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Preface

Imagine a large statistical ensemble of Young diagrams and pick up one. We would
like to say something about the typical shape, if any, of a Young diagram we get.
Mathematically, let Yn be the set of Young diagrams of size n and introduce a
probability M

ðnÞ on Yn. We discuss probabilistic limit theorems, especially the law
of large numbers, as n ! 1 on the quantities describing the shape of a Young
diagram. While a Young diagram grows with n, let us rescale it horizontally and
vertically by 1=

ffiffiffi

n
p

to keep its area, which enables us to recognize the visible limit
shape. Among others, the Plancherel measure is the most important from the point
of view of symmetry or group-theoretical meaning. It describes the relative size of
each irreducible component in the bi-regular representation of a symmetric
group. Moreover, because the Plancherel measure is defined also on the path space
of the Young graph, we can discuss the limit shape of Young diagrams as a strong
law of large numbers.

Such a limit shape problem for Young diagrams was first shown and solved by
Vershik–Kerov [29] and Logan–Shepp [21]. Afterwards, Biane [1, 2] extended this
problem to a wide range of group-theoretical ensembles and brought in new insights
of Voiculescu’s free probability theory. Analysis of Young diagram ensembles and
random permutations has made great progress, strongly influenced by an explosive
development of random matrix theory. Beyond the law of large numbers, the central
limit theorem (fluctuation of the shape) and other limit theorems have been studied
extensively. References would be too huge to mention here (Kerov’s book [19] is
the one I always cite as a rich source of ideas from asymptotic representation
theory). Readers can search through keywords and researchers according to their
tastes.

This book is intended to serve as an introduction to the limit shape problem for
Young diagrams as sketched above. It does not cover a broad range but stays near
the classical results of Vershik–Kerov and Logan–Shepp. However, we bring a
contemporary point of view for methods of proofs and some approaches. A key
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ingredient will be the algebra of polynomial functions in several coordinates of
Young diagrams, which was introduced by Kerov–Olshanski [20]. In this book, we
call it the Kerov–Olshanski algebra (KO algebra) after [20]. We give complete and
self-contained proofs to the main results within the framework of representations of
symmetric groups, not relying on random matrix theory or representations of uni-
tary groups. Another point put anew is to mention a dynamical model for the time
evolution of profiles of random Young diagrams. Although we focus mostly on the
representation–theoretical aspect of the model in this book, analysis of the time
evolution of profiles will be a promising topic with relation to geometric partial
differential equations.

It is essential to investigate in detail the relations between various generating
systems of the KO algebra, which was performed by Ivanov–Olshanski [16].
Notions of free probability theory are brought into this algebra with the help of
Kerov’s transition measure, and Biane’s method plays an active part therein.
Actually, it may be an exaggeration that we bring in the KO algebra to show the
classical result of Vershik–Kerov and Logan–Shepp on the limit shape with respect
to the Plancherel measure. However, once we know some structure of this algebra,
the rest will be reduced to a pleasant application of simple weight counting argu-
ment. The KO algebra is a very nice device having rich applications in asymptotic
representation theory for symmetric groups, especially in that it enables us to
proceed along an exact or non-asymptotic way up to certain stages. We willingly
include some materials about the KO algebra in reasonable depth. Such being the
case, this book owes much to the works of [2, 3, 16].

Because the scope of this book is kept rather limited, we let quite many materials
drop out of the content which could be appropriately included as interesting related
topics by a more skillful author; for example,

• the philosophical and phenomenological analogy between random permutations
and random matrices

• exact and asymptotic analysis of random Young diagrams as a point process
• the nature of fluctuations for ensembles of Young diagrams
• harmonic and stochastic analysis on infinite-dimensional dual objects, e.g., the

Martin boundary of a branching graph
• asymptotic representation theory in frameworks beyond group actions, e.g., an

extension from Plancherel to Jack, and so on.

Let us briefly give the organization of the following chapters. Because Chap. 1 is
nothing but a casual description of preliminaries, readers should look into appro-
priate references according to their backgrounds. Speaking of representations of the
symmetric group, one can go ahead with little trouble by accepting the hook for-
mula and Frobenius’s character formula. Chapter 2 is devoted to analysis of the KO
algebra, which makes a technical prop. Chapter 3 contains analytic descriptions of
continuous diagrams, or continuous limits of Young diagrams. Solutions of the
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limit shape problem for the Plancherel ensemble are given in Chap. 4. We give the
proofs not only by an application of the KO algebra but also through what is called
a continuous hook. The latter is of interest leading to the large deviation principle.
While the results in Chap. 4 are of static nature, Chap. 5 includes a dynamical
model. Funaki–Sasada [11] treated hydrodynamic limit for evolution of the profiles
of Young diagrams. Chapter 5 is based on [12], which was greatly inspired by [11].

Sapporo, Japan Akihito Hora
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Chapter 1
Preliminaries

Abstract In this chapter, we briefly sketch the following materials as preliminaries
for later chapters: representations of the symmetric group and Young diagrams, the
Younggraph and theThomasimplex, combinatorial aspects of free probability theory.

1.1 Representations of Symmetric Groups

It is expected that our readers are either familiar with elementary terms of represen-
tations of (finite) groups and what we note in this section, or willing to take them for
granted as well-known facts.

Young Diagrams

AYoung diagram λ of size n ∈ N is specified by non-increasing integers: λ1 � λ2 �
· · · � λl(λ) > 0 such that |λ| = ∑l(λ)

i=1 λi = n, where λi is considered as the length
of the i th row and l(λ) is the number of rows of λ. Alternatively, λ is expressed as
(1m1(λ)2m2(λ) . . . jm j (λ) . . .) by letting m j (λ) denote the number of rows of length j .
The set of Young diagrams of size n is denoted by Yn . A Young diagram is displayed
by loaded boxes or cells as in Fig. 1.1.1 The box lying in the i th row and j th column
is referred to as the (i, j) box. The transposed diagram of λ is denoted by λ′. The
number of columns of λ then agrees with l(λ′).

Given λ ∈ Yn , a tableau of shape λ is an array of {1, 2, . . . , n} put into the n
boxes of λ one by one. A tableau is said to be standard if the arrays are increasing
along every row and column. The set of tableaux of shape λ is denoted by Tab(λ).
As a subset we set STab(λ) = {T ∈ Tab(λ)|T is standard} . The following formula
counting |STab(λ)| is well-known. Here hλ(b) = λi − i + λ′

j − j + 1 is the hook
length of the (i, j) box in λ as it looks like in Fig. 1.2.

1In this book, we will have a Young diagram in the English style in mind for a combinatorial or
counting argument. On the other hand, we will switch the picture to the style in Fig. 2.1 introduced
later (often referred to as the Russian style) when some coordinates and profiles are treated.
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2 1 Preliminaries

English λ French λ English λ ′

Fig. 1.1 λ = (4, 2, 2, 1) = (11223041), λ′ = (4, 3, 1, 1)

Fig. 1.2 (left) b: (2, 1) box,
hλ(b) = 4; (right) b: (2, 2)
box, hλ(b) = 2

Proposition 1.1 (Hook formula) The number of the standard tableaux of shape λ is
given by

|STab(λ)| = n!
/ ∏

b∈λ

hλ(b), λ ∈ Yn.

Symmetric Groups

The symmetric group Sn is the group consisting of the permutations of n letters
{1, 2, . . . , n}. We have an increasing family

{e} = S1 ⊂ S2 ⊂ · · · ⊂ · · · ⊂ Sn ⊂ · · · (1.1)

by regarding Sm as the stabilizer of letters m + 1, . . . , n in Sn for m < n. The
unfixed letters for the action of x ∈ Sn is called the support of x : supp x = {i ∈
{1, 2, . . . , n}|x(i) �= i}. The support of x is well-defined along with the inclusion
(1.1). Every x ∈ Sn is decomposed into a product of disjoint (hence commutative)
cycles, which assigns to x a cycle type ρ = (ρ1 � ρ2 � · · · ) ∈ Yn where ρi ’s are
the cycle lengths. Two x, y ∈ Sn have the same cycle type if and only if x and y
are conjugate. Let Cρ denote the conjugacy class in Sn consisting of the elements
of cycle type ρ ∈ Yn . It is easy to see that

|Cρ | = n!/zρ where zρ =
∏

j

jm j (ρ)m j (ρ)!. (1.2)

Irreducible Representations of Sn

Several ways are well-known to assign an irreducible representation ofSn to λ ∈ Yn

and to show that Yn parametrizes the equivalence classes of irreducible representa-
tions of Sn . A recipe based on the action on the Specht polynomials is as follows.
Set

Δ(x1, . . . , xn) =
∏

1�i< j�n

(xi − x j ) = det[xn− j
i ] n

i, j=1.
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If λ ∈ Yn is a one-column diagram, then for T ∈ Tab(λ) filled with letters i1, i2, . . .
from the top we set Δ(T ) = Δ(xi1 , xi2 , . . .). If λ ∈ Yn is a general shape, then
for T ∈ Tab(λ) with Tj as the j th column we set Δ(T ) = Δ(T1) · · · Δ(Tl(λ′)). The
actions of g ∈ Sn on tableau T and polynomial F(x1, . . . , xn) are defined by

(gT )(i, j) = T (g(i), g( j)), (gF)(x1, . . . , xn) = F(xg(1), . . . , xg(n)). (1.3)

Here T (i, j) denotes the letter put in the (i, j) box in tableau T . Since Δ(gT ) =
gΔ(T ) holds, {Δ(T )|T ∈ Tab(λ)} spans an Sn-invariant subspace which is called
a Specht module and denoted by Sλ. Restricting the action of (1.3) to Sλ, we get a
representation (πλ, Sλ) of Sn .

Proposition 1.2 The set {Δ(T )|T ∈ STab(λ)} forms a basis of Sλ. In particular,
dim Sλ = |STab(λ)|.

If μ ∈ Yn−1 is obtained by removing one of the corners of λ ∈ Yn , we write as
μ ↗ λ. We can show the decomposition

ResSn
Sn−1

πλ
∼=

⊕

μ∈Yn−1:μ↗λ

πμ, λ ∈ Yn, (1.4)

which plays a key role in an inductive argument to show the following property.

Proposition 1.3 The set of {πλ}λ∈Yn forms a complete system of representatives of
the equivalence classes of irreducible representations of Sn.

Hence (1.4) implies a multiplicity-free irreducible decomposition. Essential parts
of the proofs omitted above are covered by a relation between Specht polynomials
called the Garnir relation.My favorite textbook for the account is [27]. An alternative
approach due to Okounkov–Vershik is contained in [6].

Symmetric Functions

Let�k
n be the set of homogeneous symmetric polynomials of degree k in n variables,

which contains for example

• monomial : λ ∈ Yk ,

mλ(x1, . . . , xn) =
∑

(α1,...,αn)

xα1
1 . . . xαn

n

((α1, . . . , αn) runs over all distinct permutations of (λ1, . . . , λl(λ), 0, . . . , 0)),
• power sum :

pk(x1, . . . , xn) = xk1 + · · · + xkn ,

• Schur polynomial : λ ∈ Yk , l(λ) � n,

sλ(x1, . . . , xn) = det[xλ j+n− j
i ]/ det[xn− j

i ],
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• complete symmetric polynomial:

hk(x1, . . . , xn) =
∑

λ∈Yk

mλ(x1, . . . , xn).

Along the projective system pnm : �k
m −→ �k

n , n < m, sending f (x1, . . . , xm) to
pnm f = f (x1, . . . , xn, 0, . . . , 0), let�k be the projective limit as n → ∞. Then,mλ

(λ ∈ Yk), pk and hk are readily defined as elements of �k . It is convenient to use the
notation of a formal power series like pk = xk1 + xk2 + · · · . For Schur polynomials
also, since we have for λ ∈ Yk

{
sλ(x1, . . . , xn, 0) = sλ(x1, . . . , xn), l(λ) � n,

sλ(x1, . . . , xn, 0) = 0, l(λ) = n + 1,

sλ is well-defined as an element of �k . An element of � = ⊕∞
k=0 �k is called a

symmetric function. The totality of Young diagrams of arbitrary sizes is denoted by
Y = ⊔∞

k=0 Yk . HereY0 = {∅} is a singleton set. Nowwe havemonomial symmetric
function mλ and Schur function sλ for λ ∈ Y. As power sum symmetric function pλ

and complete symmetric function hλ for λ ∈ Y, we set

pλ = pλ1 . . . pλl(λ)
, hλ = hλ1 . . . hλl(λ)

,

furthermore m∅ = p∅ = h∅ = 1.

Proposition 1.4 Either {mλ}λ∈Y, {pλ}λ∈Y or {hλ}λ∈Y forms a basis of �.

Characters of Sn

Let χλ denote the character of an irreducible representation ofSn corresponding to
λ ∈ Yn , χ̃λ be the normalized one, and χλ

ρ denote the value at x ∈ Cρ (= conjugacy
class of cycle type ρ ∈ Yn):

χλ
ρ = χλ(x) = tr πλ(x), χ̃λ

ρ = χλ
ρ / dim λ.

There exists a bijective correspondence betweenK (Sn), the set of positive-definite,
central, normalized complex-valued functions on Sn , and P(Yn) , the set of prob-
abilities on Yn , as f ∈ K (Sn) ←→ M ∈ P(Yn):

f =
∑

λ∈Yn

M({λ})χ̃λ. (1.5)

Proposition 1.5 (The Frobenius character formula I) For k, n ∈ N and ρ ∈ Yn,

pρ(x1, . . . , xk) =
∑

λ∈Yn : l(λ)�k

χλ
ρ sλ(x1, . . . , xk). (1.6)
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A fantastic way for showing (1.6) is to consider actions of the symmetric group
Sn and the unitary group U (k) onto (Ck)⊗n and to apply the Schur–Weyl duality.
Passing from (1.6) to the symmetric function setting yields the following.

Theorem 1.1 (The Frobenius character formula II) For n ∈ N and ρ, λ ∈ Yn,

pρ =
∑

λ∈Yn

χλ
ρ sλ, sλ =

∑

ρ∈Yn

1

zρ

χλ
ρ pρ. (1.7)

Note that the two expressions in (1.7) are connected by the orthogonality relation for
the irreducible characters χλ

ρ .
The formula giving the value of χλ at a cycle is also well-known. We often use

the notation (k, 1n−k) instead of (1n−kk1) = (k, 1, . . . , 1) ∈ Yn . The descending kth
power z(z−1) . . . (z−k+1) is written simply as z↓k . The notation [z−1]{. . .}means
the coefficient of z−1-term in the Laurent series {. . .}.
Theorem 1.2 For n ∈ N, k ∈ {1, . . . , n} and λ ∈ Yn,

n↓k χ̃λ
(k,1n−k ) = −1

k
[z−1]

{
z↓k

n∏

j=1

z − k − (λ j + n − j)

z − (λ j + n − j)

}
. (1.8)

We refer to [22] for getting informations on the symmetric functions and the
characters of Sn . Also recommended for the same purpose is [24] which contains
clear expositions.

1.2 Young Graph

In this section we recall basic notions on the Young graph and the infinite symmetric
group and recognize the fundamental correspondence (1.13) of the three objects. The
graph consisting of the vertex set Y and the edge structure defined by μ ↗ λ in (1.4)
is called the Young graph, which grows as seen in Fig. 1.3.

Harmonic Functions

If restriction is switched to induction, (1.4) is rephrased as

IndSn
Sn−1

πλ
∼=

⊕

μ∈Yn : λ↗μ

πμ, λ ∈ Yn−1. (1.9)

A complex-valued function ϕ on Y is said to be harmonic if

ϕ(λ) =
∑

μ∈Y: λ↗μ

ϕ(μ), λ ∈ Y,
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Fig. 1.3 Young graph

and normalized if ϕ(∅) = 1. Let H (Y) denote the set of nonnegative normalized
harmonic functions on Y. EquipH (Y) with the topology of pointwise convergence
of functions on Y. Then, H (Y) is convex, compact and metrizable. Furthermore,
H (Y) has a bijective correspondence to

{
ψ : � −→ C

∣
∣ linear, ψ(1) = 1, ψ(sλ) � 0, kerψ ⊃ (s1 − 1)�

}

by
ϕ(λ) = ψ(sλ), λ ∈ Y. (1.10)

Indeed, harmonicity of ϕ is connected to the Pieri formula for Schur functions sλ.

Central Probabilities

Let T denote the set of infinite paths on the Young graph beginning at ∅. A path
t ∈ T is expressed as t = (

t (0) ↗ t (1) ↗ t (2) ↗ · · · ) where t (n) ∈ Yn . The set of
finite paths terminating at λ ∈ Y is denoted by T(λ) . Thus Tn = ⊔

λ∈Yn
T(λ) is the

set of paths of length n. EquipTwith the canonical projective limit topology induced
by t ∈ T �→ tn ∈ Tn , and T is compact. A permutation σ of T(λ), λ ∈ Yn , acts on T:
σ(t) = (

σ(tn) ↗ t (n+1) ↗ t (n+2) ↗ · · · ) if t ∈ T passes through λ, or σ(t) = t
otherwise. Let S(λ) be all such transformations on T. The transformation group of
T generated by

⋃
λ∈Y

S(λ) is denoted by S0(Y). The Borel field of T, denoted by
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B(T), is generated by cylindrical subsets Cu ⊂ T where Cu = {t ∈ T | tn = u}
for u ∈ Tn . Let P(T) denote the set of probabilities on (T,B(T)). An element
M ∈ P(T) is S0(Y)-invariant if and only if M(Cu) = M(Cv) holds whenever
u(n) = v(n) for any n ∈ N and u, v ∈ Tn . We refer to anS0(Y)-invariant probability
as a central probability on T. LetM (T) denote the set of central probabilities on T,
andM (T) is closed with respect to the weak convergence topology onP(T) hence
a compact set.

Lemma 1.1 There exists an affine homeomorphism between the two compact convex
setsH (Y) ∼= M (T) by

ϕ(λ) = M(Cu), λ = u(n), λ ∈ Yn, u ∈ Tn. (1.11)

The Infinite Symmetric Group

The infinite symmetric group S∞ is the inductive limit of (1.1), or, regarding an
element ofSn as a permutation of N,S∞ = ⋃∞

n=1 Sn . The identity element ofS∞
is denoted by e. The support of x ∈ S∞, denoted by supp x , is well-defined from
those in Sn . A complex-valued function f on S∞ is said to be positive-definite if∑l

j,k=1 α jαk f (x
−1
j xk) � 0 for any l ∈ N and x j ∈ S∞, α j ∈ C ( j ∈ {1, . . . , l})

and normalized if f (e) = 1. LetK (S∞) be the set of positive-definite, normalized
and central complex-valued functions on S∞. Equip K (S∞) with the topology of
pointwise convergence, andK (S∞) is compact, convex and metrizable.

Lemma 1.2 There exists an affine homeomorphism K (S∞) ∼= H (Y) by

f
∣
∣
Sn

=
∑

λ∈Yn

ϕ(λ) χλ, n ∈ N. (1.12)

Combining Lemmas 1.1 and 1.2, we have affine homeomorphisms

K (S∞) ∼= H (Y) ∼= M (T) (1.13)

in which the mutual correspondences between f ∈ K (S∞), ϕ ∈ H (Y) and
M ∈ M (T) are given by (1.12) and (1.11).

The conjugacy classes of S∞ are parametrized by

Y
× = {

ρ ∈ Y
∣
∣m1(ρ) = 0

}

where ρ ∈ Y
× indicates the cycle type of nontrivial cycles of x ∈ S∞.

Extremal Objects

Since (1.13) is affine homeomorphisms between compact, convex and metrizable
spaces, the subspaces consisting of the extremal points are also preserved under
(1.13). Customarily, an extremal element of K (S∞), H (Y) and M (T) is respec-
tively called a character, a minimal harmonic function and an ergodic probability.
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Theorem 1.3 (Thoma [28]) An element f ∈ K (S∞) is a character of S∞ if and
only if it is multiplicative, that is, f (xy) = f (x) f (y) holds for x, y ∈ S∞ \{e} such
that supp x ∩ supp y = ∅.

Concerning the correspondence of (1.10) forH (Y), the following holds.

Proposition 1.6 Under (1.10), ϕ ∈ H (Y) is extremal if and only ifψ is an algebra
homomorphism.

The extremal points of these spaces are parametrized by the well-known Thoma
simplex. We call the subset of [0, 1]∞ × [0, 1]∞:

� = {
(α, β)

∣
∣ α = (αi )

∞
i=1, β = (βi )

∞
i=1, α1 � α2 � · · · � 0, β1 � β2 � · · · � 0,

∞∑

i=1

(αi + βi ) � 1
}

(1.14)

the Thoma simplex. Equipped with the relative topology of [0, 1]∞ × [0, 1]∞ (with
the product topology), � is compact and metrizable.

Theorem 1.4 (Thoma [28]) The set of characters of S∞ is homeomorphic to �.
The correspondence (α, β) ∈ � ↔ f (extremal inK (S∞)) is given by

f
(
k -cycle

) =
∞∑

i=1

(
αk
i + (−1)k−1βk

i

)
, k ∈ {2, 3, . . .}. (1.15)

Theorem 1.3 yields that (1.15) completely determines the values of character f .
Furthermore, it is known that any element ofK (S∞) has an integral representation
over � and hence there exists an affine homeomorphism

K (S∞) ∼= P(�). (1.16)

This is a variant of the classical Bochner theorem. By virtue of (1.13), Theorems 1.4
and (1.16) are translated into bothH (Y) and M (T).

The most fundamental extremal object is the one corresponding to (α, β) =
(0, 0) ∈ � in (1.14). In terms of a character of S∞, this agrees with f0,0 = δe,
the delta function at e ∈ S∞. Translating it into M (T), we obtain the Plancherel
measure MPl on T: for n ∈ N,

MPl(Cu) = dim λ

n! , u ∈ Tn, u(n) = λ ∈ Yn. (1.17)

The Plancherel measure is thus an ergodic probability on T. The nth marginal dis-
tribution of MPl:

M (n)
Pl ({λ}) = MPl

({t ∈ T | t (n) = λ}) = (dim λ)2/n!, λ ∈ Yn (1.18)

is also called the Plancherel measure on Yn .



1.2 Young Graph 9

All the materials presented in this section are well-known, but included in [13]
with full proofs.

1.3 Free Probability

The readers who are not familiar with free probability and feel its appearance here
a bit sudden may temporarily skip this section and revisit it after recognizing the
necessity of relevant notions.

Cumulant

The kth (classical) cumulant Ck(μ) of μ ∈ P(R) appears by definition in the
coefficient of ζ k in the expansion of logarithm of the Laplace transform of μ (with
an appropriate exponential integrability condition):

log
∫

R

eζ xμ(dx) =
∞∑

k=1

Ck(μ)

k! ζ k .

In other words, using the nth moment of μ: Mn(μ) = ∫
R
xnμ(dx) , we have

∞∑

n=0

Mn(μ)

n! ζ n = exp
( ∞∑

k=1

Ck(μ)

k! ζ k
)
. (1.19)

Comparing the coefficients of both sides of (1.19), we obtain the cumulant-moment
formula as follows. Let P(n) denote the set of partitions of {1, 2, . . . , n}. By definition
π = {v1, . . . , vl} ∈ P(n), vi �= ∅, gives {1, 2, . . . , n} = v1�· · ·�vl , where each vi is
called a block ofπ and l = b(π) denotes the number of blocks ofπ . Forπ, ρ ∈ P(n),
if any block of ρ is a subset of some block of π , we write as ρ ≤ π . Clearly, P(n) is
a poset with the minimal element 0n = {{1}, {2}, . . . , {n}} and the maximal element
1n = {{1, 2, . . . , n}}. Cumulants of μ are extended to the partition subscript case in
a multiplicative way:

Cπ (μ) =
b(π)∏

i=1

C|vi |(μ), π = {v1, . . . , vb(π)} ∈ P(n) (1.20)

where |vi | is the cardinality of block vi . Then, (1.19) yields the following.

Proposition 1.7 For μ ∈ P(R),

Mn(μ) =
∑

π∈P(n)

Cπ (μ), n ∈ N. (1.21)

Moments of μ are also extended multiplicatively with respect to the blocks as
(1.20). By using the Möbius function mP(n) for poset P(n), we can invert (1.21).
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Proposition 1.8 For μ ∈ P(R),

Cn(μ) =
∑

π∈P(n)

mP(n)(π, 1n)Mπ (μ), n ∈ N. (1.22)

Here mP(n)(ρ, π) is determined as the inverse matrix of aP(n)(ρ, π) = 1{ρ≤π}.
Note that (1.21) and (1.22) (both with multiplicative extensions), called cumulant-
moment formulas, serve as a definition of the cumulant Ck(μ) for any μ ∈ P(R)

having all moments.
A partition π ∈ P(n) is often described by connecting all the letters in a block by

an arc as indicated in Fig. 1.4. We call π a non-crossing partition if it is expressed
with no crossing arcs in such a description. In Fig. 1.4, the 14 partitions (except the
13th one) are non-crossing. A non-crossing partition is called an interval partition if
no arcs are nested. In Fig. 1.4, the first and second are interval partitions, while the
third and fourth are not. The posets of non-crossing partitions and interval partitions
of {1, 2, . . . , n} are denoted by NC(n) and I(n) respectively. We thus have I(n) ⊂
NC(n) ⊂ P(n). Replacing P(n) byNC(n), we introduce the kth free cumulant Rk(μ)

for μ ∈ P(R). The free cumulant-moment formulas then take the following forms.

Proposition 1.9 For μ ∈ P(R) and n ∈ N,

Mn(μ) =
∑

π∈NC(n)

Rπ (μ), Rn(μ) =
∑

π∈NC(n)

mNC(n)(π, 1n)Mπ (μ). (1.23)

Here mNC(n) is the Möbius function for poset NC(n).

Moreover, adopting also I(n) as a partition structure,we obtainBoolean cumulants
Bk(μ) for μ ∈ P(R) and the Boolean cumulant-moment formulas similar to (1.21),
(1.22) and (1.23).

Convolution

The convolution μ ∗ ν of μ, ν ∈ P(R) is linearized by the cumulants:

Ck(μ ∗ ν) = Ck(μ) + Ck(ν), k ∈ N.

Analogously,we introduce the free convolutionμ�ν ofμ, ν ∈ P(R)which satisfies

Rk(μ � ν) = Rk(μ) + Rk(ν), k ∈ N. (1.24)

1 2 3 4

Fig. 1.4 |P(4)| = 15, |NC(4)| = 14, |I(4)| = 8
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Equivalently, in terms of the free cumulant-moment formula (1.23), μ � ν is a
probability on R whose moments are given by

Mn(μ � ν) =
∑

π={v1,··· ,vb(π)}∈NC(n)

b(π)∏

i=1

(
R|vi |(μ) + R|vi |(ν)

)
, n ∈ N. (1.25)

Some extra conditions for μ and ν are needed in addition to the existence of all
moments, in order for (1.25) to determine μ � ν uniquely. There are no problems if
μ and ν have compact supports, and then so does μ � ν.

Generating Function

At a level of (exponential) generating functions, the moments and cumulants of
μ ∈ P(R) are connected to each other by (1.19). For a free cumulant sequence
{Rk(μ)}k∈N, we consider (as formal series)

Rμ(ζ ) =
∞∑

k=0

Rk+1(μ)ζ k, Kμ(ζ ) = 1

ζ
+ Rμ(ζ ). (1.26)

We call Rμ(ζ ) Voiculescu’s R-transform of μ. The Stieltjes transform

Gμ(z) =
∫

R

1

z − x
μ(dx) =

∞∑

n=0

Mn(μ)

zn+1

ofμ is another generating function of the moments ofμ. The free cumulant-moment
formula (1.23) is now converted into the following form.

Proposition 1.10 If μ ∈ P(R) has a compact support, there exists δ > 0 such that
Kμ(ζ ) is holomorphic in 0 < |ζ | < δ and yields Kμ(ζ ) = G−1

μ (ζ ).

A generating function of the Boolean cumulants of μ ∈ P(R) is derived in a
similar (in fact, easier) way to Proposition 1.10. We will recall it in introducing the
Kerov polynomials (Theorem 2.2).

Proposition 1.11 If μ ∈ P(R) has a compact support, Gμ(z)−1 is holomorphic in
a large annulus a < |z| < ∞ with the Laurent expansion:

1

Gμ(z)
= z −

∞∑

k=1

Bk(μ)

zk−1
. (1.27)

Proof Since Gμ(z)−1 is holomorphic in |z| � 1 and satisfies limz→∞ zGμ(z) = 1,
it has the Laurent expansion:

Gμ(z)−1 = z +
∞∑

k=1

ck
zk−1

, |z| � 1. (1.28)

http://dx.doi.org/10.1007/978-4-431-56487-4_2
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Lemma 1.3 below with αn = Mn(μ) and γk = Bk(μ) yields

G
(1

ζ

) = ζ A(ζ ), C(ζ ) =
∞∑

k=1

Bkζ
k

and (1.30). Therefore, comparing G(1/ζ )−1 = ζ−1 + ∑∞
k=1 ckζ

k−1 (|ζ | � 1)
obtained by (1.28) to

G
(1

ζ

)−1 = 1

ζ A(ζ )
= 1

ζ

(
1 − C(ζ )

) = 1

ζ
−

∞∑

k=1

Bkζ
k−1,

we have ck = −Bk for any k ∈ N. This completes the proof of (1.27).

Lemma 1.3 Given real sequences {αn}n∈N and {γk}k∈N, consider formal power
series

A(ζ ) = 1 +
∞∑

n=1

αn ζ n, C(ζ ) =
∞∑

k=1

γk ζ k

and define γπ multiplicatively for π ∈ I(n) from γk’s. Then the following are equiv-
alent:

• αn =
∑

π∈I(n)

γπ , n ∈ N, (1.29)

• A(ζ )C(ζ ) = A(ζ ) − 1. (1.30)

Proof We rewrite (1.30) as the relation between the coefficients:

αn =
n∑

l=1

αn−l γl, n ∈ N (1.31)

with setting α0 = 1. It suffices to verify that αn’s determined by (1.29) satisfy the
recurrence (1.31). Dividing the interval partitions according to length of the block
containing 1, we have

αn =
∑

π∈I(n)

γπ = γn +
n−1∑

l=1

∑

ρ∈I(n−l)

γl γρ =
n∑

l=1

γl αn−l

as desired.

Proposition 1.12 If μ ∈ P(R) has a compact support, the free cumulants are
expressed as

Rk(μ) = − 1

2π(k − 1)i

∫

{|z|=s}
dz

Gμ(z)k−1
= − 1

k − 1
[z−1]

( 1

Gμ(z)k−1

)
(1.32)

for k ∈ {2, 3, . . .} and sufficiently large s > 0.
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Proof Noting Gμ(z) and Gμ(z)−1 are holomorphic in |z| � 1, we put ζ = Gμ(z)
in the integral expression for Rk(μ) induced from (1.26):

Rk(μ) = 1

2π i

∫

{|ζ |=r}
Kμ(ζ )

ζ k
dζ = 1

2π i

∫

−{|z|=s}
z

Gμ(z)k
G ′

μ(z)dz

= − 1

2π(k − 1)i

∫

{|z|=s}
dz

Gμ(z)k−1
.

Note that, if ζ runs over {|ζ | = r} in the ordinary direction, z runs over a simple
closed curve lying in an annulus large enough in the reverse direction.

Freeness

IfR-valued independent random variables a and b have distributionsμ and ν respec-
tively, the distribution of a+b is given by their convolutionμ∗ν. On the other hand,
the free convolution comes from the important notion of freeness of noncommutative
random variables. A pair (A, φ) of unital ∗-algebra A (over C) and state φ of A is
called a probability space. A family {Aα} of unital ∗-subalgebras of A are said to be
free in (A, φ), or with respect to φ, if the following are fulfilled: for any n ∈ N,

⎧
⎪⎨

⎪⎩

ai ∈ Aαi , i ∈ {1, . . . , n}
φ(ai ) = 0, i ∈ {1, . . . , n}
α1 �= α2 �= · · · �= αn

=⇒ φ(a1a2 . . . an) = 0

(the last assumption means that any adjacent αi ’s are distinct). Two random variables
a, b ∈ A are said to be free if the generated ∗-subalgebras 〈a, a∗〉 and 〈b, b∗〉 are
free. For self-adjoint a ∈ A and μ ∈ P(R), we say a obeys μ, or the distribution of
a isμ, and write as a ∼ μ if φ(an) = Mn(μ) holds for any n ∈ N (admitting that the
moment sequence {φ(an)}n∈N does not necessarily determine a unique probability
on R).

Proposition 1.13 If a, b ∈ A are free, a ∼ μ, b ∼ ν and μ, ν have compact
supports, then a + b ∼ μ � ν.

Let q ∈ A be a projection, q2 = q = q∗, such that φ(q) �= 0. Setting B = q Aq
and ψ = φ(q)−1φ

∣
∣
B , we have a new probability space (B, ψ). If self-adjoint a ∈ A

and q are free, the distribution of qaq in (B, ψ) is called the free compression of
μ, where a ∼ μ ∈ P(R). For compactly supported μ ∈ P(R) and 0 < c � 1, the
free compression is uniquely determined and denoted by μc ∈ P(R).

Proposition 1.14 The free compression μc of μ ∈ P(R) is characterized in terms
of free cumulants by

Rk(μc) = ck−1Rk(μ), k ∈ N. (1.33)

Readers should consult [32] above all to know what free probability means. All
informations on free probability theory needed for our purpose are contained in [23].



Chapter 2
Analysis of the Kerov–Olshanski Algebra

Abstract In this chapter, we investigate the algebra of polynomial functions in
coordinates of Young diagrams as a nice framework in which various quantities on
Young diagrams can be efficiently computed. This algebra was introduced byKerov–
Olshanski [20], analysis of which is substantially due to Ivanov–Olshanski [16].
Several systems of generators and associated generating functions are considered.
It is important to understand the concrete transition rules between these generating
systems, one of which is the Kerov polynomial.

2.1 Coordinates of a Young Diagram

In this section, we consider two kinds of coordinates encoding a Young diagram: the
Frobenius coordinates and the min-max coordinates.

Let λ = (λ1 � λ2 � · · · ) ∈ Y be a Young diagram having d boxes along the
main diagonal. We call

ai = ai (λ) = λi − i + 1

2
, bi = bi (λ) = λ′

i − i + 1

2
, i ∈ {1, 2, . . . , d}

the Frobenius coordinates of λ and write as λ = (a1, . . . , ad | b1, . . . , bd). The
Frobenius coordinates of λ ∈ Y satisfy

−b1 < −b2 < · · · < −bd < 0 < ad < · · · < a2 < a1, |λ| =
d∑

i=1

(ai + bi ).

Let us display a Young diagram in the upper half of the xy-plane as in Fig. 2.1, where
λ = (4, 2, 2, 1) of the French style in Fig. 1.1 is rotated by 45◦ and put in such a
way that the main diagonal boxes lie along the y-axis. The piecewise linear border
indicated by bold lines in Fig. 2.1 is called the profile of a Young diagram. Since it
is preferable that the corners of any profile have integral xy-coordinates, we always
assume that the edge length of each box is

√
2 in the display as in Fig. 2.1.

© The Author(s) 2016
A. Hora, The Limit Shape Problem for Ensembles of Young Diagrams,
SpringerBriefs in Mathematical Physics, DOI 10.1007/978-4-431-56487-4_2
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x

y

x1 y1 xr

Fig. 2.1 (left) profile of λ = (4, 2, 2, 1); (right) its min-max coordinates

For λ = (λ1 � λ2 � · · · ) ∈ Y, the subset of Z + 1
2 defined by M(λ) =

{λi − i + 1
2 }i∈N is called the Maya diagram of λ. It is easy to see

{a1, . . . , ad} = M(λ) ∩ (
N − 1

2

)
, {−b1, . . . ,−bd} = (−M(λ′)

) ∩ (−N + 1

2

)
,

M(λ) � (−M(λ′)
) = Z + 1

2

for λ = (a1, . . . , ad | b1, . . . , bd) ∈ Y. The set {b : box | b ∈ λ} is bijective to{
(s, t) ∈ M(λ) × (−M(λ′)

) ∣
∣ s > t

}
. We have hλ(b) = s − t as the hook length

under this bijective correspondence b ↔ (s, t) and hence

log
∏

b∈λ

hλ(b) =
∑

(s,t)∈M(λ)×(−M(λ′)) : s>t

log(s − t). (2.1)

Through the hook formula (Proposition 1.1) and (2.1), maximizing dim λ in Yn is
equivalent to minimizing the RHS of (2.1).

Given λ = (a1, . . . , ad | b1, . . . , bd) ∈ Y, we consider a polynomial of degree k
in the Frobenius coordinates:

pk(λ) =
d∑

i=1

(
aki + (−1)k−1bki

)
, k ∈ N, (2.2)

and a rational function with ai and −bi as its pole and zero respectively:

Φ(z; λ) =
d∏

i=1

z + bi
z − ai

, z ∈ C. (2.3)

We may set Φ(z; ∅) = 1 though we do not consider the Frobenius coordinates of
the empty diagram ∅. In a sufficiently large annulus 1 	 |z| < ∞, the Laurent
expansion of Φ gives

http://dx.doi.org/10.1007/978-4-431-56487-4_1
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Φ(z; λ) =
d∏

i=1

1 + (bi/z)

1 − (ai/z)
= exp

( ∞∑

k=1

pk(λ)

k
z−k

)
. (2.4)

The x-coordinates of the interlacing valleys (=local minima) and peaks (=local
maxima) of the profile of λ ∈ Y yields an integer sequence

x1 < y1 < x2 < y2 < · · · < xr−1 < yr−1 < xr , r ∈ N, (2.5)

which is called the min-max coordinates of λ. Clearly, the last xr is determined from
x1, . . . , yr−1. It is not difficult to see the following characterization.

Lemma 2.1 An interlacing real sequence of (2.5) forms the min-max coordinates
of some λ ∈ Y if and only if

r∑

i=1

xi −
r−1∑

i=1

yi = 0 and x1, . . . , xr , y1, . . . , yr−1 ∈ Z.

We consider a rational function with min coordinate xi and max coordinate yi as
its pole and zero respectively:

G(z; λ) = (z − y1) · · · (z − yr−1)

(z − x1) · · · (z − xr )
, z ∈ C. (2.6)

In particular, G(z; ∅) = 1/z for the empty diagram.
Transposing λ to λ′ in (2.3) and (2.6), we readily have

Φ(z; λ′) = Φ(−z; λ)−1, G(z; λ′) = −G(−z; λ), λ ∈ Y, z ∈ C.

Proposition 2.1 The rational functions Φ of (2.3) and G of (2.6) for

λ = (a1, . . . , ad | b1, . . . , bd) = (x1 < y1 < · · · < yr−1 < xr ) ∈ Y

are connected as
Φ(z − 1

2 ; λ)

Φ(z + 1
2 ; λ)

= z G(z; λ), z ∈ C. (2.7)

Proof When we rewrite Φ(z; λ), which is expressed by the Frobenius coordinates
of λ, in terms of the min-max coordinates, we have only to be careful about how the
profile of λ traverses the y-axis. Consider the situations case by case.
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2.2 Transition Measure I

In this section, we translate encoding of a Young diagram by its coordinates into
two atomic measures on R; one called Kerov’s transition measure and the other the
Rayleigh measure. Such embedding into the space of measures enables us to develop
asymptotic theory in a flexible framework.

We begin with a bit wider class than Young diagrams. A function λ : R −→ R,
or the graph y = λ(x), satisfying the following conditions is called a (centered)
rectangular diagram:

(i) continuous and piecewise linear (ii) λ′(x) = ±1 except finite x’s
(iii) λ(x) = |x | for |x | large enough.

The set of rectangular diagrams is denoted by D0. A rectangular diagram is (the
profile of) a Young diagram if and only if the exceptional x’s in (ii) are all integers.
This yields the natural inclusionY ⊂ D0. The definitions of themin-max coordinates
and the rational function G, (2.5) and (2.6) respectively, are immediately extended
from Y to D0.

Lemma 2.2 An interlacing real sequence of (2.5) forms the min-max coordinates
of some λ ∈ D0 if and only if

r∑

i=1

xi −
r−1∑

i=1

yi = 0.

To λ = (x1 < y1 < · · · < yr−1 < xr ) ∈ D0 we assign an R-valued (probability)
measure on R as

τλ =
r∑

i=1

δxi −
r−1∑

i=1

δyi (2.8)

and call it the Rayleigh measure of λ ∈ D0. Clearly, λ → τλ is injective. Under
derivatives of Schwartz’ distributions we have

τλ =
(λ(x) − |x |

2

)′′ + δ0. (2.9)

Let us use the notation of the kth moment Mk( · ) for an R-valued measure on R also.
Then (2.8) and (2.9) yield

Mk(τλ) =
r∑

i=1

xki −
r−1∑

i=1

yki =
∫

R

xk
(λ(x) − |x |

2

)′′
dx+δ0k, k ∈ N∪{0}. (2.10)

In particular, we have through integration by parts

M2(τλ) =
∫

R

(
λ(x) − |x |)dx = 2|λ|. (2.11)
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Lemma 2.3 We can reconstruct λ ∈ D0 from its Rayleigh measure τλ by

λ(u) =
∫

R

|u − x |τλ(dx), u ∈ R.

Proof We use (2.9), but note that |u − x | is not differentiable. Take a > 0 such that
supp (λ(x) − |x |) ⊂ (−a, a). The function (λ(x) − |x |)′ is of bounded variation and
(λ(x) − |x |)′′ is an R-valued measure, both supported in (−a, a). For u ∈ (−a, a)

∫

(−a,a)

|u − x |
(λ(x) − |x |

2

)′′
dx

=
∫

(−a,u)

(u − x)
(λ(x) − |x |

2

)′′
dx +

∫

(u,a)

(x − u)
(λ(x) − |x |

2

)′′
dx . (2.12)

The first term of the RHS of (2.12) is

∫

(−a,u)

(∫ u

x
dy

)(λ(x) − |x |
2

)′′
dx =

∫

(−a,u)

(∫

(−a,y)

(λ(x) − |x |
2

)′′
dx

)
dy

=
∫

(−a,u)

(λ(y) − |y|
2

)′
dy = λ(u) − |u|

2
,

and so is the second term. We thus have (2.12) to be λ(u) − |u|. The cases of u � a
and u � a are easier to see. Combine this with

∫ ∞
−∞ |u − x |δ0(dx) = |u|.

In order to define the transition measure of a rectangular diagram, we consider
the partial fraction expansion of (2.6) for λ = (x1 < y1 < · · · < yr−1 < xr ) ∈ D0:

G(z; λ) = (z − y1) · · · (z − yr−1)

(z − x1) · · · (z − xr )
= μ1

z − x1
+ · · · + μr

z − xr
, (2.13)

μi = (xi − y1) · · · (xi − yr−1)

(xi − x1) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xr )
, i ∈ {1, . . . , r}. (2.14)

The interlacing property (2.5) assures μi > 0 in (2.14). Multiplying (2.13) by z and
letting z → ∞ yield

∑r
i=1 μi = 1. We thus have an atomic probability on R

mλ =
r∑

i=1

μiδxi ∈ P(R), suppmλ = {x1, . . . , xr } (2.15)

called (Kerov’s) transition measure of λ ∈ D0. Note that (2.13) is the Stieltjes
transform of mλ:

Gmλ
(z) =

∫

R

1

z − x
mλ(dx) = G(z; λ), z ∈ C. (2.16)
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Proposition 2.2 Given λ ∈ D0, the two moment sequences {Mn(mλ)}n∈N and
{Mk(τλ)}k∈N are connected to each other by

∞∑

n=0

Mn(mλ)z
−n = exp

( ∞∑

k=1

Mk(τλ)

k
z−k

)
. (2.17)

Hence {Mn(mλ)} and {Mk(τλ)} are expressed by polynomials in each other.

Proof Setting μ = ∑r
i=1 μiδxi in (2.13) for interlacing x1 < y1 < · · · < yr−1 < xr

and μi of (2.14), we get for |z| � 1

∞∑

n=0

Mn(μ)z−n = z Gμ(z) = z(z − y1) · · · (z − yr−1)

(z − x1) · · · (z − xr )

= exp
{r−1∑

i=1

log
(
1 − yi

z

) −
r∑

i=1

log
(
1 − xi

z

)} = exp
{ ∞∑

k=1

1

k

( r∑

i=1

xki −
r−1∑

i=1

yki
)
z−k

}
.

(2.18)

Specialization to the min-max coordinates of λ ∈ D0 yields (2.17).

As the terms of z−1 and z−2 in (2.17), we have

M1(mλ) = M1(τλ) = 0, M2(mλ) = 1

2
M2(τλ). (2.19)

Proposition 2.3 The map λ → mλ gives a bijection of D0 to the set of probabilities
on R with mean 0 and finite supports.

Proof Since the injectivity is immediate from (2.13), we verify the surjectivity. Take
any

μ =
r∑

i=1

μiδxi , x1 < · · · < xr , μi > 0,
r∑

i=1

μi = 1,
r∑

i=1

xiμi = 0.

Determine a monic real polynomial f (z) of degree r − 1 by

μ1

z − x1
+ · · · + μr

z − xr
= f (z)

(z − x1) · · · (z − xr )
.

Since f (x1), f (x2), . . . , f (xr ) have alternating sign changes, f has r − 1 zeros yi
satisfying x1 < y1 < x2 < · · · < xr−1 < yr−1 < xr . We hence have the same
equality as (2.13) and then (2.18), in particular M1(μ) = ∑r

i=1 xi − ∑r−1
i=1 yi as the

coefficient of z−1. Lemma 2.2 assures the existence of λ ∈ D0 such that mλ = μ.



2.2 Transition Measure I 21

While the Rayleigh measure τλ reflects the shape of λ ∈ Yn more or less directly,
the transition measure mλ gives us information about the irreducible representation
of Sn labeled by λ. Let us see a few instances.

The Plancherel measure MPl on the path space T defined by (1.17) induces a
Markov chain on Y. In fact, assuming λ0 = ∅ ↗ λ1 ↗ · · · ↗ λn−1 ↗ λ(∈ Yn)

forms a path in Tn , we have the conditional probability

MPl
(
t (n + 1) = μ

∣
∣ t (0) = λ0, · · · , t (n) = λ

)

=
{MPl(Cλ0↗···↗λ↗μ)

MPl(Cλ0↗···↗λ)
= dimμ

(n+1) dim λ
, λ ↗ μ,

0, otherwise.

This chain is often called the Plancherel growth process. Let (x1 < y1 < x2 < · · · <

yr−1 < xr ) be the min-max coordinates of λ ∈ Yn andμ(i) ∈ Yn+1 denote the Young
diagram obtained by putting a box at the i th valley (of the x-coordinate xi ) of λ. The
following fact gives a good reason for mλ to be called the transition measure.

Lemma 2.4 Under the above notations,

mλ

({xi }
) = dimμ(i)

(n + 1) dim λ
, i ∈ {1, . . . , r}. (2.20)

Proof The hook formula (Proposition 1.1) implies that the RHS of (2.20) is

∏

b∈λ

hλ(b)
/ ∏

b∈μ(i)

hμ(i) (b).

When we rewrite this quantity in terms of the min-max coordinates, we have only to
focus on the boxes lying in zone I and zone II in Fig. 2.2, where μ(i)/λ is the (p, q)

box in μ(i). The hook length at (p, 1) box in zone I is hμ(i) (p, 1) = xi − x1, and so
on. Successive cancellations yield (2.14) and hence mλ({xi }).

Fig. 2.2 Min-max
coordinates and hook length
ratio

μ(i)/λ

I
II

x1 y1 xrxi = q p

pth row

qth column

http://dx.doi.org/10.1007/978-4-431-56487-4_1
http://dx.doi.org/10.1007/978-4-431-56487-4_1
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Theorem 1.2 tells the irreducible character value at a cycle, where (1.8) is
expressed in terms of row lengths of a Young diagram. We now rewrite this for-
mula by using the Frobenius coordinates and the min-max coordinates, and connect
it with the transition measure. In order to regard the irreducible character values at a
cycle as a function on Y, set

Σk(λ) =
{

|λ|↓k χ̃λ
(k,1|λ|−k )

, |λ| � k,

0, |λ| < k
(2.21)

for k ∈ N and λ ∈ Y. In particular, Σ1(λ) = |λ|.
Theorem 2.1 For k ∈ N and λ ∈ Y,

Σk(λ) = −1

k
[z−1]

{
z↓k Φ(z + 1

2 ; λ)

Φ(z − k + 1
2 ; λ)

}
(2.22)

= −1

k
[z−1]

{ 1

Gmλ
(z)Gmλ

(z − 1) · · ·Gmλ
(z − k + 1)

}
. (2.23)

Proof First we verify that the RHS of (2.22) is 0 if |λ| < k. In terms of the Frobenius
coordinates λ = (a1, . . . , ad | b1, . . . , bd),

z↓k Φ(z + 1
2 ; λ)

Φ(z − k + 1
2 ; λ)

= z↓k
d∏

i=1

(z + 1
2 + bi )(z − k + 1

2 − ai )

(z + 1
2 − ai )(z − k + 1

2 + bi )
. (2.24)

The poles of (2.24) are all integers and satisfy

0 � ad − 1

2
< · · · < a1 − 1

2
< −b1 + k − 1

2
< · · · < −bd + k − 1

2
� k − 1

since a1 +b1 � |λ| < k. Multiplied by z↓k , the denominator is then canceled. Hence
(2.24) proves to be a polynomial in z.

Let us assume |λ| � k. We show (2.22). By (1.8) and (2.21),

Σk(λ) = −1

k
[z−1]

{
z↓k

n∏

i=1

z − k − (λi + n − i)

z − (λi + n − i)

}
(2.25)

where λ = (λi � λ2 � · · · ) and n = |λ|. We note the equality

Φ(z; λ) =
∞∏

i=1

z − (−i + 1
2 )

z − (λi − i + 1
2 )

. (2.26)

http://dx.doi.org/10.1007/978-4-431-56487-4_1
http://dx.doi.org/10.1007/978-4-431-56487-4_1
http://dx.doi.org/10.1007/978-4-431-56487-4_1
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In fact, multiplying both the numerator and the denominator in the RHS of (2.3) by∏
c∈M(λ)∩(−N+ 1

2 )(z − c), we get
∏∞

i=1 z − (−i + 1
2 ) as the new denominator. Now

that λn+1 = 0, (2.26) yields

Φ(z − n + 1

2
; λ) =

n∏

i=1

z − n + i

z − n − λi + i
,

Φ(z − n − k + 1

2
; λ) =

n∏

i=1

z − n − k + i

z − n − k − λi + i
,

and hence

Φ(z − n + 1
2 ; λ)

Φ(z − n − k + 1
2 ; λ)

=
n∏

i=1

z − n + i

z − n − k + i

n∏

i=1

z − k − λi − n + i

z − λi − n + i
.

Noting that the first product of the RHS is z↓k/(z − n)↓k , we have from (2.25)

Σk(λ) = −1

k
[z−1]

{
(z − n)↓k

Φ(z − n + 1
2 ; λ)

Φ(z − n − k + 1
2 ; λ)

}
. (2.27)

For given λ and k, we can take a sufficiently large annulus 1 	 |z| < ∞ in which
changing the contours C ↔ C − n in the integral expressions is valid. Therefore,
(2.22) follows from (2.27).

Finally, we verify the equality in (2.23). However, that is immediate from (2.7)
and (2.16).

2.3 The Kerov–Olshanski Algebra

In this section, we focus on the algebra of polynomial functions in the coordinates of
Young diagrams. Analysis of its structure in particular yields the Kerov polynomial
and an asymptotic formula for irreducible characters of the symmetric groups.

We know two kinds of polynomials of ‘degree’ k as functions on Y; one being
pk(λ) of (2.2) in the Frobenius coordinates and the other Mk(τλ) of (2.10) in the
min-max coordinates. Their generating functions of exponential type appear in (2.4)
and (2.16)–(2.17) respectively. Since they are connected as (2.7), we can get the
following relation between {pk(λ)} and {Mk(τλ)}.
Proposition 2.4 There exists an infinite matrix A satisfying

• A is upper-triangular
• All entries of A are nonnegative and rational
• All diagonal entries of A are equal to 1
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and

[
M2(τλ) M3(τλ) M4(τλ) · · · ] = [

2p1(λ) 3p2(λ) 4p3(λ) · · · ]A. (2.28)

Proof We begin with (2.7) and use (2.3) and (2.6):

(1 − y1
z ) · · · (1 − yr−1

z )

(1 − x1
z ) · · · (1 − xr

z )
=

d∏

i=1

(1 − −bi
z−(1/2) )(1 − ai

z+(1/2) )

(1 − ai
z−(1/2) )(1 − −bi

z+(1/2) )
(2.29)

where λ ∈ Y has the Frobenius coordinates (a1, . . . , ad | b1, . . . , bd) and the min-
max coordinates (x1 < y1 < · · · < yr−1 < xr ). Expand logarithms of the both sides
of (2.29) in |z| � 1. The LHS yields by (2.10)

∑∞
n=1(Mn(τλ)/n)z−n , while the RHS

proceeds by (2.2) to

∞∑

k=1

pk(λ)

k

{(
z − 1

2

)−k − (
z + 1

2

)−k
}

=
∞∑

k=1

pk(λ)

k
z−k

{(
1 − 1

2z

)−k − (
1 + 1

2z

)−k
}

=
∞∑

k=1

pk(λ)

k
z−k

∞∑

j=0

( −k

2 j + 1

)−1

22 j
z−(2 j+1)

=
∞∑

k=1

pk(λ)

k
z−k

∞∑

j=0

k↑(2 j+1)

(2 j + 1)!22 j z
−(2 j+1)

=
∞∑

n=2

z−n
∑

0� j�(n/2)−1

pn−2 j−1(λ)
(n − 1)↓(2 j)

(2 j + 1)!22 j .

Hence we have

Mn(τλ) =
∑

0� j�(n/2)−1

(
n

2 j + 1

)
1

22 j
pn−2 j−1(λ), n ∈ {2, 3, . . .},

which gives (2.28) and the other conditions for A.

Proposition 2.5 Both {pn(λ)}n∈N and {Mn(τλ)}n∈{2,3,··· } are algebraically indepen-
dent.

Proof 1We show algebraic independence of {pn(λ)}n∈N. Provided that

f (p1(λ), . . . , pn(λ)) =
∑

k1,...,kn

αk1...kn p1(λ)k1 . . . pn(λ)kn = 0 (2.30)

holds for a polynomial f in n variables, let us show f = 0. In (2.30), the partial
sum of the terms in which k = k1 + 2k2 + · · · + nkn is maximal is denoted by f 	.

1The argument follows Proposition 1.5 in [16].

http://dx.doi.org/10.1007/978-4-431-56487-4_1
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It suffices to verify that any coefficient αk1···kn in f 	 vanishes because it then proves
to be the case for all k’s inductively. Let x = (x1, . . . , xl) ∈ R

l , x1 � · · · � xl > 0,
l � k, take m ∈ N and set λi = �mxi� for i ∈ {1, . . . , l}, λ = (λ1 � · · · � λl) ∈ Y.
Putting this λ into (2.30), dividing the expression by the highest power of m and
letting m → ∞, we get

f 	(p1(x), p2(x), . . . , pn(x)) = 0 (2.31)

where p j (x) = p j (x1, . . . , xl) = x j
1 +· · ·+x j

l is the power sum in l variables. In fact,
the effect of bi ’s in the Frobenius coordinates and the other terms than f 	 tend to 0
as m → ∞. Since

{
p1(x1, . . . , xl)k1 . . . pn(x1, . . . , xl)kn | k1 + . . . + nkn = k (� l)

}

is linearly independent by Proposition 1.4 (or a version of finite variables suffices),
all coefficients in (2.31) is 0. This yields f = 0 and thus algebraic independence of
{pn(λ)}n∈N.

Provided that there exists an algebraic relation g(M2(τλ), . . . , Mn+1(τλ)) = 0
between {Mn(τλ)}n∈{2,3,...}, rewrite it by using Proposition 2.4 as

g(2p1(λ), . . . , (n + 1)pn(λ)) + h(2p1(λ), . . . , (n + 1)pn(λ)) = 0.

By upper triangularity of A in (2.28), we get g	(2p1(λ), . . . , (n + 1)pn(λ)) = 0
similarly to (2.31). Again through an inductive argument, we are led to g = 0. This
completes the proof of algebraic independence of {Mn(τλ)}n∈{2,3,...}.

The algebra A of functions on Y generated by {pn(λ)}n∈N, or equivalently by
{Mn(τλ)}n∈{2,3,...}, is isomorphic to Λ of the symmetric functions. We call A the
Kerov–Olshanski algebra after [20]. The two kinds of generators above induce the
degrees of an element of A. The canonical degree in A is defined by regarding
pn(λ) as a homogeneous element of degree n. This is clearly the one inherited from
Λ. On the other hand, the weight degree in A is defined by regarding Mn(τλ) as
a homogeneous element of degree n. These degrees are denoted by deg and wt
respectively: deg pn(λ) = n, wt Mn(τλ) = n. If f ∈ A is not homogeneous, deg f
and wt f indicate the degrees of the respective top homogeneous terms of f . For
example, wt pn(λ) = n + 1.

Recall that {Mn(τλ)}n∈{2,3,...} and {Mn(mλ)}n∈{2,3,...} are in polynomial relations to
each other through (2.17) as was seen in Proposition 2.2. Actually, the relation is (a
specialization of) the one between the power sums and the complete symmetric func-
tions inΛ. Furthermore, moments of a probability onR are in polynomial relations to
three kinds of cumulants, classical, free and Boolean, through the cumulant-moment
formulas. In particular, we can take {Mn(mλ)}n∈{2,3,...} or {Rn(mλ)}n∈{2,3,...} as gener-
ators of A. As is seen in the sequel, {Σk(λ)}k∈N also generates A. A key observation
might be a resemblance between the two expressions (1.32) and (2.23). In the begin-
ning, we have

Σ1(λ) = R2(mλ) (= |λ|), Σ2(λ) = R3(mλ). (2.32)

http://dx.doi.org/10.1007/978-4-431-56487-4_1
http://dx.doi.org/10.1007/978-4-431-56487-4_1
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Indeed, (2.11) and (2.19) yield

Σ1(λ) = |λ| = 1

2
M2(τλ) = M2(mλ) = R2(mλ).

Moreover, (2.23) and (1.27) yield

Σ2(λ) = −1

2
[z−1]

{(
z −

∞∑

k=1

Bk(mλ)

zk−1

)(
z − 1 −

∞∑

k=1

Bk(mλ)

(z − 1)k−1

)}

= −1

2

(−B2(mλ) − B3(mλ) + B2(mλ) − B3(mλ)
)

= B3(mλ) = M3(mλ) = R3(mλ) (2.33)

by noting B1(mλ) = R1(mλ) = M1(mλ) = 0.

Theorem 2.2 For any k ∈ N, k � 3, there exists a polynomial Pk(x2, . . . , xk−1) in
k − 2 variables satisfying

Σk(λ) = Rk+1(mλ) + Pk
(
R2(mλ), . . . , Rk−1(mλ)

)
(2.34)

where a possible value of the weight degree of each term in the lower part

Pk
(
R2(mλ), . . . , Rk−1(mλ)

)

belongs to {k − 1, k − 3, . . .} (every other integer) ⊂ N.

Proof Let us write Gλ = Gmλ
, Mk(λ) = Mk(mλ), Rk(λ) = Rk(mλ), Bk(λ) =

Bk(mλ) for short.
[Step 1] We will have an expression of Gλ(z)−1 . . .Gλ(z − k + 1)−1 in (2.23) in

terms of the Laurent series in z in a similar way as (2.33). The expansion (1.27) of
Boolean cumulant coefficients yields

1

Gλ(z − r)
= z − r −

∞∑

j=1

Bj (λ)

(z − r) j−1
= z − r −

∞∑

j=1

Bj (λ)

z j−1

( ∞∑

l=0

rl

zl

) j−1
(2.35)

for r ∈ {1, . . . , k − 1}. Putting
( ∞∑

l=0

t l
) j−1 =

∞∑

l1,··· ,l j−1=0

t l1+···+l j−1 =
∞∑

i=0

αi, j−1 t
i ,

αi, j−1 = ∣
∣
{
(l1, . . . , l j−1) ∈ (N ∪ {0}) j−1

∣
∣ l1 + · · · + l j−1 = i

}∣
∣

into (2.35), we continue (2.35) as

http://dx.doi.org/10.1007/978-4-431-56487-4_1
http://dx.doi.org/10.1007/978-4-431-56487-4_1
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= z − r −
∞∑

j=1

∞∑

i=0

αi, j−1r i B j (λ)

zi+ j−1
= z − r −

∞∑

p=1

1

z p−1

( p∑

j=1

αp− j, j−1r
p− j B j (λ)

)

= z −
∞∑

p=1

Ap,r (λ)
1

z p−1
(2.36)

where

Ap,r (λ) =
{∑p

j=1 αp− j, j−1r p− j B j (λ), p � 2,

r + B1(λ), p = 1.

Since wt Bj (λ) = wt Mj (λ) = wt Mj (τλ) = j holds, we have wt Ap,r (λ) = p and

Ap,r (λ) = Bp(λ) + (wt-lower terms), p ∈ N. (2.37)

[Step 2] Put (2.36) and (2.37) into Gλ(z − r)−1 of (2.23):

(
Gλ(z)Gλ(z − 1) · · ·Gλ(z − k + 1)

)−1

=
(
z −

∞∑

p=1

Bp(λ)

z p−1

)(
z −

∞∑

p=1

Bp(λ)

z p−1 +
∞∑

p=1

∗p
1

z p−1

)
· · ·

(
z −

∞∑

p=1

Bp(λ)

z p−1 +
∞∑

p=1

∗p
k−1

z p−1

)

where ∗p
i , · · · , ∗p

k−1 are terms of weight degree � p − 1. Continue as

=
(
z −

∞∑

p=1

Bp(λ)

z p−1

)k +
k−1∑

j=1

(
z −

∞∑

p=1

Bp(λ)

z p−1

) j{∑

�

( ∞∑

p=1

∗
z p−1

)
· · ·

( ∞∑

p=1

∗
z p−1

)

︸ ︷︷ ︸
(k− j) product

}

= Gλ(z)
−k + (�) (2.38)

where (k− j)∗’s are ofweight degree� p−1 though they are not identical.Moreover,∑

�

indicates a finite sum with the number depending k and j . Each j-term of (�) in

(2.38) has such an expression as

zi
Bp1(λ)

z p1−1
· · · Bpj−i (λ)

z p j−i−1

[wt � q1 − 1]
zq1−1

· · · [wt � qk− j − 1]
zqk− j−1 , i ∈ {0, 1, . . . , j}.

To pick up the term of z−1, the requirement for the index is

i − {(p1 − 1) + · · · + (p j−i − 1) + (q1 − 1) + · · · + (qk− j − 1)} = −1.
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Then the weight degree of the coefficient is bounded by

p1 + · · · + p j−i + (q1 − 1) + · · · + (qk− j − 1) = j + 1 � k.

We have thus wt
([z−1](�)) � k. Combining this with (1.32), we get

Σk(λ) = −1

k
[z−1]

{ 1

Gλ(z)k
+ (�)

}
= Rk+1(λ) + F(λ) (2.39)

with F ∈ A, wt F � k.
[Step 3] Since {Rk(λ)} generates A, (2.39) yields existence of a polynomial Pk

such that

Σk(λ) = Rk+1(λ) + Pk
(
R2(λ), . . . , Rk(λ)

)
, wt Pk

(
R2(λ), . . . , Rk(λ)

)
� k,
(2.40)

where it clearly suffices to take generators up to Rk(λ) from the relations between
generators of A. Let us consider the involution

inv( f )(λ) = f (λ′), f ∈ A

induced by the transposition λ → λ′. Taking the character values at a k-cycle of
λ′ ∼= λ ⊗ sgn, we have

inv(Σk)(λ) = Σk(λ
′) = (−1)k−1Σk(λ).

On the other hand, since the transition measure obeys mλ′(A) = mλ(−A) for any
Borel set A of R, its moment satisfies inv(Mk)(λ) = Mk(λ

′) = (−1)kMk(λ). Then,
(1.23) yields also for its free cumulant

inv(Rk)(λ) = Rk(λ
′) = (−1)k Rk(λ).

Taking inv of (2.40):

(−1)k−1Σk(λ) = (−1)k+1Rk+1(λ) + Pk
(
R2(λ), . . . , (−1)k Rk(λ)

)

and comparing it with (2.40), we have

Pk
(
R2(λ),−R3(λ), . . . , (−1)k Rk(λ)

) = (−1)k−1Pk
(
R2(λ), R3(λ), . . . , Rk(λ)

)
.

(2.41)
When k is even, (2.41) implies that the sum of the terms of even weight degree in
Pk

(
R2(λ), . . . , Rk(λ)

)
vanishes. Similarly, when k is odd, that of odd weight degree

in Pk
(
R2(λ), . . . , Rk(λ)

)
vanishes. Hence we conclude that possible weight degrees

for the terms in Pk
(
R2(λ), . . . , Rk(λ)

)
of (2.40) belong to {k − 1, k − 3, . . .}. In

particular, Rk(λ) does not appear since there are no terms of weight degree k.

http://dx.doi.org/10.1007/978-4-431-56487-4_1
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Seen from the viewpoint of the canonical degree, the following holds instead of
Theorem 2.2.

Theorem 2.3 For any k ∈ N, there hold

Σk(λ) = Mk+1(mλ) + (deg-lower terms) (2.42)

= pk(λ) + (deg-lower terms). (2.43)

Proof We first verify that the RHSs of (2.42) and (2.43) agree. Note degMk(τλ) =
k − 1 by (2.28). The relation between Mn(mλ)’s and Mk(τλ)’s yield

Mk+1(mλ) = 1

k + 1
Mk+1(τλ) + (terms of deg � k − 1), (2.44)

which together with (2.28) implies (2.42) agrees with (2.43). Needless to say, the
terms of lower canonical degrees in both equations are not identical.

Next we show the equality of (2.42). In (2.34), the lower terms in the RHS satisfy
wt � k − 1 and deg � k − 2. In the free cumulant-moment formula

Rk+1(mλ) =
∑

π∈NC(k+1)

mNC(k+1)(π, 1k+1)Mπ (mλ), (2.45)

we have degMπ (mλ) = k + 1 − b(π) where b(π) denotes the number of blocks of
π ∈ NC(k+1). Indeed, (2.44) gives degMn(mλ) = degMn(τλ) = n−1. Hence the
term of the highest canonical degree in the RHS of (2.45) is the one of b(π) = 1,
namely Mk+1(mλ). This completes the proof of (2.42).

Corollary 2.1 Both {Σk(λ)}k∈N and {Rk(mλ)}k∈{2,3,...} are algebraically indepen-
dent.

Corollary 2.2 In Theorem 2.2, uniqueness of the polynomial Pk holds also. To be
precise, the expression of (2.34) is unique without mentioning the weight degree of
Pk

(
R2(mλ), . . . , Rk−1(mλ)

)
.

Proof This follows from Corollary 2.1.

Definition 2.1 Theorem 2.2, Corollary 2.2 and (2.32) determine the following
sequence of polynomials:

K2(x2) = x2, K3(x2, x3) = x3,

Kk+1(x2, . . . , xk+1) = xk+1 + Pk(x2, . . . , xk−1), k � 3.

The polynomial Kk is called the Kerov polynomial.

Remark 2.1 The derivation of the Kerov polynomials based on comparing (1.32)
and (2.23) is due to Okounkov as suggested in [3]. Carrying out Step 2 of the proof
of Theorem 2.2, one has

http://dx.doi.org/10.1007/978-4-431-56487-4_1
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K4(x2, x3, x4) = x4 + x2, K5(x2, x3, x4, x5) = x5 + 5x3, · · · .

The fact that all coefficients of the Kerov polynomials are positive integers is con-
jectured by Kerov and proved first by Féray [8]. Explicit forms of the first several
Kerov polynomials are presented in [3].

Remark 2.2 Along the above discussion, Theorem 2.3 was proved by using the
Kerov polynomials (Theorem 2.2), which does not seem to be optimal as readers
might notice. It would be more natural to deduce (2.43) directly from (2.22) for a
proof of Theorem 2.3.

Extending (2.21) to a general conjugacy class, set for ρ ∈ Y

Σρ(λ) =
{

|λ|↓|ρ|χ̃λ
(ρ,1|λ|−|ρ|), |λ| � |ρ|,

0, |λ| < |ρ|, λ ∈ Y.

In particular, Σ∅(λ) = 1. As a linearizing formula, the following holds.

Proposition 2.6 For ρ, σ ∈ Y,

ΣρΣσ = Σρ�σ +
∑

τ∈Y: |ρ|∨|σ |�|τ |<|ρ|+|σ |
aτΣτ , aτ ∈ Q�0.

Proposition 2.6 yields that Σρ ∈ A and degΣρ = |ρ|. Hence we have

Σρ = Σρ1 · · · Σρl(ρ)
+ (deg-lower terms). (2.46)

Similarly for the weight degree also, the following holds.

Proposition 2.7 For ρ, σ ∈ Y,

ΣρΣσ = Σρ�σ +
∑

τ∈Y: |τ |+l(τ )�|ρ|+l(ρ)+|σ |+l(σ )−2

aτΣτ .

Hence we see wtΣρ = |ρ| + l(ρ) and

Σρ = Σρ1 · · · Σρl(ρ)
+ (lower terms with weight degree � wtΣρ − 2). (2.47)

The expression (2.46) or (2.47) tells that {Σρ}ρ∈Y forms a basis of A.
See [16] for the proofs of Proposition 2.6 and Proposition 2.7. In [13], we included

their proofs based on partial permutations developed in [15].



Chapter 3
Continuous Diagram

Abstract In this chapter, continuous diagrams are introduced as limiting objects of
the profiles of Young diagrams. It is important that the notion of a transition measure
is extended for a continuous diagram.

3.1 Continuous Diagram I

Recall that D0 denotes the set of rectangular diagrams introduced in the beginning
of Sect. 2.2. Extending the notion of a rectangular diagram, we consider a function
ω : R −→ R satisfying:

(i) |ω(x1) − ω(x2)| � |x1 − x2|, x1, x2 ∈ R

(ii) there exist a < 0 < b such that ω(x) = |x | if x � a or x � b,
and call such ω, or the graph y = ω(x), a (centered) continuous diagram. The set of
continuous diagrams is denoted by D. For ω ∈ D, the minimal closed interval [a, b]
satisfying (ii) is denoted by suppω. It is obvious that Y ⊂ D0 ⊂ D holds. Since the
empty diagram ∅ ∈ Y has the profile y = |x |, the definition implies supp∅ = {0}.

The condition (i) for ω ∈ D yields that ω is differentiable a.e. with |ω′(x)| � 1.
Set

D
(a) = {

ω ∈ D
∣
∣ suppω ⊂ (−a, a)

}
, a > 0.

We obviously have D = ⋃
a>0 D

(a) = ⋃
n∈N D

(n). It is natural to equip D with the
topology induced by the metric

‖ω1 − ω2‖sup = sup
x∈R

|ω1(x) − ω2(x)|, ω1, ω2 ∈ D,

which is called the uniform (convergence) topology on D. On the other hand, we
can consider the inductive limit topology on D = ⋃

a>0 D
(a) also where each D

(a)

is given the relative topology of the uniform one on D. Clearly, the inductive limit
topology is stronger than the uniform topology on D. Furthermore, the pointwise
convergence topology on D is defined by the family of pseudo-metrics

{|ω1(x) − ω2(x)|
}
x∈R, ω1, ω2 ∈ D.
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Lemma 3.1 The uniform and pointwise convergence topologies on D coincide.

Proof Since the uniform topology is clearly stronger than the pointwise convergence
one, let us show the converse implication. For anyω0 ∈ D given, take a > 0 such that
ω0 ∈ D

(a). For any ε > 0, divide [−a, a] to have −a = x0 < x1 < · · · < xm = a
with maxi=1,··· ,m(xi − xi−1) � ε/3. If ω ∈ D satisfies

max
i=1,··· ,m

∣
∣ω(xi ) − ω0(xi )

∣
∣ � ε

3
, (3.1)

then we have ‖ω − ω0‖sup � ε through the obvious triangular inequality. Indeed,
since ω0(x) = |x | holds for x ∈ (−a, a)c, |ω(±a) − ω0(±a)| � ε implies that
|ω(x)−ω0(x)| � ε holds for x ∈ (−a, a)c also. Hence the set of ω’s satisfying (3.1)
is included in the uniform ε-neighborhood of ω0. This completes the proof.

3.2 Transition Measure II

We assigned to a rectangular diagram λ ∈ D0 its transition measure mλ by (2.15).
It is characterized by the Stieltjes transform as in (2.16). There are several routes
to reach the notion of the transition measure of a continuous diagram. Let us here
review an elementary argument based on an approximation by rectangular diagrams.

For a given ω ∈ D, take a > 0 such that ω ∈ D
(a). We can take a sequence

{λ(n)}n∈N ⊂ D0 ∩ D
(a) converging to ω in D

(a). In fact, for any ε > 0, divide [−a, a]
as −a = x0 < x1 < · · · < xm = a with maxi=1,··· ,m(xi − xi−1) � ε. The oscillation
of ω in [xi−1, xi ] is less than ε. Connect (xi−1, ω(xi−1)) and (xi , ω(xi )) by a portion
of an element ofD0 in such a way that the range lies betweenω(xi−1) andω(xi ). The
resulting λ ∈ D0 ∩ D

(a) then satisfies ‖ω − λ‖sup � ε. Since supp λ(n) ⊂ (−a, a),
so are suppmλ(n) and supp τλ(n) . Considering an approximation by polynomials on
[−a, a], we have for any f ∈ C(R)

lim
n→∞

∫

R

f (x)
(λ(n)(x) − |x |

2

)′
dx =

∫

R

f (x)
(ω(x) − |x |

2

)′
dx . (3.2)

Lemma 3.2 For any k ∈ N ∪ {0}, {
Mk(mλ(n) )

}
n∈N and

{
Mk(τλ(n) )

}
n∈N are both

Cauchy sequences in R.

Proof It is trivial for k = 0. Since (2.10) yields

Mk(τλ(n) ) = −
∫

R

kxk−1
(λ(n)(x) − |x |

2

)′
dx, k ∈ N,

{
Mk(τλ(n) )

}
n∈N is of Cauchy as in (3.2). SinceMk(mλ(n) ) is expressed by a polynomial

in Mj (τλ(n) )’s (not depending on n) by Proposition 2.2,
{
Mk(mλ(n) )

}
n∈N is of Cauchy

also.

http://dx.doi.org/10.1007/978-4-431-56487-4_2
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Combining Lemma 3.2 with a simple moment problem on a compact interval, we
find a unique probability μ on [−a, a] satisfying

Mk(μ) = lim
n→∞ Mk(mλ(n) ), k ∈ N ∪ {0}.

The probability μ does not depend on the choice of an approximating sequence
{λ(n)} ⊂ D0∩D

(a) ofω ∈ D
(a). Indeed, for another approximating sequence {μ(n)} ⊂

D0∩D
(a), the limit of Mk(τμ(n) ) is determined by (3.2) and so is the one of Mk(mμ(n) ).

Similarly, μ does not depend on the choice of a > 0 such that ω ∈ D
(a) either. The

probability μ thus determined for ω ∈ D is called the (Kerov) transition measure of
ω and denoted by mω. Taking an approximating sequence {λ(n)} as above, we have

lim
n→∞

∫

R

f (x)mλ(n) (dx) =
∫

R

f (x)mω(dx), f ∈ C(R) (3.3)

through the approximation by polynomials on a compact interval.

Proposition 3.1 The transition measure mω of ω ∈ D satisfies

∫

R

1

z − x
mω(dx) = 1

z
exp

{∫

R

1

x − z

(ω(x) − |x |
2

)′
dx

}
, z ∈ C

+. (3.4)

Proof Take an approximating sequence {λ(n)} ⊂ D0 ∩ D
(a) of ω ∈ D

(a). By (2.17),
λ(n) satisfies the equality of (3.4) for |z| > a. Then, (3.2) and (3.3) yield the same
equality for ω. Since the both sides are holomorphic in C

+, we get (3.4).

For a > 0 and ω ∈ D, we set

ωa(x) = a−1ω(ax)

to have a rescaled diagram ωa ∈ D.

Corollary 3.1 For a > 0 and ω ∈ D, we have mωa (dx) = mω(adx). In particular,

Mk(mωa ) = a−kMk(mω), k ∈ N ∪ {0}.

The above procedure of approximation does not work for defining an R-valued
measure though

{
Mk(τλ(n) )

}
n∈N is a Cauchy sequence. As in (2.9) for a rectangular

diagram, we call

τω =
(ω(x) − |x |

2

)′′ + δ0

the Rayleigh measure of ω ∈ D, provided that (ω(x)− |x |)′ is of bounded variation.

http://dx.doi.org/10.1007/978-4-431-56487-4_2
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Proposition 3.2 If the Rayleigh measure τω exists for ω ∈ D, it satisfies

ω(u) =
∫

R

|u − x |τω(dx), u ∈ R, (3.5)

1

Gmω
(z)

d

dz
Gmω

(z) = −
∫

R

1

z − x
τω(dx), z ∈ C

+. (3.6)

Proof Note the bounded variation of (ω(x) − |x |)′ and compactness of the supports
of the measure considered. Then, a similar argument to Lemma 2.3 yields (3.5), and
(3.6) easily follows from (3.4).

Proposition 3.3 Let probability μ on R with mean 0 and R-valued measure τ on R

have compact supports and satisfy

1

Gμ(z)

d

dz
Gμ(z) = −

∫

R

1

z − x
τ(dx), z ∈ C

+.

Set

ω(u) =
∫

R

|u − x |τ(dx), u ∈ R. (3.7)

Then, ω ∈ D, mω = μ and τω = τ hold.

Proof We have
d

dz

(
logGμ(z) +

∫

R

log(z − x)τ (dx)
)

= 0

in C
+. Here the argument of log is taken in (−π, π). Since

∫

R

log(z − x)τ (dx) = τ(R) log z +
∫

R

log
(
1 − x

z

)
τ(dx),

we have

logGμ(z) + τ(R) log z +
∫

R

log
(
1 − x

z

)
τ(dx) = c (= const.).

Letting z → ∞, we see that τ(R) = 1 and c = 0. Hence

∫

R

1

z − x
μ(dx) = 1

z
exp

{
−

∫

R

log
(
1 − x

z

)
τ(dx)

}
, z ∈ C

+ (3.8)

holds. Considering the Laurent expansions of (3.8) for |z| 
 1 and comparing the
coefficients of both sides, we get M1(τ ) = M1(μ) = 0 in particular.

http://dx.doi.org/10.1007/978-4-431-56487-4_2
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Take a > 0 such that supp τ ⊂ [−a, a]. Setting F(x) = τ
(
(−∞, x]), we show

0 � F(x) � 1, x ∈ R. (3.9)

For z ∈ C
+, we have

logGμ(z) = −
∫

[−a,a]
log(z − x)τ (dx) = −

∫

[−a,a]

(
log z +

∫ x

0

−1

z − t
dt

)
τ(dx)

= − log z −
∫ 0

−a

F(t)

z − t
dt +

∫ a

0

1 − F(t)

z − t
dt = − log(z − a) −

∫ a

−a

F(t)

z − t
dt.

(3.10)

Set z = x + iy for x ∈ (−a, a) and y > 0 in (3.10). We have

−π < Im logGμ(z) < 0, lim
y↓0 Im log(z − a) = π,

and, if F is continuous at x ,

F(x) = lim
y↓0

(
− 1

π
Im

∫ a

−a

F(t)

z − t
dt

)
.

Hence, letting y ↓ 0 in (3.10), we get −1 � F(x) − 1 � 0. Noting that F is right
continuous, has left limits and the continuous points of F are dense in R, we have
shown (3.9).

We show ω defined by (3.7) belongs to D. Since M0(τ ) = 1 and M1(τ ) = 0 as
verified above, it easily follows that ω(u) = |u| holds for |u| � a. Computing ω′ (as
a Schwartz distribution) by using test functions, we get

ω′(u) = τ
(
(−∞, u]) − τ

(
(u,∞)

) = 2F(u) − 1. (3.11)

Combining (3.11) with (3.9), we have |ω′(u)| � 1 and hence ω ∈ D.
Differentiating (3.11) (as a Schwartz distribution) again, we see that ω has the

Rayleigh measure and τω = τ holds. Since τω andmω are related in the same manner
that τ and μ are in (3.8), mω and μ have the same Stieltjes transform. This implies
μ is the transition measure mω of ω.

Remark 3.1 Changing the order of the integrals in (3.8), we have

∫

R

log
(
1 − x

z

)
τ(dx) =

∫

(−∞,0)

(∫ 0

x

1
z

1 − y
z

dy
)
τ(dx) +

∫

(0,∞)

(∫ x

0

− 1
z

1 − y
z

dy
)
τ(dx)

=
∫ 0

−∞
1

z − y
F(y)dy −

∫ ∞

0

1

z − y

(
1 − F(y)

)
dy,
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hence

∫

R

1

z − x
μ(dx) = 1

z
exp

(
−

∫ 0

−∞
F(x)

z − x
dx +

∫ ∞

0

1 − F(x)

z − x
dx

)
, z ∈ C

+

(3.12)
with F satisfying F(−∞) = 0, F(∞) = 1 and 0 � F � 1 as in (3.9). Similarly,
(3.7) is rewritten as

ω(u) =
∫ u

−∞
F(x)dx +

∫ ∞

u

(
1 − F(x)

)
dx, u ∈ R. (3.13)

Since (3.11) holds in this case also, we have ω ∈ D. Actually, it can be shown that,
if μ ∈ P(R) has mean 0 and compact support, then there exists a unique ω ∈ D

such that μ = mω which is characterized by (3.12) and (3.13), though τω may not
necessarily exist. Including the casewhereμ has non-compact support (with a certain
moment condition), [18] gives a thorough treatment of interplay betweenμ, F andω.

In the approach to the limit shape problem that we will adopt, limiting objects
are often captured first in terms of free cumulants, then the R-transform, the
Stieltjes transform of the desired probability, and finally the corresponding continu-
ous diagram.Proposition3.3 is useful in such a context.Wenowgive two fundamental
examples—free counterparts of Gauss and Poisson distributions.

Example 3.1 Wigner’s semi-circle distribution with mean m and variance v:

1

2πv

√
4v − (x − m)2 1[m−2

√
v,m+2

√
v](x)dx (3.14)

is characterized by the free cumulant sequence: R1 = m, R2 = v, R3 = R4 =
· · · = 0. Since the transition measure of a continuous diagram has mean 0, let us
start from the free cumulant sequence

R1 = 0, R2 = v, R3 = R4 = · · · = 0, v > 0 (3.15)

and compute the corresponding continuous diagram. It immediately follows from
(3.15) and 1.26 that z = K (ζ ) = ζ−1 + vζ , which is inverted as

ζ = G(z) = z − √
z2 − 4v

2v
, z ∈ C

+ (3.16)

by noting that limz→∞ zG(z) = 1 holds. For
√
A in (3.16), the argument of A is

taken in (0, 2π). Hence we have

G ′(z)
G(z)

= − 1√
z2 − 4v

= −
∫ 2

√
v

−2
√
v

dx

π
√
4v − x2

. (3.17)
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3.2 Transition Measure II 37

The second equality in (3.17) is well known, or obtained by using the Stieltjes
inversion formula. Applying Proposition 3.3, we get

ω(u) =
∫ 2

√
v

−2
√
v
|u − x | dx

π
√
4v − x2

=
{

2
π
(uarcsin u

2
√
v
+ √

4v − u2), |u| � 2
√
v,

|u|, |u| > 2
√
v.

(3.18)
The particular case of m = 0 and v = 1 in (3.14) gives the standard semi-circle
distribution. The corresponding continuous diagram of (3.18) is what we call the
limit shape (see Fig. 4.1).

Example 3.2 The free Poisson distribution, or the Marchenko–Pastur distribution,
with parameter λ:

{
ν, λ � 1,

ν + (1 − λ)δ0, 0 < λ � 1,

ν(dx) =
√
4λ − (x − 1 − λ)2

2πx
1(

(1−√
λ)2,(1+√

λ)2
)(x)dx

is characterized by the free cumulant sequence: R1 = R2 = · · · = λ. Translating it
to have mean 0, we start from

R1 = 0, R2 = R3 = · · · = λ > 0 (3.19)

to compute the corresponding continuous diagram. Similarly to (3.16) we have

z = K (ζ ) = 1

ζ
+ λζ

1 − ζ
, ζ = G(z) = z + 1 − √

(z − 1)2 − 4λ

2(z + λ)

from (3.19) and (1.26), and hence

− G ′(z)
G(z)

= 1

2
√

(z − 1)2 − 4λ

(
1 + λ − 1

z + λ

)
+ 1

2(z + λ)
. (3.20)

We seek R-valued measure τ on R with compact support which has (3.20) as its
Stieltjes transform. Set z = x + iy (y > 0) and

√
(z − 1)2 − 4λ = u + iv. Then, the

imaginary part of (3.20) is given by

− 1

2

{ v

u2 + v2
+ (λ − 1)(uy + v(x + λ))

(u(x + λ) − vy)2 + (uy + v(x + λ))2
+ y

(x + λ)2 + y2

}
. (3.21)

Since (z− 1)2 − 4λ = (x − 1)2 − 4λ− y2 + i2y(x − 1), (3.21) tends to 0 as y ↓ 0 if
(x − 1)2 − 4λ > 0 and x + λ = 0. On the other hand, if (x − 1)2 − 4λ < 0, we get

http://dx.doi.org/10.1007/978-4-431-56487-4_4
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lim
y↓0(3.21) = −1

2

( 1
√
4λ − (x − 1)2

+ λ − 1

(x + λ)
√
4λ − (x − 1)2

)

by noting limy↓0 u = 0. The Stieltjes inversion formula then yields that τ (if it exists)
has the absolutely continuous part

τ̃ (dx) = 1

2π

( 1
√
4λ − (x − 1)2

+ λ − 1

(x + λ)
√
4λ − (x − 1)2

)
1(1−2

√
λ,1+2

√
λ)(x)dx .

(3.22)
The Stieltjes transform of (3.22) is actually computed (by any method you like, e.g.
residue calculus) as

G τ̃ (z) = (1 − δλ1)
λ − 1

2

{ 1

|λ − 1|(z + λ)
+ 1

(z + λ)
√

(z − 1)2 − 4λ

}

+ 1

2
√

(z − 1)2 − 4λ
, z ∈ C

+. (3.23)

Comparing (3.23) with (3.20), we see that the R-valued measure

τ =

⎧
⎪⎨

⎪⎩

τ̃ , λ > 1,

τ̃ + 1
2δ−1, λ = 1,

τ̃ + δ−λ, 0 < λ < 1

(3.24)

defined from τ̃ of (3.22) is compactly supported and has (3.20) as its Stieltjes trans-
form. Applying Proposition 3.3, we get the corresponding continuous diagram from
the Rayleigh measure τ of (3.24). As for τ̃ ,

∫

R

|u − x |τ̃ (dx)

=
√

λ

2π

∫ 2

−2

∣
∣
∣
u − 1√

λ
− x

∣
∣
∣

dx√
4 − x2

+ λ − 1

2π

∫ 2

−2

∣
∣
∣
u − 1√

λ
− x

∣
∣
∣

dx

(x + √
λ + 1√

λ
)
√
4 − x2

.

The case of λ = 1 is easier. To handle the case of λ = 1, use (if you like)

1

(x + √
λ + 1√

λ
)
√
4 − x2

= d

dx

⎛

⎝ 2

|√λ − 1√
λ
|arcsin

√
(
√

λ + 1√
λ

+ 2)(x + 2)

2
√
x + √

λ + 1√
λ

⎞

⎠ ,

x

(x + √
λ + 1√

λ
)
√
4 − x2

= 1√
4 − x2

−
√

λ + 1√
λ

(x + √
λ + 1√

λ
)
√
4 − x2

.
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The result of ω(u) = ∫
R

|u − x |τ(dx) is as follows: if λ � 1,

ω(u) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

√
4λ−(u−1)2

π
+ u−λ

π
arcsin u−1

2
√

λ
− u+λ

2

+ 2(u+λ)

π
arcsin

√
(
√

λ+ 1√
λ
+2)(u−1+2

√
λ)

2
√
u+λ

, 1 − 2
√

λ � u � 1 + 2
√

λ,

|u|, u � 1 − 2
√

λ or 1 + 2
√

λ � u,

and, if 0 < λ � 1,

ω(u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−u, u � −λ,

u + 2λ, −λ � u � 1 − 2
√

λ,√
4λ−(u−1)2

π
+ u−λ

π
arcsin u−1

2
√

λ
+ 3(u+λ)

2

− 2(u+λ)

π
arcsin

√
(
√

λ+ 1√
λ
+2)(u−1+2

√
λ)

2
√
u+λ

, 1 − 2
√

λ � u � 1 + 2
√

λ,

u, 1 + 2
√

λ � u.

3.3 Continuous Diagram II

This section contains remarks on the topologies on D.

Lemma 3.3 The following three families of pseudo-distances on D give the same
topology: for ω1, ω2 ∈ D,

{|Mk(mω1) − Mk(mω2)|
}
k∈N,

{∣
∣
∣

∫

R

xk
(
ω1(x) − |x |)′

dx −
∫

R

xk
(
ω2(x) − |x |)′

dx
∣
∣
∣
}

k∈N
,

{∣
∣
∣

∫

R

xk−1
(
ω1(x) − ω2(x)

)
dx

∣
∣
∣
}

k∈N
.

Proof The formula (3.4) is rewritten for |z| 
 1 as

∞∑

n=0

Mn(mω)

zn
= exp

{
−

∞∑

k=1

1

zk+1

∫

R

xk
(ω(x) − |x |

2

)′
dx

}
. (3.25)

Hence {Mn(mω)}n and
{∫

R
xk(ω(x) − |x |)′dx}

k
are expressed by polynomials in

each other. The rest follows immediately from integration by parts.

The beginning of the relation given by (3.25) are

M0(mω) = 1, M1(mω) = 0, M2(mω) =
∫

R

ω(x) − |x |
2

dx, · · · . (3.26)
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We call the topology determined in Lemma 3.3 the moment topology on D.

Lemma 3.4 For a > 0, the moment and uniform topologies on D
(a) coincide.

Proof Weverify that themoment topology is stronger since the converse is immediate
from a triangle inequality. By virtue of Lemma 3.1, the uniformity can be replaced
by the pointwise convergence. For ω1, ω2 ∈ D, we have

|ω1(u)−ω2(u)| =
∣
∣
∣

∫ a

−a
1[−a,u](x)

{
(ω1(x)−|x |)′−(ω2(x)−|x |)′}dx

∣
∣
∣, u ∈ [−a, a].

Approximating 1[−a,u] by a continuous function and then by a polynomial, we see
that, for any δ > 0, there exists a polynomial pδ such that

|ω1(u) − ω2(u)| � δ +
∣
∣
∣

∫ a

−a
pδ(x)

{
(ω1(x) − |x |)′ − (ω2(x) − |x |)′}dx

∣
∣
∣.

The second term of RHS can be arbitrarily small in the moment topology.

Proposition 3.4 The moment topology is stronger than the uniform topology on D.

Proof Since both topologies are metrizable, it suffices to discuss convergence of a
sequence. Assume that {ωn}∞n=1 ⊂ D converges to ω0 ∈ D in the moment topology.
First let ω0(x) ≡ |x |. If ωn does not converge uniformly, then ∃ε > 0, ∃{ωn j } j :
subsequence,∀ j , supx∈R

∣
∣ωn j (x)−|x |∣∣ � ε. Sinceωn j ∈ D, this condition necessarily

yields ωn j (0) � ε. We can take a triangular diagram1 Δ satisfying ωn j (x) � Δ(x)
(∀x ∈ R) and have

M2(mωn j
) =

∫

R

ωn j (x) − |x |
2

dx �
∫

R

Δ(x) − |x |
2

dx > 0 = M2(mω0).

This contradicts the convergence of the moments.
Let ω0(x) ≡ |x | hence ∫

R

(
ω0(x) − |x |)dx > 0 hold. By the assumption,

lim
n→∞

∫

R

xk−1(−x)
(
ωn(x) − |x |)′

dx =
∫

R

xk−1(−x)
(
ω0(x) − |x |)′

dx, k ∈ N.

(3.27)
Setting

cn =
∫

R

(−x)
(
ωn(x) − |x |)′

dx, n ∈ N ∪ {0},

we can assume cn > 0 since limn→∞ cn = c0 > 0. Set

νn(dx) = c−1
n (−x)

(
ωn(x) − |x |)′

dx, n ∈ N ∪ {0}. (3.28)

1A continuous diagram Δ such that the region |x | � y � Δ(x) is a triangle.



3.3 Continuous Diagram II 41

Since ωn ∈ D, we have νn ∈ P(R) and convergence of the moments of νn by (3.27),
which implies the weak convergence of νn to ν0 as n → ∞ (because ν0 is compactly
supported). Noting that ν0

(
(0,∞)

)
> 0 and ν0

(
(−∞, 0)

)
> 0 hold, we first consider

on (0,∞). In (3.28), we want to remove the effect of multiplication by x . This turns
out to be possible since we have |(ωn(x) − |x |)′| � 2 and hence

0 �
∫ δ

0

{−(ωn(x) − |x |)′}dx � 2δ

for any δ > 0 and n ∈ N ∪ {0}. Therefore,

lim
n→∞

∫ ∞

0
f (x)

{−(ωn(x)−|x |)′}dx =
∫ ∞

0
f (x)

{−(ω0(x)−|x |)′}dx, f ∈ Cb(R).

A similar discussion proceeds on (−∞, 0) also. Then, we get pointwise convergence
of the distribution functions and consequently

lim
n→∞ ωn(u) = ω(u), u ∈ R.

This with Lemma 3.1 completes the proof.

Remark 3.2 We thus have three topologies on D = ⋃
a>0 D

(a) according to the
order of strength: the inductive limit topology (of the uniform topology on each), the
moment topology, and the uniform topology.



Chapter 4
Static Model

Abstract Since the Plancherel measure on the path space of the Young graph is
ergodic, some deterministic aspects will appear in a macroscopic point of view. In
this chapter, we describe the famous limit shape problem for the profiles of random
Young diagrams in the Plancherel ensemble, which is due to Vershik–Kerov and
Logan–Shepp, as a strong lawof large numbers for the Plancherelmeasure on the path
space. Free cumulants of the transition measure play a central role in characterizing
the limit shape of Young diagrams.

4.1 Balanced Young Diagrams

The Plancherel measure MPl was introduced by (1.17) as an ergodic central probabil-
ity on the path space T. The aim of this section is to show the following asymptotic
property of MPl. Recall t (n) ∈ Yn denotes the nth vertex of the path t ∈ T.

Theorem 4.1 There exists c > 0 such that, for MPl-a.s. path t ∈ T,

t (n)1 � c
√
n and t (n)′1 � c

√
n

hold if n is sufficiently large.

Let us recall the Robinson–Schensted correspondence holding between permuta-

tions and pairs of standard tableaux. To obtain from x =
(
1 2 . . . n
x1 x2 . . . xn

)

∈ Sn a pair

(P, Q) of standard tableaux with a common shape in Yn , we consider a sequence of
pairs

(P0, Q0) = (∅, ∅), (P1, Q1), . . . , (Pn, Qn) = (P, Q)

as follows.

© The Author(s) 2016
A. Hora, The Limit Shape Problem for Ensembles of Young Diagrams,
SpringerBriefs in Mathematical Physics, DOI 10.1007/978-4-431-56487-4_4
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1. P1 contains x1 in the box � ∈ Y1.
2. If x2 > x1, P2 has shape (21) with x1, x2 in the row. If x2 < x1, x2 bumps x1 and

send it to the next row to obtain P2 of shape (12) with x2, x1 in the column.
3. Provided that Pk−1 containing x1, . . . , xk−1 is in hand, compare xk with the letters

in the first row R1 of Pk−1. If xk is larger than any other, simply add xk at the
right end of R1 to get Pk . Otherwise, xk bumps the smallest y larger than xk in R1

and send y to the next row. Then, compare y with the second row of Pk−1, and
continue such a bumping procedure until xn is put to get Pn finally.

4. Letting λ(k) ∈ Yk denote the shape of Pk , we have a path λ(0) = ∅ ↗ λ(1)

↗ . . . ↗ λ(k). Let Qk ∈ STab(λ(k)) correspond to this path. We thus get P =
Pn, Q = Qn ∈ STab(λ(n)) with λ(n) ∈ Yn .

Proposition 4.1 For n ∈ N, the map x → (P, Q) gives a bijection between

Sn
∼= {

(P, Q)
∣
∣ P, Q ∈ STab(λ), λ ∈ Yn

}
. (4.1)

Moreover, letting Ln(x) be the length of a longest increasing subsequence of x, we
have Ln(x) = λ1 under (4.1).

See [25, Chap. 3] for the proof of Proposition 4.1. Here (xi1xi2 . . . xik ) is called an

increasing subsequence of x =
(
1 2 . . . n
x1 x2 . . . xn

)

∈ Sn if xi1 < xi2 < · · · < xik holds

with i1 < i2 < · · · < ik .

Lemma 4.1 The law of Ln with respect to the uniform probability Probn on Sn is
given by

Probn(Ln = l) = M (n)
Pl

({λ ∈ Yn | λ1 = l}), l ∈ {1, 2, . . . , n}. (4.2)

Proof Propositions 4.1 and 1.2 yield

∣
∣{x ∈ Sn | Ln(x) = l}∣∣ = ∣

∣{(P, Q) | P, Q ∈ STab(λ), λ ∈ Yn, λ1 = l}∣∣
=

∑

λ∈Yn : λ1=l

(dim λ)2.

Multiplying this by 1/n!, we get (4.2).
Lemma 4.2 For n ∈ N,

Probn(Ln � l) � n↓l/(l!)2, l ∈ {1, 2, . . . , n}. (4.3)

Proof Given l ∈ {1, 2, · · · , n}, estimate the number of permutations x with Ln(x) �
l quite roughly. Since there may be

(n
l

)
choices for l positions and l letters to extract

an increasing subsequence of length l, we have

Probn(Ln � l) � 1

n!
(
n

l

)2

(n − l)! = n↓l

(l!)2 .

http://dx.doi.org/10.1007/978-4-431-56487-4_1
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For c > 0, we consider

∞∑

n=1

MPl
({t ∈ T | t (n)1 > c

√
n}) =

∞∑

n=1

M (n)
Pl

({λ ∈ Yn | λ1 > c
√
n}). (4.4)

Combining (4.2) and (4.3) with Stirling’s formula, we easily see (4.4) is finite if
c > e. Since the same estimate holds for t (n)′1 by the symmetry of the Plancherel
measure, we have

∞∑

n=1

MPl
({t ∈ T | t (n)1 > c

√
n or t (n)′1 > c

√
n}) < ∞

if c > e. Then, the Borel–Cantelli lemma completes the proof of Theorem 4.1.
Since any λ ∈ Yn satisfies λ1λ

′
1 � n, the condition λ1 � c

√
n, λ′

1 � c
√
n for

λ ∈ Yn implies √
n

c
� λ1 � c

√
n,

√
n

c
� λ′

1 � c
√
n. (4.5)

Such a λ ∈ Yn satisfying (4.5) is said to be c-balanced.

4.2 Convergence to the Limit Shape

In this section, we show a fundamental fact about the asymptotic property of the
profiles of Young diagrams in the Plancherel ensemble (Theorem 4.2). Let Ω denote
the continuous diagram of (3.18) in the case of v = 1 (Fig. 4.1):

Ω(x) =
{

2
π
(xarcsin x

2 + √
4 − x2), |x | � 2,

|x |, |x | > 2.
(4.6)

SinceTheorem4.1 assures that typicalYoung diagrams grow in a balancedmanner
(4.5) under the Plancherel measure, it is appropriate to consider a limit rescaled by
1/

√
n. For λ ∈ Yn ⊂ D0, define λ

√
n ∈ D0 by

λ
√
n(x) = 1√

n
λ(

√
nx). (4.7)

Theorem 4.2 For MPl-a.s. path t ∈ T, rectangular diagram t (n)
√
n converges to Ω

as n → ∞ in D with respect to the moment topology, hence to the uniform topology
also.

A weak law obviously follows from Theorem 4.2, a strong law. Recall that M (n)
Pl

denotes the Plancherel measure (1.18) on Yn as a marginal distribution of MPl.

http://dx.doi.org/10.1007/978-4-431-56487-4_3
http://dx.doi.org/10.1007/978-4-431-56487-4_1
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Fig. 4.1 Limit shape Ω of Young diagram

Corollary 4.1 For any ε > 0,

lim
n→∞ M (n)

Pl

({
λ ∈ Yn

∣
∣
∣ sup

x∈R
|λ√

n(x) − Ω(x)| � ε
})

= 0.

Since convergence of the moments is equivalent to convergence of the free cumu-
lants by the free cumulant-moment formula (1.23), Theorem 4.2 follows from the
following result.

Theorem 4.3 For MPl-a.s. path t ∈ T, the convergence of

lim
n→∞ Rk

(
mt (n)

√
n

) = Rk(mΩ), k ∈ N (4.8)

holds.

The rest of this section is devoted to the proof of Theorem 4.3. However, some
explanatory comments are scattered as Remarks on the way.

We have Rk(mΩ) = δk,2 by (3.15), R1(mλ
√
n ) = 0 and R2(mλ

√
n ) = 1 for λ ∈ Yn

by (2.19) and (2.11). Hence (4.8) is equivalent to

lim
n→∞ Rk

(
mt (n)

√
n

) = 0, k ∈ N, k � 3. (4.9)

It suffices to show that, for a fixed k � 3, (4.9) holds for MPl-a.s. t ∈ T.

Remark 4.1 As many textbooks on probability theory tell us, the strong law of large
numbers for the sum of i.i.d. R-valued random variables {Xn} easily follows from
the Borel–Cantelli lemma if Xn is assumed to have the fourth moment. Considering
the expectation of Rk(mt (n)

√
n )4 below is suggested by this fact.

http://dx.doi.org/10.1007/978-4-431-56487-4_1
http://dx.doi.org/10.1007/978-4-431-56487-4_3
http://dx.doi.org/10.1007/978-4-431-56487-4_2
http://dx.doi.org/10.1007/978-4-431-56487-4_2
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For c > 0, let Yn,c denote the subset of Yn consisting of c-balanced Young
diagrams (namely, satisfying (4.5)). As a result we will have

∞∑

n=1

∫

{t∈T | t (n)∈Yn,c}
Rk(mt (n)

√
n )

4MPl(dt) < ∞ (4.10)

for any c > 0 and k � 3. First we verify that the desired consequence follows from
(4.10).

Since (4.10) with the Chebyshev inequality gives

∞∑

n=1

MPl
({
t ∈ T

∣
∣ t (n) ∈ Yn,c, |Rk(mt (n)

√
n )| � ε

})
< ∞

for any ε > 0, the Borel–Cantelli lemma yields that, for MPl-a.s. t ∈ T, t (n) /∈ Yn,c

or |Rk(mt (n)
√
n )| < ε holds except finite n’s. On the other hand, Theorem 4.1 tells

that, if c > 0 is large enough, then, for MPl-a.s. t ∈ T, t (n) ∈ Yn,c holds except
finite n’s. Hence we have, for MPl-a.s. t ∈ T, t (n) ∈ Yn,c and |Rk(mt (n)

√
n )| < ε hold

except finite n’s. Taking a decreasing sequence ε j ↓ 0, set

T(0) =
∞⋂

k=3

∞⋂

j=1

{
t ∈ T

∣
∣ t (n) ∈ Yn,c, |Rk(mt (n)

√
n )| < ε j except finite n’s

}
.

We have MPl(T
(0)) = 1 and that (4.9) holds if t ∈ T(0).

Remark 4.2 Actually, the property of elements of T(0) assures that we have proved
the convergence of Theorem 4.2 with respect to the inductive limit topology on D

(see Remark 3.2).

Remark 4.3 Recall that {Rk(mλ)}k∈{2,3,...} forms a generating set of the Kerov–
Olshanski algebra A. Among several generating sets of A mentioned in Sect. 2.3,
Σk(λ) of (2.21) (irreducible character of the symmetric group) is best fit to compute
the expectation with respect to the Plancherel measure. We know the transition rules
between generators of A to a more or less considerable extent.

To show (4.10), we apply Theorem 2.2 and replace Rk with Σk−1, taking
Remark 4.3 into account. We have

∫

{t∈T | t (n)∈Yn,c}
Rk(mt (n)

√
n )

4MPl(dt)

=
∑

λ∈Yn,c

Rk(mλ
√
n )

4M (n)
Pl ({λ}) =

∑

λ∈Yn,c

n−2k Rk(mλ)
4M (n)

Pl ({λ})

=
∑

λ∈Yn,c

n−2k
{
Σk−1(λ) − Pk−1

(
R2(mλ), . . . , Rk−2(mλ)

)}4
M (n)

Pl ({λ})

http://dx.doi.org/10.1007/978-4-431-56487-4_3
http://dx.doi.org/10.1007/978-4-431-56487-4_2
http://dx.doi.org/10.1007/978-4-431-56487-4_2
http://dx.doi.org/10.1007/978-4-431-56487-4_2
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� 8
∑

λ∈Yn,c

n−2kΣk−1(λ)4M (n)
Pl ({λ})

+ 8
∑

λ∈Yn,c

n−2k Pk−1
(
R2(mλ), . . . , Rk−2(mλ)

)4
M (n)

Pl ({λ}), (4.11)

where note that Corollary 3.1 (with the free cumulant-moment formula) yields

Rk(mλ
√
n ) = n−k/2Rk(mλ), λ ∈ Yn.

The second sum of (4.11) is treated by easy weight-degree counting. In fact, we
know by Corollary 3.1 that, if λ ∈ Yn,c, suppmλ

√
n ⊂ [−c, c] and hence

|R j (mλ)| = n j/2|R j (mλ
√
n )| � C ′n j/2 (4.12)

for some C ′ > 0 depending only on c and j . In (4.11),

wt Pk−1
(
R2(mλ), . . . , Rk−2(mλ)

)
� k − 2 (4.13)

holds. Hence we have from (4.12) and wt R j (mλ) = j

2nd sum of(4.11) � C ′′ ∑

λ∈Yn,c

n−2kn4(k−2)/2M (n)
Pl ({λ}) � C ′′n−4 (4.14)

for some C ′′ > 0 depending only on c and k.

Remark 4.4 As is seen below, it is sufficient for our present purpose that (4.14) holds
for n−2 instead of n−4, and so does (4.13) for k − 1 instead of k − 2.

To rewrite the first sum of (4.11), set Aρ = ∑
x∈Cρ

x for a conjugacy class Cρ of
Sn (see (1.2)), which belongs to the center of C[Sn]. Since a normalized irreducible
character of Sn is multiplicative on the center of C[Sn], we have

∑

λ∈Yn

n−2kΣk−1(λ)4M (n)
Pl ({λ}) =

∑

λ∈Yn

n−2k(k − 1)4χ̃λ
(
A 4

(k−1,1n−k+1)

)
M (n)

Pl ({λ})

= (k − 1)4n−2kδe
(
A 4

(k−1,1n−k+1)

)
. (4.15)

It is easy to see that

δe
(
A 4

(k−1,1n−k+1)

) =
∑

w,x,y,z∈C(k−1,1n−k+1)

δe(wxyz) (4.16)

http://dx.doi.org/10.1007/978-4-431-56487-4_3
http://dx.doi.org/10.1007/978-4-431-56487-4_3
http://dx.doi.org/10.1007/978-4-431-56487-4_1
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is O(n2(k−1)) as n → ∞. In fact, let r = |(suppw) ∪ (supp x) ∪ (supp y) ∪ (supp z)|
in (4.16). If 2r > |suppw| + |supp x | + |supp y| + |supp z| = 4(k − 1), wxyz
cannot coincide with e. Hence we have only to take into account w, x, y, z such that
r � 2(k − 1). Combining this with (4.15), we have verified that

1st sum of (4.11) � C ′′′n−2kn2(k−1) = C ′′′n−2 (4.17)

for some C ′′′ > 0 depending only on k. Now (4.10) follows from (4.11), (4.17) and
(4.14). This completes the proof of Theorem 4.3.

Remark 4.5 In the above proof of Theorem 4.3, we showed (4.10) to apply the
Borel–Cantelli lemma with the help of Theorem 4.1. The balanced condition for
λ’s made the estimate for Pk−1

(
R2(mλ), . . . , Rk−2(mλ)

)
in (4.11) easy. On the other

hand, without knowing the balancedness in advance, we can modify the proof by
expressing the lower weight-degree terms by Σ j ’s instead of R j ’s.

For a modification of the proof of Theorem 4.3, in which the balanced condition
is not explicit, we show

∞∑

n=1

∫

T

Rk(mt (n)
√
n )

4MPl(dt) < ∞, k � 3 (4.18)

instead of (4.10). We use Theorem 2.2 to get, similarly to (4.11),

∫

T

Rk(mt (n)
√
n )

4MPl(dt) � 8
∑

λ∈Yn

n−2kΣk−1(λ)4M (n)
Pl ({λ})

+ 8
∑

λ∈Yn

n−2k Q
(
Σ1(λ), . . . ,Σk−3(λ)

)4
M (n)

Pl ({λ}) (4.19)

where Q is a polynomial satisfying wt Q
(
Σ1(λ), . . . ,Σk−3(λ)

)
� k − 2. Note that

Q = 0 for k = 3 since R3(mλ) = Σ2(λ)holds.The functionQ
(
Σ1(λ), . . . ,Σk−3(λ)

)

is a linear combination of Σ j1(λ)Σ j2(λ) . . . Σ jp (λ)’s, which satisfies

wtΣ j1Σ j2 . . . Σ jp = ( j1 +1)+· · ·+ ( jp +1) = j1 +· · ·+ jp + p � k−2. (4.20)

To estimate (4.19), we again use multiplicativity of χ̃λ on the center of C[Sn] with
noticing, however, appearance of Σ1. Let j1, . . . , jq � 2 and jq+1 = · · · = jp = 1
for 0 � q � p. Then, we have

http://dx.doi.org/10.1007/978-4-431-56487-4_2
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∑

λ∈Yn

n−2k(Σ j1(λ) . . . Σ jp (λ)
)4
M (n)

Pl ({λ})

=
∑

λ∈Yn

n−2k+4(p−q)
(
Σ j1(λ) . . . Σ jq (λ)

)4
M (n)

Pl ({λ})

=
∑

λ∈Yn

n−2k+4(p−q) j41 . . . j4q χ̃λ
( q∏

i=1

A 4
( ji ,1n− ji )

)
M (n)

Pl ({λ})

= n−2k+4(p−q) j41 . . . j4q δe

( q∏

i=1

A 4
( ji ,1n− ji )

)
. (4.21)

Similarly to the estimate for (4.16), we see

(4.21) � K ′n−2k+4(p−q)n2( j1+···+ jq ) � K ′n−2k+4(p−q)+2(k−2−2p+q) = K ′n−4−2q

by (4.20), where K ′ > 0 depends only on j1, . . . , jp. We have thus

2nd sum of (4.19) � Kn−4

for some K > 0 depending only on k. This leads to the proof of (4.18), and hence
of Theorem 4.3.

Remark 4.6 In [14], we included a (partly non-self-contained) proof of the limit
shape for the Plancherel measure of symmetric groups in terms of analysis of the
Jucys–Murphy elements. Actually, overlap of this book with [14] is not so much
except presentations of basic notions on Young diagrams. In the latter, the main
ingredient concerning asymptotic representation theory was the fluctuation (CLT),
which we analyzed by the method of quantum decomposition therein.

4.3 Continuous Hook and the Limit Shape

In this section, we present a variational approach to the limit shape problem. We
follow the discussion described in [19, 31] while a full detail of computation is left
to [13].Wegive a proof of Theorem4.2 relying on the hook formula (Proposition 1.1),
balancedness of Young diagrams (Theorem 4.1) and a famous formula of Hardy–
Ramanujan (Theorem 4.4). As a result, group representation theory is not needed for
the proof.

Theorem 4.4 The number of Young diagrams of size n satisfies

|Yn| = eπ
√
2n/3

4
√
3n

(
1 + O

( 1√
n

))

as n → ∞.

http://dx.doi.org/10.1007/978-4-431-56487-4_1
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Fig. 4.2 Continuous hook
length

P(x,y)

B A

See [7] for the proof of Theorem 4.4.
We begin with introducing a continuous version of a hook length for a continuous

diagram. For ω ∈ D, let D(ω) denote the region
{
(x, y) ∈ R

2
∣
∣ |x | < y < ω(x)

}
. In

particular, if λ ∈ Yn , the area of D(λ) is 2n. As indicated in Fig. 4.2, take P(x, y),
A(s, ξ) andB(t, η) for (x, y) ∈ D(ω), and set hω(x, y) = PA+PB. From an obvious
reason, hω(x, y) is called the continuous hook length at (x, y). We have

hω(x, y) = √
2(s − x) + √

2(x − t) = √
2(s − t), (x, y) ∈ D(ω)

where (s, t) is the solution of

{
ξ − y = s − x

ξ = ω(s)
,

{
η − y = −(t − x)

η = ω(t).
(4.22)

Our first task is to show the following asymptotic formula for the Plancherel
measure.

Proposition 4.2 We have

M (n)
Pl ({λ}) = (

1 + o(1)
)√

2πn

exp
{
−n

(
1 +

∫∫

D(λ
√
n)

log
hλ

√
n (x, y)√
2

dxdy + O
( 1√

n

))}
(4.23)

for λ ∈ Yn as n → ∞. The two error terms in (4.23) depend only on n.

Proof [Step 1] Taking it into account that λ ∈ Yn is rescaled by 1/
√
n, we rewrite

M (n)
Pl ({λ}) by using Proposition 1.1 and Stirling’s formula as

M (n)
Pl ({λ}) = n! exp

(
−2

∑

b∈λ

log hλ(b)
)

= n!2n
nn

exp
(
−n

∑

b∈λ

2

n
log

√
2hλ(b)√

n

)

= (
1 + o(1)

)√
2πn exp

{
−n

(
1 − log 2 +

∑

b∈λ

2

n
log

√
2hλ(b)√

n

)}
.

(4.24)

For b ∈ λ ∈ Yn , we replace hλ
√
n (x, y), the continuous hook length at (x, y) ∈ b

√
n

(a small box in λ
√
n), with the value at the center (x0, y0) of b

√
n to have

http://dx.doi.org/10.1007/978-4-431-56487-4_1
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h̃λ
√
n (x, y) = hλ

√
n (x0, y0) =

√
2

n
hλ(b), (x, y) ∈ b

√
n. (4.25)

Putting (4.25) into (4.24), we have

M (n)
Pl ({λ}) = (

1 + o(1)
)√

2πn exp
{
−n

(
1 +

∫∫

D(λ
√
n)

log
h̃λ

√
n (x, y)√
2

dxdy
)}

.

[Step 2] We show

∫∫

D(λ
√
n)

(
log hλ

√
n (x, y) − log h̃λ

√
n (x, y)

)
dxdy = O

( 1√
n

)
(4.26)

holds as n → ∞. First we write the integral on a small box b
√
n , which equals

∫ 1/
√
2n

−1/
√
2n

∫ 1/
√
2n

−1/
√
2n

(
log(h − x − y) − log h

)
dxdy

= h2

2

(
1 +

√
2

h
√
n

)2
log

(
1 +

√
2

h
√
n

)
+ h2

2

(
1 −

√
2

h
√
n

)2
log

(
1 −

√
2

h
√
n

)
− 3

n

where h is the continuous hook length at the center of b
√
n . Since (4.25) yields

h
√
n/2 = hλ(b), we continue as

= 1

n

{(
hλ(b) + 1

)2
log

(
1+ 1

hλ(b)

)
+ (

hλ(b) − 1
)2
log

(
1− 1

hλ(b)

)
− 3

}
. (4.27)

Note that (4.27) is valid also if hλ(b) = 1. Now sum up (4.27) over all boxes b in λ

to get

∣
∣LHS of (4.26)

∣
∣ =

n∑

j=1

∣
∣{b ∈ λ | hλ(b) = j}∣∣

×1

n

∣
∣
∣( j + 1)2 log

(
1 + 1

j

) + ( j − 1)2 log
(
1 − 1

j

) − 3
∣
∣
∣. (4.28)

In (4.28), we have

( j + 1)2 log
(
1 + 1

j

) + ( j − 1)2 log
(
1 − 1

j

) − 3

=
∞∑

k=1

(
−1

k
− 1

k + 1
+ 4

2k + 1

) 1

j2k
= −

∞∑

k=1

1

k(k + 1)(2k + 1) j2k
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for j � 2 (and <0 for j = 1 also). Using this with (4.29) below in [Step 3], we have

(4.28) � C ′
√
n

+
n∑

j=2

∞∑

k=1

√
2√
n

1

k(k + 1)(2k + 1) j2k−(1/2)
� C√

n

for some positive constants C ′ and C .
[Step 3] To complete the proof, we show

max
λ∈Yn

∣
∣{b ∈ λ | hλ(b) = j}∣∣ �

√
2 jn, 1 � j � n. (4.29)

Imagine the English display of a Young diagram. Let b̃ denote the box which the
hook at box b shares with the horizontal strip of the border of λ, in other words, the
end of the leg from b. If b itself lies in a horizontal strip of the border, we set b̃ = b. If
b̃ is distant by more than j from the right-nearest corner, the hook at b does not have
length j . For each horizontal strip of the border, therefore, we have only to consider
at most ( j∧ (the horizontal strip length)) hooks. Hence the number of the hooks of
length j is bounded above by

u =
∑

i :mi (λ′)�1

j ∧ mi (λ
′).

For given n and j , the quantity u is maximized by λ ∈ Yn as indicated in Fig. 4.3.
Letting the border of λ in Fig. 4.3 contains (p − 1) horizontal strips of length j , we
have

n = 1

2
j p(p − 1) + j ′ p, u = j (p − 1) + j ′, 0 � j ′ � j − 1. (4.30)

Then, u2 � 2 jn follows from (4.30). Indeed,

2 jn − u2 = j2(p − 1) + j ′(2 j − j ′) � 0.

We thus obtain (4.29).

j′
j

j
j (p−1) horizontal strips of length j

possibly 1 strip of length j′ < j

Fig. 4.3 Young diagram in Step 3 of the proof
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We consider the change of variables through (4.22) i.e.

x = 1

2

(
s − ω(s) + t + ω(t)

)
, y = 1

2

(
t + ω(t) − s + ω(s)

)
(4.31)

for the integral in (4.23), or more generally for ω ∈ D. The map (s, t) → (x, y) by
(4.31) is surjective with the Jacobian

∂x

∂s

∂y

∂t
− ∂x

∂t

∂y

∂s
= 1

2

(
1 − ω′(s)

)(
1 + ω′(t)

)
. (4.32)

Moreover, it is bijective if restricted on the region where (4.32) does not vanish. We
thus have

∫∫

D(ω)

log
hω(x, y)√

2
dxdy = 1

2

∫∫

{s>t}

(
1 − ω′(s)

)(
1 + ω′(t)

)
log(s − t)dsdt.

(4.33)
Comparing (4.33) with (4.23), we set

θ(ω) = 1 + 1

2

∫∫

{s>t}

(
1 − ω′(s)

)(
1 + ω′(t)

)
log(s − t)dsdt, ω ∈ D. (4.34)

Proposition 4.3 The functional θ on D satisfies the following:

θ(Ω) = 0, (4.35)

θ(Ω + φ) = 1

4

∫∫

{s>t}

(φ(s) − φ(t)

s − t

)2
dsdt +

∫

{|s|�2}
φ(s) log

( |s|
2

+
√
s2

4
− 1

)
ds

(4.36)

if Ω + φ ∈ D, and furthermore Ω is a unique minimizer for θ on D.

Proof We show an outline of the computation. See also (4.39) and (4.40). Starting
from (4.34), we have the following after some computation:

θ(Ω) = 1 + 1

2

∫∫

{−2<t<s<2}

(
1 − 2

π
arcsin

s

2

)(
1 + 2

π
arcsin

t

2

)
log(s − t)dsdt

= 1 + 1

2

∫ 2

−2

{∫ 2

t

(
1 − 2

π
arcsin

s

2

)
log(s − t)ds

}
dt

= 1 +
∫ 2

0
(s log s − s)

(
1 − 2

π
arcsin

s

2

)
ds = 0.
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Using (4.34) and (4.35), we have

θ(Ω + φ) =1

2

∫ −2

−∞

(∫ 2

t

(
1 − Ω ′(s)

)
log(s − t)ds

)
φ′(t)dt

− 1

2

∫ ∞

2

(∫ s

−2

(
1 + Ω ′(t)

)
log(s − t)dt

)
φ′(s)ds

− 1

2

∫∫

{s>t}
φ′(s)φ′(t) log(s − t)dsdt. (4.37)

The third term of (4.37) equals the first of (4.36). Indeed, take a > 0 such that
suppφ ⊂ (−a, a) to have

−1

2

∫∫

{s>t}
φ′(s)φ′(t) log(s − t)dsdt

= a

2

∫ a

−a

φ(s)2

a2 − s2
ds + 1

4

∫∫

{−a<t<s<a}

(φ(s) − φ(t)

s − t

)2
dsdt (4.38)

and let a → ∞. The first and second terms of (4.37) give the second of (4.36).
Finally, since Ω + φ ∈ D implies that φ(s) � 0 for |s| � 2, (4.36) yields that Ω

is a unique minimizer of θ .

We mention some integrations for reference: for s ∈ R,

∫ 2

−2

log |s − x |
π

√
4 − x2

dx =
{
log

( |s|
2 +

√
s2
4 − 1

)
, |s| � 2,

0, |s| � 2,
(4.39)

∫ 2

−2

x log |s − x |
π

√
4 − x2

dx =

⎧
⎪⎨

⎪⎩

−s − √
s2 − 4, s � −2,

−s, −2 � s � 2,

−s + √
s2 − 4, 2 � s.

(4.40)

Putting (4.23), (4.33) and (4.34) together, we get the asymptotic

M (n)
Pl ({λ}) = (

1 + o(1)
)√

2πn e−nθ(λ
√
n)+O(

√
n), λ ∈ Yn (4.41)

as n → ∞. Combining (4.41) with Theorem 4.4, we obtain the following.

Theorem 4.5 For any ε > 0,

M (n)
Pl

({λ ∈ Yn | θ(λ
√
n) � ε}) � C1√

n
e−εn+C2

√
n (4.42)

holds with universal positive constants C1 and C2.

Let us now give an alternative proof of Theorem 4.2 by applying Theorem 4.5.
We can take c > 2 and T0 = {t ∈ T | t (n) ∈ Yn,c for sufficiently large n} such that
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MPl(T0) = 1 by Theorem 4.1. Note that λ ∈ Yn,c satisfies supp(λ
√
n −Ω) ⊂ [−c, c]

since c > 2. Then, (4.37) and (4.38) yield

θ(λ
√
n) = θ(Ω + φ) � c

2

∫ c

−c

φ(s)2

c2 − s2
ds, φ = λ

√
n − Ω. (4.43)

Considering an estimate from below for φ(s) in (4.43) by a suitable triangle, we see
that, for λ ∈ Yn,c,

‖λ√
n − Ω‖sup � ε =⇒ θ(λ

√
n) � ε3/(6c).

Therefore, it follows from (4.42) that

M (n)
Pl

({
λ ∈ Yn,c

∣
∣ ‖λ√

n − Ω‖sup � ε
})

� C1√
n
exp

(
−ε3n

6c
+ C2

√
n
)
.

By the Borel–Cantelli lemma, we have T1 ⊂ T such that MPl(T1) = 1 and

t ∈ T1 =⇒ t (n) /∈ Yn,c or ‖t (n)
√
n − Ω‖sup < ε with finite exceptional n’s.

Hence t ∈ T0 ∩T1 satisfies ‖t (n)
√
n −Ω‖sup < ε for sufficiently large n. Routinely,

replace ε by ε j ↓ 0. This completes the proof of Theorem 4.2.

4.4 Approximate Factorization Property

Although this book is mainly concerned with the Plancherel measure, in this section
we look into some progress of the limit shape problem observed in other random
structures. The key notion here is the approximate factorization property of a state of
the group algebra, introduced by Biane in [2], which nicely weakens the ergodicity
of a measure. Another motivation for touching upon a bit general theory here is to
help to see a variety of initial states for the dynamical model treated in Chap. 5.

We beginwith setting a condition for a sequence of probability spaces to formulate
the concentration of profiles. For the sake of convenience, let us say that a sequence
of probability space {(Yn, M

(n))}n∈N admits the concentration at ψ if there exists
ψ ∈ D such that, for any p ∈ N and k1, . . . , kp ∈ {2, 3, . . .},

lim
n→∞ EM(n)

[
Mk1(mλ

√
n ) . . . Mkp (mλ

√
n )

] = Mk1(mψ) . . . Mkp (mψ) (4.44)

holds. The condition (4.44) uniquely determines ψ . Furthermore, (4.44) holds auto-
matically for ki = 0 or 1. It is obvious that (4.44) yields

lim
n→∞ EM(n)

[(
Mk(mλ

√
n ) − Mk(mψ)

)2] = 0, k ∈ N ∪ {0}

http://dx.doi.org/10.1007/978-4-431-56487-4_5
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and hence the weak law of large numbers with respect to the moment topology on
D.

The following two conditions are an equivalent modification of (4.44): there exist
a real sequence {m3,m4, . . .} and a > 0 such that

lim
n→∞ EM(n)

[
Mk1(mλ

√
n ) . . . Mkp (mλ

√
n )

] = mk1 . . .mkp , (4.45)

|mk | � ak . (4.46)

In fact, (4.45) and (4.46) follow from (4.44). Conversely, if we set m0 = m2 = 1
and m1 = 0, (4.45) holds for ki = 0, 1, 2. Then, (4.45) and (4.46) give μ ∈ P(R)

with compact support such that Mk(μ) = mk (k ∈ N ∪ {0}). We obtain ψ ∈ D such
that mψ = μ by virtue of (3.12) and (3.13).

Moreover, (4.45) and (4.46) are equivalent also to that there exist a real sequence
{r3, r4, . . .} and b > 0 such that

lim
n→∞ EM(n)

[
Rk1(mλ

√
n ) . . . Rkp (mλ

√
n )

] = rk1 . . . rkp , (4.47)

|rk | � bk (4.48)

as seen from the free cumulant-moment formula by setting r1 = 0 and r2 = 1. Note
a rough estimate of |NC(k)| � 4k . Under (4.47) and (4.48), {(Yn, M

(n))}n∈N admits
the concentration at ψ ∈ D such that Rk(mψ) = rk .

Lemma 4.3 For a sequence of probability spaces {(Yn, M
(n))}n∈N, (4.47) is equiv-

alent to that: for j, ji ∈ {2, 3, . . .},

EM(n)

[
Σ j1 . . . Σ jp

] = EM(n)

[
Σ j1

]
. . . EM(n)

[
Σ jp

] + o
(
n( j1+···+ jp+p)/2

)
(n → ∞),

(4.49)

lim
n→∞ n−( j+1)/2EM(n)

[
Σ j

] = r j+1. (4.50)

(Note that (4.49) and (4.50) are valid when j or ji equals 1 also by setting r2 = 1.)

Proof The assertions follow from Theorem 2.2 with simple weight counting. For
example, in

EM(n)

[
Σ j1 . . . Σ jp

] = EM(n)

[
R j1+1(mλ) . . . R jp+1(mλ)

] + EM(n)

[
Q

]
,

Q ∈ A is expressed as a polynomial of Ri (mλ)’s with wt Q � j1 +· · ·+ jp + p−2.

Proposition 2.7 with weight counting yields the following.

Lemma 4.4 For a sequence of probability spaces {(Yn, M
(n))}n∈N, (4.49) and (4.50)

are equivalent to

http://dx.doi.org/10.1007/978-4-431-56487-4_3
http://dx.doi.org/10.1007/978-4-431-56487-4_3
http://dx.doi.org/10.1007/978-4-431-56487-4_2
http://dx.doi.org/10.1007/978-4-431-56487-4_2
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EM(n)

[
Σρ�σ

] − EM(n)

[
Σρ

]
EM(n)

[
Σσ

] = o
(
n(|ρ|+l(ρ)+|σ |+l(σ ))/2

)
(4.51)

as n → ∞ for any ρ, σ ∈ Y
× and (4.50).

An element f ∈ K (Sn) is linearly extended to a tracial state of C[Sn], denoted
by the same symbol f . For a probability space (Yn, M

(n)), let f (n) be the tracial state
of C[Sn] assigned to M

(n) through (1.5).

Lemma 4.5 For a sequence of probability spaces {(Yn, M
(n))}n∈N, (4.51) and (4.50)

are equivalent to

f (n)

(ρ�σ,1n−|ρ|−|σ |) − f (n)

(ρ,1n−|ρ|) f
(n)

(σ,1n−|σ |) = o
(
n−(|ρ|−l(ρ)+|σ |−l(σ ))/2

)
(4.52)

as n → ∞ for any ρ, σ ∈ Y
×, and

lim
n→∞ n( j−1)/2 f (n)

( j,1n− j )
= r j+1, j ∈ {2, 3, . . .}. (4.53)

(The case of j = 1 is valid under r2 = 1.)

Lemma 4.5 is shown also through a weight counting argument. In the proofs of
these lemmas, we note that either (4.49) + (4.50), (4.51) + (4.50) or (4.52) + (4.53)
yields

EM(n)

[
Σρ

] = O
(
n(|ρ|+l(ρ))/2

)
, f (n)

(ρ,1n−|ρ|) = O
(
n−(|ρ|−l(ρ))/2

)

as n → ∞ for ρ ∈ Y
× (then trivially extended to ρ ∈ Y).

Among the above conditions concerning the concentration for a sequence of prob-
ability spaces {(Yn, M

(n))}n∈N, we call (4.52) the approximate factorization property
after [2].

Example 4.1 Let λ(n) ∈ Yn be c-balanced for some c > 0 and assume that there
exists ψ ∈ D such that λ(n)

√
n converges to ψ in D (with respect to the moment

topology or the uniform one). It is obvious that {(Yn, δλ(n) )}n∈N satisfies (4.44) and
hence admits the concentration at ψ . Note that, for any ψ ∈ D given, we can take
such c > 0 and λ(n) ∈ Yn,c.

Example 4.2 The Littlewood–Richardson measure M
(μ,ν) is associated with the

outer product μ ◦ ν of μ ∈ Ym and ν ∈ Yn through (1.5):

χ̃μ◦ν =
∑

λ∈Ym+n

M
(μ,ν)({λ})χ̃λ. (4.54)

By using the Littlewood–Richardson coefficients cλ
μν , (4.54) is rewritten as

M
(μ,ν)({λ}) = m!n!

(m + n)!
cλ
μν dim λ

dimμ dim ν
, λ ∈ Ym+n .

http://dx.doi.org/10.1007/978-4-431-56487-4_1
http://dx.doi.org/10.1007/978-4-431-56487-4_1
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Let us take two sequences of c-balanced Young diagrams {μ(m) ∈ Ym}m∈N and
{ν(n) ∈ Yn}n∈N for some c > 0 whose rescaled profiles converge to φ ∈ D

(c) and
ψ ∈ D

(c) respectively, namely

lim
m→∞(μ(m))

√
m = φ, lim

n→∞(ν(n))
√
n = ψ in D

(c) ⊂ D.

Then,
{
(Ym+n, M

(μ(m),ν(n)))
}
m,n∈N admits the concentration at ω ∈ D when m, n →

∞ and m/(m + n) → q ∈ [0, 1]. The limit profile ω is characterized by

mω = mφ1/
√
q � mψ1/

√
1−q (4.55)

where φ1/
√
q(x) = √

qφ(x/
√
q) similarly to (4.7). In fact, we have

χ̃
μ(m)◦ν(n)

(k,1m+n−k )
= m↓k

(m + n)↓k
χ̃

μ(m)

(k,1m−k )
+ n↓k

(m + n)↓k
χ̃ ν(n)

(k,1n−k )
, k � 2. (4.56)

Theorem 2.2 transforms (4.56) into the asymptotic relation between free cumu-
lants of the transition measures, which produces the free convolution in (4.55). The
approximate factorization property follows also from the structure of induced rep-
resentations. This fact of concentration for the Littlewood–Richardson measure was
first obtained by Biane [1].

Example 4.3 Recall that f ∈ K (S∞) is extremal if and only if it is multiplicative
as described in Theorem 1.3. Hence, if f is a character ofS∞, f (n) = f

∣
∣
Sn

satisfies
(4.52) without error terms. Let (α, β) ∈ Δ correspond to f = fα,β in Theorem 1.4.
As shown by Vershik–Kerov [30], row and column lengths of the typical t (n) ∈ Yn

(t ∈ T) with respect to f are nαi and nβi respectively as n → ∞. In order to
consider a macroscopic shape under the rescale by 1/

√
n, we therefore adjust the

Thoma parameter (α(n), β(n)) ∈ Δ to satisfy

α
(n)
1 = O

(
1/

√
n
)
, β

(n)
1 = O(1/

√
n
)

(n → ∞), (4.57)

and consider a sequence of probability spaces {(Yn, M
(n))}n∈N by taking M

(n) =
M

(n)

α(n),β(n) determined through (1.5):

f (n) = fα(n),β(n)

∣
∣
Sn

=
∑

λ∈Yn

M
(n)

α(n),β(n) ({λ})χ̃λ.

For (α, β) ∈ Δ, set γ = 1 − ∑∞
i=1(αi + βi ) ∈ [0, 1] and

να,β =
∞∑

i=1

(αiδαi + βiδ−βi ) + γ δ0 ∈ P(R).

http://dx.doi.org/10.1007/978-4-431-56487-4_2
http://dx.doi.org/10.1007/978-4-431-56487-4_1
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Then, since

Mk(να,β) =
∞∑

i=1

(
αk+1
i + (−1)kβk+1

i

) = fα,β

(
(k + 1)-cycle

)

holds for k ∈ N, we have

Mj−1

(
να(n),β(n)

( 1√
n

· )
)

= n( j−1)/2 f (n)

( j,n− j), j ∈ N.

The supports of να(n),β(n)

(
1√
n

· ) (n ∈ N) are uniformly bounded under (4.57). Con-

sequently, if we take a sequence of Thoma parameters {(α(n), β(n))}n∈N satisfying
(4.57) and the condition that

να(n),β(n)

( 1√
n

· ) converges weakly to ν in P(R),

then
{
(Yn, M

(n)

α(n),β(n) )
}
n∈N admits the concentration at ω = ων such that

Rk(mω) = lim
n→∞ Mk−2

(
να(n),β(n)

( 1√
n

· )
)

= Mk−2(ν), k ∈ {2, 3, . . .}.

The R-transform of mω is given by

Rmω
(ζ ) =

∞∑

k=2

Rk(mω)ζ k−1 =
∫

R

ζ

1 − ζ x
ν(dx),

which serves concrete computation of the limit profile ω. Some details and further
aspects are found in [2, 4].

Remark 4.7 Beyond the concentration of profiles of Young diagrams, one naturally
gets interested in fluctuation from the limit profile. A fundamental reference in this
line with respect to the Plancherel measure is [17]. Further studies are found in [14,
16, 19, 26].



Chapter 5
Dynamic Model

Abstract In this chapter, we discuss a dynamical aspect of the limit shape problem
for random Young diagrams. In a microscopic point of view, a continuous time
Markov chain is introduced on the Young diagrams of size n which keeps the
Plancherel measure invariant and has an initial distribution admitting the concen-
tration at a profile as n tends to∞. Our model is built on such a canonical setting. By
considering a diffusive scaling limit in time versus space, we derive a macroscopic
time evolution of the limit profile. The resulting evolution is described through the
Kerov transition measure in terms of free-probabilistic notions.

5.1 Restriction-Induction Chain

We consider a Markov chain on Yn as follows. For a given λ ∈ Yn , imagine its
profile. Remove a box from one of its peaks according to a certain rate (which is
connected with the Plancherel measure). We have ξ ∈ Yn−1 such that ξ ↗ λ. Next
put a box at one of the valleys of ξ according to a certain rate to have μ ∈ Yn such
that ξ ↗ μ. The chain gets a transition from λ toμ in one step. Alternatively, we can
first put a box and next remove a box in a similar way. If (1.4) and (1.9) are recalled,
this chain is clearly produced by restriction and induction (alternatively, induction
and restriction) for irreducible representations of symmetric groups. Let us here look
at such a restriction-induction chain in a bit general setting.

Let G be a finite group and H its subgroup. Setting

cλ,ξ = [
ResGHλ : ξ

] = [
IndGHξ : λ

]

for λ ∈ Ĝ and ξ ∈ Ĥ , we have

ResGHλ ∼=
⊕

ξ∈Ĥ
[cλ,ξ ]ξ, IndGHξ ∼=

⊕

λ∈Ĝ
[cλ,ξ ]λ

hence

© The Author(s) 2016
A. Hora, The Limit Shape Problem for Ensembles of Young Diagrams,
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IndGHRes
G
Hλ ∼=

⊕

μ∈Ĝ

[∑

ξ∈Ĥ
cλ,ξcμ,ξ

]
μ, λ ∈ Ĝ. (5.1)

Taking the dimension of (5.1), we obtain a transition probability

Pλμ = dimμ

[G : H ] dim λ

∑

ξ∈Ĥ
cλ,ξcμ,ξ , λ, μ ∈ Ĝ. (5.2)

The Plancherel measure on Ĝ is defined by

MG
Pl({λ}) = (dim λ)2/|G|, λ ∈ Ĝ.

Lemma 5.1 The restriction-induction chain on Ĝ is reversible with respect to the
Plancherel measure, that is,

MG
Pl({λ})Pλμ = MG

Pl({μ})Pμλ, λ, μ ∈ Ĝ.

Hence the chain keeps MG
Pl invariant.

Proof We immediately have

MG
Pl({λ})Pλμ = dim λ dimμ

|G|[G : H ]
∑

ξ∈Ĥ
cλ,ξcμ,ξ ,

which is symmetric in λ and μ.

Let χΠ denote the character of a representation Π of G on a finite-dimensional
vector space V , χ̃Π be the normalized one χΠ/ dim V , and χΠ

C denote the value at
an element of a conjugacy class C of G. If π is a representation of H , the induced
character formula for Π = IndGHπ is well-known:

χ̃Π(x) = 1

|G|
∑

y∈G
χ̃π (y−1xy), x ∈ G, (5.3)

where χπ is extended onto G by setting χπ(x) = 0 for x /∈ H . For a conjugacy class
C of G, decompose its restriction to H as C ∩ H = ⊔

i Ci into conjugacy classes
Ci of H . Then, (5.3) is rewritten as

χ̃Π
C =

∑

i

|Ci |
|C | χ̃π

Ci
. (5.4)

We seek eigenvectors of the transition matrix P = [Pλμ]λ,μ∈Ĝ of the restriction-
induction chain. Let x̃C denote the column vector [χ̃λ

C ]λ∈Ĝ for a conjugacy class C
of G.
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Lemma 5.2 We have

P x̃C = |C ∩ H |
|C | x̃C . (5.5)

Proof The λ-entry of P x̃C for λ ∈ Ĝ is computed as

∑

μ∈Ĝ
Pλμχ̃

μ

C = 1

[G : H ] dim λ

∑

μ∈Ĝ

∑

ξ∈Ĥ
cλ,ξcμ,ξχ

μ

C

= 1

[G : H ] dim λ

∑

ξ∈Ĥ
cλ,ξχ

IndGH ξ

C = 1

[G : H ] dim λ
χ
IndGHRes

G
Hλ

C . (5.6)

Applying (5.4) with the decomposition C ∩ H = ⊔
i Ci , we have

χ
IndGHRes

G
Hλ

C =
∑

i

[G : H ] |Ci |
|C | χ

ResGHλ

Ci
= [G : H ] |C ∩ H |

|C | χλ
C .

Hence (5.6) equals (|C ∩ H |/|C |)χ̃λ
C . This completes the proof of (5.5).

Remark 5.1 Restriction-induction chains are effectively used in Fulman’s works [9,
10] etc., which should have been mentioned in [12] also.

5.2 Diffusive Limit

Our Markov chain on Yn mentioned in the beginning of Sect. 5.1 is produced by the
restriction-induction chain for G = Sn and H = Sn−1. In this situation, let us see
the transition probability P (n)

λμ in (5.2) for λ,μ ∈ Yn . Here the superscript (n) is put
to make dependence on n explicit. We now have

cλ,ξ =
{
1, ξ ↗ λ,

0, otherwise,
λ ∈ Yn, ξ ∈ Yn−1.

If λ = μ ∈ Yn , (5.2) yields

P (n)
λλ = 1

[Sn : Sn−1]
∑

ξ∈Yn−1: ξ↗λ

1 = 1

n

∣
∣{peaks of the profile of λ}∣∣.

If λ,μ ∈ Yn are distinct, there possibly exists at most one ξ ∈ Yn−1 such that
ξ ↗ λ and ξ ↗ μ. This ξ is the set-theoretical intersection of the boxes of λ and μ:
ξ = λ ∧ μ. We thus gets
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P (n)
λμ =

⎧
⎪⎨

⎪⎩

∣
∣{peaks of the profile of λ}∣∣/n, λ = μ,

dimμ/(n dim λ), λ ∧ μ ∈ Yn−1,

0, otherwise.

(5.7)

Let us consider a continuous time Markov chain (X (n)
s )s∈[0,∞) with the transition

matrix P(n) = [P (n)
λμ ]λ,μ∈Yn on the state space Yn . LetM

(n)
0 be the initial distribution

on Yn . The induced probability on the set of paths (namely, Yn-valued functions on
[0,∞)) is denoted byM (n). Then, the distributionM (n)(X (n)

s = · ) at time s is given
by

M (n)(X (n)
s = μ) =

∑

λ∈Yn

M
(n)
0 ({λ})(es(P(n)−I))

λμ
, μ ∈ Yn. (5.8)

We take the limit of both s and n tending to ∞ in a diffusive regime, namely under
the rescales of time and space in micro-macro transition:

s ∈ [0,∞) �−→ s

n
, λ ∈ Yn �−→ λ

√
n(x) = 1√

n
λ(

√
nx) (5.9)

respectively. Thus, for (macroscopic) time t ∈ [0,∞), letM(n)
t be the distribution of

the chain at (microscopic) time s = tn:

M
(n)
t ({λ}) = M (n)(X (n)

tn = λ), λ ∈ Yn. (5.10)

The following result tells us that the concentration property of an initial state is
propagated as macroscopic time goes by in our model. The examples mentioned in
Sect. 4.4 serve to produce such initial states.

Theorem 5.1 For a sequence of the Markov chains
{
(X (n)

s )s∈[0,∞)

}
n∈N, assume that

the initial probability space
{
(Yn,M

(n)
0 )

}
n∈N admits the concentration at ω0 ∈ D.

Then, for any macroscopic time t ∈ (0,∞),
{
(Yn,M

(n)
t )

}
n∈N also admits the con-

centration at someωt ∈ D. The limit profileωt is characterized through its transition
measure mωt by using the free convolution and the free compression:

mωt = (mω0)e−t � (mΩ)1−e−t (5.11)

where Ω is the limit shape of (4.6) with the standard semi-circle distribution as its
transition measure mΩ .

Proof [Step 1] We first translate (5.11) in terms of the free cumulant sequence. By
(1.24) and (1.33), we see (5.11) is equivalent to

R1(mωt ) = 0, R2(mωt ) = 1,

Rk(mωt ) = Rk(mω0)e
−(k−1)t , k ∈ {3, 4, · · · }. (5.12)

http://dx.doi.org/10.1007/978-4-431-56487-4_4
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Note that R1(mω0) = 0, R2(mω0) = 1 hold by the assumption of concentration,
especially (4.47).

[Step 2] We use Lemma 5.2 for G = Sn and H = Sn−1. Let C be the conjugacy
class of Sn associated with (ρ, 1n−|ρ|) for ρ ∈ Y. Since

|C ∩ Sn−1|
|C | = (n − |ρ| + m1(ρ))!(n − 1)!

n!(n − 1 − |ρ| + m1(ρ))! = 1 − |ρ| − m1(ρ)

n

holds, applying (5.5) to x̃(ρ,1n−|ρ|) = [
χ̃λ

(ρ,1n−|ρ|)
]
λ∈Yn

, we have

P(n)x̃(ρ,1n−|ρ|) =
(
1 − |ρ| − m1(ρ)

n

)
x̃(ρ,1n−|ρ|) (5.13)

and hence
etn(P(n)−I)x̃(ρ,1n−|ρ|) = e−t (|ρ|−m1(ρ))x̃(ρ,1n−|ρ|). (5.14)

Among several criteria for the concentration developed in Sect. 4.4, we use the one
described in terms of Σρ’s by taking (5.14) into account. Combining (5.10), (5.8)
and (5.14), we obtain for ρ ∈ Y

E
M

(n)
t

[
Σρ

] =
∑

μ∈Yn

M
(n)
t ({μ})Σρ(μ)

=
∑

μ∈Yn

(∑

λ∈Yn

M
(n)
0 ({λ})(etn(P(n)−I))

λμ

)
Σρ(μ)

=
∑

λ∈Yn

M
(n)
0 ({λ})

∑

μ∈Yn

(
etn(P(n)−I))

λμ
Σρ(μ)

=
∑

λ∈Yn

M
(n)
0 ({λ})e−t (|ρ|−m1(ρ))Σρ(λ)

= e−t (|ρ|−m1(ρ))E
M

(n)
0

[
Σρ

]
.

This implies that (4.51) satisfied by M
(n)
0 is inherited byM(n)

t also. Moreover,

n−( j+1)/2E
M

(n)
t

[
Σ j

] = e− j t n−( j+1)/2E
M

(n)
0

[
Σ j

]

n→∞−−−→ e− j t r j+1 = e− j t R j+1(mω0)

holds for j ∈ {2, 3, · · · , }, which agrees with the free cumulant sequence of (5.12).
We have thus shown

{
(Yn,M

(n)
t )

}
n∈N admits the concentration at ωt determined by

(5.11).

Remark 5.2 If we adopt the induction-restriction chain instead of the restriction-
induction one as a microscopic dynamics, (5.7) is replaced by

http://dx.doi.org/10.1007/978-4-431-56487-4_4
http://dx.doi.org/10.1007/978-4-431-56487-4_4
http://dx.doi.org/10.1007/978-4-431-56487-4_4
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P (n)
λμ =

⎧
⎪⎨

⎪⎩

∣
∣{valleys of the profile of λ}∣∣/(n + 1), λ = μ,

dimμ/((n + 1) dim λ), λ ∨ μ ∈ Yn+1,

0, otherwise,

where λ ∨ μ is the set-theoretical union of the boxes of λ and μ. Again, this chain is
reversible with respect to M (n)

Pl . We modify (5.13) and (5.14) as

P(n)x̃(ρ,1n−|ρ|) =
(
1 − |ρ| − m1(ρ)

n + 1

)
x̃(ρ,1n−|ρ|),

etn(P(n)−I)x̃(ρ,1n−|ρ|) = e−t n
n+1 (|ρ|−m1(ρ))x̃(ρ,1n−|ρ|)

respectively for ρ ∈ Y and n ∈ N. Hence Theorem 5.1 remains valid without any
modification.

By (3.26) and (5.12), we have

∫

R

(
ωt (x) − |x |)dx = 2, t ∈ [0,∞).

The macroscopic profile ωt is regarded as the interface of the region between y =
ωt (x) and y = |x | which has constant area 2. We see another aspect of the time
evolution of ωt in terms of the Stieltjes transform of its transition measure. Set

G(t, z) = Gmωt
(z) =

∫

R

1

z − x
mωt (dx). (5.15)

The following is a (nonlinear) PDE aspect of our dynamical model.

Theorem 5.2 The function G(t, z) of (5.15) satisfies the partial differential equa-
tion:

∂G

∂t
(t, z) = G(t, z) + 1

G(t, z)

∂G

∂z
(t, z) − G(t, z)

∂G

∂z
(t, z). (5.16)

Proof Considering (5.12) in (1.26) for μ = mω0 and μ = mωt , we have

K0(ζ ) = Kmω0
(ζ ) = ζ−1 + ζ +

∞∑

k=2

Rk+1(mω0)ζ
k,

K (t, ζ ) = Kmωt
(ζ ) = ζ−1 + ζ +

∞∑

k=2

Rk+1(mω0)e
−ktζ k,

and hence

http://dx.doi.org/10.1007/978-4-431-56487-4_3
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K0(ζe
−t ) = ζ−1et + ζe−t +

∞∑

k=2

Rk+1(mω0)e
−ktζ k

= ζ−1et + ζe−t + K (t, ζ ) − ζ−1 − ζ. (5.17)

Differentiate (5.17) in t and ζ respectively and eliminate the terms containing K ′
0.

Then,
∂K

∂t
(t, ζ ) + ζ

∂K

∂ζ
(t, ζ ) + ζ−1 − ζ = 0. (5.18)

On the other hand, we have

K
(
t,G(t, z)

) = Kmωt

(
Gmωt

(z)
) = z, (5.19)

and hence

∂K

∂t

(
t,G(t, z)

) + ∂K

∂ζ

(
t,G(t, z)

)∂G

∂t
(t, z) = 0,

∂K

∂ζ

(
t,G(t, z)

)∂G

∂z
(t, z) = 1 (5.20)

by differentiating (5.19) in t and z. Replacing ∂K
∂t and ∂K

∂ζ
in (5.18) by the expressions

obtained from (5.20), we have the desired Eq. (5.16).

Remark 5.3 As seen from (5.12), we have the convergence of moments and hence

lim
t→∞mωt = mΩ in P(R).

On the other hand, the ODE

G(z) + 1

G(z)

dG(z)

dz
− G(z)

dG(z)

dz
= 0

connected with (5.16) is easily solved to have the solution

G(z) = z − √
z2 − 4

2
,

which is the Stieltjes transform GmΩ
(z) of mΩ (see (3.16)).

Remark 5.4 Funaki–Sasada [11] gave remarkable results on hydrodynamic limit for
the evolution of profiles of Young diagrams. Their model is given in the setting of the
grand canonical ensemble. The Markov chain governing the microscopic dynamics
runs overY, totality of Young diagrams of all sizes, allowing variation of the number
of boxes. In one step transition from λ ∈ Y, all peaks of λ are treated equally for
removal of a box, and similarly all valleys for addition.

http://dx.doi.org/10.1007/978-4-431-56487-4_3
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Remark 5.5 Borodin–Olshanski [5] showed a very interesting scaling limit for
Markov chains onYn in a diffusive regime for time vs space. Their limit of n → ∞ is
taken not under the rescale inwhich the profile of aYoung diagram survives but under
the one in which characters of S∞ are captured, that is, under the famous Vershik–
Kerov condition. Instead of (5.9), the rescales of time and space in micro-macro
transition are given by 1/n2 and 1/n respectively for the size n of a Young diagram.
TheMarkov chain governing the microscopic dynamics keeps a z-measure invariant.
The constructed diffusion process on the Thoma simplex Δ has rich structure to be
investigated.
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χλ, 4
χ̃λ, 4
Ck(μ), 9
cλ
μν , 58
Cπ (μ), 9
Cρ , 2
Cu , 7
D, 31
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deg, 25
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sλ, 4
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Sλ, 3
STab(λ), 1
supp, 2, 7, 31
Tab(λ), 1
τλ, 18
τω, 33
T, 6
T(λ), 6
Tn , 6
U (k), 5
wt, 25
Y, 4
Yn , 1
Yn,c, 47
Y

×, 7
z↓k , 5
zρ , 2

A
Approximate factorization property, 58

B
Balanced, 45

C
Canonical degree, 25
Central probability, 7
Character, 7
Complete symmetric function, 4
Complete symmetric polynomial, 4
Concentration (at ψ), 56
Continuous diagram, 31
Continuous hook length, 51
Cumulant, 9

Boolean —, 10
free —, 10

Cumulant-moment formula, 10
Boolean —, 10
free —, 10

D
Diffusive, 64

E
Ergodic probability, 7

F
Free, 13

— compression, 13
— convolution, 10

Free Poisson distribution, 37
Frobenius character formula, 5
Frobenius coordinates, 15

H
Hook formula, 2

I
Increasing subsequence, 44
Induced character formula, 62
Induction-restriction chain, 65

K
Kerov polynomial, 29
Kerov–Olshanski algebra, 25

L
Littlewood–Richardson coefficient, 58
Littlewood–Richardson measure, 58

M
Marchenko–Pastur distribution, 37
Maya diagram, 16
Min-max coordinates, 17
Möbius function, 9
Moment topology, 40
Monomial, 3
Monomial symmetric function, 4
Multiplicative, 8

P
Partition, 9

interval —, 10
non-crossing —, 10

Pieri formula, 6
Plancherel growth process, 21
Plancherel measure, 8
Positive-definite, 7
Power sum, 3
Power sum symmetric function, 4
Profile, 15

R
Rayleigh measure, 18, 33
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Rectangular diagram, 18
Restriction-induction chain, 61
Robinson–Schensted correspondence, 43
R-transform, 11

S
Schur function, 4
Schur polynomial, 3
Semi-circle distribution, 36
Specht module, 3
Specht polynomial, 2
Stieltjes transform, 11
Symmetric function, 4

T
Tableau, 1

standard —, 1
Thoma simplex, 8
Transition measure, 19, 33

W
Weight degree, 25

Y
Young diagram, 1
Young graph, 5
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