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Introduction

The importance of probability theory in several fields of pure and applied science
can hardly be overrated. In particular, it is a cornerstone in which several branches
of physics and mathematics have their roots.

Probability theory is the theoretical framework underlying statistics, and thus
enables to rigorously extract information from experimental data with enormous
implications in all fields of science. The language of several branches of modern
theoretical physics, from quantum mechanics to quantum field theory and statistical
physics, is formulated in terms of random variables and processes. One could think
that celebrated Gibbs ensembles of classical statistical mechanics, for example
Q’lexp(—ﬂH), are, in the classical case, nothing but probability densities. In
quantum mechanics, the wave function of a physical system, the quantum state, say
¥(x), allows one to compute probability densities for any observable. Even
quantum field theory, when formulated using euclidean Feynman path integrals, is a
probability theory on the space of configurations of the quantum fields.

The ubiquitous presence of probability theory in modern science and the advent
of more and more powerful computational resources have conferred a role of
increasing relevance to computational methods in ductile and powerful techniques
for investigating reality. Actually, computational physics lies somehow in the
middle between theoretical and experimental physics: experiments are performed
on a computer relying on theoretical models. One creates his/her own virtual lab-
oratory and performs his/her own experiments inside it by sampling a random
variable whose expected value is the solution of the physical problem under study.
The mathematical foundation of most of the methodologies in computational
physics lies, again, in probability theory. Just to give an example, the very famous
Metropolis algorithm, which enabled the quantitative study of all Gibbs ensembles,
ranging from classical fluids to biological molecules, has its roots in an advanced
topic in probability theory, the theory of Markov chains.

Finally, the study of complex systems, with plenty of applications in biology,
physics, chemistry, economy, computer science, and many other fields, has become
during last decades an extremely attractive research field. Probability theory is

xi



xii Introduction

naturally essential for the mathematical modeling, and simulation is a crucial tool to
understand the behavior of such systems.

A robust background in probability theory is thus arguably a mandatory requisite
for graduate students in physics or related disciplines. This book is meant to guide a
student from the very foundations to more advanced topics, like stochastic pro-
cesses and stochastic differential equations. This material is typically dealt with in
advanced textbooks about mathematics, which, due to the volume and the high
level of sophistication of the formalism, are sometimes hard to read for a reader
with a non-strictly mathematical background. We present the material in such a way
to provide a link between basic undergraduate level textbooks and such advanced
books. In doing this, we will keep extreme attention to the mathematical rigor and,
contemporarily, we add simple intuitive explanations that help understanding the
“physical meaning” of advanced mathematical objects.

In addition, we describe the applications of the formalism and the connections
with other branches of physics. For example, we will explore the deep connection
between the Brownian motion, originally introduced to describe the motion of
pollen grains inside water, and quantum mechanics in Feynman’s path integral
formulation.

Furthermore, we describe selected important applications of the formalism of
stochastic processes to various branches of modern physics, namely partial differ-
ential equations, quantum mechanics of interacting particles, and econophysics. The
proposed applications are remarkable examples of complex systems, as they model
a large number of strongly interacting constituents. Their study requires and applies
the same mathematical notions and instruments, ranging from the It6 integral to the
Feynman—Kac and Fokker—Planck equations, on which this flourishing branch of
applied mathematics is based.

We also provide fully solved exercises meant to allow the reader to deepen his
knowledge of the several topics; sometimes, in the exercises we take the oppor-
tunity to present material that is not covered in the main text.

While reading this book, a reader with basic knowledge of a programming
language like C++ or Fortran will become able to implement his/her own simulation
algorithms in computational physics, thus having the possibility to address the
study of models in statistical physics and quantum mechanics. Moreover, and
maybe even more importantly, the reader will develop the background necessary to
consciously and critically use already existing computational physics codes.

The book is organized as follows: in Chap. 1, we will review the basic formalism
of probability theorem, putting emphasis on the topics that will be more useful for
the following chapters. The material in this chapter is naturally standard, but we
find it useful to make the book self-contained, and, moreover, to fix the basic
notations and set up the basis of the formalism in a somehow familiar context. We
take the opportunity to introduce in this chapter also topic that are very interesting
for a physicist, like quantum statistics, Gaussian integration, and Wick’s theorem.

In Chap. 2, we will provide a brief but self-contained and rigorous review of the
basic notions and results of mathematical statistics: this is a large field that deserves
a full book for a comprehensive review. In our context, we find essential to present
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what is needed to be able to analyze experimental data or numerical data on a fully
rigorous basis. Particular emphasis is put on the definition and the properties of
estimators, and on hypothesis tests.

Chapter 3 deals with conditional expectation: this is a crucial ingredient of the
theory of stochastic processes. Since it is quite a difficult notion, we try to add
explanations and elementary constructions that allow the reader to capture the
essential interpretation. After the first three chapters, which somehow provide the
foundation of the book, we start dealing with stochastic processes, which are the
most natural models of phenomena whose time dependence is, to a certain degree,
non-deterministic.

In Chap. 4, we introduce the Markov chains, which are the simplest stochastic
processes. Although simple, those processes, defined by the very intuitive picture
that the state at present time is enough to study the future state, allowing to “forget
the past,” are extremely important in several areas of applied sciences. We focus our
attention on the thermalization process of the Markov chains, that is, on the infinite
time limit. This has deep connection with the thermalization of real physical sys-
tems. We will also prove the Metropolis theorem, which, as mentioned above,
provides the mathematical foundation of a vast number of numerical simulations in
computational physics.

Chapter 5 is meant to teach the reader how to use a computer to design his own
simulations relying on what he learned till now. He/She will learn how to sample a
random variable and a Markov chain, thus learning the basics of Monte Carlo
simulations. This will allow him/her to numerically study a huge variety of physical
models like, just to mention a couple of examples, the Ising model or the model of a
simple liquid in thermal equilibrium.

Chapter 6 deals with the celebrated Brownian motion, starting from the historical
approach invented by Einstein, up to the modern formulation in the context of the
theory of stochastic processes. We stress that the Brownian motion is a meeting
point of several branches of physics, ranging from quantum mechanics in the path
integral formulation to the theory of partial differential equations.

The two final chapters will be devoted to more advanced topics, that is,
stochastic calculus and stochastic differential equations, with physical applications.
Attention will be devoted both to the formal development and to the applications, in
the attempt of justifying the mathematical objects with their interpretation in the
realm of models of physical systems. We will arrive at the Feynman—Kac and
Fokker—Planck equations, which play a crucial role in several branches of physics.



Chapter 1 ®)
Review of Probability Theory oo

Abstract This chapter provides a self-contained review of the foundations of proba-
bility theory, in order to fix notations and introduce mathematical objects employed in
the remaining chapters. In particular we stress the notions of measurability, related to
what it is actually possible to observe when performing an experiment, and statistical
independence. We present several tools to deal with random variables; in particular
we focus on the normal random variables, a cornerstone in the theory of random
phenomena. We conclude presenting the law of large numbers and the central limit
theorem.

Keywords Probability theory - Probability spaces - Random variables
Probability laws - Law of large numbers - Central limit theorem

1.1 Probability Spaces and Random Variables

Let us begin by introducing the natural environment to deal with random phenomena,
relying on the axiomatic formulation due to Kolmogorov [1]. The first ingredient we
need is provided by the following

Definition 1.1 A probability space is a triplet of the form:
(£2,3, P) (1.1)

where:

1. £2 is a non—empty set, called sample space;

2. Fis a o-field of subsets of £2, called the set of events;
3. P is a measure JF satisfying the condition P(£2) = 1, called probability
measure.

© Springer International Publishing AG, part of Springer Nature 2018 1
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The elements of £2 are interpreted as all the possible outcomes of an experiment
modelled by the probability space (2, F, P).Once observed the outcome of the given
experiment, we know whether some events have happened or not: the collection of
such events is J. The probability measure describes how likely is the outcoming of the
events. The mathematical requirement of J being a o -field means, by definition, that
F is closed under countable unions and intersections, and under complementations;
moreover, §2 itself and the empty set ¥ belongs to F by definition. The measure P is
o-additive, i.e., for any countable family of events {A}, ..., A,, ...} C F such that

+oo +00
P UAJ- = ZP(Aj) (1.2)
j=1 j=1

In general, the sample space can be any non-empty set, finite, infinite countable
or uncountable. Whenever £2 is finite or countably infinite, the o-field is always
taken to be the whole power set of £2, F = P(£2), containing all the subsets of £2.
Whenever £2 is uncountable, the power set is in general too large, giving rise to
pathological situations in which a probability measure cannot be defined (the reader
may remember that this is the case in Lebesgue measure theory). In such cases one
has to restrict the o -field. Whenever £2 is a topological space, we will always choose
the Borel o -field, B(£2), which is the smallest o -field containing all the open subsets
of 2.

The second basic ingredient is the definition of random variable.

Definition 1.2 Let (E, £) be a measurable space, that is a non-empty set
E together with a o-field of subsets £. A random variable is a function
X : 2 — E which is measurable, that is:

VBeé, {wef : X(w)eBledF (1.3)

When we want to make explicit the o -fields, we will use the transparent nota-
tion:
X:(2,F,P)— (E,E) (1.4)

Remark 1.1 We will use simple notation of the form { X € B} instead of the more pre-
ciseone {w € 2 : X(w) € B}, or, in case of real valued random variables, {X < x}
instead of {w € £2 : X(w) < x} and so on.

Random variables are thus the functions naturally related to the mathematical
structure of measurable spaces, just like continuous functions between topological
spaces and linear applications between vector spaces.

The map:

Beé— uB Y Pxen) (1.5)
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is a probability measure on £ and is called the law or distribution of the random
variable X. The notation X ~ u is commonly use to denote the fact that p is the
law of X. The measurable space (E, £), equipped with the measure i, becomes a
probability space (E, &, u).

Remark 1.2 'We note that the identity map on (£2, F):
we R —idop(w) =w (1.6)

is naturally a random variable and its law is precisely P. This simple observation
allows to conclude that, whenever a probability measure P is defined on a measurable
set, there always exist a random variable taking values in the given set whose law
is P. This could appear trivial at first sight, but it is useful: we will always work
directly with laws, forgetting to explicitly define the random variables.

We stress that the notion of measurability is very important: from the point of
view of the interpretation, the fact that a random variable X is measurable means
that, once observed the outcome of an experiment modelled by (£2, F, P), the value
of X is known. This will turn out to be a key point in future chapters, when our
knowledge will depend on time.

Besides measurability, an extremely important notion is that of independence,
translating in mathematical language the intuitive idea the term suggests.

Definition 1.3 A collection {F j}jeg (not necessarily finite) of sub-o-fields
of F are said to be independent if, for any finite subset J C { the following

equality holds:
P (ﬂ A,-) =[P 1.7)

ied ieJ

for any choice of events A; € F;.
A collection {A; }je ; of events belonging to J are said to be independent

if the sub-o-fields {F 4, }jeg’ Fa, = {9, Aj, A]C, 2}, are independent.
A collection {Xj}jeg of random variables, X; : (22, F, P) — (E;, &),
are said to be independent if the generated sub-o-fields {o (X j)}je 50 (X;)

being, by definition, the smallest o-field containing all the events {X; € B}
for all B € €;, are independent.

Remark 1.3 The definition of a o-field o (X) generated by a random variable X, will
be useful in the following chapters. It is the smallest o -field making X a measurable
function. This means that it contains the minimal information needed to know the
value of X, once an experiment is performed.
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1.2 First Examples: Binomial Law, Poisson Law,
and Geometric Law

Now that we have introduced the most important ingredients, we are ready to build up
our first examples of probability spaces and random variables. We consider an exper-
iment consisting in tossing a (non necessarily balanced) coin n times and counting
the number of heads obtained. How can we describe such situation in the language
of probability theory? It is quite natural to build up a probability space (£2, F, P) in
the following way; let’s choose:

2 =1{0,1)" (1.8)

This means that the possible outcomes have the form £2 5 w = (wy, ..., w,) where,
using a simple convention, w; = 0 if at the i-th toss we get tail and w; = 1 if we get
head. We may consider as o -field the whole power set of £2, F = P(£2), containing
all the subsets of £2.

The definition of the probability measure requires some more work. We introduce
a parameter p € [0, 1], which would be equal to 1/2 if the coin were perfectly
balanced, with the interpretation of how likely is the outcome of head in a single
toss. Rigorously, this means we are defining:

P(A)=p, Vi=1l,....,n, Ai={w=(w),...,0,) € 2| w; =1} (1.9)

assuming that all tosses are equivalent, i.e. P(A;) does not depend on i. We observe
now that the event “the first x tosses (x = 0, ..., n) give head and the other (n — x)
tail”, contains only the element of £2:

w=(11,...,10,...,00=AN---NANAS, N---NAS (1.10)
If we assume that the tosses are independent we have necessarily:
Plo=(,1,...,1,0,...,00h =p* 1 —p)" (1.11)

Moreover any element of @ in which the value 1 appears x times and the value 0
(n — x) times has the same probability by construction. We have thus defined P ({w})
for all w € §2 and thus:

P(A) =) P({o) (1.12)

weA

for any event A € F = P(£2).
The definition of the probability space (§2, F, P) is now completed.



1.2 First Examples: Binomial Law, Poisson Law, and Geometric Law 5

Let’s define now the random variable X : 2 — {0, 1, ..., n}:
o= (@....0) > X(@) =) o (1.13)
i=1
where the set {0, 1, ..., n} is trivially measurable once endowed with its power set
o-field P ({0, 1, ..., n}). The random variable X simply counts the number of heads

in n independent coin tosses. The law of X can be obtained very simply starting from
the probabilities:
P(X=x), xe{0,1,...,n} (1.14)

that can be obtained counting the number of different @ € §2 in which the value 1
appears x times and the value O (n — x) times: the event

X=x}={we|) o=x) (1.15)

i=1

contains indeed all such elements, whose number is given by the binomial coefficient:

n n!
The result is:
P(X:x):(Z) PA—p) T, x=0,....n (1.17)

From the knowledge of P(X = x) we immediately obtain the law of X:

BeiP({O,l,...,n})—>;L(B)=Z<:> (1 —p)"™ (1.18)

xeB

This law is very famous and it is called binomial law with parameters (n, p): we
will write X ~ B(n, p). In the particular case n = 1, B(1, p) is called Bernoulli law
with parameter p.

In order to make the notations more compact, it is useful to define a function
p : R — R as follows:

n X _ n—x —
xeR— px) = (x)p A=p™ if x=0,....n (1.19)
0 otherwise
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Such function is called discrete density of X, it is different from zero only in a
countable subset of R and satisfies:

px) =0, > px)=1 (1.20)

xeR

where the sum is meant in the language of infinite summations theory. The law can
be extended naturally to the measurable set made by real numbers equipped with the
Borel o-field B(IR), the smallest o -field containing the open subset of R, (IR, B(IR))

B € B(R) > w(B) = Zp(x) (1.21)

xeB

In this example we have built up explicitly a probability space (§2, F, P) and a
discrete random variable X (i.e. it assumes only a countable set of values). The law of
such random variable turned out to be completely determined by the discrete density
p(x). The reader will imediately realize that the precise details of the definition of the
space (§2, F, P) and of X can be completely forgotten once the law of X is known:
they actually have no impact on the probabilistic description of the experiment.

Starting from the binomial law, it is possible to build up other very important laws.
We consider a law B(n, %), where A > 0 is a fixed parameter, and we investigate the
asymptotic behavior as n — +-00:

Por=n= (1) () a-dr = s a- b= a2

— ));—:(1 )n nn—1).. (l’l x+1) (1 _ %)7)(:

n——4o00 3x _
23 L g

The last expression provides the definition of the Poisson law with parameter A,
related to the discrete density:

Ee=t ¥ =0,1,2,...

e
¥ E€R = plo) = { 0 otherwise (1.23)

It is simple to check that the above function actually defines a discrete density:

+00 )»X
> p) = Z =ee =1 (1.24)
xeR x= 0

A Poisson law is often used to model experiments in which a system of many objects
is observed (for example a collection of nuclei), each having a very low probability
to undergo a certain phenomenon (for example radioactive decay).

Another interesting question is the following: what is the probability that the first
head appears precisely at the x-th toss? Let 7' be the random variable providing the
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toss in which we obtain the first head. To evaluate P(T = x) we can use the following
simple identity:
(T =x}U{T >x} ={T >x —1} (1.25)

implying, since naturally {7 = x} N {T > x} = :
P(T=x)+P(T>x)=P(T >x—-1) (1.26)

The key point is that the event {T" > x} corresponds to no heads in the first x tosses,
so that the probability is:

P(T >x)= (3) pPP=p)0=(1-p)* (1.27)

It follows that:

PT=x)=PT>x—-1D)—-PT>x)=1=-p '—=1U=p*=pl-p* "' (1.28)

We call geometric law of parameter p € [0, 1] the law associated with the discrete
density:

erR—>p(x)={p(l_p)x x=01,2,... (1.29)

0 otherwise

In our example, 7 — 1 has a geometric law.

1.3 Probability and Counting

Within probability theory, quite often it is necessary to be able to count the elements of
a finite set. Whenever the sample space £2 is finite, 2 = {w, ..., wy}, one uniquely
defines the probability measure P assigning the numbers:

pi=P{w}), i=1,...,N (1.30)

For any event A € P (£2), its probability is given by:

P(A) =) pi (1.31)

w; €A

In the particular case of uniform probability (we use the symbol card(X) to denote
the number of elements of a set X):

1 1
= — = — 1.32
P card($2) N ( )
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we have:
card(A)
P(A) =

This relation should be familiar to all readers and reminds the intuitive idea of prob-
ability as the ratio between the number of favorable events and the total number of
possible events.

Moreover, the above relation indicates that, when facing probability problems, a
good skill in counting is desirable. The field of mathematics that deals with counting
the number of elements of a set is combinatorics. We won’t enter the details of such
highly non trivial branch of mathematics. We just summarize a few commonly used
notations. The factorial of a non-negative integer n is defined as:

nl=nm-1)...1=]]i o=1 (1.34)

i=1

and is the number of bijective functions f : {1,...,n} — {1,..., n}, that is the
number of permutations of n objects. Another very important object is the binomial
coefficient, we have already encountered in the previous section:

) J— (1.35)

k) kl(n—k) ’
which can be defined as the coefficient of x* in the expansion of (1 + x)". (Z) is the
number of subsets containing k elements that can be extracted from the set {1, . . ., n}.

1.3.1 A Bit of Quantum Statistics

We find interesting to present a counting exercise that deserves strong attention from
an historical point of view, in connection with the origins of quantum mechanics.
Let’s introduce the problem step by step.

Suppose a single particle energy level € has degeneracy g (this means that there are
g energy levels sharing the same energy ¢) and, in an ideal quantum gas, n particles
can occupy any of the degenerate states. We wish to count the number of different
ways we can distribute the n particles within the g degenerate states.

Actually the solution depends on a crucial point in quantum mechanics and sta-
tistical physics: distinguishability and indistinguishability.

If the particles are assumed to be distinguishable, naturally, starting with the first
particle we have g possibilities to place it inside a single particle state, and so on with
the other particles. The desired number is thus (Maxwell-Boltzmann counting):

N =g" (1.36)
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On the other hand, if the particles are indistinguishable, the counting is strongly
different. When the particles are bosons, there are no restrictions on the number of
particles that can occupy a single particle state, and thus we can proceed as follows:
let’s consider n particles and g — 1 separating walls among the levels (the reader
may think of the levels as boxes and of the particles as balls to be distributed among
the boxes). We have thus n 4+ g — 1 objects, and the number of ways we are looking
for is simply the number of ways we can choose n of these objects to be the particles,
that is (Bose-Einstein counting):

_(n+g-1) _ @m+g-D!
N‘( n )_ (g — Dn! (137

Finally, if the particles are fermions, Pauli principle imposes a severe restriction:
in each single-particle state there can be at most one particle. Assuming g > n, we
can perform the counting as follows. We have to decide which single particle states
contain one particle and which are empty. The number of choices is (Fermi-Dirac

counting):
N:(g) - & (1.38)
n (g —n)ln!

Suppose now we have a collection, possibly infinite, of single particle energy
levels {e4},, with degeneracies g,. We would like to evaluate the number of ways
we can distribute N particles inside the levels in such a way that n, particles have
energy &,. Naturally N = }__ ng.

Let’s use the notation ¢ ({n,}) for the desired number of microstates correspond-
ing to the desired partition of the particles among the energy levels. In what follows,
we will deal with bosons and fermions, forgetting about distinguishable particles.
Relying on the previous results, for bosons we have:

o a D!
t(Ina}) = Hw (1.39)

o (&« — Dlng!

while, for fermions, we have:

|
t(n) =[] —2—— (1.40)

PN
o (8o — na)'ng!

As usual in statistical physics, we claim that, in thermal equilibrium, the particles
populate the levels, on average, in such a way that, given an average energy E =
Za ny&y and an average particles number N = Za Ny, the number of microstates
corresponding to the given average distribution is maximum.
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Let’s perform in detail the calculations in the bosonic case, the fermionic one
being very similar. We will assume high degenaracy and let:

|
t(nah) >~ ] (e + 80! (1.41)

In.!
o 8a g

Moreover, we (brutally!) assume that (a simplified form of the) Stirling formula can
be applied and write:

log (t ({na}) = D (14 + 2u) 108(ne + 8a) — 8o 10g(8a) — e log(na)  (1.42)

o

To find the optimal partition, we find the stationary point of the function:

log (t ((na}) +a Y ng+b Y nata (1.43)

where a, b are Lagrange multipliers, fixing the average particle number and the
average total energy. We thus find the equation:

log(ng + go) + 1 —log(ny) — 14+ a+be, =0 (1.44)
that is: o+
Ba T8 _ oxp(—a — bey) (1.45)
or: g
Ny = - (1.46)

exp (—a —bgy) — 1

where a, b are determined by the constraints:

N = Zna, E = Znaea (1.47)

Typically the optimal partition is written in terms of temperature g = kLT and
chemical potential . in the following way: (Bose-Einstein distribution):
Ny = 8a (1.48)

exp (Bleq —m)) — 1

In the fermionic case, the same procedure leads to the following optimal partition
(Fermi-Dirac distribution):

Ny = 8a (1.49)

exp (Bea — ) +1
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These distributions are very famous in statistical physics. For example, Bose-Einstein
distribution is the key to understand the black-body radiation and Bose-Einstein
condensation, while the Fermi-Dirac distribution puts light into the description of
the behavior of electrons in metals.

1.4 Absolutely Continuous Random Variables

In the preceding examples we have presented our first examples of random variables.
All such examples involved real valued discrete random variables, taking values in
a countable subset of IR; their law is univocally determined by the discrete density
p(x), non-zero only inside a countable set, non-negative and normalized to one. The
law has the form:

B € B(R) > u(B) =Y p(x) (1.50)

xeB

The generalization to multidimensional discrete random variables is straightforward:
one simply defines discrete densities p(x) on IR, related to the laws of random
variables of the form X = (X1, ..., X;) where, naturally, the X; are real valued
discrete random variables.

In general, we will very often meet random variables which are not discrete. The
simplest example is provided by the uniform law in (0, 1): we will say that a random
variable is uniform in (0, 1) if its law has the form:

M(B)=/BdXP(X) (1.51)

where:

px) = {(1) o (152)
The values of X cover uniformly the interval (0, 1). Random variables uniform in
(0, 1) will be very important in the definition of sampling techniques in the following
chapters: the key point is that, with a computer, we can generate the values of X, in
a sense which will be later clarified.

It is evident that, in (1.52), the discrete density has been replaced by a continuous
density and the summation has been replaced by an integral. The random variable
X belongs to a very important class of random variables, defined in the following
definition.

Definition 1.4 We say that arandom variables taking values in RY, X : (2,F,P)—
(RY, B(IRY)) is absolutely continuous if the law 1 of X is absolutely continuous
with respect to the Lebesgue measure, that is u(B) = 0 whenever B has Lebesgue
measure equal to zero.
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If X is absolutely continuous, the Radon—Nicodym theorem, from measure theory,
ensures the existence of the density of X, i.e. a function p : R? — R non-negative,
Borel-measurable, Lebesgue-integrable with f]Rd dx p(x) = 1, and such that:

M(B):fdxp(x):/ dx15(x) p(x) VB € B(RY) (1.53)
B R?

The density of a random variable is unique almost everywhere with respect to
Lebesgue measure: if p e p’ are two densities of a random variable X, then nec-
essarily they coincide everywhere but inside a set of zero Lebesgue measure.

Remark 1.4 We invite the reader to observe the similarity between the discrete and
the absolutely continuous case. If a random variable has discrete density p,(x), then:

1(B) =Y pa(x) (1.54)
xeB

while, if it is absolutely continuous, there exist a density p.(x) such that:

n(B) =/BdXPc(X) (1.55)

Several authors unify the two cases using the integral notation defining p,(x) as a
sum of Dirac’s deltas. We prefer not to use such a notation. We observe, on the other
hand, that there exist random variables which are neither discrete nor absolutely
continuous.

In the case of real valued random variables, it is always possible to define the
cumulative distribution function, F : R — IR as follows:

xeR = FO)Y 11 ((—o0,x]) = P(X < x) (1.56)
By construction, F is increasing, right-continuous, and satisfies:

lim F(x) =0, lim F(x)=1 (1.57)
X—>—00 x——+00
Itis possible to show that there is a one to one correspondence between the cumulative
distribution function and the law of a random variable. Moreover, for any function
F possessing the above mentioned properties, there exists a random variable having
F as the cumulative distribution function.

In particular useful relations are:

p(x,yD)=F(y)—Fx), pn(x,y)=Fy)—-Fx),... (1.58)
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and:
n({x}) = F(x) — F(x7) (1.59)

where we use the notation F(x~) = lim,_, .- F (7).
If X is absolutely continuous we have:

F(X)=/ dy p(y) (1.60)

Moreover, if the density is continuous on IR, the cumulative distribution function is
differentiable on IR and we have:

(1.61)

In general (1.61) is not true for any absolutely continuous random variable, since the
density can happen not to be continuous; however, it can be shown that the cumulative
distribution function is always differentiable almost everywhere with respect to the
Lebesgue measure, and it is always possible to modify the density in such a way that
it coincides with the derivative of F in all points where such derivative exists.

Example 1.1 Our first examples of absolutely continuous random variables are the
following:

1. If the density is:
)1, xe(@©1)
px) = {0, ¥ ¢ (0. 1) (1.62)
we will say that X is Uniform in (0, 1). The cumulative distribution function of
X is:

0, x<0
Fx)y=3x, xe€(0,1 (1.63)
1, x>1

2. If the density is:

_ x 1.64
P(x)—mexp(—?> (1.64)

we will say that X is Standard Normal and we will write X ~ N (0, 1). Its
cumulative distribution function is:

Fo) = — / d < xz) (1.65)
X)=— yexp| —— .
kY, 271 J—o P 2

This integral cannot be worked out analytically, but many tables and softwares
are available to perform the calculation. Typically the cumulative distribution
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function of a standard normal random variable is expressed in terms of the
famous error function:

2 5
erf(x) = ﬁfo du exp (—u?) (1.66)

F(x) = % (1 +erf (%)) (1.67)

From this relation, it simply follows that:

as:

P(—x <X <x)=P(X| <x)=erf (%) (1.68)

Important values are P (| X| < 1) ~ 0.68 and P (|]X| < 2) ~ 0.95.

Example 1.2 In quantum mechanics, the ground state wave function of a one-
dimensional harmonic oscillator of mass m = 1 and elastic constant k = 1 is:

1\ 1
w(x>=(—) exp(—=x?) (1.69)
T 2

According to Born interpretation of quantum mechanics, the square modulus of the
wave function is the probability density for the position of the oscillator. The position
of the oscillator is thus interpreted as an absolutely continuous random variable X
with probability density:

1 1/2
p(x)=|w(x>|2=<;> exp(—x?) (1.70)

This has again the form of a normal. We will learn to write X ~ N (0, %).

1.5 Integration of Random Variables

We are going now to introduce key notions to work with random variables: the
expectation, the variance, and so on. We prefer to use the unifying formalism of
abstract integration with respect to probability measures to introduce such notions,
in order to avoid the necessity of dealing separately with discrete and continuous
random variables. If a reader is not interested in abstract integration, he/she can skip
directly to the formulae expressing abstract integrals in terms of ordinary integrals
or summations involving the probability density.

As usual in abstract integration theories, one works with extended functions, that
is random variables X : 2 — R = IR U {00}, endowing R with the Borel o-field.
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Such extension is completely innocuous, and simply meant to work with limits,
superiors or inferiors extrema. The construction is very simple, and will be sketched
here starting from the class of random variables introduced in the following definition.

Definition 1.5 We say that a random variable X is simple if it can be written as:
X(@) =Y a1 () (1.71)
i=1

where n is an integer number,a; e R, A; € F,i =1, ..., n.
The integral of simple random variables is defined as follows:

Definition 1.6 If X is simple we define expectation or abstract integral of X with
respect to the probability measure P, denoted f o X(@)P(dw):

f X(@)Pdo) < > aiP(A) (1.72)
2 i=1

If X is a non-negative random variable, we define expectation or abstract integral
of X with respect to the probability measure P, denoted f o X (@) P(dw) the extended
real number:

f X (w)P(dw) Y sup{/ Y(@)P(dw) : Y simple, 0 <Y < X} (1.73)
2 2

which can be equal to +o0.

In the most general case, we let X = max(X, 0) e X~ = —min(X, 0) and intro-
duce the following definition:

Definition 1.7 We say that X : 2 — R is integrable if f o Xt (w)P(dw) < +00
and | o X (@) P(dw) < +00. In such case we define expectation or abstract inte-
gral of X with respect to the probability measure P, and denote f o X (@) P(dw), the
real number:

/ X (w)P(dw) déf/ X (w)P(dw) —/ X (w)P(dw) (1.74)
Q Q Q
We stress the important identity:

/ 1a(@)P(dw) = P(A), YAeT (1.75)
2

Definition 1.8 The set of integrable random variables X : 2 — R = R U {400}
will be denoted L(£2, F, P)
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Readers familiar with Lebesgue theory of integration will certainly not be surprised
by the following elementary properties of the abstract integral, which will be stated
without proof. The interested reader may refer to [5].

1. If X, Y are integrable random variables, « X + BY is integrable for all o, 8 € R
and:

/(ozX—i—,BY)(a))P(da)) = a/ X(w)P(dw) +,3/ Y(w)P(dw) (1.76)

Q 2 Q

2. If X >0, then f_Q X(w)P(dw) = 0. If moreover Y > 0 is integrable and 0 <
X <Y, then X is integrable and [, X (w) P(dw) < [, Y () P(dw).

3. X € L(£2,F, P) if and only if |X| € L($2,F, P), and, in such case, we have
| [o X(@)P(dw)| < [ |X (w)|P(dw)

4. If X = Y almost surely (a.s), i.e. if there exists an event N, P(N) = 0, such that
X(w) = Y(w), Yo € N¢, then f_Q X(w)P(dw) = f_Q Y(w)P(dw)

The following properties concern limits and approximations. A proof can be found
in [5].

Theorem 1.1 If X is non-negative, there exists a sequence {X,}, of simple, non-
negative random variables, such that X, (@) < X,y (w) for each w and pointwise
converging to X, that is:

lim X,(0) = X(@), Yo e R (1.77)
n——+o00

Theorem 1.2 (Monotone convergence theorem) Ifa sequence { X, },, of non-negative
random variables, such that X,(w) < X,11(w), converges pointwise almost surely
to a (non-negative) random variable X, that is:

nEToo X, (w) = X(w) a.s. (1.78)
then:
lim X, (w)P(dw) =/ X (w)P(dw) (1.79)
n—-+o0o Q Q

even if [, X(w) P(dw) = +oo. In particular, if 1im,_, 1o [ X, (@) P(dw) < 400,
then X € L(82,F, P).

Theorem 1.3 (Dominated convergence theorem) If a sequence {X,}, of random
variables converges almost surely to a random variable X :

lim X,(@) = X(w), a.s. (1.80)

n—+00
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and |X,| <Y, for all n, where Y € L(§2,F, P), then X, € L(£2,F,P), X €
L(2,F, P) and:

lim Xy (w)P(dw) =/ X(w)P(dw) (1.81)
n—+oo [ Q
Definition 1.9 We say that two random variables X and Y are equivalent if X =

Y almost surely. We denote L'(2,F, P) the set made of equivalence classes of
integrable random variables:

/ |X ()| P(dw) < 400 (1.82)
2

We denote L2(£2, F, P) the set made of equivalence classes of square-integrable
random variables:

/ 1X (0)|?P(dw) < +00 (1.83)
2

In mathematics textbooks, the difference between a random variable and an equiv-
alence class of random variables is often ignored, when this cannot give rise to
confusion.

We mention the following result:

Theorem 1.4 L'(2,F, P) and L*(2,F, P) are linear vector spaces, satisfying
L*(2,F,P)C L' (2,5, P); if X € L*(2,F, P) then:

2
(/ X(co)P(dw)) 5/ X (w)*P(dw) (1.84)
2 2

Moreover, if X,Y € L*(2,F, P), their product is integrable XY € L'(2,F, P)
and the (Cauchy-Schwarz inequality) holds:

5\// X(w)ZP(dw)/ Y (0)2P(dw) (1.85)
2 2

/ X (@)Y () P(dw)
2

Let’s turn to a useful consequence of the properties of abstract integrals:

Theorem 1.5 (Chebyshev inequality) If X € L*(2,7F, P), foralla > 0 the follow-
ing inequality holds:
fg X (w)*P(dw)

P(IX| 2 a) < .

(1.86)

a
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Proof From the obvious inequality X2(w) > a’1|x|>4(w), it follows that:

/X(w)zP(dw)z/ a’lix=q (@) P(dw) = a* P (|X| > a) (1.87)
2 2

which is just the statement of the theorem.

We will often use the notation:

E[x]1Y / X () P(dw) (1.88)
2

when no confusion can rise about the probability space over which we are integrating.
We stress the identity:

E[14]=P(A), VAeT (1.89)

which will be frequently used.
Definition 1.10 If X € L?>(£2, F, P), we call variance of X and denote Var(X)

the non-negative real number:

Var(X) € E[(X — E[X))?] (1.90)
The Chebyshev inequality implies the following:

Var(X)

P (X - E[X]| 2 a) < —,
a

(1.91)

which provides an interpretation of the variance: Var(X) controls the dispersion of
the values of X around the expectation E[X].

1.5.1 Integration with Respect to the Law of a Random
Variable

Let X : (2,5, P) —» (E, &) be a random variable, and p its law, i.e. X ~ u. We
know that (E, €, ) is a probability space. Let now % : (E, &, u) — (R, B(R)) be
a measurable function. Then % o X is a composition of measurable functions and
therefore a real random variable. We are going to prove now the following very
important theorem:

Theorem 1.6 If h > 0 the following equality holds:

/(hoX)(w)P(dw):/h(x)M(dx) (1.92)
2 E
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even when bothmembers are equal to +00. Moreover, foranyh,h o X € L'(2, F, P)
ifand only if h € L'(E, &, j) and, in such case, the above written equality holds.

Proof We preliminarly observe that both the members make sense, being two abstract
integrals on two different probability spaces. Now, we fix B € € and we remind the
reader the definition of the law of X:

u(B) = P(X € B) (1.93)
On the other hand, we have:
P(X € B) = /Q 1 ven(@) P(dw) = /9 (X @)P@o)  (1.94)
and:
H(B) = /E (0 (dx) (1.95)

so that the statement of the theorem is true if #(x) = 1 (x). By linearity, the equality
holds also when £ is a simple function.

Let now & > 0; we know that there exists a sequence {/,}, of non-negative sim-
ple functions, satisfying 5, (x) < h,4(x), and pointwise converging to /. Then,
the monotone convergence theorem, applied twice, justifies the following chain of
equalities:

Jehp(dx) = [ lim, o0 hy(X)pu(dx) = (1.96)
=lim, o0 [ hn(X)p(dx) =1lim, o0 [, (hy 0 X) (@) P(dw) =
= [ lim, o0 hy 0 X P(dw) = [, (h o X)(w) P(dw)

proving the theorem in the case & > 0. Finally, if we consider |A|, we immediately
conclude thath o X € L' (2,7, P)ifandonly if h € L' (E, €, 1), and the equality
between the abstract integrals follows writing 7 = h* + h~.

Now, we focus on the particular case (E, &) = (R?, B(IR?)); moreover, we
assume X absolutely continuous. If 7 = 15 we have:

P(XeB):/

2

15(X (@) P(dw) =M(B)=dep(X) =/ dx 15(x) p(x)
B R?

1.97)
where the last integrals are ordinary Lebesgue integrals. We can extend the above
result to simple & exploiting linearity and to generic / using the monotone conver-
gence theorem, obtaining the useful identity:

/(hoX)(a))P(da)) =/ dx h(x) p(x) (1.98)
2 RY

which holds for any 4 > 0 and for any & such that the two integrals exist.



20 1 Review of Probability Theory

If in particulard = 1, h(x) = x and X € L'(22, F, P), we have:

+o00
E[X] = / X(w)P(dw) = / dx x p(x) (1.99)
2 —00
Moreover, if X € L%(£2, F, P), we have:
+o0
Var(X) = / dx (x — E[X])? p(x) (1.100)

If the random variable X is discrete and p(x) is its discrete density, we have:

P(X €B)= fg 15X (@) P(dw) =pu(B) =) px) =Y 13(x)pXx)
XeB xeR?

(1.101)
and thus:

hoX Pdw) = h 1.102
[9( o X)(@) P(dw) = Y h(x)p(x) (1.102)

xeR?

if & > 0 or if the abstract integral and the finite or infinite sum are finite. If X €
LY(£2,7, P), we have:

E[X] :/ X(@)P(dw) =Y x p(x) (1.103)
2

xeR

and if X € L*(£2, F, P), we have:

Var(X) = Z(x — E[X])? p(x) (1.104)
xeR

1.6 Transformations Between Random Variables

Let now X be a real valued random variable defined on a probability space
(82,3, P), absolutely continuous with density px(x). Let also g: R — R be a
Borel-measurable function. ¥ = g(X) is naturally a random variable. It would be
useful to express its law, or its density (if it exists), in terms of the law of X. We start
from the cumulative distribution function:

Fy(y) =P =y)=P@X)=y)=PX € By = / dx px(x)  (1.105)

y
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where:
={xreR: gx) <y} (1.106)

Let us examine first the simple case in which g : R — IR is bijective, differentiable
with continuous derivative with 7% g # 0; in particular, we assume g strictly increasing.
Then g is invertible on IR with i 1nverse g~ ! which is differentiable with continuous
non-vanishing derivative; thus:

={xeR: gx)<yl={xeR: x<g ')} (1.107)
which implies that:

Fr()=PY <y)=P@EX)<y)=P(X <g '(y)=Fx(g ' (y)) (1.108)

where Fy is the cumulative distribution function of X. Under the hypotheses we
have fixed about the function g, if Fy is everywhere differentiable (this happens if
px (x) is continuous), also Fy is differentiable, ensuring the existence of the density
of Y = g(X):

dF; d do~!
py(y) = dY(y) = L Fog ) = pxe on B (1L109)
y dy dy
If, on the other hand, g is strictly decreasing, we have:
Fr()=P@EX)<y)=PX>g'(»))=1-Fx(g ') (1.110)
and thus:
dF d d -1
pr(y) = dY(y) =———(Fxog H() = px(g~'() (— $ (y)) (L111)
y dy dy

Combining the above results, we have proved the following:

Theorem 1.7 If a real random variable X has continuous density px(x) and g :
R — R is a bijective function, differentiable with continuous derivate never equal
to zero, then the random variable Y = g(X) has density given by:

¢!
(y)‘ (1.112)

pr(») = px(@E ') ‘

As a simple application we consider affine transformations g(x) = ox + p,
o,ueR, 0 #0. Since g7 (y) = &£ " , the theorem above provides the density of
Y=0X+u:

y—up) 1
pr(y) = px (—U ) — (1.113)

o]
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In particular, if X ~ N (0, 1) is a standard normal random variable, ¥ = o X + u,
with u € R, o € (0, 400), has density:

-w?

1
pr(y) = N eXp< T) (1.114)

We will say that ¥ = o X + 1 is a normal with parameters 1 and o2 and we will
write Y ~ N(u, 02).

When the hypotheses of the above proved theorem do not hold, we have to work
directly with the equality:

Fy(y)=P(YSY)=P(g(X)§y)=P(X€By)=/ dx px(x)  (1.115)

y

where:
By={xeR: g(x) <y} (1.116)

Example 1.3 Let X ~ N(0, 1) be a standard normal and g(x) = x?%; we wish to
evaluate the density of ¥ = g(X) = X?. Naturally Fy(y) is zero if y < 0. On the
other hand, if y > 0, we have:

Fr(y))=PY <y)=PX*<y=P—/y<X=</n= (L7
= Fx(/y) — Fx(=y)

with:

£y 1 x2
Fx(£7) = dxﬁexp (—7> (1.118)

We see that Fy (y) is almost everywhere differentiable (except at the origin), and thus
we can obtain the density by differentiation, obtaining:

1 oexp(=y/2) (1.119)

py(y) = \/ET 10,400)(¥)

We say that ¥ = X? is chi-square with one degree of freedom, and we write
Y ~ x2(1).

1.7 Multi-dimensional Random Variables

Now we consider random variables taking values in IR?. For simplicity of exposition,
we work with d = 2, but the results can be readily generalized to higher dimensions,
with less transparent notations.
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Let therefore X = (Y, Z) be a two-dimensional random variable, absolutely con-
tinuous with density p(y, z). An interesting result is the following, which we just
state without proof:

Theorem 1.8 Y and Z are real random variables absolutely continuous, with den-
sities py(y) e pz(z) given by:

+00 400
pr(y) = / dz p(y,2), pz(2) = / dy p(y,2) (1.120)
o oo
Moreover, Y and Z are independent if and only if:
p(y,2) = pr(y)pz(2) (1.121)

almost everywhere with respect to Lebesgue measure.

The densities py (y) and pz(z) are called marginal densities of p. We observe that,
once p is known, the marginal densities can be obtained, but the converse is not true:
if we know py(y) and pz(z), we can obtain p only if Y and Z are independent.

IfY,Z € L*(2, F, P), then the product Y Z is integrable: YZ € L'(2, F, P).
We call covariance of Y and Z, and we denote Cov(Y, Z), the real number:

Cov(Y,Z)=E[(Y —E[YD(Z—-EIZD]I=E|[YZ] - E[Y]IE[Z] (1.122)
From the theorem of integration with respect to the law of a random variable, in the

special case X = (Y, Z), (E, &) = (R?, B(R?)) and h(y, z) = yz, we obtain the
following identity:

E[YZ] =/ dydzyz p(y,z) (1.123)
]RZ

If Y and Z are independent, then:

E[YZ] =/ dydzyz py(y)pz(2) = E[Y]E[Z] (1.124)
]RZ

thanks to Fubini theorem from Lebesgue integral theory, and thus:

Cov(Y,Z) =0 (1.125)

The property of having null covariance is called non-correlation. We have proved
that two independent random variables are non-correlated; the converse, in general is
not true. A simple example of two non-correlated, non independent random variables
is provided by a standard normal random variable X ~ N (0, 1) and its square X>.
Obviously X, X 2 are not independent, but

E[XX?]— E[X]E[X*]=0 (1.126)

and thus they are also non-correlated.
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We call correlation coefficient of Y and Z the real number:

_ Cov(YZ)
- SVar(Y)J/Var(Z)

Pyz (1.127)

This is zero if Y and Z are non-correlated, and, in general, satifies the following
property:
—1=<pyz=1 (1.128)

which is a simple consequence of Cauchy-Schwarz inequality.

1.7.1 Evaluation of Laws

Let X = (Y, Z), as before, a two—dimensional random variable absolutely contin-
uous, with density p(y, z). We wish to evaluate the law of Y + Z, a real random
variable.

Let’s evaluate the cumulative distribution function:

Fu)=PY+Z <u)= P(XeAu)=/ dydz p(y,z) (1.129)
Ay
where:
Ay={(.20) eR*:y+z <u} (1.130)
Then:
+00 u—y
F(u) =/ dy/ dz p(y,2) (1.131)

With a change of variables 7 — 7/ = 7 + y we have:

u +00
Fu) = / d7 / dy p(y,7 —y) (1.132)

which provides the expression for the density of the sum of two random variables:

+00
Py+z(u) =/ dy p(y,u—y) (1.133)

o0

The calculation we have made is a special case of a general procedure, that can be
described as follows: let X be a d-dimensional random variable absolutely continuous
with density pyx(x); moreover, let g : R¢ — R* be a Borel-measurable function.
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W = g(X) is a k-dimensional random variable. If py (y) were the density of W,
then, for any Borel set A C R¥, the following equality would hold:

/k dy 1,(y)pw(y) = P(W € A) = P(X € g '(A)) = /d dx14(g(x)) px (x)

A 8 (1.134)
where g‘l(A) ={xe R? : g(x) € A}. The above relation is very general and, in
some cases, allows to evaluate the density pw(y). Let’s consider the case d = k;
we assume that py is null outside an open set D C R and that g : D — V is a
diffeomorphism between D and an open set V C IR?. Naturally py (y) will be zero
outside V. Then, if A C V, a basic theorem from mathematical analysis guarantees
the validity of the following change of variables:

/ dx 14(g(x)) px(x) = / dy 1ay)px (¢~ () |det(Jg-1 (v))] (1.135)
D 14
which implies the following expression for the density of W = g(X):

pw(y) = px(g~ () |[det(Je1 ()] (1.136)

1

where J,-1(y) is the Jacobian matrix of g~ evaluated in y.

1.8 Characteristic Functions

Let X be a d-dimensional random variable, X = (X1, ..., X4), X ~ .

Definition 1.11 The function ¢x:

¢x R - C (1.137)

d
0 eR' > ox(0) <L E |:exp (i Zekxkﬂ (1.138)
k=1

is called characteristic function of X.
The complex-valued integral (1.138) is defined as:

E [exp <l~ Zex)] _r [ (i Zex)} vir [ (Z ekxk)}

(1.139)
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Since trigonometric functions are measurable and limited, the abstract integrals
always exist, implying that the characteristic function is well defined for every ran-
dom variable. Moreover, applying the theorem of integration with respect to the law
of X, we obtain:

¢x(0)=/ exp(if - x) u(dx) (1.140)
]Rd

which, if X is absolutely continuous, becomes:

dx(0) = / dx exp(if - x) p(x) (1.141)
]Rd
If X is discrete, on the other hand, we have:

¢x(0) = > exp(if - x) p(x) (1.142)

xeR?

There is a one to one correspondence between characteristic functions and laws of
random variables: ¢x (f) uniquely determines the law of X.
We present now some properties of characteristic functions. The first trivial obser-

vation is the equality:
¢x(0) =1 (1.143)

Moreover, extending to complex valued functions an inequality from abstract inte-
gration theory, we have:

d
lox ()| < E |:|exp (i ZHka) |} —1,v0 e RY (1.144)
k=1

that is the characteristic function is limited. Moreover, the constant function 1 (which
is integrable!), dominates any sequence of functions exp(i#, - x), in the sense of
dominated convergence theorem; if 6, — 6 for n — 400, then exp(if, - x) —
exp(if - x) and, by dominated convergence theorem, ¢x(6,) — ¢x(0). Thus the
characteristic function is continuous over R¢.

Let’s turn to smoothness. We state the following theorem, which is a plain appli-
cation of dominated convergence theorem in the realm of integration theory [7]:

Theorem 1.9 IfE[|X|"] < 400 for some integer m, then the characteristic function
of X has continuous partial derivatives till order m and the following equality holds:

d
dx () =i"E |:X_,-1 ... X, exp (i Zekxk)} (1.145)
k=1

m

36, ...06;,



1.8 Characteristic Functions 27

In the case of real random variables it follows that, if X € L'(2, F, P):

dox (0
E[X]=—i ‘2‘9( ) (1.146)
and, if X € L?(2, F, P), we have also:
E[X?] = —dzjgz(o) (1.147)
We now present some examples:
Example 1.4 1f X is uniform in (0, 1) we have:
L Col0#£0
dx(0) =/ dx e"™* ={ ! (1.148)
0 1, 6=0
Example 1.5 If X is standard normal we have:
1 too x2
dx(0) = E /_Do dx exp (i@x — ?> (1.149)
Since the density is an even function, we can write:
1 +oo x2
¢dx(0) = \/T_JT KOO dx cos(6x)exp (—?> (1.150)

We know that X is integrable and square-integrable, and thus we can apply the above
theorem to evaluate the derivative of the characteristic function:

dgx(60)

1 +00
do T A/ 2 ./—oo
We observe that the identity:

+0oo 2 +00 d X2
_ / dx x sin(6x) exp (—-) = f dx sin(6x) <_ exp (__))
—00 2 —00 dx 2

(1.152)

2
dx x sin(6x) exp (—%) (1.151)

allows us to perform integration by part, providing the following result:

2

d¢x©) _ dx 0 cos(0x) exp <—%) = —0¢x(0) (1.153)

1 +00
do B _\/27'[ /;oo




28 1 Review of Probability Theory

We have tus obtained an ordinary differential equation which, together with the initial
condition ¢x (0) = 1, has the unique solution:

92
¢x(0) = exp <—?> (1.154)

Example 1.6 If X is binomial, X ~ B(n, p), we have:

dx(6) = Z e <Z> pr(1—p) = (pe? +1-p) (1.155)
x=0

where Newton’s binomial theorem has been employed.

Example 1.7 If X is Poisson with parameter A, then:

+00 x N )
dx(0) = Z ¢ e = e et = exp(h(e” — 1)) (1.156)
X
x=0

We turn to independence. If X = (Y, Z) is a 2-dimensional random variable abso-
lutely continuous, with ¥ and Z independent, then, writing § = (6;, 6,), we have:

¢x(01,6,) = /2 dydz &% py () pz(2) = by (01)$2(62) (1.157)

R

Naturally the above equality can be trivially extended to d-dimensional random
variables. In particular, if Y and Z are independent, we have:

by12(0) = ¢y (0)$z(0) (1.158)

It is possible to prove that, if the equality:

@x (01, 02) = ¢y (01)Pz(62) (1.159)

holds over the whole R?, then Y and Z are independent.

1.8.1 Moments and Cumulants

The characteristic function is related to the important notions of moments and cumu-
lants, which we now introduce.
Let X be a real-valued random variable. The moments of X, {m;},, are defined
as follows:
my=E[X'], k=0,1,2,... (1.160)
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The cumulants of X, {K,}, are defined by the following identity:

(l-e)n
n!

+00
log (¢x(0)) = D K, (1.161)

n=1

It is useful to express the first cumulants, X, K,, K3, in terms of the first three
moments.

To do this, we proceed formally, starting from the definition given above, written
in the form:

+o0 n
E [exp (tX)] = exp <Z JC,,%) (1.162)

n=1
where ¢ = i6, and Taylor expanding both sizes up to #°:

| Lo 1 3 _
+m]t+imzt +§m3z +-..=

| S [y 3 I o33
1+<J<1r+2—!9<21 + 5% +...>+2—!(9<1z + K Kot +.,.>+§(J<1t +...)
(1.163)
and comparing the terms corresponding to the same power of ¢. We obtain:

Ky =m = E[X], Ky=my—m}=Var(X) (1.164)

and, finally:
K3 = m3 — 3mymy + 2m3 (1.165)

1.9 Normal Laws

We have already defined the standard normal law N (0, 1), related to the density:

1 x2
px) = N exp <—?> (1.166)

We have also evaluated the characteristic function of arandom variable X ~ N (0, 1):

92
¢x(0) = exp <—?> (1.167)

Moreover, we have presented the law N (i, o?), related to the density:

1 (x — p)?
px) = mo_ exp <_T> (1.168)
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We already know that,if X ~ N(0, 1),thenY = o X + u ~ N(u, o2). The charac-
terictic function of Y can thus be readily evaluated:

2n2
¢y (0) = E [¢"7] = E["¥ W] = /"¢y (c0) = exp (iem — ) (1.169)
and the expected value and the variance are:
E[Yl=un, Var(X)=o? (1.170)

It is useful to extend the definition of a normal law to the d-dimensional case:

Definition 1.12 We say that a d-dimensional random variable X is normal if
its characteristic function has the form:

¢x(0) = exp (i() - — %0%’30) (1.171)

where u € IR? and € is a symmetric, positive semidefinite real d x d-matrix.
We will write X ~ N (u, C).

From linear algebra we learn that, whenever C is a a symmetric, positive semidef-
inite real d x d-matrix, there exists a symmetric real d x d-matrix A such that:

Ar=0¢ (1.172)

Now,if Z = (Z,, ..., Z,) isarandom variable suchthat Z; ~ N(0,1),i =1, ...,d
and the Z; are independent, we have:

d 62 10
$7(0) = l_[exp <—?> = exp <_T> (1.173)
i=1

Let’s define:
X=AZ+n (1.174)

We have:
. ) 1
$x(0) = E[¢"X] = ¢ ¢,(AT9) = exp (z‘o =0 60) (1.175)

where we have used the fact that A is symmetric and that A% = C. We have thus
shown that, for any choice of the vector u € IR? and of the real, symmetric and
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positive semidefinite matrix C, there exists a random variable X ~ N (u, C). Now,
the random variable Z has density:

_ ! 2/ 1.176
pz(z) = WGXP <_T> (1.176)

and it is straightforward to check that:

E[Z]1=0, Cov(ZZ;) =35; (1.177)

Hence follows that: .,
E[X]1= ) AGEIZ]+ w = i (1.178)

j=1

e
Cov(XiX;) = E[(X; — ni)(X; —pj)l = (1.179)
=E [(ZZ=1 AinZ) (i -Alel)] =Yt A b =
=G

where we have used the symmetry of A.
If C is invertible, and thus positive definite, than also A is positive definite and
X has density which is given by:

px(x) = A (x—p) (1.180)

1
| det(A)| "

that is:

d
1
exp 5 Z(-xi - ,ui)efjl(xj — 1)) (1.181)

ij=1

1
P i e

We conclude this paragraph with some important observations about normal laws.
The first is that linear-affine transformations map normal random variables into nor-
mal random variables. In fact, if X ~ N(u, ) and ¥ = BX + d we have:

by (0) = Elexp(if - Y)] = exp(i6 - d)px (" BO) = (1.182)
=exp(if -d)exp (i(TB)0 - p — 3('B)8 - C("B)9) =
=exp(i0 - (d+ Bp) — 3("B)8 - C("B)#) =
= exp(i6 - (d + Bp) — 360 - (BC("B))f)

thatis Y ~ N (d + Bu. B € ("B)).



32 1 Review of Probability Theory

We consider now a real random variable of the form ¥ =a- X = Z?:l a; X,
where a € R? is a vector. The following calculation:

¢y(0) = E[exp(i0Y)] = Elexp(fa - X)] = ¢x(0a) = (1.183)
=exp (iea T %a . Ga)

showthatY ~ N (a - u, a - Ca).In particular the components of a normal are normal.

Another important observation concerns independence and non correlation. If
X1, ..., X, are independent real random variables, X; ~ N (u;, ol.z), then the
multi-dimensional random variable X = (X, ..., X,) isnormal, X ~ N (u, C) with
Ci;j = 08;;, as one can trivially check writing the characteristic function. On the
other hand, if X = (X4, ..., X,,) is normal, X ~ N(u, C), with diagonal covari-
ance matrix C;; = oiZ(Si i, then X1, ..., X, are independent real random variables,
X; ~ N(ui, aiz), since the characteristic function is factorized. Thus, if the joint law
is normal, independence and non correlation are equivalent properties.

1.10 Convergence of Random Variables

Before introducing the very important law of large numbers and the celebrated central
limit theorem, the cornerstone of probability and statistics, we summarize the basic
definitions of convergence of random variables.

Definition 1.13 (Almost sure convergence) A sequence {X,}°2, of d-dimensional
random variables converges almost surely to a d-dimensional random variable X if:

P (a): lim X, () = X(a))) =1 (1.184)

Definition 1.14 (convergence in probability) A sequence {X,}°7 , of d-dimensional
random variables converges in probability to a d-dimensional random variable X if:

lim P (@ X, (@) — X(@)| > €) =0 (1.185)

forall e > 0.

Definition 1.15 (weak convergence or convergence in law or convergence in distri-
bution) A sequence {X,}2, of d-dimensional random variables converges in law or
weakly or in distribution to a d-dimensional random variable X if:

1im ¢y, (6) = ¢x(©) (1.186)

where ¢y, (0) and ¢x (0) are the characteristic functions of X,, and X respectively.

We proof now the following useful result:
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Theorem 1.10 Almost sure convergence implies convergence in probability; con-
vergence in probability implies convergence in law.

Proof Let’s fix € > 0 and consider the sequence of events {A,}5
(o]
Ay = U{a): X, (0) — X (w)| > €} (1.187)

Such sequence is decreasing, thatis A} D A, D .... Welet A = ﬂ;’lozo A,,. From
the very definition of probability measure it follows that: P(A) = lim,—, 1o P(A,).

Since the sequence is decreasing, Ay, = lim, o0 A, = ﬂff;o A,.. Moreover we
have:

P(X,—X|>¢€¢)<P(A,) — lim P(|X, — X|>¢€) < P(Ay) (1.188)
n—oo

It is simple to realize that, for any w € Ao, lim, o X, (®) # X (), and thus:

Ax C{o: lirgoX,,(a)) # X(w)} (1.189)

If {X,,}:2, converges almost surely to X, the r.h.s. of the above inclusion relation
has zero probability, and thus also A, has zero probability. We have thus:

lim P (|X, — X|>¢€) =0 (1.190)

and the first part of the theorem is proved.
Let’s consider now:

lpx, (0) — ¢x (0)] = |E[e%] — E[¢""X]| < E[|"X~0 —1]]  (1.19])

Since the function x — ¢'%* is continuous, forall ¢ > Othere exists§ > 0 such that
|x| < & and [e* — 1| < €. We can rewrite the last member of the above inequality

as:

E[]e% 0 — 1| 01X, — X| < O]+ E[|*F 0 —1|0(X, — X| = §)]

(1.192)
so that the following inequality is at hand:
|6x,0) — px ()] < € +2 P(X, — X| = 8) (1.193)
So, if {X,};2, converges in probability to X:
lim [¢x, (0) — px(O)] <€ (1.194)

for any € > 0, and thus lim,,_, o, ¢x, (6) = Px(0).
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Simple examples show that other implications do not hold in general.

1. Suppose {£2, F, P} be the probability space with ([0, 1], B([0, 1]), u), where u
is the uniform probability. Let also:

X1(w) = o+ x0.11(®)

Xo(w) = o+ xp0,1/21(@)
X3(w) = o+ xup21(w)
X4(w) = o + xj0,1/31(®)

(1.195)
Xs5(w) = o+ x1173,2/31(®)
Xeo(@) = o + xp/3,11(@)
Xu(@) = o+ xi,(®)
and X (w) = w. Since:
P@: X, (@) — X(@)| > €) = P(w € ) (1.196)

the sequence {X,}72 , converges in probability to X. Nevertheless, since lim,,_, »,
X, (w) does not exist for any w € §2, it does not converge almost surely to X.

2. Suppose {£2, F, P} be the probability space with ({0, 1}, P({0, 1}), ) , where
is the uniform probability. Let also:

Xy(w) =w (1.197)

and X (w) = 1 — w. Since:
i0X {7 i0X L
¢x,(0) = Ele ”]=§e ¢x(0) = Ele ]=§e (1.198)

the sequence {X,}°2, converges in law to X. On the other hand, since X, — X =
1, it does not converge in probability to X.

1.11 The Law of Large Numbers and the Central Limit
Theorem

We conclude our review of probability theory with two key results about convergence
and approximation.

Let {X}x>1 be a sequence of real valued random variables, independent and
identically distributed (iid): this means that all the X; have the same law. We also
assume that all the X are square-integrable, and we introduce the notation:

w=E[X{, o>=Var(Xy) (1.199)
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w and % are finite by construction, and do not depend on k because we have assumed
the random variables identically distributed. Let’s define the empirical mean:

1
Sy =— X (1.200)
n
We perform now some calculations:

o
ESi] = - Z;E[Xn] T (1.201)
Var(S,) = E[(S, — w)*] = E[S?] — u? = (1.202)
== 1E[X,ij] - =
=LYl EIXA+ 5 Y EIX X - =
= ,%7 Z?:l (Var(X») + E[ ‘]2) + nlz Z?;ej—l E[X;]E[X ;] — Mz =
+ 4 CUETpE R

We use now the Chebyshev inequality:

\4 Sn 2 n—
P Sy —ul > ) < L9 0 gy (1.203)
n? nn?

We have proved in this way a very important result:

Theorem 1.11 (Weak law of large numbers) The sequence of empirical means
{Sn}n>1 of independent and indentically distributed real square-integrable ran-
dom variables { Xy }r>1 with expected value 1, converges in probability fo (-

lim P (S, —pl=m=0, ¥n>0 (1.204)
n—+0o0

It can be shown that this convergence result can be proved also under weakened
hypotheses, removing the assumption of finite variance, and with a stronger notion
of convergence:

Theorem 1.12 (Strong law of large numbers) The sequence of empirical means
{Sn}n>1 of independent and indentically distributed real integrable random variables
{ Xk k=1 with expected value (i, converges almost surely 7o (.

We omit the proof of such result.



36 1 Review of Probability Theory

Now, let’s introduce:

Sp— 1
S = 1.205
n O‘/\/ﬁ ( )
We may write:
1 & X —
S=— Ye, Vi = (1.206)

where the random variables Y are clearly independent and identically distributed,
and satisfy:
E[Y]=0, Var(Yy) =1 (1.207)

We observe that the expression:

=t (1.208)
n «/ﬁ \/ﬁ .
suggests the idea of a sum of many small independent non systematic (zero mean)
effects. This could remind the reader the theory of errors which he/she has learned
in university courses.
Since the Y} are identically distributed, they have the same characteristic function,
which we will denote simply ¢. We evaluate now the characteristic function of S;:

qbs; (0) = E[exp(i6S;)] = E[exp(i0 ﬁ ZZ:] Yol = (1.209)
_ o \\" _ 0 _ )
= (6(5))" =exp (nlog@ (L)) = exp (nlog (1 + & (45) — 1))

Since the characteristic functions are always continuous, we have ¢ (%) — ¢(0) =
1if n — +oo for any fixed 0; this implies the asymptotic behavior:

0 n——+0oo 6
nlog(l—i—(p(ﬁ)—l) ~ n((f)(ﬁ)—l) (1.210)

The Y} are by construction square-integrable, and thus:

dg) d*$(0)
— g =iEINI =0, —o= = —Var(r) = -1 (1.211)
so that:
Oy 1=-Zhady (1.212)
¢(ﬁ T % ’
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which implies:

9 n——+oo 9 n—+00 92
nlog(l—i-(ﬁ(ﬁ)—l) ~ n(q&(ﬁ)—l) ~T - (1.213)

We have thus found the following very important result:

. 6?
nl}rfoo ¢s:(0) = exp <—?) (1.214)

where in the right hand side we have the characteristic function of a standard normal
random variable Z ~ N (0, 1).

We summarize what we have found in the following central result in probability
theory, the cornerstone of mathematical statistics:

Theorem 1.13 (Central Limit theorem) If { Xy }i>1 is a sequence of real val-
ued square integrable random variables, independent and identically dis-
tributed, letting u = E[Xi] and 6> = Var(Xy), the sequence:

o — %ZZ=1XI<_M

! o//n

converges in law to a standard normal random variable Z ~ N (0, 1).

(1.215)

‘We use the notation: »
S —>Z~N(@©,1), n— +oo (1.216)

where the arrow indicate convergence in law.

1.12 Further Readings

This chapter contains all the notions that are needed to understand the remainder of
the book, but it does not aim to provide a thorough exposition of probability theory.
Readers wishing to deepen their knowledge about basic probability theory can refer
to many excellent introductory textbooks, like, e.g., [2-6].

Readers interested in abstract integration theory can in turn refer, for example,
to [7].

Finally, for application to statistical and quantum mechanics, possible further
readings are [8, 9].
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Problems

1.1 Expected values and variances
Evaluate E[X] and Var(X) when:

1. X is uniform in (0, 1).
2. X is standard normal, X ~ N (O, 1).
3. X is binomial, X ~ B(n, p).

4. X is Poisson with parameter A.

1.2 Useful formulas

Let T be a random variable taking values in N = {1, 2, 3, ..., }. Prove that
E[T]=)_ P(T =n) (1.217)
n=1

Let X be an absolutely continuous random variable, such that X > 0 and suppose
F (x) is its cumulative distribution function. Prove that:

~+00 +00
E[X] = / dyP(X =2 y) = / dy (1—F(y)) (1.218)
0 0

1.3 Random point on a circumference

Consider a circumference I” of unitary radius, fix a point A € I" and suppose that we
select another point B € I', defined by an angle 8 chosen with uniform distribution in
[0, 27r] . Whatis the probability distribution of the length L 4 g of the chord connecting
A and B? What are its expectation and variance? What is the probability that L 4 is
longer than the side +/3 of an equilater triangle inscribed in I"?

1.4 Bertrand paradox
The previous exercise is useful to introduce a very interesting historical paradox,
which makes evident the importance of the choice of the probability space for the
description of a phenomenon. Suppose we face quite the same problem but with a
slightly less precise formulation. Given a circumference I” of unitary radius, suppose
that a chord of the circumference is chosen randomly. What is the probability that the
chord is longer than the side of an equilater triangle inscribed in the circumference
L = +/3? The key point is how we model the randomness of the choice of the chord.
In the previous problem we have chosen a model for describing the way we pick
up the chord. Different choices lead to different results! Statistics is the discipline
which can tell us which is more reliable! Evaluate the requested probability using
the following other two different models:
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1. Suppose that, fixed a point A on the circumference a point x is chosen in the
radius ending on A with uniform probability. The random chord is the one pass-
ing through x and perpendicular to the radius ending on A.

2. Suppose that a point x is chosen randomly anywhere within the circle having I”
as its boundary. The random chord is the one having such point as its midpoint.

1.5 Gaussian integration
Verify explicitly that the probability density:

1 1< »
px(X) = Wexp —E iJZZI(Xi — ,u,,-)(?ij ()Cj — /.Lj) (1219)

satisfies the normalization condition fIRd dx px(x) = 1, whenever the covariance
matrix is positive definite.
Find out an explicit expression for the gaussian integral:

d d
1
| = fw dxexp |~ > xi0uxj+ Y dixi (1.220)

ij=1 i=1
when the matrix O is real, symmetric and positive definite, and for the derivative:

021
=0 (1.221)
9d:9d;

Do you see any relation between this expression and covariance matrix of multidi-
mensional normal random variables?

1.6 Isserlis identity and Wick theorem
Let Z = (Z,...Z>,) be a normal 2n-dimensional random variable Z ~ N (0, C©).
Prove Isserlis Identity:

1
] Z E[Z;1yZo)] .. . ElZson-1)Zsm)] (1.222)

' O'ESzn

E[Z)...Zy] =

where S, contains all the 2n! permutations of the 2n labels. Rearrange the above
expression to obtain the very famous Wick theorem (for bosons):

ElZi...Zwl= Y €ij...Cy (1.223)

all pairings

where the summation involves all the (2n)!/(2"n!) possible ways to build up ordered
pairs (i;, ji), i < ji, I =1,...,n fromthe set (1, ..., 2n).
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1.7 x?(n) random variable: chi-square law with n degrees of freedom.
Let X ... X, be iid (independent and identically distributed) standard normal ran-
dom variables. Compute the probability density and the moments of the random
variable Y ~ x2(n):

Y=X{+...X; (1.224)
1.8 7(n) random variable: Student law with n degrees of freedom.
Let X and Y be independent random variables such that X ~ N (0, ) and Y ~ x2(n).
Compute the probability density and the moments of the random variable 7' ~ 7 (n):

T = (1.225)

Rk
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Chapter 2 ®
Applications to Mathematical Statistics e

Abstract In this chapter we present applications of probability theory within the
science of extracting information from data: mathematical statistics. We present, on
a rigorous basis, the theory of statistical estimators and some of the most widely
employed hypothesis tests. Finally, we briefly discuss linear regression, a mandatory
topic for physicists.

Keywords Statistical models + Estimators + Cochran theorem
Cramer-Rao theorem + Maximum likelihood estimators - Hypothesis tests + Linear
regression

2.1 Statistical Models

One very important environment in which the formalism of probability theory plays
aleading role is the science of extracting information from data: mathematical statis-
tics. We review the key results of mathematical statistics, since they are a mandatory
requisite for any scientist working on data, either coming from experiments or from
numerical simulations.

Observations, that is measured data, are used to infer the values of some parame-
ters necessary to complete a mathematical description of an experiment. The simplest
situation we can imagine is to measure n-times the same quantity (or the same set
of quantities), performing all the measurements under the same experimental condi-
tions and in such a way that the result of any measure does not affect the results of
the others. The outcome of the experiment is thus a collection of data:

(Xl e Xn) (21)

where x; € R¥ is the result of the i-th measure.

Naturally, even if we are very careful in the preparation of the experimental setup,
we cannot expect that, if we repeated the whole set of n measures, we would find the
same data (2.1): some randomness unavoidably exists.
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It is thus natural to use the language of probability theory to describe the exper-
iment. The i-th measure can be modeled by a random variable X;, defined on some
probability space (£2,F, P) and the whole outcome of the experiment, the data
(X1 ...X,), can be viewed as realizations of a collection (Xi, ..., X,) of random
variables, independent and identically distributed. The requirement of indepen-
dence is suggested by the assumption that the result of any measure does not affect
the results of the others while the one of identical distribution translates the idea that
the measurements are performed under the same experimental conditions.

Sometimes, depending on the measurement procedure, one has an idea about the
law of the random variables X;: in could be Binomial, Poisson, Exponential, Normal,
Uniform and so on. However, in general, the actual parameters characterizing the
law are not known but can be inferred from the data (x; ...Xx,).

This typical situation justifies the following definition:

Definition 2.1 A statistical model is a family:

{(Q9 377 Po)}()e@

of probability spaces sharing the same sample space and the same collection
of events. The probability measure Py : § — [0, 1] depends on a parameter 6
taking values in a set @ C R™.

A statistical model describes the preparation procedure of the experiment; the
results of the experiment, as anticipated above, are realizations of a multidimensional
random variable:

X=X...X) 2.2)

where the components X;:$2 — E C R* are independent and identically
distributed. Such a random variable X is called a sample of rank ».
Within a statistical model, the law of X;, describing the measurement procedure:

B € B(R*) — ug(B) = Py(X; € B) (2.3)

naturally depends on @ and can be related to a density pg (x), discrete of continuous.

Asusual in probability theory, the actual precise definition of the triplet (£2, F, Py)
is in general omitted once the law of the sample is specified.

Some examples of models that are frequently employed are summarized in the
following table, in which we indicate the range of the measurements E, the set &
and the density pg(X).

All such models are examples of a wide class of models, called s-parameters
exponential models, characterized by densities of the form:

po(X) = e T1@)f2(x) eif3(0)f4(x) (2.4)
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Model E e Po
Bernoulli | {0, 1} ©, 1) 0171 — 0)*
(x—60)%
. 1 T
Gaussian R |R x (0, 00) T ¢ 01
Exponential | (0, c0)| (0, 00) 0 e 0¥

wheref, : ©® > R, f, :RF - R, 5: © - Redfy : RF — [0, 00).

2.2 Estimators

One of the main goals of mathematical statistics is to use the data (x;...x,) to
estimate functions t(f) of the parameter @, useful to complete the probabilistic
description of the experiment. For this purpose, suitable functions have to be applied
to the data; keeping in mind that the data are viewed as realizations of a sample, the
following definition is quite natural:

Definition 2.2 A statistic T is an s-dimensional random variable of the form:
w € 2 — T(w) =tX1(w), ..., X, ()

where 7: R x ... x R - R® is a measurable function which does not
depend on the parameter # and (X . ..X,) is a sample of rank n.

The Definition (2.2) of a statistic describes the manipulations we make to
the data. When a statistic T is used to infer a value for a given function of the
parameter 0, 7(6), we say that T is an estimator of 7(6), while 7(x; . . .X,) is
called pointwise estimation of 7(0).

2.3 The Empiric Mean

The most natural statistic one considers when dealing with a set of data is the mean.
Inside our formalism, we build the estimator M:

"X
M=mX,...X,) = Lizi Xi (2.5)
n

for the unknown quantity:
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n(@) = Eg(X;) = /dXXPo(X)

We start our presentation of mathematical statistics from the analysis of this estimator,
which will help us to introduce some basic notions.
Intuitively, given the set of data (xi, ..., x,), one would like to write something

like ¢(8) ~ =%,
Let’s give a precise meaning to such an operative procedure.
M is a random variable, with a law depending on the law of the sample; in

particular the expected value is readily computed:

Ey(M) =

"By (X
Zl:lno( ) ZM(G)

and coincides with «(0). So M has expected value equal to the quantity we wish to
infer. This is an important property of the estimator, called unbiasedness, defined in
the following:

Definition 2.3 An estimator J of a function 7 (@) is called unbiased if:
Eg(T) =7(0), Vo (2.6)
What about the “error”? In other words, what do we expect about the spreading

of the realizations of M around the expected value 1 (0)? This is controlled by the
variance of M, which we have already computed in the chapter of probability. Letting:

02(0) = Varg(X;) = / dx(x — pn(6))*p(x)

we have: 29
Varg(M) = o”®)

As we have already learnt when studying the law of large numbers, the following
inequality holds:
a*(9)

Py (IM — ()] >n) =< —
nn

for any > 0. This means that, provided that the 02(f) < +oc for all @, increasing
the number of data, i.e. the rank of the sample, the spreading of M around the
expected value 1 (@) becomes smaller and smaller, making the number &TM nearer
and nearer to @ (@) for any realization of the sample.

This is another useful property of an estimator, consistency, expressed in general

in the following:
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Definition 2.4 An estimator T of a function (@) is called consistent if it
converges in probability to t(6) if the rank of the sample tends to +oo.

In order to proceed further, we need some assumption about the law of the X;.
A typical situation, quite always presented in textbooks, is the case when the X; are
normal with known variance 2. This can be a good model if we know a priori the
sensibility of a given instrument, and is given by:

()

exp ( — 57

0 — wB)=PX, eB) = | de— 22/
’ B V2mo?

where the parameter 6 = () is to be inferred from the data, while o? is a fixed
parameter, which we assume to know a priori. In such case, M is normal, being a
linear combination of normal random variables. In particular, we have:

2.7)

M-0
Z =

~N(,1) (2.8)

a

n

This means that the statistic M is normally distributed around the unknown mean 6
with a known variance, decreasing with the rank of the sample.
Before proceeding, we need the very important definition of quantiles.

Definition 2.5 If X is a real valued absolutely continuous random variable,
the quantile of order @ € (0, 1), gy, is defined by the following:

PX =qo) = 2.9)
Introducing the quantiles ¢, of a standard normal law, we can write the exact
result:

Py(—p-e <2Z<_g)=1-a (2.10)

or, equivalently:

o? o?
Po | M=¢1-eq/ — <0 <M+¢j_ey/—|=1-« (2.11)
n n

It is important to understand the meaning of this equality: let’s fix ] —«a = 0.95 =
95%, the confidence level; in such case, we have to use the quantile d)l,% = ¢0.975
= 1.96. The random interval:
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2 2
[M— 1.96,/ 2 M + 1.96,/6—} (2.12)
n n

contains the unknown expected value 6, with probability 1 — o = 95%: for that
reason, it is called confidence interval at the level 1 — o = 95% for the parameter
6. This is a particular example of the following very general definition:

Definition 2.6 Given two real valued statistics A, B, the random interval
[A, B] is called confidence interval at the level 1 — « € (0, 1) of a function
7(0) if:

Po(tr@) €c[A,B)>1—a V6OcoO

To summarize, if our data (xi,...,x,) can be modelled with normal random
variables with unknown expected value 6 and known variance o2, the real number:

Lict%i (2.13)

n

X=
is a pointwise estimation of 8. Moreover, letting:

0-2
- (2.14)
n

0x =

the interval:
[x — 1.968%, x + 1.9656Xx] (2.15)

is an estimation of a confidence interval at the level 95% for the unknown 6.

2.4 Cochran Theorem and Estimation of the Variance

A far more general situation emerges in the case that the sample components are
normal with both expectation and variance unknown.

exp <_ _(X;glo)z )
A/ 27‘[01
We show now how to use the data to estimate the unknown functions () and o2(8),

and to obtain two intervals in R containing respectively the two functions with a given
confidence level.

0 =(,0) - ngB)=PX; €B) = [ dx (2.16)
B
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Besides the statistic M introduced above, which is an unbiased and consistent
estimator of ©(6) = 6y, we introduce the following estimator:

S X =)

$?=52(X;...X,) =
n—1

(2.17)

of 62(0) = 6. The presence of n — 1 in the denominator makes $? unbiased, as
follows from the following calculation:

Eo(8?) = Ey i X (Z—X)z _

n—1

ey~ 5 (57.))

n—1
2
nEy(X?) — 1 <Varo (%) + (8 (S %)) )
- n—1 B
_ nEg(X?) — Varg (X)) —n (Ep (X))* Vars(X) = 0°(0)
o n—1 B o=

82 is also consistent, as can be easily verified using the law of large numbers. The
pointwise estimation of o2(#) is thus:

n Z,l— Xj
2 Zi:l ('xi - nl )
ST .. oxy) = (2.18)
n—1

Let’s turn to confidence intervals.

The central result is that the random variable:

M — 6,
R = 0 (2.19)
82

n

follows a Student law 7(n — 1) with n — 1 degrees of freedom, and this allows

to build confidence intervals for the mean, 6. Moreover, it turns out that the

random variable: 1
i —

01

52 (2.20)

follows a chi-square law x2(n— 1) withn — 1 degrees of freedom, allowing
to compute confidence intervals for the variance, 6;.
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We lett;_q/2(n — 1) be the quantile of order 1 — «/2 of the Student law t(n — 1),
defined, as we have already seen before, by the following:

Py(R < ti—apn—1) =1-a/2 2.21)

Since the Student law is even (R and —X have the same law), we have #,2(n — 1) =
—t1—q/2(n — 1) and thus we can write:

Po(—ti_qp(n—1) <R <t 4pn—1))=1-a (2.22)

We conclude that the random interval:

S2 32
M —t;_gpp(n— 1)\/;, M+t _gpn— 1)\/;] (2.23)

is a confidence interval at the level 1 — « for the mean 1 (6) = 6. If we replace the
estimators with the pointwise estimations, we provide an estimation for the confi-
dence interval which, letting:

Do Xi I < 2
P n_llzz;(xz m)

m= == 2=
52 52
[m—ti_qpn—1) ;sm""tlf(xﬂ(n_ D ;]

The most typical choice is the level 95%, which means 1 — o = 0.95, thatis o =
0.05: we have to use the quantile #|_q/2(n — 1) = f9.975(n — 1), which, for example
in the case n = 100, is nearly 1.985.

is:

Remark 2.1 Quite often, when the rank of the sample in large, in the expression of
confidence intervals one replaces the quantile #;_q/>(n — 1) of the Student law with
the ones of standard normal law ¢;_, > (naturally strictly independent on 7). In the
case n = 100, for example, such substitution would give a slightly smaller interval,
being ¢0,975 = 1.96.

For the variance, the result:

Q2
= DS 91”8 ~ P — 1) (2.24)

implies that:

(n—18§?
01

Py <x§/2(n -1 = < Xlz—a/z(” - 1)) =1l-«a (2.25)
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where we have introduced the quantiles of the x2(n — 1). We can rewrite the above
expression in the following way:

— 2 _ 2
po (DY o oD ), (2.26)
X1_a/2(”l_ 1) Xa/z(n_ 1)

which shows that:

_ 2 _ 2
[ (n—18 (n—1)8 } 227

Kapt— 1) X2 — 1)
is a confidence interval at the level 1 — « for 62(8) = 6,.

Typically, when a sample has rank n > 30, the following approximation turns out
to be very accurate:

1 2
Xlz—oz/Z(n -~ 3 (¢1—a/2 + m) (2.28)

where ¢1_, 5 is the quantile of the standard normal law. In the case n = 100, at the
level 95%, a = 0.05, we have:

Xiap(n—1) = 129.07, xi,(n—1)~73.77 (2.29)

so that the confidence interval is [0.7782, 1.3682].

2.4.1 The Cochran Theorem

The rigorous justification of the results of this paragraph relies on the following:

Theorem 2.1 (Cochran) Let Y = (Y;...Y,) be an n-dimensional normal random
variable, Y ~ N (0, 1). Moreover, let E; ...Es be orthogonal vector subspaces of
R", such that @;:1 E; = R". We denote I, ... Il the linear projectors onto such
subspaces. Then:

1. the random variables IT;X, j = 1...s, are independent.
2. the random variables |ITX | j = 1...s, has a chi-square law x*(d;), where
dj = dim(E}) is the dimension of E;.

Proof LetB = {e; ...e,} be the canonical base of R”, and let’s write Y = Z?:l Yie;.

Moreover, if B’l ... BS are orthonormal basis of the subspaces E . . . E, the set of
vectors B= B U---UB, = {&, ...&,} is an orthonormal basis of R” and we may
write Y = Y7, ¥;¢; where:
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Y eiler) ... (erlen) Y,

the matrix I" with matrix elements I'; = (¢;|e;) being orthogonal. It follows that the
rNandom variable (f/l ... f/n) isnormal N(I"0 = 0, I'lI"* = T). Thus, the components
Y; are standard normal and independent.

n
My =3 @mye =) Ye
i=1 é,‘Eé/’

implies that the I7;Y are independent. Finally:

Y=Y~ x*(d)

&eB;

since the ¥; are standard normal and independent.

2.5 Estimation of a Proportion

Let’s assume now that the sample X = (X, ..., X,;) is made of Bernoulli random
variables B(1, #) with parameter 6 € (0, 1). We know that:

Eo(X;) =0, Varg(X;) =0(1 —0)

so that the random variable:

M=mX;...X,) = ¥ (2.30)
is an unbiased estimator for 6, that is:
Eq(M) =0
Moreover, for large n, the law of:
M0 (2.31)

JIad—0)/n



2.5 Estimation of a Proportion 51

can be approximated by a law N (0, 1), for the central limit theorem. We can thus
write:

r, <_¢1;§ M-—0 <¢1;>:1—a (2.32)

VOl —6)/n —

where, as before, ¢>1,% are the quantiles of the standard normal N (0, 1). We can
rewrite the above formula as:

po <M_q]_g—ve(l_9) <6 §M+ql_a—vé(l—6)> ~1—a

Ji T

In order to build up a confidence interval at the level 1 — « for the parameter 6 we
should solve the inequality:

M—-6
—$1-e < —9(1_—9)/,1 = ¢

with respect to 8, which is a simple exercise which we leave to the reader. In gen-
eral, when n is large enough, the resulting confidence interval can be accurately
approximated as:

VM1 =M) VAT M)i| (2.33)
n n ’

R R e

2.6 Cramer-Rao Theorem

We have learnt till now to build up estimators T for functions t(#), in particular
for the mean and the variance, inside a given statistical model. We have seen that
some nice properties of an estimator are unbiasedness and consistence. We are going
now to explore more deeply the quality of an estimator. Naturally, the precision of
our estimation will depend on the variance of 7, or, in higher dimensions, on its
covariance matrix.

We start limiting our attention to real valued estimators and to a one dimensional
parameter 6. Later we will generalize to higher dimensions.

We fix some working hypothesis, which are satisfied by a wide class of statistical
models, including the exponential ones. First of all, we aussume that the real valued
components X; of the sample (X| ...X,) have density py(x), which we ask to be
differentiable with respect to the parameter 8. Moreover, we assume that, for any
statistic T = £(X] ... X,), integrable with respect to the density pg(x;) . .. ps(x,), we
can exchange integration and differentiation:

] = /dxl...dxnr(n...xn)%[pe<x1)...pe<xn>]
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A simple manipulation of the above identity leads to the following:

0

- [E0171] = £ (78] (2.34)

where we have introduced the score function:

S = ! 9 X X, = 9 1 X X
—m@[m( 1)...pol n)] =39 Og[Pe( 1)...po( n)]

which measures the sensibility of the density pg (x) with respect to the parameter 6.
The score function statistic has zero mean, as can be proved by using T = 1 in
the identity (2.34):
d
8—6[159[1]] —0=E,[S] (2.35)

The average sensibility is thus measured by the variance of the score function,
which is called Fisher Information number:

3 2
10) =E [S*] = Ey |:<%log [PG(XL) o ~P0(Xn)]> :| >0
‘We will show now that such Fisher information number is related to the maximum
precision we can expect for one estimator.

We consider now an estimator J = ¢(X1, ..., X,) of a quantity t(0). If the esti-
mator is unbiased, we have:

7(0) = Ep[T] = fdxl codxy H(xy - .x,,)[pg(xl) ...Do (x,,)] (2.36)
and, by construction:
d;(:) =Eg[TS]=Ep[(T —7(0)) 8] = Cov[T, 8] (2.37)

where we have use the fact that the score function has zero mean.
We can use now Cauchy-Schwartz inequality, which implies the following very
interesting result:

2

dz () = |Cov [T, 811> < Var(T)Var(S) (2.38)

dé
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This is the very important Cramer-Rao inequality:
| d 1(9) |2

Varg(T) > 1(9)

(2.39)

1(0) being the Fisher Information number:

5 2
1(0) = Ey |:<£log [Pe(Xl) ac -Po(Xn)]) :|

We stress that the Fisher information number is a property of the statistical model,
and not of the estimator: nevertheless, it imposes a lower bound to the variance of
estimators that can be built up. Naturally, the smallest is the variance, the highest is
the precision of the estimation: /(8) controls the precision of the estimators.

Definition 2.7 An estimator T of a quantity 7(6) is called efficient if:

|d1(9)|2

Vary(T) = <6 (2.40)

Let’s consider an instructive example: let’s assume that the components of the
sample X; are normal with unknown mean 6 and known variance o2. We have:

: - exp _@
(%log[PO(Xl) pg(Xn)]) — Z%log % _

i=1

=(i;;%< (XT IOg(\/_0)>> :(X”:X;@)Z

i=1

We get thus, exploiting independence, the following result for the Fisher infor-
mation:

2
"X, —0 Xi—6 Xi—60\> n
1(0) = E, (Z . ) =nVar9< 5 ):nEg|:( 5 )}:—2
i1 o o (o2 o

independent on 6. On the other hand, if we consider the estimator:

"X,
M=mX,...X,) = Liz Xi (2.42)
n
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of 7(0) = 6 (whose derivative is one!), we already know that:

2

Var(M) = <

so that M is an efficient estimator of the mean: keeping fixed the statistical model, it

. . . . . . 2
is not possible to build up an estimator for the mean with variance lower than *-.
We present now the general statement of the Cramer-Rao theorem.

Theorem 2.2 (Cramer, Rao) Let {(£2,F, Py)}oco a statistical model and X =
(X1 ...X,) a sample of rank n such that the following hypothesis hold:

1. the law of the components X; of the sample (X, . ..X,) has density pg(X)
2. pe(x) is differentiable with respect to 0
3. for any s-dimensional statistic T = t(X; ... X,) we can write:

0

@[Eg(%)] - /dxl e dx (X Xy) %I:po(xl) N .pg(xn)]

If T is an estimator of the quantity t(0) with finite expectation Eg¢(7T), then the
following matrix inequality holds:

Covg(T) > JOI ' @)J T (2.44)
where J (0) is the Jacobian of E¢(7):

9Ey(Ti)

Jiu () = 26,

(2.45)

and 1(0) is the Fisher Information matrix:
I;(0) = Eg (Si(X1 ... X8 (X1 ... X))

the score vector being defined by:

d
SX1... X,) = =5 10g [po(X1) .. .pa(X,)

Proof Using the constant statistic T = 1, we see that the components of the score
vector have zero mean. We introduce the matrix:

A = Eo((T = Ea(T) Sk) = Eo(T:51) (2:46)
Moreover, by inspection we see that:

0Eg (T})

Eo(TiSi) = = J4(6) (2.47)
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This implies that, for each couple of vectors a € R*, b € R™:
a-Ab=a-J@)Db (2.48)
The left hand side has the explicit form:
s m
a-Ab=3"3 aAb = Eo[(a- (T — Eg(T))) (S ~b))]
i=1 j=1

Cauchy-Schwartz inequality implies:

a-AbP < E( @ (T EM))) Eo( (s 1)?)

that is:
la-AbJ> < (a-Covg(T)a) (b-1(0)b) (2.49)

Finally:
la-J@)b> =]a-Ab|* < (a-Covg(T)a) (b-1(8)b)

Choosing b = 1(#)~'J(#)"a and using the symmetry of Fisher information matrix
(and of its inverse), we find:

(a-J@)b) (a-J(O)©0)'J(©0) a) < (a-covg(T)a) (a-J(@)-b)

that is:
(a-covg(Ma) > (a-J(O)I(®)'J(6) a)

This completes the proof.

2.7 Maximum Likelihood Estimators (MLE)

We have till now learnt some useful properties of estimators, determining their pre-
cision in inferring 7 (@) from a set of data. A natural question is whether there exists a
tool to invent an estimator for a particular 7 (@). In the case of mean and variance the
actual definition of the estimator is very natural, but there can be situations in which
the choice is not so simple. We limit our attention to the case when the quantity 7 ()
to be estimated is the parameter  itself. We assume moreover that the components
of the sample (X; ... X,) have density pg(x).
Given the data (x; ...X,) let’s consider the likelihood function:

LO:x1 .. %) Z pp(x1).. . po(x,) (2.50)
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Intuitively, “L(0; X; . ..X,)dX; ...dXx,” is the probability to obtain precisely the mea-
sured data for the value @ of the parameter. We are naturally induced to estimate the
unknown parameter as the value # which maximizes such probability. This justifies
the following:

Definition 2.8 We call maximum likelihood estimator (MLE) of the param-
eter @ the statistic:

T (X ... X,) = arg max L(0; X; ... X,) = arg max pg(Xy) ...pe(Xp)
0cO 0cO 251)
2.

We observe that such estimator is well defined whenever, for the given data, the
function # — L(0; x; ...X,) has a unique maximum.

In order to give a first example, let’s consider again the normal sample with
unknown mean 6 and known variance o 2. In such case:

. 1  (X; — 0)?
LO; X ...X,) = Gy P (— ; T) (2.52)

The maximization of such function with respect to 6 leads to the following equation:

a n n
0= = (— ;(Xi —@)2> - 2;(&. —0)

which implies:

"X
T Xy ... X)) = Z';ll

which is exactly the empirical mean.
The MLE for some important models are summarized in the following table:

Model Tmr Eo(Tmr) Varg (Tyr) 1(0)
Bernoulli Lo X P 20-0) i
Gaussian Zi?’] . 2 ( b ) ( %‘ 0 ) % 0

Lé S n 2 n . _ _ n

ma ()’ )\ ete )|\ 0 5o )|\ O 5
i n n n? 2 n
Exonential ST, -9 e 0 z

We observe that the MLE may be not unbiased nor efficient, but they asyntotically
have these properties in the limit of large samples.
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The following theorems, which we state without proof, provide general results
about MLEs. The first result concernes existence of MLEs. For a proof we defer
to [2].

Theorem 2.3 (Wald) If:

1. ® is compact.

2. for each X the density pg(X) is a continuous function of 6.

3. pe(X) = pg(X) if and only if 0 = 0’

4. there exists a positive function K : RF — R, such that the random variable K (X;)
has finite expectation and such that, for each x and 0:

‘1 [Po (%) }
0og

P (X)
Then there exist a maximum likelihood estimator Ty (X, ...X,) that converges
almost surely to 0 as the rank of the sample increases to +00.

< K(x) (2.53)

A stronger result is the following:

Theorem 2.4 (Cramer) If:

1. O isopen.

2. for each x, pg(x) € C2(®), and it is possible to exchange derivative and expec-
tation.

3. pe(X) = pg(X) if and only if 0 = 0’

4. there exists a function K (x) such that K (X;) has finite expectation and:

[V log (pe(x)) || < K(x) (2.54)

for each x € R¥.

Then there exists a maximum likelihood estimator Ty (X, ...X,) that converges
almost surely to 0 as the rank of the sample increases to +00, and that is asyntotically
normal and efficient:

T X1 ... X)) —=> @

S (2.55)
lim 7 [Ty (X1 ... X,) —01=>Z~N[0,1(0)"]
n—oo

2.8 Hypothesis Tests

A typical problem in mathematical statistics is to use the data to confirm or reject
an hypothesis relying on a set of data. Once fixed a statistical model, an hypothesis
is a statement about the parameter 6. In practice, the statistical hypothesis to be
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tested, called the null hypothesis H) (that in general the tester tries to reject) can be
expressed as:
Hy: 6 €6, (256)

while the alternative hypothesis H,, (that in general the tester tries to establish) can
be expressed as:

H: 00 =060 —06, (2.57)

We start from the data (X; ...X,). Performing a statistical test means choosing a
subset 2z C R¥ x ... x R¥, called critical region, such that we reject the null
hypothesis if (x; ...X,) € £2z:

(X1...Xp) € 2 = reject Hy (2.58)

In such case the conclusion is that Hy is not consistent with the data. Naturally, the
randomness in the experiment can lead to errors: if we reject Hy when Hj is true,
we say we do a type I error; on the other hand, if we do not reject Hy when H is
false, we say that we do a type II error.
In most cases, the critical region is expressed in term of a statistic T = #(Xy, ...,
X,), in the form:
2r = {(X1...%,) 1 1(X]...X,) > Ty}

for a given treshold value Tj.

2.8.1 Student Test

One very common experimental situation is the comparison between the mean of a
measured quantity and a reference value, maybe coming from a theoretical study. We
assume that the data (x; ... x,) can be modeled as realization of a sample (X ... X,),
with one dimensional normal components. Introducing the statistics M and §2,
respectively estimators of mean 1 (6) and variance o2(0), we already know that:

M=)

R=rX,....X,) = \/E

follows a Student law with n — 1 degrees of freedom.
We denote i the reference value. We test the hypothesis:

(2.59)

Ho: n(@) = o (2.60)
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against:
Hi: () # 1o 2.61)

Naturally we will reject Hy if the estimated mean is far from po. If the null hypothesis
H, is true, we can calculate:

M — o
J%

for any « € (0, 1). At the significance level «, we can define the critical region as:

Py

>hoe(n—1)| =«

Qp={(x1...x) t[r(x ... x)| > 1_e(n = 1)}

Typically chosen values are « = 0.10, 0.05, 0.01, corresponding, for large samples,
to the quantiles 1.645, 1.96, 2.58. We note that « is precisely the probability of type
I error.

Given the data (x; ...x,), we can thus immediately calculate the standardized
discrepancy with respect to the reference value: r(x; ... x,). We can also, using the
Student law or the normal if the sample is large enough, compute the p value:

>r(X)...x,) (2.62)

M-
p value = Py ‘ Ho
8
n

=

under the assumption that Hy is true. If the p value is less than or equal to the
significance level «, Hy is rejected at the significance level «; the p value is the
probability to find data worse than the ones we have measured if Hj is true. A small
p value means that is very unlikely that H is consistent with the data.

Another important class of hypothesis that are often tested have the form:

Hy: n@) <po (2.63)

Naturally, the alternative is:
Hy: p(@) > o (2.64)

It is clear that we will reject the null hypothesis if we get a mean much bigger than
Wo- In order to be quantitative, we observe that:

M=o M —pu@) @) —po

= = +
82 82 82
Yoy ary ary

R

(2.65)
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is the sum of a Student random variable #(n — 1) and a term which is always negative
if Hy is true. Thus:

M — (0)

2
n

Py (R>t1_o(n—1)) < Py >t_gn—1D | =«

and we may set the critical region:
2r ={01...x) 1 r(x1...%,) > ti_o(n — 1)}

defines a statistical test of the hypothesis (2.63) whose probability of I type error
isa.

In several situations two different estimations of averages of independent nor-
mal samples X = (X;...X,) and Y = (Y ...Y,,) are compared. We will limit our
attention to the situation in which the two independent samples share the same value
for the variance.

In the simplest case, the hypothesis that the two means are equal:

Ho: px(0) = puy(9) (2.66)
is tested against the alternative:

Hy: pux(0) #pny(0) (2.67)
Using Cochran theorem, it is simple to show that, if Hj is true, the random variable:

My — My
Lyl [ (n—1)8% +(m—1)8}
n m n+m—2

follows a Student law with n 4+ m — 2 degrees of freedom #(n + m — 2). The above

notation is precisely the same we have used throughout this chapter a part from a
label to distinguish the two samples: My = . >, X; and so on. We have thus:

T n

T =

Py (1T > t1_a(n+m—2)) =« (2.68)
providing a critical region at the significance level o of the form:
Qr ={0 ... X Y1 ym) ] > g (n+m—2)}

where t = T(x;...X,; V1 ...Vn). Intuitively, if the two estimations of the means turn
out to be “too different”, we reject the hypothesis.
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If we have to test the hypothesis:
Ho: px(0) < puy(0) (2.69)

we rely on the observation that:

7 My — My _
i
_ (Mx —6ox) — My — boy) box — boy

141 (n—1)8%+(m—1)83% Ly1 (n—1)8% +(m—1)8%
n m n+m—2 n m n+m—2

is the sum of a random variable with law #(n 4+ m — 2) and a term which, if Hj is
true, is always negative or equal to zero. Therefore:

Py (T>ti_,(n+m—-2)) =« (2.70)
and the critival region for a test at the significance level « is:
r ={(x1...x591...Y9m) it > t1_o(n+m — 2)}

where t = T(X ... X0 Y1 -+ Ym)-

2.8.2 Chi-Squared Test

The Chi-Squared test, or Goodness-of-Fit test, due to Pearson, is a test of the
hypothesis:
H() 0= 00

aiming to verify whether the probability density py, (X), specified by the value 6 of
the parameter, is a good description of the experiment we have made, given a set of
data (x; ...x,). The starting point is a partition of the range of the measurements,
R¥, in a finite family {E;}_, of outcomes, mutually disjoint such that | Ji_, E; = R*.
The basic idea of the test is to compare the theoretical frequencies:

pj(0o) = Py, (X; € Ej) = f dx py, (X)
with the empirical frequencies:

er'lzl 1Ej (Xi)

n

‘]S-:

giving the number of measurements fallen in the set E;.



62 2 Applications to Mathematical Statistics

As usual, we interpret the numbers f; as realizations of the statistics:

>t 15 (X)

The discrepancy between theoretical and empirical frequencies builds up the Pearson
random variable:

d (3\5'—17]'(00))2
P=pXi,....X,) = AL
P ) J:Zln 00

Q2.71)

The key result is the following, which we will prove in the problems section:

Theorem 2.5 If the hypothesis:
H() 0= 00

is true, the Pearson random variable converges in distribution to a random variable
x2(r — 1), as the rank of the sample tends to +oc.

Thus, assuming H true, if the sample is large enough, we have:
Po, (P> xior—1) =« (2.72)
so that we can define the critical region for the test of Hy at the significance level «.

Qp={x1...%) : p(X1...X,) > xi_o(r — D} (2.73)

2.8.3 Kolmogorov-Smirnov Test

The weak point of the Pearson x? test is the necessity of introducing the partition
{Ej}j_, of the outcomes, which is quite arbitrary. In this section we will describe
a different approach due to Kolmogorov and Smirnov. The aim is again to test the
hypothesis:

HQ 0= 00

We will assume to deal with a sample (X ... X,) made of one-dimensional random
variables with cumulative distribution function Fy : R — [0, 1] that is continuous
and strictly increasing for all 6.
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We introduce now the empirical cumulative distribution function of the sample:
1 n
Fyx) =~ Z} O — X))
i

where ® is the Heaviside distribution, ®(x) =1 if x > 0 and ®(x) =0if x < 0.
F, 2 (x), forall x € R, is arandom variable counting the number of outcomes smaller or
equal to x. The following calculation shows that F, (x) is an unbiased and consistent
estimator of the “true” cumulative distribution function Fp:

- 1<
Eg[F,(x)] = p ZEo[@(x —X)]=Po(X <x) =Fy(x)
i=1

Fo()(1 — Fp(x))

5 1 n
vang[F, ()] = — 3 ElO(x = X)O (x = X))] = Fy()* = -

ij=1
Moreover, we are going now to show the following important result:

Theorem 2.6 (Glivenko-Cantelli) The Kolmogorov-Smirnov random variable:

sup |F, (x) — Fp(x)|

xeR

converges in probability to zero, that is:

lim P,,( sup |F(x) — Fo()| < e) =1

n—o0 xeR

Ve>0.

Proof Let’s fix € > 0, choose k € N, k > Z—L and consider the points x; = F,,,_l (i)
withj =0...k. Then:
J+1

Fo(xj11) — Fo(x)) = e

<e€

|~
| =

As we have observed above, in each point x; the empirical cumulative distribution
function F,(x;) converges in probability to Fg(x;). Then the random variable:

Ay = max |F, () = Fp ()]

j=0..

converges in probability to zero. Since V x € R there exists one and only one j such
that x € [x;_1, x;) we can write:
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Fy(0) = Fo(x) < Fu() = Fo(gj-1) = Fu(x)) — Fo(x)) + Fp (x)) — Fy (xj—1)
[Fa(x) — Fo@)| < |Fa(x) — Fo(x)| + |Fo(x) — Fa(xj-1)| < Ax + €
The fact that the last member is independent of x allows to write:

Sup F () — Fy ()] < Ay + e
which implies:

Po((sup|F (@) — Fo(o)| = 2€ ) = Py(A +¢ < 2¢) = Py 4y < )
xeR

This completes the proof since A; converger in probability to zero:
lim Py (Sup |F,(x) — Fp(x)| < 26) > 1
n—o0 R
Let’s consider now the random variable:

- 1<
Vi sup |Fu(x) — Fy(n)] = v/ sup |= Y~ O(x — X)) — Fy(v)]

xeR xeR N i=1

for the given sample. Since Fy is invertible by construction, we can write:

FuFy ') = 1] = sup

Vnsup |F,(x) — Fo(x)| = +/n sup
R [0,1] [0,1]

] n
7 ; Ot — Fo(X) — ~/nt
Now, let’s define:

20— LN o oy
B" = ﬁgoa Fy(X)) — </nt

The key point is that Fy(X), ..., Fg(X,) are independent and uniform in (0, 1), as
we have shown in the first chapter. It is immediate to see that:

pm _ pm) _
B"=B" =0

Moreover:

LS|
E[B}"ﬂ:%;/o duO(t — u) — /nt = 0
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and, if s < 1:
o~ 1 1
E [B§”>B§">] --y / du®(t — ) (s — v)du+
n ; 0

1 n 1 1
+ - Z f du/ dvO(t —u)O® (s — v) + nts+
n 0 0

i#i=1

n 1 n 1
_SZ/O du@(t—u)—tZ/O dvO (s —v) =
i=1 i=1

=5+ (n— Dts + nts — nts — nts =
=s(l —1)

Finally, the central limit theorem guarantees that B;, in the limit n — +o00 becomes
normal. When we will introduce the theory of stochastic processes, we will call the
process:

B, = lim B"™

n——+00

brownian bridge. We have thus shown that:

lim /1 sup |F,(x) — Fp(x)| = sup |B(?)| (2.74)
n—00 R [0,1]

where B(r) is a brownian bridge. This is very useful since the following technical
result, of which we will omit the proof, holds:

P(sup|B(t)| <x) =1-2) (=D le 2 (2.75)
(0.1] k=1

The reader may refer to the following table of the quantiles of the random variable
supyg 1y |B(7)| (Table2.1):

Table 2.1 Quantiles Dj_, of

. -« Di—q
the random variable e Te2]
supyo, 17 1B(@)| : :

0.98 1.518
0.95 1.358
0.90 1.222
0.85 1.138
0.80 1.073
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The critical region of the Kolmogorov-Smirnov test is:
r = {(xl cXy) \/E sup |Fn(x) - Fﬂo(x)| > Dla} (2.76)
R

Given the data, the tester, assuming that § = 6, evaluates the empirical cumulative
distribution function F,, (x) and finds the real number /1 Supr |f7 w(x) — Fp, (x)]; if
such positive number is bigger than D;_,, the tester rejects the hypothesis at the
significance level .

2.9 Estimators of Covariance and Correlation

During experiments a very important issue is the existence of correlations among

different quantities that are measured. Let’s consider the the simplest situation, when

only two quantities are measured: this results into two sets of data, (x; ...x,) and

(V1 .- -Yn), which we view as realizations of two samples (X;...X,) e (¥;...Y,).
We wish to estimate the covariance:

Covy (XiYi) = Eg(X;Y;) — Eg(X)Ep(Y;) = puxy (0) — pux (0) ey (9) 2.77)

Let’s define the estimator:

n
n—1

X n 1 n n
- ;Xm—m (;X> (;Y>

This is an unbiased estimator for uxy (0) — ux (@) 1y (@), as can be seen from the
following calculation:

C=

n
My (XY X Yo) = —— My (X X)Wy (Vi . Y) =
(2.78)

Y EeXiY)  Xym Be(XiY)
n—1 nn—1
= Eg(X;Y)) — Eg(X)Ep(Yi) = puxy (0) — ux (8)pny(6)

Ey (C) =

Moreover, the law of large numbers guarantees that C is also consistent.
A very interesting quantitative information about correlation, very often used in
data analysis, is the Pearson correlation coefficient:

pxy (0) — ux (0)y(6)

NEROEHO!

p(0) =




2.9 Estimators of Covariance and Correlation 67

which is a real number, —1 < p(@) < 1, is zero if the quantities are non correlated
and reaches the value +1 when there exists a linear relationship between the two
quantities.

A typical estimator for p (@) is:

— MXY - MXMY
Js2s2

This natural estimator is a quite complicated function of the samples: it is highly
non trivial to evaluate its expectation or to build up confidence intervals. It is useful
to introduce here a well established technique, the propagation of errors, which will
help us to study the estimator R. The first observation is that:

R (2.79)

R = g (Mx, My, sz, MY% MXY)

where:
X5 — X1X2

J —xDea — )

8(x1,x2, X3, X4, Xs5) =

and we know the properties of the statistics My, My, Myz2, My2, Mxy. What can
we learn about R?
The approach we will follow relies on the important theorem:

Theorem 2.7 (Propagation of errors) Let {Z,}72, be a sequence of k dimensional
random variables converging almost surely to a constant vector z € R* and such as
the sequence:

Zy—2

1/y/n

converges in distribution to a normal random variable N (0, X) for a given matrix X.
Ifg : RY — Ris afunction of class C' in a neighborhood of z, then the sequence:

(2.80)

8Zy) — 8(@)
1/+/n

converges in distribution to a normal random variable N (0, Vg(z) X Vg(2)T).

2.81)

Proof The proof relies on a first order Taylor expansion with Lagrange rest:

8(Zy(w) = g(2) + Vg(Z) (@) (Zy(®) — 2)

where Z (w) lies, for all w, between z and Z, (w). Exploiting the continuity of Vg (g
is of class C! by construction), we have thus:

Jim /n(2(Zy) - () = Vg(@) lim +/n(Z, —2)
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and the thesis follows from the fact that the right hand side has law N (0, Vg(z) ¥
Ve@").

Now, the sequence (My, My, Myz2, My2, Mxy) converges almost surely to the
limit (ux (0), uwy (0), ux2(0), y2(0), uxy (6)) when the rank of the samples tends
to +00. Since:

R =g My, My, Mx2, My2, Mxy)

where:
X5 — X1X2

\/ (3 — x}) (x4 — x3)

g(x1, X2, X3, X4, X5) =

is continuous (ux (0), wy(0), ux2(0), y2(0), uxy(@)), then R converges almost
surely to p (@) (the interested reader can try to show this intuitive continuous map-
ping theorem). This guarantees the consistency of the estimator, since almost sure
convergence implies convergence in probability. Moreover, since:

lim E¢(R) = p(0)

R is also an asyntotically unbiased estimator.

If the components (X;, ¥;) follow a normal law, we can also use the propagation
of errors to find the law of R and to provide confidence intervals for p(@). In order
to simplify the notations, we let ;ux () = 0 and uy () = 0.

For the central limit theorem, the random variable:

My 0
My 0
lim /n My2 | — a)% 0)
n—>oo My 03(0)
Mxy p(0)ox (0)oy ()

follows a normal law with covariance matrix X whose explicit form is:

o)% 2poxoy 0 0 0

pOx Oy 03 0 0 0
Y= 0 0 204 2p°0go;  2pojoy
0 0 2,020)% 03 20;‘ 2,0030;(

0 0 2p030y 2poiox (1+ p*)oio?l
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Moreover:

0
0
p(6)
0z (0)

p(6)
Q)

Vg(0,0,0¢(0), 52 (8), p(0)ox ()oy (0)) =

L
ox (0)oy (9)
Since VgX'Vg = (1 — p(6)?)?, the propagation of errors theorem guarantees that:
lim 7 (R— p@) ~N (o, (1- p(0)2)2> (2.82)
n—oo
The reader can verify that the same result can be obtained also when px (f) and

Wy (@) do not vanish.
We have thus:

R—p(8
Py <—¢1; < ﬁrf(;))z < ¢1;) ~l-a (2.83)

and a confidence interval at the level 1 — « for p (@) turns out to be:

(2.84)

1 —V1—4zR+422 V1+4zR+42 -1
2z ’ 2z

(.

IR

where z =

S

2.10 Linear Regression

We conclude this chapter with a brief review of the well known linear regression,
which is widely used in applied science, data analysis and machine learning. It is
very common, in several applications, to guess an affine-linear relation between
two quantities, say X and Y. The quantity X is usually called the input variable,
and can be controlled by the experimentalist, who chooses n-values, (xi, ..., x,)
and, correspondingly, performes n measurements of the response variable, Y. The
response variable is random and the experimentalist will obtain n data (yq, ..., ¥,).
If we expect a linear-affine relation between X and Y, the simplest way to describe
the experiment using the language of probability theory is to model (yi, ..., y,) as
realizations of n random variables of the form:

Yi =a-+ bxi +o¢g; (285)
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where the x; enter simply as real parameters, while &; ~ N (0, 1) are standard normal
independent random variables; the coefficients a and b of the linear-affine relation,
and the measurement error o, are to be inferred from the data.

We are going now to show how to build up estimations of a, b, and o, using as
starting point the input parameters (xi, ..., x,) and the data (y;, ..., y,).

If we organize the data in couples (x1, y1) . .. (X, ¥), the most natural strategy is
to find the values of @ and b minimizing the quantity:

Fla,b)=) lyi—a~—bxl|’ (2.86)

We can write the above function in a more geometrical way as follows:

a2
Fla.b) = ’y—M <b)‘ (2.87)
wherey = (y1, ..., ¥,) and M € M,,»(R) is the matrix:
1 X1
...... (2.88)
1 x,

whose columns are linearly independent provided that (x; ... x,) are not all equals.
As (a, b) vary, the set of points M
of M. Thus:

Z is the plane E; in R” spanned by the columns
min F(a,b) = m1n ly — p/? (2.89)

(a,b)eR?

so that elementary geometry implies that the minimum is reached when p = I}y,
I, being the projector onto the plane E;, whose explicit form is the following:

I =MM™M)"'MT (2.90)

‘We have thus:
p=Iy=MM™M)'MTy (2.91)

which, keeping in mind that p = M < Z), leads to the estimator:

<“§> (Yi...Y)=M"M)"'MTy (2.92)

or, more explicitly:
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MMy — My Myy

A Y = =
Mo VN (2.93)
BY,...Y,) = — T
Mx2 - MX

We stress that the quantities My and My2 are not random, depending only on the
input data. The random variables (2.93) are unbiased estimators of the parameters
(a, b); in fact:

E[(%)] =M"M)"'MTE[Y] = M"M)"'M"M (Z) = (Z) (2.94)

We have still to build up an estimator for o2, The idea is that such parameter deter-
mines the discrepancy between the data (yy, .. ., y,) and the points of the regression
line (a + bxy, ..., a+ bx,). It is thus natural to interrelate such parameter to the
minimum of the function:
min |y — p|* = |ITy|® (2.95)
pEE;

IT, being the projector onto the n — 2-dimensional orthogonal complement of the
plane E;. Such quantity can be interpreted as a realization of the random variable:

_BYP Y1 - A B

82 (Y;...Y, 2.96
R — (2.96)

which is an unbiased estimator for o2 since:
E[IILY)?] =0’ E[|[el*] = 0® (n—2) (2.97)

We can also estimate confidence intervals for the parameters a, b, o relying on
the following result:

Theorem 2.8 The random variables A and B are independent from 8*. Moreover:

82  x*(n—2)

o2 - n—2
A4 -2 (2.98)
NDE '
b ~t(n—2)
N

where:
My 1

. S 2.99
TG VI Vi R G I, V3 (299)
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Proof Since the random variable € and the linear projectors I1;, I1, satisfy the
hyphothesis of Cochran theorem, the random variables 1, € and I'T, € are independent.
Moreover, Cochran theorem guarantees that:

|Mel* ~ x*(n—2) (2.100)

2
el
n—2

%. Since the covariance matrix of the random variable M "M)~'MTY is:

since the subspace onto which IT, projects has dimension n — 2. Thus f—;

= Coo[M™M)Y " "MTY]=M"™M)"'"MTCov[YIMM™M) ' =c*M™M)!

(2.101)

we conclude that A ~ N (a, m, 6%), B ~ N (b, m; ) where m, = [(MTM)_1]11 =
M _ ..

n(MXz—XfMi) and my, = [(MTM) 1]22 = m The definition of the Student

law together with the independence of A and B of § completes the proof.

We are now able to provide confidence intervals of level 1 — « for o2

—2 —2
— 8%, — $? (2.102)
X 0-2) K-

and for a and b:

[A—mg8ti_«(n—2), A+ Jmg8t_s(n—2)]

(2.103)
[B— imp8t1_e(n—2), B+ \/my 8112 (n—2)]

2.11 Further Readings

This chapter contains all the notions necessary to perform standard statistical data
analysis. Further topics in Statistics are covered in many excellent textbooks, like,
for example [1-3].

Problems

2.1 An estimator

Consider a sample (Xj...X,) with iid components following the law py(x) =
‘%X[oyg] (x). The statistics T(X; ...X,,) = max(X; ...X,) can be used to estimate 6. Is
it an unbiased estimator? Is it consistent?
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2.2 Mean squared error
Given an integrable and square-integrable estimator T of a quantity (). Provide an
expression for the Mean Squared Error of the estimator:

MSE(T) = E[(T — 1(6))*] (2.104)

in terms of the variance of the estimator itself. What is the role of bias?

2.3 Cochran theorem
Use Cochran theorem to show that, if the sample is made of normal random variables
X; ~ N (6, 0), then, given the estimators M = % > X;and 82 = ﬁ X —
M)?, they are independent, and that:

M — 6y (n—1)82

— ~t(n— 1), 9—1~X2(n—1) (2.105)

(%]

=|

2.4 Chi-squared test

Prove the basic result about the chi-squared test, that is that the Pearson random
variable converges in distribution to a random variable x>(r — 1), r being the number
of intervals, as the rank of the sample tends to 4-o00.

2.5 Velocity of light in the air
The Table2.2 contains n = 100 measurements of the velocity of light in air by A.
Michelson (1879): each value plus 299000 is a measure of ¢ in km/s.

Estimate the mean and the variance, under the assumption that X; ~ N (6, 61).
Estimate confidence intervals for the mean and for the variance at the level 1 — o =
95%. Use the Student test to test the hypothesis that the mean is equal to the exact
value ¢ = 299792.458 km/s.

Table 2.2 The 100 measurements of the velocity of light in air by A. Michelson (1879), from [4];
the given values plus 299000 re the original measurements in km/s

850 740 900 1070 930 850 950 980 980 880
1000 980 930 650 760 810 1000 1000 960 960
960 940 960 940 880 800 850 880 900 840
830 790 810 880 880 830 800 790 760 800
880 880 880 860 720 720 620 860 970 950
880 910 850 870 840 840 850 840 840 840
890 810 810 820 800 477 760 740 750 760
910 920 890 860 880 720 840 850 850 780
890 840 780 810 760 810 790 810 820 850
870 870 810 740 810 940 950 800 810 870
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Table 2.3 Are these numbers drawn from a uniform distribution?

0.676636 0.231011 0.613735 0.055805
0.924277 0.335412 0.289339 0.927961
0.250062 0.809011 0.056113 0.661863
0.939963 0.966387 0.079119 0.759914
0.891149 0.554386 0.583501 0.912486

2.6 Kolmogorov-Smirnov and chi-squared test
Consider the set of data in Table 2.3:

Use Chi-squared with 5 bins of equal length and Kolmogorov-Smirnov tests to
test the hypothesis at the confidence level 90% that such data can be modeled by a
uniform law in (0, 1).

2.7 Estimators for sums and products

Let X;...X, and Y ...Y, be independent samples with normally distributed com-
ponents, such that X; ~ N(ux, 02) and ¥; ~ N(uy, o2). Construct estimators for
px + py and py py.
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Chapter 3
Conditional Probability and Conditional oo
Expectation

Abstract Inthis chapter we deal with conditional probability. After having sketched
the elementary definitions, we introduce the advanced notion of conditional expec-
tation of a random variable with respect to a given o -field. The intuitive meaning of
the conditional expectation is the best prediction we can do about the values taken by
the random variable, once we have observed the family of events inside the o -field.
The conditional expectation is widely used in the theory of stochastic processes we
will present in the following chapters.

Keywords Conditional probability - Conditional expectation - Measurability
Independence - Bayes theorem

3.1 Introduction

So far we have focused on independent random variables, which are well suitable to
deal with statistical inference, allowing us to exploit the very powerful central limit
theorem. However, for the purpose of studying time dependent random phenomena,
it is necessary to consider a much wider class of random variables.

The treatment of mutually dependent random variables is based on the funda-
mental notion of conditional probability and on the more sophisticated conditional
expectation which we will present in this chapter.

The conditional probability is presented in every textbook about probability; we
sketch this topic briefly in the following section and then we turn to the condi-
tional expectation, which will provide a very important tool to deal with stochastic
processes.

3.2 Conditional Probability

Definition 3.1 Let (2, F, P) be a probability space and B € F an event with non-
zero probability; the conditional probability of A with respect to B is:
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_ P(ANB)
mmm_—7@T- 3.1)

Intuitively, P(AIB) is the probability that the event A occurs when we know that the
event B has occurred. It is very simple to show that the map:

AeT, A— P(AB) (3.2)

defines a new probability measure on (2, ). If the events A and B are independent,
P(A|B) = P(A): the occurring of the event B does not provide any information
about the occurring of A.

From the Definition (3.1) of conditional probability the following important the-
orems easily follow:

Theorem 3.1 (Bayes) Let (2, F, P) a probability space and A, B € F events,
P(A) #0, P(B) # 0, then:

P(A|B) P(B) = P(B|A) P(A) (3.3)
Proof Both members are equal to P(A N B).

Theorem 3.2 (Law of Total Probability) Let (§2, F, P) a probability space and A €
JF an event and { B;}!_, mutually disjoint events, P(B;) # 0, such that U;B; = §2;
then:

P(A)=)_P(A|B)P(B;) G4

i=1
Proof

P(A) = Z P(ANB;) = Z P(A|B;)P(B))

i=1 i=1

3.3 Conditional Expectation

The remainder of the chapter is devoted to the presentation of the conditional expecta-
tion, which can be thought as a generalization of the concept of conditional probabil-
ity: the idea of conditional expectation rises from the observation that the knowledge
of one or more events, represented by a sub-o-field § C J, allows to “predict” values
taken by a random variable X through another random variable E[X|3], the so-called
conditional expectation of X with respect to G.

Before giving the rigorous definition of E[X|S], we discuss a useful example.
Consider a sequence of random variables, taking values in R", defined as:
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n

=) & =0 (3.5)
i=1

The label n could represent a time instant and ¢, the position of a particle, resulting
from the accumulation of n steps &;. We will assume that {£;} are independent and
identically distributed, with mean . We observe that, while {§;} are i.i.d, the ran-
dom variables ¢, and ¢, for m # n, are correlated. This correlation is crucial for
describing time dependent phenomena, as it will become very clear in the following
chapter.

Let us now denote Y = ¢, and X = {44, for k > 0. Imagine that we can measure
the position at time n, that is Y, while the time instant n + k is in the future. Can we
predict the position at time n + k, that is X, relying on our measurement of ¥?

It is natural to proceed as follows: we try to build a function of Y, say f(Y),
that minimizes the intuitive figure of merit E[(X — f( Y))?]. For simplicity, we will
assume that the random variables {§;} are discrete, implying that ¥ and X are discrete.
We can thus parametrize:

fO) =) ailyoy, (3.6)

where o; is f(y;). Differentiating E[(X — f(Y))?] with respect to «; we obtain the
minimization condition:

_EX vl N by = v
YT EN _;x’P(X_x"Y—y’) (3.7)

Now, we observe that:

n+k
PX=x, Y =y) _, &
I=n+1
so that:
n+k Ntk
& :ZXJP(Z & :xj_yi):Z(yi+u)P( Z £ =u) =y +ku
J I=n+1 u J—
(3.9
We conclude thus that:
X)) =Y +ku (3.10)

The interpretation is very simple: if we observe the position of the molecule at time
n, the best prediction for the position of the particle at time n + & is obtained drifting
the current position by ku, u being the average step.

In the rest of this chapter we will learn to call f{Y) the conditional expectation of
X given Y, E[X1Y], which we will now define rigorously.
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Let X be a real integrable random variable on a probability space (£2, F, P), and
G a sub-o-field of F. Consider the map:

BeSG B— 0¥IB)Y / X (0) P(dw) (3.11)
B

If X >0, (3.11) defines a positive measure on (2, §), absolutely continuous with
respect to P; by virtue of the Radon-Nikodym theorem [1], there exists a real random
variable Z, S-measurable, a.s. unique and such that:

QX'S(B)=/Z(a))P(da)) VBe§ (3.12)
B

Such random variable will be denoted:
Z = E[X|9] (3.13)

and called conditional expectation of X given G. If X is not positive, it can be
represented as difference of two positive random variables X = X — X~ and its
conditional expectation given G can be defined as follows:

Z=E[X|S]1=E[X*|G] - E[X"|9] (3.14)

The conditional expectation E [X|G] is defined by the two conditions:
1. E[X|G]is G-measurable
2. E[1g E[X|S]l=E[1pX], VBe§
With measure theory arguments it can be proved that the second condition
is equivalent to:
E[W E[X|S]] = E[W X] (3.15)

for all bounded and §-measurable random variables W.

The key point is the G-measurability: if G represents the amount of information
available, in general we cannot access all information about X; on the other hand, we
can construct E [ X|SG], whose distribution is known, and use it to replace X whenever
events belonging to G are considered.

We will often use the notation:

P(A19) Y E[14]G] (3.16)
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and call (3.16) the conditional probability of A given G; we stress that (3.16), in
contrast to (3.1), is a random variable. Moreover, it is §-measurable and such that:

/P(A|9) (w)P(dw):/ la(@)Pdw) = P(ANB), YBe§G (3.17)
B B

3.4 An Elementary Construction

We will now provide some intuitive and practical insight into the formal definition
of conditional expectation, giving an elementary construction of (3.12) under some
simplifying hypotheses. Let Y : 2 — R be a random variable and, as usual:

o) Y {Acea=y""(B), BeBR) (3.18)

the o-field generated by Y, i.e. the smallest sub-o-field of F with respect to which
Y is measurable. Intuitively, if our amount of information is o (Y, this means that,
after an experiment, we know only the value of Y: we do not have access to other
information.

Let us assume that Y be discrete, i.e. that it can assume at most countably infinite

values {y1, ..., Yu, ... }. Forall events A € &, let us define:
PAN{Y=Y;}) - _
w | TPo=nT HPE =y)>0
P == (3.19)

0  otherwise

Equation (3.19) is nothing but the familiar conditional probability of A given the
event {Y = y;}. Due to the law of total probability:

P(A)=) P(AlY =y) P (Y =y) (3.20)

Let now X : 2 — R be an integrable random variable, which we assume discrete
for simplicity, and consider the map:

B(R)>H— P(X e H|Y =y) (3.21)
Equation (3.21) is a probability measure on R, with expectation:

EIXIY =yl E Y 5P (X =xjIY = y) (3.22)
j

Consider now the function 4 : R — R:
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yeR — h(y) = (3.23)

def |E[X|Y =y], ify=y, PY =y)>0
0 otherwise

h is clearly measurable, so that it makes perfectly sense to construct the random
variable Z : 2 — R
we 2 Z(@) “ h (Y () (3.24)

that is, recalling (3.22):

Z(w)Z{E[xw:y;], if Y() =y, P(Y=y)>0 (35)

arbitrary value otherwise

Equation (3.25) has a straightforward interpretation: given a realization of Y, the
expectation of the possible outcomes of X can be computed; this expectation is
random, like Y. At a first sight, the arbitrary constant in (3.25) could seem disturbing:
nevertheless, the subset of £2 on which Z takes an arbitrary value has probability equal
to 0.

Incidentally, we remark that, for all A € J:

E[WY =yl= ) aP(a=alY =y)=PA]Y =y) (3.26)
a=0,1

It remains to show that:
Z(w) = E[X|lo(Y)](w) a.s. (3.27)

First, we show that Z : £2 — R is o (Y)-measurable; to this purpose, consider H €
B(R):
Z'H)=(hoY) ' (H)=Y"" (h"'(H)) € o(Y) (3.28)

since h~'(H) € B(R). Therefore, Z is o (Y)-measurable. Let now be W a bounded
and o (Y)-measurable random variable (this includes the case W = 1g, with B €
o (Y)). By virtue of a theorem by J. L. Doob, which we state without proof reminding
the interesting reader to [2], there exists a measurable function w : R — R such that
W = w(Y). Recalling that Z = h(Y), we therefore have:

E[WZ] =) ,wO)E[X|Y =y]P(Y =y) =
=Y, wO) X 5P (X =x;1Y =y) P(Y = yi) = (3.29)
= Zi’j w(yi)x; P ({X = xj} Nn{Yy = )’i}) = E[WX]

which is exactly the second condition defining E [X|o (Y)].
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3.5 Computing Conditional Expectations from Probability
Densities

The notion of conditional expectation E [X |0 (Y)] is well defined also for continuous
random variables X, Y. Several authors write, for the sake of simplicity, E [X|Y]
instead of E [X|o (Y)]. Remarkably, since E [X|o (Y)]is o (Y)-measurable, by virtue
of Doob’s theorem [2] there exists a measurable function g such that:

E[X|Y] = g(Y) (3.30)

Equation (3.30) has the intuitive interpretation that to predict X given Yit is sufficient
to apply a measurable “deterministic” function to Y. In the remainder of this section,
we will present a practical way to compute explicitly g(Y) in some special situations.
The following discussion will be based on the simplifying assumptions:

1. that the random variables X, Y take values in R.

2. that X and Y have joint law absolutely continuous with respect to the Lebesgue
measure, and therefore admit joint probability density p(x,y).

3. that the joint probability density p(x,y) is a.e. non-zero.

Under these hypotheses, the marginal probability densities and the conditional prob-
ability density of X given Y can be defined with the formulas:

p(x,y)

3.31
py(y) 63D

px(x) =/dyp(x,y) py(y)=/dx p(x,y)  pkly) =

By virtue of these definitions, and of Fubini’s theorem [ 1], we find that for all bounded
measurable functions /2 : R — R one has:

E[Xh(Y)] = /dx/dy Py 2 h(y) =
=fdypy(y)h(y) /dxx pxly) = E[g(Y)h(Y)]
where the measurable function:

gly) = /dxx p(xly)

has appeared. Since, on the other hand:
E[Xh(Y)] = E[E[X|Y]h(Y)]

we conclude that E[X|Y] = g(Y). As an example of remarkable importance, con-
sider a bivariate normal random variable (X, Y) ~ N(u, ') with joint density:
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Gop)? | PE—m)G—py) | (—py)?
203(-p2) ' oxoy(i—p%)  20}(1—p?)

px,y) =
2rocoyy/1 — p?

A straightforward calculation shows that:

_ O—ny 2
202

/2710)?

which allows us to obtain p(xly) and to compute explicitly g(y). The result is:

pr(y) =

P Ox

g(y) = ux + O —ny)

y

The conditional expectation of X given Y is therefore, in this special situation, a linear
Sfunction of Y, explicitly depending on the elements of the covariance matrix X'.

3.6 Properties of Conditional Expectation

The following theorem contains some important properties of the conditional expec-
tation.

Theorem 3.3 Let X be a real integrable random variable, defined on a probability
space (2, F, P), and G a sub-o -field of F. Then:

the map X — E [X|G] is a.s. linear

if X > 0a.s., then E[X|9] > 0 a.s.

E[E[XI|S]] = E[X].

if X is G-measurable, then E [X|G] = X a.s.

if X is independent on G, i.e. is if 0 (X) and G are independent, then E [X|G] =
E[X]a.s.

if X C Gisao-field, then E [E [X|G]|H] = E [X|H] a.s.

7. if Y is bounded and G-measurable, then E [Y X|G] = YE [X|G] a.s.

SR~

S

Proof The first two points are obvious. To prove the third one, it is sufficient to recall
that:

E[1z E[X|S]l=E[1p X], VBeS§ (3.32)

and choose B = 2. To prove the fourth point, it is sufficient to observe that, in such
case, X itself satisfies the two conditions defining the conditional expectation.

To prove the fifth point, we observe that, since the random variable w — E [X]
is constant and therefore §G-measurable, and since for all B € G the random variable
15 is clearly G-measurable and independent on X:
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E[lp X]1=E[l3]E[X]= E[1zE[X]] (3.33)

so that w — E [X] satisfies the two conditions defining the conditional expectation.

To prove the sixth point, we observe that by definition E [E [X|G]|H] is H-
measurable; moreover, since B € H, 1 is H-measurable and also G-measurable
(since G contains H). Therefore:

E[lz E[E[X|S]|H]] = E[15 E[X|S]] = E[15 X] (3.34)

where the definition of conditional expectation has been applied twice.

To prove the last point we observe that, as a product of §-measurable random vari-
ables, Y E [X|G] is G-measurable. For all bounded, §-measurable random variables
Z, therefore:

E[ZYE[X|SII=E[ZYX] = E[ZE[YX]S]] (3.35)

since also ZY is bounded and G-measurable.

3.7 Conditional Expectation as Prediction

We are going now to put on a firm ground the intuitive idea of the conditional
expectation as prediction: E [X|G] “predicts” X when the amount of information is
§. To this purpouse, we need a geometrical interpretation: let L? (£2, &, P) be the
Hilbert space of (complex valued) square-integrable random variables, endowed with
the inner product:

(x1v) < E[XY] (3.36)

Moreover, as usual G is sub-o -field of F. The space L?(£2, G, P)isaclosed subspace
L? (82, F, P). Let us define the mapping:

Xel?@.9.P), X— 0x“ E[x|9] (3.37)

We leave to the reader the simple proof of the fact that Q is a linear operator from
L? (2,7, P)toLz(.Q g, P).
Let us prove that Q is idempotent, that is Q2 Q

0%X = QE[X|9] = E[E [X|9]/9] =

N 3.38
= E[X|S] = 0X (3:3%)

Moreover Q is self-adjoint, since:
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(X|0Y) = E[XE[Y|S]] = E[E[XE[Y|9]19]] =
= E[EYISIE[X|S]] = E[E[YE[XI5]15]] = (3.39)

= E[YE[XI9]] = £ [E[XIS]Y ] = (0x11)

Therefore Q is an orthogonal projector onto the subspace L? (£2, G, P).

Letnow be X € L?(£2, F, P) areal random variable; let us look for the element
Y € L?(£2, G, P) such that ||X — Y||? is minimum. The minimum is reached for
Y = E [X]S]. The key point is that Y = QY, in fact:

E[X=YP] =X Y|P =[[0X+(1 = OX = 0Y|P= ;0
= 10X =DIP +1I(1 = OXI> = IY = OX[P +|I(1 = O)X[>
and the minimum is achieved precisely at Y = 0X.

In the sense of L2, thus, ¥ = E [X|G] is the best approximation of X among
the class of G-measurable functions. This is the justification of the interpretation
of Y = E[X|G] as a prediction: within the set of square-integrable §-measurable
random variables, Y = E [X|G] is the closest one to X in the topology of L>.

3.8 Linear Regression and Conditional Expectation

There is a very interesting connection between conditional expectation and linear
regression which we are going now to explore. Let’s consider two real random
variables Y and Z, representing two properties one wishes to measure during an
experiment. Quite often it happens that the quantity Z can be measured with an high
accuracy, while Y, a “response”, contains a signal and a noise difficult to disentangle.
In such situations, from a mathematical point of view, the experimentalist would like
to work with o (Z)-measurable random variables: such quantities, in fact, have a well
defined value once the outcome of Z is known. The key point is that E[YIZ] is the
best prediction for Z within the set of o (Z)-measurable random variables.
Since the conditional expectation is a linear projector, we can always write the
unique decomposition:
Y=E[Y|Z]+¢ (3.41)

where ¢ is a real random variable. It is immediate to show that:
Ele] = E[e|Z] =0 (3.42)
Moreover, since Y — E[Y|Z] is orthogonal to all the random variables o (Z)-

measurable:
E[(Y — E[Y|ZDh(Z)]=0 (3.43)
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in particular the following orthogonality property holds:

EleZ]=0 (3.44)

In order to proceed further, let’s assume that the two-dimensional random vari-

able (Z, X) is normal. In such case we know that the conditional expectation depends
linearly on Z:

E[Y|Zl=a+bZ (3.45)
with:
. Var(Z)E[Y] — E[Z]Cov(Z,Y)
N Var(Z)
_ Cov(Z, ) (3.46)
" Var(2)

The “error” ¢ = Y — (a + bZ) is also normal being a linear function of (X, Z) of zero
mean. Moreover, since E[¢Z] = 0, ¢ is independent of Z. The variance is:

o = Var(e) = E[(Y — (a + bZ))*] (3.47)

and, from the geometrical interpretation of the conditional expectatio, we know that
the parameters in (3.46) minimize such quantity.

To summarize, we have found that, whenever two quantities Z and Y have a
joint normal law, the best prediction we can do for Y once we know the value
of Z is a linear function of such value. The experimentalist collects a set of data
{(z1,¥1), .-+, (zZu, ¥n)}, interprets such data as realization of two-dimensional ran-
dom variables (Z;, ¥;) independent and identically distributed as (Z, Y), and uses
such data to infer the values of @, b and o2, the last one providing the “accuracy” of
the linear approximation.

For the statistical analysis, we refer to the previous chapter.

3.9 Conditional Expectation, Measurability
and Independence

The conclusion of the present chapter is devoted to the presentation of a useful result,
which will be used later. For clarity, let us think about a particle moving from an initial
position X to a final position X + Y. We assume that X is G-measurable, meaning
that G contains all the necessary information to know the initial position, and that
Y is independent from §. What the best prediction for the final position, given the
initial one? We learnt in this chapter that the best prediction is:

E[X+7YIS] =X + E[Y] (3.48)
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where we have used the properties of conditional expectation. The result is a random
variable, function of X.

More generally, what is the best prediction for a function (let’s imagine for exam-
ple the value of a field), evaluated in the final position, or any function of both the
initial and the final position (imagine the calculation of the velocity)? That is, we
wish to compute E [g(X, Y)|G] for a given function g. Intuitively, we expect that the
result will be a random variable function of X. We will now show how to make the
explicit calculation.

In the simple case g(X, Y) = XY, we have:

E[XY|S]=XE[Y|G9] = XE[Y] (3.49)

This can be immediately generalized to linear combinations of factorized functions
g(X,Y) = f(X)h(Y), f, h being measurable functions (and integrability conditions
have naturally to be fulfilled).

E[f(X)h(M)IG] = f(X)E[h(Y)|G] = f(X)E [A(Y)] (3.50)

The key point is that the result is a random variable depending on X, whose explicit
form is obtained performing an expectation over Y. Formally, we can summarize this
result in the following theorem [3], where we introduce a function v (x, @) such that:

§X (@), Y(w)) = ¥ (x, 0)|x=x () (3.51)

Theorem 3.4 Let (2, F, P) be a probability space, G and H mutually indepen-
dent sub-o -fields of F. let X : 2 — E be a G-measurable random variable taking
values in the measurable space (E, £) and ¥ a function ¢ : E x 2 — R € ® H-
measurable, such that v — (X (w), w) is integrable. Then:

def

E[y(X, )5l =2(X), @) = E[¥(x, )] (3.52)

3.10 Further Readings

Readers wishing to deepen their knowledge about conditional probability and con-
ditional expectation can refer to many excellent textbooks, like, e.g., [4, 5].

Problems

3.1 Random summations

Let {X}; be a sequence of independent and identically distributed, taking valued in
N. Let, moreover, N be another random variable taking values in N, independent
from the X;. Define the random summation:

Sv=X14+---+ Xy (3.53)
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Evaluate the discrete density P(Sy = k) and the generating function:
Vs, (2) = E[2%] (3.54)
Deduce the useful relation:
E[Sy] = E[N]E[X;] (3.55)

which holds provided that N and X; are integrable.

3.2 Lack of memory
Let X be a geometric random variable with parameter p, i.e. with density

_|pd—=p) x=0,1,2,...
pix) = { 0 otherwise (3.56)
Show that:
PX>j+k|X=j)=P(X=k) (3.57)

Show that the same is true if X is exponential with parameter A, i.e. with density:
px) = hexp(—ix) 1o 1oc) (x) (3.58)
Precisely, show that:
PX>t+s|X>t)=P (X >y¥) (3.59)

3.3 Diagnostic test

In medicine, a diagnostic test is any kind of medical test to aid in the diagnosis of
a disease. Suppose that, if the patient has the disease, the probability that the test is
positive is 99% and, contemporarily, the probability that the test if negative assuming
that the patient does not have the disease is the same 99%. Now, assuming that the
incidence of the given disease is 0.2%, what is the probability that any individual
whose test has turned out to be positive actually has the disease?

3.4 A simple conditional expectation
Show that, in the special case § = {0, £2, A, A€} where A € F has non-zero proba-
bility, we have:

_1
EIX |5](@) = {P“‘) J oo, ool (3.60)

P(LC) [4e PA0)X (w), w € A€
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3.5 Calculation of conditional expectation
Consider a random variable (X, Y) uniform inside the unit circle, with density:

) = L x=<1 3.61)
Poxr B 0, otherwise '

Find E[XIY].

3.6 A simple situation

Suppose a random variable X is used to model the measurement of a quantity which
is assumed to be normal with mean M and variance 1; the mean M is random too and
is assumed to follow an exponential law with parameter A. Evaluate E[X]. What is
the joint probability density p(x,m) of (X, M)?

3.7 Gamma and negative binomial law
We say that a random variable X follows a Gamma law with parameters «, 8, @ > 0
and B > 0, and write X ~ I'(«, B), if its density is:

o

px(x) = Fﬂ(a)x“*‘ exp(—B) 10,400 (1) (3.62)

We observe that I' (1, B) is the exponential law with parameter 8, while I” (% %) =
2
x-(n).
Now, suppose a random variable N represents a quantity that is modeled by a
Poisson distribution with a random parameter A ~ I'(«, 8). Show that N follows a

negative binomial law with parameters ¢ > 0 and 0 < p = ,3L+1 <1, that is:

(a+n—1)(a+n—2)..c0. n
e e p* 1 —p), n=0,1,2,...

pn(n) = mo (3.63)
0, otherwise

Evaluate E[N].
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Chapter 4 ®)
Markov Chains Check for

Abstract In this chapter we will start dealing with stochastic processes, which are
the mathematical models for phenomena whose temporal evolution contains some
randomness. Starting from the celebrated example of the random walk, we will
introduce the central definition of Markov chains, which, although simple, provide
extremely important models for physical systems. The description of Markov chains
will allow us to introduce the central topic of thermalization and approach to equilib-
rium of random motions, that is the existence of asymptotic laws to which the Markov
chains converge, in a sense that will be made rigorous. Finally, we will introduce
Metropolis theorem, a cornerstone of numerical simulations, as will be discussed in
the following chapter.

Keywords Markov chains - Random walk - Transition matrix - Invariant laws
Metropolis theorem

4.1 Basic Definitions

In the present chapter we will introduce the mathematical description of time-
dependent random phenomena. We will begin treating the simple case in which
the time evolution can be represented as a sequence of steps in discrete time, and the
random variables describing the quantities evolving randomly in discrete time take
values in a discrete space.

In the following, we will consider a probability space (£2, F, P) and a set E at
most countable, which we will call state space.

All the random variables X which will be dealt with are measurable functions
X : 2 — E with discrete density:

keE—-v 2 PX =k, w=0 Y n=1I @.1)
keE

As discussed in the first chapter, a discrete density uniquely defines a law: having
in mind (4.1), for the sake of simplicity, we will call v the law of X with innocuous
abuse of notation.
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Random processes with discrete time and discrete state space can be interpreted
as random walks on the points of E. To the purpose of describing such processes
we must know the transition probability from a generic point k € E to another one.
Therefore, a central ingredient in our treatment is represented by the following:

Definition 4.1 A transition matrix P on E is a real matrix, satisfying the
following properties:

1. Vi,jeE Ofﬂ)i_”'
2. VieE Z ‘Pi_”'

where the symbol P;_, ;, i, j € E denotes the matrix elements of P.

1A

jeE

The above requirements enable us to interpret P;_, ; as the probability of moving
fromi € E to j € E in one time step: the second one, in particular, simply means
that the probability of transitioning from i to any state in E is equal to one. We now
give the fundamental:

Definition 4.2 Given a law v on E and a transition matrix P on E, we call
homogeneous Markov chain with sample space E, with initial law v and
transition matrix P, a family: {X,},~( of random variables X, : £2 — E such
that:

1. X has law v
2. whenever conditional probabilities make sense:

PXyr1=jlXp=i,Xp_1=ip—1,...,Xo=1p) = 4.2)
=P(Xyp1 = jlXp=1) = (Pi—>j

We stress that P(X,+1 = j|X, = i) is assumed independent of n, whence the adjec-
tive homogeneous in definition (4.2).

4.2 Random Walk in d Dimensions

We begin our exposition of the theory of Markov chains with a remarkable example,
the random walk on a lattice, which is the mathematical model of a path that consists
of a succession of random steps. The reader can think of a drunk man, or a particle
randomly moving, who, at each time, chooses a random direction, and makes a step
accordingly.
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In order to introduce the model, we let {eu}ﬁ=1 be the canonical basis of R,

{e,}, =1{(1,0,...,0),(0,1,...,0),...,(0,0,..., 1} (4.3)

and we consider a family of independent and identically distributed random variables,

{&,},,en taking values in the set of the 2d unit vectors (the directions) {+e,},. We
assume that there is no preferred direction, that is:

1
P&y, = £e,) = — 4.4
& €.) 2d 4.4)
Finally, we define:
Xo=0, X, =&+&++& (4.5)

X, has the natural interpretation of position, at time n, of the walker starting from
the origin 0 and moving, at each time step, choosing randomly a direction leading
him/her to one of the nearest neighbors of its actual position in Z¢.

With this position, we have defined an homogeneous Markov chain with initial
law v, X — vy = &5 and transition matrix:

1
5=, |x—y|l=1
P ={2 | . 4.6
=y 0, otherwise (4.6)
In fact, choosing by construction xy = 0 and X, X,,_p, ..., X| nearest neighbors, we

have:
P(Xpp1 =YXy =%, X1 = X1, ..., Xo =0) =

=P(Xy + &1 =YXy =% X1 =X 1,..., Xo=0) =
_ PX,+&a =y, X, =X X,-1=X-1,..., X0=0) _
B PX,=x, Xy 1=%X,-1,...,X0=0) - 4.7)
_ PG =y —x&6=X—%X1....X0=0)
P =x—X%X,_1...,Xo=0)

P(EnJrl =y- X) = jjxey

where the fact that &, is independent on all §,, with m < n has been used.

4.2.1 An Exact Expression for the Law
We start from the basic relation:

1
PXy=Xx=) PXa=9)Pyx=5 ) PXi=y *8

yezd yezd, ly—x|=1
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Since the law at time n,x — P (X,, = X), is defined on the lattice 74, we can always
turn in Fourier space, writing:

P (X, =X) dk C(n, k) exp (—ik - X) (4.9)

N (27[)d [—m,m]d

We already know that:
Cn=0,k)y=1 (4.10)

If we plug (4.9) into (4.8) we obtain:

/ dk C(n,Kk)exp (—ik - x) =
[-m,7]

d
: dk C(n —1,k) Z (exp (—ik - (x +e,)) +exp (—ik - (x —e,)))

2d Jigpe =
(4.11)
Implying that:
d
1
Cn,k) =Cn —1,k) p Zcos(kﬂ) (4.12)
n=1
Iterating we readily obtain:
1< '
Cn, k) = i > " cos(k,) (4.13)
n=1
implying that:
d n
P (X, =x) : / dk IZ (k) (—ik-x) (414
n=X)= - cos exp (—ik - x .
(2 ST —— d = .

This is an exact expression for the law of the random walk at the time instant n.
4.2.2 Explicit Expression in One Dimension and Heat
Equation

In the special case of the random walk in one dimension, we can perform the integral
analytically:
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P(X,=x)= L /ﬂ dk (cos(k))" exp (—ik - x) =
@m) J 7

1 dk <exp(lk) + exp(—ik)

zm 3 ) exp (—ik - x) =

(4.15)

zi(zl_n) /z dk ,;1 (;) exp(ikp) exp(—ik(n — p)) exp (—ik - x) =

_ 1 n
- F(%(nﬂ))

provided that 3(n +x) € {0, 1, ..., n}.
We take the opportunity to observe that:

P(Xp1=j)=P <U{Xn+1 =, Xy = h}) =

hel
= ZP(XnJrl =j, Xn=h)= ZP(Xn+1 =jl Xy =h)P(X, =h) =
hel hel
1
=3 (PXp=j—D+PX,=j+1)
(4.16)
Subtracting P (X, = j) from both members yields:

1
P(Xn-%—l:j)_P(Xn:j):E(P(Xn:j_l)+P(Xn:j+1)_2P(Xn:j)) (417)

Equation has the form of a partial differential equation with time and space finite
differences instead of derivatives, closely resembling the celebrated heat equation,
which plays a central role in the study of diffusive processes like, for example, the
flow of heat through a material:

a 0?
W _ 0

=D—= 4.18
ot ax2 ( )

We stress that the analogy is not limited to one dimension, but is valid in arbitrary
dimension.

Another similarity between the random walk and the heat equation is make evident
by the following equalities, resulting from easy calculations:

E[X,]=) E[&]=0

i=0 (4.19)

Var(X,) =Y _ Var&)=n

i=0
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The mean distance covered by the walker scales with the square root of the number
of steps, a typical property of diffusion processes.

The connection between a stochastic process and a partial differential equation
is not a coincidence, but the first appearence of a general relationship between two
apparently disconnected fields of Mathematics, which we will explore in detail in
the next chapters.

4.2.3 The Asymptotic Behavior for n — +o0c and Recurrence
We observe that:

d

1

EZcos(kM) <1, ke[-n x| (4.20)
n=1

the left hand side taking the value 1 only if k = 0. This implies that the behavior of
the integral when n — +00 is governed by a small region near k = 0, where we can
make the expansion:

d
1 1
5 § cos(k,) =1 — ﬁ|k|2 4+ 4.21)

n=I1

yielding the approximation:

P (X, =x)~

. n 2
Gy /Rd dk exp <1k~x Skl ) (4.22)

where we have extended the integration to the whole R since the exponential term
guarantees that only vectors k near the origin play a significant role. This integral
can be performed analytically, giving the result:

d d/2 |X|2
P(X,=x) >~ (—) exp (—2d—) 4.23)

2mn 4n

The above expression is very interesting. It shows that, for large time 7, the law of
the random walk becomes normal N (0, n/d). Moreover, let’s consider the number
of times, say N, the walker comes back to visit the origin x = 0. We write:

+00
N=>"1I, (4.24)
n=1

where I, = 1 if X,, = 0 while 7, = 0 otherwise. We have:
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+00 +00
E[N1=) E[L,]=)_ P(X,=0) (4.25)
n=1 n=1
We have found that: |
PXy=0)~ —5 (4.26)

This implies that, when d = 1,2, E[N] = +o0, while, when d > 3, E[N] < oc.
This is a very interesting feature: when d = 1, 2 we have an infinite expected number
of returns to the origin, while this is not true in higher dimensions. Typically arandom
walk giving an infinite expected number of returns to the origin is called recurrent,
while, when E[N] < +00, the random walk is called transient.

4.3 Recursive Markov Chains

The random walk on Z¢ exemplifies a general procedure for constructing explicitly
Markov chains. Let X be a given random variable, and {U,, },,cn @ sequence of inde-
pendent and identically distributed uniform random variables in (0, 1). Let moreover
h: E x (0,1) — E be a function, until now arbitrary. We define:

Xns1 = h (X, Unt1) (4.27)

where U, is assumed to be independent from X,,. Repeating the calculation of the
previous paragraph it is easily concluded that {X,,}, is a Markov chain. Its transition
matrix is readily obtained:

Ph(Xy,Ups1) = j, Xy =) _
P(X, =i)

P(Xyyp1 = JjlXy=10) = (4.28)
_P(h (la Un+l) - ja Xn == l)

P(X, = l)

=P, Um)=j) =P

This result is very useful since, as we will explain in the next chapter, having at
our disposal a random number generator, the problem of simulating a Markov chain
with initial law v and transition matrix P is solved sampling the initial state with
probability v and iteratively applying X,,+; = h (X, U,+1) where h : E x (0, 1) —
E is a function such that P(h (i, U) = j) = P;_; if U is uniform in (0, 1).

Remark 4.1 From now on we will always assume that set E is finite. For the sake of
simplicity, we will write E = {1, ..., N}. Probabilities on the set £, when useful,
will be identified with row vectors v = (v{,...,vy) € R¥, v; > 0, ZlN=1 v, = 1.
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4.4 Transition Matrix and Initial Law

‘We will now show how initial law and transition matrix give an exhaustive knowledge
of the corresponding homogeneous Markov chain. We begin computing the law v(!
of X;:

N

N
PXi=k =) PXo=mPXi=kiXo=h) =) wPpp (429
h=1 h=1

which can be written in matrix form recalling that laws can be represented through
row vectors in RY:
vl =vP (4.30)

At the subsequent instant:

PXa=k)y=Y N P(X;=DP(Xa=k|X, =1) =
=Y PXi=DPr = S v Put Pk = 4.31)
= Z}],vzl Vi leil Th—)l (~Pl—>k

that is:
v® =y P? (4.32)

Iterating this reasoning we easily conclude that the law at instant n is obtained
applying to the row vector representing the initial law the n-th power of the transition
matrix:

v = v P (4.33)

It is interesting to observe that, denoting with Tf’i) ; the matrix elements of the m-th
power P of the transition matrix, one obtains the m-step transition probabilities.

P = PKXim = j1 Xy = 1) (4.34)

i—j
This can be shown iterating the following calculation:

P(Xpim = jIXy = i) = Phe=ll=D) =

P(Xy=i)
— Z PXnim=j, Xnsm-1=h,Xp=0) __
- h P(X,=i) -
=Y, Putnzi Xusmor =hXa=i) PKusmor=hiXosi) _ (4.35)
T L P(Xpm—1=h,Xp=I) P(Xn=i) -

= Zh P(Xn+m = j|Xn+m—l =hX,= i)P(Xi1+m—l =h|X,=1i)=
= Zh ﬂ)h—>jP(Xn+m—l = h|Xn =1

We eventually compute the joint laws ot the process in terms of the initial law v and
of the transition matrix P, thatis P (X,, =iy, ..., Xy = i), 0 <ny < -+ < ng:
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P(Xp, =it,....Xp, =ix) =
=P (X, =it Xne, = ikm1) P (X, = ikl Xy =ity oo, Xy, = k1) =
=P (X, =i, eees Xo, = i) P00 = = (4.36)
=P (X, =iy) P pTe) =
= Zj ngjyl)z, iPz(,niz:l]) Tz(:l,kljkz;l)

Remark 4.2 Rewriting the 2- and 3- times joint laws in the form:

P(Xu = i1, Xp, = i3) = P (Xp, = i1) PP (4.37)

11—>13

P (Xny =ity Xop = i2, Xy = i3) = P (X, = 1) PU2/0P T (4.38)

i1—i> ir—3
the relation:

N
P(Xy, =it, Xoy, =i3) = > P (Xy, =i1, Xy, =i, X, = i3) (4.39)

ir=1

is equivalent to the followig Chapman-Kolmogorov equation for the m-step tran-
sition probability:

N
PR = N CprRIIPI I 0 <ny < np < ns (4.40)

i1—i3 i1—i> ir—3
12—1

The property (4.40), quite natural in the present context since it is known that the
m-step transition probability is obtained computing the m-th power of the transition
matrix, will turn out of great importance when dealing with continous-time Markov
processes taking values in R,

4.5 Invariant Laws

Given a probability distribution = on E, which as seen before can be repre-
sented with arow vectorm = (7q, ..., wy) € RY, and ahomogeneous Markov
chain with transition matrix P = {P;_, ; }l. ; and initial law v, we will say that
7 is invariant provided that: ’

T=n?P, ie m = Z”h B 4.41)

heE
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We stress that if the initial law v is invariant, X,, has law v for all n: all the X,, have
the same law, giving rise to a stationary Markov process.
We now prove an important result:

Theorem 4.1 (Markov-Kakutani) Any transition matrix P admits has at least an
invariant law.

Proof We first observe that there is a one-to-one correspondence between probabil-
ities on E ad points in the following set, the simplex:

N
S = XGRNﬂfxmsLE:mzl (4.42)
i=1

S is a closed and limited set in R", and therefore compact: by virtue of Bolzano-
Weierstrass theorem of classical Mathematical Analysis [1], any sequence in S has
a convergent subsequence. Given a generic point X € §, consider the sequence:

n—1
1
X = Y xP* (4.43)
n
k=0

Obviously x,, has non-negative components. Moreover, X, € S as the following sim-
ple calculation shows:

n—1 n—1
> i = %ZZZWE’L - %szh —1 (4.44)

k=0 h i k=0 h

where we have taken into account the fact that T;lk_))i is the probability of moving

from h to i in k steps, and therefore ), fP;Lkl)i = 1.

Since {x,},, C S it has a subsequence: {Xnk }m converging to a point T € S. We
observe that:

1 ng—1 ng—1 1 )
xnk—xnkﬂ’za(Zx?h—ZxT"H)=a(x—xﬂ”) (4.45)
h=0 h=0

and since the quantity x — x P is limited by construction:

. 1 "
T—nP= kllr-kl—loo (X,lk — Xp, '.P) = kEToo a (X —xP ‘) =0 (4.46)

which completes the proof.
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We observe that the proof of Markov-Kakutani’s theorem is constructive: any
sequence X,, once thinned out, converges to an invariant law, which may be not
unique. Since the point X = X, is completely arbitrary, it can be chosen x;, = 8,
corresponding to a probability distribution concentrated at the point i. Were that the
case:

n

n—1
1
Xnj ==y P, (4.47)
k=0

If {X,} is the Markov chain with initial law X, concentrated at the point i with
transition matrix P, we know that:

:P(k)

i—j

— P(X; = ) (4.48)

Therefore:

n—1 n—1 n—1
1 ® 1 . 1
== Py == PXe=p=E |- =) (4.49)
k=0 k=0 k=0

and x, ; coincides with the expectation of the random variable:
n—1
= lix=j (4.50)

n
k=0

representing the fraction of time the process has spent in the state j before the
n-th time step. Remarkably, for large n the expectation of such random variable

approximates the j-th component of one invariant law.
To compute the invariant law(s), the following problem must be solved:

T = ZT[,‘ ':P,'A,j (451)
i=l

To this purpose, the following interesting result holds, which represent a sufficient
condition for a law 7 to be invariant:

Theorem 4.2 [f a law & satisfies the detailed balance equation:
JTiiPi_>j=7ijPj_>i, Vi,j e E (4.52)

then it is invariant.
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Proof The proof is simple:

i?’[,‘ipiﬁjz’zlﬂjfpjﬁizﬂj (453)

i=1 i=1

A transition matrix may have, in general, infinite invariant laws: in fact, as a simple
calculation shows, if 7 and 7’ are distinct stationary laws for P, any convex linear
combination of 77 and 7’ is still a stationary law for P.

It is therefore very interesting to investigate conditions for the uniqueness of the
invariant law. To this purpose, we introduce the following definitions:

Definition 4.3 LetP = {ﬂ’i_, j }I. i be the transition matrix of ahomogeneous Markov
chain. ’

1. astate j € E is accessible from i € E, denoted i — j if there exists an integer
m > 0 such that fPl("_? P> 0. Conversely, if fPl('i) ;= 0 for all m > 0, then the state
J is not accessible from i, denoted i - j.

2. the states j, i € E communicate if j is accessible from i and viceversa, denoted
i 5.

Remark 4.3 1t is useful to include in the exposition the zeroth power (Pg ;=0

which is actually a trivial zero steps transition matrix, to deal with communications

among states.

The communication relation < satisfies the following conditions:

1. reflexivity: Vi € E, i < i since P, =1

2. symmetry: Vi, j € E,i < jifandonlyif j i

3. transitivity: Vi, j,k € E,ifi = jand j S ktheni Sk

To prove the transitivity condition, let us observe thatif i <= j and j < k there exists
two integer numbers m, n such that P < 0 and U’ﬁ”) ¢ > 0. Therefore:

1—>] N ud

P = PP = PP >0 (4.54)

i—k i—l i—jv j—
l

The above conditions imply that communication is an equivalence relation. The state
space E can be uniquely decomposed into mutually disjoint subsets {E;}; whose
union equals E, the equivalence classes of the homogeneous Markov chain.

Definition 4.4 LetP = {Ti_, j }l. i be the transition matrix of ahomogeneous Markov
chain. ’

1. P= {fPl-_, j} is irreducibile if all states in £ communicate with each other.

2. P ={Pi_,} is regular if there exists a number m > 0 such that P{"’; > 0 for
alli, j € E.
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A regular trasition matrix is always irreducible, but the converse is not true in
general. Nevertheless, the following result holds:

Lemma 4.1 If a transition matrix is irreducible, and there exists h € E such that
Pun > 0, it is regular.
(m)

i—j

Proof If for all i, j € E there exists m = m(i, j) > 0 such that P

s = max; jeg m(i, j) we have fPl(z_i)k > O foralll, k € E, as the following inequality

makes clear:

> 0, chosen

2 Lh h.,k
P = PGPy PP > 0 (4.55)

-k =
in which the term P;,_,;, appears 2s — n(l, h) — n(h, k) times.

Remark 4.4 At a first glance, it might seem very difficult to verify whether a chain
is irreducible or not, but there exist observations that can considerably simplify
the calculations involved. Chosen two states i, j, i # j, if the chain is irreducible
there exists m > 0, in general depending on the couple (i, j) of interest, such that

f]’l('l) ; > 0; since the transition matrix has non-negative elements, this corresponds
to the existence of at least one (m — 1)-tuple of states ki, ..., k,,—; such that:

0 < Pioot, Pyt Payy sy < P (4.56)

i~
Intuitively, it is necessary to move from i to j passing through points in E making
steps with non-zero transition probability. At least for Markov chains with small
state space, this can be checked representing the Markov chain as a directed graph
I' = (E, V) with links (i, j) € V € E x E connecting states i, j € E for which
Ti_> j = 0.
This pictorial representation permits to quickly verify whether a state j is acces-
sible from another state i. In the following example:

0 1 00 0 O C@ ’
0 P00 P50

P 0 0 00 1 O

- 0 Psr00Ps_s0
Ps_.1 Ps—n00 0 O o

0 0 00 0 1

the simple observation of the graph I" shows that P is not irreducible. The equiv-
alence classes into which E is split by the communication equivalence relation are
{1,2,5}, {3}, {4}, {6}.
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We are going now to present the most important result, involving regular tran-
sition matrices, which is the Markov theorem, which states that the Markov chain
thermalizes, in the sense that, for every initial law, the law of X, for n — +o0,
converges to the unique equilibrium invariant law.

We need first the following preliminary version of Markov theorem:

Theorem 4.3 If a transition matrix P has all strictly positive entries, it admits a
unique invariant law * and, for all initial laws v:

nf= lim (vP")

J n——00 J

(4.57)

Proof By virtue of Markov-Kakutani theorem, P admits an invariant law 7 *. By
definition, it is a fixed point of the map:

C:S—> S, vi>Cv)=vP (4.58)
where, as before:
N
S={xeR":0<x <1, ) x=1 (4.59)
i=1

It will now be shown that C is a strict contraction on S relative to the following
distance:

1
dvw) =33 Ivi —wil (4.60)
ieE
First, since all the entries of P are strictly positive, there exists some number & such
that ¢ < + and P;_,; > ¢ Vi, j € E. It is simple to show that Q;,; = Tl"jljv_; is

a transition matrix on E. The distance d (C(v), C(w)) between the images of two
generic laws v, w € § through the map € can be expressed as:

% P —wP),| = % >
i

J

> i —w) (1= Ne)Qi,; (4.61)
and since:

D= w) (1= Ne)Q

i

<A=Ne) ) vi—wlQey (462

and Q is a transition matrix, the distance Eq. (4.61) is bounded by:
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d(C),Cw) <(1—Ne) Y vy —wi| Y Qisj=
i J

(4.63)
=(1=Ne) Y i —wi| = (1 - Ne)d(v, w)

1

Equation (4.63) ensures that € is a contraction. Hence the uniqueness of the invariant
law 7 * and its expression Eq. (4.64) follow from Banach’s fixed point theorem [1].

The Theorem 4.3 has been proved under the strict requirement that all the entries
of P are positive. Such condition can be relaxed, leading to the following fundamental
result:

Theorem 4.4 (Markov) If a transition matrix P is regular, it admits a unique
invariant law 7w* and, for all initial laws v:

nf= lim (vP")

J n——+00 J

(4.64)

Proof The regularity condition implies the existence of an integer m > 0 such that
P™ has all entries strictly positive. Hence, by Banach’s fixed point theorem there
exists a unique law 7 * such that:

7% =g*P" lim vP" =xn* VvesS (4.65)

n— 00

the second of egs. (4.65) still holds if we change v — v Pk withk < m — 1. Now, ifa
sequence {v,}, has the property that all the subsequences {Viymn}n, Withk < m — 1,
converge to the same limit v*, then it converges to v*. Therefore:

Iim vP"=7x% Vvesdg (4.66)
n—oo
r* is also invariant since:
TP = <1im v?") P = lim v P+ =7t (4.67)
n— 00 n—oo

by the continuity of the matrix product.

Markov’s Theorem 4.4 ensures that if a homogeneous Markov chain with regular
transition matrix starts at a generic initial law v, it converges exponentially fast to a
unique law 7 *.
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4.6 Metropolis Theorem

Consider a given probability distribution 7 on E. We are going to somehow reverse
the point of view: we wonder whether there exists a transition matrix P such that,
for all initial laws v

;= lim (V fP”)

n——+oo J

(4.68)

Were that the case, we could construct a Markov chain {X,,}, with law converging,
as n tends to infinity, to 7 in the sense precised by (4.68).

As the reader might have guessed, this possibility has deep implications in the
field of simulations.

To this purpose, it turns out to be necessary to assume that 7; > 0 for all the states
J € E and that 77 is not the uniform distribution.

Let now J = {U’H j} be a symmetric and irreducible transition matrix, J;_, ; =
Jj—i, subject to no other restrictions, and define:

Tisjy i#j, mj>m
T . .
Pin = ‘IHJ-”—;, i#EJ, mp<m (4.69)
V=2 s Pinjs 0=

We have the following [2]:

Theorem 4.5 If ; > 0 for all the states j € E and m is not uniform, for all the
initial laws v the Markov chain {X,}, with initial law v and transition matrix P is
regular, and has 1 as unique invariant distribution. Consequently:

m;p= lim (vP") = lim P(X, =) (4.70)

n——+00 J n——400

Proof We start showing that the detailed balance condition is satisfied. We choose
two states (i, j) such that, without loss of generality, 7; < m;, P;,; = T, jZ—f

whereas P;_,; = T;_,; and thus:

L

where the hypothesis that J is symmetric has been used. As a consequence of (4.71)
7T is invariant.

It remains to show that the Markov chain (4.69) is regular; first, we show that it
is irreducible. In fact, if i # j and T;_,; > 0, then, by construction P;_, ; > 0; this
means that, if I’ makes two states communicate, the same does P, and this guarantees
that P is irreducible.

To prove that (4.69) is regular, by virtue of lemma (4.1) it is sufficient to show
that there exists ip € E such that P;,_,;, > 0. Since m is not uniform, there exists
a proper subset M C E, M # E of E on which 7 takes maximum value; due to
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the irreducibility of J the chain can move outside M, and therefore there exist
ip € M and j, € M¢ suchthat T _, j, > 0and, by construction, ;, > 7 . Moreover,
Pij <Ti;ifi # j. These intermediate results imply:

v

Pigsio =1 =352, Pio—i = 1= X sio Py j = P jy
>1- Zj;éig,jn ‘Tio—ﬁ' - Tioﬁjoﬁ =
=1- Zj#io Tiu—ﬁ' + ‘Tio—>jo <1 - M) = ‘Tio—n'u + ‘Tio—>jo (1 - h) > (4.72)

Tig Tigy
7
> Tiﬂ‘)j(] (l — ﬂ—:g) >0
that is, the chain is regular by virtue of Lemma (4.1) and admits a unique stationary
law by virtue of Markov’s theorem.

Metropolis’ theorem is widely used in Physics, where it provides a technique for
simulating random variables with law given by:

= e_mi), H:E—>R, Z(B) = Ze—ﬁ““) (4.73)
Z(B) ier

E being the configuration space of the classical system under study and J{ its Hamil-
tonian. Notice that the knowledge of Z(B) (resulting from an integration procedure
which, for large systems of interacting particles, cannot be preformed neither ana-
lytically nor numerically) is not necessary for applying (4.69). We will discuss the
application in some detail in the next chapter.

Usually (4.69) is written, for i # j, in the form:

Py =TiejAinj, Aij =min (1, ﬂ) (4.74)

i

Ji—j is a trial move that is accepted or refused depending on the outcome of a
Metropolis test controlled by the term min (1, %)

We remind the reader that the hypothesis J;_, ; = T;_,; was framed in the proof
of Metropolis’ theorem. This hypothesis can be removed, provided that 7;_,; > 0

whenever T;_, ; > 0;in such situation, Metropolis’ theorem still holds for the Markov
chain:

Pii=Tin Aisj, Aszmin<l,n] ! ) i#j (4.75)
i Jisj

where it is meant that P;_, ; = 0 if J;_,; = 0, whereas P;_,; is defined as in (4.69).
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4.7 Further Readings

The topic of Markov chains and their application is extremely vast, and dealt with
with many textbooks. Readers interested in deepening their knowledge of the math-
ematical background can see, for example, [2]. For applications in simulation of
physical systems, we refer to the bibliography of the following chapter.

Problems

4.1 Ehrenfest model

Suppose there are N particles in two containers. At time n = 0, all the particles are
in the first container and, subsequently, they can diffuse changing container. Let X,
the number of particles in the first container at time instant n. Assume that the time
evolution is markovian, driven by a transition matrix of the form:

g =i/N ifj=i—1
Pij=1pi=WN—-0)/N ifj=i+1
0, otherwise

Find the invariant law of the Markov chain.

4.2 Random walk on a triangle
Study a random walk on the vertices of an equilater triangle, with transition matrix:

0 p 1-p
P=11—-p O p

p 1-p O

4.3 Galton-Watson process
The Galton-Watson process is a branching stochastic process describing the extinc-
tion of family names. Let the time n enumerate the generations and Z,, be the number
of individuals with a given family name at generation 7.

We model the situation as follows: if £ denote the number of descendants of
the i-th individual at generation n, we will have:

Zy

Zyyr =y &" (4.76)

i=1
‘We have:

P (Zf:l Ei(n) = m) , k>0
8m,0’ k=0

maﬂ=ma:m:{ 4.77)
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Assuming {Si(”)},- independent and identically distributed with density p, assumed to
be independent from n, we will have: Py_,,, = (p * - - - * p), where:

(p*p)i=)_ pipij (4.78)
JjeE
Study the Markov chain Z, with state space £ ={0,1,2,3,...,} and compute
ElZ,11|Z,] and E [Zﬁ +11Z,], as well as the extinction probability starting from a
single individual, defined as
P ({w € 2| liT Z,(w) =0, Zy(w) = 1}) (4.79)

In particular consider the Lotka probability density:
0.4825, k=0
= . (4.80)
0.2126 (0.5893)¢, k #0

4.4 Gambler’s Ruin problem

Consider a gambler (player A) whose initial fortune is a coins, who plays against
another player, say B, having an initial fortune of b coins: @ + b = N. The rules of
the game are as follows: at each time step player A either gives one coin to player b
with probability p or he/she receives a coin from B with probability g = 1 — p. If,
at a time instant, player A possesses N coins (win) or he/she runs out of coins (ruin),
the game finishes. Write down a transition matrix describing the game, compute the
probability that player A wins.

4.5 An explicit calculation
Consider the following transition matrix for a Markov chain with two accessible
states:

l—a a
U’:( b l—b)’ O<a,b<1 (4.81)

a1 ba . a —a
P _a+b{<ba>+(l_a_b) <_b ) )} (4.82)

Evaluate explicitly lim,,_, 1 oo P".

Show that:

4.6 A monkey inside a labyrinth

A monkey is inside a labyrinth containing 9 cells. Assuming that the labyrinth is a
square, at any time instant, the monkey changes cell with a probability proportional
to the number of nearest neighboring cells. Write down the transition matrix and find
the invariant law.
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4.7 Monkey run
Suppose now that the monkey is allowed to escape from cell 9 of the labyrinth.

Estimate the time that will take for the monkey to leave the labyrinth.
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Chapter 5 ®)
Sampling of Random Variables i
and Simulation

Abstract In this chapter we introduce the art of sampling of random variables.
Sampling a random variable X, for example real valued, means using a random
number generator to generate n real numbers (xi, ..., x,), realizations of a sample
(X1, ..., X,) of independent and identically distributed random variables sharing
the same law as X. The ability of sampling is crucial to deal with integrals in high
dimensions, appearing in quantum mechanics and in statistical physics, and gives the
possibility to simulate physical systems. We first introduce simple tools to sample
random variables, that can be used only in quite special situations. In the last part of
the chapter, we will introduce and discuss a very general sampling technique, relying
on the Metropolis theorem.

Keywords Sampling of random variables + Monte carlo integration
Random number generators + Metropolis algorithm - Simulation

5.1 Introduction

In our study of mathematical statistics, we have learnt to use data to infer the values
of some parameters specifying the law of a random variable modeling the outcomes
of the considered experiment. A set of data:

(G ST &) (5.1
are interpreted as realizations of a sample (X1, ..., X,), that is:
X150 %) = (X1 (@), ..., Xy (w)) (5.2)

for a particular @ in some abstract probability space (€2, F, P) where the random
variables are defined. This interpretation allows then to define estimators and confi-
dence intervals, and to test some hypothesis regarding the outcome of the experiment.

In this chapter we will take the opposite point of view: given the law of a random
variable X, or, equivalently, its probability density p(x) (if it exists), is it possible to
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generate possible realizations of X ? This is a central topic in the realm of simulations,
and is usually called the sampling of random variables, or, equivalently, the sampling
of probability densities.

Remark 5.1 In what follows we will use interchangeably the expressions sampling
of a random variable, sampling of a law, and sampling of a probability density.

5.2 Monte Carlo Integration

One very important application of the sampling of probability densities is Monte
Carlo integration. It is an extremely useful tool to evaluate integrals arising, for
example, from statistical physics and quantum mechanics. It becomes quite the
unique way to face multi-dimensional integrals, when typical strategies of numerical
quadrature would require a huge number of operations, beyond the possibility of any
computer.

Remark 5.2 Suppose to evaluate an integral in d = 300 dimensions, arising, for
example, from classical statistical mechanics, where equilibrium physical properties
of a system of 100 classical particles are expressed as integrals over the configuration
space. A numerical quadrature scheme unavoidably requires a grid: if one chooses
10 points per dimension, then it is necessary to evaluate a function on 10°% points,
which is enormous. The rule of thumb is that numerical quadrature methods hardly
serve purpose when d > 10

To state the problem, let’s consider an integral of the very general form:
I = / dx f(x) p(x) (5.3)
D
where D C RY, f is any (measurable) function and p is a probability density on D:

p(x) >0, f dxpx) =1 5.4)
D

The key observation is that, if X is a random variable having p(x) as its probability
density, the following equalities holds:

I =E[f(X)] (5.5
/DdX (f®) = 1)* p(x) = Var (f(X)) (5.6)

The law of large numbers and the central limit theorem, provided that E [ f(X)] and
Var (f(X)) are finite, guarantee that, if {X; }f=°1° is a sequence of independent and
identically distributed random variables with density p(x), we have:
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. 1
1 =ngrpw;;f<xi) (5.7)
and: N
a2 (X =1 (5.8)

[ Var(f(X))
n

converges in distribution to a standard normal random variable N (0, 1). Thus, if we
are able to sample p(x), i.e., in practice, to generate n points in D:

(X1, .-, Xp) (5.9)
realizations of {X;}?_;:
(Xl,...,xn)z(Xl(a)),...,X,,(a))) (510)

for a w in some abstract probability space (€2, F, P) where the random variables are
defined, then we can evaluate:

1 n
I~ ;,;f(xi) (5.11)

and use mathematical statistics to estimate confidence intervals for the exact value
of the integral.
Precisely in the same way, finite or infinite summations:

=" fxpX) (5.12)

can be dealt with, whenever p(x) is a discrete probability density.

To summarize, the problem of evaluating an integral is transferred into the problem
of building up a (possibly large) number of points (x, ..., X,) starting from the
knowledge of a probability density p(x). Such problem is in general highly not
trivial. The first necessary ingredient is an algorithm for the basic generation of
random numbers.

5.3 Random Number Generators

Our starting point is the existence of the random number generators, which are
algorithms able to sample a sequence of independent uniform in (0, 1) random
variables. The output of such an algorithm is a sequence:

(uy, ..., up) (5.13)
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0 < u; < 1, realizations of n independent uniform in (0, 1) random variables:
Wy, ..., U (5.14)

Remark 5.3 Sometimes, the generated random numbers lie in [0, 1) or in (0, 1],
depending on the particular algorithm. It is important to be aware of this when
applying functions to the random numbers, as we will see below.

We are not going now to enter the details of the theory of random number genera-
tion, requiring complex notions of numbers theory beyond the scope of this book. We
simply mention the simplest algorithm, the linear congruential generator (LCG),
introduced by D.H. Lehmer in 1949, which builds up the sequence (1, . .., u,) using
the integers:

ijr1=(aij+c¢) (modm), j=0,....,n (5.15)

where m, a, ¢ € N are positive integer numbers, called modulus, multiplicator and
increment, while the starting term, iy, iS a non-negative integer called the seed of
the generator; finally the u; are obatined as u; =i;/(m — 1). In the Table5.1 we
report typical values for the parameters m, a, c.

The reader could feel a bit confused now, since we have claimed independence
while actually obtaining the sequence applying a deterministic (and very simple!)
function to a given number to obtain the following one. This is the reason for the
choices of the parameters in the given table, providing the conditions for the data
(uy, ..., u,)tobe modeled by independent random variables. Statistical and numeri-
cal studies have shown that such choices of parameters make the model very accurate,
in the sense discussed in the chapter about statistics.

The other important point is the seed ij: it can be chosen to be equal to any
non-negative integer number. If a program is used twice with the same seed, it gives
exactly the same output. Actually the seed can be thought as the point w € €2 in some
abstract probability space (€2, F, P) determining the output of the “experiment”:

(u,...,uy) = U(w),...,U,(w)) (5.16)

Table 5.1 parameters m, a, ¢ of the LCG

Source m a c

gclib 231 1103515245 12345
Numerical Recipes 232 1664525 1013904223
java.util. Random 248 25214903917 11
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5.4 Simulation of Normal Random Variables

‘We have thus learned that, with a very simple algorithm, we can sample the uniform
distribution in (0, 1). What about other probability densities? In general, this problem
is highly non trivial. Nevertheless, there are some situations allowing to solve the
problem in a simple and elegant way, relying on transformations between random
variables. Due to the outstanding importance of normal random variables, our first
example is the sampling the density N (0, 1):

1 x?

We will exploit the transformation law for densities:

pr(y) = px(g~' ) [det(Jg-1 ()] (5.18)

valid whenever ¥ = g(X), g being a diffeomorphism between open subsets of R.
Jg-1(y) is the Jacobian matrix of the inverse g h

We specialize the transformation law to the special case in two dimensions X =
(Uy, Uy), Uy, U, being independent uniform in (0, 1) and:

o1, ) = (,/—210g(u1) cos(2 ), v/—2 log(ur) sin(2nu2)) (5.19)

We let Y = (Y;, Y») and evaluate its density. The inverse if g is simply checked to

be:
2 2 1
g ' ya) = (exp (=2 bl , — arctan | 22 (5.20)
2 2 Vi

while its Jacobian is given by:

—y1 exp ( yl*"z) — ¥, exp ( V1+Y2>
Je-1 (1, y2) = /y? o (5.21)
T 2r(1433/y7) 27r(1+vz/y,)

The determinant is:

1 + 2 2 2 2
det (Jg-1 (y1, y2)) = —% exp (—u> (5.22)
2 1

implying that Y = (Y}, Y») = g(U,, U,) has density:

1 2 + 2
pr(y1, y2) = z—exp AT h (5.23)
2 2

which means that Y; and Y, are independent standard normal random variables.
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Thus, in practice, it is possible to use a random number generator twice, obtaining
two numbers (u, u7), and to apply the following Box-Muller formula:

y =+/—2log(u;) cos(2mus) 5.24)

to obtain a number sampling a standard normal random variable.

Remark 5.4 If the employed random number generator yields numbers in [0, 1), the
Box-Muller formula has to be modified by changing u; ~» 1 — u;.

5.5 The Inverse Cumulative Distribution Function

We present now another very important example of the possibility of sampling one-
dimensional random variables given a random number generator. Let’s consider a
given probability density p(x) on R and let F(x) = ff @y p(y), the cumulative
distribution function of a random variable having p(x) as probability density. We
work under the hypothesis that there exists an interval (o, 8), —o0 <o < 8 < 400
such that p(x) > 0 for x € (&, 8) and p(x) = 0 outside that interval. F(x) is thus
strictly increasing on (&, 8) and its values lie in [0,1]. We define now ¥ = F -
where U is uniform in (0, 1). The key point is that the cumulative distribution of Y
coincides with F'(x), in fact:

Fy() =PY <y)=PF 'U)<y)=PWU<F(y) =F() (5.25)

and thus:
pr(y) = p(y) (5.26)

This means that we can sample any one-dimensional probability density p(x) using
a random number generator if we are able to evaluate F~': the generator provides
a realization of a uniform random variable U, and, if we apply F~!, we obtain a
realization of a random variable with density p(x).

w ~ U(w) ~ FY(U(w)) (5.27)

Example 5.1 If we wish to sample the lorentzian probability density:

1 r
= —— 5.28
PO =~ (5.28)
we evaluate: . | |
F(x) = ﬁw dy p(y) = —arctan (%) +3 (5.29)



5.5 The Inverse Cumulative Distribution Function 115

We know that, if U is uniform in (0, 1):

Y =F '(U)=T tan (n (U - %)) (5.30)

has density p(x).
Example 5.2 1f p(x) is the exponential density with parameter A:
px) = Aexp(—Ax) 10 400)(x), A >0 (5.31)

we evaluate:
F(x) =/ dy p(y) = (1 — exp(—=Ax)) 1(0,400)(x) (5.32)
—0oQ
so that, if U is uniform in (0, 1):
4 1
Y=F (U)=—Xlog(1—U) (5.33)

has density p(x).

5.6 Discrete Random Variables

We discuss now the typical situation of the sampling a discrete probability den-
sity p(x), non-zero only in the discrete set {xy, ..., x,}, which we assume to be
finite. The typical tool we can use is the following: we define gy = 0, q; = p(x}),

g2 = p(x1) + p(x2), gm—1 = p(x1) + p(x2) + - -+ + p(x—1) and, finally, g, = 1.
We have naturally 0 = gg < - -+ < g, = 1. If U is uniform in (0, 1), we define:

Y:xj, lf qj—l§U<qj (5.34)

Y is clearly a discrete random variable and has precisely the discrete density p(x),
as follows from the following simple calculation:

PY =x;)=P(qj-1 =U <gqj)=q; —qj-1 = pxj) (5.35)

In practice, this result yields a very simple algorithm: we generate a random number
u and find out:

j=min{n| Y pGxi) > u) (5.36)

i=1
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Intuitively, this sampling scheme resembles an unfair roulette: the idea is to divide
the interval (0, 1) into n sub-intervals, the j-th having length equal to p(x;); then
we sample p(x) choosing x; if a random number u falls inside the j-th sub-interval.

5.7 The Metropolis Algorithm

In the previous sections we have presented some tools to sample random variables,
once a random number generator is available. Unfortunately, these tools are, in gen-
eral, not useful in the multidimensional case, which is the most common field of
application of Monte Carlo methods.

For example, in classical statistical mechanics, an extremely interesting topic
is the possibility of sampling the Boltzmann weight of a classical fluid in thermal
equilibrium at temperature 7 = 1/K g B:

exp (~B X, v (v — 1))
z

p(rla"'er)z (537)
v(r) being the interatomic potential. Another example is the celebrated Ising model,
describing a collection of magnetic moments, spins (o1, ...,0yN), 0; = =1 on a
lattice. The equilibrium properties, at temperature 7 = 1/8 and at the presence of a
magnetic field B, are described by the probability density:

exp (—/3 (— Z(Lj) Joijoj —BY_, cr,-))
VA

P(Ul»-usUN): (538)

J > 0 describing a ferromagnetic coupling between the nearest neighbours spins
(the symbol (i, j) indicates that the summation is restricted to nearest neighbours).

Such probability densities can be sampled using the Metropolis algorithm, relying
on the Metropolis theorem we have proved in the chapter about Markov chains. The
basic idea is to build up a Markov chain, or more precisely a regular transition matrix,
that has the desired probability density as its invariant law. It is then possible to choose
any initial state and the Markov chain will converge to the desired law, in the sense
discussed in the chapter about Markov chains.

We find useful to present the algorithm using the Ising model as a guiding example.

5.7.1 Monte Carlo Simulation of the Ising Model

The Ising model is certainly the most thoroughly studied model in statistical physics.
It is a model of a magnet. The essential premise behind it is that the magnetism of a
bulk material is made up of the combined magnetic dipole moments of many atomic
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spins within the material. The model postulates a lattice, typically an hyper cubic
lattice Z¢, with a magnetic dipole or spin on each site. In the Ising model these spins
assume the simplest form possible, which consists of scalar variables ¢; which can
take only two values %1, representing up-pointing or down-pointing dipoles of unit
magnitude.

In a real, magnetic material the spins interact, and the Ising model mimics this
by including terms in the Hamiltonian proportional to products o;0; of the spins. In
the simplest case, the interactions involves only nearest-neighbors spins and are all
of the same strength, denoted by J (which has the dimensions of an energy), and the
Hamiltonian is defined by:

H(or...on) =—J Y oio;—BY o (5.39)
(i)} i

where the notation (ij) indicates that the sum runs over nearest neighbours. The
minus signs here are conventional. They merely dictate the choice of sign for the
interaction parameter J and the external magnetic field B. A positive value for J
signals a ferromagnetic coupling.

We want to study the equilibrium distribution of the model for N spins at tem-
perature 7 = 1/, that is the probability density:

w(o]...0Nn) exp (—BH(oy ...onN)) (5.40)

1
~ Z(B, B, N)

defined on the state space E = {(o} ...0oy), o; = %1} containing 2" possible con-
figurations of spins. The denominator Z(8, B, N) is the partition function of the
model:

Z(B.B.N)= ) exp(~pH(1...0n) (5.41)
(O']...O'N)EE
We focus our attention on the simplest situation: the one-dimensional case. We

adopt also periodic boundary conditions, defining:

N N
H(Gl"'UN):_JZGiUi+1_BZUi7 ONy] =01 (542)
i=1 i=1

We will learn now how to implement the Metropolis algorithm to sample 7. We
will use the notation ¢ = (o7 . . . o) for the states, i.e. the configurations of the spins.

5.7.1.1 The Algorithm

The algorithm consists in the iteration of some steps, translating into a practical
algorithm the choice of an initial law and the sampling the law of a Markov chain
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{X, },, with a transition matrix of the form:
Pa—nr’ = Z)'—)G" A0—>a’ (543)

where 7 is any symmetric and irreducible transition matrix, while, as we learned in
the previous chapter, the acceptance probability, is:

Ag e = min (17 w) (5.44)

(o)
Metropolis theorem ensures that:

lim P(Z, =0)=n(0) (5.45)

n——+00

The steps are the following:

1. Inizialization. We start choosing an arbitrary initial state, that is an initial
configuration for the spins o(. For example, we can make all spins up-

pointing.

2. Trial move. We propose a move o ¢ ~~ 0 i, randomly choosing a spin
and flipping it.

3. Acceptation. If we have flipped, say, the jth spin, we have 0y = (o7, . . .,
0j, ...,O'N) anda,rmz = (O’l, ce., —0j, ...,O'N).

We evaluate the number:

_ ”(atrial)

=exp (=B [H(0riar) — H(o0))]) (5.46)
7(00)

that is:
w = exp (—2BBo; —2BJoj(0;_1 + 0j11)) (5.47)

Then, we generate a uniform random number r € (0, 1) and:

a. if r < w, we accept the move, defining 61 = 0i4/;

b. if » > w, we reject the move, defining 0 = 0.

4. Tteration. Then, we use 0| as the new starting point, and go back to point 2.

We proceed with the process for, at least, M ~ 10° — 10° Monte Carlo steps.
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Remark 5.5 We stress a very important point: the implementation of the Metropolis
algorithm does not require the evaluation of the partition function

ZB.B.N)= Y exp(—pH(o1...0n)) (5.48)

(01...0N)EE

since it involves only the ratio of values of the probability density. In the special case of
the one-dimensional Ising model the partition function can be evaluated analytically,
but this is an exception: there is only an handful of problems in statistical physics
that allow for an analytical solution.

The Metropolis algorithm builds up a realization of a Markov chain with state
space made of all the possible configurations of the spins:

OO~ G~ e~ Gy~ (5.49)

From the theory of Markov chains we know that, for n large enough, the {o,} sample
the probability 7.

As the spins “move” exploring the state space, we can perform measurements
on the system, actually like an experimentalist. For example, suppose we wish to
evaluate the average magnetization:

M(B.B) =) m(o)n(o) (5.50)
where:
1 N
m(o) = 5 l;a,- (5.51)

The basic idea is to estimate it computing an empirical mean over the random
walk:

M
M(B. p) ~ % > e my=m(@,) (5.52)
n=0

Incidentally, we stress that it is neither mandatory nor in general advisable to use
all the steps of the Markov chain to perform the measurements; on the contrary, in
the realm of Monte Carlo simulations, the evaluation of a quantity on a configuration
happens to be much more computationally expensive than producing a new config-
uration (actually this is not the case of the magnetization in Ising model), making
more convenient to wait some time before measuring again the same quantity. This
procedure is called sparse averaging; we will come back to this point in a while.
By now it is enough to say that the summation (5.52) involves a set of samples of
the magnetization, m,, measured at evenly-spaced “times” n, while the spins are
moving.
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Although the estimation (5.52) can be justified relying on ergodic theorems, in
practice one wishes to employ the central limit theorem, in order to provide an
estimation of the magnetization of the system together with a statistical uncertainty.

In principle this is not allowed, since the o, sample the desired probability
density only asymptotically, for large n and, moreover, they are neither inde-
pendent nor identically distributed, being realizations of the steps of a Markov
chain.

Some empirical strategies are commonly adopted to recover the conditions to
apply, at least approximately, the central limit theorem.

The first is equilibration: the first steps of the random walk, when the distribution
of the sampled Markov chain has not yet reached its limit law s, are discarded.
This is done empirically, monitoring, for example, the instantaneous value of the
magnetization itself as a function of the number of steps. It can be useful to perform
more than one simulation, changing the initial configuration: after a transient, the
values of the magnetization begin to fluctuate around a value independent of the
initial condition. This transient corresponds to the steps we have to neglect for our
calculations. Itis interesting to observe that such equilibration transient resembles the
typical thermalization of physical systems approaching a steady equilibrium state.

Let’s consider now the correlations among the measurements. The summation
(5.52) is a realization of the random variable:

M
1
S = Zl: M, (5.53)

where, after the equilibration transient, the M,, have density 7 but are not independent.
Naturally E[Sy] = M(B, B). Let’s look at the variance:

Var(Sy) = E [(Su — M(B, B))*] =
M

1
M2 [Z : } (5.54)

n,l=1

M
1
=5 D Cov(M,, My)
n,l=1

As a consequence of the homogeneity of the Markov chain, the covariance Cov(M,,,
M;) depends only on the time t = n — [. We define the autocorrelation function of
the magnetization:

Cm(@) = Cov(My, M) (5.55)
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We thus write:
M

Var(Sy) = Z Cov(M,, M)) =

M
CM (O) 2 Z Z Cm (t)

n=1 150

(5.56)

where the last member is approximate since the summation over ¢ is extended to the
whole Z — {0}. To be consistent with such approximation, which somehow forgets
the initial time and the finite number of measurements, we assume that Cq(t) =
Car(J2]). We find the approximate result:

Cm(0
Var(Sy) ~ M() 2ZZCM(t)—

n=1 t#0

(5.57)
Cm(0) Cnm(D)
= 142 Z V0]
10
The number:
Cm(t) \ der
142 “ e (5.58)
; Caa(0) ™

defines the autocorrelation time of the magnetization. The name derives from the
expected large time behavior:

C 1 t
MmO exp (--) (5.59)
Cm(0) ™
We observe that: C o0
Var(Sy) ~ AA;;f) (5.60)
e
where the effective number of data is:
M
Msp = (5.61)
’ 2‘[/\/(

Comparing this result with the one about independent and identically distributed
random variables we have presented when dealing with the central limit theorem,
the following procedure is quite natural: we use all the measured data to estimate the
autocorrelation function C (), using the formula:
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1 M—t 1 M—t 1 M—t
T D MM = e ) i ) Mg (5.62)
i=1 i=1 i=0

and subsequently estimating the autocorrelation time. Finally, it is advisable to keep,
in the summation (5.52), only measurements obtained every 27, measurements
(sparse averaging). In this way, we can safely deal with the measurements as if they
were independent.

As we have learned in the chapter about statistics, it is desirable to have normal
samples, in order to estimate confidence intervals on a rigorous basis. This is achieved
performing data blocking, which actually corresponds to perform many different
independent simulations. The simulation is divided in large (several autocorrelation
times) blocks; for each block an estimation of M (B, B) is provided. If the blocks are
large enough, we may rely on the central limit theorem and interpret each estimation
as a realization of a normal random variable; we can thus use mathematical statistics
to provide a confidence interval for the average magnetization of the system.

5.7.1.2 Analytic Results

A reader wishing to implement a Monte Carlo simulation can find useful to compare
his/her results with the analytic results for the Ising model in one-dimension. The
explicit solution relies on the observation that the partition function can be written
as:

Z(B,B,N)=Tr(T") (5.63)
where:
eBU+B)  o=BI
T = ( B eﬂ(J—B)) (5.64)
Thus, we have:
ZB,B,N)=1) +1V (5.65)

74 being the eigenvalues of the matrix 7. explicitly:
T =Pl (Ch(,BB) + /Sh(BB)? + e*4ﬁj> (5.66)

It is to possible use this expressions to evaluate analytically the magnetization:

1 dlog(Z(B, B, N))

M(,B»B)Z(Ui>=Nﬂ 3B

(5.67)

The expression for finite N is quite cumbersome, but becomes simple in the
thermodynamic limit N — +oc:



5.7 The Metropolis Algorithm 123

Sh(BB) + —SMEBChER)
M (B, B) = (0;) = N .

" Ch(BB) + /Sh’(BB) + e—*F7

5.7.2 Monte Carlo Simulation of a Classical Simple Liquid

Another very important example of application of Monte Carlo simulations is the
study of a classical fluid in thermal equilibrium at temperature 7 = 1/K g 8. A typical
model of the two-body interaction among the particle in the fluid, very accurate in
the case of noble gases, is the following Lennard-Jones potential, depending only on
the inter particle distance:

v =1e|(2) - (2)'] (5:69)

The r~'2 term describes hard-core interaction, while the attractive r ~® term represents
Van der Waals weak induced dipole attraction. The phenomenological parameters ¢
and o depend on the particular noble gas one wishes to study.

We are interested in the bulk physics of the system: we fix the particles density p
and consider a cubic region, say B C R?, of volume V = L? with p = &. Further-
more, we imagine that the whole R? is covered by identical replicas of the simulation
box B.

In order to be consistent with such a picture, we let R = (ry, ..., ry) denote
the configuration of the fluid inside B and we write the potential energy of the N
particles moving inside B and interacting with all the images of the particles in the
replicas of B, in the form:

VR)= > ¥(r;). rj=r—r, (5.70)
1<i<j<N
with:
_« Jv(r—=_Lnint(£)]) —=v(r), Ir—Lnint(¥)|<r
v = { 0, |r—Lnint(¥)|>re (.71)
where r, < % is a cutoff radius, larger than the interaction range. The redefinition of

the distances r;; = [r; —r;| = |r;; — Lnint (%£)|, where nint denotes the nearest
integer, is meant to be consistent with the picture of infinite replicas of the simu-
lation box, where the images of the particles reproduce the motion of the particles
themselves. The number |r;; — Lnint (52)] is the distance between particle i and
the particle j in the box whenever the cartesian components of r;; are smaller than
L/2, otherwise it is the distance between particle i and the image of particle j in
neighboring boxes closest to the particle i. We stress that it is important that the
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potential (5.71) is short range, making only the images in the nearest replicas inter-
act with the particles in the box B (minimum image convention). This is the reason
why the potential is cut at r.. Moreover, the potential is shifted by a quantity v(r.),
in order to avoid a discontinuity at the point r.. Although this shift does not have any
effect in Monte Carlo simulations, it is a common practice to introduce it. The poten-
tial (5.71) is usually called the cut and shifted Lennard-Jones potential. We will
not present here the implications of such choice in the definition of the interatomic
potential: an interested reader see, for example, the excellent textbook [3, 4].

Now, once fixed the mechanical model of the classical fluid, in thermal equilibrium
the configurational probability density has the form:

exp (—BV(R))
[y AR exp (—BV(R"))

p(R) = (5.72)

Once again, it is possible to use the Metropolis algorithm to sample the Gibbs
weight (5.72). To do this, we have to build up a Markov chain whose state space
is BN:

{Rn}u=0.12.... (5.73)

starting from a given initial configuration R,—9 = Ry, typically chosen sitting the
particles on the sites of a crystalline lattice. According to Metropolis theorem, we
choose the transition matrix of the form:

Psor = Tsor Asor, Asor =min (1, @) (5.74)
p(S)

where 7s_, % is a symmetric and irreducible transition matrix. In general the particles
are moved one at the time; this means that 7s_, ¢ is chosen to be non zero only if R
and S differ only in the position vector of one particle. In such case, we choose to
move a particle randomly uniformly inside a cube centered on the actual position,

that is:
11

=—— 5.75
N 43 ©-7)

,]?Sl,nnSiquN)—WSl ~~~~~ Ti,...SN)

if r; lies inside a cube of edge 2 A centered in s;; otherwise, the transition matrix will
be identically zero. The free parameter A is typically chosen a posteriori, monitoring
the acceptation rate of the Metropolis moves, and fixing it in such a way that nearly
the 50% of the moves are accepted.

In practice, it is very simple to build up the simulation: starting from the initial
configuration, we propose a random displacement of a particle, and accept/reject the
move according to the ration ‘;((—7;;, exactly in the same way as in the case of the Ising
model. Iterating this for a suitable number of Monte Carlo steps we can perform
measurements on the fluid, evaluating average properties.
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The simplest quantities that can be computed are the average potential energy:

\% 1
<N> - /B ARVR) p(R) (5.76)
and the virial; N
(W) = / dR (Zri~v,-V(R>> p(R) (5.77)
BN i=1

giving access to the pressure of the fluid through the virial relation, which can be
found in any textbook about Statistical Mechanics:

1
P = pkpT — — (W 5.78
pks v (W) (5.78)
Other very important properties that can be evaluated in a Monte Carlo simulation
are the correlation functions among the positions of the particles. In standard text-
books on statistical mechanics, the reduced two-body density matrix is introduced:

pP@,r)y=NN-1) /dr3 ..dryp(r,r’irs, ... 1y) (5.79)

The interpretation of this quantity is given by the joint probability density for two-
particles, that is:

/ drdr’ p® (r,r") (5.80)
AxA’

is the probability to find a particle in the region A and another particle in the region
A’. Let’s now evaluate the probability to find two particles with a relative distance
between r and r + Ar:

/ drdr' p®(r,r') = / drdr' p@ @ +r',r’)  (5.81)
r<|r—r’|<r+Ar

r<|r|<r+Ar

where we have simply changed variable r — r — r’. In the liquid phase, we expect
that the reduced two-body density matrix p® (r, r’) depends only on |r —r’[, so
that we can write:

/ drdr' p® @, r')=V f drp®(r) =
r<|r—r’|<r+Ar

r<|r|<r+Ar

T 27 r+Ar (582)
= V/ do sin@/ dgo/ dss* p* g(s)
0 0 r
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where we have introduced the radial distribution function:

2)
gr) = 20 (5:83)
0

In we choose Ar small enough so that we can neglect the variations of g(r) in the
interval [r, r + Ar], we may write:

drpN
3

/ drdr'p®(r,r'") ~ g(r) (r + Ar)’ = 17) (5.84)
r<|r—r’|<r+Ar

We can rewrite the above relation in the following way, keeping into account also
our model of the system in periodic boundary conditions:

N
() = N(r, Ar)/dR 3 lpran <|r,-j—Lnint (%) |) p(R) (5.85)

i#j=1
where the normalization is:

1

N(r, Ar) =
0 an ZON ((r + Ar)3 = 1)

(5.86)

From the expression (5.895) it is evident that we can evaluate g(r) during the simu-
lation: we have simply to build up an histogram of the distances among particles.

5.8 Further Readings

The field of Monte Carlo integration and numerical simulations is very vast. Our focus
is on applications within statistical mechanics. Readers interested in the foundations
of statistical mechanics can see, for example, [1, 2]. For readers more interested in
the applications of numerical simulations, we recommend the classical textbooks
[3, 4]. Finally, more information about random number generation and Monte Carlo
simulation can be found, for example, in [5].

Problems

5.1 Buffon needle

Perhaps the earliest documented use of random sampling to find the solution to an
integral is that of Comte de Buffon. In 1777 he described the following experiment:
a needle of length L is thrown at random onto a horizontal plane ruled with straight
lines a distance d apart ( d > L). What is the probability P that the needle will
intersect one of these lines? Describe an algorithm to evaluate 7 starting from this
experiment.
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5.2 Uniform law inside the unit circle
Consider a random variable X uniform inside the unit circle, with density:

1 =1
px(xX) =17 . (5.87)
0, otherwise

Show that X can be sampled in the following way: using a random number genera-
tor, we continue generating points within the square {x = (x,y) e R*| — 1 <x <
1, —1 <y < 1}, and keep only the ones falling inside the circle.

5.3 Another way to sample the normal distribution
Consider the random variable X of the previous exercise, and define the two dimen-
sional random variable Y = g(X), where:

—2log (|X|2)

= (5.88)

g(x) =x

show that Y = (Y;, ¥») where Y| and Y, are independent standard normal random
variables.

5.4 Simulation of a poisson process

Suppose we wish simulate a radioactive decay process. Imagine we switch up a timer,
and we let 77 be the instant of the first decay, 75 of the second, and so on. The number
of decays in the interval [0, 7] is given by:

Ny =sup{n|T, <t} (5.89)

In this problem we will learn the law of N, under quite natural assumptions and how
to sample it.
We will write:
T, =ATi + AT, +--- + AT, (5.90)

where AT; = T; — T;_, is the inter-arrival time. We assume that the random variables
AT; are independent, identically distributed, and follow an exponental law with
parameter A, that is:

rexp(—Ax), x>0

5.91
0, x<0 ( )

par(x) = {
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Show that N; follows a Poisson law with parameter Az, that is:

(A
k!

P(N, =k) = exp(—AXt) (5.92)
Using this result, describe an algorithm to sample N, for any ¢, that is to simulate the
Poisson process.

5.5 Methods to reduce the variance
Suppose we wish to evaluate the integral:

1
1 =/ dx exp(x) (=e—1) (5.93)
0

using a Monte Carlo method.

First, we use a random number generator to generate xj, ..., x, sampling a uni-
form random variable U and estimate I as I = E[f(U)] where f(u) = exp(u).
Compute Var(f(U)), controlling the precision of the estimation.

Then we use an importance sampling technique, rewriting:

! ! 3exp(x)) 2
I = d = dx | = —(1 5.94
/0 x exp(x) /0 x<21+x> 3( +x) (5.94)
and generating xi, ..., X, sampling a random variable X with density py(x) =

2(1 +x) 1o,(x) to estimate [ as I = E[g(X)] where g(x) = 322 Compute
Var(g(X)).
Now, we adopt another strategy, the Antithetic Variates technique, writing:

1 1
I = / dx exp(x) = f dx % (exp(x) + exp(1 — x)) (5.95)
0 0

and we use again a random number generator to generate xi, ..., x, sampling a
uniform random variable U, but now we estimate I as I = E[h(U)] where h(u) =
%(exp(u) + exp(1 — u)). Compute Var(h(U)).

Finally, we combine the two strategies writing:

1 1 _
I = / dx exp(x) = / dx 1 <exp(x) +exp(1 x)) 2 06) (5.96)
0 0 2 w(x)

where 7(x) = % (1 + % (x — %)2> Lo 1)(x). We generate xi, ..., x, sampling a
random variable X with density 7 (x) and we estimate [/ as I = E[h(X)] where
h(X) =1 (M) Compute Var(h(X)).

(x)
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5.6 A delicate situation
Suppose we wish to evaluate the integral:

! 1
I=] dx — (=2 5.97
/O xﬁ( ) (5.97)

using a Monte Carlo method.

Show that, if we use a random number generator to generate xy, . . ., x,, sampling
auniform random variable U and estimate [ as I = E[ f(U)] where f(u) = \/L;, we
have Var(f(U)) = 4o0.

On the other hand, show that, if we use importance sampling, writing:

1 1 L 12
1= | dxﬁ=/0 dxmn(x) (5.98)

with, for example, 7 (x) = (1 —r)x™" 1¢,1)(x), for 0 < r < 1, makes the variance
finite allowing to perform the calculation sampling the density 7 (x).
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Chapter 6 ®)
Brownian Motion Becit

Abstract In this chapter we will introduce the celebrated brownian motion.
Starting from the study of the randomly-driven motion of a pollen grain, first observed
by the botanist Robert Brown, the brownian motion has become the cornerstone of
the theory of stochastic processes in the continuum. The brownian motion is a sort
of meeting point of several aspects of abstract mathematics, theoretical physics and
real-world applications. We present first an heuristic description of it due to Einstein’s
genius, and then we provide a rigorous definition, taking the opportunity to intro-
duce important definitions of stochastic processes theory. Afterwards, we define the
transition probability, the generalization of the transition matrix of Markov chains.
We also present the intriguing connection with Feynman’s path integral and Quan-
tum Mechanics: the brownian motion is the free particle motion in (imaginary time)
quantum mechanics. Finally, we start exploring a deep connection existing between
the theory of stochastic processes and the theory of partial differential equations: the
brownian motion is related to the celebrated heat equation.

Keywords Brownian motion + Stochastic processes + Martingale property
Markov property + Heat equation

6.1 Introduction

Markov chains, presented in Chap. 4, belong to a wide class of mathematical objects,
the stochastic processes, which we will introduce in the present chapter. Stochastic
processes form the basis for the mathematical modeling of non deterministic time-
dependent phenomena. We will begin focussing our attention on the randomly-driven
motion of a pollen grain, the well-known brownian motion. Such motion, historically,
has been the first stochastic process to be stated in rigorous mathematical terms. The
brownian motion will represent our starting point for introducing the fundamental
notions of stochastic processes. It will be introduced retracing the pioneering work
of A. Einstein.
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6.2 Brownian Motion: A Heuristic Introduction

For the sake of simplicity, the one-dimensional case will be considered first, the
generalization to higher dimensionality being straightforward. We will assume that in
a given time interval T a pollen grain, due to random collisions with water molecules,
undergoes a random variation ¢ in its position. We will denote through

D(7,¢) 6.1)

the probability density for the “jump” of the pollen grain, in such a way that

b
/ ?(z,0)dg (6.2)

can be interpreted as the probability that the particle, being in any given position x
at time ¢, is found in the interval [x + a, x + D] at time s = ¢ + 7; we are assuming
in particular that the transition probability density ®(t, ¢) depends only on the
quantitiest =t —sand ¢ =y — x (Fig.6.1).

The function @ (7, ¢) remarkably resembles the transition matrix of a Markov
chain, except for the fact that, in the present context, time and state space are con-
tinuous. We will assume that the following property:

P(1,¢8) = P(r, =) (6.3)

X

Fig. 6.1 The pollen grain (large sphere) moves inside the water, making random collisions with
water molecules (small spheres)



6.2 Brownian Motion: A Heuristic Introduction 133

holds, which expresses the fact that moving rightwards of leftwards is equally prob-
able, and implies that the “mean jump” vanishes:

/ ditd(r,0)=0 6.4)
R

Let now p(x, t) denote the probability density for the position of the pollen grain at
time 7. We will assume that the following very natural continuity equation holds:

Pl i+ 1) =/d;¢><r, O plx — £.1) 6.5)
R

expressing the fact that the position at time s = ¢ 4 t is the sum of the position at
time ¢ and of the transition occurred between times ¢ and s. If t is small, provided that
@ (1, ¢) tends to 0 rapidly enough as || — +00, we can make Taylor expansions:

px,t+1)=plx, 1)+ tz—]:(x, H+... (6.6)
P 1 ,9%®
p(x—g“,t)=p(x,t)—§8—(x,t)+—§ ——(n+... (6.7)
X 27 09%x

Substituting the above expressions into the continuity equation (6.5) and retaining
non vanishing low-order terms only we get:

0 192
p(x,t)+r—p(x,t)+... =p(x, 1)+ —Tp(x,t)/ d¢ §2¢(r, Z)+... (6.8)
ot 2 0%x R

where we have taken into account the fact (6.4) that the mean transition is vanishing,
enabling us to retain terms of at most first order in t and second in ¢, and that the
transition probability density is normalized to 1. Inspired by the microscopic theory
of diffusion, we are induced to interpret the quantity:

o?(1)
2T

7 (6.9)

1
D= /d: $o(r,0) =
R
as the macroscopic diffusion coefficient; for this quantity to be constant, it is neces-
sary to assume that o2(t) is proportional to 7. Under this additionally hypothesis,
one arrives to the diffusion equation:

ap 82p
E(x,t) = D%(x,t) (6.10)
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To complete the description, it is necessary to equip the diffusion equation (6.10)
with an initial condition. A possible choice is:

p(x,0) =68(x) (6.11)

representing a particle at the origin of a suitable reference frame. Were that the case,
the solution of (6.10) would be a gaussian probability density:

1 x?
plx,t) = mexp (—m) (6.12)

which coincides, by virtue of the continuity equation (6.5), with the transition prob-
ability density:

D(1,¢0) = (6.13)

el )
4m Dt 4Dt
This expression will represent a natural starting point for the rigorous mathematical
treatment of the brownian motion.

6.3 Stochastic Processes: Basic Definitions

The heuristic discussion of the preceding paragraph has put in evidence several
remarkable aspects: first, the motion of the pollen grain is treated with probabilistic
arguments. This implies that a probability space (£2, &F, P) has to be introduced, on
which it must be possible to define the random variables:

X, : (2,9, P)— (R, B(RY)) (6.14)
with the interpretation of position of the pollen grain at time ¢. The time parameter t

takes values on a suitable time interval T C [0, +00). The movement of the pollen
grain will be therefore described by the family:

{Xihier (6.15)
of random variables. For all w € §2, one obtains the trajectory:
t ~ X (w) (6.16)

corresponding to a possible motion of the system. Moreover, in the above outlined
formalism it makes sense to compute expressions of the form:

P(X, €Al ....X, €A, Ap...,A, €B(RY) (6.17)
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As it is well known, the o-field F contains all possible events, corresponding to
all the possible statements one can formulate once an outcome of the experiment
is registered; in the present context, however, the information obtained through an
observation increases with time: at time ¢ one has gained knowledge of the position
of the particle for past times s < ¢, but not for future times s > ¢. This means that a
key ingredient for the probabilistic description of the brownian motion is represented
by the following definition:

Definition 6.1 We call filtration {F,},.;, T C R", a family of sub-o-fields of F
increasing with¢,i.e. suchthat ¥y C J; if s < t. We call stochastic basis a probability
space endowed with a filtration, i.e. an object of the form:

(2.5 Fdier . P) (6.18)

Intuitively, F; contains all events that it is possible to discriminate, that is to conclude
whether have occurred or not, once the system has been observed up to the instant ¢.
In other words, it represents all the information available up to time # and including
time £.

We can now give the following general definition:

Definition 6.2 A stochastic process is an object of the form:
X= (‘Q’:}-’ {gt},ET,{X,},ET,P) (6.19)

where:

1. (2,9, {F};er . P) is a stochastic basis
2. {X;},er is a family of random variables taking values in a measurable space
(E, &):
X, :2—>E (6.20)

and such that, for all ¢, X, is F;-measurable. To express this circumstance, we
say that {X,},cr is adapted to the filtration.

The set E is called state space of the process: for the purpose of our applications,
it will coincide with R?, endowed with the o-field of Borel sets. Given w € £2, the
map:

T>t~ X, (w)ekE (6.21)

is called a trajectory of the process, which is called (almost certainly) continu-
ous if the set of points @ such that the corresponding trajectory is continuous has
probability 1.
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6.3.1 Finite-Dimensional Laws

Let X = (2, F, {Fiher . {Xiher - P) be a stochastic process and 7w = (11, ..., 1)
a finite set of instants in 7', such that#; < --- < t,. The map:

253w~ (X,1 (w), ..., X,ﬂ(w)) € E" (6.22)
is clearly a random variable; let i, be its law:
pr (Ap X - x Ay) =P (X, €Ay,....X, €A;), Ai,...,A, €& (6.23)

Wy is called a finite-dimensional law of X. Two processes sharing the same finite-
dimensional laws are said equivalent.

Given 7, i is a probability measure on (E", ®"€), ®"E being the smallest o -
field containing all the sets of the form A; x --- x A,, A; € &. Finite-dimensional
laws, by construction, satisfy a simple consistency property:

Uz (A X LA X E X Ajig.. X Ay) = Uy (A1 X LAZ1 X Ajyr.. X Ay) (6.24)

forall t and @ = (¢, ..., t,), provided that 7’ = (¢, ...t _1, tix1, ..., ;). On the
contrary, we will say that a family of probability measures {i-}, is consistent if
it satisfies the property (6.24). We state without proof the following fundamental
result:

Theorem 6.1 (Kolmogorov) Let E be a complete and separable metric space, € the
o -field of Borel sets and {1}, a family of consistent probability measures. Let:

def

Q=ZE"={w:T — E) (6.25)

be the set of all functions w from T to E, and:
5 B(E)T (6.26)
the smallest o -field containing the cylindrical sets:
{we 2| w(t)eAl...,o,) € A,} (6.27)

Let finally:
X (@) w() (6.28)

and F; = o (X, s <t), be the natural filtration.

Then there exists a unique probability measure P on (§2,F) such that the
measures {|i;}, are the finite-dimensional laws of the stochastic process X =
(2,5 AFhier » (Xihier » P).
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Despite its complexity, the meaning of Kolmogorov’s theorem is clear: for any family
of consistent probability distributions there exists a unique stochastic process having
precisely that probability distributions as finite-dimensional laws.

In many contexts, it is interesting to draw some conclusions about the reg-
ularity of the trajectories of a stochastic process. To this purpose, we prelimi-
nary mention that two stochastic processes X = (.Q, F AT her s (Xihier » P) and
X =(2,7, {?;}teT , {X;}teT,P’) are called modifications of each other if
(2,F,P)= (82,5, P')and if, forallt € T, X, = X, almost surely.

Again we state without proof the following second Kolmogorov theorem:

Theorem 6.2 (Kolmogorov) Let X be a process taking values in R, and such that
for suitable « > 0, B > 0, ¢ > 0 and for all instants s, t:

E[1X, — X,IP] < clt — s/ (6.29)

Then there exists a modification X' of X which is continuous.

6.4 Construction of Brownian Motion

We now have all the instruments for giving a precise definition of the brownian
motion, starting from Einstein’s discussion. We consider (Rd, B (Rd )) as state space
of the process. We recall that in the historical description of the brownian motion a key
role was played by the transition probability density, which turned out to be normal.
Moreover, in Einstein’s discussion, the assumption that the transition of the pollen
grain is independent on its position at current and past time was implicit. Summing
up these observations and completing the description of the brownian motion with a
suitable initial condition we formulate the following:

Definition 6.3 A process B = (22, F, {F;},=0, {B:};50 . P) is called brown-
ian motion if:

1. By = 0 almost certainly

2. forall 0 < s <t the random variable B, — Bj is independent of B, for all
u < s, and in particular it is independent of Fj;

3. for all 0 < s <t the random variable B, — B, has law N (0, (t — s)I),
where 1 is the d x d identity matrix.

The first property corresponds to the requirement that the particle starts its motion
at the origin of a suitable reference frame. The second property is commonly resumed
saying that the increments of the brownian motion are independent of the past,
and is strongly related to the memoryless condition for Markov chains, as it will be
soon explained in detail. The third property makes the introduction of a gaussian
transition probability density rigorous.
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As the reader might have observed, so far the stochastic basis of the brownian
motion has not been defined. In fact, no arguments have been presented to guarantee
the existence of a brownian motion: in the previous Definition 6.3 the requirements
formulated in the heuristic introduction to the brownian motion have just been for-
mulated in the language of stochastic processes.

To the purpose of proving the existence of the brownian motion, we first observe
that the Definition 6.3 of brownian motion corresponds to assigning the finite-
dimensional laws of the process. We will limit our treatment to the one-dimensional
case d = 1, as the multidimensional case results from a straightforward generaliza-
tion left to the reader.

First, we prove that the n-dimensional random variable (B, ..., B;,) is normal.
By virtue of the second and third property of the brownian motion the vector random
variable (Y;,, ..., Y; ) given by:

Ytl == Btl Ytk = Bfk - B’k—l k = 2. ..n (6.30)

has independent and normally distributed components with zero mean and covariance
matrix:

h 0 - 0
A= 0n—1... 0 6.31)
0 0 ...t —t,—1
Since it is related to the vector random variable (B;,, ..., B;,) by the linear transfor-
mation:
B, 1 0...0 Y, Y,
B, _ 1 1...0 Y, _A Y, 6.32)
B, 11 ...1 Y, Y,
the former is also normally distributed with covariance matrix:
I=AAA" (6.33)
Explicitly:
I, = E[B, B, = min(t;, t;) (6.34)

This can be verified also with the following simple calculation, assuming, for exam-
ple, i < t;:
E [B’i B’f] =E [Bfi (Bff - B,,)] +E [Bt?] = (6.35)
=E[Bt,]E[Btj—Bt,-]+ti=fi .
Since the covariance matrix I” is invertible with inverse I' ! = A= A~! (A’I)T
where, as a simple calculation shows:
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A7l = o (6.36)

we can write the finite-dimensional laws of the brownian motion:

Ay 4 )_/‘ " / " exp (_% (Z:’l,j=1xiri;]xj>> 637)
Hor 121 L T T @y det () 2 :

The above expression can be given a more transparent form since, due to Egs. (6.33)
and (6.36), the following simplifications occur:

n

n 2 2
- X (xXx — Xx—1)

S ey =y Y T
h (e — tr—1)

i j=1 k=2 (6.38)
det(I") = 11(ta — 1) ... (ty — tn—1)
leading to the identity:
Pr (Ap X oo X Ap) = (6.39)

=/ dx1 px1, 1110, 0) dxzp(x2,t2|x1,f1)---/ i ot o)
Ay

Ay Ay

where the transition probability density is given by:

Dot s) = —— e <—M> s<t (6.40)
P Clis 27 —s) g 2(t—s) )’ '

In the multidimensional case one has:

(v, £I%, 5) ! ¢ ( 'y_x|2) s<t (641
) 3 §) = —————————75 €X - ) .
Py 2ra —s 2 TP\ 26— )

Itis also immediate to realize that the expression (6.39) implies the three properties
in the Definition 6.3 of the brownian motion. The first property is obvious. The second
and third are retrieved choosing n = 2 and A; = R (Fig.6.2):

Mr (A2) = / dxi p(x1,1110,0) | dxz p(x2, t2]x1, 11) (6.42)
R Ay

which shows that B,, = B;, + B;, — B;,, with the increment B,, — B,
on By, and normally distributed with mean O and variance #, — ;.

, independent
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Fig. 6.2 Probability density “‘E—\_;____E
of By, p(x,t), as a function \

of the position and of time

6.5 Transition Probability and Existence of the Brownian
Motion

The Definition 6.3 of brownian motion given above is equivalent to the assignment of
the finite-dimensional laws. The latter present an interesting structure, and involve an
object closely recalling the transition matrices introduced in the context of Markov
chains. Consider in fact the following map, called markovian transition function
of the brownian motion:

saxnd L / dy exp <— y = X|2> (6.43)
27t —s5)]17* Ja 2(t — )

where s, € T,s <t,x € R? and A € B (RY). If s = ¢, we put instead:

(A, s 1%, 5) Y 5.(4) (6.44)

Intuitively, we interpret p(A, ¢ |X, s) as the probability that the pollen grain is in the
Borel set A at time ¢, given the fact that it was at the point x at time s. Incidentally
we observe that the probability of finding a particle at a precise point vanishes at any
instant s > 0, so that the map (6.44) cannot be properly interpreted as conditional
probability. On the other hand, we realize that, by definition, B, — By ~ N (0, t), and
therefore:

_ _ Iy
P(B, € A) = p(A,11]0,0) = G fAdy exp <— o > (6.45)
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recalling that, by definition, By = 0 almost surely. In general:
Px+ B, — B; € A) = p(A,t]x,s) (6.46)

We now introduce some observations, that will turn out to be useful later in the
discussion:

1. for fixed s, f, A the function X — p (A, t | X, s) is Borel-measurable

2. for fixed s, t, X, the function A +— p (A, t|X,s) is a probability measure on
(R, B (R7));

3. p satisfies the following Chapman-Kolmogorov equation:

p(A,tlx,S)=fdp(A,tly,u)p(dy,ulx,S) (6.47)

R

foralls <u <,x € R%and A € B (R).

The reader is invited to derive the last Eq.(6.47) through a direct calculation, which
is a simple exercise on gaussian integrals.

As proved earlier, the finite-dimensional laws of the brownian motion are given
by:

u,,(Alx---xAn):/

A

p(Xm,tl |0’ 0)/ / p(dxnatn |Xn—1’tn—l)
A A,

(6.48)
where 7w =(t1,...,1,), 0<t <---<t,. The consistence of these finite-
dimensional laws is an immediate consequence of the Chapman-Kolmogorov
equation.

Kolmogorov’s Theorem 6.1 ensures the existence of a stochastic process:

B = (2,5 {F}=0.{Bi}i=0. P) (6.49)

having (6.48) as finite-dimensional laws, and makes it possible to construct the
stochastic basis for such process. £2 is the set of trajectories:

2 = {w: [0, +00) - R?} (6.50)

J the o-field B (Rd)[0'+oo) , appearing in Kolmogorov’s theorem, and F;, = o (X,
s < t) the natural filtration. The process is defined by:

we R, w— B Y ow (6.51)

The second Kolmogorov’s theorem guarantees that a large class of stochastic pro-
cesses can be modified in such a way as to be turned into a continuous process. To
prove that the second Kolmogorov’s theorem applies to the brownian motion, we
consider 8 = 2n for some integer n > 2 and ¢ > s:
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E[|Bz—Bs|ﬁ]=;/dxx2"exp - x? =
2r@ —s) Jr 2(t — 5)

i ~ : 2nF<"+%> 1
Zm(t_“')n/o d“”’HEeXP(—M):T(I—S)"=c(t—s) o

(6.52)

From now on, we will always assume to work with a continuous brownian motion.

We conclude this section with a technical observation. It is often useful, in par-
ticular to prove some theorems on stochastic calculus, to choose a filtration which is
larger than the natural one, so that the stochastic basis:

(2,F.{F )20, P) (6.53)

satisfies the so-called usual hypotheses, that is:

1. the filtration is right continuous, i.e. J; = F,, e Mo Fs
2. each sub-o-field F; contains all the events of I with vanishing probability

A simple way to satisfy the usual hypotheses is add to all the o-fields F; =
o (Xs, s <1t) all the events of F with vanishing probability. The so-obtained fil-
tration is referred to as completed natural filtration.

6.6 The Martingale Property and the Markov Property

Due to the fact that the increments of the brownian motion are independent of the
past, the stochastic process exhibits the following remarkable property:

E [Bt|5ts] =E[B, — B, + Bs|3~3] =
= E[B; — Bs|F]1 + E [B,|F] = (6.54)
= E[Bt - Bv] + Bs = Bs

where the independence property and the fact that B, is F;-measurable have been
used. The above equation means that B, is the best prediction for B, given the
information obtained observing the system up to time s. In the language of stochastic
processes, this property is expressed saying that the brownian motion is a martingale.

The problem of determining E [ f(B;)|7,], if f:RY — R is a limited Borel
function f : RY — R, has great interest. To this purpose, we will refer to a useful
theorem we have presented in Chap.3, and which we recall here for the sake of
clarity:

Theorem 6.3 Let (2, F, P) be a probability space, G and H mutually independent
sub-o-fields of F. Let X : 2 — E be a G-measurable random variable taking values
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in ameasurable space (E, £) and ¥ afunctiony : E x 2 — R E ® H-measurable
and such that v — ¥ (X (w), w) is integrable. Then:

def

E[Y(X,)|9]=@(X), @) = E[Y(x,")] (6.55)
We know that § = F; and H = o (B, — By) are mutually independent, and that the
random variable X = B, is G-measurable. Moreover the function ¥ : R? x 2 — R
given by ¥ (X, w) = f(Xx + B;(w) — B;(w)) is H-measurable. The function @ (x)
appearing in the above theorem is therefore:

P(x) = E[f(x+ B — By)] (6.56)

and since the random variable @ +— X + B;(w) — B;(w) has law N (x, (t — s) I):

P = f dy f(y)ex (——'y_"'Z) (6.57)
Tt -2 Ju TV PAT0 Ty :
we conclude that:
E[f(B)IF]=E[f(Bs+ B, — By)|F,]1 = E[Y(By, )|Fs] = @(Bs) (6.58)

and:

E[f(B)I?]—;/ dy £(3) ex (_M) (6.59)
t sl — [Zﬂ([—s)]d/2 Rd y y p Z(I—S) .

This result is extremely important: the observation of the system up to time s corre-
sponds to the knowledge of By, a circumstance already reported in Markov chains.
In particular, if f = 1, for some A € B(R?), the above expression becomes:

P (B; € A|Fy) = p(A.1]| By, ) (6.60)

(6.60) is referred to as Markov property of the brownian motion.

6.7 Wiener Measure and Feynman Path Integral

Let’s consider again the transition probability density:

(¥. 11X, 5) : e ( 'y_x|2> 6.61)
, ,S)=———exp|— .
Py e —s 2 TP\ 20—y
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The Chapman-Kolmogorov property can be written in the form:

p(y,r|x,s>=/ddxlp<y,r|xl,t1) P10 Ix, $) (6.62)
R

Suppose we iterate, introducing a partition 7o = s <t; < --- <1, =t and letting
X) = X, X, =Y. We get:

n—1

P tIx,s) = f ]‘[dx, [T ot 30 (6.63)

that is:
p(y,t|x,s) = /l_[dx ; exp (_M> (6.64)
’ "o i — 1] 20151 — 1)

We observe that the result is independent from the particular choice of the partition
of the time interval. We can thus arbitrarily increase the number n, eventually making
n — 4o00. For example, if we choose a uniform partition, ¢; | — #; = At, we observe

that:
T X1 — il i — il
i L [ — 2 A 6.65
,-l:! xp < 2At ) xp ; 2A¢2 (6.65)

and, for small A¢, we are induced to formally write:

n—1 2

X1 — X[ /’ 1 |dx(t)
— — At | >~ — | dt = 6.66
xp < ; 2A82 Rl W AN (6.66)

where the sequence of points X; has become a motion x(t).
Motivated by this observation we define the Path-Integral:
t 1 d 2
/ Dx(t) exp | — f dt — x(@) (6.67)
x(s)=x, x(1)=y s 2 dt

as:

T /de ; exp <_ [Xi41 — Xi|2> 669
lit1—4;—0 l 27t(tz+1 — t;)]d/z 2(tiy1 — 1) .

where the limit is meant by considering partitions of arbitrarily small width
and arbitrarily large number of points.
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The Chapman-Kolmogorov property guarantees that such definition is well
posed and we know that:
2
) (6.69)

dx(t)
dt

|
p(y,t]x,s) =/ Dx(t) exp —/ dt —
x(s)=x, x(1)=y s 2

The interpretation of this identity is strongly related to Feynman approach to
Quantum Mechanics: the transition probability for the brownian particle to move
from x to y in the time interval [s, ] is obtained by summing all the possible trajecto-
ries joining x and y, each path being weighted by the exponential of the free-particle
action functional (Fig.6.3):

1 2
2

dx (1)
dt

S[x(e)] = / dr (6.70)

We note that a classical limit is transparent: only the trajectory with minimal action
contributes to the summation, making the free particle follow a straight line. The
measure Dx(7), called the Wiener measure, is actually a well defined measure on
the Wiener space W, of continuous functions:

X:[s,t] > RY, 17— x(7) (6.71)

pla()] = e~

\

Fig. 6.3 Representation of possible trajectories joining x and y, each one being weighted by the
exponential of the free-particle action functional
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plx()] = ¢SV

\

x@) =y

x(s)=x

Historically, Feynman introduced this formalism of path integrals in quantum
mechanics during the year 1948. His path integral uses real time, the weight being
the imaginary number:

exp (—%S [x( o)]) (6.72)

It is not possible to rigorously define the path integral of the above imaginary valued
function, since the defining sequence does not converge in the limit of partitions
of arbitrarily small width and arbitrarily large number of points. Nevertheless, this
difficulty can however be overcome via a Wick rotation, t — t = —iht, driving the
quantum free particle into the brownian particle!

We observe that, in principle, it is very interesting to go beyond the free particle,
introducing an action containing a potential energy: the stochastic motion will not be
a brownian motion, but still a Markov process, as we will learn in the next chapter.
We will come back to this point when we will have developed the foundations of the
stochastic calculus.

6.8 Markov Processes

Moving from the discussion of the previous paragraphs, we will now abstract the
general definition of Markov process, which extends to continuous time and state
space the notion of Markov chain, introduced in the previous chapters. The discussion
will begin with the following:
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Definition 6.4 A markovian transition function on a measurable space
(E, &) is a real-valued function p (A, | x,s), where s,t e RT, s <t,x € E
and A € € is such that:

1. for fixed s, ¢, A the function x — p (A, t | x, 5) is E-measurable
2. for fixed s, t, x the function A — p (A, t|x, s) is a probability measure
on (E, &)

3. p satisfies the following Chapman-Kolmogorov equation:

P(A,tlx,S)=/ p(A.tly,u) p(dy,ulx,s) (6.73)
E

foralls <u <t,x € Eand A € &;

4. ifs=t,p(A,s|x,s) =6:(A) forallx € E.

The reader is invited to observe that p generalizes the n-step transition matrices
of Markov chains.

Definition 6.5 Let (E, £) be a measurable space. Given a markovian tran-
sition function p on (E, €) and a probability law w, we call Markov pro-
cess associated to p, starting at time u with initial law u, a process X =
(SZ, F AT Y er (X dier P), with time domain 7" = [u, 4+-00) and state space
(E, &), such that:

1. X, has law u;
2. the following Markov property holds:

P (X, € A|F) = p(A, 1] Xy, 5) (6.74)

almost surely forall A € Eand ¢t > s > u.

The brownian motion is our first example of Markov process.

A fascinating and surprising relationship between theory of stochastic processes
and theory of partial differential equation exists. In the remainder of the present
chapter a first discussion providing an insight into this topic will be raised, and
deepened once the formalism of stochastic differential equations will have been
introduced.
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6.9 Semigroup Associated to a Markovian Transition
Function

Let p be a markovian transition function on (R?, B(R?)), which for the moment will
be assumed time homogeneous, i.e. depending only on t — s. If f is a real-valued
and bounded Borel function, we can define the time dependent family of operators:

(T, f) (x) < /R Ay f() p(dy.1]x,0) (6.75)

Intuitively this operator, which we will meet again in the future chapters, represents
a time dependent average of a given function of a Markov process, for example
the energy of a system which evolves in time under the action of random external
fields. We immediately see that Ty is the identity, and that the following composition
property holds:

T,o T, = Ty (6.76)

To prove (6.76), let us compute:

(T 0 T))X) = [pady (T f) (¥) p(dy, s |x,0) = (6.77)
= [pedy Jpadz f(@)p(dz 1]y, 0)p(dy,s|x,0) =

= Jpedz f(2) [padyp(dz,s +11y,s) p(dy,s|x,0) =
= [padz f(2) p(dz,s +1]X,0) = (Tys f) (%)

where the homogeneity of the markovian transition function and the Chapman-
Kolmogorov equation have been recalled. Hence {7}},- is a semigroup of linear
operators acting on the space of real-valued and bounded Borel functions.

If, for all x € R?, the following limit exists:

1
Jim (T f)(x) = f X)) (6.78)

we can define the infinitesimal generator L of the semigroup {7;},-:

def

1
LHE) = Jim, " (T fHx) — f(X)] (6.79)

which, intuitively, is the time derivative, at ¢ = 0, of the time dependent average.
More generally, if the markovian transition function is not time homogeneous,
the same reasoning leads to a family of operators {Ts,, }Sq, defined through:

(T, f) 0 < /R Ay f) p(dy.1]x.5) (6.80)
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T; 5 is the identity, and:
Tx,u o Tu,t =15;, S<u=<t (681)

Instead of the operator £ a family of infinitesimal generators {L,}, appears, defined
through the expression:

i
-0t

e 1
&0 L tim [T ) = f (0] (6.82)

whenever it makes sense.
If f is smooth, more precisely if f € C?(R?), the explicit expression:

1 1
W [(Teon H®) = f0] = A /1;@ dy (f(y) = f(x) p(dy. 1 + h|x,1) (6.83)

can be combined with a Taylor expansion:

: : af (%) 1 P fx)
fo) = fx®= Z ax, Vo~ %) + 3 Zﬁ T, e X008 — ) oy - x%)
(6.84)
which immediately suggests a very interesting relation:
d d
1 02 f af
L = - ,t boe(x,t 6.85

(L f)x) > aEﬁ:] Aap (X )axaaxl3 x) + aE:] o (X )8xa x) (6.85)

with aqg(x, t) and b, (X, 1) uniquely determined by the transition probability p:

1

dap(x, 1) = Hm - /d dy (Yo — Xa)(yp — Xp) p(dy, t +h|X, 1)
g R

(6.86)

1
butx.t) = fim - [ dy = x0) pldy.t 4 hix.1)
- R

provided that the two limits make sense. The expression (6.85) can be shown [3] to
hold under suitable hypotheses involving the behavior of the transition probability p
for small &, which has to ensure us that higher order terms in the Taylor expansion
can be neglected. For completeness, we mention also that the matrix {aaﬁ (x, t)}
can be shown to be always positive-semidefinite [3].

The relation (6.85) is very important since in provides a bridge between two
apparently independent branches of Mathematics: the theory of partial differential
equations and the theory of stochastic processes. We will come back to this crucial
point in the following chapters.

ap
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6.10 The Heat Equation

As shown in the previous paragraph, under suitable condition, to each Markov pro-
cess, or equivalently to each markovian transition function, a differential operator
can be associated. In the time-homogeneous case, which we consider only for the
sake of simplicity, we know that the function u(x, t) = T, f (x) satisfies:

] 1
a—b:(x, 0) = ,}132) E(Thf(x) —f(x) =Lf(x) (6.87)
and that:
] 1
a—b:(x, 1) = %ILI}) Z(Tr-i—hf(x) -Tfx) =TLf(X (6.88)

If it happens that 7, and £ commute, the following heat equation associated to
the markovian transition function is found:

B (x,1) = (Lu) (x, 1)
{ ’ u(x,0) = f(x) (6.89)

On the other hand, let ¢ (¢, X, y) be the fundamental solution of the heat equation, i.e.
the function satisfying:

aq _
5L, x,y) = (Lq) (t,X,y) 0
{ q(0,x,y) =8(x—y) (6.90)

then, from the theory of partial differential equations, it is known that:

u(x, 1) = /d dyq(t,x,y) f(y) (6.91)
R

But since u(x, t) = T; f (x), the markovian transition function must be:
pdy,s +t|x,s) =q(t,X,y)dy (6.92)
This observation sheds light on the possibility of inverting this process: given a
partial differential equation with fundamental solution g, we might ask ourselves
whether it is possible to construct a Markov process having a markovian transition

function p related to g by (6.92). As pointed out before, for this issue to be faced
adequately, the formalism of stochastic differential equations is required.
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6.11 Further Readings

Brownian motion is the cornerstone of the theory of stochastic processes and is
presented in many excellent books. The presentation in this chapter is self-contained.
A few books that readers may see to deepen their study are [1-3]. Readers interested
in Feynman path integral can see the original book [4]. For the connection with the
theory of partial differential equations we refer to the bibliography of the following
chapters.

Problems

6.1 Invariances of the brownian motion

Given a one-dimensional brownian motion continuous with increments independent
from the past B;, show that X; = —B; and ¥; = ﬁ B,,; are brownian motions.

6.2 Drifted brownian motion

Given a one-dimensional brownian motion continuous with increments independent
from the past B,, consider the process X; = B; + vt,v € R. Computem(t) = E[X,],
the probability density of X;, and C (¢, s) = E[X, X;].

6.3 Distance from the origin
Given two independent brownian motions continuous with increments independent

from the past By, and B, ,, let:
R, = /B, + B, (6.93)

Compute the probability density, the mean and the variance of R;.

6.4 Brownian motion on the unit circle
Given a one-dimensional brownian motion continuous with increments independent
from the past B;, the stochastic process:

__ (cos(B;)
R, = (sin(B,)) (6.94)

is called brownian motion on the unit circle. Find the law of the random variables
cos(B;), sin(B;) and B,mod2x. The first two random variables correspond to the
projections of R, onto the x and y axis, and the latter to the angle of the particle

6.5 Brownian bridge
Given a one-dimensional brownian motion continuous with increments independent
from the past B;, define the brownian bridge:

X; =B, —tB;, tel0,1] (6.95)

Show that X, is normal, compute mean and variance. Show also that (X, ..., X;,)
is normal. Compute mean and covariance matrix.
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6.6 Correlated brownian motion
Given two independent brownian motions continuous with increments independent
from the past B;; and B, ,, let:

X, =pBi +v1— /02 By, (6.96)

Show that X, is a brownian motion. Evaluate E[X, B; ,].

6.7 Brownian bomb

Given a one-dimensional brownian motion continuous with increments independent
from the past B, and a random variable 7 exponential with parameter A, find the
probability density of the random variable w — Z(w) = Br()(®).
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Chapter 7 ®)
Stochastic Calculus and Introduction Creck for
to Stochastic Differential Equations

Abstract In this chapter we introduce the basic notions of stochastic calculus, start-
ing from the Brownian motion. Stochastic processes describe time-dependent random
phenomena, generalizing the usual deterministic evolution. The description of the
latter requires the notions of differential and integral, which need to be properly
extended to stochastic properties. Stochastic calculus is the branch of mathematics
dealing with this important topic. The reason why traditional calculus is not suitable
for stochastic processes is revealed by the Brownian motion. Since Var(B;) = ¢,
implying that B, “scales” as /7, its trajectories are not differentiable in the usual
sense. The stochastic calculus allows us to introduce generalized notions of dif-
ferential and integral, notwithstanding this difficulty. Moreover, it allows to write
differential equations involving stochastic processes, providing thus a powerful gen-
eralization of ordinary differential equations to study phenomena evolving in time
in a non deterministic way.

Keywords Stochastic calculus - Itd integral - Wiener integral
Approach to equilibrium - Langevin equation

7.1 Introduction

In this chapter we pursue the exploration of stochastic processes begun in Chap.6
with the study of the Brownian motion. In order to deal with stochastic processes,
which describe random phenomena depending on time, we need to introduce several
basic notions and mathematical instruments. To understand the reason of this need,
let us consider a system whose state at time 7 is described by a set of variables x;.
Let us suppose that x, undergoes a deterministic time evolution, i.e. an evolution in
which no randomness is involved. This evolution, in most situations, is governed by
an ordinary differential equation of the form:

dx;, =F(x,,t) dt
[de <R ex) o
Xp) =X
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whose formal solution is readily obtained integrating both sides of (7.1) with respect
to time:

t
X; =x" —i—/ F (x,,s) ds (7.2)
0

The solution of (7.2) defines a family {x,}, of states of the system. In the realm of
stochastic processes, this family is replaced by a family of random variables {X;},.
The time evolution of the family {X,}, is now governed by a stochastic differen-
tial equation: the latter should include a term introducing randomness in the time
evolution.

This observation suggests that we should be able to rigorously define a notion
of differential for a stochastic process {X;};. Traditional calculus is not suitable
for stochastic processes. The reason lies in the behavior of the trajectories of the
Brownian motion: informally speaking, since Var(B;) =t the Brownian motion
scales as /7 and thus has non-differentiable trajectories.

Equivalently, we should be able to rigorously define a notion of integral generalis-
ing (7.2) to stochastic processes: this crucial instrument is called the It6 integral after
the work of Kiyoshi Itd. It is a generalisation of the ordinary concept of Riemann
integral, which takes into account two important circumstances: (i) the integrand is
a random variable and not an ordinary function and (ii) if randomness is present in
the time evolution, integration is not only performed with respect to time but also
with respect to the Brownian motion.

In order to properly fix the mathematical framework, for the time being we assign
a stochastic basis in the usual hypothesis (defined in Sect. 6.5 in Chap. 6):

(2,9, {F )20, P) (7.3)

where we suppose a continuous Brownian motion is defined, with increments inde-
pendent of the past. For simplicity, we now consider only the one-dimensional case:

B = (2, {F )20, (Bi)iz0. P) (7.4)

Remark 7.1 Having fixed the stochastic basis, we will use the simple notation X =
{X},>0 to indicate processes. Naturally, we will be careful to verify that all processes
are adapted, i.e. that X, is F,-measurable.

We start from the observation that a stochastic process X = {X,},-, can be viewed
as a function of two variables:

X :[0,400) x 2 - R, (t,w) - X;(w) (7.5)

where each w determines a random trajectory t — X,(w) and ¢ is a time instant.



7.1 Introduction 155

We will deal with stochastic processes whose time evolution is governed by the
following integral equation, generalizing the deterministic one (7.2):

t t
X, =Xo+/ F(X,.s) ds+/ G (X,.s) dB, (7.6)
0 0

where the last term, introducing randomness, is constructed from the Brownian
motion.

In this chapter, we will learn to define the two kinds of integration of stochastic
processes appearing in (7.6), one with respect to time, and the other with respect to

the Brownian motion: p 5
f Fds, / G.dB, (1.7)

and to give a precise meaning to expressions of the form:
dXt = F[dt + G[dB[ (7.8)

which will turn out to be a very important tool to build new processes starting from the
Brownian motion and will be the cornerstone of the theory of stochastic differential
equations.

In this chapter we will provide rigorous definitions and results about stochas-
tic calculus, together with examples and applications. We will omit the proofs of
several theorems, which would require more advanced tools and can be found in
excellent textbooks on this subject. The Fig.7.1 provides an illustration of the dif-
ference between integration with respect to time and integration with respect to the
brownian motion.

B[(w)eilgr?()az)él(w) ey B ()1 (@) X (@)
Biy (0)¢(0) oy e Bz (@) ()
By (@)eq(®) M\ By (@)ep (@)
t T t

(J5 XdB,) () = Eiei(@) (B, (0) = By (@) ([ Xide) (@) = [} Xi(@)dr

Fig. 7.1 Illustration of the two kinds of integration we will define in this chapter
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7.2 Integration of Processes with Respect to Time

Let us consider a process X, interpreted as a function of two variables:
X:[0,400) x 2 > R, (t,w) > X;(w) (7.9)

From the very definition of stochastic process we know that, for fixed ¢, the function:
o — X,;(w) is F-measurable and in particular F,-measurable. On the other hand, for
fixed w, the real-valued function t — X;(w) defined on [0, +0o0) has no assumed
measurability properties.

We will focus our attention to progressively measurable processes, that is,
by definition, processes such that, for all 7 > 0, the function (¢, ®) — X, () is
(B([O, 1) ® ?;)-measurable. It is possible to show [1] that such technical hypoth-
esis holds if the given process is continuous, i.e. it has continuous trajectories.

For such processes, the function:

is measurable and thus we can define its Lebesgue integral [ f X,ds, one for each
trajectory, which can be finite, infinite or even non existent:

B B
</ Xsds) () "éf/ X, (w)ds (7.11)

where we have fixed a time interval [«, 8],0 < a < 8 < +00.
If the integral in (7.11) exists and is finite, owing to the hypothesis of progressive
measurability, it is a random variable. It is thus natural to introduce the following:

Definition 7.1 Let X and Y two progressively measurable processes such that:

B
P (/ |X,|ds < +oo> =1 (7.12)

We say that X and Y are equivalent if:

B
P(/ |X,—Yt|dt=0) =1 (7.13)

We call A'(«, B) the set made of equivalence classes of progressively measurable
processes satisfying (7.12), the equivalence relation being defined by (7.13).

As usual, often the difference between a process and an equivalence class of
processes is neglected.
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Since we have chosen to work under the usual hypothesis, in every equivalence
class in A'(a, B) we can always find a representative X such that the integral:

B
( / Xsds> (®) (7.14)

exists for any w. Such integral defines a real random variable Jg-measurable and, if:

B
/ E[|X;|lds < 400 (7.15)

then, by the classical Fubini’s [2] theorem:

B B
E[/ xm}:[ E[X,]ds (7.16)

Moreover, if X € A'(0, T), then the function:

(t, w) — / Xids, te€[0,T] (7.17)
0

{ / Xsds} (7.18)
0 t

which is continuous, since any integral is continuous with respect to the extremum,
and thus progressively measurable.

To summarize, a stochastic process, under some quite natural hypothesis, can
be integrated with respect to time: this is a simple Lebesgue integral of the single
trajectories. In order to familiarize with this notion, we invite the reader to solve
Problem 7.1.

defines a stochastic process:

7.3 The Ito Integral

We have defined the integral of a stochastic process with respect to time. We now
define a different kind of integration, with respect to the Brownian motion. The reader
could find useful to review the definition of the abstract integral with respect to the
probability measure in the first chapter, Sect. 1.5, as the two constructions share some
common features: the definition of Itd integral is first given within a particular class
of stochastic processes, and then extended to a wider class of processes that cover
most of the practical applications.
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7.3.1 Ito Integral Integral of Simple Processes

Let us fix, as before, a time interval [«, 8], 0 < o < B < 400 and start with the
following:

Definition 7.2 We say that a stochastic process X is simple if:

n—1

Xi(@) =) (@)1, (1) + en(@) L) (1) (7.19)
i=0

for some choice of the integer n and of the timeso = #p < - - - < t, = B. The random

variables e; are J, -measurable.

For every w, an simple process remains equal to a constant ¢; (w) over finite intervals
of time [#;, t; 1) . By construction, such a process is progressively measurable. We
give now the first basic:

Definition 7.3 If X is an simple process, we call Ito integral or stochastic integral
of X, and we denote it f f X,d By, the random variable:

B n—1
( / xde.v> @) Z Y ei@) (B, @) — B, ) (7.20)
« i=0

We denote S(a, B) the set of simple processes, and 8%(a, B) the set of square-
integrable simple processes, i.e. E [|X,|*] < +o0.

Naturally, X € 8(a, B) if and only if E[eiz] < 400 for all i. Let us study now
the map:

def B
XeSp), X—>I1(X) = / Xsd By (7.21)

o
in more detail. It has some important properties:

1. it is linear;

2. since the Brownian motionis adapted, / (X) is  g-measurable because it depends
only of random variables at times preceding S;

3. it satisfies the following additivity property:

B Y B
/ X,d B, =/ X,d B, +/ X,dB,, a<y<§ (7.22)
o a Y

4. If X € 8*(a, B), then I (X) is square integrable:

B 2
E [(/ XSdBS> } < 400 (7.23)
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To verify this property, we have to show thate;e; (By., — By,) (Bi,., — By)isinte-
grable. If i = j, we know that e} is integrable since X € 8*(a, B); (By,, — B,,.)2
is naturally integrable (since it is a Brownian motion) and independent of e?,

which is F;, -measurable. Thus e; (Bt,+1 B[/.)2 is integrable, being the product
of integrable independent random variables. This implies that e; (Bt,- o B,,,) is
square-integrable, and thus e;e; (B,,, — B,,) (By,., — B;) is integrable, being a
product of square-integrable random variables.

We have thus defined a linear map:
2 2 def ?
I:8%(a,B) > L(82,F5,P), X—>1(X)= / XdB; (7.24)

Since I (X) is square-integrable, it is also integrable because the probability P is a
finite measure. The expectation E[/ (X)] is thus well defined and can be computed
as follows:

E [/;f Xsstm] - [Z, L ei (By,, — By) m] -
= X020 ) E[E [ei (Biy — By) %3] 19a] = Yoo ) E[eiE[(Byy, — By)1F4]1%a] =
=31 E[eiE[(Byy, — By)]1Ta] =0 (7.25)

where we have used the fact that e; is F;,-measurable and that (Btm — B,i) is inde-
pendent of J;,, together with the properties of conditional expectation detailed in
Sect. 3.6.

Thus we have found that:

B
E [/ XsdBS|3’a:| =0 (7.26)

which implies, taking the expectation of both members, that:

B
E |:/ XSdB5i| =0 (7.27)

E [(ff Xsst>2 |3ra} -

=3 E [e,? (By,, — B, ) I%] + s E leres By, — By) (Biy,y — Bi)1Fa]  (7.28)

Let us now evaluate:

Ifi < j, we have:
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E [eie; (By,, — B,) (Bi,,, — B;,) 1Fa] =
=E [E [eiej (Bfm - Bli) (Ble - B’/) |9~f/] |3:°‘] =
=E [e,-ej (Bfm - B;,.) E [(Bf.f+1 - Bf.f) |‘rff.f] |§a] =0 (7.29)

so that no contribution arises from non-diagonal terms of (7.28). We have thus:

E [(ff deBs>2 m} =
=X B[} (B, — B)19.] =
=5 E[E[¢ (Bi, — B.)19,]19.] =
=% E[2E[(B, — B)17,]19.] =
=% E[@E[(B., —B.)]19.] =
= E[X, & (i — 1) 19.] = E[ [ X213, ] (7.30)

We conclude that:

B 2 B
E [(/ Xsst) m} =E U des|:fa] (7.31)

which implies the following very important equality:

E [(/j XsdBS)2:| =E [/j xfds] (7.32)

having a profound geometrical meaning, as we will see in a moment. The linear map:

- B
I:8%a, ) > L2, F5. P), x—>1(X)"éf/ X,dB, (7.33)

satisfies the following:

B
||1(X)||2LZ(Q,%P) =E [/ des] (7.34)

The right hand side of this equality is a double integral in df and P(dw) of the
function
(1, ) = X} (@) (7.35)
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so that it has the form of a square norm in a L>-like space which we define in the
following:

Definition 7.4 We denote M?(«, B) the set of equivalence classes of progressively
measurable processes such that:

B
E [ / stds:| < 400 (7.36)

where, as before, we say that two processes X and Y are equivalent if:

B
j2 (/ X, — Y,|dt = o) =1 (7.37)

M?(a, B) is a Hilbert space, subspace of L2 ((a, B) x 2,B(a, B) @ T, A ® P),
where X is the Lebesgue measure.
We have thus built an isometry, called Ito isometry:

||I(X)||i2(9’3~ﬂ’p) == ||X||[2V12(“»/3) (738)

It6 isometry is not only a beautiful geometric identity, but it is the cornerstone of the
extension of the It0 integral to more general processes.

7.3.2 First Extension of the Ito Integral

So far, we have defined the It6 integral for simple processes, through Eq. (7.20). In
this section, we extend it to processes in M 2(a, B). We have learned the the map:

B
I:8%a. B) C M2(a, B) — L*(2.F5. P), X — I(X) déf/ X,dB, (7.39)

o

is linear and isometric:
GOz 0.5, 7 = IXIBrwp (7.40)

and thus it is bounded. The intuitive idea is to extend the It6 integral to more general
processes using approximating sequences of simple processes. This is possible since
itcanbe shown [1]that 82 («, B) is a dense subset of M («, B), thatis, for each process
X € M?(a, B), there exists a sequence {Y ™} of simple processes in 8% (e, B) such
that:

X = lim Y® (7.41)

n——+o0o

where the above limit is in L2-sense, that is:
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B
E [ / Y™ — XS|2ds:| "% (7.42)

Thanks to the well-known Hahn-Banach bounded extension theorem [2, 3], the
bounded linear functional (7.39) can be extended from square-integral simple pro-
cesses to general square-integrable processes, leading to the following:

Definition 7.5 We call stochastic integral of a process X € M?(a, B), and we
denote ff X,d By, the element of L2(£2, F4, P):

B def B
f X,dB; ‘2 lim Y"d B (7.43)

—
n—o0o o

where {Y(”)}n C 82(a, B) is any sequence of simple square-integrable processes

converging to X in M?(a, B). The above written limit is meant in the topology of
L*(£2, 5, P).

The map I becomes thus an isometry between Hilbert spaces:

B
I M B) > LX(2.95. P), X — [(X) "éf/ X,dB, (7.44)

The properties of the restriction to $(«, 8) guarantee that all the properties of I (X)
discussed above, including the ones about expectations and conditional expectations,
hold for each X € M?*(«a, B).

7.3.3 Second Extension of the Ito Integral

In this section, we extend the It integral beyond M?(a, 8). We limit ourselves to
outlining the extension procedure, which relies on suitable approximating sequences.
Technical details can be found in [1].

Definition 7.6 We let A%(«, B) be the set of equivalence classes of progressively
measurable processes such that:

B
P (f |X,|%ds < +oo> =1 (7.45)

where we identify two processes X and Y if:

B
P (/ X, — Y,|dt = o) =1 (7.46)

Naturally M?(«, B) C A*(a, B).
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Itis possible to show [1] that for each process X € A?(a, B) there exists a sequence
of simple processes {Y ™} 'in A%(a, B), such that:

p n——+oo
f Y™ — X ’ds " =570 (7.47)

where the limit is meant in probability. It can then be proved [1] that the sequence:

B
{ / Y;'”st} (7.48)

converges in probability to a random variable which depends on X but not on the
approximating sequence. Such random variable is the 1t6 integral of the process X:

B def B
/ X,dB; = lim Y"dB (7.49)

=
n—+oo /.,

where again the convergence is in probability. It is quite simple to show that, if
X € M?(«, B) this definition coincides to the one given above. When dealing with
processes outside M?(a, ), care has to be taken since properties involving expec-
tations and conditional expectations are no longer valid.

So far, our discussion has been concerned with proving the existence of the It6 inte-
gral. Of course, practical applications require its evaluation, which will be explored
in the reminder of the chapter. It can be shown [4] that, whenever a process X is
continuous, its It6 integral is the limit in probability of the following sequence of
Riemann sums:

n—1
> X, (B, —B,) (7.50)
i=0

as the width |t;1; — #;| of the partition tends to 0. An application of this formula is
proposed in Problem 7.2.
7.3.4 The Ito Integral as a Function of Time

So far we have defined the Itd integral of a process X over an interval with fixed
extrema « and B8 as a map producing a random variable ff X,dBy. Allowing S to
vary, such random variable is promoted to a stochastic process.

A central object of stochastic calculus is the following process:

. t
1) / X,dB, (7.51)
0

where X € A?(0, T), and the instant 7 is the interval [0, T'].
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The following very simple but important property holds for s < ¢:
t
I1(t)=1(s)+ / XdB; (7.52)

Moreover, I (t) is F;,-measurable for all ¢; we already know that this is the case if X
is a simple process. In the general case, if {Y(”) }n is a sequence of simple processes

approximating in probability X in A?(0, T), and ,(t) = [ N Ys(”)st} , then 1,,(¢)

is F;-measurable. Since [,,(¢) converges to I (¢) in probability, it is possible to extract
a subsequence converging almost surely to / (), which is thus F;-measurable.

It is possible to show [1] that each equivalence class X € A%(0, T) contains a
representative such that 7 (¢) is continuous.

In the particular case X € M?(, T), we already know that 7(¢) is square-
integrable and:

EUW|F,]1=1()+E U XSdBSm] = 1(s) (7.53)

so that 7 (¢) is a square-integrable martingale.

Despite its somewhat abstract appearance, the It integral can be evaluated exactly
for a broad class of processes. One extremely important exact computation of a It6
integral is the Wiener integral, widely used in physics and finance, as well as in the
theory of complex systems [5].

7.3.5 The Wiener Integral

A special case happens when the integrand is a deterministic function of time. Let f :
[0, T] — R be a square-integrable real valued function f € L?(0, T). The process:

(1, w) > f(1) (7.54)
independent of w, is in M 2(0, 7). In such case:
t
1(t) = / f(s)d By (7.55)
0

is called Wiener integral of f on [0, 7]. We know, from Egs. (7.27) and (7.32) that:

E[I(t)] =0, E[I(t)2]=/ F2(s)ds (7.56)
0
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If f is piecewise constant:

n—1
F© = il (7.57)

i=0

then: B
Ity= Y ¢ (B, —B,) (7.58)

i=0;t; <t tip) <t

and thus /() is normal, being a linear combination of normal random variables.
This holds also for (I(t;), ..., I(t,)), which turns out to be normal. This property
continues to hold in the limit in M?(0, T), since the convergence in the sense of L?
preserves the normal character of laws of random variables. We conclude that:

1(t) = / f(s)d By ~N(o, / fz(s)ds) (7.59)
0 0

It is possible to exactly compute the covariance function of a Wiener integral, as
discussed in Problem 7.6.

7.4 Stochastic Differential and It6’s Lemma

So far we have learned to define integrals of stochastic processes, both with respect
to time and with respect to the Brownian motion. Before proceeding, let us pause for
a second and briefly summarize the results we obtained. We have fixed the mathe-
matical environment assigning a stochastic basis:

(2,F{F }i=0. P) (7.60)

in the usual hypothesis, that is with a right-continuous filtration such that F, contains
all the elements of & whose probability is zero. Then we have started from a one-
dimensional continuous Brownian motion {B;}, with increments independent of the
past. Given a time interval [0, T,

1. forall F € A'(0, T) we have built a process fol Fds, fort € [0, T], continuous,
and thus progressively measurable. Moreover the trajectories of such process are
integrable and also square-integrable being continuous on the compact interval
[0, T, so that:

{/ Fsds} e AY0, T)N A%(0, T) = A*(0, T) (7.61)
0 0<t<T
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2. forall G € A%(0, T) we have built a process fot G,dBy,fort € [0, T], continuous,
and thus progressively measurable. Moreover the trajectories of such process are
integrable and also square-integrable being continuous on the compact interval
[0, T, so that:

{/ GsdBS} € AY0,T)N A%(0, T) = A*(0, T) (7.62)
0 0<t<T

Definition 7.7 Let{X,},-,beaprocesssuchthat, V¢ € [0, T], the following equality
holds:

t t
X, = Xo + / Fyds + / G,dB, (7.63)
0 0

X, being a Fp-measurable random variable, F € A'(0, T) and G € A%(0, T). Then,
we say that {X,},-, is an It process or, equivalently, that {X,},., has stochastic
differential:

dX; = Fdt + G,dB, (7.64)

We stress that the stochastic differential is not a new mathematical object, but it
provides a mere rewriting of a stochastic integral. However, the differential formal-
ism is much easier to deal with, due to an extremely important result which is the
cornerstone of stochastic calculus, the Ité formula or It6’s lemma. For a proof we
refer to [6].

Theorem 7.1 (It6’s lemma) Let XV, i = 1, ..., m be a collection of Itd processes
with differentials: ‘ ‘ _
dx" = FPdt + GV dB, (7.65)

with FO e AY0, TYand G € A%(0, T). Letalso f : R" x Rt — R be ameasur-
able function, continuous at every point (X, t), X = (X1, ..., X»), twice continuously
differentiable in X, and once in t. Then, writing X, e/ (Xfl),

Y; = f(X;, 1) is an It6 process with differential:

..., X", the process

m

= i 1 i) ~(j
dY, = fi(X,.0)dt + Y fo (X, 0)d X[ + 3 > fux, (X 0GPGPdr (7.66)

i=1 ij=1
where the subscripts t and x; denote derivatives with respect to t and x;.
that is:
dYy, =
_ (f,(x,, D+ Y0 o X DFED + 130 fo (X, t)GE”Gf”) dr +

+ (ZEL fo Xy, t)G,(i)) dB, (7.67)
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7.5 Extension to the Multidimensional Case

‘We conclude this section sketching the extension of the stochastic calculus formalism
to the multidimensional case. The generalization is straightforward: nothing actually
changes but a slight modification of the notations.

The starting point is, as usual, a stochastic basis in the usual hypothesis where
a continuous d-dimensional Brownian motion with increments independent of the
past is assigned.

The processes F; of the previous paragraphs take now values in R™ while the
processes G, take values in R”*¢. We say that F, belongs to AL, T), T > 0if F;,
belongs to A'(0, T) forall i = 1, ..., m. In the same way. we say that G, belongs
to Afn‘d(O, T) (respectively M,%,Yd(O, T)) if G;j, belongs to A%(0, T) (respectively
M2, T)) foralli = L....m,j=1,...d.

The time integral fot Fds is defined as the vector of components fot F; (ds, while
Jo Gsd By is defined as the vector of components Y_%_, [ Gyj.,dBj;. It isometry

becomes:
t
E / G,d By
0

and holds whenever G, € M 31 40, T). Weobserve that | |in the lefthand side denotes
the norm in R™, while in the right hand side it denotes the norm in R"*
If we can write:

2 t
}:/ E[|G,*]ds (7.68)
0

t t
X, = Xo + / Fyds + / G,dB, (7.69)
0 0

with Xy Fp-measurable we say that X is an Ito process, or, equivalently, that X has
stochastic differential:
dX, = F,dt+ G,dB, (7.70)

The Itd’s formula can be generalized as follows (see [6]):

Theorem 7.2 (Multidimensional Itd formula) Let X be a process taking values in
R™ with stochastic differential:

dXt = Ftdt + thB[ (7.71)

with F; € A,ln(O, T)and G € Ai,d(O, T). We let also f : R™ x RY — R be a mea-
surable function, continuous in every point (X, t), X = (x1, ..., Xy), continuously

, . , . , d ,
differentiable twice in X and once in t. Then the process Y; L f(X;,t) admits
stochastic differential:

m m d
1
dY, = f,(X,, t)drt + ; fo (Xt DXy + 5 ,»,Z=1 Fa, (Xia 1) ; GinsG jdt

(7.72)
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1t6’s lemma has a vast breadth of application and use in many branches of applied
mathematics and physics and underlies the formalism of stochastic differential equa-
tions, forming the subject of the next chapter. Stochastic differential equations are
powerful generalizations of ordinary differential equations, that include randomness
in the modeling of physical processes.

Problems 7.3-7.6 propose applications of Itd’s lemma, that can help the reader
familiarizing with this powerful tool of stochastic calculus.

Before tackling the theory of SDEs, we conclude the chapter presenting the his-
torically important Langevin equation.

7.6 The Langevin Equation

We consider again the motion of a pollen grain inside a glass of water, already
introduced in Chap. 6. We can use the formalism of the stochastic calculus to provide
a more general description of this kind of random motion. We would like to write
down a Newton equation of motion for the pollen grain which takes into account, at a
phenomenological level, the interaction between the grain and the water molecules.
The presence of the water gives rise both to a velocity-dependent drag force of the
form —¢v(z), arising from the viscosity of the water, described through a friction
coefficient ¢ > 0, and to a random force, say f(¢), representing the collisions with
water molecules surrounding the grain at a given instant ¢.

The simplest model of these collisions uses the famous white noise, usually
heuristically introduced requiring f(¢) to have Gaussian distribution, zero mean and
no memory of the past:

E[fi®)] =0, Cov(fi(t), fi(s)) x§;;6(t—s), i,j=1,...,3 (7.73)

Physically, this means that the correlations decay faster than any time scale important
in the physical description of the motion.

At a rigorous level, since the covariance is a Dirac delta distribution, some care
has to be taken in defining f(¢). We are going to show now that the properties (7.73)
could characterize the time derivative, if existing, of the Brownian motion. To this

aim, let us define:
B,.,— B
Wi = —’”’h d (7.74)

for a finite increment /. By inspection we see that w, , ~ N (0, %). Moreover, for
s <t

1
Cov (Wi W) = 5 (s +h —min(t,s +h)) (7.75)

Letting & — 0, the above expression tends to 0 whenever s # ¢ and to oo in the
special case s = ¢, justifying §(+ — 5). The problem is that the trajectories of the
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Brownian motion are not differentiable: this circumstance prevents to rigorously
define f(¢). The formalism of stochastic calculus permits to circumvent difficulties
related with the ill-definition of f(¢) by rigorously introducing a white noise term:

dtf(t) — dB, (7.76)

Using the notations x, and v,, which are two stochastic processes with state space
IR3, to indicate the position and the velocity of the pollen grain at the instant ¢, we
write the Newton equation in the form of a Langevin equation:

dX[ == tht
{ dv, = —¢v,di + odB, 7.77)
The above equation, from a formal point of view, is simply a stochastic differential
for a process X; = (x;, v;) with state space R®, having assigned a three-dimensional
Brownian motion:
dX, = —AX,dt + 8d B, (7.78)

where A is a constant 6 x 6-matrix and S a constant 6 x 3 matrix.
Turning to the integral form, we have:

t t
X: = Xo —/ AXds —l—f 8d By (7.79)
0 0

We observe that the above formula is not a solution, but an equation, since the
unknown process X also appears in the right hand side, and still has to be determined.
In order to build up an explicit solution, we use the Ansatz:

X, = e MU, (7.80)

and apply the It6 formula to the function f(x, 1) = e~/

derivatives with respect to x;x; vanish). We get:

x (observing that the second

dX, =d(eMU,) = —Ae MU, dt + e MdU, = —AX,dt + e V'dU, (1.81)
and thus, from a comparison with the equation of motion for X:
dU, = ¢"'8dB, (7.82)
introducing a deterministic initial condition:

Xy = Uy = (X, Vo) (7.83)
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we have the explicit solution of the Langevin equation:
t
X, =eMXo+ / e A17984d By (7.84)
0

describing the random motion of the pollen grain. In order to keep the notations
simple, we turn now to the one-dimensional case, where:

0-1 0
A=<0 €>, S=<0> (7.85)

It is simple to show, by a direct calculation, that:

_#n—1
A — (8 g ) (7.86)
whence the exponential e~ is:
it
e—ﬂl — ((1) (1 eéU )/C) (787)

The solution takes the form:

()= () () [ ) 2o
Vs 0 e~ ¢! Vo o \0 e~ ¢U=9) o
(7.88)
that is:
X = X0 + _(1_2—0)‘)0 + fot —(l_e?rﬂ))ast (7.89)
v, = e flyy + fof e tt=95dB, ’
Both position and velocity are a sum of a deterministic contribution, on a time scale
1/¢ related to the viscous drag, and of a random contribution, arising from the colli-
sions with water molecules. These random terms have the form of Wiener integrals
of functions of the variable s, square-integrable on the interval (0, ¢), for each value
of t. We know from (7.59) that one-dimensional Wiener integrals are normal random
variables with zero expectation and variance equal to the time integral of the square
of the deterministic integrand. Thus:

_ ot 2 t
E[x:]=x0+(1§—e)vo, Var(x,)z(;—z/ (1—et9)as  (7.90)
0

Explicitly:

Var(x,) = “;; + %(—3 + debt — o2t (7.91)
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and:

21 _ e—2§t

: (7.92)

t
Elvil=e vy, Var(y) = 02/ (e—i(t—s))st =0
0

Let us write explicitly the probability density for the velocity of the pollen grain at
the instant 7:

12 =t )2
P(V,t)=<2—§> exp( 2;“(v—ev0)> (7.93)

2ma(l — e~ 2r)  202(1 — e 1)
In the realm of liquid state theory, a very important object is the autocorrelation of
velocity:

Co(1) = E [viov] (7.94)

For an explicit calculation of this dynamic correlation function we need the following
important property of Wiener integrals:

{1,:/ f(s)st} , felL*0,T), 0<t<T (7.95)
0 t

namely:

min(z,t")
E[LL] = / F2(s)ds (7.96)
0

The proof is left as an exercise (Problem 7.6).
Putting all together, using (7.96) for the Wiener integral in v,, we have:

min(z,t’)
E[vvp] = vie 10T 4 o8t 52 f > ds (7.97)
0
that is: 5
E[vvy] = v2e S0+ 4 ¢=¢ <’+f’>;—§ (ezf min(t.) _ 1) (7.98)
or, equivalently:
o2 5 02\ o
E[v,vy] = ZE =l 4 (vo — Z) e ¢+ (7.99)

so that, for T > O:

o? _ 2 o\ _ Qi+1)
C,(t)=E [vH_,v,] = Ze LLeE <v0 — Z) e trtT (7.100)
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Since we have an analytic solution, we can investigate the limit r — +o00. From a
physical point of view, this means that we study the random processes whent > 1/¢,
the latter playing the role of a relaxation time. We have:

t—+00 2 1 - e—Z{t t—+00 2

Elvl=e""v'Z5°0, Var(v)=o —5— ;_; (7.101)

so that, as can be checked by considering the characteristic function, v, converges in

law to a random variable N (0, ‘2’—;), with density:

20 \'? 2012
Do (V) = (W) exp <_F) (7.102)

If the glass of water is kept at a temperature 7', the above mentioned convergence in
law corresponds to a thermalization of the pollen grain, suggesting to postulate the

relation:
26 m

— = — 7.103
0'2 kBT ( )

m being the mass of the grain. In this way, the equilibrium density has the typical
Maxwell-Boltzmann form (in one dimension):

W) = — e m” (7.104)
PtV =\ 3 kp T P\ T2k, T '

Moreover, for t 3> 1/¢, the autocorrelation of the velocity has the exponential form:

1/¢c kgT
Co(t) = E [viv] 2 L (7.105)

As far as the position is concerned, we have, in one dimension, the important result:

(=) im
A=

E[x,]=x0+ x4+ v (7.106)

which supports the interpretation of ¢ ! as relaxation time. The variance provides
information about the quadratic mean displacement:

t—>+400 0’2 kBT
Var(x;) =~ —t=2——-t1 (7.107)
¢? gm

growing linearly with time.
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7.6.1 Ohm’s Law

The Langevin equation can be easily generalized to study the motion of a particle
subject to a constant external force, that can be of gravitational or electrostatic origin,
leading to a suggestive derivation of Ohm’s law. The Langevin equation for the
velocity becomes:

{dvt = L4t —¢v,di+odB 7.108)
Vo =V a.s.
To solve this equation, we introduce an auxiliary process:
ot F ¢t
wy = f(v,t) =e v,+—(1—e ) (7.109)
mg
Applying the It6 formula, we find that:
t
dw, = o0é* dB, — w, :vo—i—/ ds o e** dB, (7.110)
0
Inverting Eq. (7.109) we obtain:
F t
v, =voe S+ — (1 —e ¥ + / ds o ¢~ d B, (7.111)
m¢ 0
whence:
v~ N voe—¢’+i(1 —e*) f(1 — ) (7.112)
' me "2 '
In particular:
F - F
Elvi] =voe 4+ — (1 —e ") 257 — (7.113)
m¢ m¢

The most noticeable aspect of Eq. (7.113) is that the asymptotic drift velocity is
proportional to the external force.

In particular, for a collection of N non-interacting particles obeying this Langevin
equation with an electrostatic force F' = ¢ E one finds:

E[v,]—>m—E J=— ZEV,]—— (7.114)

where n = N/ V is the electron density.
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7.7 Further Readings

Readers interested in deepening their knowledge about the mathematical foundations
of the stochastic integration can see, for example [1, 5—7]. Readers more interested
in applications can refer, just to quote a few examples, to [5, 7]. Applications within
statistical mechanics can be found, for example, in [8]. Finally, stochastic calculus
in the realm of statistical field theory are presented in [9, 10].

Problems

7.1 Time integral of the Brownian motion
Given a one-dimensional Brownian motion continuous with increments independent
from the past B;, define:

t
X, = / B,ds (7.115)
0

Find E[X,] and Var(X,). What can we say about the average %

7.2 Ito integral of the Brownian motion
Given a one-dimensional Brownian motion continuous with increments independent
from the past B,, compute:

t
/ B,d By (7.116)
0

starting from the definition of the It6 integral.

7.3 Integration by parts
Given a one-dimensional Brownian motion continuous with increments independent
from the past B;, consider two It6 processes X, ¥; with stochastic differentials:

X, = fiX)dt + g1(X)dB; Y, = fL(Y)dt + g2(Y:)d B,

Show that:
d(X,Y,) = X,dY, + Y, dX, + gl(X;)gz(Yt)dt

7.4 Stochastic differentials

Given a one-dimensional Brownian motion continuous with increments indepen-
dent from the past B;, compute the stochastic differentials of the processes Bt2 and
sin(t + By).

7.5 Stochastic differential equations
Show that the equation:

dX, = f@®)X,dt +gt)dB;, Xo = xo
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has the solution:

Xt=xOF(t)+F(l)/ F(—s5)g(s)dBy, F(t)=exp</ f(S)dS>
0 0

7.6 Correlation functions of Wiener processes
Show that:

min(z,1")
E[LI/] = / f2(s)ds (7.117)
0

holds for Wiener integrals:

{1,:/ f(s)st}, felL*0,T), 0<t<T (7.118)
0 t
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Chapter 8 ®)
Stochastic Differential Equations oo

Abstract In this chapter we introduce the formalism of stochastic differential equa-
tions (SDE). After an introduction stressing their importance as generalizations of
ordinary differential equations (ODE), we discuss existence and uniqueness of their
solutions and we prove the Markov property. This leads us to a deep connection
with the theory of partial differential equations (PDE), which will emerge naturally
when computing time derivatives of averages of the processes. In particular we will
introduce the generalized heat equation, as well as the more general Feynman-Kac
equation, underlying the path integral formalism and the Schrédinger equation in
imaginary time. Moreover, studying the time evolution of the transition probability
of the processes will lead us to the Kolmogorov equations. A special case is provided
by the Liouville equation, the cornerstone of classical statistical mechanics.

Keywords Stochastic differential equations - Chapman-Kolmogorov equation
Fokker-Planck equation « Geometric brownian motion + Brownian bridge
Feynman-Kac equation - Kakutani representation

8.1 General Introduction to Stochastic Differential
Equations

Let us briefly summarize where do we stand: in the previous chapter we have learnt
to define integrals of given processes with respect to time and with respect to the
brownian motion and we have introduced the notation of stochastic differential:

dX, = F,dt + G,dB, (8.1)

in which the coefficients F; and G, are given stochastic processes. On the other hand,
while studying the generalization of Newton equation in presence of random forces,
we have brought into stage a differential in which the coefficients were functions of
the unknown solution itself. This drives us into the formalism of stochastic differential
equations. In this chapter we define on a rigorous mathematical basis a class of
stochastic differential equations generalizing the Langevin equation and we present,
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without proof, the theorems about existence and unicity of solutions. The proofs
involve sophisticated mathematical instruments, the presentation of which is beyond
the aim of this book.

Let’s fix a time interval [0, T']: any instant of time that will appear from now on
lies in this interval. Let moreover b and o be measurable functions:

b:R"x[0,T] > R", o:R"x[0,T] > R"™ (8.2)

that we call drift and diffusion coefficient respectively. We use b and o to write
a formal stochastic differential equation for an unknown process X, taking values
in R™:

{ dX, =b(X,, t)dt + o (X, 1)dB, 83)

Xu=n5 I/lft

n being a m-dimensional random variable.

The Eq.(8.3) is a powerful generalization of the Cauchy problem in the realm
of ordinary differential equations (ODE), for which o = 0 and X, non random. As
the reader may remember from courses about basic calculus, the approach to the
Cauchy problem starts from the definition of its solution. Then, properties of the
function b ensuring existence and uniqueness of the solutions are identified and,
finally, specific techniques to solve the problem are investigated in a well defined
mathematical framework. We will follow the same path in the realm of SDE. We
also comment that, as in the Cauchy problem, the differential d X, is given in terms
of functions evaluated at the precise instant 7, i.e. no memory effects are included in
the time evolution equation. Introducing memory effects, although very important,
lies beyond the purpose of this book. Interested readers are deferred, for example, to
the book [1], where a thorough discussion of the Langevin equation with memory is
presented.

At this point we have written only a formal equality: we have not fixed a stochastic
basis yet. Let us therefore rigorously define what do we mean when talking about a
solution of (8.3).

Definition 8.1 We say that a process:
X = (29, (Fhewrr (Xidico.r1+ P) (8.4)

is a solution of the stochastic differential equation (8.3) if:

1. (,F,{F},,{B:},, P) is a continuous d-dimensional brownian motion with
increments independent of the past defined inside a stochastic basis satisfying
the usual hypotheses;

2. nis F,-measurable;

3. forallt € [u, T], we have:

t t
X; =n+/ b(XS,s)ds—{—/ o(Xy, s)dBy (8.5)
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We stress that it is implicitly assumed that the two integrals in the above equation
are well defined.

The existence and the main properties of solutions of (8.3) will be discussed under
the following working hypotheses, closely resembling the ones required in the realm
of ordinary differential equations:

Definition 8.2 (hypotheses (A)) We say that b and o satisfy the hypotheses (A)
if they are measurable in (x, t) and if there exist L > 0 and M > 0 such that, for
eachx,y € R4 and ¢t € [0, T1], the following sublinear growth and global Lipschitz
conditions holds:

Ibx, )| = M1 +[x]), o, )] =Md+[x]) (8.6)
|bx, 1) —b(y, )| = LIx=yl, |o(x,1)—o(y, )| = Lx-y| (8.7)

Remark 8.1 The above hypotheses (A) are quite natural: in the special case 0 = 0
we expect to recover the formalism of ordinary differential equations.

Under such hypotheses the following global existence and uniqueness theorem can
be proved [2-5]:

Theorem 8.1 Given a stochastic basis in the usual hypotheses (defined in Sect. 6.5
in Chap.6), where a continuous d-dimensional brownian motion with increments
independent of the past is defined, if n is a m-dimensional random variable F,-
measurable square-integrable, E[|n|?] < oo and if the hypotheses (A) hold, there
exists a process X € M 2(u, T) such that:

t t
X, =r}+/ b(Xs,s)ds—i—/ o (X, s)d B (8.8)

Moreover, if another process X' satisfies Eq. (8.8), then:
P(X,=X,, VieuT]) =1 (8.9)

Along with existence and uniqueness, in this context it is possible to study con-
tinuous dependence on initial data, by focussing on the situation when (8.3) has a
deterministic initial condition 1 = x almost surely. We denote X;** the solution of:

dX, =b(X,,t)dt+o(Xn,1, 1)d B, (8.10)
X;=x, x €R

We state without proof this result [4], concerning continuous dependence on initial
data:
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Theorem 8.2 Under hypotheses (A) there exists a collection of m-dimensional ran-
dom variables {ZX,S (t)} withx € R", 0 <s <t < T such that.

x,s,t’

1. the map (X, s,t) — Zx(t) is continuous for each w;
2. Zxs(t) = X almost surely for all (x, s, t).

The family of processes (¢, ) — X;** (w), thus, almost surely depends continuously
on the initial position x, on the initial instant s, and on the time variable 7.

8.2 Stochastic Differential Equations and Markov
Processes

The importance of the family of processes X;°, introduced at the end of the last
paragraph, is manifold. On one hand, they allow to build up the solution also in the
general case of random starting point. Indeed, it is possible to prove [4] that the
process

(t,w) > X, (@) = X)“"(w), t>s (8.11)

is a solution of:

{dX, =b(X,, t)dt +o(X,,1)dB, 8.12)

Xs=mn, st
if n is F,-measurable and square integrable.

Remark 8.2 The notation X (w), widely used in the literature about SDE, rep-
resents simply a composition of measurable functions:

w — n(w) = X' (w) (8.13)

As the processes X}* allow to easily build the solution for a generic random
variable 1, they will be the focus of our attention from now on.
In particular, a corollary of the result (8.11) is the following composition property:

X () = X" W), s<u<t (8.14)

whose meaning is clarified in Fig.8.1: X} *(w) starts from x at time s and visits the
random point X*(w) at intermediate time u.

Starting from (8.14), we will show that the processes X;* are Markov processes,
satisfying the celebrated Chapman-Kolmogorov equation:

p(At]x,5) = [pa p(A 1]y, u) p(dy, u|x,s) (8.15)
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where:
p(At]x,5) = P(X;"S € A) (8.16)

denotes the probability that the process X;**, which started in x at time s, lies inside
the set A at time 7.

8.2.1 The Chapman-Kolmogorov Equation

Let X;** be the solution of:

dX, = b(X;, )dt +o(X;, t)dB;
{ X, =x, x € R" ®.17)
If A is a Borel subset of R™ we can define the real valued function:
def X,S X,S
p(At|x,5)'= P(X}* € A) = E[1a(X}")] (8.18)

The dependence on x is measurable as a consequence of the continuity in (X, s, ),
and the dependence on A provides a probability measure, the law of the random
variable w — X* (w).

We are going to show now that p satisfies the Markov property for the process
Xr

P (X;“ € A|9-'L,) =p(A, t| X35, u) (8.19)

To this aim, we need the relation (8.14), which we remind here:

X5 (w),u

X (w)y=X" (w), s<u<t (8.20)

Let’s define the x-dependent random variable:
Y (X, 0) = 14(X7" (@) (8.21)
We observe that:
P (X! € AlF,) = E[14 (X)) 1F.] = (8.22)

= B[4 (x") 19, = E[y e, 1.

Now, the random variable:
o — X2 (o) (8.23)
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X" is F,-measurable X" is J,-independent

Fig. 8.1 Pictorial representation of the rationale behind Eq. (8.14). The process (¢, ») — X}** (w)
starts, at time s, from the point x. At a given intermediate time u, any position acts as the starting
point for the future evolution

is F,-measurable, while the random variable:
o =YX, o) = 1,(X"(w)) (8.24)
is independent of JF,, since, intuitively, whatever happens before u doesn’t matter

having fixed the process in x at the time #. We can thus use Theorem 3.4 in Chap. 3
about conditional expectations:

E[yX}*, )F.] = (X)), @) =E[v(y, )] (8.25)
We have:
@) =E[v@y. )] =E[1a(X")] = p(A.t]y.u) (8.20)
Putting all together, we have proved the Markov property:
P (X;"‘Y € A|5‘",,) =pA,t| X%, u) (8.27)

We need to show now that Chapman-Kolmogorov property holds, which is quite
simple:
p(A 1]1x,5) = E[1a(X?)] = E[E[1a(XF)|T]] = (8.28)
= E[p(A. 1| X} u)] = [ou p(A 1]y, u) p(dy.u|X.s)
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We have thus learned that {X ;”} is a Markov process with initial instant s, initial
law 8 and transition function p. We already know that such process is continuous;
moreover, since X ;” is continuous in (X, s, f), the map:

(x,1) — / dy f(y) p(dy.t +h|x,t) = E[X}},] (8.29)
R4

is continuous for any function f continuous and bounded. In the language of Markov
processes theory, this is called Feller property, which, together with the continuity
of the process, makes { X'} a strong Markov process.

8.3 Kolmogorov Equations

As we learnt in Sect. 6.9, every Markov process can be associated to an infinitesimal
generator. Building over the result that the solutions of SDE are indeed Markov
processes, we will now construct the infinitesimal generator for solutions of SDEs.
This will deepen our exploration of the connection between two different branches of
Mathematics: the theory of stochastic processes and the theory of partial differential
equations. As anticipated in Sect. 6.9, we will learn how to build a Markov process
starting from a partial differential equation. This will provide an extremely useful
tool for numeric solutions of PDEs.

The central result is the correspondence between a stochastic differential equa-
tion:
dXt zb(X[,t)dt+J(Xt,t)dB[ (8.30)

and a differential operator:

2

a
Bx,-axj

d
1
L= 3 Z a; j(X, 1)

i.j=1

+ Y bix, t)% (8.31)

where the matrix a(x, t) = o (x, 1) (o(x,1))7 is positive semidefinite. Under
some conditions, in fact, the solution of a differential equation of the form:

0
5,20 = L) (x,1), ¢(x,0) = f(x) (8.32)

can be expressed as:

¢(x,1) = E[f(X))] (8.33)

where:
dX;, =b(X;,t)dt +o(X;,t)dB;, Xy=Xx (8.34)
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Remark 8.3 The special case f(x) = §(x — Xg) leads to the so-called fundamen-
tal solution of the PDE. Under the natural hypothesis that transition function is
absolutely continuous:

p(dy,t|x,s) =dyq(y,t|x,s) (8.35)

we have:
E[8(X* —x0)] = q(xo. 11X, 5) (8.36)

meaning that the transition probability density ¢, for the backward transition:
(x,8) = (X0, 1) (8.37)

We use the term backward since X is the starting point for the PDE.

For example, consider the case of the m-dimensionsl brownian motion: a simple
calculation shows that, if X; = x + B,, then the function

H=E[fxX)=|d ! _ly—xp? 8.38
px, 1) = E[f( t)—/ Yf(Y)WCXP< > > (8.38)

is the solution of the heat equation:
9 1_,
5¢(X, n=\7Ve|&xn, ¢x0)=/fx) (8.39)

This result is usually expressed saying that the differential operator L, = %Vz is the
infinitesimal generator of the brownian motion.

Now, more generally, we consider a measurable real-valued function f limited
and smooth, more presicely C?(R™) with bounded derivatives, and define the map:

def

(T f) ® = E[f(X})] = / O pdy.ilx,s) (8.40)
R[
where, as in the previous paragraph, {X**} satisfies the equation:

(8.41)

dX, =b(X,,t)dt +o(X,,t)dB,
X;,=x, x € R"

We assume moreover that hypotheses (A) hold.
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We apply now It6 formula to the process f (X ;"S), obtaining:

s ma.Xx,s s 1 m az-Xx,s s
df (X;*) =ZM(dX,") +5 > Ma,-,j(x,“,z)dz (8.42)
i=1

ax; i 21_’],:1 9x;0x;
where:
a=oo" (8.43)
We define now:
L)) =+ i -2 <x>+ib(x 02 x) (8.44)
=3 ai, j (X, &, L) .
! 2 42 o, — dx;
so that:
X,s X, s - d 8f (X;K,Y) X,S
df (X¥°) = (L /)X )dr+;;a—xim,j (XX, t)dB;, (8.45)

By construction, the derivatives of f are limited and o has a sublinear growth;
moreover we know that X** belongs to M?(s, T'), which implies that the coefficient
of the differential of the brownian motion belongs to M?(s, T'). We can thus be sure
that the It6 integral has zero mean. We can thus write:

E[f (X™)] = Fx) + / duE [(L0 )(X3)] (8.46)

that is: .

(To f) ®) = f(®) +/ du (Tyu 0 Ly f) () (8.47)

We observe that, in (8.47), if Ty, commutes with £,, we are lead to a differential
equation for the function:

x,1,8) = (T f) (%) (8.48)

which is precisely the central result of this paragraph. The investigation of the con-
ditions making 7 ; commute with £,, is beyond the scope of this book.

Interestingly, it is found that differentiation with respect to the initial time s
allows to weaken the hypothesis. The following important result in fact can be shown
[3, 4]
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Theorem 8.3 (Backward Kolmogorov equation) If the hypotheses (A) hold
and VR > 0, there exists Az > O such that:

(a(x,1)z) -z > Aglz|? (8.49)

for all (x,1), |X| <R, 0<t <T and z € R™, then, defining u'(x, s) =
(Ts,, f ) (x) for f limited and continuous, u' (X, s) is the unique solution with
polynomial growth on [0, t) of the Backward Kolmogorov equation:

fn— g,
as “ (8.50)
limy, - u(x, ) = f(x)

8.3.1 The Fokker-Planck Equation

Another very interesting point is to write down the equation of motion for the tran-
sition probability of the stochastic process X;**. For example, in the particular case
of the brownian motion, the transition probability density:

(y,11%,s) ! ly —x* 8.51)
X, 8) = ———>exp|— .
Pty Qr —sym2 P\ "o —y)
satisfies the heat equation:

0 1_,

3 PV 11X s) = 2Viply, t]X,5) (8.52)

where the laplacian operator is meant with respect to the variable y.
In general, let’s assume that there exists a time dependent transition probability
density:

p(A,t|x,s)=/dyq(y,t|x,s), t>s (8.53)
A
We start from the basic expression:

E[f (X)) =f®+ / duE [(Ly /)(X3)] (8.54)

where, as before, the function f is assumed to be measurable and limited, and C 2(R%)
with limited derivatives. Explicitly we have:
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Jredy FMa(y.11%,5) = f(x) + (8.55)
Sy du o dy g(youlx,s) (302 a0 002, £ ) + X, by 00 /)

If the transition probability density is differentiable with respect to ¢ for ¢t > s and if
we can integrate by parts, we get:

/Rdyf(y) 5——28 a,](y,r>+Zab(y,r> q(y,11%,s)=0
d =

(8.56)
Since such equation holds for any f under regularity assumptions discussed in [3],
we are driven to the celebrated Fokker-Planck equation or forward Kolmogorov
equation, providing the equation of motion of the transition probability density:

gq(y,tlx,s) =
ad
= —Z a,,-<y, Dq(y,t1%,s)) - Za—y_ (bi(y, Dq(y, 1%, 5))

8yl
(8.57)

Remark 8.4 In the deterministic case a = 0, the Fokker-Planck equation reduces to
the celebrated Liouville equation

d 0
—q =— — (bi 8.58
54 = Z ay; ) (8.58)
which is a cornerstone of classical statistical mechanics, in the special case when b
is the vector field defined by the Hamiltonian of a physical system. In Problem 8.5
we will expand the formalism.

8.4 Important Examples

Before completing our exploration of the theory of SDEs, and in particular on their
connection to PDEs, let us now pause for a moment, and take the opportunity to
present some examples taken from applied science.
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8.4.1 Geometric Brownian Motion

Let’s consider the following equation in one dimension:
dX, =bX,dt +0X,dB,
{ Xo=x. >0 (8.59)

where b, o and x are non-negative constants.
We will show now that the solution is the famous geometric brownian motion:

2
X, =x .exp<<b— %)Z—FGB,) (8.60)

The parameter x is the initial value of the quantity X, which always remains positive.
In general such process is used to model the temporal evolution of prices in financial
markets. In the case o = 0, the evolution is risk-less, the constant b playing the
role of rate of increase. The constant o, usually called volatility, introduce risk in
the temporal evolution, the term o B, governing fluctuations in a price typical of a
financial market.

Let’s show that the above process actually satisfies the differential equation (8.73).
To do this, we write X, = f (¢, B;) where:

2
F(t,y) = x -exp ((b— %)t—i—oy) (8.61)
and apply Itd formula, obtaining:
dX, = §fdt + F£dB, + 1 5hdr = (8.62)

= (b~ %) Xudr + o X,dB, + Lo X,dr =
- bXtdt + JXtdBt

which is what we wanted to show.

8.4.2 Brownian Bridge

Let’s now consider the following equation:

dX, = —&dt +dB,
(8.63)
Xo=0, 0=<t<l
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We will show that the solution is:

" dB;
Xt=(1—t)/ 1
0 — S

Before doing this, let’s discuss some general properties of this process. The first
observation is that:

(8.64)

Xo=X,=0 (8.65)

Moreover, the process is the product of a function depending only on time and a
Wiener integral. This means that:

E[X,]1=0 (8.66)
and: [ |
Var(X,) = (1 —z)2/0 ds s =11 =) (8.67)
so that:
X, ~ N, t(1—1)) (8.68)

This process is called brownian bridge.
We are going now to verify that the brownian bridge X, actually satisfies the above
written stochastic differential equations. For this purpose, we write:

‘ dB,
X, = f(LY), f.x)=(-Dx, Yf=/1 S (8.69)
e

[t6 formula implies that:

X dB
dX, = =Ydt + (1 — )dY, = - ttdt+(1 -0 ’t

(8.70)

which is precisely what we wanted to show.
It is straightforward to generalize the brownian bridge to a process starting at a
and arriving in b. The stochastic differential equation is the following:

dX, = %%dt + dB,
{ona, 0<r<l1 @.71)
and the solution is:
" dB
X;={0—-ta+tb+(1—-1) ] (8.72)
0 — S
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8.4.3 Langevin Equation in a Force Field

In this section we will discuss the Langevin equation at the presence of a force field
[6, 7]. Apart from its intrinsic interest, this equation in indeed very important: on
one hand, it offers a model of approach to equilibrium in a very natural way. On the
other hand, it is the foundation of Smart Monte Carlo sampling, which is a powerful
generalization of the Metropolis technique that we have introduced in Chaps. 4 and 5.
Let us consider the following equation, again in one dimension for simplicity:

dX; = ¢(X;)dt +o0dB;

{ Xo=x, 0<t (8.73)

where ¢ : R — Ris a function satisfying the conditions given in the previous chapter
about existence and uniqueness of solutions of stochastic differential equations. On
the other hand, o > 0 is a constant.

Analytical solutions of this equations are, in general, unknown. Nevertheless,
we can learn something about the process by studying the related Fokker-Planck
equation, assuming that the transition probability density exists:

3 ,1 92 d
PYCASMRARS 0)=0"> 20y 35240 11x.0) === (@(g(y. 1]x,0))  (8.74)
y

Let’s first look for a time-independent solution of the form:

q(y,1]x,0) ocexp (=P(y)) (8.75)

A solution of this form actually exists provided that:

LI 8.76
o (y) = _78_ ) (8.76)
Let’s thus define: (D)
€X —
Qo) = ——P ) (8.77)

Jedy' exp (=@ ()

and look for time-dependent solutions of the Fokker-Planck equation, which we write
in the form:

q(y,11%,0) = Vg ¥ (v, 1) = YoM ¥y, 1) (8.78)

If we substitute the above Ansatz in the Fokker-Planck equation
we obtain:

92 N
—8Y(y, 1) = _10232 W0+ 1 (i;/f—fy%”) V(y, 1) (8.79)
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We define:
-0 =A=— (8.80)

and the above equation takes the form of an imaginary time Schrddinger equation
related to a Fokker-Planck hamiltonian with a local potential, of the form:

205, ¥o(y)

7 2
Trp = Ay ( Yol

2 1 2 1 2
= =305, + ( 7020 — 39700 ) (881

It is immediate to observe that:
g:(FM[/O =0 (8.82)

that is ¥ is an eigenfunction of F Fp relative to the eigenvalue 0. Moreover, v is
strictly positive, which means that it has to be the ground state of the Fokker-Planck
hamiltonian, with zero energy [8].

The Schrédinger-like equation:

~0 (1) = (Ferpd) 0.1 (8:83)

has general solution:

0.0 = (exp (=1Fer) £) 1) (8:84)

f being any initial condition.
Since the ground state has zero energy, the excited states energies have to be
positive, guaranteeing that, for any choice of the initial condition f, not orthogonal

to Yo:
J 0.0 = (exp (=36p ) 1) 00 =5 9o () (8:85)

a part from an unessential multiplicative constant.

Putting all together, we see that any solution of the Fokker-Planck equation related
to the Langevin equation in a force field converges, in the limit + — +o0 to the
equilibrium probability density:

exp (—®(y))
Jrdy' exp (=2 ()

qo(y) = (8.86)



192 8 Stochastic Differential Equations

This is a very interesting model in which the phenomenon of approach to equilibrium
appears: the stochastic motion described by the equation

dX, = ¢(X,)dt + odB, (8.87)

approaches a stationary asymptotic probability density independent of the initial
condition: a Boltzmann weight related to the potential energy ®(y) where:

2

o° 0
o) = _E@d)(y) (8.88)

This result is very useful also in the realm of numerical simulations, yielding the
foundations of the so-called smart Monte Carlo or Langevin Monte Carlo method.
Suppose we wish to sample the probability density:

exp (—®(y))
Jzdy' exp (=P ()

po(y) = (8.89)

If we were able to generate realizations of the solution of the stochastic differential
equation:
{ dX, = ¢(X,)dt +cdB, (8.90)

Xo=x, 0<t

then, after an equilibration transient, our simulation would yield the desired sampling.
Although the solution cannot be found exactly, we can introduce an integration time
step At and simulate the approximated solution:

Xipar = Xi + ¢(X) At + 0 (Biyar — By) (8.91)
Given X, = x*, the random variable X, », follows a law N (x* 4+ ¢ (x*)At, 02 At).

This is also an example of Euler-Maruyama method for the numerical solution of
SDE:s [9].

8.5 Feynman-Kac Equation

We are going now to explore further the connection between stochastic differential
equations and partial differential equations. We have learned in previous chapters to
relate the equation:

dX; =b(X;, t)dt + o (X;, t)dB; (8.92)

to the differential operator:
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Za,,(x Dy—— +Zb(x r)—

where a = o o . In this section we will deal with a more general class of PDEs of
the form:

—dux, 1)+ Lux, 1) —VXux,t) = f(x,1) x,1) eR"x(0,7T)
ux,0) =¢x) xeR”
(8.93)
A reader familiar with Quantum Mechanics immediately realize the importance of
such a generalization. The function V (x) will have the interpretation of a time inde-
pendent external potential in the particular case of the Schrodinger equation in imag-
inary time, V (x) playing the role of the potential energy:

— W (x,1) = —%A\I/(x,t)+V(x)lI/(x,t) (8.94)

Moreover, the term f (X, t) appears, for example, in the heat equation with the role
of a source term.

We will learn that also in this case the solution of the PDE can be represented as
an average of a suitable functional of the process X,. This connection will introduce
naturally the path integral of the function V (x) on the process X;.

Let’s fix some working hypotheses:

Definition 8.3 (hypotheses B) We will say that the operator L;:

Za,](x Dy—— +Zb(x t)

satisfies hypothesis B if the functions a;;(x, 1) and b; (x, 1):

1. have sub-linear growth, that is there 3 M such that:

|bi(x, )] < M + |x])
laij(x, )] < M(1+ |x|)

VxeR", teT).
2. satisfy Lipschitz condition, that is there 3 L such that:

[bi(x, 1) = bi(y,t)| < L|x —y|
lajj(x,1) —a;j(y,t)| < L|x — y|

Vx,yeR" te(0,T).
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In the realm of the theory of partial differential equations, the following existence
and uniqueness theorem can be proved [10]:

Theorem 8.4 LetV :R" - R, f: R" x (0,T) - Rand ¢ : R" — R continuous
Sfunctions and L, the above mentioned differential operator statisfying hypothesis B
and elliptic, that is there 3 A such that:

in aij(x, ) x; = Ax]> Y(x,1) € R" x (0, T)
ij

Then the parabolic partial differential equation:

{—a,u(x, 0+ L) = VEuE =& DR xO.T) oo

u(x,0) =¢x) xeR”

has a unique solution u(x, t) € C>(R" x (0, T))

Theorem 8.5 (Feynman-Kac representation formula) The solution u(x,t) of the
parabolic partial differential equation:

{—B,u(x, H+Lux,t)—VXuix,t)=f(x,t) x,t)eR"x(0,T) (8.96)

ux,0) =¢xx) xeR”?

can be written as expectation of stochastic processes in the Feynman-Kac formula:

T
ux,T)=El¢(X7)Zr]—E [/ fX, T—1) Z,dt:| (8.97)
0

where X, is the solution of the stochastic differential equation:

dX[ == b(X[, t) dt + G(X[, t) dB]
Xo = x (8.98)

where a(x,t) = o(x, 1) o (x, )T, and:
Z, = e~ Jo VXods (8.99)

is the path integral of the function V (x).

Proof Let’s define the stochastic process:
t— &, =ZulX,, T —1) (8.100)

where u(x, t) is the unique solution of (8.96).



8.5 Feynman-Kac Equation 195
The first observation is that:

Py =ulx,T), Pr=ZruXr,0)=2Zr¢Xr) (8.101)

We are going now to evaluate d ®, observing that ®, = F(Z,, X,, t) where:
F(z,x,t) =zu(x, T —1t) (8.102)

and using It6 formula. We observe that:

dZ, = -7,V (X,)dt (8.103)

as can be immediately verified from the very definition of Z,. We have thus:

dq)[ = _Ztatu(X[, T - t)dt + M(Xt, T - l)dZt—i-
+ Z, Y bi(X,. T — ) u(X,, T — Hdt+

+ Z, Z du(X,, T —1)01j(X,, T — t)dBji+ (8.104)
ij
1
+ 57 lejai,-(Xz, DX, T — 1)

that is:

dd, = Z, (=8, + L) u(X,, T — )dt + u(X,, T — 1)d Z,+
+ Z 3, u(X;, T —1)0;j(X;, T — 1)dBj, (8.105)
ij

We stress that the terms with d_, F and 9, F' vanishes because the function F is linear
in z and the It6 differential d Z; does not contain d B;.

Since, by construction, u is a solution of the partial differential equation (8.96),
we get:

do, =Z, (VXou(X,, T —1) + f(X,, T —1))dt + u(X,, T — )dZ,+
> 0,u(X,. T —0)oyj(X,. T — )dBj, = (8.106)
ij

=Zf(X,, T =0dt + Y du(X,, T — 1)oi;(X,, T — t)dBj,
ij

where we have used the explicit expression for d Z;.
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We have thus:

T T
O — Dy = / Zf(X,, T —t)dt +/ > o,u(X,, T = t)oi;(X,, T — t)dBj,
0 0 ij

(8.107)
so that, taking the expectation of both members:
T
ElZr¢(Xp)]— Elu(x,T)] =E [/ Z f(X:, T — t)dt] (8.108)
0
which gives the Feynmann-Kack representation:
T
ulx,T) = E[ZT¢(XT)]—E[/ Z,f(Xt,T—t)dt] (8.109)
0

Let’s specialize the Feynmann-Kac representation in the case of imaginary
time Schrodinger equation:

—o¥(x,t) = —% AV (x, 1) + V(X)W (x,1t)
U(x,0) = p(x)

(8.110)

‘We have: .,
4, T)= E [e—fo VOBt g BT)] 8.111)

where we have observed that, in such simple case X; = x + B;.

8.6 Kakutani Representation

We conclude our adventure with a very important application, which makes evident
that the stochastic formalism is extremely powerful and can reach beyond the domain
of partial differential equations describing some form of diffusion (Fig. 8.2).

Let’s focus on the Poisson problem with Dirichlet boundary conditions:

1Au(x) = f(x) xeQ

(8.112)
ux) =¢x) x €d
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e Feynman-Kac | o E[¢(Xr)Zr — ST]
e heat-like equation {--{® E[f(X")]

e Fokker-Planck e 2 =7,,(p)

e Liouville '

stochastic
calculus

ordinary
calculus

Fig. 8.2 Pictorial representation of the connection among Ordinary Differential Equations (ODE),
Partial Differential Equations (PDE) and Stochastic Differential Equations (SDE)

where 2 C R” is a bounded open set. In one-dimension, the equation is:

lu'(x) = f(x) x€(ab)
ua) = ¢q (8.113)
u(b) = ¢y

and the solution has the simple form:

X—a X —a
ux) =, + h—a (Pp — Pa) + G(x) — —— G(b) (8.114)
—a b—a

where G(x) =2 [ dx’ fax/ dx” f(x"). On the other hand, when n > 1, the problem
is much more difficult, and an analytical solution can be found only in a few special
cases.

We already know that the differential operator L = %A is related to the stochastic
differential equation:

{dx’ =dB; (8.115)

XQ:X

with solution X, = B; + x. For t > 0 the process X, takes values outside the set Q2
with probability P (X, ¢ 2) # 0, so that the process Y, = u(X,) is well defined only
if f(x) and u(x) can be extended to functions of class C2(R"). From now on we will
assume that this is the case. It6 formula provides the following equality:

(8.116)

dY, = Vu(X,)dB, + 1 Au(X,, t)dt
Yo =u(x)
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that is u(X,) = u(x) + f; f(X;)ds + [, Vu(X,)dB;. Taking the expectations of
both members, provided that Vu(Xj) is in M 2(0, 1), we get:

E[u(X)] = u(x)+ E [/ f(XS)ds} (8.117)
0

We know the value of E[u(X,)] only if X; lies on the boundary 92, thanks to Dirichlet
boundary conditions. We thus introduce the following:

Definition 8.4 (first-pass instant) If {X,},>¢ is a stochastic process taking values
inside a measurable space (E, £), and A € € is a measurable subset, the random
variable:

Ta(w) = inf{t : X, (w) € A} (8.118)

is called first-pass instant of the process X, in the set A.

and specialize (8.117) obtaining:

u(x) = Elp(Xp)] — E [ / f(xads] (8.119)
0

The interpretation of this result is simple: we can express the solution of the Poisson-
Dirichlet problem as expectation of a suitable function of the process X;.

The procedure we have followed is somehow euristic, since, in general, we cannot
guarantee that f(x) and u(x) can be extended to functions of class C 2(R™) and,
moreover, we have introduced a substitution  — 73 in a non-rigorous way. Finally,
we are not sure that E[tyq] < 00.

A fully rigorous treatment, which goes beyond the aim of this book, relies on the
the following two basic theorems, which we state without proof [10, 11]:

Theorem 8.6 (existence and uniqueness) Let 2 C R” be a bounded open set, c :
Q — [0, 00) and ¢ : 92 — R functions satisfying lipschitz property and L a “time
independent” differential operator of the form:

1 02 ]
L = - ii bi _
Z;QJ(X)axiaxj +Xl: (X)axi
satisfying hypothesis (B) and elliptic. The equation:

Lux) —cx)ux) = f(x) x e

(8.120)
ulx) = ¢(x) x €0

has a unique solution u(x) € C%(S).
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Theorem 8.7 (Kakutani formula) Under the hypothesis of the previous theorem, the
solution of the elliptic partial differential equation:

Lux) —cx)ux) = f(x) x e 8.121)
ulx) =¢(x) x € 0Q
can be represented in the Kakutani form:
Ty
u(x) = E[Z,,¢p(Xr,,)] — E [/ f(Xy) Zy dS} (8.122)
0
where X, is the solution of the stochastic differential equation:
{dX, = b(X,)dt + o (X,)dB, 5.123)
XO =X

witha(x) = o (x) o7 (x), Tyq is the first-pass instant of the process X, in the boundary
K2 of the set Q2 and:
Z, = e JocXndr (8.124)

is the path integral of the function c.

8.7 Further Readings

The literature about stochastic differential equations and their applications is very
vast. We defer the readers to the books cited in the main text of this chapter and
references therein.

Problems

8.1 Population growth is a stochastic environment
Consider the following the equation for the size X, of a population growing in a
crowded and stochastic environment:

dX, =r X,(K — X,)dt + BX,dB,

(8.125)
Xo=x>0
where r € Rrepresents the quality of the environment, K > 0 represents the carrying
capacity of the environment and 8 € R is a measure of the noise.
Show that the solution is:
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exp ((rK - %) ‘ + ﬂBt)

x7 147 [y exp ((rK - %7) s + ﬂBs) dt

X, = (8.126)

8.2 RLC circuit with noise
Consider the following formal equation for a RLC circuit, without a generator, but

subject to noise.
d? d 1
L_dt2 Q(t)—i-REQ(t)—i-EQ(t) =af(t) (8.127)

where f(¢) is a white noise term. Let’s introduce a two-dimensional process X; =
(X1, Xp,) where X; , = Q(¢) and X, , = j—tQ(t). The problem becomes:

dXL, = Xz,;dl
R 1 o (8.128)
dXQ’t = _ZXZ’tdt — EXl,,dt + ZdB[
or, in matrix notation:
0o 1 0
dX, = AX,dt +0dB;, A= | ], o=14« (8.129)
“ICc T L L
Find the solution of this equation.
8.3 A function of the brownian motion
Find a function f : R — R? such that ¥, = f(B,) satisfies the equation:
1
dY]qr = ——Y1,;dl‘ — YzytdBf
2 (8.130)

1
dYZ,t == _EYZ’tdt + Yl,tdBt

8.4 A calculation of the infinitesimal generator
Find the infinitesimal generator for the brownian bridge, starting from the equation:

b-Y,
dY,:1 tdt+dB,, Yo=a (8.131)

8.5 Liouville equation
Starting from classic 6 N-dimensional Hamilton equation:

d oH
Ex(r) = a_(x(t)’ p())
p (8.132)

d N,
Ep(t) = —g(x(t), p())

write the Liouville equation for the probability density p (x, p, t).
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8.6 Cox-Ingersoll-Ross (CIR) model

In mathematical finance, the Cox-Ingersoll-Ross model describes the evolution of
interest rates: the instantaneous interest rate X, is assumed to satisfy the following
stochastic differential equation:

dX, =a(b — X,)dt +o/X,dB,, Xo=xo (8.133)

Show that, if we choose a = 28,b = #, and o = 1, itis possible to write X; = Y,Z,
where Y; satisfies the Langevin equation:

1
dY, = —pYdt + 5dB, (8.134)

Write down the explicit solution in such case.

8.7 Wright-Fisher (WF) model
Consider the equation:

dX, = (a+bX)dt +/X.(1— X)dB, Xo=xo

with a, b, xy € [0, 1]. Show that, in the special case a = % and b = —%, the solution
is: 3

X, = sin? (7’ + arcsin ¢x—0> (8.135)
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Problems of Chap. 1

1.1 If X is uniform in (0, 1), we have:

1
1

E[X]:/ dxx = —
0 2

! 1\* 1
Var(X) = / dx (x — —) = —
0 2 12

If X ~ N(0, 1), we have:
+00 1 x2
E[X] =/ dx x ex (——) =0
—00 A/ 27 P 2

+<X>d 5 1 X2
Var(X) = [ XX ex (——) =1
—oo N2 P

and:

and:

If X ~ B(n, p), we have:

Zx )v P prd—pyt =

I’l—l)' xX— n—1)—(x—
PZ— "1 = p) b =

(n—x)!(x—=D!

=np (p +A=p)"=np

© Springer International Publishing AG, part of Springer Nature 2018
E. Vitali et al., Theory and Simulation of Random Phenomena, UNITEXT
for Physics, https://doi.org/10.1007/978-3-319-90515-0

ey

(@)

3)

“4)

®)
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In order to evaluate the variance, let’s start with:

EW]—X}: )Wp(—pV*=

_ =DV eeh—GeD) _
npgx(n—x)!(x—l)!p (=) =
— - =DV Ja-h—6-D) _ ©)
—an:(x Do oo AP +np =
=npn—1)p Z m P21 = )DLy
=np(n — 1)p+np =n’p*>+np(l—p)

We can now evaluate:
Var(X) = E[X*] — (E[X])* = np(1 — p) @)

There is also another approach in the case of the binomial distribution: let’s con-
sider the case n = 1 (the Bernoulli distribution). If Y ~ B(1, p) we have:

E[Y]=1xp+0x(l—p)=p, 3)

and:
Var(\) = (1=p* x p+©0=p)’ x A =p) = =p)p—p*+p)=pd—p) (9
Now, if X ~ B(n, p), we can write X =Y + Y, +--- 4+ Y,, where Y; ~ B(1, p)

and the Y are independent. We thus find:

E[X]=) E[Y]=np (10)

Var(X) = Var[¥;] = np(l — p) (11)

i=1

If X is Poisson with parameter A we have:

+o0 AF
E[X] = Zx exp(—)\); =
(12)

= exp(— A)AZ Y =
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In order to evaluate the variance, let’s start with:

+00 IE:
29 _ 2 _ _
E[X"] = E x= exp( A)—x! =

x=0

= exp(— A)AZ 1 =

= ) (13)

= rexp(—A) (;(X - . + Z
+00 )\'X*Z I )\,x71
= hexp(—2) (*2 G2 " ; (x — 1“) )

=2+ D) =142

We can now evaluate:
Var(X) = E[X*] — (E[X])* = A (14)
1.2 First observe that E[7T] = limy_ o fo:l n P(T = n). Then, since:

N
> nP(T=n)=
n=1

=PT=D)+PT=2+PT=2+PT=3)+PT=3)+PT =3+ =

15
=PT=D+--+PT=N)+@PT=2)+--+PT=N)+ (1>

+o A (PM=N-D+PT=N)+P(T=N)=) P(N>T>n)
n=l1

one has:

N—o00

E[T] = lim ZP(N >T>n)= ZP(T > n) (16)

The second point is a simple application of multi-dimensional integration tech-

niques.
+o00 +o00 x
E[X] :/ dxx p(x) =/ dxp(x) / dy =
0 0 0

+00 X
=/ dx/ dy p(x) =
0 0
+00 +oo
—[ v [ arpeo=
0 y

+00 —+o00
=/ dyP(Xzy)=/ dy (1 —F(y))
0 0

a7)
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1.3 The angle 6 between A and B is a random variable uniformly distributed on the
interval [—m, m]. The length L(6) of the chord connecting A and B is:

L©®) =+2/1—cos(0) (13)

The cumulative distribution function is, for [ € (0, 2):

6o  arccos(1—1%/2)

F()=P(L©O) <)=P(—0y <0 <bth) = - - (19)
The probability density is 1 — F(+/3) = 1.
dF() 1 1
py =20 20)

dl o /1-12/4
Sothat E[L] = [y dil p(I) = % and var(L) = E[L*] — E[L}? =2 — 1¢.

1.4 1. Suppose that, fixed a point A on the circumference a point x is chosen in
the radius ending on A with uniform probability; the length of the chord passing
through x and perpendicular to the radius ending on A is:

L(x) = 2v/1 — x2 @21)

the chord is longer than /3 if x < 1, then P = 1.

2. Suppose that a point x with polar coordinates (r, 6) is chosen randomly anywhere
within the circle having the circumference as its boundary; the length of the chord
having such point as midpoint is L(r, 8) = 2+/1 — r2, and it is longer than /3
if the point falls within a circle of radius %; since the area of such small circle is
7 then P = %.

1.5 Let’s face the calculation of:

d
1
Iy = /]Rd dxexp | = > xi0ix; (22)

i.j=1

since the first part of the exercise is a simple corollary of this result.
Since the matrix O is real, symmetric and positive definite, it can be diagonalized
through an orthogonal matrix R:

A0 .00

RTOR — 0 X ... 0 23)

0 0 ...
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We then perform a change of variables inside the integral x = Ry and keep in mind

that the orthogonal matrix has unit jacobian. We obtain:

d d
1 Foo 1

Iy = / dy exp | — Z)’i ryi | = H/ dy; exp (__)Liyl?) (24)
R 2= PR 2

that is:

, _li[ 2t Qn)??
VAT Vae©

We have thus found that:
1< Q)i
/]R" dx exp —Ei;xioux, = W
Now let’s turn to:
| & d
1 = /]Rd dx exp _EiJZZIXinjxj‘ + ;3,-)@

Using the same change of variables as before we find:

| d
I =/ dy exp <—§ Z)»iyiz‘i‘Z(fRTH)iyi)
R i i=1

that is:
I—IdI/md' L @),
- 8 Yi eXp 5 lyi ( )in

i=1Y "%
If we write:

1
—AiyP — (fRT 3),- yi =

2 2 )\i 2 )\'i

and shift the integration variable we get:

d c:RT 2 +00
I'= Hexp (%(A—H)l>/ dy; exp <_%)\i)’i2> =

i=1

—_—

1(®79);\ [2r o) (®7 3)
=[]ew (5 py N Jdeo P 2.3 py

i=1

x( (Wa)?)z (7 9)]
Y ) A Y )

2

i

(25)

(26)

27)

(28)

(29)

(30)

€2V
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Let’s conclude now observing that:

d RT 2 d gle J d d
Z ( Z M = Z J; 9 Z(Rﬂ%ylfk (32)
i=1 =1 jik=1 i=1 !
and that: .
> Rii %ﬂ%fk =05 (33)

i=1

We have thus the following expression:

(zﬂ)d/Z
_— 4
d&et(0) ,Zk 131 Oj¢ i (34)

It is thus immediate to obtain:

321 g = O] (27)d/? @5)
0303, °=" ~ T /det(0)

On the other hand we observe that:

921
3397 l9=0 :/ dxxjxj exp | —= Z x;0;jx; (36)
Leed 1] 1
Putting all together, we have the result:
/det(0) _
@)z /,Ru dxxixj exp | =5 Z %0y | = 05 (7

1]]

In the language of quantum field theory this result states that, in a free (gaussian)
theory, the two point function E[X; X ;] = (x; x;) is equal to the inverse of the prop-
agator (the matrix O).

1.6 The characteristic function of a random variable X ~ N (0, ¢?) is:

E[x2)2

dx(t) = E[e"*]=e""7 (38)

Choosing ¢ = 1 and expanding both members of the previous equality in series:

(=D e (=D
;—(M EIX¥] =) = EIXT (39)

s=0
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Applying the previous identity to X = ¢1Z; + - - - + ¢2,, Z2,, One obtains two analytic
functions in the ¢y ... ¢y, coefficients. The left member reads:

o0 (—1y 00 ( 2 >
— ki kar 7 T2y

E E ' ... E[Z) ... Zy] 40)

—0 (2}’)' Ky do =0 kl N kzr

with the constraint k; + - - - + ky, = 2r. The only term proportional to c; ... ¢y, in

the above series corresponds tor = n, ky = -+ = kp, = 1
D e en ELZ1 ... Zan] (1)
2n)!

The right member of (39) reads:

0 (=1 2n s e (-1)* 2n
> ol > e ElZiZ1]| =Y > > e EIZiZj) .. ci,c; E1Zi, Z},]
5=0 T \ij=t 5=0 L js=1

(42)
The only terms proportional to ¢y ... ¢y, correspond to s = n, iy j; ... iy j; permuta-
tionof 1...2n:

="

ETHE Z ElZeyZo2)]. .. ElZs0on-1)Zsm]Cl ... Cop (43)

oceSH,

Putting all together we find the identity:

1
ElZy... Zul= 7 > ElZoow)] - ElZogn-1y0m] (44)

UESzn

The rearrangement necessary to write down Wick formula simply follows from
the observation that several terms in the above summation are redundant.

1.7 Forall y € [0, oo) the probability P(Y < y) is given by:
P(Y<y = / dxy...dx, p(x1)...p(xy) (45)
1xIx</5)

Moving to spherical coordinates:

J3
P(Y <y) = 9/ dx x"~ (46)
0 2
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where £2, = 1%7(73) Differentiation with respect to y yields the desired probability
density: i
1 n y
PO = yiTle 47)
221 (%)

Moments of Y can be computed using the formula:

* 1 OO 2im—1_—2% m rm+3
E[Ym]:/ dyymp(y):ﬁ / dyy2+ le=2 =2 #
0 251 (3) Jo r(3)
(43)
In particular, E[Y] = n and var(Y) = 2n.

1.8 Forall t > O the event T < t coincides with Y > t% X2, which has probability:

0 0 00 o
P(Tst)=/ dx/O dypx(x)py(y)+/0 dx /2 dy px(x) pyr(y) =
1 o0 o0
=5+ [ ax [ avpxtom
0 s

(49)
Derivation with respect to ¢ yields:

= (50)

o= 1 (Hf)_z (51)
PT B U

Since T is an even random variable, its odd moments vanish. Moreover:

2k ntl

“ iy () (52)

E(T?) =
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2+l Were that the case, the change of

this integral converges if and only if k < *3-.
coordinate r = —— yields:
n(l+

B
nk 1 n 1 l’lk 1 n

E(T*) = —— fdr(l—r)z—k—lrk—z=T8<k+—,——k>
B(5.%) Jo B (3 5) 22

(53)

In particular, var(T) = E[T?*] = -5 provided that n > 2.

Problems of Chap.?2

2.1
lJl
Py(T <t) = Py(X, St,---,XnSl)=9—nX[o,9](l) (54)

therefore the statistics .7 has distribution:
ntnfl
po(t) = on x10.01(1) (55)

Asa consequence:
n—1 n
0 (56)

nt

0
E = =
ol /0 b Tt

7 and the estimator is only asymptotically unbiased. Moreover, since:

0 tn—l n
BT = [ 22 = 02 57
7= [ et = (57)

0

we have: "
_ 2
varl7) = C T m 2 %)

so that .7 is consistent. Notice that .7 remains consistent even when multiplied by

241 which turns it into an unbiased estimator.

the factor =

2.2
(59)

MSE(Z)=E[(7 —t©)’]| = E[T*]+1(0)* —2t(O)E[T]
Writing E [(ﬂ - 1(9))2] = Var [T ] + E[.7?] we find
MSE(ﬂ)=Var[§]—i—(t(9)—E[§])2 (60)

The bias t(0) — E [.7] increases M SE(.7) beyond the minimum value Var [.7].
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2.3 Let’s apply the Cochran theorem to the statistics M and §2. We let:

1

NG

N

and define E, as the one-dimensional subspace of R” spanned by ¢;. Moreover, we let

Ez be the orthogonal complement of E 1. Starting from the sample X = (X1, ..., X,),
we define the n-dimensional random variable:
X — 6 e
Y = ﬂ 61)
7o

which, by construction, follows the law ¥ ~ N (0, I). Using the notations of Cochran
theorem, we have:

M — 6, X — Me
Y = 0 L Y= &
«/91/” \/91
We know that IT; Y and I1, Y are independent. Moreover:
1 < n—182
mYP=—) X;—M)?=—"— 62
M Y = > X =) i (62)

i=1

has alaw x2(n — 1) and is independent on /7, Y. It follows (see problem 1.7) that
the random variable:

(%) _ M -6

= = (63)
VI YR /(n—=1)  /8/n

has a Student law R ~ 7(n — 1) with n — 1 degrees of freedom.

2.4 Keeping in mind the idea of dealing with samples with arbitrary size, We con-
sider the sequence of r-dimensional random variables:

where:
n(Xy...X,) p1(6o)

N = . p(By) =

(X ... X,) pr(0)
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The definition:
1o e (X))
N ==
s\ 1 (X))

guarantees that .4 is the empirical mean of n random variables independent and
identically distributed with mean:

1E, (Xi)

Eg = p(0o)

1g, (X))
and covariance matrix:

Xje = Eg, (1£,(X)15,(X))) — Eg, (1£,(X:)) Eg, (1£,(Xi)) =
=8;x pj(00) — p;(Bo) pr(0o)

The multidimensional central limit theorem guarantees thus that:

lim Z, = Z ~ N(0, %)
n—0oQ

where the convergence is meant in law. We observe now that the Pearson random
variable may be expressed as an inner product in R":

P = (AZ,|AZ,)

where A € M, ,(R) is the diagonal matrix:

1 1
A= di . (64)
e <\/p1(00) Jprwo))

Using the identities:
Eg,(AZ,) = AE¢(Z,) =0 Cov(AZ,) = ACov(Z,) AT

we conclude that:
lim AZ,=N@©,AXAT)
n—oo

Performing the product of matrices we get:

(AZA) ji = 8jx — /P (00)v/ Pi(80)



214 Solutions
By inspection we see that AX AT is a projection matrix of rank:

rg(AXAT) =tr(AZA") =Y (AZA )y =r -1
k

There exists thus an orthogonal matrix U € M, , (R) such that:
AXAT = U diag(1...100UT =U AUT

The sequence U AZ,, converges thus in distribution to a random variable N (0, A),
whose components are independent: the first » — 1 follow a standard normal, the last
one is the constant 0.

The sequence (UAZ,|UAZ,) converges thus in law to a x>(r — 1) and:

lim 2 = lim (AZ,|AZ,) = lim (UAZ,JUAZ,) ~ x2(r — 1)  (65)
n—oo

n—00 n—oo
This completes the proof.

2.5
M = 852.4 (66)

7 =6242.7 (67)
A level 0.95 confidence interval for the mean is:
[/, #] = [836.7, 868.0] (68)

¢ =299852.4 + 15.67 km/s.
Stephen M Stigler, Ann. Stat. 5, 1055 (1977)

2.6 The observed numbers of samples in the bins B; = [(i — 1)Ax,iAx), i =
1...5, Ax = %, are O; =3, 4, 2, 4, 7 respectively. The expected numbers are
Ei=4.S0x>=Y7  ©=Er _35 Forr =S5, the | —a = 0.9 critical value is
Xi—a(r — 1) =7.78. Since x2 < xi1_o(r — 1) the hypothesis that X; ~ U(0, 1) is
accepted with confidence level 0.9.

The maximum deviation D = /n SUP[o, |I:“n (x) — F(x)| between the empirical

1 n
Fa(0) = =) Koo (%) (69)
i=1

and exact F(x) = x cumulative distribution function is D = 0.9140. In the limit
of large sample (that we assume for simplicity), the 1 — o = 0.9 critical value is
D,_, = 1.222. Since D < D;_,, the hypothesis that X; ~ U (0, 1) is accepted with
confidence level 0.9.
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2.7 Consider the statistics:
.//X +.ﬂy and ./ﬂx./ﬂy (70)

since My —> uy and My —=> 1y, due to the continuous mapping theorem
n—00 n—00
they represent asymptotically unbiased and consistent estimators for py + py and

MxMy.
For the purpose of constructing confidence intervals for px + ty, we observe
that:

Vi (M + My = px = py) —=> NO, 0% +0}) (71)
and that since .5 + .7 SN oy + o}, by virtue of Slutsky’s Theorem:
n—oo
(Mx + My — ux — ny) L

VTR + S e

@2 2 [ 2 2
Therefore | .#x + . #y — —‘{ijyydn,%, My + My + #dﬁ;] is an

approximate confidence interval for uy + puy of level 1 — «.
Analogous calculations show that:

N

N, 1) (72)

2 2
(M My = pxpty) ——> N (o, (uxpr)? (Z—;‘ - Z—g)) (73)
X Y

and that | Ax. #y —

an approximate confidence interval for pyuy of level 1 — «.
Problems of Chap. 3

3.1 We proceed as follows:

P(Sy=k =P (U ({Sy =k} N{N :n})) =Y P(S, =k N=n) (74)

neN neN

where we used the fact that if N = n then Sy = §,,. Now, using independence, we
have:
P(Sy=k) =Y P(S, =k P(N =n) (75)
neN
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We have:

Ysy@ = EN] =) PSSy =k =) PSS = PIN=n) =) PN =nys )
k n

o (76)
We have also:
vs, (2) = (¥x, ()" (77)
so that:
Vs (@) =Y PN =n) (¥x,2)" =¥ (¥x,() (78)

Finally, differentiating, we have:

ElS\] =y =1 =y (Yx=D) v =1 =ENIEX;]] (79
since any generating function is equal to 1 if z = 1.
3.2 We compute:

PX=j+k,X=>))
P(X =)

PXzj+klX=j)=

_P(X>j+h (80)
- P(X =)
Now, the identity:
+00 A
P(X=j)=Y pl—p)=(-p)y 1)
x=j
implies that:
PX>j+k 1 — p)itk
P(X>j+k|X>j)= (P(X—ij) ) - ((l_p;)j =(1—pl=PX=>k
- (82)

In the case of the exponential distribution, the same result can be obtained following
the same procedure, using the fact that:

400
P(X>1) = f dx e =M (83)
t

3.3 We denote M the event that the individual has the disease and A the event that
the test turns out positive. We have, P(A|M) = P(A|M¢) = 0.99, P(M) = 0.002
We apply Bayes theorem to find:
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PAIM)P(M) P(AIM)P (M)

P(M|A) =

3.4 The result is immediately proved observing that, if we let:

W= o Ja Pdo)X (@), weA
P(}AC) [4e PA0)X (w), € A€
then:
1

E[14W] = P(A) x 50

f P(dw)X(w) = E[14X]
A

and the same holds for A€, ¢, 2. This implies that:
W = E[X|¥4]
being manifestly ¢-measurable.

3.5 Let us start computing the marginal probability density:

0, Iyl>1 2

pr(y) =1, 1= =—v1=ycin)
—f dx, |y| <1 T
v iy =

We have thus:

Pxnx,y) 1 1

pxly) = == Lixpyeany(x, y)
pr(») 2 /T—y2 el
We know that:
+00
E[X|Y] = g(Y), g(y)=/ dxxp(x|y) =0

3.6 We can model the situation as follows:

— % (x—m)?

e

p(x|m) = Ner

while:
p(m) = re ™" 10 100) (m)

We observe that:
+0o0
/ dxxp(x|m) =m

(o]

P(A) ~ P(AIM)P(M) + P(AIM)(1 = P(M))
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(84)

(85)

(86)

(87)

(88)

(89)

(90)

oD

92)

93)
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which means that E[X|M] = M, whence we find:

1
E[X]=E[E[XIM]]=E[M]=X (%94)
We finally have:
A —Lx—m)2—am
p(x,m) = p(x|m)p(m) = ne g 1(0,4-00) (1) 95)
3.7 We have: ;
Py = —e (96)
We have thus:

B +ood)\ At L ﬂa )\'a—l N
pn(n) = ; il T@ exp(—pr)

— 1 o oo n+a—1
= F(a)n!ﬂ /0 di i exp(—(B + D)

1 a 1 e n+a—1 _ F(l’l+0l) o 1
Fan” G+ 1>"+a/o e = ’

I'(x)n! (B + 1yrte
7

which is the desired result.
A simple calculation shows that:
l-p
p

E[N] =« (98)

Problems of Chap.4

4.1 The two random variables X,,, number of molecules in the first container at time
instant n, and Y,,, number of molecules in the second container at time instant n, are
related by the constraint X,, + Y, = N. The law of X, is (1,0, ..., 0).
This chain is irreducible, since all the states communicate. Studying the equation
nP =m:
To = 41701

T = poTo + g272

T = Tp—1Pk—1 T Tht1 Pk+1

TN = TTN-1PN-1
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we find a unique invariant law, whose entries satisfy the following:
Pi—1---Po (N )
T =——""n0= | . |70
qi---q1 1

Observing that Y, 7; = 2V, we get mp = 27V, so that we have finally:

N
T = < )2N
1

The expectation of the law of the random variable whose density is 7 is N/2,
while its variance is N/4.

4.2 A general property of transition matrices ensures us that (1, 1, 1) is a right
eigenvalue of the matrix P; we observe that it is also a left eigenvalue. The similarity
transformation UT PU with the orthogonal matrix:

L

1
B V6 2
u=|% = 0
T
B 2
leads to:
1 0 0
T _ 1 V3
U PU=|0 f—i F2p—1
0-%@2p-1) -3

The eigenvalues of the 2 x 2 block are —% + */75 i v/4p? + 1 — 4p and their mod-
ulus is /1 + 3p% — 3 p, strictly less than 1 if p € (0, 1).
If p € (0, 1) the n-th power of the modulus of those eigenvalues tends to zero,

and thus:
100 1

uU'pru — 1000 — P> -[111
000 3\

implying that P has a unique stationary distribution, (%, %, %). Ifp=0orp=1,
the random walk is simply arotation, clockwise or counterclockwise. The eigenvalues
of P in such case are the three complex square roots of 1. The limit of the matrix P
for n — oo does not exist, and there are no invariant laws.

4.3 The first calculation is very simple
ElZy|Zy =kl = E[§] + -+ §1=kn

where p is the expectation of &, assumed independent from n and k. Then
E[Zn-H |Zn] = ,UvZn-
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Similarly:
ElZ3 | Zy =k = EIG] +--- + &)1 = K*1* + ko
where o is the variance of &
We have thus E[Z2,|Z,] = u*Z: + 0 Z,.
Using properties of conditional expectation we conclude that:
E[Zy1]1 = E[E[Zy11|Z,]] = RE[Z,]
E(Zy) = EIEIZ, | Z,)] = P E[Z;] + op”
Var(Zyn] = 1*Var[Z,) +op"
The recursion relation for the expectations implies that:

E[Z,] = u" 99)

while the one for the variances is satisfied by

e I
Var[Z,] = {"ﬂ T R 7 (100)
no, pu=1

If © < 1 the average of the population goes to zero, together with its variance. If
w =1 (u > 1) the average of the population remains constant (diverges).
Now let’s turn to the extinction problem. We will need a few definitions:

+00
o) =E [ =3 put (101)
k=0
and:
+00
on(t) = E[t7] =Y " P(Z, =k)* (102)
k=0

The following is very important:

+00
Qui1 (1) = E [17] = Y " E[172, = k] P(Z, = k)
k=0
+o00
_ Nk [;Zf:off")] P(Z, = k) (103)
k=0
+o00

1k
E[r#"] Py =k =¢u (o)

~
Il
o
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We will prove now by induction that also:

@nt1(1) = @(@a (1)) (104)

Since Zy = 1, ¢o(t) = t so that the above is verified if » = 0. Now we assume (104)
true for n, and we observe that:

Ont2(1) = @ui1(9(1)) = @(@u(@(1))) = @(Pn+1(1)) (105)
where we used twice (103).
Also:
def . . = k
¢a(0) = lim g, (1) = }gr(l]g P(Z,=k)t* = P(Z,=0) (106)
‘We observe now that:
&= J1z.=0 (107)

n>1

Since the events are encapsulated, that is {Z,, = 0} C {Z,+; = 0}, we have, for the
extinction probability:

peu ™ P(&) = lim P(Z,=0)= lim ¢,(0) (108)
n—-+00 n—-+o00

Now we observe that:

#(per) = ¢ lim_0,(0) = lim_¢(,(0))

. . (109)
= lim ¢,(¢(0)) = lim ¢,11(0) = pex
n—+o00 n—+o00
We have thus found that p,,, satisfies the fixed-point equation:
+00
Pext = (p(pext) = Z pkpifxz (110)
k=0

For Lotka distribution, we get p,,, ~ 0.598271.

4.4 Denote the probability that the first gambler is ruined having started with a coins
through P(R,), that is:

R,={we 2] lim X,(w) =0,X,=a) (111)
n——+o0o

X, being the amount of coins after » rounds.
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Obviously P(Rp) = 1 and P(Ry) = 0; otherwise:

P(Rq) = P(Rg|X1 =a+ DpXy=a+1)+ P(Ra|X1 =a—-Dp(Xy =a—-1= P(Ra+1)P+P(Ra71()lq

it is easily shown that such recursion relation is solved, together with the boundary
conditions P(Ry) = 1 and P(Ry) = 0, by:

P(R) = —— ifp=1/2
(z)“ _ (a)” (113)
q q .
P(R,) = —————5— otherwise
(s

Observe that if g — 1 the probability P(R,) converges, by I’Hopital’s Rule, to

N—a
N -

4.5 This is a simple algebraic exercise.

_++_
_++_

Let the state space of the random walk be the set E =1{1,2,3,4,5,6,7,8, 9}. Since
a room i with i even is connected only to rooms j with j odd and viceversa (for
instance, room 2 is connected to rooms 1, 3, 5 and thus P,_, ; = % forj =1,3,5and
0 otherwise). It is therefore convenient to order the elements of E separating odd and
even numbers, for instance £ = {1,3,7,9,5, 2,4, 6, 8} and writing the transition
matrix of the process as:

0 0 0 0 01/21/20 0

00 0 0 01/201/20

00 0 0 0 071/201/2

00 0 0 0 0 01/21/2
Pj=P_;=]0 0 0 0 0 1/41/41/41/4 (114)

1/31/3 0 01/30 0 0 0
1/301/301/30 0 0 0
01/30 1/31/30 0 0 O
0 0 1/31/31/3 0 0 0 O

for instance, the only nonzero elements of the i = 2 row correspond to the columns
Jj = 1,3, 5. If the monkey is in a state i with i even (odd), it can return to i in at least
2 steps. This matrix is irreducible (in fact any two rooms i, j communicate). To find
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the invariant distribution, we solve:
T =T Pij (115)

T = — 2,2,2,2,4,3,3,3 116

We observe that this invariant distribution carries an intuitive meaning: the element
i is proportional to the number of doors leading to the cell i.

4.7 This exercise allows to discuss an interesting feature of Markov chains, that is
the concepts of transient and absorbing states. We start at a more general level.
Suppose a Markov chain has state space E and transition probability P such that
P,.i=0foralli <k,a>kand P,_,, =68, for all a, b > k for a given integer
k. The states a, b > k are called absorbing. All the other states i, j < k are called
transient and we will keep consistent notations throughout this solution.
The transition matrix of the chain thus takes the form

_(9R
P_(OI> (117)

where Q, R describe transitions between transient states and from transient to absorb-
ing states respectively. We assume that R is a non-zero matrix.
With a simple proof by induction over n > 1,

n Qn (Zn: Qk) R
pr— ( " (Lo (118)

The entry (Q");; of Q" gives the probability for being in a transient state j after
n step, starting from a transient state i.
In the limit n — oo, provided that the limit exists, one has

—1
lim P" = (0 1-0) R) (119)

n—-+00 0 1

The ia-entry of (1 — Q)" R gives the probability that chain is absorbed to a state
a, having started from the state i.

Assuming moreover X, = i, the expected number of times the chain is in the
transient state j reads:

+00 +00
Nij=E [Z lm—j}} =) (09, =0-0) (120)
n=0 n=0

The expected total number ¢; of steps before the chain is absorbed, having started
from i, is therefore
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=Y Nj=> (1-0);" . (121)
J J

This quantity is the average duration of the absorption process, assuming the chain
started in i.
Now we come back to the monkey. We add a cell, say 10, accessible only starting

1|2|3
-t
4 5 6
S
7|8 9 10

from cell 9: | | | We will have a transition matrix of the form:
0O 0 0 0 O01/21/2 0 0 0
0O 0 0 0 0120120 0
0O 0 00 0 01/2 0 1/2 0
O 0o 0 0 0 0 0 1/31/31/3
0 0 0 0 O 1/41/41/41/4 0
Pi=F-i=113130 0130 0 0 0 0 (122)
/30 1/3 0 1/73 0 0 0O O O
013013130 0 0 0 O
0o o0 1/31/31/73 0 0 0 0 O
O 0 0 0O 0O 0O 0O 0 0 1

where the new state space is £’ = {1,3,7,9,5,2,4, 6,8, 10}. Assuming that the
monkey starts in cell 1, using formula (121), we obtain an average of 43 steps.

Problems of Chap.5

5.1 For simplicity, without loosing generality, we consider only two parallel lines at
distance d and we allow the center of mass of the needle to fall at any point within the
area included between the lines. Let ® be a random variable representing the slope
of the needle; more precisely, @ will be the angle formed by the needle measured
with respect to the lines. Considering symmetry, we can assume that @ follows a
uniform law on [0, Z]. We introduce another random variable X, representing the
distance between the center of mass of the needle and one straight line. X will be
uniform in [0, d]. Finally, we will assume X and @ to be independent.

An instant of reflection allows us to compute the desired probability, which we
denote p:

L L
p=P<X§Esin@)—i—P(X—i-Esin@zd) (123)

Under the assumptions we made, we will have:
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) - / dxdOpx (x) pe (©)
(r< sin(@))

L

7 sin(0)
a6 / dx — (124)
0
L

@

L .
P(Xf—sm
2

fo
. L
df—sin(f) = —
0 2 wd

1old

wold

2
wd
2
wd
Performing a similar calculation for P (X + % sin ® > d), we can conclude that:

2L

== (125)

)4

If we sample X and ® we can thus estimate 7.

5.2 We can model the situation as follows. Let Y is uniform in the square [—1, 1] x
[—1, 1]. Let € be the unit circle. Consider the probability law:

AeR* > P(YEA|Y €9%) (126)

which is the law we are sampling if we reject the realizations of Y that fall outside
the circle.

We need to show that this is the law of a random variable, say X, uniform in %
If p,(x) denotes the probability density of X, we will have:

PYeANYe?)
P(Y € 6)

/dXPX(X)=P(XeA)=P(YeA|Ye<5)=
A

4 4f dxly (x) (127
=_p(YeAmyECg)=_M
T T 4
so that we have: |
px(x) = p I (x) (128)

5.3 This exercise is a direct application of the transformation law of probability
densities. In order to simplify the algebra, we can solve the problem in two-steps.

We start from X = (X, X») uniform in the unit circle, and we first investigate
the probability density for the polar coordinates (R, ®) = ¢ (X, X»), where:

b (x1, x2) = (,/xl2 +x2, arctan C—?)) (129)

The inverse is naturally:

¢ '(r,0) = (rcos@, rsind) (130)
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and the jacobian is:

cos@ —rsiné
Ty (r, 0) = (sine - cos 8 ) det (Jy-1(r,0)) =r (131)

So that:
Pre) (1, 0) = px(¢~'(r,0)) |det (J4-1(r,0))| = % Tio.11(r) (132)

Now, we consider Y = (Y7, ¥2) = ¥ (R, ®) where:

Dlogr? Dlogr?
w(r,e)z(mm@,/%,min@,/%) (133)

It is easy tho check that:

v (v, ) = (ei(ylzﬂg) , arctan (%)) (134)

and: o 1 .
—% e_Z(-"f‘*‘Y%) % e_Z(ylz"'."z')
Jy-1 1, y2) = R s L_L

2 2 I )
V1 2 Vi b
+3 1+ (135)

1 2
det (Jv/q (yl ) y2)) = —567%&()}124')’2)

so that, finally:

1 1 2 2
Py, y2) = preoy (W (1, y2)) |det (Jy-1 (1, y2))| = Ee_f(yl"‘yz) (136)

which is the desired result.

5.4 Therandom variable 7, represents the time instants when the n-th event happens.
Under the assumptions of this exercise we can easily compute its characteristic
function. As a preliminary step, we observe that, since A7T; is exponential, we have:

bar, (0) = (137)

A—1i6

) (138)

Itis not difficult to show that this characteristic function corresponds to the probability
density:

so that:

¢Tn(e>=<k_l.9
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)\'n

P, (%¥) = X©0,400(X) =1 x"hem (139)
which defines the gamma law I" (n, ).
Now, the key observation is the following:
{N: = n} ={T, =1} (140)

The interpretation is as follows: n events or more have happened by time 7 if an only
if the n-th event happened no later than 7. So, in order to solve the problem, we need

to show that:
+0o i t n
At A
§ ( ,) e M =/ dx x"heH (141)
i! 0 (n—1)!

i=n

A simple way to verify this identity is to notice that, at ¢ = 0, both sides vanish, so
that we should only check the the derivatives with respect to ¢ coincide. We have:

d (& o L\ (i L, ool
E(Z i “)=Z{—u il

i=n i=n

Non ()" PRV A" ey
n! n!

)\n-H (I’l + 1) ([)" e—)»t B ()»l‘)n-H e—)»l )Ln+2 (n + 2) (l‘)n+l e—)»t N
(n+ 1! (n+ 1! (n+2)!
A tn—l Y
BN

(142)
since all the other terms cancel. By inspection this result coincide with the derivative
of the right hand side of (141).

5.5 This problem just requires evaluations of one-dimensional elementary integrals.

5.6 This problem just requires evaluations of one-dimensional elementary integrals.

Problems of Chap.6

6.1 X, = —B, is a continuous process, with Xg = —By = 0 and its increments
X, — X, are independent of the past because they are the negatives of the increments
of the Brownian motion. The distribution of X; — X; = —(B; — By) is normal with

mean 0 and variance ¢ — s, by the parity of the normal distribution. Therefore, X, is
a Brownian motion.

The process X; = \/Lﬁ B,,; has continuous paths and X, = 0. The increment X, —
X, = ﬁ (By: — Bys) is independent of the history of B before us, which is exactly
the history of X before s. The distribution of the increment X, — X is normal
with mean O and variance Var[\/LE (B, — B,y)] = % =t — s. Therefore, X, is a
Brownian motion.
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6.2 We have:
m(t) = E[B; + vt] = vt (143)

Moreover:
C(t,s) = E[(B; + vt) (Bg + vs)] = min(z, s) + Vs (144)

Finally, the probability density is:

_ 1 1 (x —vr)?
p(x,l) = \/?mexp <_§T) (145)

6.3 To compute Fg, (x) = P[R, < x] we write th = Blzyt + Bzz,t and:
Fg,(x) = P[R} < x*] = P[(B1,, Ba,) € Bi(x)] (146)

where Bj(x) is the disk of radius x centered at 0. Then:

Fr(x) = / (147)
R B[(x) ZjTt

Xz .
e~ 7 . The mean value and vari-

=

moving to radial coordinates we find Fg, (x) =
ance are /75 and 2t respectively.

t

6.4 Let B, be a brownian motion on the real axis. The stochastic process:

__ [cos(B;)
R = (sin(B,)) (148)

is called brownian motion on the unit circle. Find the law of the random variables
cos(By), sin(B,) and B;mod2x. The first two random variables correspond to the
projections of R; onto the x and y axis, and the latter to the angle of the particle.

The event —1 < sin(x) < y, where y € [—1, 1], is realized if and only if x €
[Zkrr — % — arcsin(y), 2kmwr — % + arcsin(y)], where k is an integer number.

[o.¢]
p(sin(B;) <y) = Z p (an -~ arcsin(y) < B; < 2km — z + arcsin(y))
e 2 2
(149)
the right member of this equation is a known quantity, since B, is a normal random
variable with mean 0 and variance 7. The probability distribution of sin(B;) is found
differentiating p(sin(B;) < y) with respect to y:

o0

. Y . . e .
p(y) = Z dy arcsin(y) py (an -3 + arcsm(y)) + 3y arcsin(y) pr <2krr -5 arcsm(y))

k=—o00
(150)



Solutions 229

where p;(x) is the probability distribution of B,. This series can be summed exactly,
the result being:

1 arcsin(y) m _. 1 arcsin(y) mw _.
=—0| ———,¢2 — | ——— —,e 2 151
pe(y) 2713( > R )+2n3< 2 1€ (151)

where 603 (x, y) is Jacobi’s theta function:

o0
O3(x.e )= Y eV gl 2T (152)
n=—0oQ
Therefore:
_ i 1 arcsin(y) Tt _arcsin(y) T
=5 o (0 (*52 - Tt ) o (<252 - e t))

(153)
We can find the probability distribution of sin(B;) at long time ¢ using the following
property:

lim O3(x,e™”) =1 (154)
y—00
We obtain: 1 {
= — — 155
o) = = (155)

The event 0 < xmod27 < «, where « € [0, 27], is realized if and only if x €
[2k7m, 2km + o] where k is an integer number. Therefore:

o0
p(Bmod2r <a@)= Y p(2kw < B, < 2kn +a) (156)

k=—00

and the probability distribution of B,mod2rx is readily found differentiating this
quantity with respect to «:

o]

1 o
p@ =Y pChr o) =6 (5.

I~

) (157)

k=—00

for long time, p,(a) — %: in this sense, we can say that the particle spreads
uniformly on the unit circle.

6.5 The brownian bridge is a gaussian process, being the difference of two gaussian

processes. Moreover:

E[X;Xs]=E[B;Bs —sB;B1 —tB1Bs + tsBlz] = min(z, s) — ts = min(¢, s) — min(¢, s) max(z, s)
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so that, if s < ¢, we have E[ X, X] = s(1 — ).

6.6 This is a special case of the following situation:

N
X =Y pi B (158)
k=1
where { By ,} is a family of independent Brownian motions with increments indepen-
dent from the past, and 21]{\;1 p,% = 1. We have:

N

Xiyar—Xo =Y pi (Bessar — Bis) (159)
k=1

which shows that the increments are independent from the past.
We have also:
E[X/]=0 (160)

and:

N
E[X.X;]=0= ZpkplE BB, = Zp min(7, s) = min(z, s)  (161)
k,I=1 k=1

Finally, we have:

E[X/Bi,] = pit (162)
6.7 We can write:
© /ood @ =10 pr() /Ood 0 /wd 7 ot oV
= t =1 1) = t ¢ _ ; _
rz(z A pz(zl PT A PB, (D) — A — = —

which is the density of a Laplace random variable with mean O and variance t.
Problems of Chap.7

7.1 E[X,]= [y E[B;lds = 0.

t t t t
E[Xf]:/o ds/o ds/E[BSB;]zfo ds/o ds'min(s, s") = 1°/3

Since X; ~ N (0, t3/3), we have X7/T ~ N(0, T/3).

7.2 Lett; =i é, i = 0...n be a partition of the interval [0, #]. We know that:
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Y™ ZBH B,., — B,) (163)

converges to X, as n — oo. Since:

nle _Bz n—1 B[/)

Yt(n) — Z l:+1 Z x+|

i=0 i=

(164)

The first sum is readily computed observing that 3/~ B?  — B} = B}. Moreover,
B,., — B, ~ N (0, 1) and since the increments of the browman motion are inde-
pendent on the past, then Z::ol (B,i "= B[,.)2 ~ L x*(n) This random variable has

mean ¢ and variance 2%. Taking the n — oo limit we find:

y™ — B> —1t (165)
Consider now the process Y; = f(B;) = Btz. The 1t6 formula leads to the following
expression for dY;:

whence, recalling the linearity of the stochastic differential, we immediately find:
B(t)* —1t
B/ dB;, =d — (167)

whose solution is:
t BZ —t
X; =/ BydB; = — (168)
0 2

7.3 Consider the function @ (¢, x, y) = xy. Due to the It6 formula:

1
dd =0,P + 0, PdX, + ay(det + 5 [axx(pg]z(xt) +2axy¢gl(xt)g2(yt) + ayyq)g%(yt)] dt

explicit calculation of the derivatives of @ yields:
d(X,Y) = XidY, + Y:d X, + g1(X,)g2(Y;)dt
that is, by definition:
T T T
Xe¥r =Xt = [ xavi+ [ vax+ [ e
0 0 0

or:
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T T T
/ X,dY, = [X,Y,] —/ Y, dX, —/ 81(X)g2(Yy)dt
0 0 0

similar to the typical integration by parts formula, with a correction of the form
fOT g1(X;)ga(Y,)dt. In the special case Y, = h(t), dY, = h'(t)dt we have:

T

T
/ h/(t)X,dtz[h(t)X,]g—/ h(r)dX,
0 0

if moreover X, = B, :

T T
/h/(t)Bldtzh(T)BT—/ h(t)dB,

0 0

7.4 We apply the It6 formula:
1
dX, = f(X)dt +g(X)dB, — d®, = 8, Pdt + 9, PidX, + 500 Prg* (X,)
to the functions @ (x, 1) = x* and @ (x, t) = sin(¢ + x). We get:

@
d®, =2B,dB, +di  d®, = (qs,ﬂ - 7’) dt + &,z dB,

7.5 We consider the function @ (x, ) = x F(—t). We use Itd’s Lemma, together
with F’(¢t) = F(¢) f(¢) to get:

d®, = —F'(-0)X,dt + F(—t)dX, = F(—t)g(t)dB,

or:

&, = @+ f F(=$)g(s)dB, — F(—)X, = x f F(=s)g(s)dB,
0 0

X, =xoF () + F(t)/ F(—s)g(s)dB;
0

7.6 If f is piecewise constant:
K
f@O =" ey @, 10=0 (169)
i=1

I; is a linear combination of increments of the brownian motion:

Iy =ci(By — Bo) +c2(B, = B;) + -+ +cu(B =B, ), n=K (170)
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and it is thus normal, as we already know. Given another instant ', we have:
Iy = ci(B;, — Bo) +co(By, = By)) +---+cu(By — B;,_,)), m=<K (171)

where the time instants coincide with the ones in the expression for ;. Let’s evaluate:

n m

E[L11=Y Y cic;E[(B, — B, )(B, — B, _,)] (172)

i=1 j=1

If i or j are larger that min(m, n), and whenever i > j or i < j, the two random
variables in the expectation are independent, so that the contribution to the sum
vanishes. We thus conclude that:

min(n,m)

min(z,t")
E[LI= Y ¢ty —1)= / [ (s)ds (173)
0

i=1

This results holds also for any f € L2(0, T), as can be shown by approximating f
with piecewise constant functions.

Problems of Chap. 8

8.1 Let’s consider first the process:

t 2
Y, = x! +r/ exp ((ﬂ( - %)HﬂBS) dt (174)
0

2
dY, =rexp ((rK — %) t+ ,33,) dt (175)

we have:

We have thus:

exp ((rK — %2) t+ ,3x1>

Xf:¢(t’ BtaYZ)v ¢(t7xlﬂx2)= X (176)
2
We can apply multidimensional Itd formula:
,82
dX[ = (rK - 7) X[dt + ﬂX}dBt
! ((K ﬁ2>t+ﬂB>dY+1,32th
— —ex rk — — —
Yzz p ) 1 Y t a7

2
1

=r X, (K — X,)dt + BX.dB,
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8.2 We introduce the auxiliary process:
U, = exp (—Ar) X, (178)

‘We have:
dU, = —A exp (—At) X,dt +exp (—At) dX, (179)

Using the equation we have:

dU, = —A exp (—At) X,dt + exp (—At) (AX,dt + 0dB,) = exp (—At) odB,

(180)
which immediately implies:
t
U, =0 —i—/ exp (—As) odB; (181)
0
or: .
X = X exp (—A?) —{—/ exp (—A(t —s)) odB; (182)
0

8.3 Consider f = (fi, f>) : R — R?, and the process (f1(B,), f>(B;)). We apply
1t6 formula to the two components:

1
dfi, = f{"dB, + 3 1
(183)

_ e 1 0
dfsi = fi"dB, + 3 s

where fl(k) denotes the k-th derivative. Comparing the above It6 differential with the
considered equation, we have the conditions:

fO==h fV==f B==57 LV=H ash
It is simple to check that:
J(Bi) = (cos(By), sin(B;)) (185)

is a solution.

8.4 This is a simple example of a Kolmogorov equation, the generator being given
by:
_1d 2 b—xd

¥ —_
oo T 1-rdx

(186)

8.5 We consider the process (deterministic):
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Y, = (X, )
satisfying the differential equation:

dX, = 5 (X,, P
dP; = =%E(X,, P)dt

which can be seen as a special case of a SDE with zero diffusion and drift:
(9 A
~\ap’ ox
The related Fokker-Planck equation, that is the Liouville equation:

3 3 A N A
—p=—— (bip) = _a
0" = Ty, P Z 9% (ap, ) Z op; ( 9%, p)

i=1

[8%3 8%3}
=l Sv 50 T an a0 | P

ox; dp;  Ip; Ox;
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(187)

(188)

(189)

(190)

where we have used Schwarz theorem from classic analysis. Remembering the def-

inition of the Poisson brackets, we have the celebrated Liouville equation:

9
—p=—{p, H
o7 P {o }

8.6 This is a simple application of Itd formula to the process:
) 1
X, =Y, dY,=-BY, + EdB,

The details of the algebra are left to the reader.

8.7 This is a simple application of Itd formula to the process:

Y, = 2arcsin(y/ X;)

where X, is the Wright-Fisher process. After some algebra, it turns out that:

Y, = 2arcsin(/X;) = B; + a

(191)

(192)

(193)

(194)

where the constant a is obtained imposing the initial condition Xy = x( almost

everywhere.
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