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Supervisor’s Foreword

Whilst plasmas, i.e. partially or fully ionised gases, have to be artificially generated
on Earth (e.g. in fusion devices), they occur naturally in space and a large pro-
portion of ordinary matter in the Universe is assumed to be in the plasma state.
Within our own solar system, we can study plasmas across a huge range of
parameter regimes. Some examples are the extremely dense, high-temperature and
fully ionised plasma in the Sun’s core, the more tenuous outer parts of the solar
atmosphere (solar corona and solar wind) and planetary magnetospheres, in which
fully ionised regions can be coupled to only partially ionised domains, for example
Earth’s ionosphere.

In more tenuous plasmas, collisions between individual particles can be
neglected and only the collective interaction between the charged particles via
electromagnetic forces has to be considered. These collisionless plasmas are the-
oretically described by the Vlasov (collisionless Boltzmann) equation combined
with Maxwell’s equations (for short called the Vlasov-Maxwell equations). This
nonlinear system of equations has been used for many years to study plasma
phenomena such as waves and instabilities, and the theory has been used to
understand and explain activity processes in space and other plasmas.

As in many areas of physics, the basic time-independent (equilibrium) solutions
of the Vlasov-Maxwell equations are important as a foundation for studies of
time-dependent phenomena. Using the mathematical method of characteristics
equilibrium solutions, the Vlasov equation can in principle be found; in practice,
however, this is only possible if the plasma system has spatial symmetries that are
associated with constants of motion. One such solution found is E. Harris in the
early 1960s has been used in a large number of investigations.

The method for finding Vlasov-Maxwell equilibria described above starts with
finding the particle distribution function first and then solves Maxwell’s equations
in a second step to obtain the full solution. In practice, however, one often wants to
carry out these steps in reverse order, i.e. start with given electromagnetic fields and
find consistent particle distribution functions that solve the Vlasov equation. This
turns out to be a formidable problem, beset with mathematical difficulties.
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Building on previous work, Oliver Allanson has in his Ph.D. thesis advanced
this particular subject substantially. Underpinned by rigorous mathematical meth-
ods, he has for the first time found an analytical solution for a distribution function
that is consistent with a magnetic field configuration, that is of particular interest for
space and astrophysical plasmas—a nonlinear force-free magnetic field. The
methodology developed in his thesis does, however, have much wider applications.
Whereas the case just described is given in Cartesian geometry, the thesis also
investigates whether solutions with similar properties can be found in cylindrical
coordinates, which is another geometry that is potentially important for astro-
physical plasmas. Finally, the thesis presents a new family of analytical distribution
functions for asymmetric current sheets, which have applications, for example, to
the interface between the terrestrial magnetosphere and the solar wind, the
magnetopause.

In my opinion, the value of this thesis does not only lie in its contents, but also in
the potential for future work based on the methodology developed in it.

St Andrews, UK
June 2018

Prof. Thomas Neukirch
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Abstract

Vlasov-Maxwell equilibria are characterised by the self-consistent descriptions
of the steady states of collisionless plasmas in particle phase space and balanced
macroscopic forces. We study the theory of Vlasov-Maxwell equilibria in one
spatial dimension, as well as its application to current sheet and flux tube models.

The ‘inverse problem’ is that of determining a Vlasov-Maxwell equilibrium
distribution function self-consistent with a given magnetic field. We develop the
theory of inversion using expansions in Hermite polynomial functions of the
canonical momenta. Sufficient conditions for the convergence of a Hermite
expansion are found, given a pressure tensor. For large classes of DFs, we prove
that non-negativity of the distribution function is contingent on the magnetisation
of the plasma, and make conjectures for all classes.

The inverse problem is considered for nonlinear ‘force-free Harris sheets’. By
applying the Hermite method, we construct new models that can describe sub-unity
values of the plasma beta (flpl) for the first time. Whilst analytical convergence is
proven for all flpl, numerical convergence is attained for flpl ¼ 0:85, and then
flpl ¼ 0:05 after a ‘re-gauging’ process.

We consider the properties that a pressure tensor must satisfy to be consistent
with ‘asymmetric Harris sheets’, and construct new examples. It is possible to
analytically solve the inverse problem in some cases, but others must be tackled
numerically. We present new exact Vlasov-Maxwell equilibria for asymmetric
current sheets, which can be written as a sum of shifted Maxwellian distributions.
This is ideal for implementations in particle-in-cell simulations.

We study the correspondence between the microscopic and macroscopic
descriptions of equilibrium in cylindrical geometry and then attempt to find Vlasov-
Maxwell equilibria for the nonlinear force-free ‘Gold–Hoyle’ model. However, it is
necessary to include a background field, which can be arbitrarily weak if desired.
The equilibrium can be electrically non-neutral, depending on the bulk flows.
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Chapter 1
Introduction

Most important part of doing physics is the knowledge of
approximation.

Lev Landau

1.1 The Hierarchy of Plasma Models

More than 99% of the known matter in the Universe is in the plasma state (Baumjo-
hann and Treumann 1997), by far the most significant material constituent of stellar,
interplanetary, interstellar and intergalactic media. Not only is a deep understand-
ing of plasmas then clearly necessary to understand the physics of our universe,
but plasmas are also of real interest to us on Earth. Nuclear fusion experiments—
and in principle, future power stations—necessarily exploit the plasma state to work,
either using high-temperature plasmas confined by strongmagnetic fields, or plasmas
formed by the laser ablation of a solid fuel target.

Plasmas are often known as the ‘fourth’ state of matter, lying after the ‘third’,
and more familiar gaseous state. At a temperature above 100,000 K, most matter
exists in an ionised state, however plasmas can exist at much lower temperatures
should ionisation mechanisms exist, and if the density is sufficiently low (Krall and
Trivelpiece 1973). Figures1.1a, b display some examples from the rich array of
plasma environments in temperature-density scatter plots; from the relatively cool
and diffuse plasmas of interstellar space, to the incredibly dense and hot plasmas of
stellar and laboratory fusion. Since there is such variety in the physical conditions
able to sustain plasmas, the ‘plasma state’ may best describe collective behaviours,
the characteristics that persist despite the range of physical conditions that can sus-
tain plasmas (we see from Fig. 1.1b that even the free electrons in metals can be
considered, or modelled, as a plasma). Matter is in a plasma state when the degree of
ionisation is sufficiently high that the dynamical behaviour of the particles is dom-
inated by electromagnetic forces (Fitzpatrick 2014), and this can even be the case
for ionisation levels as low as a fraction of a percent (Peratt 1996). Whilst many of
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2 1 Introduction

Fig. 1.1 The variety of
plasma conditions and
environments
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these plasmas possess some shared tendencies and behaviours, it is not possible to
capture all the detailed physics of the entire variety of plasma processes with one
particular mathematical toolkit or model. Not only may some models fail to capture
certain aspects of the physics by virtue of the approximations made, but they may
be inefficient, or in fact insoluble when applied in practice. Hence, plasma physics
is a discipline with a rich variety of perspectives and methods. Within each of these
paradigms we make certain approximations and ordering assumptions, in order to
capture the essence of the problem at hand.

1.1.1 Single Particle Motion

Taking the viewpoint of particulate matter as the fundamental approach, then a ‘full’
description of plasmas is found by solving the (Lorentz) equation of motion of each
individual particle, written in classical form as

Fs(x(t), v(t); t) = qs(E(x, t) + v(t) × B(x, t)), (1.1)

with the force, Fs , on a test particle of species s, of charge qs , at position x, and
with velocity v, when under the influence of electric and magnetic fields, E and B.
One can in principle integrate in time to calculate the trajectory of the particle for all
future times (e.g. see Vekstein et al. 2002),

x(t) =
∫ t

t0

v(t ′)dt ′,

for v(t0) some initial condition. However, in all but the simplest electromagnetic
field geometries these integrals may not even be able to be written down, and/or
one might have to resort to numerical methods to calculate the trajectory. One more
complication is the effect of the charged particles on the electromagnetic fields, E
and B, and this shall be discussed in Sect. 1.1.2.

If a plasma is sufficiently magnetised it has small parameters

rL
L

� 1,
1/�

τ
� 1,

for rL and � the characteristic values of the Larmor radius and gyrofrequency of
individual particle gyromotion respectively, and L and τ the characteristic length
and time scales upon which the electromagnetic fields vary. In such a case there is
a well understood treatment for particle orbits, namely Guiding Centre theory (e.g.
see Northrop 1961; Littlejohn 1983; Cary and Brizard 2009). Guiding centre theory
models particle motion as a superposition of rapid gyromotion and a comparitively
slow secular drift (e.g. seeMorozov and Solov’ev 1966). This gyromotion is depicted
in Fig. 1.2, reproduced from Northrop (1963); in which the notation ρ and ρ are used
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Fig. 1.2 A figure from
Northrop (1963). This figure
depicts the gyromotion about
the local magnetic field of a
positively charged particle.
Image copyright: American
Geophysical Union
(reproduced with
permission)

Fig. 1.3 A representation of
the different models,
approaches and phenomena
in plasma physics. Image
copyright: Dominique
Escande: From his
presentation at the EPS
Conference on Plasma
Physics 2015 in Lisbon
(reproduced with
permission)

for the gyroradius ‘vector’ and magnitude respectively (in contrast to the use of rL
herein); r is the particle position; and R is the guiding center position, such that
r = R + ρ. The local gyromotion is governed by the conservation (to lowest order)
of the magnetic moment,

μ = msv
2
⊥

2|B| ,

for ms the mass of a particle, and v2
⊥ the square magnitude of the particle velocity

normal to the local magnetic field. This theory is very useful for heuristic under-
standing of individual particle motion, and for the study of ‘test particles’ embedded
in a system of interest (e.g. see Threlfall et al. 2015; Borissov et al. 2016), however
not for ‘building up’ a theory that models the evolution of the particles and electro-
magnetic fields self-consistently. In a situation in which many particles are present,
the self-consistent modelling of all of the particles would in practice require knowl-
edge of the individual particle interactions via the electromagnetic fields of mixed
origin (microscopic/self-generated and macroscopic/external fields), and in princi-
ple collisions, which is mathematically unwieldy. However, we note here that it is
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possible—whilst unconventional—to use N -body particle dynamics to study collec-
tive effects in plasma physics (e.g. see Pines and Bohm 1952; Escande et al. 2016),
including the recent work of Dominique Escande and collaborators, who have taken
an N-body approach to ‘re-deriving’ physical phenomena, such as Debye shielding
and Landau Damping (see Fig. 1.3 for a representation of how their work ‘sidesteps’
the more traditional routes).

1.1.2 Kinetic Theory

To move forward we require a mean-field/statistical formalism that allows for a
self-consistent set of evolution equations, involving the quantities that both describe
the particles and electromagnetic fields. The electromagnetic fields are governed by
Maxwell’s equations, and given in free space as

∇ · E = σ

ε0
, (1.2)

∇ × E = −∂B
∂t

, (1.3)

∇ × B = μ0 j + 1

c2
∂E
∂t

, (1.4)

∇ · B = 0, (1.5)

for σ and j the charge and current densities respectively (e.g. see Griffiths 2013).
The electric permittivity and magnetic permeability in vacuo are given by ε0 and μ0

respectively, and they are related by c2 = 1/(μ0ε0), for c the speed of light in free
space. The electric and magnetic fields are defined as derivatives of the electrostatic
scalar potential, φ, and the magnetic vector potential, A, according to

E = −∇φ − ∂A
∂t

, (1.6)

B = ∇ × A. (1.7)

The potential functions are themselves ‘sourced’ by σ and j , respectively,

φ(x, t) = 1

4πε0

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
σ(x′, tr )
|x − x′| d

3x ′, (1.8)

A(x, t) = μ0

4π

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
j(x′, tr )
|x − x′| d

3x ′, (1.9)

for tr = t − |x − x′|/c the retarded time (Griffiths 2013). The charge and current
densities can be calculated by takingmoments of the 1-particle distribution functions
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(DF), fs(x, v; t) for particle species s (e.g. see Krall and Trivelpiece 1973; Schindler
2007), over velocity space

σ(x, t) =
∑
s

qsns =
∑
s

qs

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
fsd

3v, (1.10)

j(x, t) =
∑
s

qsnsV s =
∑
s

qs

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
v fsd

3v, (1.11)

with ns andV s the number density and bulk velocity of particle species s respectively.
Hereafter we us the notation d3x and d3v to imply triple integration over all position
and velocity space respectively,

∫
d3x :=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
d3x,

∫
d3v :=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
d3v,

unless otherwise stated. The DF, fs , represents the number density of particles in a
microscopic volume of six-dimensional phase-space at a particular time, such that

fs(x, v; t)d3xd3v = # of particles in volume d3x centred on x

with velocities in the range (v, v + dv).

Note that one can instead use the Klimontovich-Dupree description to exactly
describe the particles using Dirac-Delta functions in phase space, but this approach
is really only useful for formal considerations (Krall and Trivelpiece 1973).

Now we are in a position to imagine the ‘machine’ behind nature’s self-consistent
evolution of the particles and fields in the plasma, in the following way:

Statistical description: fs(x, v, tr ) is found by ‘coarse graining’ (or ‘ensemble
averaging’) the exact positions and velocities of the particles of species s at time
tr (Krall and Trivelpiece 1973; Fitzpatrick 2014)

Source terms: σ(x, tr ) and j(x, tr ) are then found by integrating
fs(x, v, tr ) over velocity space (Eqs. 1.10 and 1.11)

Potentials: φ(x, t) and A(x, t) are found by integrating σ(x, tr ) and j(x, tr )
(Eqs. 1.8 and 1.9)

Forces: Fs(t) is found by differentiating the φ(x, t) and A(x, t) (Eqs. 1.6 and 1.7)
Velocities: v(t + δt) is found by integrating the Lorentz force,

Fs(x, t), for δt some infinitesimal time (Eq.1.1)
Positions: x(t + 2δt) is found by integrating v(t + δt)
Statistical description: fs(x, v, t + 2δt) is found by. . . and so the cycle

continues.
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To put these ideas on a firm mathematical footing, we need to understand the
evolution of fs in phase space, (x, v; t). The DF evolves according to an equation
typically known as the Boltzmann equation,

∂ fs
∂t

+ v · ∂ fs
∂x

+ qs
ms

(E + v × B) · ∂ fs
∂v

= ∂ fs
∂t

∣∣∣∣
c

, (1.12)

with the right-hand side (RHS) of the equation describing the evolution of the DF
according to ‘collisions’ (e.g. binary Coulomb collsions, see Fitzpatrick 2014). Prop-
erly, this equation is specifically named after the form of collision operator assumed,
e.g. Boltzmann, Fokker-Planck or Lenard-Balescu (Schindler 2007). If the collision
operator chosen is a function of fs alone, then theBoltzmann equation andMaxwell’s
equations form a closed set, and the plasma is said to be in a kinetic regime Schindler
(2007). In its general form, the Boltzmann equation can be obtained by integrating
the Liouville equation for the N-particle DF in 6N dimensional phase-space,

dFs(x1, . . . , xN , v1, . . . , vN ; t)
dt

= 0,

over the positions and velocities of all but one particle (Krall and Trivelpiece 1973)
(made possible by the fact that particles of a particular species are identical (Tong
2012)). This also involves some assumptions made about the weak nature of the
particle coupling in the plasma, characterised by

g = 4π

3�p
= 1

neλ3
D

� 1,

for the small parameter g, i.e. a weakly coupled plasma (Schindler 2007; Krall and
Trivelpiece 1973). Here, �p is the plasma parameter, equal to the number of elec-
trons in the Debye sphere, a sphere of radius λD beyond which charge density inho-
mogeneities are shielded (Krall and Trivelpiece 1973; Fitzpatrick 2014). The small
parameter g is used as the ordering parameter in an infinite hierarchy of statisti-
cal equations—the so called BBGKY hierarchy—for which closure is achieved by
neglecting terms of the desired order in gs (Krall and Trivelpiece 1973). The standard
collisional framework is achieved by neglecting terms of order g2 and above.

1.1.3 Quasineutrality

It is a feature common tomanyweakly coupled plasmas that typical spatial variations,
L , are much larger than a quantity known as the Debye radius, λD ,

ε = λD

L
� 1, s.t. λD =

√
ε0kBTe
ne2

,
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for kB Boltzmann’s constant, Te the electron temperature, and e the fundamental
charge. In such a situation the plasma is considered to be quasineutral (Schindler
2007), typically taken to mean that

ni = ne ⇐⇒ σ = 0. (1.13)

Note that this is in an asymptotic sense, and formally does not imply that ∇ · E van-
ishes, see e.g. Freidberg (1987), Schindler (2007), Harrison and Neukirch (2009b).
To see how this works, first notice that if one normalises Poisson’s equation by

φ = φ0φ̃, ∇ = 1

L
∇̃, σ = en0σ̃,

for characteristic valuesφ0, L and n0 of the scalar potential, length scales and number
densities, then one obtains

ε2∇̃2φ̃ = −σ̃,

for φ0 = kBT0/e, and ε = λD/L . In the quasineutral limit the ε2 parameter is van-
ishingly small. If one then makes an expansion of small parameters

φ̃ =
∞∑
n=0

ε2nφ̃n, σ̃ =
∞∑
n=0

ε2nσ̃n,

then one sees that formally, for λD/L � 1,

σ̃0 = 0,

∇̃2φ̃0 = −σ̃1.

...

As such, letting σ = 0 is an approximation to the quasineutral limit, valid to first
order.

It should also be mentioned that quasineutrality implies that the characteristic
frequencies are much less than the (electron) plasma frequency,

ωp =
√

nee2

ε0me
. (1.14)

Quoting Freidberg (1987) directly: “For any low-frequency macroscopic charge sep-
aration that tends to develop, the electrons have more than an adequate time to
respond, thus creating an electric field whichmaintains the plasma in local quasineu-
trality”. The assumption of quasineutrality is consistent with neglecting the displace-
ment current in Maxwell’s equations (Schindler 2007). These ordering assumptions
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give the quasineutral ‘low-frequency/pre-Maxwell’ equations that are commonly
used in plasma physics

∇ × B = μ0 j , Ampère’s Law

∇ × E = −∂B
∂t

, Faraday’s Law

∇ · B = 0 Solenoidal constraint,

and (
∇ · E = σ

ε0
, Gauß’ Law, s.t.

ε0∇ · E
σ

� 1

)
.

In practice, Gauß’ Law is often not considered as a ‘core equation’ in plasma physics,
and is implicitly ‘replaced’ by σ = 0. Faraday’s law is also often ‘reformulated’ by
eliminating the electric field using some version of Ohm’s law (e.g. see Schindler
2007; Kulsrud 1983; Freidberg 1987; Krall and Trivelpiece 1973; Fitzpatrick 2014).

1.1.4 Fluid Models

Fluid models are the next step in the hierarchy after kinetic models, and are charac-
terised by variables that depend only on space and time. Hence, the fluid equations
are calculated by integrating over velocity space: taking velocity space moments of
the kinetic equation at hand (Schindler 2007). This process was laid down in the
seminal work of Braginskii (1965), giving the collisional transport (or Braginskii)
equations

∂ρe

∂t
+ ρe∇ · V e = 0, Electron mass transport

ρe
dV e

dt
+ ∇ pe + ∇ · πe − σe(E + V e × B) = Ffr,e, Electron mom. transport

3

2

dpe
dt

+ 5

2
pe∇ · Ve + πe : ∇V e + ∇ · qe = We, Electron energy transport

for electrons, and

∂ρi

∂t
+ ρi∇ · V i = 0, I on mass transport

ρi
dV i

dt
+ ∇ pi + ∇ · πi − σi (E + V i × B) = −Ffr,i , I on mom. transport

3

2

dpi
dt

+ 5

2
pi∇ · V i + πi : ∇V i + ∇ · q i = We, I on energy transport
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for ions, using the notation from Fitzpatrick (2014). In these equations ρs = msns
defines the mass density, ps = 1

3Tr(P s) the scalar pressure for species s, defined by
the trace of the pressure tensor of species s

Pi j,s = ms

∑
s

∫
fswisw jsd

3v s.t. Pi j =
∑
s

Pi j,s,

for ws = v − V s the velocity of a particle relative to the bulk flow, and for which

πs = P s − ps I,

is the stress/generalised viscosity tensor. The vector qs ,

qs = ms

2

∫
w2

sws fsd
3v,

is the heat flux density. Finally, Ffr,s andWs are found by taking the momentum- and
energy- moments of the collision operator (the RHS of the Boltzmann equation), and
represent the collisional friction force, and collisional energy change, respectively.

These are the two-fluid equations. They describe the spatio-temporal evolution
of the moments of the ion and electron DFs resepctively, and these are coupled by
the EM fields. In their current form they are not closed: there are more unknowns
than equations (Freidberg 1987). It is not the purpose of this introduction to explore
the subtle details of fluid closure, two-fluid, single fluid and magnetohydrodynamic
(MHD) theories. For details on these topics see Schindler (2007), Kulsrud (1983),
Freidberg (1987), Krall and Trivelpiece (1973), and Fitzpatrick (2014).

1.2 Collisions in Plasmas

1.2.1 Collisional Plasmas

The collisionality of a plasma species is characterised in time and space by two
quantities (Fitzpatrick 2014): the collision rate/frequency, νs ; and the mean free path
λmfp,s , such that

νs ≈
∑
s ′

νss ′ ,

λmfp,s = vth,s/νs,

Ti = Te =⇒ νe ∼
√
mi

me
νi .
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That is to say that the total collision rate for a species is made up of the collision
rates with all species (including its own), the mean free path measures the typical
distance a particle travels between collisions, and that in the case of an isothermal
plasma the collision rate for electrons is much greater than that for ions. The thermal
velocity, vth,s , gives the energy of random particle motion Erandom = msv

2
th,s , such

that in thermal equilibrium kBTs = Erandom (Schindler 2007). We note here that a
collision is classified as a ≥90◦ scattering event, and as such a particle may have
numerous ‘small-angle’ scattering (i.e. <90◦) events before a successful ‘collision’
(Fitzpatrick 2014).

A collision dominated plasma is one for which the mean free path is much smaller
than typical plasma length scales, L

λmfp � L ,

with the opposite limit indicating a collisionless plasma. The collisional frequency
typically has magnitude

νe ∼ ln�p

�p
ωp,

(Fitzpatrick 2014) and as such

νe � ωp ⇐⇒ �p  1 ⇐⇒ g � 1.

That is to say that weakly coupled plasmas are those for which collisions are not
able to prevent plasma oscillations from regulating charge separation. In the case of
a sufficiently collisional plasma characterised by

1

νs

∂〈vk fs〉
∂t

� 〈vk fs〉,
λmfp,s∇〈vk fs〉 � 〈vk fs〉,

λmfp,se|E| � kBTs

for which 〈vk fs〉 is a k-th order velocity moment of the DF, then the plasma is in a
local thermal equilibrium (e.g. see Cowley 2003/4), characterised by a temperature
Ts(x, t), and the DF can be written as a Maxwellian of the form

fs(x, v; t) = ns(x; t)
(2πkBTs(x; t)/ms)3/2

e−ms (v−V s (x;t))2/(kBTs (x;t)), (1.15)

to lowest order. ThisDFdescribes a plasma specieswith local number densityns(x, t)
and local bulk velocity V s(x, t). The DF in Eq. (1.15) is clearly not an equilibrium
solution, since the number density, bulk flow and temperature explicitly depend
on time. Given sufficient time, Boltzmann’s H-Theorem implies that collisions will
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always attempt to drive a system towards thermal equilibrium (e.g. see Grad 1949;
Brush 2003), defined by a DF of the form

fs(v) = ns
(2πkBTs/ms)3/2

e−ms (v−V s )
2/(kBTs ). (1.16)

The DF in Eq. (1.16) is of the same form as that in Eq. (1.15), but is now independent
of space and time. The temperature is constant and a non-zero bulk flow is permitted.

1.2.2 Collisionless Plasmas

The statement that collisionless plasmas are those for which λmfp  L is rather
truistic, and not particularly helpful in physical terms. Using the definition of the
plasma parameter (Fitzpatrick 2014),

�p = 4π

n1/2e

(√
ε0Te
e

)3

,

we see that the collision frequency behaves like

νe ∼ e4ne ln�p

4πε20m
1/2T 3/2

e

= e4

4πε20m
1/2

ne

T 3/2
e

ln

(
4π

n1/2e

(√
ε0Te
e

)3
)

.

Hence, dense and low temperature plasmas are more likely to be collisional, whereas
diffuse and high temperature plasmas tend to be collisionless. In such situations, it
is reasonable to neglect the RHS of the Boltzmann equation (Eq. (1.12)), giving the
Vlasov equation (Vlasov 1968),

∂ fs
∂t

+ v · ∂ fs
∂x

+ qs
ms

(E + v × B) · ∂ fs
∂v

= 0. (1.17)

In closed form this equation can be written, using Hamilton’s equations (Tong 2012),
as

d fs
dt

= ∂ fs
∂t

+ ∂ fs
∂x

· dx
dt

+ ∂ fs
∂v

· dv
dt

= 0,

= ∂ fs
∂t

+ ∂ fs
∂x

· ∂Hs

∂ ps
− ∂ fs

∂ ps
· ∂Hs

∂x
= 0,

= ∂ fs
∂t

+ { fs, Hs}PB = 0. (1.18)

Here, the Hamiltonian is given by Hs , the canonical momenta by ps , and the brackets
{ , }PB are Poisson brackets, whose definition can be inferred from above. We can go
from using velocity variables in the first line, to momentum variables in the second
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since d ps = msdv. The Vlasov equation essentially states that the DF is conserved
along a particle trajectory in phase-space (Schindler 2007), since the characteristics
of the Vlasov equation are the single particle equations of motion,

d

dt
x(t) = v(t),

d

dt
v(t) = qs

ms
(E + v × B).

The solutions of this equation are in principle completely reversible in time, and
hence entropy conserving (Krall and Trivelpiece 1973).

1.3 Collisionless Plasma Equilibria

A Vlasov equilibrium is obtained when the DF satisfies

∂ fs
∂t

= 0 =⇒ {Hs, fs}PB = 0. (1.19)

This statement does notmean that there are nomacroscopic particle flows or currents;
density, pressure or temperature gradients; or even heat fluxes, for example. That is
to say that the moments of the DF can still have gradients in space. Rather, it is an
equilibrium in the sense of a particle distribution. This means that the value of the
DF at each individual point in phase-space is independent of time.

It is a standard result in classical mechanics that constants of motion, Cs(x(t),
p(t)), (that do not depend explicitly on time) are in ‘involution’ with/commute with
the Hamiltonian (Tong 2004),

{Hs,Cs}PB = 0. (1.20)

Using this result, and the linearity of the Poisson bracket, we see that any function
of the constants of motion is a Vlasov equilibrium DF, since

{Hs, fs(C1s, . . . ,Cns)}PB =
n∑
j=1

∂ fs
∂C js

{
Hs,C js

}
PB =

n∑
j=1

∂ fs
∂C js

× 0 = 0.

(1.21)
We can also show that the reverse is true, namely that any Vlasov equilibrium

DF is a function of the constants of motion. First consider a Vlasov equilibrium
DF fs(G1,G2, . . . ,Gn) for arbitrary linearly independent functions G j (x(t), p(t)).
Then by linearity of the Poisson Bracket,

{Hs, fs}PB =
n∑
j=1

∂ fs
∂G j

{
Hs,G j

}
PB . (1.22)



14 1 Introduction

This summust be zero for an equilibrium, and since the G j are linearly independent,
that implies that each of the Poisson brackets must be zero independently. Hence the
G j must be constants of motion and so

“ fs is a V lasov equilibrium DF ⇐⇒ fs is a f unction of the constants o f motion”.

It is clear that a Vlasov equilibrium DF also satisfies the time-dependent Vlasov
equation itself Schindler (2007), since

d fs
dt

= ∂ fs
∂t

+ { fs, Hs}PB = 0 + 0. (1.23)

Using this fact, one can construct time-dependent solutions for ‘nonlinear’
propagating structures to the Vlasov equation by using a frame transformation
(Schamel 1979). Then one can solve for Vlasov equilibria in the wave frame, e.g. the
famous BGK modes (Bernstein et al. 1957) and Schamel’s theory (Schamel 1986),
amongst other examples, e.g. see Abraham-Shrauner (1968), Ng and Bhattacharjee
(2005), Vasko et al. (2016), Hutchinson (2017).

1.3.1 The ‘Forward’ and ‘Inverse’ Approaches

As described above, one can easily construct equilibrium solutions of the Vlasov
equation provided that at least one constant of motion has been identified. Any
differentiable function of the constants of motion is an equilibrium solution of the
Vlasov equation (Schindler 2007), and is physicallymeaningful provided all velocity
moments exist,

∣∣∣∣
∫

vi
1v

j
2v

k
3 fs dv1 dv2 dv3

∣∣∣∣ < ∞∀ i, j, k ∈ 0, 1, 2, . . . ,

and the function is non-negative over all phase-space,

fs(x, v) ≥ 0 ∀ x, v.

Whilst such a function may well satisfy these mathematical/microscopic conditions,
the next question to ask is of the macroscopic electromagnetic fields that are consis-
tent with such a function. Through Eqs. (1.10) and (1.11), we see that the distribution
of particles in phase-space determines the charge and current densities respectively,
in configuration-space. These charge and current densities are consistent with cer-
tain electric and magnetic fields through Maxwell’s equations (Eqs. (1.2)–(1.3)).
Hence, a full understanding of the macroscopic and microscopic physics of a plasma
necessitates a self-consistent ‘solution’ of the Vlasov-Maxwell (VM) system.
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From these considerations, it should be clear that there are two possible routes to
follow, in the absence of a comprehensive self-consistent theory, namely

• ‘Inverse’: Given some or all of the macroscopic fields (φ, A), can we find a self-
consistent DF, fs? (e.g. see discussions in Alpers 1969; Channell 1976; Mynick
et al. 1979; Greene 1993; Harrison and Neukirch 2009b; Belmont et al. 2012;
Allanson et al. 2016)

• ‘Forward’: Given a DF, fs , can we find some set of self-consistent macroscopic
fields, (φ, A)? (e.g. see discussions in Grad 1961; Harris 1962; Sestero 1964,
1965; Lee and Kan 1979a; Schindler 2007; Kocharovsky et al. 2010; Vasko et al.
2013)

The forward approach is the one that is most frequently seen in the literature. This is
partly due,mathematically, to the fact that this involves solving differential equations,
as opposed to the often less tractable inversion of integral equations in the case of
the inverse approach. But also, as argued in Sect. 1.2.1, it is reasonable on physical
grounds to assume that—for sufficiently collisional (Cowley 2003/4) and ‘not-too-
turbulent’ plasmas (Alpers 1969)—that the DF is (locally) Maxwellian, and then to
proceed with the forwards approach from thereon.

In the case of collisionless plasmas, there are an infinite class of equilibrium
solutions in principle, and hence the forwards approach would have to be predicated
on some prior knowledge of the DF. In-situ observations of DFs have only recently
become available with spatio-temporal resolution on kinetic scales, for example the
NASAMultiscale Magnetospheric (MMS) mission (Hesse et al. 2016), and the ESA
candidate mission: Turbulent Heating ObserveR (THOR) (Vaivads et al. 2016).

Due to the ubiquitous nature and reasonable validity of the MHD approach in
many environments, and the relative wealth and long history of magnetic field mea-
surements, the equilibrium structures and dynamics of electromagnetic fields are
better understood and more often used as the fundamental basis, or object, of plasma
physics discussions and theory. Hence, it is of use, and necessity, to consider the
inverse approach.

1.3.2 Motivating Translationally Invariant Vlasov-Maxwell
(VM) Equilibria

1.3.2.1 Current Sheets

In a planar geometry, localised electric currents in a plasma are known as current
sheets: frequently considered to be the initial state of wave processes (Fruit et al.
2002), instabilities (Schindler 2007), reconnection (Yamada et al. 2010) and various
dynamical phenomena in laboratory (Beidler and Cassak 2011), space (Zelenyi et al.
2011) and astrophysical (DeVore et al. 2015) plasmas. The formation of current sheets
is ubiquitous in plasmas. They can form between plasmas of different origins that
encounter each other, such as at Earth’s magnetopause between the magnetosheath
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Fig. 1.4 A diagrammatic representation of the local structure of a magnetic reconnection event,
and the ‘electron diffusion region’, in which the electrons decouple from the magnetic field. Image
copyright: NASA MMS-SMART Investigation, (reproduced with permission)

plasmas and magnetospheric plasmas (e.g. see Dungey 1961; Phan and Paschmann
1996); or they can develop spontaneously in magnetic fields that are subjected to
random external driving (e.g. see Parker 1994), such as in the solar corona.

As to be introduced in Sect. 1.3.3, localised electric currents are an important
ingredient for magnetic reconnection: acting as a signature of sheared magnetic
fields, and reconnection electric fields (e.g. see Biskamp 2000; Hesse et al. 2011).
As per Poynting’s theorem (Poynting 1884), with S = μ−1

0 E × B, and neglecting
electric field energy,

∂B2/((2μ0)

∂t
= −∇ · S − j · E,

intense current sheets are ideal locations for magnetic energy conversion and dissi-
pation (Birn and Hesse 2010; Zenitani et al. 2011). The dominant mechanisms that
release the free energy include magnetic reconnection, and various plasma instabil-
ities.

The currents themselves are usually considered synonymouswith a stressed and/or
anti-parallel magnetic field configuration, since in a quasineutral plasma (or a plasma
in equilibrium), the current density is given by

j = 1

μ0
∇ × B.
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Fig. 1.5 a represents the magnetic field lines for the Harris sheet magnetic field. b shows the
normalised Bx , jy , and scalar pressure p for the Harris sheet equilibrium characterised by jy =
dBx/dz, and dp/dz = − jy Bx . Image’s copyright: M. G. Harrison’s Ph.D thesis (Harrison 2009),
(reproduced with permission)

Perhaps the most used current sheet equilibrium model is represented in Fig. 1.5: the
Harris sheet (Harris 1962),

B = B0

(
tanh

( z

L

)
, 0, 0

)
,

1

μ0
∇ × B = j = B0

μ0L

(
0, sech2

( z

L

)
, 0

)
, (1.24)

dp

dz
= − jy Bx =⇒ p = B2

0

2μ0
sech2(z/L),

with L the current sheet ‘width’, normalising z; B0 the asymptotic values of the
magnetic field, normalising Bx ; jy0 = B0/(μ0L) and p0 = B2

0/(2μ0) normalising
the current density and scalar pressure respectively. The maximum shear of Bx is
localised in the region−L < z < L , and this is where we see the maximum values of
the current density: the current sheet itself. A Vlasov equilibrium DF self-consistent
with the Harris sheet is given by

fs = n0s

(
√
2πvth,s)3

e−βs (Hs−uys pys ), (1.25)

with βs = 1/(msv
2
th,s); n0s a constant with dimensions of spatial number density

(and not necessarily representing the number density itself); and with uys a bulk flow
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parameter, that in this case coincides with the bulk flow itself, i.e. uys = Vys . Note
that one can derive other equilibrium DFs for the Harris sheet, e.g. the Kappa (κ) DF
(Fu and Hau 2005).

1.3.2.2 Harris-Type Distribution Functions (DFs)

If we were to ‘generalise’ the DF in Eq. (1.25) to one that supports two current
density components (and hence a DF self-consistent with a different magnetic field),
then we have

fs = n0s

(
√
2πvth,s)3

e−βs (Hs−uxs pxs−uys pys ).

One particularly nice feature of a DF that is a function of (Hs − uxs pxs − uys pys),

fs = fs(Hs − uxs pxs − uys pys)

is that the bulk flows are directly related to the flow parameters, i.e. Vxs = uxs and
Vys = uys . This is seen by the following argument. If we define Hs = Hs − us · ps
for

us = (uxs, uys, 0), ps = (pxs, pys, 0),

then fs = fs(Hs) and

Hs = ms

2
U2

s − ms

2
u2
s − qs(Ax + Ay) s.t. U s = v − us .

If we now consider the first-order moment of fs by U s , the result must be zero since
fs only depends on U2

s , through Hs . Consequently

∫
U s fs(Hs)d

3Us = 0 =
∫

v fsd
3v

︸ ︷︷ ︸
nsV s

− us

∫
fsd

3v

︸ ︷︷ ︸
nsus

,

and hence V s = us = (uxs, uys, 0).

1.3.2.3 Other Applications

Current sheets are by no means the only application of the work on translationally
invariant VM equilibria in this thesis. As indicated in Sect. 1.3.6, translationally
invariant VM equilibria are of use for numerous other applications in plasma physics.
Examples include nonlinear waves (e.g. see Bernstein et al. 1957; Ng et al. 2012);
electron holes, ion holes and double layers (e.g. see Schamel 1986); and colllisionless
shock fronts (e.g. see Montgomery and Joyce 1969; Burgess and Scholer 2015).
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1.3.3 Magnetic Reconnection

Magnetic reconnection is a ubiquitous phenomenon in solar, space, astrophysical and
laboratory plasmas, and now considered to be “among the most fundamental unifying
concepts in astrophysics, comparable in scope and importance to the role of natural
selection in biology.” (Moore et al. 2015): see authoritative discussions of ‘classical’
reconnection in Schindler (2007, Priest and Forbes (2000), Biskamp (2000), Hesse
et al. (2011); on modern theories of ‘fast’ reconnection and ‘turbulent/stochastic
reconnection’ in Lazarian et al. (2015); Loureiro and Uzdensky (2016); and ‘frac-
tal reconnection’ in Shibata and Tanuma (2001). The literature on the topic is vast
and there are many complex concepts to consider regarding the precise mathemati-
cal definition (e.g. see Hesse and Schindler 1988; Priest 2014) of reconnection and
its physical behaviour in different dimensions and plasma environments. The phe-
nomenon also appears in physical environments as numerous as the number of plasma
environments themselves, e.g. solar corona, planetary and pulsar magnetospheres,
magnetic dynamos, gamma-ray bursts, geomagnetic storms and sawtooth crashes
in tokamaks. However, there are common features that are agreed upon:

Topology: There is a change in the topology of the magnetic field, caused by
processes in non-ideal (E + V × B �= 0) regions of plasma with strong localised
electric currents and parallel electric fields.

Diffusion region: This region is termed the diffusion region (e.g. see Hesse et al.
2001; Schindler 2007; Hesse et al. 2011), and is represented locally, and in an
idealised geometry in Fig. 1.4.

Decoupling: Ideal MHD breaks down within the diffusion region, kinetic physics
is dominant, and the plasma decouples from the magnetic field, enabling stored
magnetic energy to be released to the physical medium.

Hence, magnetic reconnection explicitly couples (via the transmission of energy) the
macroscopic ideal MHD picture of relatively slow-evolving and large scale neutral,
conducting fluids to the small-scale, short-timescale and non-neutral kinetic plasma
physics. Reconnection can of course occur in many different ways. It could occur in
one of following ways

Incidental: One physical phenomenon out of many (and not necessarily domi-
nant), occurring in a dynamical plasma, e.g. small scale reconnection in a turbulent
plasma (e.g. Lazarian and Vishniac 1999);

Steady-state: A continuous reconnection phenomenon that generates kinetic
energy with no significant macroscopic structural changes, e.g. the Sweet-Parker
(Parker 1957; Sweet 1958) and Petschek models (Petschek 1964);

Instability: The result of an instability, i.e. the system was perturbed from equi-
librium, reconnection was initiated, and the system does not return to the initial
equilibrium, e.g. the tearing mode instability (e.g. see Furth et al. 1963; Drake
and Lee 1977).



20 1 Introduction

1.3.3.1 Approximate Equilibria In Particle-in-Cell (PIC) Simulations

Magnetic reconnection processes can critically depend on a variety of length and
time scales, for example on lengths of the order of the Larmor orbits and below that
of the mean free path (e.g. see Biskamp 2000; Birn and Priest 2007). In such situa-
tions a collisionless kinetic theory could be necessary to capture all of the relevant
physics, and as such an understanding of the differences between using MHD, two-
fluid, hybrid, Vlasov and other approaches is of paramount importance, for example
see Birn et al. (2001, 2005) for discussions of this problem in the context of one-
dimensional (1D) current sheets: the ‘Geospace Environmnetal Modelling (GEM)’
and ‘Newton’ challenges.

In the absence of an exact collisionless kinetic equilibrium solution, one has to
use non-equilibrium DFs to start kinetic simulations, without knowing how far from
the true equilibriumDF they are. In such cases, non-equilibrium driftingMaxwellian
distributions are frequently used (see Swisdak et al. 2003; Hesse et al. 2005; Pritchett
2008;Malakit et al. 2010; Aunai et al. 2013; Hesse et al. 2013; Guo et al. 2014; Hesse
et al. 2014; Liu and Hesse 2016 for examples),

fMaxw,s = ns(x)

(
√
2πvth,s)3

exp

[
− (v − V s(x))2

2v2
th,s

]
, (1.26)

with vth,s a characteristic value of the thermal velocity, ns(x) the number density,
and V s the bulk velocity of species s. These DFs can reproduce the same moments
ns, V s (and p = nskBTs , typically with ni = ne) necessary for a fluid equilibrium,
maintained by the gradient of a scalar pressure,

∇ p = j × B.

However, the DF, fMaxw,s, in Eq. (1.26) is not an exact solution of the Vlasov equation
and hence does not describe a kinetic equilibrium. The macroscopic force balance
self-consistent with a quasineutral Vlasov/kinetic equilibrium is maintained by the
divergence of a rank-2 pressure tensor, Pi j = Pi j (Ax (z), Ay(z)) (e.g. see Channell
1976; Mynick et al. 1979; Schindler 2007), according to

∇ · P = j × B.

As explained inAunai et al. (2013) on the subject of PIC simulations, the fluid equilib-
rium characterised by a drifting Maxwellian can evolve to a quasi-steady state “with
an internal structure very different from the prescribed one”, and as demonstrated
in Pritchett (2008), undesired electric fields, “coherent bulk oscillations”, and other
perturbations may form, in nature’s attempt to maintain force-balance. Figure1.6 is
taken from Pritchett (2008), and demonstrates this phenomenon. Each of the panels
relates, in principle, to a 1D MHD equilibrium characterised by dp/dx = jy Bz , in
which the PIC simulation is intialised with a DF of the form of that in Eq. (1.26).
Panel (a) demonstrates how the initial condition is self-consistent with a magnetic
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Fig. 1.6 A figure from Pritchett (2008). Profiles in x across a 1D current layer: a magnetic field
Bz(x) and density n(x) from a PIC simulation at ‘time’ 20 (red curves), and from the fluid equi-
librium (black curves); b electric field Ex (x) from a PIC simulation at ‘time’ 20; c current density
Jy(x) determined from a PIC simulation at ‘time’ 20 carried by the electrons (blue curve), ions
(green curve), and the electrons and ions combined (red curve) and the fluid current density cor-
responding to the magnetic field (black curve). Image copyright: American Geophysical Union
(reproduced with permission)

field profile and number density that are very close to those prescribed by the fluid
equilibrium. However, panel (b) shows an electric field that forms due to the non-
equilbrium initial state, and panel (c) demonstrates the resultant disparity between
the exact/‘fluid’ current density (black), and that derived from the PIC simulation
(red).
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The knowledge of exact VM equilibria thus provides the chance to initialise PIC
simulations in full confidence, with the intended macroscopic quantities reproduced.
Exact VM equilibria would also permit analytical and numerical studies of the lin-
ear phase of collisionless instabilities (Gary 2005), such as the tearing mode (e.g.
see Drake and Lee 1977; Quest and Coroniti 1981a). This sort of exact analysis is
formally out of reach without an exact initial condition since—as discussed by e.g.
Pritchett (2008); Aunai et al. (2013)—a non-exact Vlasov solution creates perturba-
tions itself, by virtue of not being an equilibrium.

Of course, one could make an argument on the basis of ordering arguments that
a non-exact equilibrium DF such as that in Eq. (1.26) allows the study of the non-
linear (and perhaps the linear) phase dynamics of plasma instabilities, such as the
tearing mode. This sort of argument would be based on the assumption that a drifting
Maxwellian such as that in Eq. (1.26) is sufficiently close to a VM equilibrium so
as not to significantly affect the physical processes. However, it is generally unclear
how far such an initial condition is from exact equilibrium.

1.3.4 Forward Approach for One-Dimensional (1D) VM
Equilibria

To give context and to demonstrate the contrast, I will briefly introduce the ‘forward
approach’ in VM equilibria, as used and discussed in e.g. Grad (1961), Harris (1962),
Sestero (1967), Lee andKan (1979a), Schindler (2007). In these—and other—works,
a self-consistent solution to theVMsystem is foundfirst by specifying the equilibrium
DF as a function of the constants of motion. For example, a 1D system with ∂/∂x =
∂/∂y = 0, has the Hamiltonian, and two canonical momenta as the constants of
motion,

Hs(φ(x), v) = Hs(z, v) = msv
2/2 + qsφ(z), (1.27)

pxs(Ax (x), v) = pxs(z, vx ) = msvx + qs Ax (z), (1.28)

pys(Ay(x), v) = pys(z, xy) = msvy + qs Ay(z), (1.29)

These quantities are constants of motion in the sense that for an individual particle
trajectory (the characteristics of the Vlasov equation) parameterised by t ,

d

dt
Hs(z(t), v(t)) = d

dt
pxs(z(t), v(t)) = d

dt
pys(z(t), v(t)) = 0,

where the d/dt is in fact an operator involving derivatives over phase-space,

d

dt
= ∂

∂t
+ dz

dt

∂

∂z
+ dv

dt
· ∂

∂v
.
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Using these relationships, it is now clear how one can justify writing the equilib-
rium DF as a function of the constants of motion

fs(x, v) = fs(z, v) = fs(Hs(z, v), pxs(z, v), pys(z, v)),

and a solution of Vlasov’s equation. Note how the second equality above demon-
strates that the non-uniqueness of the correspondences,

z = z(Hs, pxs, pys),

v = v(Hs, pxs, pys), (1.30)

could play a role in this problem, see e.g. Grad (1961), Belmont et al. (2012) for
discussions of this problem.

In order to now satisfy the equilibrium Maxwell equations, scalar and vector
potentials must be found that satisfy the following,

−ε0
d2

dz2
φ(z) = σ(φ(z), Ax (z), Ay(z)) =

∑
s

∫
fs(Hs, pxs, pys) d

3v,

− 1

μ0

d2

dz2
Ax (z) = jx (φ(z), Ax (z), Ay(z)) =

∑
s

∫
vx fs(Hs, pxs, pys) d

3v,

− 1

μ0

d2

dz2
Ay(z) = jy(φ(z), Ax (z), Ay(z)) =

∑
s

∫
vy fs(Hs, pxs, pys) d

3v.

Since the RHS of the above equations are in principle now known functions of
(φ, Ax , Ay), the problem of finding a VM equilibrium has been reduced to solving
3 coupled (ordinary) differential equations, subject to boundary conditions, e.g. the
asymptotic values of the potentials at z = ±∞.

1.3.4.1 A Route Through the Forward Problem

To demonstrate how the forward problem works, we give an example for a form of
DF that could be used,

fs = n0s

(
√
2πvth,s)3

e−βs Hs (ase
βsuxs pxs + bse

βsuys pys )

for the constants as and bs . This form is chosen as it is directly relatable to those
considered in e.g. Harris (1962) and Schindler (2007), and has properties like that
discussed in Sect. 1.3.2.2. With this form of DF, the charges and current densities
become
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σ = −ε0
d2φ

dz2
=

∑
s

qse
−qsβsφ

[
nase

qsβsuxs Ax + nbse
qsβsuys Ay

]
, (1.31)

jx = − 1

μ0

d2Ax

dz2
=

∑
s

qsnasuxse
−qsβs (φ−uxs Ax ), (1.32)

jy = − 1

μ0

d2Ay

dz2
=

∑
s

qsnbsuyse
−qsβs (φ−uys Ay), (1.33)

for nas = n0sas exp(u2xs/(2v
2
th,s)) and nbs = n0sbs exp(u2ys/(2v

2
th,s)). If we nowmake

the assumption of quasineutrality—on the level of σ(φ, Ax , Ay) = 0—then from
consideration of Eq. (1.31), we see that one possible solution for φ = φ(Ax , Ay)

is as

φ(Ax , Ay) = 1

βe + βi
(βi uxi + βeuxe)Ax + const. = 1

βe + βi
(βi uyi + βeuye)Ay + const.,

(1.34)
when

βi uxi Ax = βi uyi Ay,

βeuxe Ax = βeuye Ay .

Upon substituting Eq. (1.34) into Eqs. (1.32) and (1.33), the problem has now been
reduced to solving two second order nonlinear ODEs in Ax and Ay ,

( jx =) − 1

μ0

d2Ax

dz2
= jx0e

αx Ax ,

( jy =) − 1

μ0

d2Ay

dz2
= jy0e

αy Ay ,

for constants αx ,αy, jx0 and jy0. For examples/discussions of solutions to ODEs
such as these, see Harris (1962), Schindler (2007), Tassi et al. (2008), Vasko et al.
(2013). Note that Harris treats a problem like this in 1D, but with only one current
density component; Schindler treats a 2D problem with only one current density
component; Tassi treats a 2D problem in an MHD context and exploiting Lie Point
symmetries, but with some 1D solutions; and Vasko also treats the 2D problem with
a group theory approach, and only one current density component.

1.3.5 Inverse Approach for 1D VM Equilibria

As demonstrated by the above example, the ‘forward approach’ necessarily restricts
the choice of electromagnetic fields that one can describe in a VM equilibrium, by
the solution of differential equations. The inverse approach bypasses this restriction,
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since it begins with the prescription of the (electro-)magnetic fields themselves. The
counterpoint to this—since the calculation of charge and current densities involves
definite integration and hence a loss of information—is that there are in principle
an infinite number of possible VM equilibrium DFs for a given macroscopic fluid
equilibrium, e.g. see Wilson and Neukirch (2011) for an explicit demonstration of
this feature.

The inverse approach is used in Alpers (1969), Channell (1976), Greene (1993),
and Harrison and Neukirch (2009a) to obtain analytical solutions of VM equilibria,
and in Mynick et al. (1979), Belmont et al. (2012) for numerical ones. All of these
works consider 1DCartesian coordinates, which are very frequently used in the study
of waves, instabilities and reconnection (e.g. see Schindler 2007). In this work, and
without loss of generality, z is taken to be the spatial coordinate on which the system
depends, and so∇ = (0, 0, ∂/∂z). Thus the particle Hamiltonian, Hs , and two of the
canonical momenta pxs and pys are conserved, see Eqs. (1.27–1.29).

1.3.5.1 Existence of a Vlasov Equilibrium

Resembling discussions in e.g. Bertotti (1963), Channell (1976), Mynick et al.
(1979), Greene (1993), Schindler (2007), Harrison and Neukirch (2009b), we now
consider the theory that describes macroscopic equilibria in one dimension, given
the existence of a Vlasov equilibrium DF. The first velocity moment of the Vlasov
equation in Cartesian coordinates

∫ ∞

−∞
v

(
v · ∂ fs

∂x
+ qs

ms
(E + v × B) · ∂ fs

∂v

)
d3v = 0,

will, after a little algebra, yield the macroscopic/fluid equation of motion

∇ · P = σE + j × B.

In our 1D equilibrium geometry Bz = jz = Ex = Ey = 0 automatically, for

B = ∇ × A, E = −∇φ,

and so this implies that force-balance is maintained by

d

dz
Pzx = 0,

d

dz
Pzy = 0,

d

dz
Pzz = σEz + jx By − jy Bx . (1.35)
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We note here that this type of equilibrium is known as a tangential equilibrium
(e.g. see Mottez 2004), and is characterised by

B · ∇ = 0, V s · ∇ = 0,

i.e. the magnetic field and bulk plasma flows are normal to the gradient direction(s).
If we now consider the dynamic component of the pressure tensor,

Pzz =
∑
s

ms

∫ ∞

−∞
v2
z fs(Hs(v

2,φ), pxs(vx , Ax ), pys(vy, Ay)) d
3v,

then we see that Pzz = Pzz(φ, Ax , Ay). Note that the pressure tensor is usually found
by taking moments by wzs = vz − Vzs . But since fs is only a function of vz through
Hs (which is a function of v2

z ), then automatically the vz moment of fs is zero, and
so the bulk flow Vzs = 0, giving wzs = vz . Using this knowledge of the form of Pzz
gives

d

dz
Pzz = dφ

dz

∂Pzz
∂φ

+ d Ax

dz

∂Pzz
∂Ax

+ d Ay

dz

∂Pzz
∂Ay

, (1.36)

by the chain rule. A term-by-term comparison of Eq. (1.35) with Eq. (1.36) yields

σ = −∂Pzz
∂φ

,

jx = ∂Pzz
∂Ax

,

jy = ∂Pzz
∂Ay

,

and so we see that the existence of a Vlasov equilibrium implies the existence of a
potential function, Pzz , fromwhich the charge and current densities can be calculated.

The above equations demonstrate that a reasonable first step in an attempt to find
a VM equilibrium DF self-consistent with a given set of electromagnetic fields is to
first find a Pzz function that is compatible. For example, in the case of a force-free
field for which j × B = 0, there is a simple procedure one can follow to calculate an
expression for Pzz(Ax , Ay) (for details relevant to force-free fields, see e.g. Harrison
and Neukirch (2009b) and Chap. 3).

1.3.5.2 Equilibrium DF

The Vlasov equation can be solved by any differentiable function fs(Hs, pxs, pys),
with the additional ‘physical’ constraints being that fs is also normalisable, non-
negative and has velocity moments of arbitrary order (Schindler 2007). In line with
numerous previous works in 1D (Sestero 1967; Alpers 1969; Channell 1976; Harri-
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son and Neukirch 2009a; Abraham-Shrauner 2013), the work in this thesis on VM
equilibria in Cartesian coordinates (Chaps. 2, 3 and 4) shall consider DFs of the form

fs = n0s

(
√
2πvth,s)3

e−βs Hs gs(pxs, pys), (1.37)

for gs an as yet unknown function, to be determined. This form is chosen for the DF
for the following reasons:

Integrability: e−βs Hs scales like e−v2/(2v2th,s ), implying that for a reasonable gs func-
tion, all moments of fs will be integrable, as necessary,

Solving integrals: The e−v2/(2v2th,s ) dependence lends itself to not only being inte-
grable, but to having known definite integrals whenmultiplied bymany functions,

Physical meaning: As discussed in Sect. 1.2.1, the unique equilibrium DF for a
collisional plasma is aMaxwellian.As such it is clear how thisVlasov/collisionless
equilibrium DF relates to a collsional equilibrium DF,

Elegance: A zero-flow Maxwellian DF is reproduced when gs = 1.

1.3.5.3 Scalar and Vector Potentials

As demonstrated in Sect. 1.3.4.1, the combination of quasineutrality,

ni (Ax , Ay,φ) = ne(Ax , Ay,φ),

and aDF of the form in Eq. (1.37) results in a scalar potential that is implicitly defined
as a function of the vector potential, e.g. Harrison and Neukirch (2009b, Schindler
(2007), Tasso and Throumoulopoulos (2014), and Nakariakov (2015):

φqn(Ax , Ay) = 1

e(βe + βi )
ln(ni/ne). (1.38)

In Chaps. 2, 3 and 4, and as in e.g. Channell (1976), parameters will be chosen such
that ni = ne as functions over (Ax , Ay) space, and so ‘strict neutrality’ is satisfied,
implying φqn = 0. This choice of parameters is mathematically equivalent to the
condition used to derive the ‘micro-macroscopic’ parameter relationships, which
will be discussed later.

It has been commented in e.g. Grad (1961), Bertotti (1963), Nicholson (1963),
Sestero (1966), Mynick et al. (1979), Attico and Pegoraro (1999), and Harrison and
Neukirch (2009b), that the 1D VM equilibrium problem is analagous to that of a
particle moving under the influence of a potential; with the relevant component of
the pressure tensor, Pzz , taking the role of the potential; (Ax , Ay) the role of position
and z the role of time. This analogy is demonstrated by
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d2Ax

dz2
= −μ0

∂Pzz
∂Ax

, (1.39)

d2Ay

dz2
= −μ0

∂Pzz
∂Ay

. (1.40)

The LHS of the above equations take the role of acceleration, and the RHS take
the role of force, as the gradient of a potential. Through this analogy, the task of
finding a consistent Pzz function—as discussed in Sect. 1.3.5.1—can be reformu-
lated as finding a ‘potential function’ Pzz , such that a ‘particle trajectory’ follows
(Ax (z), Ay(z)).

1.3.5.4 The Inverse Problem

Channell (1976) developed the theory of the inverse problem in a general sense, with
the assumption of zero scalar potential from the offset. It is shown therein that a DF
of the form of Eq. (1.37) implies that the relevant component of the pressure tensor,
Pzz , is a 2-D integral transform of the unknown function gs , given by

Pzz(Ax , Ay) = βe + βi

βeβi

n0s
2πm2

sv
2
th,s

×
∫ ∞

−∞

∫ ∞

−∞
e−βs((pxs−qs Ax )

2+(pys−qs Ay)
2)/(2ms )gs(pxs, pys)dpxsdpys . (1.41)

This equation together with Eqs. (1.39) and (1.40) define the inverse problem at
hand, viz. ‘for a given macroscopic equilibrium described by (Ax (z), Ay(z)), can we
find a self-consistent Pzz(Ax , Ay) according to Eqs. (1.39) and (1.40), and can we
then invert the integral transform in Eq. (1.41) to solve for the unknown function gs?’
Observe that the LHS of Eq. (1.41) is species-independent, whereas the RHS seems
not to be. In fact, the consistency of this equation for both ions and electrons is one
more condition that is implicit in ‘Channell’s method’, and is formally compatible
with the condition of strict neutrality, φ = 0.

1.3.5.5 Inversion by Fourier Transforms

As written, Eq. (1.41) is almost exactly a 2D convolution of the functions e−(t21+t22 )/2

and g(t1, t2), for a convolution of functions h1(t1, t2) and h2(t1, t2) defined as

h1 � h2 (τ1, τ2) =
∫ t1=∞

t1=−∞

∫ t2=∞

t2=−∞
h1(τ1 − t1, τ2 − t2)h2(t1, t2)dt2dt1,

=
∫ t1=∞

t1=−∞

∫ t2=∞

t2=−∞
h1(t1, t2)h2(τ1 − t1, τ2 − t2)dt2dt1. (1.42)



1.3 Collisionless Plasma Equilibria 29

There is a useful result regarding the Fourier transform,

FT[h](ω) = 1√
2π

∫ ∞

−∞
e−i tωh(t)dt,

of a convolution. The convolution theorem states that

FT[h1 � h2](ω1,ω2) = FT[h1](ω1)FT[h2](ω2),

(Zayed 1996). That is to say that the Fourier transform of a convolution of functions
is the product of the transforms of the individual functions. By making some simple
changes of variables, A = A/qs , Eq. (1.41) can be manipulated into the form of
Eq. (1.42),

Pzz

(
Ax

qs
,
Ay

qs

)
= Pzz(Axs,Ays) = βe + βi

βeβi

n0s
2πm2

sv
2
th,s

e−βs (p2xs+p2ys )/(2ms ) � gs .

(1.43)
As such, and using the convolution theorem, gs can—at least formally—be written

gs(pxs, pys) = βeβi

βe + βi

2πm2
sv

2
th,s

n0s
IFT

[
FT[Pzz](ω1,ω2)

FT
[
e−βs (t21+t22 )/(2ms )

]
(ω1,ω2)

]
, (1.44)

for IFT the inverse Fourier transform,

IFT[h](t) = 1√
2π

∫ ∞

−∞
eitωFT[h](ω)dω.

Note that the t1, t2,ω1,ω2 variables used in Eq. (1.44) are in a sense dummyvariables,
and do not in fact represent time/frequency in this example, but were used for con-
sistency with the rest of the discussion. For dimensional consistency the conjugate
variables to the pxs, pys variables should have dimensions of “1/momentum”.

This Fourier transformmethod is used in Channell (1976); Harrison and Neukirch
(2009a) to derive VM equilibrium DFs for 1Dmacroscopic equilibria, and in a sense
this is the most natural method for the problem. At least, one can always formally
write down the solution. However, there are two main difficulties:

Integrability: Since the Fourier transform of a Gaussian is a Gaussian (Erdelyi
et al. 1954), part of the RHS of Eq. (1.44) is an exponential of a positive quadratic.
Formally, the integrability of the RHS places serious restrictions on the nature of
FT[Pzz : (ω1,ω2)], and hence the validity of themethod.We note here that despite
this formal restriction on the use of the Fourier transform, it is in effect possible
to bypass this problem by inspection. For example, in Neukirch et al. (2009),
Abraham-Shrauner (2013) the gs function is found ‘by inspection’/using known
integrals, that give the same result that the (invalid) Fourier transform method
would have.
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Integrals: It may be that certain Pzz functions in Eq. (1.43) have no analytic
expression for the Fourier transform, or that the argument of the RHS of Eq. (1.44)
has no analytic expression for the inverse Fourier transform.

1.3.6 Previous Work on VM Equilibria

In this thesis we shall consider theory and examples of exact self-consistent solutions
of the VM system for magnetised plasmas, including some non-trivial solutions
of Poisson’s equation such that the plasma can be either neutral or non-neutral,
in Chap. 5. Our focus will be on translationally invariant equilibria in Cartesian
geometry in Chaps. 2, 3 and 4, and on rotationally symmetric equilibria in cylindrical
geometry inChap. 5. These solutions can either describe equilibria of theVMsystem,
such that the one-particle DF for species s, fs , satisfies the steady-state Vlasov
equation in particle phase space (x, v),

d fs(x, v; t)
dt

= 0 = ∂ fs(x, v; t)
∂t

,

or as aforementioned in Sect. 1.3, nonlinear wave solutions that satisfy the above
equation when Galilei-transformed to the wave frame (e.g. see Bernstein et al. 1957;
Abraham-Shrauner 1968), by making a transformation

x → x − ut,

v → v − u,

for u the phase velocity of the travelling wave.
Knowledge of exact solutions to the VM system are of value in the study of a

wide variety of phenomena in collisionless plasmas, and a comprehensive review
and description of all the potential applications is beyond the scope of this thesis.
However, we shall survey the theoretical works most relevant to ours, and some
applications. Broadly speaking there are three approaches in the literature: on elec-
trostatic and un-magnetised; electrostatic and magnetised; and neutral magnetised
plasmas.Of course these ‘streams’ have some overlap, and theoretically the boundary
between them is ‘woolly’ by the Lorentz invariance of Maxwell’s equations. Specifi-
cally, sinceGalilean frame transformations, u—in the non-relativistic scenariowhere
u � c—can send

E′ = 0 → E = u × B, or (1.45)

B′ = 0 → B = − 1

c2
u × E, (1.46)

(e.g. see Griffiths 2013; Landau and Lifshitz 2013). We interpret Eqs. (1.45) and
(1.46) as follows. Consider two coordinate systems: the stationary laboratory, K ,
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and one moving at a constant velocity u relative to the laboratory, K ′. In these
two coordinate systems, the electromagnetic fields are denoted without and with
primes, respectively. Then Eq. (1.45) says that if in the frame K ′ the electric field
is measured to be E′ = 0, then it measured to be given by u × B in the K frame.
Likewise, Eq. (1.46) says that if in the frame K ′ the magnetic field is measured to
be B′ = 0, then it measured to be given by c−2u × E in the K frame.

Not only that, but the differences/distinctions between the following frequently
assumed states:

• ‘strict neutrality’ (e.g. see Grad 1961; Channell 1976),

φ = 0 =⇒ σ = 0;

• quasineutrality, i.e. σ = 0 to first order, as introduced in Sect. 1.1.3), and typically
achieved in the literature (e.g. see Harrison and Neukirch 2009b) by

φ = φ(A(x)) s.t. σ = 0;

• non-neutrality (e.g. see Davidson 2001 for the authoritative text),

φ = φ(x) s.t. σ �= 0,

are subtle (e.g. see Bertotti 1963; Greene 1993; Schindler 2007). Given these con-
siderations, we shall make some crude distinctions, and given that the electrostatic
literature is relatively self-contained and seemingly the one that gained maturity the
quickest, we describe this first.

The seminal work on electrostatic solutions of the VM system in the absence of
a magnetic field is that of Bernstein et al. (1957), in which an inductive method is
developed that calculates theDF of trapped electrons in a nonlinear travelling electro-
static wave (Bernstein-Greene-Kruskal (BGK) waves), for a given 1D scalar poten-
tial, φ, in the wave frame. This work was developed upon in particular by Schamel
(1971, 1972a)with particular emphasis on the necessary condition of positivity of the
DF. Other theoretical works in a 1D geometry include those on ion-acoustic waves
(e.g. see Schamel 1972b, ion/electron holes and double layers (e.g. see Schamel
1986, 2000), generalisations and extensions of BGK theory (e.g. see Lewis and
Symon 1984; Karimov and Lewis 1999), and ‘three-dimensional BGK waves’ (e.g.
see Ng and Bhattacharjee 2005; Ng et al. 2006). One particular application of this
theory is the phenomena of collisionless shocks (e.g. see Burgess and Scholer 2015;
Marcowith et al. 2016), relevant in astrophysical, laboratory, and laboratory astro-
physical contexts (e.g. see Montgomery and Joyce 1969; Forslund and Shonk 1970;
Forslund and Freidberg 1971; Eliasson and Shukla 2006; Spitkovsky 2008; Stockem
et al. 2014; Cairns et al. 2014; Svedung Wettervik et al. 2016).

There exists a similarly rich literature for magnetised quasi-neutral and non-
neutral solutions (the majority of which is quasi-neutral), much of which is collected
in the articles by Roth et al. (1996), Zelenyi et al. (2011), and Artemyev and Zelenyi
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(2013). Perhaps the most ubiquitous work in the context of current sheets is that
of Harris (1962), in which it is demonstrated that the DF consistent with the 1D
Harris current sheet and for a plasma with zero scalar potential can, by using a post-
hoc Galilean transformation, also describe a non-neutral configuration (the Harris
sheet equilibrium is considered in the relativistic case in Hoh 1966). The founda-
tional work in the realm of magnetised and electrostatic collisionless shocks is that
of Sagdeev (1966), in which analogies are drawn between the equations describing
solitary waves, and themotion of a particle in a potential: the Sagdeev potential. Gen-
eral theoretical treatments on quasi-neutral and non-neutral VM equilibria include,
for

• 1D plasmas: Tonks (1959), Sestero (1964, 1966, 1967), Lam (1967), Abraham-
Shrauner (1968), Lemaire and Burlaga (1976), Lee and Kan (1979), Mitchell
and Kan (1979), Greene (1993), Mottez (2003), Yoon et al. (2006), Balikhin and
Gedalin (2008), Artemyev (2011),

• Two-dimensional (2D) plasmas: Hewett et al. (1976), Mynick et al. (1979), Kan
(1979), Otto and Schindler (1984), Muschietti et al. (2000), Schindler and Birn
(2002), Eliasson et al. (2006), Suzuki and Shigeyama (2008), Kocharovsky et al.
(2010), Schindler (2007), Ng et al. (2012), and Vasko et al. (2013),

• With applications to magnetospheres for 1D plasmas: Davies (1968), (1969), Su
and Sonnerup (1971), Kan and Akasofu (1979), Stern (1981a, b), Rogers and
Whipple (1988), and DeVore et al. (2015),

• With applications to magnetospheres for 2D plasmas: Kan et al. (1979), Lee and
Kan (1979a), Birn et al. (2004).

For theoretical treatments that treat the plasma as strictly neutral (φ = 0), seeGrad
(1961, Hurley (1963), Nicholson (1963), Schmid-Burgk (1965), Moratz and Richter
(1966), Lerche (1967), Alpers (1969), Channell (1976), Bobrova and Syrovatskii
(1979), Lakhina and Schindler (1983), Attico and Pegoraro (1999), Bobrova et al.
(2001), Fu and Hau (2005), Yoon and Lui (2005), Harrison and Neukirch (2009a),
Neukirch et al. (2009), Panov et al. (2011), Wilson and Neukirch (2011), Belmont
et al. (2012), Janaki and Dasgupta (2012), Abraham-Shrauner (2013), Ghosh et al.
(2014), Kolotkov et al. (2015), Allanson et al. (2015), and Allanson et al. (2016).

We should indicate that there also exists a substantial literature on magnetised
neutral and non-neutralVMsolutions in cylindrical geometry (for exampleflux tubes,
mono-energetic beams, laboratory pinches and astrophysical jets), with Davidson
(2001), Vinogradov et al. (2016), and Allanson et al. (2016) and references therein,
as well as Chap. 5 providing a suitable starting point for an interested reader.

1.4 Thesis Motivation and Outline

The importance of understanding the equilibriumstates permitted by agiven system is
common tomost physical disciplines, and this is—broadly speaking—themotivation
for the work in this thesis. Specifically, I shall consider electromagnetic structures
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that—by the balance of electromagnetic, inertial, and thermal pressure forces—
confine the mass and electric currents in a plasma. These equilibrium configurations
will be considered in Cartesian and cylindrical geometries, namely current sheets
and flux tubes. There are many potential applications for current sheet and flux
tube equilibria, and these shall be discussed in Chaps. 3, 4, and then 5 respectively.
However, the main/most timely application of the work in this thesis could be to
studies of magnetic reconnection, for which localised currents are a pre-condition.

1.4.1 Outline of the Thesis

This thesis is structured as follows:

• Chapter 2: The Use of Hermite Polynomials for the Inverse Problem in Nne-
Dimensional Vlasov-Maxwell Equilibria
By expressing the unknown functions, gs , of the canonical momenta as (infinite)
expansions of Hermite polynomials, we establish a one-to-one correspondence
between the coefficients of expansion, and those of a Maclaurin expansion of the
pressure tensor. We then find a sufficient condition for the convergence of the
Hermite representation, contingent on the Maclaurin expansion coefficients of the
pressure tensor. For certain classes of DFs, we prove results on the non-negativity
of the gs function, and make a conjecture for all other classes.

• Chapter 3: One-Dimensional Nonlinear Force-Free Current Sheets
Using pressure transformation techniques, we find a new pressure tensor self-
consistent with the force-free Harris sheet magnetic field, for any value of the
plasma beta, and crucially sub-unity values that could not be accessed before.
Then we use the Hermite polynomial expansion technique established in Chap. 2
to calculate a Vlasov equilibriumDF consistent with the low beta force-free Harris
sheet. Next, the Hermite expansion is proven to be analytically convergent, using
the sufficient condition derived in Chap. 2, and we confirm that the DF satisfies the
conjectured condition for non-negativity of the Hermite representation of a DF,
also from Chap. 2.

We conduct a preliminary analysis on the physical properties of the DF, but
encounter numerical difficulties for the parameter range of interest when attempt-
ing to make plots for βpl < 0.85. In response to this difficulty, we ‘re-gauge’ the
vector potential, allowing for numerical convergence of the Hermite expansions
for much lower values of the plasma beta, βpl = 0.05. As before, we establish the
necessary convergence and non-negativity of the DF, and present new plots.

• Chapter 4: One-Dimensional Asymmetric Current Sheets
We first consider the mathematical problem for a pressure tensor consistent with
an ‘asymmetric’ current sheet equilibrium. Using these results, we present possi-
ble examples of pressure tensors self-consistent with asymmetric equilibria, and
discuss the inverse problem. It becomes apparent that for certain representations,



34 1 Introduction

the problem is not analytically soluble, and numerical techniques are necessary.
Using representations for the pressure tensor that give soluble solutions, we present
exact analytic VM equilibria for an asymmetric Harris sheet with guide field, and
a preliminary analysis

• Chapter 5: Neutral and Non-neutral Flux Tube Equilibria
This is a departure from the previous work on translationally invariant systems.
First we consider the problem of constructing one-dimensional VM equilibria in
cylindrical geometry, and establish the fluid equation(s) of motion from the Vlasov
equation in cylindrical geometry. We include an analysis of the microscopic origin
of the macroscopic forces in the resultant equation of motion.
Next, there is discussion on the attempts to construct VM equilibria for the exact
Gold-Hoyle model, a force-free flux tube. These attempts do not yield solutions,
and there seems to be good physical reasoning behind themathematical difficulties.
By making a small change to the macroscopic magnetic field, we are able to find
a consistent VM equilibrium for the Gold-Hoyle model embedded in a uniform
background field. We present a preliminary analysis of the equilibrium, including
a consideration of multiple maxima in velocity space, and the non-neutrality of
the macroscopic configuration.

• Chapter 6: Discussion
We briefly summarise the main results from this thesis, and place them in the con-
text of current plasma physics research. In particular we focus on open questions
and avenues that merit further investigation.
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Chapter 2
The Use of Hermite Polynomials
for the Inverse Problem in
One-Dimensional Vlasov-Maxwell
Equilibria

Boltzmann’s is still the most beautiful equation in the world, but
Vlasov’s isn’t too shabby!

Cédric Villani

Much of the work in this chapter is drawn from Allanson et al. (2015, 2016, 2018).

2.1 Preamble

In this chapter, the aim is to make a contribution to the theory of exact equilibrium
solutions to the Vlasov-Maxwell system, in 1D Cartesian geometry. In particular, we
consider a solutionmethod for the inverse problem in collisionless equilibria, namely
that of calculating a VM equilibrium for a given macroscopic (fluid) equilibrium.
Using Jeans’ theorem (Jeans 1915), the equilibrium DFs are expressed as functions
of the constants of motion, in the form of a stationary Maxwellian multiplied by
an unknown function of the two conserved canonical momenta. In this case it is
possible to reduce the inverse problem to invertingWeierstrass transforms, which we
achieve by using expansions over Hermite polynomials. A sufficient condition on the
pressure tensor is found which guarantees the convergence of the candidate solution
when satisfied, and as a result the existence of velocity moments of all orders. This
condition is obtained by elementary means, and it is clear how to put it into practice.
We also argue that for a given pressure tensor for which our method applies, there
always exists a non-negative DF for a sufficiently magnetised plasma. This argument
is in fact proven for certain classes of DFs, and in the form of conjecture for others.

© Springer Nature Switzerland AG 2018
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2.2 Introduction

2.2.1 Hermite Polynomials in Fluid Closure

f = n(x, t)

(
√
2πkB T (x, t)/m)3

e−w(x,t)2/(2kB T (x,t)/m)

∞∑

n=0

a(n)(x, t)H(n)(w),

for H(n) the n-dimensional Hermite “polynomial”, and in fact a rank-n tensor,
defined by

H(n)(w) = (−)n

W(w)

∂n

∂wi1 . . . ∂win

W(w),

s.t. W(w) = 1

(2π)3/2
e−w2/(2kB T (x,t)/m), (2.1)

with each of the in-indices running over {x, y, z}. Note that—by the commutativity
of partial derivatives—the labelling of the n-dimensional Hermite polynomials is
somewhat degenerate, e.g. H (2)

xy = H (2)
yx = wxwy .

In this representation a(n)H(n) is the scalar product of two rank-n tensors, with
the a ‘coefficients’ relating directly to the velocity moments of the DF, and as such
they neatly ‘index’ the relationship between the particle distributions and certain
macroscopic quantities:

a(0) = 1 ⇐⇒
∫

f d3v = n(x, t),

a(1) = (0, 0, 0) ⇐⇒
∫

wi f d3v = 0

a(2)
i j = πi j/p, ⇐⇒ πi j = Pi j (x, t) − δi j p(x, t)

a(3)
i jk = Si jk/(pvth) ⇐⇒

∫
wiw jwk f d3v = Si jk(x, t).

...

for δi j the Kronecker delta and Si jk the heat flux tensor. By substituting this expanded
form of the DF into Boltzmann’s equation (Eq. (1.12)), multiplying by Hn(w) and
then integrating over velocity space d3v, Grad obtains an infinite hierarchy of differ-
ential equations that describe the spatial-temporal evolution of the a(n) coefficients,
and in turn the moments of the DF. By truncating to third order (i.e. up to Si jk),
Grad then develops the “13-moment” equations for the variables n, V , T,πi j and
Si = pvtha

(3)
i j j .
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Grad uses Hermite polynomials (or generalisations thereof) in gas kinetic theory
because of their orthogonality properties with respect to Gaussian functions, and this
is what allows each term of order n in the expansion of the DF to be directly related
to nth order velocity-space moments of the DF. It is for this very reason that Hermite
polynomials have a long history in plasma physics.

2.2.2 Hermite Polynomials in VM Plasma Theory

The most typical approach in collisionless and weakly collisional plasma kinetic
theory is to use expansions in ‘scalar’ Hermite polynomials, defined by

Hn(v) = (−1)nev2 dn

dvn
e−v2 , (2.2)

∫ ∞

−∞
Hm(v)Hn(v)e−v2dv = δmn2

nn!√π. (2.3)

Hermite polynomials are a complete orthogonal set of polynomials for f ∈ L2(R,

e−v2dv) (Arfken and Weber 2001). That is to say that for any piecewise continuous
f , such that ∫ ∞

−∞
| f |2e−v2dv < ∞, (2.4)

then there exists an (infinite) expansion in Hermite polynomials,
∑∞

n=0 cn Hn(v),
such that

lim
k→∞

∫ ∞

−∞

∣∣∣∣ f −
k∑

n=0

cn Hn(v)

∣∣∣∣
2

e−v2dv = 0. (2.5)

where as Eqs. (2.2) and (2.4) are the standard definitions relevant to the use of
Hermite polynomials, it will be of use in this work to consider the scaled func-
tion Hn(v/(

√
2vth,s)), since Maxwellian DFs scale with e−v2/(2v2th,s ), as opposed to

e−v2/(v2th,s ). This slight modification results in changes to Eqs. (2.2), (2.3), (2.4) and
(2.5), easily achieved by substitution.

2.2.2.1 Hermite Polynomials in Velocity Space

As intimated above, expansions in Hermite polynomials are a natural choice for rep-
resenting the velocity space structure of a DF in equilibrium and near-equilibrium
plasmas, be the (near-)equilibrium collisional and hence (near-)thermal; or collision-
less, and hence not necessarily (near-)thermal at all. Their suitability is epitomised
by Eq. (2.3), and is demonstrated as follows.
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First consider a quite general DF, written explicitly as a function over phase space
(x, v; t), and of the form

fs(x, v, t) = ns(x, t)

(
√
2πvth,s(x, t))3

e−v2/(2(vth,s (x,t)2))

×
∑

i j

ai j (x, t)Hi

(
vx√

2vth,s(x, t)

)
Hj

(
vy√

2vth,s(x, t)

)
, (2.6)

where we define a time and space dependent thermal velocity by vth,s(x, t) =
kB Ts(x, t)/ms . Expansions such as these are used in Hewett et al. (1976); Cam-
poreale et al. (2006); Suzuki and Shigeyama (2008), for example. This form of the
DF implies that a velocity space moment with respect to the (i, j)th-order Hermite
polynomials is directly related to the (i, j)th-order coefficient of expansion,

∫
fs Hi

(
vx√
2vth,s

)
Hj

(
vy√
2vth,s

)
d3v ∝ ns(x, t)ai jk(x, t).

A DF expanded in Hermite polynomials in the manner of Eq. (2.6) also possesses
the feature that ‘normal’ velocity moments yield simple results, since the velocity
space moments can be determined using the following definite integral (Gradshteyn
and Ryzhik 2007), ∫ ∞

−∞
vne−v2 Hn(v)dv = n!√π. (2.7)

For example, the charge density and current density are directly related to the ai j

coefficients according to

σ(x, t) ∝
∑

s

qsnsa00,

jx (x, t) ∝
∑

s

qsnsvth,sa10,

jy(x, t) ∝
∑

s

qsnsvth,sa01.

2.2.2.2 Hermite Polynomials in Momentum Space

The usefulness of Hermite polynomial expansions is not necessarily restricted to
writing them as explicit functions of velocity space. If one considers VM equilibria,
then as aforementioned the equilibriumDF is a function of phase space (x, v) through
its dependence on the constants of motion. In such circumstances one could write the
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DF as a stationary Maxwellian multiplied by an expansion in Hermite polynomials
in the canonical momenta. For example, in the case of a 1D plasma such that ∇ =
(0, 0, ∂/∂z), one could write

fs = n0s

(
√
2πvth,s)3

e−βs Hs
∑

i j

ai j Hi

(
pxs√

2msvth,s

)
Hj

(
pys√

2msvth,s

)
, (2.8)

(e.g. see Abraham-Shrauner (1968), Channell (1976) for expansions such as these).
Despite the fact that theMaxwellian factor, e−βs Hs , is a function of v2, and theHermite
polynomials are functions of the momenta, one can still exploit the orthogonality
properties of the Hermite polynomials. To see this, we can use the identity mentioned
in Weisstein (2017)

Hj (x + y) = (H + 2x) j , s.t. H j := Hj (y). (2.9)

The identity in Eq. (2.9), and proven below, is useful since we can associate X =
x + y with p js = msv j + qs A j . This allows us to re-write the DF from Eq. (2.8),
and to separate the dependence on velocity and vector potential. Since the vector
potential is a function of space (z) only, the phase-space variables have also been
‘separated’ allowing us to use results such as those explained in Sect. 2.2.2.1.

We now prove this identity, since it seems fairly non-standard, and the above
reference cites personal communication as the source:

Proof Wefirst make use of the generating function for Hermite polynomials (Arfken
and Weber 2001)

exp(2Xt − t2) =
∞∑

j=0

Hj (X)
t j

j ! . (2.10)

By substituting X = x + y into Eq. (2.10) we see that

exp(2(x + y)t − t2) =
∞∑

j=0

Hj (x + y)
t j

j ! ,

= exp(2xt)
∞∑

i=0

Hi (y)
t i

i ! .

Then, expanding exp(2xt) as an infinite series implies that

∞∑

i=0

∞∑

k=0

(2xt)k

k!
Hi (y)t i

i ! =
∞∑

j=0

Hj (x + y)
t j

j ! . (2.11)
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To isolate the Hj (x + y) term, we now need to pick the terms such that i + k = j :

Hj (x + y)

j ! =
j∑

k=0

(2x)k

k!( j − k)! Hj−k(y), (2.12)

=⇒ Hj (x + y) =
j∑

k=0

(
j

k

)
(2x)k Hj−k(y), (2.13)

=⇒ Hj (x + y) = (H + 2x) j , H j := Hj (y). (2.14)

2.2.3 Hermite Polynomials for Exact VM Equilibria

In the work by Abraham-Shrauner (1968), expansions in Hermite polynomials of
the canonical momentum are used to solve the VM system for the case of ‘stationary
waves’ in a manner like that to be described in this chapter. These correspond not
to Vlasov equilibria, but rather to nonlinear waves that are stationary in the wave
frame, as discussed in Sect. 1.3.6. Abraham-Shrauner considers a 1D plasma with
only one component of current density, first in a general sense, and then considers
three different magnetic field configurations. Alpers (1969) also presents a somewhat
general discussion on the use of Hermite polynomials for 1D VM equilibria, and
proceeds to considermodels suitable for themagnetopause, with both one component
of the current density, and with two. In the work by Channell (1976), two methods
are presented for the solution of the inverse problem with neutral VM equilibria, by
means of example. These twomethods are inversion byFourier transforms and—once
again—expansion over Hermite polynomials respectively. Channell uses Hermite
polynomials in the canonical momenta, but this time with two components of the
current density, for the specific case of a magnetic field that is especially suitable to
be considered as a stationary wave solution.

In contrast to Abraham-Shrauner (1968), Alpers (1969), Channell (1976), the
works by Hewett (1976), Suzukis (2008) both consider the forwards problem in VM
equilibria, and use Hermite polynomial expansions in velocity space, for 1D and 2D
plasmas respectively. Hewett et al. (1976) assume a representation for the DF similar
to that in Eq. (2.6) but with only one current density component, and ensure self-
consistency with Maxwell’s equations numerically, whereas Suzuki and Shigeyama
(2008) use an analytical approach, e.g. demonstrating that the Hermite polynomial
approach can reproduce known equilibria such as the Harris sheet (Harris 1962), and
the Bennett Pinch (Bennett 1934).

To give a subset of (modern) examples outside the realm of equilibrium studies
per se, Hermite polynomial expansions are used by Daughton (1999) to assess the
linear stability of a Harris current sheet; by Camporeale et al. (2006) also on the lin-
ear stability problem, using a truncation method somewhat like that of (Grad, 1949),
and managing to bypass the traditional approach of integrating over the ‘unper-
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turbed orbits’ (Coppi et al. 1966; Drake and Lee 1977; Quest and Coroniti 1981;
Daughton 1999); by Zocco (2015) on linear collisionless Landau damping (Landau
1946; Clement Mouhot and Cedric Villani 2011); and by Schekochihin et al. (2016)
on the problem of the free-energy associated with velocity-space moments of the DF,
in the problem of plasma turbulence.

2.2.3.1 Mathematical Criteria

Since a DF represents a probability (in phase space), it clearly must satisfy the
property

fs ≥ 0 ∀ x, v, t, (2.15)

and since a DF found using a Hermite polynomial method could in principle include
an infinite series of polynomials inmomenta/velocity that does not represent a known
function in closed form, it is by no means clear if Eq. (2.15) will be satisfied. This
issue is recognised by Abraham-Shrauner (1968, Hewett (1976). Not only is the non-
negativity in question, but it is not obvious whether a given expansion in Hermite
polynomials even converges, and this question was also raised by Hewett et al.
(1976). Finally, even if the Hermite expansion converges, it must-when multiplied
by the Maxwellian factor—produce a DF for which velocity moments of all orders
exist, as discussed in Sect. 1.2.1. In order to have full confidence in the Hermite
polynomial method we need to address these issues of non-negativity, convergence,
and the existence of moments.

Crucially, none of the above references tackle the questions of non-negativity and
convergence of an infinite series of Hermite polynomials in a systematic way, or of
the boundedness of the resultant DF. The method presented in this chapter should be
seen as a rigorous extension, or generalisation, of the Hermite Polynomial discussed
previously by these authors.

We should mention that the reverse questions are well established, i.e. if one
a priori knows the DF in closed form, or at least if Eq. (2.4) is satisfied. In such
circumstances, one can represent a given non-negativeDFas aMaxwellianmultiplied
by an expansion in Hermite polynomials provided the gs function grows at a rate
below ev2/(4v2th,s ) (Grad 1949; Widder 1951).

The structure of the rest of this chapter is as follows. Section2.3 contains the details
of a formal solution to the inverse problem, by using known methods of inverting
Weierstrass transforms with possibly infinite series of Hermite polynomials. For
the formal solution to meaningfully describe a DF however, these series must be
convergent, positive and bounded. A sufficient condition for convergence that places
a restriction on the pressure tensor is obtained in Sect. 2.4. In Sect. 2.5 we argue
that for an appropriate pressure function, there always exists a positive DF, for a
sufficiently magnetised plasma, including proofs for a certain class of function.
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2.3 Formal Solution by Hermite Polynomials

It was demonstrated in Sect. 1.3.5.1 that the pressure tensor component Pzz can
be seen as the ‘key’ to solving the inverse problem for VM equilibria. In a 1D
z−dependent geometry, the inverse problem is encapsulated by Eq. (1.41), repeated
below,

Pzz(Ax , Ay) = βe + βi

βeβi

n0s

2πm2
s v

2
th,s

×
∫ ∞

−∞

∫ ∞

−∞
e−βs((pxs−qs Ax )

2+(pys−qs Ay)
2)/(2ms )gs(pxs, pys)dpxsdpys,

along with Ampère’s Law and quasineutrality (in this chapter we shall assume strict
neutrality),

∂Pzz

∂ Ax
= − 1

μ0

d2 Ax

dz2
,

∂Pzz

∂ Ay
= − 1

μ0

d2 Ay

dz2
,

φ = 0.

The subsequent work in this chapter assumes that such a function, Pzz(Ax , Ay), has
been found. To make mathematical progress, we shall make the assumption that the
Pzz function found is of either ‘summative’ or ‘multiplicative’ separability, i.e. that
Pzz(Ax , Ay) is of the form

Pzz = n0(βe + βi )

βeβi

(
P̃1(Ax ) + P̃2(Ay)

)
or Pzz = n0(βe + βi )

βeβi
P̃1(Ax )P̃2(Ay).

(2.16)
The constants n0,βe and βi are present in order to give the correct dimensions to the
Pzz expression, in a species independent manner, such that the ‘components’ of the
pressure, P̃1(Ax ) and P̃2(Ay), are dimensionless. These assumptions are commen-
surate with

gs = g1s(pxs; vth,s) + g2s(pys; vth,s) or gs = g1s(pxs; vth,s)g2s(pys; vth,s), (2.17)

respectively, and allow separation of variables according to

P̃1(Ax ) = 1√
2πmsvth,s

∫ ∞

−∞
e−βs (pxs−qs Ax )

2/(2ms )g1s(pxs; vth,s)dpxs, (2.18)

P̃2(Ay) = 1√
2πmsvth,s

∫ ∞

−∞
e−βs(pys−qs Ay)

2
/(2ms )g2s(pys; vth,s)dpys . (2.19)
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The separation constant is set to unity in the case of multiplicative separability,
and zero in the case of additive separability, without loss of generality. We have
included the parametric dependence on the thermal velocity, vth,s , in the gs functions
to highlight the fact that the gs functions must behave in such a way that the RHS of
Eqs. (2.18) and (2.19) must, after integration, be independent of species as discussed
in Sect. 1.3.5.4. This would be impossible if gs did not depend on vth,s .

The components of the pressure are now represented by 1D integral transforms
of the unknown parts of the DF, namely Weierstrass transforms.

2.3.1 Weierstrass Transform

The Weierstrass transform, u(x, t) of u0(y), is defined by

u(x, t) := W [u0] (x, t) = 1√
4πt

∫ ∞

−∞
e−(x−y)2/(4t) u0(y) dy, (2.20)

see Bilodeau (1962) for example. This is also known as the Gauß transform, Gauß-
Weiertrass transform and the Hille transform (Widder 1951). As the Green’s function
solution to the heat/diffusion equation,

∂u

∂t
− ∂2u

∂x2
= 0,

such that u(x, 0) = u0(x), ∀x ∈ (−∞,∞),

=⇒ u(x, t) = W [u0] (x, t),

u(x, 1) represents the temperature/density profile of an infinite rod one second after it
was u0(x), seeWidder (1951). Hence theWeierstrass transform of a positive function
is itself a positive function.

2.3.2 Two Interpretations with Respect to Our Equations

Give or take some constant factors, Eqs. (2.18) and (2.19) express P̃1 and P̃2 as
Weierstrass transforms of g1s and g2s respectively. To discuss this problem in gener-
ality, the following discussions in this chapter will make regular use of the subscript
j ∈ {1, 2}. This index will indicate the following components for the vector potential
and canonical momenta,

(A1, A2) := (Ax , Ay),

(p1s, p2s) := (pxs, pys)
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Otherwise, the indexing of P1, P2, g1s, g2s will remain “as is”. As such the inverse
problem is now characterised by the following equation,

P̃j (A j ) = 1√
2πmsvth,s

∫ ∞

−∞
e−βs (p js−qs A j )

2/(2ms )g js(p js; vth,s)dp js

To be precise, there are two different interpretations of the equations that could be
made here, namely:

Dimensionality retained and ‘time’ is a variable:

P̃j (A j ) =: I j (A js) = 1√
4πεs

∫ ∞

−∞
e−(p js−A js )

2/(4εs )g js(p js; εs)dp js, (2.21)

for εs = m2
s v

2
th,s/2 and A js = qs A j . This first interpretation is depicted by Eq.

(2.21) and casts the inverse problem in direct comparison with the Weiertrass
transform, making a correspondence between space and time in the heat equa-
tion, (x, t), to (A js, εs) in our inverse problem. However, one difference is that
the gs function must—at least parametrically—depend on ‘time’, εs , in contrast
to the initial condition (i.e. time-independent function) that is part of the integrand
in Eq. (2.20). We know that gs must depend on a species-dependent parameter,
i.e. εs , since the result of the integral (the LHS) must be independent of εs , in a
similar vein to the discussion in Sect. 1.3.5.4.

Dimensionless variables and ‘time’ is fixed:

P̃j
(
sgn(qs)δs A j

) =: J js( Ã j ; δs) = 1√
2π

∫ ∞

−∞
e−( p̃ js− Ã j )

2/2 ḡ js( p̃ js; δs)d p̃ js,

(2.22)
with sgn(qe) = −1 and sgn(qi ) = 1, and for

δs = msvth,s

eB0L
,

p̃ js = p js

msvth,s
,

Ã j = A j

B0L
ḡ js( p̃ js; δs) = g js(p js; vth,s).

The species-dependent magnetisation parameter, δs (e.g. see (Fitzpatrick, 2014)),
is defined by

δs = rLs

L
= msvth,s

eB0L
.
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It is the ratio of the thermal Larmor radius, rLs = vth,s/|�s |, to the character-
istic length scale of the system, L . The gyrofrequency of particle species s is
�s = qs B0/ms . The magnetisation parameter is also known as the fundamental
ordering parameter in gyrokinetic theory (see Howes (2006), Abel (2013) for
example). In particle orbit theory, δs � 1 implies that a guiding centre approxi-
mationwill be applicable for that species, e.g. seeNorthrop (1961) and Sect. 1.1.1.

This second interpretation is depicted by Eq. (2.22) and once again casts the
inverse problem in direct comparison with the Weiertrass transform, making a
correspondence between space in the heat equation, x , to Ã in our inverse problem.
But in this case the ‘time’ is evaluated at t = 1/2. Since the LHS of Eq. (2.22) is
now a function of δs , we have included the parametric dependence on δs in ḡs .

2.3.2.1 The ‘Backwards Heat Equation’

The first interpretation is the one that I believe carries the most meaning for the
problem considered in this thesis. Since the integral transformdescribed byEq. (1.41)
must leave the LHS independent of species-dependent parameters, it makes sense
that the transformed function, gs , is not directly analogous to an initial condition.
If gs was an ‘initial condition’ and independent of ‘time’, εs , then the outcome of
the evolution (transform) would surely give a time-dependent solution, i.e. one that
depends on εs . But that is not what occurs. The correct analogy is to view the gs

function not as an initial condition, but as the ‘heat distribution’ εs ‘seconds’ ago,
such that when evolved (transformed) forward by εs ‘seconds’, the resultant ‘heat
distribution’ is Pzz . In that sense, we are considering the heat equation but with a
final condition, as opposed to an initial condition: the ‘backwards heat equation’.
Similar topics are discussed in the ‘backwards uniqueness of the heat equation’ (see
e.g. Lawrence 2010).

2.3.3 Formal Inversion of the Weierstrass Transform

Formally, the operator for the inverse Weierstrass transform is e−D2
, with D the

differential operator and the exponential suitably interpreted, see Eddington (1913);
Widder (1954) for two different interpretations of this operator.

A second, and perhaps more computationally ‘practical’ method employs Her-
mite polynomials, see Bilodeau (1962). The Weierstrass transform of the nth Her-
mite polynomial Hn(y/2) at t = 1 is xn . Hence if one knows the coefficients of the
Maclaurin expansion of u(x, 1) in Eq. (2.20),

u(x, 1) =
∞∑

j=0

η j x
j ,
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then the Weierstrass transform can immediately be inverted to obtain the formal
expansion

u0(y) =
∞∑

j=0

η j Hj (y/2) . (2.23)

For this method to be useful in our problem, the pressure function must have a
Maclaurin expansion that is convergent over all (Ax , Ay) space. Then, its coefficients
of expansion must ‘allow’ the Hermite series to converge.

2.3.3.1 Formal Inversion of Our Problem

The following discussion applies to pressure functions of both summative and
multiplicative form, with Maclaurin expansion representations (convergent over all
(Ax , Ay) space) given by

P̃1(Ax ) =
∞∑

m=0

am

(
Ax

B0L

)m

, P̃2(Ay) =
∞∑

n=0

bn

(
Ay

B0L

)n

, (2.24)

with B0 and L the characteristicmagnetic field strength and spatial scale respectively.
In line with the discussion on inversion of the Weierstrass transform in Sect. 2.3, we
solve for gs functions represented by the following expansions

g1s(pxs; vth,s) =
∞∑

m=0

Cms Hm

(
pxs√

2msvth,s

)
, (2.25)

g2s(pys; vth,s) =
∞∑

n=0

Dns Hn

(
pys√

2msvth,s

)
, (2.26)

with currently unknown species-dependent coefficients Cms and Dns . We cannot
simply ‘read off’ the coefficients of expansion as in Eq. (2.23), since our integral
equations are not quite in the ‘perfect form’ of Eq. (2.20). Upon computing the
integrals of Eqs. (2.18) and (2.19) with the above expansions for gs , we have

P̃1(Ax ) =
∞∑

m=0

( √
2qs

msvth,s

)m

Cms Am
x , P̃2(Ay) =

∞∑

n=0

( √
2qs

msvth,s

)n

Dns An
y . (2.27)

This result appears species dependent. However, to ensure self-consistency with
quasineutrality (ni (Ax , Ay) = ne(Ax , Ay))—as in Channell (1976, Harrison and
Neukirch (2009), Wilson andNeukirch (2011)—we have to fix the pressure func-
tion to be species independent. It clearly must also match with the pressure function
that maintains equilibrium with the prescribed magnetic field. The conditions to be
derived here are critical for making a link between the macroscopic description of
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the equilibrium structure with the microscopic one of particles. These requirements
imply—by the matching of Eqs. (2.24) and (2.27)—that

( √
2qs

msvth,s

)m

Cms =
(

1

B0L

)m

am =⇒ Cms = sgn(qs)
m

(
δs√
2

)m

am, (2.28)

( √
2qs

msvth,s

)n

Dns =
(

1

B0L

)n

bn =⇒ Dns = sgn(qs)
n

(
δs√
2

)n

bn. (2.29)

2.4 Mathematical Validity of the Method

2.4.1 Convergence of the Hermite Expansion

Here we find a sufficient condition that, when satisfied, guarantees that the Hermite
series representations in (2.25) and (2.26) converge. This provides some answers
to questions on the convergence of Hermite Polynomial representations of Vlasov
equilibria dating back to Hewett et al. (1976), and implicit in the work of e.g. Alpers
(1969), Channell (1976), Suzuki and Shigeyama (2008).

Theorem 1 Consider a Maclaurin expansion of the form

P̃j (A j ) =
∞∑

m=0

am

(
A j

B0L

)m

(2.30)

that is convergent for all A j . Then for εs = m2
s v

2
th,s/2 the function g js , calculated in

the inverse problem defined by the association

P̃j (A j ) := P̃INT, j (A j ) = 1√
4πεs

∫ ∞

−∞
e−(p js−qs A j )

2/(4εs )g js(p js; vth,s)dp js .

(2.31)
of the form

g js(p js; vth,s) =
∞∑

m=0

am sgn(qs)
m

(
δs√
2

)m

Hm

(
p js√

2msvth,s

)
(2.32)

converges for all p js , provided

lim
m→∞

√
m

∣∣∣∣
am+1

am

∣∣∣∣ < 1/δs, (2.33)
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in the case of a series composed of both even- and odd-order terms, or

lim
m→∞ m

∣∣∣∣
a2m+2

a2m

∣∣∣∣ < 1/(2δ2s ), lim
m→∞ m

∣∣∣∣
a2m+3

a2m+1

∣∣∣∣ < 1/(2δ2s ), (2.34)

in the case of a series composed only of even-, or odd-order terms, respectively.

Proof For a series composed of even- and odd-order terms, we have that

g js(p js; vth,s) =
∞∑

m=0

am sgn(qs)
m

(
δs√
2

)m

Hm

(
p js√

2msvth,s

)
. (2.35)

An upper bound on Hermite polynomials (see e.g. Sansone (1959)) is provided by
the identity

|Hj (x)| < k
√

j !2 j/2 exp
(
x2/2

)
s.t. k = 1.086435 . (2.36)

This upper bound implies that

0 < |am |
(

δs√
2

)m ∣∣∣∣Hm

(
ps√

2msvth,s

) ∣∣∣∣ < k|am |δm
s

√
m! exp

(
p2

js

4m2
s v

2
th,s

)
.

Let us now compose a series of the upper bounds,

g js,upper = k exp

(
p2

js

4m2
s v

2
th,s

) ∞∑

m=0

|am |δm
s

√
m!.

By the use of the ratio test (Bartle and Sherbert 2000), a sufficient condition for
convergence of g js,upper is found by

lim
m→∞

∣∣∣∣
am+1

am

∣∣∣∣
√

m + 1 < 1/δs,

=⇒ lim
m→∞

∣∣∣∣
am+1

am

∣∣∣∣
√

m < 1/δs, (2.37)

for a given δs ∈ (0,∞). If the am satisfy the criteria in Eq. (2.37) then g js,upper is a
convergent series, and hence by the comparison test (Bartle and Sherbert 2000),

g js,absolute =
∞∑

m=0

|am |
(

δs√
2

)m ∣∣∣∣Hm

(
p js√

2msvth,s

) ∣∣∣∣,
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is a convergent series. This then implies that

∞∑

m=0

amsgn(qs)
m

(
δs√
2

)m

Hm

(
p js√

2msvth,s

)
(= g js(p js; vth,s))

is an absolutely convergent series, and in turn a convergent series. We can now
confirm that g js(p js; vth,s) is a convergent series (Bartle and Sherbert 2000).

An analogous argument holds for those series with only even or odd order terms,
with the ratio test giving

lim
m→∞

∣∣∣∣
a2m+2

a2m

∣∣∣∣m < 1/(2δ2s ), or lim
m→∞

∣∣∣∣
a2m+3

a2m+1

∣∣∣∣m < 1/(2δ2s ), (2.38)

respectively. By the same argument as above, the comparison test implies that if the
condition of (2.38) is satisfied, that since the series composed of upper bounds will
converge, so must g js(p js). �

2.4.1.1 Decay Rate of the Coefficients

In order to get a better understanding of the meaning of Theorem 1, it is instructive
to recapitulate the results in a continuous setting. One could imagine the modulus
of the coefficients, |am |, as a subset of the codomain of a continuous function of the
independent variable m,

|am |, m = 0, 1, 2, . . .

→ a = a(m), m ∈ [0,∞), s.t. a(0) = |a0|, a(1) = |a1| . . . .

In this case, we require

a(m) = O(au(m)), s.t. au(m) = (δ2s m)−m/2,

since the function au satisfies the restrictions of Eqs. (2.37) and (2.38), i.e.

O
(∣∣∣∣

au(m + 1)

au(m)

∣∣∣∣

)
= 1

δs
√

m
,

O
(∣∣∣∣

au(2m + 2)

au(2m)

∣∣∣∣

)
= 1

2δ2s m
,

O
(

au(2m + 3)

au(2m + 1)

∣∣∣∣

)
= 1

2δ2s m
.

Hence the modulus of the coefficients, |am |must ‘fall below’ the graph of (δ2s m)−m/2

for large m, and depicted in Fig. 2.1.
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Fig. 2.1 Theorem 1 states
that if the modulus of the
coefficients, |am |, ‘fall
below’ the graph of
(δ2s m)−m/2 as m → ∞, then
the Hermite series of Eq.
(2.32) will converge

2.4.1.2 The Existence of Velocity Moments

Once the convergence of theHermite polynomial is established, then one can begin to
consider the boundedness of the DF, and the existence of velocity moments. If
gs(ps; vth,s) is a convergent series, then by using Eq. (2.36) we see that

|g js(p js; vth,s)| < L js exp

(
p2

js

4m2
s v

2
th,s

)
∀ p js,

and for L js a finite, positive constant, independent of space and momentum. By now
using the form of theDF fromEq. (1.37) and the separability conditions of Eq. (2.17),
we see that

| fs | < exp
[−(pxs − qs Ax )

2/(2m2
s v

2
th,s) − (pys − qs Ay)

2/(2m2
s v

2
th,s) − v2z /(2v

2
th,s)

]

×
(
Lxsep2xs/(4m2

s v2th,s ) + Lysep2ys/(4m2
s v2th,s )

)
,

in the case of additive separability, or

| fs | < exp
[−(pxs − qs Ax )

2/(2m2
s v

2
th,s) − (pys − qs Ay)

2/(2m2
s v

2
th,s) − v2z /(2v

2
th,s)

]

×
(
LxsLysep2xs/(4m2

s v2th,s )ep2ys/(4m2
s v2th,s )

)
,

in the case of multiplicative separability. In either case, we see that boundedness
in momentum space (and hence velocity space) is guaranteed. The reasoning is as
follows. Since p js = msv j + qs A j , the arguments of the exponentials scale like

exp

(
− v2

j

4v2
th,s

)
, (2.39)
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in v j velocity space. There is also a spatial dependence in the argument of the
exponential, through A j (z), but this does not affect the velocity moment at a given
z value. The scaling described by Expression (2.39) not only ensures boundedness,
but guarantees that velocity moments of all order exist, since

∣∣∣∣
∫ ∞

−∞
vke−v2/(4vth,s )

2
dv

∣∣∣∣ < ∞∀ k ∈ 0, 1, 2, . . .

2.4.1.3 Summary

In this Section we have shown that for a DF of the form

fs(Hs, pxs, pys) = n0s

(
√
2πvth,s)3

e−βs Hs gs(pxs, pys; vth,s),

with

gs = g1s(pxs; vth,s) + g2s(pys; vth,s) or gs = g1s(pxs; vth,s)g2s(pys; vth,s),

and

g1s(pxs; vth,s) =
∞∑

m=0

am sgn(qs)
m

(
δs√
2

)m

Hm

(
pxs√

2msvth,s

)
,

g2s(pys; vth,s) =
∞∑

n=0

bn sgn(qs)
n

(
δs√
2

)n

Hn

(
pys√

2msvth,s

)
,

the gs functions are convergent provided the criteria on the growth rates of the
coefficients of expansion from Theorem 1 are satisfied:

lim
m→∞

√
m

∣∣∣∣
am+1

am

∣∣∣∣ < 1/δs,

in the case of a series composed of both even- and odd-order terms, or

lim
m→∞ m

∣∣∣∣
a2m+2

a2m

∣∣∣∣ < 1/(2δ2s ), lim
m→∞ m

∣∣∣∣
a2m+3

a2m+1

∣∣∣∣ < 1/(2δ2s ),

in the case of a series composed only of even-, or odd-order terms, respectively, and
this in turn implies that velocity moments of the DF of all order exist.
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2.5 Non-negativity of the Hermite Expansion

In this Section, we consider the non-negativity of the Hermite series representation
of gs—given by Eqs. (2.25) and (2.26)—and hence positivity of the DF. As such
this Section responds to questions on the positivity of DF representation by Hermite
polynomials raised by Abraham-Shrauner (1968), Hewett et al. (1976), and implicit
in the work of e.g. Alpers (1969), Channell Suzuki and Shigeyama (1976, 2008).

2.5.1 Possible Negativity of the Hermite Expansion

For an example of a g js function that is not necessarily always positive despite the
pressure function being positive, consider a pressure function (e.g. from (Channell,
1976)) that is quadratic in the vector potential. In our notation, the pressure function
considered by Channell is

P̃ = 1

2

(
a0 + a2

(
Ax

B0L

)2
)

+ 1

2

(
a0 + a2

(
Ay

B0L

)2
)

,

for a0, a2 > 0. The resultant gs function is of the form

gs ∝ 1

2

[
a0 + a2

(
δs√
2

)2

H2

(
pxs√

2msvth,s

)]
+ 1

2

[
a0 + a2

(
δs√
2

)2

H2

(
pys√

2msvth,s

)]
.

Once these Hermite polynomials are expanded, and by substituting pxs = pys = 0,
we see that positivity of gs is—for given values of a0 and a2—contingent on the size
of δs ,

gs(0, 0) = a0 − a2δ
2
s ,

∴ gs(0, 0) ≥ 0 =⇒ δ2s ≤ a0

a2
.

However, there is not necessarily anything ‘special’ about the origin, as compared to
other points inmomentum-space. For example, consideration of the pressure function

P̃j =
(

a0 + a2

(
A j

B0L

)2

+ a4

(
A j

B0L

)4
)

,

gives a g js function that can, for given values of a0, a2, a4 and for δs sufficiently
large, be positive at p js = 0, and negative at some other points.
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It is worth considering how a g js function that is negative for some p js can
transform in the manner of (2.18) and (2.19) to give a positive P̃j (A j ). One might
expect that for certain values of A j such that the Gaussian

e−(p js−qs A j )
2/(4εs )

is centred on the region in p js space for which g js is negative, that a negative value
of P̃j (A j ) could be the result.

Essentially, the Gaussian will only ‘successfully sample’ a negative region of g js

to give a negative value of P̃j (A j ) if the Gaussian is narrow enough—for a given
value of εs—to ‘resolve’ a negative patch of g js . In other words, if the Gaussian
is too broad, it won’t ‘see’ the negative patches of g js , and hence P̃j (A j ) will be
positive. Hence the non-negativity of P̃j (A j ) is a restriction on the possible shape
of g js , and how that shape must scale with εs .

2.5.2 Detailed Arguments

When considering the non-negativity of the Hermite expansion, it is instructive to
rewrite (2.31) in the form

∞∑

n=0

an

(
sgn(qs)δs Ã j

)n = 1√
2π

∫ ∞

−∞
e−( p̃ js− Ã j )

2/2 ḡ js( p̃ js; δs)d p̃ js, (2.40)

by using the following associations

Ã j = A j

B0L
, p̃ js = ps√

2εs
, g js(p js; εs) = ḡ js( p̃ js; δs).

The formal solution as an expansion in Hermite polynomials can be written as

ḡ js( p̃ js; δs) =
∞∑

n=0

ansgn(qs)
n

(
δs√
2

)n

Hn

(
p̃ js√
2

)
. (2.41)

We shall assume that the right-hand side of (2.41) represents a differentiable function.
Note that the Gaussian in (2.40) is of fixed width 2

√
2 (defined at 1/e), in contrast

to the Gaussian of variable width defined in (2.31).
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2.5.2.1 Boundedness Below Zero of the Hermite Expansion

If the Hermite series satisfies the condition in Theorem1 then it is convergent, so Eq.
(2.36) gives ∣∣ḡ js( p̃ js; δs)

∣∣ < L jse p̃2
js/4

for some finite and positive L js , determined by the sum of the (possibly infinite)
series. Note that these bounds automatically imply integrability of fs since as can be
seen from Eq. (2.40), for some finite L ′ > 0, we have that

∣∣ḡ js( p̃ js; δs)
∣∣ < L ′e p̃2

js/2

implies integrability, which is a less strict condition.
The bounds on ḡ js given above demonstrate that ḡ js can not tend to±∞ for finite

p̃ js . Hence, if it reaches−∞ at all, it can only do so as | p̃ js | → ∞.We argue however
that the positivity of the pressure prevents the possibility of ḡ js being without a finite
lower bound. The heuristic reasoning is as follows: the expression on the RHS of
Eq. (2.40) treats—in the language of the heat/diffusion equation—the ḡ js function
as the initial condition for a temperature/density distribution on an infinite 1-D line,
and the left-hand side represents the distribution at some finite time later on. Were
ḡ js to be unbounded from below, this would imply for our problem that a smooth
‘temperature/density’ distribution that is initially unbounded from below could, in
some finite time, evolve into a distribution that has a positive and finite lower bound.
This seems entirely unphysical since this would imply that an infinite negative ‘sink’
of heat/mass would somehow be ‘filled in’ above zero level in a finite time.

2.5.2.2 Proofs and Arguments by Contradiction

Here we give some technical remarks that support our claim that ḡ js (and hence
g js) is bounded below, using an argument by contradiction. First of all consider a
smooth ḡ js function that is unbounded from below in positive momentum space.
Then, depending on the number and nature of stationary points, either

• Case 1: Therewill be some p̃ j0,s such that ḡ js < c < 0 for all p̃ js > p̃ j0,s . This is a
trivial statement if ḡ js has only a finite number of stationary points, whereas in the
case of an infinite number of stationary points, all maxima of ḡ js for p̃ js > p̃ j0,s

must be ‘away’ from zero by a finite amount.
• Case 2: In this case the (infinite number of) maxima either can rise above zero, or
tend to zero from below in a limiting fashion.

If ḡ js is of the type described in Case 1, then we can create an ‘envelope’ genv, j

for ḡ js such that genv, j > ḡ js for all p̃ js . The envelope we choose is

genv, j =
{
L jse p̃2

js/4, for p̃ js ≤ p̃ j0,s,

c for p̃ js > p̃ j0,s .
(2.42)
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The L jse p̃2
js/4 form for the profile is chosen because this represents the absolute

upper bound for our convergent Hermite expansions, at a given p̃ js as seen from
Eq. (2.36). If we then substitute the genv, j function for ḡ js in Eq. (2.40) the integrals
give combinations of error functions,

1√
2π

∫ ∞

−∞
e−( p̃ js− Ã j )

2/2 ḡenv, j d p̃ js =

L jse Ã2
j /2√

2

(
erf

(
p̃ j0,s − 2 Ã j

2

)
+ 1

)
+ c

2

(
erf

(
Ã j − p̃ j0,s√

2

)
+ 1

)

from which it is seen that one obtains a negative result, i.e. c, as Ã j → ∞. This is
a contradiction since the left-hand side of Eq. (2.40) is positive for all Ã j . Hence
we can discount the ḡ js functions of the variety described in Case 1, as we have a
contradiction.

Case 2 is less simple to treat. The fact that there exists an infinite number of
local minima and that the infimum of ḡ js is −∞ implies that there exists an infinite
sequence of points in momentum space, Sp = { p̃k : k = 1, 2, 3 . . .}, that are local
minimaof ḡ js , such that ḡ js( p̃k+1) < ḡ js( p̃k). Essentially there are an infinite number
of minima ‘lower than the previous one’. For sufficiently large k = l, we have that
the magnitude of the minima is much greater than the width of the Gaussian, i.e.

|ḡ js( p̃l)| � 2
√
2.

In this case the only way that the sampling of ḡ js described by Eq. (2.40) could
give a positive result for a Gaussian centred on the minima is if ḡ js rapidly grew
to become sufficiently positive, in order to compensate the negative contribution
from the minimum and its local vicinity. However, this seems to be at odds with the
condition that ḡ js is smooth, since the function would have to rise in this manner
for ever more negative values of the minima (and hence rise ever more quickly) as
k → ∞. We claim that this can not happen, and hence we discount the ḡ js functions
of the variety described in Case 2.

Since there is no asymmetry in momentum-space in this problem, the arguments
above hold just as well for for a ḡ js function that is unbounded from below in negative
momentum space. It should be clear to see that if ḡ js can not be unbounded from
below in either the positive or negative direction, then it can not be unbounded in
both directions either.

2.5.2.3 Behaviour with Respect to the Magnetisation

If ḡ js (and hence g js) is indeed bounded below then that means that one can always
add a finite constant to g js to make it positive, should the lower bound be known.
However this constant contribution would directly correspond to raising the pressure
(through the zeroth order Maclaurin coefficient a0).
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If we wish to consider a pressure function that is ‘fixed’, then we have a fixed a0,
and so it is not immediately obvious whether or not we can obtain a g js that is positive
over all momentum space. We have already seen some examples in Sect. 2.5.1 for
which the sign of g js depended on the value of δs .

Consider ḡ js evaluated at some particular value of p̃ js . We see from Eq. (2.41)
that positivity requires

a0 + c1δs + c2δ
2
s + · · · > 0,

for c1, c2, . . . finite constants. We also know that a0 > 0 since Pj (0) > 0, i.e. the
pressure is positive. This clearly demonstrates that positivity of g js places some
restriction on possible values of δs .

Let us now suppose that for a given value of δs , that there exists some regions in
p̃ js space where ḡs < 0. Our claim that ḡ js has a finite lower bound, combined with
the expression in Eq. (2.41) implies that the ḡs function is bounded below by a finite
constant of the form a0 + δsM, with

M = 1√
2
inf
p̃ js

∞∑

n=1

ansgn(qs)
n

(
δs√
2

)n−1

Hn

(
p̃ js√
2

)
,

and finite (and for inf the infimum, i.e. the greatest lower bound). By letting δs → 0
we see that ḡ js will converge uniformly to a0, with

lim
δs→0

ḡ js( p̃ js, δs) = a0 > 0.

Hence, there must have existed some critical value of δs = δc such that for all δs < δc

we have positivity of ḡ js . Note that if the negative patches of ḡ js do not exist for any
δs , then trivially δc = ∞ as a special case.

2.5.3 Summary

To summarise, we claim—provided gs is differentiable and convergent—that for
values of the magnetisation parameter δs less than some critical value δc, according
to 0 < δs < δc ≤ ∞, gs is positive for any positive pressure function. The crucial
step in this work was to prove/argue that gs is bounded from below by a constant for
all values of the momenta.

We have in fact proven this result for the class of gs functions for which the
number of stationary points is finite, or if infinite for which the stationary points are
‘away’ from zero by a finite amount. We have also presented arguments based on the
differentiability of gs , that support this result for other classes of gs function.
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2.6 Illustrative Case of the Use of the Method:
Correspondence with the Fourier Transform Method

Here we give an example of the use of the solution method to a pressure function
that was first discussed in Channell (1976). In that paper, Channell actually solved
the inverse problem by the Fourier transform method, and showed that the solution
was valid given certain restrictions on the parameters. We tackle the problem via the
Hermite Polynomial method, and find that for the resultant DF to be convergent, we
require exactly the same restrictions as Channell. This parity between the validity
of the two methods is reassuring, and implies that the necessary restrictions on the
parameters are in a sense ‘method independent’, and are the result of fundamental
restrictions on the inversion of Weierstrass transformations.

The magnetic field considered by Channell can not be given analytically, but is
of the form

B = (Bx(z) , 0 , 0), s.t. Bx (−∞) = B0, (2.43)

and self-consistent with a pressure function

Pzz = P0e−γ Ã2
y (2.44)

for P0, B0 and L characteristic values of the pressure,magnetic field and length scales,
Ãy = Ay/(B0L) and γ > 0 dimensionless. The magnetic field and self-consistent
number density profiles for this equilibrium are shown in Fig. 2.2, reproduced from
Channell (1976). Note that the γ used by Channell has dimensions equivalent to
1/(B2

0 L2). We can now write the details of the inversion. The equation we must
solve, for a DF given by

fs = n0

(
√
2πvth,s)3

e−βs Hs gs(pys; vth,s)

Fig. 2.2 A figure from Channell (1976) that displays the magnetic field and number density con-
sistent with Eqs. (2.43) and (2.44). Image Copyright: AIP, Physics of Fluids 19, 1541, (1976),
copyright (1976), (reproduced with permission)
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is

P0 exp

(
−γ

A2
y

B2
0 L2

)
= n0(βe + βi )

βeβi

1√
2πmsvth,s

∫ ∞

−∞
e−(pys−qs Ay)

2/(2m2
s v

2
th,s )gsdpys .

We can immediately formally invert this equation as per the methods described in
this Chapter, given the Maclaurin expansion of the pressure

Pzz = P0

∞∑

m=0

a2m

(
Ay

B0L

)2m

s. t. a2m = (−1)mγm

m! ,

to give

gs(pys) =
∞∑

m=0

(
δs√
2

)2m

a2m H2m

(
pys√

2msvth,s

)
.

Let us turn to the question of convergence. Theorem 1 states that if

lim
m→∞ m

∣∣∣∣
a2m+2

a2m

∣∣∣∣ < 1/(2δ2s ),

then the gs function is convergent. This is readily seen to imply that γ must satisfy

γ <
1

2δ2s
,

for the Hermite series representation of gs to be convergent. This condition is exactly
equivalent to the one derived by Channell (Equation (28) in the paper). Note that
now that we have established convergence for particular γ, then boundedness results
follow as per the results in Sect. 2.4.1.2. One more question remains, namely how
does the gs function derived compare to the Gaussian gs(pys) function derived by
Channell

gs ∝ e−4γ2δ4s p2
ys/(1−4γ2δ4s )

(in our notation) using the method of Fourier transforms? In fact, one can see by
setting y = 0 in Mehler’s Hermite Polynomial formula (Watson 1933)

1√
1 − ρ2

exp

[
2xyρ − (x2 + y2)ρ2

1 − ρ2

]
=

∞∑

n=0

ρn

2nn! Hn(x)Hn(y),

and using

Hm(0) =
{
0 if m is odd,

(−1)m/2m!/(m/2)! if m is even,
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(see (Gradshteyn and Ryzhik, 2007) for example), that the Hermite series represents
a Gaussian function in the range |ρ| < 1. This is equivalent to the condition derived
above for convergence, γ < 1/(2δ2s ). Hence, we have shown that for this specific
example—solvable by using both Hermite polynomials and Fourier transforms—
the two methods used to solve the inverse problem give equivalent functions with
equivalent ranges of mathematical validity.

2.7 Summary

The primary result of this chapter is the rigorous generalisation of a solution method
that exactly solves the ‘inverse problem’ in 1-D collisionless equilibria, for a certain
class of equilibria. Specifically, given a pressure function, Pzz(Ax , Ay), of a sepa-
rable form, neutral equilibrium DFs can be calculated that reproduce the prescribed
macroscopic equilibrium, provided Pzz satisfies certain conditions on the coefficients
of its (convergent) Maclaurin expansion, and is itself positive.

The DF has the form of aMaxwellian modified by a function gs , itself represented
by—possibly infinite—series of Hermite polynomials in the canonical momenta. It is
crucial that these series are convergent and positive for the solution to be meaningful.
A sufficient condition was derived for convergence of the DF by elementary means,
namely the ratio test, with the result a restriction on the rate of decay of theMaclaurin
coefficients of Pzz . For DFs that are written as an expansion in Hermite polynomials,
multiplied by a stationary Maxwellian, we have demonstrated that the necessary
boundedness results follow.

We also argue that for such a pressure function that is also positive, that the
Hermite series representation of the modification to the Maxwellian is positive, for
sufficiently low values of the magnetisation parameter, i.e. lower than some critical
value. Thiswas actually proven for a certain class of gs functions, and differentiability
of gs was assumed. It would be interesting in the future to investigate whether this
critical value of the magnetisation parameter can be determined. It is also desirable
that the result is proven for all reasonable function classes.

We have demonstrated the application of the solution method in Sect. 2.6. This
particular example already has a known solution and range of validity in parameter
space, obtained by a Fourier transform method in (Channell 1976). We obtain a
solution with an alternate representation using the Hermite Polynomial method. The
Hermite series obtained is shown to be equivalent to the representation obtained by
Channell, and to have the exact same range of validity in parameter space. It is not
clear if this equivalence between solutions obtained by the two different methods is
true in general. Our problem is somewhat analagous to the heat/diffusion equation,
and in that ‘language’ the question of the equivalence of solutions is related to the
‘backwards uniqueness of the heat equation’ (see e.g. (Evans 2010). The degree of
similarity between our problem and the one described by Evans, and its implications,
are left for future investigations.
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Also, whilst we have assumed that the pressure is separable (either summatively or
multiplicatively), the method should be adaptable in the ‘obvious way’ for pressures
that are a ‘superposition’ of the two types. Interesting further work would be to see
if the method can be adapted to work for pressure functions that are non-separable,
i.e. of the form

Pzz =
∑

m,n

Cmn

(
Ax

B0L

)m (
Ay

B0L

)n

.
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Chapter 3
One-Dimensional Nonlinear Force-Free
Current Sheets

We have to keep an eye on the electrons.

Thomas Neukirch

Much of the work in this chapter is drawn from Allanson et al. (2015, 2016).

3.1 Preamble

In this chapter we present new exact collisionless equilibria for a 1D nonlinear
force-free magnetic field, namely the force-free Harris sheet. In contrast to previous
solutions (Harrison and Neukirch 2009a; Wilson and Neukirch 2011; Abraham-
Shrauner 2013; Kolotkov et al. 2015), the solutions that we present allow the plasma
beta (βpl ) to take any value, and crucially values below unity for the first time. In the
derivations of the equilibriumDFs it is found that themost typical approach of Fourier
Transforms can not be applied, and so we use expansions in Hermite polynomials,
making use of the techniques developed in Chap. 2. Using the convergence criteria
developed therein, we verify that the Hermite expansion representation of the DFs
are convergent for all parameter values. As shown in Chap. 2, this also implies
boundedness, and the existence of velocity moments of all orders.

Despite the proven analytic convergence, initial difficulties in attaining numerical
convergence mean that plots of the DF can be presented for the plasma beta only
modestly below unity. In the effort to model equilibria with much lower values of the
plasma, we use a new gauge for the vector potential, and calculate the DF consistent
with this gauge, confirming the properties of convergence velocity moments. This
new gauge makes attaining numerical convergence possible for lower values of the
plasma beta, and we present results for βpl = 0.05.

© Springer Nature Switzerland AG 2018
O. Allanson, Theory of One-Dimensional Vlasov-Maxwell Equilibria,
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3.2 Introduction

Force-free equilibria, with fields defined by

j × B = 1

μ0
(∇ × B) × B = 0, (3.1)

are of particular relevance to the solar corona (e.g. see (Priest and Forbes 2000;
WiegelmannandSakurai 2012) andFig. 3.1); current sheets in theEarth’smagnetotail
(e.g. (Vasko et al. 2014; Petrukovich et al. 2015)), the Earth’s magnetopause (e.g.
(Panov et al. 2011)) and in the Jovian magnetotail (e.g. (Artemyev et al. 2014)); other
astrophysical plasmas (e.g. (Marsh 1996)); scrape-off layer currents in tokamaks (e.g.
(Fitzpatrick 2007)), and ‘Taylor-relaxed’ magnetic fields in fusion experiments (e.g.
(Taylor 1974, 1986)). Eq. (3.1) implies that the current density is everywhere-parallel
to the magnetic field;

μ0 j = α(x)B, (3.2)

or zero in the case of potential fields, and with α the force-free parameter. If∇α �= 0
then the force-free field is nonlinear, whereas a constant α corresponds to a linear
force-free field. Note that

∇ · (∇ × B) = 0 =⇒ B · ∇α = 0,

and hence α is a constant along a magnetic field line, but will vary from field line to
field line in the case of nonlinear force-free fields. Extensive discussions of force-free
fields are given in Sakurai (1989) and Marsh (1996).

3.2.1 Force-Free Equilibria and the Plasma Beta

Equation (3.1) presents the force-free condition in purely geometric terms, i.e. an
equilibrium force-free magnetic field has field lines obeying certain geometrical
constraints, such that a particular combination of spatial derivatives vanish. In order
to gain some physical insight, consider a generic plasma equilibrium (in the absence
of a gravitational potential),

∇ · P = σ E + j × B. (3.3)

Next, normalise each of the quantities according to
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∇ · P = p0
LP

∇̃ · P̃,

σ E = σ0E0 σ̃ Ẽ,

j × B = B2
0

μ0LB
j̃ × B̃,

for LP , LB typical values of the length scales associated with the pressure and mag-
netic fields respectively; and with p0, σ0, E0, B0 typical values of the thermal pres-
sure, charge density, electric and magnetic field respectively. Furthermore, since
E = −∇φ and ∇2φ = −σ/ε0, we define

σ0 = −ε0φ0

L2
φ

,

E0 = − φ0

Lφ

,

s.t. φ0 = kBT0
e

,

for T0 a typical value of the temperature, and Lφ the length scale associated with the
scalar potential.Written in dimensionless form, the force balance equation (Eq. (3.3))
can now be written as

βpl

2
LB

[
1

LP
∇̃ · P̃ − 1

Lφ

λ2
D

L2
φ

σ̃ Ẽ

]
= j̃ × B̃,

for βpl = 2μ0 p0/B2
0 the plasma beta, and λD = √

ε0kBT0/(n0e2) the Debye radius.
Note that we have made use of p0 = n0kBT0. This equation demonstrates that—in
principle -

βpl � 1���⇐⇒ j × B = 0,

for���⇐⇒ to read as ‘not equivalent’, i.e. force free equilibria need not necessarily
have a vanishing plasma beta, or vice versa. However, we see that for a quasineutral
plasma in which ε = λD/Lφ � 1, the second term on the LHS is—for a given value
of βpl—almost certainly of a lower order than the first term on the LHS, due to the
ε2 dependence. Hence we see that for a quasineutral equilibrium

βpl

2

LB

LP
∇̃ · P̃ = j̃ × B̃,

and so itwouldnowseemfair to say thatβpl � 1 ⇐⇒ j × B = 0 for a quasineutral
equilibrium, unless the thermal pressure varies with respect to very fine length scales.
For a similar discussion to the above, including the gravitational acceleration but not
the electric field, see Neukirch (2005). Figure3.1 is reproduced from Gary (2001)
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Fig. 3.1 A figure from Gary (2001) that displays a representative βpl model over solar active
regions, derived from a range of sources. Image Copyright: Springer, Solar Physics 203, 1, (October
2001), pp. 71–86., copyright (2001), (reproduced with permission)

and shows a model for the plasma beta in the solar atmosphere, compiled from
observational data. The figure demonstrates that βpl can take sub-unity and vanishing
values in the solar chromosphere and the corona, aswell as values above one (contrary
to the most typical assumptions). As such, much of the solar corona magnetic field
is modelled as force-free (Wiegelmann and Sakurai 2012).

3.2.2 1D Force-Free Equilibria

1D magnetic fields can be represented without loss of generality by

B = (
Bx (z), By(z), 0

) =
(

−d Ay

dz
,
d Ax

dz
, 0

)
. (3.4)

http://link.springer.com/journal/11207
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The force-free condition then implies that

j × B = 0 =⇒ d

dz

(
B2
x

2μ0
+ B2

y

2μ0

)
= 0, (3.5)

and hence the magnetic field is necessarily of uniform magnitude. Considering the
equation of motion for a quasineutral plasma, now given by

d

dz

(
Pzz + B2

2μ0

)
= 0,

we see that the thermal pressure is also of constant magnitude,

d

dz
Pzz = 0 =⇒ Pzz = const. (3.6)

As demonstrated in Sect. 1.3.5.1, the (assumed) existence of a VM equilibrium
implies—through the dependence of the DF on the constants of motion—that the
pressure tensor is a function of the vector and scalar potentials. Hence, we see that
for a quasineutral plasma in which φqn = φ(Ax , Ay), the force-free equilibrium
fields correspond to a trajectory, A f f (z) = (Ax (z), Ay(z), φqn(Ax (z), Ay(z))), that
is itself a contour;

d

dz
Pzz(Ax (z), Ay(z)) = 0, (3.7)

of the potential, Pzz (Harrison and Neukirch 2009a, b). As such, the construction of
a Pzz function that satisfies Eq. (3.7), given some (Ax (z), Ay(z) is the first step in
the inverse method for 1D force-free equilibria.

In fact, Eq. (3.7) compactly defines the entire macroscopic problem, since

∂Pzz
∂A

= j , (3.8)

implies that

d

dz
Pzz(Ax (z), Ay(z)) = ∂Pzz

∂Ax︸ ︷︷ ︸
jx

d Ax

dz︸︷︷︸
By

+ ∂Pzz
∂Ay︸ ︷︷ ︸
jy

d Ay

dz︸︷︷︸
−Bx

= 0,

= jx By − jy Bx ,

= ( j × B)z . (3.9)

This demonstrates that—in a 1D quasineutral plasma—the existence of a VM equi-
librium that is self-consistent with a spatially uniform pressure tensor directly implies
that the magnetic field is force-free.
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3.2.2.1 Pressure Tensor Transformation Theory

The inverse problem is not only non-unique regarding the form of the DF for a
particular macroscopic equilibrium (as discussed in Sect. 1.3.5), but also for the form
of Pzz(Ax , Ay) for a particular magnetic field. Given a specific force-free magnetic
field, i.e. a specific

(
Ax , Ay

)
, and a known Pzz that satisfies Eqs. (3.7) and (3.8), one

can construct infinitely many new P̄zz functions that also satisfy them;

P̄zz = 1

ψ ′(Pf f )
ψ(Pzz), (3.10)

for differentiable and non-constantψ , provided the LHS is positive, and forwhich the
value of Pzz evaluated on the force-free contour, A f f , is the constant, Pf f (Harrison
and Neukirch 2009b). These P̄zz functions maintain a force-free equilibrium with
the same magnetic field as Pzz , since

∂ P̄zz
∂A

∣∣∣∣
A f f

= 1

ψ ′(Pf f )

∂ψ

∂Pzz

∂Pzz
∂A

∣∣∣∣
A f f

= ∂Pzz
∂A

∣∣∣∣
A f f

= j f f ,

for j f f the current density derived from A f f .

3.3 Force-Free Current Sheet VM Equilibria

Since current sheets are extremely important for reconnection studies (e.g. see (Priest
and Forbes 2000)), and it is appropriate inmany circumstances tomodel themagnetic
field as force-free, a natural step is to construct VM equilibria for force-free current
sheets. The archetypal 1D current sheet structure used to model reconnection is the
Harris sheet (Harris 1962) (see Sect. 1.3.2.1),

B = B0(tanh(z/L), 0, 0),

for which an exact VM equilibrium DF is well-known. However, the Harris sheet
has j ⊥ B and hence is not force-free, with thermal pressure gradients balancing
those of the magnetic pressure. It is possible to approximate a force-free field with
the addition of a uniform guide field

B = (Bx0 tanh(z/L), By0, 0),

for Bx0, By0 constants. This magnetic field configuration is frequently chosen as the
initial condition in PIC simulations of magnetic reconnection (e.g. see (Pritchett and
Coroniti 2004)), and the VM equilibrium is easily implemented since it is the same
as that for the Harris sheet (Eq. (1.25)).
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In principle, this magnetic field does approach a force free configuration for
By0 	 Bx0, since j is approximately parallel to B. However, the current density,
jy , is completely independent of the magnitude of the guide field, and so it is quite
unlike an exact force-free field, for which the field-aligned current is related to the
shear of the magnetic field. The equilibrium force balance is still maintained by the
balance between gradients in the thermal pressure and the magnetic pressure,

1

2μ0

(
B2
x0 tanh

2
( z
L

)
+ B2

y0

)
,

unlike for an exact force-free field. Finally, the addition of the guide field adds no
extra free energy to the system (Harrison 2009). Hence it is of value to consider
VM equilibria self-consistent with exact force-free magnetic fields because of their
distinct physical nature, with one motivation in mind to see how these differences
affect the magnetic reconnection process.

As discussed in e.g. Bobrova et al. (2001), Vekstein et al. (2002), Eq. (3.5) implies
that a 1D force-free field can be written without loss of generality as

B(z) = B0(cos(S(z)), sin(S(z)), 0), (3.11)

where S(z) = ∫
α(z)dz, for α defined in Eq. (3.2). 1D linear force-free fields then,

necessarily, have S(z) as a linear function of z, i.e. S0z + S1. As a result, Eq. (3.11)
then implies that that the magnetic field configuration for linear force-free fields will
be periodic in the z direction, and hence there will be an infinite sequence of current
sheet structures,

j = −B0S0
μ0L

(sin(S0z + S1), cos(S0z + S1), 0).

Figure3.2 displays the magnetic field from Eq. (3.11), and its current density, for
S(z) = z − π/2.

In contrast to linear force-free fields, nonlinear force-free fields admit—in
principle—all reasonable varieties of differentiable S(z) functions, and hence are
able to describe single, localised and intense current sheet structures.

3.3.1 Known VM Equilibria for Force-Free Magnetic Fields

The first VM equilibria self-consistent with linear force-free fields were found
approximately fifty years ago, (Moratz and Richter 1966; Sestero 1967), with further
examples of equilibria in Channell (1976), Bobrova and Syrovatskiı̌ (1979), Correa-
Restrepo and Pfirsch (1993), Attico and Pegoraro (1999), Bobrova et al. (2001) (note
that Channell (1976); Attico and Pegoraro (1999) don’t actually make the connec-
tion to force-free fields, but write down DFs that are self-consistent with such fields).
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Fig. 3.2 a shows the magnetic field and current density components for a linear force-free field
with S(z) = z − π/2. b shows the magnetic field lines. Images copyright: M.G. Harrison’s PhD
thesis (Harrison 2009), (reproduced with permission)

A limited number of PIC studies with exact VM equilibria for linear force-free fields
as initial conditions have been conducted in Bobrova et al. (2001), Li et al. (2003),
Nishimura et al. (2003), Sakai and Matsuo (2004), Bowers and Li (2007), Harrison
(2009).

In contrast, exact VM equilibria for nonlinear force-free fields were only dis-
covered in Harrison and Neukirch (2009a) (see also Neukirch et al. 2009), with
subsequent solutions in Wilson and Neukirch (2011), Abraham-Shrauner (2013),
Kolotkov et al. (2015), and ‘nearly force-free’ equilibria in Artemyev (2011). As a
result, the investigations of the linear and nonlinear dynamics of such configurations
are at an early stage (Harrison 2009; Wilson 2013; Wilson et al. 2017), with the first
fully kinetic simulations of collisionless reconnection with an initial condition that is
an exact Vlasov solution for a nonlinear force-free field conducted by (Wilson et al.
2016), and using the DF derived by Harrison and Neukirch (2009a).

3.3.1.1 The Force-Free Harris Sheet

Thenonlinear force-freeVMequilibrium solutions derived byHarrison andNeukirch
(2009a), Wilson and Neukirch (2011), Kolotkov et al. (2015) are self-consistent with
the force-free Harris sheet (FFHS), defined by
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Fig. 3.3 a shows the magnetic field and current density components for the FFHS. b shows the
magnetic field lines. Images copyright: M.G. Harrison’s PhD thesis (Harrison 2009), (reproduced
with permission)

B = B0 (tanh (z/L) , sech (z/L) , 0) , (3.12)

j = B0

μ0L

1

cosh(z/L)
(tanh (z/L) , sech (z/L) , 0) , (3.13)

Pzz(z) = PT − B2
0

2μ0
= const. (3.14)

with L the width of the current sheet, B0 the constant magnitude of the magnetic
field,α(z) = L−1sech(z/L) and PT the total pressure. Themagnetic field and current
density for the FFHS are displayed in Fig. 3.3.

The DF found by Abraham-Shrauner (2013) is consistent with magnetic fields
more general than the FFHS, described by Jacobi elliptic functions,

B = B0

(
sn
( z
L

, k
)

, cn
( z
L

, k
)

, 0
)

,

with sn and cn doubly periodic generalisations of the trigonometric functions. The
parameter k is a real number such that as k → 0, sn → sin and cn → cos;whereas for
k → 1, sn → tanh and cn → sech. As such the FFHS is a special case, as is the linear
force-free case when k → 0. We also note work on ‘nearly’ force-free equilibria
(Artemyev 2011), with the FFHS modified by adding a small Bz component.

As demonstrated by Harrison and Neukirch (Harrison and Neukirch (2009a)),
Neukirch et al. (Neukirch et al. (2009)), the assumption of summative separability
for Pzz (the first option in Eq. (2.16)), determines the components of the pressure
according to
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Pzz(Ax , Ay) + B2
0

2μ0
= PT ,

P1(Ax ) + 1

2μ0
B2
y (Ax ) = PT 1, P2(Ay) + 1

2μ0
B2
x (Ay) = PT 2 (3.15)

for PT 1, PT 2 constants such that PT 1 + PT 2 = PT is the total pressure. We choose
to write Bx and By as functions of Ay and Ax since Bx = −d Ay/dz and By =
d Ax/dz. In the ‘particle in a potential’ analogy—as discussed in Sect. 1.3.5.3—this
corresponds to writing vx = vx (x(t)), and vy = vy(y(t)).

The expressions in Eq. (3.15) can now be used as the left-hand side of the integral
Eqs. (2.18) and (2.19), and one could attempt to invert the Weierstrass transforms.
They were used by Harrison and Neukirch (2009a) to derive a summative pressure
for the FFHS. The gauge chosen for the magnetic field was

A = B0L
(
2 arctan

(
exp

( z
L

))
, ln
(
sech

( z
L

))
, 0
)

, (3.16)

and as such the pressure tensor is given by

Pzz = B2
0

2μ0

[
1

2
cos

(
2Ax

B0L

)
+ exp

(
2Ay

B0L

)
+ b

]
. (3.17)

The constant b > 1/2 contributes to a ‘background’ pressure consistent with a
Maxwellian distribution, required for positivity. Figure3.4 shows the Pzz function as
defined by Eq. (3.17), with the overlaid contour delineating the ‘path’ followed by

Fig. 3.4 The
Harrison-Neukirch pressure
function Pzz , with overlaid
contour delineating the path
in (Ax (z), Ay(z)) on which
dPzz/dz = 0. Images
copyright: M.G. Harrison’s
PhD thesis (Harrison 2009),
(reproduced with
permission)
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A = (Ax (z), Ay(z), 0) according to Eq. (3.16), and such that dPzz/dz = 0. Using
either Fourier transforms or inspection to invert the Weierstrass transforms, the DF
calculated to correspond to the Pzz in Eq. (3.17) was given by

fs = n0s

(
√
2πvth,s)3

e−βs Hs
(
as cos (βsuxs pxs) + eβsuys pys + bs

)
.

In this representation, uxs and uys are bulk flow parameters in the x and y directions
respectively, with

Vxs = uys sinh(z/L)

(b + 1/2) cosh2(z/L)
,

Vys = uys

(b + 1/2) cosh2(z/L)
,

and |uxs | = |uys |.

3.3.1.2 Summative Pressures and the Plasma Beta

A free choice of the plasma beta is not possible in the summativeHarrison-Neukirch
equilibriumDF: it is bounded below by unity. In fact it is a feature generally observed
that for pressure tensors (that correspond to force-free fields) constructed in this man-
ner (Harrison and Neukirch 2009a; Wilson and Neukirch 2011; Abraham-Shrauner
2013; Kolotkov et al. 2015), that the plasma-beta is bounded below by unity. By
combining Eqs. (3.11) and (3.15) we see that under the following assumptions,

1. P1(Ax ) ≥ 0 and P2(Ay) ≥ 0
2. ∃ z1, z2 s.t. sin2 S(z1) = 1, sin2 S(z2) = 0, cos2 S(z2) = 1, cos2 S(z1) = 0.

We justifyAssumption 1. by the following argument.Whilst formallywe only require
the sum Pzz = P1(Ax (z)) + P2(Ay(z)) ≥ 0 (since pressure can’t be negative), we do
in fact require P1(Ax ) ≥ 0 and P2(Ay) ≥ 0 individually. The inverse problemdefined
by Eq. (1.41) ties together the dependence of Pzz on Ax and Ay to the dependence
of the DF on pxs and pys respectively. As the DF must be positive with respect to
the independent variation of pxs or pys , so must Pzz be with respect to independent
variations of Ax and Ay .

Assumption 2. is trivially true in the case of a 1D linear force-free field, since
S(z) is a linear function of z. For the case of a nonlinear force-free field in which one
of the magnetic field components goes through 0, and the other tends to 0 at ±∞,
Assumption 2. will hold, and this is the case for the FFHS.

If we combine Assumptions 1. and 2., then the following inequalities will hold,
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PT 1 = P1(Ax (z1)) + B2
0

2μ0
sin2 S(z1) ≥ B2

0

2μ0
, (3.18)

PT 2 = P2(Ay(z2)) + B2
0

2μ0
cos2 S(z2) ≥ B2

0

2μ0
. (3.19)

In fact, since Pzz(z) = const., and PT 1 and PT 2 are independent of each other through
the separation of variables, we see that the inequalities in Eqs. (3.18) and (3.19) must
in fact hold true for all z. Using this knowledge, and Eq. (3.15), we conclude that

PT = PT 1 + PT 2 ≥ 2
B2
0

2μ0
=⇒ P1(Ax ) + P2(Ay) + B2

0

2μ0
≥ 2

B2
0

2μ0
,

and then, upon dividing through by B2
0/(2μ0) that

βpl + 1 ≥ 2 =⇒ βpl ≥ 1.

3.3.1.3 Exponential Pressure Transformation

The lower bound of unity on theβpl for theDFs considered byHarrison andNeukirch
(2009a), Wilson and Neukirch (2011), Abraham-Shrauner (2013), Kolotkov et a.
(2015) could be considered a problem for modelling the solar corona. Formally, βpl

is defined as the ratio of the thermal energy density to the magnetic energy density;

βpl =
∑
s

βpl,s = 2μ0kB
B2
0

∑
s

nsTs, (3.20)

for ns and Ts the number density and temperature—of species s—respectively. In a
1D Cartesian geometry, and for a DF of the form of Eq. (1.37), the following relation
holds

Pzz,s = ns
βs

= nskBTs,

e.g. see Channell (1976), Harrison and Neukirch (2009b). As a result the plasma beta
can be written in the more familiar form,

βpl = 2μ0Pzz
B2
0

, s.t. Pzz =
∑
s

Pzz,s

In this chapter we take the Pzz used in Harrison and Neukirch (2009a), Neukirch et
al. (2009), Wilson and Neukirch (2011), Kolotkov et al. (2015), which is given by
Eq. (3.17), and transform it as in Eq. (3.10) with the exponential function according
to

ψ(Pzz) = exp

[
1

P0

(
Pzz − Pf f

)]
, (3.21)
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with P0 a freely chosen positive constant. This gives P̄zz, f f = P0, and so the plasma
pressure can be as low or high as desired. Channell (1976) showed that under the
assumptions used in this chapter,

Pzz(Ax , Ay) = βe + βi

βeβi
n(Ax , Ay), (3.22)

where n = ni = ne. Equation (3.20) then gives

βpl = 2μ0Pzz, f f
B2
0

= 2μ0P0
B2
0

.

Hence, a freely chosen P0 corresponds directly to a freely chosen βpl .
We note here that this pressure transformation can also be implicitly seen for the

different linear force-free cases presented in the literature, although this connection
has never been made. For example, the pressure function in Sestero (1967) (and
implicitly in (Bobrova et al. 2001)) is an exponentiated version of that in Channell
(1976);Attico andPegoraro (1999).A further interesting aspect is that themomentum
dependent parts of the DFs are also related to each other exponentially in the linear
force-free case.

Obviously, even if integral Eq. (1.41) can be solved for the original function
Pzz(Ax , Ay) it is by no means clear that this is possible for the transformed function
P̄zz . Usually one would expect that solving Eq. (1.41) for gs is much more difficult
after the transformation to P̄zz .

3.4 VM Equilibria for the Force-Free Harris Sheet:
β pl ∈ (0,∞)

3.4.1 Calculating the DF

The pressure function in Eq. (3.17) describes βpl ≥ 1 regimes, and we are to trans-
form according to Eqs. (3.10) and (3.21) in order to realise βpl < 1, resulting in

P̄zz = P0 exp

{
1

2βpl

[
cos

(
2Ax

B0L

)
+ 2 exp

(
2Ay

B0L

)
− 1

]}
.

The−1/(2βpl) termcomes from the fact that Pf f = B2
0/(2μ0)(1 + (b − 1/2)), read-

ily seen for z = 0, for example.Note that Pzz is constant over z, and sowe can evaluate
at any z to calculate Pf f . Exponentiation of Pzz has clearly resulted in a complicated
LHS of Eq. (1.41), i.e.
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P0 exp

{
1

2βpl

[
cos

(
2Ax

B0L

)
+ 2 exp

(
2Ay

B0L

)
− 1

]}
= βe + βi

βeβi

n0s
2πm2

sv
2
th,s

×
∫ ∞

−∞

∫ ∞

−∞
e−βs((pxs−qs Ax )

2+(pys−qs Ay)
2)/(2ms )gs(pxs, pys)dpxsdpys, (3.23)

and so the inverse problem defined above is mathematically challenging.
Since exponentiation of the ‘summative’ pressure function results in a ‘multiplica-

tive’ one,we shall exploit separation of variables by assuming gs ∝ g1s(pxs)g2s(pys),
whilst noting that P̄zz ∝ P̄1(Ax )P̄2(Ay). This assumption leads to integral equations
of the form of those in Eqs. (2.18) and (2.19),

P̄1(Ax ) ∝
∫ ∞

−∞
e−βs (pxs−qs Ax )

2/(2ms )g1(pxs)dpxs, (3.24)

P̄2(Ay) ∝
∫ ∞

−∞
e−βs(pys−qs Ay)

2
/(2ms )g2(pys)dpys, (3.25)

in which the LHS are formed of exponentiated cosine and exponential functions,
respectively. From Eq. (3.23), we see that the inverse problem now defined by Eqs.
(3.24) and (3.25) is not analytically soluble by Fourier transform methods. Hence,
we resolve to use the Hermite polynomial method from Chap. 2.

The first step is to Maclaurin expand the exponentiated pressure function of Eq.
(3.17) according to Eqs. (3.10) and (3.21). Exponentiation of a power series is a com-
binatoric problem, and was tackled by E.T. Bell in Bell (1934). If h(x) = exp k(x),
and k(x) is given by the power series

k(x) =
∞∑
n=1

1

n!ζnx
n,

then

h(x) =
∞∑
n=0

1

n!Yn(ζ1, ζ2, . . . , ζn)x
n,

for Yn the nth Complete Bell Polynomial (CBP), with Y0 = 1. These can be defined
explicitly for n ≥ 1 by Faà di Bruno’s determinant formula as the determinant of an
n × n matrix (Johnson 2002),

Yn(ζ1, ζ2, . . . ζn) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(n−1
0

)
ζ1
(n−1

1

)
ζ2
(n−1

2

)
ζ3 . . .

(n−1
n−2

)
ζn−1

(n−1
n−1

)
ζn

−1
(n−2

0

)
ζ1
(n−2

1

)
ζ2 . . .

(n−2
n−3

)
ζn−2

(n−2
n−1

)
ζn−1

0 −1
(n−3

0

)
ζ1 . . .

(n−3
n−4

)
ζn−3

(n−3
n−3

)
ζn−2

...
...

...
...

...

0 0 0 . . .
(1
0

)
ζ1

(1
1

)
ζ2

0 0 0 . . . −1
(0
0

)
ζ1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (3.26)
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For example Y1(ζ1) = ζ1 and Y2(ζ1, ζ2) = ζ 2
1 + ζ2.We include this determinant form

here since this is the representation we use to plot the DF. Instructive references on
CBPs can be found inRiordan (1958), Comtet (1974),Kölbig (1994), Connon (2010),
for example. Another representation for the CBPs is given by Connon (2010), where
for n ≥ 1 the Yn can be written as

Yn(ζ1, ζ2, . . . ζn) =
∑
π(n)

n!
k1!k2! . . . kn!

(
ζ1

1!
)k1 (ζ2

2!
)k2

. . .

(
ζn

n!
)kn

, (3.27)

where the sum is taken over all partitions π(n) of n, i.e. over all sets of integers k j

such that
k1 + 2k2 + · · · + nkn = n.

Using CBPs, and a simple scaling argument (Bell 1934; Connon 2010), immediately
seen from Eq. (3.27),

Yn(aζ1, a
2ζ2, . . . , a

nζn) = anYn(ζ1, ζ2, . . . ζn), (3.28)

we can derive the Maclaurin expansion of the transformed pressure, making use of

cos

(
2Ax

B0L

)
=

∞∑
n=0

(−1)n

(2n)!
(
2Ax

B0L

)2n

, exp

(
2Ay

B0L

)
=

∞∑
n=0

(−1)n

(2n + 1)!
(
2Ay

B0L

)2n+1

.

The Maclaurin expansion is found to be

P̄zz = P0e
−1/(2βpl )

∞∑
m=0

a2m

(
Ax

B0L

)2m ∞∑
n=0

bn

(
Ay

B0L

)n

, (3.29)

with

a2m = e1/(2βpl )
(−1)m22m

(2m)! Y2m

(
0,

1

2βpl
, 0, . . . , 0,

1

2βpl

)
, (3.30)

and

bn = e1/βpl
2n

n! Yn
(

1

βpl
, . . . ,

1

βpl

)
. (3.31)

This allows us to formally solve the inverse problem for the unknown functions
g1s(pxs) and g2s(pys) in terms of Hermite polynomials (using results from Chap. 2),
giving
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fs(Hs, pxs, pys) = n0s(√
2πvth,s

)3 e−1/(2βpl ) ×

[ ∞∑
m=0

C2m,s H2m

(
pxs√

2msvth,s

) ∞∑
n=0

DnsHn

(
pys√

2msvth,s

)]
e−βs Hs , (3.32)

for species-dependent coefficients C2m,s and Dns . As discussed in Chap. 2, we fix
the micro-macroscopic parameter relationships by the following conditions

σ(Ax , Ay) = 0,

P0 exp

{
1

2βpl

[
cos

(
2Ax

B0L

)
+ 2 exp

(
2Ay

B0L

)
− 1

]}
= ms

∑
s

∫
v2
z fsd

3v,

for the fs given by Eq. (3.32). After performing the necessary integrations, these
conditions are satisfied by fixing the parameters according to

n0i = n0e = n0, P0 = n0
βe + βi

βeβi

C2m,s =
(

δs√
2

)2m

a2m, Dns = sgn(qs)
n

(
δs√
2

)n

bn.

Asyet, the distribution ofEq. (3.32), togetherwith themicro-macroscopic conditions,
is only a formal solution to the inverse problemposed, andwe nowproceed to confirm
the convergence and boundedness properties, using techniques from Chap. 2.

3.4.2 Convergence and Boundedness of the DF

Here we include the full details of the calculations that confirm the validity of the
Hermite Polynomial representation of the multiplicative FFHS equilibrium in the
‘original’ gauge (Eq. (3.16)). We shall first verify the convergence of g2s (expanded
over n in Eq. (3.32)) using the convergence condition from Sect. 2.4, and then verify
convergence of g1s by comparison with g2s .

3.4.2.1 Convergence of the pys Dependent Sum

As Theorem 1 states, we can verify convergence of g2s provided

lim
n→∞

√
n

∣∣∣∣bn+1

bn

∣∣∣∣ < 1/δs .
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Explicit expansion of the exponentiated exponential series by ‘twice’ using Maclau-
rin series (as opposed to the CBP formulation of Eq. (3.31)) gives

P̃2( Ãy) = exp

(
1

βpl
exp

(
2Ay

B0L

))
=

∞∑
k=0

1

βk
plk!

exp

(
2k Ay

B0L

)
,

=
∞∑
k=0

1

βk
plk!

∞∑
n=0

2nkn

n!
(

Ay

B0L

)n

=
∞∑
n=0

bn

(
Ay

B0L

)n

,

such that bn are defined by

bn = 2n

n!
∞∑
k=0

kn

βk
plk!

, (3.33)

And for which the sum over k is itself a convergent series, meaning that the bn are
well-defined. Using the definition of bn and bn+1 gives

bn+1/bn = 2

n + 1

∞∑
j=0

j n+1

j !β j
pl

/ ∞∑
j=0

j n

j !β j
pl

= 2

n + 1

⎛
⎜⎜⎜⎝
0 + 1

0!βpl
+ 2n

1!β2
pl

+ 3n

2!β3
pl

+ · · ·

0 + 1

1!βpl
+ 2n

2!β2
pl

+ 3n

3!β3
pl

+ · · ·

⎞
⎟⎟⎟⎠

= 2

n + 1

⎛
⎜⎜⎜⎝

1

βpl
+ 2

2n

2!β2
pl

+ 3
3n

3!β3
pl

+ · · ·
1

1!βpl
+ 2n

2!β2
pl

+ 3n

3!β3
pl

+ · · ·

⎞
⎟⎟⎟⎠ .

The kth ‘partial sum’ of this fraction has the form

Sn,k = p1 + 2p2 + 3p3 + · · · + kpk
p1 + p2 + p3 + · · ·

with pi � 1/ i !, where we write g � h to mean g/h and h/g are bounded away from
0. Now since the denominator of the pi increase factorially we have i pi � pi and
hence

0 <

∞∑
i=1

i pi < ∞ and 0 <

∞∑
i=1

pi < ∞.



86 3 One-Dimensional Nonlinear Force-Free Current Sheets

Thus Sn,k → Sn,∞ ∈ (0,∞) and, more specifically, Sn,∞ � 1 in n. Therefore

bn+1/bn = Sn,∞/(n + 1) � 1/n.

That is to say bn+1/bn behaves asymptotically like 1/n. This satisfies the condition
of Theorem 1. Hence g2s(pys) converges for all δs and pys by the comparison test.

3.4.2.2 Convergence of the pxs Dependent Sum

We shall now verify convergence of g1s , by comparison with g2s . By explicitly using
theMaclaurin expansion of the exponential, and then the power-series representation
for cosn x from Gradshteyn and Ryzhik (2007)

cos2n x = 1

22n

[
n−1∑
k=0

2

(
2n

k

)
cos(2(n − k)x) +

(
2n

n

)]
,

cos2n−1 x = 1

22n−2

n−1∑
k=0

(
2n − 1

k

)
cos((2n − 2k − 1)x),

one can calculate

P̃1( Ãx ) = exp

(
1

2βpl
cos

(
2Ax

B0L

))
=

∞∑
m=0

a2m

(
Ax

B0L

)2m

.

The zeroth coefficient is given by a0 = exp
(
1/(2βpl)

)
, and the rest are

a2m = 2(−1)m

(2m)!
∞∑
k=0

∑
j∈Jk

1

j !(4βpl) j

(
j

k

)
( j − 2k)2m,

for Jk = {2k + 1, 2k + 2, . . .} and m �= 0. By rearranging the order of summation,
a2m can be written

a2m = 2(−1)m

(2m)!
∞∑
j=1

1

j !(4βpl) j

�( j−1)/2�∑
k=0

(
j

k

)
( j − 2k)2m,

where �x� is the floor function, denoting the greatest integer less than or equal to x .
Recognising an upper bound in the expression for a2m ;

�( j−1)/2�∑
n=0

(
j

n

)
( j − 2n)2m ≤ j2m

j∑
n=0

(
j

n

)
= 2 j j2m,
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gives

a2m <
2(−1)m

(2m)!
∞∑
j=1

2 j+1 j2m

j !2 j (2βpl) j
= 2

(−1)m

(2m)!
∞∑
j=1

j2m

j !(2βpl) j
,

≤ 2

(2m)!
∞∑
j=1

j2m

j !(2βpl) j
,

= 1

(2m)!
∞∑
j=1

21− j j2m

j !β j
pl

< b2m .

Hence we now have an upper bound on a2m for m �= 0 and we know that a2m+1 = 0,
and so is bounded above by b2m+1. Note also that a0 < b0. Hence, each term in
our series for g1s(pxs) is bounded above by a series known to converge for all δs
according to

al

(
δs√
2

)l

Hl(x) < bl

(
δs√
2

)l

Hl(x), ∀l.

So by the comparison test, we can now say that g1s (pxs) is a convergent series.
Hence the representation of the DF in Eq. (3.32) is convergent.

3.4.2.3 Boundedness of the DF

The boundedness of the DF in Eq. (3.32) is now guaranteed by the reasoning from
Sect. 2.4.1.2 for a general solution, and need not be repeated here.

3.4.3 Moments of the DF

The moments of the DF are used to calculate the number density and bulk velocity,
and in turn the charge and current densities respectively. It is useful to calculate these
quantities from the DF to confirm parity with the required macroscopic quantities
not only as a procedural check, but also to derive relations between the micro- and
macroscopic parameters.

3.4.3.1 The Zeroth Order Moment

The number density is found by taking the zeroth moment;
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ns(Ax , Ay) = e
− 1

2βpl

m3
s

n0

(
√
2πvth,s)3

×
[ ∞∑

m=0

C2m,s

∫ ∞

−∞
e− βs

2ms
(pxs−qs Ax )

2

H2m

(
pxs√

2msvth,s

)
dpxs ×

∞∑
n=0

Dns

∫ ∞

−∞
e− βs

2ms
(pys−qs Ay)

2

Hn

(
pys√

2msvth,s

)
dpys

∫ ∞

−∞
e− βs

2ms
p2zs dpzs

]
,

which, after integrating over pzs and making substitutions, gives

ns(Ax , Ay) = n0e
− 1

2βpl

π

∞∑
m=0

C2m,s

∫ ∞

−∞
e
−(X− qs Ax√

2ms vth,s
)2

H2m(X)dX

×
∞∑
n=0

Dns

∫ ∞

−∞
e
−(Y− qs Ay√

2ms vth,s
)2

Hn(Y )dY.

Use the standard integral (Gradshteyn and Ryzhik 2007),

∫ ∞

−∞
e−(x−y)2Hn(x)dx = √

π2n yn,

to give

ns(Ax , Ay) = n0e
− 1

2βpl

∞∑
m=0

C2m,s2
2m

(
qs Ax√
2msvth,s

)2m ∞∑
n=0

Dns2
n

(
qs Ay√
2msvth,s

)n

= n0
P0

P̄zz .

Using Pzz, f f = P0, we see that
n f f = n0,

and so n0 represents the constant particle number density.

3.4.3.2 The vx Moment

We now take the first moment of the DF by vx denoted by [vx fs];
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[vx fs] = 1

m3
s

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
vx fsd

3 p,

= n0e
− 1

2βpl

(
√
2π)msvth,s

∞∑
n=0

bn

(
Ay

B0L

)n ∞∑
m=0

C2m,s ×
∫ ∞

−∞
vxe

− βs
2ms

(pxs−qs Ax )
2

H2m

(
pxs√

2msvth,s

)
dpxs

︸ ︷︷ ︸
Ivx

,

after both the pys and pzs integrations. Now, use the Hermite expansion of the expo-
nential (Morse and Feshbach 1953), to give

Ivx = 1

ms

∫ ∞

−∞
(pxs − qs Ax )H2m

(
pxs√

2msvth,s

)
e− βs p2xs

2ms ×
⎡
⎣ ∞∑

j=0

1

( j)!

(
qs Ax√
2msvth,s

) j

Hj

(
pxs√

2msvth,s

)⎤⎦ dpxs .

Now define an inner product according to

〈 f1(x), f2(x)〉 =
∫ ∞

−∞
e−x2 f1(x) f2(x)dx . (3.34)

Then orthogonality of the Hermite polynomials (Eq. (2.3)), and the recurrence rela-
tion, Hn+1(x) = 2xHn(x) − 2nHn−1(x), are used to give

〈xHj (x), H2m(x)〉 = j〈Hj−1(x), H2m(x)〉 + 1

2
〈Hj+1(x), H2m(x)〉

= √
π22m(2m)!

(
jδ j−1,2m + 1

2
δ j+1,2m

)
. (3.35)

This allows us to write

Ivx = √
2πvth,s2

2m(2m)! ×
∞∑
j=0

1

j !

(
qs Ax√
2msvth,s

) j[√
2msvth,s

(
jδ j−1,2m + 1

2
δ j+1,2m

)
− qs Axδ j,2m

]
.

Hence, we have
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[vx fs ] = n0e
− 1

2βpl

ms

∞∑
n=0

bn

(
Ay

B0L

)n ∞∑
m=0

C2m,s2
2m (2m)!

×
∞∑
j=0

1

j !

(
qs Ax√
2msvth,s

) j[√
2msvth,s

(
jδ j−1,2m + 1

2
δ j+1,2m

)
− qs Ax δ j,2m

]
.

reducing to

[vx fs] =
(
msv

2
th,s

qs B0L

)
n0e

− 1
2βpl

∞∑
n=0

bn

(
Ay

B0L

)n ∞∑
m=1

a2m2m

(
Ax

B0L

)2m−1

=
(
msv

2
th,s

qs P0

)
n0

∂ P̄zz
∂Ax

= βeβi

βe + βi

(
1

qsβs

)
∂ P̄zz
∂Ax

(3.36)

The x component of current density is defined as jx = ∑
s qs[vx fs], giving

jx = βeβi

βe + βi

∂ P̄zz
∂Ax

∑
s

1

βs
= ∂ P̄zz

∂Ax

=⇒ jx = ∂ P̄zz
∂Ax

, (3.37)

reproducing the familiar result from e.g. Channell (1976), Harrison and Neukirch
(2009b), Schindler (2007), Mynick et al. (1979). The first moment of the DF can
also be used to calculate the bulk velocity in terms of the microscopic parameters;

Vxs = [vx fs]
ns

= jx
qsβs P0

, (3.38)

using Eq. (3.36). Then, by using the current density for the FFHS (Eq. (3.13)),

j = B0

μ0L

(
sinh

(
z
L

)
cosh2

(
z
L

) , 1

cosh2
(
z
L

) , 0
)

, (3.39)

we have the bulk flow in x

Vxs = B0

μ0Lqsβs P0

sinh
(
z
L

)
cosh2

(
z
L

) . (3.40)

3.4.3.3 The v y Moment

By a completely analogous calculation, we derive the vy moment of the DF,
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[vy fs] =
(
msv

2
th,s

P0qs

)
n0

∂ P̄zz
∂Ay

= βeβi

βe + βi

(
msv

2
th,s

qs

)
∂ P̄zz
∂Ay

Again, the current density jy = ∑
s qs[vy fs] gives

jy = βeβi

βe + βi

∂Pzz
∂Ay

∑
s

msv
2
th,s = ∂ P̄zz

∂Ay

=⇒ jy = ∂ P̄zz
∂Ay

.

We can also calculate the bulk velocity in terms of the microscopic parameters;

Vys = B0

μ0Lqsβs P0

1

cosh2 (z/L)
. (3.41)

3.4.4 Properties of the DF

3.4.4.1 Current Sheet Width

The nature of the inverse problem is to calculate a microscopic description of a
system, given certain prescribed macroscopic data. Hence, one of the main tasks
is to find the relationships between the characteristic parameters of each level of
description. That is to say, given (B0, P0, L) for example, what is their relation to
(ms, qs, vth,s, n0s)?

Currently, there are six free parameters that will determine the nature of the
equilibrium. These are n0, βpl , βth,i , βth,e, δi and δe. n0 is in principle fixed by
ensuring that the DF is normalised to the total particle number. As yet we have
no information regarding the width of the current sheet L . To this end we shall
consider bulk velocities Vxs and Vys , obtained from the first moment of the DF. The
calculations in Sect. 3.4.3, together with the fact that B0 = √

2μ0P0/βpl give

Vxs = [vx fs]
n0

=
√

2

μ0βpl P0

1

Lqsβs

sinh (z/L)

cosh2 (z/L)
,

Vys = [vy fs]
n0

=
√

2

μ0βpl P0

1

Lqsβs

1

cosh2 (z/L)
.
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We can identify the coefficient of the z dependent profiles as the amplitude of the
bulk velocities, Vxs and Vys , as us , given by

us =
√

2

μ0βpl P0

1

Lqsβs
, (3.42)

giving

(ui − ue)
2 = 2

μ0βpl P0L2e2

(
βe + βi

βeβi

)2

, (3.43)

=⇒ L = 1

e

√
2(βe + βi )

μ0n0βeβi (ui − ue)2βpl
, (3.44)

where e = |qs |. Interestingly, this is almost identical to the expression found in
Neukirch et al. (2009) for the current sheet width of the Harrison-Neukirch equi-
librium, with the addition of the β

1/2
pl factor in the denominator. It is readily seen

that, given some fixed B0, L ∝ β
−1/2
pl . This makes sense in that, by raising the num-

ber density n0, and hence βpl , there are simply more current carriers available to
produce j , and hence the width L can reduce. By manipulating Eq. (3.42) one can
show that the amplitudes of the fluid velocities are given by

us
vth,s

= 2sgn(qs)
δs

βpl
= 2sgn(qs)

ρs

Lβpl
. (3.45)

Once again, this is almost identical to the expression found in Neukirch et al. (2009),
with the addition of a βpl factor in the denominator.

3.4.4.2 Plots of the DF

Having found mathematical expressions for the DFs, we now present different plots
of their dependence on vx and vy , for z/L = 0,−1, 1. Plotting fs in the original
gauge is a challenging numerical task, and particularly for the low-βpl regime. The
reasoning is as follows. When βpl < 1/2, the C2m,s (for example) are readily seen
to be of the order (

1√
2

)2m 1

(2m)!
(

δs

βpl

)2m

,

since Y2m is a polynomial of order 2m in 1/(2βpl). The factorial dependence in the
denominator ensures that these terms → 0 as m → ∞. But, for relatively small m
there is a competition between the factorial and the β−2m

pl , factor. This means that
one must go to many terms in the expansion to get near numerical convergence.



3.4 VM Equilibria for the Force-Free Harris Sheet: βpl ∈ (0,∞) 93

As a result, one needs to calculate both incredibly small (e.g. the 1/(2m)! factor),
and incredibly large numbers (the Y2m factors), and combine them to reach C2m,s .

Furthermore, the Hermite polynomials become very large when the modulus of
the argument is large. In normalised parameters, suitable for numerical methods, we
have that

Hn

(
p js√

2msvth,s

)
= Hn

(
1√
2

(
ṽ js + sgn(qs)δ

−1
s Ã j

))
, (3.46)

for p̃ js = p js/(msvth,s), and Ã j = A j/(B0L). In particular, small values of δs mean
that one needs to calculate Hn of a large number, which can itself be inordinately
large since Hn is a polynomial.

So, while it has been proven that the series with which we represent the DFs are
convergent for all values of the relevant parameters, attaining numerical convergence
is difficult for the low-βpl regime, and particularly for the pxs dependent sum. Here
we present plots for βpl = 0.85 and δi = δe = 0.15. As aforementioned we use Faà
di Bruno’s determinant formula in Eq. (3.26) to calculate the CBP’s, and a recurrence
relation for the Hermite Polynomials. Whilst this βpl is only modestly below unity,
however it represents a value of which we are confident of our numerics for both
the pxs and pys dependent sums. In Figs. 3.5a–c we plot the vx variation of our
electron DF, as a representative example (the vy plots are qualitatively similar). First
of all we note that the DFs appear to have only a single maximum, and fall off
as vx → ±∞. This is to be contrasted with the plots of the DF using the additive
pressure, which can have multiple peaks (Neukirch et al. 2009). Thus far we have not
found any indication of multiple peaks in the parameter regime that we have been
able to explore. However, this does not mean that multiple peaks can not appear, for
example for lower values of the βpl .

A first look at the plots also seems to indicate that the shape of the DF resembles
the shape of a Maxwellian. Motivated by this similarity, we define a Maxwellian DF
according to Eq. (1.26), and repeated here,

fMaxw,s = n0

(
√
2πvth,s)3

exp

[
− (v − V s(z))

2

2v2
th,s

]
. (3.47)

TheMaxwellian distribution reproduces the same first order moment in terms of z as
the equilibrium solution does, namely V s , and a spatially uniform number density,
namely n0. However it is not a solution of the Vlasov equation and hence not an
equilibrium solution. PIC simulations for a force-free field were initiated with a
distribution of this type in Hesse et al. (2005), Birn and Hesse (2010), for example.
To highlight the difference between the two DFs, we plot both the vx and vy variation
of the ratio of the DF, with the Maxwellian of Eq. (3.47) for both ions and electrons
in Figs. 3.6a–c. As we can see, in all plots the ratio deviates from unity, and in
some cases these deviations are substantial. This shows that the initial impression is
somewhat misleading. We also observe a symmetry in that the vy dependent plots
are even in z, since Ay and 〈vy〉s are even in z.
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Fig. 3.5 The vx variation of
fe for z/L = 0 Fig. 3.5a,
z/L = −1 Fig. 3.5b and
z/L = 1 Fig. 3.5c.
βpl = 0.85 and δe = 0.15.
Note the antisymmetry of the
z = ±1 plots with respect to
each other

(a)

(b)

(c)
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Fig. 3.6 The vx variation of
fi/ fMaxw,i for z/L = 0 Fig.
3.6a, z/L = −1 Fig. 3.6b
and z/L = 1 Fig. 3.6c.
βpl = 0.85 and δi = 0.15.
Note the antisymmetry of the
z = ±1 plots with respect to
each other

(a)

(b)

(c)
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Fig. 3.7 The vy variation of
fi/ fMaxw,i for z/L = 0 Fig.
3.7a, z/L = −1 Fig. 3.7b
and z/L = 1 Fig. 3.7c.
βpl = 0.85 and δi = 0.15.
Note the symmetry of the
z = ±1 plots with respect to
each other

(a)

(b)

(c)
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Fig. 3.8 The vx variation of
fe/ fMaxw,e for z/L = 0 Fig.
3.8a, z/L = −1 Fig. 3.8b
and z/L = 1 Fig. 3.8c.
βpl = 0.85 and δe = 0.15.
Note the antisymmetry of the
z = ±1 plots with respect to
each other

(a)

(b)

(c)
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Fig. 3.9 The vy variation of
fe/ fMaxw,e for z/L = 0 Fig.
3.9a, z/L = −1 Fig. 3.9b
and z/L = 1 Fig. 3.9c.
βpl = 0.85 and δe = 0.15.
Note the symmetry of the
z = ±1 plots with respect to
each other

(a)

(b)

(c)



3.4 VM Equilibria for the Force-Free Harris Sheet: βpl ∈ (0,∞) 99

Fig. 3.10 Contour plots of
fi − fMaxw,i for z/L = 0
Fig. 3.10a, z/L = −1 Fig.
3.10b and z/L = 1 Fig.
3.10c. βpl = 0.85 and
δi = 0.15. Note the
antisymmetry of the z = ±1
plots with respect to each
other

(a)

(b)

(c)
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Fig. 3.11 Contour plots of
fe − fMaxw,e for z/L = 0
Fig. 3.11a, z/L = −1 Fig.
3.11b and z/L = 1 Fig.
3.11c. βpl = 0.85 and
δe = 0.15. Note the
antisymmetry of the z = ±1
plots with respect to each
other

(a)

(b)

(c)
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To further see the deviations of fs from the Maxwellian, we present contour plots
of the difference fs − fMaxw,s in Figs. 3.10a–c over (vx , vy) space for various z
values. One observation we can make from these is that there is a symmetry with
respect to both velocity direction and the value of z. For example it seems that fs is
symmetric under the transformation (vx → −vx , z → −z). This seems reasonable
since Ax is dynamically equivalent to an odd function of z, by a gauge transformation,
as By is even (moreon this inSect. 3.5.1). For a plasma-betamodestly belowunity, and
thermal Larmor radius roughly 15% of the current sheet width, we find distributions
that are roughly Maxwellian in shape, but ‘shallower’ at the centre of the sheet. At
the outer edges of the sheet, this shallowness assumes a drop-shaped depression in
the vx direction, with localised differences for large vy .

3.5 ‘Re-Gauged’ Equilibrium DF for the FFHS

3.5.1 On the Gauge for the Vector Potential

In Sect. 3.4we used the pressure transformation techniques to derive a pressure tensor
of ‘multiplicative form’

Pzz = P1(Ax )P2(Ay),

in order to construct a DF self-consistent with any value of the βpl . However, the
exact form of the DFwas challenging to calculate numerically for low βpl , with plots
for βpl only modestly below unity presented (βpl = 0.85). The ‘problem terms’ are
those that depend on pxs . The specific problem is that the Ax function in the original
gauge is neither even or odd,

Ax = 2B0L arctan
(
exp

( z
L

))
,

and as a result the range of pxs for which it is necessary to numerically calculate
a convergent DF can be obstructive, say over a symmetric range in velocity space.
Equation (3.46) shows us that when Ax is neither even nor odd, then |pxs | can take
on larger than ‘necessary’ values for a given vx .

In this chapter, we shall ‘re-gauge’ the vector potential component Ax to be an
odd function,

Ax = 2B0L arctan
(
tanh

( z

2L

))
, (3.48)

which is commensurate with By being an even function and results in the same By =
B0 sech(z/L) as the one derived from the Ax defined in (3.16). As a consequence
the numerical calculation of the DFs that we shall calculate for the FFHS becomes
easier in the low βpl regime.
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3.5.2 DF for the ‘Re-Gauged’ FFHS: β pl ∈ (0 , ∞)

We will now calculate a multiplicative DF for the ‘re-gauged’ FFHS, in the same
style as in Sect. 3.4, in the effort to produce a low-beta DF for the FFHS that is easier
to calculate numerically, and plot. The new gauge is defined by

A = B0L
(
2 arctan

(
tanh

( z

2L

))
, ln sech

z

L
, 0
)

. (3.49)

This re-gauging is equivalent to adding a constant to Ax and so corresponds to a shift
in the origin of the Ax dependent part of the summative Pzz used in Harrison and
Neukirch (2009a). As a result, one can derive a new summative pressure function in
the same manner as in (Harrison and Neukirch 2009a), corresponding to this new
gauge, as

Pzz = B2
0

2μ0

[
sin2

(
Ax

B0L

)
+ exp

(
2Ay

B0L

)]
(3.50)

The next step is to construct a multiplicative pressure tensor. Using the same pressure
transformation technique as in Sect. 3.3.1.3, on the Pzz given in Eq. (3.50), we arrive
at the ‘re-gauged’ multiplicative pressure

Pzz = P0e
−1/βpl exp

[
1

βpl

(
sin2

(
Ax

B0L

)
+ exp

(
2Ay

B0L

))]
(3.51)

= P0 exp

[ ∞∑
n=1

1

(2n)!ν2n
(

Ax

B0L

)2n
]
exp

[ ∞∑
n=1

1

n!ξn
(

Ay

B0L

)n
]
, (3.52)

with the coefficients defined by

ν2n = (−1)n+122n−1

βpl
, ξn = 2n

βpl
.

We now use the theory of CBPs, as in (Allanson et al. 2015) and Sect. 3.4, to write
the pressure as

Pzz = P0

∞∑
m=0

1

(2m)!Y2m (0 , ν2 , 0 , ν4 , . . . , 0 , ν2m)

(
Ax

B0L

)2m

×
∞∑
n=0

1

n!Yn (ξ1 , ξ2 , . . . , ξn)

(
Ay

B0L

)n

.

Once again using the simple scaling argument from Eq. (3.28), we have
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Pzz = P0

∞∑
m=0

(−1)m22m

(2m)! Y2m

(
0

−1

2βpl
, 0 ,

−1

2βpl
, . . . , 0 ,

−1

2βpl

)(
Ax

B0L

)2m

×
∞∑
n=0

2m

n! Yn
(

1

βpl
,

1

βpl
, . . . ,

1

βpl

)(
Ay

B0L

)n

.

Using the methods established in Chap. 2, namely expansion over Hermite polyno-
mials, we calculate a DF that gives the above pressure

fs = n0

(
√
2πvth,s)3

e−βs Hs ×
∞∑

m=0

a2m

(
δs√
2

)2m

H2m

(
pxs√

2msvth,s

)
×

∞∑
n=0

bnsgn(qs)
n

(
δs√
2

)n

Hn

(
pys√

2msvth,s

)
, (3.53)

for

a2m = (−1)m22m

(2m)! Y2m

(
0

−1

2βpl
, 0 ,

−1

2βpl
, . . . , 0 ,

−1

2βpl

)
,

bn = 2m

n! Yn
(

1

βpl
,

1

βpl
, . . . ,

1

βpl

)
. (3.54)

One can readily calculate the number density for this DF using standard integral
results (Gradshteyn and Ryzhik 2007) to be

ns(Ax , Ay) = n0

∞∑
m=0

a2m

(
Ax

B0L

)2m ∞∑
n=0

bn

(
Ay

B0L

)n

= P0
βeβi

βe + βi
.

3.5.3 Convergence and Boundedness of the DF

This DF has identical coefficients for the pys-dependent Hermite polynomials as that
derived in Sect. 3.4, and so we need not verify convergence for that series. In fact, all
that has changed in the analysis of the coefficients for the pxs-dependent sum is that
we now have to consider theMaclaurin coefficients of sin2(Ax/(B0L)) as opposed to
cos(2Ax/(B0L)). These Maclaurin coefficients both have the same ‘factorial depen-
dence’ and as such the convergence of the one DF implies the convergence of the
other.
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The boundedness argument is exactly analogous to that made above for the DF
in original gauge, and need not be repeated here.

3.5.4 Plots of the DF

We now present plots for the DF given in Eq. (3.53), for βpl = 0.05 and δe = δi =
0.03. This value for βpl is substantially lower than the value used in Sect. 3.4, which
had βpl = 0.85. The ability to go down to lower values of the plasma beta is due
to the re-gauging process as explained in Sect. 3.5.1. The plots that we show are
intended to demonstrate progress in the numerical evaluation of low-beta DFs for
nonlinear force-free fields, and as a proof of principle.

The value of δs is chosen such that δs < βpl , since as explained in Sect. 3.4.4.2,
attaining convergence numerically has not been easy for values of δs > βpl when
βpl < 1.

Initial investigations of the shape of the variation of the DF in the vx and vy

directions indicate that the DF seems to have a Gaussian profile, as in the DFs
analysed in Sect. 3.4. Hence, as in that work, we shall compare the DFs calculated in
this work to drifting Maxwellians, in order to measure the actual difference between
the Vlasov equilibrium fs , and theMaxwellian fMaxw,s . In Figs. 3.12a–e and 3.13a–e
we give contour plots in (vx/vth,s, vy/vth,s) space of the ‘raw’ difference between
the DFs defined by Eqs. (3.53) and (3.47). These figures bear close resemblance to
those presented in Sect. 3.4.4.2. Specifically, we see ‘shallower’ peaks for the exact
Vlasov solution, fs , than for fMaxw,s . There is also a clear anisotropic effect in that
fs falls off more quickly in the vx direction than in the vy direction as compared to
fMaxw,s . Note that whilst the raw differences plotted in these figures may not seem
substantial, they can in fact be significant as a proportion of fMaxw,s , and even of the
order of the magnitude of fMaxw,s . As a demonstration of this fact we present plots
in Figs. 3.14a–e and 3.15a–e of the quantity defined by

fdi f f,s = ( fs − fMaxw,s)/ fMaxw,s

for line cuts through (vx/vth,s, vy/vth,s = 0) and (vx/vth,s = 0, vy/vth,s) respectively,
for the ions. As suggested by the contour plots, fdi f f,i takes on significantly larger
values in the vy direction, indicating that the tail of fi falls off less quickly than
fMaxw,i in vy than in vx .
We are yet to observe multiple peaks in the multiplicative DFs for the FFHS,

derived herein and in Sect. 3.4. However, the summative Harrison-Neukirch equilib-
ria (Harrison and Neukirch 2009a) could develop multiple maxima for sufficiently
large values of themagnitude of the drift velocities. For theDF derived in this chapter,
and as in Sect. 3.4, the ‘amplitude’ of the drift velocity profile across the current sheet
is given by

us
vth,s

= 2sgn(qs)
δs

βpl
,
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(a) (b)

(c) (d)

(e)

Fig. 3.12 Contour plots of fi − fMaxw,i for z/L = −1Fig. 3.12a, z/L = −0.5Fig. 3.12b, z/L = 0
Fig. 3.12c, z/L = 0.5 Fig. 3.12d and z/L = 1 Fig. 3.12e. βpl = 0.05 and δi = 0.03

where us represents the maximum value of the drift velocities. As a result, large
values of the drift velocity correspond to large values of δs/βpl , and these are exactly
the regimes for which we are struggling to attain numerical convergence. This theory
suggests that we may not be seeing DFs with multiple maxima because we are not
in the appropriate parameter space.
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(a) (b)

(c)

(e)

(d)

Fig. 3.13 Contour plots of fe − fMaxw,e for z/L = −1 Fig. 3.13a, z/L = −0.5 Fig. 3.13b, z/L =
0 Fig. 3.13c, z/L = 0.5 Fig. 3.13d and z/L = 1 Fig. 3.13e. βpl = 0.05 and δe = 0.03
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(a) (b)

(c) (d)

(e)

Fig. 3.14 Line plots of fdi f f,i against vx/vth,i at vy = 0 for z/L = −1 Fig. 3.14a, z/L = −0.5
Fig. 3.14b, z/L = 0 Fig. 3.14c, z/L = 0.5 Fig. 3.14d and z/L = 1 Fig. 3.14e. βpl = 0.05 and
δi = 0.03



108 3 One-Dimensional Nonlinear Force-Free Current Sheets

(a) (b)

(c) (d)

(e)

Fig. 3.15 Line plots of fdi f f,i against vy/vth,i at vx = 0 for z/L = −1 Fig. 3.15a, z/L = −0.5
Fig. 3.15b, z/L = 0 Fig. 3.15c, z/L = 0.5 Fig. 3.15d and z/L = 1 Fig. 3.15e. βpl = 0.05 and
δi = 0.03
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3.6 Summary

This chapter contains presentation and analysis of the first DFs capable of describing
low plasma beta, nonlinear force-free collisionless equilibria. By using expressions
for themoments of the DFs we have derived the relationships between themicro- and
macroscopic parameters of the equilibrium, in particular the current sheet width. We
have presented line-plots of the electron DF in the vx direction as a representative
example. These show that the DF has a single maximum in the vx direction, and
seems to resemble a Maxwellian, at least for the parameter range studied. However,
a detailed comparison with a Maxwellian describing the same particle density and
average velocity/current density shows that there are significant deviations. This was
corroborated by contour plots of the difference between the DF and the Maxwellian
in the (vx , vy) plane.

While it has been shown that the infinite series over Hermite polynomials are
convergent for all parameter values, plotting the DF in the original gauge,

A = B0L(2 arctan(exp(z/L)), ln sech(z/L), 0),

has been difficult for the low-beta regime, and particularly due to the vx dependent
sum. As such, βpl = 0.85 was the lowest value of the plasma beta for which we
could be confident in the numerical method. Further work on attaining numerical
convergence for a wider parameter range was necessary, with a particular motivation
was to find out whether the DF develops multiple peaks similar to the DF found for
an additive form of Pzz (Neukirch et al. 2009).

Motivated by the numerical challengesmentioned above, in Sect. 3.5we presented
calculations for a DF with a different gauge to that considered in previous studies
(Harrison and Neukirch 2009a; Neukirch et al. 2009; Wilson and Neukirch 2011;
Abraham-Shrauner 2013; Kolotkov et al. 2015),

A = B0L(2 arctan tanh(z/(2L)), ln sech(z/L), 0).

Wehave presented someplots of a comparison between the re-gaugedDFs and shifted
Maxwellian functions, as a proof of principle, namely that numerical convergence
for values of βpl lower than previously reached in the ‘original gauge’, can now be
attained (βpl = 0.05).

Verification of the analytical properties of convergence and boundedness for both
the DFs written as infinite sums over Hermite polynomials have been given. Note
that the verification of these DFs is rather involved due to the complex nature of the
specific Maclaurin expansions that we consider, and is simpler for more ‘straightfor-
ward’ expansions, e.g. for the example considered in Sect. 2.6.

Future work could involve an in-depth parameter study of the new re-gauged
multiplicative DF for the FFHS, with an analysis of how far the exact equilibrium
DF differs from an appropriately driftingMaxwellian, frequently used in fully kinetic
simulations for reconnection studies. In particular it would be interesting to see how
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much the DFs differ from drifting Maxwellians as the set of parameters (βpl , δs) are
varied across a wide range. Preliminary numerical investigations verify that plotting
DFs for the FFHS with a lower βpl than previously achieved, namely βpl = 0.05
rather than βpl = 0.85, has been made possible by the theoretical developments in
this chapter. We have not yet observed multiple maxima for the DFs, but do see
significant deviations from Maxwellian distributions, and an anisotropy in velocity
space.
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Chapter 4
One-Dimensional Asymmetric Current
Sheets

Reconnection is now among the most fundamental unifying
concepts in astrophysics, comparable in scope and importance
to the role of natural selection in biology.

from Moore, Burch, and Torbert, (2015)

Much of the work in this chapter is drawn from Allanson et al. (2017)

4.1 Preamble

The NASA MMS mission has very recently made in situ diffusion region measure-
ments of asymmetric magnetic reconnection for the first time (Burch et al. 2016).
In order to compare to the data obtained from kinetic-scale observations (e.g. see
Burch and Phan 2016), it would be useful to have initial equilibrium conditions
for PIC simulations that reproduce the physics of the dayside magnetopause cur-
rent sheet as accurately as possible, i.e. self-consistent VM equilibria that model the
magnetosheath-magnetosphere asymmetries in pressure and magnetic field strength.

In this chapter, we present new ‘exact numerical’ (numerical solutions to equa-
tions for exact VM equilibria), and exact analytical equilibrium solutions of the VM
system that are self-consistent with 1D and asymmetric Harris-type current sheets,
with a constant guide field. The DFs can be represented as a combination of shifted
Maxwellian DFs, are consistent with a magnetic field configuration with more free-
dom than the previously known exact solution (Alpers 1969), and have different bulk
flow properties far from the sheet.

© Springer Nature Switzerland AG 2018
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4.2 Introduction

4.2.1 Asymmetric Current Sheets

Under many circumstances (and unlike the application in Chap. 3), the plasma con-
ditions can be different on either side of the current sheet, e.g. the magnetic field
strength and its orientation. As well as in the magnetopause (e.g. see Burch and
Phan 2016), such asymmetric current sheets are observed at Earth’s magnetotail
(e.g. Øieroset et al. 2004), in the solar wind (e.g. Gosling et al. 2006), between solar
flux tubes (e.g. Linton 2006; Murphy et al. 2012; Zhu et al. 2015), in turbulent plas-
mas (e.g. Servidio et al. 2009; Karimabadi et al. 2013), and inside a tokamak (e.g.
Kadomtsev 1975).

Regarding the theoretical modelling of dynamical features, various authors have
considered the impact of asymmetric current sheets on different aspects of instability
and magnetic reconnection, such as the ‘Sweet-Parker’ style analysis carried out by
Cassak and Shay (2007); the development of current driven instabilities (the lower-
hybrid instability) (Roytershteyn et al. 2012); and the suppression of reconnection
at Earth’s magnetopause (Swisdak et al. 2003; Phan et al. 2013; Trenchi et al. 2015;
Liu and Hesse 2016). Whilst it can be argued that the general properties (e.g. the
reconnection rate) of the nonlinear phase physics of magnetic reconnection are rela-
tively insensitive with regards to the exactitude of the initial conditions, the physics
in the linear stage can affect the dynamical evolution of the current sheets, and that
can only be confidently studied with exact initial conditions (e.g. see Dargent 2016).

To give some specific examples of the use of exact solutions, setting up a VM
equilibrium current sheet in numerical simulations would be helpful for the study of
collisionless tearing instabilities, which could be important to understand the role of
tearing modes in determining the orientation of the three-dimensional reconnection
x-line in an asymmetric geometry (Liu et al. 2015). This is especially crucial for pre-
dicting the location of magnetic reconnection at Earth’s magnetopause under diverse
solar wind conditions, as discussed in (Komar et al. 2015) for example. Knowledge
of an exact equilibirum also facilitates the study of tearing instabilities under the
influence of cross-sheet gradients (e.g. see Zakharov and Rogers 1992; Kobayashi
et al. 2014; Pueschel et al. 2015; Liu and Hesse 2016), which can be important for
understanding the onset and diamagnetic suppression of sawtooth crashes in fusion
devices.

4.2.2 Modelling the Magnetopause Current Sheet

4.2.2.1 Model Paradigm

Themacroscopic equilibrium for which wewish to obtain a self-consistent VM equi-
librium is that which describes a current sheet in the Earth’s dayside magnetopause.
Figure4.1 depicts the Earth’s magnetopause, its relation to the rest of the Earth’s
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Fig. 4.1 Diagram representing the Earth’s magnetic environment, and it’s interaction with the solar
wind. Image credit: NASA, and without copyright

magnetosphere, and the interaction with the solar wind. In line with other theoretical
approaches (e.g. see Hesse et al. 2013) and observational (e.g. see Burch et al. 2016)
conclusions, the equilibrium should be ‘asymmetric’ with respect to either side of the
current sheet, i.e. it should be characterised by an enhanced density/pressure on the
magnetosheath side of the current sheet, and an enhanced magnetic field magnitude
on the magnetosphere side. These basic requirements are shown by Fig. 4.2a and b,
in which the coordinates (x, y, z) are related to the “Boundary Normal” coordinates,
LMN , (e.g. see Hapgood 1992; Burch et al. 2016). Their correspondence is given
by (x̂, ŷ, ẑ) ∼ (L̂, M̂, N̂ ), with the xy plane tangential to the magnetopause, and z
normal to it. As explained by Hapgood (1992), “There is no universal convention
to resolve the L and M axes. The relationship between LMN and other systems ...
is dependent on position.” For a heuristic understanding, and in the paradigm of
the ‘square-on’ geometry presented by Fig. 4.1, we can think of x ∼ L as pointing
‘Earth North’, y ∼ M as pointing ‘Earth West’, and z ∼ N as pointing ‘Sunward’.
The figures relate to a specific magnetic field, to be defined in Sect. 4.3.1.2, but they
portray the basic features that the model should have. Essentially, pressure balance
dictates that an enhanced magnitude of magnetic pressure on the magnetosphere side
of the current sheet (z < 0, N < 0) relies on a depleted thermal pressure, and vice
versa for the magnetosheath side (z > 0, N > 0). However, the current density is
modelled to be symmetric. As in Chaps. 2 and 3, we assume a 1D geometry for
which ∇ = (0, 0, ∂/∂z), which is justifiable by a separation of scales (e.g. see Quest
and Coroniti 1981). In this case, a quasineutral macroscopic equilibrium will obey
the following equation,

d

dz

(
Pzz + B2

2μ0

)
= 0, (4.1)
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Fig. 4.2 The AH+G
equilibrium configuration
(Eq.4.7)

but, in contrast to the application to force-free current sheets in Chap. 3, Pzz and B2

must be non-uniform in z.

4.2.2.2 Typical Approach in PIC Simulations

In the effort to model dayside magnetopause reconnection, asymmetric macroscopic
equilibria that satisfy Eq. (4.1) have been used in PIC simulations by e.g. Swisdak
et al. (2003), Pritchett (2008), Huang et al. (2008), Malakit et al. (2010), Wang et al.
(2013), Aunai et al. (2013b), Aunai et al. (2013a), Hesse et al. (2013), Hesse et al.
(2014), Dargent (2016), Liu and Hesse (2016). All but two (Aunai et al. 2013a; Dar-
gent 2016) of these studies have used drifting Maxwellian DFs as initial conditions
(Eq. 1.26). As discussed in more detail in Sect. 1.3.3.1, these DFs can reproduce the
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same moments (n(z), V s(z), p(z)) necessary for a quasineutral fluid equilibrium,
but are not exact solutions of the Vlasov equation and hence do not describe a kinetic
equilibrium. The main aim of this chapter is to calculate exact solutions of the equi-
libriumVM equations consistent with a suitable dayside magnetopause current sheet
model, in order to circumvent the need to use non-equilibrium DFs of the form in
Eq. (1.26).

The work in this chapter is relevant to the main focus of the MMS mission, i.e.
asymmetric magnetic reconnection, and so we envisage that this could be the main
use of the results at the present time. However, as mentioned in Sect. 4.2.1, there are
other potential applications of the work to basic equilibrium and instability physics
in the magnetotail, solar corona, turbulent plasmas and tokamaks.

4.3 Exact VM Equilibria for 1D Asymmetric Current
Sheets

4.3.1 Theoretical Obstacles

The (symmetric) Harris sheet (Eq. 1.24) can be rendered asymmetric—the asymmet-
ric Harris sheet (AHS)—by the simple addition of a constant component to Bx ,

B = B0

(
C1 + C2 tanh

( z

L

)
, 0, 0

)
, (4.2)

for C1 and C2 dimensionless constants, and and for which there is a field reversal (a
change in the sign of Bx ) only when

∣∣∣∣C1

C2

∣∣∣∣ < 1. (4.3)

The current density, jy , is indepdendent of C1, and so whilst a field-reversal is not
essential for the existence of a current sheet in itself, we shall only consider the
field-reversal regime. The addition of C1 to Bx leads to an equilibrium described by

B2

2μ0
(z) = B2

0

2μ0

(
C2
1 + 2C1C2 tanh

( z

L

)
+ C2

2 tanh
2
( z

L

))
,

Pzz(z) = PT − B2
0

2μ0

(
C2
1 + 2C1C2 tanh

( z

L

)
+ C2

2 tanh
2
( z

L

))
, (4.4)

with PT > B2
0 (|C1| + |C2|)2/(2μ0) the constant total pressure.
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The VM equilibrium DF self-consistent with the Harris sheet (Harris 1962 and as
discussed in Sect. 1.3.2.1),

fs = n0s

(
√
2πvth,s)3

e−βs (Hs−uys pys ),

can also be made to be consistent with the field,

B = B0

(
tanh

( z

L

)
,C3, 0

)
,

i.e. a Harris sheet plus guide field. This is achieved fairly simply by ‘sending’ Ax =
0 → Ax = C3B0z. This adds no real complications since jx = 0, Pzz(Ay) remains
unchanged, and one essentially just solves Ampère’s Law with different conditions
as |z| → ∞,

∇2Ax = 0 s.t. Ax = 0 → ∇2Ax = 0 s.t. Ax = C3B0z.

In the analogy of the particle in a potential (see Sect. 1.3.5.3), this corresponds to
the particle having a non-zero and constant component of ‘velocity’ in the x ∼ Ax

direction, instead of zero velocity in that direction. As a result, one might expect that
it should be relatively straightforward to adapt the Harris DF to be self-consistent
with the AHS, but this is not the case in the field-reversal regime.

4.3.1.1 Pzz Must Depend on Both Ax and Ay

TheAHS has only one component of the current density, jy , and since j = ∂Pzz/∂A,
one might expect that the equilibrium could be described by Pzz = Pzz(Ay), and
hence fs = fs(Hs, pys) accordingly. However, using the analogy of the particle in a
potential (see Sect. 1.3.5.3), in which the following correspondences hold

Position: (x, y) ∼ (Ax , Ay),

Time: t ∼ z

Velocity: (vx (t), vy(t)) ∼
(
d Ax

dz
(z),

d Ay

dz
(z)

)
∼ (By,−Bx ),

Potential:V(x, y) ∼ Pzz(Ax , Ay),

Force:F(x(t), y(t)) ∼ μ0
d2A
dz2

,

Equation of motion:F = −∇V ∼ μ0
d2A
dz2

= −∂Pzz
∂A

,

we note that—crucially—velocity is conjugate to the derivatives of Ax , Ay , and
hence the magnetic field. The important observation to make is that a single-valued
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Fig. 4.3 The “tanh” pressure
function for C1 = −1,C2 =
8,C3 = 1,C2 = 2

√
C2
1 = 2

and 1D potential, Pzz(Ay), cannot be compatible with a ‘velocity’ of the form of the
magnetic field in Eq. (4.2),

vy(t) ∼ C1 + C2 tanh t,

when we are in the field-reversal regime (|C1| < |C2|). The reasoning is as follows.
Without loss of generality suppose that C1,C2 > 0. The particle begins its jour-

ney at t = −∞, y = ∞ with velocity C1 − C2 < 0. It then rolls up a ‘hill’ in the
potential, is stationary at t = tanh−1(−C1/C2), and rolls back down the hill towards
y = ∞ with final velocity C1 + C2 at t = ∞. This trajectory is not possible for a
conservative potential that is single-valued in space. Hence we conclude that a 1D
asymmetric current sheet with field reversal can not be analytically self-consistent
with a pressure tensor that is a function of only one component of the vector potential.

Despite the fact that jx = 0 for the AHS, and hence ∂Pzz/∂Ax = 0, it has become
apparent that we require the ‘hill’ to be 2D, such as the Pzz(Ax , Ay) function depicted
in Fig. 4.3, for which the overlaid line depicts the particle trajectory. (The exact form
and derivation of that particular pressure function shall be discussed in Sect. 4.3.2).

We note that ‘exact numerical’ VM equilibria have recently been found by Bel-
mont et al. (2012), Dorville et al. (2015), using the inverse approach, for the ‘nor-
mal/symmetric’ Harris sheet magnetic field, and a modified ‘force-free Harris sheet’
respectively. The equilibria have asymmetries in the number density and tempera-
ture either side of the sheet, with Dorville et al. (2015) including an electric field.
Their methods rely on similar notions to those discussed above, for which the DFs
were multi-valued functions of the constants of motion. The DF derived by Belmont
et al. (2012) has been used as the initial condition for Hybrid simulations by Aunai
et al. (2013a), and PIC simulations by Dargent (2016). Exact numerical solutions for
asymmetric current sheets are more numerous for the forward problem, with exam-
ples in e.g. Kan (1972), Lemaire and Burlaga (1976), Kuznetsova and Roth (1995),
Roth et al. (1996), Lee and Kan (1979).
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4.3.1.2 Prior Exact Analytical VM Equilibria

To our knowledge, there is one known exact VM equilibrium for a magnetic field
like the AHS. In the Appendix of Alpers (1969), a DF is derived that is consistent
with the ‘Alpers magnetic field’, which could be written in a z-dependent geometry
as

B = B0

(
− B2

2

(
1 + tanh

( z

L

))
,
B1

2
tanh

( z

L

)
, 0

)
. (4.5)

Despite appearances, this magnetic field is almost equivalent to the AHS. To see this,
we make a small digression.

First allow the AHS to have a constant guide field, with A, B and j given by

A = B0L(C3 z̃, −C1 z̃ − C2 ln cosh z̃, 0), (4.6)

∇ × A = B = B0(C1 + C2tanhz̃, C3, 0), (4.7)
1

μ0
∇ × B = j = B0

μ0L
( 0, C2sech

2 z̃, 0), (4.8)

then we have the Asymmetric Harris sheet plus guide field (AH+G), with C3 a
non-zero constant. The vector potential, magnetic field, current density and length
scales are normalised according to ÃB0L = A, B̃B0 = B, j = j0 j̃ and z = Lz̃
respectively, with j0 = B0/(μ0L). Example profiles of B̃x and j̃y are plotted in
Fig. 4.2b for parameter values C1 = 0.5, C2 = −1 and C3 = 1, (in line with other
theoretical studies, e.g. see Pritchett 2008; Liu and Hesse 2016). For these parameter
values, the left and right hand sides of the plot represent the magnetosphere and
magnetosheath respectively, whilst the central current sheet is in the magnetopause.
The equilibrium is maintained by the ‘gradient of a scalar pressure’, p(z) := Pzz ,
according to

Pzz(z̃) = PT − B2
0

2μ0

(
C2
1 + 2C1C2 tanh z̃ + C2

2 tanh
2 z̃ + C2

3

)
, (4.9)

for PT the total pressure (magnetic plus thermal), and Pzz > 0 for C2
1 + 2|C1C2| +

C2
2 + C2

3 < 2μ0PT /B2
0 . The profile of p̃(z̃) = Pzz/PT is plotted in Fig. 4.2b, for

PT = 1.625.
After a rotation by tan θ = C1/C3, the AH+G field becomes

B′ = B0

⎛
⎝ C2C3√

C2
1 + C2

3

tanh z̃,
√
C2
1 + C2

3 + C1C2√
C2
1 + C2

3

tanh z̃, 0

⎞
⎠ , (4.10)

which is essentially equivalent to the Alpers magnetic field in Eq. (4.5) whenC1C2 =
C2
1 + C2

3 . As such, the Alpers magnetic field is very similar to the AH+G field, but
with one fewer degree of freedom.
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For the DF derived by Alpers, and those to be developed in this chapter, the guide
field, By = C3B0, is crucial for making analytical progress. The existence of By

necessitates a non-trivial Ax = C3B0z, and as a result the ‘potential’ Pzz can now
be a function of both Ax and Ay . This two-dimensionality was reasoned to be an
important feature of analytically described asymmetric fields in Sect. 4.3.1.1, and
will allow us to construct exact analytical DFs.

There is one more difference between the equilibrium derived by Alpers, and the
one that we shall consider, and it is related to the bulk flows.

As is necessary for consistencybetween themicroscopic andmacroscopic descrip-
tions, the Alpers DF is self-consistent with the prescribed magnetic field, i.e. the
sum of the individual species (kinetic) currents are equal to the current prescribed
by Ampère’s Law, i.e.

∑
s j s = j = ∇ × B/μ0. However, the j s are non-zero at

z = +∞ (in our co-ordinates), i.e. the magnetosheath side. In contrast, Eq. (5.19)
shows that the macroscopic current densities vanish as z → ±∞, i.e. the Alpers
DF gives species currents j s that are not proportional to the macroscopic current j .
That is to say that there is finite ion and electron mass flow at infinity, “impinging
vertically” on the magnetosheath side of the current sheet. This could be appropriate
if one wishes to consider a larger scale/global model including bulk flows at the
boundary, but it is not suitable if one wishes to consider the domain as an isolated
‘patch’, representing a local current sheet structure.

In summary, the DF that we derive shall be consistent macroscopically with an
equilibrium for which there are no mass flows at the boundary (as typically assumed
in PIC simulations, e.g. Aunai et al. 2013b; Hesse et al. 2013), and is self-consistent
with a magnetic field that has more degrees of freedom than that in Alpers (1969).

4.3.2 Outline of Basic Method

In order to find aVMequilibrium,we shall use ‘Channell’smethod’ (Channell 1976).
As discussed in Chap. 1, this involves the following steps:

Pressure tensor: First calculate a functional form Pzz(Ax , Ay) that ‘reproduces’
the scalar pressure of Eq. (4.9) as a function of z. It must also satisfy ∂Pzz/∂A =
j(z). There could in principle be infinitely many functions Pzz(Ax , Ay) that sat-
isfy both these criteria, but we shall choose specific Pzz(Ax , Ay) functions which
allows us to make analytical progress.

Note that this procedure is—by the analogy of a particle in a potential—contrary
to the ‘typical approach’, in which one tries to establish the trajectory in a given
potential. We know the ‘trajectory as a function of time’ A(z), and the value of the
potential along it Pzz(z), and seek to construct a self-consistent ‘potential function
in space’, Pzz(Ax , Ay).

Inversion: The second step is to use the assumed form of the DF in Eq. (1.37) in
the definition of the pressure tensor component Pzz as the second-order velocity
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moment of the DF, Pzz = ∑
s ms

∫
v2
z fsd

3v, and attempt to invert the integral
transforms, either by Fourier transforms, Hermite polynomials, or perhaps some
other method.

Macro-micro: The inversion process must yield an fs that not only reproduces the
macroscopic expression for the pressure tensor (achieved by fixing parameters),
but also that is consistent with quasineutrality (σ(Ax , Ay) = 0), and in this case
strict neutrality, φ = 0.

Let us first consider possible expressions for Pzz(Ax , Ay). Pressure balance dictates
that

Pzz(z̃) = PT − B2
0

2μ0

(
C2
1 + 2C1C2 tanh z̃ + C2

2 tanh
2 z̃ + C2

3

)
. (4.11)

Using the knowledge that exponential functions are eigenfunctions of theWeierstrass
transform (Wolf 1977),wewould like to use exponential functions to represent the Pzz
function wherever possible. In Sects. 4.4 and 4.5 we present two different attempts at
usingChannell’smethod for theAH+Gfield. The first requires a numerical approach,
whereas the second can be completed analytically.

4.4 The Numerical/“tanh” Equilibrium DF

4.4.1 The Pressure Function

From Eq. (4.6) we see that exp(2Ay/(C2B0L)) = sech2 z̃ exp(−2C1 z̃/C2), and so
we can construct one part of the RHS of Eq. (4.11) by

tanh2 z̃ = 1 − sech2 z̃ = 1 − exp

(
2 Ãy

C2

)
exp

(
2C1 Ãx

C2C3

)
. (4.12)

The remaining task is to invert tanh z̃ = tanh z̃( Ãx , Ãy), and this is most readily
achieved by

tanh z̃ = tanh

(
Ãx

C3

)
. (4.13)

Note that we have not chosen to take the square root of Eq. (4.12), since we—
naively—expect to be able to invert the Weierstrass transform for the expression in
Eq. (4.13) more easily (and in fact, it can be shown that one cannot solve Ampère’s
Law by doing so). Substituting Eqs. (4.13) and (4.12) into Eq. (4.11) gives the
pressure tensor
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Pzz = P0

[
C2 exp

(
2 Ãy

C2

)
exp

(
2C1 Ãx

C2C3

)
− 2C1 tanh

(
Ãx

C3

)
+ Cb

]
, (4.14)

with Cb > 2C1 for positivity of the pressure. There is a priori no guarantee that this
pressure tensor will satisfy Ampère’s law, ∂Pzz/∂A = j . We can check the validity
of the pressure with respect to Ampère’s law, by

∂Pzz
∂Ax

= P0
B0L

∂ P̃zz

∂ Ãx

= 2
P0
B0L

C1

C3

(
e2 Ãy/C2e2C1 Ãx/(C2C3) − sech2( Ãx/C3)

)
= 0 = jx ,

and

∂Pzz
∂Ay

= P0
B0L

∂ P̃zz

∂ Ãy
= 2P0

B0L
e2 Ãy/C2e2C1 Ãx /(C2C3) = 2P0

B0L
sech2 z̃ = jy ⇐⇒ C2 = 2μ0P0

B2
0

.

4.4.2 Inverting the Weierstrass Transform

As aforementioned, we can solve the inverse problem exactly for the exponential
functions in Eq. (4.14), using the fact that

“g js(p js) ∝ exp( p̃ js)
′′ =⇒ “Pj ∝ exp( Ã j )

′′,

with the terminology of Chap. 2. Hence the challenge is to try to solve

tanh( Ãx/C3) = 1√
2π

∫ ∞

−∞
exp

[
−1

2

(
p̃xs − sgn(qs)

δs
Ãx

)2
]
Gs( p̃xs)d p̃xs .

(4.15)
for some unknown Gs function, one component of a DF of the form

fs = n0s

(
√
2πvth,s)3

e−βs Hs
(
a0se

βsuxs pxs eβsuys pys + a1sGs(pxs) + bs
)
, (4.16)

and such that the species-dependent constants are yet to be determined. It turns out
that Eq. (4.15) is not amenable to the Fourier transform method described in Sect.
1.3.5.5 since there does not exist an analytic expression for the Fourier transform of
the tanh function. Furthermore, one cannot use the Hermite polynomial expansion
techniques as developed in Chap. 2, because the Maclaurin expansion for tanh x ,

tanh x =
∞∑
n=0

χnx
n,
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is only convergent for |x | < π/2. This is not a purely formal objection, for the
following reason. Using the theory developed in Chap. 2, we could in principle
construct a Hermite polynomial expansion for the Gs function of the form

Gs =
∞∑
n=0

χnsgn(qs)
n

(
δs√
2

)n

Hn

(
pxs√

2msvth,s

)
,

such that the theWeierstrass transform resulted in aMaclaurin series with the correct
coefficients, χn . However, the Hermite series is valid for all pxs—assuming that it
is convergent—and there is a priori no reason to restrict the range of the conjugate
variable, Ax . Hence the result of the forward procedure is a pressure function that is
not convergent for all Ãx , and cannot equal the closed form on the LHS of Eq. (4.15).
Furthermore, since Ãx/C3 = z̃ ∈ (−∞,∞), one can not even make an argument on
the basis of accessibility (i.e. claiming that this formal argument does not matter),
which could possibly be justified if it were the case that | Ãx (z̃)/C3| < π/2 ∀z̃. In
the absence of other analytical techniques, one must proceed with this problem
numerically. We do not develop that approach in detail in this thesis, but we shall
show some indicative results, to demonstrate the principle.

In collaborationwith J. D. B. Hodgson (who has led this particular effort), we have
used Genetic algorithms (e.g. see Holland 1975) to construct numerical solutions
for the Gs function. My contribution to this project has been on the theoretical side,
whereas J.D.B. Hodgson’s has been the development of the algortithm and numerical
approach, as well as Figs. 4.4 and 4.5. The algorithm works by optimisation through
random mutation. One starts with an initial population of candidate solutions to a
problem, i.e. candidate Gs functions that could solve Eq. (4.15). Each member of
the population (or chromosome) is ranked according to some fitness function. The
population is then evolved in discrete steps (generations), between which various
mutations and genetic operations occur, such that the fitness is hopefully optimised
as t → ∞.

Since the aim of the algorithm is—in general terms—to find a function G(p) that
satisfies,

P(A) =
∫ b

a
K (A, p)G(p)dp,

for known P(A) and K (A, p), a sensible fitness function to choose is

F(G(p)) =
∫ A1

A0

[∫ b

a
K (A, p)G(p)dp − P(A)

]2

d A.

In analytic terms, one would of course use±∞ for all the relevant integral limits, but
clearly one cannot do this in numerical computation. Figure4.4 displays some results
for a run of the algorithm through 1000 generations. Figure4.4a, b, and c display
the highest ranked chromosome of each population at the initial, 4th, and 999th
generations respectively. The highest ranked chromosome is the individual that best
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Fig. 4.4 The ‘most fit’
numerical solution for the
Gs function at three separate
generations (courtesy of
J.D.B. Hodgson)

a

b

c
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Fig. 4.5 The minimum
fitness/error through the
generations (courtesy of
J.D.B. Hodgson)

minimises the fitness function (Eq. 4.4.2), which can be thought of as minimising the
error. In Fig. 4.5, we show—on a loglog plot—the trend of the minimum fitness of
each population, through the generations. The jump in the fitness around generation
500 identifies the point in the algorithm at which the grid resolution is increased,
temporarily resulting in a larger error, which rapidly stabilises. An interesting feature
of the ‘solution’ given by Fig. 4.4c is that it almost directly lies over the function
tanh( p̃xs/C3), and hence it seems that

Gs( p̃xs) ≈ tanh( p̃xs/C3).

The numerical procedure therefore seems to suggest that tanh x is close to a ‘numer-
ical’ eigenfunction of the Weierstrass transform, despite the fact that one cannot
compute the Weierstrass transform of the tanh function.

Without an analytic expression for the function Gs( p̃xs), we can make some
progress in understanding the micro-macroscopic parameter relationships, and in
calculating the bulkflowproperties.Using standard integrals (Gradshteyn andRyzhik
2007), we see that the DF in Eq. (4.16) gives a pressure tensor of the form

Pzz =
∑
s

ms

∫
v2
z fsd

3v,

=
∑
s

n0s
βs

(
a0se

(u2xs+u2ys )/(2v
2
th,s )eβsuxsqs Ax eβsuysqs Ay + a1s tanh( Ãx/C3) + bs

)
.

Channell’s method dictates that this expression must match up with the macroscopic
expression from Eq. (4.14). This condition, as well as that of imposing σ = 0 gives
the following conditions
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2C1

C2C3B0L
= eβi uxi = −eβeuxe, (4.17)

2

C2B0L
= eβi uyi = −eβeuye,

n0sa0se
(u2xs+u2ys )/(2v

2
th,s ) =: a0 = βeβi

βe + βi
P0C2, (4.18)

n0sa1s =: a1 = −2
βeβi

βe + βi
P0C1, (4.19)

n0sbs =: b = βeβi

βe + βi
P0Cb,

and, for completeness, the number density is given by

ni = ne := n = a0sech
2 z̃ + a1 tanh z̃ + b = βeβi

βe + βi
Pzz .

The conditions listed above represent 10 constraints for 14 parameters (βs , n0s , uxs ,
uys , a0s , a1s , bs), given macroscopic characteristics B0, P0, C1, C2, C3, Cb and L .

We can also calculate the bulk flow properties. In particular one should check that
jx = 0. Using standard integrals (Gradshteyn and Ryzhik 2007), we see that

jx = 0 =
∑
s

qs

∫
fsvxd

3v,

=
∑
s

qsn0s

[
a0suxse

(u2xs+u2ys )/(2v
2
th,s )eβsqsuys Ay eβsqsuxs Ax

+ a1s√
2πvth,s

∫ ∞

−∞
e−v2x/(2v

2
th,s )vxGs( p̃xs)dvx

]
.

By differentiating Eq. (4.15) with respect to Ãx , we can see that

∫ ∞

−∞
e−v2x/(2v

2
th,s )vxGs( p̃xs)dvx =

√
2πδssgn(qs)v2

th,s

C3
sech2( Ãx/C3). (4.20)

Plugging this back into the equation for jx gives

jx =
∑
s

qs

[
a0uxssech

2 z̃ + a1
C3βsqs B0L

sech2 z̃

]
, (4.21)

and substituting in Eq. (4.17), and then Eqs. (4.18) and (4.19) gives

jx = βeβi sech2 z̃

(βe + βi )C3B0L

∑
s

1

βs
[2C1P0 − 2P0C1] = sech2 z̃ P0

C3B0L

∑
s

0 = 0. (4.22)
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In contrast to the solution found by Alpers (1969), we see that this DF gives Vxs ∝
jx = 0.

Similarly, we can calculate jy ,

jy =
∑
s

qs

∫
fsvyd

3v,

...

= C2B2
0

2μ0

2

B0L
sech2 z̃ = jy .

The individual bulk velocities in the y direction are proportional to the total current
density, and go to zero at ∞, i.e. Vys ∝ jy .

4.5 The Analytical/“Exponential” Equilibrium DF

4.5.1 The Pressure Tensor

In this section we derive one more pressure tensor consistent with the AH+G field,
that allows an exact analytical solution for the DF. The key step for analytic progress
is to find distinct representations of tanh z̃ = tanh z̃( Ãx , Ãy) that allow inversion of
the Weierstrass transform.

In a similar vein to the method in Alpers (1969), we achieve this crucial step by
identifying two distinct representations of tanh z̃(Ax , Ay),

tanh z̃ = 1 − e−z̃sechz̃ = 1 − e
C1−C2
C2C3

Ãx e
1
C2

Ãy ,

tanh z̃ =
√
1 − sech2 z̃ =

√
1 − e

2C1
C2C3

Ãx e
2
C2

Ãy ,

These are composed as a linear combination, and then substituted into Eq. (4.9) to
give

Pzz = PT − B2
0

2μ0

{
C2
1 + C2

3 + 2C1C2

(
1 − e

C1−C2
C2C3

Ãx e
1
C2

Ãy

)

+C2
2

[
k

(
1 − e

C1−C2
C2C3

Ãx e
1
C2

Ãy

)2
+ (1 − k)

(
1 − e

2C1
C2C3

Ãx e
2
C2

Ãy

)]}
, (4.23)

with k a ‘separation constant’. Ampère’s Law implies that Pzz must satisfy ∂Pzz/
∂Ax (z̃) = 0 and ∂Pzz/∂Ay(z̃) = B0C2/(μ0L)sech2 z̃, and it is seen to do so when
k = C1/C2. In this case, Eq. (4.23) can be re-written
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Pzz = PT − B2
0

2μ0

{
C2
1 + C2

3 + −C1C2 + C1C2

(
1 +

(
1 − e

C1−C2
C2C3

Ãx e
1
C2

Ãy

))2

+ C2(C2 − C1)
(
1 − e

2C1
C2C3

Ãx e
2
C2

Ãy

) }
, (4.24)

An examination of the coefficients of the exponential functions in Eq. (4.24) tells us
that Pzz > 0 ∀ (Ax , Ay) under the following conditions

C1C2 < 0, (4.25)

PT >
B2
0

2μ0

[
C2
1 + C2

3 − C1C2 + C2
2 − C1C2

]

= B2
0

2μ0

[
C2
1 + C2

2 + C2
3 − 2C1C2

]
(4.26)

Now that a Pzz > 0 has been found that satisfies Ampère’s Law and pressure balance,
we can attempt to solve the inverse problem.

4.5.2 The DF

By comparison with Eq. (4.24) (in which Pzz is written as a sum of exponential
functions), we can suggest a form for the DF by using either ‘inspection and standard
integral formulae’ (Gradshteyn and Ryzhik 2007), Fourier transforms (see Sect.
1.3.5.5), or knowledge of eigenfunctions (Wolf 1977). The form that we choose is

fs = n0s

(
√
2πvth,s)3

e−βs Hs

(
a0se

βs (uxs pxs+uys pys )

+a1se
2βs (uxs pxs+uys pys ) + a2se

βs (vxs pxs+vys pys ) + bs

)
, (4.27)

for a0s, a1s, a2s, bs, uxs, uys, vxs and vys as yet arbitrary constants, with the “a, b”
constants dimensionless, and the “u, v” constants the bulk flows of particular particle
populations (e.g. see Davidson 2001; Schindler 2007 and Sect. 1.3.2.2).

4.5.2.1 Equilibrium Parameters and Their Relationships

We proceed with the necessary task of ensuring that the DF in Eq. (4.27) exactly
reproduces the correct pressure tensor expression of Eq. (4.23). After some algebra
we find the ‘micro-macroscopic’ consistency relations by taking the v2

z moment of
the DF, and these are displayed in Eqs. (4.28–4.31).
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PT − B2
0

2μ0

[
(C1 + C2)

2 + C2
3

]
= b

βe + βi

βeβi
,

C1 − C2

C2C3B0L
= eβi uxi = −eβeuxe, (4.28)

4C1C2
B2
0

2μ0
= a0

βe + βi

βeβi
,

1

C2B0L
= eβi uyi = −eβeuye, (4.29)

−C1C2
B2
0

2μ0
= a1

βe + βi

βeβi
,

2C1

C2C3B0L
= eβivxi = −eβevxe, (4.30)

C2(C2 − C1)
B2
0

2μ0
= a2

βe + βi

βeβi
,

2

C2B0L
= eβivyi = −eβevye, (4.31)

Wemust also ensure that ni (Ax , Ay) = ne(Ax , Ay) (for ns(Ax , Ay) the number den-
sity of species s) in order to be consistent with our assumption that φ = 0. The
constants a0, a1, a2 and b are defined by these neutrality relations that complete this
final step of the method, are found by calculating the zeroth order moment of the DF,
and are written in Eqs. (4.32 and 4.33).

a0 = n0sa0se
(u2xs+u2ys )/(2v

2
th,s ), a2 = n0sa2se

(v2xs+v2ys )/(2v
2
th,s ), (4.32)

a1 = n0sa1se
2(u2xs+u2ys )/v

2
th,s , b = n0sbs . (4.33)

These constraints are 16 in number, with 20 microscopic parameters (βs , n0s , a0s ,
a1s , a2s , bs , uxs , uys , vxs , vys), given chosen macroscopic parameters (B0, PT , L , C1,
C2, C3).

4.5.2.2 Non-negativity of the DF

Sincewe integrate fs over velocity space to calculate Pzz , it is clear that non-negativity
of Pzz does not imply non-negativity of fs . Furthermore, it is clear from Eqs. (4.29)
and (4.32) that C1C2 < 0 =⇒ a0s < 0 (as well as a1s > 0, a2s > 0). We can also
see by consideration of Eqs. (4.26) and (4.33) that bs>0. The fact that a0s < 0 is
a cause for concern, regarding the positivity of the DF, given its form (Eq. 4.27).
However, by completing the square, the DF can be re-written as

fs = n0s

(
√
2πvth,s)3

e−βs Hs

[
1

a1s

(
−a0s

2
+ a1se

βs (uxs pxs+uys pys )
)2 − a20s

4a1s

+ a2se
βs (vxs pxs+vys pys ) + bs

]
.

Hence we see that non-negativity of the DF is assured provided

bs ≥ a20s
4a1s

. (4.34)
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4.5.2.3 The DF Is a Sum of Maxwellians

The equilibrium DF in Eq. (4.27) is written as a function of the constants of motion
(Hs, pxs, pys), and this was suitable for constructing an exact equilibrium solution
to the Vlasov equation. However, we can write fs explicitly as a function over phase-
space (z, v), in a form similar to that of the drifting Maxwellian in Eq. (3.47). The
DF can be re-written as

fs(z, v) = 1

(
√
2πvth,s)3

[
N0s(z)e

− (v−V0s )2

2v2th,s + N1s(z)e
− (v−V1s )2

2v2th,s

+N2s(z)e
− (v−V2s )2

2v2th,s + be
− v2

2v2th,s

]
, (4.35)

for the density and bulk flow variables (“N , V”), defined by

N0s(z) = a0e
qsβs A·V 0s = a0e

−z̃sechz̃, V 0s = (uxs, uys, 0),

N1s(z) = a1e
qsβs A·V 1s = a1e

−2z̃sech2 z̃, V 1s = (2uxs, 2uys, 0),

N2s(z) = a2e
qsβs A·V 2s = a2sech

2 z̃, V 2s = (vxs, vys, 0),

respectively. The u, v variables are normalised by vth,s (ũxs = uxs/vth,s etc.). This
representation of fs has the advantages of having a clear visual/physical interpre-
tation, and of being in a form readily implemented into PIC simulations as initial
conditions. Despite the fact that each term of fs as written in Eq. (4.35) bears a strong
resemblance to fMaxw,s as defined by Eq. (3.47), fs is an exact Vlasov equilibrium
DF, whereas fMaxw,s is not.

4.5.3 Plots of the DF

In order to plot the normalised DF, f̃s = fs/max fs , it is more convenient for Eqs.
(4.28)–(4.31) to be expressed in dimensionless form. Making use of the dimension-
less parameters also defined in Sect. 4.5.2.3, we have the following relationships

βT − [
(C1 + C2)

2 + C2
3

] = bR,
(C1 − C2)δ



s

C2C3
= ũxs

4C1C2 = a0R,
δ

s

C2
= ũ ys,

−C1C2 = a1R,
2C1δ



s

C2C3
= ṽxs,

C2(C2 − C1) = a2R,
2δ


s

C2
= ṽys .
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The signedmagnetisation parameter δ

s = msvth,s/(qs B0L) is the ratio of the (signed)

thermal Larmor radius to the current sheet width, and the constants R and βT defined
by

R = βe + βi

βeβi

2μ0

B2
0

,

βT = PT
2μ0

B2
0

.

Hence, the normalised bulk flow parameters, ũxs, ũ ys, ṽxs, ṽys are fixed by choosing
the magnetisation, δ


s , and the magnetic field configuration,C1,C2,C3. If in addition
one chooses n0s , and the ratio R (note that n0s R is dimensionless), then we see that
the ‘density parameters’ a0, a1 and a2 are also fixed. In turn a0s, a1s and a2s are then
fixed by Eqs. (4.32) and (4.33). Then, the lower bound on bs (for positivity of the DF)
is determined by Eq. (4.34), and in turn we see a lower bound for b and hence βT .

Note that when Te = Ti := T and n0i = n0e := n0, it is the case that n0R = 2β

pl ,

for

β

pl = n0kBT

B2
0/(2μ0)

,

a constant reference value for βpl , which itself is spatially dependent. We shall also
assume that bs = a20s/(4a1s), and hence

inf f̃s = 0.

In Fig. 4.6 we present plots of the DF in (vx/vth,s, vy/vth,s) space, for z/L =
(0, 0.1, 1, 10), and for the parameters

(δi , R, n0,C1,C2,C3) = (0.2, 0.1, 1,−0.1, 0.2, 0.1),

=⇒ (ũxi , ũ yi , ṽxi , ṽyi ) = (−3, 1,−2, 2).

We have chosen this particular parameter set, in order to clearly see that the VM
equilibrium permits multiple maxima in velocity space, as is to be expected by a sum
of drifting Maxwellians. However, whilst the plots of f̃i permit multiple maxima
for z/L = 0, 0.1, 1 in the parameter range chosen, we see that for large z/L the DF
is an isotropic Maxwellian, centred on (0, 0). This is consistent with no bulk flows
Vxi , Vxe for large z̃, in contrast to the DF found by Alpers (1969).

In particular, Fig. 4.6e shows f̃e for δe = δi , and hence

(ũxe, ũ ye, ṽxe, ṽye) = −(ũxi , ũ yi , ṽxi , ṽyi ),
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4.6 In a–d we plot f̃i for δi = 0.2 and z/L = 0, 0.1, 1 and 10 respectively. In e we plot f̃e for
δe = 0.2 and z/L = 0. In f–hwe plot f̃e for δe = √

me/mi δi and z/L = 0, 0.1 and 10 respectively
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with other parameters unchanged. As a result, we see that sending “qi → qe” seems
equivalent to sending “ fi (vx/vth,i , vy/vth,i ) → fe(−vx/vth,e,−vy/vth,e)”. However,
for Fig. 4.6f, g and h we take Te = Ti , and hence δe = √

me/miδi , giving

(ũxe, ũ ye, ṽxe, ṽye) ≈ (0.07,−0.02, 0.05,−0.05).

The normalised bulk electron flow is now much smaller in magnitude, and this is
represented in the figures.

We note that there is a large portion of parameter space for which one sees no
multiple maxima in velocity space (although we have not plotted these), indicating
that the VM equilibrium that we present permits locally Maxwellian/thermalised—
and hence micro-stable -DFs.

4.6 Discussion

By considering the theory of the pressure tensor in vector-potential space (and its
analogy with the problem of a particle in a potential), we have deduced that Pzz
must be a function of both Ax and Ay , to describe a 1D asymmetric Harris current
sheet with field reversal. This is—at first glance—a surprise, since there is only one
component of the current density.

We have presented two valid Pzz(Ax , Ay) functions that are self-consistent with
an asymmetric Harris sheet plus guide field. One of these necessitated a numerical
approach in order to solve for the DF, whereas the second allowed an analytical
solution. The magnetic fields described by our models have often been used as
asymmetric current sheet models for reconnection studies, and should be particularly
suited to studying reconnection in Earth’s dayside magnetopause.

The expression for the exact analytical VM equilibriumDF is elementary in form,
and is written as a sum of exponential functions of the constants of motion, which can
be re-written in (z, v) space as aweighted sumof driftingMaxwellianDFs. This form
for the DF can be readily used as initial conditions in particle-in-cell simulations.
The equilibrium has zero mass flow far from the sheet, which is corroborated by
the plots of the DF, and this is in contrast to the known exact analytical DF in the
literature (Alpers 1969).
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Chapter 5
Neutral and Non-neutral Flux
Tube Equilibria

Things are the way they are because they were the way they were.

Fred Hoyle

Much of the work in this chapter is drawn from Allanson et al. (2016).

5.1 Preamble

In this chapter we calculate exact 1D collisionless plasma equilibria for a continuum
of flux tube models, for which the total magnetic field is made up of the ‘force-free’
Gold-Hoyle (GH) magnetic flux tube embedded in a uniform and anti-parallel back-
ground magnetic field. For a sufficiently weak background magnetic field, the axial
component of the total magnetic field reverses at some finite radius. The presence of
the background magnetic field means that the total system is not exactly force-free,
but by reducing its magnitude, the departure from force-free can be made as small
as desired. The DF for each species is a function of the three constants of motion;
namely, the Hamiltonian and the canonical momenta in the axial and azimuthal
directions. Poisson’s equation and Ampère’s law are solved exactly, and the solution
allows either electrically neutral or non-neutral configurations, depending on the val-
ues of the bulk ion and electron flows. These equilibria have possible applications in
various solar, space, and astrophysical contexts, as well as in the laboratory.

The work in this chapter pertains to a cylindrical geometry, in which r is the
horizontal distance from the z axis, and θ the azimuthal angle.
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5.2 Introduction

Magnetic flux tubes and flux ropes are prevalent in the study of plasmas, with a wide
variety of observed forms in nature and experiment, as well as uses and applications
in numerical experiments and theory. Some examples of the environments and fields
of study in which they feature include solar (e.g. Priest et al. 2002; Magara and
Longcope2003); solarwind (e.g.Wang andSheeley 1990;Borovsky2008); planetary
magnetospheres (e.g. Sato et al. 1986; Pontius and Wolf 1990) and magnetopauses
(e.g. Cowley and Owen 1989); astrophysical plasmas (e.g. Rogava et al. 2000; Li
et al. 2006); tokamak (e.g. Bottino et al. 2007; Ham et al. 2016), laboratory pinch
experiments (e.g. Rudakov et al. 2000), and the basic study of energy release in
magnetised plasmas (e.g. Cowley et al. 2015), to give a small selection of references.

One application of flux tubes is in the study of solar active regions (e.g. Fan
2009) and the onset of solar flares and coronal mass ejections (e.g. Török and Kliem
2003; Titov et al. 2003; Hood et al. 2016). A classic magnetohydrodynamic (MHD)
model for magnetic flux tubes was first presented by Gold and Hoyle (1960), initially
intended for use in the study of solar flares. The GH model is an infinite, straight,
1D and nonlinear force-free magnetic flux tube with constant ‘twist’ (Birn and Priest
2007). Mathematically, the GH magnetic field could be regarded as the cylindrical
analogue of the Force-Free Harris sheet (Tassi et al. 2008), as the Bennett Pinch
(1934) might be to the ‘original’ Harris Sheet.

It is typical to consider solar, space and astrophysical flux tubes within the frame-
work of MHD (e.g. see Priest 2014). However, many of these plasmas can be weakly
collisional or collisionless, with values of the collisional free path large against any
fluid scale (Marsch 2006), making a description using collisionless kinetic theory
necessary. In this chapter, it is our intention to study the GH flux tube model beyond
the MHD description, since—apart from the very recent work in Vinogradov et al.
(2016)—we see no attempt in the literature of a microscopic description of the GH
field.

The work in Chaps. 2 and 3, as well as Alpers (1969), Harrison and Neukirch
(2009a, b), Neukirch et al. (2009), Wilson and Neukirch (2011), Abraham-Shrauner
(2013), Kolotkov et al. (2015), used methods like Channell’s (Channell 1976) to
tackle the VM inverse problem in Cartesian geometry. Channell described the exten-
sion of hiswork to cylindrical geometry as ‘not possible in a straightforwardmanner.’
As explained in Tasso and Throumoulopoulos (2014) (in which cylindrical coordi-
nates are used to model a torus), this is due in part to the ‘toroidicity’ of the problem,
i.e. the 1/r factor in the equations. As we shall see in this chapter, another potential
complication is the need to allow—at least in principle—a non-zero charge density.

There has been significant recent work on VM equilibria that are consistent with
nonlinear force-free (Harrison and Neukirch 2009a, b; Neukirch et al. 2009; Wilson
and Neukirch 2011; Abraham-Shrauner 2013; Kolotkov et al. 2015; Allanson et al.
2015, 2016) and ‘nearly force-free’ (Artemyev 2011) magnetic fields in Cartesian
geometry. VM equilibria for linear force-free fields have also been found in Sestero
(1967), Bobrova and Syrovatskiı̌ (1979), Bobrova et al. (2001). Therein, force-free
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refers to a magnetic field for which the associated current density is exactly parallel,
which is the definition we shall also use,

j × B = 1

μ0
(∇ × B) × B = 0.

These works consider 1D collisionless current sheets, and so a natural question to
consider is whether it is also possible to find self-consistent force-free (or nearly
force-free) VM equilibria for other geometries, in particular cylindrical geometry. In
this chapter we shall present particular VM equilibria for 1D magnetic fields which
are nearly force-free in cylindrical geometry, i.e. flux tubes/ropes. These kinetic
models and the the theory that follows are of potential applicability in the solar corona
(e.g. see Wiegelmann and Sakurai 2012; Hood et al. 2016), Earth’s magnetotail (e.g.
see Kivelson and Khurana 1995; Khurana et al. 1995; Slavin et al. 2003; Yang et al.
2014) andmagnetopause (e.g. Eastwood et al. 2016), planetary magnetospheres (e.g.
DiBraccio et al. 2015), tokamak (e.g. Tasso and Throumoulopoulos 2007, 2014) and
laboratory (e.g. Davidson 2001) plasmas.

5.2.1 Previous Work

Two of the archetypal field configurations in cylindrical geometry are the z-Pinch
and the θ-pinch. The z-pinch has axial current and azimuthal magnetic field,

j × B = ∇ p ⇐⇒ d

dr

(
p + B2

θ

2μ0

)
+ B2

θ

μ0r
= 0,

Freidberg (1987), a classical example of which is the Bennett Pinch

B̃θ = − r̃

1 + r̃2
, (5.1)

written in non-dimensional units, and for which a Vlasov equilibrium is well known
(Bennett 1934; Harris 1962). In contrast, the θ-Pinch has azimuthal current and axial
magnetic field,

j × B = ∇ p ⇐⇒ d

dr

(
p + B2

z

2μ0

)
= 0.

Pinches that have both axial and azimuthal magnetic fields are known as screw or
cylindrical pinches, e.g. see Freidberg (1987); Carlqvist (1988).

Consideration of ‘Vlasov-fluid’ models of z-Pinch equilibria was given in Chan-
non and Coppins (2001), with Mahajan (1989) calculating z-Pinch equilibria and an
extension with azimuthal ion-currents. Others have also constructed kinetic models
of the θ-pinch, see Nicholson (1963); Batchelor and Davidson (1975) for examples.
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In the same year as Pfirsch (1962), cylindrical kinetic equilibria with only azimuthal
currents were studied in Komarov and Fadeev (1962). For examples of treatments of
the stability of fluid and kinetic linear pinches, see Newcomb (1960), Pfirsch (1962),
Davidson (2001) respectively.

Recently there have been studies on ‘tokamak-like’ VM equilibria with flows
(Tasso and Throumoulopoulos 2007, 2014), starting from the VM equation in cylin-
drical geometry andworking towardsGrad-Shafranov equations for the vector poten-
tial. We also note two Vlasov equilibrium DFs in the literature that are close in style
to the one that we shall present. The first is described in a brief paper (El-Nadi et al.
1976), with an equilibrium presented for a cylindrical pinch. However, their distri-
bution describes a different magnetic field and the DF appears not to be positive
over all phase space. The second DF is a very recent paper that actually describes a
magnetic field much like the one that we discuss (Vinogradov et al. 2016). Their DF
is designed to model ‘ion-scale’ flux tubes in the Earth’s magnetosphere. Formally,
their quasineutral model approaches a nonlinear force-free configuration in the limit
of a vanishing electron to ion mass ratio. In their model, current is carried exclu-
sively by electrons and the non-negativity of the DF depends on a suitable choice of
microscopic parameters. Finally, we mention that in beam physics (e.g. seeMorozov
and Solov’ev 1961; Hammer and Rostoker 1970; Gratreau and Giupponi 1977; Uhm
and Davidson 1985), much work on constructing cylindrical VM equilibria is done
by looking for mono-energetic distributions with conserved angular momentum,

fs = δ(Hs − H0s)g(pθs),

for H0s a fixed energy, Hs and pθs the Hamiltonian and angular momentum respec-
tively.

This chapter is structured as follows. In Sect. 5.3 we first review the theory of the
equation of motion consistent with a collisionless DF in cylindrical geometry, and
discuss the question of the possibility of 1D force-free equilibria. Then we introduce
themagnetic field to be used.We note that whilst the work in this chapter is applied to
a particular magnetic field from Sect. 5.3.6 onwards, the steps taken to calculate the
equilibrium DF seem as though they could be adaptable to other cases. In Sect. 5.4
we present the form of the DF that gives the required macroscopic equilibrium, and
proceed to ‘fix’ the parameters of the DF by explicitly solving Ampère’s Law and
Poisson’s Equation. Note that whilst we choose to consider a two-species plasma
of ions and electrons, we see no obvious reason preventing the work in this chapter
being used to describe plasmas with a different composition. In Sect. 5.5 we present
a preliminary analysis of the physical properties of the equilibrium. The analysis
includes discussions on non-neutrality and the electric field; the equation of state
and the plasma beta; the origin of individual terms in the equation of motion; plots
of the DF; as well as particularly technical calculations in Sects. 5.4.1, 5.5.4.1 and
5.5.4.2. Section5.4.1 contains the zeroth and first order moment calculations, used
to find the number densities and bulk flows directly, and in turn the charge and
current densities. Sections5.5.4.1 and 5.5.4.2 contain the mathematical details of the
existence and location of multiple maxima of the DF in velocity-space.
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Thework in this chapter does not present a generalisedmethod for the VM inverse
problem in cylindrical geometry, but instead some particular solutions for a specific
given magnetic field. Other than any interesting theoretical advances, a possible
application of the results of this study could be to implement the obtained model in
kinetic (particle) numerical simulations.

5.3 General Theory

5.3.1 Vlasov Equation in Time-Independent Orthogonal
Coordinates

A collisionless equilibrium is characterised by the 1-particle DF, fs , a solution of the
steady-state Vlasov Equation (e.g. see Schindler 2007). The Vlasov equation can be
written (Santini and Tasso 1970) in index notation as

∂ fs
∂t

+ 1√
g

∂

∂xi

(√
g
dxi

dt
fs

)
+ ∂

∂vi

(
dvi

dt
fs

)
= 0, (5.2)

for i ∈ {1, 2, 3}; time-independent orthogonal coordinates givenby xi ∈ (x1, x2, x3);
orthogonal and orthonormal basis vectors defined by ei and êi respectively; the diag-
onal metric tensor gi j = gi j (x1, x2, x3) = ei e j , such that distances in configuration-
space obey

ds2 = g11(dx
1)2 + g22(dx

2)2 + g33(dx
3)2;

g = Det[gi j ] = g11g22g33; velocities given by v = vi êi = √
gii dxi/dt êi ; and the

Einstein summation convention applied such that repeated indicies are summed over,
i.e.

Ai B
i = A1B

1 + A2B
2 + A3B

3.

Superscript and subscript indices represent contra- and co-variant tensor components
respectively, with the metric tensor able to raise or lower these indices, e.g.

x j = gi j x
i ,

such that
∇ = ei∇ i = gi j e

j∇ i = e j∇ j (= ei∇i = ∇),

and

∇i = ∂

∂xi



142 5 Neutral and Non-neutral Flux Tube Equilibria

(see e.g. Leonhardt and Philbin 2012; Landau and Lifshitz 2013 for good introduc-
tions to index notation).

Equation (5.2) can be re-written in vector notation (Santini and Tasso 1970) as

∂ fs
∂t

+ v · ∇ f + qs
ms

[(E + v × B) − v × (∇ × v)] · ∂ fs
∂v

= 0, (5.3)

for

v = vi êi ,
∂ fs
∂v

= êi
∂ fs
∂vi

,

In Cartesian geometry, Eq. (5.3) reduces to a familiar form since the Cartesian basis
vectors are position-independent, i.e.

∇ × v = vx∇ × êx + vy∇ × êy + vz∇ × êz = 0.

5.3.2 Vlasov Equation in Cylindrical Geometry

In cylindrical geometry (x1 = r, x2 = θ, x3 = z), (êr = er = r̂ , êθ = 1
r eθ = θ̂, êz =

ez = ẑ), ∇ × v = vθr̂ × ∇θ, and Eq. (5.3) can be shown to reduce to

∂ fs
∂t

+ v · ∇ fs + qs
ms

(E + v × B) · ∂ fs
∂v

+
[
v2

θ

r

∂ fs
∂vr

− vrvθ

r

∂ fs
∂vθ

]
= 0, (5.4)

e.g. see Komarov and Fadeev (1962), Santini and Tasso (1970) and Tasso and
Throumoulopoulos (2007). Note that the gradient operator in cylindrical coordinates
is given by

∇ = r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ ẑ

∂

∂z
,

such that the matrix representation of the metric tensor, g = Mat[gi j ], is given by

g =
⎛
⎝1 0 0
0 r2 0
0 0 1

⎞
⎠ .

The ‘fluid’ equation of motion of a particular species s is found by taking first-
order velocity moments of the Vlasov equation. For the purposes of completeness
and future reference the full first order moment-taking calculation is performed in
Sect. 5.3.3, since it is not easily found in the literature, to our knowledge. The result
is that for an arbitrary DF that only depends spatially on r , the equation of motion can
almost be written in a familiar form, as compared to the equation in Cartesian geom-
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etry (Mynick et al. 1979; Greene 1993; Schindler 2007), but with some ‘additional’
terms. This is to be expected, given the form of Eq. (5.4).

5.3.3 Equation of Motion in Cylindrical Geometry

It will be useful to-rewrite the Vlasov equation from Eq. (5.4) in index notation, in
order to take the velocity moments. As such, the Vlasov equation can be written
according to

∂ fs
∂t

+ vi∇i fs + qs
ms

(
Ei + εi jkv

j Bk
)∇vi fs +

[
(vθ)2

r
∇vr fs − vrvθ

r
∇vθ fs

]
= 0.

(5.5)
The totally antisymmetric unit tensor of rank 3 (the Levi-Civita tensor) is εi jk , and
it takes the value 0 when any of its indices are repeated (e.g. ε131 = 0), +√

g for an
‘ordered triplet’ (e.g. ε231 = √

g), and −√
g for a ‘disordered triplet’ (e.g. ε213 =

−√
g). The first moment of the Vlasov equation (Eq.5.5), and multiplied by ms ,

gives

ms

∫ {
vi

∂ fs
∂t︸ ︷︷ ︸
A

+ viv j∇ j fs︸ ︷︷ ︸
B

+ qs
ms

(
vi E j∇v j fs︸ ︷︷ ︸

C

+ viε jklv
k Bl∇v j fs︸ ︷︷ ︸
D

)

+ vi
(vθ)2

r
∇vr fs︸ ︷︷ ︸

E

− vi
vrvθ

r
∇vθ fs︸ ︷︷ ︸

F

}
d3v = 0, (5.6)

with the triple integral written in shorthand by

∫
d3v :=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dvr dvθdvz .

The first term, ‘A’, gives ∂/∂t (ρsVjs). Next, we notice that the spatial derivative
in ‘B’ can be taken outside of the integral. Then, if we write vi = Vis + w js , we see
that by Leibniz’ rule, for ∇ a derivative

∇〈viv j 〉 = ∇(VisVjs) + ∇〈wisw js〉 + ∇(Vis〈w js〉) + ∇(Vjs〈wis〉),

with the angle brackets denoting an integral over velocity space (by definition 〈wi 〉 =
0). As a result, ‘B’ becomes

∇ j (ρsVjsVis) + ∇ j Pi j .
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We shall integrate terms ‘C–F’ by parts and neglect surface terms, i.e. we assume
that

lim|v|→∞G(x, v, t) fs(x, v, t) = 0,

for G representing the different variables multiplying the DF in terms ‘C-F’. As a
result ‘C’ and ‘D’ become−σs Ei and−σsεi jkV

j
s Bk respectively. If again, we rewrite

vi = Vis + wis , and use Leibniz’ rule, ‘E’ becomes

−δir

r
ρsV

2
θs − δir

r
Pθθ,s,

with δi j the Kronecker delta. Similarly, ‘F’ becomes

1

r
πir,s + δiθ

r
πrθ,s,

for πi j,s = ms
∫

viv j fsd3v. Putting this all together gives

ρs
∂Vis

∂t
+ ∇ j Pi j,s + ∇ j (ρsVjsVis) − σs Ei − σsεi jkV

j
s B

k

−ρs(Vθs)
2 δir

r
− δir

r
Pθθ,s + 1

r
πir,s + δiθ

r
πrθ,s = 0. (5.7)

Taking the r -component, in equilibrium (∂/∂t = 0), assuming a 1D configuration
with only radial dependence (∂/∂θ = ∂/∂z = 0), letting fs be an even function of
vr (Vrs = Prθ = Pzr = 0), and noticing that πrr,s = ρsV 2

rs + Prr,s = Prr,s gives

∂Prr,s
∂r

+ 1

r
(Prr,s − Pθθ,s) = σs(E + V s × B)r + ρs

V 2
θs

r
.

We now consider the general expression for the r component of the divergence of a
rank-2 tensor in cylindrical coordinates (Huba 2013)

(∇ · T )r = 1

r

∂

∂r
(rTrr ) + 1

r

∂Tθr

∂θ
+ ∂Tzr

∂z
− Tθθ

r
. (5.8)

Since the Prθ and Pzr terms of the pressure tensor are zero, this becomes

(∇ · P)r = 1

r

∂

∂r
(r Prr ) − Pθθ

r
, (5.9)

and so force balance for species s is maintained—in equilibrium (∂/∂t = 0), assum-
ing a 1D configuration with only radial dependence (∂/∂θ = ∂/∂z = 0), and letting
fs be an even function of the radial velocity vr—according to

(∇ · P s)r = ( j s × B)r + σs Er + ρs

r
V 2

θs . (5.10)
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Equation (5.10) can be summed over species to give

(∇ · P)r + F c = ( j × B)r + σE, (5.11)

where

F c =
∑
s

F c,s = −1

r

(
ρi V

2
θi + ρeV

2
θe

)
êr

is the force density associated with the rotating bulk flows of the ions and electrons,
and is in fact a centripetal force. Equation (5.11) is a cylindrical analogue of the force
balance equation in Cartesian geometry (e.g. see Mynick et al. 1979). However, in
the cylindrical case there are extra terms due to centripetal forces. Note that in a non-
inertial frame that is co-moving with the respective species bulk flows, the species s
will also feel a fictitious force equal to −F c,s (as well as any other forces), and this
is known as the centrifugal force.

From the point of view of a particular magnetic field B (which is the point
we take by specifying a particular macroscopic equilibrium), we see that equilib-
rium is maintained by a combination of density/pressure variations as in the case
of Cartesian geometry, but with additional contributions from centripetal forces
and as an inevitable result of the resultant charge separation, an electric field.
This effect is represented in Fig. 5.1, with Fig. 5.1a depicting the case for Er < 0,
such that −F ci > −F ce. Whereas Fig. 5.1b depicts the case for Er > 0, such that
−F ce > −F ci . This demonstrates that ‘sourcing’ an exactly force-free macroscopic
equilibriumwith an equilibriumDF in a 1D cylindrical geometry is inherently amore
difficult task than in the Cartesian case. The presence of ‘extra’ centripetal forces,
and almost inevitably forces associated with charge separation, raises the question of
whether exactly force-free ( j × B = 0) equilibria are possible at all in this geometry.

Before proceeding, we comment that given certain macroscopic constraints on
the electromagnetic fields or fluid quantities—such as the force-free condition, or a
specific givenmagnetic field (for example)—it is not a priori known how to calculate
a self-consistent Vlasov equilibrium, or if one even exists within the framework of
the assumptions made. Hence one has to proceed more or less on a case by case
basis, with the intention of achieving consistency with the required macroscopic
conditions, upon taking moments of the DF.

5.3.4 The Gold-Hoyle (GH) Magnetic Field

TheGHmagnetic field (Gold andHoyle 1960) is a 1D (∂/∂θ = ∂/∂z = 0), nonlinear
force-free (∇ × B = α(r)B) and uniformly twisted flux-tube model, with
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Fig. 5.1 A schematic
representation of how, in
force balance, the electric
field, Er exists in order to
balance the ‘charge
separation’ effect caused by
the forces associated with the
ion and electron rotational
bulk flows, Fci and Fce
respectively. Figure5.1a
depicts the case for Er < 0,
such that −Fci > −Fce,
whilst Fig. 5.1b depicts the
case for Er > 0, such that
−Fce > −Fci

AGH (r̃) = B0

2τ

(
0,

1

r̃
ln
(
1 + r̃2

)
,− ln

(
1 + r̃2

))
,

BGH (r̃) = B0

(
0,

r̃

1 + r̃2
,

1

1 + r̃2

)
,

jGH (r̃) = 2
τ B0

μ0

(
0,

r̃

(1 + r̃2)2
,

1

(1 + r̃2)2

)
,

jGH (A, r̃) = 2
τ B0

μ0

(
0, r̃ e− 4τ

B0
r̃ Aθ , e

4τ
B0

Az

)
, (5.12)

The constant τ has units of inverse length, and we use 1/τ to represent the character-
istic length scale of the system (r̃ = τr ). The parameter B0 gives themagnitude of the
magnetic field at r̃ = 0. Note that the representation of jGH (A) chosen in Eq. (5.12)
is representative and non-unique. In fact there are other possible representations, that
include ‘mixtures’ of Aθ and Az in each component of the current density.

Furthermore, τ is a direct measure of the ‘twist’ of the embedded flux tube (see
Birn and Priest 2007), with the number of turns per unit length (in z) along a field
line given by τ/(2π) (Gold and Hoyle 1960). A diagram representing the qualitative
interior structure of such a flux tube is given in Fig. 5.2, and reproduced from Russell
and Elphic (1979) (their magnetic field was in fact not quite uniformly twisted, but
close enough that the diagram still serves a purpose). The most important feature to
note is how the Bz component of the field dominates at small radii, whereas the Bθ

component dominates for larger radii. This characteristic ensures that you travel the
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Fig. 5.2 The interior structure of a flux tube, from Russell and Elphic (1979), and similar to the
GH model. Image Copyright: Nature Publishing Group. Reprinted by permission from Macmillan
Publishers Ltd: Nature 279 (June 1979), pp. 616–618. copyright (1979)

same distance in z, for each 2π revolution, regardless of how far from the central
axis you are (dθ/dz = const.). The force-free parameter for the magnetic field is

α(r) = ∇ × B · B
|B|2 = 2τ

1 + r̃2
.

Should one wish to consider the GH field in an MHD context (∇ p = j × B = 0)
then the scalar pressure p = const.. This is seen by considering the 1D force-balance
equation (Freidberg 1987),

j × B = ∇ p ⇐⇒ d

dr

(
p + B2

θ

2μ0
+ B2

z

2μ0

)
+ B2

θ

μ0r
= 0,

for the GH field.

5.3.5 Methods for Calculating an Equilibrium DF

In Channell (1976), Harrison and Neukirch (2009a) for example, a method used to
calculate a DF, given a prescribed 1Dmagnetic field was Inverse Fourier Transforms
(IFT). This method was also discussed in Sect. 1.3.5.5. A DF of the form

fs ∝ e−βs Hs gs(pxs, pys), (5.13)

was used, with Hs , pxs and pys the conserved particle Hamiltonian and canonical
momenta in the x and y directions, and gs an unknown function, to be determined.
Since our problem is one of a 1D equilibrium with variation in the radial direction,
the three constants of motion are the Hamiltonian, and the canonical momenta in the
θ and z directions:

Hs = ms

2

(
v2
r + v2

θ + v2
z

)+ qsφ,

pθs = r (msvθ + qs Aθ) , pzs = msvz + qs Az . (5.14)

http://www.nature.com
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One can try to calculate an equilibrium distribution for the GH force-free flux tube
without a background field by a similar method, assuming a DF of the form

fs ∝ e−βs Hs gs(pθs, pzs). (5.15)

By exploiting the convolution in the definition of the current density,

j(A, r) =
∑
s

qs

∫
v fs(Hs, pθs, pzs) d

3v,

= r
∑
s

qs
m4

s

∫
(ps − qs A) fs(Hs, rpθs, pzs) d

3ps,

Ampère’s law can be solved formally by IFT (cf. Harrison and Neukirch 2009a
and Sect. 1.3.5.5), or informally by ‘inspection’ (cf. Neukirch et al. 2009), with the
quantity ps defined by

prs = prs, pθs = pθs

r
, pzs = pzs .

Notice how when written in this integral form, j is not only a function of A, but—in
contrast with the Cartesian case—also of the relevant spatial co-ordinate, r .

5.3.5.1 Problems with Equilibrium DFs for the GH Field

We shall now reproduce the calculations, representatively, for the jθ case. These
calculations are representative in that the choice of expression for the current density
as a function of the vector potential is non-unique, as indicated previously. However,
this calculation should demonstrate the inherent obstacle in calculating a Vlasov
equilibrium DF for the GH field.

The definition of the current density, along with the ansatz of Eq. (5.15) gives

jθ = r
∑
s

qs
m4

s

n0s

(
√
2πvth,s)3

e−βsqsφ
∫

(pθs − qs Aθ)e
−(ps−qs A)2/(2m2

s v
2
th,s )gs(rpθs , pzs)d

3ps .

If we now take a representative (i.e. one possible) expression for the current density,
chosen as a more ‘general’ form than that in Eq. (5.12),

jθ = c1
τ 2B0r

μ0
exp

(
c2τ 2r Aθ

B0
+ c3τ Az

B0

)
,

for c1, c2 and c3 constants, and re-write pθs = pθs/r , then we obtain
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c1
τ 2B0r

μ0
exp

(
c2τ 2r Aθ

B0
+ c3τ Az

B0

)
=
∑
s

qs
m3

s

n0s

(
√
2πvth,s)2

e−βsqsφ ×
∫

(pθs − qsr Aθ)e
−(pθs−qsr Aθ)

2/(2m2
s v

2
th,sr

2)−(pzs−qs Az)
2/(2m2

s v
2
th,s )gs(pθs, pzs)dpθsdpzs .

In the case of zero scalar potential, the result of the calculation is to give a gs
function (and hence a DF) that is not a solution of the Vlasov equation as it is not
a function of the constants of motion only. In essence, an additional “exp(−r2)”
factor would be required in the DF to counter “exp(+r2)” terms that manifest by
completing the square in the integration. That is to say that the ‘solution’ would be
of the form

gs(pθs, pzs) = g0 exp

(
− ω2

s

2τ 2v2
th,s

δ2s τ
2r2

)
exp

(
ωs

τvth,s

τ 2 pθs

qs B0
+ V

vth,s

τ pzs
qs B0

)
,

and hence the DF can be written as

fs ∝ g0 exp

(
− ω2

s

2τ 2v2
th,s

δ2s τ
2r2

)
e−βs Hs exp

(
ωs

τvth,s

τ 2 pθs

qs B0
+ V

vth,s

τ pzs
qs B0

)
, (5.16)

for some g0,ωs and V related to c1, c2 and c3 respectively. The ratio of the thermal
Larmor radius, rL = msvth,s/(e|B|) (for e = |qs |) to the macroscopic length scale of
the system L(= 1/τ ), is given by

δs(r) = rL
L

= msvth,sτ

eB(r)
,

typically known as the ‘magnetisation parameter’ (Fitzpatrick 2014) (see Table5.1
for a concise list of the micro and macroscopic parameters of the equilibrium). Note
that in our system, the magnitude of the magnetic field and hence δs itself is spatially
variable. For the purposes of the calculations in this chapter however, we set

msvth,sτ

eB0
= δs = const.

as a characteristic value.
The DF in Eq. (5.16) is not a solution of the Vlasov equation, but would approxi-

mate one in the limit ωs

τvth,s
δs = ωs

qs B0/ms
→ 0,

i.e. the vanishing ratio of the bulk angular frequency to the gyrofrequency of the
individual particles (cf. Vinogradov et al. 2016 and more on this later). It is now
apparent that the physical cause for the extra “exp(+r2)” term here would appear to
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Table 5.1 The fundamental parameters of the equilibrium. The s subscript refers to particles of
species s

Macroscopic parameter Meaning

B0 Characteristic magnetic field strength

τ Measure of the twist of flux tube

k Strength of the background field

γ1 �= 0, 1, 0 < γ2 < 1 Gauge for scalar potential

Uzs , Vzs Bulk rectilinear flows

ωs Bulk angular frequency

Microscopic parameter Meaning

ms Mass of particle

qs , e Charge, magnitude of charge

βs = 1/(kBTs) Thermal beta

vth,s Thermal velocity

δs(r), δs Magnetisation parameters

n0s Normalisation of particle number

be the forces associated with the rotational bulk flow, since the term is non-negligible
when ωs is of a sufficient magnitude.

If one assumes a non-zero scalar potential, then the above considerations would
seem to imply that

−βi qiφ = −βeqeφ = − ω2
s

2τ 2v2
th,s

δ2s τ
2r2,

for there to be an exact Vlasov solution. This equation cannot be satisfied. The
physical cause seems to be that, in the case of force-free fields, one would require
a ‘different’ electrostatic potential to balance the forces for the ions and electrons,
which is of course nonsensical. Thus, our investigation seems to suggest that it is not
possible to calculate a DF of the form of Eq. (5.15) for the exact GH field.

5.3.6 GH Flux Tube Plus Background Field (GH+B)

To make progress, we introduce a background field in the negative z direction. The
mathematical motivation for this change is to balance the ‘exp(r2) problem’. Physi-
cally, it seems that the background field introduces an extra term (whose sign depends
on species) into the force-balance, to allow for both the ion and electrons to be in
force balance simultaneously, given one unique expression for the scalar potential.

The vector potential, magnetic field and current density used are as follows:
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Fig. 5.3 The twist
(normalised by τ/(2π)) of
the GH+B field for three
values of k. Figure5.3a
shows the twist for k < 1/2,
and as such there are both
negative and positive twists,
due to the field reversal.
Figure5.3b and c both show
negative twist, since there is
no magnetic field reversal
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AGH+B(r̃) = B0

2τ

(
0,

1

r̃
ln
(
1 + r̃2

)− 2kr̃ ,− ln
(
1 + r̃2

))
,

= AGH − (
0, B0kτ

−1r̃ , 0
)
. (5.17)

BGH+B(r̃) = B0

(
0,

r̃

1 + r̃2
,

1

1 + r̃2
− 2k

)
,

= BGH − (0, 0, 2kB0). (5.18)

jGH+B(r̃) = 2
τ B0

μ0

(
0,

r̃

(1 + r̃2)2
,

1

(1 + r̃2)2

)
,

= jGH . (5.19)

The dimensionless constant k > 0 controls the strength of the background field in
the z direction, and as a result there are now two different interpretations to be made.
We could either consider the system as a GH flux tube of uniform twist embedded in
an untwisted uniform background field, or consider the whole GH+B magnetic field
as a non-uniformly twisted flux tube.

In the first interpretation, τ is (as aforementioned) a direct measure of the ‘twist’
of the embedded flux tube (see Birn and Priest 2007), with the number of turns per
unit length (in z) along a field line given by τ/(2π) (Gold and Hoyle 1960). In the
second interpretation, we see that the system is not uniformly twisted, with the z
distance traversed when following a field line (e.g. Marsh 1996), given by

∫
r Bz

Bθ
dθ = 1

τ

(
1 − 2k(1 + r̃2)

) ∫
dθ.

The fact that this depends on r demonstrates that the system as a whole has non-
uniform twist. The number of turns per unit length in z of the GH+B field: the ‘twist’
is given by (∫ θ=2π

θ=0

r Bz

Bθ
dθ

)−1

= τ

2π

(
1 − 2k(1 + r̃2)

)−1
,

and is plotted in Fig. 5.3 for three values of k. Since k < 1/2 corresponds to the field-
reversal regime,we see amixture of positive and negative twists (Fig. 5.3a). However,
for k ≥ 1/2 we see only negative values of the twist (Fig. 5.3b and c), i.e. we travel in
the negative z direction as we wind round the GH+B flux tube in the anti-clockwise
direction. Themagnetic field is plotted in Fig. 5.4a–b for two values of k. The k = 0.3
case contains a reversal of the B̃z field direction and as such is akin to a Reversed
Field Pinch (e.g. see Escande 2015 for a laboratory interpretation): this configuration
may be of use in the study of astrophysical jets, see Li et al. (2006) for example.
The value k = 1/2 gives zero B̃z at r̃ = 0, and as such is the value that distinguishes
the two different classes of field configuration, namely unidirectional (k ≥ 1/2) or
including field reversal (k < 1/2). The value of r̃ for which the B̃z field reverses is
plotted in Fig. 5.4c. The magnitude of the GH+B magnetic field is plotted in Fig. 5.5
for three values of k. For all values of k, |B̃| → 2k for large r̃ , i.e. to a potential field.
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Fig. 5.4 Figure5.4a and b show the GH+B magnetic field in the xy plane, for two values of k.
The curved arrows indicate the direction of the B̃θ components, whilst the blue-black-red shading
denotes the magnitude and direction of the B̃z component. The k = 0.3 case contains a reversal of
the B̃z field direction and as such is a Reversed Field Pinch whilst k = 0.5 gives zero B̃z at r̃ = 0.
Figure5.4c shows the radius at which B̃z changes its direction, for 0 < k < 1/2. B̃z does not reverse
for k ≥ 1/2
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Fig. 5.5 Figure5.5a–c show
the magnitude of the GH+B
magnetic field for
k = 0.1, 0.5 and k = 1
respectively, normalised by
B0. For k < 0.5, |B̃| → 2k
from above, whereas for
k ≥ 1/2, |B̃| → 2k from
below
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We also note here that flux tubes embedded in an axially directed background field
have recently been observed during reconnection events in the Earth’s magnetotail,
by the Cluster spacecraft (e.g. Borg et al. 2012), and that recent numerical modelling
of ‘magnetohydrodynamic (MHD) avalanches’ in the low-beta solar corona has used
multiple flux ropes embedded in a uniform background magnetic field (Hood et al.
2016). The magnetic field model used (Hood et al. 2009) is similar to the model in
this chapter, as it is force-free and 1D.

The primary task of this chapter is to calculate self-consistent collisionless equilib-
rium DFs for the GH+B field. This problem essentially reduces to solving Ampère’s
Law such that Eq. (5.4) is satisfied. We assume nothing about the electric field how-
ever, and in fact use that degree of freedom to solve Ampère’s Law. The resultant
form of the scalar potential is then substituted into Poisson’s equation, to establish
the final relationships between the microscopic and macroscopic parameters of the
equilibrium.

5.4 The Equilibrium DF

Although the IFT method did not yield a self-consistent equilibrium DF for the GH
field without a background field, the outcome of the calculation can still be used as
an indication of possible forms for the DF for the GH+B field. Using trial and error
we arrived at the DF

fs = n0s

(
√
2πvth,s)3

[
e−(H̃s−ω̃s p̃θs−Ũzs p̃zs) + Cse

−(H̃s−Ṽzs p̃zs)
]
, (5.20)

which is a superposition of two terms that are consistent macroscopically with a
‘Rigid-Rotor’ (Davidson 2001). A Rigid-Rotor is microscopically described by a
DF of the form F(H − ω pθ − V pz). Each F(H − ω pθ − V pz) term corresponds
to an average macroscopic motion of rigid rotation with angular frequency ω, and
rectilinear motion with velocity V (with ω = 0 in the second term of the DF in
Eq.5.20). This can be shown in a manner similar to that shown in Sect. 1.3.2.2.

The dimensionless constants ω̃s , Ũzs , Ṽzs and Cs are yet to be determined, with
Cs > 0 for positivity of the distribution (see Table5.2 for a concise list of the dimen-
sionless quantities used in this chapter).

5.4.1 Moments of the DF

In order to satisfyMaxwell’s equations, we shall require the charge and current densi-
ties.Hencewewill require the zeroth- andfirst-ordermoments of theDF inEq. (5.20),
and these calculations follow. See Table5.2 for a clarification of all dimensionless
quantities denoted by a tilde, .̃
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Table 5.2 Dimensionless form of some important variables. The s subscript refers to particles of
species s

Variable Dimensionless form

Particle Hamiltonian H̃s = βs Hs

Particle angular momentum τ pθs = msvth,s p̃θs

Particle z-Momentum pzs = msvth,s p̃zs
Vector potential qs A = msvth,s Ãs

Scalar Potential φ̃s = qsβsφ

Bulk rectilinear flows vth,sŨzs = Uzs , vth,s Ṽzs = Vzs
Bulk angular frequency τvth,s ω̃s = ωs

Particle position (radial) τr = r̃

Particle velocity v = vth,s ṽs

5.4.1.1 Zeroth Order Moments

The number density of species s is given by the zeroth moment of the DF;

ns =
∫

fsd
3vs = n0s

(
√
2π)3

∫
e−H̃s

(
eŨzs p̃zs eω̃s p̃θs + Cse

Ṽzs p̃zs

)
d3ṽs (5.21)

= n0s

(
√
2π)2

e−φ̃s

[
e(Ũ

2
zs+r̃2ω̃2

s )/2eŨzs Ãzs eω̃s r̃ Ãθs

∫ ∞

−∞
e−(ṽzs−Ũzs)

2
/2d ṽzs ×

∫ ∞

−∞
e−(ṽθs−ω̃s r̃)

2
/2d ṽθs + Cs

√
2πeṼ

2
zs/2eṼzs Ãzs

∫ ∞

−∞
e−(ṽzs−Ṽzs)

2
/2d ṽzs

]

= n0se
−φ̃s

[
e(Ũ

2
zs+r̃2ω̃2

s )/2eŨzs Ãzs eω̃s r̃ Ãθs + Cse
Ṽ 2
zs/2eṼzs Ãzs

]
(5.22)

We take the following sum to calculate the charge density,

σ =
∑
s

qsns =
∑
s

n0sqse
−φ̃s

[
e(Ũ

2
zs+r̃2ω̃2

s )/2eŨzs Ãzs eω̃s r̃ Ãθs + Cse
Ṽ 2
zs/2eṼzs Ãzs

]

(5.23)

5.4.1.2 First Order Moments

We take the vz moment of the DF to calculate the z—component of the bulk velocity,
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Vzs = v4
th,s

ns

∫
ṽzs fsd

3ṽs,

= vth,s

ns

n0s

(
√
2π)2

e−φ̃s

[
e(Ũ

2
zs+r̃2ω̃2

s )/2eŨzs Ãzs eω̃s r̃ Ãθs

∫ ∞

−∞
ṽzse

−(ṽzs−Ũzs)
2
/2d ṽzs ×

∫ ∞

−∞
e−(ṽθs−ω̃s r̃)

2
/2d ṽθs + Cs

√
2πeṼ

2
zs/2eṼzs Ãzs

∫ ∞

−∞
ṽzse

−(ṽzs−Ṽzs)
2
/2d ṽzs

]

= n0svth,s
ns

e−φ̃s

[
Ũzse

Ũzs Ãzs e(Ũ
2
zs+r̃2ω̃2

s )/2eω̃s r̃ Ãθs + ṼzsCse
Ṽ 2
zs/2eṼzs Ãzs

]
, (5.24)

for ns the number density. We take the following sum to calculate the z—component
of the current density,

jz =
∑
s

qsnsVzs =
∑
s

n0sqsvth,se
−φ̃s ×

(
Ũzse

Ũzs Ãzs e(Ũ
2
zs+r̃2ω̃2

s )/2eω̃s r̃ Ãθs + ṼzsCse
Ṽ 2
zs/2eṼzs Ãzs

)
. (5.25)

By taking the vθ moment of the DF we can calculate the θ—component of the
bulk velocity,

Vθs = v4
th,s

ns

∫
ṽθs fsd

3ṽs = vth,s

ns

n0s

(
√
2π)2

e−φ̃s

[
e(Ũ

2
zs+r̃2ω̃2

s )/2eŨzs Ãzs eω̃s r̃ Ãθs ×
∫ ∞

−∞
e−(ṽzs−Ũzs)

2
/2d ṽzs

∫ ∞

−∞
ṽθse

−(ṽθs−ω̃s r̃)
2
/2d ṽθs

= r̃ ω̃sn0svth,se−φ̃s

ns
e(Ũ

2
zs+r̃2ω̃2

s )/2eŨzs Ãzs eω̃s r̃ Ãθs , (5.26)

for ns the number density. This gives the θ—component of the current density,

jθ =
∑
s

qsnsVθs =
∑
s

n0sqsvth,s r̃ ω̃se
−φ̃s eŨzs Ãzs e(Ũ

2
zs+r̃2ω̃2

s )/2eω̃s r̃ Ãθs . (5.27)

5.4.2 Maxwell’s Equations: Fixing the Parameters of the DF

By insisting on a specific magnetic field configuration (the GH+B field) we have
made a statement on the macroscopic physics. In searching for the equilibrium DF,
we are trying to understand the microscopic physics. In this sense we are tackling an
‘inverse problem’. Once an assumption on the form of the DF is made then – should
the assumed form be able to reproduce the correct moments – this inverse problem
reduces to establishing the relationships between the microscopic and macroscopic
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parameters of the equilibrium. In this Section we ‘fix’ the free parameters of the DF
in Eq. (5.20), such that Maxwell’s equations are satisfied;

∇ · E = 1

ε0

∑
s

qs

∫
fsd

3v, (5.28)

∇ × B = μ0

∑
s

qs

∫
v fsd

3v. (5.29)

Note that the solenoidal constraint and Faraday’s law are automatically satisfied
for the GH+B field in equilibrium, since B = ∇ × A implies that ∇ · B = 0 and
E = −∇φ implies that ∇ × E = 0 = − ∂B

∂t .

5.4.2.1 Ampère’s Law

In Sect. 5.4.1.2 we have calculated the jz current density, found by summing first
order moments in vz of the DF. We now substitute in the macroscopic expressions
for jz(r̃), Aθ(r̃) and Az(r̃) from (5.19) and (5.17) into the expression for the jz current
density of Eq. (5.25). After this substitution, we can calculate a φ(r) that makes the
system consistent. The substitution of the known expressions for jz , Az and Aθ gives

jz(r̃) = 2τ B0

μ0

1

(1 + r̃2)2
=
∑
s

n0sqsvth,se
−qsβsφ ×

(
Ũzse

(Ũ 2
zs+r̃2ω̃2

s )/2−sgn(qs )ω̃s r̃2k/δs
(
1 + r̃2

)sgn(qs )(ω̃s−Ũzs )/(2δs )

+ṼzsCse
Ṽ 2
zs/2

(
1 + r̃2

)−sgn(qs )Ṽzs/(2δs )
)

= “ion terms” + “electron terms” (5.30)

In order to satisfy the above equality we can construct a solution by introducing a
‘separation constant’ γ1 �= 0, 1. We multiply the above equation by (1 + r̃2)2 which
makes the left-hand side constant, whilst the right-hand side is a sum of two (sets
of) terms, one depending on ion parameters and the second depending on electron
parameters. Then we can define γ1 by

2τ B0

μ0
= 2τ B0

μ0
(1 − γ1)︸ ︷︷ ︸

ion terms

+ 2τ B0

μ0
γ1︸ ︷︷ ︸

electron terms

, (5.31)

associating the ‘ion term’ with the first term on the right-hand side of (5.31), and
the ‘electron term’ with the second term on the right-hand side of (5.31). After some
algebra we can rearrange these two associations to give two expressions for the
scalar potential, one in terms of the ion parameters, and one in terms of the electron
parameters:
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φ(r) = 1

qiβi
ln

{
μ0n0i qivth,i
2τ B0(1 − γ1)

×
[
Ũzi e

(Ũ 2
zi+r̃2ω̃2

i )/2−ω̃i r̃2k/δi
(
1 + r̃2

)2+(ω̃i−Ũzi )/(2δi )

+ṼziCi e
Ṽ 2
zi /2

(
1 + r̃2

)2−Ṽzi /(2δi )
]}

φ(r) = 1

qeβe
ln

{
μ0n0eqevth,e
2τ B0γ1

[
Ũzee

(Ũ 2
ze+r̃2ω̃2

e )/2+ω̃er̃2k/δe
(
1 + r̃2

)2−(ω̃e−Ũze)/(2δe)

+ṼzeCee
Ṽ 2
ze/2

(
1 + r̃2

)2+Ṽze/(2δe)
]}

The two values of the scalar potential above must be made identical by a suitable
choice of relationships between the ion and electron parameters. Given enough free-
dom in parameter space, we could say that the z component of Ampère’s Law is
implicitly solved by the above equations, in that one just needs to choose a consistent
set of parameters. However, we seek a solution in an explicit sense.

In order to make progress we non-dimensionalise the above equations by multi-
plying both sides by eβr with

βr = βiβe

βe + βi
.

Once this is done we can write the scalar potential in the form

eβrφ(r) = ln
{
[ion terms]

eβr
qi βi

}
, (5.32)

eβrφ(r) = ln
{
[electron terms]

eβr
qeβe

}
. (5.33)

Specifically, Eqs. (5.32) and (5.33) require the equality of the arguments of the loga-
rithm to hold in order for ameaningful solution to be obtained for the scalar potential.
A first step towards this is made by requiring consistent powers of the 1 + r̃2 ‘profile’
in the right-hand side of the above expression to allow factorisation. Hence

(ω̃i − Ũzi )/(2δi ) = −Ṽzi/(2δi ), −(ω̃e − Ũze)/(2δe) = Ṽze/(2δe),

=⇒ ω̃i = Ũzi − Ṽzi , ω̃e = Ũze − Ṽze, (5.34)

and hence the rigid-rotation, ω̃s , is fixed by the difference of the rectilinear motion,
Ũzs − Ṽzs . On top of this, we require that the power of the 1 + r̃2 ‘profile’ on the
right-hand side is the same for both the ions and electrons, thus

eβr

qiβi

(
2 − Ṽzi/(2δi )

)
= E = eβr

qeβe

(
2 + Ṽze/(2δe)

)
. (5.35)
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This condition seems to be a statement on an average potential energy associated
with the particles. Once more to allow factorisation of the 1 + r̃2 ‘profile’, we insist
that net exp(r2) terms cancel, i.e.

ω̃i

2
= k

δi
> 0,

ω̃e

2
= − k

δe
< 0. (5.36)

The physical meaning of this condition seems to be that the frequencies of the rigid
rotor for each species are matched according to the relevant magnetisation, and
the background field magnitude. The remaining task is to ensure equality of the
‘coefficients’

{
1

4δi (1 − γ1)

n0imiv
2
th,i

B2
0/(2μ0)

[
Ũzi e

Ũ 2
zi /2 + ṼziCi e

Ṽ 2
zi /2
]} eβr

qi βi

= D

=
{

− 1

4δeγ1

n0emev
2
th,e

B2
0/(2μ0)

[
Ũzee

Ũ 2
ze/2 + ṼzeCee

Ṽ 2
ze/2
]} eβr

qeβe

(5.37)

These seem to be conditions on the ratios of the energy densities associated with
the bulk rectilinear motion and the magnetic field respectively. Thus far we have
8 constraints and 12 unknowns (Ũzs, Ṽzs, ω̃s,Cs, n0s,βs), given fixed characteristic
macroscopic parameters of the equilibrium; B0, τ , and k. We can now write down
an expression for φ that explicitly solves the z component of Ampère’s law;

φ(r̃) = 1

eβr
E ln

(
1 + r̃2

)+ φ(0), (5.38)

with

φ(0) = 1

eβr
lnD.

Clearly, we require that D > 0 for the expression above to make sense. It is clear
that the sign of γ1 could, in principle, affect the sign of D. It is seen from (5.37) that
positivity of D implies that

1

1 − γ1

[
Ũzi e

Ũ 2
zi /2 + ṼziCi e

Ṽ 2
zi /2
]

> 0, (5.39)

1

γ1

[
Ũzee

Ũ 2
ze/2 + ṼzeCee

Ṽ 2
ze/2
]

< 0. (5.40)

By rearranging the above inequalities to make Cs the subject, it can be seen after
some algebra that positivity of D and Cs is guaranteed when

γ1 > 1, sgn(Ũzs) = −sgn(Ṽzs).
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Note that these conditions are sufficient, but not necessary, i.e. it is possible to have
D > 0 and Cs > 0 for any value of γ1 �= 0, 1, and even for sgn(Ũzs) = sgn(Ṽzs) in
the case of γ1 < 0.

Thus far we have only considered the jz component, and it is premature to con-
sider all components of Ampère’s Law satisfied. Let us move on to consider the
θ component. In a process similar to that above, we substitute in the macroscopic
expressions for jθ(r̃), Aθ(r̃) and Az(r̃) for the GH+B field into the expression for the
jθ current density of Eq. (5.27) in Sect. 5.4.1.2. After this substitution, we can once
more calculate the φ that makes the system consistent. The substitution gives

jθ = 2τ B0

μ0
=
∑
s

n0sqsvth,sω̃se
−qsβsφ ×

e(Ũ 2
zs+r̃2ω̃2

s )/2−sgn(qs)ω̃s r̃2k/δs
(
1 + r̃2

)2+sgn(qs )(ω̃s−Ũzs )/(2δs ) (5.41)

Using the parameter relations as above, we determine that the scalar potential is again
given in the form of (5.38),

φ(r̃) = 1

eβr
E ln

(
1 + r̃2

)+ φ(0).

Hence, this form of the scalar potential is consistent provided

[
1

1 − γ2

1

4δi

n0imivth,iωi/τ

B2
0/(2μ0)

eŨ
2
zi /2

] eβr
qi βi = D =

[
− 1

γ2

1

4δe

n0emevth,eωe/τ

B2
0/(2μ0)

eŨ
2
ze/2

] eβr
qeβe

(5.42)
for γ2 �= 1 another separation constant. These seem to be conditions on the ratios of
the energy densities associated with the bulk rotation and the magnetic field respec-
tively. This has added two more constraints.

Once again we must ensure that D > 0. Since ωe < 0, the right-hand side of
the above equation implies that γ2 > 0 to ensure that D > 0. Whilst the left-hand
side implies that γ2 < 1 for positivity of D since ωi > 0. Hence we can say that for
positivity

0 < γ2 < 1.

We can now consider Ampère’s Law satisfied, given a φ that solves Poisson’s equa-
tion. That is to say that we have satisfied the equation

(∑
s

qs

∫
v fsd

3v =
)

jmicro(φ, A) = jmacro(r)

(
= 1

μ0
∇ × B

)
,

s.t. φ(r̃) = 1

eβr
E ln

(
1 + r̃2

)+ φ(0) and A = AGH+B,

with AGH+B defined by Eq. (5.17). As a result, the problem of consistency is now
shifted to solving Poisson’s Equation, where the remaining degrees of freedom lie.
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5.4.2.2 Poisson’s Equation

The final step in ‘self-consistency’ is to solve Poisson’s Equation. Frequently in such
equilibrium studies, this step is replaced by satisfying quasineutrality and in essence
solving a first order approximation of Poisson’s equation, see for example Schindler
(2007), Harrison and Neukirch (2009b), Tasso and Throumoulopoulos (2014) and
Sect. 1.1.3 of this thesis. Here we solve Poisson’s equation exactly, i.e. to all orders.
Poisson’s equation in cylindrical coordinates with only radial dependence gives

∇ · E = −1

r

∂

∂r

(
r
∂φ

∂r

)
= σ

ε0
. (5.43)

The electric field is calculated as E = −∇φ, giving

Er = −∂rφ = −2τE
eβr

r̃

(1 + r̃2)
. (5.44)

We can now take the divergence of the electric field ∇ · E = τ r̃−1∂r̃ (r̃ Er ) and so

∇ · E = −4τ 2E
eβr

1

(1 + r̃2)2
=⇒ σ = −4ε0τ 2E

eβr

1

(1 + r̃2)2
. (5.45)

This gives a non-zero net charge—per unit length in z—of

Q =
∫ θ=2π

θ=0

∫ r=∞

r=0
σ r dr dθ = −4πε0E

eβr
. (5.46)

The charge density derived in Eq. (5.45) must equal the charge density calculated by
taking the zeroth moment of the DF. The expression for the charge density calculated
in (5.23) gives

σ =
∑
s

n0sqse
−qsβsφ ×

(
e(Ũ 2

zs+r̃2ω̃2
s )/2eŨzs Ãzs eω̃s r̃ Ãθs + Cse

(Ũzs−ω̃s )
2/2e(Ũzs−ω̃s ) Ãzs

)
,

=
∑
s

n0sqse
−qsβsφ ×

(
1 + r̃2

)sgn(qs )(ω̃s−Ũzs )/(2δs )
(
eŨ

2
zs/2 + Cse

(Ũzs−ω̃s )
2/2
)

,

= 1(
1 + r̃2

)2
∑
s

n0sqsD− qsβs
eβr

(
eŨ

2
zs/2 + Cse

(Ũzs−ω̃s )
2/2
)

. (5.47)
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The second equality is found by substituting the form of the vector potential from
Eq. (5.17), and the final equality is reached by using the conditions derived in
Eqs. (5.34)–(5.38).

We can now match Eqs. (5.45) and (5.47) to get

(σ(0) =) − 4ε0τ 2E
eβr

=
∑
s

n0sqsD− qsβs
eβr

(
eŨ

2
zs/2 + Cse

Ṽ 2
zs/2
)

. (5.48)

We now have 12 physical parameters (Ũzs, Ṽzs, ω̃s,Cs, n0s,βs) with 11 constraints
(5.34–5.37), (5.42) and (5.48). For example, if one picks B0, τ , k and onemicroscopic
parameter, sayβi , then the remaining parameters of the equilibrium, (Ũzs, Ṽzs, ω̃s,Cs ,
n0s , βe), are now determined. One could of course choose the values of a different
set of parameters, and determine those that remain by using the constraints derived.
Note that whilst the constants γ1 �= 0, 1 and 0 < γ2 < 1 are system parameters, they
are not physically meaningful as they only represent a change in the gauge of the
scalar potential.

5.5 Analysis of the Equilibrium

5.5.1 Non-neutrality and the Electric Field

It is seen from Eqs. (5.45) and (5.46) that basic electrostatic properties of the equilib-
rium described by fs are encoded in E . The equilibrium is electrically neutral only
when E = 0, and non-neutral otherwise. Specifically, there is net negative charge
when E > 0, and net positive charge when E < 0. This net charge is finite in the
(r, θ) plane and given by Q in Eq. (5.46).

Physically, the sign of E seems to be related to the respective magnitudes of the
bulk rotation frequencies, ω̃s . From Eqs. (5.34) and (5.35) we see that E > 0 implies
that

ω̃i > ω�
i = Ũzi − 4δi ,

|ω̃e| < ω�
e = −Ũze − 4δe,

and E < 0 implies that

ω̃i < ω�
i = Ũzi − 4δi ,

|ω̃e| > ω�
e = −Ũze − 4δe.

Hence, E > 0 is seen to occur for ‘sufficiently large’ bulk ion rotation frequencies,
and ‘sufficiently small’ (in magnitude) bulk electron rotation frequencies. A positive
E corresponds to an electric field directed radially ‘inwards’. This seems to make
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sense physically, by the following argument. A ‘larger’ (ω̃i > ω�
i ) bulk ion rotation

frequency gives a ‘larger’ centrifugal force (in the co-moving frame), and a ‘smaller’
(|ω̃e| < ω�

e ) bulk electron rotation frequency gives a ‘smaller’ centrifugal force (in
the co-moving frame). For a dynamic interpretation, at a fixed r , the ions are forced
to a slightly larger radius than the electrons, i.e. a charge separation manifests on
small scales. This charge separation results in an inward electric field, Er < 0. An
equally valid interpretation is to say that for an equilibrium to exist, an electric field
must exist to counteract the differences in the forces associated with the bulk ion and
electron rotational flows. This effect is represented in Fig. 5.1a.

In a similar manner, E < 0 is seen to occur for ‘sufficiently small’ (ω̃i < ω�
i ) bulk

ion rotation frequencies, and ‘sufficiently large’ (|ω̃e| > ω�
e ) bulk electron rotation

frequencies.AnegativeE corresponds to an electric field directed radially ‘outwards’.
We can then interpret these result physically, in a manner like that above. This effect
is represented in Fig. 5.1b.

Finally, we can interpret the neutral case, E = 0, as the intermediary between the
two circumstances considered above. That is to say that the equilibrium is neutral
when the bulk rotation flows are justmatched accordingly, such that there is no charge
separation and hence no electric field.

5.5.2 The Equation of State and the Plasma Beta

For certain considerations, e.g. the solar corona, it would be advantageous if the DF
had the capacity to describe plasmas with sub-unity values of the plasma beta: the
ratio of the thermal energy density to the magnetic energy density

βpl(r̃) = 2μ0kB
B2

∑
s

nsTs . (5.49)

For our configuration, the number density is seen to be proportional to the rr com-
ponent of the pressure tensor, Prr,s = nskBTs . This is demonstrated by the following
calculation. In order to calculate Prr , we must consider the integral

Prr =
∑
s

ms

∫ ∞

−∞
wrs wrs fs d

3v. (5.50)

However, we do not have to consider a bulk velocity in the r direction here (Vrs = 0),
since fs is an even function of vr . Using the fact that

∫ ∞

−∞
v2
r e

−v2r /(2v
2
th,s )dvr = v2

th,s

∫ ∞

−∞
e−v2r /(2v

2
th,s )dvr ,
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and by consideration of Eq. (5.50) and the number density, we see that

Prr,s = msv
2
th,sns, (5.51)

that is to say that kBTs = msv
2
th,s . Note that if ni = ne := n and hence E = 0 (neu-

trality), then we have an equation of state given by

Prr = βe + βi

βeβi
n.

This resembles expressions found in theCartesian case, inChannell (1976), Neukirch
et al. (2009), Allanson et al. (2015) for example. Incidentally, we can use the con-
nection between ns and Prr to give an expression for the βpl that is perhaps more
typically seen,

βpl(r̃) = 2μ0

B2

∑
s

Prr,s .

The square magnitude of the magnetic field (Eq.5.18) is given by

B2 = B2
0

(1 + r̃2)

(
1 − 4k + 4k2(1 + r̃2)

)
.

Using the number density from Eq. (5.22) in the definition of the plasma beta from
Eq. (5.49), as well as the equilibrium conditions (5.34)–(5.38) gives

βpl(r̃) = 2μ0

B2
0 (1 + r̃2)

(
1 − 4k + 4k2(1 + r̃2)

) ×
∑
s

n0s
βs

D− qsβs
eβr

(
eŨ

2
zs/2 + Cse

Ṽ 2
zs/2
)

. (5.52)

It is not immediately obvious from the above equation what values βpl can have.
However it is readily seen that as r̃ → ∞ then βpl → 0, essentially since the number
density is vanishing at large radii. On the central axis of the tube we see that

βpl(0) = 2μ0

B2
0

(
1 − 4k + 4k2

) ×
∑
s

n0s
βs

D− qsβs
eβr

(
eŨ

2
zs/2 + Cse

Ṽ 2
zs/2
)

, (5.53)

suggesting that for a suitable choice of parameters, it should be possible to attain any
value of βpl on the axis.
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5.5.3 Origin of Terms in the Equation of Motion

It could be instructive to now consider the individual terms in the equation of motion
for this equilibrium, Eq. (5.11), and repeated here,

(∇ · P)r = ( j × B)r + σEr − F c · êr .

We will seek to see if, at least mathematically, that certain terms have their origin in
other particular terms in the equation, and what these are. Rather than this suggesting
‘what balances what’, it is an attempt to see the physical origin of the forces, i.e.
which forces arise from which system configurations?

5.5.3.1 Centripetal Forces and Non-inertial Motion

Let’s first consider the divergence of the pressure, Eq. (5.9), and repeated here

(∇ · P)r = 1

r

∂

∂r
(r Prr ) − Pθθ

r
.

As mentioned in Sect. 5.3.3, Pθθ = πθθ −∑
s nsV

2
θs , since

Pθθ =
∑
s

∫
(Vθs − vθ)

2 fsd
3v,

=
∑
s

[
nsV

2
θs − 2nsV

2
θs +

∫
v2

θ fsd
3v

]
,

=
∑
s

[∫
v2

θ fsd
3v − nsV

2
θs

]
,

= πθθ −
∑
s

nsV
2
θs = πθθ + F c · r êr .

Hence the centripetal forces, F c = − 1
r

∑
s ρsV 2

θs êr are seen to have their origin in
the terms in Pθθ/r , from ∇ · P . This seems to say that in a lab frame, the centripetal
forces arise from the stresses associated with the differences between the particle
and bulk velocities, i.e. the

∫
vθVθs fsd3v terms. So far we have accounted for the

following terms,

1

r

∂

∂r
(r Prr ) − 1

r
πθθ + 1

r

∑
s

nsV
2
θs

︸ ︷︷ ︸
“Derivatives” of potentials

= ( j × B)r + σEr − F c · êr︸ ︷︷ ︸
Forces

.
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5.5.3.2 Electric Fields and Pressure Gradients

We now consider the Prr terms. Using the ‘equation of state’ (5.51), and the ns
implicit from Eq. (5.47) we see that

1

r

∂

∂r
(r Prr ) = 1

r

∂

∂r

[
r

(
ni
βi

+ ne
βe

)]
∝ 1

r̃

∂

∂r̃

[
r̃

1

(1 + r̃2)2

]
,

= 1

r̃

1

(1 + r̃2)2︸ ︷︷ ︸
∝Prr /r

− 4r̃

(1 + r̃2)3︸ ︷︷ ︸
∝∂Prr /∂r

(5.54)

We can see from Eqs. (5.44), (5.47) and (5.48), that

σEr = 8ε0τ 3E2

e2β2
r

r̃

(1 + r̃2)3
.

Hence the electric fields have their origin in the density/pressure gradients ∂Prr/∂r ,
and we have accounted for the following terms,

1

r
Prr + ∂

∂r

∑
s

ns
βs

− 1

r
πθθ + 1

r

∑
s

nsV
2
θs

︸ ︷︷ ︸
“Derivatives” of potentials

= ( j × B)r + σEr − F c · êr︸ ︷︷ ︸
Forces

.

5.5.3.3 ‘Lorentz Forces’ and πθθ

Using the definition of the DF (Eq.5.20), let’s now consider the form of πθθ/r ,

−1

r
πθθ = −1

r

∑
s

∫
v2

θ fsd
3v = −

∑
s

1

r

(
nsr

2ω2
s + K1ns

)
,

∝ −
∑
s

1

r̃

(
r̃2ω̃2

s

(1 + r̃2)2
+ K1

(1 + r̃2)2

)
,

for K1 a positive constant, and using elementary integrals. The second term on the
RHS is seen to cancel with the first term on the RHS of Eq. (5.54), i.e. Prr/r . Also,
we see from Eqs. (5.18) and (5.19) that

( j × B)r = −4kτ B2
0

μ0

r̃

(1 + r̃2)2
,

and so we see that the j × B force has it’s origins in πθθ. Now we are in a position
to account for all the terms in force balance,
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∂

∂r

∑
s

ns
βs

+ 1

r

∑
s

nsV
2
θs − 1

r

∑
s

nsr
2ω2

s

︸ ︷︷ ︸
“Derivatives” of potentials

= σEr − F c · êr + ( j × B)r︸ ︷︷ ︸
Forces

.

5.5.3.4 Summary of Force Balance Analysis

The conclusions reached from this analysis are somewhat general since some results
did not depend on the specific electromagnetic fields (E, B). Regardless, we see that

• The electric field sources/balances gradients in the particle number densities
• The centripetal forces are sourced/balanced by the bulk angular flows, Vθs(r)
• The Lorentz force is sourced/balanced by a centripetal-type force, that treats the
flow as uniform circular motion, Vθs = r ω̃s , i.e. rotational flows consistent with a
rigid-rotor (see Sect. 5.4).

5.5.4 Plots of the DF

A characteristic that one immediately looks for in a new DF is the existence of mul-
tiple maxima in velocity space, which are a direct indication of non-thermalisation,
relevant for the existence of micro-instabilities (e.g. see Gary 2005). Using an anal-
ysis very similar to that in Neukirch et al. (2009), we can derive—for a given value
of ω̃s—conditions on r̃ and either ṽz or ṽθ, for the existence of multiple maxima
in the ṽθ or ṽz direction respectively. We present these calculations in Sects. 5.5.4.1
and 5.5.4.2. The most readily understood results are that multiple maxima in the ṽθ

direction can only occur for r̃ > 2/|ω̃s |, and in the ṽz direction for |ω̃s | > 2. Given
these necessary conditions, one can then calculate that multiple maxima of fs will
occur in the ṽθ direction for ṽz bounded above and below, and vice versa.

In Figs. 5.6, 5.7, 5.8 and 5.9 we present plots of the DFs over a range of parameter
values. Figures 5.6 and 5.7 show the ion DFs for k = 0.1 and k = 1 respectively, for
all combinations of ω̃i = 1, 3, r̃ = 0.5, 2 andCs = 0.1, 1, andwith themagnetisation
parameter δi = 1. As a graphical confirmation of the above discussion, we can only
see multiple maxima in the ṽθ direction for r̃ > 2/|ω̃s |, and in the ṽz direction for
|ω̃s | > 2, with the appropriate bounds marked by the horizontal/vertical white lines.

Aside from multiple maxima in the orthogonal directions, the DF can also be
‘two-peaked’. That is, the DF can have two isolated peaks in (ṽz, ṽθ) space. This is
seen to occur for Fig. 5.7d, g, h). Hence, fi is seen to be ‘two-peaked’ when k = 1 for
both r̃ > 2/ω̃i and r̃ < 2/ω̃i . However, we do not see a two-peaked DF for k = 0.1.
This seems to suggest that the stronger guide field (k = 1) correlates with multiple
peaks. Physically, this may correspond to the fact that a homogeneous guide field
is consistent with a Maxwellian DF centred on the origin in (ṽz, ṽθ) space, given
that a Maxwellian contributes zero current. Hence, if the ‘main’ part/peak of the DF
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Fig. 5.6 Contour plots of the fi in (ṽz, ṽθ) space for an equilibrium with field reversal (k = 0.1 <

0.5), for a variety of parameters (ω̃i , r̃ ,Ci ) and δi = 1. The white horizontal/vertical lines indicate
the regions in which multiple maxima in either the ṽz or ṽz directions can occur, if at all. A single
line indicates that the ‘region’ is a line
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Fig. 5.7 Contour plots of fi in (ṽz, ṽθ) space for an equilibriumwithout field reversal (k = 1 > 0.5),
for a variety of parameters (ω̃i , r̃ ,Ci ) and δi = 1. The white horizontal/vertical lines indicate the
regions in which multiple maxima in either the ṽz or ṽz directions can occur, if at all. A single line
indicates that the ‘region’ is a line
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Fig. 5.8 Contour plots of fe in (ṽz, ṽθ) space for an equilibrium with field reversal (k = 0.1 <

0.5), for a variety of parameters (ω̃e, r̃ ,Ce) and δe ≈ 1/
√
1836. The white horizontal/vertical lines

indicate the regions in which multiple maxima in either the ṽz or ṽz directions can occur, if at all.
A single line indicates that the ‘region’ is a line
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Fig. 5.9 Contour plots of fe in (ṽz, ṽθ) space for an equilibrium without field reversal (k = 1 >

0.5), for a variety of parameters (ω̃e, r̃ ,Ce) and δe ≈ 1/
√
1836. Note that there are not any multiple

maxima in this case
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is centred away from the origin, then the Maxwellian contribution from the guide
field could contribute a secondary peak. These secondary peaks are seen to be more
pronounced when C̃i is larger, i.e. the contribution from the second term from the
DF is greater.

Figures5.8 and 5.9 show the electron DFs for k = 0.1 and k = 1 respectively, for
all combinations of ω̃e = 1, 3; r̃ = 0.5, 2, and Ce = 0.1, 1, and with the magneti-
sation parameter δe = δi

√
me/mi ≈ 1/

√
1836. This choice of magnetisation corre-

sponds to Ti = Te. In general we see DFs with fewer multiple maxima in velocity
space than the ion plots, which is physically consistent with the electrons being more
magnetised, i.e. more ‘fluid-like’. In particular we see nomultiplemaxima in Fig. 5.9,
the case with the stronger background field.

Note that when the electrons have the same magnetisation as the ions, i.e. δe =
δi = 1, then these marked differences in the velocity-space plots disappear, and we
observe a qualitative symmetry fi (ṽθ, ṽz, r) ∝ fe(−ṽθ,−ṽz, r).

5.5.4.1 Maxima in vθ Space

The p̃rs dependence of the DF is irrelevant to our discussion, and as such can be
integrated out. We can also neglect the scalar potential φ. The reduced DF, F̃s , in
dimensionless form is

F̃s = ((
√
2πvth,s)

2/n0s) e
φ̃s

∫ ∞

−∞
fs dvr ,

which then reads

F̃s = exp

{
−1

2

[(
p̃θs

r̃
− Ãθs

)2

+
(
p̃zs − Ãzs

)2]}×
[
exp

(
ω̃s p̃θs + Ũzs P̃zs

)
+ Cs exp

(
Ṽzs P̃zs

)]
. (5.55)

Wehavewritten F̃s in terms of the canonicalmomenta, and sowe search for stationary
points given by ∂ F̃s/∂ p̃θs = 0, equivalent to ∂ F̃s/∂ṽθs = 0. Setting ∂ F̃s/∂ p̃θs = 0
gives

p̃θs − r̃ Ãθs = ω̃s r̃2

1 + Cse−ω̃s p̃zs e−ω̃s p̃θs

= A

1 + Be−ω̃s p̃θs
:= R( p̃θs). (5.56)

To derive a necessary condition for multiple maxima, we analyse the RHS of
Eq. (5.56), R( p̃θs). This function is bounded between 0 and A, and is monotonically
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increasing. Hence, using techniques similar to those in Neukirch et al. (2009), a
necessary condition for multiple maxima in the DF is that

max
p̃θs

R′( p̃θs) > 1, (5.57)

since the LHS of Eq. (5.56) is a linear function of unit slope in p̃θs . This condition
can be shown to be equivalent to Aω̃s/4 > 1 and so

ω̃2
s > 4r̃−2 ⇐⇒ r̃ > 2/|ω̃s | (5.58)

This demonstrates that for sufficiently small r̃ , there cannot exist multiple maxima.
Equivalently, this condition will always be satisfied for some r̃ , and as such is just a
condition on the domain, in r̃ , for which multiple maxima can occur. This condition
is not sufficient however, as it could still be the case that there exists only one point
of intersection (and hence one maximum), depending on the value of B. It is seen
that R has unit slope at

p̃±
θs = 1

ω̃s
×

[
ln (2B) − ln

(
Aω̃s − 2 ±

√
Aω̃s (Aω̃s − 4)

)]
. (5.59)

Clearly R has unit slope for two values of p̃θs . After some graphical consideration
of the problem, it becomes apparent that B should be bounded above and below for
multiplemaxima. After elementary consideration of the functional form of (5.56), for
examplewith graph plotting software, we see thatmultiplemaxima in the ṽθ direction
can only occur, for a given r̃ , when B (and hence ṽz) satisfies these inequalities for
ions

p̃+
θi − R( p̃+

θi ) − r̃ Ãθi > 0,

p̃−
θi − R( p̃−

θi ) − r̃ Ãθi < 0, (5.60)

and these for electrons

p̃+
θe − R( p̃+

θe) − r̃ Ãθe < 0,

p̃−
θe − R( p̃−

θe) − r̃ Ãθe > 0. (5.61)

5.5.4.2 Maxima in vz Space

We shall once again use the reduced DF defined in Eq. (5.55) in our analysis.
Thus, we shall consider ∂ F̃s/∂ p̃zs = 0, which is equivalent to ∂ F̃s/∂ṽzs = 0. Setting
∂ F̃s/∂ p̃zs = 0 gives
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p̃zs − Ãzs = Ũzs + Cs Ṽzse−ω̃s ( p̃zs+ p̃θs )

1 + Cse−ω̃s ( p̃zs+ p̃θs )

= A1

1 + B1e−D1 p̃zs
+ A2

1 + B2e−D2 p̃zs

:= R1( p̃zs) + R2( p̃zs) = R( p̃zs),

such that

A1 = Ũzs, A2 = Ṽzs,

B1 = Cse
−ω̃s p̃θs = B−1

2 , D1 = ω̃s = −D2.

To derive a necessary condition for multiple maxima, we analyse the RHS of
Eq. (5.62). Each R function is bounded and monotonic. Once again using techniques
similar to those in Neukirch et al. (2009), a necessary condition for multiple maxima
in the DF is that

max
p̃zs

(
R′
1( p̃zs) + R′

2( p̃zs)
)

> 1. (5.62)

After some algebra this condition can be shown to be equivalent to ω̃2
s /4 > 1 and so

|ω̃s | > 2. (5.63)

This condition is not sufficient however, as it could still be the case that there exists
only one point of intersection, depending on the value of B1(= 1/B2). The transition
between 3 points of intersection and one occurs at the value of B1 for which the
straight line of slope unity through p̃zs = 0 just touches R1( p̃zs) + R2( p̃zs) at the
point where it also has unit slope. It is readily seen that R1 + R2 has unit slope at

p̃±
zs = 1

ω̃s

[
ln (2B1) − ln

(
ω̃2
s − 2 ±

√
ω̃2
s (ω̃

2
s − 4)

)]
. (5.64)

Clearly R has unit slope for two values of p̃zs . Once again, after some graphical
consideration of the problem, it becomes apparent that B1 should be bounded above
and below for multiple maxima. After elementary consideration of the functional
form of (5.62), for examplewith graph plotting softwarewe see that multiplemaxima
in the ṽz direction can only occur, for a given r̃ , when B1 (and hence ṽθ) satisfies
these inequalities for ions

p̃+
zi − R( p̃+

zi ) − Ãzi > 0,

p̃−
zi − R( p̃−

zi ) − Ãzi < 0, (5.65)



176 5 Neutral and Non-neutral Flux Tube Equilibria

and these for electrons

p̃+
ze − R( p̃+

ze) − Ãze < 0,

p̃−
ze − R( p̃−

ze) − Ãze > 0. (5.66)

5.6 Summary

In this chapter we have calculated 1D collisionless equilibria for a continuum of
magnetic field models based on the GH flux tube, with an additional constant back-
ground field in the axial direction. This study was motivated by a desire to extend
the existing methods for solutions of the ‘inverse problem in Vlasov equilibria’ in
Cartesian geometry, to cylindrical geometry.

In Sect. 5.3.3 we calculated the fluid equations of motion for a 1D system with
azimuthal and axial flows, found by taking the first order velocity moment of the
Vlasov equation in cylindrical coordinates. The presence of centripetal forces in the
equation of motion demonstrated that it may be difficult to find Vlasov equilibrium
DFs self-consistent with force-free fields.

However, initial efforts focussed on solving for the exact force-free GH field, but
this seems impossible due to the centripetal forces, and this conclusion is somewhat
corroborated by Vinogradov et al. (2016). The GH field in particular was chosen
as it represents the ‘natural’ analogue of the Force-Free Harris Sheet in cylindrical
geometry, a magnetic field whose VM equilibria have been the subject of recent
study, (Harrison and Neukirch 2009a; Neukirch et al. 2009; Wilson and Neukirch
2011; Abraham-Shrauner 2013; Kolotkov et al. 2015), as well as the work detailed
in Chaps. 2 and 3, featuring work from Allanson et al. (2015, 2016)

A background field was introduced, and an equilibrium DF was found that repro-
duces the required magnetic field, i.e. solves Ampère’s Law. It is the presence of the
background field that allows us to solve Vlasov’s equation and Ampère’s Law, and it
appears physically necessary as it introduces an ‘asymmetry’; namely an extra term
into the equation of motion whose sign depends explicitly on species. In contrast to
the ‘demands’ of insisting on a particular magnetic field, no condition was made on
the electric field. The DF allows both electrically neutral and non-neutral configu-
rations, and in the case of non-neutrality we find an exact and explicit solution to
Poisson’s equation for an electric field that decays like 1/r far from the axis. We
note here that the type of solutions derived in this chapter could—after a Galilean
transformation—be interpreted as 1D BGK modes with finite magnetic field (see
Abraham-Shrauner 1968; Ng and Bhattacharjee 2005; Grabbe 2005; Ng et al. 2006
for example, to provide some context).

An analysis of the physical properties of the DF was given in Sect. 5.5, with some
particularly detailed calculations in Sects. 5.5.4.1 and 5.5.4.2. The dependence of
the sign of the charge density (and hence the electric field) on the bulk ion and
electron rotational flows was analysed, with a physical interpretation given. Essen-
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tially the argument states that the electric field exists in order to balance the differ-
ence in the centrifugal forces (in the co-moving frame) between the two species.
The DF was found to be able to give sub-unity values of the plasma beta, should
this be required/desirable given the relevant physical system that it is intended to
model. In Sect. 5.5.3 we performed a detailed analysis of the relationship between
individual terms in the equation of motion. For clarity, the conclusions drawn for
the macroscopic equilibrium considered in this chapter are that the electric field
sources/balances gradients in the particle number densities; the centripetal forces are
sourced/balanced by the bulk angular flows; and the j × B force is sourced/balanced
by a centripetal-type force, that treats the flow as uniform circular motion, i.e. rota-
tional flows consistent with a rigid-rotor (see Sect. 5.4). The final part of the analysis
focussed on plotting the DF in velocity space, for certain parameter values, and at
different radii. Mathematical conditions were found that determine whether or not
the DF could have multiple maxima in the orthogonal directions in velocity space,
and these are corroborated by the plots of the DFs. For certain parameter values,
the DF was also seen to have two separate, isolated peaks. This non-thermalisation
suggests the existence of microinstabilities, for a certain choice of parameters.

Further work could involve a deeper analysis of the properties of the DFs and
their stability. This work has also raised a fundamental question: ‘is it possible to
describe a 1D force-free collisionless equilibrium in cylindrical geometry?’ Prelimi-
nary investigations seem to suggest that it is not possible. It would also be of value to
find out whether the relationships derived between individual terms in the equation
of motion are totally general in nature, and if not, to what extent do they apply?
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Chapter 6
Discussion

For God’s sake, stop researching for a while and begin to think.

Walter Hamilton Moberley

The details of the main results of this thesis have been explained in the preambles and
summaries of Chaps. 2, 3, 4 and 5, and as suchwe shall not duplicate that information.
Here, it is the intention to place the motivation of the work and the results in context
with regards to personal research direction, broader questions, and suggestions for
future work.

6.1 Context

The overarching physical motivation for the work in this thesis is perhaps embodied
by—and has its roots in—the ‘GEM challenge’: ‘The goal is to identify the essen-
tial physics which is required to model collisionless magnetic reconnection’, (Birn
et al. 2001). However, this thesis does not focus on the analysis of instability and
reconnection itself. The results in this thesis are on the theoretical modelling of
Vlasov-Maxwell equilibria, with the approach being a mixture of ‘general scientific
curiosity’ (e.g. Chaps. 2 and 5), and the application to particular physical problems
(e.g. Chaps. 3, 4 and 5).

6.1.1 Current Sheets

Much of the research effort in tackling the GEM challenge has been spent on antipar-
allel (i.e. Bx (z) = −Bx (−z)) reconnection, with initial equilibrium conditions as
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symmetric 1D current sheets (e.g. see Hesse et al. 2001; Birn et al. 2005 for exam-
ples with and without guide fields By respectively). In particular, the Harris current
sheet model (or some modification) is very frequently used, in no small part due to
the well-known exact Vlasov-Maxwell equilibrium DF (Harris 1962),

fs = n0s

(
√
2πvth,s)3

e−βs (Hs−uys pys ).

It is possible to approximate force-free ( j × B = 0) conditions, relevant to the
βpl � 1 conditions in the solar corona, by assuming a strong, uniform guide field
By(z) = By0 � Bx0,

B = (Bx0 tanh z̃, By0, 0).

However, as discussed in Chap. 3, the nature of such an equilibrium does not accu-
rately represent a true force-free equilibrium, such as the force-free Harris sheet,

B = B0(tanh z̃, sechz̃, 0).

Until the discovery of the first VM equilibrium DF for a nonlinear force-free field
(the Harrison-Neukirch equilibrium for the force-free Harris sheet) by Harrison and
Neukirch (2009a), the analysis of reconnection and instability of force-free fields
had to be limited to the use of exact initial conditions for a uniform strong guide field
configuration, e.g. Ricci et al. (2004); the use of inexact initial conditions (drifting
Maxwellians) for an exact nonlinear force-free field (e.g. Birn and Hesse 2010); or
one would have to use a linear force-free model (e.g. Bobrova et al. 2001), for which
one cannot isolate and study a single current sheet. We are now beginning to see the
first analyses of linear stability (Wilson et al. 2017), and reconnection (Wilson et al.
2016) for exact nonlinear force-free current sheet models.

The Harrison-Neukirch equilibrium does have one fairly significant drawback,
with regards to its use in a low plasma beta environment. Due to technical reasons
regarding the manner in which the Vlasov-Maxwell equilibrium was constructed,
βpl is bounded below by unity. This feature motivated our investigations of low-
beta Vlasov-Maxwell equilibria for the force-free Harris sheet (Allanson et al. 2015,
2016), as discussed in Chap. 3. The key step in reducing the lower bound for βpl , was
the use of pressure tensor transformation techniques, as discussed in Harrison and
Neukirch (2009b), and for which we chose an exponential function. This transfor-
mation made the inverse problem (Channell 1976) difficult to solve, and confidence
in the solution necessitated some rigorous mathematical work (see Allanson et al.
2016) and Chap. 2.

It is now established that ‘magnetic reconnection relies on the presence of a
diffusion region, where collisionless or collisional plasma processes facilitate the
changes in magnetic connection through the generation of dissipative electric fields’
(Hesse et al. 2011). The very recent (and current) NASA MMS mission is able
to make in-situ diffusion region measurements on kinetic scales for the very first
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time (Burch et al. 2016; Hesse et al. 2016). The satellite will focus on the dayside
magnetopause in the first phase of its mission, and the magnetotail in the second
phase. Current sheets in the dayside magnetopause are typically of a rather different
nature than those of the symmetric Harris sheet type, by virtue of the asymmetric
conditions either side of the current sheet. The magnetosheath side is characterised
by an enhanced thermal pressure and depleted magnetic pressure, and vice versa
for the magnetosphere side. Exact analytical (Alpers 1969) and numerical (Belmont
et al. 2012; Dorville et al. 2015) Vlasov-Maxwell equilibria are few in number, and
so the work in Chap. 4 and Allanson et al. (2017) is targeted towards improving
this situation. In particular, the exact analytical solution due to Alpers (1969) has
different bulk flow properties to the one that we present.

6.1.2 Flux Tubes

Localised currents need not always obey a planar geometry; flux tubes play an impor-
tant role in confinement and subsequent energy release in many areas of plasma
physics (see Chap. 5), and particularly in the solar corona (e.g. see Wiegelmann and
Sakurai 2012;Hood et al. 2016), aswell as the extended structure ofmagnetic islands,
perpendicular to current sheets in the magnetopause and magnetotail (e.g. see Kivel-
son and Khurana 1995; Vinogradov et al. 2016). Hence it was with a combination
of mathematical curiosity, and a desire to model nonlinear force-free flux tubes, that
we attempted to calculate exact Vlasov-Maxwell equilibria for the Gold-Hoyle flux
tube (Gold and Hoyle 1960), the natural analogue of the force-free Harris sheet in
cylindrical geometry (Tassi et al. 2008). The work is detailed in Chap. 5 and Allan-
son et al. (2016), and in fact we were unable to find solutions for the exact nonlinear
force-free Gold-Hoyle model. However, the magnetic field can be arbitrarily close
to a force-free field if desired. An interesting feature of the analysis focussed on the
need to include non-neutrality and non-zero electric fields in the equilibrium, brought
about by charge separation effects, inherent in the rotational motion of particles with
different masses.

6.2 Broader Theoretical Questions

6.2.1 The Pressure Tensor

In a one-dimensional and z-dependent geometry, the ‘keystone’ of the inverse prob-
lem is the pressure tensor component Pzz(Ax , Ay): given a magnetic field, one first
attempts to calculate Pzz , and then self consistent distribution functions. The main
theoretical/mathematical developments in this thesis (related to Cartesian geometry)
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have focussed on the second step in this process, i.e. calculating self-consistent DFs,
of the form

fs = n0s

(
√
2πvth,s)3

e−βs Hs gs(pxs, pys),

given a Pzz(Ax , Ay). However, there remain important questions about the determi-
nation of the Pzz function itself.

As discussed in Chaps. 1 and 4, the problem of determining Pzz(Ax , Ay) given a
magnetic field (in force balance) is analogous to that of determining the shape of a
conservative potential function, V(x), given the knowledge of the particle trajectory,
x(t), and the value of the potential along the trajectory, V(t). In the case of 1D force-
free fields there is an algorithmic path that determines a valid form of Pzz (e.g. see
Chap. 3, Harrison and Neukirch 2009b). The question remains: ‘to what extent is it
possible to find self-consistent Pzz functions for a given magnetic field, and what are
they?’

One other feature of interest is the solubility of Ampère’s Law,

∂ Pzz

∂A
= − 1

μ0

d2A
dz2

,

with respect to different Pzz expressions. As demonstrated in Chap. 3 and Harrison
and Neukirch (2009b) for the case of force-free fields; given one Pzz that satisfies
Ampère’s Law, there exist infinitely many others. There are two obvious questions
here. Firstly, it would be interesting to investigate if there are ways to transform the
Harrison-Neukirch pressure function to allow sub-unity values of the plasma beta,
in a way that is more readily soluble and easier to manipulate numerically than the
result found in Chap. 3 and Allanson et al. (2015, 2016). Secondly, is it in any way
possible to extend the pressure transformation theory for force-free equilibria to non
force-free equilibria? If so, then the theory is to be expected to be more complicated
than for force-free fields, which relies on Pzz being a constant when evaluated along
the force-free trajectory (Ax (z), Ay(z)).

6.2.2 Non-uniqueness

One clear challenge is to marry together the need for individual, exact solutions of
the inverse problem for Vlasov-Maxwell equilibria, versus the fact that there are in
principle infinitely many solutions. In essence, how do we know that a given Vlasov-
Maxwell equilibrium is appropriate physically? In Chap. 1 we gave arguments for
suggesting why distribution functions of the form in Sect. 6.2.1 were reasonable
on both physical and mathematical grounds. In particular, this form of distribution
function bears a strong resemblance to a (drifting) Maxwellian. Hence, provided the
gs function is not too ‘exotic’, it seems reasonable that these distribution functions
can—for a certain choice of microscopic parameters—minimise the free energy
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Fig. 6.1 A schematic representation of the inverse problem in Vlasov-Maxwell equilibria

(maximise the entropy) in a plasma, given certain constraints such as the conservation
of energy in a closed system (e.g. see Schindler 2007).

The inverse problem is characterised by non-uniqueness on the level of the Pzz

for a given B, and on the level of fs for a given Pzz . It would be of interest to
see if—given a distribution function of the form in Sect. 6.2.1—the inversion of
the Weierstrass transform gives a unique solution and if not, whether the inversion
method (e.g. Fourier transformorHermite polynomial expansion) has an effect on the
outcome. As discussed in Chap. 2, these considerations are related to the ‘backwards
uniqueness of the heat equation’ (Evans 2010), with gs and Pzz somewhat equivalent
to the initial and final ‘heat’ distributions over a two-dimensional surface.

An explicit demonstration of the non-uniqueness of the inverse problem (on the
level of fs for a given Pzz)was given byWilson andNeukirch (2011) for the case of the
force-free Harris sheet, and using ideas from Schmid-Burgk (1965). As discussed in
the Appendix, it is possible to rewrite the relevant integral equations in d Hsdpxsdpys

space.When this is done, it soon becomes apparent—in the case ofφ = 0—that there
is considerable freedom in the dependency of the DF on Hs , for a given Pzz(Ax , Ay).
This is related to the ‘convoluted’ nature of the (Ax , Ay) and (pxs, pys) variables,
and as such the gs(pxs, pys) function and the Pzz(Ax , Ay) function can be considered
‘tied’ together, with flexibility in the function of energy.

Putting all of this together, we see that the non-uniqueness of the inverse problem
can be represented byFig. 6.1,whichworks as follows. For a given B, one can attempt
to find a self-consistent Pzz . In that case, one might assume the energy dependence
of the DF to be of a certain form, e.g. h = exp(−βs Hs), and then solve the inverse
problem for gs . Once these gs functions are found, it may be possible to find other h
functions that are self-consistent with the same Pzz , and hence B. On top of all this,
there could in practice be infinitely many such compatible Pzz functions (which in
the force-free case can be found using established pressure transformation theory).
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For each of these Pzz functions one could then attempt to solve the inverse problem
for gs , given an assumed form of hs . Once this is achieved, it may be possible to
generalise the energy dependency once more.

In summary, we believe that there is more work to be done regarding the non-
uniqueness of Vlasov-Maxwell equilibria. It would be desirable to be able to have a
‘road-map’ of the variety of solutions to the inverse problem, with a clearer under-
standing of how they relate to one another in their mathematical structure, and their
suitability for physical applications. In particular, can the somewhat complicated
structure of the diagram in Fig. 6.1 be simplified, or brought in to a more holistic
form, and to what extent can the heat/diffusion equation analogy be brought to bear
on the problem at hand?

6.2.3 Extensions to Other Physical Systems and Geometries

Clearly, not all collisionless plasma equilibria can be modelled in a one-dimensional,
Cartesian, strictly neutral and non-relativistic framework. For example, one might
really need to consider two-dimensional current sheets in the Earth’s magnetotail
(e.g. see Artemyev and Zelenyi 2013), cylindrical geometry in a tokamak (e.g. see
Tasso and Throumoulopoulos 2014), non-neutral plasmas in nonlinear electrostatic
structures (e.g. see Ng et al. 2006; Vasko et al. 2016), and relativistic equilibria in
pulsar magnetospheres (e.g. see DeVore et al. 2015). In contrast to the ‘forward
problem’, the theory for the ‘inverse problem’ is only really well-developed for one-
dimensional quaineutral plasmas in a Cartesian geometry, like those considered in
this thesis. It would clearly be of interest to try and develop themethods of the inverse
problem in some or all of these directions.

The generalisation that seems—at a first ‘glance’—to be the most readily made,
is to two-dimensional plasmas. In fact, this is the paradigm in which the ‘forward
problem’ is most usually considered (e.g. see Schindler and Birn 2002; Schindler
2007; Artemyev and Zelenyi 2013). However, if one uses Jeans’ theorem with the
constants of motion of Hamiltonian and the canonical momenta, there is a clear
trade-off between spatial invariance, and the number of non-zero components of the
current density. To be precise, if we now let the system depend on both x and z, then
pxs is no longer a conserved quantity. In the absence of other conserved quantities,
we now only have Hs and pys for the variables in the distribution function, and as
such we can only model plasmas with a current density in the y direction, and fields
that are of the form

A = (0, Ay(x, z), 0),

B = (Bx (x, z), 0, Bz(x, z)),

j = (0, jy(x, z), 0).
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Note that since jx = jz = 0, we could in principle add a constant By field, and hence
Ax , Az that are linear functions of x, z. This would not break the self-consistency
with the Vlasov approach, provided the distribution function had no dependence on
Ax or Az . This is somewhat similar to the realisation that the distribution function
for the Harris sheet, is also self consistent with the Harris sheet plus guide field.

So we see there is a challenge if one wishes to maintain flexibility in both the
spatial variance of the plasma considered, as well as more than one current carrying
component. Formally speaking, one would have to proceed by identifying further
exact (or approximate/adiabatic) constants of motion, in order to have more than one
current component (e.g. see Schindler 2007; Zelenyi et al. 2011 for discussions of
these topics).

The ‘grand goal’ of all of this theoretical work is, in my mind, some sort of
unification of the forward and inverse approaches. Can we establish a framework that
includes physically meaningful Vlasov-Maxwell equilibria, for which there are clear
and well-understood routes from the microscopic Vlasov description of particles, to
the macroscopic description of fluids and fields, and vice versa? First of all, I would
be motivated to develop the forward/inverse theory—beyond quasineutrality—for
distribution functions of the form described in Mottez (2004)

fs(Hs, pxs, pys) =
∫ a2

a1

n0s(a)

(
√
2πvth,sa)

e−βsa(Hs−uxsa pxs−uysa pys )da,

for a1, a2 constants, and fs the distribution function, which is formed by a continuous
superposition over the index/variablea, and forwhich the gs functions have beenwrit-
ten as exponentials, i.e. eigenfunctions of the Weierstrass transform. The a variable
indexes the thermal velocity, thermal beta, and the drift parameters, and fs reduces to
a more immediately recognisable distribution function when n0s(a) = δ(a − c)n0s ,
for a1 < c < a2 and n0s a constant. A first step in this directionmight be to consider a
discrete superposition rather than a continuous one, i.e. for n0s(a) = ∑

j δ(a − a j ).

6.2.4 Stability

As mentioned throughout this thesis, but never really explored, a theoretical under-
standing of equilibria is not completewithout understanding their stability properties.
Knowledge of Vlasov-Maxwell equilibria allows one to study micro-instabilities in
phase space (Gary 2005), for which non-thermal distribution functions are a pre-
condition (i.e. multiple maxima and/or anisotropic distributions in velocity space).
And keeping in mind the ‘main’ physical motivation for this body of work, we would
be interested in considering instabilities involved in magnetic reconnection, e.g. the
tearing mode (e.g. see Furth et al. 1963; Drake and Lee 1977).
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There are two main approaches to assess the stability of a (kinetic) equilibrium

Normal mode analysis (e.g. see Daughton 1999; Gary 2005): Linearise the
Vlasov-Maxwell equations by expressing quantities in the form fs = f0s +
f1s, B = B0 + B1 etc., for the first order quantities as small perturbations to
the zeroth order ones, to arrive at,

d f1s

dt
= − qs

ms
(E1 + v × B1) · ∂ f0s

∂v
.

One then subjects this equation to a Laplace/Fourier analysis in time/space (per-
turbed quantities ∼ ei(k·x−ωt), for k the real wave-vector, and ω the complex
frequency), with the aim being to solve for f1s , by integrating the RHS over the
‘unperturbed orbits’. One can then—in principle—use the knowledge of f1s to
calculate the source terms, σ1 and j1. The source terms and the perturbed dis-
tribution function can then be substituted into the linearised Maxwell equations,
from which one attempts to calculate a dispersion relation, ω = ω(k). The results
of this analysis is that for certain k, and ω = ωr + iγ , one should see that the
equilibrium is linearly stable to some perturbations (γ < 0), and unstable to oth-
ers (γ > 0). This approach does not only tell the analyst the perturbations for
which the equilibrium is unstable, but it also yields the ‘damping/growth-rate’,
|γ |, which tells us how quickly the perturbation damps/grows.

The (linear and nonlinear) energy principles: This approach counts a system as
stable if “a suitably selected test energy remains bounded by the energy supplied
from external sources.” (Schindler 2007). In the linear approach, the method
essentially rests on first calculating the total energy over the spatial domain (for
which there is no energy flux across the boundaries). For example, assuming the
electric energy density is vanishing (consistent with quasineutrality), the energy
is given by

W =
∑

s

∫
ms

2
v2 fsd3vd3x +

∫
1

2μ0
B2d3x .

Then, assuming linear perturbations of the form fs = f0s + f1s, B = B0 + B1

etc., one tries to ascertain whether—under certain dynamical constraints—there
is a “dynamic conversion of equilibrium energy into kinetic energy” (Schindler
2007). If there is no dynamic conversion, then the equilibrium is said to be linearly
stable. The energy approach typically provides sufficient criteria for stability, as
opposed to necessary ones.

Preliminary analysis of the kinetic stability properties of the force-free Harris
sheet have been conducted in Harrison (2009),Wilson (2013). InWilson et al. (2016)
the first particle-in-cell simulations were performed with exact initial conditions for
a nonlinear force-free field. In Wilson et al. (2017) we carry out a normal-mode
analysis for the collisionless tearing mode, of the manner described above, and for
the Harrison-Neukirch equilibrium (Harrison andNeukirch 2009a). It is of interest to
study the stability properties of exact force-free tangential equilibria—for which B ·



6.2 Broader Theoretical Questions 189

∇ = 0 and ∇n = 0—since ‘density-driven/drift instabilities’ (e.g. the lower hybrid
drift instability) will not be present (Gary 2005).

Possible future work could include normal mode/energy principle and/or numer-
ical (i.e. particle-in-cell) instability analyses of the specific equilibria presented in
this thesis, and particularly that presented in Chap. 4, given the timely relevance to
the MMS mission. One might also wish to study the stability analysis of distribution
functions in a general sense, viz: “given a distribution function that is a solution of
the inverse problem, what are its necessary/sufficient stability properties, and how
does it grow/damp?”
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Appendix A
Schmid-Burgk Variables

This Appendix is based on results in Schmid-Burgk (1965), Wilson and Neukirch
(2011).

A.1 Species-Independent Integrals

For a general DF of the form fs = fs(Hs, pxs, pys), we see that Pzz is given by

Pzz = 2
∑

s

1

m3
s

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

Hs,min

√
2ms(Hs − Hs,min) fsdHsdpxsdpys,

for Hs,min = [(pxs − qs Ax )
2 + (pys − qs Ay)

2]/(2ms) + qsφ. At this stage it seems
clear that the result of the integral is species-dependent. If one makes substitutions
using Schmid-Burgk variables,

(Es, Ps, Qs) =
(
msHs

q2
s

,
pxs
qs

,
pys
qs

)
,

Fs(Es, Ps, Qs) = m3
s

q4
s

fs(Hs, pxs, pys),

then Pzz is now written

Pzz = 2
∑

s

e

ms

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

Es,min

√
(Es − Es,min)FsdEsd PsdQs,

for Es,min = [(Ps − Ax )
2 + (Qs − Ay)

2]/2 + qs
ms

φ. As yet, we have only made sub-
stitutions, and there have been no restrictions. However, if we now assume strict
neutrality, φ = 0, and—crucially—assume that the functional form of the Fs func-
tion is independent of species, then the above expression has an interesting property.
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Note that when we say ‘functional form is independent of species’, we mean that
regardless of the species s, the function Fs maps the inputs (Es, Ps, Qs) according
to the same rules, i.e.

Fs(Es, Ps, Qs) = F(Es, Ps, Qs),

(for example, it cannot use an exponential function for ions, and a quadratic function
for electrons). Under these assumptions, the triple integral in the Pzz expression
actually becomes species-independent. The (Es, Ps, Qs) variables are nothing but
dummy variables, and the integrand itself is now of the same form, regardless of s.
As a result, Pzz becomes

Pzz(Ax , Ay) = 2e

(
1

me
+ 1

mi

) ∫ ∞

−∞

∫ ∞

−∞

∫ ∞

Es,min

√
(Es − Es,min)FdEsd PsdQs .

(A.1)
Similarly it can be shown that the charge density is given by

σ(Ax , Ay) = 2
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

Es,min

(Es − Es,min)
−1/2FdEsd PsdQs

∑

s

qs
e

= 0,

and we see that the DF is automatically self-consistent with the assumption of strict
neutrality.

The Schmid-Burgk variables have helped us to demonstrate that the species-
dependency of velocity moments of the DF enter through a qs/ms factor that multi-
plies the scalar potential, and through any ‘innate’ species-dependency that the DFs
may have in themselves. In particular, the assumption of strict neutrality is automat-
ically self-consistent if Fs = F (in the case of an electron-ion plasma, or any plasma
for which

∑
s qs/|qs | = 0).

A.1.1 Freedom in the Energy Dependency

Using the Schmid-Burgk variables and the assumptions explained above (φ =
0, Fs = F), Wilson and Neukirch (2011) show—for the the example of the FFHS—
that it is possible under certain conditions to solve the inverse problem with a DF of
the general form

F = h(Es)g(pxs, pys),

and with the h function not only of the typically assumed exponential form, but of a
reasonably arbitrary nature. This process is demonstrated for h functions that are in
Dirac delta form (δ(Es − E0)), Step function form (�(E0 − Es)), and polynomial
form (�(E0 − Es) (E0 − Es)

χ , for χ > −1).
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As such, we can consider the Pzz(Ax , Ay) and gs(pxs, pys) functions as ‘tied’
together. This ‘tie’ is evidenced by the convoluted nature of the variables A and ps
in the relevant integral equations, i.e. velocity moments of the DF, in general form,
are given by

〈vk
j fs〉(Ax , Ay) := n0s

(
√
2πvth,s)3

2

mk+2
s

×
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

Hs,min

(p js − qs A j )
k

√
2ms(Hs,min − Hs)

fs(Hs, pxs, pys)dHsdpxsdpys .

A.1.2 Summary

In summary, the Schmid-Burgk variables have helped us to see that in the case of
strictly neutral plasmas, there is evidence to suggest that the inverse problem should
be framed as as: “for a given macroscopic equilibrium, i.e. a Pzz(ax , Ay), what are
the self-consistent g functions”, for

fs ∝ h(Es)g(Ps, Qs),

as opposed to: “for a given macroscopic equilibrium, i.e. a Pzz(ax , Ay), what are
the self-consistent DFs?”
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