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Supervisor’s Foreword

Since the discovery of the anisotropy of the cosmic microwave background
(CMB) by the COBE satellite, maps of the CMB have played a central role in
cosmology. The statistics of these maps have allowed us to understand the nature
of the primordial seeds of structure and to constrain the contents of the Universe to
great precision.

Most focus has naturally been on the power spectra, or two-point moments,
of the temperature and polarization maps. But there has been growing awareness
that higher order statistics of the maps might provide unique information about the
mechanism by which the primordial seeds were created in the early Universe. With
the WMAP and Planck data, the non-Gaussianity of the maps has become an
essential means of excluding or constraining potential models of inflation.

One of the advantages of CMB data is that it is relatively easy to interpret. This
is because when the anisotropies were generated, 400,000 years after the big bang,
the temperature fluctuations were small, meaning that a linear approximation to
their evolution works extraordinarily well. In this regime, any non-Gaussianity seen
in the CMB maps directly reflects that of the primordial seeds; the subsequent
evolution does not change the statistics.

Unfortunately, this simple picture inevitably breaks down; at a small level
nonlinear corrections to the evolution are inevitable, generating a new intrinsic
non-Gaussianity in the CMB statistics. If we want to use the higher order statistics
of the CMB maps (such as the bispectrum, or three-point moment) to constrain
models of the early Universe, we must thoroughly understand the intrinsic signal
that is created more recently. This is particularly true in light of the incredibly
precise constraints on non-Gaussianity offered by the new Planck satellite data,
which have placed limits close to the level naively expected for the intrinsic signal.

In his Ph.D. work, Dr. Pettinari was able to quantify precisely the intrinsic CMB
non-Gaussianity. He did this through the Herculean task of constructing a
second-order Einstein-Boltzmann code describing the complex scattering processes
when the CMB anisotropies were produced. By characterizing the shape of the
intrinsic signal, this work will enable future experiments to detect it and disentangle
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it from whatever primordial non-Gaussianity might have been created in the very
early Universe.

As a result of this research, Dr. Pettinari was awarded the Michael Penston Prize
for 2014 given by the Royal Astronomical Society for the best doctoral thesis in
Astronomy or Astrophysics.

University of Portsmouth Prof. Robert Crittenden
May 2015
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Preface

Cosmology, intended as the study of the origin and evolution of the Universe and
its components, has advanced from being a philosophical discipline to a data-driven
science. Much of this progress was achieved in the past few decades thanks to the
wealth of cosmological data from Earth and space-based experiments. The abun-
dance of observational constraints has considerably narrowed the space for theo-
retical speculation, to the point that now most of the cosmological community
agrees on a standard model of cosmology.

A crucial assumption of this model is that the structure observed in the Universe,
such as planets, stars and galaxies, can be ultimately traced back to tiny density
perturbations in the early Universe. Therefore, a huge theoretical and experimental
effort is being made by cosmologists and particle physicists to gain insight into the
mechanism of generation of these primordial fluctuations, which remains still lar-
gely unknown. The bispectrum of the cosmic microwave background (CMB) has
been recently recognized as a powerful probe of this mechanism, as it is sensitive to
the non-Gaussian features in the seed fluctuations, which in turn are generated by
nonlinear processes such as the interactions between the fields present in the pri-
mordial Universe.

The non-Gaussianity of the CMB, therefore, opens a window to the nonlinear
physics of the early Universe; the CMB bispectrum is the observable that allows us
to look through this window. However, not all of the observed non-Gaussianity is
of primordial origin. Indeed, a bispectrum arises in the CMB even for Gaussian
initial conditions due to nonlinear dynamics, such as CMB photons scattering off
free electrons and their propagation in an inhomogeneous Universe. This intrinsic
bispectrum is an interesting signal in its own right as it contains information on
such processes. Furthermore, if not correctly estimated and subtracted from the
CMB maps, it will provide a bias in the estimate of the primordial non-Gaussianity.

The main purpose of my doctorate has been to quantify the intrinsic bispectrum
of the CMB and compute the bias it induces on the primordial signal. In doing so,
I have developed, a new and efficient code for solving the second-order
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Einstein-Boltzmann equations and compute primordial and intrinsic bispectra,
including polarization.1 While this project might sound eminently technical, it
allowed me to gain deep insight into some of the most important aspects of modern
cosmology. The purpose of this Ph.D. thesis is to share such insight with the reader,
in a plain and accurate way, avoiding the technicalities when possible and making
those that cannot be avoided as digestible as possible.

In writing my thesis I employed a pedagogic approach and strived to make it
comprehensible to a first-year Ph.D. student with a basic background in physics and
statistics. The first four chapters, complemented with the appendices, review the
state of the field, while the last chapters detail the original research that I conducted
during my Ph.D. at the Institute of Cosmology and Gravitation, University of
Portsmouth, UK, which led to the publication of the following paper:

G.W. Pettinari, C. Fidler, R. Crittenden, K. Koyama, and D. Wands. “The
Intrinsic Bispectrum of the Cosmic Microwave Background”. J. Cosmology
Astropart. Phys., 04(2013)003, doi: 10.1088/1475-7516/2013/04/003, http://arxiv.
org/abs/1302.0832, April 2013.

Since I obtained my Ph.D. in 2013, my collaborators and I have carried out
further research on the topic, extending the work presented in this thesis. In par-
ticular, we have found the polarized intrinsic bispectrum to be strongly enhanced
with respect to the temperature one; developed a formalism to treat all propagation
effects, including lensing, at second order; computed the power spectrum of the
second-order B-modes; quantified the CMB spectral distortions in both temperature
and polarisation. These works are all published in peer-reviewed journals, and can
be freely accessed as preprints; their bibliographical references are, respectively:

G.W. Pettinari, C. Fidler, R. Crittenden, K. Koyama, A. Lewis, and D. Wands.
“Impact of polarisation on the intrinsic CMB bispectrum”. Phys. Rev. D, 90,
103010, doi: 10.1103/PhysRevD.90.103010, http://arxiv.org/abs/1406.2981,
November 2014.

C. Fidler, K. Koyama, G.W. Pettinari. “A new line-of-sight approach to the
non-linear Cosmic Microwave Background”. J. Cosmology Astropart. Phys., 04
(2015)037, doi: 10.1088/1475-7516/2015/04/037, http://arxiv.org/abs/1409.2461,
July 2014.

C. Fidler, G.W. Pettinari, R. Crittenden, K. Koyama and D. Wands. “The intrinsic
B-mode polarisation of the Cosmic Microwave Background”. J. Cosmology
Astropart. Phys., 07(2014)011, doi: 10.1088/1475-7516/2014/07/011, http://arxiv.
org/abs/1401.3296, July 2014.

S. Renaux-Petel, C. Fidler, C. Pitrou and G.W. Pettinari. “Spectral distortions in
the cosmic microwave background polarization”. J. Cosmology Astropart. Phys., 03
(2014)033, doi: 10.1088/1475-7516/2014/03/033, http://arxiv.org/abs/1312.4448,
March 2014.

1SONG is open-source and available since August 2015 on the website https://github.com/
coccoinomane/song.
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I would like to stress that this thesis would not exist without the constant help
and encouragement of my Ph.D. supervisor, Prof. Robert Crittenden, and of my
collaborator, Dr. Christian Fidler, and, in general, of all the great friends and
colleagues that I was lucky enough to meet at the Institute of Cosmology and
Gravitation.

Rome Guido Walter Pettinari
May 2015
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Abbreviations

We will adopt the Einstein notation and imply a sum over repeated indices. Greek
letters are space-time indices, μ ¼ 0; 1; 2; 3, latin letters are spatial indices,
i ¼ 1; 2; 3, the underlined letters a; b; c are space-time tetrad indices, while the
underlined letters i; j; k are spatial tetrad indices. For the metric, we use a
ð�;þ;þ;þÞ signature.

We raise and lower the spatial indices with the Kronecker delta, δij. Here are a
few examples of this rule:

1. Ui ¼ Ui is the spatial part of the four-velocity Uμ; we use no symbol for the
spatial part of Uμ, which we shall just denote it as gμ i Uμ.

2. γ ij ¼ γ i
j ¼ γ ij is the spatial part of the metric gμν.

3. Unless explicitly stated, we shall always use the ð1; 1Þ-rank versions of the
energy-momentum and Einstein tensors. Hence, Ti

j ¼ Tij ¼ Tij and Gi
j ¼ Gij ¼

Gij will represent the space-space parts of Tμ
ν and Gμ

ν.
4. ki ¼ ki, ki1 ¼ k1i and ki2 ¼ k2i are the Fourier wavemode, and do not have an

associated four-tensor.

The cosmological quantities indexed by a ‘0’ are evaluated today, a0 � aðt0Þ,
while those with an overbar are evaluated at zero order, �ρðtÞ � ρð0ÞðtÞ.

The following abbreviations are used in this thesis:

BES Boltzmann-Einstein differential system,
CDM Cold Dark Matter,
CMB Cosmic Microwave Background,
FLRW Friedmann-Lemaître-Robertson-Walker,
GR General Relativity,
ISW Integrated Sachs-Wolfe,
LSS Last Scattering Surface,
ODE Ordinary Differential equation,
PDE Partial Differential equation,
SW Sachs-Wolfe.
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Chapter 1
Introduction

1.1 Precision Cosmology

During the last three decades, cosmology has undergone a transition from a
theory-dominated discipline to a data-driven science. Currently, numerous Earth and
space-based experiments provide observers with a continuous flow of high precision
data, allowing us to constrain and rule out many of the models brought forward by
theorists. For the first time, we have the tools to study in an accurate and quantitative
way the origins and evolution of the Universe. It is unsurprising that our present days
are commonly referred to as the era of precision cosmology.

As a result of this process, cosmologists are now converging towards a unified
picture of theUniverse, similar to when particle physicists built the standardmodel of
particle physics. The standard model of cosmology depicts the Universe as a mixture
of five known particle species (photons, neutrinos, electrons, protons and neutrons), a
hypothetical one (cold darkmatter) and amysterious dark energy component that can
be interpreted either as a cosmological constant or as a fluid with negative pressure.
The structure that we observe in the Universe (galaxies, clusters, filaments, voids
and temperature fluctuations) is thought to have originated from the gravitational
enhancement of small initial density perturbations over an otherwise homogeneous
and isotropic background.

The standard model of cosmology includes the fundamental observation that the
Universe is expanding. By extrapolating it back in time, today’s expansion implies
that the Universe was once in very dense and hot state. The limit of infinite temper-
ature and density is called the Big Bang, which conventionally marks the beginning
of the Universe as we know it. The existence of this “primeval fireball” [39] leads to
the prediction that the Universe must be permeated by a relic radiation from the Big
Bang, the cosmic microwave background (CMB). The CMB was serendipitously
discovered by Penzias and Wilson [19, 40] in 1965, thus providing a direct con-
firmation of the Big Bang scenario. In the course of the years, the observation of
the CMB has provided insight on the Universe that has been crucial to establish
the standard model of cosmology. This was possible thanks to three satellites that
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2 1 Introduction

measured the CMB temperature map to increasingly high precision: the NASA
Cosmic Background Explorer (COBE) in the 1990s [53], the NASA Wilkinson
MicrowaveAnisotropy Probe (WMAP) in the 2000s [11] and the ESAPlanck survey,
which has released its first-year results in 2013 [48]. Thanks to these experiments, as
well as ground and balloon based observations [18, 26], we are now able to determine
the parameters of the standard model of cosmology to percent-level precision.

1.2 Cosmic Inflation

The standardmodel of cosmology, however, leaves open several important theoretical
issues. For example, it cannot explain why the CMB is observed with the same
temperature within a part in a 105 in regions of the sky that, in principle, were never
in casual contact. Furthermore, it lacks a mechanism to generate the initial density
perturbations that seeded the observed structure of the Universe. These and other
problems are solved by postulating that, at some point in its infancy, the Universe
underwent a cosmic inflation [2, 23, 33, 54], that is, a period of accelerated expansion.
Before this time, our patch ofUniversewasmuch smaller thanwhat is predicted by the
hot Big Bang model; therefore, regions that are now out of reach were once causally
connected and the causality problem is solved. As for the primordial fluctuations,
in the inflationary picture they are generated from microscopic quantum vacuum
fluctuations that the accelerated expansion stretches and imprints on superhorizon
scales [3, 24, 36, 55].

The simplest model of cosmic inflation involves a hypothetical scalar field slowly
rolling down a very flat potential. In this circumstance, the field behaves like a fluid
with negative pressure and thus powers an almost exponential cosmic expansion.
This simple picture is very successful as it predicts a nearly scale-invariant power
spectrumof perturbations that is actually observed in theCMB [48] and is compatible
with the galaxy data [51]. Many different theoretical models of inflation have been
put forward that build on this “vanilla” model. Some popular extensions include
multiple fields, features in the inflation potential, the presence of a non-canonical
kinetic term or non Bunch-Davies vacuum states [15, 35]. In most cases, it is difficult
to distinguish between these models of inflation just from the measurements of the
power spectrum.

1.3 Non-Gaussianity

Recently, the three-point function of the primordial perturbation, or primordial bis-
pectrum, has aroused the interest of cosmologists for several reasons. First, it vanishes
for a Gaussian field and, therefore, it is the lowest order statistics sensitive to whether
a perturbation is Gaussian or non-Gaussian; for this reason, the bispectrum is a mea-
sure of non-Gaussianity. Secondly, it is directly related to the angular bispectrum of
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the cosmic microwave background, which is an observable quantity [8, 28, 29, 32,
49, 57]. Finally, different models of inflation produce specific shapes for the primor-
dial bispectrum, whose amplitudes are usually parametrised by a number denoted
fNL ; most importantly, the single-field slow-roll inflation produces an effectively
Gaussian distribution of primordial density perturbations [1, 34], i.e. fNL � 0 .
Therefore, the primordial bispectrum as inferred from the CMB has the power of
ruling out the simplest models of inflation and to strongly constrain the physics of
the early Universe based on the shape and amount of produced non-Gaussianity.

1.4 The Intrinsic Bispectrum of the CMB

However, we do not expect all of the observed non-Gaussianity to be of primordial
origin. Non-linear evolution will generate some degree of non-Gaussianity even in
the absence of a primordial signal, for the simple reason that the product of Gaussian
random fields is non-Gaussian. The propagation of CMB photons in an inhomoge-
neous Universe and their non-linear collisions with electrons make it possible for
Gaussian initial conditions to be non-linearly propagated into a non-Gaussian tem-
perature field. This results in the emergence of an intrinsic CMB bispectrum, which
is the topic of this thesis.

The primordial bispectrum is hypothetical and its shape and amplitude depend on
the largely unknown details of cosmic inflation. The intrinsic CMB bispectrum, on
the other hand, is always present and acts as a systematic bias in the measurement of
the primordial bispectrum [28]. In order to correctly interpret any non-Gaussianity
measurement from the CMB bispectrum, and in particular those from the Planck
satellite [49], it is of crucial importance to quantify this bias, which we label f intrNL.
In addition, the non-Gaussian signal from non-linear dynamics has an interest of its
own, as it might shed light on the details of the gravity theory [22].

The non-linear signal can be quantified theoretically by using second-order per-
turbation theory; this is the leading order of non-Gaussianity since linear evolution
cannot generate non-Gaussian features that are not already present in the initial con-
ditions. The Einstein and Boltzmann equations at second order have been studied in
great detail [6, 7, 10, 37, 44, 45] and will be shown below. They are significantly
more complicated than at first order and solving them numerically is a daunting task;
this is testified by the many approximate approaches to the problem that can be found
in the literature [4, 5, 9, 13, 16, 17, 27, 31, 38, 52], which either neglect some of
the physics or focus on a particular bispectrum configuration (we shall comment on
these approaches in more detail in Chap.6). Generally, these estimates yield a small
non-Gaussianity level, with f intrNL � 1: none of them constitutes a significant bias
for Planck, which constrains the local model of non-Gaussianity with an uncertainty
of σ fN L ∼ 5 . However, the first full numerical computation of the bias, performed
by Pitrou et al. (2010) [46, 47], found the much higher value f intrNL ∼ 5 , just at the
detection threshold for Planck.

http://dx.doi.org/10.1007/978-3-319-21882-3_6
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The importance of the intrinsic bispectrum for the determination of the primordial
non-Gaussianity and the tension between the numerical and analytical results in the
literature has motivated us to compute the intrinsic bispectrum of the CMB. Our
purpose is to include all the relevant physical effects at second order in a numerically
stable and efficient way. The result of this effort is SONG (Second-Order Non-
Gaussianity), a numerical code that solves the second-order Einstein-Boltzmann
equations for photons, neutrinos, baryons and cold dark matter. SONG is written
in C, is parallel, and is based on the first-order Boltzmann code CLASS [12, 30],
from which it inherits its modular structure and ease of use. SONG is fast enough to
perform various convergence tests to check the robustness of the numerical results.
Utilising this code, we will study the intrinsic non-Gaussianity to quantify the bias
in the measurements of primordial non-Gaussianity and evaluate its signal-to-noise
ratio.

We have published the results thus obtained in Pettinari et al. [42]. While the
paper was in preparation, two works appeared that study the intrinsic bispectrum,
giving similar results for the bias to the primordial non-Gaussianity templates, but
different ones for the signal-to-noise ratio [25, 56]. We will discuss in Chap. 7 why
these references obtained different results.

1.5 Summary of the Thesis

The purpose of this thesis is to introduce and compute the intrinsic bispectrum of
the cosmic microwave background, and to quantify its observability. A description
of the structure of the thesis follows.

InChap.2wepresent the standardModel ofCosmology and describe the evolution
of the metric and matter species under the assumption of perfect homogeneity and
isotropy.We explain how the cosmicmicrowave background is originated and discuss
the potential of constraining models of cosmic inflation via its bispectrum.

In Chap.3 we use perturbation theory to model the small deviations from homo-
geneity expected in the early Universe. The non-linearities in the cosmological per-
turbations are studied by expanding them up to second order. We take particular care
in separating their stochastical properties from their dynamical evolution by intro-
ducing the concept of transfer function. The main subject of this work, the intrinsic
bispectrum, is discussed for the first time.We also report the Einstein equations up to
second order.

In Chap.4 we introduce the Boltzmann formalism as a general framework to
compute the time evolution of the perturbations of the massless and massive species.
To simplify the derivation of the collision term and the interpretation of the energy
and momentum of the particles, we work in the local inertial frame via the tetrad
formalism. The angular and positional dependences of the second-order Boltzmann
equation are decomposed using plane waves and spherical harmonics, thus resulting
in a hierarchy of equations for the Fourier multipoles of the distribution function. The

http://dx.doi.org/10.1007/978-3-319-21882-3_7
http://dx.doi.org/10.1007/978-3-319-21882-3_2
http://dx.doi.org/10.1007/978-3-319-21882-3_3
http://dx.doi.org/10.1007/978-3-319-21882-3_4
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Boltzmann hierarchies, together with the Einstein equations, form the Boltzmann-
Einstein system of differential equations at second order (BES).

In Chap.5 we summarise the equations in the BES and illustrate how our code,
SONG , efficiently solves them for the evolution of the metric variables and Fourier
multipoles. We derive and show the initial conditions for the system, which are set
deep in the radiation era when the Fourier modes are superhorizon. The second-
order transfer functions are evolved with the differential system until the time of
recombination; to obtain their present-day value, we describe and solve the line of
sight integral. The line of sight sources are split into three contributions: the collision
sources, the metric sources and the propagation sources. We also present detailed
numerical and analytical tests on the transfer functions computed by SONG.

In Chap.6 we compute the intrinsic bispectrum of the cosmic microwave back-
ground and quantify its observability and the bias it induces on a measurement of
the primordial bispectrum. We first derive a formula where the intrinsic bispectrum
is obtained from a four-dimensional integral over the first and second-order transfer
functions. To quantify its importance we use a Fisher matrix formalism where we
consider the intrinsic bispectrum and three primordial ones: local, equilateral and
orthogonal.

Finally, in Chap.7 we conclude by summarising ourmain results.We also propose
other interesting research directions where SONG will be useful, such as computing
the spectrum of the B polarisation of the CMB, studying the impact of modified
gravity theories on the intrinsic bispectrum, quantifying the spectral distortions and
the generation of magnetic fields at recombination.

1.6 Further Research

Asmentioned in the preface, since I obtainedmy Ph. D. in 2013my collaborators and
I have carried out further research on the non-linearities of the CMB, extending the
work in this thesis. In particular, we have found the polarised intrinsic bispectrum to
be strongly enhancedwith respect to the temperature one [43]; developed a formalism
to treat all propagation effects, including lensing, at second order [21]; computed the
power spectrum of the second-order B-modes [20]; quantified the intrinsic spectral
distortions in the CMB [50]. These works are all published in peer-reviewed journals,
and can be freely accessed as preprints on the arXiv (http://www.arxiv.org); the reader
can refer to the preface for their bibliographical references.

Furthermore, during my Ph.D. I have worked on two projects that are not related
to the topic of this thesis. The first project involved using Active Galactic Nuclei
(AGNs) to probe the existence of axion-like particles; in particular, we showed that,
while promising, this possibility is unattainable until we understand the nature of
AGNs in detail [41]. In the second project, we have studied the behaviour of isolated
galaxy pairs from a numerical simulation, with the objective of determining whether
they contain information about the cosmological expansion [14].

http://dx.doi.org/10.1007/978-3-319-21882-3_5
http://dx.doi.org/10.1007/978-3-319-21882-3_6
http://dx.doi.org/10.1007/978-3-319-21882-3_7
http://www.arxiv.org
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Chapter 2
The Standard Model of Cosmology

2.1 Introduction

The standard model of cosmology encompasses our knowledge of the Universe as a
whole. It has matured over the last century, consolidating its theoretical foundations
with increasingly accurate observations. The main assumptions on which it rests are:

• On sufficiently large scales the Universe is homogeneous and isotropic (the cos-
mological principle).

• The energy content of the Universe is modelled in terms of cosmological fluids
with constant equation of state: photons, baryons, neutrinos, cold dark matter and
dark energy.

• The gravitational interactions between the cosmological fluids are described by
Einstein’s general relativity (GR).

Along with the above theoretical assumptions, the standard model of cosmology
includes the fundamental observation that the Universe is expanding.

2.1.1 Summary of the Chapter

In this chapter we analyse these features in detail, starting with the cosmological
principle in Sect. 2.2. The assumptions of isotropy and homogeneity lead to the
formulation of the FLRW metric, which we introduce in Sect. 2.3. We derive the
dynamic evolution of this metric in Sect. 2.4 by solving the Einstein equation; in
particular, we find that the cosmic expansion is one of the solutions and is favoured by
themeasured abundances of the various species. The presence of a cosmic expansion,
in turn, indicates that the primordial Universe was in a very hot and dense state
where thermal equilibrium between the species was established. This prediction is
spectacularly confirmed by the observation of a cosmic microwave background with
a blackbody spectrum, which is the subject of Sect. 2.5. We conclude the chapter by
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discussing in Sect. 2.6 some important problems of the hot Big Bang scenario and
one of the possible ways to solve them: the mechanism of cosmic inflation, a phase
of accelerated expansion in the early Universe.

Note that in Sect. 2.6.4 we shall briefly discuss how non-linearities might arise
during inflation that generate non-Gaussian signatures. The work described in this
thesis is ultimately motivated by the quest to measure said non-Gaussianity.

2.2 The Cosmological Principle

The cosmological principle (CP) states that on sufficiently large scales the Universe
is homogeneous and isotropic. Homogeneity means that different patches of the
Universe have the same average physical properties. In particular, any cosmological
fluid has the same energy density, pressure and temperature everywhere. Isotropy
means that there are no preferred directions in the Universe. Any observer measuring
a cosmological quantity—e.g. the photon flux or a galaxy count—in two different
directions should find the same value.

Homogeneity does not imply isotropy. For example, a Universe filled with a
homogeneous magnetic field is homogeneous but not isotropic. On the other hand,
isotropy about one location does not guarantee homogeneity. The simplest case is
given by an observer at the centre of an isotropic explosion, but there are other
examples of inhomogeneous distributions that project isotropically on the sky of one
observer [25]. However, isotropy about two locations does guarantee homogeneity
and isotropy about all locations (Peacock [62, pp.65–67]).

The cosmological principle is spectacularly violated on small scales. Planets, stars
and galaxies should not exist in a perfectly homogeneous Universe. However, when
zooming out on scales larger than roughly 100 h−1 Mpc, where 1Mpc = 3.086 ×
1022 m = 3.262 × 106 ly is roughly the average distance between two galaxies, the
Universe does become smooth, as we detail in Sect. 2.2.1. This allows us to treat
the dynamics of the cosmological fluids on the largest scales as if the Universe were
perfectly homogeneous and isotropic. In this limit, the physics and the resulting
equation are particularly simple, as discussed in Sect. 2.3.

The cosmological principle also allows us to define a universal time variable, the
cosmic time, defined as the time measured by observers at rest with respect to the
matter in their vicinity. The homogeneity of the Universe ensures that the clocks of
these fundamental observers can be synchronised with respect to the evolution of the
universal homogeneous density. We choose the zero of the cosmic time to coincide
with the Big Bang, which we shall introduce in Sect. 2.4. As a consequence, the
cosmic time is interpreted as the age of the Universe.
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2.2.1 Validity of the Cosmological Principle

The cosmological principle is crucial in order to make sense of the Universe, as it
allows us to give universal significance to our local measurements. Furthermore, as
we shall see in Sect. 2.4, it leads to an elegant dynamical solution of Einstein’s equa-
tions. When it was proposed , however, the cosmological principle was little more
than a conjecture. As cosmological observations increased in number and accuracy,
it was substantiated by more and more evidence. Nevertheless, the cosmological
principle has not been proven unambiguously yet.

The main difficulty lies in the fact that it is impossible to observationally prove
the homogeneity of the Universe without first assuming the Copernican principle,
according to which we do not occupy a special position in the Universe.1 The reason
is that any observation has only access to our past light cone. Even worse, we cannot
effectively move in cosmic time or space, so that we can only probe the past light
cone of here and now. As a result, our observations mix time and space in such a way
that we cannot tell the difference between an evolving homogeneous distribution of
matter and an inhomogeneous one with a different time evolution [52].

If we accept the Copernican principle, however, the existence of isotropy in the
observable Universe (that is, isotropy in the past light cone of Earth) would automat-
ically imply the homogeneity of the whole Universe [26, 52]. Isotropy, contrary to
homogeneity, is well established by many observations. The most relevant ones are
the nearly perfect isotropy of the Cosmic Microwave Background [11], the isotropy
of the X-ray background [71] and the isotropies of various source populations, e.g.
radio galaxies [64]. The isotropy of the CMB also provides a good argument for
homogeneity, since its angular distribution is linked to the three-dimensional fluctu-
ations of the gravitational potential during recombination [84].

Not assuming the Copernican principle has two important consequences. First,
the observed isotropy could not be used to infer homogeneity, not even in our local
Universe. Secondly, observations would need to be interpreted in light of our special
position. This is the case in the so-called void models, where the cosmological
principle is assumed to be valid but our Galaxy sits close to the center of an under-
dense area which is radially inhomogeneous (the void). While some of these models
have the benefit of removing the need for a cosmological constant by modifying the
redshift-distance relationship (see, e.g., Refs. [55, 60, 80]), they fail to reproduce all
the available observations at the same time [14, 17, 58, 83, 86, 88, 89]. For a review
of other ways to test the Copernican principle, refer to Refs. [16, 35, 52].

A useful check for the homogeneity of the observable Universe consists in count-
ing objects in a galaxy-survey in regions of increasing volume. In a homogeneous
Universe, the mean density of galaxies in these regions should approach a constant
value at a certain homogeneity scale. In order to look for this scale in the data, one
needs to assume a cosmological model to convert the measured fluxes of galaxies to
distances; hence it is more of a consistency check for homogeneous models rather

1This is also referred to as the weak cosmological principle by Ellis [26].
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than a test of homogeneity. 2He largest-volume measurement (V ∼ 1 h−3 Gpc3)
to date was performed by Scrimgeour et al. [72] using the blue galaxies of the
WiggleZ survey [23]. They found homogeneity for scales larger than 70 h−1 Mpc,
in agreement with what previously obtained by Hogg et al. [40] using large red
galaxies,3 and in disagreement with earlier results that suggested a fractal structure
of the Universe [66, 79]. Interesting discussions about the scale of homogeneity and
the fractal Universe can also be found in Refs. [19, 34]. For an observational test of
homogeneity that relies only on the angular distances of galaxies, and is therefore
less model-dependent, refer to Ref. [5].

2.3 The Expansion of the Universe

In the 1910s Vesto Slipher had noticed by measuring their light spectra that most of
nearby galaxies—or nebulae, as they were called at the time—were quickly receding
from us [75, 76]. In 1929, Edwin Hubble [41] independently confirmed that galax-
ies where receding and found a correlation between their radial velocity and their
distance from us. This observation is encoded in Hubble’s law, whereby there is a
linear relationship between the radial speed with which a galaxy recedes from Earth
and its distance to it:

v = H0 r . (2.1)

The proportionality constant is now called Hubble constant.
If one assumes the cosmological principle, Hubble’s law becomes universal: any

two galaxies move away from each other with a speed proportional to the distance
that separates them. In reality, the cosmological principle alone suffices to enforce
the proportionality between distance and radial velocity. Isotropy enforces the radial
motion, while homogeneity ensures that the recession velocity is proportional to the
distance [36, 62]. However, the cosmological principle alone does not specify the
sign of this proportionality, which Hubble found to be positive.

Hubble’s discovery was soon linked to previous theoretical papers by Georges
Lemaître [45, 46] and Alexander Friedmann [32]. In these pioneering works, the
authors found dynamical solutions to Einstein equations where the Universe could
expand indefinitely in a homogeneous manner. In this context, Hubble’s law is the
empirical consequence of a more fundamental concept: space itself is expanding.
The apparent recession of galaxies is just one manifestation of the expansion of the
Universe, and H0 represents the homogeneous expansion rate.4 In the expanding

2T.
3As a comparison consider that the disk of our Galaxy, the Milky Way, which is an average galaxy,
measures just around 30 kpc.
4It is sometimes thought that Hubble discovered the expansion of the Universe in his 1929 paper.
This was not the case, as the first connection to Lemaître and Friedmann works was made in 1930
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Universe picture, the receding galaxies are not thought as projectiles shooting away
through space, but as objects at rest in expanding space. Similarly, the recession
speed is not the speed of something moving through space, but of space itself; it
is not a local phenomenon and this is why it can exceed the speed of light without
changing the causal structure of space-time [36].

Thevalue of H0 cannot be predicted by theoreticalmeans: only observation canpin
it down. Since distance measurements are subject to high uncertainty, it is customary
to parametrize the Hubble constant by means of the pure number h:

H0 ≡ 100 h
km/s

Mpc
(2.2)

= h

9.77Gyr
(2.3)

= h

4.69 × 1041
GeV (assuming � = 1) (2.4)

= h

2998Mpc
(assuming c = 1) . (2.5)

In his seminal paper, Hubble estimated h ∼ 5. The most accurate local measure-
ments of h to date employ Cepheid variables and Type Ia supernovae in low-redshift
galaxies, and read

h = 0.738 ± 0.024 (Riess et al. [69]) , (2.6)

h = 0.743 ± 0.021 (Freedman et al. [31]) , (2.7)

at 68% confidence level. The Planck CMB satellite obtained a more precise value
[67], but it is an indirect estimate as it assumes a cosmological (ΛCDM) model:

h = 0.6780 ± 0.0077 (Planck+WP+highL+BAO) , (2.8)

at 68% confidence level. There is a mild tension between the two measurements,
which could be explained by some unknown source of systematic error in the local
measurement or by the fact that theΛCDMmodel assumed in Planck’s data analysis
is incorrect [67, 81].

On small scales the cosmological principle fails because, over time, gravitational
instability creates bound structures such as stars, galaxies and clusters of galaxies.
Hence, we expect galaxies to have their own motions decoupled from the Hubble
expansion, which are called peculiar velocities. An example of peculiar velocity is
the circular motion of the galaxies of a cluster around the common centre of mass.
In most cases, the magnitude of the peculiar velocities does not exceed 103 km/s;

(Footnote 4 continued)
by Arthur Eddington and Willem de Sitter. An account by the American Institute of Physics of
the fascinating story behind the discovery of the expansion of the Universe can be found at the
following URL: http://www.aip.org/history/cosmology/ideas/expanding.htm.

http://www.aip.org/history/cosmology/ideas/expanding.htm
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using the measured values for H0, we expect peculiar velocities to be negligible
with respect to the Hubble flow for objects distant more than roughly 100Mpc. It is
reassuring that such a value is consistent with the homogeneity scale discussed in
Sect. 2.2.

2.3.1 The Metric

The dynamics of the expanding Universe are better understood in terms of observers
who are at restwith theHubble expansion, the so-called comoving observers. Comov-
ing observers perceive the Universe as isotropic and see objects receding from them
according to Hubble’s law. In this section, we shall employ comoving coordinates
defined as the coordinate system where all comoving observers have constant spatial
coordinates, i.e. are static. Any motion in comoving coordinates has the Hubble part
subtracted so that the only velocities are the peculiar ones.

In differential geometry the distance ds between two infinitesimally nearby space-
time points (x0, x1, x2, x3) and (x0 + dx0, x1 + dx1, x2 + dx2, x3 + dx3) is called
the line element and is defined as

ds2 = gμν (x) dxμdxν for μ, ν = 0, 1, 2, 3 .

Here gμν(x) is the metric, a (0,2) tensor which determines how distances are com-
puted in the considered space-time manifold. We shall adopt comoving coordinates
and set x0 = c t where t is the cosmic time.

The metric that describes a homogeneous and isotropic expanding space-time is
called the Friedmann-Lemaître-Robertson-Walker (FLRW ) metric [32, 46, 70, 82].
In comoving coordinates, it is given by

ds2 = −(c dt)2 + a(t)2 γi j dxi dx j . (2.9)

The cosmic time t , introduced in Sect. 2.2, is defined so that the Universe has the
same density everywhere at each moment in time. The scale factor a(t) parametrises
the uniform expansion of the Universe. We express the spatial part of ds2 so that, in
comoving and spherical coordinates (ρ, θ,φ), it reads

γi j dxi dx j = dρ2 + Sk(ρ)2
(

dθ2 + sin2 θ dφ2
)

. (2.10)

With this choice, the quantity dχ2 ≡ γi j dxi dx j has the meaning of a comoving
distance or coordinate distance. The function Sk(ρ) depends on the spatial curvature
of the Universe, which in these models is uniform and is given by k/a2. Even before
discussing its form, it should be noted that for radial trajectories (dφ = dθ = 0) the
comoving distance coincides with the radial comoving coordinate.
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We distinguish three different geometries for the Universe based on the value of
the curvature constant k:

Sk(ρ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρ flat geometry (k = 0)

sin(ρ) spherical geometry (k = +1)

sinh(ρ) hyperbolic geometry (k = −1) .

(2.11)

For k = 0, the comoving distance is just the usual Euclidean distance: dχ2 =
δi j x i x j . The value of the curvature constant k is a free parameter in the FLRW
models and, as the Hubble constant, has to be determined by experiment. Recent
results from the WMAP [39] and Planck [67] CMB satellites constrain the spatial
curvature to be negligible, thus suggesting that we live in a Universe with a flat
geometry. We shall assume k = 0 for the rest of this work. This allows us to choose
coordinates where ρ and χ are lengths (measured in Mpc) and the scale factor is a
dimensionless quantity such that a(t0) = 1 [24].

Now that we have introduced the concept of scale factor, Hubble’s law follows
easily. Given an observer at the origin of a spherical coordinate system, we define
the physical coordinates of an object as r = a(t) x, where x = (x1, x2, x3) are its
comoving coordinates. The distance r = a(t)χ along a radial path is the physical
distance and can be thought as the distance that would be measured by stretching a
tape measure in a uniformly curved surface [36]. There are two contributions to the
velocity d r/dt :

d r
dt

= 1

a

da

dt
r + a

dx
dt

. (2.12)

We project along the radial direction r̂ in order to obtain an expression for the radial
velocity v = d r/dt · r̂:

v = 1

a

da

dt
r + a

dx
dt

· r̂ . (2.13)

The term a dx/dt · r̂ is the peculiar velocity of the object. For a comoving object
(dx/dt = 0) we obtain the so-called velocity-distance law:

v = 1

a

da

dt
r . (2.14)

The above equation has the same form of Hubble’s law in Eq. 2.1. From a direct
comparison, we see that the Hubble constant H0 is just the present-day value of the
Hubble parameter defined as

H ≡ 1

a

da

dt
. (2.15)
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Conformal time The FLRW metric can be conveniently expressed using the con-
formal time defined as dτ = dt/a:

ds2 = a(τ )2
{

−(c dτ )2 + γi j dxi dx j
}

= a(τ )2 ημν dxμ dxν , (2.16)

where ημν is the Minkowski metric of special relativity and we have assumed flat
space (k = 0). In the following chapters we shall use τ instead of t as the evolution
variable for the cosmological perturbations, and assume units where c = 1. It should
be noted that, for a radial trajectory, the conformal time is equal to the comoving
distance divided by c.

2.3.2 Light in an Expanding Universe

The cosmological data that we extract from the Universe (temperature and polar-
isation maps, galaxy surveys, lensing maps, etc.) rely on the observation of light,
with the exceptions of neutrinos and, possibly, gravitational radiation. It is therefore
crucial to understand how light is affected by the expansion of the Universe.

2.3.2.1 Expansion Redshift

All physical lengths are stretched by the expansion of the Universe; the wavelength
of a light wave makes no exception. Light emitted by a comoving source at time t
with wavelength λ will be seen by a comoving observer today with a wavelength λ0
given by

λ0

λ
= a(t0)

a(t)
.

As it travels through the expanding Universe, the light emitted from distant objects
experiences an expansion redshift: its spectrum is uniformly shifted to larger wave-
length and lower energies by an amount depending solely on the time of emission,
regardless of whether the light consists of radio waves or gamma rays.

By adopting the same convention as in spectroscopy, where the fractional wave-
length shift (λ0 − λ)/λ is denoted by the letter z, we write the expansion-redshift
law

1 + z(t) = a(t0)

a(t)
. (2.17)

If we assume that the laws governing the emission and absorption of light do not
change through cosmic evolution, the expansion redshift of a cosmological source
can be inferred from its electromagnetic spectrum. Thanks to spectroscopic galaxy
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surveys such as 2dF [18], SDSS-II [87], WiggleZ [23] and BOSS [20], we have
now measured the optical spectra of millions of galaxies and thus determined their
redshift.

In an expanding Universe, the sources with the highest redshift are the ones
farthest away from us. Hence, high-redshift objects have to be more luminous than
low-redshift ones for us to be able to see them. The highest-redshift galaxy that
has been spectroscopically confirmed to date has z = 7.51 [29],5 and a candidate
galaxy with z = 11.9 [27] has been recently reported. In a ΛCDM Universe, the
light from these galaxies was emitted about 13 billion years ago and their distance
is now growing at a rate of many times the speed of light.

In the following, we will sometimes use the redshift as a time variable to para-
metrize the evolution of the Universe. This is correct since z is a monotonically
decreasing function of a which in turn, in an expanding Universe, is a monotonically
increasing function of cosmic time. Note also that from Eq. 2.17 it follows that today
(a(t0) = 1) the redshift vanishes: z(t0) = 0.

2.3.2.2 Other Redshifts

The expansion redshift should not be confused with the Doppler effect. The Doppler
effect produces a shift in the observed wavelength of photons because of the relative
motion between source and observer. The recession velocity does not give rise to
a Doppler shift because it does not describe the motion of objects in space, but
the rate at which distances grow in the expanding Universe. Incidentally, this is
why recession velocities can be larger than the speed of light. What gives rise to
the expansion redshift is the wavelength of photons getting stretched during their
trajectory through expanding space. On the other hand, Doppler redshift is generated
by the peculiar velocities of the galaxies, which cannot exceed the speed of light.

A third type of redshift, the gravitational redshift, arises from the fact that the
photons frequencies change as they travel through an inhomogeneous gravitational
field. For example, we expect the light from a cluster of galaxies to be gravitationally
redshifted, as the gravitational field at the centre of the cluster is different from that
on the surface of Earth.

Expansion redshift, Doppler redshift and gravitational redshift coexist in the spec-
trum of galaxies and, in general, of all astrophysical sources. When determining the
expansion redshift of an object, the non-cosmological Doppler and gravitational
redshifts must be subtracted or accounted for in the error budget. The gravitational
redshift is usually not toomuch of a concern as it shifts the spectrum by just z ∼ 10−3

[36]. However, in the local Universe, say for z < 0.01, the peculiar velocities give
rise to a Doppler redshift of the same order of the expansion one. This is a man-
ifestation of the breakdown of the cosmological principle on small scales due to

5Note that a galaxy with a spectroscopic redshift of z = 8.6 had been previously reported in
Ref. [44], but it was later found to be a spurious signal in Ref. [12].
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gravitational instability. For more distant objects, peculiar velocities become negli-
gible with respect to recession velocities and one can trust the measured redshift to
be due to the expansion of the Universe.

2.3.3 Comoving Distance

In Sect. 2.3.1 we have introduced the concept of comoving distance χ as the dimen-
sionless distance between two spatial points on the comoving grid. The great advan-
tage of χ is that it is constant in time, since its expression only involves comoving
coordinates. On the other hand, the physical distance, given by r = a(t)χ, is the
tape-measure distance on a grid which is not comoving with the expansion, and
hence increases with time.

But how are these theoretical distances related to the measured redshift of an
object? Since redshift is intrinsically related to light propagation, we need to study
the trajectory of photons from a source to us. This is described by the null geodesics
(ds2 = 0) along a radial path (dφ = dθ = 0),6 which in the case of the FLRW metric
in Eq. 2.9 yields

dχ = c

a
dt . (2.18)

This result is intuitive: the actual speed of a photon does not vary, but its speed with
respect to expanding coordinates is larger when the Universe is small (a < 1). A
photon that was emitted at a time tems and observed at tobs will have travelled a
comoving distance of

χ (tems, tobs) =
∫ tobs

tems

c

a(t)
dt . (2.19)

Any comoving distance is by construction independent of time. If another photon is
emitted soon after the first one (say, at time t1 + dt1), it is obviously observed after
the first one (say, at time t2 + dt2), but the comoving distance covered is the same.
In formulae, χ (t1, t2) = χ (t1 + dt1, t2 + dt2). Inserting this identity in Eq. 2.19
yields dt1/a(t1) = dt2/a(t2): the quantity dt/a(t) is conserved along the light cone.
This is a formal demonstration of the fact that all time intervals get stretched while
propagating through an expanding Universe. Since dλ = cdt , this is true also for all
wavelengths.

Using the expansion-redshift law, 1+z = a0/a and the definition of the expansion
rate, aH = da/dt , the comoving distance can be related to the redshift by

6It should be noted that, given the choice of the spatial metric in Eq. 2.10, the comoving distance
for a radial path is just the radial comoving coordinate.
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dχ = − c

a0 H(z)
dz , (2.20)

where a0 ≡ a(t0). Thus, the comoving distance travelled by a photon emitted at a
redshift z and received today (z = 0) is given by

χ(z) = c

a0

∫ z

0

dz

H(z)
= c

a0 H0

∫ z

0

dz

E(z)
, (2.21)

where we have defined the dimensionless parameter E(z) ≡ H(z)/H0 [6]. We shall
refer to the above formula as the distance-redshift law; it is important because it
relates the geometry of the Universe (χ and H ) to the measured redshift. By using
the velocity-distance relation v = H0 r and the identity r(t, t0) = a0 χ(t, t0), we
obtain the velocity-redshift law

v

c
=

∫ z

0

dz

E(z)
, (2.22)

which is key to convert a redshift to the recession velocity at the time of emission.
The distance-redshift and velocity-redshift laws tell us that, in order to infer the

distances and velocities of an object, we first need to know the expansion history
of the Universe H(z) all the way to when the light was emitted. The reason is that
our cosmological observations are limited to the region of space-time included in
our past light cone. We, as observers, do not have access to a the world map but
only to a single world picture taken now and here [36]. The farthest sources in our
world picture emitted their light at a time where the expansion rate was significantly
different from the current value, H0. Furthermore, the emitted light travelled for a
long time in an expanding Universe. Hence, the measured redshift is related to the
distance covered by the light by the expansion history between emission time and
observation time.

If the object is very close, however, the integral
∫ z
0 dz/E(z) can be Taylor

expanded around z = 0 [6]:

∫ z

0

dz

E(z)
� z − E ′(0)

2
z2 + 1

6

[
2E ′(0)2 − E ′′(0)

]
z3 + O(z4) , (2.23)

where the prime represents a derivative with respect to z. By keeping only the first
term in the expansion, the distance-redshift andvelocity-redshift lawsbecome respec-
tively

c z = H0 r (2.24)

and

v = c z . (2.25)
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In his famous 1929 paper, Hubble interpreted his velocity measurements as peculiar
velocities rather than recession velocities. He used the Fizeau-Doppler formula to
convert redshifts in velocities, which happens to coincide with the z → 0 limit of
the velocity-redshift law. For this reason, some authors prefer to refer to cz = H0 r
as the Hubble’s law (rather than v = H0 r ) in order to keep clear the distinction
between the Doppler redshift and velocity redshift [36].

2.3.4 The Hubble Time

The Hubble time tH is defined as the inverse of the Hubble parameter. The current
value of the Hubble time is easily obtained from the definition of H0 in Eq. 2.2:

tH0 ≡ 1

H0
= 9.77 h−1 Gyr .

Given constant expansion, i.e. d2a/dt2 = 0, the Hubble time is the time needed by
the Universe to double in size. Equivalently, the solution to:

a(t1) + da

dt
Δt = a(t2) , (2.26)

for a(t2) = 2a(t1) is Δt = H−1(t1). If the expansion had been constant after the
Big Bang, the Hubble time would be the age of the Universe; to see it, substitute
a(t1) = 0 and a(t2) = a in the above equation.

In a more realistic model where the expansion rate varies, the Hubble time does
not correspond anymore to the age of the Universe. It rather sets the time-scale for the
expansion of the Universe: in a time comparable to H−1 the expansion parameter
increases noticeably. In the currently accepted accelerating ΛCDM model, tH0 is
still a good proxy for the current age of the Universe. Using Planck cosmological
parameters [67], one finds t0 = 13.817 ± 0.048Gyr against tH0 � 14.6Gyr.

2.3.5 The Hubble Radius

The Hubble radius L H is defined as the physical distance travelled by light in a
Hubble time. From Eq. 2.2, its current value is given by

L H0 ≡ c

H0
= 2998 h−1 Mpc . (2.27)
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By virtue of the velocity-distance law (v = Hr ), objects farther than a Hubble radius
recede faster than light.7 Therefore, given a constant expansion, an object located at
the centre of a sphere whose radius is equal to the Hubble radius will never be able to
interact with objects outside the sphere; a super-luminar motion is necessary for the
contrary to be true. In these conditions, the Hubble radius is the maximum extension
of the future light cone of any event in the Universe.

However, if the expansion of the Universe slows down, the Hubble sphere swells
and an increasing number of regions in the Universe will eventually enter in causal
contact. The time-scale needed for this to happen is the Hubble time. On the other
hand, if the Universe experiences an accelerated expansion, any object located inside
the Hubble sphere now will be out of it after a long enough time; as a result an
increasing number of causally disconnected regionswill be created. In an accelerating
Universe light cannot keep up with the expansion.

Because of this causal interpretation, the Hubble radius is often referred to as
horizon. Being defined as

c

H(t)
,

the horizon is a physical distance, not a comoving one. Its comoving counterpart is
obtained by dividing it by the expansion parameter:

c

a(t) H(t)
.

The above quantity, called the comoving horizon, is not to be confused with the
particle horizon, which we define below and represents the maximum distance a
particle could have travelled since the Big Bang until a certain time t .

2.3.5.1 Particle Horizon and Causality

The distance travelled by a photon from the Big Bang up to a certain time t is known
as the particle horizon. Its expression in comoving coordinates is obtained from Eq.
2.19 by setting tems = 0 and tobs = t :

χ(t) ≡
∫ t

0
c

dt

a(t)
.

Since the speed of light is the limit velocity, the particle horizon represents the
maximum comoving distance any particle could have travelled up to time t . Note
that the particle horizon is proportional to the conformal time τ appearing in
Eq. 2.16:

7Note that this behaviour does not invalidate special relativity since expansion is uniformeverywhere
in the Universe and therefore no exchange of information is possible as a result of the super-luminar
velocity.
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χ(t) = c τ (t) . (2.28)

In the following we shall use the conformal time and the comoving particle horizon
interchangeably.

At any moment t in the evolution of the Universe, the particle horizon χ(t) is
the maximum extension of the past light cone for all events in the Universe. In
particular, for an observer on Earth, the present-day particle horizon sets the size of
the observable Universe. Its value depends on the cosmological model adopted; for
a ΛCDM model, it roughly amounts to χ(t0) � 14,000Mpc. For the same model,
c t0 � 4,000Mpc . There is a subtle difference between the particle horizon χ(t)
and the Hubble horizon c/(aH): the former is a measure of the past light cone of
an event given the previous expansion history, while the latter sets the extent of its
future light cone based on the instantaneous value of H .

2.4 The Background Evolution

In order to derive the time evolution of the scale parameter a(t) we need to relate
the metric with the energy content of the Universe. This is achieved via the Einstein
equation:

Rμν − 1

2
gμν R = 8π G Tμν , (2.29)

where we have set c = 1 and

• Rμν is the Ricci tensor, defined as the self-contraction of the Riemann tensor. It
can be expressed in terms of the Christoffel symbols or affine connection,

Γ μ
αβ = gμν

2

[
∂gαν

∂xβ
+ ∂gβν

∂xα
− ∂gαβ

∂xν

]
(2.30)

as

Rμν = ∂Γ α
μν

∂xα
− ∂Γ α

μα

∂xν
+ Γ α

βα Γ β
μν − Γ α

βν Γ β
μα . (2.31)

• R = gμν Rμν is the Ricci scalar.
• Tμν is the total energy-momentum tensor, source of the gravitational field.
• G is Newton’s gravitational constant.

Inserting the metric for an FLRW Universe in comoving coordinates (Eq. 2.9), we
find that for an isotropic Universe the only non-zero components of the connection,
Ricci tensor and Ricci scalar are, respectively,
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Γ 0
i j = δi j a′ a and Γ i

0 j = Γ i
j0 = δi j

a′

a
, (2.32)

R00 = −3
a′′

a
and Ri j = δi j

(
2 a′ 2 + a a′′) , (2.33)

R = 6

[
a′′

a
+

(
a′

a

)2
]

, (2.34)

where the primes denote differentiation with respect to cosmic time, a′ = da/dt .
The left hand side of the Einstein equation is called the Einstein tensor Gμν and can
be determined using the above relations:

G00 = 3

(
a′

a

)2

, Gi j = −δi j

(
a′ 2 + 2 a a′′) Gi0 = G0i = 0 . (2.35)

The total energy-momentum tensor is given by the sum of the energy-momentum
tensors of the species in the Universe, that is,

Tμν =
∑

a

Ta,μν , (2.36)

where a = γ, b, ν, c,Λ for photons, baryons, neutrinos, cold dark matter and dark
energy, respectively. The fact that the spatial Einstein tensor is diagonal is a direct
consequence of the isotropy of theFLRW metric. The energy-momentum is forced to
be diagonal too, meaning that the cosmological fluids cannot have peculiar velocities
or anisotropic stresses. Therefore, in the simple FLRW model a fluid is characterised
only by its energy density ρ(t) and its pressure P(t).

We shall assume that the fluids that compose the Universe are barotropic, that is,
their pressure is given as an explicit function of their energy density. The relation
between P and ρ is called the equation of state of the fluid; we parametrise it via the
barotropic parameter w as

P = w(ρ) ρ . (2.37)

The energy-momentum tensor of the fluid ‘a’ is thus expressed as

Ta,00 = ρa , Ta,i j = δi j wa(ρ) ρa . (2.38)

As we shall soon see, knowing the equation of state w(ρ) of the various species is
needed to derive the expansion history of the Universe. Relativistic species (R), such
as the photons, the neutrinos and the massive species while still relativistic, have a
constant equation of state:wR = 1

3 . Non-relativistic species (M), such as the baryons
and cold dark matter after decoupling, instead, have no pressure:wM = 0. Note that,
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already in a simple mixture of matter and radiation, w ceases to be constant. In
this work we treat dark energy as a cosmological constant, which is equivalent to a
negative pressure fluid with constant equation of state: wΛ = −1.

2.4.1 Friedmann Equation

The time-time component of the Einstein equations is called theFriedmann equation,

H2 = 8π G

3
ρ − k

a2 , (2.39)

where H = a′/a is the Hubble parameter and ρ = ∑
ρa is the total energy density

of the Universe. We have included the curvature contribution, k, to highlight the fact
that in a flat universe (k = 0) the total density always equals the critical density ρcrit,
defined as

ρcrit ≡ 3 H2

8π G
.

The critical density depends on time; its present-day value can be easily computed
in terms of the Hubble constant:

ρcrit(t0) = 1.878 h2 × 10−26 kg

m3 (2.40)

= 2.775 h−1 × 1011
M�(

h−1 Mpc
)3 (2.41)

= 10.54 h2
GeV

m3 (assuming c = 1) . (2.42)

This is an astonishingly small number: with a density of 1.27 kg/m3, air is around
1026 times denser than the critical density. However, since 1011–1012 solar masses
is close to the mass of a typical galaxy and 1Mpc is the order of magnitude of the
typical galaxy separation, the Universe cannot be too distant from the critical density.

The density of the species normalised to the critical density of the Universe is
called the density parameter:

Ωa(t) ≡ ρa(t)

ρcrit(t)
. (2.43)

Using the information on the equations of state of the various species (Sect. 2.4.3),
the Friedmann equation can be recast in terms of the present-day value of the density
parameters, Ωa0 ≡ Ωa(t0), as
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H2 = H2
0

[
ΩM0

a3 + ΩR0

a4 + Ωk0

a2 + ΩΛ0

]
, (2.44)

where H0 ≡ H(t0) and

ΩM0 = ρM(t0)

ρcrit(t0)
, ΩR0 = ρR(t0)

ρcrit(t0)
, Ωk0 = − k

a2
0 H2

0

, ΩΛ0 = Λ

3 H2
0

.

(2.45)

(In this thesis, cosmological quantities indexed by a ‘0’ are evaluated today, X0 ≡
X (t0)).

2.4.2 Acceleration Equation

In an FLRW Universe, the spatial components of the Einstein equation reduce to a
single expression, the acceleration equation:

a′′

a
= −4π G

3
(ρ + 3 P) , (2.46)

where P = ∑
Pa is the combined pressure of all the species. The acceleration

equation holds also in a curved Universe, where k �= 0.
The pressure and the density appear in the acceleration equation on equal grounds:

they both contribute to increasing the gravitational attraction and thus decelerate the
cosmic expansion. This might seem counter intuitive, as we are used to thinking of
pressure as something that powers expansive processes such as explosions. This is
indeed true if a force is supplied bymeans of a gradient in the pressure field; however,
in a homogeneous Universe, P is the same everywhere and no pressure forces are
possible.

2.4.3 Continuity Equation

The evolution of the matter species is determined by the conservation of the energy
and momentum,

T μ
ν;μ = ∂μT μ

ν + Γ μ
αμT α

ν − Γ α
νμT μ

α = 0 . (2.47)

Due to isotropy, the only meaningful equation is ν = 0, the continuity equation:

ρ′ + 3 H (ρ + P) = 0 , (2.48)
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which, in terms of the barotropic parameter, reads

ρ′ + 3 H ρ (w + 1) = 0 . (2.49)

The continuity equation applies separately to each species as, for the epochs of
interest, their particle number is conserved and their energy exchange is negligible.
Then, for a fluid ‘a’ with a constant equation of state, P = wρ, the continuity
equation can be solved to yield

ρa ∝ a− 3 (1+wa) . (2.50)

For radiation (w = 1/3), cold matter (w = 0) and the cosmological constant (w =
−1), the density is thus given by

ρR ∝ a−4 , ρM ∝ a−3 , ρΛ = constant . (2.51)

In the more general case of a time-dependent equation of state, w = w(a), one has
to solve the following integral:

ρ ∝ exp

(
−3

∫ a

0

dã

ã

[
1 + w(ã)

])
. (2.52)

2.4.4 Expansion History

The expansion history of a universe filled by a single species with constant equation
of state can be inferred analytically. This is achieved by inserting the general equation
of state (Eq. 2.50) into the Friedmann equation (Eq. 2.39) and solving for a(t). If the
curvature k is neglected, we have that [24]

a ∝ t2/(3 (1+w)) ∝ τ2/(1+3w) , H ∝ t−1 ∝ a−3(1+w)/2 , w = constant �= −1 ,

a ∝ t2/3 ∝ τ2 , H ∝ t−1 ∝ a−3/2 , w = 0 (cold matter) ,

a ∝ t1/2 ∝ τ , H ∝ t−1 ∝ a−2 , w = 1/3 (radiation) ,

a ∝ eH t ∝ 1/|τ | , H = constant , w = −1 (cosmol. constant) .
(2.53)

Recall that t is the cosmic time and τ is the conformal time, dτ = dt/a.
In the general case of a mixture of fluids, one has to rely on the full Friedmann

equation (Eq. 2.44):

1

a

da

dt
= H0

√
Ω M0

a3 + Ω R0

a4 + Ωk0

a2 + ΩΛ0 , (2.54)

which yields a time integral that is easily solved for a(t) once the cosmological
parameters are specified. These have beenmeasured to high accuracy. For the Hubble



2.4 The Background Evolution 27

constant, H0 = 100 h km/s/Mpc, and the density parameter of matter, Ω M = Ωb +
Ωc, we adopt the best fit values obtained by the Planck experiment [67],

h = 0.6780 ± 0.0077 , Ωb0 h2 = 0.02214 ± 0.00024 , Ωc0 h2 = 0.1187 ± 0.0017 ,

(2.55)

at 68% confidence level. The density parameter of the photon fluid is determined by
the value of the CMB temperature [30],

T0 = 2.725 ± 0.001K at 95% confidence level , (2.56)

which, for a blackbody spectrum, yields

Ωγ0 h2 = 2.49 × 10−5 and Ων0 h2 = 1.69 × 10−5 , (2.57)

where we have used the fact that the massless neutrino density is roughly equal to
0.68Ωγ because they are fermions rather than bosons and are at a lower temperature.
Finally, we assume a flat Universe (Ωk = 0) so that the density of dark energy can
be determined as

ΩΛ0 = 1 − Ω R0 − Ω M0 = 0.694 . (2.58)

In Fig. 2.1 we show the evolution of the scale factor obtained for the above para-
meters. Depending on the species that is the most abundant, we identify three epochs
in the cosmic history: the radiation dominated era (a ∝ τ ), the matter domination

Fig. 2.1 Cosmic history of theUniverse. The blue curve is the scale factor as a function of conformal
time, obtained by solving the Friedmann equation in Eq. 2.54. Today corresponds to a = 1 and τ =
14,200Mpc. The three black dot-dashed curves are the density parameters of radiation (Ω R), cold
matter (Ω M) and dark energy considered as a cosmological constant fluid (ΩΛ). The intersections
between the three Ω’s naturally split the cosmic history in three epochs: the radiation domination
era (a ∝ τ ), the matter domination era (a ∝ τ2) and the dark energy domination era (a ∝ 1/τ )
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era (a ∝ τ2) and the dark-energy dominated era (a ∝ 1/τ ). The transitions between
the three eras take place at

aeq = Ω R0

Ω M0
= 2.96 × 10−4 and aΛ = Ω M0

ΩΛ0
= 0.44 , (2.59)

which correspond, respectively, to zeq = 3380 and zΛ = 1.26.

The Big Bang If we inspect the acceleration equation Eq. 2.46,

a′′

a
= −4π G

3
ρ (3w + 1) , (2.60)

we see that in the early Universe when radiation dominates (w = 1/3 > 0), the
second derivative of a(t) is negative; that is, a(t) is a concave curve. Thus, we expect
the scale factor of the Universe to cross the a = 0 line in a finite amount of time;
the moment when this happens is called the Big Bang.8 The Big Bang represents a
singularity in the coordinates (the spatial metric vanishes for a = 0), in the Ricci
scalar (Eq. 2.34) and in the density (ρR ∝ a−4).

2.5 The Cosmic Microwave Background

Soon after the Big Bang, the particle density is so high that the species interact at a
rate much higher than the expansion rate, with all kinds of particle-antiparticle pairs
being created and annihilated. As a result of these continuous collisions, particles of
different species are in thermal equilibrium, i.e. they can be considered to be part of
a single cosmic plasma with a common temperature and average kinetic energy.

Photons in thermal equilibriumobey a blackbody spectrum, which is characterised
by a simple relation between the energy density ργ and the ambient temperature T ,

ργ = α T 4 , (2.61)

where the proportionality constant is the Stefen-Boltzmann constant times 4/c, that
is,α = π2k4B/(�3c3). Since the energy density of radiation scales with a−4, it follows
that the temperature of the cosmic plasma scales as a−1:

T = 2.725K

a
= (z + 1) 2.35 × 10−4 eV , (2.62)

wherewe have used the current CMB temperature as normalisation and, in the second
equality,wehave assumedunitswhere theBoltzmann constant kB = 11,605−1 eV/K

8The name was invented during a radio interview by Fred Hoyle, the main supporter of a steady
state Universe, as a mockery of the idea of an expanding Universe. Refer to the following URL for
the transcript: http://www.joh.cam.ac.uk/library/special_collections/hoyle/exhibition/radio/.

http://www.joh.cam.ac.uk/library/special_collections/hoyle/exhibition/radio/
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is equal to one. To give an idea of the scales involved, we can use the fact that a ∝ t1/2

in the radiation dominated era to write

T � 1.5 × 1010 K

√
1s

t
� 1.3MeV

√
1s

t
, (2.63)

Thus, one second after the Big Bang, the average photon has an energy of ∼1MeV
while, after 50,000 years, its energy has dropped to 1 eV.

In an expandingUniverse, however, thermal equilibrium does not last forever. The
particles of a given species interact with a rate proportional to their number density,
which decays as a−3. The expansion rate H , on the other hand, never decays faster
than a−3/2 (Eq. 2.53), meaning that, eventually, it will exceed the interaction rate.
As a result, the thermal equilibrium cannot be maintained anymore and the particle
species is said to have decoupled from the cosmic plasma. As we shall see in the next
sections, the photons decouple at a redshift of z � 1100, soon after matter-radiation
equality. Then, why do we speak of “temperature of the photons”, if they are not
in thermal equilibrium? The answer is simple: the cosmic expansion preserves the
blackbody spectrum of the photon fluid even when it is out of thermal equilibrium.
Due to its E/T dependence, the distribution function is frozen as it redshifts into
a similar distribution with a lower temperature proportional to 1/a (we will come
back to this point in Sect. 4.3.1). Thus, after decoupling, the photon fluid possesses
an effective temperature rather than a thermodynamical one.

The presence of this blackbody, isotropic background radiation of cosmic origin is
a definite prediction of the Big Bang model. The first measurement that was directly
linked [21] to the cosmic background radiation was made serendipitously in 1963 by
Penzias and Wilson [65], who measured an isotropic excess temperature of around
3.5K. Since then, many experiments were performed to measure the present-day
CMB spectrum over different wavelengths. The most accurate measurement of the
CMBspectrumwasmade by the FIRASexperiment, launched in 1989 on board of the
NASA Cosmic Background Explorer (COBE). The spectrum measured by FIRAS
[30, 54] is blackbody to high accuracy and is shown in Fig. 2.2. The blackbody
form of the CMB spectrum has been confirmed by several other experiments for
wavelengths outside the millimetre range, as shown in Fig. 2.3. The measured CMB
temperature, T0 = 2.725 ± 0.001K [30], implies that the average CMB photon has
the following properties:

frequency ∼ 160GHz , wavelength ∼ 2mm , energy ∼ 0.7meV . (2.64)

2.5.1 Compton Scattering

After the temperature of the cosmic plasma has dropped below the electron mass,
T 
 511 keV, the only process that maintains the photons in thermal equilibrium are
the rapid collisions with the free electrons. In general, the scattering of a photon by

http://dx.doi.org/10.1007/978-3-319-21882-3_4
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Fig. 2.2 The cosmic microwave background spectrum as measured by FIRAS. The error bars have
been multiplied by 400 to make them visible; the line represents the best-fit blackbody spectrum
at T = 2.725K. Source Data from FIRAS [30], image courtesy of Edward L. Wright from the
website http://www.astro.ucla.edu/~wright/cosmo_01.htm

Fig. 2.3 The CMB blackbody spectrum as confirmed by measurements over a broad range of
wavelengths. Credit: Fig. 19.1 of Ref. [61], reproduced with permission of Springer Publishing
(http://pdg.lbl.gov/1998/contents_large_sports.html); coloured additions courtesy of Karl-Heinz
Kampert (http://astro.uni-wuppertal.de/~kampert/Cosmology-WS0607.html)

http://www.astro.ucla.edu/~wright/cosmo_01.htm
http://pdg.lbl.gov/1998/contents_large_sports.html
http://astro.uni-wuppertal.de/~kampert/Cosmology-WS0607.html
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a free charged particle is called Compton scattering. It is an inelastic process, as an
incident photon deflected by an angle θ experiences awavelength shiftΔλ ≡ λ′−λ of

Δλ = λc (1 − cos θ) , (2.65)

where λc ≡ h/(mc) is the Compton wavelength of the target particle, which is
assumed to be at rest. In terms of the photon’s energy (Eγ = hc/λ), the formula
translates to

ΔEγ

E ′
γ

= (cos θ − 1)
Eγ

m c2
, (2.66)

which means that the fractional change in the photon’s energy is negligible as long
as its energy is much smaller than the target’s mass. The condition definitely applies
to our context, where we consider temperatures of the order of the eV and the target
particles are electrons with mec2 = 511 keV.9 In this limit, the process is elastic and
is called Thomson Scattering.

The total cross-section for the Thomson scattering is given by [22]

σT = 8π

3
α2 λ2

c = 8π

3

(
α�

mc

)2

(2.67)

= 6.652 × 10−29m2 (2.68)

= 4.328 × 10−17eV−2 (assuming h = c = 1 ) , (2.69)

whereα � 1/137 is the fine structure constant and in the last equalities we have used
the electron mass mec2 = 511 keV. It is important to note that the cross section is
inversely proportional to the squared mass of the target particle. Therefore, provided
that protons and electrons have the same number density, photon-electron collisions
(mec2 = 511 keV) are severalmillion timesmore likely that photon-proton collisions
(m pc2 = 938GeV). For this reason,we shall ignore the latter and focus on the former.

2.5.1.1 Interaction Rate and Optical Depth

Here we introduce the interaction rate κ̇ and the optical depth κ that will be useful
in the following chapters to derive and numerically solve the Boltzmann equation.

The cross-section σ associated with a scattering process is defined so that

d N = n σ dx (2.70)

9Note that, in the context of the cosmological perturbations, even this tiny energy transfer has to be
considered, as we shall see in Sect. 4.5.2.

http://dx.doi.org/10.1007/978-3-319-21882-3_4
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is the average number of scatterings the incident particle undergoes when covering
a distance of dx in a material with a density n of scattering targets. Since d N/dx
is the average number of scatterings per unit of length, its inverse is the mean free
path:

λ = 1

n σ
, (2.71)

i.e. the average distance a particle covers between two consecutive scatterings. If the
velocity dx/dt of the incident particle is known, then it is straightforward to obtain
the interaction rate d N/dt , that is the average number of scatterings per unit of time.
For a photon,

d N

dt
= n σ c . (2.72)

The inverse of the interaction rate is the average timeelapsedbetween twoconsecutive
scatterings; we shall call this quantity mean free time. For a photon it is given by:

tγ = 1

n σ c
. (2.73)

In the context of the cosmic microwave background, the optical depth or optical
depth, κ, is the average number of Thomson scatterings a photon undergoes from
the time t up to now,

κ(t) =
∫ t0

t
dt ′ ne σT c . (2.74)

The optical depth is a monotonically decreasing function of time; its time derivative
is just the interaction rate with a negative sign

dκ

dt
= −ne σT c . (2.75)

In terms of conformal time, dτ = dt/a, the interaction rate reads

κ̇ = dκ

dτ
= −a ne σT c . (2.76)

2.5.2 Recombination and Decoupling

The frequent Thomson scatterings between the photons and the electrons before
recombination keep the two fluids in thermal equilibrium. Together with the protons,
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which are tightly coupledwith the electrons via Coulomb scattering, the three species
form a unique fluid with a common temperature.

The photons are maintained in thermal equilibrium as long as their interaction
rate with the electrons, ne σT c, exceeds the cosmic expansion rate, H . If we assume
that the electrons remain free throughout cosmic evolution, such decoupling happens
only at a redshift of z ∼ 40 [22]. The electrons, however, do not stay free as it is
energetically favourable for them to combine with the free protons to form hydrogen
atoms via the reaction

e− + p −→ H + γ (13.6 eV) . (2.77)

In the early Universe, the energy and the density of photons are so high that the
hydrogen atoms thus formed are rapidly disrupted via the inverse reaction; thus,
most of the electrons are free and the abundance of neutral hydrogen is very low. As
the Universe expands and cools, however, more and more atoms are able to form and
endure in a process that is called recombination.

During recombination, the number density of free electrons quickly drops and
so does the rate of photon scatterings, |dκ/dt | = neσT c. When the interaction rate
is surpassed by the expansion rate, the photon fluid goes out of equilibrium and
decouples from the electron fluid. As a result, the photons can stream freely in a
now transparent Universe. This process is called decoupling. As we shall see below,
decoupling happens during recombination.

Recombination is a complicated process that involves non-equilibrium physics
and is usually treated using the Boltzmann formalism. In principle, to obtain the
ionisation history of the Universe requires solving a system with 300+ differential
equations, one per energy level of the hydrogen atom [73]. In practice, however, one
can model the hydrogen atom as having effectively three energy levels: ground state,
first excited state and continuum [63] (see also Sect. 5.3.4). Numerical codes such as
RECFAST [73] start from this 3-level approximation to compute the ionisation history
of the Universe in less than a second with sub-percent accuracy over a wide range of
redshifts. The codeHyRec [4] implements an evenmore accurate numerical treatment
of recombination where four energy levels are considered that is mathematically
equivalent to the multi-level approach [3].

However, it is still possible to make general statements about recombination and
decoupling without resorting to a numerical computation, and we shall do so in
the following two subsections. One of the major simplifications that we shall adopt
is to assume that all the protons are in hydrogen nuclei, thus ignoring the ∼25%
contribution in mass that is expected from the helium nuclei. Since about 1 proton
out of every 8 is in a Helium nucleus, this results in an error of roughly 10%.

http://dx.doi.org/10.1007/978-3-319-21882-3_5
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2.5.2.1 Recombination

The quantity of interest is the free electron fraction or ionisation fraction,

xe ≡ ne

ne + nH
, (2.78)

where ne, n p and nH are respectively the number densities of free electrons, free
protons and neutral hydrogen atoms; note that, since the Universe is globally neutral,
ne = n p. If we neglect the small number of electrons and protons in Helium nuclei,
the denominator is equal to the number density of baryons: ne + nH � nb.

Before recombination begins, the reaction e + p ←→ H + γ is in equilibrium
and we use the Saha ionisation equation [22, 24] to describe it:

x2e
1 − xe

= 1

ne + nH

(
me T

2 π

)3/2

e−ε/T . (2.79)

If we approximate ne + nH � nb and multiply and divide the right hand side by the
blackbody density of the photons, nγ = 2/π2 T 3 ζ(3), where ζ(3) � 1.2021, we
obtain

x2e
1 − xe

� 0.265
nγ

nb

(me

T

)3/2
e−ε/T . (2.80)

The nγ/nb factor is the photon to baryon ratio, which is constrained by observations
[39] to be equal to∼1.64×109, while ε = 13.6 eV is the hydrogen ionisation energy.

The function xe(z) from the Saha equation is shown in Fig. 2.4. Due to the pres-
ence of the exponential term, we see that recombination is a sudden process. If
we conventionally set the recombination temperature Trec as the temperature when
xe(Trec) = 0.5, the Saha equation yields

Trec = 0.32 eV = 3700K , and zrec = 1360 . (2.81)

Because of the steep slope of the xe curve, these values are not particularly sensitive
to the choice of xe(Trec). It should be noted that Trec is considerably smaller than
the energy needed to ionise an hydrogen atom. The reason is that the large value
of nγ/nb pushes xe to unity and significantly delays recombination; the photons
are so abundant that, even at sub-eV energies, there are still enough of them in the
high-energy tail of the Planck distribution to keep the Universe ionised [24].

The Saha equation is meant to be accurate only when recombination happens in
quasi-equilibrium. In Fig. 2.4, we show the Saha solution together with the “exact”
ionisation history as obtained from solving the Boltzmann equation. As expected,
the Saha approximation is accurate in determining the redshift when recombination
starts but it fails at lower redshifts when the system goes out of equilibrium. It should
be noted that the xe curve flattens at low redshift, as if recombination at some point
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Fig. 2.4 Ionisation history of recombination. The free electron fraction is plotted against redshift
and temperature. Recombination starts when xe begins to drop and is a quick process. The Saha
approximation (Eq. 2.80) correctly describes the beginning of recombination, but fails when the
average energy of the photons becomes too small to maintain the e + p ↔ H + γ reaction in
equilibrium. Note that the exact solution does not drop to zero but, due to the reaction “freezing”
when σT xe nb c 
 H , it asymptotes to xe � 10−3. Source Dodelson [22, p. 72], reproduced with
permission from Elsevier Books

had become ineffective in binding electrons and protons. This is indeedwhat happens
after the recombination rate drops below the expansion rate, so that recombination
“freezes” and the ionisation fraction remains constant.

2.5.2.2 Decoupling

Two particle species decouple from each other when their interaction rate drops
below the cosmic expansion rate. Roughly speaking, if a photon scatters an electron
less than once in an expansion time, equilibrium between the two species cannot
be maintained. As we mentioned above, all the species are doomed to decouple at
some point due to the expansion rate decreasing slower than any interaction rate.
For the photons, the process of recombination anticipates this moment by suddenly
removing most of the free electrons from the Universe.

We estimate the redshift of photon decoupling by equating the rate of photon
scatterings with the cosmic expansion rate:

ne(zdec)σT c = H(zdec). (2.82)

Provided that we neglect the helium nuclei, we can express the fraction of free
electrons as

ne = xe nb = xe
Ωb0 ρcrit

m p
(1 + z)3 .
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where we have used nb = ρb0/m p a−3. The Hubble parameter is given by the
Friedmann equation Eq. 2.44,

H2 = H2
0 (1 + z)3 Ω M0

(
1 + 1 + z

1 + zeq

)
, (2.83)

where we have neglected the cosmological constant and the curvature because they
were insignificant at the high redshifts considered. By enforcing the condition in Eq.
2.82 we obtain

xe (1 + zdec)
3/2

(
1 + 1 + zdec

1 + zeq

)−1/2

=
[

m p H0 Ω
1/2
M0

c ρcrit σT Ωb0

]
. (2.84)

Inserting the cosmological parameters considered in Sect. 2.4.4, the term in the right
hand side evaluates to 236 and zeq � 3380. The ionisation fraction xe needs to be
computed numerically (Saha’s equation is of no use when xe is small) and we do so
by using RECFAST [73]. This results in the values zdec � 900 and xe(zdec) � 10−2,
which imply that photon decoupling takes place during recombination (recombina-
tion ends when the ionisation fraction reaches the freeze-out value of xe � 10−3, see
Fig. 2.4). It is interesting to note that if recombination did not happen the photons
would have decoupled only at z � 40; this can be seen by setting xe = 1 in the above
equation.

In Sect. 5.5 (and inSONG) we shall use amore sophisticatedmethod to determine
the time of photon decoupling, making use of the visibility function, the probability
that a photon last scattered at a given redshift. In particular, we shall see that the
visibility function peaks at zdec � 1100, a redshift slightly higher than what we
have inferred by enforcing ne σT c = H . For a standard ΛCDMmodel, a redshift of
zdec � 1100 correponds to

χ (zdec) � 280Mpc , t (zdec) � 380, 000 yr , T (zdec) � 0.26 eV . (2.85)

The three-dimensional spatial surface identified by the time of decoupling is called
the last scattering surface (LSS). Note that the comoving particle horizon at the
LSS, χ(zdec) � 280Mpc, is roughly 80 times smaller than the one today, χ0 �
14200Mpc.

Weconclude this section bynoting that the electrons remain coupled to the photons
even after recombination ends and the photons go out of thermal equilibrium. That
is, the photons decouple from the electrons but not viceversa. This happens because
the mean free path of an electron is much shorter than that of a photon, for the simple
reason that there are many more photons than electrons. Equivalently, the interaction
rate of the free electrons (σT nγ c) is much larger than that of the photons (σT xe nb c)
because nγ/nb 
 1. Therefore, the temperature of the electrons does not decay as
1/a2, as it would be expected from a thermal fluid of massive particles, but follows
that of the CMB until low redshifts.

http://dx.doi.org/10.1007/978-3-319-21882-3_5
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2.6 Cosmic Inflation

The standard hot Big Bang model introduced in the previous sections succesfully
accounts for the observed expansion of the Universe (Sect. 2.4.4), for the blackbody
spectrum of the cosmic microwave background (Sect. 2.5) and for the abundances of
the light nuclei created via nuclesynthesis (see, for example Refs. [22] and [24]). The
model, however, is unable to answer several important observational and theoretical
questions that we list below.

• The Big Bang singularity The most obvious issue is the presence of a a sin-
gularity in the finite past, the Big Bang (Sect. 2.4), when the curvature and the
density of the Universe are divergent.

• The Horizon problem Any sign of correlations between regions of the Universe
separated by a distance larger than the particle horizon cannot be explained by
the standard model (Sect. 2.3.5). This is, however, what we observe: the cosmic
microwave background has the same temperature with a precision of a part over
105 regardless of the direction of observation. The particle horizon at decoupling
was 80 times smaller than the current value (Sect. 2.5.2.2), meaning that we would
expect to observe fluctuations of order unity in the temperature of the CMB sky on
angular scales of about 1◦. The fact that we do not observe such fluctuations poses
a causality problem that is referred to as the horizon problem: how can regions of
the Universe be so similar if they did not have enough time to interact?

• The Flatness problem The Friedmann and acceleration equations (Eqs. 2.44
and 2.46) can be combined to obtain an evolution equation for the total density
parameter Ω(t) ≡ ρ/ρcrit = 1 − k/(a2H2):

d

dt

[
Ω(t) − 1

] = [
Ω(t) − 1

]
Ω(t) (1 + 3w) . (2.86)

This equation shows that, for a Universe with an equation of state of w > −1/3,
such as in a mixture of matter and radiation, the solution Ω(t) = 1 is dynamically
unstable; in fact, the sign of the derivative is positive for Ω(t) > 1 and negative
for Ω(t) < 1 so that Ω(t) will always evolve away from unity. This means
that, for the Universe to be close to the critical density today as observations
suggest, it had to be much more so in the past. For example, for a current value
of 0.1 < Ω0 < 2, it can be shown [24] that |Ω − 1| ≤ 10−15 at nucleosynthesis
(z � 109) and |Ω−1| ≤ 10−60 at thePlanck time (tP = √

�G/c5 � 5.4×10−44 s).
The smallness of these values poses a fine-tuning issue that is called the flatness
problem: how can the Universe be still so close to the critical density?

• The structure problem We observe tiny anisotropies in the CMBwith an ampli-
tude of ΔT/T ≈ 105 and, more evidently, the observed Universe is highly inho-
mogeneous with a strongly clustered distribution of galaxies on small scales. By
which mechanism was this structure formed?

These shortcomings of the hot Big Bang model are all connected to the initial
conditions of the Universe. In this section we shall see that, apart from the Big Bang
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singularity, they can be solved by postulating the existence of a phase of accelerated
expansion in the early Universe, the so-called cosmic inflation. We first describe in
Sect. 2.6.1 how inflation solves the aforementioned cosmological problems. Then,
in Sect. 2.6.2 we show that the inflationary expansion can be achieved if the early
Universe was dominated by a slowly-evolving scalar field, the so-called inflaton. In
section Sect. 2.6.3 we briefly discuss how inflation generates the density fluctuations
that have seeded the observed structure on large scales. In particular, we shall focus
on the possibility that these primordial fluctuations are non-Gaussian, thus opening
a window on interesting new physics. (Note that to do so we use the concepts of
cosmological perturbations and n-point functions, which are described only in the
next chapter.)

In this section we shall only mention the fundamental properties of inflation.
A detailed description of the topic can be found in several textbooks. For exam-
ple, Chap. 6 of Dodelson [22] provides a pedagogical introduction to inflation while
Liddle and Lyth [47] treat inflation from a more advanced point of view; we refer
the reader to these references for the omissions of this section. Technical reviews
focussed on the generation of non-Gaussianity during inflation can be found in
Refs. [8, 15].

2.6.1 The Accelerated Expansion

The mechanism of cosmic inflation [2, 33, 50, 77] consists of postulating the exis-
tence of a period in which the Universe was much smaller than what one would infer
based on the standard Big Bang model. In this period, the same regions of the Uni-
verse that we see today as separate and independent, were actually in causal contact.
In order to link this “small universe” with the size of the universe today, one needs
to postulate a phase in between where the Universe has expanded much quicker than
the normal rate; hence the name cosmic inflation. In Fig. 2.5 we explain this process
in terms of a conformal diagram of cosmic inflation.

Cosmic inflation solves the horizon problem by connecting regions that, in a
standard Big Bang model, would be causally disconnected. For this to happen, the
comoving Hubble radius, which we defined in Sect. 2.3.5 to be c/(aH), at the
beginning of inflation had to be larger than the largest scale observable today, that
is the current comoving Hubble radius. Since after inflation the horizon grows with
time (Sect. 2.4.4), it follows that during inflation it has to decrease; the expansion
during inflation must therefore satisfy

d

dt

[
1

aH

]
< 0 ⇒ d2a

dt2
> 0 , (2.87)

that is, the expansion had to be accelerated. It is important to remark that it is not the
accelerated expansion that solves the horizon problem: the causal connection (i.e. the
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Fig. 2.5 Conformal diagram of inflation. The y-axis is conformal time, while the x-axis is distance.
Our vantage point is today (τ0), on the x = 0 vertical line. The standardBigBangmodel predicts that
the dynamical evolution of the Universe started at τ = 0 (green horizontal line). In this picture, the
past light cones of two distant CMB patches (small orange triangles) do not intersect, because the
particle horizon at the time where the CMB is formed (horizontal line at τrec) is much smaller than
τ0. Therefore, we expect order-unity differences in the CMB temperature on large scales. However,
we observe the CMB today to be almost perfectly isotropic on all scales; this is the horizon problem.
In the inflationary scenario, the horizon problem is solved by postulating the existence of a period
where the two CMB patches were in casual contact (big orange triangle). This is achieved by
extending the time axis below τ = 0 in order to allow the past-light cones of the two CMB patches
to intersect. A period of accelerated expansion, cosmic inflation, is needed in order to bridge the
gap between the “small Universe” where the casual contact was established, and the large value
of today’s particle horizon. In this context, τ = 0 is not a singularity but an apparent Big Bang,
as it marks the end of inflation and the decay of the inflaton (Sect. 2.6.2) into a thermal mix of
elementary particles. The actual Big Bang singularity sits at τ → −∞. Source Courtesy of Daniel
Baumann, from Fig. 9 of Baumann [10]

Universe becoming uniform) is established before inflation and what inflation does
is to put those regions out of reach again, because this is how we see them today.

The accelerated expansion, however, does solve the flatness problem, because
it washes out any curvature, stretching the geometry of the Universe so much that
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it becomes spatially flat [38]. More quantitatively, we see from the acceleration
equation (Eq. 2.46),

a′′

a
= −4π G

3
(ρ + 3 P) , (2.88)

that the Universe undergoes an accelerated expansion only if ρ + 3 P < 0 or, in
terms of the barotropic parameter, if w < − 1

3 . If we inspect Eq. 2.86, we realise that
this is the same condition needed to make Ω(t) = 1 an attractor solution; that is, if
cosmic inflation lasted long enough, the flatness problem would be solved without
the need to fine tune the initial curvature. In fact, we can ask the question: how many
times must the Universe double in size during inflation to justify the fact that today’s
Universe is so close to the critical density? The answer comes from the Friedmann
equation for a constant equation of state (Eq. 2.44):

|Ω(t) − 1| = 3 |k|
8π G a2 ρ

∝ a1+ 3w . (2.89)

If we assume that during the inflationary phase w = −1, then |Ω(t) − 1| decreases
like a−2; to bring |Ω(t) − 1| to today’s value of order unity from ∼10−60 at the
Planck time would require that

N ≡ ln

(
aend
aini

)
� 30 ln(10) � 70 , (2.90)

where N is called the number of e-foldings and aini and aend mark the beginning and
the end of inflation, respectively.

Cosmic inflation provides a solution to the structure problem that is rooted in
quantum mechanics; we postpone this discussion until Sect. 2.6.3.

2.6.2 Single Field Model

Inflation is a mechanism rather than a theory of the early Universe, a phase of accel-
erated expansion before which the comoving horizon was larger than the largest
scale observable today. We have seen that to realise the accelerated expansion it
is necessary for the matter content of the Universe to have an equation of state of
w < − 1

3 , which corresponds to a negative pressure, ρ+3 P < 0. Neither cold matter
(w = 0) nor radiation (w = 1

3 ) are suitable candidates as they have positive pressure;
the cosmological constant (w = −1) can produce an accelerated expansion but is
completely negligible in the early Universe, so it cannot be responsible for inflation.

Let us see how the presence of a scalar field, which we call the inflaton φ, can
trigger the mechanism of cosmic inflation. The scalar field Lagrangian is given by
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Lφ = − 1

2
∂μ φ ∂μ φ − V (φ) , (2.91)

where V (φ) is the potential for the field, which we assume to be positive. In principle
L should include terms to account for the interactions with the other species, but we
postulate that they are negligible during inflation. The pressure and the energy density
of the inflaton field can be inferred from its energy-momentum tensor:

Tμν = ∂μ φ ∂ν φ − 1

2
gμν ∂α φ ∂α φ − gμν V (φ) . (2.92)

Here we assume that the Universe is homoegenous, so that gμν is the conformal
FLRW metric in Eq. 2.16 and the spatial gradients of φ vanish. It follows that

ρφ = −T 0
0 = 1

2
φ′ 2 + V (φ) and Pφ = 1

3
T i

i = 1

2
φ′ 2 − V (φ) .

(2.93)

where φ′ = dφ/dt . The expression for the energy density is reminiscent of that
of a particle moving in a potential V with velocity φ′ and kinetic energy 1

2 φ′ 2. In
this picture, a field with negative pressure is one with more potential energy than
kinetic. In the limit where the inflaton field is constant (φ′ = 0), its kinetic energy
vanishes and we have a constant energy density: ρφ = V (φ) = constant. If we
assume that the energy density and pressure of the Universe are dominated by the
inflaton’s contribution, the expansion rate of the Universe is determined by ρφ via
the Friedmann equation Eq. 2.39:

H = 1

a

da

dt
=

√
8π G ρφ

3
= constant , (2.94)

It follows that a Universe whose dynamical evolution is determined by a constant
scalar field expands at an exponential rate: a ∝ eH t , where H ∝ √

ρφ constant.
Inflation is therefore realised.

The Friedmann equation (Eq. 2.39) during inflation reads

H2 = 1

3m2
P

(
1

2
φ′ 2 + V (φ)

)
, (2.95)

where we have introduced the Planck mass mP ≡ (8πG)−1/2 � 2.4 × 1018 GeV.
The Friedmann and acceleration (Eq. 2.46) equations can be combined to yield the
background evolution of the inflaton,

φ′′ + 3 H φ′ + V,φ = 0 , (2.96)

where the primes denote derivatives with respect to cosmic time t and V,φ = ∂V/∂φ.
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Fig. 2.6 Example of a slow-roll inflationary potential.As long as the inflaton’s kinetic energy, 12 φ′ 2,
is negligible with respect to its potential energy, V (φ), the Universe expands in an accelerated
fashion; this limit corresponds to the constant part of the potential. When 1

2 φ′ 2 � V (φ), the
acceleration can no longer be sustained and inflation ends. When the inflaton reaches the minimum
of the potential, reheating occurs and the energy density of the inflaton is converted into a thermal
mix of elementary particles. Source Courtesy of Daniel Baumann, from Fig. 10 of Baumann [10]

2.6.2.1 The Slow-Roll Condition

We have just proved that a scalar field can drive inflation as long as it does not evolve
significantly, φ′ 2 
 V (φ). The issue now is to determine the potential V (φ) that
keeps φ nearly constant for the number of e-foldings necessary to solve the horizon
and flatness problems. Most models of inflation satisfy the slow-roll condition [2,
50], whereby the inflaton stays nearly constant by slowly rolling down a potential
that is almost flat. We show an example of a slow-roll potential in Fig. 2.6. Because
inflation cannot last forever, the potential needs to have a minimum; as time goes
on, the inflaton approaches this minimum and, due to the increased slope of the
potential, it starts to evolve faster. Inflation comes to an end when the kinetic energy
1
2 φ′ 2 grows to be of the order of the potential V (φ). When the inflaton eventually
reaches the minimum of the potential, the coupling with the other fields becomes
significant so that it decays into a thermal mix of elementary particles [24], leading
to a radiation dominated universe in a process called reheating. In practice, we can
think of the reheating process after inflation as the moment when the hot Big Bang
occurs, in which matter and radiation as we know them start to be created.

Many different potentials can be devised that satisfy the slow-roll condition. It
is customary to parametrise them with two variables that vanish in the limit where
φ is constant. The first slow-roll parameter η quantifies the variation in the Hubble
factor, and is related to the first derivative of the inflaton potential. It is defined as

ε ≡ d

dt

(
1

H

)
= − H ′

H2 ≈ m2
P

2

(
V,φ

V

)2

. (2.97)
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Whenever the inflaton field is constant, φ′ = 0, then also H ∝ √
ρφ is constant (Eq.

2.94) meaning that the ε parameter vanishes. In fact, the slow-roll condition requires
ε 
 1, an assumption that implies an approximate time-translation invariance of the
background. On the other hand, in the radiation dominated era ε = 2; in fact, one can
define the inflationary epoch as ε < 1. The second slow-roll parameter, η, is directly
related to the second derivative of the potential,10

η ≡ m2
P

(
V,φφ

V

)
. (2.99)

Again, in the case of a constant field or potential this parameter vanishes. As we shall
see below, the most important predictions of inflation can be recast in terms of the
slow-roll parameters ε and η.

2.6.3 Primordial Fluctuations

Cosmic inflation was originally proposed to solve the horizon and flatness prob-
lems [2, 33, 50, 77], but it was soon realised that it also provided a mechanism to
generate primordial density fluctuations [7, 37, 59, 78]. The idea is that the struc-
ture that we observe today, such as the CMB anisotropies and the galaxy distribution,
formed starting from tiny quantumfluctuations set during inflation and later enhanced
throughout cosmic history via gravitational instability. These primordial fluctuations
were generated asmicroscopic quantum vacuumfluctuations in the inflaton field that,
during inflation, were stretched and imprinted on superhorizon scales by the acceler-
ated expansion. These density fluctuations reentered the horizon after inflation ended
and served as initial conditions for the anisotropy and the growth of structure in the
Universe.

In what follows, we briefly describe the main features of the primordial fluctua-
tions generated during inflation. To do so, we need to use some concepts that will be
formally defined only in the next chapter, like the idea that the primordial fluctuations
generated during inflation are stochastic in nature and, therefore, their magnitude is
determined in terms of their variance (in real space) or their power spectrum (in
Fourier space). We will also use of the concepts of scalar and tensor (Sect. 3.3.1)
perturbations (Sect. 3.4), power spectrum (Sect. 3.7.1) and bispectrum (Sect. 3.7.2).

10In defining the slow-roll parameters, we are using the notation of the review by Bartolo et al. [8].
Chen [15], on the other hand, denotes the quantity in Eq. 2.99 as η V and uses the symbol η for a
third slow-roll parameter:

η ≡ −2 η V + 4 ε = ε′

ε H
. (2.98)

.

http://dx.doi.org/10.1007/978-3-319-21882-3_3
http://dx.doi.org/10.1007/978-3-319-21882-3_3
http://dx.doi.org/10.1007/978-3-319-21882-3_3
http://dx.doi.org/10.1007/978-3-319-21882-3_3
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2.6.3.1 Scalar Fluctuations

The primordial fluctuations generated during slow-roll inflation are expected to have
nearly the samevarianceon all spatial scales. The reason is that the slow-roll condition
ε = −H ′/H2 
 1 results into an approximate time-translation invariance of the
background. Therefore, the primordial fluctuations are produced with approximately
the same background expansion rate regardless of the scale considered. This scale
invariance is usually quantified in terms of the scalar spectral index, ns , defined
to be the slope of the dimensionless power spectrum of the primordial curvature
perturbation,

PR ∝ k ns−1 . (2.100)

The condition of scale invariance translates to ns = 1. However, the presence of
structure in the inflaton potential affects the expansion rate and, therefore, it generates
deviations from scale invariance. In a slow-roll inflationarymodelwhere the potential
is nearly flat, these deviations are small [8, 15]:

ns = 1 − 6 ε + 2 η . (2.101)

Because the slow-roll parameters ε and η describe, respectively, the first and second
derivative of the inflaton potential V (φ), measuring ns is equivalent to constraining
the shape of V (φ). The cosmic microwave background is strongly affected by the
tilt of the primordial fluctuations and, as a result, it can be used to constrain ns [67]:

ns = 0.9603 ± 0.0073 at 68% confidence level . (2.102)

Thismeasurement is in agreementwith the slow-roll inflationarymodels and suggests
that the two slow-roll parameters have a value of O(10−2).

Another important observable of inflation is the amplitude As of the primordial
fluctuations, which is defined as

PR(k) = As

(
k

k0

) ns−1

, (2.103)

where k0 is the pivot scale. In the slow-roll limit, the amplitude As is connected to
the ratio between the inflaton potential and the slow-roll parameter ε [68]:

As = V

24π2 m4
P ε

. (2.104)

By measuring the amplitude of the CMB angular spectrum, the Planck team [68]
found the value ln(1010 As) = 3.089+0.024

−0.027 at 68% confidence level for a pivot scale



2.6 Cosmic Inflation 45

of k0 = 0.05Mpc−1, which translates to a constraint on the energy scale of inflation,
V 1/4, and on ε:

V 1/4

ε1/4
= 0.027mP = 6.6 × 1016 GeV . (2.105)

2.6.3.2 Gravitational Waves

Another prediction from inflation is the presence of a background of primordial
gravitational waves. These are generated with the same mechanism as the scalar
fluctuations and are thus also expected to be nearly scale invariant. The power spec-
trum of tensor fluctuations,

P t (k) = At

(
k

k0

) nt

, (2.106)

defines the tensor amplitude At and the tensor spectral index nt , which vanishes
for a scale-invariant spectrum. For a slowly rolling scalar field, they are given by
[22, 68]

At = 2 V

3π2 m4
P

, and nt = −2 ε . (2.107)

In the slow-roll limit, a consistency relation links the spectral index nt to the ampli-
tudes of the scalar and tensor power spectra:

r ≡ P t

PR
= −8 nt , (2.108)

where we have defined the tensor-to-scalar ratio r . Since As has already been exper-
imentally determined, measuring the value of r would automatically yield the ampli-
tude of the tensor perturbations At and, through the consistency relation, the tilt nt of
the tensor spectrum. Furthermore, a determination of r would imply also an indirect
detection of the gravitational waves. So far, only upper limits for the tensor-to-scalar
exist; in Fig. 2.7 we show the joint measurement of r and ns produced by the Planck
experiment [68].

2.6.4 Non-Gaussianity

The inflation observables that we have introduced in the previous subsection, the
spectral index ns and the tensor-to-scalar ratio r , are defined with respect to the
power spectrum of the primordial curvature perturbation, PR. The power spectrum,
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Fig. 2.7 Constraints on the spectral tilt and the tensor-to-scalar ratio r from Planck [68]. The
ellipses represent the 68 and 95% confidence limits on ns and r for various combinations of
datasets (WP WMAP polarisation, BAO Baryon acoustic oscillation, highL high-resolution CMB
data). The theoretical predictions of several inflationary models are also shown. Credit: Fig. 1 on
p.10 of Ref. [68] by the Planck collaboration, A&A, reproduced with permission c© ESO

however, is just one of the infinite series of n-point functions that characterise the
primordial field (Sect. 3.4). In the case of a Gaussian random field, these moments
can be expressed as products of PR; for an arbitrary field, this is not the case: the
higher-order moments contain extra information that eludes the power spectrum and
that, as we shall soon see, is precious to understand the non-linear physics at work
in the early Universe. We shall refer to this extra information as non-Gaussianity,
simply because it is absent for Gaussian perturbations.

In this thesis, we focus on the three-point function of the primordial curvature
perturbation, or primordial bispectrum. The full formalism to characterise the bis-
pectrumand its observability in the cosmicmicrowave backgroundwill be introduced
in Chap.6. The purpose of this subsection is to explain our motivations for studying
the bispectrum; therefore, for now, we shall keep the technical details to a minimum.

The primordial bispectrum is important for two reasons. First, it is the lowest order
statistic sensitive towhether a perturbation isGaussian or non-Gaussian. This follows
from the fact that the three-point function of a Gaussian random field with zero mean
vanishes. Secondly, it is directly related to the angular bispectrum of the cosmic
microwave background, which is an observable quantity [42, 43, 85]. Therefore, the
primordial bispectrum as inferred from the CMB has the power of discriminating
models of inflation based on the amount of non-Gaussianity they produce.

The standard slow-roll inflation models that we have described above, where the
accelerated expansion is driven by a non-interacting scalar field, produce a bispec-
trum of the order of the slow-roll parameters [1, 53]; for all practical purposes, this
non-Gaussianity can be considered negligible. This is intuitive as the bispectrum is
inherently related to the non-linearities in the propagation of the field. In the “vanilla”

http://dx.doi.org/10.1007/978-3-319-21882-3_3
http://dx.doi.org/10.1007/978-3-319-21882-3_6
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models, the inflaton propagates freely along a very flat potential (ε, |η| 
 1), so that
any self-interaction term of the inflaton potential and the gravitational coupling must
be very small; consequently, the non-linearities are also suppressed [8].

Measuring a significant bispectrum would therefore rule out the simplest models
of inflation. It should be stressed that these models are otherwise highly successful
in reproducing the required duration of inflation and the observed shape of the power
spectrum. The non-Gaussianity measurement is thus complementary to the usual
inflation observables, ns and r , and it provides extra information on the physics of
the early Universe that is useful to break degeneracies between models that would
otherwise be observationally equivalent.

The constraining power of the primordial bispectrum and its observability promp-
ted particle physicists and cosmologists to join forces and investigate many well-
motivated extensions to the inflationary vanilla model. The multiple-field models,
for example, postulate that two ormore fields are present during inflation. Thesemod-
els are appealing also because, from the point of view of particle physics, it is natural
to have several other fields that contribute to the inflationary dynamics. If the fields
interact, the Lagrangian will include non-linear contributions that ultimately lead to
deviations from pure Gaussian statistics [8, 13, 74]. This is not, however, the only
mechanism to create non-Gaussianity in amulti-fieldmodel. In the curvaton scenario
[28, 49, 51, 56, 57], for example, the inflaton field drives the accelerated expansion
as in a single field model, while a subdominant second field, the curvaton, is respon-
sible for generating the curvature perturbations. In this case, the non-Gaussianity is
produced by the non-linear evolution of the curvature perturbation on superhorizon
scales.

Other extensions to the vanilla model include features in the inflaton potential, the
presence of a non-canonical kinetic term, non-linearities in the initial vacuum state or
modifications to the theory of gravity [15]. These features generally translate to non-
Gaussian signatures in the primordial curvature perturbation and, thus, in specific
shapes of the bispectrum. For a review on these models and their observability, refer
to the reviews in Refs. [9, 42, 48, 85].

In summary, the non-Gaussianity of the cosmological perturbations opens a win-
dow on the non-linear physics of the early Universe; the CMB bispectrum is the
observable that allows us to look through this window. The subject of this thesis is
the connection between the primordial non-Gaussianity and the CMB bispectrum.
In the following chapters, we shall answer the questions: how is the measured CMB
bispectrum affected by the non-linear evolution that happens after inflation? Would
this effect significantly bias a measurement of the primordial signal?

The answers can be found in Chap.6.

http://dx.doi.org/10.1007/978-3-319-21882-3_6
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Chapter 3
Perturbation Theory

3.1 Introduction

According to the hot Big Bang cosmology introduced in the previous chapter, all
observations are expected to be perfectly homogeneous and isotropic about our
location. This prediction is in clear disagreement with the observed distribution of
galaxies in the sky, which shows strong clustering properties on scales smaller than
100Mpc (Sect. 2.2), and with the measured temperature of the cosmic microwave
background, which is characterised by tiny direction-dependent fluctuations [9, 72,
87]. The ultimate origin of this structure was explained in Sect. 2.6.3 in terms of the
primordial fluctuations generated in the early Universe via cosmic inflation. In this
chapter, we introduce a formalism that is useful to study their subsequent evolution.

The theory of cosmological perturbations has been extremely successful in
describing the clustering of galaxies and the angular distribution of the CMB tem-
perature. The key aspect of perturbation theory is to consider the Universe as being
described by a homogeneous background with small position-dependent perturba-
tions that are assumed not to affect the background itself. The background ismodelled
as a hot Big Bang Universe with an FLRW metric, as discussed in Chap.2, while the
perturbations evolve according to a form of the Einstein and Boltzmann equations
obtained by expanding them around the homogeneous solution. The advantage of
this approach is that the perturbed equations have a recursive structure that can be
truncated at the desired level of accuracy.

The temperature map of the cosmic microwave background is particularly well
suited to be treated with a perturbative approach, because it is almost perfectly
smooth, with deviations from isotropy of a part in 105 [9, 72, 87]. The reason for this
behaviour is that photons, being relativistic particles, tend to stream freely rather than
cluster, thus preserving the amplitude of the small initial fluctuations that were set in
the earlyUniverse. The only timewhere photons clusteredwas before recombination,
when they strongly interacted with baryons through Thomson scattering; this is the
reason why the observed fluctuations in the CMB peak on the angular scale, ∼1◦,
corresponding to the size of the sound horizon at recombination (see Sect. 2.5).
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54 3 Perturbation Theory

Since the CMB anisotropies are small, their basic properties are well described
by the first order in perturbation theory, where the Boltzmann and Einstein equations
are linearised. There are, however, many aspects of the CMB that cannot be predicted
by linear theory. One of them, which is the main topic of this thesis, in the generation
of non-Gaussian features in the CMB due to the propagation of photons through an
inhomogeneous Universe. Other notable effects are the generation of vorticity and
anisotropic stresses at recombination, which ultimately leads to the generation of
magnetic fields and B-mode polarisation in the CMB, and the momentum transfer
between photon and electrons due to Compton scattering, which gives raise to dis-
tortions in the frequency spectrum of the CMB. These non-linearities of the CMB
can be treated in the framework of the standard relativistic perturbation theory by
going to second order in the cosmological perturbations, a technique that we shall
review in this chapter.

Contrary to the CMB, the density of the cold matter grows in time due to grav-
itational collapse, to the point that, eventually, the assumption of small perturba-
tions on a homogeneous background breaks down. This is the so-called non-linear
regime, which happens at late times and on scales that are well inside the horizon.
The non-linear regime is better described by ad-hoc perturbative techniques that
are generally more involved than the standard perturbation theory; for an exten-
sive review, refer to Ref. [10]. However, because the CMB photons were emitted
at a time (t ∼400,000years) where the non-linear effects in the matter distribution
were subdominant, in this thesis we only treat the standard relativistic perturbative
approach.

3.1.1 Summary of the Chapter

In Sect. 3.1 we explain why perturbation theory is needed to describe our inhomoge-
neous Universe, and provide a literature review of the field. In Sect. 3.2 we introduce
the mathematical definition of perturbations and show the general properties of first
and second-order equations. In Sect. 3.3 we illustrate what a gauge is and we pick
one, the Newtonian gauge, to build our perturbed metric. In Sect. 3.4 we focus on
the statistical properties of the cosmological perturbations and explain why they
are described in terms of stochastic fields that satisfy statistical homogeneity and
isotropy. In Sect. 3.5 we explain why going to Fourier space is a good idea, and we
introduce the concept of a transfer function as a way of separating the determinis-
tic part of a perturbation from its stochastic one. In Sect. 3.6 we introduce the fluid
variables and show the Einstein equations up to second order in the cosmological
perturbations. The main cosmological observables, the power spectrum and the bis-
pectrum, are treated in Sect. 3.7, where we also introduce the concepts of primordial,
linear and intrinsic bispectra.
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3.1.2 Literature Review

Lifshitz [51] and, later, Lifshitz and Khalatnikov [52], first developed the relativistic
linear theory of the cosmological perturbations in a FLRW Universe, and used it to
derive the evolution of the density perturbations in the synchronous gauge. A more
general gauge-invariant treatment that did not rely on a choice of the coordinates, was
introduced by Bardeen [2] and later generalised by Kodama and Sasaki [43] (see also
Gerlach and Sengupta [28]). The subject of cosmological perturbations on a FLRW
background is treated in great detail in the following reviews and books: Peebles [68],
Kodama and Sasaki [43], Mukhanov et al. [64], Durrer [25], Ma and Bertschinger
[53], Bertschinger [12], Tsagas et al. [94], Malik and Matravers [56] and Malik and
Wands [57], with the last review treating also the second-order perturbations. Amore
general approach dealing with general space-times is given in Stewart and Walker
[92]. For a pedagogical introduction to the topic, refer to the review by Knobel [42].

Among the earliest works that applied the linear perturbation theory to the cos-
mic microwave background were Sachs and Wolfe [80], who showed how density
perturbations generate fluctuations in the angular distribution of the CMB photons,
and Peebles and Yu [69], who first integrated the collision equation of the photon
distribution function and introduced the tight coupling approximation. Kaiser [39],
Bond and Efstathiou [13] and Polnarev [75] were among the first authors to study
the linear polarisation induced by Thomson scattering in the CMB, thus finding an
alteration of the CMB anisotropy pattern of the 10% level. A systematic study of
the two-point statistics of the CMB in real and harmonic space can be found in Bond
and Efstathiou [14]. Further analytic insight on the relation between the matter com-
ponents (baryons and cold dark matter) and the CMB photons at recombination was
given, e.g., in Hu and Sugiyama [34]. The correlation between the dark matter struc-
ture and the CMB anisotropies was discussed in Crittenden and Turok [21] and later
measured in, e.g., Giannantonio et al. [29], to yield a confirmation of the presence of
dark energy. Reviews on the theory of CMB perturbations can be found in Ma and
Bertschinger [53], Hu andWhite [35], Durrer [26], Hu and Dodelson [33], Challinor
[18], Challinor and Peiris [19], Lesgourgues [46], and in the book by Dodelson [22].

The first author to study the relativistic cosmological perturbations beyond linear
order was Tomita [93] who, extending Lifshitz’s theory, computed the growth of the
second-order density perturbations in synchronous gauge. A general way to relate
higher-order perturbations in different gauges was given by Bruni et al. [15] and
Sonego and Bruni [89], and was later used by Matarrese et al. [58] to study the
relativistic perturbations in an Einstein-de Sitter Universe in both the synchronous
and Newtonian gauges. More recently, the second-order equations and their gauge
invariance were discussed by Bartolo et al. [3], Pitrou [70], Beneke and Fidler [7],
Nakamura [65] and Naruko et al. [66].

When relaxing the approximation of linear perturbations, a number of effects arise
that alter the anisotropies in the cosmic microwave background [54, 62, 77], such as
the Rees-Sciama effect [78], the time-delay effect [32], the gravitational lensing of
CMB photons [30, 47, 48, 50, 84, 86], the emergence of B-mode polarisation from
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the vector and tensor modes in the metric [63] and in the baryon-photon scattering
[8], and, in general, a number of new quadratic contributions to the electron-photon
scattering during recombination and reionisation [4, 7, 23, 36, 70, 82].Most of these
effects can be estimated with a second-order Boltzmann approach, which is what our
code, SONG, does and is the topic of the next chapters.

3.2 General Formalism

A cosmological field X(t, x) is perturbatively expanded around its background value
X(0)(t) according to

X(t, x) = X(0)(t) +
∞∑
i=i

εi X(i)(t, x) , (3.1)

where ε is the expansion parameter and X(n) is the n-th order perturbation of X. We
identify the background value X(0), often indicated also as X, as the value that X
would have if the Universe were perfectly homogeneous; this is why it depends on
cosmic time alone. The other terms in the expansion form the perturbed part of X,
which is by definition inhomogeneous and thus depends on both time and position.
The first-order term, X(1)(t, x), is usually called the linear term.

When ε is smaller than unity, the sum can be truncated at a certain order n to yield
X up to the nth order:

X(t, x) � X(0)(t) + ε X(1)(t, x) + · · · + εn X(n)(t, x) . (3.2)

For the sake of readability, we absorb the expansion parameter ε in the perturbed
variables by setting εnX(n) → X(n). For the same reason, we shall often omit to
specify the space-time dependence of the perturbations.

First-order perturbations The observed isotropy of the CMB suggests that in the
early Universe (z > 1000) the perturbations had an amplitude 105 times smaller than
the background. It is then an excellent approximation to truncate the sum at linear
order

X(t, x) � X(0)(t) + X(1)(t, x) . (3.3)

At later times, the CMB stays linear because, as we pointed out in the introduction
to the chapter, the photon perturbations do not grow with time. We are then justified
in using the linearised equations to describe most of the CMB physics all the way to
today.

Second-order perturbations There are, however, important effects in the CMB
that cannot be predicted by linear perturbation theory. In particular, by employing a
first-order approach, one would ignore all the complexity in the non-linear structure
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of the Einstein and Boltzmann equations. Unless the primordial perturbations are
non-Gaussian to start with, doing so ultimately yields to a vanishing 3-point function
for the CMB. Hence, in order to study the generation of non-Gaussianity, we shall
expand all variables up to second order according to

X(t, x) � X(0)(t) + X(1)(t, x) + X(2)(t, x) . (3.4)

3.2.1 Perturbing Functions

The most common exercise in perturbation theory is to expand a perturbed variable
inside a function or an equation. A simple but relevant case is the product of two
perturbations

X Y =
(

X(0) + X(1) + X(2) + · · ·
) (

Y (0) + Y (1) + Y (2) + · · ·
)

,

that is easily split into orders:

(XY)(0) = X(0)Y (0)

(XY)(1) = X(0)Y (1) + X(1)Y (0)

(XY)(2) = X(0)Y (2) + X(2)Y (0) + X(1)Y (1) , (3.5)

and so on. The above expansion shows that perturbation theory is “verbose” in
the sense that it produces long equations; even stopping at second order, a simple
product yields 6 terms. However, many perturbations have a vanishing background
value. This is the case of all 3-vectors, including velocity, because if they had a
background value they would violate the requirement of homogeneity and isotropy.
When X(0) = Y (0) = 0, the product XY simplifies to

(XY)(0) = 0

(XY)(1) = 0

(XY)(2) = X(1)Y (1) . (3.6)

A generic function of the perturbed variable X can be Taylor expanded around
X(0) ≡ X as

f (X) � f (X) +
(

∂f

∂X

)

X
(X − X) + 1

2

(
∂2f

∂X2

)

X
(X − X)2 . (3.7)
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If we also expand X � X(0) + X(1) + X(2) and split f (X) into orders, we obtain

f (X)(0) = f (X)

f (X)(1) =
(

∂f

∂X

)

X
X(1)

f (X)(2) =
(

∂f

∂X

)

X
X(2) + 1

2

(
∂2f

∂X2

)

X
X(1)X(1) . (3.8)

Two useful examples are (1+ x)α and e x , with x = (X − X)/X , which are expanded
up to second order as

(1 + x)α � 1 + α x(1) + α x(2) + α(α − 1)

2
x(1) x(1) (3.9)

and

e x � 1 + x(1) + x(2) + 1

2
x(1) x(1) . (3.10)

In particular, we have that

√
1 + 2 x � 1 + x(1) + x(2) − 1

2
x(1) x(1) ,

1√
1 + 2 x

� 1 − x(1) − x(2) + 3

2
x(1) x(1) . (3.11)

3.2.2 Perturbing Equations

The main advantage of perturbation theory is that the perturbed equations can be
solved order by order. An equation is split into a background part, a first-order part,
a second-order part and so on. The equation for the nth order is solved using the
solutions for the preceding orders, from the (n − 1)th order all the way to the 0th
order, or background, solution. The solution for the (n + 1)th order is not needed
because it is negligible with respect to the nth order one.

The last line of Eq.3.8 implies that a second-order equation can be always split in
a purely second-order part, which is linear in the second-order perturbations, and in a
quadratic part, involving the product of first-order perturbations. The purely second-
order part, as can be seen from the second line of Eq.3.8, has the same structure of
the linearised equation.

In this and in the next chapter, we shall expand the Boltzmann and Einstein
equations up to the second order in the cosmological perturbations. This will result in



3.2 General Formalism 59

a system of coupled ordinary differential equations (ODEs) where the time evolution
of the second-order variables is the unknown. The quadratic part of each equation,
whose evolution is known from the solution of the first-order system, acts as a time-
dependent source term for the second-order structure. If these quadratic sources are
neglected, the second-order system is equivalent to the first-order one. This is an
important property of perturbation theory that generalises to any order: a perturbed
system of equations at the nth order, as intimidating as it may look, has the same
structure as the linear system with the addition of extra sources that are known from
solving the previous orders.

Conventions In the following, we shall ofter refer to the equations at second pertur-
bative order simply as “second-order equations”. These should not to be confused
with the second-order differential equations, which instead we shall always call with
their full name.1 Furthermore, we shall often omit showing the perturbative order
in our expressions. There is no ambiguity in doing so because we never go beyond
second order; a quadratic term will always be made of two first-order perturbations
while a term which is alone is necessarily a purely second-order variable.

3.3 The Perturbed Metric

We parametrise the metric as

ds2 = a2(τ )
{
−(1 + 2Ψ )dτ 2 + 2ωi dxidτ + [

(1 − 2Φ)δij + 2 γij
]
dxidxj

}
,

(3.12)

where the variables Ψ , Φ, ωi and γij are perturbations with vanishing background
value. Since γij is by construction traceless and symmetric, the perturbed variables
contain 10 independent components (1 + 1 + 3 + 5, respectively) as expected from
a symmetric space-time tensor. By expanding the above metric according to gμν �
g(0)
μν + g(1)

μν + g(2)
μν , we see that its background value is given by the homogeneous flat

FLRW metric in Eq.2.16. Note that we are assuming a vanishing spatial curvature
of the Universe at the background level, k = 0, as suggested by the observations of
the cosmic microwave background and of other geometrical probes [31, 72, 73]; for
a discussion of perturbations on a curved background, refer to e.g. Hu et al. [37],
Lewis et al. [49], Zaldarriaga et al. [97].

The first and second-order parts of the metric each have 10 independent com-
ponents whose time-evolution is given by the second-order Einstein equations. In
Sect. 3.3.1 we shall split these components in scalar, vector and tensor parts that
evolve independently by virtue of the decomposition theorem. In Sect. 3.3.3 we shall

1The ambiguity is minimal also because we shall almost always solve first-order differential equa-
tions. The only second-order differential equation we shall deal with is the one for the tensor modes
of the metric, γ[±2].

http://dx.doi.org/10.1007/978-3-319-21882-3_2
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show how the 10 components can be cut down to only 6 degrees of freedom by
picking a specific gauge; in this work we choose to use the Newtonian gauge.

3.3.1 Scalar-Vector-Tensor Decomposition

Under a spatial coordinate transformation x i → x̃ i = x̃ i (x1, x2, x3), the components
of a space-time tensor T transform as a 3-scalar (T00), a 3-vector (T0i) and a 3-tensor
(Tij). This follows directly from the tensor transformation rule,

T̃μν = ∂ xα

∂ x̃μ

∂ xβ

∂ x̃ν
Tαβ , (3.13)

after noting that, for a spatial transformation, ∂xi/∂ x̃0 = ∂x0/∂ x̃i = 0.
The split is not complete, though, as the 3 components of Ti0 and the 6 independent

components of Tij still are a mixture of scalar, vector and tensor degrees of freedom.
These can be extracted in a systematic way by using the projection vectors ξ i[m] and
matrices χ

ij
2,[m], which we detail in Appendix A. The contraction

χ
ij
2,[m]Tij (3.14)

yields an m-dependent object that represents the scalar (m = 0), vector (m = ±1)
and tensor (m = ±2) components of Tij. The remaining scalar component of Tij is
in the trace,

δi
j Tij

3
. (3.15)

Similarly, the vector Ti0 can be contracted with the vectors ξ i[m],

ξ i[m] Ti0 (3.16)

to yield one scalar component (m = 0) and two vector ones (m = ±1). To sum up,
any symmetric space-time tensor T can be decomposed into 4 scalar, 4 vector and 2
tensor components according to the following scheme:

m = 0 (scalar) χ
ij
2,[0] Tij ξ i[0] Ti0 δ i

j Tij/3 T00

m = ±1 (vector) χ
ij
2,[±1] Tij ξ i[±1] Ti0

m = ±2 (tensor) χ
ij
2,[±2] Tij
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This separation is called the scalar-vector-tensor (SVT ) decomposition. In the fol-
lowing, we shall use m = 0, m = ±1 and m = ±2 as shorthands for scalar, vector
and tensor degrees of freedom, respectively. We shall collectively refer to them as
azimuthal modes as they are ultimately connected to the m index in the spherical
harmonic Ylm. For further details, refer to Appendix A.

The metric is decomposed in its SVT components in the same way. After defining

γ[m] ≡ χ
ij
2,[m] gij (3.17)

and

ω[m] ≡ ξ i[m] gi0 , (3.18)

it is straightforward to see that Φ, Ψ , γ[0] and ω[0] are the scalar components of the
metric, γ[±1] and ω[±1] are the vector ones and γ[±2] are the tensor ones.

3.3.2 The Decomposition Theorem

In the following chapters, we shall decompose the Einstein and Boltzmann equa-
tions into azimuthal modes by contracting them with the projection vectors ξ i[m] and
matrices χ

ij
2,[m] . The main advantage of doing so is that, at first order, the resulting

differential system will be decoupled in its scalar (m = 0), vector (m = ±1) and
tensor (m = ±2) components. For example, the Einstein equations that dictate the
evolution of the scalar modes will not contain either the vector or the tensor degrees
of freedom. Similarly, the evolution of γ[±1] will be completely decoupled from
γ[±2], and, since γ[±2] is the only tensor degree of freedom, its evolution will not
involve any other metric perturbation. This separation in the evolution of different
m-modes is called the decomposition theorem, and is widely used at first order (see,
for example, Appendix B of Ref. [43], Sect. 4.2 of Ref. [12] and Sect. 3.2 of Ref. [42])
as it considerably simplifies the treatment of the vector and tensor perturbations. In
particular, from the numerical point of view, the decomposition theorem allows to
solve three simple differential systems, one for each of the considered modes, rather
than a single one where the modes are coupled in a complicated way.

At second and higher order, the decomposition theorem does not hold anymore,
because the various azimuthal modes mix and source each other. This SVT mixing
is a direct consequence of the non-linear structure of the quadratic sources, as we
shall show explicitly in Sect. 3.6.2 for the energy-momentum tensor and in Sect.A.4
for the Boltzmann equation. Nonetheless, it is still possible to solve the second-order
Boltzmann-Einstein system separately for each m-mode. In fact, the linear structure
of the second-order system coincides with that of the first-order one (Sect. 3.2.2),
and it is therefore decoupled in m. The internal structure of the quadratic sources still
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couples different m-modes but, since the sources are known from the solution of the
first-order system, they can be precomputed without interfering with the evolution
of the second-order system, which can thus be solved separately for each m.

3.3.3 Gauge Choice

The split of the metric into background and perturbed parts implies the presence
of two separate manifolds, namely the background and perturbed spacetimes. To
compare the two metrics and perform the usual tensorial operations such as addition
and subtraction, it is therefore required to define a correspondence between the
points of the two aforementioned manifolds. A gauge transformation is exactly that:
an infinitesimal, invertible diffeomorphism that relates the points in the background
manifold with those in the perturbed one.2 Because the theory of general relativity is
diffeomorphism invariant, there is no preferred gauge; the perturbations themselves,
however, are gauge dependent.

While all the gauges are theoretically equivalent, one gauge choicemight be better
suited than another depending on the problem at hand. Historically, many different
gauges have been used to study the cosmological perturbations; a list can be found
in Sect. 7 of Malik and Wands [57]. In this work and in SONG, we choose the
Newtonian or Poisson gauge [12] whereby both the g0i and gij perturbations are
transverse or, in terms of the metric variables in Eq.3.12,

∂ i ωi = 0 and ∂ jγij = 0 . (3.19)

We shall see that, in Fourier space and for k configurations along the polar axis, this
choice is equivalent to setting ω[0] = 0 and γ[0] = γ[±1] = 0 . It follows that in
the Poisson gauge there are two scalar potentials (Φ and Ψ ), one transverse vector
potential (ω), and one transverse-traceless tensor potential (γ ), for a total of 6 degrees
of freedom.

Another popular gauge choice is the synchronous gauge [12], whereby the per-
turbations are confined to the spatial part of the metric:

Ψ = 0 and ωi = 0 . (3.20)

The synchronous gauge, however, leads to a more complicated angular dependence
in the Boltzmann equation at second order, which contains terms that are cubic
and quartic in the photon’s direction, n(i) (see Eq.3.29 of Ref. [66]). The multipole

2For details on the definition of a gauge transformation (and on its active and passive interpretations),
refer to Refs. [15, 56, 64]. See Refs. [15, 56, 57, 65] for details on gauge transformations in a
second-order context. See also Sects. 3.1.1 and 3.4 of Ref. [42] for a pedagogical approach to gauge
transformations. Finally, we refer to Refs. [66, 70] for a discussion of the gauge invariance of the
second-order Boltzmann equation.
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expansion of these terms ismuchmore complicated than that of the equivalent ones in
Newtonian gauge, which are atmost quadratic in n(i) (seeAppendixA). Nonetheless,
it is our intention to implement the synchronous gauge in SONG at a later stage,
for two reasons. First, verifying that the observables such as the bispectrum do not
depend on the gauge would be an important check of the implementation of the
differential system and of the line of sight sources (see Chap. 5). Secondly, we could
further test our transfer functions bymaking use of the gauge transformation between
the Newtonian and synchronous gauges up to second order, which can be found in
Bruni et al. [15].

The exponential metric Another way to express the metric in Newtonian gauge is
using exponentials, as it is done in, e.g., Refs. [4, 55, 82]:

ds2 = a2(τ )
[
−e2Ψe dτ 2 + 2ωi dxidτ +

(
e−2Φe δij + 2 γij

)
dxidxj

]
, (3.21)

where the suffix ‘e’ serves the purpose to distinguish the potentials thus defined
from the ones in the usual metric in Eq.3.12. The resulting equations are slightly
simpler due to the properties of the exponential, especially for the Liouville term in
the Boltzmann equation. After expanding the two metrics up to the second order and
equating them (1 + 2Ψ = e2Ψe and 1 − 2Φ = e−Φe ), it is clear that the Ψ and Φ

potentials in the two representations differ only at the second-order level:

Ψ = Ψe (1 + Ψe) and Φ = Φe (1 − Φe) . (3.22)

In particular, the following equalities hold that are useful for computations that
involve the tetrad (Sect. 4.2.1):

√
1 + 2Ψ = eΨe , 1√

1+2Ψ
= e−Ψe ,√

1 − 2Φ = e−Φe , 1√
1−2Φ

= eΦe .
(3.23)

In the computations that follow we always use the metric in Eq.3.12; we refer to the
“exponential” metric only to compare our results with the ones in the literature.

Relation with the literature In Chap.4, we will often refer to the results found in
the second-order literature. Here we provide the rules to convert from our metric
variables to those adopted by the following authors:

• Beneke and Fidler [7, 8]:

ABF = Ψ , DBF = −Φ , BBF
i = −ωi , EBF

ij = γij ; (3.24)

http://dx.doi.org/10.1007/978-3-319-21882-3_5
http://dx.doi.org/10.1007/978-3-319-21882-3_4
http://dx.doi.org/10.1007/978-3-319-21882-3_4
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• Pitrou et al. [70, 71]:

ΦP = Ψ , Ψ P = Φ , BP
i = ωi , HP

ij = γij ; (3.25)

• Senatore et al. [82, 83] (see also Eq.3.22):

Ψ S = Ψ (1 − Ψ ) , ΦS = Φ (1 − Φ) , ωS
i = ωi , χS

ij = 2 γij ;
(3.26)

• Bartolo et al. [4, 5, 67] (see also Eq.3.22):

ΦB = Ψ (1 − Ψ ) , Ψ B = Φ (1 − Φ) , ωB
i = ωi , χB

ij = 2 γij .

(3.27)

3.4 Statistical Description of the Perturbations

According to the mechanism of cosmic inflation, the structure that we observe in
the CMB and in the galaxy distribution is due to quantum-mechanical fluctuations
that were set soon after the Big Bang. Due to the stochastic nature of quantum
processes, the Universe should be considered as just one of the potential outcomes
of a statistical ensemble of realisations that could have arisen from inflation. Since
all stochastic processes have a variance, any two realisations differ and, if we were
to live in a realisation different from ours, we would observe a different sky. This
intrinsic discrepancy between what is accessible by observations and the underlying
description of the perturbations is called cosmic variance.

Because of their stochastic nature, we shall treat the cosmological perturbations
as random fields. In the next subsection, we shall detail the properties of random
fields and characterise them in terms of their connected correlation functions. In
Sect. 3.4.2 we shall introduce the concepts of statistical homogeneity and isotropy,
and briefly discuss how to relate the abstract idea of an ensemble of realisations to
the observable Universe. In Sect. 3.4.3, we shall discuss the Gaussian random fields,
which are particularly important in the study of the cosmological perturbations, and
give details on their two-point correlation function.

3.4.1 Random Fields

A random field, R(x), is a set of random variables, one for each points in space,
characterised by a probability functional, P[R̂(x)], which specifies the probability
for the occurrence of a particular realisation of the field. A realisation of the field,
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R̂(x), is a deterministic3 function of position, x, that represents one of the possible
outcomes of the random field [76].

The main difference between a random field,R(x), and a set of random variables,
ri, is that the former is continuous. The PDF of the field is therefore expressed
as a functional of one realisation, P[R̂(x)], rather than a function of the discrete
set of random variables, P(r1, . . . , rn). Accordingly, the expectation value of any
functional, F(R[x]), is obtained by a functional convolution with the PDF:

〈F[R(x)] 〉 =
∫

D[R̂(x)] P[R̂(x)] F[R̂(x)] , (3.28)

where
∫
D[R̂(x)] stands for the product of the integrals at each space point x [41, 98],

∫
D[R̂(x)] ≡

∫ ∏
x

dR̂(x) . (3.29)

As an example, consider the functional F[R] = R(x′), which is the value of the
field at a given position x′. The expectation value of R(x′) is given by the value
of the field in x′ averaged over the infinite ensemble of possible realisations of the
field. This way of averaging is impossible to do in practice, since observations can
only probe the single realisation we live in; in Sect. 3.4.2 we shall see that we can
still relate these abstract averages with the observed quantities by assuming the fair
sample hypothesis.

The cosmological perturbations are usually described by either 2D or 3D random
fields. The temperature of the CMB, for example, is modelled as a two-dimensional
random field, T (n), because all CMB photons were emitted from the last scattering
surface, whose distance does not depend significantly on the direction of observation.
On the other hand, the density of the cold dark matter component can be observa-
tionally traced by measuring the redshift of galaxies at various distances, and thus
is described by a three-dimensional random field, ρ(x). In this section we shall not
specify a dimension, so that the obtained results shall be general. It is also important
to remember that all the cosmological perturbations also have a time dependence,
e.g. T = T (n, τ ) and ρ = ρ(x, τ ), that we shall often omit for clarity.

It is convenient to define the cosmological perturbations as zero-mean quantities.
For example, rather than dealingwithmass densities,ρ(x, τ ), we define the fractional
overdensity or density contrast field as

δ(x, τ ) ≡ ρ(x, τ ) − ρ̄(τ )

ρ̄(τ )
, (3.30)

3Here and in the following, we shall use the adjective “deterministic” to mean non-stochastic,
non-random.
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where ρ̄ = 〈 ρ(x, τ ) 〉, so that 〈 δ(x, τ ) 〉 = 0, and the field of temperature fluctuations
as

Θ(x, τ ) ≡ T (x, τ ) − T̄ (τ )

T̄ (τ )
, (3.31)

where T̄ = 〈 T (x, τ ) 〉, so that 〈 Θ(x, τ ) 〉 = 0. In writing the definitions above,
we have implicitly set the average value of the fields not to depend on position,
〈 ρ(x, τ ) 〉 = ρ̄(τ ) and 〈 T (x, τ ) 〉 = T̄ (τ ). As we shall see in Sect. 3.4.2, this is
justified by the requirement of statistical homogeneity.

3.4.1.1 The n-Point Functions and the Partition Functional

A simple way to characterise a random field is through its n-point functions, that is
the expectation values of the product of n perturbations in different positions and at
the same time τ ,

〈R(x1) . . . R(xn) 〉 ≡
∫

D[R(x)] P[R(x)] R(x1) . . . R(xn) . (3.32)

For a completely uncorrelated random field, the probability is given by P[R(x)] =∏
x
P(R(x)) and the n-point functions reduce to products of one-point functions.

Then-point functions inEq.3.32 canbedefined in termsof the partition functional,

Z[f (x)] =
〈
exp

[∫
dx′ R(x′) f (x′)

] 〉

=
∫

D[R(x)] P[R(x)] exp

[∫
dx′ R(x′) f (x′)

]
, (3.33)

where f (x) is a realisation. The partition functional is the generalisation to the con-
tinuum of the characteristic function of a discrete set of random variables r,

Cr (b) =
〈

e b·r 〉
=

∫
dr P(r) e b·r . (3.34)

The realisationR(x) plays the role of the vector ri and the location x the role of the
index i [98]. Taking the derivatives of the characteristic function with respect to the
components of b directly yields the moments of the distribution,

〈
rk1 . . . rkn

〉 = ∂

∂ bk1
· · · ∂

∂ bkn

Cr(b)

∣∣∣∣
b=0

. (3.35)
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Similarly, functional differentiation can be used to obtain the n-point functions from
the partition functional,

〈R(x1) . . .R(xn) 〉 = δ

δf (x1)
· · · δ

δf (xn)
Z[f (x)]

∣∣∣∣
f =0

, (3.36)

where we have used the property of the functional differentiation,

δ

δf (xi)

∫
dx R(x) f (x) = R(xi) . (3.37)

Thus, the n-point functions are just the MacLaurin coefficients of the partition
functional.

3.4.1.2 The Connected Functions

The n-point functions, also known as the disconnected correlation functions, are not
the only way to characterise a random field. It is sometimes convenient to use the
connected correlation functions, which are defined as the Maclaurin coefficients of
the logarithm of the partition functional,4

〈R(x1), . . . ,R(xn) 〉c ≡ δ

δf (x1)
· · · δ

δf (xn)
lnZ[f (x)]

∣∣∣∣
f =0

. (3.38)

The connected functions are the generalisation of the cumulants of a discrete set
of variables, just as the n-point functions are the generalisations of the non-central
moments.

The main advantage of the connected functions is that they vanish if any of their
arguments are independent. To prove this, let us assume that the space where x
lives can be divided into two sets, X1 and X2, where the random field is causally
disconnected. We can then think of the random field as being described by two
disjoint probability distribution functionals, one for the points in X1 and another for
those in X2,

P[R(x)] = P[R(x)]X1 × P[R(x)]X2 . (3.39)

The probability measure is separable, too,

∫
D[R(x)] =

∫ ∏
x∈X1

dR(x) ×
∫ ∏

x∈X2

dR(x) , (3.40)

4Note that we use commas to separate the variables in 〈R(x1), . . . ,R(xn) 〉c to make it clear that
the connected functions are not obtained as the average of a product of random fields.
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which, after using Eq.3.32, implies that the n-point functions, 〈R(x1) . . .R(xn) 〉 ,
break down according to whether the points belong to X1 or X2. For example, if
x1, x3 ∈ X1 and x2 ∈ X2, we obtain

〈R(x1)R(x2) 〉 = 〈R(x1) 〉 〈R(x2) 〉
(3.41)〈R(x1)R(x2)R(x3) 〉 = 〈R(x1)R(x3) 〉 〈R(x2) 〉 .

The connected functions are a different story. Because the scalar product behaves
linearly,

∫
dx R(x) f (x) =

∫

X1

dx R(x) f (x) +
∫

X2

dx R(x) f (x) , (3.42)

we have that the partition function of R(x) is given by the product

Z[f (x)] = Z[f (x)]X1 Z[f (x)]X2 . (3.43)

The generating function for the connected correlation functions is the logarithm ofZ:

lnZ[f (x)] = lnZ[f (x)]X1 + lnZ[f (x)]X2 . (3.44)

By virtue of the definition of connected correlation functions in Eq.3.38, we have
that

〈R(x1), . . . ,R(xn) 〉c = δ

δf (x1)
· · · δ

δf (xn)
lnZ[f (x)]X1

∣∣∣∣
f =0

+ δ

δf (x1)
· · · δ

δf (xn)
lnZ[f (x)]X2

∣∣∣∣
f =0

. (3.45)

This means that the connected functions vanish unless all of the points are either in
X1 or in X2, simply because

δ

δf (x)

∫

X
dx′ R(x′) f (x′) = 0 (3.46)

if x does not belong to X .
We have proven that the connected correlation functions, 〈R(x1), . . . ,R(xn) 〉c ,

vanish if at least two points belong to casually disconnected regions (hence the
adjective “connected”). As a consequence, each independent region has its own set
of connected correlations functions that, under the assumption of statistical homo-
geneity, coincidewith those of any other region.One could say that each disconnected
region behaves as a realisation within the realisation. This statement is particularly
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important for the cosmological study of the Universe, where a structure of discon-
nected regions arises naturally due to the finite speed of light; we shall treat the
consequences of this statement in Sect. 3.4.2.

3.4.1.3 Wick’s Theorem

Like themoments and the cumulants of a distribution, the disconnected and connected
correlation functions of a random field are related by simple polynomial expressions.
The coefficients of the polynomials can be determined by the repeated application
of the chain rule to the logarithmic function in Eq.3.38; there is however a simpler
version of the formula in terms of set partitions [79, 90], which we report here:

〈R1 · · ·Rn 〉 =
∑
π

∏
b∈π

〈 b 〉c . (3.47)

The sum goes over all the possible partitions π of the set {R1, . . . ,Rn}, while
the product goes over each block b of the considered partition, and Ri stands for
R(xi). For example, the set {R1,R2} has only two partitions: the one-block partition
{R1,R2} and the two-block partition {{R1}, {R2}}; hence, the average of R1R2
includes two terms involving, respectively, one and two unconnected functions:

〈R1R2 〉 = 〈R1,R2 〉c + 〈R1 〉c〈R2 〉c . (3.48)

Since 〈R1 〉 = 〈R1 〉c , the above formula tells us that 〈R1,R2 〉c is just the covari-
ance of the field between R(x1) and R(x2).

The combinatorics formula in Eq.3.47 is usually referred to as Wick’s theorem
and is widely used in particle physics to compute Feynman diagrams. Here, we use
it to find the first four n-point functions for a zero-mean random field:

〈R1 〉 = 〈R1 〉c = 0

〈R1R2 〉 = 〈R1,R2 〉c
(3.49)〈R1R2R3 〉 = 〈R1,R2,R3 〉c

〈R1R2R3R4 〉 = 〈R1,R2,R3,R4 〉c + 〈R1,R2 〉c〈R3,R4 〉c

+ 〈R1,R3 〉c〈R2,R4 〉c + 〈R1,R4 〉c〈R2,R3 〉c .

In this work we shall mostly deal with the two and three-point functions (that is,
spectra and bispectra), which, as can be seen by the above expression, coincide
with their corresponding connected functions. Sometimes, we will need to evaluate
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the four-point function of a Gaussian random field; in that case, all the connected
functions apart from the covariance vanish, and we are left with

〈R1R2R3R4 〉 = 〈R1R2 〉 〈R3R4 〉 + 〈R1R3 〉 〈R2R4 〉 + 〈R1R4 〉 〈R2R3 〉 .

(3.50)

3.4.2 Statistical Homogeneity and Isotropy

The stochastic nature of the cosmological perturbations poses the problem of con-
necting the observations to the underlying theory. Theoretical investigation is only
able to compute quantities averaged over the ensemble of possible realisations of the
Universe, such as the n-functions in Eq.3.32; it cannot predict the details of our pecu-
liar realisation which is just the final outcome of a random process that took place
during inflation. On the other hand, cosmological observations probe just a portion
of the single realisation we live in; a measurement is always an average over a finite
volume of some observable quantity. For example, cosmologists count the number
of galaxies as a function of direction and redshift and then compute their correlation
functions as an average over the probed volume. Similarly, the temperature of the
CMB is averaged over all directions to obtain the angular power spectrum.

Observation can be still used to constrain the theory if the statistical properties
of the Universe do not vary from region to region. Then, sampling different regions
in our realisation is equivalent to sampling different realisations. Therefore, we can
compensate the fact that we observe only one realisation of theUniverse by observing
as much Universe as we can. In principle, if we could access arbitrary large regions
of the Universe we would be able to probe the statistics of the primordial density
fluctuations on any scale. In practice, this is obviously not possible because the
finite size of our past light cone still limits the maximum volume we can probe to
∼(14Gpc)3.

We shall therefore demand that the random fields describing the cosmological
perturbations are statistically homogeneous and isotropic. A random field is statisti-
cally homogeneous if the joint probability distribution for any finite set of points is
invariant under a spatial translation, that is

P (R(x1), . . . ,R(xn)) = P (R(x1 + x), . . . ,R(xn + x)) (3.51)

for any n. This property, also called stationarity, is directly transferred to the n-
point functions of the field; for instance, the homogeneity condition implies that
〈R(x) 〉 is spatially independent and that 〈R(x1)R(x2) 〉 is a function only of the
relative separation, r ≡ x2 − x1. Statistical isotropy instead means invariance of the
finite joint probability under a global rotation of its arguments. Thus, in a statistically
isotropic and homogeneousUniverse, 〈R(x1)R(x2) 〉 depends solely on the distance,
r = |r|, between x2 and x1.
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The statistical homogeneity and isotropy are far less stringent requirements than
the cosmological principle, whereby all realisations must be perfectly homogeneous.
The statistical version of the cosmological principle still allows for distant regions
in the Universe to look different from each other, just because of the variance which
is intrinsic in the stochastic nature of the perturbations. However, the variance itself
should not depend on the location, and taking averages of different patches of the
Universe should yield similar results.

Fair sample and ergodicity hypotheses The requirement of statistical homogeneity
and isotropy is closely related to the fair sample hypothesis, whereby well separated
regions of the Universe can be thought as being independent realisations of the
underlying distribution; thus, spatial averages over many of such regions are equal
to expectations over the ensemble [68]. The fair sample hypothesis, which implies
the statistical homogeneity and isotropy, provides an operational way to perform
a volume average that is directly related to the ensemble average: first perform a
volume average over a representative patch of the Universe, and secondly an average
over many independent patches within your past light cone [20]. Another related
hypothesis is that of ergodicity, whereby volume averages over the full extent of
a realisation are equal to the expectations over the ensemble. Ergodicity is of less
practical importance than the fair sample hypothesis because it requires averaging
over an infinite volume; its advantage, however, is that it is automatically satisfied
for all the homogeneous Gaussian fields with a continuous power spectrum [1].

3.4.3 Gaussian Random Fields

In the simplest scenario of cosmic inflation, the primordial perturbations are Gaus-
sianly distributed and can therefore be described by Gaussian random fields. The
probability distribution functional for one of such fields, G, is given by

P[G] = (det K)1/2 exp

(
−1

2

∫
dx1 dx2 G(x1) K(x1, x2) G(x2)

)
, (3.52)

where K(x1, x2) is a symmetric, invertible operator. An important property of
Gaussian random fields is that they are completely characterised by their two-point
connected function, which we denote as ξ(x1, x2) and is given by the functional
inverse of K :

ξ(x1, x2) = K−1(x1, x2) . (3.53)

All the other connected functions vanish. This property greatly simplifies the task of
deriving the n-point functions of the field, which can be expressed in terms of sums
of products of ξ by virtue of the Wick’s theorem in Eq.3.47.
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The fact that a Gaussian field is completely characterised by its two-point con-
nected function is easily proven when considering a finite set of points, rather than a
full realisation. The probability of measuring the finite number of values {g1, . . . gn}
in the space points {x1, . . . , xn} is given by a multivariate Gaussian distribution:

P(g1, . . . , gn) = 1√
(2π)n det K

exp

(
−1

2
gi K−1

ij gj

)
, (3.54)

where Kij = 〈
gi gj

〉
is the (symmetric) covariance matrix. The above expression is

just the discrete version of Eq.3.52. Because the solution of the Gaussian integral
with a linear term is analytically known, the characteristic function of P is simply
given by

Cg(b) = exp

(
1

2
bi Kij bj

)
. (3.55)

The joint cumulants, κ , of the random variables g can be obtained by differentiating
lnC with respect to b:

κ(x1, . . . , xn) = ∂

∂b1
· · · ∂

∂bn
lnCg(b)

∣∣∣∣
b=0

. (3.56)

Since lnC is quadratic in b, it is clear that the only non-vanishing cumulants of a set
of Gaussian variables are

κ(xi, xj) = Mij , (3.57)

a statement that, after taking the limit n → ∞, applies also to a Gaussian random
field and its two-point connected correlation functions.

3.5 Transfer Functions

The evolution of the cosmological perturbations is dictated by the Einstein and Boltz-
mann equations, which, as we shall see in the following chapters, form a system of
coupled partial differential equations (PDEs). The differential system can be turned
into a hierarchy of ordinary differential equations (ODEs), which are easier to treat
numerically, by projecting the positional dependence, x, into a basis of plane waves
withwavevector k.We shall introduce the formalism necessary to do so in Sect. 3.5.1.

Aswe pointed out in Sect. 3.4, the cosmological perturbations are stochastic three-
dimensional fields. Rather than evolving a single realisation of such fields, we are
interested into predicting their expectationvalues such as power spectra andbispectra.
InSect. 3.5.3we showhow todo soby introducing the concept of the transfer function.
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3.5.1 Fourier Formalism

We shall solve the Einstein-Boltzmann differential system in Fourier space. This is
achieved by applying to both sides of the equations the Fourier operator,

Fk
[

f
] =

∫
dx e−ik·x f (x) , (3.58)

where f (x) is a generic function of the position. Note that, being linear, the Fourier
operator acts separately on all the addends of its argument. The function F k

[
f
]
is

called the Fourier transform of f (x) and we shall denote it simply as f (k). (Note
that, although we adopt the same symbol to denote them, the functions f (x) and f (k)

generally have a different functional dependence.) The inverseFourier transformation
is given by

f (x) =
∫

dk
(2π)3

eik·x f (k) , (3.59)

from which it follows that the Fourier transform of a real valued function obeys
f (−k) = f ∗(k). It is important to note that both x and k are comoving quantities,
that is, they are unaffected by the expansion of the Universe.

In Fourier space, partial derivatives transform to products,

F k

[
∂f

∂xi

]
= i ki f (k) , (3.60)

as a direct consequence of the properties of the exponential function with respect to
differentiation. The Laplacian operator ∇2 = ∂ i∂i also has a simple Fourier trans-
form,

F k

[
∇2f

]
= − |k|2 f (k) , (3.61)

where |k|2 ≡ ki ki. Therefore, going to Fourier space has the desirable property of
turning our system of PDEs into an easier-to-treat system of ODEs by eliminating
the partial derivatives with respect to the position.

The components of the wavevector k = (
k1, k2, k3

)
enter the Fourier-space equa-

tions as external parameters. In principle, to obtain the time evolution of the pertur-
bations, one has to solve N3 independent differential systems, where N is the number
of sampling points in each k-direction. In practice, however, the statistical isotropy
of the cosmological perturbations allows us to choose a coordinate system for each
wavevector k where the zenith is aligned with k itself. As a result, the solution for a
given wavevector k will depend only on its magnitude, k ≡ |k|, and on conformal
time, τ .



74 3 Perturbation Theory

As an example, consider the time–time component of Einstein equations in New-
tonian gauge, also known as energy-constraint equation. In real space and at first
perturbative order, it reads

Φ̇ + HΨ − 1

3H ∇2Φ + a2

2H
∑

T 0
0 = 0 , (3.62)

where a dot denotes differentiation with respect to conformal time, τ , the sum is
over all the matter species, and Φ, Ψ , T 0

0 are first-order quantities with a (τ, x)

dependence. In Fourier space and with the zenith aligned with k, the time-time
equation reads

Φ̇ + HΨ + k2

3H Φ + a2

2H
∑

T 0
0 = 0 , (3.63)

where, now, all perturbed variables have a (τ, k) dependence. Even though they look
almost identical, the Fourier-space equation is much easier to solve than the real-
space one as it does not involve partial derivatives. However, it contains a parameter,
k, that has to be sampled in a range and with a frequency suitable to capture the
physics of perturbations on all scales. We shall discuss the best sampling strategies
for the wavemode k in Sect. 5.3.2.

3.5.1.1 Sub and Super-Horizon Scales

The value of a random field in Fourier space,X(k), quantifies the correlation between
pairs of points separated by a distance of r = 2π/k. This follows directly from the
harmonic behaviour of the exponential in the Fourier transform, and it is sometimes
known as the Wiener-Khinchin theorem.

In the case of cosmological perturbations, the correlation length 2π/k defines a
comoving scale with an important causal meaning. A given wavemode is said to be
inside or outside the horizon if its comoving scale, 2π/k, is respectively smaller or
larger than the particle horizon, cτ . Modes inside the horizon, or sub-horizon, have
τk > 2π/c, while modes outside the horizon, or super-horizon, have τk < 2π/c.
Since the particle horizon, which we have defined in Sect. 2.3.3, is the maximum
length a particle can travel since the Big Bang, no causal physics can take place on
super-horizon scales; hence, we expect the observable correlators to evolve only on
sub-horizon scales.

3.5.2 Mode Coupling

As we have seen in Sect. 3.2.1, a second-order equation always includes a quadratic
source term consisting of products of first-order perturbations. The Fourier transform
of a generic quadratic term, A(x)B(x), yields a convolution integral:

http://dx.doi.org/10.1007/978-3-319-21882-3_5
http://dx.doi.org/10.1007/978-3-319-21882-3_2
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F k[ A(x) B(x) ] =
∫

dk1

(2π)3
A(k1) B(k − k1) (3.64)

=
∫

dk1dk2

(2π)3
A(k1) B(k2) δ(k − k1 − k2) , (3.65)

where δ(k − k1 − k2) is a Dirac delta and forces the three wavevectors k, k1, k2 to
form a triangle. The second form of expressing the convolution is particularly useful
for reasons that will be clear after we introduce the transfer functions in Sect. 3.5.3.
For the sake of readability, we shall adopt the shorthand notations A1 ≡ A(k1),
B2 ≡ B(k2) and denote the convolution integral as [71]

K { f } ≡
∫

dk1dk2

(2π)3
f (k1, k2) δ(k − k1 − k2) . (3.66)

Due to the presence of these non-local terms, the evolution of the mode k of a
second-order perturbation is determined by all other modes, which in Eq.3.64 are
represented by k1. Equivalently, the behaviour of perturbations on a given scale is
influenced by all other scales. This important property is typical of non-linear system
and is referred to as mode coupling. At linear order, where there are no quadratic
sources, all modes evolve independently.

Let us see with an example what the quadratic sources look like in Fourier space.
In real space, the quadratic sources S of the time–time equation are given by (see
Sect. 3.6)

S (τ, x) = 4HΨ Ψ + 4Ψ Φ̇ − 4Φ Φ̇

+ 1

3H
(
8Φ ∇2Φ + 3 ∂iΦ ∂ iΦ + 3 Φ̇ Φ̇

)
, (3.67)

where ∂i is a shorthand for ∂/∂xi and all perturbations have the same (τ, x) depen-
dence. The full second-order time–time equation is obtained by adding S to the left
hand side of Eq.3.62. In Fourier space, we have that S(τ, k) = K { S (k1, k2) }where
the convolution kernel is given by

S (k1, k2) = 4HΨ1 Ψ2 + 4Ψ1 Φ̇2 − 4Φ1 Φ̇2

+ 1

3H
[
−

(
8 k22 + 3 k1 ·k2

)
Φ1 Φ2 + Φ̇1 Φ̇2

]
. (3.68)

To obtain the above equation, we have just transformed the Laplacian term, 8Φ ∇2Φ,
into −8Φ1 k22 Φ2 according to Eq.3.61, and the gradient product, 3 ∂iΦ ∂ iΦ, into
−3 k1 ·k2 Φ1 Φ2 according to Eq.3.60.

Symmetrisation The convolution wavevectors k1 and k2 are dummy variables, thus
there is no unique way to express the quadratic source terms. In the above example,
we could have written the Φ1 Φ2 coefficient as 8 k21 + 3 k1 ·k2 or as 4 k21 + 4 k22 +
3 k1 ·k2. In SONG, we shall solve the second-order equations by symmetrising the
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quadratic sources with respect to the exchange of k1 and k2, because doing so cuts
the computation time by half (see Chap.6). In this thesis, instead, we shall report the
lowest possible number of terms, except for the quadratic terms in the same variable
(e.g. Φ1 Φ2), which we shall symmetrise.

3.5.3 Transfer Functions

One of the purposes of SONG is to predict the current value of the cosmological
perturbations by numerically evolving them from an initial state, according to a given
cosmological model. The perturbations, however, are three-dimensional stochastic
fields of which the observable Universe, that is our sky, is just a realisation (Sect. 3.4).
Since all stochastic processes have a variance, any two realisations differ; thus, the
physical insight lies in the expectation values of the field rather than in the stochastic
fluctuations of a single realisation.

In order to separate the stochastic part of the perturbations from their deterministic
evolution, we introduce the concept of transfer function. The transfer function of a
given cosmological field is an operator that maps a realisation of the field in the early
Universe to its state today. The stochastic process is relegated to the initial realisation,
which is drawn from the probability distribution of whatever physics took place in
the early Universe. The transfer function, instead, is completely deterministic as it
describes the subsequent physical processes, which are dictated by the Einstein and
Boltzmann equations.

We shall express a perturbation field X in terms of its linear and second order
transfer functions, T (1) and T (2) respectively, as

X(τ, k) = T (1)
X (τ, k) Φ(τin, k)

+ K
{
T (2)

X (τ, k1, k2, k) Φ(τin, k1) Φ(τin, k2)
}

, (3.69)

where Φ(τin, k) is the curvature potential at the initial time τin, a stochastic quantity.
Aswe shall see in Chap.5, the initial time should be chosen to be deep in the radiation
era, where the evolution of the perturbations is known analytically. Note that, in
principle, the full perturbation X is given by an infinite sum of terms, each involving
a higher-order transfer function and an extra primordial potential; we truncate the
sum at T (2) because all of the other terms are at least third order.

The choice of Φ as the reference field is arbitrary and choosing another pertur-
bation results in a simple rescaling of the transfer functions; in fact, many authors
prefer to choose the curvature perturbation R instead. Note that, contrary to Φ and
X, the linear and non-linear transfer functions are not perturbed quantities and are
of order unity. Nonetheless, we denote them with a perturbative order with a small
abuse of notation.

http://dx.doi.org/10.1007/978-3-319-21882-3_6
http://dx.doi.org/10.1007/978-3-319-21882-3_5
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3.5.3.1 Linear Transfer Functions

If follows from Eq.3.69 that the evolution of the first-order part of a perturbation is
completely determined by its linear transfer function:

X(1)(τ, k) ≡ T (1)
X (τ, k) Φ(1)(τin, k) . (3.70)

If we take a first-order equation and express all the perturbations in terms of their
linear transfer functions, we can factor out the primordial stochastic field, Φ(τin, k),
because it does not have a time dependence. This leads to a fully deterministic
equation. For example, the time–time equation (Eq.3.63) becomes

Ṫ (1)
Φ − HT (1)

Ψ + k2

3H T (1)
Φ + a2

2H
∑

T (1)
T 0

0
= 0 , (3.71)

which is an ordinary differential equation that can be solved to yield the time evolu-
tion of T (1)

Φ . In general, numerical solutions for the linear transfer functions of the
cosmological perturbations can be computed in the matter of seconds for a number
of different cosmological model, by using any of the publicly available Boltzmann
codes [24, 38, 45, 49, 81].

The time-time equation example shows that, in order to derive the time evolu-
tion of the transfer functions, it is not needed to know the details of the primor-
dial field, Φ(τin, k). Note that this is possible because we have defined the trans-
fer functions in Fourier space. Had we defined them in real space as X(1)(τ, x) =
T (1)

X (τ, x)Φ(1)(τin, x), the partial derivatives in the evolution equations would have
made it impossible to factor out the primordial potential. As a result, the same equa-
tions in Fourier space would have had convolution integrals over T (1)

X Φ(1)(τin) even
at first order.

3.5.3.2 Second-Order Transfer Functions

The second-order part of a perturbation is determined by both the linear and the
second-order transfer functions:

X(2)(τ, k) = T (1)
X (τ, k)Φ(2)(τin, k)

+ K
{
T (2)

X (τ, k1, k2, k) Φ(1)(τin, k1) Φ(1)(τin, k2)
}

. (3.72)

Similarly to the linear case in Eq.3.70, the evolution of the second-order transfer
functions is deterministic and is independent of the primordial potential. We can see
that this is the case by inserting the above expression in the second-order time-time
equation (given by Eqs. 3.63 and 3.68). The first part of the resulting expression
involves only the linear transfer functions,
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(
Ṫ (1)

Φ − HT (1)
Ψ + k2

3H T (1)
Φ + a2

2H
∑

T (1)
T 0

0

)
Φ(2)(τin, k) ,

and it vanishes identically because it corresponds the first-order time-time equation.
The second part is a convolution over the k1 and k2 wavemodes:

K
{(

Ṫ (2)
Φ − HT (2)

Ψ + k2

3H T (2)
Φ + a2

2H
∑

T (2)
T 0

0

)
Φ1(τin) Φ2(τin) + S (k1, k2)

}
= 0 ,

where the quadratic source term S (k1, k2) is given in Eq.3.68:

S (k1, k2) = 4HΨ1 Ψ2 + 4Ψ1 Φ̇2 − 4Φ1 Φ̇2

+ 1

3H
[
−

(
8 k22 + 3 k1 ·k2

)
Φ1 Φ2 + Φ̇1 Φ̇2

]
. (3.73)

The important point here is that the whole expression is inside a convolution integral
over k1 and k2. If we drop the integral, we are left with

(
Ṫ (2)

Φ − HT (2)
Ψ + k2

3H T (2)
Φ + a2

2H
∑

T (2)
T 0

0

)
Φ1(τin) Φ2(τin) + S (k1, k2) = 0 ,

which is an expression where k1 and k2 appear now as external parameters, at the
same level of k. Let us now divide this expression by Φ1(τin) Φ2(τin). Then, the
Φ potentials in the purely second-order part are simply factored out, while for the
quadratic sources we have

S (k1, k2)

Φ1(τin) Φ2(τin)
, (3.74)

which reduces to products of linear transfer functions, like in

4
Ψ1(τ )

Φ1(τin)

Φ̇2(τ )

Φ2(τin)
= 4 T (1)

Ψ (k1) Ṫ (1)
Φ (k2) . (3.75)

As in the first-order case, the time-time equation now contains only determin-
istic transfer functions and can be solved numerically to yield the evolution of
T (2)

Φ (k, k1, k2). The same applies for all other equations at second order. Computing
numerically the second-order transfer functions is indeed one of the main features
of our code SONG, which shall be described in Chap.5.

A final remark is in order. The second-order transfer functions T (2)
X (k, k1, k2)

are mathematical objects introduced to parametrise the evolution of the second-
order perturbations. Being defined inside a convolution integral where k1 and k2 are
dummy variables, they are neither unique nor observable. The observable quantities,
such as spectra and bispectra, will depend on the actual perturbations that result from
convolving the transfer functions with the initial conditions by means of Eq.3.72.

http://dx.doi.org/10.1007/978-3-319-21882-3_5
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3.6 The Einstein Equations

We consider the following form of the Einstein equation:

Gμ
ν = Rμ

ν − 1

2
δμ

ν R = κ T μ
ν , (3.76)

where κ = 8πG/c4. We prefer to work with the up-down version of Einstein equa-
tions because in this configuration the energy-momentum tensor has a simpler form,
for reasons that will be clear after introducing the tetrad formalism in Sect. 4.2.1.

We project the Einstein equation in its scalar, vector and tensor components by
using the projection vectors, ξ[m], and matrices, χ[m], according to the SVT decom-
position detailed in Sect. 3.3.1. We shall refer to the projected equations as follows:

Time–time G0
0 = κ T 0

0

Trace δij Gij = κ δij Tij (3.77)

Space–time i ξ i[m] Gi0 = κ i ξ i[m] Ti0

Space–space χ
ij
2,[m] Gij = κ χ

ij
2,[m] Tij

The time–time and trace equations each describe 1 scalar degree of freedom, the
space–time one describes 3 DOFs (1 scalar, 2 vector) and the space–space equation
describes 5 DOFs (1 scalar, 2 vector, 2 tensors), for a total of 10 degrees of freedom.
The spatial indices refer to the up-down version of the Einstein equation (Eq. 3.76).
They are raised and lowered with the Euclidean metric δij and its inverse δij so that,
for instance, Tij is the spatial part of T μ

ν and not that of Tμν .

3.6.1 The Metric

As discussed in Sect. 3.3, we shall adopt the Newtonian gauge and neglect the first-
order parts of the vector and tensor degrees of freedom. The resulting metric up to
second order reads

g
(2)
00 = −a2 (1 + 2Ψ (1) + 2Ψ (2))

g
(2)
0i = g

(2)
i0 = a2 ω

(2)
i (3.78)

g
(2)
ij = a2 (1 − 2Φ(1) − 2Φ(2)) δij + 2 a2 γ

(2)
ij .

The spatial perturbation γij is traceless by definition while the Newtonian gauge con-
ditions enforce that both the vector and spatial perturbations are transverse: ∂ iωi = 0

http://dx.doi.org/10.1007/978-3-319-21882-3_4
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and ∂ jγij = 0. The number of independent degrees of freedom in gμν is therefore 6.
As pointed out in Sect. 3.3.1, we further decompose the metric in scalar, vector and
tensor degrees of freedom by introducing the variables

ω
(2)
[m] = ξ i[m] ω

(2)
i (3.79)

and

γ
(2)
[m] = χ

ij
2,[m] γ

(2)
ij . (3.80)

In Fourier space, after aligning the zenith with the k wavemode, the gauge conditions
readω

(2)
[0] = 0 and γ

(2)
[0] = γ

(2)
[±1] = 0,whichmeans that inNewtonian gauge the vector

modes are only in the gi0 part of the metric.

3.6.2 The Energy-Momentum Tensor

The energy-momentum tensor for a given species is rigorously defined as themomen-
tum integral over the one-particle distribution function, f ,

T μ
ν(τ, x) = 1√−g

∫
dp

pμ pν

p0
f (τ, x, p) , (3.81)

where pν is the four-momentum of one particle of the considered species. A useful
way to parametrise the energy momentum tensor is by means of a fluid,

T μ
ν = (ρ + P) Uμ Uν + δμ

ν P + Σμ
ν , (3.82)

where ρ is the energy density, P is the pressure, Uμ is the four-velocity, Σμ
ν is the

anisotropic stress tensor, a symmetric and traceless tensor, and we have assumed
c = 1. These variables are defined in the energy frame of the species; we shall refer
to them collectively as the fluid variables.

The fluid description is particularly apt to treat the baryons and the cold dark
matter because, being massive particles, they can be approximated as dust (P = 0
and Σμ

ν = 0) for all relevant cosmological epochs. However, it captures only part
of the energetics of the photons and the neutrinos, which are relativistic particles and
need to be described by the full distribution function. In Chap.4 we shall introduce a
more general frameworkwherewe treat both relativistic and non-relativistic particles
by expanding the distribution function into a hierarchy of multipole moments; the
components of the energy-momentum tensor will be just the lowest moments of

http://dx.doi.org/10.1007/978-3-319-21882-3_4
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such expansion. Nonetheless, we shall refer to the fluid limit often because it is still a
valuable tool to relate the abstract multipole moments to the familiar energy density,
velocity, pressure and shear.

3.6.2.1 The 4-Velocity

Before expanding the energy-momentum tensor up to second order, let us study
the behaviour of the four-velocity of the fluid, Uμ. At the background level, the
cosmological principle forbids the existence of any preferred direction in the fluids’
motions [57]. Thus, we have that, in comoving coordinates,

Uμ

(0) =
(

U0
(0), 0, 0, 0

)
. (3.83)

(Note that, for the same reason, the shear tensor Σ i
j vanishes at the background

level). The time component, U0 , can be obtained from the other ones, at any order,
by noting that the four-velocity, Uμ = dxμ/ds , satisfies the normalisation condition

gμν Uμ Uν = −1 , (3.84)

which, up to second order, yields

g00 U0 U0 + δij Ui Uj = −1 ⇒ U0 = 1√−g00

√
1 + UiUi , (3.85)

where we have considered the vector and tensor modes to be at least second order.
In Newtonian gauge, where g00 = −a2(1+ 2Ψ ) , and if we choose the positive root
of

√−g00 , the above relation reads

U0 = 1

a
√
1 + 2Ψ

√
1 + UiUi , (3.86)

which up to second order is equivalent to

U0 = 1

a

(
1 − Ψ + 3

2
Ψ Ψ + UiUi

2

)
. (3.87)

Note that, had we not imposed ω
(1)
i = 0 , the expression would have included a

ωi Ui term.

Helmholtz decomposition In the following, we parametrise the spatial part of the
four-velocity of a fluid as

Ui ≡ V i

a
, (3.88)
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and further decompose V i into a scalar field v and a divergence-less vector field vi,

V i = ∂ i v + vi , (3.89)

in what is called the Helmholtz decomposition. The two parts are, respectively, curl-
free and divergence-free, and are known as the longitudinal and solenoidal parts of
the vector field [57]. In Fourier space, after aligning the zenith with the k vector, the
decomposed velocity field reads

Vi = (v1, v2, ikv) . (3.90)

Note that, for an irrotational fluid (that is, a fluid whose velocity is curl-free), vi

vanishes and the velocity field is completely described by its longitudinal part.

Spherical decomposition Like for any other three-vector, we decompose the fluid
velocity V i into its spherical components as

V[m] = ξ i[m] Vi . (3.91)

The Helmholtz and spherical decompositions of a three-vector are closely related.
By using the expression for V i in Fourier space from Eq.3.90 and the definition of
the ξ vectors from Appendix A, we obtain

V[0] = i k v ,

V[±1] = 1√
2

(∓v1 + i v2) . (3.92)

Thus, the longitudinal and solenoidal parts of the Helmholtz decomposition corre-
spond, respectively, to the scalar (m = 0) and vector (m = ±1) parts of the vector
field.

3.6.2.2 Perturbative Expansion of Tμ
ν

We now have all the ingredients to expand the fluid energy momentum tensor up to
second order

T 0
0 = −ρ − (ρ + P) V i Vi ,

T i
0 = −(ρ + P) (1 + Ψ ) V i ,

(3.93)
T 0

i = (ρ + P) (1 + Ψ + 2Φ) (V i + ωi) ,

T i
j = δ i

j P + Σ i
j + (ρ + P) V i V j ,
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Since the only quantitieswith a background value are ρ andP, the energy-momentum
tensor up to first order is free from metric perturbations:

T 0
0 = −ρ , T i

0 = −(ρ + P) V i ,

(3.94)
T 0

i = −T i
0 , T i

j = δi
j P + Σ i

j .

Wecanobtain the spherical components of the energy-momentum tensor by apply-
ing the SVT decomposition described in Sect. 3.3.1:

T 0
0 = −ρ − (ρ + P) V i Vi ,

T i
i = 3P + (ρ + P) V i Vi ,

(3.95)
ξ i[m] Ti0 = −(ρ + P) (1 + Ψ ) V[m] ,

χ
ij
2,[m] Tij = Σ[m] + (ρ + P) (V V )[m] ,

where we have introduced the shorthands (V V )[m] = χ
ij
2,[m] Vi Vj and V[m] =

ξ i[m] Vi.We remark that all the quadratic sources in the above expressionmix different
azimuthal modes, thus violating the decomposition theorem, as expected from the
discussion in Sect. 3.3.2. For example, the vector part of the third line, ξ i[±1] Ti0 ,
includes the term Ψ V[±1] which involves the scalar potential Ψ . Similarly, the

scalar T 0
0 in the first line contains the quadratic term V iVi =

1∑
m=−1

V[m] V ∗[m] (see

Sect.A.3.1), which is in itself a scalar but has contributions from the vector part V[±1]
of the velocity.

3.6.3 The Einstein Equations at Second Order

We derive the Einstein equations up to second order in Newtonian gauge by first
inserting the perturbed metric in Eq.3.78 into the Einstein equation in Eq.3.76.
We then decompose the resulting expression into its scalar, vector and tensor parts
according to Eq.3.77, and project it to Fourier space using the Fourier operator in
Eq.3.58. It is crucial at this point to align the zenith to the k wavevector, so that
kx = ky = 0 or, in spherical coordinates, k[±1] = 0; only in this way the mixing
between the different azimuthal modes is forbidden explicitly.

Below, we show the Einstein equations in Fourier space as obtained with the
procedure described above. For the real space equations, refer to, e.g., Appendix A
of Pitrou et al. [71]. Also note that, due to the gauge conditions, only six out of the
ten independent Einstein equations are independent.
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3.6.3.1 Purely Second-Order Structure

The purely second-order Einstein equations read

• Time-time, or energy constraint, equation:

6H2 Ψ + 6H Φ̇ + 2 k2 Φ + QTT = a2κ T 0
0 . (3.96)

• Trace equation:

6 Φ̈ + Ψ (6H2 + 12 Ḣ) + 6H (Ψ̇ + 2 Φ̇) + 2 k2 (Φ − Ψ ) + QTR = a2κ T i
i .

(3.97)

• Space-time equations for m = 0 and m = ±1,

− 2 k (Φ̇ + HΨ ) + QST[0] = a2κ (i ξ i[0] Ti0) ,

i

2
ω[±1] (4H2 − 4 Ḣ + k2) + QST[±1] = a2κ ( i ξ i[±1] Ti0 ) . (3.98)

• Space-space, or anisotropic stresses, equations for m = 0, m = ±1 and m = ±2,

− 2 k2

3
(Φ − Ψ ) + QSS[0] = a2κ ( χ

ij
2,[0] Tij ) ,

− i k√
3

(ω̇[±1] + 2Hω[±1]) + QSS[±1] = a2κ ( χ
ij
2,[±1] Tij ) ,

γ̈[±2] + 2H γ̇[±2] + k2 γ[±2] + QSS[±2] = a2κ ( χ
ij
2,[±2] Tij ) . (3.99)

The dots denote differentiation with respect to the conformal time, τ , and κ =
8πG. The symbols Q stands for the the quadratic part of the Einstein tensor, which
we shall show below. The right hand side of each equation contains the spherical
decomposition of the energy-momentum tensor. This is given by a sum of the energy-
momentum tensors of the single species (photons, neutrinos, baryons and cold dark
matter). Its form in the fluid limit can be read from Eq.3.95; however, in SONG,
it is computed using the Fourier multipoles Δ�m(k) defined in Chap.5 rather than
the fluid variables. Note that the four scalar equations can be directly compared with
Eqs. (23a)–(23d) in Ma and Bertschinger [53].

3.6.3.2 Quadratic Sources

We denoted the quadratic sources for the Einstein tensor with the letter Q:

http://dx.doi.org/10.1007/978-3-319-21882-3_5
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QTT = a2 G0
0
(1)(1)

, QTR = a2 Gi
i
(1)(1)

,

QST[m] = i ξ i[m] a2 Gi0
(1)(1) , QSS[m] = χ

ij
2,[m] a2 Gij

(1)(1) .

Their explicit form is given by

QTT = − 12H2 Ψ1 Ψ2 + (3 k1 ·k2 + 4 k21 + 4 k22)Φ1 Φ2

+ 12H Φ̇2 (Φ1 − Ψ1) − 3 Φ̇1 Φ̇2

QTR = − 12Ψ1 Ψ2 (H2 + 2 Ḣ) + (K2 + k21 + k22) Ψ1 Ψ2

+ (3 k1 ·k2 + 4 k21 + 4 k22)Φ1 Φ2 + (2 k1 ·k2 − 4 k22)Φ1 Ψ2

+ 12 (Φ̈2 + 2H Φ̇2) (Φ1 − Ψ1) − 6 Ψ̇2 (4HΨ1 + Φ̇1) + 3 Φ̇1 Φ̇2

QST[m] = 2 k1[m]
[
2HΨ1 (Ψ2 − Φ2) − 2Φ1 Φ̇2 − 4 Φ̇1 Φ2 + Ψ1 Φ̇2

]

QSS[m] = (k1k2)[m]
[
2Φ1 Ψ2 − 3Φ1 Φ2 − iΨ1 Ψ2

]

+ (k1k1)[m]
[
2Ψ1 Φ2 − 4Φ1 Φ2 − 2Ψ1 Ψ2

]
.

(3.100)

The subscripts indicate the dependence on the convolution wavemodes, e.g. Φ1 =
Φ(k1) and Φ2 = Φ(k2). Because k1 and k2 are dummy variables that will be even-
tually integrated out (Sect. 3.5.2), there is no unique way to write down the quadratic
sources. In writing the above expression, we have favoured brevity and we have writ-
ten the quadratic sources using as few terms as possible. In SONG, for the purpose
of optimisation, we shall symmetrise the sources with respect to the exchange of k1
and k2 (Chap. 5).

3.6.3.3 Modified Gravity Theories

In this work, we shall always assume that the theory of general relativity (GR) holds.
There are, however, other viable theories of gravitation than GR. In fact, while GR
is well tested for scales smaller than the size of the solar system [11, 40], there is
still room for different formulations of gravity on larger scales [95]. The possibility
is particularly interesting because the least understood components of the Universe,
that is cold dark matter and dark energy, are known to be relevant on large scales.

It has been proposed that the observed flatness of the galaxy rotation curves
on kiloparsec scales might be due to a modification of Newton’s law [6, 59–61]
rather than to the presence of dark matter. Similarly, it was shown that including
more structure in the Lagrangian of GR results in a richer phenomenology that

http://dx.doi.org/10.1007/978-3-319-21882-3_5
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can ultimately yield to cosmic acceleration, without the need of a cosmological
constant (see, e.g., Refs. [16, 17, 91]). In this work, and inSONG, we assume that the
gravitational interaction is well described by the standard Einstein field equations; as
we shall discuss in Sect. 7.2, using a different theory of gravity might have interesting
effects on the CMB bispectrum and is left for future work.

3.7 Spectra and Bispectra

Given the stochastic nature of the cosmological perturbations, both predictions and
observablesmust be expressed in terms of the probability distribution function (PDF)
of the perturbed fields. In Sect. 3.4 we have introduced the n-point functions as a
simple way to characterise the PDF. In this section, we focus on the two and three-
point functions, which, in the case of the temperature of the cosmic microwave
background, have been observed to high precision by the WMAP [9] and Planck
[72, 74] satellites.

3.7.1 The Two-Point Function

3.7.1.1 The Power Spectrum

Given a random field R, we denote its two-point function, or autocorrelation, with
the symbol ξ(r):

ξ(r) ≡ 〈R(x)R(x + r) 〉 . (3.101)

In principle, the autocorrelation depends on both the point, x, and the separation, r.
However, enforcing statistical homogeneity (Sect. 3.4.2) removes the x dependence.
As a consequence, the expectation value for the product of two Fourier modes,

〈R(k1)R(k2) 〉 =
∫

dx dy e−i ( k1·x + k2·y ) 〈R(x)R(y) 〉 .

collapses to a Dirac delta after the change of variable y = x + r:

〈R(k1)R(k2) 〉 = (2π)3 δ(k1 + k2) P(k1) , (3.102)

where we have defined the power spectrum, P(k), as the Fourier transform of the
two-point function:

P(k) ≡
∫

dr ξ(r) e−ik·r . (3.103)

http://dx.doi.org/10.1007/978-3-319-21882-3_7
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Therefore, the two-point function of a homogeneous field in Fourier space vanishes
unless the two considered wavevectors are equal and opposite. In other words, the
homogeneity enforces that the covariance matrix in Fourier space is diagonal. This
useful result is known as the Wiener-Khintchine theorem.

The two-point function is readily obtained by taking the inverse Fourier transform
of P(k):

ξ(r) =
∫

dk
(2π)3

P(k) eik·r .

One can also enforce statistical isotropy, ξ(r) = ξ(r), to reduce the integration to
one dimension:

ξ(r) = ξ(r) = 1

2π2

∫
dk k2

sin(kr)

kr
P(k) ,

P(k) = P(k) = 4π
∫

dr r2
sin(kr)

kr
ξ(r) . (3.104)

In the limit where r → 0, the two-point function reduces to the variance of the field:

σ 2 =
〈
R(x)2

〉
=

∫
dk

(2π)3
P(k) . (3.105)

It follows that the product dk P(k)/(2π)3 is the contribution to the variance of the
field coming from the volume element dk; that is, the power spectrum quantifies the
power in thefluctuations per unit-volumeofk-space.Anynon-trivial randomfield has
a non-vanishing power spectrumwhich, if measured, provides important information
on its PDF. In the case of Gaussian random fields, the power spectrum, being the
Fourier transform of the two-point correlation function, uniquely determines the PDF
of the field.

3.7.1.2 Perturbative Expansion

After adopting the transfer function representation in Eq.3.69,

X(τ, k) = T (1)
X (τ, k) Φ(τin, k)

+ K
{
T (2)

X (τ, k1, k2, k) Φ(τin, k1) Φ(τin, k2)
}

,

the leading termof the two-point functionof a cosmological perturbationX is givenby

〈 X(k1) X(k2) 〉 � T (1)
X (k1) T (1)

X (k2) 〈 Φ(k1)Φ(k2) 〉 , (3.106)
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and is second-order in the primordial perturbation. (Note that we have dropped the
time dependence, as the potential Φ is always evaluated at the initial time τin and the
transfer functions at the arbitrary time τ .)

The next-to-leading order contribution is a product of the linear transfer function
with the second-order one,

K
{
T (1)(k1) T (2)(k2, k1

′, k2
′)

〈
Φ(k1)Φ(k1

′)Φ(k2
′)

〉 } + 1 permutation,

(3.107)

where k1
′ and k2

′ are convolution variables and the permutation consists of the
same term with k1 and k2 switched. This contribution is penalised with respect to
Eq.3.106 by the presence of an extra power of the primordial potential, which is
of order 10−5. The penalisation can be compensated either by a strong initial non-
Gaussianity, manifesting itself in a large value of the three-point function, or by a
growth of the perturbation with time, which would correspond to a large value of the
second-order transfer function. The former case has been excluded observationally,
as we shall detail in Sect. 3.7.2; the latter, while being certainly possible for cold dark
matter, cannot happen to photon perturbations, because they do not grow with time.
Thus, we can safely use the linear term in Eq.3.106 to approximate the two-point
function in Fourier space:

〈 X(k1) X(k2) 〉 � T (1)
X (k1) T (1)

X (k2) 〈 Φ(k1)Φ(k2) 〉 . (3.108)

By enforcing the statistical homogeneity of the cosmological perturbations
(Eq.3.102), we obtain a relation between the primordial power spectrum, PΦ , and
that of the considered perturbation, PX :

PX(k) � T (1)
X (k) T (1)

X (−k) PΦ(k) ,

Because of statistical isotropy, we also have that PΦ(k) = PΦ(k) and T (1)
X (k) =

T (1)
X (−k) = T (1)

X (k). Hence, we obtain

PX(τ, k) � T (1)
X (τ, k)2 PΦ(τin, k) , (3.109)

where we have reintroduced the time dependence. Therefore, measuring the power
spectrum of a cosmological perturbation today, gives valuable information on the
product between the primordial power spectrum, whose shape and amplitude are
dictated by the physical processes at work in the early Universe, and the first-order
transfer function, which depends on the way the perturbations evolved from the
initial conditions all the way to today. As we pointed out before, this is true only if
the higher-order corrections such as that in Eq.3.107 are negligible.

The power spectrum of the photon temperature field has been measured to great
precision by theWMAP [9] and Planck [72] experiments. The simplified description
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of Eq.3.109, where we only consider the leading contribution to the fluctuations,
complemented by the simple �CDM model, fits the angular power spectrum of the
CMB with impressive precision. Such agreement is an important confirmation of
the fact that photon perturbations do not grow and that, therefore, the higher-order
corrections like the one in Eq.3.107 can be neglected. However, it should be noted
that these corrections can still play a role at the power spectrum level if one aims to
a precision below the percent level.

3.7.2 The Three-Point Function

3.7.2.1 The Bispectrum

We denote the three-point function of a cosmological perturbation X as

ξ(s, t) = 〈R(x)R(x + s)R(x + t) 〉 .

The statistical homogeneity ensures that ξ(s, t) does not depend on the point where
it is evaluated, x, but only on the separations, s and t . The statistical isotropy takes
out three more degrees of freedom from ξ(s, t) by forcing it to depend only on the
three combinations of s and t that are rotationally invariant: their magnitudes, s and
t , and their scalar product.

If we take the expectation value of three perturbations in Fourier space,

〈R(k1)R(k2)R(k3) 〉 =
∫

dx dy dz e−i ( k1·x + k2·y + k3·z ) 〈R(x)R(y)R(z) 〉 ,

and introduce the variables s = y − x and t = z − x eliminating y and z,

〈R(k1)R(k2)R(k3) 〉 =
∫

dx e−i x·(k1+k2+k3)

∫
ds dt e−i ( k2·s + k3·t ) ξ(s, t) ,

we see that the statistical homogeneity makes it possible to substitute the x integral
with a Dirac delta function:

〈R(k1)R(k2)R(k3) 〉 = (2π)3 δ(k1 + k2 + k3) B(k2, k3) , (3.110)

where we have defined the bispectrum B(k2, k3) as the Fourier transform of the
three-point function:

B(k2, k3) ≡
∫

ds dt e−i ( k2·s + k3·t ) ξ(s, t) . (3.111)



90 3 Perturbation Theory

For a zero-mean Gaussian random field the three-point function, ξ(s, t), vanishes
(see Sect. 3.4.3) and so does the bispectrum. The bispectrum is therefore the lowest-
order statistic which is sensitive to the non-Gaussianity of the field. In particular,
measuring a non-vanishing bispectrum for a cosmological perturbation would prove
that the perturbation has undergone some non-Gaussian (or, equivalently, non-linear)
process at some point in the evolution of the Universe.

In an isotropic Universe, the bispectrum can only depend on the magnitudes of the
wavevectors, k1 and k2, and on the angle between them. Because of the presence of
theDirac delta function, δ(k1+k2+k3), thewavevector k3 can be used to parametrise
the bispectrum, too; in fact, in the literature it is customary to express the bispectrum
using the magnitudes of the k-vectors:

〈R(k1)R(k2)R(k3) 〉 = (2π)3 δ(k1 + k2 + k3) B(k1, k2, k3) . (3.112)

Assuming the statistical isotropy and homogeneity of the Universe brings down
the number of independent degrees of freedom in the three-point function from 9 to
3; the bispectrum is just a convenient way of expressing these 3 DOFs in Fourier
space. The freedom in choosing how to parametrise the bispectrum might lead to
ambiguities in the notation. We shall avoid them by denoting the bispectrum with its
full dependence on the wavevectors, B(k1, k2, k3).

Higher-order spectra In general, the n-point connected function of a homoge-
neous field can be always expressed in Fourier space in terms of its polyspectrum,
S(k2, . . . , kn):

〈R(k1) · · · R(kn) 〉 = (2π)3 δ(k1 + · · · + kn) S(k2, . . . , kn) . (3.113)

The polyspectrum is defined as the Fourier transform of the n-point correlation func-
tion:

S(k2, . . . , kn) ≡
∫

dr2 · · · drn e−i ( k2·r2 +···+ kn·rn ) ξ(r2, . . . , rn) . (3.114)

Because of homogeneity, the polyspectrum only depends on n − 1 out of the n
wavevectors in the n-point function. Note that for Gaussian random fields all odd-n
polyspectra vanish, because they are defined out of the connected correlation func-
tions (Sect. 3.4.3).

3.7.2.2 Perturbative Expansion

We expand the three-point function of a cosmological perturbation X in terms of its
transfer functions via Eq.3.69:
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X(τ, k) = T (1)
X (τ, k) Φ(τin, k)

+ K
{
T (2)

X (τ, k1, k2, k) Φ(τin, k1) Φ(τin, k2)
}

,

The resulting expression involves several terms, the leading order ones being of order
O(Φ3) and O(Φ4). The O(Φ3) part is

T (1)
X (k1) T (1)

X (k2) T (1)
X (k3) 〈Φ(k1)Φ(k2)Φ(k3) 〉 , (3.115)

and, according to Eq.3.110, corresponds to a bispectrum that is proportional to the
bispectrum of the primordial potential:

Blin
X (k1, k2, k3) = T (1)

X (k1) T (1)
X (k2) T (1)

X (k3) BΦ(k1, k2, k3) . (3.116)

We shall call this contribution the linearly propagated bispectrum, because it involves
only linear transfer functions.5 The above relation implies that, at leading order in
the perturbations, any non-Gaussianity present in the initial conditions is linearly
transferred throughout the evolution of the Universe. In a linear Universe, any non-
Gaussian feature observed in the sky today can be traced back to some process that
took place in the early Universe. In particular, if the early Universe was Gaussian,
as predicted by the simplest models of inflation [55], all the observables including
the CMB sky and the distribution of galaxies would be normally distributed. Equiv-
alently, at linear order there is no mechanism to produce non-Gaussianities that were
not already in the initial conditions.

The next-to-leading order contribution to the bispectrum is of order O(Φ4) and
it involves the second-order transfer function of the considered perturbation:

T (1)
X (k1) T (1)

X (k2)

∫
dk1

′ dk2
′

(2π)3
δ
(
k1

′ + k2
′ − k3

)
T (2)

X (k1
′, k2

′, k3)

× 〈
Φ(k1)Φ(k2)Φ(k1

′)Φ(k2
′)

〉 + 2 permutations ,

(3.117)

where the permutations consist of two extra terms where T (2)
X is assigned k1 and k2,

respectively. Using the Wick’s theorem for a zero-mean field (Eq.3.49), we expand
the four-point function as

〈
Φ1 Φ2 Φ ′

1 Φ ′
2

〉 = 〈
Φ1, Φ2, Φ

′
1, Φ

′
2

〉
c + 〈 Φ1 Φ2 〉 〈

Φ ′
1 Φ ′

2

〉

+ 〈
Φ1 Φ ′

1

〉 〈
Φ2 Φ ′

2

〉 + 〈
Φ1 Φ ′

2

〉 〈
Φ2 Φ ′

1

〉
. (3.118)

5Note that some authors refer to Blin as the primary bispectrum.
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The three products involving the two-point function can be expressed in terms
of the power spectrum via Eq.3.102; the resulting Dirac delta functions com-
bine with the one in Eq.3.117. We neglect the combination that arises from
〈Φ1 Φ2 〉 〈

Φ ′
1 Φ ′

2

〉
because, being proportional to δ(k3), would imply evaluating a

perturbationwith infinite wavelength. The other two terms collapse in the usual Dirac
delta, δ(k1 + k2 + k3), which can be extracted to yield the following contribution to
the total bispectrum:

Bintr
X (k1, k2, k3) = 2 T (1)

X (k1) T (1)
X (k2) T (2)

X (−k1,−k2, k3) PΦ(−k1) PΦ(−k2) + 2 perm. ,
(3.119)

where the factor 2 comes from the fact that we choose the second-order transfer
function to be symmetric with respect to the exchange of k1 with k2.

We shall denote the contribution to the bispectrum in Eq.3.119 as the intrinsic
bispectrum. The intrinsic bispectrum is always present no matter what the initial
conditions are: the very existence of the perturbations ensure that the power spectrum
ofΦ is non-vanishing, while the non-linearity of the gravitational interactions always
sources the second-order transfer function. This is in stark contrast with the linearly
propagated bispectrum in Eq.3.116, which, instead, strongly depends on the statistics
of the primordial field, to the point that it vanishes when Φ is Gaussian.

The connected four-point function in Eq.3.118 can be expressed in terms of the
primordial trispectrum, SΦ(k1, k2, k1

′, k2
′), according to Eq.3.113:

〈
Φ(k1), Φ(k2), Φ(k1

′), Φ(k2
′)

〉
c = (2π)3 δ(k1 + k2 + k1

′ + k2
′) SΦ(k1, k2, k1

′, k2
′) ,

which, inserted intoEq.3.117, yields the contribution from the primordial trispectrum
to the observed bispectrum:

B
trisp
X (k1, k2, k3) = T (1)

X (k1)T (1)
X (k2) K

{
T (2)

X (k1
′, k2

′, k3) SΦ(k1, k2, k1
′, k2

′)
}

+ 2 perm. ,

(3.120)

where k1
′ and k2

′ are convolution variables. Note that in a statistically isotropic and
homogeneous Universe, the trispectrum can only depend on 6 scalars parameters.

The bispectrum of the cosmological perturbation X, today, is given by the sum of
Blin (Eq. 3.116), Bintr (Eq. 3.119) and Btrisp (Eq. 3.120):

BX (k1, k2, k3) �T (1)
X (k1)T (1)

X (k2) T (1)
X (k3) BΦ(k1, k2, k3) (3.121)

+ 2T (1)
X (k1)T (1)

X (k2) T (2)
X (k1, k2, k3) PΦ(k1) PΦ(k2) + 2 perm.

+ T (1)
X (k1)T (1)

X (k2) K
{
T (2)

X (k1
′, k2

′, k3) SΦ(k1, k2, k1
′, k2

′)
}

+ 2 perm.

where the permutations refer only to those terms including the second-order trans-
fer function, T (2). The above relation neglects the infinite series of terms of order
O(Φ5) or higher which involve the higher-order transfer functions. These terms are
naturally suppressed due to the smallness of the primordial potential. Since photon
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perturbations do not grow, their transfer function stays small, too; as a result, they
are negligible and the CMB bispectrum is well approximated by Eq.3.121. When
considering cold dark matter, however, the smallness of the potential is compensated
by the quick growth of the high-order transfer functions on subhorizon scales, so that
the relation in Eq.3.121 ceases to be accurate on small scales and at late times.

3.7.2.3 The Importance of the Intrinsic Bispectrum of the CMB

We shall now focus on the bispectrum of the CMB temperature perturbation, Θ . The
first question to ask is: which of the three contributions to the CMB bispectrum in
Eq.3.121 is dominant? If we assume that all the transfer functions are of order unity,
which is a reasonable assumption for the photon perturbations during all epochs, the
relative size of the various terms is determined by the statistics of the primordial
field, Φ. Since the amplitude As of the primordial power spectrum is known from
the CMB (As � 2.5 × 10−9 [31, 72, 88]), it makes sense to express the primordial
bispectrum in terms ofP(k) . In the simple local template [27, 44, 96], the bispectrum
is parametrised by a single amplitude, fNL:

BΦ(k1, k2, k3) = 2 fNL PΦ(k1) PΦ(k2) + 2 permutations . (3.122)

The local shape is just one of the several physically motivated shapes that are com-
monly used in the literature to parametrise the primordial bispectrum. In Chap. 6, we
shall introduce the other shapes and relate them to actual models of cosmic inflation;
for the time beingwe shall assume the local shape only to provide order-of-magnitude
estimates of the various bispectra.

Estimate of the linearly propagated bispectrum It is not simple tomake an estimate
of fNL based on physical insight, because its exact value depends on the largely
unknown details of cosmic inflation. For a mildly non-Gaussian random field, we
would expect the three-point function to be of order Φ3

rms = P(k)3/2, which, given
that A

1/2
s ∼ 5× 10−5 corresponds to a value of fNL ∼ 104; most models of inflation,

however, tend to favour lower values. The Planck collaboration [74] has recently
produced the most stringent constraints to date on the non-Gaussianity of the cosmic
microwave background by measuring its bispectrum. Their result highlights that the
CMB is almost perfectly Gaussian, with an estimate of fNL = 2.7 ± 5.8 for the
local shape. If we take into account the definition of fNL in Eq.3.122, this constraint
translates to an upper limit for the absolute value of BΦ(k1, k2, k3) of roughly 20 ×
P(k)2 at 95% CL.

Estimate of the intrinsic bispectrumChapters5 and 6will be devoted to the numer-
ical computation of the intrinsic bispectrum of the CMB. This is a formidable task
that requires solving the Boltzmann-Einstein system of differential equations and
estimating several multi-dimensional oscillating integrals. An order of magnitude
estimate, however, is already possible at this stage. Armed with the knowledge that
the photon perturbations do not grow with time, and that their transfer functions

http://dx.doi.org/10.1007/978-3-319-21882-3_6
http://dx.doi.org/10.1007/978-3-319-21882-3_5
http://dx.doi.org/10.1007/978-3-319-21882-3_6
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start with an amplitude close to unity, we can see from Eq.3.119 that the intrinsic
bispectrum should be roughly of the same order of magnitude as 2 × P(k)2.

Estimate of the trispectrum term The primordial trispectrum is usually para-
metrised using two amplitudes, τNL and gNL. The former, τNL , is not independent
from fNL and, for most models of inflation, is proportional to f 2NL. The latter, gNL , is
the independent degree of freedom that represents the amplitude of the actual intrin-
sic cubic non-linearities in the primordial potential [74]. The two amplitudes appear
as proportionality constants between the primordial trispectrum and terms of order
A3

s involving the product of three power spectra. Thus, for the trispectrum contribu-
tion in Eq.3.121 to be of the same order as the linear and intrinsic ones, either τNL

or gNL needs to be of order A−1
s ∼ 4 × 108. Both the upper limits from the Planck

team, |τNL| < 2800 at 95% CL, and from Smidt et al. [85], |gNL| < 8× 105 at 95%
CL, fall short of that value. Therefore, in the following we shall always neglect the
trispectrum contribution to the observed bispectrum.

In summary, the observed bispectrum of the CMB is well approximated by two
contributions of potentially comparable size: the linearly propagated bispectrum,
which is directly related to the physics of the earlyUniverse and vanishes forGaussian
initial conditions (Eq.3.116), and the intrinsic bispectrum, whose amplitude and
shape are fixed by the non-linear physics of gravity and radiation transfer (Eq.3.119).
The linear bispectrum carries information on the early Universe that is directly linked
to the parameters of the many models of cosmic inflation, as we shall see in Chap.6.
However, Planck has posed strong constraints on the linear bispectrumwhich suggest
that, if it exists, then it must be of comparable size or smaller than the intrinsic one. In
order to extract the primordial information from the CMB bispectrum, it is therefore
needed to precisely compute the shape and amplitude of the intrinsic signal, which
in this context acts as a source of systematic. In fact, this is one of the main reason
that motivated us into developing SONG and computing the intrinsic bispectrum.
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Chapter 4
The Boltzmann Equation

4.1 Introduction

The Einstein equations (Eqs. 3.96–3.100) need to be completed by a model of matter
that specifies the form and evolution of the energy-momentum tensor in terms of the
matter and metric variables. The fluid model that we have introduced in Sect. 3.6.2
provides a good description for the massive species of the Universe (cold dark matter
and baryons) but is not adequate to represent the detailed evolution of the relativistic
species (photons and neutrinos). An alternative and more general model of matter
is provided by the kinetic theory of gases in general relativity, which is the main
subject of this chapter.

The kinetic theory postulates that dilute matter is formed by a discrete system
of particles whose overall dynamics can be interpreted as a stochastic process. The
physically relevant and macroscopic properties of the system, such as the energy
density or pressure, are described by smooth expectation values [15]. The main
ingredient of the theory is the phase-space density or one-particle distribution func-
tion, f (τ , x, p), defined so that, for an observer sitting at the space-time point (τ , x)

and adopting a local inertial frame,

dN = f (τ , x, p) dx d p

is the average number of particles in the volume element dx d p at the position
(x, p) in phase space. This definition highlights the statistical nature of the kinetic
treatment: rather than focussing on the behaviour of the single particles, the system is
characterised by a probability distribution in phase space. All possible measurements
of numbers, energies, and directions of travel of a flux of particles can be described
as an integral over the distribution function.

In the kinetic theory picture, the interactions between the particles in the system
can be divided in long range forces and short range forces according to the following
scheme. The long range forces are described by amean field generated collectively by
the particles throughmacroscopic field equations. Gravity belongs to this category, as
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the gravitational field is sourced by the particles through the Einstein field equations,
with the particles, in turn, following geodesic trajectories under the action of the
field. (Another example of long range force is the Lorentz force generated through
the Maxwell equations, but we will not consider it.) The short range forces, instead,
are treated in terms of point-collisions whose probability of occurrence is governed
by cross-sections taken from a special-relativistic scattering theory [16]. This is the
case for the interaction between the photons and the baryons prior to recombination
and after reionisation, which is governed by the Compton scattering cross-section.
Another assumption of the theory is that, between collisions, the particles move like
test particles in the mean field.

The two types of interaction determine the form of the distribution function of a
system of particles through the Boltzmann equation:

d f

dλ
= C[ f ]. (4.1)

The Liouville term, d f/dλ, represents the change of f as measured by an observer
that follows the flow of the particles. Said flow is caused by the action of the long
range forces and, since we consider only the gravitational interaction, it consists of
geodesic trajectories parametrised by the affine parameter λ. The short range forces,
on the other hand, are encoded in the collision term, C[ f ], that is the average rate at
which the particles’ momenta change due to collisions.

In the absence of collisions, the Boltzmann equation is called the Liouville equa-
tion collisionless Boltzmann equation,

d f

dλ
= 0, (4.2)

which implies that the distribution function is conserved along geodesic trajectories.
Stated differently, observers that drift along with the particles that surround them
do not perceive a change in the local density. However, if the particles start inter-
acting through collisions, even the geodesic observers will witness a change in their
momenta and, therefore, in the local phase-space distribution. Note that, f being an
average quantity, the Liouville equation applies also in the presence of collisions that
are in detailed balance, i.e. as long as the direct collisions are equilibrated by the
inverse ones. This is the case for fluids in thermal equilibrium, such as the photons
and the baryons before recombination.

4.1.1 Summary of the Chapter

The rawBoltzmann equation inEq.4.1 is of little practical use. In this chapterwe shall
turn it into an evolution equation for the temperature and polarisation anisotropies
of the CMB by
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1. expressing it in terms of the metric and matter variables, up to second order in
the cosmological perturbations, and by

2. projecting its positional (x), angular (n) andmomentum (p) dependences so that it
turns into a system of ordinary differential equations that is numerically tractable.

To do so, we first introduce in Sect. 4.2 the local inertial frame as a convenient tool
to derive the collision term and to express the energetics of the system. In Sect. 4.3 we
show how to expand the CMB distribution function around its equilibrium form, the
blackbody spectrum; we shall also treat the issue of defining a temperature at second
order. In Sect. 4.4 we derive the Liouville term, that is the part of Boltzmann equation
that encodes the effect of the geodesic motion of the particles on the distribution
function. In Sect. 4.5 we shall compute the collision term for the Compton scattering
at recombination that, complemented with the Liouville term, will allow us to obtain
the evolution equation for the temperature and polarisation anisotropies of the CMB.

4.1.2 Literature Review

For a detailed review of kinetic theory and of its many uses in cosmology and astro-
physics, refer to the works by Ehlers [15, 16] and Lindquist [32], and to the book
by Bernstein [6]. An early application of the theory to predict the first-order CMB
fluctuations can be found in Peebles and Yu [36].

The collision term at second order in the cosmological perturbations was obtained
independently by Dodelson and Jubas [14] and Hu et al. [24] in a systematic way, in
the context of cosmic reionisation, assuming azimuthal symmetry of the perturba-
tions. This assumption does not hold in general at second order, where vorticity natu-
rally arises even for scalar initial conditions (Sect. 3.3.1). Bartolo et al. [1] computed
the collision term in the general case and complemented it with the Liouville term
in Newtonian gauge.1 Senatore et al. [44] provided a way to compute the evolution
of the perturbed electron density, thus completing the derivation of the second-order
collision term for the CMB temperature fluctuations.

Pitrou [38] and Beneke and Fidler [3] paved the way to a precise numerical
integration of the system by independently including the effect of polarisation in the
second-order Boltzmann equation. More recently, Naruko et al. [34] did the same
but without fixing a particular gauge; they also studied in detail the generation of
spectral distortions in the CMB temperature and polarisation. Note that the authors
of Refs. [3, 34, 38, 44] performed their computations in the local inertial frame by
employing a tetrad approach.

1Note that somemistakes in their equations were reported and corrected by Pitrou [38] and Senatore
et al. [44].

http://dx.doi.org/10.1007/978-3-319-21882-3_3
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4.2 The Local Inertial Frame

The collision term in the Boltzmann equation, C[ f ], is determined by the cross-
section of the Compton scattering, a local quantity that is known in the flat
Minkowskian space of special relativity. Rather than deriving the collision term in
a curved space-time, it is preferable to adopt a frame where C[ f ] assumes the sim-
ple Minkowskian form. This is achieved by employing a set of orthonormal tetrads
whereby the components of the metric are equal to those of the flat Minkowski
metric. In this so-called local inertial frame, we can use the Compton scattering
cross-section computed in flat space and thus derive a collision term that is free from
metric fluctuations; in fact, all themetric fluctuations will be confined to the Liouville
term [34, 44].

Another advantage of computing the Boltzmann equation in the local inertial
frame is that it allows to separate the energy, momentum and direction of a particle
in a covariant manner. (For example, in the local inertial frame the mass shell relation
assumes the special relativity form, E2 = p2+m2.) At linear order, this property can
be used to simplify the Boltzmann equation without making the tetrads machinery
explicit [13, 33]; at second order, however, this is no longer the case.

In the next section, we briefly introduce the tetrad formalism following the
approach in Chap.1 of Chandrasekhar [11] and Appendix J of Carroll [9]. In
Sect. 4.2.2 we show the explicit form of the tetrad in Newtonian gauge up to sec-
ond order, while in the rest of the section we give formulae for the four-momentum
(Sect. 4.2.3) and the energy-momentum tensor (Sect. 4.2.4) that relate their compo-
nents in the tetrad and coordinate frames.

4.2.1 Tetrad Formalism

The tangent space of a space-time point is spanned by a basis of four contravariant
vectors which are collectively called the tetrad. The choice of the tetrad is arbitrary
and it defines the reference frame in that point. Because all vectors and tensors, most
notably the four-momentum and the energy-momentum tensor, live in the tangent
space, their components depend on the chosen tetrad.

Being geometrical objects, the tetrads exist regardless of the coordinate system.
Oncewe pick one, however, it is natural to define a coordinate tetrad as the directional
derivatives with respect to the coordinates, ∂/∂xμ. Following the notation used in
Chap.1 of Chandrasekhar [11], we express a general tetrad in terms of the coordinate
ones as

ea = ea
μ ∂

∂xμ
(a = 0, 1, 2, 3) , (4.3)
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where the tetrad indices are underlined to distinguish them from the usual coordinate
ones. To make the distinction clearer, we shall also use the Latin letters a, b, c to
denote the tetrad indices instead of the Greek ones (a = 0, 1, 2, 3). We can also
define an inverse tetrad that spans the dual tangent space:

ea = ea
μ dxμ , (4.4)

with the inverse coefficient matrix, ea
μ, given by

ea
μ eb

μ = δb
a and ea

μ ea
ν = δ μ

ν . (4.5)

The existence of the inverse tetrad allows us to express the coordinate bases in terms
of the tetrad ones by contracting Eqs. 4.3 and 4.4 with ea

ν and ea
ν , respectively:

∂

∂xν
= ea

ν ea and dxν = ea
ν ea . (4.6)

Any vector V , 1-formω or tensor T can be represented using either the coordinate
basis or the tetrad basis:

V = V μ ∂

∂xμ
= V a ea ,

ω = ωμ dxμ = ωa ea ,

T = T μ
ν

(
∂

∂xμ
⊗ dxν

)
= T a

b

(
ea ⊗ eb

)
. (4.7)

After expanding the tetrad in the above identities according to Eqs. 4.3 and 4.4, we
see that the components in the two frames are related by

V μ = V a ea
μ and V a = V μ ea

μ ,

ωμ = ωa ea
μ and ωa = ωμ ea

μ ,

T μ
ν = T a

b ea
μ eb

ν and T a
b = T μ

ν ea
μ eb

ν , (4.8)

for vectors, 1-forms and tensors, respectively. Therefore, a covariant (contravari-
ant) tetrad index can be turned into a covariant (contravariant) coordinate index by
contraction with the (inverse) tetrad coefficient matrix. This also implies that the
contraction between two tensors yields the same result regardless of whether it is
carried over their tetrad or coordinate indices. For example,

V μ ωμ = V a ωa and T μ
ν ωμ V ν = T a

b ωa V b . (4.9)

Themetric in tetrad indices, Mab, is obtained by contracting the coordinatemetric,
gμν , with two tetrads:

gμν ea
μ eb

ν = Mab . (4.10)
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Unsurprisingly, the inverse relation involves the contraction with two inverse tetrads:

gμν = Mab ea
μ eb

ν . (4.11)

The metric Mab and its inverse Mab can be used to lower and raise the tetrad indices,
respectively. For a vector V , this can be proven by expanding V ν = ea

ν V a and
Vν = ea

ν Va in the identity gμν V ν = Vμ and by later contracting the result with eb
μ.

In general, it is easy to prove all the following relations:

Va = Mab V b , ωa = Mab ωb and T a
b = Mbc T ac . (4.12)

As we pointed out in the introduction to the section, it is convenient to express
the Boltzmann equation in terms of a tetrad that is orthonormal:

gμν ea
μ eb

ν = ηab , (4.13)

where ηab are the components of Minkowski’s metric and are constant. (This is
equivalent to setting Mab = ηab in the above equations.) The resulting frame is
called the local inertial frame.

The orthonormality condition determines only 10 out of the 16 components of
the tetrad matrix, ea

μ. The remaining 6 degrees of freedom correspond to a Lorentz
boost and to a rotation of the tetrad base with respect to the coordinate axes (see
Appendix J in Carroll [9] and the note 15 in Senatore et al. [44]). We choose the
tetrad so that they are at rest with a comoving observer, i.e. an observer with constant
spatial coordinates. This is achieved by setting e0 ∝ ∂/∂τ , where τ is the time
coordinate,2 which, by virtue of Eq.4.3, is equivalent to have

e0
i = 0 . (4.14)

We fix the other three degrees of freedom by setting

ei
j = e j

i , (4.15)

which corresponds to asking that there is no rotation between the background and
the perturbed tetrads. The two constraints that we have just discussed correspond to
choosing one out of the infinitely many local inertial frames; for simplicity, from
now on we shall use the term “local inertial frame” to denote this particular choice.
We shall also refer to an observer with vanishing spatial velocity in the inertial frame
as an inertial observer.

2Note that Senatore et al. [44] (Sect. 4.1) andBeneke and Fidler [3] (Sect. I) use the same convention,
while Pitrou [38] (Sect. 4.2.2) and Naruko et al. [34] (Sect. 2.1), instead, choose the tetrad to be
orthogonal to constant time hypersurfaces, that is e0 ∝ dτ . See Sect. 5.3.1 of Pitrou [38] for further
details.
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4.2.2 Tetrads in Newtonian Gauge

The tetrad components for the local inertial frame in Newtonian gauge are obtained
by applying the orthonormality condition,

gμν ea
μ eb

ν = ηab , (4.16)

to the expanded metric in Eq.3.78 and by fixing the velocity and orientation of the
local frame with respect to the coordinate axes,

e0
i = 0 and ei

j = e j
i . (4.17)

The components of the inverse tetrad can be obtained from the direct ones as ea
μ =

gμν ηabeb
ν . By doing so, we obtain the following expression up to second-order

accuracy3:

a e00 = 1√
1+2Ψ

, e00/a = √
1 + 2Ψ ,

a e0i = 0 , e0i/a = −ωi ,

a ei
0 = ωi , ei

0/a = 0 ,

a ei
j = δ j

i√
1−2Φ

− γ j
i , ei

j/a = δi
j
√
1 − 2Φ + γi

j ,

(4.18)

which is straightforwardly expanded into perturbative orders by enforcing Eq.3.11.
To obtain the same expression in terms of the “exponential” potentials of Eq. 3.21,
one has to substitute the square root factors with exponentials according to Eq.3.23.
Note that, had we not neglected the vector and tensor modes at first order, the tetrad
components would have included extra quadratic contributions (for example, see
Eqs. 2.6 and 2.7 of Naruko et al. [34]).

4.2.3 The Four-Momentum

We parametrise the four-momentum of a particle in the local inertial frame as

pa =
(

E, p ni
)

, (4.19)

where we have introduced the energy, E , the momentum, p, and the direction of

propagation, ni , of the particle. The momentum is defined as p =
√

pi pi , which

implies that ni ni = 1. The energy and the momentum are related by the mass-shell
relation:

3The expression coincides with the one in Eq.4.4 of Ref. [44] once we convert our potentials to the
“exponential” ones using Eq.3.23, but differs from the one in Ref. [34] due to the different choice
of tetrads.

http://dx.doi.org/10.1007/978-3-319-21882-3_3
http://dx.doi.org/10.1007/978-3-319-21882-3_3
http://dx.doi.org/10.1007/978-3-319-21882-3_3
http://dx.doi.org/10.1007/978-3-319-21882-3_3
http://dx.doi.org/10.1007/978-3-319-21882-3_3
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gμν pμ pν = ηab pa pb = −m2 , (4.20)

which, given the diagonal form of ηab, implies that

E2 = p2 + m2 , (4.21)

wherem is the rest mass of the considered particle. For this reason, the tetradmomen-
tum pa is also called the proper momentum [7, 33]. In general, being able to split
energy, momentum and direction in a covariant way is one of the advantages of using
orthonormal tetrads. We also define the velocity in the local inertial frame as

vi ≡ pi

p0
= p

E
ni . (4.22)

For massless particles such as photons, p = E and the velocity is just vi = ni .
In order to study the trajectory of a particle as seen in the local inertial frame,

we need a dictionary to translate the tetrad four-momentum into the coordinate one.
This is provided by the relation

pμ = ea
μ pa , (4.23)

which, up to second-order accuracy, results in

p0 = E

a
√
1 + 2Ψ

(
1 + p

E
ωi ni

)
,

pi = p ni

a
√
1 − 2Φ

(
δi

j − γi
j

)
, (4.24)

or, in terms of the exponential potentials Ψe and Φe,

p0 = E

a
e−Ψe

(
1 + p

E
ωi ni

)
,

pi = p ni

a
eΦe

(
δi

j − γi
j

)
. (4.25)

(Note that we have used the fact that ω and γ are second-order quantities to pull out
of the parentheses the scalar potentials.) By explicitly expanding the perturbations
up to second order, we obtain

p0 = E

a

(
1 − Ψ (1) − Ψ (2) + 3

2
Ψ (1) Ψ (1) + p

E
ω(2)

i ni
)

,

pi = p ni

a

[
δi

j

(
1 + Φ(1) + Φ(2) + 3

2
Φ(1) Φ(1)

)
− γ(2)i

j

]
. (4.26)
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It should be noted that an observer who stands still in the local frame (pi/p0 = 0) is
comoving with the coordinates (dxi/dτ = pi/p0 = 0); this is a direct consequence
of having chosen the tetrads such as e0 ∝ ∂/∂τ in Sect. 4.2.1. Had we chosen, for
example, e0 ∝ dτ , we would have had dxi/dτ ∝ ωi when pi/p0 = 0, instead.

In the following, we shall use the variables of the local inertial frame, p and ni , to
reparametrise the momentum dependence in the distribution function. With an abuse
of notation, we denote the functional dependence in the new variables with the same
letter, f :

f (τ , xi , p, ni ) = f (τ , xi , pi (τ , xi , p, ni )) . (4.27)

Moreover, for the sake of readability we shall, drop the underlining of the tetrad index
for the direction of propagation of a particle in the local inertial frame: ni = ni .

4.2.4 The Energy Momentum Tensor

Wecompute the evolution of thematter species (photons, neutrinos, baryons and cold
dark matter) by solving the Boltzmann equation in the local inertial frame; the matter
perturbations thus obtained source the Einstein equation via the energy momentum
tensor, T a

b ,

Gμ
ν = κ T μ

ν = κ ea
μ eb

ν T a
b . (4.28)

In this section we address three important questions, that is

1. what is the explicit transformation that relates the energy-momentum tensor in
the local inertial frame (which is what we obtain by evolving the Boltzmann
equation) to that in the coordinate frame (which is the one that appears in the
Einstein equation);

2. how to relate the moments of the distribution function, f�m , to the energy-
momentum tensor, and

3. what is the relation between such multipoles and the fluid variables (energy den-
sity, pressure, velocity and shear) that we have introduced in Sect. 3.6.2.

4.2.4.1 From T a
b to Tμ

ν

The energy-momentum tensor in the coordinate frame is related to T a
b by

T μ
ν = ea

μ eb
ν T a

b . (4.29)

http://dx.doi.org/10.1007/978-3-319-21882-3_3
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The explicit form of T μ
ν in terms of inertial-frame variables is obtained by inserting

in the above expression the tetrad components of Eq.4.18. The result up to second
order is remarkably simple:

T 0
0 = T 0

0 ,

T i
0 = T i

0 (1 + Ψ + Φ) , (4.30)

T 0
i = T 0

i (1 − Ψ − Φ) − T 0
0 (w + 1) ωi ,

T i
j = T i

j .

where we have used the fact that T i
0 and T 0

i vanish in the isotropic background, and
we have introduced the barotropic parameter w, a background quantity defined by

T (0)i
j = − δ i

j w T (0)0
0 , (4.31)

which in terms of the fluid variables (Sect. 3.6.2) simply reads w = P̄
ρ̄ . The rela-

tion between the energy-momentum tensor in the inertial and coordinate frames is
particularly simple for two reasons. First, the tetrad components are simple to start
with, because we are neglecting the first-order part of the vector and tensor modes
in the metric. Secondly, and more subtly, the formula for the up-down version of the
energy-momentum tensor, Eq. 4.29, contains the product of a tetrad with its inverse,
which results in a cancellation when both of T ’s indices are either temporal or spa-
tial. Had we instead used the up-up version, T μν = ea

μ eb
ν T ab , we would have

obtained a more complicated relation whereby T 00 �= T 00 and T i j �= T i j .
It should be noted that, to first order accuracy, the components of the energy-

momentum tensor are the same in the coordinate and tetrad frames. This is a con-
firmation of what we anticipated in the introduction to the section: at first order
introducing the tetrads is not necessary to derive the correct equations. At second
order, however, there are corrections to T i

0 and T 0
i that cannot be neglected.

4.2.4.2 Multipole Decomposition of T a
b

In the local inertial frame, the volume element of momentum space has the standard
Lorentz invariant measure (see Sect. 3.6 of Ehlers [15] or Appendix A.1 of Senatore
et al. [44]). Thus, the energy momentum tensor is simply given by

T ab =
∫

d p
pa pb

E
f , (4.32)

where d p/E is the (invariant) measure in the inertial frame (d p = dp1dp2dp3)
and f is the one-particle distribution function. If we separate the magnitude of
the momentum from its direction as in Eq.4.19, the components of the energy-
momentum tensor read

http://dx.doi.org/10.1007/978-3-319-21882-3_3
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T 0
0 = −

∫
dp p2 E

∫
dΩ f ,

T i
0 = −T 0

i = −
∫

dp p2 p
∫

dΩ ni f , (4.33)

T i
j =

∫
dp p2

p2

E

∫
dΩ ni n j f ,

where we have lowered one of the indices of T ab by contracting it with ηab .
We decompose the energy-momentum tensor in its spherical components using

the projection vectors ξ and the projection matricesχ according to the scheme shown
in Eq.3.77. In particular, we use the relations

ξ i[m] ni =
√
4π

3
Y ∗
1m and χ

i j
2,[m] ni n j = 2

3

√
4π

5
Y ∗
2m , (4.34)

from Sect. A.3, and the expansion in spherical harmonics of f ,

f (n) =
∞∑

�=0

�∑
m=−�

(−i)�
√

4π

2� + 1
f�m Y�m(n) ,

which, with respect to the usual expansion, includes extra �-dependent factors in
order to simplify the Boltzmann equation (see also comment after Eq. A.4). By
inserting the first three multipoles of f ,

f00 =
∫

dΩ

4π
f, f1m = i

√
3

4π

∫
dΩ f Y ∗

1m, f2m = −
√

5

4π

∫
dΩ f Y ∗

2m,

(4.35)

in Eq.4.33, we find

T 0
0 = −4π

∫
dp p2 E f00 , T i

i = 4π

∫
dp p2

p2

E
f00 ,

i ξ i[m] Ti0 = −4π

3

∫
dp p2 p f1m , χ

i j
2,[m] Ti j = − 4π

5

2

3

∫
dp p2

p2

E
f2m .

(4.36)

The energy-momentum tensor is therefore completely determined by the first three
angular multipoles of the distribution function: themonopole f00 , the dipole f1m and
the quadrupole f2m . (Note that, with our conventions, Ti j are the spatial components
of T a

b , and not of Tab .)

http://dx.doi.org/10.1007/978-3-319-21882-3_3
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Relativistic case If we consider a relativistic fluid (p = E), we can express the
energy-momentum tensor in terms of the brightness Δ (defined in Eq.4.64),

T 0
0 = −ρ̄ (1 + Δ00) , T i

i = ρ̄ (1 + Δ00) ,

i ξ i[m] Ti0 = − 1
3 ρ̄ Δ1m , χ

i j
2,[m] Ti j = − 2

15 ρ̄ Δ2m ,
(4.37)

where

ρ̄ =
∫

d p E f (0) = 4π

∫
dp p2 E f (0) . (4.38)

(Note that T a
a = 0, as expected from a fluid of relativistic particles.) Because the

brightness multipoles are the quantities that we actually evolve in SONG, the above
equation, complemented with the tetrad transformation in Eq. 4.30, allows us to build
the right hand side of the Einstein equation. In particular, it should be stressed that
the second-order space-time equation will contain an extra quadratic term in Ψ +Φ,

i ξ i[m] T i
0 = −1

3
ρ̄ Δ1m (1 + Ψ + Φ) , (4.39)

which comes from the tetrad transformation.

General case In order to describe an arbitraryfluid, be it relativistic or non relativistic,
we introduce the beta-moments,

1 + nΔ(τ , x, n) ≡ 1∫
dp p3 f̄ (τ , p)

∫
dp p3

( p

E

)n−1
f (τ , x, p, n) ,

(4.40)

so that the energy-momentum tensor in Eq.4.36 can be recast as

T 0
0 = −ρ̄ (1 + 0Δ00) , T i

i = ρ̄ (1 + 2Δ00) ,

i ξ i[m] Ti0 = − 1
3 ρ̄ 1Δ1m , χ

i j
2,[m] Ti j = − 2

15 ρ̄ 2Δ2m .
(4.41)

The βn operator defines an expansion in the powers of the dimensionless velocity
of the particle, β = p/E , hence the name. For relativistic or massless species
(p/E = 1) the beta-moments reduce to the brighnessmoments, that is nΔ�m = Δlm .
For non-relativistic species (p 	 E) the higher order beta-moments are suppressed
so that only the lowest multipoles count, as in the fluid limit. Therefore, the beta-
moments allow us to treatmassive andmassless particles within the same framework;
we shall use this property in writing the Boltzmann equation for the baryon and CDM
fluids in Sect. 5.3.1. As a final note, we remark that our beta-moments are equivalent
to the momentum-integrated multipoles defined in Lewis and Challinor [30] (see
also Ref. [17]).

http://dx.doi.org/10.1007/978-3-319-21882-3_5
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4.2.4.3 Fluid Limit

To relate the fluid variables to the moments of the distribution function, we enforce
the following equality,

T a
b =

∫
d p

pa pb

E
f

= (ρ + P) U a Ub + δ a
b P + Σa

b , (4.42)

where the first line is the energy-momentum tensor in the local inertial frame,
expressed in terms of the beta-moments via Eq.4.41, and the second line is the
fluid representation, which is expanded up to second order according to4

T 0
0 = −ρ − (ρ̄ + P̄) vi vi , T i

i = 3 P + (ρ̄ + P̄) vi vi ,

T i
0 = −(ρ + P) vi , T i

j = δ i
j P + Σ i

j + (ρ̄ + P̄) vi v j .
(4.43)

The correspondence between the moments of the distribution function and the fluid
variables, up to second order, is therefore given by

ρ̄ (1 + 0Δ00) = ρ + (ρ̄ + P̄) vi vi , ρ̄ (1 + 2Δ00) = 3 P + (ρ̄ + P̄) vi vi ,

ρ̄ 1Δ1m = 3 (ρ + P) i v[m] , ρ̄ 2Δ2m = − 15
2

[
Σ[m] + (ρ̄ + P̄) (vv)[m]

]
,
(4.44)

where we have introduced the shorthand (vv)[m] = χ
i j
2,[m] vi v j . It is clear that, at

second order, the moments of f do not correspond to the fluid variables. The reason
is that ρ and P represent the energy density and the pressure for an inertial observer
at rest with the fluid, while our inertial observer is at rest with the coordinates (let
us recall that, in Eq.4.14, we have chosen the tetrad to correspond to observers with
constant spatial coordinates, i.e. e0 ∝ ∂/∂τ ). In fact, the quadratic terms in the
above equation represent the Lorentz boost that brings our observer at rest with the
fluid. These terms matter only at second order, so that, up to first order, the moments
of the distribution function do correspond to the fluid variables,

ρ̄ (1 + 0Δ00) = ρ , ρ̄ (1 + 2Δ00) = 3 P ,

ρ̄ 1Δ1m = 3 (ρ̄ + P̄) i v[m] , ρ̄ 2Δ2m = − 15
2 Σ[m] .

(4.45)

At the background level, we have that (1 + 2Δ00)/3 = P̄/ρ̄ ≡ w .

4The expansion is obtained by following the procedure in Sect. 3.6.2, with the difference that now
we are adopting the local intertial frame and, therefore, the metric is Minkowskian. In particular,
we have defined vi ≡ Ui /a and we have used U0 = (1 + Ui Ui )/a.

http://dx.doi.org/10.1007/978-3-319-21882-3_3
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It is convenient to express the dictionary between the moments and the fluid
variables in terms of the density contrast, δ = (ρ − ρ̄)/ρ̄ , the barotropic parameter,
w(ρ) = P/ρ , and the sound of speed, c2s = ∂P/∂ρ ,

0Δ00 = δ + (w + 1) vi vi ,

1 + 2Δ00 = 3
[

w + δ c2s + ρ̄
2

∂c2s
∂ρ δ2

]
+ (w + 1) vi vi ,

1Δ1m = 3 i v[m]
[
(w + 1) + δ (c2s + 1)

]
,

2Δ2m = − 15
2

[
Σ[m]

ρ̄ + (w + 1) (vv)[m]
]

,

(4.46)

where we have used the following relation for the adiabatic pressure,

P(ρ) = ρ̄

[
w + δ c2s + ρ̄

2

∂c2s
∂ρ

δ2
]∣∣∣∣

ρ=ρ̄

, (4.47)

obtained by Taylor expanding around ρ = ρ̄ the relation P = w ρ up to second
order. In the following we shall treat only fluids with a constant equation of state,
such as the photons (w = c2s = 1/3) or the cold dark matter (w = c2s = 0); in that
case, the above expression reduces to

0Δ00 = δ + (w + 1) vi vi , 1 + 2Δ00 = 3w (1 + δ) + (w + 1) vi vi ,

(4.48)

1Δ1m = 3 (w + 1) i v[m] (1 + δ) , 2Δ2m = −15

2

[
Σ[m]

ρ̄
+ (w + 1) (vv)[m]

]
.

To connect with the existing literature, we take into consideration θ and σ , the
first-order fluid variables defined in Ma and Bertschinger [33],

(ρ̄ + P̄) θ ≡ i k j T 0
j and (ρ̄ + P̄) σ ≡ −

(
k̂i k̂ j − δi j

3

)
Σ i j . (4.49)

Being a first-order definition, we can identify T 0
j = T 0

j = −T j
0 and Σ i

j = Σ i
j

by using Eq.4.30. After we align k with the zenith, it follows that ξ
j
[0] = k j/k and

χ
i j
2,[0] = k̂i k̂ j − δi j/3 . Thus, using Eq.4.45 yields

θ = k

3
1Δ10

w + 1
and σ = 2

15
2Δ20

w + 1
, (4.50)

where we have used P̄/ρ̄ = w .
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4.3 The Distribution Function

In this section we use the concept of thermal equilibrium to specify a simple form
for the distribution functions of the photon (Sect. 4.3.1) and electron (Sect. 4.3.2)
fluids; this ansatz will considerably simplify the computation of the collision term
in Sect. 4.5. In Sect. 4.3.1, we also discuss the ambiguity of defining the CMB tem-
perature at second order due to the presence of spectral distortions.

4.3.1 The Photon Distribution Function

Before the epoch of recombination, the CMB photons frequently interact with the
free electrons via Compton scattering due to the high density of the early Universe.
As a result, they are in a state of thermal equilibrium which is well described by the
Bose-Einstein distribution function with vanishing chemical potential, or blackbody
spectrum:

f BB(τ , p) =
[
exp

(
p

T (τ )

)
− 1

]−1

, (4.51)

where p is the photon momentum in the local inertial frame and T is the CMB
temperature. This simple picture is complicated by two circumstances. First, in an
inhomogeneous Universe, different observers would measure a different distribu-
tion function according to their position and to the direction they look at; this can
be accommodated by including a positional and directional dependence in the tem-
perature: T = T (τ , x, ni ). Secondly, as the Universe expands and cools down, the
Compton scattering rate decreases and the photons eventually cease to be in thermal
equilibrium. Thus, one has to allow for deviations from the blackbody spectrum,
or spectral distortions, which amounts to f having a momentum dependence more
complicated than the one in Eq.4.51.

According to the above considerations, we assume for the photon distribution
function the following ansatz:

f (τ , x, p, ni ) =
[
exp

(
p

T (τ ) [ 1 + Θ(τ , x, p, ni ) ]
)

− 1

]−1

, (4.52)

where T is the background temperature and we have introduced the temperature
fluctuation, Θ = (T − T )/ T . After Taylor expanding f about Θ = 0 ,

f = f
∣∣∣
Θ=0

+ ∂ f

∂Θ

∣∣∣∣
Θ=0

Θ + 1

2

∂2 f

∂Θ2

∣∣∣∣
Θ=0

Θ2 , (4.53)
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and setting Θ = Θ(1) + Θ(2) , we find the relation between the temperature fluctu-
ation and the distribution function up to second order:

f = f̄ − p
∂ f̄

∂ p
Θ +

(
p2

2

∂2 f̄

∂ p2
+ ∂ f̄

∂ p

)
Θ2 , (4.54)

where f̄ ≡ f (0) .
By choosing the form in Eq.4.52 for f , we have implicitly assumed that, at the

background level, the blackbody shape of the spectrum is preserved throughout the
cosmic evolution,

f̄ (τ , p) =
[
exp

(
p

T (τ )

)
− 1

]−1

. (4.55)

This occurs for two reasons. First, as we shall see in Sect. 4.5.2, during recombi-
nation the energy transfer between the photons and the electrons is so small that
the background collision term is negligible and cannot induce spectral distortions.
Secondly, after recombination, when the collisions are unimportant, both the energy
of the photon and the temperature decay as 1/a , leaving p/T unchanged during the
cosmic expansion. Thus, the blackbody spectrum of the background CMB, which
was established before recombination by the frequent Compton collisions, is not
altered and survives all the way to today.5 As a matter of fact, in Sect. 4.5.3 we shall
see that the negligible energy transfer between photons and electrons preserves the
blackbody shape also at the first-order level. It follows that the spectral distortions
are confined to the higher-order fluctuations; up to second order, this corresponds to
setting

Θ = Θ(1)(τ , x, ni ) + Θ(2)(τ , x, p, ni ) . (4.56)

4.3.1.1 Temperature Definition

The presence of spectral distortions makes it impossible to unambiguously define a
temperature for the CMB. This is clear by looking at the moments of the distribution
function,

Mm ≡
∫

dp p2 E m f . (4.57)

5It should be noted that the cosmic expansion not altering the CMB spectrum is not a coincidence;
in fact, the spectral distortions cannot be induced by the geodesic motion encoded in the Liouville
operator, for the simple reason that a photon follows the same geodesic trajectory regardless of its
energy. Therefore, we expect the spectral distortions to arise only at the level of the collision term.



4.3 The Distribution Function 117

For the blackbody spectrum in Eq.4.51, all the moments can be expressed in terms
of powers of the temperature6

Mm

M (0)
m

=
(

T

T

)3+m

, (4.58)

where we have normalised the moments and the temperature with respect to their
backgroundvalues. In particular, the number densityn≡M0 and the brightnessI≡M1
satisfy

n BB

n
=

(
T

T

)3

and
I BB

I
=

(
T

T

)4

. (4.59)

On the contrary, the moments of an arbitrary spectrum f are in general independent
and cannot be expressed in terms of a single temperature function. If we parametrise
them as

Mm

M (0)
m

≡
(

Tm

T

)3+m

, (4.60)

we see that Tm is the temperature of a blackbody spectrum whose m-th moment is
equal to that of f . For a blackbody spectrum, all these effective temperatures are
equal; it follows that the existence of a scatter in the Tm’s indicates the presence of
spectral distortions.

One could pick one of the effective temperatures Tm to represent the CMB tem-
perature, but this is clearly an arbitrary choice. In Pitrou et al. [40], however, it was
shown that the CMB bispectrum is insensitive to the specific moment of the distri-
bution function that is chosen to define the temperature. We therefore follow what
is commonly done in the literature [4, 35, 41] and define the temperature T via the
first moment of the distribution, the brightness,

(
T

T

)4

≡ I
I

. (4.61)

which is the temperature of the blackbody spectrum with the same energy density as
the CMB, and is referred to as the bolometric temperature.7

6This can be proven by integrating Mm [ f BB] = 4π
∫
dp p2+m f BB by parts and using the fact

that ∂ f BB/∂ p = −T/p ∂ f BB/∂T .
7Note that Pitrou et al. [40] proposed another definition of temperature, the occupation number
temperature, T # , which is the temperature associated to the blackbody spectrum with the same
number density as the CMB, (

T #
T

)3

≡ n

n
. (4.62)

For a more detailed discussion on temperature moments and on their relation to what is measured
by CMB experiment, refer to Pitrou and Stebbins [40].
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4.3.1.2 The Brightness Fluctuation Δ

We introduce the brightness fluctuation, Δ , as

I ≡ I (1 + Δ) . (4.63)

Because I = ∫
dp p3 f , the brightness fluctuation is explicitly given by

1 + Δ(τ , x, n) ≡ 1∫
dp p3 f (τ , p)

∫
dp p3 f (τ , x, p, n) . (4.64)

In general we define the brightness operator, β, as

β [ F ] ≡ 1∫
dp p3 F

∫
dp p3 F . (4.65)

so that β [ f ] = 1+Δ. The evolution of the brightness fluctuation is dictated by the
brightness-projected Boltzmann equation,

β

[
d f

dτ
− 1

p0
C[ f ]

]
= 0 , (4.66)

which we shall call the brightness equation.
The bolometric temperature fluctuation Θ , defined as T = T (1+ Θ) , is related

to Δ via Eq.4.61,

( 1 + Θ )4 = 1 + Δ . (4.67)

Up to first order, the relation translates to Δ = 4Θ while, up to second order, it
reads

Δ = 4Θ + 6Θ Θ , (4.68)

Θ = 1

4
Δ − 3

32
ΔΔ . (4.69)

Tocompute the anisotropies of theCMB,weneed tofirst solve the brightness equation
up to second-order for Δ(2), and then relate it to the bolometric temperature through
the above equation.

Huang and Vernizzi [25] have recently proposed a different parametrisation for
the brightness using the Δ̃ variable,

I ≡ I eΔ̃ , (4.70)
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which differs from Δ at the second-order level,

Δ̃ = Δ − 1

2
ΔΔ = 4Θ − 2Θ Θ . (4.71)

In principle, there is no difference in using one or the other expansion but, as we
shall see in Sect. 5.5.3, a specific term in the left hand side of Boltzmann equation is
simpler to integrate when using the Δ̃ variable.

We conclude this section showing some relations that will be useful to compute
the brightness-projected Liouville and collision terms:

β

[
p

∂ f

∂ p

]
= −4 (1 + Δ) , β

[
p2

∂2 f

∂ p2

]
= 20 (1 + Δ) ,

β

[
∂ f

∂τ

]
= ∂Δ

∂τ
− 4H (1 + Δ) . (4.72)

We have obtained them by repeated application of integration by parts and, for the

last one, by enforcing the zero order Boltzmann equation, ḟ = H p ∂ f /∂ p . Note
that the relations can also be inferred by those for the more general β-moments (see
Sect. 5.3.1).

4.3.1.3 Projected Distribution Function

To characterise the spatial and directional dependence of the brightness fluctuation
Δ, we project it on plane waves using the Fourier-space operator F (Eq.3.58) and
on spherical harmonics using the multipole-space operator L�m (Eq. A.12):

Δ�m(τ , k) ≡ (F k ◦ L�m ◦ β) [ f ]

= i�
√
2� + 1

4π

∫
dx dΩ e−i k·x Y ∗

�m(n) Δ(τ , x, n) . (4.73)

The evolution equations for Δ�m(τ , k) are given by the projected Boltzmann equa-
tion:

(F k ◦ L�m ◦ β)

[
d f

dτ
− 1

p0
C[ f ]

]
= 0 . (4.74)

Being linear, the three operators act on the Boltzmann equation on a term-by-term
basis, so that the formulae we have provided in Sects. 3.5.1, A.4 and in Eq.4.72 are
sufficient to obtain the evolution equation for Δ�m(τ , k).

The advantage of following this approach is that the Boltzmann equation, origi-
nally a partial differential equation in time, position, momentum and direction, turns
into a system of ordinary differential equations for the time evolution of Δ�m(τ , k)

which is numerically tractable.

http://dx.doi.org/10.1007/978-3-319-21882-3_5
http://dx.doi.org/10.1007/978-3-319-21882-3_5
http://dx.doi.org/10.1007/978-3-319-21882-3_3
http://dx.doi.org/10.1007/978-3-319-21882-3_3
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4.3.2 The Electron Distribution Function

During all epochs of interest, the Coulomb collision rate between free electrons
and protons is much larger than the expansion rate of the Universe [13], meaning
that they are kept in thermal equilibrium. Furthermore, until the end of recombina-
tion, the electrons share the same temperature with the photons as they frequently
interact through Compton scattering. Around recombination, this common temper-
ature is much smaller than the electron mass so that electrons and protons can be
treated as non-relativistic particles. Therefore, both fluids must be described by the
Maxwell-Boltzmann distribution function of baryons distribution function, which for
the electrons reads

g (τ , x, q) = ne(τ , x)

(
2π

me Te(τ )

)3/2

exp

{
− [

q − me ve(τ , x)
]2

2me Te(τ )

}
,

(4.75)

where Te(τ ), ve(τ , x) and ne(τ , x) denote respectively the electron temperature, the
bulk velocity of the electron fluid and the number density of free electrons,

ne(τ , x) =
∫

dq
2π3 g (τ , x, q) . (4.76)

Note that the distribution function is normalised so that 〈 g 〉 = ∫
dq/(2π3)g = ne.

The total momentum of an electron, q, has two contributions: the bulk velocity of
the electron fluid, q B = me ve, which coincides with that of the proton fluid due to
the tight coupling between the two fluids induced by Coulomb scattering, and the
thermal motion, qT = q − q B , which appears in the numerator of the exponential
in Eq.4.75.

We report the moments of g that will be useful in the derivation of the collision
term:

〈 g 〉 ≡
∫

dq
(2π)3

g = ne ,

〈
g qi

〉
≡

∫
dq

(2π)3
qi g = ne me vi

e , (4.77)

〈
g qi q j

〉
≡

∫
dq

(2π)3
qi q j g = δi j ne me Te + ne m2

e vi
e v

j
e .

To derive the second equality, one has to perform the variable substitution qT =
q − meve and realise that the integral

∫
dq qi

T exp

{
− q2

T

2me Te

}
(4.78)
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vanishes. (Note that this is a direct consequence of the assumed isotropy of the
thermal motion of particles.)

Let us establish some relations between the magnitudes of the various momenta
and velocities, an exercise that will prove itself useful in computing the collision
term in Sect. 4.5. If follows from the Maxwell-Boltzmann distribution that the aver-
age thermal momentum of an electron is of order qT 
 √

me Te. Due to Compton
scattering, the temperature of the electron fluid is nearly identical to that of the
photons until the end of recombination: Te 
 Tγ = T . Therefore, on average, the
momentum of a photon, p = T , is much smaller than that of an electron:

p

qT



√
T

me
= O(10−3) , (4.79)

wherewe have used T 
 1eVduring recombination andme 
 511keV. The average
thermal momentum of an electron, however, is still much smaller than its mass,

vT ≡ qT

me



√
T

me
= O(10−3) . (4.80)

Because vT = qT /me is the average thermal velocity, the free electrons are non-
relativistic (hence the Maxwell-Boltzmann distribution). It is important to note that
the bulk velocity of the electrons, being of the same order as the metric perturbations,

ve = O(10−5) , (4.81)

it is on average much smaller than the thermal component.

4.4 The Liouville Term

The Liouville term appears in the left hand side of the Boltzmann equation:

d f

dλ
= C[ f ] , (4.82)

and describes the evolution of the considered species in the absence of interactions.
This is in turn determined by the geodesic motion of the species particles, which
propagate in a perturbed metric. The geodesic flow is parametrised by the affine
parameter λ. Using

pμ ≡ dxμ

dλ
, (4.83)
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where xμ(λ) is a geodesic curve, we write the Boltzmann equation as

d f

dτ
= C[ f ] , (4.84)

where dτ = dt/a is the conformal time and we have defined C[ f ] ≡ C[ f ]/p0.
With a small abuse of terminology, we shall sometimes refer to the left and right
hand sides of Eq.4.84 as the Liouville and collision terms, respectively.

As we have mentioned in the previous section, we shall solve the Boltzmann
equation in the local inertial frame, where the four-momentum of a particle is split
into its magnitude, p, and its direction, ni (Eq. 4.19). Being a scalar, the distribution
function has the same value in the coordinate and inertial frames,

f (τ , xi , p, ni ) = f (τ , xi , pi (τ , xi , p, ni )) , (4.85)

and, therefore, we can expand the Liouville term in terms of the partial derivatives
of f with respect to p and ni :

∂ f

∂τ
+ ∂ f

∂xi

dxi

dτ
+ ∂ f

∂ p

dp

dτ
+ ∂ f

∂ni

dni

dτ
= C[ f ] . (4.86)

As we shall see, each of the terms in the Liouville term affects the CMB anisotropies
in a different way. The first two terms encodes free streaming, that is the propagation
of perturbations from the small to the large multipoles. At higher order this term also
includes gravitational time delay effects. The third term, at background level, causes
the redshifting of photons, and at higher-order includes the well-known Sachs-Wolfe
(SW), integrated Sachs-Wolfe (ISW) and Rees-Sciama (RS) effects. The fourth term
vanishes to first order and describes the small-scale effect of gravitational lensing on
the CMB. We shall refer to these terms as the free-streaming, redshift and lensing
terms, respectively.

We now express the three parts of the Liouville term in terms of the metric and
matter variables, and integrate out themomentumdependence of the resulting expres-
sions.

4.4.1 The Free Streaming Term

The free-streaming term,

L FS ≡ ∂ f

∂τ
+ ∂ f

∂xi

dxi

dτ
, (4.87)

contains the coordinate velocity, which we can express in terms of p and ni up to
second order using Eq.4.24:
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dxi

dτ
= pi

p0
= p n j

E

√
1 + 2Ψ

1 − 2Φ

[
δ i

j (1 − p

E
ωi ni ) − γi

j

]
. (4.88)

The second-order part of the particle’s velocity is not needed, because it multiplies
a quantity, ∂ f/∂xi , that is at least first-order due to the fact that the background
distribution function is position-independent (Eq.4.55). Thus, the free-streaming
term, up to second order, reads

L FS = ḟ + ni ∂i f
p

E
( 1 + Ψ + Φ ) , (4.89)

where the dot denotes a partial derivative with respect to conformal time and ∂i =
∂/∂xi .

4.4.1.1 Momentum Integrated L FS

For the photons (p = E) and in terms of the brightness fluctuation Δ, the free
streaming term reads

β [L FS ] = Δ̇ − 4H (1 + Δ) + ni ∂i Δ(1 + Φ + Ψ ) , (4.90)

wherewehaveusedEq.4.72 to compute the timederivative. The termmultiplied byH
comes from taking the time derivative of the background distribution function in the
denominator of Eq.4.65, and represents the universal redshift due to the expansion.
It will cancel out with the equal but opposite term in the redshift term (Eq.4.101),
thus leaving no effect on the temperature perturbation.

4.4.2 The Redshift Term

The redshift term,

L R ≡ ∂ f

∂ p

dp

dτ
, (4.91)

encodes the change of the phase-space density caused by the energy variations of
the particles as they travel in a curved Universe. To obtain an expression for dp/dτ
valid up to second order, we use the geodesic equation:

dp0

dτ
= −Γ 0

αβ

pα pβ

p0
. (4.92)
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The computation is lengthy and ismore easily carried using the exponential potentials
Ψe andΦe in Eq.3.21. Using the expression for p0 in terms of the proper momentum
(Eq.4.24), the left hand side of Eq.4.92 reads

dp0

dτ
= d

dτ

[
E

a
e−Ψe (1 + p

E
ωi ni )

]

= 1

a

dp

dτ

(
ωi ni + p

E
e−Ψe

)
− E

a
e−Ψe (Ψ̇e + H) − p

a
eΦe ∂iΨe ni

− p

a
(Hωi ni − ω̇i ni − p

E
∂i ω j ni n j ) , (4.93)

where a dot denotes a partial derivative with respect to time, ∂/∂τ , and we have used
the following identities:

d

dτ

(
E

a

)
= p

a E

dp

dτ
− E

a
H ,

dΨe

dτ
= ∂Ψe

∂τ
+ ∂Ψe

∂xi

dxi

dτ
= Ψ̇e + p

E
∂iΨe ni eΨe+Φe ,

d

dτ

( p

E
ωi ni

)
= 1

E

dp

dτ

(
1 − p2

E2

)
ωi ni + p

E
ω̇i ni + p2

E2 ∂i ω j ni n j . (4.94)

The right hand side of Eq.4.92 is expanded using the components of the Levi-Civita
connection at second order and, again, the dictionary in Eq.4.24:

−Γ 0
αβ

pα pβ

p0
= p2

a E
e−Ψe (Ψ̇e − H) − E

a
e−Ψe (Ψ̇e + H) − 2

p

a
eΦe ∂iΨe ni

+ H p

a

(
p2

E2 − 3

)
ωi ni + p2

a E

(
∂i ω j − γ̇i j

)
ni n j .

(4.95)

We then equate Eqs. 4.93 and 4.95 and multiply both sides of the resulting expres-
sion by aE/p2 eΨe in order to isolate the fractional rate of change in the particle
momentum, d ln p/dτ . As a result, several terms cancel; in particular, after enforc-
ing the zeroth-order version of the equation, d ln p/dτ = −H, all the terms involving
ωi ni can be grouped into a single one,

H
(

p

E
− E

p

)
ωi ni = −H m2

E p
ωi ni . (4.96)

Thus, we obtain the so-called redshift formula up to second order8:

8Our expression for dp/dτ matches the one given in Eq.4.14 by Senatore et al. [44] but is different
form the one in Eq.3.14 of Bartolo et al. [1]. The reason for this discrepancy is explained in the
footnote 11 of the former paper.

http://dx.doi.org/10.1007/978-3-319-21882-3_3
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1

p

dp

dτ
= −H + Φ̇e − E

p
ni ∂iΨe (1 + Ψe + Φe)

− H m2

E p
ωi ni − E

p
ω̇i ni − γ̇i j ni n j , (4.97)

where the dots denote partial differentiationwith respect to the conformal time,∂/∂τ ,
and ∂i = ∂/∂xi . The redshift formula can be recast in terms of the usual potentials,
Ψ and Φ, using the relations in Eq.3.22,

Φ̇e = Φ̇ + 2Φ Φ̇ ,

∂iΨe = ∂iΨ − 2Ψ ∂iΨ , (4.98)

at the cost of introducing two extra quadratic terms:

1

p

dp

dτ
= −H + Φ̇ − E

p
ni ∂iΨ

√
1 + 2Ψ

1 − 2Φ
+ 2

(
Φ Φ̇ + E

p
Ψ ni ∂iΨ

)

− H m2

E p
ωi ni − E

p
ω̇i ni − γ̇i j ni n j . (4.99)

Up to second order, this is equivalent to

1

p

dp

dτ
= −H + Φ̇ (1 + 2Φ) − E

p
ni ∂iΨ (1 + Φ − Ψ )

− H m2

E p
ωi ni − E

p
ω̇i ni − γ̇i j ni n j . (4.100)

4.4.2.1 Momentum Integrated L R

For the photons (p = E) and in terms of the brightness fluctuation Δ, the redshift
term up to second order reads

β [L R ] = 4H (1 + Δ) − 4 (1 + Δ)
(
Φ̇ − ni ∂iΨ

)

− 4
[
2Φ Φ̇ − (Φ − Ψ ) ni ∂iΨ − ni ω̇i − ni n j γ̇i j

]
, (4.101)

where we have used the relation β [ p ∂ f/∂ p ] = −4 (1 + Δ) from Eq.4.72. Note
that the first term, which encodes the uniform redshift of the spectrum, cancels with
the equal but opposite one in Eq.4.90.

http://dx.doi.org/10.1007/978-3-319-21882-3_3
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4.4.3 The Lensing Term

The lensing term,

L L ≡ ∂ f

∂ni

dni

dτ
, (4.102)

describes the change in the direction of propagation of the particles induced by the
matter distribution; for photons, this is known as the gravitational lensing. Because
the background distribution function (Eq. 4.55) does not depend on the particle’s
direction, the term ∂ f/∂ni is at least first order and, therefore, we only need to
compute dni/dτ up to first order. Using the geodesic equation,

dpi

dτ
= −Γ i

αβ

pα pβ

p0
, (4.103)

it can be shown that, up to first order [1, 44],

dni

dτ
= −(δi j − ni n j )

(
E

p
∂iΨ + p

E
∂iΦ

)
. (4.104)

The operator in the first parentheses, δi j − ni n j , extracts from a vector the part
that is transverse to ni , the direction of propagation of the particle. Therefore, the
bending of the particle’s trajectory is determined only by the transverse gradients of
the scalar potentials. Since p/E is the velocity of the particle in the local inertial
frame, the coefficients of the potentials have a precise physical meaning: relativistic
particles (p/E = 1) are deflected twice as much with respect to the non-relativistic
ones (p/E 	 1).

4.4.3.1 Momentum Integrated L L

For the photons (p = E) and in terms of the brightness fluctuation Δ, the lensing
term up to second order reads

β [L L ] = −
(

δi j − ni n j
) ∂Δ

∂ni ( ∂iΨ + ∂iΦ) . (4.105)

4.4.4 The Momentum-Integrated Liouville Term

The momentum-integrated Liouville term is given by
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β

[
d f

dτ

]
= β [L FS ] + β [L R ] + β [L L ] . (4.106)

Inserting the expressions in Eqs. 4.90, 4.101 and 4.105,we obtain up to second order9

β

[
d f

dτ

]
= Δ̇ + ni ∂i Δ (1 + Φ + Ψ )

− 4 (1 + Δ)
(
Φ̇ − ni ∂i Ψ

)
− 4

[
2Φ Φ̇ − (Φ − Ψ ) ni ∂i Ψ − ni ω̇i − ni n j γ̇i j

]

−
(

δi j − ni n j
) ∂Δ

∂ni
( ∂i Ψ + ∂i Φ) . (4.107)

Up to first order, all the quadratic terms and the non-scalar perturbations can be
neglected; what is left are two contributions from the free streaming term and two
from the redshift term,

β

[
d f

dτ

]
= Δ̇ + ni ∂i Δ − 4

(
Φ̇ − ni ∂iΨ

)
. (4.108)

At thebackground level, the brightnessfluctuationvanishes bydefinition (Eq.4.64)
and so does the Liouville term. Therefore, we use the redshift formula (Eq.4.89),

1

p

dp

dτ
= −H (4.109)

to obtain

d f

dτ
= ḟ − H p

∂ f

∂ p
. (4.110)

Aswe shall see in Sect. 4.5.2, during and after recombination, the zero-order collision
term vanishes due to the negligible energy transfer between photons and electrons.

Thus, the evolution equation for ḟ simply reads

ḟ = H p
∂ f

∂ p
. (4.111)

Using the relation ∂ f BB/∂ p = −T/p ∂ f BB/∂T , we find that the background
temperature scales as the inverse of the scale factor,

T ∝ 1

a
, (4.112)

as expected from the thermodynamical argument of Sect. 2.5.

9Note that, with respect to what we have written in [37], we have corrected a typo in the sign of ω̇i .

http://dx.doi.org/10.1007/978-3-319-21882-3_2
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4.5 The Collision Term

In order to obtain a time evolution equation for the distribution function f , one needs
to specify the form of the collision term in the Boltzmann equation. The collision
term for a particle species described by f ,

C[ f ] = C[ f ](τ , x, p) , (4.113)

is the average rate of collisions happening in the neighbourhood of (τ , x) that result
in the creation or annihilation of a particle with momentum p. If more than one
interaction can create or annihilate that type of particle, then its collision term will
consist of a sum over the various contributions.

In this section we derive the collision term for the Compton scattering between
a photon and a free electron to second order in the cosmological perturbations. The
period of interest is the recombination (z 
 1100), when the photons progressively
go out of thermal equilibrium as the electrons combine with the protons to form
neutral hydrogen. Due to the low thermal energy of photons during recombination,
Eγ 
 0.25eV, with respect to the electrons rest mass, me 
 511keV, one can
assume that, at first order, the scattering processes are well described by the low-
energy limit of the Klein-Nishina formula for the Compton scattering, that is the
Thomson cross-section. We shall see that at second order one has to also consider
corrections of the order of the energy transfer. It should be noted that the photons also
interact with protons; however, the proton collisions are penalised with respect to
the electron ones by a factor (m p/me)

2 
 18362 by virtue of the mass-dependence
in the Thomson scattering cross section.

The ionisation and expansion histories of the Universe play a crucial role in
determining the collision term. Before recombination (z � 1100), all the electrons
are free and the Universe is very dense. As a result, the Compton collisions between
photons and electrons are so frequent that the two fluids are in thermal equilibrium,
the direct collisions balancing, on average, the inverse ones. After recombination,
there are nomore free electrons for the photons to scatterwith,meaning that collisions
cannot take place. As a result, the photons free stream in a transparent Universe. At
z ∼ 10, however, the Universe undergoes a second phase transition as a result of the
light from the first galaxies ionising the hydrogen in the intergalactic medium. This
process is knownas reionisation; there is nowevidence fromquasars that theUniverse
was completely ionised at z ∼ 6 [2, 18]. Reionisation is not physically different from
recombination, and can be modelled within the same kinetic treatment [14, 24]. The
main difference lies in the fact that reionisation happens when the density of the
Universe is a million times smaller than at recombination, thus reducing the collision
rate and making the Universe effectively transparent to radiation [13, Sect. 3.3]. For
this reason, in this work we do not treat reionisation.10

10It should be noted, however, that reionisation does play a role at second-order as it generates spec-
tral distortions in the CMB [40]; we have investigated the effect of reionisation spectral distortions
on the CMB spectrum both in temperature and polarisation with SONG in Ref. [42].
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We shall derive the collision term up to second order following the approach of
Dodelson and Jubas [14], where only the temperature perturbations are considered.
For a complete treatment including polarisation, refer to Pitrou [38] and Beneke and
Fidler [3], and to the references therein. Note that, in SONG, we have included the
full collision term including the E and B-modes of polarisation.

4.5.1 General Form of the Collision Term

We consider the reversible reaction

γ( p) + e(q) ←→ γ( p′) + e(q ′) , (4.114)

representing theCompton scattering of a photonwithmomentum p off a free electron
with momentum q, that results into a photon with momentum p′ and a free electron
with momentum q ′. We assume that the electrons are thermally distributed about
some bulk velocity ve, as in Eq.4.75. At this stage, we do not specify the form of the
distribution function of the photons, f .

The collision term is the rate of change of the number of photons with momentum
p, and is therefore given by the differential cross-section for the scattering, |M |2,
weighted by the occupation number and integrated over all the possible momentum
configurations that sum up to p:

C[ f ]( p) =
∫

dq
(2π)3 2 Eq

∫
d p′

(2π)3 2 E p′

∫
dq ′

(2π)3 2 Eq ′
|M |2

× (2π)4 δ( p + q − p′ − q ′) δ(E p + Eq − E p′ − Eq ′)

×
{

f p′ gq ′ [1 + f p] [1 − gq ] − f p gq [1 + f p′ ] [1 − gq ′ ]
}

,

(4.115)

where we have adopted the shorthand notation E p = E( p), f p = f ( p), gq ′ = g(q ′)
and similarly for the other momenta. Because we have assumed the interaction to
be reversible, the balance between the direct and inverse collisions is dictated by
the relative abundances of the reagents and products of the reaction. As a result,
the production and annihilation rates of γ( p) are respectively proportional to f p′ gq ′
and f p gq ; we shall call the two terms in curly brackets the gain term and the loss
term, respectively. The 1 + f and 1 − g factors encode the Bose enhancement
and the Pauli suppression, i.e. the fact that the reaction is favoured (disfavoured) if
photons (electrons) with the same final state already exist; in the following, we shall
approximate 1− g 
 1 because of the smallness of the electron density, ne. The two
Dirac delta functions enforce energy andmomentum conservation in the local inertial
frame. We are assuming that the mass-shell relation is valid, so that E p = p2 + m2,
and similarly for the other momenta. As a matter of fact, to obtain Eq. 4.115 we have
already performed the integration over the energies of the particles by enforcing
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∞∫

0

dE δ(E2 − p2 − m2) =
∞∫

0

dE
δ
(

E − √
p2 + m2

)

2 E
, (4.116)

which explains the presence of the 2 E factors.

4.5.2 Energy Transfer as an Expansion Parameter

We perform the first integration over q ′ by enforcing q ′ = p − p′ + q via the
three-dimensional Dirac delta function:

C[ f ]( p) = 1

8π

∫
dp′ p′ dΩ(n′)

4π

∫
dq

(2π)3

|M |2
Eq E p−p′+q

× δ(p − p′ + Eq − E p−p′+q)

×
{

f p′ gp−p′+q [1 + f p] − f p gq [1 + f p′ ]
}

, (4.117)

where we have split the p′ integration into its radial and angular parts, and we have
enforced E(p′) = p′ and E(p) = p. The next step is to realise that the energy
transferred in the scattering, p − p′ = Eq ′ − Eq , is much smaller than the energy
scale at recombination, which is given by the ambient temperature T . The energy
transfer is given by the difference in the kinetic energy of the electron,

E(q) − E(q ′) = E(q) − E( p − p′ + q) = q2

2me
− ( p − p′ + q)2

2me


 q · ( p′ − p)

me
, (4.118)

where, after expanding the scalar product in the last term of the first line, we have
neglected the term ( p − p′)2 because it is much smaller than q · ( p − p′) by virtue
of Eq.4.79. Since for thermal photons | p′ − p| = O(T ), it follows that the energy
transfer over the temperature is of the same order as the electron velocity, q/me,
which, as we have proven in Eq.4.80, is very small11 (order 10−3). Therefore, we
can expand all the parts in the collision term—energies, squared matrix element,
delta functions and distribution functions—using the energy transfer as an expansion
parameter [14].

11It is interesting to note that, even if the energy transfer is very small, p − p′ = Eq ′ − Eq =
O(T q/me), it is still possible for a photon to scatter with a large angle, | p′ − p| = O(T ), so that

p′−p
| p′− p| = O(q/me).
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The distribution function of the electrons is expanded up to second order in the
energy transfer as12

g ( p − p′ + q) = g (q)

{
1 − ( p − p′) · (q − mv)

me Te
− ( p − p′)2

2me Te

+ 1

2

[
( p − p′) · (q − mv)

me Te

]2
+ · · ·

}
. (4.119)

similarly for the Dirac delta function,

δ
(

p − p′ + E(q) − E( p − p′ + q)
)

= δ (p − p′) + q · ( p − p′)
me

∂ δ (p − p′)
∂ p′

+ ( p − p′)2
2me

∂ δ (p − p′)
∂ p′ + 1

2

[
q · ( p − p′)

me

]2 ∂2 δ (p − p′)
∂ p′2 , (4.120)

where the momentum derivatives of δ makes sense only when integrated by parts.
On the other hand, we expand the photon distribution function up to second order in
the cosmological perturbations:

f ( p) = f̄ p + f (1)( p) + f (2)( p) , (4.121)

where f̄ p = f (0)(p) is the background blackbody distribution. We perform the two
types of perturbative expansion at the same time13 and neglect all the terms that are
higher than second order, including the mixed terms such as f (2) q/me.

The leading order in both expansions corresponds to a homogeneous Universe
( f ( p) = f̄ (p)) where photons and electrons scatter elastically (p′ = p). Equiva-
lently,

g(q ′) = g(q) and f ( p′) = f ( p) . (4.122)

It follows that the gain and loss terms in Eq.4.117 are equal and opposite, so that
the whole collision term vanishes at the leading order. This has two important con-
sequences. First, because spectral distortions can only be induced by collisions, we
have proven that the zero-order CMB spectrum retains its blackbody shape even after
the photons cease to be in thermal equilibrium. Secondly, the other parts of the inte-
grand function in Eq.4.117 need to be expanded only up to first order in the energy

12At zero order in the energy transfer, neither the momentum nor the direction of propagation of an
electron is changed by the scattering (q ′ = q) because the electrons have a large mass compared
to the energy of the incident photon. This is reflected in Eq.4.119 by the fact that, at zero order,
g(q ′) = g(q). This is not the case for the scattering photon, whose direction can change even if the
momentum stays constant (see previous footnote).
13It should be noted that the perturbative expansion in the energy transfer is different from the one in
the metric variables. For more details on this topic, refer to the discussion in Sect. 7.2 of Pitrou [38].
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transfer. In particular, the two energies in the denominator can be simply replaced
by m2

e and the Compton matrix element is expanded as [14]

|M |2 = 6π σT m2
e

[
(1 + cos2 θ) − 2 cos θ (1 − cos θ)

q · (n + n′)
me

]
,

(4.123)

where cos θ = n · n′ and σT is the Thomson cross section (Eq.2.67). The first term
in brackets is the angular dependence of Thomson scattering, while the second one
is the first-order correction coming from the Klein-Nishina formula [28].

4.5.3 Contributions to the Collision Term

The next step consists of inserting the perturbed expressions for g (Eq.4.119), δ
(Eq. 4.120), f (Eq. 4.121) and |M |2 (Eq.4.123) in the collision term (Eq.4.117) and
to keep only the terms up to second order. As a result, the integrand function has a
simple q dependence that can be integrated out using the moments of the Maxwell
distribution function in Eq.4.77. Following the approach of Dodelson and Jubas
[14], we write the resulting expression as the sum of a first-order contribution and 4
second-order ones:

C[ f ]( p) = 1

p0
C[ f ]( p) = − 3

4 p
κ̇

ne

ne

∫
dp′ p′ dΩ(n′)

4π

[
(1 + Ψ ) c(1)( p, p′)

+ c(2)( p, p′) + c(2)
f v ( p, p′) + c(2)

vv ( p, p′) + c(2)
K ( p, p′)

]
,

(4.124)

where ne = n(0)
e is the background numer density of free electrons and we have

introduced the Thomson scattering rate,

κ̇ = − ne σT a , (4.125)

whose meaning is explained in Sect. 2.5.1. With respect to what is reported in
Ref. [14], we have explicitly included the 1/p0 factor from Eq.4.84, which is
expanded to first order as

1

p0
= a

p
(1 + Ψ ) . (4.126)

The factor (1 + Ψ ) is important as it encodes the change in the photon energy from
the coordinate frame to the local inertial one. Note, however, that it is not part of the
collision term, which cannot contain metric perturbations in the local inertial frame.

http://dx.doi.org/10.1007/978-3-319-21882-3_2
http://dx.doi.org/10.1007/978-3-319-21882-3_2


4.5 The Collision Term 133

A list with the form of each contribution follows.14

• The part linear in the metric perturbations consists of a damping term, also called
the anisotropy suppression term, and a Doppler term:

c(1)( p, p′) =
(
1 + cos2 θ

) [
δ(p − p′)

(
f (1)

p′ − f (1)
p

)

+
(

f̄ p′ − f̄ p

)
v(1) · ( p − p′) ∂δ(p − p′)

∂ p′

]
. (4.127)

Once integrated in p′, the first term can be expressed as f (1) = −p ∂ f̄ /∂ p Θ(1)

by using Eq.4.54; the second one, due to the presence of the derivative of the delta
function, is proportional to p ∂ f̄ /∂ p . Therefore, the momentum dependence of
the linear collision term is encoded in an overall factor p ∂ f̄ /p . Similarly, the
Liouville term, once it is expressed in terms of d

(
Θ(1)

)
/dτ , has exactly the same

dependence. This means that p ∂ f̄ /p can be eliminated from both sides of the
Boltzmann equation, thus resulting in a momentum-independent Θ(1) : the linear
CMB is free from spectral distortions and is therefore well described by a black-
body distribution. In general, all the terms in the collision term that are proportional
to p ∂ f̄ /p result in a momentum independent temperature perturbation and, thus,
in a blackbody distribution.

• The purely second-order part has the same structure of the first-order one,

c(2)( p, p′) =
(
1 + cos2 θ

) [
δ(p − p′)

(
f (2)

p′ − f (2)
p

)

+
(

f̄ p′ − f̄ p

)
v(2) · ( p − p′) ∂δ(p − p′)

∂ p′

]
, (4.128)

and, therefore, it does not induce spectral distortions.
• A quadratic part that mixes the photon perturbation with the electron velocity:

c(2)
f v ( p, p′) =

(
f (1)

p′ − f (1)
p

) [ (
1 + cos2 θ

)
v(1) · ( p − p′) ∂δ(p − p′)

∂ p′

− 2 cos θ (1 − cos θ) δ(p − p′) v(1) · (n + n′)
]

. (4.129)

The first term in brackets, after integration over p′, has the form p ∂ f (1)/∂ p . If
we substitute f (1) = −p ∂ f̄ /∂ p Θ(1), we see that, even if Θ(1) does not depend

14The below equations slightly differ from the ones in Dodelson and Jubas [14] in that we have
merged the purely second-order terms into c(2) and we have implemented the corrections that were
pointed out in Appendix C of Senatore et al. [44]. For an alternative splitting strategy, refer to
Eq.6 of Hu et al. [24], where the photon distribution function is left unperturbed and the integrand
function is expressed in terms of 7 contributions.
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on p, this term generates an explicit momentum dependence in the equation for
Θ(2) which is not of the “blackbody” form p ∂ f̄ /p ; that is, c(2)

f v does generate a
spectral distortion.

• A part quadratic in the electron velocity:

c(2)
vv ( p, p′) =

(
f̄ p′ − f̄ p

)
v(1) · ( p − p′)

[ (
1 + cos2 θ

) v(1) · ( p − p′)
2

∂2δ(p − p′)
∂ p′2

− 2 cos θ (1 − cos θ) v(1) · (n + n′) ∂δ(p − p′)
∂ p′

]
. (4.130)

The second derivative of the delta function generates p2 ∂2 f̄ /p2 contributions
that ultimately spoil the blackbody shape of the distribution.

• The so-called Kompaneets part,

c(2)
K ( p, p′) =

(
1 + cos2 θ

) ( p − p′)2
2me

[ (
f̄ p′ − f̄ p

)
Te

∂2δ(p − p′)
∂ p′2

−
(

f̄ p′ + f̄ p + 2 f̄ p′ f̄ p

) ∂δ(p − p′)
∂ p′

]
+ 2 (p − p′) cos θ (1 − cos2 θ)

me

×
[

δ(p − p′) f̄ p′
(
1 + f̄ p

)
− Te

(
f̄ p′ − f̄ p

) ∂δ(p − p′)
∂ p′

]
, (4.131)

induces spectral distortions via the terms quadratic in the distribution function and
those including the second derivative of the delta function. The Kompaneets part is
the only one with neither photon nor electron perturbations, as it is already second
order in the energy transfer. It vanishes in the limit where the photon and electron
temperatures coincide and we neglect it [38, Sect. 7.4].

It should be noted thatwe have not expanded ne yet. The density of free electrons is
defined as the product between the density of all electrons and the ionisation fraction:
ne = Ne xe. Because the collision term vanishes at leading order (Eq. 4.122), ne

needs to be expanded only up to first order:

ne

ne
= 1 + N (1)

e

N e
+ x (1)

e

xe
. (4.132)

The second term in parentheses is the density contrast of the electrons, which is
equal to the protons’ because of the tight coupling between the two fluids induced by
Coulomb scattering; we denote such common value as the baryons density contrast,
δb. The third term is determined by perturbing the recombination process up to first
order, and is the subject of Sect. 5.3.4. After perturbing ne according to Eq.4.132,
the collision term reads

http://dx.doi.org/10.1007/978-3-319-21882-3_5
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C[ f ]( p) = − 3

4 p
κ̇

∫
dp′ p′ dΩ(n′)

4π

[ (
1 + Ψ (1) + δ(1)

b + x (1)
e

xe

)
c(1)( p, p′)

+ c(2)( p, p′) + c(2)
f v ( p, p′) + c(2)

vv ( p, p′) + c(2)
K ( p, p′)

]
.

(4.133)

All the contributions to the collision term listed above are in the form of an integral
over the momentum of the scattered photon, p′, that can be solved analytically. To
do so, one needs to expand the quantities that depend on the direction of p′ in
terms of spherical harmonics, so that the dΩ( p′) integral can be solved by using
the orthogonality properties of the Y�m’s (Sect.A.1). The remaining integrals on the
magnitude of the scattered momentum, dp′, is computed by enforcing the properties
of theDiracDelta function, after integration by parts. The detailed steps are explained
in Bartolo et al. [1]; the correct formula of the second-order collision term for the
CMB temperature as a function of p is reported in Eq. C.1 of Senatore et al. [44].15

4.5.4 Polarisation

So far, we have neglected the fact that Compton scattering also induces a change in
the polarisation state of the photon. For example, the cross section includes terms
like

|M |2 ⊃ | ε · ε′ |2 , (4.134)

where ε and ε′ are the incident and scattered polarisation directions of the photon,
respectively. In the early Universe, the frequent interactions force the photons and
the baryons to be tightly coupled in a highly isotropic fluid, the only non-negligible
anisotropy being the Doppler dipole from the electrons’ bulk flow; as a result, the
CMB cannot develop a net polarisation. During recombination, however, the inter-
action rate slows down so that the inhomogeneities in the photon fluid can convert to
anisotropies. In particular, the quadrupolar variation in the incident flux of the pho-
tons, as seen by the electrons, makes it possible for the CMB to acquire a net linear
polarisation through Compton scattering. Thus, the polarisation of the CMB is due to
those photons that scattered after a quadrupole anisotropy was generated. However,
by the time a significant quadrupole develops, the Universe is already optically thin,

15The expression obtained inRef. [1] is not correct because it assumes that the first-order distribution
function only has scalar components, i.e. f (1)

�m (k1) ∝ δm0. This is the case only if the polar axis is
chosen to coincide with the wavemode k1. In a second-order expression, however, the first-order
quantities are evaluated in the convolution wavevectors, k1 and k2; since the polar axis was already
chosen to be aligned with k, one cannot assume f (1)

�m (k1) ∝ δm0; as explained in Appendix B, the

angular dependence of f (1)(k1) is given by f (1)
�m (k1) ∝ f̃ (1)

�0 (k1) Y�m(k).
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that is, the scatterings are already very rare. As a result, only about 10% of the CMB
photon anisotropies are polarised [8, 10, 22, 26].

To describe the polarised radiation in the Boltzmann formalism, one has to intro-
duce a Hermitian tensor-valued distribution function, fμν(τ , x, p) , such that

εμ ε∗ν fμν (τ , x, p) (4.135)

is the number density of photons at (x, p) in phase space with polarisation state
ε (see [3, 39] and references therein). The polarised distribution function can be
decomposed on the so-called helicity basis of the spherical coordinate system,

f μν =
∑
ab

fab ε̂∗μ
a ε̂ν

b , (4.136)

given by the two vectors

ε̂+ = − 1√
2

( eθ + i eφ ) and ε̂− = − 1√
2

( eθ − i eφ ) , (4.137)

where eθ = ∂θn and eφ = ∂φn/ sin θ are the two orthonormal vectors that span
the plane orthogonal to the direction of propagation of the photon, n . The a and b
indices are called helicity indices and can assume the values ab = ++, −−, −+,

+− .
The four physical degrees of freedom of fab can also be expressed in terms of

the Stokes parameters,

fab =
(

f++ f+−
f−+ f−−

)
=

(
f I − fV fQ − i fU

fQ + i fU f I + fV

)
, (4.138)

where f I is the intensity, fV the circular polarisation, fQ and fU the two components
of linear polarisation. The intensity is related to the photon temperature; what we
have been referring to as f in the previous sections is, in the formalism of polarised
radiation, f I . The linear polarisation of the CMB is usually described in terms of
its curl-free and gradient-free components, the E and B polarisation modes [23, 27,
43], which are obtained from the Q and U parameters as

fE,�m ± i fB,�m = i�
√
2 � + 1

4π

∫
dΩ Y ∓2∗

�m (n)
[

fQ(n) ± i fU (n)
]

,

(4.139)

where Y s
�m(n) is the spin-weighted spherical harmonic with spin s. In the following,

we shall refer to the E and B polarisation modes of the photon fluid as E-modes and
B-modes, respectively. The circular polarisation, fV , is not sourced by the Compton
scattering or by any mechanism in the standard cosmological paradigm; we shall
therefore ignore it.
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The evolution of polarised light is described by a tensor-valued Boltzmann equa-
tion for fμν , which can be recast as a system of differential equations for f I,�m ,
fB,lm and fE,�m . We shall report them in the next section, following Beneke and
Fidler [3].

4.6 The Final Form of the Boltzmann Equation

In the unpolarised case, the brightness equation is obtained by equating the Liou-
ville term in Eq.4.107 with the collision term in Eq.4.124, after integrating out the
momentum dependence of the latter using the β operator in Eq.4.65. The resulting
expression is a partial differential equation in Δ(τ , x, n), which can be turned into
a system of differential equations by projecting it into Fourier and multipole space,

(F k ◦ L�m ◦ β)

[
d f

dτ
− C[ f ]

]
= 0 , (4.140)

where the three projection operators are defined, respectively, in Eqs. 4.65, A.12 and
3.58.

To include polarisation, one has to follow the approach outlined in Sect. 4.5.4. For
the details, we refer to Pitrou [38] (P2009 [38], hereafter) and Beneke and Fidler [3]
(BF2010 [3], hereafter), who independently derived the Boltzmann equation in the
polarised case, up to second order and in Newtonian gauge. The two groups used
different methods to derive the collision term: P2009 [38] first computed it in the rest
frame of the electron, and then performed a Lorentz boost to the coordinate frame,
while BF2010 [3] followed an approach more similar to the one we have outlined
in the previous section, which consists in describing the electrons with a Maxwell-
Boltzmann distribution from the beginning. Another difference is that P2009 [38]
used projected symmetric trace-free tensors to perform the angular projections, while
BF2010 [3] used spin-weighted spherical harmonics.Nonetheless, their resultsmatch
up to a few minor discrepancies, as pointed out in Sect. 5 of BF2010 [3].

Here we report the brightness equation for the three types of photon perturbations
(I, E and B) by applying the β operator to Eqs. 143–146 of BF2010 [3]. Following
their notation, we employ the coupling coefficients C, D and R, K as shorthands for
the multipole decompositions of ni f and of (δi j −ni n j ) ∂ f/∂n j , respectively; we
give their explicit form in Eqs. A.67 and A.70. In writing the equations, we adopt
the following conventions:

• We denote the brightness multipoles with the symbols I, E and B, so that

I �
m(k) = β [ f I,�m ] , E�

m(k) = β [ fE,�m ] , B�
m(k) = β [ fB,�m ] . (4.141)

• We drop the perturbation suffix.
• We drop the explicit k dependence in the purely second-order terms.

http://dx.doi.org/10.1007/978-3-319-21882-3_3
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• We write the equations in terms of ω̃i ≡ i ωi and ui
e ≡ i vi

e in order to absorb
all the imaginary factors. The variables ω̃i and ui

e are the ones that are actually
numerically evolved in SONG.

In multipole space, the metric variables in BF2010 [3] are related to ours by

A BF → Ψ , D BF → −Φ , B BF[m] → −ω̃[m] , αm E BF[m] → −γ[m] ,

(4.142)

as follows from the correspondences given in Eq.3.24 and in footnotes 1 to 2 of Sect.
A.3. Furthermore, due to the different definition of the spherical components (see
footnote 1 in Sect. A.3), we have that i k BF[m] = −k[m] and v BF

e[m] = ue[m].
We recall that the equations that follow were obtained in conformal Newtonian

gauge,

ds2 = a2(τ )
{
−(1 + 2Ψ )dτ2 + 2ωidxidτ + [

(1 − 2Φ)δi j + 2 γi j
]
dxidx j

}
,

(4.143)

for phase-space densities defined in an inertial frame locally at rest and aligned
with the coordinate axes, under the assumption that the first-order vector and tensor
perturbations in the metric vanish (ω(1)

i = γ
(1)
i j = 0). For the expansion in spherical

harmonics, we have chosen the zenith to be aligned with the k wavemode.

4.6.1 Purely Second-Order Structure

The linear structure of the Boltzmann equation follows.We group the quadratic parts
of the Liouville and collision terms for the species X using the symbols L�m

[
QL

X

]

and L�m

[
QC

X

]
, respectively.

• Photon temperature:

İ�
m + k

(
I �+1

m C+,�
m m − I �−1

m C−,�
m m

)
− δ�0 4 Φ̇

− 4 δ�1

(
δm0 k Ψ − δm1 ˙̃ω[1]

)
− δ�2 δm2 4 γ̇[m] + L�m

[
QL
I

]

= κ̇
(

−I �
m + δ�0 I 0

0 + δ�1 4 u[m] + δ�2 Πm

)
+ L�m

[
QC
I

]
, (4.144)

where we have defined

Πm = 1

10

(
I 2

m − √
6 E2

m

)
. (4.145)

http://dx.doi.org/10.1007/978-3-319-21882-3_3
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• Photon E-mode polarisation:

Ė l
m + k

(
E�+1

m D+,�
m m − E�−1

m D−,�
m m + B�

m D0,�
m m

)
+ L�m

[
QL
E

]
(4.146)

= κ̇
(

−E�
m − δ�2

√
6 Πm

)
+ L�m

[
QC
E

]
.

• Photon B-mode polarisation:

Ḃ l
m + k

(
B�+1

m D+,�
m m − B�−1

m D−,�
m m − E�

m D0,�
m m

)
+ L�m

[
QL
B

]
(4.147)

= − κ̇ B�
m + L�m

[
QC
B

]
.

It is important to remark that the linear structure of the Boltzmann equation does
not mix the azimuthal modes, that is, all the above expressions have the same mode,
m, on both sides. Aswe have already noted in Sects. 3.3 andA.4, this is a consequence
of having chosen the polar axis of the spherical coordinate system to coincide with
the wavemode k.

The E polarisation and the temperature are directly coupled through the quadru-
pole of the collision term. This means that, today, we expect at least a fraction of the
CMB photon anisotropies to be polarised [8, 26], a circumstance that was experi-
mentally verified [5, 29]. Before recombination, however, polarisation is quenched
by the high scattering rate, as we shall explicitly show in Sect. 5.4.1 when discussing
the tight-coupling approximation.

On the other hand, at first order the B polarisation couples only indirectly to the
temperature, through the E polarisation. The coupling appears in the free-streaming
part of the Liouville term, that is the first line of Eqs. 4.146 and 4.147, which means
that the mixing between the E and B-modes, at linear order, is a propagation effect
rather than a scattering one. The coupling is active only for the non-scalar modes, as
the coupling coefficient, D0,�

m m , vanishes for m = 0. As a result, at linear order and in
the standard cosmological scenario, the presence of B-mode polarisation today has
to be linked to the presence of non-scalar perturbations in the initial conditions. In
principle, because the vector modes decay with time [20], measuring the B-modes
would be a smoking gun for the presence of gravitational waves in the early Universe
[23, 27, 43]. In practice, as we shall soon see, there are other sources of B-mode
polarisation from second-order effects that need to be considered.

4.6.2 Quadratic Sources

The quadratic sources of the Boltzmann equation are a convolution integral over two
dummy wavemodes, k1 and k2 (Sect. 3.5.2). Here, for brevity, we report the kernels
of the convolution, so that, for example, when we write

http://dx.doi.org/10.1007/978-3-319-21882-3_3
http://dx.doi.org/10.1007/978-3-319-21882-3_5
http://dx.doi.org/10.1007/978-3-319-21882-3_3
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L�m

[
QL
I

]
= kernel(k1, k2) (4.148)

we mean

L�m

[
QL
I

]
=

∫
dk1dk2

(2π)3
kernel(k1, k2) δ (k − k1 − k2) . (4.149)

We also omitwriting the explicit k1 and k2 dependence of the first-order perturbations
and assume that the first term in a product is assigned k1 and the second k2, e.g.
4 Φ̇ I �

m = 4 Φ̇(k1) I �
m(k2) .

The mode coupling mixes not only the wavemodes but also the azimuthal modes,
as explained in Sect.A.4; in what follows, we introduce the indices m1 and m2 =
m − m1 , and implicitly assume a sum over m1 = −1, 0,+1. Expressions for the
coupling coefficients C, D and R, K can be found in Eqs. A.67 and A.70.

Note that, in principle, the quadratic sources for the E and B polarisation should
also include terms involvingB�

m at first order. However, we shall ignore them because
the first-order B-modes vanish unless the initial conditions contain non-scalarmodes,
a circumstance that we do not explore in this work. For the full expression including
the first-order B-modes, refer to Eqs. 144 and 145 of BF2010 [3].

• Photon temperature:

L�m

[
QL

I
]

=
∑
±

± (Ψ + Φ) k[m2]
2 I�±1

m1
C±,�

m1 m

+ 4
[
−Φ̇ I�

m +
∑
±

± k[m2]
1 Ψ I�±1

m1
C±,�

m1 m − δ�0 2 Φ̇ Φ − δ�1 k[m]
1 Ψ (Φ − Ψ )

]

+
∑
±

± k[m2]
1 (Ψ + Φ) I�±1

m1
R±,l

m1 m . (4.150)

L�m
[

QC
I

] =
(

Ψ + δb + x (1)
e

x̄e

)
C�m [ I ] + κ̇ u[m2]

e

{ ∑
±

∓ I�±1
m1

C±,�
m1 m

+ δ�0

(
2 I1

m1
− 4 u[m1]

e

)
C+,0

m1 m + δ�1 3 I0
m1

C−,1
m1 m

+ δ�2

(
7 u[m1]

e − 1

2
I1

m1

)
C−,2

m1 m + δ�3 5 Πm1 C−,3
m1 m

}
, (4.151)

where Πm is given in Eq.4.145 and C�m is the first-order collision term for the intensity,

C�m [ I ] = κ̇
(

−I�
m + δ�0 I0

0 + δ�1 4 u[m] + δ�2 Πm

)
. (4.152)

Note that the collision term, contrary to the Liouville one, does not include gradient terms (i.e.
an explicit k, k1 or k2 dependence) because collisions are local in space.
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• Photon E-mode polarisation:

L�m

[
QL

E
]

=
∑
±

± (Ψ + Φ) k[m2]
2 E�±1

m1
D±,�

m1 m

+ 4
[
−Φ̇ E�

m +
∑
±

± k[m2]
1 Ψ E�±1

m1
D±,�

m1 m

]

+
∑
±

± k[m2]
1 (Ψ + Φ) E�±1

m1
K ±,l

m1 m . (4.153)

L�m
[

QC
E

] =
(

Ψ + δb + x (1)
e

x̄e

)
C�m [ E ] + κ̇ u[m2]

e

{ ∑
±

∓ E�±1
m1

D±,�
m1 m

+ δ�2

√
6

2

(
I1

m1
− 2 u[m1]

e

)
C−,2

m1 m + δ�3 5
√
6 Πm1 C−,3

m1 m

}
, (4.154)

where Πm is given in Eq.4.145 and C�m is the first-order collision term for the E polarisation,

C�m [ E ] = κ̇
(

−E�
m − δ�2

√
6 Πm

)
. (4.155)

• Photon B-mode polarisation:

L�m

[
QL

B
]

= − ( Ψ + Φ ) k[m2]
2 E�

m1
D0,�

m1 m

− 4 k[m2]
1 Ψ E�

m1
D0,�

m1 m

− k[m2]
1 ( Ψ + Φ ) E�

m1
K 0,�

m1 m . (4.156)

L�m
[

QC
B

] = κ̇ u[m2]
e

{
E�

m1
D0,l

m1 m − δ�2 2
√
6 Πm1 D0,2

m1 m

}
. (4.157)

The full second-order Boltzmann equation shows that the B polarisation is gen-
erated even in the absence of vector and tensor modes. In particular, the B-modes
are sourced by the propagation of photons through an inhomogeneous Universe, via
Eq.4.156, and by the collisions with the electrons, via Eq.4.157. The former is a
well known mechanism [31, 45] that converts E into B polarisation, in analogy with
the linear streaming term in Eq.4.147; it is dominated by the conversion due to the
weak gravitational lensing [21]. The latter mechanism includes the conversion of
non-scalar E-modes into B-modes through collisions, via κ̇ u[m2]

e E�
m1

D0,l
m1 m , and

the generation of the B-modes directly from the temperature quadrupole [3] due to
the term

− δ�2 κ̇

√
6

5
u[m2]

e

(
I2

m1
− √

6 E2
m1

)
D0,2

m1 m (4.158)
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of Eq.4.157. We remark that these collisional sources for the B-modes are purely
kinematic in nature, as they do not exist in the electron’s rest frame, that is, they
are proportional to the electron velocity u[m2]

e . Their efficiency in generating the
B polarisation was found to be negligible with respect to the weak lensing contribu-
tion by Beneke et al. [4]. For a comprehensive description and computation of the
B-modes generated at second order, refer to Fidler et al. [19].

In writing the quadratic Liouville term for I, E and B, we have confined the

free streaming ( ∂ f
∂xi

dxi

dτ ), redshift (
∂ f
∂ p

dp
dτ ) and lensing ( ∂ f

∂ni
dni

dτ ) contributions to the
first, second and third lines, respectively. The �-dependence of the three effects is
determined by their coupling coefficients, which we have reported in Eqs. A.67
and A.70. The free-streaming and redshift terms are proportional to C±,�, for the
intensity, and to D±,�, for the E-modes; both coefficients are of order unity for
large �’s. On the other hand, the gravitational lensing is determined by R±,�, for
the intensity, and by K ±,�, for the E-modes; since they both grow proportionally
to �, we expect that, for temperature and E polarisation, the gravitational lensing
dominates over the other second-order propagation effects on small angular scales.
For the B polarisation, however, the three effects are of comparable importance as
they all involve the coefficients D0,� and K 0,�, which are of order 1/� for large
�. Thus, in principle, the time-delay and the redshift effects are expected to be as
efficient as weak lensing in converting the E-modes into B polarisation. In practice,
however, it was shown that the generation of B-modes through the time-delay effect
is suppressed for geometrical reasons [12, 21].

4.6.3 A Compact Form of the Boltzmann Equation

We now introduce a compact notation for the Boltzmann equation that will be useful
in the next chapter, when we shall introduce the line of sight formalism. Following
Beneke et al. [4], we introduce a single composite index, n, to express the harmonic
dependence, (�, m), and the kind of photon perturbation (temperature, E polarisation
or B polarisation). The Boltzmann equation at second order then reads16

Δ̇n + k Σnn′ Δn′ + Mn + QL
n = Cn , (4.159)

where a sum over the composite index n′ in implicit, and:

• Σnn′ is the free streaming matrix that arises from the decomposition of ni∂iΔ

into spherical harmonics. Its form can be read from Eqs. 4.144 and 4.147:

16Note that this notation is the same that we have adopted in Pettinari et al. [37] and in Fidler
et al. [19].
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Σnn′ Δn′
I−−−→ I�+1

m C+,�
m m − I�−1

m C−,�
m m ,

Σnn′ Δn′
E−−−→ E�+1

m D+,�
m m − E�−1

m D−,�
m m + B�

m D0,�
m m ,

Σnn′ Δn′
B−−−→ B�+1

m D+,�
m m − B�−1

m D−,�
m m − E�

m D0,�
m m . (4.160)

Note that free streaming mixes the E and B-modes in an efficient way. We shall
see in the next chapter (Eqs. 5.101 and 5.102) that, as a result of this coupling, the
two types of polarisation directly source each other in the line of sight integral.

• Mn groups all the terms, pure and quadratic, that consist exclusively of metric
perturbations. Because the polarisation multipoles do not couple directly to the
metric perturbations, we have that Mn exists only for the temperature perturba-
tions. By inspecting Eq.4.86, we identifyM with the only part of the Boltzmann
equation that does not involve the perturbed distribution function, that is

M = ∂ f

∂ p

(0) dp

dt

(2)

. (4.161)

The explicit form of Mn can be read from Eqs. 4.144 and 4.150:

MI,�m = − δ�0 4
[

Φ̇ + 2 Φ̇ Φ
]

(4.162)

− δ�1 4
[

δm0 k Ψ + k[m]
1 Ψ (Φ − Ψ ) − ˙̃ω[m]

]
− δ�2 4 γ̇[m] ,

ME,�m = MB,�m = 0 . (4.163)

• QL
n groups the quadratic terms in the left hand side of the Boltzmann equation that

do include the perturbed photon distribution function; each of them is the product
of a metric perturbation (Ψ or Φ or their derivatives) with a photon perturbation
(I, E or B). Its explicit form can be obtained as

QL
n = QL

n − Mn , (4.164)

where QL
n , depending on the index n, is either L�m

[
QL
I

]
, L�m

[
QL
E

]
or

L�m
[

QL
B

]
, which are reported in Eqs. 4.150, 4.153 and 4.156, respectively.

As for the collision term, we split its second-order part in two contributions, so
that it reads

Cn = κ̇
(

−Δn + Γn Δn′ + QC
n

)
, (4.165)

where QC
n is the quadratic contribution. We have introduced the split in view of

building the line of sight sources in the next chapter, which, by construction, do
not include the −κ̇ Δn term. The explicit form of the term with the Γ matrix is
immediately obtained by inspecting Eqs. 4.144–4.147,

http://dx.doi.org/10.1007/978-3-319-21882-3_5
http://dx.doi.org/10.1007/978-3-319-21882-3_5
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Γnn′ Δn′
I−−−→ δ�0 I0

0 + δ�1 4 u[m] + δ�2

(
I2

m − √
6 E2

m

)
/10 ,

Γnn′ Δn′
E−−−→ −δ�2

√
6

(
I2

m − √
6 E2

m

)
/10 ,

Γnn′ Δn′
B−−−→ 0 . (4.166)

As for QC
n , depending on the index n, it is either L�m

[
QC
I

]
, L�m

[
QC
E

]
or

L�m

[
QC
B

]
, which are reported in Eqs. 4.151, 4.154 and 4.157, respectively.
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Chapter 5
Evolution of the Second-Order Perturbations

5.1 Introduction

The main results of the last two chapters are the Einstein and Boltzmann equations
up to second order in the cosmological perturbations. The Boltzmann equation dic-
tates the evolution of the matter fields (photons, neutrinos, baryons and cold dark
matter) in an inhomogeneous Universe, while the Einstein equation describes how
the curvature is affected by the distribution of matter, energy and momentum. By
studying the structure of the equations we have seen that, at second order, several
non-linear effects arise that:

• couple different scales, ultimately generating an intrinsic bispectrum in the cosmic
microwave background (Sect. 3.7) even for Gaussian initial conditions;

• couple the scalar, vector and tensor modes, resulting in the presence of vector and
tensor modes even for purely scalar initial conditions (Sect. 3.3);

• generate B polarisation both from the E polarisation and from the temperature
fluctuations (Sect. 4.6);

• perturb the blackbody shape of the photon spectrum (Sect. 4.3.1).

In order to accurately quantify these effects, the first step is to numerically solve
the Boltzmann-Einstein system of coupled ODEs (BES, hereafter) at second order
in the cosmological perturbations, which is the topic of this chapter. Even though
the purpose of this Ph. D. thesis is to compute the intrinsic bispectrum of the CMB,
the results of this chapter are general and can be used to explore the other effects
mentioned above.

5.1.1 Summary of the Chapter

In Sect. 5.3 we explain how SONG solves the Boltzmann equation for photons,
massless neutrinos, baryons and cold dark matter, including the effect of perturbed
recombination. This is a complex task that involves solving the inherent stiffness of
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the differential system and devising efficient sampling techniques for the time and
wavemode grids.

To numerically solve the equations, we choose the initial conditions that corre-
spond to the fastest growing mode of the density perturbations, which, in Newtonian
gauge, is constant [32]. Therefore, one has to carefully match the initial conditions
with the analyical solution of the differential system in the early Universe, in order
to avoid exciting the decaying mode. We discuss these issues in Sect. 5.4.

In principle, once suitable initial conditions are specified deep in the radiation
dominated era, the second-order systemcan be solved all theway to today. In practice,
however, the CMB anisotropies cannot be computed in this way because of the size
of the differential system; in fact, after the time of recombination more and more
multipoles are excited and it soon becomes impractical to follow their evolution.
Instead, we use the line of sight (LOS) formalism to directly compute the today’s
transfer functions in a numerically efficient way. The key ingredient of the formalism
is the line of sight source function, which encodes the physical effects that alter the
CMB anisotropy pattern. We shall identify three contributions to the LOS source
function: collision, metric and propagation sources. To build them, we still need to
evolve the BES, but only until shortly after recombination. We introduce the line of
sight formalism and its implementation in SONG in Sect. 5.5.

Finally, Sect. 5.6 we compare the numerical results of SONG against some ana-
lytical limits known in the literature.

5.2 The Code, SONG

SONG is a numerical code to compute the effect of the non-linear dynamics on the
CMB observables. The reason for writingSONGwas not to provide a more accurate
version of the already existing first-order Boltzmann codes. Rather, SONG is a tool
that, given a cosmological model, provides predictions for “new” observables or
probes that do not exist at first order, such as

• the intrinsic bispectrum of the CMB,
• the angular power spectrum of the spectral distortions,
• the power spectrum of the magnetic fields generated at recombination, and
• the angular power spectrum of the B-mode polarisation.

So far, SONG only computes the intrinsic bispectrum. It is our intention to include
the other effects in the near future. This task is achievable with a comparatively
smaller effort, because all these observables can be built starting from the second-
order transfer functions; as we shall describe in the rest of the chapter, SONG
already implements the complex framework needed to compute the second-order
transfer functions up to today.

SONG is able to compute the polarised intrinsic bispectrum of the CMB to 5%
precision in about 4 CPU-hours, which is roughly equivalent to 4min on a 60-core
machine or one hour on a standard laptop with four cores; a 10% run takes about
a quarter of this time, thus making it possible to compute the intrinsic bispectrum
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in 15 min on a standard laptop. Once they are implemented, the other observables
will take considerably less time, because they do not involve the computation of
the non-separable bispectrum integral. These numbers have to be compared with the
two weeks taken by CMBquick [44, 45] and the few days needed by CosmoLib2nd
[16] for a full bispectrum run. (Note that these are rough estimates based on private
communications with the authors of the aforementioned codes.)

The structure of SONG is based on that of CLASS, a recently released first-order
Boltzmann code [5, 19]. In particular, SONG inherits the philosophy of CLASS, that
is to provide an easy-to-use interface that builds on a modular and flexible internal
structure. Special care is taken to avoid the use of hard-coded numerical values, or
“magic numbers”; the physical and numerical parameters are controlled through two
separate input files by the user,whoneeds to set only those parameters of their interest,
the others taking default values. In writing SONG we have followed the principle of
encapsulation, so that a programmer who wants to modify or add a feature to SONG
has to “hack” the code only in a few localised portions of the source files. When
in doubt, said programmer can resort to the internal documentation, that comprises
more than 10,000 lines of comments.

We conclude this subsection with a summary of the most relevant properties of
SONG:

• SONG is written in C using only freely distributed libraries.
• It inherits from CLASS [5] a modular and flexible structure (work is in progress to
implement a Python interface, also adapted from the one used by CLASS).

• It employs an ad hoc differential evolver designed for stiff systems to solve the
BES.

• It is OpenMP parallelised.
• Its source code is extensively documented with more than 10, 000 lines of com-
ments.

• It uses novel algorithms for Bessel convolution, bispectrum integration and 3D
interpolation.

• It implements the concept of beta-moments, whereby the non-realitivistic and
relativistic species are treated in a unified way in terms of the moments of the
distribution function.

SONG is open-source and is available since August 2015 on the website https://
github.com/coccoinomane/song.

5.3 The Differential System

The numerical integration of the Boltzmann-Einstein system at second order presents
several challenges. The most obvious one comes from the sheer size of the sys-
tem. Having projected the equations to Fourier and multipole space, we have intro-
duced five external parameters in our equations: the three wavemode magnitudes,
(k1, k2, k3), and the two harmonic indices, (�, m); this parameter space has to be
sampled for each of the four considered species (photons, neutrinos, baryons and

https://github.com/coccoinomane/song
https://github.com/coccoinomane/song
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cold dark matter) and for the metric. In Sect. 5.3.1, we introduce several simplifying
assumptions such as truncating the photon hierarchies to �max ∼ O(10) or consider-
ing baryons and CDM as perfect fluids whereby �max = 1. Similarly, in Sect. 5.3.2,
we devise a strategy to sample the Fourier space and the time evolution grid in an
optimised way, so that the regions where the transfer functions are expected to vary
slowly are sampled less finely than the rest. Even after adopting these optimisations,
the system remains sizeable; in a typical run of SONG, we evolve a system of ∼100
differential equations for ∼106 independent (k1, k2, k3) triplets. Another difficulty
arises from the stiffness of the Boltzmann equation in the tight coupling regime. In
Sect. 5.3.3, we shall explain why this is the case and show that it is a purely numerical
issuewhich can be solved by adopting an implicit differential solver; for this purpose,
we use ndf15, the solver from the first-order Boltzmann code CLASS [5]. Finally, in
Sect. 5.3.4 we outline SONG’s implementation of inhomogeneous recombination, a
linear effect that changes the position of the last scattering surface.

5.3.1 The Evolved Equations

In this subsection, we review the differential system that is solved by SONG and
explore some of the numerical approximations employed in doing that. A first impor-
tant property is that the system is coupled in �but decoupled inm, so that eachm-mode
is described by a separate differential system; in other words, the scalar (m = 0),
vector (m = ±1) and tensor (m = ±2) equations are decoupled from each other.1

Furthermore, we only need to evolve the m ≥ 0 modes as we consider real-valued
transfer functions whereby

T�−m = (−1)m T�m . (5.1)

The second-order transfer functions are sourced by terms quadratic in the first-order
ones, so that we first need to solve the BES at the background and linear level. For
this purpose we employ CLASS, a recently released linear Boltzmann code [5, 19].
The linear transfer functions thus obtained are computed only in the direction of
the polar axis, so that they need to be “rotated” according to Eq. B.9 before being
inserted in the quadratic sources.

5.3.1.1 Einstein Sector

In principle, the metric in Eq. 3.12 has ten degrees of freedom. After imposing the
Newtonian gauge conditions (ω[0] = γ[0] = γ[±1] = 0), and using the fact that

1It is important to note that this property is not a consequence of the decomposition theorem, which
holds only at first order, but of the fact that the second-order system shares the same linear structure
with the first-order one. Mode details can be found in Sect. 3.3.2.

http://dx.doi.org/10.1007/978-3-319-21882-3_3
http://dx.doi.org/10.1007/978-3-319-21882-3_3


5.3 The Differential System 151

ω[−1] = −ω[1] and γ[−2] = γ[2], we see that only four of them are independent:
Ψ , Φ , ω[1] and γ[2] . This means that, in order to obtain the time evolution of the
metric, we only need four out of the ten Einstein equations; the remaining ones can
be used to check the consistency of the numerical results and the initial conditions, as
we shall do in Sect. 5.6. A list follows of the four Einstein equations that we employ
in SONG; the quadratic sources for each equation can be read from Eq.3.100.

• We evolve the curvature potential Φ using the time-time equation (Eq.3.96),

Φ̇ = −HΨ − k2

3H Φ − 1

6H κ a2
∑

ρ̄ 0Δ00 − QTT

6H . (5.2)

Alternatively, SONG supports evolving Φ with the space-time equation or the
trace equation; the latter option is claimed to be numerically stabler byHuang [15].

• We determine the Newtonian potential Ψ using the constraint from the scalar part
of the space-space, or anisotropic stress, equation (Eq.3.99),

Ψ = Φ − 1

5 k2
κ a2

∑
ρ̄ 2Δ20 + 3

2 k2
QSS[0] . (5.3)

It should be noted that, unlike the first-order case, at second order the quadrupole
includes a contribution from the non-relativistic fluids (baryons and cold dark
matter), in the form of terms quadratic in their velocity. This is due to the fact that
the quadrupoles do not correspond to the shear, as is clear from the discussion
below Eq.4.44.

• Weevolve the vector potential ω̃[1] ≡ i ω[1] using the vector part of the space-space
equation (Eq.3.99),

i ω̇ = − 2H i ω + 2
√
3

15 k
κ a2

∑
ρ̄ 2Δ21 +

√
3

k
QSS[1] . (5.4)

• We evolve the tensor potential γ[2] using the only tensorial equation, that is the
m = 2 part of the space-space equation (Eq.3.99),

γ̈[2] = − 2H γ̇[2] − k2 γ[2] − 2

15
κ a2

∑
ρ̄ 2Δ22 − QSS[2] . (5.5)

The sum symbol refers to the sum over the different species, so that theΔ’s appearing
in the above equation are understood as

∑
ρ̄ nΔ�m = ρ̄γ I�

m + ρ̄ν N �
m + ρ̄b nb �

m + ρ̄c nc �
m , (5.6)

where the terms in the right hand side correspond to the background density and
moments of the photon, neutrino, baryon and cold dark matter distribution functions,
respectively. Note that we have denoted the moments of the baryon and cold dark
matter fluids as nb �

m and nc �
m , respectively. We recall that the nΔ�m variables are

http://dx.doi.org/10.1007/978-3-319-21882-3_3
http://dx.doi.org/10.1007/978-3-319-21882-3_3
http://dx.doi.org/10.1007/978-3-319-21882-3_3
http://dx.doi.org/10.1007/978-3-319-21882-3_4
http://dx.doi.org/10.1007/978-3-319-21882-3_3
http://dx.doi.org/10.1007/978-3-319-21882-3_3
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the moments of the distribution function, and are related to the energy-momentum
tensor and to the fluid variables according to Eqs. 4.41 and 4.48, respectively.

One could choose a different set of equations to determine the four degrees of
freedom in the metric. For example, one could evolve the curvature potential Φ

by using its second time-derivative from the trace Einstein equation in Eq.3.97, as
shown in Huang [15], or the first time-derivative from the longitudinal equation in
Eq.3.98, as it is now done in CLASS. Not all solutions, however, are numerically
stable. In fact,Φ was initially determined in SONG by using the constraint equation
obtained by combining the time-time and space-time equations,

Φ = − κ a2 ρ̄

2 k3
(HΔ10 + k Δ00 ) − 1

2 k2
QTT[0] − 3H

2 k3
QST[0] . (5.7)

The equation turns up to be numerically unstable at first and second order
because, at early times, the two terms in parentheses cancel each other, that is
Δ

(1)
10 � −Δ

(1)
00 k/H. The loss of significant digits due the cancellation is then

enhanced by the 1/k3 factor, which can be as large as 1018Mpc3 on large scales.2

5.3.1.2 Relativistic Sector

We evolve the multipoles for the photon temperature and polarisation using the
Boltzmann equation in harmonic and Fourier space; its linear structure is reported
in Eqs. 4.144–4.147, while its quadratic sources can be found in Eqs. 4.150–4.157.
The neutrino multipoles, being collisionless and assumed to be massless, obey the
same equations but without a collision term. The linear structure of the Boltzmann
equation is such that adjacent multipoles are coupled to each other, thus defining
an infinite hierarchy of equations where the evolution of, say, I�

m is determined by
I�−1

m and I�+1
m . The azimuthal modes, on the other hand, do not couple thanks to

the decomposition theorem.
Before recombination, all moments vanish apart from the monopole, the dipole

and, at second order, the quadrupole. As the time of decoupling approaches and the
mean free path of the photons increases, the � coupling in the BES has the effect
of propagating the anisotropies from these small multipoles to the large ones. In
physical terms, we can say that the inhomogeneities begin to generate anisotropies.
The efficiency of this transmission of power is proportional to k, due to the gradient
term in Liouville equation. As a result, the time of excitation τ of the multipole �

obeys the following approximate relation,

� ∼ k ( τ − τrec ) . (5.8)

2TheCLASS code initially usedEq.5.7 to evolveΦ; thiswas changed in v1.4 afterwe communicated
with the authors about the numerical instability. CLASS now uses the time-time equation, as SONG
does.

http://dx.doi.org/10.1007/978-3-319-21882-3_4
http://dx.doi.org/10.1007/978-3-319-21882-3_4
http://dx.doi.org/10.1007/978-3-319-21882-3_3
http://dx.doi.org/10.1007/978-3-319-21882-3_3
http://dx.doi.org/10.1007/978-3-319-21882-3_4
http://dx.doi.org/10.1007/978-3-319-21882-3_4
http://dx.doi.org/10.1007/978-3-319-21882-3_4
http://dx.doi.org/10.1007/978-3-319-21882-3_4
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(Note that the neutrinos obey a similar relation where � = kτ because, being colli-
sionless, they always stream freely.) These arguments apply equally to the first and
second-order differential systems, as both share the same structure of equations.

To solve the BES numerically, one has to truncate the �-hierarchy at some multi-
pole Lcut . The simplest approach consists in setting all the multipoles with � > Lcut
to zero. Doing so, however, disrupts the symmetry of the system by preventing the
higher moments with � > Lcut to feed back into the lower ones, thus generating
numerical noise. Following the argument that led to Eq. 5.8, we expect this disrup-
tion to affect the lower moments in a time which is inversely proportional to k;
namely,

Lcut ∼ � + k
( τ − τrec )

2
. (5.9)

The reason for the factor 1/2 is that the anisotropies have to propagate first from �

to Lcut, where the disruption is created, and then back to �.
In the line of sight approach (Sect. 5.5), we sample the multipoles up to the

quadrupole (� = 2) until the decay of the visibility function, which corresponds
to τ − τrec � 120Mpc for a standard ΛCDM cosmology. If we consider that the
smallest scale probed usually corresponds to k = 0.2Mpc−1 , we see from Eq.5.9
that to accomplish this goal we have to evolve at least 14 multipoles in the Boltz-
mann hierarchy. While this is certainly a viable option, there are more efficient
truncation schemes than a simple cutoff of the hierarchy. The most widely used
truncation scheme is the one described in Ref. [32], which uses the fact that, in the
absence of scattering, the first-order multipoles behave like spherical Bessel func-
tions, I�

m ∝ j�(kτ ) . Then, the recurrence properties of the Bessel functions can be
used to express the last element in the �-hierarchy without reference to the higher-
order ones [48]. In SONG we adopt this truncation scheme for the four relativistic
hierarchies, applying the general closure relations provided in Appendix D by Pitrou
et al. [45],

İ�
m = k

[ √
� + |m|
� − |m|

2� + 1

2� − 1
I�−1

m − � + 1 + |m|
k τ

I�
m

]
,

Ė�
m = k

⎡

⎣
√

1 − m2

�2

√
� + 2

� − 2

2� + 1

2� − 1
E�−1

m − � + 3

k τ
E�

m − m

�
B�

m

⎤

⎦ ,

Ḃ�
m = k

⎡

⎣
√

1 − m2

�2

√
� + 2

� − 2

2� + 1

2� − 1
B�−1

m − � + 3

k τ
B�

m + m

�
E�

m

⎤

⎦ .

(5.10)

For the neutrinos, we use the same relations as for the photons. At second order, the
presence of the quadratic sources undoes the spherical Bessel solution; nonetheless,
the above closure relations represent an improvement over the simple cutoff scheme,
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and allow us to obtain a percent convergence in the spectrum and in the bispectrum
already for Lcut = 8 .

5.3.1.3 Cold Matter Sector

In SONGwe treat the baryons and the cold darkmatter as pressureless perfect fluids,
which are described only by their energy density and velocity. We are justified in
doing so because the baryon fluid is non-relativistic, since the masses of the electron
(mec2 = 511 keV) and of the proton (m pc2 = 938MeV) are much larger than the
background temperature for all considered times. As for dark matter, it has to be non-
relativistic, or cold, in order to explain the formation of structure in the observable
Universe [10].

The usual approach at second order is to evolve the energy density and the velocity
of the massive species using the continuity and Euler equations [2, 45]. In SONG,
we prefer to adopt a unified treatment where all the species are described by the
Boltzmann equation in terms of the moments of the distribution function. In order
to do so, in Sect. 4.2.4 we have introduced the beta-moments, an expansion of the
one-particle distribution function in terms of the powers the particle’s velocity,

1 + nΔ(τ , x, n) ≡ 1∫
dp p3 f̄ (τ , p)

∫
dp p3

( p

E

)n−1
f (τ , x, p, n) .

(5.11)

The beta-moments are directly related to the energy-momentum tensor,

T 0
0 = −ρ̄ (1 + 0Δ00) , T i

i = ρ̄ (1 + 2Δ00) , (5.12)

i ξ i[m] Ti0 = −1

3
ρ̄ 1Δ1m , χ

i j
2,[m] Ti j = − 2

15
ρ̄ 2Δ2m .

The equivalent expression for the fluid variables (Eq. 4.37) includes extra quadratic
terms in the fluid’s velocity, which need to be accounted for when computing the
right hand side of Einstein equations; by evolving directly the beta-moments, we can
avoid performing this step. The relation of the beta-moments with the fluid variables
can be read from Eq.4.48.

The main advantage of the beta-moments is that they can be used to describe any
particle regardless of its mass. For the photons and themassless neutrinos (p/E = 1)
they reduce to the usual brightness moments nΔ�m = Δlm , while for the baryons
and the cold dark matter (p � E), only the lowest order beta-moments survive, and
we recover the fluid limit. In general, one can project the Boltzmann equation into a
hierarchy of ODEs for three indices, (n, l, m), using

(F k ◦ L�m ◦ βn)

[
d f

dτ
− 1

p0
C[ f ]

]
= 0 , (5.13)

where βn is the operator that projects a function into its n-th beta-moment,

http://dx.doi.org/10.1007/978-3-319-21882-3_4
http://dx.doi.org/10.1007/978-3-319-21882-3_4
http://dx.doi.org/10.1007/978-3-319-21882-3_4
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βn[ F ] ≡ 1
∫

dp p2 E F

∫
dp p3

( p

E

)n−1
F(p) . (5.14)

The standard brightness equation for the photons is just the special case of Eq.5.13
where n = 1. To project the Boltzmann equation into its beta-moments, the following
relations are needed,

β n

[ ( p

E

)m
f
]

= n+mΔ , β n

[
E

∂ f

∂ p

]
= −(n + 2) n−1Δ + (n − 2) n+1Δ ,

β n

[
∂ f

∂τ

]
= ∂ nΔ

∂τ
− 3H nΔ (1 + w) , β n

[
p

∂ f

∂ p

]
= −(n + 3) nΔ + (n − 1) n+2Δ .

(5.15)

The expressions are obtained by performing simple integration by parts and by using
the on-shell relation E(p) = √

p2 + m2. By setting nΔ = Δ and substituting n = 1
in the coefficients, one recovers the usual relations for the photon brightness (see
Eq.4.72).

We denote the beta-moments of the baryon and cold dark matter fluids as nb �
m

and nc �
m , respectively. Since we treat them as perfect-fluids, the only moments that

survive are the n = 0 and n = 1 ones. Their evolution is governed by the following
equations:

0ḃ00 = − H 2b 0
0 − k

3 1b 1
0 + 3 Φ̇ − ( L00 ◦ β0 ) [QL

b ] − r C[ I ]00 , (5.16)

1ḃ1m = −H 1b 1
m + k

(
C−,1

m m 2b 0
0 − C+,1

m m 2b 2
m

)
− ( L1m ◦ β1 ) [QL

b ]
+ 3δm0kΨ − 3δm1

( ˙̃ω[1] + Hω̃[1]
)

− r C[ I ]1m ,

where r = ρ̄γ/ρ̄b and C[ I ]�m is the collision term for the photons, which coincides
with the right hand side of Eq.4.144. Let us stress that the collision term for the
baryons has a very simple form; were we evolving the energy density and the velocity
instead of the monopole and the dipole, the equations would have included extra
quadratic terms in the fluid’s velocity. The cold dark matter moments obey identical
equations, but with the collision term set to zero.

It should be noted that 2b 0
0 and 2b 2

m enter the evolution equations for the
monopole and the dipole. In principle, to obtain their value we would need to evolve
the n = 2 moment of the Boltzmann equation. However, using Eq.4.44, we see that,
at second order, they are respectively related to the pressure and to the anisotropic
stress,

ρ̄ 2b 0
0 = 3 P + (ρ̄ + P̄) vi vi and ρ̄ 2b 2

m = −15

2

[
Σ[m] + (ρ̄ + P̄)(vv)[m]

]
. (5.17)

As the anisotropic stress vanishes for a perfect fluid like the baryons, we can simply
set

http://dx.doi.org/10.1007/978-3-319-21882-3_4
http://dx.doi.org/10.1007/978-3-319-21882-3_4
http://dx.doi.org/10.1007/978-3-319-21882-3_4
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2b 0
0 = vi vi and 2b 2

m = −15

2
(vv)[m] , (5.18)

where the quadratic velocity term are known from the solution of the first-order
differential system.

As a final note, we remark that using the beta-moments to treat a perfect fluid is
more a matter of preference rather than necessity. However, when it comes to species
that are neither relativistic nor cold, like massive neutrinos and other non-cold relics,
the beta-moments are an efficient way to solve the Boltzmann equation. Indeed, the
first-order code CAMB [26] implements the massive neutrinos using a momentum-
integrated Boltzmann hierarchy which is equivalent to the beta-moments [23]. The
usual way to treat massive neutrinos in a first-order Boltzmann code consists in
evolving the perturbation of the distribution function as a partial differential equation,
on a momentum grid [20]. Using a velocity expansion, instead, the problem would
be that of solving a hierarchy of ODEs in the beta-moments (n), in complete analogy
with the Fourier projection in wavemodes (k) and the harmonic one in spherical
harmonics (�m).

5.3.2 Sampling Strategies

In this subsection we discuss the strategy adopted in SONG to sample the Fourier
and time grids. In doing so, we use some of the optimisation introduced in first-order
Boltzmann codes such as CLASS [19] and CAMB [26]. This is possible because the
second-order differential system, apart from the obvious differences of having the
non-scalar modes and three Fourier modes instead of one, is similar to the first-order
one. Furthermore, the physical scales involved—age of the Universe, distance to
recombination, sound horizon at recombination, epoch ofmatter-radiation equality—
are all background quantities.

Below,we shall introduce a fewnumerical parameters and choose reference values
for them; although such choices might seem arbitrary at this stage, we shall back
them up with extensive convergence tests in the next chapter, in Sect. 6.5.1.

5.3.2.1 Sampling of k1 and k2

Due to mode coupling (Sect. 3.5.2), the second-order system has to be solved on a
three-dimensional grid in Fourier space. InSONG, we parametrise the k-space using
the magnitudes of the three comoving wavevectors, k1, k2 and k3, and take k3 as the
one satisfying the triangular condition,

|k1 − k2| ≤ k3 ≤ k1 + k2 . (5.19)

Therefore, our transfer functions depend on four parameters, e.g.,Ψ (2)(k1, k2, k3, τ ).
We recall that the actual second-order perturbations are obtained as a convolution of

http://dx.doi.org/10.1007/978-3-319-21882-3_6
http://dx.doi.org/10.1007/978-3-319-21882-3_3
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the transfer functions with two primordial potentials, Φ(k1)Φ(k2) (Eq. 3.69); every
observable quantity, including the bispectrum, depends on such integrals rather than
on the transfer functions themselves, which are just mathematical objects.

In SONG, we fix a lower and an upper limit for all the wavemodes, regardless of
whether they are k1, k2 or k3 ; we denote such limits as kmin and kmax . Their value
is determined by two numerical parameters, Kmin and Kmax , as

kmin = 1

τ0
Kmin and kmax = �max

τ0
Kmax , (5.20)

where �max is the maximum angular multipole that we want to probe. The choice of
the parametrisation follows from the fact that a comoving scale k at recombination is
projected onto our sky, today, at an angular scale of � � k(τ0 −τrec) � kτ0 . We find
that choosing Kmin ≤ 0.5 and Kmax ≥ 1.5 gives a percent level convergence in the
bispectrum of the cosmic microwave background for �min = 2 and �max > 1000 .

In a typical run of SONG, we employ the resolution of the Planck experiment,
�max � 2000 , which, based on the above arguments, corresponds to sampling the
Fourier space in the range between kmin � 10−5 Mpc and kmax � 0.2Mpc (assum-
ing a standard ΛCDMmodel where τ0 � 14, 000Mpc). This amounts to 4 orders of
magnitude in Fourier space that, for high precision runs, can extend to 5 or 6. Given
that we are dealing with a 3D space, it is clear that the sampling strategy should be
optimised as much as possible to avoid wasting precious computational time.

Using a linear k-sampling obviously neglects the large-scale details of the system,
unless the step is chosen to be of the same order as kmin , a prohibitive choice from
the computational point of view. On the other hand, a logarithmic sampling would
fail to capture the oscillations in k experienced by the transfer functions on scales
that are smaller than the sound horizon at recombination, krec . The approach of the
CLASS code is to use two linearly sampled intervals with different steps: a fine one
from kmin to krec and a coarse one from krec to kmax. (Note that, for a standardΛCDM
cosmology, krec = √

3 (2π)/τrec � 0.04Mpc .) To smooth the transition between
the two linear regimes, an arctangent function with variable width is used. The two
steps are parametrised in units of krec with the parameters K super

lin and K sub
lin .

In SONG, we slightly modify the strategy used by CLASS by including a loga-
rithmic sampling, Klog , which is used starting from kmin and is kept as long as the
step is smaller than both krec K super

lin and krec K sub
lin . After that, CLASS’ strategy is

used all the way to kmax . Schematically, this corresponds to having the logarithmic
step

kn+1 = kn Klog until kn+1 − kn < min
(

krec K super
lin , krec K sub

lin

)
. (5.21)

The inclusion of a logarithmic regimemakes it possible to obtain a convergence in the
bispectrum using fewer k-values. In Fig. 5.1 we show the k-grid thus obtained for our
standard set of parameters, Kmin = 0.1 , Kmax = 2 , Klog = 1.2 , K super

lin = 0.025
and K sub

lin = 0.1, which, for a ΛCDM universe, gives rise to about Nk = 130 values.

http://dx.doi.org/10.1007/978-3-319-21882-3_3
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Fig. 5.1 Example of the comoving fourier grid that is used to sample k1 and k2 in SONG. In order
to sample equally well the four orders of magnitude spanned, we define three regimes: a logarithmic
regime up to k = 10−3 Mpc−1, a first linear regime up to krec = 0.044Mpc−1, and a second linear
one all the way to kmax

5.3.2.2 Sampling for k3

We draw the magnitudes of the wavemodes k1 and k2 from the k-grid that we have
obtained following the procedure outlined above (hereafter, we shall refer to such
grid as k). An important optimisation that can be made at this stage is to symmetrise
the quadratic sources of the BES with respect to the exchange of k1 and k2; by
doing so, we are allowed to solve the system only for those (k1, k2) couples whereby
k1 ≥ k2. This results in a two-dimensional grid with N (N + 1)/2 nodes, where N
is the number of points in k.

For each couple (k1, k2), we need to create a second grid for k3 that satisfies the
triangular condition, i.e. k3 ∈ [ |k1 − k2|, k1 + k2]. In order to minimise the number
of parameters in the code, we sample k3 using the points in k, taking care of including
only those k-values that fall into the triangular regime for the considered (k1, k2).
One of the consequences of this choice is that the k3 wavemode will never take values
below kmin or above kmax, even if they were allowed by the triangular condition.3

If either k1 or k2 is very small, it is likely that none of the values in k satisfies the
triangular condition; when this happens, we just sample k3 linearly between |k1−k2|
and k1+k2 using a fixed number of points. We find that the bispectrum is insensitive
to this number; this is expected, because the size of these regions in the 3D Fourier
space is very small, and therefore they contribute only marginally to any observable.

For the standard set of SONG parameters, k counts around 140 elements, while
the total number of nodes in the (k1, k2, k3) mesh amounts to about 150,000. This
means that, using the above strategy, the average size of a k3 grid is of 8 elements.

3There are obviously other ways to sample the triangular wavemode, k3. In fact, in CMBquick [45] a
different technique is used where, for each k1 and k2, the k3 grid is chosen so that the angle between
k1 and k2 is linearly sampled for a fixed number of time (16 in the latest version of CMBQuick).
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5.3.2.3 Time Sampling of the Line of Sight Sources

Rather than evolving the photon multipoles all the way to today, we sample them
only up to a certain time to build their line of sight sources, as discussed in detail in
Sect. 5.5. Therefore, we need to devise a time sampling of the transfer functions that
captures all of their relevant features. The time steps of the differential solver can
be used for this purpose as, by definition, they closely follow the variations in the
transfer functions; in fact, this is how we store the time evolution of the background
quantities. However, this method is computationally inefficient, as the differential
solver always performs more steps, typically O(1000), than what is strictly needed
to sample the transfer functions, typically O(200). When it comes to second order,
where we evolve about 100 transfer functions for more than 105 wavemodes, this
option is impractical, from both points of view of memory usage and computational
speed.

To optimise the time sampling of the transfer functions,we adopt the same strategy
of CLASS. We start sampling the transfer functions when the Universe starts to
become transparent to the CMB photons, that is when the Compton interaction rate
has slowed down enough to be comparable with the expansion rate. The exact time
is determined by the parameter Tstart , defined as

τH(τstart)

τc(τstart)
= κ̇(τstart)

H(τstart)
= Tstart . (5.22)

We find a percent convergence in the spectrum and in the bispectrum for values of
Tstart ≤ 0.01 , which in conformal time correspond to τstart ≤ 230Mpc for a ΛCDM
model where the peak of recombination is at τrec � 280Mpc. It is important to note
that τstart is not the time at which we start evolving the sytem, τini , which is much
smaller and of order O(0.1Mpc).

We then define at each time two timescales: the time variation of the visibility
function and that of the cosmic expansion, that is

Δτrec = g

ġ
and Δτexp = 1√∣∣2 ä

a − H2
∣∣

, (5.23)

respectively. (Note that the second timescale is the usual Hubble time with a cor-
rection to include extra points during a phase of accelerated expansion, such as the
one induced by late time dark energy.) The sampling points that follow τstart are
determined by the lowest of the two timescales,

τn+1 = τn + Tstep Δτ with Δτ =
[

1

Δτrec
+ 1

Δτexp

]−1

. (5.24)
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Fig. 5.2 Example of the conformal time grid that is used to sample the line of sight sources in
SONG. The sampling is devised so that the regions close to the two phase transitions—the one from
an opaque to a transparent Universe and that from a matter dominated to a dark-energy dominated
era—are sampled more finely than the others. In green, we show the shape of the visibility function
around recombination

Smaller values of the numerical parameter Tstep correspond to finer time samplings;
a percent-level convergence in the spectrum and in the bispectrum is found by setting
Tstep ≤ 0.2

In Fig. 5.2 we show the time sampling of the second-order line of sight sources
which, adopting the typical parameters Tstart = 0.008 and Tstep = 0.2 , consists of
Nτ = 290 points between τstart = 230Mpc and τ0 = 14,300Mpc , for a standard
ΛCDM model where τrec = 280Mpc .

5.3.3 The Differential Solver

5.3.3.1 Stiffness in the Differential System

One of the major difficulties in deriving the evolution of the photon anisotropies is
that the Boltzmann equation is numerically stiff. Stiffness in a differential equation
of the form y′ = f (t, y) arises when its exact solution, y(t), contains a term that
decays exponentially to zero, but whose derivative is much larger and of opposite
sign with respect to the term itself. A simple example of stiff system is given by

y′ = −c y , t > 0 , y(0) = 1 , (5.25)

where c is a large and positive constant; the exact solution is the exponentially
decaying function y = e −c t . If we numerically solve the equation using the simple
Euler’s method with a step size of h, we obtain for the n-th iteration
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yn+1 = yn + h y′
n = (1 − h c) yn , (5.26)

which yields the solution yn = (1 − h c)n . The numerical solution correctly con-
verges to zero for n → ∞ only if the step is chosen so that h < 2/c , otherwise
it is a diverging and exponentially growing succession that alternately undershoots
and overshoots the exact solution.

By looking at the evolution equation for the photons, Eq. 4.144, we see that the
scattering rate, κ̇ = a ne σT , plays the same role that c had in the previous example,
making the system potentially stiff. To follow the evolution of the differential system
with an explicit integration method, such as Euler or Runge-Kutta, the time step h
needs to be smaller than 1/κ̇ ≡ τc , the mean time between two collisions. This is
clearly not an issue after recombination, where the collisions are absent (κ̇ = 0). In
that case, the evolution of the system is determined on super-horizon scales by the
conformal Hubble time, 1/H ≡ τH , and on sub-horizon scales by 1/k ≡ τk ; both
are typically of order 1Mpc or larger, meaning that the system can be evolved until
today, τend � 14000Mpc, in roughly O(3000) steps, the exact number depending
on the considered wavemode. However, before recombination the interaction time
τc , which is proportional to ∝ a−2, is much smaller than both τH (∝ a−1) and τk

(∝ a0), and the time step needs to be similarly small. In a typical run of SONG, we set
the initial conditions at τin = 0.5Mpc when the interaction time, τc � 10−6 Mpc ,
is at least 5 orders of magnitudes smaller than τk or τH . To evolve the system
with a step size of τc up to the end of recombination, τend � 400Mpc, requires
about 4 × 108 time steps. This approach is not practical as we need to solve the
system for more than 105 different configurations of the wavemodes; furthermore, it
is unsatisfactory to use so many time steps to sample a function that we know to be
smooth.

Stiff systems are more easily treated using an implicit integration method, that is,
a method where information from the next step, in the form of y′

n+1 , is used to esti-
mate yn+1 . The simplest implicit method is the backward Euler’s method, whereby
yn+1 = yn + h y′

n+1 . Going back to the example of Eq.5.25, this is equivalent to
using

y n+1 = yn + h y′
n+1 = yn − h c y n+1 , (5.27)

whose solution,

y n+1 = yn

1 + h c
⇒ yn =

(
1

1 + h c

)n

, (5.28)

correctly decays to zero as n increases, for any step size and without oscillations,
thus solving the stiffness of the system. The drawback of using an implicit method
is that yn+1 can be obtained only after solving an implicit algebraic equation. In the
general case of a system of coupled differential equations, one has to solve a system
of algebraic equations in the vector-valued yn+1 at each time step.

http://dx.doi.org/10.1007/978-3-319-21882-3_4
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5.3.3.2 An Implicit Evolver

To evolve the Boltzmann-Einstein system of coupled ODEs in SONG, we use ndf15
[5], the ODE solver of the first-order Boltzmann code CLASS [19]. The principle of
ndf15 is similar to that of the simple backward Euler’s method that we have discussed
above, in that it is an implicit method built to overcome the stiffness of the system. It
uses, however, the more elaborated numerical differentiation formulae in Ref. [51]
which are built to ensure a faster convergence using fewer time steps.

The implicit formulae for yn+1 form a linear system of algebraic equations which
is solved numerically, at each step, by using Newton’s method. In principle, this
requires the computation of the Jacobian of the system at each time step, which,
for a typical run where N ∼ 100 cosmological perturbations are evolved, is an
N × N matrix. This part is optimised in twoways. First, each step reuses the previous
Jacobian unless the convergence of Newton’s method is too slow.4 Secondly, a sparse
matrixmethod is used to optimise the storage and access of the Jacobianmatrix, using
the fact that most of the Jacobian’s entries are zeros due to the system being only
partially coupled. (As an example, consider the fact that the neutrino hierarchy is
coupled only to the metric, and that the polarisation and intensity hierarchies are
mutually coupled only through the � = 2 and � = 3 moments.)

By using ndf15 and the optimisation techiques outlined above, we manage to
evolve the Boltzmann-Einstein system of coupled ODEs up to the end of recombi-
nation for a given (k1, k2, k3) triplet inO(1000) time steps and withO(50) Jacobian
computations, where we have considered a scalar (m = 0) system consisting of
roughly 100 equations, with a requested tolerance of 10−4. In a complete run, we
solve the same system for about 105 independent (k1, k2, k3) configurations in about
1 h on a quad-core machine.

Another approach to solve the stiffness problem is the so-called tight-coupling
approximation [5, 32, 43], where the photon hierarchy is expanded in powers of the
interaction time, tc = 1/κ̇, to obtain equations that are numericallywell behaved. The
resulting differential system is drastically reduced in size as the anisotropies with � >

2 are tight-coupling suppressed. While we do use the tight-coupling approximation
to find the initial conditions of the photon fluid in Sect. 5.4, we have not implemented
it yet in SONG to solve the differential system; we plan to do so in the near future
as it is likely to reduce the computation time considerably.

We conclude this subsection by noting that the above considerations are valid at
any order in perturbation theory. In particular, the stiffness is always present as it
pertains to the linear structure of Boltzmann equation; this is the reason why the
differential solver from CLASS is well suited for the task at hand. Note, however,
that at second order the quadratic sources depend on two wavemodes, k1 and k2,
meaning that the timescale τk is given by 1/max(k1, k2, k3) rather than by 1/k.

4The Jacobian is computed only for the purpose of accelerating the convergence of Newton’s
method; it is not used in building the differentiation formulae. Therefore, reusing it does not imply
a loss of precision, but just a slightly slower convergence.
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5.3.4 Perturbed Recombination

The existence of the density perturbations make the recombination process inhomo-
geneous, in the sense that different regions of the Universe have different ionisation
histories according to the local density of free electrons; this effect is known as per-
turbed recombination and slightly alters the time of decoupling and the visibility
function. The perturbed recombination is encoded by the presence in the collision
term (Eq.4.133) of the term

(
δ
(1)
b + δ(1)

x

)
C(1) , (5.29)

where δ
(1)
x ≡ x (1)

e /x̄e is the perturbation in the fraction of the free electrons.
Note that, since the collision term vanishes in a homogeneous Universe, the CMB is
affected by the perturbed recombination only at the second order level.

At the background level, the recombination process is usually treated by using
the 3-level atom approximation [42], whereby the hydrogen is considered as an atom
with effectively 3 energy levels: ground state, first excited state and continuum. As
a result, the ionisation history is determined by a single differential equation for the
free electron density,

˙̄xe = a Q̄ x̄e , (5.30)

where the collision term is a complicated function of four parameters, Q ( xe, nb, T,

H) ; its expression can be obtained as Q = Q/ne from Eq.2.10 of Senatore et al.
[49]. In SONG, we compute the background ionisation history by implementing the
code RECFAST [47, 56], which is indeed based on a slightly modified version of
the three-level approximation.

The physics of the perturbed recombination has been treated by several authors
[21, 25, 41, 49]. In particular, Senatore et al. [49] have rigorously proved that the
perturbed ionisation fraction, δx , is still well described by the recombination equa-
tion for the three-level atom, as long as it is expressed in terms of the perturbed
variables. The resulting equation for δx is given by

δ̇x = a
[

Ψ Q̄ + Q(1)
]

, (5.31)

where the perturbed source functionQ(1) is obtained by expanding the arguments of
Q ( xe, nb, T, H) up to first order,

Q(1) = ∂Q
∂xe

x̄e δ(1)
x + ∂Q

∂nb
n̄b δ

(1)
b + ∂Q

∂T
T̄ Θ(1) + ∂Q

∂xe
H δ

(1)
H . (5.32)

http://dx.doi.org/10.1007/978-3-319-21882-3_4
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Fig. 5.3 Effect of perturbing recombination on the visibility function for a super-horizon (left
panel) and a sub-horizon (right panel) mode. From top to bottom the usual unperturbed visibility
function, ḡ = κ̇e −κ ; the visibility function including the effect of the perturbed electron density,
g = ḡ δb ; the same with the addition of the perturbed ionisation fraction g = ḡ (δb + δx ) ; the
superhorizon approximation, g = ḡ δb [ 1 − ẋe/(3 xe H)] , obtained by considering δe as a time
delay of the homogeneous solution (see Sect. 3.3 of Ref. [49] for details). For the super-horizon
mode, the approximation is very precise and the two curves are indistinguishable. In general, we
see that including the perturbation to xe enhances the visibility function. It is important to note that,
at second order, the perturbed visibility function enters only that part of the collision term shown
in Eq.5.29; the rest of C[ f ] is multiplied by the standard unperturbed g

The temperature perturbation can be expressed in terms of the energy perturbations
of photons as Θ(1) = δg/4 , while, at first order, H assumes the meaning of the local
divergence of the baryons,

δ(1)
H = −Ψ − δ̇b

3H . (5.33)

We have implemented the perturbed recombination in SONG using Eqs. 5.29,
5.31 and 5.32. We have considered the photon and electron temperatures to coincide
and we have not included the effect of Helium recombination; it was shown in
Ref. [49] that both are very good approximation for the computation of the CMB
anisotropies. As we shall see in Chap.6, we find that the perturbed recombination
does not affect the intrinsic bispectrum of the CMB at a significant level. In Fig. 5.3
we show our numerical results for the perturbed recombination, which are in perfect
agreement with those obtained by Senatore et al. [49]. In particular, we confirm that
δx is 2–5 times larger than δb around recombination, depending on the considered
k-mode.

5.4 The Initial Conditions

In this section we derive the initial conditions of the second-order transfer functions
for the differential system. Because the transfer functions are decoupled from the
details of the primordial potential (Sect. 3.5), such as the amplitude of the primordial

http://dx.doi.org/10.1007/978-3-319-21882-3_6
http://dx.doi.org/10.1007/978-3-319-21882-3_3
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spectrum or the non-Gaussianity, we do not choose a specific model of the early
Universe yet. At this stage, we only assume that the primordial perturbations are
adiabatic, meaning that the relative abundances of the different species (photons,
neutrinos, baryons and cold dark matter) are spatially constant. Another approach
would be to keep the total energy density spatially constant (thus leaving the cur-
vature unperturbed) but to allow the relative abundances to vary, in what are called
Isocurvature initial conditions [7]. The simplest models of single-field inflation gen-
erate adiabatic initial conditions, while the isocurvature modes naturally arises in
the context of multifield inflation [11, 28, 29, 38, 39]. However, CMB observa-
tions constrain the fractional contribution to the primordial power spectrum from the
isocurvature modes to be below a few percent [46, 54], thus motivating our choice
of adiabatic initial conditions.

We set the initial conditions deep in the radiation dominated era when all the
evolved Fourier modes are super-horizon, so that we can expand the system in terms
of kτ � 1 and neglect all the terms that are of order (kτ )2 or larger. In the typical
SONG run, we start evolving the system at a � 10−6; back then, the baryon and
the cold dark matter fluids make a negligible contribution to the total energy density,
so that ρ̄tot = ρ̄γ + ρ̄ν and H = 1/τ (Sect. 2.4.4). Note that, in the Newtonian
gauge, a constant mode and a decaying mode exist for the density perturbations
[32]. We shall assume that, when we set our initial conditions, the decaying mode
is already negligible, so that the energy density of the various species and the two
scalar potentials are time independent.

Under the assumptions of adiabatic and super-horizon perturbations in the radia-
tion dominated era, it is possible to compute the evolution of the transfer functions
analytically, up to second order, by solving the Boltzmann-Einstein system. In doing
so below, we recover the results obtained by Pitrou et al. [45], and derive a new for-
mula for the adiabatic velocity perturbations, Eq. 5.43.We set the initial conditions in
this way only for the scalar modes (m = 0), and assume vanishing initial conditions
for the non-scalar ones (m �= 0). This is equivalent to assuming that no vector nor
tensor modes were produced in the primordial Universe and, since the non-scalar
modes do not have a monopole, to ignoring the terms that grow like kτ or faster,
which is reasonable as long as we set our initial conditions early enough.

5.4.1 Initial Conditions for the Matter Perturbations

For purely adiabatic initial conditions, all the fluids in the early Universe (photons,
neutrinos, baryons and cold dark matter) share a common velocity field,

vγ[m] = vν[m] = vb[m] = vc[m] , (5.34)

and their density perturbations are locked together so that the ratios between ρ
1/4
γ ,

ρ
1/4
ν , ρ

1/3
b and ρ

1/3
c remain spatially constant. In particular, we have that the energy

http://dx.doi.org/10.1007/978-3-319-21882-3_2
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density of any relativistic species, ρR , is related to that of a non-relativistic one,
ρM, by

ρ
1/4
R

ρ̄
1/4
R

= ρ
1/3
M

ρ̄
1/3
M

(5.35)

which, after introducing the density contrast δ = (ρ − ρ̄)/ρ̄, reads

(1 + δR)
1/4 = (1 + δM)

1/3 ⇒ δR

4
− 3

16
δ2R = δM

3
− 2

9
δ2M (5.36)

where in the second line we have expanded the expression up to second order using
Eq.3.9. It follows that, at first order, the two energy densities are related by a 3/4
factor,

δ
(1)
R

4
= δ

(1)
M

3
. (5.37)

Thus, the expression for δR up to second order is

δM

3
= δR

4
− 1

16
δ2R , (5.38)

where δR refers to either δγ of δν , and δM to either δb or δc .
Thanks to the adiabaticity relations Eqs. 5.34 and 5.38, we only need to find the

initial conditions for the common adiabatic velocity, which we denote v, and for the
density perturbation of one of the fluids. To do so, in the next two subsections, we
use the space-time and time-time Einstein equations, respectively. In the last two
subsections, we shall also compute the initial conditions for the photon and neutrino
quadrupoles. Whereas they are in principle negligible, because of order (kτ )2 , they
need to be considered in order to compute the initial values of the metric potentials
due to a cancellation in the anisotropic stress equation, as we shall see in Sect. 5.4.3.

5.4.1.1 Dipoles

The space-time Einstein equation in the Newtonian gauge (Eq.3.98) reads

Φ̇ = −HΨ + 1

6 k
κ a2

∑
ρ̄ 1Δ10 + QST[0]

2 k
. (5.39)

At early times, if we only consider the constant mode of the initial conditions, we
can set Ψ̇ = 0, while the expression for the quadratic contribution in QST is found
in Eq.3.100. The term containing the dipole can be expanded as

http://dx.doi.org/10.1007/978-3-319-21882-3_3
http://dx.doi.org/10.1007/978-3-319-21882-3_3
http://dx.doi.org/10.1007/978-3-319-21882-3_3
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κ a2
∑

ρ̄ 1Δ1m = κ a2
[

ρ̄γ I1
m + ρ̄ν N 1

m + ρ̄b 1b 1
m + ρ̄c 1c 1

m

]

= 3H2
[

Ωγ I1
m + Ων N 1

m + Ωb 1b 1
m + Ωc 1c 1

m

]
,

(5.40)

where in the second line we have extracted ρ̄tot and used the Friedmann equation to
write κ a2 ρ̄tot = 3H2 . Note that we are allowed to simplify the above expression
by settingΩc = Ωb = 0, but we refrain from doing so in order to get a slightly more
accurate result. We now enforce the relation between the dipole of a given species
and its velocity, Eq.4.48,

I1
m = N 1

m = 4 i
(
v[m] + δR v[m]

)
,

1b 1
m = 1c 1

m = 3 i
(
v[m] + δM v[m]

)
, (5.41)

to express the velocities of all the species in terms of the commonadiabatic velocity,v,

κ a2
∑

ρ̄ 1Δ1m = 3H2 i v[m] [ 3ΩM (1 + δM) + 4Ωr (1 + δR) ] , (5.42)

where we have used the adiabaticity to set δγ = δν ≡ δR and δb = δc ≡ δM ,
and we have collected Ωγ + Ων = ΩR and Ωb + Ωc = ΩM . We can now insert
the expression back in the time-space equation to obtain a formula for the velocity
shared by all the fluids in the early Universe, up to second order:

u[0] =
{
2

k

H
[

Ψ − QST[0]
2 k H

]
− u[0] ( 3ΩM δM + 4ΩR δR )

}
1

3ΩM + 4ΩR
,

(5.43)

where we have introduced u = i v. In SONG, however, we evolve the dipoles of the
distribution function rather than the velocities. The initial conditions for the former
are obtained from u[0] by using the correspondence in Eq.5.41.

All the elements appearing in the adiabatic velocity u[0] are known from the solu-
tion of the first-order differential system, except Ψ , which is constant. In particular,
the first-order adiabatic velocity is given by5

u[0] = 2
k

H
Ψ

3ΩM + 4ΩR
� 1

2
k τ Ψ , (5.44)

where we have set ΩR = 1 , ΩM = 0 and H = τ−1 . The term in the quadratic
source is also proportional to kτ , as can be verified by inspecting Eq.3.100, while
we know that, for the constant mode, the δ’s are constant. Thus, at early times, both
the first and second-order adiabatic velocity are proportional to kτ . An interesting
consequence of this dependence is that any term quadratic in the velocity can be

5The expression matches with Eq.98 of Ma and Bertschinger [32], that is θ = (k2 τ ) Ψ , once we
realise that, at first order, θ = i k j v j = i k v[0] .

http://dx.doi.org/10.1007/978-3-319-21882-3_4
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safely ignored in the early Universe. As an example, consider the relation between
the monopole and the density perturbation (Eq.4.48),

I0
0 = N 0

0 = δR − 4

3
ui ui ,

0b 0
0 = 0c 0

0 = δM − ui ui . (5.45)

Since the adiabatic velocity goes as kτ , we can ignore the terms quadratic in the
velocity; what is left is the density perturbation of the two relativistic fluids, which,
for adiabatic initial conditions, coincide. Therefore, up to first order in kτin and up to
second order in the cosmological perturbations, the monopoles correspond to the
energy densities: I0

0 = N 0
0 = δR and 0b 0

0 = 0c 0
0 = δM . Similarly, in the early

Universe, the quadrupole corresponds to the shear.

5.4.1.2 Monopoles

The time-time Einstein equation (Eq.3.96) reads

Φ̇ = −HΨ − k2

3H Φ − 1

6H κ a2
∑

ρ̄ 0Δ00 − QTT

6H . (5.46)

On super-horizon scales, we can ignore Φ̇, because we focus on the constant mode,
and the term in Φ, because it is suppressed by a factor (kτ )2 with respect to −HΨ .
For the same reasons, the only term in the quadratic source (see Eq. 3.100) which is
non negligible with respect to −HΨ is 2HΨ Ψ . Thus,

HΨ = 2HΨ Ψ − 1

6H κ a2
∑

ρ̄ 0Δ00 . (5.47)

If we neglect the baryon and cold dark matter contributions, the matter term can be
recast as

κ a2
∑

ρ̄ 0Δ00 � 3H2 (Ωγ I0
0 + Ων N 0

0 ) , (5.48)

where we have used the Friedmann equation, κ a2 ρ̄tot = 3H2 . Because of adia-
baticity, the two monopoles coincide, and we can write

κ a2
∑

ρ̄ 0Δ00 = 3H2 I0
0 (Ωγ + Ων ) � 3H2 I0

0 , (5.49)

which, inserted in the time-time Einstein equation, leads to

I0
0 = N 0

0 = −2Ψ + 4Ψ Ψ . (5.50)

http://dx.doi.org/10.1007/978-3-319-21882-3_4
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This expression is valid up to second order and is used in SONG to set the initial con-
ditions for the monopoles of the relativistic species. For the non-relativistic species,
we use the adiabaticity condition in Eq.5.38 which, up to first order in kτ , reads

0b 0
0 = 0c 0

0 = 3

4

(
I0
0 − 1

4
I0
0 I0

0

)
. (5.51)

5.4.1.3 Photon Quadrupole

To derive the initial conditions for the photon perturbations, we enforce the tight-
coupling approximation at zero order (TCA0, hereafter). The TCA0 approximation
consists in assuming that the interaction rate between the photons and the baryons is
infinite. This is a good approximation of the physics in the pre-recombination epoch,
when the extremely high density of photons and free electrons renders the Universe
opaque to radiation. At the level of the Boltzmann equation, the TCA0 is equivalent
to neglecting all the terms that do not appear multiplied by κ̇, which implies that the
collision term as a whole must be equated to zero.

At first order, the collision terms for the temperature and E polarisation read

C�m [ I ] = κ̇
(

− I�
m + δ�0 I0

0 + δ�1 4 ue[m] + δ�2 Πm

)
,

C�m [ E ] = κ̇
(

−E�
m − δ�2

√
6 Πm

)
,

(5.52)

where Πm = (I2
m −√

6 E2
m)/10 . Using the TCA0 approximation, we set C�m [ I ] =

0 . For the dipole, this implies I1
m = 4 ue[m] , which, using the correspondence

between moments and fluid variables in Eq.4.48, simply tells us that the baryon and
photon fluids have the same velocity, uγ[m] = ue[m] , a statement that is true at all
orders for tightly coupled fluids (and consistent with the adiabaticity condition). If
we also set C�m [ E ] to vanish, we obtain for � = 2 an algebraic system that admits
only the solutions I2

m = E2
m = 0 . Similarly, for � > 2, the TCA0 relation reduces

to the identities I�
m = 0 and E�

m = 0 .
Thus, at first order, the tight-coupling between the photons and the electrons forces

all the anisotropies except from the dipole to vanish; this result confirms the physical
intuition that in a fluid where the mean free path of the particles is infinitely short,
there is no way for the inhomogeneities to turn into anisotropies.

Second-order dipoleThe secondorder expression for the dipole in theTCA0approx-
imation is given by C1m [ I ] = 0 , with C taken from Eq.4.151:

−I1
m + 4 ue[m] + ( Ψ + δe ) (−I1

m + 4 ue[m] ) + 4 ue[m] I0
0 = 0 , (5.53)

where we have set the first-order multipoles with � ≥ 2 to zero and used C−,1
0,0 = 1.

The third term in the expression vanishes after enforcing the first-order TCA0 rela-
tion, I1

m = 4 ue[m] ; we are thus left with

http://dx.doi.org/10.1007/978-3-319-21882-3_4
http://dx.doi.org/10.1007/978-3-319-21882-3_4
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I1
m = 4 u[m] + I1

m I0
0 = 4 ( ue[m] + uγ[m] δγ) . (5.54)

Again, if use the moments-fluid correspondence in Eq.4.48,

I1
m = 4 (uγ[m] + uγ[m] δγ) , (5.55)

we see that the expression enforces uγ[m] = ue[m] , that is, the velocities of the baryon
and photon fluid during tight coupling coincide also at second order, as expected.
Second-order quadrupole The expression for the second-order quadrupole at zero
order in the tight coupling approximation is given by C2m [ I ] = 0 :

−I2
m + 1

10
I2

m −
√
6

10
E2

m + ue[m2] I1
m1

C−,2
m1m + ue[m2] ( 7 ue[m1] − 1

2
I1

m1
) C−,2

m1m = 0 .

By enforcing the first-order relation ue[m] = I1
m/4, the sum collapses to

I2
m = 5

8
C−,2

m1m I1
m2

I1
m1

−
√
6

9
E2

m . (5.56)

If we insert the above expression into the TCA0 equation for the E polarisation,
C2m [ E ] = 0 , where C[E] is taken from Eq.4.154, we obtain the identity E2

m = 0 .
By inspecting the structure of Eq.4.157, it is straightforward to verify that this is the
case also for the B polarisation, that is, B2

m = 0 . Thus, at second order, the photon
quadrupole during tight coupling is given by

I2
m = 5

8
C−,2

m1m I1
m2

I1
m1

= −10 (vv)[m], (5.57)

where the last equality stems from a geometrical identity involving the tensor product
(vv)[m] ≡ χ

i j
2,[m]vγvγ and the coupling coefficients C defined in Eq.A.67. (Let us

recall that a sum over m2 = −1, 0, 1 is implicit and that m1 = m − m2.) We verify
below (in Fig. 5.6 on page 189) that SONG indeed reproduces this limit. It should
be noted that the presence of a quadrupole is still compatible with the absence of
anisotropic stresses. In fact, the last relation of Eq.4.48 can be used to show that the
shear, Σ[m] , does vanish in the tight coupling regime; the velocity squared terms in
Eq.5.57 encode the Lorentz boost needed to bring our observer to the rest frame of
the photon fluid.

Finally, we note that during the tight-coupling regime all the photon moments
with � > 2 vanish at second order, because they are sourced by first-order multipoles
with � ≥ 2.

5.4.1.4 Neutrino Quadrupole

The evolution of the neutrino quadrupole in the radiation dominated era can be
inferred from the first moments of the Boltzmann equation,

http://dx.doi.org/10.1007/978-3-319-21882-3_4
http://dx.doi.org/10.1007/978-3-319-21882-3_4
http://dx.doi.org/10.1007/978-3-319-21882-3_4
http://dx.doi.org/10.1007/978-3-319-21882-3_4


5.4 The Initial Conditions 171

Ṅ 1
0 = k

(
N 0

0 − 2
5 N 2

0

)
+ 4 k Ψ − L10[QL

N ] ,

Ṅ 2
0 = k

(
2
3 N 1

0 − 3
7 N 3

0

)
− L20[QL

N ] ,

(5.58)

where the quadratic sources L�m[QL
N ] are equal to those of the photons in Eq.4.150

with I substituted with N .
The dipole equation can be recast into

Ṅ 1
0 = 2 k ( Ψ + 2Ψ 2 ) − L10[QL

N ] , (5.59)

after neglecting the quadrupole term (N 2
0 /N 0

0 = O(kτ )2 � 1 ) and using the
monopole initial condition in Eq.5.50, that is N 0

0 = −2Ψ + 4Ψ 2 . The quadratic
source can be schematically written as

L10[QL
N ] = (metric )2 + k N 0

0 × metric + k N 2
m × metric . (5.60)

If we drop the terms in the first-order quadrupole (N 2
0 � N 0

0 ) and use N 0
0 = −2Ψ ,

we see that the quadratic source at early times is constant. Since all the terms in the
right hand side of Ṅ 1

0 are constant, the dipole equation can be solved analytically
to yield

N 1
0 = 2 k τ (Ψ + 2Ψ 2) − τ L10[QL

N ] . (5.61)

It can be verified that the above expression for the neutrino dipole is compatible
with the one in Eq.5.41, which was obtained by solving the longitudinal Einstein
equation.

If we insert the solution for the neutrino dipole into the quadrupole equation in
Eq.5.58 and neglect the octupole term (N 3

0 /N 1
0 = O(kτ )2 � 1 ), we obtain

Ṅ 2
0 = 4

3
k2 τ

(
Ψ + 2Ψ 2

)
− 2

3
k τ L10[QL

N ] − L20[QL
N ] . (5.62)

By inspecting Eq.3.100, we see that the second quadratic term can be schematically
written as

L20[QL
N ] = k N 1

0 × metric + k N 3
m × metric , (5.63)

meaning that L20[QL
N ] ∝ τ . Therefore, the right hand side of Ṅ 2

0 contains only
terms proportional to τ that can be integrated to yield a τ 2 proportionality for N 2

0 ,

N 2
0 = 2

3
(k τ )2 Ψ + QN2 , (5.64)

http://dx.doi.org/10.1007/978-3-319-21882-3_4
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where we have grouped all the quadratic sources in

QN2 ≡ (k τ )2

(
4

3
Ψ 2 − 1

3

L10[QL
N ]

k
− 1

2

L20[QL
N ]

k2 τ

)
. (5.65)

5.4.2 Initial Non-Gaussianity

In the previous section, we have enforced the Einstein and Boltzmann equations to
express up to second order the initial conditions of the matter perturbations in terms
of the metric potentials Ψ and Φ. The latter, however, cannot be determined without
first knowing the amount and type of primordial non-Gaussianity produced in the
early Universe. We need therefore to choose a model of inflation and to relate the
non-Gaussianity produced by such model to the gravitational potentials at the time
where the initial conditions for the non-linear transfer functions are set. To do so,
we employ the gauge-invariant curvature perturbation ζ , the same variable used in
Maldacena (2003) [34], which up to second order is given by [35, 55]6

ζ = − R − R2 , (5.66)

with

R = Φ + 2

3H (w + 1)

[
Φ̇ + HΨ − 4HΨ 2 − Φ̇2

H − 4 (Ψ − Φ) Φ̇

]

+ (1 + 3 c2s )

[
δ

3 (w + 1)

]2
+ 4

3 (w + 1)
δ Φ , (5.67)

where the density contrast δ = (ρ − ρ̄)/ρ̄, the barotropic parameter w and the
adiabatic sound of speed c2s refer to the total fluid. The expression for ζ simplifies
considerably in the radiation dominated era (w = c2s = 1

3 ) and on super-horizon
scales (Ψ̇ = Φ̇ = 0):

ζ = − Φ − 1

2
Ψ + 1

2
Ψ 2 − Φ2 . (5.68)

6In order to facilitate the comparison with the literature, we express ζ in terms of the perturbation
R used in Pitrou et al. [45]. The two variables are unperturbatively related by e2ζ = 1− 2R, which
translates to R = −ζ − ζ2 up to second order. We also note that Eq.5.67 is the same as Eq.3.6b of
Ref. [45], with Φ ↔ Ψ and a multiplicative factor 1/2 in the quadratic part, to account for the fact
that we use the perturbative expansion X ≈ X (1) + X (2) instead of X ≈ X (1) + 1

2 X (2).
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The advantage of using ζ is that, for adiabatic perturbations, it is conserved on
super-horizon scales regardless of the perturbative order [30, 31, 35, 55]. Being
conserved, ζ provides a convenientway to relate the primordial curvature fluctuations
created during the inflationary period to the gravitational potentials at the time where
we set our initial conditions. Therefore, once the post-inflationary transfer function of
ζ, T (2)

ζ (k1, k2, k3) , is specified, the relation in Eq.5.68 can be used together with the

Einstein equations to infer the initial values of T (2)
Φ (k1, k2, k3) and T (2)

Ψ (k1, k2, k3) ,
which are the numerically-evolved quantities in SONG.

Because the topic of this thesis is the intrinsic bispectrum, which is independent
of the initial non-Gaussianity [45], in what follows we shall assume Gaussian initial
conditions. Following the discussion in Sects. 3.5 and 3.7.2, this requirement trans-
lates into the absence of mode coupling in the ζ random field and, ultimately, in a
vanishing initial transfer function:

T (2)
ζ (k1, k2, k3) = 0 . (5.69)

The above condition is indeed used to compute the intrinsic bispectrum in SONG
and to derive the results presented in the next chapter. For the rest of this section,
however, we shall keep the form of ζ unspecified, so that the initial conditions
derived below can be used for an arbitrary model of inflation.

5.4.3 Initial Conditions for the Metric Perturbations

As discussed in Sect. 5.4.2, we parametrise the initial conditions for the scalar poten-
tials, Φ and Ψ , in terms of the curvature perturbation, ζ . The initial values of
the two potentials are determined by the algebraic system consisting of the equation
defining ζ , Eq. 5.68, and of the anisotropic stress equation for m = 0, Eq.5.3,

Φ = − ζ − 1

2
Ψ + 1

2
Ψ 2 − Φ2 , (5.70)

Ψ = Φ − 1

5 k2
κ a2

∑
ρ̄ 2Δ20 + QA , (5.71)

where we have introduced the shorthand

QA ≡ 3

2 k2
QSS[0] , (5.72)

and QSS[0] is given in Eq.3.100. The only species that are relevant in the radiation
dominated era are the photons and the neutrinos, so we can ignore the contributions
to the quadrupole from the baryon and the cold dark matter fluids. (Note that they do
contribute to the quadrupole in later epochs, even if their anisotropic stresses vanish,

http://dx.doi.org/10.1007/978-3-319-21882-3_3
http://dx.doi.org/10.1007/978-3-319-21882-3_3
http://dx.doi.org/10.1007/978-3-319-21882-3_3


174 5 Evolution of the Second-Order Perturbations

via a quadratic contribution in their velocity, see Eq.4.48.) Therefore, the anisotropic
stress equation can be written as

Ψ = Φ − 3

5

( H
k

)2 (
Ωγ I2

0 + Ων N 2
0

)
+ QA , (5.73)

where the extra H2 factor comes from enforcing the Friedmann equation. To close
the system, we need the initial values of the quadrupoles of the photon and neutrino
fluids. In principle, both quantities are of order (kτ )2, and thus negligible. However,
they appear in the above equation multiplied by a factor (H/k)2 � (kτ )−2, meaning
that their contribution to the Ψ potential is of order unity, and should therefore be
considered. If we insert the expression for the neutrino quadrupole (Eq.5.64) into
the anisotropic stress equation, we obtain

Ψ = Φ − 6

15
Ων Ψ − 3

5

1

(k τ )2

[
Ωγ I2

0 + Ων QN2

]
+ QA , (5.74)

which, after substituting Φ using Eq.5.70, becomes an algebraic equation for Ψ that
can be easily solved to yield the initial condition for the Newtonian potential up to
second order,

[
1 + 4

15
Ων

]
Ψ = 2

3

[
− ζ + 1

2
Ψ 2 − Φ2 + QB

]
, (5.75)

where we have grouped the quadratic sources in

QB = QA − 3

5

1

(k τ )2

[
Ωγ I2

0 + Ων QN2

]
. (5.76)

Let us reiterate our notation. All the terms inQB are quadratic: QA is the quadratic
part of the anisotropic stress equation, as defined in Eq.5.72; I2

0 is the photon quadru-
pole, whose form is dictated by the tight coupling condition and grows as (kτ )2, as
shown in Eq.5.57; QN2 is the quadratic part of the neutrino quadrupole, as defined in
Eq.5.65, and alsogrows as (kτ )2. Thedensity parameters are defined asΩγ = ρ̄γ/ρ̄tot
and Ων = ρ̄ν/ρ̄tot and are related by Ωγ = 1 − Ων in the radiation dominated era,
when ρ̄tot � ρ̄γ + ρ̄ν . The initial value of Φ, up to second order, can be found by
going back to Eq.5.74,

Φ =
[
1 + 2

5
Ων

]
Ψ − QB . (5.77)

Note that, at first order, our initial conditions read

Ψ = − 10

15 + 4Ων
ζ and Φ =

[
1 + 2

5
Ων

]
Ψ , (5.78)

http://dx.doi.org/10.1007/978-3-319-21882-3_4
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and are in agreement with those found in the literature. In particular, from the com-
parison with Eq.98 of Ma and Bertschinger [32], we find that ζ = −2C , where C
is the variable used in that reference to denote the amplitude of the fastest-growing
mode.

To sum up, the numerical initial conditions in SONG are set using: Eqs. 5.50
and 5.51 for the monopoles, Eq.5.41 for the dipoles, Eqs. 5.57 and 5.64 for the
quadrupoles, Eqs. 5.75 and 5.77 for the scalar potentials. All the other perturbations,
including the non-scalar ones, are evolved starting from vanishing values.

5.5 The Line of Sight Sources

SONG efficiently implements the Boltzmann-Einstein system of differential equa-
tions in the Newtonian gauge (Sect. 5.3) with correct initial conditions set deep into
the radiation era (Sect. 5.4) and passes all the numerical tests that we could devise
(Sect. 5.6). Therefore, in principle, we could compute the transfer functions for any
perturbation at any time after the initial conditions are set. In particular, we could
obtain the value of the photon moments today in order to build the CMB observables
at first and second order, such as the angular power spectra and bispectra of the CMB
temperature and polarisation.

In practice, however, one has to first face a major numerical issue. The cur-
rent CMB experiments have angular resolutions of �max = O(1000) , meaning
that in order to fully use the data to constrain the theoretical predictions, the latter
need to be computed with a similar resolution. Because the Boltzmann equation
in multipole space forms a hierarchy which is coupled in � , we cannot solve it
for a number of � values and later interpolate the results; to obtain a resolution of
�max = 2000 , one needs to evolve at least �max = 2001 coupled differential equa-
tions for each of the considered wavemodes. Furthermore, one has to consider the
issue of numerical reflection in the Boltzmann hierarchy, discussed in Sect. 5.3.1.
Thus, the number of evolved equations in the photon hierarchy needs to be larger
than Lcut = �max + kmax τ0/2 � 3500 , even using the clever Bessel truncation
scheme. This was indeed the standard procedure adopted by the cosmological com-
munity before 1996 (see, e.g., [9, 32]). As an example of the required computational
effort, the first-order COSMICS code [4] took about 90 h on the 16 processors of the
Cray C90 supercomputer to compute the Cl spectrum up to �max = 3000 .

In 1996, a new method to compute the anisotropies of the cosmic microwave
background was proposed by Seljak and Zaldarriaga [48] that neatly separates the
geometrical evolution of the multipoles from the physical effects that source them.
In this line of sight approach, the multipoles at τ0 are obtained as a convolution
integral along the past light cone of the photon, hence the name, that involves a
source function, smooth in k and time, and a spherical Bessel function, oscillatory
in both. By applying the line of sight (hereafter, LOS) approach, the current value
of the first-order transfer functions up to �max = 2000 can be numerically computed
in a matter of seconds, without the sacrifice of precision; it is no surprise that all
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the recent first-order Boltzmann codes, including CLASS and CAMB, implement the
LOS formalism.

Although it was developed with the purpose of solving the first-order BES, the
LOS formalism can be adapted to obtain the transfer functions at any order [2,
16, 40, 45], as we shall describe in Sect. 5.5.1, where we also discuss SONG’s
implementation. Themain result will be the expression for the line of sight integral in
multipole space for the intensity, E-modes and B-modes, reported in Eqs. 5.95, 5.101
and 5.102, respectively. In Sect. 5.5.2, we discuss the form of the LOS sources and
identify three kinds of contributions: the scattering sources, the metric sources and
the propagation sources. The propagation sources include the time-delay, redshift
and lensing effects which are numerically challenging to integrate; one of them,
however, can be computed via a clever change of variables introduced in Sect. 5.5.3.
We conclude the section in Sect. 5.5.4 with a brief note on integration by parts, a
technique that is commonly used at first order but whose interpretation at second
order is still not clear.

5.5.1 The Line of Sight Formalism

We first introduce the LOS formalism for the intensity perturbation, which will lead
to Eq.5.95, and later extend it to include the E and B polarisation, in Eqs. 5.101 and
5.102.

5.5.1.1 The LOS Integral

The brightness equation for the photon intensity can be written, before multipole
decomposition, as

Δ̇ + (
i k·n + κ̇

)
Δ = S , (5.79)

whereΔ is the brightnessmoment of the one-particle distribution function (Eq. 4.64),
n is the photon’s direction and κ̇ = a neσT is theThomson scattering rate. The source
function, S , groups all the other terms of the Boltzmann equation; both the source
function and the brightness are functions of (τ , k, n). The left hand side of the above
expression can be written as

d

dτ

[
e i k·n τ +κ(τ ) Δ

]
e −i k·n τ −κ(τ ) , (5.80)

which leads to an integral solution for the Boltzmann equation:

τ0∫

τin

d
[

e i k·n +κ(τ ) Δ(τ )
]

=
τ0∫

τin

dτ e i k·n τ +κ(τ ) S(τ ) , (5.81)

http://dx.doi.org/10.1007/978-3-319-21882-3_4
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where we have introduced an arbitrary lower limit for the integral, τin . After expand-
ing the left hand side,

e i k·n τ0 +κ(τ0) Δ(τ0) = e i k·n τin +κ(τin) Δ(τin) +
τ0∫

τin

dτ e i k·n τ +κ(τ ) S(τ ) ,

(5.82)

we can get an expression for the brightness perturbation today,

Δ(τ0) = e i k·n (τin−τ0) −κ(τin,τ0) Δ(τin) +
τ0∫

τin

dτ e i k·n (τ−τ0) −κ(τ ,τ0) S(τ ) .

(5.83)

Because κ̇ is the number of scatterings in the unit of time, the optical depth κ,

κ (τin, τ0) ≡
τ0∫

τin

dτ κ̇ = κ(τ0) − κ(τin) , (5.84)

is the average number of scatterings experienced by a photon between the initial time
τin and today. If we set the initial time of integration before the time of recombina-
tion, this number becomes extremely large, so that the term in Δ(τin) is completely
negligible. We are thus left with the so-called line of sight integral:

Δ(τ0, k, n) =
τ0∫

τin

dτ e i k·n (τ−τ0) e−κ(τ ,τ0) S(τ , k, n) , (5.85)

where we have reestablished both the Fourier and directional dependences. The line
of sight integral is an exact representation of the photon distribution function, in
the sense that no approximations where made in its derivation from the Boltzmann
equation; furthermore, it has the desirable property of separating the geometrical and
dynamical contributions to the anisotropies [48]. Note also that the precise value of
the initial time of integration, τin , is not important as long as it is set before the
beginning of recombination; in fact, any earlier contribution is suppressed by the
e−κ(τ ,τ0) term.

The LOS representation makes evident an important property of the CMB
anisotropies. The factor e−κ(τ ,τ0) acts as a step function that penalises the con-
tributions to Δ(τ0) from before the time of recombination, when κ(τ , τ0)was huge.
Thus, only the last scattering undergone by a photon is important. In the limit of
instantaneous recombination, the LOS integral reduces to
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Δ(τ0, k, n) =
τ0∫

τrec

dτ e i k·n (τ−τ0) S(τ , k, n) , (5.86)

and, if we make the assumption that after recombination the photons stream freely,
measuring the CMB gives us information on the source function S at the time of
recombination. This is the reason why the CMB is often referred to as an instan-
taneous picture of the Universe at the redshit zrec � 1100. Note, however, that the
photons do not stream freely after recombination, as both scattering (e.g. reionisation,
Sunyaev-Zeldovich effect) and gravitational effects (e.g. time delay and gravitational
lensing, see Sect. 4.4) slightly alter the anisotropy and spectral patterns of the CMB.

5.5.1.2 Multipole Decomposition

To solve the LOS integral numerically, we first need to find its multipole represen-
tation. For intensity (Δ → I and S → S I ), we have that

I�
m(τ0, k) =

τ0∫

τin

dτ e−κ L�m

[
e i k·n (τ−τ0) S I(τ , k, n)

]
, (5.87)

where the spherical projection operator, L�m is defined in Eq.A.12. The spherical
harmonic decomposition of a plane wave is given by the Rayleigh formula [37],

e i k·r =
∞∑

�1=0

i�1 (2 �1 + 1) j�1(k r) P�1(k̂ · r̂)

=
∞∑

�1=0

�1∑

m1=−�1

i�1 (4π) j�1(k r) Y�1m1(k̂) Y ∗
�1m1

(r̂) , (5.88)

where r = (τ − τ0) n , j�1 is the spherical Bessel function of order �1, and in the
second line we have used the addition theorem (Eq.A.17) to express the Legendre
polynomials P� in terms of two Y�m’s. If we choose the polar axis of the spherical
coordinate system to be aligned with k, we have that

Y�m(k̂) = Y�m(θ = 0,φ = 0) = δm0

√
2 �1 + 1

4π
, (5.89)

and the plane wave expansion reduces to

e i k·r =
∞∑

�1=0

i�1
√
4π (2 �1 + 1) j�1(k r) Y�10(r̂) . (5.90)

http://dx.doi.org/10.1007/978-3-319-21882-3_4
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This is, again, a manifestation of the decomposition theorem: when k is aligned
with the zenith, the coupling between the azimuthal modes vanish. The source func-
tion also depends on the direction of propagation, n , so we expand it in spherical
harmonics,

S I(τ , k, n) =
∑

L M

(−i)L

√
4π

2 L + 1
S I

L M (τ , k) YL M (n) . (5.91)

Thus,

L�m

[
e i k·n (τ−τ0) S I(τ , k, n)

]
= i�

√
2 � + 1

4π

∑

�1L M

i�1−L 4π

√
2 � + 1

2 L + 1

j�1 (k (τ − τ0)) S I
L M (τ , k)

∫
dΩ(n) Y ∗

�m(n) Y�10(n) YL M (n) .

(5.92)

The final step consists in substituting the expression for the Gaunt integral in the last
line,

∫
dΩ(n) Y ∗

�m(n) Y�10(n) YL M (n) =

(−1)m

√
(2 � + 1)(2 �1 + 1)(2 L + 1)

4π

(
� �1 L
0 0 0

) (
� �1 L

−m 0 m

)
, (5.93)

set M = m enforcing the Wigner 3 j symmetry, and to use the relation

j�1 (k (τ − τ0)) = (−1)�1 j�1 (k (τ0 − τ )) . (5.94)

Then, we can express the photon multipoles as a convolution between a geometrical
projection function and the source function:

I�
m(τ0, k) =

τ0∫

τin

dτ e−κ
Lmax∑

L=0

JL�m (k r) S I
Lm(τ , k) , (5.95)

where we have set r ≡ τ0 − τ and Lmax is, in principle, infinity. We have introduced
the line of sight projection function as7

7Note that our projection functions are related to those defined in [14] by

JL�m(x) = i�
√
4π (2 � + 1) j (Lm)

� . (5.96)

.
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JL�m(x) ≡ (−1)m (2 � + 1)
�+L∑

�1=|�−L|
i �−�1−L (2 �1 + 1)

(
� �1 L
0 0 0

)(
� �1 L

−m 0 m

)
j�1 (x) .

(5.97)

The projection function JL�m(x) encodes the excitation of higher multipoles
through streaming. It oscillates in both conformal time and comoving scale, and it
is real valued as the Gaunt structure forces � + �1 + L to be even and, therefore,
i �+�1+L to be real. For the monopole, � = 0 and m = 0, JL�m reduces to a simple
spherical Bessel function,

JL00(x) = (−1)L jL(x) , (5.98)

but, in general, for a given L , it is a linear combination of 2L + 1 spherical Bessel
functions with coefficients of similar magnitudes.

5.5.1.3 Numerical Advantages of the LOS Formalism

There are several reasons why solving the line of sight integral in Eq.5.95 is more
advantageous than obtaining I�

m(τ0, k) by directly solving the differential system:

1. In Sect. 5.5.2 we shall see that, for all the terms in the source function apart from
the quadratic propagation sources, the sum in the LOS integral can be truncated at
Lmax < 10 . The LOS integral can be therefore computed efficiently for any value
of � and m using only a reduced number of precomputed sources. In particular,
one can build an �-grid that goes up to � = O(1000) without having to sample
every single �-value, as it would be the case if solving the coupled differential
system. We shall see in the next chapter that, as far as the intrinsic bispectrum
is concerned, a grid of N� � 100 points up to �max = 2000 yields a 1%-level
convergence.

2. The features of the projection function are transferred to I�
m(τ0, k) , which is

therefore a highly oscillating function in k . In particular, any feature of the source
function at the time of recombination will generate oscillations in I�

m(τ0, k) of
wavelength 1/(τ0 − τrec) � 1/τ0 � 10−4 Mpc−1 . On the other hand, the source
function is a slowly varying function of k and therefore only requires the cruder
k-sampling that we have discussed in Sect. 5.3.2.

3. The projection function is a purely geometrical object that does not depend on
any cosmological parameter. In SONG, it is computed and stored in a table and
later interpolated for quick access.

5.5.1.4 Polarisation

The LOS integral (Eq. 5.95) was derived in multipole space assuming that Δ was
an intensity perturbation, Δ = I . As described in BFK2011 [2], the result can be
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generalised to the polarised case by simply substituting Δ for Δab , where ab =
++,+−,−+,−− are the helicity indices (Sect. 4.5.4), and by introducing a spin
factor in the 3 j symbol,

(
� �1 L
0 0 0

)
−→

(
� �1 L

−s 0 s

)
, (5.99)

where s = 2 for ab = +− , s = −2 for ab = −+ and s = 0 for ab = ++
or −−. The multipoles for the E and B polarisation are obtained by enforcing the
transformations

E�
m = 1

2

(
Δ+−,�m + Δ−+,�m

)
,

B�
m = i

2

(
Δ+−,�m − Δ−+,�m

)
. (5.100)

The spin integer s introduces a sign swap that, after inserting Eq.5.95 in the above
expression, ultimately leads to a mixing between the E and B-modes,

E�
m(τ0, k) =

τ0∫

τin

dτ e−κ
Lmax∑

L=2

[
JE E

L�m (kr) S E
Lm(τ , k) + JE B

L�m (kr) S B
Lm(τ , k)

]
,

(5.101)

B�
m(τ0, k) =

τ0∫

τin

dτ e−κ
Lmax∑

L=2

[
JB B

L�m (kr) S B
Lm(τ , k) + JB E

L�m (kr) S E
Lm(τ , k)

]
,

(5.102)

and to slightly different projection functions (see Eq.B.12 of BFK2011 [2]),

JE E
L�m (x) = JB B

L�m (x) = (−1)m (2 � + 1)
�+L∑

�1=|�−L|
even (� − �1 − L)

× i �−�1−L (2 �1 + 1)

(
� �1 L

−2 0 2

)(
� �1 L
m 0 −m

)
j�1 (x) ,

(5.103)

JE B
L�m (x) = −JB E

L�m (x) = (−1)m (2 � + 1)
�+L∑

�1=|�−L|
odd (� − �1 − L)

× i �−�1−L−1 (2 �1 + 1)

(
� �1 L

−2 0 2

)(
� �1 L
m 0 −m

)
j�1 (x) .

(5.104)

(Note the different exponent of the i factor in the EB case.) The functions “odd” and
“even” are equal to one if their argument is, respectively, odd or even, and vanish
otherwise.

http://dx.doi.org/10.1007/978-3-319-21882-3_4
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5.5.2 The Source Function

In the general case of polarised radiation, the line of sight integral can be written
using the composite index notation (Sect. 4.6.3) as

Δn(τ0, k) =
τ0∫

τin

dτ e−κ(τ ) Jnn′(kr) S n′(τ , k) , (5.105)

where r = τ0−τ . A sum over the composite index n′ is implicit and it includes both
the perturbation indices (I,B, E) and the L one. This compact expression encloses
the three formulae for the intensity, E-modes and B-modes that we have derived,
respectively, in Eqs. 5.95, 5.101 and 5.102. The source function Sn is defined by the
multipole decomposition of Eq.5.79, which reads

Δ̇n + k Σnn′ Δn′ + κ̇ Δn = S n . (5.106)

whereΣnn′ is the free streamingmatrix that arises from the decomposition of ni∂iΔ

(Sect. 4.6.3). By equating the above expressionwith the compact Boltzmann equation
in Eq.4.159 and the collision term in Eq.4.165, we see that the source function is
given by

Sn = κ̇
(

Γnn′ Δn′ + QC
n

)
− Mn − QL

n . (5.107)

We shall refer to the three addends in the right hand side as the collision sources, the
metric sources and the propagation sources, respectively.

5.5.2.1 Collision Sources

The contribution to the photon anisotropies from the collision sources is

Δn(τ0) ⊃
τ0∫

τin

dτ Jnn′(kr) g(τ )
(

Γn′n′′ Δn′′ + QC
n′
)

, (5.108)

where we have introduced the visibility function as

g(τ ) ≡ κ̇ e−κ . (5.109)

The visibility function is the probability that a photon scatters off an electron for
the last time around the time τ , and is therefore strongly peaked at the time of
recombination; this feature of the visibility function can be appreciated in Fig.5.4.

http://dx.doi.org/10.1007/978-3-319-21882-3_4
http://dx.doi.org/10.1007/978-3-319-21882-3_4
http://dx.doi.org/10.1007/978-3-319-21882-3_4
http://dx.doi.org/10.1007/978-3-319-21882-3_4
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Fig. 5.4 The visibility function, g, is obtained as the product between the scattering rate κ̇ and e−κ.
The former vanishes after recombination, the latter before. As a result, g is sharply peaked at the
time of recombination. In fact, the redshift of recombination is defined in SONG as the time when
the visibility function peaks; for a standard ΛCDM model, it corresponds to τdec � 280Mpc or
zdec � 1100 . The redshift of decoupling, instead, is defined using the Tend parameter in Eq. 5.111

The presence ofΔn in the linear structure of the collision sources makes it impos-
sible to compute the line of sight integral without a prior knowledge of the solution
of the Boltzmann equation. This apparent paradox holds regardless of the perturba-
tive order, and can be solved after inspecting the form of Γnn′ Δn′ , as reported in
Eq.4.166:

Γnn′ Δn′
I−−−→ δL0 I0

0 + δL1 4 u[m] + δL2

(
I2

m − √
6 E2

m

)
/10

Γnn′ Δn′
E−−−→ −δL2

√
6
(
I2

m − √
6 E2

m

)
/10 , (5.110)

Γnn′ Δn′
B−−−→ 0 .

Because of the geometry of Thomson scattering, the only multipoles that contribute
to Γnn′ Δn′ are themonopole, the dipole and the quadrupole. Armedwith this knowl-
edge, we can simply truncate the sum over the purely second-order scattering sources
in the LOS integral to Lmax = 2, without loss of precision. For the E-modes, this
amounts to considering only the quadrupole, while the B-modes do not have any
purely second-order source.

The value of the multipoles up to Lmax = 2 is computed by directly solving
the BES system at second order, as described in Sect. 5.3. The evolution of the
photon hierarchies can be stopped at the time of decoupling, just after recombination
(Sect. 2.5.2.2), as any other contribution to the LOS integral would be suppressed by
the visibility function, which is strongly peaked there. This is indeed what we do in
SONG, where the final time of integration for the scattering sources is determined

http://dx.doi.org/10.1007/978-3-319-21882-3_4
http://dx.doi.org/10.1007/978-3-319-21882-3_2
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as the time where the visibility function drops below a certain value Tend relative to
its height at the peak,

g(τend)

g(τrec)
= Tend . (5.111)

It is important to tune the parameter Tend as much as possible because Lcut, the
number of equations to follow in the photon hierarchy, has to increase proportionally
to τend due to numerical reflection (Sect. 5.3.1). After running convergence tests,
we find that a 1%-level convergence in the bispectrum is obtained for Lcut � 8
and Tend � 100 ; the latter choice corresponds to evolve the differential system
up to τend � 500Mpc for a ΛCDM model where the peak of recombination is at
τrec � 280Mpc, as can be inferred from Fig. 5.4.

The quadratic collision sources QC
n can be built from the solution of the BES at

first order. They are multiplied by the visibility function, so that they contribute to
the observed anisotropies only at the time of recombination. Contrary to the purely
second-order collision sources, the quadratic ones exist also for L > 2 ; for example,
the intensity sources QC

I (Eq. 4.151) includes the following terms that are present
at any angular scale:

(
Ψ + δb + x (1)

e

x̄e

)
CLm [ I ] + κ̇ u[m2]

e

∑

±
∓ IL±1

m1
C±,L

m1 m .

The L > 2 contributions, however, are subdominant with respect to those with
L ≤ 2, as they always involve first-ordermultipoles above the dipole, which are tight-
coupling suppressed during recombination. In SONG, we set the maximum number
of multipoles to include in QC

n using the Lmax parameter, whose convergence will
be discussed in Sect. 6.5.1.

5.5.2.2 Metric Sources

The explicit form of the metric sources Mn can be read off from Eqs. 4.144 and
4.150:

Mn = − δL0 4
[

Φ̇ + 2 Φ̇ Φ
]

− δL1 4
[

δm0 k Ψ + k[m]
1 Ψ (Φ − Ψ ) − i ω̇[m]

]
− δL2 4 γ̇[m] .

(5.112)

These sources exist only for the photon intensity, as polarisation is not sourced by
the metric. They are qualitatively different from those in the collision term as they do
not involve moments higher than the quadrupole, as expected for the metric modes,
and they are active throughout cosmic evolution all the way to today.

http://dx.doi.org/10.1007/978-3-319-21882-3_4
http://dx.doi.org/10.1007/978-3-319-21882-3_6
http://dx.doi.org/10.1007/978-3-319-21882-3_4
http://dx.doi.org/10.1007/978-3-319-21882-3_4


5.5 The Line of Sight Sources 185

We have already seen that solving the relativistic hierarchies after recombination
is computationally inefficient; however, it is not needed do so in order to compute the
metric sources up to today. In fact, after the epoch of matter-radiation equality, the
relativistic species (photons and neutrinos) become subdominant in the total energy
density with respect to the cold ones (baryons and cold dark matter). Their effect on
the curvature of the Universe is therefore negligible, and the Einstein equations can
be safely evolved without considering the four relativistic Bolzmann hierarchies in
their entirety. Under this assumption, the BES reduces to just 10 equations (four for
the metric variables and six for the cold species) that are well behaved numerically;
in particular, the problem of numerical reflection in the relativistic hierarchies is
removed. We can therefore obtain the value of the second-order metric sources by
evolving this reduced system of ODEs all the way to today. As for the quadratic
part of the metric sources, we build them from the first-order solutions of the system
evolved in CLASS.

From the numerical point of view, we activate this no-radiation approximation
(NRA) only after the time τNRA when the ratio between the energy density of
matter and that of radiation has exceeded the numerical parameter TNRA :

ρ̄M(τNRA)

ρ̄R(τNRA)
= a(τNRA)

aeq
= TNRA , (5.113)

where aeq is the scale factor at equality. We find that the transfer functions of the
second-order metric variables are not affected by the NRA as long as TNRA > 100 ,
which corresponds to a redshift of z (TNRA) < 32 for a standard ΛCDM model.
Note that the smaller is the scale considered, the earlier can the NRA be turned on,
as what matters in the Einstein equation is the product between ρ̄ and the density
perturbation δ, and δ grows much faster for matter than for radiation on subhorizon
scales.

5.5.2.3 Propagation Sources

The propagation sources contain all the terms in the Boltzmann equation that are
products of a metric potential with a photon perturbation (Sect. 4.6.3). These are
only present in the Liouville term, and can be read for the intensity, E-modes and
B-modes from Eqs. 4.150, 4.153 and 4.156, respectively. In real space and before
multipole decomposition, the propagation sources for the photon intensity can be
read from Eq.4.107,

QL
n = ni ∂i Δ(Φ + Ψ )

− 4Δ
(
Φ̇ − ni ∂iΨ

)

−
(

δi j − ni n j
) ∂Δ

∂ni ( ∂iΨ + ∂iΦ) , (5.114)

http://dx.doi.org/10.1007/978-3-319-21882-3_4
http://dx.doi.org/10.1007/978-3-319-21882-3_4
http://dx.doi.org/10.1007/978-3-319-21882-3_4
http://dx.doi.org/10.1007/978-3-319-21882-3_4
http://dx.doi.org/10.1007/978-3-319-21882-3_4


186 5 Evolution of the Second-Order Perturbations

where the first line, second and third lines are the contributions from the free-

streaming ( ∂ f
∂xi

(1) dxi

dτ

(1)
), redshift (∂ f

∂ p

(1) dp
dτ

(1)
) and lensing ( ∂ f

∂ni

(1) dni

dτ

(1)
) terms,

respectively.
The contribution QL

n is purely quadratic in first-order terms and, in principle,
can be computed without the need to solve the differential system at second order.
However, it comprises a sum over first-order multipoles which are important over all
angular scales and times. To compute the Δ’s in the standard line of sight approach
up to today would require evolving thousands of equations in the first-order system
with an extremely fine sampling in the wavemode k, and later solving the LOS
integral with Lmax = O(1000) . This is clearly impractical, and special techniques
need to be introduced in order to treat the propagation sources, as we shall do for the
redshift contribution in the next section.

5.5.3 Treating the Redshift Contribution

As shown by Huang and Vernizzi [17], the redshift contribution to QL
n in Eq.5.114,

− 4Δ
(

Φ̇ − ni ∂iΨ
)

, (5.115)

can be absorbed by using the new variable

Δ̃ ≡ ln (1 + Δ) , (5.116)

which is expanded up to second order as

Δ̃ = Δ − 1

2
ΔΔ . (5.117)

The time derivative of Δ̃ up to second order is then given by

˙̃
Δ = Δ̇ − ΔΔ̇ = − ni ∂i Δ̃ − M + C (1 − Δ)

− QL − 4Δ(Φ̇ − ni∂iΨ ) , (5.118)

where we have used the first-order Boltzmann equation

Δ̇ = − ni ∂i Δ + 4 (Φ̇ − ni∂iΨ ) + C , (5.119)

to replace the quadratic term ΔΔ̇ and the second-order one Eq.4.159 to replace
Δ̇ . The new contribution −4Δ(Φ̇ − ni∂iΨ ) exactly cancels the redshift term in
QL , so that the second line of Eq. 5.118 reduces to only the time-delay and lensing
contributions. In addition, the collision term C is replaced by C(1 − Δ).

http://dx.doi.org/10.1007/978-3-319-21882-3_4
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As can be seen, the transformation is effective because the second order source
we are eliminating is the first orderΔ times part of the first order source. The price is
to make the scattering term more complex by introducing an extra quadratic source
of the form −CΔ , which is tractable with the standard line of sight approach. Thus,
in SONG we evolve the BES for the usual intensity brightness Δ , but build the line
of sight sources for the transformed brightness Δ̃. These are equal to those for Δ but
for the extra −CΔ term and the lack of the redshift term.

It should be noted that the effect of the Δ̃ transformation is not that of moving the
time-integrated redshift term to the last scattering surface. Like Δ , also Δ̃ is non-
linearly related to the observed temperature anisotropies. This leads to an additional
quadratic contribution to the temperature bispectrum arising from the first-order
evolution, as we shall show in Sect. 6.3.1.

Unfortunately, the Δ̃ transformation still leaves other problematic terms in QL ,
the lensing and time-delay terms (first and third lines ofEq.5.114). These do not relate
to the first-order sources, and cannot be removed by a similar change of variables.
We will not include them in the line of sight integration in this thesis, and leave them
for future work. Note, however, that we do include all terms in QL when solving
the differential system given in Sect. 4.6 up to recombination.

5.5.4 A Note on Integration by Parts

It is often a good technique to use integration by parts in order to separate recombi-
nation effects from time-integrated effects. By doing so, Eq.5.105 becomes

τ0∫

τin

dτ e−κ S n′ Jnn′(kr) =
τ0∫

τin

dτ e−κ

(
Ṡ n′

k
− κ̇S n′

k

)
jnn′(kr) , (5.120)

where we have chosen to integrate Jnn′ and jnn′ , its antiderivative, can still be
expressed in terms of spherical Bessel functions. This is usually done at first order,
where the source is equal to the gradient of the potential S n′ = kn′ Φ and gives rise
to the usual SW (κ̇Φ) and ISW (Φ̇) split. This separation is useful because Φ̇ is
much smaller than kΦ as the potential is slowly changing. The second-order metric
terms M can be treated in the same way.

However, the quadratic sources QL are problematic as they contain the first-
order photon fluctuations, which oscillate with frequency k so that k−1Q̇L

n ∼ QL
n .

Integration by parts then generates two terms: one with κ̇, which is clearly located
on the last scattering surface, and a second one which is comparable to the original
integral. That second term itself can be decomposed by using integration by parts,
and will yield a non-negligible LSS contribution. Therefore, the technique fails to
single out a unique LSS contribution.

http://dx.doi.org/10.1007/978-3-319-21882-3_6
http://dx.doi.org/10.1007/978-3-319-21882-3_4
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Whenwe exclude sources such as lensing, we exclude them in their entirety rather
than imposing an arbitrary split. In this way, our results can be complemented by
the known non-perturbative approaches, see Ref. [13, 22, 24, 27, 50, 52, 53] for
lensing.

5.6 Robustness of SONG’s Transfer Functions

We have tested SONG against a number of analytical limits and consistency checks.
In this section we show the most relevant ones.

5.6.1 Initial Conditions

We provide SONG with the initial conditions that we have derived in Sect. 5.4. In
the left panel of Fig. 5.5 we show the transfer functions of the scalar potentialsΨ and
Φ thus obtained. At early times, they are time independent, meaning that SONG
picks the constant mode of the Newtonian gauge immediately. This is an important
test of the consistency of the differential system, as even a small displacement of the
initial conditions spoils the flatness of the potentials. The adiabaticity of the initial
conditions is tested in the right panel of the same figure. Also in this case, SONG’s
transfer functions respect the analytical expectations, whereby the cosmological flu-
ids all share a common velocity in the early Universe (Eq.5.43).

As we have proven in Sect. 5.4.1, the velocities of the photon and baryon fluids
coincide before the epoch of recombination due toCompton scattering.We showhow
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Fig. 5.5 Initial conditions computedbySONG inNewtoniangauge. In the left panel, theNewtonian
and curvature potentials pick up the constant mode as expected; this does not change when the
initial time of evolution is varied (dashed curves). In the right panel, the velocities of the species
converge at early times to a common value, as expected for adiabatic initial conditions. (Wavemodes
k1 = 0.2Mpc−1 , k2 = 0.1Mpc−1 , k3 = 0.15Mpc−1.)
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Fig. 5.6 Transfer function of the photon quadrupole before recombination. The numerical curve
matches the tight coupling approximation obtained in Eq.5.57. (Wavemodes k1 = 0.087Mpc−1 ,
k2 = 0.069Mpc−1 , k3 = 0.081Mpc−1.)

SONG reproduces this limit in Fig. 5.7. The precision of the match is a good test
of the implementation of the initial conditions and of the full second-order collision
term. In Fig. 5.6 we also show the agreement between the numerical quadrupole and
the approximate one that we have derived in Sect. 5.4.1.

5.6.2 Constraint Equations

SONG employs only a subset of the Einstein equations to compute the evolution
of the four metric perturbations of Newtonian gauge (Ψ , Φ, ω[1] and γ[2]). The
redundant equations are useful to check the numerical consistency of the differential
system and of the initial conditions.

In the left panel of Fig. 5.8, we compare the derivative of the curvature potential Φ̇
as obtained from the time-time equation (red curve, Eq. 3.96) and from the longitudi-
nal equation, that is the m = 0 part of the space-space Einstein equation in Eq.3.98
(blue curve). The time-time equation is used to evolve Φ, while the longitudinal one
is just a constraint. We can see that the two curves start slightly displaced but then
rapidly converge. After recombination, however, some numerical noise is introduced
in the time-time curve Φ̇ that prevents the match to improve below the 1% level.
We have made separate runs of SONG using either of the equations to evolve Φ

and found no significative difference in the final bispectrum; nonetheless, we plan to
discover the origin of this small numerical instability and solve it.

http://dx.doi.org/10.1007/978-3-319-21882-3_3
http://dx.doi.org/10.1007/978-3-319-21882-3_3
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Fig. 5.7 Transfer functions of the photon and baryon velocities before recombination, as computed
in SONG for a sub-horizon mode at recombination. Both the scalar (left panels) and vector (right
panels) velocities coincide until recombination due to tight coupling. Note that the scalar baryon
velocity after recombination grows in amplitude as H a2, as predicted by the sub-horizon approx-
imation in Eq.40 of Bernardeau et al. [3]. The spikes in the lower panels correspond to the zero
crossing. (Wavemodes: k1 = 0.2Mpc−1 , k2 = 0.1Mpc−1 , k3 = 0.133Mpc−1.)

In the right panel of the figure, we compare the vector mode of the metric, ω[1],
as obtained by direct evolution via Eq.5.4 (red curve) and from the m = 1 constraint
equation in Eq.3.98 (blue curve). In this case, the match is precise and improves over
time.

5.6.3 Einstein-De Sitter Limit

The evolution of the density contrast of cold dark matter, δc, can be analytically
computed on sub-horizon scales in the Einstein-de Sitter limit, whereby ΩM = 1
[3, 12, 18, 33]:

δ(2)(k) = K
{

F2(k1, k2) δ(1)
c (k1) δ(1)

c (k2)
}

, (5.121)

http://dx.doi.org/10.1007/978-3-319-21882-3_3
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Fig. 5.8 Comparison between the evolution and constraint Einstein equations. In the left panels, we
show Φ̇ from the time-time and longitudinal equations. The two curves do not match at early times
(hinting some minor issue with the initial conditions); furthermore, the time-time curve develops
a small numerical noise after a = 10−3. In the right panels, we show the evolved ω[1] against the
constraint one. In this case, thematch is very good. The tiny difference between the two curves at the
initial conditions (a = 10−6) is due to the fact that we have assumed the starting value of ω[1] = 0
to be zero (Sect. 5.4.3). The consistency between the two curves at late times suggests that such
approximation is appropriate. (Wavemodes: k1 = 0.2Mpc−1 , k2 = 0.1Mpc−1 , k3 = 0.15Mpc−1.)

where the convolution kernel F2 is given by

F2(k1, k2) = 5

7
+ 1

2

k1 ·k2

k1 k2

(
k1
k2

+ k2
k1

)
+ 2

7

(
k1 ·k2

k1 k2

)2

. (5.122)

The Newtonian potential is related to δc by the time-time equation, so that

Ψ (2)(k) = − 2

3H2 k2
K

{
k21 k22 F2(k1, k2) δ(1)

c (k1) δ(1)
c (k2)

}
. (5.123)

Similarly, the form of the vector and tensor modes of the metric can be analytically
computed in the EdS limit, for any scale, to yield [6, 36]
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i ω
(2)
[m] = 4

3H k2
K

{
( k21 k2[m] + k22 k1[m] ) Ψ (1)(k1) Ψ (1)(k2)

}
, (5.124)

γ(2)
[m] = −10

(
1

3
− j1(kτ )

kτ

)
K

{
(k1k2)[m]

k2
Ψ (1)(k1) Ψ (1)(k2)

}
(5.125)

where (k1k2)[m] = χ
i j
2,[m] ki

1 k j
2 .

In Fig. 5.9 we show that SONG’s numerically-computed transfer functions match
the aforementioned analytical results to high precision. The match improves as the
ratio between the the matter and radiation densities increases with time, as expected.
This is an important test of SONG’s implementation of the Einstein equation and
of the description of cold dark matter.
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Fig. 5.9 Transfer functions in theEinstein-de Sitter limit. In clockwise order,we show the analytical
curves (blue) versus SONG’s numerical results (red) for the transfer functions of the Newtonian
potential (Eq.5.123), density contrast (Eq.5.121), vector (Eq.5.124) and tensor (Eq. 5.125) metric
modes. We have considered a universe without dark energy. As expected, a match between the
analytical and numerical curves is obtained after the epoch of matter-radiation equality, which is
indicated by the vertical dashed line. The numerical noise in the lower-right panel is due to a poor
choice of sampling for the x-axis, insufficient to follow the frequent oscillations in time of γ[2] ;
this does not affect SONG’s results as they are obtained using a finer sampling than in the figure.
Note that the density contrast of CDM grows as a2 during matter domination, as predicted by
the sub-horizon approximation in Eq.40 of Bernardeau et al. [3]. (Wavemodes: k1 = 0.26Mpc−1 ,
k2 = 0.14Mpc−1 , k3 = 0.32Mpc−1.)
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5.6.4 Squeezed Limit

When one of the two convolution wavemodes of a second-order perturbation is much
smaller than the other, say k1 � k2 , its effect can be understood as a time-dependent
modulation of the first-order perturbation in k2. Then, in this so-called squeezed limit,
the transfer functions for the Newtonian potential and the photon density contrast
read [1, 8]

Ψ (2)(k1, k2, k) = f (τ )
∂ Ψ (1)(k2)

∂ ln τ
− ∂ Ψ (1)(k2)

∂ ln k2
, (5.126)

δ(2)
γ (k1, k2, k) = −4 f (τ ) τ H δγ(k2) + f (τ )

∂ δ
(1)
γ (k2)

∂ ln τ
− ∂ δ

(1)
γ (k2)

∂ ln k2
,

where the modulating function f (τ ) is defined as

f (τ ) = −20 + 15ατ + 3α2τ2

15 (2 + ατ )2
with α = 1√

8
. (5.127)

In Fig. 5.10 we show that SONG indeed matches this analytical limit.

5.6.5 Green Functions

Finally, we have compared the results obtained with SONGwith those of an updated
version of the code used in Ref. [2], which is based on Green’s functions rather than
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Fig. 5.10 Squeezed limit transfer functions for the Newtonian potential (left panel) and the density
contrast of the photon fluid (right panel). In both cases SONG’s result (blue curves) matches the
analytic approximation in Eq.5.126 (red curves) to sub-percent accuracy. We adopt a configuration
where the long wavemode is 3, 000 times smaller than the short wavemode (k1 = 0.0001Mpc−1 ,
k2 = 0.3Mpc−1 , cos θ = −0.5). These plots are similar to those in Fig. 2 of Ref. [8]
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transfer functions. Green’s functions provide an orthogonal method of reducing the
stochastic Boltzmann equations to algebraic differential equations, that can be solved
efficiently. The Green’s function Gnm(k, τ1, τ2) depends on two times and describes
the impact of a mode m at time τ2 on the mode n at time τ1. The differential equa-
tions for the Green’s functions are especially simple as they are independent of the
quadratic source terms. It is also not necessary to introduce the additional wavevec-
tors k1 and k2. However, the Green’s functions do depend on an additional time, τ2,
and have one additional composite index m. For runs with average precision, the
methods have a comparable speed, but, when refining the numerical parameters, we
find that the transfer function approach scales better. Comparing the results between
these different approaches, we obtain a sub-percent level agreement.
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Chapter 6
The Intrinsic Bispectrum of the CMB

6.1 Introduction

The formalism that we have developed in the previous chapters makes it possible
to efficiently compute the first and second-order transfer functions of the cosmic
microwave background all theway to today. The transfer functions can be then used to
build observables such as the bispectrum of the temperature anisotropies. As we have
discussed in Sect. 3.7, it is possible to identify two major cosmological contributions
to the CMB bispectrum: the linearly propagated bispectrum, sensitive to the the
non-Gaussianity of primordial origin, and the intrinsic bispectrum, arising from the
subsequent non-linear evolution of the cosmological perturbations. In this chapter,
we describe how the intrinsic and linear bispectra are computed in SONG and we
constrain their observability and the bias that the former induces on a measurement
of the latter.

The linearly propagated bispectrum is hypothetical and, depending on the consid-
eredmodel of the earlyUniverse, it assumes specific shapes that havebeen extensively
investigated in the literature. In models such as the curvaton one [12, 32, 33, 36, 37],
where non-Gaussianity arises due to the non-linear evolution of the primordial cur-
vature perturbation on super-horizon scales, the bispectrum peaks at squeezed con-
figurations where one of the momenta is much smaller than the other two momenta.
This is called the local type non-Gaussianity [17, 24, 58] as the non-linearity appears
locally in real space. On the other hand, the non-linearity of quantum fluctuations on
sub-horizon scales during inflation generally produces a bispectrum that peaks for
more equilateral configurations [1, 54]. Theoretical templates for the bispectra have
been developed to optimally measure these two distinct types of non-Gaussianity.
In addition, an orthogonal template with minimal overlap was developed to measure
the bispectrum that cannot be captured by the local and equilateral templates [51].
These three templates have been applied to CMB anisotropies measured by WMAP,
giving constraints −3 < f localNL < 77, −221 < f eqNL < 323, −445 < f orthNL < −45
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at 95% confidence level [5]. The Planck satellite [46] dramatically improved these
constraints but still found values of fNL compatible with a Gaussian Universe,

f localNL = 2.7 ± 5.8 , f eqNL = −42 ± 75 , f orthNL = −25 ± 39 . (6.1)

at 68% confidence level.
The intrinsic bispectrum, on the other hand, is always present, as it is generated by

the well known gravitational and collisional effects that we have treated in Chap. 4;
computing its shape and amplitude numerically is the major effort of this chapter.
Due to the difficulty of this task, many approximate approaches to the problem
can be found in the literature that either neglect some of the physics or focus on
a particular bispectrum configuration. On super-horizon scales at recombination,
where only gravitational effects are important, it is well established that f intrNL ∼
−1/6 for the local model [2, 3, 7]. On small angular scales, one has to consider the
interactions taking place between photons and baryons before the time of decoupling.
The contribution to f intrNL arising from the fluctuations in the free-electron density has
been shown to be of order unity [22, 50], and likewise for the contribution from
the other quadratic sources in the Boltzmann equation [39]. An alternative approach
consists of focussing on the squeezed limit, where the local template peaks. The
recombination bispectrum in this limit can be obtained by a coordinate rescaling [8]
and yields a contamination to the local signal again of order unity [4, 8, 10, 28].

6.1.1 Summary of the Chapter

In Sect. 6.2, we derive the formula needed to compute the intrinsic bispectrum,
which is now fully implemented in SONG. In the same section we also explain
how to compute the linearly propagated bispectrum and give the shape of the local,
equilateral and orthogonal templates of primordial non-Gaussianity.

To quantify the observability of the various bispectra and their correlations, in
Sect. 6.3 we shall adopt a Fisher matrix approach. We will be particularly interested
in the observability of the intrinsic bispectrum, quantified by its signal-to-noise ratio,
and in the bias that its presence induces in the measurements of the primordial non-
Gaussianity.

The main results of this thesis are illustrated in Sect. 6.4, where we find that the
amplitude of the intrinsic bispectrum is beyond the sensitivity of the Planck CMB
survey, with a signal-to-noise ratio of ∼1/3 and biases smaller than the error bars.

In Sect. 6.5 we conclude the chapter with a number of numerical and analytical
checks on SONG’s results. These include extensive convergence tests on the most
important numerical parameters in SONG and a successful comparison which the
well-known analytical limit for the squeezed configurations of the bispectrum.

http://dx.doi.org/10.1007/978-3-319-21882-3_4
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6.1.2 Cosmological Parameters

Throughout the chapter we employ a ΛCDMmodel with WMAP9 parameters [19],
whereby h = 0.697,Ωb = 0.0461,Ωcdm = 0.236,ΩΛ = 0.718, As = 2.43×10−9,
ns = 0.965, τreio = 0.08, Neff = 3.04. In this model, the age of the Universe
is 13.75Gyr, the conformal age c τ0 = 14297Mpc and recombination happens at
z = 1088, corresponding to a conformal time of c τrec = 284Mpc. We recall that
we use purely scalar adiabatic initial conditions (Sect. 5.4). For the power spectrum
of the primordial perturbations, we assume the following form:

PΦ(k) = 2 π2

k3
As

(
k

k0

)ns−1

. (6.2)

where the pivot scale is taken to be k0 = 0.002Mpc−1 , following the WMAP team
[19].

6.2 From the Sources to the Bispectrum

In this section we derive the formulae used in SONG to compute the bispectrum of
the cosmic microwave background. The starting point is the definition of the angular
bispectrum for the brightness perturbation,

〈
Δ3
〉

≡ 〈
Δ�1m1(τ0, x0)Δ�2m2(τ0, x0)Δ�3m3(τ0, x0)

〉
, (6.3)

which we evaluate here (x0) and now (τ0) in order to relate it to the observations. In
Fourier space, the angular bispectrum reads

〈
Δ3
〉

=
∫

dk1 dk2 dk3

(2 π)9
e i x0 (k1+k2+k3)

〈
Δ�1m1(τ0, k1) Δ�2m2 (τ0, k2) Δ�3m3(τ0, k3)

〉
.

(6.4)

In a statistically homogeneous Universe the real-space bispectrum cannot depend
on the position. This is reflect by the presence in the Fourier-space bispectrum of
the Dirac delta function δ(k1 + k2 + k3), as shown in Sect. 3.72. Therefore, the
exponential can be set to unity:

〈
Δ3
〉

=
∫

dk1 dk2 dk3

(2 π)9

〈
Δ�1m1 (τ0, k1) Δ�2m2 (τ0, k2) Δ�3m3 (τ0, k3)

〉
. (6.5)

The brightness perturbation can be expressed in terms of its transfer function using
Eq. 3.69,

http://dx.doi.org/10.1007/978-3-319-21882-3_5
http://dx.doi.org/10.1007/978-3-319-21882-3_3
http://dx.doi.org/10.1007/978-3-319-21882-3_3
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Δ�m (τ , k) = T (1)
�m (τ , k) Φ(τin, k) (6.6)

+
∫

dk1
′ dk2

′
(2π)3

δ(k1
′ + k2

′ − k) T (2)
�m (τ , k1

′, k2
′, k) Φ(τin, k1

′) Φ(τin, k2
′) .

As we have explained in Sect. 3.72, this results into three contributions to the bis-
pectrum: the linearly propagated bispectrum (Eq. 3.116)1

〈
Δ3
〉
lin

=
∫

dk1 dk2 dk3

(2 π)6
δ (k1 + k2 + k3) T (1)

�1m1
(k1)T (1)

�2m2
(k2)T (1)

�3m3
(k3) BΦ(k1, k2, k3) ,

(6.7)
where the primordial bispectrum BΦ is defined as

〈Φ(k1)Φ(k2)Φ(k3)〉 = (2π)3 δ (k1 + k2 + k3) BΦ(k1, k2, k3) , (6.8)

which vanishes for Gaussian initial conditions; the intrinsic bispectrum (Eq. 3.119)

〈
Δ3
〉
intr

=
∫

dk1 dk2 dk3

(2 π)6
δ(k1 + k2 + k3)

×
[
2 T (1)

�1m1
(k1) T (1)

�2m2
(k2) T (2)

�3m3
(−k1, −k2, k3) PΦ(−k1) PΦ(−k2) + 2 perm.

]
,

(6.9)

which exists nomatterwhat the initial conditions are; and the trispectrumcontribution
(Eq. 3.120)

〈
Δ3
〉
trisp

=
∫

dk1 dk2 dk3

(2 π)6
δ(k1 + k2 + k3)

×
[
T (1)

�1m1
(k1) T (1)

�2m2
(k2) K

{
T (2)

�3m3
(k1

′, k2
′, k3) SΦ(k1, k2, k1

′, k2
′)
}

+ 2 perm.
]

,

(6.10)

which involves the trispectrum of the primordial potential.
The three contributions to theCMBbispectrum—linear, intrinsic and trispectrum—

add linearly. Understanding their relative importance is crucial for interpreting the
observed bispectrum as it allows us to separate the effect of the primordial non-
Gaussianity, encoded in BΦ and SΦ , from the post-inflationary evolution of the
signal, given by T (2)

�m ; indeed, this was one of our main motivations in developing
SONG. According to the order-of-magnitude estimate provided in Sect. 3.72, the lat-
est observations from the Planck satellite [46] suggest that the linear bispectrum has
an amplitude similar to or smaller than what is expected from the intrinsic one. The
trispectrum contribution, on the other hand, is constrained to be negligible [46, 55].
We remark that these considerations apply only to the forms of the primordial bis-
pectrum (local, equilateral and orthogonal) and trispectrum (τ N L and gN L models)
that we take into account. It is possible that a yet-to-be constrained model of infla-

1Note that from now on we shall omit writing the time dependence. This does not create ambiguity
as the transfer functions T are always evaluated today, τ0, and the potentials Φ at the initial time
τin.

http://dx.doi.org/10.1007/978-3-319-21882-3_3
http://dx.doi.org/10.1007/978-3-319-21882-3_3
http://dx.doi.org/10.1007/978-3-319-21882-3_3
http://dx.doi.org/10.1007/978-3-319-21882-3_3
http://dx.doi.org/10.1007/978-3-319-21882-3_3
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tion generates a larger non-Gaussianity than the intrinsic bispectrum for a specific
(�1, �2, �3) limit. However, the purpose of this thesis is to quantify the amplitude and
shape of the intrinsic bispectrum, which is independent from the details of inflation
and is a guaranteed contribution to the total CMB bispectrum.

In what follows, we obtain a numerically viable formula for the intrinsic bispec-
trum (Sect. 6.2.1) and explain how it is implemented in SONG (Sect. 6.2.2). We also
briefly describe the templates that are usually employed to parametrise the primordial
non-Gaussianity (Sect. 6.2.3).

6.2.1 The Intrinsic Bispectrum Formula

We shall now derive in four steps the formula that is used by SONG to compute the
intrinsic bispectrum of the cosmic microwave background. We shall express it as a
sum over the azimuthal modes,

Bintr
�1�2�3

=
∑

m

B{m}
�1�2�3

, (6.11)

where the scalar (m = 0) contribution resembles the well known expression for the
primordial bispectrum [13, 24]. We remark that the bispectrum formula, which is
reported in its final form in Eq. 6.36, was first derived by Christian Fidler and is
going to be included in a paper in preparation.

6.2.1.1 Enforce Statistical Isotropy

In SONG, we compute the second-order transfer functions assuming that the zenith,
that is the polar axis of the spherical coordinate system, is aligned with the k3 direc-
tion; this choice makes it possible to solve the differential systems for the different
m-modes separately. The transfer functions thus computed can be inserted in the for-
mula for the intrinsic bispectrum, Eq. 6.9, only after rotating the coordinate system
to align the zenith with the k3 vector; the statistical isotropy of the Universe ensures
that the angular bispectrum is invariant under such rotation. To do so, we contract
each of the transfer functions in Eq. 6.9 with the Wigner rotation matrices [20, 23]

D (�)

m′,m(φ, θ,ψ) =
√

4π

2 � + 1
Y −m′

�m (θ,φ) e i m′ ψ , (6.12)

where Y s
�m (θ,φ) is the spin-weighted spherical harmonic of spin s and (φ, θ,ψ) are

the Euler angles that map the zenith in the unrotated coordinate system to k3. The
last rotation about z is clearly not needed, so that we can set ψ = 0; the θ and φ
angles are the polar and azimuthal angles of k3 in the unrotated coordinate system.
Then, the rotation amounts to performing the following substitutions:
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T (1)
�1m1

(k1) −→
√

4π

2 �1 + 1
Y

−m′
1

�1m1
(k̂3) T (1)

�1m′
1
(k1

′) ,

T (1)
�2m2

(k2) −→
√

4π

2 �2 + 1
Y

−m′
2

�2m2
(k̂3) T (1)

�2m′
2
(k2

′) , (6.13)

T (2)
�3m3

(−k1,−k2, k3) −→
√

4π

2 �3 + 1
Y −m

�3m3
(k̂3) T (2)

�3m(−k1
′,−k2

′, k3) ,

where k1
′, k2

′ and k3
′ are the rotated axes in Fourier space and sums over the m′

1,
m′

2 and m indices are implicit; we have used a different notation for the m index for
reasons that will be clear soon. It should be noted that, after the rotation, the second
order T depends only on the magnitude of the third wavevector, k3 = k3′ , and not
anymore on its direction.

Applying the rotation to the intrinsic bispectrum, Eq. 6.9, results in

〈
Δ3
〉
intr

=
√

(4π)3

(2 �1 + 1)(2 �2 + 1)(2 �3 + 1)

∫
dk1 dk2

(2 π)6

∫
dk3 k23 δ(k1 + k2 + k3)

× 2 T (1)
�1m′

1
(k1) T (1)

�2m′
2
(k2) T (2)

�3m(−k1, −k2, k3) PΦ(−k1) PΦ(−k2)

×
∫

dΩ(k̂3) Y
−m′

1
�1m1

(k̂3) Y
−m′

2
�2m2

(k̂3) Y −m
�3m3

(k̂3) + 2 perm. , (6.14)

where we have split the k3 integral in its radial and angular parts and we have
dropped the prime indices for the wavemodes.2 The latter (dΩ) can be immedi-
ately solved using the Gaunt relation for the spin weighted spherical harmonics [53,
Appendix A.1] to yield

〈
Δ3
〉
intr

= 4π

(
�1 �2 �3
m1 m2 m3

) (
�1 �2 �3
m′

1 m′
2 m

)∫
dk1 dk2

(2π)6

∫
dk3 k23 δ(k1 + k2 + k3)

× 2 T (1)
�1m′

1
(k1) T (1)

�2m′
2
(k2) T (2)

�3m(−k1,−k2, k3) PΦ(−k1) PΦ(−k2) + 2 perm. ,

(6.15)

where a sum over the m′ indices is implicit. Thus, after enforcing the statistical
isotropy of the Universe, the m-dependence of the bispectrum assumes the simple
formof a 3 j symbol. The information content of

〈
Δ3
〉
intr can be therefore compressed

in the angle-averaged bispectrum B�1�2�3 defined as3

2Note that we have also assumed that the Dirac delta function does not depend on k̂3 ; we shall
prove this point later in the comment to Eq. 6.30
3The adjective “angle-averaged” comes from the fact that, using Eq. A.36, B�1�2�3 can be written
as

B�1�2�3 [Δ ] =
∑

m1m2m3

(
�1 �2 �3
m1 m2 m3

) 〈
Δ�1m1 Δ�2m2 Δ�3m3

〉
. (6.16)
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〈
Δ�1m1 Δ�2m2 Δ�3m3

〉 =
(

�1 �2 �3
m1 m2 m3

)
B�1�2�3[ Δ ] . (6.17)

The angle-averaged bispectrum depends only on the three angular scales �1, �2 and
�3 but, as it clear fromEq. 6.15, it contains a sum over the different azimuthal modes;
this is an analogy with the angular power spectrum C�, which includes contributions
from the scalar, vector and tensor modes.

The linear transfer functions computed by SONG, T̃ (1)
� 0 (k) , do not depend on the

direction of the wavemode as they are obtained assuming that the zenith is aligned
with k ; on the other hand, those appearing in the bispectrum formula, T�m(k) , are
for an arbitrary coordinate system and include the full k dependence. The multipoles
in the two coordinate systems are related by the rotation matrices,

T (1)
�1m1

(k1) =
√

4π

2 �1 + 1
Y�1m1(k̂1) T̃ (1)

�1 0
(k1) , (6.18)

T (1)
�2m2

(k2) =
√

4π

2 �2 + 1
Y�2m2(k̂2) T̃ (1)

�2 0
(k2) , (6.19)

where a sum over m′ is absent because we are assuming that at linear order the
non-scalar modes are negligible. It is important to note that this is not a rotation of
the axes but a simple substitution; in fact, had we performed a rotation to align the
zenith with k1 or k2, we would have undone what was gained with the rotation in
Eq. 6.13. If we insert the above identities in Eq. 6.15, we obtain an expression for
the angle-averaged bispectrum,

Bintr
�1�2�3

[Δ ] = (−1)�1+�2

√
(4π)4

(2 �1 + 1)(2 �2 + 1)

(
�1 �2 �3
m′

1 m′
2 m

)

×
∫

d k1 d k2 d k3
(2 π)6

(k1 k2 k3)
2 T̃ (1)

�1 0
(k1) T̃ (1)

�2 0
(k2) PΦ(k1) PΦ(k2)

×
∫

dΩ(k̂1) dΩ(k̂2) δ(k1 + k2 − k3) Y�1m′
1
(k̂1) Y�2m′

2
(k̂2)2 T (2)

�3m(k1, k2, k3) + 2 perm.,

(6.20)

where we have enforced again the statistical isotropy to set PΦ(k1) = PΦ(k1) and
PΦ(k2) = PΦ(k2) , and we have performed the parity inversions k1 → −k1 and
k2 → −k2 ; the (−1)�1+�2 factor comes from the relations

Y�1m′
1
(−k̂1) = (−1)�1 Y�1m′

1
(k̂1) and Y�2m′

2
(−k̂2) = (−1)�2 Y�2m′

2
(k̂2) .

6.2.1.2 Isolate the Azimuthal Dependence of T (2)

The second-order transfer function in the bispectrum formula, T (2)
�3m(k1, k2, k3), is

characterised by 7 degrees of freedom: k1, θ1,φ1, k2, θ2,φ2, k3, where θ and φ are
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the polar and azimuthal angles, respectively. Due to the presence of the Dirac delta
function, however, the integral has support only for those configurations where k1 +
k2 − k3 = 0 . The relation allows us to express 3 of the 7 coordinates as a function
of the remaining 4, which we choose to be k1,φ1, k2, k3. In particular, we remark
that θ1 is obtained as

cos θ1 = k23 + k21 − k22
2 k3 k1

. (6.21)

(For further details, refer to Appendix B.) In the bispectrum formula (Eq. 6.20) we
can thus substitute

T (2)
�3m(k1, k2, k3) −→ T (2)

�3m(k1,φ1, k2, k3) . (6.22)

This is still not enough because, as discussed in Appendix B, in SONG we compute
the transfer functions assuming thatφ1 = 0 andφ2 = π or, equivalently, k1y = k2y =
0 . Therefore, SONG’s transfer functions, which we denote as T̃ (2)(k1, k2, k3) , are
related to those in the bispectrum integral by a rotation about the zenith,

T (2)
�3m(k1,φ1, k2, k3) = e imφ1 T̃ (2)

�3m(k1, k2, k3) . (6.23)

The term e imφ1 has to be included in the bispectrum integral and thus complicates
the dΩ(k̂1) integration considerably. One strategy is to expand e imφ1 into spherical
harmonics and use the orthogonality relations to integrate it out, thus introducing an
extra pair of multipole indices. This can be avoided if we note that e imφ1 can be
expressed in terms of the spherical harmonic Y|m|m , which is given in Sect. A.1 as

Y|m|m(k̂1) = e imφ1

√
2|m| + 1

4π

√
(2|m|)!

2|m| |m|! sin|m| θ1 ×
{

(−1)m for m ≥ 0

+ 1 for m < 0 .

(6.24)

Then, we can write

e imφ1 T̃ (2)
�3m(k1, k2, k3) = (−1)m

√
4π

2|m| + 1
T (2)

�3m(k1, k2, k3) Y|m|m(k̂1) ,

(6.25)
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where we have defined the rescaled transfer function as

T (2)
�3m(k1, k2, k3) ≡ T̃ (2)

�3m(k1, k2, k3)
1

sin|m| θ1
2|m| |m|!√

(2|m|)! ×
{ + 1 for m ≥ 0

(−1)m for m < 0 .

(6.26)

The crucial point here is that the rescaled transfer function does not depend on the
azimuthal angle φ1 but only on the magnitude of the three wavemodes. Furthermore,
it is immediately obtained by multiplying SONG’s transfer function, T̃ (2) , by a
simple factor. The azimuthal dependence is confined to Y|m|m(θ1,φ1), which, as
we shall soon see, will be integrated out using the orthogonality properties of the
spherical harmonics.

In summary,wehave found that, by using the properties of theDirac delta function,
we can substitute the second-order transfer function in the bispectrum formula (Eq.
6.20) with

T (2)
�3m(k1, k2, k3) −→ (−1)m

√
4π

2m + 1
T (2)

�3m(k1, k2, k3) Y|m|m(k̂1) , (6.27)

where T is defined in Eq. 6.26 and is numerically computed in SONG. This is a
substantial advancement because the angular part of the transfer function is now
completely separated from the radial one, without the need of performing additional
multipole expansions.

6.2.1.3 Integrate Out the Angular Dependence

At this stage, two strategies are possible. One can integrate out the k2 dependence
using the Dirac delta function and then solve numerically the resulting 4D integral
in

∫
d k1 d k3 d θ1 dφ1 , (6.28)

which involves the highly oscillating spherical harmonics and transfer functions.
Instead, we choose to expand the delta function in spherical harmonics and then
solve the angular integration analytically; as we shall see, the final result is still a
4D integral, but its computation is numerically advantageous since it presents two
smooth directions.

The integral form of the Dirac delta function,

(2 π)3 δ (k1 + k2 − k3) =
∫

dx e i x·(k1+k2−k3) , (6.29)
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includes three plane waves that can expanded via the Rayleigh formula (Eq. 5.88).
If we do so, we obtain an expression for the delta function that involves spherical
harmonics and Bessel functions [34]:

δ (k1 + k2 − k3) = 8 i L1+L2+L3

√
(2 L1 + 1)(2 L2 + 1)(2 L3 + 1)

4π

×
(

L1 L2 L3
0 0 0

) (
L1 L2 L3
M1 M2 M3

)

× YL1M1(k̂1) YL2M2(k̂2) (−1)L3 YL3M3(k̂3)

×
∫

dr r2 jL1(rk1) jL2(rk2) jL3(rk3) (6.30)

where a sum over the L and M indices is intended and the (−1)L3 factor comes
from the parity inversion of YL3M3(−k̂3) . The presence of YL3M3(k̂3) is suspicious,
becausewe have already integrated out the angular dependence of k3 . However, since
k3 is aligned with the zenith, we see that the dependence on k3 is only apparent:

YL3M3(k̂3) = YL3M3(θ = 0,φ) = δM30

√
2 L3 + 1

4π
. (6.31)

This is indeed the reason why we were allowed to take δ (k1 + k2 + k3) out of the
dΩ integral in Eq. 6.14. If we insert the delta function expansion (Eq. 6.30) and the
rescaled transfer function (Eq. 6.27) in the bispectrum integral (Eq. 6.20), we obtain

Bintr
�1�2�3

[Δ ] = 8 i L1+L2+L3 (−1)�1+�2+L3+m

×
√

(4π)3 (2 L1 + 1)(2 L2 + 1)(2 L3 + 1)2

(2 �1 + 1)(2 �2 + 1)(2m + 1)

×
(

�1 �2 �3
m′

1 m′
2 m

)(
L1 L2 L3
0 0 0

) (
L1 L2 L3
M1 M2 0

) ∫
d k1 d k2 d k3 d r

(2π)6
(k1 k2 k3 r)2

× T̃ (1)
�1 0

(k1) T̃ (1)
�2 0

(k2) 2 T (2)
�3m(k1, k2, k3) PΦ(k1) PΦ(k2) jL1 (rk1) jL2 (rk2) jL3 (rk3)

×
∫

dΩ(k̂1) Y�1m′
1
(k̂1) YL1M1 (k̂1) Y|m|m(k̂1)

×
∫

dΩ(k̂2) Y�2m′
2
(k̂2) YL2M2 (k̂2) + 2 perm. , (6.32)

We recall that the L and M indices come from the delta function expansion while the
m′ and m indices come from the axes rotation; all 8 indices are summed. It should
also be noted that the i L1+L2+L3 factor is always real because the second 3 j symbol
vanishes when L1 + L2 + L3 is odd. The two angular integrals in the last line can
be solved analytically using the Gaunt equality:

http://dx.doi.org/10.1007/978-3-319-21882-3_5
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∫
dΩ(k̂1) Y�1m′

1
(k̂1) YL1M1(k̂1) Y|m|m(k̂1)

=
√

(2 �1 + 1)(2 L1 + 1)(2m + 1)

4π

(
�1 L1 |m|
0 0 0

)(
�1 L1 |m|
m′

1 M1 m

)
,

(6.33)

∫
dΩ(k̂2) Y�2m′

2
(k̂2) YL2M2(k̂2) = √

(2 �2 + 1)(2 L2 + 1)

(
�2 L2 0
0 0 0

)(
�2 L2 0
m′

2 M2 0

)
.

We could express the last integral simply as δ�2L2 δm′
2M2

, but by doing so we would
not be able to spot the following identity:

∑

m′
1m′

2M1M2

(
�1 �2 �3
m′

1 m′
2 m

) (
L1 L2 L3
M1 M2 0

) (
�1 L1 |m|
m′

1 M1 m

) (
�2 L2 0
m′

2 M2 0

)

= (−1)�1+�2+L3+m δ�2L2√
2 �2 + 1

(
�3 L3 |m|
m 0 −m

) {
�1 �3 �2
L3 L1 |m|

}
,

(6.34)

where the term in curly brackets is Wigner’s 6j symbol. To derive the identity, one
has to introduce an extra factor in the sum,

√
2m + 1

(
|m| 0 |m|
m̃ 0−m̃

)
= δmm̃ . (6.35)

Then, the whole sum over the 5 azimuthal indices (m′
1, m′

2, M1, M2, m̃) collapses
to the product between a 3j and a 9j symbol (see Eq.34.6.1 of Ref. [11]). The latter
contains a vanishing entry and therefore collapses to a 6j symbol, thus yielding the
result in Eq. 6.34. Note that we have verified every step of this derivation using the
Mathematica software [59].

Expanding the Dirac delta function in spherical harmonics has allowed us to
solve the angular integrations and all the azimuthal sums but m analytically. As we
shall show in the next subsection, what is left is a 4D integral that can be tackled
numerically.

6.2.1.4 Final Formula

After inserting the geometrical identity (Eq.6.34) in the bispectrum integral
(Eq. 6.32), we obtain the final formula for the angle-averaged intrinsic bispectrum:
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Bintr
�1�2�3

[ Δ ] =
∞∑

m=−∞

�3+|m|∑
L3=|�3−|m||

�1+|m|∑
L1=|�1−|m||

× 8 i L1+�2+L3 4π (2 L1 + 1)(2 �2 + 1)(2 L3 + 1)

×
(

L1 �2 L3
0 0 0

) (
�1 L1 |m|
0 0 0

) (
�3 L3 |m|
m 0 −m

) {
�1 �3 �2
L3 L1 |m|

}

×
∫

d k1 d k2 d k3 d r

(2 π)6
(k1 k2 k3 r)2

× T̃ (1)
�1 0

(k1) T̃ (1)
�2 0

(k2) 2 T (2)
�3m(k1, k2, k3) PΦ(k1) PΦ(k2)

× jL1(rk1) j�2(rk2) jL3(rk3) + 2 perm. (6.36)

We recall that Bintr
�1�2�3

[ Δ ] is the bispectrum of the brightness perturbation, and that
the transfer functions in the integral are accordingly defined with respect to Δ (Eq.
6.6). In Sect. 6.3.1, we shall see that the observed intrinsic bispectrum, Bintr

�1�2�3
[ Θ ] ,

is obtained from the above by the simple relation

Bintr
�1�2�3

[ Θ ] = B̂intr
�1�2�3

[ Δ ] − 3 h�1�2�3

(
C�1C�2 + C�2C�3 + C�3C�1

)
,

(6.37)

where B̂intr is a simple rescaling of Bintr
�1�2�3

(Eq. 6.73) and h�1�2�3 is the purely
geometrical factor defined in Eq. A.20:

h�1�2�3 =
√

(2�1 + 1)(2�2 + 1)(2�3 + 1)

4π

(
�1 �2 �3
0 0 0

)
.

Weinvite the reader not to be intimidated by the long expression inEq. 6.36. In fact,
the formula is a substantial improvement over the starting point of our computation
(Eq. 6.9) because all the involved quantities are in a form that can be numerically
evaluated. The first-order transfer functions, T̃ (1) , can be produced in the matter of

seconds by any linear Boltzmann code, while the second-order one, T (2)
is a direct

product of SONG. The 3 j symbols and the spherical Bessel functions are purely
geometrical factors that can be precomputed and stored in tables using publicly
available libraries such as SLATEC [57] or GSL [16].

Squeezed limit The squeezed limit of the bispectrum consists in considering only
those configurations where one of the �’s is much smaller than the other two; thus,
the squeezed bispectrum encodes the correlations between large and small angular
scales. The projection functions in the line of sight integral enforce that the Fourier
modes contributing to such configurations are also squeezed, that is, one of the
three wavemodes has to be much smaller than the other two. Since we align k3 to
the polar axis, the triangular condition implies that, for squeezed configurations,
at least one between k1 or k2 is also aligned with the polar axis; it follows that the
quadratic sources of theEinstein andBoltzmann equations always contain at least one
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first-order perturbation with a polar angle θ � 0. In the absence of first-order vector
and tensor modes, any linear perturbation is proportional to Y�m(k̂) (Eq. B.9) which,
in turn, is proportional to sinm θ. Therefore, the quadratic sources are suppressed for
squeezed configurations unless m = 0. Because we assume that the m �= 0 modes
are only sourced by the quadratic sources (i.e. we assume the absence of primordial
vector and tensor modes), it follows that the m �= 0 transfer functions vanish in the
squeezed limit and so do the m �= 0 contributions to the intrinsic bispectrum.

Thus, the dominant contribution to the intrinsic bispectrum in the squeezed limit
comes from the scalar modes, that is, by setting m = 0 in Eq. 6.36:

B̂intr
�1�2�3

[ Δ ]
∣∣∣
m=0

= h�1�2�3

(
2

π

)3 ∫
d r r2

×
∫

d k1 k21 PΦ(k1) T̃ (1)
�1

(k1) j�1(rk1)

×
∫

d k2 k22 PΦ(k2) T̃ (1)
�2

(k2) j�2(rk2)

×
∫

d k3 k23 2 T (2)
�3

(k1, k2, k3) j�3(rk3) + 2 perm. ,

(6.38)

where we have introduced the notation T� ≡ T� 0/(2 � + 1) and used the identities

(
� L 0
0 0 0

)
= δ�L

(−1)�√
2� + 1

and

{
�1 �3 �2
�3 �1 0

}
= (−1)�1+�2+�3

√
(2�1 + 1)(2�3 + 1)

. (6.39)

The m = 0 formula is accurate to study the overlap between the intrinsic bispectrum
and the local template, the latter being strongly peaked on squeezed configuration.
This is what we have done in Ref. [40], as we shall detail in Sect. 6.4.

6.2.2 Numerical Estimation

We express the bispectrum formula schematically as

Bintr
�1�2�3

[ Δ ] =
∞∑

m=−∞

�3+|m|∑
L3=|�3−|m||

�1+|m|∑
L1=|�1−|m||

Γ
mL1L3
�1�2�3

× I mL1L3
�1�2�3

+ 2 perm. ,

(6.40)

where Γ groups the terms in Eq. 6.36 before the integral sign, and I the rest. The
computation of Bintr

�1�2�3
is then split in two parts: estimating the 4D integral, I , and

performing the three summations over the geometrical factors, Γ .
The two permutations in the formula refer to the exchange of k1, k2 and k3 (see

comment to Eq. 3.117). By looking back at Eq. 6.9, we see that they are equivalent

http://dx.doi.org/10.1007/978-3-319-21882-3_3
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to permutations in (�1m1), (�2m2) and (�3m3). Therefore, they can be accounted for
in the last step of the computation as

Bintr
�1�2�3

[ Δ ] = Basymm
�1�2�3

[ Δ ] + Basymm
�3�1�2

[ Δ ] + Basymm
�2�3�1

[ Δ ] , (6.41)

where Basymm is the first term in the right hand side of Eq. 6.40. Note that by doing
so, we also ensure that the intrinsic bispectrum is symmetric.

6.2.2.1 Integral Estimation

The integral in the intrinsic bispectrum reads

I mL1L3
�1�2�3

= 1

(2 π)6

∫
d r r2

∫
d k1 k21 PΦ(k1) T̃ (1)

�1 0
(k1) jL1 (rk1)

×
∫

d k2 k22 PΦ(k2) T̃ (1)
�2 0

(k2) j�2 (rk2)
∫

d k3 k23 2 T (2)
�3m(k1, k2, k3) jL3 (rk3) .

(6.42)

A similar integral has been efficiently treated in Fergusson and Shellard [13,
14], where the role of the second-order transfer function was played by the sep-
arable primordial bispectrum BΦ(k1, k2, k2). Our case is more complicated as

T (2)
�3m(k1, k2, k3) is not separable; however, we can still numerically solve the integral

in an efficient way by exploiting other useful properties of T (2)
�3m(k1, k2, k3).

Sampling in k1 and k2 The non-linear transfer function T (2)
�3m(k1, k2, k3) is rapidly

oscillating in k3 but it is smooth in the k1 and k2 directions. This is clear by looking
at the line of sight integral (Eq. 5.105), which is used to compute T̃ (2):

T̃ (2)
n (k1, k2, k3) =

τ0∫

τin

dτ e−κ(τ ) Jnn′(k3 (τ0 − τ )) S n′(k1, k2, k3) . (6.43)

Any feature in the source at the time of recombination, τrec, generates oscillations of
frequency τ0−τrec in the k3 direction of T̃ (2) , through the projection function J . The
k1 and k2 directions of T̃ (2), on the other hand, inherit the oscillation frequency of
S , which, at the time of recombination, is dictated to be of order τrec/

√
3 by the tight

coupling between the photon and baryon fluids. Because τ0 � 80 τrec for a standard
ΛCDM Universe, T̃ (2) oscillates in the k1 and k2 directions with a frequency ∼80

times slower than that of k3. The same argument applies to T (2)
, which is related to

T̃ (2) by the smooth rescaling shown in Eq. 6.26. The smoothness of the k1 and k2
directions substantially reduces the execution time, as the k3 integral can be solved
and tabulated on the small (k1, k2) grid discussed in Sect. 5.32. It should be noted
that, hadwe directly integrated out the delta function in Eq. 6.20 instead of expanding
it in spherical harmonics, we could not have used this property; in fact, in that case,

http://dx.doi.org/10.1007/978-3-319-21882-3_5
http://dx.doi.org/10.1007/978-3-319-21882-3_5
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the dependence of the transfer function on the wavemodes would have been mixed,
thus spoiling its smoothness in k1 and k2.

Sampling in r The projection function in the line of sight formula, above, is effec-
tively a spherical Bessel function (see comment to Eq. 5.97); similarly, in the bis-
pectrum formula, for �3 
 m we can approximate jL3 � j�3 . Thus, the k3 integral
in Eq. 6.42 is roughly given by

∫ ∞

0
d k3 k23 j�3(k3r) j�3(k3(τ0 − τrec)) S�3m(k1, k2, k3) , (6.44)

where we have also assumed that all the sources are localised on the last scattering
surface. The source function is smooth in k3, meaning that it acts as a modulation of
the two oscillating functions in the integrand. In the limit of a flat source, we can use
the closure relation of the spherical Bessel functions [34] to find

∫ ∞

0
d k3 k23 j�3(k3r) j�3(k3(τ0 − τrec)) ∝ δ(r − (τ0 − τrec)) . (6.45)

Thus, we expect the integrand of the bispectrum integral to be peaked around r �
τ0−τrec. The same argument applies to the k1 and k2 integrals, so that any contribution
to the bispectrum from regions where r is far from τ0 − τrec is threefold suppressed.
The argument breaks down when we consider the propagation sources (Eq. 5.114),
which are not localised on the last scattering surface and can therefore couple with
the late-time effects encoded in the linear transfer functions. This is the case of the
gravitational lensing, that couples with the integrated Sachs-Wolfe effect to give a
squeezed bispectrum [18, 28, 29, 31, 52, 56] that has been actually measured by the
Planck satellite [46]. In this work, however, we do not consider lensing. By including
only the scattering and metric sources, we obtain a sub-percent level convergence in
the bispectrum with an r -grid of O(100) points around τ0 − τrec (Sect. 6.5.1).

Order of the integrations Armedwith the knowledge that the r , k1 and k2 directions
are smooth, we estimate the bispectrum integral in a straightforward way. Below, we
describe the order of integration that we adopt; we also assume that (m, L3, L1) is
fixed.

1. We first compute the d k3 integral,

I�3(r, k1, k2) = 2
∫

d k3 k23 T (2)
�3m(k1, k2, k3) jL3(rk3) , (6.46)

and store the result as a table in r , k1, k2 and �3. For an average precision run
where each of these parameters is sampled inO(100) points, this corresponds to
solving the integral for about 108 times for each (m, L3, L1) configuration that
is considered. Note that we only need to compute I�3(r, k1, k2) for the k1 ≥ k2
configurations, as the behaviour of the rescaled transfer function (Eq. 6.26) with
respect to the exchange k1 ↔ k2 ensures that

http://dx.doi.org/10.1007/978-3-319-21882-3_5
http://dx.doi.org/10.1007/978-3-319-21882-3_5


212 6 The Intrinsic Bispectrum of the CMB

I�3(r, k1, k2)

I�3(r, k2, k1)
= (−1)m

(
sin θ2

sin θ1

)|m|
= (−1)m

(
k1
k2

)|m|
, (6.47)

where we have used the relation k1 sin θ1 = k2 sin θ2 (Eq. B.4). The (−1)m

factor comes from exchanging k1 ↔ k2 in the unrescaled transfer functions T̃ (2)

(Eq. B.12).
2. Then, we use the results of the previous integration to compute the d k2 integral,

I�2�3(r, k1) =
∫

d k2 k22 PΦ(k2) T̃ (1)
�2 0

(k2) j�2(rk2) I�3(r, k1, k2) , (6.48)

and store the result as a table in r , k1, �2 and �3 . The presence of the power
spectrum does not require an ad-hoc treatment as it is usually a smooth function
of k2 . Because T̃ (1)

�2 0
(k2) oscillates rapidly in k2 but I�3(r, k1, k2) does not, we

interpolate the latter in k2.
3. The d k1 integral,

I�1�2�3(r) =
∫

d k1 k21 PΦ(k1) T̃ (1)
�1 0

(k1) jL1(rk1) I�2�3(r, k1) , (6.49)

is equivalent to that in d k2 , so that it also requires the interpolation of I�2�3(r, k1)
in k1 . The result is stored in a table in �1, �2 and �3.

4. The last integral in d r ,

I�1�2�3 = 1

(2 π)6

∫
d r r2 I�1�2�3(r) . (6.50)

is the simplest one as it does not involve oscillations and only depends on �1, �2
and �3.

We remark that the three integrals in k are similar as they always involve the con-
volution of a rapidly oscillating function with a spherical Bessel function; in fact, in
SONG they are all solved using the same integration routine via a simple trapezoidal
rule.

6.2.2.2 Angular Summations

In the bispectrum formula of Eq. 6.40,

Bintr
�1�2�3

[ Δ ] =
∞∑

m=−∞

�3+|m|∑
L3=|�3−|m||

�1+|m|∑
L1=|�1−|m||

Γ
mL1L3
�1�2�3

× I mL1L3
�1�2�3

+ 2 perm. ,

(6.51)
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the sum over the azimuthal modes is in principle infinite and needs to be truncated
at some mmax. At its present state, SONG implements the intrinsic bispectrum for
any value of m, but we have not yet performed a full convergence test to assess the
optimal value of mmax. However, we expect the largest contribution to the intensity
bispectrum to come from the m ≤ 2 modes, because the other modes correspond to
multipoles that are tight-coupling suppressed during recombination.

For m ≤ 2, the summations over L1 and L3 contain a small number of addends.
The number is further reduced if one considers that, for the photon intensity, only
even values of �1 + L1 + m and �3 + L3 + m are allowed. Thus, for m = 0, there
is only one contribution to the bispectrum while for m = 1 and m = 2 there are 4
and 9, respectively. This is indeed a welcome simplification, since the bispectrum
integral in Eq. 6.42 needs to be solved for each combination of m, L3 and L1.

Another major simplification in the computation of Bintr
�1�2�3

comes from the fact
that them < 0 elements of the sum can be inferred from them > 0 ones. In fact, from
Eq. 6.26 it follows that, for the intensity, the rescaled transfer function is invariant
under a sign-flip of m,

T (2)
�3−m = T (2)

�3m , (6.52)

as the (−1)m factor in the definition of T (2)
�3m cancels with that coming from T̃ (2)

�3−m =
(−1)m T̃ (2)

�3m . Since the only term apart from T̃ (2)
�3m that depends on the sign of m in

the bispectrum formula Eq. 6.36 is

(
�3 L3 |m|
m 0 −m

)
, (6.53)

we infer that, for a given |m|, the contribution to the bispectrum is proportional to

(
�3 L3 |m|
m 0 −m

)
+
(

�3 L3 |m|
−m 0 m

)
=
[
1 + (−1) �3+L3+|m| ]

(
�3 L3 |m|
m 0 −m

)
, (6.54)

which forces the intensity bispectrum to vanish for odd values of �3 + L3 +|m| and
yields a factor 2 otherwise. That is, the negative azimuthal modes contribute to the
intrinsic bispectrum as much as their positive counterparts. We also note that, for the
intensity, the angle-averaged bispectrum Bintr

�1�2�3
[ Δ ] vanishes when �1 + �2 + �3 is

odd. This follows directly from the fact that the sums L1 + �2 + L3 , �1 + L1 + m
and �3 + L3 + m must all be even.

B-modes The above considerations have to be slightly adjusted when treating bis-
pectra involving B polarisation. In fact, the B-mode transfer functions satisfy

T̃ (2)
�3−m = (−1)m+1 T̃ (2)

�3m ⇒ T (2)
�3−m = −T (2)

�3m . (6.55)

This implies that, when considering an odd number of B-modes (e.g. 〈BT T 〉 or
〈B E E〉 ), the intrinsic bispectrum in Eq. 6.36 is proportional to
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(
�3 L3 |m|
m 0 −m

)
−
(

�3 L3 |m|
−m 0 m

)
=
[
1 − (−1) �3+L3+|m| ]

(
�3 L3 |m|
m 0 −m

)
, (6.56)

and therefore vanishes when �3+ L3+|m| is even. If we consider that L1+�2+ L3
and �1 + L1 + m still have to be even due to the 3 j symmetries, if follows that a
bispectrum with an odd number of B-modes possesses odd parity, that is, it vanishes
when �1 + �2 + �3 is even. On the other hand, a bispectrum with an even number
of B-modes possesses even parity and vanishes when �1 + �2 + �3 is odd. This
latter case includes the bispectra involving exclusively intensity or E-modes, such
as 〈T T T 〉, 〈E E E〉 and 〈T E E〉.

6.2.3 Linearly Propagated Bispectrum

The linearly propagated bispectrum,
〈
Δ3
〉
lin , describes how the primordial non-

Gaussianity of the CMB evolves throughout cosmic history. It is therefore crucial
to accurately compute

〈
Δ3
〉
lin to relate the current CMB observations to the non-

Gaussian properties of the early Universe.
The linear bispectrum has a simple form,

〈
Δ3
〉
lin

=
∫

dk1 dk2 dk3

(2 π)6
δ (k1 + k2 + k3)

× T (1)
�1m1

(k1) T (1)
�2m2

(k2) T (1)
�3m3

(k3) BΦ(k1, k2, k3) ,

where the primordial bispectrum BΦ is defined by (Sect. 3.72)

〈Φ(k1)Φ(k2)Φ(k3)〉 = (2π)3 δ (k1 + k2 + k3) BΦ(k1, k2, k3) . (6.57)

The numerical computation of
〈
Δ3
〉
lin requires a simplified treatment with respect

to the intrinsic bispectrum, because of the absence of the complicated second-order
transfer function. Schematically, the steps involved are:

1. Substitute the three linear transfer functions with

T (1)
�m (k) =

√
4π

2 � + 1
Y�m(k̂) T̃ (1)

� 0 (k) (6.58)

to express the integrand in terms of the transfer functions in the coordinate system
where the zenith is aligned with k , which are those actually computed by a
Boltzmann code.

2. Expand the Dirac delta function in spherical harmonics according to Eq. 6.30;
this introduces 6 sums in (L1M1), (L2M2) and (L3M3) and the Gaunt coefficient
G L1L2L3

M1M2M3
.

http://dx.doi.org/10.1007/978-3-319-21882-3_3
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3. Enforce the statistical isotropy of the Universe to set the primordial bispec-
trum to depend only on the magnitudes of the wavevectors: BΦ(k1, k2, k3) =
BΦ(k1, k2, k3) (Sect. 3.7.2).

4. Solve the simple angular integrals in dΩ(k̂1) , dΩ(k̂2) and dΩ(k̂3) exploiting
the orthogonality property of the spherical harmonics; the resulting Kronecker
deltas can be used to enforce L = � and M = m and thus solve the summations
introduced by the delta function expansion.

As a result, one is left with the following formula for the linear bispectrum:

〈
Δ3
〉
lin

= G �1�2�3
m1m2m3

(
2

π

)3
i �1+�2+�3

√
(2 �1 + 1)(2 �2 + 1)(2 �3 + 1)

(4π)3

×
∫

d r r2
∫

d k1 k21
T̃ (1)

�1 0
(k1)

2 �1 + 1
j�1(rk1)

∫
d k2 k22

T̃ (1)
�2 0

(k2)

2 �2 + 1
j�2 (rk2)

×
∫

d k3 k23
T̃ (1)

�3 0
(k3)

2 �3 + 1
j�3(rk3) BΦ(k1, k2, k3) . (6.59)

At first order, the temperature bispectrum is related to the brightness one by

43
〈
a�1m1 a�2m2 a�3m3

〉
lin =

〈
Δ3
〉
lin

i−�1−�2−�3

√
(4π)3

(2 �1 + 1)(2 �2 + 1)(2 �3 + 1)
(6.60)

The factor 43 comes from the fact that, at the linear level, Δ = 4Θ (Eq. 4.69), while
the remaining coefficients are due to the different convention for the Y�m expansions
of Δ and Θ (Eq. A.5). Furthermore, due to the absence of non-scalar modes, it is
customary to express the transfer functions in terms of their Legendre coefficients
rather than the spherical multipoles; the two are related by a 2� + 1 factor:

T̃ (1)
� (k) = T̃ (1)

� 0 (k)

2 � + 1
. (6.61)

With these notational changes, our formula for the linearly propagated bispectrum
reads

43
〈
a�1m1 a�2m2 a�3m3

〉
lin = G �1�2�3

m1m2m3

(
2

π

)3 ∫
d r r2

∫
d k1 k21 T̃ (1)

�1
(k1) j�1 (rk1)

×
∫

d k2 k22 T̃ (1)
�2

(k2) j�2 (rk2)

×
∫

d k3 k23 T̃ (1)
�3

(k3) j�3 (rk3) BΦ(k1, k2, k3) , (6.62)

which is the usual form found in the literature [13, 24].

http://dx.doi.org/10.1007/978-3-319-21882-3_3
http://dx.doi.org/10.1007/978-3-319-21882-3_4
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It should be noted that the formula for the linearly propagated bispectrum, above,
resembles that for the scalar intrinsic bispectrum, shown in Eq. 6.38. In fact, the two
formulae are equivalent if we substitute

T̃ (1)
�3

(k3) BΦ(k1, k2, k3) → 2 T (2)
�3

(k1, k2, k3) PΦ(k1) PΦ(k2) . (6.63)

This result was expected since the same transformation relates Eqs. 6.7 and 6.9.

6.2.3.1 The Primordial Templates

Many models of the early Universe exist that give definite predictions for the shape
and amplitude of the primordial bispectrum BΦ(k1, k2, k3). In principle, they can
be falsified or constrained by comparing the measured CMB bispectrum with the
predicted one, via Eq. 6.62. To facilitate the comparison between theory and obser-
vations, three theoretical templates have been put forward that capture most of the
physics in the models of the early Universe:

• The local shape [17, 24, 58],

Blocal
Φ (k1, k2, k3) = 2 f localNL

[
PΦ(k1) PΦ(k2) + PΦ(k2) PΦ(k3) + PΦ(k3) PΦ(k1)

]
,

(6.64)

is produced in a wide class of multi-field models, including the curvaton one [12,
32, 33, 36, 37]. It peaks at the so-called “squeezed” triangles where one of the
sides is much smaller than the other two.

• The equilateral shape [9],

Beq
Φ (k1, k2, k3) = 6 f eqNL

×
{

− PΦ(k1) PΦ(k2) − PΦ(k1) PΦ(k3) − PΦ(k2) PΦ(k3)

− 2
[

PΦ(k1) PΦ(k2) PΦ(k3)
]2/3 + 5 perm.

+ [
PΦ(k1) PΦ(k2)

2PΦ(k3)
3 ]1/3 + 5 perm.

}
, (6.65)

arises in single-field models with non-standard kinetic terms such as DBI infla-
tion [1, 54] or, in general, in models where the Lagrangian involves higher-order
derivative operators. As the name suggests, it peaks when the three wavemodes
have similar values. The local and equilateral shapes are almost orthogonal.
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• The orthogonal shape [51],

Borth
Φ (k1, k2, k3) = 6 f orthNL

×
{

− 3 PΦ(k1) PΦ(k2) − 3 PΦ(k1) PΦ(k3) − 3 PΦ(k2) PΦ(k3)

− 8
[

PΦ(k1) PΦ(k2) PΦ(k3)
]2/3 + 5 perm.

+ 3
[

PΦ(k1) PΦ(k2)
2PΦ(k3)

3 ]1/3 + 5 perm.
}

, (6.66)

was constructed to be as orthogonal as possible to the local and orthogonal shapes;
a few models of inflation are known to produce this shape, one of them being the
DBI Galileon inflation [49].

The three shapes of non-Gaussianity have the advantage of being separable in k1, k2
and k3 , thus allowing the CMB bispectrum to be quickly estimated via Eq. 6.62 by
solving four one-dimensional integrals.

In SONG, we have implemented the computation of the three primordial tem-
plates in the “bispectrum.c” module. The module computes the linearly propagated
bispectrum of the CMB once the primordial bispectrum function BΦ(k1, k2, k3) is
provided. The non-separable shapes are implemented following the same procedure
used for the intrinsic bispectrum, described in Sect. 6.5. We have used the bispec-
trum module to produce the Fisher matrices of Ref. [26], where we have considered
the two non-separable shapes from the DBI Galileon model of inflation; the results
we have obtained match with those of the WMAP team [5], thus confirming our
computation [6, 27, 41].

6.3 From the Bispectrum to fNL

The primordial and intrinsic contributions coexist in the observed CMB bispectrum.
To disentangle them and quantify their amplitude requires a detailed knowledge
of the expected signals and of their correlation for a given CMB survey. In this
section, we introduce a Fisher matrix approach whereby the elements of the matrix
are scalar products between the considered bispectra (local, equilateral, orthogonal,
intrinsic) that quantify their overlap on the sky. In particular, the diagonal elements
will represent the potential of the considered CMB survey to measure the single
bispectra,while the off-diagonal ones quantify how the presence of the other bispectra
might bias such measurement.

Before introducing the Fisher matrix approach, however, we define the observed
temperature bispectrum and relate it to the theoretical one for the brightness, which
we have derived in Eq. 6.36.
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6.3.1 The Temperature Bispectrum

In Sect. 4.3.1, we have shown that it is not possible to unambiguously define the
temperature in a perturbed Universe, because the perturbations provoke an unbal-
anced transfer ofmomentum between photons and baryons that breaks the blackbody
spectrum of the photon distribution function. As a result, one can choose between
a number of “effective” temperatures, each corresponding to a different moment of
the distribution function (Eq. 4.60); while this choice is in general arbitrary, it was
shown that the CMB bispectrum is insensitive to it [43].

In SONG, we adopt the commonly used bolometric temperature T [43], that is
the temperature of the blackbody spectrumwith the same energy density as the CMB.
It is related to the brightness perturbation Δ by

(
T

T

)4

= I
I

=⇒ ( 1 + Θ )4 = 1 + Δ , (6.67)

which, up to second order, reads

Δ = 4Θ + 6Θ Θ and Δ̃ = 4Θ − 2Θ Θ , (6.68)

where Δ̃ = Δ − Δ2/2 is the variable introduced in Sect. 5.5.3 to treat the redshift
contribution.

We define the temperature angle-averaged bispectrum as

B�1�2�3 [ Θ ] ≡ 〈
a�1m1 a�2m2 a�3m3

〉 ( �1 �2 �3
m1 m2 m3

)
, (6.69)

where the a�m’s are the multipoles of the observed CMB temperature map:

Θ(n) =
∑
�m

a�m Y�m(n) , (6.70)

which are conventionally related to the Θ�m’s by Eq. A.5:

a�m = i−�

√
4π

2� + 1
Θ�m . (6.71)

Using the identities in 6.68we can relate the temperature bispectrum to the analogous
bispectra constructed using the brightness moments Δ and Δ̃ :

Bintr
�1�2�3

[ Θ ] = B̂intr
�1�2�3

[ Δ ] − 3 h�1�2�3

(
C�1C�2 + C�2C�3 + C�3C�1

)

= B̂intr
�1�2�3

[ Δ̃ ] + h�1�2�3

(
C�1C�2 + C�2C�3 + C�3C�1

)
,

(6.72)

http://dx.doi.org/10.1007/978-3-319-21882-3_4
http://dx.doi.org/10.1007/978-3-319-21882-3_4
http://dx.doi.org/10.1007/978-3-319-21882-3_5
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where h�1�2�3 is the purely geometrical factor defined inEq.A.20. The angular power
spectrum of temperature fluctuations,C� , is obtained from linear perturbation theory
as 〈a�m a�′m′ 〉 = (−1)m C� δ��′ δm−m′ . The rescaled bispectrum B̂ is defined as

B̂�1�2�3 [ Δ ] = 1

43
〈
Δ�1m1 Δ�2m2 Δ�3m3

〉
i−�1−�2−�3

√
(4π)3

(2 �1 + 1)(2 �2 + 1)(2 �3 + 1)
,

(6.73)

in order to counter the 4 coefficients in Eq. 6.68 and the � factors in the definition of
the a�m’s with respect the Θ�m’s (Eq. 6.71). Note that to derive the identities in Eq.
6.72 we have inserted Eq. 6.68 into the temperature bispectrum

〈
a�1m1 a�2m2 a�3m3

〉
and used Wick’s theorem to obtain the terms quadratic in the C�’s.

In principle, the temperature bispectrum can be obtained by either computing
B�1�2�3 [ Δ ] or B�1�2�3[ Δ̃ ] . In practice, as we have explained in Sect. 5.5.3, using
the latter is advantageous because the Δ̃ variable includes by construction the
numerically challenging redshift contribution. Thus, in SONG we first compute the
bispectrum formula in Eq. 6.36, using the transfer functions for Δ̃ , and then build
the temperature bispectrum with the relation in the second line of Eq. 6.72.

6.3.2 The Estimator

We quantify the importance of the intrinsic bispectrum by using a Fisher matrix
approach. The Fisher matrix element between two temperature bispectra B i and B j

is given by [24, 56]

F i, j = fsky

�max∑
2≤�1≤�2≤�3

B i
�1�2�3

B j
�1�2�3

C̃�1C̃�2C̃�3 Δ�1�2�3

, (6.74)

where C̃� is the observed spectrum, i.e. the signal plus noise, �max and fsky are,
respectively, the maximum angular resolution and fraction of covered sky attainable
with the considered CMB survey, and Δ�1�2�3 is equal to 1, 2, 6 for triangles with
no, two or three equal sides. The bispectrum appearing in the estimator is the angle-
averaged one, defined as

〈
a�1m1 a�2m2 a�3m3

〉 =
(

�1 �2 �3
m1 m2 m3

)
B�1�2�3 . (6.75)

For the intrinsic bispectrum, this corresponds to the one in Eq. 6.72.
The observability of a given bispectrum B is quantified by its signal-to-noise:

S/N = √
F B,B . If the signal-to-noise is smaller than unity, the considered survey

will not be able to distinguish B from the intrinsic variance of the temperature field,

http://dx.doi.org/10.1007/978-3-319-21882-3_5
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which is given by the C� product in the denominator of Eq. 6.74. The amplitude of
the primordial templates is parametrised by the fNL parameter, so that

σB
fNL = (S/N )−1 = 1√

F B,B
(6.76)

is the minimum value of f BNL that is needed for the survey to be able to detect the
bispectrum B.

Several effects contribute to the bispectrum of the cosmic microwave background
and one wants to be able to distinguish them. For example, a measurement of the pri-
mordial signal is subject to a number of contaminants from Galactic emissions (syn-
chrotron, free-free, thermal dust, CO molecular lines), extra-Galactic point sources
and cosmological effects such as the ISW-lensing bispectrum [46]. A contaminant
C generally induces a bias on the fNL measurement of a primordial template T ; if
the bispectrum generated by the contaminant is theoretically known, its bias can be
quantified using the Fisher matrix as

f CNL = FC,T

FT,T
. (6.77)

The bias f CNL is the amplitude of primordial non-Gaussianity that would be (wrongly)
inferred by applying the estimator to the bispectrum produced by the contaminantC .
We shall use this formula in Sect. 6.4 to quantify the contamination to the primordial
signal caused by the intrinsic bispectrum.

The computation of the estimator, the noise model and the interpolation of the
bispectra are implemented in SONG in a separate module called “fisher.c”. No
assumptions are made in the module on the input bispectra, which can be of any
type, e.g. template, intrinsic or analytical bispectra. It is, in this respect, a general
and flexible tool to produce Fisher matrices and fNL estimates for any number of
bispectra. Furthermore, the experiment parameters (resolution, number of frequency
channels, their beam and noise) can be specified via SONG’s input file in a straight-
forward way.

6.3.2.1 Noise Model

In what follows, we shall assume a Planck-like experiment with homogeneous noise,
where the observed CMB spectrum is given by

C̃� ≡ C� + N� . (6.78)
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Table 6.1 Beam and noise parameters for the frequency channels of Planck where the CMB signal
dominates over the foregrounds

ν (GHz) θFWHM σ (µK) fsky �max

100 9.66 10.77 100% 2500

143 7.27 6.40 100% 2500

217 5.01 12.48 100% 2500

The values are taken from the Planck Explanatory Supplement, which can be found at the following
URL: http://wiki.cosmos.esa.int/planckpla/index.php/Main_Page

The noise power spectrum, N� , is a combination of the noise from each frequency
channel c:

N� =
[∑

c

N−1
�,c

]−1

. (6.79)

We assume that the noise in the channel c is due to the instrument beam, taken
to be Gaussian and parametrised by θFWHM,c, and to the limited sensitivity of the
experiment, represented by the variance σ2

c per pixel of size θFWHM,c [47]:

N�,c =
(

σc θFWHM,c

T

)2

exp

[
� (� + 1) θ2FWHM,c

8 ln 2

]
. (6.80)

In our analysiswe include the 100, 143 and 217GHz frequency channelsmeasured
by the HFI instrument on board of Planck, where the CMB signal dominates over
the foregrounds. As for the noise and beam parameters, we use those provided by
the Planck team, which we report in Table6.1. By doing so, we find the following
Fisher matrix for the local, equilateral and orthogonal shapes (Sect. 6.2.3):

F =
⎛
⎝

398 6.95 −28.7
6.95 2.59 −0.200

−28.7 −0.200 10.1

⎞
⎠× 10−4 , (6.81)

where to compute the transfer functions we have used the best-fit cosmological para-
meters from Planck (dataset Planck+WP+highL+BAO) [45]. The diagonal elements
can be converted to uncertainties on the fNL parameters via Eq. 6.76,

σlocal
fNL = 5.01 , σ

eq
fNL

= 62.1 , σorth
fNL = 31.5 , (6.82)

that are in line with the errors of the Planck experiment [46] quoted in Eq. 6.1.4

4More precisely, our uncertainties are about 15−20% smaller than Planck’s. The reason is that the
error budget in Planck’s analysis includes uncertainties frommore subtle effects such as incomplete
foreground removal. By setting fsky = 0.74 in our Fishermatrix estimator, we obtain a percent-level
match.

http://wiki.cosmos.esa.int/planckpla/index.php/Main_Page
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6.3.2.2 Interpolation Strategy

The Fisher matrix in Eq. 6.74 is given by a sum over all the independent bispectra
configurations up to �max. For a typical run where �max = 2000, this corresponds
to computing the intrinsic bispectrum for almost a billion configurations, a task
that would take weeks even on a supercomputer. The transfer functions, however,
are determined by the acoustic oscillations at the time of recombination and thus
oscillate with a period of � = O(100); the bispectrum, which is the correlation of
three transfer functions, inherits this property. Therefore, the features of the intrinsic
bispectrum can be captured using an �-samplingwith a step of � = O(10). InSONG,
we build a grid in �which starts as logarithmic and,when the logarithmic step exceeds
a fixed linear step, continues linearly up to �max . In this way, we ensure that the low-�
regions are sampled more finely than the large-� ones. Using this inhomogeneous
sampling, we build a bidimensional grid in �1 and �2 and then choose for each node
an �3-sampling that satisfies the triangular condition, in analogy to what is done for
the wavemodes sampling (Sect. 5.32).

To compute the Fisher matrix, we resort to interpolation. The main difficulty in
interpolating the bispectrum is that it is not defined on a cubic grid. In fact, the
triangular condition,

|�i − � j | ≤ �k ≤ �i + � j with i, j, k = 1, 2, 3, (6.83)

results in a mesh for (�1, �2, �3) that has the shape of a “tetrapyd”, the union of
two triangular pyramids through the base (see Fig. 2 of Ref. [15]). A simple trilinear
method can be used to interpolate the bispectrum, but it is inaccurate near the edges
of the tetrapyd as it inherently assumes that the domain is cubic. The problem can be
circumvented by deforming the allowed region to a cube via a geometrical transfor-
mation and then using trilinear interpolation [14]. While viable, this approach would
force us to discard the points that do not fall in the transformed grid, thus requiring
a finer �-sampling.

Rather than relying on a cubicmethod,we devise a general interpolation technique
that is valid on any mesh. We first define a correlation length L and divide the
tetrapyd domain in boxes of side L . To compute the interpolation in an arbitrary
point � = (�1, �2, �3), we consider the values of all the nodes in the box where �

falls and in the adjacent ones. To each node, we assign a weight that is inversely
proportional to its distance from �. The problem with this approach is that, the mesh
being inhomogeneous, there might be a group of close nodes in one direction that
influences the interpolated value in � much more than a closer point in the opposite
direction. In order to prevent this, we weight down the nodes that have a high local
density within a certain distance from them. This mesh interpolation technique relies
on two free parameters:

1. The correlation length L , which sets the size of the local region influencing
the interpolation. It should correspond roughly to the largest distance of two
neighbouring points.

http://dx.doi.org/10.1007/978-3-319-21882-3_5
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2. The grouping length, that is the distance below which many close nodes are
considered as a single one. It is used to avoid the interpolation being determined
by a bunch of close nodes in one direction. The grouping length should roughly
correspond to the shortest distance between two points.

We have found the optimal values for the logarithmic step, the linear step, the
correlation length and the grouping length through extensive convergence tests. As a
result, SONG can now compute the signal-to-noise of the intrinsic bispectrum at the
percent-level accuracy using only 60 points per �-direction up to �max = 2000 (Sect.
6.5.1). The mesh interpolation technique is used with success also to compute the
Fisher matrix for the separable bispectra such as the local, equilateral and orthogonal
templates; as an example,we can compute the signal-to-noise of the equilateralmodel
for a given cosmology with ∼1% accuracy in the matter of seconds on a quad-core
machine.

6.4 Results

We present results for the intrinsic bispectrum considering three different com-
binations of line of sight sources. The first considered bispectrum (B R) includes
only sources located on the surface of last scattering, that is the |κ̇| sources in Eq.
5.107 plus the second-order Sachs-Wolfe effect, 4 |κ̇| Ψ , which only contributes to
the monopole. The second (B R+Z ) also includes the redshift term of QL , that is
4 (ni∂i Ψ − Φ̇)Δ. This is computed using Δ̃ , as discussed in Sect. 4.4.2, and it is
the same bispectrum presented in Huang and Vernizzi (2012) [21]. Finally, B R+Z+M

consists of the above sources plus all the terms inM (Eq. 4.162). One of such terms
gives rise to the second-order integrated Sachs-Wolfe effect, or Rees-Sciama effect
[7, 35, 38, 48], which is given by 4 (Ψ̇ +Φ̇). The latter bispectrum contains all terms
in theBoltzmann equation but the time-delay and lensing contributions (first and third
line of Eq. 5.114, respectively), and is therefore our most complete bispectrum.

6.4.1 Scalar Modes

We compute the contamination f intrNL induced by the intrinsic bispectra for the three
models of primordial non-Gaussianity described in Sect. 6.2.3: local, equilateral
and orthogonal. Our results are shown in Table6.2, where we assume a Planck-like
experiment with the noise model described in Sect. 6.3, and in Table6.3, where we
assume an ideal experiment with �max = 2000. These numbers do not include the
non-scalar contributions, that is they have been computed using only the m = 0
contribution to the sum in Eq. 6.40. Therefore, for the equilateral and orthogonal
models, they only represent the dominant contribution to the signal. On the other

http://dx.doi.org/10.1007/978-3-319-21882-3_5
http://dx.doi.org/10.1007/978-3-319-21882-3_4
http://dx.doi.org/10.1007/978-3-319-21882-3_4
http://dx.doi.org/10.1007/978-3-319-21882-3_5
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Table 6.2 Correlations between the primordial templates and the intrinsic bispectra, computed as
f intrNL = F I,T /FT,T , for a Planck-like experiment characterised by noise parameters in Table6.1

Model B R B R+Z B R+Z+M S/N

Local 2.3 0.40 0.33 0.19

Equilateral 6.4 4.2 3.7 0.016

Orthogonal −4.3 −0.80 −0.82 0.031

S/N 0.57 0.34 0.34 –

The signal-to-noise S/N is given by the square root of the autocorrelation

Table 6.3 The same as Table6.3, but considering a cosmic variance limited CMB survey with
�max = 2000

Model B R B R+Z B R+Z+M S/N

Local 2.5 0.58 0.51 0.24

Equilateral 6.7 4.7 4.2 0.018

Orthogonal −5.1 −1.38 −1.35 0.035

S/N 0.77 0.47 0.47 –

hand, we expect our local model results to be accurate, as vector and tensor modes
are negligible in the squeezed configurations where the local template peaks.

The most striking feature of Tables6.2 and 6.3 is the difference between the B R

and B R+Z bispectra, with the former yielding a larger fNL contamination. This effect
is clear also from Fig. 6.1, where we plot B R and B R+Z for a squeezed configuration.
The recombination-only curve exhibits a positive offset with respect to the integrated
one showing the importance of the integrated effects which includeΔ(1). On the other
hand, the time-integrated effects given by the metric affect f intrNL only marginally, and
do not seem to affect the signal-to-noise. This can be seen by comparing the B R+Z

and B R+Z+M columns of Table6.3.
The last column of Table6.3 can be computed by using a first-order Boltzmann

code. Our value of S/N = 0.24 for the local-template agrees with the one obtained
using the first-order code CAMB [30] and with Ref. [24].

In Fig. 6.2, we show the signal-to-noise ratio of the B R+Z+M bispectrum as a
function of �max, which is the angular resolution of the considered experiment. We
find that, adopting the noise model of a Planck-like experiment, the signal to noise
saturates at S/N � 0.34. For an ideal experiment which is limited only by cosmic
variance, the signal-to-noise ratio reaches unity only for �max � 3000.

6.4.1.1 Reproducing Pitrou’s Results

Pitrou et al. [44] found f intrNL ∼ 5 and S/N (�max = 2000) ∼ 1 by using the Boltz-
mann code CMBquick [42] and assuming a cosmic variance limited experiment. In
that code, the bispectrum was computed by including all line of sight sources in
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Fig. 6.1 Numerical temperature bispectra B R and B R+Z , together with the squeezed-limit approx-
imation in Eq. 6.86 for a WMAP7 cosmology [25], where �1 = 6 and �2 = �3 = � . We normalise
the curves with respect to the ultra-squeezed limit for a local-type bispectrum with f Φ

NL = 1 [17,
24], so that the primordial curve would appear as a constant horizontal line with amplitude close
to unity. Plot taken from Pettinari et al. [40], page 10. c© SISSA Medialab Srl. Reproduced by
permission of IOP Publishing. All rights reserved

Fig. 6.2 Signal-to-noise ratio of the B R+Z+M bispectrum, which includes all effects apart from
time-delay and lensing. The S/N saturates at∼0.34 for � > 2000. A cosmic-variance limited exper-
iment with a resolution of �max = 2000 would yield S/N � 0.47; for the same ideal experiment,
the S/N reaches unity only at �max � 3000

Eq. 5.107, including lensing and time-delay, and integrating them until shortly after
recombination. This is perfectly achievable since lensing and time-delay pose numer-
ical problems only at later times, when small-scale multipoles get excited. However,
the choice of the cutoff time is arbitrary as the time-integrated effects are important
throughout cosmic evolution.

http://dx.doi.org/10.1007/978-3-319-21882-3_5
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We ran SONG with the same parameters and cutoff time as CMBquick, and we
obtained similar values: f intrNL = 3.7 and S/N (�max = 2000) = 1.1. As pointed
out in Sect. 6.5.1, the remaining discrepancy might be due to a lack of numerical
convergence inCMBquick. Furthermore, themost recent version ofCMBquick yields
a value of f intrNL ∼ 35 which is more in line with what we find.

6.4.2 Non-scalar Modes

The results that we have discussed above were published in Pettinari et al. [40]. Since
then, we have updated SONG to implement the m �= 0 modes and produced the
intrinsic bispectrum including the vector and tensor modes. That is, we have com-
puted the bispectrum formula in Eq. 6.36 considering the elements of the azimuthal
sum from −2 to +2 . Before showing our results, let us remark that we have not yet
performed extensive convergence tests on the non-scalar modes; we cannot therefore
guarantee their accuracy to more than the 10% level.

The Fisher matrix that we obtain when we include the scalar, vector and tensor
modes considering a cosmic variance limited experiment with �max = 2000 is:

F =

⎛
⎜⎜⎝

614 (590) 8.98 (8.98) −39.8 (−39.4) 267 (299)
8.98 (8.98) 3.18 (3.18) −0.44 (−0.45) 13.9 (13.5)

−39.8 (−39.4) −0.44 (−0.45) 12.6 (12.5) −6.84 (−16.9)
267 (299) 13.9 (13.5) −6.84 (−16.9) 2530 (2170)

⎞
⎟⎟⎠× 10−4 .

(6.84)

The ordering of the rows and columns is local, equilateral, orthogonal and intrinsic.
The values in parentheses correspond to the scalar contribution to the intrinsic bispec-
trum.6 The Fisher matrix elements translate to a signal-to-noise ratio of the intrinsic
bispectrum of S/N = 0.50 (0.47) and to biases on the primordial measurements of

f localNL = 0.44 (0.51) , f eqNL = 4.4 (4.2) , f orthNL = −0.54 (−1.35) .

(6.85)

Neither the signal-to-noise nor the bias to the primordial signal are significantly
affected by the inclusion of the vector and tensor modes, with the exception of f orthNL

5Cyril Pitrou, private communication (2013).
6Note that the inclusion of the non-scalar modes should not affect the S/N of the primordial
templates, because we assume that the vector and tensor modes vanish at first order. However,
we can see from the Fisher matrix in Eq. 6.84 that there are differences of the order 5% for the
local template. The reason for this discrepancy is purely numerical: in order to compute the intrinsic
bispectrum for them �= 0modeswe have adopted a different �-grid that contains only configurations
where �1 + �2 + �3 is even, as the bispectrum formula (Eq. 6.36) vanishes otherwise. The local
template is the most affected one by this slightly worse grid because it is very peaked for squeezed
configurations.
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which is small in both cases. In principle, we should include in our analysis also the
|m| > 2 modes; however, we do not expect them to make a difference because they
correspond to multipoles that are tight-coupling suppressed during recombination.

6.5 Robustness of SONG’s Bispectra

The computation of the intrinsic bispectrum via Eq. 6.36 involves estimating a four-
dimensional integral over six oscillatory functions; one of them is the second-order
transfer function, which is obtained by solving a large differential system (Sect. 5.3)
and an oscillating integration (Sect. 5.5) for ∼106 configurations of the wavemodes.
The resulting bispectrum is then summed over ∼109 multipoles using a novel inter-
polation method to obtain the Fisher matrix (Sect. 6.3.2).

SONG implements all these steps in an efficient way, so that a Fisher matrix for
a given cosmological model is produced to 5% precision in about 4 CPU-hours. The
point, however, is not only speed but accuracy: how can we trust SONG’s results
after so much numerical processing? To answer the question, we have run several
tests onSONG’s final products, that is the intrinsic bispectrum and its signal-to-noise
ratio; these numerical and analytical checks are complementary to those involving
the differential system, which we have discussed in Sect. 5.6.

6.5.1 Convergence Tests

We have checked the numerical robustness of our bispectrum results by varying the
most relevant numerical parameters in SONG:

• Nτ , number of sampling points in conformal time for the line of sight sources
(Sect. 5.3.2).

• Nk , number of sampling points per direction of k-space (k1, k1, k3) for the transfer
functions (Sect. 5.3.2).

• NL , number of sampling points per direction of �-space (�1, �2, �3) for the bis-
pectrum (Sect. 6.3.2).

• Δr , step size of the r -grid in the bispectrum integrals in Eqs. 6.36 and 6.62.
• kmax, maximum value of k for which we compute the transfer functions (Sect.
5.3.2).

• Lmax, highest multipole source considered in the line of sight integral in Eq. 5.95.

In Fig. 6.3, we show how quickly the signal-to-noise of the intrinsic bispectrum
converges for all the tested parameters. (Note that the convergence of f intrNL =
F B,T /FT,T is even faster than the convergence of S/N = √

F B,B as numerical
errors tend to cancel when taking ratios.)

We find that the signal strongly depends on the number of multipoles included in
the line of sight integration, Lmax , as shown in the bottom-right panel of Fig. 6.3.

http://dx.doi.org/10.1007/978-3-319-21882-3_5
http://dx.doi.org/10.1007/978-3-319-21882-3_5
http://dx.doi.org/10.1007/978-3-319-21882-3_5
http://dx.doi.org/10.1007/978-3-319-21882-3_5
http://dx.doi.org/10.1007/978-3-319-21882-3_5
http://dx.doi.org/10.1007/978-3-319-21882-3_5
http://dx.doi.org/10.1007/978-3-319-21882-3_5
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Fig. 6.3 Convergence of the signal-to-noise ratio for B R+Z+M , our most complete bispectrum, for
a cosmic variance limited experiment with �max = 2000. The horizontal blue line in each panel
represents the value obtained using the default parameters (i.e. the typical run of SONG). Refer to
the text for details on the tested parameters. Plot taken from Pettinari et al. [40], page 14. c© SISSA
Medialab Srl. Reproduced by permission of IOP Publishing. All rights reserved

While at first order there are no line of sight sources higher than the quadrupole (Eq.
5.110), at second order the sum JL�m SLm has to be cut at a suitable Lmax — see Eq.
5.95 and the discussion in Sect. 5.5.2. We obtain a convergence only for Lmax > 8 ,
with lower values yielding a larger signal. This behaviour might partly explain the
large value of f intrNL found by Pitrou et al. (2010) [44], who used Lmax = 4.

As illustrated in Sect. 6.3.2, we compute the Fisher matrix elements in Eq. 6.74
by interpolating the bispectra on a mesh. The top-right panel of Fig. 6.3 shows how
our interpolation technique yields percent-level precision with just 60 points out of
2000 in each �-direction.We also tested the interpolation against known results, such
as the signal-to-noise of the local model, and obtained the same level of agreement.

6.5.2 Squeezed Limit

For squeezed triangles, where the small-k side is within the horizon today but was
not at recombination, the intrinsic bispectrum is known approximately [8]. In this
configuration, the long-wavelength mode acts as a perturbation of the background
that alters the observed angular scale of the short wavelength modes. The reduced
bispectrum for the bolometric temperature then takes the following form [4, 10, 28]:

http://dx.doi.org/10.1007/978-3-319-21882-3_5
http://dx.doi.org/10.1007/978-3-319-21882-3_5
http://dx.doi.org/10.1007/978-3-319-21882-3_5
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b�1�2�3[ Θ ] = C�1C�2 + C�1C�3 + C�2C�3

− CT ζ
�1

1

2

(
C�2

d ln (�2
2 C�2)

d ln �2
+ C�3

d ln (�3
2 C�3)

d ln �3

)
, (6.86)

where CT ζ
�1

is the correlation between the photon temperature and the super-horizon
curvature perturbation ζ = Δ/4 − Φ at first order, and �1 is the long-wavelength
mode. The derivative term encodes the shift in the observed angular scales, known
as Ricci focussing, while the first three terms represent the smaller effect due to
anisotropic redshifting, known as redshift modulation [28]. A quick comparison
with Eq. 6.72 shows that the bispectrum induced by Ricci focussing corresponds to
the bispectrum of Δ̃ .

In Fig. 6.1 we show two temperature bispectra obtained with SONG compared
to the analytical approximation for a squeezed configuration where the large-scale
mode is fixed. The bispectrum computed using Δ̃ (labelled B R+Z in Sect. 6.4), which
includes both the scattering sources and the time-integrated effect arising from the
redshift term, matches the analytical curve to a precision of a few percent. On the
other hand, the bispectrum computed using the standard brightness Δ (labelled B R

in Sect. 6.4), which does not include the redshift term, presents a nearly constant
positive offset with respect to the analytical approximation.

6.5.3 Local Limit

In SONG, the initial conditions for the non-linear transfer functions are set using the
gauge-invariant perturbation ζ , as discussed in Sect. 5.4.2. Therefore, one can recre-
ate any kind of initial non-Gaussianity by choosing an appropriate initial value for
T (2)

ζ (k1, k2, k3). If we choose for T (2)
ζ (k1, k2, k3) a local shape with a non-vanishing

value for fNL, and run SONG with the quadratic sources deactivated, we expect
to obtain an intrinsic bispectrum that perfectly matches the local template with an
amplitude of fNL; we call this the local limit. This happens because deactivating the
quadratic sources in the second-order Boltzmann-Einstein system is equivalent to
solving the linear system, so that the resulting intrinsic bispectrum corresponds to
the linearly propagated one.

In Fig. 6.4 we show that, for a typical run of SONG, the intrinsic bispectrum in
the local limit matches the linearly propagated bispectrum of the local template with
percent-level accuracy. By applying the fNL estimator (Eq. 6.74) on the local-limit
intrinsic bispectrum with fNL = 1, we recover fNL = 1 to 10−3 accuracy. (Note that
thematch in fNL is better than theone in the bispectrumbecause the former is obtained
as a sum over all the bispectra configurations, which cancels the random error.) This
is an important test on SONG’s implementation of the differential system, on the
way the transfer functions are computed, on the bispectrum formula in Eq. 6.36 for

http://dx.doi.org/10.1007/978-3-319-21882-3_5
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Fig. 6.4 Local limit of the intrinsic bispectrum for an equilateral (left panels) and a squeezed (right
panels) configuration. The red curve is the local template with fNL = 1; the blue curve is the
intrinsic bispectrum with an equal amount of local NG and with the quadratic sources deactivated.
Thematch between the two bispectra, which are shownmultiplied by a factor 1016 �2 (�+1)2/(2 π)2

[23], is always at the percent level or better

the m = 0 case, on the Fisher module and, in particular, on the mesh interpolation
technique that we have discussed in Sect. 6.3.
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Chapter 7
Conclusions

7.1 The Intrinsic Bispectrum

In this thesis we have presented results from a new, efficient numerical code,SONG,
designed to calculate the cosmic microwave background anisotropies up to second
order. We have exploited it to find the temperature bispectrum which arises even
for purely Gaussian initial density perturbations. This intrinsic non-Gaussianity will
necessarily bias attempts to estimate different types of primordial non-Gaussianity
from the CMB bispectrum. The efficiency of SONG has allowed us to demonstrate
convergence of our results with respect to several different numerical parameters.
We have also demonstrated percent-level agreement with analytical estimates in the
squeezed limit, and we believe our answers are robust.

The contamination from the intrinsic bispectrum generated by the second-order
Einstein-Boltzmann equations generally leads to a small bias in the estimates of
non-Gaussianity, which is good news for the prospect of using CMB data to probe
primordial non-Gaussianity.While the precise answer depends on the terms included,
the biases for local templates of non-Gaussianity are below the level of primordial fNL
detectable by the Planck satellite. The biases from the intrinsic bispectrum for other
primordial templates, equilateral and orthogonal, also appear to be small. (These
results are summarised in Table6.2.) The intrinsic non-Gaussianity can be searched
for directly, using the predicted signal as a template; our calculations suggest this
signal is just beyond what is possible with Planck, with a signal-to-noise rising to
unity only for �max = 3000 (Fig. 6.2.)

In comparing to recent calculations, we find good agreement with the results of
Huang and Vernizzi [9] when we include the integrated redshift termwith the recom-
bination contribution. The signal-to-noise for the intrinsic signal matches well, while
our bias to f intrNL � 0.5 is slightly different, which appears to be due to differences
in the implementation of the local template. Excluding the integrated redshift term
yields a significantly higher answer, with f intrNL = 2.5. This is much more similar to
the results of Pitrou et al. [19], which focussed on the contributions on the recombi-
nation surface alone. We have also found that the number of multipole sources in the
line of sight integral required for numerical convergence is Lmax ≥ 8, and we find
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larger values of f intrNL are obtained for Lmax = 4 as used in Ref. [19]. Su et al. [26] find
similar numerical values to Huang and Vernizzi [9] for the bias, but disagree on the
signal-to-noise of the intrinsic signal. We are unable to directly compare our numer-
ical results with theirs, since they use integration by parts which leads to different
line of sight source terms.

We have shown how the redshift terms along the line of sight lead to a change in the
value of the local-type f intrNL bias of approximately 2.We interpret this as the evidence
that effects which are not at recombination are important, and should be all included
in order to obtain a complete result. We plan to further develop our numerical code to
include the time-delay and lensing contributions. The time-delay effect was studied
in Ref. [8] and is expected to be small. The lensing term, on the other hand, is known
to strongly correlate with the linear integrated Sachs-Wolfe effect and thus yields
a strong squeezed signal that contaminates the local measurement of Planck with a
bias of f intrNL ∼ 7 [6, 12–14, 24, 25].

We have calculated the intrinsic bispectrum from the scalar (m = 0), vector
(m = ±1) and tensor (m = ±2) modes, neglecting higher moments. This should
give a reliable estimate of local-type fNL since higher moments are suppressed for
squeezed configurations. We expect also the prediction on the signal-to-noise of the
intrinsic bispectrum and on the bias on the equilateral and orthogonal templates to be
robust. In fact, the highermoments thatwe are neglecting only exist for themultipoles
with � ≥ 2 , which are suppressed by tight coupling during recombination.

7.2 Current and Future Research

Aswehave seen inChaps. 3 and5, several non-linear effects in addition to the intrinsic
bispectrum arise at second order that can be computed by SONG. In the following
we give a brief outlook of these effects and, in general, of possible applications of
SONG.

B polarisationMeasuring the tensor-to-scalar ratio parameter, r , would shed light on
the physics of the early Universe and provide an indirect detection of gravitational
waves (Sect. 2.6.3). The B polarisation of the cosmic microwave background is
sourced by the tensor part of the metric and is therefore a promising probe for
measuring r [10, 23]. The B polarisation, however, is also generated by the non-
linear dynamics either via the conversion from E to B-modes due to the propagation
of light in an inhomogeneous Universe (either from lensing [13, 28] or time-delay
terms [8]), by the vector and tensor modes in the metric [16] or by kinematic effects
in the scattering term [1]. These effects are clearly recognisable in the second-order
Boltzmann equation, as discussed in Sect. 4.6. We have implemented in SONG a
module to quantify the contribution to the power spectrum of the B-modes, C B B

� ,
induced by the second-order metric, scattering and propagation effects, excluding
time-delay and lensing. Our analysis [3] indicates that these intrinsic B-modes from
non-linear dynamics are comparable to a primordial signal of order r ∼ 10−7 and,
therefore, will not bias future CMB survey such as LiteBIRD [7, 15], PIXIE [11]
and Prism [20].
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Spectral distortions When they collide through Compton scattering during recom-
bination and reionisation, photons and electrons exchange a tiny amount of energy
(Sect. 4.5.2) that, at second order, needs to be taken into account. This introduces
a momentum dependence in the the CMB collision term that ultimately spoils its
blackbody spectrum (see Sects. 4.3.1 and 4.5.3). This spectral distortion can be char-
acterised using the Compton y parameter [18] and has a signature similar to that
of the thermal Sunyaev-Zeldovich effect [27]. The evolution of y obeys the Boltz-
mann equation and is computed by solving an extra hierarchy that is sourced by the
difference between the photon and electron velocities [18]. Because the electrons’
velocity grows after recombination (vb ∝ kτ ) and the photons’ does not, the largest
contribution to this type of spectral distortion comes from the time of reionisation.
Using SONG, we have computed these spectral distortions both for temperature and
polarisation and studied their dependence on the details of reionisation [22]. This is
of interest in view of the proposed experiments Prism [21] and Pixie [11], which are
expected to measure the CMB frequency spectrum with unprecedented accuracy.

Magneto-genesis At second order, the electron and photon velocities are vortical
even in the absence of primordial vector fluctuations. During recombination, when
the tight coupling between the two fluids breaks down, this vorticity translates into
currents that unavoidably source a magnetic field. The amplitude of the magnetic
field was found by Fenu et al. [2] to be of B1 Mpc � 3 × 10−29 Gauss on cluster
scales. We plan to include this magneto-genesis effect in SONG by implementing
the Maxwell equations. Once this is done, we intend to verify the results obtained
by Ref. [2] and extend their work by also considering the presence of a residual
first-order magnetic field from inflation, which would source the second-order one
quadratically.

Modified gravity Gao [5] has recently studied the dependence of the intrinsic bis-
pectrum of the CMB on the theory of gravity. By assuming an f (R) model and
considering only the Sachs-Wolfe effect, the author found that the intrinsic bispec-
trum depends strongly on the non-linear structure of the f (R) function. In particular,
he found that the existence of the second, third or fourth derivatives in f (R) results
in a bispectrum larger than the one produced for standard general relativity. It would
be interesting to explore this dependence in detail in view of constraining the f (R)

models using the observed CMB bispectrum. We plan to do so by implementing an
appropriate parametrisation of modified gravity into SONG.

As mentioned in the preface, since I obtained my Ph. D. in 2013, my collaborators
and I have carried out further research on the non-linearities of the CMB, extending
the work in my thesis. In particular, we have found the polarised intrinsic bispectrum
to be strongly enhancedwith respect to the temperature one [17]; developed a formal-
ism to treat all propagation effects, including lensing, at second order [4]; computed
the power spectrum of the second-order B-modes [3]; quantified the intrinsic spectral
distortions in the CMB [22]. These works are all published in peer-reviewed jour-
nals, and can be freely accessed as preprints at this link: http://arxiv.org/find/astro-
ph/1/au:+Pettinari_G/0/1/0/all/0/1. Furthermore, the code SONG is available in the
open-source format on the website https://github.com/coccoinomane/song.
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Appendix A
Projection on the Sphere

In this Appendix we shall discuss how to treat the directional dependence in the
Boltzmann and Einstein equations, in view of solving them numerically. The topic
is also treated in Sect. IIIB of Beneke and Fidler [2], in Sect. 8.2 of Pitrou [4] and in
Sect.C of Hu and White [3].

To characterise the angular dependence of the equations, we adopt a spherical
coordinate systemwhere the direction of propagation of a particle, n, is parametrised
by a polar angle θ (or colatitude) and an azimuthal angle φ (or longitude). The polar
angle is defined with respect to an arbitrary axis, the zenith or polar axis, and has the
range 0 ≤ θ ≤ π, the value π/2 corresponding to the equator. The azimuthal angle
is the direction of n projected to the plane perpendicular to the zenith, and has the
range 0 ≤ φ < 2π, with the y axis at φ = π/2. In a Cartesian coordinate system
where the z-axis is aligned with the zenith, the coordinates of the particle’s direction
n are given by:

nx = sin θ cosφ ,

ny = sin θ sin φ ,

nz = cos θ . (A.1)

We expand the angular dependence of the distribution function, f (n), in spherical
harmonics,

f (n) =
∞∑

�=0

�∑
m=−�

(−i)�
√

4π

2� + 1
f�m Y�m(n) . (A.2)

The coefficient f�m are called the multipoles of f and do not depend on the direction
n. The spherical harmonics Y�m are defined as

Y�m(θ,φ) =
√
2� + 1

4π

(l − m)!
(l + m)! P�m(cos θ) eimφ , (A.3)
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where the P�m are the associated Legendre polynomials of degree � and order m [1].
Note that we shall follow the literature and define two multipole expansions for the
temperature perturbation of the CMB, Θ = (T − T )/T :

Θ(n) =
∑
�m

a�m Y�m(n) =
∑
�m

(−i)�
√

4π

2� + 1
Θ�m Y�m(n) . (A.4)

The a�m are used to define the observables, such as the power spectrum 〈a�m, a�′m′ 〉
and the bispectrum

〈
a�1m1, a�2m2 , a�2m2

〉
; they are related to the Θ�m by

Θ�m = i�
√
2� + 1

4π
a�m . (A.5)

The extra coefficients in the definition ofΘ�m and f�m serve the purpose of simplify-
ing the Boltzmann equation, and is a convention normally adopted in the literature.

The Legendre polynomials oscillate in the θ direction with a wavelength that is
roughly inversely proportional to �:

λ ∼ 2π/� . (A.6)

For example, for � = 180 the peaks of P�0 are separated by about 2◦. Therefore,
the multipole f�m quantifies the autocorrelation of f on angular scales ∼2π/�; the
larger � is, the smaller are the scales being considered. For this reason, we shall often
refer to � as the angular scale.

The azimuthal mode m influences the Y�m in two ways. First, it enters the associ-
ated Legendre polynomials as

P�m(cos θ) ∝ (sin θ)|m| , (A.7)

thus penalising Y�m(θ,φ) for directions that are too close to the zenith (θ = 0).
Increasingm makesY�m smaller at the zenith and larger at the equator; every spherical
harmonics with m 
= 0 vanishes at the zenith. For m = l, the spherical harmonic is
peaked at the equator. Secondly, m enters as a rotation parameter

Y�m ∝ P�m eimφ . (A.8)

The normalisation factor of the spherical harmonics is chosen so that the Y�m are
orthonormal:

∫
dΩ(n) Y�m(n) Y ∗

�′m′(n) = δ�′� δm′m , (A.9)
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where

∫
dΩ(n) =

π∫

0

dθ sin θ

2π∫

0

dφ (A.10)

denotes an integral over all possible directions. Because of the orthogonality of the
spherical harmonics, the (�, m)multipole of the distribution function can be extracted
using the relation

f�m = i�
√
2� + 1

4π

∫
dΩ Y ∗

�m(n) f (n) . (A.11)

In general, we define the projection operator L as

L�m[F] = i�
√
2� + 1

4π

∫
dΩ Y ∗

�m(n) F(n) . (A.12)

We shall project the Boltzmann equation to harmonic space by applying the L
operator to both of its sides. This eliminates the angular dependence of the distribution
function, at the cost of introducing two discrete indices, � and m. The Boltzmann
equation thus reduces to a hierarchy of ordinary differential equations in (�, m),
which is numerically tractable. The hierarchy is in principle infinite, but it can be
truncated at a suitable angular scale, Lmax, as we detail in Chap. 4. Therefore, the
angular projection operator, L , is analogous to the Fourier projection operator, F
(Sect. 3.5.1), because it turns a partial differential equation into a system of ordinary
differential equations by integrating out a functional dependence.

A.1 Properties of the Spherical Harmonics

The spherical harmonics have a number of important properties. We have already
mentioned the orthonormality relation,

∫
dΩ(n) Y�m(n) Y ∗

�′m′(n) = δ�′� δm′m , (A.13)

which allows to extract the multipole of a function by the simple projection in
Eq.A.11. They also satisfy the conjugation relation,

Y�−m(n) = (−1)m Y ∗
�m(n) , (A.14)

the parity relation,

http://dx.doi.org/10.1007/978-3-319-21882-3_4
http://dx.doi.org/10.1007/978-3-319-21882-3_3
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Y�m(−n) = (−1)� Y�m(n) , (A.15)

where −n is characterised by the angles (π − θ,φ + π), the completeness relation,

∑
�,m

Y�m(θ,φ) Y ∗
�m(θ′,φ′) = δ(cos θ − cos θ′) δ(φ − φ′) , (A.16)

and the addition theorem [1],

∑
m

Y�m(n) Y ∗
�m(n′) = 2� + 1

4π
P� (n·n′) (A.17)

where n and n′ are arbitrary unit vectors.
The product of two spherical harmonics can be itself expanded in spherical har-

monics to yield a relation involving two Wigner 3 j symbols,

Y�1m1(n) Y�2m2(n) =
∑
�m

√
(2�1 + 1)(2�2 + 1)(2� + 1)

4π
(

�1 �2 �

0 0 0

)(
�1 �2 �

m1 m2 m

)
Y ∗

�m(n) . (A.18)

Integrating the above expression on the sphere yields the so-called Gaunt relation:

∫
dΩ Y�1m1(n) Y�2m2(n) Y�3m3(n) = (A.19)

√
(2�1 + 1)(2�2 + 1)(2�3 + 1)

4π

(
�1 �2 �3
0 0 0

)(
�1 �2 �3
m1 m2 m3

)
.

In Chap. 6, where we deal with three-dimensional integrals of the type
∫
dk1dk2dk3,

the Gaunt relation will prove useful to integrate out analytically the angular depen-
dence of the transfer functions. Sometimes, we shall also use the following short-
hands:

h�1�2�3 =
√

(2�1 + 1)(2�2 + 1)(2�3 + 1)

4π

(
�1 �2 �3
0 0 0

)
, (A.20)

and

G �1�2�3
m1m2m3

= h�1�2�3

(
�1 �2 �3
m1 m2 m3

)
. (A.21)

http://dx.doi.org/10.1007/978-3-319-21882-3_6
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Finally, we list two properties of the associated Legendre polynomials [1]

Pν−ν(cos θ) = sin(θ)ν

2νν! and Pν−ν = (−1)ν
1

(2ν)! Pνν (A.22)

that, together with the definition of the spherical harmonics in Eq.A.3, make it
possible to derive a closed form for the spherical harmonics with � = m ,

Y|m|m(θ,φ) = (−1)m

√
2m + 1

4π

√
(2m)!
2m m! sinm θ e imφ form ≥ 0 , (A.23)

Y|m|m(θ,φ) = (−1)m Y ∗|m||m|(θ,φ) form < 0 . (A.24)

The formula will be useful in Sec. 6.2.1 to characterise the azimuthal dependence of
the second-order transfer functions, and thus derive a numerically tractable expres-
sion for the intrinsic bispectrum.

A.2 Properties of the 3 j Symbols

The Wigner 3 j symbol,

(
�1 �2 �3
m1 m2 m3

)
, (A.25)

encodes the geometrical properties of a system of three vectors that form a triangle,
�1+�2+�3 = 0; the elements of the first line, (�1, �2, �3), must be positive and repre-
sent themagnitudes of the three vectors, while those of the second line, (m1, m2, m3),
must satisfy −�i ≤ mi ≤ �i and represent the projections of the three vectors on
the zenith. The 3 j symbol is different from zero only for the configurations that
respect the triangular inequality,

|�i − � j | ≤ �k ≤ �i + � j (A.26)

and for those whereby �1z + �2z + �3z = 0, that is

m1 + m2 + m3 = 0 . (A.27)

The 3 j symbol is related to the Clebsch-Gordan coefficients, which are often used
in quantum mechanics to describe the coupling of two angular momentum states, by
the following relation

http://dx.doi.org/10.1007/978-3-319-21882-3_6
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(
�1 �2 �3
m1 m2 m3

)
= (−1)�1−�2−m3

√
2 �3 + 1

〈�1 m1 �2 m2|�3 m3〉 . (A.28)

A.2.1 Symmetries of the 3 j Symbols

The 3 j symbols are symmetric under even permutations of their columns,

(
�1 �2 �3
m1 m2 m3

)
=

(
�2 �3 �1
m2 m3 m1

)
=

(
�3 �1 �2
m3 m1 m2

)
, (A.29)

and they gain an alternating sign factor after an odd permutation,

(
�1 �3 �2
m1 m3 m2

)
=

(
�2 �1 �3
m2 m1 m3

)
=

(
�3 �2 �1
m3 m2 m1

)

= (−1)�1+�2+�3

(
�1 �2 �3
m1 m2 m3

)
. (A.30)

Changing the sign of the second line yields a phase factor, too,

(
�1 �2 �3

−m1 −m2 −m3

)
= (−1)�1+�2+�3

(
�1 �2 �3
m1 m2 m3

)
, (A.31)

which implies that

(
�1 �2 �3
0 0 0

)
= 0 if �1 + �2 + �3 is odd . (A.32)

This property will be important in understanding the structure of the intrinsic bis-
pectrum in Chap.6.

Aswe have anticipated in the previous section, theGaunt integral can be expressed
in terms of the product of two 3 j symbols (see Eq.A.19),

G �1�2�3
m1m2m3

=
√

(2�1 + 1)(2�2 + 1)(2�3 + 1)

4π

(
�1 �2 �3
0 0 0

)(
�1 �2 �3
m1 m2 m3

)
. (A.33)

The Gaunt coefficients possess more symmetries than the 3 j symbols; in particular,

• they are symmetric with respect to any permutation of their columns;
• they vanish for �1 + �2 + �3 odd, and
• they are invariant under sign flip of the m, that is G �1�2�3

m1m2m3 = G �1�2�3−m1−m2−m3
.

http://dx.doi.org/10.1007/978-3-319-21882-3_6
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A.2.2 Orthogonality of the 3 j Symbols

The 3 j symbols are orthogonal with respect to the summation over one column,

∑
�3m3

(2 �3 + 1)

(
�1 �2 �3
m1 m2 m3

) (
�1 �2 �3
M1 M2 m3

)
= δm1M1 δm2M2 , (A.34)

and with respect to the summation over two azimuthal numbers,

(2 �3 + 1)
∑

m1m2

(
�1 �2 �3
m1 m2 m3

) (
�1 �2 L3
m1 m2 M3

)
= δ�3L3 δm3M3 . (A.35)

The last identity implies also that

∑
m1m2m3

(
�1 �2 �3
m1 m2 m3

)2

= 1 , (A.36)

a result that will be useful in defining the angle-averaged bispectrum.

A.3 Projecting Tensors

To project the Einstein equation to spherical space, we need a prescription to extract
the (�, m) multipoles out of a tensor. In this section we show how to do so by
employing a set of projection vectors, ξ, and matrices, χ.

A.3.1 The Projection Vectors ξ

We start by choosing a direction, n, and noticing that it can be recast as

ni =
√
4π

3

1∑
m=−1

ξ i[m] Y1m , (A.37)

where we have used the fact that
⎧⎪⎪⎨
⎪⎪⎩

nx = sin θ cosφ

ny = sin θ sin φ

nz = cos θ

and

⎧⎪⎪⎨
⎪⎪⎩

√
4π/3 Y1,−1 = √

1/2 sin θ (cosφ − i sin φ)√
4π/3 Y1,+1 = √

1/2 sin θ (− cosφ + i sin φ)√
4π/3 Y1,0 = cos θ

.
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We shall refer to the ξ i[ m] vectors as our spherical basis. They are a set of three unit
vectors defined by Eq.A.37. Their cartesian coordinates are

ξ[0] =
⎛
⎝
0
0
1

⎞
⎠ , ξ[+1] =

√
1

2

⎛
⎝

−1
i
0

⎞
⎠ , ξ[−1] =

√
1

2

⎛
⎝

+1
i
0

⎞
⎠ , (A.38)

and their indices are lowered and raised respectively with the Euclidean metric δi j

and its inverse δi j . Since n is real-valued, under complex conjugation the ξ vectors
transform like the spherical harmonics:

ξ i[−m] = (−1)m ξ∗i[m] . (A.39)

By using the orthogonality property of the spherical harmonics, we immediately see
that the ξ vectors are the coefficients for the spherical transformation of ni , that is

L�m [ ni ] = δ�1 i ξ i[m] , (A.40)

where the operator L is defined in Eq.A.12.

Orthogonality It is straightforward to verify that the ξ vectors are orthogonal with
respect to both indices:

1∑
m=−1

ξ i[m] ξ
∗ j
[m] =

1∑
m=−1

(−1)m ξ i[m] ξ
j
[−m] = δi j ,

3∑
i=1

ξ i
[m′] ξ

∗ i[m] =
3∑

i=1

(−1)m ξ i
[m′] ξ i[−m] = δmm′ . (A.41)

This property makes them suitable to be used as projection operators. We define the
spherical components, V[m], of a real 3-vector, V i , as1

V[m] =
3∑

i=1

ξ i[m]V i , (A.42)

where V i are the vector’s cartesian coordinates. The explicit form of the spherical
components is given by

V[0] = Vz , V[+1] =
√
1

2
(−Vx + i Vy) , V[−1] =

√
1

2
(+Vx + iVy) ,

(A.43)

1Note that Beneke and Fidler [2] (Sect. IIIB) define the spherical components so that V BF[m] = i V[m],
while Pitrou et al [5] (Sect. 7.2) use a notation whereby V P[m] = −V[m].
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and, like the ξ vectors, they satisfy the relation

V[−m] = (−1)m V ∗[m] , (A.44)

where V ∗[m] ≡ ξ i[m] V ∗
i . The inverse relation is found by exploiting the orthogonality

of ξ:

V i =
1∑

m=−1

ξ∗ i[m] V[m] =
1∑

m=−1

(−1)m ξ i[−m] V[m] . (A.45)

It should be noted the the spherical components of the reference direction, n, are the
azimuthal modes of the spherical harmonic Y1m ,

n[m] = ξ i[m] ni =
√
4π

3
Y ∗
1m , (A.46)

a property that can be proven by making use of the second orthogonality relation in
Eq.A.41.

Azimuthal modes By applying the spherical projection operator L in Eq.A.12 to
ni Vi , it follows that the spherical components V[m] are the only non-vanishing mul-
tipoles of ni Vi ,

L�m [ ni Vi ] = δ�1 i V[m] . (A.47)

Due to this property, we shall refer to V[0] and V[±1] as the scalar and vector compo-
nents of V i , respectively.

Scalar product The scalar product of two real vectors, Ui Vi , has a simple form in
terms of the spherical components,

3∑
i=1

V i Ui =
1∑

m=−1

1∑
m′=−1

(
3∑

i=1

ξ∗ i[m] ξ∗ i
[m′]

)
U[m] V[m′]

=
1∑

m=−1

(−1)m U[m] V[−m] , (A.48)

which follows from the orthogonality relation in Eq.A.41. The scalar product is
obviously a scalar quantity; however, it is given by the sum of scalar and vector
quantities. This is a simple example of how the different azimuthal modes couple
when considering the product of vectors.
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A.3.2 The Projection Matrices χ

Given a direction n, the simplest rank-2 tensor that can be constructed is ni n j . Using
the expression for ni in Eq.A.37, ni n j is given by

ni n j =
∑
m1

∑
m2

4π

3
ξ i[m1] ξ

j
[m2] Y1m1(n) Y1m2(n) . (A.49)

The product of spherical harmonics can be expanded using Eq.A.18 into

Y1m1(n) Y1m2(n) =
∑
�m

√
9 (2� + 1)

4π

(
1 1 �

0 0 0

)(
1 1 �

m1 m2 m

)
Y ∗

�m .

Because of the properties of the 3 j symbol, the sum over � reduces to two terms: a
monopole (� = 0) and a quadrupole (� = 2). The expansion of ni n j is then given by

ni n j = δi j

3
+

√
4π

5

2∑
m=−2

χ
i j
2,[m] Y2m , (A.50)

wherewe have usedY00 = √
1/(4π) andwe have defined the symmetric and traceless

χ matrices as

χ
i j
2,[m] = (−1)m

1∑
m1=−1

1∑
m2=−1

√
10

3

(
1 1 2

m1 m2 −m

)
ξ i[m1] ξ

j
[m2] . (A.51)

Their explicit form can be determined from Eq.A.51 and are given by

χ 2,0 = 1

3

⎛
⎝

−1 0 0
0 −1 0
0 0 2

⎞
⎠ , χ 2,±1 =

√
1

6

⎛
⎝

0 0 ∓1
0 0 i

∓1 i 0

⎞
⎠ , χ 2,±2 =

√
1

6

⎛
⎝

1 ∓i 0
∓i −1 0
0 0 0

⎞
⎠ .

(A.52)

The Kronecker delta and the χ matrices are the � = 0 and � = 2 multipoles of the
tensor ni n j , respectively. All the other multipoles identically vanish; this is easily
seen by applying the L operator (Eq.A.12) to the expansion of ni n j in terms of the
χ matrices (Eq.A.50):

L00 [ ni n j ] = δi j

3
,

L2m [ ni n j ] = −χ
i j
2,[m] . (A.53)
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Similarly, the contraction of an arbitrary tensor Ei j with the tensor ni n j only has a
monopole and a quadrupole contribution:

L00 [ ni n j Ei j ] = Ei
i

3
,

L2m [ ni n j Ei j ] = −χ
i j
2,[m] Ei j = −E[m] , (A.54)

where in the last equalitywe have defined the azimuthal components of the symmetric
tensor as2 E[m] ≡ χ

i j
2,[m] Ei j . Therefore, the χ matrices provide an easy way to

extract from a symmetric three-tensor Ei j its scalar (E[0] = χ
i j
2,[0] Ei j ), vector

(E[±1] = χ
i j
2,[±1] Ei j ) and tensor (E[±2] = χ

i j
2,[±2] Ei j ) parts.

Orthogonality The χ matrices are symmetric and traceless by construction. They
satisfy

χ
i j∗
2,[m] = (−1)m χ

i j
2,[−m] (A.55)

and are orthogonal with respect to summation over the spatial indices,

∑
i j

χ
i j∗
2,[m] χ

i j
2,[m′] = 2

3
δm m′ . (A.56)

The orthogonality property can be used to extract the spherical components of ni n j ,

χ
i j
2,[m] ni n j = 2

3

√
4π

5
Y ∗
2m . (A.57)

A.4 Projecting Functions

The most common direction-dependent term in the Boltzmann equation has the form

ni Vi f (n) , (A.58)

where Vi can be either a wavemode (in the Liouville term) or the electron bulk
velocity (in the collision term). In both cases, the multipole space projection is
obtained through the L operator:

2Note that Beneke and Fidler [2] (Sect. IIIB) define the spherical components so that EBF[m] =
−E[m]/αm , with α0 = 2/3, α±1 = 1/

√
3 and α±2 = 1.
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L�m [ ni Vi f (n) ] =
∫

dΩ Y ∗
�m ni Vi f (n) . (A.59)

Both ni and f (n) are further expanded in spherical harmonics according to Eqs.A.37
and A.2, respectively, to yield

L�m [ ni Vi f (n) ] =
1∑

m2=−1

√
4π

3
ξ i[m2]

∞∑
�1=0

�1∑
m1=−�1

(−i)�1

√
4π

2�1 + 1
f�1m1

×
∫

dΩ Y ∗
�m(n) Y1m2(n) Y�1m1(n) .

After noting that Y ∗
�m = (−1)mY�m , we take care of the angular integration using the

Gaunt relation (Eq.A.19), and obtain

L�m [ ni Vi f (n) ] = (−1)m (2� + 1)
∞∑

�1=0

�1∑
m1=−�1

1∑
m2=−1

V[m2] f�1m1

× i�−�1

(
1 �1 �

0 0 0

)(
1 �1 �

m2 m1 −m

)
. (A.60)

The sum over �1 is infinite but, due to the symmetries of the 3 j symbols, it has
support only for triangular configurations; since one of the sides has length 1, the
sum consists of three terms:

∞∑
�1=0

→
�+1∑

�1=|�−1|
. (A.61)

The first 3 j symbol also enforces that 1 + �1 + � is even, thus excluding the con-
tribution with �1 = �. Similarly, the second 3 j symbol enforces m1 = m − m2, so
that only the azimuthal modes of f with m1 = m and m1 = m ± 1 contribute to the
sum. For example, the (100, 0) multipole of ni Vi f (n) picks up contributions of the
following types:

L100,0[ni Vi f (n)] ⊃
{

f99,−1 V[1], f99,0 V[0], f99,1 V[−1], f101,−1 V[1], f101,0 V[0], f101,1 V[−1]
}

.

In any gauge, the free-streaming term of the linearised Boltzmann equation is
given by ni ki f (n, k) . Since we choose to align the zenith with the k vector, the
latter only has a scalar part, k[m] = δm0 k (see Eq.A.43). Thus, the sum over m2 in
Eq.A.60 reduces to only one term:

L�m [ ni ki f (n) ] = (−1)m (2� + 1)
∞∑

�1=0

�1∑
m1=−�1

k f�1m1 i�−�1

(
1 �1 �

0 0 0

)(
1 �1 �

0 m1 −m

)
.
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The elements in the second line of a 3 j symbol must add up to zero; hence, the sum
over m1 only has support for m1 = m:

L�m [ ni ki f (n) ] = (−1)m (2� + 1) k
∞∑

�1=0

f�1m i�−�1

(
1 �1 �

0 0 0

)(
1 �1 �

0 m −m

)
.

(A.62)

This is amanifestation of the decomposition theorem:when the zenith is alignedwith
k, all the sums over the different azimuthal modes collapse and there is no coupling
between the modes. As a result, the only contribution to the (�, m)-th multipole of
ni ki f comes from the multipoles of f with azimuthal mode m. On the other hand,
the different angular scales � still couple, in analogy with the mode coupling of
the Fourier modes that we have explored in Sect. 3.5.2. For example, the (100, 0)
multipole of ni ki f (n) picks up only two contributions:

L100,0[ni ki f (n)] ⊃
{

f99,0 k[0], f101,0 k[0]
}

.

The Boltzmann equation at second order also contains the terms ni ki
1 f (n) and

ni ki
2 f (n) . Having aligned the zenith with k, the wavemodes k1 and k2 are arbitrary

vectors for which k1[±1] and k2[±1] do not need not vanish. Therefore, the sum over
m′ in Eq.A.60 also includes the azimuthalmodes of f withm1 = m±1,meaning that
the decomposition theorem does not apply for the quadratic part of the second-order
equations.

A.4.1 The Coupling Coefficients

After enforcing the triangular inequality and setting m2 = m − m1, the general
multipole expansion of ni Vi f (n) in Eq. A.60 takes the form

L�m [ ni Vi f (n) ] = (−1)m (2� + 1)
�+1∑

�1=|�−1|

�1∑
m1=−�1

V[m−m1] f�1m1

i�−�1

(
1 �1 �

0 0 0

)(
1 �1 �

m − m1 m1 −m

)
. (A.63)

This type of term appears in the free-streaming and redshift part of the Liouville
operator, where V i is one of k, k1 or k2, as well as in the collision term, where V i

is the electron velocity. Thus, to express the Boltzmann equation in a compact way,
we follow Beneke and Fidler [2] and introduce the coupling coefficients C±,

C±,�
m1 m ≡ (−1)m (2� + 1)

(
1 � ± 1 �

0 0 0

)(
1 � ± 1 �

m − m1 m1 −m

)
, (A.64)
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so that Eq.A.63 can be rewritten as

L�m [ ni Vi f (n) ] = −i
∑
±

m+1∑
m1=m−1

± V[m−m1] f�±1,m1 C±,�
m1 m , (A.65)

with the caveat that C−,0 should be set to zero. For the polarisation hierarchies,
a class of terms slightly different than Eq.A.63 appear where the first 3 j symbol
has (0, 2,−2) in the second line; in that case, we define the D± and D0 coupling
coefficients as

D±,�
m1 m ≡ (−1)m (2� + 1)

(
1 � ± 1 �

0 2 −2

) (
1 � ± 1 �

m − m1 m1 −m

)
,

D0,�
m1 m ≡ (−1)m (2� + 1)

(
1 � �

0 2−2

)(
1 � �

m − m1 m1 −m

)
, (A.66)

The D0 coefficients encode the mixing between the E and B modes. Note that there
is no thing such as a C0 coefficient because the 3 j symbol

(
1 � �

0 0 0

)

would vanish. The explicit form of the C and D coupling coefficients is

C+,�
m±1,m = −

√
(� + 1 ± m) (� + 2 ± m)√

2(2� + 3)
, C+,�

m m =
√

(� + 1)2 − m2

2� + 3
,

C−,�
m±1,m =

√
(� − 1 ∓ m) (� ∓ m)√

2(2� − 1)
, C−,�

m,m =
√

�2 − m2

2� − 1
, (A.67)

D+,�
m1m =

√
(� − 1) (� + 3)

� + 1
C+,�

m1m , D−,�
m1m =

√
�2 − 4

�
C−,�

m1m ,

D0,�
m±1,m = ∓

√
2(� + 1 ± m) (� ∓ m)

�(� + 1)
, D0,�

m m = − 2m

�(� + 1)
.

The multipole expansion of the lensing term in the Liuoville equation is different
from the others, because it includes the derivative of the distribution function with
respect to the direction of propagation, ∂ f

∂ni . We thus define another set coefficients,
the R±,

R±,�
m1 m ≡ (−1)m (2� + 1)

√
2 (� ± 1)(� ± 1 + 1)

(
1 � ± 1 �

1 −1 0

)(
1 � ± 1 �

m − m1 m1 −m

)
,

(A.68)
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so that

L�m

[
(δ i

j − ni n j )
∂ f (n)

∂ni
V j

]
= i

∑
±

m+1∑
m1=m−1

± V[m−m1] f�±1,m1 R±,�
m1 m .

(A.69)

Their explicit form is given by

R+,l
m1m = −(l + 2) C+,l

m1m , R−,l
m1m = (l − 1) C−,l

m1m ,

K +,l
m1m = −(l + 2) D+,l

m1m , K −,l
m1m = (l − 1) D−,l

m1m , K 0,l
m1m = −D0,l

m1m ,

(A.70)

where the K coefficients are the equivalent of the R coefficients but for the polari-
sation hierarchies.
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Appendix B
Geometry of the Wavemodes

The non-linear transfer functions are defined inside a convolution integral over two
dummy wavemodes, k1 and k2:

X�m(k) = T (1)
�m (k) Φ(k)

+
∫

dk1 dk2

(2π)3
δ(k1 + k2 − k) T (2)

�m (k1, k2, k) Φ(k1) Φ(k2) ,

(B.1)

where the (�, m) indices come from the decomposition in spherical harmonics of
the directional dependence of X , as explained in Appendix A. In principle, T (2)

�m
depends on the 9 coordinates of the wavemodes: the magnitudes k1, k2 and k;
the polar angles θ1, θ2 and θ; the azimuthal angles φ1, φ2 and φ . In solving the
Boltzmann-Einstein differential system for T (2)

�m , however, we adopt the following
simplifying assumptions that reduce the number of independent parameters to 3,
which we choose to be the three magnitudes; we shall denote the resulting transfer
function as T̃ (2)

�m (k1, k2, k).
First, we solve the system only for those configurations where the polar axis is

aligned with k. That is, we always take

θ = φ = 0 , (B.2)

which also implies kx = ky = k[±1] = 0. The statistical isotropy of the Universe

ensures that T (2)
�m can be obtained in the other configurations by performing a rotation

of the polar axis, as we will detail in Sect. 6.2.1 where we compute the intrinsic
bispectrum.

Secondly, we note that the Dirac delta function enforces k = k1 + k2. This allows
to express θ1, θ2 and φ2 as functions of the other variables,
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cos θ1 = k2 + k21 − k22
2 k k1

, cos θ2 = k2 − k21 + k22
2 k k2

, φ2 = φ1 + π ,

(B.3)

so that only 6 independent parameters are left. Together with the alignment of the
polar axis, the Dirac delta condition allows us to set k1x = −k2x , which implies

k1 sin θ1 = k2 sin θ2 , (B.4)

an expression that will be useful in Sect. 6.2.2 to optimise the bispectrum computa-
tion.

Finally, we only compute the transfer functions in φ1 = 0 and φ2 = π, so that
the k1 and k2 wavevectors both lie in the zx plane. Again, thanks to the statistical
isotropy, the value of T (2)

�m in the general case is obtained with the simple rotation

T̃ (2)
�m (k1, k2, k,φ1) = e imφ1 T̃ (2)

�m (k1, k2, k, 0) . (B.5)

We shall use this property in Eq.6.23 to analytically solve the φ1 dependence in
the bispectrum integral. To sum up, the second-order transfer function computed by
SONG, T̃ (2)

�m (k1, k2, k3), is related to the general one by

T̃ (2)
�m (k1, k2, k) = T (2)

�m

(
k1, θ1(k1, k2, k),φ1 = 0, k2, θ2(k1, k2, k),φ2 = π, k, θ = 0,φ = 0

)
.

(B.6)

B.1 Rotation

The second-order equations are sourced by terms quadratic in the linear transfer
functions; because the Fourier transform of a product in real space is a convolution
in Fourier space (Eq.3.65), these quadratic sources are evaluated in the dummy
wavemodes k1 and k2. For example, the equation for the photon dipole transfer
function, T (2)

1m , at second order includes the term

Ṫ (2)
1m ⊃ 4 T (1)

1m (k1) Ṫ (1)
Φ (k2) . (B.7)

In SONG, we compute the linear transfer functions only in the direction of the polar
axis,

T̃ (1)
�m (k1) = T (1)

�m (k1, θ1 = 0,φ1 = 0) . (B.8)

The T̃ (1)(k1) ’s cannot be inserted directly in the quadratic sources of the second-
order system, like Eq.B.7, which instead involve the transfer functions in the general
direction k2. Thanks to statistical isotropy, however, the two are related by a Wigner
rotation,
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T (1)
�m (k1) =

√
4π

2 � + 1
Y�m(k̂1) T̃ (1)

� 0 (k1) . (B.9)

Here we have implicitly used the fact that only the scalar mode exists at first
order, since we assume vanishing initial conditions for the vector and tensor modes:
T̃ (1)

�m (k1) ∝ δm0.
All the quadratic sources in SONG are expressed using Eq.B.9, including the

baryon velocity,

vb[m](k1) =
√
4π

3
Y1m(k̂1) ṽ

(1)
b[0](k1). (B.10)

It should be noted that, having chosen the azimuthal angle of k1 to beφ1 = 0 andφ1 =
φ1 +π , the Y�m function is always real-valued. This is a favorable property because
it is numerically simpler to evolve a system of real-valued differential equations.
(See also Eq. A.37 of [2] and Eq. A.6 of [1].)

B.2 Symmetrisation

The second-order transfer functions are defined inside a convolution integral
(Eq. 3.69) where k1 and k2 are the integration variables. This reflects the structure
of the Boltzmann and Einstein equations, which, in Fourier space, include the same
convolution over the quadratic sources (Sect. 3.5.2). Because k1 and k2 are dummy
variables, the quadratic sources can be arranged to be symmetric with respect to their
exchange:

T (2)
�m (k1, k2, k) = T (2)

�m (k2, k1, k). (B.11)

The k1 ↔ k2 symmetry is exploited in SONG to reduce the computation time
of the transfer functions by half. We do so by building quadratic sources that are
symmetric with respect to the exchange of the magnitudes k1 and k2. Since θ1 and
θ2 are determined by k1, k2 and k via Eq.B.3, this choice also ensures that the
quadratic sources are symmetricwith respect to θ1 ↔ θ2. The azimuthal angles of the
convolutionwavemodes, on the other hand, are independent from themagnitudes and
satisfy φ2 = φ1 + π. Then, the identity T (2)

�m (k1, k2, k) = T (2)
�m (k2, k1, k) implies

T̃ (2)
�m (k2, k1, k) = e imπ T̃ (2)

�m (k1, k2, k) = (−1)m T̃ (2)
�m (k1, k2, k). (B.12)

Thus, by symmetrising the quadratic sources with respect to k1 ↔ k2 we only need
to evolve the transfer functions with k2 ≥ k1; the other configurations are obtained by
multiplication with the (−1)m factor. We shall use this fact in Sect. 6.2.2 to perform
the bispectrum integral.
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