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Series Editor’s Preface

This is the first volume in the new series Molecular Modeling and Simulation—
Application and Perspectives. The series aims at providing a comprehensive col-
lection of works on developments in molecular modeling and simulation, particu-
larly as applied to the various research fields of engineering. The goal is to cover a
broad range of topics related to modeling matter at the atomistic level and to
provide timely and detailed treatment of advanced methods and their application in
a broad range of interrelated fields such as biomedical and biochemical engineering,
chemical engineering, chemistry, molecular biology, mechanical engineering, and
materials science. It is therefore fitting that the first volume contains papers arising
from work presented at the 2015 Foundations of Molecular Modeling and
Simulation (FOMMS) conference, held July 12–16, 2015 near Mount Hood,
Oregon.

I wish to acknowledge the tireless efforts of the FOMMS 2015 conference
cochairs Claire S. Adjiman (Imperial College London) and David A. Kofke
(University at Buffalo) and conference chair Randall Q. Snurr (Northwestern
University), who organized FOMMS 2015 and carried out the editorial duties
associated with assembling this volume.

Edward Maginn
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Preface

This volume contains ten papers from the 2015 conference on Foundations of
Molecular Modeling and Simulation (FOMMS). The theme of this 6th FOMMS
conference was Molecular Modeling and the Materials Genome. As in past con-
ferences, the format consisted of invited lectures, contributed posters, and several
workshops. A total of 172 people participated in FOMMS 2015, and 116 con-
tributed posters were presented.

The conference began with a keynote address from Frank Stillinger of Princeton
University, entitled “Chiral Symmetry Breaking via Computer Simulation.” The
theme of the first session was Future Trends in Modeling, Simulation and Data
Mining, and the session featured talks by Andrea Browning of Boeing, Alán
Aspuru-Guzik of Harvard University, and Jinghai Li of the Chinese Academy of
Sciences. The session on Biomaterials and Biological Systems consisted of talks
from Sabrina Pricl of the University of Trieste and Yiannis Kaznessis of the
University of Minnesota. Chris Wolverton of Northwestern University, Kristen
Fichthorn of Penn State University, and Jonathan Moore of Dow Chemical spoke in
the session on Energy and Environmental Applications, and the session on
Complex Fluids and Materials featured talks by Edward Maginn of the University
of Notre Dame, Coray Colina of Penn State University, and Marjolein Dijkstra of
Utrecht University. Talks by Joachim Sauer of Humboldt University, Daniela
Kohen of Carleton College, and Jeffrey Errington of the University at Buffalo were
the focus of the session on Catalysis and Interfaces. The session on Reactive Force
Fields featured presentations by Susan Sinnott of the University of Florida and Adri
van Duin of Penn State University. The conference ended with the awarding of the
FOMMS Medal to Carol Hall of North Carolina State University, who gave a
memorable talk entitled “Protein Aggregation Simulations: Lessons Learned Over a
Decade.”

The conference also featured three workshops. The first workshop on Data
Mining, Machine Learning, and Materials Informatics was given by Jonathan
Moore of Dow Chemical and Johannes Hachmann of the University at Buffalo.
Joshua Anderson of the University of Michigan put on a workshop entitled “Using
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GPUs for Bigger and Faster Simulations,” and the final workshop, entitled “Solving
Common Software Problems in Computational Labs,” was led by Patrick Fuller of
NuMat Technologies and Christopher Wilmer of the University of Pittsburgh.

The principal sponsor of FOMMS 2015 was the CACHE Corporation, with
financial support coming from the Computational Molecular Science and
Engineering Forum of the American Institute of Chemical Engineers, ExxonMobil,
Imperial College London, the Journal of Physical Chemistry, Materials Design, the
National Institute of Standards and Technology, the National Science Foundation,
Northwestern University, Procter and Gamble, the Royal Society of Chemistry,
Scienomics, Springer, the University of Minnesota Nanoporous Materials Genome
Center, and UOP.

The ten papers in this volume represent the wide range of molecular modeling
tools and applications discussed at the conference. The first paper, by Shao and
Hall, presents a coarse-grained model that accounts for protein–protein interactions
in a multiprotein system using discontinuous molecular dynamics simulations. The
model should set the stage for simulating protein systems on longer timescales and
deepening our understanding of processes such as protein crystallization, protein
recognition, and protein purification. In the second paper, Sprenger et al. describe
their use of molecular dynamics simulations with enhanced sampling methods to
study how two types of defects in self-assembled monolayers affect the structure of
adsorbed peptides. Moore et al. present the development of a coarse-grained force
field for water via multistate iterative Boltzmann inversion. The model is derived to
match the bulk and interfacial properties of liquid water. Hülsmann et al. discuss
strategies and software for the semi- or fully-automated parameterization of force
fields, including options for intramolecular and intermolecular interactions and a
work flow combining global and local optimization procedures. In another paper
focused on software and methods, Klein et al. describe open-source software called
mBuild, which is a general tool designed to simplify the construction of complex,
regular, and irregular structures for molecular simulation. Basic molecular com-
ponents are connected using an equivalence operator which reduces and often
removes the need for users to explicitly rotate and translate components as they
assemble complex systems. In a methods-oriented contribution bridging quantum
and classical mechanics, Subramanian et al. examine the Path Integral Monte Carlo
performed with “semi-classical beads.” They compare the rate of convergence with
respect to the number and type of beads for computing fully quantum virial coef-
ficients of helium-4.

Turning more toward applications, the paper by He et al. describes molecular
simulations of the homogeneous nucleation of the ionic liquid [dmim+][Cl−] from
its bulk supercooled liquid. Their work combines the string method in collective
variables, Markovian milestoning with Voronoi tessellations, and order parameters
for molecular crystals. Results include the free-energy barrier, the critical nucleus
size, and the nucleation rate. Schweizer et al. study the influence of alloy compo-
sition on the structure of Raney nickel catalysts using molecular dynamics simu-
lations and the competitive adsorption of benzene and cyclohexane on Raney nickel
as a first step toward modeling the catalytic hydrogenation of benzene. Norman
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et al. present atomistic modeling related to hydrocarbon mixtures and gas hydrates
in porous media, including molecular dynamics simulations to study the phase
diagrams of hydrocarbon mixtures in the bulk and in confined geometries. Finally,
Bamberger and Kohen report a combination of grand canonical Monte Carlo and
MD simulations that provide new insight into an intriguing “cation gating” that
allows carbon dioxide but not other adsorbates to permeate Na—Rho zeolites.

We thank all of the participants for their contributions to FOMMS 2015 and
especially the authors and reviewers of the papers in this volume. Special thanks
goes to the conference facilitator, Robin Craven; the Senior Advisors of FOMMS
2015, Peter Cummings, Joe Golab, Clare McCabe, Jonathan Moore, and J. Ilja
Siepmann; and the conference Programming Committee.

Randall Q. Snurr
Claire S. Adjiman
David A. Kofke
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A Discontinuous Potential Model
for Protein–Protein Interactions

Qing Shao and Carol K. Hall

Abstract Protein–protein interactions play an important role in many biologic and
industrial processes. In this work, we develop a two-bead-per-residue model that
enables us to account for protein–protein interactions in a multi-protein system
using discontinuous molecular dynamics simulations. This model deploys discon-
tinuous potentials to describe the non-bonded interactions and virtual bonds to keep
proteins in their native state. The geometric and energetic parameters are derived
from the potentials of mean force between sidechain–sidechain, sidechain–back-
bone, and backbone–backbone pairs. The energetic parameters are scaled with the
aim of matching the second virial coefficient of lysozyme reported in experiment.
We also investigate the performance of several bond-building strategies.

Keywords Coarse-grained model � Protein–protein interactions � Discontinuous
molecular dynamics � Square-well potential � Osmotic second virial coefficient

1 Introduction

Here, we report the development of a two-bead-per-residue protein model that can
be used with discontinuous molecular dynamics (DMD) simulations to investigate
protein–protein interactions in a multi-protein system. We expect that this new
model will allow us to simulate multi-protein systems on longer timescales than
what has heretofore been achievable, helping us to deepen our understanding of
processes such as protein crystallization [1], protein recognition [2], and protein
purification [3].

Protein models can be classified broadly into two types: all-atom if they describe
every atom in the protein explicitly and coarse-grained if they group several atoms
into one interactive site. All-atom force fields such as CHARMM [4], AMBER [5],

Q. Shao � C.K. Hall (&)
Department of Chemical and Biomolecular Engineering,
North Carolina State University, Raleigh 27695, USA
e-mail: hall@ncsu.edu
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GROMOS [6, 7], and OPLS/AA [8] are very good at describing the behavior of a
single protein and how it interacts with other molecules in explicit solvent.
However, atomistic simulations are usually limited to one or several small proteins
and timescales up to several hundred nanoseconds, effectively precluding the
investigation of many interesting multi-protein problems. Coarse-grained models
enable us to simulate larger systems for longer timescales using less computational
resources. There are two major choices to be made in the development of
coarse-grained models: (1) how to coarse-grain the protein geometry and (2) how to
obtain the geometric and energetic parameters (see recent review papers [9–15] that
summarize the various coarse-graining methods, coarse-grained protein models,
and their applications). Coarse-grained protein models can be categorized based on
how the atoms are grouped together to form the coarse-grained bead
(four-bead-per-residue [16], two-bead-per-residue [17], one-bead-per-residue [18,
19], and ultra-coarse-grained [20]) and how the force field parameters are deter-
mined (e.g., Go-type [21], knowledge-based [22, 23], and physics-based [24]).

Coarse-grained models are usually more problem-specific than all-atom models
because of transferability issues. Coarse-grained protein models are often developed
with the goal of examining particular properties. Most of the current coarse-grained
protein models focus on the folding/unfolding problem. It thus remains to be seen
how well protein models developed based on such properties do in describing
behavior that is a consequence of protein–protein interactions. For example, Stark
et al. [25] found that the popular MARTINI force field predicts a second virial
coefficient of lysozyme that differs considerably from the experimental value. This
inconsistency between simulation and experiment points out the importance of
developing protein models that are designed to apply to problems where protein–
protein interactions play a major role.

It is also important that the method used to simulate multi-protein systems be
fast. Most of the models used in simulating multi-protein systems are based on
continuous intermolecular potentials like the Lennard–Jones potential. Simulations
based on continuous potentials proceed by solving Newton equations at a uniformly
spaced time intervals. They have an algorithm complexity of O(Nlog N), where N is
the number of particles in the system. The big-O notation describes how the per-
formance or complexity (referring to the number of operations) required to run an
algorithm depends on the number of particles in the system. Therefore, the required
computational time for continuous MD simulations increases dramatically with the
number of beads in the system, limiting their application to relatively small systems.

Discontinuous molecular dynamics (DMD) simulations can be used to investi-
gate large systems efficiently with moderate computational resources. DMD sim-
ulations were designed to be applicable to systems that interact via discontinuous
potentials (square-well/square-shoulder and hard-sphere). They proceed by ana-
lytically calculating the next collision time. Several papers [26–28] describe the
details of DMD simulations. The algorithm complexity of DMD simulations is O
(Nlog N). (One paper by Paul [29] even claims a realization of the DMD method
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with an algorithm complexity of O(1).) The enhanced algorithm complexity of
DMD simulations compared to continuous MD simulations make them suitable for
the investigation of long-time processes like spontaneous formation of amyloid
structure, which are still challenging for continuous MD simulations.

This work reports our effort to develop a coarse-grained protein model that can
be used to study protein–protein interactions in multi-protein systems via DMD
simulations. We deploy a two-bead-per-residue protein model: one bead for the
backbone and the other for the sidechain. The parameters of our protein model are
obtained by coarse-graining atomistic simulation results for backbone–backbone,
backbone–sidechain, and sidechain–sidechain interactions in explicit water. The
rest of the paper is organized as follows. Section 2 describes the protein model in
detail; Sect. 3 describes the atomistic and DMD simulations; Sect. 4 discusses the
analysis leading to the final choice of model parameters; and Sect. 5 summarizes
the current status of the model.

2 Model Description

We deploy a two-bead-per-residue protein model to represent the 20 natural amino
acid residues. Since computational efficiency was a major consideration here, we
tried to minimize the number of beads in the system and at the same time represent
the chemical heterogeneity of the individual amino acid residues. Although a
one-bead-per-residue model minimizes the number of beads in the system, we
found that it made it harder to represent the difference among the various types of
amino acid residue in DMD simulations. Protein models with more than two beads
per residue do a good job of representing the chemical heterogeneity of the 20
residues (see, e.g., our protein model, PRIME20 [16]), but this increases the
required computational resources. The two-bead-per-residue model is a good
compromise for large proteins.

The 18 amino acid residues except glycine and proline are represented by two
beads: one bead at the position of the C-a atom to represent the backbone entity and
the other at the sidechain center of mass to represent the sidechain entity. Glycine
and proline residues are represented solely by a single bead at the positions of their
C-a atoms because either they do not have a sidechain or the sidechain is closely
linked with the backbone. Figure 1 shows a schematic of the two-bead model for
alanine.

The potential energy of the system is the sum of the intermolecular potential
energy, intramolecular potential energy, and virtual bond energy for all the beads in
the system (Eq. 1).

Utotal ¼
X

UinterðrÞþ
X

UintraðrÞþ
X

UbondðrÞ ð1Þ

A Discontinuous Potential Model for Protein–Protein Interactions 3



The intermolecular bead–bead interactions are represented by a single square
well or single square shoulder potential as given in Eq. (2):

UinterðrÞ ¼ 1; r� r1
UinterðrÞ ¼ �; r1\r\r2
UinterðrÞ ¼ 0; r� r2

8<
: ð2Þ

where r is the bead–bead distance, r1 and r2 are geometric parameters, and e is the
energetic parameter. The geometric and energetic parameters (r1, r2, and e) are
derived from the potentials of mean force (PMFs) of sidechain–sidechain, side-
chain–backbone, and backbone–backbone pairs from atomistic simulations in
explicit water solvent as discussed in Sect. 4. A single square-well potential (e < 0)
indicates that the two entities attract each other in explicit water; a single
square-shoulder potential (e > 0) indicates that these two entities repel each other in
explicit water; and a hard-sphere potential (e = 0) indicates that the two entities just
have an excluded volume interaction in water. The effect of water is taken into
account in the parameters because the PMFs were obtained from the pair’s inter-
actions in explicit water solvent.

The intramolecular bead–bead non-bonded interactions consider excluded vol-
ume effects only. The hard-sphere potential is used to describe the intramolecular
bead–bead non-bonded interactions (Eq. 3).

UintraðrÞ ¼ 1; r� 0:8r1
UintraðrÞ ¼ 0; r[ 0:8r1

�
ð3Þ

where r is the bead–bead distance and r1 is the geometric parameter in Eq. (2). The
geometric parameters could, in principle, be obtained from the volumes of the
individual beads, but to simplify the process, we choose to use 0.8r1 as the geo-
metric parameter. We found that this selection avoids overlap between beads in a
protein and works well with the virtual bond setting, which is described in the next
paragraph.

Fig. 1 Schematic of the
two-bead-per-residue model.
One bead is at Ca, and the
other is at the center of mass
of the sidechain
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We deploy virtual bead–bead bonds to maintain the protein in its native state.
The virtual bond potential is a double hard wall (Eq. 4).

UbondðrÞ ¼ 1; r�ð1� dÞr
UbondðrÞ ¼ 0; ð1� dÞr\r\ð1þ dÞr
UbondðrÞ ¼ 1; r�ð1þ dÞr

8<
: ð4Þ

where r is the bead–bead distance, r is an equilibrium bead–bead distance obtained
from the native state of the protein, and d is the flexibility factor. Figure 2 shows a
schematic describing the virtual bonds. The native state of a protein is its naturally
folded structure. Here, we use the structure of a protein in the Protein Data Bank
(PDB) as its native state. The virtual bonds can be divided into two categories
depending on the indices of the connected beads along the amino acid sequence.
The “local” category includes virtual bonds between beads whose index difference
is less than four. They are used to maintain the protein local secondary structure.
The other category (non-local) includes virtual bonds between beads far away from
each other along the amino acid sequence. These bonds are used to maintain the
tertiary and quaternary structures of a protein. Section 4.2 discusses the choice of
the virtual bonds in detail.

3 Simulation Details

3.1 Atomistic Simulation

We conducted atomistic simulations to obtain the geometric and energetic param-
eters for the coarse-grained beads in the two-bead-per-residue model; these
parameters are then used in the DMD simulations. The sidechain and backbone
entities were generated from amino acid residues. Glycine and proline entities were
generated by capping their N and C terminals with an acetyl group and an N-methyl

Fig. 2 Schematic describing
virtual bonds. The circles with
solid borders are backbone
beads, and the circles with
dash-line borders are
sidechain beads. The virtual
bonds connect these beads to
keep the protein in its native
state

A Discontinuous Potential Model for Protein–Protein Interactions 5



amide group. These caps prevent the two entities from associating with others
through their N or C termini. The glycine entity was also used as the backbone
entity because it is an amino acid without a sidechain. Sidechain entities were
generated by detaching the sidechain of an amino acid residue from its backbone
and replacing the CB atom with an H atom. Two sidechain or backbone entities
were placed in a 3.0 � 3.0 � 3.0 nm3 box filled with water molecules at a density
of 1.0 g/nm3. The initial entity–entity distance was at least 1.0 nm to avoid any
artificial association. The GROMOS54a7 force field [7] was used to describe the
sidechain and backbone entity, and the SPC model [30] was deployed to describe
the water molecules since it is recommended for use with the GROMOS force field.
Figure 3 shows the initial configuration of a glycine–glycine pair in a water box.

For each system, a 1-ns isothermal–isobaric ensemble (NPT, T = 300 K,
P = 1 bar) MD simulation with a 1-fs time step was conducted after energy min-
imization to let the system reach the equilibrated density and potential energy.
Then, a 100-ns canonical ensemble (NVT, T = 300 K) MD simulation with a 2-fs
time step was conducted to collect data every 500 fs. The 12-6 Lennard–Jones
interactions were treated with a 1.0-nm cutoff, and the electrostatic interactions
were treated with particle mesh Ewald sum [31]. No bonds were constrained to their
equilibrium length during the 1-ns NPT MD simulation. The bonds to the hydrogen
atoms were constrained to their equilibrium length using LINCS algorithm [32]
during the 100-ns NVT MD simulation. The desired temperature was maintained
using the v-rescale algorithm [33], and the desired pressure was maintained using
the Parrinello–Rahman algorithm [34]. The MD simulations and energy mini-
mization were conducted using GROMACS-4.6.5 [35].

3.2 DMD Simulation

We conducted DMD simulations to test and scale the parameters obtained from
atomistic simulations. The DMD simulations were conducted in the NVT ensemble

Fig. 3 Glycine–glycine pair
in a 3.0 � 3.0 � 3.0 nm3

box. Glycine molecules are
represented in a VDW view,
and water molecules are
represented in CPK model
view l. C atom green, N atom
blue, O atom red, and H atom
white
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using code developed in our group. For single-protein systems, the protein was
placed in the center of a 10 � 10 � 10 nm3 box. The temperature of the system
was maintained at 1.0 using the Andersen thermostat [36]. For multi-protein sys-
tems, 50 lysozyme proteins were placed at random positions in a 40 � 40 � 40
nm3 box (1.38 lM) using Packmol [37]. The initial protein–protein distance was at
least 7 nm to avoid any artificial association. Figure 4 shows the initial configu-
ration for 50 lysozyme proteins.

4 Parameter Development

4.1 Intermolecular Interaction

We use a pair of glycine (G) entities to illustrate how we get geometric and
energetic parameters (r1, r2, and e) from atomistic simulation results (Fig. 5). The
radial distribution functions between the centers of mass of two glycine entities
(Fig. 5a) were obtained from the MD simulation. Boltzmann inversion [38] was
used to calculate the PMF (Fig. 5b). There are several ways to select the geometric
and energetic parameter from a continuous potential [39, 40]. Here, we choose the
geometric parameter r1 to be one root where the PMF = 0 (Fig. 5b) and the
energetic parameter e to be the lowest value of the PMF. Here, we choose r2 to be
where g(r) reaches the range of 1.0 ± 0.1. This method may result in a small
energy perturbation (−0.1 kBT when g(r) = 1.1 and 0.1 kBT when g(r) = 0.9) but
avoids the possibility of having an artificially large well/shoulder width when the
PMF approaches zero slowly. The geometric parameter r1 for the square-shoulder
is where the PMF starts to increase rapidly, and the energetic parameter e is the

Fig. 4 The initial
configurations of 50
lysozymes in a
40 � 40 � 40 nm3 box
(1.38 lM)

A Discontinuous Potential Model for Protein–Protein Interactions 7



value of PMF at r1. The geometric parameter r2 for the square-shoulder is deter-
mined in the same manner as for the square-well. If the value of the PMF is always
between −0.1 and 0.1 kBT, we deploy a hard-sphere potential for the bead–bead
interaction. The geometric parameter r1 is selected in the same way as that for the
square-shoulder.

It is of interest to ask whether or not the parameters (r1, r2, and e) of the 210
pairs are physically meaningful and if they bias toward certain conformations. The
value of the parameter r1 reflects how close the two entities can approach each
other in water solvent. The majority of bead–bead pairs have r1 in the range of
0.33–0.45 nm, which is quite close to the size of the heavy atoms in the entities.
These entities should be able to contact with each other directly in water solvent.
Only five pairs have r1 larger than 0.45 nm: arginine (R)–arginine (R), arginine
(R)–lysine (K), glutamic acid (E)–glutamic acid (E), tryptophan (W)–tryptophan
(W), and tryptophan (W)–tyrosine (Y).

The value of parameter r2 reflects how far apart the two entity beads can be and
still influence each other. The values of r2 for the 210 pairs range from 0.55 to
1.0 nm. This wide range illustrates the chemical dissimilarities among the 18
sidechain entities. The values of r2 for the hydrophilic and charged pairs (such as
0.85 nm for the asparagine–asparagine pair and 1.0 nm for the lysine–lysine pair)
are generally larger than those for the hydrophobic pairs (0.55 nm for the valine–
valine pair). This is expected because the former two are controlled by electrostatic
interactions, which decrease much more slowly as a function of distance than the
van der Waals interactions which control the hydrophobic associations.

The value of the energetic parameter e reflects whether the two entities attract or
repel each other. We first consider charged sidechain entities. The pairs of sidechain
entities with the same sign charge have positive e (a repulsive force), and the pairs
with opposite sign charge have negative e (an attractive force). Our atomistic MD

Fig. 5 a Radial distribution functions and b potential of mean force (PMF) and square-well
potential for a G–G pair. The geometric (r1 and r2) and energetic (e) parameters for the
square-well potential were obtained from discretizing the PMF of entity pairs in atomistic
simulations

8 Q. Shao and C.K. Hall



simulations successfully capture how these charged entities interact with each other.
Histidine (H) has a pKa similar to 7.0, so its net charge is quite weak. Therefore, we do
not find a strong repulsive force between H and the negatively charged sidechains.
Instead, we find a weak attraction, probably due the effect of water molecules.

We further examine the values of parameter e for the other entity pairs. Two
pairs, glycine–aspartic acid and glycine–proline, have a positive e, which may be
due to their different influences on the structure of water molecules. The other pairs
have a negative e, whose value depends on the chemistries of the entities and their
individual effects on the structure of surrounding water molecules. For instance, the
value of e for the valine–valine pair is −1.44 kBT, and that for the serine–serine pair
is only −0.61 kBT, consistent with the fact that hydrophobic substances associate
more stably than hydrophilic substances in water. The glutamic acid–cysteine and
lysine–tryptophan pairs have much lower e than the others. The former may be due
to an interaction between the S atoms and the charged group, and the latter may be
due to a charged-group-p conjugation.

Twenty entity pairs (Table 1) have a hard-sphere potential because their inter-
actions are judged to be very weak based on the criterion stated above. Some of
these may be due to the different hydrophilicities of the entities (such as the
sidechains of valine and aspartic acid). Some of these may be due to the effect of
water molecules. Consider for instance, the glycine–serine sidechain pair. The
serine sidechain has a hydroxyl group, which should be able to associate with the
oxygen atom on glycine; however, these two entities can also form hydrogen bonds
with water molecules. The water molecules around the two entities may make the
glycine–serine sidechain association energetically comparable to the non-associated
state. This weak interaction reminds us of the importance of taking the effect of
water molecules into account when considering protein–protein interactions.

4.2 Virtual Bond

An ideal set of virtual bonds should be able to maintain the protein in its native
state, while maximizing the timescale per simulation step. We investigated how this
goal could be achieved by tuning the types of virtual bonds and the flexibility factor
d in Eq. (4). Table 2 lists the choice of virtual bond types and the values of d for

Table 1 The entity pairs that
have a hard-sphere potential

G-S T-R S-H R-I

V-D T-H D-Q E-I

V-R S-R D-L Y-Y

V-E S-K D-I Y-W

T-D S-E D-M W-W

A Discontinuous Potential Model for Protein–Protein Interactions 9



three sets used for lysozyme and for myoglobin. These are labeled as “rigid,”
“moderate,” and “loose” based on d. The number of virtual bonds in the “loose”
category is greater than that in the “moderate” category which is itself greater than
that in the “rigid” category.

We select lysozyme (PDB ID: 193L) as our first test protein to evaluate the
ability of these three virtual bond sets to maintain the protein in its native state.
Lysozyme was chosen as our first test case because it is relatively small and rigid.
The virtual bond set’s ability to maintain the protein in its native state was measured
using the root mean square deviation (RMSD) of all beads from the lysozyme
native state conformation during a DMD simulation of 200 million collisions. As
shown in Fig. 6, the small RMSD fluctations (0.15–0.30 nm for the rigid set, 0.18–
0.30 nm for the moderate set, and 0.15–0.25 nm for the loose set) indicate that all
three sets work well at maintaining lysozyme in its native structure. Interestingly,

Table 2 Three virtual bond sets. CA[i] means the ith backbone bead, and CB[i] means the ith
sidechain bead

Local Non-local

Bond types d Bond types d

Rigid

CA[i]–CA[i + 1]
CA[i]–CA[i + 2]
CA[i]–CA[i + 3]
CB[i]–CA[i]
CB[i]–CA[i − 1]
CB[i]–CA[i + 1]

0.05 CA[i]–CA[i + 10]
CA[i]–CA[i + 20] (i = i + 2)a

CB[i]–CB[i + 10]
disulfide bonds

0.05

Moderate

CA[i]–CA[i + 1]
CA[i]–CA[i + 2]
CA[i]–CA[i + 3]
CB[i]–CA[i]
CB[i]–CA[i − 1]
CB[i]–CA[i + 1]

0.12 CA[i]–CA[i + 10] (i = i + 2)
CA[i]–CA[i + 20] (i = 2, i = i + 4)b

CA[i]–CA[i + 40] (i = i + 8)
CA[i]–CA[i + 80] (i = i + 16)
CB[i]–CB[i + 10] (i = i + 4)
CB[i]–CB[i + 20] (i = 2, i = i + 4)
disulfide bonds

0.05

Loose

CA[i]–CA[i + 1],
CA[i]–CA[i + 2]
CA[i]–CA[i + 3]
CB[i]–CA[i]
CB[i]–CA[i − 1]
CB[i]–CA[i + 1]

0.25 CA[i]–CA[i + 10] (i = i + 2),
CA[i]–CA[i + 20] (i = 2, i = i + 4),
CA[i]–CA[i + 40] (i = i + 8)
CA[i]–CA[i + 80] (i = i + 16)
CB[i]–CB[i + 10] (i = i + 4)
CB[i]–CB[i + 20] (i = 2, i = i + 4)
disulfide bonds
CA[i]–CA[i + 120](i = i + 16)(myoglobin)

0.12 (lysozyme)
0.1 (myoglobin)

The value of dr is limited to be less than 0.1 nm
ai = i + n means that this type of virtual bonds is set for beads i, i + n, i + 2n…
bi = n means this type of virtual bonds starts from nth bead
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the “loose” set works as well as the other two even though its d is much higher than
the other two.

The “loose” virtual bond set works best at maximizing the simulation timescale
per million collisions. As listed in Table 3, a simulation of 50 lysozymes shows that
for a 100-million-collision simulation, the simulation-reduced time achieved with
the “loose” virtual bond set is 1.4 times that with the “moderate” virtual bond set
and 3.3 times that with the “rigid” virtual bond set. DMD simulations of complex
molecules such as proteins spend more than 90 % of the simulation time in colli-
sions between the bonded beads, indicating that the timescale of a DMD simulation
heavily depends on the bond flexibility. A “loose” virtual bond set allows the
simulation to advance much faster than a “rigid” one. However, the “loose” set may
also increase the risk that the protein will deform. This risk should be taken into
account when selecting proper virtual bonds.

We then tested the performance of these three virtual bond settings for a more
flexible protein: myoglobin (PDB ID: 1YMB). The RMSD of myoglobin well
illustrates the importance of choosing the virtual bond types and flexibility factor
more carefully. The “rigid” and “moderate” virtual bond sets for myoglobin are the

Fig. 6 Root mean square
deviation (RMSD) of all
beads in a lysozyme during a
2-billion-collision DMD
simulation

Table 3 Simulation time
advanced by a
100-million-collision DMD
simulation of 50 lysozymes

Reduced time

Rigid 619

Moderate 1457

Loose 2072

A Discontinuous Potential Model for Protein–Protein Interactions 11



same as for lysozyme. As shown in Fig. 7, the RMSDs with these two virtual bond
sets fluctuate from 0.15 to 0.5 nm (rigid) and 0.2 to 0.5 nm (moderate). The large
RMSD fluctuations indicate that we need to select virtual bonds carefully. We thus
set a “loose” set for myoglobin, which has a new type of virtual bond: CA[i]−CA
[i + 120] (i = i + 16) because myoglobin is larger than lysozyme. In this set, the
value of d for the local virtual bonds is chosen to be 0.25; however, unlike our
choice for lysozyme, we set the non-local d to be 0.10 instead of 0.12. As shown in
Fig. 7, the increase in the number of “non-local” virtual bonds improves the ability
of the model to hold myoglobin in its native state (0.25 < RMSD < 0.3 nm).

The comparison among the three virtual bond sets shows the importance of the
non-local virtual bonds in maintaining the protein in its native state. A protein
usually keeps its tertiary and quaternary structures with the help of non-bonded
intramolecular interactions such as hydrogen bonds and hydrophobic associations,
which are not considered in the current version of our model. All the virtual bonds
that connect the beads whose index difference is less than four are there to maintain
the bonds, angles, and dihedral angles between the beads. They work well at
maintaining the local secondary structure of a protein but have little influence on the
tertiary and quaternary structures of the protein. Thus, the model depends on the
non-local virtual bonds between beads that are far away in the sequence to hold
different regions of a protein together. The selection of “non-local” virtual bonds is
still an art. Using the virtual bonds that connect the beads whose index difference is
10, 20, 40, 80…, up to the total number of the beads in the protein, works well. The
value of d for the “non-local” virtual bonds should be less than that for the “local”

Fig. 7 RMSD of all beads in
myoglobin during a
2-billion-collision DMD
simulation
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ones due to their large equilibrated bond length. Although the total number of
“non-local” virtual bonds is much less than that for “local” virtual bonds, the
non-local bonds are very important as they greatly enhance the ability of a protein
to stay in its native state. For instance, having six virtual bonds between CA[i] and
CA[i + 120] results in a decrease of the RMSD of myoglobin from around 0.2–
0.5 nm (rigid and moderate) to 0.25–0.3 nm (loose) (Fig. 7). Such a strategy
could be useful for the simulation of other complex systems.

4.3 Energetic Parameter Adjustment

The values of the force field parameters need to be adjusted to ensure that the
coarse-grained model gives reasonable results in comparison with experiment.
Tables 4, 5, and 6 show the values of r1, r2 and e obtained from the PMFs for the
210 bead-bead pairs. Here, we select the osmotic second virial coefficient (B22) of
lysozyme as the reference property because it well represents the strength of
lysozyme–lysozyme interactions in a solution. Lenhoff and his colleagues [41–44]
measured B22 for lysozyme in a variety of solutions. Lysozyme is expected to have
a positive B22 in water because it is positively charged. Their data indicate that B22

of lysozyme in water at pH 7 is around 5 � 10−4 mol ml/g2.
We use Eq. (5) to calculate B22 from radial distribution functions g(r) of the

center of mass of lysozymes obtained from DMD simulations of our system of 50
lysozymes.

B22 ¼ � 2p
M2

wNA

Z1

0

g rð Þ � 1ð Þr2dr ð5Þ

where Mw is the molecular weight of the protein, NA is the Avogadro constant, and
g(r) is the radial distribution function. We then compare the simulation value of B22

to the experimental one; a simulation value of B22 larger than the experimental one
would imply that the force field overestimates the attraction among proteins, while a
simulation value of B22 smaller than the experimental one would imply that the
force field overestimates the repulsion among proteins.

The energetic parameters are adjusted so that the value of B22 obtained from
simulations approaches the experimental value. Ideally, all the geometric and
energetic parameters should be adjusted individually, but this would require mas-
sive data which are not achievable now. Alternatively, if we fix the interaction
ranges of the 210 pairs, i.e., the geometric parameters r1 and r2, and keep the ratio
of the energetic parameters for any two pairs unchanged, we can adjust all the
energetic parameters by multiplying them by a single factor f. This helps us to
narrow the difference between the simulation and experiment results for B22.

A Discontinuous Potential Model for Protein–Protein Interactions 13
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The reduced temperature T* is set to 1.0 when tuning the factor. For each f, the
average value of B22 was obtained from three independent DMD simulations
starting from different initial configurations. These simulations lasted for 120–170
billion steps with a total reduced time s of around 1 � 106.

We find that f needs to be small in order to get our value of B22 to be close to
experimental value. The value of B22 is 1.9 ± 0.83 � 10−4 mol ml/g2 when
f = 0.15 and increases to 7.1 ± 3.18 � 10−4 mol ml/g2 when f = 0.10. These
values are close to the value obtained experimentally (5 � 10−4 mol ml/g2). We
chose to set f = 0.10 as the scale factor because the simulation results for B22 with
f = 0.1 straddle the experimental value. It is not surprising to find such a small
f value. There are two possible reasons for the need for such drastic rescaling. First,
coarse-graining smooths the free energy surface and makes it easier for proteins to
aggregate. Second, the current coarse-graining method may not be able to address
the effect of water molecules near the proteins well. Stark et al. [25] also found that
they needed to drastically rescale the energetic parameters of the MARTINI force
field [45] to match the experimental value for B22 of lysozyme. The necessity of
scaling parameters to match experiment results was also observed for ionic liquids
[46]. A possible reason for such necessity is that the current models use an additive
two-body interaction system, which is an approximation to the many-body inter-
actions. Parameter scaling may be an effective way to attenuate the error brought by
the different interaction systems.

5 Conclusion

We have developed a discontinuous potential two-bead-per-residue protein model
so that we can conduct DMD simulations to investigate protein–protein interactions
in a multi-protein system. The current model focuses on proteins that are in their
native states. We derive the intermolecular bead–bead interactions from the
potential of mean force obtained from atomistic simulations. Examination of the
geometric and energetic parameters shows that these parameters are physically
meaningful. We also developed strategies to set the types and flexibility of the
virtual bonds to constrain the proteins in their native state while maximizing the
simulation timescale. Comparison of a variety of virtual bond sets illustrates that
high bond flexibility (the loose set) improves the DMD simulation performance.
We also scale the energetic parameters of our model to match experimental results
on the osmotic second virial coefficient of lysozyme. We are using this model to
investigate the formation of the corona of proteins that forms around a nanoparticle.
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Probing How Defects in Self-assembled
Monolayers Affect Peptide Adsorption
with Molecular Simulation

K.G. Sprenger, Yi He and Jim Pfaendtner

Abstract Due to their flexible chemical functionality and simple formulation,
self-assembled monolayer (SAM) surfaces have become an ideal choice for a
multitude of wide-ranging applications. However, a major issue in the preparation
of SAM surfaces is naturally occurring defects that manifest in a number of dif-
ferent ways, including depressions in the underlying gold substrate that cause
surface roughness or through incorrect self-assembly of the chains that causes
domain boundary effects. Molecular simulations can provide valuable insight into
the origins of these defects and the effect they have on biological and other pro-
cesses. Molecular dynamics (MD) simulations have been performed on a SAM
surface with a carboxylic acid/carboxylate terminal functionality and induced with
two types of experimentally observed defects. The enhanced sampling method
PTMetaD-WTE has been used to model the adsorption of LKa14 onto the two
types of defective SAM surfaces and onto a control SAM surface with no defective
chains. An advanced clustering algorithm has been used to elucidate the effect of
the surface defects on the conformations of the adsorbed peptide. Results show
significant structural differences arise as a result of the defects. Specifically, both
types of defects lead to a near-complete loss of secondary structure of the adsorbed
peptide as compared to the control simulation, in which LKa14 adopts a perfect
helical structure at the SAM/water interface. On the surface with domain boundary
effects, extended conformations of the peptide are stabilized, whereas on the SAM
with surface roughness (i.e., chains of various lengths), random coil conformations
dominate the ensemble of surface-bound structures.
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1 Introduction

The formation and characterization of self-assembled monolayers (SAMs) on solid
surfaces has been extensively studied for several decades. The easy preparation of
SAMs with different terminal chemical functionalities has made them convenient
for far-reaching and numerous applications, including bio-related technologies such
as biosensors and medical implants, nano- and microfabrication, nanodevices, and
corrosion protection. Experimental microscopy studies have long shown that SAMs
have high concentrations of defects [1–3]; in some cases, as with the nanofabri-
cation method of microcontact printing, naturally occurring imperfections in the
SAMs were shown to play a beneficial role in the process [4]. In most cases,
however, defects in the monolayers can have unexpected and perhaps undesirable
consequences. Two commonly occurring defects arise from imperfections in the
substrate (leading to increased surface roughness after self-assembly) and imper-
fections in the self-assembly process (i.e., the so-called film defects).

Though molecular simulation can offer unique insights into the consequences of
SAM structural imperfections, it has only rarely been done [5–9]; limitations of
small simulation cell sizes and/or insufficient sampling times have prevented the
explicit exploration of defects in typical SAM modeling studies [4]. We have
employed the enhanced sampling method parallel tempering metadynamics using
the well-tempered ensemble (PTMetaD-WTE), which we have used successfully in
several prior studies to study peptide/protein adsorption at interfaces [10–12].
A description of other simulation approaches to studying these types of problems
can be found elsewhere [11].

In this work, we build on our prior simulations [11] of the model peptide LKa14
[13] adsorbing onto an ideal SAM. Past work focused on obtaining structural and
thermodynamic information of adsorbed peptides, with a specific emphasis on
quantitative comparison to experimental measurements of side chain orientation.
However, the systems studied were very idealized due to their lack of SAM
structural imperfections. In this work, we take the logical next step by studying the
impact of incorporating surface defects and provide new insights into the conse-
quences of SAM imperfections on the structure and binding thermodynamics of
adsorbed biomolecules. Herein, we have performed a series of molecular dynamics
(MD) simulations with PTMetaD-WTE of LKa14 adsorbing onto a
carboxyl-terminated alkanethiol SAM with both substrate and film naturally
occurring defects incorporated to mimic experimental observations. In addition to
the simplicity of the peptide (the alpha helix organizes the side chains into a
hydrophobic and charged, hydrophilic face with sequence LKKLLKLLKKLLKL),
this combination of surface and peptide was chosen owing to the ease with which
future experiments could be performed related to further understanding defects in
SAMs. With an idealized SAM as a control, two types of defects are introduced,
namely a gold depression that creates shortened alkyl chain lengths to mimic a
characteristic defect in the underlying gold substrate and a characteristic film defect
arising from faulty packing of the SAM (i.e., chains pointed toward and away from
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each other), creating domain boundary effects. We also used an advanced clustering
analysis and reweighting technique to reveal large differences in surface-bound
peptide conformations caused by the presence and type of incorporated SAM
defect. As we discuss, this analysis is quite general and can be applied to any type
of biased protein/surface simulation.

2 Methods

2.1 System Setup

System specifications are reported in Table 1, including information from a control
simulation without defects from our past work [11]. Systems consisted of one
LKa14 peptide, a SAM surface functionalized with a carboxylic acid/carboxylate
head group, explicit TIP3P waters, and sodium ions to achieve system charge
neutrality. The LKa14 peptide structure was generated with the VMD psfgen
plug-in [14], and the defect-free SAM surface was based on our prior studies.
LKa14 was capped with a deprotonated carboxylate group to match experimental
conditions [15–23], imparting it an overall peptide charge of +5. Two types of
defects were introduced into the SAM surfaces. The first type of defect mimics an
experimentally observed defect in the underlying gold substrate where depressions
in the gold layer lead to shortened alkyl chain lengths (hereafter referred to as a
“Type I” defect, see Fig. 1).

The original surface consisted of 100 randomly alternating protonated and
deprotonated chains in a 1:1 ratio to mimic a bulk pH of 7.4 [24]. Fifty chains were
randomlymutated to have reduced alkyl chain lengths from 12 to 8 carbons. The same
force field parameters were used for the head groups of both the healthy and mutated
chains, leaving the overall surface charge of −50 unaffected. Force field parameters
were taken from the AMBER99SB-ILDN force field [25] (i.e., COOH/COO from
glutamic acid/glutamate). Triplicate systems were set up in this manner; distributions
of the healthy/mutated chains for the 3 systems are shown in Fig. 2.

Table 1 Setup of PTMetaD-WTE simulations

Defect
type

Trial Total
number
of SAM
chains

COO/COOH
chain ratio

Mutated
COO
chains

Mutated
COOH
chains

Na+ Waters Box lengths
(nm3)

I I 100 1:1 24 26 45 4334 4 � 5 � 8

I II 100 1:1 27 23 45 4339 4 � 5 � 8

I III 100 1:1 23 27 45 4334 4 � 5 � 8

II N/A 70 3:4 16 24 25 4490 4 � 5 � 8

None
[11]

N/A 100 1:1 0 0 45 3957 4 � 5 � 8
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The second type of defect mimics a characteristic film defect that occurs during
SAM self-assembly, where alkyl chains pointing in opposite directions lead to
domain boundary effects (hereafter, “Type II” defect, see Fig. 3). To introduce this
defect while still maintaining the original R3 geometry and 30° normal tilt angle of
the SAM chains [26], it was necessary to remove 30 of the original 100 chains.
A portion of the remaining chains was then rotated about the chains’ centers of

Fig. 1 Side view of LKa14 (side chains shown in space-filling representation and hydrogen not
included) on a SAM surface with a Type I substrate defect causing areas of shortened alkyl chain
lengths. The +z direction is orthogonal to the SAM surface and the +x direction is out of the plane
of the page. Chains are colored to highlight frozen atoms (silver frozen CH2 atoms) and head
group atoms allowed to remain free during MD simulation (teal carbon, yellow hydrogen, and red
oxygen)

Fig. 2 Distribution of healthy to defective (i.e., short) chains for the three Type I defect
simulation trials. The +z direction is out of the plane of the page. Cyan and magenta represent
healthy and defective chains, respectively
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mass (minus the head groups), creating both the outward and the inward defects
shown from left to right in Fig. 3. To prevent spurious interactions with the thiol
group exposed at the base of the inward boundary defect, thiol groups were
removed from the original surface. As all simulations used periodic boundary
conditions in the x, y, and z dimensions to allow for electrostatic calculations with
the particle mesh Ewald (PME) method [27], the peptide could interact with water
in the triangular regions marked in blue in Fig. 3.

Simulations used the GROMACS 4.6.5 MD engine [28] with the AMBER99SB-
ILDN force field [25] and the PLUMED 2.0 plug-in [29]. Box heights were chosen
to permit diffusion of the peptide beyond the short-range van der Waals and
Coulombic cutoff distances of 1.0 nm to experience a bulk-like state. The peptide
was prevented from interacting with the image of the surface by placing a harmonic
restraint on its center of mass that began acting on the peptide at a z-distance of
4.5 nm from the top of the surface. Energy minimization was performed on all
surfaces with a steepest descent algorithm for 40,000 steps, followed by the mini-
mization of the solvated peptide/surface systems where the first 6 and 10 CH2 groups
were frozen for the mutated and healthy SAM chains, respectively. Chains were
frozen to prevent diffusion or melting at high temperatures and remained frozen in all
ensuing simulations while movement of the head groups was unrestricted.

2.2 System Setup

Due to the strong binding forces that exist between the peptide and surfaces, the use
of a multiscale modeling algorithm to overcome sampling challenges is essential.
This type of algorithm, as applied to protein adsorption, should (1) have strong
atomistic detail (e.g., be based on MD or other molecular techniques), (2) be

Fig. 3 Side view of LKa14 (side chains shown in space-filling representation and hydrogen not
included) on a SAM surface with a Type II film self-assembly defect causing inward and outward
boundary effects. The +z direction is orthogonal to the SAM surface and the +y direction is out of
the plane of the page. Chains are colored to highlight frozen atoms (silver frozen CH2 atoms) and
head group atoms allowed to remain free during MD simulation (teal carbon, yellow hydrogen, and
red oxygen)
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scalable to systems of practical size, and (3) allow for quantitative comparison with
experiments (e.g., in resolving the conformation and orientation of adsorbed pro-
teins for comparison with, for example, SFG results). A method that can address all
of these challenges is metadynamics (MetaD) [30, 31], which works by applying a
history-dependent bias to one or more collective variables (CVs) that describe the
underlying changes in a system (e.g., interfacial versus solution state structure of
biomolecules in an adsorption process) in reduced dimension:

V sðrÞ; tð Þ ¼ W
Xt0\t

t0¼sG;2sG

YNCV

i¼1

exp
� siðrÞ � siðrðt0ÞÞð Þ

2r2i

� �
ð1Þ

The added bias potential, V(s, t), is added to the overall potential energy and is
repulsive, Gaussian-shaped, and centered on the CV at the time of addition. This
results in a net force that prevents the system from exploring previously visited
states and instead encourages it to explore new regions of the CVs. To achieve
smooth convergence of the bias potential, we use the well-tempered variant of
metadynamics (WTM) [32]:

W 0 ¼ x� exp �Vðs; tÞ
kBDT

� �
ð2Þ

In Eq. (1), the number of CVs is given by NCV, the values of which are defined
by a functional mapping that relates the CV to the system’s geometry, or s(r).
Gaussian “hills” are added every sG time steps with characteristic height W and
width r. WTM leads to an exponential decrease in the amount of bias added to
previously explored regions of phase space (Eq. 2). The instantaneous hill height,
W′, is also controlled by an adjustable parameter DT that is related to the charac-
teristic barrier heights in the system. In a post-processing manner, the cumulative
bias from the simulation can be inverted to obtain the underlying free energy
surface (FES) as projected onto the CVs [33].

Despite its capacity to greatly enhance conformational sampling, MetaD suffers
from the ability of the chosen CVs to overcome hidden degrees of freedom in the
system. This can be addressed with the use of parallel tempering (PT) [34, 35],
which manipulates some or all degrees of freedom in a more general way (e.g., by
increasing the temperature of the system). PT works by requiring many parallel
simulations or “replicas” of the system that span a wide temperature range and
exchange configurations periodically according to the Metropolis criterion. In this
way, PT can be combined with metadynamics (PTMetaD [36]) to both increase the
exploration of CV space and overcome hidden energy barriers.

The addition of sampling in the well-tempered ensemble (WTE) [37] provides an
efficiency boost to the method, which has been discussed elsewhere [10]. The WTE
algorithm works by using the potential energy itself as a CV and amplifying energy
fluctuations (while leaving average energies of the original ensemble untouched) to
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increase overlap in the energy distributions of adjacent temperatures. This in turn
increases the frequency of exchange between replicas and thus increases the overall
efficiency of the method. The degree of amplification of the energy fluctuations is
controlled via the same adjustable parameter DT. However, the WTE bias of the
simulation is generally constructed with a different value of this parameter.
Commonly, DT is rewritten as c, called the bias factor, where c = (DT + T)/T [31].

PTMetaD-WTE was used with the same procedure described in past work [11],
including the use of a new functionality in PLUMED 2.0 [29] to provide a slight
improvement to the method. Spanning a range of 300–450 K, 12 configurationally
identical replicas were simulated in a short, 1 ns NVT PT simulation to equilibrate
each replica at its respective temperature. A 10 ns WTM simulation biasing the
potential energy was then performed to establish the WTE to increase sampling
efficiency through increasing the spread in the system’s potential energy. A bias
factor of 20 was used in all WTM simulations with Gaussian hills added every ps
with a width of 200 kJ/mol at an initial height of 2.0 kJ/mol.

Production runs biased two CVs for LKa14 with an additional two-dimensional
MetaD bias potential. As with past work [11], the first CV biased the distance
between LKa14’s center of mass (COM) and the surface, whereas a second con-
formational CV biased the number of backbone a-helical hydrogen bond contacts.
A switching function with a reference bond length of 0.25 nm was used to define
the degree of the contact, which was defined between a-helical hydrogen bond
donor/acceptor pairs along the peptide backbone (i.e., i, i + 4 pairs). The distance
and conformational CVs were biased with Gaussian hill widths of 0.05 and 0.1 nm,
respectively. A bias factor of 10 was used in all PTMetaD-WTE simulations with
Gaussian hills added every ps at an initial bias deposition rate of 3.0 kJ/mol/ps.

3 Results and Discussion

3.1 Convergence of MetaD Simulations

To assess convergence of the PTMetaD-WTE simulations, the free energy differ-
ence between the adsorbed and solvated states was calculated as a function of time.
Convergence was established when the change in the free energy difference became
negligible with time. Figure 4 shows the change in the Helmholtz binding energy as
a function of simulation time for each of the systems listed in Table 1. All simu-
lations were initially run for 200 ns per replica, and all Type I defect simulations
were deemed converged by the end of that time period. The Type II defect simu-
lation was extended by 50 ns per replica to achieve convergence. Figure 4 shows
that both the type of defect (i.e., Type I vs. Type II) and the distribution of the
defects (i.e., Type I, trials I–III) impact the final value of the free energy change
upon binding as compared to the control simulation.

Probing How Defects in Self-assembled Monolayers … 27



3.2 Clustering of Surface-Bound Structures

Figure 5 shows the Helmholtz energy as a function of distance between LKa14 (Ca
center of mass (COM)) and the surface (frozen C10 atom) for each simulation listed
in Table 1. Figure 5c shows the minimum peptide/surface distance for the control
simulation is approximately 1 nm; therefore, any minima in Fig. 5a, b below 1 nm
represent binding to defective areas of the SAM surfaces.

To determine the effect of the defects on peptide adsorption, an RMSD-based
clustering algorithm [38] was used to extract the most dominant structures in each
of the wells in Fig. 5. The algorithm works by first removing external translational
and rotational motions so that only the internal structural fluctuations can be
characterized. A least-squares alignment between all unique pairs of structures is
then performed and an RMSD value is calculated for each pair. For each structure,
other structures that fall below a given cutoff value in RMSD are assigned as
“neighbors”. The structure with the largest number of neighbors and all of its
assigned neighbors is assigned a cluster number and removed from the pool of
clusters. The process is then repeated for all remaining structures until each is
assigned a cluster value.

An important point should not be overlooked. The clusters obtained in the
manner described above are obtained from biased MD trajectories. Therefore, it is
impossible to directly compute relative cluster weights or probabilities only using
the output of a clustering analysis. Instead, we employed a previously demonstrated
reweighting technique [39] that makes use of the classic Torrie-Valleau umbrella
sampling reweighting approach [40] with statistical weights calculated according to
Eq. (3):

w ¼ exp Vbiasbð Þ ð3Þ

where the bias potential in this case is obtained by using the final MetaD bias
potential treated as a static biasing potential. We note for interested readers that this
analysis is trivially performed within PLUMED/GROMACS by using the “-rerun”
functionality of the MD engine along with the final MetaD bias (e.g., the “HILLS”

Fig. 4 Convergence of free
energy differences between
solvated and adsorbed states
for PTMetaD-WTE
simulations at 300 K. The
negative value implies a
decrease in free energy upon
adsorption
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file) and the MD trajectory (i.e., in this case, the 300 K replica trajectory from the
sampling scheme). Care should be taken to avoid using the portion of the trajectory
that corresponds to the MetaD transient. However, in this case this is not an issue as
we only clustered the 2nd half of the trajectories—far beyond the end of the
transient period. With the proper statistical weights in hand for the trajectory of
surface-bound structures, the final probability of each cluster is trivially calculated
by normalizing and summing the individual weights (calculated via Eq. 3) for each
member in each cluster.

The analysis was first performed on the trial III Type I defect simulation; since
Fig. 5a shows similar free energy profiles for the three trials, we deemed analysis of
a single trial to be sufficient. Skipping every second frame to reduce computation
time, surface-bound structures (defined as peptide/surface distances below 1.2 nm)
were clustered with an RMSD cutoff value of 0.2 nm. As noted above, we used
only the second half of the trajectory for the clustering analysis to eliminate the
transient part of the MetaD bias potential. Among 39,696 structures, 78 clusters

(a)

(b)

(c)

Fig. 5 Helmholtz free energy
as a function of LKa14/SAM
distance for PTMetaD-WTE
simulations at 300 K: a Type
I defect simulations, trials
I–III; b Type II defect
simulation, energy minima
highlighted in inset; and
c control simulation. Note that
the relative energy scale is
arbitrary owing to the trivial
constant introduced in the
estimation of the free energy
from the MetaD bias potential
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were determined. The control simulation was analyzed in a similar manner,
resulting in 29 clusters from 29,848 surface-bound structures. The central confor-
mation of each cluster, the so-called cluster centers, for the top three weighted
clusters for each of these simulations, along with their respective weights, is shown
in Fig. 6. Both top and side views are included for the Type I defect simulation to
highlight binding to either normal or shortened alkyl chain lengths.

The first thing to note is the difference in cluster distribution between the defect
and the control simulations: Conformations in the top three clusters of the defect
simulation make up about 81 % of the total probability of surface-bound states,
whereas conformations in the first cluster alone in the control simulation have a
similar probability of existing on the surface of just over 78 %. As Fig. 6 shows,
this is because areas of shortened alkyl chain lengths caused by depressions in the
gold substrate below the SAM surface dramatically disrupt the helical structure that
LKa14 normally adopts at interfaces, leading to a wide array of unfolded structures.
Nearly, all secondary structure, indicated by the color of the peptide’s backbone
(i.e., magenta, cyan, and purple indicate turns, coils, and alpha helical residues,
respectively), is lost with the addition of the surface defects. Unlike the central

Fig. 6 Top three surface-bound cluster center conformations from a clustering analysis of the
Type I, trial III defect simulation compared to the control simulation with no chain defects.
Secondary structure is indicated by peptide backbone color: Purple designates an a-helix, magenta
a turn, and cyan a random coil. Silver and pink represent healthy and defective chains, respectively
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cluster conformations from the control simulation, those from the defect simulation
appear to have little in common apart from a tendency toward unstructured coils,
which makes sense as defective chains are randomly distributed across the surface.

The same analysis was performed on the Type II defect simulation for each of
the three energy minima highlighted in Fig. 5b (i.e., A, B, and C). These minima
are related to the presence of the outward boundary defect (see Fig. 3); the inward
boundary defect appears to have little influence on binding. Within ± sigma of each
minimum, all structures below an RMSD cutoff of 0.2 nm were clustered. This
resulted in 9,885 structures in 11 clusters for minimum A, 41,203 structures in 23
clusters for minimum B, and 14,710 structures in 9 clusters for minimum C. The
central cluster conformations of the clusters with the top three weights calculated
for each of the minima are shown in Fig. 7.

Similar to the Type I defect results, conformations in the first cluster of energy
minimum A make up about 60 % of all surface-bound states. As the distance
between the peptide and the surface increases to correspond to energy minima B

Fig. 7 Top three surface-bound cluster center conformations from a clustering analysis of the
Type II defect simulation for each energy minima highlighted in Fig. 5b. Secondary structure is
indicated by peptide backbone color: Purple designates an a-helix, blue a 310-helix, magenta a
turn, and cyan a random coil
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and C, however, the cluster distributions become tighter (i.e., over 95 % of all
surface-bound structures reside in the top weighted cluster), similar to what was
observed with the control simulation. The trends make sense given that the results
for energy minimum C should most closely represent those of the control simu-
lation due to the particular peptide/surface distance.

Deep in the hydrophobic cleft (i.e., minimum A) highly extended conformations
of LKa14 are stabilized compared to structures in the control simulation, which we
believe is due to the shape of the defect. Figure 5b shows binding in the pocket of
minimum A is stronger than that for minimum B and much stronger than that for
minimum C on top of the surface, which, as mentioned earlier, should most closely
resemble the control simulation. Some a-helicity is retained on top of the surface
(i.e., minimum C), as indicated by the purple color of the peptide’s backbone in the
cluster center conformations. However, even the mere presence of the defect causes
the peptide to extend over the edge of the surface into the cavity, thereby affecting
the normally helical structure of LKa14.

4 Summary/Conclusion

The enhanced sampling method PTMetaD-WTE was employed to simulate the
adsorption of LKa14 to a model hydrophilic SAM with a carboxylate/carboxylic
acid-terminated head group and two types of induced surface defects. Naturally
occurring defects were chosen to best mimic what has been observed experimen-
tally and included both a substrate defect and a characteristic SAM film defect.
Results of free energy versus peptide/surface distance showed a difference in the
location of the free energy minima for the surfaces with defects compared to a
control surface with no defects. The results also indicated binding to the surface
with the characteristic film defect (“Type II” defect) is much stronger than binding
to the control surface, which we hypothesized is due to the specific shape of the
hydrophobic cleft defect.

A clustering analysis was performed to elucidate structural differences in the
bound peptide caused by the surface defects. Results showed the presence of either
type of defect heavily disrupts the helical structure that LKa14 normally adopts at
interfaces. In performing this analysis, peptide structures were extracted from basins,
aligned, and clustered, and thus, orientation of the peptides with respect to the surface
was not taken into account, only the conformation. In this case, it was not important
to distinguish between orientations because charged or hydrophobic side chains
dominate the surface-bound orientations. However, prior to reweighting it would be
trivial to extend the clustering analysis to distinguish between orientations by sub-
dividing further to, for example, distinguish between hydrophobic/hydrophilic pat-
ches on a peptide or protein or using other directional descriptors to account for
protein orientation in conjunction with the conformational clusters.

This work will also have implications for future experimental work. Surface-
guided self-assembly of proteins is growing in interest; the observed effects on
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peptide structure from relatively small changes in surface roughness suggest careful
design of the electrostatic and van der Waals interactions at the protein/surface
interface may be required. Additionally, this method could be used as a means to
reverse engineer protein structure by designing and incorporating specific surface
defects to control the structure of biomolecules upon adsorption.

Finally, we note that the predictions from these simulations could be directly
probed with surface spectroscopies such as sum frequency generation (SFG)
spectroscopy [16]. Provided self-assembly of SAMs of different chain lengths was
possible, adsorption of LKa14, we predict, would reveal no appreciable SFG signal
compared to neat SAMs, which reveal the expected helical structures. Likewise,
using a combination of techniques such as surface plasmon resonance (SPR) and
atomic force microscopy (AFM) [41], we propose it would be possible to study the
expected increases in binding energy due to the film formation defects. Of course,
this would depend on being able to synthesize in a controlled way the film-type
defects.
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Development of a Coarse-Grained Water
Forcefield via Multistate Iterative
Boltzmann Inversion

Timothy C. Moore, Christopher R. Iacovella and Clare McCabe

Abstract A coarse-grained water model is developed using multistate iterative
Boltzmann inversion. Following previous work, the k-means algorithm is used to
dynamically map multiple water molecules to a single coarse-grained bead,
allowing the use of structure-based coarse-graining methods. The model is derived
to match the bulk and interfacial properties of liquid water and improves upon
previous work that used single state iterative Boltzmann inversion. The model
accurately reproduces the density and structural correlations of water at 305 K and
1.0 atm, stability of a liquid droplet at 305 K, and shows little tendency to crys-
tallize at physiological conditions. This work also illustrates several advantages of
using multistate iterative Boltzmann inversion for deriving generally applicable
coarse-grained forcefields.

Keywords Interface � Pressure � Crystallization � Surface tension

1 Introduction

Coarse-grained (CG) models have proven to be useful in many fields of chemical
research [1–10], allowing molecular simulations to be performed on larger system
sizes and access longer timescales than is possible with atomistic-level models,
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enabling complex phenomena such as hierarchical self-assembly to be described
[11, 12]. In CG simulations of aqueous systems, especially ones with significant
amounts of hydrophobic and/or hydrophilic interactions, the water model
is important and can have a major impact on the resulting properties of the
system [13].

While the assignment of atoms to CG beads (i.e., defining the CG mapping) is
relatively straightforward for most chemical systems (e.g., aggregating four methyl
groups bonded in sequence into a single CG bead), mapping an atomistic water
trajectory to the CG level (i.e., grouping several water molecules into a single CG
bead) is not as well-defined given the lack of permanent bonds between water
molecules. Even if a mapping were chosen, water molecules will diffuse away from
their initial clusters over time, such that the initial mapping is no longer repre-
sentative of the local clustering of water. This ambiguity presents a problem for
structure-based methods that require an atomistic configuration to be mapped to the
corresponding CG configuration, e.g., to generate a target radial distribution
function (RDF) against which the forcefield is optimized. As such, the majority of
many-to-one CG models of water (i.e., where one CG bead represents multiple
water molecules) have instead been derived by assuming a functional form of the
forcefield and optimizing the associated parameters to match selected physical
properties of water, such as density, vaporization enthalpy, surface tension, etc.
[13–19]. For example, Chiu et al. developed a 4:1 CG water forcefield by opti-
mizing the parameters of a Morse potential to accurately reproduce the surface
tension and density of liquid water [18]. Despite capturing the interfacial properties
and density, this potential overestimates structural correlations, as one might expect
given that structural data was not used in its optimization.

Recently, Hadley and McCabe [20] proposed a method for mapping configu-
rations of atomistic water to their CG representations using the k-means clustering
algorithm. Subsequently in related work, van Hoof et al. [21] developed the
CUMULUS method for mapping atoms to CG beads. Both methods enable
dynamic mapping of multiple water molecules to a single CG bead, allowing
structure-based schemes to be used. Here, dynamic refers to a CG mapping that
changes over the course of the atomistic trajectory, i.e., different water molecules
are assigned to different CG beads in each frame of the atomistic trajectory. Both
works employed the iterative Boltzmann inversion (IBI) [22] method to derive the
intermolecular interaction by optimizing a numerical, rather than analytical,
potential to reproduce RDFs calculated from the atomistic-to-CG mapped config-
urations [20, 21]. The forcefields derived are similar and show good agreement with
the structural properties and density of the atomistic water models studied.
However, neither model is able to accurately reproduce interfacial properties, since
they were derived solely from bulk fluid data. This failure to capture interfacial
properties is a consequence of the single-state nature of the IBI approach and may
alter the balance of hydrophobic and hydrophilic interactions when using these
water models in multicomponent systems.

Recently, the multistate IBI (MS IBI) method [23] was developed as an
extension of the original IBI approach, with the goal of reducing state dependence
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and structural artifacts often found in IBI-based potentials [24–26]. While IBI-based
potentials have been derived that show some degree of transferability [26–28] a
significant issue related to the IBI method is that a multitude of potentials can give
rise to similar RDFs, and the method cannot necessarily differentiate which of the
many potentials is most accurate, as only RDF matching is considered. MS IBI
operates based on the idea that different thermodynamic states will occupy different
regions of potential “phase space” (i.e., regions where potentials give rise to similar
RDFs), and that the most transferable, and thus most accurate, potential lies in the
overlap of phase space for the different states. That is, by optimizing a potential
simultaneously against multiple thermodynamic states, MS IBI provides constraints
to the optimization, forcing the method to derive potentials that exist in this overlap
region, and thus are transferable among the states considered. The MS IBI approach
has been shown to reduce state dependence and improve the quality of the derived
potentials, as compared to the original IBI method [23].

In this work, multistate iterative Boltzmann inversion (MS IBI) is used to derive
an intermolecular potential that captures both bulk and interfacial properties of
water, improving upon the CG water model of Hadley and McCabe [20]. Again,
optimizations are carried out using the MS IBI method, where both bulk and
interfacial systems are used simultaneously as target conditions for the optimization.
MS IBI is also used, for the first time, in a multi-ensemble context, enabling opti-
mizations in both the canonical (NVT) and isothermal-isobaric (NPT) ensembles to
be performed simultaneously to derive the density-pressure relationship of the
system. To further constrain the optimization, a slightly modified version of the Chiu
et al. CG water forcefield, originally optimized for surface tension, is used as a
starting condition, allowing the MS IBI method to make specific modifications to the
potential to improve structural properties. The remainder of the paper is organized as
follows: In Methods, a brief overview of the k-means clustering and MS IBI algo-
rithms is given and the models used are described. The potential derivation is then
presented, validated, and compared to existing CG water models in the Results
section and finally, conclusions are drawn about the applicability of the derived CG
model and the broader applicability of the MS IBI method discussed.

2 Methods

2.1 k-Means Clustering Algorithm

Mapping a water trajectory to a many-to-one CG level is inherently different than
mapping a larger molecule’s trajectory, since for water, atoms mapped into a single
CG bead necessarily exist on different molecules. Furthermore, the water molecules
mapped to a common bead are not likely to remain associated throughout the full
simulation because of thermal diffusion. A dynamic mapping scheme is therefore
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required to generate CG structures from atomistic configurations for water.
Following the work of Hadley and McCabe [20], the k-means algorithm has been
used to map atomistic water trajectories to the CG level. In short, k-means is a
clustering algorithm that is used to find clusters of data points in a large data set.
The positions of the water molecules are here analogous to the points in the data set
and waters mapped to a single bead are analogous to the clusters. Additional details
on the algorithm can be found elsewhere [20, 29]. While the k-means algorithm can
be used to group together any number of water molecules, a 4:1 mapping is chosen,
as this was found in prior work to provide the best balance between accuracy
and computational efficiency [20] and 4:1 models are common in the literature
[17, 18, 20].

2.2 Multistate Iterative Boltzmann Inversion Method

MS IBI was used to derive the intermolecular potential between water beads. The
goal of MS IBI is to derive a single potential that can be used over a range of
thermodynamic states. As an extension of the original IBI method [22], the
potential is updated based on the average differences in CG and target RDFs at
multiple states (i.e., a single potential for each pair is updated based on RDFs from
multiple states). The potential is adjusted according to

Viþ 1ðrÞ ¼ ViðrÞ � 1
N

X
s

asðrÞkBTs ln g�s ðrÞ
gisðrÞ

� �
; ð1Þ

where Vi(r) is the pair potential as a function of separation r at the ith iteration;
N the number of target states; as(r) an effective weighting factor for state s, allowing
more or less emphasis to be put on a particular target state; kB the Boltzmann
constant, Ts the absolute temperature of state s; gs

i(r) the RDF from the CG simu-
lation at state s using Vi(r); and gs

�(r) the target RDF from state s. as(r) was chosen
to be a linear function of the form

asðrÞ ¼ a0;s 1� r
rcut

� �
; ð2Þ

such that as(rcut) = 0 and the potential remains 0 for r � rcut. This form of
as(r) also places more emphasis on the short-ranged part of the potential to suppress
long-range structural artifacts.

An initial potential is assumed for each pair interaction. In theory, there are no
restrictions on the initial potential, so it may take any form; however, in practice,
the initial potential is often taken to be the potential of mean force (PMF) calculated
from the Boltzmann inverted RDF. In this work, rather than taking an average of
the PMFs over the states used, the initial potential used was chosen to be a slightly
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modified version of Chiu et al.’s water model, as discussed below. That is, rather
than starting from an initial potential that is likely to do a poor job of predicting the
behavior, we start from a robust starting point as the Chiu et al. potential is known
to accurately reproduce several properties of water.

A CG simulation is then run with the initial potential. Based on the RDFs from
the CG simulation, the potential is updated according to Eq. (1). The updated
potential is used as input to the next cycle, and the process is repeated until some
stopping criterion is met. Here, the stopping criterion is determined using the
following fitness function

ffit ¼ 1�

Rrcut
0
dr giðrÞ � g�ðrÞj j

Rrcut
0
dr giðrÞj j þ g�ðrÞj j

; ð3Þ

where the optimization is stopped when the value of ffit exceeds a specified value
(i.e., meets some tolerance), given below.

2.3 Models

Atomistic simulations of pure water were performed with the TIP3P model [30]. All
atomistic systems contained 5,832 water molecules and were simulated in
LAMMPS [31, 32] using a 1 fs timestep. A cutoff distance of 12 Å was used for the
van der Waals interactions; long-range electrostatics were handled with the PPPM
method with a 12 Å real space cutoff. Three distinct states were simulated: bulk,
NVT at 1.0 g/mL and 305 K; bulk, NPT at 305 K and 1.0 atm; and an NVT droplet
state at 305 K, where the box from the bulk NVT state was expanded by a factor of
3 in one direction. Each atomistic simulation was run for 7 ns. The atomistic
trajectories were mapped to the CG level using the k-means algorithm. Target RDFs
were calculated from the final 5 ns of the mapped trajectory from each state (bulk
NVT, bulk NPT, and droplet NVT). MS IBI was performed using the target data
from each of the three states. The initial guess of the potential is given as a Morse
potential of the form

VðrÞ ¼ De e�2b r�reqð Þ�2e�b r�reqð Þ� �
; ð4Þ

where req is the location of the potential minimum, −De is the value of the potential
minimum, and b is related to the width of the potential well. Parameters are taken to
be those from Chiu et al: De = 0.813 kcal/mol, b = 0.556 Å−1, and req = 6.29 Å,
however, we note that the potential was adjusted so that b = 0.5 Å−1 for r < req.
This change was made to increase sampling at small separations, because numerical
issues arise in the potential update when the CG RDF is zero but the target RDF is
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nonzero. This modification of the potential will slightly alter the properties as
compared to the original model, as discussed below. The potential update scaling
factor a0,s (see Eqs. 1 and 2) was set to 0.7 to avoid large updates to the potential.
The optimizations were stopped when ffit � 0.98 and ffit(i) − ffit(i − 1) < 0.001 for
each state.

All optimizations were performed with the open-source MS IBI Python package
we developed [33], which calls HOOMD-Blue [34–36] to run the CG simulations
and uses MDTraj [37, 38] for RDF calculations and file-handling. CG simulations
were run at the same states as the atomistic systems. Initial CG configurations were
generated from the CG-mapped atomistic trajectories at each state. As a result of the
4:1 mapping, CG water simulations contained 1,458 water beads. All CG simula-
tions were run with a 10 fs timestep. The derived CG potential was set to 0 beyond
the cutoff of 12 Å.

The surface tension c of the droplet state was calculated as

c ¼ 1
2
Lz Pzz � Pxx þPyy

2

� 	
;

where Lz is the length of the box in the expanded direction, Pzz is the pressure
component in the direction normal to the liquid-vapor interfaces, Pxx and Pyy are the
pressure components in the directions lateral to the interfaces, and the angle
brackets denote a time average. The factor of ½ is included to account for the two
interfaces that are present in the droplet simulation setup.

3 Results and Discussion

3.1 Modified Chiu Potential

Since the MS IBI optimization of water uses a modified version of the Chiu, et al.
potential as an initial guess, we first consider the impact of modifying the potential
to create a softer repulsion. Figure 1 plots the RDFs of the three target states for the
original and modified potentials and the RDF of the 4:1 mapped state (i.e., the target
data used later for the MS IBI optimization). The peak location of the NVT state is
relatively unchanged; however, upon modification, there is a slight shift in the first
peak for the NPT and interfacial states, allowing the model to access smaller
separations, as was intended and required for the potential update scheme. The
softer potential allows closer contact and thus allows the MS IBI algorithm to
modify this region of the potential where the 4:1 mapped atomistic water has
non-zero values of the RDF. The density predicted with both potentials is the same
(0.991 ± 0.003 g/mL); however, due to softening the potential, the calculated
surface tension of the droplet changes from 70.3 to 45 mN/m after the modification,
although this value is still sufficient for the droplet to maintain a stable interface.
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These surface tension values agree favorably with that of TIP3P water, which is
reported to have a surface tension of 52.3 mN/m at 300 K [39].

3.2 Potential Derivation and Validation

Starting from the modified Morse potential of Chiu, et al., the new water forcefield
is optimized using the bulk NVT and NPT states and the interfacial state. This
potential is chosen as the initial starting guess, rather than an arbitrary starting point,

Fig. 1 RDFs from
simulations using the original
and modified Chiu potentials.
Top NVT; top-middle NPT;
bottom-middle interface;
bottom comparison of the two
potentials
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as the unmodified version has been shown to accurately reproduce many properties
of water (e.g., density and surface tension), but overestimates the structural cor-
relations. The use of MS IBI should allow for modification of this potential, such
that it is able to reproduce structural quantities. The results of the potential
derivation are summarized in Fig. 2, where it is clear that the modified Chiu, et al.
potential (i.e., step 0) overestimates the structural correlations, as was also seen in
Fig. 1 for both the modified and original potentials. After only a few iterations, the
RDFs match the targets with a high degree of accuracy. This trend is shown in
Fig. 3, which plots the fitness value from Eq. (3) as a function of iteration. The
value of ffit changes most rapidly in the first 3 steps of the optimization. After 10
iterations, the stopping criteria are met and the optimization stopped. While the

Fig. 2 RDFs and potentials
from the MS IBI potential
derivation. Top NVT;
middle-top NPT;
middle-bottom interface;
bottom potentials. The initial
potential shows significant
structural correlations missing
from the target data. The
derived potential at ten
iterations shows excellent
structural agreement with the
target
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changes to the potential are small, there is a noticeable shift in the location of the
minimum to a slightly larger r value and the potential becomes slightly more
attractive. Although the shape of the attractive well is mostly unchanged, the
potential more rapidly decays to 0 than the original Morse potential at larger
r values, while the shape of the repulsive regime at small r is changed slightly.
These subtle changes to the potential are sufficient to create significant changes in
the RDF and provide excellent convergence of the structural correlations. These
changes are made possible by modifying a numerical potential rather than adjusting
parameters for an analytical potential. Note that in Figs. 1 and 2 the RDFs from the
interfacial state do not decay to 1 at large r. This is due to the fact that 2/3 of the box
is essentially devoid of particles, but the RDF is normalized based on the volume of
the whole simulation box. This has no effect on the potential update scheme, as both
the target and CG RDFs are normalized by the same factor, which cancels out in
Eq. (1).

In addition to accurately capturing the RDFs, the multi-ensemble approach
provides an accurate estimate of the density at 305 K and 1 atm. NPT simulations
performed using the optimized CG forcefield find a density of 1.027 ± 0.006 g/mL,
compared to 1.037 ± 0.004 g/mL for TIP3P water which was used to generate
target data. This approach is successful because the RDFs will not match if the
pressure-density relationship is not satisfied, as the density is implicitly represented
in Eq. (1) through the RDF terms (i.e., the RDFs at the NPT state will not match the
target RDFs if the density is significantly different than the density of the target
state). In contrast, the original IBI method proposed the use of a pressure correction
term of the form ΔV(r) = A(1 − r/rcut) to account for the pressure [22]. This
approach has been successful, but requires a somewhat arbitrary estimate of
the parameter A. While a method exists for estimating A based on the virial
expression [40], some degree of trial-and-error is still necessary. Furthermore, the
multi-ensemble approach within MS IBI does not require direct calculation of the
pressure, which often demonstrates considerable fluctuations, providing a simpler
route to account for pressure in the CG model.

Calculation of the surface tension of the derived MS IBI potential yields a value
of 42 mN/m, lower than the original Chiu, et al. potential (70.3 mN/m) which was
optimized to match experiment, but only slightly perturbed from the modified
potential (45 mN/m). This reduction in surface tension appears directly related to
the softening of the potential, although, we note that this softening is required to
provide an accurate match of the structure and that this value reasonably

Fig. 3 ffit from Eq. (3) as a
function of iteration in the
potential derivation.
Convergence with the
criterion is found after 10
iterations
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approximates the surface tension of the atomistic TIP3P model used as target data
(52.3 mN/m at 300 K) [39].

3.3 Validation and Comparison to Other Models

To further explore the efficacy of the MS IBI-derived model, comparisons are made
to other CG water models in the literature, namely, the k-means based potential of
Hadley and McCabe [20] derived via the single state (SS) IBI procedure (here
referred to as the SS IBI potential) and the MARTINI potential [17]. These models
were chosen because they are short-ranged, non-polarizable, and 4:1 models. For
reference, these potentials are plotted in Fig. 4. Note that the MS IBI and SS IBI
potentials are numerical (as they were derived via IBI), while the MARTINI
potential is represented by a 12-6 Lennard-Jones potential with a well depth of
1.195 kcal/mol located at a separation of 5.276 Å. Note that all of the potentials
considered in this paper provide a close estimate of the density of water at 1 atm
and 305 K, as reported in Table 1.

First considering the SS IBI potential, it can be seen that the well depth is
approximately 0.5 kcal/mol weaker than the MS IBI potential and shifted to larger
separations. While this has little impact on the density or the structural correlations
of the bulk states (not shown), simulations of droplets show that the interfacial
properties are not sufficiently captured. Specifically, as shown in Fig. 5, simulations
of atomistic TIP3P, SS IBI, and MS IBI water were performed with interfaces.
From these it can be clearly seen that the SS IBI potential model fills the box, rather

Fig. 4 Interaction potentials
from the CG water models
compared in this work.
The MS IBI and SS IBI
potentials are numerical,
derived with structure-based
methods. MARTINI is a
Lennard-Jones 12-6 potential

Table 1 Density of water at
305 K, 1 atm calculated with
different models

Model Density (g/mL)

TIP3P 1.037 ± 0.004

MS IBI 1.027 ± 0.006

SS IBI 1.083 ± 0.008

MARTINI 1.015 ± 0.003

Chiu 0.991 ± 0.003
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than maintaining an interface. In contrast, the MS IBI model maintains a stable
interface in agreement with the atomistic model. Thus, while an exact match to the
experimental surface tension is not found for the MS IBI potential, as discussed
above, it is still sufficiently strong to maintain a clear interface, providing a sig-
nificant improvement over the SS IBI potential. We note that the difference between
the SS IBI and MS IBI potentials is likely related to the aforementioned issue
whereby many potentials can give rise to matching RDFs, and SS IBI provides no
means to determine which ones are most physical. This limitation is overcome by
the use of the interfacial state during the MS IBI optimization.

It is also important that the potential is not so strong that the system can solidify
at physiological conditions. For example, the MARTINI water model is known to
spontaneously crystallize at physiologically relevant temperatures [17]. This phe-
nomenon is enhanced by the presence of interfaces (e.g., a lipid bilayer surface),
and requires the addition of unphysical “antifreeze” particles to avoid crystalliza-
tion. While we note that modifications to the MARTINI water model exist
(e.g., adding charge polarization) [41, 42], only the original MARTINI model was
tested, since it more closely resembles the model derived via MS IBI (i.e., both

Fig. 5 Simulation snapshots of droplets using the various models discussed. Top all-atom TIP3P;
middle SS IBI; bottom MS IBI. Atomistic and MS IBI models agree, producing a system with a
stable interface, whereas SS IBI does not form a stable interface
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represent 4 water molecules as a single, spherically symmetric interaction site). To
test the crystallization tendency, a nucleation site is generated with the following
protocol. A crystalline state is generated by running a simulation with the MS IBI
potential in the NVT ensemble. During this simulation, the temperature is decreased
from 305 to 1 K over 10 ns. A subsequent CG simulation is run at 1000 K, where
the middle-most 1/8th of the beads are kept fixed, resulting in a configuration that
contains a crystal seed surrounded by a fluid of CG water beads. The beads in the
crystal seed are kept fixed in the nucleation site simulations, with interactions
identical to the fluid interactions. While neither model shows a tendency to freeze at
305 K in the absence of a nucleation site over a 100 ns simulation, the MARTINI
model rapidly crystallizes in the presence of a nucleation site, while the MS IBI
potential remains fluid (Fig. 6). Note, for a direct comparison with the MS IBI
model derived here, antifreeze particles were not used with the MARTINI model.
To ensure that the MS IBI system is not an amorphous solid structure, the ratio of
the diffusion coefficients with and without a nucleation site were calculated for each
model from the slope of the mean-squared displacement. As shown in Table 2, the
diffusion coefficient of the MS IBI potential model remains relatively unchanged
when a nucleation site is added, whereas a significant drop is seen for the
MARTINI model resulting from crystallization. Additionally, Fig. 7 plots the RDF
of the MARTINI model for the bulk NVT state as compared to the 4:1 mapped
target data. Clearly, the MARTINI potential does not accurately capture the

Fig. 6 Configurations from simulations in the presence of a nucleation site with the MARTINI
(left) and MS IBI (right) models. CG water beads colored silver were kept fixed during the
simulations, but were treated as the same type as the blue particles (i.e., the color is different to
show the nucleation site)

Table 2 Ratio of diffusion
coefficients from simulations
with (Dnuc) and without
(Dbulk) a nucleation site with
different potentials

Model Dnuc/Dbulk

MS IBI 0.88

MARTINI 0.02

Diffusion coefficient D calculated from the slope of a linear fit to
the long-time mean squared displacement (MSD), using
MSD = 6Dt
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structural correlations of bulk water, further demonstrating the significant
improvement of the MS IBI model in reproducing key properties of water.

We note that the self-diffusion coefficient of MS IBI water is calculated to be
16.07 � 10−9 m2/s at 305 K and 1 atm, as compared to 3.05 � 10−9 m2/s for the
atomistic TIP3P water at the same conditions, both run for 5 ns. This factor of *5
difference is not entirely unexpected, given the softening of the free energy land-
scape that often comes with CG models and the fact that kinetic data was not used
in the optimization. However, we also note that the dynamics of the CG model does
not bear a strong connection with the atomistic level behavior, given that each CG
bead represents 4 water molecules, but not necessarily the same water molecules
through time, due to the lack of permanent bonds between the waters being grouped
together.

4 Conclusions

In this work, the MS IBI method was used to derive the interactions for a 4:1
mapped CG water model, using a modified version of the Chiu, et al. potential as an
initial guess. An improvement over previous models is made by simultaneously
matching the fluid structure to target data from bulk and interfacial states. It was
shown that a model that reproduces the structure and density of water does not
necessarily reproduce the interfacial properties and that the addition of a droplet
target state constrains the potential to also capture the interfacial properties. The
resulting potential is able to accurately predict the density of water at 305 K and
1 atm, interfacial properties, and structural correlations. Additionally, the model
shows no tendency to spontaneously crystallize at physiological conditions. This is
important, since inaccuracies in a water model can propagate as more potentials are
derived against it when simulating mixed systems.

This work highlights a key advantage of deriving potentials via the MS IBI
approach. For simulations that cover multiple states, it is important to have a
forcefield that is accurate across the states of interest. MS IBI allows this to be
achieved by including target data from states that represent structures present in the

Fig. 7 RDFs of the
MARTINI model and the
atomistic TIP3P model
mapped to the CG level for
the bulk NVT state
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states of interest. This is realized here by including a multi-ensemble state to
accurately model the pressure-density relationship, and a droplet state to capture the
interfacial properties of water. Another case where this would be beneficial is
studying systems over multiple phases, e.g., phase transitions in liquid crystals.
While clever approaches are taken to capture behavior across multiple states [43], a
more systematic approach would be useful. Based on the results presented here, we
foresee this method being useful for deriving CG potentials for a wide range of
applications.
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Optimizing Molecular Models Through
Force-Field Parameterization
via the Efficient Combination
of Modular Program Packages

Marco Hülsmann, Karl N. Kirschner, Andreas Krämer,
Doron D. Heinrich, Ottmar Krämer-Fuhrmann and Dirk Reith

Abstract A central goal of molecular simulations is to predict physical or chemical
properties such that costly and elaborate experiments can be minimized. The reli-
able generation of molecular models is a critical issue to do so. Hence, striving for
semiautomated and fully automated parameterization of entire force fields for
molecular simulations, the authors developed several modular program packages in
recent years. The programs run with limited user interactions and can be executed in
parallel on modern computer clusters. Various interlinked resolutions of molecular
modeling are addressed: For intramolecular interactions, a force-field optimization
package named Wolf2Pack has been developed that transfers knowledge gained
from quantum mechanics to Newtonian-based molecular models. For intermolec-
ular interactions, especially Lennard–Jones parameters, a modular optimization
toolkit of programs and scripts has been created combining global and local opti-
mization algorithms. Global optimization is performed by a tool named CoSMoS,
while local optimization is done by the gradient-based optimization workflow
named GROW or by a derivative-free method called SpaGrOW. The overall goal of
all program packages is to realize an easy, efficient, and user-friendly development
of reliable force-field parameters in a reasonable time. The various tools are needed
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and interlinked since different stages of the optimization process demand different
courses of action. In this paper, the conception of all programs involved is presented
and how they communicate with each other.

Keywords Molecular modeling � Force field � Numerical optimization �
High-performance computing � Modular software packages

1 Introduction

1.1 Molecular Simulation and Its Tools

Molecular simulation methods, most prominently molecular dynamics (MD) and
Monte Carlo (MC), are powerful tools to gain insight into microscopic processes that
govern the macroscopic behavior of matter. There is a long-standing tradition of
studying molecular behavior for biomolecules (e.g., proteins, DNA, and carbohy-
drates) and for soft materials (e.g., plastics, fibers, carbon nanotubes, and ionic liq-
uids). This is reflected by a long history of parameter and software development in this
area, which is often distributed together as a collection of predefined parameters,
molecular building blocks, and a simulation engine. However, in recent years, sig-
nificant algorithmic progress has been made to enhance molecular simulation and
analysis. There is a widespread utilization of GPUs in existing software packages
(e.g., Amber [1], Charmm [2], Gromacs [3], and LAMMPS [4]) and automated pro-
cedures to derive force-field parameters [5, 6]. In addition, recent coarse-grained
methods that access the mesoscale introduced new powerful scientific concepts to the
field of molecular simulations (e.g.,HOOMD [7], ESPResSo++ [8], and IBIsCO [9]).

To gain a molecular-level understanding, chemical systems are modeled at
atomistic or near atomistic (e.g., united atom, fine coarse graining) resolution levels.
Since computable properties obey the laws of statistical physics, an ensemble of
several ten thousands of atoms is necessary to compute the macroscopic observ-
ables. Furthermore, modern industrially relevant systems (e.g., chemically hetero-
geneous, surfaces, mixed phase states) require large models for accurate
representations. This results in the necessity to implement the calculations in
high-performance computing environments. Driven by the ongoing growth in
computational power, it can be expected that these molecular methods will be
increasingly useful in the coming decades.

One goal of our research is to provide a computational modeling service to
external researchers, both in industry and academics, who wish to obtain a
molecular understanding of their systems. As such, we have been faced with using,
modifying, and optimizing all atom, united atom, and coarse-grained force fields for
natural products, polymers, lipids, ionic liquids, and organic solvents. While the
technique of molecular simulations has existed for decades and in spite of its
obvious powers, only a few companies have in-house departments, that is due to
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(a) the diversity of knowledge needed to do high-quality research (i.e., the method’s
core is mathematics and physics, the content is often being chemical, and the
technical aspects require computational scientists) and (b) the high-performance
hardware that is required to execute the simulation software.

1.2 Force Fields

One key requirement in molecular mechanics (MM)-based models is the need to be
as accurate as possible. This accuracy is directly dependent upon the force field,
which describes the intra- and intermolecular interactions. Force fields are a
semiempirical approach to represent these interactions—that is a set of equations
and associated parameters that model stretching, bending, internal rotations, van der
Waals, and Coulombic interactions. In general, there is a consensus on what
function form of the equations should be used. Coupled directly to the equations are
the parameters, whose optimization is very important but often tedious to
accomplish.

Over the past decades, many researchers have developed force fields for a
variety of areas, such as thermodynamic properties of fluids [10–15], mechanic
properties of solids [16–18], phase change phenomena [19–21], protein folding
[22–24], transport processes in biological tissue [25, 26], transport processes in
liquids [27–29], polymer properties using different length scales [30–33], and
generic statistic properties of soft matter [34]. Some of these force fields have been
molecule specific, while others have been transferable over a chemical class (e.g.,
hydrocarbons, alcohols). For our models, the criterion is that they accurately
reproduce or predict the relevant observable(s) using the modeling software that is
most appropriate for the investigation. Quantum mechanical methods are useful to
determine some of the target observables used in parameter fitting (i.e., geometry,
electrostatics, relative energies). However, weak short-range nonbonded interac-
tions are difficult to isolate target quantum mechanical observables, particularly
when the molecules are composed of heterogeneous atom types. Hence, the
force-field parameters for these weak interactions are often fitted to experimental
condense-phase target values. Thus, a manual parameter adjustment is usually not
feasible or is, at best, extremely time-consuming.

1.3 Goal of This Work

What has become clear is that a user-friendly and versatile software package, which
facilitates the optimization of force-field parameters for a given MM or MD engine,
is very important. Hence, automated and semiautomated parameterization process
can reduce the time required for optimization and subsequently allow researchers
more time to explore their ideas. We contribute to this field by creating modular
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software packages that follow our ideas for force-field development and by effi-
ciently and systematically combining these programs for the (semi)automated
optimization of bonded and nonbonded parameters.

The benefits of utilizing scientific workflows are numerous, and they represent a
major improvement in how one approaches force-field development. These benefits
include (a) saving time by automating certain optimization tasks; (b) making
force-field development quasi-deterministic; (c) reducing human error; (d) enabling
tasks to be executed in a distributed environment; (e) accommodating ideas,
algorithmic changes, and updates easier; and finally (f) accelerating and trans-
forming the process of scientific analysis. From a scientific perspective, workflows
enable researchers to focus more on scientific issues, and due to its hierarchical
organization, new advancement in theories can be easily incorporated. In addition
to this, errors within the force field and models are better avoided, making the
simulation results become more trustworthy and reliable. Moreover, the algorithms
involved within the workflow can handle overdetermined and underdetermined
optimization problems. From a community service perspective, our workflows
significantly reduce the real time needed for force-field development and allow
nonspecialists access to more standardized optimization procedures.

For the determination of the intramolecular parameters, we developed a tool
named Wolf2Pack, and for the intermolecular parameters, we use a combination of
a global optimization procedure with a local one. For the former, we developed a
global optimization tool named CoSMoS, and for the latter, we developed a
gradient-based optimization toolkit named GROW and a derivative-free sparse
grid-based algorithm named SpaGrOW. The three tools are described in more detail
in the next subsections.

2 Goal-Driven Software Conception

2.1 Wolf2Pack: Intramolecular Parameters

The concept for Wolf2Pack
1 came from our goals to have a tool that would

(a) allow for quick optimization of bonded parameters,
(b) enable one to qualify observed MD structural results,
(c) allow one to evaluate existing force fields,
(d) allow for the systematic generation and archiving of QM target data for reuse,
(e) enable nonforce-field experts the opportunity to generate their own parameters, and
(f) enable reproducibility of reported force-field research results (e.g.,

molecule-specific QM and MM energy curves).

1http://www.wolf2pack.com.
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To achieve these goals, a scientific workflow was developed that provided a
guiding architecture for software development [35]. Each step of the workflow was
realized through shell scripts, whose output data are organized, as illustrated in
Fig. 1, into subdirectories. This modular construct has the advantage that individual
scripts can be easily updated, discovered errors in the scripts and generated data can
be efficiently corrected, and the generated data are organized in a systematic manner
that easily allow for the inclusion of new computations, archiving, and reuse.

To enable nonforce-field experts the chance to check and optimize parameters, a
Web site was created that serves as a front-end to Wolf2Pack [36]. This Web site
guides users in the parameter optimization process, starting from selecting an
appropriate molecule to the determination of a suitable parameter. The site also
provides a collection of “Knowledge Modules” that are a combination of tutorials
and examples. Currently, the Web site only provides access to a truncated amount
of the existing data within the Wolf2Pack’s database. In the near future, we intend
to provide users’ access to the full database and enable them to upload a molecule
and compute the QM curves that they desire.

An important component of Wolf2Pack is its molecular database. The database
contains molecules of diverse chemical functionalities for which bond, angle, and
torsion relative energies curves have been generated. This database naturally grows
over time as new functional groups and combinations thereof are investigated.
Thus, the statistical evaluation of force fields improves as the database expands.
Due to its systematic development, the database also enables users to reproduce
results in published force-field papers, which is currently a difficult task to
accomplish. We believe this will become an important feature in the future as users
make use of Wolf2Pack for optimizing parameters. The challenge will be to con-
tinually update the database for the new QM theories that are reported in the

Fig. 1 Illustration of the basic directory structure within Wolf2Pack. Each molecule with a given
conformation has its own parent directory. The number of bond, angle, and torsion subdirectories
is dependent upon the molecule’s unique internal coordinates. The “QM n” and “FF n” labels
indicate data from constraint QM and MM optimizations using a specific theory level (e.g.,
HF/6-31G(d)//HF/6-31G(d)) or force field (e.g., Parm14SB)
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literature, which will be an increasingly demanding task as the number of molecules
and internal coordinates grow.

Considering parameterization philosophy, we are pursuing new ideas in addition
to the traditional fitting of continuous relative potential energy curves. Through the
assistance of the Balloon algorithm [37], Wolf2Pack can quantum mechanically
generate and identify unique conformations automatically. For illustration, we
recently predicted 76 unique octane conformations at the HF/6-31G(d) using
Balloon and Wolf2Pack algorithms. While this does not represent the complete set
of unique octane conformations, which have been determined to be 95 [38], it does
impressively cover a wide range of relative energies (0.0–8.9 kcal/mol). These high
numbers of conformations for a flexible molecule allow for a unique way to validate
force fields. Traditionally, nonbonded and bonded force-field terms are optimized
by reproducing experimental observables (e.g., density) and relative energy curves
(i.e., transition states, minima), which rarely consider more than a few high energy
minima. By having access to a large number of minima, one can observe how a
given force field’s parameters transfer to higher energy minima and conformations
not originally considered during the optimization process.

Researchers usually strive to generate continuous QM rotational energy curves.
A continuous curve is one whose incremented internal coordinate changes, while all
other unconstrained torsion angles remain in their original position (e.g., within
±5°). The advantage of this is that the obtained relative energies directly reflect the
rotation around a single bond. The subsequent parameter optimization is then fairly
straightforward. A discontinuous rotational curve would be when a second torsion
undergoes significant rotation at some point during the interested torsion rotation
(e.g., Fig. 2). The resulting energy curve then reflects contribution from changes

Fig. 2 Potential energy curves and geometric overlays for dimethoxymethane as determined by
HF/6-31G(d) (red) and the Gaff (black) force field. In this case, the C–C–O–C torsion on the left
side of the molecule is systematically rotated. The left image shows the discontinuous curve where
the right side C–O–C–C adopted a transconformation at 300°, while the right image shows the
continuous curve. The continuous curve was generated by constraining the mobile torsion
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within two torsion angles, making parameter optimization more convoluted. In
Wolf2Pack, we strive to generate continuous curves and will apply a secondary
torsion constraint if necessary to obtain one for parameter optimization purposes.
Nevertheless, we also make use of the discontinuous curves that are produced for
testing the robustness of the optimized parameters. Fundamentally, the discontin-
uous curve represents significant coupling between internal coordinates, for which
force fields should ideally reproduce. We believe that reproduction of discontinuous
curves is a more rigorous test of a force field’s performance in comparison with the
reproduction continuous curves. In addition to investigated torsion angles, dis-
continuous curves also occur when generating bond stretching and angle bending
energy profiles. Typically, a close contact occurs between atoms, resulting in the
rotation about a bond to relieve the high energy strain.

2.2 CoSMoS, GROW, and SpaGrOW: Intermolecular
Parameters

The optimization of nonbonded parameters is difficult since one can rarely isolate the
parameters for a specific atom type, with the notable exception of the noble gases. If
one considers simple saturated hydrocarbons, the carbon and hydrogen Lennard–Jones
parameters are often optimized simultaneously. This results in a large possible
parameter space, making an a priori understanding of the loss function’s shape
impossible. For this reason, as illustrated in Fig. 3, we have developed both global (i.e.,

Fig. 3 The funnel workflow approach for optimizing nonbonded parameters
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CoSMoS) and local (i.e., GROW and SpaGrOW) tools that are implemented in a
funnel workflow. CoSMoS is based on metamodeling that enables rough identification
of potential optimal values, while either a gradient-based (GROW) or derivative-free
(SpaGrOW) approach is used to refine the identified parameters.

In the last two decades, substantial research occurred for the optimization of
intermolecular force-field parameters [39–54]. In most cases, intermolecular
parameters, especially Lennard–Jones parameters, cannot be strictly derived via
physical considerations since they parameterize semiempirical models (i.e., based on
classical mechanics) whom themselves only approximate reality. Hence, they are
usually adjusted so that the resulting model is able to reproduce physical or chemical
experimental target properties as accurately as possible.

The overall optimization task is to find a solution to the following mathematical
optimization problem:

min
x2X

FðxÞ :¼ Wðf simðxÞ � f expÞ�� ��2
p; p 2 ½1;1�; ð1Þ

where x ¼ ðx1; . . .; xNÞT 2 R
N is a vector consisting of the force-field parameters to

be adjusted, N 2 N is the number of parameters, n 2 N is the number of physical
properties to be fitted, f simðxÞ 2 R

n is the vector containing all properties calculated
by simulation, f simi ; i ¼ 1; . . .;m, and f exp 2 R

n is the vector containing the
experimental target values f expi ; i ¼ 1; . . .;m. For reasons of brevity, �k k indicates
an arbitrary p 2 ½1;1�. If a particular norm is considered, this will be expressed
explicitly (e.g., �k k2 or �k k1). The weighting matrix is defined as:

W ¼

w1
f exp1

0 � � � 0

0 w2
f exp2

. .
. ..

.

..

. . .
. . .

.
0

0 � � � 0 wn
f expn

0
BBBBBB@

1
CCCCCCA

ð2Þ

with specific weights wi; i ¼ 1; . . .; n, for each property, accounting for the fact that
some properties may be easier to reproduce than others due to statistical noise on
both simulation and experimental data. The loss function F(x) has to be minimized
with respect to x within an admissible domain X � R

N . Hence, the optimization
problem is constrained.

The loss function does not have any analytical form with respect to the
force-field parameters, and the simulated properties are affected by statistical noise.
Hence, it cannot be assumed to be smooth or differentiable. Its shape is not known a
priori and is often jagged in real applications. Moreover, as the optimization
problem may be overdetermined, the loss function may form a rain drain, where
many global optima are located at the bottom. Additionally, the evaluations of the
loss function may be costly, in particular if molecular simulations have to be
performed. For all these reasons, the solution of the optimization problem (1) is
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challenging and not possible using standard line-search methods. In order to jump
over intermediate local minima, an efficient global optimization that focuses into a
close neighborhood of the global minimum is indispensable. Mostly, global opti-
mization algorithms get stuck at a certain iteration because the points in the
parameter space are generated via random sampling methods. In this case, local
optimization procedures are more reliable and faster because they are directed to the
minimum, especially when they are gradient based. Hence, the combination of
global with local optimization algorithms turned out to be much more reliable and
efficient in order to solve the present optimization task than the usage of a single
global or local algorithm [55].

2.3 Methodological Aspects of CoSMoS

The recently developed global optimization tool for the Calibration of molecular
force fields by Simultaneous Modeling of Simulated data (CoSMoS) [56] uses a
metamodeling procedure based on radial basis functions (RBFs). It has been shown
in [56] that metamodel-based optimizers particularly suit the quest for quickly
finding nearly optimal force-field parameters. The metamodels constructed by
CoSMoS describe functional dependencies between the force-field parameters and
the relative deviations of the simulated properties to experimental data so that the
minimization task is easier to solve. The RBFs are rational symmetric functions
U : RN ! R of the form UðxÞ ¼ U xk kð Þ for x 2 R

N . For the present optimization

problem, inverse multiquadric RBFs, i.e., UðxÞ ¼ ð xk k2 þ c2Þ�1
2; c 2 R, turned out

to perform best. However, CoSMoS also offers the possibility to use other RBFs,

e.g., cubic UðxÞ ¼ xk k3
� �

and Gaussian (UðxÞ ¼ expð�ðc xk kÞ2Þ) functions,

thin-plate splines (UðxÞ ¼ xk k2log xk k), or multiquadrics UðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjxjj2 þ c2

q� �
.

The metamodel MmðxÞ interpolating a target property m 2 f1; . . .; ng is then given
by

MmðxÞ ¼
Xq
j¼1

amjUð x� xj
�� ��Þþ Xr

k¼1

bmkpkðxÞ; ð3Þ

where xj; j ¼ 1; . . .; q; q 2 N are sampling points that fulfill the interpolation
condition MmðxjÞ ¼ f simm ðxjÞ; j ¼ 1; . . .; q. The pkðxÞ; k ¼ 1; . . .; r; r 2 N are
low-order polynomials, and the coefficients amj 2 R; j ¼ 1; . . .; q; m ¼ 1; . . .; n and
bmk 2 R; k ¼ 1; . . .; r; m ¼ 1; . . .; n are obtained by solving a linear equation system
(LES): The radial basis function matrix of the sampling points is given by
H ¼ ðHÞli :¼ ðUðjjxl � xijjÞÞl;i¼1;...;q 2 R

q�q, and the polynomial matrix is given by
P :¼ ðPÞlk ¼ pkðxlÞl¼1;...;q;k¼1;...;r 2 R

q�r. The right hand side is as follows:
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dsimm :¼ ðdsimm Þl ¼
f simm ðxlÞ � f expm

ssimm f expm

� �
l¼1;...;q

; ð4Þ

where ssimm ; m 2 f1; . . .; ng is the standard deviation of the relative noise of the
property m. Hence, the following linear equation system (LES) has to be solved:

H P
PT 0

� �
am

bm

� �
¼ dsim

0

� �
; ð5Þ

where
am

bm

� �
is the vector containing the coefficients amj 2 R; j ¼ 1; . . .; q; m ¼ 1;

. . .; n, and bmk 2 R; k ¼ 1; . . .; r; m ¼ 1; . . .; n. The second line mirrors an addi-
tional orthogonality to render the coefficients unique. However, this procedure may
lead to large RBF coefficients, resulting in wavy metamodels that do not reflect the
underlying data properly. This is particularly severe for noisy data, which demands
proper smoothing approaches. Thus, in this work, CoSMoS was extended by two
different smoothing methods: The smoothest metamodel is the one with the smallest
RBF coefficients, which can be calculated by solving

minam amk k2; ð6Þ

where f siml � n� bl � f siml þ n; l ¼ 1; . . .; q; ð7Þ

where n[ 0 is a small tolerance value, and b is the vector H Pð Þ am

bm

� �
. As the

statistical noise is taken into account by the method due to Eq. (4), confidence
intervals are drawn around the sampling points so that overfitting can be avoided
during interpolation. Hence, the method searches for metamodels which are as
smooth as possible.

The weighted smoothing method tries to find a compromise between the two
contradictory requirements of high smoothness and low smoothing error. This
compromise is controlled via an additional weighting parameter v[ 0, and the
following constrained minimization problem is solved:

min
am;bm

H Pð Þ am

bm

� �
� dsimm

����
����

����
����
2

þ v amk k2; ð8Þ

which is equivalent to solving the LES

HTHþ vI HTP
PTH PTP

� �
am

bm

� �
¼ HT dsimm

PT dsimm

� �
: ð9Þ
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An optimal choice of v would lead to a perfect metamodel fulfilling both criteria.
However, the parameter is problem-dependent and thus difficult to optimize in
practice.

Furthermore, CoSMoS provides an intelligent sampling procedure extending the
approach of the Constrained Optimization using Response Surfaces (CORS) [57].
The latter focuses the sampling onto potentially optimal regions, avoiding previ-
ously sampled regions. This neighborhood is a ball around a sampling point x 2 ~X,
where ~X � X is the set of the already sampled points, of radius

r\dmax
~X :¼ max

x2X
min
~x2~X

x� ~xk k: ð10Þ

This taboo search approach is then realized by solving the constrained mini-
mization problems:

min
x2X

W � MmðxÞj jj j; ð11Þ

where x 2
[
~x2~X

Urð~xÞ; m ¼ 1; . . .; n: ð12Þ

CoSMoS extends this approach by introducing a penalty term

pðxÞ :¼ dmax
~X

min
~x2~X

x� ~xk k � 1; ð13Þ

which grows to infinity, whenever x approaches a sampling point. In contrast to
CORS, CoSMoS minimizes the penalized metamodels

sm~cðxÞ :¼ pðxÞ~cðMmðxÞ � cÞ; m ¼ 1; . . .; n: ð14Þ

where ~c and c are control parameters. For more algorithmic details, see reference
[56]. Figure 4 demonstrates the adaptive nature of the intelligent sampling strategy.
The plot shows a preliminary metamodel after 20 evaluations (right) compared to
the actual loss function (left). The metamodel generally captures the optimal region
of the loss function, i.e., the vicinity of the minimum. The intelligent sampling
strategy takes advantage of this and preferably samples points in the optimal region.
In return, each function evaluation further improves the accuracy of the metamodel,
improving the sketch of the optimal region. This circular procedure within
CoSMoS, which is also depicted in Fig. 3, reduces the number of required simu-
lations and thus the time-to-solution substantially.

An additional advantage of CoSMoS is the fact that it can handle abortive
simulations. Whenever a simulation goes wrong due to a bad selection of the
force-field parameters, the corresponding sampling points are penalized in the same
way so that they are not triggered anymore by the sampling algorithm. Within one
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CoSMoS iteration, all belonging sampling points are evaluated in parallel via a
simple job threading.

2.4 Methodological Aspects of GROW

The GRadient-based Optimization Workflow (GROW) [58] explicitly considers the
euclidean norm for the loss function in Eq. (1). GROW is a collection of
gradient-based numerical optimization algorithms (e.g., steepest descent, conjugate
gradients, and trust region) combined with an efficient Armijo step length control.
The latter prevents GROW from both jumping over the minimum and leaving the
admissible domain of the force-field parameters. For more details of the algorithms
involved in GROW, see Ref. [59].

The gradient at an iteration x 2 X is given by the partial derivatives

@F
@xj

ðxÞ ¼ �2
Xn
i¼1

wi
f expi � f simi ðxÞ

f expið Þ2
@f simi

@xj
ðxÞ; j ¼ 1; . . .;N:

The partial derivatives of the properties are approximated numerically by

@f simi

@xj
ðxÞ ¼ f simi ðx1; . . .; xj þ h; . . .; xNÞ � f simi ðxÞ

h
; h[ 0; j ¼ 1; . . .;N:

On the one hand, due to the statistical uncertainties on the simulated properties
f simi ðxÞ, GROW can get stuck in an intermediate local minimum caused by the
noise, if the discretization parameter h is chosen too small. On the other hand, if h is
too large, the estimations of the gradient might be incorrect. Hence, a good com-
promise has to be found, and the choice of h is problem-dependent and thus difficult

Fig. 4 Left The original loss function for a test problem is shown. The black points, sampled by
CoSMoS, adapt the shape of the loss function. Right The metamodel of the loss function after 20
CoSMoS iterations is depicted, with the first 20 sampling points
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to optimize in practice. However, GROW turned out to be very successful for the
parameterization of force fields in many applications [55, 60–62]. For more algo-
rithmic details concerning GROW, see reference [58].

Local optimization procedures always start with an initial guess x0 2 X, which
must be situated in the sphere of influence of the minimum. By evaluating the loss
function, the simulated properties are compared with the experimental target data. If
a specified stopping criterion is fulfilled, the parameters are final and the workflow
ends. Otherwise, for the current iteration xk 2 X; k 2 N, GROW searches for a
iteration xkþ 1 2 X with a lower loss function. At each iteration, a gradient has to be
calculated, whose components are evaluated in parallel together with the original
iteration xk. Note that the force-field parameters for the gradient components are the
same as in xk except for one component which deviates by h from the original one.
Hence, at each iteration, N + 1 loss function evaluations are parallelized. The
Armijo steps are parallelized as well. For each job, time-consuming molecular
simulations are required, and parallelization of these simulations reduces the real
computation time significantly. Another approach to reduce computational effort
consists in efficient gradient computations, which do not require new function
evaluations. This is achieved by computing directional derivatives instead of the
partial derivatives so that previously performed loss function evaluations can be
used again. The same approach can be applied to Hessians (i.e., for the trust region)
method as well [63, 64].

The stopping criterion depends on the specific properties to be fitted. For
example, if the density deviates by less than 0.5 % from experiment, the corre-
sponding force field is considered as optimal because the experiment is not more
accurate either. The same holds for all other properties. However, the experimental
accuracy is much lower for transport properties like diffusion coefficients or
viscosity.

2.5 SpaGrOW as an Enhanced GROW-Alternative

The Sparse Grid-based Optimization Workflow (SpaGrOW) [65] counteracts the
drawbacks of local gradient-based optimization mentioned above. It approximates
the loss function near the minimum and filters out the statistical noise by regular-
ization methods using naive elastic nets [66]. In order to reduce the computational
effort, this approximation is performed on sparse grids [67], meaning that simula-
tions only have to be performed for sparse grid points. As sparse grids are fully
occupied at their boundary, transformations onto the unit hypercube is performed,
followed by multiplications of the loss function values with sine functions so that
they vanish at the boundary and no simulation has to be performed. Afterward,
interpolations from sparse to full grids are performed via a combination technique
[68], and the loss function is discretely minimized on the resulting full grids.
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The integrated trust region approach [59] makes SpaGrOW an iterative proce-
dure: At each iteration, the loss function is considered on a trust region of a certain
size. It must be large enough in order to increase the speed of convergence and to
distinguish different loss function values despite the statistical noise, and it must be
small enough such that the loss function can be reproduced accurately by the sparse
grid interpolations. The discrete minimum of the model on the full grid is compared
to the corresponding original loss function value. If both coincide well, then the
trust region is increased, if not then it is decreased. Due to the grid-based approach,
SpaGrOW is able to find a much more direct path to the minimum than GROW.
The practical proof that SpaGrOW is able to outperform gradient-based methods for
the present optimization task and all algorithmic details can be found in reference
[65].

Note that the loss function evaluations for the different sparse grid points are
independent from each other. Hence, they are evaluated in parallel like the gradient
components within GROW. Due to its derivative-free approach and due to the fact
that it leads more directly to the optimum, SpaGrOW is always preferred to GROW
within the funnel workflow. However, one or two steepest descent directions may
also be reliable after the CoSMoS’s global optimization, leading to faster force-field
parameters with a lower loss function value. Moreover, SpaGrOW is not suitable
for high-dimensional problems due to the involved smoothing and interpolation
procedures, whose computation effort increases exponentially with the dimension.

3 Software Realization

3.1 Wolf2Pack

Wolf2Pack is a software package that uses a series of shell scripts that interlink
already existing and specialized software (e.g., for computing QM data, statistical
analysis, visualization). It enables researchers to optimize intramolecular parameters
by fitting to target QM data (i.e., relative energies and geometries) [35, 36].
The QM theories that are possible for generating target data include HF, B3LYP,
MP2, AM1, and PM3, while both basis sets proposed by Pople [69] (e.g., 6-31G
(d)) and correlation consistent [70] (e.g., aug-cc-pVDZ) basis sets can be specified
to describe the orbital space. Currently, Amber force fields are available (i.e.,
Parm14SB [71], Gaff [72], Glycam06j [52], and Lipid14 [73]), as well as our own
force field (ExTrM) that is continually being refined and extended.

Parameters optimization can be done using an algorithm or by hand in an iter-
ative process. Several algorithms already exist for intramolecular parameter opti-
mization [1, 6, 53, 74–82]. Currently, we have integrated the algorithms published
in Refs. [78, 79]. However, Wolf2Pack strongly encourages the user to perform the
optimization by hand in an iterative manner. Doing so allows the users to explore
the parameter space and thus build their intuition of how the parameters influence
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the resulting curves. With gained experience, one can better decide the importance
of specific parameters (e.g., a V3 term in HC–CT–CT–HC), which ones have little
influence on given energy curves. For example, an optimization algorithm may
determine nonzero values for torsions V1, V2, and V3, while during a manual
adjustment, the user observes that the V2 has little effect on the resulting fit. In such
a case, setting the V2 to zero should lead to an increase in the parameter transfer-
ability over diverse molecules. And due to Wolf2Pack’s molecular database, such a
transferability test can be done easily.

Within Wolf2Pack, all QM calculations are performed by GAMESS [83], while
all MM calculations are performed by AmberTools [1] (i.e., Sander). Partial atomic
charges are determined using R.E.D. [54]. File format conversions are executed
using OpenBabel [84] and shell scripts. Statistical analysis and image generation
are done using Ptraj [1], R statistical language [85], and pymol [86]. LATEX
typesetting language, with the graphics and animate packages sourced, is used to
generate PDF documents with embedded images of relative energy curves and
animations that display an overlay of the resulting QM and MM geometries of each
conformation [87]. These PDF files serve to archive the final data and allow for
easy dissemination of the results to other researchers.

3.2 CoSMoS, GROW, and SpaGrOW

CoSMoS, GROW, and SpaGrOW are integrated into a fully modular program
structure. The program is implemented in a generic manner such that modules can
be easily exchanged. This modular structure allows a developer to easily exchange
the optimization algorithm, the optimization problem, the objective function, and
the constraints. An interface to a new simulation tool can also be easily imple-
mented. The overall structure is object-oriented and easy to extend. All three tools
are written in python (version 2.6.6). The program is categorized into the following
four layers, whereas the first two layers are related to general optimization problems
and the last two are related to the execution of molecular simulations:

• Generic Optimization,
• Force-Field Parameterization,
• Parallel Jobs, and
• Simulation.

As shown in Fig. 5, each layer considers two independent optimization sections: the
Solver and the Problem Formulation section. The former regards the optimization
algorithm itself, while the latter regards the evaluation of the objective function (i.e., the
function to be minimized and the constraints). Within the Generic Optimization layer,
there are two abstract upper classes, which are the OptimizationAlgorithm and
OptimizationProblem in the Solver and Problem Formulation sections. These two
classes are connected in the sense that the OptimizationAlgorithm requires a defined

Optimizing Molecular Models Through Force-Field … 67



problem to solve from OptimizationProblem. For OptimizationProblem, it is irrelevant
which optimization algorithm is used to solve the optimization problem.

Within the Solver section, the class OptimizationAlgorithm defines an object of the
class StepLengthControl, which steers the step length control. The specific class
ArmijoStepLengthControl is derived from it and can be exchanged by another step
length control method other than Armijo. The CoSMoS, GROW, and SpaGrOW
algorithms are steered by specific child classes derived from OptimizationAlgorithm.
GROW itself encompasses the classes SteepestDescent, ConjugateGradients, and
TrustRegion.

The optimization problem for OptimizationAlgorithm is defined within the Problem
Formulation as an objective function to be minimized and box constraints to be met,
which are represented by abstract classes ObjectiveFunction and BoxConstraints. These
two classes contain getter and setter functions (e.g., for the function value, the gradient,
the Hessian), which have to be overwritten by specific derived child classes in the layer
Force-Field Parameterization. A generic loss function class (i.e., Loss) is derived from
ObjectiveFunction implementing a general loss function between calculated and target
values (Eq. 1). Its child class PhysicalPropertiesLoss steers the molecular simulations

Fig. 5 Generic modular structure of the overall intermolecular optimization toolbox consisting of the
abstract layer Generic Optimization and the three specific layers Force-Field (FF) Parameterization,
Parallel Jobs (PJOBS), and Simulation. Most of the modules require input parameters, which are
defined in the configuration file (i.e., “Config’’)

68 M. Hülsmann et al.



that are executed in parallel and collects the simulation results. This module interacts
with a wrapper script for the molecular simulation steering calling specific python
scripts for the desired simulation tools. Currently, interfaces to the simulation tools
Gromacs [3], ms2 [88], and korr (simulated simulations) [89] are implemented. The
molecular simulations can be replaced by so-called simulated simulations based on
equations of state defining functional dependencies between specific force-field
parameters and certain physical observables. This makes it possible to compute
physical properties without performing time-consuming molecular simulations (see
Refs. [60, 89] for further details).

Finally, an abstract class named BoxConstraints is used by OptimizationProblem
with the specific child class ForceFieldConstraints implementing the admissible
domain X for the force-field parameters. An object of the latter is given to the class
MolecularSimulationOptimizationProblem derived from the abstract class
OptimizationProblem. Once the simulation results (i.e., the simulated physical prop-
erties) have been calculated, they are given back to the class PhysicalPropertiesLoss.

A majority of the modules requires certain input parameters, which have to be
defined in a user-written configuration file, and is read by the main python module
main.py. The configuration file specifies all class objects, modules, and submodules
that are desired for optimization process. It also contains important preferences
concerning the system (e.g., input/output paths, number of computer cores, batch
system), the optimization (e.g., algorithm, step length control, stopping criterion,
initial parameters, constraints), and the optimization problem (e.g., objective
functions, the loss function’s target values). When molecular simulations are per-
formed, all desired properties and parameters of the thermodynamic system have to
be defined (e.g., ensemble, temperatures, pressures, physical properties to be fitted,
number of molecules, box size, number of MD/MC steps, time step). Hence, the file
is divided into three blocks. If more than one substance is considered in the opti-
mization, one block for each substance has to be indicated.

The final output file contains an evaluation in tabular form of all simulation and
optimized force-field parameters, the simulated properties along with their actual
deviations from the experimental reference data at each temperature, the loss
function values, and algorithm-specific information.

The steering of parallel molecular simulations requires special consideration.
This is realized by three different modules: the producer, the executer, and the
collector. The main function of the producer, illustrated in Fig. 6, is to generate all
configuration files for the molecular simulations. In order to generate transferable
force fields, a variation level was added to the producer. This allows researchers to
vary their optimization jobs by the force-field parameters, number of ensembles,
temperatures, and molecular models (i.e., different substances). Before running the
producer, the user must define all model systems with their properties in the initial
configuration file, which contains several sections for each system. The relevant
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properties for the producer are the force-field parameters, substances, ensembles,
and temperatures.

Generally, all necessary configuration files are realized in the following manner.
First, the x-mol-ens-T-variation script is started, which calls the x-variation script.
This script then reads the initial configuration file and generates subdirectories that
contain new configuration files with the new force-field parameters as varied by the
optimization algorithm. Second, the mol-ens-T-variation script calls the mol-vari-
ation script, which varies the new configuration files with respect to different
substances and stores them in new subdirectories. Third, the ens-T-variation script
calls the ens-variation script. This script then reads the new configuration files and
varies the ensembles as well. The new files are stored into subdirectories. Finally,
the T-variation script is called, varying the temperature and storing the new con-
figuration files into a new subdirectory. In summary, the producer generates a
four-level subdirectory structure with varied configuration files, as exemplified in
Fig. 7, according to the following pattern: force-field parameters–substances–
ensembles–temperatures.

After this procedure, the executer starts the parallel molecular simulations based
on the set of configuration files. After completion, the executer reports the status
and results of all simulations to the collector. The latter collects the simulation
results of each single molecular simulation being stored in the leaf subdirectory
level. The main idea is that the collector runs through all result folders, collects the
simulated physical properties, and stores them together in a result file within the
highest directory level. Afterward, the result file is used for the evaluation of the
loss function.

Fig. 6 Illustration of the producer module comprising the x-variation, mol-variation, ens-
variation, and T-variation scripts
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4 Interlinking Aspects of Bonded and Nonbonded
Parameter Optimization

It is well known that bonded and nonbonded parameters are coupled to each other.
For a given set of nonbonded parameters, there will be an optimal set of bonded
parameters and vice versa. This implies that through a successive iteration of
bonded and nonbonded parameter optimization, a self-consistent force field should
be achieved. Figure 8 shows the interaction between intramolecular and inter-
molecular parameter optimization tools. Often, an initial set of Lennard–Jones
parameters is chosen based on existing force fields and atom types. One then
optimizes the bonded parameters using Wolf2Pack. The resulting parameters are
then transferred to the intermolecular optimization tools, which optimizes the
nonbonded parameters. Depending on the algorithm used, the transferred Lennard–
Jones parameters are used as an initial guess (i.e., GROW and SpaGrOW) or they
are discarded (i.e., CoSMoS). Once new nonbonded parameters are generated, they

Fig. 7 Illustration of the
four-level subdirectory
structure that is generated by
the producer module.
A unique configuration file is
stored in all subdirectories
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are then transferred back to Wolf2Pack, and the cycle is repeated until all investi-
gated parameters converge. Currently, we are improving our understanding of the
sensitivity of this global optimization routine by performing it on selected saturated
hydrocarbons (e.g., octane).

5 Future Work: Methods and Applications

In addition to researching how to best realize the bonded–nonbonded optimization
cycle described in the last section, we are currently working toward the inclusion of
solution-phase models (e.g., pure solvent PBC box, ionic liquid PBC boxes) into
Wolf2Pack’s database. Experimentally known condense-phase observables (e.g.,
density, enthalpy of vaporization) will also be included into the database. These
models and target experimental values will be accessible to CoSMoS, GROW, and
SpaGrOW. This will allow future users to have a common access point and starting
models for nonbonded parameter optimization. Once this is realized, the next step
will be to extend Wolf2Pack’s online portal to include these condensed-phase
models and our nonbonded optimization algorithms, thus unifying our bonded and
nonbonded software packages.

With regard to application, we will apply our tools to optimize a force field
specific for fluorinated alcohols. Fluorinated alcohols are highly relevant in
industrial applications (e.g., as solvents used in chemical separation processes).
Their attractiveness is that they can be extracted from the reaction medium and be
reused, which makes them both environmentally friendly and economically
attractive [90]. The challenge in optimizing such a force field arises from the lack of
experimental data and lacks previously published parameters that can be used as an
initial input [91–93]. The goal will be to fit both vapor–liquid equilibrium data (e.g.,
saturated liquid density, vapor pressure) and transport properties (e.g., diffusion
coefficients) simultaneously and at different temperatures. Hence, not only paral-
lelization over different substances but also over different ensembles and temper-
atures are required.

Furthermore, a new force field for carbon dioxide will be developed that
reproduces bulk densities, vapor–liquid equilibrium data, and overcritical transport
properties (e.g., diffusion coefficients and viscosities) simultaneously. New force

Fig. 8 Interaction between
intramolecular (i.e.,
Wolf2Pack) and the
intermolecular parameter
optimization tools (i.e.,
CoSMoS, GROW,
SpaGrOW)
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fields for alkaline earth salts, including a transferable parameters, are about to be
published.

6 Conclusion

In this work, the conception and implementation of recently developed modular pro-
gram packages applied for force-field parameterizations was described in detail.
Intramolecular parameters (i.e., bond length, angles, and torsions) are obtained using
the software package Wolf2Pack. Intermolecular parameters, especially Lennard–Jones
parameters, are computed via a new set of software tools, implementing a so-called
funnel workflow combing global and local optimization procedures. The global
metamodeling package CoSMoS is combined with gradient-based (GROW) or
derivative-free methods (SpaGrOW). The derivative-free method, based on smoothing
procedures and sparse grid interpolation, tends to be much more efficient near the
global optimum. The mathematical optimization problem is formulated through the
minimization of a loss function between simulated physical properties and experimental
reference data. It was shown how the individual software is interlinked with each other
within the overall optimization package. These tools form the basis for user-friendly
and highly efficient parallelized force-field parameterizations. Finally, several applica-
tions are planed in order to obtain industrially relevant force fields (i.e., for
solution-phase models, ionic liquids, fluorinated alcohols, alkaline earth salts, and
overcritical CO2).

References

1. Case, D.A., Babin, V., Berryman, J.T., Betz, R.M., Cai, Q., Cerutti, D.S., Cheatham III, T.E.,
Darden, T.A., Duke, R.E., Gohlke, H., Goetz, A.W., Gusarov, S. Homeyer, N., Janowski, P.,
Kaus, J., Kolossváry, I., Kovalenko, A., Lee, T.S., LeGrand, S., Lucko, T., Luo, R., Madej, B.,
Merz, K.M., Paesani, F., Roe, D.R., Roitberg, A., Sagui, C., Salomon-Ferrer, R., Seabra, G.,
Simmerling, C.L., Smith, W., Swails, J., Walker, R.C., Wang, J., Wolf, R.M., Wu, X.,
Kollmann, P.A.: AMBER 14. http://ambermd.org. University of California, San Francisco
(2014)

2. Brooks, B.R., Brooks III, C.L., Mackerell, A.D., Nilsson, L., Petrella, R.J., Roux, B., Won, Y.,
Archontis, G., Bartels, C., Caflisch, S.B.A., Caves, L., Cui, Q., Dinner, A.R., Feig, M.,
Fischer, S., Gao, J., Hodoscek, M., Im, W., Kuczera, K., Lazaridis, T., Ma, J., Ovchinnikov,
V., Paci, E., Pastor, R.W., Post, C.B., Pu, J.Z., Schaefer, M., Tidor, B., Venable, R.M.,
Woodcock, H.L., Wu, X., Yang, W., York, D.M., Karplus, M.: Charmm: the biomolecular
simulation program. J. Comp. Chem. 30, 1545–1615 (2009)

3. Hess, B., van der Spoel, D., Lindahl, E.: Gromacs user manual 4.5.4. http://www.gromacs.org/
Documentation/Manual/manual-4.5.4.pdf (2010)

4. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys. 117,
1–19 (1995)

Optimizing Molecular Models Through Force-Field … 73

http://ambermd.org
http://www.gromacs.org/Documentation/Manual/manual-4.5.4.pdf
http://www.gromacs.org/Documentation/Manual/manual-4.5.4.pdf


5. Gil, Y., Deelman, E., Ellisman, M., Fahringer, T., Fox, G., Gannon, D., Goble, C., Livny, M.,
Moreau, L., Myers, J.: Examining the challenges of scientific workflows. Computer 40, 24–32
(2007)

6. Waldher, B., Kuta, J., Chen, S., Henson, N., Clark, A.E.: ForceFit: a code to fit classical force
fields to quantum mechanical potential energy surfaces. J. Comp. Chem. 12, 2307–2316
(2010)

7. Highly optimized object-oriented many-particle dynamics—blue edition. http://codeblue.
umich.edu/hoomd-blue/ (2011)

8. Halverson, J.D., Brandes, T., Lenz, O., Arnold, A., Bevc, S., Starchenko, V., Kremer, K.,
Stuehn, T., Reith, D.: ESPResSo++: a modern multiscale simulation package for soft matter
systems. Comput. Phys. Commun. 184, 1129–1149 (2013)

9. Karimi-Varzaneh, H., Qian, H., Chen, X., Carbone, P., Müller-Plathe, F.: Ibisco: a molecular
dynamics simulation package for coarse-grained simulation. J. Comp. Chem. 32, 1475–1487
(2011)

10. Singer, S.J., Nicolson, G.L.: The fluid mosaic model of the structure of cell membranes.
Science 175, 720–731 (1972)

11. Zhou, Y., Stell, G.: Chemical association in simple models of molecular and ionic fluids II.
Thermodynamic properties. J. Chem. Phys. 96, 1504–1506 (1992)

12. Siepmann, J.I., Karaborni, S., Smit, B.: Simulating the critical behaviour of complex fluids.
Nature 365, 330–332 (1993)

13. O’Connell, S.T., Thompson, P.A.: Molecular dynamics-continuum hybrid computations: a
tool for studying complex fluid flow. Phys. Rev. E 52, 5792–5795 (1995)

14. Kolafa, J., Nezbeda, I., Lisal, M.: Effect of short- and long-range forces on the properties of
fluids. III. dipolar and quadrupolar fluids. Mol. Phys. 99, 1751–1764 (2001)

15. Valiullin, R., Naumov, S., Galvosas, P., Kärger, J., Woo, H.-J., Porcheron, F., Monson, P.A.:
Exploration of molecular dynamics during transient sorption of fluids in mesoporous materials.
Nature 443, 965–968 (2006)

16. Batra, I.P., Bennett, B.I., Herman, F.: Simple molecular model for crystalline
tetrathiofulvalene-tetracyanoquinodimethane (TTF-TCNQ). Phys. Rev. B 11, 4927–4934 (1975)

17. Fehlner, T.P.: Molecular models of solid state metal boride structure. J. Solid State Chem. 154,
110–113 (2000)

18. Della, C.N., Dongwei, S.: Mechanical properties of carbon nanotubes reinforced ultra high
molecular weight polyethylene. Solid State Phenom. 136, 45–49 (2008)

19. Lin, S.-T., Blanco, M., Goddard III, W.A.: The two-phase model for calculating
thermodynamic properties of liquids from molecular dynamics: validation for the phase
diagram of Lennard-Jones fluids. J. Chem. Phys. 119, 11792–11805 (2003)

20. Bien, D.E., Chiriac, V.A.: A novel molecular approach to modeling phase change in
micro-fluidic systems. In: Proceedings of the 9th Intersociety Conference on Thermal and
Thermomechanical Phenomena in Electronic Systems, pp. 598–604. IEEE, New Jersey (2004)

21. Vrabec, J., Gross, J.: Vapor–liquid equilibria simulation and an equation of state contribution
for dipole-quadrupole interactions. J. Phys. Chem. B 112, 51–60 (2008)

22. Levitt, M., Warshel, A.: Computer simulation of protein folding. Nature 253, 694–698 (1975)
23. Gsponer, J., Caflisch, A.: Molecular dynamics simulations of protein folding from the

transition state. In: Fersth, A. (ed.) Proceedings of the National Academy of Sciences (PNAS),
vol. 99, pp. 6719–6724. Washington (2002)

24. Snow, C.D., Sorin, E.J., Rhee, Y.M., Pandel, V.S.: How well can simulation predict protein
folding kinetics and thermodynamics? Annu. Rev. Biophys. Biomol. Struct. 34, 43–69 (2005)

25. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its
application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

26. Barkla, B.J., Pantoja, O.: Physiology of ion transport across the tonoplast of higher plants.
Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 159–184 (1996)

27. Müller-Plathe, F., Reith, D.: Cause and effect reversed in non-equilibrium molecular
dynamics: an easy route to transport coefficients. Comput. Theor. Polymer Sci. 9, 203–209
(1999)

74 M. Hülsmann et al.

http://codeblue.umich.edu/hoomd-blue/
http://codeblue.umich.edu/hoomd-blue/


28. Bordat, P., Reith, D., Müller-Plathe, F.: The influence of interaction details on the thermal
diffusion in binary Lennard-Jones liquids. J. Chem. Phys. 115, 8978–8982 (2001)

29. Guevara-Carrion, G., Nieto-Draghi, C., Vrabec, J., Hasse, H.: Prediction of transport
properties by molecular simulation: methanol and ethanol and their mixture. J. Phys. Chem.
B 112, 16664–16674 (2008)

30. Grest, G.S., Kremer, K.: Molecular dynamics simulation for polymers in the presence of a heat
bath. Phys. Rev. A 33, 3628–3631 (1986)

31. Müller-Plathe, F.: Permeation of polymers—a computational approach. Acta Polymer. 45,
259–293 (1994)

32. Binder, K.: Monte Carlo and molecular dynamics simulations in polymer science. Oxford
University Press, Oxford (1995)

33. Kremer, K., Müller-Plathe, F.: Multiscale simulation in polymer science. Mol. Sim. 28, 729–
750 (2002)

34. Praprotnik, M., Junghans, C., Delle Site, L., Kremer, K.: Simulation approaches to soft matter:
generic statistical properties vs. chemical details. Comput. Phys. Commun. 179, 51–60 (2008)

35. Reith, D., Kirschner, K.N.: A modern workflow for force field development—bridging
quantum mechanics and atomistic computational models. Comput. Phys. Commun. 182,
2184–2191 (2011)

36. Krämer-Fuhrmann, O., Neisius, J., Gehlen, N., Reith, D., Kirschner, K.N.: Wolf2Pack – Portal
based atomistic force field development. J. Chem. Inf. Mod. 53, 802–808 (2013)

37. Vainio, M.J., Johnson, M.S.: Generating conformer ensembles using a multiobjective genetic
algorithm. J. Chem. Inf. Mod. 47, 2462–2474 (2007)

38. Tasi, G., Mizukami, F., Csontos, J., Gyõrffy, W., Pálinkó, I.: Quantum algebraic–combinatoric
study of the conformational properties of n-alkanes. II. J. Math. Chem. 27, 191–199 (2000)

39. Jorgensen, W.L., Madura, J.D., Swensen, C.J.: Optimized intermolecular potential functions
for liquid hydrocarbons. J. Am. Chem. Soc. 106, 6638–6646 (1984)

40. Martin, M.G., Siepmann, J.I.: Transferable potentials for phase equilibria. 1. United-atom
description of n-alkanes. J. Phys. Chem. B 102, 2569–2577 (1998)

41. Ungerer, P., Beauvais, C., Delhommelle, J., Boutin, A., Rousseau, B., Fuchs, A.H.:
Optimization of the anisotropic united atoms intermolecular potential for n-alkanes. J. Phys.
Chem. 112, 5499–5510 (2000)

42. Bourasseau, E., Haboudou, M., Boutin, A., Fuchs, A.H., Ungerer, P.: New optimization
method for intermolecular potentials: optimization of a new anisotropic united atoms potential
for olefins: prediction of equilibrium properties. J. Chem. Phys. 118, 3020–3035 (2003)

43. Stoll, J., Vrabec, J., Hasse, H.: A set of molecular models for carbon monoxide and
halogenated hydrocarbons. J. Chem. Phys. 119, 11396–11407 (2003)

44. Reith, D., Pütz, M., Müller-Plathe, F.: Deriving effective mesoscale potentials from atomistic
simulations. J. Comp. Chem. 24, 1624–1636 (2003)

45. Oostenbrink, C., Villa, A., Mark, A.E., van Gunsteren, W.F.: A biomolecular force field based
on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5
and 53A6. J. Comp. Chem. 25, 1656–1676 (2004)

46. Sun, H.: Prediction of fluid densities using automatically derived VDW parameters. Fluid
Phase Eq. 217, 59–76 (2004)

47. Eckl, B., Vrabec, J., Hasse, H.: On the application of force fields for predicting a wide variety
of properties: ethylene oxide as an example. Fluid Phase Eq. 274, 16–26 (2008)

48. Cacelli, I., Cimoli, A., Livotto, P.R., Prampolini, G.: An automated approach for the
parameterization of accurate intermolecular force-fields: pyridine as a case study.
J. Comp. Chem. 33, 1055–1067 (2012)

49. Ucyigitler, S., Camurdan, M.C., Elliott, J.R.: Optimization of transferable site–site potentials
using a combination of stochastic and gradient search algorithms. Ind. Eng. Chem. Res. 51,
6219–6231 (2012)

50. Eckelsbach, S., Janzen, T., Köster, A., Mirshnichenko, S., Muñoz Muñoz, Y.M., Vrabec, J.:
Molecular models for cyclic alcanes and ethyl acetate as well as surface tension data from
molecular simulation. In: Nagel, W.E., Kröner, D.E., Resch, M.M. (eds.) High Performance

Optimizing Molecular Models Through Force-Field … 75



Computing in Science and Engineering ‘14, Transactions of the High Performance Computing
Center, HLRS, Stuttgart (2014), pp. 645–659. Springer, Berlin (2015)

51. Muñoz Muñoz, Y.M., Guevara-Carrion, G., Llano-Restrepo, M., Vrabec, J.: Lennard–Jones
force field parameters for cyclic alkanes from cyclopropane to cyclohexane. Fluid Phase
Eq. 404, 150–160 (2015)

52. Kirschner, K.N., Yongye, A.B., Tschampel, S.M., Gonzalez-Outeirino, J., Daniels, C.R.,
Foley, B.L., Woods, R.J.: GLYCAM06: a generalizable biomolecular force field.
Carbohydrates. J. Comp. Chem. 29, 622–655 (2008)

53. Faller, R., Schmitz, H., Biermann, O., Müller-Plathe, F.: Automatic parameterization of force
fields for liquids by simplex optimization. J. Comp. Chem. 20, 1009–1017 (1999)

54. Dupradeau, F.-Y., Pigache, A., Zaffran, T., Savineau, C., Lelong, R., Grivel, N., Lelong, D.,
Rosanski, W., Cieplak, P.: The R.E.D. tools: advances in RESP and ESP charge derivation and
force field library building. Phys. Chem. Chem. Phys. 12, 7821–7839 (2010)

55. Hülsmann, M.: Effiziente und neuartige Verfahren zur Optimierung von Kraftfeldparametern
bei atomistischen Molekularen Simulationen kondensierter Materie. In: Fraunhofer SCAI (ed.)
Fraunhofer-Verlag, Ph.D. thesis, University of Cologne, Germany (2012)

56. Krämer, A., Hülsmann, M., Köddermann, T., Reith, D.: Automated parameterization of
intermolecular pair potentials using global optimization techniques. Comput. Phys. Commun.
185, 3228–3239 (2014)

57. Regis, R., Shoemaker, C.: Constrained global optimization of expensive black box functions
using radial basis functions. J. Glob. Opt. 31, 153–171 (2005)

58. Hülsmann, M., Köddermann, T., Vrabec, J., Reith, D.: GROW: A gradient-based optimization
workflow for the automated development of molecular models. Comput. Phys. Commun. 181,
499–513 (2010)

59. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)
60. Hülsmann, M., Vrabec, J., Maaß, A., Reith, D.: Assessment of numerical optimization

algorithms for the development of molecular models. Comput. Phys. Commun. 181, 887–905
(2010)

61. Hülsmann, M., Müller, T.J., Köddermann, T., Reith, D.: Automated force field optimization of
small molecules using a gradient-based workflow package. Mol. Sim. 36, 1182–1196 (2011)

62. Köddermann, T., Kirschner, K.N., Vrabec, J., Hülsmann, M., Reith, D.: Liquid-liquid
equilibria of dipropylene glycol dimethyl ether and water by molecular dynamics. Fluid Phase
Eq. 310, 25–31 (2011)

63. Hülsmann, M., Kopp, S., Huber, M., Reith, D.: Efficient gradient and Hessian calculations for
numerical optimization algorithms applied to molecular simulations. In: Proceedings of the
International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE),
Budapest, Hungary (2012), IOP Publishing, Journal of Physics: Conference Series 410,
012007 (2013)

64. Hülsmann, M., Kopp, S., Huber, M., Reith, D.: Utilization of efficient gradient and Hessian
computations in the force field optimization process of molecular simulations. Comput. Sci.
Disc. 6, 015005 (2013)

65. Hülsmann, M., Reith, D.: SpaGrOW—a derivative-free optimization scheme for
intermolecular force field parameters based on sparse grids methods. Entropy 15, 3640–
3687 (2013)

66. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. Roy. Stat. Soc.
Ser. B 67, 301–320 (2005)

67. Smolyak, S.A.: Quadrature and interpolation formulas for tensor products of certain classes of
functions. Sov. Math. Doklady 4, 240–243 (1963)

68. Griebel, M., Schneider, M., Zenger, C.: A combination technique for the solution of sparse
grid problems. Technical Report, Institute for Computer Science, Technical University of
Munich, Germany (1990)

69. Ditchfield, R., Hehre, W.J., Pople, J.A.: Self consistent molecular orbital methods. IX. An
extended Gaussian type basis for molecular orbital studies of organic molecules. J. Chem.
Phys. 54, 724–728 (1971)

76 M. Hülsmann et al.



70. Dunning, T.H.: Gaussian basis sets for use in correlated molecular calculations. I. The atoms
boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989)

71. Maier, J.A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K.E., Simmerling, C.:
ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB.
J. Chem. Theory Comput. 11, 3696–3713 (2015)

72. Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.A.: Development and testing of
a general amber force field. J. Comput. Chem. 25, 1157–1174 (2004)

73. Dickson, C.J., Madej, B.D., Skjevik, Å.A., Betz, R.M., Teigen, K., Gould, I.A., Walker, R.C.:
Lipid14: the amber lipid force field. J. Chem. Theory Comput. 10, 865–879 (2014)

74. Wang, J.M., Kollman, P.A.: Automatic parameterization of force field by systematic search
and genetic algorithms. J. Comp. Chem. 22, 1219–1228 (2001)

75. Vaiana, A.C., Cournia, Z., Costescu, I.B., Smith, J.C.: AFMM: a molecular mechanics force
field vibrational parametrization program. Comput. Phys. Commun. 167, 34–42 (2005)

76. Guvench, O., MacKerell Jr, A.D.: Automated conformational energy fitting for force field
development. J. Mol. Model. 14, 667–679 (2008)

77. Mayne, C.G., Saam, J., Schulten, K., Tajkhorshid, E., Gumbart, J.C.: Rapid parameterization
of small molecules using the force field toolkit. J. Comp. Chem. 32, 2757–2770 (2013)

78. Hopkins, C.W., Roitberg, A.E.: Fitting of dihedral terms in classical force fields as an analytic
linear least-squares problem. J. Chem. Inf. Mod. 54, 1978–1986 (2014)

79. Burger, S.K., Ayers, P.W., Schofield, J.: Efficient parameterization of torsional terms for force
fields. J. Comp. Chem. 35, 1438–1445 (2014)

80. Betz, R.M., Walker, R.C.: Paramfit: automated optimization of force field parameters for
molecular dynamics simulations. J. Comp. Chem. 36, 79–87 (2015)

81. Vanommeslaeghe, K., Mingjun, Y., MacKerell, A.D.: Robustness in the fitting of molecular
mechanics parameters. J. Comp. Chem. 36, 1083–1101 (2015)

82. Vanduyfhuys, L., Vandenbrande, S., Verstraelen, T., Schmid, R., Waroquier, M., Van
Speybroeck, V.: QuickFF: a program for a quick and easy derivation of force fields for
metal-organic frameworks from ab initio input. J. Comp. Chem. 36, 1015–1027 (2015)

83. Gordon, M.D., Schmidt, M.W.: Advances in electronic structure theory: GAMESS a decade
later. In: Gordon, M.S., Schmidt, W., Dykstra, C.E. (eds.) Theory and Applications of
Computational Chemistry: The First Forty Years, pp. 1167–1189. Elsevier Amsterdam Boston
(2005)

84. O’Boyle, N., Banck, M., James, C., Morley, C., Vandermeersch, T., Hutchison, G.: Open
babel: an open chemical toolbox. J. Cheminf. 3, 33 (2011)

85. R: A language and environment for statistical computing. manual. http://www.R-project.org.
The R Foundation for Statistical Computing, Vienna, Austria (2009)

86. PyMOL(TM) Molecular Graphics System, Version 1.6.0.0. http://pymol.org && http://
sourceforge.net/projects/pymol/ (2009)

87. The LaTeX Project. http://latex-project.org/
88. Deublein, S., Eckl, B., Stoll, J., Lishchuk, S.V., Guevara-Carrion, G., Glass, C.W., Merker, T.,

Bernreuther, M., Hasse, H., Vrabec, J.: ms2: a molecular simulation tool for thermodynamic
properties. Comput. Phys. Commun. 182, 2350–2367 (2011)

89. Stoll, J., Vrabec, J., Hasse, H., Fischer, J.: Comprehensive study of the vapour–liquid
equilibria of the pure two–centre Lennard-Jones plus point quadrupole fluid. Fluid Phase
Eq. 179, 339–362 (2001)

90. Bégué, J.-P., Bonnet-Delpon, D., Crousse, B.: Fluorinated alcohols: anew medium for
selective and clean reaction. Synlett, 18–29 (2004)

91. Rochester, C.H., Symonds, J.R.: Densities of solutions of four fluoralcohols in water.
J. Fluorine Chem. 4, 141–148 (1974)

92. Gross, T., Karger, N., Price, W.E.: p, T dependence of self-diffusion in 2-fluoroethanol, 2,2
difluoroethanol and 2,2,2-trifluoroethanol. J. Mol. L. 75, 159–168 (1998)

93. Meeks, A.C., Goldfarb, I.J.: Vapor pressure of fluoroalcohols. J. Chem. Eng. Data 12, 196
(1967)

Optimizing Molecular Models Through Force-Field … 77

http://www.R-project.org
http://pymol.org
http://sourceforge.net/projects/pymol/
http://sourceforge.net/projects/pymol/
http://latex-project.org/


A Hierarchical, Component Based
Approach to Screening Properties of Soft
Matter

Christoph Klein, János Sallai, Trevor J. Jones,
Christopher R. Iacovella, Clare McCabe and Peter T. Cummings

Abstract In prior work, Sallai, et al. introduced the concept and algorithms of
building molecular topologies through the use of a hierarchical data structure and
the use of an affine coordinate transformation to connect molecular components. In
this work, we expand upon the original concept and present a refined version of this
software, termed mBuild, which is a general tool for constructing arbitrarily
complex input configurations for molecular simulation in a programmatic fashion.
Basic molecular components are connected using an equivalence operator which
reduces and often removes the need for users to explicitly rotate and translate
components as they assemble systems. Additionally, the programmatic nature of
this approach and integration with the scientific Python ecosystem seamlessly
exposes high-level variables that users can tune to alter the chemical composition of
their systems, such as mixtures of polymers of different chain lengths and surface
patterning. Leveraging these features, we demonstrate how mBuild serves as a
stepping stone towards screening and performing optimizations in chemical
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parameter space of complex materials by performing automated screening studies
of monolayer systems as a function of graft type, degree of polymerization, and
surface density.

Keywords Molecular dynamics � Software � System construction

1 Introduction

The biophysics simulation community has put considerable effort into creating tools
and databases for building and parameterizing biological molecules with minimal
effort, e.g. the Protein Data Bank [1], VMD [2], AmberTools [3], the Omnia suite
[4]. Such toolchains allow researchers to generate input files for complex structures,
such as proteins and DNA, that can run on most molecular dynamics simulation
engines with little to no manual intervention. However, while the biophysics
community’s tools provide excellent functionality for biological system setup, they
do not allow one to easily generate arbitrary structures found outside the biophysics
community. For example, surface bound brushes or tethered nanoparticles, which
often feature semi-infinite substrates and/or irregular surface bonding sites, require
a less specialized approach. These systems may not be regular and thus defining a
small unit cell and replicating it is not always possible. Additionally, many tools are
tied to a specific simulation environment [3] or are operated via a custom language
that complicates integration with a broader scientific ecosystem of tools for per-
forming tasks not specific to the domain of molecular simulation, such as statistical
analysis and visualization.

In prior work [5], we introduced the preliminary concepts underpinning
mBuild’s functionality. Since then, mBuild has evolved into a Python package
designed to simplify the construction of complex, regular and irregular structures
and topologies as well as integrate seamlessly with the Python scientific stack and
more recently developed Python tools in the area of molecular simulation [6–10].
mBuild adopts a hierarchical approach to system construction that relies on
equivalence relations to connect chemical building blocks (components). Every
component can recursively contain particles and other components to generate
arbitrary, hierarchical structures where every particle represents a leaf in the hier-
archy. Low-level components, such as an alkyl group or a monomer, can be
hand-drawn using software like Avogadro [11] and then connected using an
equivalence operator which matches defined attachment sites between two com-
ponents—the operator forces two sets of points in space to overlap thus translating
and rotating components into the desired positions. This approach minimizes and
often even eliminates the need for users to explicitly translate or rotate components
while constructing initial configurations—users simply specify which components
should be connected. Additionally, the hierarchical nature of this approach allows
for complex families of chemical structures to be encapsulated in a single
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component class which exposes user defined, tunable parameters that adjust the
structural properties of the system (e.g. chain length, surface coverage). By pro-
viding a more natural avenue to express such structures, where the requirement for
mental visualization of spatial arrangements is minimized, mBuild provides a
stepping stone towards the goals outlined by the Materials Genome Initiative [12],
by enabling screening of and optimizations in chemical parameter space of com-
plex, soft-materials.

Here, we provide an overview of the algorithms associated with mBuild
including several recent improvements, and demonstrate its use as a means for
automating screening of soft matter systems. We illustrate the construction of basic
components, how they can be connected programmatically into complex chemical
systems, and finally showcase this functionality by generating and performing
parameter sweeping simulations of an ensemble of monolayers constructed of
alkanes and polyethylene glycol (PEG) where, through the functionality of
mBuild, we trivially vary surface density, patterning and chain length in an
automated, programmatic way.

2 Software Concept

While the basic concepts and algorithms underlying mBuild were outlined in Ref.
[5] additional refinement and development has been undertaken, as reported here, in
particular to simplify and increase the generality of the data structure and provide
enhancements with regards to connecting individual components via equivalence
transforms. The primary building blocks of an mBuild hierarchy are
Compounds; every user-created component inherits from this class. Each
Compound can contain an arbitrary amount of other Compounds, allowing for
systems to be flexibly built in a hierarchical manner. The programmatic connection
of Compounds in three dimensional space is facilitated by an equivalence trans-
form. This concept is formalized and implemented via the Port class which
defines connection sites and orientation. These are each discussed below.

2.1 Data Structure

The hierarchical data structure of mBuild is composed of Compounds.
Compounds maintain an ordered set of children which are other Compounds.
Compounds at the bottom of an mBuild hierarchy, i.e., the leafs of the tree, are
referred to as Particles and can be instantiated as, for example, lj = mb.
Particle(name=‘lennard-jonesium’). Note however, that this merely
serves to illustrate that this Compound is at the bottom of the hierarchy;
Particle is an alias for Compound which can be used to clarify the intended
role of an object you are creating.
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Every mBuild hierarchy also maintains a network of bonds between its
Particles in the form of a graph as provided by the NetworkX package [13].
This graph is maintained by the root (top level component) of the given hierarchy.
When two Compounds with bonds are added together, their bond graphs are
composed.

Additionally, Compounds have built-in support for copying and deep copying
Compound hierarchies, enumerating particles or bonds in the hierarchy, proximity
based searches, visualization, I/O operations, and a number of other convenience
methods that enable complex topologies to be constructed with little user effort.

2.2 Equivalence Transforms

When connecting components in 3D space, their relative orientations must be
specified. In mBuild, this is accomplished via an equivalence transform. The
equivalence operator described here declares points in a component’s local coor-
dinate system to be equivalent to points in another component’s coordinate system.
Using these point pairs, it is possible to compute a rigid transformation, specifically
an affine coordinate transformation conserving scaling and orientation (chirality),
that, when applied to one component, will transform its designated points to the
other component’s respective points. Specifying four or more pairs of non-coplanar
points is sufficient to compute an unambiguous transformation matrix in 3D space.

Using a rigid transformation F, one can map a point vector t to its image FðtÞ in
a different coordinate system. This operation can be expressed as a multiplication
by a rotation matrix R 2 R

3�3 and a translation with vector t 2 R
3�1.

FðtÞ ¼ Rtþ t ð1Þ

R and t can be solved for using the singular value decomposition to get the
pseudoinverse given four or more points Piðxi; yi; ziÞ and their images P
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where the lower elements in the transformation matrix (0 and 1) are of dimensions
1� 3 and 1� 1 respectively.

In mBuild, this equivalence transform is used to force four points of one
compound to overlap with four points of another. Achieving this generally, requires
that the same arrangement of four non-coplanar points must be added to any
compound intended to make use of the equivalence transform.

82 C. Klein et al.



2.2.1 Ports

To formalize, simplify, and enable this behavior to function with any compound,
mBuild provides the Port class, which is a simple Compound containing four
untypedParticles in a compact, non-coplanar arrangement (see Fig. 1). Note that
for most use cases, it is not desirable to print these untyped, extra Particleswhen
outputting the final structure to a file, which is the default behavior of the Compound.
save() method, but they can be saved if desired, e.g. for visualization purposes.

Instead of having to explicitly define an equivalence relation between four pairs of
points, mBuild allows for declaring two Ports, one in each compound, to be
equivalent. When performing an equivalence transform on two Ports, one of the
Compounds that the two Ports are a part of is rotated and translated, such that the
untyped particles inside their respective ports overlap (see Fig. 2). Since it is common
that Ports represent bonding sites where molecule fragments need to be attached,
mBuild allows for defining an anchorCompound associatedwith aPort. After the
affine transformation is applied, mBuild will by default create a bond between the
two respective anchors, relieving the user from this often tedious task.

Notice that ports have directionality, as well. Consider Component C1 in Fig. 2,
representing a methyl group. It is not possible to create an ethane molecule from

downup up/down

Fig. 1 The spatial arrangement of the particles within a port. Both up and down contain the same
arrangement of four non-coplanar particles except that they face opposite directions

Fig. 2 A Port is a compound with two pairs of four Particles. Here, one pair of three points
is shown to illustrate this 2D example. Ports are attached to any other Compound, most
commonly anchored to a Particle where a chemical bond should exist. Compound C1 is a
methyl group with a Port anchored to the carbon atom. C2 is a methylene bridge already
connected to a hydroxyl group. C1 and C2 are then attached using the equivalence relation
described in Eq. (2) to create C3, an ethanol molecule. By default, a Bond is created between the
two anchoring carbons. Adapted with permission from Fig. 2 in Sallai, J. et al. (2013) Web- and
Cloud-based Software Infrastructure for Materials Design. Procedia Computer Science: Elsevier
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two such components, because the equivalence transform would render not just the
untyped atoms in the ports, but also the carbon and hydrogen atoms to
overlap. While one way of solving this problem would be to have two flavors of
each such Compound class, one with an “outward pointing” Port, and another one
with an “inward pointing” one, mBuild takes an alternate approach. The actual
implementation of the Port class contains not four, but eight untyped atoms: four
of them forming an “inward pointing”, while the other four comprising an “outward
pointing” collection of points. When performing an equivalence transform,
mBuild computes two affine transformation matrices, and choses the one that
avoids the overlap of the compounds’ typed atoms. This is achieved by checking
which of the two transformations forces the anchor atoms as far away from one
another as possible (see Fig. 1 for an illustration of how these quartets of
Particles are arranged). Figure 2 highlights this procedure via the construction
of an ethanol molecule. Additional documentation is included at the development
website (http://imodels.github.io/mbuild/) via an interactive IPython notebook [14].

3 Applications

Below, we highlight the basics of assembling low level components into succes-
sively more complex structures in mBuild and how to programmatically control
these workflows to perform automated screening for monolayer systems. All the
examples discussed below are also available as tutorials in IPython notebook format
where users can seamlessly visualize components as they are constructed from
Python code via a widget provided by the imolecule package [8]. Static versions
of these notebooks are also hosted on our documentation page at http://imodels.
github.io/mbuild/. Many additional example systems of varying complexity are
provided together with the mBuild source code on GitHub.

3.1 Defining and Connecting Basic Components

The simplest way to define a basic component in mBuild is to draw the component
using software such as Avogadro [11], output it as a .mol2 or .pdb file with
defined bonds and then use the load function in mBuild. Adding a Port to a
compound that a user wants to be able to connect to other compounds requires
placing the Port where a bond could be formed and specifying an anchor particle
with which the Port is associated. Just as with any other Compound, Ports can
not only be translated but also rotated thus allowing non-linear arrangements to be
constructed. This procedure is highlighted in Listing 1; basic components can be
stored and reused for future system construction thus minimizing the need for users
to place Ports, as will be demonstrated as part of the construction of alkane
monolayers in the screening application below.
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Listing 1 Example code to generate a CH2 group and attach two ports

Any two Ports can be forced to overlap using the equivalence transform.
Listing 2 demonstrates how this functionality can be leveraged via the simple yet
common use case of creating an alkane polymer chain which will be used for
screening—in this example, a CH2 group with the ports “up” and “down” defined.

Listing 2 Example code for polymerizing CH2 groups

To further simplify the composition of basic components into more complex
structures, several classes and functions have been developed to more naturally
express many commonly performed tasks. For example, the functionality of the
example in Listing 2 is encapsulated within the Polymer class which reduces the
above for loop to one line for end users. For example, the PEG chains referenced in
the following examples, are created with the code in Listing 3.

Listing 3 Using the Polymer class to create PEG chains
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3.2 Patterning Surfaces

mBuild provides functionality for patterning of surfaces in arbitrary ways. Below,
we highlight this feature via the patterning of scientifically relevant 2D and 3D
systems.

In the example shown in Fig. 3, the TiledCompound class is used to replicate
a periodic substrate in the x- and y-dimensions. This class also internally adjusts
periodic bonds. In the final tier of the hierarchy, the patterning functionality, which
can be used to create patterns on, for example, substrates or spherical particles, is
used to randomly disperse polymer brushes on the substrate. Functionality is pro-
vided in mBuild for a variety of 2D and 3D patterns including random, grid-like,
disks and spherical patterns. Ultimately, a multi-tiered hierarchy of components is
assembled, from simple “hand-drawn” monomers, through polymerization and
replication of periodic substrates. This functionality is expressed with minimal code
via creating a new Python class (shown at the bottom of Fig. 3) to expose the
desirable tunable parameters. Here, the number of monomers in the chain, the
number of chains on the surface, the pattern on the surface, and the size of the
surface can all be trivially modified during screening.

The surface patterning illustrated in Fig. 3 was limited to a two-dimensional
surface; however, the underlying functionality in mBuild naturally generalizes to
three dimensions as well with essentially no changes to the user-level code.

-cristobalite

4.7 x 4.1 nm

-cristobalite

14.1 x 8.2 nm

CH2

CH3 (CH2)5 Silane

Alkylsilane monomer

Alkylsilane monolayer

Fig. 3 Hierarchy of compounds used to generate an alkylsilane monolayer on a b-cristobalite
substrate. Dashed boxes indicate base components for which .mol2 or .pdb files exist, e.g. drawn
using software such as Avogadro [11]. The code snippet used to generate the structures with all of
the tunable parameters exposed is shown at the bottom for two different parameter combinations
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Figure 4 and Listing 4 show how this could be used to functionalize a spherical
nanoparticle with various polymer chains. The code utilized to attach chemical
groups to two-dimensional systems can be reused for three dimensional structures
without significant modification or further effort by the end user.

Listing 4 Example code to tether PEG chains to a silica nanoparticle

4 Screening Soft Matter Systems: Self-assembled
Monolayers

Building upon the prior examples, monolayers are constructed in a programmatic
way to demonstrate the use of mBuild for screening applications. Monolayers
encompass a vast chemical parameter space that can be tuned for applications such

Fig. 4 An 8 nm diameter
silica nanoparticle sparsely
functionalized with PEG
chains bound to the surface
with a silane group
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as lubrication [15] and anti-fouling [16], and their behavior and properties often
strongly depend on the substrate, binding moiety, chain type, composition of
multiple chain types, surface patterning, etc. Sampling more than one or two
dimensions of this parameter space using experimental techniques, while techni-
cally possible, quickly becomes limited by practical considerations. Molecular
dynamics can be used as a screening step to inform subsequent experimental studies
and dramatically cut down the relevant search space. Here, using mBuild substrate
density, chain length, and chain type of monolayer systems are programmatically
varied in order to perform a basic screening.

The first step to performing a screening procedure across chemical space
involves building the input topologies. Ideally, a user should have seamless access
to any variables of interest thus enabling them to adjust these to mimic a statistical
distribution. As discussed previously, the hierarchical nature of mBuild provides
an avenue to expose an arbitrary set of variables to the end user and thus enables
users to leverage the scientific Python ecosystem to apply standard optimization
techniques and analysis to explore chemical parameter space. As highlighted above,
in mBuild, the only explicit rotation and translation occurs in the lowest level of
the hierarchy when placing ports. Once these simple components have been fitted
with ports, they can be stored in the database for future use thus completely
eliminating the need for explicit rotation and translation when building many
systems; here, we reuse many of the components previously defined in the prior
examples. Each higher tier in the hierarchy contains only a few lines of code to
express which ports to connect to one another.

Listing 5 shows the mBuild code that generates configurations for a simple
screening procedure of alkane and PEG monolayers on silica substrates. This code
varies the chain length and the number of chains on the surface for both molecules
types. It is important to note that the code to generate both monolayer types are
nearly identical due to the hierarchical nature of mBuild; the Monolayer
function is generic, as it simply expects a Compound with a Port defined for
attachment. Thus it can readily accept either the Alkane or PEG Compounds (or
mixture thereof) that have previously been define, where each of these
Compounds accepts an argument to define the length of the desired polymer chain.
As such, this example can be trivially extended by creating a different molecule
Compound, and substituting this in place of either the Alkane or PEG
Compound.

Figure 5 illustrates two of the systems created using this procedure
post-equilibration. In this example, the monolayers were patterned in a 2D grid but
the patterning of the surface is also tunable if desired, as shown previously. Each
monolayer that was created was sampled for 10 ns using GROMACS [17] and the
OPLS-aa forcefield [18] with modifications as described by Lorentz et al. [19].

Listing 5 Example code to generate alkane and PEG monolayers differing in both
chain length and number of surface grafted chains. Note that most of the code can
be reused to create both the PEG and alkane monolayer; the only difference is the
chain class that is instantiated
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Figure 6 shows the average nematic order parameter, S2, of the chains on
monolayer [20, 21]. S2 measures the orientational ordering of the chains, where for
monolayers, values below 0.7 indicate a fluid-like state (i.e., low order) whereas
values that approach unity indicate a high degree of crystalline orientational
ordering. It has been shown that S2 influences the frictional properties of mono-
layers, where lower values of S2 for monolayers tend to be correlated with higher
frictional forces when the monolayers are brought together in sliding contact [22].
Thus S2 serves as a useful surrogate for rapidly screening monolayers to determine
which regimes are likely to produce high/low coefficients of frictions. While
additional simulations and sampling are required to draw more robust conclusions,
several regimes are readily apparent. A clear transition from disordered, fluid-like
monolayer states to ordered states occurs for both systems. This transition occurs at
lower surface coverages for alkane chains as compared to PEG chains. That is, PEG
systems appear to have a smaller regime of well order states, which can be

Fig. 5 An alkane system with 81 chains with 7 carbons each (left) and a PEG system with 64
chains and 13 carbons/oxygens (right). Both shown post-equilibration
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accounted for by the increased flexibility in PEG. In both cases, systems with the
highest values of S2 tend to occur for higher surface densities and longer chains,
and thus one would expect materials in these regimes to demonstrate the most
favorable frictional properties. Interestingly, these screening simulations also reveal
a second regime for PEG occurring for low surface coverage and short chain length;
in this regime moderate values of S2 are observed, which, upon visual inspection,
appears associated with chains lying flat along the surface. The ability to rapidly
screen, evaluate and cross-correlate metrics like the nematic order parameter will
accelerate our ability to rationally design soft materials in complex parameter
landscapes.

5 Conclusion

mBuild provides a programmatic pathway to constructing arbitrary, complex input
topologies for molecular simulations. The use of an equivalence operator typically
eliminates the need for users to explicitly rotate or translate components while
assembling chemical structures. The core data structures of mBuild and how the
equivalence operator is implemented and used in practice are described and the
pathway from basic component creation all the way through constructing several
complex example hierarchies illustrated. The format-agnostic nature of mBuild
allows for flexible interoperability with other tools in the scientific Python and
molecular modeling communities, such as packmol [23], polymatic [6], MDTraj
[7], imolecule [8], OpenMM [9] and HOOMD-blue [10]. Using monolayers as an

Fig. 6 Average nematic order parameter of every system after 10 ns of sampling. The total
process of constructing all 84 systems with mBuild takes a few minutes on a modern laptop and
the simulations each take approximately 0.5–3 h depending on system size using a GTX980 and 8
CPU cores of an Intel Xeon E5 2600v3
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example, the power of this approach is highlighted by performing a small parameter
sweeping simulation study, demonstrating clear regimes of highly ordered mono-
layers which are likely correlated with favorable friction coefficients. This example
demonstrates how this approach can be leveraged to more broadly study, design and
optimize complex materials. Source code and interactive tutorials in the IPython
notebook format, which reinforce the basics of component construction and how to
re-use components to assemble more complex systems, are also provided on the
mBuild website (http://imodels.github.io/mbuild/).

The amount of easily generatable chemical configurations scales dramatically as
users contribute components to mBuild’s library. As such, we have begun curating
a version-controlled library of components such that they can be reused,
error-corrected and added to. mBuild and its component library are fully
open-sourced at https://github.com/imodels/mbuild and user contributions are
actively encouraged, which we hope will attract an active user base.

Acknowledgments This material is based upon work supported by the National Science
Foundation under Grants No. NSF CBET-1028374 and OCI-1047828.

References

1. Bernstein, F.C., Koetzle, T.F., Williams, G.J., Meyer, E.F., Brice, M.D., Rodgers, J.R.,
Kennard, O., Shimanouchi, T., Tasumi, M.: The protein data bank: a computer-based archival
file for macromolecular structures. Arch. Biochem. Biophys. 185, 584–591 (1978)

2. Humphrey, W., Dalke, A., Schulten, K.: VMD: visual molecular dynamics. J. Mol. Graph. 14,
33–38 (1996)

3. Salomon-Ferrer, R., Case, D.A., Walker, R.C.: An overview of the Amber biomolecular
simulation package. Wiley Interd. Rev.: Comput. Mol. Sci. 3, 198–210 (2013)

4. Omnia: High performance, high usability toolkits for predictive biomolecular simulation.
http://www.omnia.md

5. Sallai, J., Varga, G., Toth, S., Iacovella, C.T., Klein, C., McCabe, C., Ledeczi, A., Cummings,
P.T.: Web- and cloud-based software infrastructure for materials design. Proc. Comput. Sci.
29, 2034–2044 (2014)

6. Abbott, L.J., Hart, K.E., Colina, C.M.: Polymatic: a generalized simulated polymerization
algorithm for amorphous polymers. Theoret. Chem. Acc. 132, 1–19 (2013)

7. McGibbon, R.T., Beauchamp, K.A., Schwantes, C.R., Wang, L.-P., Hernández, C.X.,
Harrigan, M.P., Lane, T.J., Swails, J.M., Pande, V.S.: MDTraj: a modern, open library for the
analysis of molecular dynamics trajectories. bioRxiv (2014)

8. Fuller, P.: Imolecule: an embeddable webGL molecule viewer. https://github.com/
patrickfuller/imolecule

9. Eastman, P., et al.: OpenMM 4: a reusable, extensible, hardware independent library for high
performance molecular simulation. J. Chem. Theory Comput. 9, 461–469 (2013)

10. Anderson, J.A., Lorenz, C.D., Travesset, A.: General purpose molecular dynamics simulations
fully implemented on graphics processing units. J. Comput. Phys. 227, 5342–5359 (2008)

11. Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., Hutchison, G.R.:
Avogadro: an advanced semantic chemical editor, visualization, and analysis platform.
J. Cheminform. 4, 17 (2012)

12. http://www.whitehouse.gov/mgi. Materials genome initiative for global competitiveness

A Hierarchical, Component Based Approach to Screening … 91

http://imodels.github.io/mbuild/
https://github.com/imodels/mbuild
http://www.omnia.md
https://github.com/patrickfuller/imolecule
https://github.com/patrickfuller/imolecule
http://www.whitehouse.gov/mgi


13. Aric Hagberg, P.S., Dan Schult NetworkX: High-productivity software for complex networks.
https://networkx.github.io/

14. Pérez, F., Granger, B.E.: IPython: a system for interactive scientific computing. Comput. Sci.
Eng. 9, 21–29 (2007)

15. Bhushan, B., Israelachvili, J.N., Landman, U.: Nanotribology: friction, wear and lubrication at
the atomic scale. Nature 374, 607–616 (1995)

16. Brzoska, J.B., Shahidzadeh, N., Rondelez, F.: Evidence of a transition temperature for the
optimum deposition of grafted monolayer coatings. Nature 360, 719–721 (1992)

17. Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M.R., Smith, J.
C., Kasson, P.M., Van Der Spoel, D., Hess, B., Lindahl, E.: GROMACS 4.5: a
high-throughput and highly parallel open source molecular simulation toolkit.
Bioinformatics 29, 845–854 (2013)

18. Jorgensen, W.L., Maxwell, D.S., Tirado-Rives, J.: Development and testing of the OPLS
all-atom force field on conformational energetics and properties of organic liquids. J. Am.
Chem. Soc. 118, 11225–11236 (1996)

19. Lorenz, C., Webb, E., Stevens, M., Chandross, M., Grest, G.: Frictional dynamics of
perfluorinated self-assembled monolayers on amorphous SiO2. Tribol. Lett. 19, 93–98 (2005)

20. Lagomarsino, M.C., Dogterom, M., Dijkstra, M.: Isotropic nematic transition of long, thin,
hard spherocylinders confined in a quasi-two-dimensional planar geometry. J. Phys. Chem.
119, 719–721 (2003)

21. Wilson, M.R.: Determination of order parameters in realistic atom-based models of liquid
crystal systems. J. Mol. Liq. 68, 23–31 (1996)

22. Black, J.E., Iacovella, C.R., Cummings, P.T., McCabe, C.: Molecular dynamics study of
alkylsilane monolayers on realistic amorphous silica surfaces. Langmuir 31, 3086–3093
(2015)

23. Martnez, L., Andrade, R., Birgin, E.G., Martnez, J.M.: PACKMOL: a package for building
initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164
(2009)

92 C. Klein et al.

https://networkx.github.io/


Quantum Virial Coefficients via Path
Integral Monte Carlo with Semi-classical
Beads

Ramachandran Subramanian, Andrew J. Schultz and David A. Kofke

Abstract Conventionally, Path Integral Monte Carlo (PIMC) calculations are
performed with ‘classical beads’ (beads interacting via a classical potential) by using
the primitive approximation for the thermal density matrix. Higher order propagators
of the thermal density matrix have been proven to achieve faster convergence and
better precision in quantum calculations than using just the primitive approximation.
Use of different propagators in PIMC leads to methods equivalent to performing
PIMC with ‘semi-classical beads’ (beads interacting via a semi-classical potential).
We examine the Takahashi-Imada (TI) propagator as well as an ad hoc
semi-classical potential in PIMC calculations for computing the quantum second
virial coefficient for helium-4. We compare the performance of the two approaches
based on semi-classical beads against values computed from PIMC using conven-
tional classical beads. We find that while the TI propagator has the same or mar-
ginally better precision compared to the classical case, it has the best convergence
rate (with respect to number of path-integral beads) among the three approaches. The
convergence rate of the ad hoc potential is marginally better than its classical
counterpart, and its precision is approximately the same as the classical case.

Keywords Path integral Monte Carlo � Takahashi-Imada propagator � Quantum
virial coefficients � Helium-4 � Thermal density matrix

1 Introduction

The thermal density matrix q plays a key role in Feynman’s imaginary-time Path
Integrals (PI) formalism and its application in Monte Carlo (MC) algorithms to
compute physical properties of interest. In position space, it is given by [1–3]:
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qðR;R0; bÞ ¼ Rje�bHjR0� � ð1Þ

where R ¼ fr1; r2; . . .rng and b ¼ 1=kBT , with kB Boltzmann’s constant and T the
temperature. A key property of the density matrix is that the product of two density
matrices is also a density matrix:

qðR;R0; b1Þ � qðR;R0; b2Þ ¼ qðR;R0; b1 þ b2Þ ð2Þ

This is because any operator (specifically the Hamiltonian operator H here) is
commutative with any scalar multiple of itself. This exact property allows us to
write down the following ðP� 1Þ-fold convolution:

qðR0;RP; bÞ ¼
Z

� � �
Z

dR1 dR2 . . . dRP�1 qðR0;R1; sÞqðR1;R2; sÞ. . .qðRP�1;RP; sÞ
ð3Þ

where s ¼ b=P. Note that even though the above expression is exact, one needs to
make approximations to the thermal density matrix in order to compute the con-
volution efficiently. The simplest of the approximations is to assume that the
kinetic-energy operator (T ) and the potential-energy operator (V) in the
Hamiltonian commute with each other. As s ! 0 or equivalently as PT ! 1, the
‘‘primitive approximation” is given by:

e�sðT þVÞ � e�sT e�sV ð4Þ

The Trotter formula proves that this approximation does converge to the right
result in the P ! 1 limit and is given by:

e�bðT þVÞ ¼ lim
P!1

½e�sT e�sV�P ð5Þ

It is worth noting that within the PI implementation, we are mainly interested in
evaluating the trace of the density matrix, as it is directly related to the partition
function. Also when using the primitive approximation, we neglect terms that are of
the order s2. To improve the precision of results in MC simulations and to achieve
faster convergence as P increases, higher order corrections (or propagators of the
density matrix) have been developed.

The Takahashi-Imada (TI) propagator [4] with error of the order s4 uses:

Tr e�bðT þVÞ
h i

¼ Tr e�
b
PT e�

b
PV0h iP

þO b5P�4� �
;

V0 ¼ V þ 1
24

b
P

� �2

½V; ½T ;V��:
ð6Þ
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Given a system with Hamiltonian H as:

H ¼ T þV;

T ¼ � �h2

2m

XN
i¼1

@2

@r2i
;

V ¼ Vðr1; . . .; rNÞ;

ð7Þ

it can be easily shown that from Eqs. (6) and (7), we get the following:

V0 ¼ Vðr1; . . .; rNÞþ �h2

24m
b
P

� �2XN
i¼1

jriVðr1; . . .; rNÞj2; ð8Þ

where �h is the reduced Planck’s constant andri denotes the gradient with respect to
coordinates of the ith atom. Equations (6) and (8) constitute the working equations
of the TI propagator. Schenter [5] computed fully quantum virial coefficients using
three different interaction potentials for water and found that using the
semi-classical TI approximation (Eq. (8) with P ¼ 1) gave the best agreement to
fully quantum statistical mechanical calculations, especially at low temperatures
where conventional expressions (based on the primitive approximation) including
first order quantum corrections failed.

Janke and Sauer [6] showed that by adopting a slightly modified version of the
Trotter formula (Eq. 5), they could systematically decrease the variance of the
propagator. By decomposing the Hamiltonian to include more and more compo-
nents of the kinetic- and potential-energy operators, they observed that the variance
of the propagator improved. Suzuki [7] suggested new schemes for the exponential
product formulae along with a basic theorem for a generalized decomposition that
results in the propagator having error of the order Oð1=P4Þ. Yamamoto [8] showed
that using a finite-difference based approach (instead of computing derivatives
involved with the use of TI and Suzuki propagators) helped improve the variance
further.

In this paper, we compute fully quantum virial coefficients of helium-4 using the
TI propagator (Eqs. 6–8); we also consider the use of an ad hoc semi-classical
potential (details of which will be explained in Sect. 4). Calculation of very precise
physical properties of helium is of interest in the field of metrology to develop
accurate calibration and pressure standards, to accurately compute the Boltzmann
constant, and to improve acoustic gas thermometry [9–14]. Semi-classical virial
coefficients up to fifth order have been computed for helium-4 by Shaul et al. [15],
and showed that first-principles properties could be evaluated with precision and
accuracy that exceeds experiment. Garberoglio and Harvey [9, 16, 17] reported
fully quantum second and third virial coefficients for helium-3 and helium-4
including exchange effects where needed, for temperatures as low as 2.6 K. Shaul
et al. [18] reported fully quantum virial coefficients of helium-4 (but without
exchange) up to fourth order for temperatures of T = 2.6–1000 K.
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The present application is primarily interested in demonstrating a variation of the
PIMC methodology, rather than establishing new or more precise values of virial
coefficients of helium. In Sect. 2 we will introduce the basics of computing
quantum virial coefficients using PIMC. Sect. 3 explains how the thermal density
matrix is used in PIMC to compute quantum virial coefficients. Sect. 4 contains all
the simulation details including the ab initio Potential Energy Surface (PES) used,
the range of temperatures investigated and other relevant computational parameters.
Sect. 5 discusses the results and its comparison with values from literature, and also
examines the performance of the various approaches used. We provide concluding
remarks and ideas for future work in Sect. 6.

2 Quantum Virial Coefficients

Virial coefficients are important thermodynamic quantities of a system for two main
reasons:

• They lead to other physical properties such as the pressure, critical temperature
etc.

• They can be evaluated computationally given an interaction potential, and also
by experiments. Thus the accuracy of the interaction potential can be judged
based on the accuracy of the virial coefficients relative to experimental results.

The virial coefficients are generally denoted as BN and the first two virial
coefficients are given by [19]:

B2ðTÞ ¼ � 1
2!V

Z�
2 � Z�2

1

� 	
;

B3ðTÞ ¼ � 1
3!V2 VðZ�

3 � 3Z�
2Z

�
1 þ 2Z�3

1 Þ � 3ðZ�
2 � Z�2

1 Þ2
h i

;

ð9Þ

where Z�
N � N! V

Q1


 �N
QN

� 
is the N-body configurational integral, QN is the N-

body canonical partition function, and V is the volume.
The N-body configurational integral, which depends on the N-body interaction

potential, becomes exponentially more difficult to compute with increasing N. For
extremely simple interaction potentials like hard spheres, up to fourth-order virial
coefficients may be calculated analytically [20]. Higher order virial coefficients
using more complicated interaction potentials need to be evaluated numerically
through quadrature or by using MC simulations. Upon further simplification and
assuming pairwise additivity of the potential, we can rewrite Eq. (9) using Mayer f-
functions as [20, 21]:
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B2ðTÞ ¼ � 1
2

Z
d1 f ð0; 1Þ;

B3ðTÞ ¼ � 1
3

ZZ
d1 d2 f ð0; 1Þ f ð0; 2Þ f ð1; 2Þ;

ð10Þ

where f ð0; 1Þ ¼ ðexp½�bU2ðrÞ� � 1Þ and indices ‘1’ and ‘2’ denote the position and
orientational degrees of freedom of molecules 1 and 2, respectively, with respect to
molecule ‘0’ at the origin.

Empirical potentials, which are usually functions that are fit to experimental
data, tend to predict the net effect of a variety of phenomena over a range of
conditions, and are consequently less accurate than ab initio PES for describing N-
body interactions. The virial coefficients that are calculated from an input interac-
tion potential (empirical or ab initio PES) without modification are known as
classical virial coefficients because they do not include nuclear quantum effects
explicitly. Virial coefficients computed using an effective potential such as the
Quadratic Feynman-Hibbs (QFH) [1] that includes a quantum correction are known
as semi-classical virial coefficients.

Nuclear quantum effects are almost always ignored in the development of an
ab initio PES because of the Born-Oppenheimer approximation, which greatly
simplifies the electronic Schrödinger equation by separating or decoupling the
coordinates of the electrons from those of the nuclei. However, quantum mechanics
prescribes that the wave functions of the atoms/molecules become more diffuse at
low temperatures, or in other words, they become ‘‘fuzzy.” This behavior has an
effect on the virial coefficient. Therefore, when using ab initio PESs for the cal-
culation of physical properties, especially at low temperatures, one needs to account
for the nuclear quantum effects explicitly. The discretized PI formalism of Feynman
provides a route to approximate the inherent fuzziness of an atom/molecule at low
temperatures as a closed ring of ‘beads’ that represent the atom/molecule at
P different imaginary-time instances. The formalism maps the quantum mechanical
partition function onto the classical partition function of a closed ring polymer with
P beads where adjacent beads are connected by harmonic springs whose stiffness
depends on the temperature, atomic mass and P. The larger the discretization
parameter P, the better the characterization of the fuzziness.

PIMC involves simulating different configurations of the closed ring polymer
and accepting/rejecting it based on some MC criteria. The property of interest
(usually the interaction potential) is then averaged across the simulation with each
configuration having an appropriate weight. The interaction potential between two
molecules is defined to be the average of the inter-molecular potential energy over
corresponding beads of the two rings. Virial coefficients that are calculated from an
input interaction potential including nuclear quantum effects using PIMC method
are therefore known as (fully) quantum virial coefficients.
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3 Thermal Density Matrix and PIMC

In this section, we will show how the thermal density matrix is used in PIMC to
compute quantum virial coefficients. Consider the Hamiltonian of a monatomic
molecule like helium with mass m (Eq. 7). Using the primitive approximation
(Eq. 4), Trotter formula (Eq. 5), and following the procedure outlined in Ref. [9],
we can obtain the kinetic-energy operator matrix elements as:

ri exp � bp̂2

2mP

� �����
����rj

� �
¼ P3=2

K3 exp �Kðri � rjÞ2
2

 !
; ð11Þ

where K ¼ 2pP
K2 ; K ¼ hffiffiffiffiffiffiffiffiffiffiffiffi

2pmkBT
p .

The potential-energy operator matrix elements can similarly be written as [3]:

ri exp � bVðrÞ
P

� �����
����rj

� �
¼ exp � bVðriÞ

P

� �
dðri � rjÞ: ð12Þ

It can be easily shown [9] then that the expression for the fully quantum second
virial coefficient can be written as:

B2ðTÞ ¼ �2p
Z

dr r2ðe�bV2;eff ðrÞ � 1Þ; ð13Þ

where

e�bV2;effðrÞ ¼
Z YP�1

i¼1

d3Dri e�bU2ðrÞ Fringðm;Dr1; . . .;DrP�1Þ; ð14Þ

U2ðrÞ ¼ 1
P

XP
i¼1

U2ðr1;i; r2;iÞ;

jrj2 ¼ jrcm1 � rcm2 j2; rcmi � 1
P

XP
j¼1

ri;j

ð15Þ

Fringðm;Dr1; . . .;DrP�1Þ ¼ K3 P3=2

K3

� �P

exp �K
2

XP
i¼1

Dr2i

" #
;

Dri ¼ riþ 1 � ri ði ¼ 1; . . .;P� 1Þ:
ð16Þ

Here Fringðm;Dr1; . . .;DrP�1Þ represents the weight of a ring polymer configu-
ration, U2ðr1;i; r2;iÞ is the inter-molecular potential energy between the ith beads of
rings 1 and 2, V2;effðrÞ is an effective inter-molecular potential defined by Eq. (14)
and r is the inter-molecular separation.
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The kinetic-energy operator in the Hamiltonian gives rise to the weight of the
ring configuration, which depends on the harmonic energy of the system with
P beads. The potential-energy operator (and hence, the ab initio PES) leads to the
effective potential V2;effðrÞ in the expression for the quantum virial coefficient.
Recall that we used the primitive approximation where the potential-energy oper-
ator was a simple function of the PES. If instead, we were to include higher order
terms in the primitive approximation using the TI propagator, we would expect it to
affect only U2ðrÞ. This would in turn lead to a change in the effective potential
V2;effðrÞ. From Eqs. (7) and (8), Eq. (15) can be rewritten as follows:

U2ðrÞ ¼ 1
P

XP
i¼1

U2ðr1;i; r2;iÞþ �h2

24m
b
P

� �2

jrU2ðr1;i; r2;iÞj2
" #

: ð17Þ

We can see that the argument within the sum on the right-hand side of the
expression for U2ðrÞ goes from being a quantity completely independent of P and �h
as in Eq. (15) to a quantity that is dependent on both P and �h as in Eq. (17). The
inter-molecular potential experienced by the beads of the ring changes from being
classical to semi-classical (dependent on P and �h). Therefore, the phrase ‘PIMC
with semi-classical beads’ along with Fig. 1 is an apt description of such a PIMC

Fig. 1 Different levels of
‘‘quantumness” of a B2

calculation going from
classical virial coefficients
that are calculated assuming
point masses to fully quantum
virial coefficients with
semi-classical beads. The
different sphere sizes here are
for illustrative purposes only
and no quantitative inference
should be made
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simulation. For a fixed P, we would expect to capture more quantum effects with
the use of semi-classical beads than classical beads, that is, by using the primitive
approximation with higher order terms than just the primitive approximation by
itself.

4 Computational Details

In Sect. 3 we noted that using different propagators brought about changes only in
the effective potential used. While a given propagator will correspond to some
effective potential, the converse might not necessarily be true—selection of an ad
hoc effective potential might not map back to an appropriate propagator. Still, it
may be interesting to examine other choices of semi-classical potential for use in a
PIMC framework, without deriving it from a propagator. Once the accuracy of such
an ad hoc potential is established empirically, we can then compare its efficiency
against the TI propagator. We have in mind in particular the QFH effective potential
[1, 5], modified slightly for this purpose. We denote this as QFH* and it is given as:

UQFH�
2 ðr1;i; r2;iÞ ¼ U2ðr1;i; r2;iÞþ �h2b

24mP2

@2U2ðr1;i; r2;iÞ
@r212;i

þ 2
r12;i

@U2ðr1;i; r2;iÞ
@r12;i

" #
;

jr12;ij2 ¼ jr1;i � r2;ij2
ð18Þ

where m is the mass of the atom. We use the 1=P2 prefactor for the second term as it
closely resembles the TI propagator and also gives the best results of those we
examined. The standard QFH semi-classical potential is obtained for P ¼ 1.

The ab initio helium pair potential that we used is due to Przybytek et al. [22]
(denoted as u) and a simplified, approximate version of the same (denoted as usimple)
was obtained from supplementary material of Shaul et al. [18]. We investigated a
total of 8 temperatures ranging from T = 2.5–500 K. Mayer Sampling Monte Carlo
(MSMC) [23, 24], which uses importance sampling to compute virial coefficients
efficiently for any given interaction potential, was employed in our calculations.

Since this work is aimed at extending the work of Shaul et al. [18], we shall be
comparing the performance of the TI propagator and the QFH* effective potential
against their results. In order to make a fair and consistent comparison, we employ
the same decomposition algorithms as Shaul et al. [18]. These schemes were
developed to improve the efficiency of the virial coefficient calculation, doing so by
computing the full quantum virial coefficients through a series of stages of
increasing accuracy in the quantum treatment and adherence to the target PES. We
have the same three choices for the preliminary approximation: (1) semi-classical,
½CSCLðuÞ�, (2) the usimple approximation to the semi-classical treatment,
½CSCLðusimpleÞ� and (3) the usimple approximation to u for a finite P, ½CðP; usimpleÞ�.
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Here C represents the configurational integral of the associated potential, the square
brackets indicate an independent simulation, and the superscript SCL denotes a
QFH semi-classical approximation (Eq. 18) to u or usimple. Since we are interested
only in B2, the Percus-Yevick compressibility route approximation [21, 25, 26] to
the semi-classical approximation is ignored.

Any computational details regarding the inter-molecular potentials, decompo-
sition strategies and MSMC parameters that are not included here may be found in
Sect. B of Shaul et al. [18] and the supplementary material therein.

5 Results

For ease of reference and use, we note and define the following:

• All the simulations involved the same set of inter-molecular potentials, u or
usimple or their semi-classical approximations.

• We denote quantum virial coefficient results from Shaul et al. [18] as Bcl
2 , those

using the QFH* effective potential as Bsc;QFH�
2 , and those using the TI propagator

as Bsc;TI
2 ; the first part of the superscript denotes which type of beads (classical

(cl) or semi-classical (sc)) were used in the PIMC calculations. Note this is not
to be confused with the preliminary approximations ½CSCLðuÞ� or ½CSCLðusimpleÞ�
which denote the semi-classical calculations using the QFH approximations to
u and usimple respectively.

• In the same spirit, we refer to the algorithm for computing Bcl
2 as the Classical

Beads approach denoted as CB; Bsc;QFH�
2 as the Semi-Classical Beads QFH*

approach denoted as SCB-QFH*; Bsc;TI
2 as the Semi-Classical Beads TI

approach denoted as SCB-TI.
• It is possible to use a semi-classical TI approximation (P ¼ 1 in Eq. (8)) instead

of the QFH (Eq. 18) approximation while using the TI propagator. However,
after performing several calculations, we observed that using semi-classical TI
approximations as preliminary approximations always led to inefficient decom-
positions, which resulted in larger uncertainties in Bsc;TI

2 than Bcl
2 or Bsc;QFH�

2 . This
is because the uncertainty of the quantity y ¼ ½CðP; usimpleÞ � CSCLðusimpleÞ�, was
significantly higher when using the semi-classical TI approximation than its QFH
counterpart. Hence, we decided to use the semi-classical QFH approximation
while using both the TI propagator as well as QFH* effective potential.

We know that all propagators yield results that converge to the correct value in
the P ! 1 limit, irrespective of the choice of the potential. So, as a first step, we
verified that the Bsc;QFH�

2 did agree within statistical uncertainties with Bcl
2 . In the

next step, we break down our Bsc;QFH�
2 and Bsc;TI

2 simulations into smaller, more
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precise ones using the decomposition algorithm. We observed a similar trend for
Bsc;QFH�
2 and Bsc;TI

2 decompositions as was observed [18] for Bcl
2 , i.e. for

T [ 63:15K ½CSCLðuÞ� is always chosen as the preliminary approximation, for
4K	 T 	 63:15K ½CSCLðusimpleÞ� is chosen as the preliminary approximation and
for T\4K ½CðP; usimpleÞ� is chosen as the preliminary approximation.

To assess the performance of SCB-QFH* and SCB-TI approaches against the
CB approach in terms of achieving faster convergence as P increases, in Fig. 2, we
plot the magnitude of y ¼ ½CðP; uÞ � CðP=2; uÞ� as a function of P. For conver-
gence to be achieved, as P increases jyj decreases and as P ! 1; jyj ! 0; the
smaller the value of jyj, the faster the convergence. In Fig. 2 we see that the SCB-TI
values are consistently lower than values of the other two approaches for all tem-
peratures except T = 10.0 and 50.0 K for P = 4 beads, where the SCB-QFH* has
lower jyj values than SCB-TI. This condition is not particularly relevant, because at
lower temperatures we almost always use a value of P[ 4 and the convergence is
more dependent on jyj values for higher P (128 say), where SCB-TI has much lower
jyj values. From Fig. 2 we also notice that as temperature increases, jyj decreases
for each case. This is to be expected, because as we increase temperature the system
approaches classical behavior, requiring fewer and fewer beads to converge.

To assess the performance of SCB-QFH* and SCB-TI approaches against the
CB approach in terms of achieving better precision, we plot the ratios of uncertainty
of the quantity y ¼ ½CðP; uÞ � CðP=2; uÞ�, i.e. we plot ry (SCB-QFH*)/ry(CB) and
ry (SCB-TI)/ry(CB) in Fig. 3. In order to make a fair comparison, we use the
uncertainties due to the same number of MC steps (1� 106) for each case. In Fig. 3

Fig. 2 Convergence factor, y ¼ ½CðP; uÞ � CðP=2; uÞ� as a function of number of beads
P. Symbols alternate filled or open with each temperature and indicate: classical-beads
(CB) approach (circles); SCB-QFH* (squares); SCB-TI (diamonds). Temperatures are T ¼
2:5K (black open symbols connected by solid lines); T ¼ 10:0K (red filled symbols connected by
dotted lines); T ¼ 50:0K (green open symbols connected by dashed lines); T ¼ 500:0K (blue
filled symbols connected by dash-dot lines). Confidence limits (68 %) are smaller than the symbol
sizes except where shown
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we observe that SCB-TI has a consistently lower uncertainty ratio than SCB-QFH*
for all P except for P = 4, where the T = 2.5 and 5.0 K results for SCB-QFH* have
slightly lower values. At these low temperatures, since P[ 4 almost always, we do
not worry too much about SCB-QFH* having lower uncertainty ratios because it
does not affect the uncertainty of the overall result that much, and also because the
values are only slightly lower. The ratio for SCB-QFH* is almost always greater
than 1, suggesting that it is not expected to give better precision when compared to
CB for most cases. For the cases where the SCB-QFH* ratio is less than 1, i.e.
T = 2.5 K and P	 128, we expect it to give better precision. The ratio for SCB-TI
is almost always less than 1, suggesting that it is expected to give better precision
when compared to CB for most cases. For the cases where the SCB-TI ratio is
greater than 1, i.e. T = 10.0 K and P	 8, the magnitude is only marginally greater;
as explained earlier, usually P[ 8 is needed for accurate results when T = 10.0 K.

To assess the performance of SCB-QFH* and SCB-TI approaches against the
CB approach in terms of the uncertainty achieved for a given period of time, in
Fig. 4 we plot the ratios of the best-case uncertainties of the quantum second virial

Fig. 3 Uncertainty ratio of
the convergence factor
ryðSCBÞ=ryðCBÞ, where
y ¼ ½CðP; uÞ � CðP=2; uÞ�, as
a function of number of beads
P

Fig. 4 Uncertainty ratio
rB2 ðSCBÞ=rB2 ðCBÞ as a
function of temperature,
for optimal decomposition
with a fixed total computation
time of 1 CPU-hour
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coefficient values resulting from an overall simulation time of 1 h, i.e. we plot
rB2ðSCB - QFH�Þ=rB2ðCBÞ and rB2ðSCB� TIÞ=rB2ðCBÞ calculated after opti-
mally decomposing the simulation effort for a cumulative time of 1 h. We again
observe that in Fig. 4, the SCB-TI approach has a lower uncertainty ratio than
SCB-QFH* for all temperatures considered. Also, the ratio of SCB-TI is slightly
less than 1 for most cases while that of SCB-QFH* is always greater than 1. This
suggests that decomposition for the SCB-QFH* approach is expected to yield larger
uncertainties for the quantum virial coefficient, compared to that of CB and SCB-TI
approaches. The decomposition for the SCB-TI approach seems to be performing
better than the SCB-QFH* approach, especially at lower temperatures, which is
desirable because we normally tend to use large P at these temperatures. Even in the
cases where the SCB-TI ratio is greater than 1, it is only marginally greater and
therefore it may be considered acceptable.

6 Conclusion

We have implemented the PIMC method with two approaches based on
semi-classical beads (SCB-QFH*, SCB-TI) and MSMC to compute more precise
quantum virial coefficients for helium-4. The SCB results agree well with CB
results as they are within statistical uncertainties of each other. The decomposition
algorithm of Shaul et al. [18] was implemented to achieve better efficiency of
quantum virial coefficient calculations. We observed similar trends in decomposi-
tions of simulations in our SCB based approaches as was the case for the CB
approach. For lower temperatures, the approximation usimple to u for finite P is
chosen as the preliminary approximation. As the temperature increases, the pre-
liminary approximation preferred is the semi-classical approximation to usimple, and
for high temperatures the semi-classical approximation to u is preferred. Having
chosen the preliminary approximation, the decomposition algorithm spends the
most time in the first step and the amount of time spent per step gradually decreases
for subsequent steps. This is because the subsequent steps involve more compu-
tationally expensive calculations (either by shifting to u from its semi-classical
approximation, or by doubling P from the previous step, or by shifting to the full
potential u from usimple) and by design, these steps also yield better and better
precision. The decomposition algorithm was designed to allocate computational
effort proportional to the difficulty of the computation, which is defined as
((cpu-time)1/2 � uncertainty). The SCB-QFH* and SCB-TI approaches have
comparable and better uncertainties respectively, for the steps that involve com-
puting ½CðP; uÞ � CðP=2; uÞ� or ½CðP; usimpleÞ � CðP=2; usimpleÞ�. Since these steps
involve significant computational costs and relatively low uncertainties, the amount
of effort dedicated for them is lower, attenuating the effect of any efficiency brought
to their calculation. As a result, the improvement of the precision of the resulting
virial coefficient is only marginal. We note that if the decomposition algorithm is
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not being used, either because it is non-trivial to apply, or because virial coefficients
are not being computed, the SCB-TI approach performs much better than both
SCB-QFH* and CB approaches, which is what we would expect anyway from the
use of a higher order propagator.

In summary, we found the following order for the rate of convergence with
respect to number of beads P: SCB-TI > SCB-QFH* > CB. We expect a similar
trend for the rate of convergence with respect to P for higher order coefficients as
well, because of the use of the higher order TI propagator. The order for precision
was found to be: SCB-TI > SCB-QFH*. Compared to CB, QFH* is always worse
but only marginally so; TI is almost always better and only marginally worse for a
few temperatures. We expected a trend similar to the rate of convergence with P for
the precision as well, even for B2 calculations. Since this was not what we observed,
partially due to the decomposition algorithm, an understanding of the order of
precision for higher order coefficients for the SCB based approaches compared to
CB approach would require further investigation. However, we do expect the order
between SCB based approaches to remain the same, i.e., SCB-TI > SCB-QFH*.

Directions for future work include investigating more temperatures, comparing
the performance of different higher-order propagators of the thermal density matrix
in terms of precision and rate of convergence, and using alternative ab initio
potentials as they become available. Extension of PIMC with semi-classical beads
to multi-atomic molecules is straightforward, and we expect such an approach to
perform better than conventional PIMC with classical beads, in terms of conver-
gence rate and precision.
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Homogeneous Nucleation of [dmim+][Cl−]
from its Supercooled Liquid Phase:
A Molecular Simulation Study

Xiaoxia He, Yan Shen, Francisco R. Hung and Erik E. Santiso

Abstract We have used molecular simulations to study the homogeneous nucle-
ation of the ionic liquid [dmim+][Cl−] from its bulk supercooled liquid at 340 K.
Our combination of methods include the string method in collective variables
(Maragliano et al., J. Chem. Phys. 125:024106, 2006), Markovian milestoning with
Voronoi tessellations (Maragliano et al J Chem Theory Comput 5:2589, 2009), and
order parameters for molecular crystals (Santiso and Trout J Chem Phys
134:064109, 2011). The minimum free energy path, the approximate size of the
critical nucleus, the free energy barrier and the rates involved in the homogeneous
nucleation process were determined from our simulations. Our results suggest that
the subcooled liquid (58 K of supercooling) has to overcome a free energy barrier
of *85 kcal/mol, and has to form a critical nucleus of size *3.4 nm; this nucleus
then grows to form the monoclinic crystal phase. A nucleation rate of
6.6 � 1010 cm−3 s−1 was determined from our calculations, which agrees with
values observed in experiments and simulations of homogeneous nucleation of
subcooled water.
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1 Introduction

Room-temperature ionic liquids (ILs) have attracted significant attention as designer
solvents, electrolytes, and other applications mostly involving liquid phases of the
ILs. Very recently, Warner et al. [1–7] developed IL-based nanomaterials (dubbed
GUMBOS, for Group of Uniform Materials Based on Organic Salts) where these
compounds are in the solid state. These IL-based materials hold enormous promise,
as they have the highly tunable properties of ILs [8, 9] and can be prepared via
simple procedures [1–7], possibly impacting fields as diverse as optoelectronics,
photovoltaics, separations, analytical chemistry and biomedicine. 1D-nanomaterials
such as nanorods and nanowires were also synthesized [6] by introducing the ILs
inside hard templates with cylindrical nanopores, e.g., multi-walled carbon nan-
otubes and anodic alumina membranes; shape anisotropy can lead to further vari-
ations in interesting properties of these nanomaterials (fluorescence, magnetic). On
the other hand, ILs are also immobilized in nanoporous solids (carbon nanotubes,
silica, cellulose, polymers, etc.) during the synthesis of ionogels [10]. These hybrid
materials have potential applications in lithium batteries, fuel cells and solar cells,
and in catalysis and biocatalysis, drug delivery and optical sensing devices [10].
A rational design of IL-based nanomaterials and ionogels require a fundamental
understanding of the solidification, as well as the nucleation and growth of crystals
of ILs in contact with surfaces and inside nanopores.

As a starting point for our studies in this area, here we focus on modeling the
homogeneous nucleation of a simple IL, 1,3-dimethylimidazolium chloride, or
[dmim+][Cl−], from its supercooled liquid phase in the bulk. This IL has been
extensively studied in previous simulation reports [11–19]. However, nucleation is
an extremely challenging problem [20–27], mainly because the initial stages of
nucleation typically involve a few molecules or atoms, which makes it difficult to
design experiments to study nucleation at the molecular level. Molecular dynamics
(MD) simulations of nucleation are also very challenging, as nucleation is a rare
event. Previous studies of homogeneous nucleation of systems of particles
(hard-sphere, Lennard-Jones, etc.) [28–37] water [38–46] and other substances
(e.g., NaCl, silicon, benzene, n-octane, urea, copper, aluminum, etc.) [47–58] using
rare event methods have provided important insights on these phenomena in those
systems. However, these methods might have limitations when studying the
nucleation of ILs, which can have very slow dynamics and therefore the transition
paths might take a prohibitively long time to commit to any of the stable states.
Here we have combined the string method in collective variables (SMCV) [59] with
Markovian Milestoning with Voronoi tessellations [60–62] to study the homoge-
neous nucleation of [dmim+][Cl−]. This combination of methods has been used
before to study conformational changes in biomolecules [59, 61, 63, 64]. In the
SMCV, a string of replicas connecting the liquid with the crystal phase evolves
guided by the negative gradient of the free energy with respect to some collective
variables (or order parameters, OPs, characterizing the transition), until they con-
verge into a minimum free energy path (MFEP). This path represents the region
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where the transition has the maximum probability to take place. This converged
string is then used as input to our second method, Markovian milestoning with
Voronoi tessellations, which yields the free energy along the path, as well as the
mean first passage times (MFPTs) in the transition studied. In association with these
methods we have used the OPs for molecular crystals recently developed by Santiso
and Trout [65]. These OPs can distinguish between different crystal polymorphs
and liquid phases, and detect crystal ordering in nm-size regions. For example, if
our system would crystallize into two solid polymorphs, one could use our methods
to determine the minimum free energy paths connecting the supercooled liquid with
the different polymorphs, and comparison of the free energies of the polymorphs
would provide insights about their thermodynamic stability.

We note here that we have used the same methods and OPs in previous studies
of the homogeneous nucleation of benzene [66] and the same IL studied here,
[dmim+][Cl−] [67]. In the latter report we used a system consisting of 1372 ion
pairs, and interpreted our results using calculations based on classical nucleation
theory, which also helped us address possible finite-size effects in this system. Our
interpretations were corroborated by SMCV results obtained using a larger system
containing 2268 ion pairs [67]. Here in this paper we present a complete account
and discussion of our results obtained for this larger system, using both the SMCV
and Markovian milestoning with Voronoi tessellations, which completes the work
we have presented before [67]. Nucleation could be studied using alternative
approaches such as transition path sampling/aimless shooting, and metadynamics
(see, e.g. [54, 55]). However, for very complex systems such as ILs, which have
slow dynamics, the transition paths might take a long time to commit to any of the
stable states, and trajectories could recross the top of the barrier multiple times [54],
which could make sampling extremely challenging. Furthermore, and in order to
avoid finite-size effects, here we had to consider a relatively large system size (2268
ion pairs), which required us to use a total of 180 OPs. Such a system would be
extremely challenging to study using metadynamics (systems previously studied
with this method were significantly smaller and had a considerably lower number of
collective variables, see, e.g. [55, 68]). The rest of the paper is structured as follows.
In the next section, we provide details of our systems and methods (OPs used,
SMCV and Markovian milestoning with Voronoi tessellations). Section 3 contains
our main results and discussion, and our main findings are summarized in Sect. 4.

2 Simulation Details

2.1 Models

The monoclinic crystal structure of [dmim+][Cl−] was obtained from the Cambridge
Crystallographic Data Centre [69, 70]. The classical, non-polarizable, all-atom force
field developed by Lopes et al. [71–75] was used to model the IL, mainly because it
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can reproduce the experimental crystal structure of [dmim+][Cl−] [71] (here the
cations and anions have integer charges). Furthermore, the density of the liquid
phase and the melting point as determined from simulations using this model were
found to be in good agreement with experimental values [76]. Our system contained
2268 ion pairs, which can form a monoclinic crystal of characteristic dimensions
8.3 nm � 5.3 nm � 9.7 nm. All MD simulations were performed using a modified
version of the NAMD software [77] that included implementations of the OPs, the
SMCV and Markovian milestoning with Voronoi tessellations (see below) in C+
+ libraries. All the simulations were performed in the NPT ensemble with
P = 1 bar and T = 340 K (a supercooling of 58 K). When selecting the temperature
(and thus the degree of supercooling) in our systems, we considered the following
aspects that would impact the computational costs of our simulations. Higher
temperatures (i.e., smaller supercoolings) would result in an increase in the size of
the critical nucleus. In this situation one could obtain a critical nucleus that might be
larger than the dimensions of the simulation box, and run into finite-size issues;
therefore a larger simulation box would be needed, which would increase com-
putational costs. Reducing the temperature (i.e., having a larger supercooling)
would reduce the size of the critical nucleus; however, if the temperature is too low,
the dynamics of the ions would slow down and thus very long simulations would be
needed. We have found that, for our system, 58 K of supercooling provides a
system with reasonable dynamics, and allowed us to use a simulation box of
reasonable size (so that the critical nucleus formed does not percolate through any
of the dimensions of the box). A Langevin thermostat with a damping coefficient of
25 ps−1 was used to control the temperature, and the Nosé-Hoover Langevin piston
with a damping time of 50 fs was used as the barostat. Periodic boundary condi-
tions were applied in all directions. Lennard-Jones and electrostatic interactions
were cutoff at 10 and 12 Å; particle mesh Ewald (PME) [78] was used to handle the
latter type of interactions. Hydrogen bond lengths were constrained with the LINCS
algorithm, and a time step of 0.5 fs was used in our simulation runs [79]. Additional
details of our model systems can be found elsewhere [67].

2.2 Order Parameters (OPs)

The OPs developed by Santiso and Trout [65] are extracted from a generalized pair
distribution function. All OPs used in this study were based on [dmim+]; no par-
ticular OPs were defined for [Cl−]. In Fig. 1 two ion pairs are shown, where the
absolute orientation of each cation is given by the vectors q1 and q2, which are
normal to the imidazolium ring of each cation. The distance OP provides quan-
tification for the various center of mass (COM) distances between the cations. The
bond orientation OP measures the orientation of bonds joining the center-of-mass of
the cations, while the relative orientation OP measures the orientation of one cation
with respect to another one [65, 67]. All the OPs are defined per cation and per peak
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in the pair distribution function, which leads to an extremely large number of OPs.
To reduce the total number of OPs, we first sum over peaks in the pair distribution
function, and then calculate local averages over the cations present in a given
subcell of the simulation box, according to the following equation [65]:

hC ¼ 1
NC

X
i2C

X
a

ui;a ð1Þ

where NC is the number of cations in subcell C, the index i denotes the ith cation,
the index a runs over peaks of the pair distribution function, and ui,a represents any
of the per-molecule and per-peak OP (i.e., distance, bond orientation or relative
orientation). Therefore, each subcell has a corresponding OP. Additional details are
presented elsewhere [65].

In our system, the simulation box was divided into 6 � 5 � 6 subcells, giving a
total of 180 OPs of each type (distance, bond orientation and relative orientation).
In Fig. 2 we present the number frequency of distance, bond orientation and relative
orientation OPs for the liquid and crystal phases of [dmim+][Cl−] at 340 K. The
frequency is averaged over 400 configurations (as obtained from short, 0.4 ns MD
simulation of the liquid and solid phases in the NPT ensemble). These results
indicate that any of the OPs can serve as a good metric to distinguish between
crystal and liquid phases, even in nm-sized regions. Here we chose to work with the
bond orientation OPs, although we also monitored the distance and the relative
orientation OPs.

Fig. 1 Variables used in the
construction of OPs. The
vector normal to the plane of
the imidazolium ring of
[dmim+] gives the absolute
orientation of each of the two
cations. The distance OP is
based on r, which joins the
center of mass (COM) of the
two cations. The angle formed
by the vectors r and q1 is used
for the bond orientation /r̂ ,
whereas the angle formed by
the vectors q1 and q2 is used
for the relative orientation /q
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2.3 String Method in Collective Variables (SMCV)

The SMCV [59, 63] was used to sketch a MFEP for the homogeneous nucleation of
[dmim+][Cl−] from its subcooled liquid. Here we used the following procedure:

1. An initial string consisting of 32 replicas was prepared by collecting a number
of intermediate states from the simulated melting of a crystal of the IL at 800 K.

Fig. 2 The number
frequency of distance, bond
orientation and relative
orientation OPs for liquid and
solid IL, as obtained from 400
liquid-like and 400
crystal-like configurations of
the IL. The distance, bond
orientation and relative
orientation OPs have units of
Å−1, which corresponds to the
units of ra (see, e.g., Eqs. 11,
15, 21–22 in Ref. [65]; we
used similar OPs here)
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Each replica i in this string contains 180 OPs (denoted by qi) that characterize its
local structure.

2. At every step of the SMCV method:

2:1. An extended Hamiltonian is established for each replica, by including a set
of harmonic springs that keep each replica’s OPs close to their ‘target’
values. Using this extended Hamiltonian, we run short (0.2 ns) MD simu-
lations in the NPT ensemble for each image, in order to determine the mean
force rqFðqiÞ and metric tensor MðqiÞ required to maintain each image
close to the target OP values (here the mean force is the negative gradient of
the free energy with respect to the OPs)

2:2. The new target OPs are estimated by taking a forward Euler step on the
string evolution equation:

q�i ¼ qi � DsMðqiÞrqFðqiÞ ð2Þ

where Ds is the time step in the SMCV, and qi
* denotes the target OPs for

the ith image for the next SMCV step.
2:3. Reparameterize by interpolating a curve through the new target OP values

qi
*, and recompute new target OP values qi

* so that consecutive replicas are
at constant arclength from each other. This step prevents the replicas from
clustering near the stable states.

3. Step 2.1–2.3 above are repeated until the potential of mean force
(PMF) converges; here the PMF is the line integral of the restraint force along
the path in the multi-dimensional OP space

Additional details about the SMCV and its implementation are presented else-
where [59, 63, 66, 67].

2.4 Markovian Milestoning with Voronoi Tessellations

The MFEP computed from the SMCV is an n-dimensional function (where n is
equal to the 180 OPs), determined by effectively restraining 180 degrees of freedom
as the replicas in the SMCV evolve following the negative gradient of the free
energy with respect to the OPs. The MFEP thus only represents a single pathway in
the transition tube. However, this tube can be mapped into a single free energy
curve as a function of a reaction coordinate, by using the converged string from the
SMCV as input to simulations using Markovian milestoning with Voronoi tessel-
lations [60–63]. This procedure can also yield information about the rate of
nucleation. In this method, we associate a cell in OP space to each replica from the
converged SMCV string, forming a tessellation in the OP space. By construction
[61, 63], the edges of the tessellations are approximate isocommittor surfaces, and
thus are used as milestones in our procedure. We then perform MD simulations
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where each replica is forced to remain within its own cell by using soft walls (planar
half-pseudoharmonic restraints) [61]. In these simulations we monitor the number
of collisions each trajectory does with the milestones (edges of the Voronoi tes-
sellation). At steady state, if Nn,m represents the number of collisions that the MD
trajectory in cell Bn experiences with the boundary of cell Bm during the simulation
time tn, the rate of escape from tessellation cell Bn to cell Bm can be estimated as:

vn;m ¼ Nn;m

tn
ð3Þ

The probability pn of finding the system in cell Bn can then be calculated from
the following equations:

XN
n¼1
n 6¼m

pnvn;m ¼
XN
n¼1
n 6¼m

pmvm;n ð4Þ

XN
n¼1

pn ¼ 1 ð5Þ

The free energy curve Fn can be calculated as a function of cell n as follows:

Fn ¼ �kBT ln pn ð6Þ

In turn, the MFPTs can be also computed from the Voronoi milestoning pro-
cedure using the following equations:

X
b 6¼b�

ka; b tb; b� ¼ �1; a 6¼ b� ð7Þ

ka; b ¼
PN

n¼0 pnN
n
a; b

.
tnPN

n¼0 pnt
n
a

�
tn

ð8Þ

where tb,b* is the MFPT to milestone b* from other milestones in the system (where
b 6¼ b*). ka,b is the rate of instantaneous transition from milestone a to milestone b;
Na,b
n is the total number of transitions from milestone a to milestone b during the

simulation confined to cell Bn, and ta
n is total time during which a was the most

recent milestone visited by the system. We used the arbitrary precision
floating-point library implemented in the Sage software [80] to solve the equations
above, as the values of ka,b could have variations of up to 6 orders of magnitude.
Additional details of these simulations are provided elsewhere [61, 63, 66, 67].
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3 Results and Discussion

3.1 Determination of the MFEP from the SMCV

The converged PMF (see Sect. 2.3) as determined from our simulations with the
SMCV is presented in Fig. 3; here the arclength (of the bond orientation OPs, in
this case) represents the distance along the multidimensional nucleation path.
A difference of about 141 kcal/mol is observed between the crystal phase and the
supercooled liquid phase at about 58 K of supercooling, with a PMF barrier of
about 163 kcal/mol between the supercooled liquid and the state at the top of the
PMF profile.

In Fig. 4 we show x–y side views of representative simulation snapshots of
several relevant states along the MFEP mapped in Fig. 3. As we move left from the
supercooled liquid (state e) at the right of the PMF curve shown in Fig. 3, the
cations and anions start to rearrange (state d) until we reach the top of the barrier
(state c), where the ions form a critical nucleus exhibiting crystal-like order. If we
arbitrarily define the cations with OPs > 3.5 (Fig. 2) as crystalline, those cations
form a cluster in the replica at the top of the PMF curve (the critical nucleus) which
has an average size of *3.4 nm at this degree of supercooling. A similar procedure
was used for the configuration at the top of the free energy curve (Fig. 6) deter-
mined from our Voronoi milestoning simulations (see below), giving a similar
average size for the critical nucleus. Moving further left (and now downhill) along
the MFEP mapped in Fig. 3, the crystal-like region grows (state b) until the system
crystallizes completely (state a).

Fig. 3 The PMF associated with the MFEP for homogeneous nucleation of a crystal phase of
[dmim+][Cl−] from its supercooled liquid phase at 340 K and 1 bar. The left and right sides of the
curve correspond to crystal and liquid states. Simulation snapshots of states labeled here are shown
in Fig. 4
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3.2 Free Energy and MFPTs from Markovian Milestoning
with Voronoi Tessellations

The 32 replicas from the converged SMCV string were used as the starting point for
our series of simulations with Markovian milestoning. Here we had to interpolate
additional replicas (to reach a total of 74) as to ensure collection of enough statistics
for the numerical solution of Eqs. (3–8). As direct analysis of the data is difficult
due to the 180-dimensionality of the OP space, we used principal component
analysis to determine the subspace of the OP space that contains most of the
variance along the solidification path. In Fig. 5 we show the projections onto the
first two principal components of the initial configurations (converged SMCV
string, black dots), as well as some representative configurations (different colors)
observed throughout our Markovian milestoning simulations. The results shown in
Fig. 5 suggest that the images mainly remain within their own cells, although they
occasionally wander into neighboring cells for a brief period; this is a consequence
of using soft walls [61] to maintain each MD trajectory within its own cell. One
important challenge is to properly distribute the images along the MFEP, in order to
accumulate good statistics for the numerical solution of Eqs. (3–8). At the same
time, we strived to not place too many images in MFEP regions with high cur-
vature; this way, replicas mostly visit adjacent cells when they leave their own cells,
and we avoid transitions between non-adjacent cells as much as possible (as dis-
cussed before [63], replicas visiting cells of non-adjacent neighbors can affect the
accuracy in the calculations of the free energy and the MFPTs).

Fig. 4 x–y side views of simulation snapshots of states labeled along the MFEP shown in Fig. 3.
The cations (top row) are color-coded according to the value of their bond orientation OPs (red
crystal-like, blue liquid-like). The anions are shown on bottom row and are not color-coded
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In Fig. 6 we show the free energy along the MFEP as a function of the Voronoi
cell number, as determined from the Voronoi milestoning simulations. These results
indicate that the difference in free energy between the crystal and liquid phases of
[dmim+][Cl−] at 58 K of supercooling is about 50 kcal/mol, and the free energy
barrier between the liquid and the configuration at the top of the curve is about
85 kcal/mol. These free energy differences are comparable to those determined for
water [41] and urea [55] in recent simulation studies of homogeneous nucleation.
The free energy curve (Fig. 6) and the PMF curve (Fig. 3) are qualitatively similar
(the snapshots of configurations obtained from the Markovian milestoning simu-
lation procedure look very similar to those obtained from the SMCV and shown in
Fig. 4); however the differences in free energies between relevant states are smaller
than the corresponding differences in PMF. This observation is expected, as in the

Fig. 5 Voronoi tessellation
of the MFEP as projected
onto the first two principal
components PC1 and PC2 in
OP space. The black dots
represent the initial
configurations (converged
SMCV string plus
interpolation of additional
replicas) used in the
Markovian milestoning
simulations. Projections of
representative configurations
obtained from the milestoning
procedure are also shown
using different colors. The
region corresponding to the
peak of the PMF and free
energy curves (Figs. 4 and 6)
is labeled
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SMCV more entropy is removed as we are effectively restraining 180 degrees of
freedom (replicas evolve guided by the negative gradient of free energy in order
parameter space). In contrast, in the Markovian milestoning simulations less
entropy is removed from the system, as by construction a trajectory restrained to
remain in its Voronoi cell is equal to the equivalent sections of a conventional
(unbiased) MD trajectory that is passing through the same cell [61].

In Fig. 7 we show the MFPTs to reach the configurations at the peak of the free
energy curve (Fig. 6). Here we only considered fluxes between adjacent cells
(fluxes between non-adjacent cells represent about 13 % of the total number of
fluxes in our milestoning simulations). If we consider all fluxes (i.e. between nearest
and non-nearest neighboring images), we determined that the difference in MFPTs
with respect to those shown in Fig. 7 is only of about 8 %. These results suggest
that the contribution of non-adjacent isocommittor surfaces to the kinetics of the
nucleation process can be ignored (for a detailed discussion, see Appendix B in the
study of Ovchinnikov et al. [63]). The results shown in Fig. 7 suggest that the
MFPTs to the configurations at the peak of the free energy curve of Fig. 6 are
approximately constant for milestones Bi+1 \ Bi with i = 72, 71, …, 53. From the
data shown in Fig. 7, we calculated a simulated nucleation rate of 6.6 � 1010

cm−3 s−1 for our system, which is at a supercooling of 58 K. Unfortunately no
experimental data is available for our system; however, our computed rate is in

Fig. 6 Free energy involved
in the homogeneous
nucleation of [dmim+][Cl−]
from its supercooled liquid
phase at 340 K and 1 bar, as
obtained from the milestoning
procedure. The left and right
sides of the curve correspond
to crystal and liquid states

Fig. 7 Mean first passage
times (MFPTs) from the
milestone Bi+1 \ Bi for
i = 72, 71, … 52 to the
milestones at the shoulder of
the free energy curve,
B52 \ B51
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reasonable agreement with experimental and simulation values for the homoge-
neous nucleation of ice, which are on the order of 1010 cm−3 s−1 [41, 81, 82] at a
supercooling of about 40 K.

4 Conclusions

The homogeneous nucleation of the IL [dmim+][Cl−] from its bulk subcooled liquid
phase (58 K of supercooling) was studied using molecular simulation. The SMCV
[59, 63] combined with OPs [65] for molecular crystals was used to have a string of
replicas map a MFEP connecting the supercooled liquid with the monoclinic crystal
phase. The converged SMCV string was then used to initiate simulations using
Markovian milestoning with Voronoi tessellations [61, 63]. These methods yield
information about the free energy barrier, the size of the critical nucleus and the rate
of nucleation. Our results indicate that the supercooled liquid has to overcome a free
energy barrier of *85 kcal/mol to form a critical nucleus of size *3.4 nm.
A simulated homogeneous nucleation rate of 6.6 � 1010 cm−3 s−1 was determined
from our calculations. The values of the free energy barrier and the rate of nucle-
ation are in reasonable agreement with experimental and simulation values obtained
for the homogeneous nucleation of water and urea. Current work in our group is
focused on the study of nucleation of ILs near surfaces and inside pores.
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Influence of the Precursor Composition
and Reaction Conditions on Raney-Nickel
Catalytic System

Sabine Schweizer, Robin Chaudret, Theodora Spyriouni, John Low
and Lalitha Subramanian

Abstract Raney-Nickel is routinely used in the process of selective hydrogenation
of benzene and its derivatives. In order to gain a better understanding of this
catalytic reaction, we have implemented both atomistic and thermodynamic mod-
eling methods. While modeling at the atomistic level provides essential information
about structure, electronic effects and dynamics, thermodynamic modeling provides
data on physical properties of the system of interest. First, we investigated the
influence of the alloy composition on the Raney-Nickel catalyst structure based on a
molecular dynamics (MD) based workflow. Different initial and final NiAl com-
positions were tested. Our simulations indicate that there is a dependence of the
pore size on the NiAl composition and this is more pronounced when some
Aluminum remains in the catalyst. Next, the solubility of hydrogen in benzene was
calculated with thermodynamic modeling. The effect of temperature, pressure, and
concentration of cyclohexane (product) on the solubility of hydrogen in benzene
was examined. For a given temperature, our studies provided the optimal pressure
necessary to obtain maximum solubility of hydrogen in benzene. Finally, based on
the results obtained, we have studied the competitive adsorption and chemisorption
of benzene and cyclohexane on Raney-Nickel as a first step towards modeling the
catalytic hydrogenation of benzene.
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1 Introduction

Catalytic reactions are ubiquitous and play a key role in numerous industrial pro-
cesses. New application fields, changing demands, and limitations of existing
systems make catalysis a challenging research area. In the last decades, computa-
tional methods have proven to be useful for revealing critical insights into catalytic
systems. Multiscale modeling is becoming increasingly important in this area, as
catalytic processes typically involve considerable length and time scales. While
questions on physical properties can be addressed by thermodynamic modeling,
modeling at the atomistic level can provide essential information about electronic
effects, dynamics, and most importantly structural properties and thus allows to
pursue a more rational and molecular driven approach for catalyst design.
Moreover, amorphous systems are difficult to characterize based on experiments
alone and molecular modeling can efficiently complement experimentation.

Here, we present a computational study on Raney-Nickel [1], which is a
nanostructured amorphous catalyst used in many industrial applications. It is rou-
tinely used in hydrogenation reactions such as the reduction of benzene to cyclo-
hexane. Raney-Nickel is typically prepared by quenching a molten mixture of a
NiAl alloy from which Al is leached out for producing the final catalyst. The initial
alloy precursor composition is important because it affects the NiAl phases formed
during the quenching process. These phases have different leaching properties
influencing the porosity of the catalyst and thus its performance.

For gaining a fundamental understanding of this complex catalytic system, one
main aspect is to know the structural characteristics of the catalyst and the factors
that influence them. Therefore, molecular dynamics (MD) simulations have been
performed to study the influence of the alloy composition on the final structure of
the catalyst following a recently established workflow for modeling nanoporous
structures [2]. In addition to the alloy composition, the impact of the aluminum
content in the active catalyst has been examined.

In order to provide comprehensive insights into the catalytic system, we have also
performed thermodynamic modeling studies to investigate the reactant mixture in the
context of hydrogenation reactions, which belong to the most important applications
of Raney-Nickel. The PC-SAFT [3] equation of state has been employed to calculate
the influence of temperature and pressure on the solubility of hydrogen in benzene.
The effect of the product (cyclohexane) concentration on the hydrogen solubility in
benzene was also investigated. This approach will allow us to predict the optimal
reaction conditions for obtaining maximum solubility of hydrogen in benzene.

Finally, in the spirit of a multiscale approach, the modeled structures together with
the information of the thermodynamic modeling was used to investigate the com-
petitive adsorption and chemisorption of benzene and cyclohexane on Raney-Nickel
as a first step towards modeling the catalytic hydrogenation of benzene. Parts of this
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work involved fairly demanding molecular dynamics simulations enabled by access
to high performance computing (HPC) resources at Argonne National Lab (ANL).

2 Computational Details

MAPS [4] software platform was used for generating structures, preparing the MD
simulations and analyzing the trajectories. The pore size analysis was carried out
using the program package Zeo++ [5, 6]. For the thermodynamic modeling, the
SciTherm module of MAPS was used. The MD simulations were carried out using
the software package LAMMPS [7] and the LAMMPS-plugin tools in MAPS.
For MD simulations on the precursor and final catalyst structures, we used a NiAl
alloy potential developed by Mishin [8] which was obtained from the NIST
Interatomic Potentials Repository [9]. For studying adsorption and chemisorption
processes on the catalyst structure, the reactive force field (ReaxFF) [10, 11] in
LAMMPS was employed. The ReaxFF force field allows the creation and breaking
of covalent bonds between atoms during a molecular dynamic simulation using a
bond index criterion evolving with the interatomic distance. Such a criterion has
been extensively described in previous studies [10]. The force-field parameters of
the different atoms are updated during the reaction depending on the bond index
allowing a modification of all the interaction terms (bond, angle, dihedral, elec-
trostatic, van der Waals…).

For the thermodynamic calculations with PC-SAFT the pure component
parameters used in this work are given in Table 1. Binary interaction parameters kij
were fitted for each pair by using phase equilibrium data found in the literature. For
the hydrogen/benzene and hydrogen/cyclohexane pairs, the phase equilibrium data
[12, 13] were in the temperature range from 339 to 422 K and pressure up to
70 MPa. For benzene/cyclohexane, the data [14] were at 313 and 343 K, and at
sub-atmospheric pressure. The following values were found for each pair: kij(hy-
drogen/benzene) = 0.37, kij(hydrogen/cyclohexane) = 0.46 and kij(benzene-/cyclo-
hexane) = 0.017. The large values of kij for hydrogen/benzene and hydrogen/
cyclohexane reflect the non-ideality of the system due to the difference in size and
polarity.

Based on a 2 � 2 � 2 supercell of the conventional crystal structure of NiAl3
(cell parameters were taken from Ref. [15]), starting structures for the precursor

Table 1 PC-SAFT pure
component parameters

Compound m r (Å) e/k (K) References

Hydrogen 0.8285 2.973 12.53 [4]

Benzene 2.4653 3.6478 287.35 [3]

Cyclohexane 2.5303 3.8499 278.11 [3]
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models have been generated by randomly replacing Ni and Al, respectively, in the
corresponding fractions. In total four different initial NiAl compositions were
considered: (1) 40 wt% Ni—60 wt% Al (denoted as Ni30Al98), (2) 50 wt%
Ni—50 wt% Al (denoted as Ni40Al88, results are discussed in Ref. [2]), (3) 60 wt
% Ni—40 wt% Al (denoted as Ni52Al76), (4) 70 wt% Ni—30 wt% Al (denoted as
Ni66Al62). For each one of the compositions, five different models were created.
These models have been enlarged to 8 � 8 � 8 supercells each containing more
than 65,000 atoms with cell lengths between 70 and 120 Å. The structures were
then subjected to several MD simulations to generate porous structures. First, the
structures were equilibrated over 50 ps using an NVT ensemble. Subsequently, a
200 ps equilibration using an NPT ensemble at 2000 K was performed, before
quenching the system to room temperature over 1 ns. To confirm the convergence
of the simulations after quenching, an additional 1 ns equilibration was performed
using an NPT ensemble at 300 K for one configuration per composition. Since for
each composition similar results were obtained for all five models, subsequent
calculations were performed for only one structure per composition. Aluminum was
removed to make three different fractions: (a) 0 %, (b) 5 % Al, and (c) 10 % Al.
After a short geometry optimization, equilibrations over 10 ns with NVT ensemble
and 15 ns with NPT ensemble were carried out at 300 K. A more detailed
description of the workflow can be found in Ref. [2].

The final Raney-Nickel system from the industrially widely used 50 wt%
Ni—50 wt% Al precursor with 0 % of remaining Al was used as catalyst for the
ReaxFF simulation. As a preliminary study of the catalytic reaction, we focused on
modeling the adsorption of benzene on Nickel surface. For this purpose, MAPS
platform was used to set up an initial system of 100 benzene molecules within the
porous catalyst. The system was heated to 500 K and simulated at the same tem-
perature for 25 ps. For comparison, Nickel (111) and Nickel (100) surfaces were
built. The Nickel (111) surface contains 6 layers of 8 � 8 Nickel atoms for a total
384 atoms on top of which 20 Å of vacuum were added. The simulation unit had
the following dimension a = b = 20 Å and c = 30 Å with angles a = b = 90° and
c = 120°. The Nickel (100) surface contains 9 layers of 8 � 8 Nickel atoms for a
total of 288 atoms on top of which 20 Å of vacuum were added. The box had the
following dimension a = b = 20 Å and c = 30 Å with angles a = b = 90° and
c = 120°. The vacuum was filled with 45 and 35 benzene molecule for Nickel
(111) and Nickel (100) surface, respectively. The analysis of the ReaxFF simulation
was performed using ReaxFF plugin module within MAPS.

3 Results and Discussion

In the first sub-section we present the results obtained for the different catalyst
compositions. In the second sub-section, the thermodynamic modeling studies will
be shown, and in the last part results obtained on the reactivity are discussed.
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3.1 Molecular Dynamics Simulation on Different Catalyst
Compositions

One main goal of the present work was to investigate how the precursor compo-
sition affects the structure of the active catalyst.

In the actual catalyst, different NiAl phases are present. We started from a
simplified model and have used only one phase as a building block to keep the
system size and computational effort reasonable. More advanced models including
different phases will be subject of future work and are beyond the scope of the
present work.

After quenching to room temperature, the density and cell parameters of the
different alloy models were compared for each composition. Depending on the
composition, the density values of the precursor range between 3.9 g/cm3 and
5.9 g/cm3 which is in line with experimentally determined values of 3.95 g/cm3 and
4.76 g/cm3 for NiAl3 and Ni2Al3 [16]. For the different initial configurations of each
composition we found the same values in each case. The respective densities
remained constant after an additional 1 ns equilibration step using NPT ensemble
confirming the convergence of the simulations. The cell parameters also behaved
consistently with a standard deviation of 9 Å from the average value at most.

After quenching the alloy structures to 300 K, aluminum was removed in three
different fractions to emulate the experimental leaching process: (a) None of the
aluminum was kept (denoted as 0 % Al). (b) 5 % aluminum was kept (denoted as
5 % Al), and (c) 10 % aluminum was retained (denoted as 10 % Al) in order to
investigate the influence of the remaining aluminum on the structural characteristic
of the final catalyst. After removing the aluminum, the structures were geometry
optimized and then subjected to a MD simulation using NVT ensemble over 10 ns
at 300 K to allow for pore formation. For relaxing the cell volume, a 15 ns MD
simulation using NPT ensemble was performed at the same temperature. In Ref. [2],
the structural properties of the 0 and 5 % Al models based on the initial 50 wt% Ni
model were thoroughly characterized and compared with experimental results. The
computed properties show a good agreement with experimental data validating the
computational approach for modeling the catalyst structure. In the following, we
will now compare the structural characteristics for different initial and final com-
positions. The structures were analyzed with respect to the final densities and the
pore sizes. The final densities are listed in Table 2. As expected the density
increases with increasing amount of Ni with respect to the initial composition.
Interestingly, for a given composition, the density decreases with increasing amount

Table 2 Densities in g/cm3

after 15 ns NPT MD
simulation

Remaining Al (%) Initial wt% Al

60 50 40 30

0 4.2 4.1 5.4 5.9

5 2.1 3.9 5.2 5.7

10 2.6 3.8 4.1 5.0
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of remaining aluminum which could indicate a stabilizing influence of Al on the
overall structure. This trend is observed for each composition except for the 60 wt%
Al composition for which a slightly smaller density is found for 5 % Al structure
than for the 10 % Al structure.

The results of the pore size analysis are summarized in Fig. 1 in which the largest
pore size diameter after NVT and NPT equilibration are illustrated. The removal of
the Al atoms causes a fairly large void volume. In order to allow a decent structural
equilibration, first the volume of the simulation box was kept constant which
induced the pore formation. In the NPT simulation performed subsequently, the
volume was allowed to equilibrate under constant pressure which is typically closer
to experimental conditions in this context. As can be expected, the volume reduced
during the NPT equilibration, but the simulation box did not collapse. Consequently,
the largest pore size diameter reduced during the NPT run (orange vs. red /purple vs.
green /cyan vs. blue bar in Fig. 1). For each initial Ni/Al composition (60/50/40/30
wt% Al) we have studied three Al fractions (0, 5, 10 %) for the final catalyst. If we
compare the results after NPT simulation for the three Al fractions, we observe that
the largest pore size diameters are obtained for the 5 % Al structures (green vs. red
and blue bars in Fig. 1), except for the initial 30 wt% Al composition. For this
composition, the largest pore size diameter was found for the 10 % Al structure
(blue bar in Fig. 1), while the maximum pore size diameters of the 0 and 5 % model
are almost similar (red and green bar in Fig. 1). This finding further confirms the
assumption that aluminum has a stabilizing influence on the porosity of the final
catalyst. The largest pore size diameter of the 0 % Al structures (red bars in Fig. 1)
ranges between 34 and 44 Å, of the 5 % Al structures (green bars in Fig. 1) between
32 and 69 Å, and of the 10 % Al structures (blue bars in Fig. 1) between 43 and 58
Å. For the 0 % Al structures (red bars in Fig. 1), the largest pore size was found for
the initial 50 wt% Al composition, while for the 5 and 10 % Al structure (green and
blue bars in Fig. 1) the largest pore size diameter was obtained for the initial 60 wt%
Al composition. The 10 % Al structures (blue bars in Fig. 1) shows an increasing
largest pore size diameter from the initial 50 wt% Al composition to the 30 wt%

Fig. 1 Largest pore size
diameter in Å after 10 ns
NVT and 15 ns NPT
equilibration
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Al composition, while for theses compositions a decrease in the largest pore size
with decreasing Al content was observed for the 0 and 5 % Al structures (red and
green bars in Fig. 1). Zeifert el al. [17] compared alternative experimental routes for
the catalyst preparation and determined the mean pore size diameter for different
initial NiAl compositions. For initial alloy compositions containing 58/50/46 wt%
Al, the mean pore diameters were obtained as 37/55/27 Å. Experimentally, there is
thus also no uniform dependence observed of the pore size on the initial Al content.
Candy and Fouilloux [18] measured a pore size diameter of 45 Å for a Raney Ni
sample containing 4.7 % Al. Basically, our results are in reasonable agreement with
experimental data bearing in mind that the mean pore diameter is certainly smaller
than the largest pore size diameter used in our analysis. Our results suggest that there
is a complex balance between the maximum pore size and the aluminum content in
the initial and final structure, respectively.

Overall, the analysis of the MD simulations clearly suggests that the porosity in
terms of the pore size diameter depends on the initial composition and on the
remaining aluminum content after activation of the catalyst.

3.2 Thermodynamic Modeling of the Reactants

In addition to the simulation of the catalyst, we also performed thermodynamic
modeling studies on the reactants and products in order to investigate physical
properties during the catalytic reaction. The solubility of hydrogen in benzene and
benzene/cyclohexane mixtures was calculated with PC-SAFT at the temperature
range 250–523 K. T-P Flash calculations were performed at constant pressure 10,
20 and 50 bar. The results are illustrated in Fig. 2. The composition of the liquid
phase in these T-P Flash calculations is not kept constant, therefore the mole
fraction of cyclohexane shown in Fig. 2 (0.36 (top) and 0.96 (bottom)) is
approximate.

As expected, the solubility of hydrogen increases with increasing pressure. The
solubility shows maxima with temperature at the various pressures. The highest
solubility is observed at 475 K and 50 bar. Finally, the presence of cyclohexane
results in an increased hydrogen solubility in all cases.

3.3 Reactive Force Field Simulations on Benzene
Adsorption on the Raney-Nickel Catalyst

Based on the results presented above, we have performed preliminary simulations
on the catalytic reaction. For this purpose, we have studied the adsorption of
benzene on Raney-Nickel using one of the model structures generated as discussed
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above and compared the results for Raney-Nickel with results obtained for Ni
(100) surface and Ni (111) surface. A snapshot showing benzene adsorption in
Raney Ni catalyst is illustrated in Fig. 3.

The results presented in Fig. 4 show the evolution of the number of adsorbed
benzene in the different system as a function of the simulation time. The ReaxFF
force field allows the creation and breaking of covalent bonds between the different
atoms of the system during the molecular dynamics simulation. In this work, we
considered that a benzene molecule was adsorbed, if it formed at least one bond
with the Ni (100), Ni (111), or Raney-Nickel surface, respectively. In the first 5 ps,
the benzene adsorption is comparable for all three systems evaluated, i.e. both clean
Ni surfaces and Raney Ni model. After the first 5 ps, about 6–7 % of benzene
molecules have been adsorbed. In the very beginning of the simulation time, the
adsorption process is even faster on Ni (100) and Ni (111) surface (blue and green
line in Fig. 4) compared to the catalyst (purple line). After the first few ps, the
adsorption on Ni (100) surface (blue line in Fig. 4) remains rather constant and does
not increase much. After 25 ps, only about 12 % of benzene have been adsorbed. In
contrast to this finding, the benzene adsorption on the Ni (111) surface and the
Raney Ni model system (green and purple line in Fig. 4) increases more

Fig. 2 Results of PC-SAFT
for hydrogen solubility (mole
fraction) in benzene (dashed
lines) and
benzene/cyclohexane
mixtures (solid lines) in the
temperature range 250–550 K
and at 10, 20, and 50 bar. The
mole fraction of cyclohexane
is approximately 0.36 (top)
and 0.96 (bottom)
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continuously after the first few ps of the simulation, while the increase is steeper for
the Raney Ni system (purple line in Fig. 4). After 25 ps adsorption of benzene in
Raney-Nickel appears thus faster than on both Nickel surfaces with more than 20 %
of benzene molecules adsorbed.

The analysis of the reaction profiles indicates that the adsorption is not finished
and longer simulation times are necessary to model the catalytic reaction. These
early results are however promising for modeling benzene adsorption and

Fig. 3 Snapshot of a ReaxFF
simulation of benzene
adsorption in Raney Ni. The
model structure of Raney Ni
was generated as described
above for an initial 50 wt%
Ni/Al composition

Fig. 4 Adsorbed benzene in
percent over simulation time
for Ni (100) surface, Ni
(111) surface, and Raney Ni
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hydrogenation reaction kinetic on Raney-Nickel. Jobic et al. [19] have reported
experimental studies on benzene-nickel systems using neutron inelastic spec-
troscopy and found a stronger bonding of benzene on Raney Ni compared to that on
Ni (111) and Ni (100). This finding matches well with the computational results
indicating that more benzene is adsorbed on Raney Ni assuming that a higher
coverage can be expected when benzene is bonded stronger. Experimentally [19], a
higher force constant was found for Ni (100) compared to Ni (111), while the
simulations indicate a slightly higher coverage on Ni (111). However, this may be
attributed to the short simulations times. Future studies will include longer simu-
lations of pure benzene and hydrogen/benzene mixture will be studied using
ReaxFF. For these simulations, it has become apparent during our preliminary
studies that the ReaxFF force field parameter set needs to be further refined, which
is, however, beyond the scope of the present work. In subsequent work, we plan to
refine the parameters and also utilize the results from thermodynamic modeling
work for setting up the system and the simulation conditions. In addition to the
adsorption behavior, the influence of the Al content on the adsorption and reaction
kinetics will then be investigated as well.

4 Conclusions

In this work, we have presented a molecular modeling study on Raney-Nickel. Our
results show a dependence of the pore size on the initial precursor and final catalyst
compositions. The simulations indicate a stabilizing influence of the aluminum on
the remaining porosity. In addition, thermodynamic modeling of physical properties
of a possible reactant mixture provide insights into optimal initial reaction condi-
tions. Furthermore, we have shown results on the chemisorption of benzene on
Raney-Nickel which were compared to the adsorption on a conventional clean Ni
surface.
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Abstract Proof-of-concept results are presented on the application of molecular
modeling and simulation to the gas extraction problems. Both hydrocarbon mix-
tures and gas hydrates in porous media are considered. Retrograde gas condensation
reduces the amount of recoverable gas in reservoirs and can lead to jamming of
wells. For example, the authors [1] developed a model of two-phase gas filtration
through porous media that can reproduce the jamming. The model can describe gas
flow in soil of reservoir if both a phase diagram of the gas mixture and permeability
of pores to gaseous and liquid phases are known. Molecular dynamics simulations
are used to study phase diagrams of binary hydrocarbon mixtures at temperatures
between the critical points of pure components. The phase diagrams in free space
and in slit pores are calculated. Effects of wall–gas interaction on the phase diagram
are estimated. The data obtained from molecular simulations can be used to
improve the hydrodynamic filtration model and to optimize the natural gas and gas
condensate extraction conditions. Effects of pore structure on the phase stability of
gas hydrates and on the diffusion of guest molecules are studied by means of
molecular modeling. The anisotropic diffusion is found in hydrogen hydrates.
Moreover, diffusivity of hydrogen molecules demonstrates anomalous behavior on
nanosecond timescale.

Keywords Phase diagrams �Methane �Molecular dynamics � Clathrate hydrates �
Retrograde condensation � Porosity

G.E. Norman � V.V. Pisarev (&) � G.S. Smirnov � V.V. Stegailov
Joint Institute for High Temperatures of RAS, 125412 Moscow, Russia
e-mail: pisarevvv@gmail.com

G.S. Smirnov
Moscow Institute of Physics and Technology (State University),
141700 Dolgoprudnyy, Moscow Region, Russia

© Springer Science+Business Media Singapore 2016
R.Q. Snurr et al. (eds.), Foundations of Molecular Modeling and Simulation,
Molecular Modeling and Simulation, DOI 10.1007/978-981-10-1128-3_9

137



1 Introduction

Natural gas extraction and storage give rise to a number of scientific and technical
problems which require the knowledge of gas mixture behavior in porous media.
Two particular problems are the modeling of hydrocarbon filtration through porous
reservoir rocks and the modeling of gas–water systems at high pressures. They
require the knowledge of phase diagrams and transport coefficients of multicom-
ponent systems. Phase diagrams of one-component substances on the pressure (P)–
temperature (T) plane consist of two-phase coexistence lines. Single-phase stability
areas span between the lines. In contrast, a two-phase coexistence region transforms
into a surface in the (P-T-a) space for binary mixtures phase diagrams, where a is
the molar fraction of one of the components. In particular, there is a region of the
two-phase surface for binary and multicomponent mixtures, where gas phase par-
tially condenses into a liquid at the isothermal depressurizing. This phenomenon is
known as retrograde condensation, and it can occur at temperatures higher than a
critical temperature of the most volatile component of a mixture.

Since the critical temperature of methane is 190.6 K, methane-containing mix-
tures at ambient temperatures always have some range of methane concentrations at
which the retrograde condensation occurs. This condensation complicates gas field
operation, since it results in partial condensation of natural gas near a well bottom.
It lowers a well yield and decreases the amount of recoverable hydrocarbons.

Gas filtration through a porous medium is often described mathematically in the
form of the Darcy equation u = KI, where u is a filtration rate, I is a head gradient,
and permeability coefficient K is the main characteristics of the medium. To model
gas reservoirs, it is necessary to know permeability coefficients for both gas and
liquid phases and to have a model to calculate reservoir liquid saturation [1, 2]. The
equilibrium liquid saturation depends only on the thermodynamic functions of the
fluids and reservoir walls.

The bulk phase diagrams of pure hydrocarbons and mixtures are well known
from the experiments. In the work by Sage et al. [3], the bubble point pressures of
methane + n-butane mixtures are determined experimentally from the discontinuity
of isothermal compressibility of constant-composition mixture at the point of phase
transition. The composition of vapor phase is determined in that work from the
residual specific volume of gas. Later experiments employ phase recirculation
techniques [4] to achieve vapor–liquid equilibrium [5, 6], and the phase compo-
sitions are analyzed by more advanced methods such as gas chromatography.

Molecule–wall interaction may shift phase diagrams in porous media, especially
in nanopores. One of the ways to quantify such changes is the calculation of phase
diagrams via atomistic simulations using molecular dynamics (MD) [7, 8] or Monte
Carlo (MC) [9–13] methods. Semigrand ensemble simulations [12] and Gibbs–
Duhem integration [13] are the most used MC techniques to tackle with the problem
of multicomponent mixture phase diagram calculation. The MC approach is good
for purely thermodynamic properties, but it does not allow calculation of dynamic
properties. MD method is widely used for the calculation of phase diagrams [14],
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structure [15–18], and transport properties [19, 20] of confined fluids. In the present
work, we use the MD method for phase diagram calculations to validate the
potential model. We plan to use the same potential model then in the future works
to calculate the transport properties.

The phase diagram of a model methane + n-butane hydrocarbon mixture is
studied in this paper. Such components are chosen because this mixture reproduces
qualitatively phase diagram peculiarities of more complex hydrocarbons with the
retrograde condensation, on one hand, and is studied experimentally at the Plast
setup [1, 2] in the Joint Institute for High Temperatures of RAS, on the other hand.
Due to the large critical temperature difference (190.6 K for methane vs. 425.1 K
for butane), vapors below the critical point of methane have vanishing butane
concentrations. Because of that, molecular simulations of phase equilibrium would
require impractically large number of particles. For the gas extraction tasks, the
supercritical region with respect to methane poses the greatest interest.

Modeling of natural gas with high water content poses an additional problem of
gas hydrate formation. Clathrate gas hydrates are crystalline water-based inclusion
compounds physically resembling ice. They require elevated pressures and low
temperatures to be formed and are found in gas pipelines, permafrost regions, ocean
sediments, comets, and certain outer planets [21, 22]. Guest molecules are trapped
inside cavities, or cages, of the hydrogen-bonded water framework. The clathrate
structure type is mainly determined by the size of guest molecules. Gas hydrates
allow compact storage of hydrocarbons since one volume of hydrate may contain
180 volumes of gas (STP). The discovery of hydrogen hydrates (HH) attracted
significant attention to the H2 + H2O phase diagram and clathrate structures. Along
with the fundamental interest and significance for geophysics of icy moons and
outer planets, HH provide a way to prospective hydrogen storage technologies.
Diffusion of guest molecules plays a key role at hydrate storage and transportation.
It affects the saturation of crystals with surrounding gases as well as the kinetics of
clathrate decay and formation.

The diffusivity of hydrogen molecules is mostly studied for hexagonal ice and
sII clathrate structure. Strauss [23] showed by neutron inelastic scattering that the
diffusion coefficient of H2 in deuterated ice at 25–60 K is rather high and com-
parable with the self-diffusion coefficient in liquid hydrogen. About 272 K,
hydrogen solubility in hexagonal ice is comparable with that in liquid water at
atmospheric pressure and differs by two times at 100 MPa [24].

In the clathrate structure sII, the diffusion coefficient of hydrogen molecules is
lower by several orders of magnitude. The modeling of process of hydrogen
molecule diffusion is performed previously in works [25–29]. Gorman et al. [28]
reveal two diffusion modes in the sII structure: diffusion within one cavity on short
timescale and “jumps” between cavities on long timescale.

The importance of hydrates requires the accurate knowledge of their thermo-
dynamic and kinetic properties, mechanisms of formation and decay. Molecular
simulation is a method of choice for such theoretical studies since it can explicitly
capture the structure of gas hydrates and their constituents. MD is used to study
different processes in methane hydrate, especially phase diagram of hydrates. Tung
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et al. [30] determined the coexistence line in a wide range of pressures using
TIP4P/Ew water model and OPLS-AA model for methane. They analyzed the
evolution of the potential energy as a function of time during NPT simulations.
Conde and Vega [31] used a similar technique to determine the coexistence points
at up to 400 bar. They established that the TIP4P/Ice model [32] gives the best
agreement with the experimental results, but their results differ from the Monte
Carlo data of Jensen et al. [33]. In our previous work [34], we confirm the data of
Jensen et al. [33] and suggest that TIP4P/2005 [35] water model gives better results
at higher pressures than TIP4P/Ice.

Section 2 is devoted to the simulation details used at modeling of both problems.
Simulation results are presented in Sect. 3. Phase diagrams for both bulk and
porous systems are treated for gas condensates in Sects. 3.1 and 3.2. Melting and
decay of the superheated sI methane hydrate structure are studied using MD sim-
ulation in Sect. 3.3. The melting curve is calculated by the direct coexistence
simulations in a wide range of pressures up to 5 kbar for the SPC/E, TIP4P/2005,
and TIP4P/Ice water models and the united atom model for methane. We also
discuss diffusion of guest molecules in hydrogen hydrates in Sect. 3.4.

2 Simulation Details

2.1 Methane + n-Butane Mixture

TraPPE-UA (Transferrable Potential for Phase Equilibria–United Atom model)
force field [36] is used for methane + n-butane mixtures. Methane molecules are
presented by point particles, and butane molecules are reduced to four-particle
models. Due to complications with rigid bonds in the MD method, a fully flexible
butane molecule model is used instead of rigid bonds suggested in the original
TraPPE force field. Spring constants for C–C bonds are taken from the AMBER
force field [37]. Force field authors claim that phase diagrams are determined
mainly by the intermolecular forces so such augmentation would still give the
correct phase equilibrium [38]. Lennard-Jones (LJ) potential is used for nonbonded
interactions. The LJ cutoff radius is 16 Å, and the potential and its derivative are
smoothed to zero from 16 to 18 Å.

rRESPA scheme [39] is used for the numerical integration of motion equa-
tions. 4 fs timestep is chosen for nonbonded interactions, 2 fs for dihedral torsions,
and 1 fs for bond and angle oscillations. Periodic boundary conditions are
employed. The MD box size is chosen as 15 � 15 � N a0

3, where a0 = 6.8 Å is the
parameter of a simple cubic lattice and N = 80–250 depends on the target pressure
and fraction of methane.

A following approach is applied to create a two-phase gas–liquid system. First,
9000 butane molecules are placed in the simple cubic lattice sites of the volume
15 � 15 � 40 a0

3. The z-axis is a preferential direction in this configuration, which
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is normal to the interface. The whole box volume is filled then with randomly
distributed methane molecules. Energy minimization is then applied to relax the
structure and move apart the particles which are generated unphysically close to
each other. The number of methane molecules defines the mixture composition.
Mixtures with 25–70 molar percentage of methane are considered.

Nose–Hoover thermostat [40] and Shinoda barostat [41] are applied at MD runs.
As a fluid medium is simulated, the external pressure is established by changing
only the Lz size of the simulation box to fit the Pzz pressure tensor component to the
target value. The sizes Lx and Ly remain the same during the simulation, and the
isotropic stress tensor is maintained hydrostatically by the fluid phases. The sim-
ulations are carried out for 1.5 million timesteps, or 6 ns, and component densities
are then averaged over the last 500,000 timesteps in 100 bins along the z-axis to
obtain the profiles.

2.2 Gas Hydrates

Although even simplified potential models can capture some important features of
water, we have to use state-of-the-art classical potentials for accurate overall
description of the water phase diagram in the solid phase. We use the TIP4P/Ice
[32] model that gives a very good description of the ice phase coexistence lines. We
consider for comparison TIP4P/2005 [35] and a well-known SPC/E [42] model.
SPC/E is a simple 3-site model with charges located on H and O sites. TIP4P
models are the 4-site models with a negative massless charge located near the
oxygen atom and positive charges located on H atoms. We use a simple LJ model
for methane and three-site model with charges for hydrogen molecules. The
cross-interaction between guest and host molecules is described by the Lorentz–
Berthelot rules:

eij ¼ v
ffiffiffiffiffiffiffiffi
eiiejj

p
; rij ¼ rii þ rjj

� �
=2; ð1Þ

where eii and rii are the LJ parameters for the pure ith component, and eij and rij are
the cross-interaction parameters, where v = 1 or v = 1.07. The latter value indi-
rectly introduces polarization of methane in TIP4P/2005 water [43].

We use 9 Å cutoff distance for the LJ interactions. The PPPM algorithm is
applied to take into account the long-range interactions, with 9 Å cutoff for the
real-space part. Water molecule bonds and angles are fixed using the SHAKE
algorithm. The 3D periodic boundary conditions are used. The integration time step
is 2 fs.

Diffusion of hydrogen molecules in hydrates is studied using the classical MD
method. Our previous work shows the stability of C0 and sT′ structures at pressures
2–10 atm. We study in the current work diffusion of hydrogen molecules at the
pressure 0.6 GPa and temperatures from 140 to 260 K. The previous works show
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that both structures are stable at those conditions at 100 % cage occupancy
regardless of the potential used.

The simulations are performed with the Nose–Hoover thermostat and Shinoda
barostat. The MSDs are calculated by both time averaging along the individual MD
trajectories and ensemble averaging over several trajectories.

We determine first the equilibrium temperatures and pressures for coexistence.
Conde and Vega in their work [31] performed similar calculations using long
NPT MD trajectories (up to 1 ls). They waited for complete crystallization or
complete melting of the initial three-phase system at several fixed temperatures. We
follow another approach looking directly for the phase coexistence conditions.

We start from a 5 � 5 � 10 unit cells clathrate system. Then, we keep atoms in
one half of the cell frozen on their positions and raise the temperature in the other
half to melt it. After such a procedure, we have the initial nonequilibrium system.
Then, a short NPT simulation is performed to drive the system to the desired
temperature and pressure. Finally, we perform a several nanosecond-long NVE MD
simulation. The sI phase grows or melts in this simulation depending on whether we
overshot or undershot the clathrate melting temperature at the given pressure. After
partial melting or crystallizing, the system should stabilize at some temperature and
pressure corresponding to the equilibrium curve. Reaching the equilibrium during
crystallization requires longer simulation times, especially when methane molecules
form a bubble in water. In our calculations, we consider only the cases when
clathrate melts and equilibrium establishes much faster, during a few nanoseconds.
When the volume of the sI phase stops changing, we assume that the temperature
and pressure in the system correspond to the coexistence conditions.

All MD simulations are conducted using the LAMMPS package [44].

3 Simulation Results

3.1 Gas Condensates: Bulk Simulations

Density profiles of the hydrocarbon mixture components are calculated by MD
simulations. The examples of the profiles are presented in Fig. 1 for temperature
330 K at two pressures. The liquid phase is butane-rich; the vapor phase is
methane-rich. The density profiles turn out to be non-typical for a liquid film.
Absolute value of the methane density does not change remarkably at the transition
from vapor to liquid phase. Moreover, the absolute methane density is lower in
liquid phase with respect to vapor at some conditions. It is interesting to note that
there is a maximum of the methane density near the phase boundary at 40 atm. It
points to the methane adsorption on the interface. Similar phenomena are observed
at the modeling of the liquid in a contact with solid walls [15–17, 20], as well as in
Coulomb clusters [45, 46].
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The phase equilibrium curve is calculated for the methane + n-butane mixture at
330 K (Fig. 2). The force field model used reproduces experimental data [3] on
methane solubility in liquid butane rather well up to 80 atm. It reproduces the
existence of the retrograde condensation region for the mixture under consideration
at this temperature. The existence of the region follows from the fact that the phase
equilibrium curve does not reach 100 % methane molar fraction.

3.2 Gas Condensates: Pore Simulations

Calculations are also performed for the phase equilibrium in a pore. The simplest
model of a slit pore with smooth walls is considered. Interaction of a particle with
walls is taken in the Lennard-Jones 9-3 form

UwallðrÞ ¼ ew
2
15

rw
r

� �9
� rw

r

� �3
� �

;

where r is a distance from a particle to thewall, and rw and ew are potential parameters.
The walls are perpendicular to the x-axis. The examples of wall surfaces with ew =
0.35 kcal/mol, rw = 0.35 nm (“weak” wall potential) and ew = 0.5 kcal/mol, rw =

Fig. 1 Component density profiles in vapor–liquid coexistence simulations for methane +
n-butane mixture at 330 K: 40 atm (a) and 90 atm (b)

Fig. 2 Phase equilibrium
curve of methane + n-butane
at 330 K: MD model
compared to the experimental
data [3]. The error bars show
statistical uncertainties. The
error bars lie within the
symbols if not shown
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0.39 nm (“strong” wall potential) are considered. The LJ parameters for the mixture
components are eCH4 = 0.29 kcal/mol and rCH4 = 0.373 nm, eCH3 = 0.19 kcal/mol
and rCH3 = 0.375 nm, and eCH2 = 0.09 kcal/mol and rCH2 = 0.395 nm. The simu-
lations are conducted with the distances 4.08 and 10.2 nm between walls.

To obtain the density profiles in pores, we used longer simulations, for 2.5 million
timesteps, or 10 ns. Density is averaged over the last 200,000 timesteps in 100 bins to
obtain the profiles.

In the 10.2 nm pores, the different wettability of the walls is clearly seen.
“Weak” walls show contact angle >90°, and “strong” walls show contact angle
<90° (Fig. 3), which means partial wettability of the “strong” walls and partial
nonwettability of “weak” walls. The mixture phase diagrams in the pores are shown
in Fig. 4. The influence of the walls on the liquid phase composition is rather weak,
while the shift of the vapor composition is more prominent. As expected, the effect
is more for the stronger wall potential. In the case of “weak” wall, the shift of the
vapor composition is within the statistical errors for 10.2 nm pore width, while the
“strong” wall demonstrates effect on phase diagram for both pore widths.

An important result is the prominent shift of the mixture critical point with the
4.08 nm pore with “weak” potential. The critical pressure rises from around
120 atm in the bulk to about 140 atm in slit pore (Fig. 4). Since rocks usually have
higher permeability to single-phase supercritical fluid than to two-phase mixture,

Fig. 3 Shape of the interphase boundary in the XZ plane for walls with different wettabilities at
330 K and 30 atm. Butane molecules are shown in green and methane molecules in blue. Every
picture shows two overlaid snapshots of the simulation cell
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the widening of two-phase region may lead to lowering the permeability of
nanoporous media.

As of yet, we cannot establish a clear relation between the phase composition
shift and the pore width. In the case of the “strong” wall, the vapor composition
shift relative to the bulk case has different signs depending on the pore width.

3.3 Phase Diagram of Methane Hydrates

Our results for different water models (TIP4P/Ice, TIP4P/2005, and SPC/E) are
shown in Fig. 5.

According to Conde and Vega [31], the TIP4P/Ice model provides the best
agreement with the experimental data. Jensen et al. [33] determined the sI melting
line by free energy calculations via Monte Carlo method for TIP4P/Ice model, and
the agreement of their results is worse than it was found by Conde and Vega
(although the LJ potentials for methane were slightly different). Our MD results are
in agreement with the data of Jensen et al. This is a strange fact because our results
for TIP4P/2005 models are in a fairly good agreement with Conde and Vega. We
attribute this discrepancy to the larger interface area of our model (5 � 5 unit cells
compared to 2 � 2 in Conde and Vega’s work). Presumably, smaller interface cross
sections can result in larger statistical uncertainty and biased coexisting pressure
and temperature values. Our results show that the TIP4P/2005 model gives the
better agreement with the experimental coexistence line than the TIP4P/Ice model
in the entire pressure range considered. Although TIP4P/2005 coexistence tem-
peratures are systematically 10–20 K lower, the qualitative curve shape reproduces
the experimental data quite well.

Fig. 4 Phase diagrams for methane + n-butane mixture at 330 K in slit pores with “weak” walls
(a) and “strong” walls (b). Triangles 10.2 nm wide pores, crosses: 4.08 nm wide pores. Circles,
squares, and solid line are the same as in Fig. 2. The error bars show statistical uncertainties. The
error bars lie within the symbols if not shown
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3.4 Diffusion in Hydrogen Hydrates

We have studied in our previous work [48] the stability areas of the possible
structures of the new phase at *0.5 GPa suggested by experimenters. It turns out
that C0 and sT′ structures remain stable in the MD simulations.

We distinguish two characteristic time and length scales of diffusion in both C0

and sT′ structures. On the short timescale, hydrogen molecules move within a single
cage (in sT′ structure) or channel (in C0 structure). On longer timescales, molecules
jump between cages or channels. The jumps are rather rare events because mole-
cules have to overcome high energy barriers.

Diffusion of guest molecules in C0 and sT′ structures shows prominent aniso-
tropic and anomalous character, i.e., diffusion along different axes occurs at highly
different rates, and the mean square displacement (MSD) does not grow linearly on
time. Such behavior is probably due to the strong interaction between the frame-
work and guest molecules, since the simulations of gases in metal–organic
frameworks with large cage sizes do not reveal anomalous diffusion [49]

Water molecules in the C0 structure form parallel helical channels oriented along
the z-axis. Diffusion of hydrogen in the XY plane occurs therefore due to the jumps
of molecules from one channel to another. The time- and ensemble-averaged MSDs
of hydrogen molecules along each axis are shown in Fig. 6 in the double loga-
rithmic scale. The asymptotical behavior of MSD curves at long timescales is
shown for the lowest and highest of the studied temperatures. The MSD in the
z direction (along the axis) is several orders higher than the MSD in the perpen-
dicular plane. The MSDs in the XY plane do not exceed 0.1 nm2 in 10 ns. This
value is less than the square of the distance between channel centers. Therefore,
most hydrogen molecules only move along the channel and do not jump between
channels on this timescale.

Fig. 5 Methane–water phase diagram. The solid line is the experimental [47] three-phase
equilibrium curve of methane hydrate. The snowflakes show the result of Jensen et al. [33] for
TIP4P/Ice model. The filled blue, green, and red symbols show the three-phase coexistence points
of Conde and Vega [31], and open symbols show our results: Yellow triangles are for SPC/E, green
diamonds and red squares for TIP4P/2005 with v = 1:07 and 1.00 in (1), respectively, and blue
circles for TIP4P/Ice. Our symbols correspond to 5510 unit cell systems. The statistical errors are
within the symbols
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The MSDs along the x- and y-axes show peculiar behavior at 260 K. The
high-temperature MSD curves cross the MSDs at 180 and 220 K. Thus, some
inhibition of diffusion takes place at elevated temperatures. Its origin is yet
unknown.

The diffusion of hydrogen molecules in the sT′ structure is even slower (Fig. 7).
The MSDs in 10 ns do not exceed 0.04 nm2 along x- and y-axes and 0.006 nm2

along the z-axis. The MSDs at 180 and 220 K reach the plateau corresponding to
the trapping of molecules within a single polyhedron. Leaving a cage is a very
improbable event, so the contribution of such jumps is negligible after ensemble
averaging. At 140 K, the diffusion is so slow that only the z diffusion curve reaches
the plateau. At 260 K, we see the growth of the MSD after a short plateau which
corresponds to the jumps of hydrogen molecules between cages. The same behavior
is expected for the lower temperatures at longer timescales.

Fig. 6 Time- and ensemble-averaged mean square displacements of hydrogen molecules in the C0

structure at different temperatures and 100 % cage occupancy
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The analysis of the displacements of the individual molecules shows that the
MSDs in the XY plane are in fact due to large displacements of only a few mole-
cules (several tens out of several hundred).

One of the important issues is the possibility to reveal the specific mechanisms
of subdiffusion. The nonlinear time dependence of mean square displacements
appears in different mathematical models, for example, in continuous-time random
walk models, fractional Brownian motion, and diffusion on fractals. Sometimes,
subdiffusion is a combination of different mechanisms. The more thorough inves-
tigation of subdiffusion mechanisms, subdiffusion–diffusion crossover times, dif-
fusion coefficients, and activation energies is the subject of future works.

Fig. 7 Time- and ensemble-averaged mean square displacements of hydrogen molecules in the sT′
structure at different temperatures and 100 % cage occupancy
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4 Summary

Two gas extraction problems are formulated to solve with the atomistic modeling.
They are related to natural gas condensates and gas hydrates. First steps toward the
multiscale modeling are suggested. Examples of molecular dynamics simulations
are performed for phase diagrams and diffusion.

• The phase diagram of the test methane + n-butane system is calculated.
• The effect of nanoscale porosity on the test phase diagram is considered. Pore

walls are shown to have more effect on the equilibrium vapor composition than
on methane solubility. The effect of the critical point shift in nanopores is
demonstrated.

• Three-phase coexistence lines are calculated for sI methane hydrate using dif-
ferent water models.

• Possible structures of hydrogen clathrate hydrates are refined at high pressures:
C0 and sT′.

• Anomalous diffusion of hydrogen molecules is analyzed in these structures,
which is determined by the geometry features of the water framework. Diffusion
of hydrogen molecules in the new C0 and sT′ hydrogen clathrate structures is
also analyzed. Mean square displacement analysis shows that diffusion is ani-
sotropic and anomalous at nanosecond timescale.
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Atomistic Simulations of CO2 During
“Trapdoor” Adsorption onto Na-Rho
Zeolite

Nathan Bamberger and Daniela Kohen

Abstract Behavior of CO2 within Na-Rho was studied using atomistic simulations.
This zeolite is known to experience a phenomenon called “cation gating” which
allows carbon dioxide but not other sorbents to permeate the zeolite, giving rise to
very high adsorption selectivities for CO2. Our goal is to provide further insight into
the reasons behind this intriguing phenomenon. We show that CO2’s favorable
electrostatic interactions with the zeolite framework result in preferential binding in
the opening of the channels between cages. This leads us to suggest a novel
mechanism to explain carbon dioxide’s unique “gate opening behavior” in which
this preference for binding inside the “gate” allows CO2 to “squeeze” by the gate-
keeping cation as it moves around slightly due to thermal fluctuations. This proposed
mechanism is distinct from a previously proposed mechanism in which carbon
dioxide mediates the displacement of gatekeeping cations via electrostatic interac-
tions and may be in better agreement with experimental evidence.

Keywords Zeolites � Cations � Trapdoor � Gating � RHO

1 Introduction

Zeolites and metal-organic frameworks are two fascinating classes of microporous
adsorbents with potential applications in separation processes, catalysis, and gas
storage [1–4]. In particular, these materials have received a lot of attention due to
their potential ability to reduce greenhouse gas emissions through carbon-capture
schemes [5, 6].

Both families of materials have advantages and disadvantages for this applica-
tion, but zeolites are particularly attractive since they are already industrially syn-
thesized, applied in large-scale processes, and can have good stability in the
presence of water and other impurities. Framework structure, composition, and
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location of extra-framework cations strongly influence carbon dioxide uptake in
zeolites [7]. These factors also affect selectivity, which is just as important for a
carbon-capture candidate as being able to strongly adsorb CO2.

Related zeolite Rho (RHO) materials with a Si/Al framework ratio of 4.5 have
shown both good CO2 uptake and high CO2 selectivity with respect to small
molecules such as CH4, N2, and ethane [8–10]. As with other zeolites containing
small pores connecting reasonably large cavities [11], RHO materials have window
dimensions close to the kinetic diameter of the relevant gases and cage sizes that
facilitate interaction with the adsorbing molecules. In addition to these character-
istics, many univalent cation-exchanged zeolite Rho materials have extra-
framework cations that block the entrances to the narrow pores connecting cages
[9, 10]. Such materials experience a phenomenon called “cation gating” which
allows carbon dioxide but not other sorbents to permeate the zeolite, giving rise to
very high adsorption selectivities for CO2. This complex behavior is a consequence
of the siting and movement of these extra-framework cations but also of the strong
cation-dependent structural flexibility of the Rho structure. These materials expand
to accommodate carbon dioxide (and presumably no other adsorbate), but the extent
of the change depends on the nature of the cation.

In this work, we focus on fully exchanged Na-Rho, the most studied Rho
structure and the most promising for practical applications due to its adsorption
properties and costs. Na-Rho has been extensively studied by Lozinska et al.
[9, 10], who found that although it is a flexible zeolite, it retains its symmetry when
loaded with 1 bar of CO2 and distorts and expands less than other Rho materials.
Lozinska et al. also performed careful in situ XRD structural studies and IR
spectroscopy of carbon dioxide adsorption within this material. These studies as
well as others in related Rho materials led these authors to propose a mechanism for
cation gating in which cations in window sites interact strongly enough with nearby
carbon dioxide molecules that the cations are temporarily displaced to empty sites
within nearby a-cages, opening a “trapdoor” that allows adsorbates to diffuse
through the zeolite. This intriguing mechanism is likely to be at play in other
relevant materials as well. In particular, Webley and coworkers believe that a
“trapdoor” mechanism is also responsible for the very high selectivity of carbon
dioxide over methane that they have found in chabazite zeolites [12–14].

Because cation gating is fundamentally a molecular scale phenomenon, ato-
mistic simulations are well-suited to help answer some of the questions left open by
the experiments of Lozinska et al. due to the time-averaged nature of their data.

In this paper, we therefore present classical molecular simulations that provide
detailed microscopic information regarding carbon dioxide’s “gated” adsorption
within fully exchanged Na-Rho. However, the scope of this work is modest, as we
only focus on the behavior of mobile cations and carbon dioxide within a rigid
zeolite. This is because, to the best of our knowledge, there are no reliable atomistic
potentials that can model a flexible aluminum-substituted zeolite framework. Our
goal is to provide further insight into the reasons behind carbon dioxide’s ability to
adsorb within cation gated zeolites rather than fully describe the system’s behavior.
In particular, our results suggest that the carbon dioxide, rather than mediating the
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displacement of gating cations to open the trapdoor, is instead more adept than
other sorbents at “squeezing” through the trapdoor as it opens by itself due to
thermal fluctuations.

The remainder of the paper is structured as follows. In Sect. 2, we describe our
computational methods. Section 3 presents our results and discussion: Sect. 3.1
presents cation radial distribution functions in the presence and absence of carbon
dioxide, and Sect. 3.2 describes carbon dioxide and Na+ preferred sites of
adsorption. These two sections provide the rationale for the alternative scenario
described in the previous paragraph and set the stage for Sect. 3.3, where we show a
suggestive MD simulation of a carbon dioxide entering a “blocked” channel. We
conclude in Sect. 4.

2 Methods and Models

All of our atomistic simulations were performed using standard Grand Canonical
Monte Carlo (GCMC) and Equilibrium Molecular Dynamics (EMD) simulation
methods. The RASPA [15] code was employed. Electrostatic energies were cal-
culated using Ewald summation [16, 17] with a relative error of 10−6. A 12 Å van
der Waals cutoff was used for the short-range interactions. Periodic boundary
conditions were employed.

In our GCMC simulations, four types of trial moves were used: attempts to
translate an adsorbed carbon dioxide or a sodium cation, attempts to insert a new
carbon dioxide into the zeolite, attempts to delete an existing carbon dioxide from
the zeolite, and attempts to rotate an adsorbed carbon dioxide. Typically, simula-
tions were run for 5 � 106 Monte Carlo cycles (each cycle consisted of max[N, 20]
steps where N is the number of moving particles). The first half of these cycles was
used for equilibration and was not included in the sampling of the desired ther-
modynamic properties. MD simulations were performed in the NVT ensemble at
298 K using a Nose–Hoover thermostat to regulate the temperature. The time step
in all simulations was 0.5 fs. Each MD simulation started with a Monte Carlo
(MC) pre-equilibration (at least 106 Monte Carlo moves) followed by MD equili-
bration (at least 106 MD steps). After equilibration, production runs of 106 MD
steps were performed and used to sample the desired thermodynamic properties. In
both, the MD and GCMC simulations, the number of steps (or cycles) was large
enough that the results were independent of the number of steps.

In the work presented here, interactions between adsorbed molecules, the neg-
atively charged zeolite framework, and extra-framework cations are modeled using
a DFT-derived force field for carbon dioxide in Na-exchanged zeolites. Recently
developed by Sholl’s group [18] and referred to as CCFF, this potential was
obtained using experimental data for zeolite LTA-4A and validated with two other
common adsorbents, NaX and NaY. This makes it ideally suited for our purposes
as it was designed with the goals of both being accurate and transferable to
materials with the same chemical composition as Na-Rho. The CCFF potential
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models CO2–CO2 interactions using the well-established EPM2 potential [19].
Within this potential, carbon dioxide is represented by a linear triatomic with fixed
bond lengths and bond angles and each atom is described by a charged
Lennard-Jones (LJ) center. All other interactions in the system are modeled using
DFT-derived parameters. The interaction between carbon dioxide and the rest of the
system has two contributions: a Coulombic and a LJ interaction between each pair
of atoms. The interaction of each extra-framework cation and framework atom has a
Coulombic contribution as well. In addition, the dispersion interaction between
each extra-framework cation and the oxygen atoms within the framework is
modeled using a Buckingham potential.

As was mentioned in the introduction, the work presented here focuses on
behavior within the Na-Rho zeolite (Fig. 1). The structure of zeolite RHO is well
known [20]; it has a 3-dimensional channel system composed of one size of cavities
(a-cages). Each a-cage is connected to six other a-cages by double 8-ring pores
(D8R). This gives rise to two interpenetrated but not interconnected pore systems.
When dehydrated, zeolite Na-Rho has I�43m symmetry [9]. This zeolite is flexible:
when loaded with 1 bar of carbon dioxide, the 8-rings are distorted from circular to
elliptical, the a-cages become tetrahedral rather than cubic, and the zeolite expands
approximately 2 % (but maintains I�43m symmetry) [10].

To the best of our knowledge, there is no available potential that would allow us
to describe both the flexibility and the carbon dioxide absorption of this zeolite, and
so instead, we model the system with all framework atoms fixed at their crystal-
lographic positions while cations and carbon dioxide molecules are allowed to
move. In order to make 1-to-1 comparisons regarding sites and locations within the
zeolite, we wanted to use the same rigid zeolite structure for both the simulations

Fig. 1 The structure of
zeolite Na-RHO when
PCO2 ¼ 1 bar [20]. The
framework is shown in blue.
Note the 3-dimensional
channel system composed of
cavities (a-cages). Each
a-cage is connected to six
others byD8Rs. This gives rise
to two interpenetrated but not
interconnected pore systems
(shown in gray and pink)
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with CO2 and without CO2, even though as described above the structure is known
to change upon addition of CO2. We chose to use the Na-Rho crystallographic
positions corresponding to the zeolite structure when loaded with 1 bar of CO2 [10]
because our primary interest is in interactions involving CO2. Note that most
classical simulations of cation-exchanged zeolites [21, 22] also assume a rigid
framework and that the CCFF potential was derived under these conditions as well.
Furthermore, studies of methane in flexible LTA zeolite [23] have shown that
flexibility is much less important when studying adsorption than when studying
diffusion. All qualitative conclusions described in what follows were obtained using
both GCMC (simulating adsorption) and MD (simulating diffusion) calculations
(unless noted), lending credibility to our approach. However, the absence of a
potential that can be used to more accurately study the behavior of carbon dioxide
within flexible Na-Rho limits the scope of this work to the qualitative insights
provided in the results and conclusion sections.

Before continuing note that when using crystallographic data obtained for
Na-Rho loaded with 1 bar of CO2, our approach is able to accurately reproduce a
298 K experimental isotherm (see Fig. 2). Note that in all the simulations presented
in this work, the Si/Al ratio is approximately 4 (9.8 Al and 38.2 Si per unit cell) in
order to simulate the material of interest. The positions of the Al atoms are chosen
randomly subject to the constraint of Lowenstein’s rule [24].

Lozinska et al. have determined that when the ratio of Si/Al � 4, Na+ cations
preferentially occupy S8R (single 8 ring) sites and S6R (single 6 ring) sites (see
Fig. 3). Our simulations of this system show cation sites that are very similar to the
experimental ones in both location and fractional occupancy (see Fig. 3 and
Table 1).

Fig. 2 CO2 adsorption
isotherm within Na-RHO at
298 K. The simulations were
performed using a rigid
zeolite framework with all
atoms at their crystallographic
positions. The three
simulations shown differ in
the random locations of the
Al-substitutions within the
zeolite. The experimental data
are that of Ref. [10]
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3 Results and Discussion

3.1 Cation Radial Distribution Function

The equilibrium positions of cations in the presence and absence of carbon dioxide
were first investigated by calculating radial density probability functions. Figure 4
shows the average of 5 such plots from different GCMC runs where the random Al

Fig. 3 Cation Sites. Spheres showing preferred cation sites: S8R in orange and S6R in green. The
orientation of the cage was chosen to clearly show how the experimental cation site in the S8R
(solid orange sphere) is not exactly the same as the one found in our simulations (translucent
orange sphere); although it is not obvious in the figure, the experimental site refines in an
off-center position. Note that the experimental S6R site is indistinguishable from the one found in
this work. The figure also shows the D8R traced in blue and the S6R traced in black. Note that in
each unit cell, there are 6 D8R sites (and thus 12 S8R) and 8 S6R. The experimental data are that
of Ref. [10]

Table 1 Fractional occupancies of cation sites

Sample PCO2ð Þ Occ. fraction site S8R Occ. fraction site S6R

Na-RHO (0 bar) Experimental 0.51 0.43

Simulations 0.48 0.41

Na-RHO (1 bar) Experimental 0.5 0.49

Simulations 0.46 0.40

Experimental data are from Ref. [10]. Note that in our calculations, as in experiments, about half
the S8R are blocked by cations whether carbon dioxide is present or not. Lozinska et al. argue that
it is likely that cations prefer to occupy S8Rs belonging to different D8Rs. However, our
calculations show that is not the case. This could be another shortcoming of the interaction
potentials we are using, but without further evidence, this cannot be ascertained
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locations were all the same, but the seed numbers were different. Note that the
qualitative conclusions reached below can be obtained by examining each of these
five runs independently or equivalent MD runs, but averaging allows the reader to
focus on the important features. Also note that the conclusions are the same if the
random Al-substitutions are different. The zero was chosen as the crystallographic
center of an S8R. This position was chosen because a cation sitting near the center
of the S8R blocks carbon dioxide molecules from also fitting in the plane of the
ring. Figure 4 shows that the distributions do not vary much between when carbon
dioxide is present and when it is not. In both cases, there is a peak near zero
(corresponding to the cations in the S8R site) and another peak 4–6 Å away cor-
responding to cations in the S6R site. However, there is one difference that is
important in the context of this article: While the distribution of cations in the S6R
does not change appreciably, there is a shift in the distribution of cations in the S8R
when carbon dioxide is present. More specifically, when CO2 is added to the zeolite
the probability of a cation being located 1–2 Å from the center of the ring decreases
while at around 3 Å the probability increases. In other words, there is a net
movement of some cations away from the center of the 8 rings when CO2 is
introduced into the zeolite, a finding that is in agreement with the experimental
observation that CO2 is not blocked by cations. However, this finding does not
address the issue of what causes some cations to move from their blocking positions
and allow for the “opening of the gate.” We therefore move on to this question in
the following sections.

Fig. 4 Cation radial probability density functions. Each line is the average of 5 plots from
different GCMC runs where the random Al locations were all the same but the seed numbers were
different. Note that the distributions do not differ substantially between when carbon dioxide is
present and when it is not. In both cases, there is a peak near zero corresponding to the S8R site
and another much further away corresponding to cations on the S6R site. However, while the
distribution of cations in the S6R is essentially unchanged, there is a small shift in the distribution
of cations in the S8R when carbon dioxide is present: The probability of a cation being between 1–
2 Å from the center of the ring is smaller while around 3 Å the probability is larger than in the
absence of the adsorbate
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3.2 Preferred Sites of Adsorption

In this section, preferred sites of adsorption for both carbon dioxide and cations will
be investigated. These will suggest that the reason for carbon dioxide’s “gate
opening behavior” has more to do with carbon dioxide’s preferred sites within the
zeolite than its ability to guide cations out of the way.

Figures 5 and 6 show probability maps for sodium cations and carbon dioxide
molecules, respectively, at 298 K. These maps are normalized 3D histograms of
particle locations collected every 10 cycles during a GCMC simulation with
5 � 106 production cycles. Qualitatively equivalent results are obtained if data are
collected in an EMD simulation. The maps in Fig. 5 correspond to cation locations
when no carbon dioxide is present, but almost identical ones are obtained in the
presence of 1 bar of CO2. This demonstrates that only limited cation rearrangement
takes place when carbon dioxide is adsorbed, just as experiments have suggested
[9]. In Fig. 5a, the scale is such that even locations that are very infrequently visited
are shown. This map reveals that cations explore within their site and thus must
somehow be mobile. The extent to which this mobility is poor is underscored in
Fig. 5b, where only the region within the 0.1*max probability contour is shown.

Figure 6 shows that, as expected, the carbon dioxide molecules explore a large
region of the zeolite; the figure highlights the cages and the narrow passages between
then. This plot suggests that the highest probability of finding an adsorbed CO2 is at
the entrances of the narrow channels connecting cages (i.e., in the S8R). This finding
is in line with previous work within silica-only zeolites ITQ-3 and ZK4 (an LTA
equivalent) [25, 26] where we have shown that carbon dioxide, but not nitrogen,
strongly adsorbs in narrow pores between cages. Carbon dioxide adsorption in the
narrow pores takes on increased significance in the context of this paper because to
enter these pores the CO2 must pass the cation that is “gating” the S8R.

Figure 7a shows that carbon dioxide has two preferred adsorption sites: one in
the S8R, as mentioned previously, and the other, near the walls of the a-cage. These
locations are in agreement with findings by Lozinska and coworkers [10] who were
also able to locate carbon dioxide molecules in two sites, one within the window
region and another within the cage. Figure 7 was obtained by using appropriate
symmetry operations to collapse probability anywhere in the simulation cell around
a location at the geometric center of the D8R. This effectively moves all the
probability around any of the D8Rs in the simulation cell to the vicinity of the
one shown, highlighting the role of this region. Figure 7b is an equivalent plot for
the sodium cations. Figure 7 shows how both cations and carbon dioxide have a
preferred site of adsorption near the center of the S8R.

In their work, Lozinska et al. suggest that blocking cations undergo a quick CO2-
mediated migration from a window site to an empty S6R site, “opening the gate”
for a brief period of time and allowing CO2 to diffuse through. They suggest that
weaker electrostatic interactions between cations and other adsorbents prevent this
mechanism from taking place with molecules such as CH4. The plots in Fig. 7
suggest an alternative explanation for carbon dioxide’s ability to permeate the
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zeolite: perhaps the gating cation periodically moves around the S8R by itself due
to thermal motion, and CO2 is simply more inclined than other molecules to
“squeeze” by into the S8R when this happens due to its natural affinity for this site.
In other words, it is not so much that the carbon dioxide molecule opens the gate by
interacting with the “gatekeeper” sodium, but rather that carbon dioxide is able to
take advantage of a “wandering gatekeeper.” In the context of this alternative
explanation, Fig. 4 can be understood as showing the cation distribution changing
due to competition with the CO2 for the ring site.

Within this alternative explanation, a methane molecule, for example, would not
be able to take advantage of the cation’s thermal motion because in the absence of
strong electrostatic interactions with the pore it might lack carbon dioxide’s pref-
erence for an S8R site. At this moment, there is no methane potential that would
allow us to further confirm this hypothesis, but to explore the plausibility of this
explanation we ran simulations in which we artificially set CO2’s partial charges to

b Fig. 5 Probability map for sodium cations. The figure is centered in the middle of a cage, with six
D8Rs surrounding it. The framework is shown in black with the Al atoms in green. a The
probability scale is such that even locations that are very infrequently visited are shown in blue.
These blue regions reveal that the cations explore within their site and are thus to some extent
mobile. b Most visited locations (the 0.1*max probability contour is shown)

Fig. 6 Probability map for carbon dioxide. The figure shows a 2 � 2 � 2 simulation cell. The
framework is shown in black with the Al atoms in green. The figure highlights the cages and the
narrow passages in between then
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zero. In previous work within silica-only zeolite [25, 27], we have used this strategy
to show that when carbon dioxide is modeled using only dispersive forces, it no
longer strongly adsorbs in the narrow pores between cages and this region becomes
a barrier to diffusion rather than an adsorption site. Under these conditions, carbon
dioxide’s preferred sites become quite similar to those of nitrogen (the other
adsorbent studied in those articles). Figure 8 is the equivalent of Fig. 7a for when
carbon dioxide’s partial charges are set to zero. Note how in this case the middle of
each S8R is no longer a preferred location. This suggests that a molecule without a
significant quadrupole would not “squeeze” into the S8R, and thus, its diffusion
would be blocked by the cation in the S8R. This might explain why other small
molecules are not able to diffuse within this material [8–10] while carbon dioxide is.

b Fig. 7 Probability maps around a D8R. Thicker lines highlight the D8R. These plots were
obtained by using appropriate symmetry operations to collapse probability anywhere in the
simulation cell around a location at the geometric center of the D8R. This effectively collapses all
the probability around any of the D8Rs in the simulation cell to the vicinity of the one shown,
highlighting the role of this region. a Map for carbon dioxide. Note the areas of higher probability
in the middle of each S8R and near the walls of the a-cage. The map does not include CO2

probability corresponding to empty D8R sites. b Map for sodium cations. Note the areas of higher
probability at the sites mentioned, in the S8R and in the S6R

Fig. 8 Carbon dioxide probability maps around a D8R when CO2’s partial charges are set to zero.
The map does not include CO2 probability corresponding to empty D8R sites. Note how the areas
of higher probability differ from those in Fig. 7a in that the middle of each S8R is no longer a
preferred location
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3.3 An MD Trajectory Showing a CO2 Entering
a “Gated” Ring

A carbon dioxide entering a cation-blocked narrow channel between two a-cages
(the D8R) is likely a rare event. Given the importance of such an event in the context
of this work, many MD simulations were searched in order to find one. Figure 9
shows a carbon dioxide molecule entering a D8R that is blocked by a cation.
Figure 9a is a snapshot, Fig. 9b traces the motion of the carbon dioxide, and Fig. 9c
traces the cation (a 0.5-ns movie showing this event is available as supplemental
information). This figure shows how little the cation moves as the carbon dioxide

Fig. 9 A carbon dioxide molecule entering a D8R blocked by a cation. Only the relevant
adsorbate molecule and cation are shown in the figure. The blocked D8R is highlighted. a A
snapshot. b Multiple frames showing the motion of the CO2. Solid colors show 0.5 ps before and
after the frame shown in (a) while translucent shows 50 ps before and after. c Multiple frames
showing the very narrow range of motion of the blocking cation. Frames 0.5 ps before and after
the frame in (a) are shown in solid blue, frames 50 ps before and after are shown in blue stripes,
and frames 200 ps before and after are shown as translucent blue
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enters the ring, and in particular that while our simulations show that when the cation
and carbon dioxide are close to each other electrostatic interactions cause them to
interact strongly, we have found no evidence that the cation needs to leave the S8R
site in order to allow for a carbon dioxide molecule to enter the “gate.” This finding is
significant in the context of CO2/CH4 breakthrough experiments performed by
Palomino et al. [8] on zeolite Na-RHO. These experiments showed that while CO2 is
retained, methane passes with practically no retention. If the cation truly does leave
the narrow channel via a CO2-facilitated jump from a S8R site to a S6R site (as in the
mechanism suggested by Lozinska et al.), even for a short time, then molecules other
than carbon dioxide might be able to pass through the gate. On the other hand, a
cation that only moves slightly away from the S8R could completely block methane
from entering the zeolite. Our proposed mechanism may therefore be in better
agreement with the Palomino results than that of Lozinska et al.

It is important to point out, though, that our mechanism and Lozinska’s are not
mutually exclusive: It is entirely possible that CO2 being better at opening the gate
and CO2 being better at entering the gate when it opens by itself (due to thermal
fluctuations) both contribute to carbon dioxide’s ability to diffuse through the
zeolite while other molecules cannot.

4 Conclusions

We have used molecular simulations to examine the behavior of CO2 within
Na-Rho zeolite focusing on the manner by which pore blocking sodium cations
allow this adsorbate to diffuse within the material. Experiments have shown that
while carbon dioxide can explore this zeolite (and other related zeolites), other
small gas molecules such as nitrogen and methane cannot, effectively making
Na-RHO zeolite a very attractive candidate for practical separations. While this
highly selective trapdoor adsorption is thought to be a consequence of both the
cation behavior and the framework flexibility, we focus in this work only on
the former. Despite this shortcoming, our work identifies a novel understanding of
the mechanism at play: rather than coaxing the cation off the blocking position by
interacting via electrostatic forces, a carbon dioxide competes with the cation for the
position at the entrance of the channel and so is able to squeeze by as the cation
moves around its adsorption site (the whole system is at room T). We show that
carbon dioxide has a preferred site at the S8R, which disappears when electrostatic
forces are artificially ignored. This suggest that gases that do not possess a quad-
rupole cannot diffuse through S8Rs because they have no energetic reason for
entering the narrow channel when then the cation is not quite blocking the S8R.

Our work highlights the need for reliable atomistic potentials for other cations
and other adsorbates that would allow this mechanism to be studied further.
Potentials that would allow for a flexible zeolite are also needed. We believe the
potential used here is adequate to shed light onto the behavior, but its inability to
describe motion of the framework is a significant shortcoming. Experimentally it
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has been shown that carbon dioxide but not other gases can penetrate and thereby
distort the zeolite. Our work suggests carbon dioxide’s preference for the S8R
might influence (and even drive) this geometry change, but the available potentials
do not allow us to investigate this hypothesis further. Further improvements in the
available force fields would allow for better understanding of materials with
doorkeeping cations and their interactions with adsorbates with and without a
quadrupole and thus aid the search for microporous materials uniquely suited to
practical CO2 separations.
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