on the
GW anisotropy quantified.
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Chapter 4
Concluding Remarks

Lack of comfort means we are on the threshold of new insights.
—Lawrence M. Krauss

In this thesis, I have demonstrated that gravitational waves can be used as powerful
probes of the early universe. I focussed on two separate topics, tensor perturbations
from inflation within a quantum gravity formalism, and gravitational waves from
preheating in the presence of a light scalar field.

Chapter2 showed that using the Ashtekar variables in Cosmology, which are an
alternative description of gravitational degrees of freedom, lead to a chiral power
spectrum of tensor perturbations. This would have an effect on the TB correlator,
making it non-zero and potentially measurable, depending on the strength of the
parity violation. Although the BICEP2 collaboration has recently detected B-modes
[1] of potentially primordial origin, there is not yet sufficient data to explore the TB
correlator in detail. To do this, a full sky analysis is needed, which would enable us
to constrain the possible chirality of gravity.

If the fairly large value of r = 0.2+0.07
−0.05 seen by BICEP2 is confirmed by other

experiments, the model of massless preheating studied in Chap.3 has become more
viable again. Naturally, this value of r will probably change as more data becomes
available, but the observation has undoubtedly given a boost to the simpler mod-
els where inflation happens at high energy scales. I have shown that during mass-
less preheating, a light scalar field with superhorizon fluctuations would result in
an anisotropic GW background today. Although we cannot currently measure this
background, in the future such aniosotropies might provide a vital clue as to how the
preheating process occurred, and give further constraints on inflationary models.

The study of B-mode polarization of the CMB marks the beginning of our explo-
ration of primordial gravitational wave backgrounds. Current and future B-mode
experiments [1–3] should be able to enhance our understanding of these tensor per-
turbations, and hopefully one day we might also be able to detect cosmological
gravitational wave backgrounds directly. Additionally, detectors like LIGO should
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be able to measure gravitational waves emitted by astrophysical sources in the next
few years, which would provide us with fascinating new insights into the world of
Astrophysics [4].

Gravitational waves were first predicted by Einstein in 1916, and since then much
effort has been invested in understanding their production in the universe and their
significance for Astrophysics and Cosmology. Now, nearly a hundred years later, we
can finally begin to properly explore these ripples in spacetime.

References

1. BICEP2 Collaboration Collaboration, P.A.R. Ade et al., BICEP2 I: detection of B-mode polar-
ization at degree angular scales, http://xxx.lanl.gov/abs/1403.3985

2. J. Errard, The new generation CMB B-mode polarization experiment: POLARBEAR, http://
xxx.lanl.gov/abs/1011.0763

3. B. Crill, P. Ade, E. Battistelli, S. Benton, R. Bihary, et al., SPIDER: a balloon-borne large-scale
CMB polarimeter, http://xxx.lanl.gov/abs/0807.1548

4. B. Sathyaprakash, B. Schutz, Physics, astrophysics and cosmology with gravitational waves.
Living Rev. Rel. 12 (2009) 2, http://xxx.lanl.gov/abs/0903.0338

http://xxx.lanl.gov/abs/1403.3985
http://xxx.lanl.gov/abs/1011.0763
http://xxx.lanl.gov/abs/1011.0763
http://xxx.lanl.gov/abs/0807.1548
http://xxx.lanl.gov/abs/0903.0338


Appendix

A.1 Cosmological Perturbation Theory

In this appendix I want to describe the basic features of cosmological perturbation
theory. In particular, I will discuss the SVT decomposition into scalars, vectors and
tensors and the importance of choosing a gauge.

Whenwe define ametric inGR,we need to choose a threading, which corresponds
to timelike lines through spacetime (fixed x), and a slicing, corresponding to spacelike
hypersurfaces (fixed t) [1]. For an FRW background, Eq. (1.12), there exists a pre-
ferred coordinate system, with a threading according to comoving observers (which
measure zero momentum density) and an orthogonal slicing of homogeneous hyper-
surfaces [2]. However, as soon as we define perturbations, there is no obvious choice
of coordinates, and you could even pick a threading and slicing such that it looks like
the spacetime is unperturbed [3]. Selecting a specific coordinate system is referred
to as picking a gauge [1], and the choice of gauge strongly depends on the problem
you want to solve.

The most general form of a perturbed FRW metric can be written as [2]

ds2 = −(1 + 2�)dt2 + 2a(t)Bi dtdxi + a2(t)
[
(1 − 2�)δi j + 2Ei j

]
dxi dx j .

(A.1)

� is called the lapse (which relates coordinate andproper time [1]), Bi the shift (which
measures the relative velocity between the threading and worldlines orthogonal to
the slicing [1]), � the spatial curvature perturbation and Ei j (which is traceless) the
shear.

The energy-momentum tensor, Eq. (1.6), also needs to be perturbed. The energy
density ρ and pressure P determine the background FRW metric, so they need to
be supplemented by perturbations δρ, δP (which depend on space and time). As we
are not considering a perfect fluid anymore, we also need a momentum density pi

and a traceless and symmetric anisotropic stress tensor �i j (which are both zero to
zeroth order). For details on the exact form of the perturbed stress energy tensor see
e.g. appendix A of [2].
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A.1.1 SVT Decomposition

To study the relationship between the metric and matter perturbations, we need to
expand Einstein’s equation (1.1) to first order. This will give us evolution and con-
straint equations [1].Note that perturbation components that transformas vectors (Bi ,
pi ) can be further decomposed into the divergence of a scalar and a divergenceless
vector, and similarly objects transforming as tensors (Ei j , �i j ) can be decomposed
into scalar, vector and tensor parts [2].

Due to the symmetry of the FRW background, scalar, vector and tensor perturba-
tions decouple and all evolve independently (having different symmetry properties
under rotations) [1]. This is called the SVT decomposition and greatly simplifies the
calculation. We will focus on scalar and tensor perturbations as the vector compo-
nents are not sourced by inflation [2] and furthermore decaywith the expansion of the
universe [4]. We therefore care about four scalar perturbations �, B, E, �, sourced
by the scalar stress energy perturbations δρ, δP, p,�, and a transverse and traceless
tensor perturbation, which we will call hTT

i j , solely sourced by the transverse trace-

less anisotropic stress, �TT
i j . Tensors therefore only couple to matter distributions

that have a non-zero anisotropic stress [4]. This is not the case for the inflaton, so
they are not directly sourced by inflation.

A.1.2 Gauge Selection

Due to the diffeomorphism invariance of GR, we can always make a gauge trans-
formation xμ → x̃μ = xμ + ξμ, i.e. a first order change in coordinates, which
leaves the form of the metric invariant [5]. To find out how such a transformation
affects different types of perturbation, we need to invoke the tensor transformation
law (1.2). Scalars do not transform, but they do shift their position, so the new set
of metric perturbations �̃, B̃, Ẽ, �̃ will be linear combinations of the old ones. The
perturbations in the stress energy tensor also transform. We find that there are two
redundant degrees of freedom in the metric perturbations that can be eliminated by
appropriately picking two scalars ξ0, ξ, j that determine the gauge transformation [4].
The tensor perturbation hTT

i j , being transverse (hTT
i j,i = 0) and traceless (hi

i
TT = 0),

is gauge invariant [4].
Selecting an appropriate gauge is particularly important for the scalar perturba-

tions, which are the source of matter density perturbations. In this case, it is useful
to define gauge invariant quantities, either just in terms of metric perturbations, or
for combinations of both stress energy and metric components [2], like for example
the curvature perturbation R in Eq. (1.68). This makes it easy to relate quantities
defined in different gauges. As scalar perturbations are not the main focus of this
thesis, I refer the reader to [1, 2, 4] for details on popular gauges in Cosmology.

http://dx.doi.org/10.1007/978-3-319-17449-5_1
http://dx.doi.org/10.1007/978-3-319-17449-5_1
http://dx.doi.org/10.1007/978-3-319-17449-5_1


Appendix 137

A.2 Hamiltonian Constrained Systems

Constrained Hamiltonian systems and their quantization have been extensively stud-
ied by Dirac [6, 7]. All gauge theories (like, for example, GR, where the local
symmetry transformations that leave the theory invariant are the diffeomorphisms
[8]) need to be supplemented by constraints in their Hamiltonian formulation [9],
which take care of the fact that the theory should not change under symmetry trans-
formations. In this appendix I will summarise the most important aspects of Dirac’s
procedure, in particular focussing on the meaning of primary, secondary, first and
second class constraints.

First, let us recall the basics of Hamiltonian mechanics [10]: Starting from a
Lagrangian L(q, q̇), we can derive canonical momenta p = ∂L

∂q̇ and define the
Hamiltonian by performing a Legendre transform,

H(p, q) = q̇ p − L . (A.2)

Hamilton’s equations

q̇ = ∂ H

∂p
, ṗ = −∂ H

∂q
, (A.3)

are equivalent to the Euler-Lagrange equations and can be expressed in terms of
Poisson brackets (which become commutation relations upon quantization). The
Poisson bracket is defined as

{ f, g} = ∂ f

∂q

∂g

∂p
− ∂ f

∂p

∂g

∂q
, (A.4)

and Eq. (A.3) can therefore be written as

q̇ = {q, H} , ṗ = {p, H} . (A.5)

The time evolution of any function f (q, p) of the canonical variables can similarly
be expressed as the Poisson bracket with the Hamiltonian,

ḟ (q, p) = { f, H} . (A.6)

Note that the Hamiltonian is supposed to be expressed only in terms of q and p which
relies upon the fact that the Lagrangian is non-singular, such that the relation p = ∂L

∂q̇
can be inverted to find the velocity q̇ in terms of the canonical momentum p. This is
not possible in general and the reasonwhy the standard Hamiltonian procedure needs
to be generalised. The Lagrangian is always singular in the case of gauge theories [9].

If the Lagrangian cannot be inverted, it means that that the phase space variables
are related, i.e. they satisfy a constraint [7]

φ(q, p) ≈ 0 . (A.7)
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The use of the approximately equal ≈ signals that this is a weak equality, i.e. one
that is only satisfied after the equations of motion have been imposed. In particular,
we can only impose this condition after Poisson brackets have been evaluated [7].
There may be several such conditions φm(q, p) ≈ 0 on the phase space variables
and they are known as the primary constraints.

We can take care of these constraints by extending the Hamiltonian to

HT = H + umφm , (A.8)

where um are arbitrary coefficients (Lagrange multipliers) that do not depend on
(q, p). Clearly HT ≈ H , so the extended Hamiltonian reduces to the ordinary
Hamiltonian when the equations of motion and therefore the constraints are satisfied.
Now, we can easily incorporate the constraints by deriving the equations of motion
for any function f (q, p) using the generalised total Hamiltonian HT in Eq. (A.6).

We need to satisfy φ̇m ≈ 0 to ensure that the constraints are conserved. Eq. (A.6)
gives us consistency relations for each of the primary constraints. Using theHamilton
equations (A.3) to solve (A.6) forφm leads to three separate cases [7]: For somevalues
of m, the consistency condition is identically satisfied, giving no new conditions. In
other cases, we might obtain further, secondary constraints φk(q, p) ≈ 0, which also
need to be conserved, i.e. plugged into (A.6). This means that overall we actually
have to satisfy φ̇ j ≈ 0, j = 1...M + K where there are M primary and K secondary
constraints. Lastly, we might obtain conditions that enable us to uniquely determine
some of the coefficients um , while others remain undetermined. As I will describe
now, the latter play an important role for gauge theories.

The primary constraints φ̃a (which in general are a linear combination of the
original primary constraints φm) that correspond to the undetermined Lagrange mul-
tipliers ua are first class [7]. A variable R is first class if it satisfies the condition

{φ j , R} ≈ 0 ∀ j , (A.9)

i.e. the Poisson bracket with all primary and secondary constraints is zero. It is
straightforward to show that the total Hamiltonian is first class, and so are the φ̃a [7].
The first class primary constraints are very important as they are generating functions
of infinitesimal transformations that preserve the physical state. In other worlds, they
generate gauge transformations.

Heuristically, the reason the φ̃a generate gauge transformations is that the undeter-
mined, arbitrary Lagrangemultipliers ua reflect the fact that the phase space variables
(q, p) cannot be determined uniquely from an initial state. However, they need to
correspond to the same physical system regardless of the value of ua , in the same
way that an arbitrary gauge transformation needs to leave the theory invariant [7].

Constraints not satisfying Eq. (A.9) are called second class. They correspond to
redundant physical degrees of freedom, and can be taken care of by using the Dirac
bracket [6] instead of the Poisson bracket: it gives the same time evolution as before,
but makes it possible to set the second class constraints to zero [7].
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In canonical GR, all the constraints are first class and satisfy the symmetries of
general covariance: At each point in space there is a 3d diffeomorphism constraint,
corresponding to diffeomorphisms on spacelike slices, and the Hamiltonian con-
straint, corresponding to time translations [11]. Hence, there seems to be no mean-
ingful way to describe the evolution of a system with time in the context of canonical
GR. In the Ashtekar formalism, the formulation in terms of a complex spin connec-
tion means there is also an SU(2) gauge group, which leads to an additional Gauss
constraint [12].

Note that in the quantum theory, the constraints are not imposed on the operators,
but as conditions on the Hilbert space: physical states need to be annihilated by
the constraints [12]. This is what gives rise to the Wheeler-DeWitt equation [13]
in canonical quantum gravity, H|�〉 = 0, where H is the quantum Hamiltonian
constraint.
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