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Preface

The goal of the present course on “Fundamentals of Theoretical Physics” is to
be a direct accompaniment to the lower-division study of physics, and it aims
at providing the physical tools in the most straightforward and compact form as
needed by the students in order to master theoretically more complex topics and
problems in advanced studies and in research. The presentation is thus intentionally
designed to be sufficiently detailed and self-contained – sometimes, admittedly,
at the cost of a certain elegance – to permit individual study without reference to
the secondary literature. This volume deals with the quantum theory of many-body
systems. Building upon a basic knowledge of quantum mechanics and of statistical
physics, modern techniques for the description of interacting many-particle systems
are developed and applied to various real problems, mainly from the area of solid-
state physics. A thorough revision should guarantee that the reader can access the
relevant research literature without experiencing major problems in terms of the
concepts and vocabulary, techniques and deductive methods found there.

The world which surrounds us consists of very many particles interacting
with one another, and their description requires in principle the solution of
a corresponding number of coupled quantum-mechanical equations of motion
(Schrödinger equations), which, however, is possible only in exceptional cases in
a mathematically strict sense. The concepts of elementary quantum mechanics and
quantum statistics are therefore not directly applicable in the form in which we have
thus far encountered them. They require an extension and restructuring, which is
termed “many-body theory”.

First of all, we have to look for possibilities for formulating real many-body prob-
lems in a mathematically correct but still manageable way. If the systems considered
are composed of distinguishable particles, their description can be obtained directly
from the general postulates of quantum mechanics. More interesting, however, are
systems of identical particles, whoseN -particle wavefunctions must fulfil quite spe-
cial symmetry requirements. Working directly with the required (anti-)symmetrised
wavefunctions proves to be extraordinarily tedious. A first perceptible simplification
is provided in this connection by the formalism of second quantisation. It allows
a quite elegant description but of course does not provide an actual solution to
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the problem. The student who has been confronted in lower-division courses with
problems which as a rule can be treated with mathematical rigour has to become
accustomed to the idea that realistic many-body problems can practically never be
treated exactly. In order to nevertheless fulfil the central function of a theoretician,
i.e. the description and explanation of experiments, some concessions must be made.
This includes, as a first step, the construction of a theoretical model which can
be understood as a caricature of the real world, in which nonessential details are
suppressed and only the essence of the problem is emphasised. Finding such a
theoretical model must be considered to be a nontrivial challenge for theoreticians.
Chapter 2 therefore treats the formulation and justification of important standard
models of theoretical physics in detail. Their presentation is carried out consistently
using the formalism of second quantisation from Chap. 1.

Unfortunately, the real situation can seldom be caricatured in such a way that
the resulting model is on the one hand still sufficiently realistic and on the other
can be treated with mathematical rigour. Thus, one usually has to accept additional
approximations in order to find solutions. A powerful technique in this connection
has proven to be the Green’s function method, with its concept of quasi-particles.
The abstract theory is discussed in Chap. 3 and then applied to numerous concrete
problems in Chap. 4. Diagrammatic methods of solution are worked out in Chaps. 5
and 6. They should be included nowadays within the indispensable repertoire of
every theoretician. A number of exercises (together with their explicit solutions)
are also included in this volume and are in particular designed to help the student
to acquire a facility for working with the formalism and applying it to concrete
topics. The solutions given, however, should not tempt the reader to forbear making
a serious effort to solve the problems independently. At the end of each major
chapter, questions are included, which can be useful to test the knowledge gained
by the reader and in preparing for examinations.

This book is the result of diverse special-topics lecture courses on many-body
theory which I have given at the universities of Würzburg, Münster, Osnabrück, and
Berlin (Germany), Warangal (India), Valladolid (Spain), Irbid (Jordan) and Harbin
(China). I am very grateful to the students of those courses for their constructive
criticism. It is quite clear to me that the material in this volume with certainty
no longer belongs to lower-division physics. However, I also believe that it is
indispensable for making the transition to independent research as a theoretician.
Since the available textbook literature on the subject of many-body theory as a
rule presupposes advanced knowledge and substantial experience on the part of the
reader, the present book might – hopefully – be very useful for the “beginner”. I am
very grateful to the Springer-Verlag for their concurring assessment as well as for
their professional cooperation.

Berlin, Germany Wolfgang Nolting
August 2008
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Chapter 1
Second Quantisation

The physical world consists of interacting many-body systems. Their exact descrip-
tion would require the solution of the corresponding many-body Schrödinger
equations, which however is as a rule not feasible. The goal of theoretical physics
therefore consists of developing concepts with whose aid a many-body problem can
be approximately solved in a physically reasonable manner.

The formalism of second quantisation permits a considerable simplification
in the description of many-body systems, but in the end, it involves merely a
reformulation of the original Schrödinger equation, and thus does not represent a
concept for its solution. The second quantisation is characterised by the introduction
of so-called

creation and annihilation operators,

which render the tedious construction of N -particle wavefunctions as symmetrised
or antisymmetrised products of single-particle wavefunctions unnecessary. The
overall statistical properties are then included in

fundamental commutation relations

of these creation and annihilation operators. The interaction processes which take
place in many-body systems are expressed in terms of the creation and annihilation
of certain particles.

If the particles in an N -body system are distinguishable in terms of some
physical property, then the description can be obtained directly from the general
postulates of quantum mechanics. In the case of indistinguishable particles, a
principle comes into play which introduces special symmetry requirements for the
vectors in the Hilbert space of the N -particle systems.

If the particles are distinguishable, then they can be enumerated in some fashion:

H(i)
1 : The Hilbert space of i-th particle.

Let
{
ϕ̂(i)
}

be a complete set of commuting observables in H(i)
1 ; then the (mutual)

eigenstates
∣∣∣ϕ(i)α

〉
form a

© Springer Nature Switzerland AG 2018
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2 1 Second Quantisation

basis of H(i)
1 ,

which we may assume to be orthonormalised:

〈
ϕ(i)α

∣∣ϕ(i)β
〉
= δαβ (or δ(α − β)).

HN : The Hilbert space of the N -particle system

HN = H(1)
1 ⊗H(2)

1 ⊗ · · · ⊗H(N)
1 .

As a basis of HN , we employ the direct products of the corresponding single-
particle basis states:

|ϕN 〉 =
∣∣∣ϕ(1)α1

ϕ(2)α2
· · ·ϕ(N)αN

〉
=

=
∣∣∣ϕ(1)α1

〉 ∣∣∣ϕ(2)α2

〉
· · ·
∣∣∣ϕ(N)αN

〉
.

(1.1)

A general N -particle state |ψN 〉 can be expanded in terms of the |ϕN 〉:

|ψN 〉 =
∑

α1,...,αN

C(α1, . . . , αN)

∣∣∣ϕ(1)α1
ϕ(2)α2

· · ·ϕ(N)αN

〉
. (1.2)

The statistical interpretation of such an N -particle state is identical with that of
the single-particle states. Thus, |C(α1, . . . , αN)|2 is the probability with which a
measurement of the observable ϕ̂ in the state |ψN 〉 will yield the eigenvalue of∣∣∣ϕ(1)α1 · · ·ϕ(N)αN

〉
. The dynamics of the N -particle system derives from a formally

unmodified Schrödinger equation:

ih̄
∣∣ψ̇N

〉 = Ĥ |ψN 〉. (1.3)

Ĥ is the Hamiltonian of the N -particle system.
A quantum-mechanical treatment of many-body systems with distinguishable

particles presents the same difficulties as in classical physics, simply due to its
greater complexity as compared to the single-particle problem. There are, however,
no additional, typically quantum-mechanical complications. This is no longer the
case if we consider systems of indistinguishable particles.

1.1 Identical Particles

Definition 1.1.1 (Identical particles) Particles which behave in exactly the same
way under similar physical conditions and therefore cannot be distinguished by any
objective measurement.
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In classical mechanics, with well-known initial conditions, the state of a particle
is determined for all times by Hamilton’s equations of motion. The particle is always
identifiable, since its orbit can be calculated. In this sense, even identical particles
(with the same masses, charges, spatial extensions etc.) can be distinguished in
classical mechanics.

Within the range of validity of quantum mechanics, in contrast, the fundamental

principle of indistinguishability

holds. This principle states that mutually-interacting identical particles are in prin-
ciple not distinguishable. Its origin lies in the fact that as a result of the uncertainty
relation, no sharply defined particle orbits exist. Instead, the particle must be treated
as a spreading wave packet. The occupation probabilities of mutually-interacting
identical particles overlap, which makes their identification impossible.

Every physical problem which requires the observation of single particles is
physically meaningless for systems of identical particles! It now becomes a problem
that for computational reasons, an enumeration of the particles is unavoidable.
This enumeration must however be carried out in such a fashion that physically
relevant statements are invariant with respect to changes in the enumeration scheme.
Physically relevant are exclusively the measurable quantities of a physical system.
These are not the bare operators or states, but rather the expectation values of
observables or scalar products of states. They must not change if the numbering
of two particles in the N -particle state is exchanged. Otherwise, there would be a
measurement procedure which would distinguish between the two particles. One
can therefore consider the following relation as

the defining equation for systems of identical particles:

〈
ϕ(1)α1

· · ·ϕ(i)αi · · ·ϕ(j)αj
· · ·ϕ(N)αN

∣∣∣ Â
∣∣∣ϕ(1)α1

· · ·ϕ(i)αi · · ·ϕ(j)αj
· · ·ϕ(N)αN

〉 !=
!=
〈
ϕ(1)α1

· · ·ϕ(j)αi
· · ·ϕ(i)αj · · ·ϕ(N)αN

∣∣∣ Â
∣∣∣ϕ(1)α1

· · ·ϕ(j)αi
· · ·ϕ(i)αj · · ·ϕ(N)αN

〉
. (1.4)

This holds for an arbitrary observable Â and arbitrary N -particle states. From
Eq. (1.4), a whole series of characteristic properties of both the operators and of
the states evolves. Equation (1.4) naturally holds for all pairs (i, j) and not only
for exchange of two particles, but rather for arbitrary permutations of the particle
indices. Every permutation can however be written as the product of transpositions
of the type (1.4).

Definition 1.1.2 Permutation operator P

P
∣∣∣ϕ(1)α1

ϕ(2)α2
· · ·ϕ(N)αN

〉
=
∣∣∣ϕ(i1)α1

ϕ(i2)α2
· · ·ϕ(iN )αN

〉
. (1.5)

P is assumed here to act upon the particle indices; of course state indices αi can
also be employed. (i1, i2, · · · , iN ) is the permuted N -tuple (1, 2, . . . , N).
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Definition 1.1.3 Transposition operator Pij

Pij

∣∣∣· · ·ϕ(i)αi · · ·ϕ(j)αj
· · ·
〉
=
∣∣∣· · ·ϕ(j)αi

· · ·ϕ(i)αj · · ·
〉
. (1.6)

We wish to discuss some of the properties of the transposition operator. Applying
Pij two times to an N -particle state obviously leads back to the initial state. This
means that:

P 2
ij = 1 ⇐⇒ Pij = P−1

ij . (1.7)

Equation (1.4) can now be written in the following form:

〈
ϕN |Â|ϕN

〉 != 〈PijϕN |Â|PijϕN
〉 =

〈
ϕN
∣∣P+ij ÂPij

∣∣ϕN
〉
.

This holds for arbitrary N -particle states of the HN ; furthermore, also for arbitrary
matrix elements of the type

〈
ϕN |Â|ψN

〉
, since these can be brought into the above

form by the decomposition

〈
ϕN |Â|ψN

〉 = 1

4

{〈
ϕN + ψN |Â|ϕN + ψN

〉

− 〈ϕN − ψN |Â|ϕN − ψN
〉

+ i
〈
ϕN − iψN |Â|ϕN − iψN

〉

−i
〈
ϕN + iψN |Â|ϕN + iψN

〉}
.

This leads us to the operator identity:

Â = P+ij ÂPij ∀(i, j). (1.8)

A necessary and nearly trivial precondition for the observables of a system of
identical particles is therefore that they depend explicitly on the coordinates of all
N particles.

If we choose in (1.8) in particular Â = 1, it follows that:

1 = P+ij Pij ⇒ Pij = P+ij P
2
ij = P+ij .

The transposition operator Pij is thus Hermitian and unitary in the space HN of
identical particles:

Pij = P+ij = P−1
ij . (1.9)

From (1.8), it also follows that:

Pij Â = Pij P
+
ij ÂPij = ÂPij .
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All the observables of the N -particle system commute with Pij :

[
Pij , Â

]
− = Pij Â− ÂPij ≡ 0. (1.10)

This is in particular true of the Hamiltonian Ĥ of the system:

[Pij , Ĥ ]− = 0. (1.11)

According to the principle of the indistinguishability of identical particles, the N -
particle state |ϕN 〉 can be changed only in terms of a non-essential phase factor
through the action of Pij ; in particular, |ϕN 〉 must be an eigenstate of Pij :

Pij

∣∣∣· · ·ϕ(i)αi · · ·ϕ(j)αj
· · ·
〉
=
∣∣∣· · ·ϕ(j)αi

· · ·ϕ(i)αj · · ·
〉 !=

!= λ

∣∣∣· · ·ϕ(i)αi · · ·ϕ(j)αj
· · ·
〉
. (1.12)

Owing to (1.7), only the real eigenvalues

λ = ±1 (1.13)

need be considered, which are independent of the particular pair (i, j). This means
that:

the states of a system of identical particles are either symmetric or antisym-
metric under exchange of a pair of particles!

H(+)
N : the Hilbert space of the symmetric states

∣∣∣ψ(+)
N

〉
:

Pij

∣∣∣ψ(+)
N

〉
=
∣∣∣ψ(+)

N

〉
∀(i, j). (1.14)

H(−)
N : the Hilbert space of the antisymmetric states

∣∣∣ψ(−)
N

〉
:

Pij

∣∣∣ψ(−)
N

〉
= −

∣∣∣ψ(−)
N

〉
∀(i, j). (1.15)

For the time evolution operator

U(t, t0) = exp

(
− i

h̄
H(t − t0)

)
, H �= H(t), (1.16)

we find as a result of (1.11):

[
Pij , U

]
− = 0. (1.17)
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The states of a system of N identical particles thus retain their symmetry character
for all times.

How can such (anti-)symmetrised N -particle states be constructed? A non-
symmetrised N -particle state of the type (1.1) can serve as our starting point. The
following symmetrisation operator is then applied to it:

Ŝε =
∑

P
εpP, (1.18)

ε = ±; p is the number of transpositions which construct P . The sum runs over
all the possible permutation operators P for the N -tuple (1, 2, . . . , N). If a P in
the sum is multiplied by a transposition Pij , then naturally a different permutation
P ′, which also occurs in the sum, is obtained, with p′ = p ± 1. The following
rearrangement is therefore plausible:

Pij Ŝε =
∑

P
εp Pij P =

∑

P
εp P ′ = ε

∑

P ′
εp

′ P ′.

This means that:

Pij Ŝε = ε Ŝε. (1.19)

The prescription

∣∣∣ψ(ε)
N

〉
= Ŝε

∣∣∣ψ(1)
α1
ψ(2)
α2
· · ·ψ(N)

αN

〉
(1.20)

thus leads to a symmetrised (ε = +) or to an antisymmetrised (ε = −) N -particle
state, for which (1.14) or (1.15) holds.

For a generalised permutation P , it then clearly holds that:

P Ŝε = εp Ŝε ⇐⇒ P
∣∣∣ψ(ε)

N

〉
= εp

∣∣∣ψ(ε)
N

〉
. (1.21)

Thus far, we have shown that the N -particle states identical particles can be only of

the type
∣∣∣ψ(±)

N

〉
and that they retain their particular symmetry character for all times.

This can be formulated in a somewhat more precise way:

The states of a system of N identical particles either all belong to H(+)
N , or

else they all belong to H(−)
N .

We can make this plausible as follows: If
∣∣∣ϕ(ε)N

〉
and

∣∣∣ψ(ε′)
N

〉
are two possible states

of the N -particle system, then it should be possible through a suitable operation, i.e.



1.2 The “Continuous” Fock Representation 7

by applying a certain operator x̂ (or a set of operators) to transform the one state
into the other and vice versa. Formally, this means that the scalar product is

〈
ϕ
(ε)
N

∣∣x̂
∣∣ψ(ε′)

N

〉
�= 0.

Then it further follows that:

ε
〈
ϕ
(ε)
N

∣∣x̂
∣∣ψ(ε′)

N

〉
=
〈
Pijϕ

(ε)
N

∣∣x̂
∣∣ψ(ε′)

N

〉
=
〈
ϕ
(ε)
N

∣∣∣P+ij x̂
∣∣∣ψ(ε′)

N

〉
=

=
〈
ϕ
(ε)
N

∣∣Pij x̂
∣∣ψ(ε′)

N

〉
=
〈
ϕ
(ε)
N

∣∣x̂Pij
∣∣ψ(ε′)

N

〉
=

= ε′
〈
ϕ
(ε)
N

∣∣x̂
∣∣ψ(ε′)

N

〉
.

Thus, the conjecture ε = ε′ must hold.
Which space, H(+)

N or H(−)
N , is appropriate for which type of particle is

determined by relativistic quantum field theory. Here, we assume without proof the
validity of the

spin-statistics relation.

H(+)
N : The space of the symmetric states of N identical particles of

integer spin.

These particles are called Bosons.

Examples π mesons (S = 0), Photons (S = 1), Phonons (S = 0), Magnons
(S = 1), α Particles, 4He,. . .

H(−)
N : The space of the antisymmetric states of N identical particles of

half-integer spin.

These particles are called Fermions.

Examples Electrons, positrons, protons, neutrons, 3He,. . .

1.2 The “Continuous” Fock Representation

In this section, we wish to introduce the creation and annihilation operators which
are typical of the second quantisation. First, some preliminary remarks are in order.

Our first problem consists of constructing a basis for the space H(ε)
N making

use of appropriate single-particle states |ϕα〉. In the process, we must distinguish
the cases in which the associated single-particle observable ϕ̂ has a discrete or a
continuous spectrum. We first discuss in this section the case of a continuous single-
particle spectrum. We thus presuppose:
ϕ̂: a single-particle observable with a continuous spectrum
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ϕ̂|ϕα〉 = ϕα|ϕα〉, (1.22)
〈
ϕα
∣∣ϕβ
〉 = δ

(
ϕα − ϕβ

) ≡ δ(α − β). (1.23)

The eigenstates are presumed to form a basis of H1:

∫
dϕα |ϕα〉 〈ϕα〉 = 1 in H1. (1.24)

A non-symmetrised N -particle state is found as in (1.1) simply in the form of a
product state:

∣∣ϕα1 · · ·ϕαN
〉 =

∣∣∣ϕ(1)α1

〉 ∣∣∣ϕ(2)α2

〉
· · ·
∣∣∣ϕ(N)αN

〉
. (1.25)

The upper index refers to the particle, and the αi’s are complete sets of quantum
numbers. The N -fold state indices αi are ordered arbitrarily but in a well-defined
way according to some criteria. The state symbol on the left side of (1.25) implies
this standard ordering. Application of the operator Ŝε from (1.18) converts (1.25)
into an

(anti-)symmetrised N -particle state

∣∣ϕα1 · · ·ϕαN
〉(ε) = 1

N !
∑

P
εpP

∣∣ϕα1 · · ·ϕαN
〉
. (1.26)

Here, we have introduced an appropriate normalisation factor 1/N ! When there is
no danger of misinterpretation, we shall also indicate the state (1.26) simply by∣∣∣ϕ(ε)N

〉
.

It is easy to convince oneself that in the space of H(ε)
N , every permutation operator

P is Hermitian:

〈
ψ
(ε)
N

∣∣P+
∣∣ϕ(ε)N

〉
=
(〈
ϕ
(ε)
N |P|ψ(ε)

N

〉)∗ = εp
(〈
ϕ
(ε)
N

∣∣ψ(ε)
N

〉)∗ =

= εp
〈
ψ
(ε)
N

∣∣ϕ(ε)N
〉
=
〈
ψ
(ε)
N |P|ϕ(ε)N

〉
.

It follows from this that:

P = P+ within H(ε)
N . (1.27)

We can derive with this a useful relation for the states (1.26). Let Â be an arbitrary
observable. Then it holds that:
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〈
ψ
(ε)
N |Â|ϕ(ε)N

〉
= 1

N !
∑

P
εp
〈
ψα1 · · ·ψαN

∣∣P+Â
∣∣ϕ(ε)N

〉
=

= 1

N !
∑

P
εp
〈
ψα1 · · ·ψαN

∣∣ÂP
∣∣ϕ(ε)N

〉
=

= 1

N !
∑

P
ε2p
〈
ψα1 · · ·ψαN |Â|ϕ(ε)N

〉
.

Due to (1.10), every transposition Pij commutes with Â. Since P can be written
as a product of transpositions, it follows that P also commutes with every allowed
observable Â. We made use of this fact together with (1.27) in the second step. Since
ε2p = +1 and the sum contains just N ! terms, we have:

〈
ψ
(ε)
N |Â|ϕ(ε)N

〉
=
〈
ψα1 · · ·ψαN |Â|ϕ(ε)N

〉
. (1.28)

The bra vector on the right-hand side is thus not symmetrised. This relation holds in
particular when Â is the identity:

(ε)
〈
ϕβ1 · · ·ϕβN

∣∣ϕα1 · · ·ϕαN
〉(ε) =

= 〈ϕβ1 · · ·ϕβN
∣∣ϕα1 · · ·ϕαN

〉(ε) =

= 1

N !
∑

Pα

εpαPα
〈
ϕβ1 · · ·ϕβN

∣∣ϕα1 · · ·ϕαN
〉
.

The index α indicates that Pα acts only upon the quantities ϕα . Thus we have for
the

scalar product of two (anti-)symmetrised N -particle states:

(ε)
〈
ϕβ1 · · ·ϕβN

∣∣ϕα1 · · ·ϕαN
〉(ε) =

= 1

N !
∑

Pα

εpαPα
{ 〈
ϕ
(1)
β1

∣∣ϕ(1)α1

〉
· · ·
〈
ϕ
(N)
βN

∣∣ϕ(N)αN

〉 }
=

= 1

N !
∑

Pα

εpαPα [δ(β1 − α1) · · · δ(βN − αN)] . (1.29)

This is the logical generalisation of the orthonormalisation condition (1.23) for the
single-particle states to the (anti-)symmetrised N -particle states.
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With (1.29) one then finds:

∫
· · ·
∫

dβ1 · · · dβN
∣∣ϕβ1 · · ·ϕβN

〉(ε) (ε) 〈ϕβ1 · · ·ϕβN
∣∣ϕα1 · · ·ϕαN

〉(ε) =

= 1

N !
∑

Pα

εpαPα
∣∣ϕα1 · · ·ϕαN

〉(ε) = 1

N !
∑

Pα

ε2pα
∣∣ϕα1 · · ·ϕαN

〉(ε) =

= ∣∣ϕα1 · · ·ϕαN
〉(ε)

. (1.30)

Every arbitrary N -particle state |ψN 〉(ε) represents the sum of products of N single-
particle states |ψ〉. Since, by hypothesis, the |ϕα〉 form a complete basis set in
H1, |ψ〉 can be written as a linear combination of the |ϕα〉. Then it is clear that
|ψN 〉(ε) can always be expanded in terms of the

∣∣ϕα1 · · ·
〉(ε):

|ψN 〉(ε) = Ŝε

∣∣∣ψ(1) · · ·ψ(N)
〉
=

=
∑

α1

Cα1

∑

α2

Cα2 · · ·
∑

αN

CαN Ŝε
∣∣ϕα1 · · ·ϕαN

〉 =

=
∑

α1···αN
C(α1 · · ·αN)

∣∣ϕα1 · · ·ϕαN
〉(ε)

. (1.31)

Then from (1.30), the

completeness relation

∫
· · ·
∫

dβ1 · · · dβN
∣∣ϕβ1 · · ·ϕβN

〉(ε) (ε) 〈ϕβ1 · · ·ϕβN
〉 = 1 (1.32)

within H(ε)
N

follows. The states defined in (1.26),
∣∣ϕα1 · · ·ϕαN

〉(ε), thus form a complete,

orthonormalised basis of H(ε)
N .

The preceding considerations make it clear how tedious it can be to work with
(anti-)symmetrised N -particle states. We thus would like to construct these with the
aid of special operators entirely from the so-called

vacuum state |0〉; 〈0 | 0〉 = 1. (1.33)

The characteristic effect of this operator,

a+ϕα ≡ a+α ,
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consists in linking many-particle Hilbert spaces belonging to different numbers of
particles with one another:

a+α : H(ε)
N �⇒ H(ε)

N+1. (1.34)

The operator is completely defined by its action:

a+α1
|0〉 = √

1
∣∣ϕα1

〉(ε)
,

a+α2

∣∣ϕα1

〉(ε) = √
2
∣∣ϕα2ϕα1

〉(ε)

. . .

In general, it holds that:

a+β |ϕα1 · · ·ϕαN︸ ︷︷ ︸
∈H(ε)

N

〉(ε) = √
N + 1|ϕβϕα1 · · ·ϕαN︸ ︷︷ ︸

∈H(ε)
N+1

〉(ε). (1.35)

We refer to a+β as a

creation operator.

In a graphic sense, it creates an additional particle in the single-particle state
∣∣ϕβ
〉
.

The inverse relation to (1.35) reads:

∣∣ϕα1 · · ·ϕαN
〉(ε) = 1√

N !a
+
α1
a+α2

· · · a+αN |0〉. (1.36)

Here, we must be careful to observe the order of the operators. Thus, for example:

a+α1
a+α2

∣∣ϕα3 · · ·ϕαN
〉(ε) = √N(N − 1)

∣∣ϕα1ϕα2ϕα3 · · ·ϕαN
〉(ε)

,

a+α2
a+α1

∣∣ϕα3 · · ·ϕαN
〉(ε) = √N(N − 1)

∣∣ϕα2ϕα1ϕα3 · · ·ϕαN
〉(ε) =

= ε
√
N(N − 1)

∣∣ϕα1ϕα2ϕα3 · · ·ϕαN
〉(ε)

.

Since these are basis states, we can read off the following operator identity:

[
a+α1

, a+α2

]
−ε ≡ a+α1

a+α2
− εa+α2

a+α1
= 0. (1.37)

The creation operators commute for Bosons (ε = +) and anticommute for Fermions
(ε = −).

We now discuss the operator which is adjoint to a+α ,

aα =
(
a+α
)+
, (1.38)
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which links the Hilbert spaces H(ε)
N and H(ε)

N−1 to each other:

aα : H(ε)
N �⇒ H(ε)

N−1. (1.39)

The term

annihilation operator

will be justified by the following considerations. Since aα is adjoint to a+α , we
initially have according to (1.35) or (1.36):

(ε)
〈
ϕα1 · · ·ϕαN

∣∣ aβ =
√
N + 1

(ε) 〈
ϕβϕα1 · · ·ϕαN

∣∣ (1.40)

(ε)
〈
ϕα1 · · ·ϕαN

〉 = 1√
N ! 〈0|aαN · · · aα2aα1 . (1.41)

The meaning of the operator aα can be seen by computing the following matrix
element:

(ε)

〈

ϕβ2 · · ·ϕβN︸ ︷︷ ︸
∈H(ε)

N−1

∣∣aγ
∣∣ϕα1 · · ·ϕαN︸ ︷︷ ︸

∈H(ε)
N

〉(ε)
=

= √
N(ε)

〈
ϕγ ϕβ2 · · ·ϕβN

∣∣ϕα1 · · ·ϕαN
〉(ε) =

=
√
N

N !
∑

Pα

εpαPα
(
δ(γ − α1)δ(β2 − α2)δ(β3 − α3) · · · δ(βN − αN)

)
.

In the last step, we made use of (1.29). We re-sort the sum:

(ε)
〈
ϕβ2 · · ·ϕβN

∣∣aγ
∣∣ϕα1 · · ·ϕαN

〉(ε) =

= 1√
N

1

(N − 1)!

{

δ(γ − α1)
∑

P
εpαPα

(
δ(β2 − α2) · · · δ(βN − αN)

)
+

+ εδ(γ − α2)
∑

Pα

εpαPα
(
δ(β2 − α1)δ(β3 − α3) · · · δ(βN − αN)

)
+

+ · · ·+

+εN−1δ(γ − αN)
∑

Pα

εpαPα
(
δ(β2 − α1)δ(β3 − α2) · · · δ(βN − αN−1)

)
⎫
⎬

⎭
.

The sums on the right-hand side again represent scalar products, now however in
H(ε)
N−1:
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(ε)
〈
ϕβ2 · · ·ϕβN

∣∣aγ
∣∣ϕα1 · · ·ϕαN

〉(ε) =

= 1√
N

{
δ(γ − α1)

(ε)
〈
ϕβ2 · · ·ϕβN

∣∣ϕα2 · · ·ϕαN
〉(ε)+

+ εδ(γ − α2)
(ε)
〈
ϕβ2 · · ·ϕβN

∣∣ϕα1ϕα3 · · ·ϕαN
〉(ε)+

+ · · ·+
+εN−1δ(γ − αN)

(ε)
〈
ϕβ2 · · ·ϕβN

∣∣ϕα1 · · ·ϕαN−1

〉(ε)}
.

Since the bra vector is an arbitrary basis vector of H(ε)
N−1, this relation implies that:

aγ
∣∣ϕα1 · · ·ϕαN

〉(ε) = 1√
N

{
δ(γ − α1)

∣∣ϕα2 · · ·ϕαN
〉(ε)+

+ εδ(γ − α2)
∣∣ϕα1ϕα3 · · ·ϕαN

〉(ε)+
+ · · ·+
+εN−1δ(γ − αN)

∣∣ϕα1 · · ·ϕαN−1

〉(ε)} (1.42)

If the single-particle state
∣∣ϕγ
〉

appears among the states
∣∣ϕα1

〉
to
∣∣ϕαN

〉
which

construct the N -particle state
∣∣ϕα1 · · ·ϕαN

〉(ε), then an (N − 1)-particle state results,
in which however

∣∣ϕγ
〉

is no longer present. One then says that aγ annihilates a
particle in the state

∣∣ϕγ
〉
. If
∣∣ϕγ
〉

does not occur within the symmetrised initial state,
then application of aγ causes the initial state to vanish. In particular, an important
special case applies:

aγ |0〉 = 0. (1.43)

The commutation relation for the annihilation operators follows immediately from
(1.37):

[
aα1 , aα2

]
−ε = −ε

([
a+α1

, a+α2

]
−ε
)+

.

Annihilation operators commute (ε = +; Bosons) or else they anticommute (ε = −;
Fermions):

[
aα1 , aα2

]
−ε ≡ 0. (1.44)

There is still a third commutation relation, i.e. the one between the creation and the
annihilation operators:

[
aα1 , a

+
α2

]
−ε = δ(α1 − α2). (1.45)
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Proof Let
∣∣ϕα1 · · ·ϕαN

〉(ε) be an arbitrary basis state of H(ε)
N .

aβ

(
a+γ
〈
ϕα1 · · ·ϕαN

〉(ε)) = √
N + 1aβ

∣∣ϕγ ϕα1 · · ·ϕαN
〉(ε) =

= δ(β − γ )
∣∣ϕα1 · · ·ϕαN

〉(ε)+
+ εδ(β − α1)

∣∣ϕγ ϕα2 · · ·ϕαN
〉(ε)+

+ · · ·+
+ εNδ(β − αN)

∣∣ϕγ ϕα1 · · ·ϕαN−1

〉(ε)
,

a+γ
(
aβ
∣∣ϕα1 · · ·ϕαN

〉(ε)) = δ(β − α1)
∣∣ϕγ ϕα2 · · ·ϕαN

〉(ε)+

+ εδ(β − α2)
∣∣ϕγ ϕα1ϕα3 · · ·ϕαN

〉(ε)+
+ · · ·+
+ εN−1δ(β − αN)

∣∣ϕγ ϕα1 · · ·ϕαN−1

〉(ε)
.

Combining these two equations, we find:
(
aβa

+
γ − εa+γ aβ

) ∣∣ϕα1 · · ·ϕαN
〉(ε) = δ(β − γ )

∣∣ϕα1 · · ·ϕαN
〉(ε)

.

This proves (1.45).

Thus, by using (1.36) and (1.41), we can refer all theN -particle states to the vacuum
state |0〉, by repeated application of creation and annihilation operators. The effect
of the annihilator on |0〉 is trivial (1.43). Using the commutation relations (1.37),
(1.44) and (1.45), we can change the order of the operators in any desired manner.

However, the introduction of the creation and annihilation operators is advanta-
geous only if we are able to describe the N -particle observables within the same
formalism.

Using the completeness relation (1.32) for an arbitrary observable Â, we initially
find:

Â = 1 · Â · 1 =

=
∫
· · ·
∫

dα1 · · · dαNdβ1 · · · dβN
∣∣ϕα1 · · ·

〉(ε) ·

·(ε) 〈ϕα1 · · · |Â|ϕβ1 · · ·
〉(ε) (ε) 〈

ϕβ1 · · ·
〉
. (1.46)

We now insert (1.36) and (1.41):

Â = 1

N !
∫
· · ·
∫

dα1 · · · dαNdβ1 · · · dβNa+α1
· · · a+αN |0〉.

·(ε) 〈ϕα1 · · · |Â|ϕβ1 · · ·
〉(ε) 〈0|aβN · · · aβ1 . (1.47)
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As a rule, Â will contain single-particle and two-particle parts:

Â =
n∑

i=1

Â
(i)

1 + 1

2

i �=j∑

i,j

Â
(i,j)

2 . (1.48)

We first discuss the single-particle part, for which in (1.47) the following matrix
element is required:

(ε)
〈
ϕα1 · · ·

∣∣
n∑

i=1

Â
(i)

1

∣∣ϕβ1 · · ·
〉(ε) =

= 1

N !
∑

Pβ

εpβPβ
[〈
ϕ(1)α1

∣∣Â(1)1

∣∣ϕ(1)β1

〉 〈
ϕ(2)α2

∣∣ϕ(2)β2

〉
· · ·
〈
ϕ(N)αN

∣∣ϕ(N)βN

〉
+

+ · · ·+
+
〈
ϕ(1)α1

∣∣ϕ(1)β1

〉
· · ·
〈
ϕ(N)αN

∣∣Â(N)1

∣∣ϕ(N)βN

〉]
. (1.49)

Here, we have already made use of (1.28). It can readily be seen that each term of
the sum over the permutations gives exactly the same contribution after inserting

(1.49) into (1.47). Every permuted arrangement of the
∣∣∣ϕ(i)βi

〉
can namely be reduced

to the standard arrangement by:

1. renaming the integration variables βi and
2. then exchanging the corresponding annihilation operators.

The exchange in Part 2 yields a factor εpβ , owing to (1.44). Overall, this gives for
each permutation a coefficient ε2pβ = +1.

In a similar fashion, one can show that each summand within the square brackets
in (1.49) also gives the same contribution to (1.47). This is achieved by:

1. exchanging corresponding integration variables(
αj ⇐⇒ αi, βj ⇐⇒ βi

)
and

2. then regrouping of equal numbers of creation and annihilation operators.

Part 2 gives in each case a factor
(
ε2
)nj = +1. We thus obtain an intermediate result

which is already greatly simplified:

n∑

i=1

Â
(i)

1 =

= N

N !
∫
· · ·
∫

dα1 · · · dβNa+α1
· · · a+αN |0〉·

·
{〈
ϕ(1)α1

∣∣∣Â(1)1

∣∣∣ϕ(1)β1

〉
δ(α2 − β2) · · · δ(αN − βN)

}
·
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· 〈0|aβN · · · aβ1 =

=
∫∫

dα1dβ1

〈
ϕ(1)α1

∣∣Â(1)1

∣∣ϕ(1)β1

〉
a+α1
·

·
{

1

(N − 1)!
∫
· · ·
∫

dα2 · · · dαNa+α2
· · · a+αN |0〉 〈0|aαN · · · aα2

}
aβ1 . (1.50)

As one can read off (1.32), the curly brackets contain the identity 1 of H(ε)
N−1. As the

result, we then have:

n∑

i=1

Â
(i)

1 ≡
∫∫

dα dβ
〈
ϕα
∣∣Â1
∣∣ϕβ

〉
a+α aβ. (1.51)

On the right-hand side, the particle number N no longer appears explicitly. It is
of course contained implicitly in the identity, which from (1.50) should in fact be
imagined to occur between a+α and aβ .

In a completely analogous way, we now treat the two-particle part of the
observables Â:

1

2

i �=j∑

i,j

Â
(i,j)

2 =

= 1

2N !
∫
· · ·
∫

dα1 · · · dβNa+α1
· · · a+αN |0〉·

·
⎧
⎨

⎩
1

N !
∑

Pβ

εpβPβ
[〈
ϕ(1)α1

∣∣〈ϕ(2)α2

∣∣Â (1,2)
2

∣∣∣ϕ(1)β1

〉 ∣∣∣ϕ(2)β2

〉
·

·
〈
ϕ(3)α3

∣∣ϕ(3)β3

〉
· · ·
〈
ϕ(N)αN

∣∣ϕ(N)βN

〉
+

+ 〈ϕ(1)α1

∣∣〈ϕ(3)α3

∣∣Â (1,3)
2

∣∣∣ϕ(1)β1

〉 ∣∣∣ϕ(3)β3

〉 〈
ϕ(2)α2

∣∣ϕ(2)β2

〉
·

·
〈
ϕ(4)α4

∣∣ϕ(4)β4

〉
· · ·
〈
ϕ(N)αN

∣∣ϕ(N)βN

〉
+ · · ·

]}
〈0|aβN · · · aβ1 . (1.52)

Precisely the same argumentation can be applied here as was used above for the
single-particle portion, in order to show that all the N ! permutations Pβ contribute
to the multiple integral in a similar manner, and furthermore, that all N(N − 1)
summands in the square brackets are equivalent. This means that:

1

2

i �=j∑

i,j

Â
(i,j)

2 = 1

2

∫
· · ·
∫

dα1dα2dβ1dβ2

〈
ϕα1ϕα2

∣∣Â (1,2)
2

∣∣ϕβ1ϕβ2

〉
.
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· a+α1
a+α2

{
1

(N − 2)!
∫
· · ·
∫

dα3 · · · dαN ·

· a+α3
· · · a+αN |0〉 〈0|aαN · · · aα3

}
aβ2aβ1 . (1.53)

The curly brackets now contain the identity 1 of H(ε)
N−2. With this, we find:

1

2

i �=j∑

i,j

Â
(i,j)

2 = 1

2

∫
· · ·
∫

dα dβ dγ dδ
〈
ϕαϕβ

∣∣Â2
∣∣ϕγ ϕδ

〉
a+α a+β aδaγ . (1.54)

The matrix element can be constructed with non-symmetrised states,

〈
ϕαϕβ

∣∣Â2
∣∣ϕγ ϕδ

〉 = 〈ϕ(1)α
∣∣
〈
ϕ
(2)
β

∣∣Â (1,2)
2

∣∣ϕ(1)γ
〉 ∣∣∣ϕ(2)δ

〉
,

but also with symmetrised two-particle states:

∣∣ϕγ ϕδ
〉(ε) = 1

2!
(∣∣ϕ(1)γ

〉 ∣∣∣ϕ(2)δ
〉
+ ε
∣∣ϕ(2)γ

〉 ∣∣∣ϕ(1)δ
〉)
.

One can again readily convince oneself that in

(ε)
〈
ϕαϕβ

∣∣Â2
∣∣ϕγ ϕδ

〉(ε) = 1

4

{〈
ϕ(1)α

∣∣
〈
ϕ
(2)
β

∣∣Â (1,2)
2

∣∣ϕ(1)γ
〉 ∣∣∣ϕ(2)δ

〉
+

+ ε
〈
ϕ(1)α

∣∣
〈
ϕ
(2)
β

∣∣Â (1,2)
2

∣∣ϕ(2)γ
〉 ∣∣∣ϕ(1)δ

〉
+

+ ε〈ϕ(2)α
∣∣
〈
ϕ
(1)
β

∣∣Â (1,2)
2

∣∣ϕ(1)γ
〉 ∣∣∣ϕ(2)δ

〉
+

+ ε2〈ϕ(2)α
∣∣
〈
ϕ
(1)
β |Â (1,2)

2 |ϕ(2)γ
〉 ∣∣∣ϕ(1)δ

〉 }

every summand provides the same contribution to (1.54), so that the normalisation
factor guarantees that the symmetrised matrix element in (1.54) is equivalent to the
non-symmetrised one. One can thus make the choice on the basis of convenience.

Let us summarise briefly what we have achieved thus far. Through (1.36) and
(1.41), we were able to replace the tedious construction of (anti-)symmetrised
products of single-particle wavefunctions for the N -particle wavefunctions by
sequentially applying creation operators to the vacuum state |0〉. Their application
is simple. The symmetry behaviour of the wavefunctions is reproduced by the
three fundamental commutation relations (1.37), (1.44) and (1.45). The N -particle
observables also can be expressed in terms of the creation and annihilation oper-
ators, (1.51) and (1.54), whereby the remaining matrix elements can be computed
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straightforwardly. We will give some examples of the application of this procedure
in Chap. 2.

We now introduce two important special operators:

The occupation-density operator

n̂α = a+α aα. (1.55)

The action of this operator is found by considering (1.35) and (1.42):

n̂α
∣∣ϕα1 · · ·ϕαN

〉(ε) = δ(α − α1)
∣∣ϕαϕα2 · · ·ϕαN

〉(ε)+
+ εδ(α − α2)

∣∣ϕαϕα1ϕα3 · · ·ϕαN
〉(ε)+

+ · · ·+
+ εN−1δ(α − αN)

∣∣ϕαϕα1 · · ·ϕαN−1

〉(ε) =
= δ(α − α1)

∣∣ϕαϕα2 · · ·ϕαN
〉(ε)+

+ εδ(α − α2)ε
∣∣ϕα1ϕαϕα3 · · ·ϕαN

〉(ε)+
+ · · ·+
+ εN−1δ(α − αN)ε

N−1
∣∣ϕα1 · · ·ϕαN−1ϕα

〉(ε)
.

The basis states of H(ε)
N are thus apparently eigenstates of the occupation-density

operator:

n̂α
∣∣ϕα1 · · ·ϕαN

〉(ε) =
{

n∑

i=1

δ(α − αi)

}
∣∣ϕα1 · · ·ϕαN

〉(ε)
. (1.56)

The microscopic occupation density is contained in the curly brackets.

The particle-number operator

N̂ =
∫

dα n̂α =
∫

dα a+α aα. (1.57)

It follows immediately from (1.56) that the basis states of H(ε)
N are also eigenstates

of N̂ , whereby in every case the eigenvalue is the total particle number N .
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N̂
∣∣ϕα1 · · ·ϕαN

〉(ε) =
∫

dα
N∑

i=1

δ(α − αi)
∣∣ϕα1 · · ·ϕαN

〉(ε) =

= N
∣∣ϕα1 · · ·ϕαN

〉(ε)
. (1.58)

Making use of the fundamental commutation relations for the creation and annihi-
lation operators, we compute the following commutator:

[
n̂α, a

+
β

]

− = n̂αa
+
β − a+β n̂α =

= a+α aαa+β − a+β n̂α =

= a+α
(
δ(α − β)+ εa+β aα

)
− a+β n̂α =

= a+α δ(α − β)+ ε2a+β a
+
α aα − a+β n̂α.

The last two terms just cancel:

[
n̂α, a

+
β

]

− = a+α δ(α − β). (1.59)

In an analogous manner, one shows that:

[
n̂α, aβ

]
− = −aαδ(α − β). (1.60)

With (1.57), the analogous relations for the particle number operator are obtained:

[
N̂, a+α

]
− = a+α ;

[
N̂, aα

]
− = −aα. (1.61)

This can also be written as follows:

N̂a+α = a+α
(
N̂ + 1

) ; N̂aα = aα
(
N̂ − 1

)
. (1.62)

If we apply this combination of operators to a basis state,

N̂
(
a+α
∣∣ϕα1 · · ·ϕαN

〉(ε)) = (N + 1)
(
a+α
∣∣ϕα1 · · ·ϕαN

〉(ε))
,

N̂
(
aα
∣∣ϕα1 · · ·ϕαN

〉(ε)) = (N − 1)
(
aα
∣∣ϕα1 · · ·ϕαN

〉(ε))
,

then we can again recognise that the terms creation operator for a+α and annihilation
operator for aα are clearly appropriate.

We have made the assumption in this section that the single-particle observable
ϕ̂, from whose eigenstates we constructed the N -particle basis of the Hilbert space
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H(ε)
N , possesses a continuous spectrum. A prominent example of this class of

observables is the

position operator r̂ .

The associated creation and annihilation operators are called

field operators ψ̂(r), ψ̂+(r).
All of the relations derived above naturally hold for these operators, however with a
special notation:

ψ̂+(r)|r1 · · · rN 〉(ε) =
√
N + 1|rr1 · · · rN 〉(ε), (1.63)

|r1r2 · · · rN 〉(ε) = 1√
N ! ψ̂

+(r1) · · · ψ̂+(rN)|0〉. (1.64)

The commutation relations of the field operators follow immediately from (1.37),
(1.44) and (1.45):

[
ψ̂+(r), ψ̂+

(
r ′
)]
−ε =

[
ψ̂(r), ψ̂

(
r ′
)]
−ε = 0,

[
ψ̂(r), ψ̂+

(
r ′
)]
−ε = δ

(
r − r ′

)
. (1.65)

Their relationship with general creation and annihilation operators aα, a+α is impor-
tant. The completeness relation yields:

|ϕα〉 =
∫

d3r|r〉〈r|ϕα
〉 =

∫
d3rϕα(r)|r〉.

It thus follows owing to |ϕα〉 = a+α |0〉 and |r〉 = ψ̂+(r)|0〉 that:

a+α =
∫

d3rϕα(r)ψ̂
+(r), (1.66)

aα =
∫

d3rϕ∗α(r)ψ̂(r). (1.67)

Note that ψ̂(r), ψ̂+(r) are operators, whilst ϕα(r) is the scalar wavefunction
belonging to the state |ϕα〉. The inverses of (1.66) and (1.67) follow from

|r〉 =
∫

dα |ϕα〉
〈
ϕα|r

〉

with the same considerations as above:

ψ̂+(r) =
∫

dα ϕ∗α(r)a+α , (1.68)

ψ̂(r) =
∫

dα ϕα(r)aα. (1.69)
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1.3 The “Discrete” Fock Representation

We again assume that the basis of the Hilbert space H(ε)
N of a system of N identical

particles is constructed from the eigenstates of a single-particle observable ϕ̂,
whereby now however ϕ̂ is taken to have a discrete spectrum:

ϕ̂|ϕα〉 = ϕα|ϕα〉, (1.70)

〈ϕα
∣∣ϕβ〉 = δαβ, (1.71)

∑

α

|ϕα〉 〈ϕα| = 1 in H1. (1.72)

In principle, we can make use of the same considerations as in Sect. 1.2, and can
therefore proceed somewhat more quickly.

Our starting point is a non-symmetrised N -particle state of the form (1.25):

∣∣ϕα1 · · ·ϕαN
〉 =

∣∣∣ϕ(1)α1

〉
· · ·
∣∣∣ϕ(N)αN

〉
. (1.73)

The state indices α1, . . . αN are taken here again to be given in an arbitrary, but
fixed standard ordering. We now apply the operator Ŝε from (1.18) to this state
and obtain an

(anti-)symmetrised N -particle state

∣∣ϕα1 · · ·ϕαN
〉(ε) = Cε

∑

P
εpP

∣∣ϕα1 · · ·ϕαN
〉
, (1.74)

which differs formally from (1.26) only through a normalisation constant Cε,
which is still to be determined. One can see that for Fermions (ε = −), the
antisymmetrised state may also be written in the form of a determinant:

∣∣ϕα1 · · ·ϕαN
〉(−) = C−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣ϕ(1)α1

〉 ∣∣∣ϕ(2)α1

〉
· · ·
∣∣∣ϕ(N)α1

〉

∣∣∣ϕ(1)α2

〉 ∣∣∣ϕ(2)α2

〉
· · ·
∣∣∣ϕ(N)α2

〉

...
...

...
...∣∣∣ϕ(1)αN

〉 ∣∣∣ϕ(2)αN
〉
· · ·
∣∣∣ϕ(N)αN

〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (1.75)

the Slater determinant.
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If two sets of quantum numbers are the same in the N -particle state (αi = αj ), then
this means that two rows in the determinant would be the same. The determinant
would then have the value zero. The probability of finding two Fermions in the
same single-particle state is thus zero. This is equivalent to the statement made by
the Pauli principle, which of course holds not only for the case discussed here
of a discrete spectrum. Naturally, one can also write (1.26) for ε = − as a Slater
determinant.

As the next step, we want to determine the normalisation constant Cε and
introduce to this end the

occupation numbers ni .

These numbers reflect the frequency with which a particular single-particle state∣∣ϕαi
〉

occurs within the N -particle state
∣∣ϕα1 · · ·

〉(ε), or, more intuitively, the number
of identical particles in the state

∣∣ϕαi
〉
:

∑

i

ni = N,

ni = 0, 1 Fermions, (1.76)

ni = 0, 1, 2, . . . Bosons.

Let Cε be real and chosen in such a way that the N -particle state
∣∣ϕα1 · · ·ϕαN

〉(ε) is
normalised to 1. It then follows that:

1
!=
〈
ϕ
(ε)
N

∣∣ϕ(ε)N
〉
= Cε

∑

P
εp
〈
ϕα1 · · ·ϕαN

∣∣P+
∣∣ϕ(ε)N

〉
(P+=P)=

(P+=P)= Cε
∑

P
ε2p
〈
ϕα1 · · ·

∣∣ϕ(ε)N
〉
=

= N !Cε
〈
ϕα1 · · ·ϕαN

∣∣ϕ(ε)N
〉
.

This yields:

(
N !C2

ε

)−1 =
∑

P
εp
〈
ϕ(1)α1

∣∣〈ϕ(2)α2

∣∣ · · · 〈ϕ(N)αN

∣∣
(
P
∣∣ϕ(1)α1

〉 · · · ∣∣ϕ(N)αN

〉)
. (1.77)

In the case of Fermions, each state occurs once and only once, i.e. all N single-
particle states are pairwise distinct. The right-hand side is thus only nonzero when
P is the identity, and then, due to ε0 = +1 and to (1.71), it is equal to 1.

C− = 1√
N ! . (1.78)
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For Bosons (ε = +), all the permutations are allowed which simply exchange the
particles in the ni equivalent single-particle states |ϕαi 〉. Clearly, there are

n1!n2! · · · ni ! · · ·

such permutations, each of which contributes a summand with the value +1 to
(1.77). This leads to:

C+ =
(

N !
∏

i

ni !
)−1/2

. (1.79)

Formally, this expression is valid also for Fermions, due to 0! = 1! = 1.
We can see that an (anti-)symmetrised N -particle state can be uniquely charac-

terised by giving its occupation numbers. This leads to an alternate representation,
which is called the

occupation-number representation:

∣∣N; n1n2 · · · ni · · · nj · · ·
〉(ε) ≡ ∣∣ϕα1 · · ·ϕαN

〉(ε) =
= Cε

∑

P
εpP

{ ∣∣∣ϕ(1)α1

〉 ∣∣∣ϕ(2)α1

〉
· · ·

︸ ︷︷ ︸
n1

· · ·
∣∣∣ϕ(p)αi

〉 ∣∣∣ϕ(p+1)
αi

〉
· · ·

︸ ︷︷ ︸
ni

}
. (1.80)

In the symbol for the state, all occupation numbers are given; the unoccupied single-
particle states are then denoted by ni = 0. Two states are clearly identical if and only
if they are the same in terms of all the occupation numbers. The

orthonormalisation

(ε)
〈
N; · · · ni · · ·

∣∣N; · · · n̄i · · ·
〉(ε) = δNN

∏

i

δni n̄i (1.81)

follows immediately from the single-particle states. This holds in the same way for
the

completeness

∑

n1

∑

n2

· · ·
∑

ni

· · · |N; · · · ni · · · 〉(ε)(ε)〈N; · · · ni · · · | = 1 (1.82)
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of the so-called Fock states. The sum runs over all the allowed occupation numbers
with the condition

∑
i ni = N .

The creation and annihilation operators, which we shall now discuss, are defined
up to their normalisation factors as in Sect. 1.2:

The creation operator: a+αr ≡ a+r

a+r |N; · · · nr · · · 〉(ε) =
= a+r

∣∣ϕα1 · · ·ϕαN
〉(ε) ≡

≡ √nr + 1

∣∣∣∣∣∣∣
ϕαr ϕα1ϕα1 · · ·︸ ︷︷ ︸

n1

· · ·ϕαr ϕαr · · ·︸ ︷︷ ︸
nr

· · ·
〉(ε)

=

= εNr
√
nr + 1

∣∣∣∣∣∣∣
ϕα1ϕα1 · · ·︸ ︷︷ ︸

n1

· · ·ϕαr ϕαr · · ·︸ ︷︷ ︸
nr+1

· · ·
〉(ε)

(1.83)

Here,

Nr =
r−1∑

i=1

ni (1.84)

is assumed to hold. The creation operator thus acts as follows:

Bosons:

a+r |N; · · · nr · · · 〉(+) =
√
nr + 1|N + 1; · · · nr + 1 · · · 〉(+),

Fermions:

a+r |N; · · · nr · · · 〉(−) = (−1)Nr δnr ,0|N + 1; · · · nr + 1 · · · 〉(−). (1.85)

Every N -particle Fock state can be created by repeated application of the creation
operators from the vacuum state:

|N; n1 · · · ni · · · 〉(ε) =
∑
np=N∏

p=1···

(a+p )np√
np!

εNp |0〉. (1.86)

The annihilation operator: ar ≡ (a+
r )

+
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is again defined as the adjoint of the creation operator. Its action can be read off the
following general matrix element:

(ε)
〈
N; · · · nr · · ·

∣∣ar
∣∣N; · · · n̄r · · ·

〉(ε) =
= εNr

√
nr + 1

(ε)〈N + 1; · · · nr + 1 · · · ∣∣N; · · · n̄r · · ·
〉(ε) =

= εNr
√
nr + 1δN+1,N

(
δn1n̄1 · · · δnr+1,n̄r · · ·

) =
= εN̄r

√
n̄r δN,N−1

(
δn1n̄1 · · · δnr ,n̄r−1 · · ·

) =

= εNr
√
n̄r
(ε) 〈

N; n1 · · · nr · · ·
∣∣N − 1; n̄1 · · · n̄r − 1 · · · 〉(ε) .

This holds for arbitrary basis states, so that clearly it must follow that:

ar
∣∣N; · · · n̄r · · ·

〉(ε) = εNr
√
n̄r
∣∣N − 1; n̄1 · · · n̄r − 1 · · · 〉(ε) .

For Fermions, we still have to take into account the limitation on the occupation
numbers:

Bosons:

ar |N; · · · nr · · · 〉(+) = √
nr |N − 1; · · · nr − 1 · · · 〉(+),

Fermions:

ar |N; · · · nr · · · 〉(−) = δnr ,1(−1)Nr |N − 1; · · · nr − 1 · · · 〉(−).

(1.87)

To derive the fundamental commutation relations, we start from our definition
Eqs. (1.85) and (1.87). One can directly read off the following relations:

1. Bosons (r �= p):

a+r a+p
∣∣· · · nr · · · np · · ·

〉(+) =
= √nr + 1

√
np + 1

∣∣· · · nr + 1 · · · np + 1 · · · 〉(+) =
= a+p a+r

∣∣· · · nr · · · np · · ·
〉(+)

,

(1.88)

arap
∣∣· · · nr · · · np · · ·

〉(+) =
= √

nr
√
np
∣∣· · · nr − 1 · · · np − 1 · · · 〉(+) =

= apar
∣∣· · · nr · · · np · · ·

〉(+)
,

(1.89)

(continued)
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a+r ap
∣∣· · · nr · · · np · · ·

〉(+) =
= √

np
√
nr + 1

∣∣· · · nr + 1 · · · np − 1 · · · 〉(+) =
= apa

+
r

∣∣· · · nr · · · np · · ·
〉(+)

.

(1.90)

a+r ar | · · · nr · · · 〉(+) =
= √

nra
+
r | · · · nr − 1 · · · 〉(+) =

= nr | · · · nr · · · 〉(+),
(1.91)

ara
+
r | · · · nr · · · 〉(+) =
= √nr + 1ar | · · · nr + 1 · · · 〉(+) =
= (nr + 1)| · · · nr · · · 〉(+).

(1.92)

2. Fermions (r < p):

a+r a+p
∣∣· · · nr · · · np · · ·

〉(−) =
= (−1)Np (−1)Nr δnr ,0δnp,0

∣∣· · · nr + 1 · · · np + 1 · · · 〉(−) ,
a+p a+r

∣∣· · · nr · · · np · · ·
〉(−) =

= (−1)Nr (−1)Np+1δnr ,0δnp,0
∣∣· · · nr + 1 · · · np + 1 · · · 〉(−) =

= −a+r a+p
∣∣· · · nr · · · np · · ·

〉(−)
,

(1.93)

a+r ar | · · · nr · · · 〉(−) =
= (−1)2Nr δnr ,1| · · · nr · · · 〉(−) = δnr ,1| · · · nr · · · 〉(−),

(1.94)

ara
+
r | · · · nr · · · 〉(−) =
= (−1)2Nr δnr ,0| · · · nr · · · 〉(−) = δnr ,0| · · · nr · · · 〉(−),

a+r ap
∣∣· · · nr · · · np · · ·

〉(−) =
= (−1)Np (−1)Nr δnp,1δnr ,0

∣∣· · · nr + 1 · · · np − 1 · · · 〉(−)

apa
+
r | · · · nr · · · np · · · 〉(−) =

(1.95)

(continued)
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= (−1)Nr (−1)Np+1δnr ,0δnp,1
∣∣· · · nr + 1 · · · np − 1 · · · 〉(−) =

= −a+r ap
∣∣· · · nr · · · np · · ·

〉(−)
.

(1.96)

Since all of these relations hold for arbitrary basis states, the following operator
identities can be directly obtained:

[ar , as]−ε = 0, (1.97)
[
a+r , a+s

]
−ε = 0, (1.98)

[
ar , a

+
s

]
−ε = δrs . (1.99)

These are the fundamental commutation relations which are analogous to (1.37),
(1.44) and (1.45) for the creation and annihilation operators in the discrete Fock
representation.

In order to represent an arbitrary operator Â, which as in (1.48) consists of single-
particle and two-particle parts, within the formalism of the second quantisation
in terms of creation and annihilation operators, we make use of exactly the same
considerations as in the case of a continuous spectrum:

Â ≡
∑

p,r

〈
ϕαp

∣∣Â1
∣∣ϕαr

〉
a+p ar+

+ 1

2

∑

p,r,
s,t

〈
ϕ(1)αp ϕ

(2)
αr

∣∣Â2
∣∣ϕ(1)αt ϕ

(2)
αs

〉
a+p a+r asat . (1.100)

The only difference from the continuous case consists of the fact that here, the two-
particle matrix element must be formed in every case with non-symmetrised two-
particle states. In (1.54), we could also use the (anti-)symmetrised states. The reason
for this lies exclusively in the different normalisations.

The analogy to the occupation-density operator (1.55) is, in the discrete case, the

occupation-number operator

n̂r = a+r ar . (1.101)

One can see from (1.90) and (1.94) that the Fock states are eigenstates of n̂r :

n̂r |N; · · · nr · · · 〉(ε) = nr |N; · · · nr · · · 〉(ε) . (1.102)
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n̂r thus asks the question: How many particles occupy the r-th single-particle state:

Particle number operator

N̂ =
∑

r

n̂r . (1.103)

Its eigenstates are the Fock states with the total particle number N as eigenvalue:

N̂ |N; · · · nr · · · 〉(ε) =
(
∑

r

nr

)

|N; · · · nr · · · 〉(ε) =

= N |N; · · · nr · · · 〉(ε). (1.104)

The derivation of the following useful commutation relations, which hold equally
for Bosons and for Fermions, can be carried out using (1.97), (1.98) and (1.99) and
is recommended as an exercise:

[
n̂r , a

+
p

]

− = δrpa
+
p ; [n̂r , ap]− = −δrpap,

[N̂, a+p ]− = a+p ; [N̂, ap]− = −ap. (1.105)

1.4 Exercises

Exercise 1.4.1 Two identical particles are moving in a one-dimensional
potential well with infinitely high walls:

V (x) =
{

0 f or 0 ≤ x ≤ a,

∞ f or x < 0 and x > a.

Compute their energy eigenfunctions and the energy eigenvalues of the two-
particle system, in the case that (a) the particles are Bosons, and (b) the
particles are Fermions. What is the ground-state energy in the case of N � 1
Bosons or Fermions?
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Exercise 1.4.2 Consider a system of two spin 1/2 particles. The common
eigenstates

∣∣∣Si,m
(i)
S

〉
; Si = 1

2
; m

(i)
S = ±1

2
; i = 1, 2

of the spin operators S2
i , S

z
i ,

S2
i

∣∣∣∣
1

2
,m

(i)
S

〉
= 3

4
h̄2
∣∣∣∣
1

2
,m

(i)
S

〉
; Szi

∣∣∣∣
1

2
,m

(i)
S

〉
= h̄m

(i)
S

∣∣∣∣
1

2
,m

(i)
S

〉
,

form a complete single-particle basis. For the non-symmetrised two-particle
states,

∣∣∣m(1)
S1
,m

(2)
S2

〉
=
∣∣∣∣
1

2
,m

(1)
S1

〉 ∣∣∣∣
1

2
,m

(2)
S2

〉
,

let the permutation (transposition) operator P12 be defined as usual:

P12

∣∣∣m(1)
S1
,m

(2)
S2

〉
=
∣∣∣m(2)

S1
,m

(1)
S2

〉
.

Prove the following statements:

1. The common eigenstates |S,MS〉t of the operators

S2
1,S

2
2,S

2 = (S1 + S2)
2, Sz = Sz1 + Sz2,

|0, 0〉t = 2−1/2
(∣∣(1/2)(1), (−1/2)(2)

〉− ∣∣(1/2)(2), (−1/2)(1)
〉)
,

|1, 0〉t = 2−1/2
(∣∣(1/2)(1), (−1/2)(2)

〉+ ∣∣(1/2)(2), (−1/2)(1)
〉)
,

|1,±1t =
∣∣∣(±1/2)(1), (±1/2)(2)

〉

are eigenstates of P12.
2. In H(ε)

2 , the following relations hold:

P12S1P12 = S2; P12S2P12 = S1.

(continued)
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Exercise 1.4.2 (continued)
3. The representation

P12 = 1

2

(
1+ 4

h̄2 S1 · S2

)
.

applies.

Exercise 1.4.3 Let the normalised vacuum state |0〉(〈0 | 0〉 = 1) and |ϕα〉 be
an eigenstate belonging to an observable �̂ with a continuous spectrum:

〈
ϕα
∣∣ϕβ
〉 = δ(α − β).

a+α and aα are creation and annihilation operators for a particle in a single-
particle state |�α〉. Using the commutation relations for a+α , aα , derive the
following expressions:

〈0 | aβN · · · aβ1a
+
α1
· · ·α+αN | 0〉 =

∑

Pα

εpαPα(δ(β1 − α1) · · · δ(βN − αN)).

Pα is the permutation operator which acts on the state indices αi . ε is +1 for
Bosons and −1 for Fermions.

Exercise 1.4.4 Consider a system of N identical (spinless) particles with a
pair interaction which depends only on their distance

Vij = V
(∣∣r i − rj

∣∣) .

Show that the Hamiltonian

H =
n∑

i=1

p2
i

2m
+ 1

2

i �=j∑

i,j

Vij

can be written as follows in the continuous k representation (plane waves!):

H =
∫

d3k

(
h̄2k2

2m

)

a+
k
ak + 1

2

∫∫∫
d3k d3 p d3q V (q)a+

k+q
a+p−qapak.

(continued)
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Exercise 1.4.4 (continued)
Here,

V (q) = (2π)−3
∫

d3r V (r)eiq·r = V (−q)

is the Fourier transform of the interaction potential. You can use the following
form of the δ function:

δ
(
k − k′

) = (2π)−3
∫

d3r e−i(k−k′)·r .

Exercise 1.4.5 Show that the particle number operator

N̂ =
∫

d3k a+k ak

commutes with the Hamiltonian from Exercise 1.4.4!

Exercise 1.4.6 For a system of N identical (spinless) particles with a pair
interaction which depends only on their distance V (

∣∣r−r ′
∣∣), the Hamiltonian

H can be expressed in the second quantisation in terms of the field operators:

H =
∫

d3rψ̂+(r)
{

− h̄2

2m
�r

}

ψ̂(r)+

+ 1

2

∫∫
d3r d3r ′ψ̂+(r)ψ̂+(r ′)V

(∣∣r − r ′
∣∣) ψ̂(r ′)ψ̂(r).

Demonstrate the equivalence of this description to the k representation for H
which was derived in Exercise 1.4.4 by making use of plane waves as single-
particle wavefunctions.

Exercise 1.4.7 Let aϕα = aα and a+ϕα = a+α be annihilation and creation
operators for single-particle states |ϕα〉 of an observable �̂ with a discrete

(continued)
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Exercise 1.4.7 (continued)
spectrum. Compute the following commutators using the fundamental com-
mutation relations for Bosons and for Fermions:

1.
[
n̂α, a

+
β

]

−;

2.
[
n̂α, aβ

]
−;

3.
[
N̂, a+α

]
−;

4.
[
N̂, aα

]
−.

Exercise 1.4.8 Show that with the assumptions made in Exercise 1.4.7 for
Fermions, the following relations are valid:

1. (aα)2 = 0;
(
a+α
)2 = 0,

2. (n̂α)2 = n̂α ,
3. aαn̂α = aα; a+α n̂α = 0,
4. n̂αaα = 0; n̂αa+α = a+α .

Exercise 1.4.9 Consider a system of non-interacting, identical Bosons or
Fermions:

H =
N∑

i=1

H
(i)
1 .

The single-particle operator H
(i)
1 is supposed to have a discrete, non-

degenerate spectrum:

H
(i)
1

∣∣∣ϕ(i)r
〉
= εr

∣∣∣ϕ(i)r
〉
;
〈
ϕ(i)r

∣∣ϕ(i)S
〉
= δrs .

The
∣∣∣ϕ(i)r

〉
are used to construct the Fock states |N; n1, n2, . . .〉(ε). The general

state of the system is described by the non-normalised density matrix ρ,
for which in the grand canonical ensemble (variable particle number!), the
following holds:

ρ = exp
[−β (H − μN̂)

]
.

(continued)
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Exercise 1.4.9 (continued)

1. What is the Hamiltonian in second quantisation?
2. Verify that for the grand canonical partition function, the following relation

holds:

�(T , V,μ) = Trρ =
{∏

i {1− exp[−β (εi − μ)]}−1 Bosons,∏
i {1+ exp[−β (εi − μ)]} Fermions.

3. Compute the expectation value of the particle number.

〈
N̂
〉 = 1

�
T r
(
ρN̂
)
.

4. Compute the internal energy:

U = 〈H 〉 = 1

�
T r(ρH).

5. Compute the mean occupation number of the i-th single-particle state,

〈n̂i〉 = 1

�
T r
(
ρa+i ai

)

and show that the following relation holds:

U =
∑

i

εi〈n̂i〉;
〈
N̂
〉 =

∑

i

〈̂ni〉.

Exercise 1.4.10 Consider a system of electrons which stem from two differ-
ent energy levels, ε1 and ε2. They are described by the following Hamiltonian:

H =
∑

σ

[
ε1a

+
1σ a1σ + ε2a

+
2σ a2σ + V

(
a+1σ a2σ + a+2σ a1σ

)]
(σ =↑ or ↓).

1. Show that H commutes with the particle number operator

N̂ =
∑

σ

(
a+1σ a1σ + a+2σ a2σ

)
.

(continued)
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Exercise 1.4.10 (continued)
2. Develop a general procedure for computing the energy eigenvalues for

arbitrary total electron numbers N (N = 0, 1, 2, 3, 4), making use of the
Fock states

|N;F 〉 = ∣∣N; n1↑n1↓; n2↑n2↓
〉(−)

.

3. Calculate the energy eigenvalues for N = 0 and N = 1.
4. Show that of the six possible Fock states for N = 2, two are already

eigenstates of H . Solve the remaining 4× 4 secular determinant.
5. Find the energy eigenvalues for N = 3 and N = 4.

1.5 Self-Examination Questions

1.5.1 For Sect. 1.1

1. What is meant by identical particles?
2. Why are even identical particles distinguishable in classical physics?
3. What does the principle of indistinguishability state?
4. Justify for an arbitrary observable Â of a system of identical particles the operator

identity Â = P+ij ÂPij , where Pij is the transposition operator.
5. How does one construct (anti-)symmetrised N -particle states?
6. Can the symmetry character of a state of N identical particles change with time?
7. Justify why all the states of a system of N identical particles have the same

symmetry character.
8. Formulate the relation between spin and statistics.
9. What are Bosons, and what are Fermions? Name some examples.

1.5.2 For Sect. 1.2

1. Why is every permutation operator P in the space H(±)
N of a system of N

identical particles Hermitian?
2. What is the scalar product of two (anti-)symmetrised N -particle states, which

are constructed of single-particle states |ϕα〉 with a continuous spectrum?
3. Formulate the completeness relation for states as in 1.5.
4. How can an (anti-)symmetrisedN -particle state

∣∣ϕα1 . . . ϕαN
〉(±) be constructed

from the vacuum state |0〉 with the aid of creation operators?
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5. How does the annihilation operator aγ act on the N -particle state
∣∣ϕα1 · · ·ϕαN

〉(±)?
6. How do aα and a+α act on the vacuum state |0〉?
7. Explain the concepts creation operator and annihilation operator.
8. Formulate the three fundamental commutation relations.
9. Express a general single-particle operator in terms of creation and annihilation

operators.
10. Are there any restrictions on the single-particle basis {|ϕα〉} from which

the (anti-)symmetrised N -particle basis states of H(ε)
N are constructed? What

aspects could influence your choice of states?
11. How are the occupation-density and particle number operators defined? What

form do their eigenstates take?
12. What is meant by field operators?
13. What relation exists between field operators and the general creation and

annihilation operator aα, a+α ?

1.5.3 For Sect. 1.3

1. What does the Slater determinant describe?
2. What is the relation between the Slater determinant and the Pauli principle?
3. What is meant by the occupation number ni?
4. How does one formulate an N -particle state in the occupation representation?
5. Formulate the orthonormalisation and completeness relations for Fock states.
6. Describe the action of creation and annihilation operators on N -particle states in

the occupation representation.
7. How can an N -particle Fock state be created from the vacuum state |0〉?
8. What are the fundamental commutation relations in the discrete case?
9. Show that the Fock states are eigenstates of the occupation number and the

particle number operators.



Chapter 2
Many-Body Model Systems

In this section, we introduce some model systems which are frequently treated and
with which we shall later demonstrate and test the elements of the abstract theory.
In formulating the model Hamiltonians, we can practice the transformation from the
first to the second quantisation. The examples chosen are all taken from the field of
theoretical solid-state physics and will be preceded by some introductory remarks.

A solid is certainly a many-body system,

Solid =
N∑

i=1

(particles)i ,

composed of atoms or molecules which interact with one another. Each particle
consists of one or more positively-charged atomic nuclei and a negatively-charged
electron cloud. One distinguishes between core electrons and valence electrons.
The core electrons are strongly bound and are localised in the immediate neigh-
bourhood of the nuclei. They as a rule occupy closed electronic shells – exceptions
are e.g. the 4f electrons of the rare earths – and thus have hardly any influence on
the characteristic properties of the solid. This is in contrast to the valence electrons,
which occupy non-closed shells and are responsible for the bonding to form a solid.
Of course, this separation into core and valence electrons is not always clear cut. It
already represents a certain approximation. A lattice ion refers in this sense to the
ensemble of the atomic nucleus plus the core electrons. This leads to the following
model:

Solid:
an interacting system of particles consisting of lattice ions and valence
electrons.

© Springer Nature Switzerland AG 2018
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How is the corresponding Hamiltonian constructed?

H = He +Hi +Hei. (2.1)

The subsystem of the electrons is described by the operator He:

He =
Ne∑

i=1

p2
i

2m
+ 1

2

1

4πε0

i �=j∑

i,j

e2

|r i − rj | ≡ He,kin,+Hee. (2.2)

Ne is the number of valence electrons. The first term represents their kinetic energy,
the second term is their Coulomb interaction. r i , rj are the position vectors of the
electrons.

The subsystem of the ions is defined by the operator Hi:

Hi =
Ni∑

α=1

p2
α

2Mα

+ 1

2

α �=β∑

α,β

Vi(Rα −Rβ) ≡ Hi,kin +Hii. (2.3)

The ion-ion interaction need not be precisely specified at this point. It is in every
case a pairwise interaction. It is partially responsible for the fact that the equilibrium
positions of the ions, R

(0)
α , define a strictly periodic crystal lattice. The ions exhibit

oscillations around these equilibrium positions; the oscillation energy is quantised.
The elementary quantum is called a phonon. It is therefore expedient to separate
Hii further into

Hii = H
(0)
ii +Hp. (2.4)

H
(0)
ii determines for example the bonding in the solid, and Hp the lattice dynamics.
The interaction of the two subsystems is finally given by

Hei =
Ne∑

i=1

Ni∑

α=1

Vei(r i −Rα), (2.5)

where here also, a further separation is expedient:

Hei = H
(0)
ei +He−p. (2.6)

H
(0)
ei refers to the interaction of the electrons with the ions in their equilibrium

positions. He−p is the electron-phonon interaction.
An exact solution for the overall system (2.1) would appear to be impossible. An

approximation can be formulated in the following three steps:
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1. Electronic motions, e.g. in a rigid ionic lattice: He +H
(0)
ei .

2. Ionic motions, e.g. in a homogeneous electron gas Hp.
3. Coupling, e.g. the perturbation-theoretical treatment of He−p.

Following this concept, in the following section, we discuss the electronic
subsystem.

2.1 Crystal Electrons

2.1.1 Non-interacting Bloch Electrons

We first consider electrons in a rigid ionic lattice, which do not interact with each
other, but rather only with the periodic lattice potential, i.e. we are looking for the
solutions corresponding to the eigenstates of the following Hamiltonian:

H0 = He,kin +H
(0)
ei . (2.7)

The so-called lattice potential is defined by the ions which are fixed in their
equilibrium positions

V̂ (r i ) =
Ni∑

α=1

Vei

(
r i −R(0)

α

)
. (2.8)

More precisely, we have for the positions of the ions R
(0)
α :

R(0)
α ⇒ Rn

s = Rn +Rs ,

n = (n1, n2, n3); ni ∈ Z. (2.9)

Here, Rn defines the Bravais lattice:

Rn =
3∑

i=1

niai. (2.10)

a1, a2, a3 are the primitive translations, and Rs are the position vectors of the basis
atoms. The periodicity mentioned above refers to the Bravais lattice:

V̂ (r i +Rn)
!= V̂ (r i ). (2.11)

V̂ (r i ) = V̂ (r̂ i) is a single-particle operator, and this can be inserted into:

H
(0)
ei =

Ne∑

i=1

V̂ (r̂ i). (2.12)
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We thus have to solve the following eigenvalue equation:

h0ψk(r) = ε(k)ψk(r). (2.13)

We refer to ψk(r) as a Bloch function and ε(k) as the corresponding Bloch energy.
k is a wave vector within the first Brillouin zone. h0 refers to the operator

h0 = p2

2m
+ V̂ (r̂). (2.14)

The solution of (2.13) for realistic lattices is a non-trivial problem. Using the
periodicity (2.11) of the lattice potential, one can derive the fundamental Bloch’s
Theorem:

ψk(r +Rn) = ei k·Rn

ψk(r). (2.15)

Employing the usual ansatz

ψk(r) = uk(r)e
i k·r , (2.16)

the amplitude function must have the periodicity of the lattice:

uk(r +Rn) = uk(r). (2.17)

The Bloch functions ψk(r) form a complete, orthonormalised system:

∫
d3 rψ∗k (r)ψk′(r) = δk,k′ , (2.18)

1.BZ∑

k

ψ∗k (r)ψk(r
′) = δ(r − r ′). (2.19)

The sum runs over all the wave vectors k in the first Brillouin zone. Owing to the
periodic boundary conditions, these are discrete. Since h0 contains no spin parts, its
eigenfunctions can be factored into a spin and a configuration-space function:

|kσ 〉 ⇐⇒ Bloch state,

〈r | kσ 〉 = ψkσ (r) = ψk(r)χσ ,

χ↑ =
(

1
0

)
; χ↓ =

(
0
1

)
.

(2.20)

If we consider electrons from different energy bands, the Bloch function is also
characterised by a band index n. We limit ourselves here, however, to electrons
within a single band.
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We define:

a+
kσ

(akσ ) : creation (annihilation) operator for a Bloch electron.

Since H0 is a single-particle operator, it follows from (1.100) that:

H0 =
∑

kσ
k′σ ′

〈
kσ |h0|k′σ ′

〉
a+
kσ
ak′σ ′ .

The matrix elements can be computed in a straightforward manner:

〈
kσ |h0|k′σ ′

〉 = ε(k′)
〈
kσ |k′σ ′〉 = ε(k)δkk′δσσ ′ , (2.21)

since |kσ 〉 is an eigenstate of h0. It then follows that:

H0 =
∑

kσ

ε(k)a+kσ akσ =
∑

kσ

ε(k)nkσ . (2.22)

The Bloch operators akσ , a+
kσ

of course fulfil the fundamental commutation
relations:

[akσ , ak′σ ′ ]+ = [a+kσ , a+k′σ ′ ]+ = 0, (2.23)

[akσ , a
+
k′σ ′ ]+ = δkk′δσσ ′ . (2.24)

If we neglect the crystalline structure of the solid and consider the ionic lattice
merely as a positively-charged background for the electronic system, (V̂ (r) =
const), then the Bloch functions become plane waves,

ψk(r) ⇒
[V̂=const]

1√
V

ei k·r , (2.25)

and the Bloch energies, due to p2/2m = −(h̄2/2m)�, are:

ε(k) ⇒
[V̂=const]

h̄2k2

2m
. (2.26)

(V is the volume of the solid. It is important to distinguish between V and the lattice
potential V̂ !) We will discuss two other representations of H0 which are important
for applications, e.g. the

field operators

ψ̂+σ (r), ψ̂σ (r),
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which are to be understood as in (1.63) through (1.69), with the addition that we now
also take the spin of the electron into account. The generalisation of the formulas
given in Chap. 1 is evident. Thus, for example:

[
ψ̂σ (r), ψ̂

+
σ ′(r

′)
]
+ = δ(r − r ′)δσσ ′ . (2.27)

From this it follows for H0:

H0 =
∑

σ,σ ′

∫∫
d3r d3 r ′〈rσ |h0|r ′σ ′〉ψ̂+σ (r)ψ̂σ ′(r ′) =

=
∑

σ,σ ′

∫∫
d3 r d3 r ′δσσ ′

(

− h̄2

2m
�r ′ + V̂ (r ′)

)

δ(r − r ′)ψ̂+σ (r)ψ̂σ ′(r ′) =

=
∑

σ

∫
d3 r ψ̂+σ (r)

(

− h̄2

2m
�r + V̂ (r)

)

ψ̂σ (r). (2.28)

An additional, frequently-used particular configuration representation makes use of

Wannier functions

ωσ (r −Ri) = 1√
Ni

1.BZ∑

k

e−i k·Riψkσ (r). (2.29)

A typical feature of these functions is their relatively strong concentration around
each lattice position Ri (Fig. 2.1). With (2.18) as well as

1

Ni

1.BZ∑

k

ei k·(Ri−Rj ) = δij , (2.30)

one can readily prove the orthogonality relation:
∫

d3 r ω∗σ (r −Ri)ωσ ′(r −Rj ) = δσσ ′δij . (2.31)

Fig. 2.1 The qualitative
position dependence of the
real part of a Wannier
function
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Using the notations

|iσ 〉 ⇐⇒ Wannier state,

〈r|iσ 〉 = ωσ (r −Ri), (2.32)

a+iσ (aiσ ) : creation (annihilation) operator for an electron

in a Wannier state at the lattice site Ri,

in second quantisation, H0 is given by

H0 =
∑

ijσ

Tij a
+
iσ ajσ , (2.33)

and describes in an intuitively clear manner the hopping of an electron with spin σ
from the lattice site Rj – where it is annihilated – to the lattice site Ri, where it is
created. Tij is therefore also called the

“hopping” integral.

We start with:

〈iσ |h0|jσ ′〉 = δσσ ′ 〈iσ |h0|jσ 〉 =
= δσσ ′

∑

k,k′
σ1,σ2

〈iσ |kσ1〉〈kσ1|h0|k′σ2〉〈k′σ2|jσ 〉 =

= δσσ ′
∑

k,k′
σ1,σ2

ε(k′)〈iσ |kσ1〉〈kσ1|k′σ2〉〈k′σ2|jσ 〉 =

= δσσ ′
∑

k,σ1

ε(k)〈iσ |kσ1〉〈kσ1|jσ 〉.

(2.34)

The remaining matrix elements can then be computed as follows:

〈iσ |kσ1〉 =
∫

d3 r 〈iσ |r〉〈r|kσ1〉 =

=
∫

d3 r ω∗σ (r −Ri)ψkσ1(r) =

= 1√
Ni

∑

k′
ei k′·Ri

∫
d3 r ψ∗

k′σ (r)ψkσ1(r) =

= 1√
Ni

∑

k′
ei k′·Riδkk′δσσ1 = δσσ1

ei k·Ri

√
Ni

.

This yields in (2.34):

〈iσ |h0|jσ ′〉 = δσσ ′Tij (2.35)
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with

Tij = 1

Ni

∑

k

ε(k)ei k·(Ri−Rj ). (2.36)

The inverse relation is given by:

ε(k) = 1

Ni

∑

i,j

Tij e−i k·(Ri−Rj ), (2.37)

as can be verified by substituting in (2.36) and employing (2.30).
The relation between the Bloch and the Wannier operators can be found in the

same way as shown in (1.66) for the example of the field operators:

aiσ = 1√
Ni

1.BZ∑

k

ei k·Riakσ , (2.38)

akσ = 1√
Ni

Ni∑

i=1

e−i k·Riaiσ . (2.39)

From the commutation relations for the Bloch operators (2.23) and (2.24), the
commutation relations for the Wannier operators then follow immediately:

[
aiσ , ajσ ′

]
+ =

[
a+iσ , a

+
jσ ′
]

+ = 0, (2.40)

[
aiσ , a

+
jσ ′
]

+ = δij δσσ ′ . (2.41)

2.1.2 The Jellium Model

This model is adequate for the description of simple metals and is based on the
following assumptions:

1. Ne electrons within the volume V = L3 interact with each other via the Coulomb
interaction

Hee = e2

8π ε0

i �=j∑

i,j

1

|r i − rj | . (2.42)

2. The ions are singly positively charged:

Ne = Ni = N. (2.43)
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3. The ions form a homogeneously distributed background and thus guarantee (a)
charge neutrality, (b) a constant lattice potential.

The Bloch functions then become plane waves:

ψkσ (r) ⇒ 1√
V

ei k·rχσ . (2.44)

4. Periodic boundary conditions for V give rise to discrete wave numbers:

k = 2π

L
(nx, ny, nz), nx,y,z ∈ Z. (2.45)

How is the Hamiltonian for the model corresponding to these assumptions formu-
lated in first quantisation? It should contain three terms:

H = He +H+ +He+. (2.46)

He is to be interpreted as in (2.2) and is the pivotal term. H+ describes the
homogeneously distributed ionic charges, where homogeneously distributed is taken
to imply that the ion density n(r) is position-independent:

n(r) ⇒ N

V
. (2.47)

Then we have for H+:

H+ = e2

8π ε0

∫∫
d3 r d3 r ′ n(r) · n(r

′)
|r − r ′| e−α|r−r ′|. (2.48)

Due to the 4th assumption, we must discuss our results in the thermodynamic limit,
i.e. for N →∞, V →∞, N/V → const. Owing to the long range of the Coulomb
forces, the integrals then diverge. For this reason, a convergence factor exp(−α|r −
r ′|) with α > 0 is introduced. After evaluating the integrals, the limit α → 0 is
taken.

Because of (2.47), we require the following integral in (2.48):

∫∫
d3 r d3 r ′ e

−α|r−r ′|

|r − r ′| = V

∫

V

d3 r
e−αr

r
−−−−→
V→∞

4π V

α2 .

We then obtain:

H+ = e2

8π ε0

N̂2

V

4π

α2 . (2.49)
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H+ indeed diverges for α → 0, but it is compensated by other terms which are yet
to be discussed. He+ in (2.46) describes the interactions of the electrons with the
homogeneous background of ions:

He+ = − e2

4π ε0

N∑

i=1

∫
d3 r

n(r)

|r − r i |e
−α|r−r i |. (2.50)

With the same considerations as used for H+, we find:

He+ = − e2

4π ε0

N

V

N∑

i=1

∫
d3 r

e−α|r−r i |

|r − r i | =

= − e2

4π ε0

N

V

N∑

i=1

4π

α2 .

We now replace the classical particle number N by the particle-number operator N̂ ;
this yields:

He+ = − e2

4π ε0

N̂2

V

4π

α2 . (2.51)

All together, this gives for our model:

H = He − 1

2

e2

4π ε0

N̂2

V

4π

α2 . (2.52)

This still looks critical for α → 0, but as we shall see, He contains an exactly
corresponding term, which just cancels with the second term in (2.52). He is in fact
the decisive operator, and according to (2.2), it is composed of the kinetic energy
H0 (2.7) and the Coulomb interaction Hee (2.42). H0 was already transformed to
second quantisation in the previous section. Hee is a typical two-particle operator,
for which, according to (1.100), we find in the Bloch representation:

Hee = 1

2

∑

k1···k4
σ1···σ4

υ (k1σ1, . . . , k4σ4)a
+
k1σ1

a+k2σ2
ak4σ4ak3σ3 . (2.53)

The matrix element

υ(k1σ1, . . . , k4σ4) =

= e2

4π ε0

〈
(k1σ1)

(1)(k2σ2)
(2)
∣∣∣∣

1

|r̂(1) − r̂
′(2)|

∣∣∣∣ (k3σ3)
(1)(k4σ4)

(2)
〉
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is with certainty nonzero only for

σ1 = σ3 and σ2 = σ4,

since the operator itself is spin-independent:

v(k1σ1, . . . , k4σ4) = e2

4π ε0

∫∫
d3 r1 d3 r2

〈
k
(1)
1 k

(2)
2

∣∣∣
1

|r̂(1) − r̂
′(2)| ·

·
∣∣∣r(1)1 r

(2)
2

〉 〈
r
(1)
1 r

(2)
2

∣∣∣∣k
(1)
3 k

(2)
4

〉
δσ1σ3δσ2σ4 =

= e2

4π ε0

∫∫
d3 r1 d3 r2

1

|r1 − r2|
〈
k
(1)
1 k

(2)
2

∣∣∣∣r
(1)
1 r

(2)
2

〉
·

·
〈
r
(1)
1 r

(2)
2

∣∣∣∣k
(1)
3 k

(2)
4

〉
δσ1σ3 δσ2σ4 =

= e2

4π ε0

∫∫
d3 r1 d3 r2

1

|r1 − r2|ψ
∗
k1
(r1)ψ

∗
k2
(r2)·

· ψk3(r1)ψk4(r2)δσ1σ3 δσ2σ4 .

Making use of Bloch’s theorem (2.15), we can furthermore show that in addition,

k1 + k2 = k3 + k4

must hold. We then have:

v(k1σ1, . . . , k4σ4) = δσ1σ3 δσ2σ4 δk1+k2,k3+k4v(k1, . . . k4),

v(k1, . . . , k4) = e2

4π ε0

∫∫
d3 r1 d3 r2ψ

∗
k1
(r1)ψ

∗
k2
(r2)· (2.54)

· 1

|r1 − r2|ψk3(r1)ψk4(r2).

For the Coulomb interaction Hee, we thus obtain the following expression:

Hee = 1

2

∑

k1,...,k4
σ,σ ′

v(k1, . . . , k4)δk1+k2,k3+k4a
+
k1σ

a+
k2σ

′ak4σ
′ak3σ . (2.55)

In the jellium model, the ψk(r) are plane waves, so that we still must calculate:

υα(k1, . . . , k4) =

= e2

4π ε0

1

V 2

∫∫
d3 r1 d3 r2

e−i(k1−k3)·r1 e−i(k2−k4)·r2

|r1 − r2| e−α|r1−r2|. (2.56)
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We set

r = r1 − r2; R = 1

2
(r1 + r2)

⇐⇒ r1 = 1

2
r +R; r2 = −1

2
r + R.

(2.57)

and must then solve:

υα (k1, . . . , k4) = e2

4π ε0

1

V

∫
d3 R e−i(k1−k3+k2−k4)·R·

· 1

V

∫
d3 r

1

r
e−αre−(i/2)(k1−k3−k2+k4)·r =

= e2

4π ε0
δk1+k2,k3+k4

1

V

∫
d3 r

e−i(k1−k3)·re−αr

r
.

Using

∫
d3 r

e−iq·r

r
e−αr = 4π

q2 + α2 , (2.58)

we finally obtain:

υα(k1, . . . , k4) = e2

ε0V
[
(k1 − k3)2 + α2

]δk1−k3,k4−k2 . (2.59)

We insert this into (2.55):

H(α)
ee = 1

2

∑

k,p,q
σ,σ ′

υα(q)a
+
k+qσ

a+
p−qσ ′apσ ′akσ , (2.60)

υα(q) = e2

ε0V
(
q2 + α2

) . (2.61)

We consider now the q = 0 term of the Coulomb interaction:

1

2

e2

ε0 V α2

∑

k,p
σ,σ ′

a+
kσ
a+
pσ ′apσ ′akσ =

= 1

2

e2

ε0 V α2

∑

k,p
σ,σ ′

(−δσσ ′δkpnkσ + npσ ′nkσ

) = (2.62)

= e2

2ε0 V α2

[
−N̂ + (N̂)2

]
.
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We can see that the second term in (2.62) just compensates the second term in (2.52),
i.e. the contributions from H+ and He+ just cancel. The first term in (2.62) leads to
an energy per particle which vanishes in the thermodynamic limit,

− e2

2ε0 V α2 −−−−−−−−−→N→∞; V→∞ 0,

and therefore can be left off from the beginning. If we now finally take the limit
α→ 0, we find for the

Hamiltonian of the jellium model:

H =
∑

kσ

ε0(k)a
+
kσ akσ + 1

2

q �=0∑

k,p,q
σ,σ ′

υ0(q)a
+
k+qσ a

+
p−qσ ′apσ ′akσ . (2.63)

From (2.26), we have

ε0(k) = h̄2k2

2m
(2.64)

as the matrix element of the kinetic energy, and

υ0(q) = 1

V

e2

ε0q2 (2.65)

as that of the Coulomb interaction.
In addition, we would like to derive a useful alternative representation of H ,

making use of the

electron density operator:

ρ̂(r) =
N∑

i=1

δ(r − r̂ i). (2.66)

This is a single-particle operator. The site of the electron r̂ i is an operator here,
whilst the variable r is naturally not. From (1.100), we find for ρ̂ in the second-
quantisation formalism using the Bloch representation:

ρ̂(r) =
∑

k,k′
σ,σ ′

〈kσ |δ(r − r̂
′
)|k′σ ′〉a+

kσ
ak′σ ′ . (2.67)
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For the matrix element, we need to calculate the following:

〈kσ |δ(r − r̂
′
)|k′σ ′〉 =

∑

σ ′′

∫
d3 r ′′〈kσ |δ(r − r̂

′
)|r ′′σ ′′〉〈r ′′σ ′′|k′σ ′〉 =

=
∑

σ ′′

∫
d3 r ′′δ(r − r ′′)〈kσ |r ′′σ ′′〉〈r ′′σ ′′|k′σ ′〉 =

=
∑

σ ′′
δσσ ′′δσ ′′σ ′ 〈kσ |rσ 〉〈rσ |k′σ 〉 =

= δσσ ′ψ
∗
k (r)ψk′(r).

If we confine ourselves to plane waves, as in the jellium model, then we have

〈kσ |δ(r − r̂
′
)|k′σ ′〉 = δσσ ′

1

V
ei(k′−k)·r . (2.68)

In terms of (2.67), this means:

ρ̂(r) = 1

V

∑

k,q,σ

a+
kσ
ak+qσ eiq·r . (2.69)

For the Fourier component of the electron-density operator, we thus find:

ρ̂q =
∑

kσ

a+
kσ
ak+qσ . (2.70)

One can read off, among other things:

ρ̂+q = ρ̂−q; ρ̂q=0 = N̂ . (2.71)

With this result, we can express the Hamiltonian of the jellium model in terms of
density operators. The kinetic energy remains unchanged:

Hee = 1

2

q �=0∑

k,p,q
σ,σ ′

υ0(q)a
+
k+qσ

a+
p−qσ ′apσ ′akσ =

= 1

2

q �=0∑

k,pq
σ,σ ′

υ0(q)a
+
k+qσ

{
−δσσ ′δk,p−q + akσ a

+
p−qσ ′

}
apσ ′ =

= −1

2

q �=0∑

q,p,σ

υ0(q)a
+
pσ apσ + 1

2

q �=0∑

q

υ0(q)
∑

kσ

a+k+qσ akσ ·

·
∑

p,σ ′
a+
p−qσ ′apσ .
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Thus, all together, the Hamiltonian of the jellium model becomes:

H =
∑

kσ

ε0(k)a
+
kσ
akσ + 1

2

q �=0∑

q

υ0(q)
{
ρ̂q ρ̂−q − N̂

}
. (2.72)

In order to obtain a certain insight into the physics of the model, we now investigate
the ground-state energy of the jellium model. To this end, we make use of first-
order perturbation theory, which according to the variational principle will in any
case give us an upper limit for the ground-state energy. We consider the Coulomb
interaction Hee as a perturbation; the unperturbed system is thus given by

H0 =
∑

kσ

ε0k a
+
kσ
akσ (2.73)

(Sommerfeld model). It can be solved exactly. In the

“unperturbed” ground state |E0〉,
the N electrons occupy all the states with energies which are not greater than a
limiting energy εF, which is referred to as the Fermi energy:

ε0(k) = h̄2k2

2m
≤ εF = h̄2k2

F

2m
. (2.74)

kF is the Fermi wavevector, which can readily be computed as follows: owing to
the isotropic energy dispersion

ε0(k) = ε0(k), (2.75)

the electrons occupy all the states in k space within a sphere of radius kF. Since the
k-points are discrete in k space due to the periodic boundary conditions (cf. (2.45)),
each k-point occupies an available

grid volume �k = (2π)3

L3 = (2π)3

V
. (2.76)

If we now take the spin degeneracy into account, we find the following relation
between the electron number N and the Fermi wavevector kF:

N = 2
1

�k

(
4π

3
k3

F

)
= V

3π2 k
3
F.

This means that:

kF =
(

3π2N

V

)1/3

, (2.77)
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εF = h̄2

2m

(
3π2N

V

)2/3

. (2.78)

We can readily compute the mean energy per particle ε̄, finding:

ε̄ = 2

N

⎛

⎜
⎝
∫

k≤kF

d3k
h̄2k2

2m

⎞

⎟
⎠

1

�k
= 3

5
εF. (2.79)

We thus have obtained the ground-state energy:

E0 = Nε̄ = 3

5
NεF. (2.80)

We introduce some standard abbreviations:

ne = N

V
: mean electron density, (2.81)

υe = 1

ne
: mean volume per electron. (2.82)

υe determines via

υe = 4π

3
(aBrs)

3 (2.83)

the dimensionless density parameter rs , where

aB = 4π ε0h̄
2

me2 = 0.529 Å (2.84)

is the Bohr radius. If we introduce an energy parameter in a similar fashion,

1 ryd = 1

4π ε0

e2

2aB
= 13.605 eV, (2.85)

then for the Fermi energy εF, we find:

εF = α2

r2
s

[ryd]; α =
(

9π

4

)1/3

. (2.86)

Then the unperturbed ground-state energy is given by:

E0 = N
2.21

r2
s

[ryd]. (2.87)
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We now switch on the perturbation Hee and compute the energy correction to first
order:

ε(1) = 1

2N

q �=0∑

k,p,q
σ,σ ′

υ0(q)
〈
E0

∣∣∣a+k+qσ a
+
p−qσ ′apσ ′akσ

∣∣∣E0

〉
. (2.88)

Only those terms contribute for which the annihilation operator acts on states within
the Fermi sphere, and the creation operator subsequently fills the resulting holes
within the Fermi sphere:
(1) Direct Term:

k = k + q; p = p − q ⇐⇒ q = 0. (2.89)

According to our preliminary considerations, terms of this type however do not
occur in the sum!

(2) Exchange Term:

σ = σ ′; k + q = p; p − q = k. (2.90)

This is a typically quantum-mechanical term, which is not classically understand-
able. It results from the antisymmetrisation principle for the N -particle states:

ε(1) = 1

2N

q �=0∑

k,q,σ

υ0(q)
〈
E0

∣∣∣a+k+qσ
a+
kσ
ak+qσ akσ

∣∣∣E0

〉
=

= − 1

2N

q �=0∑

k,q,σ

υ0(q)
〈
E0

∣∣∣n̂k+qσ n̂kσ

∣∣∣E0

〉
.

(2.91)

Since in the unperturbed ground state |E0〉, all the states within the Fermi sphere
are occupied and all those outside it are unoccupied, it follows that:

ε(1) = − 1

2N

q �=0∑

k,q,σ

υ0(q)Θ(kF − |k + q|)Θ(kF − k). (2.92)

In the thermodynamic limit, we can replace the sums by integrals:

∑

k

⇒ 1

�k

∫
d3k = V

(2π)3

∫
d3k.
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Fig. 2.2 A schematic representation of the integration region for computing the ground-state
energy in the jellium model to first order in perturbation theory as in (2.93)

After carrying out the summation over spins, we still need to compute:

ε(1) = −V
N

e2

ε0(2π)6

∫
d3k

∫
d3 q

1

q2Θ(kF − |k + q|)Θ(kF − k).

The substitution

k ⇒ x = k + 1

2
q

leads to

ε(1) = −V
N

e2

ε0(2π)6

∫
d3q

1

q2
2S(q), (2.93)

S(q) = 1

2

∫
d3 x Θ

(
kF −

∣∣∣∣x +
1

2
q

∣∣∣∣

)
Θ

(
kF −

∣∣∣∣x −
1

2
q

∣∣∣∣

)
. (2.94)

For the spherical segment sketched in Fig. 2.2, we clearly need to calculate:

S(q) = Θ
(
kF − q

2

) 1∫

q/2
kF

d cosϑ
∫

dϕ

kF∫

y(ϑ)

dx x2,

y(ϑ) = q/2

cosϑ
.

The integration can be readily carried out:

S(q) = 2π

3
Θ
(
kF − q

2

){
k3

F −
3

4
qk2

F +
1

16
q3
}
. (2.95)
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Fig. 2.3 Ground-state energy per particle in the jellium model as a function of the density
parameter rS

The remaining evaluation of (2.93) is then simple:

ε(1) = −0.916

rs
[ryd].

This yields finally for the ground-state energy per particle (Fig. 2.3):

1

N
Emin[ryd] = 2.21

r2
S

− 0.916

rS
+ εcorr = ε. (2.96)

The first term is the kinetic energy (2.87), the second represents the so-called
exchange energy. The latter is typical of systems of identical particles and is a
direct result of the principle of indistinguishability and thus for Fermions of the
Pauli principle. It guarantees that electrons with parallel spins do not approach each
other too closely. Every effect which keeps particles of the same charge at a distance
leads to a reduction of their ground-state energy. This is the reason for the minus sign
in (2.96). The last term is called the correlation energy. It gives the deviation of the
perturbation-theoretical energy from the exact result and is thus naturally unknown.
Modern methods of many-body theory lead to the following series (see (5.177)):

εcorr = 2

π2 (1− ln 2) ln rS − 0.094+O(rS ln rS)[ryd]. (2.97)

The simple jellium model already gives useful results, e.g. ε−εcorr passes through
a minimum at

r0 = (rS)min = 4.83,

(ε − εcorr)min = −0.095[ryd] = −1.29[eV].
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This indicates an optimal value of the electron density, which corresponds finally
to the energetically most favourable ionic spacing, and thus explains, at least
qualitatively, the phenomenon of metallic bonding.

2.1.3 The Hubbard Model

The decisive simplification achieved by the jellium model consists of the fact that it
treats the ions in a solid merely as a positively-charged, homogeneously distributed
background, i.e. the crystalline structure is completely ignored. The Bloch functions
then become plane waves (2.44), so that within the framework of this model, the
electrons have a constant occupation probability throughout the entire crystal. The
jellium model is thus limited from the start to electrons in broad energy bands,
i.e. for example to the conduction electrons of the alkali metals, for which these
assumptions are valid to a good approximation.

The electrons in narrow energy bands have a relatively low mobility and
distinct maxima in their occupation probabilities at the locations of the individual
lattice ions. Plane waves are naturally not appropriate for the description of such
band electrons. A considerably better starting point is the so-called tight-binding
approximation.

If we assume a strong lattice potential V̂ (r) and a low mobility of the band
electrons, then in the neighbourhood of the lattice ions, the atomic Hamiltonian

Hat =
Ni∑

i=1

h
(i)
at , (2.98)

which is the sum of the Hamiltonians for the individual atoms, should yield a fairly
reasonable description, that is, it should be quite similar to H0 as in (2.7):

h
(i)
at ϕn(r −Ri) = εnϕn(r −Ri). (2.99)

ϕn is an atomic wavefunction, which we can take to be known. The index n

symbolises a set of quantum numbers. We are interested in the case that the functions
ϕn have only a limited overlap when they are centered at different locations Ri, Rj .
This results in a low tunneling probability for the electrons from atom to atom and
therefore only a weak splitting of the atomic levels in the solid – i.e. a narrow energy
band.

For the Hamiltonian of the non-interacting electrons (2.7),

H0 =
Ne∑

i=1

h
(i)
0 , (2.100)
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we use the following approach:

h0 = hat + V1(r). (2.101)

The correction V1(r) should thus be small in the neighbourhood of the lattice ions,
but in contrast relatively large in the intermediate regions, where however the ϕn
have dropped to nearly zero. From (2.13), we in fact must solve the following
problem:

h0ψnk(r) = εn(k)ψnk(r). (2.102)

The complete solution of this eigenvalue problem appears to be extremely compli-
cated. We therefore use the following trial functions for the Bloch functions ψnk(r):

ψnk(r) = 1√
Ni

Ni∑

j=1

ei k·Rj ϕn
(
r −Rj

)
. (2.103)

This ansatz obeys the Bloch theorem (2.15), and it is practically exact near the ionic
cores (V1(r) ≈ 0), whilst the errors in the interatomic regions are not too great, due
to the small overlap of the wavefunctions there. A comparison with (2.29) shows
that we have replaced the exact Wannier functions by the atomic wavefunctions.
Using (2.102), we now compute approximately the Bloch energies εn(k). To start,
the following expressions are strictly valid:

∫
ϕ∗n(r)h0ψnk(r)d

3r = εn(k)

∫
ϕ∗n(r)ψnk(r)d3r,

∫
ϕ∗n(r)V1(r)ψnk(r)d

3r = (εn(k)− εn)

∫
ϕ∗n(r)ψnk(r)d3r.

Here, we now apply the ansatz (2.103). With the abbreviations

υn =
∫

d3 r V1(r)|ϕn(r)|2, (2.104)

T
(n)
0 = εn + υn, (2.105)

α
(j)
n =

∫
d3 r ϕ∗n(r)ϕn(r −Rj ), (2.106)

γ
(j)
n =

∫
d3r ϕ∗n(r)V1(r)ϕn(r −Rj ) (2.107)

we obtain:

(εn(k)− εn) = υn + 1√
Ni

Rj �=0∑

j

[
γ
(j)
n − (εn(k)− εn)α

(j)
n

]
ei k·Rj ,
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where we have presumed that the atomic wavefunctions are normalised. We then
find for the Bloch energies:

εn(k) = εn +
υn + 1√

Ni

∑ �=0
j γ

(j)
n ei k·Rj

1+ 1√
Ni

∑�=0
j α

(j)
n ei k·Rj

. (2.108)

The overlap integrals γ (j)n and α(j)n are by assumption for Rj �= 0 only very small
quantities, so that we can with confidence simplify further:

εn(k) = T
(n)
0 + γ (1)n

∑

�

ei k·R�. (2.109)

� indicates the nearest neighbours to the atom at the origin of the coordinate system.
The sum can as a rule be readily computed. Thus, for a simple cubic lattice:

RΔ = a(±1, 0, 0); a(0, ±1, 0); a(0, 0, ±1),

εs.c.
n (k) = T

(n)
0 + 2γ (1)n

(
cos(kxa)+ cos(kya)+ cos(kza)

)
.

(2.110)

a is the lattice constant, and T (n)0 and γ (1)n are parameters which must be determined

experimentally. γ (1)n is determined by the width W of the band:

W s.c.
n = 12|γ (1)n |. (2.111)

The tight-binding approximation, which led to (2.109), is strictly speaking allowed
only for so-called s bands. For p-, d-, f - . . . bands, a certain degree of degeneracy
must be taken into account, but we shall not discuss this point further here. In the
following, we limit our treatment to s bands and thus leave off the index n from here
on.

The Bloch energies, (2.109) or (2.110), now clearly exhibit the influence of the
crystal structure. Only for very small |k| values near the bottom of the band does the
parabolic dispersion, which applies within the jellium model, hold approximately,
ε(k)⇒ ε0(k)/h̄

2k2/2m.
In second quantisation, H0 takes the same form as in (2.33):

H0 =
∑

ijσ

Tij a
+
iσ ajσ . (2.112)

The tight-binding approximation permits electronic transitions via the hopping
integral

Tij = 1

Ni

∑

k

ε(k)ei k·(Ri−Rj ) (2.113)
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only between nearest-neighbour lattice positions. For the Coulomb interaction of
the band electrons, (2.55) of course still applies. The transformation to real space
then yields:

Hee = 1

2

∑

ijkl

σ,σ ′

v(ij ; kl)a+iσ a+jσ ′alσ ′akσ , (2.114)

where the matrix element is to be computed with atomic wavefunctions:

v(ij ; kl) =

= e2

4π ε0

∫∫
d3r1 d3 r2

ϕ∗(r1 −Ri)ϕ
∗(r2 −Rj )ϕ(r2 −Rl )ϕ(r1 −Rk)

|r1 − r2| .

(2.115)

Owing to the small overlap of the atomic wavefunctions which are centered on
different lattice positions, the intra-atomic matrix element

U = v(ii; ii) (2.116)

predominates. Hubbard made the suggestion that the electron-electron interaction
therefore be limited to this term:

Hubbard model

H =
∑

ijσ

Tij a
+
iσ ajσ +

1

2
U
∑

i,σ

n̂iσ n̂i−σ (2.117)

(Notation: σ =↑ (↓) ⇐⇒ −σ =↓ (↑)). The Hubbard model must thus be the
simplest model with which one can study the interplay of the kinetic energy, the
Coulomb interactions, the Pauli principle and the lattice structure.

The drastic simplifications which led to (2.117) of course entail a correspond-
ingly limited applicability of the model.

The model is used in the discussion of

1. the electronic properties of solids with narrow energy bands (e.g. transition
metals),

2. band magnetism (Fe, Co, Ni, . . . ),
3. metal-insulator transitions (“Mott transitions”),
4. general principles of statistical mechanics,
5. high-temperature superconductivity.
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In spite of its simple structure, the exact solution of the Hubbard model has thus
far not been achieved. One must still resort to approximate solutions. Examples will
be discussed in the following sections.

2.1.4 Exercises

Exercise 2.1.1 A solid contains N = N ′3 (N ′ even) unit cells in the volume
V = L3 (L = aN ′). For the allowed wave vectors, using periodic boundary
conditions, the following holds:

k = 2π

L
(nx, ny, nz); nx,y,z = 0, ±1, +2, . . . ,±

(
N ′

2
− 1

)
, N ′/2.

Prove the orthogonality relation

δij = 1

N

1.BZ∑

k

exp
[
i k · (Ri −Rj

)]
.

The sum runs over all the wavenumbers within the first Brillouin zone.

Exercise 2.1.2 Based on the fundamental commutation relations for Bloch
operators, a+kσ , akσ , derive the corresponding relations for Wannier operators
a+iσ , ajσ .

Exercise 2.1.3 In theoretical solid-state physics, one often has to deal with
integrals of the type

I (T ) =
+∞∫

−∞
dx g(x)f−(x), f−(x) = {exp[β(x − μ)] + 1}−1.

These deviate from their values at T = 0

I (T = 0) =
εF∫

−∞
dx g(x)

by an expression which is determined almost exclusively by the behaviour of
the function g(x) within the Fermi layer (μ − 2kBT ; μ + 2kBT ), where μ

(continued)
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Exercise 2.1.3 (continued)
represents the chemical potential. Power series are therefore very promising!
Assume that g(x)→ 0 for x →−∞, and that g(x) for x →+∞ diverges at
most as a power of x and is regular within the Fermi layer.

1. Show that

I (T ) = −
+∞∫

−∞
dx p(x)

∂

∂x
f−(x)

holds, with

p(x) =
x∫

−∞
dy g(y).

2. Use a Taylor series for p(x) around μ (chemical potential) for the
following representation of the integral:

I (T ) = p(μ)+ 2
∞∑

n=1

(
1− 21−2n

)
β−2nζ(2n)g(2n−1)(μ).

Here, g(2n−1)(μ) is the (2n − 1)-th derivative of the function g(x) at the
position x = μ, and ζ(n) is Riemann’s ζ function:

ζ(n) =
∞∑

p=1

p−n = 1
(
1− 21−n)Γ (n)

∞∫

0

du
un−1

eu + 1
.

3. Calculate explicitly the first three terms of the series for I (T ).

Exercise 2.1.4 The Sommerfeld model can explain many electronic prop-
erties of the so-called simple metals such as Na, K, Mg, Cu, . . . to a good
approximation. It is defined by the following model assumptions:

(a) An ideal Fermi gas within the volume V = L3.
(b) Periodic boundary conditions on V .
(c) A constant lattice potential V (r) = const.

1. Give the eigenstate energies and the eigenfunctions.

(continued)
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Exercise 2.1.4 (continued)
2. Calculate the Fermi energy and the Fermi wavevector as functions of the

electron density n = N/V .
3. How does the average energy per electron depend on the Fermi energy?
4. Determine the electronic density of states ρ0(E).
5. Make use of the dimensionless density parameter rs from Eq. (2.83) to

compute the ground-state energy E0:

E0 = N
2, 21

r2
s

[ryd].

Exercise 2.1.5 Discuss some of the thermodynamic properties of the Som-
merfeld model which was introduced in Exercise 2.1.4.

1. Calculate the temperature dependence of the mean occupation number of
a single-particle level.

2. How are the total particle number N and the internal energy U(T ) related
to the density of states ρ0(E)?

3. Verify, using the Sommerfeld series from Exercise 2.1.2, that the following
relation holds for the chemical potential μ:

μ = εF

[

1− π2

12

(
kBT

εF

)2
]

.

4. Compute to a precision of (kBT /εF)
4 the internal energy U(T ) and the

specific heat cV of the itinerant metal electrons.
5. Calculate and discuss the entropy

S = ∂

∂T
(kBT lnΞ).

Test the Third Law! � is the grand canonical partition function.

Exercise 2.1.6

1. Transform the operator for the electron density

ρ̂ =
N∑

i=1

δ(r − r̂ i)

(continued)
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Exercise 2.1.6 (continued)
to the second quantisation with Wannier states as the single-particle basis.

2. Derive, using the result of 1, the relation between the electron number and
the electron density operator.

3. What form does the electron density operator from part 1 take in the special
case of the jellium model?

Exercise 2.1.7 Represent the operator for the electron density

ρ̂ =
N∑

i=1

δ(r − r̂ i)

in the formalism of second quantisation using field operators.

Exercise 2.1.8 Transform the Hamiltonian of the jellium model into second
quantisation using Wannier states as a single-particle basis.

Exercise 2.1.9 Making use of the electron density operator

ρ̂ =
N∑

i=1

δ (r − r̂ i) ,

one can calculate the so-called density correlation

G(r, t) = 1

N

∫
d3 r ′

〈
ρ
(
r ′ − r, 0

)
ρ
(
r ′, t

)〉

as well as the dynamic structure factor

S(q, ω) =
∫

d3r

+∞∫

−∞
dt G(r, t)ei(q·r−ωt).

(continued)
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Exercise 2.1.9 (continued)
The expression

S(q) =
+∞∫

−∞
dω S(q, ω)

is termed the static structure factor,
whilst the static pair distribution function g(r) is defined by

G(r, 0) = δ(r)+ ng(r) (n = N/V ).

1. Show that for the density correlation,

G(r, t) = 1

NV

∑

q

〈
ρqρ−q(t)

〉
e−iq·r

holds. What is the meaning of G(r, t)?
2. Verify the expression

ng(r) = 1

N

i �=j∑

i,j

〈
δ
(
r + r i (0)− rj (0)

)〉
.

Consider an appropriate physical interpretation here, also.
3. Prove the following relations for the structure factor:

S(q, ω) = 1

N

+∞∫

−∞
dt e−iωt 〈ρqρ−q(t)

〉
,

S(q) = 2π

N

〈
ρqρ−q

〉
.

4. Show that at T = 0, the following holds:

S(q, ω) = 2π

N

∑

n

∣∣∣|En|ρ+q 〈E0|
∣∣∣
2
δ

[
ω − 1

h̄
(En − E0)

]
.

|En〉 are the eigenstates of the Hamiltonian, and |E0〉 is its ground state.
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Exercise 2.1.10

1. Use the general results from Exercise 2.1.9 to determine the static structure
factor S(q) with the exact eigenstates of the Sommerfeld model. Sketch its
q dependence.

2. Compute also the static pair distribution function g(r). Sketch and discuss
its r dependence.

Exercise 2.1.11 Compute in the tight-binding approximation the Bloch ener-
gies ε(k) for the body-centered cubic and for the face-centered cubic lattice
structures.

Exercise 2.1.12 Show that the tight-binding approach for the electronic
wavefunctions ϕnk(r) obeys the Bloch theorem.

2.2 Lattice Vibrations

In Sect. 2.1, the lattice ions were assumed to be motionless and only the excitations
of the electronic system were investigated. Following a programme as in (2.6) we
now want to discuss the subsystem of the ions in more detail; i.e. the Hamiltonian
of (2.3) will now be at the centre of attention.

If energy is transferred to a single lattice ion, e.g. by a particle collision, it will be
rapidly distributed over the whole lattice as a result of the strong ion-ion interactions.
The local excitation will become a collective excitation, in which finally all the
lattice sites participate. It is therefore expedient to use collective coordinates, which
are still to be defined, in the mathematical description instead of ion coordinates. In
this representation, the lattice vibrations can then be quantised. The corresponding
quanta are called phonons.

2.2.1 The Harmonic Approximation

The restoring forces required for lattice vibrations are the bonding forces, which
can have rather diverse physical origins. Qualitatively, the pair potential Vi(|Rα −
Rβ |) however always has the same form. The potential minimum defines the

equilibrium distance R
(0)
αβ . The so-called harmonic approximation consists in
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the end in treating the potential curve approximately as a parabola, which seems
reasonable for small excursions from the equilibrium distance. We shall next discuss
this point more quantitatively.

Our starting point will be a Bravais lattice with a basis containing p atoms, which
we describe as in (2.9) by

Rm
s = Rm +Rs (2.118)

with s = 1, 2, . . . , p and m ≡ (m1,m2,m3); mi ∈ Z,

Rm =
3∑

i=1

miai. (2.119)

Let

xm
s (t) be the momentary position of the (m, s)-th atom, and

um
s (t) be the displacement of the (m, s)-th atom from equilibrium.

As a result, we find:

xm
s (t) = Rm

s + um
s (t). (2.120)

The kinetic energy of the lattice ions is then given by:

Hi,kin = 1

2

∑

m
s,i

Ms

(
dum

s,i

dt

)2

, i = x, y, z. (2.121)

For the potential energy, we write:

Hii = V
({

xm
s

}) = V
({

Rm
s + um

s

})
. (2.122)

Here, the quantity

V0 = V
({

Rm
s

})
(2.123)

represents the so-called binding energy. We expand V around the equilibrium
position (Fig. 2.4):

V
({

xm
s

}) = V0 +
∑

m
s,i

ϕm,s,iu
m
s,i+

+ 1

2

∑

m
s,i

∑

n
t,j

ϕ
n,t,j
m,s,iu

m
s,iu

n
t,j +O(u3).

(2.124)
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Fig. 2.4 Illustration of the
harmonic approximation for
the pair potential in a solid

The harmonic approximation now consists of neglecting the remainder O (u3).
The displacements u are as a rule less than 5% of the lattice spacing, so that the
harmonic approximation is quite appropriate. Higher-order, so-called anharmonic
terms, are therefore initially not of interest.

For the partial derivatives ϕ in (2.124), we find:

ϕm,s,i ≡ ∂V

∂xm
s,i

∣∣∣∣∣
0

= 0. (2.125)

This is the definition of the equilibrium position. The second derivatives form a

matrix of the atomic force constants

ϕ
n,t,j
m,s,i ≡

∂2V

∂xn
t,j ∂x

m
s,i

∣∣∣∣∣
0

. (2.126)

For a better understanding of this important matrix, the following statement is
useful:

−ϕn,t,j
m,s,iu

n
t,j is the force in the i direction, which acts on the (m, s)-th atom, when

the (n, t)-th atom is displaced in the j direction by un
t,j , and all the

other atoms remain fixed.

The harmonic approximation thus corresponds to a linear force law, as in a harmonic
oscillator:

Msü
m
s,i = − ∂V

∂um
s,i

= −
∑

n
t,j

ϕ
n,t,j
m,s,iu

n
t,j . (2.127)
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The force-constant matrix has a few obvious symmetries. It follows directly from
its definition that:

ϕ
n,t,j
m,s,i ≡ ϕ

m,s,i
n,t,j . (2.128)

On translating the whole solid body by �x = (�x1, �x2, �x3), the forces
naturally remain unchanged. It therefore follows from

−
∑

j

�xj
∑

n,t

ϕ
n,t,j
m,s,i = 0

that the relation

∑

n,t

ϕ
n,t,j
m,s,i = 0 (2.129)

holds. Finally, the translational symmetry yields:

ϕ
n,t,j
m,s,i = ϕ

t,j
s,i (n−m). (2.130)

To solve (2.127), we first take a trial solution of the form:

um
s,i =

ûm
s,i√
Ms

e−iωt . (2.131)

This gives the eigenvalue equation

ω2ûm
s,i =

∑

n
t,j

D
n,t,j
m,s,i û

n
t,j (2.132)

for the real and symmetric matrix

D = ϕ√
MsMt

. (2.133)

It has 3pN real eigenvalues (ωm
s,i )

2. The eigenvalues ωm
s,i are thus likewise real or

purely imaginary. Only the real eigenvalues represent physical solutions. Making
use of the translational symmetry (2.130), the dimensionality of the eigenvalue
problem is reduced from 3pN to 3p:

ω2cs,i =
∑

t,j

K
s,t
i,j ct,j . (2.134)
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Here, we have used the following definitions:

um
s,i =

cs,i√
Ms

exp[i(q ·Rm − ωt)], (2.135)

K
s,t
i,j (q) =

∑

p

ϕ
p,t,j
0,s,i√
MsMt

exp(iq ·Rp). (2.136)

Equation (2.134) is an eigenvalue equation for the matrix K with 3p eigenvalues:

ω = ωr(q), r = 1, 2, . . . , 3p. (2.137)

Crystals are anisotropic. The dispersion branches ωr(q) therefore have to be
determined for each direction q/|q| as functions of q = |q|. Details can be found
for the standard example of a diatomic, linear chain in the textbook literature of
solid-state physics. One finds there (Exercise 2.2.1):

3 acoustic branches ⇐⇒ ω(q = 0) = 0,

3(p − 1) optical branches ⇐⇒ ω(q = 0) �= 0.

Owing to the periodic boundary conditions, the wavenumbers q are discrete. If G is
an arbitrary vector in the reciprocal lattice, then because of exp(iG · Rm) = 1, we
have:

ωr(q +G) = ωr(q). (2.138)

This means that one needs only consider wavenumbers q within the first Brillouin
zone. Time-reversal invariance of the equations of motion finally leads to:

ωr(q) = ωr(−q). (2.139)

For each of the 3p ωr values, Eq. (2.134) has a solution

cs,i = ε
(r)
s,i (q), (2.140)

which can be chosen so that the orthonormality relation

∑

s,i

ε
(r)∗
s,i (q)ε

(r ′)
s,i (q) = δr,r ′ (2.141)

is fulfilled. The general solution of the equation of motion (2.127) is thus finally
found to be:

um
s,i (t) =

1√
NMs

3p∑

r=1

1.BZ∑

q

Qr(q, t)ε
(r)
s,i (q)e

iq·Rm

. (2.142)
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Here, we have included the time factor exp(−iωr(q)t) within the coefficients
Qr(q, t). With

1

N

∑

m

exp
(
i
(
q − q ′

) ·Rm
) = δq,q ′ ,

we find the normal coordinates Qr(q, t)

Qr(q, t) = 1√
N

∑

m
s,i

√
Msu

m
s,i (t)ε

(r)∗
s,i (q)e

−iq·Rm

, (2.143)

which obey the equation of motion of the harmonic oscillator

Q̈r (q, t)+ ω2
r (q)Qr(q, t) = 0. (2.144)

2.2.2 The Phonon Gas

The harmonic approximation of the previous sections gives the following expression
for the Lagrange function L = T − V of the ion system:

L = 1

2

∑

m
s,i

Ms(u̇
m
s,i )

2 − 1

2

∑

m,s,i
n,t,j

ϕ
n,t,j
m,s,iu

m
s,iu

n
t,j . (2.145)

We wish to represent L in normal coordinates. We rearrange, making use of:

1

N

∑

m

exp[i(q − q ′) ·Rm] =
{

1, if q − q ′ = 0 or G,

0 otherwise,
(2.146)

[
Qr(q, t)ε

(r)
s,i (q)

]∗ = Qr(−q, t)ε
(r)
s,i (−q). (2.147)

Equation (2.147) must hold, so that the displacements um
s,i are real. We have already

used Eq. (2.146) in various contexts.

1

2

∑

m
s,i

Ms

(
u̇m
s,i

)2 = 1

2

∑

m
s,i

Ms

1

NMs

∑

q,q ′

∑

r,r ′
Q̇r (q, t)Q̇r ′(q

′, t)ε(r)s,i (q)·

· ε(r ′)s,i (q
′)ei(q+q ′)·Rm = (2.148)

= 1

2

∑

q

∑

r,r ′
Q̇r (q, t)Q̇r ′(−q, t)

∑

s,i

ε
(r)
s,i (q)ε

(r ′)
s,i (−q) =

= 1

2

∑

q,r

Q̇∗
r (q, t)Q̇r (q, t).
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In an analogous manner, we find the potential energy:

1

2

∑

m,s,i
n,t,j

ϕ
n,t,j
m,s,iu

m
s,iu

n
t,j =

= 1

2N

∑

m,s,i
n,t,j

ϕ
n,t,j
m,s,i

1√
MsMt

∑

q,q ′

∑

r,r ′
Qr(q, t)Qr ′(q

′, t)·

· ε(r)s,i (q)ε(r
′)

t,j (q
′)eiq·Rm

eiq ′·Rn =

= 1

2N

∑

s,i
n,t,j

∑

qq ′

∑

r,r ′
Qr(q, t)Qr ′(q

′, t)ε(r)s,i (q)ε
(r ′)
t,j (q

′)·

·
∑

m

ϕ
t,j
s,i (n−m)√
MsMt

eiq·(Rm−Rn)ei(q+q ′)·Rn =

= 1

2

∑

s,i
t,j

∑

q,q ′

∑

r,r ′
Qr(q, t)Qr ′(q

′, t)ε(r)s,i (q)ε
(r ′)
t,j (q

′)·

·Ks,t
i,j (q)

1

N

∑

n

ei(q+q ′)·Rn =

= 1

2

∑

s,i

∑

q

∑

r,r ′
Qr(q, t)Qr ′(−q, t)ε

(r)
s,i (q)

∑

t,j

K
s,t
ij (q)ε

(r ′)
t,j (−q) =

= 1

2

∑

q

∑

r,r ′
ω2
r ′(−q)Qr(q, t)Qr ′(−q, t)

∑

s,i

ε
(r)
s,i (q)ε

(r ′)
s,i (−q) =

= 1

2

∑

q,r

ω2
r (q)Qr(q, t)Q

∗
r (q, t).

(2.149)

All together, we then have for the Lagrange function:

L = 1

2

∑

r,q

{
Q̇∗
r (q, t)Q̇r (q, t)− ω2

r (q)Q
∗
r (q, t)Qr(q, t)

}
. (2.150)

The momenta which are canonically conjugate to the normal coordinates,

Πr(q, t) = ∂L

∂Q̇r

= Q̇∗
r (q, t), (2.151)
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are required to formulate the classical Hamilton function:

H = 1

2

∑

r,q

{
Π∗
r (q, t)Πr(q, t)+ ω2

r (q)Q
∗
r (q, t)Qr(q, t)

}
. (2.152)

This is a notable result, since by transforming to the normal coordinates, we have
shown that the Hamilton function decomposes into a sum of 3pN non-coupled,
linear harmonic oscillators.

The next step is the quantisation of the classical variables. The displacements
um
s,i and the momenta Msu̇

m
s,i now become operators with the fundamental commu-

tation relations:

[um
s,i , u

n
t,j ]− = [Msu̇

m
s,i , Mt u̇

n
t,j ]− = 0, (2.153)

[Msu̇
m
s,i , u

n
t,j ]− =

h̄

i
δm,nδs,t δi,j . (2.154)

By substitution, we find from them the commutation relations for the normal
coordinates and their canonically conjugated momenta. With (2.143) and (2.153),
we immediately obtain:

[Qr(q), Qr ′(q
′)]− = [�r(q), �r ′(q

′)]− = 0. (2.155)

For the third relation, we make use of (2.154):

[Πr(q), Qr ′(q
′)]− = 1

N

∑

m
s,i

∑

n
t,j

√
MsMtε

(r)
s,i (q)e

iq·Rm ·

· ε(r ′)∗t,j (q ′)e−iq ′·Rn 1

Ms

[
Msu̇

m
s,i , u

m
t,j

]
=

= h̄

i

1

N

∑

m
s,i

ei(q−q ′)·Rm

ε
(r)
s,i (q)ε

(r ′)∗
s,i (q ′) =

= h̄

i

∑

s,i

ε
(r)
s,i (q)ε

(r ′)∗
s,i (q)δq,q ′ .

With (2.141), it finally follows that:

[
Πr(q), Qr ′(q

′)
]
− =

h̄

i
δq,q ′δr,r ′ . (2.156)
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We now introduce new operators bqr and b+qr :

Qr(q) =
√

h̄

2ωr(q)

{
bqr + b+−qr

}
, (2.157)

Πr(q) = i

√
1

2
h̄ωr(q)

{
b+qr − b−qr

}
. (2.158)

We can read off directly:

Q+
r (−q) = Qr(q); Π+

r (−q) = Πr(q). (2.159)

The inverses of (2.157) and (2.158) are given by:

bqr = (2h̄ωr(q))
−1/2

{
ωr(q)Qr(q)+ iΠ+

r (q)
}
, (2.160)

b+qr = (2h̄ωr(q))
−1/2

{
ωr(q)Q

+
r (q)− iΠr(q)

}
. (2.161)

We compute the commutation relations:

[
bqr , bq ′r ′

]
− =

= (4h̄2ωr(q)ωr ′(q
′))−1/2·

·
{

iωr(q)
[
Qr(q),Π

+
r ′ (q

′)
]
− + iωr ′(q

′)
[
Π+
r (q),Qr ′(q

′)
]
−
}
=

= (4h̄2ωr(q)ωr ′(q
′))−1/2·

·
{

iωr(q)

(
− h̄

i
δrr ′δq,−q ′

)
+ iωr ′(q

′)
(
h̄

i
δrr ′δ−q,q ′

)}
=

= 0,

[bqr , b
+
q ′r ′ ]− =

= (4h̄2ωr(q)ωr ′(q
′))−1/2·

·
{
−iωr(q)

[
Qr(q), Πr ′(q

′)
]
− + iωr ′(q

′)
[
Π+
r (q),Q

+
r ′ (q

′)
]
−
}
=

=
(

4h̄2ωr(q)ωr ′(q
′)
)−1/2 ·

·
{
−iωr(q)

(
− h̄

i
δr,r ′δqq ′

)
+ iωr ′(q

′)
(
h̄

i
δr,r ′δ−q,−q ′

)}
=

= δrr ′δqq ′ .
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bqr and b+qr are thus Bosonic operators:

[
bqr , bq ′r ′

]
− =

[
b+qr , bq ′r ′

]

− = 0, (2.162)

[
bqr , b

+
q ′r ′
]

− = δqq ′δrr ′ . (2.163)

We are now in a position to quantise the Hamilton function:

H =
∑

q,r

1

2

{
Π+
r (q)Πr(q)+ ω2

r (q)Q
+
r (q)Qr(q)

}
=

= 1

4

∑

qr

h̄ωr(q)
{ (
bqr − b+−qr

) (
b+qr − b−qr

)
+
(
b+qr + b−qr

) (
bqr + b+−qr

) } =

= 1

4

∑

qr

h̄ωr(q)
{
bqrb

+
qr + b+−qrb−qr + b+qrbqr + b−qrb

+−qr

}
=

= 1

4

∑

qr

h̄ωr(q)
{

2b+qrbqr + 2b+−qrb−qr + 2
}
.

We can also make use of (2.139) and then obtain within the harmonic approximation
the Hamiltonian for the quantised vibrations of the ion lattice:

H =
∑

qr

h̄ωr(q)

{
b+qrbqr + 1

2

}
. (2.164)

We are dealing here with a system of 3pN non-coupled harmonic oscillators.
In Eqs. (2.157) and (2.158), we suppressed the time dependence of the normal

coordinatesQr and their canonical momenta. As set out in (2.142), it is given simply
by:

Qr(qt) = Qr(q)e
−iωr(q)t . (2.165)

This implies according to (2.157) that:

bqr (t) = bqre
−iωr (q)t . (2.166)

We wish to show that this result agrees with

bqr (t) = exp

(
i

h̄
H t

)
bqr exp

(
− i

h̄
H t

)
. (2.167)
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To this end, we first prove the assertion

bqrH
n = {h̄ωr(q)+H }nbqr , (2.168)

using the method of complete induction:
n = 1:

[
bqr , H

]
− =

∑

q ′,r ′
h̄ωr ′(q

′)
[
bqr , b

+
q ′r ′bq ′r ′

]

− = h̄ωr(q)bqr

⇒ bqrH = (h̄ωr(q)+H)bqr .

n⇒ n+ 1:

bqrH
n+1 = (bqrH

n
)
H = (h̄ωr(q)+H)nbqrH =

= (h̄ωr(q)+H)n+1bqr .

This proves the assertion in (2.168). It then follows that:

bqr exp

(−i

h̄
H t

)
=

∞∑

n=0

(−i/h̄)n

n! tnbqrH
n =

= exp

[
− i

h̄
(h̄ωr(q)+H)t

]
bqr .

After insertion into (2.167), we find the result (2.166). The two relations are
therefore equivalent.

The essential result of this section is (2.164). This makes it clear that the energy
of the lattice vibrations is quantised. The elementary quantum h̄ωr(q) is interpreted
as the energy of the quasi-particle phonon. In detail, one makes the following
associations:

b+qr : Creation operator for a (q, r) phonon,
bqr : Annihilation operator for a (q, r) phonon,
h̄ωr(q) : Energy of the (q, r) phonon.

Phonons are Bosons! Each vibrational state can therefore be occupied by arbitrarily
many phonons.

The harmonic approximation which underlies this section models the ion lattice
as a non-interacting phonon gas. The terms neglected in the series expansion
(2.124) for the potential V , which are of third or higher order in the displacements
um
s,i (anharmonicity of the lattice), can be interpreted as a coupling, i.e. an

interaction between the phonons. They are important for the description of effects
such as thermal expansion, the approach to thermal equilibrium, heat conductivity,
the high-temperature behaviour of cp, cV , etc.
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2.2.3 Exercises

Exercise 2.2.1 Consider a linear chain composed of two different types of
atoms (masses m1, m2) alternating along the chain (Fig. 2.5):

Fig. 2.5 Model of the linear diatomic chain

The interaction between the atoms can be taken to a good approximation to
be limited to nearest neighbours. Within the harmonic approximation (linear
force law), the coupling between neighbouring atoms can be expressed in
terms of a force constant f .

1. Describe the chain as a linear Bravais lattice with a diatomic basis.
Determine the primitive translations and the vectors of the (reciprocal)
lattice as well as the first Brillouin zone.

2. Formulate the equation of motion for longitudinal lattice vibrations.
3. Justify and make use of the trial solution

unα =
cα√
mα

exp[i (q Rn − ωt)]

for the displacement of the (n, α)-th atom from its equilibrium position.
4. Sketch the dispersion branches for a qualitative discussion. Investigate in

particular the special cases q = 0, +π/a, −π/a, 0 < q � π/a.

Exercise 2.2.2 Compute the density of states D(ω) of the linear chain:

D(ω)dω = The number of eigenfrequencies in the interval (ω;ω + dω).

Use appropriate periodic boundary conditions. How doesD(ω) depend on the
group velocity υg = dω/dqz? Give a qualitative sketch of D(ω)!
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Exercise 2.2.3 Compute the density of states D(ω) for the lattice vibrations
of a three-dimensional crystal. The crystal has the primitive translations ai ,
i = 1, 2, 3, which are not necessarily orthogonal.

1. Introduce periodic boundary conditions on a parallelepiped with the edges
Niai , i = 1, 2, 3. Express the allowed wavenumbers in terms of the
primitive translations of the reciprocal lattice.

2. Calculate the grid volume in q space, which contains one and only one
wavevector.

3. Express the density of states for one dispersion branch ωr(q) in terms of a
volume integral in q space.

4. Make use of the group velocity to find an alternative representation of the
density of states:

υ(r)g = |�qωr(q)|.

5. What is the expression for the overall density of states?

Exercise 2.2.4 The so-called Debye model for the lattice vibrations of a pure
Bravais lattice (p = 1, monatomic basis) makes use of the following two
assumptions:

1. A linear, isotropic approximation for the acoustic branches:

ωr = vrq.

2. Replacement of the Brillouin zone by a sphere of the same volume.

Due to (2), there must be a limiting frequency ωDr (the Debye frequency).
Calculate it! Derive the density of states DD(ω) corresponding to this model.

Exercise 2.2.5

1. Calculate in the harmonic approximation the internal energy U(T ) = 〈H 〉
(〈· · · 〉: thermal average) of the lattice vibrations of a three-dimensional
crystal. Discuss the limiting cases of high and low temperatures (Hint:
〈b+qrbqr 〉 ⇒ Bose-Einstein distribution).

2. Use the Debye model (Exercise 2.2.4) to compute the specific heat at low
temperatures.
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2.3 The Electron-Phonon Interaction

Having discussed in Sect. 2.1 the crystal electrons and in Sect. 2.2 the lattice ions,
essentially with no mutual coupling, or at most coupled in a very simple manner via
He+ (2.50), we now examine the interaction between these two subsystems in more
detail. Within our general model of the solid state (2.1), we will now consider the
operator Hei.

2.3.1 The Hamiltonian

Our starting point is the operator (2.5):

Hei =
Ne∑

j=1

Ni∑

α=1

Vei(rj − xα) = H
(0)
ei +He−p. (2.169)

The interaction H(0)
ei of the electrons with the rigid ion lattice was already included

in our model H0 for the crystal electrons (see (2.7)). He−p is the electron-phonon
interaction per se.

Following the considerations of the previous section, we know that every lattice
vibration is characterised by the states defined by the wavenumber q and the branch
r of the dispersion spectrum ωr(q). The electron-phonon interaction thus implies
the

absorption and emission of (q, r) phonons.

The conceivable elementary processes can be shown graphically in a simple way
(see Fig. 2.6).

All the interactions can be composed out of these four elementary processes.
They should therefore be reflected in a corresponding model Hamiltonian.

We assume that in these interactions, the ion is displaced as a rigid body and is not
deformed, which is of course by no means to be taken for granted. Deformations of
the ions however represent higher-order effects. In the framework of the harmonic
approximation for the lattice vibrations, we expand the interaction energy Vei up to
the first non-vanishing term. It is in this case the linear term:

Vei
(
rj − xm

s

) ≡ Vei
(
rj −Rm

s − um
s

) =
= Vei

(
rj −Rm

s

)− um
s · ∇Vei +O(u2).

(2.170)

The first term leads to H(0)
ei and was already taken into account in the treatment of

the crystal electrons (see Sect. 2.1) e.g. in the Bloch energies ε(k). The second term
contains the actual electron-phonon interaction. We assume singly-charged ions,
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Fig. 2.6 Elementary
processes of the
electron-phonon interaction;
straight arrows stand for (c)
electrons, wavy arrows for
phonons: (a) Phonon
emission by an electron; (b)
Phonon absorption by an
electron; (c) Phonon emission
from electron-hole
recombination; (d) Creation
of an electron-hole pair by
phonon annihilation

(Ne = Ni = N), and use expression (2.142) for the displacements um
s :

He−p = −
N∑

j=1

∑

m,s

3p∑

r=1

1.BZ∑

q

1√
NMs

Qr(q)e
iq·Rm ·

· ε(r)s (q) · ∇Vei
(
rj −Rm

s

)
.

(2.171)

Qr(q) is already familiar from (2.157) in second quantisation. We still have to
transform the electronic part. In ∇Vei, the electronic variable rj appears. We choose
the Fourier representation for Vei:

Vei
(
rj −Rm

s

) =
∑

p

V
(s)
ei (p)e

ip·(rj−Rm). (2.172)
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Note that in this representation, p− as a wavenumber – is a variable and not an
operator. Operator properties apply only to rj .

∇Vei
(
rj −Rm

s

) = i
∑

p

V
(s)
ei (p)peip·(rj−Rm). (2.173)

For the second quantisation of this single-electron operator, we choose the Bloch
representation:

N∑

j=1

∇Vei
(
rj −Rm

s

) =
∑

k,k′
σ,σ ′

〈kσ |∇Vei|k′σ ′〉a+kσ ak′σ ′ . (2.174)

We compute the matrix element:

〈
kσ |eip·r̂ |k′σ ′

〉
= δσσ ′

∫
d3r
〈
k|eip·r̂ |r

〉
〈r|k′〉 =

= δσσ ′
∫

d3r eip·r 〈k|r〉〈r|k′〉 =

= δσσ ′
∫

d3r eip·rψ∗k (r)ψk′(r).

For the Bloch functions, we use (2.16):

〈
kσ |eip·r̂ |k′σ ′

〉
= δσσ ′

∫
d3r ei(p−k+k′)·ru∗k(r) · uk′(r). (2.175)

The amplitude function uk(r) which reflects the periodicity of the lattice is not to
be confused with the displacements um

s . Inserting (2.175) into (2.174), we now find
the following intermediate result:

N∑

j=1

∇Vei
(
rj −Rm

s

) = i
∑

k,k′
p,σ

V
(s)
ei (p)pe−ip·Rm

a+kσ ak′σ ·

·
∫

d3r ei(p−k+k′)·ru∗k(r)uk′(r).

(2.176)

The product of the displacements has the periodicity of the lattice, owing to (2.17).
The integral can therefore be nonzero only for k = k′ + p. Inserting into (2.171)
then yields the following result (making use of

1

N

∑

m

ei(q−p)·Rm =
∑

K

δp,q+K , (2.177)



2.3 The Electron-Phonon Interaction 81

where K is a vector in the reciprocal lattice):

He−p = −
∑

s,r

∑

q,k′,Kσ
i

√
N

Ms

Qr(q)V
(s)
ei (q +K)·

·
(
ε(r)s (q) · (q +K)

)
a+
k′+q+Kσ

a′kσ ·

·
∫

d3r u∗
k′+q+K

(r)uk′(r).

We now use (2.157) for the normal coordinates Qr(q, t), and define as an
abbreviation the

Matrix element of the electron-phonon coupling

T
(s,r)
k,q,K

= −i

√
h̄N

2Msωr(q)
V
(s)
ei (q +K)

[
ε(r)s (q) · (q +K)

]
·

·
∫

d3r u∗k+q+K(r)uk(r).

(2.178)

Then the Hamiltonian for the electron-phonon interaction is given by:

He−p =
∑

kσ

∑

q,K

∑

s,r

T
(s,r)
k,q,K

(
bqr + b+−qr

)
a+
k+q+Kσ

akσ . (2.179)

Upon emission (creation) of a (−q, r) phonon, or upon absorption (annihilation)
of a (q, r) phonon, the wavenumber k of the electron becomes k + q + K . One
therefore defines the

h̄(q +K): quasi-(crystal-)momentum of the phonons,

where q originates in the first Brillouin zone, whilst K can be an arbitrary
reciprocal-lattice vector. In (2.179), K is fixed by the requirement

k + q +K ∈ the first Brillouin zone.

We distinguish between:

K = 0 : normal processes, and

K �= 0 : umklapp processes.

The complicated matrix element (2.178) can be greatly simplified if the following
assumptions can be made:

1. A simple Bravais lattice: p = 1 ⇒∑
s is omitted,
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2. Only normal processes: K = 0 ⇒∑
K is omitted,

3. The phonons are uniquely longitudinally or transversally polarised:

Under these assumptions, only the longitudinal acoustic phonons interact with the
electrons. With the matrix element

Tk,q = −i

√
h̄N

2Mω(q)
Vei(q)[ε(q) · q]

∫
d3r u∗k+q(r)uk(r), (2.180)

the electron-phonon interaction can be simplified to:

He−p =
∑

kqσ

Tkq

(
bq + b+−q

)
a+k+qσ akσ . (2.181)

2.3.2 The Effective Electron-Electron Interaction

The elementary processes sketched in Fig. 2.6 may be combined into additional,
more complex types of coupling. In particular, phonon-induced electron-electron
interactions can be described. Figure 2.7 symbolises a process in which a (k, σ )
electron emits a q phonon, which is then absorbed by a (k′, σ ′) electron. The spin
of the electron is of course not involved in this process. The first electron deforms
the lattice in its immediate neighbourhood, i.e. as a negatively-charged particle, it

Fig. 2.7 Elementary process
of the phonon-induced
effective electron-electron
interaction
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displaces the positively-charged ions slightly. Deformation means abstractly always
absorption or emission of phonons. A second electron “sees” this lattice deformation
and reacts to it. The result is thus an effective electron-electron interaction, which
naturally has nothing to do with the usual Coulomb interaction and can therefore
be either attractive or repulsive. In the case of an attractive interaction, it can
lead to the formation of electron pairs (Cooper pairs) with an accompanying
decrease in the ground-state energy. This process forms the basis for conventional
superconductivity. We consider the electron-phonon interaction in the form (2.181)
and neglect electron-electron as well as phonon-phonon interactions. The matrix
element Tkq (2.180) can be computed for simplicity with plane waves, which also

eliminates the k-dependence
(
uk(r)⇒ 1/

√
V
)

:

Tq = −i

√
h̄N

2Mω(q)
Vei(q)[ε(q) · q]. (2.182)

One can see from (2.172) that

V ∗ei(q) = Vei(−q)

must hold. Due to (2.147), we also can assume

[ε(q) · q]∗ = ε(−q) · q,

so that

T ∗q = T−q (2.183)

follows. We now investigate whether the following model Hamiltonian contains
terms representing an effective electron-electron interaction, as presumed:

H =
∑

kσ

ε(k)a+
kσ
akσ +

∑

q

h̄ω(q)b+q bq +
∑

kqσ

Tq

(
bq + b+−q

)
a+
k+qσ

akσ .

(2.184)

We carry out an appropriate canonical transformation and try to eliminate linear
terms in He−p.

H̃ = e−SHeS =
(

1− S + 1

2
S2 + · · ·

)
H

(
1+ S + 1

2
S2 + · · ·

)
=

= H + [H, S]− + 1

2
[[H, S]−, S]− + · · · ,

H̃ = e−SHeS = H0 +He−p + [H0, S]− +
[
He−p, S

]
− +

1

2
[[H0, S]−, S]− + · · ·

(2.185)
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We take He−p to be a small perturbation. S should be of the same order of
magnitude. We therefore neglect all the terms in the expansion (2.185) which are
of higher than quadratic order in S or He−p. H0 combines the first two terms in
(2.184).

For S, we take the ansatz

S =
∑

kqσ

Tq

(
xbq + yb+−q

)
a+k+qσ akσ (2.186)

and fix the parameters x and y in such a way that

He−p + [H0, S]− != 0 (2.187)

holds. If we can do this correctly, then the effective operator H̃ is given by:

H̃ ≈ H0 + 1

2
[He−p, S]−. (2.188)

We first compute the commutator:

[H0, S]− = [He, S]− + [Hp, S]−.
Here,

[He, S]− =
=
∑

p,σ ′

∑

kqσ

ε(p)Tq

[
a+
pσ ′apσ ′ ,

(
xbq + yb+−q

)
a+k+qσ akσ

]

− =

=
∑

p,k,q
σ,σ ′

ε(p)Tq

(
xbq + yb+−q

) [
a+
pσ ′apσ ′ , a

+
k+qσ akσ

]

− =

=
∑

ε(p)Tq

(
xbq + yb+−q

)
δσσ ′

(
δp,k+qa

+
pσ ′akσ − δkpa

+
k+qσ apσ ′

)
=

=
∑

kqσ

Tq(ε(k + q)− ε(k))a+
k+qσ

akσ

(
xbq + yb+−q

)
.

We have repeatedly made use of the fact that the creation and annihilation operators
for electrons and phonons are of course mutually commuting.

[Hp, S]− =
∑

p

∑

kqσ

h̄ω(p)Tq

[
b+p bp, (xbq + yb+−q)

]

− a
+
k+qσ

akσ =

=
∑

p

∑

kqσ

h̄ω(p)Tq

(
−xδq pbp + yδ−q pb

+
p

)
a+
k+qσ

akσ =

=
∑

kqσ

Tq h̄ω(q)
(−xbq + yb+−q

)
a+k+qσ akσ .
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All together, we obtain:

[H0, S]− =
∑

kqσ

Tq

{
x (ε(k + q)− ε(k)− h̄ω(q)) bq +

+y (ε(k + q)− ε(k)+ h̄ω(q)) b+−q

}
a+
k+qσ

akσ .

(2.189)

Equation (2.187) can thus be obtained using the following parameters x and y:

x = {ε(k)− ε(k + q)+ h̄ω(q)}−1, (2.190)

y = {ε(k)− ε(k + q)− h̄ω(q)}−1. (2.191)

In the last step, we have inserted the expression for S thus obtained into (2.188).
The essential task is the computation of the following commutator:

[(
bq ′ + b+−q ′

)
a+
k′+q ′σ ′ak′σ ′ ,

(
xbq + yb+−q

)
a+k+qσ akσ

]

− =

=
(
bq ′ + b+−q ′

) (
xbq + yb+−q

) [
a+
k′+q ′σ ′ak′σ ′ , a

+
k+qσ

akσ

]

− +

+
[(
bq ′ + b+−q ′

)
,
(
xbq + yb+−q

)]

− a
+
k′+q ′σ ′ak′σ ′a

+
k+qσ akσ .

Only the last term leads to an effective electron-electron interaction. We thus
concentrate exclusively on this term:

[(
bq ′ + b+−q ′

)
,
(
xbq + yb+−q

)]

− = x
[
b+−q ′ , bq

]

− + y
[
bq ′ , b

+−q

]
− =

= −xδq ′,−q + yδq ′,−q .

(2.192)
This yields the following contribution to H̃ :

H̃eff = 1

2

∑

kqσ

k′q ′σ ′

Tq ′Tq(y − x)δq ′,−qa
+
k′+q ′σ ′ak′σ ′a

+
k+qσ akσ =

= 1

2

∑

kqσ

k′σ ′

T−qTq(y − x)
(
a+k+qσ a

+
k′−qσ ′ak′σ ′akσ + δk′,k+q n̂kσ

)
.

The final term is uninteresting in this context. However, we can see that the electron-
phonon interaction brings about a term of the following form:

H̃ee =
∑

k pqσ,σ ′
|Tq |2 h̄ω(q)

(ε(k + q)− ε(k))2 − (h̄ω(q))2
a+k+qσ a

+
p−qσ ′apσ ′akσ .

(2.193)
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This interaction is

repulsive, when (ε(k + q)− ε(k))2 > (h̄ω(q))2,

attractive, when (ε(k + q)− ε(k))2 < (h̄ω(q))2.

The latter effect explains the stability of Cooper pairs, and thus forms the basis for
our understanding of superconductivity.

2.3.3 Exercises

Exercise 2.3.1 The initial idea of the BCS theory of superconductivity is
the correlation of conduction electrons through virtual phonon exchange into
so-called Cooper pairs, each consisting of two electrons with oppositely-
directed wavevectors and spins,

(k ↑, −k ↓),
which form a bound state. Define suitable creation and annihilation operators
for the Cooper pairs! Compute the associated fundamental commutation
relations! Are Cooper pairs Bosons?

Exercise 2.3.2 The normal electron-phonon interaction generates an effec-
tive electron-electron interaction induced by phonon exchange, which under
certain circumstances can also be attractive (Sect. 2.3.2). Consider the follow-
ing model:

(a) N interaction-free electrons in states k ≤ kF , all states with k > kF
unpopulated ⇐⇒ a filled Fermi sphere |FS〉.

(b) Two additional electrons with oppositely-directed wavevectors and spins
(Cooper pair, see Exercise 2.3.1) interact according to

Vk(q) =
{−V, if |ε(k + q)− ε(k)| ≤ h̄ωD,

0, otherwise

(ωD : Debye frequency).

1. Formulate the model Hamiltonian.
2. Justify the ansatz

|ψ〉 =
∑

k,σ

ασ (k)a
+
kσ a

+
−k−σ |FS〉

(continued)
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Exercise 2.3.2 (continued)
for the Cooper-pair state and show that

ασ (k) = −α−σ (−k)

must hold.
3. Verify that due to the normalisation of |ψ〉 and |FS〉 the following relation

must hold:

k>kF∑

k,σ

|ασ (k)|2 = 1.

Exercise 2.3.3 Consider again the Cooper model defined in Exercise 2.3.2
with the ansatz |ψ〉 for the Cooper-pair state:

1. Show that for the expectation value of the kinetic energy in the state |ψ〉,
the following holds:

〈ψ |T |ψ〉 = 2
k>kF∑

k,σ

ε(k)|ασ (k)|2 + 2
k<kF∑

k

ε(k).

2. Show that for the expectation value of the potential energy in the state |ψ〉,
the following holds:

〈ψ |V |ψ〉 = 2
k,|k+q|>kF∑

k,q,σ

Vk(q)α
∗
σ (k + q)ασ (k) .

Exercise 2.3.4 Consider still further the Cooper model defined in Exer-
cise 2.3.2 with the ansatz |ψ〉 for the Cooper-pair state:

1. Determine the optimum expansion coefficients ασ (k) by minimising the
energy calculated in Exercise 2.3.3,E = 〈ψ |H |ψ〉. Note the side condition
from Exercise 2.3.2, 3, which follows from the normalisation of |ψ〉.

2. Show that the energy of the Cooper pair is less than the energy of two non-
interacting electrons at the Fermi edge. What conclusions can you draw
from this?

(continued)
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Exercise 2.3.4 (continued)
Hint: summations over k can often be advantageously converted into
simpler integrals over energy by making use of the free Bloch density of
states:

ρ0(ε) = 1

N

∑

k

δ (ε − ε(k))!

Exercise 2.3.5 On the BCS theory of superconductivity (Phys. Rev. 108,
1175 (1957)): The BCS model suppresses from the beginning all those
interactions which give the same contributions in the normal and the super-
conducting phase. It considers only the attractive part of the phonon-induced
electron-electron interaction. As test states for a variational calculation of the
BCS ground-state energy (⇐⇒ difference between the ground-state energies
in the normal and the superconducting phases), products of Cooper-pair states
are used, since according to Exercise 2.3.4, the latter lead to an energy
decrease:

|BCS〉 =
[
∏

k

(uk + υkb
+
k
)

]

|0〉, |0〉 : particle vacuum,

b+k = a+k↑a
+
−k↓: Cooper-pair creation operator (see Exercise 2.3.1). The

coefficients uk and υk can be taken to be real.

1. Show that due to the normalisation of the state |BCS〉,
u2

k + υ2
k = 1

must hold.
2. Calculate the following expectation values:

〈BCS|b+k bk|BCS〉; 〈BCS|b+k bkb
+
p bp|BCS〉;

〈BCS|b+k bk(1− b+p bp)|BCS〉; 〈BCS|b+p bk|BCS〉.

Exercise 2.3.6 On the BCS theory of superconductivity (Phys. Rev. 108,
1175 (1957)): The BCS model of superconductivity limits itself, as explained
in Exercise 2.3.5, to treating the attractive contribution to the phonon-induced

(continued)
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Exercise 2.3.6 (continued)
electron-electron interaction (see Exercise 2.3.2). Using the variational
expression |BCS〉 from Exercise 2.3.5, an upper limit to the ground-state
energy can be calculated.

1. Justify the model Hamiltonian:

HBCS =
∑

k,σ

t (k)a+kσ akσ − V

k �=p∑

k,p

b+p bk;

t (k) = ε(k)− μ.

2. Calculate:

E = 〈BCS|HBCS|BCS〉.

3. Show that for the gap parameter

Δk = V

�=k∑

p

upυp,

the minimum condition for E = E({υk}) leads to the result:

Δk = V

2

�=k∑

p

Δp(t
2(p)+Δ2

p)
−1/2.

4. Express υ2
k , u2

k , E0 = (E({υk}))min in terms of �k and t (k).

Exercise 2.3.7 In order to derive the effective electron-electron interaction
H̃ from the actual electron-phonon interaction H , a canonical transformation
(2.185)

H̃ = e−SHeS,

is carried out. Why must S+ = −S be required? Is this requirement fulfilled
by the solutions (2.186), (2.190), (2.191)?
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2.4 Spin Waves

The concepts of many-body theory have a particularly rich field of application in
the area of magnetism. For this in fact rather old phenomenon, there is thus far no
complete theory. Model concepts are necessary, and they are adapted to particular
manifestations of magnetism. We develop the most important of these in this section.

2.4.1 Classification of Magnetic Solids

Using the magnetic susceptibility

χ =
(
∂M

∂H

)

T

(M : magnetisation), (2.194)

the various magnetic phenomena can be divided roughly into three classes:

diamagnetism, paramagnetism, and “collective” magnetism.

In the case of
(1) Diamagnetism
In diamagnetism, we are dealing basically with a purely inductive effect. The
applied magnetic field H induces magnetic dipoles which are, according to Lenz’s
rule, opposed to the field which induces them. A negative susceptibility is thus
typical of diamagnets:

χdia < 0; χdia(T , H) ≈ const. (2.195)

Diamagnetism is naturally a property of all materials. One therefore refers to a
diamagnet only when there is no additional paramagnetism or collective magnetism
present which would overcompensate the relatively weak diamagnetism.

The decisive precondition for

(2) Paramagnetism
In paramagnetism is the existence of permanent magnetic moments, which can
be oriented by the applied field H in competition with the thermal motion of the
elementary magnets. It is thus typified by:

χpara > 0; χpara(T , H)
i.g.= χpara(T ). (2.196)

The permanent moments can be

(2a) localised moments
which result from electron shells which are only partly filled. If these are sufficiently
well shielded from environmental influences by outer, filled shells, then the
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electrons of the unfilled shell will not contribute to an electric current in the solid, but
rather will remain localised in the region of their mother ion. Prominent examples
are the 4f electrons of the rare earths. An incompletely filled electronic shell has as
a rule a resultant magnetic moment. Without an applied magnetic field, the moments
are statistically distributed over all directions, so that the solid as a whole has no
net moment. In an applied field, the moments become oriented, and their magnetic
susceptibility follows the so-called Curie law at temperatures which are not too low:

χpara(T ) ≈ C

T
(C = const). (2.197)

Such a system is called a Langevin paramagnet.
The permanent magnetic moments of a paramagnet can however also be the

(2b) itinerant moments
of quasi-free conduction electrons, of which each carries a moment of one Bohr
magneton (1μB). In this case, one refers to Pauli paramagnetism, whose suscepti-
bility is to first order temperature independent as a result of the Pauli principle.

Dia- and paramagnetism can be regarded as essentially understood. They are
more or less properties of individual atoms, and thus not typical many-body
phenomena. Here, we are interested only in
(3) “Collective” Magnetism
“Collective” magnetism results from a characteristic interaction which is under-
standable only in terms of quantum mechanics, the exchange interaction between
permanent magnetic dipole moments. These permanent moments can again be

localised (Gd, EuO, Rb2 MnCl4)

or else they can be

itinerant (Fe, Co, Ni).

The exchange interaction leads to a

critical temperature T∗,
below which the moments order spontaneously, i.e. without an applied magnetic
field. Above T ∗, they behave as in a normal paramagnet. The susceptibility for
T < T ∗ is in general a complicated function of the applied field and the temperature,
which in addition depends on the previous treatment (history) of the sample:

χKM = χKM(T , H, history) (T ≤ T ∗). (2.198)

Collective magnetism can be divided into three major subclasses:

(3a) Ferromagnetism
In this case, the critical temperature is referred to as

T ∗ = TC : Curie temperature.
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At T = 0, all the moments are oriented parallel to one another (ferromagnetic
saturation). This ordering decreases with increasing temperature. In the range 0 <
T < TC, however, a preferred axis persists, i.e. a spontaneous magnetisation of the
sample is still present; it then vanishes at TC. Above TC, the system is paramagnetic
with a characteristic high-temperature behaviour of its susceptibility, which is called
the Curie-Weiss law:

χ(T ) = C

T − TC
(T � TC). (2.199)

(3b) Ferrimagnetism
The lattice in this case is composed of two ferromagnetic sublattices A and B with
differing spontaneous magnetisations:

MA �= MB : MA +MB = M �= 0 for T < TC. (2.200)

(3c) Antiferromagnetism
This is a special case of ferrimagnetism. Below a critical temperature, which in this
case is termed

T ∗ = TN : the Néel temperature,

the two sublattices order ferromagnetically with opposite but equal spontaneous
magnetisations:

T < TN : |MA| = |MB| �= 0; M = MA +MB ≡ 0. (2.201)

Above TN, the system is normally paramagnetic, with a linear high-temperature
behaviour of the inverse susceptibility, as in a ferromagnet:

χ(T ) = C

T −�
(T � TN). (2.202)

� is called the paramagnetic Curie temperature. As a rule, it is negative.

2.4.2 Model Concepts

Models are indispensable owing to the lack of a complete theory of magnetism; they
relate specifically to particular magnetic phenomena. Here, we refer exclusively to
collective magnetism. The collective magnetism of insulators and of metals must
be treated separately.

(1) Insulators
Magnetism is produced by localised magnetic moments which are due to incom-
pletely filled electronic shells (3d-, 4d-, 4f - or 5f -) in the atoms.
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Examples:

Ferromagnets: CrBr3, K2CuF4, EuO, EuS, CdCr2Se4, Rb2CrCl4, . . .

Antiferromagnets: MnO, EuTe, NiO, RbMnF3, Rb2MnCl4, . . .

Ferrimagnets: MO · Fe2O3 (M = divalent metal ion such as Fe, Ni, Cd,
Mg, Mn, . . . )

These substances are described quite realistically by the so-called

Heisenberg model

H = −
∑

i,j

JijSi · Sj . (2.203)

Each localised magnetic moment is associated with an angular momentum J i
(magneto-mechanical parallelism):

mi = μB(Li + 2Si) ≡ μBgJ · J i. (2.204)

Li is here the orbital contribution, Si the spin contribution, and gJ is the Landé
g-factor. Due to

Si = (gJ − 1)J i, (2.205)

the exchange interaction between the moments can be formulated as an interaction
between their associated spins. The index i refers to the lattice site. The coupling
constants Jij are called exchange integrals (Fig. 2.8).

The Heisenberg Hamiltonian (2.203) is to be understood as an effective operator.
The spin-spin interaction (Si · Sj ), applied to corresponding spin states, simulates
the contribution of the exchange matrix elements of the Coulomb interaction (cf.
(2.90)), which is presumed to be at the origin of the spontaneous magnetisation.

Although the Heisenberg model works well for the magnetic insulators, it is
practically useless for the description of magnetic metals.

Fig. 2.8 Model of a
ferromagnet with localised
magnetic moments. Jij are
the exchange integrals
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Fig. 2.9 Exchange splitting
of the density of states of a
ferromagnet below its Curie
temperature. The states up to
the Fermi energy EF are all
occupied by electrons

(2) Metals
It is expedient to subdivide this topic into those magnetic metals in which the
magnetism and the electrical conductivity are due to the same group of electrons,
and those in which these properties can be ascribed to different groups of electrons.
In the former case, one refers to

(2a) Band magnetism
Prominent representatives of this class are Fe, Co and Ni. A quantum-mechanical
exchange interaction causes a spin-dependent band shift below T < TC. Since the
two spin subbands are each filled with electrons up to the common Fermi energy
EF, it follows that (Fig. 2.9)

N↑ > N↓ (T < TC),

and thus a spontaneous magnetic moment is observed. It is found that band
magnetism is possible especially with narrow energy bands, and it is therefore
thought that the phenomenon can be explained by the Hubbard model which was
discussed in Sect. 2.1.

(2b) “Localised” magnetism
The prototype of this class is the 4f metal Gd. Its magnetism is carried by localised
4f moments, which can be described realistically by the Heisenberg model (2.203).
The electric current in Gd is carried by quasi-free, mobile conduction electrons,
which can be understood with the aid of e.g. the jellium model (Sect. 2.1.2),
or also with the Hubbard model (Sect. 2.1.3). Interesting phenomena result from
an interaction between the localised 4f moments and the itinerant conduction
electrons. It can for example lead to an effective coupling of the 4f moments
and thus can amplify the collective magnetism. It can however also contribute to
the electrical resistance via scattering of the conduction electrons from the local
moments. An appropriate model is the so-called
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s-f (s-d) model

H = H(Hubbard, jellium)+H(Heisenberg)− g
∑

i

σ i · Si. (2.206)

σ is the spin operator for the conduction electrons at the site Ri, and g is a
corresponding coupling constant.

2.4.3 Magnons

There are interesting analogies between the lattice vibrations treated in Sect. 2.2 and
the elementary excitations in a ferromagnet. The oscillations of the lattice ions about
their equilibrium positions can be decomposed into normal modes with quantised
amplitudes. The unit of quantisation is called the phonon. The oscillations in a
ferromagnet corresponding to the normal modes are called

spin waves,

following Bloch, and their unit of quantisation is the

magnon.

We want to analyse these excitations within the framework of the Heisenberg model
(2.203) in more detail. With the usual conventions

Jij = Jji; Jii = 0; J0 =
∑

i

Jij =
∑

j

Jij (2.207)

and the well-known spin operators

Sj =
(
Sxj , S

y
j , S

z
j

)
, (2.208)

S±j = Sxj ± i Syj , (2.209)

Sxj =
1

2

(
S+j + S−j

)
; S

y
j =

1

2i

(
S+j − S−j

)
, (2.210)
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we can decompose the scalar product in the Heisenberg Hamiltonian into its
components:

Si · Sj = 1

2

(
S+i S

−
j + S−i S

+
j

)
+ Szi S

z
j

⇒ H = −
∑

i,j

Jij

(
S+i S

−
j + Szi S

z
j

)
− 1

h̄
gJμBB0

∑

i

Szi .
(2.211)

Compared to (2.203), we have added to the Hamiltonian a Zeeman term, in order to
take account of the interaction of the local moments with the applied magnetic field
B0 = μ0H .

It is often expedient to make use of the spin operators in k space:

Sα(k) =
∑

i

e−i k·RiSαi , (2.212)

Sαi =
1

N

∑

k

ei k·RiSα(k), (2.213)

with (α = x, y, z,+,−).
From the commutation relations in real space,

[
Sxi , S

y
j

]

− = ih̄ δij S
z
i and cyclic permutations, (2.214)

[
Szi , S

±
j

]

− = ±h̄ δij S
±
i , (2.215)

[
S+i , S

−
j

]

− = 2h̄ δij S
z
i , (2.216)

the commutation relations in k space follow immediately:

[
S+(k1), S

−(k2)
]
− = 2h̄Sz(k1 + k2), (2.217)

[
Sz(k1), S

±(k2)
]
− = ±h̄S±(k1 + k2), (2.218)

(
S+(k)

)+ = S−(−k). (2.219)

With the wavenumber-dependent exchange integrals,

J (k) = 1

N

∑

i,j

Jij ei k·(Ri−Rj ), (2.220)

we can then rewrite the Hamiltonian (2.211) in terms of wavenumbers:
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H = − 1

N

∑

k

J (k)
{
S+(k)S−(−k)+ Sz(k)Sz(−k)

}
−

− 1

h̄
gJμBB0S

z(0).

(2.221)

The ground state |S〉 of a Heisenberg ferromagnet corresponds to an overall parallel
orientation of all the spins. We first compute its energy eigenvalue. The effect of the
spin operators on |S〉 is immediately clear:

Szi |S〉 = h̄S|S〉 ⇒ Sz(k) |S〉 = h̄NS |S〉 δk,0, (2.222)

S+i |S〉 = 0 ⇒ S+(k) |S〉 = 0. (2.223)

It thus follows that:

− 1

N

∑

k

J (k)S+(k)S−(−k) |S〉 =

= − 1

N

∑

k

J (k)
[
S−(−k)S+(k)+ 2h̄Sz(0)

] |S〉 =

= −2Nh̄2SJii |S〉 = 0,

− 1

N

∑

k

J (k)Sz(k)Sz(−k) |S〉 =

= −h̄NS 1

N
J(0)Sz(0) |S〉 = −NJ0h̄

2S2 |S〉.

This yields the ground state energy E0 of the Heisenberg ferromagnet:

H |S〉 = E0 |S〉,
E0 = −NJ0h̄

2S2 −NgJμBB0S.
(2.224)

We now show that the state

S−(k) |S〉

is likewise an eigenstate of H . To do so, we calculate the following commutator:

[
H, S−(k)

]
−

= − 1

N

∑

p

J (p)
{[
S+(p), S−(k)

]
−S

−(−p)+
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+Sz(p)[Sz(−p), S−(k)
]
− +

[
Sz(p), S−(k)

]
−S

z(−p)
}
−

− 1

h̄
gJμBB0

[
Sz(0), S−(k)

] =

= − 1

N

∑

p

J (p)
{

2h̄Sz(k + p)S−(−p)− h̄Sz(p)S−(k − p)−

− h̄S−(k + p)Sz(−p)
}
+ gJμBB0S

−(k) =

= gJμBB0S
−(k)− 1

N

∑

p

J (p)
{
− 2h̄2S−(k)+

+ 2h̄S−(−p)Sz(k + p)+ h̄2S−(k)− h̄S−(k − p)Sz(p)−
− h̄S−(k + p)Sz(−p)

}
.

Due to

Jii = 1

N

∑

p

J (p) = 0 (2.225)

we finally find:

[
H, S−(k)

]
− = gJμBB0S

−(k)− h̄

N

∑

p

J (p)
{

2S−(−p)Sz(k + p)−

− S−(k − p)Sz(p)− S−(k + p)Sz(−p)
}
.

(2.226)

The application of this commutator to the ground state |S〉 yields:

[
H, S−(k)

]
− |S〉 = h̄ω(k)

(
S−(k)|S〉) , (2.227)

h̄ω(k) = gJμBB0 + 2Sh̄2(J0 − J (k)). (2.228)

Here, we have also made use of J (k) = J (−k). Our assertion that S−(k)|S〉 is an
eigenstate of H can now be readily demonstrated:

H(S−(k) |S〉) = S−(k)H |S〉 + [H, S−(k)]− |S〉 =
= E(k)

(
S−(k)|S〉) , (2.229)

E(k) = E0 + h̄ω(k). (2.230)

If we presume the ground state |S〉 to be normalised, then it follows that:
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〈S|S+(−k)S−(k)|S〉 = 〈S| (2h̄Sz(0)+ S−(k)S+(−k)
) |S〉 = 2h̄2NS.

We thus have the following important final result: The

normalised single-magnon state

|k〉 = 1

h̄
√

2SN
S−(k)|S〉 (2.231)

is an eigenstate belonging to the energy

E(k) = E0 + h̄ω(k).

This corresponds to the excitation energy

h̄ω(k) = gJμBB0 + 2Sh̄2(J0 − J (k)) (2.232)

which is ascribed to the quasi-particle magnon. The magnetic field term gJμBB0
contains more information. One can see from it that the magnetic moment of the
sample in the state |k〉 has been modified relative to the ground state |S〉 only by a
term gJμB. The magnon thus has a spin of S = 1:

magnons are Bosons!

Another interesting result can be found from the expectation value of the local spin
operator Szi in the single-magnon state |k〉:

〈
k | Szi | k

〉 =

= 1

2SNh̄2

〈
S|S+(−k)Szi S

−(k)|S〉 =

= 1

2SN2h̄2

∑

q

eiq·Ri
〈
S|S+(−k)Sz(q)S−(k)|S〉 =

= 1

2SN2h̄2

∑

q

eiq·Ri〈S|S+(−k)
(−h̄S−(k + q)+ S−(k)Sz(q)

) |S〉 =

= 1

2SN2h̄2

∑

q

eiq·Ri
{
−2h̄2 〈S|Sz(q)|S〉+ h̄NSδq,02h̄

〈
S|Sz(0)|S〉

}
=

= 1

2SN2h̄2

{
−2h̄2Nh̄S + 2h̄2NSNh̄S

}
=

= h̄S − h̄

N
.
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We thus have the notable result

〈
k | Szi | k

〉 = h̄

(
S − 1

N

)
∀i, k. (2.233)

The right-hand side is not dependent on i and k. That means that the spin deviation
1h̄ in the single-magnon state |k〉 is uniformly distributed over all the lattice sites
Ri. As compared to the completely ordered ground state |S〉, with

〈
S | Szi | S

〉 = h̄S ∀i, (2.234)

we find a deviation of the local spin per lattice site of h̄/N . This leads immediately
to the concept of a spin wave, which implies just this collective excitation |k〉. Every
existing spin wave thus implies for the entire lattice a spin deviation of exactly one
unit of angular momentum. The spin wave is characterised by its wavevector k,
which can be visualised in a semiclassical vector model as follows: The local spin
Si precesses about the z-axis with an axial angle which has just the right value so
that the projection of the spins of length h̄S onto the z-axis has the value h̄(S−1/N).
The precessing spins have a fixed, constant phase shift from lattice site to lattice site
corresponding to k = 2π/λ. They thus clearly define a wave.

2.4.4 The Spin-Wave Approximation

The Heisenberg model (2.211) is not exactly solvable for the general case. In
order to arrive at an approximate solution, it is often expedient to transform the
somewhat unwieldy spin operators to creation and annihilation operators in the
second quantisation:

Holstein-Primakoff transformation:

S+i = h̄
√

2Sϕ(ni)ai, (2.235)

S−i = h̄
√

2Sa+i ϕ(ni), (2.236)

Szi = h̄(S − ni). (2.237)

Here, the following abbreviations were used:

ni = a+i ai; ϕ(ni) =
√

1− ni

2S
. (2.238)
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By insertion, one can verify that the commutation relations for the spin operators
(2.214), (2.215), and (2.216) are fulfilled if and only if the creation and annihilation
operators a+i , ai are Bosonic operators:

[
ai, aj

]
− =

[
a+i , a

+
j

]

− = 0,

[
ai, a

+
j

]

− = δij .

(2.239)

The corresponding Fourier transforms

aq = 1√
N

∑

i

e−iq·Riai; a+q = 1√
N

∑

i

eiq·Ria+i (2.240)

can be interpreted as magnon annihilation or creation operators. The model Hamil-
tonian (2.211) then takes on the following form as a result of the transformation:

H = E0 + 2Sh̄2J0

∑

i

ni − 2Sh̄2
∑

i,j

Jij ϕ(ni)aia
+
j ϕ(nj )− h̄2

∑

i,j

Jij ninj .

(2.241)

Here, E0 is the ground-state energy (2.224). A disadvantage of the Holstein-
Primakoff transformation is obvious: working explicitly with H required us to carry
out an expansion of the square root in ϕ(ni):

ϕ(ni) = 1− ni

4S
− n2

i

32S2
− · · · . (2.242)

This means thatH in principle consists of infinitely many terms. The transformation
is thus only reasonable when there is a physical justification for terminating the
infinite series. Since ni can be interpreted as the operator for the magnon number at
the site Ri, but at low temperatures only a few magnons are excited, in such a case
one can limit ni to only its lowest powers. The simplest approximation in this sense
is the so-called spin-wave approximation:

H SW = E0 + 2Sh̄2
∑

i,j

(
J0δij − Jij

)
a+i aj . (2.243)

After the transformation to wavenumbers, H SW is diagonal

H SW = E0 +
∑

k

h̄ω(k)a+
k
ak (2.244)
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with h̄ω(k) as in (2.232). In this low-temperature approximation, the ferromagnet
is thus described as a gas of non-interacting magnons. According to the rules of
statistical mechanics, the mean magnon number 〈nk〉 at T > 0 is then given by the
Bose-Einstein distribution function:

〈nk〉 = 1

exp(βh̄ω(k))− 1
. (2.245)

Then we find for the magnetisation of the ferromagnet:

M(T,H) = gJμB
N

V

(

S − 1

N

∑

k

〈nk〉
)

. (2.246)

At low temperatures, this result is experimentally confirmed to high precision.

2.4.5 Exercises

Exercise 2.4.1 Derive the corresponding relations, using the commutation
relations of the spin operators in real space, for the wavenumber-dependent
spin operators (i.e. in reciprocal space):

Sα(k) =
∑

i

e−i k·RiSαi .

Exercise 2.4.2 Reformulate the Heisenberg-model Hamiltonian,

H = −
∑

i,j

Jij

(
S+i S

−
j + Szi S

z
j

)
− gJ

μB

h̄
B0

∑

i

Szi ,

making use of the k-space spin operators from Exercise 2.4.1.

Exercise 2.4.3 Carry out the Holstein-Primakoff transformation on the
Heisenberg model Hamiltonian from (Exercise 2.4.2).
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Exercise 2.4.4 In the spin-wave approximation, the spontaneous magnetisa-
tion of a Heisenberg ferromagnet at low temperatures is given by:

M0 −MS(T )

M0
= 1

NS

∑

q

1

exp[βh̄ω(q)] − 1
. (s. (2.246))

M0 = gJμBS
N
V

is the saturation magnetisation and

h̄ω(q) = 2Sh̄2(J0 − J (q))

is the magnon energy. Prove Bloch’s T 3/2 law:

M0 −MS(T )

M0
∼ T 3/2.

Hints:

(a) Transform the summation over q into an integral.
(b) Keep in mind that at low temperatures, it suffices to use the magnon

energies in the form which is valid for small q-values:

h̄ω(q) = D

2Sh̄2 q
2,

and that it is allowed to extend the integration over q to the entire q-space
rather than limiting it to the first Brillouin zone.

Exercise 2.4.5 Let the following be given:

H : Hamiltonian with H |n〉 = En|n〉; Wn = exp(−βEn)
Tr[exp(−βH)] ,

A,B,C: arbitrary operators.

1. Show that

(A,B) =
En �=Em∑

n,m

〈
n |A+ |m〉 〈m |B | n〉Wm −Wn

En − Em

represents a (semidefinite) scalar product.

(continued)
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Exercise 2.4.5 (continued)
2. Show that with B = [C+,H ]−, the following relations hold:

(A,B) =
〈[
C+, A+

]
−
〉
; (B,B) =

〈[
C+, [H,C]−

]

−

〉
≥ 0,

(A,A) ≤ 1

2
β
〈[
A,A+

]
+
〉
.

3. Prove the Bogoliubov inequality using (2):

β

2

〈[
A,A+

]
+
〉 〈[[C,H ]−, C+

]
−
〉
≥ |〈[C,A]−〉|2.

Exercise 2.4.6

1. Show that for the scalar product defined in Exercise 2.4.5, (H,H) = 0
holds when H is the Hamiltonian of the system.

2. Let C be an operator which commutes with the Hamiltonian H . Show
that for C, the Bogoliubov relation from Exercise 2.4.5 can be taken as an
equation.

Exercise 2.4.7 Discuss the isotropic Heisenberg model:

H = −
∑

i,j

JijSi · Sj − bB0

∑

i

Szi exp(−i K ·Ri); b = gJμB

h̄
.

The wavevector K is a help in distinguishing different magnetic configura-
tions. Thus, K = 0 leads to ferromagnetism. We assume that

Q = 1

N

∑

i,j

∣∣Ri −Rj

∣∣2 ∣∣J ij

∣∣ <∞,

which is not a major limitation of generality. For the magnetisation, we then
have:

M(T,B0) = b
1

N

∑

i

exp(iK ·Ri)
〈
Sz

i

〉
.

(continued)
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Exercise 2.4.7 (continued)
In the case of an antiferromagnet, (K = (1/2)Q,Q: the smallest reciprocal
lattice vector), M represents the sublattice magnetisation.

1. Choose

A = S−(−k −K); C = S+(k)

and then prove that

(a) 〈[C,A]−〉 = 2h̄N
b
M(T ,B0),

(b)
∑

k

〈[A,A+]+〉 ≤ 2h̄2NS(S + 1),

(c) 〈[[C,H ]−, C+]−〉 ≤ 4Nh̄2(|B0M| + h̄2k2QS(S + 1)).

2. Prove the Mermin-Wagner theorem (Phys. Rev. Lett. 17, 1133 (1966)),
using the Bogoliubov inequality, (Exercise 2.4.5): In the d = 1- and
d = 2-dimensional, isotropic Heisenberg model, there can be no
spontaneous magnetisation for (T �= 0).

(a) Show that the following holds in this connection:

S(S + 1) ≥ M2υdΩd

βh̄2b2(2π)d

k0∫

0

dk
kd−1

|BM| + h̄2k2QS(S + 1)
.

Here, k0 is the radius of a sphere which lies completely within the Brillouin
zone, �d is the surface area of the d-dimensional unit sphere (�1 =
1,�2 = 2π, �3 = 4π), and υd = Vd/Nd is the specific volume of
the d-dimensional system in the thermodynamic limit.

(b) Verify for the spontaneous magnetisation that:

MS(T ) = lim
B0→0

M(T,B0) = 0 for T �= 0 and d = 1 and 2.

2.5 Self-Examination Questions

2.5.1 For Sect. 2.1

1. Which eigenvalue equation leads to the Bloch functions and the Bloch energies?
2. What is stated by Bloch’s Theorem?
3. What are the orthogonality and completeness relations for Bloch functions?
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4. Give the Hamiltonian H0 for non-interacting crystal electrons in second
quantistion for the Bloch representation, for the real-space representation with
field operators, and for the Wannier representation.

5. What are the commutation relations for Bloch operators a+
kσ
, akσ and for

Wannier operators a+iσ , aiσ ?
6. When does a Bloch function become a plane wave?
7. What is meant by a hopping integral?
8. What relationship exists between Bloch and Wannier operators?
9. Which assumptions define the jellium model?

10. Justify the necessity of a convergence-producing factor in the Coulomb inte-
grals of the jellium model.

11. What is the Hamiltonian of the jellium model? What is the effect of the
homogeneously distributed positive ion charges?

12. How is the operator for the electron density written in the formalism of second
quantisation if plane waves are used as a single-particle basis?

13. What relationship exists between the electron density operator and the particle
number operator?

14. Formulate the Hamiltonian of the jellium model using the electron density
operator.

15. Define the concepts of Fermi energy and Fermi wavevector.
16. What is meant by the direct term and the exchange term in the Coulomb

interaction of the jellium model?
17. Give the two leading terms in the expansion of the ground-state energy of the

jellium model in terms of the dimensionless density parameter rs , and interpret
them.

18. What is meant by correlation energy?
19. Why is the jellium model not useful for the description of electrons in narrow

energy bands?
20. Describe the so-called tight-binding approximation.
21. What are the decisive simplifications which finally lead to the Hubbard model?
22. What is the Hamiltonian of the Hubbard model?
23. Which physical parameters mainly influence the statements of the Hubbard

model?
24. Name some of the important areas of application of the Hubbard model.

2.5.2 For Sect. 2.2

1. Why is it reasonable in the description lattice vibrations to use collective
coordinates instead of the ion coordinates?

2. How can the harmonic approximation be justified?
3. How is the matrix of the atomic force constants defined? What is the meaning

of its elements?
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4. Name some of the obvious symmetries of the force-constant matrix.
5. Justify the terms acoustic and optical dispersion branch.
6. What equation of motion is obeyed by the so-called normal coordinates? How

are they related to the real displacements of the ions?
7. How is the Lagrangian function of the ion system written in terms of the normal

coordinates?
8. What are the momenta which are canonically conjugate to the normal coordi-

nates?
9. Give the classical Hamilton function of the ion system. Interpret it.

10. State the commutation relations for the normal coordinates and for the momenta
which are canonically conjugate to them.

11. How are the creation and annihilation operators b+qr , bqr related to the normal
coordinates and their canonically conjugated momenta?

12. Why are bqr and b+qr Bosonic operators?
13. Give the Hamiltonian for the ion system in the harmonic approximation in terms

of the creation and annihilation operators bqr and b+qr .
14. What is a phonon?

2.5.3 For Sect. 2.3

1. Describe the elementary processes which lead to an electron-phonon interaction.
2. Which approximation for the electron-phonon interaction corresponds to the

harmonic approximation for the lattice vibrations?
3. Which operator combination defines the electron-phonon interaction within the

formalism of second quantisation?
4. What is meant by normal and umklapp processes?
5. Describe how the elementary processes of the electron-phonon interaction can

be combined.
6. Which method of theoretical physics allows us to recognise that the electron-

phonon interaction contains terms describing an effective phonon-induced
electron-electron interaction?

7. Can this effective electron-electron interaction also be attractive?

2.5.4 For Sect. 2.4

1. Which physical quantity would appear to be particularly suited for the classifi-
cation of magnetic solids?

2. Why is diamagnetism a property of all materials?
3. What is the decisive precondition for the occurrence of paramagnetism and

collective magnetism?
4. What distinguishes Langevin paramagnetism from Pauli paramagnetism?
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5. Comment on the Curie law.
6. Into which three major subclasses can collective magnetism be subdivided?
7. What is the Hamiltonian of the Heisenberg model? For which class of magnetic

substances is the model suited?
8. When does one speak of band magnetism?
9. Which magnetic materials are described by the s-f (or s-d) model?

10. Sketch the derivation of the so-called single-magnon state

|k〉 =
(
h̄22SN

)−1/2
S−(k)|S〉 (|S〉 ⇐⇒ ferromagnetic saturation)

as an eigenstate of the Heisenberg Hamiltonian.
11. What is the spin of magnons?
12. What is the expectation value of the local spin operator Szi in the single-magnon

state |k〉? Interpret the result.
13. Explain the concept of a spin wave.
14. Formulate the Holstein-Primakoff transformation of the spin operators.
15. What is meant by the spin-wave approximation? Under which conditions is it

justified?



Chapter 3
Green’s Functions

The goal of theoretical physics consists in developing methods for the calculation
of measurable physical quantities. Measurable physical quantities are:

1. the eigenvalues of observables,
2. the expectation values of observables 〈Â(t)〉, 〈B̂(t ′)〉, . . .,
3. the correlation functions between observables 〈Â(t) · B̂(t ′)〉 . . .
Within the framework of statistical mechanics, calculations of measurable quantities
of category (2) or (3) are possible only when the partition function of the physical
system under consideration is known. This presupposes, on the other hand, a
knowledge of the eigenvalues and the eigenstates of the Hamiltonian, which is as a
rule not the case for realistic many-body problems. The Green’s-function method
allows a determination, in general necessarily approximate, of the expectation
values and correlation functions without an explicit knowledge of the partition
function. The corresponding methods will be discussed in this chapter and in the
following ones. To this end, we require some preliminary information.

3.1 Preliminary Considerations

3.1.1 Representations

For the description of the time dependence of physical systems, we use one of the
three equivalent representations, depending on which is most expedient:

Schrödinger, Heisenberg, Dirac representation.

We shall begin with the representation which is used almost exclusively in Quan-
tum Mechanics.
(1) The Schrödinger representation (state representation)
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In this representation, the time dependence is carried by the states, whilst the
operators are independent of time, unless they have an explicit time dependence,
e.g. due to switching-on and -off processes. We adopt the

equations of motion

from elementary quantum mechanics

(a) for pure states:

ih̄|ψ̇s(t)〉 = H |ψs(t)〉, (3.1)

(b) for mixed states:

ρ̇S = i

h̄
[ρS,H ]−. (3.2)

Here, ρS is the density matrix with its well-known properties:

ρS =
∑

m

pm |ψm〉 〈ψm| (3.3)

where pm is the probability that the system is to be found in the state |ψm〉,
〈Â〉 = Tr(ρsÂ), (3.4)

Trρs = 1, (3.5)

Trρ2
s =

{
1 : pure state,

< 1 : mixed state.
(3.6)

For the following, the

time-evolution operator US(t, t0),

is important; it is defined by

|ψS(t)〉 = US(t, t0) |ψS(t0)〉 . (3.7)

Essential properties of this operator are:

1. U+S (t, t0) = U−1
S (t, t0), (3.8)

2. US(t0, t0) = 1 (3.9)

3. US(t, t0) = US
(
t, t ′
)
US
(
t ′, t0

)
. (3.10)

If we use (3.7) in (3.1), then we obtain an equivalent equation of motion for the
time-evolution operator:

ih̄U̇S(t, t0) = HtUS(t, t0). (3.11)
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The index t of the Hamiltonian indicates a possible explicit time dependence.
Equation (3.11) can be formally integrated by taking (3.9) into account:

US(t, t0) = 1− i

h̄

t∫

t0

dt1Ht1US(t1, t0). (3.12)

After some iterations, we obtain

von Neumann’s series

US(t, t0) = 1+
∞∑

n=1

U
(n)
S (t, t0), (3.13)

U
(n)
S (t, t0) =

(
− i

h̄

)n t∫

t0

dt1

t1∫

t0

dt2 . . .

tn−1∫

t0

dtn Ht1 Ht2 . . . Htn (3.14)

(t ≥ t1 ≥ t2 ≥ · · · ≥ tn ≥ t0) .

The time ordering must be strictly observed, since the operators Hti at different
times do not necessarily commute.

For further rearrangements, we introduce a special operator:

Dyson’s time-ordering operator

TD(A(t1)B(t2)) =
{
A(t1)B(t2) f or t1 > t2,

B(t2)A(t1) f or t2 > t1.
(3.15)

The generalisation to more than two operators is obvious. The following relations
can be seen from Fig. 3.1:

t∫

t0

dt1

t1∫

t0

dt2 Ht1 Ht2 =
t∫

t0

dt2

t∫

t2

dt1 Ht1 Ht2 .

On the right-hand side of the equation, we interchange t1 and t2:

t∫

t0

dt1

t1∫

t0

dt2 Ht1 Ht2 =
t∫

t0

dt1

t∫

t1

dt2 Ht2 Ht1 .
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Fig. 3.1 Illustration of the
rearrangement of the
time-ordering operator from
(3.14) as in (3.17)

When we combine the last two relations, this yields:

t∫

t0

dt1

t1∫

t0

dt2 Ht1 Ht2 =

= 1

2

t∫

t0

dt1

t∫

t0

dt2 (Ht1 Ht2�(t1 − t2)+Ht2Ht1�(t2 − t1)) = (3.16)

= 1

2!
t∫∫

t0

dt1dt2TD
(
Ht1 Ht2

)
.

This result can be generalised to n terms, so that from (3.14), we now obtain:

U
(n)
S (t, t0) = 1

n!
(
− i

h̄

)n t∫

t0

· · ·
t∫

t0

dt1 · · · dtn TD
(
Ht1 Ht2 · · ·Htn

)
. (3.17)

Thus, the time-evolution operator can be represented compactly in the following
form:

US(t, t0) = TD exp

⎛

⎝− i

h̄

t∫

t0

dt ′Ht ′

⎞

⎠ . (3.18)

A special case is a closed system:

∂H

∂t
= 0 �⇒ US(t, t0) = exp

(
− i

h̄
H(t − t0)

)
. (3.19)
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(2) The Heisenberg representation (operator representation)
In this representation, the time dependence is carried by the operators, whilst the

states remain constant in time.
The Schrödinger representation discussed in (1) is of course by no means

compulsory. Every unitary transformation of the operators and the states which
leaves the measurable quantities (expectation values, scalar products) invariant is
naturally allowed.

For the states in the Heisenberg representation, we assume:

|ψH(t)〉 ≡ |ψH〉 != |ψS(t0)〉 . (3.20)

Here, t0 is an arbitrary but fixed time, e.g. t0 = 0. With (3.7), (3.9) and (3.10), it
follows that:

|ψH〉 = U−1
S (t, t0) |ψS(t)〉 = US(t0, t) |ψS(t)〉 . (3.21)

Due to

〈ψH |AH(t)|ψH〉 != 〈ψS(t) |AS|ψS(t)〉 (3.22)

we then find for the observable A in the Heisenberg representation:

AH(t) = U−1
S (t, t0)ASUS(t, t0). (3.23)

If H is not explicitly time-dependent, this relation can be simplified to

AH(t) = exp

(
i

h̄
H(t − t0)

)
AS exp

(
− i

h̄
H(t − t0)

) (
∂H

∂t
= 0

)
. (3.24)

In particular, we then see that:

HH(t) = HH = HS = H. (3.25)

We now derive the equation of motion of the Heisenberg operators:

d

dt
AH(t) = U̇+S (t, t0)ASUS(t, t0)+ U+S (t, t0)

∂AS

∂t
US(t, t0)+

+ U+S (t, t0)ASU̇S(t, t0) =

= − 1

ih̄
U+S HASUS + 1

ih̄
U+S ASHUS + U+S

∂AS

∂t
US =

= i

h̄
U+S [H,AS]−US + U+S

∂AS

∂t
US.
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We define

∂AH

∂t
= U−1

S (t, t0)
∂AS

∂t
US(t, t0) (3.26)

and then find for the equation of motion:

ih̄
d

dt
AH(t) = [AH,HH]−(t)+ ih̄

∂AH

∂t
. (3.27)

An intermediate role between that of the Schrödinger and the Heisenberg
representation is played by

(3) the Dirac representation (interaction representation)
Here, the time dependence is distributed between the states and the operators.

The starting point is the usual situation,

H = H0 + Vt , (3.28)

in which the Hamiltonian is composed of a part H0 for the free system and a
possibly explicitly time dependent interaction Vt . Then the following ansatz is taken
conventionally:

|ψD(t0)〉 = |ψS(t0)〉 = |ψH〉 , (3.29)

|ψD(t)〉 = UD
(
t, t ′
) ∣∣ψD

(
t ′
)〉
, (3.30)

|ψD(t)〉 = U−1
0 (t, t0) |ψS(t)〉 . (3.31)

Here,

U0
(
t, t ′
) = exp

[
− i

h̄
H0
(
t − t ′

)]
(3.32)

is the time-evolution operator of the free system. We find from this that in the
absence of interactions, the Dirac and the Heisenberg representations are identical.

As a result of (3.29) through (3.31), the following rearrangement holds:

|ψD(t)〉 = U−1
0 (t, t0) |ψS(t)〉 = U−1

0 (t, t0)US
(
t, t ′
) ∣∣ψS

(
t ′
)〉 =

= U−1
0 (t, t0)US

(
t, t ′
)
U0
(
t ′, t0

) ∣∣ψD
(
t ′
)〉 != UD

(
t, t ′
) ∣∣ψD

(
t ′
)〉
.

We have thus found the expression which relates the Dirac to the Schrödinger time-
evolution operator:

UD
(
t, t ′
) = U−1

0 (t, t0)US
(
t, t ′
)
U0
(
t ′, t0

)
. (3.33)
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We can see that for Vt ≡ 0, i.e. US = U0, UD(t, t
′) ≡ 1 holds. Dirac states are then

time independent. We require

〈ψD(t)|AD(t) |ψD(t)〉 != 〈ψS(t) |AS|ψS(t)〉

for an arbitrary operator A. Making use of (3.31) and (3.32), this yields:

AD(t) = exp

(
i

h̄
H0(t − t0)

)
AS exp

(
− i

h̄
H0(t − t0)

)
. (3.34)

The dynamics of the operators in the Dirac representation are thus determined by
H0. This can in particular be seen from the equation of motion which can be derived
directly from (3.34):

ih̄
d

dt
AD(t) = [AD,H0]− + ih̄

∂AD

∂t
. (3.35)

Analogously to (3.26), here we have used the definitions:

∂AD

∂t
= U−1

0 (t, t0)
∂AS

∂t
U0(t, t0). (3.36)

For the time dependence of the states, according to (3.31) we find:

|ψ̇D(t)〉 = U̇+0 (t, t0)|ψS(t)〉 + U+0 (t, t0)|ψ̇S(t)〉 =

= i

h̄
(U+0 (t, t0)H0 − U+0 (t, t0)H)|ψS(t)〉 =

= i

h̄
U+0 (t, t0)(−Vt )U0(t, t0) |ψD(t)〉 .

It thus follows that:

ih̄|ψ̇D(t)〉 = V D
t (t)|ψD(t)〉. (3.37)

The dynamics of the states are thus determined by the interaction Vt . We distinguish
the two time dependencies in V D

t (t)! Analogously to (3.37), the equation of motion
of the density matrix can be derived:

ρ̇D(t) = i

h̄

[
ρD, V

D
t

]

− (t). (3.38)

Inserting (3.30) into (3.37), we find with

ih̄
d

dt
UD
(
t, t ′
) = V D

t (t)UD
(
t, t ′
)

(3.39)
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an equation of motion for the time-evolution operator, which is formally identical to
(3.11). The same logical sequence as employed following Eq. (3.13) then leads to
an important relation:

UD
(
t, t ′
) = TD exp

⎛

⎝− i

h̄

t∫

t ′
dt ′′V D

t ′′
(
t ′′
)
⎞

⎠ , (3.40)

which represents the starting point for the diagram techniques which we shall
discuss later. Note thatUD(t, t

′), in contrast toUS(t, t
′), cannot be further simplified

even when there is no explicit time dependence, since then simply the replacement
V D
t ′′ (t

′′)→ V D(t ′′) is to be made. A time dependence thus remains.

3.1.2 Linear-Response Theory

We want to introduce the Green’s functions in connection with a concrete physical
problem:

How does a physical system react to an external perturbation?

Problems of this type are characterised by so-called

response functions,

among which in particular are

1. the electrical conductivity,
2. the magnetic susceptibility, and
3. the dielectric function.

It is found that these quantities are described by retarded Green’s functions. To
show this, we introduce the linear-response theory, an important tool of theoretical
physics.

We describe the system under consideration by its Hamiltonian:

H = H0 + Vt . (3.41)

Here, Vt has a somewhat different meaning than in (3.28). It describes the interaction
of the system with an applied field (the perturbation). H0 describes the system of
interacting particles when the field is switched off. Due to the interactions between
the particles, even the eigenvalue problem belonging toH0 usually cannot be solved
exactly.

The scalar field Ft is assumed to couple to an observable B̂ of the system:

Vt = B̂Ft . (3.42)
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Note that B̂ is an operator and Ft is a c-number. Let Â be a not explicitly
time-dependent observable, whose thermodynamic expectation value 〈Â〉 can be
interpreted as a measurable quantity. We wish to investigate how 〈Â〉 reacts to the
perturbation Vt .

Without the applied field, we have

〈Â〉0 = Tr
(
ρ0Â

)
, (3.43)

where ρ0 is the density matrix of the field-free system:

ρ0 = exp(−βH0)

Tr
[
exp(−βH0)

] . (3.44)

We average over the grand canonical ensemble:

H0 = H0 − μN̂. (3.45)

μ is the chemical potential. If we now switch on the field Ft , the density matrix will
be correspondingly modified:

ρ0 −→ ρt . (3.46)

This modification then affects the expectation value of Â:

〈Â〉t = Tr
(
ρt Â

)
. (3.47)

We have initially used the Schrödinger representation here, but we leave off the
index S. The equation of motion of the density matrix is found from (3.2):

ih̄ρ̇t = [H0, ρt ]− + [Vt , ρt ]− . (3.48)

We assume that the field is switched on at some particular time, and we can therefore
use the following as the boundary condition for the differential equation of first order
(3.48):

lim
t→−∞ ρt = ρ0. (3.49)

We now (temporarily) change to the Dirac representation, in which we find with
t0 = 0 from (3.34):

ρD
t (t) = exp

(
i

h̄
H0t

)
ρt exp

(
− i

h̄
H0t

)
. (3.50)

The equation of motion (3.38) leads, with the boundary condition (3.49),

lim
t→−∞ ρD

t (t) = ρ0, (3.51)
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to the result:

ρD
t (t) = ρ0 − i

h̄

t∫

−∞
dt ′
[
V D
t ′
(
t ′
)
, ρD

t ′
(
t ′
)]

− . (3.52)

This equation can be solved to arbitrary precision by iterating:

ρD
t (t) = ρ0 +

∞∑

n=1

ρ
D(n)
t (t), (3.53)

ρ
D(n)
t (t) =

(
− i

h̄

)n t∫

−∞
dt1

t1∫

−∞
dt2 · · ·

tn−1∫

−∞
dtn·

·
[
V D
t1
(t1),

[
V D
t2
(t2),

[
. . . ,

[
V D
tn
(tn), ρ0

]
− . . .

]

−

]

−

]

−
. (3.54)

This formula is indeed exact, but as a rule not applicable, since the infinite series
cannot be computed. We therefore assume that the external perturbations are
sufficiently small that we can limit ourselves to linear terms in the perturbation V :

Linear response

ρt ≈ ρ0 − i

h̄

t∫

−∞
dt ′ exp

(
− i

h̄
H0t

)[
V D
t ′
(
t ′
)
, ρ0

]

− exp

(
i

h̄
H0t

)
.

(3.55)

In this expression, we have already transformed the density matrix back to the
Schrödinger representation. We can now insert this expression into (3.47) in order
to compute the perturbed expectation value:

〈Â〉t = 〈Â〉0 − i

h̄

t∫

−∞
dt ′Tr

{
exp

(
− i

h̄
H0t

)[
V D
t ′
(
t ′
)
, ρ0

]

− exp

(
i

h̄
H0t

)
Â

}
=

= 〈Â〉0 − i

h̄

t∫

−∞
dt ′Ft ′Tr

{[
B̂D (t ′

)
, ρ0
]
−Â

D(t)
}
=

= 〈Â〉0 − i

h̄

t∫

−∞
dt ′Ft ′Tr

{
ρ0
[
ÂD(t), B̂D (t ′

) ]
−
}
.
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We were able to make use of the cyclic invariance of the trace several times here. We
thus now know the reaction of the system to the external perturbation, as reflected
in the observable Â:

�At = 〈Â〉t − 〈Â〉0 = − i

h̄

t∫

−∞
dt ′ Ft ′

〈[
ÂD(t), B̂D (t ′

) ]
−
〉

0
. (3.56)

Note that the reaction of the system is determined by an expectation value of
the unperturbed system. The Dirac representation of the operators ÂD(t), B̂D(t ′)
corresponds to the Heisenberg representation when the field is off. We define the

double-time retarded Green’s function

Gret
AB

(
t, t ′
) = ⟪A(t);B (t ′)⟫ = −i�

(
t − t ′

) 〈[
A(t), B

(
t ′
) ]
−
〉

0
. (3.57)

The operators here are always taken to be in the Heisenberg representation of the
field-free system. We leave off the corresponding index.

The retarded Green’s functionGret
AB thus describes the reaction of the system, as it

manifests itself in the observable Â when the perturbation acts on the observable B̂:

�At = 1

h̄

+∞∫

−∞
dt ′Ft ′Gret

AB

(
t, t ′
)
. (3.58)

Using the Fourier transform F(E) of the perturbation,

Ft = 1

2π h̄

+∞∫

−∞
dE exp

[
− i

h̄

(
E + i0+

)
t

]
F(E), (3.59)

and in anticipation of a later result that the Green’s function itself depends only on
the time difference t − t ′ when the Hamiltonian is not explicitly time dependent, we
can write (3.58) also in the following form:

Kubo formula

�At = 1

2π h̄2

+∞∫

−∞
dE F(E)Gret

AB(E + i0+) exp

[
− i

h̄

(
E + i0+

)
t

]
.

(3.60)
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The term i0+ in the exponent guarantees the fulfillment of the boundary condition
(3.49). The field Ft is, as one says, thus switched on adiabatically. In the following
three sections, we discuss some examples of applications of the important Kubo
formula.

3.1.3 The Magnetic Susceptibility

The perturbation is caused by a spatially homogeneous, temporally oscillating
magnetic field:

B t = 1

2π h̄

+∞∫

−∞
dE exp

[
− i

h̄

(
E + i0+

)
t

]
B(E). (3.61)

The field couples to the magnetic moment of the system:

m =
∑

i

mi = gJμB

h̄

∑

i

Si . (3.62)

This produces the following perturbation term in the Hamiltonian:

Vt = −m · B t =

= − 1

2π h̄

(x,y,z)∑

α

+∞∫

−∞
dE exp

[
− i

h̄

(
E + i0+

)
t

]
mαBα(E).

(3.63)

Of particular interest is of course the reaction of the magnetisation to the switched-
on field. As a result of

M = 1

V
〈m〉 = gJμB

h̄V

∑

i

〈Si〉, (3.64)

in the Kubo formula (3.60) or (3.58), we choose both operators Â and B̂ to
correspond to the magnetic-moment operator m. From (3.58), we then obtain:

M
β
t −M

β
0 = − 1

V h̄

∑

α

+∞∫

−∞
dt ′Bα

t ′ ⟪m
β(t);mα

(
t ′
)
⟫ . (3.65)

The field-free magnetisation M
β
0 is of course nonvanishing only in the case of a

ferromagnet. Equation (3.65) defines the
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magnetic-susceptibility tensor

χ
βα
ij

(
t, t ′
) = − μ0

V h̄

g2
Jμ

2
B

h̄2 ⟪Sβi (t); Sαj
(
t ′
)
⟫ (3.66)

as a retarded Green’s function. We then have

�M
β
t =

1

μ0

∑

i,j

∑

α

+∞∫

−∞
dt ′χβαij

(
t, t ′
)
Bαt ′ , (3.67)

or, in the energy representation:

�M
β
t =

1

2π h̄μ0

∑

i,j

∑

α

+∞∫

−∞
dE exp

[
− i

h̄

(
E + i0+

)
t

]
χ
βα
ij (E)B

α(E). (3.68)

In applying (3.62), we assumed implicitly that the physical system under considera-
tion contains permanent local moments (cf. (2.204)). In such a situation, two special
types of susceptibilities are of particular interest:

(1) The longitudinal susceptibility

χzzij (E) = − μ0

V h̄

g2
Jμ

2
B

h̄2 ⟪Szi ; Szj⟫E . (3.69)

The index E denotes the energy-dependent Fourier transform of the retarded
Green’s function.

From χzzij , one can derive important statements about the stability of
magnetic order. To this end, we compute the spatial Fourier transform

χzzq (E) =
1

N

∑

i,j

χzzij (E)e
iq·(Ri−Rj ) (3.70)

for the paramagnetic phase. Given the singularities of this response function, an
infinitesimal field suffices to produce a finite magnetisation in the sample, i.e.
to bring about a spontaneous ordering of the magnetic moments. One therefore
investigates under which conditions

{
lim

(q, E)→0
χzzq (E)

}−1

= 0 (3.71)
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holds, and reads off from this condition the characteristics of the phase
transition for para- ⇐⇒ ferromagnetism.

The
(2) transverse susceptibility

χ+−ij (E) = − μ0

V h̄

g2
Jμ

2
B

h̄2 ⟪S+i ; S−j ⟫E (3.72)

also contains considerable information. Its poles are identical with the spin-
wave energies (magnons):

{
χ+−q (E)

}−1 = 0 ⇐⇒ E = h̄ω(q). (3.73)

These examples show that the linear-response theory not only represents an
approximate method for weak external perturbations, but it also allows us to
make statements about the unperturbed system.

3.1.4 The Electrical Conductivity

We next take the perturbation to be a spatially homogeneous, temporally oscillating
electric field:

F t = 1

2π h̄

+∞∫

−∞
dE exp

[
− i

h̄

(
E + i0+

)
t

]
F (E). (3.74)

We choose the symbol F for this field instead of the more usual E in order to avoid
confusion with the energy E.

The electric field couples to the operator of the electric dipole moment P :

P =
∫

d3r r ρ(r). (3.75)

We consider N point charges qi at the positions r̂ i (t). Then the charge density is
given by

ρ(r) =
N∑

i=1

qiδ(r − r̂ i ), (3.76)

and thus we have for the dipole-moment operator:
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P =
N∑

i=1

qi r̂ i . (3.77)

The electric field causes an additional term to appear in the Hamiltonian:

Vt = −P · F t =

= − 1

2π h̄

(x,y,z)∑

α

+∞∫

−∞
dE exp

[
− i

h̄

(
E + i0+

)
t

]
PαFα(E).

(3.78)

One is of course interested in particular in the reaction of the current density to the
field. The expectation value of the current-density operator,

j = 1

V

N∑

i=1

qi ˙̂r i = 1

V
Ṗ , (3.79)

is certainly zero in the absence of an applied field:

〈j〉0 = 0. (3.80)

After switching on the field, owing to (3.58), we find:

〈
jβ
〉
t
= −1

h̄

∑

α

+∞∫

−∞
dt ′Fα

t ′ ⟪j
β(t);Pα

(
t ′
)
⟫ . (3.81)

In the energy representation, this gives:

〈
jβ
〉
t
= 1

2π h̄

∑

α

+∞∫

−∞
dE exp

[
− i

h̄

(
E + i0+

)
t

]
σβα(E)Fα(E). (3.82)

This relation (Ohm’s law) defines the

electrical conductivity tensor

σβα(E) ≡ −1

h̄
⟪jβ;Pα⟫

E
, (3.83)



124 3 Green’s Functions

whose components are represented by retarded Green’s functions. This expression
still requires some rearrangement. For this, we make use of the temporal homogene-
ity of the Green’s functions, which we have already used and which will be proved
later:

σβα(E) = −1

h̄

+∞∫

−∞
dt ⟪jβ(0);Pα(−t)⟫ exp

[
i

h̄

(
E + i0+

)
t

]
=

= i

h̄

∞∫

0

dt
〈[
jβ, P α(−t)]−

〉
exp

[
i

h̄

(
E + i0+

)
t

]
=

=
〈[
jβ, P α(−t)]−

〉

E + i0+
exp

[
i

h̄

(
E + i0+

)
t

]∣∣∣∣

∞

0
− (3.84)

−
∞∫

0

dt
exp[(i/h̄) (E + i0+

)
t]

E + i0+
d

dt

〈[
jβ, P α(−t)]−

〉
=

= −
〈[
jβ, P α

]
−
〉

E + i0+
+

∞∫

0

dt
〈[
jβ, Ṗ α(−t)]−

〉 exp
[
(i/h̄)

(
E + i0+

)
t
]

E + i0+
=

= −
〈[
jβ, P α

]
−
〉

E + i0+
+ iV

⟪jβ; jα⟫
E

E + i0+
.

The first term can be readily evaluated:

[
jβ, P α

]
− =

1

V

∑

i,j

qiqj

[˙̂rβi , r̂αj
]

− =
1

V

∑

i,j

qiqj
h̄

i

δij δαβ

mi

. (3.85)

We assume identical charge carriers,

qi = q; mi = m ∀i,

and then, inserting (3.85) into (3.84), we find:

σβα(E) = ih̄
(N/V )q2

m(E + i0+)
δαβ + iV

⟪jβ; jα⟫
E

E + i0+
. (3.86)

The first term represents the conductivity of a system of non-interacting electrons, as
is known from the classical Drude theory. The influence of the particle interactions is
thus brought into play exclusively by the retarded current-current Green’s function.
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3.1.5 The Dielectric Function

If an external charge density ρext(r, t) is added to a metal, it will give rise to a change
in the density of the quasi-free conduction electrons within the system, producing
screening of the perturbation charges. This screening effect is described by the
dielectric function ε(q, E), which is therefore a measure of the response of the
system to the external perturbation ρext(r, t). It is a further example of a response
function and can likewise be expressed in terms of a retarded Green’s function. We
shall demonstrate this in the present section, first preparing the problem using a
classical treatment.

For the external charge density, we take:

ρext(r, t) = 1

2π h̄V

+∞∫

−∞
dE
∑

q

ρext(q, E)e
iq·r exp

[
− i

h̄

(
E + i0+

)
t

]
. (3.87)

Acting between ρext and the charge density of the conduction electrons,

−eρ(r) = − e

V

∑

q

ρqeiq·r , (3.88)

is an interaction energy

Vt = −e
4πε0

∫∫
d3r d3r ′ ρ(r)ρext(r

′, t)
|r − r ′| . (3.89)

As in (2.58), one can show that

∫∫
d3r d3r ′ exp[i(q ·r + q ′ ·r ′)]

|r − r ′| = δq,−q ′
4πV

q2

holds. Then, using the definition

ῡ(q) = υ0(q)

−e = 1

V

−e
ε0q2 , (3.90)

along with (3.87) and (3.88) inserted into (3.89), we obtain for Vt :

Vt = 1

2π h̄

+∞∫

−∞
dE exp

[
− i

h̄

(
E + i0+

)
t

]∑

q

ῡ(q)ρ−qρext(q, E). (3.91)

We use the jellium model for the metal, i.e. we assume that in equilibrium, the
electronic and the ionic charge densities just compensate each other. Furthermore,
the perturbation charge is assumed to polarise only the more mobile electronic
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system, whilst the ionic charges remain homogeneously distributed. The overall
charge density is then the sum of ρext and the induced charge density ρind which
it produces in the electron gas:

ρtot(r, t) = ρext(r, t)+ ρind(r, t). (3.92)

From the Maxwell equations

iq ·D(q, E) = ρext(q, E), (3.93)

iq ·F (q, E) = 1

ε0
(ρext(q, E)+ ρind(q, E)) (3.94)

and the electric elasticity of matter

D(q, E) = ε0ε(q, E)F (q, E), (3.95)

we find for the induced charge density:

ρind(q, E) =
[

1

ε(q, E)
− 1

]
ρext(q, E). (3.96)

We next transform our thus-far classical considerations to a quantum-mechanical
representation. For the electron density ρ−q in (3.91), we obtain the density
operator, which was formulated in second quantisation in (2.70):

ρq =
∑

kσ

a+
kσ
ak+qσ ; ρ−q = ρ+q . (3.97)

The interaction energy defined in (3.91) then likewise becomes an operator:

Vt =
∑

q

ρ+q F̃t (q). (3.98)

The perturbation field F̃t (q),

F̃t (q) = ῡ(q)

2π h̄

+∞∫

−∞
dE exp

[
− i

h̄

(
E + i0+

)
t

]
ρext(q, E), (3.99)

in contrast, remains a scalar c-number. We are interested in how the expectation
value of the induced charge density (operator!),

〈ρind(q, t)〉 = −e (〈ρq
〉
t
− 〈ρq

〉
0

)
, (3.100)



3.1 Preliminary Considerations 127

reacts to the perturbation field. The corresponding information is contained in the
Kubo formula (3.60):

�(ρq)t = 1

h̄

∑

q ′

+∞∫

−∞
dt ′F̃t ′

(
q ′
)
⟪ρq(t); ρ+q ′

(
t ′
)
⟫ . (3.101)

The translational symmetry of the unperturbed system guarantees that the retarded
Green’s function is nonzero only for q = q ′. This means that

〈ρind(q, t)〉 = −e
h̄

+∞∫

−∞
dt ′F̃t ′(q)⟪ρq(t); ρ+q

(
t ′
)
⟫ , (3.102)

or, after Fourier transformation:

〈ρind(q, E)〉 = −eῡ(q)
h̄

ρext(q, E)⟪ρq; ρ+q ⟫E . (3.103)

If we now compare this result with the classical expression (3.96), then we find that
the dielectric function is also determined by a retarded Green’s function:

1

ε(q, E)
= 1+ 1

h̄
υ0(q)⟪ρq; ρ+q ⟫E . (3.104)

If ε(q, E) is very large, then it follows from (3.103) and (3.104) that 〈ρind〉 � −ρext.
The screening of the perturbation charges by the induced charges in the electron gas
is thus practically complete. The other limiting case ε(q, E) → 0 corresponds to
a singularity of the Green’s function ⟪ρq; ρ+q ⟫E . According to (3.96), arbitrarily
small perturbation charges then suffice to provoke finite density fluctuations in the
system of conduction electrons. The poles of ⟪ρq; ρ+q ⟫E therefore correspond to
certain proper frequencies (resonances) of the system. These collective excitations
of the electronic system are associated with the quasi-particles called plasmons, in
the same sense as we associated spin waves with the quasi-particles called magnons,
thus defining the latter, in Sect. 2.4.3.

3.1.6 Spectroscopies, Spectral Density

An additional important motivation for dealing with Green’s functions is their close
connection to the

elementary excitations

of the system, which can be observed directly by means of suitable spectroscopies.
Certain Green’s functions thus provide an immediate access to experimental results.
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This is true in an even more direct form of another fundamental function, which
however is very closely related to the Green’s functions, namely the so-called

spectral density.

Figure 3.2 shows in schematic form which elementary processes can be used to
determine the electronic structure with four well-known spectroscopic methods.

Fig. 3.2 Elementary processes relevant to four different spectroscopies: 1. Photoemission (PES),
2. Inverse Photoemission (IPE), 3. Auger Electron Spectroscopy (AES), 4. Appearance-Potential
Spectroscopy (APS). Zj is the transition operator, where j means the change in the electron
numbers due to the respective excitation
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Photoemission (PES) and inverse photoemission (IPE) are so-called single-particle
spectroscopies, since the system (the solid) contains one particle more (or less) after
the excitation process than before the excitation. In photoemission, the energy h̄ω
of a photon is absorbed by an electron from a (partially) occupied energy band.
The increase in energy can permit the electron to leave the solid. An analysis
of the kinetic energies of these photoelectrons then permits conclusions to be
drawn about the energies of the occupied states of the energy bands involved. The
transition operator Z−1 = aα then corresponds to the annihilation operator aα , if the
electron was in the single-particle state |α〉 before the excitation process. In inverse
photoemission, essentially the reverse process occurs. An electron is injected into
the solid and lands there in a hitherto unoccupied state |β〉 of the partially filled
energy band. The energy which is released is emitted in the form of a photon h̄ω, and
this photon is detected and analysed. The system now contains one electron more
than before the process. This corresponds to the transition operator Z+1 = a

†
β . PES

and IPE are to a certain extent complementary spectroscopies. The former permits
statements about occupied states of the energy band to be made, the latter permits
statements about the unoccupied states.

Auger electron spectroscopy (AES) and appearance potential spectroscopy (APS)
are two-particle spectroscopies. The initial situation for AES is characterized by the
existence of a hole in a deep-lying core state of an atom in the solid. An electron
from the partially-filled energy band makes a transition into this core state and
transfers the energy released to another electron from the same energy band; this
electron can then leave the solid. The analysis of the kinetic energies of the emitted
electrons yields information about the energy structure of the occupied band states
(two-particle density of states). The system (energy band) contains two particles
fewer after the excitation process than before: Z−2 = aαaβ . Practically the reverse
process is used in APS. An electron lands in an unoccupied state of the energy
band. The energy released is transferred to a core electron, exciting it into another
free state within the band. The following de-excitation processes can be analysed
in terms of the unoccupied part of the energy band. The system (energy band) thus
contains two electrons more after the process than before. The transition operator is
thus in this caseZ+2 = a

†
βa

†
α . AES and APS are clearly complementary two-particle

spectroscopies.

We now wish to estimate the intensities which occur in these individual measure-
ment processes using simple considerations.

• The system under investigation is assumed to be described by the Hamiltonian

H = H − μN̂. (3.105)

Here, μ is the chemical potential and N̂ is the particle number operator. We use
here H instead of H , since we shall carry out averaging over the grand canonical
ensemble in the following. This is expedient, because the transition operator Zj
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discussed above changes the particle number.H and N̂ are assumed to commute,
i.e. they have a common set of eigenstates:

H |En(N)〉 = En(N)|En(N)〉 ; N̂ |En(N)〉 = N |En(N)〉

Then H obeys an eigenvalue equation:

H|En(N)〉 = (En(N)− μN)|En(N)〉 → En|En〉. (3.106)

To simplify the notation, in the following we will use the short form on the right
whenever this will not cause confusion; thus for the eigenvalues (En(N)−μN),
we write briefly En, and for the eigenstates |En(N)〉, we write simply |En〉. The
real dependence of the states or energy eigenvalues on the particle number must
however always be kept in mind.

• With the probability

1

�
exp(−βEn)

the system at the temperature T can be found in an eigenstate |En〉 of the
Hamiltonian H. � is the grand canonical partition function:

� = Tr (exp(−βH)) (3.107)

• The transition operator Zr causes a transition between the states |En〉 and |Em〉
with the probability:

|〈Em|Zr |En〉|2 r = ±1,±2

• The intensity of the elementary processes to be measured corresponds to the total
number of transitions with excitation energies between E and E + dE:

Ir (E) = 1

�

∑

m,n

e−βEn |〈Em|Zr |En〉|2δ(E − (Em − En)). (3.108)

If the excitation energies (Em − En) are sufficiently closely spaced, which for
example always holds for a solid, then Ir (E) will be a continuous function of the
energy E.

• At this point, we neglect several additional effects which can be quite important
for a quantitative analysis of the corresponding experiment, but are not decisive
for the actual process of interest here. This applies e.g. in PES and AES to the fact
that the “photoelectron” which leaves the solid will still exhibit a coupling to the
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rest of the system (the “sudden approximation”). Furthermore, matrix elements
for the transition from a band level to the vacuum state are not included here. The
“bare line shape” of the spectroscopies listed above should however be correctly
described by (3.108).

Note that for the transition operator,

Zr = Z
†
−r (3.109)

holds, i.e. complementary spectroscopies will be related to one another in a certain
fashion. We now proceed to investigate this point in more detail.

Ir (E) = 1

�

∑

m,n

eβEe−βEm |〈Em|Zr |En〉|2δ(E − (Em − En))

= 1

�

∑

n,m

eβEe−βEn |〈En|Zr |Em〉|2δ(E − (En − Em))

= eβE

�

∑

n,m

e−βEn |〈Em|Z−r |En〉|2δ((−E)− (Em − En))

In the second step, only the summation indices n,m were exchanged; the last step
then uses (3.109). We thus have derived a symmetry relation for complementary
spectroscopies:

Ir (E) = eβEI−r (−E) (3.110)

We now define the spectral density, which is important for the considerations that
follow:

1

h̄
S(±)r (E) = I−r (E)∓ Ir (−E) =

(
eβE ∓ 1

)
Ir (−E). (3.111)

The freedom of choice of the signs will be interpreted later. We can see from (3.110)
and (3.111) that intensities of complementary spectroscopies are determined in a
simple way by one and the same spectral density.

h̄Ir (E) = 1

e−βE ∓ 1
S(±)r (−E) (3.112)

h̄I−r (E) = eβE

eβE ∓ 1
S(±)r (E) (3.113)
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The spectral density which we have introduced is thus very closely related to the
intensities of the various spectroscopies. We therefore wish to investigate it further,
by carrying out a Fourier transformation into the time representation:

1

2π h̄

∫ +∞

−∞
dEe

− i
h̄
E(t−t ′)

I−r (E)

= 1

2π h̄

1

�

∑

m,n

e−βEne−
i
h̄
(Em−En)(t−t ′)〈Em|Z−r |En〉 〈En|Z†

−r |Em〉

= 1

2π h̄

1

�

∑

m,n

e−βEn〈Em|e ih̄Ht ′
Z−re−

i
h̄
Ht ′ |En〉 〈En|e ih̄Ht

Zre
− i
h̄
Ht |Em〉

= 1

2π h̄

1

�

∑

m,n

e−βEn〈En|Zr(t)|Em〉 〈Em|Z†
r (t

′)|En〉

= 1

2π h̄

1

�

∑

n

e−βEn〈En|Zr(t)Z†
r (t

′)|En〉

= 1

2π h̄
〈Zr(t)Z†

r (t
′)〉.

In complete analogy, one finds

1

2π h̄

∫ +∞

−∞
dEe

− i
h̄
E(t−t ′)

Ir (−E) = 1

2π h̄
〈Z†

r (t
′)Zr(t)〉.

With (3.111), this implies for the double-time spectral density that:

S(ε)r (t, t ′) = 1

2π h̄

∫ +∞

−∞
dEe

− i
h̄
E(t−t ′)

S(ε)r (E)

= 1

2π
〈
[
Zr(t), Z

†
r (t

′)
]

−ε〉. (3.114)

Here, η = ± is merely an initially arbitrary sign factor; [· · · , · · · ]−η is either the
commutator or the anticommutator:

[
Zr(t), Z

†
r (t

′)
]

−ε = Zr(t)Z
†
r (t

′)− ε Z†
r (t

′)Zr(t). (3.115)

We were thus able to show that the spectral density in (3.114) is of central
importance for the intensities of the spectroscopies. One can furthermore verify that
the generalisation of the spectral density to arbitrary operators Â and B̂ is closely
connected to the retarded Green’s function introduced in (3.57). This holds also
for the other types of Green’s functions which will be defined later. The spectral
density
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S
(η)
AB(t, t

′) = 1

2π
〈[Â(t), B̂(t ′)]−ε〉 (3.116)

is of the same fundamental importance for many-body theory as are the Green’s
functions.

3.1.7 Exercises

Exercise 3.1.1 For the non-interacting electron gas (He) and for the non-
interacting phonon gas (Hp),

He =
∑

k,σ

ε(k)a+kσ akσ ; Hp =
∑

q,r

h̄ωr(q)

(
b+qrbqr + 1

2

)
,

compute the time dependence of the annihilation operators akσ (t), bqr (t) in
the Heisenberg representation.

Exercise 3.1.2 Let A and B be linear operators with A �= A(λ) and B �=
B(λ), λ ∈ R.

1. Write

eλABe−λA =
∞∑

n=0

αnλ
n (αnare operators!)

and compute the coefficients αn.
2. Show that from

[A, [A,B]−]− = 0,

it follows that:

eλABe−λA = B + λ[A,B]−.
3. Use the results from (1) and (2) to derive the differential equation

d

dλ

(
eλAeλB

)
= (A+ B + λ[A,B]−)

(
eλAeλB

)

for [A, [A,B]−]− = [B, [A,B]−]− = 0.

(continued)
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Exercise 3.1.2 (continued)
4. Prove using (3) the following relation:

eAeB = eA+B+
1
2 [A,B]− , when [A, [A,B]−]− = [B, [A,B]−]− = 0.

Exercise 3.1.3 Let A(t) be an arbitrary operator in the Heisenberg represen-
tation and ρ the statistical operator:

ρ = e−βH

Tr
(
e−βH

) .

Prove the Kubo identity:

i

h̄
[A(t), ρ]− = ρ

β∫

0

dλ Ȧ(t − iλh̄).

Exercise 3.1.4 Show by using the Kubo identity (Exercise 3.1.3), that the
retarded (commutator-) Green’s function can be written as follows:

⟪A(t);B(t ′)⟫ret = −h̄�(t − t ′)
β∫

0

dλ
〈
Ḃ(t ′ − iλh̄)A(t)

〉
.

Exercise 3.1.5 Make use of the Kubo identity (Exercise 3.1.3) to express the
tensor of the electrical conductivity in terms of a current-current correlation
function:

σβα(E) = V

β∫

0

dλ

∞∫

0

dt
〈
jα(0)jβ(t + iλh̄)

〉
exp

(
i

h̄

(
E + i0+

)
t

)
.

V is the volume of the system!
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Exercise 3.1.6 Compute the current-density operator ĵ in the formalism of
second quantisation using

1. the Bloch representation, and
2. the Wannier representation.

Which form does the conductivity tensor take in these cases?

Exercise 3.1.7 In the so-called tight-binding model (cf. Sect. 2.1.3) for
strongly bound electrons in solids, the following approximate expression
holds for the matrix element:

pijσ =
∫

d3r w∗σ (r −Ri )rwσ
(
r −Rj

) � Riδij .

Here, wσ (r − Ri ) is the Wannier function (2.29) centered on the lattice site
Ri .

1. How are the dipole-moment operator P̂ and the current-density operator ĵ

written in second quantisation using the Wannier representation?
2. The system of interacting electrons can be described by a Hamiltonian of

the form

H =
∑

i,j,σ

Tij a
+
iσ ajσ +

∑

i,i,σ,σ ′
Vijσσ ′niσ njσ .

Compute the current-density operator ĵ . Which Green’s function deter-
mines the conductivity tensor σαβ(E)?

3.2 Double-Time Green’s Functions

3.2.1 Equations of Motion

For the construction of the complete Green’s function formalism, the retarded
functions which we have thus far introduced are not sufficient. We require two
additional types of Green’s functions:
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Retarded Green’s functions

Gret
AB

(
t, t ′
) ≡ ⟪A(t);B (t ′)⟫ret =
= −i�

(
t − t ′

) 〈[
A(t), B

(
t ′
) ]
−ε
〉
.

(3.117)

Advanced Green’s functions

Gadv
AB

(
t, t ′
) ≡ ⟪A(t);B (t ′)⟫adv =
= +i�

(
t ′ − t

) 〈[
A(t), B

(
t ′
) ]
−ε
〉
.

(3.118)

Causal Green’s functions

Gc
AB

(
t, t ′
) ≡ ⟪A(t);B (t ′)⟫c =
= −i

〈
Tε
(
A(t)B

(
t ′
))〉
.

(3.119)

The operators which generate the Green’s functions are given here in their time-
dependent Heisenberg representation, i.e. from (3.24) for the case of a Hamiltonian
which is not explicitly time-dependent:

X(t) = exp

(
i

h̄
Ht
)
X exp

(
− i

h̄
Ht
)
. (3.120)

H is defined as in (3.45):

H = H − μN̂. (3.121)

The averaging is carried out over the grand canonical ensemble:

〈X〉 = 1

�
Tr
(

e−βHX
)
, (3.122)

� = Tr
(

e−βH
)
. (3.123)

� is the grand-canonical partition function. ε = ± is the sign index which was
introduced in Chap. 1. The value of ε in the definitions (3.117) to (3.119) is
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completely arbitrary. If A and B are purely Fermionic (Bosonic) operators, then
the choice ε = −(+) proves to be expedient, as we shall later see. It is, however, by
no means imperative.

We recall that

[
A(t), B

(
t ′
)]
−ε = A(t)B

(
t ′
)− εB

(
t ′
)
A(t) (3.124)

refers to the commutator when ε = +, and to the anticommutator when ε = −.
Finally, we must define Wick’s time-ordering operator Tε, which sorts the

operators in a product according to their time arguments:

Tε
(
A(t)B

(
t ′
)) = �

(
t − t ′

)
A(t)B

(
t ′
)+ ε�(t ′ − t)B

(
t ′
)
A(t). (3.125)

Due to ε, it is not identical to Dyson’s time-ordering operator TD (3.15). The step
function �,

�
(
t − t ′

) =
{

1 for t > t ′,
0 for t < t ′, (3.126)

is not defined for t = t ′. This holds also for the Green’s functions.
Owing to the averaging process in the defining equations (3.117), (3.118)

and (3.119), the Green’s functions are also temperature dependent. We shall
demonstrate later how the time and temperature variables can be brought into a
close interrelation (see Chap. 6).

There is another very important function in many-body theory which we wish
to introduce at this point. It is the so-called spectral density, whose information
content will prove to be identical to that of the Green’s functions:

SAB
(
t, t ′
) = 1

2π

〈[
A(t), B

(
t ′
) ]
−ε
〉
. (3.127)

We can now prove the fact, already used several times in Sect. 3.1, that for
Hamiltonians which are not explicitly time-dependent, the Green’s functions and
the spectral density are homogeneous in time:

∂H
∂t

= 0 �⇒ Gα
AB

(
t, t ′
) = Gα

AB

(
t − t ′

)
(α = ret, adv, c), (3.128)

SAB
(
t, t ′
) = SAB

(
t − t ′

)
. (3.129)

The proof is evidently substantiated if we can demonstrate this homogeneity for the
so-called
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correlation functions

〈
A(t)B

(
t ′
)〉
,
〈
B
(
t ′
)
A(t)

〉
.

This can be achieved by making use of the cyclic invariance of the trace:

Tr
[

exp(−βH)A(t)B (t ′)
]
=

= Tr

[
exp(−βH) exp

(
i

h̄
Ht
)
A exp

(
− i

h̄
H
(
t − t ′

))
B exp

(
− i

h̄
Ht ′
)]

=

= Tr

[
exp(−βH) exp

(
i

h̄
H
(
t − t ′

))
A exp

(
− i

h̄
H
(
t − t ′

))
B

]
=

= Tr

[
exp(−βH)A (t − t ′

)
B(0)

]
.

From this it follows that:

〈
A(t)B

(
t ′
)〉 = 〈A (t − t ′

)
B(0)

〉
. (3.130)

Analogously, one finds:

〈
B
(
t ′
)
A(t)

〉 = 〈B(0)A (t − t ′
)〉
. (3.131)

Then (3.128) and (3.129) are proved!
For the actual computation of the Green’s functions, we as a rule will require their

equations of motion. These can be obtained directly from the general equation of
motion (3.27) for Heisenberg operators. Due to

d

dt
�
(
t − t ′

) = δ
(
t − t ′

) = − d

dt ′
�
(
t − t ′

)
,

one finds for all three types of Green’s functions (3.117), (3.118) and (3.119)
formally the same equation of motion:

ih̄
∂

∂t
Gα
AB

(
t, t ′
) = h̄δ

(
t − t ′

) 〈[A,B]−ε〉 + ⟪[A,H]−(t);B
(
t ′
)
⟫α . (3.132)

The solutions for the three functions are however subject to different boundary
conditions:

Gret
AB

(
t, t ′
) = 0 for t < t ′, (3.133)
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Gadv
AB

(
t, t ′
) = 0 for t > t ′, (3.134)

Gc
AB

(
t, t ′
) =

{−i
〈
A(t − t ′)B(0)

〉
for t > t ′,

−iε
〈
B(0)A(t − t ′)

〉
for t < t ′. (3.135)

On the right-hand side of (3.132), a new Green’s function has appeared, since the
commutator [A,H]− is itself an operator. This is as a rule a so-called higher-order
Green’s function, i.e. one which is constructed from more operators than the original
function Gα

AB(t, t
′). These higher-order Green’s functions of course also obey an

equation of motion of the type (3.132), in which then a further new Green’s function
appears on the right-hand side,

ih̄
∂

∂t
⟪[A,H]−(t);B

(
t ′
)
⟫α = h̄δ

(
t − t ′

) 〈[[A,H]−, B]−ε〉+

+ ⟪[[A,H]−,H]−(t);B
(
t ′
)
⟫α ,

(3.136)

to which the process can again be applied, etc. This leads for non-trivial problems to
an infinite chain of equations of motion, which must be decoupled at some point
in order to obtain an approximate solution. The point of decoupling should in every
case be physically justifiable.

More expedient than the time representation of the Green’s functions and of the
spectral density is often their energy representation:

Gα
AB(E) ≡ ⟪A;B⟫αE =

=
+∞∫

−∞
d
(
t − t ′

)
Gα
AB

(
t − t ′

)
exp

(
i

h̄
E
(
t − t ′

))
, (3.137)

Gα
AB

(
t − t ′

) = 1

2π h̄

+∞∫

−∞
dEGα

AB(E) exp

(
− i

h̄
E
(
t − t ′

))
. (3.138)

The spectral density is transformed in a similar fashion. If we now use the Fourier
representations of the δ-functions,

δ
(
E − E′

) = 1

2π h̄

+∞∫

−∞
d
(
t − t ′

)
exp

(
− i

h̄

(
E − E′

) (
t − t ′

))
, (3.139)

δ
(
t − t ′

) = 1

2π h̄

+∞∫

−∞
dE exp

(
i

h̄
E
(
t − t ′

))
, (3.140)
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then the equation of motion (3.132) becomes:

E ⟪A;B⟫αE = h̄〈[A,B]−ε〉 + ⟪[A,H]−;B⟫αE . (3.141)

We are thus now no longer dealing with a differential equation, but instead with
a purely algebraic equation. However, we again have an infinite chain of such
equations of motion, which must be decoupled. The different boundary conditions
(3.133), (3.134) and (3.135) manifest themselves in the energy representation in
terms of different analytic behaviour of the Green’s functions Gα

AB(E) in the
complex E-plane. We investigate this behaviour in the following section.

3.2.2 Spectral Representations

In order to supplement the system of equations which results from (3.141) with
the boundary conditions, it is important to be aware of the so-called spectral
representations of the Green’s function.

LetEn and |En〉 be the energy eigenvalues and the eigenstates of the Hamiltonian
H of the physical system under consideration:

H |En〉 = En |En〉 . (3.142)

The states |En〉 are assumed to form a complete, orthonormalised system:
∑

n

|En〉 〈En| = 1; 〈
En
∣∣Em

〉 = δnm. (3.143)

We first want to discuss the correlation functions
〈
A(t)B(t ′)

〉
,
〈
B(t ′)A(t)

〉
:

�
〈
A(t)B

(
t ′
)〉 = Tr

{
e−βHA(t)B

(
t ′
)} =

∑

n

〈En| e−βHA(t)B
(
t ′
) |En〉 =

=
∑

n,m

〈En |A(t)|Em〉
〈
Em
∣∣B
(
t ′
)∣∣En

〉
e−βEn =

=
∑

n,m

〈En |A|Em〉 〈Em |B|En〉 e−βEn ·

· exp

[
i

h̄
(En − Em)

(
t − t ′

)] = (3.144)

=
∑

n,m

〈En |B|Em〉 〈Em |A|En〉 e−βEne−β(Em−En)·

· exp

[
− i

h̄
(En − Em)

(
t − t ′

)]
.
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In the third step, we inserted the complete set of eigenstates between the operators,
rendering the time dependence of the Heisenberg operators trivial. In the final step,
we exchanged the indices n and m. In a quite analogous manner, we find for the
second correlation function:

�
〈
B
(
t ′
)
A(t)

〉 =
∑

n,m

〈En |B|Em〉 〈Em |A|En〉 e−βEn ·

· exp

[
− i

h̄
(En − Em)

(
t − t ′

)]
.

(3.145)

Inserting (3.144) and (3.145) into (3.127) leads after Fourier transformation to the
important

spectral representation of the spectral density

SAB(E) = h̄

�

∑

n,m

〈En |B|Em〉 〈Em |A|En〉 e−βEn ·

·
(

eβE − ε
)
δ[E − (En − Em)].

(3.146)

Note that the arguments of the δ-functions contain the possible excitation energies
of the system.

We now wish to express the Green’s functions in terms of the spectral densities.
To this end, we make use of the following representation of the step function:

�
(
t − t ′

) = i

2π

+∞∫

−∞
dx

e−ix(t−t ′)

x + i0+
. (3.147)

Its proof is readily carried out using the residual theorem (Exercise 3.2.4). With
(3.147), the retarded Green’s function (3.117) may be rearranged as follows:

Gret
AB(E) =

+∞∫

−∞
d
(
t − t ′

)
exp

(
i

h̄
E
(
t − t ′

)) (−i�
(
t − t ′

)) (
2πSAB

(
t − t ′

)) =

=
+∞∫

−∞
d
(
t − t ′

)
exp

(
i

h̄
E
(
t − t ′

)) (−i�
(
t − t ′

)) ·
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· 1

h̄

+∞∫

−∞
dE′SAB(E′) exp

(
− i

h̄
E′
(
t − t ′

)) =

=
+∞∫

−∞
dE′

+∞∫

−∞
dx
SAB(E

′)
x + i0+

·

· 1

2π h̄

+∞∫

−∞
d
(
t − t ′

)
exp

[
− i

h̄

(
h̄x − E + E′

) (
t − t ′

)] =

=
+∞∫

−∞
dE′

+∞∫

−∞
dx
SAB(E

′)
x + i0+

1

h̄
δ

(
x − 1

h̄

(
E − E′

))
.

With this, we obtain the

spectral representation of the retarded Green’s function

Gret
AB(E) =

+∞∫

−∞
dE′ SAB(E

′)
E − E′ + i0+

. (3.148)

The treatment of the advanced function is completely analogous:

Gadv
AB(E) =

+∞∫

−∞
d
(
t − t ′

)
exp

(
i

h̄
E
(
t − t ′

))
i�
(
t ′ − t

)
2πSAB

(
t − t ′

) =

=
+∞∫

−∞
dE′

+∞∫

−∞
dx
SAB(E

′)
x + i0+

·

· −1

2π h̄

+∞∫

−∞
d
(
t − t ′

)
exp

[
− i

h̄

(−h̄x − E + E′
) (
t − t ′

)] =

= −
+∞∫

−∞
dE′

+∞∫

−∞
dx
SAB(E

′)
x + i0+

1

h̄
δ

(
−x − 1

h̄

(
E − E′

))
.
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This yields the

spectral representation of the advanced Green’s function

Gadv
AB(E) =

+∞∫

−∞
dE′ SAB(E

′)
E − E′ − i0+

. (3.149)

The sign of i0+ is the only –but still important– difference between the retarded and
advanced functions, and leads to their differing analytic behaviours:

Gret
AB

can be analytically continued in the upper half-plane,

Gadv
AB

in the lower half-plane! The causal Green’s function, which we still have to discuss,
can be analytically continued neither in the upper nor in the lower half-plane, in
contrast.

If we now insert the spectral representation (3.146) of the spectral density into
(3.148) or (3.149), we obtain the following notable expression:

G
ret

adv
AB =

h̄

�

∑

n,m

〈En |B|Em〉 〈Em |A|En〉 e−βEn eβ(En−Em) − ε

E − (En − Em)± i0+
.

(3.150)

In both cases, we thus have a meromorphic function with simple poles at precisely
the excitation energies of the interacting systems. If we are able somehow to
determine the Green’s function, then we could read off exactly the energies (En −
Em) at the singularities for which the matrix elements of the operators A and B are
nonzero. Thus, by a suitable choice ofA and B, one can specify that particular types
of excitation energies will appear as poles.

Owing to their identical physical information content, the retarded and the
advanced Green’s functions are sometimes combined into a single function
GAB(E). Specifically, one considers Gret

AB and Gadv
AB as the two branches of a

unified Green’s function in the complex E-plane:

GAB(E) =
+∞∫

−∞
dE′ SAB(E

′)
E − E′

=
{
Gret
AB(E), when Im E > 0,

Gadv
AB(E), when Im E < 0.

(3.151)

The singularities then lie on the real axis.
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In (3.148), (3.149) and (3.151), we expressed the Green’s functions in terms of
the spectral density. Making use of the Dirac identity

1

x − x0 ± i0+
= P 1

x − x0
∓ iπδ(x − x0), (3.152)

in which P denotes the Cauchy principal value, we can also readily derive the
converse:

SAB(E) = i

2π

[
GAB

(
E + i0+

)−GAB

(
E − i0+

) ]
. (3.153)

If one presumes the spectral density in (3.151) to be real, then it follows that:

SAB(E) = ∓ 1

π
ImG

ret
adv
AB(E). (3.154)

We have still not given the spectral representation of the causal Green’s function.
Starting from the definition (3.119)

Gc
AB(E) = −i

+∞∫

−∞
d
(
t − t ′

)
exp

(
i

h̄
E
(
t − t ′

)) (
�
(
t − t ′

) 〈
A(t)B

(
t ′
)〉+

+ε� (t ′ − t
) 〈
B
(
t ′
)
A(t)

〉)
,

and inserting (3.144), (3.145) and (3.147), we obtain:

Gc
AB(E) =

= 1

�

∑

n,m

〈En |B|Em〉 〈Em |A|En〉 e−βEn 1

2π

+∞∫

−∞
dt ′′

+∞∫

−∞
dx

1

x + i0+
·

·
{

exp[β(En − Em)] exp

{
i

h̄
[E − (En − Em)− h̄x]

}
t ′′+

+ε exp

[
i

h̄
(E − (En − Em)+ h̄x)t ′′

]}
=

= h̄

�

∑

n,m

〈En|B|Em〉〈Em|A|En〉e−βEn ·

·
+∞∫

−∞
dx

1

x + i0+
[
eβ(En−Em)δ(E − (En − Em)− h̄x)+

+ εδ(E − (En − Em)+ h̄x)
]
.



3.2 Double-Time Green’s Functions 145

This yields the

spectral representation of the causal Green’s function

Gc
AB(E) =

h̄

�

∑

n,m

〈En|B|Em〉〈Em|A|En〉e−β En ·

·
[

eβ(En−Em)

E − (En − Em)+ i0+
− ε

E − (En − Em)− i0+

]

.

(3.155)

The causal Green’s function thus has singularities both in the lower and in the upper
half-plane; it cannot be analytically continued in either. For specific computations,
the retarded and the advanced functions are as a rule more tractable. The diagram
techniques which we will introduce later can, however, be carried out only using the
causal function.

3.2.3 The Spectral Theorem

In the last section, we have seen that from the Green’s functions or alternatively
from the spectral density, valuable microscopic information about the physical
system under consideration can be obtained. The singularities of these functions
are identical with the excitation energies of the system. The Green’s functions
however can yield considerably more information. We now want to show that the
complete macroscopic thermodynamics of the system is determined by suitably-
defined Green’s functions. To this end, we first derive the fundamental spectral
theorem.

We start with the correlation function

〈B(t ′)A(t)〉,

whose spectral representation (3.145) is very similar to the corresponding represen-
tation (3.146) of the spectral density. The correlation can therefore be expressed
in terms of the spectral density. This is directly possible with the aid of the
anticommutator spectral density (ε = −). Combining (3.145) and (3.146) yields:

〈B(t ′)A(t)〉 = 1

h̄

+∞∫

−∞
dE

S
(−)
AB (E)

eβE + 1
exp

(
− i

h̄
E(t − t ′)

)
. (3.156)
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This fundamental relation is called the spectral theorem. With its aid, arbitrary
correlation functions and expectation values (t = t ′) over suitably defined spectral
densities can be computed. One must however keep in mind that when using com-
mutator spectral densities (ε = +), the above expression must be complemented
with a constant D, so that the complete spectral theorem must be formulated as
follows:

〈B(t ′)A(t)〉 = 1

h̄

+∞∫

−∞
dE

S
(ε)
AB(E)

eβE − ε
exp

(
− i

h̄
E
(
t − t ′

))+ 1

2
(1+ ε)D.

(3.157)

The following example shows that in the case of (ε = +), a correction term must
be added to (3.156): In the definition (3.127) for the commutator spectral density,
we replace the operators A and B by

Ã = A− 〈A〉 ; B̃ = B − 〈B〉. (3.158)

Then the spectral density itself does not change at all:

S
(+)
AB (t − t ′) = S

(+)
ÃB̃
(t − t ′).

Without D, the right-hand side of (3.156) would therefore not change, but the left-
hand side would:

〈B̃(t ′)Ã(t)〉 = 〈B(t ′)A(t)〉 − 〈B〉〈A〉. (3.159)

The commutator spectral density thus does not completely determine the correlation
function. The reason for this can be read off (3.146), if one decomposes the spectral
density into a diagonal and a non-diagonal part:

S
(ε)
AB(E) = Ŝ

(ε)
AB(E)+ h̄(1− ε)Dδ(E). (3.160)

Here, the following relations hold:

Ŝ
(ε)
AB(E) =

h̄

�

En �=Em∑

n,m

〈En|B|Em〉〈Em|A|En〉e−βEn ·

·
(

eβE − ε
)
δ[E − (En − Em)], (3.161)

D = 1

�

En=Em∑

n,m

〈En|B|Em〉〈Em|A|En〉e−βEn. (3.162)
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The diagonal terms contained in D do not appear at all in the commutator spectral
density. They are however required for the determination of the correlation functions
(3.144) and (3.145). The (ε = +) spectral density alone therefore does not suffice
for the determination of the correlations, in the case that the diagonal elements are
nonzero. Instead, we then find

〈B(t ′)A(t)〉 = D + 1

h̄

+∞∫

−∞
dE

Ŝ
(ε)
AB(E)

eβE − ε
exp

(
− i

h̄
E(t − t ′)

)
, (3.163)

〈A(t)B(t ′)〉 = D + 1

h̄

+∞∫

−∞
dE

Ŝ
(ε)
AB(E)e

βE

eβE − ε
exp

(
− i

h̄
E(t − t ′)

)
, (3.164)

as can be directly read off from the general spectral representations (3.144)
and (3.145). Upon insertion into the commutator Green’s function G

(+)
AB (E) or

into the commutator spectral density, the constant D is eliminated. The spectral
representation of the Green’s function defined in (3.151),GAB(E), is then given by:

G
(−)
AB (E) =

= h̄

�

∑

n,m

〈En|B|Em〉〈Em|A|En〉e−βEn eβ(En−Em) + 1

E − (En − Em)
, (3.165)

G
(+)
AB (E) =

= h̄

�

En �=Em∑

n,m

〈En|B|Em〉〈Em|A|En〉e−βEn eβ(En−Em) − 1

E − (En − Em)
. (3.166)

The following limiting case, which is to be carried out in the complex plane, since
G
(ε)
AB(E) is defined only there,

lim
E→0

EG
(ε)
AB(E) = (1− ε)h̄D, (3.167)

yields a practical method for the determination of the constant D. The general
spectral theorem (3.157) requires the presence of D when using the commutator
functions. It can however be determined directly via (3.167) from the associated
anticommutator Green’s function G(−)

AB (E). Two additional important consequences
can be seen from (3.167):

1. The commutator Green’s function G(+)
AB (E) is in every case regular at the origin.

This fact can be used as a criterion for approximate solutions.
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2. The anticommutator Green’s function G
(−)
AB (E) has a first-order pole at E =

0 with the residual 2h̄D, in the case that D �= 0. We will discuss simple
applications of the fundamental spectral theorem in Sect. 3.3.

3.2.4 Exact Expressions

For realistic problems, Green’s functions and spectral densities are, unfortunately,
almost never exactly calculable. Approximations thus have to be tolerated. It is
then however very useful to have some general, exact expressions at one’s disposal
(limiting cases, symmetry relations, sum rules etc.), with which one can test the
approximations. In this section, we list some of these exact expressions.

One can read directly from the general definitions of the Green’s functions the
following:

Gret
AB(t, t

′) = εGadv
BA(t

′, t). (3.168)

With (3.117) and (3.118), we have namely:

⟪A(t);B(t ′)⟫ret = −i�(t − t ′)
〈
[A(t), B(t ′)]−ε

〉
=

= +iε�(t − t ′)
〈
[B(t ′), A(t)]−ε

〉
=

= ε ⟪B(t ′);A(t)⟫adv
.

After a Fourier transformation, (3.168) becomes:

+∞∫

−∞
d(t − t ′)Gret

AB(t − t ′) exp

(
i

h̄
E(t − t ′)

)
=

= ε

+∞∫

−∞
d(t − t ′)Gadv

BA(t
′ − t) exp

(
i

h̄
E(t − t ′)

)
=

= ε

+∞∫

−∞
d(t ′ − t)Gadv

BA(t
′ − t) exp

[
i

h̄
(−E)(t ′ − t)

]
.

This means that:

Gret
AB(E) = εGadv

BA(−E) (E real). (3.169)
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If E is complex, then one must take into account the fact that Gret
AB(E) and Gadv

AB(E)

are analytic only within one half-plane, respectively. When E is complex, the
combined function (3.151) is to be preferred; it is on the other hand not defined
for a real E:

GAB(E) = εGBA(−E) (E complex). (3.170)

For retarded and for advanced Green’s functions, the following holds:

(
G

ret, adv
AB (t, t ′)

)∗ = εG
ret, adv
A+B+ (t, t

′). (3.171)

This relation, which follows directly from the definition, has the consequence – in
the case that the Green’s functions are constructed with Hermitian operators (A =
A+, B = B+), as for example in the case of the response functions from Sect. 3.1
– that the commutator functions are purely real and the anticommutator functions
are purely imaginary.

Using the equation of motion (3.141), we carry out the following rearrangement:

+∞∫

−∞
dE{E ⟪A;B⟫ret

E − h̄〈[A, B]−ε〉} =

=
+∞∫

−∞
dE ⟪[A, H]−;B⟫ret

E =

=
+∞∫

−∞
dE(−i)

∞∫

0

dt 〈[[A, H]−(t), B(0)]−ε〉 exp

(
i

h̄
Et

)
=

= h̄

∞∫

0

dt
〈
[Ȧ(t), B(0)]−ε

〉 +∞∫

−∞
dE exp

(
i

h̄
Et

)
=

= 2π h̄2

∞∫

0

dt
〈
[Ȧ(t), B(0)]−ε

〉
δ(t).

Due to

∞∫

0

dx δ(x)f (x) = 1

2
f (0), (3.172)
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it finally follows that:

+∞∫

−∞
dE{EGret

AB(E)− h̄〈[A, B]−ε〉} = πh̄2
〈
[Ȧ(0), B(0)]−ε

〉
. (3.173)

The analogous relations for the two other Green’s functions are given by:

+∞∫

−∞
dE{EGadv

AB(E)− h̄〈[A, B]−ε〉} = −π h̄2
〈
[Ȧ(0), B(0)]−ε

〉
, (3.174)

+∞∫

−∞
dE{EGc

AB(E)− h̄〈[A, B]−ε〉} = π h̄2{〈Ȧ(0)B(0)〉 + ε〈B(0)Ȧ(0)〉}.

(3.175)

The significance of these relations lies in the following conclusion: The right-
hand sides are finite quantities, being expectation values of products of operators
(observables). The integrals on the left-hand sides of the equations must therefore
converge. The necessary condition for this is:

lim
E→∞Gα

AB(E) ≈
h̄

E
〈[A, B]−ε〉. (3.176)

The expectation value on the right is as a rule directly calculable, so that the high-
energy behaviour of the Green’s function can be determined in a simple fashion.
Consider for example the important response functions χαβij (E), σ

αβ(E), ε(q, E)
from Sect. 3.1.

For the spectral density SAB(E), there are useful sum rules, which can be
obtained independently of the function itself and thus serve as controls for the
inevitable approximation procedures. From the definition of the spectral density in
(3.127), we have:

(
ih̄
∂

∂t

)n
(2π SAB(t, t

′)) =
(

ih̄
∂

∂t

)n
〈[A(t), B(t ′)]−ε〉 =

=
(

ih̄
∂

∂t

)n 1

h̄

+∞∫

−∞
dE SAB(E) exp

(
− i

h̄
E(t − t ′)

)
=

= 1

h̄

+∞∫

−∞
dE SAB(E)E

n exp

(
− i

h̄
E(t − t ′)

)
.

(3.177)
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For t = t ′, we obtain from these expressions the so-called

spectral moments

M
(n)
AB =

1

h̄

+∞∫

−∞
dE EnSAB(E). (3.178)

If we insert the equation of motion (3.27) for Heisenberg operators on the left-hand
side of (3.177), and keep in mind that we could have allowed SAB(t, t

′) to be
operated upon by

(
ih̄ ∂
∂t

)n−p( − ih̄ ∂
∂t ′
)p with 0 ≤ p ≤ n instead of by

(
ih̄ ∂
∂t

)n,
with the same result, then we obtain the following alternative expression for the
moments:

M
(n)
AB =

〈[ [ · · · [[A, H]−, H]− · · ·H
]
−︸ ︷︷ ︸

(n−p)-fold commutator

, [H, · · · [H, B]− · · · ]−︸ ︷︷ ︸
p-fold commutator

]
−ε
〉

(0≤p≤ n; n= 0 ,1 ,2, ...)
(3.179)

When the Hamiltonian is known, this relation allows us in principle to compute all
the moments of the spectral density exactly; this is independent of SAB(E).

With the aid of the spectral moments, an often very useful

high-energy expansion

for the Green’s functions can be formulated. We find for the ‘combined’ Green’s
function (3.151) the following expression:

GAB(E) =
∫ +∞

−∞
dE′ SAB(E

′)
E − E′

= 1

E

∫ +∞

−∞
dE′ SAB(E

′)
1− E′

E

= 1

E

∞∑

n=0

∫ +∞

−∞
dE′SAB(E′)

(
E′

E

)n
.

Comparison with (3.178) then yields:

GAB(E) = h̄

∞∑

n=0

M
(n)
AB

En+1 . (3.180)

For the extreme high-energy behaviour (E→∞), this then implies:

GAB(E) ≈ h̄

E
M

(0)
AB =

h̄

E
〈[A, B]−η〉. (3.181)
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The right-hand side can as a rule be readily calculated; therefore, the high-energy
behaviour of e.g. the important response functions from Sect. 3.1.2 is already
known.

3.2.5 The Kramers-Kronig Relations

According to (3.148) or (3.149), the Green’s functions Gret
AB and Gadv

AB are com-
pletely determined by the spectral density SAB . On the other hand, the latter can be
derived according to (3.154) from the imaginary part of these functions alone. The
real and imaginary parts of the Green’s functions are therefore not independent of
one another.

We consider the integral

IC(E) =
∮

C

dE
Gret
AB(E)

E − E − i0+
.

Gret
AB(E) is analytic within the entire upper half-plane. This holds, presuming that

E is real, for the complete integrand, so that (Fig. 3.3.)

IC(E) = 0

results. If we close the semicircle at infinity, then the integrand along it vanishes due
to (3.176). This remains true when we apply the Dirac identity (3.152):

0 =
+∞∫

−∞
dE

Gret
AB(E)

E − E − i0+
= P

+∞∫

−∞
dE

Gret
AB(E)

E − E
+ iπGret

AB(E).

From this we find:

Gret
AB(E) =

i

π
P

+∞∫

−∞
dE

Gret
AB(E)

E − E
. (3.182)

Fig. 3.3 The integration path
in the complex E-plane for
computing the integral IC(E)
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Analogously, one finds on closing the semicircle within the lower half-plane, in
which Gadv

AB(E) is analytic, and replacing −i0+ by +i0+,

Gadv
AB(E) = − i

π
P

+∞∫

−∞
dE

Gadv
AB(E)

E − E
. (3.183)

Precisely speaking, one requires no knowledge of the complete Green’s functions.
Determining only the real or only the imaginary part is sufficient. The other part
then follows from the relations which we can read off (3.182) and (3.183), i.e. the

Kramers-Kronig relations

ReG
ret

adv
AB(E) = ∓ 1

π
P

+∞∫

−∞
dE

ImG
ret

adv
AB(E)

E − E
, (3.184)

ImG
ret

adv
AB(E) = ± 1

π
P

+∞∫

−∞
dE

ReG
ret

adv
AB(E)

E − E
. (3.185)

If we assume that the spectral density SAB(E) is real, then (3.154) holds, and
thus:

ReGret
AB(E) = ReGadv

AB(E) = P
+∞∫

−∞
dE

SAB(E)

E − E
, (3.186)

ImGret
AB(E) = −ImGadv

AB(E) = −πSAB(E). (3.187)

The connection to the causal Green’s function is obtained from (3.146) and (3.155):

ImGc
AB(E) = −π SAB(E)eβE + ε

eβE − ε
, (3.188)

ReGc
AB(E) = ReGret, adv

AB (E). (3.189)

Whilst (3.184) and (3.185) remain generally valid, (3.186) to (3.189) require that
the spectral density be real. If this the case, as often happens, then these relations
can serve as transformation formulas for converting one type of Green’s function
into another. This is not unimportant, since, as already mentioned, the method of
equations of motion uses Gret, adv

AB , whilst in contrast, the diagram techniques, which
will be treated later, make use of Gc

AB .
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3.2.6 Exercises

Exercise 3.2.1 Prove

d

dt
�(t − t ′) = δ(t − t ′) = − d

dt ′
�(t − t ′),

where �(t − t ′) denotes the step function.

Exercise 3.2.2 Derive the equation of motion of the causal Green’s function
Gc
AB(t, t

′).

Exercise 3.2.3 Show that

〈B(0)A(t + ih̄β)〉 = 〈A(t)B(0)〉

holds for time-dependent correlation functions when the Hamiltonian is not
explicitly time-dependent.

Exercise 3.2.4 Derive the representation (3.147) of the step function:

� (t − t ′) = i

2π

+∞∫

−∞
dx

e−ix(t−t ′)

x + i0+
.

Exercise 3.2.5 Prove that a complex function F(E) has an analytic continua-
tion in the upper (lower) half-plane, when its Fourier transform f (t) vanishes
for t < 0 (t > 0).

Exercise 3.2.6 Calculate the conductivity tensor for the non-interacting elec-
tron system, using the result of Exercise 3.1.7.
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Exercise 3.2.7 Show that for both retarded and advanced Green’s functions,
the following relation holds:

[
G

ret (adv)
AB (t, t ′)

]∗ = εG
ret (adv)
A+B+ (t, t ′).

Exercise 3.2.8 Prove the relation (3.175) for the causal Green’s function:

+∞∫

−∞
dE
[
EGc

AB(E)− h̄〈[A, B]−ε〉
] = π h̄2[〈Ȧ(0)B(0)〉 + ε 〈B(0)Ȧ(0)〉].

Exercise 3.2.9 Compute all of the spectral moments,

M
(n)
kσ
=
〈
[. . . [akσ , H]−, . . . ,H]−, H]−, a+kσ ]+

〉
,

for a system of non-interacting electrons,

H =
∑

k,σ

ε(k)a+kσ akσ ,

and with them the exact spectral density:

Skσ (E) = − 1

π
Im ⟪akσ ; a+kσ⟫

ret
E
.

Exercise 3.2.10 Consider a free, spinless particle in one dimension:

H = p2

2m
, [x, p]− = i h̄.

The (mixed) state of the system is given by the density operator

(continued)
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Exercise 3.2.10 (continued)
ρ = e−βH (not normalised).

β = 1
kBT

is a parameter.

1. Calculate the trace of the density operator:

(ρ) =
∫

e−βHdp;

2. Show that for the expectation value of the energy,

〈H 〉 = 1

2
kBT

holds.
3. 〈H 〉 is to be calculated from the commutator Green’s function G(+)

p (E) =
⟪p;p⟫(ε=+). Solve the equation of motion for G(+)

p (E). (The result is
trivial.)

4. Try to determine the expectation value 〈H 〉 = 1
2m 〈p · p〉 from the spectral

theorem. Keep in mind the constant D (cf. (3.157))!
5. Compute the constant D using the relation

lim
E→0

EG(−)
p (E) = 2h̄ D

from the solution of the equation of motion for the anticommutator Green’s
function G(−)

p (E) = ⟪p; p⟫(ε=−). Is it possible to determine 〈H 〉?
6. Let an infinitesimal, symmetry-breaking field be defined by

H ′ = p2

2m
+ m

2
ω2x2 (ω→ 0).

Set up the equation of motion for the commutator Green’s function and
solve it for ω �= 0. (The commutator Green’s function ⟪x;p⟫(ε=+) must
also be determined.)

7. Find the constant D!
8. Calculate 〈H 〉ω from the spectral theorem for G(+)

p (E) with ω �= 0.
9. Show that

lim
ω→0

〈H ′〉ω = 1

2
kBT .
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3.3 First Applications

In this section, we want to demonstrate applications of the abstract Green’s function
formalism treated in the last section to simple systems. Their properties are naturally
known from elementary statistical mechanics. Here, they merely help us to become
acquainted with the method.

3.3.1 Non-interacting Bloch Electrons

As a first example, we discuss a system of electrons in a solid which do not interact
with one another, but only with the periodic lattice potential; they are described by
the Hamiltonian (2.22):

H0 = H0 − μN̂, (3.190)

H0 =
∑

kσ

ε(k)a+kσ akσ , (3.191)

N̂ =
∑

kσ

a+kσ akσ . (3.192)

All of the properties of the electronic system which are of interest can be derived
from the so-called

one-electron Green’s function

Gα
kσ (E) = ⟪akσ ; a+kσ⟫

α

E
,

α = ret, adv, c; ε = −.
(3.193)

Since we are dealing with a purely Fermionic system, the choice of the anticommu-
tator Green’s function (ε = −) is preferable, but not necessary.

In solving this simple problem, we proceed exactly as would be required for more
complicated cases. The first step is to set up and solve the equation of motion:

EGα
kσ (E) = h̄

〈
[akσ , a

+
kσ
]+
〉
+ ⟪[akσ , H0]−; a+kσ⟫

α
. (3.194)
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Making use of the fundamental commutation relations (2.23) and (2.24) for
Fermions, one readily finds:

[akσ , H0]− =
∑

k′,σ ′
(ε(k′)− μ)

[
akσ , a

+
k′σ ′ak′σ ′

]

− =

=
∑

k′,σ ′
(ε(k′)− μ)δkk′δσσ ′ak′σ ′ = (3.195)

= (ε(k)− μ)akσ .

After insertion into (3.194), this leads to the simple equation of motion:

EGα
kσ (E) = h̄+ (ε(k)− μ)Gα

kσ (E). (3.196)

Rearrangement and fulfilling the boundary conditions by introducing+i0+ or−i0+
yields:

G
ret, adv
kσ

(E) = h̄

E − (ε(k)− μ)± i0+
. (3.197)

The singularities of this function clearly correspond to the possible excitation
energies of the system. For a complex argumentE we employ the combined Green’s
function (3.151):

Gkσ (E) = h̄

E − (ε(k)− μ)
. (3.198)

The one-electron spectral density

Skσ (E) = h̄δ(E − (ε(k)− μ)) (3.199)

is important. What is the structure of the associated time-dependent functions? We
first consider the retarded Green’s function:

Gret
kσ (t − t ′) = 1

2π h̄

+∞∫

−∞
dE exp

(
− i

h̄
E(t − t ′)

)
h̄

E − (ε(k)− μ)+ i0+
.

We substitute E by E = E − (ε(k)− μ):

Gret
kσ (t − t ′) = exp

[
− i

h̄
(ε(k)− μ)(t − t ′)

]
1

2π

+∞∫

−∞
dE

exp
(
− i
h̄
E(t − t ′)

)

E + i0+
.
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With (3.147), this gives:

Gret
kσ (t − t ′) = −i�(t − t ′) exp

[
− i

h̄
(ε(k)− μ)(t − t ′)

]
. (3.200)

The boundary condition (3.133) is thus indeed fulfilled by inserting the infinitesimal
+i0+. In a quite analogous manner, we find the advanced function:

Gadv
kσ (t − t ′) = i�(t ′ − t) exp

[
− i

h̄
(ε(k)− μ)(t − t ′)

]
. (3.201)

In the non-interacting system, the time-dependent Green’s functions thus exhibit an
oscillatory behaviour with a frequency which corresponds to an exact excitation
energy. We shall see later that this remains valid in analogous fashion also for
interacting systems. These are then typically characterised by an additional damping
factor, which can be interpreted as a finite lifetime of the quasi-particles.

We still want to investigate the causal Green’s function, which according to
(3.135) must obey the somewhat clumsy boundary conditions

Gc
kσ ((t − t ′) = 0+) = −i(1− 〈nkσ 〉), (3.202)

Gc
kσ ((t − t ′) = −0+) = +i 〈nkσ 〉. (3.203)

We therefore write the solution of the equation of motion (3.194) in the following
form:

Gc
kσ (E) =

C1

E − (ε(k)− μ)+ i0+
+ C2

E − (ε(k)− μ)− i0+
.

The transformation to the time-dependent function is carried out as for (3.200):

Gc
kσ (t − t ′) =

(
−i�(t − t ′)C1

h̄
+ i�(t ′ − t)

C2

h̄

)
·

· exp

[
− i

h̄
(ε(k)− μ)(t − t ′)

]
.

(3.204)

The boundary conditions (3.202) and (3.203) are thus fulfilled with

C1 = h̄(1− 〈nkσ 〉) ; C2 = h̄〈nkσ 〉. (3.205)

We can recognise from this simple example that the computational manipulation of
the causal Green’s function,

Gc
kσ (E) =

h̄(1− 〈nkσ 〉)
E − (ε(k)− μ)+ i0+

+ h̄〈nkσ 〉
E − (ε(k)− μ)− i0+

, (3.206)
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is considerably more complicated than that of the retarded or the advanced
functions. In particular, the expectation value 〈nkσ 〉 of the number operator must still
be determined. The equation of motion method therefore deals almost exclusively
with the retarded and the advanced functions.

The time-dependent spectral density can be readily found from (3.199):

Skσ (t − t ′) = 1

2π
exp

[
− i

h̄
(ε(k)− μ)(t − t ′)

]
. (3.207)

The average occupation number 〈nkσ 〉 of the (k, σ ) level can be found by inserting
(3.199) into the spectral theorem (3.157). We obtain the result which is well known
from quantum statistics:

〈nkσ 〉 = 1

expβ(ε(k)− μ)+ 1
. (3.208)

This is the Fermi function

f−(E) = 1

eβ(E−μ) + 1
(3.209)

with the value E = ε(k).
Using 〈nkσ 〉, and summing over all the wavenumbers k and both spin directions

σ , we can fix the total number of electrons Ne:

Ne =
∑

kσ

1

h̄

+∞∫

−∞
dE Skσ (E)

1

eβE + 1
=

=
∑

kσ

1

h̄

+∞∫

−∞
dE f−(E)Skσ (E − μ).

(3.210)

We denote the density of states per spin by ρσ (E) for the free Fermion system,
for which of course also ρσ (E) = ρ−σ (E) holds; then Ne can also be written as
follows:

Ne = N
∑

σ

+∞∫

−∞
dE f−(E)ρσ (E). (3.211)

N is the number of lattice sites; ρσ (E) is normalised to 1. Comparison of (3.210)
and (3.211) leads to the important definition of the
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(quasi-particle) density of states

ρσ (E) = 1

Nh̄

∑

k

Skσ (E − μ). (3.212)

The above considerations concerning the electron number Ne are of course applica-
ble not only to the non-interacting system, but also hold quite generally. As we will
therefore see later, (3.212) already represents the general definition of the quasi-
particle density of states for an arbitrary interacting electron system.

For non-interacting electron systems, we can insert (3.199):

ρσ (E) = 1

N

∑

k

δ(E − ε(k)). (3.213)

If the lattice potential plays no role, i.e.

ε(k) = h̄2k2

2m
,

then ρσ (E) exhibits the well-known
√
E dependence:

ρσ (E) = 1

N

∑

k

δ(E − ε(k)) = V

N(2π)3

∫
d3k δ

(

E − h̄2k2

2m

)

=

= V

2π2N

∞∫

0

dk k2 2m

h̄2 δ

(
2mE

h̄2 − k2
)
=

= mV

2π2 h̄2N

∞∫

0

dk k

[

δ

(√
2mE

h̄2 − k

)

+ δ

(√
2mE

h̄2 + k

)]

.

Only the first δ-function contributes:

ρσ (E) =

⎧
⎪⎨

⎪⎩

V

4π2N

(
2m

h̄2

)3/2√
E, when E ≥ 0,

0 otherwise.

(3.214)
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The internal energyU can be determined in a simple manner as the thermodynamic
expectation value of the Hamiltonian using 〈nkσ 〉:

U = 〈H0〉 =
∑

kσ

ε(k)〈nkσ 〉 =

= 1

2h̄

∑

kσ

+∞∫

−∞
dE(E + ε(k))f−(E)Skσ (E − μ).

(3.215)

The more complicated expression in the second line will prove to be the generally
valid definition of U for interacting electron systems.

FromU , we obtain the free energy F , and thus finally the entire thermodynamics
of the system, with the aid of the following considerations:

Due to

F(T , V ) = U(T , V )− T S(T , V ) = U(T , V )+ T

(
∂F

∂T

)

V

we have also:

U(T , V ) = −T 2
[
∂

∂T

(
1

T
F(T , V )

)]

V

. (3.216)

Employing the Third Law of Thermodynamics,

lim
T→0

[
1

T
(F (T )− F(0))

]
=
(
∂F

∂T

)

V

(T = 0) = −S(T = 0, V ) = 0,

as well as F(0, V ) = U(0, V ), we can integrate (3.216):

F(T , V ) = U(0, V )− T

T∫

0

dT ′U(T
′, V )− U(0, V )

T ′2
. (3.217)

All the other quantities of equilibrium thermodynamics can be derived from
F(T , V ).

In this section, we have described non-interacting electrons in a solid using
the wavenumber-dependent Green’s function Gα

kσ
(E). We could of course have

investigated the single-electron Green’s function just as well in the Wannier
representation. For H0, we would then have used (2.33). For

Gα
ijσ (E) = ⟪aiσ ; a+jσ⟫

α

E
, (3.218)
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we find the equation of motion,

EGα
ijσ (E) = h̄δij +

∑

m

(Tim − μδim)G
α
mjσ (E), (3.219)

which is not directly decoupled as is Gα
kσ (E) in (3.196), but which can be readily

solved via Fourier transformation:

G
ret

adv
ijσ (E) =

1

N

∑

k

exp(ik · (Ri −Rj ))

E − (ε(k)− μ)± i0+
. (3.220)

The physical results which can be derived from this function are of course the same
ones which we deduced above from Gα

kσ
.

3.3.2 Free Spin Waves

As a further, very simple example of an application, we wish to discuss a system
of non-interacting Bosons, and we consider in this connection the spin waves of a
ferromagnet, which we introduced in Sect. 2.4.4. Our starting point is therefore the
Hamiltonian (2.244):

HSW = E0 +
∑

q

h̄ω(q)a+q aq . (3.221)

E0 and h̄ω(q) are explained in (2.224) and (2.232), respectively. We define the
following

one-magnon Green’s function

Gα
q (t, t

′) = ⟪aq(t); a+q (t ′)⟫α , (3.222)

α = ret, adv, c; ε = +. Since magnons are Bosons, it will prove expedient to use
the commutator Green’s function.

For magnons, conservation of particle number does not hold. Precisely that
number of magnons is excited at a given temperature T , for which the free energy
F is minimised:

(
∂F

∂N

)

T ,V

!= 0. (3.223)
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The differential quotient on the left is just the chemical potential μ. It thus follows
that:

μ = 0. (3.224)

This means that in the equation of motion for the Green’s function, we can set
H = H − μN = H . We require the commutator

[
aq , HSW

]
− =

∑

q ′
h̄ω(q ′)

[
aq , a

+
q ′aq ′

]

− =

=
∑

q ′
h̄ω(q ′)

[
aq , a

+
q ′
]

− aq ′ = (3.225)

= h̄ω(q)aq .

The equation of motion then takes on a simple form:

EGα
q (E) = h̄+ h̄ω(q)Gα

q (E).

Rearrangement and taking into account the boundary conditions then leads to:

G
ret

adv
q (E) = h̄

E − h̄ω(q)± i0+
. (3.226)

The poles again represent the excitation energies, i.e. the energies which must be
exchanged on creation or annihilation of a magnon. This is of course just h̄ω(q).

With (3.154), we find directly from (3.226) the fundamental

one-magnon spectral density

Sq(E) = h̄δ(E − h̄ω(q)). (3.227)

The time-dependent Green’s function, e.g. the retarded function, represents the
undamped harmonic oscillation, as in (3.200) for the free Bloch electrons:

Gret
q (t − t ′) = −i�(t − t ′)e−iω(q)(t−t ′). (3.228)

The frequency of the oscillations corresponds once again to an exact excitation
energy of the system.

Making use of the spectral theorem (3.157) and of the spectral density Sq(E), we
obtain the expectation value of the magnon-number operator, the so-called
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magnon occupation density

mq =
〈
a+q aq

〉 = 1

exp(βh̄ω(q))− 1
+Dq . (3.229)

Since we started with the commutator Green’s function, we still have to deter-
mine the constant Dq for the corresponding anticommutator Green’s function,
as described in detail in Sect. 3.2.3. The fundamental commutation relations for
Bosonic systems (1.99) determine the inhomogeneity in the equation of motion:

〈[
aq , a

+
q

]
+
〉
= 1+ 2mq . (3.230)

Furthermore, the anticommutator Green’s function obeys the same equation of
motion as the commutator function. We find:

G(−)
q (E) = h̄(1+ 2mq)

E − h̄ω(q)
. (3.231)

For an at least infinitesimal, symmetry-breaking external field (B0 ≥ 0+), the
magnon energies are in every case nonzero, and are in fact positive. Then, however,
from (3.167) we find:

2h̄Dq = lim
E→0

EG(−)
q (E) = 0. (3.232)

For the occupation density, it thus follows that:

mq = 1

eβh̄ω(q) − 1
. (3.233)

This is the Bose-Einstein distribution function, and thus the result known from
elementary quantum statistics for free Bosonic systems.

The internal energy of the spin-wave system corresponds to the expectation
value of the Hamiltonian, and is therefore given with (3.221) by

U = 〈H 〉 = E0 +
∑

q

h̄ω(q)mq . (3.234)

The entire equilibrium thermodynamics can finally be derived from the free energy
F , which is determined from the internal energy as in (3.217). Thus, finally,
everything else follows from the magnon occupation density mq and therefore from
the spectral density Sq(E). Even for more complicated interacting systems, as we
shall later demonstrate, all the quantities defined in equilibrium thermodynamics
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become accessible once we have computed the spectral density or, equivalently, one
of the Green’s functions.

3.3.3 The Two-Spin Problem

As a third example of an application, we wish to treat a model system with
interactions, whose partition function can still be calculated exactly, so that all
the interesting correlation functions are known in principle. This thus opens up the
possibility of comparing the results of the Green’s function method with the exact
solutions.

The model system in question consists of two spins of magnitudes

S1 = S2 = 1

2
, (3.235)

which are coupled to each other via an exchange interaction J and are presumed to
be acted upon by a homogeneous magnetic field. We describe them in terms of the
correspondingly simplified Heisenberg model (2.221):

H = −J (S+1 S−2 + S−1 S
+
2 + 2Sz1S

z
2

)− b
(
Sz1 + Sz2

)
, (3.236)

where

b = 1

h̄
gJμBB0. (3.237)

The limitation to S1 = S2 = 1/2 allows some simplifications:

S∓i S
±
i =

h̄2

2
∓ h̄Szi , (3.238)

S±i S
z
i = −Szi S±i = ∓ h̄

2
S±i , (3.239)

(
S+i
)2 = 0 ; (

Szi

)2 = h̄2

4
. (3.240)

For our further discussion, we require several commutators:

[
S−1 , H

]
− = −J [S−1 , S+1

]
− S

−
2 − 2J

[
S−1 , S

z
1

]
− S

z
2 − b

[
S−1 , S

z
1

]
− =

= 2h̄J
(
Sz1S

−
2 − S−1 S

z
2

)− h̄bS−1 .
(3.241)
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Quite analogously, one finds:

[
S−2 , H

]
− = 2h̄J (S−1 S

z
2 − Sz1S

−
2 )− h̄bS−2 , (3.242)

[
Sz1, H

]
− = −J ( [Sz1, S+1

]
− S

−
2 + [Sz1, S−1

]
S+2
) =

= −h̄J (S+1 S−2 − S−1 S
+
2

) = − [Sz2, H
]
− . (3.243)

Finally, we also require:

[
Sz1S

−
2 , H

]
− =

= [Sz1, H
]
S−2 + Sz1

[
S−2 , H

]
− =

= −h̄J (S+1 S−2 − S−1 S
+
2

)
S−2 + 2h̄J

(
Sz1S

−
1 S

z
2 −

(
Sz1

)2
S−2
)− h̄bSz1S

−
2 =

= h̄J

[

S−1

(
h̄2

2
+ h̄Sz2

)]

+ 2h̄J

(
−S−1 Sz2

h̄

2

)
− 2h̄J

h̄2

4
S−2 − h̄bSz1S

−
2 =

= 1

2
h̄3J

(
S−1 − S−2

)− h̄bSz1S
−
2 .

(3.244)
If the indices 1 and 2 are exchanged in this expression, which was derived using
(3.238) through (3.240), it then follows that:

[
Sz2S

−
1 , H

]
− =

1

2
h̄3J

(
S−2 − S−1

)− h̄bSz2S
−
1 . (3.245)

Our main goal is the calculation of the magnetisation of the spin system, i.e. the
expectation value

〈
Sz1

〉 = 〈Sz2
〉 ≡ 〈Sz〉. The corresponding Green’s function (retarded

or advanced), according to (3.238), is given by:

G
(+)
11 (t, t

′) = ⟪S−1 (t); S+1 (t ′)⟫(+) , (3.246)

where the commutator function (ε = +) proves to be expedient. The equation of
motion for G(+)

11 naturally contains new, higher-order Green’s functions, for which
we then can construct further equations of motion. We however obtain a closed
system of equations, if we extend G(+)

11 with the following functions:

G
(+)
21 (t, t ′) = ⟪ S−2 (t); S+1 (t ′)⟫(+) , (3.247)

 
(+)
12 (t, t ′) = ⟪(Sz1S−2 )(t); S+1 (t ′)⟫(+) , (3.248)

 
(+)
21 (t; t ′) = ⟪(Sz2S−1 )(t); S+1 (t ′)⟫(+) . (3.249)
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The equations of motion of the energy-dependent Fourier transforms of these
functions can be derived using the commutators (3.241), (3.242), (3.243), (3.244),
and (3.245); we however still require the inhomogeneities:

〈[
S−1 , S

+
1

]
−
〉
= −2h̄

〈
Sz
〉
, (3.250)

〈[
S−2 , S

+
1

]
−
〉
= 0, (3.251)

〈[
Sz1S

−
2 , S

+
1

]
−
〉
= h̄

〈
S+1 S

−
2

〉
, (3.252)

〈[
Sz2S

−
1 , S

+
1

]
−
〉
= −2h̄

〈
Sz2S

z
1

〉
. (3.253)

We define the abbreviations

ρ12 =
〈
S+1 S

−
2

〉+ 2
〈
Sz1S

z
2

〉
, (3.254)

R(+)(E) =  
(+)
12 (E)−  

(+)
21 (E), (3.255)

and thus obtain the following equations of motion:

(E + h̄b)G
(+)
11 (E) = −2h̄2 〈Sz

〉+ 2h̄JR(+)(E), (3.256)

(E + h̄b)G
(+)
21 (E) = −2h̄JR(+)(E), (3.257)

(E + h̄b)R(+)(E) = h̄2ρ12 + h̄3J
(
G
(+)
11 (E)−G

(+)
21 (E)

)
. (3.258)

This system of equations can readily be solved:

(E + h̄b)
(
G
(+)
11 (E)+G

(+)
21 (E)

)
= −2h̄2 〈Sz

〉
, (3.259)

(

E + h̄b − 4h̄4J 2

E + h̄b

)(
G
(+)
11 (E)−G

(+)
21 (E)

)
=

= −2h̄2 〈Sz
〉+ 4h̄J

h̄2ρ12

E + h̄b
. (3.260)

However, it is found that the Green’s functions have first-order poles at the following
energies:

E1 = −h̄b; E2 = −h̄b − 2J h̄2; E3 = −h̄b + 2J h̄2. (3.261)
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We use this to further rearrange (3.259) and (3.260):

G
(+)
11 (E)+G

(+)
21 (E) =

−2h̄2 〈Sz〉
E − E1

,

G
(+)
11 (E)−G

(+)
21 (E) = −h̄2〈Sz〉

(
1

E − E2
+ 1

E − E3

)
−

− h̄ρ12

(
1

E − E2
− 1

E − E3

)
.

Addition or subtraction of these two equations finally leads to:

G
(+)
11 (E) = − h̄2 〈Sz〉

E − E1
− h̄

2

η+
E − E2

− h̄

2

η−
E − E3

, (3.262)

G
(+)
21 (E) = − h̄2 〈Sz〉

E − E1
+ h̄

2

η+
E − E2

+ h̄

2

η−
E − E3

. (3.263)

Here, we have also used the abbreviation

η± = h̄
〈
Sz
〉± ρ12. (3.264)

The remaining higher-order Green’s function R(+)(E) can be most simply deter-
mined using (3.257):

R(+)(E) = −E − E1

2h̄J
G
(+)
21 (E) =

= h̄

2J

〈
Sz
〉− 1

4J

[

η+

(

1− 2J h̄2

E − E2

)

+ η−

(

1+ 2J h̄2

E − E3

)]

.

This gives:

R(+)(E) = h̄2

2

η+
E − E2

− h̄2

2

η−
E − E3

. (3.265)

Because of (3.167), these commutator Green’s functions must be regular at E = 0.
This is immediately clear in the presence of a field (B0 �= 0 ⇐⇒ b �= 0 ⇐⇒ E1 �=
0). In the absence of a field, it is however assured only by

〈
Sz
〉 = 0 for B0 = 0 (3.266)

From the general analytic properties of the commutator Green’s functions, we
already obtain the physically important result that in the exchange-coupled two-spin
system, there can be no spontaneous magnetisation.
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For the complete determination of the Green’s functions in (3.262), (3.263) and
(3.265), we must determine the expectation values 〈Sz〉 and ρ12 with the aid of
the spectral theorem (3.157). The spectral densities associated with the Green’s
functions can be directly read off (3.262), (3.263) and (3.265) using (3.152) and
(3.154):

S
(+)
11 (E) = −h̄2 〈Sz

〉
δ(E − E1)− h̄

2
η+δ(E − E2)− h̄

2
η−δ(E − E3), (3.267)

S
(+)
21 (E) = −h̄2 〈Sz

〉
δ(E − E1)+ h̄

2
η+δ(E − E2)+ h̄

2
η−δ(E − E3), (3.268)

S(+)r (E) = h̄2

2
η+δ(E − E2)− h̄2

2
η−δ(E − E3). (3.269)

The spectral theorem (3.157) then gives the following results, where we make use
of the abbreviation

mi = 1

eβEi − 1
; i = 1, 2, 3 : (3.270)

〈
S+1 S

−
1

〉 = −h̄ 〈Sz〉m1 − 1

2
η+m2 − 1

2
η−m3 +D11, (3.271)

〈
S+1 S

−
2

〉 = −h̄ 〈Sz〉m1 + 1

2
η+m2 + 1

2
η−m3 +D21, (3.272)

〈
S+1 S

z
1S
−
2

〉− 〈S+1 Sz2S−1
〉 = h̄

2
η+m2 − h̄

2
η−m3 +DR. (3.273)

With the results

〈
Sz
〉 = − h̄

2
+ 1

h̄

〈
S+1 S

−
1

〉
, (3.274)

η+ = −2

h̄

(〈
S+1 S

z
1S
−
2

〉− 〈S+1 Sz2S−1
〉)
, (3.275)

η− = −η+ + 2h̄
〈
Sz
〉
, (3.276)

〈
Sz1S

z
2

〉 = 1

4
(η+ − η−)− 1

2

〈
S+1 S

−
2

〉
(3.277)

we have thus determined all the required correlation functions up to the constants
D11, D21, and DR .

According to (3.167), these constants are just the residuals of the E = 0 poles of
the associated anticommutator Green’s functions G(−)

11 (E), G
(−)
21 (E) and R(−)(E).

Their equations of motion differ from those of the commutator functions (3.256)
through (3.258) only in terms of the inhomogeneities on the right-hand sides of the
equations:
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〈[
S−1 , S

+
1

]
+
〉
= h̄2,

〈[
S−2 , S

+
1

]
+
〉
= 2

〈
S+1 S

−
2

〉
,

〈[
Sz1S

−
2 , S

+
1

]
+
〉
= 0,

〈[
Sz2S

−
1 , S

+
1

]
+
〉
= h̄2 〈Sz

〉
.

We find the following equations of motion:

(E + h̄b)G
(−)
11 (E) = h̄3 + 2h̄JR(−)(E), (3.278)

(E + h̄b)G
(−)
21 (E) = 2h̄

〈
S+1 S

−
2

〉− 2h̄JR(−)(E), (3.279)

(E + h̄b)R(−)(E) = −h̄3 〈Sz
〉+ h̄3J

(
G
(−)
11 (E)−G

(−)
21 (E)

)
. (3.280)

They can be further rearranged to:

G
(−)
11 (E)+G

(−)
21 (E) = h̄

h̄2 + 2
〈
S+1 S

−
2

〉

E − E1
,

(

E + h̄b − 4h̄4J 2

E + h̄b

)(
G
(−)
11 (E)−G

(−)
21 (E)

)
=

= h̄3 − 2h̄
〈
S+1 S

−
2

〉− 4h̄4J
〈Sz〉

E + h̄b
.

This gives:

G
(−)
11 (E)−G

(−)
21 (E) =

=
(
h̄3 − 2h̄

〈
S+1 S

−
2

〉) 1

2

(
1

E − E2
+ 1

E − E3

)
+ h̄2

(
1

E − E2
− 1

E − E3

) 〈
Sz
〉
.

Addition or subtraction of these two equations finally leads to:

G
(−)
11 (E) =

h̄

2

(
h̄2 + 2

〈
S+1 S

−
2

〉) 1

E − E1
+

+ h̄

2

(
h̄2

2
+ h̄

〈
Sz
〉− 〈S+1 S−2

〉
)

1

E − E2
+ (3.281)

+ h̄

2

(
h̄2

2
− h̄

〈
Sz
〉− 〈S+1 S−2

〉
)

1

E − E3
,
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G
(−)
21 (E) =

h̄

2

(
h̄2 + 2

〈
S+1 S

−
2

〉) 1

E − E1
−

− h̄

2

(
h̄2

2
+ h̄

〈
Sz
〉− 〈S+1 S−2

〉
)

1

E − E2
− (3.282)

− h̄

2

(
h̄2

2
− h̄

〈
Sz
〉− 〈S+1 S−2

〉
)

1

E − E3
.

For the determination of R(−)(E), we make use of (3.279):

R(−)(E) = 1

2h̄J

[

h̄
〈
S+1 S

−
2

〉− h̄3

2
+

+ h̄

2

(
h̄2

2
+ h̄

〈
Sz
〉− 〈S+1 S−2

〉
)(

1− 2J h̄2

E − E2

)

+

+ h̄
2

(
h̄2

2
− h̄

〈
Sz
〉− 〈S+1 S−2

〉
)(

1+ 2J h̄2

E − E3

)]

.

This yields:

R(−)(E) = − h̄
2

2

(
h̄2

2
+ h̄

〈
Sz
〉− 〈S+1 S−2

〉
)

1

E − E2
+

+ h̄2

2

(
h̄2

2
− h̄

〈
Sz
〉− 〈S+1 S−2

〉
)

1

E − E3
.

(3.283)

According to (3.167), we can read directly off these expressions:

D11 = D21 =
⎧
⎨

⎩

0 for b �= 0,
h̄2

4
+ 1

2

〈
S+1 S

−
2

〉
for b = 0,

(3.284)

DR ≡ 0. (3.285)

Then the equal-time correlation functions (3.271) through (3.275) are completely
determined.

The magnetisation 〈Sz〉 of the two-spin system for b �= 0 is of particular interest;
for it, we find the following result, keeping in mind (3.271), (3.274) and (3.284):

〈
Sz
〉 = − h̄

2
− 〈Sz〉m1 − η+

2h̄
m2 − η−

2h̄
m3. (3.286)
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With (3.276), we obtain from this expression:

〈
Sz
〉
(1+m1 +m3) = − h̄

2
− η+

2h̄
(m2 −m3).

Equation (3.273) leads to

η+ = 2h̄
〈
Sz
〉 m3

1+m2 +m3
.

Combining these two equations, we obtain the intermediate result:

〈
Sz
〉 = − h̄

2

(
1+m1 +m3

1+ 2m2

1+m2 +m3

)−1

.

Inserting the mi as in (3.270) then gives after some simple rearrangements:

〈
Sz
〉 = h̄

2

exp(βh̄b)− exp(−βh̄b)
1+ exp(−2βh̄2J )+ exp(βh̄b)+ exp(−βh̄b) . (3.287)

For zero applied magnetic field (B0 → 0+), the magnetisation of the two-spin
system thus vanishes. There is therefore no spontaneous magnetisation, as we had
indeed already deduced from the general analytic properties of the commutator
Green’s function G(+)

11 (E) in (3.266). When there is no coupling between the two
spins, i.e. J → 0, then we obtain the well-known result for the S = 1

2 paramagnet:

〈
Sz
〉 −−−→
J→0

h̄

2
tanh

(
1

2
gJμBB0

)
. (3.288)

The exchange coupling of the two spins mediated by J is reflected in particular in
the correlations

〈
S+1 S

−
2

〉
and

〈
Sz1S

z
2

〉
, which in the limit J → 0 must be expressed by:

〈
S+1 S

−
2

〉 −−−→
J→0

〈
S+1
〉 〈
S−2
〉 = 0, (3.289)

〈
Sz1S

z
2

〉 −−−→
J→0

〈
Sz1

〉 〈
Sz2

〉 = 〈Sz〉2 . (3.290)

From (3.271) and (3.272), we first find:

〈
S+1 S

−
2

〉 = − 〈S+1 S−1
〉− 2h̄〈Sz〉m1 =

= − h̄
2

2
− h̄

〈
Sz
〉
(1+ 2m1).

(3.291)
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In the last step, we made use of (3.238). Inserting (3.287) then leads to

〈S+1 S−2 〉 =
h̄2

2

1− exp(−2βh̄2J )

1+ (−2βh̄2J )+ exp(−βh̄b)+ exp(βh̄b)
. (3.292)

The limiting case of (3.289) is clearly fulfilled.
The second correlation function,

〈
Sz1S

z
2

〉
, can be evaluated as follows: First, from

(3.273), (3.275) and (3.276), we obtain:

η+ − η− = −2h̄
〈
Sz
〉 1+m2 −m3

1+m2 +m3
.

This means, according to (3.277):

〈
Sz1S

z
2

〉 = − h̄
2

〈
Sz
〉 1+m2 −m3

1+m2 +m3
− 1

2

〈
S+1 S

−
2

〉
.

Inserting (3.287) and (3.292) then gives:

〈
Sz1S

z
2

〉 = h̄2

4

exp(βh̄b)+ exp(−βh̄b)− exp(−2βh̄2J )− 1

1+ exp(βh̄b)+ exp(−βh̄b)+ exp(−2βh̄2J )
. (3.293)

Here, again, we can see that the limiting case of J → 0 is reproduced correctly by
(3.290).

Thus far, we have assumed that b �= 0, and we must consider separately the
special case of b = 0. We naturally expect that it can be treated in the limit b → 0
from (3.292) or (3.293). Necessarily, we must have 〈Sz〉 = 0 from (3.266), since the
commutator Green’s function G(+)

11 (E) cannot have a pole at E = 0. Furthermore,
in (3.271), (3.272), (3.273), (3.274), (3.275), (3.276) and (3.277), the constants D11
and D21 are now nonzero (3.284). DR is however still zero. It follows from (3.271)
that:

〈
S+1 S

−
1

〉
0 =

h̄2

2
= 1

2
ρ12(m3 −m2)+ h̄2

4
+ 1

2

〈
S+1 S

−
2

〉
0 . (3.294)

The same equation results from (3.272), so that for the determination of
〈
S+1 S

−
2

〉
, no

other equation is available. The isotropy which is present for b = 0 however leads
to

〈
S+1 S

−
2

〉
0 = 2

〈
Sz1S

z
2

〉
0 (3.295)

and thus to ρ12 = 2
〈
S+1 S

−
2

〉
0. Equation (3.294) now contains only one unknown:

h̄2

4
= 〈S+1 S−2

〉
0

(
m3 −m2 + 1

2

)
.
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In fact, using

〈
S+1 S

−
2

〉
b=0 =

h̄2

2

1− exp(−2βh̄2J )

3+ exp(−2βh̄J )
, (3.296)

the limiting case of b→ 0 gives the result (3.292), and – due to (3.295) – also that
of (3.293). Note that this would not have been the case if we had not taken into
account the constants D11 and D12, which arise from the application of the spectral
theorem.

To conclude, we wish to demonstrate the significance of the constants D in the
spectral theorem by considering an additional example. The exact result for the
correlation

〈
Sz1S

z
2

〉
in (3.293) was obtained finally with the aid of the Green’s function

 
(+)
21 (E) defined in (3.249). We could however have obtained the same result with

the Green’s function

P
(+)
21 (E) = ⟪ Sz2; Sz1⟫(+)E

(3.297)

and the spectral theorem (3.157). We wish therefore to calculate this Green’s
function. With the commutator (3.243), its equation of motion is given by:

EP
(+)
21 (E) = h̄JQ(+)(E). (3.298)

We denote the Green’s function

Q(+)(E) = ⟪ S+1 S−2 − S+2 S
−
1 ; Sz1⟫(+)E

(3.299)

by Q(+)(E). For its equation of motion, we require the following commutator:
[
S+1 S

−
2 , H

]
− =

[
S+1 , H

]
− S

−
2 + S+1

[
S−2 , H

]
− =

=
(
− [S−1 , H

]
−
)+

S−2 + S+1
[
S−2 , H

]
− .

We insert (3.241) and (3.242):
[
S+1 S

−
2 , H

]
− =

(− 2h̄J (Sz1S
+
2 − S+1 S

z
2)+ h̄bS+1 )S

−
2 +

+ S+1 (2h̄J (S
−
1 S

z
2 − Sz1S

−
2 )− h̄bS−2

)
.

and use (3.238) and (3.239):

[
S+1 S

−
2 , H

]
− = −2h̄J

[

Sz1

(
h̄2

2
+ h̄Sz2

)

− S+1
(
− h̄

2
S−2
)]

+

+ 2h̄J

[(
h̄2

2
+ h̄Sz1

)

Sz2 −
(
− h̄

2
S+1
)
S−2

]

=

= −J h̄3 (Sz1 − Sz2

) = − [S+2 S−1 , H
]
− .
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With the inhomogeneity

〈 [
S+1 S

−
2 − S+2 S

−
1 , S

z
1

]
−
〉
= h̄

〈−S+1 S−2 − S+2 S
−
1

〉 = −2h̄
〈
S+1 S

−
2

〉
,

the equation of motion for Q(+)(E) becomes:

EQ(+)(E) = −2h̄2 〈S+1 S
−
2

〉− 2J h̄3
{
P
(+)
11 (E)− P

(+)
21 (E)

}
. (3.300)

The corresponding equation of motion for the function

P
(+)
11 (E) = ⟪Sz1; Sz1⟫(+)E

(3.301)

is found immediately using (3.243) to be

EP
(+)
11 (E) = −h̄JQ(+)(E). (3.302)

From (3.298) and (3.302), we conclude that:

P
(+)
11 (E) = −P (+)

21 (E). (3.303)

This leads via (3.300) to

E2P
(+)
21 (E) = −2h̄3J

〈
S+1 S

−
2

〉+ 4J 2h̄4P
(+)
21 (E).

We can then readily calculate P (+)
21 (E):

P
(+)
21 (E) = h̄

2

〈
S+1 S

−
2

〉 ( 1

E + 2h̄2J
− 1

E − 2h̄2J

)
. (3.304)

With the spectral theorem (3.157) and the result (3.292) for
〈
S+1 S

−
2

〉
, we finally

obtain:

〈
Sz1S

z
2

〉 = − h̄
2

4

1+ exp
(−2βJ h̄2

)

1+ exp
(−2βh̄2J

)+ exp(βh̄b)+ exp(−βh̄b) +Dp. (3.305)

Without the constant Dp, a contradiction of our earlier result (3.293) would be
obtained.Dp may therefore under no circumstances be neglected here. To determine

Dp, we must finally compute the anticommutator Green’s function P
(−)
21 (E).

With
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〈[
Sz2, S

z
1

]
+
〉
= 2

〈
Sz1S

z
2

〉
,

we find its equation of motion:

EP
(−)
21 (E) = 2h̄

〈
Sz1S

z
2

〉+ h̄JQ(−)(E). (3.306)

Because of
〈[
S+1 S

−
2 , S

z
1

]
+
〉
= 〈S−2

(
S+1 S

z
1 + Sz1S

+
1

)〉 = 0,

for Q(−)(E), analogously to (3.300), we find:

EQ(−)(E) = −2J h̄3
{
P
(−)
11 (E)− P

(−)
21 (E)

}
. (3.307)

Using

〈[
Sz1, S

z
1

]
+
〉
= 2
〈(
Sz1

)2〉 = h̄2

2
,

we finally obtain, as in (3.302):

EP
(−)
11 (E) = h̄3

2
− h̄JQ(−)(E). (3.308)

The Eqs. (3.306), (3.307), and (3.308) form a closed system, which can readily be
solved for P (−)

21 (E):

P
(−)
21 (E) = 2h̄

E

{
E2 − 2h̄4J 2

E2 − 4h̄4J 2

〈
Sz1S

z
2

〉− h̄2

4

2h̄4J 2

E2 − 4h̄4J 2

}

. (3.309)

In contrast to the commutator Green’s function (3.304), the anticommutator-Green’s
function thus has a first-order pole at E = 0. From (3.167), we therefore find:

Dp = 1

2h̄
lim
E→0

E P
(−)
21 (E) = 1

2

〈
Sz1S

z
2

〉+ h̄2

8
. (3.310)

Inserting this expression for Dp into (3.305), we obtain for
〈
Sz1S

z
2

〉
the correct result

(3.293).
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3.3.4 Exercises

Exercise 3.3.1 According to (2.164), the quantised vibrations of the ionic
lattice can be described in terms of a non-interacting phonon gas:

H =
∑

q,r

h̄ωr(q)

(
b+qrbqr + 1

2

)
.

One defines the so-called one-phonon Green’s function:

Gα
qr (t, t

′) = ⟪bqr (t); b+qr (t ′)⟫α (α = ret, adv, c).

1. Justify the claim that for phonons, the chemical potentialμ is equal to zero.
2. Compute Gret, adv

qr (E).

3. Derive the time-dependent Green’s function Gret, adv
qr (t, t ′).

4. Calculate the internal energy U .

Exercise 3.3.2 In Exercises 2.3.5 and 2.3.6, the BCS theory of superconduc-
tivity was treated. The simplified model Hamiltonian,

H ∗ =
∑

k,σ

t (k)a+kσ akσ −�
∑

k

(bk + b+k )+
1

V
�2,

in which b+k = a+k↑a
+
−k↓ is the Cooper-pair creation operator, and

t (k) = ε(k)− μ ; t (−k) = t (k)

was defined, leads to the same expressions for the ground-state energy and for
the coefficients uk and υk in the BCS ansatz |BCS〉 (Exercise 2.3.5), if one
also chooses

� = �∗ = V
∑

k

〈bk〉 = V
∑

k

〈
b+
k

〉
.

(continued)
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Exercise 3.3.2 (continued)
1. Calculate the excitation spectrum of the superconductor using the one-

electron Green’s function

Gret
kσ (E) = ⟪akσ ; a+kσ⟫

ret
E
.

Show that it has an energy gap �.
2. Derive an equation for determining � using the spectral theorem for a

suitably defined Green’s function. Show that for T → 0, it is equivalent to
the gap parameter�k from Exercise 2.3.6, if�k is taken to be independent
of k.

Exercise 3.3.3

1. Show, using the model Hamiltonian H ∗ from Exercise 3.3.2, that the
following holds for the p-fold commutator of akσ with H ∗:

[
· · ·
[ [
akσ , H

∗]
− , H

∗]

− . . . , H
∗
]

−
=

=
{
(t2(k)+�2)nakσ , if p = 2n,

(t2(k)+�2)n
(
t (k)akσ − zσ�a

+
−k−σ

)
, if p = 2n+ 1,

n = 0, 1, 2, . . .

Compute all of the spectral moments of the one-electron spectral density
using this result.

2. Choose a two-pole approach for the one-electron spectral density

Skσ (E) =
2∑

i=1

aiσ (k)δ(E − Eiσ (k))

and determine the spectral weights αiσ (k) as well as the so-called quasi-
particle energies Eiσ (k) from the exact results for the first four spectral
moments.
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Exercise 3.3.4 Investigate the model Hamiltonian H ∗ for BCS superconduc-
tivity,

H ∗ =
∑

k

Hk + �2

V
,

Hk = t (k)
(
a+k↑ak↑ + a+−k↓a−k↓

)
−�

(
a+k↑a

+
−k↓ + a−k↓ak↑

)
.

1. Find the energy eigenvalues of Hk .
2. Give the corresponding eigenstates.
3. Give the possible excitation energies of the system.

Exercise 3.3.5

1. Show that the excitations of a BCS superconductor are generated from
Exercise 3.3.4 by the operators

ρ+k↑ = uka
+
k↑ − υka−k↓; ρ+−k↓ = uka

+
−k↓ + υkak↑.

The coefficients uk and υk are defined as in Exercise 2.3.6:

u2
k =

1

2

(
1+ t (k)

(t2(k)+�2)1/2

)
, υ2

k = 1− u2
k.

2. Prove that these operators are purely Fermionic operators.
3. Compute the commutator

[
H ∗, ρ+k↑

]
−.

How is this result to be interpreted?
4. Formulate and solve the equation of motion of the retarded Green’s

function:

Ĝret
k↑(E) = ⟪ρk↑; ρ+k↑⟫

ret

E
.
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3.4 The Quasi-particle Concept

In Sect. 3.3, we discussed relatively simple, exactly solvable model systems, which
strictly speaking do not require the Green’s function formalism. They were intended
merely to introduce the solution techniques. The full scope of the method becomes
clear only when it is applied to the treatment of interacting systems. In most such
cases, to be sure, we will then no longer be able to treat the many-body problem
in a mathematically strict manner. Approximations are unavoidable and must be
tolerated.

The concept of

quasi-particles

has proven to be extraordinarily useful in this connection, and we shall consider it
in detail in the present section. To be more concrete, we will first keep interacting
electron systems in mind. The extension to other many-body systems will cause no
difficulties.

We wish to investigate which statements about interacting electron systems can
be made using Green’s functions. To this end, we must first define the operators (or
combinations of operators) A and B which are to be used to construct the Green’s
function being considered. In most practical cases, the type of this function is quite
unambiguously fixed by the physical problem and by the representation of the model
Hamiltonian used.

3.4.1 One-Electron Green’s Functions

As in (2.55), the Hamiltonian of a system of Ne mutually-interacting electrons in
the Bloch representation is given by:

H =
∑

kσ

ε(k)a+kσ akσ + 1

2

∑

kpq
σσ ′

υkp(q)a
+
k+qσ a

+
p−qσ ′apσ ′akσ . (3.311)

We limit our considerations to the electrons of a single energy band, so that we can
suppress the band indices. For the so-called Bloch energies ε(k), from (2.14) and
(2.21) we have:

ε(k) =
∫

d3r ψ∗k (r)
[

− h̄2

2m
�+ V (r)

]

ψk(r). (3.312)

ψk(r) is a Bloch function and V (r) is the periodic lattice potential. We treat ε(k)
in the following as a given model parameter. We calculated the Coulomb matrix
element in (2.54):

υkp(q) = e2

4π ε0

∫∫
d3r1 d3r2

ψ∗k+q(r1)ψ
∗
p−q(r2)ψp(r2)ψk(r1)

|r1 − r2| . (3.313)
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With a constant lattice potential V (r) ≡ const, this becomes

υkp(q) −−−−−−→
V (r)=const

υ0(q) = e2

ε0 V q2 . (3.314)

Frequently, one uses the model Hamiltonian (3.311) also in its Wannier represen-
tation (cf. e.g. (2.115)):

H =
∑

ijσ

Tij a
+
iσ ajσ +

1

2

∑

ijkl

σσ ′

υ(ij ; kl)a+iσ a+jσ ′alσ ′akσ . (3.315)

The so-called hopping integrals

Tij =
∫

d3 r ω∗(r −Ri )

{

− h̄2

2m
�+ V (r)

}

ω(r −Rj ) (3.316)

are related to the Bloch energies via a Fourier transform ε(k) (cf. (2.113)). ω(r−Ri )

is the Wannier function centered at Ri .

υ(ij ; kl) = e2

4π ε0

∫∫
d3r1 d3r2 ω

∗(r1 −Ri )ω
∗ (r2 −Rj

) ·

· 1

|r1 − r2|ω(r2 −Rl )ω(r1 −Rk).

(3.317)

In this section, we show that the one-electron Green’s function, already introduced
in Eq. (3.193),

Gα
kσ (E) ≡ ⟪akσ ; a+kσ⟫

α

E
, (3.318)

Gα
ijσ (E) ≡ ⟪aiσ ; a+jσ⟫

α

E
, (3.319)

α = ret, adv, c (ε = −)

or the equivalent one-electron spectral density

Skσ (E) = 1

2π

+∞∫

−∞
d(t − t ′) exp

(
− i

h̄
E(t − t ′)

) 〈 [
akσ (t), a

+
kσ
(t ′)
]
+
〉
,

(3.320)

Sijσ (E) = 1

2π

+∞∫

−∞
d(t − t ′) exp

(
− i

h̄
E(t − t ′)

) 〈[
aiσ (t), a

+
jσ (t

′)
]

+

〉
(3.321)
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determine the entire equilibrium thermodynamics, even for systems of interacting
electrons. This of course presumes that one was able in some manner to compute
these functions.

To show this, we first write the equation of motion of the k-dependent Green’s
function, for which we require the following commutator:

[akσ , H]− = (ε(k)− μ)akσ+
+
∑

p,q
σ ′

υp,k+q(q)a
+
p+qσ ′apσ ′ak+qσ (3.322)

(Its derivation can be carried out by the reader as an exercise!). With the higher-
order Green’s function

α σ
′σ

pk;q(E) ≡ ⟪a+p+qσ ′apσ ′ak+qσ ; a+kσ⟫
α

E
(3.323)

the equation of motion is then given by:

(E − ε(k)+ μ)Gα
kσ (E) = h̄+

∑

p,q,σ ′
υp,k+q(q)

α σ
′σ

pk;q(E). (3.324)

The unknown function  on the right-hand side prevents a direct solution of this
equation. However, we postulate that the following decomposition is permitted:

⟪[akσ , H−H0]−; a+kσ⟫
α

E
=
∑

p,q,σ ′
υp,k+q(q) 

σ ′σ
pk;q(E) ≡

≡ !α
σ (k, E)G

α
kσ (E).

(3.325)

This equation defines the so-called

self-energy, �α
σ (k,E),

which we wish to discuss in more detail. With it, the equation of motion (3.324) can
be formally solved in a simple fashion:

Gα
kσ (E) =

h̄

E − (ε(k)− μ+!α
σ (k,E))

. (3.326)

Comparing this expression with that for the non-interacting system (3.197), we see
that the entire influence of the particle interactions is contained in the self-energy
!σ (k, E). As a rule, this is a complex-valued function of (k, E), whose real part
determines the energy and whose imaginary part the lifetime of the quasi-particles,
which we have yet to define.
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We can reformulate Eq. (3.326) to some extent. We denote the one-electron
Green’s function of the non-interacting electrons by G

(0)
kσ
(E); then from (3.326),

it follows that:

Gkσ (E) = h̄

{
h̄
[
G
(0)
kσ (E)

]−1 −!σ (k, E)

}−1

�⇒
{[
G
(0)
kσ (E)

]−1 − 1

h̄
!σ (k, E)

}
Gkσ (E) = 1.

Here, we have suppressed the index α to make the expressions clearer. Finally, we
arrive at the so-called

Dyson equation

Gkσ (E) = G
(0)
kσ
(E)+ 1

h̄
G
(0)
kσ
(E)!σ (k, E)Gkσ (E). (3.327)

Our goal will be to obtain at least an approximate determination of the self-energy.
Inserting an approximate expression for !σ (k, E) into the Dyson equation already
implies summation over an infinite partial series. We recall however that for the
derivation of (3.327), we had to postulate the decomposition (3.325) of the higher-
order Green’s function.

3.4.2 The Electronic Self-Energy

In this section, we wish to obtain an overview of the general structures of the
fundamental quantities self-energy, Green’s functions, and spectral density. Our
starting point is the representation (3.326) of the single-particle Green’s function,
whereby in the case of the self-energy, we are dealing in general with a complex
quantity:

!α
σ (k, E) = Rασ (k, E)+ iIασ (k, E). (3.328)

The index α stands for retarded, advanced, or causal. The corresponding self-
energies are quite distinct. Thus, for example, according to (3.186) and (3.187) for
a real spectral density, we have:

(
Gadv

kσ (E)
)∗ = Gret

kσ (E).
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This implies

(
!adv
σ (k, E)

)∗ = !ret
σ (k, E). (3.329)

The relationship is thus simple. We may limit our considerations without loss of
generality to the retarded functions. We then leave off the supplement+i0+, if Iσ �=
0. We omit the index “ret” on the self-energy in the following.

First, we rearrange Eq. (3.326) slightly:

Gret
kσ (E) = h̄

{E − (ε(k)− μ+ Rσ (k, E))} + iIσ (k, E)

{E − (ε(k)− μ+ Rσ (k, E))}2 + I 2
σ (k, E)

. (3.330)

From (3.154), we then have for the spectral density:

Skσ (E) = − h̄
π

Iσ (k, E)

{E − (ε(k)− μ+ Rσ (k, E))}2 + I 2
σ (k, E)

. (3.331)

With (3.146), we could have given the general spectral representation of the spectral
density, which –for the case of the one-electron spectral density which interests us
here–becomes:

Skσ (E) = h̄

�

∑

n,m

|〈En|a+kσ |Em〉|2e−βEn
(

eβE + 1
)
·

· δ[E − (En − Em)].
(3.332)

Skσ (E) is thus non-negative for all (k, σ, E). This, however, according to (3.331),
gives

Iσ (k, E) ≤ 0. (3.333)

for the imaginary part of the self-energy (retarded!). We now want to investigate
the expression (3.331) somewhat more precisely. Without explicit knowledge of
Rσ (k, E) and Iσ (k, E), we nevertheless expect in the usual case to find more or
less prominent maxima in the spectral density at the resonance energies Eiσ (k)
defined by

Eiσ (k)
!= ε(k)− μ+ Rσ (k, Eiσ (k)) ; i = 1, 2, 3, . . . (3.334)

Here, we must distinguish between two cases.
Case A: Let

Iσ (k, E) ≡ 0 (3.335)
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hold in a certain energy range, which contains the resonance Eiσ . Then, in (3.331),
we must go to the limit Iσ → −0+. Using the formulation of the δ-function as a
limiting expression,

δ(E − E0) = 1

π
lim
x→0

x

(E − E0)2 + x2 , (3.336)

we then find:

Skσ (E) = h̄δ[E − (ε(k)− μ+ Rσ (k, E))]. (3.337)

We then make use of

δ[f (x)] =
∑

i

1

|f ′(xi)|δ(x − xi) ; f (xi) = 0, (3.338)

which allows us to write the following expression in place of (3.337):

Skσ (E) = h̄

n∑

i=1

αiσ (k)δ(E − Eiσ (k)), (3.339)

αiσ (k) =
∣∣∣∣1−

∂

∂E
Rσ (k, E)

∣∣∣∣

−1

E=Eiσ
. (3.340)

The sums extend over those resonancesEiσ which lie within the energy range where
(3.335) is valid.
Case B: We assume

Iσ (k, E) �= 0, (3.341)

where, however,

|Iσ (k, E)| � |ε(k)− μ+ Rσ (k, E)| (3.342)

is valid within a certain neighbourhood of the resonance Eiσ . Then we can expect a
prominent maximum at the energy E = Eiσ . To see this, we expand the expression

Fσ (k, E) ≡ ε(k)− μ+ Rσ (k, E)

around the resonance position and terminate the series after the linear term:

Fσ (k, E) = Fσ (k, Eiσ )+ (E − Eiσ )
∂Fσ

∂E

∣∣∣∣
E=Eiσ

+ · · · =

= Eiσ (k)+ (E − Eiσ )
∂Rσ

∂E

∣∣∣∣
E=Eiσ

+ · · ·
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This means that:

(E − ε(k)+ μ− Rσ (k, E))
2 � (E − Eiσ )

2

(

1− ∂Rσ

∂E

∣∣∣∣
E=Eiσ

)2

=

= α−2
iσ (k)(E − Eiσ (k))

2.

(3.343)

We insert this expression into (3.331). Let us now further assume that Iσ (k, E)
in the neighbourhood of the resonance Eiσ is a continuous, only weakly varying
function of E, so that to a good approximation in the energy region of interest, we
can set

Iσ (k, E) ≈ Iσ (k, Eiσ (k)) ≡ Iiσ (k) ; (3.344)

then the spectral density can be approximated as follows:

S
(i)
kσ (E) ≈ − h̄

π

α2
iσ (k)Iiσ (k)

(E − Eiσ (k))2 + (αiσ (k)Iiσ (k))2
. (3.345)

Under the given assumptions, the spectral density has a Lorentz shape in the
neighbourhood of the resonance Eiσ . Note however, that for this to hold, in
particular (3.342) must be fulfilled. This condition can however unfortunately be
verified only after a complete solution of the problem is at hand. It thus remains
speculative for the time being, but is satisfactorily confirmed by a number of
examples of concrete applications. However, we shall also encounter systems for
which the shape of the spectral density is found to be quite different from the Lorentz
form, i.e. for which (3.342) is not obeyed (Fig. 3.4).

As a rule, however, according to our preliminary considerations, the spectral
density will be a linear combination of weighted Lorentz and δ-functions.

This structure of the spectral density will lead us in the next section to the concept
of the quasi-particle. In this connection, it is interesting to examine the behaviour
of the time-dependent spectral density, which one sometimes calls the propagator.
(Occasionally, this term is also used for the time-dependent Green’s function.) In
the case of a non-interacting particle system, it represents a non-damped harmonic
oscillation, as one can see from Eq. (3.207). This is true in the system of interacting
particles only for case A, when the spectral density can be written as a δ-function
(3.337). From (3.339), it then namely follows that:

Skσ (t − t ′) = 1

2π

n∑

i=1

αiσ (k) exp

(
− i

h̄
Eiσ (k)(t − t ′)

)
. (3.346)

The frequencies of oscillation are then determined by the resonance energies
Eiσ (k).
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Fig. 3.4 The qualitative
shape of the spectral density
for a system of interacting
Fermions

For case B, in contrast, the Lorentz peaks require exponentially damped oscil-
lators. To see this, we assume for the moment that (3.345) holds to a good
approximation over the entire energy range. Then we can write:

S
(i)
kσ (t − t ′) ≈ 1

4π2i

+∞∫

−∞
dE exp

(
− i

h̄
E(t − t ′)

)
αiσ (k)·

·
{

1

E − (Eiσ (k)− iαiσ (k)Iiσ (k))
− (3.347)

− 1

E − (Eiσ (k)+ iαiσ (k)Iiσ (k))

}
.

We solve the integrals using the residual theorem. The spectral weights are positive
definite, so that due to (3.333), we must have:

αiσ (k)Iiσ (k) ≤ 0. (3.348)

The first term thus has a pole in the upper half-plane, and the second term has a pole
in the lower half-plane. If we choose the following integration paths,

then the exponential function in (3.347) guarantees that the semicircle which is
closed at infinity makes no contribution. According to the residual theorem, for
t − t ′ > 0 then only the second term makes a contribution to the integral in (3.347),
whilst for t − t ′ < 0, only the first term contributes. This yields finally:
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S
(i)
kσ (t − t ′) ≈ 1

2π
αiσ (k) exp

(
− i

h̄
Eiσ (k)(t − t ′)

)
·

· exp

(
−1

h̄

∣∣∣αiσ (k)Iiσ (k)
∣∣∣|t − t ′|

)
·

(3.349)

The time-dependent spectral density indeed represents a damped oscillation, whose
frequency again corresponds to a resonance Eiσ , whilst the damping is essentially
determined by the imaginary part of the self-energy.

Thus, in general for interacting systems, we can expect that Skσ (t − t ′) will
consist of a superposition of damped and undamped oscillations, whose frequencies
correspond to the resonance energies Eiσ . The resulting time dependence can then
become quite complicated.

Precisely this qualitative picture of the time dependence of the spectral density
will lead us in the next section to the concept of the quasi-particle, which is typical
of many-body theory.

3.4.3 Quasi-particles

In this section, we will draw some preliminary conclusions. What is in fact the new
aspect of the Green’s function formalism as compared to conventional methods?
What do Green’s functions or spectral densities have to do with quasi-particles?
What are quasi-particles after all? We presume that they are related to the more or
less prominent resonance peaks in the spectral density which we discussed in the
last section. We want to clarify this point qualitatively by considering a special case

T = 0 ; |k| > kF ; t > t ′.

kF denotes the Fermi wavevector. We presume the system to be in its ground state
|E0〉. Upon adding a (k, σ ) electron at the time t , the state

|ϕ0(t)〉 = a+kσ (t)|E0〉 (3.350)

is created, which must not necessarily be an eigenstate of the Hamiltonian. Owing
to |k| > kF, only one of the two terms in the definition of the propagator (3.127)
Skσ (t − t ′) can contribute. We therefore have

2π Skσ (t − t ′) = 〈ϕ0(t)|ϕ0(t
′)
〉
. (3.351)

With this, the time-dependent spectral density acquires a clear interpretation.
2π Skσ (t − t ′) is the probability amplitude that the state |ϕ0〉, which was formed

from the ground state |E0〉 by adding a (k, σ ) electron at the time t ′, still exists
at a time t > t ′. Skσ (t − t ′) thus characterises the time evolution (propagation)
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of an additional (k, σ ) electron in the N -particle system. If we had presupposed
|k| < kF, then Skσ (t − t ′) would describe the propagation of a hole.

We must now distinguish between two typical cases:

|〈ϕ0(t)|ϕ0(t
′)〉|2 = const ⇐⇒ stationary state,

|〈ϕ0(t)|ϕ0(t
′)〉|2 −−−−−→

t−t ′→∞
0 ⇐⇒ state with a finite lifetime.

First, we again consider

(1) Non-interacting electrons,
described by

H0 =
∑

k,σ

(ε(k)− μ)a+
kσ
akσ .

One readily obtains

[H0, a
+
kσ
]− = (ε(k)− μ)a+

kσ
,

with which we find

H0
(
a+kσ |E0〉

) = a+kσH0|E0〉 +
[
H0, a

+
kσ

]
− |E0〉 =

= (E0 + ε(k)− μ)
(
a+kσ |E0〉

) ·

In this special case, we thus have a+kσ |E0〉 which is an eigenstate of H0.
Continuing, we obtain:

|ϕ0(t)〉 = exp

(
i

h̄
H0t

)
a+kσ exp

(
− i

h̄
H0t

)
|E0〉 =

= exp

(
− i

h̄
E0t

)
exp

(
i

h̄
H0t

) (
a+
kσ
|E0〉

) = (3.352)

= exp

(
i

h̄
(ε(k)− μ)t

) (
a+kσ |E0〉

) ·

Due to |k| > kF and 〈E0|E0〉 = 1, we also have:

〈E0|akσ a
+
kσ |E0〉 = 〈E0|E0〉 − 〈E0|a+kσ akσ |E0〉 = 1.

We then finally obtain:

〈ϕ0(t)|ϕ0(t
′)〉 = exp

[
− i

h̄
(ε(k)− μ)(t − t ′)

]
. (3.353)
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Fig. 3.5 The manifestation
of a stationary state in the
time-dependent spectral
density, in the form of an
undamped harmonic
oscillation

The propagator S(0)
kσ
(t − t ′) thus represents an undamped harmonic oscillation, as

we have already seen by another method. Its frequency corresponds to an exact
excitation energy of the system, namely (ε(k)− μ). Because of

|〈ϕ0(t)|ϕ0(t
′)〉|2 = 1, (3.354)

this is a stationary state (see Fig. 3.5).

(2) Interacting electron systems
For the propagator Skσ (t − t ′), we obtain from (3.351) by inserting a complete
set of eigenstates |En〉 between the two time-dependent creation and annihilation
operators:

2π Skσ (t − t ′) =
∑

n

|〈En|a+kσ |E0〉|2 exp

(
− i

h̄
(En − E0)(t − t ′)

)
. (3.355)

In the free system, a+
kσ
|E0〉 is an energy eigenstate. Its orthogonality then guarantees

that only one term in the sum is nonzero. This no longer holds for an interacting
system. In the series expansion

|ϕ0〉 = a+kσ |E0〉 =
∑

m

cm|Em〉, (3.356)

several, in general infinitely many expansion coefficients are nonzero. Each sum-
mand to be sure still represents a harmonic oscillation; but the superposition of
a number of oscillations with different frequencies will guarantee that the sum
in (3.355) exhibits a maximum at t = t ′. For t − t ′ > 0, the phase factors
exp[−(i/h̄)(En − E0)(t − t ′)] will gradually distribute themselves over the entire
unit circle of the complex plane and thus possibly give rise to

|〈ϕ0(t)|ϕ0(t
′)〉|2 −−−−−→

t−t ′→∞
0 (3.357)

as a result of destructive interference. The state |ϕ0(t
′)〉 which is formed at the time

t ′ now has a finite lifetime.
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Under certain circumstances, it is however possible to represent the erratic time
dependence of the propagators as a superposition of damped oscillations with well-
defined frequencies:

2π Skσ (t − t ′) =
∑

i

αiσ (k) exp

[
− i

h̄

(
η

QP
iσ (k)

)
(t − t ′)

]
. (3.358)

This ansatz has formally the same structure as the corresponding expression (3.353)
for the free system, except that now the new single-particle energies are in general
complex quantities:

η
QP
iσ (k) = Re ηQP

iσ (k)+ i Im η
QP
iσ (k). (3.359)

The imaginary part (Im η
QP
iσ < 0) is responsible for the exponential damping of

the oscillations. We ascribe these new energies ηQP
iσ to a fictitious particle, which

we call a

quasi-particle.

It is, roughly speaking, as if the (k, σ ) electron, implanted into the N -particle
system at time t ′ as its (N+1)-th particle, decays into several quasi-particles, whose
energies are determined by the real parts and whose lifetimes by the imaginary parts
of ηQP

iσ :

Quasi-particle energy Re ηQP
iσ (k),

Quasi-particle lifetime
h̄

|Im η
QP
iσ (k)|

.
(3.360)

Every quasi-particle is associated with a

spectral weight αiσ (k),

whereby, due to conservation of the overall number of particles,

∑

i

αiσ (k) = 1 (3.361)

must be fulfilled. Now comparing

S
(i)
kσ (t − t ′) = 1

2π
αiσ (k) exp

[
− i

h̄

(
Re ηQP

iσ (k)
)
(t − t ′)

]
·

· exp

(
−1

h̄
|Im η

QP
iσ (k)|(t − t ′)

) (3.362)

with (3.349), we can see the connection of the quasi-particle properties with the
electronic self-energy (Fig. 3.6):
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Fig. 3.6 The typical time
evolution of the spectral
density for the case of a
system of interacting particles

Quasi-particle energy: Eiσ (k)

Eiσ (k)
!= ε(k)− μ+ Rσ (k, E = Eiσ (k)), (3.363)

Quasi-particle lifetime: τiσ (k)

τiσ (k) = h̄

|αiσ (k) · Iiσ (k)| . (3.364)

The spectral weights αiσ (k) are, according to (3.340), determined by the real part
of the self-energy. Thus the lifetime of the quasi-particles is not influenced solely by
the imaginary part, but also by the real part of !σ (k, E). However, for Iiσ (k) = 0,
in every case τiσ = ∞ holds. The Lorentz peaks in the spectral density Skσ (E) can
also be associated with quasi-particles whose energies are given by the positions
and whose lifetimes by the widths of the peaks. δ-functions (3.339) are then special
cases, corresponding to quasiparticles with infinitely long lifetimes.

We can finally profit from the analogy with the free system to define an

effective mass m∗
iσ (k)

of the quasi-particles. For small wavenumbers, the Bloch energies can always be
expanded as follows:

ε(k) = T0 + h̄2k2

2m
+O

(
k4
)
. (3.365)

T0 is the lower edge of the respective energy band. Formally, we postulate the same
approach as for the quasi-particle energies:

Eiσ (k) = T0iσ + h̄2k2

2m∗iσ
+O

(
k4
)
. (3.366)

We insert (3.365):

Eiσ (k) = T0iσ + m

m∗iσ
(ε(k)− T0)+ · · · ,
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and thus obtain:

m

m∗iσ (k)
= ∂Eiσ (k)

∂ε(k)
. (3.367)

However, from (3.363), this implies that:

m

m∗iσ
= 1+

(
∂Rσ

∂ε(k)

)

Eiσ

+
(
∂Rσ

∂Eiσ

)

ε(k)

∂Eiσ

∂ε(k)

�⇒ m

m∗iσ

[

1−
(
∂Rσ

∂Eiσ

)

ε(k)

]

= 1+
(
∂Rσ

∂ε(k)

)

Eiσ

·

The real part of the electronic self-energy thus determines the effective mass of the
quasiparticles:

m∗iσ (k)
m

=
1−

(
∂Rσ (k, Eiσ )

∂Eiσ

)

ε(k)

1+
(
∂Rσ (k, Eiσ )

∂ε(k)

)

Eiσ

. (3.368)

We will encounter another important property of the quasi-particles in the following
section.

3.4.4 Quasi-particle Density of States

We will again treat this property in a strict analogy to the free electron gas. For the
average occupation number 〈nkσ 〉 of the (k, σ ) level, we find using the spectral
theorem (3.157) from the one-electron spectral density:

〈nkσ 〉 =
〈
a+
kσ
akσ

〉 = 1

h̄

+∞∫

−∞
dE f−(E)Skσ (E − μ). (3.369)

In the non-interacting system, this is the same as (3.208), if we substitute (3.199)
for the spectral density. By summing over all wavenumbers k and all spins σ , we
can find from 〈nkσ 〉 the total number of electrons Ne:

Ne =
∑

kσ

〈nkσ 〉 = 1

h̄

∑

kσ

+∞∫

−∞
dE f−(E)Skσ (E − μ). (3.370)
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As in the free system, Ne must also be accessible through integrating the density of
states ρσ (E) of the interacting system over energy:

Ne = N
∑

σ

+∞∫

−∞
dE f−(E)ρσ (E). (3.371)

N is here the number of lattice sites, and ρσ (E) is evidently normalised to 1.
Comparison with (3.370) then yields the

quasi-particle density of states

ρσ (E) = 1

Nh̄

∑

k

Skσ (E − μ). (3.372)

We have already obtained the same expression in Sect. 3.1.1 for non-interacting
Bloch electrons. There is thus a close connection between the density of states and
the spectral density. All the properties of the spectral density are transferred rather
directly to the quasi-particle density of states. If, for example, we insert (3.332)
into (3.372), we can see that ρσ (E), in contrast to the so-called Bloch density
of states ρ0(E) ((3.213) or (3.214)) of the non-interacting electron system, will
be temperature dependent. Furthermore, as we will see from later examples, it
is also decisively influenced by the particle number. Since, finally, the spectral
density is, according to (3.332), represented by a weighted superposition of δ-
functions, whose arguments contain the excitation energies which must be supplied
to take on an additional (k, σ ) electron into the N -particle system or to remove
a corresponding electron from it, then ρσ (E) also has a close connection to
experiments (photoemission!).

Because of its fundamental significance, we want to discuss the quasi-particle
density of states ρσ (E) for a relatively simple special case. We assume that the
electronic self-energy is k-independent and real:

Rσ (k, E) ≡ Rσ (E) ; Iσ (k, E) ≡ 0. (3.373)

Then, from (3.337), we have:

Skσ (E) = h̄δ(E − ε(k)+ μ− Rσ (E)). (3.374)

For the quasi-particle density of states ρσ (E), this implies that:

ρσ (E) = 1

N

∑

k

δ[E − ε(k)− Rσ (E − μ)]. (3.375)
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Fig. 3.7 The qualitative energy behaviour of the self-energy for a system of interacting particles,
which gives rise to a correlation-related band splitting (Mott insulator)

The comparison with the Bloch density of states,

ρ0(E) = 1

N

∑

k

δ(E − ε(k)),

finally yields:

ρσ (E) = ρ0[E − Rσ (E − μ)]. (3.376)

ρσ (E) is thus nonzero at those energies for which the function [E − Rσ (E − μ)]
assumes values lying between the lower and the upper band edge of the free Bloch
band. If Rσ is simply a weakly varying, smooth function of E, then ρσ will not
be too different from ρ0, so that the influence of the particle interactions can be
taken into account sufficiently accurately by introducing effective particle masses
or similar auxiliary concepts from solid-state physics.

One can, however, readily imagine situations in which ρσ (E) differs markedly
in a qualitative sense from ρ0(E). This is for example the case when the function
[E − Rσ (E − μ)] has a singularity at some point E0, as indicated in the sketch
(see Fig. 3.7). This situation necessarily leads to band splitting. With a suitable band
filling, the chemical potential μ might then fall within the band gap, and as a result,
the system would be metallic according to conventional band theory, whilst many-
body theory predicts an insulator or a semiconductor. A prominent example of such
a situation (Mott insulator) is antiferromagnetic NiO.

3.4.5 Internal Energy

In Sects. 3.1.2, 3.1.3, 3.1.4 and 3.1.5, we motivated the use of Green’s functions
with examples of so-called response functions such as
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σαβ(E) : the electrical conductivity (3.83),

χαβ(E) : the magnetic susceptibility (3.66),

ε(q, E) : the dielectric function (3.104),

which turned out to be retarded commutator Green’s functions. These are all two-
or-more-particle functions, i.e. Green’s functions which are constructed from more
than one creation and more than one annihilation operator. Naturally, Gkσ (E)

does not belong to this class of functions. However, we want to use the example
of the internal energy to show that Gkσ (E) determines the entire equilibrium
thermodynamics of the system of interacting electrons.

For the internal energy, we have initially from (3.311):

U = 〈H 〉 =
∑

kσ

ε(k)
〈
a+
kσ
akσ

〉+ 1

2

∑

p,k,q
σσ ′

υkp(q)
〈
a+
k+qσ

a+
p−qσ ′apσ ′akσ

〉
·

(3.377)

We substitute

q →−q, then k − q → k

and use from (3.313)

υk+q,p(−q) = υp,k+q(q).

Then (3.377) becomes:

U =
∑

kσ

ε(k)〈a+
kσ
akσ 〉 + 1

2

∑

k,p,q
σ,σ ′

υp,k+q(q)
〈
a+
kσ
a+
p+qσ ′apσ ′ak+qσ

〉
. (3.378)

Making use of the spectral theorem (3.157), we can express the expectation values
on the right-hand side in terms of the Green’s functions Gkσ (E) and  σσpk;q(E); the
latter is defined in (3.323):

U = 1

h̄

+∞∫

−∞

dE

eβE + 1

{
∑

kσ

ε(k)

(
− 1

π
ImGret

kσ (E)

)
+

+1

2

∑

k pq
σσ ′

υp,k+q(q)

(
− 1

π
Im ret σ

′σ
pk,q(E)

)
⎫
⎪⎪⎬

⎪⎪⎭
.

(3.379)
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Employing the equation of motion (3.324), we can finally replace the higher-order
Green’s function ret σ

′σ
pk;q by the one-electron Green’s function Gret

kσ (E):

1

2

∑

k pq
σσ ′

υp,k+q(q)
ret σ

′σ
pk;q(E) =

1

2

∑

kσ

(−h̄+ (E − ε(k)+ μ)Gret
kσ (E)

)
.

(3.380)
Inserting into (3.379) then leads to:

U = 1

2h̄

∑

kσ

+∞∫

−∞

dE

eβE + 1
(E + μ+ ε(k))

(
− 1

π
ImGret

kσ (E)

)
. (3.381)

According to (3.154), on the right-hand side, we have just the single-electron
spectral density Skσ (E). If we now replaceE byE−μ and insert the Fermi function
f−(E) (3.209), then we obtain the notable result,

U = 1

2h̄

∑

kσ

+∞∫

−∞
dE f−(E)(E + ε(k))Skσ (E − μ), (3.382)

which we have already encountered in (3.215) in connection with the system of
non-interacting electrons. We have, with the aid of (3.382), succeeded in expressing
even the contribution of the two-particle Coulomb interaction to the internal energy
in terms of the one-electron spectral density. As a result of the generally valid
relation (3.217) between the internal energy U and the free energy F(T , V ), the
latter is likewise completely determined by Skσ (E). Thus, our claim that the entire
equilibrium thermodynamics of the system of interacting electrons can be derived
from the one-electron Green’s function or spectral density has been verified.

At the end of this chapter, we want to recall the goals we set out at its begin-
ning. We wished to calculate thermodynamic expectation values and correlation
functions. We could do this by solving the Schrödinger equation and then using the
eigenstates and eigenvalues of the Hamiltonian H to construct the partition function.
All the desired information can then be derived from it. However, apart from the
fact that it would be possible to solve the Schrödinger equation only approximately,
this approach would appear to be inefficient in many cases, since possibly a major
portion of the tediously calculated terms would cancel out on summing due to the
destructive interference discussed in Sect. 3.4.3.

The spectral density Skσ (E), from which likewise the entire thermodynamical
information can be obtained, is to some extent an all-inclusive quantity, which
already implicitly contains the interference effect mentioned. Only the sufficiently
prominent quasi-particle peaks in the spectral density, i.e. those quasi-particles
with a sufficiently long lifetime, will make a significant contribution to the various
energy integrals. In this sense, the Green’s function method, which calculates no



3.4 The Quasi-particle Concept 199

states, but instead zooms directly in on the decisive quantities such as the spectral
density, appears to be a relatively efficient technique. Its basic idea consists of
replacing an inherently complex interacting many-body system by a free gas of
quasi-particles. The interaction processes which in fact occur manifest themselves in
the renormalised energies and in the possibly finite lifetimes of these quasi-particles.

3.4.6 Exercises

Exercise 3.4.1 For a system of electrons, calculate

H =
∑

k,σ

ε(k)a+kσ akσ + 1

2

∑

k,p,q
σ,σ ′

υkp(q)a
+
k+qσ a

+
p−qσ ′apσ ′akσ ,

and formulate the equation of motion of the retarded single-particle Green’s
function. Use it to justify Eq. (3.324) from the text.

Exercise 3.4.2 Let |E0〉 be the ground state of the system of non-interacting
electrons (Fermi sphere). Calculate the time dependence of the state

|ψ0〉 = a+kσ ak′σ ′ |E0〉 (k > kF, k
′ < kF).

Is this a stationary state?

Exercise 3.4.3 Let the one-electron Green’s function of a system of interact-
ing electrons be given by:

Gret
kσ (E) = h̄[E − 2ε(k)+ E2/ε(k)+ iγ |E|]−1, γ > 0.

1. Find the electronic self-energy
∑

σ (k, E).
2. Compute the energies and lifetimes of the quasi-particles.
3. Under which conditions is the quasi-particle concept useful?
4. Calculate the effective masses of the quasi-particles.
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Exercise 3.4.4 Assume that the self-energy of a system of interacting elec-
trons has been calculated:

!σ (E) = aσ (E + μ− bσ )

(E + μ− cσ )
(aσ , bσ , cσ positive-real; cσ > bσ ).

For the density of states of the non-interacting electrons, the following holds:

ρ0(E) =
{

1/W for 0 ≤ E ≤ W,

0 otherwise.

Determine the quasi-particle density of states. Is there a band splitting?

3.5 Self-Examination Questions

3.5.1 For Sect. 3.1

1. Why is the Schrödinger representation of the time dependence of physical
systems also called the state representation?

2. Name the most important properties of the time-evolution operator US(t, t0) in
the Schrödinger representation.

3. Give the time-evolution operator in the Schrödinger representation for the case
that the Hamiltonian is not explicitly time dependent.

4. Give a compact expression for US(t, t0) in the case that ∂H/∂t �= 0.
5. What is the equation of motion for time-dependent Heisenberg operators?
6. Which relation exists between the operators in the Heisenberg representation

and those in the Schrödinger representation?
7. Characterise the Dirac representation.
8. What is the relation between the Dirac and the Schrödinger time-evolution

operator?
9. List examples of physically important response functions.

10. What is the simplifying assumption of linear response theory?
11. What is a double-time, retarded Green’s function?
12. Interpret the Kubo formula.
13. Which retarded Green’s function determines the tensor of the magnetic suscep-

tibility?
14. How can the susceptibility be used to determine the Curie temperature Tc of the

phase transition for para-/ferromagnetism?
15. What is the physical significance of the singularities in the transverse suscepti-

bility χ±q (E)?
16. What relation exists between the dipole-moment operator and the current-

density operator?
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17. Which Green’s function determines the influence of the particle interactions on
the electrical conductivity tensor?

18. Sketch the train of argumentation for the derivation of the dielectric function
ε(q, E).

19. What is the physical meaning of the poles of the Green’s function ⟪ρq; ρ+q ⟫ret
E

?

3.5.2 For Sect. 3.2

1. Define retarded, advanced and causal Green’s functions.
2. Explain the action of Wick’s time-ordering operator.
3. When are the Green’s functions homogeneous in time?
4. Give the equation of motion for time-dependent, retarded (advanced, causal)

functions. Which boundary conditions do they obey?
5. How does a chain of equations of motion arise?
6. Describe the spectral representation of the spectral density SAB(E).
7. What relation exists between the spectral density SAB(E) and the Green’s

functions Gret (adv)
AB (E)?

8. What is the physical significance of the poles of the Green’s functions?
9. How do Gret

AB(E) and Gadv
AB(E) differ?

10. Formulate the so-called Dirac identity.
11. Why is the causal Green’s function less suitable for the equation of motion

method than the retarded or the advanced function?
12. Formulate and interpret the spectral theorem.
13. Can a commutator Green’s function have a pole at E = 0?
14. What can you say about the high-energy behaviour (E → ∞) of the Green’s

function Gα
AB(E) (α = ret, adv, c)?

15. Explain the relation between the spectral density and the spectral moments.
16. How can one conclude from the spectral representations of the Green’s function

that the real and imaginary parts of these functions are not independent of each
other?

17. What is meant by the Kramers-Kronig relations?
18. What connections exist between the various Green’s functions Gret

AB(E),
Gadv
AB(E) and Gc

AB(E) and the spectral density SAB(E)?
19. Assume that the causal Green’s function Gc

AB(E) has been determined in some
way. How can you use it to find the retarded Green’s function?

3.5.3 For Sect. 3.3

1. How is the one-electron Green’s function defined?
2. What is the one-electron spectral density for non-interacting Bloch electrons?
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3. What typical time behaviour is exhibited by the single-particle Green’s func-
tions of the free electron system?

4. Sketch the derivation of the causal single-particle Green’s function for mutually
non-interacting Bloch electrons.

5. How does one determine the average occupation number 〈nkσ 〉 of the free
electron system? What is its temperature dependence?

6. What considerations lead to the definition of the quasi-particle density of states
ρσ (E)? How is it related to the spectral density?

7. In which manner is the internal energy U = 〈H0〉 of the non-interacting
electron system determined by the spectral density?

8. How can the free energy F(T , V ) be obtained from U(T , V )?
9. Give the one-magnon spectral density for a system of non-interacting magnons.

10. Why is the chemical potential μ of magnons equal to zero?
11. Why does it make sense to use the commutator Green’s function to describe

magnons?
12. Explain (S+i )2 = 0 and (Szi )

2 = h̄2/4 for spin-1/2 particles.

3.5.4 For Sect. 3.4

1. How is the electronic self-energy !α
σ (k, E) (α = ret, adv, c) introduced into

the equation of motion for the one-electron Green’s function?
2. Give the formal solution for Gα

kσ (E) including the self-energy.
3. Formulate and interpret the Dyson equation for the one-electron Green’s

function.
4. What connection is there between the retarded and the advanced self-energy?
5. Why can the imaginary part of the retarded self-energy not be positive?
6. What can you say about the sign of the imaginary part of the advanced self-

energy?
7. Demonstrate why the real part of the self-energy determines the resonance val-

ues Eiσ (k) of the one-electron spectral density, at which it exhibits prominent
maxima.

8. What is the structure of the spectral density of the interacting electron system in
the case that the imaginary part Iσ (k, E) of the self-energy is identically zero?

9. What condition on the imaginary part of the self-energy guarantees a prominent
maximum in the spectral density?

10. Under which conditions does the spectral density have a Lorentz form in the
neighbourhood of a resonance?

11. Which general structure is to be expected in the normal case for the spectral
density?

12. What is the structure of the time-dependent spectral density when the imaginary
part of the self-energy vanishes identically?

13. What is the effect of the Lorentz peaks of Skσ (E) on Skσ (t − t ′)?
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14. Which well-defined physical significance is expressed by the propagator
Skσ (t − t ′) in the special case that T = 0; k > kF; t > t ′? How does it
change for k < kF?

15. When does one denote |ϕ0(t)〉 as a stationary state? When does one say that it
has a finite lifetime?

16. What is the time dependence of the propagator

2πSkσ (t, t
′) = 〈ϕ0(t)|ϕ0(t

′)〉

(|ϕ0〉 = a+kσ |E0〉, |E0〉: ground state, k > kF) for the non-interacting electron
system?

17. How should this time dependence change for the interacting electron system?
18. Explain how this time dependence leads to the concept of quasi-particles.
19. What is meant by the spectral weight and what is to be understood as the

lifetime of a quasi-particle?
20. How do quasi-particle energies and quasi-particle lifetimes relate to the elec-

tronic self-energy?
21. How does a quasi-particle manifest itself in the spectral density Skσ (E)?
22. When does a quasi-particle have an infinitely long lifetime?
23. How is the effective mass of a quasi-particle defined?
24. What close relation is there between the quasi-particle density of states ρσ (E)

and the spectral density of an interacting electron system?
25. Let the self-energy be real and independent of k, and assume that it has a

singularity at the energy E0. What does this imply for the quasi-particle density
of states?

26. How is the internal energy of an interacting electron system related to the one-
electron spectral density?



Chapter 4
Systems of Interacting Particles

In this section, we want to apply the abstract Green’s function formalism introduced
in the last chapter to realistic problems in many-body theory, keeping in mind in
particular the model systems from Chap. 2. We want to find out on the one hand just
which information can be obtained from suitably chosen Green’s functions, and on
the other, to see how such Green’s functions can be calculated in practical cases. We
will critically examine the approximations which as a rule must be made in order to
make the problems tractable.

4.1 Electrons in Solids

We start by investigating interacting electrons in solids, concentrating here on some
typical problems without attempting an exhaustively complete treatment. Two of the
models introduced in Sect. 2.1, the jellium model and the Hubbard model, will form
the basis for this discussion. We begin with an exactly solvable special case of the
Hubbard model.

4.1.1 The Limiting Case of an Infinitely Narrow Band

The Hubbard model describes interacting electrons in relatively narrow energy
bands. It is characterised by the Hamiltonian (2.117):

H =
∑

ijσ

(Tij − μδij )a
+
iσ ajσ +

1

2
U
∑

i,σ

niσ ni−σ . (4.1)

We wish to calculate the one-electron Green’s function. The form of the Hamiltonian
in (4.1) suggests the use of the Wannier formulation (3.319):
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Gα
ijσ (E) = ⟪aiσ ; a+jσ⟫

α

E
. (4.2)

For the equation of motion, we require the commutator

[aiσ , H]− =
∑

m

(Tim − μδim)amσ + Uni−σ aiσ . (4.3)

The second term gives rise to a higher-order Green’s function:

 αilm;jσ (E) = ⟪a+i−σ al−σ amσ ; a+jσ⟫
α

E
. (4.4)

Then the equation of motion of the one-electron Green’s function is found to be:

(E + μ)Gα
ijσ (E) = h̄δij +

∑

m

TimG
α
mjσ (E)+ U αiii;jσ (E), (4.5)

which cannot be solved directly on the right-hand side due to the higher-order
Green’s function  α

iii;jσ (E). Therefore, we write the corresponding equation of
motion for this function also:

[ni−σ aiσ , H0]− =
=
∑

lmσ ′
(Tlm − μδlm)

[
ni−σ aiσ , a+lσ ′amσ ′

]
− =

=
∑

lmσ ′
(Tlm − μδlm)

{
δilδσσ ′ni−σ amσ ′− (4.6)

− δilδσ−σ ′a+i−σ aiσ amσ ′ − δimδσ−σ ′a+lσ ′ai−σ aiσ
}
=

=
∑

m

(Tim − μδim)
{
ni−σ amσ + a+i−σ am−σ aiσ − a+m−σ ai−σ aiσ

}
,

[ni−σ aiσ , H1]− =

= 1

2
U
∑

m,σ ′

[
ni−σ aiσ , nmσ ′nm−σ ′

]
− =

= 1

2
U
∑

m,σ ′
ni−σ

[
aiσ , nmσ ′nm−σ ′

]
− = (4.7)

= 1

2
U
∑

m,σ ′
ni−σ

{
δimδσσ ′amσ ′nm−σ ′ + δimδσ−σ ′nmσ ′am−σ ′

}
=

= Uaiσ ni−σ .
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In the final step, we made use of the relation (which holds for Fermions):

n2
iσ = niσ .

All together, we find for the equation of motion:

(E + μ− U) αiii;jσ (E) =
= h̄δij 〈ni−σ 〉 +

∑

m

Tim

{
 αiim;jσ (E)+  αimi;jσ (E)−  αmii;jσ (E)

}
.

(4.8)

In this section, we shall limit ourselves to the relatively simple but quite instructive
limiting case of an infinitely narrow band,

ε(k) ≡ T0 ⇐⇒ Tij = T0δij , (4.9)

for which the hierarchy of equations of motion decouples itself. Equation (4.8) is
thus simplified to:

(E + μ− U − T0) 
α
iii;jσ (E) = h̄δij 〈n−σ 〉. (4.10)

Due to translational symmetry, the expectation value of the number operator is
independent of the lattice site (〈niσ 〉 = 〈nσ 〉 ∀i). We insert the solution of (4.10)
into (4.5):

(E + μ− T0)G
α
iiσ = h̄+ h̄

U 〈n−σ 〉
E − (T0 − μ+ U)

.

Then we finally obtain for the retarded function:

Gret
iiσ (E) =

h̄(1− 〈n−σ 〉)
E − (T0 − μ)+ i0+

+ h̄〈n−σ 〉
E − (T0 + U − μ)+ i0+

. (4.11)

Gret
iiσ (E) thus has two poles, corresponding to the possible excitation energies:

E1σ = T0 − μ = E1−σ , (4.12)

E2σ = T0 + U − μ = E2−σ . (4.13)

The original level T0 splits because of the Coulomb interaction into two spin-
independent quasi-particle levels E1σ and E2σ . The spectral density can readily
be computed using (3.154) from (4.11):

Siiσ (E) = h̄

2∑

j=1

αjσ δ(E − Ejσ ). (4.14)



208 4 Systems of Interacting Particles

The spectral weights

α1σ = 1− 〈n−σ 〉; α2σ = 〈n−σ 〉 (4.15)

are a measure of the probability that the σ electron encounters a (−σ) electron at
the same lattice site, (α2σ ), or arrives at an unoccupied site, (α1σ ). In the former
case, it must overcome the Coulomb interaction U .

The quasi-particle density of states

ρσ (E) = 1

Nh̄

∑

i

Siiσ (E − μ) = 1

h̄
Siiσ (E − μ) =

= (1− 〈n−σ 〉)δ(E − T0)+ 〈n−σ 〉δ(E − (T0 + U))

(4.16)

consists in this limit of two infinitely narrow bands at the energies T0 and T0 + U .
The lower band, which is degenerate to the level, contains (1 − 〈n−σ 〉), the upper
band 〈n−σ 〉 states per atom. The number of states in a quasi-particle subband is thus
temperature dependent!

For a complete determination of the quasi-particle density of states, we must find
the expectation value 〈n−σ 〉 by using the spectral theorem (3.157):

〈n−σ 〉 = 1

h̄

+∞∫

−∞
dE Sii−σ (E)

[
eβE + 1

]−1 =

= (1− 〈nσ 〉)f−(T0)+ 〈nσ 〉f−(T0 + U).

f−(E) is here again the Fermi function. We insert the corresponding expression for
〈nσ 〉 and thus find:

〈n−σ 〉 = f−(T0)

1+ f−(T0)− f−(T0 + U)
. (4.17)

The complete solution for ρσ (E) is then given by:

ρσ (E) = 1

1+ f−(T0)− f−(T0 + U)

{
(1− f−(T0 + U))δ(E − T0)+

+ f−(T0)δ(E − T0 − U)
}
= (4.18)

= ρ−σ (E).

The quasi-particle density of states is thus spin-independent. A spontaneous mag-
netisation, i.e. ferromagnetism, is therefore excluded in the limiting case of an
infinitely narrow band:

〈nσ 〉 = 〈n−σ 〉 = 1

2
n. (4.19)
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4.1.2 The Hartree-Fock Approximation

In this section, we want to introduce a very simple but also very typical approxima-
tion, which is to be sure much too coarse for exacting requirements, but frequently
can provide a first valuable insight into the physics of the model at hand. The
Hartree-Fock approximation of the Hubbard model is known in the literature as
the Stoner model and as such is referred to in discussing the magnetic behaviour of
band electrons.

Our starting point is the following identity for the product of two operators A
and B:

AB = (A− 〈A〉)(B − 〈B〉)+ A〈B〉 + 〈A〉B − 〈A〉〈B〉. (4.20)

The simplification consists in a linearisation of this expression. We imagine the
product AB as a component of a Green’s function, which is indeed defined as a
thermodynamic average. The Hartree-Fock approximation or also the molecular-
field approximation neglects the fluctuations of the observables around their
thermodynamic averages in the Green’s functions; it thus makes the replacement

AB →
HFA

A〈B〉 + 〈A〉B − 〈A〉〈B〉. (4.21)

The last term is a pure c-number and does not appear in the equations of motion.
We carry out the approximation (4.21) for the Green’s function  αiii,jσ (E)

in (4.5). As a result of

aiσ ni−σ →
HFA

aiσ 〈n−σ 〉 + 〈aiσ 〉ni−σ − 〈aiσ 〉〈n−σ 〉 = aiσ 〈n−σ 〉,

for the higher-order Green’s function  α
iii;jσ (E) in the Hartree-Fock approxima-

tion, we find:

 αiii;jσ (E) →HFA
〈n−σ 〉Gα

ijσ (E). (4.22)

〈n−σ 〉, a scalar, can be removed from the Green’s function. Then the equation of
motion (4.5) can be simplified to

(E + μ− U 〈n−σ 〉)Gα
ijσ (E) = h̄δij +

∑

m

TimG
α
mjσ (E),

and by Fourier transformation to wavenumbers, it can be readily solved:

Gkσ (E) = h̄

E − (ε(k)+ U 〈n−σ 〉 − μ)
≡

≡ G
(0)
kσ
(E − U 〈n−σ 〉).

(4.23)
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In the Hartree-Fock approximation, the one-electron Green’s function of the Hub-
bard model has the same form as that of the free system, however with renormalised,
spin-dependent single-particle energies. Making use of the dimensionless

magnetisation m = 1

2
(〈n↑〉 − 〈n↓〉) (4.24)

and of the

particle density n = 〈n↑〉 + 〈n↓〉, (4.25)

the quasi-particle energies are given by:

Eσ (k) =
(
ε(k)+ 1

2
Un

)
− zσmU. (4.26)

zσ is a symbol for the sign: (z↑ = +1, z↓ = −1). For a complete solution of
the problem, we still have to determine the expectation value 〈n−σ 〉 in (4.23). This
can be done by applying the spectral theorem. From (4.23), we read off directly the
following expression

Skσ (E) = h̄δ(E − ε(k)− U 〈n−σ 〉 + μ) (4.27)

for the spectral density. The spectral theorem (3.157) then yields:

〈n−σ 〉 = 1

N

∑

i

〈ni−σ 〉 = 1

N

∑

k

〈a+k−σ ak−σ 〉 =

= 1

N

∑

k

1

h̄

+∞∫

−∞
dE f−(E)Sk−σ (E − μ).

This means that:

〈n−σ 〉 = 1

N

∑

k

{1+ exp[β(ε(k)+ U 〈nσ 〉 − μ)]}−1. (4.28)

This is an implicit functional equation for the average number of particles 〈nσ 〉,
〈n−σ 〉, which we can rearrange into a corresponding expression for the magnetisa-
tion m:

m = 1

2
sinh(βUm)

1

N

∑

k

gk(β, n, m). (4.29)

Here, we have used the abbreviation:



4.1 Electrons in Solids 211

gk(β, n, m) =
{

cosh(βUm)+ cosh

[
β

(
ε(k)+ 1

2
Un− μ

)]}−1

. (4.30)

For the particle density, we find:

n = 1

N

∑

k

{
exp

[
−β
(
ε(k)+ 1

2
Un− μ

)]
+ cosh(βUm)

}
gk(β, n, m).

(4.31)

We can immediately recognise that the non-magnetic state m = 0 always represents
a possible solution. In order to see whether there are other solutions, for m �= 0,
we rearrange the expression (4.30) slightly using the density of states (3.213) of the
non-interacting system,

ρ0(E) = 1

N

∑

k

δ(E − ε(k)),

which we may presume to be known:

1

N

∑

k

gk(β, n, m) =
+∞∫

−∞
dx ρ0(x)

{
cosh(βUm)+

+ cosh

[
β

(
x + 1

2
Un− μ

)]}−1

.

(4.32)

At high temperatures (T → ∞ ⇐⇒ β → 0), we can expand the hyperbolic
functions:

sinh x = x + 1

3!x
3 + · · · ; cosh x = 1+ 1

2!x
2 + · · · .

This means that:

1

N

∑

k

gk(β, n, m) −−−→
T→∞

1

2

+∞∫

−∞
dx ρ0(x),= 1

2
(4.33)

or, with (4.29):

m −−−→
T→∞

1

4
βUm. (4.34)

This equation has the single solution m = 0. At high temperatures, there is thus
no spontaneous magnetisation m �= 0. If a ferromagnetic solution m �= 0 exists at
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all, then clearly only below a critical temperature TC (the Curie temperature). If
we approach TC from below, then m should become very small (second-order phase
transition!), so that in (4.32), we can expand the first term. In the neighbourhood of
TC, with (4.25) we should then find:

T
<→ TC : 1 ≈ 1

2
βCU

+∞∫

−∞
dx

ρ0(x)

1+ cosh
(
βC

(
x + 1

2Un− μ
)) . (4.35)

For ferromagnetism to be realised in fact, we must require at the least that

TC = 0+
(
βC = (kBTC)

−1 →∞
)

be fulfilled. With the following representation of the δ-function (proof as exer-
cise (4.1.2)),

δ(x) = lim
β→∞

1

2

β

1+ cosh(βx)
, (4.36)

we obtain using (4.35) the criterion

1 ≈ Uρ0

(
μ− 1

2
Un

)
. (4.37)

At T ≈ 0, the chemical potential μ can be replaced by the Fermi energy EF.
From (4.26), the Fermi energy is related to that of the free system (εF), due to
m ≈ 0, as EF ≈ εF + 1

2Un. We then obtain from (4.37) the well-known

Stoner criterion

1 ≤ Uρ0(εF) (4.38)

for the occurrence of ferromagnetism. If this relation is fulfilled, then the electronic
system should exhibit a spontaneous magnetisation m �= 0, i.e. one not induced by
an external magnetic field. In spite of the various greatly simplifying assumptions
which finally led to (4.38), the Stoner criterion has proved to be correct for
predicting trends.

We finally return to the quasi-particle energies Eσ (k), (4.26). We have seen that
under certain conditions (4.38), the magnetisation can be nonzero, m �= 0. This
corresponds to a temperature-dependent exchange splitting �Eex

�Eex = 2Um,
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Fig. 4.1 The spin-dependent
splitting of the quasi-particle
energies in the Stoner model
for temperatures below the
Curie temperature

Fig. 4.2 The excitation
spectrum in the Stoner model
for non-spin-flip transitions

which in the present simple example is rigid, i.e. k-independent. Corresponding to
the significance of one-electron Green’s functions, the quasi-particle energiesEσ (k)
are just the energies which must be supplied in order to add one (k, σ ) electron into
the N -particle system. For the actual excitation energy within the system, we then
find (Fig. 4.1):

�Eσσ ′(k; q) = Eσ ′(k + q)− Eσ (k) =
= ε(k + q)− ε(k)+mU(zσ − zσ ′).

(4.39)

If an excitation of this type takes place without a spin flip (σ = σ ′) within
one subband, then because of the rigid band shift, the excitation is identical to a
corresponding transition in a non-interacting (U = 0) system. In the case of a
spherically symmetric Fermi volume, i.e. ε(k) = h̄2k2/2m∗, the excitation spectrum
lies between two curves (see Fig. 4.2):

�Emax(q) = h̄2

2m∗
(q2 + 2kF|q|), (4.40)

�Emin(q) =
⎧
⎨

⎩

h̄2

2m∗
(q2 − 2kF|q|), when |q| > 2kF,

0 otherwise.
(4.41)

Excitations with a spin flip, in contrast, are transitions between the two subbands:

�E↑↓(k; q) = ε(k + q)− ε(k)+ 2Um. (4.42)

One distinguishes between strong (2Um > εF) and weak ferromagnetism
(2Um < εF) (see Fig. 4.3).
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Fig. 4.3 The excitation spectrum in the Stoner model for spin-flip transitions: (a) a weak
ferromagnet; (b) a strong ferromagnet

4.1.3 Electronic Correlations

The Hartree-Fock approximation for the Hubbard model as discussed in the last
section is applied to the higher-order Green’s function  αiiijσ (E) (cf. (4.22)), which
appears in the equation of motion (4.5) for the one-electron Green’s function. One
can readily convince oneself that the same results would have been obtained if the
approximation (4.21) had been applied directly to the model Hamiltonian (4.1):

H→ HS =
∑

i,j,σ

(
Tij + (U 〈n−σ 〉 − μ)δij

)
a+iσ ajσ =

=
∑

k,σ

(Eσ (k)− μ)a+
kσ
akσ .

(4.43)

HS defines the actual Stoner model. It is a single-particle operator, for which
Gkσ (E) can readily be calculated exactly, giving agreement with (4.23).

We can obtain additional information by decoupling the chain of equations of
motion at a later point, e.g. at the new Green’s function which appears in the
equation of motion (4.8) for  α

iii;jσ (E). The result can then however no longer be
formulated within the framework of a single-particle model. In this connection, one
introduces the concept of

particle correlations,

and includes in it all the particle interactions which are not describable within a
single-particle model and therefore represent genuine

many-body effects.

The decoupling mentioned several times above was introduced by Hubbard
himself, who thereby suggested an approximate solution to his own model. One
applies the Hartree-Fock procedure (4.21) to the Green’s functions of Eq. (4.8).
Taking into account the conservation particle number and spin, we thus find:

 αiim;jσ (E)
i �=m−−→ 〈n−σ 〉Gα

mjσ (E), (4.44)
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 αimi;jσ (E)
i �=m−−→ 〈

a+i−σ am−σ
〉
Gα
ijσ (E), (4.45)

 αmii;jσ (E)
i �=m−−→ 〈

a+m−σ ai−σ
〉
Gα
ijσ (E). (4.46)

Equations (4.45) and (4.46) give no contribution on insertion into (4.8),

m�=i∑

m

Tim

(
 αimi;jσ (E)−  αmii;jσ (E)

)

−→ Gα
ijσ (E)

∑

m

Tim
(〈
a+i−σ am−σ

〉− 〈a+m−σ ai−σ
〉)
,

(4.47)

if we assume a translationally symmetric lattice as usual:

∑

m

Tim
(〈
a+i−σ am−σ

〉− 〈a+m−σ ai−σ
〉) =

= 1

N

∑

i

∑

m

Tim
(〈
a+i−σ am−σ

〉− 〈a+m−σ ai−σ
〉) =

= 1

N

∑

i,m

(Tim − Tmi)
〈
a+i−σ am−σ

〉 =

= 0.

(4.48)

In going from the first to the second line, we made use of translational symmetry;
in going from the second line to the third for the second term, we exchanged the
summation indices; and in going from the third to the fourth line, we used Tim =
Tmi .

With Eqs. (4.47) and (4.48), we have for the equation of motion (4.8):

(E + μ− T0 − U) αiii;jσ (E) = h̄δij 〈n−σ 〉 + 〈n−σ 〉
m�=i∑

m

TimG
α
mjσ (E).

Solving for  α
iii;jσ (E) and inserting into (4.5) yields a functional equation for the

one-electron Green’s function:

(E + μ− T0)G
α
ijσ (E) =

⎛

⎝h̄δij +
m�=i∑

m

TimG
α
mjσ (E)

⎞

⎠ ·

·
(

1+ U 〈n−σ 〉
E + μ− T0 − U

)
,
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which can be solved by Fourier transformation to the wavenumber domain. We
define

!σ (E) = U 〈n−σ 〉 E + μ− T0

E + μ− U(1− 〈n−σ 〉)− T0
(4.49)

and thus obtain precisely the form expected from the general considerations in
Sect. 3.4.1 (cf. (3.326)) for the Green’s function of the system of interacting
electrons:

Gkσ (E) = h̄[E − (ε(k)− μ+!σ (E))]−1. (4.50)

One can readily show that forU → 0 (band limit) and for ε(k)→ T0 (atomic limit),
this solution converges to the exact expressions (3.198) or (4.11). The Hartree-Fock
solution (4.23) is correct, in contrast, only in the band limit.

The self-energy is zero when the interaction is switched off, (U = 0), but also
for 〈n−σ 〉 = 0, because the σ electron then has no interaction partners.

The self-energy is real and independent of k in the Hubbard solution (4.49),
and thus it fulfils the conditions (3.373) of the special case discussed in Sect. 3.4.4,
which implies for the quasi-particle density of states in the representation (3.376)
that:

ρσ (E) = ρ0 [E −!σ (E − μ)]. (4.51)

The argument E −!σ (E − μ) diverges at

E0σ = U (1− 〈n−σ 〉)+ T0. (4.52)

This leads to a band splitting due to electron correlations, which in principle cannot
be understood in a single-particle picture.

Finally, we consider the spectral density, for which from (3.374) we have

Skσ (E) = h̄δ [E − ε(k)+ μ−!σ (E)]. (4.53)

With the formula (3.338), we can also write

Skσ (E) = h̄

2∑

j=1

αjσ (k)δ (E + μ− Ejσ (k)). (4.54)

Here, for the quasi-particle energies, we find

Ejσ (k) = 1

2
(U + ε(k)+ T0)+

+ (−1)j
√

1

4
(T0 + U − ε(k))2 + U 〈n−σ 〉(ε(k)− T0);

(4.55)
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Fig. 4.4 The qualitative
energy dependence of the
self-energy in the Hubbard
solution of the Hubbard
model

and for the spectral weights:

αjσ (k) = (−1)j
Ejσ (k)− T0 − U(1− 〈n−σ 〉)

E2σ (k)− E1σ (k)
. (4.56)

The band splitting mentioned above manifests itself here in the fact that for
each wave-number k, two quasi-particle energies exist. These are real, and thus
correspond to quasi-particles with infinite lifetimes. If the electron is moving in the
upper subband, then it hops mainly onto lattice sites already occupied by another
electron from the same energy band with opposite spin. In the lower subband, in
contrast, it prefers unoccupied sites. This leads to an energetic spacing of the two
subbands of about U , as one can easily verify from (4.55).

The singularity which causes the band splitting,E0σ , is however also responsible
for a serious disadvantage of the Hubbard solution. One should expect that with
decreasing U/W (W is the Bloch bandwidth), the initially separated subbands
would gradually begin to overlap. We can see however from (4.52) that even for
arbitrarily small U/W , a singularity E0σ in (E − !σ (E − μ)) always persists, so
that the theory predicts a band gap for all values of the parameters. For small U/W ,
the Hubbard solution therefore appears questionable (Fig. 4.4).

4.1.4 The Interpolation Method

In this section, we will encounter a very simple approximation method, which can
be quite informative for first estimates. It is found to be exact in the two extreme
limits, the band limit (interactions → 0) and the atomic limit, (ε(k)→ T0 ∀k), and
should therefore also represent a relatively useful approximation in the intermediate
range. To explain the method, we begin first with the free system, described by

H0 =
∑

k,σ

(ε(k)− μ)a+
kσ
akσ ≡

∑

ijσ

(Tij − μδij )a
+
iσ ajσ . (4.57)
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The corresponding atomic limit is still simpler:

H00 =
∑

i,σ

(T0 − μ)a+iσ aiσ . (4.58)

The single-particle Green’s function which applied here will be called the

centroid function G00σ (E).

Its equation of motion can be rapidly formulated, giving:

G00σ (E) = h̄[E − T0 + μ]−1. (4.59)

The single-particle Green’s function for H0 was already derived in (3.198):

G
(0)
kσ
(E) = h̄[E − ε(k)+ μ]−1.

Clearly, it can be expressed in terms of the centroid function as follows:

G
(0)
kσ
(E) = h̄

[
h̄G−1

00σ (E)+ T0 − ε(k)
]−1

. (4.60)

This relation, of course, is exact. We now postulate that formally, the same relation
betweenGkσ (E) and the centroid functionG0σ (E) (= solution in the atomic limit!)
also holds to a good approximation for arbitrary model systems:

Interpolation method

Gkσ (E) = h̄[h̄G−1
0σ (E)+ T0 − ε(k)]−1. (4.61)

This implies for the quasi-particle density of states that:

ρσ (E) = ρ0
[
h̄G−1

0σ (E − μ)+ T0
]
. (4.62)

Here, G0σ (E), as the solution of the atomic limit, can as a rule be relatively simply
determined.

We want to evaluate this expression for the Hubbard model. For the atomic limit
solution, Eq. (4.11) applies:

G0σ (E) = h̄
E − T0 + μ− U(1− 〈n−σ 〉)

(E − T0 + μ)(E − T0 + μ− U)
.

It then follows that:

h̄G−1
0σ (E) = (E − T0 + μ)

(
1− U 〈n−σ 〉

E − T0 + μ− U(1− 〈n−σ 〉)
)

= E + μ− T0 −!σ (E).

(4.63)
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!σ (E) is the self-energy (4.49). The interpolation method (4.61) thus gives, with

Gkσ (E) = h̄[E + μ− ε(k)−!σ (E)]−1 (4.64)

for the Hubbard model, exactly the same solution as the Hubbard decoupling which
we discussed in the last section. By construction, the interpolation method is exact
in the band limit and in the atomic limit.

4.1.5 The Method of Moments

The Hubbard solution treated in Sect. 4.1.3 was originally conceived for the
description of band magnetism. However, one can readily see that a spontaneous
magnetisation is possible in the framework of this theory only under very excep-
tional, even hardly plausible conditions (e.g. a low particle density n!). We will
consider the reasons for this later. Whilst the Stoner model (Sect. 4.1.2) clearly
overestimates the occurrence of ferromagnetism – the Stoner criterion (4.30) is too
weak –, the Hubbard solution gives a criterion which is too restrictive!

We want now to use the example of the Hubbard model to develop a method
which is distinctly different from the usual decoupling procedures for Green’s
functions. It has already proven itself as a very effective technique in many-body
theory and gives e.g. in the case of the Hubbard model very realistic criteria for the
existence of band ferromagnetism.

Our starting point in this case is the one-electron spectral density (3.320)
or (3.321):

Sij (k)σ (E) = 1

2π

+∞∫

−∞
d(t − t ′) exp

(
− i

h̄
E(t − t ′)

)
·

·
〈[
ai(k)σ (t), a

+
j (k)σ

(t ′)
]

+

〉
.

(4.65)

The procedure consists of two steps. First, one attempts to guess the general
structure of this fundamental function, guided by exactly solvable limiting cases,
spectral representations, approximations which are known to be reliable, or general
plausibility considerations. This leads to a particular ansatz for the spectral density,
which contains a number of initially unknown parameters. In a second step, these
are then adjusted to the exactly calculable spectral moments M(n)

kσ
of the spectral

density being sought. The essential point is that for these moments, according
to (3.180) and (3.181), there are two equivalent representations. One of them yields
the relationship to the spectral density

M
(n)
kσ =

1

h̄

+∞∫

−∞
dE EnSkσ (E); n = 0, 1, 2, . . . , (4.66)
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whilst via the second relation, all the moments can be calculated exactly, indepen-
dently of the function being sought, at least in principle:

M
(n)
kσ =

1

N

∑

i,j

e−ik·(Ri−Rj )·

·
〈[
[. . . [aiσ ,H]−, . . . ,H]−︸ ︷︷ ︸

(n−p)-fold

,

[
H, . . . ,

[
H, a+jσ

]

− . . .
]

−︸ ︷︷ ︸
p-fold

,
]

+

〉
.

(4.67)

We are thus seeking an ansatz for Skσ (E)which containsm free parameters; we will
then insert it into (4.66) and finally fix the parameters using the first m moments
M

(n)
kσ , which can be computed exactly from (4.67). This procedure depends upon

two decisive preconditions. For one thing, the ansatz must come as close as possible
to the correct structure of the spectral density. Secondly, all of the expectation values
which occur in the moments must be expressible through Skσ (E) in some form
by making use of the spectral theorem (3.157), in order to arrive at a closed, self-
consistently solvable system of equations. As the order n of the moments increases,
the expectation values however become more and more complicated, so that this
latter condition sets limits to the number of moments which can be employed.

Now how might a reasonable ansatz in the framework of the Hubbard model
look? The general considerations in Sect. 3.4.2 have shown that as a rule, the spectral
density should have the form of a linear combination of weighted δ- and Lorentz
functions. If we are not interested in lifetime effects, we can adopt the version
from (3.339):

Skσ (E) = h̄

n0∑

j=1

αjσ (k)δ (E + μ− Ejσ (k)). (4.68)

We treat αjσ (k) and Ejσ (k) as the initially undetermined parameters. Now, the
question is: How large is the number n0 of quasi-particle poles? A hint can be
given by the exactly solvable atomic limit, which must naturally also be contained
in (4.68) as a limiting case. In this case, however, from (4.14), we have:

n0 = 2. (4.69)

The Hubbard solution (4.54) (or the equivalent result (4.64) of the interpolation
method) likewise corresponds to such a two-pole structure of the spectral density.
It therefore seems attractive to choose as our ansatz a sum of two weighted
δ-functions. This then contains four undetermined parameters, the two spectral
weights αjσ (k), and the two quasi-particle energies Ejσ (k). These are fixed by the
first four exactly calculated spectral moments. Using the model Hamiltonian (4.1)
in (4.67), we find after a straightforward but somewhat tedious computation:
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M
(0)
kσ
= 1, (4.70)

M
(1)
kσ = (ε(k)− μ)+ U 〈n−σ 〉, (4.71)

M
(2)
kσ
= (ε(k)− μ)2 + 2U 〈n−σ 〉(ε(k)− μ)+ U2〈n−σ 〉, (4.72)

M
(3)
kσ = (ε(k)− μ)3 + 3U 〈n−σ 〉(ε(k)− μ)2+

+ U2〈n−σ 〉(2+ 〈n−σ 〉)(ε(k)− μ)+
+ U2〈n−σ 〉(1− 〈n−σ 〉)(Bk−σ − μ)+ U3〈n−σ 〉. (4.73)

Here, as an abbreviation, we have written:

〈n−σ 〉(1− 〈n−σ 〉)Bk−σ = BS,−σ + BW,−σ (k)+ T0〈n−σ 〉. (4.74)

This term turns out to be decisive for the possibility of a spontaneous spin ordering.
It must therefore be carefully considered. Most important is the first term, which
gives rise to a spin-dependent band shift:

BS,−σ = 1

N

∑

i,j

Tij 〈a+i−σ aj−σ (2niσ − 1)〉. (4.75)

The second term in (4.74) has an influence in particular on the widths of the quasi-
particle bands, due to its k dependence:

BW,−σ (k) = 1

N

∑

i,j

Tij eik ·(Ri−Rj ) ·
{
〈ni−σ nj−σ 〉 − 〈n−σ 〉2−

−
〈
a+jσ a

+
j−σ ai−σ aiσ

〉
−
〈
a+jσ a

+
i−σ aj−σ aiσ

〉}
.

(4.76)

The Hubbard model is intended primarily to answer questions concerning mag-
netism. In this connection, BW,−σ (k) plays only a minor role. Thus, in the Hartree-
Fock approximation, the first two terms on the right-hand side of (4.76) compensate
each other. The other two terms are even spin-independent; the following relation
holds:

〈
a+jσ a

+
j−σ ai−σ aiσ

〉
=
〈
a+j−σ a

+
jσ aiσ ai−σ

〉
,

and for real expectation values:

〈
a+jσ a

+
i−σ aj−σ aiσ

〉
=
〈(
a+jσ a

+
i−σ aj−σ aiσ

)+〉 =

=
〈
a+iσ a

+
j−σ ai−σ ajσ

〉
=

=
〈
a+j−σ a

+
iσ ajσ ai−σ

〉
.
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It should therefore be quite sufficient to take BW,−σ (k) into account merely in the
form of an average over all wavenumbers k:

1

N

∑

k

BW,−σ (k) =

= 1

N

∑

i,j

Tij

(
1

N

∑

k

e−ik · (Ri−Rj )

){
〈ni−σ nj−σ 〉 − 〈n−σ 〉2−

−
〈
a+jσ a

+
j−σ ai−σ aiσ

〉
−
〈
a+jσ a

+
i−σ aj−σ aiσ

〉}
=

= 1

N

∑

ij

Tij δij

{
〈ni−σ nj−σ 〉 − 〈n−σ 〉2−

−
〈
a+jσ a

+
j−σ ai−σ aiσ

〉
−
〈
a+jσ a

+
i−σ aj−σ aiσ

〉}
=

= T0

{
〈n−σ 〉(1− 〈n−σ 〉)− 2〈ni−σ niσ 〉

}
.

(4.77)

Bk,−σ from (4.74) is then absorbed completely into the band correction B−σ :

〈n−σ 〉(1− 〈n−σ 〉)B−σ = T0〈n−σ 〉(1− 〈n−σ 〉)+

+ 1

N

i �=j∑

i,j

Tij 〈a+i−σ aj−σ (2niσ − 1)〉. (4.78)

With the exact spectral moments (4.70), (4.71), (4.72) and (4.73), the free param-
eters in our ansatz (4.68) for the spectral density are fixed via (4.66). For the
quasi-particle energies, one finds

Ejσ (k) = Hσ (k)+ (−1)j
√
Kσ (k), (4.79)

Hσ (k) = 1

2
(ε(k)+ U + B−σ ), (4.80)

Kσ (k) = 1

4
(U + B−σ − ε(k))2 + U 〈n−σ 〉(ε(k)− B−σ ), (4.81)

and for the spectral weights:

αjσ (k) = (−1)j
Ejσ (k)− B−σ − U(1− 〈n−σ 〉)

E2σ (k)− E1σ (k)
. (4.82)

These results have the same structure as the Hubbard solutions (4.55) and (4.56).
New, but very essential, is the band correction B−σ . If we replace it in the above
expressions with its value in the atomic limit,

B−σ −−−−−−→
Tij→T0δij

T0, (4.83)
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then we find precisely the same results as the Hubbard solution. In the method of
moments, the quasi-particle quantities acquire an additional spin dependence via
B−σ .

To solve the problem completely, we still have to determine the expectation
values 〈n−σ 〉 and B−σ , or to express them in terms of Skσ (E), in order to arrive at
a closed, self-consistently solvable system of equations. For 〈n−σ 〉, we can employ
the spectral theorem (3.157) directly:

〈n−σ 〉 = 1

Nh̄

∑

k

+∞∫

−∞
dE f−(E)Sk−σ (E − μ). (4.84)

The band correction B−σ is, however, determined essentially by a higher-order
equal-time correlation function, namely by

〈
a+i−σ aj−σ niσ

〉
.

Fortunately, this term can likewise be expressed in terms of the one-electron spectral
density. This however requires some preliminary considerations. First of all, as
in (4.3), we have

[
H, a+i−σ

]
− =

∑

m

(Tmi − μδmi)a
+
m−σ + Uniσ a

+
i−σ , (4.85)

and we can then express the desired expectation value as follows:

〈a+i−σ aj−σ niσ 〉 = − 1

U

∑

m

(Tmi − μδmi)
〈
a+m−σ aj−σ

〉+

+ 1

U

〈[
H, a+i−σ

]
− aj−σ

〉
.

(4.86)

If we now once again use the spectral theorem, as well as the equation of
motion (3.27) for time-dependent Heisenberg operators, then for the second term,
we can write down the following expressions:

〈[
H, a+i−σ

]
aj−σ

〉 =

= 1

h̄

+∞∫

−∞
dE (eβE + 1)−1

+∞∫

−∞
d (t − t ′)·

· exp

(
i

h̄
E (t − t ′)

)(
−ih̄

∂

∂t ′

)
Sji−σ (t − t ′) =
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= 1

h̄

+∞∫

−∞
dE (eβE + 1)−1

+∞∫

−∞
d(t − t ′) exp

(
i

h̄
E(t − t ′)

)
·

· 1

2πh̄

+∞∫

−∞
dE exp

[
− i

h̄
E(t − t ′)

]
ESji−σ (E) =

= 1

h̄

+∞∫

−∞
dE (eβE + 1)−1

+∞∫

−∞
dEδ(E − E)ESji−σ (E).

This finally leads to:

〈[
H, a+i−σ

]
− aj−σ

〉
= 1

Nh̄

∑

k

e−ik · (Ri−Rj )·

·
+∞∫

−∞
dE f−(E)(E − μ)Sk−σ (E − μ).

(4.87)

For the remaining expectation value,
〈
a+m−σ aj−σ

〉
in (4.86), we can make use of the

spectral theorem directly:

〈
a+m−σ aj−σ

〉 = 1

Nh̄

∑

k

e−ik · (Rm−Rj )·

·
+∞∫

−∞
dE f−(E)Sk−σ (E − μ).

(4.88)

We then obtain for the expectation value (4.86):

〈
a+i−σ aj−σ niσ

〉 = 1

Nh̄

∑

k

e−ik · (Ri−Rj )·

·
+∞∫

−∞
dE f−(E)

1

U
(E − ε(k))Sk−σ (E − μ).

(4.89)

For the band correction, we require

1

N

∑

i,j

Tij
〈
a+i−σ aj−σ (2niσ − 1)

〉 =

= 1

Nh̄

∑

k

ε(k)

+∞∫

−∞
dE f−(E)

[
2

U
(E − ε(k))− 1

]
Sk−σ (E − μ),
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from which we must subtract the diagonal term

T0〈ni−σ (2niσ − 1)〉 = T0

Nh̄

∑

k

+∞∫

−∞
dE f−(E)

[
2

U
(E − ε(k))− 1

]
Sk−σ (E − μ).

If we now make use of our two-pole approach (4.68) for the spectral density, then
we find for the band correction which we have been seeking:

〈n−σ 〉(1− 〈n−σ 〉)B−σ =

= 〈n−σ 〉(1− 〈n−σ 〉)T0 + 1

N

∑

k

2∑

j=1

αj−σ (k)(ε(k)− T0)f−(Ej−σ (k))·

(4.90)

·
[

2

U
(Ej−σ (k)− ε(k))− 1

]
.

Clearly, Eqs. (4.79), (4.80), (4.81), (4.82), (4.84), and (4.90) form a closed system,
which can be solved self-consistently. The model parameters are the following:

1. the temperature, which enters into the Fermi functions,
2. the band occupation n =∑σ 〈nσ 〉, which determines the chemical potential μ,
3. the Coulomb interaction U and
4. the lattice structure, which determines the free Bloch density of states ρ0(E) =

1
N

∑
k δ(E−ε(k)) or the single-particle energies ε(k) and affects the summation

over k.

Figure 4.5 illustrates the quasi-particle density of states

ρσ (E) = 1

N

∑

k

2∑

j=1

αjσ (k)δ (E − Ejσ (k)) (4.91)

for two different band occupations, n = 0.6 and n = 0.8, as well as U = 6eV and
T = 0K. The Bloch density of states used is sketched in Fig. 4.6. We can see that
the original band splits into two quasi-particle bands per spin direction.

For the situations indicated, there is an additional shift of the two spin spectra.
Since the bands are filled up to the Fermi energies, which are marked by bars,
there will be a preferred spin direction and thereby a nonvanishing spontaneous
magnetisation m. Finally, the observed band shift is caused by the band correction
B−σ . Once B↑ �= B↓, it follows that m �= 0. The band correction is lacking in
the Hubbard solutions in Sect. 4.1.3, and they therefore do not readily predict the
occurrence of ferromagnetism.

Figure 4.7 illustrates the importance of the parametersU and n for the occurrence
of ferromagnetism (Fig. 4.8).
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Fig. 4.5 The quasi-particle density of states in the Hubbard model for the ferromagnetic phase
as a function of the energy, for two different band occupations, calculated using the method of
moments

Fig. 4.6 The Bloch density
of states of the
non-interacting system as a
function of the energy
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Fig. 4.7 The spontaneous
magnetisation m of a system
of correlated electrons
described by the Hubbard
model, as a function of the
band occupation n for
different values of the
Coulomb interaction U ,
calculated with the method of
moments for a Bloch density
of states as in Fig. 4.6
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Fig. 4.8 The quasi-particle density of states of the Hubbard model in the ferromagnetic phase as
a function of the energy for two different temperatures, calculated using the method of moments

Fig. 4.9 The Curie
temperature in the Hubbard
model as a function of the
Coulomb interaction
parameter U for different
band occupations n,
calculated by the method of
moments
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The quasi-particle densities of states ρ↑↓(E) are, in contrast to ρ0(E), notice-
ably temperature dependent. With increasing temperature, ρ↑ and ρ↓ become
increasingly similar, until finally above a critical temperature TC, called the
Curie temperature, they become identical. TC also depends strongly on the band
occupation n and the interaction constant U , as seen in Fig. 4.9. (In the figures, W
always denotes the width of the free Bloch band!)
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The conceptually rather simple method of moments yields TC values which agree
qualitatively quite well with experimental results.

The decisive point in the method of moments is of course the ansatz in (4.68). The
rest of the calculation is then practically exact. One can show (A. Lonke, J. Math.
Phys. 12, 2422 (1971)) that such an ansatz is then and only then mathematically
precise, when the determinant

D
(r)
kσ
≡

∣∣∣∣∣∣∣

M
(0)
kσ

. . . M
(r)
kσ

...
...

M
(r)
kσ . . . M

(2r)
kσ

∣∣∣∣∣∣∣
(4.92)

is zero for r = n0 and nonzero for all lower orders r = 1, 2, . . . , n0 − 1. The
elements of the determinant are just the spectral moments (4.67). (As an exercise,
one can investigate the atomic limit as solved in Sect. 4.1.1, using (4.92)!)

4.1.6 The Exactly Half-Filled Band

Often, valuable physical information can be obtained by transforming the model
Hamiltonian for a case of interest to an equivalent effective operator. A rewarding
possibility of this type is offered by the Hubbard model for the special case of an
exactly half-filled band. In the Hubbard model, the system is described as a lattice
of atoms, each of which has a single atomic level which then can be occupied by
at most two electrons (of opposite spins). A half-filled band here thus means that
each atom contributes exactly one electron, i.e. there are just as many electrons as
lattice sites (n = 1!). In the atomic limit, in the ground state, each site is occupied
by exactly one electron. The only variable is then the electronic spin. If we now
gradually switch on the hopping, then the band electrons will still remain strongly
localised. Virtual site exchanges will however still give rise to an indirect coupling
between the electronic spins at the different lattice sites. Such a situation is described
as a rule by the Heisenberg model (2.203). We wish to show in this section, using
elementary perturbation theory, that in the situation described, i.e. (n = 1, ,U/W �
1), there is an equivalence between the Hubbard and the Heisenberg models.

We treat the hopping of the electrons as a perturbation:

H = H0 +H1, (4.93)

H0 = T0

∑

i,σ

niσ + 1

2
U
∑

i,σ

niσ ni−σ ; (n = 1; U/W � 1), (4.94)

H1 =
i �=j∑

i,j,σ

Tij a
+
iσ ajσ . (4.95)
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We consider only the ground state – all the eigenvalues and eigenstates of H0 are
characterised by the number d of doubly-occupied lattice sites. The states with the
same d are still highly degenerate due to the explicit distribution of theNσ electrons
with spin σ (σ =↑ or ↓) over the lattice sites. The corresponding enumeration is
denoted by Greek letters: α, β, γ, . . .

H0|dα〉(0) = E
(0)
d |dα〉(0) = (NT0 + dU)|dα〉(0). (4.96)

Since n = 1, we have

|0α〉(0) : 2N -fold degenerate ground state.

First-order perturbation theory requires the solution of the secular equation,

det
[
(0)〈0α′|H1|0α〉(0) − E

(1)
0 δαα′

] != 0, (4.97)

with 2N solutions E(1)0α . Now, one can readily see that

(0)〈dα′|H1|0α〉(0) �= 0 only for d = 1 (4.98)

is allowed, since every term of the operator H1 produces an empty and a doubly-
occupied site. The perturbation matrix in (4.97) thus contains as elements only
zeroes. All the energy corrections to first order E(1)0α vanish; the degeneracy remains
completely unchanged.

Second-order perturbation theory requires the solution of a system of equations:

∑

α

Cα

⎧
⎨

⎩

d �=0∑

d,γ

(0)〈0α′|H1|dγ 〉(0)(0)〈dγ |H1|0α〉(0)·

· 1

E
(0)
0 − E

(0)
d

− E
(2)
0 δαα′

}
!= 0.

(4.99)

This corresponds to the eigenvalue equation of an effective Hamiltonian Heff with
the matrix elements:

(0)〈0α′|H1

d �=0∑

d,γ

|dγ 〉(0)(0)〈dγ |
E
(0)
0 − E

(0)
d

H1|0α〉(0) =

= − 1

U

(0)

〈0α′|H1

⎛

⎝
∑

d,γ

|dγ 〉(0)(0)〈dγ |
⎞

⎠H1|0α〉(0) = (4.100)

= − 1

U

(0)

〈0α′|H 2
1 |0α〉(0).



230 4 Systems of Interacting Particles

In the first step, we made use of (4.98), yielding

(
E
(0)
d − E

(0)
0

)
−→

(
E
(0)
1 − E

(0)
0

)
= U

and allowing us to leave off the constraint d �= 0. The second step follows from the
completeness relation for the unperturbed states |dγ 〉(0). Let

P0: projection operator onto the subspace d = 0;
it then follows for our effective Hamiltonian of second order:

Heff = P0

(

−H
2
1

U

)

P0. (4.101)

We now rewrite this in terms of spin operators. To do so, we first insert (4.95):

Heff = − 1

U
P0

⎛

⎜
⎝
i �=j∑

ij
σ

m�=n∑

mn
σ ′

TijTmna
+
iσ ajσ a

+
mσ ′anσ ′

⎞

⎟
⎠P0. (4.102)

In the multiple sum, only the terms

i = n and j = m

give nonvanishing contributions. We then have:

Heff = − 1

U
P0

⎛

⎜⎜
⎝

i �=j∑

ij

σσ ′

TijTjia
+
iσ ajσ a

+
jσ ′aiσ ′

⎞

⎟⎟
⎠P0 =

= − 1

U
P0

⎛

⎜⎜
⎝

i �=j∑

ij

σσ ′

T 2
ij a

+
iσ aiσ ′

(
δσσ ′ − a+

jσ ′ajσ
)
⎞

⎟⎟
⎠P0 = (4.103)

= − 1

U
P0

⎛

⎝
i �=j∑

ijσ

T 2
ij

(
niσ − niσ njσ − a+iσ ai−σ a

+
j−σ ajσ

)
⎞

⎠P0.

We now introduce the spin operators:

Szi =
1

2

∑

σ

zσ niσ , (4.104)

Sσi = a+iσ ai−σ
(
S
↑
i ≡ S+i , S

↓
i ≡ S−i

)
. (4.105)
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One can readily see that these operators fulfil the elementary commutation rela-
tions (2.215) and (2.216) (cf. Exercise 4.1.6). (Remember: z↑ = +1, z↓ = −1):

P0

(
Szi S

z
j

)
P0 = 1

4

∑

σ,σ ′
zσ zσ ′P0

(
niσ njσ ′

)
P0 =

= 1

4

∑

σ

{
P0
(
niσ njσ

)
P0 − P0

(
niσ nj−σ

)
P0
} =

= 1

4

∑

σ

{
P0
(
niσ njσ

)
P0 − P0

[
niσ
(
1− njσ

)]
P0
} =

= 1

2
P0

{
∑

σ

niσ njσ

}

P0 − 1

4
P0

{
∑

σ

niσ

}

P0 =

= 1

2
P0

{
∑

σ

niσ njσ

}

P0 − 1

4
P 2

0 .

With this we have:

P0

{
∑

σ

niσ njσ

}

P0 = P0

{
2Szi S

z
j +

1

2

}
P0, (4.106)

where in particular we have used

P0

{
∑

σ

niσ

}

P0 ≡ P01P0, (4.107)

a relation which is naturally correct only for our special case n = 1. Finally, it
follows from (4.105) that:

P0

{
∑

σ

a+iσ ai−σ a
+
j−σ ajσ

}

P0 = P0

{
∑

σ

Sσi S
−σ
j

}

P0 =

= P0

{
2Sxi S

x
j + 2Syi S

y
j

}
P0.

(4.108)

Inserting (4.106), (4.107) and (4.108) into (4.103), we obtain an effective operator
of the Heisenberg type:

Heff = P0

⎧
⎨

⎩

i �=j∑

i,j

T 2
ij

U

(
2Si · Sj − 1

2

)
⎫
⎬

⎭
P0. (4.109)
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Fig. 4.10 Virtual hopping
processes of an electron in the
strongly correlated Hubbard
model with a half-filled band
(n = 1)

The exchange integrals

Jij = −2
T 2
ij

U
(4.110)

are always negative, which favours an antiferromagnetic ordering of the electronic
spins.

We have thus shown that for the half-filled band (n = 1), the Hubbard model
is equivalent to the Heisenberg model, whereby we are even able to ascribe a
microscopic interpretation to the exchange integrals Jij .

The expression (4.100) from second-order perturbation theory describes virtual
hopping processes from one site Ri to another, Rj , and back again (Fig. 4.10).
According to (4.100), these hopping processes lead to a gain in energy. The
hopping probability is proportional to Tij and is certainly maximal between nearest-
neighbour lattice sites. In a ferromagnet, virtual hopping is not allowed due to the
Pauli principle, since all the spins are parallel. In a paramagnet, the spin directions
are statistically distributed over all the possible states. The number of nearest
neighbours with antiparallel electronic spins is therefore certainly smaller than in an
antiferromagnet. We can therefore indeed expect an antiferromagnetic ground state.

4.1.7 Exercises

Exercise 4.1.1 What form does the Hubbard Hamiltonian take in the Bloch
representation? How is it different from the Hamiltonian of the jellium model?

Exercise 4.1.2 Verify the following formulation of the δ-function:

δ(x) = 1

2
lim
β→∞

β

1+ cosh(βx)
(β > 0).
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Exercise 4.1.3

1. Carry out the Hartree-Fock approximation for the Hamiltonian of the
jellium model. Make use of spin, momentum, and particle-number con-
servation.

2. Use it to compute the one-electron spectral density.
3. Construct with the aid of the spectral theorem an implicit functional

equation for the average occupation number 〈nkσ 〉.
4. Calculate the internal energy U(T ).
5. Compare U(T = 0) with the perturbation-theoretical result from

Sect. 2.1.2.

Exercise 4.1.4 Verify whether

1. the Stoner approximation, and
2. the Hubbard approximation

of the Hubbard model correctly reproduce the exact results for the band limit
(U → 0) and for the atomic limit (ε(k)→ T0∀k).

Exercise 4.1.5 Calculate the electronic self-energy in the Hubbard model for
the limiting case of an infinitely narrow band. Compare the result with the
self-energy in the Hubbard approximation.

Exercise 4.1.6

1. Show that the following definition of spin operators makes sense for
itinerant band electrons:

Szi =
h̄

2
(ni↑ − ni↓); S+i = h̄a+i↑ai↓; S−i = h̄a+i↓ai↑.

Verify the usual commutation relations.
2. Transform the Hubbard Hamiltonian to the spin operators of part 1.

Assume the electronic system to be in a static, position-dependent mag-
netic field:

B0 exp(−iK ·Ri )ez.

(continued)
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Exercise 4.1.6 (continued)
3. Compute for the wavenumber-dependent spin operators

Sα(k) =
∑

i

Sαi exp(−ik ·Ri ) (α = x, y, z, +, −)

the commutation relations: which are analogous to 1.

Exercise 4.1.7

1. Show, using the result of part 3 in Exercise 4.1.6, that for the Hubbard
Hamiltonian in the wavenumber representation, the following holds:

H =
∑

k,σ

ε(k)a+kσ akσ − 2U

3h̄2N

∑

k

S(k) · S(−k)+ 1

2
UN̂ − bSz(K),

b = 2μB

h̄
μ0H, N̂ =

∑

iσ

niσ .

2. Prove the following anticommutation relation:

∑

k

[
S−(−k −K), S+(k +K)

]
+ = h̄2N

∑

i

(ni↑ − ni↓)2

(K arbitrary!).
3. Verify the following commutator expressions:

⎡

⎣S+(k),
∑

p

S(p)S(−p)

⎤

⎦

−
= [S+(k), N̂ ]− = 0.

4. Calculate the following commutator with the Hubbard Hamiltonian H :

[
S+(k), H

]
− = h̄

∑

i,j

Tij

(
e−ik ·Ri − e−ik ·Rj

)
a+i↑aj↓ + bh̄S+(k +K).

5. Confirm the result for the following double commutator:
[ [
S+(k), H

]
− , S

−(−k)
]

−

= h̄2
∑

i,j,σ

Tij

(
e−ik · (Ri−Rj ) − 1

)
a+iσ ajσ + 2bh̄2Sz(K).
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Exercise 4.1.8 For a system of interacting electrons in a narrow energy band,
one can assume that

Q = 1

N

∑

i,j

|Tij |(Ri −Rj )
2 <∞,

since the hopping integrals Tij decrease as a rule exponentially with increas-
ing distance |Ri −Rj |.
1. Set

A = S−(−k −K); C = S+(k)

and estimate with the help of the partial results from Exercise 4.1.7 the
following:

(a) !k

〈 [
A, A+

]
+
〉
≤ 4h̄2N2,

(b)
〈[[C, H ]−, C+

]
−
〉
≤ Nh̄2Qk2 + 2bh̄2|〈Sz(K)〉|,

(c) 〈[C, A]−〉 = 2h̄〈Sz(−K)〉.
Distinguish between commutators [. . . , . . .]− and anticommutators
[. . . , . . .]+ in 1(a) to 1(c).

2. Define as in the Heisenberg model in Exercise 2.4.7 the magnetisation:

M(T, B0) = 2μB

h̄

1

N

∑

i

eik ·Ri 〈Szi 〉

Use the results of part 1 to estimate the following using the Bogoliubov
inequality from Exercise 2.4.5:

β ≥ M2

(2μB)2

1

N

∑

k

1

|B0M| + 1
2k

2Q
.

3. Show, using the result of part 2, that there can be no spontaneous
magnetisation in the d = 1- and in the d = 2-dimensional Hubbard model
(Mermin-Wagner theorem):

MS(T ) = lim
B0→0

M(T, B0) = 0 for T �= 0 and d = 1, 2.
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Exercise 4.1.9 A system of interacting electrons in a narrow energy band is
presumed to be approximately described by the Hubbard model in the limiting
case of an infinitely narrow band,

Tij = T0δij .

1. Verify the following exact representation for the one-electron spectral
moments:

M
(n)
iiσ = T n0 + [(T0 + U)n − T n0 ]〈ni−σ 〉 ; n = 0, 1, 2, . . .

2. Use Lonke’s theorem (4.92) to prove that the one-electron spectral density
represents a two-pole function, i.e. a linear combination of two δ-functions.

3. Compute the quasi-particle energies and their spectral weights.

Exercise 4.1.10 In Exercise 3.3.2, we have seen that the simplified model
Hamiltonian H ∗,

H ∗ =
∑

k,σ

t (k)a+kσ akσ −�
∑

k

(bk + b+k )+
1

V
�2; b+k = a+k↑a

+
−k↓,

describes BCS superconductivity.

1. Give all of the spectral moments of its one-electron spectral density.
2. Show using Lonke’s theorem (4.92) that the one-electron spectral density

must be a two-pole function.

4.2 Collective Electronic Excitations

All of the results obtained in Sect. 2.1 concerning interacting electrons in solids were
found using one-electron Green’s functions or one-electron spectral densities. There
are, however, also important collective electronic excitations such as

charge density waves (plasmons), spin density waves(magnons),

which require other Green’s functions for their description. In preparation for
their treatment, we first will discuss more or less qualitatively the phenomenon of
screening, a characteristic consequence of the electron-electron interaction.
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4.2.1 Charge Screening (Thomas-Fermi Approximation)

How can collective excitations arise in a system of electrons which are moving in a
homogeneously distributed, positively charged ion sea?

We begin with the simplest possible assumption, i.e. that the electrons do
not mutually interact (Sommerfeld model). One then finds a position-independent
particle density n0 (2.77):

n0 = k3
F

3π2 =
(2mεF)

3/2

3π2 h̄3 = n0(εF). (4.111)

We now introduce into the system an additional static electronic charge (q = −e),
which we may take to be located at the origin of the coordinate system. The
electrons interact with this charge. Due to the Coulomb repulsion, they have in the
neighbourhood of the test charge at r = 0 an additional potential energy

Epot(r) = (−e)ϕ(r), (4.112)

where ϕ(r) is the electrostatic potential of the test charge. They will thus tend to
avoid the neighbourhood of r = 0, i.e. the particle density n(r) becomes position
dependent. In fact, we should solve the Schrödinger equation in order to calculate
the particle density,

− h̄2

2m
�ψi(r)− eϕ(r)ψi(r) = εiψi(r),

and derive the electron density from

n(r) =
∑

i

|ψi(r)|2.

In the Thomas-Fermi model, this procedure is drastically simplified by the
assumption that the single-particle energies ε(k) can be written approximately in
the presence of the test charge as follows:

E(k) ≈ ε(k)− eϕ(r). (4.113)

This is naturally not really obvious, since this expression contradicts the uncer-
tainty relation by implying simultaneously a precisely-determined momentum and
position for the electron. One must consider the electron to be a wavepacket whose
position uncertainty will be of the order of 1/kF. In order to accept (4.113), we must
then also require that ϕ(r) hardly changes over a region of the order of 1/kF. If we
transform to wavenumber-dependent Fourier components, then the Thomas-Fermi
approximation will be realistic only in the region



238 4 Systems of Interacting Particles

q � kF. (4.114)

For the unperturbed electron density n0 (4.111), we have from (3.209):

n0(εF) = 2

V

∑

k

{exp[β(ε(k)− εF)] + 1}−1.

In order to obtain n(r) from n0, we replace the unperturbed single-particle energies
ε(k) by the energies E(k) from (4.113):

n(r) = 2

V

∑

k

{exp[β(ε(k)− eϕ(r)− εF)] + 1}−1 =

= n0(εF + eϕ(r)).

(4.115)

Using (4.111), this means that:

n(r) = [2m(εF + eϕ(r))]3/2
3π2h̄3 . (4.116)

We expand n(r) around n0 and terminate the series under the assumption

εF � |eϕ(r)|

after the linear term:

n(r) ≈ n0 + eϕ(r)
∂n0

∂εF
= n0

(
1+ 3

2

eϕ(r)

εF

)
. (4.117)

The resulting r-dependence is shown qualitatively in Fig. 4.11. Around the static
charge at r = 0, a virtual hole forms, which has the same effect as an additional
positive charge, since there, the positive ion background charges show through more
strongly than elsewhere. The Coulomb potential of the test charge is thus shielded,
so that the electrons of the system are affected by it only at distances less than
a characteristic length, the screening length, which we still have to define. We
determine this length by using the Poisson equation:

�ϕ(r) = − (−e)
ε0

δ(r)− (−e)
ε0

{n(r)− n0}. (4.118)

Fig. 4.11 A schematic
representation of the position
dependence of the particle
density in the neighbourhood
of a static perturbing charge
in the Sommerfeld model
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The first term on the right-hand side represents the charge density of the static point
charge. The second term is a result of the now incomplete compensation of the
positive ion charges by the electronic charges in the neighbourhood of the perturbing
charge. With (4.117), Eq. (4.118) can be simplified to:

(
�− 3

2

n0e
2

ε0εF

)
ϕ(r) = e

ε0
δ(r). (4.119)

The solution of this differential equation is most readily obtained by Fourier
transformation:

ϕ(r) = V

(2π)3

∫
d3q ϕ(q)eiq · r ,

δ(r) = 1

(2π)3

∫
d3q eiq · r .

Inserting into (4.119), this yields:

(
−q2 − 3

2

n0e
2

ε0εF

)
ϕ(q) = e

ε0V
.

We define

qTF =
√

3n0e2

2ε0εF
(4.120)

and then obtain:

ϕ(q) = −e
ε0V (q2 + q2

TF)
. (4.121)

The reverse transformation makes use of the residual theorem:

ϕ(r) = −e
ε0(2π)3

∫
d3q

eiq · r

q2 + q2
TF

=

= −e
4π2ε0

∞∫

0

dq
q2

q2 + q2
TF

+1∫

−1

dx eiqrx =

= ie

4π2ε0r

∞∫

0

dq
q

q2 + q2
TF

(eiqr − e−iqr ) =
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= ie

4π2ε0r

+∞∫

−∞
dq

qeiqr

q2 + q2
TF

=

= ie

4π2ε0

1

r

∫
dq

qeiqr

(q + iqTF)(q − iqTF)
=

= −e
2πε0r

iqTF

2iqTF
e−qTFr .

We find, as expected, a screened Coulomb potential

(4.122)

(i.e. a Yukawa potential). Within the

screening length

λTF = q−1
TF =

√
2ε0εF

3n0e2 , (4.123)

the potential of the test charge is shielded to 1/e of its maximum value. Making use
of Eqs. (2.84), (2.85) and (2.86), we can express λTF in terms of the dimensionless
density parameter rS defined in (2.83):

λTF ≈ 0.34
√
rS. (4.124)

Typical metallic densities are 2 ≤ rS ≤ 6. Then λTF is of the order of the average
spacing of the particles. The screening is thus substantial! A characteristic measure
of the strength of the screening effect is given by the dielectric function which
was introduced in Sect. 3.1.5, ε(q, E). For the situation discussed here, we have
from (3.96):

ρind(q, 0)

ρext(q, 0)
= 1

ε(q, 0)
− 1.

Now we find

ρind(r) = −e(n(r)− n0)
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and therefore, from (4.117):

ρTF
ind(q) = −3

2

e2

εF
n0ϕ(q) = −3

2
e2 2ε0q

2
TF

3e2

−e
ε0V (q2 + q2

TF)
=

= eq2
TF

V (q2 + q2
TF)

.

With ρext(q, 0) = −e/V , we then obtain for the dielectric function in the Thomas-
Fermi approximation the following simple expression:

εTF(q) = 1+ q2
TF

q2 . (4.125)

The serious disadvantage of the Thomas-Fermi model consists of the assumption
that the problem is static. Screening processes should, in contrast, be dynamic
processes. If we bring a negative test charge into the electron system, then the
negatively-charged electrons will be repelled. They will initially move out past the
stationary equilibrium position; this allows the positive background charges to show
through more strongly and attracts the electrons again. They flow back, approach
the test charge too closely, and are again repelled, etc. The system thus forms a
harmonic oscillator and exhibits oscillations in the electron density. This system
will then have a proper frequency, corresponding to collective excitations referred
to as plasmons. We will investigate these in the next section. Within the Thomas-
Fermi approximation, they are naturally not considered!

4.2.2 Charge Density Waves, Plasmons

In Sect. 3.1.5, we have seen that the dielectric function ε(q, E) describes the reac-
tion of the electronic system to a time-dependent external perturbation. According
to (3.103), we have:

ε−1(q, E) = 1+ 1

h̄
υ0(q)⟪ρ̂q; ρ̂+q ⟫ret

E
, (4.126)

υ0(q) = 1

V

e2

ε0q2 . (4.127)

Here, ρ̂q is the Fourier component of the density operator:

ρ̂q =
∑

kσ

a+kσ ak+qσ . (4.128)
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We encountered a first approximation for ε(q, E) in the preceding section within
the framework of the classical Thomas-Fermi model (4.125), which however can be
convincing only for static problems (E = 0) and |q| → 0.

Via the zeroes of ε(q, E), we can find the spontaneous charge-density fluctua-
tions of the system, which can be excited by an arbitrarily weak perturbative charge.
We wish to treat these proper frequencies of the system of charged particles in the
following. They manifest themselves clearly in the poles of the retarded Green’s
function,

χ(q, E) = ⟪ρ̂q; ρ̂+q ⟫ret
E
, (4.129)

which is also called the generalised susceptibility (compare with (3.69) and (3.70)).
We compute this function initially for the non-interacting system. In the process, it
is advantageous to begin with the following Green’s function,

fkσ (q, E) = ⟪a+kσ ak+qσ ; ρ̂+q ⟫ret
E
, (4.130)

which, after summation over k, σ , yields χ(q, E). To set up its equation of motion,
we require the commutator

[
a+kσ ak+qσ , H0

]
− =

=
∑

p,σ ′
(ε(p)− μ)

[
a+kσ ak+qσ , a

+
pσ ′apσ ′

]

− =

=
∑

p,σ ′
(ε(p)− μ)

{
δσσ ′δp,k+qa

+
kσ apσ ′ − δσσ ′δp,ka

+
pσ ′ak+qσ

}
=

= (ε(k + q)− ε(k))a+
kσ
ak+qσ

(4.131)

and the inhomogeneity

[
a+
kσ
ak+qσ , ρ̂

+
q

]
− =

∑

p,σ ′

[
a+
kσ
ak+qσ , a

+
p+qσ ′apσ ′

]

− =

=
∑

p,σ ′

{
δσσ ′δpka

+
kσ
apσ ′ − δσσ ′δkpa

+
p+qσ ′ak+qσ

}
=

(4.132)= nkσ − nk+qσ .

We then obtain:

{E − (ε(k + q)− ε(k))} fkσ (q, E) = h̄
(
〈nkσ 〉(0) − 〈nk+qσ 〉(0)

)
. (4.133)

The index “0” refers to averaging within the free system. From this we obtain the
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susceptibility of the free system

χ0(q, E) = h̄
∑

k,σ

〈nkσ 〉(0) −
〈
nk+qσ

〉(0)

E − (ε(k + q)− ε(k))
. (4.134)

This is by the way also the generalised susceptibility of the Stoner model, if we
substitute Eσ (k) from (4.26) for ε(k). In the above expression, the summation over
σ is purely formal, since the occupation numbers 〈nkσ 〉(0) are of course independent
of spins in the free system.

Taking realistic particle interactions into account, we can no longer calculate the
susceptibility exactly. We discuss in the following an approximation for the jellium
model, whose Hamiltonian we will formulate as in (2.72):

H =
∑

kσ

ε(k)a+
kσ
akσ + 1

2

�=0∑

q

υ0(q)(ρ̂q ρ̂−q − N̂), (4.135)

with ε(k) from (2.64) and υ0(q) from (2.127). Our starting point is again the Green’s
function fkσ (q, E), whose equation of motion can be written as follows:

[E − (ε(k + q)− ε(k))] fkσ (q, E) = h̄(〈nkσ 〉 − 〈nk+qσ 〉)+

+ 1

2

�=0∑

q1

υ0(q1)⟪
[
a+
kσ
ak+qσ , ρ̂q1

ρ̂−q1

]
− ; ρ̂+q ⟫ .

(4.136)

We now of course average over states of the interacting system. We have already
made use of the commutators (4.131) and (4.132) in setting up (4.136). Furthermore,
one can readily see that:

[
a+
kσ
ak+qσ , N̂

]
− ≡ 0. (4.137)

We further rearrange the equation of motion. We find initially:

[
a+kσ ak+qσ , ρ̂q1

ρ̂−q1

]
− =

= [a+kσ ak+qσ , ρ̂q1

]
−ρ̂−q1

+ ρ̂q1

[
a+kσ ak+qσ , ρ̂−q1

]
−,

[
a+kσ ak+qσ , ρ̂q1

]
− =

=
∑

p,σ ′

[
a+kσ ak+qσ , a

+
pσ ′ap+q1σ

′
]

− =
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=
∑

p,σ ′

{
δσσ ′δp,k+qa

+
kσ ap+q1σ

′ − δσσ ′δk,p+q1
a+
pσ ′ak+qσ

}
=

= a+
kσ
ak+q+q1σ

− a+
k−q1σ

ak+qσ .

Analogously, one obtains:

[
a+
kσ
ak+qσ , ρ̂−q1

]
− = a+

kσ
ak+q−q1σ

− a+
k+q1σ

ak+qσ .

Using υ0(q1) = υ0(−q1), we can then rewrite the equation of motion of the Green’s
function as follows:

[E − (ε(k + q)− ε(k))]fkσ (q, E) =

= h̄
(〈nkσ 〉 −

〈
nk+qσ

〉)+ 1

2

�=0∑

q1

υ0(q1)· (4.138)

·
(
⟪
[
ρ̂q1

, a+
kσ
ak+q−q1σ

]
+; ρ̂+q ⟫− ⟪

[
ρ̂q1

, a+
k+q1σ

ak+qσ

]

+ ; ρ̂
+
q ⟫
)
.

These expressions are all still exact. Note that the higher-order Green’s functions
on the right side now contain only anticommutators! In the next step, we implement
the so-called

random phase approximation (RPA):

1. higher-order Green’s functions are decoupled using the Hartree-Fock
method (4.18), whereby momentum conservation must be obeyed. An example:

ρ̂q1
a+
kσ
ak+q−q1σ

HFA−−→ ρ̂q1
〈a+

kσ
ak+q−q1σ

〉+
+ 〈ρ̂q1

〉a+
kσ
ak+q−q1σ

−
− 〈ρ̂q1

〉〈a+kσ ak+q−q1σ
〉 =

= δqq1
ρ̂q1
〈nkσ 〉.

(4.139)

2. Occupation numbers are replaced by those of the free system:

〈nkσ 〉 → 〈nkσ 〉(0). (4.140)

Thus, the equation of motion (4.138) is now decoupled:

[E − (ε(k + q)− ε(k))]fkσ (q, E) =
= h̄

(
〈nkσ 〉(0) − 〈nk+qσ 〉(0)

)
+ (4.141)

+ υ0(q)
(
〈nkσ 〉(0) − 〈nk+qσ 〉(0)

)
⟪ρ̂q; ρ̂+q ⟫E .
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With χ(q, E) ≡ ⟪ρ̂q; ρ̂+q ⟫E =
∑

kσ fkσ (q, E) and with (4.134), we finally obtain
the generalised susceptibility in the RPA:

χRPA(q, E) = χ0(q, E)

1− 1
h̄
υ0(q)χ0(q, E)

. (4.142)

From (4.126), we find the dielectric function:

εRPA(q, E) = 1− 1

h̄
υ0(q)χ0(q, E) =

= 1− υ0(q)
∑

k,σ

〈nkσ 〉(0) − 〈nk+qσ 〉(0)
E − (ε(k + q)− ε(k))

.

(4.143)

This expression is also called the Lindhard function. As shown in Sect. 3.1.5,
ε(q, E) describes the relation between the polarisation ρind(q, E) of the medium,
i.e. the fluctuations of the charge density in the electronic system, and an external
perturbation ρext(q, E). According to (3.96), we have:

ρind(q, E) =
(

1

ε(q, E)
− 1

)
ρext(q, E). (4.144)

The zeroes of the dielectric function are therefore interesting; they determine the
proper frequencies of the system. From (4.143), we obtain them by applying the
condition

fq(E) ≡ υ0(q)
∑

kσ

〈nkσ 〉(0) − 〈nk+qσ 〉(0)
E − (ε(k + q)− ε(k))

!= 1. (4.145)

The first evaluation of this expression was published by J. Lindhard (1954).
The function fq(E) exhibits a dense series of poles within the single-particle

continuum,

Ek(q) = ε(k + q)− ε(k). (4.146)

Between each pair is an axis crossing fq(E) = 1 (cf. Fig. 4.12). In the ther-
modynamic limit, these are congruent with the single-particle excitations Ek(q)

and are thus uninteresting for us here. There is, however, another axis crossing
Ep(q) outside the continuum, which cannot be a single-particle excitation, but rather
represents a collective mode:

Ep(q) ≡ h̄ωp(q) : plasma oscillation, plasmon.



246 4 Systems of Interacting Particles

Fig. 4.12 A graphic
illustration of the
determination of the zeroes of
the Lindhard function

Fig. 4.13 The wavenumber
dependence of the zeroes of
the Lindhard function
(plasmon mode and
single-particle continuum)

Qualitatively, the excitation spectrum as sketched in Fig. 4.13 is found. Since a long-
wave plasma oscillation (q small) represents a correlated motion of a large number
of electrons, plasmons have relatively high energies,

5eV · · ·Ep(q) · · · 25eV,

and can therefore not be excited thermally. By injecting high-energy particles into
metals, however, it has been possible to excite and observe plasmons.

We now wish to determine the plasmon dispersion relation ωp(q) approximately
for small values of |q|. We set

ε(k) = h̄2k2

2m∗
, (4.147)

where m∗ represents an effective mass of the electrons, which takes into account
to first order the otherwise neglected influence of the lattice potential. Because
of (4.147), we can then assume that

〈nkσ 〉(0) = 〈n−kσ 〉(0). (4.148)

In the second term of (4.145), we substitute k by (−k − q) and then make use
of (4.148):
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1 = fq(Ep) =

= υ0(q)
∑

kσ

{
〈nkσ 〉(0)

Ep − ε(k + q)+ ε(k)

〈n−kσ 〉(0)
Ep − ε(−k)+ ε(−k − q)

}

= (4.149)

= 2υ0(q)
∑

kσ

〈nkσ 〉(0)(ε(k + q)− ε(k))

E2
p − (ε(k + q)− ε(k))2

.

We next insert (4.147):

ω2
p =

e2

ε0m∗V q2

∑

kσ

〈nkσ 〉(0)(q2 + 2k · q)

1− h̄2

ω2
p

(
q2

2m∗ + k · q
m∗
)2 . (4.150)

Let us first investigate the case that |q| → 0. Then we can neglect the expression in
parentheses in the denominator, relative to 1. Furthermore, we have:

∑

k,σ

〈nkσ 〉(0) = Ne = n0V, (4.151)

∑

k,σ

〈nkσ 〉(0)(2k · q) =
∑

k′,σ
〈n−k′σ 〉(0)(−2k′ · q) =

(4.148)= −
∑

k′,σ
〈nk′σ 〉(0)(2k′ · q) = (4.152)

= 0.

Then, for |q| = 0, we obtain the so-called

plasma frequency: ωp = ωp(q = 0) =
√
n0e2

ε0m∗
. (4.153)

For q �= 0, but |q| still small, we expand the denominator in (4.150) up to quadratic
terms in q:

ω2
p ≈

e2

ε0m∗V
∑

kσ

〈nkσ 〉(0)
(

1+ 2
k · q

q2

)[

1+ h̄2

ω2
p

q4

4m∗2

(
1+ 2

k · q

q2

)]2

=

= e2

ε0m∗V
∑

kσ

〈nkσ 〉(0)
[

1+ 2
k · q

q2
+ q4h̄2

4m∗2ω2
p
·

·
(

1+ 6
k · q

q2 + 12
(k · q)2

q4 + 8
(k · q)3

q6

)]
.
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The odd powers of (k · q) make no contribution, owing to the k summation
(cf. (4.152)):

ω2
p(q) ≈ ω2

p(0)+
3e2h̄2

ε0m∗3ω2
p(q)

1

V

∑

k,σ

〈nkσ 〉(0)(k · q)2. (4.154)

On the right-hand side, we can replace ω2
p(q) by ω2

p(0), and also, at low tempera-
tures, we can estimate:

1

V

∑

k,σ

〈nkσ 〉(0)k2 cos2 ϑ ≈ 2 · 2π

(2π)3

+1∫

−1

d cosϑ cos2 ϑ

kF∫

0

dk k4 =

(4.111)= 1

5
n0k

2
F.

This gives in (4.154) with (4.153):

ω2
p(q) ≈ ω2

p +
3

5

h̄2k2
F

m∗2 q
2. (4.155)

Thus, from the zeroes of the dielectric function ε(q, E), we have derived the

plasmon dispersion relation:

ωp(q) = ωp

(

1+ 3

10

h̄2k2
F

m∗2ω2
p
q2

)

+O(q4). (4.156)

In order to compare our general RPA result (4.143) with the semiclassical
Thomas-Fermi model from the previous section, we finally evaluate the dielectric
function in the static limit, E = 0. From (4.143) and (4.149), we need to compute:

εRPA(q, 0) = 1+ 2υ0(q)
∑

k,σ

〈nkσ 〉(0)
ε(k + q)− ε(k)

. (4.157)

As usual, we replace the k summation by a corresponding integration (T ≈ 0):

∑

k,σ

〈nkσ 〉(0)(ε(k + q)− ε(k))−1 = 2V

(2π)3

∫

FS

d3k (ε(k + q)− ε(k))−1 ≡ I (q).
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FS refers to the Fermi sphere. With (4.147), we then find:

I (q) = V

2π2

2m∗

h̄2

+1∫

−1

dx

kF∫

0

dk k2 1

2kqx + q2 =

= Vm∗

π2h̄2

1

2q

kF∫

0

dk k ln

∣∣∣∣
q + 2k

q − 2k

∣∣∣∣ .

The right-hand side contains a standard integral:

∫
x ln(a + bx)dx = 1

2

(
x2 − a2

b2

)
ln(a + bx)− 1

2

(
x2

2
− ax

b

)
. (4.158)

We then have:

I (q) = Vm∗

2qπ2h̄2

[
1

2
qkF + 1

2

(
k2

F −
q2

4

)
ln

∣∣∣∣
q + 2kF

q − 2kF

∣∣∣∣

]
. (4.159)

We define the following function:

g(u) = 1

2

(
1+ 1

2u
(1− u2) ln

∣∣∣∣
1+ u

1− u

∣∣∣∣

)
. (4.160)

Then we can write:

I (q) = 1

2

Vm∗

π2h̄2 kF g

(
q

2kF

)
.

With (4.120) and (4.157), the static dielectric function is given by (Fig. 4.14):

εRPA(q) = 1+ q2
TF

q2
g

(
q

2kF

)
. (4.161)

Fig. 4.14 The qualitative
behaviour of the Lindhard
correction (4.160)
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For g = 1, this yields the Thomas-Fermi result (4.125). For small q, i.e. long
wavelengths, we thus have:

εRPA(q) ≈
q�kF

εTF(q). (4.162)

The so-called Lindhard correction g (q/2kF) is 1 for q = 0 and non-analytic for
q = 2kF. There, the first derivative of g exhibits a logarithmic singularity with
interesting physical consequences. Using the Poisson equations for the external
charge density ρext(r), and the overall charge density ρ(r) = ρext(r)+ ρind(r),

q2ϕ(q) = 1

ε0
ρ(q), (4.163)

q2ϕext(q) = 1

ε0
ρext(q), (4.164)

we can express the screened potential ϕ(q) by means of the static dielectric
function ε(q) in terms of the external potential. With (3.96), we find:

ϕ(q) = ϕext(q)

ε(q)
. (4.165)

If ϕext is the potential of a point charge (−e), i.e.

ϕext(q) = −e
ε0V q2 ,

then we obtain – for example with the Thomas-Fermi result (4.125) – just (4.121).
However, if we insert the RPA result (4.162) and transform back to real space, then
for large distances a term of the form

ϕ(r) ∼ 1

r3
cos(2kFr) (4.166)

is dominant. The potential thus does not decrease exponentially as in the Thomas-
Fermi model, but rather has very long-range oscillations, which are called Friedel
oscillations.

4.2.3 Spin Density Waves, Magnons

There is another type of collective excitations in a system of interacting band
electrons, which arises from the existence of the electronic spin. In Sect. 3.1.3,
we introduced the transverse susceptibility χ+−ij (3.72), which can be written as
follows for band electrons:
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χ+−ij (E) = −γ ⟪a+i↑ai↓; a+j↓aj↑⟫E ;
(
γ = μ0

V h̄
g2μ2

B

)
. (4.167)

The poles of the wavelength-dependent Fourier transform,

χ+−q (E) = 1

N

∑

i,j

χ+−ij (E)eiq(Ri−Rj ) = −γ 1

N

∑

k,p

χ̄kp(q), (4.168)

χ̄kp(q) = ⟪a+k↑ak+q↓; a+p↓ap−q↑⟫
E
, (4.169)

correspond to spin-wave energies (magnons). The concept of the spin wave was
introduced in Sect. 2.4.3 for a system of interacting, localised (!) spins (Heisenberg
model). It is a collective excitation which is accompanied by a variation in the z-
component of the overall spin by one unit of angular momentum. This spin deviation
is not associated with a single electron, but rather is uniformly distributed over the
entire spin system. Although it is then not so readily intuitively understandable, the
concept of the spin wave can also be applied to itinerant band electrons with their
permanent spins. We discuss this point briefly here. We compute χ+−q (E) first in the
framework of the Stoner model, which is, as in (4.43), described by the Hamiltonian

HS =
∑

k,σ

(Eσ (k)− μ)a+kσ akσ . (4.170)

We formulate the equation of motion for the Green’s function χ̄kp(q). To do so, we
require the commutator

[
a+
k↑ak+q↓,HS

]

− =

=
∑

k′,σ
(Eσ (k

′)− μ)
[
a+k↑ak+q↓, a+k′σ ak′σ

]

− =

=
∑

k′,σ
(Eσ (k

′)− μ)
(
δσ↓δk′,k+qa

+
k↑ak′σ − δσ↑δk′,ka+k′σ ak+q↓

)
= (4.171)

= (E↓(k + q)− E↑(k)
)
a+k↑ak+q↓ =

(4.39)= �E↑↓(k; q)a+k↑ak+q↓,

and the inhomogeneity:

〈 [
a+
k↑ak+q↓, a+p↓ap−q↑

]

−

〉
=
(
〈nk↑〉(S) − 〈nk+q↓〉(S)

)
δp,k+q . (4.172)
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This yields the simple equation of motion:

(
E −�E↑↓(k; q)

)
χkp(q) =

(
〈nk↑〉(S) − 〈nk+q↓〉(S)

)
δp,k+q . (4.173)

With (4.168), we find the transverse susceptibility in the Stoner model:

(
χ+−q (E)

)(S) = γ

N

∑

k

〈nk+q↓〉(S) − 〈nk↑〉(S)
E −�E↑↓(k; q) . (4.174)

The poles are identical with the single-particle spin-flip excitation spectrum. In this
model, without genuine interactions, there are naturally no collective excitations.

In the next step, we compute the susceptibility within the Hubbard model:

H =
∑

kσ

(ε(k)− μ)a+kσ akσ + U

N

∑

k pq

a+k↑ak−q↑a+p↓ap+q↓. (4.175)

For the equation of motion of the Green’s function χk p(q), we find in comparison
to (4.173) an additional term owing to the interactions:

U

N

∑

k′pq ′

[
a+
k↑ak+q↓, a+k′↑ak′−q ′↑a+p↓ap+q ′↓

]

− =

= U

N

∑

k′pq ′

(
δp,k+qa

+
k↑a

+
k′↑ak′−q ′↑ap+q ′↓−

δk,k′−q ′a
+
k′↑a

+
p↓ap+q ′↓ak+q↓

)
=

= U

N

∑

k′q ′

(
a+k↑a

+
k′↑ak′−q ′↑ak+q+q ′↓ − a+

k+q ′↑a
+
k′↓ak′+q ′↓ak+q↓

)
.

(4.176)

We thus find in the equation of motion two new higher-order Green’s functions,

H
k′q ′
k pq(E) = ⟪a+k↑a+k′↑ak′−q ′↑ak+q+q ′↓; a+p↓ap−q↑⟫

E
, (4.177)

K
k′q ′
k pq

(E) = ⟪a+
k+q ′↑a

+
k′↓ak′+q ′↓ak+q↓; a+p↓ap−q↑⟫

E
, (4.178)

which we simplify by making use of the RPA method, taking care to fulfil
momentum and spin conservation:

H
k′q ′
k pq(E) �⇒ 〈nk′↑〉(S) δq ′, 0 χkp(q)− 〈nk↑〉(S) δk,k′−q ′χk+q ′,p(q), (4.179)

K
k′q ′
k pq �⇒ 〈nk′↓〉(S) δq ′, 0 χk,p(q)− 〈nk+q↓〉(S)χk+q ′,p(q)δk′, k+q .

(4.180)
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We then find for χk,p(q) the following simplified equation of motion:

[E − (ε(k + q)− ε(k))]χkp(q) =
= δp,k+q

[
〈nk↑〉(S) − 〈nk+q↓〉(S)

]
+

+ χk p(q)
U

N

∑

k′

[
〈nk′↑〉(S) − 〈nk′↓〉(S)

]
−

− U

N

[
〈nk↑〉(S) − 〈nk+q↓〉(S)

]∑

q ′
χk+q ′,p(E).

(4.181)

With (4.39), it then follows that:

(
E −�E↑↓(k; q)

)
χkp(q) = δp,k+q

[
〈nk↑〉(S) − 〈nk+q↓〉(S)

]
−

− U

N

[
〈nk↑〉(S) − 〈nk+q↓〉(S)

]∑

k′
χk′p(q).

(4.182)
This means, with (4.168) and (4.174):

χ+−q (E) =
(
χ+−q (E)

)(S) + χ+−q (E)

[
U

γ

(
χ+−q (E)

)(S)]
,

χ+−q (E) =
(
χ+−q (E)

)(S)

1− γ−1U
(
χ+−q (E)

)(S) .

(4.183)

This result is very similar to that in the RPA (4.142) for the generalised
susceptibility. Its evaluation therefore follows the same scenario as in the preceding
section. We shall not repeat the details here.

Qualitatively, we obtain the excitation spectrum shown in Fig. 4.15 for spin-flip
processes. h̄ωm(q) is a collective spin-wave mode with

h̄ωm(q) ≈ Dq2 (q → 0). (4.184)

Fig. 4.15 The excitation
spectrum of spin-flip
processes in a system of band
electrons. The solid line is the
spin-wave dispersion relation
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The overall spectrum is composed of the single-particle Stoner continuum and
the collective mode together. Spin waves in metals were first observed experimen-
tally in iron by inelastic neutron scattering. Their characteristic difference with
respect to the spin waves in localised spin systems is found from a more detailed
analysis to be a T 2 dependence of the magnetisation at low temperatures, instead of
the Bloch T 3/2 law.

4.2.4 Exercises

Exercise 4.2.1 Prove the following commutator relation:

[
a+kσ ak+qσ , N̂

] = 0 (N̂ : particle number operator).

Exercise 4.2.2

1. Show that for the Pauli susceptibility of a system of non-interacting
electrons, the following holds:

χPauli � 2μ2
Bμ0ρ0(EF).

Here, EF is the Fermi energy, ρ0 the density of states, μB the Bohr
magneton and μ0 the permeability of vacuum. The susceptibility is defined
as follows:

χ = ∂M

∂H
; M = μB (N↑ −N↓) magnetisation.

H is a homogeneous magnetic field.
2. Evaluate the generalised susceptibility χ0(q) of a non-interacting electron

system (4.134),

χ0(q, E = 0) = h̄
∑

k,σ

〈nk+qσ 〉(0) − 〈nkσ 〉(0)
ε(k + q)− ε(k)

,

at T = 0 and compare the result with χPauli from Sect. 1.1.
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Exercise 4.2.3

1. Compute the diagonal susceptibility of interacting electrons within the
Hubbard model:

χzzq (E) =
1

N

∑

i,j

χzzij (E) exp(iq · (Ri −Rj )),

χzzij (E) = −4μ2
Bμ0

V h̄3 ⟪σ
z
i ; σzj ⟫ ,

σ zi =
h̄

2
(ni↑ − ni↓).

Use an RPA method analogous to that in Sect. 4.2.3.
2. Derive a condition for ferromagnetism with the aid of (3.71) and the result

from part 1.

Exercise 4.2.4 Auger electron spectroscopy (AES) and appearance-potential
spectroscopy (APS) have become important experimental methods for the
investigation of electronic states in solids. In AES a primary core hole
is filled by a band electron. The energy released is transferred to another
band electron, which is then able to leave the solid. Its kinetic energy is
measured. In APS roughly speaking the reverse process takes place. An
electron impinges upon a solid and fills an unoccupied band state. The
energy released serves to excite a core electron into another unoccupied
state. The ensuing recombination radiation (⇐⇒ filling of the resulting core
hole) is used for the detection of the process. Due to the participation of
the strictly localised core state, the excitation of the two holes or electrons
is considered to be intraatomic. We consider a non-degenerate energy band,
whose interacting electrons are described within the Stoner model (4.43),

HS =
∑

k,σ

(Eσ (k)− μ)a+
kσ
akσ .

An exact description gives the following energy and temperature dependen-
cies for the APS(AES) Intensities:

IAPS(E−2μ) = eβ(E−2μ)IAES(2μ−E)= eβ(E−2μ)

eβ(E−2μ) − 1

(
1

h̄
S
(2)
ii
(E − 2μ)

)
.

(continued)
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Exercise 4.2.4 (continued)
Both of these intensities are determined by the same two-particle commutator
spectral density:

S
(2)
ii (E) = − 1

π
ImDii(E); Dij (E) = ⟪ai−σ aiσ ; a+jσ aj−σ⟫

ret

E
.

1. Show that the two-particle spectral density can be expressed as follows by
means of the quasi-particle density of states ρ(S)σ (E) in the Stoner model:

S
(2)
ii (E − 2μ) = h̄

∫
dx ρ(S)σ (x)ρ

(S)
−σ (E − x)(1− f−(x)− f−(E − x)),

where f−(x) is the Fermi function.
2. Let W be the width of the energy band of the non-interacting electrons.

How wide is the energy range in which S(2)ii (E − 2μ) is non-vanishing?

Exercise 4.2.5 Some important correlation functions and sum rules can be
derived from the intensities IAPS, IAES of the AES and APS spectroscopies
explained in Exercise 4.2.4. Show using the spectral representation of the two-
particle spectral density that the following relations are valid, independently
of the single-band model used:

+∞∫

−∞
dE IAPS(E−2μ) = 1−n+ 〈nσn−σ 〉 ;

+∞∫

−∞
dE IAES(2μ−E) = 〈nσn−σ 〉.

Exercise 4.2.6 Electrons in a non-degenerate energy band (s-band) are to be
described by the Hubbard model. Show that for the intensities of the Auger
electron (AES) and appearance-potential (APS) spectroscopies introduced in
Exercise 4.2.4, for the case of an empty (n = 0) energy band, (μ → −∞)

applies:

IAES(E) = 0; IAPS = − 1

π
Im

1

N

∑

k

#
(0)
k (E)

1− U#
(0)
k (E)

,

#
(0)
k
(E) = 1

N

∑

p

1

E − ε(k)− ε(k − p)+ i0+
.

(continued)
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Exercise 4.2.6 (continued)
It should be expedient to use a retarded Green’s function

Dret
mn;jj (E) = ⟪amσ an−σ ; a+j−σ a+jσ⟫

ret

E
.

Write its equation of motion and show that the higher-order Green’s functions
are greatly simplified, due to n = 0! Demonstrate that IAPS can be written as
a self-folding integral of the Bloch density of states ρ0(E) for weak electronic
correlations, i.e. small U .

Exercise 4.2.7 Calculate as in Exercise 4.2.6 the APS and AES intensities
for the case of a completely occupied energy band, (n = 2).

4.3 Elementary Excitations in Disordered Alloys

4.3.1 Formulation of the Problem

So far, we have investigated the electronic properties of solids with a periodic lattice
structure, which are therefore invariant with respect to symmetry operations. They
fulfil for example translational symmetry, which we have already used several times,
and this guarantees that the single-particle terms of the Hamiltonian are diagonal in
k space. The decisive advantage of a periodic solid relative to a disordered system
lies in the applicability of Bloch’s theorem (2.15), with which one can reduce the
entire problem to the solution of the Schrödinger equation for a single microscopic
lattice cell. In disordered systems, Bloch’s theorem does not apply. In such systems,
one must therefore consider a potential of infinite range, which is of course possible
with mathematical rigour in only a few, relatively uninteresting limiting cases.

Let us first consider what might be a suitable model Hamiltonian, whose form
depends of course essentially on the type of spatial disorder of the system at hand.
We want to limit ourselves in the following to the single-particle terms, i.e. we
leave the mutual interaction of the elementary excitations out of consideration. Then
the model Hamiltonian for all elementary excitations (electrons, phonons, magnons
etc.) will have the same formal structure:

H =
i �=j∑

i, j

∑

m,n

T mnij a+imajn +
∑

i, m

εma
+
imaim +

∑

i, j

∑

m, n

V mn
ij a+imajn. (4.185)
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The first term describes the hopping of the particle from the state |n〉 at Rj into the
state |m〉 at Ri . T mnij is the corresponding transfer integral. εm is the atomic energy
of the state |m〉 in an ideal periodic lattice. The actual problem is to be found in the
third term. The perturbation matrix Vmn

ij contains the statistical deviations of the
atomic energies and the transfer integrals from the corresponding quantities in the
ideal system:

Vmn
ij = (ηm − εm)δij δmn + (T̃ mnij − T mnij ). (4.186)

The multiplicity of possible types of disorder can be roughly divided into two
classes: Substitutional disorder and structural disorder. The first category is
characterised by a still strictly-periodic arrangement of the lattice building blocks,
whereby however for a propagating elementary excitation, the physical conditions
vary from one location to another. Examples are alloys and mixed crystals. One
refers to structural disorder when an additional deviation of the lattice structure
from strict spatial periodicity is present, e.g. in amorphous solids, in glasses, in
doped semiconductors, in liquid metals etc.

We shall develop the theoretical concepts on the example of the simplest type of
disorder, namely that of

diagonal substitutional disorder.

Here, we consider a periodic lattice in which the atomic building blocks change their
character statistically from lattice site to lattice site, whilst the hopping integrals are
assumed to remain unchanged. From (4.186), we then have:

Vmn
ij = (ηm − εm)δij δmn. (4.187)

This idealised situation can be found to a good approximation in alloys whose pure
components have very similar band structures. We could think of Ni-Cu or Ag-Au
alloys, for example.

To be more concrete, we consider in the following electrons in a multiple-
component alloy with diagonal substitutional disorder. It should in the end be clear
that the inclusion of band transitions can offer nothing basically new in the context
which interests us here. We therefore limit ourselves to a single-band model and
suppress the band index:

H =
∑

σ

Hσ ; Hσ = H0σ + V0σ , (4.188)

H0σ =
∑

i, j

Tij a
+
iσ ajσ , (4.189)

V0σ =
∑

i

η(i)σ a
+
iσ aiσ . (4.190)
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Let us summarise once more the assumptions which we have made:

1. An alloy with α components. Each component is characterised by precisely one
atomic level (η(i)σ = ηmσ − Tii = η̂mσ , in the case that an atom of type m is
located at Ri),

2. a diagonal substitutional disorder (4.187),
3. no electron-electron interactions,
4. a statistically independent and homogeneous distribution of the types of atoms.

The constraints 1 and 2 may be reduced. Due to 4, the atomic levels ηmσ become
statistically random variables. The concentrations cm of the alloy components are at
the same time the probabilities that an atom of type m is to be found on a particular
lattice site.

We are aware of the great information content of the single-particle Green’s
function,

Gijσ (E) = ⟪aiσ ; a+jσ⟫E , (4.191)

and will therefore try to determine it as precisely as possible. Its equation of motion
is readily derived with (4.188):

EGijσ (E) = h̄δij +
∑

m

(Tim + η(i)σ δim)Gmjσ (E). (4.192)

Owing to the lack of translational symmetry, this equation however cannot be solved
simply by Fourier transformation.

If we denote the Green’s function matrix by Ĝσ (E), whose elements are just
the Gijσ (E) in the Wannier representation, then we can read (4.192) as a matrix
equation, which is simpler to manipulate for many purposes:

EĜσ (E) = h̄1+ (H0σ + V0σ )Ĝσ (E). (4.193)

Its formal solution is simple:

Ĝσ (E) = h̄[E −Hσ ]−1. (4.194)

The Green’s function of the free system is given correspondingly by:

Ĝ0σ (E) = h̄[E −H0σ ]−1. (4.195)

Combining the last two equations,

Ĝσ (E) = h̄[h̄Ĝ−1
0σ (E)− V0σ ]−1 =

=
[

1− 1

h̄
Ĝ0σ (E)V0σ

]−1

Ĝ0σ (E),
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we obtain the Dyson equation (3.327):

Ĝσ (E) = Ĝ0σ (E)+ 1

h̄
Ĝ0σ (E)V0σ Ĝσ (E). (4.196)

If we return for a moment to the Wannier representation, then the Dyson equation
reads as follows, using (4.190):

Gijσ (E) = G
(0)
ijσ (E)+

1

h̄

∑

m

G
(0)
imσ (E)η(m)σGmjσ (E). (4.197)

It will prove to be expedient to introduce at this point the scattering matrix (T-
matrix) T̂0σ . It is defined by the following equation:

Ĝσ (E) = Ĝ0σ (E)+ 1

h̄
Ĝ0σ (E)T̂0σ Ĝ0σ (E). (4.198)

Ĝσ (E) or Gijσ (E) depends just like the Hamiltonian Hσ on the actual distribution
of the types of atoms m = 1, 2, . . . , α over the lattice. For a given set of concen-
trations (c1, c2, . . . , cα), there is therefore a whole ensemble of Green’s functions.
This however means that we encounter a completely unnecessary difficulty, since
special configurations are not of interest, as they would hardly be experimentally
reproducible. Only the configurationally averaged quantities are important, and we
will denote them by angular brackets,

〈. . .〉 ⇐⇒ configurational averaging,

Configurational averaging means taking an ensemble average over all the macro-
scopically non-distinguishable but microscopically different atomic arrangements
which are possible for a given set of concentrations. The practical execution of the
averaging process is accomplished as follows: Let Fσ be a functional of the random
variables ηmσ ; then we have:

〈Fσ 〉 =
α∑

m=1

cmFσ (ηmσ ). (4.199)

Carrying out this averaging on the Green’s function matrix (4.194), we thus define
an effective Hamiltonian Hσ

eff(E):

〈Ĝσ (E)〉 =
〈

h̄

E −Hσ

〉
= h̄

E −Hσ
eff(E)

. (4.200)

Hσ
eff now exhibits the full symmetry of the lattice, due to the configurational average

that we carried out, but at the price that it is energy dependent and complex under
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all circumstances. The basic lattice (free system) is of course unaffected by the
configurational averaging. We thus find:

〈
Ĝ0σ (E)

〉 ≡ Ĝ0σ (E), (4.201)

and Hσ
eff can be written according to (4.188) as:

Hσ
eff(E) = H0σ +!0σ (E). (4.202)

The determination of !0σ (E) clearly solves the problem.
Finally, we can write down the Dyson Eq. (4.196) and the T-matrix Eq. (4.198)

for the configurationally-averaged Green’s function:

〈Ĝσ (E)〉 = Ĝ0σ (E)+ 1

h̄
Ĝ0σ (E)!0σ (E)〈Ĝσ (E)〉, (4.203)

〈Ĝσ (E)〉 = Ĝ0σ (E)+ 1

h̄
Ĝ0σ (E)〈T̂0σ 〉Ĝ0σ (E). (4.204)

4.3.2 The Effective-Medium Method

The separation of the model Hamiltonian Hσ as in (4.188) into H0σ and V0σ is
not mandatory in this form. Instead of the unperturbed crystal, that is the strictly
periodic basic lattice, we could have separated off any suitably chosen effective
medium, by attributing to each lattice site a fictitious, real or complex potential
υKσ . The effective medium is then defined by the Hamiltonian

Kσ =
∑

i, j

Tij a
+
iσ ajσ +

∑

i

υKσ a
+
iσ aiσ . (4.205)

It will of course be chosen so that the associated many-body problem can be solved
exactly. Since it furthermore exhibits the full symmetry of the basic lattice, the
Green’s function of the effective medium,

R̂σ (E) = h̄[E −Kσ ]−1, (4.206)

is known, and it is diagonal in k space:

Rkσ (E) = h̄(E − ε̃σ (k))
−1, (4.207)

ε̃σ (k) = ε(k)+ υKσ . (4.208)
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The model Hamiltonian can now be written as:

Hσ = Kσ + VKσ , (4.209)

VKσ =
∑

i

(η(i)σ − υKσ )a
+
iσ aiσ ≡

∑

i

η̃(i)σ a
+
iσ aiσ . (4.210)

η̃(i)σ gives the deviation of the local potential at Ri relative to the effective medium.
Equations (4.196), (4.198), (4.203) and (4.204) can be taken over directly. We need
only replace Ĝ0σ by R̂σ (E). Naturally, the self-energy (!0σ �⇒ !Kσ ) and the
T-matrix (T̂0σ �⇒ T̂Kσ ) are modified.

Ĝσ (E) = R̂σ (E)+ 1

h̄
R̂σ (E)VKσ Ĝσ (E), (4.211)

Ĝσ (E) = R̂σ (E)+ 1

h̄
R̂σ (E)T̂Kσ R̂σ (E), (4.212)

〈Ĝσ (E)〉 = R̂σ (E)+ 1

h̄
R̂σ (E)!Kσ (E)〈Ĝσ (E)〉, (4.213)

〈Ĝσ (E)〉 = R̂σ (E)+ 1

h̄
R̂σ (E)〈T̂Kσ 〉R̂σ (E) (4.214)

Combining the first two equations for the function before averaging, we can express
the T-matrix in terms of the statistical potential VKσ :

T̂Kσ = VKσ Ĝσ R̂
−1
σ = VKσ

(
1− 1

h̄
R̂σ VKσ

)−1

R̂σ R̂
−1
σ ,

T̂Kσ = VKσ

(
1− 1

h̄
R̂σ VKσ

)−1

.

(4.215)

Quite analogously, by combining (4.213) and (4.214), one obtains:

〈T̂Kσ 〉 = !Kσ

(
1− 1

h̄
R̂σ!Kσ

)−1

, (4.216)

!Kσ =
〈
T̂Kσ

〉 (
1+ 1

h̄
〈T̂Kσ 〉R̂σ

)−1

. (4.217)

We now recall that we have not yet specified the effective medium in any concrete
way. We vary it, i.e. we change the type of quasi-particles of the effective medium,
until they are no longer scattered on the local potentials. This is the case only when
the configuration-averaged T-matrix vanishes:

〈
T̂Kσ

〉 != 0. (4.218)
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If we can fulfil this condition, then the entire problem is automatically solved.
From (4.217), it then namely follows that:

!Kσ (E) ≡ 0 ⇐⇒ 〈
Ĝσ (E)

〉 = R̂σ (E). (4.219)

The Green’s function R̂σ of the effective medium is however known by construction.
The requirement (4.218) can, however, not as a rule be strictly met, since T̂Kσ

is not explicitly known. We discuss a suitable approximation method in the next
section.

4.3.3 The Coherent Potential Approximation

We first attempt to express the scattering matrix T̂Kσ in terms of atomic scattering
matrices t̂ (i)Kσ . Let Ĝiσ (E) be the Green’s function for the special case that only the
atomic scattering centre at the lattice site Ri is switched on, i.e. the sum for VKσ
in (4.210) contains only one term:

V
(i)
Kσ = η̃(i)σ a

+
iσ aiσ . (4.220)

Then it follows from (4.211) that:

Ĝiσ (E) = R̂σ (E)+ 1

h̄
R̂σ (E)V

(i)
Kσ R̂σ (E)+

+ 1

h̄2
R̂σ (E)V

(i)
Kσ R̂σ (E)V

(i)
Kσ R̂σ (E)+ · · · = (4.221)

= R̂σ (E)+ 1

h̄
R̂σ (E)V

(i)
Kσ Ĝiσ (E).

Equation (4.212) then defines the atomic scattering matrix t (i)Kσ :

Ĝiσ (E) = R̂σ (E)+ 1

h̄
R̂σ (E)t̂

(i)
Kσ R̂σ (E). (4.222)

Comparison with (4.221) yields:

t̂
(i)
Kσ = V

(i)
Kσ +

1

h̄
V
(i)
Kσ R̂σV

(i)
Kσ +

1

h̄2V
(i)
Kσ R̂σV

(i)
Kσ R̂σV

(i)
Kσ + · · · =

= V
(i)
Kσ

(
1− 1

h̄
R̂σ V

(i)
Kσ

)−1

.

(4.223)
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This result is naturally consistent with (4.215). We now return to the full Dyson
equation (4.211) and insert VKσ =∑i V

(i)
Kσ there:

Ĝσ = R̂σ + 1

h̄
R̂σ
∑

i

V
(i)
Kσ R̂σ +

1

h̄2
R̂σ
∑

i, j

V
(i)
Kσ R̂σV

(j)
Kσ R̂σ + · · ·

With (4.223), we then find:

Ĝσ (E) = R̂σ (E)+ 1

h̄
R̂σ (E)

∑

i

t̂
(i)
Kσ R̂σ (E)+

+ 1

h̄2 R̂σ (E)

i �=j∑

i, j

t̂
(i)
Kσ R̂σ (E)t̂

(j)
Kσ R̂σ (E)+

+ 1

h̄3 R̂σ (E)

i �=j ;k �=j∑

i, j, k

t̂
(i)
Kσ R̂σ (E)t̂

(j)
Kσ R̂σ (E)t̂

(k)
Kσ R̂σ (E)+

+ · · · .

(4.224)

Comparison with (4.212) finally gives the desired result:

T̂Kσ =
∑

i

t̂
(i)
Kσ +

1

h̄

i �=j∑

i, j

t̂
(i)
Kσ R̂σ (E)t̂

(j)
Kσ+

+ 1

h̄2

i �=j ;j �=k∑

i, j, k

t̂
(i)
Kσ R̂σ (E)t̂

(j)
Kσ R̂σ (E)t̂

(k)
Kσ + · · · .

(4.225)

Up to now, everything is still exact. With a known T-matrix, the entire problem has
also been solved, since then via (4.212) the single-particle Green’s function is also
determined. Every approximate determination of T̂Kσ thus leads to an approximate
solution of the complete alloy problem.

At this point, it is advisable to formulate the operator relation (4.225) once again
for the corresponding matrix elements:

(
T̂Kσ

)
mn
= t

(m)
Kσ δmn +

1

h̄
t
(m)
Kσ Rmnσ (E)t

(n)
Kσ+

+ 1

h̄2

∑

j

t
(m)
Kσ Rmjσ (E)t

(j)
KσRjnσ (E)t

(n)
Kσ+

+ · · · .

(4.226)

Here, we have written as an abbreviation:

Rmnσ (E) = Rmnσ (E)(1− δmn). (4.227)
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We require the configuration-averaged T-matrix. If we carry out the averaging
process on the expression (4.225), we obtain terms of the form

〈
t̂
(i)
Kσ R̂σ t̂

(j)
Kσ R̂σ · · · R̂σ t̂ (n)Kσ

〉
. (4.228)

If the indices i, j, . . . , n are all pairwise different, then this expression can be
factored. The so-called T-matrix approximation (TMA) postulates that the prop-
agating electron never returns to a site at which it was already scattered. Owing to
the statistical independence of the local scattering potentials, we then find:

〈
t̂
(i)
Kσ r̂σ t̂

(j)
Kσ R̂σ · · · R̂σ t̂ (n)Kσ

〉
−−−→
TMA

〈
t̂
(i)
Kσ

〉
R̂σ

〈
t̂
(j )
Kσ

〉
R̂σ · · · R̂σ

〈
t̂
(n)
Kσ

〉
. (4.229)

After the configuration averaging, the atomic scattering matrix is of course indepen-
dent of the lattice site. Thereby, we can now sum (4.225), if we take into account
that

〈
t̂
(i)
Kσ

〉
= 〈tKσ 〉

⎛

⎜⎜⎜⎜⎜⎜
⎝

0 0
. . .

1
. . .

0 0

⎞

⎟⎟⎟⎟⎟⎟
⎠

← i-th row.

We write

1i ≡

⎛

⎜⎜⎜⎜⎜⎜
⎝

0 0
. . .

1
. . .

0 0

⎞

⎟⎟⎟⎟⎟⎟
⎠

← i-th row

↑
i-th column

(4.230)

and then obtain:
〈
t̂
(i)
Kσ

〉
= 〈tKσ 〉1i . (4.231)

Here, 〈tKσ 〉 is now no longer an operator. Instead, with (4.223) and (4.199), we
have:

〈tKσ 〉 =
α∑

m=1

cm
η̂mσ − υKσ

1− 1
h̄
Riiσ (E)(̂ηmσ − υKσ )

. (4.232)
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From (4.225), we then find
(∑

i

〈
t̂
(i)
Kσ

〉
= 〈t̂Kσ 〉1

)
:

〈
T̂Kσ

〉TMA = 〈tKσ 〉1
(

1+ 1

h̄
R̂σ (E)〈tKσ 〉+

+ 1

h̄2 R̂σ (E)〈tKσ 〉R̂σ (E)〈tKσ 〉 + · · ·
)
, (4.233)

〈
T̂Kσ

〉TMA = 〈tKσ 〉1
(

1− 1

h̄
R̂σ (E)〈tKσ 〉

)−1

.

Inserting this result into the expression (4.217) for the self-energy, we can then see
that it is diagonal within the TMA in the Wannier representation:

(
!TMA
Kσ (E)

)
ij
= 〈tKσ 〉δij

(
1+ 1

h̄
Riiσ (E)〈tKσ 〉

)−1

. (4.234)

Note that the Green’s function Riiσ (E) carried the index i only formally, due to the
translational symmetry. It is naturally independent of the lattice site:

Riiσ (E) = 1

N

∑

k

Rkσ (E) =

= h̄

N

∑

k

(E − ε(k)− υKσ )
−1.

(4.235)

The self-energy is independent of wavenumber:

!TMA
Kσ (k; E) ≡ !TMA

Kσ (E). (4.236)

The TMA is clearly not a self-consistent procedure, since the solution depends on
the arbitrary choice of the effective medium. Intuitively, one would expect that the
quality of the TMA is higher, the more similar the effective medium chosen is to the
real physical system.

We can now however readily make the procedure self-consistent by making use
of the results of the previous section, i.e. by determining the potential of the effective
medium through the requirement (4.218). This however means according to (4.233),
that through

〈tKσ 〉 != 0, (4.237)

υKσ is fixed. This method is referred to in the literature as the

coherent potential approximation (CPA).
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According to (4.232), we solve (Tii = T0, η̂mσ = ηmσ − T0):

0
!=

α∑

m=1

cm
ηmσ − υKσ − T0

1− 1
h̄
Riiσ (E)(ηmσ − υKσ − T0)

(4.238)

for

υKσ → !CPA
σ (E) (4.239)

and then, in view of (4.219), we have completely determined the single-particle
Green’s function

〈Gkσ (E)〉 = Rkσ (E) = h̄ (E − ε(k)−!CPA
σ (E))−1. (4.240)

Now all the other quantities which are derivable from the single-particle Green’s
function are known, such as the quasi-particle density of states:

ρσ (E) = − 1

π
Im

+∞∫

−∞
dx

ρ0(x)

E − x −!CPA
σ (E)

. (4.241)

In this expression, we have replaced the summation over k by an integration over
the free density of states ρ0(x).

The equation to be solved, (4.238), is as a rule highly nonlinear and therefore
solvable only by numerical methods.

The physical concept of the CPA is clear and relatively simple. Now theories
which in some sense follow physical intuition often suffer from the problem that
their mathematical structure remains unclear. This is however not the case for
the CPA! In spite of its naive concept, it is nevertheless the result of carefully
executed mathematics. To demonstrate this, we derive in the next section the CPA
formula (4.238) once again in a quite different manner using a diagram technique.
In the process, we will encounter a series of other methods which are frequently
employed in the theory of disordered systems, and we will experience the power of
the CPA.

4.3.4 Diagrammatic Methods

We return once again to the Dyson equation (4.197):

Gijσ (E) = G
(0)
ijσ (E)+

1

h̄

∑

m

G
(0)
imσ (E)η(m)σG

(0)
mjσ (E)+

+ 1

h̄2

∑

m, n

G
(0)
imσ (E)η(m)σG

(0)
mnσ (E)η(n)σG

(0)
njσ (E)+ (4.242)

+ · · ·
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and carry out the configurational averaging directly on this infinite series:

〈
Gijσ

〉 = G
(0)
ijσ +

1

h̄

∑

m

G
(0)
imσG

(0)
mjσ 〈η(m)σ 〉+

+ 1

h̄2

∑

m, n

G
(0)
imσG

(0)
mnσG

(0)
njσ

〈
η(m)σ η(n)σ

〉+ (4.243)

+ · · ·
Due to the assumed statistical independence of the lattice sites, we naturally have:

〈
η(m)σ η(n)σ

〉 = δmn

〈
η2
(m)σ

〉
+ (1− δmn)

〈
η(m)σ

〉2
. (4.244)

We agree upon the following

diagram rules

⇒ 〈Gijσ 〉

⇒ G
(0)
ijσ

⇒ 1

h̄
〈η(i)σ 〉=1

h̄

α∑

m=1

cmη̂mσ

⇒1

h̄

〈
ηn(i)σ

〉
= 1

h̄n

α∑

m=1

cmη̂
n
mσ

With these, we can now represent the above result (4.243) for 〈Gijσ 〉 in terms of
diagrams:
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(4.245)

The term order of a diagram means the number of interaction lines (dashed!).
All diagrams up to third order are explicitly plotted in (4.245). In evaluating the
diagrams, sums over all the inner indices must be carried out.

Examples

⇐⇒ 1

h̄3

∑

m, n

G
(0)
imσG

(0)
mnσG

(0)
nnσG

(0)
njσ 〈η(m)σ 〉

〈
η2
(n)σ

〉
.

We can now however also represent the Dyson equation by diagrams:

(4.246)

!σ is defined as the sum of all those diagrams which cannot be decomposed
into two independent diagrams from the expansion for 〈Gijσ 〉 by cutting through a
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particle propagator ( ), whereby the two outer connections at i and j are left
off. Up to fourth order, !σ thus consists of the following diagrams:

(4.247)

With this still-exact representation, one can classify all the known approximations
to the theory of disordered systems.

(1) The Virtual Crystal Approximation (VCA)

The simplest approximation is that of the virtual crystal, which includes only the
first term from the expansion of

∑
σ :

1

h̄
!VCA
σ ⇐⇒

≡ δrt
1

h̄

α∑

m=1

cmη̂mσ ≡ δrt
1

h̄
〈̂ησ 〉. (4.248)

For the Green’s function, this implies:

〈Gijσ (E)〉VCA = G
(0)
ijσ (E)+

1

h̄
〈̂ησ 〉

∑

m

G
(0)
imσ 〈Gmjσ 〉VCA.

Transformation to wavenumbers then yields:

〈Gkσ (E)〉VCA = G
(0)
kσ (E − 〈̂ησ 〉). (4.249)

This corresponds to a molecular-field approximation. The quasi-particle energies
EVCA
σ (k) are only shifted by a constant amount 〈̂ησ 〉 relative to the free Bloch

energies ε(k):



4.3 Elementary Excitations in Disordered Alloys 271

EVCA
σ (k) = ε(k)+ 〈̂ησ 〉 − T0. (4.250)

The VCA is usable, to be sure, only when the atomic levels of the alloying
components are not very different from each other.

(2) The Single-Site Approximation (SSA)

A somewhat more subtle approximation consists in taking into account all the
diagrams from the exact expansion for the self-energy (4.247) which contain just
one vertex point, that is the diagrams which are linear in the concentrations cm. In
this case, one neglects correlations between scattering processes at different lattice
sites.

1

h̄
!SSA
σ ⇐⇒ (4.251)

This infinite series can be summed exactly:

1

h̄

(
!SSA
σ

)

rt
=

= δrt

[
1

h̄

∑

m

cmη̂mσ + 1

h̄2

∑

m

cmη̂
2
mσG

(0)
mmσ+

+ 1

h̄3

∑

m

cmη̂
3
mσ (G

(0)
mmσ )

2 + · · ·
]

=

= δrt
1

h̄

∑

m

cmη̂mσ

[
1+ 1

h̄
η̂mσG

(0)
mmσ +

1

h̄2
(̂ηmσG

(0)
mmσ )

2 + · · ·
]
.

The brackets on the right enclose the geometric series:

1

h̄
(!SSA

σ )rt = δrt
1

h̄

∑

m

cm
η̂mσ

1− 1
h̄
η̂mσG

(0)
mmσ

. (4.252)

From (4.232), the self-energy in the SSA, which includes multiple scattering only
from an isolated local potential, is represented by the atomic T-matrix. The self-
energy is independent of wavenumber after Fourier transformation, owing to its
single site nature:

!SSA
σ (k, E) ≡ !SSA

σ (E). (4.253)
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The full single-particle Green’s function is then given by

〈Gkσ 〉SSA = h̄(E − ε(k)−!SSA
σ (E))−1, (4.254)

and the quasi-particle energies are determined as usual from the poles of this
function:

(
E − ε(k)−!SSA

σ (E)
) ∣∣∣

E=Eσ (k)
!= 0. (4.255)

Because of the k-independence, the full Green’s function can be expressed in terms
of that of the free system:

〈Gkσ (E)〉SSA = G
(0)
kσ (E −!SSA

σ (E)). (4.256)

(3) The Modified Propagator Method (MPM)

As a next step, one can make the SSA self-consistent by replacing the free
propagator in (4.251) by the full Green’s function:

1

h̄
!MPM
σ ⇐⇒ (4.257)

In this way, one reproduces precisely the result of the so-called modified propagator
method, which however was based originally on a quite different idea:

1

h̄
!MPM
σ (E) = 1

h̄

∑

m

cm
η̂mσ

1− 1
h̄
η̂mσG

(0)
mmσ (E −!MPM

σ (E))
. (4.258)

One can see immediately that by inserting the full propagator into the SSA diagrams,
one brings a large number of diagrams from the exact expansion back into play,
which were neglected in the SSA itself. Thus, up to fourth order, from the exact
expansion (4.247) for !σ only the crossed diagram is still missing; it describes
cluster effects.

(4) The Average T-Matrix Approximation (ATA)

An obvious defect in the SSA can readily be seen, which in the end is based upon
an inaccuracy within our general diagram rules. If, for example, we insert the first
term in the expansion of the self-energy (4.247) into the Dyson equation, we obtain
among others the diagram sketched here:



4.3 Elementary Excitations in Disordered Alloys 273

Fig. 4.16 Diagram
corrections to the single-site
approximation

which, due to the two vertex points, yields the contribution

1

h̄2 〈̂ησ 〉2
∑

m, n

G
(0)
imσG

(0)
mnσG

(0)
njσ .

According to the rules, we must sum over all m and n. The inaccuracy lies in the
diagonal terms m = n, since they are included quadratically in the concentrations c,
although the correct m=n diagram is only linear in c:

(Note: 〈̂η2
σ 〉 �= 〈̂ησ 〉2!)

This obvious error can be eliminated by the following additional prescription:
One must subtract from every diagram in the SSA the contributions of all those
diagrams which can be constructed from the original diagrams by breaking off the
interaction lines from vertex points. This is illustrated in the Fig. 4.16.

Finally, we must consider another important additional rule. In the correction
columns, naturally only those diagrams can appear which have a real counterpart
in the SSA (first column). Otherwise we produce so-called overcorrections, i.e.
corrections to a diagram which does not even exist.

Examples

“overcorrection”

The crossed diagram must not be counted. We sum the individual columns
separately:

1st column:
1

h̄
!SSA
σ = 1

h̄
〈t0σ 〉 (s. (4.252)),
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2nd column:
1

h̄
!ATA
σ G(0)

mmσ

1

h̄
!ATA
σ ,

...

n-th column:
1

h̄
!ATA
σ

[
G(0)
mmσ

1

h̄
!ATA
σ

]n−1

.

This can be straightforwardly summarised:

1

h̄
!ATA
σ = 1

h̄
〈t0σ 〉 − 1

h̄
!ATA
σ

∞∑

n=1

[
G(0)
mmσ

1

h̄
!ATA
σ

]n
=

= 1

h̄
〈t0σ 〉 + 1

h̄
!ATA
σ − 1

h̄
!ATA
σ

∞∑

n=0

[
G(0)
mmσ

1

h̄
!ATA
σ

]n
=

= 1

h̄
〈t0σ 〉 + 1

h̄
!ATA
σ − 1

h̄
!ATA
σ

(
1−G(0)

mmσ

1

h̄
!ATA
σ

)−1

.

We finally obtain:

!ATA
σ (E) = 〈t0σ 〉

(
1+ 1

h̄
G(0)
mmσ (E)〈t0σ 〉

)−1

. (4.259)

The comparison with (4.234) makes it clear that the ATA differs from the T -matrix
approximation (TMA) only in the fact that in the ATA, the effective medium has
been replaced once more by the free, unperturbed crystal with the corresponding
atomic T-matrix:

〈t0σ 〉 =
α∑

m=1

cm
η̂mσ

1− 1
h̄
η̂mσG

(0)
iiσ

. (4.260)

(5) The Coherent Potential Approximation (CPA)

It is immediately clear that one can improve the procedure in one last way by making
it self-consistent, as under point (3) in the MPM, by replacing the free propagator
G
(0)
mmσ in the diagrams of the ATA by the full single-particle Green’s function.
The multiple-occupation corrections, as in the diagrams of the ATA, now

become somewhat more numerous, although they all have the same origins as
explained under point (4). What is new in the CPA is then the inclusion of so-called
nested diagrams (Fig. 4.17), which allow the propagating particles to be scattered
between two scattering events at the same site m to all the other sites. Difficulties
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Fig. 4.17 Example of a
nested diagram

arise again due to the diagonal terms m = n = o, which must be subtracted off.
This includes for example all of the diagrams in the second column. We again sum
the individual columns separately.

1st column We find the same result as in the ATA, except that the free propagator
must be replaced by the full propagator:

1

h̄
!(1)
σ = 1

h̄

α∑

m=1

cmη̂mσ

(
1− 1

h̄
η̂mσ 〈Giiσ 〉

)−1

. (4.261)

2nd column These diagrams are evidently obtained when we interpret !σ as a
functional of the propagator γσ , which is defined as follows:

= 〈Gmmσ 〉 + 1

h̄
〈Gmmσ 〉!σ [γσ ]γσ . (4.262)

The second column then makes the contribution:

−1

h̄

(
!σ [γσ ] −!σ [〈Gmmσ 〉]

)
.

The first term in (4.262) no longer appears. Corresponding diagrams again have to
be extracted (Fig. 4.18).

3rd column

− 1

h̄
!σ [γσ ]〈Gmmσ 〉1

h̄
!σ [γσ ]. (4.263)

...

n-th column

−1

h̄
!σ [γσ ]

(
〈Gmmσ 〉1

h̄
!σ [γσ ]

)n−2

. (4.264)
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Fig. 4.18 Complete diagram corrections to the modified propagator method which lead to the CPA

We then obtain all together for the desired self-energy !σ [〈Gmnσ 〉]:

!σ [〈Gmmσ 〉] = !(1)
σ −!σ [γσ ] +!σ [〈Gmmσ 〉]+

+!σ [γσ ] −
∞∑

n=0

(
1

h̄
!σ [γσ ]〈Gmmσ 〉

)n
!σ [γσ ].

This means in the first instance

!(1)
σ =

(
1− 1

h̄
!σ [γσ ]〈Gmmσ 〉

)−1

!σ [γσ ] (4.265)

which can be resolved in terms of !σ [γσ ]:

!σ [γσ ] = !
(1)
σ

1+ 1
h̄
〈Gmmσ 〉!(1)

σ

. (4.266)
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Using (4.262), we rearrange further:

!σ [γσ ] =
!
(1)
σ

(
1+ γσ

1
h̄
!σ [γσ ]

)

1+ γσ
1
h̄
!σ [γσ ] + γσ

1
h̄
!
(1)
σ

�⇒ !σ [γσ ]
(

1+ γσ
1

h̄
!σ [γσ ]

)
= !(1)

σ .

(4.267)

Now we insert (4.261):

!σ [γσ ] =
α∑

m=1

cmη̂mσ

[(
1− 1

h̄
η̂mσ 〈Giiσ 〉

)(
1+ γσ

1

h̄
!σ [γσ ]

)]−1

=

=
α∑

m=1

cmη̂mσ

[
1+ γσ

1

h̄
!σ [γσ ] − 1

h̄
η̂mσ γσ

]−1

.

(4.268)
This is a self-consistent functional equation for the self-energy as a functional of γσ .
The result we actually desired,

!CPA
σ (E) ≡ !σ [〈Gmmσ (E)〉], (4.269)

is obtained by taking the limit

γσ �⇒ 〈Gmmσ 〉.

This yields the following expression:

!CPA
σ (E) =

∑

m

cm
η̂mσ

1− 1
h̄
〈Giiσ 〉

(
η̂mσ −!CPA

σ

) . (4.270)

This result can again be rearranged:

1

h̄
!CPA
σ 〈Giiσ 〉 =

∑

m

cm

(

−1+ 1+ 1
h̄
〈Giiσ 〉!CPA

σ

1− 1
h̄
〈Giiσ 〉

(
η̂mσ −!CPA

σ

)

)

.

With
∑

m cm = 1, it follows that:

0 =
(

1+ 1

h̄
!CPA
σ 〈Giiσ 〉

)∑

m

cm

(

1− 1

1− 1
h̄
〈Giiσ 〉

(
η̂mσ −!CPA

σ

)

)

.

This leads finally to
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0 =
α∑

m=1

cm
ηmσ −!CPA

σ (E)− T0

1− 1
h̄
〈Giiσ (E)〉

(
ηmσ −!CPA

σ (E)− T0
) . (4.271)

This self-consistent functional equation for the self-energy !CPA
σ (E) in the CPA

is identical to (4.238), because of

〈Giiσ (E)〉 = G
(0)
iiσ (E −!CPA

σ (E)). (4.272)

Due to the single-site nature of the approximation, it is likewise independent of
wavenumbers.

We can see that this formally rather simple solution contains three essential
parameters:

1. The concentrations of the alloy components,
2. the atomic levels ηmσ , and
3. the density of states ρ0(E) of the unperturbed, pure crystal.

We require ρ0(E) for the determination of the free propagator:

G
(0)
iiσ (E) =

+∞∫

−∞
dx

ρ0(x)

E − x
. (4.273)

The considerations in this section have demonstrated that the CPA, among all the
methods which make use of the single-site aspect, is by far the most successful.

4.3.5 Applications

The most obvious application of the CPA concerns a binary alloy containing the
atomic species A and B, which are present in the alloy at the concentrations cA,
cB = 1 − cA. A typical result is sketched in Fig. 4.19. The pure crystals should
exhibit the same densities of states, which have the appearance of a church tower,
whose centres of gravity however lie at different energies. If they are sufficiently far
apart, this leads for medium concentrations to a band splitting in the A–B alloy and
to clear-cut deformations of the density of states.

The field of applications of the CPA however extends far beyond just the real
alloys. At present, it has matured into a standard procedure in general many-body
theory, and especially in connection with the concept of the

alloy analogy.
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Fig. 4.19 A typical CPA
solution for the density of
states of a binary A–B alloy
where the pure alloying
partners A and B have the
same densities of states but
with shifted centres of
gravity. cA and cB = 1− cA
are the concentrations of the
alloying partners A and B,
resp

Think of some electronic many-body model such as for example the Hubbard
model (2.117). It is solved in the atomic limit, i.e. for the case that all the N energy-
band states fall within an N -fold degenerate level T0. In the Green’s function,

G0σ (E) = h̄

p∑

m=1

αmσ

E − ηmσ
, (4.274)

then, the ηmσ are the p quasi-particle levels into which T0 splits owing to the
interactions. The spectral weights ασ give the degree of degeneracy of the quasi-
particle levels:

Nαmσ : degeneracy of the level ηmσ .

This situation however corresponds to that of a fictitious alloy having p components
with the

concentrations: α1σ , α2σ ,. . .,αpσ

and the

atomic levels: η1σ , η2σ , . . . ,ηpσ .

These quantities are known. One can insert them into the CPA formula (4.271) and
compute the self-energy !CPA

σ (E) for a crystal lattice defined by ρ0(E). Thus, for
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example, the atomic solution (4.11) of the Hubbard model transforms in this way to
that of a binary alloy with the atomic levels T0 and T0 + U and the concentrations
(1− 〈n−σ 〉) and 〈n−σ 〉.

This alloy analogy has proven to be an extraordinarily powerful method of many-
body theory. In Sect. 4.5.3, we describe a concrete example of an application.

4.4 Spin Systems

In Sect. 2.4.2, we introduced the Heisenberg model as a realistic description of
magnetic insulators. In spite of the simple structure of its Hamiltonian (2.203),
the associated many-body problem has up to now no exact solution. We must still
rely on approximations. We have already encountered one of these in the form of
the spin-wave approximation (2.243), which however is limited conceptually to the
low-temperature range.

The two-spin system calculated in Sect. 3.3.3 could be solved with mathematical
rigour and thus serves as a valuable demonstration example for abstract concepts in
many-body theory. For conclusive statements about a macroscopic ferromagnet, it
is of course insufficient.

4.4.1 The Tyablikow Approximation

As a model for a ferromagnetic insulator, we consider a system of localised magnetic
moments described by spin operators Si , Sj in a homogeneous, constant magnetic
field B0 = μ0H :

H = −
∑

i, j

Jij

(
S+i S

−
j + Szi S

z
j

)
− 1

h̄
gJμBB0

∑

i

Szi . (4.275)

We assume that the spin system orders ferromagnetically below a critical tempera-
ture TC, and we are thus primarily interested in its magnetisation:

M(T, B0) = 1

V
gJ
μB

h̄

∑

i

〈Szi 〉T ,B0 . (4.276)

To calculate it, we need the thermodynamic expectation value of the spin operator
Szi , which, owing to translational symmetry, will be independent of the lattice site:

〈Szi 〉T ,B0 ≡ 〈Sz〉T ,B0 . (4.277)
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Which Green’s function can deliver the quantity we are seeking? If we initially for
simplicity assume that the localised spins have a magnitude of

S = 1

2
, (4.278)

Then the generally-valid relation

S±i S
∓
i = h̄2S (S + 1)± h̄Szi − (Szi )

2 (4.279)

simplifies to

S±i S
∓
i = h̄(h̄S ± Szi )

(

(Szi )
2 = h̄2

4
1

)

. (4.280)

Clearly, then, the following retarded commutator Green’s function is a good starting
point:

Gret
ij (t, t

′) = ⟪S+i (t); S−j (t ′)⟫
ret
. (4.281)

We first set up the equation of motion of the energy-dependent Fourier transform
and make use of the following commutators:

[
S+i , S

−
j

]

− = 2h̄δij S
z
i , (4.282)

[S+i , H ]− = −2h̄
∑

m

Jmi (S
+
mS

z
i − S+i S

z
m)+ gJμBB0S

+
i . (4.283)

For the derivation of the last relation, we were able to make use of Jii = 0. The
equation of motion for Gret

ij (E) is then given by:

(E − gJμBB0)G
ret
ij (E) = 2h̄2δij 〈Szi 〉+

+ 2h̄
∑

m

Jim

(
⟪S+i S

z
m; S−j ⟫

ret

E
− (4.284)

−⟪S+mSzi ; S−j ⟫
ret

E

)
.

Due to the higher-order Green’s functions on the right-hand side, this equation
cannot be directly solved. A simple approximation consists of carrying out a
Hartree-Fock decoupling (4.21) on the higher-order Green’s functions. Because of
〈S+i 〉 ≡ 0 (conservation of spin!), this means that:
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⟪S+i S
z
m; S−j ⟫

ret

E
−−→
i �=m 〈Sz〉Gret

ij (E),

⟪S+mSzi ; S−j ⟫
ret

E
−−→
i �=m 〈Sz〉Gret

mj (E).

(4.285)

Then the equation of motion (4.284) simplifies to:
(
E − gJμBB0 − 2h̄J0〈Sz〉

)
Gret
ij (E) =

= 2h̄2δij 〈Sz〉 − 2h̄〈Sz〉
∑

m

JimG
ret
mj (E).

(4.286)

J0 is defined in (2.207). This equation can be readily solved by transforming to
wavenumbers ((2.212) and (2.220)):

Gret
q (E) =

2h̄2〈Sz〉
E − E(q)+ i0+

. (4.287)

The poles of the Green’s function correspond to the elementary excitations of the
spin system,

E(q) = gJμBB0 + 2h̄〈Sz〉(J0 − J (q)), (4.288)

which are found to be temperature dependent, owing to 〈Sz〉. For T → 0, the
approximation (4.285) is exact, and (4.288) then agrees with (2.232) because of
〈Sz〉T=0 = h̄S (ferromagnetic saturation).

For the complete determination of the quasi-particle energies E(q), we still
require a functional equation for 〈Sz〉, which we obtain by making use of the spectral
theorem (3.157) and the spectral density

Sq(E) = − 1

π
ImGret

q (E) = 2h̄2〈Sz〉δ(E − E(q)). (4.289)

It can readily be verified by using the associated anticommutator Green’s function
that the constant D in the spectral theorem is to be chosen as

D ≡ 0 for B0 ≥ 0+. (4.290)

We thus find:

〈
S−j S

+
i

〉
= 1

N

∑

q

e−iq·(Ri−Rj )
1

h̄

+∞∫

−∞

Sq(E)dE

eβE − 1
=

= 2h̄〈Sz〉 1

N

∑

q

e−iq·(Ri−Rj )

eβE(q) − 1
.

(4.291)
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Due to the stipulated limitation to S = 1
2 , we can relate 〈Sz〉 directly to 〈S−i S+i 〉

via (4.280),

〈Sz〉 = h̄S − 1

h̄
〈S−i S+i 〉,

from which the following implicit functional equation for 〈Sz〉 results:

〈Sz〉 = h̄S

1+ 2
N

∑

q

(
eβE(q) − 1

)−1
. (4.292)

Since according to (4.288), the quasi-particle energies E(q) still contain 〈Sz〉, a
general analytic solution is not possible. A numerical solution however poses no
problems with a computer.

As the next step, we want to carry out an explicit determination of the Curie
temperature TC from (4.292). To this end, we consider the special case

B0 = 0+, T <→ TC ⇐⇒ 〈Sz〉 >→ 0,

in which the quasi-particle energies E(q) become very small, so that the denomina-
tor of (4.292) can be expressed in a series expansion.

〈Sz〉 � h̄S

⎛

⎝ 2

N

∑

q

1

1+ βCE(q)+ · · · − 1

⎞

⎠

−1

�

� h̄SβC

⎛

⎝ 2

N

∑

q

1

2〈Sz〉h̄(J0 − J (q))

⎞

⎠

−1

.

The Curie temperature

kBTC =
⎧
⎨

⎩
1

NS

∑

q

1

h̄2(J0 − J (q))

⎫
⎬

⎭

−1

(4.293)

depends of course on the one hand on the exchange integrals, but on the other, it
also depends upon the lattice structure, which influences the summation over q. The
latter can be carried out without difficulties when the exchange integrals are known
and the lattice is not too complicated.

One can also show that for low temperatures, the Tyablikow approxima-
tion (4.292) correctly reproduces Bloch’s T 3/2 law,

1− 〈Sz〉
h̄S

∼ T 3/2; (4.294)
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this can be taken as a retroactive validation of the decoupling (4.285), which
initially appears somewhat arbitrary. All together, the Tyablikow approximation
yields acceptable results over the whole range of temperatures 0 ≤ T ≤ TC.

Finally, we compute the internal energy U of the spin system as the thermody-
namic expectation value of the Hamiltonian:

U = 〈H 〉 = −
∑

i, j

Jij

(
〈S+i S−j 〉 + 〈Szi Szj 〉

)
− 1

h̄
gJμBB0N〈Sz〉. (4.295)

The terms 〈S+i S−j 〉 and 〈Sz〉 have already been expressed in terms of the spectral
density Sq(E). We must still discuss 〈Szi Szj 〉. We start with the operator identities

S−i S
z
i =

h̄

2
S−i ; S−i S

+
i = h̄2S − h̄Szi , (4.296)

which hold for S = 1
2 , in order to calculate

S−i
[
S+i , H

]
− =

= −2h̄
∑

m

Jmi

{
h̄

2
S+mS−i − h̄2SSzm + h̄Szi S

z
m

}
+ gJμBB0 (h̄

2S − h̄Szi )

with (4.283). This means that:

−
∑

i, j

Jij 〈Szi Szj 〉 =
1

2h̄2

∑

i

〈S−i [S+i , H ]−〉+

+ 1

2

∑

i, j

Jij 〈S+i S−j 〉 − h̄SJ0N〈Sz〉−

− 1

2h̄2 gJμBB0N
(
h̄2S − h̄〈Sz〉

)
.

We denote the ground-state energy of the ferromagnet (2.224) as E0,

E0 = −N J0h̄
2S2 −NgJμBB0S,

and then find with (4.295) the internal energy U :

U = −1

2

∑

i, j

Jij 〈S+i S−j 〉 +
1

2h̄2

∑

i

〈S−i [S+i , H ]−〉+

+NSJ0 (〈S−i S+i 〉 − h̄2S)− 1

2
gJμBB0NS+
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+ 1

2h̄
gJμBB0N〈Sz〉 − 1

h̄
gJμBB0N〈Sz〉 =

= E0 + 1

2h̄2

∑

i

〈S−i [S+i , H ]−〉+

+ 1

2

∑

i, j

{
(J0δij − Jij )+ δij

1

h̄2
gJμBB0

}
〈S−j S+i 〉.

Here, we have used the normalisation Jii = 0 several times. After Fourier
transformation to wavenumbers, the curly brackets contain just the spin-wave
energy h̄ω(q) of the S = 1/2 ferromagnet (2.232):

U = E0 + 1

2h̄3

∑

q

h̄ω(q)

+∞∫

−∞
dE

Sq(E)

eβE − 1
+

+ 1

2h̄2

∑

i

〈S−i [S+i , H ]−〉.
(4.297)

We can now attempt to express the last term, also, in terms of the spectral density
Sq(E):

1

2h̄2

∑

i

〈S−i [S+i , H ]−〉 =

= ih̄

2h̄2

∑

i

(
∂

∂t
〈S−i (t ′)S+i (t)〉

)

t=t ′
=

= ih̄

2h̄2

∑

q

⎛

⎝1

h̄

∂

∂t

+∞∫

−∞
dE

Sq(E)

eβE − 1
exp

(
− i

h̄
E(t − t ′)

)⎞

⎠

t=t ′
=

= 1

2h̄3

∑

q

+∞∫

−∞
dE

ESq(E)

eβE − 1
.

(4.298)

Here, we have made use of the equation of motion for time-dependent Heisenberg
operators (3.27) and again of the spectral theorem (3.157). Thus, the internal energy
U is in the end completely determined by the spectral density Sq(E):

U = E0 + 1

2h̄3

∑

q

+∞∫

∞
dE

(E + h̄ω(q))

eβE − 1
Sq(E). (4.299)



286 4 Systems of Interacting Particles

If we now insert the expression (4.289) for the spectral density, then the integration
over energy can easily be performed. For the S = (1/2) ferromagnet, we then have:

U = E0 + 1

h̄
〈Sz〉

∑

q

E(q)+ h̄ω(q)

exp(βE(q))− 1
. (4.300)

Using the generally-valid expression (3.217), we can find from U(T , V ) the free
energy F(T , V ), which then determines the complete thermodynamics of the S =
1/2 ferromagnet.

Thus far, we have limited our considerations to the special case of S = 1/2, since
it permits certain simplifications in comparison to the general case of S ≥ 1/2. Our
goal in fact is the determination of 〈Sz〉 from a suitably chosen Green’s function.
Due to (4.280), this is immediately possible for S = 1/2 with the function (4.281).
For S > 1/2, however, instead of (4.280) the relation (4.279) must be averaged:

〈S−i S+i 〉 = h̄2S(S + 1)− h̄〈Szi 〉 −
〈
(Szi )

2
〉
. (4.301)

The term 〈(Szi )2〉 causes difficulties. It can not be expressed by the Green’s
function (4.281). We therefore choose as our starting point an entire set of Green’s
functions:

G
(n)
ij (E) = ⟪S+i ;

(
Szj

)n
S−j ⟫E; n = 0, 1, 2, . . . , 2S − 1. (4.302)

Since the operator to the left of the semicolon is the same as in the case of S = 1/2,
which we discussed above, the equation of motion is changed only in terms of its
inhomogeneity. If we accept the same decouplings as in (4.285), then we can write
the solution for the Green’s function (4.302) directly:

G(n)
q (E) = h̄

〈[S+i ,
(
Szi

)n
S−i ]−

〉

E − E(q)
. (4.303)

The quasi-particle energies E(q) are exactly the same as in (4.288). From the
spectral theorem, it then follows that:

〈(
Szi

)n
S−i S

+
i

〉 = 〈[S+i ,
(
Szi

)n
S−i ]−

〉
ϕ(S), (4.304)

ϕ(S) = 1

N

∑

q

(
eβE(q) − 1

)−1
. (4.305)

For the expectation value on the left-hand side of (4.304) we can write with (4.301):

〈(
Szi

)n
S−i S

+
i

〉 = h̄2S(S + 1)
〈(
Szi

)n〉−
− h̄

〈(
Szi

)n+1
〉
−
〈(
Szi

)n+2
〉
.

(4.306)
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We require this equation only for n = 0, 1, . . . , 2S − 1, since the operator identity
valid in spin space,

+S∏

mS=−S
(Szi − h̄mS) = 0, (4.307)

guarantees the termination of the series of Eq. (4.306). For n = 2S − 1, the highest
power of Szi is given by 2S + 1. This can however be expressed in terms of lower
powers of Szi by solving the relation (4.307) for (Szi )

2S+1,

〈(
Szi

)2S+1
〉
=

2S∑

n=0

αn(S)
〈(
Szi

)n〉
. (4.308)

The numbers αn(S) can for a given spin S be readily derived from (4.307).
As our next step, we prove using complete induction the conjecture

S+i
(
Szi

)n = (Szi − h̄
)n
S+i . (4.309)

For n = 1, due to

S+i S
z
i = − [Szi , S+i

]
− + Szi S

+
i =

= −h̄S+i + Szi S
+
i =

(
Szi − h̄

)
S+i ,

the conjecture is correct. The extrapolation from n to n+ 1 can be made as follows:

S+i
(
Szi

)n+1 = S+i
(
Szi

)n
Szi =

= (Szi − h̄
)n
S+i S

z
i =

= (Szi − h̄
)n (

Szi − h̄
)
S+i =

= (Szi − h̄
)n+1

S+i .

Thus we have proven (4.309). We now use this relation to further evaluate the
commutator in (4.304):

[
S+i ,

(
Szi

)n
S−i
]
− =

(
Szi − h̄

)n
S+i S

−
i −

(
Szi

)n
S−i S

+
i =

= {(Szi − h̄
)n − (Szi

)n}
S−i S

+
i + 2h̄

(
Szi − h̄

)n
Szi .

(4.310)

After averaging and insertion of (4.301), we obtain an expression which – together
with (4.306) – converts (4.304) into the following system of equations:
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h̄2S(S + 1)
〈(
Szi

)n〉− h̄
〈(
Szi

)n+1
〉
−
〈(
Szi

)n+2
〉
=

= {2h̄ 〈(Szi − h̄
)n
Szi

〉+
+
〈((
Szi − h̄

)n − (Szi
)n) (

h̄2S(S + 1)− h̄Szi −
(
Szi

)2)〉}
ϕ(S),

n = 0, 1, . . . , 2S − 1.

(4.311)

These are 2S equations, which together with (4.308) allow us to determine the (2S+
1) expectation values

〈(
Szi

)n〉, n = 1, 2, . . . , 2S + 1. This procedure is of course
very laborious for large values of S, especially since 〈Sz〉 reappears in ϕ(S) in a
complicated way; but it offers no difficulties in principle.

4.4.2 “Renormalised” Spin Waves

In Sect. 2.4.3, we introduced the concept of the spin wave starting from the fact that
the normalised one-magnon state

|q〉 = 1

h̄
√

2SN
S−(q)|S〉

is an exact eigenstate of the Heisenberg Hamiltonian with the eigenvalue

E(q) = E0 + h̄ω(q).

The linear spin-wave approximation (Sect. 2.4.4) describes a ferromagnet as a gas
of non-interacting magnons. It is based on the Holstein-Primakoff transformation
((2.235), (2.236), (2.237) and (2.238)) of the spin operators, which represents
an infinite series in the magnon occupation number, that is broken off after the
linear term. Such an approximation can, to be sure, be justified only at very low
temperatures when the magnon gas is still so rarefied that the interactions between
the magnons can be neglected. This is no longer allowed at somewhat higher
temperatures, and the ansatz (2.243) becomes untenable.

In this section, we wish to employ the method of moments, which was demon-
strated in Sect. 4.1.5 on the Hubbard model, to renormalise the spin-wave energies
by including their interactions. We start with the so-called Dyson-Maleév transfor-
mation of the spin operators:

S−i = h̄
√

2Sα+i ,

S+i = h̄
√

2S
(

1− ni

2S

)
αi, (4.312)

Szi = h̄(S − ni).



4.4 Spin Systems 289

α+i , αi are Bosonic operators; they thus fulfil the fundamental commutation
relations (1.97), (1.98) and (1.99). ni = α+i αi can be interpreted as the magnon
occupation-number operator. The transformation (4.312) has the advantage relative
to the Holstein-Primakoff transformation that no infinite series occur. The Heisen-
berg Hamiltonian contains a finite number of terms after the transformation:

H = E0 +H2 +H4, (4.313)

H2 = 2Sh̄2
∑

i, j

(
J0δij − Jij + δij

1

h̄2 gJμBB0

)
α+i αj , (4.314)

H4 = −h̄2
∑

i, j

Jij ninj + h̄2
∑

i, j

Jij α
+
i njαj . (4.315)

The term H2 describes free spin waves, whilst H4 contains the interactions between
them.

The decisive disadvantage of the transformation (4.312) consists of the fact that
S−i , S

+
i are no longer adjoint operators and H is therefore no longer Hermitian.

We shall however not treat the resulting complications here (F. J. Dyson, Phys. Rev.
102, 1217, 1230 (1956)). With

αq = 1√
N

∑

i

e−iq ·Ri αi , (4.316)

we now rewrite H in terms of wavenumbers:

H = E0 +
∑

q

h̄ω(q)α+q αq+

+ h̄2

N

∑

q1···q4

(J (q4)− J (q1 − q3))δq1+q2,q3+q4
α+q1

α+q2
αq3

αq4
.

(4.317)
h̄ω(q) again refers to the bare spin-wave energies (2.232).

We define the one-magnon spectral density:

Bq(E) = 1

2π

+∞∫

−∞
d(t − t ′) exp

(
i

h̄
E(t − t ′)

) 〈[
αq(t), α

+
q (t

′)
]

−

〉
. (4.318)

The associated spectral moments can be computed from:

M(n)
q =

〈[ [
. . . [[αq ,H ]−, H ]−, . . . , H

]

−︸ ︷︷ ︸
n-fold commutator

, α+q
]

−

〉

. (4.319)
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They are related to the spectral density via

M(n)
q = 1

h̄

+∞∫

−∞
dEEn Bq(E). (4.320)

Which ansatz should we choose for Bq(E)? Both the spin-wave result

BSW
q (E) = h̄δ(E − h̄ω(q)) (4.321)

and the Tyablikow approximation (4.289) correspond to one-pole approaches. If we
are not particularly interested in lifetime effects, then

Bq(E) = bqδ(E − h̄�(q)) (4.322)

represents a physically reasonable starting point, where bq and h̄�(q) are initially
unknown parameters. We now compute using (4.319) the first two spectral moments:

M(0)
q =

〈[
αq , α

+
q

]

−

〉
= 1. (4.323)

For the second moment, we require the following commutator:

[
αq , H

]
− = h̄ω(q)αq + h̄2

N

∑

q1···q4

{
J (q4)− J (q1 − q3)

} ·

· δq1+q2,q3+q4

(
δq,q1

α+q2
αq3

αq4
+ δqq2

α+q1
αq3

αq4

)
=

= h̄ω(q)αq + h̄2

N

∑

q3,q4

{
2J (q4)− J (q − q3)− J (q4 − q)

} ·

· α+q3+q4−qαq3
αq4

.

(4.324)
With it, we continue the calculation:

[
[αq , H ]−, α+q

]

− =

= h̄ω(q)+ h̄2

N

∑

q3,q4

{
2J (q4)− J (q − q3)− J (q4 − q)

}
α+q3+q4−q ·

· (δqq4
αq3

+ δqq3
αq4

) =

= h̄ω(q)+ 2
h̄2

N

∑

q̄

{J (q)+ J (q̄)− J (0)− J (q − q̄)}α+q̄ αq̄ .

(4.325)
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The second spectral moment is then found as:

M(1)
q = h̄ω(q)+ 2

h̄2

N

∑

q̄

{J (q)+ J (q̄)− J (0)− J (q − q̄)}〈α+q̄ αq̄〉. (4.326)

The initially unknown parameters in the spectral-density approach (4.322) are
uniquely determined by M(1)

q and M(2)
q via (4.320):

bq ≡ h̄, (4.327)

h̄�(q) = h̄ω(q)+ 2
h̄2

N

∑

q̄

J (q)+ J (q̄)− J (0)− J (q − q̄)

exp(βh̄�(q̄))− 1
. (4.328)

For the last equation, we have made use of the spectral theorem:

〈α+q̄ αq̄〉 = 1

h̄

+∞∫

−∞
dE

Bq̄(E)

exp(βE)− 1
= {exp(βh̄�(q̄))− 1}−1. (4.329)

The constantD in the general spectral theorem (3.157) is zero here, due to B0 ≥ 0+.
It is notable that the renormalised spin-wave energies (4.328), calculated using the
conceptually simple method of moments, prove to be completely equivalent to those
from the well-known Dyson spin-wave theory. The method of moments here again
distinguishes itself as a both simple and powerful procedure for finding solutions in
many-body theory.

The result in (4.328) can readily be further evaluated for specific systems. The
exchange integrals Jij depend only on the lattice spacings |Ri − Rj |. Let zn be the
number of magnetic atoms (spins) in the n-th neighbour shell relative to a chosen
atom, and Jn the exchange integral between this atom and its n-th neighbour, and
further let

γ (n)q = 1

zn

∑

�n

eiq·R�n , (4.330)

where the sum runs over all the magnetic lattice sites of the n-th shell; then we can
cast the renormalised spin-wave energies in the following form:

h̄�(q) = 2S
∑

n

(
1− γ (n)q

)
znJn (1− An(T )), (4.331)

An(T ) = 1

NS

∑

p

1− γ
(n)
p

exp(βh̄�(p))− 1
. (4.332)
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The prototype of a ferromagnetic Heisenberg spin system is EuO, of which it is
known that only exchange with nearest and next-nearest neighbours is significant
(J. Als Nielsen et al., Phys. Rev. B 14, 4908 (1976)):

J1

kB
= 0.625K; J2

kB
= 0.125K. (4.333)

The magnetic 4f moments of EuO are strictly localised on the Eu2+ lattice sites.
They thus occupy a face-centered cubic lattice structure. The summation in (4.332)
therefore runs over the first f.c.c. Brillouin zone and can be carried out exactly, so
that (4.331) can be self-consistently solved for all temperatures. With the spin-wave
energies h̄�(q), we can calculate the magnetisation of the system via

〈Sz〉 = h̄S − h̄

N

∑

q

{exp(βh̄�(q))− 1}−1 (4.334)

and compare it with experiment. The result (4.334) should be applicable in the
temperature range 0 ≤ T ≤ 0.8 · TC (TC(EuO) = 69.33 K). From the theory of
phase transitions, we know that the magnetisation of a ferromagnet in its critical
region 0.9 · TC ≤ T ≤ TC can be described by a power law (J. Als Nielsen et al.,
Phys. Rev. B. 14, 4908 (1976)):

〈Sz〉 = 1.17 · S ·
(

1− T

TC

)0.36

. (4.335)

Combining (4.334) and (4.335) and “fitting” the small transition region (0.8TC ≤
T ≤ 0.9TC) correctly, we find, as shown in Fig. 4.20, a practically quantitative
agreement with the experiments (data points!).

Fig. 4.20 The spontaneous
magnetisation of EuO as a
function of the temperature,
calculated by the method of
moments. The points are
experimental data
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4.4.3 Exercises

Exercise 4.4.1 Show that the Tyablikow approximation for the Heisenberg
model obeys Bloch’s T 3/2 law,

1− 〈Sz〉
h̄S

∼ T 3/2.

You can make use of the fact that for small wavenumbers |q|, the exchange
integrals can be approximated by

J0 − J (q) = D

2Sh̄2 q
2.

Exercise 4.4.2 For a system of localised spins with S = 1, derive within
the framework of the Heisenberg model the following implicit functional
equation:

〈Sz〉S=1 = h̄
1+ 2�(1)

1+ 3�(1)+ 3�2(1)
,

�(S) = 1

N

∑

q

[exp(βE(q))− 1]−1,

E(q) = 2h̄〈Sz〉(J0 − J (q)).

Use the Tyablikow approximation for the Green’s function defined in
Sect. 4.3.2:

G
(n)
ij (E) = ⟪S+i ;

(
Szj

)n
S−j ⟫

ret

E
; n = 1, 2.

Compute also
〈
(Sz)2

〉
S=1.

Exercise 4.4.3 Verify the following commutators for spin operators:

1.

[
(S−i )

n, Szi

]
− = nh̄(S−i )

n; n = 1, 2, . . .

(continued)



294 4 Systems of Interacting Particles

Exercise 4.4.3 (continued)
2.

[
(S−i )

n,
(
Szi

)2]

− = n2h̄2(S−i )
n + 2nh̄Szi

(
S−i
)n ; n = 1, 2, . . .

3.

[
S+i , (S

−
i )

n
]
− =

[
2nh̄Szi + h̄2n(n− 1)

] (
S−i
)n−1 ; n = 1, 2, . . .

Exercise 4.4.4 Verify the following operator identity:

(S−i )
n (S+i )

n =
n∏

p=1

[
h̄2S(S + 1)− (n− p)(n− p + 1)h̄2

−(2n− 2p + 1)h̄Szi −
(
Szi

)2
]
.

Exercise 4.4.5 Find a closed system of equations for the spontaneous mag-
netisation 〈Sz〉 of a S ≥ 1/2 spin ensemble, using the retarded Green’s
functions

G
(n)
ij (E) = ⟪S+i ; (S−j )n+1

(
S+j
)n
⟫

ret

E
; n = 0, 1, . . . , 2S − 1.

Solve the equation of motion by employing the Tyablikow approximation
and use some of the results of Exercises 4.4.3 and 4.4.4. Demonstrate the
equivalence of the above system of Green’s functions to that in (4.302) (see
Exercise 4.4.2) explicitly for S = 1.

4.5 The Electron-Magnon Interaction

We have already mentioned in a previous section that there are interesting analogies
between the lattice vibrations treated in Sect. 2.2 (phonons) and the magnons
introduced in Sect. 2.4.3. Just as the electron-phonon interaction (Sect. 2.3) leads
to a series of spectacular phenomena – one only need to think of superconductivity
–, so the analogous electron-magnon interaction also has interesting consequences.
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This is true in particular for those systems in which the magnetic and electronic
properties are dominated by electrons from different groups. This, again, is typical
of compounds of which rare earths are components. They are therefore the subject
of the considerations in the following section.

4.5.1 Magnetic 4f Systems (s-f-Model)

The term 4f system refers to a solid whose electronic properties are due essentially
to the existence of partially-filled 4f shells. These are thus compounds whose
components include the so-called rare earths. The electron configuration of a neutral
rare-earth atom corresponds to the stable noble gas configuration of xenon plus
additional contributions from the 4f , 6s, and often also the 5d electrons:

[RE] = [Xe](4f)n(5d)m(6s)2; (0 ≤ n ≤ 14; m = 0, 1).

In the Periodic Table, the rare earths follow the element lanthanum (La) and are
distinguished from it and from each other by the successive filling of the 4f shell,
i.e. by the number n of their 4f electrons. In condensed matter, the 4f systems
can be insulators, semiconductors, and metals; the rare-earth ions typically exhibit
a valence state of 3+,

RE −→ (RE)3+ + {(6s)2 + 4f 1},

whereby the rare-earth atom gives up its two 6s electrons and one of the 4f
electrons. In insulators, e.g. NdCl3, these three electrons participate in the formation
of chemical bonds, whilst in metallic 4f systems, e.g. Gd, they represent quasi-free
conduction electrons. There are a few exceptions to this rule. Ce and Pr can also be
tetravalent, Sm, Eu, Tm, and Yb can also be divalent in certain compounds.

An essential property of the 4f systems is the strict localisation of the 4f
electrons. The 4f shell is strongly shielded against influences from the environment
by the filled electronic shells lying further out in the atom (5s, 5p), so that even
in complicated materials, the 4f wavefunctions of neighbouring rare-earth ions
have practically no overlap. Among other things, this has the result that even in
the solid, the 4f shell can be described well by Hund’s rules from atomic physics.
If – according to these rules – the 4f electronic angular momenta couple to a
total angular momentum J �= 0, then the incompletely filled 4f shell produces
a permanent magnetic moment, which is likewise strictly localised at the rare-
earth site. It is thus not surprising that in certain 4f systems, the exchange
interaction couples these permanent magnetic moments and produces a collective
magnetic ordering, e.g. ferromagnetic order, below a critical temperature which is
a characteristic of the material. In this case, we refer to a magnetic 4f system.
Prototypes of this group are the Europium chalcogenides EuX (X = O, S, Se, Te);
and the element Gd. The EuX are insulators or semiconductors, whilst Gd is a metal.
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The fact that the electronic and magnetic properties of the 4f systems are
produced by two different types of electrons leads to interesting mutual effects.
Thus, one observes for example in ferromagnetic systems a drastic temperature
dependence of the structure of the conduction bands which is determined by the state
of magnetisation of the 4f moments. On the other hand, the system of moments
reacts sensitively to changes in the charge-carrier density in the conduction band,
which can be produced e.g. by doping with suitable impurities.

The theoretical model with which the magnetic 4f systems are to be described is
completely uncontroversial. It is the s-f model, which we have already introduced
in (2.206) and will discuss here in more detail. This model is defined by the
following Hamiltonian:

H = Hs +Hss +Hf +Hsf . (4.336)

Hs represents the kinetic energy of the conduction electrons and their interactions
with the periodic lattice potential:

Hs =
∑

ijσ

(Tij − μδij ) a
+
iσ ajσ =

∑

kσ

(ε(k)− μ)a+
kσ
akσ . (4.337)

This corresponds to the operator H0 from Eq. (3.190) in Sect. 3.3.1. The symbols
in (4.337) have the same meanings as in (3.190).
Hss describes the Coulomb interactions of the conduction electrons, which we

for simplicity assume to be strongly shielded, so that they will be of the Hubbard
type:

Hss = 1

2
U
∑

i,σ

niσni−σ . (4.338)

In formulating Hs and Hss , we have presumed that the conduction band is a so-
called s band, which can contain at most two electrons per lattice site.

The subsystem of the magnetic 4f moments can be very realistically described
by the Heisenberg model (2.203), owing to their strict localisation:

Hf = −
∑

i,j

JijSi · Sj . (4.339)

The coupling between the conduction electrons and the 4f electrons is now of
decisive importance; it is described as an intra-atomic exchange interaction, i.e. a
local interaction between the spins σ of the conduction electrons and the 4f spin Si :

Hsf = −g
∑

i

σ i · Si . (4.340)
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Formally, this operator has the same form asHf , except that one 4f spin is replaced
by the conduction electron spin, and the double sum is restricted to its diagonal
(intra-atomic) terms. g is here the corresponding s-f exchange constant. For practical
purposes, the compact notation in (4.340) is inopportune. One should rather use the
formalism of second quantisation for the electronic spins. We therefore transform
the spin operators as in (4.104) and (4.105) to creation and annihilation operators:

1

h̄
σ zi =

1

2

∑

σ

zσ niσ ; (z↑ = +1; z↓ = −1), (4.341)

1

h̄
σ+i = a+i↑ai↓, (4.342)

1

h̄
σ−i = a+i↓ai↑. (4.343)

The s-f interaction then appears as follows:

Hsf = −1

2
gh̄
∑

i,σ

(
zσ S

z
i niσ + Sσi a

+
i−σ aiσ

)
, (4.344)

where we have used the abbreviation

S
↑
i ≡ S+i = Sxi + iSyi ; S

↓
i ≡ S−i = Sxi − iSyi . (4.345)

The interaction is thus composed of two parts, a diagonal term between the z

components of the spin operators involved, and a non-diagonal term, which clearly
describes spin exchange processes between the two interaction partners. It is found
that it is precisely these spin-flip terms which have a significant influence on the
structure of the conduction band.

The s-f model (4.336) has proved to be extraordinarily realistic for describing
the magnetic 4f systems. It however defines a truly non-trivial many-body problem
which cannot be solved in the general case. One can learn much from two limiting
cases, which we shall discuss in the next sections.

4.5.2 The Infinitely Narrow Band

We start by disregarding the dispersion relation (k dependence) of the energy band
states; i.e. as a thought experiment, we allow the lattice constant to become so large
that the conduction band becomes degenerate and collapses into a single level T0.
From the model Hamiltonian (4.336), we then obtain:

Ĥ = (T0 − μ)
∑

σ

nσ + 1

2
U
∑

σ

nσ n−σ − 1

2
gh̄
∑

σ

(zσ S
znσ + Sσ a+−σ aσ ).

(4.346)
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Because of Jii = 0,Hf is zero in this limit. However, we wish to continue to assume
that the localised spin system orders ferromagnetically, i.e. below TC, it exhibits a
finite magnetisation 〈Sz〉. 〈Sz〉 cannot of course be derived self-consistently from
Ĥ , and we therefore treat it as a parameter. This will become clear later.

The many-body problem associated with Ĥ can be solved exactly with some
effort. We define the following operator combinations,

dσ = zσ S
zaσ + S−σ a−σ , (4.347)

Dσ = zσ S
zn−σ aσ + S−σ nσ a−σ , (4.348)

pσ = n−σ aσ , (4.349)

and compute the commutators with them:

[
aσ , Ĥ

]
− = T0aσ − 1

2
gh̄dσ + Upσ , (4.350)

[
dσ , Ĥ

]
− =

=
(
T0 + 1

2
gh̄2
)
dσ − 1

2
gS(S + 1)h̄3aσ +

(
U − gh̄2)Dσ , (4.351)

[
Dσ , Ĥ

]
− =

(
T0 + U − 1

2
gh̄2
)
Dσ − 1

2
gS(S + 1)h̄3 pσ , (4.352)

[
pσ , Ĥ

]
− = (T0 + U)pσ − 1

2
gh̄Dσ . (4.353)

For the following four Green’s functions,

Gaσ (E) = ⟪aσ ; a+σ ⟫E , (4.354)

Gdσ (E) = ⟪dσ ; a+σ ⟫E , (4.355)

GDσ (E) = ⟪Dσ ; a+σ ⟫E , (4.356)

Gpσ (E) = ⟪pσ ; a+σ ⟫E , (4.357)

we can readily work out the equations of motion by making use of the above
commutators:

(E − T0 + μ)Gaσ (E) = h̄− h̄

2
gGdσ (E)+ UGpσ (E), (4.358)

(

E − T0 + μ− h̄2

2
g

)

Gdσ (E) =

= h̄zσ 〈Sz〉 − h̄3

2
gS(S + 1)Gaσ (E)+ (U − gh̄2)GDσ (E), (4.359)
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(
E − T0 + μ− U + 1

2
gh̄2
)
GDσ (E) =

= −h̄2�−σ − h̄3

2
gS(S + 1)Gpσ (E), (4.360)

(E − T0 + μ− U)Gpσ (E) = h̄〈n−σ 〉 − h̄

2
gGDσ (E). (4.361)

Here, we have used the abbreviation:

h̄�σ = 〈Sσ a+−σ aσ 〉 + zσ 〈Sznσ 〉. (4.362)

Equations (4.358), (4.359), (4.360) and (4.361) form a closed system. For their
solution, we first insert (4.360) into (4.361):

(

E − T0 + μ− U − h̄4/4g2S(S + 1)

E − T0 + μ− U + h̄2/2g

)

Gpσ (E) =

= h̄〈n−σ 〉 +
h̄3

2 g�−σ
E − U + h̄2/2g − T0 + μ

.

We abridge:

E3 = T0 + U − h̄2

2
g(S + 1); E4 = T0 + U + h̄2

2
gS. (4.363)

Gpσ (E) is obviously a two-pole function:

Gpσ (E) = h̄

(E − E3 + μ)(E − E4 + μ)
·

·
[
h̄2

2
g�−σ + 〈n−σ 〉

(

E − T0 + μ− U + h̄2

2
g

)]

.

We therefore set

Gpσ (E) = h̄

(
ϑ3σ

E − E3 + μ
+ ϑ4σ

E − E4 + μ

)
(4.364)

and determine the spectral weights from:

ϑ3σ = lim
E→E3−μ

1

h̄
(E − E3 + μ)Gpσ (E) =

= 1

2S + 1
(S〈n−σ 〉 −�−σ ), (4.365)
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ϑ4σ = lim
E→E4−μ

1

h̄
(E − E4 + μ)Gpσ (E) =

= 1

2S + 1
((S + 1)〈n−σ 〉 +�−σ ). (4.366)

Then Gpσ (E) is completely determined. The sum rule

ϑ3σ + ϑ4σ = 〈n−σ 〉 (4.367)

can be employed as a consistency check. It becomes clear from (4.361) thatGDσ (E)

must have the same poles as Gpσ (E):

GDσ (E) = h̄2
(

γ3σ

E − E3 + μ
+ γ4σ

E − E4 + μ

)
. (4.368)

For the spectral weights, we find as in (4.365) and (4.366):

γ3σ = (S + 1)ϑ3σ ; γ4σ = −Sϑ4σ . (4.369)

Here again, the sum rule (= first spectral moment) is obeyed:

γ3σ + γ4σ = −�−σ . (4.370)

We now insert the results for GDσ (E) and Gpσ (E) into (4.358) and (4.359) and
solve for Gaσ (E):

(

E − T0 + μ−
h̄4

4 g
2S(S + 1)

E − T0 + μ− h̄2

2 g

)

Gaσ (E) =

= h̄

(

1−
h̄
2gzσ 〈Sz〉

E − T0 + μ− 1
2gh̄

2

)

+ UGpσ (E)−

−
1
2g
(
U − gh̄2

)
h̄

E − T0 + μ− 1
2g
GDσ (E).

(4.371)

The bracket expression on the left-hand side of the equation can be written as a
product (E − E1 + μ)(E − E2 + μ) with

E1 = T0 − h̄2

2
gS; E2 = T0 + h̄2

2
g(S + 1). (4.372)

Gaσ (E) thus evidently represents a four-pole function:

Gaσ (E) = h̄

4∑

i=1

αiσ

E − Ei + μ
. (4.373)
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We find using (4.371) and

αiσ = lim
E→Ei−μ

1

h̄
(E − Ei + μ)Gaσ (E)

the following expressions for the spectral weights:

α1σ = 1

2S + 1

{
S + 1+ zσ

h̄

〈
Sz
〉+�−σ − (S + 1) 〈n−σ 〉

}
, (4.374)

α2σ = 1

2S + 1

{
S − zσ

h̄

〈
Sz
〉−�−σ − S 〈n−σ 〉

}
, (4.375)

α3σ = ϑ3σ ; α4σ = ϑ4σ . (4.376)

Now only the Green’s function Gdσ (E) remains; it can be readily determined by
employing (4.358):

Gdσ (E) = h̄2
4∑

i=1

βiσ

E − Ei + μ
. (4.377)

For the spectral weights, we now have:

β1σ = Sα1σ ; β2σ = −(S + 1)α2σ ; β3σ = (S + 1)α3σ ; β4σ = −Sα4σ .

(4.378)

The quantity in which we are principally interested is the one-electron Green’s
function Gaσ (E) (4.373), for whose complete determination we still need the
expectation values �−σ and 〈n−σ 〉 as well as the chemical potential μ. We write
as an abbreviation

fi(T ) = 1

1+ exp[β(Ei − μ)] ; i = 1, . . . , 4; (4.379)

We can then find 〈n−σ 〉 from the one-electron spectral density by making use of the
spectral theorem:

Saσ (E) = − 1

π
ImGaσ

(
E + i0+

) = h̄

4∑

i=1

αiσ δ(E − Ei + μ). (4.380)

We immediately obtain:

〈n−σ 〉 =
4∑

i=1

αi−σ fi(T ). (4.381)
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The chemical potential μ is determined by the band occupation n(= number of
electrons per lattice site in the energy band considered):

n =
∑

σ

〈nσ 〉 =
∑

i,σ

αiσ fi(T ). (4.382)

�−σ can likewise be readily derived from the spectral theorem via the higher-order
spectral density

Sdσ (E) = − 1

π
ImGdσ

(
E + i0+

) = h̄2
4∑

i=1

βiσ δ(E − Ei + μ), (4.383)

leading to:

�−σ =
4∑

i=1

βi−σ fi(T ). (4.384)

With (4.381), (4.382) and (4.384), the spectral weights of all four Green’s functions
are completely determined.

The poles of the one-electron Green’s function Gaσ (E) represent the quasi-
particle energies of the interacting system. Due to these interactions, the Bloch band
T0, which had become a degenerate level, splits into four quasi-particle levels Ei ,
which are listed in (4.363) and (4.372). In contrast to the spectral weights αiσ , the
levels are independent of the spins, the temperature, and the band occupation.

The ↑-weights are plotted in Fig. 4.21 as functions of the band occupation n (0 ≤
n ≤ 2) as well as the renormalised magnetisation M = (S − 〈Sz〉)/S for a realistic
set of parameters (U = 2 eV; g = 0.2 eV; S = 7/2). The corresponding ↓-weights
can likewise be read off the figure by using particle-hole symmetry

α1σ (T , n) = α4−σ (T , 2− n); α2σ (T , n) = α3−σ (T , 2− n). (4.385)

The temperature dependence of αiσ results almost exclusively from the 4f mag-
netisation 〈Sz〉, which we must regard here as a parameter. This is not completely
without problems, since the moment system is naturally also influenced by the
conduction electrons via the exchange coupling (4.344). 〈Sz〉 would in fact have to
be determined self-consistently within the framework of the full model. ForHf = 0,
however, such a self-consistent calculation would yield 〈Sz〉 = 0. We can see from
the figure that for each constellation of parameters, at most three of the four levels
are in fact found; at least one of them has a vanishing spectral weight. There are
in addition a number of special cases in which additional levels are missing, e.g. at
T = 0 or for n = 0, 1, 2.

What is the significance of the spectral weights? When the interactions are
switched off, the level T0 is 2N -fold degenerate (N = number of lattice sites, the
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Fig. 4.21 The spectral weights of the exact solution of the s-f model in the limit of an infinitely
narrow band are plotted as functions of the particle density n and the renormalised magnetisation
M = (S − 〈Sz〉)/S. E1 to E4 are the quasi-particle levels

factor of 2 enters due to the two spin directions). The αiσ now determine how
the degeneracy is distributed over the quasi-particle levels when the interactions
are again switched on. αiσN is the degree of degeneracy of the (i, σ ) level. This
interpretation now suggests the application to the s-f model of the alloy analogy
introduced in Sect. 4.3.5 (CPA), in order to derive from the above atomic results
statements about the case of finite bandwidths which in fact interests us.

4.5.3 The Alloy Analogy

We imagine a fictitious alloy composed of four components. Each component is
characterised by a single level which interests us

ηmσ ≡ Em (m = 1, 2, 3, 4) (4.386)

and is statistically distributed throughout the lattice with the

concentration cmσ ≡ αmσ (T , n). (4.387)

In the case of very large lattice spacings, the level ηmσ is then all together
(cmσN)-fold degenerate. This however corresponds precisely to the situation in the
real system, in which at large spacings each quasi-particle level is (αmσN)-fold
degenerate.
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We choose as the density of states of the energy band under consideration in the
undisturbed pure crystal a simple semi-elliptical form,

ρ0(E) =

⎧
⎪⎨

⎪⎩

4

πW

√

1− 4

(
E

W

)2

when |E| ≤ W

2
,

0 otherwise,

(4.388)

and furthermore the precise values of the parameters

h̄2g = 0.2eV; U = 2eV; S = 7

2
; W = 1.17eV, (4.389)

which can be regarded as realistic for the ferromagnetic 4f insulator EuS. We put
all this into Eq. (4.271), from which we can then compute the CPA self-energy
!CPA
σ (E) for various temperatures, i.e. for corresponding 4f magnetisations, and

for various band occupations n self-consistently. With

ρσ (E) = ρ0

(
E −!CPA

σ (E)
)

(4.390)

we then find the (T , n)-dependent quasi-particle density of states. The actual
evaluation must be carried out numerically with a computer. The most noticeable
characteristic of the quasi-particle density of states is its multi-subband structure,
which in addition exhibits a distinctive (T , n) dependence. Figure 4.22 shows the
dependence on the band occupation n for three different temperatures T = 0, T =
0.8 TC, and T = TC = 16.6 K. For n < 1, the spectrum in general consists of two
low-energy and one higher-energy quasi-particle subbands. These subbands can be
roughly and intuitively classified as follows: If the σ electron (for n < 1) is moving
in the uppermost band, then it is hopping mainly over lattice sites which are already
occupied by a (−σ) electron. For this to happen, however, the Coulomb interaction
energy U must be supplied. This explains why the position of this quasi-particle
band is ca. 2 eV above the two other bands, in which the electron propagates over
empty sites. It is thus clear that the upper subband must vanish for n = 0, since then
no interaction partners exist, whilst the two lower bands must vanish for n = 2, since
then there are no empty sites. The two lower-energy bands can be distinguished as
follows: In the lowest subband, the electron is moving over lattice sites on which a
parallel 4f spin is localised; in the second subband, it has an antiparallel orientation
relative to the 4f spin. With ferromagnetic saturation at T = 0, an ↑-electron can
no longer find an antiparallel 4f spin, and the second subband therefore does not
appear at T = 0 in the ↑ spectrum. In this manner, even details of the notable
(T , n) dependence of the quasi-particle density of states ρσ (E) can be intuitively
interpreted. For n > 1, i.e. when the Bloch band is more than half filled, it is
expedient to make use of particle-hole symmetry in the interpretation of the spectra.
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Fig. 4.22 The quasi-particle density of states in the s-f model as a function of the energy for
different band occupations n, calculated using the CPA alloy analogy. Figures (a), (b) and (c)
represent three different temperatures

4.5.4 The Magnetic Polaron

There is a very informative special case of the s-f model (4.336), that of a single
electron (a test electron) in an otherwise empty conduction band, which is a
thoroughly relevant situation to ferromagnetic insulators such as Eu0 or EuS. This
problem is exactly solvable for ferromagnetic saturation, i.e. for T = 0.
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All of the information that interests us can once again be derived from the
(retarded or advanced) single-electron Green’s function:

Gijσ (E) ≡ ⟪aiσ ; a+jσ⟫E =
1

N

∑

k

Gkσ (E)e
ik·(Ri−Rj ). (4.391)

We will leave off the index “adv” or “ret” in the following, for simplicity. Three
additional, higher-order Green’s functions will be significant for this problem:

Dik,jσ (E) = ⟪Szi akσ ; a+jσ⟫E , (4.392)

Fik,jσ (E) = ⟪S−σi ak−σ ; a+jσ⟫E , (4.393)

Pik,jσ (E) = ⟪ni−σ akσ ; a+jσ⟫E . (4.394)

For the equation of motion of the function Gijσ (E), we require the commutator:

[aiσ ,H ]− =
∑

m

Timamσ + Uni−σ aiσ − h̄

2
gzσ S

z
i aiσ −

h̄

2
gS−σi ai−σ . (4.395)

This yields for the equation of motion:

∑

m

(Eδim − Tim)Gmjσ (E) =

= h̄δij + UPii,jσ (E)− h̄

2
g
(
zσDii,jσ (E)+ Fii,jσ (E)

)
.

(4.396)

As in (3.325), at this point we introduce the electronic self-energy:

⟪[aiσ ,H −Hs]−; a+jσ⟫E ≡
∑

l

!ilσ (E)Gljσ (E). (4.397)

The determination of !ilσ (E) or of its k-dependent Fourier transform !kσ (E)

solves this problem. Comparison with (4.396) shows that the self-energy is deter-
mined essentially by the higher-order Green’s functions P,D and F :

∑

l

!ilσ (E)Gljσ (E) = UPii,jσ (E)− h̄

2
g
(
zσDii,jσ (E)+ Fii,jσ (E)

)
.

(4.398)

We will now make use of our previous assumption that (T = 0, n = 0); it implies
that we can carry out all the necessary averaging processes of the Green’s functions
with the ground state |0〉, which corresponds to an electron vacuum and a magnon
vacuum. For this special case, several obvious simplifications are possible:
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Dik,jσ (E) −−−−−→
T=0,n=0

h̄SGkjσ (E), (4.399)

Pik,jσ (E) −−→
n=0

0. (4.400)

The self-energy is thus essentially fixed by the spin-flip function Fik,jσ (E). The
latter becomes particularly simple for σ =↑. Owing to

S+i |0〉 = 0 ⇐⇒ 〈0|S−i = 0, (4.401)

we have namely:

Fik,j↑(E) −−−−−→
T=0,n=0

0. (4.402)

Note that for finite band occupations, n �= 0, due to s-f coupling, the spin system
need not necessarily be ferromagnetically saturated. The conclusions in (4.399)
and (4.402) are then no longer permitted.

With (4.402), the ↑ problem can be trivially solved:

!
(0,0)
il↑ (E) ≡ −1

2
gh̄2Sδil,

!
(0,0)
k↑ (E) ≡ −1

2
gh̄2S.

(4.403)

For the retarded Green’s function, we thus have:

G
(0,0)
k↑ (E) = h̄

{
E − ε(k)+ 1

2
gh̄2S + i0+

}−1

. (4.404)

The ↑ quasi-particle energies in this special case are merely shifted by a constant
amount relative to the free Bloch energies ε(k):

E
(0,0)
↑ (k) ≡ ε(k)− 1

2
gh̄2S. (4.405)

The ↑ spectral density is given by a simple δ-function,

S
(0,0)
k↑ (E) = h̄δ

(
E − ε(k)+ 1

2
gh̄2S

)
, (4.406)

typical of a quasi-particle with an infinitely long lifetime. The quasi-particle density
of states

ρ
(0,0)
↑ (E) = 1

N

∑

k

S
(0,0)
k↑ (E) = ρ0

(
E + 1

2
gh̄2S

)
(4.407)
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Fig. 4.23 The ↑ spectral density and the ↑ quasi-particle density of states in the exact solution of
the (n = 0, T = 0) s-f model

remains undistorted relative to the free Bloch density of states

ρ0(E) = 1

N

∑

k

δ(E − ε(k)); (4.408)

it is only rigidly shifted by a constant amount (Fig. 4.23).
The ↑ spectrum thus consists of a single quasi-particle band. The CPA results

from the last sections therefore prove to be exact for this special case. Physically,
these results are simple to understand. At the temperature T = 0, the ↑ electron has
no possibility to exchange its spin with the completely parallel oriented spin system.
The spin-flip terms in the s-f exchange (4.344) are meaningless; only the diagonal
part of the s-f interaction is in effect, and it produces a relatively unimportant rigid
shift in the quasi-particle spectrum.

The situation becomes more complicated but also more interesting in the case of
the ↓ spectrum. A ↓ electron can naturally exchange its spin even at T = 0 with one
of the antiparallel localised f spins. The spin-flip terms in the s-f exchange in this
case will drastically modify the quasi-particle spectrum. We now wish to investigate
this point in more detail.

From (4.398), we have:

∑

l

!
(0,0)
il↓ G

(0,0)
lj↓ = 1

2
gh̄2SG

(0,0)
ij↓ − 1

2
gh̄F

(0,0)
ii,j↓ . (4.409)

We write the equation of motion of the spin-flip function Fik,j↓(E). For this, we
require the following commutator:

[
S+i ak↑,H

]
− =

∑

m

TkmS
+
i am↑ + US+i nk↓ak↑−

− 1

2
gh̄
(
S+i S

z
kak↑ + S+i S

−
k ak↓

)+

+ 1

2
gh̄2 (ni↑ − ni↓

)
S+i ak↑−

− gh̄2Szi a
+
i↑ai↓ak↑−

− 2h̄
∑

m

Jim
(
Szi S

+
m − SzmS

+
i

)
ak↑.

(4.410)
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The Green’s functions which result from these terms are further simplified to some
extent for (n = 0, T = 0):

⟪S+i nk↓ak↑; a+j↓⟫ −−→
n=0

0,

⟪S+i S
z
kak↑; a+j↓⟫ = −h̄δik ⟪S+i ak↑; a+j↓⟫+ ⟪SzkS+i ak↑; a+j↓⟫

−−−−−→
n=0,T=0

h̄(S − δik)F
(0,0)
ik,j↓,

⟪S+i S
−
k ak↓; a+j↓⟫ = 2h̄δik ⟪Szi ak↓; a+j↓⟫+ ⟪S−k S+i ak↓; a+j↓⟫

−−−−−→
n=0,T=0

2h̄2SδikG
(0,0)
ij↓ ,

⟪
(
ni↑ − ni↓

)
S+i ak↓; a+j↓⟫ −−→

n=0
0,

⟪Szi a
+
i↑ai↓ak↑; a+j↓⟫ −−→

n=0
0,

⟪
(
Szi S

+
m − SzmS

+
i

)
ak↑; a+j↓⟫ −−−−−→

n=0,T=0
h̄S
(
F
(0,0)
mk,j↓ − F

(0,0)
ik,j↓

)
.

We then find for the equation of motion:
(
E + 1

2
gh̄2(S − δik)

)
F
(0,0)
ik,j↓(E) =

=
∑

m

TkmF
(0,0)
im,j↓(E)− gh̄3SδikG

(0,0)
ij↓ (E)−

− 2h̄2S
∑

m

Jim

(
F
(0,0)
mk,j↓(E)− F

(0,0)
ik,j↓(E)

)
.

(4.411)

To solve it, we transform the position-dependent functions to k-space:

Gijσ (E) = 1

N

∑

k

exp
(
ik · (Ri −Rj )

)
Gkσ (E), (4.412)

Fik,jσ (E) = 1

N3/2

∑

k,q

exp
(
i
(
q ·Ri + (k − q) ·Rk − k ·Rj

))
Fkqσ (E).

(4.413)

Then, from (4.411), we obtain after some simple rearrangements:

(
E + 1

2
gh̄2S − ε(k − q)− h̄ω(q)

)
F
(0,0)
kq↓ (E) =

= 1

2
gh̄2 1

N

∑

q̄

F
(0,0)
kq̄↓ (E)− gh̄3S

1√
N
G
(0,0)
k↓ (E).

(4.414)
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The spin-wave energies h̄ω(q) are as defined in (2.232). We abbreviate by writing:

Bk(E) = 1

N

∑

q

{
E + 1

2
gh̄2S − ε(k − q)− h̄ω(q)

}−1

. (4.415)

Then we have from (4.414):

1√
N

∑

q

F
(0,0)
kq↓ (E) = − gh̄3SBk(E)

1− 1
2gh̄

2Bk(E)
G
(0,0)
k↓ (E). (4.416)

The equation of motion of the single-particle Green’s function is given,
from (4.396), (4.399), (4.400), (4.412) and (4.413), by:

(
E − 1

2
gh̄2S − ε(k)

)
G
(0,0)
k↓ (E) = h̄− 1

2
gh̄

1√
N

∑

q

F
(0,0)
kq↓ (E). (4.417)

Into this equation, we insert (4.416):

(
E − 1

2
gh̄2S − ε(k)

)
G
(0,0)
k↓ (E) = h̄+

1
2g

2h̄4S

1− 1
2gh̄

2Bk(E)
Bk(E)G

(0,0)
k↓ (E).

Comparison with

G
(0,0)
k↓ (E) = h̄

{
E − ε(k)−!

(0,0)
k↓ (E)

}−1
(4.418)

finally yields the ↓ self-energy:

!
(0,0)
k↓ (E) = 1

2
gh̄2S

(

1+ gh̄2Bk(E)

1− 1
2gh̄

2Bk(E)

)

. (4.419)

The problem is thereby completely and exactly solved.
We want to try to interpret this result. First of all, we can achieve a significant

simplification in its evaluation if we suppress the magnon energies h̄ω(q) in (4.415).
This is certainly permitted, since they are always several orders of magnitude
smaller than other typical energies such as the Bloch band width W or the s-f
coupling constant g. With this simplification, the in general complex propagator
Bk(E) becomes independent of wavenumbers:

Bk(E) ≡ B(E) = RB(E)+ iIB(E). (4.420)

Here, the imaginary part IB(E) is practically identical to the ↑ density of
states (4.407):
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IB(E) = − π
N

∑

q

δ

(
E + 1

2
gh̄2S − ε(k − q)

)
=

= − π
N

∑

q̂

δ

(
E + 1

2
gh̄2S − ε(q̂)

)
=

= −πρ0

(
E + 1

2
gh̄2S

)
= −πρ(0,0)↑ (E).

(4.421)

The real part is a principal-value integral:

RB(E) = P
∫

dx
ρ0(x)

E + 1
2gh̄

2S − x
. (4.422)

The electronic self-energy (4.419) will in general be a complex quantity, which,
owing to the above stipulation that we will neglect h̄ω(q), likewise becomes
independent of wavenumbers:

!
(0,0)
k↓ (E) ≡ !

(0,0)
↓ (E) = R↓(E)+ iI↓(E). (4.423)

If we insert (4.420) into (4.419), we obtain as our concrete result:

R↓(E) = 1

2
gh̄2S

⎛

⎜
⎝1+ gh̄2RB(E)(1− 1

2gh̄
2RB(E))− 1

2gh̄
2I 2

B(E)
(

1− 1
2gh̄

2RB(E)
)2 + 1

4g
2h̄4I 2

B(E)

⎞

⎟
⎠ .

(4.424)

I↓(E) = 1

2
g2h̄4S

IB(E)
(

1− 1
2gh̄

2RB(E)
)2 + 1

4g
2h̄4I 2

B(E)

. (4.425)

Comparison with (4.421) shows that the imaginary part of the electronic ↓ self-
energy is then and only then nonzero, when the ↑ density of states ρ(0,0)↑ (E) takes
on finite values. I↓ �= 0 means that the lifetime of the corresponding quasi-particle
is finite. It is clearly limited by spin-flip processes. If we recall that we strictly
speaking should have included also the magnon energies in the above expressions, it
becomes clear that the original ↓ electron reverses its spin on emission of a magnon
and thereby becomes a ↑ electron. This is of course only then possible, if suitable ↑
states are available which can accept the originally ↓ electron.

If the Green’s function already has a pole outside the range ρ(0,0)↑ (E) �= 0, i.e. if

E = ε(k)+ R↓(E)
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can be fulfilled there, then an additional quasi-particle appears, now however with
an infinite lifetime. The spectral density

S
(0,0)
k↓ (E) = − 1

π
ImG

(0,0)
k↓ (E + i0+)

will thus as a rule be composed of two terms which correspond to two different
elementary processes (see Fig. 4.24):

S
(0,0)
k↓ (E) =

=

⎧
⎪⎨

⎪⎩

− h̄
π

I↓(E)
(
E − ε(k)− R↓(E)

)2 + I 2↓(E)
, for ε0 ≤ E + 1

2gh̄
2S ≤ ε0 +W,

h̄δ
(
E − ε(k)− R↓(E)

)
otherwise.

(4.426)

(ε0 is the lower band edge and W the width of the Bloch band.) The original
↓ electron can exchange its spin with the localised spin system through magnon
emission and thereby become a ↑ electron. This leads to the first term in (4.426),
yielding a scattering spectrum which is always a few eV in width and occupies the
same energy range as the ↑ density of states. The ↓ electron can however also form
a bound state with an antiparallel 4f spin. As long as its energy lies outside that of
the scattering spectrum, it will give rise to a quasi-particle with an infinitely long
lifetime, which is referred to as a magnetic polaron.

At the conclusion of this chapter, we want to discuss the exact T = 0 results by
referring to the specific Bloch density of states for a simple cubic lattice, which can
be calculated in the “tight-binding approximation” with the energies from (2.110).
The details of such a calculation are not important here.

Figure 4.25 shows the spectral density S
(0,0)
k↓ (E) for several values of the k

vector within the first Brillouin zone and for three different coupling strengths gh̄2.
With weak coupling (gh̄2 = 0.05 eV), the spectral density consists of a narrow
peak whose position is k-dependent and lies near the energy ε(k) + 1

2gh̄
2S, which

corresponds to a molecular-field approximation. More precisely, in the “weak-
coupling-limit”, we find

E↓(k) ≈ ε(k)+ 1

2
gh̄2S + g2h̄4S

2N

∑

q

1

ε(k)+ gh̄2S − ε(q)
. (4.427)

With stronger coupling, the picture changes completely. As already indicated
schematically in Fig. 4.24, a sharp, high-energy peak splits off, which corresponds
to the stable magnetic polaron. The scattering spectrum, which arises from magnon
emission through the ↓ electron, is seen as a rule as a relatively flat, low-energy
structure, but it is sometimes bundled into a fairly prominent peak (Fig. 4.25;  
point; gh̄2 = 0.6 eV).
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Fig. 4.24 A schematic illustration of the elementary processes which contribute to the exact ↓
spectral density of the (n = 0, T = 0) s-f model; on the left: magnon emission, on the right: formation
of a stable magnetic polaron

Fig. 4.25 The ↓ spectral density as a function of the energy for several wavenumbers within
the first Brillouin zone and for different coupling constants, gh̄2 : (k( ) = (0, 0, 0); k(X) =
π
a
(1, 0, 0); k(M) = π

a
(1, 1, 0); k(R) = π

a
(1, 1, 1); a: lattice constant). Parameters: S = 1

2 , W =
1 eV, simple cubic lattice, n = 0, T = 0
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With

ρ(0,0)σ (E) = 1

Nh̄

∑

k

S
(0,0)
kσ

(E), (4.428)

we can finally also compute the quasi-particle density of states. Results for a simple
cubic lattice are shown in Fig. 4.26. From (4.407), ρ↑(E) is identical to the Bloch
density of states, and is merely rigidly shifted by a constant energy of − 1

2gh̄
2S.

Considerably more structure is shown by ρ↓(E). The two elementary processes
shown lead already at moderate coupling strengths to a splitting of the original
Bloch band into two quasi-particle bands. The lower band is formed as a result
of magnon emission. Since the ↓ electron reverses its spin in this process, there
must be unoccupied ↑ states on which the ↓ electron can then “land”. This explains
why the “scattering band” occupies the same energy region as ρ↑(E). The upper
quasi-particle band consists of polaron states.

The many-body correlations thus give rise here to a phenomenon which could
not be explained by conventional single-particle theory.

4.5.5 Exercises

Exercise 4.5.1 Give the complete equation of motion of the higher-order
Green’s function (4.392):

Dik,jσ (E) = ⟪Szi akσ ; a+jσ⟫E
in the framework of the s-f model.

Exercise 4.5.2 Give the complete equation of motion of the higher-order
Green’s function (4.394):

Pik,jσ (E) = ⟪ni−σ akσ ; a+jσ⟫E
in the framework of the s-f model.

Exercise 4.5.3 Give the complete equation of motion of the higher-order
Green’s function (4.393):

Fik,jσ (E) = ⟪S−σi ak−σ ; a+jσ⟫E
in the framework of the s-f model.
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Fig. 4.26 The quasi-particle density of states ρσ (E) as a function of the energy E for different
coupling strengths gh̄2. The solid lines are for σ =↓, the dashed lines for σ =↑. Parameters:
S = 7

2 , W = 1 eV, simple cubic lattice, n = 0, T = 0

Exercise 4.5.4 Discuss the special case within the s-f model of a single hole
in an otherwise fully occupied conduction band. For a ferromagnetically
saturated f spin system, this situation can be treated with mathematical
rigour.

1. Show that the one-electron Green’s function for σ =↓ electrons takes on
the following simple form:

G
(n=2, T=0)
k↓ (E) = h̄

(
E − ε(k)− U − 1

2
gh̄2S + i0+

)−1

.

(continued)
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Exercise 4.5.4 (continued)
2. Compute the electronic σ =↑ self-energy. Compare the result with the

magnetic polaron discussed in Sect. 4.5.4.

Exercise 4.5.5 Apply the Hartree-Fock approximation to the equation of
motion of the one-electron Green’s function in the s-f model. Test the result
by comparing with the exact cases of the atomic limit and the empty or the
completely filled conduction band at T = 0. What would you see as the
principal disadvantage of this approximation?

4.6 Self-Examination Questions

4.6.1 For Sect. 4.1

1. How is the Hubbard Hamiltonian formulated in the limiting case of an infinitely
narrow band?

2. What structures do the one-electron Green’s function and spectral density have
in this limiting case?

3. Can ferromagnetism occur in the case of an infinitely narrow band?
4. What is referred to as the Hartree-Fock or molecular-field approximation of a

Green’s function?
5. Which form does the one-electron Green’s function of the Hubbard model take

on in the Hartree-Fock approximation?
6. What is the relation between the Stoner and the Hubbard models?
7. What are the quasi-particle energies of the Stoner model?
8. Explain the Stoner criterion for the occurrence of ferromagnetism.
9. When does one speak of strong, and when of weak ferromagnetism?

10. What is meant by particle correlations?
11. To what extent can the so-called Hubbard decouplings also be interpreted as a

molecular field approximation?
12. How can one readily see from the self-energy that the Hubbard approximation

for the Hubbard model leads to a splitting into two quasi-particle bands?
13. What is the lifetime of the quasi-particles in the Hubbard approximation?
14. Name a significant disadvantage of the Hubbard solution.
15. What is the relationship within the interpolation method between the Green’s

function of a model system and the associated solution in the atomic limit?
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16. Compare within the Hubbard model the solutions of the one-electron Green’s
function by the interpolation method with those from Hubbard’s decoupling
method.

17. Sketch the method of moments.
18. Justify the two-pole ansatz for the spectral density in the Hubbard model.
19. How do the quasi-particle energies in the Hubbard approximation differ from

those in the method of moments?
20. Why are the solutions in the method of moments more realistic for the

description of magnetic electron systems than those resulting from the Hubbard
decouplings?

21. Which physical quantities determine the actual form of the quasi-particle
density of states in the Hubbard model?

22. What are the preconditions for an equivalence between the Hubbard model and
the Heisenberg model?

23. Can you explain why the Hubbard model for a half-filled energy band (n = 1)
favours antiferromagnetism over ferromagnetism?

4.6.2 For Sect. 4.2

1. What is the simplifying assumption of the Thomas-Fermi approximation?
2. What is meant by the screening length?
3. Which simple structure is assumed by the dielectric function ε(q) in the

Thomas-Fermi approximation?
4. What are plasmons? Which Green’s function determines them through its

poles?
5. Can one describe charge-density waves (plasmons) by a one-electron Green’s

function?
6. Which form does the susceptibility χ0(q, E) of the non-interacting electron

system take?
7. How is the susceptibility in the random phase approximation (RPA) related to

χ0(q, E)?
8. Sketch the determination of the plasmon dispersion relation h̄ωp(q) via the

Lindhard function graphically.
9. What is the order of magnitude of plasmon energies?

10. How is the plasma frequency defined?
11. Give the wave-number dependence of the plasmon dispersion relation ωp(q)

for small |q|.
12. What is the Lindhard correction? What is its relation to the Friedel oscillations

of the shielded Coulomb potential of a perturbation charge density ρext(r)?
13. Which Green’s function is suitable for the determination and discussion of spin-

density waves and magnons in the Hubbard model?
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4.6.3 For Sect. 4.3

1. Define the concepts of structural disorder, substitutional disorder, and diagonal
substitutional disorder.

2. What is the decisive advantage of a periodic solid as compared to a disordered
system for the theoretical description?

3. How do the T-matrix equation and the Dyson equation differ?
4. What is meant by configurational averaging in a disordered system? How is it

carried out in practice?
5. Explain the effective-medium method.
6. Which equation defines the atomic scattering matrix?
7. What simplification makes use of the so-called T -matrix approximation (TMA)?
8. One describes the TMA as non-self-consistent. What does this mean?
9. How does one go from the TMA to the coherent potential approximation

(CPA)?
10. The CPA is considered – in contrast to the TMA – to be self-consistent. Why?
11. Formulate the diagram rules for the single-particle Green’s function of disor-

dered systems.
12. What is meant by the order of a diagram?
13. Describe the diagram representation of the Dyson equation.
14. Characterise the virtual crystal approximation (VCA). When can it be applied?
15. What does the single site approximation (SSA) neglect?
16. Which form does the self-energy have in the SSA?
17. How is the modified propagator method (MPM) derived from the SSA?
18. Which diagram corrections were applied in order to go from the SSA to the

average T-matrix approximation (ATA)? What is meant in this connection by
overcorrections?

19. How do the self-energies in the TMA differ from those in the ATA?
20. How does one obtain the CPA from the ATA? Which multiple-occupation

corrections have to be considered?
21. Why is the CPA self-energy independent of the wavenumber?
22. Which parameters determine the CPA self-energy?
23. What is meant by the concept of “alloy analogy” in connection with the CPA?
24. Formulate the CPA alloy analogy in the Hubbard model.

4.6.4 For Sect. 4.4

1. Which Green’s function is expedient for the calculation of the magnetisation of
a spin-(1/2) system within the Heisenberg model?

2. What is meant by the Tyablikow approximation? How well does it work for low
temperatures (T → 0)?

3. Does the Tyablikow approximation obey Bloch’s T 3/2 law?
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4. What difficulties occur in calculating the magnetisation of S > 1/2 systems?
5. Formulate the Dyson-Maleév transformation of the spin operators.
6. Which advantage and which disadvantage does the Dyson-Maleév transforma-

tion have in comparison to the Holstein-Primakoff transformation?
7. Which simple approach for the magnon spectral density yields Dyson’s full spin-

wave result via the method of moments?

4.6.5 For Sect. 4.5

1. What is meant by a 4f system?
2. Give the Hamiltonian of the s-f model. Which solids are typically described by

this model?
3. How many poles does the one-electron Green’s function of the s-f model have

in the limiting case of an infinitely narrow band? Characterise them.
4. Formulate the CPA alloy analogy in the s-f model.
5. Try to give a physical interpretation of the different quasi-particle bands in the

CPA solution of the s-f model.
6. Describe the ↑ quasi-particle energies for an electron in an otherwise empty

conduction band at T = 0. Why do they have such a simple form in this limit?
7. Is the CPA solution for the special case described in (6) correct?
8. Why is the imaginary part of the ↓ self-energy in this special case nonzero just

when the ↑ density of states assumes finite values?
9. Which physical processes determine the lifetimes of the ↓ quasi-particles?

10. What does a δ-function imply for the lifetime of the corresponding quasi-
particle?

11. Which elementary processes give rise in the above exactly solvable special case
to a splitting of the ↓ quasi-particle density of states into two subbands?



Chapter 5
Perturbation Theory (T = 0)

The general considerations in Chap. 3 have shown that we can express everything
that we need for the description of physical systems with suitably defined Green’s
functions. With just this statement, however, we have not yet solved any many-
body problem. We need to find procedures for determining such Green’s functions.
Several of these we encountered in Chap. 4 in connection with specific problems in
solid-state physics. The goal of the present chapter is to develop a

diagrammatic perturbation theory,

whereby we first want to presuppose generally

T = 0 : 〈. . .〉 �⇒ 〈E0| . . .
∣∣E0
〉
.

All average values are to be carried out over the ground state |E0〉 of the interacting
system.

5.1 Causal Green’s Functions

5.1.1 “Conventional” Time-Dependent Perturbation Theory

We decompose the Hamiltonian H,

H = H0 + V, (5.1)

as usual into an unperturbed part H0 and a perturbation V . We presume that this
decomposition is carried out in such a way that the eigenvalue problem for H0 can
be regarded as solved:
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H0 |ηn〉 = ηn |ηn〉 . (5.2)

We seek the ground state of the complete problem:

H
∣∣E0
〉 = E0

∣∣E0
〉
. (5.3)

Often, one splits off a coupling constant λ from the perturbation V , which as a rule
is a particle interaction,

V = λυ, (5.4)

and then attempts to expand the quantities sought, i.e. E0,
∣∣E0
〉
, in powers of λ.

If λ is sufficiently small, one will then be able to terminate the series after a finite
number of terms. If this precondition is not fulfilled, one will instead try to sum
infinite series containing the dominant terms.

With (5.2) and (5.3), we initially have:

〈η0|V
∣∣E0
〉 = 〈η0| (H−H0)

∣∣E0
〉 = (E0 − η0) 〈η0|E0〉 .

This yields the still-exact

level shift

�E0 ≡ E0 − η0 = 〈η0|V
∣∣E0
〉

〈η0|E0〉 . (5.5)

We of course cannot make much use of this shift, since
∣∣E0
〉

is still unknown. We
define the projection operator

P0 ≡ |η0〉 〈η0| . (5.6)

For the orthogonal projector Q, we find:

Q0 ≡ 1− P0 =
∞∑

n=0

|ηn〉 〈ηn| − |η0〉 〈η0| =

=
∞∑

n=1

|ηn〉 〈ηn| .
(5.7)
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We now return to the exact eigenvalue equation (5.3), for which we assume the
ground state

∣∣E0
〉

to be non-degenerate. With an arbitrary real constant D, we
can write:

(D −H0)
∣∣E0
〉 = (D −H+ V )

∣∣E0
〉 = (D − E0 + V )

∣∣E0
〉
.

The operator (D−H0) has a unique inversion, as long as H0 does not have just the
constant D itself as an eigenvalue:

∣∣E0
〉 = 1

D −H0
(D − E0 + V )

∣∣E0
〉
.

We now make use of the projectors introduced above:

∣∣E0
〉 = P0

∣∣E0
〉+Q0

∣∣E0
〉 = |η0〉 〈η0|E0〉 +Q0

∣∣E0
〉
.

With the definition

|Ẽ0〉 =
∣∣E0
〉

〈η0|E0〉 , (5.8)

we then obtain an equation for |Ẽ0〉,

|Ẽ0〉 = |η0〉 + 1

D −H0
Q0(D − E0 + V )|Ẽ0〉, (5.9)

which clearly can be iterated. In (5.9), we have already made use of the fact that Q0
commutes with H0. From the definition (5.6), it namely follows immediately that:

[P0,H0]− = 0 (5.10)

and thus also:

[Q0,H0]− = 0. (5.11)

By iteration of (5.9), we obtain the

Fundamental formula of perturbation theory

|Ẽ0〉 =
∞∑

m=0

{
1

D −H0
Q0(D − E0 + V )

}m
|η0〉 . (5.12)
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On the right-hand side, only the unperturbed ground state occurs, to be sure
accompanied by the eigenvalue E0, which still has to be determined. We still have
the constant D as a free parameter. For the level shift �E0, we find with (5.12)
in (5.5):

�E0 = 〈η0|V |Ẽ0〉 =

=
∞∑

m=0

〈η0|V
{

1

D −H0
Q0(D − E0 + V )

}m
|η0〉 .

(5.13)

Specific choices of D yield different versions of time-independent perturbation
theory.

1. The Schrödinger perturbation theory
If we choose

D = η0, (5.14)

then we obtain:

|Ẽ0〉 =
∞∑

m=0

{
1

η0 −H0
Q0(V −�E0)

}m
|η0〉 , (5.15)

�E0 =
∞∑

m=0

〈η0|V
{

1

η0 −H0
Q0(V −�E0)

}m
|η0〉 . (5.16)

For a practical evaluation, these general results must now be ordered according
to powers of the coupling constant λ. To do this, we evaluate the leading terms
of the level shift explicitly:

�E0(m = 0) = 〈η0| λυ |η0〉 ∼ λ, (5.17)

�E0(m = 1) = 〈η0|V 1

η0 −H0
Q0(V −�E0) |η0〉 =

= 〈η0|V 1

η0 −H0

∞∑

n=1

|ηn〉 〈ηn|V |η0〉 =

=
∞∑

n=1

|〈η0| λυ |ηn〉|2
η0 − ηn

∼ λ2. (5.18)

These are the well-known results of the Schrödinger perturbation theory. Up to
m = 1, the perturbation expansion runs parallel to the powers of λ, that is,

�E0(m) ∼ λm+1 (m = 0, 1). (5.19)
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This however already no longer holds for the m = 2 term.

�E0(m = 2) =

= 〈η0|V 1

η0 −H0
Q0(V −�E0)

1

η0 −H0
Q0(V −�E0) |η0〉 =

=
∞∑

n=1

〈η0|V 1

η0 −H0
Q0(V −�E0) |ηn〉 〈ηn|V |η0〉 1

η0 − ηn
=

=
∞∑

n=1

∞∑

m=1

〈η0|V |ηm〉 〈ηm|V |ηn〉 〈ηn|V |η0〉
(η0 − ηm)(η0 − ηn)

−

−�E0

∞∑

n=1

|〈η0|V |ηn〉|2
(η0 − ηn)2

.

(5.20)

The first term is proportional to λ3, the second contains all powers of λ ≥ 3 due
to �E0. The ordering process becomes more and more tedious with increasing
m. It is for example not possible to formulate the general energy correction
proportional to λn in a concrete and clearly-arranged form. This proves to be a
considerable disadvantage when the physical problem requires the summation
of an infinite partial series. In that case, one needs perturbation expansions
which directly yield the corrections proportional to λn. We will encounter such
expansions in the next section. First, however, we ask whether the

2. Brillouin-Wigner perturbation theory
is more suitable in the above sense than Schrödinger’s perturbation theory.

Here, we set

D = E0 (5.21)

and then obtain:

|Ẽ0〉 =
∞∑

m=0

{
1

E0 −H0
Q0V

}m
|η0〉 , (5.22)

�E0 =
∞∑

m=0

〈η0|V
{

1

E0 −H0
Q0V

}m
|η0〉 . (5.23)

One can readily see that the desired ordering in terms of powers of λ will give rise
to the same difficulties here as in 1.

A trick can help at this point: The in reality time-independent problem is
converted artificially into a time-dependent one. This makes it possible to use the
time-evolution operator, which from (3.18) or (3.40) consists of terms which are
ordered according to powers of λ, to construct the ground state of the interacting
system from that of the non-interacting system.
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5.1.2 “Switching on” the Interaction Adiabatically

We make the Hamiltonian (5.1) artificially time dependent by replacing it with

Hα = H0 + V e−α|t |; α > 0. (5.24)

Beginning with the unperturbed system (H0) at t = −∞, we switch on the
interaction slowly, so that it has reached full strength at t = 0, and then is switched
off in the same manner for t →∞:

lim
t→±∞Hα = H0; lim

t→0
Hα = H. (5.25)

At the end of the calculation, the limit α→ 0 will be carried out, i.e. the interaction
is switched on and off with infinite slowness (i.e. adiabatically). If now the ground
state |η0〉 of the free system is not degenerate, and furthermore the overlap 〈η0|E0〉
is finite, then it appears at least plausible that the ground state

∣∣E0
〉
of the interacting

system evolves during this adiabatic switching process continuously out of |η0〉. We
want to investigate this question more quantitatively in the following.

It proves expedient to formulate the operators of interest in the Dirac representa-
tion. From (3.34), we have for the interaction operator,

VD(t) exp(−α|t |) = exp

(
i

h̄
H0t

)
V exp

(
− i

h̄
H0t

)
exp

(
− α|t |

)
(5.26)

which determines the time-evolution operator in (3.40) and (3.18):

UD
α (t, t0) =

∞∑

n=0

1

n!
(
− i

h̄

)n ∫ t

· · ·
t0

∫
dt1 · · · dtne−α(|t1|+···+|tn|)·

· TD

{
VD(t1) · · ·VD(tn)

}
. (5.27)

Each term belongs to a particular power of the coupling constant λ. The expansion
is thus favourably ordered in the sense of the considerations in the previous section.

The action of the time-evolution operator is clear from (3.30):

∣∣∣ψD
α (t)

〉
= UD

α (t, t0)

∣∣∣ψD
α (t0)

〉
. (5.28)

The equation of motion (3.37),

ih̄
∣∣∣ψ̇D

α (t)
〉
= e−α|t |VD(t)

∣∣∣ψD
α (t)

〉
,
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implies for α > 0 that:

ih̄
∣∣∣ψ̇D

α (t →±∞)
〉
= 0.

In the interaction representation in this limit, the state thus becomes time indepen-
dent. We take

∣∣∣ψD
α (t →−∞)

〉
= |η0〉 , (5.29)

since at T = 0,
∣∣ψD

α (t →−∞)
〉

differs from the ground state of the free system
only in terms of a phase factor. The latter can be set to 1 without loss of generality.
Then, however, the phase for the corresponding limiting state at t → +∞ is no
longer free:

∣∣∣ψD
α (t →+∞)

〉
= eiϕ |η0〉 . (5.30)

With (5.28), we then obtain for the time evolution of the Dirac state:

∣∣∣ψD
α (t)

〉
= UD

α (t,−∞) |η0〉 . (5.31)

At t = 0, the interaction is fully switched on. It can of course not be excluded that
the state

∣∣ψD
α (0)

〉
still depends on α. α indeed determines the speed of the switching-

on process. If the latter is however carried out adiabatically, (α→ 0), then it seems
clear that at every given time t , the ground state which corresponds to the current
value of the interaction strength will be found. Thus the desired exact ground state
should be calculable from (5.31) and

∣∣∣ED
0

〉
?= lim
α→0

∣∣∣ψD
α (0)

〉
. (5.32)

Since, however, we must assume explicitly that α > 0 for (5.29), it is by no means
certain that the limit α→ 0 exists in fact.

Gell-Mann–Low theorem
If the state

lim
α→0

UD
α (0,−∞) |η0〉

〈η0|UD
α (0,−∞) |η0〉 = lim

α→0

∣∣ψD
α (0)

〉

〈
η0
∣∣ψD

α (0)
〉 (5.33)

exists for every order of perturbation theory, then it is an exact eigenstate of H. The
limiting value (5.32), on the other hand, does not exist!
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This theorem fixes the eigenstate which evolves from the free ground state
during the adiabatic switching-on of the perturbation. This need not necessarily
be the ground state of the interacting system. Therefore, we will later have to
postulate the additional assumption that no crossings of the states occur during their
evolution from the free states. This will as a rule be correct; however this additional
assumption naturally excludes phenomena such as superconductivity. In that case,
the interactions lead to a new type of ground state with a different symmetry and a
lower energy than the adiabatic ground state.

We will briefly sketch the proof of the Gell-Mann–Low theorem: The starting
point is the relation

(H0 − η0)

∣∣∣ψD
α (0)

〉
= (H0 − η0)U

D
α (0,−∞) |η0〉 =

=
[
H0, U

D
α (0,−∞)

]

− |η0〉 .
(5.34)

Inserting (5.27), we see that the following commutators must be evaluated:

[H0, VD(t1) · · ·VD(tn)]− =
= [H0, VD(t1)]−VD(t2) · · ·VD(tn)+
+ VD(t1)[H0, VD(t2)]−VD(t3) · · ·VD(tn)+
+ · · ·+
+ VD(t1)VD(t2) · · · [H0, VD(tn)]− =

= −ih̄

{
∂

∂t1
+ ∂

∂t2
+ · · · + ∂

∂tn

}
VD(t1) · · ·VD(tn).

(5.35)

In the last step, we made use of the equation of motion (3.35). It is immediately
clear that from (5.35), it follows that:

[H0, TD(VD(t1) · · ·VD(tn))]− = −ih̄

⎛

⎝
n∑

j=1

∂

∂tj

⎞

⎠ TD (VD(t1) · · ·VD(tn)) .

(5.36)

We insert this along with (5.27) into (5.34):

(H0 − η0)

∣∣∣ψD
α (0)

〉
=

= −
∞∑

n=1

1

n!
(
− i

h̄

)n−1 ∫ 0
· · ·
−∞

∫
dt1 · · · dtn·

· e−α(|t1|+···+|tn|)
⎛

⎝
n∑

j=1

∂

∂tj

⎞

⎠ TD (VD(t1) · · ·VD(tn)) |η0〉 .

(5.37)
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Because of the subsequent integrations, the n time derivatives naturally make the
same contribution; one need only suitably reorder the time indices. We can then
agree upon the replacement

⎛

⎝
n∑

j=1

∂

∂tj

⎞

⎠ −→ n
∂

∂tn

in (5.37). Now, however,

0∫

−∞
dtn e+αtn ∂

∂tn
TD (VD(t1) · · ·VD(tn)) =

= [eαtnTD(VD(t1) · · ·VD(tn))
]0
−∞ −

0∫

−∞
dtnαeαtnTD (VD(t1) · · ·VD(tn)) =

= VD(0)TD (VD(t1) · · ·VD(tn−1))− α

0∫

−∞
dtne−α|tn|TD (VD(t1) · · ·VD(tn)) .

For (5.37), this means that:

(H0 − η0)

∣∣∣ψD
α (0)

〉

= −VD(0)
∞∑

n=1

1

(n− 1)!
(
− i

h̄

)n−1

·

·
∫ 0

· · ·
−∞

∫
dt1 · · · dtn−1e−α(|t1|+···+|tn−1|)TD (VD(t1) · · ·VD(tn−1)) |η0〉+

+ α

∞∑

n=1

1

(n− 1)!
(
− i

h̄

)n−1 ∫ 0
· · ·
−∞

∫
dt1 · · · dtn·

· e−α(|t1|+···+|tn|)TD (VD(t1) · · ·VD(tn)) |η0〉 .
(5.38)

Due to (5.4), we have:

TD (VD(t1) · · ·VD(tn)) ∼ λn.

In the second term in (5.38), we then have an expression of the form

α

(
− i

h̄

)n−1 1

(n− 1)!λ
n = αih̄λ

∂

∂λ

[(
− i

h̄

)n 1

n!λ
n

]
. (5.39)
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We can thus combine the two terms in (5.38):

(H0 − η0)

∣∣∣ψD
α (0)

〉

=
(
−VD(0)+ ih̄αλ

∂

∂λ

) ∞∑

n=0

1

n!
(
− i

h̄

)n ∫ 0
· · ·
−∞

∫
dt1 · · · dtne−α(|t1|+···+|tn|)·

· TD (VD(t1) · · ·VD(tn)) |η0〉 =

=
(
−VD(0)+ ih̄αλ

∂

∂λ

) ∣∣∣ψD
α (0)

〉
.

(5.40)

At t = 0, the interaction in the Dirac representation is identical with that of the
Schrödinger representation. We can thus now combine H0 with VD(0):

(H− η0)

∣∣∣ψD
α (0)

〉
= ih̄αλ

∂

∂λ

∣∣∣ψD
α (0)

〉
. (5.41)

We rearrange:

(
H− η0 − ih̄αλ

∂

∂λ

) ∣∣ψD
α (0)

〉

〈
η0
∣∣ψD

α (0)
〉 =

= (H− η0)

∣∣ψD
α (0)

〉

〈
η0
∣∣ψD

α (0)
〉 − ih̄αλ

〈
η0
∣∣ψD

α (0)
〉
∂

∂λ

∣∣∣ψD
α (0)

〉
+

+ ih̄α
∣∣ψD

α (0)
〉

(〈
η0
∣∣ψD

α (0)
〉)2 〈η0| λ ∂

∂λ

∣∣∣ψD
α (0)

〉
=

(5.41)= (H− η0)

∣∣ψD
α (0)

〉

〈
η0
∣∣ψD

α (0)
〉 − (H− η0)

∣∣ψD
α (0)

〉

〈
η0
∣∣ψD

α (0)
〉+

+
∣∣ψD

α (0)
〉

〈
η0
∣∣ψD

α (0)
〉
〈η0| (H− η0)

〈
ψD
α (0)

∣∣
〈
η0
∣∣ψD

α (0)
〉 =

=
∣∣ψD

α (0)
〉

〈
η0
∣∣ψD

α (0)
〉

{
〈η0|H

∣∣ψD
α (0)

〉

〈
η0
∣∣ψD

α (0)
〉 − η0

}

.

All together, we have now found the result:

{

H−
〈
η0
∣∣H
∣∣ψD

α (0)
〉

〈
η0
∣∣ψD

α (0)
〉 − ih̄αλ

∂

∂λ

} ∣∣ψD
α (0)

〉

〈
η0
∣∣ψD

α (0)
〉 = 0. (5.42)
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Now, by construction, the state on the right next to the brackets must also exist for
α → 0 in every order of perturbation theory, i.e. in every order in the coupling
constant λ. This remains true when we differentiate this expression with respect to
λ. If we now go to the limit α→ 0 in (5.42), then the third term within the brackets
vanishes:

{

H−
〈
η0
∣∣H
∣∣ψD

0 (0)
〉

〈
η0
∣∣ψD

0 (0)
〉

} ∣∣ψD
0 (0)

〉

〈
η0
∣∣ψD

0 (0)
〉 = 0. (5.43)

This proves the assertion of the Gell-Mann–Low theorem. We have shown that the
state (5.33) is an exact eigenstate under the conditions assumed. In agreement with
previous considerations, we make the additional assumption that it is also the ground
state:

∣∣ψD
0 (0)

〉

〈
η0
∣∣ψD

0 (0)
〉 !=

∣∣ED
0 (0)

〉

〈
η0
∣∣ED

0 (0)
〉 = |Ẽ0〉. (5.44)

Finally, we show to conclude this section that the numerator and the denominator
of (5.33), each by itself, do not exist in the limit α → 0. To do so, we consider the
following expression:

ih̄αλ
∂

∂λ
ln
〈
η0
∣∣ψD

α (0)
〉
=

= 1
〈
η0
∣∣ψD

α (0)
〉 ih̄αλ

∂

∂λ

〈
η0
∣∣ψD

α (0)
〉
=

(5.41)= 1
〈
η0
∣∣ψD

α (0)
〉 〈η0| (H− η0)

∣∣∣ψD
α (0)

〉
=

= 〈η0|VD(0)
∣∣ψD

α (0)
〉

〈
η0
∣∣ψD

α (0)
〉

(5.5)−−−→
α→0

�E0(λ).

It then follows that:

∂

∂λ
ln
〈
η0
∣∣ψD

α (0)
〉
−−−→
α→0

1

ih̄

�E0(λ)

λ

1

α
.

The integration over λ leads to an expression of the form

ln
〈
η0
∣∣ψD

α (0)
〉
−−−→
α→0

−if (λ)

α

and thus

〈
η0
∣∣ψD

α (0)
〉
−−−→
α→0

exp

(
−i
f (λ)

α

)
. (5.45)
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The state
∣∣ψD

α (0)
〉

thus has a phase which diverges as 1/α for α → 0. The limit
in (5.32) therefore does not exist. This divergent phase apparently cancels out in the
state (5.33).

5.1.3 Causal Green’s Functions

Green’s functions are, according to the definition in Sect. 3.2.1, expectation values
of time-dependent Heisenberg operators. Since in this section, we are generally
considering the limiting case T = 0, these expectation values are to be taken over
the ground state. The Heisenberg representation is not suitable for a perturbation-
theory calculation; the Dirac representation is more convenient. We therefore first
investigate the corresponding transformations.

In (5.44), we found the ground state of the interacting system:

|Ẽ0〉 = lim
α→0

UD
α (0,−∞) |η0〉

〈η0|UD
α (0,−∞) |η0〉 . (5.46)

Since the interaction is again switched off for times greater than zero in the same
manner as it was switched on for negative times starting from t = −∞, we could
have proved the Gell-Mann–Low theorem just as well for the state

|Ẽ′0〉 = lim
α→0

UD
α (0,+∞) |η0〉

〈η0|UD
α (0,+∞) |η0〉 . (5.47)

Due to the fact that |η0〉 is by construction non-degenerate, |Ẽ0〉 and |Ẽ′0〉 can differ
at most by a phase. Owing to

〈η0|Ẽ0〉 = 〈η0|Ẽ′0〉 = 1, (5.48)

we can even write:

|Ẽ0〉 ≡ |Ẽ′0〉. (5.49)

The normalised ground state which is the same in all representations at the time
t = 0 is then given by:

|E0〉 = |Ẽ0〉
(〈Ẽ0|Ẽ0〉)1/2

= |Ẽ′0〉
(〈Ẽ′0|Ẽ′0〉)1/2

. (5.50)

For the time-evolution operator in the Dirac representation, from (3.33) we then
obtain

UD
α

(
t, t ′
) = exp

(
i

h̄
H0t

)
US
α

(
t, t ′
)

exp

(
− i

h̄
H0t

′
)
, (5.51)
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and thus for an arbitrary operator A in the Heisenberg representation:

AH
α (t) = US

α (0, t)A
S
αU

S
α (t, 0) =

= US
α (0, t) exp

(
− i

h̄
H0t

)
AD(t) exp

(
i

h̄
H0t

)
US
α (t, 0) = (5.52)

= UD
α (0, t)A

D(t)UD
α (t, 0).

We can now find the expectation value of a Heisenberg observable in the ground
state:

〈E0|AH(t)
∣∣E0
〉 = 〈Ẽ0|AH

α→0(t)|Ẽ0〉
〈Ẽ0|Ẽ0〉

=

(5.49)= 〈Ẽ′0|AH
α→0(t)|Ẽ0〉
〈Ẽ′0|Ẽ0〉

=

= lim
α→0

〈η0|UD
α (+∞, 0)AH

α (t)U
D
α (0,−∞) |η0〉

〈η0|UD
α (∞, 0)UD

α (0,−∞) |η0〉
〉 .

We define the

scattering matrix: Sα = UD
α (+∞,−∞), (5.53)

and can then rewrite the expectation value in terms of the interacting ground state,
with the aid of (5.52), as an expression which refers to the ground state |η0〉 of the
free system:

〈E0|AH(t)
∣∣E0
〉 = lim

α→0

〈η0|UD
α (∞, t)AD(t)Uα(t,−∞) |η0〉

〈η0| Sα |η0〉 . (5.54)

Together with (5.51), this relation can be generalised immediately to several
operators:

〈E0|AH(t)BH (t ′
) ∣∣E0

〉 =

= lim
α→0

〈η0|UD
α (∞, t)AD(t)UD

α (t, t
′)BD(t ′)UD

α (t
′,−∞) |η0〉

〈η0| Sα |η0〉 .
(5.55)

Using this expression, we now wish to cast the causal Green’s function defined
in (3.119) in a form which is tractable for perturbation theory. To do so, we insert
UD
α from (5.27), henceforth leaving off the index “D”, since we will work only with

the Dirac representation in the following.
In the definition of the causal Green’s function (3.119), Wick’s time-ordering

operator Tε appears. It orders operators at later times to the left, whereby each
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permutation introduces a factor of ε = +1 for Bosonic operators and ε = −1 for
Fermionic operators. In UD

α , in contrast, Dyson’s time-ordering operator TD (3.15)
occurs. It orders similarly to Tε, but without the factor ε. TD acts on the interaction
V (t). It always consists however for Fermions of an even number of creation or
annihilation operators, so that the replacement

TD �⇒ Tε

in the time-evolution operator is always permitted. We now assert that the expecta-
tion value (5.54) can be written as follows:

〈E0|AH(t)
∣∣E0
〉 =

= lim
α→0

1

〈η0| Sα |η0〉
∞∑

ν=0

1

ν!
(
− i

h̄

)ν ∫ +∞
· · ·
−∞

∫
dt1 · · · dtν ·

· e−α(|t1|+···+|tν |) 〈η0| Tε {V (t1) · · ·V (tν)A(t)} |η0〉 .

(5.56)

For the proof, we consider a snapshot of the ν-th term:

n times t1, t2, . . . , tn > t,

m times t̄1, t̄2, . . . , t̄m < t,

with m+ n = ν. In this case, we have:

Tε{. . .} = Tε{V (t1) · · ·V (tn)}A(t)Tε{V (t̄1) · · ·V (t̄m)}.

This situation can, for ν independent times, give rise to

ν!
n!m!

possibilities which all make the same contribution. We then take all of the
possibilities into account by summation over all the conceivable values of n and
m, with ν = n+m as a boundary condition:

∞∑

ν=0

1

ν!
(
− i

h̄

)ν ∫ +∞
· · ·
−∞

∫
dt1 · · · dtνe−α(|t1|+···+|tν |)·

· Tε{V (t1) · · ·V (tν)A(t)} =
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=
∞∑

ν=0

1

ν!
0...∞∑

n,m

(
− i

h̄

)ν
ν!
n!m!δν,n+m

∫ ∞
· · ·
t

∫
dt1 · · · dtn·

· e−α(|t1|+···+|tn|)Tε{V (t1) · · ·V (tn)}A(t)·

·
∫ t

· · ·
−∞

∫
dt̄1 · · · dt̄me−α(|t̄1|+···+|t̄m|)Tε{V (t̄1) · · ·V (t̄m)} =

=
[ ∞∑

n=0

1

n!
(
− i

h̄

)n ∫ ∞
· · ·
t

∫
dt1 . . . dtne−α(|t1|+···+|tn|).

· Tε{V (t1) . . . V (tn)}
]
A(t)

[ ∞∑

m=0

1

m!
(
− i

h̄

)m
·

·
∫ t

· · ·
−∞

∫
dt̄1 · · · dt̄me−α(|t̄1|+···+|t̄m|)Tε{V (t̄1) · · ·V (t̄m)}

⎤

⎦ .

The comparison with (5.27) then yields:

∞∑

ν=0

1

ν!
(
− i

h̄

)ν ∫ +∞
· · ·
−∞

∫
dt1 · · · dtν e−α(|t1|+···+|tν |)·

· Tε{V (t1) · · ·V (tν)A(t)} =
= Uα(∞, t)A(t)Uα(t,−∞).

(5.57)

Together with (5.54), this relation proves the assertion of (5.56).
The same train of thought allows us to rearrange (5.55), also. We merely have to

divide the integration variables into three groups. This leads to:

〈E0| Tε
{
AH(t)BH (t ′

)} ∣∣E0
〉 =

= lim
α→0

1

〈η0| Sα |η0〉
∞∑

ν=0

1

ν!
(
− i

h̄

)ν ∫ +∞
· · ·
−∞

∫
dt1 · · · dtν ·

· e−α(|t1|+···+|tν |) 〈η0| Tε{V (t1) · · ·V (tν)A(t)B(t ′)} |η0〉 .

(5.58)
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With this, we can now specifically cast the causal T = 0 Green’s function in a form
which will prove to be convenient for a diagrammatic perturbation theory:

Causal one-electron Green’s function
(T = 0):

iG0
kσ

(
t, t ′
) =

= lim
α→0

1

〈η0| Sα |η0〉
∞∑

ν=0

1

ν!
(
− i

h

)ν ∫ +∞
· · ·
−∞

∫
dt1 · · · dtν ·

· e−α(|t1|+···+|tν |) 〈η0| Tε{V (t1) · · ·V (tν)akσ (t)a
+
kσ

(
t ′
)} |η0〉 . (5.59)

The denominator 〈η0|Sα| η0〉 has here a form analogous to that of the numerator,
except that the operators akσ , a

+
kσ are lacking in the argument of the Tε operator.

5.1.4 Exercises

Exercise 5.1.1 Let P = |η〉〈η| be the projection operator onto the eigenstate
|η〉 of the Hamiltonian H . Show that P and the orthogonal projector Q =
1− P commute with H .

Exercise 5.1.2 If

H = H0 + λυ = H(λ)

is the Hamiltonian of a system of particles with interactions, then the (nor-
malised) ground state |E0〉 and the ground-state energy E0 will be functions
of the coupling constant λ. Show that for the level shift of the unperturbed
ground state |η0〉, the following relation holds due to the interaction λυ:

�E0(λ) = E0(λ)− η0 =
λ∫

0

dλ′

λ

〈
E0
(
λ′
)∣∣ λ′υ

∣∣E0
(
λ′
)〉
.
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Exercise 5.1.3 Electrons in a valence band which are interacting with an
antifer-omagnetically ordered, localised spin system can be described by the
following simplified s-f model:

H = H0 +H1; H0 =
∑

k,σ
α,β

εαβ(k)a
+
kσα

akσβ;

H1 = −1

2
g
∑

k,σ,α

zσ
〈
Szα
〉
a+
kσα

akσα.

α = A,B denotes the two chemically equivalent ferromagnetic sublattices A
and B:

〈
SzA

〉 = − 〈SzB
〉 = 〈Sz〉 .

The Bloch energies

εAA(k) = εBB(k) = ε(k); εAB(k) = ε∗BA(k) = t (k)

are assumed to be known, where k is a wavenumber within the first Brillouin
zone of one of the two equivalent sublattices.

1. Compute the eigenvalues and eigenstates of the unperturbed operator H0.
2. Calculate the energy corrections to first and second order in the

Schrödinger perturbation theory.
3. Calculate the energy corrections to first and second order in the Brillouin-

Wigner perturbation theory.
4. Compare the results of part 5.2. and 5.3 with the exact energy eigenvalues.

5.2 Wick’s Theorem

5.2.1 The Normal Product

In order to be specific, we shall concentrate in this section exclusively on

Fermi systems,

which are subject to a pair interaction of the form

V (t) = 1

2

∑

kl
mn

υ(kl; nm)a+k (t)a+l (t)am(t)an(t). (5.60)
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The most obvious realisation would be the electron-electron Coulomb interaction
with k ≡ (k, σ ), . . . The operators are given in their Dirac representation, whereby
the time dependence is in fact trivial. According to the Baker-Hausdorff theorem
(see Exercise 3.1.2), we have:

ak(t) = exp

(
i

h̄
H0t

)
ak exp

(
− i

h̄
H0t

)
=

∞∑

n=0

1

n!
(
− i

h̄
t

)n
Ln(H0)ak, (5.61)

L(H0)ak = [ak,H0]− = (ε (k)− μ) ak, (5.62)

Ln(H0)ak =
⎡

⎣. . . [[ak,H0]−,H0]− . . . ,H0︸ ︷︷ ︸
n-fold

⎤

⎦

−
=

= (ε(k)− μ)n ak.

(5.63)

This implies that:

ak(t) = exp

(
− i

h̄
(ε(k)− μ) t

)
ak, (5.64)

a+k (t) = exp

(
i

h̄
(ε(k)− μ) t

)
a+k . (5.65)

According to (5.59), our task consists of finding expectation values of the following
form:

〈η0|Tε{a+k1
(t1)a

+
l1
(t1)am1(t1)an1(t1) · · ·

· · · a+kn(tn)a+ln (tn)amn(tn)ann(tn)akσ (t)a
+
kσ
(t ′)}|η0〉.

(5.66)

We shall try to rewrite these products in such a way that the application of the
operators to the ground state |η0〉 of the non-interacting system becomes generally
feasible. To this end, we introduce new operators. In the ground state |η0〉, all the
levels within the Fermi sphere (of radius kF in k-space) are occupied. The operator

γ+kσ =
{
a+kσ for |k| > kF,

akσ for |k| ≤ kF
(5.67)

thus creates a particle outside the Fermi sphere, and a hole within it. The corre-
sponding annihilation is effected by the operator γkσ :

γkσ =
{
akσ for |k| > kF,

a+
kσ

for |k| ≤ kF,
(5.68)

For the γ ’s, the same fundamental commutation relations naturally hold as for
the a’s. When |k| > kF, γkσ and γ+kσ are creation and annihilation operators for
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particles; when |k| ≤ kF, they apply to holes. Due to

γkσ |η0〉 = 0, (5.69)

|η0〉 is also referred to as the Fermi vacuum or the vacuum state. We now introduce
the so-called

normal product N
(· · · γ+k · · · γl

)

of a series of such creation and annihilation operators γ+, γ relative to the Fermi
vacuum by means of the prescription that all the creation operators γ+ must stand
to the left of all the annihilation operators γ . Each permutation of two operators
required for this prescription introduces a factor of (−1). The ordering of the γ ’s
among themselves and of the γ+’s among themselves is irrelevant.

Examples

N
(
γ1γ

+
2 γ3

) = (−1)γ+2 γ1γ3 =
= (−1)2γ+2 γ3γ1 =
= N

(
γ+2 γ3γ1

) =
= (−1)3N

(
γ3γ

+
2 γ1

)
.

If the “original” a and a+ are found in the argument of N , they are to be interpreted
according to (5.67) and (5.68) as γ or γ+, respectively.

It is important for our purposes that:

〈
η0
∣∣N
(· · · γ+k · · · γl · · ·

) ∣∣η0
〉 = 0. (5.70)

A decomposition of T products into N products in (5.66) would thus be desirable,
and we therefore will try to achieve it in the following. We define the

(contraction)

A(t)B
(
t ′
) ≡ Tε

{
A(t)B

(
t ′
)}−N

{
A(t)B

(
t ′
)}
. (5.71)

If the operators A and B are both creation operators or both annihilation operators,
then the contraction is clearly zero. Thus, only the following two cases are
interesting:

γk(t)γ
+
k′
(
t ′
) =

{
γk(t)γ

+
k′ (t

′)+ γ+
k′ (t

′)γk(t) for t > t ′,
0 for t < t ′,

(5.72)
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γ+
k′ (t

′)γk(t) =
{
−γk(t)γ+k′ (t ′)− γ+

k′ (t
′)γk(t) for t > t ′,

0 for t < t ′.
(5.73)

Since the time dependence of the γ ’s is trivial due to (5.64) and (5.65), and
furthermore for k �= k′ all creation and annihilation operators anticommute, the
contractions given above are all zero for k �= k′.

We formulate (5.72) and (5.73) once more explicitly in terms of the original
operators ak, a

+
k :

|k| > kF:

ak(t)a
+
k′ (t

′) = δkk′

⎧
⎨

⎩
exp

[
− i
h̄
(ε(k)− μ)(t − t ′)

]
for t > t ′,

0 for t < t ′,
(5.74)

a+
k′ (t

′)ak(t) = δkk′

⎧
⎨

⎩
− exp

[
− i
h̄
(ε(k)− μ)(t − t ′)

]
for t > t ′,

0 for t < t ′,
(5.75)

|k| ≤ kF:

ak(t)a
+
k′
(
t ′
) = δkk′

⎧
⎨

⎩
0 for t > t ′,
− exp

[
− i
h̄
(ε(k)− μ)(t − t ′)

]
for t < t ′,

(5.76)

a+
k′
(
t ′
)
ak(t) = δkk′

⎧
⎨

⎩
0 for t > t ′,
exp

[
− i
h̄
(ε(k)− μ) (t − t ′)

]
for t < t ′,

(5.77)

Now, from (3.204), for the free, causal Green’s function (ε = −1, T = 0), we find:

iG0,c
kσ

(
t − t ′

) =
{
�
(
t − t ′

) (
1− 〈nkσ 〉(0)

)
−�

(
t ′ − t

) 〈nkσ 〉(0)
}
·

· exp

[
− i

h̄
(ε(k)− μ)

(
t − t ′

)]
.

(5.78)

Comparison yields:

ak(t)a
+
k

(
t ′
) = iG0,c

k

(
t − t ′

)
, (5.79)

a+k
(
t ′
)
ak(t) = −iG0,c

k

(
t − t ′

)
. (5.80)

The Tε products of two time dependent creation and annihilation operators thus
decompose into normal products which vanish on taking averages over the free
ground state |η0〉, and contractions which are simply free, causal Green’s functions.
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(The argument of the Green’s function always contains the annihilation time minus
the creation time). Contractions are here c numbers, that is they are not operators:

〈η0| ak(t)a+k
(
t ′
) |η0〉 = ak(t)a

+
k

(
t ′
)
. (5.81)

These important relations hold for t �= t ′. For t = t ′, the causal functions are not
defined.

The problem of simultaneity always arises when in a typical term such as (5.66), a
creation operator and an annihilation operator which stem from the same interaction
potential V (t) are contracted with each other. By convention, the Tε products leave
the operators in their natural order, i.e. the creation operator is to the left of the
annihilation operator. This means that

tannihilation operator − tcreation operator = 0−

and thus:

ak(t)a
+
k (t) = iG0,c

k (0−); a+k (t)ak(t) = −iG0,c
k (0−), (5.82)

where, from (5.78), we have:

iG0,c
k (0−) = −〈nk〉(0). (5.83)

5.2.2 Wick’s Theorem

Equation (5.71) yields the desired decomposition of a Tε product of two factors into
normal products and contractions. In general, this follows from Wick’s theorem for
a Tε product of n factors.

Theorem 5.2.1

U,V,W, . . . , X, Y,Z : Fermionic operators.

We then have:

Tε(UVW . . . XYZ) = N(UVW . . . XYZ)+

⎛

⎝
N -products

with one
contraction

⎞

⎠ +N(UV W . . . XYZ)+

+N(UV W . . . XYZ)+
+ · · ·+
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⎛

⎝
N -products

with two
contractions

⎞

⎠ +N(UV W . . . X YZ)+

+N(UV W . . . X YZ)+
+ · · ·+
+ {total pairing}

(5.84)

The term total pairing refers to the complete decomposition of the operator product
UVW . . . XYZ in all possible ways into contractions, which naturally presupposes
an even number of operators.

Wick’s theorem, as quoted above, is an operator identity. However, its true useful-
ness only becomes clear on carrying out an averaging process over the ground state
|η0〉, when all the normal products vanish:

〈η0| Tε(UVW . . . XYZ) |η0〉 = {total pairing}. (5.85)

Here, according to (5.79) through (5.82), a total pairing represents a sum of products
of causal Green’s functions of the free systems.

Before we prove the theorem, let us consider as an example the Tε product of
four operators:

Tε(UVWX) = N(UVWX)+
+
(
UV N(WX)+ VW N(UX)+

+WXN(UV )+ UXN(VW)−

− UW N(VX)− VXN(UW)
)
+

+
{
UV WX−UW VX+UX VW

}
.

(5.86)

Contractions, as c numbers, can of course be extracted from the N product as
prefactors. To do this, we agree upon a sign convention, that the operators to be
contracted must be adjacent in the N product. The required permutations of pairs of
Fermion operators each yield a factor of (−1).

For the proof of the theorem, we can permit ourselves the assumption that the
operators U,V,W, . . . , X, Y,Z are already time-ordered within the argument of
the Tε operator. If this is not yet the case, then we reorder the argument of the Tε
operator correspondingly. This contributes for p permutations a factor (−1)p to the
left-hand side of (5.84). The same factor occurs also in each summand on the right-
hand side when we reorder the arguments of the N products correspondingly.
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The decisive point for the proof of Wick’s theorem is the following:

Lemma 5.2.1 Let Z be an operator at an earlier time than U,V,W, . . . , X, Y .
Then we have:

N(UV . . . XY )Z = N(UV . . . X YZ)+
+N(UV . . . XYZ)+
+ · · ·+
+N(UV . . . XYZ)+
+N(UV . . . XYZ).

(5.87)

Proof

1. Z: annihilation operator on the Fermi vacuum. Then:

UZ = Tε(UZ)−N(UZ) = UZ − UZ = 0.

Equation (5.87) is thus clearly proven, provided that

N(UV . . . XY )Z = N(UV . . . XYZ)

can be assumed. This is however certainly the case, since Z is presumed to be an
annihilation operator.

2. Z: Creation operator on the Fermi vacuum.

We can assume that the operators U,V, . . . , X, Y in (5.87) are already normally
ordered. If this is not the case, we reorder them suitably in the arguments of the
N products, which introduces into each summand a factor of (−1)m. If, however,
the normal order is already present, then we can take the operatorsU,V, . . . X, Y all
together to be annihilation operators on the Fermi vacuum without loss of generality.
We can namely later fill in creation operators from the left, without changing
the normal ordering. The additional terms which then appear on the right contain
contractions of the creation operator Z with one of the filled-in creation operators,
and are thus all equal to zero.

We therefore must prove the lemma only for the case that Z is a creation operator
and U,V, . . . , X, Y are annihilation operators. We carry out the proof by complete
induction:
n = 2 :

We wish to show that:

N(Y )Z = N(YZ)+N(YZ).
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The contraction is a c number. Therefore, the relation is proved if and only if

YZ = YZ+N(YZ)

holds. With the precondition ty > tz, this is however just the definition (5.71) of the
contraction:

Tε(YZ) = YZ+N(YZ).

n �⇒ n+ 1 :
We multiply (5.87) from the left by an additional annihilation operator D: since
U,V, . . . , X, Y are also annihilation operators, it follows initially that:

DN(UV . . . XY )Z = N(DUV . . . XY )Z.

From the condition of the induction, (5.87) is valid for n operators:

DN(UV . . . XY )Z = DN(UV . . . X YZ)+DN(UV . . . XYZ)+
+ · · · +DN(UV . . . XYZ)+DN(U . . . Z) =

= N(DUV . . . X YZ)+N(DUV . . . XYZ)+
+ · · · +N(DUV . . . XYZ)+DN(UV . . . XYZ).

In the last step, we made use of the fact that the only creation operator in the
arguments of the N products, the operator Z, occurs only within contractions, i.e. it
no longer acts as an operator. We can thus include the annihilation operator D, as
indicated, within the N products. Equation (5.87) is then proved, if

DN(UV . . . XYZ) = N(DU . . . YZ)+N(DU . . . YZ)

can be demonstrated to hold. Now, however, we have:

DN(UV . . . YZ) = (−1)nDZUV . . . Y =
(tD>tZ)= (−1)n DZ UV . . . Y + (−1)nN(DZ)UV . . . Y =
= (−1)2nN(DUV . . . YZ)+ (−1)n+1N(ZD)UV . . . Y =
= N(DUV . . . YZ)+ (−1)n+1N(ZDUV . . . Y ) =
= N(DUV . . . YZ)+ (−1)n+1(−1)n+1N(DUV . . . YZ) =
= N(DUV . . . YZ)+N(DUV . . . YZ).
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This proves the lemma (5.87).

One can immediately see that (5.87) remains valid even if the normal product on the
left-hand side already contains one or more contractions:

N(U V . . . X Y )Z = N(U V . . . X YZ)+ · · ·+
+ · · · +N(U V . . . X YZ)+N(U V . . . X YZ).

(5.88)

We can now proceed to prove Wick’s theorem (5.84) once again, using complete
induction. We employ the fact explained above that the operators can be assumed to
be already time-ordered.
n = 2 :

Tε(UV ) = UV = N(UV )+ UV .

This is nothing other than the definition of a contraction.
n �⇒ n+ 2 :

We multiply (5.84) from the right with AB, whereby

tU > tV > tW > · · · > tX > tY > tZ > tA > tB

can be assumed, and then we apply the lemma (5.87) twice.

Tε(UV . . . YZ)AB = Tε(UV . . . YZAB) =
= N(UV . . . YZ)AB +N(UV . . . YZ)AB+
+ · · · =

= N(UV . . . YZA)B +N(UV . . . Y ZA)B+
+ · · ·+
+N(UV . . . YZA)B +N(UV . . . Y ZA)B+
+ · · ·+
+ {total pairing}n(AB +N(AB)) =

= N(UV . . . YZAB)+N(UV . . . YZ AB)+
+ . . .+
+N(UV . . . Y ZAB)+N(UV . . . Y ZAB)+

+ . . .+
+ {total pairing}nN(AB)+
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+ {total pairing}n AB =
= N(UV . . . YZAB)+N(UV . . . YZ AB)+
+N(UV . . . Y ZAB)+ · · ·+
+N(UV . . . YZ AB)+N(UV . . . Y ZAB)+ · · ·+
+ · · · +
+ {total pairing}n+2.

The {total pairing}n+2 results from {total pairing}n AB and from those terms for
which in the n-th step all the operators are paired except for two in the argument of
the N products.

Thus we have proved the fundamental Wick theorem!

5.2.3 Exercises

Exercise 5.2.1

1. Write the time-ordered product

Tε

{
akσ (t1)a

+
lσ ′(t2)amσ (t3)a

+
nσ ′(t3)

}

in terms of normal products and suitable contractions.
2. Express the expectation value of the time-ordered product in part 1 in the

ground state |η0〉 of the unperturbed system in terms of products of the free
causal Green’s functions.

Exercise 5.2.2 Evaluate explicitly the expectation value of the time-ordered
product in part 1 of Exercise 5.2.1 in the ground state |η0〉 of the unperturbed
system for the special case k = l = m = n, σ = σ ′ for

1. t1 > t2 > t3,
2. t1 > t3 > t2.

Check the results by direct calculation of the expectation values, i.e. without
using Wick’s theorem.
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5.3 Feynman Diagrams

Wick’s theorem shows the way to construct perturbation expansions for the various
expectation values. The main task consists of forming all imaginable contractions
from the given products of creation and annihilation operators, whereby these are
related according to (5.79) and (5.82) directly to the unperturbed causal Green’s
functions. This task requires as a rule considerable effort, which however can be
effectively reduced by introducing Feynman graphs.

We start with the expectation value of the time-evolution operator,

〈η0|Uα
(
t, t ′
) |η0〉 ,

which is also called the vacuum amplitude. Other examples will then follow quite
naturally.

5.3.1 Perturbation Expansion for the Vacuum Amplitude

According to (5.27), we must calculate the following:

〈η0|Uα
(
t, t ′
) |η0〉 = 1+

∞∑

n=1

〈η0|U(n)
α

(
t, t ′
) |η0〉 , (5.89)

〈η0|U(n)
α (t, t ′) |η0〉 = 1

n!
(
− i

h̄

)n ∫ t

· · ·
t ′

∫
dt1 · · · dtn·

· e−α(|t1|+···+|tn|) 〈η0| Tε {V (t1) · · ·V (tn)} |η0〉 .

(5.90)

V (t) is taken to be a pair interaction of the type (5.60). It will later prove expedient
to insert a trivial integration into it:

V (t1) = 1

2

∑

kl
mn

υ(kl; nm)
+∞∫

−∞
dt ′1δ

(
t1 − t ′1

)
a+k (t1)a

+
l

(
t ′1
)
am
(
t ′1
)
an(t1) (5.91)

As an example, we consider the first term of the perturbation expansion (5.89):

〈η0|U(1)
α

(
t, t ′
) |η0〉 = − i

2h̄

t∫

t ′
dt1e−α|t1|

∑

klmn

+∞∫

−∞
dt ′1δ

(
t1 − t ′1

) ·

· v(kl; nm) 〈η0| Tε
{
a+k (t1)a

+
l

(
t ′1
)
am
(
t ′1
)
an(t1)

} |η0〉 .
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Fig. 5.1 The annotation of a
vertex as a basic element of a
Feynman diagram

To evaluate the matrix element, we make use of Wick’s theorem:

〈η0| Tε{. . .} |η0〉 = a+k (t1)an(t1) a
+
l

(
t ′1
)
am
(
t ′1
)−

− a+k (t1)am
(
t ′1
)
a+l
(
t ′1
)
an(t1) =

=
[
−iG0,c

k (0−)δkn
] [
−iG0,c

l (0−)δlm
]
−

−
[
−iG0,c

k

(
t ′1 − t1

)
δkm

] [
−iG0,c

l

(
t1 − t ′1

)
δln

]
.

With (5.83), this yields after insertion:

〈η0|U(1)
α

(
t, t ′
) |η0〉 =

= i

2h̄

t∫

t ′
dt1e−α|t1|

∑

k,l

〈nk〉(0)〈nl〉(0)(υ(kl; lk)− υ(kl; kl)).
(5.92)

We want to visualise this result using diagrams. In the following, we wish to work
out step by step a unique set of translation rules for the complicated terms in the
perturbation expansion into so-called

Feynman graphs.

Vertex The interaction is indicated by a dashed line (Fig. 5.1). The time indices
ti , t

′
i serve only to distinguish the ends of the interaction line. Due to δ(ti − t ′i ) in

the integrands of (5.91), both points of course finally denote the same time. A line
which enters a vertex point symbolises an annihilation operator, and a line which
emerges from a vertex symbolises a creation operator.



5.3 Feynman Diagrams 349

A contraction is represented by a solid line with an arrow which connects two
vertex points. We imagine a time axis with a time index which increases from left
to right. We distinguish between:

(1) Propagating Lines
The time argument of the Green’s function, as per our previous convention,

always contains (annihilation time – creation time).

⇐⇒ a+ki (ti)anj (tj ) =

= −iG0,c
ki
(tj − ti )δkinj , (5.93)

⇐⇒ ani (ti)a
+
kj
(tj ) =

= −iG0,c
kj
(ti − tj )δnikj . (5.94)

Within the contraction, the operator appears before the time, which is placed
further to the left.

(2) Non-propagating Lines
This refers to a solid line which emerges from and reenters one and the same

vertex. There are several different possibilities for this:

⇐⇒ a+ki (ti)aki (ti) =

= −iG0,c
ki
(0−)δkini = 〈nki 〉(0)δkini . (5.95)

This assignment is per convention; the arrow on the bubble is therefore in fact
superfluous.
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⇐⇒ a+ki (ti)ami (t
′
i ) =

= −iG0,c
ki
(0−)δkimi = 〈nki 〉(0)δkimi . (5.96)

⇐⇒ ani (ti)a
+
li
(t ′i ) =

= −iG0,c
ni (0

−)δni li = −〈nli 〉(0)δlini . (5.97)

We agree upon the convention that in the Tε product, the contractions are
always to be sorted in such a way that for same times, the operators with
the “primed” times will be placed to the right of those with the “unprimed”
times. Combining (5.96) with (5.97), we can see that within a contraction, the
“primed” times can be permuted with the “unprimed” times. We will make use
of this later.

The first term in the perturbation expansion for Uα(t, t ′) has only a single vertex.
The solid lines can therefore be only non-propagating lines. The fourfold sum thus
becomes a double sum:

〈η0|U(1)
α

(
t, t ′
) |η0〉 = − i

2h̄

t∫

t ′
dt1e−α|t1|

+∞∫

−∞
dt ′1δ(t − t1)·

(5.98)

Applying the diagram rules listed above, we find directly the result (5.92).
Since every vertex must be entered by two lines and two must emerge from
it, it is clear that to first order, no additional diagrams are possible besides the
two in (5.98).

For the first term in the perturbation expansion, the diagram representation
is child’s play; it becomes useful only for higher-order terms and for partial
summations.
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How many different graphs are possible with n vertices? We can see the
answer as follows: for n vertices, there are 2n outgoing arrows. The first out-
going arrow then has 2n possibilities to end on a vertex as an ingoing arrow,
whilst the second arrow then has only (2n − 1) possibilities, the third has
(2n− 2) etc.:

n vertices ⇐⇒(2n)! different graphs for the vacuum amplitude.

However, not all of them must always be explicitly counted. Graphs which are
related to each other simply by a permutation of the indices on an interaction
line are naturally identical, since later, a summation will be carried out over all
wavenumbers. Furthermore, those diagrams which differ only in the arrangement
of the time indices are the same, since the integration is performed indepen-
dently over all times. We shall later need to systematise this description to some
extent.

Before we formulate the general diagram rules, we wish as an exercise to
investigate the second term of the perturbation expansion in somewhat more detail:

〈η0|U(2)
α

(
t, t ′
) |η0〉 =

= 1

222!
(
− i

h̄

)2 ∫ t

· · ·
t ′

∫
dt1dt ′1dt2dt ′2 e−α(|t1|+|t2|)δ

(
t1 − t ′1

) ·

· δ (t2 − t ′2
) ∑

k1l1m1n1

∑

k2l2m2n2

υ(k1l1; n1m1)υ(k2l2; n2m2)·

· 〈η0| Tε{(2)} |η0〉 .

(5.99)

The total pairing of the time-ordered product in 〈η0|Tε{(2)}|η0〉 contains 24 terms:
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In evaluating the contractions indicated here, one must keep in mind that the oper-
ators to be contracted must be adjacent to one another. The pairwise permutations
required to achieve this each introduce a factor of (−1). Furthermore, we agreed
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upon the convention that within a contraction, the operators must be arranged in
such a way that the operator with the smaller time index stands to the left, and when
the times are the same, the operator with the unprimed time is on the left. This
sounds rather complicated, but it can be greatly simplified by using the loop rule,
which we shall prove later.

We translate the above contributions to the total pairing into the diagram
language:
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All 24 diagrams must of course be counted. However, many of these diagrams make
identical contributions to the perturbation expansion.

A first important simplification is obtained from the so-called

loop rule.

1. Every solid propagating line contains the factor

iG0,c
kν

(
tν − tμ

)
δkν,kμ

(tν : annihilation time; tμ : creation time).

2. Every non-propagating line contains the factor

iG0,c
kν
(0−)δkνkμ = − 〈ηkν

〉(0)
δkνkμ . (5.100)

3. The sign of the overall factor is then

(−1)S,

with S = number of closed Fermion loops,
and a loop is closed sequence of solid lines.

Proof In the terms of n-th order in the perturbation expansion, the operators occur
as four-tuples of the form

a+k (t)a
+
l

(
t ′
)
am
(
t ′
)
an(t).

We can rewrite these without change of sign to

a+k (t)an(t)a
+
l

(
t ′
)
am
(
t ′
)
,
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since within the Tε product, this requires two permutations in each case. Same-time
operators always enter a loop in the form

as long as it is not a bubble, which we will treat separately. Such operator products
can be moved arbitrarily through the Tε product without changes of sign. Then a
loop can always be arranged as follows:

In this process, a+(t1)a(t1) is held fixed, whilst a+(tn)a(tn) is moved to the extreme
right, a+(tn−1)a(tn−1) follows, etc. If now all the time indices in a contraction are
different, then it corresponds to a propagating line. The inner contractions in the
expression above then have an operator ordering which leads according to (5.94)
to a contribution of the form 1. If same-time operators with primed and unprimed
times are contracted, this corresponds to a non-propagating line of the form (5.97),
which makes a contribution as in 2. This holds again for the inner contractions. The
only exception is an outer contraction in which the operators to be contracted are
arranged in the wrong order. Evaluating the whole loop using the prescriptions 1
and 2 will then lead to an additional factor of (−1).

If the diagram term consists of several loops, then one can reorder the operators
in the Tε product from the outset in such a way that in the total pairing, the loops are
directly factored. This can be accomplished without sign changes, since each loop
is of course constructed from an even number of operators.

A bubble a+k (t)ak(t) represents a special case of a loop.

From 2, it makes the contribution −〈nk〉(0), and from 3 an additional factor of (−1)
occurs; thus all together +〈nk〉(0). This indeed agrees with (5.95). We have thus
proved the loop rule.

“Preliminary” diagram rules. Terms of n-th order in the perturbation expansion
for 〈η0|Uα(t, t ′)|η0〉:

All (!) of the diagrams with n vertices are to be drawn, whose end points are
joined pairwise by solid, directed lines. The contribution of a diagram can then be
computed as follows:

1. Vertex i ⇐⇒ υ(ki li; nimi).
2. Propagating line ⇐⇒ iG0,c

ki
(ti − tj )δki ,kj .

3. Non-propagating line ⇐⇒ − 〈nki
〉(0)

δki ,kj .
4. Factor (−1)S; S = number of Fermion loops.
5. Summation over all wavenumbers and possibly spins . . . , ki, li , mi, ni, . . ..
6. Insert δ-functions δ(ti−t ′i ); and the switching-on factor exp[−α(|t1|+· · ·+|tn|)].
7. Integrate over all ti , t ′i from t ′ to t .

8. Include a factor 1
n!
(
− i

2h̄

)n
.



356 5 Perturbation Theory (T = 0)

Examples Diagram (3)

(3) = 1

2!
(
− i

2h̄

)2 ∫ t

· · ·
t ′

∫
dt1 dt ′1 dt2 dt ′2δ

(
t1 − t ′1

)
δ
(
t2 − t ′2

) ·

· e−α(|t1|+|t2|)
∑

k1,...,n1
k2,...,n2

υ(k1 . . .)υ(k2 . . .)(−1)·

·
(

iG0,c
l1

(
t ′2 − t ′1

)) (
iG0,c

n1
(t1 − t2)

) (
− 〈nk1

〉(0)) (− 〈nn2

〉(0)) ·
· δl1,m2δn1,k2δk1,m1δn2,l2 =

= +1

2!
(
− i

2h̄

)2 t∫∫

t ′
dt1dt2 e−α(|t1|+|t2|)

∑

k1,l1,n1,n2

υ(k1l1; n1k1)·

· υ(n1n2; n2l1)G
0,c
l1
(t2 − t1)G

0,c
n1
(t1 − t2)

〈
nk1

〉(0) 〈
nn2

〉(0)
.

5.3.2 The Linked-Cluster Theorem

The procedure which we have thus far developed still seems to be too complicated.
We want to simplify it further by making use of topology. What is in fact the
meaning of

“all” diagrams with n vertices

in the rules given above? Among these, there are a number of diagrams which each
make the same contribution to the perturbation expansion:

Diagrams with the same structure are those which can be converted into one
another by exchanging their vertices and permuting the times at their vertices. With
n vertices, there are n! possible permutations of the vertices among themselves and
2n permutations of above and below on the individual vertices. For a given diagram
type with n vertices, there are thus

2nn! diagrams of the same structure,

which each make the same contribution to the perturbation expansion, since an
independent summation over all wavenumbers and integration over all times will
later be performed. The indices on the wavenumbers and on the times are only an
aid to characterising the variables.
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Examples

We can find all the diagrams with the same structure as the one sketched for example
by carrying out the following prescription: Leave off the arrows and construct all
diagrams by permutation of the right and left as well as of above and below:

For each of these diagrams, there are now still two possibilities for the sense of
rotation. All together, we thus have eight diagrams (222!) of the same structure.

Among the 2nn! diagrams of the same structure, however, there are some which
are already

topologically equivalent.

These are diagrams with certain symmetries, which mean that a permutation of
certain vertices or permutation of the vertex points yields identical diagrams. Thus,
the diagram 1.

1.

is invariant with respect to a permutation of above and below.
The diagram

2.

remains invariant when the two vertices are exchanged and simultaneously above
and below are permuted on both vertices.
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We introduce the following notation:

� : Structure of a diagram,
h(�): Number of topologically equivalent diagrams within a structure �,
An(�): Number of topologically distinct diagrams within a structure

An(�) = 2nn!
h(�)

. (5.101)

Topologically distinct diagrams with the same structure correspond to different
combinations of contractions in the total pairing, which however all make the same
contribution to the perturbation term.

One thus chooses from each of the pairwise different structures

�1,�2, . . . , �ν, . . .

one representative D(n)
ν and computes its contribution U(D

(n)
ν ) according to the

diagram rules from the preceding section. Then the overall contribution from the
structure �ν is:

U(�ν) = An(�ν)U(D
(n)
ν ) = an (�ν)U

∗ (D(n)
ν

)
. (5.102)

Here, U∗(D(n)
ν ) is the contribution of the diagram D

(n)
ν without the factor required

by rule 8., i.e.

an(�ν) = 1

h(�ν)

(
− i

h̄

)n
. (5.103)

Finally, one sums over all the structures:

〈
η0
∣∣U(n)

α

(
t, t ′
) ∣∣η0

〉
=
∑

ν

an(�ν)U
∗ (D(n)

ν

)
. (5.104)

We now define

connected diagrams

as those which cannot be decomposed by any cut into two independent diagrams of
lower order without cutting through a line of the diagram. The diagrams (1), (2), (7)
and (8) in Sect. 5.3.1 are clearly not connected.

Now let D(n) be a diagram with the structure �, which can be decomposed into
the two connected diagrams D(n1)

1 and D(n2)
2 with the structures �1 and �2, and is

thus not itself connected. Then for �1 �= �2, we have:
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h(�) = h(�1)h(�2), (5.105)

since for each diagram from �1, there are h(�2) topologically equivalent diagrams
with the structure �2. The overall contribution of the structure � is then given by:

U(�) =
(
− i
h̄

)n1+n2

h(�1)h(�2)
U∗
(
D(n)

)
.

Non-connected diagrams have no common integration or summation variables in
their substructures. Therefore, the overall contribution U∗(D(n)) can be factored:

U∗
(
D(n)

)
= U∗

(
D
(n1)
1

)
U∗
(
D
(n2)
2

)
. (5.106)

However, this also signifies that:

U(�) = U(�1)U(�2) (�1 �= �2). (5.107)

With the same structures (�1 = �2), we have instead of (5.105):

h(�) = h(�1)h(�2)2! = 2!h2(�1), (5.108)

since a permutation of the same structures yields further topologically equivalent
diagrams:

U(�) = 1

2!U
2(�1) (�1 = �2). (5.109)

These considerations can readily be generalised to arbitrary structures �. Assume
that

� = p1�1 + · · · + pn�n; pν ∈ N, (5.110)

where �ν are connected structures. Then for the overall contribution of this
structure, we have:

U(�) = 1

p1!U
p1(�1)

1

p2!U
p2(�2) · · · 1

pn!U
pn(�n). (5.111)

Let us now consider the full perturbation expansion of the time-evolution operator
Uα(t, t

′):
〈
η0
∣∣Uα

(
t, t ′
) ∣∣η0

〉 = 1+
∑

�

U(�) =

= 1+ U(�1)+ U (�2)+ · · ·+︸ ︷︷ ︸
Contributions of all the
connected diagrams
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+ 1

2!U
2(�1)+ U(�1)U(�2)+ U(�1)U(�3)+ · · ·+

+ 1

2!U
2(�2)+ U(�2)U(�3)+ · · ·+

...

+ 1

2!U
2(�n)+ U(�n)U(�n+1)+ · · ·+

︸ ︷︷ ︸
Contributions of all the non-connected diagrams
which are decomposable into two connected diagrams

+ 1

3!U
3(�1)+ 1

2!U
2(�1)U(�2)+ · · ·+

+ U(�1)U(�2)U(�3)+ · · ·+

+ 1

3!U
3(�2)+ 1

2!U
2(�2)U(�1)+ · · ·+

︸ ︷︷ ︸
Contributions of all the non-connected diagrams
which are decomposable into three connected diagrams

+ · · · =

= 1+
(

conn∑

ν

U(�ν)

)

+

+ 1

2!
(
U2(�1)+ 2U(�1)U(�2)+ · · ·+

+U2(�2)+ 2U(�2)U(�3)+ · · ·
)
+

+ 1

3!
(
U3(�1)+ 3U2(�1)U(�2)+ 6U(�1)U(�2)U(�3)+ · · ·

)
+

+ · · · =

= 1+
{

conn∑

ν

U(�ν)

}

+ 1

2!

{
conn∑

ν

U(�ν)

}2

+ · · · .

We have thus derived the important

linked-cluster theorem

〈
η0
∣∣Uα

(
t, t ′
) ∣∣η0

〉 = exp

{
conn∑

ν

U(�ν)

}

(5.112)
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with the notable consequence that we now have to sum only the connected diagrams
which exhibit pairwise different structures.

We can now update the diagram rules of the preceding section:

Perturbation-theoretical calculation of the vacuum amplitude

〈
η0
∣∣Uα

(
t, t ′
) ∣∣η0

〉
.

One finds all the connected diagrams with pairwise different structures and
computes the contribution of a diagram of n-th order as follows:

1. Vertex ⇐⇒ υ(kl; nm).
2. Propagating line ⇐⇒ iG0,c

kν
(tν − tμ)δkν,kμ .

3. Non-propagating line ⇐⇒ − 〈nkν
〉(0)

δkν ,kμ .
4. Summation over all . . . , ki, li , mi, ni, . . .

5. Multiplication by exp (−α(|t1| + · · · + |tn|)) δ(t1 − t ′1) · · · δ(tn − t ′n), then inte-
gration over all t ′i , ti from t ′ to t .

6. Factor
(
− i
h̄

)n
(−1)S

h(�)
.

Finally, one inserts the resulting contribution U(�) into (5.112).

5.3.3 The Principal Theorem of Connected Diagrams

Up to now, we have been considering the development of diagrams for the vacuum
amplitude

〈
η0
∣∣Uα

(
t, t ′
) ∣∣η0

〉
,

which becomes the scattering matrix Sα (5.53) for t = +∞ and t ′ = −∞. In fact,
however, we are interested in expressions of the form (5.58):

〈
E0
∣∣Tε
{
AH(t)BH (t ′

)} ∣∣E0
〉 =

= lim
α→0

1
〈
η0
∣∣Sα
∣∣η0
〉
∞∑

ν=0

1

ν!
(
− i

h̄

)ν ∫ +∞
· · ·
−∞

∫
dt1 · · · dtν ·

· e−α(|t1|+···+|tν |)
〈
η0
∣∣Tε
{
V (t1) · · ·V (tν)A(t)B

(
t ′
)} ∣∣η0

〉
,

(5.113)
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in which the operators are on the right in the Dirac representation and A(t), B(t ′)
are supposed to be products of Fermionic creation and annihilation operators. The
perturbation expansion of the numerator on the right-hand side is carried out quite
analogously to that of the vacuum amplitude which we have been discussing:

1. Wick’s theorem: total pairing of the creation and annihilation operators which
occur.

2. Summations over all the inner ki, li , . . . No summation is carried out over the
outer indices of the operators occurring in A and B.

3. Integrations over all the inner time variables from −∞ to +∞, but not over t
and t ′.

A(t) is supposed to contain n̄ creation and annihilation operators, B(t ′) m̄, where
m̄ + n̄ is an even number. A diagram of n-th order can then be represented
symbolically as in Figs. 5.2 and 5.3:

Fig. 5.2 The general
structure of an open diagram
of n-th order

Fig. 5.3 The general
structure of the contribution
to the vacuum amplitude of
an arbitrary diagram
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We distinguish among:

“open” diagrams = diagrams with outer lines,

“closed” diagrams; and

vacuum fluctuation = diagrams without outer lines.

diagrams

We then clearly expect that:
Every open diagram consists of open, connected diagrams plus connected

vacuum fluctuation diagrams.
One obtains all such diagrams by adding all of the possible vacuum fluctuation

diagrams to every combination D0 of open, connected diagrams. The former
contribute, as in (5.112), a factor of

exp

{
conn∑

ν

U(�ν)

}

.

All diagrams with the same combination D0 of open, connected diagrams thus
contribute to the denominator in (5.113) with

U(D0) exp

{
conn∑

ν

U(�ν)

}

.

It then follows that:

The overall contribution of all diagrams to the perturbation expansion
is:

⎛

⎝
∑

D0

U(D0)

⎞

⎠ exp

{
conn∑

ν

U(�ν)

}

. (5.114)

The summation runs over all combinations of open, connected diagrams. This is the

principal theorem of connected diagrams,

without which every diagram expansion would be illusory. If we insert this theorem
into (5.113), then the contribution from the vacuum fluctuation diagrams just cancels
out with 〈η0|Sα|η0〉:

〈E0| Tε{AH(t)BH (t ′
)}∣∣E0

〉 = lim
α→0

∑

D0

U(D0). (5.115)
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Here, D0 is thus a combination of open, connected diagrams with all together n
attached outer lines at t and m at t ′, where n and m are the numbers of Fermionic
operators in A(t) and B(t ′).

Quite analogously, we find for the simpler expression (5.56):

〈
E0
∣∣AH(t)

∣∣E0

〉
= lim

α→0

∑

D0

U(D0). (5.116)

In this expression, D0 is now a combination of open, connected diagrams with as
many solid lines attached at t as there are Fermionic operators contained in A(t).

For both cases, (5.115) and (5.116), we discuss examples of applications in the
following sections.

5.3.4 Exercises

Exercise 5.3.1 Evaluate the vacuum amplitude {η0|Uα(t, t ′)|η0〉 in first order
perturbation theory for the

1. Hubbard model and the
2. jellium model.

Exercise 5.3.2 In second-order perturbation theory for the vacuum ampli-
tude, we find the diagram:

1. Calculate the contribution of this diagram.
2. What does it contribute in the Hubbard model?
3. What contribution does it make in the jellium model?
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Exercise 5.3.3 Find out which of the diagrams of second order for the
vacuum amplitude as listed in Sect. 5.3.1 are topologically distinct, but have
the same structure; i.e. they correspond to different terms of the total pairing
which make the same contributions to the perturbation expansion. How many
of the 24 diagrams accordingly must be evaluated explicitly?

5.4 Single-Particle Green’s Functions

5.4.1 Diagrammatic Perturbation Expansions

An important application of diagrammatic perturbation theory concerns the causal
single-particle Green’s function:

iGc
kσ

(
t − t ′

) = 〈E0| Tε
{
akσ (t)a

+
kσ

(
t ′
)} ∣∣E0

〉
. (5.117)

This corresponds to the case of (5.115), i.e. it is to be summed over all the pairwise
distinct structures of connected diagrams with two solid outer lines, corresponding
to the operators akσ (t) and a+

kσ
(t ′).

We insert here a remark on interactions. We consider pairwise interactions,
((υ(|r1 − r2|)). The entire system is assumed to have translational symmetry. Then
the momenta at a vertex are not arbitrary, but instead

momentum conservation at a vertex

must be required:

k − n = m− l = q. (5.118)

The sum of the inward-pointing momenta is equal to the sum of the outward-
pointing momenta. At each vertex point, we furthermore require conservation
of spin:

σk = σn; σl = σm. (5.119)

Due to (5.118) and (5.119), the number of summations is again greatly reduced. We
shall make use of this at a suitable juncture.

We now come to the diagram expansion for the Green’s function. In

zeroth order,

we find merely a line propagating from t ′ to t :
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this corresponds to the contribution:

iG0,c
kσ

(
t − t ′

)
.

In

first order

we must evaluate:

1

1!
1

2

(
− i

h̄

) +∞∫

−∞
dt1

+∞∫

−∞
dt ′1 δ(t1 − t ′1) e−α|t1|

∑

k1l1m1n1
σ1σ

′
1

υ(k1l1;n1m1)·

Only open, connected diagrams need be considered.

At the vertex, one can naturally also exchange upper and lower. This yields
topologically distinct diagrams of the same structure, which are taken into account
by inserting the factor 21 · 1!.

Second order

We have to count the following open, connected diagrams:
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For each of these diagrams there are again 22 ·2! = 8 topologically distinct diagrams
of the same structure which make the same contributions. Topologically equivalent
diagrams do not occur owing to the outer attachments. For the Green’s function
diagrams, one sometimes chooses a somewhat modified representation by stretching
the propagating lines, but not necessarily drawing in the vertices as perpendicular
lines. The above diagrams are then drawn as follows:

“stretched” diagrams

The rules for the evaluation of these not-numbered diagrams are obtained
immediately from those in Sect. 5.3.2 for the vacuum amplitude:
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We draw a member from each structure � of connected diagrams with two outer
attachments. Each diagram of n-th order contains n vertices and (2n+1) solid lines,
among them two outer ones. The contribution of such a diagram is then computed
as follows:

1. Vertex ⇐⇒ υ(kl; nm).
2. Propagating line ⇐⇒ iG0,c

kν
(tν − tμ)δkν,kμ .

3. Non-propagating line ⇐⇒ iG0,c
kν
(0−)δkν,kμ .

4. Momentum conservation at the vertex; spin conservation at the vertex point.
5. Multiplication by e−α(|t1|+...+|tn|)δ(t1 − t ′1) · · · δ(tn − t ′n).
6. Summation over all the inner wavenumbers and spins . . . , ki, li , mi, ni, . . . as

well as integration over all the inner times ti , t ′i from −∞ to +∞.

7. The factor
(
− i
h̄

)n
(−1)S; S = number of loops (h̄(�) ≡ 1).

In 2 and 3, kν and kμ refer to the indices (wavenumber, spin) which connect the
propagators iG0,c to each other.

The evaluation of the diagrams using these rules can be somewhat tedious, since
as seen in (5.78), the causal one-electron Green’s function exhibits an unfavourable
time dependence. One is thus well advised to use the Fourier transform:

G
0,c
k

(
t − t ′

) = 1

2πh̄

+∞∫

−∞
dEG0,c

k (E) exp

(
− i

h̄
E
(
t − t ′

))
. (5.120)

In the diagrams, the transformation is carried out as follows:

exp
(
− i
h̄
Et1

)

√
2πh̄

(
iG0,c

k (E)
) exp

(
− i
h̄
Et2

)

√
2πh̄

The outgoing line at t2 is associated with the additional factor

exp
(

i
h̄
Et2

)

√
2πh̄

.

The ingoing line at t1, in contrast, produces a term

exp
(
− i
h̄
Et1

)

√
2πh̄

.
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Fig. 5.4 The annotation of a
vertex in a diagram for an
energy-dependent
one-electron Green’s function

It is thus advisable to index the ingoing and outgoing lines at a vertex additionally
with the energies. The whole vertex is then associated, apart from the matrix element
υ(kl; nm), with a factor (Fig. 5.4):

1

(2πh̄)2
exp

{
i

h̄
(Ek − En)t + i

h̄
(El − Em)t

′ − α|t |
}
δ(t − t ′).

The subsequent integration over time is readily carried out:

+∞∫

−∞
dt

+∞∫

−∞
dt ′ exp

{
i

h̄

[
(Ek − En)t + (El − Em)t

′]
}

exp(−α|t |)δ (t − t ′
) =

=
+∞∫

0

dt exp

(
i

h̄
Et − αt

)
+

0∫

−∞
dt exp

(
i

h̄
Et + αt

)
=

= −1
i
h̄
E − α

+ 1
i
h̄
E + α

= 2α
(

1
h̄
E
)2 + α2

,

E = (Ek − En)+ (El − Em).

Taking the limit α → 0 (adiabatic switching on) then makes this expression into a
δ-function:

lim
α→0

1

(2πh̄)2

+∞∫∫

−∞
dtdt ′ exp

{
i

h̄

[
(Ek − En)t + (El − Em)t

′]
}
·

· exp (−α|t |) δ (t − t ′
) =

= 1

2πh̄
δ[(Ek + El)− (Em + En)].

(5.121)

This however simply guarantees

conservation of energy at the vertex.
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The outer lines take on a certain special role:

exp
(
− i
h̄
Et
)

√
2πh̄

(
iG0,c

k (E)
) exp

(
+ i
h̄
Et1

)

√
2πh̄

The factor exp[(i/h̄)Et1]/
√

2πh̄, as described above, is taken into the vertex at t1
and contributes after the integration over t1 to the corresponding δ-function (5.121).
Then the term

exp
(
− i
h̄
Et
)

√
2πh̄

(
iG0,c

k (E)
)

still remains; it is finally integrated over all E in order to obtain Gc
k(t − t ′).

For the line which enters the diagram from the right of t ′, an analogous factor
applies:

iG0,c
k

(
E′
) exp

(
1
h̄
E′t ′

)

√
2πh̄

.

If the inner summations and integrations all together yield the numerical value I ,
then we have for the overall diagram:

iG̃k

(
t − t ′

) = i

2πh̄

∫∫
dEdE′

(
iG0,c

k (E)
) (

iG0,c
k (E′)

)
·

· exp

[
i

h̄
(E′t ′ − Et)

]
!=

!= iG̃k

(
(t + t0)− (t ′ + t0)

) =

= i

2πh̄

∫∫
dEdE′

(
iG0,c

k (E)
) (

iG0,c
k

(
E′
)) ·

· exp

[
i

h̄
(E′t ′ − Et)

]
exp

[
i

h̄
(E′ − E)t0

]
.

Since from (3.129), the Green’s function depends only upon the time difference, it
follows that:

iG̃k

(
t − t ′

) = i

2πh̄

∫
dE
(

iG0,c
k (E)

)2
exp

(
i

h̄
E
(
t ′ − t

))
.
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For the Fourier transform, this implies that:

iG̃k(E) = I
(

iG0,c
k (E)

)2
. (5.122)

The two outer attachments of a diagram for the single-particle Green’s function
Gc
k(E) thus have not only the same wavenumber and spin k = (k, σ ), but also the

same energy E, in the last analysis a consequence of energy conservation at each
vertex.

If we now recall the structure of the free, energy-dependent causal T = 0 Green’s
function according to (3.206),

G
0,c
kσ (E) =

h̄

E − (ε(k)− εF )± i0+

(+ for |k| > kF, − for |k| < kF),

(5.123)

then we have everything we need in order to formulate the diagram rules for
iGc

kσ
(E),

diagram rules foriGc
kσ
(E):

One member from each structure � of connected diagrams with two outer attach-
ments must be found. A diagram of n-th order (with n vertices, (2n+ 1) solid lines)
then yields the following contribution:

1. Vertex ⇐⇒ 1
2πh̄υ(kl, nm)δ[(Ek + El)− (Em + En)].

2. Propagating and non-propagating line ⇐⇒ iG0,c
kν
(Ekν )δkνkμ .

3. Factor: (−1)S
(
− i
h̄

)n
.

4. Summation over all the inner indices ki, li , . . .; integration over all the inner
energies Eki , Eli , . . .

5. Outer attachments: iG0,c
k (E).

5.4.2 The Dyson Equation

As we already mentioned earlier, summing of a finite number of terms of a
perturbation expansion is not always expedient, e.g. when the perturbation is not
really small or when divergences occur in the individual perturbation terms. It is
then often preferable to formulate an approximation by summing an infinite partial
series. Such a possibility is opened up by the Dyson equation, which we have
already encountered in (3.327). We now wish to reconstruct it with the aid of our
diagram techniques.

Definition 5.4.1 Self-energy contribution = that portion of a diagram which is
connected with the remainder of the diagram by two propagating lines.
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Examples

A self-energy contribution is thus a diagram part with two outer attachments, for
one outgoing and one incoming propagating line.

Definition 5.4.2 The proper (irreducible) self-energy contribution = that portion
of the self-energy part which cannot be decomposed into two independent self-
energy contributions by removal of a propagating line.

Examples

Up to second order, the causal Green’s function has the following irreducible
self-energy contributions:

With the exception of the zero-order diagram, one can decompose every diagram
which contributes to iGc

kσ
(E) as follows:
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(I): iG0,c
k (E),

(II): the proper self-energy contribution,
(III): any arbitrary Green’s-function diagram.

Due to conservation of energy and momentum at each vertex, the middle propagator
has the same fixed indices k,E as the incoming and outgoing propagating lines.

Evidently, one obtains all the diagrams by summing in (II) over all the proper
self-energy contributions and in (III) over all the Green’s function diagrams.

Definition 5.4.3 Self-energy (!kσ (E)) = ih̄ · Sum over all the proper self-energy
contributions. Using the notation

: iGc
kσ (E)

: iG0,c
kσ (E)

: −1

h̄
!kσ (E),

we find the

Diagram representation of the Dyson equation

The self-energy diagrams have as a rule a simpler form than the Green’s function
diagrams. Once the self-energy has been computed (approximately or exactly), the
Green’s function is also determined:

iGc
kσ (E) = iG0,c

kσ
(E)+ iG0,c

kσ
(E)

(
− i

h̄
!kσ (E)

)
iGc

kσ (E),

Gc
kσ (E) = G

0,c
kσ (E)+G

0,c
kσ (E)

1

h̄
!kσ (E)G

c
kσ (E).

(5.124)

This equation can be formally solved:
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Gc
kσ (E) =

G
0,c
kσ
(E)

1−G
0,c
kσ (E)

1
h̄
!kσ (E)

= (5.125)

= h̄

E − ε(k)+ εF −!kσ (E)
. (5.126)

In the last step, we made use of (5.123), including the imaginary infinitesimal ±i0+
within !kσ (E), which is as a rule a complex function. When !kσ (E) is real, then
±i0+ in the sense of (5.123) must be introduced again. The physical significance of
the self-energy was discussed in detail in Sect. 3.4, and thus need not be repeated
here.

Note that even the simplest approximation imaginable for !kσ (E) according
to (5.124) requires summing of an infinite partial series:

If within the jellium model (Sect. 2.1.2), we assume

υ(q = 0) = 0, (5.127)

then all the diagrams with bubbles make no contribution, since they correspond to a
momentum transfer of q = 0. Then, as the simplest approximation, we have:

∧=− i

h̄
!
(1)
kσ (E).

The evaluation of this expression follows immediately from the diagram rules in
Sect. 5.4.1:

− i

h̄
!
(1)
kσ (E) = − i

h̄

1

2πh̄

q �=0∑

q

υ(q)

∫
dE′iG0,c

k+qσ (E + E′) =

= −i

2πh̄2

q �=0∑

q

υ(q)i2πh̄G0,c
k+qσ (0

−).

Here, we assumed specifically υ(kl;nm) = υ(k−n) = υ(m− l) = v(q) as in the
jellium model. We then have

!
(1)
kσ (E) = −

∑

q

υ(q)
〈
nk+q,σ

〉(0)
. (5.128)
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5.4.3 Exercises

Exercise 5.4.1 Within the Hubbard model, calculate the first-order con-
tribution to the self-energy of the one-electron Green’s function. Which
approximation of the equation of motion method (Chap. 4) corresponds to
this self-energy?

Exercise 5.4.2 Discuss the self-energy diagrams of second order for the
Hubbard model which can yield a nonzero contribution to the one-electron
Green’s function.

Exercise 5.4.3 Within the Hubbard model, calculate the one-electron
Green’s function in first-order perturbation theory and compare the result with
the Green’s function which is found by computing the self-energy to first order
(Exercise 5.4.1).

Exercise 5.4.4 Even the lowest-order approximation for the self-energy
requires the summation of an infinite partial series of diagrams for the one-
electron Green’s function. Give all of the diagrams which occur up to second
order.

Exercise 5.4.5 Which approximation is obtained if, in the self-energy to
first order, the free Green’s function propagators are replaced by the full
propagators:

!̂
(1)
kσ (E) =

Give examples of new diagrams which occur as a result of this so-called
renormalisation of the particle propagators as compared to the approxima-
tion in Exercise 5.4.4.
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5.5 The Ground-State Energy of the Electron Gas (Jellium
Model)

5.5.1 First-Order Perturbation Theory

Following the one-electron Green’s functions, we now discuss another application
of the diagram techniques developed in Sect. 5.3. We consider the ground-state
energy of the interacting electron gas, which we describe within the jellium model
(Sect. 2.1.2). It is characterised by the interaction operator

V (t) = 1

2

∑

klmn

υ(kl; nm)a+k (t)a+l (t)am(t)an(t),

k ≡ (k, σk),

(5.129)

where for the matrix element

υ(kl; nm) = υ(k − n)δk+l,m+nδσkσnδσmσl (5.130)

we find:

υ(q) = e2

ε0V q2
; υ(0) = 0. (5.131)

The q = 0-matrix element is exactly compensated by the homogeneously dis-
tributed positively-charged ionic background.

For the ground-state energy and the level shift, we have from (5.5) and (5.43):

E0 = lim
α→0

〈
η0
∣∣Hα

∣∣ψD
α (0)

〉

〈
η0
∣∣ψD

α (0)
〉 , (5.132)

�E0 = E0 − η0 = lim
α→0

〈
η0
∣∣V (t = 0)Uα(0,−∞)

∣∣η0
〉

〈η0|Uα(0,−∞) |η0〉 . (5.133)

All the operators are of course here again taken to be in their Dirac representations.
The denominator is already familiar from Sect. 5.3. It is the vacuum amplitude for
t ′ = −∞ and t = 0. We still have to evaluate the following expression:
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�E0 = lim
α→0

1
〈
η0
∣∣Uα(0,−∞)

∣∣η0
〉
∞∑

n=0

1

n!
(
− i

h̄

)n
·

·
∫ 0

· · ·
−∞

∫
dt1 · · · dtne−α(|t1|+···+|tn|)·

· 〈η0
∣∣V (t = 0)Tε {V (t1) · · ·V (tn)}

∣∣η0
〉
.

(5.134)

We can include the operator V (t = 0) as indicated within the Tε product, since the
times t1, . . . , tn are all ≤ 0. The diagram expansion of this expression corresponds
to the situation in (5.116):

�E0 = lim
α→0

∑

D̂0

U
(
D̂0
)
. (5.135)

The sum runs over all the combinations D̂0 of open, connected diagrams with four
solid lines attached at t = t ′ = 0. According to Wick’s theorem, we have to
construct the total pairing from typical terms of the perturbation expansion such as

Tε

{
a+k (t = 0)a+l

(
t ′ = 0

)
am
(
t ′ = 0

)
an(t = 0)a+k1

(t1)a
+
l1
(t ′1)·

· am1(t
′
1)an1(t1) · · · a+kn(tn)a+ln

(
t ′n
)
amn

(
t ′n
)
ann(tn)

}
.

The Feynman diagrams have formally the same structures as those for the vacuum
amplitude in Sect. 5.3.1, with the exception that the left vertex is fixed at t = t ′ = 0.
We integrate or sum over the times, momenta, and spins of the inner vertices. At
this point, we can already contemplate how many topologically distinct diagrams
of the same structure there can be for a given order. Due to the integrations and
summations, we can permute the inner vertices among themselves and exchange
above and below on them. The left vertex is fixed. However, here, too, above and
below can be exchanged:

A(�n) = 2n+1n!
h(�n)

. (5.136)

h(�n) is the number of topologically equivalent diagrams (Fig. 5.5).
The diagrams in first-order perturbation theory (n = 0) contain no inner vertices:

n = 0
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Fig. 5.5 Outer and inner
vertices for the computation
of the ground-state energy
within the jellium model

A bubble as in the left diagram makes no contribution within the jellium model
due to

υ(k − n) = υ(0) = 0.

Thus only the second diagram remains. Exchanging above and below yields a
topologically equivalent diagram. We thus find h(�0) = 2; A(�0) = 1. The rules
of Sect. 5.3 then yield:

�E
(1)
0 = −1

2

∑

klmn

υ(kl; nm)〈nk〉(0)〈nl〉(0)δkmδln =

= −1

2

∑

kl
σk,σl

υ(k − l)δ2
σkσl

〈
nkσk

〉(0) 〈
nlσl

〉(0)
.

With l = k + q and σk = σl = σ , we then must still calculate:

�E
(1)
0 = −

q �=0∑

k,q

υ(q)�(kF − k)�(kF − |k + q|). (5.137)

A similar expression was already evaluated in Sect. 2.1.2. From (2.96), we have:

�E
(1)
0 = −0.916

rs
N [ryd]. (5.138)

With (2.87) for η0, we find in first-order perturbation theory for the ground-state
energy the so-called Hartree-Fock energy:

E
(1)
0 = η0 +�E

(1)
0 = N

(
2.21

r2
s

− 0.916

rs

)
[ryd]. (5.139)

The first term represents the kinetic energy and the second the exchange energy.
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5.5.2 Second-Order Perturbation Theory

Now, how do the diagrams for second-order perturbation theory look? According
to (5.134), the following expression must be evaluated:

�E
(2)
0 = lim

α→0

1
〈
η0
∣∣Uα(0,−∞)

∣∣η0
〉
(
− i

h̄

) +∞∫

−∞
dt ′δ(t ′)

0∫

−∞
dt1·

·
+∞∫

−∞
dt ′1δ

(
t1 − t ′1

)
e−α|t1| 1

4

∑

klmn

∑

k1l1m1n1

υ(kl; nm)υ(k1l1; n1m1)·

·
〈
η0
∣∣Tε
{
a+k (0)a

+
l

(
t ′
)
am
(
t ′
)
an(0)a

+
k1
(t1)a

+
l1

(
t ′1
)
am1

(
t ′1
)
an1(t1)

}∣∣η0

〉
.

(5.140)

Only connected, open diagrams need be considered. For each diagram structure,
there are from (5.136)

A(�1) = 4

h(�1)
(5.141)

topologically distinct diagrams of the same structure. The following structures
occur:

Due to the fixed vertex on the left, diagrams (5) and (6) – in contrast to the case of
the vacuum amplitude – do not have the same structure.

Owing to (5.131), all the diagrams with bubbles make no contribution. The
structures (4), (5) and (6) therefore need not be evaluated. It can be readily seen
that this also holds for diagrams of type (3):

To see this, we examine the exact annotation of the diagram:
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Because of t ′ > t ′1, the propagator above, iG0,c
kσ (t

′ − t ′1), is only nonzero when

k > kF, according to (5.78); the propagator below, iG0,c
kσ (t1− t), is however nonzero

only when k < kF, due to t1 < t . The two cases cannot occur simultaneously. Thus
the net contribution of this diagram is zero. Since the ti , t ′i are always less than the
fixed times t, t ′ (after carrying out the trivial integrations), this also holds for all the
higher orders. Diagrams of the type

cannot contribute within the jellium model. We concentrate our considerations on
the structures (1) and (2). The contribution of (1) is calculated as follows:

U(1)(�1) = lim
α→0

4

2

1

4

(
− i

h̄

)
(−1)2

∑

klmn

υ(kl; nm)·

·
∑

k1l1m1n1

υ(k1l1; n1m1)

+∞∫

−∞
dt ′δ

(
t ′
)

0∫

−∞
dt1e−α|t1|·

·
+∞∫

−∞
dt ′1δ

(
t1 − t ′1

) (
iG0,c

k (t1 − 0)δkn1

)
(iG0,c

n (0− t1)δnk1)·

·
(

iG0,c
l (t ′1 − t ′)δlm1

) (
iG0,c

m (t ′ − t ′1)δml1
)
=

= lim
α→0

(
− i

2h̄

)∑

klmn

υ(kl; nm)υ(nm; kl)·
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·
0∫

−∞
dt1e−α|t1|

(
iG0,c

k (t1)
)
(iG0,c

n (−t1))
(

iG0,c
l (t1)

)
(iG0,c

m (−t1)).

In this expression, we now insert the free, causal Green’s functions from (5.78):

U(1)(�1) = lim
α→0

(
− i

2h̄

) |l|,|k|<kF<|n|,|m|∑

klmn
σkσlσmσn

υ(k − n)δm+n,k+l ·

· δσkσnδσmσl υ(n− k)δk+l,m+nδσnσk δσmσl ·

·
0∫

−∞
dt1 exp

[
αt1− i

h̄

(
ε(k)−μ+ε(l)−μ−ε(n)+μ−ε(m)+μ

)
t1

]
=

= 1

2
4
|l|,|k|<kF<|n|,|m|∑

klmn

υ2(n− k)
δk+l,m+n

ε(k)+ ε(l)− ε(n)− ε(m)
.

With n = k + q, l = p, m = p − q, it finally follows that:

U(1)(�1) = 2
q �=0∑

k,p,q(
p,k<kF|k+q|,|p−q|>kF

)

υ2(q)

ε(k)+ ε(p)− ε(k + q)− ε(p − q)
. (5.142)

As we shall later show, this contribution diverges owing to the Coulomb interaction
υ2(q). This is not the case for the structure (2):

U(2)(�1) = lim
α→0

4

2

1

4

(
− i

h̄

)
(−1)

∑

klmn

υ(kl; nm)·

·
∑

k1l1m1n1

υ(k1l1; n1m1)

0∫

−∞
dt1e−α|t1|

(
iG0,c

k (t1)δkm1

)
·

· (iG0,c
n (−t1)δnk1

) (
iG0,c

l (t1)δln1

) (
iG0,c

m (−t1)δml1
) =

= i

2h̄

∑

klmn
σkσlσmσn

υ(k − n)δk+l,m+nδσkσnδσmσl ·

· υ(n− l)δn+m,l+kδσnσl δσmσk ·
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·
[
− i

h̄
(ε(k)+ ε(l)− ε(n)− ε(m))

]−1
∣∣∣∣∣k,l<kF
n,m>kF

=

= −
k,l<kF<n,m∑

klmn

δk+l,n+mυ(k − n)υ(n− l)

ε(k)+ ε(l)− ε(n)− ε(m)
.

The structure (2) thus makes the contribution:

U(2)(�1) = −
q �=0∑

k,p,q(
p,k<kF|k+q|,|p−q|>kF

)

υ(q)υ(k + q − p)

ε(k)+ ε(p)− ε(k + q)− ε(p − q)
. (5.143)

We now want to prove by explicit evaluation the assertion made above that the
contribution U(1)(�1) diverges:

ε(k)+ ε(p)− ε(k + q)− ε(p − q) = h̄2

m
q · (p − k − q).

We normalise the wavenumbers

q̄ = − q

kF
; k̄ = − k

kF
; p̄ = p

kF

and as usual replace the sums by integrals:

∑

k

�⇒ V

(2π)3

∫
d3k.

We then still have to evaluate the expression:

U(1)(�1) = −2V 3

(2π)9
k3

F
e4

ε2
0V

2

∫
d3q̄

q̄4

∫∫
d3k̄ d3p̄

m/h̄2

q̄ · (p̄ + k̄ + q̄)
.

Here, we are still using the energy unit “ryd” (2.35):

lryd = me4

2h̄2(4πε0)2
, (5.144)

U(1)(�1) = − 3N

8π5

∫∫∫

(
p̄,k̄<1

|k̄+q̄|,|p̄+q̄|>1

)
d3q̄ d3k̄ d3p̄

1

q̄4

1

q̄ · (p̄ + k̄ + q̄)
. (5.145)
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We have made use of k3
F = 3π2N/V in this expression. We abbreviate

xp = p̄ · q̄
p̄q̄

; xk = k̄ · q̄
k̄q̄

and consider the integral

I (q̄) =
∫∫

d3p̄ d3k̄
1

q̄p̄xp + q̄k̄xk + q̄2
. (5.146)

The range of integration is determined by

k̄ < 1 < |k̄ + q̄|; p̄ < 1 < |p̄ + q̄|.

We estimate these expressions for small values of q̄.

|k̄ + q̄| =
√
k̄2 + q̄2 + 2k̄q̄xk = k̄

(
1+ 2xk

q̄

k̄
+ q̄2

k̄2

)1/2

=

= k̄ + q̄xk +O(q̄2),

|p̄ + q̄| = p̄ + q̄xp +O(q̄2).

For the range of integration, this implies:

1− q̄xk < k̄ < 1; 1− q̄xp < p̄ < 1.

We define the polar axis to be parallel to q̄ and then have to evaluate:

I (q̄) ≈ 4π2

+1∫

−1

dxk

+1∫

−1

dxp

1∫

1−q̄xk
dk̄

1∫

1−q̄xp
dp̄

k̄2p̄2

q̄p̄xp + q̄k̄xk + q̄2
.

For q̄ → 0, we can assume in the denominator of the integrand that k̄, p̄ = 1+O(q̄):

I (q̄) ≈ 4π2

+1∫

−1

dxk

+1∫

−1

dxp

1∫

1−q̄xk
dk̄

1∫

1−q̄xp
dp̄

k̄2p̄2

q̄
(
xp + xk

) =

= 4π2

9

+1∫∫

−1

dxkdxp
{1− (1− q̄xk)

3}{1− (1− q̄xp)
3}

q̄(xp + xk)
≈

≈ αq̄ +O
(
q̄2
)
.

(5.147)
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Here,

α = 4π2

+1∫∫

−1

dxkdxp
xkxp

xk + xp

is a simple numerical value. Inserting this result into (5.145),

U(1)(�1) ≈ − 3N

2π4α

?∫

0

dq̄

q̄
, (5.148)

We can see that the integral diverges at its lower bound. At the upper bound, our
estimate is not valid; however, due to the 1/q̄4 term, no irregularities occur there.

For the structure (2), from (5.143), we find:

U(2)(�1) =

= − V 3

(2π)9
e4

ε2
0V

2

m

h̄2

∫∫∫

(
k,p<kF|k+q|,|p−q|>kF

)
d3q d3k d3p

1

q2|k + q − p|2q · (p − k − q)
=

= − V k3
F

16π7

∫∫∫

(
k̄,p̄<1

|k̄+q̄|,|p̄−q̄|>1

)
d3q̄ d3k̄ d3p̄

1

q̄2|p̄ − k̄ − q̄|2q̄ · (p̄ − k̄ − q̄)
[ryd].

We now replace q̄ by −q̄ and k̄ by −k̄ and then obtain an expression which can be
integrated analytically (L. Onsager et al., Annalen der Physik 18, 71 (1966)):

U(2)(�1) = 3N

16π5

∫
d3q̄

q̄2

∫
d3k̄

∫
d3

(
k̄,p̄<1

|k̄+q̄|,|p̄+q̄|>1

)
p̄

1

|p̄ + k̄ + q̄|2q̄ · (p̄ + k̄ + q̄)
[ryd] =

= 0.0484 ·N [ryd].
(5.149)

The origin of the divergence of the structure (1) lies in the factor υ2(q). This also
holds for all the higher orders, each of which contains a diagram of the type (1),
which contributes a factor υn+1(q) that produces the divergence. Such diagrams are
called ring diagrams; they represent continuing sequences of structural elements.
These contribute the same momentum transfer q at every interaction line (Fig. 5.6).
Within the jellium model, we make the strange observation that first-order perturba-
tion theory gives good results (5.138), but every additional term of the perturbation
expansion diverges. If one however sums the infinite series, then the contributions
of the ring diagrams cancel, so that a finite value is obtained.
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Fig. 5.6 Structural elements
of a ring diagram

5.5.3 The Correlation Energy

The so-called Hartree-Fock solution (5.139) for the ground-state energy of the
interacting electron gas, which we derived here using first-order perturbation theory,
yielded finally the expectation value of the Coulomb interaction in the unperturbed
ground state |η0〉. It takes the Pauli principle into account, which guarantees that
electrons with parallel spins cannot approach each other too closely. This leads to a
reduction in the ground-state energy, since it keeps like-charged particles at a certain
distance. Due to the repulsive electron-electron interactions, it should however be
improbable that electrons with antiparallel spins approach each other closely. This
fact, that even particles with opposite spins are correlated with each other, is not
taken into account in the Hartree-Fock approximation. One therefore refers to the
deviation of the exact ground-state energy from its Hartree-Fock value as the

correlation energy,

which we want to estimate more precisely in this section following a procedure of
M. Gell-Mann and K. A. Brueckner (Phys. Rev. 106, 364 (1957)) in the limiting case
of high electron densities. According to the Rayleigh-Ritz variational principle, the
perturbation-theoretical result (5.139) already represents an upper limit for the true
ground-state energy. Taking the correlations into account should therefore lead to a
further reduction of the energy.

As a measure of the electron density, we make use of the dimensionless density
parameter rs , which was defined by (2.83):

V

N
= 4π

3
(aBrs)

3; aB = 4πε0h̄
2

me2 .

aB is the first Bohr radius. High electron densities correspond to low values of rs .
In estimating the higher-order perturbation corrections, it can prove to be

reasonable to reverse the transition from (3.14) to (3.18) for the time-evolution
operator. We can then, instead of (5.134), also use the following formula for the
ground-state energy:
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�E0 = lim
α→0

1
〈
η0
∣∣Uα(0,−∞)

∣∣η0
〉
∞∑

n=0

(
− i

h̄

)n
·

·
0∫

−∞
dt1

t1∫

−∞
dt2 · · ·

tn−1∫

−∞
dtne−α(|t1|+···+|tn|)·

· 〈η0
∣∣V (t = 0)V (t1)V (t2) · · ·V (tn)

∣∣η0
〉
.

(5.150)

The operators are in this case already time-ordered. Tε thus acts as an identity and
can be left off. Note that in (5.150), as compared to (5.134), the factor 1/n! is
missing. In counting the topologically distinct diagrams of the same structure, we
must be careful, since the vertices cannot be permuted arbitrarily any longer owing
to the fixed time ordering. This just explains the factor 1/n!. Instead of (5.136), we
now have:

A∗(�n) = 2n+1

h(�n)
= 2n+1. (5.151)

Because of the fixed ordering of the vertices, there are now no longer any connected
topologically equivalent diagrams.

We first consider those corresponding ring diagrams from third-order perturba-
tion theory (n = 2) which we want to evaluate with (5.150) (Fig. 5.7).

URing(�2) =

= lim
α→0

8
1

8

(
− i

h̄

)2

(−1)3
∑∑∑

klmnk1...k2...

υ(kl, nm)υ(k1l1, n1m1)υ(k2l2, n2m2)·

·
0∫

−∞
dt1

t1∫

−∞
dt2 e−α(|t1|+|t2|) ·

(
iG0,c

k (t2)δkn2

) (
iG0,c

n (−t2)δnk2

)·

Fig. 5.7 A third-order ring
diagram
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·
(

iG0,c
l (t1)δl,m1

) (
iG0,c

m (−t1)δm,l1
) (

iG0,c
k1
(t2 − t1)δk1m2

) (
iG0,c

n1
(t1 − t2)δn1l2

)
.

Following (5.130), we insert the explicit Coulomb matrix elements and carry out the
summation over spins, which yields trivial numerical values, since the free Green’s
functions are independent of spin:

= −8

(
− i

h̄

)2

lim
α→0

∑

klmn
k1

υ(k − n)υ(n− k)·

· υ(n− k)

0∫

−∞
dt1

t1∫

−∞
dt2 e−α(|t1|+|t2|)δk+l,m+n

(
iG0,c

k (t2)
) (

iG0,c
n (−t2)

)·

·
(

iG0,c
l (t1)

) (
iG0,c

m (−t1)
) (

iG0,c
k1
(t2 − t1)

) (
iG0,c

k1+k−n(t1 − t2)
)
.

We write

k → k1; l → k2; m → k2 + q; n → k1 − q; k1 → k3

and then obtain after insertion of (5.78):

URing(�2) = 8

(
− i

h̄

)2

lim
α→0

q �=0∑

k1,k2,k3
q

υ3(q)

0∫

−∞
dt1

t1∫

−∞
dt2 eα(t1+t2)·

·�(kF − k1)�(|k1 − q| − kF)·
·�(kF − k2)�(|k2 + q| − kF)·
·�(kF − k3)�(|k3 + q| − kF)·

· exp

[
− i

h̄

(
ε(k2)− ε(k2 + q)− ε(k3)+ ε(k3 + q)

)
t1

]
·

· exp

[
− i

h̄

(
ε(k1)− ε(k1 − q)+ ε(k3)− ε(k3 + q)

)
t2

]
=

= 8
q �=0∑

k1,k2,k3,q(
k1<kF<|k1−q|
k2<kF<|k2+q|
k3<kF<|k3+q|

)

υ3(q)

(ε(k1)− ε(k1 − q)+ ε(k3)− ε(k3 + q))
·

· 1

(ε(k2)− ε(k2 + q)+ ε(k1)− ε(k1 − q))
.
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We substitute

q →− q

kF
; k2 →−k2

kF
; k3 →−k3

kF

and again use the energy unit ryd (5.144). With

kFaB = α

rs
; α =

(
9π

4

)1/3

(cf. (2.86)),

we then find the intermediate result:

URing(�2) = 3N

4π7α
rs

∫
d3q̄

q̄6

∫∫∫

k̄i<1<|k̄i+q̄|
i=1,2,3

d3k̄1 d3k̄2 d3k̄3·

· 1
[
q̄ · (k̄1 + k̄3 + q̄)

] [
q̄ · (k̄1 + k̄2 + q̄)

] [ryd]

(5.152)

We want to demonstrate, as in (5.148), that this contribution also diverges. To this
end, we first investigate the triple integral over the k̄i

I(2)(q̄) ≡
∫∫∫

k̄i<1<|k̄i+q̄|
i=1,2,3

d3k̄1d3k̄2d3k̄3

{
(q̄k̄1x1 + q̄k̄3x3 + q̄2)·

· (q̄k̄1x1 + q̄k̄2x2 + q̄2)
}−1

(5.153)

for small values of q̄. We again have abbreviated

xi = k̄i · q̄
k̄i q̄

; i = 1, 2, 3.

The range of integration can be estimated as from (5.146) to be

1− q̄xi < k̄i < 1; i = 1, 2, 3.

Within these ranges, however, k̄i = 1+O(q̄). The polar axis is chosen to be parallel
to q̄:

I(2)(q̄) ≈ 8π3

+1∫∫∫

−1

dx1 dx2 dx3

+1∫∫∫

1−q̄xi
dk̄1 dk̄2 dk̄3 k̄

2
1 k̄

2
2 k̄

2
3 ·
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·
{
q̄2[(x1 + x3)(x1 + x2)+O(q̄)]

}−1 =

= 8π3

9

+1∫∫∫

−1

dx1 dx2 dx3

[
1− (1− q̄x1)

3
] [

1− (1− q̄x2)
3
]
·

·
[
1− (1− q̄x3)

3
] {
q̄2(x1 + x3)(x1 + x2)+O(q̄3)

}−1
.

This yields

I(2)(q̄) = α(2)q̄ +O
(
q̄2
)

(5.154)

with a simple numerical factor α(2). The q̄-dependence is thus the same as in (5.147).
For the remaining contribution (5.152) of the ring diagram, we then have

URing(�2) ≈ γ(2)rs

?∫

0

dq̄

q̄3 , (5.155)

which obviously diverges at the lower limit of the integration.
In (n+1)-th order perturbation theory, the integral which is analogous to (5.153),

I(n)(q̄), can be estimated for small values of q̄. The integrations over the inner
times t1, t2, . . . , tn each contribute a factor of q̄−1 with the above estimate. At
each vertex, we have in fact three independent summations over k. In the case of
ring diagrams, each inner vertex, except for the last, yields only one additional,
independent summation over wavenumbers. With n inner vertices, this gives (n−1)
summations. The fixed vertex at the left contributes three summations, one of them
over q̄. All together, after taking the thermodynamic limit in I(n)(q̄), we have
(n + 1)k̄i integrations, each from 1 − q̄xi to 1. Each one contributes a factor of q̄
(after expansion for small q̄, as shown just before (5.154)). This yields all together

I(n)(q̄) ≈ α(n)q̄ +O
(
q̄2
)
. (5.156)

The contribution U of the ring diagram in (n + 1)-th order perturbation theory
therefore diverges due to the factor υn+1(q̄) ∼ q̄−(2n+2) as

URing(�n) ∼
?∫

0

dq̄

q̄2n−1 . (5.157)

Compare the particular results (5.148) for n = 1 and (5.155) for n = 2.
Now, the dependencies of the contributions of the individual diagrams on the

density parameter rs are important; they can be readily estimated for arbitrary
diagrams, i.e. not only for ring diagrams. In second-order perturbation theory (n =
1), we computed all of the possible diagrams for the jellium model in Sect. 5.5.2
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exactly. They proved to be independent of rs . In every order which increases by
�n = 1, an additional factor of

υ
(
ki − kj

) ∼ 1

|ki − kj |2

occurs, which after scaling contributes a factor k−2
F . Each new inner vertex

furthermore yields an additional time variable over which we must integrate. This
adds an additional energy denominator {ε(ki)+ · · · }−1, which after scaling, owing
to ε(ki) ∼ k2

i , likewise contributes a factor k−2
F . Every additional inner vertex

requires one further k-summation, which, after taking the thermodynamic limit,

∑

k

−→ V

(2π)3

∫
d3k,

leads to a scaling factor k3
F. All together, each increase in the order of perturbation

theory by �n = 1 gives a factor of k−1
F and thus, due to

kFaB = α

rs
,

a factor rs . For the contribution ofU(�n) to the (n+1)-th-order perturbation theory,
we thus have:

U(�n) ∼ rn−1
s ; n = 0, 1, 2, . . . (5.158)

This is naturally extremely favourable for a perturbation theory in the region of high
electron densities (rs → 0). The perturbation expansion could be terminated after a
finite number of terms, if the divergent q → 0 behaviour were not present in certain
terms; this in turn results from the long range of the Coulomb interaction.

The correlation energy must naturally be finite in the end, i.e. the Coulomb
interaction is finally screened by the electron gas itself. Thus, the divergent terms
in the perturbation expansion must compensate each other in the summation to
give a finite value. We shall therefore attempt to carry out infinite partial sums
over the critical diagrams, whilst the non-divergent terms, due to (5.158), need to
be taken into account only up to a finite order. We must however be aware that
not only the ring diagrams exhibit singularities. We therefore first justify why we
may nevertheless limit ourselves essentially to the ring diagrams in carrying out the
evaluation. The actual ring diagrams look like those in Fig. 5.8.

In Fig. 5.9, a divergent non-ring diagram is shown as an example. It belongs to
U(�2) and yields a term υ2(q); it is therefore less divergent than the corresponding
ring diagram, but just as divergent as URing(�1). It is thus not immediately apparent
just why it may be neglected. It diverges as
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Fig. 5.8 (a–c) Low-order
ring diagrams

Fig. 5.9 An example of a
divergent non-ring diagram

?∫

0

dq̄

q̄4−3 g
(3)
2 (q̄),

where g(3)2 (q̄) is a harmless factor which remains finite for q̄ → 0. The upper index
indicates the order (n+1) of perturbation theory, and the lower index (m = 2) gives
the number of equal momentum transfers of the structure being considered, whereby
a factor of q̄−2m is brought into play. In general, one can write for the contribution
of the n-th order diagram:
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U(�n) = rn−1
s

n+1∑

m=1

?∫

0

dq̄ q̄3−2mg(n+1)
m (q̄),

g(n+1)
m (q̄) −−−→

q̄→0
const.

(5.159)

All the contributions except for m = 1 are divergent. The actual ring diagrams
correspond tom = n+1 (see (5.157)). Why need one include only the ring diagrams
in the evaluation?

As already mentioned, the physical origin of the divergences is the long range of
the Coulomb potential. The reaction of the electron gas to the potential leads to a
screening effect, so that only those wavenumbers q are relevant whose contribution
exceeds a minimum value km. If we take as a measure of km the reciprocal of the
Thomas-Fermi screening length (4.23),

km ∼ r
−1/2
s �⇒ k̄m = km

kF
∼ r

−1/2
s

kF
∼ r

+1/2
s ,

then we obtain the estimate:

m = 2 :
?∫

k̄m

dq̄

q̄
g
(n+1)
2 (q̄) ∼ ln k̄m ∼ ln rs,

m > 2 :
?∫

k̄m

dq̄ · q̄3−2mg(n+1)
m (q̄) ∼ k̄4−2m

m ∼ r2−m
s .

The contribution of a diagram with n inner vertices then, due to (5.159), scales as

U(�n) ∼ rn+1−m
s (m > 2). (5.160)

For the ring diagrams (m = n+ 1), this means that

URing(�n) ∼ r0
s (m > 2) (5.161)

and for the contributions of all the other diagrams:

U(�n) ∼ rts −−−→
rs→0

0 (t > 0).
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A special case is n = 1, which we calculated explicitly in the last section:

URing(�1) ∼ ln rs,

U(2)(�1) ∼ r0
s (s. (5.149)). (5.162)

For high electron densities (rs small!), we then find the following expression to be
a reasonable approximation for the correlation energy:

Ecorr ≈
∞∑

n=1

URing(�n)+ U(2)(�1). (5.163)

As our next step, we therefore try to sum the ring diagrams.
Our starting point is the following representation for URing(�):

URing(�n−1) = (−1)n−1 3N

8π5

( rs

απ2

)n−2
∫
I(n−1)(q̄)

q̄2n d3q̄[ryd], (5.164)

I(n−1)(q̄) = 1

n

∫ +∞
· · ·
−∞

∫
dt1 · · · dtnFq̄(t1) · · ·Fq̄(tn)δ(t1 + · · · + tn),

(5.165)

Fq̄(t) =
∫

p̄<1<|p̄+q̄|
d3p̄ exp

(
−
(

1

2
q̄2 + q̄ · p̄

)
|t |
)
. (5.166)

For a general proof of this assertion, we must refer to the original literature (M. Gell-
Mann, K. A. Brueckner, Phys. Rev. 106, 364 (1957)). However, we shall examine
the case of n = 2 explicitly:

I(1)(q̄) =

= 1

2

+∞∫∫

−∞
dt1dt2Fq̄(t1)Fq̄(t2)δ(t1 + t2) =

= 1

2

+∞∫

−∞
dt1Fq̄(t1)Fq̄(−t1) =

=
∫∫

p̄i<1<|p̄i+q̄|
i=1,2

d3p̄1d3p̄2

∫ ∞

0
dt exp

(
−
(

1

2
q̄2 + q̄ · p̄1

)
t

)
exp

(
−
(

1

2
q̄2 + q̄ · p̄2

)
t

)
.
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The exponents

1

2
q̄2 + q̄ · p̄i =

1

2

[
(q̄ + p̄i )

2 − p̄2
i

]
(5.167)

are positive within the range of integration, so that the above integrals converge in
any case:

I(1)(q̄) =
∫∫

p̄i<1<|p̄i+q̄|i=1,2

d3p̄1d3p̄2
1

q̄ · (q̄ + p̄1 + p̄2)
(s. (5.146)).

If we insert this result into (5.164), we indeed find precisely (5.145). We recommend
the verification of the case n = 3 as an exercise for the reader.

We now insert the following expression for the δ-function into (5.164):

δ(t) = 1

2π

+∞∫

−∞
dω eiωt = q̄

2π

+∞∫

−∞
dω eiq̄ωt ,

and thus obtain:

I(n−1)(q̄) = q̄

2πn

+∞∫

−∞
dω
∫ +∞

· · ·
−∞

∫
dt1 · · · dtnFq̄(t1) · · ·Fq̄(tn)·

· exp[iq̄ω(t1 + · · · + tn)] =

= q̄

2πn

+∞∫

−∞
dω

⎡

⎣
+∞∫

−∞
dt Fq̄(t)e

iq̄ωt

⎤

⎦

n

.

(5.168)

We further evaluate the expression in square brackets:

Rq̄(ω) ≡
+∞∫

−∞
dt Fq̄(t)e

iq̄ωt =

=
∫

p̄<1<|p̄+q̄|
d3p̄

+∞∫

−∞
dt exp(iq̄ωt) exp

(
−
(

1

2
q̄2 + q̄ · p̄

)
|t |
)
=

=
∫

d3 p̄ �(1− p̄)�(|p̄ + q̄| − 1)
2
(

1
2 q̄

2 + q̄ · p̄
)

q̄2ω2 +
(

1
2 q̄

2 + q̄ · p̄
)2
.

(5.169)
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Due to (5.167), the quotient in the integrand is antisymmetrical with respect to the
permutation p̄ � p̄ + q̄. In the product of the step functions

�(1− p̄)�(|p̄ + q̄| − 1) = �(1− p̄)
{

1−�(1− |p̄ + q̄|)
}
,

in contrast, the second term is symmetrical with respect to this permutation, so that
all together, we have:

Rq̄(ω) = 2
∫

d3p̄ �(1− p̄)

1
2 q̄

2 + q̄ · p̄
q̄2ω2 +

(
1
2 q̄

2 + q̄ · p̄
)2
.

We first carry out the integrations over angles. Using

+1∫

−1

dx

±iq̄ω + 1
2 q̄

2 + q̄p̄x
= 1

q̄p̄
ln
±iq̄ω + 1

2 q̄
2 + q̄p̄

±iq̄ω + 1
2 q̄

2 − q̄p̄
,

we find the intermediate result:

Rq̄(ω) = 2π

q̄

1∫

0

dp̄ p̄ ln

(
1
2 q̄ + p̄

)2 + ω2

(
1
2 q̄ − p̄

)2 + ω2
.

Defining

x = p̄ ± 1

2
q̄,

we must still evaluate:

Rq̄(ω)=2π

q̄

⎡

⎢⎢
⎣

1+ 1
2 q̄∫

1
2 q̄

dx

(
x−1

2
q̄

)
ln(x2+ω2)−

1− 1
2 q̄∫

− 1
2 q̄

dx

(
x + 1

2
q̄

)
ln(x2 + ω2)

⎤

⎥⎥
⎦ .

The integrals are elementary:

∫
dx ln(x2 + ω2) = x ln(x2 + ω2)+ 2ω arctan

x

ω
− 2x + C1, (5.170)

∫
dx x ln(x2 + ω2) = 1

2
(x2 + ω2) ln(x2 + ω2)− x2

2
+ C2. (5.171)
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We thus obtain:

Rq̄(ω) = 2π

{

1− ω

(

arctan
1+ 1

2 q̄

ω
+ arctan

1− 1
2 q̄

ω

)

+

+1− 1
4 q̄

2 + ω2

2q̄
ln
(1+ 1

2 q̄)
2 + ω2

(1− 1
2 q̄)

2 + ω2

}

.

(5.172)

We first insert this into (5.168), in order to evaluate (5.164):

�ERing =
∞∑

n=2

�E
(n)
Ring =

∞∑

n=2

URing(�n−1) =

= − 3N

8π5

(
απ2

rs

)2 ∫
d3q̄

q̄

2π

+∞∫

−∞
dω

∞∑

n=2

(−1)n

n

(
rs
Rq̄(ω)

απ2q̄2

)n
.

(5.173)

The expansion converges in the case that

−1 < rs
Rq̄(ω)

απ2q̄2 < +1 (5.174)

can be assumed, which however certainly becomes questionable for small values
of q̄:

�ERing = 3N

16π6

(
απ2

rs

)2 ∫
d3q̄ q̄

+∞∫

−∞
dω

[
ln

(
1+ rs

Rq̄(ω)

απ2q̄2

)
− rs

Rq̄(ω)

απ2q̄2

]
.

(5.175)

We are now in principle finished. The remaining multiple integrals must be
evaluated numerically. The use of the logarithm proves always to be correct, in spite
of (5.174) (K. Sawada: Phys. Rev. 106, 372 (1957); K. Sawada, K. Brueckner, N.
Fukuda, R. Brout: Phys. Rev. 108, 507 (1957)):

�ERing = N

[
2

π2
(1− ln 2) ln rs − 0.142+O(rs ln rs)

]
[ryd]. (5.176)

With (5.149) and (5.176) inserted into (5.163), we finally arrive at the correlation
energy:

1

N
Ecorr = [0.0622 ln rs − 0.094+O(rs ln rs)][ryd]. (5.177)
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Higher-order corrections correspond to higher powers of rs , which we can neglect
for the case of high electron densities. Only for high densities is (5.177) also
acceptable. Note, however, that for typical metallic electron densities, rs lies in the
range 1 < rs < 6.

5.6 Diagrammatic Partial Sums

In Sect. 5.4.2, we derived the Dyson equation for the one-electron Green’s function.
A central point in the derivation was the introduction of the concept of self
energy (5.124). Every approximation to the self energy !kσ (E), no matter how
simple, already corresponds to an infinite partial sum. The self-energy concept is
however not the only possibility to form partial sums. In this section, we wish to
introduce additional variants. The summing of such infinite partial series is often
very important, sometimes even unavoidable. Quasi-particle lifetime effects can, for
example, be calculated only in this way. In the last section, we saw that divergences
in the individual terms of the perturbation expansion for the ground-state energy
will compensate each other through the use of suitable partial sums to give finite
values.

For many diagram expansions, a considerable reduction in the number of
diagrams considered can be achieved if one includes only those diagrams which
contain a self-energy part in none of their particle lines (“skeleton diagrams”),
and instead in the remaining diagrams, one replaces every free propagator by the
full propagator. In a similar manner, interaction lines also may be renormalised
(dressing). Some of the most important methods of this type will be discussed in
outline form in the following sections, whereby we will limit our considerations to
the concrete example of the jellium model.

5.6.1 The Polarisation Propagator

In connection with the dielectric function ε(q, E), in Sect. 3.1.5 we introduced the
so-called density correlation. This is a two-particle Green’s function:

Dq

(
t, t ′
) = ⟪ρq(t); ρ+q (t ′)⟫ = −i

〈
Tε(ρq(t)ρ

+
q (t

′))
〉
=

= 1

2πh̄

+∞∫

−∞
dEDq(E) exp

(
− i

h̄
E(t − t ′)

)
.

(5.178)

We have already encountered the density operators ρq(t) in (3.97):

ρq(t) =
∑

k,σ

a+kσ (t)ak+qσ (t); ρ+q (t) = ρ−q(t). (5.179)
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The computation of the expression (5.178),

iDq(E) =
+∞∫

−∞
d
(
t − t ′

)
exp

(
i

h̄
E(t − t ′)

)
·

·
∑

k,p
σ,σ ′

〈E0|Tε{a+kσ (t)ak+qσ (t)a
+
pσ ′(t

′)ap−qσ ′(t
′)}|E0〉,

(5.180)

corresponds to the task formulated in (5.115). The sums run over all combinations of
open, connected diagrams, which all together exhibit four outer lines, two attached
at t and two at t ′:

If we once again assume conservation of spin at each vertex point (no spin exchange
between the interacting particles!), then it becomes immediately clear that (5.180)
is nonzero only for σ = σ ′. This is already taken into account in the figure. Let
us think in particular of the jellium model; all open diagrams of the above type
are, due to υ(0) = 0, themselves already connected. Then for example a diagram
contribution of the form

requires from conservation of momentum at the vertex that k+q+n = k+n ⇐⇒
q = 0, and thus makes no contribution. Thus, in (5.180), we need not sum over
combinations of open, connected diagrams with all together four outer lines, but
rather only over the connected diagrams themselves.

The zeroth order contains no vertex. Therefore, for q �= 0, only one diagram is
possible.
n = 0 :

⇐⇒ (−1)
(

iG0,c
kσ
(t ′ − t)

)
δk,p−q

(
iG0,c

k+q,σ
(t ′ − t)

)
δp, k+q .

The factor (−1) results from the loop rule.
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To first order, we find the following diagram structures:
n = 1 :

The two representations are of course completely equivalent; the right-hand one is
the more usual.

As in the case of the single-particle Green’s functions in Sect. 5.4.1, we can again
employ the energy-dependent Fourier transforms. The most important consequence
of this is then energy conservation at each vertex. Aside from this, the diagram
rules formulated following (5.123) can be adopted practically without change.
For a quantitative analysis, however, a careful evaluation of the trivial factors is
indispensable. The latter represent a genuinely serious source of errors. We shall
therefore formulate the diagram rules for the two-particle Green’s functionDq(t, t

′)
or Dq(E) explicitly once again.

Let us first consider the diagrams of order n = 0:

≡ ih̄#(0)
q

(
t, t ′
)
. (5.181)

Corresponding to (5.180), we find:

ih̄#(0)
q

(
t, t ′
) = −

∑

k,σ
p

δk+q,p

(
iG0,c

k+qσ

(
t − t ′

)) (
iG0,c

kσ

(
t ′ − t

)) =

= − 1

(2πh̄)2
∑

k,σ

∫∫
dE dE′ exp

(
− i

h̄
E
(
t − t ′

)) ·

·
(

iG0,c
k+qσ

(
E + E′

)) (
iG0,c

kσ

(
E′
))
.
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This implies for the energy-dependent Fourier transform:

≡ ih̄#(0)
q (E) =

= −1

2πh̄

∑

k,σ

∫
dE′

(
iG

(0,c)
k+q,σ (E + E′)

) (
iG

(0,c)
k,σ (E′)

)
.

(5.182)

According to (5.123), the Green’s function G0,c has the dimension of a time. This
then holds also for h̄#(0)

q . #
(0)
q (E) itself thus has the dimension of 1/energy.

What is then the structure of the Fourier transform of a general diagram of the
perturbation expansion?

≡ iD̃q

(
t, t ′
)
.

Following the considerations in Sect. 5.4.1, the four outer lines make the following
contributions:

(k + q, E1) : 1√
2πh̄

exp

(
− i

h̄
E1t

)(
iG0,c

k+qσ (E1)
)
,

(k, E2) : 1√
2πh̄

exp

(
i

h̄
E2t

)(
iG0,c

kσ
(E2)

)
,

(p, E3) : 1√
2πh̄

exp

(
i

h̄
E3t

′
) (

iG0,c
pσ (E3)

)
,

(p − q, E4) : 1√
2πh̄

exp

(
− i

h̄
E4t

′
)(

iG0,c
p−qσ (E4)

)
.

The kernel of the diagram contributes Ikp,qσ (E1 · · ·E4). We then have all together:

iD̃q

(
t, t ′
) = −1

(2πh̄)2
∑

k,p
σ

∫
· · ·
∫

dE1 · · · dE4Ikp,qσ (E1 · · ·E4)·

· exp

{
− i

h̄

[
(E1 − E2)t − (E3 − E4)t

′]
} (

iG0,c
k+q,σ (E1)

)
·

·
(

iG0,c
kσ
(E2)

) (
iG0,c

pσ (E3)
) (

iG0,c
p−qσ (E4)

)
.



5.6 Diagrammatic Partial Sums 401

Green’s functions depend only on time differences (3.128). Therefore, we can
assume that

E1 − E2 = E3 − E4 ≡ E.

With E1 = E′ +E,E2 = E′, E3 = E′′, E4 = E′′ −E, we then obtain after Fourier
transformation:

iD̃q(E) = −1

2πh̄

∑

k,p,σ

∫∫
dE′dE′′Ikp,qσ

(
E′, E′′;E)·

·
(

iG0,c
k+qσ

(
E′ + E

)) (
iG0,c

kσ

(
E′
)) ·

· (iG0,c
pσ

(
E′′
)) (

iG0,c
p−qσ

(
E′′ − E

))
.

(5.183)

The factor (−1) results from the loop rule. We can now formulate the diagram rules
for the two-particle Green’s function,

diagram rules for iDq(E):

Consider all the diagrams with four outer attachments as in Fig. 5.10. A diagram of
n-th order (n vertices!) is then to be evaluated as follows (cf. Sect. 5.4.1):

1. Vertex ⇐⇒ 1
2πh̄

(
− i
h̄

)
υ(kl, nm)δ[(Ek + El)− (Em + En)].

2. Propagator (= solid line): iG0,c
kν

(
Ekν
)
δkνkμ .

3. Factor: (−1)S; S = number of Fermion loops.
4. Outer attachments:

left:
1√
2πh̄

(
iG0,c

k+q
(E′ + E)

) (
iG0,c

k
(E′)

)
,

right:
1√
2πh̄

(
iG0,c

p−q(E
′′ − E)

)
(iG0,c

p (E′′))

5. Summation or integration over all the inner wavenumbers, spins and energies.
Among these are also k,p, σ, E′, E′′, not however E and q.

With this, we can systematically develop the perturbation expansion for the two-
particle Green’s function iDq(E).

Fig. 5.10 The general diagram structure of the density correlation
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Just as with the Dyson equation for the single-electron Green’s function in
Sect. 5.4.2, we can see that the diagram expansion for iDq(E), according to the
above rules, also contains an infinite partial series which can be separated off.

Definition 5.6.1 The polarisation part = diagram contributing to iDq(E) with
two fixed outer attachments, into each of which an external line enters and from
each of which an external line emerges.

We are thus dealing here with a diagram from the expansion of

⇐⇒ iDq(E).

Examples

Definition 5.6.2 The proper, irreducible polarisation part= the polarisation part
which cannot be decomposed into two independent diagrams by separating off an
interaction line.

Examples

(1) irreducible

(2) reducible

Every diagram which is not itself already an irreducible polarisation part can then
evidently be decomposed as follows:

(I): Irreducible polarisation part,
(II): interaction line,

(III): Diagram from the expansion of iDq(E).

We clearly obtain all the diagrams if in (I) we sum over all the irreducible
polarisation parts and in (III) over all possible diagrams and furthermore add on
the sum of all irreducible polarisation parts themselves.
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Definition 5.6.3

ih̄#q(E)⇐⇒
= sum of all irreducible polarisation parts.

with this, we can formulate the following diagrammatic Dyson equation:

iDq(E) ih̄#q(E) ih̄#q(E) iDq(E) (5.184)

We still have to consider the contribution of the interaction line, which deviates
somewhat from point 1 of the above diagram rules. Conservation of energy, which
is guaranteed by the δ-function in 1, is already provided for in the case of this
interaction line through the attachments at the left and the right. If in the evaluation
of the second summand in (5.184) we take the right-hand attachments of ih̄#q(E)

and the left-hand attachments of iDq(E) to be outer attachments as in rule 5.6.1.,
then the integration over time (5.121) at the vertex can naturally be dispensed with
and thus the factor (1/2πh̄)δ[(Ek+El)−(Em+En)] drops out. This becomes clear
in the derivation of (5.183).

The formal solution of (5.184) is given by

Dq(E) = h̄#q(E)

1−#q(E)υ(q)
. (5.185)

Dq(E) is thus completely determined by the polarisation propagator #q(E), which
is to be computed according to the above diagram rules and has a considerably
simpler structure than the original two-particle Green’s function Dq(E).

5.6.2 Effective Interactions

Using the polarisation propagator #q(E) which was introduced in the previous
section, we can develop another very useful concept, that of the effective (dressed)
interaction. In the diagram expansion for the single-particle Green’s function
iGc

kσ
(E), which we carried out in Sect. 5.4.1, a series of graphs occurs which

contain an irreducible polarisation part in an interaction line.
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Example

On summing over all possible diagrams, we will encounter a number of such graphs
which differ from the one in the sketch only in that the loops in the interaction line
are replaced by something more complex. We want to combine the ensemble of
all such diagrams by introducing the effective interaction υeff(q, E). We adopt by
convention the following symbols:

====== ⇐⇒ − i

h̄
υeff(q, E)

− − − − −− ⇐⇒ − i

h̄
υ(q).

The prefactor (−i/h̄) corresponds to the diagram rule 5.6.1. for iDq(E). Energy
conservation, which leads to the term

1

2πh̄
δ[(Ek + El)− (Em + En)],

must be taken into account both for υeff(q, E) as well as for the undressed
interaction υ(q), and will therefore not be explicitly considered in the following.

Now, in the diagram expansion for iGc
kσ (E), one suppresses all the diagrams

which contain a polarisation part in at least one interaction line. In the remaining
diagrams, one then replaces the simple (undressed) interaction lines v(q) by the
effective ones, whereby veff(q, E) results from the following expansion:
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The n-th order in the expansion for υeff(q, E) is characterised by (n+1) interaction
lines υ(q). Obviously, in the form given, the diagrams can be combined into a Dyson
equation with the formal solution:

υeff(q, E) = υ(q)

1− υ(q)#q(E)
. (5.186)

Due to the polarisation propagator #q(E), the effective interaction is also uniquely
determined.

Those diagrams which remain in the expansion of iGc
kσ (E) after the introduction

of the effective interaction as described above are referred to as skeleton diagrams.
In Sect. 3.1.5, we discussed the dielectric function ε(q, E). Via the rela-

tion (3.104), we can now relate it to the effective interaction or the polarisation
propagator:

1

εc(q, E)
= 1+ 1

h̄
υ(q)⟪ρq; ρ+q ⟫c

E
=

= 1+ 1

h̄
υ(q)Dq(E).

The superscript c is meant to indicate that the diagram techniques used here refer to
the causal Green’s function. The considerations in Sect. 3.1.5, in contrast, referred
to the corresponding retarded function. Owing to (3.188) and (3.189) for T → 0,

Re εret(q, E) = Re εc(q, E),

Im εret(q, E) = sign(E)Im εc(q, E),
(5.187)

the transformation is however simple. With (5.185), it follows that:

εc(q, E) = 1− υ(q)#q(E). (5.188)

Inserting this into (5.186),

υeff(q, E) = υ(q)

εc(q, E)
, (5.189)

we can see that the dielectric function expresses the screening of the undressed
interaction due to the polarisation of the Fermi sea by the particle interactions.

We want to consider at this point the discussion of an important special case
which will allow us to establish a direct relationship between the self-energy of the
Dyson equation and the polarisation propagator. Our starting point is the simplest
approximation #

(0)
q (E) for the polarisation propagator, which we formulated

in (5.182). For the effective interaction, it requires the summation of ring diagrams.
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In this way, we now construct on the other hand an infinite partial series for the
self-energy !kσ (E). In the example of an application at the end of Sect. 5.4.2, we

replace the undressed interaction in
(
!
(1)
kσ (E)

)
by the effective interaction:

−1

h̄

∼∑(1)

kσ
(E) ≡

− i

h̄
!̃
(1)
kσ
(E) = − i

h̄

1

2πh̄

∑

q

∫
dE′ υ(0)eff

(
q, E′

)
iG0,c

k+q,σ

(
E + E′

)
. (5.190)

This leads to the so-called RPA (Random Phase Approximation), which is
characterised by the lowest-order diagram for #q(E) and already by all the ring
diagrams for !kσ (E) :

!̃
(1)
kσ (E) =

1

2πh̄

∑

q

+∞∫

−∞
dE′

(
iG0,c

k+qσ

(
E + E′

)) υ(q)

1− υ(q)#
(0)
q (E′)

. (5.191)

We can see that the lowest order of perturbation theory for a higher-order Green’s
function already corresponds to an infinite partial sum for a Green’s function of
lower order. This is, by the way, a typical property of the diagram techniques.

We want to evaluate the RPA result for the polarisation propagator explicitly
in one case. Our starting point is the intermediate result (5.182), into which we
insert (5.123):

#(0)
q (E) = −i

2π
2
∑

k

+∞∫

−∞
dE′ 1

E + E′ − (ε(k + q)− εF)+ i0k+q

·

· 1

E′ − (ε(k)− εF)+ i0k

.

0k is positive, as long as |k| > kF, and negative when |k| < kF. We solve the integral
by integration within the complex plane. If both poles lie in the same semi-plane,
we can close the integration path in the other semi-plane. Within the area enclosed
by the integration path, there are no poles; thus, the integral vanishes. We still need
to discuss two cases:
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1. |k + q| > kF; |k| < kF
In this case, the following integral must be solved:

dE′(E + E′ − ε(k + q)+ εF + i0+)−1(E′ − ε(k)+ εF − i0+)−1 =

= 2π i
(
E + ε(k)− εF − ε(k + q)+ εF + i0+

)−1 =
= 2π i

(
E + ε(k)− ε(k + q)+ i0+

)−1
.

2. |k + q| < kF; |k| > kF

dE′(E + E′ − ε(k + q)+ εF + i0+)−1(E′ − ε(k)+ εF + i0+)−1 =

= 2π i
(−E + ε(k + q)− εF − ε(k)+ εF + i0+

)−1 =
= −2π i

(
E + εk − ε(k + q)− i0+

)−1
.

The final result for #(0)
q (E) is then:

#(0)
q (E) = 2

∑

k

⎧
⎨

⎩

(
1− 〈nk+q

〉(0)) 〈nk〉(0)
E + ε(k)− ε(k + q)+ i0+

−

−
(
1− 〈nk〉(0)

) 〈
nk+q

〉(0)

E + ε(k)− ε(k + q)− i0+

}

.

(5.192)

Finally, we can express the ground-state energy of the interacting electron gas in
terms of the polarisation propagator. Because of υ(0) = 0 (jellium model), all the
ground-state diagrams are connected and open. With the fixed vertex at t = t ′ = 0,
four outer lines (two creation operators and two annihilation operators) are joined:

The remaining diagram attached to the vertex corresponds to the general diagram
of the density correlation. Therefore, an irreducible polarisation part can again be
separated off. What remains is then a diagram of the effective interaction
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�E0 = 2
∑

q

+∞∫

−∞

dE

2πh̄
υeff(q, E)i h̄#q(E). (5.193)

The factors 2 and 1/2πh̄ result from the summation over spins and from energy con-
servation at the vertex. The factor −i/h̄, which is related according to the diagram
rule 1. to iDq(E) with one vertex, in the end results from the perturbation expansion
of the time-evolution operator, and thus appears only for the inner vertices. The
effective interaction thus enters (5.193) without this factor. With (5.188) and (5.189),
we can finally express the level shifts in terms of the dielectric function:

�E0 = i

π

∑

q

+∞∫

−∞
dE

{
1

εc(q, E)
− 1

}
. (5.194)

�E0 is of course real; therefore, we must have:

�E0 = − 1

π

∑

q

+∞∫

−∞
dE Im

1

εc(q, E)
. (5.195)

As we discussed in detail in the last section, in particular the ring diagrams are
important for the ground-state energy. We find these precisely when we insert the
lowest-order approximation #(0)

q (E) for the polarisation propagator in (5.193):

�ERPA
0 = i

π

∑

q

+∞∫

−∞
dE

υ(q)#
(0)
q (E)

1− υ(q)#
(0)
q (E)

.

5.6.3 Vertex Function

The method of simplifying diagram expansions by introducing certain diagram
blocks can be extended in a variety of ways. Thus far, we have introduced the
self-energy of the single-particle Green’s function, the polarisation propagator of
the density correlation, and the effective interaction. Let us look once again at the
polarisation propagator#q(E) somewhat more closely. In the lowest orders, we find
the following diagram contributions:
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We define:

Definition 5.6.4 The vertex part= diagram contribution with two attachments for
particle lines and one attachment for an interaction line.

Examples

Definition 5.6.5 Irreducible vertex part = a vertex part from which no indepen-
dent self-energy diagram can be split off by separation of a propagating line, nor
any independent polarisation diagram by separation of an interaction line.

Examples

Finally, we also define:

Definition 5.6.6 The vertex function

⇐⇒  σ (q E; kE′) = sum of all irreducible vertex parts.

We list the lowest orders:
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We can use the vertex function for the representation of the polarisation propagator:

A sum or an integral must be carried out over the inner variable:

i h̄#q(E) = −1

2πh̄

∑

kσ

+∞∫

−∞
dE′

(
iGc

kσ (E
′)
) ·

·
(

iGc
k+qσ (E + E′)

)
 σ (q E; kE′).

(5.196)

The factor 1/2πh̄ follows from rule 4 for iDq(E); the sign corresponds to the
loop rule.

The lowest-order approximation already yields the RPA result (5.182):

RPA : Gc
kσ −→ G

0,c
kσ ,

 σ −→ 1.
(5.197)

Physically, this means neglecting all the scattering processes of the particle-hole
pair. These are better taken into account in the so-called ladder approximation:
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(5.198)

The solid lines refer in this approximation to free propagators. The Dyson equation
for the ladder approximation of the vertex function can be summed exactly for
certain types of interactions.

Finally, we can also use the vertex function to decompose the electronic self-
energy:

Written as a formula, this decomposition is given by:

− i

h̄
!kσ (E) =

= −i

2πh̄2

∑

q

+∞∫

−∞
dE′ υeff(q, E

′)
(

iGc
k+qσ (E + E′)

)
 σ (qE

′; kE).
(5.199)

If we use the simplest approximation (5.197) together with υeff → υ, we obtain the
Hartree-Fock approximation (5.128).

5.6.4 Exercises

Exercise 5.6.1 Calculate the transverse susceptibility approximately, using
suitable partial sums within the Hubbard model:

χ±q (E) = −γ
+∞∫

−∞
d(t−t ′) exp

[
i

h̄
E(t−t ′)

]
1

N

∑

k,p

{
−i〈E0|Tε

(
a+k↑(t)ak+q↓(t)·

(continued)
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Exercise 5.6.1 (continued)

·a+p↓(t ′)ap−q↑(t ′)
)
|E0〉

}
= − γ

N
χ̂±q (E).

It can be treated diagrammatically in complete analogy to the density-density
Green’s function Dq(E) which was discussed in Sect. 5.6.

1. Show, using the Dyson equation, that χ̂±q (E) is completely determined by
the suitably defined polarisation propagator.

2. Calculate the vertex function in the ladder approximation.
3. Give a representation of the transverse susceptibility in terms of the full

one-electron Green’s function and the vertex function.
4. In the exact expression for the transverse susceptibility from 3, replace the

full propagators by the free propagators and use the ladder approximation
as in 2 for the vertex function. Compare the result for the transverse
susceptibility with that from Sect. 4.2.3.

Exercise 5.6.2 The T-matrix 5.6.4. introduced in Sect. 4.3.1 can be defined
as follows:
(
− i

h̄
Tkσ (E)

)
= sum over all the proper and improper self-energy parts.

Find, making use of the T-matrix, an exact diagrammatic representation of the
one-electron Green’s function. Derive the connection between the T-matrix
and the self energy.

Exercise 5.6.3 In Exercise 4.2.4, it was shown that the so-called appearance-
potential spectroscopy (APS) and Auger electron spectroscopy (AES) are
completely determined by the two-particle spectral density

S
(2)
iiσ (E) = − 1

π
Im⟪ai−σ aiσ ; a+iσ a+i−σ⟫E .

1. Develop an appropriate diagrammatic representation.
2. Describe as in Exercise 4.2.6 the interacting electron system within the

Hubbard model and develop an approximation which describes exactly the

(continued)
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Exercise 5.6.3 (continued)
direct interactions of the two excited particles (direct correlations), but
neglects the interactions with the rest of the system (indirect correlations).

3. How could one extend the approximation in 2 with a previously-
determined full one-electron Green’s function in order to take into account
the indirect correlations, at least approximately?

5.7 Self-Examination Questions

5.7.1 For Sect. 5.1

1. What is the fundamental formula of perturbation theory?
2. How are the Schrödinger perturbation theory and the Brillouin-Wigner perturba-

tion theory obtained from the fundamental formula?
3. What is the disadvantage of conventional, time-independent perturbation theory?
4. What is meant by adiabatic switching on of an interaction?
5. Formulate and interpret the Gell-Mann–Low theorem.
6. How does the normalised ground state of the interacting system develop accord-

ing to the Gell-Mann–Low theorem from that of the free system?
7. Describe the expectation value of an arbitrary, time-dependent Heisenberg

observable in the ground state using the trick of adiabatic switching-on in terms
of an expression which refers to the ground state |η0〉 of the free system.

8. Discuss the structure of the causal one-electron Green’s function, as appropriate
for diagrammatic perturbation theory.

5.7.2 For Sect. 5.2

1. What is meant by the Fermi vacuum?
2. How is the normal product defined? For what purpose was it introduced?
3. What is meant by a contraction?
4. To what does the contraction of two annihilation operators give rise?
5. Why is the contraction ak(t)a

+
k′ (t

′) not an operator?

How is it related to the causal T = 0 Green’s function? What is the convention
for equal times t = t ′?

6. Formulate Wick’s theorem.
7. What does total pairing mean?
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5.7.3 For Sect. 5.3

1. Which expectation value is referred to as a vacuum amplitude?
2. Which diagrams contain the first term of the perturbation expansion for the

vacuum amplitude?
3. What is meant by a vertex?
4. How many different graphs with four vertices contribute to the vacuum

amplitude?
5. Formulate the loop rule.
6. Which diagrams are referred to as having the same structure?
7. How many diagrams of the same structure with n vertices are there for the

vacuum amplitude?
8. What are topologically equivalent diagrams?
9. What is a connected diagram?

10. Formulate and interpret the linked cluster theorem.
11. What is an open diagram? What is a vacuum-fluctuation diagram?
12. What does the principal theorem of connected diagrams state?

5.7.4 For Sect. 5.4

1. What does conservation of momentum at a vertex mean?
2. What is meant by stretched diagrams of the single-particle Green’s function?
3. Which considerations lead to conservation of energy at a vertex?
4. What are the diagram rules for the causal one-electron Green’s function
iGc

kσ (E)?
5. What is a self-energy part? When is it called proper or irreducible?
6. How is the self energy defined?
7. Describe the diagram representation of the Dyson equation.

5.7.5 For Sect. 5.5

1. Which expression must be evaluated for the calculation of the level shifts
�E0 = E0 − η0?

2. How do the Feynman diagrams for �E0 differ from those for the vacuum
amplitude?

3. How many topologically distinct diagrams of the same structure �n are there
to order n in the expansion for �E0?

4. What is found in first-order perturbation theory for the ground-state energy in
the jellium model?

5. Why do diagrams with bubbles make no contribution in the jellium model?
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6. Which diagram structures contribute to second-order perturbation theory for
the ground-state energy?

7. Which type of diagrams causes divergences even in second-order perturbation
theory for the ground-state energy in the jellium model?

8. What is meant by ring diagrams?
9. Interpret the concept of correlation energy.

10. How does a ground-state diagram of n-th order depend on the density
parameter rs?

11. Why can one limit oneself in the approximate determination of the ground-
state energy in the jellium model for high electron densities to non-divergent
diagrams of low order, whilst in contrast the ring diagrams must be included as
infinite partial sums?

12. What is the physical cause of the divergence of a ring diagram?

5.7.6 For Sect. 5.6

1. Formulate the diagram rules for the two-particle Green’s function iDq(E)

(density-density correlation).
2. What is a polarisation part? When is it referred to as proper or irreducible?
3. What is meant by a polarisation propagator? Which form does it assume in the

so-called RPA?
4. Formulate the Dyson equation for iDq(E) using the polarisation propagator.
5. How can one define an effective interaction υeff(q, E) using the polarisation

propagator?
6. What are skeleton diagrams?
7. What is the relation between the effective interaction υeff(q, E) and the

dielectric function?
8. How can the so-called RPA of the self-energy!kσ (E) be represented diagram-

matically using the dressed interaction υeff(q, E)?
9. Give the ground-state energy in the jellium model in terms of the polarisation

propagator and the effective interaction.
10. Express the level shift �E0 in terms of the dielectric function. Which result is

found in the RPA?
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11. What is a vertex part? When is it irreducible?
12. How is the vertex function defined?
13. Represent the polarisation propagator using the vertex function.
14. What is meant by the ladder approximation?
15. How can one determine the self-energy !kσ (E) using the vertex function?



Chapter 6
Perturbation Theory at Finite
Temperatures

6.1 The Matsubara Method

Up to now, we have concerned ourselves exclusively with perturbation-theory
methods which apply at T = 0. Experiments, however, are carried out at finite
Temperatures. Since every theory in the end has the goal of explaining experimental
results or of predicting them, the extension to T > 0 is unavoidable. We should at
least investigate whether the T = 0 methods of the preceding chapter can be carried
over to the case that T �= 0 in some form. Considerations of this type are closely
connected with the name Matsubara (T. Matsubara, Progr. Theoret. Phys. 14, 351
(1955)). We therefore refer to the procedures discussed in the present section as
Matsubara methods.

As we showed in Chap. 3, the retarded Green’s function has a direct relation to
experiments (e.g. response functions, quasi-particle densities of states, correlation
functions, excitation energies). There are a series of methods for its approximate
determination (equation of motion method, method of moments, CPA,. . . ), a
perturbation-theory diagram technique in the sense of Chap. 5, however, cannot be
formulated. For the retarded function, there is no Wick’s theorem, although a Dyson
equation as in Eq. (3.313) can be constructed. The retarded Green’s function is thus
not so readily accessible via perturbation theory. For perturbation theory, at least
at T = 0, the causal function is eminently suitable. The special form Eq. (5.85) of
Wick’s theorem makes it possible to apply quite effective diagram techniques. Since,
on the other hand, at T = 0 the transformation from the causal to the retarded
function is very simple Eqs. (3.174) and (3.175), it is worthwhile to develop the
perturbation theory for the causal Green’s function as in Chap. 5.

At finite temperatures, however, the conditions for the application of Wick’s
theorem in the special form of Eq. (5.85) are no longer fulfilled. We can no longer
take averages using only the ground state |η0 > of the non-interacting system, and
the vanishing of the normal products as in Eq. (5.70) can no longer be exploited.
The Matsubara functions which we now introduce are actually nothing other
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than suitably generalised causal Green’s functions which permit the application
of a modified Wick’s theorem and thus become accessible to perturbation theory.
Furthermore, we will be able to show that the transition from the causal functions
to the presently more interesting retarded Green’s functions is quite simple.

6.1.1 Matsubara Functions

Making use of Eqs. (3.130) and (3.131), we have derived the fact that when
the Hamiltonian is not explicitly time dependent, the correlation functions <

A(t)B(t ′) >, < B(t ′)A(t) > and thereby all three Green’s functions depend only
on the time difference t − t ′:

< A(t)B(t ′) > =< A(t − t ′)B(0) >=< A(0)B(t ′ − t) > ,

< B(t ′)A(t) > =< B(t ′ − t)A(0) >=< B(0)A(t − t ′) > .

The two correlation functions which construct the Green’s functions Gα
AB(t, t

′)
(α = ret, adv, c) are not mutually independent if one allows the time variable
formally to assume complex values:

�A(t − ih̄β)B(t ′) =

= Tr

{
exp

(− βH
)

exp

[
i

h̄
H(t − ih̄β)

]
A(0) exp

[
i

h̄
H(t − ih̄β)

]
B(t ′)

}
=

= Tr

{
B(t ′) exp

(− βH
)

exp
(+ βH

)
exp

(
i

h̄
Ht
)
A(0) exp

(
− i

h̄
Ht
)

exp(−βH)
}
=

= Tr
{

exp
(− βH

)
B(t ′)A(t)

}
.

Here, we have made use of the cyclic invariance of the trace several times. The
resulting relation

< A(t − ih̄β)B
(
t ′
)
>,=< B

(
t ′
)
A(t) > (6.1)

makes it reasonable to extend the definitions of the Green’s functions also to
complex times. This would have an additional advantage: Every normal perturbation
theory is based on the assumption that the Hamiltonian H of the system can be
decomposed according to H = H0 + V , where it is assumed that the eigenvalue
problem for H0 is exactly solvable. For averaged quantities at T �= 0 (Eq. (3.122)),
the perturbation V then appears in two distinct places, first in the Heisenberg
representation of the time-dependent operators via exp

( ± i
h̄
Ht
)
, and secondly in

the density operator exp(−βH) of the grand canonical averaging procedure. For
both, we would then in fact have to carry out a perturbation expansion. The effort
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required can be reduced if one takes h̄β to be the real or the imaginary part of a
complex time. The two exponential functions can then be combined.

The Matsubara method presumes purely imaginary times and introduced the the
real quantity

τ = i t . (6.2)

This leads to a modified Heisenberg representation for the operators:

A(τ) = exp

(
1

h̄
Hτ
)
A(0) exp

(
− 1

h̄
Hτ
)
. (6.3)

In making use of this representation, we must take some care, since the operator
exp

( 1
h̄
Hτ
)

that produces the imaginary time differences is not unitary. The equation
of motion is then given by:

− h̄
∂

∂τ
A(τ) = [A(τ),H]− . (6.4)

With the step function

�(τ) =
{

1 , if τ > 0 ⇐⇒ t negative imaginary,

0 , if τ < 0 ⇐⇒ t positive imaginary ,
(6.5)

we can define a time-ordering operator:

Tτ
{
A(τ)B(τ ′)

} = �(τ − τ ′)A(τ)B(τ ′)+ εp�(τ ′ − τ)B(τ ′)A(τ) . (6.6)

p is the number of transpositions of creation and annihilation operators which
are necessary in order to bring the second summand again into the same operator
ordering as the first summand. ε = ±1 is defined as usual: “bosonic” when ε = +1
or ε = −1and p is even; and “fermionic” when ε = −1 and p is odd. In any case,
εp as well as ε can take on only the values ±1. For simplicity in the following, we
therefore replace εp by ε, but we will again recall the original stipulation in Eq. (6.6)
as soon as needed.

After these preliminary considerations, we now define the
Matsubara function

GM
AB

(
τ, τ ′

) ≡<< A(τ);B(τ ′) >>M= − < Tτ

(
A(τ)B

(
τ ′
))
> . (6.7)

It follows immediately from the above definition that the equation of motion of this
function, inserting Eqs. (6.4) and (6.6), is given by:

− h̄ ∂
∂τ
GM
AB

(
τ, τ ′

) = h̄δ
(
τ−τ ′) < [A,B]−ε > + <<

[
A(τ),H

]
−;B

(
τ ′
)
>>M .

(6.8)
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We wish to list some of its important properties. Due to

� < A(τ)B
(
τ ′
)
>=

= Tr

{
exp

(− βH
)

exp

(
1

h̄
Hτ
)
A exp

(
− 1

h̄
H
(
τ−τ ′)

)
B exp

(
− 1

h̄
Hτ ′

)}
=

= Tr

{
exp

(− βH
)

exp

(
1

h̄
H
(
τ−τ ′)

)
A exp

(
− 1

h̄
H
(
τ−τ ′)

)
B

}
=

= � < A
(
τ − τ ′

)
B > ,

the Matsubara function also depends only on time differences:

GM
AB

(
τ, τ ′

) = GM
AB

(
τ − τ ′, 0

) = GM
AB

(
0, τ ′ − τ

)
. (6.9)

Another quite important property concerns its periodicity. Assuming that

h̄β > τ − τ ′ + nh̄β > 0 n ∈ Z ;

then we have:

�GM
AB

(
τ − τ ′ + nh̄β

)

︸ ︷︷ ︸
>0

=

= −Tr
{

exp
(− βH

)
Tτ
(
A
(
τ − τ ′ + nh̄β

)
B(0)

)} =

= −Tr
{

exp
(− βH

)
A
(
τ − τ ′ + nh̄β

)
B(0)

}
=

= −Tr

{
exp

(− βH
)

exp

(
1

h̄
H
(
τ − τ ′ + nh̄β

))
A(0)·

· exp

(
− 1

h̄
H
(
τ − τ ′ + nh̄β

))
B(0)

}
=

= −Tr

{
exp

(
1

h̄
H
(
τ − τ ′ + (n− 1)h̄β

))
A(0)·

· exp

(
− 1

h̄
H
(
τ − τ ′ + (n− 1)h̄β

))
exp

(− βH
)
B(0)

}
=

= −Tr
{

exp
(− βH

)
B(0)A

(
τ − τ ′ + (n− 1)h̄β

)

︸ ︷︷ ︸
<0

}
=

= −Tr
{

exp
(− βH

)
Tτ
(
B(0)A

(
τ − τ ′ + (n− 1)h̄β

))} =

= −εTr
{

exp
(− βH

)
Tτ
(
A
(
τ − τ ′ + (n− 1)h̄β

)
B(0)

)}
.
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This yields the important relation:

h̄β > τ − τ ′ + nh̄β > 0 :
GM
AB

(
τ − τ ′ + nh̄β

) = εGM
AB

(
τ − τ ′ + (n− 1)h̄β

)
.

(6.10)

In particular, for n = 1 we find:

GM
AB

(
τ − τ ′ + h̄β

) = εGM
AB

(
τ − τ ′

)
,

iff − h̄β < τ − τ ′ < 0 .
(6.11)

The Matsubara function is thus periodic with a periodicity interval of 2h̄β. We can
therefore limit our considerations to the time interval −h̄β < τ − τ ′ < 0.

Owing to this periodicity, we can make use of a Fourier expansion for the
Matsubara function:

GM(τ ) = 1

2
a0 +

∞∑

n= 1

[
an cos

nπ

h̄β
τ + bn sin

nπ

h̄β
τ

]
,

an = 1

h̄β

+h̄β∫

−h̄β
dτ GM(τ ) cos

(
nπ

h̄β
τ

)
,

bn = 1

h̄β

+h̄β∫

−h̄β
dτ GM(τ ) sin

(
nπ

h̄β
τ

)
.

We define

En = nπ

β
; GM(En

) = 1

2
h̄β
(
an + ibn

)
(6.12)

and can then write:

GM(τ ) = 1

2
a0 +

∞∑

n= 1

{
an

2

[
exp

(
i

h̄
Enτ

)
+ exp

(
− i

h̄
Enτ

)]
+

+ bn

2i

[
exp

(
i

h̄
Enτ

)
− exp

(
− i

h̄
Enτ

)]}

= 1

2

+∞∑

n=−∞

(
an + ibn

)
exp

(
− i

h̄
Enτ

)
.
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Here, we have used

E−n = −En ; a−n = an ; b−n = −bn ; b0 = 0 .

It thus holds that:

GM(τ ) = 1

h̄β

+∞∑

n=−∞
exp

(
− i

h̄
Enτ

)
GM(En

)
, (6.13)

GM(En
) = 1

2

+h̄β∫

−h̄β
dτ GM(τ ) exp

(
i

h̄
Enτ

)
. (6.14)

This can be somewhat further simplified:

GM(En
) = 1

2

h̄β∫

0

. . .+ 1

2

0∫

−h̄β
. . . =

= 1

2

h̄β∫

0

dτ GM(τ ) exp

(
i

h̄
Enτ

)
+

+ 1

2

h̄β∫

0

dτ ′GM(τ ′ − h̄β
)

exp

(
i

h̄
Enτ

′
)

exp
(− iEnβ

) =

(
τ ′ = τ + h̄β

)

=
[
1+ ε exp

(− iβEn
)]1

2

h̄β∫

0

dτ GM(τ ) exp

(
i

h̄
Enτ

)
.

The expression in brackets vanishes for fermions (ε = −1), in the case that n is
even, and for bosons (ε = +1) when n is odd. We then have:

GM(τ ) = 1

h̄β

+∞∑

n=−∞
exp

(
− i

h̄
Enτ

)
GM(En

)
, (6.15)

GM(En
) =

h̄β∫

0

dτ GM(τ ) exp

(
i

h̄
Enτ

)
, (6.16)
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En =
{

2nπ / β : bosons,

(2n+ 1)π / β : fermions.
(6.17)

For these Matsubara functions, we shall be able to formulate Wick’s theorem later
on. In order to show that they also have a direct connection to experiments, we
demonstrate their relation to the retarded Green’s function. This is possible using
the spectral representation (notation as in Sect. 3.2.2):

< A(τ)B(0) >=
1

�

∑

n

< En|A(τ)B(0)|En > exp
(− βEn

) =

1

�

∑

n,m

< En|A |Em >< Em|B |En > exp
(− βEn

)
exp

[
1

h̄

(
En − Em

)
τ

]
.

For the spectral density SAB(E), we had derived the following expression
using Eq. (3.146):

SAB(E) = h̄

�

∑

n,m

< En|A |Em >< Em|B |En > e−βEn·

· (1− εe−βE
)
δ
[
E − (Em − En

)]
.

We thus have:

< A(τ)B(0) >= 1

h̄

+∞∫

−∞
dE

SAB(E)

1− ε exp(−βE) exp

(
− 1

h̄
Eτ

)
. (6.18)

Within the integration range in Eq. (6.16), τ always remains positive, so that for the
Matsubara function, we need evaluate only:

GM
AB

(
En
) = −

h̄β∫

0

dτ exp

(
i

h̄
Enτ

)
< A(τ)B(0) > . (6.19)

We insert

h̄β∫

0

dτ exp

(
1

h̄

(
iEn − E

)
τ

)
= h̄

iEn − E

[
exp

(
iβEn

)
exp

(− βE
)− 1

]
=

= h̄

iEn − E

[
ε exp

(− βE
)− 1

]
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together with Eq. (6.18) into Eq. (6.19):

GM
AB

(
En
) =

+∞∫

−∞
dE′

SAB
(
E′
)

iEn − E′
. (6.20)

Comparison with Eq. (3.148) verifies the formal agreement with the spectral
representation of the retarded Green’s functions after making the replacement

iEn −→ E + i0+ . (6.21)

We thus obtain the retarded Green’s function from the Matsubara function quite
simply by an analytic continuation of the imaginary axis to the real E axis. –
For completeness, we mention that the advanced Green’s function can be obtained
from the Matsubara function Eq. (6.20) via the transition iEn → E − i0+. It
is found that the (“combined”) Green’s function defined in Eq. (3.151) is the
unique analytic continuation of the Matsubara function in the complex E plane
(cf. Exercise 6.1.3). The unified Green’s function defined in Eq. (3.151) proves to
be the unique analytic continuation of the Matsubara function into the complex E-
plane (see Exercise 6.1.3)

6.1.2 The Grand Canonical Partition Function

The following considerations concern systems containing fermions or bosons which
may be subject to a pairwise interaction, as usual:

H = H0 + V , (6.22)

H0 =
∑

k

(
ε(k)− μ

)
a+k ak , (6.23)

V = 1

2

∑

klmn

v(kl; nm)a+k a+l aman . (6.24)

In the case of S = 1 / 2 fermions, k ≡ (k, σ ); for S = 0 bosons, k = k is to
be read. In the end, the goal will be to compute expectation values of time-ordered
operator products, whereby the averaging process is to be carried out over the grand
canonical ensemble:

< Tτ
( · · · I(τi

) · · · J (τj
) · · · ) >= 1

�
Tr
{

e−βHTτ
( · · · I(τi

) · · · J (τj
) · · · )

}
.

(6.25)
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� is the grand canonical partition function, of which we have already often
made use

� = Tr
{
e−βH

}
. (6.26)

As we shall see, this important function will play a similar role to that of the vacuum
amplitude in the T = 0 formalism.

For the construction of a T = 0 perturbation theory, we found the Dirac or
interaction representation to be particularly favourable. This is true in modified
form also of the Matsubara formalism. The following considerations thus run for
the most part parallel to those in Sect. 3.1.1. We first define the transition to the
Dirac representation, in analogy to Eq. (3.34), for an arbitrary operator AS from the
Schrödinger representation as follows:

AD(τ ) = exp

(
1

h̄
H0τ

)
AS exp

(
− 1

h̄
H0τ

)
. (6.27)

For the transformation into the Heisenberg representation, we have from Eq. (6.3):

AH(τ) = exp

(
1

h̄
Hτ
)
AS exp

(
− 1

h̄
Hτ
)
. (6.28)

AS is at most explicitly time dependent. We define in analogy to Dirac’s time-
evolution operator (3.33):

UD
(
τ, τ ′

) = exp

(
1

h̄
H0τ

)
exp

(
− 1

h̄
H
(
τ − τ ′

))
exp

(
− 1

h̄
H0τ

′
)
. (6.29)

This operator is, to be sure, not unitary, but like its analog in (3.33), it has the
following properties for real times:

UD
(
τ1, τ2

)
UD
(
τ2, τ3

) = UD
(
τ1, τ3

)
, (6.30)

UD(τ, τ ) = 1 . (6.31)

The Dirac and the Heisenberg representations can be related to each other using UD:

AH(τ ) = exp

(
1

h̄
Hτ
)

exp

(
− 1

h̄
H0τ

)
AD(τ ) exp

(
1

h̄
H0τ

)
exp

(
− 1

h̄
Hτ
)
=

= UD(0, τ )AD(τ )UD(τ, 0) . (6.32)

Using Eq. (6.29), we can readily derive the equation of motion of the time-evolution
operator:



426 6 Perturbation Theory at Finite Temperatures

−h̄ ∂

∂τ
UD
(
τ, τ ′

) =

= − exp

(
1

h̄
H0τ

)(
H0 −H

)
exp

(
− 1

h̄
H
(
τ − τ ′

))
exp

(
− 1

h̄
H0τ

′
)
=

= exp

(
1

h̄
H0τ

)
V exp

(
− 1

h̄
H0τ

)
exp

(
1

h̄
H0τ

)
exp

(
− 1

h̄
H
(
τ − τ ′

))

exp

(
− 1

h̄
H0τ

′
)
,−h̄ ∂

∂τ
UD
(
τ, τ ′

) = VD(τ )UD
(
τ, τ ′

)
.

(6.33)

VD(τ ) is the interaction in the Dirac representation. With Eq. (6.31) as boundary
condition, the formal solution of the equation of motion is given by:

UD
(
τ, τ ′

) = 1− 1

h̄

τ∫

τ ′
dτ ′′ VD

(
τ ′′
)
UD
(
τ ′′, τ ′

)
. (6.34)

This agrees, apart from unimportant factors, with Eq. (3.12). We thus find as a result
of the same considerations as those that led to Eqs. (3.13) and (3.17):

UD
(
τ, τ ′

) =
∞∑

n= 0

1

n!
(
− 1

h̄

)n τ∫

τ ′
dτ1 · · ·

τ∫

τ ′
dτnTτ

(
VD
(
τ1
) · · ·VD

(
τn
))
. (6.35)

With the same justification as for Eq. (5.56), we were able to replace Dyson’s time-
ordering operator TD Eq. (3.15), which in fact appears in the expansion (6.35) and
sorts without the factor ε, by the operator Tτ from Eq. (6.6). This is permissible,
since from Eq. (6.24), the interaction V is constructed with an even number of
creation and annihilation operators.

Equation (6.35) is the starting point for a T > 0 perturbation theory. We can draw
a first important conclusion for the grand canonical partition function. It follows
from Eq. (6.29) that:

exp

(
− 1

h̄
Hτ
)
= exp

(
− 1

h̄
H0τ

)
UD(τ, 0) .

If we choose in particular τ = h̄β,

e−βH = e−βH0UD(h̄β, 0) , (6.36)

then we can relate the partition function to UD:

� = Tr
{
e−βH0UD(h̄β, 0)

} =

=
∞∑

n= 0

1

n!
(
− 1

h̄

)n ∫
· · ·
∫ h̄β

0
dτ1 · · · dτn Tr

{
e−βH0Tτ

(
VD
(
τ1
) · · ·VD

(
τn
))}

.

(6.37)
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6.1.3 The Single-Particle Matsubara Function

The single-particle Matsubara function will be of particular interest:

GM
k (τ ) = − < Tτ

(
ak(τ )a

+
k (0)

)
> . (6.38)

We will show later that it obeys a Dyson equation:

GM
k (τ ) =

1

h̄β

+∞∑

n=−∞
exp

(
− i

h̄
Enτ

)
GM
k

(
En
)
,

GM
k

(
En
) = h̄

iEn −
(
ε(k)− μ

)−!M
(
k,En

) .

(6.39)

Here, the self-energy !M(k, En) depends upon the retarded self-energy, which we
have already encountered and which takes the influence of the particle interactions
into account, via the following transition:

!M(k, En) −−−−−−−→iEn→E+ i0+
!ret(k, E) = Rret(k, E)+ iI ret(k, E) . (6.40)

Rret and I ret, according to Eq. (3.331), directly determine the single-particle spectral
density Sk(E), whose significance and direct relation to experiments were empha-
sized in Chap. 3.

For the perturbation theory which we wish to describe in the following, we
require the Matsubara function G0,M

k (τ ) for the system of non-interacting particles
defined by H0, which of course can be calculated exactly. We first derive explicitly
the time evolution of the Heisenberg operator ak(τ ). The relation

akHn
0 =

(
ε(k)− μ+H0

)n
ak (6.41)

is proved by complete induction. Due to

[
ak,H0

]

−
= (ε(k)− μ

)
ak ,

the proposition is clearly correct for n = 1:

akH0 =
[
ak,H0

]

−
+H0ak =

(
ε(k)− μ+H0

)
ak .

The extension from n to n+ 1 is accomplished as follows:

akHn+ 1
0 = (akHn

0)H0 =



428 6 Perturbation Theory at Finite Temperatures

= (ε(k)− μ+H0
)n
akH0 =

= (ε(k)− μ+H0
)n(
ε(k)− μ+H0

)
ak =

= (ε(k)− μ+H0
)n+ 1

ak q. e. d.

With Eq. (6.27), we furthermore have:

exp

(
1

h̄
H0τ

)
ak exp

(
− 1

h̄
H0τ

)
=

= exp

(
1

h̄
H0τ

) ∞∑

n= 0

1

n!
(
− τ

h̄

)n
akHn

0 =

= exp

(
1

h̄
H0τ

) ∞∑

n= 0

1

n!
(
− 1

h̄

(
ε(k)− μ+H0

)
τ

)n
ak =

= exp

(
1

h̄
H0τ

)
exp

(
− 1

h̄

(
ε(k)− μ+H0

)
τ

)
ak .

This means that:

ak(τ ) = ak exp

(
− 1

h̄

(
ε(k)− μ

)
τ

)
. (6.42)

We could of course also have obtained this result directly with the equation of
motion (6.4):

−h̄ ∂
∂τ
ak(τ ) =

[
ak, H0

]
−(τ ) =

(
ε(k)− μ

)
ak(τ ) .

Quite analogously, one proves that:

a+k (τ ) = a+k exp

(
1

h̄

(
ε(k)− μ

)
τ

)
. (6.43)

We can see that in the modified Heisenberg representation, ak(τ ) and a+k (τ ) are no
longer mutually adjoint for τ �= 0.

Using (6.42) and (6.43), the free single-particle Matsubara function can be
readily computed:

G
0,M
k

= − < Tτ
(
ak(τ )a

+
k
(0)
)
>(0)=

= −�(τ) < ak(τ)a
+
k
(0) >(0) − ε �(−τ) < a+

k
(0)ak(τ ) >

(0)=

= − exp

(
− 1

h̄

(
ε(k)− μ

)
τ

){
�(τ) < aka

+
k
>(0) + ε �(−τ) < a+

k
ak >

(0)
}
,

G
0,M
k

(τ ) = − exp

(
− 1

h̄

(
ε(k)− μ

)
τ

){
�(τ)

(
1+ ε < nk >

(0) )+�(−τ)ε < nk >
(0)
}
.

(6.44)
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This result strongly reminds us of the representation (3.204) for the causal function.
The expectation value of the number operator < nk >

(0) is determined with the aid
of Eq. (6.18):

< aka
+
k >(0) = 1

h̄

+∞∫

−∞
dE

S
(0)
k (E)

1− εe−βE
(3.199)= 1

1− εe−β(ε(k)−μ)
=

= eβ(ε(k)−μ)

eβ(ε(k)−μ) − ε
= 1+ ε

eβ(ε(k)−μ) − ε
= 1+ ε < nk >

(0) .

This yields the result which is well known from quantum statistics (the Fermi-Dirac
or the Bose-Einstein functions):

< nk >
(0)= {eβ(ε(k)−μ) − ε

}−1
. (6.45)

The energy-dependent Matsubara function can be quickly computed by insertion of
Eq. (3.199) into (6.20):

G
0,M
k

(
En
) = h̄

iEn −
(
ε(k)− μ

) . (6.46)

Of course, we could also have inserted Eq. (6.44) into (6.16) and transformed
directly. – The temperature dependence is here contained only in the energies
En ∼ β−1. We shall see later how the mean occupation numbers enter back into
the equations when diagrams and correlation functions are explicitly evaluated.

We now want to bring the single-particle function of the interacting system (6.38)
into a suitable form for perturbation theory:

GM
k (τ1, τ2) = − < Tτ

(
ak
(
τ1
)
a+k
(
τ2
))
> . (6.47)

The operators are given here still in their modified Heisenberg representation. The
time differences τ1 − τ2 are limited to the range

−h̄β < τ1 − τ2 < +h̄β .

We can therefore assume for τ1 and τ2 that

0 < τ1, τ2 < h̄β . (6.48)

Equation (6.47) can be further rearranged using (6.36) and (6.32), whereby we
initially assume that τ1 > τ2:

GM
k (τ1, τ2) = − 1

�
Tr
{

e−βHTτ
(
ak(τ1)a

+
k (τ2)

)} =
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= − 1

�
Tr
{

e−βHak
(
τ1
)
a+k
(
τ2
)} =

= − 1

�
Tr

{
e−βH0UD(h̄β, 0)UD(0, τ1)·

· aD
k

(
τ1
)
UD
(
τ1, 0

)
UD
(
0, τ2

)
a+D
k

(
τ2
)
UD
(
τ2, 0

)} =

= − 1

�
Tr

{
e−βH0UD(h̄β, τ1)a

D
k

(
τ1
)
UD
(
τ1, τ2

)
a+D
k

(
τ2
)
UD
(
τ2, 0

)}
.

Since, from Eq. (6.48), h̄β is the latest time, the operators in the trace are already
time-ordered. We can therefore once again introduce the time-ordering operator Tτ ,
and in the argument of Tτ , we can factor the operators UD without a sign change
past aD

k or a+D
k , since according to Eqs. (6.35) and (6.24), they are composed of an

even number of creation and annihilation operators:

GM
k

(
τ1, τ2

) =

= − 1

�
Tr

{
e−βH0Tτ

(
UD
(
h̄β, τ1

)
aD
k

(
τ1
)
UD
(
τ1, τ2

)
a+D
k

(
τ2
)
UD
(
τ2, 0

))} =

= − 1

�
Tr

{
e−βH0Tτ

(
UD
(
h̄β, τ1

)
UD
(
τ1, τ2

)
UD
(
τ2, 0

)
aD
k

(
τ1
)
a+D
k

(
τ2
))} =

= − 1

�
Tr
{

e−βH0Tτ
(
UD(h̄β, 0)aD

k

(
τ1
)
a+D
k

(
τ2
))}

.

In the final step, we once again made use of Eq. (6.30). We now have to investigate
the other case, that τ1 < τ2:

GM
k

(
τ1, τ2

)

= − ε

�
Tr
{
e−βHa+k

(
τ2
)
ak
(
τ1
)} =

= − ε

�
Tr
{

e−βH0UD(h̄β, 0)UD
(
0, τ2

)
a+D
k

(
τ2
)·

· UD
(
τ2, 0

)
UD
(
0, τ1

)
aD
k

(
τ1
)
UD
(
τ1, 0

)} =

= − ε

�
Tr
{

e−βH0UD
(
h̄β, τ2

)
a+D
k

(
τ2
)
UD
(
τ2, τ1

)
aD
k

(
τ1
)
UD
(
τ1, 0

)} =

= − ε

�
Tr

{
e−βH0Tτ

(
UD
(
h̄β, τ2

)
a+D
k

(
τ2
)
UD
(
τ2, τ1

)
aD
k

(
τ1
)
UD
(
τ1, 0

))} =

= − ε

�
Tr
{

e−βH0Tτ
(
UD(h̄β, 0)a+D

k

(
τ2
)
aD
k

(
τ1
))} =

= − 1

�
Tr
{

e−βH0Tτ
(
UD(h̄β, 0)aD

k

(
τ1
)
a+D
k

(
τ2
))}

.
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Both cases, τ1 > τ2 and τ1 < τ2, thus lead to the same result. If we suppress
the index D on the operators, since now all the operators are given in their Dirac
representation, we can express this result as:

GM
k

(
τ1, τ2

) = −
Tr
{
e−βH0Tτ

(
U(h̄β, 0)ak

(
τ1
)
a+k
(
τ2
))}

Tr
{
e−βH0U(h̄β, 0)

} . (6.49)

If we now insert the time-evolution operator U as in Eq. (6.35), so we can recognise
a clear analogy with the causal T = 0 Green’s function, Eq. (5.59). It is therefore
not surprising that we will be able to use practically the same procedure for the
evaluation of Eq. (6.49) as in Chap. 5. Important differences are that the time
integrations are carried out over finite ranges, and that no switching-on factors
occur. We have at no point had to employ the hypothesis of adiabatic switching-
on (cf. Sect. 5.1.2). – The partition function � takes on roughly the same role in
the Matsubara formalism which the vacuum amplitude (5.89) played in the T = 0
formalism. This will become more clear in the following section.

6.1.4 Exercises

Exercise 6.1.1 Verify the result in (6.46) for the energy-independent “free” single-
particle Matsubara function G0,M

k (En) by direct transformation of the associated

time-dependent function G0,M
k (τ ) (6.44).

Exercise 6.1.2

1. Show that the time-dependent single-particle Matsubara function

GM
k (τ) = − 〈Tτ

(
ak(τ ) a

+
k (0)

)〉

is discontinuous at τ = 0, and compute the value of the discontinuity!
2. Express

1

h̄β

+∞∑

n=−∞
GM
k (En)

in terms of the average occupation number 〈nk〉. How does the result differ from

1

h̄β

+∞∑

n=−∞
GM
k (En) exp

(
i

h̄
En0+

)
?
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Exercise 6.1.3 Show that the (“combined”) Green’s function GAB(E) defined in
Eq. (3.151) as the analytic continuation of the Matsubara function GM

AB(E) (6.20)
is uniquely defined in the complex E plane!

Exercise 6.1.4 A system of interacting particles (bosons or fermions) is assumed
to be described by the Hamiltonian (6.22). Show that the internal energy U can be
expressed as follows in terms of a single-particle Matsubara function:

U = 〈H 〉 = −1

2
ε lim
τ→−0+

∑

p

(
ε(p)− h̄

∂

∂τ

)
GM
p (τ)

(H = H(μ = 0)) .

Exercise 6.1.5 Verify the following partial-fraction decomposition of the
Fermi/Bose distribution functions:

〈nk〉(0) = 1

exp(β(ε(k)− μ))− ε
= −ε

2
− ε

β

+∞∑

n=−∞

1

iEn − (ε(k)− μ)
.

6.2 Diagrammatic Perturbation Theory

6.2.1 Wick’s Theorem

For a diagrammatic analysis of the time-ordered products in (6.49), we need a
tool which can assume the function of Wick’s theorem, Eq. (5.85), in the T = 0
formalism for the causal function. We shall call this tool, which we will now
develop, the generalised Wick theorem. We shall have to evaluate expressions of
the following form:

Tr
{
e−βH0Tτ (UVW · · ·XYZ)} = �0 < Tτ (UVW · · ·XYZ) >(0) .

�0 is the grand canonical partition function of the non-interacting system. U , V ,
W . . . are creation and annihilation operators in the Dirac representation, each of
which acts at at some particular time τ . We define a
Contraction

UV =< Tτ (UV ) >
(0)= ε VU . (6.50)
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Since U and V are presumed to be creation and annihilation operators, the
contraction, in analogy to the case of T = 0 , will be essentially the single-particle
Matsubara function. We now prove a
Generalised Wick theorem

< Tτ (UVW · · ·XYZ) >(0)= (UV W · · · XYZ)+ (UVW · · · XYZ)+ · · · =
= {total pairing} .

(6.51)

Note that this theorem does not imply an operator identity. Under the term total
pairing, we mean (as in Sect. 5.2.2) the complete partitioning of the operator
products UVW · · ·XYZ into products of contractions in all possible ways, which
of course presumes an even number of operators. The latter will however always be
the case. H0 namely commutes with the particle number operator N̂ ; the number
of particles is therefore a conserved quantity. An expectation value of the form
< UV · · · YZ >(0) is thus only then nonzero when the product contains the same
number of creation and annihilation operators. All together, we thus always have an
even number of operators. – We now introduce for Eq. (6.51) the sign convention,
that the operators to be contracted are first to be brought into neighbouring positions.
Each permutation which is required to achieve this contributes a factor of ε.

We can initially assume, as in the proof of Wick’s theorem, in Sect. 5.2.2, that
the operators are already time-ordered on the left side of Eq. (6.51). If this were not
the case, the corresponding permutations would imply for each term in Eq. (6.51)
the same factor εm. We can thus assume without loss of generality for the proof that

τU > τV > τW > · · · > τX > τY > τZ . (6.52)

Due to Eqs. (6.42) and (6.43), the time dependence of the creation and annihilation
operators is very simple. We write:

U = γU
(
τU
)
αU ; αU = a+U or aU , (6.53)

γU(τU ) = exp

(
σU

1

h̄

(
ε(U)− μ

)
τU

)
; σU =

{
− , when αU = aU ,

+ , when αU = a+U .

(6.54)

Let us first consider the contraction

UV =< Tτ (UV ) >
(0)=< UV >(0)= γU(τU )γV (τV ) < αUαV >(0) . (6.55)

Since the averaging is carried out over the free system, we can further conclude that:

< αUαV >(0) �= 0 only in the case that
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1. αU = aU , αV = a+U ,

2. αU = a+U , αV = aU .

From this, it follows with Eq. (6.45) that:

1.

< aUa
+
U >(0) = 1+ ε < nU >(0)=

= 1+ ε

eβ(ε(U)−μ) − ε
= 1

1− εe−β(ε(U)−μ)
=

=

[
aU , a

+
U

]

−ε
1− εγU (h̄β)

.

2.

< a+UaU >(0) =< nU >(0)= 1

γU(h̄β)− ε
=

= −ε
1− εγU (h̄β)

=

[
a+U , aU

]

−ε
1− εγU (h̄β)

.

We can evidently combine the two cases:

UV = γU(τU )γV
(
τV
)

[
αU , αV

]

−ε
1− εγU (h̄β)

. (6.56)

We now come to the actual proof of Eq. (6.51). We first have:

< UV · · · YZ >(0)= γUγV · · · γY γZ < αUαV · · ·αYαZ >(0) .

We now attempt to pull the operator αU all the way to the right:

< UV · · · YZ >(0)

γUγV · · · γY γZ = <

[
αU , αV

]

−ε
αW · · ·αZ >(0) +

+ ε < αV

[
αU , αW

]

−ε
· · ·αZ >(0) +

+ · · ·+

+ εp− 2 < αV αW · · ·
[
αU , αZ

]

−ε
>(0) +

+ εp− 1 < αV αW · · ·αYαZαU >(0) .

(6.57)
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p is the number of operators in the expectation value. Since p must be an even
number, we have εp− 1 = ε. We rearrange the last summand in Eq. (6.57) once
more. For this, Eq. (6.41) is helpful:

aU e−βH0 =
∞∑

n= 0

1

n! (−β)
naUHn

0 =

=
∞∑

n= 0

1

n!
(− β(ε(U)− μ+H0)

)n
aU =

= e−β(ε(U)−μ+H0)aU =
= γU(h̄β)e

−βH0aU .

Analogously, one finds

a+U e−βH0 = e+β(ε(U)−μ)−βH0a+U = γU(h̄β)e
−βH0a+U ,

so that we can summarise as:

αU e−βH0 = γU(h̄β)e
−βH0αU . (6.58)

Making use of the cyclic invariance of the trace, we find with Eq. (6.58) for the last
summand in Eq. (6.57):

< αV αW · · ·αZαU >(0) = 1

�0
Tr

{
e−βH0αV αW · · ·αZαU

}
=

= 1

�0
Tr

{
αU e−βH0αV αW · · ·αZ

}
=

= γU(h̄β)

�0
Tr

{
e−βH0αUαV · · ·αZ

}
=

= γU(h̄β) < αUαV · · ·αZ >(0) .

In Eq. (6.57), this yields:

< UV · · ·YZ >(0)

γUγV · · · γZ
(
1− εγU (h̄β)

) =

=<
[
αU , αV

]

−ε
αW · · ·αZ >(0) +

+ ε < αV

[
αU , αW

]

−ε
· · ·αZ >(0) +
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+ · · ·+

+ εp− 2 < αV αW · · ·
[
αU , αZ

]

−ε
>(0) .

Finally, with Eq. (6.56), it follows that:

< UVW · · ·XYZ >(0) =< UV W · · ·XYZ >(0) +
+ ε < V UW · · ·XYZ >(0) +
+ · · ·+
+ εp− 2 < VW · · ·UZ >(0)=

=< UV W · · ·XYZ >(0) +
+ < UVW · · ·XYZ >(0) +
+ · · ·+
+ < UVW · · ·XYZ >(0) .

(6.59)

The contraction itself is a C-number, and can therefore be factored out of the
expectation value. We can again apply Eq. (6.59) to the remaining mean value.
Finally, we obtain the total pairing. With Eq. (6.52), we have then proven the
generalised Wick theorem Eq. (6.51).

6.2.2 Diagram Analysis of the Grand-Canonical Partition
Function

We start with the analysis of the grand canonical partition function �, from which
all the macroscopic thermodynamics of the system of interacting particles can
be derived. We presume the grand canonical partition function �0 of the non-
interacting system to be known, and then, according to Eq. (6.37), we must calculate
the following:

�

�0
= 1

�0
Tr

{
e−βH0U(h̄β, 0)

}
= U(h̄β, 0)(0) . (6.60)

The associated perturbation expansion is likewise given in Eq. (6.37). Its n-th term
is given by:
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1

n!
(
− 1

h̄

)n ∫
· · ·
∫ h̄β

0
dτ1 · · · dτn < Tτ

(
V
(
τ1
) · · ·V (τn

))
>(0)=

= 1

n!
(
− 1

h̄

)n 1

2n
∑

k1l1
m1n1

· · ·
∑

knln
mnnn

v
(
k1l1; n1m1

) · · · v(kn · · · )·

·
∫
· · ·
∫ h̄β

0
dτ1 · · · dτn < Tτ

{
a+k1

(
τ1
)
a+l1
(
τ1
)
am1

(
τ1
)
an1

(
τ1
) ·

· · · · · a+kn
(
τn
)
a+ln
(
τn
)
amn
(
τn
)
ann
(
τn
)}
>(0) .

(6.61)

Apart from the switching-on factors and (−1 / h̄)n instead of (−i / h̄)n, this
expression is identical to Eq. (5.90), the expansion for the vacuum amplitude. Since
the algebraic structure of the generalised Wick theorems Eq. (6.51) is the same as
in the T = 0 case, when we average Eq. (5.84) over the ground state |η0 > of
the free system, we can directly adopt practically all of the rules and laws derived
in Sect. 5.3. The Feynman diagrams will have the same structures as in the case of
T = 0 . We could therefore repeat the treatment of the vacuum amplitude in Sect. 5.3
nearly intact; we shall do this however only in outline form.

Previously, we separated the time arguments from a fourfold packet

a+k (τ )a
+
l (τ )am(τ)an(τ )

into τ and τ ′, in order to be able to formally distinguish between below and above
at a vertex. We will dispense with this distinction here, but adopt the convention that
a+k and an are attached to the same vertex point and a+l and am to the other one.
Every combination of contractions from the total pairing will be represented by a
Feynman diagram. The number of vertices corresponds to the order of the diagram.

We adopt the same notation as in Sect. 5.3.2. Thus, � denotes the structure of a
diagram. All the topologically distinct diagrams of the same structure make the same
contribution to the perturbation expansion, but they belong to different combinations
of contractions and must therefore be counted separately. We can give their number.
As in Eq. (5.101), we have:

An(�) = 2nn!
h(�)

. (6.62)

The factor 2n results from permutations of below and above at a vertex, and n! from
the permutation of the vertices. h(�) is the number of topologically equivalent
diagrams within the structure �. These correspond to identical combinations of
contractions, and thus are to be counted only once.

We again denote by connected diagrams those which cannot be decomposed
into two independent diagrams of lower order by means of a cut. For the contribution
of all connected diagrams with the structure � of order n, we write:
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Un(�) = 2n

h(�)

(
− 1

h̄

)n
U∗n
(
D(n)

)
, (6.63)

U∗n
(
D(n)

) =
∫
· · ·
∫ h̄β

0
dτ1 · · · dτn < Tτ

(
V
(
τ1
) · · ·V (τn

))
>(0)

conn . (6.64)

We now consider a non-connected diagram which consists of p connected diagram
components with n1, n2, . . . , np vertices (n1 + n2 + · · · + np = n). Non-connected
diagrams have no common integration or summation variables in their substructures.
Therefore, the overall contribution can be factored as in Eq. (6.64):

U∗n
(
D(n)

) = U∗n1

(
D(n1)

) · · ·U∗np
(
D(np)

)
.

If, among the p connected diagram components p1,. . . , pν , some are the same with
the structures �1,. . . , �ν ,

� = p1�1 + p2�2 + · · · + pν�ν ; p1 + p2 + · · · + pν = p ,

then in Eq. (6.63) we must set

h(�) = p1!hp1
(
�1
)
p2!hp2

(
�2
) · · ·pν !hpν

(
�ν

)
. (6.65)

The factorials p1!, p2!,. . . , pν ! result from the fact that a permutation of the pμ
diagram components among themselves leads to topologically equivalent diagrams.
We then obtain for the overall contribution of the structure:

Un(�) = 1

p1!U
p1
(
�1
) 1

p2!U
p2
(
�2
) · · · 1

pν !U
pν
(
�ν

)
. (6.66)

We can now easily formulate the overall perturbation expansion for �/�0 in
compact form:

�

�0
=

0 ...∞∑

p1, p2, ...

1

p1!U
p1
(
�1
) 1

p2!U
p2
(
�2
) · · · (6.67)

All the pairwise distinct connected diagram structures occur in the product on the
right. Every pν runs from 0 to ∞. This means that

�

�0
= exp

(
U
(
�1
))

exp
(
U
(
�2
)) · · ·

or

�

�0
= exp

{ conn∑

ν

U
(
�ν

)}
. (6.68)
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Fig. 6.1 The annotation of a
vertex in the diagram analysis
of Matsubara functions

This corresponds to the linked-cluster theorem, Eq. (5.112). We can thus imme-
diately limit ourselves to the connected diagrams for the evaluation of the grand
canonical partition function.

The analysis of a diagram component is carried out in complete analogy to the
special case of T = 0 .

The vertices are denoted by times τi , whose indices increase in going from left to
right (see Fig. 6.1). Every vertex is associated with a factor v(kl; nm). The factors
1 / 2 cancel out in the overall expression with the term 2n in Eq. (6.63).

∧= a+ki
(
τi
)
anj
(
τj
) = εG

0,M
ki

(
τj − τi

)
δkinj , (6.69)

∧= ani
(
τi
)
a+kj
(
τj
) = −G0,M

ni

(
τi − τj

)
δnikj . (6.70)

When the times are equal, (τi = τj = τ ), we assume the convention as in the case of
T = 0 that the time-ordering operator should move the creation operator to the left:

a+k (τ ) ak(τ )
!=< Tτ

(
a+k (τ )ak

(
τ − 0+

))
>(0)=

= −εG0,M
k

(− 0+
) =

= ε ak(τ ) a
+
k (τ ) .

(6.71)

With Eq. (6.44), this means that:

a+k (τ ) ak(τ ) =< nk >
(0) . (6.72)

We are thereby in a position to formulate the diagram rules for the grand canonical
partition function �/�0:

All the connected diagrams with pairwise differing structures are sought and the
contribution of the diagrams of n-th order (n vertices, 2n propagators) is computed
as follows (Fig. 6.2):

1. Vertex ⇐⇒ v(kl; nm).
2. Propagating line ⇐⇒ −G0,M

kν
(τν − τμ)δkν,kμ (from τμ to τν).
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Fig. 6.2 Vertex annotation
for the transition from the
time-dependent to the
energy-dependent Matsubara
functions

3. Non-propagating line (equal times) ⇐⇒ −G0,M
kν

(−0+)δkνkμ .
4. Summation over all the . . . , ki , li , mi, ni, . . .

5. Integration over all the τ1, . . . , τn from 0 to h̄β.
6. Factor:

(− 1
h̄

)n εs

h(�)
; S = number of loops.

The loop rule, which in rule 6 leads to the factor εs , is proved as in the T = 0 case;
cf. Eq. (5.100).

The time dependence of the free single-particle Matsubara function G0,M
k (τ ) is,

according to Eq. (6.44), somewhat clumsy. The required distinction between τ ≷ 0
makes the evaluation of the Feynman diagrams relatively complicated. The energy-
dependent function has, in contrast, a considerably simpler structure Eq. (6.46).
From Eq. (6.15) we see that:

G
0,M
k

(
τ2 − τ1

) = 1

h̄β

∑

n

exp

(
− i

h̄
En
(
τ2 − τ1

))
G

0,M
k

(
En
)
. (6.73)

In the diagrams, we adopt the following assignment:

Every line which emerges from a vertex point yields an additional factor

exp
( i
h̄
Enτ1

)

√
h̄β

.

The corresponding line which enters at τ2 contributes the factor

exp
(− i

h̄
Enτ2

)
/
√
h̄β .
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The time dependencies are concentrated exclusively in these exponential functions.
The vertex at τ then contains the factors sketched, with which one can readily carry
out the integrations over time:

1

(h̄β)2

h̄β∫

0

dτ exp

(
i

h̄

(
Ek + El − Em − En

)
τ

)
=

= 1

(h̄β)2

exp
[ i
h̄

(
Ek + El − Em − En

)
τ
]

i
h̄

(
Ek + El − Em − En

)
∣∣∣∣

h̄β

0
=

= 1

h̄β

{
0 , when

(
Ek + El

) �= (Em + En
)
,

1 , when
(
Ek + El

) = (Em + En
)
.

The combination (Ek+El−Em−En) is, from Eq. (6.17), an even-integer multiple
of π / β for both fermions and bosons. The integrations over time thus lead to energy
conservation at the vertex. We can now reformulate the

diagram rules for the grand canonical partition function �/�0:All the con-
nected diagrams with pairwise differing structures are sought and the contribution
of the diagrams of n-th order (n vertices, 2n propagators) is computed according to
the following prescriptions:

1. Vertex ⇐⇒ v(kl; nm) 1
h̄β
δEk+El,Em+En .

2. Solid line (propagating or non-propagating):

−G0,M
k

(
Enk
) = −h̄

iEnk −
(
ε(k)− μ

) .

3. In addition, for non-propagating lines:

exp

(
i

h̄
Enk0

+
)
.

4. Summations over all . . . , ki , li , mi, ni, . . . and over all Eni .
5. Factor:

(− 1
h̄

)n εs

h(�)
; S = number of loops.

The convergence-inducing factor for non-propagating lines in rule 3 can be read
directly off from Eq. (6.73). It follows from our convention of taking the limit

τ2 −→ τ1 − 0+

for equal times. This, however, means that we must also associate a factor 3
with a solid line which begins and ends at the same vertex, in addition to the
contribution (2).
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Fig. 6.3 Integration paths in the complex energy plane for carrying out the summations over the
Matsubara energies

The summations over wavenumbers which are required by rule 4 will practically
always be replaced by the corresponding integrations on going to the thermody-
namic limit:

∑

k

�⇒ V

(2π)3

∫
d3k . (6.74)

The summations over the Matsubara energies En, for which Eq. (6.17) holds, are
a new feature. These summations can also be converted to integrations. Let F =
F(iEn) be some function of these En; then we have:

1

h̄β

+∞∑

n=−∞
F(iEn) = −1

2π ih̄

∫

C

dE′
F
(
E′
)

1− εeβE′
. (6.75)

C refers to the path in the complex E′-plane which is sketched in Fig. 6.3. – If
the function F(E′) vanishes at infinity more rapidly than 1 /E′, then we may later
replace C by the contour C′.

For the proof of Eq. (6.75), we rearrange the right-hand side as follows:

I = −1

2π ih̄

∑

n

∫

Cn

dE′
F
(
E′
)

E′ − iEn
f
(
E′
)
.

Here, we expect that

f
(
E′
) = E′ − iEn

1− εeβE′

holds. f
(
E′
)

remains finite for E′ = iEn:
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f
(
E′ = iEn

) = lim
E′ → iEn

d
dE′
(
E′ − iEn

)

d
dE′
(
1− εeβE′

) =

= lim
E′ → iEn

1

−εβeβE′
= − 1

β
.

The integrand of I thus has a first-order pole at E′ = iEn with the residual
− 1
β
F (iEn). According to the residual theorem, it then follows for I that:

I = 1

h̄β

∑

n

F
(
iEn
)
.

This proves the assertion Eq. (6.75).
In the next section, we will practice the application of the diagram rules on some

specific examples.

6.2.3 Ring Diagrams

As demonstrated in Sect. 5.5 for the ground-state energy of the jellium model,
likewise in the case of the grand canonical partition function �, the ring diagrams
play a decisive role. They can be summed exactly. We shall demonstrate this again
for the jellium model, i.e. for a system of fermions. As an example, let us consider
a third-order ring diagram:

The conservation of energy and momentum have already been taken into account in
the notation of the diagram. The Eν’s are, by construction, Fermi quanta,

Eν =
(
2nν + 1

)π
β
;
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as a result, the energy transfer E0 must be a Bose quantum:

E0 = 2n0
π

β
.

Due to conservation of spin at the vertex, we must still take three independent
summations over spins into account. The term I3 is then found to contribute:

I3 = 23
(
− 1

h̄

)3
(−1)3

h(�3)

︸ ︷︷ ︸
(5)

V 4

(2π)12

∫
· · ·
∫

d3q d3k1 d3k2 d3k3

∑

E0E1E2E3︸ ︷︷ ︸
(4)

·

· 1

(h̄β)3
v3(q)

︸ ︷︷ ︸
(1)

3∏

ν=1

( −h̄
iEν − ε

(
kν
)+ μ

−h̄
i
(
Eν + E0

)− ε
(
kν + q

)+ μ

)

︸ ︷︷ ︸
(2)

.

We factor out the term

#̃q
(
k;E0

) = 1

h̄β

∑

En

−h̄
iEn − ε(k)+ μ

−h̄
i
(
En + E0

)− ε(k+ q)+ μ
(6.76)

and use the following definition:

h̄#(0)
q (E0) = 2

V

(2π)3

∫
d3k #̃q

(
k;E0

)
. (6.77)

This corresponds to the lowest-order approximation Eq. (5.182) of the polarisation
propagator. The factor 2 results from the spin degeneracy. We can then write the
diagram contribution I3 as follows (Fig. 6.4):

I3 = 1

h
(
�3
)

V

(2π)3

∫
d3q

∑

E0

(
v(q)#(0)

q
(
E0
))3

. (6.78)

This can be extended to an arbitrary order n of the ring diagram. For the number
h(�n) of topologically equivalent ring diagrams, one finds

h
(
�n

) = 2n . (6.79)

Fig. 6.4 A first-order
diagram in the ring-diagram
approximation for the grand
canonical partition function
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Topologically equivalent diagrams are obtained e.g. by cyclic permutations of
the vertices. This gives n different possibilities. Permutation of above and below
simultaneously at the vertices yields once more a factor of 2. For the contribution of
n-th order, we thus have:

In = 1

2

V

(2π)3

∫
d3q

∑

E0

1

n

(
v(q)#(0)

q
(
E0
))n

, n ≥ 2 . (6.80)

The contribution from n = 1 has been left out. This is an equal-time diagram, which
according to rule 3 receives an additional factor exp

( i
h̄
E00+

)
. We shall see that

without this factor, the n = 1 contribution to the grand-canonical partition function
would be divergent. Since, on the other hand, it causes no disturbance in the n ≥ 2
terms, we include it in Eq. (6.80) generally for all n:

∞∑

n= 1

In = 1

2

V

(2π)3

∫
d3q

∑

E0

[ ∞∑

n= 1

1

n

(
v(q)#(0)

q (E0) exp

(
i

h̄
E00+

))n]
.

With

ln(1− x) = −
∞∑

n= 1

xn

n
,

the ring-diagram approximation for the grand canonical partition function can then
be written as follows, also taking into account the fact that the n = 0 term
contributes just 1:

(
�

�0

)

ring
= 1− 1

2

V

(2π)3

∫
d3q

∑

E0

ln
(
1− v(q)#(0)

q (E0)
)
. (6.81)

We have not written the convergence-inducing factor explicitly; we merely add it in
as needed.

Finally, #(0)
q (E0) still remains to be evaluated. To this end, we first compute

#̃q(k;E0) using Eq. (6.76). With Eq. (6.75), we find:

#̃q
(
k;E0

) = −1

2π ih̄

∫

C

dE′

1+ eβE′
h̄2

(
E′ − ε(k)+ μ

)(
E′ + iE0 − ε(k+ q)+ μ

) .

The fraction on the right vanishes as 1 /E′2 at infinity. We can thus replace the path
C by C′ (cf. Fig. 6.3). Two first-order poles lie within the region bounded by C′;
they are each traversed mathematically in a negative direction. With the residual
theorem, it then follows that:
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#̃q(k;E0) = h̄
(
1+ eβ(ε(k)−μ)

)(
ε(k)− ε(k+ q)+ iE0

)+

+ h̄

(1+ eβ(ε(k+q)−μ)e−iβE0)(ε(k+ q)− ε(k)− iE0)
.

E0 is a bosonic quantum, and therefore eiβE0 = +1. We still have:

#̃q(k;E0) = h̄
< nk >

(0) − < nk+q >
(0)

ε(k)− ε(k+ q)+ iE0
. (6.82)

The result

#(0)
q (E0) = 2V

(2π)3

∫
d3k

< nk >
(0) − < nk+q >

(0)

ε(k)− ε(k+ q)+ iE0
(6.83)

can be compared to Eq. (5.192).
If we insert this result into Eq. (6.81), then we can again convert the summation

over the Matsubara frequencies E0 into an integration using (6.75). In the series
expansion for the logarithm, the n = 1 term would then give rise to difficulties
without the convergence-inducing factor exp

( i
h̄
E00+

)
, since #(0)

q behaves only as
1 /E0 at infinity. With this factor, two cases can be distinguished:

1. |E| → ∞ with ReE > 0:
The overall integrand behaves asymptotically as

exp

( 1
h̄

ReE 0+
)

exp(βE)|E| ∼
1

|E| exp

(
− (βh̄− 0+

)ReE

h̄

)
.

Since βh̄ > 0+ > 0, the preconditions for Jordan’s lemma are met. We can thus
replace the contour C by C′.

2. |E| → ∞ with ReE < 0:
The integrand now behaves asymptotically as

exp
( 1
h̄

ReE 0+
)

1

1

|E|
and thus likewise meets the preconditions.

6.2.4 Single-Particle Matsubara Functions

We have already carried out the most important preparations for the diagrammatic
analysis of the single-particle Matsubara function in Sect. 6.1.3. The following
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Fig. 6.5 The general
structure of an open diagram
for the single-particle
Matsubara function

considerations are based on Eq. (6.49) and run generally parallel to those in
Sect. 5.3.3. The diagrams which contribute to the numerator of the perturbation
expansion multiplied by 1 /�0 in Eq. (6.49) are all open. They contain two extended
outer lines, of which one begins at τ2 and the other enters at τ1. If a diagram
component is attached to one of these two outer connections, then necessarily it
is also attached to the other. This is required by particle number conservation. An
equal number of creators and of annihilators contributes to each combination of
contractions (Fig. 6.5).

Every open diagram of this form consists of an open, connected diagram
plus combinations of closed, connected diagrams from the expansion for �. One
therefore obtains all the diagrams if one adds to each open, connected diagram D0
with two outer attachments all the possible �/�0 diagrams. The latter contribute,
as seen from Eq. (6.68), the factor

exp

{ conn∑

ν

U
(
�ν

)}
.

The overall contribution of all diagrams in the perturbation expansion to the
numerator multiplied by 1 /�0 in Eq. (6.49) is then:

{∑

D0

U(D0)

}
exp

{ conn∑

ν

U
(
�ν

)}
.

The last factor just cancels out with the denominator multiplied by 1 /�0 in
Eq. (6.49), so that for the Matsubara function, we have:

GM
k

(
τ1, τ2

) = − < Tτ
(
U(h̄β, 0)ak

(
τ1
)
a+k
(
τ2
))
>
(0)
conn
open

. (6.84)

The diagram rules for the time-dependent function can be derived directly from
those for the grand canonical partition function which we formulated following
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Eq. (6.72), whereby the sums and integrations are to be limited merely to inner
variables.

We therefore go immediately to the time-dependent function. Initially, one
readily sees that every connected diagram with two outer lines has no topologically
equivalent diagram of the same structure:

h
(
�n

) = 1 ∀n . (6.85)

We can take over practically all the rules from Sect. 6.2.2; only the outer lines require
a certain special treatment.

Owing to energy conservation at each vertex, the two outer lines carry the same
energy En:
Left:

−G
0,M
k

(
τ1 − τi

) =

=
∑

n

( 1√
h̄β

exp
(− i

h̄
Enτ1

))

︸ ︷︷ ︸
(1)

(−G
0,M
k

(
En
))

︸ ︷︷ ︸
(2)

( 1√
h̄β

exp
(1

h̄
Enτi

))

︸ ︷︷ ︸
(3)

.

The contribution (3) is associated to the vertex and guarantees that energy is
conserved. (2) is taken over by the solid outer line. (1) is required for the entire
Fourier decomposition.
Right:

−G
0,M
k

(
τj − τ2

) =

=
∑

n

( 1√
h̄β

exp
(− i

h̄
Enτj

))

︸ ︷︷ ︸
(1)

(−G
0,M
k

(
En
))

︸ ︷︷ ︸
(2)

( 1√
h̄β

exp
(1

h̄
Enτ2

))

︸ ︷︷ ︸
(3)

.

(1) goes into the vertex, (2) is associated with the outer line, and (3) appears in the
Fourier decomposition.
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If the inner lines all together make the contribution I , then it follows that:

−GM
k

(
τ1 − τ2

) = 1

h̄β

∑

n

I
(−G

0,M
k

(
En
))2 exp

(− i

h̄
En
(
τ1 − τ2

))
, (6.86)

−GM
k

(
En
) = I

(
G

0,M
k

(
En
))2

. (6.87)

with this, we now have the
Diagram rules for −GM

k

(
En
)
.

All the connected diagrams with pairwise differing structures and two outer lines
are sought. A diagram of n-th order (n vertices, 2n extended lines, of which 2 are
outer lines) is evaluated according to the following prescription:

1. Vertex: v(kl; nm) 1
h̄β
δEk+El,Em+En .

2. Extended (propagating and non-propagating) lines:

−G0,M
ki

= −h̄
iEnki − ε

(
ki
)+ μ

.

3. An additional factor for non-propagating lines

exp

(
i

h̄
Enk0

+
)
.

4. Summation over all the inner ki , li and all the inner Matsubara energies.
5. Extended outer lines: G0,M

k

(
En
)
.

6. Factor:
(− 1

h̄

)n
εs ; S = number of loops.

To conclude, we wish to calculate diagrammatically the single-particle Matsubara
function in first-order perturbation theory for the system of an

interacting electron gas (ε = −1)

as an example of an application. Our starting point is the Hamiltonian

H =
∑

kσ

ε(k) a+kσ akσ + 1

2

∑

kpq
σσ ′

v(q) a+k+qσ a
+
p−qσ ′apσ ′akσ , (6.88)

which is structurally identical to that of the jellium model (Eq. (2.63)), however
without the constraint q �= 0. The matrix elements ε(k) and ν(q) indeed have the
same physical significance. Here, in any case, we are more interested in showing a
first application of the diagram rules developed in this section, and less so in specific
physical applications.

A comparison of Eq. (6.88) with the general approach (6.22), (6.23) and (6.24),
yields the following mappings:
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• ••

•
^ ^ ^ ^ ^ ^ ^

^

+ +k, , n k, , n k, , n k, , n k, , nk, , n

l, ,’ l

l, , l

q=0
q l k

Fig. 6.6 A single-particle Matsubara function of the interacting electron gas in first-order
perturbation theory

k = (k, σk)→ (k+ q, σ )

l = (l, σl)→ (p− q, σ ′)

m = (m, σm)→ (p, σ ′)

n = (n, σn)→ (k, σ ) .

Furthermore, momentum is conserved at the vertex, and spin is conserved at every
vertex point:

v(kl; nm)→ v(q = k− n) δk+l,m+n δσkσnδσmσl .

This has already been taken into account in the notation of the diagrams in Fig. 6.6
which contribute to first-order perturbation theory for a single-particle Matsubara
function. For the evaluation, we make use of the diagram rules given above. Those
rules prescribe the following contribution:

−G(1)
kσ (En) = −G(0)

kσ (En)+
1

h̄2β

∑

lσ ′El
v(0)

(
−G(0)

lσ ′ (El) exp

(
i

h̄
El · 0+

))

(
−G(0)

kσ (En)
)2

− 1

h̄2β

∑

lEl

v(l− k)
(
−G(0)

lσ ′ (El)exp

(
i

h̄
El · 0+

))(
−G(0)

kσ (En)
)2

.

This can be compressed as follows:

G
(1)
kσ (En) = G

(0)
kσ (En)+G

(0)
kσ (En)

1

h̄
!
(1)
kσ (En)G

(0)
kσ (En)

Here, we have used the definitions:
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!
(1)
kσ (En) =

1

h̄β

∑

lσ ′El

(
v(0)− v(l − k)δσσ ′

)
G
(0)
lσ ′ (El) exp

(
i

h̄
El · 0+

)

=
∑

lσ ′

(
v(0)− v(l − k)δσσ ′

)
〈nlσ ′ 〉(0) ≡ !

(1)
kσ (6.89)

In the last step, we have employed Eq. (6.44) (see also Exercises 6.1.2 and 6.2.5).
Note that the ‘free’ Matsubara function is of course actually spin independent. The
corresponding summations can therefore be carried out in a trivial manner.

The result looks like the first iteration step of a Dyson equation, as in Eq. (3.327)
or (5.124). Then, one would have to interpret !(1)

kσ as an (energy-independent) self-
energy in first order perturbation theory. In particular, it appears that also the T �= 0
Matsubara formalism also permits the definition of a self-energy, which should not
be surprising, since the T = 0 and T �= 0 diagrams are structurally identical. All
the Dyson equations in Chap. 5 can be taken over more or less directly. The T �= 0
self-energy will be investigated and discussed in detail in the following sections.

The T �= 0 Matsubara formalism does not at any point require the hypothesis
of an adiabatic switching-on, which is afflicted with a degree of uncertainty. The
Gell-Mann–Low theorem guarantees only that the adiabatically switched-on state
be an eigenstate of the full Hamiltonian. It need not, starting from the ground state
of the free system, necessarily yield the ground state of the interacting system
after switching on the interactions. This will, to be sure, as a rule be the case,
but one can also land in an excited state. The limit of T → 0 in the Matsubara
formalism, in contrast, yields the ground state in all cases (W. Kohn, J. M. Luttinger:
Phys. Rev. series 118, 41 (1960)).

6.2.5 The Dyson Equation and Skeleton Diagrams

The concept of conventional perturbation theory is certainly not always reasonable;
it is at times in fact even useless, if for example the interaction is not actually
weak, or when divergences occur in certain perturbation terms. In such cases,
the computation of infinite partial sums can be much more promising. This is
naturally just as feasible at finite temperatures as in the case of T = 0, as we have
already discussed extensively. Thus, a Dyson equation can be written as described
in detail in Sect. 5.4.2. The “self-energy part” is also now defined as a part of a
single-particle Matsubara diagram, which is connected to the rest of the diagram by
two propagating lines. The examples following the Definition 5.4.1 can be directly
applied. This also holds for the Definition 5.4.2 of the “irreducible self-energy
part” as a self energy which cannot be decomposed into two independent self-
energy contributions by splitting up a propagating line. Examples are to be found
following Definition 5.4.2. Thus, every such diagram can be represented as in
Fig. 6.7, except for the zeroth order. (a) is the “free” propagator −G0,M

k (En), (b)
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n n n

(a)
(b)

(c)

< < <

Fig. 6.7 The typical structure of a single-particle Matsubara diagram

Fig. 6.8 Diagrammatic
symbol for the self energy

•k n(E )

=< < <<+
Fig. 6.9 Diagrammatic Dyson equation

some irreducible self-energy contribution, and (c) some single-particle Matsubara
diagram of low order. One evidently obtains the contribution of all the diagrams by
summing in (b) over all the irreducible self-energy contributions and in (c) over
all the possible single-particle Matsubara diagrams. This leads to the following
Definition (Fig. 6.8):

Self energy !k(En)

≡ (−h̄)· sum of all irreducible self-energy contributions
We thus obtain a Dyson equation (Fig. 6.9):

−GM
k (En) = −G0,M

k (En)+
(
−G0,M

k (En)
)(
−1

h̄
!k(En)

)(
−GM

k (En)
)
,

(6.90)
which can be decomposed according to the single-particle Matsubara function:

GM
k (En) =

G
0,M
k (En)

1−G
0,M
k (En)

1
h̄
!k(En)

= h̄

iEn + μ− ε(k)−!k(En)
. (6.91)

After the replacement iEn → E + i0+, !k(E) gives exactly the self energy
which we have already introduced via the equation of motion method (3.325). Its
physical significance was discussed in detail in Sect. 3.4.2. It of course likewise
corresponds up to an unimportant factor to the T = 0 self energy from Sect. 5.4
(see Definition 5.4.3). Everything which was said there about typical self-energy
diagrams can be immediately applied here. In particular, the self-energy diagrams
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Fig. 6.10 Irreducible
self-energy contributions of
first order •

<

are now simpler as a rule, since they are more compact than the diagrams of the
single-particle Matsubara function. Now, indeed, only irreducible diagrams occur.
Here, in connection with the Matsubara formalism, we want especially to take
up once again the concept of the formation of “partial sums”. Even a simple
approximation for the self energy involves the summation of an infinite partial series
for the single-particle function GM

k (En).

Let us consider briefly the two irreducible self-energy contributions in Fig. 6.10.
From them, additional self-energy diagrams can be obtained by inserting further
self-energy contributions into the existing propagators. Thus, for example, the
diagrams in Fig. 6.11 are obtained from the right-hand diagram in Fig. 6.10. One
can encompass these diagrams, as well as an infinite number of others, by replacing
the free propagator in the right-hand diagram from Fig. 6.10 by the full propagator
(Fig. 6.12). This is termed a “renormalisation” of the single-particle propagator.
Another example of such a renormalisation is shown in Fig. 6.13.
Renormalisation generates infinitely many diagrams. One must, however, take pains
to avoid that such a renormalisation of propagators in the self energy does not lead
to double counting of diagrams. Thus, the two renormalised diagrams in Fig. 6.14
should not both be counted, since one can discern that the contributions which
follow from the left-hand diagram are all completely contained within the right-
hand diagram. This indeed already holds for the two renormalised propagators in
Fig. 6.15. All single-particle diagrams which belong to the left-hand propagator are
also obtained from the right-hand propagator. The left-hand renormalised diagram
of second order in Fig. 6.14 thus should not be counted. It is a characteristic of
the associated non-renormalised diagram that a self-energy contribution can be
recognised in one of its propagators. This leads us to the

Definition Skeleton diagram ≡ a self-energy diagram which is constructed from
only (free) propagators which contain no self-energy contributions.

This can again best be demonstrated with the help of examples. The diagram in
Fig. 6.16 is evidently a ‘skeleton’, while the examples in Fig. 6.11 are clearly not,
since the (basis) propagator contains a complete self-energy contribution.

Definition A (‘dressed’) skeleton diagram ≡ a skeleton diagram in which the
‘free’ propagators are replaced by the ‘full’ propagators.
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Fig. 6.11 Examples of
irreducible self-energy
contributions

Fig. 6.12 Renormalisation of
a self-energy diagram

Fig. 6.13 Renormalisation of
a self-energy diagram

•

•

•

•

•

•
•
•

• •

>

•

•>

Fig. 6.14 An example of a renormalised self-energy diagram (left) whose terms are already
completely contained in another renormalised diagram (right)
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Fig. 6.15 A renormalised propagator (left) whose diagrams are already all contained in the single-
particle propagator (right)

Fig. 6.16 Example of a
skeleton diagram

Fig. 6.17 Skeleton diagrams of the self energy up to second order

Thus, however, we evidently find:

The self energy≡ the sum of all the dressed skeleton diagrams.

Figure 6.17 shows the representation of the self energy via skeleton diagrams up
to second order, whereby the ‘order of a skeleton diagram’ is defined here as the
number of explicitly-appearing interaction lines. One can convince oneself that
all of the self-energy diagrams up to second order are contained in the approach
shown in Fig. 6.17, and, through renormalisation, infinitely many more of arbitrary
order. Here, the ‘dressed’ propagator must be determined according to Eq. (6.91)
or Fig. 6.9 ‘self consistently’. The explicit computation is carried out as a rule by
iteration. One therefore speaks of a ‘self-consistent renormalisation’.

In the next section, we give a first evaluation.
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Fig. 6.18 Skeleton diagrams in the Hartree-Fock approximation

6.2.6 The Hartree-Fock Approximation

We discuss the simplest application of the formalism developed above, which indeed
is often applied in modern calculations. The “Hartree-Fock approximation” consists
in limiting the computation of the self energy to the n = 1 skeleton diagrams
(Fig. 6.18). The evaluation is carried out using the diagram rules which are set out
following Eq. (6.87).

1. Hartree term
Energy conservation at the vertex is directly fulfilled:

− 1

h̄
!
(H)
k (E) = −1

h̄
ε
∑

l,E′

(
−GM

l (E
′) e

i
h̄
E′0+

) 1

h̄β
v(kl; kl) . (6.92)

Now we have:

1

h̄β

∑

E′
GM
l (E

′) e
i
h̄
E′0+ = Gl(τ = −0+) = −

〈
Tτ

(
al(−0+) a†

l (0)
)〉

= −ε 〈a+l (0) al(−0+)
〉 = −ε 〈nl〉 . (6.93)

This leads to the result:

!
(H)
k (E) ≡ !

(H)
k =

∑

l

v(kl; kl) 〈nl〉 . (6.94)

The expectation value of the occupation-number operator is to be computed here
self consistently in the “full” system.

2. Fock term

− 1

h̄
!
(F)
k (E) = −1

h̄

∑

l,E′

(
−GM

l (E
′) e

i
h̄
E′0+

) 1

h̄β
v(lk; kl) . (6.95)

The E′ summation is carried out as above. We then find immediately:

!
(F)
k (E) ≡ !

(F)
k = ε

∑

l

v(lk; kl) 〈nl〉 . (6.96)
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All together, we thus find for the Hartree-Fock self energy:

!
(HF)
k (E) ≡ !

(HF)
k =

∑

l

(v(kl; kl)+ ε v(lk; kl)) 〈nl〉 . (6.97)

This result is evidently energy-independent and real.
As already mentioned, this solution is not yet complete, since 〈nl〉 must still be

self-consistently determined. That can be done by using the spectral theorem (6.18):

〈nl〉=
〈
a+l (0) al(−0+)

〉=−ε GM
l (τ = −0+) = 1

h̄

∫ +∞

−∞
dE

Sl(E)

eβE − ε
+1

2
(1+ε)D .

(6.98)
where the (‘normal’) spectral density according to (6.21) can be calculated as
follows from the Green’s function:

Sl(E) = − 1

π
ImGM

l

(
iEn → E + i0+

)
. (6.99)

The quantity D was treated in detail in Sect. 3.2.3. It will play no role in later appli-
cations, since they will deal with ‘fermionic’ systems for which the anticommutator
Green’s functions are employed. When using commutator functions, as usual for
‘bosonic’ systems, a value of D �= 0 may not be excluded from the beginning.

The ‘complete’ solution will be found by iteration. We start with an initial value
for 〈nl〉, thus fixing the Hartree-Fock self energy !(HF)

k via (6.97), and calculate
the Green’s function or the spectral density with (6.91). The spectral theorem (6.98)
then leads to a new value for 〈nl〉.

Before we show the calculation of some concrete examples, we further develop
the approximation of the self energy using skeleton diagrams by adding a non-trivial
step.

6.2.7 Second-Order “Perturbation Theory”

We now must evaluate the “dressed” skeleton diagrams shown in Fig. 6.19. In this
process, we must keep in mind that among all the actual self-energy diagrams of
second order, some are already contained in the n = 1 skeleton diagrams. We
initially want to evaluate the two diagrams separately.

1. Direct term:
The diagram rules lead to the following expression:

−1

h̄
!
(d)
k (E) =

(
−1

h̄

)2 ∑

E1,E2,E3

∑

n1,m2,l3

ε

(h̄β)2

· v(km2; n1l3) v(n1l3; km2)δE+E2,E1+E3δE1+E3,E+E2
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Fig. 6.19 Skeleton diagrams of second order

·
(
−GM

n1
(E1)

) (
−GM

m2
(E2)

) (
−GM

l3
(E3)

)

= −ε
h̄2

∑

lmn

1

(h̄β)2

∑

E1,E2

v(km; nl)v(nl; km) ·

· GM
n (E1)G

M
m (E2)G

M
l (E + E2 − E1) .

We define:

Inml(E) = 1

(h̄β)2

∑

E1,E2

GM
n (E1)G

M
m (E2)G

M
l (E + E2 − E1) . (6.100)

We then find

!
(d)
k (E) = ε

h̄

∑

lmn

v(km; nl) v(nl; km) Inml(E) . (6.101)

The two Coulomb matrix elements are of course identical.
2. Exchange term:

In this case (Fig. 6.19), the diagram rules give:

−1

h̄
!
(ex)
k (E) =

(
−1

h̄

)2 ∑

E1,E2,E3

∑

n1,m2,l3

1

(h̄β)2

· v(m2k; n1l3) v(n1l3; km2)δE+E2,E1+E3δE1+E3,E+E2

·
(
−GM

n1
(E1)

) (
−GM

m2
(E2)

) (
−GM

l3
(E3)

)

= −1

h̄2

∑

lmn

v(mk; nl)v(nl; km) ·
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· 1

(h̄β)2

∑

E1,E2

GM
n (E1)G

M
m (E2)G

M
l (E + E2 − E1) .

Then we have to evaluate

!
(ex)
k (E) = 1

h̄

∑

lmn

v(mk; nl) v(nl; km) Inml(E) . (6.102)

The skeleton diagrams can thus be combined as follows:

!
(2)
k (E) = !

(d)
k (E)+!

(ex)
k (E) (6.103)

= 1

h̄

∑

lmn

(v(mk; nl)+ εv(km; nl)) v(nl; km) Inml(E) .

We thus finally have to determine “merely” Inml(E). To this end, we make use of
the spectral representation (6.20) of the Matsubara function:

GM
m (E) =

∫ +∞

−∞
dE′ Sm(E

′)
iE − E′

.

E is a Matsubara energy here. Then we have:

Inml(E) =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
dxdydz Sn(x)Sm(y)Sl(z) FE(x, y, z) (6.104)

with the condition:

FE(x, y, z) = 1

(h̄β)2

∑

E1,E2

1

iE1 − x

1

iE2 − y

1

i(E + E2 − E1)− z
. (6.105)

The two Matsubara summations are carried out in Exercise 6.2.4, with the result:

FE(x, y, z) = 1

h̄2

1

iE − x + y − z
· (−fε(z)fε(x)+ fε(y)fε(x)− fε(y)fε(−z)) .

(6.106)
Here, fε is the Fermi-Dirac or the Bose-Einstein function for μ = 0:

fε(x) = 1

eβx − ε
. (6.107)

For these, we evidently find:

fε(x)+ fε(−x) = 1

eβx − ε
+ 1

e−βx − ε
= 1

eβx − ε
− εeβx

−ε + eβx
= −ε .

We can thus rearrange Eq. (6.106) to some extent:
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−fε(z)fε(x)+ fε(y)fε(x)− fε(y)fε(−z) =
= (−ε)

(
− fε(z)fε(x){fε(y)+ fε(−y)} + fε(y)fε(x){fε(z)+ fε(−z)}

− fε(y)fε(−z){fε(x)+ fε(−x)}
)

= (−ε)
(
− fε(z)fε(x)fε(y)− fε(z)fε(x)fε(−y)+ fε(y)fε(x)fε(z)

+ fε(y)fε(x)fε(−z)− fε(y)fε(−z)fε(x)− fε(y)fε(−z)fε(−x)
)

= ε
(
fε(x)fε(−y)fε(z)+ fε(−x)fε(y)fε(−z)

)
.

Thus, we finally obtain

Inml(E) = ε

h̄2

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
dxdydz

Sn(x)Sm(y)Sl(z)

iE − x + y − z
·

·
(
fε(x)fε(−y)fε(z)+ fε(−x)fε(y)fε(−z)

)
. (6.108)

With (6.103), the contribution of the n = 2 skeleton diagrams is thus completely
determined. Note, however, that the single-particle spectral densities in Inml(E)

must be computed self-consistently by using (6.91) and (6.99). A further evaluation
of the theory now requires a concrete specification of the model system. That is
carried out in terms of examples in the following two sections, making use of two
fermionic models.

6.2.8 The Hubbard Model

This model was already introduced in Sect. 2.1.3 and was discussed in detail in
Sect. 4.1. Today, it is the standard model for describing highly-correlated elec-
trons within solids and thus serves to elucidate phenomena such as for example
magnetism, superconductivity and the metal-insulator (Mott) transition. It treats
conduction electrons in a nondegenerate energy band (s band) with only intra-
atomic Coulomb interactions. In the Wannier representation, this means, according
to Eq. (2.117),

H =
∑

ijσ

Tij a
†
iσ ajσ +

1

2
U
∑

iσ

niσ ni−σ . (6.109)

Using Eqs. (2.36) through (2.41) as well as (2.116), the significance of the Wannier
operators and matrix elements is clear. For our purposes here, however, the “Bloch
representation” is preferable. The corresponding transformation of the Hamiltonian
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was carried out in Exercise 4.1.1:

H =
∑

kσ

ε(k)a†
kσ akσ + U

2N

∑

kpqσ

a
†
k+qσ a

†
p−q−σ ap−σ akσ . (6.110)

A comparison of the interaction term with the general representation (6.24) yields,
along with the assignment

k→ (k, σk) ; l→ (l, σl) ; m→ (m, σm) ; n→ (n, σn) , (6.111)

the following expression for the interaction matrix element:

vH (kl; nm) = U

N
δk+l,m+n δσkσn δσlσm δσk−σl . (6.112)

One immediately discerns that owing to the special spin relations in the Hubbard
model, which require that operators at “lower” and at “upper” vertex points must
have oppositely-directed spins, the Fock term from first-order diagrams (Fig. 6.18)
vanishes:

vH (lk; kl) ∝ δσlσk δσkσl δσl−σk � vH (lk; kl) = 0 .

The Hartree term, in contrast, makes a contribution:

vH (kl; kl) = U

N
δσk−σl . (6.113)

In first-order perturbation theory (Hartree-Fock approximation), we thus find for the
Hubbard model a wavenumber- and energy-independent self energy (σk → σ):

!
(HF)
kσ (Hubbard) ≡ !(HF)

σ = U

N

∑

l

〈nl−σ 〉 = U

N
N−σ = U 〈n−σ 〉 . (6.114)

〈n−σ 〉 is the average number of −σ electrons per lattice site, which, as already
mentioned, must be determined self-consistently.

The second order in the diagram expansion is naturally considerably more
complicated. Its evaluation has however already been carried out for the most
part with (6.103) and (6.108). Initially, we discover that the exchange diagram
in Fig. 6.19 gives no contribution in first order, for the same reasons as the Fock
diagram:

vH (mk; nl) vH (nl; km) = U2

N2 δ
2
m+k,n+l δσmσn δσkσl δσm−σk δσnσk δσlσm δσn−σl

= 0 .
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For the direct term in Fig. 6.19, in contrast, we require

vH (km; nl) vH (nl; km) = v2
H (km; nl) =

U2

N2 δ
2
m+k,n+l δ

2
σkσn

δ2
σmσl

δ2
σk−σm .

(6.115)
We insert this into (6.103) and (6.108) and thus obtain the overall self energy in the
Hubbard model up to second order in the skeleton diagrams (σk → σ ):

!
(Hubbard)
kσ (E) = U 〈n−σ 〉 +

+ U2

h̄3

1

N2

∑

lmn

δm+k,n+l

∫ +∞

−∞
dx

∫ +∞

−∞
dy

∫ +∞

−∞
dz ·

· Snσ (x) Sm−σ (y) Sl−σ (z)
iE − x + y − z

· (6.116)

·
(
f−(x)f−(−y)f−(z)+ f−(−x)f−(y)f−(−z)

)

+ O(U3) .

The self energy is nonlocal, energy dependent and in general complex. It becomes
exact for U → 0+. The retarded self energy is found from (6.116) immediately by
making the replacement iE → E + i0+. The explicit, self-consistent evaluation,
however, demands a considerable numerical effort, in which the summation over
wavenumbers, in particular, can cause problems.

6.2.9 The Jellium Model

This model was introduced in Sect. 2.1.2. It describes weakly-correlated electrons in
the broad energy bands of the so-called “simple metals”, which have high electrical
conductivities. It treats the ionic charges as though they were homogeneously spread
out as a background, and thus neglects the crystal structure of the solid. The model
Hamiltonian was derived as Eq. (2.63):

H =
∑

kσ

ε(k)a†
kσ akσ + 1

2

q �=0∑

kpqσσ ′
v(q) a†

k+qσ a
†
p−qσ ′ apσ ′ akσ , (6.117)

with

ε(k) = h̄2k2

2m
; v(q) = e2

ε0V q2
. (6.118)
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Comparison of the interaction term with the general formulation (6.24) in this case
yields the assignment:

vJ (kl; nm) = v(k− n) δk+l,m+n(1− δkn) δσkσn δσlσm . (6.119)

Since a momentum transfer q = 0 is “forbidden”, the Hartree term from the Hartree-
Fock diagrams in Fig. 6.18 makes no contribution (vJ (kl; kl) ≡ 0). Among the
n = 1 skeleton diagrams, thus only the Fock part need be evaluated:

vJ (lk; kl) = v(l− k)(1− δk,l) δ
2
σlσk

. (6.120)

Setting σk = σ , we find (6.97) as the first-order contribution to the self energy of
the Jellium model:

!
(HF)
kσ (Jellium) = −

l �=k∑

l

v(l− k) 〈nlσ 〉 . (6.121)

It does not depend on the energy, but is indeed wavenumber dependent.
The skeleton diagrams of second order in Fig. 6.19 both contribute for the jellium

model, in contrast to the case of the Hubbard model. With (6.119), we find the
combination of Coulomb matrix elements in (6.103):

v(km; nl) v(nl; km) = v2(km; nl)
= v2(k− n) δ2

k+m,n+l (1− δkn)
2 δ2

σkσn
δ2
σmσl

= v2(k− n) δk+m,n+l (1− δkn) δσkσn δσmσl (6.122)

v(mk; nl) v(nl; km) = v(m− n) v(n− k) (1− δmn) (1− δnk) ·
· δ2

k+m,n+l δσmσn δσkσl δσnσk δσlσm . (6.123)

Making use of (6.103) and (6.121), we have for the Jellium self energy up to second
order in the skeleton diagrams:

!
(Jellium)
kσ (E) = −

l �=k∑

l

v(l− k) 〈nlσ 〉 +

+ 1

h̄

∑

l,m,n,σ ′

(
v(m− n) v(n− k) (1− δmn) δσσ ′ − v2(k− n)

)
·

· (1− δkn) δk+m,n+l Inσ,mσ ′,lσ ′(E) . (6.124)
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Here, according to (6.108), we have:

Inσ,mσ ′,lσ ′(E) = −1

h̄2

∫ +∞

−∞
dx

∫ +∞

−∞
dy

∫ +∞

−∞
dz

Snσ (x)Smσ ′(y)Slσ ′(z)

iE − x + y − z
·

·
(
f−(x)f−(−y)f−(z)+ f−(−x)f−(y)f−(−z)

)
. (6.125)

We have thus found a closed system of equations for the single-particle Matsubara
function of the Jellium model also, using (6.91), (6.98) and (6.124); it can be solved
self consistently.

6.2.10 The Imaginary Part of the Self Energy in the
Low-Energy Region

The skeleton diagrams for the self energy can be further analysed to some extent.
Thus, one can find important information about the imaginary part, which for one
thing can be valuable in a pragmatic way to test the unavoidable approximations, and
for another can contribute to a deeper understanding of the quasi-particle picture in
many-body theory. If we decompose the self energy as in (3.328) into a real and an
imaginary part,

!k(E) = Rk(E)+ i Ik(E) ,

and denote the order of the skeleton diagram as n, then it holds (J.M. Luttinger,
Phys. Rev. 121, 942 (1961)) that:

T = 0 : I
(n)
k (E) ∝ E2n−2 for E→ 0 (n ≥ 2) . (6.126)

According to (6.97), the self energy for n = 1 is indeed real. We want to prove
the theorem for n = 2, that is for the contribution to the self energy resulting
from the skeleton diagrams of second order (6.103). Its energy dependence is
contained exclusively in the function Inml(E) (6.108). The Fermi-Dirac/Bose-
Einstein function can be simplified for T = 0 to:

f (T=0)
ε (x) =

{
0 for x > 0
−ε for x < 0

(6.127)

With a suitable substitution of variables, we find from this using (6.108)

Inml(E) = − ε2

h̄2

∫ ∞

0

∫ ∞

0

∫ ∞

0
dxdydz

(
Sn(−x)Sm(y)Sl(−z)
E + x + y + z+ i0+

+

+ Sn(x)Sm(−y)Sl(z)
E − x − y − z+ i0+

)
. (6.128)
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Here, the transition to a ‘retarded’ function has already been carried out. The
spectral density is real. With the Dirac identity (3.152), it then follows that

ImInml(E) = π

h̄2

∫ ∞

0

∫ ∞

0

∫ ∞

0
dxdydz

{
Sn(−x)Sm(y)Sl(−z) δ(E + x + y + z)+

+ Sn(x)Sm(−y)Sl(z) δ(E − x − y − z)
}
. (6.129)

The first summand is nonzero only for E ≤ 0, the second only for E ≥ 0, whereby
in addition, 0 ≤ x, y, z ≤ |E| must hold. The limits of integration can therefore be
set as follows:

∫ ∞

0

∫ ∞

0

∫ ∞

0
dxdydz · · · −→

∫ |E|

0

∫ |E|

0

∫ |E|

0
dxdydz · · ·

If we now also substitute

x → |E| x̂ ; y → |E| ŷ ; z→ |E| ẑ ,

this then gives the expressions

E > 0 : δ(E − x − y − z) = 1

E
δ(1− x̂ − ŷ − ẑ)

E < 0 : δ(E + x + y + z) = δ(|E| − x − y − z) = 1

|E|δ(1− x̂ − ŷ − ẑ) .

We are thus led to an intermediate result:

ImInml(E) = π

h̄2
|E|2

∫ 1

0

∫ 1

0

∫ 1

0
dx̂dŷdẑ δ(1− x̂ − ŷ − ẑ) · (6.130)

·
(
Sn(−|E |̂x)Sm(|E |̂y)Sl(−|E |̂z)+ Sn(|E |̂x)Sm(−|E |̂y)Sl(|E |̂z)

)
.

As the next step, we carry out a Taylor expansion of the spectral densities around
|E| = 0:

Sn(|E |̂x) = Sn(0)+ |E| x̂ S′n(0)+ · · · (6.131)

For the expression in brackets in (6.130), this means that:

(
· · ·
)
= 2Sn(0)Sm(0)Sl(0)+ |E|

{
− x̂S′n(0)Sm(0)Sl(0)+ ŷSn(0)S

′
m(0)Sl(0)

− ẑSn(0)Sm(0)S
′
l (0)+ x̂S′n(0)Sm(0)Sl(0)− ŷSn(0)S

′
m(0)Sl(0)
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+ ẑSn(0)Sm(0)S
′
l (0)
}
+O(|E|2)

= 2Sn(0)Sm(0)Sl(0)+O(|E|2) .

Finally, we must still integrate:

∫ 1

0

∫ 1

0

∫ 1

0
dx̂dŷdẑ δ(1− x̂ − ŷ − ẑ) =

∫ 1

0
dx̂

∫ 1−x̂

0
dŷ =

∫ 1

0
dx̂(1− x̂) = 1

2
.

The low-energy behaviour of the imaginary part of the function Inml(E) can then be
estimated as follows:

ImInml(E) =
(
π

h̄2 Sn(0)Sm(0)Sl(0)

)
· E2 +O(E4) . (6.132)

With this result, we know the contribution of the skeleton diagrams of second order
to the imaginary part of the self energy in the low-energy range. Taking into account
that owing to the ‘grand-canonical’ definition of the Green’s function, the energy
always appears as E + μ, we can also formulate the result as follows:

I
(2)
k (E − μ) = γk (E − μ)2 +O((E − μ)4) (T = 0) . (6.133)

The imaginary part of the self energy thus vanishes as the square of the energy at
the chemical potential (the Fermi energy). In particular, the quasi-particles have an
infinite lifetime there!

γk = π

h̄3

∑

lmn

(
εv(km; nl)v(nl; km)+ v(nl; km)v(mk; nl)

)
Sn(0)Sm(0)Sl(0) .

(6.134)
With the condition that the perturbation-theoretical diagram expansion converges,
which we have implicitly assumed throughout the preceding discussion, then the
self energy will thus always show the following low-energy behaviour,

!k(E) = αk + βk · E + iγk · E2 + . . . (T = 0) , (6.135)

with real coefficients αk , βk and γk .
The expansion in (6.135) thus holds only at T = 0. We can however make an

estimate of the temperature dependence of the imaginary part of the self energy at
E = 0. The latter is again exclusively determined by Inml(E) (6.108).

− 1

π
ImInml(E)

∣∣∣∣
E=0

= ε

h̄2

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
dxdydz Sn(x)Sm(y)Sl(z) · (6.136)

· δ(−x+y−z)
(
fε(x)fε(−y)fε(z)+fε(−x)fε(y)fε(−z)

)
.
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We can see that the two terms in the parentheses emerge from each other for T ↔
−T . The parenthesis is thus an even function of T . For T = 0, the whole expression
vanishes due to (6.132). The spectral densities for interacting particle systems can
indeed be temperature dependent; however in zeroth order, we have

Sn(x)Sm(y)Sl(z) −→ S(0)n (x)S(0)m (y)S
(0)
l (z)

with spectral densities of the non-interacting particle systems which are in every
case temperature independent. For our estimate, we thus have:

− 1

π
ImInml(E)

∣∣∣∣
E=0

∝ T 2 (T → 0) . (6.137)

This immediately transfers to the imaginary part of the self energy, since the latter
is real in first order:

Im!k(E = 0) ∝ T 2 (T → 0) . (6.138)

We will return again to this important result in connection with the concept of ‘Fermi
liquids’.

6.2.11 Quasi-particles and the Fermi Liquid

We come back once more to a fundamental concept for many-body theory, that of

quasi-particles,

which was already treated in general and in detail in Sect. 3.4, but which can now be
made more precise and expanded using the results of the preceding sections. Among
the quantities which were central for the concept of quasi-particles in Sect. 3.4 were
the single-particle spectral density and the self energy, about which we were able
to derive some general statements. To be concrete, we will again limit ourselves to

systems of interacting fermions in the limit of T → 0.

The treatment of Bose liquids at low temperature is found to be considerably more
difficult, which is due in the end to the Bose-Einstein condensation that occurs
already for a Bose gas (Theoretical Physics, Volume 8, Sect. 3.3.3). A general
precondition for the following considerations is the

convergence of the diagrammatic perturbation series,

as it was developed in the preceding sections.
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It is found that for many important questions, the complete determination of the
central spectral density is not unconditionally necessary. Frequently, it suffices to
limit the determination to a small energy region around the chemical potential μ.
Essential properties of the system (electrical conductivity σ = 1/ρ, heat capacity
cV , magnetic susceptibility χT , . . .) are determined within this region alone.

The (low-temperature) properties of the Fermi system in the limiting case of no
interactions, i.e. the case of an (ideal) Fermi gas, are well known from quantum
statistics (Theoretical Physics, Vol. 8, Sect. 3.2), e.g.:

CV ∝ T ; χT ≈ const.; ρ ∝ T 2. (6.139)

The spectral density in this limiting case has a simple form, according to (3.199):

S
(0)
kσ (E) = h̄ δ (E + μ0 − ε(k)) .

The index ‘0’ indicates the lack of interactions. Making use of the spectral
theorem (3.157), we find immediately the mean occupation number 〈nkσ 〉(0) of the
(k, σ ) level,

〈nkσ 〉(0) = 1

exp (β(ε(k)− μ0))+ 1
= f−(ε(k)− μ0)

T→0−→ �(εF − ε(k)) ,

(6.140)
which at T = 0 becomes a step function (see Fig. 6.20), as is well known. εF =
μ0(T = 0) is the Fermi energy. The T = 0 discontinuity of the distribution function
at k = kF makes the definition of a ‘Fermi surface’ seem reasonable; for T > 0, it
is “softened” in the well-known manner:

‘Fermi surface’ = {k : ε(k) != μ0(T = 0) = εF
}
. (6.141)

Now, what happens when the interactions are “switched on”? For only weakly-
interacting fermions, their properties should not change dramatically. In particular,

•

<nk >
(0)

k

T=0

T>0

1

1/2

kF

Fig. 6.20 Mean occupation number of a single-particle level of the ideal Fermi gas
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there should be a unique relation between the excitations of the “free” and those
of the interacting system. This presupposes however, that the ground state of the
interacting system develops “continuously” from that of the “free” system. The
spectral density, which is a simple delta function for the “free” system, should
continue to show a prominent peak, however now possibly with a finite width (see
Sect. 3.4.2 and Fig. 6.21).

How does the distribution function (Fig. 6.20) behave after switching on the
interactions? If we think of the ‘softening’ of the Fermi edge with increasing
temperature, which occurs in an energy range of the order of kBT around μ, and
additionally take into account the fact that the interactions v and the Fermi energy
εF generally are of the same order of magnitude (a few eV ), then the distribution
function should indeed be strongly deformed (Fig. 6.22). A reasonable definition
of a Fermi surface would then naturally no longer be possible. There should be a
strong redistribution of the particles from occupied states below μ into unoccupied
states above μ. Experimentally, however, this is not observed. Instead, one finds a
characteristic discontinuity at T = 0, which finally makes it possible to determine
a Fermi surface even in an interacting system (Fig. 6.23). But how does this jump
〈nkσ 〉 arise? That will be explained in the following.

Let us recall the spectral theorem (3.157) and the general form of the spectral
density:

〈nkσ 〉 = 1

h̄

∫ +∞

−∞
dE

Skσ (E)

eβE + 1

T→0−→ − 1

π

∫ 0

−∞
dE Im

1

E + i0+ − ε(k)+ μ−!kσ (E)
. (6.142)

Fig. 6.21 The spectral
density of a Fermi gas and of
a Fermi liquid (schematic)

Sk

E+

( )kE ( )k
• •

Fig. 6.22 The change in the
single-particle distribution
function which is ‘actually’ to
be expected after switching
on the interactions v
(schematic) •

<nk >

k
T=0

1

1/2

kF

v 0

v=0

?
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Fig. 6.23 The
experimentally-observed
behaviour of the
single-particle distribution
function of an interacting
fermion system (schematic) •

<nk >

k
T=0

1

1/2

kF

v 0

v=0

•
•

The k dependence of ε(k) and!kσ (E) should actually be “benign”. A discontinuity
in 〈nkσ 〉 is therefore only imaginable as a result of a singularity in the integrand in
Eq. (6.142). That, in turn, presupposes that the imaginary part of the self energy,

!kσ (E) = Rkσ (E)+ i Ikσ (E) ,

vanishes at a particular (real) energy. This is, however, according to the considera-
tions in Sect. 6.2.10 (Eq. (6.135)), indeed the case in the low-energy region:

Rkσ (E) = αkσ + βkσ · E +O(E2) (6.143)

Ikσ (E) = γkσ · E2 +O(E4) . (6.144)

Now, in general, we have for the single-particle spectral density according to
Eq. (3.331):

Skσ (E) = − h̄
π

Ikσ (E)

{E + μ− ε(k)− Rkσ (E)}2 + I 2
kσ (E)

. (6.145)

Owing to the unique relation between the free and the interacting Fermi systems
which is required of a Fermi liquid, Skσ (E) must have precisely one resonance at
the energy E + μ = Eσ (k). It satisfies the equation

Eσ (k)− ε(k)− Rkσ (Eσ (k)− μ)
!= 0 . (6.146)

Because of

Eσ (k)
v→0−→ ε(k) ,

it can now be expected, in analogy to the “free” system as in (6.141) (at first
tentatively) that we can define a Fermi surface of the interacting system as follows:

‘Fermi surface’ =
{

k : Eσ (k) != μ
}
. (6.147)
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For wavevectors k out of the Fermi surface, this would mean that

μ
!= ε(k)+ Rkσ (0) = ε(k)+!kσ (0) . (6.148)

This definition is, to be sure, reasonable only when the distribution function 〈nkσ 〉
indeed exhibits a discontinuity, as in the free system on the Fermi surface. We shall
need to investigate this point further.

For wavevectors k on the Fermi surface, we thus have Eσ (k)−μ = 0. For points
near to the Fermi surface, (Eσ (k)− μ) should thus in any case be a small quantity.
We will therefore be able to write an expansion:

Rkσ (Eσ (k)− μ) ≈ Rkσ (0)+(Eσ (k)− μ)
∂Rkσ

∂E

∣∣∣∣
E=0

= αkσ+βkσ (Eσ (k)− μ) .

(6.149)
We insert this into the “quasi-particle equation” (6.146):

0 = Eσ (k)− ε(k)− αkσ − βkσ (Eσ (k)− μ)+ . . .

≈ (Eσ (k)− μ) (1− βkσ )− (ε(k)+ αkσ − μ) .

We now define the ‘quasi-particle weight’:

zkσ ≡
(

1− ∂Rkσ

∂E

∣∣∣∣
E=0

)−1

= (1− βkσ )
−1 . (6.150)

This is practically identical to the previously introduced (more general) spectral
weight ((3.340) and (3.343)), and has in addition a close connection to the effective
mass defined in (3.368). For the ‘quasi-particle energy’, we thus have:

Eσ (k)− μ ≈ zkσ (ε(k)+ Rkσ (0)− μ) . (6.151)

We make use of it to estimate the energy denominator of the retarded single-particle
Green’s function

Nkσ ≡ E + i0+ − ε(k)+ μ− Rkσ (E + i0+)− iIkσ (E + i0+) .

To the first approximation, we find:

N
(1)
kσ = E + i0+ − ε(k)+ μ− αkσ − βkσ (E + i0+)

= (E + i0+)(1− βkσ )− (ε(k)− μ+ αkσ )

= (E + i0+)(1− βkσ )− z−1
kσ (Eσ (k)− μ)

= z−1
kσ

(
E + i0+ − (Eσ (k)− μ)

)
.
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Using the Dirac identity (3.152), it thus follows for the spectral density in the
simplest approximation, close to the Fermi surface:

S
(1)
kσ (E) ≈ h̄zkσ δ (E + μ− Eσ (k)) . (6.152)

This result initially neglects the imaginary part of the self energy completely, which
is strictly speaking valid only directly on the Fermi surface. We therefore proceed
one step further by taking the imaginary part into account to lowest order (6.144):

N
(2)
kσ = E − ε(k)+ μ− αkσ − βkσE − iγkσE

2 + . . .

= z−1
kσ (E + μ− Eσ (k))− iγkσE

2 + . . .

For a finite imaginary part of the self energy, the term i0+ can naturally be
suppressed. For the spectral density, we find from (3.154):

S
(2)
kσ (E) ≈ − h̄

π
zkσ

(zkσ γkσ )E
2

(E + μ− Eσ (k))2 + (zkσ γkσ )2E4
. (6.153)

This representation of the spectral density replaces the more general formula (6.145)
in the low-energy region. The delta function from (6.152) is now broadened out into
a peak of finite width. The two results (6.152) and (6.153) demonstrate that the
quasi-particle weight zkσ corresponds roughly to the area under the quasi-particle
peak in the spectral density. The position of the peak is centered at the quasi-
particle energy (Fig. 6.24)

E + μ = Eσ (k) ,

with a height of

Hkσ = − h̄
π

1

γkσ (Eσ (k)− μ)2

and a finite width

�kσ = zkσ |γkσ | (Eσ (k)− μ)2 , (6.154)

which increases quadratically with the distance of the quasi-particle energy Eσ (k)
from the chemical potential μ. The physical interpretation follows naturally
precisely from the quasi-particle concept in Sect. 3.4. The quasi-particle peak in
the neighbourhood of the Fermi surface corresponds to a ‘damped excitation’ of the
system. Here, as a rule, (Eσ (k)−μ) is not an exact excitation, but rather the centre
of gravity of a number of closely-spaced exact excitation energies, as can be seen
from the spectral representation (3.146) of the spectral density. The width of the
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Fig. 6.24 Possible form of a
quasi-particle peak in the
single-particle spectral
density

E+

Sk

Hk

×

×
k

E ( )k

peak is a measure of the damping, and, as in (3.364), it makes the definition of a

quasi-particle lifetime

appear reasonable:

τkσ = h̄

�kσ
= h̄

zkσ |γkσ | (Eσ (k)− μ)2
. (6.155)

For (kσ) from the Fermi surface (Eσ (k)
!= μ), the quasi-particle becomes stable:

τkσ
Eσ (k)→μ−→ ∞ . (6.156)

In comparison to Sect. 3.4, the quasi-particle picture has become considerably more
detailed here due to the additional information given in the preceding sections,
although the validity of these statements is to be sure limited to the immediate
neighbourhood of the Fermi surface.

Finally, the distribution function 〈nkσ 〉 for interacting Fermi systems, with which
we began the discussion in this section, remains to be investigated.

At T = 0K , the spectral theorem gives for die mean occupation number
(distribution function)

〈nkσ 〉 = 1

h̄

∫ 0

−∞
dE Skσ (E) = 1

h̄

∫ −η

−∞
dE Skσ (E)+ 1

h̄

∫ 0

−η
dE Skσ (E) .

(6.157)
Here, η > 0 and is sufficiently small. Then we can on the one hand assume that

〈̂nkσ 〉 = 1

h̄

∫ −η

−∞
dE Skσ (E) (6.158)

is a well-behaved, “harmless” function of the wavenumber without any sort of
peculiarities. On the other hand, the second term in (6.157) for a sufficiently small
η can be estimated as follows with (6.152):
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1

h̄

∫ 0

−η
dE Skσ (E) → zkσ

∫ 0

−η
dEδ (E + μ− Eσ (k))

= zkσ � (μ− Eσ (k)) � (η − μ+ Eσ (k)) .

In the immediate neighbourhood of the Fermi surface, the second step function
yields precisely one, so that in this region, we find:

〈nkσ 〉 = zkσ � (μ− Eσ (k))+ 〈̂nkσ 〉 . (6.159)

The distribution function thus exhibits the discontinuity at the Fermi surface as
indicated in Fig. 6.23. The height of the discontinuity step corresponds precisely to
the quasi-particle weight zkσ < 1. In the non-interacting system, we have zkσ = 1.
This jump in the distribution function 〈nkσ 〉 indeed makes it possible to define a
Fermi surface in a reasonable manner for the interacting system, also.

The results derived in this Sect. 6.2.11 are based exclusively on the validity of
the diagrammatic perturbation theory developed in the preceding sections, i.e. on its
applicability to correlated fermion systems. They are, on the other hand, so general
that a special class of systems can be defined by them, namely the

(normal) Fermi liquids,

whose preconditions we list once more here:

• The existence of a Fermi surface,
• a 〈nkσ 〉 jump on the Fermi surface,
• a unique relation to the ideal Fermi gas, i.e. “well-defined” low-energy quasi-

particle excitations,
• Im!kσ (E) and τ−1

kσ increase quadratically with increasing distance from the
Fermi surface.

The Fermi liquid concept is thus reasonable only for

• small excitation energies,
• wavenumbers in the neighbourhood of the Fermi surface, and
• low temperatures.

6.2.12 Exercises

Exercise 6.2.1

1. Illustrate the “free” mean value of the time-ordered product
〈
Tτ

{
akσ (τ1)a

†
lσ ′(τ2)amσ (τ3)a

†
nσ ′(τ3)

}〉(0)

using suitable contractions.
2. Express the result of 1. in terms of “free” single-particle Matsubara functions.
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Fig. 6.25 Example of a
diagram of second order for
the grand-canonical partition
function

•

• •

•

>

>>

>

1

Exercise 6.2.2 Evaluate the grand-canonical partition function �/�0 in first-order
perturbation theory for the

1. Hubbard model (6.109) and for the
2. Jellium model (6.117).

Exercise 6.2.3 The diagram shown in Fig. 6.25 belongs to second-order perturba-
tion theory for the grand-canonical partition function.

1. Compute the contribution of the diagram D for an interacting particle sys-
tem (6.22), (6.23) and (6.24).

2. What is found for the Hubbard model?
3. What does the contribution in the Jellium model look like?
4. What would be found for the analogous diagram in the energy representation?

Exercise 6.2.4 Verify the result (6.106) for the energy-dependent function (6.105)

FE(x, y, z) = 1

(h̄β)2

∑

E1,E2

1

iE1 − x

1

iE2 − y

1

i(E + E2 − E1)− z
.

Here, E,E1, E2 are Matsubara energies, all either bosonic or fermionic.

Exercise 6.2.5

1. Show that the Fermi-Dirac/Bose-Einstein functions

fε(E) = 1

eβE − ε
ε = ±1

exhibit first-order poles in the complex E plane at the (fermionic/bosonic)
Matsubara energies E = iEn. What holds for the residuals?

2. Let the function H(E) be holomorphic over the entire complex plane, apart from
isolated singularities Êi , and have no common poles with the Fermi-Dirac/Bose-
Einstein functions fε. The product functionH(E)fε(E) vanishes at infinity more
rapidly than 1

E
; this is true in particular when the same behaviour can already be

assumed for H(E). Investigate the path integral

IC ≡
∮

C

H(E) fε(E)dE ,
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where C is a circle in the complex E plane, e.g. with its centre point at the
coordinate origin. Derive the following equation from an analysis of the integral
IC :

∑

En

H(iEn) = −εβ
∑

Êi

(
ResÊiH(E)

)
fε(Êi) .

Convince yourself that this formula is equivalent to Eq. (6.75) for the practical
evaluation of Matsubara summations.

Exercise 6.2.6 Let there be a non-interacting particle system which is described by
the single-particle Matsubara function (6.46)

G
0,M
k (En) = h̄

iEn − ε(k)+ μ
.

Carry out the following Matsubara summations with the aid of the formula from
Exercise 6.2.5 (or else with (6.75)):

1.

G
0,M
k (τ = 0)→ 1

h̄β

∑

En

G
0,M
k (En)

2.

G
0,M
k (τ = −0+) = 1

h̄β

∑

En

G
0,M
k (En) exp

(
i

h̄
En0+

)
.

Compare the results with those of Exercise 6.1.2.

Exercise 6.2.7 The “combined” single-particle Green’s function Gk(E) (3.151)
is defined for complex E and possesses poles only on the real axis. Show for
a system of (interacting) fermions that the expectation value of the occupation-
number operator 〈nk〉 can be represented as a summation over Matsubara energies
with the aid of Gk(E):

〈nk〉 = 1

h̄β

∑

En

GM
k (iEn) exp

(
i

h̄
En · 0+

)
.

Verify the spectral theorem!
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6.3 Two-Particle Matsubara Functions

The self-energy concept developed in Sect. 6.2 led us to considerable simplifica-
tions. The method of partial summations which stands behind this concept has
evidently proved to be quite helpful. In particular, the introduction of skeleton
diagrams made the procedure transparent and manageable. As we however already
know from Sect. 5.6, the self-energy concept is not the only possibility for forming
partial sums. The ideas which were developed there for the special case of T = 0
can be transferred to a great extent to the T �= 0 Matsubara formalism. We therefore
discuss in this section further variants on partial summations, and we will make use
of what was worked out in Sect. 5.6 at many points along the way. In particular, the
diagrams which hold for T �= 0 will prove to have the same structures as the T = 0
diagrams from Sect. 5.6, so that in the following, we will often be able to use the
corresponding representations, which we have already developed.

6.3.1 Density Correlation

The so-called ‘density correlation’

〈〈ρq ; ρ+q 〉〉ret
E

which is defined finally through the (adjoint) ‘density operator’ (3.97),

ρq =
∑

kσ

a+kσ ak+qσ ; ρ+q ≡ ρ−q , (6.160)

was introduced in Sect. 3.1.5 as a retarded Green’s function. Using the example
of the Jellium model, its close connection to the physically important ‘dielectric
function’ was demonstrated:

1

ε(q, E)
= 1+ 1

h̄
v(q) 〈〈ρq ; ρ+q 〉〉ret

E . (6.161)

Here, v(q) = e2/ε0V q
2 is the relevant Coulomb matrix element for the Jellium

model ((3.90) and (6.118)). The derivation in Sect. 3.1.5 however shows that this
factor in (6.161) is brought into play by certain normal Fourier transformations and
is not due to the interactions in the Jellium model. The expression should thus hold
generally. The only precondition is that the charge densities of the electronic and
ionic systems precisely compensate each other in equilibrium, and that the external
perturbing charges act only upon the (more rapidly responding) electronic subsys-
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Fig. 6.26 Vertex notation
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tem. The connection (3.96) between an external ‘perturbing charge’ ρext(q, E) and
the charge density ρind(q, E) which it induces is important:

ρind(q, E) =
(

1

ε(q, E)
− 1

)
ρext(q, E) . (6.162)

Here, one can distinguish some interesting limiting cases:

• ε(q, E)� 1 �⇒ practically complete shielding of the perturbing charge

• ε(q, E) → 0 ⇐⇒ 〈〈ρq ; ρ+q 〉〉ret
E singularities �⇒ ; arbitrarily

small perturbing charges cause finite fluctuations in the charge density �⇒
“plasmons” E = E(q)

The retarded density correlation, and with it the dielectric function, can thus be
determined (approximately) as in Sect. 4.2.2 by using the equation of motion method
with Green’s functions (Chap. 3). As a complement to this, we now wish to consider
how the density correlation can be calculated with the aid of the diagrammatic
Matsubara formalism.

In the following, we shall make use of the vertex notation as sketched in
Fig. 6.26:

• Spin conservation at every vertex point: σk = σn ; σl = σm
• Momentum conservation at the vertex: k+ l = m+ n
• Interaction matrix element dependent at most on the momentum transfer: q ≡

k− n = m− l

These assumptions are fulfilled for most of the models which are of interest to us;
in any case for the Hubbard model and the Jellium model:

v(kl; nm)→ vσkσl (q = k− n) δk+l,m+n δσkσnδσlσm

(6.163)

vσkσl (q) =
{
v(q) (Jellium)
U
N
δσk−σl (Hubbard)
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Our starting point is the following two-particle Matsubara function:

Dq(E0) = 〈〈ρq ; ρ+q 〉〉ME0
=
∫ h̄β

0
dτ e

i
h̄
E0(τ−τ ′)Dq(τ − τ ′) (6.164)

Dq(τ − τ ′) = −
〈
Tτ

(
ρq(τ ) ρ

+
q (τ

′)
)〉
. (6.165)

The operators are still given here in their modified Heisenberg representation (6.3).
The transition to the modified Dirac representation (6.27) is carried out exactly as
for (6.49):

Dq(τ − τ ′) = −
∑

kp
σσ ′

〈
Tτ

(
U(h̄β, 0) a+kσ (τ )ak+qσ (τ ) a

+
pσ ′(τ

′)ap−qσ ′(τ ′)
)〉(0)

〈U(h̄β, 0)〉(0)

(6.166)

≡
∑

σσ ′
Dqσσ ′(τ − τ ′) .

We have suppressed the index D on the operators, since from now on, they all
are supposed to be given in the Dirac representation. It proves to be expedient,
especially for the partial summations which are to be discussed in the following
sections, to carry out the diagrammatic analysis initially for Dqσσ ′(τ − τ ′). The
final transition to the density correlation, which is actually the quantity of interest,
can then naturally be achieved simply by a summation over σ and σ ′. We shall
denote Dqσσ ′ as the ‘spin-resolved density correlation’.

As demonstrated with (6.84), the ‘law of connected diagrams’ sees to it that the
denominator in (6.166) just cancels out, so that for the evaluation, one has to sum
only over connected, open diagrams:

Dqσσ ′(τ − τ ′) = −
∑

kp

〈
Tτ

(
U(h̄β, 0) a+kσ (τ )ak+qσ (τ ) a

+
pσ ′(τ

′)ap−qσ ′(τ
′)
)〉(0)

conn.
open

.

(6.167)
Each summand

D̂kpqσσ ′(τ − τ ′) = −
〈
Tτ

(
U(h̄β, 0) a+kσ (τ )ak+qσ (τ ) a

+
pσ ′(τ

′)ap−qσ ′(τ
′)
)〉(0)

conn.
open

(6.168)

corresponds to a combination of open, connected diagrams with all together two
external lines each at τ and τ ′ (one of them incoming, the other outgoing), as shown
schematically in Fig. 6.27. Due to (6.166), these correspond in the case of the density
correlation to propagators with the same spin index σ . In Sect. 6.3.5, an example is
given in which these external propagators, in contrast, carry different spins.
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Fig. 6.27 The general
diagrammatic structure for
density correlations .........• •
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Fig. 6.28 A schematic
representation of an open,
non-connected diagrammatic
structure for density
correlations
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Fig. 6.29 Possible diagrams
of zeroth and of first order for
density correlations • •
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As in Sect. 5.6.1, one can readily convince oneself that all open diagrams must
automatically also be connected. Owing to the assumed conservation of momentum
at the vertex, a non-connected diagram structure as in Fig. 6.28 is possible only for
q = 0. In the Jellium model, such diagrams make no contribution due to v(0) = 0.
In any case, they are relatively uninteresting, since for q = 0, the density operator
is identical to the number operator N̂ =∑kσ a

+
kσ akσ .

Some examples of diagrams of zeroth and first order can be seen in Fig. 6.29,
where the order is again determined by the number of interaction lines. They are
naturally identical structurally with the T = 0 diagrams from Sect. 5.6.1.

For the evaluation, the energy representation is again found to be advantageous
here.

D̂kpqσσ ′(τ − τ ′) = 1

h̄β

∑

E0

e
− i
h̄
(E0(τ−τ ′) D̂kpqσσ ′(E0) . (6.169)
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Fig. 6.30 The energy
representation of a
density-correlation diagram
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This leads at first, as explained in Sect. 6.2.2, to the conservation of energy at the
vertex. As in the discussion of the single-particle Matsubara function in Sect. 6.2.4,
however, the external lines require a special treatment. Their contribution can be
decomposed into three factors, as shown preceding Eq. (6.86). The first enters into
the vertex for energy conservation. The second and third factors give contributions
of the following form:

(k, E1) :
(
−G

0,M
kσ (E1)

)( 1√
h̄β

exp

(
i

h̄
E1τ

))

(k+ q, E2) :
(
−G

0,M
k+qσ (E2)

)( 1√
h̄β

exp

(
− i

h̄
E2τ

))

(p, E3) :
(
−G

0,M
pσ ′ (E3)

)( 1√
h̄β

exp

(
i

h̄
E3τ

′
))

(p− q, E4) :
(
−G

0,M
p−qσ ′(E4)

)( 1√
h̄β

exp

(
− i

h̄
E4τ

′
))

.

We denote, as in Fig. 6.30, the contribution of the diagram core by Akpqσσ ′(E1 . . .

E4); then all together, we find:

−D̂kpqσσ ′(τ − τ ′) = ε

h̄2β2

∑

E1...E4

(
−G

0,M
kσ (E1)

)(
−G

0,M
k+qσ (E2)

)
×

×
(
−G

0,M
pσ ′ (E3)

)(
−G

0,M
p−qσ ′(E4)

)
×

×Akpqσσ ′(E1 . . . E4) e
− i
h̄ ((E2−E1)τ−(E3−E4)τ

′) .

The factor ε results from the loop rule. Since we want to presume that the
Hamiltonian of the system considered has no explicit time dependence, the above
expression can depend only on the time difference τ − τ ′ (“homogeneity of time”).
This means that

E2 − E1
!= E3 − E4 ≡ E0 . (6.170)
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As the difference of two Matsubara energies, E0 is in any case bosonic. We write:

E1 = E ; E2 = E + E0 ; E3 = E′ ; E4 = E′ − E0

and then obtain for the Fourier transform in (6.169):

− D̂kpqσσ ′(E0) = ε

h̄β

∑

E,E′

(
−G

0,M
kσ (E)

)(
−G

0,M
k+qσ (E + E0)

)
× (6.171)

×
(
−G

0,M
pσ ′ (E

′)
)(
−G

0,M
p−qσ ′(E

′ − E0)
)
Akpqσσ ′(E,E

′, E0) .

Due to

Dqσσ ′(E0) =
∑

kp

D̂kpqσσ ′(E0) , (6.172)

the

Diagram rules for the spin-resolved density correlation −Dqσσ ′(E0)

can now be formulated: We seek open, connected diagrams with four external
continuous lines as in Fig. 6.31. A diagram of n-th order (with n vertices!) is then to
be evaluated as follows:

1. Vertex ⇐⇒ 1
h̄β
vσkσl (q) δEk+El,Em+En δk+l,m+n δσkσnδσlσm ; (q = k− n)

(see (6.163))
2. Continuous inner lines (propagating or non-propagating) ⇐⇒

−G0,M
nσn (En) =

−h̄
iEn − ε(n)+ μ

.

3. Non-propagating lines obtain an additional factor ⇐⇒

exp

(
i

h̄
En · 0+

)
.
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Fig. 6.31 Energy-dependent spin-resolved density correlation
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Fig. 6.32 Density correlation
in lowest (zeroth) order

• •

^

^
E, ,k

E+E , + ,0 k q

(E , )0 q, (E , ’= )0 q,

4. External connections (propagators) ⇐⇒

left:
(
−G

0,M
kσ (E)

)(
−G

0,M
k+qσ (E + E0)

)

right:
(
−G

0,M
pσ ′ (E

′)
)(
−G

0,M
p−qσ ′(E

′ − E0)
)
.

5. Summation over all “inner” wavenumbers, spins and Matsubara energies,
i.e. over k,p, E,E′, not however over q, E0, σ, σ

′.
6. Factor:

1

h̄β

(
−1

h̄

)n
εS; S = loop number .

The additional factor 1/h̄β in rule 6 results from the now four external connections,
in contrast to the two connections for the single-particle Matsubara function
(Sect. 6.2.4)! In order to arrive at the actual density correlation−Dq(E0), we merely
still need to sum −Dqσσ ′(E0) over σ and σ ′.

As a first application of the formalism, we will calculate the density correlation to
lowest, i.e. zeroth order explicitly. The diagram shown in Fig. 6.32 is to be evaluated,
for which σ = σ ′ must hold:

− h̄#(0)
q (E0) ≡ − D(n=0)

q (E0) = −
∑

σσ ′
D
(n=0)
qσσ ′ (E0) δσσ ′

= ε

h̄β

∑

k,E,σ

G
0,M
k+q(E + E0)G

0,M
k (E) . (6.173)

The “free” Matsubara function is not spin dependent; the summation over σ
therefore yields merely a factor of two:

h̄#(0)
q (E0) = −2εh̄2

∑

k

Ik(q) (6.174)

= −2εh̄2 · 1

h̄β

∑

k

∑

E

1

iE − ε(k)+ μ
· 1

i(E + E0)− ε(k+ q)+ μ
.
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The summation over Matsubara energies is carried out according to Eq. (6.75):

Ik(q) = ε

2π ih̄

∮

C′
dE

1

eβE − ε
· 1

(E − ε(k)+ μ)(E + iE0 − ε(k+ q)+ μ)
.

(6.175)

The path C′ is that shown in Fig. 6.3. It is traversed mathematically in the negative
sense. The integrand has two poles at E1 = ε(k)−μ and E2 = ε(k+q)−μ− iE0.
The law of residuals thus yields

Ik(q) = −2επ i

2π ih̄

(
1

eβ(ε(k)−μ) − ε
· 1

ε(k)− μ+ iE0 − ε(k+ q)+ μ

+ 1

eβ(ε(k+q)−μ−iE0) − ε
· 1

ε(k+ q)− μ− iE0 − ε(k)+ μ

)
.

As we have already found, E0 is ‘bosonic’, so that exp(−iβE0) = +1 holds. We
then have:

Ik(q) = −ε
h̄

1

iE0 + ε(k)− ε(k+ q)

(
fε(ε(k)− μ)− fε(ε(k+ q)− μ)

)

= −ε
h̄

〈nk〉(0) − 〈nk+q〉(0)
iE0 + ε(k)− ε(k+ q)

.

Finally, this means that

#(0)
q (E0) = 2

∑

k

〈nk〉(0) − 〈nk+q〉(0)
iE0 + ε(k)− ε(k+ q)

. (6.176)

With this result, the density correlation has been determined to the simplest
approximation. Inserting into Eq. (6.161) yields an approximate expression for the
dielectric function:

1

ε(0)(q, E)
= 1+ 2v(q)

∑

k

〈nk〉(0) − 〈nk+q〉(0)
E + i0+ + ε(k)− ε(k+ q)

. (6.177)

Here, we have already carried out the transition (6.21) to the retarded function. The
zeroes of the dielectric function represent elementary excitations of the system. If
we interpret this expression for the Jellium model, then the zeroes just correspond
to the “particle-hole excitations”. Additional zeroes do not occur. There are e.g. no
indications at all of collective excitations (“plasmons”).
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6.3.2 The Polarisation Propagator

As with the Dyson equation for the single-particle Matsubara function (6.90), also
for the density correlation we can split off infinite partial series. Analogously to the
case of T = 0 in Sect. 5.6.1, we define the

‘spin-resolved polarisation contribution’

= diagram contribution from −Dqσσ ′(E0) with two external connections for
interaction lines in which in addition one propagator each is incoming and one

each is outgoing (Fig. 6.33).

One can readily see already that all of the diagrams are from the expansion of
−Dqσσ ′(E0) (compare Figs. 6.31 and 6.33). Examples can be found in Fig. 6.34.

In the next step, one defines the

‘irreducible spin-resolved polarisation contribution’

= a polarisation contribution which cannot be decomposed into two
independent polarisation contribution diagrams of low order by cutting through

an interaction line.
The third diagram in Fig. 6.34 is evidently reducible, while the first two diagrams,
in contrast, are irreducible. The general form of a reducible diagram is composed,
as sketched schematically in Fig. 6.35, of three structural units. Part a symbolises
some irreducible spin-resolved polarisation contribution, part b is an interaction
line, and part c represents some (reducible or irreducible) spin-resolved density-
correlation diagram of low order. It is apparent that one obtains all of these diagrams
if one sums in part a over all the irreducible spin-resolved polarisation contributions
and in part c over all the spin-resolved density-correlation diagrams, and finally
includes all the irreducible spin-resolved polarisation contributions. This leads to
the definition of the

• •>>> >> ( ,E , ’)q 0( ,E , )q 0

Fig. 6.33 The general diagrammatic structure of a spin-resolved polarisation contribution

Fig. 6.34 Examples of
(irreducible and reducible)
polarisation contributions
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Fig. 6.35 The general
structure of a reducible
polarisation contribution
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Fig. 6.36 The diagrammatic
symbol for the spin-resolved
polarisation propagator • •q ’h-
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Fig. 6.37 The Dyson equation for the spin-resolved density correlation

‘spin-resolved polarisation propagator’ −h̄#qσσ ′(E0)

= the sum of all irreducible spin-resolved polarisation contributions

Diagrammatically, the polarisation propagator is denoted by the symbol in Fig. 6.36.
We can now formulate a Dyson equation for the spin-resolved density correlation
in which we are actually interested, with the aid of the spin-resolved polarisation
propagator; it is equivalent to the single-particle Matsubara function in Eq. 6.91.
This is formulated diagrammatically in Fig. 6.37. The notation of the vertex in
Fig. 6.37 must however still be justified. According to rule 1 in Sect. 6.3.1, the vertex
“normally” carries the factor

1

h̄β
vσσ ′(q) δE1+E2,E3+E4 δk+l,m+n δσkσnδσlσm .
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The Kronecker deltas can be left off here, since the conservation of energy, spin,
and momentum entered directly into the notation defining the diagram. If we
subsume the right-hand connection of −h̄#qσσ ′′ and the left-hand connection of
(−Dqσ ′′′(E0)) under “external” connections, then these contribute a factor of 1/h̄β
according to rule 5 (Sect. 6.3.1), which the “inner” propagators otherwise do not
carry. This factor thus no longer needs to be supplied by the vertex sketched. Finally,
we still need to consider that the order n of a diagram is given by the number of its
vertices. This leads to a factor of (− 1

h̄
)n. If a special vertex is pulled out as in the

Dyson equation in Fig. 6.37, then it must be accompanied by the factor (− 1
h̄
). What

then remains is:

Dqσσ ′(E0) = h̄#qσσ ′(E0)+
∑

σ ′′σ ′′′
#qσσ ′′(E0)vσ ′′σ ′′′(q)Dqσ ′′′σ ′(E0) . (6.178)

If we combine the remaining terms as 2 × 2 matrices in spin space, whereby the
elements of the model-specific interaction matrix Ṽ (q) are defined in Eq. (6.163) as

Ṽ (q) =
(
vσσ ′(q)

)
σ=↑,↓
σ ′=↑,↓

,

then Eq. (6.178) can also be written as a matrix equation,

D̃q(E0) = h̄#̃q(E0)+ #̃q(E0)Ṽ (q)D̃q(E0) ,

with the solution

D̃q(E0) = h̄#̃q(E0)

1l − #̃q(E0)Ṽ (q)
. (6.179)

With this, the density correlation Dq(E0) is completely determined by the polarisa-
tion propagator, whereby we must consider that after solving the matrix equation,
we have to sum over all the elements Dqσσ ′(E0) of the matrix D̃q(E0). One thus
distinguishes between Dq(E0) and D̃q(E0):

Dq(E0) = 〈〈ρq ; ρ+q 〉〉ME0
=
∑

σσ ′
Dqσσ ′(E0) . (6.180)

Due to the special form of the interaction matrix in the Jellium model,

Ṽ (q) ≡ v(q)
(

1 1
1 1

)
, (6.181)

in Eq. (6.179), the density correlation can also be expressed directly in terms of the
actual, i.e. not spin-resolved polarisation propagator,

#q(E0) =
∑

σσ ′
#qσσ ′(E0) (6.182)
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(see Exercise 6.3.1):

Dq(E0) = 〈〈ρq; ρ+q 〉〉ME0
= h̄#q(E0)

1− v(q)#q(E0)
. (6.183)

This means for the physically important dielectric function (6.161) that

ε(q, E0) = 1− v(q)#q(E0) . (6.184)

In the first approximation, the polarisation propagator #q(E0) of the Jellium model

is to be replaced by the expression #
(0)
q (E0) from Eq. (6.176), which to be sure

already implies for Dq(E0) the summation over an infinite partial series (the
‘random phase approximation’, RPA):

εRPA(q, E) = 1− 2v(q)
∑

k

〈nk〉(0) − 〈nk+q〉(0)
E + i0+ + ε(k)− ε(k+ q)

. (6.185)

Here, we have already again carried out the transition (6.21) to the retarded function.
One must keep in mind that in spite of their formal similarity, εRPA(q, E) is not the
same as ε(0)(q, E) from Eq. (6.177). The latter corresponds in an expansion of 1/ε,

1

ε
= 1

1− v#
=

∞∑

n=0

(v#)n = 1+ v#︸ ︷︷ ︸
(6.177)

+ . . . ,

just to the first two summands. Summing an infinite partial series leads to a
physically significant additional zero of εRPA(q, E), which can be identified as
a plasmon excitation. In Sect. 4.2.2, we used the equation of motion method for
Green’s functions with Eq. (4.143) to be able to derive exactly the same RPA result
for the dielectric function as in (6.185). The physical interpretation given there,
in particular also the graphical illustration in Fig. 6.12, can therefore be adopted
completely and need not be repeated here.

Note that for the Hubbard model, the matrix equation (6.179) must be solved
with the interaction

Ṽ ≡ U

N

(
0 1
1 0

)
, (6.186)

which permits no direct simplification as in the case of the Jellium model. An
explicit calculation of the elements Dqσσ ′(E0) is given in Exercise 6.3.2.
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Fig. 6.38 Self-energy diagrams with polarisation contributions

Fig. 6.39 The general
structure of a diagram for an
effective interaction

6.3.3 Effective Interactions

Independently of the original goal of describing density correlations, there are
additional important applications of the polarisation propagator. In Sect. 5.6.2, we
showed for the special case of T = 0 how one can develop the concept of
an effective interaction with the aid of the polarisation propagator. This can be
transferred rather directly to the T �= 0 Matsubara formalism, as will be briefly
indicated in the following.

Among the self-energy diagrams for the single-particle Matsubara function
(Sect. 6.2.5), there are those which contain a reducible or irreducible polarisation
contribution in an interaction line. Examples are sketched in Fig. 6.38. The totality
of all such diagrams can be encompassed by introducing an ‘effective interaction’
veff,σσ ′ . Diagrammatically, we wish to distinguish the “bare” interactions from
“effective” interactions as follows:

σ =======σ ′ ⇐⇒ −1

h̄
veff,σσ ′(q, E)

σ −−−−−−σ ′ ⇐⇒ −1

h̄
vσσ ′(q) .

The general structure of a diagram is built up as in Fig. 6.39 from two “bare”
interaction lines and some reducible or irreducible (spin resolved) polarisation
contribution. The sum of all these diagrams then leads to the effective interaction. It
is reasonable to attribute an ‘order’ also to the effective interaction. The ‘n-th order’
of veff,σσ ′ contains (n + 1) interaction lines. Examples of the zeroth, first, second
and third orders are shown in Fig. 6.40.
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Fig. 6.40 Explicit
diagrammatical contributions
to the effective interaction
veff,σσ ′ (q, E) (without
counting spins)
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Fig. 6.41 Schematic structure of a diagram for the effective interaction veff,σσ ′ (q, E) (without
spin counting): (a) “bare” interaction; (b) “arbitrary” irreducible polarisation contribution; (c)
“arbitrary” diagram for veff,σσ ′ (q, E)

Every diagram, except for the zeroth order, has the structure sketched in
Fig. 6.41. It is evident that one includes all interaction diagrams if one sums over
all the irreducible polarisation contributions in (b), which leads to a polarisation
propagator, and in (c) over all the diagrams of the effective interaction, and finally
adds in the diagram of zeroth order. This can again be formulated as a Dyson
equation:

− 1

h̄
veff,σσ ′ (q, E) = (6.187)

= − 1

h̄
vσσ ′ (q) +

∑

σ ′′σ ′′′

(
− 1

h̄
vσσ ′′ (q)

)(
− h̄#qσ ′′σ ′′′ (E)

)(
− 1

h̄
veff,σ ′′′σ ′(q, E)

)
.
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The matrix formulation, as in Eq. (6.179), is more readily understood:

ṽeff(q, E) = Ṽ (q)+ Ṽ (q) #̃q(E) ṽeff(q, E) = Ṽ (q)

1l − Ṽ (q) #̃q(E)
. (6.188)

With this, the “effective” interaction is completely determined in terms of the
polarisation propagator.

Similarly to the case of the density correlation (6.179), the special form of the
“bare” interaction matrix in the Jellium model (6.181) allows the expression of
the effective interaction by means of the actual, i.e. not spin-resolved polarisation
propagator (6.182). Thus, in the Jellium model, the effective interaction proves to
be not explicitly spin dependent (see Exercise 6.3.3):

veff,σσ ′(q, E) ≡ veff(q, E) = v(q)
1− v(q)#q(E)

= v(q)
ε(q, E)

. (6.189)

In the last step, we have also brought the dielectric function according to Eq. (6.184)
into play. ε(q, E) evidently describes the (dynamic) shielding of the “bare”
interaction through polarisation of the correlated Jellium particle system. In (5.189),
we were able to formulate an analogous result for T = 0 via the causal Green’s
function.

The special interaction matrix (6.186) of the Hubbard model does not permit
a simplification as in the Jellium model. One must therefore use the matrix
equation (6.188) directly (see Exercise 6.3.4). Note that in contrast to the “bare”
interaction, the upper and lower vertex points of the effective interaction must
not necessarily carry different spins, i.e. in general, in the Hubbard model also,
veff,σσ (q, E) �= 0.

The effective interaction allows an alternative approach to that in Sect. 6.2 for
an (approximate) determination of the single-particle Matsubara function or the
corresponding single-particle self energy:

• In the self energy-diagrams of the single-particle Matsubara function, all those
diagrams are to be suppressed which contain a polarisation contribution in at
least one interaction line. In the remaining

‘skeleton diagrams’,

one replaces the “bare” interactions by the effective interactions. This again
requires the automatic summation of infinite partial series and leads to a new
concept for the evaluation of the self energy!

• One can now replace the free propagators in the remaining skeleton diagrams
as in Sect. 6.2.5 by full “dressed” propagators, whereby the latter are to be
determined self-consistently by making use of the Dyson equation in Fig. 6.9
(see Fig. 6.42). Due to the various renormalisations, there is naturally a danger of
counting certain diagrams twice, which can lead to serious errors in the results
and must therefore be avoided at all cost. Thus, the interaction line in the first
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diagram in Fig. 6.42 must not be “dressed”, since otherwise for example the
diagram from Fig. 6.43 would occur doubly, once through the self energy of the
full propagator in first order (left-hand diagram in Fig. 6.10), secondly via the
effective interaction in first order (second diagram in Fig. 6.40).

For the same reason, the “direct term” from Fig. 6.19 also does not appear with
an effective interaction in the expansion in Fig. 6.42. One can readily convince
oneself that the corresponding diagram is already completely contained in the
second summand in Fig. 6.42.
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Fig. 6.44 Examples of vertex-contribution diagrams

6.3.4 The Vertex Function

We still wish to discuss another variant which permits us to simplify diagram series
by introducing “diagram blocks”. We explain this method using the example of
the polarisation propagator (Fig. 6.36). Here, the same assumptions are presumed
to hold as in the preceding sections, e.g. Eq. (6.163). Examples of polarisation-
contribution diagrams of low order can be seen in Fig. 6.34. The T = 0 diagrams in
Sect. 5.6.3 are naturally topologically equivalent.

Definition ‘Vertex contribution’: the diagram part of a (spin-resolved) polarisa-
tion contribution with two connections for one particle line each and one connection
for an interaction line.

Examples are listed in Fig. 6.44. These diagram types can also be found in
Sect. 5.6.3. There, however, the propagators are causal T = 0 Green’s functions
and the interaction line can be attributed especially to the Jellium model. Note that
the vertex contribution of zeroth order consists merely of a single (vertex) point,
which naturally must nevertheless be counted.

Definition ‘Irreducible vertex contribution’ A vertex contribution from which no
complete self-energy diagram can be split off by separation of a propagator, and no
complete polarisation-contribution diagram can be split off by cutting an interaction
line.

Among the diagrams in Fig. 6.44, the first, second, fourth and fifth are clearly
irreducible, while the third and the sixth are reducible. From the third diagram, one
can obtain a self-energy diagram of first order by separation of a propagator, and
from the sixth, a polarisation diagram of zeroth order can be obtained by cutting an
interaction line.
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Fig. 6.46 Representation of the polarisation propagator with the aid of the vertex function

Definition ‘Vertex function’  σσ ′(qE0;kE): The sum of all the irreducible vertex
contributions.

We use the symbol for a vertex function as shown in Fig. 6.45. It is to be read as
follows: Since at the right-hand vertex point an interaction line must be connected
in any case, two propagators must emerge from the vertex function. q is the
wavenumber and E0 the energy transferred between these two propagators. We
recall that in this section, we have generally assumed that these two propagators
have the same spin quantum number σ . The notation (kEσ ′) on the upper left-hand
vertex point denotes the (external) propagator to which the vertex function is to be
connected at the left. The propagator which connects into the lower left-hand vertex
point then has the quantum numbers (k+ q, E + E0, σ

′).
The contribution of zeroth order to the vertex function is the isolated vertex

point which enters into the vertex function  σσ ′ as δσσ ′ . Some irreducible vertex
contributions of first and second order which enter into the vertex function are,
as already mentioned, the first, second, fourth and fifth diagrams in Fig. 6.44.
Other contributions to the vertex function have the same structure as the examples
following Definition 5.6.6 in Sect. 5.6.3.

Our original goal was the representation of the polarisation propagator via the
vertex function. This can be accomplished as shown in Fig. 6.46, and can be
evaluated as follows:

− h̄#qσσ ′(E0) = ε

h̄β

∑

kE

(
−GM

kσ (E)
)(
−GM

k+qσ (E + E0)
)
 σ ′σ (qE0;kE) .

(6.190)
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The sign factor ε results from the loop rule, and the factor 1/h̄β from the fact that the
two “full” propagators represent “external” connections, as explained for (6.171).
The representation (6.190) of the polarisation propagator can also not be strictly
evaluated, as a rule. We therefore wish to discuss two possible approximations:

• If one uses the zeroth approximation for the vertex function

 σ ′σ (qE0;kE)→ δσ ′σ ,

and the “free” propagators as the “full” propagators, then for the polarisation
propagator the simple results (6.173) or (6.176) are obtained, as already dis-
cussed.

• A further, more extensive approximation is the ‘ladder approximation’ which
can in a certain manner be considered as the (approximate) Dyson equation
for the vertex function. It is shown in Fig. 6.47. Here, in order to make an
immediate connection to the exact representation of the polarisation propagator
in Eq. (6.190) or in Fig. 6.46, we will interpret the propagators which occur as
“full” single-particle Matsubara functions. Furthermore, we limit ourselves to
systems which exhibit an interaction of the type (6.181), such as the Jellium
model. (One can readily see that all the terms in Fig. 6.47 vanish for the Hubbard
model, and thus the ladder approximation would become meaningless in such a
case. An alternative to the Hubbard model is discussed in the next section). The
evaluation then gives

 LAσσ ′(qE0;kE) = δσσ ′ + δσσ ′
(
−1

h̄

)
1

h̄β

∑

pE1

v(k− p)
(
−GM

pσ (E1)
)
×

×
(
−GM

p+qσ (E1 + E0)
)
 LAσσ (qE0;pE1) . (6.191)
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Fig. 6.47 The ladder approximation for the vertex function
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The presumed spin conservation at each vertex point guarantees in this particular
approximation that nonzero contributions are to be expected only for σ = σ ′.

The ladder approximation can be further evaluated if one can assume that
v(k−p) is only weakly or not at all dependent on the wavenumber, and therefore
can be well approximated by

v(k)→ v0 = 1

N

∑

k

v(k) .

It then follows that

 LAσσ ′(qE0;kE) = δσσ ′ − δσσ ′
v0

h̄2β

∑

pE1

GM
pσ (E1) ·

· GM
p+qσ (E1 + E0)  

LA
σσ (qE0;pE1) .

The right-hand side is now independent of (k, E). The vertex function is then
simplified to

 LAσσ ′(qE0;kE)→ δσσ ′  
LA
σ (qE0) . (6.192)

It is helpful to introduce the following abbreviation:

− h̄#̂qσ (E0) = ε

h̄β

∑

pE1

GM
pσ (E1)G

M
p+qσ (E1 + E0) . (6.193)

If one replaces the “full” propagators here by the “free” propagators, then
up to a factor 1/2, the function h̄#

(0)
q (E0) introduced in Eq. (6.173) as the

zeroth approximation to the density correlation Dq(E0) is obtained. The ladder
approximation is then simplified to

 LAσ (qE0) = 1+ ε v0 #̂qσ (E0)  
LA
σ (qE0) .

We thus find as the solution for the vertex function:

 LAσ (qE0) = 1

1− ε v0 #̂qσ (E0)
. (6.194)

If this result is inserted into Eq. (6.190), we obtain the spin-resolved polarisation
propagator in the corresponding approximation:

#LA
qσσ ′(E0) = #̂qσ (E0) δσσ ′  

LA
σ (qE0) = δσσ ′

#̂qσ (E0)

1− ε v0 #̂qσ (E0)
. (6.195)
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The matrix #̃q(E0) in the solution (6.179) for the density correlation thus
now has nonzero elements only on its diagonal. In systems which exhibit an
interaction of the type (6.181), as in the Jellium model, one can in addition make
use of (6.182):

#LA
q (E0) =

∑

σσ ′
#LA

qσσ ′(E0) =
∑

σ

#̂qσ (E0)

1− ε v0 #̂qσ (E0)
. (6.196)

Then, via (6.183) and (6.184), the density correlation and the dielectric function
have been approximately determined.

We still have to evaluate #̂qσ (E0), i.e. to carry out at least the summation
over energies. The calculational path corresponds to that for Inml(E) (6.108) in
Sect. 6.2.7, and should be followed by solving Exercise 6.3.5:

#̂qσ (E0) = 1

h̄2

∑

p

∫ +∞

−∞
dx

∫ +∞

−∞
dy

Spσ (x)Sp+qσ (y)

iE0 + x − y

(
fε(x)− fε(y)

)
.

(6.197)
fε(x) is defined as in (6.107). The spectral densities in the integrand must
still finally be fixed ‘somehow’ using the Dyson equation of the single-
particle Matsubara function. The replacement Spσ → S

(0)
p then again leads

to #(0)
q (E0) (6.173).

6.3.5 The Transverse Spin Susceptibility

Finally, we still want to discuss a special application of the vertex function
and the ladder approximation. The transverse spin susceptibility was introduced
in (3.72). This is an important quantity for the determination of magnetic properties
(spinwaves, magnons) of interacting electron systems, which we can describe
for example in the framework of the Hubbard model (see Sect. 4.2.3). The spin
susceptibility represents a two-particle Matsubara function, which shows a certain
similarity to the density correlations discussed in detail in the preceding sections. It
was defined in Eq. (3.72) as follows:

χ+−ij (E0) = − γ

h̄2

〈〈
σ+i ; σ−j

〉〉M

E0
γ = μ0

V h̄
g2μ2

B . (6.198)

γ is a constant of certain dimensions which is unimportant for our purposes (4.168).
The spin operators should apply to itinerant electrons and can then be represented
as in (4.168) by fermionic operators (4.104), (4.105):

σ+i = h̄a+i↑ai↓ ; σ−i = h̄a+i↓ai↑ ; σzi =
h̄

2

(
a+i↑ai↑ − a+i↓ai↓

)
. (6.199)
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The index i enumerates the lattice positions. The construction operators are thus
Wannier operators. Transformation to wavenumbers yields

χ+−q (E0) = 1

N

∑

i,j

χ+−ij (E0) e
iq·(Ri−Rj ) ≡ − γ

N
χ̂q(E0) . (6.200)

We want to interpret χ̂q(E0) as the actual ‘spin susceptibility’:

χ̂q(E0) =
∑

p,k

〈〈
a+k↑ak+q↓; a+p↓ap−q↑

〉〉M

E0
. (6.201)

Apart from the spin indices, this two-particle Matsubara function corresponds to the
(spin-resolved) density correlation (6.172). The difference consists in the fact that
now, to each of the external connections, two propagators with pairwise differing
spins are coupled. Figure 6.48 then replaces Fig. 6.33. The spin indices are thus
fixed, and summations are carried out over k and p.

One can see from the Dyson equation in Fig. 6.37 that for the spin susceptibility,
the sum in the second line vanishes, since due to spin conservation at the vertex
point and the special external connections, no reducible polarisation contributions
can exist for −χ̂q(E0) (Fig. 6.49):

− χ̂q(E0) ≡ −h̄#↑↓q (E0) . (6.202)

The spin susceptibility thus corresponds to the associated polarisation propaga-
tor! The ‘vertex function’ is in principle just as defined in Sect. 6.3.4; only the
particular enumeration of the spins should be noted (Fig. 6.50):

− χ̂q(E0) = ε

h̄β

∑

kE

GM
k↑(E)G

M
k+q↓(E + E0)  ↑↓(qE0 : kE) . (6.203)
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Fig. 6.48 Schematic diagrammatic representation of the spin susceptibility −χ̂q(E0) (6.201)
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Fig. 6.50 A vertex function especially for the spin susceptibility

This expression is still exact. The ladder approximation (Eq. (6.191), Fig. 6.47)
can be carried out exactly in the special case of the Hubbard model, on which we
shall concentrate here:

 LA↑↓ (qE0;kE) = 1+
(
−1

h̄

)
1

h̄β

U

N

∑

p,E1

GM
p↑(E1)G

M
p+q↓(E1+E0) 

LA↑↓ (qE0;pE1) .

(6.204)
The right-hand side does not depend on (k, E), so that one can conclude that

 LA↑↓ (qE0;kE) ≡  LA↑↓ (qE0) .

This holds analogously of course for the vertex function on the right side of (6.204).
For the resolution, we define the following, similarly to (6.193):

− h̄#̂q↑↓(E0) = −1

h̄β

∑

pE1

GM
p↑(E1)G

M
p+q↓(E1 + E0) . (6.205)

(ε = −1 in the Hubbard model.) We have already evaluated this function at the end
of Sect. 6.3.4 in terms of the energy summation. In Eq. (6.197), only the spin indices
on the spectral densities must be adjusted:

#̂q↑↓(E0) = 1

h̄2

∑

p

∫ +∞

−∞
dx

∫ +∞

−∞
dy

Sp↑(x)Sp+q↓(y)
iE0 + x − y

(
f−(x)− f−(y)

)
.

(6.206)
With this, (6.204) simplifies to:

 LA↑↓ (qE0) = 1− U

N
#̂q↑↓(E0)  

LA↑↓ (qE0) = 1

1+ U
N
#̂q↑↓(E0)

. (6.207)

The ladder approximation, together with (6.203) and (6.207), then yields for the
spin susceptibility in the Hubbard model the following expression:

χ̂LAq (E0) =  LA↑↓ (qE0)
(
h̄#̂q↑↓(E0)

) = h̄#̂q↑↓(E0)

1+ U
N
#̂q↑↓(E0)

. (6.208)

This result can be compared with (4.183), the expression found for the spin
susceptibility in the Hubbard model with the equation of motion method!
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6.3.6 Exercises

Exercise 6.3.1 Show that for the density correlation in the Jellium model, the
representation (6.183) is valid,

1. on the one hand by using the special “bare” interaction in Eq. (6.178);
2. on the other, by direct matrix multiplication in Eq. (6.179).

Exercise 6.3.2 Consider the density correlation in the Hubbard model. The ele-
ments #qσσ ′(E0) of the spin-resolved polarisation propagator are presumed to be
known.

1. Compute explicitly the matrix elements D̃q(E0) from Eq. (6.179), whose sum
yields the density correlation according to Eq. (6.180).

2. For a paramagnetic electronic system, #qσσ ′(E0) = #q−σ−σ ′(E0) can be
assumed. How does the density correlation look in this case?

3. The polarisation propagator is determined in zeroth order (Fig. 6.32). Use it to
fix the density correlation (RPA).

4. What form does the density correlation take in a saturated ferromagnetic
electronic system?

Exercise 6.3.3 Show that for the effective interaction in the Jellium model, the
representation (6.189) holds,

1. on the one hand by using the special “bare” interaction in Eq. (6.187);
2. on the other, by direct matrix multiplication in Eq. (6.188).

Exercise 6.3.4 Consider the effective interaction in the Hubbard model. The
elements #qσσ ′(E0) of the spin-resolved polarisation propagator are assumed to
be known.

1. Show that the effective interaction depends on the spin of the interaction partner.
Compute explicitly the corresponding matrix elements veffσσ ′(q, E).

2. Discuss the paramagnetic system, for which #qσσ ′(E0) = #q−σ−σ ′(E0) can be
assumed.

3. What is found by calculating the polarisation propagator in zeroth order
(Fig. 6.32)?

Exercise 6.3.5 Carry out the energy summation for the function defined in
Eq. (6.193),

−h̄#̂qσ (E0) = ε

h̄β

∑

pE1

GM
pσ (E1)G

M
p+qσ (E1 + E0) .

Confirm Eq. (6.196) in this manner.
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6.4 Self-Examination Questions

6.4.1 For Sect. 6.1

1. Why is the retarded Green’s function not suitable for perturbation theory?
2. Why can Wick’s theorem as in Sect. 5.2.2 not be used also for T �= 0 problems?
3. What close connection exists between the correlation functions 〈A(t)B(t ′)〉 and
〈B(t ′)A(t)〉, if one formally allows complex values for the time variables?

4. The Matsubara method presumes purely imaginary times (τ = −it is real!).
What form does the modified Heisenberg representation for time-dependent
operators take in this case?

5. How is the Matsubara function defined? Give its equation of motion.
6. What periodicity is exhibited by the Matsubara function?
7. How does one obtain the retarded Green’s function, which is actually the

function of interest, from the Matsubara function?
8. Write the equation of motion and further properties of the time-evolution

operator in the Dirac representation for purely imaginary times.
9. What is the formal solution of the time-evolution operator UD(τ, τ ′)?

10. Express e−βH in terms of UD .
11. How is the single-particle Matsubara function GM

k (τ) defined?
12. Which form is taken by the single-particle Matsubara function for the non-

interacting system?
13. Which form of the single-particle Matsubara function for an interacting system

is suitable for diagrammatic perturbation theory?
14. Is the hypothesis of adiabatic switching-on of the perturbation also required in

the Matsubara formalism?
15. Which quantity within the Matsubara formalism takes on the role of the

vacuum amplitude from the T = 0 theory?

6.4.2 For Sect. 6.2

1. In the Matsubara formalism, how is a contraction defined?
2. Formulate the so-called generalized Wick theorem! Is it an operator identity?
3. How do the diagram rules for the grand-canonical partition function � differ

from those of the T = 0-vacuum amplitude?
4. Is there a linked-cluster theorem for �?
5. How does one carry out summations over Matsubara energies?
6. Describe the ring-diagram approximation for the grand-canonical partition

function.
7. Explain why that for the single-particle Matsubara function, only open,

connected diagrams with two outer lines need be summed over.
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8. Formulate the diagram rules for the energy-dependent single-particle Matsub-
ara function.

9. Can Dyson equations also be formulated in the Matsubara formalism?
10. How are the (irreducible) self-energy contribution and the self energy defined

in the diagrammatic perturbation theory of finite-temperature Matsubara func-
tions? Are there differences from the T = 0 case?

11. Plot and explain the general structure of a typical single-particle Matsubara
diagram.

12. What is the formal solution of the Dyson equation for the single-particle
Matsubara function of an interacting particle system?

13. What is a (dressed) skeleton diagram? What is the connection of the skeleton
diagrams with the self-energy?

14. Plot the self-energy in terms of dressed skeleton diagrams up to second order.
15. Sketch the Hartree-Fock approximation of the single-particle self-energy. What

is the Hartree term and what is the Fock term?
16. Which skeleton diagrams have to be evaluated for the second-order perturba-

tion theory? What do we understand as the direct term and the exchange term,
respectively?

17. How does the Hamiltonian of the Hubbard model read in the Bloch represen-
tation?

18. Why do the Fock diagram in the first order and the exchange diagram of the
second order perturbation theory not contribute in the case of the Hubbard
model?

19. Why does the Hartree term in first order perturbation theory vanish in the case
of the jellium model?

20. What can be said about the energy dependence of the imaginary part of the self
energy for T = 0 near the Fermi edge?

21. Which temperature dependence does the imaginary part of the self energy
exhibit at the Fermi energy?

22. What can be said about the T = 0 lifetime of fermionic quasi-particles at the
Fermi edge?

23. What is necessary for the definition of a Fermi surface in an interacting particle
system?

24. What is characteristic for the k-dependent average occupation number of an
interacting fermion system at the chemical potential μ?

25. How do we define the Fermi surface of an interacting fermion system? Why
is the definition of a Fermi surface reasonable and possible for interacting
particles?

26. What do we mean by the weight of a quasi-particle? What is its value in the
case of non-interacting fermions?

27. How can we define the lifetime of a quasi-particle?
28. List the characteristic properties of a Fermi liquid. What is the basic precondi-

tion for the concept of the Fermi liquid?
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6.4.3 For Sect. 6.3

1. How is the density correlation defined? What is its physical relevance?
2. What is the relationship between the density correlation and the dielectric

function?
3. Which statements can be deduced from the limiting cases of the dielectric

function?
4. Recall what is meant by the modified Heisenberg (Dirac) representation.
5. Why is the difference of two Matsubara energies always a bosonic energy?
6. What is the general structure of a (reducible) diagram of the spin-resolved

polarization contribution? Define the latter! When is it irreducible?
7. What is the definition of the spin-resolved polarization propagator?
8. How can one find a plasmon-excitation by inspecting the RPA of the dielectric

function?
9. What is the general structure of a diagram which contributes to the effective

interaction?
10. How is the order of an effective-interaction diagram defined?
11. How can the effective interaction be expressed by the polarization propagator?
12. Is the effective interaction of the jellium model explicitly spin dependent? Give

reasons!
13. How does the effective interaction depend on the dielectric function (jellium

model)? Try a physical interpretation!
14. How can the effective interaction help to obtain a substantial approximation of

the self energy of the single-particle Matsubara function?
15. Explain the double-counting problem which arises when the effective interac-

tion is used in the skeleton diagrams of the single-particle self energy?
16. Define the following terms: vertex contribution, irreducible vertex contribution,

vertex function.
17. What is the contribution of zeroth order to the vertex function?
18. How can the polarization propagator be expressed by the vertex function?
19. What do we understand by the term ‘ladder approximation’?
20. What can be said about the ‘normal’ ladder approximation for the Hubbard

model?
21. How do the (spin-resolved) density correlation and the (transverse) spin

susceptibility differ?



Solutions of the Exercises

Section 1.4

Solution 1.4.1

1. Hamiltonian of the two-particle system:

H = H1 +H2 = − h̄2

2m
(�1 +�2)+ V (x1)+ V (x2).

Non-symmetrised eigenstate:

|ϕα1ϕα2〉 = |ϕ(1)α1
〉|ϕ(2)α2

〉.

Real-space representation:

〈x1x2|ϕα1ϕα2〉 = ϕn(x1)ϕm(x2)χS

(
m
(1)
S

)
χS

(
m
(2)
S′
)
,

χS : Spin function (identical particles have the same spins S)

α1 = (n,mS); α2 = (m,mS′).

2. Solution of the single-particle problem:

(

− h̄2

2m
�+ V (x)

)

ϕ(x) = Eϕ(x).

Initially, we have:

ϕ(x) ≡ 0 for x < 0 and x > a.
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For 0 ≤ x ≤ a, we need to solve:

− h̄2

2m
�ϕ(x) = Eϕ(x).

Trial solution:

ϕ(x) = c sin(γ1x + γ2).

Boundary conditions:

ϕ(0) = 0 �⇒ γ2 = 0,

ϕ(a) = 0 �⇒ γ1 = n
π

a
; n = 1, 2, 3, . . . .

Energy eigenvalues:

E = h̄2

2m
γ 2

1 �⇒ En = h̄2π2

2ma2
n2; n = 1, 2, . . . .

Eigenfunctions:

ϕn(x) = c sin
(
n
π

a
x
)
,

1
!= c2

a∫

0

sin2
(
n
π

a
x
)

dx �⇒ c =
√

2

a
,

ϕn(x) =
⎧
⎨

⎩

√
2
a

sin
(
nπ
a
x
)

for 0 ≤ x ≤ a,

0 otherwise.

3. Two-particle problem:

|ϕα1ϕα2〉(±) −→
1√
2

{
ϕn(x1)ϕm(x2)χS

(
m
(1)
S

)
χS

(
m
(2)
S′
)
±

±ϕn(x2)ϕm(x1)χS

(
m
(2)
S

)
χS

(
m
(1)
S′
)}
,

(+): Bosons,
(−): Fermions: (n,mS) �= (m,mS′) due to the Pauli principle.

4. Ground-state energy of the N -particle system:
Bosons:
All particles in the n = 1 state:
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E0 = N
h̄2π2

2ma2
.

Fermions:

E0 = 2
N/2∑

n=1

h̄2π2

2ma2 n
2 ≈ h̄2π2

2ma2

N3

24

with

N/2∑

n=1

n2 ≈
N�1

N/2∫

1

n2dn = 1

3

(
N3

8
− 1

)
≈ N3

24
.

Solution 1.4.2

1.

P12|0, 0〉t = −|0, 0〉t antisymmetric,

P12|1,MS〉t = |1,MS〉t symmetric.

(MS = 0,±1)

2. We carry out the proof in terms of components:

P12S
z
1P12

∣∣∣m(1)
S1
,m

(2)
S2

〉
=

= P12S
z
1

∣∣∣m(2)
S1
,m

(1)
S2

〉
= h̄mS2P12

∣∣∣m(2)
S1
,m

(1)
S2

〉
=

= h̄mS2

∣∣∣m(1)
S1
,m

(2)
S2

〉
= Sz2

∣∣∣m(1)
S1
,m

(2)
S2

〉
.

This expression is valid for arbitrary two-particle states, and thus also for the
symmetrised basis states of H(±)

2 . In H(±)
2 , the operator identity:

P12S
z
1P12 = Sz2

then holds. Analogously, one can show that:

P12S
z
2P12 = Sz1.

Now the x- and y-components remain to be dealt with:

Sxj =
1

2

(
S+j + S−j

)
; S

y
j =

1

2i

(
S+j − S−j

)
; j = 1, 2.
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We obtain:

P12S
±
1 P12

∣∣∣m(1)
S1
m
(2)
S2

〉
= P12S

±
1

∣∣∣m(2)
S1
m
(1)
S2

〉
=

= h̄

√(
1

2
∓mS2

)(
1

2
±mS2 + 1

)
P12

∣∣∣m(2)
S1
,
(
mS2 ± 1

)(1) 〉 =

= h̄

√(
1

2
∓mS2

)(
1

2
±mS2 + 1

) ∣∣∣m(1)
S1
,
(
mS2 ± 1

)(2) 〉 =

= S±2
∣∣∣m(1)

S1
,m

(2)
S2

〉
.

Conclusions as above:

P12S
±
1,2P12 = S±2,1.

With this, it also follows that:

P12S
x,y

1,2 P12 = S
x,y

2,1 .

This proves the proposition.
3. S1 · S2 = Sz1S

z
2 + 1

2

(
S+1 S

−
2 + S−1 S

+
2

)
.

mS1 = mS2 = mS

S±1 S
∓
2

∣∣∣m(1)
S ,m

(2)
S

〉
= 0,

Sz1S
z
2

∣∣∣m(1)
S ,m

(2)
S

〉
= h̄2

4

∣∣∣m(1)
S ,m

(2)
S

〉
,

1

2

(
1+ 4

h̄2 S1 · S2

) ∣∣∣m(1)
S ,m

(2)
S

〉
=
∣∣∣m(1)

S ,m
(2)
S

〉
=
∣∣∣m(2)

S ,m
(1)
S

〉
.

mS1 �= mS2

S+1 S
−
2

∣∣∣m(1)
S1
,m

(2)
S2

〉
= h̄2δmS1 ,−(1/2)δmS2 ,(1/2)

∣∣∣
(
mS1 + 1

)(1)
,
(
mS2 − 1

)(2) 〉 =

= h̄2δmS1 ,−(1/2)δmS2 ,(1/2)

∣∣∣m(1)
S2
,m

(2)
S1

〉
=

= h̄2δmS1 ,−(1/2)δmS2 ,(1/2)

∣∣∣m(2)
S1
,m

(1)
S2

〉
.

Analogously:

S−1 S
+
2

∣∣∣m(1)
S1
,m

(2)
S2

〉
= h̄2δmS2 ,−(1/2)δmS1 ,(1/2)

∣∣∣m(2)
S1
,m

(1)
S2

〉
,



Solutions of the Exercises 509

1

2

(
S+1 S

−
2 + S−1 S

+
2

) ∣∣∣m(1)
S1
,m

(2)
S2

〉
= h̄2

2

∣∣∣m(2)
S1
,m

(1)
S2

〉
.

Furthermore, we have:

Sz1S
z
2

∣∣∣m(1)
S1
,m

(2)
S2

〉
= − h̄

2

4

∣∣∣m(1)
S1
,m

(2)
S2

〉
.

All together, the result is thus:

1

2

(
1+ 4

h̄2
S1 · S2

) ∣∣∣m(1)
S1
,m

(2)
S2

〉
=

= 1

2

(

1− 4

h̄2

h̄2

4

) ∣∣∣m(1)
S1
,m

(2)
S2

〉
+ 1

2

(
4

h̄2

h̄2

2

) ∣∣∣m(2)
S1
,m

(1)
S2

〉
=

=
∣∣∣m(2)

S1
,m

(1)
S2

〉
.

With this, it is clear that quite generally:

P12

∣∣∣m(1)
S1
,m

(2)
S2

〉
=
∣∣∣m(2)

S1
,m

(1)
S2

〉
.

Solution 1.4.3
Proof through complete induction:
Initiation of induction:
N = 1 :

〈0|aβ1a
+
α1
|0〉 = 〈0| (δ(β1 − α1)+ εa+α1

aβ1

) |0〉 =
= δ(β1 − α1)〈0|0〉 + ε〈0|a+α1

aβ1 |0〉 =
= δ(β1 − α1).

N = 2 :

〈0|aβ2aβ1a
+
α1
a+α2
|0〉 =

= 〈0|aβ2

(
δ(β1 − α1)+ εa+α1

aβ1

)
a+α2
|0〉 =

= δ(β1 − α1)〈0|
(
δ(β2 − α2)+ εa+α2

aβ2

) |0〉+
+ ε〈0|aβ2a

+
α1

(
δ(β1 − α2)+ εa+α2

aβ1

) |0〉 =
= δ(β1 − α1)(β2 − α2)+ ε(β1 − α2)〈0|

(
(β2 − α1)+ εa+α1

aβ2

) |0〉 =
= (β1 − α1)(β2 − α2)+ ε(β1 − α2)(β2 − α1).
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Conclusion from induction for N− 1 → N:

〈0|aβN · · · aβ1a
+
α1
· · · a+αN |0〉

“pull through”! αβ1
to the right

↓=
= (β1 − α1)〈0|aβN · · · aβ2a

+
α2
· · · a+αN |0〉+

+ ε(β1 − α2)〈0|aβN · · · aβ2a
+
α1
a+α3

· · · a+αN |0〉+
+ · · · +
+ εN−1δ(β1 − αN)〈0|aβN · · · aβ2a

+
α1
a+α2

· · · a+αN−1
|0〉 =

Precondition for
induction↓= (β1 − α1)

∑

Pα

εPαPα[δ(β2 − α2) · · · δ(βN − αN)]+

+ εδ(β1 − α2)
∑

Pα

εPαPα[δ(β2 − α1)δ(β3 − α3) · · · δ(βN − αN)]+

+ · · · +
+ εN−1δ(β1 − αN)

∑

Pα

εPαPα[δ(β2 − α1)δ(β3 − α2) · · · δ(βN − αN−1)] =

=
∑

Pα

εPαPα[δ(β1 − α1)δ(β2 − α2) · · · δ(βN − αN)] q. e. d.

Solution 1.4.4
One-particle basis:

|k〉 ⇐⇒ 〈r|k〉 = ϕk(r) = (2π)−3/2eik·r

plane wave.

Operator for the kinetic energy:

N∑

i=1

p2
i

2m
�⇒

∫∫
d3kd3k′ 〈k| p

2

2m
|k′〉a+k ak′ .

Matrix element:

〈k| p
2

2m
|k′〉 =

∫
d3r〈k|r〉〈 r| p

2

2m
|k′〉 =

∫
d3rϕ∗k (r)

(

− h̄2

2m
�

)

ϕk′(r) =

= h̄2k′2

2m
(2π)−3

∫
d3r e−i(k−k′)·r = h̄2k′2

2m
δ
(
k− k′

)
.
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Single-particle operator:

N∑

i=1

p2
i

2m
�⇒

∫
dk
h̄2k2

2m
a+k ak.

Operator for the Coulomb interaction:

1

2

i �=j∑

i, j

Vij �⇒ 1

2

∫
· · ·
∫

d3k1d3k2d3k3d3k4 〈k1k2 |V12| k3k4〉 a+k1
a+k2
ak4ak3 .

The matrix element may be symmetrised, but it may also be non-symmetrised:

M ≡
〈
k(1)1

∣∣∣
〈
k(2)2

∣∣∣V12

∣∣∣k(1)3

〉 ∣∣∣k(2)4

〉
.

The real-space representation is expedient, since then V12 is diagonal:

M =
∫
· · ·
∫

d3r1 · · · d3r4

(〈
k(1)1

∣∣∣ r(1)1

〉 〈
r(1)1

∣∣∣
) (〈

k(2)2

∣∣∣ r(2)2

〉 〈
r(2)2

∣∣∣
)
·

· V
(∣∣∣r̂(1) − r̂(2)

∣∣∣
) (∣∣∣ r(1)3

〉 〈
r(1)3

∣∣∣ k(1)3

〉) (∣∣∣ r(2)4

〉 〈
r(2)4

∣∣∣ k(2)4

〉)
=

=
∫
· · ·
∫

d3r1 · · · d3r4V (|r3 − r4|)
〈
k(1)1

∣∣∣ r(1)1

〉 〈
r(1)1

∣∣∣ r(1)3

〉
·

·
〈
k(2)2

∣∣∣ r(2)2

〉 〈
r(2)2

∣∣∣ r(2)4

〉 〈
r(1)3

∣∣∣ k(1)3

〉 〈
r(2)4

∣∣∣ k(2)4

〉
=

= (2π)−6
∫∫

d3r1d3r2V (|r1 − r2|) e−i(k1−k3)·r1 e−i(k2−k4)·r2 .

Making the coordinate transformation

r = r1 − r2; R = 1

2
(r1 + r2) �⇒ r1 = 1

2
r+ R,

r2 = R− 1

2
r

it then follows that:

M = (2π)−6
∫

d3 R e−i(k1−k3+k2−k4)·R·

·
∫

d3r V (r)e−
1
2 (k1−k3−k2+k4)·r =

= (2π)−3δ (k1 − k3 + k2 − k4)

∫
d3r V (r)e−(k1−k3)·r =
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= V (k1 − k3)δ (k1 − k3 + k2 − k4).

Substitution:

k1 → k+ q, k2 → p− q, k3 → k.

Result:

1

2

i �=j∑

i, j

Vij → 1

2

∫∫∫
d3k d3 p d3q V (q)a+k+qa

+
p−qapak q. e. d.

Solution 1.4.5

H = T̂ + V̂ ,

T̂ =
∫

d3k
h̄2k2

2m
a+k ak,

V̂ = 1

2

∫∫∫
d3k d3 p d3 q V (q)a+k+qa

+
p−qapak.

1.

[
N̂, T̂

]
− =

∫
d3 p

∫
d3k

h̄2k2

2m

[
n̂p, n̂k

]
− ,

[
n̂p, n̂k

]
− = a+p apa

+
k ak − n̂kn̂p =

= a+p
(
δ(p− k)+ εa+k ap

)
ak − n̂kn̂p =

= δ(p− k)a+p ak + ε2a+k a
+
p apak − n̂kn̂p =

= δ(p− k)n̂k + εa+k a
+
p akap − n̂kn̂p =

= δ(p− k)n̂k + εa+k
(
εaka

+
p − εδ(p− k)

)
ap − n̂kn̂p =

= δ(p− k)n̂k + n̂kn̂p − δ(p− k)a+k ap − n̂kn̂p =
= 0

�⇒ [
N̂, T̂

]
− = 0.

2.

[
N̂, V̂

] = 1

2

∫∫∫∫
d3q̄ d3k d3 pd3q V (q)

[
a+q̄ aq̄, a

+
k+qa

+
p−qapak

]

− =
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= 1

2

∫∫∫∫
d3q̄ d3k d3 p d3q V (q)

{
δ(q̄− k− q)a+q̄ a

+
p−qapak +

+εδ(q̄− p+ q)a+q̄ a
+
k+qapak − ε5δ(q̄− p)a+k+qa

+
p−qakaq̄−

−ε6δ(q̄− k)a+k+qa
+
p−qapaq̄

}
=

= 1

2

∫∫∫
d3k d3 p d3q V (q)

{
a+k+qa

+
p−qapak + εa+p−qa

+
k+qapak−

−εa+k+qa
+
p−qakap − a+k+qa

+
p−qapak

}
=

= 1

2

∫∫∫
d3k d3 p d3q V (q)

{
2a+k+qa

+
p−qapak − 2a+k+qa

+
p−qapak

}
=

= 0

�⇒ [
N̂, V̂

]
− = 0.

Solution 1.4.6
According to Sect. 1.2, we have for the relation between field operators and general
creation and annihilation operators the following:

ψ̂+(r) =
∫

dα ϕ∗α(r)a+α ,

ψ̂(r) =
∫

dα ϕα(r)aα.

In the k representation with plane waves, this means that:

ψ̂+(r) = (2π)−3/2
∫

d3k e−ik·ra+k ,

ψ̂(r) = (2π)−3/2
∫

d3k eik·rak.

We first discuss the kinetic energy:

T̂ =
∫

d3rψ̂+(r)
{

− h̄2

2m
�r

}

ψ̂(r) =

= (2π)−3
∫∫∫

d3r d3k d3k′ e−ik·r
{

− h̄2

2m
�r

}

eik′·ra+k ak′ =

=
∫∫

d3k d3k′
(
h̄2k′2

2m

)

a+k ak′ (2π)
−3
∫

d3r e−i(k−k′)·r
︸ ︷︷ ︸

δ(k−k′)

=
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=
∫

d3k

(
h̄2k2

2m

)

a+k ak.

The potential energy requires somewhat more effort:

V̂ = 1

2

∫∫
d3r d3r ′ψ̂+(r)ψ̂+

(
r′
)
V
(∣∣r− r′

∣∣) ψ̂
(
r′
)
ψ̂(r) =

= 1

2
(2π)−6

∫∫
d3r d3r ′ V

(∣∣r− r′
∣∣)
∫
· · ·
∫

d3k1 · · · d3k4·

· a+k1
a+k2
ak3ak4 e−i(k1r+k2r′)ei(k3·r′+k4·r).

Centre-of-mass and relative coordinates:

r̄ = r− r′; R = 1

2

(
r+ r′

)

�⇒ r = 1

2
r̄+ R; r′ = R− 1

2
r̄.

This means that:

V̂ = 1

2

∫
· · ·
∫

d3k1 · · · d3k4a
+
k1
a+k2
ak3ak4 ·

· (2π)−3
∫

d3 R e−i(k1+k2−k3−k4)R·

· (2π)−3
∫

d3r̄ V (r̄)ei 1
2 (−k1+k2−k3+k4)r̄ =

= 1

2

∫
· · ·
∫

d3k1 · · · d3k4a
+
k1
a+k2
ak3ak4δ (k1 + k2 − k3 − k4)·

· (2π)−3
∫

d3r̄ V (r̄)ei 1
2 (−k1+k2−k3+k4)·r̄ =

= 1

2

∫∫∫
d3k1 d3k2 d3k3 a

+
k1
a+k2
ak3ak1+k2−k3 ·

· (2π)−3
∫

d3r̄ V (r̄)ei(k2−k3)·r̄.

Setting

k1 → k+ q; k2 → p− q; k3 → p,

then, with V (q) = V (−q), we obtain:
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V̂ = 1

2

∫∫∫
d3k d3 p d3q V (q)a+k+qa

+
p−qapak q. e. d.

Solution 1.4.7

1.
[
n̂α, a

+
β

]

− = n̂αa
+
β − a+β n̂α = a+α aαa+β − a+β n̂α =

= a+α
(
δαβ + εa+β aα

)
− a+β n̂α = δαβa

+
α + ε2a+β a

+
α aα − a+β n̂α =

= δαβa
+
α .

2.

[
n̂α, aβ

]
− = n̂αaβ − aβn̂α = εa+α aβaα − aβn̂α =
= (aβa+α − δαβ

)
aα − aβn̂α = −δαβaα.

3.

[
N̂, a+α

]
− =

∑

γ

[
n̂γ , a

+
α

]
−

1.=
∑

γ

δγαa
+
α = a+α .

4.

[
N̂, aα

]
− =

∑

γ

[
n̂γ , aα

]
− =

∑

γ

δγα(−aα) = −aα.

Solution 1.4.8

1. [aα, aβ ]+ = 0.
From this, it follows in particular for α = β:

0 = [aα, aα]+ = (aα)
2 + (aα)

2 = 2(aα)
2 �⇒ (aα)

2 = 0.

Owing to the Pauli principle, two Fermions can not have exactly the same set
of quantum numbers. Therefore, two equivalent Fermions cannot be annihilated.
Analogously, it follows that:

0 = [a+α , a+α
]
+ ⇐⇒ (a+α )2 = 0.

2.

(n̂α)
2 = a+α aαa+α aα = a+α

(
1+ a+α aα

)
aα =
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= n̂α +
(
a+α
)2
(aα)

2 = n̂α (Interpretation?).

3.

aαn̂α = aαa
+
α aα =

(
1+ a+α aα

)
aα = aα + a+α (aα)2 = aα,

a+α n̂α =
(
a+α
)2
aα = 0.

4.

n̂αaα = a+α (aα)2 = 0,

aαn̂α =
(
1+ a+α aα

)
aα = aα + a+α (aα)2 = aα.

Solution 1.4.9

1. Non-interacting, identical Bosons or Fermions:

H =
N∑

i=1

H
(i)
1 .

Eigenvalue equation:

H
(i)
1

∣∣∣ ϕ(i)r
〉
= εr

∣∣∣ϕ(i)r
〉
,
〈
ϕ(i)r

∣∣∣ϕ(i)s
〉
= δrs .

The single-particle operator in the second quantisation:

H =
∑

r, s

〈ϕr |H1|ϕs〉a+r as =
∑

r, s

εsδrsa
+
r as

�⇒ H =
∑

r

εra
+
r ar =

∑

r

εr n̂r .

2. Non-normalised density matrix for the grand canonical ensemble:

ρ = exp
[−β (H − μN̂

)]
,

N̂ =
∑

r

n̂r .

The normalised Fock states

|N; n1n2 · · · ni · · · 〉(ε)
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are eigenstates of n̂r and thus also of N̂ and H :

H |N; n1 · · · 〉(ε) =
(
∑

r

εrnr

)

|N; n1 · · · 〉(ε),

N̂ |N; n1 · · · 〉(ε) = N |N; n1 · · · 〉(ε).

Taking the trace is therefore expedient with these Fock states:

(ε)〈N; n1n2 · · · | exp[−β (H − μN̂)]|N; n1n2 · · · 〉(ε) =

= exp

[

−β
∑

r

(εr − μ)nr

]

with
∑

r

nr = N.

From this, it follows that:

Tr ρ =
∞∑

N=0

∑

{nr }
(!nr=N)

exp

[

−β
∑

r

(εr − μ)nr

]

=

=
∞∑

N=0

∑

{nr }
(!nr=N)

∏

r

e−β(εr−μ)nr =

=
∑

n1

∑

n2

· · ·
∑

nr

· · ·
∏

r

e−β(εr−μ)nr =

=
(
∑

n1

e−βn1(ε1−μ)
)(
∑

n2

e−βn2(ε2−μ)
)

· · · .

Grand canonical partition function:

�(T , V, μ) = Tr ρ =
∏

r

(
∑

nr

e−βnr (εr−μ)
)

.

Bosons (nr = 0, 1, 2, . . .):

�B(T , V, μ) =
∏

r

1

1− ε−β(εr−μ)
.

Fermions (nr = 0, 1):

�F(T , V, μ) =
∏

r

(
1+ e−β(εr−μ)

)
.
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3. Expectation value of the particle number:

〈
N̂
〉 = 1

�
Tr(ρN̂).

Taking the trace is to be recommended for the Fock states, since they are
eigenstates of N̂ :

〈
N̂
〉 = 1

�

∞∑

N=0

∑

{nr }
(!nr=N)

{

N exp

[

−β
∑

r

(εr − μ)nr

]}

=

= 1

β

∂

∂μ
ln�.

With part 2:

∂

∂μ
ln�B = ∂

∂μ

{

−
∑

r

ln[1− e−β(εr−μ)]
}

=

= −
∑

r

−βe−β(εr−μ)

1− e−β(εr−μ)
= β

∑

r

1

eβ(εr−μ) − 1
,

∂

∂μ
ln�F = ∂

∂μ

{
∑

r

ln[1+ e−β(εr−μ)]
}

=

= β
∑

r

e−β(εr−μ)

1+ e−β(εr−μ)
= β

∑

r

1

eβ(εr−μ) + 1
.

This means that:

〈N̂〉 =

⎧
⎪⎪⎨

⎪⎪⎩

∑

r

1

eβ(εr−μ) − 1
: Bosons,

∑

r

1

eβ(εr−μ) + 1
: Fermions.

4. Internal energy:

U = 〈H 〉 = 1

�
Tr(ρH).

Fock states are also eigenstates of H , and thus are again suitable for taking the
trace, as is required here!
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U = 1

�

∞∑

N=0

∑

{nr }
(
∑
nr=N)

[(
∑

i

εini

)

e−β!r (εr−μ)nr
]

=

= − ∂

∂β
ln�+ μ

〈
N̂
〉
,

− ∂

∂β
ln�B =

∑

r

(εr − μ)e−β(εr−μ〉

1− e−β(εr−μ)
= −μ 〈N̂ 〉+

∑

r

εr

eβ(εr−μ) − 1
,

− ∂

∂β
ln�F = −

∑ −(εr − μ)e−β(εr−μ)

1+ e−β(εr−μ)
= −μ 〈N̂ 〉+

∑

r

εr

eβ(εr−μ) + 1
.

Finally, this yields:

U =

⎧
⎪⎨

⎪⎩

∑

r

εr

eβ(εr−μ) − 1
: Bosons,

∑

r

εr

eβ(εr−μ) + 1
: Fermions.

5. Fock states are also eigenstates of the occupation-number operator:

〈n̂i〉 = 1

�
Tr(ρn̂i) = 1

�

∞∑

N=0

∑

{nr }
(!nr=N)

[
nie

−β!r (εr−μ)nr
]
=

= − 1

β

∂

∂εi
ln�,

− 1

β

∂

∂εi
ln�B = + 1

β

∑

r

+βe−β(εr−μ)

1− e−β(εr−μ)
∂εr

∂εi
=

= 1

eβ(εi−μ) − 1
(Bose distribution function),

− 1

β

∂

∂εi
ln�F = − 1

β

∑

r

−βe−β(εr−μ)

1+ e−β(εr−μ)
∂εr

∂εi
=

= 1

eβ(εi−μ) + 1
(Fermi distribution function).

It follows that:

〈n̂i〉 =
{
{exp[β(εi − μ)] − 1}−1 Bosons,

{exp[β(εi − μ)] + 1}−1 Fermions.
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By comparison with the preceding exercises, one can immediately see that:

〈
N̂
〉 =

∑

r

〈n̂r 〉; U =
∑

r

εr 〈n̂r 〉.

Solution 1.4.10

1.

N̂ =
∑

σ

(n̂1σ + n̂2σ ),

H =
∑

σ

(
ε1σ n̂1σ + ε2σ n̂2σ + V

(
c+1σ c2σ + c+2σ c1σ

))
.

As usual, we have:

[
n̂iσ , n̂jσ ′

]
− = 0, i, j ∈ {1, 2}.

This implies:

[
N̂, H

]
− =

[
∑

σ

(n̂1σ + n̂2σ ), V
∑

σ ′

(
c+1σ ′c2σ ′ + c+2σ ′c1σ ′

)
]

−
=

= V
∑

σ

∑

σ ′

{[
n̂1σ , c

+
1σ ′c2σ ′

]
− +

[
n̂1σ , c

+
2σ ′c1σ ′

]
− +

+ [n̂2σ , c
+
1σ ′c2σ ′

]
− +

[
n̂2σ , c

+
2σ ′c1σ ′

]
−
}
.

We make use of the generally-valid relation:

[
Â, B̂Ĉ

]
− =

[
Â, B̂

]
− Ĉ + B̂

[
Â, Ĉ

]
− .

Moreover, one can readily see that (cf. Exercise 1.4.7.):

[
n̂iσ , cjσ ′

]
− = −δij δσσ ′ciσ ,

[
n̂iσ , c

+
jσ ′
]

− = δij δσσ ′c
+
iσ .

We then finally obtain:

[
N̂, H

]
− = V

∑

σ

{
c+1σ c2σ − c+2σ c1σ − c+1σ c2σ + c+2σ c1σ

} = 0.
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2. Fock states:

|N;F 〉 = |N; n1↑n1↓; n2↑n2↓〉(−).

The eigenvalue equation:

H |E〉 = |E〉
�⇒ 〈N;F |H |E〉 = E〈N;F |E〉
�⇒

∑

N ′

∑

F ′
〈N;F |H |N ′;F ′〉〈N ′;F ′|E〉 = E〈N;F |E〉.

According to 1, H conserves the particle number. This means that:

〈N;F |H |N ′;F ′〉 ∼ δNN ′ .

We thus have to solve the following homogeneous system of equations for N =
0, 1, 2, 3, 4:

∑

F ′

(〈N;F |H |N;F ′〉 − EδFF ′
) 〈N;F ′|E〉 = 0.

The eigenvalues are determined from the condition for a nontrivial solution:

det
(
H
(N)

FF ′ − EδFF ′
) != 0, H

(N)

FF ′ = 〈N;F |H |N;F ′〉.

3. N=0

|0;F 〉 = |0; 00; 00〉(−)

is clearly an eigenstate with E(0) = 0.
n=1

Four possible Fock states:

|1;F 〉 = |1; 10; 00〉(−); |1; 01; 00〉(−); |1; 00; 10〉(−); |1; 00; 01〉(−).
H |1; 10; 00〉(−) = ε1|1; 10; 00〉(−) + V |1; 00; 10〉(−),
H |1; 01; 00〉(−) = ε1|1; 01; 00〉(−) + V |1; 00; 01〉(−),
H |1; 00; 10〉(−) = ε2|1; 00; 10〉(−) + V |1; 10; 00〉(0),
H |1; 00; 01〉(−) = ε2|1; 00; 01〉(−) + V |1; 01; 00〉(−),
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(
H
(1)
FF ′
)
≡

⎛

⎜⎜
⎝

ε1 0 V 0
0 ε1 0 V

V 0 ε2 0
0 V 0 ε2

⎞

⎟⎟
⎠

Condition for a solution:

0
!=

∣∣∣∣∣∣∣∣

ε1 − E 0 V 0
0 ε1 − E 0 V

V 0 ε2 − E 0
0 V 0 ε2 − E

∣∣∣∣∣∣∣∣

=

= −

∣∣∣∣∣∣∣∣

ε1 − E 0 V 0
V 0 ε2 − E 0
0 ε1 − E 0 V

0 V 0 ε2 − E

∣∣∣∣∣∣∣∣

=

=

∣∣∣∣∣∣∣∣

ε1 − E V 0 0
V ε2 − E 0 0
0 0 ε1 − E V

0 0 V ε2 − E

∣∣∣∣∣∣∣∣

=

=
{
(ε1 − E)(ε2 − E)− V 2

}2

�⇒ E
(1)
1 = E

(1)
2 = E+; E

(1)
3 = E

(1)
4 = E−,

E± = 1

2

(
ε1 + ε2 ±

√
(ε1 − ε2)2 + 4V 2

)
.

4. N = 2
Six possible Fock states:

|2;F 〉 = |2; 11; 00〉(−), |2; 00; 11〉(−);
|2; 10; 10〉(−); |2; 10; 01〉(−);
|2; 01; 10〉(−); |2; 01; 01〉(−).

Two of the Fock states are already eigenstates of H :

H |2; 10; 10〉(−) = (ε1 + ε2) |2; 10; 10〉(−),
H |2; 01; 01〉(−) = (ε1 + ε2) |2; 01; 01〉(−)

�⇒ E
(2)
1,2 = ε1 + ε2,
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H |2; 11; 00〉(−) = 2ε1 |2; 11; 00〉(−) − V |2; 01; 10〉(−) + V |2; 10; 01〉(−),
H |2; 00; 11〉(−) = 2ε2 |2; 00; 11〉(−) + V |2; 10; 01〉(−) − V |2; 01; 10〉(−),
H |2; 10; 01〉(−) = (ε1 + ε2) |2; 10; 01〉(−) + V |2; 00; 11〉(−) + V |2; 11; 00〉(−),
H |2; 01; 10〉(−) = (ε1 + ε2) |2; 01; 10〉(−) − V |2; 11; 00〉(−) − V |2; 00; 11〉(−).

We therefore still have to solve the following 4× 4 secular determinant:

0
!=

∣∣∣∣∣∣∣∣

2ε1 − E 0 V −V
0 2ε2 − E V −V
V V ε1 + ε2 − E 0
−V −V 0 ε1 + ε2 − E

∣∣∣∣∣∣∣∣

=

=

∣∣∣∣∣∣∣∣

2ε1 − E −2ε2 + E 0 0
0 2ε2 − E V −V
V V ε1 + ε2 − E 0
0 0 ε1 + ε2 − E ε1 + ε2 − E

∣∣∣∣∣∣∣∣

=

= (ε1 + ε2 − E)

∣∣∣∣∣∣

2ε1 − E −2ε2 + E 0
0 2ε2 − E V

V V ε1 + ε2 − E

∣∣∣∣∣∣
−

− (ε1 + ε2 − E)

∣∣∣∣∣∣

2ε1 − E −2ε2 + E 0
0 2ε2 − E −V
V V 0

∣∣∣∣∣∣
.

From this, we can read off another possible solution:

E
(2)
3 = ε1 + ε2.

It remains to calculate:

0 = (2ε1 − E)(2ε2 − E)(ε1 + ε2 − E)− V 2(2ε2 − E)−
− V 2(2ε1 − E)− V 2(2ε2 − E)− V 2(2ε1 − E) =

= (2ε1 − E)(2ε2 − E)(ε1 + ε2 − E)−
− 2V 2(2ε2 − E + 2ε1 − E).

This immediately yields the next solution:

E
(2)
4 = ε1 + ε2.
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Finally, we have only a quadratic equation:

0 = (2ε1 − E)(2ε2 − E)− 4V 2 �⇒ E
(2)
5,6 = 2E±.

5. N = 3

|3;F 〉 = |3; 01; 11〉(−), |3; 10, 11〉(−), |3; 11, 01〉(−), |3; 11, 10〉(−),
H |3; 01, 11〉(−) = (ε1 + 2ε2)|3; 01, 11〉(−) − V |3; 11, 01〉(−),
H |3; 10, 11〉(−) = (ε1 + 2ε2)|3; 10, 11〉(−) − V |3; 11, 10〉(−),
H |3; 11, 01〉(−) = (2ε1 + ε2)|3; 11, 01〉(−) − V |3; 01, 11〉(−),
H |3; 11, 10〉(−) = (2ε1 + ε2)|3; 11, 10〉(−) − V |3; 10, 11〉(−).

The secular determinant:

0
!=

∣∣∣∣∣∣∣∣

(ε1 + 2ε2)− E 0 −V 0
0 (ε1 + 2ε2)− E 0 −V
−V 0 (2ε1 + ε2)− E 0

0 −V 0 (2ε1 + ε2)− E

∣∣∣∣∣∣∣∣

=

= −

∣∣∣∣∣∣∣∣

(ε1 + 2ε2)− E 0 −V 0
−V 0 (2ε1 + ε2)− E 0

0 (ε1 + 2ε2)− E 0 −V
0 −V 0 (2ε1 + ε2)− E

∣∣∣∣∣∣∣∣

=

=

∣∣∣∣∣∣∣∣

(ε1 + 2ε2)− E −V 0 0
−V (2ε1 + ε2)− E 0 0

0 0 (ε1 + 2ε2)− E −V
0 0 −V (2ε1 + ε2)− E

∣∣∣∣∣∣∣∣

=

=
{
[(ε1 + 2ε2)− E][(2ε1 + ε2)− E] − V 2

}2

�⇒ E
(3)
1,2 = Ẽ+; E

(3)
3,4 = Ẽ−,

Ẽ± = E± + (ε1 + ε2).

N = 4

|4;F 〉 = |4; 11, 11〉(−),
H |4;F 〉 = 2(ε1 + ε2)|4; 11, 11〉(−)

�⇒ E(4) = 2(ε1 + ε2).
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Section 2.1.4

Solution 2.1.1

k = 2π

L

(
nx, ny, nz

)
, nx,y,z = 0,±1,±2, . . . ,±

(
N ′

2
− 1

)
,
N ′

2
,

L = N ′ax = N ′ay = N ′az, ax,y,z = a.

We can see immediately that:

∑

k

eik · (Ri−Rj ) = N ′3 = N, when i = j.

We thus need to discuss only the case i �= j :

∑

k

eik · (Ri−Rj ) =

=
∑

kx

eikx(Rix−Rjx)∑

ky

eiky(Riy−Rjy)∑

kz

eikz(Riz−Rjz) =

=
∑

nx

ei 2π
N ′ nx(ix−jx)

∑

ny

ei 2π
N ′ ny(iy−jy)

∑

nz

ei 2π
N ′ nz(iz−jz).

We compute the first factor as an example:

ix, jx ∈ Z with − N ′

2
< ix, jx ≤ +N

′

2
.

∑

nx

ei 2π
N ′ nx(ix−jx) =

=
N ′/2∑

nx=0

ei 2π
N ′ nx(ix−jx) +

−1∑

nx=−N ′
2 +1

ei 2π
N ′ nx(ix−jx) =

=
N ′/2∑

nx=0

ei 2π
N ′ nx(ix−jx) +

N ′−1∑

nx=N ′
2 −1

ei 2π
N ′ nx(ix−jx) e−i 2π

N ′N
′(ix−jx)

︸ ︷︷ ︸
=+1

=

=
N ′−1∑

nx=0

ei 2π
N ′ nx(ix−jx) = 1− ei2π(ix−jx)

1− ei 2π
N ′ (ix−jx)

.
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For ix �= jx , the numerator is zero and the denominator is finite. Completely
analogous expressions are found for the y- and z-components. We have thereby
proved the contention:

1

N

∑

k

eik · (Ri−Rj ) = δij !

Solution 2.1.2

aiσ = 1√
N

1.BZ∑

k

eik ·Ri akσ

�⇒ [
aiσ , ajσ ′

]
+ =

1

N

∑

k

∑

k′
ei(k ·Ri+k′ ·Rj ) [akσ , ak′σ ′ ]+︸ ︷︷ ︸

=0

= 0.

In complete analogy, one finds:

[
a+iσ , a

+
jσ ′
]

+ = 0.

It remains to determine:

[
aiσ , a

+
jσ ′
]

+ =
1

N

∑

k

∑

k′
ei(k ·Ri−k′ ·Rj )

[
akσ , a

+
k′σ ′
]

+ =

= 1

N

∑

k

∑

k′
ei(k ·Ri−k′ ·Rj )δσσ ′δkk′ =

= δσσ ′
1

N

∑

k

eik ·(Ri−Rj ) =

= δσσ ′δij (cf. Exercise 2.1.1).

Solution 2.1.3

1.

p(y) =
y∫

−∞
dx g(x) ⇐⇒ g(y) = dp(y)

dy
.

Through integration by parts, we find that:

+∞∫

−∞
dx g(x)f−(x) = p(x)f−(x)|+∞−∞ −

+∞∫

−∞
dx p(x)

∂f−(x)
∂x

.
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The first term vanishes at the upper bound of the integration, since f−(x) goes to
zero more quickly than p diverges. At the lower bound, f−(x) = 1 and p(x) = 0.
We have therefore found that:

I (T ) = −
+∞∫

−∞
dx p(x)

∂f−(x)
∂x

.

The second factor on the right-hand side differs notably from zero only within
the thin Fermi layer (μ± 4kBT )!

2. Taylor series expansion:

p(x) = p(μ)+
∞∑

n=1

(x − μ)n

n!
(

dnp(x)

dxn

)

x=μ
.

The first term makes the following contribution:

J0(μ) = −p(μ)
+∞∫

−∞
dx
∂f−(x)
∂x

= p(μ).

In the sum, only even powers of (x − μ) contribute, since

∂f−(x)
∂x

= −β eβ(x−μ)
[
eβ(x−μ) + 1

]2 =
−β

[
e(1/2)β(x−μ) + e−(1/2)β(x−μ)

]2

is an even function of (x − μ).
We insert this expansion for p(x) into the integral I (T ):

I (T , μ) = J0(μ)+ β

∞∑

n=1

1

(2n)!

(
d2n−1

dx2n−1 g(x)

)

x=μ
J2n(T ).

Here, we have made use of the following abbreviation:

J2n(T ) =
+∞∫

−∞
dx (x − μ)2n

eβ(x−μ)
[
eβ(x−μ) + 1

]2 .

We can evaluate this expression further:

J2n(T ) = β−(2n+1)

+∞∫

−∞
dy y2n ey

(ey + 1)2
=
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= −2β−(2n+1)

⎛

⎝ d

dλ

∞∫

0

dy
y2n−1

eλy + 1

⎞

⎠

λ=1

=

= −2β−(2n+1)

⎛

⎝ d

dλ
λ−2n

∞∫

0

du
u2n−1

eu + 1

⎞

⎠

λ=1

=

= 4nβ−(2n+1)
(

1− 21−2n
)
 (2n)ζ(2n).

Riemann’s ζ function:

ζ(n) =
∞∑

p=1

1

pn
= 1
(
1− 21−n) (n)

∞∫

0

du
un−1

eu + 1
,

n ∈ N; then:  (n) = (n− 1)!

In particular:

ζ(2) = π2

6
; ζ(4) = π4

90
; ζ(6) = π6

945
; . . .

This implies that:

I (T , μ) = p(μ)+ 2
∞∑

n=1

(
1− 21−2n

)
(kBT )

2n ζ(2n)g(2n−1)(μ).

3. The value of this so-called

Sommerfeld expansion

becomes particularly clear for functions g(x) for which

g(n)(x)

∣∣∣
x=μ ≈

g(μ)

μn

is valid, such as e.g. the density of states ρ0(x) ∼ √
x in the Sommerfeld model

(see Exercise 2.1.4). Then the series converges in fact very quickly, since the
ratios of subsequent terms are of the order of

(
kBT

μ

)2 (
≈ 10−4 for metals at room temperature

)
.
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As a rule, one needs to include only the first few terms in the sum:

+∞∫

−∞
dx g(x)f−(x) =

μ∫

−∞
dx g(x)+ π2

6
(kBT )

2 g′(μ)+

+ 7π4

360
(kBT )

4 g′′′(μ)+O
[
(kBT/μ)

6
]
.

Solution 2.1.4

1. The Schrödinger equation:

− h̄2

2m
�ψk(r) = ε(k)ψk(r),

� = d2

dx2
+ d2

dy2
+ d2

dz2
.

Trial solution:

ψk(r) = αeik ·r, |ψk(r)|2 d3r =
Probability that the electron
is to be found within the volume element d3r at
the position r.

Normalisation:

1
!=
∫

V

d3r |ψk(r)|2 �⇒ α = 1√
V
.

Eigenfunctions:

ψk(r) = 1√
V

eik · r.

This solution takes no boundary conditions into account. If the electrons remain
within the crystal, we would in fact have to require that ψ ≡ 0 at the
crystal boundaries. This, however, proves not to be expedient. Periodic boundary
conditions are easier to work with and can be justified in the thermodynamic limit
(N →∞, V →∞, N/V → const).

ψk(x + L, y, z)
!=ψk(x, y + L, z)

!=ψk(x, y, z+ L)
!=ψk(x, y, z)

�⇒ kx,y,z = 2π

L
nx,y,z, nx,y,z ∈ Z.
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Fig. A.1

“Grid volume” = volume per state in k-space:

�k = (2π)3

L3 = (2π)3

V
.

Energy eigenvalues:

ε(k) = h̄2k2

2m
= h̄2

2m

(
k2
x + k2

y + k2
z

)
= 2h̄2π2

mL2

(
n2
x + n2

y + n2
z

)
.

From this, discrete energy levels result from the boundary conditions!
2. In the ground state, the electrons occupy all the states with

ε(k) ≤ εF = h̄2k2
F

2m
,

εF: Fermi energy, kF: Fermi wavevector.
Overall number of electrons:

N = 2
k≤kF∑

k

1.

The factor 2 appears because of spin degeneracy:

N = 2

�k

∫

k≤kF

d3k = 2V

(2π)3
4π

3
k3

F

�⇒ kF =
(

3π2n
)1/3 ; εF = h̄2

2m

(
3π2n

)2/3
.

3.

ε̄ = 2

N

k≤kF∑

k

h̄2k2

2m
= 2

N

h̄2

2m
4π

kF∫

0

dk k4 1

�k
=
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= 2

N

4πh̄2

2m

k5
F

5

V

(2π)3
= 2

N

4πh̄2

2m

k2
F

5
3π2n

V

8π3
=

= 3

5

h̄2k2
F

2m
= 3

5
εF.

4.

ρ0(E)dE = the number of states within the energy interval [E;E + dE],

ρ0(E)dE = 2

�k

∫

shell[E;E+dE]

d3k.

The integration is carried out over a shell in k-space, which contains the k-vectors
belonging to energies between E and E + dE. With the phase-space volume

ϕ(E) =
∫

ε(k)≤E
d3k = 4π

3
k3

∣∣∣∣∣∣∣
ε(k)=E

= 4π

3

(
2m

h̄2
E

)3/2

,

it follows that

dϕ(E)

dE
= 2π

(
2m

h̄2

)3/2√
E.

Furthermore, we have:

ρ0(E)dE = 2V

(2π)3

(
dϕ(E)

dE

)
dE

�⇒ ρ0(E) =
{
d
√
E, when E ≥ 0,

0 otherwise,

d = V

2π2

(
2m

h̄2

)3/2

= 3N

2ε3/2
F

.

5.

n = N/V : average electron density,
υ = 1/n : mean volume per electron,

υ = 4π

3
(aBrs)

3,
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aB = 4πε0h̄
2

me2
: first Bohr radius,

1ryd ≡ 1

4πε0

e2

2aB
= me4

2h̄2(4πε0)2
,

aBrs =
(

3υ

4π

)1/3

=
(

3

4πn

)1/3

�⇒ kFaBrs =
(

9π

4

)1/3

= α.

With this, we find:

εF = h̄2k2
F

2m
= h̄2

2m
(kFaBrs)

2 1

a2
Br

2
s

=

= α2

r2
s

(
h̄2

2m

m2e4

(4πε0)2h̄
4

)

= α2

r2
s

(
me4

2h̄2 (4πε0)2

)
.

And thus:

εF = α2

r2
s

[ryd] (α = 1.92)

�⇒ E0 = Nε̄ = N
3

5
εF = N

2.21

r2
s

[ryd].

Solution 2.1.5

1. From Exercise 1.4.9, we have:

〈n̂i〉 = {exp[β(εi − μ)] + 1}−1 .

This is the probability that the state of energy εi is occupied at a temperature T !
In the Sommerfeld model for the electrons in a metal, this implies that:

〈n̂kσ 〉 = f−[E = ε(k)],

f−(E) = 1

eβ(E−μ) + 1
.

Fig. A.2
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At T �= 0, the kinetic energy of the electrons increases. Some of them leave
the levels at ε < εF for higher-lying levels which are not occupied at T = 0.
However, for all temperatures, we have:

f−(E = μ) = 1

2
.

The broadening of the Fermi edge with increasing temperature occurs symmet-
rically:

f−(μ+�E) = 1− f−(μ−�E),

df−(E)
dE

= −β eβ(E−μ)
(
eβ(E−μ) + 1

)2 −→E→μ
− 1

4kBT
.

The width of the broadened Fermi layer can thus be estimated to be approxi-
mately 4kBT !

μ = μ(T ) (cf. part 3); μ(T = 0) = εF.

Numerical values:

kBT [eV] = T [K]
11605

,

εF = 1 · · · 10 eV (typical of metals)

�⇒ kBT

εF
≥ 1

40
(at T = 290 K).

Thus, at usual temperatures, only a narrow region around the Fermi edge is
broadened. The high-energy tail of the distribution

E − μ� kBT ; f−(E) ≈ exp[−β(E − μ)],

corresponds to the classical Boltzmann distribution.
2. f−(E)ρ0(E) = density of the occupied states:

N = 2

+∞∫

−∞
dE f−(E)ρ0(E),

U(T ) = 2

+∞∫

−∞
dEEf−(E)ρ0(E).
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Fig. A.3

More formally:

N =
∑

kσ

〈n̂kσ 〉 = 2
∑

k

f−(ε(k)),

U(T ) = 〈H 〉 =
∑

kσ

ε(k) 〈n̂kσ 〉 = 2
∑

k

ε(k)f−(ε(k)),

ρ0(E) =
∑

k

δ(E − ε(k))

�⇒ N =
+∞∫

−∞
dE f−(E)ρ0(E),

U(T ) =
+∞∫

−∞
dE Ef−(E)ρ0(E).

The particle number N is in fact naturally not dependent on the temperature!
3.

ρ0(E) =
⎧
⎨

⎩

3N
2ε3/2

F

√
E for E ≥ 0,

0 otherwise.

fulfils the conditions for the Sommerfeld expansion!

N ≈
μ∫

−∞
dE ρ0(E)+ π2

6
(kBT )

2 ρ′0(μ)+ · · · =

= 3N

2ε3/2
F

(
2

3
μ3/2 + π2

6
(kBT )

2 1

2
μ−1/2 + · · ·

)

�⇒ 1 ≈
(
μ

εF

)3/2

⎡

⎢⎢⎢
⎣

1+ π2

8

(
kBT

μ

)2

︸ ︷︷ ︸
typically≈10−4!

+ · · ·

⎤

⎥⎥⎥
⎦
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�⇒ μ

εF
≈ 1− 2

3

π2

8

(
kBT

μ

)2

�⇒ μ ≈ εF

[

1− π2

12

(
kBT

εF

)2
]

.

The temperature dependence is thus as a rule very weak!
4.

U(T ) ≈
μ∫

0

dE Eρ0(E)+ π2

6
(kBT )

2 [μρ′0(u)+ ρ0(μ)
] =

= 2

5
μ2 ρ0(μ)+ π2

4
(kBT )

2 ρ0(μ) =

= 3N

2ε3/2
F

[
2

5
μ5/2 + π2

4
(kBT )

2 μ1/2
]
=

= 3

5
NεF

[(
μ

εF

)5/2

+ 5π2

8

(
kBT

εF

)2 (
μ

εF

)1/2
]

,

(
μ

εF

)n
≈ 1− n

π2

12

(
kBT

εF

)2

,

U(T ) = U(0)

[

1+ 5π2

8

(
kBT

εF

)2

− 5π2

8

(
kBT

εF

)2

+ · · ·
]

�⇒ U(T )− U(0) = U(0)
5π2

12

(
kBT

εF

)2

+O

[(
kBT

εF

)4
]

.

Specific heat:

cV =
(
∂U

∂T

)

V

= γ T

γ = U(0)
5π2

6

k2
B

ε2
F

= 1

2
Nπ2 k

2
B

εF
= 1

3
π2k2

Bρ0 (εF).

5. The grand canonical ensemble:
Entropy:

S = kB
∂

∂T
(T ln�),
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S = ∂

∂T

{

kBT
∑

kσ

ln
(

1+ e−β(ε(k)−μ)
)}

=

= kB

∑

kσ

ln
(

1+ e−β(ε(k)−μ)
)
+

+ kBT
1

kBT 2

∑

kσ

e−β(ε(k)−μ)

1+ e−β(ε(k)−μ)
(ε(k)− μ)

(
∂μ

∂T
≈ 0

)
,

�⇒ S =
∑

kσ

{
KB ln

(
1

1− 〈n̂kσ 〉
)
+ kBβ(ε(k)− μ) 〈n̂kσ 〉

}
,

−β(ε(k)− μ) = ln〈n̂kσ 〉 + ln
(

1+ e−β(ε(k)−μ)
)
=

= ln〈n̂kσ 〉 − ln(1− 〈n̂kσ 〉).

With this, we then have:

S = −kB

∑

kσ

[
ln(1− 〈n̂kσ 〉)+ 〈n̂kσ 〉 ln〈nkσ 〉 − 〈n̂kσ 〉 ln(1− 〈n̂kσ 〉)

]
,

S = −kB

∑

kσ

[
〈n̂kσ 〉 ln〈n̂kσ 〉︸ ︷︷ ︸

Contribution of the
electrons

+ (1− 〈n̂kσ 〉) ln(1− 〈n̂kσ 〉)︸ ︷︷ ︸
Contribution of the

holes

]
.

Behaviour for T → 0:

ε(k) > μ �⇒ 〈n̂kσ 〉 −−−→
T→0

0; ln(1− 〈n̂kσ 〉) −−−→
T→0

0,

ε(k) < μ �⇒ 〈n̂kσ 〉 −−−→
T→0

1; ln〈n̂kσ 〉 −−−→
T→0

0.

From all this, the validity of the Third Law follows:

S −−−→
T→0

0.

Solution 2.1.6

1. Operator for the electron density:

ρ̂(r) =
N∑

i=1

δ(r− r̂i ).
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Second quantisation with Wannier states |iσ 〉:

ρ̂(r) =
∑

ij

σσ ′

〈iσ |δ (r− r̂′
) |jσ ′〉a+iσ ajσ .

Matrix element:

〈iσ |δ(r− r̂′)|jσ ′〉 =
∑

σ ′′

∫
d3r ′′ 〈iσ |δ(r− r̂′)|r′′σ ′′〉〈r′′σ ′′|jσ ′〉 =

=
∑

σ ′′

∫
d3r ′′ δ

(
r− r′′

) 〈iσ |r′′σ ′′〉〈r′′σ ′′|jσ ′〉 =

=
∑

σ ′′
δσσ ′′δσ ′′σ ′ 〈i|r〉〈r|j 〉 =

= δσσ ′ω
∗(r− Ri )ω

(
r− Rj

)

�⇒ ρ̂(r) =
∑

ijσ

(
ω∗(r− Ri )ω

(
r− Rj

))
a+iσ ajσ .

2.
∫

d3r ω∗(r− Ri )ω
(
r− Rj

) = δij

�⇒
∫

d3rρ̂(r) =
∑

ijσ

δij a
+
iσ ajσ =

∑

iσ

n̂iσ

�⇒ N̂ =
∫

d3rρ̂(r).

3. In the jellium model: Bloch functions �⇒ plane waves.
Wannier functions:

ω(r− Ri ) = 1√
N

∑

k

e−ik ·Ri 1√
V

eik ·r.

This implies that:

〈iσ |δ (r− r̂′
) |jσ ′〉 = δσσ ′

1

VN

∑

kk′
e−ik(r−Ri )eik′(r−Rj ) =

= δσσ ′
1

V

∑

q

eiq ·r 1

N

∑

k

eik ·Ri e−i(k+q) ·Rj .
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It then follows that:

ρ̂(r) = 1

V

∑

q

ρ̂qeiq ·r,

ρ̂q = 1

N

∑

ijσ

∑

k

eik ·Ri e−i(k+q) ·Rj a+iσ ajσ =
∑

k,σ

a+kσ ak+qσ .

Solution 2.1.7

ρ̂(r) =
∑

σ ′,σ ′′

∫∫
d3r ′d3r ′′ 〈r′σ ′|δ(r− r̂)|r′′σ ′′〉ψ̂+

σ ′
(
r′
)
ψ̂σ ′′

(
r′′
) =

=
∑

σ ′,σ ′′

∫∫
d3r ′d3r ′′δ

(
r− r′′

) 〈r′σ ′|r′′σ ′′〉ψ̂+
σ ′
(
r′
)
ψ̂σ ′′

(
r′′
) =

=
∑

σ ′,σ ′′

∫∫
d3r ′d3r ′′ δ

(
r− r′′

)
δ
(
r′ − r′′

)
δσ ′σ ′′ψ̂

+
σ ′
(
r′
)
ψ̂σ ′′

(
r′′
) =

=
∑

σ

ψ̂+σ (r)ψ̂σ (r).

Solution 2.1.8
The Coulomb interaction Hee:

Hee = 1

2

∑

ijkl
σ1,...,σ4

υ(iσ1, jσ2; kσ3, lσ4)a
+
iσ1
a+jσ2

alσ4akσ3 .

Matrix element:

υ(iσ1, jσ2; kσ3, lσ4) = e2

4πε0

〈
(iσ1)

(1)(jσ2)
(2)
∣∣∣∣

1

r̂(1) − r̂′(2)

∣∣∣∣ (kσ3)
(1)(lσ4)

(2)
〉
=

= δσ1σ3δσ2σ4υ(ij, kl),

υ(ij, kl) = e2

4πε0

∫∫
d3r1d3r2

〈

i(1)j (2)

∣∣∣∣∣
1

r̂(1) − r̂′(2)

∣∣∣∣∣
r(1)1 r(2)2

〉 〈
r(1)1 r(2)2

∣∣∣ k(1)l(2)
〉
=

= e2

4πε0

∫∫
d3r1d3r2

1

|r1 − r2|
〈
i(1)j (2)

∣∣∣ r(1)1 r(2)2

〉 〈
r(1)1 r(2)2

∣∣∣ k(1)l(2)
〉
,
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〈r|i〉 = ω(r− Ri ) : Wannier function

�⇒ υ(ij, kl)= e2

4πε0

∫∫
d3r1d3r2

ω∗(r1−Ri )ω∗
(
r2−Rj

)
ω(r1−Rk)ω(r2−Rl )

|r1 − r2| .

Hamiltonian:

H =
∑

ijσ

Tij a
+
iσ ajσ +

1

2

∑

ijkl

σσ ′

υ(ij ; kl)a+iσ a+jσ ′alσ ′akσ .

The jellium model:

ω(r− Ri ) = 1√
VN

∑

k

eik · (r−Ri ).

As explained in detail in Sect. 2.1.2, an explicit calculation of the Coulomb matrix
element requires the introduction of a convergence-inducing factor:

υα(ij ; kl) = 1

V 2N2

e2

4πε0

∫∫
d3r1d3r2

∑

k1,...,k4

e−α|r2−r2| ·

· e−ik1(r1−Ri )e−ik2(r2−Rj )eik3(r1−Rk)eik4(r2−Rl )

|r1 − r2| =

= 1

N2

∑

k1,...,k4

ei(k1Ri+k2Rj−k3Rk−k4Rl )·

· e2

4πε0

1

V 2

∫∫
d3r1d3r2

e−i(k1−k3)·r1 e−i(k2−k4)·r2

|r1 − r2| e−α|r1−r2|.

The integrals were already computed in (2.56) and (2.59):

υα(ij ; kl) =

= 1

N2

∑

k1,...,k4

ei(k1 ·Ri+k2Rj−k3Rk−k4·Rl )δk1−k3,k4−k2

e2

ε0V
[
(k1 − k3)2 + α2

] .

Solution 2.1.9

1.

ρ̂(r) = 1

V

∑

q

ρ̂qeiq · r.
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It then follows that:

G(r, t) = 1

N

1

V 2

∑

q,q′

〈
ρ̂qρ̂q′(t)

〉 ∫
d3r ′eiq · (r′−r)eiq′ · r′ =

= 1

NV

∑

q,q′

〈
ρ̂qρ̂q′(t)

〉
e−iq · rδ−q,q′ =

= 1

NV

∑

q

〈
ρ̂q ρ̂−q(t)

〉
e−iq · r.

This is the conditional probability of finding a particle at time t at the position r,
when at time t = 0, one was located at r = 0.
An homogeneous system:

〈
ρ
(
r′ − r, 0

)
ρ
(
r′, t
)〉 = 〈ρ(−r, 0)ρ(0, t)〉 = 〈ρ(0, 0)ρ(r, t)〉

�⇒ G(r, t) = V

N
〈ρ(0, 0)ρ(r, t)〉 .

2.

G(r, 0) = 1

N

∫
d3r ′

∑

i, j

〈
δ
(
r′ − r− r̂i

)
δ
(
r′ − r̂j

)〉 = 1

N

∑

i, j

〈
δ
(
r+ r̂i − r̂j

)〉 =

= 1

N

∑

i

δ(r)+ 1

N

i �=j∑

i, j

〈
δ
(
r+ r̂i − r̂j

)〉 =

= δ(r)+ 1

N

i �=j∑

i, j

〈
δ
(
r+ r̂i (0)− r̂j (0)

)〉
.

By comparison, we find:

ng(r) = 1

N

i �=j∑

i, j

〈
δ
(
r+ r̂i (0)− r̂j (0)

)〉
.

g(r) is a measure of the probability of finding two particles at a mutual distance
r at a particular time.

3. The dynamic structure factor:

S(q, ω) =
∫

d3r

+∞∫

−∞
dt G(r, t)ei(q · r−ωt) =
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1.= 1

NV

∑

q′

∫
d3r

+∞∫

−∞
dt ei(q−q′)·r e−iωt 〈ρ̂q′ ρ̂−q′(t)〉 =

= 1

N

∑

q′

+∞∫

−∞
dt e−iωt δq,q′ 〈ρ̂q′ ρ̂−q′(t)〉

�⇒ S(q, ω) = 1

N

+∞∫

−∞
dt e−iωt 〈ρ̂q ρ̂−q(t)〉.

With

1

2π

+∞∫

−∞
dω e−iωt = δ(t),

it then finally follows that:

S(q) = 2π

N

〈
ρ̂qρ̂−q

〉
.

4. T = 0 �⇒ averaging over the ground state |E0〉.

S(q, ω) = 1

N

+∞∫

−∞
dt e−iωt 〈E0

∣∣ρ̂q ρ̂−q(t)
∣∣E0

〉
.

Time dependence:

ρ̂−q(t) = e
i
h̄
H t
ρ̂−qe−

i
h̄
H t
.

Completeness:

1 =
∑

n

|En〉〈En|.

This implies that:

S(q, ω) = 1

N

+∞∫

−∞
dt e−iωt

∑

n

〈E0|ρ̂q|En〉〈En|ρ̂−q(t)|E0〉 =

= 1

N

∑

n

〈E0|ρ̂q|En〉〈En|ρ̂−q|E0〉
+∞∫

−∞
dt e−iωt e

i
h̄
(En−E0)t =
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= 2π

N

∑

n

〈E0|ρ̂q|En〉〈En|ρ̂−q|E0〉δ
[
ω − 1

h̄
(En − E0)

]
.

We further make use of ρ̂−q = ρ̂+q :

S(q, ω) = 2π

N

∑

n

|〈En|ρ̂+q |E0〉|2δ
[
ω − 1

h̄
(En − E0)

]
.

Solution 2.1.10

1. The operator

ρ̂+q =
∑

kσ

a+k+qσ akσ

creates particle-hole pairs. The ground state |E0〉 corresponds to a filled Fermi
sphere.

q = 0 :
〈
En

∣∣∣ρ̂+q
∣∣∣E0

〉
= Nδn, 0,

q �= 0 :
〈
En

∣∣∣ρ̂+q
∣∣∣E0

〉
=

⎧
⎪⎪⎨

⎪⎪⎩

1, when |En〉 corresponds to a particle-hole

excitation, which occurs in ρ̂+q ,
0, otherwise.

With the general result 4 from Exercise 2.1.9, it then follows that:

S(q, ω)
(q �=0)= 2

2π

N

∑

k

�(kF − k) [1−�(kF − |k+ q|)] ·

· δ
[
ω − 1

h̄
(ε(k+ q)− ε(k))

]
,

S(0, ω) = 2πNδ(ω).

The term q = 0 drops out in the jellium model. We therefore assume from
now on that q �= 0:

Fig. A.4
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S(q) =
+∞∫

−∞
dω S(q, ω) =

= 4π

N

∑

k

[�(kF − k)−�(kF − k)�(kF − |k+ q|)] =

= 2π − 4π

N

∑

k

�(kF − k)�(kF − |k+ q|) =

= 2π

[
1− 2

N

V

(2π)3

∫
d3k�(kF − k)�(kF − |k+ q|)

]
.

The integral on the right-hand side was computed in Sect. 2.1.2. We adopt (2.95):

S(q) = 2π

[
1− 2

N

V

8π3

4π

3
�(2kF − q)

(
k3

F −
3

4
qk2

F +
1

16
q3
)]

.

With k3
F = 3π2 N

V
, we finally obtain:

S(q) = 2π

[

1−�(2kF − q)

(

1− 3q

4kF
+ q3

16k3
F

)]

.

S(q = 0) = 2πN .
2.

G(r, 0)
1.= 1

NV

∑

q

〈
ρ̂q ρ̂−q

〉
e−iq · r = 1

2πV

∑

q

S(q)e−iq · r =

= 2πN

2πV
+ 1

V

∑

q

e−iq · r− 2

VN

∑

q

∑

k

�(kF − k)�(kF−|k+q|)e−iq · r.

In the last two terms, we can add in the missing term q = 0, since it just cancels:

G(r, 0) = n+ δ(r)− 2

VN

∑

k

∑

p

e−i(p−k)·r�(kF − k)�(kF − p)
!= δ(r)+ng(r).

From this, it follows that:

g(r) = 1− 2

n2

1

(2π)6

∫∫
d3p d3k e−i(p−k)·r�(kF − k)�(kF − p) =

= 1− 2

n2

[
1

(2π)3

∫
d3p e−ip·r�(kF − p)

]2

=
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= 1− 2

n2

⎡

⎣ 1

4π2

kF∫

0

dp p2 1

−ipr

(
e−ipr − eipr

)
⎤

⎦

2

=

= 1− 2

n2

⎡

⎣ 1

2π2

1

r

kF∫

0

dp p sinpr

⎤

⎦

2

=

= 1− 1

2π4n2

1

r2

(
sin kFr

r2
− kF

r
cos kFr

)2

=

= 1− k6
F

2π4n2

[
sin kFr − (kFr) cos kFr

k3
Fr

3

]2

.

We thus have as final result:

g(r) = 1− 9

2

[
sin kFr − (kFr) cos kFr

k3
Fr

3

]2

.

Employing the rule of l’Hospital, one can show that:

sin x − x cos x

x3
−−−→
x→0

1

3

�⇒ g(r) −−→
r→0

1

2
Fermi hole,

g(r) −−→
r→0

1.

The Fermi hole results from the Pauli principle, which requires that two electrons
with parallel spins cannot approach each other too closely. The value g(r =
0) = 1/2 is nevertheless not reasonable. The Sommerfeld model neglects the
Coulomb interactions, so that two electrons with antiparallel spins could in
principle approach each other arbitrarily closely.

Fig. A.5
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Solution 2.1.11

ε(k) = T0 + γ1

∑

�

eik · R�.

1. Body-centered cubic (b.c.c.)
Number of nearest neighbours: z1 = 8

R� = a

2
(±1,±1,±1)

a : Lattice constant,
∑

�

eik · R� =
(

eikx a2 + e−ikx a2
) (

eiky a2 + e−iky a2
) (

eikz a2 + e−ikz a2
)

⇐⇒ εb.c.c.(k) = T0 + 8γ1 cos

(
1

2
kxa

)
cos

(
1

2
kya

)
cos

(
1

2
kza

)
.

2. Face-centered cubic (f.c.c.)
z1 = 12

R� = a

2
(±1,±1, 0); a

2
(±1, 0,±1); a

2
(0,±1,±1),

∑

�

eik · R� =
(

eikx a2 + e−ikx a2
) (

eiky a2 + e−iky a2
)
+

+
(

eikx a2 + e−ikx a2
) (

eikz a2 + e−ikz a2
)
+

+
(

eiky a2 + e−iky a2
) (

eikz a2 + e−ikz a2
)

⇐⇒ εf.c.c.(k) = T0 + 4γ1

[
cos

(
1

2
kxa

)
cos

(
1

2
kya

)
+

+ cos

(
1

2
kxa

)
cos

(
1

2
kza

)
+ cos

(
1

2
kya

)
cos

(
1

2
kza

)]
.

Solution 2.1.12
Tight-binding approach:

ψnk(r) = 1√
Ni

Ni∑

j=1

eik · Rj ϕn
(
r− Rj

)

�⇒ ψnk(r+ Ri ) = 1√
Ni

Ni∑

j=1

eik · Rj ϕn
(
r+ Ri − Rj

)
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(Substitution: Rk = Rj − Ri )

�⇒ ψnk(r+ Ri ) = eik · Ri 1√
Ni

Ni∑

k=1

eik ·Rkϕn(r− Rk) =

= eik ·Ri ψnk(r).

This is Bloch’s theorem!

Section 2.2.3

Fig. A.6

Solution 2.2.1

1. Linear Bravais lattice with a two-atom basis:
Primitive translations:

a = aez = 2r0ez.

Basis:

R1 = 0, R2 = r0ez.

Lattice vectors:

Rn1 = na; Rm2 =
(
m+ 1

2

)
a; n,m ∈ Z.

Primitive translations in the reciprocal lattice:

b = bez; b = 2π

a
.

First Brillouin zone:

−π
a
≤ q ≤ +π

a
.



Solutions of the Exercises 547

Reciprocal lattice vectors:

Gm = mb.

2. Longitudinal waves, i.e. the motion of the molecules along the chain consists of
displacements parallel to the chain’s direction.
Force on the (n, 1)-th atom in the z-direction:

from the right: f
(
un2 − un1

) ; u : displacement from the equilibrium position

from the left: f
(
un−1

2 − un1

)

�⇒ Equation of motion for the (n, 1)-th atom:

m1ü
n
1 = f

(
un2 + un−1

2 − 2un1

)
.

Analogously for the (n, 2)-th atom:

m2ü
n
2 = f

(
un+1

1 + un1 − 2un2

)
.

3. This approach contains translational invariance with respect to the two-atom unit
cell and takes into account the fact that the amplitudes can differ, owing to the
different masses of the particles. Inserting into the above equations of motion
yields the following system of equations:

m1
c1√
m1

(−ω2) = f c2√
m2

(
1+ e−iqa

)
− 2

c2√
m1

f,

m2
c2√
m2

(−ω2) = f c1√
m1

(
eiqa + 1

)
− 2

c2√
m2

f.

The secular equation of the homogeneous system of equations

0 =
( 2f

m1
− ω2 −f√

m1m2

(
1+ e−iqa

)

−f√
m1m2

(
1+ eiqa

) 2f
m2
− ω2

)(
c1

c2

)

yields the eigenfrequencies (branches of the dispersion relations):

ω2
1,2(q) = f

⎡

⎣
(

1

m1
+ 1

m2

)
±
√(

1

m1
+ 1

m2

)2

− 2

m1m2
(1− cos qa)

⎤

⎦ .

The two branches of the dispersion relations are periodic in q with a period of
2π
a

. For an arbitrary reciprocal-lattice vector G,
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Gm = mb = m
2π

a
ez,

we clearly have:

ω(q) = ω(q +Gm).

All the physical information can thus be derived from only the first Brillouin
zone,

−π
a
≤ q ≤ +π

a
.

q’s which lie outside it can be transformed into the first Brillouin zone by addition
of a suitable reciprocal-lattice vector without affecting the dispersion relations.

4.

Special cases:

(a) q = 0; ω = ω2 �⇒ ω2(q = 0) = 0
From the system of homogeneous equations, we then find for the amplitudes:

c1

c2
=
√
m1

m2
.

Basis atoms oscillate in phase, but with different amplitudes.
(b) q � π

a
; ω = ω2

ω2
2 ≈ f

[(
1

m1
+ 1

m2

)
−
(

1

m1
+ 1

m2

)√
1− m1m2

(m1 +m2)2
(qa)2

]
≈

≈ f

[(
1

m1
+ 1

m2

)
−
(

1

m1
+ 1

m2

)
+ (qa)2

2(m1 +m2)

]
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�⇒ ω2 ≈ a

√
f

2(m1 +m2)
q.

q � π/a means that λ � 2a. For wavelengths in this range, the atomic
structure of the solid is unimportant and a continuum theory can be applied
as a good approximation. It yields for sound waves the relation:

ω = υsq (υs = velocity of sound).

Thus the lower dispersion branch ω2 describes normal sound waves for long
wavelengths (small values of q); it is therefore called the

acoustic branch.

(c) q = 0, ω = ω1

�⇒ ω1(q = 0) = ωg =
√

2f

(
1

m1
+ 1

m2

)

limiting frequency of the spectrum.

We now obtain for the amplitudes:

c1

c2
= −

√
m2

m1
.

Basis atoms oscillate with different amplitudes and opposite phases. If the
basis atoms have opposite electric charges (e.g. in a NaCl crystal), then an
oscillating electric dipole moment results. It can interact with electromag-
netic radiation and absorb or emit electromagnetic waves. Therefore, one
refers to ω1 as the

optical branch.

(d) Zone boundary: q = ±π
a

ω(1)g = ω1

(
q = ±π

a

)
=
√

2f

m2
(optical),

ω(2)g = ω2

(
q = ±π

a

)
=
√

2f

m1
(acoustic).
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It follows from the system of homogeneous equations that:

ω = ω(1)g �⇒ c1 = 0 : only m2 atoms oscillate,

ω = ω(2)g �⇒ c2 = 0 : only m1 atoms oscillate.

A typical characteristic of the diatomic chain is the

frequency gap: ω(2)g < ω < ω(1)g .

Solutions with real ω in the gap have complex wavenumbers q. The waves
are then spatially damped.

Solution 2.2.2
Trial solution:

xnα(t) = na + unα(t),

unα(t) =
cα√
mα

exp[i (qzna − ωt)].

Periodic boundary conditions:

unα(t)
!= un+Nα (t)

⇐⇒ eiNqza != 1,

qz = n̄
2π

Na
; n̄ = 0,±1,±2, . . . ,+N

2
.

The term−N/2 is not counted, since qz changes from−N/2 to+N/2 by just 2π/a,
i.e. by a reciprocal lattice vector.

ω(qz) = ω(−qz) = ω(q); q = |qz|
�⇒ D(ω)dω = D(q) dq = 2D (qz) dqz.

Every value q is associated twice with the frequency ω, but each wavenumber
component qz = ±q is associated with the frequency only once.

Fig. A.7
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D(qz) = 1
2π
Na

= Na

2π
, (D(qz) : number of qz per unit wavenumber),

υg = dω

dqz
�⇒ D(ω) = 2D(qz)

dqz
dω

= Na

π

l

υg
.

When there are several dispersion branches, we then find all together:

D(ω) = Na

π

3p∑

s=1

1

υ
(s)
g

.

Solution 2.2.3

1. a1, a2, a3: primitive translations

V = (N1a1) · [(N2a2)× (N3a3)] = NVz

periodicity volume,

Vz = a1 · [a2 × a3]
unit cell,

N = N1N2N3

number of primitive unit cells in the periodicity volume

= number of Bravais lattice points in the crystal.

Periodic boundary conditions: For the displacements from the equilibrium
positions, we require:

u
(m1,m2,m3)
S,i

!= u(m1+N1,m2,m3)
S,i

!= u(m1,m2+N2,m3)
S,i

!=
!= u(m1,m2,m3+N3)

S,i

�⇒ q · ai = 2π

Ni
ni, i = 1, 2, 3,

ni = 0,±1,±2, . . . ,+Ni
2
.

There are thus N = N1N2N3 different wavenumbers q:

q =
3∑

j=1

nj

Nj
bj , bj : primitive translations of the reciprocal lattice.
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2. Grid volume

�3q = 1

N1N2N3
b1 · (b2 × b3) ≡ V ∗z

N
,

b1 = 2π

Vz
(a2 × a3) and cyclic permutations

(a2 × a3) · (b2 × b3) = (a2 · b2)(a3 · b3)− (a2 · b3)(a3 · b2) = (2π)2

�⇒ �3q = 1

N

(2π)3

Vz
; V ∗z =

(2π)3

Vz
.

3.

Dr(ω)dω = 1

�3q

∫

shell
(ωr ,ωr+dω)

d3q = V

(2π)3

∫

shell
(ωr ,ωr+dω)

d3q.

4.

dfω = surface-area element ω = const in q-space,

∇qω = vector perpendicular to the surface ω(q) = ω = const

�⇒ dω = ∣∣dq · ∇qω
∣∣ = dq⊥|∇qω| = υgdq⊥

�⇒ volume element within the shell: d3q = dfωdq⊥ = l

υg
dω dfω

�⇒ density of states: Dr(ω) = V

(2π)3

∫

ω=const

dfω

υ
(r)
g

.

5. Overall density of states:

D(ω) =
3p∑

r=1

Dr(ω).

Solution 2.2.4
For the density of states, we make use of the expression obtained in part 4 of
Exercise 2.2.3:

group velocity: υ(r)g = ῡr ,

Bravais lattice: p = 1 �⇒ r = 1, 2, 3.
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There are one longitudinal acoustic and two (generally degenerate) transverse
acoustic dispersion branches:

∫

ω=const

dfω

υ
(r)
g

�⇒ 1

ῡr

∫

ω=const

dfω = 1

ῡr
4πq2(ω) = 4πω2

ῡ3
r

.

Density of states:

DD
r (ω) =

⎧
⎨

⎩

V
2π2ῡ3

r
ω2 for 0 ≤ ω ≤ ωD

r ,

0 otherwise.

Debye frequency:
Condition: the number of possible frequencies per dispersion branch = N ,

N =
ωD
r∫

0

dωDD
r (ω) =

V

6π2ῡ3
r

(
ωD
r

)3

�⇒ ωD
r = ῡr

(
6π2N

V

)1/3

.

Solution 2.2.5

1. Internal energy:

U(T ) = 〈H 〉 =
3p∑

r=1

1.BZ∑

q

h̄ωr(q)
(
〈b+qrbqr 〉 + 1

2

)
,

〈b+qrbqr 〉 = {exp(βh̄ωr(q))− 1}−1 .

(a) High temperatures: kBT � h̄ωr(q)

〈b+qrbqr 〉 =
{

1+ h̄ωr(q)
kBT

+ · · · − 1

}−1

≈ kBT

h̄ωr(q)

�⇒ U(T ) ≈
∑

r,q

kBT

(
1+ 1

2

h̄ωr(q)
kBT

+ · · ·
)
≈ 3pNkBT .

This is the well-known classical result. Each of the 3pN oscillators con-
tributes on the average kBT ( 1

2kBT of kinetic energy and 1
2kBT of potential

energy: equipartition theorem) to the internal energy! �⇒ Specific heat:
CV � 3pNkB (the “Law of Dulong and Petit”).
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(b) Low temperatures: kBT � h̄ωr(q)
The optical branches can be neglected, since

〈b+qrbqr 〉opt. ≈ 0.

This does not apply to the three acoustic branches, since their energies go to
zero for q → 0.
In order to evaluate U(T ), we first convert the summation over q into an
integral over ω. Justify the following representation of the density of states:

Dr(ω) =
∑

q

δ(ω − ωr(q))

�⇒ U(T )− U(0)
↑

Zero-point energy

=
3∑

r=1

+∞∫

−∞
dω

h̄ωDr(ω)

exp(βh̄ω)− 1
.

At low temperatures, we can use the Debye approximation from Exer-
cise 2.2.4 for the acoustic branches:

U(T )− U(0) =
3∑

r=1

V

2π2ῡ3
r

ωD
r∫

0

dω
h̄ω3

eβh̄ω − 1
=

3∑

r=1

3N
(
ωD
r

)3

ωD
r∫

0

dω
h̄ω3

eβh̄ω − 1
.

2. Specific heat

CV =
(
∂U

∂T

)

V

=
3∑

r=1

3N
(
ωD
r

)3
1

kBT 2

ωD
r∫

0

dω
h̄2ω4eβh̄ω

(eβh̄ω − 1)2
,

x = βh̄ω �⇒ dω = kBT

h̄
dx; h̄2ω4 = x4(kBT )

4

h̄2
,

�
(r)
D = h̄ωD

r

kB
(“Debye temperature”)

�⇒ CV ≈
3∑

r=1

3NkB

(
T

�
(r)
D

)3 �
(r)
D /T∫

0

dx
x4ex

(ex − 1)2
.
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Low temperatures:

T � �
(r)
D �⇒

�
(r)
D /T∫

0

dx
x4ex

(ex − 1)2
≈

∞∫

0

dx
x4ex

(ex − 1)2
= 4

15
π4

�⇒ CV = NαT 3 (Debye’s T 3 law”),

α = 4

5
π4kB

3∑

r=1

(
�
(r)
D

)−3
.

Section 2.3.3

Solution 2.3.1
Creation and annihilation operators for Cooper pairs:

b+k = a+k↑a
+
−k↓; bk = a−k↓ak↑.

Here, we have used:

akσ , a
+
kσ : creation and annihilation operators for electrons

in the Bloch representation!

Fundamental commutation relations:

(a)

[bk, bk′ ]− =
[
a−k↓ak↑, a−k′↓ak′↑

]
− = 0,

[
b+k , b

+
k′
]

− = 0,
since the Fermion creation and annihilation
operators mutually anticommute.

(b)

[
bk, b

+
k′
]

− =
[
a−k↓ak↑, a+k′↑a

+
−k′↓

]

− =

= δkk′a−k↓a+−k′↓ − δ−k,−k′a
+
k′↑ak↑

= δkk′
(
1− n̂−k↓ − n̂k↑

)
.

Cooper pairs are thus, in spite of their spin 0, not genuine Bosons, since they
fulfil only two of the three fundamental commutation relations.
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(c)

b2
k =

(
b+k
)2 = 0 as for Fermions,

[bk, bk′ ]+ = 2bkbk′ �= 0 for k �= k′.

They are naturally also not genuine Fermions!

Solution 2.3.2

1. Model Hamiltonian:

H =
∑

kσ

ε(k)a+kσ akσ +
∑

kqσ

Vk(q)a
+
k+qσ a

+
−k−q−σ a−k−σ akσ .

Interactions occur only between the two additional electrons, which by construc-
tion have opposite spins and wavenumbers!

2. Cooper pair state:

|ψ〉 = 1√
2

∑

kσ

ασ (k)a
+
kσ a

+
−k−σ |FS〉 =

= 1√
2

∑

k′σ ′
α−σ ′

(−k′
)
a+−k′−σ ′a

+
k′σ ′ |FS〉 =

= − 1√
2

∑

kσ

α−σ (−k)a+kσ a
+
−k−σ |FS〉

�⇒ ασ (k) = −α−σ (−k).

3.

1
!=〈ψ |ψ〉 = 1

2

∑

kσ
pσ̄

α∗σ (k)ασ̄ (p)〈FS|a−k−σ akσ a
+
pσ̄ a

+
−p−σ̄ |FS〉 =

= 1

2

∑

kσ
pσ̄

α∗σ (k)ασ̄ (p)�(k − kF)�(p − kF)·

·
{
δσ σ̄ δkp〈FS|a−k−σ a+−p−σ̄ |FS〉−

−δσ−σ̄ δk−p〈FS|a−k−σ a+pσ̄ |FS〉
}
=

= 1

2

∑

kσ

α∗σ (k)�(k − kF)�(k − kF)·

· 〈FS|(1− n̂−k−σ )|FS〉 (ασ (k)− α−σ (−k)) =
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2.= 1

2

k>kF∑

kσ

2|ασ (k)|2〈FS|FS〉 =
k>kF∑

kσ

|ασ (k)|2.

Solution 2.3.3

1.

2〈ψ |T |ψ〉 =
=
∑

kpq
σσ ′σ ′′

ε(k)α∗σ ′(p)ασ ′′(q)〈FS|a−p−σ ′apσ ′a
+
kσ akσ a

+
qσ ′′a

+
−q−σ ′′ |FS〉 =

=
∑

kpq
σσ ′σ ′′

ε(k)α∗σ ′(p)ασ ′′(q)�(p − kF)�(q − kF)·

· 〈FS|
{
δσ ′σ δpka−p−σ ′akσ a

+
qσ ′′a

+
−q−σ ′′+

+δσ ′σ ′′δpqa−p−σ ′a+kσ akσ a
+
−q−σ ′′−

− δσ ′−σ ′′δp−qa−p−σ ′a+kσ akσ a
+
qσ ′′
}
|FS〉 =

=
∑

kq
σσ ′′

ε(k)ασ ′′(q)�(q − kF)·

·
{
α∗σ (k)�(k − kF) 〈FS|a−k−σ akσ a

+
qσ ′′a

+
−q−σ ′′ |FS〉+

+α∗σ ′′(q)�(q − kF) 〈FS|a−q−σ ′′a+kσ akσ a
+
−q−σ ′′ |FS〉−

− α∗−σ ′′(−q)�(q − kF) 〈FS|aqσ ′′a
+
kσ akσ a

+
qσ ′′ |FS〉

}
=

=
∑

kq
σσ ′′

ε(k)α∗σ (k)ασ ′′(q)�(q − kF)�(k − kF)·

· 〈FS| (δσσ ′′δkq (1− n̂−k−σ )− δσ−σ ′′δk−q (1− n̂−k−σ )) |FS〉+
+
∑

kq
σσ ′′

ε(k)α∗σ ′′(q)ασ ′′(q)(�(q − kF))
2·

· 〈FS| (δσ−σ ′′δ−qk (1− n̂kσ )+ n̂kσ + δσ ′′σ δqk (1− n̂kσ )+ n̂kσ )|FS〉
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�⇒ 〈ψ |T |ψ〉 = 1

2

∑

kσ

ε(k)α∗σ (k)(�(k − kF))
2(ασ (k)− α−σ (−k))+

+ 1

2

∑

kσ

ε(k)(�(k − kF))
2
(
|α−σ (−k)|2 + |ασ (k)|2

)
+

+ 1

2
2
∑

kσ

ε(k)�(kF − k)

q>kF∑

qσ ′′
|ασ ′′(q)|2 =

= 1

2

k>kF∑

kσ

ε(k) |ασ (k)|2 (2+ 2)+
k<kF∑

kσ

ε(k) =

= 2
k>kF∑

kσ

ε(k) |ασ (k)|2 + 2
k<kF∑

k

ε(k) q. e. d.

2.

2〈ψ |V |ψ〉 =
=

∑

kqσ
p1σ1p2σ2

Vk(q)α∗σ1
(p1)ασ2(p2)�(p1 − kF)�(p2 − kF)·

· 〈FS|a−p1−σ1ap1σ1a
+
k+qσ a

+
−k−q−σ a−k−σ akσ ·

· a+p2σ2
a+−p2−σ2

|FS〉 =

=
∑

kqσ
p1σ1p2σ2

Vk(q)α∗σ1
(p1)ασ2(p2)�(p1 − kF)�(p2 − kF)·

· 〈FS|
{
δσ1σ δp1,k+qa−p1−σ1a

+
−k−q−σ a−k−σ akσ ·

·a+p2σ2
a+−p2−σ2

− δσ1−σ δp1,−k−q ·
·a−p1−σ1a

+
k+qσ a−k−σ akσ a

+
p2σ2

a+−p2−σ2
+

+δσ1σ2δp1p2
a−p1−σ1a

+
k+qσ a

+
−q−k−σ a−k−σ akσ a

+−p2−σ2
−

−δσ1−σ2δp1,−p2a−p1−σ1a
+
k+qσ a

+
−k−q−σ a−k−σ akσ a

+
p2σ2

}
|FS〉 =

=
∑

kqσ
p2σ2

Vk(q)ασ2(p2)�(p2 − kF)·
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· 〈FS|
{ (
α∗σ (k+ q)�(|k+ q| − kF)·

· a−k−q−σ a+−k−q−σ − α∗−σ (−k− q)·

· �(|k+ q| − kF)ak+qσ a
+
k+qσ

)
·

· a−k−σ akσ a
+
p2σ2

a+−p2−σ2
+

+
(
α∗σ2

(p2)�(p2 − kF)a−p2−σ2a
+
k+qσ ·

· a+−q−k−σ a−k−σ akσ a
+−p2−σ2

−
−α∗−σ2

(−p2)�(p2 − kF)ap2σ2a
+
k+qσ ·

· a+−k−q−σ a−k−σ akσ a
+
p2σ2

) }
|FS〉 =

=
∑

kqσ
p2σ2

Vk(q)ασ2(p2)α
∗
σ (k+ q)�(|k+ q| − kF)·

· 2〈FS|a−k−σ akσ a
+
p2σ2

a+−p2−σ2
|FS〉+

+
∑

kqσ
p2σ2

Vk(q)|ασ2(p2)|2�(p2 − kF)
{
〈FS|

(
δ−σ2σ ·

· δ−p2,k+qa
+
−q−k−σ a−k−σ akσ a

+−p2−σ2
−

− δσσ2δp2,k+qa
+
k+qσ a−k−σ akσ a

+−p2−σ2
+

+ a+k+qσ a
+
−k−q−σ a−k−σ akσ

(
1− n̂−p2−σ2

)+
+ δσσ2δp2,k+qa

+
−k−q−σ a−k−σ akσ a

+
p2σ2

−
− δσ−σ2δp2,−k−qa

+
k+qσ a−k−σ akσ a

+
p2σ2

+

+ a+k+qσ a
+
−k−q−σ a−k−σ akσ

(
1− n̂p2σ2

) }|FS〉 =

=
∑

kqσ
p2σ2

2Vk(q)ασ2(p2)α
∗
σ (k+ q)�(|k+ q| − kF)�(k − kF)·

· 〈FS|
(
δσσ2δkp2

(1− n̂k−σ )− δσ−σ2δk−p2
(1− n̂k−σ )

)
|FS〉+

+
∑

kqσ

Vk(q)|ασ (k+ q)|2�(|k+ q| − kF)·
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· 〈FS|
(
a+−k−q−σ a−k−σ akσ a

+
k+qσ − a+k+qσ a−k−σ akσ a

+
−k−q−σ+

+a+k+qσ a
+
−k−q−σ a−k−σ akσ + a+−k−q−σ a−k−σ akσ a

+
k+qσ−

−a+k+qσ a−k−σ akσ a
+
−k−q−σ + a+k+qσ a

+
−k−q−σ a−k−σ akσ

)
|FS〉.

The second sum vanishes, since

〈FS|a+k+qσ = 〈FS|a+−k−q−σ = 0, for |k+ q| > kF.

In the first sum, we make use of:

ασ (k) = −α−σ (−k),

as we have already done several times. We then find:

〈ψ |V |ψ〉 = 2

k>kF|k+q|>kF∑

kqσ

Vk(q)α∗σ (k+ q)ασ (k). q. e. d.

Solution 2.3.4
The energy of the model system in the Cooper pair state according to Exercise 2.3.3
is given by:

E = 〈ψ |H |ψ〉

= 2
k>kF∑

k,σ

ε(k)|ασ (k)|2 + 2
k≤kF∑

k

ε(k)+ 2

k>kF|k+q|>kF∑

k,q,σ

Vk(q)α∗σ (k+ q)ασ (k).

1. For the determination of the ασ (k), we minimise E, coupling in the boundary
condition

k>kF∑

k,σ

|ασ (k)|2 = 1

with the aid of a Lagrange parameter λ:

∂

∂α∗σ (k)

⎛

⎝E − λ

k′>kF∑

k′,σ ′
|ασ ′(k′)|2

⎞

⎠ =
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(k>kF)= 2ε(k)ασ (k)+ 2

k>kF|k+q|>kF∑

q

Vk−q(q)ασ (k− q)− λασ (k)
!= 0.

Multiply by α∗σ (k), then sum over all k and σ (k > kF):

λ = E − 2
k<kF∑

k

ε(k) = Ê.

The Lagrange parameter thus corresponds to the additional energy due to the two
electrons in the Cooper pair. With the simplification for the matrix element given
in Exercise 2.3.2, we then find:

(2ε(k)− Ê)ασ (k) = 2V
k′>kF∑

k′
ασ (k′) ≡ 2Aσ

⇐⇒ Aσ =
∑

k

2V Aσ
2ε(k)− Ê

.

The summation over k naturally runs only over those wavevectors for which V �=
0. We convert the sum into an integral:

1 = 2NV

εF+h̄ωD∫

εF

dx
ρ0(x)

2x − Ê
≈ 2NVρ0(εF)

εF+h̄ωD∫

εF

dx

2x − Ê
≈

≈ 2NVρ0(εF)
1

2
ln

2(εF + h̄ωD)− Ê

2εF − Ê

�⇒ Ê ≈ 2εF − 2h̄ωD
exp (−1/NVρ0(εF))

1− exp (−1/NVρ0(εF))
.

For V �= 0, the energy of the Cooper pair is thus less than the energy of two
electrons at the Fermi edge which do not interact with each other. The Cooper
pair therefore represents a bound state. The Fermi sphere is unstable with respect
to the formation of Cooper pairs!

Solution 2.3.5

1.

1
!=〈BCS|BCS〉 = 〈0|

∏

k

∏

p

(uk + υkbk)
(
up + υpb

+
p

)
|0〉.
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All the operators commute for different wavenumbers. Due to bk|0〉 = 〈0|b+k =
0, we then have:

1
!= 〈0|

∏

k

(uk + υkbk)
(
uk + υkb

+
k

) |0〉 =

= 〈0|
∏

k

(
u2

k + υk
(
bk + b+k

)
uk + υ2

kbkb
+
k

)
|0〉 =

= 〈0|
∏

k

(
u2

k + υ2
kbkb

+
k

)
|0〉 =

Ex.3.1= 〈0|
∏

k

[
u2

k + υ2
k

(
b+k bk + 1− n̂k↑ − n̂−k↓

)] |0〉

b+k bk|0〉 = n̂kσ |0〉 = 0

�⇒ 1
!= 〈0|

∏

k

(u2
k + υ2

k )|0〉 =
∏

k

(u2
k + υ2

k ).

All k terms are equivalent and mutually independent:

1 = u2
k + υ2

k .

2.

〈BCS|b+k bk|BCS〉 =
= 〈0|

∏

q

∏

p

(
uq + υqbq

)
b+k bk

(
up + υpb

+
p

)
|0〉 =

= 〈0|
⎧
⎨

⎩

�=k∏

q

�=k∏

p

(
uq + υqbq

) (
up + υpb

+
p

)
⎫
⎬

⎭
(uk + υkbk)b

+
k bk

(
uk + υkb

+
k

) |0〉 =

= 〈0|
⎧
⎨

⎩

�=k∏

q

�=k∏

p

(
uq + υqbq

) (
up + υpb

+
p

)
⎫
⎬

⎭
υ2

kbkb
+
k bkb

+
k |0〉.

As in part 1: bkb
+
k |0〉 = |0〉

�⇒ 〈BCS|b+k bk|BCS〉 = υ2
k 〈0|

�=k∏

q

�=k∏

p

(
uq + υqbq

) (
up + υpb

+
p

)
|0〉 =
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1.= υ2
k

�=k∏

p

(
u2

p + υ2
p

)
1.= υ2

k .

υ2
k is the probability that the Cooper pair (k ↑,−k ↓) exists! The second

expectation value is computed in a completely analogous manner:
k �= p:

〈BCS|b+k bkb
+
p bp|BCS〉 = 〈0|

⎧
⎨

⎩

�=k,p∏

q

�=k,p∏

q′

(
uq + υqbq

) (
uq′ + υq′b

+
q′
)
⎫
⎬

⎭
·

· (uk + υkbk)b
+
k bk

(
uk + υkb

+
k

)(
up + υpbp

)
b+p bp

(
up + υpb

+
p
)|0〉 =

= 〈0|
⎧
⎨

⎩

�=k,p∏

q

�=k,p∏

q′

(
uq + υqbq

) (
uq′ + υq′b

+
q′
)
⎫
⎬

⎭
υ2

kυ
2
pbkb

+
p bkb

+
k bpb

+
p bpb

+
p |0〉 =

= υ2
kυ

2
p 〈0|

⎧
⎨

⎩

�=k,p∏

q

�=k,p∏

q′

(
uq + υqbq

) (
uq′ + υq′b

+
q′
)
⎫
⎬

⎭
|0〉 =

= υ2
kυ

2
p
( = υ2

k for k = p
)
.

〈BCS|b+k bk
(
1− b+p bp

)|BCS〉 = υ2
k − υ2

kυ
2
p = υ2

ku
2
p, when k �= p

(= 0, when k = p). Here, u2
p is the probability that the Cooper pair (p ↑,−p ↓)

does not exist!
We still have to calculate:

〈BCS|b+p bk|BCS〉 =

= 〈0|
⎧
⎨

⎩

�=k,p∏

q

�=k,p∏

q′

(
uq + υqbq

) (
uq′ + υq′b

+
q′
)
⎫
⎬

⎭
·

· (up + υpbp
)
b+p
(
up + υpb

+
p
)
(uk + υkbk)bk

(
uk + υkb

+
k

)|0〉 =

= 〈0|
⎧
⎨

⎩

�=k,p∏

q

�=k,p∏

q′

(
uq + υqbq)

(
uq′ + υq′b

+
q′
)
⎫
⎬

⎭
upυpbpb

+
p ukυkbkb

+
k |0〉 =

= upυpukυk〈0|
⎧
⎨

⎩

�=k,p∏

q

�=k,p∏

q′

(
uq + υqbq

) (
uq′ + υq′b

+
q′
)
⎫
⎬

⎭
|0〉 =

s.a.= upυpukυk.
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Here, we have made use of results from Exercise 2.3.1:

(
b+k
)2 = (bk)

2 = 0.

Solution 2.3.6

1. Phonon-induced electron-electron interaction (see Exercise 2.3.2):

H =
∑

kσ

ε(k)a+kσ akσ − V

q �=0∑

kpq
σ,σ ′

a+k+qσ a
+
p−qσ ′apσ ′akσ .

Variation is to be carried out with |BCS〉. According to Exercise 2.3.5, this test
state contains only Cooper pairs. Therefore, H can be reduced to

H =
∑

kσ

ε(k)a+kσ akσ − V

p �=k∑

p,k

b+p bk.

All the other terms yield a contribution of zero when applied to |BCS〉.
Multiplying out the product in |BCS〉, we find terms with a different number
of creation operators b+k . It follows that: |BCS〉 is not a state with a fixed number
of particles! The side condition N = const must therefore be coupled in by using
a Lagrange parameter μ:

HBCS = H(ε(k)→ t (k)) t (k) = ε(k)− μ.

2. The expectation value for the potential energy was computed in part 2 of
Exercise 2.3.5. All the operators commute as long as they belong to different
wavenumbers k: Therefore, 〈BCS|a+kσ akσ |BCS〉 can be sorted as follows:

〈BCS|a+kσ akσ |BCS〉 = 〈0|
⎧
⎨

⎩

�=±k∏

p

(
up + υpbp

)(
up + υpb

+
p
)
⎫
⎬

⎭
·

· (uk + υkbk)(u−k + υ−kb−k)a
+
kσ akσ

(
uk + υkb

+
k

)(
u−k + υ−kb

+
−k

)|0〉,

[
a+kσ akσ , b

+
k

]
− =

[
a+kσ akσ , a

+
k↑a

+
−k↓
]

− = δσ↑b+k ,
[
a+kσ akσ , b

+
−k

]
− = δσ↓b+−k,

[
a+kσ akσ , b

+
k b

+
−k

]
− =

(
δσ↓ + δσ↑

)
b+k b

+
−k = b+k b

+
−k.



Solutions of the Exercises 565

We then find:

a+kσ akσ
(
uk + υkb

+
k

)(
u−k + υ−kb

+
−k

)|0〉 =
= (υku−kδσ↑b+k + ukυ−kδσ↓b+−k + υkυ−kb

+
k b

+
−k

)|0〉.

And furthermore:

〈0|(uk + vkbk)(u−k + υ−kb−k)a
+
kσ akσ

(
uk + υkb

+
k

)(
u−k + υ−kb

+
−k

)|0〉 =
= (υku−k)

2δσ↑〈0|bkb
+
k |0〉 + (ukυ−k)

2δσ↓〈0|b−kb
+
−k|0〉+

+ υ2
kυ

2
−k〈0|bkb−kb

+
k b

+
−k|0〉 =

= υ2
kδσ↑ + υ2

−kδσ↓.

The conclusions are as in the preceding exercise:

〈BCS|a+kσ akσ |BCS〉 = υ2
kδσ↑ + υ2

−kδσ↓.

Owing to t (−k) = t (k) and part 2 of Exercise 2.3.5, we finally obtain:

E = 2
∑

k

t (k)υ2
k − V

k�=p∑

k,p

υkυpukup.

3. Minimum condition:

0
!= dE

dυk
=
(
∂E

∂υk

)

u

+
(
∂E

∂uk

)

υ

∂uk

∂υk
=
(
∂E

∂υk

)

u

− υk

uk

(
∂E

∂uk

)

υ

=

= 4t (k)υk − 2V
�=k∑

p

υpupuk + 2V
υk

uk

�=k∑

p

υkυpup =

= 4t (k)υk + 2�k

(
υ2

k

uk
− uk

)

⇐⇒ 4t2(k)υ2
ku

2
k = �2

k

(
υ2

k − u2
k

)2 = �2
k

(
4υ4

k − 4υ2
k + 1

) =
= −�2

k4υ2
ku

2
k +�2

k.

This leads to:

ukυk = 1

2

�k√
t2(k)+�2

k

.
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Inserting into the definition equation for �k finally yields:

�k = 1

2
V

�=k∑

p

�p√
t2(p)+�2

p

.

4.

u2
kυ

2
k = −υ4

k + υ2
k = −

(
υ2

k −
1

2

)2

+ 1

4
= 1

4

�2
k

t2(k)+�2
k

�⇒ υ2
k =

1

2

⎛

⎝1+ t (k)

−
√
t2(k)+�2

k

⎞

⎠ ,
negative root, since for �→ 0,
no Cooper pairs exist.

u2
k =

1

2

⎛

⎝1+ t (k)
√
t2(k)+�2

k

⎞

⎠ .

BCS-Ground-state energy:

E0 = 2
∑

k

t (k)
1

2

(

1− t (k)
√
t2(k)+�2

)

−
∑

k

υkuk�k

�⇒ E0 =
∑

k

⎧
⎨

⎩
t (k)− t2(k)+ 1

2�
2
k√

t2(k)+�2
k

⎫
⎬

⎭
.

Solution 2.3.7

eS : unitary transformation ⇐⇒
(

eS
)+ =

(
eS
)−1

⇐⇒ S+ = −S.

From (2.186):

S =
∑

kqσ

Tq(x(k, q)bq + y(k, q)b+−q)a
+
k+qσ akσ

�⇒ S+ =
∑

kqσ

T ∗q (x∗(k, q)b+q + y∗(k, q)b−q)a
+
kσ ak+qσ ,

q →−q; k → k+ q; T ∗−q = Tq (2.183),

�⇒ S+ =
∑

kqσ

Tq(x
∗(k+ q,−q)b+−q + y∗(k+ q,−q)bq

)
a+k+qσ akσ .
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S+ = −S thus obviously holds only when

y∗(k+ q,−q)
!= −x(k, q),

x∗(k+ q,−q)
!= −y(k, q)

is fulfilled. This is, from (2.190) and (2.191) and due to h̄ω(−q) = h̄ω(q), clearly
the case!

Section 2.4.5

Solution 2.4.1

[
S+(k1), S

−(k2)
]
− =

∑

i,j

e−i(k1Ri+k2Rj )
[
S+i , S

−
j

]

− =

=
∑

i,j

e−i(k1Ri+k2Rj )2h̄δij S
z
i = 2h̄

∑

i

e−i(k1+k2)·Ri Szi =

= 2h̄Sz(k1 + k2).

[
Sz(k1), S

±(k2)
]
− =

∑

i,j

e−i(k1·Ri+k2·Rj )
[
Szi , S

±
j

]

− =

= ±h̄
∑

i,j

e−i(k1·Ri+k2·Rj )δij S±i = ±h̄S±(k1 + k2).

Solution 2.4.2

∑

i,j

Jij S
α
i S

β
j =

= 1

N3

∑

i,j

∑

kqp

J (k)Sα(p)Sβ(q)e−ik·(Ri−Rj )eip·Ri eiq·Rj =

= 1

N

∑

kqp

J (k)Sα(p)Sβ(q)δkpδk,−q = 1

N

∑

k

J (k)Sα(k)Sβ(−k),

∑

i

Szi = Sz(0).
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From this, it follows that:

H = −
∑

i,j

Jij

(
S+i S

−
j + Szi S

z
j

)
− gJ

μB

h̄
B0

∑

i

Szi =

= − 1

N

∑

k

J (k)
(
S+(k)S−(−k)+ Sz(k)Sz(−k)

)− gJ
μB

h̄
B0S

z(0).

Solution 2.4.3

H = −
∑

i,j

Jij

(
S+i S

−
j + Szi S

z
j

)
− b

∑

i

Szi =
(
b = gJ

μB

h̄
B0

)

= −
∑

i,j

Jij

(
2Sh̄2ϕ(ni)aia

+
j ϕ(nj )+

+h̄2(S − ni)(S − nj )
)
− b

∑

i

h̄(S − ni),

∑

i,j

Jij = NJ0;
∑

i

Jij =
∑

j

Jij = J0.

Ground-state energy:

E0 = −NJ0h̄
2S −NgJμBB0S = E0(B0).

This implies that:

H = E0(B0)+ 2Sh̄2J0

∑

i

ni − 2Sh̄2
∑

i,j

Jij ϕ(ni)aia
+
j ϕ
(
nj
)−

− h̄2
∑

i,j

Jij ninj q.e.d.

Solution 2.4.4

M0 −Ms(T )

M0
= 1

NS

∑

q

1

exp[βh̄ω(q)] − 1
.

First of all, we convert the sum into an integral:

∑

q

1

exp[βh̄ω(q)] − 1
= V

(2π)3

∫
d3q

(
eβh̄ω(q)

)−1 =
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= V

(2π)3

∫
d3q

e−βh̄ω(q)

1− e−βh̄ω(q)
= V

(2π)3

∞∑

n=1

∫
d3q e−nβh̄ω(q).

The integration is carried out over the first Brillouin zone. At low temperatures,
β is very large, so that only the smallest magnon energies make a noticeable
contribution. These are those with a small value of |q|:

J0 − J (q) = 1

N

∑

i,j

Jij

(
1− eiq·Rij

)
≈ 1

2N

∑

ij

Jij
(
q · Rij

)2 ≡ D

2Sh̄2
q2

�⇒ h̄ω(q) ≈ Dq2.

For the same reason, we can replace the integration over the first Brillouin zone by
an integral over the entire range of q:

M0 −Ms(T )

M0
= V

2π2NS

∞∑

n=1

∞∫

0

dq q2e−nβDq2 =

= V

2π2NS

∞∑

n=1

1

2
(nβD)−3/2 

(
3

2

)
.

Riemann’s ζ function: ζ(m) =∑∞
n=1

1
nm

.
From this we find for the low-temperature magnetisation:

M0 −Ms(T )

M0
= C3/2T

3/2 (T
>→ 0)

“Bloch’s T 3/2 law”

C3/2 = V

NS
ζ

(
3

2

)(
kB

4πD

)3/2

.

Solution 2.4.5

1. We verify the axioms of the scalar product:

(a) (A,B) is a complex number with

(A,B) = (B,A)∗,

since

Wm −Wn

En − Em
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is a real number and

(〈n|B+|m〉 〈m|A|n〉)∗ = 〈n|A+|m〉 〈m|B|n〉.

(b) Linearity properties of the scalar product,

(A, α1B1 + α2B2) = α1(A,B1)+ α2(A,B2) α1, α2 ∈ C,

follow immediately from those of the matrix element 〈m|B|n〉.
(c) (A,A) ≥ 0, since

Wm −Wn

En − Em
≥ 0 �⇒ (A,A) =

∑′
n,m

∣∣〈n|A+|m〉∣∣2 Wm −Wn

En − Em
≥ 0.

(d) From A = 0, it naturally follows that (A,A) = 0. The converse,
however, does not hold (see Exercise 2.4.6)! We are therefore dealing with a
semidefinite scalar product!

2.

(A,B) =
∑

n,m

′〈n|A+|m〉〈m| [C+,H ]− |n〉
Wm −Wn

En − Em
=

=
∑

n,m

〈n|A+|m〉〈m|C+|n〉(Wm −Wn).

Due to the factor on the right, the diagonal terms can now be counted. Using the
completeness relation and the definition of Wn, we furthermore find:

(A,B) = −
∑

n

Wn〈n|A+C+|n〉 +
∑

m

Wm〈m|C+A+|m〉 =

= − 〈A+C+〉+ 〈C+A+〉 = 〈[C+, A+]−
〉
,

(B, B) = 〈[C+, B+]−
〉 = 〈[C+, [H,C]−]−

〉
.

For the third relation, we first carry out the following approximate estimate:

0 <
Wm −Wn

En − Em
= 1

Tr e−βH
e−βEm + e−βEn

En − Em

e−βEm − e−βEn
e−βEm + e−βEn

=

= Wm +Wn

En − Em
tanh

[
1

2
β(En − Em)

]
,

d

dx
tanh x = 1

cosh2 x
< 1 for x �= 0
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�⇒
tanh

(
1
2β(En − Em)

)

En − Em
=

tanh
(

1
2β|En − Em|

)

|En − Em| ≤

≤
1
2β|En − Em|
|En − Em| = 1

2
β.

We thus have:

0 <
Wm −Wn

En − Em
<

1

2
β(Wn +Wm), when En �= Em.

And it then follows that:

(A,A) <
1

2
β

En �=Em∑

n,m

〈n|A+|m〉〈m|A|n〉(Wn +Wm) ≤

≤ 1

2
β
∑

n,m

〈n|A+|m〉〈m|A|n〉(Wn +Wm) =

= 1

2
β
(〈
A+A

〉+ 〈AA+〉) = 1

2
β
〈[
A,A+

]
+
〉

q.e.d.

3. The scalar product here obeys Schwarz’s inequality:

|(A,B)|2 ≤ (A,A)(B,B).

According to 2, this means that

|〈[C,A]−〉 |2 ≤ 1

2
β
〈
[A,A+]+

〉〈
[C+, [H,C]−]−

〉

which proves the Bogoliubov inequality!

Solution 2.4.6

1.

(H,H) =
En �=Em∑

n,m

〈n|H |m〉〈m|H |n〉Wm −Wn

En − Em
=

=
En �=Em∑

n,m

E2
nδnmδnm

Wm −Wn

En − Em
= 0.
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2.

〈[C,A]−〉 =
[
Tr
(
e−βH

)]−1∑

n

e−βEn〈n|CA− AC|n〉.

Because of [C,H ]− = 0, C and H have common eigenstates:

〈[C,A]−〉 =
[
Tr
(
e−βH

)]−1∑

n

e−βEncn〈n|A− A|n〉 = 0 q.e.d.

Solution 2.4.7

(1a)

[C,A]− =
[
S+(k), S−(−k− K)

]
− = 2h̄Sz(−K) = 2h̄

∑

i

eik·Ri Szi

�⇒ 〈[C,A]−〉 = 2h̄
∑

i

eik·Ri 〈Szi
〉 = 2h̄N

b
M(T ,B0).

(1b)

∑

k

〈[
A,A+

]
+
〉
=
∑

k

〈[
S−(−k− K), S+(k+ K)

]
+
〉
=

=
∑

k

∑

i,j

ei(k+k)·(Ri−Rj )
〈
S−i S

+
j + S+j S

−
i

〉
=

=
∑

i,j

eik·(Ri−Rj )Nδij
〈
S−i S

+
i + S+i S

−
i

〉 =

= 2N
∑

i

〈
(Sxi )

2 + (S
y
i )

2
〉
≤

≤ 2N
∑

i

〈
S2
i

〉
= 2h̄2N2S(S + 1).

(1c) Initially, we find:

R(k) ≡
〈[[C,H ]−, C+

]
−
〉
=
∑

m,n

e−ik·(Rm−Rn)
〈[[S+m,H ]−, S−n

]
−
〉
.

We must therefore compute several commutators:

[
S+m,H

]
− =

= −h̄
∑

i

Jim
{
2S+i S

z
m − Szi S

+
m − S+mSzi

}+ h̄bB0S
+
me−ik·Rm =
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= −2h̄
∑

i

Jim
(
S+i S

z
m − Szi S

+
m

)+ h̄bB0S
+
me−ik·Rm,

[[
S+m,H

]
−, S

−
n

]

− =

= −2h̄
∑

i

Jim

{
S+i
[
Szm, S

−
n

]
− +

[
S+i , S

−
n

]
−S

z
m − Szi

[
S+m, S−n

]
−−

−[Szi , S−n
]
−S

+
m

}
+ h̄bB0

[
S+m, S−n

]
e−ik·Rm =

= −2h̄2
∑

i

Jim
{−δmnS+i S−n + 2δinS

z
i S

z
m − 2δmnS

z
i S

z
m + δinS

−
i S

+
m

}+

+ 2h̄2bB0δmnS
z
me−ik·Rm =

= 2h̄2δmn
∑

i

Jim
(
S+i S

−
m + 2Szi S

z
m

)− 2h̄2Jnm
(
S−n S+m + 2SznS

z
m

)+

+ 2h̄2bB0δmnS
z
me−ik·Rm.

From this, we obtain the intermediate result:

R(k) = 2h̄2
∑

m,n

Jmn

(
1− e−ik·(Rm−Rn)

) 〈
S+mS−n + 2SzmS

z
n

〉+

+2h̄2bB0

∑

m

e−ik·Rm 〈Szm
〉
.

Here, we have repeatedly made use of Jii = 0 and Jij = Jji .
Due to part 2 of Exercise 2.4.5, R(k) cannot be negative. This naturally also
holds for the corresponding expectation value < R(k) >, which is computed
not with C = S+(k), but instead with Ĉ = S+(−k). It is thus clear that:

< R(k) >≤ R(k)+ R(−k) = +4h̄2bB0

∑

m

e−ik·Rm 〈Szm
〉+

+ 4h̄2
∑

m,n

Jmn

[
1− cos(k · (Rm − Rn))

]〈
Sm · Sn + SzmS

z
n

〉
.

To continue the estimate, we take the following form of the scalar product

(Sm,Sn) = 〈Sm · Sn〉

and apply Schwarz’s inequality:

|(Sm,Sn)|2 ≤ (Sm,Sm) · (Sn,Sn).
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Clearly, this implies that:

〈Sm · Sn〉2 ≤ h̄4[S(S + 1)]2.

Furthermore, we also have:

〈
SzmS

z
n

〉 ≤ h̄2S2.

With this, it then follows that:

R(k) ≤ 4h̄2N |B0M(T,B0)| +8h̄4S(S+1)
∑

m,n

Jmn [1− cos(k · (Rm−Rn))] ≤

≤ 4h̄2N |B0M(T,B0)| + 8h̄4S(S + 1)
1

2
k2
∑

m,n

Jmm |Rm − Rn|2
︸ ︷︷ ︸

NQ

.

We have thus shown that:
〈[[C,H ]−, C+

]
−
〉
≤ 4Nh̄2

{∣∣B0M(T,B0)
∣∣+ h̄2k2QS(S + 1)

}
.

(2a) As we know, R(k) ≥ 0. Therefore, we can write the Bogoliubov inequality as
follows:

β

2

〈[A,A+]+
〉 ≥ |〈[C,A]−〉|2〈[[C,H ]−, C+]−

〉 .

We sum this inequality over all k within the first Brillouin zone:

βS(S + 1) ≥ M2

h̄2b2

1

N

∑

k

1

|B0M| + h̄2k2QS(S + 1)
.

Taking the thermodynamic limit yields:

1

Nd

∑

k

−→ υd

(2π)d

∫
ddk,

d: dimensionality of the system.
The d-dimensional volume Vd contains Nd spins (υd = Vd/Nd). The
integrand on the right-hand side of the inequality is positive. The inequality
thus holds with certainty if we integrate not over the complete Brillouin zone,
but instead over a sphere of radius k0 which lies entirely within the zone:
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S(S + 1) ≥ M2υd�d

βh̄2b2(2π)d

k0∫

0

dk
kd−1

|B0M| + h̄2k2QS(S + 1)
.

The angular integration has already been carried out and just gives the surface
area of the unit sphere as �d .

(2b) d = 1

∫
dx

a2x2 + b2
= 1

ab
arctan

ax

b
+ c

�⇒ S(S + 1) ≥ M2υd

2πβh̄2b2

arctan

(
k0

√
h̄2QS(S+1)
|B0M|

)

√
h̄2QS(S + 1)|B0M|

.

We are interested in the behaviour at low fields:

arctan

⎛

⎝k0

√
h̄2QS(S + 1)

|B0M|

⎞

⎠ −−−→
B0→0

π

2
.

This implies that:

|M(T,B0)| <→
B0→0

const
B

1/3
0

T 2/3

and thus

Ms(T ) = 0 for T �= 0!

d = 2

∫
dx x

a2x2 + b2
= 1

2a2
ln c(a2x2 + b2)

�⇒ S(S + 1) ≥ M2υd

2πβh̄2b2

ln
[
h̄2QS(S+1)+|B0M||B0M|

]

2h̄2QS(S + 1)
.

For low fields, we thus obtain:

|M(T,B0)| <→
B0→0

const1
1

√
T ln

(
const2+|B0M||B0M|

) .
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This also results in

Ms(T ) = 0 for T �= 0!

Section 3.1.6

Solution 3.1.1
The equation of motion for Heisenberg operators:

ih̄
d

dt
akσ (t) = [akσ ,He]−(t),

[akσ ,He]− =
∑

k′σ ′
ε
(
k′
) [
akσ , a

+
k′σ ′ak′σ ′

]

− =

=
∑

k′σ ′
ε
(
k′
)
δkk′δσσ ′ak′σ ′ = ε(k)akσ

�⇒ ih̄
d

dt
akσ (t) = ε(k)akσ (t),

akσ (t = 0) = akσ

�⇒ akσ (t) = akσ e−
i
h̄
ε(k)t

.

Analogously, one finds for the phonon gas:

ih̄
d

dt
bqr (t) =

[
bqr , Hp

]
− (t) = h̄ωr(q)b+qr (t)

�⇒ bqr (t) = bqre
−iωr (q)t .

An alternative derivation was used in (2.166)!

Solution 3.1.2

1.

f (λ) = eλABe−λA; A �= A(λ); B �= B(λ)

�⇒ d

dλ
f (λ) = eλA[A,B]−e−λA,

d2

dλ2 f (λ) = eλA[A, [A,B]−]−e−λA,

...
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dn

dλn
f (λ) = eλA

[
A,
[
A, . . . [A,B ]− . . .

]
−
]

−︸ ︷︷ ︸
n-fold

e−λA.

Taylor expansion around λ = 0:

f (λ) = B+
∞∑

n=1

λn

n!
[

dn

dλn
f (λ)

]

λ=0
=B+

∞∑

n=1

λn

n!
[
A,
[
A, . . . [A,B ]− . . .

]
−
]

−︸ ︷︷ ︸
n-fold

.

The comparison yields:

α0 = B,

αn =
[
A, [A, . . . [A,B]− . . .]−

]

−
1

n! , n ≥ 1.

2.

αn = 0 for n ≥ 2,

α0 = B; α1 = [A,B]−
�⇒ f (λ) = B + λ[A,B]−.

3.

g(λ) = eλAeλB,

d

dλ
g(λ) = eλA(A+ B)eλB = eλA(A+ B)e−λAg(λ) = (A+ f (λ))g(λ).

Using part 2, we then obtain:

d

dλ
g(λ) = (A+ B + λ[A,B]−)g(λ).

4. The preconditions give:

[(A+ B), [A,B]−]− = 0.

The operator coefficient in the above differential equation thus behaves on
integration just like a normal variable:

d

dλ
g(λ) = (a1 + λa2)g(λ),

g(0) = 1
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�⇒ g(λ) = ea1λ+ 1
2 a2λ

2

�⇒ g(λ = 1) = eAeB = exp

(
A+ B + 1

2
[A,B]−

)
q.e.d.

Solution 3.1.3

ρ

β∫

0

dλȦ(t − iλh̄) = ρ

β∫

0

dλ
i

h̄

d

dλ
A(t − iλh̄) =

= i

h̄
ρ[A(t − ih̄β)− A(t)] =

= i

h̄
ρ
[
e

i
h̄
(−ih̄β)H

A(t)e−
i
h̄
(−ih̄β)H − A(t)

]
=

= i

h̄
ρ(eβHA(t)e−βH − A(t)) =

= i

h̄

[
e−βHeβHA(t)e−βH

Tr
(
e−βH

) − ρA(t)

]

=

= i

h̄
(A(t)ρ − ρA(t)) = i

h̄
[A(t), ρ]− q.e.d.

Solution 3.1.4
〈[
A(t), B

(
t ′
)]
−
〉
= Tr

{
ρ
[
A(t), B

(
t ′
)]
−
}
= Tr{ρA(t)B(t ′)− ρB(t ′)A(t)} =

= Tr{B (t ′) ρA(t)− ρB
(
t ′
)
A(t)} = Tr

{[
B
(
t ′
)
, ρ
]
−A(t)

}

(cyclic invariance of the trace!).

Inserting the Kubo identity:

⟪A(t);B (t ′)⟫ret = −i�
(
t − t ′

) 〈[
A(t), B

(
t ′
)]
−
〉
=

= −h̄� (t − t ′
)

β∫

0

dλ Tr{ρḂ (t ′ − iλh̄
)
A(t)} =

= −h̄� (t − t ′
)

β∫

0

dλ
〈
Ḃ
(
t ′ − iλh̄

)
A(t)

〉
q.e.d.
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Solution 3.1.5
In (3.84) we derived:

σβα(E) = −1

h̄

+∞∫

−∞
dt ⟪jβ(0);Pα(−t)⟫ e

i
h̄
(E+i0+)t

.

With the result from Exercise 3.1.4, it follows that:

σβα(E) =
∞∫

0

dt

β∫

0

dλ〈Ṗ α(−t − iλh̄)jβ(0)〉e i
h̄
(E+i0+〉t =

3.3.79= V

∞∫

0

dt

β∫

0

dλ〈jα(−t − iλh̄)jβ(0)〉e i
h̄
(E+i0+)t

.

The correlation function depends only upon the time difference. Therefore, we also
have:

σβα(E) = V

∞∫

0

dt

β∫

0

dλ〈jα(0)jβ(t + iλh̄)〉e i
h̄
(E+i0+)t q.e.d.

Solution 3.1.6
The dipole-moment operator (3.77)

P =
N∑

i=n
qi r̂i

is a single-particle operator. We consider identical particles:

qi = q ∀i.

1. In the Bloch representation:

P̂ = q
∑

kσ
k′σ ′

〈kσ |r̂|k′σ ′〉a+kσ ak′σ ′ .

Matrix element:

〈kσ |r̂|k′σ ′〉 =
∫

d3r〈kσ |r̂|r〉〈r|k′σ ′〉 = δσσ ′
∫

d3r〈k|r〉r〈r|k′〉 =
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= δσσ ′
∫

d3rψ∗kσ (r)rψk′σ (r)

ψkσ (r) : Bloch function (2.20),

〈kσ |r̂|k′σ ′〉 = δσσ ′pkk′σ

pkk′σ ≡
∫

d3rψ∗kσ (r)rψk′σ (r)

�⇒ P̂ = q
∑

kk′σ
pkk′σ a

+
kσ ak′σ .

2. In the Wannier representation:

pijσ =
∫

d3rω∗σ (r− Ri )rωσ
(
r− Rj

)

ωσ (r− Ri ) : Wannier function (2.29)

�⇒ P̂ = q
∑

ijσ

pijσ a
+
iσ ajσ .

Current-density operator:

ĵ = 1

V

̂̇P = − i

h̄V
[P̂,H ]−.

1.

ĵ = − iq

h̄V

∑

kk′σ
pkk′σ

[
a+kσ ak′σ ,H

]
− .

2.

ĵ = − iq

h̄V

∑

ijσ

pijσ
[
a+iσ ajσ ,H

]
− .

The conductivity tensor is found immediately by inserting into (3.85).

Solution 3.1.7

1. From Exercise 3.1.6:

P̂ ≈ q
∑

i,σ

Riniσ ,
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ĵ ≈ − iq

h̄V

∑

i,σ

Ri[niσ ,H ]−.

2. niσ commutes with all the occupation-number operators. Therefore, we have:

[niσ ,H ]− =
∑

l,m,σ ′
Tlm

[
niσ , a

+
lσ ′amσ ′

]
− =

=
∑

l,m

Tlm
(
δila

+
iσ amσ − δima

+
lσ aiσ

) =

=
∑

m

(
Tima

+
iσ amσ − Tmia

+
mσaiσ

)
.

Current-density operator:

ĵ ≈ − iq

h̄V

∑

imσ

Ri
(
Tima

+
iσ amσ − Tmia

+
mσaiσ

)

�⇒ ĵ ≈ − iq

h̄V

∑

imσ

Tim(Ri − Rm)a
+
iσ amσ .

Conductivity tensor:

σαβ(E) = ih̄
N
V
q2

m(E + i0+)
− iq2

h̄2V (E + i0+)
∑

imσ
jnσ ′

TimTjn·

· (Rαi − Rαm)
(
R
β
j − Rβn

)
⟪a+iσ amσ ; a+jσ ′anσ ′⟫

ret

E

(α, β = x, y, z).

Section 3.2.6

Solution 3.2.1

�
(
t − t ′

) =
t−t ′∫

−∞
dt ′′δ(t ′′)

�⇒ ∂

∂t
�
(
t − t ′

) = d

d(t − t ′)
�
(
t − t ′

) = δ
(
t − t ′

)
,
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∂

∂t ′
�
(
t − t ′

) = − d

d(t − t)
�
(
t − t ′

) = −δ (t − t ′
)
.

Solution 3.2.2

Gc
AB(t, t

′) = −i
〈
Tε
(
A(t)B

(
t ′
))〉 =

= −i�
(
t − t ′

) 〈
A(t)B

(
t ′
)〉− iε�

(
t ′ − t

) 〈
B
(
t ′
)
A(t)

〉
.

From this, it follows that:

ih̄
∂

∂t
Gc
AB

(
t, t ′
) = +h̄δ (t − t ′

) 〈
A(t)B

(
t ′
)〉− i�

(
t − t ′

) 〈[A,H]−(t)B
(
t ′
)〉−

− h̄εδ
(
t − t ′

) 〈
B
(
t ′
)
A(t)

〉− iε�
(
t ′ − t

) 〈
B
(
t ′
) [A, H]−(t)

〉 =
= h̄δ

(
t − t ′

) 〈[
A(t), B

(
t ′
)]
−ε
〉
− i
〈
Tε
([A,H](t)B (t ′))〉 =

= h̄δ
(
t − t ′

) 〈[A,B]−ε〉 + ⟪[A,H]−(t);B
(
t ′
)
⟫c

q.e.d.

Solution 3.2.3

〈B(0)A(t + iβ)〉 =

= 1

�
Tr
{

e−βHBe
i
h̄
H(t+ih̄β)

Ae−
i
h̄
H(t+ih̄β)

}
=

= 1

�
Tr
{

eβHe−βHBe
i
h̄
Hte−βHA e−

i
h̄
Ht
}
=

= 1

�
Tr
{

e−βHe
i
h̄
Ht
Ae−

i
h̄
Ht
B
}
= 〈A(t)B(0)〉 .

Here, we have made repeated use of the cyclic invariance of the trace.

Solution 3.2.4

1. t − t ′ > 0
The integrand has a pole at x = x0 = −i0+. Residue:

c−1 = lim
x→x0

(x − x0)
e−ix(t−t ′)

x + i0+
= lim

x→x0
e−ix(t−t ′) = 1.

Fig. A.8
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The semicircle is closed in the lower half-plane due to t − t ′ > 0; then the
exponential function ensures that the contribution on the semicircle vanishes.
The pole is mathematically circumvented in a negative sense. It then follows
that:

�
(
t − t ′

) = i

2π
(−2π i)1 = 1.

2. t − t ′ < 0
In order that no contribution result from the semicircle, it is now closed in the
upper half-plane. It then follows that:

�
(
t − t ′

) = 0,

since there is no pole within the region of integration.

Solution 3.2.5

f (ω) =
+∞∫

−∞
dt f̄ (t)eiωt .

Suppose that the integral exists for real values of ω. Set:

ω = ω1 + iω2

�⇒ f (ω) =
+∞∫

−∞
dt f̄ (t)eiω1te−ω2t .

1. f̄ (t) = 0 for t < 0:

�⇒ f (ω) =
∞∫

0

dt f̄ (t)eiω1te−ω2t .

This converges for all ω2 > 0, and can thus be analytically continued in the upper
half-plane!

2. f̄ (t) = 0 for t > 0:

�⇒ f (ω) =
0∫

−∞
dt f̄ (t)eiω1te−ω2t .
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This converges for all ω2 < 0, and can thus be analytically continued in the lower
half-plane.

Solution 3.2.6
It is expedient to first transform the conductivity tensor in Exercise 3.1.7 from the
Bloch representation into a real-space representation. We have:

∑

k

(∇kε(k))nkσ =

= 1

N2

∑

k

∑

i,j

∑

m,n

Tij
[−i

(
Ri − Rj

)]
e−ik · (Ri−Rj )eik · (Rm−Rn)a+mσanσ =

= 1

N

∑

ij

∑

m,n

Tij
[−i

(
Ri − Rj

)]
δn,m+j−ia+mσanσ =

= 1

N

∑

ijm

Tij
[−i

(
Ri − Rj

)]
a+mσam+j−iσ .

We insert this into the interaction term of the conductivity tensor, keeping in mind
that because of translational symmetry,

1

N

∑

m

⟪a+mσam+j−iσ ; . . .⟫ret
E
= ⟪a+iσ ajσ ; . . .⟫ret

E
,

must hold. Then, from Exercise 3.1.7, we still have:

σαβ(E) = ih̄
N
V
e2

m(E + i0+)
+ ie2

h̄2V (E + i0+)
·

·
∑

kσ
k′σ ′

(∇kε(k))
(∇k′ε

(
k′
))
⟪nkσ ; nk′σ⟫

ret
E .

For a system of non-interacting electrons:

H0 =
∑

pσ̄

ε(p)a+pσ̄ apσ̄

�⇒ [nkσ ,H0]− = 0,
〈[nkσ , nk′σ ′ ]−

〉 = 0.

With this, the equation of motion of the higher-order Green’s function becomes
trivial:

E ⟪nkσ ; nk′σ ′⟫
ret
E ≡ 0.
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The interaction term thus vanishes, as expected:

(
σαβ(E)

)(0) = ih̄
N
V
e2

m(E + i0+)
.

Solution 3.2.7
[
G

ret,adv
AB

(
t, t ′
)]∗ =

[
∓i�

[± (t − t ′
) ]〈[

A(t), B
(
t ′
) ]
−ε
〉]∗ =

= ±i�
[± (t − t ′

)] 〈[
A(t), B

(
t ′
)]
−ε
〉∗ = ±i�

[± (t − t ′
)] 〈 [

A(t), B
(
t ′
)]+
−ε
〉 =

= ±i�
[± (t − t ′

)] 〈
B+
(
t ′
)
A+(t)− εA+(t)B+

(
t ′
)〉 =

= ∓iε�
[± (t − t ′

)] 〈 [
A+(t), B+

(
t ′
)]
−ε
〉 =

= εG
ret,adv
A+B+ q.e.d.

Solution 3.2.8

+∞∫

−∞
dE
{
EGc

AB(E)− h̄ 〈[A,B]−ε〉
} =

+∞∫

−∞
dE ⟪[A,H]−;B⟫c

E =

=
+∞∫

−∞
dE

+∞∫

−∞
dt e

i
h̄
Et ⟪[A,H]−(t);B(0)⟫c =

= −i

+∞∫

−∞
dE

⎧
⎨

⎩

∞∫

0

dt e
i
h̄
Et 〈[A,H]−(t)B(0)〉+

+ε
0∫

−∞
dt e

i
h̄
Et 〈B(0)[A,H]−(t)〉

⎫
⎬

⎭
=

= 2πh̄2

⎧
⎨

⎩

∞∫

0

dt δ(t)〈Ȧ(t)B(0)〉 + ε

0∫

−∞
dt δ(t)〈B(0)Ȧ(t)〉

⎫
⎬

⎭
=

= πh̄2 {〈Ȧ(0)B(0)
〉+ ε

〈
B(0)Ȧ(0)

〉}
q. e. d.

Solution 3.2.9

H =
∑

kσ

ε(k)a+kσ akσ − μN̂ =
∑

kσ

(ε(k)− μ)a+kσ akσ .
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One can readily calculate:

[akσ ,H] =
∑

k′σ ′

(
ε
(
k′
)− μ

) [
akσ , a

+
k′σ ′ak′σ ′

]

− =

=
∑

k′σ ′

(
ε
(
k′
)− μ

)
δkk′δσσ ′ak′σ ′ = (ε(k)− μ)akσ .

From this, it follows that:

[[akσ ,H]−H
]
− = (ε(k)− μ)[akσ ,H]− = (ε(k)− μ)2akσ .

For the spectral moments, this implies that:

M
(0)
kσ =

〈[
akσ , a

+
kσ

]
+
〉
= 1,

M
(1)
kσ =

〈[[akσ ,H]−, a+kσ
]
+
〉
=

= (ε(k)− μ)
〈[
akσ , a

+
kσ

]
+
〉
= (ε(k)− μ),

M
(2)
kσ =

〈[[[akσ ,H]−, H
]
−, a

+
kσ

]

+

〉
=

= (ε(k)− μ)2
〈[
akσ , a

+
kσ

]
+
〉
= (ε(k)− μ)2.

By complete induction, one then immediately obtains:

M
(n)
kσ = (ε(k)− μ)n; n = 0, 1, 2, . . . .

The relation (3.166) with the spectral density,

M
(n)
kσ = 1

h̄

+∞∫

−∞
dE EnSkσ (E),

then leads to the solution:

Skσ (E) = h̄δ(E − ε(k)+ μ).

Solution 3.2.10

1.

Tr(ρ) =
+∞∫

−∞
e−β

p2

2m dp = √2πmkBT
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2.

Tr(ρ) 〈H 〉 = Tr(ρH)

= 1

2m

+∞∫

−∞
p2e−β

p2

2m dp

= − d

dβ

+∞∫

−∞
e−β

p2

2m dp

= − d

dβ

√
2πm

β
= 1

2

√
2πmβ−3/2

�⇒ 〈H 〉 = 1

2

√
2πm√

2πmkBT
(kBT )

3/2 = 1

2
kBT

3.

EG(+)
p (E) = h̄ 〈[p, p]−〉︸ ︷︷ ︸

=0

+⟪[p,H ]−︸ ︷︷ ︸
=0

;p⟫(+)E = 0

�⇒ G(+)
p (E) ≡ 0 for E �= 0

4.

〈
p2
〉
= 1

h̄

+∞∫

−∞
dE
− 1
π

ImG
(+)
p

(
E + i0+

)

eβE − 1
+D = D

5.

EG(−)
p (E) = h̄ 〈[p, p]+〉 + ⟪[p,H ]−︸ ︷︷ ︸

=0

;p⟫(−)E = 2h̄
〈
p2
〉

�⇒ “combined” Green’s function: G(−)
p (E) = 2h̄

〈
p2
〉

E

�⇒ 2h̄D = lim
E→0

EG(−)
p (E) = 2h̄

〈
p2
〉

�⇒ D =
〈
p2
〉
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The contradiction is removed, but no information is obtained from the spectral
theorem.

6.

H ′ = p2

2m
+ 1

2
mω2x2 (ω→ 0)

[p,H ′]− = 1

2
mω2[p, x2]− = 1

2
mω2(x[p, x]− + [p, x]−p) = −ih̄mω2x

[x, H ′]− =
[
x,
p2

2m

]

−
= ih̄

m
p

Chain of equations of motion:

EG(+)
p (E) = 0+ ⟪[p,H ′]−;p⟫(+)E

= −ih̄mω2 ⟪x;p⟫(+)E

E ⟪x;p⟫(+)E = ih̄2 + ⟪[x,H ′]−;p⟫ = ih̄2 + ih̄

m
G(+)
p (E)

�⇒ E2G(+)
p (E) = h̄3mω2 + h̄2ω2G(+)

p (E)

�⇒ G(+)
p (E) = h̄3mω2

E2 − h̄2ω2
= 1

2
mh̄2ω

(
1

E − h̄ω
− 1

E + h̄ω

)

7. Anti-commutator Green’s function:

EG(−)
p (E) = 2h̄

〈
p2
〉
− ih̄mω2 ⟪x;p⟫(−)E

E ⟪x;p⟫(−)E = h̄〈xp + px〉 + ih̄

m
G(−)
p (E)

�⇒ E2G(−)
p (E) = 2h̄

〈
p2
〉
E − ih̄2mω2〈xp + px〉 + h̄2ω2G(−)

p (E)

�⇒ G(−)
p (E) = 2h̄

〈
p2
〉
E − ih̄2mω2〈xp + px〉
E2 − h̄2ω2

The poles naturally remain unchanged!

�⇒ 2h̄D = lim
E→0

EG(−)
p (E) = 0

−h̄2ω2
= 0

�⇒ D = 0

8.

〈H 〉ω = 1

2m

〈
p2
〉

ω
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= 1

2mh̄

+∞∫

−∞
dE
− 1
π

ImG
(+)
p (E + i0+)

eβE − 1

= h̄ω

4

+∞∫

−∞
dE

δ(E − h̄ω)− δ(E + h̄ω)

eβE − 1

= h̄ω

4

(
1

eβh̄ω − 1
− 1

e−βh̄ω − 1

)

9.

lim
ω→0

〈H 〉ω = lim
ω→0

h̄ω

4

(
1

eβh̄ω − 1
− 1

e−βh̄ω − 1

)

= lim
ω→0

h̄ω

4

(
1

βh̄ω
− 1

−βh̄ω
)

�⇒ lim
ω→0

〈H 〉ω = 1

2
kBT

This agrees with the result in 2!

Section 3.3.4

Solution 3.3.1

1. Phonons can be created and again annihilated in arbitrary numbers. In thermody-
namic equilibrium, the particle number adjusts itself to the value for which the
free energy F is minimised:

∂F

∂N

!= 0.

The left-hand side, on the other hand, defines μ!
2. Equation of motion:

[
bqr , H

]
− =

∑

q,r ′
h̄ωr ′(q)

[
bqr , b

+
q′r ′bq′r ′

]

− =
∑

q′,r ′
h̄ωr ′

(
q′
) [
bqr , b

+
q′r ′
]

− bq′r ′ =

= h̄ωr(q)bqr .
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With this, it follows that:

[E − h̄ωr(q)]Gα
qr (E) = h̄

〈[
bqr , b

+
qr
]
−
〉
= h̄

�⇒ Gret,adv
q (E) = h̄

E − h̄ωr(q)± i0+
.

3. Computed in Exercise 3.1.1:

bqr (t) = bqre
−iωγ (q)t

�⇒
〈[
bqr (t), b

+
qr
(
t ′
) ]
−
〉
= e−iωr (q)(t−t ′)

〈[
bqr , b

+
qr

]
−
〉

�⇒ Gret
qr
(
t, t ′
) = −i�

(
t − t ′

)
e−iωr(q)(t−t ′),

Gadv
qr
(
t, t ′
) = +i�

(
t ′ − t

)
e−iωr (q)(t−t ′).

Check by means of Fourier transformation:

Gret
qr
(
t, t ′
) = 1

2πh̄

+∞∫

−∞
dE e−

i
h̄
E(t−t ′) h̄

E − h̄ωr(q)+ i0+
=

E=E−h̄ωγ (q)= e−iωr (q)(t−t ′) 1

2π

+∞∫

−∞
dE

e−
i
h̄
E(t−t ′)

E + i0+
=

x=E/h̄= e−iωr (q)(t−t ′) 1

2π

+∞∫

−∞
dx

e−ix(t−t ′)

x + i0+
=

= −i�
(
t − t ′

)
e−iωr (q)(t−t ′) (s. Exercise 3.2.4).

4. Spectral density:

Sqr (E) = − 1

π
ImGret

qr (E) = h̄δ(E − h̄ωr(q)).

Mean occupation number, spectral theorem:

〈
mqr
〉 =

〈
b+qrbqr

〉
= D+

qr [exp(βh̄ωr(q))− 1]−1,

Dqr from the combined anti-commutator Green’s function. As a result of

〈[
bqr , b

+
qr
]
+
〉
= 1+ 〈mqr

〉
,
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we find for the latter:

G(−)
qr (E) =

h̄
(
1+ 〈mqr

〉)

E − h̄ωr(q)
,

ωr(q) = 0 only for acoustic branches at q = 0:

q = 0 ⇐⇒ λ = ∞ : macroscopic translation of the whole crystal!
Uninteresting!

q �= 0:

Dqr = 1

2h̄
lim
E→0

EG(0)
qr (E) = 0.

We still have:

〈
mqr
〉 = [exp(h̄ωr(q))− 1]−1

Bose-Einstein distribution function.

Internal energy:

U = 〈H 〉 =
∑

qr

h̄ωr(q)
(〈
mqr
〉+ 1

2

)
.

Solution 3.3.2

1. Equation of motion:

[
akσ ,H

∗]
− =

=
∑

pσ ′
t (p)

[
akσ , a

+
pσ ′apσ ′

]

− −�
∑

p

[
akσ , a−p↓ap↑ + a+p↑a

+
−p↓
]

− =

=
∑

pσ ′
t (p)δσσ ′δkpapσ ′ −�

∑

p

(
δkpδσ↑a+−p↓ − δk−pδσ↓a+p↑

)
=

= t (k)akσ −�
(
δσ↑ − δσ↓

)
a+−k−σ ,

zσ =
{
+1 for σ =↑,
−1 for σ =↓ .
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With this, the equation of motion becomes:

(E − t (k))Gkσ (E) = h̄−�zσ ⟪a+−k−σ ; a+kσ⟫ .

The Green’s function on the right-hand side of the equation prevents direct
solution. We formulate the corresponding equation of motion for it, also:

[a+−k−σ ,H
∗]− =

= −t (−k)a+−k−σ −�
∑

p

[
a+−k−σ , a−p↓ap↑

]
− =

= −t (k)a+−k−σ −�
∑

p

(
δkpδ−σ↓ap↑ − δ−kpδ−σ↑a−p↓

) =

= −t (k)a+−k−σ −�zσakσ .

This yields the following equation of motion:

(E + t (k))⟪a+−k−σ ; a+kσ⟫ = −�zσGkσ (E)

�⇒ ⟪a+−k−σ ; a+kσ⟫ = − zσ�

E + t (k)
Gkσ (E).

This is to be inserted into the equation of motion for Gret
kσ (E):

(
E − t (k)− �2

E + t (k)

)
Gkσ (E) = h̄.

Excitation energies:

E(k) = +
√
t2(k)+�2 −−→

t→0
� Energy gap.

Green’s function:

Gkσ (E) = h̄(E + t (k))
E2 − E2(k)

.

Taking the boundary conditions into account:

Gret
kσ (E) =

h̄

2E(k)

[
t (k)+ E(k)

E − E(k)+ i0+
− t (k)− E(k)
E + E(k)+ i0+

]
.

2. For �, we require the expectation value:

〈
a+k↑a

+
−k↓
〉
.



Solutions of the Exercises 593

Its evaluation can be accomplished using the spectral theorem and the Green’s
function used in part 1:

⟪a+−k↓; a+k↑⟫E =
−�

E + t (k)
Gk↑(E) = −h̄�

E2 − E2(k)
.

Taking the boundary conditions into account, we obtain for the corresponding
retarded function:

⟪a+−k↓; a+k↑⟫
ret

E
= h̄�

2E(k)

(
1

E + E(k)+ i0+
− 1

E − E(k)+ i0+

)
.

The corresponding spectral density:

S−k↓;k↑(E) = h̄�

2E(k)
[δ(E + E(k))− δ(E − E(k))].

Spectral theorem:

〈
a+k↑a

+
−k↓
〉 = 1

h̄

+∞∫

−∞
dE

S−k↓;k↑(E)
exp(βE)+ 1

=

= �

2E(k)

(
1

exp(−βE(k))+ 1
− 1

exp(βE(k))+ 1

)
=

= �

2E(k)
tanh

(
1

2
βE(k)

)
.

Finally, we obtain:

� = 1

2
�V

∑

k

tanh
(

1
2β
√
t2(k)+�2

)

√
t2(k)+�2

.

� = �(T ) �⇒ The energy gap is T -dependent.
Special case:

T → 0 �⇒ tanh

(
1

2
β
√
t2(k)+�2

)
→ 1

�⇒ the same result as in Exercise 2.3.6 for �k ≡ �.

Fig. A.9
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Solution 3.3.3

1. We prove the assertion using complete induction:
Initiation of induction p = 1, 2:

[
akσ ,H

∗]
− = t (k)akσ − zσ�a

+
−k−σ

(s. Exercise 3.3.2),
[[
akσ ,H

∗]
−,H

∗]

− = t (k)
(
t (k)akσ − zσ�a

+
−k−σ

)−

− zσ�
(−t (k)a+−k−σ − zσ�akσ

) =
=
(
t2(k)+�2

)
akσ .

Conclusion of induction p −→ p + 1:

(a) p even:

[
· · ·
[[
akσ ,H

∗]
−,H

∗]

−, . . . , H
∗

︸ ︷︷ ︸
(p+1)-fold commutator

]

− =

=
(
t2 +�2

)p/2 [
akσ ,H

∗]
− =

(
t2 +�2

)p/2 (
takσ − zσ�a

+
−k−σ

)
.

(b) p odd:

[
· · ·
[[
akσ ,H

∗]
−,H

∗]

− , . . . , H
∗

︸ ︷︷ ︸
(p+1)-fold commutator

]

− =

=
(
t2 +�2

)(1/2)(p−1) [
takσ − zσ�a

+
−k−σ , H

∗]
− =

=
(
t2+�2

)(1/2)(p−1)[
t
(
takσ−zσ�a+−k−σ

)−zσ�
(−ta+−k−σ−�zσakσ

)] =

=
(
t2 +�2

)(1/2)(p+1)
akσ q. e. d.

For the spectral moments of the one-electron spectral density, we find immedi-
ately from this:
n = 0, 1, 2, . . .

M
(2n)
kσ =

(
t2(k)+�2

)n
,

M
(2n+1)
kσ =

(
t2(k)+�2

)n
t (k).
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2. We use:

M
(n)
kσ = 1

h̄

+∞∫

−∞
dE EnSkσ (E).

Determining equations from the first four spectral moments:

α1σ + α2σ = h̄,

α1σE1σ + α2σE2σ = ht,

α1σE
2
1σ + α2σE

2
2σ = h̄

(
t2 +�2

)
,

α1σE
3
1σ + α2σE

3
2σ = h̄

(
t2 +�2

)
t.

This can be rearranged to:

α2σ (E2σ − E1σ ) = h̄(t − E1σ ),

α2σE2σ (E2σ − E1σ ) = h̄
[
t2 +�2 − tE1σ

]
,

α2σE
2
2σ (E2σ − E1σ ) = h̄

[(
t2 +�2

)
(t − E1σ )

]
.

After division, it follows that:

E2
2σ = t2 +�2 �⇒ E2σ (k) = +

√
t2(k)+�2 ≡ E(k).

This then leads to:

E(k) = t2 +�2 − tE1σ

t − E1σ
= t + �2

t − E1σ

�⇒ (E(k)− t (k))−1�2 = t (k)− E1σ (k)

�⇒ E1σ (k) = t (k)− �2

E(k)− t (k)
= E(k)t (k)− E2(k)

E(k)− t (k)

�⇒ E1σ (k) = −E(k) = −E2σ (k).

Spectral weights:

α2σ (k)2E(k) = h̄(t (k)+ E(k))

�⇒ α2σ (k) = h̄
t (k)+ E(k)

2E(k)
,
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α1σ (k) = h̄− α2σ (k) = h̄
E(k)− t (k)

2E(k)

�⇒ Skσ (E) = h̄

[
E(k)− t (k)

2E(k)
δ(E + E(k))+ E(k)+ t (k)

2E(k)
δ(E − E(k))

]
.

Solution 3.3.4

1. All the Hk’s commute. We thus need consider only one fixed value k. With the
normalised vacuum state |0〉 and the fact that we are dealing with Fermions, only
the following four states need be considered:

|0, 0〉 = |0〉;
|1, 0〉 = a+k↑|0〉;
|0, 1〉 = a+−k↓|0〉;
|1, 1〉 = a+k↑a

+
−k↓|0〉.

The effect of Hk on these states can be easily read off:

Hk|0, 0〉 = −�|1, 1〉,
Hk|1, 0〉 = t (k)|1, 0〉,
Hk|0, 1〉 = t (k)|0, 1〉,
Hk|1, 1〉 = 2t (k)|1, 1〉 −�|0, 0〉.

This yields the following Hamiltonian matrix:

Hk ≡

⎛

⎜⎜
⎝

0 0 0 −�
0 t (k) 0 0
0 0 t (k) 0
−� 0 0 2t (k)

⎞

⎟⎟
⎠ .

The eigenvalues are found from the requirement:

det |Hk − E1| != 0,

0 = (t − E) det

⎛

⎝
−E 0 −�

0 t − E 0
−� 0 2t − E

⎞

⎠ =

= (t − E)
[
−E(t − E)(2t − E)−�2(t − E)

]
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�⇒ E1,2(k) = t (k),

0 = −E(2t − E)−�2 ⇐⇒ �2 = E2 − 2tE.

We thus find in summary the following energy eigenvalues:

E0(k) = t (k)−
√
t2(k)+�2 = t (k)− E(k),

E1(k) = E2(k) = t (k),

E3(k) = t (k)+
√
t2(k)+�2 = t (k)+ E(k).

2. Ansatz:

|E0(k)〉 = α0|0, 0〉 + α1|1, 0〉 + α2|0, 1〉 + α3|1, 1〉,
(Hk − E0(k)1) |E0(k)〉 = 0,

⎛

⎜⎜
⎝

−E0 0 0 −�
0 t − E0 0 0
0 0 t − E0 0
−� 0 0 2t − E0

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

α0

α1

α2

α3

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

0
0
0
0

⎞

⎟⎟
⎠

�⇒ α1 = α2 = 0,

E0α0 +�α3 = 0; α2
0 + α2

3 = 1

�⇒ α2
0 =

�2

E2
0

(1− α2
0) �⇒ α2

0 =
�2

E2
0 +�2

�⇒ α2
0 =

1

2

�2

t2 +�2 − tE(k)
= 1

2

�2
(
t2 +�2 + tE(k)

)

t4 +�4 + 2t2�2 − t2
(
t2 +�2

) =

= 1

2

t2 +�2 + t
√
t2 +�2

�2 + t2

�⇒ α2
0 =

1

2

(
1+ t (k)√

t2 +�2

)
≡ u2

k (s. Exercise 2.3.6).

This leads to:

α2
3 =

1

2

(
1− t (k)√

t2 +�2

)
≡ υ2

k (s. Exercise 2.3.6).



598 Solutions of the Exercises

The ground state is then given by:

|E0(k)〉 =
(
uk + υka

+
k↑a

+
−k↓
)
|0〉.

The two single-particle states are now found:

|E1(k)〉 = a+k↑|0〉,
|E2(k)〉 = a+−k↓|0〉.

We finally still have to calculate |E3(k)〉:
⎛

⎜⎜
⎝

−t (k)− E(k) 0 0 −�
0 −E(k) 0 0
0 0 −E(k) 0
−� 0 0 t (k)− E(k)

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

γ0

γ1

γ2

γ3

⎞

⎟⎟
⎠ = 0

�⇒ γ1 = 0 = γ2,

(t + E)γ0 +�γ3 = 0; γ 2
0 + γ 2

3 = 1

�⇒ γ 2
0 = + �2

(t + E)2
(1− γ 2

0 )

�⇒ γ 2
0 =

�2

�2 + (t + E)2
= �2

2�2 + 2t2 + 2tE
=

= 1

2

�2(�2 + t2 − tE)

�4 + t4 + 2t2�2 − t2(t2 +�2)
=

= 1

2

(
1− t√

t2 +�2

)
= υ2

k

�⇒ γ 2
3 = u2

k

�⇒ |E3(k)〉 =
(
υk − uka

+
k↑a

+
−k↓
)
|0〉,

The minus sign ensures that 〈E0 |E3〉 = 0 holds!
3.

�30 = 2
√
t2(k)+�2,

which is a two-particle excitation, does not appear as a pole of the one-electron
Green’s function!

�32 = �31 = �20 = �10 =
√
t2(k)+�2 ≡ E(k).
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These single-particle excitations are identical to the poles of the Green’s function
in Exercise 3.3.3!

Solution 3.3.5

1.

ρ+k↑ |E0(k)〉 =
(
uka

+
k↑ − υka−k↓

) (
uk + υka

+
k↑a

+
−k↓
)
|0〉 =

=
(
u2

k + υ2
k

)
a+k↑|0〉 = |E1(k)〉 ,

ρ+−k↓ |E0(k)〉 =
(
uka

+
−k↓ + υkak↑

) (
uk + υka

+
k↑a

+
−k↓
)
|0〉 =

=
(
u2

k + υ2
k

)
a+−k↓|0〉 = |E2(k)〉,

ρ+−k↓ |E1 (k)〉 =
(
uka

+
−k↓ + υkak↑

)
a+k↑|0〉 =

(
υk − uka

+
k↑a

+
−k↓
)
|0〉 =

= |E3(k)〉 ,
ρ+k↑ |E2(k)〉 =

(
uka

+
k↑ − υka

+
−k↓
)
a+−k↓|0〉 = −

(
υk − uka

+
k↑a

+
−k↓
)
|0〉 =

= − |E3(k)〉 .

2.

[ρp↑, ρ+k↑]+ =
[
upap↑ − υpa

+
−p↓, uka

+
k↑ − υka−k↓

]

+ =

= upuk

[
ap↑, a+k↑

]

+ + υpυk

[
a+−p↓, a−k↓

]

+ =

=
(
u2

k + υ2
k

)
δpk = δpk,

[ρp↑, ρk↑]+ =
[
upap↑ − υpa

+
−p↓, ukak↑ − υka

+
−k↓
]

+ = 0.

3.
[
H ∗, ρ+k↑

]

− =
[
Hk, ρ

+
k↑
]

− =

= t (k)
[
a+k↑ak↑ + a+−k↓a−k↓, uka

+
k↑ − υka−k↓

]

− =

−�
[
a+k↑a

+
−k↓ + a−k↓ak↑, uka

+
k↑ − υka−k↓

]

− =

= t (k)uk

[
a+k↑ak↑, a+k↑

]

− − t (k)υk

[
a+−k↓a−k↓, a−k↓

]

− +

+�υk

[
a+k↑a

+
−k↓, a−k↓

]
−�uk

[
a−k↓ak↑, a+k↑

]

− =
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= t (k)
(
uka

+
k↑ + υka−k↓

)
+�

(
υka

+
k↑ − uka−k↓

)
,

(
tu+�υ

u

)2

= t2u2 +�2υ2 + 2t�uυ

u2 ,

2tuυ = 2t
1

2

(
1− t2

t2 +�2

)1/2

= t�√
t2 +�2

= �
(
u2 − υ2

)

�⇒ tu+�υ

u
=
√
t2 +�2.

In an analogous manner, one shows that:

tυ −�u

υ
= −

√
t2 +�2

�⇒
[
H ∗, ρ+k↑

]

− = E(k)
{
uka

+
k↑ − υka−k↓

}
= E(k)ρ+k↑.

H ∗ describes a superconductor as a system of non-interacting Bogolons. These
are the quasi-particles of superconductivity, created by ρ+!

4.

[
H ∗, ρk↑

]
− = −E(k)ρk↑,

〈 [
ρk↑, ρ+k↑

]

+

〉
= 1

�⇒ Ĝret
k↑(E) =

h̄

E + E(k)+ i0+
.

Section 3.4.6

Solution 3.4.1
With

H0 =
∑

kσ

(ε(k)− μ)a+kσ akσ ,

we initially calculate:

[akσ ,H0]− =
∑

k′σ ′

(
ε
(
k′
)− μ

) [
akσ , a

+
k′σ ′ak′σ ′

]

− =
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=
∑

k′,σ ′

(
ε
(
k′
)− μ

)
δkk′δσσ ′ak′σ ′ = (ε(k)− μ)akσ .

The interaction term requires more effort:

[akσ ,H−H0]− =

= 1

2

∑

k′pq
σ ′′σ ′

υk′p(q)
[
akσ , a

+
k′+qσ ′′a

+
p−qσ ′apσ ′ak′σ ′′

]

− =

= 1

2

∑

k′,p,q
σ ′′σ ′

υk′p(q)
(
δσσ ′′δk,k′+qa

+
p−qσ ′apσ ′ak′σ ′′−

−δσσ ′δkp−qa
+
k′+qσ ′′apσ ′ak′σ ′′

)
=

= 1

2

∑

pqσ ′
υk−qp(q)a

+
p−qσ ′apσ ′ak−qσ−

− 1

2

∑

k′qσ ′′
υk′k+q(q)a

+
k′+qσ ′′ak+qσ ak′σ ′′ .

In the first term:

q →−q; υk+q,p(−q) = υp,k+q(q) (s. 3.299).

In the second term:

k′ → p; σ ′′ → σ ′.

The two terms can then be combined:

[akσ ,H−H0]− =
∑

pqσ ′
υp,k+q(q)a

+
p+qσ ′apσ ′ak+qσ .

Equation of motion:

(E − ε(k)+ μ)Gret
kσ (E) = h̄+

∑

pqσ ′
υp,k+q(q)⟪a+p+qσ ′apσ ′ak+qσ ; a+kσ⟫

ret

E
.

Solution 3.4.2

H0 =
∑

kσ

(ε(k)− μ)a+kσ akσ .
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With this, we readily calculate:

[akσ ,H0]− = (ε(k)− μ)akσ ,

[
a+kσ ,H0

]
− = −(ε(k)− μ)a+kσ ,

[
a+kσ ak′σ ′ ,H0

] = [a+kσ ,H0
]
− ak′σ ′ + a+kσ [ak′σ ′ ,H0]− =

= −(ε(k)− μ)a+kσ ak′σ ′ +
(
ε
(
k′
)− μ

)
a+kσ ak′σ ′ =

= (ε (k′)− ε(k)
)
a+kσ ak′σ ′ .

|ψ0〉 is an eigenstate of H0, since:

H0|ψ0〉 = a+kσ ak′σ ′H0 |E0〉 −
[
a+kσ ak′σ ′ ,H0

]
− |E0〉 =

= (E0 − ε
(
k′
)+ ε(k)

) |ψ0〉 .

Time dependence:

|ψ0(t)〉 = a+kσ (t)ak′σ ′(t) |E0〉 = e
i
h̄
H0t a+kσ ak′σ ′e

− i
h̄
H0t |E0〉 =

= e−
i
h̄
E0te

i
h̄
H0t |ψ0〉 = e−

i
h̄
E0te

i
h̄
(E0+ε(k′)−ε(k))t |ψ0〉

�⇒ |ψ0(t)〉 = e−
i
h̄
(ε(k′)−ε(k))t |ψ0〉 .

With 〈E0 |E0〉 = 1, it now follows that:

〈
ψ0
∣∣ψ0
〉 = 〈E0| a+k′σ ′akσ a

+
kσ ak′σ ′ |E0〉 =

= 〈E0| a+k′σ ′(1− nkσ )ak′σ ′ |E0〉 =
= 〈E0| a+k′σ ′ak′σ ′ |E0〉 = (k > kF)

= 〈E0|
(

1− ak′σ ′a
+
k′σ ′
)
|E0〉 =

= 〈E0
∣∣E0
〉 = (

k′ < kF
)

= 1.

Finally, we obtain:

〈
ψ0(t)

∣∣ψ0(t
′)
〉 = exp

[
− i

h̄

(
ε
(
k′
)− ε(k)

) (
t − t ′

)]

�⇒ ∣∣〈ψ0(t)
∣∣ψ0

(
t ′
)〉∣∣2 = 1 : stationary state.
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Solution 3.4.3

Gret
kσ (E) = h̄(E − ε(k)+ μ−!σ (k, E))−1

general representation.

1. The following must hold:

E − ε(k)+ μ−!σ (k, E)
!= E − 2ε(k)+ E2

ε(k)
+ iγ |E|

�⇒ !σ (k, E) = Rσ (k, E)+ iIσ (k, E) =
(
ε(k)+ μ− e2

ε(k)

)
− iγ |E|

�⇒ Rσ (k, E) = ε(k)+ μ− e2

ε(k)
, Iσ (k, E) = −γ |E|.

2.

Eiσ (k)
!= ε(k)− μ+ Rσ (k, Eiσ (k)) = 2ε(k)− E2

iσ (k)

ε(k)

�⇒ E2
iσ (k)+ ε(k)Eiσ (k) = 2ε2(k),
(
Eiσ (k)+ 1

2
ε(k)

)2

= 9

4
ε2(k).

We obtain two quasi-particle energies:

E1σ (k) = −2ε(k); E2σ (k) = ε(k).

Spectral weights (3.340):

αiσ (k) =
∣∣∣∣1−

∂

∂E
Rσ (k, E)

∣∣∣∣

−1

E=Eiσ
=
∣∣∣∣1+ 2

Eiσ (k)
ε(k)

∣∣∣∣

−1

�⇒ α1σ (k) = α2σ (k) = 1

3
.

Lifetimes:

Iσ (k, E1σ (k)) = −2γ |ε(k)| = I1σ (k),

Iσ (k, E2σ (k)) = −γ |ε(k)| = I2σ (k)

�⇒ τ1σ (k) = 3h̄

2γ |ε(k)| ; τ2σ (k) = 3h̄

γ |ε(k)| .
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3. The quasi-particle concept is applicable, in the case that

|Iσ (k, E)| � |ε(k)− μ+ Rσ (k, E)|
⇐⇒ |Iσ (k, Eiσ )| � |Eiσ (k)|
⇐⇒ γ |Eiσ (k)| � |Eiσ (k)|

⇐⇒ γ � 1.

4.
(
∂Rσ (k, E)

∂E

)

ε(k)
= − 2E

ε(k)
,

(
∂Rσ (k, E)
∂ε(k)

)

E

= 1+ e2

ε2(k)

�⇒ m∗1σ (k) = m
1− 4

1+ 5
= −1

2
m,

m∗2σ (k) = m
1+ 2

1+ 2
= m.

Solution 3.4.4
The self-energy is real and independent of k. Therefore, we find together
with (3.362):

ρσ (E) = ρ0[E −!σ (E − μ)] = ρ0

(
E − aσ

E − bσ

E − cσ

)
.

Lower band edge:

0
!= E − aσ

E − bσ

E − cσ

⇐⇒ 0 = E2 − (aσ + cσ )E + aσ bσ =

=
[
E − 1

2
(aσ + cσ )

]2

+ aσ bσ − 1

4
(aσ + cσ )

2

�⇒ E
(u)
1,2σ =

1

2

[
aσ + cσ ∓

√
(aσ + cσ )2 − 4aσ bσ

]
.

Upper band edge:

W
!= E − aσ

E − bσ

E − cσ

⇐⇒ −cσW = e2 − (aσ + cσ +W)E + aσ bσ ,
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0 =
[
E−1

2
(aσ + cσ +W)

]2

+(aσ bσ + cσW)−1

4
(aσ + cσ +W)2

�⇒ E
(o)
1,2σ =

1

2

[
aσ + cσ +W ∓

√
(aσ + cσ +W)2 − 4(aσ bσ + cσW)

]
.

Quasi-particle density of states:

ρσ (E) =

⎧
⎪⎪⎨

⎪⎪⎩

1/W, when E
(u)
1σ ≤ E ≤ E

(o)
1σ ,

1/W, when E
(u)
2σ ≤ E ≤ E

(o)
2σ ,

0, otherwise.

Band splitting into two quasi-particle subbands!

Section 4.1.7

Solution 4.1.1
The Hubbard Hamiltonian in the Wannier representation:

H =
∑

ijσ

Tij a
+
iσ ajσ +

1

2
U
∑

i,σ

niσ ni−σ .

From (2.37), we find for the hopping integrals,

Tij = 1

N

∑

k

ε(k)eik · (Ri−Rj ),

and for the creation and annihilation operators:

aiσ = 1√
N

∑

k

akσ eik ·Ri .

We find from this for the single-particle contribution:

∑

ijσ

Tij a
+
iσ ajσ =

= 1

N2

∑

k,p,q
σ

ε(k)a+pσ aqσ

∑

i,j

eik · (Ri−Rj )eip ·Ri e−iq ·Rj =
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=
∑

k,p,q
σ

ε(k)a+pσ aqσ δk,−pδk,−q =
∑

p,σ

ε(−p)a+pσ apσ =

=
∑

pσ

ε(p)a+pσ apσ , da ε(−p) = ε(p).

For the interaction term, we require:

niσ = 1

N

∑

k1,k2

e−i(k1−k2) ·Ri a+k1σ
ak2σ ,

∑

i,σ

niσ ni−σ =

= 1

N2

∑

i,σ

∑

k1,k2
p1,p2

a+k1σ
ak2σ a

+
p1−σ ap2−σ e−i(k1−k2+p1−p2) ·Ri =

= 1

N

∑

k1,k2,p1,p2
σ

δk1+p1,k2+p2
a+k1σ

ak2σ a
+
p1−σ ap2−σ =

= 1

N

∑

k1,k2,p2
σ

a+k1σ
a+k2+p2−k1−σ ap2−σ ak2σ =

= 1

N

∑

k,p,q,σ

a+k+qσ a
+
p−q−σ ap−σ akσ .

In the last step, we made the substitution: k2 → k, p2 → p, k1 → k + q. Then the
Hubbard Hamiltonian in the Bloch representation is given by:

H =
∑

pσ

ε(p)a+pσ apσ + U

2N

∑

kpqσ

a+k+qσ a
+
p−q−σ ap−σ akσ .

Comparison with (2.63):

Jellium Hubbard
h̄2k2

2m
←→ ε(k) (Tight-binding approximation)

υ0(q) = e2

V ε0q2 ←→ U

N
δσ ′,−σ .
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Solution 4.1.2
First, consider x �= 0:

1

2
lim
β→∞

β

1+ cosh(βx)
= lim

β→∞βe−β|x| = 0.

For x = 0, this expression diverges. Furthermore, we have:

+∞∫

−∞
dx

1

2
lim
β→∞

β

1+ cosh(βx)
= lim

β→∞

∞∫

0

dx
β

1+ cosh(βx)
,

∞∫

0

dx
β

1+ cosh(βx)
=

∞∫

0

dy
1

1+ cosh y
=

∞∫

0

dy
1

2 cosh2 y
2

=

=
∞∫

0

dz
1

cosh2 z
= tanh z

∣∣∣
∞
0
= 1− 0 = 1.

The requirements for the δ-function are thus fulfilled!

Solution 4.1.3

1. Jellium model (2.63):

H =
∑

kσ

ε0(k)a
+
kσ akσ + 1

2

q �=0∑

kpq
σ,σ ′

υ0(q)a
+
k+qσ a

+
p−qσ ′apσ ′akσ ,

ε0(k) = h̄2k2

2m
; υ0(q) = 1

V

e2

ε0q2
.

Hartree-Fock approximation for the interaction term:

a+k+qσ a
+
p−qσ ′apσ ′akσ

(q �=0)= −
(
a+k+qσ apσ ′

) (
a+p−qσ ′akσ

)

HFA−−→ −
〈
a+k+qσ apσ ′

〉 (
a+p−qσ ′akσ

)
−
(
a+k+qσ apσ ′

) 〈
a+p−qσ ′akσ

〉
+

+
〈
a+k+qσ apσ ′

〉 〈
a+p−qσ ′akσ

〉
=

= δp,k+qδσσ ′
(
− 〈nk+qσ

〉
nkσ − nk+qσ 〈nkσ 〉 +

〈
nk+qσ

〉 〈nkσ 〉
)
.
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Via the expectation values, we can make use of momentum and spin conservation
in the last step. We furthermore define:

〈ασ (k)〉 =
�=0∑

q

υ0(q)
〈
nk+qσ

〉 =
�=k∑

p

υ0(p− k)
〈
npσ
〉
,

〈βσ 〉 = 1

2

q�=0∑

k,q,σ

υ0(q)
〈
nk+qσ

〉 〈nkσ 〉.

We can then write the Hamiltonian for the jellium model as follows:

HHFA =
∑

kσ

{
ε0(k)− 〈ασ (k)〉

}
a+kσ akσ + 〈βσ 〉.

2. The equation of motion for the one-electron Green’s function can readily be
derived,

(E − ε0(k)+ μ+ 〈ασ (k)〉)Gkσ (E) = h̄,

and likewise solved:

Gret
kσ (E) =

h̄

E − ε0(k)+ μ+ 〈ασ (k)〉 + i0+
.

From this, we can read off the spectral density directly:

Skσ (E) = h̄δ(E − ε0(k)+ μ+ 〈ασ (k)〉).
3.

〈nkσ 〉 =
〈
a+kσ akσ

〉 = 1

h̄

+∞∫

−∞
dE

Skσ (E)

eβE + 1
= f−(E = ε0(k)− 〈ασ (k)〉).

The functional equation is implicit, since

〈ασ (k)〉 =
�=k∑

p

υ0(p− k)
〈
npσ
〉
.

4. According to (3.382), we have:

U(T ) = 1

2h̄

∑

kσ

+∞∫

−∞
dE f−(E)(E + ε0(k))Skσ (E − μ).
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This implies that:

U(T ) = 1

2

∑

kσ

(2ε0(k)− 〈ασ (k)〉)〈nkσ 〉.

Obviously, then, we have: U(T ) = 〈HHFA〉.
5. At T = 0, the averaging is performed over the ground state:

U(T = 0) =
∑

kσ

ε0(k)〈nkσ 〉0 − 1

2

q �=0∑

kqσ

υ0(q)〈nk+qσ 〉0〈nkσ 〉0.

This is formally identical to the result from first-order perturbation theory (2.92).
The difference lies in the different ground states which are used for the averaging.
In (2.92), the ground state of the non-interacting system was used (the filled
Fermi sphere).

Solution 4.1.4
Band limit:

G
ret(0)
kσ (E) = h̄

E − ε(k)+ μ+ i0+
.

Atomic limit (4.11):

Gret
σ (E) =

h̄(1− 〈n−σ 〉)
E − T0 + μ+ i0+

+ h̄〈n−σ 〉
E − T0 − U + μ+ i0+

.

1. Stoner approximation (4.23):

Gret
kσ (E) =

h̄

E − ε(k)− U 〈n−σ 〉 + i0+
.

The band limit is clearly applicable, but not the atomic limit!
2. Hubbard approximation (4.49), and (4.50):

Band limit U → 0 ⇐⇒ !σ (E) ≡ 0,

The Hubbard approximation is correct in this limit.

In the atomic limit (ε(k)→ T0∀k), from (4.50), the following holds:

Gkσ (E) = h̄

E − T0 + μ− U 〈n−σ 〉(E + μ− T0)

E + μ− U(1− 〈n−σ 〉)− T0

=
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= h̄(E − T0 + μ− U(1− 〈n−σ 〉))
(E − T0 + μ)2 − U(E − T0 + μ)

=

= h̄[(E − T0 + μ)〈n−σ 〉 + (E − T0 − U + μ)(1− 〈n−σ 〉)]
(E − T0 + μ)(E − T0 − U + μ)

=

= h̄〈n−σ 〉
E − T0 − U + μ

+ h̄(1− 〈n−σ 〉)
E − T0 + μ

.

This agrees with (4.11), if the boundary conditions for the retarded function are
fulfilled by inserting +i0+ into the denominator.

The Hubbard approximation is thus exact in both limiting cases.

Solution 4.1.5
The solution is found immediately from part 2 of Exercise 4.1.4:

!σ (E) = U 〈n−σ 〉 E + μ− T0

E + μ− T0 − U(1− 〈n−σ 〉) .

The self-energy in the atomic limit is thus identical with that of the Hubbard
solution (4.49)!

Solution 4.1.6

1.
[
S+i , S

−
j

]

− = h̄2δij

[
a+i↑ai↓, a

+
i↓ai↑

]

− = h̄2δij {ni↑ − ni↓} = 2h̄δij S
z
i ,

[
Szi , S

+
j

]

− = h̄2 1

2

[(
ni↑ − ni↓

)
, a+j↑aj↓

]

−

= 1

2
h̄2δij

{[
ni↑, a+i↑ai↓

]

− −
[
ni↓, a+i↑ai↓

]

−

}
=

= 1

2
h̄2δij

{
a+i↑ai↓−

(
−a+i↑ai↓

)}
= h̄δij S

+
i ,

[
Szi , S

−
j

]
= 1

2
h̄2
{[
ni↑, a+j↓aj↑

]

− −
[
ni↓, a+j↓aj↑

]

−

}
=

= 1

2
h̄2δij

{
−a+i↓ai↑ − a+i↓ai↑

}
= −h̄δij S−i .

2. Quite generally, we have for spin operators:

S+i S
−
i =

(
Sxi + iSyi

) (
Sxi − iSyi

) = (Sxi
)2 + (Syi

)2 + i
[
S
y
i , S

x
i

]
− =

= Si · Si −
(
Szi

)2 + h̄Szi .
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From this, it follows that:

1

h̄
Si · Si = a+i↑ai↓a

+
i↓ai↑ +

1

4

(
ni↑ − ni↓

)2 − 1

2

(
ni↑ − ni↓

) =

= ni↑ − ni↑ni↓ + 1

4

(
n2
i↑ + n2

i↓ − 2ni↑ni↓
)
− 1

2

(
ni↑ − ni↓

) =

= 3

4
ni↑ + 3

4
ni↓ − 3

2
ni↑ni↓

(
n2
iσ = niσ

)

�⇒ − 2

3h̄2

∑

i

Si · Si =
∑

i

ni↑ni↓ − 1

2
N̂,

N̂ =
∑

i,σ

niσ .

Field term:

μBB0

∑

i,σ

zσ niσ e−ik ·Ri = b
h̄

2

∑

i,σ

zσ niσ e−ik ·Ri = b
∑

i

Szi e−ik ·Ri .

Here, we have made use of:

b = 2
μB

h̄
B0; z↑ = +1; z↓ = −1.

The Hubbard Hamiltonian:

H =
∑

ijσ

Tij a
+
iσ ajσ −

2U

3h̄2

∑

i

Si · Si + 1

2
UN̂ − b

∑

i

Szi e−ik ·Ri .

3.

[
Sz(k), S±(q)

]
− =

∑

i,j

e−i(k ·Ri+q ·Rj )
[
Szi , S

±
j

]

− =

= ±h̄
∑

i

e−i(k+q) ·Ri S±i = ±h̄S±(k+ q).

Analogously:

[
S+(k), S−(q)

]
− = 2h̄Sz(k+ q).
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Solution 4.1.7

1. For the spin-spin interaction, we can write:

∑

i

Si · Si = 1

N2

∑

i

∑

k,p

ei(k+p) ·RiS(k) · S(p) =

= 1

N

∑

p,k

δp,−kS(k) · S(p) = 1

N

∑

k

S(k) · S(−k).

For the field term, we read off directly:

∑

i

Szi e−ik ·Ri = Sz(K).

We have already transformed the operator for the kinetic energy to the wavenum-
ber representation:

∑

ijσ

Tij a
+
iσ ajσ =

∑

kσ

ε(k)a+kσ akσ .

With this, and with part 3 of Exercise 4.1.6, we have directly proved the assertion.
2.

∑

k

[
S−(−k− K), S+(k+ K)

]
+ =

=
∑

k

∑

i,j

[
S−i , S

+
j

]

+ ei(k+k)·Ri e−i(k+k)·Rj =

= N
∑

i,j

δij

[
S−i , S

+
j

]

+ eik·(Ri−Rj ) = N
∑

i

(
S−i S

+
i + S+i S

−
i

)
,

S−i S
+
i = h̄2a+i↓ai↑a

+
i↑ai↓ = h̄2ni↓

(
1− ni↑

)
,

S+i S
−
i = h̄2a+i↑ai↓a

+
i↓ai↑ = h̄2ni↑

(
1− ni↓

)
.

3.
⎡

⎣S+(k),
∑

p

S(p) · S(−p)

⎤

⎦

−
=

=
∑

p

{[
S+(k), Sz(p)

]
− S

z(−p)+ Sz(p)
[
S+(k), Sz(−p)

]
− +
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+ 1

2

[
S+(k), S+(p)

]
− S

−(−p)+ 1

2
S+(p)

[
S+(k), S−(−p)

]
− +

+1

2

[
S+(k), S−(p)

]
− S

+(−p)+ 1

2
S−(p)

[
S+(k), S+(−p)

]
− } =

=
∑

p

{−h̄S+(k+ p)Sz(−p)− h̄Sz(p)S+(k− p)+

+ 0+ h̄S+(p)Sz(k− p)
︸ ︷︷ ︸

p→p+k

+ h̄Sz(k+ p)Sz(p)
︸ ︷︷ ︸

p→p−k

+0} = 0,

[
S+(k), N̂

]
− = h̄

∑

i,j
σ

e−ik·Ri
[
a+i↑ai↓, a

+
jσ ajσ

]

− =

= h̄
∑

ijσ

e−ik·Ri
(
δij δ↓σ a+i↑ajσ − δij δ↑σ a+jσ ai↓

)
=

= h̄
∑

i

e−ik·Ri
(
a+i↑ai↓ − a+i↑ai↓

)
= 0.

4. First, we require:

⎡

⎣S+(k),
∑

pσ

ε(p)a+pσ apσ

⎤

⎦

−
=

=
∑

i

e−ik ·Ri ∑

mnσ

Tmn

[
a+i↑ai↓, a

+
mσanσ

]

− =

=
∑

i

e−ik ·Ri ∑

mnσ

Tmn

(
δimδ↓σ a+i↑anσ − δinδ↑σ a+mσai↓

)
=

=
∑

m,n

Tmn

(
e−ik ·Rm − e−ik ·Rn

)
a+m↑an↓.

With

[
S+(k), Sz(K)

]
− = −h̄S+(k+ K),

the assertion follows immediately!
5. The field term is simple:

[
bh̄S+(k+ K), S−(−k)

]
− = 2bh̄2Sz(K).
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Computation of the second term is somewhat more tedious:

h̄
∑

i,j

Tij

(
e−ik ·Ri − e−ik ·Rj

) [
a+i↑aj↓, S

−(−k)
]

− =

= h̄2
∑

ijm

Tij

(
e−ik ·Ri − e−ik ·Rj

)
eik ·Rm

[
a+i↑aj↓, a

+
m↓am↑

]

−︸ ︷︷ ︸
δjma

+
i↑am↑−δima+m↓aj↓

=

= h̄2
∑

ijσ

Tij

(
e−izσ k(Ri−Rj ) − 1

)
a+iσ ajσ .

This proves the assertion!

Solution 4.1.8

1. From part 2 of Exercise 4.1.7, we already know that:

∑

k

〈 [
A,A+

]
+
〉 = N

∑

i

〈
S−i S

+
i + S+i S

−
i

〉 =

= h̄2N
∑

i

〈 (
ni↑ − ni↓

)2 〉 ≤ h̄2N
∑

i

〈
n2
i

〉
≤ 4h̄2N2.

For the second inequality, we can use part 5 of Exercise 4.1.7:

0 ≤ 〈 [[C,H ]−, C+
]
−
〉 ≤ h̄2

∑

ijσ

|Tij |
∣∣e−izσ k · (Ri−Rj ) − 1

∣∣·

· ∣∣〈a+iσ ajσ
〉∣∣+ 2|b|h̄2

∣∣〈Sz(K)
〉∣∣ .

The first term on the right-hand side of the inequality can be further estimated:

∣∣e−izσ k · (Ri−Rj )−1
∣∣ =

√[
cos
(
zσ k · (Ri − Rj )

)− 1
]2+ sin2 (zσ k · (Ri − Rj )

) ≤

≤ ∣∣ cos
(
k · (Ri − Rj

))−1
∣∣ ≤ 1

2
k2 (Ri − Rj

)2
,

〈
a+iσ ajσ

〉 = 1

N

∑

k

ek(Ri−Rj )〈nkσ 〉

�⇒ ∣∣〈a+iσ ajσ
〉∣∣ ≤ 1

N

∑

k

∣∣〈nkσ 〉
∣∣ ≤ 1.

From this, the assertion follows:

〈[[C,H ]−, C+
]
−
〉
≤ Nh̄2Qk2 + 2h̄2|b| ∣∣ 〈Sz(K)〉 ∣∣.
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The third inequality follows immediately from the general commutation relations
of the spin operators (Exercise 4.1.6):

〈[C,A]−〉 = 2h̄
〈
Sz(−K)

〉
.

2. The Bogoliubov inequality:

1

2
β
〈[A,A+]+

〉 〈[[C,H ]−, C+
]
−
〉
≥ ∣∣〈[C,A]−〉

∣∣2.

According to part 2 of Exercise 2.4.5,
〈[[C,H ]−, C+

]
−
〉

is not negative.

Therefore, we also have:

1

2
β
∑

k

〈[
A,A+

]
+
〉
≥
∑

k

|〈[C,A]−〉|2〈[[C,H ]−, C+]−
〉 .

With

∣∣〈Sz(K)
〉∣∣ = ∣∣〈Sz(−K)

〉∣∣ = Nh̄

2μB
|M(T,B0)| ,

then, the assertion follows immediately by insertion of the results of part 1.
3. In Exercise 2.4.7, we found a corresponding inequality for the Heisenberg model:

βS(S + 1) ≥ M2

(
gjμB

)2
1

N

∑

k

1

|B0M| + h̄2k2QS(S + 1)
.

It is the same, apart from unimportant factors, as the inequality in part 2. The
conclusions are the same, i.e. the Mermin-Wagner theorem holds also for the
Hubbard model:

Solution 4.1.9
The Hubbard model in the limiting case of an infinitely narrow band:

H = T0

∑

i,σ

niσ + 1

2
U
∑

i,σ

niσ ni−σ .

1. Making use of

[aiσ , niσ ′ ]− = δσσ ′aiσ ,

we can readily compute the following commutators:

[aiσ ,H ]− = T0aiσ + Uaiσ ni−σ ,
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[aiσ ni−σ ,H ]− = (T0 + U)aiσ ni−σ .

The proof is first carried out by complete induction:

[
. . .
[[aiσ ,H

]
−,H

]
−, . . . , H︸ ︷︷ ︸

n-fold commutator

]

− = T n0 aiσ +
(
(T0 + U)n − T n0

)
aiσ ni−σ .

Initiation of induction n = 1: see above.
Conclusion of induction: n −→ n+ 1:

[
. . .
[[aiσ ,H ]−,H

]
−, . . . , H︸ ︷︷ ︸

(n+1)-fold commutator

]

− =

= T n0 [aiσ ,H ]− +
[
(T0 + U)n − T n0

][aiσ ni−σ ,H ]− =
= T n0 (T0aiσ + Uaiσ ni−σ )+

[
(T0 + U)n − T n0

]
(T0 + U)aiσ ni−σ =

= T n+1
0 aiσ + aiσ ni−σ

(
(T0 + U)n+1 − T n+1

0

)
q. e. d.

With this, we find for the spectral moments:

M
(n)
iiσ =

〈[[
. . .
[[aiσ ,H ]−,H

]
−, . . . , H︸ ︷︷ ︸

n-fold commutator

]
−, a+iσ

]

+

〉
=

= T n0

〈[
aiσ , a

+
iσ

]
+
〉
+ [(T0 + U)n − T n0

] 〈[
aiσ ni−σ , a+iσ

]
+
〉
=

= T n0 +
[
(T0 + U)n − T n0

]〈ni−σ 〉 q. e. d.

2.

D
(r)
iiσ =

∣∣∣∣∣∣∣

M
(0)
iiσ · · · M(r)

iiσ
...

...

M
(r)
iiσ · · · M(2r)

iiσ

∣∣∣∣∣∣∣
.

r = 1

D
(1)
iiσ =

∣∣∣∣∣
M

(0)
iiσ M

(1)
iiσ

M
(1)
iiσ M

(2)
iiσ

∣∣∣∣∣
= M

(0)
iiσM

(2)
iiσ −

(
M

(1)
iiσ

)2 =

= T 2
0 +

[
(T0 + U)2 − T 2

0

]〈ni−σ 〉 − (T0 + U 〈ni−σ 〉)2 =
= U2〈n−σ 〉(1− 〈n−σ 〉) �= 0, when 〈n−σ 〉 �= 0, 1.
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For empty bands (〈n−σ 〉 = 0), fully-occupied bands (〈n−σ 〉 = 1), and
completely polarised, half-filled bands (〈nσ 〉 = 1, 〈n−σ 〉 = 0), the spectral
density clearly consists of only one δ-function.
r = 2

D
(2)
iiσ = M

(0)
iiσM

(2)
iiσM

(4)
iiσ + 2M(1)

iiσM
(2)
iiσM

(3)
iiσ−

−
(
M

(2)
iiσ

)3 −M
(0)
iiσ

(
M

(3)
iiσ

)2 −
(
M

(1)
iiσ

)2
M

(4)
iiσ =

= M
(4)
iiσ

[
M

(2)
iiσ −

(
M

(1)
iiσ

)2
]
+M

(2)
iiσ

[
M

(1)
iiσM

(3)
iiσ −

(
M

(2)
iiσ

)2
]
+

+M
(3)
iiσ

(
M

(1)
iiσM

(2)
iiσ −M

(3)
iiσ

)
=

= U2〈ni−σ 〉(1− 〈ni−σ 〉)
[
M

(4)
iiσ + T0(T0 + U)M

(2)
iiσ − (U + 2T0)M

(3)
iiσ

]
=

= 0.

Thus, the spectral density is in general a two-pole function.
3.

Siiσ (E) = h̄[α1σ δ(E − E1σ )+ α2σ δ(E − E2σ )].

The following must hold:

1

h̄

+∞∫

−∞
dE EnSiiσ (E) = M

(n)
iiσ

⇐⇒ α1σE
n
1σ + α2σE

n
2σ = T n0 (1− 〈ni−σ 〉)+ (T0 + U)n〈ni−σ 〉.

From this, we can read off directly:

E1σ = E1−σ = T0; α1σ = 1− 〈ni−σ 〉,
E2σ = E2−σ = T0 + U ; α2σ = 〈ni−σ 〉.

Solution 4.1.10

1. The spectral moments were calculated in Exercise 3.3.3:

M
(2n)
kσ =

(
t2(k)+�2

)n = (E(k))2n,

M
(2n+1)
kσ =

(
t2(k)+�2

)n
t (k) = (E(k))2nt (k).



618 Solutions of the Exercises

2. Lonke determinant:

D
(1)
kσ = M

(0)
kσ M

(2)
kσ −

(
M

(1)
kσ

)2 = (E(k))2 − t2(k) = �2 �= 0,

D
(2)
kσ = M

(0)
kσ M

(2)
kσ M

(4)
kσ + 2M(1)

kσ M
(2)
kσ M

(3)
kσ −

−
(
M

(2)
kσ

)3 −M
(0)
kσ

(
M

(3)
kσ

)2 −
(
M

(1)
kσ

)2
M

(4)
kσ =

= (E(k))6 + 2t2(k)(E(k))4 − (E(k))6−
− t2(k)(E(k))4 − t2(k)(E(k))4 = 0 q. e. d.

Section 4.2.4

Solution 4.2.1

[
a+kσ ak+qσ , N̂

]
− =

∑

p,σ ′

[
a+kσ ak+qσ , apσ ′apσ ′

] =

=
∑

p,σ ′
{δσσ ′δp,k+qa

+
kσ apσ ′ − δσσ ′δkpapσ ′ak+qσ } =

= a+kσ ak+qσ − a+kσ ak+qσ = 0.

Solution 4.2.2

1.

ρσ (E) = ρ0(E) ρσ (E) = ρ0(E + zσμBB0),

B0 = μ0H.

The magnetisation:

Nσ = N

+∞∫

−∞
dE f−(E)︸ ︷︷ ︸

Fermi function

ρσ (E) =

= N

∫

−z∞σ μBB0

dEf−(E)ρ0(E + zσμBB0) =

= N

∞∫

0

dEf−(E − zσμBB0)ρ0(E),
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Fig. A.10

μBB0 = E–4 . . .E–3eV in the usual fields.

The Taylor expansion for the Fermi function can therefore be terminated after
the linear term:

Nσ ≈ N

∞∫

0

dE

(
f−(E)− zσμBB0

∂f−
∂E

)
ρ0(E),

∂f−
∂E

≈ −δ(E − EF)

�⇒ M ≈ 2μ2
Bμ0Nρ0(EF)H.

The Pauli susceptibility:

χPauli ≈ 2μ2
Bμ0Nρ0(EF).

2.

χ0(q, E = 0) =

= 2V h̄

(2π)3

∫
d3k

�(kF − |k+ q|)−�(kF − k)

h̄2

2m

[
(k+ q)2 − k2

] =

= 4mV

h̄(2π)3

∫
d3k�(kF − k)

{
(2k · q− q2)−1 − (2k · q+ q2)−1

}
=

= −mV
h̄π2

kF∫

0

dk k2

+1∫

−1

dx

{
1

q2 + 2kqx
+ 1

q2 − 2kqx

}
=

= − mV

2h̄π2q

kF∫

0

dk k

{
ln

(
q2 + 2kq

q2 − 2kq

)
− ln

(
q2 − 2kq

q2 + 2kq

)}
=

= − mV

h̄π2q

kF∫

0

dk k ln

∣∣∣∣
q2 + 2kq

q2 − 2kq

∣∣∣∣ =
−mV

4h̄π2q3

2kFq∫

0

dx x ln

∣∣∣∣
q2 + x

q2 − x

∣∣∣∣ .
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We use the integral formulation (4.158):

χ0(q, E = 0) =

= −mV
4h̄π2q3

{
1

2
(x2−q4) ln(q2 + x)−1

2
(x2−q4) ln(q2 − x)−1

2

(
x2

2
−q2x

)
+

+1

2

(
x2

2+ q2x

)}2kFq

0
=

= −mV kF

h̄π2

{
1

2
+ kF

2q

(

1− q2

4k2
F

)

ln

∣∣∣∣
2kF + 1

2kF − q

∣∣∣∣

}

.

In the brackets, we can identify the function defined in (4.160):

g

(
n = q

2kF

)
.

With the density of states of the non-interacting electron gas, which was
introduced in part 4 of Exercise 2.1.4 (the Sommerfeld model),

ρ0(E) = V

4π2N

(
2m

h̄2

)3/2√
E�(E),

we can reformulate the prefactor somewhat:

ρ0(EF) = V

4π2N

(
2m

h̄2

)3/2
√
h̄2

2m
kF = mV

2Nπ2h̄2 kF

�⇒ χ0(q, E = 0) = −2Nh̄ρ0(EF)g(q/2kF) =

= − h̄

μ0μ
2
B

χPaulig(q/2kF).

Solution 4.2.3

1. We need to calculate:

χzzq (E) = −μ0μ
2
B

V h̄

∑

σ,σ ′
(2δσσ ′ − 1)

1

N

∑

k,k′
⟪a+kσ ak+qσ ; a+k′σ ′ak′−qσ ′⟫.

It is reasonable to start from the following Green’s function:

χ̂σσ
′

kq (E) =
∑

k′
⟪a+kσ ak+qσ ; a+k′σ ′ak′−qσ ′⟫ .
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Hubbard model:

H = H0 +H1,

H0 =
∑

kσ

(ε(k)− μ)a+kσ akσ ,

H1 = U

N

∑

kpq

a+k↑ak−q↑a+p↓ap+q↓.

For the equation of motion of the function χσσ
′

kq (E), we require:

(a) Inhomogeneity

〈[
a+kσ ak+qσ , a

+
k′σ ′ak′−qσ ′

]
−
〉
=

= δσσ ′δk′,k+q
〈
a+kσ ak′−qσ ′

〉− δσσ ′δk,k′−q

〈
a+k′σ ′ak+qσ

〉

= δσσ ′δk′,k+q
(〈nkσ 〉 −

〈
nk+qσ

〉)
.

(b)

[
a+kσ ak+qσ ,H0

]
− =

=
∑

k′σ ′

(
ε
(
k′
)− μ

) [
a+kσ ak+qσ , a

+
k′σ ′ak′σ ′

]

− =

=
∑

k′,σ ′

(
ε
(
k′
)− μ

) (
δσσ ′δk′,k+qa

+
kσ ak′σ ′ − δσσ ′δk′,ka

+
k′σ ′ak+qσ

)
=

= (ε(k+ q)− ε(k))a+kσ ak+qσ .

(c)

[
a+kσ ak+qσ ,H1

]
− =

= U

N

∑

k′,p,q′

[
a+kσ ak+qσ , a

+
k′↑ak′−q′↑a+p↓ap+q′↓

]

− =

= U

N

∑

k′,p,q′

{
δσ↑δk′,k+qa

+
kσ ak′−q′↑a+p↓ap+q′↓−

− δσ↑δk,k′−q′a
+
k′↑ak+qσ a

+
p↓ap+q′↓+

+ δσ↓δk+q,pa
+
k′↑ak′−q′↑a+kσ ap+q′↓−
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−δσ↓δk,p+q′a
+
k′↑ak′−q′↑a+p↓ak+qσ

}
=

= U

N
δσ↑

∑

p,q′

{
a+k↑ak+q−q′↑a+p↓ap+q′↓ − a+k+q′↑ak+q↑a+p↓ap+q′↓

}
+

+ U

N
δσ↓

∑

k′,q′

{
a+k′↑ak′−q′↑a+k↓ak+q+q′↓ − a+k′↑ak′−q′↑a+k−q′↓ak+q↓

}
.

The interaction term H1 thus leads to the following higher-order Green’s
functions:

⟪
[
a+kσ ak+qσ ,H1

]
− ; . . . ⟫ =

= U

N

∑

p,q′

[
δσ↑
[
⟪a+k↑ak+q−q′↑a+p↓ap+q′↓; . . . ⟫−

−⟪a+k+q′↑ak+q↑a+p↓ap+q′↓; · · ·⟫
]
+

+ δσ↓
[
⟪a+p↑ap−q′↑a+k↓ak+q+q′↓; · · ·⟫−

− ⟪a+p↑ap−q′↑a+k−q′↓ak+q↓; · · ·⟫
]]
.

The higher order Green’s functions are decoupled using the RPA method from
Sect. 4.2.2, whereby special attention must be paid to the conservation of spin
and momentum:

⟪[a+kσ ak+qσ ,H1]−; . . .⟫ RPA−−→
RPA−−→ U

N

∑

p,q′

[
δσ↑
[
δqq′ 〈nk↑〉⟪a+p↓ap+q′↓; . . .⟫+

+ δq′,0〈np↓〉⟪a+k↑ak+q−q′↑; . . .⟫− δqq′
〈
nk+q↑

〉
⟪a+p↓ap+q′↓; . . .⟫−

−δq′,0
〈
np↓
〉
⟪a+k+q′↑ak+q↑; . . .⟫

]
+ δσ↓

[
δq′0

〈
np↑
〉
⟪a+k↓ak+q+q′↓; . . .⟫+

+ δq,−q′
〈
nk↓
〉
⟪a+p↑ap−q′↑; . . .⟫− δq′,0

〈
np↑
〉
⟪a+k−q′↓ak+q↓; . . .⟫−

− δ−q′,q
〈
nk+q↓

〉
⟪a+p↑ap−q′↑; . . .⟫

]]
=

= U

N

∑

p

(〈nkσ 〉 −
〈
nk+qσ

〉 )
⟪a+p−σ ap+q−σ ; . . .⟫ .
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Equation of motion:

[E − (ε(k+ q)− ε(k))]χσσ ′kq (E) =

= h̄δσσ ′(〈nkσ 〉 −
〈
nk+qσ

〉
)+ U

N

∑

p

(〈nkσ 〉 −
〈
nk+qσ

〉
)χ−σσ ′pq (E).

In the sense of the RPA, the expectation values can be considered to be those
of the non-interacting system. They are thus independent of spin (〈nkσ 〉(0) =
〈nk−σ 〉(0)).

χzzq (E) = −μ0μ
2
B

V h̄

1

N

∑

kσ

(
χσσkq (E)− ξ−σσkq (E)

)
=

(4.134)= −μ0μ
2
B

V h̄

⎡

⎣ 1

N
χ0(q, E)+ U

N2

1

h̄
χ0(q, E)

∑

p

χ−σσpq (E)−

− U

N2

1

h̄
χ0(q, E)

∑

p

χ−σ−σpq (E)

⎤

⎦

�⇒ χzzq (E)

[
1+ U

N

1

2h̄
χ0(q, E)

]
= −μ0μ

2
B

V h̄N
χ0(q, E),

χzzq (E) = −μ0μ
2
B

V h̄N

χ0(q, E)

1+ U
2Nh̄χ0(q, E)

.

2. Making use of the result of Exercise 4.2.2 for χ0, we obtain:

[
lim

(q, E)→0
χzzq (E)

]−1

= V
1− Uρ0(EF)

2μ0μ
2
Bρ0(EF)

.

According to (3.71), the zero of this expression yields a criterion for the
occurrence of ferromagnetism:

1
!= Uρ0(EF).

This is the well-known Stoner criterion (4.38).

Solution 4.2.4

1. Transformation to wavenumbers, making use of translational symmetry:

Dij (E) = 1

N

∑

q

Dq(E)e
iq·(Ri−Rj ),
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Dq(E) = 1

N

∑

k,p

Dkp(q, E),

Dkp(q, E) = ⟪ak−σ aq−kσ ; a+q−pσ a
+
p−σ⟫

ret
E
.

Setting up the equation of motion:

[
ak−σ aq−kσ , a

+
q−pσ a

+
p−σ
]
− = δkpak−σ a+p−σ − δkpa

+
q−pσ aq−kσ =

= δkp
(
1− nk−σ − nq−kσ

)
,

[
ak−σ aq−kσ ,Hs

]
− =

∑

k′,σ ′

(
Eσ ′

(
k′
)− μ

) [
ak−σ aq−kσ , a

+
k′σ ′ak′σ ′

]

− =

=
∑

k′,σ ′

(
Eσ ′

(
k′
)−μ) (δk′,q−kδσσ ′ak−σ ak′σ ′ − δk′,kδσ ′−σ aq−kσ ak′σ ′

) =

= (Eσ (q− k)+ E−σ (k)− 2μ)ak−σ aq−kσ

�⇒ [E + 2μ− (Eσ (q− k)+ E−σ (k))]Dkp(q, E) =
= h̄δkp

(
1− 〈nk−σ 〉 −

〈
nq−kσ

〉)
.

Solution with a suitable boundary condition:

Dkp(q, E) = δkp
h̄
(
1− 〈nk−σ 〉 −

〈
nq−kσ

〉)

E + 2μ− (Eσ (q− k)+ E−σ (k))+ i0+
.

We require:

S
(2)
ii (E − 2μ) =

= 1

N2

∑

kpq

(
− 1

π
ImDkp(q, E − 2μ)

)

= 1

N2 h̄
∑

kq

(
1− 〈nk−σ 〉 −

〈
nq−kσ

〉)
δ
(
E − (Eσ (q− k)+ E−σ (k))

)
.

In the Stoner model, we have for the one-electron spectral density given in
Eq. (4.27):

S
(S)
kσ (E) = h̄δ(E − ε(k)− U 〈n−σ 〉 + μ) = h̄δ(E − Eσ (k)+ μ).

With the spectral theorem, one therefore finds:

〈nσ 〉 = f−(Eσ (k)).



Solutions of the Exercises 625

For the two-particle spectral density, we can further write:

S
(2)
ii (E − 2μ) = h̄

N2

∑

kp

[
1− f−(E−σ (k))− f−(Eσ (p))

]
·

· δ
[
E − (Eσ (p)+ E−σ (k))

]
=

= h̄

∫
dx

1

N

∑

k

[1− f−(E−σ (k))− f−(x)]·

· δ(E − E−σ (k)− x)
1

N

∑

p

δ(x − Eσ (p)) =

= h̄

∫
dxρ(S)σ (x)[1− f−(E − x)− f−(x)]·

· 1

N

∑

k

δ(E − E−σ (k)− x) =

= h̄

∫
dxρ(S)σ (x)ρ

(S)
−σ (E − x)[1− f−(E − x)− f−(x)].

Here, for the Stoner quasi-particle density of states, we have:

ρ(S)σ (E) = 1

Nh̄

∑

k

S
(S)
kσ (E − μ) = 1

N

∑

k

δ(E − Eσ (k)) = ρ0(E − U 〈n−σ 〉).

2. The width of the spectrum is determined by the densities of states:

Emin−σ (k) ≤ E − x ≤ Emax−σ (k)

�⇒ Emax = Emax−σ (k)+ xmax = Emax−σ (k)+ Emax
σ (k),

Emin = Emin−σ (k)+ xmin = Emin−σ (k)+ Emin
σ (k),

Width = Emax − Emin =
(
Emax−σ (k)− Emin−σ (k)

)+ (Emax
σ (k)− Emin

σ (k)
) =

= W−σ +Wσ .

In the Stoner model, Wσ = W−σ = W �⇒ width of the spectrum: 2W .

Solution 4.2.5
The two-particle spectral density:

S
(2)
ii (E) =

+∞∫

−∞
d(t − t ′)e

i
h̄
E(t−t ′) 1

2π

〈[
(ai−σ aiσ )(t),

(
a+iσ a

+
i−σ
) (
t ′
) ]
−
〉
.
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We calculate the two expectation values separately; � = grand canonical partition
function:

�
〈(
a+iσ a

+
i−σ
) (
t ′
)
(ai−σ aiσ )(t)

〉 =
= Tr

{
e−βH

(
a+iσ a

+
i−σ
) (
t ′
)
(ai−σ aiσ )(t)

}
=

=
∑

N

∑

n

e−βEm(N) 〈En(N)|
(
a+iσ a

+
i−σ
) (
t ′
)
(ai−σ aiσ )(t) |En(N)〉 =

=
∑

N,N ′

∑

n,m

e−βEn(N) 〈En(N)| a+iσ a+i−σ
∣∣Em

(
N ′)〉 ·

· 〈Em
(
N ′)∣∣ ai−σ aiσ |En(N)〉 ·

· exp

(
i

h̄
(En(N)− Em

(
N ′))

(
t − t ′

)) =

=
∑

N

∑

n,m

e−βEn(N) 〈En(N)| a+iσ a+i−σ |Em(N − 2)〉 ·

· 〈Em(N − 2)| ai−σ aiσ |En(N)〉 ·

· exp

(
− i

h̄
(En(N)− Em(N − 2))

(
t − t ′

))
.

In complete analogy, we find for the second term:

�
〈
(ai−σ aiσ )(t)

(
a+iσ a

+
i−σ
) (
t ′
)〉 =

=
∑

N ′

∑

n,m

e−βEn(N)e−β(Em(N−2)−En(N))·

· 〈En(N)| a+iσ a+i−σ |Em(N − 2)〉 〈Em(N − 2) |ai−σ aiσ |En(N)〉 ·

· exp

(
− i

h̄
(En(N)− Em(N − 2))

(
t − t ′

))
.

Thus for the spectral density, using

En(N) ≈ En − μN (N � 1),

we find the following spectral representation:

S
(2)
ii (E) =

h̄

�

∑

N

∑

n,m

e−βEn(N) 〈En(N)| a+iσ a+i−σ |Em(N − 2)〉 ·

· 〈Em(N − 2)| ai−σ aiσ |En(N)〉
(

eβE − 1
)
δ[E − (En − Em − 2μ)].
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With it, we calculate:

+∞∫

−∞
dE IAES(E − 2μ) = 1

h̄

+∞∫

−∞
dE

S
(2)
ii (E − 2μ)

eβ(E−2μ) − 1
=

= 1

�

∑

N

∑

N ′

∑

n,m

e−βEn(N) 〈En(N)| a+iσ a+i−σ
∣∣Em

(
N ′)〉 ·

· 〈Em
(
N ′)∣∣ ai−σ aiσ |En(N)〉 =

= 1

�

∑

N

∑

n

e−βEn(N) 〈En(N)| a+iσ a+i−σ ai−σ aiσ |En(N)〉 =

= 〈a+iσ a+i−σ ai−σ aiσ
〉 = 〈niσ ni−σ 〉 = 〈nσn−σ 〉 q. e. d.

Analogously, one finds:

+∞∫

−∞
dE IAPS(E − 2μ) = 1

�

∑

N

∑

n,m

e−βEn(N)eβ(En−Em−2μ)·

· 〈En(N)| a+iσ a+i−σ |Em(N − 2)〉 〈Em(N − 2)| ai−σ aiσ |En(N)〉 =

= 1

�

∑

N

∑

N ′

∑

n,m

e−βEm(N ′) 〈En(N)| a+iσ a+i−σ
∣∣Em

(
N ′)〉 ·

· 〈Em
(
N ′)∣∣ ai−σ aiσ |En(N)〉 =

= 1

�

∑

N ′

∑

m

e−βEm(N ′)
〈
Em
(
N ′)∣∣ ai−σ aiσ a+iσ a

+
i−σ

∣∣Em
(
N ′)〉 =

= 〈ai−σ aiσ a+iσ a+i−σ
〉 = 〈(1− ni−σ )(1− niσ )〉 = 1− n+ 〈n−σ nσ 〉 q. e. d.

For both of these intermediate results, we have made use of the completeness
relation,

∑

N

∑

n

|En(N)〉 〈En(N)| = 1.

Furthermore, we were able to use

〈En(N)| a+iσ a+i−σ
∣∣Em

(
N ′)〉 ∼ δN ′,N−2

repeatedly.
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Solution 4.2.6
We compute the retarded Green’s function

Dret
mn;jj (E) = ⟪amσ an−σ ; a+j−σ a+jσ⟫

ret

E

with the aid of its equation of motion. Due to the assumed empty band, we set
μ→−∞, i.e.

eβ(E−2μ)

eβ(E−2μ) − 1
−→ 1; 1

eβ(E−2μ) − 1
−→ 0

�⇒ IAES ≡ 0; IAPS(E − 2μ) −→ − 1

h̄π
ImDret

ii;ii (E − 2μ).

The μ-dependence on the right is now only formal. The chemical potential μ no
longer occurs explicitly in Dret

ii;ii (E − 2μ), so that we can already set it to zero for
simplicity in the Hamiltonian:

I
(n=0)
APS (E) = − 1

h̄π
ImDret

ii;ii (E).

We require the commutator:

[amσ an−σ ,H ]− =

=
∑

ijσ ′
Tij
[
amσ an−σ , a+iσ ′ajσ ′

]
− +

1

2
U
∑

iσ ′
[amσ an−σ , niσ ′ni−σ ′ ]− =

=
∑

j

(
Tnjamσ aj−σ − Tmjan−σ ajσ

)+ 1

2
U [amσ (an−σ nnσ + nnσ an−σ )+

+(amσnm−σ + nm−σ amσ )an−σ ] =
=
∑

j

(
Tnjamσ aj−σ − Tmjan−σ ajσ

)+ U(amσ an−σ nnσ + nm−σ amσ an−σ ).

This yields the still-exact equation of motion:

(E − Uδmn)D
ret
mn;jj (E) =

= h̄
(
δnj

〈
amσ a

+
jσ

〉
− δmj

〈
a+j−σ an−σ

〉)
+

+
∑

l

(
TnlD

ret
ml,jj (E)+ TmlD

ret
ln,jj (E)

)
+

+ U(1− δmm)⟪amσ (nnσ + nm−σ )an−σ ; a+j−σ a+jσ⟫
ret

E
.
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We can make use of the assumed empty energy band (n = 0):

〈
amσ a

+
jσ

〉
= δmj −

〈
a+jσ amσ

〉
−→ δmj ,

〈
a+j−σ an−σ

〉
−→ 0,

⟪amσ (nnσ + nm−σ )an−σj a+j−σ ; a+jσ⟫
ret

E
−−→
m�=n 0.

The last relation is to be verified directly via the definition of the Green’s function.
Now, only the greatly simplified equation of motion remains:

(E − Uδmn)D
ret
mn;jj (E) = h̄δnj δmj +

∑

l

(
TnlD

ret
ml;jj (E)+ TmlD

ret
ln;jj (E)

)
.

It can be solved via Fourier transformation:

Dret
kp;jj (E) =

1

N

∑

m,n

e−i(k ·Rm+p ·Rn)Dret
mn;jj (E).

In detail, one then finds:

∑

l

TnlD
ret
ml;jj (E) =

1

N

∑

k,p

ei(p ·Rn+k ·Rm)ε(p)Dret
kp;jj (E),

∑

l

TmlD
ret
ln;jj (E) =

1

N

∑

k,p

ei(p ·Rn+k ·Rm)ε(k)Dret
kp;jj (E),

δmnD
ret
mn;jj (E) =

1

N2

∑

q

∑

k,p

ei(p ·Rn+k ·Rm)Dret
k−q,p+q;jj (E),

δmj δnj = δmj δmn = 1

N2

∑

p,k

ei(p ·Rn+k ·Rm)e−i(p+k) ·Rj .

This yields the following Fourier-transformed equation of motion:

[E − ε(k)− ε(p)]Dret
kp;jj (E) =

h̄

N
e−i(p+k) ·Rj + U

N

∑

q

Dret
k−q,p+q;jj (E).

The following change of variables now appears expedient:

ρ = k+ p; ρ̄ = 1

2
(k− p)
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�⇒
[
E − ε

(
1

2
ρ + ρ̄

)
− ε

(
1

2
ρ − ρ

)]
Dret

1
2 ρ+ρ, 1

2 ρ−ρ̄;jj (E) =

= h̄

N
e−iρ ·Rj + U

N

∑

q

Dret
1
2 ρ+q̄, 1

2 ρ−q̄;jj (E).

We require:

Dret
ii;ii (E) =

1

N

∑

k,p

ei(k+p)·RiDret
kp;ii (E) =

1

N

∑

ρ,ρ̄

eiρ·RiDret
1
2 ρ+ρ̄, 1

2 ρ−ρ̄;ii (E).

Initially, the equation of motion can be condensed after summation over ρ̄, making
use of the conventional definition of #(0)

k (E), yielding:

1

N

∑

ρ̄

Dret
1
2 ρ+ρ̄, 1

2 ρ−ρ̄;ii (E) =
h̄

N
e−iρ ·Ri #

(0)
ρ (E)

1− U#
(0)
ρ (E)

.

From this, we obtain the assertion:

I
(n=0)
APS (E) = − 1

π
Im

1

N

∑

k

#
(0)
k (E)

1− U#
(0)
k (E)

.

For small values of U , this expression can be simplified to:

I
(n=0)
APS (E) ≈ 1

N2

∑

k

∑

q

δ[E − ε(k)− ε(k− q)] =

=
+∞∫

−∞
dx ρ0(x)

1

N

∑

k

δ(E − ε(k)− x) =
+∞∫

−∞
dx ρ0(x)ρ0(E − x).

This is the self-convolution of the Bloch density of states:

ρ0(x) = 1

N

∑

p

δ(x − ε(p)).

Solution 4.2.7
Precisely speaking, we should choose the rangeμ→+∞ for the chemical potential
in this case. This implies that:

IAES(E − 2μ) −→ + 1

h̄π
ImDret

ii;ii (E − 2μ),
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IAPS(E − 2μ) −→ 0.

In the exact and generally valid equation of motion for Dret
mn;jj (E) in the solution of

Exercise 4.2.6, we can now make the following simplifications due to n = 2:

〈
amσ a

+
jσ

〉
−→ 0,

〈
a+j−σ an−σ

〉
−→ δnj ,

⟪amσnnσ an−σ ; a+j−σ a+jσ⟫
ret

E
−→ Dret

mn;jj (E),

⟪amσnm−σ an−σ ; a+j−σ a+jσ⟫
ret

E
−→ (1− δmn)D

ret
mn,jj (E).

This then leads to the simplified equation of motion:

[E + 2μ− U(2− δnm)]Dret
mn;jj (E) =

= −h̄δmj δnj +
∑

l

(
TnlD

ret
ml;jj (E)+ TmlD

ret
ln;jj (E)

)
.

This is very similar to the corresponding equation of motion for n = 0. We have
only to replace E by E + 2μ − 2U and U by −U We can thus adopt that result
directly:

I
(n=2)
AES (E − 2μ) = + 1

π
Im

1

N

∑

k

#
(2)
k (E)

1+ U#
(2)
k (E)

,

#
(2)
k (E) = 1

N

∑

p

1

E − 2U − ε(k)− ε(k− p)+ i0+
.

Section 4.4.3

Solution 4.4.1
We have according to (4.292):

σ ≡ 〈Sz〉
h̄S

= 1

1+ 2ϕ
= 1− 2ϕ + (2ϕ)2 − · · ·

At low temperatures, we can limit ourselves to the first terms of the expansion:

ϕ = 1

N

∑

q

1

exp(βE(q))− 1
.
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From (4.288), for the quasi-particle energies, we have:

E(q) = 2h̄
〈
Sz
〉
(J0 − J (q)) (B0 = 0+).

We are interested in the spontaneous magnetisation. There is thus no external
magnetic field present.

In the thermodynamic limit, we can convert the wavenumber summation into an
integration:

ϕ = V

N(2π)3

∫
d3q e−βE(q) 1

1− e−βE(q)
=

= V

N(2π)3

∫
d3q e−βE(q)

∞∑

n=0

e−nβE(q) =

= V

N(2π)3

∞∑

n=1

∫
d3q e−nβ2h̄〈Sz〉(J0−J (q)).

At low temperatures, (β → ∞), the integrand is practically zero except at small
values of |q|. We may therefore make the following approximation:

ϕ ≈ V

N4π2

∞∑

n=1

∞∫

0

dq q2e−nβσDQ2 = V

8π2N

∞∑

n=1

(nβσD)−3/2 

(
3

2

)
,

 

(
3

2

)
= 1

2

√
π,

ζ

(
3

2

)
=

∞∑

n=1

1

n3/2
≈ 2.612 (Riemann’s ζ function).

Finally, this means that:

ϕ ≈ V

N

(
kBT

4πσD

)3/2

ζ

(
3

2

)
.

In the neighbourhood of ferromagnetic saturation, ϕ � 1:

1− 〈Sz〉
h̄S

≡ 1− σ ≈ 2ϕ ∼ T 3/2 q. e. d.
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Solution 4.4.2
From the operator identity (4.307),

+1∏

ms=−1

(
Szi − h̄ms

) = (Szi + h̄
)
Szi

(
Szi − h̄

)
,

it follows for S = 1 that:

(
Szi

)3 = h̄2Szi .

The system of Eqs. (4.311) is now to be evaluated for n = 0, 1:
n = 0

2h̄2 − h̄
〈
Sz
〉−
〈
(Sz)2

〉
= 2h̄

〈
Sz
〉
ϕ(1).

n = 1

2h̄2 〈Sz
〉− h̄

〈
(Sz)2

〉
−
〈
(Sz)3

〉
=
(

3h̄
〈
(Sz)2

〉
− h̄2〈Sz〉 − 2h̄3

)
ϕ(1).

The following relation from the n = 0 equation,

〈
(Sz)2

〉
= 2h̄2 − h̄

〈
Sz
〉
(1+ 2ϕ(1)),

is inserted into the n = 1 equation:

2h̄2 〈Sz
〉− 2h̄3 + h̄2 〈Sz

〉
(1+ 2ϕ(1))− h̄2 〈Sz

〉 =
=
[
6h̄3 − 3h̄2 〈Sz

〉
(1+ 2ϕ(1))− h̄2 〈Sz

〉− 2h̄3
]
ϕ(1).

Solving for 〈Sz〉, this yields the assertion:

〈
Sz
〉 = h̄

1+ 2ϕ(1)

1+ 3ϕ(1)+ 3ϕ2(1)
.

Since 〈Sz〉 is also contained in ϕ(1), this is an implicit functional equation for 〈Sz〉.
Furthermore, one finds by substitution that:

〈
(Sz)2

〉

S=1
= h̄2 1+ 2ϕ(1)+ 2ϕ2(1)

1+ 3ϕ(1)+ 3ϕ2(1)
.
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Solution 4.4.3

1. Proof through complete induction:
n = 1:

[
S−i , S

z
i

]
− = h̄S−i .

n −→ n+ 1:

[(
S−i
)n+1

, Szi

]

− =
(
S−i
)n [

S−i , S
z
i

]
− +

[
(S−i )

n, Szi

]
− S

−
i =

= h̄
(
S−i
)n+1 + nh̄

(
S−i
)n
S−i = (n+ 1)h̄

(
S−i
)n+1

.

2. Proof using the partial result from 1:

[(
S−
i

)n
,
(
Sz
i

)2]

− = [(S−
i
)n, Sz

i
]−Szi +Szi

[(
S−
i

)n
, Sz
i

]

− =nh̄ ((S
−
i
)nSz

i
+Sz

i
(S−
i
)n) =

= nh̄ (nh̄ (S−
i
)n + 2Sz

i
(S−
i
)n) = n2h̄2 (S−

i
)n + 2nh̄Sz

i
(S−
i
)n.

3. Proof through complete induction:
n = 1:

[
S+i , S

−
i

]
− = 2h̄Szi .

n −→ n+ 1:

[
S+i ,

(
S−i
)n+1

]

− = S−i
[
S+i ,

(
S−i
)n ]

− +
[
S+i , S

−
i

]
−
(
S−i
)n =

= S−i
[
2nh̄Szi + h̄2n(n− 1)

] (
S−i
)n−1 + 2h̄Szi

(
S−i
)n =

= h̄2n(n− 1)
(
S−i
)n + 2nh̄

(
h̄S−i + Szi S

−
i

) (
S−i
)n−1

+ 2h̄Szi
(
S−i
)n =

= h̄2n(n+ 1)
(
S−i
)n + 2h̄(n+ 1)Szi

(
S−i
)n

q. e. d.

Solution 4.4.4

(
S−i
)n (

S+i
)n =

= (S−i
)n−1

[
h̄2S(S + 1)− h̄Szi −

(
Szi

)2] (
S+i
)n−1 =

=
{
h̄2S(S+1)−h̄Szi−

(
Szi

)2} (
S−i
)n−1 (

S+i
)n+1−h̄

[(
S−i
)n−1

, Szi

]

−
(
S+i
)n−1−
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−
[(
S−i
)n−1

,
(
Szi

)2]

−
(
S+i
)n−1 =

=
{
h̄2S(S + 1)− h̄Szi −

(
Szi

)2} (
S−i
)n−1(

S+i
)n+1−

− h̄
{
(n− 1)h̄

(
S−i
)n−1

} (
S+i
)n−1−

− {(n− 1)2h̄2 + 2(n− 1)h̄Szi }
(
S−i
)n−1 (

S+i
)n−1 =

=
{
h̄2S(S + 1)− n(n− 1)h̄2 − (2n− 1)h̄Szi −

(
Szi

)2} (
S−i
)n−1(

S+i
)n−1 =

=
n∏

p=1

{
h̄2S(S + 1)− (n− p)(n− p + 1)h̄2−

−(2n− 2p + 1)h̄Szi −
(
Szi

)2} q. e. d.

Solution 4.4.5
The active operator for the equation of motion S+i to the left of the semicolon is the
same as in (4.281). The Tyablikow approximation for (4.287) therefore leads to a
completely analogous solution:

G(n)
q (E) =

〈[
S+i ,

(
S−i
)n+1(

S+i
)n]

−

〉
1

E − E(q)+ i0+
,

E(q) = 2h̄
〈
Sz
〉
(J0 − J (q)).

The spectral theorem then yields:

〈(
S−i
)n+1(

S+i
)n+1

〉
=
〈[
S+i ,

(
S−i
)n+1(

S+i
)n]

−

〉
ϕ(S),

ϕ(S) = 1

N

∑

q

(
eβE(q) − 1

)−1
.

Here, we now insert the partial results from the two preceding exercises:
n = 0:

h̄2S(S + 1)− h̄
〈
Sz
〉−
〈
(Sz)2

〉
= 2h̄

〈
Sz
〉
ϕ(S).

n ≥ 1:

〈
n+1∏

p=1

{
h̄2S(S + 1)−(n+ 1− p)(n+ 2− p)h̄2−(2n− 2p + 3)h̄Sz−(Sz)2}

〉

=
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= ϕ(S)

〈

[h̄2n(n+ 1)+ 2h̄(n+ 1)Sz]
n∏

p=1

{
h̄2S(S+1)−(n− p)(n+ 1−p)h̄2−

−(2n− 2p + 1)h̄Sz − (Sz)2
} 〉
.

Evaluation for S = 1:
Due to 2S − 1 = 1, we need the equations for n = 0 and n = 1:
n = 0:

2h̄2 − h̄
〈
Sz
〉−
〈
(Sz)2

〉
= 2h̄〈Sz〉ϕ(1).

n = 1:
〈
(Sz)4 + 4h̄(Sz)3 + h̄2(Sz)2 − 6h̄3Sz

〉
=

= ϕ(1)
〈
4h̄4 + 6h̄3Sz − 6h̄2(Sz)2 − 4h̄(Sz)3

〉
.

Furthermore, from (4.307), we still have:

(Sz)3 = h̄2Sz ⇐⇒ (Sz)4 = h̄2(Sz)2.

Then the n = 1 equation becomes:

2h̄2
〈
(Sz)2

〉
− 2h̄3〈Sz〉 = ϕ(1)

{
4h̄4 + 2h̄3〈Sz〉 − 6h̄2

〈
(Sz)2

〉}
.

The n = 0 equation yields:

〈
(Sz)2

〉
= 2h̄2 − h̄〈Sz〉(1+ 2ϕ(1)).

This is inserted:

4h̄4 − 4h̄3〈Sz〉(1+ ϕ(1)) = ϕ(1)
{
−8h̄4 + 2h̄3〈Sz〉(4+ 6ϕ(1))

}

�⇒ 4h̄4(1+ 2ϕ(1)) = 4h̄3〈Sz〉(1+ 3ϕ(1)+ 3ϕ2(1)).

From this, the relation known from Exercise 4.4.2 follows:

〈
Sz
〉
S=1 = h̄

1+ 2ϕ(1)

1+ 3ϕ(1)+ 3ϕ2(1)
q. e. d.
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Section 4.5.5

Solution 4.5.1
For the equation of motion, we require a series of commutators:

[
Szi ,Hf

]
− = −

∑

m,n

Jmn
[
Szi , S

+
mS

−
n

]
− = h̄

∑

m

Jim
(
S+mS−i − S+i S

−
m

)
,

[
Szi ,Hs−f

]
− = −1

2
gh̄
∑

m,σ

[
Szi , S

σ
m

]
− a

+
m−σ amσ = −1

2
gh̄2

∑

σ

zσ S
σ
i a

+
i−σ aiσ .

We then find all together:

[
Szi ,H

]
− = h̄

∑

m

Jim
(
S+mS−i − S+i S

−
m

)− 1

2
gh̄2

∑

σ

zσ S
σ
i a

+
i−σ aiσ .

We combine this with (4.395):

[
Szi akσ ,H

]
− = Szi [akσ ,H ]− +

[
Szi ,H

]
− akσ =

=
∑

m

TkmS
z
i amσ + USzi nk−σ akσ−

− 1

2
gh̄zσ S

z
i S

z
kakσ −

1

2
gh̄Szi S

−σ
k ak−σ+

+ h̄
∑

m

Jim
(
S+mS−i − S+i S

−
m

)
akσ−

− 1

2
gh̄2

(
S+i a

+
i↓ai↑ − S−i a

+
i↑ai↓

)
akσ .

We define several new Green’s functions:

D
(1)
ik,jσ (E) = ⟪Szi nk−σ akσ ; a+jσ⟫E,

D
(2)
ik,jσ (E) = ⟪Szi Szkakσ ; a+jσ⟫E,

D
(3)
ik,jσ (E) = ⟪Szi S−σk ak−σ ; a+jσ⟫E,

Himk,jσ (E) = ⟪
(
S+mS−i − S+i S

−
m

)
akσ ; a+jσ⟫E ,

Lik,jσ (E) = ⟪
(
S+i a

+
i↓ai↑ − S−i a

+
i↑ai↓

)
akσ ; a+jσ⟫

E
.
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With these definitions, the already rather complicated, complete equation of motion
becomes:

∑

m

(Eδkm − Tkm)Dim,jσ (E) =

= h̄δkj
〈
Sz
〉+ UD

(1)
ik,jσ (E)−

1

2
gh̄zσD

(2)
ik,jσ (E)−

− 1

2
gh̄D

(3)
ik,jσ (E)+ h̄

∑

m

JimHimk,jσ (E)− 1

2
gh̄2Lik,jσ (E).

Solution 4.5.2
We require once again several commutators for the equation of motion:

[ni−σ ,H ]− = [ni−σ ,Hs]− + [ni−σ ,Hs−f]− ,

[ni−σ ,Hs]− =
∑

m,n
σ ′

Tmn
[
ni−σ , a+mσ ′anσ ′

]
− =

=
∑

m,n
σ ′

Tmn
{
δimδσ ′−σ a+i−σ anσ ′ − δinδσ ′−σ a+mσ ′ai−σ

} =

=
∑

m

Tim
(
a+i−σ am−σ − a+m−σ ai−σ

)
,

[ni−σ ,Hs−f]− = −1

2
gh̄
∑

m,σ ′
Sσ

′
m

[
ni−σ , a+m−σ ′amσ ′

]

− =

= −1

2
gh̄
∑

m,σ ′
Sσ

′
m δim

(
δσσ ′a

+
i−σ amσ ′ − δ−σσ ′a+m−σ ′ai−σ

)
=

= −1

2
gh̄
(
Sσi a

+
i−σ aiσ − S−σi a+iσ ai−σ

)
.

All together, with (4.395) this gives:

[ni−σ akσ ,H ]− =
=
∑

m

Tkmni−σ amσ +
∑

m

Tim
(
a+i−σ am−σ − a+m−σ ai−σ

)
akσ−

− 1

2
gh̄zσ S

z
kni−σ akσ −

1

2
gh̄S−σk ni−σ ak−σ−

− 1

2
gh̄
(
Sσi a

+
i−σ aiσ − S−σi a+iσ ai−σ

)
akσ .
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We define several new Green’s functions:

Kimk,jσ (E) = ⟪
(
a+i−σ am−σ − a+m−σ ai−σ

)
akσ ; a+jσ⟫E ,

P
(1)
ik,jσ (E) = ⟪Szkni−σ akσ ; a+jσ⟫E ,

P
(2)
ik,jσ (E) = ⟪S−σk ni−σ ak−σ ; a+jσ⟫E ,

P
(3)
ik,jσ (E) = ⟪

(
Sσi a

+
i−σ aiσ − S−σi a+iσ ai−σ

)
akσ ; a+jσ⟫E .

With this, the complete equation of motion is given by:

∑

m

(Eδkm − Tkm)Pim,jσ (E) =

= h̄δkj 〈n−σ 〉 +
∑

m

TimKimk,jσ (E)−

− 1

2
gh̄zσP

(1)
ik,jσ (E)−

1

2
gh̄
(
P
(2)
ik,jσ (E)+ P

(3)
ik,jσ (E)

)
.

Solution 4.5.3
For the equation of motion, we require the following commutators:

[
Sσi ,H

]
− =

[
Sσi ,Hf

]
− +

[
Sσi ,Hs−f

]
− ,

[
Sσi ,Hf

]
− = −

∑

m,n

Jmn

([
Sσi , S

+
mS

−
n

]
− +

[
Sσi , S

z
mS

z
n

]
−
)
=

= −
∑

m,n

Jmn
[
δσ↓(−2h̄Szi δim)S

−
n +

+S+mδσ↑
(
2h̄Szi δin

)+ Szm
(−zσ h̄Sσi δin

)+ (−zσ h̄Sσi δim
)
Szn
] =

= 2h̄zσ
∑

m

Jim
(
SzmS

σ
i − SσmS

z
i

)
.

In the last step, we made use of Jii = 0:

[
Sσi ,Hsf

]
− = −1

2
gh̄
∑

m,σ ′

(
zσ ′
[
Sσi , S

z
m

]
−nmσ ′ +

[
Sσi , S

σ ′
m

]

− a
+
m−σ ′amσ ′

)
=

= +1

2
gh̄2Sσi (niσ − ni−σ )− gh̄2zσ S

z
i a
+
iσ ai−σ .

This is now combined with the commutator (4.395):

[
S−σi ak−σ ,H

]
− = S−σi [ak−σ ,H ]− +

[
S−σi , H

]
− ak−σ =
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=
∑

m

TkmS
−σ
i am−σ + US−σi nkσ ak−σ+

+ 1

2
gh̄zσ S

−σ
i Szkak−σ −

1

2
gh̄S−σi Sσk akσ−

− 1

2
gh̄2S−σi (niσ − ni−σ )ak−σ+

+ gh̄2zσ S
z
i a
+
i−σ aiσ ak−σ−

− 2h̄zσ
∑

m

Jim
(
SzmS

−σ
i − S−σm Szi

)
ak−σ .

We define the following higher-order Green’s functions:

F
(1)
ik,jσ (E) = ⟪S−σi Szkak−σ ; a+jσ⟫E ,

F
(2)
ik,jσ (E) = ⟪S−σi Sσk akσ ; a+jσ⟫E ,

F
(3)
ik,jσ (E) = ⟪S−σi (niσ − ni−σ )ak−σ ; a+jσ⟫E ,

F
(4)
ik,jσ (E) = ⟪S−σi nkσ ak−σ ; a+jσ⟫E ,

Rik,jσ (E) = ⟪Szi a+i−σ aiσ ak−σ ; a+jσ⟫E ,

Qimk,jσ (E) = ⟪
(
S−σi Szm − S−σm Szi

)
ak−σ ; a+jσ⟫E .

The equation of motion:

∑

m

(Eδkm − Tkm)Fim,jσ (E) =

= UF
(4)
ik,jσ (E)+

1

2
gh̄
(
zσF

(1)
ik,jσ (E)− F

(2)
ik,jσ (E)

)
−

− 1

2
gh̄2

(
F
(3)
ik,jσ (E)− 2zσRik,jσ (E)

)
− 2h̄zσ

∑

m

JimQimk,jσ (E).

Solution 4.5.4

1. The exact equation of motion for the one-electron Green’s function (i.e.,
See (4.395)):

∑

m

(Eδim − Tim)Gmjσ (E) =

= h̄δij + UPii,jσ (E)− 1

2
gh̄
(
zσDii,jσ (E)+ Fii,jσ (E)

)
.
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For the special case of (n = 2, T = 0), we can use the following:

Dii,jσ (E) ≡ ⟪Szi aiσ ; a+jσ⟫E −−−−−−→(n=2,T=0)
h̄SGijσ (E),

Pii,jσ (E) ≡ ⟪ni−σ aiσ ; a+jσ⟫E −−−−−−→(n=2,T=0)
Gijσ (E).

We obtain the still exact, but – owing to (n = 2, T = 0) already greatly simplified
– equation of motion:

∑

m

[(
E − U + 1

2
gh̄2Szσ

)
δim − Tim

]
Gmjσ (E) = h̄δij − 1

2
gh̄Fii,jσ (E).

For the spin-flip function, we furthermore have:

Fii,j↓(E) ≡ ⟪S+i ai↑; a+j↓⟫ −−−−−−→
(n=2,T=0)

0.

This can best be seen from the time-dependent function:

Fii,j↓
(
t, t ′
) = −i�

(
t − t ′

) 〈E0|
[〈
(S+i ai↑)(t)a

+
j↓

↑
=0, due to n=2

(
t ′
) 〉+ 〈a+j↓(t ′) (S+i ai↑)(t)

〉

↑
=0, due ot T=0

]
|E0〉.

The remaining equation of motion can be readily solved by Fourier transforma-
tion:

G
(n=2,T=0)
k↓ (E) = h̄

[
E − ε(k)− U − 1

2
gh̄2S + i0+

]−2

.

2. For σ =↑ electrons, the spin-flip function is non-vanishing. Its equation of
motion was calculated in Exercise 4.5.3:

∑

m

(Eδkm − Tkm)Fim,j↑(E) = UF
(4)
ik,j↑(E)+

1

2
gh̄
(
F
(1)
ik,j↑(E)− F

(2)
ik,j↑(E)

)
−

− 1

2
gh̄2

(
F
(3)
ik,j↑(E)− 2Rik,j↑(E)

)
−

− 2h̄
∑

m

JimQimk,j↑(E).

The higher-order Green’s functions can be simplified to some extent due to the
condition (n = 2, T = 0):
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F
(4)
ik,j↑(E) ≡ ⟪S−i nk↑ak↓; a+j↑⟫E −−−−−−→(n=2,T=0)

Fik,j↑(E),

F
(1)
ik,j↑(E) ≡ ⟪S−i Szkak↓; a+j↑⟫E −−−−−−→(n=2,T=0)

h̄SFik,j↑(E),

F
(2)
ik,j↑(E) = ⟪S−i S+k ak↑; a+j↓⟫E −−−−−−→(n=2,T=0)

0,

F
(3)
ik,j↑(E) ≡ ⟪S−i (ni↑ − ni↓)ak↓; a+j↑⟫E −−−−−−→(n=2,T=0)

+δikFik,j↑(E),

Rik,j↑(E) ≡ ⟪Szi a+i↓ai↑ak↓; a+j↑⟫E −−−−−−→(n=2,T=0)
−δikh̄SGij↑(E),

Qimk,j↑(E) ≡ ⟪
(
S−i S

z
m − S−mSzi

)
ak↓; a+j↑⟫E

−−−−−−→
(n=2,T=0)

h̄S
(
Fikj,↑(E)− Fmk,j↑(E)

)
.

This yields the greatly simplified equation of motion:

[
E − U − 1

2
gh̄2(S − δik)

]
Fik,j↑(E) =

=
∑

m

TkmFim,j↑(E)−gh̄3SδikGij↑(E)+2h̄2S
∑

m

Jim
(
Fik,j↑(E)−Fmk,j↑(E)

)
.

The equation for the single-particle Green’s function is also a part of this system:

∑

m

[(
E − U + 1

2
gh̄2S

)
δim − Tim

]
Gmj↑(E) = h̄δij − 1

2
gh̄Fii,j↑(E).

For the solution of this system of equations, we apply the Fourier transformation
defined in (4.412) and (4.413), which leads us in a manner quite analogous
to (4.414) and (4.417) to the following equations:

(
E − U + 1

2
gh̄2S − ε(k)

)
G
(2,0)
k↑ (E) = h̄− 1

2
gh̄

1√
N

∑

q

F
(2,0)
kq↑ (E),

[
E − U − 1

2
gh̄2S − ε(k− q)+ h̄ω(q)

]
F
(2,0)
kq↑ (E) =

= −1

2
gh̄2 1

N

∑

q̄

F
(2,0)
kq̄↑ (E)− gh̄3S

1√
N
G
(2,0)
k↑ (E).
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The spin-wave energies are defined as in (2.232). We abbreviate:

B
(2)
k (E) = 1

N

∑

q

[
E − U − 1

2
gh̄2S − ε(k− q)+ h̄ω(q)

]−1

.

We then find:

1√
N

∑

q

F
(2,0)
kq↑ (E) = −gh̄3SB

(2)
k (E)

1+ 1
2gh̄

2B
(2)
k (E)

G
(2,0)
k↑ (E).

This yields the equation of motion for the one-electron Green’s function:

{

E − U + 1

2
gh̄2S − ε(k)−

1
2g

2h̄4SB
(2)
k (E)

1+ 1
2gh̄

2B
(2)
k (E)

}

G
(2,0)
k↑ (E) = h̄.

From it, we finally obtain the self-energy:

!
(2,0)
k↑ (E) = U − 1

2
gh̄2S

(

1− gh̄2B
(2)
k (E)

1+ 1
2gh̄

2B
(2)
k (E)

)

.

With this, we have solved the problem; compare the result with (4.419). Further
evaluation can be carried out as described in Sect. 4.5.4.

Solution 4.5.5
The Hartree-Fock approximation:

Dii,jσ (E) −→ 〈
Sz
〉
Gijσ (E),

Pii,jσ (E) −→ 〈n−σ 〉Gijσ (E),

Fii,jσ (E) −→ 0.

This simplified equation of motion,

∑

m

[(
E − U 〈n−σ 〉 + 1

2
gh̄zσ

〈
Sz
〉)
δim − Tim

]
G
(HFA)
mjσ (E) = h̄δij ,

can be readily solved through Fourier transformation:

GHFA
kσ (E) = h̄

E − ε(k)− U 〈n−σ 〉 + 1
2gh̄zσ 〈Sz〉 + i0+

.
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“Band limit” (U = g = 0): true,
Atomic limit (ε(k) = T0 ∀k): false,

(n = 0, T = 0): true for σ =↑, false for σ =↓,
(n = 2, T = 0): true for σ =↓, false for σ =↑ .

The principal disadvantage of the Hartree-Fock approximation no doubt lies in its
complete suppression of the spin-flip processes!

Section 5.1.4

Solution 5.1.1

[P0,H0]− = |η〉 〈η |H0 −H0 | η〉 〈η| = (η − η)|η〉 〈η| = 0,

since H0 is Hermitian,

[Q0, H0]− = [1− P0,H0]− = −[P0,H0]− = 0.

Solution 5.1.2

d

dλ
E0(λ) = d

dλ
〈E0(λ)|H(λ) |E0(λ)〉 =

= 〈E0(λ)| υ |E0(λ)〉+
〈

d

dλ
E0(λ)

∣∣∣∣H(λ)|E0(λ)〉+〈E0(λ)|H(λ)
∣∣∣∣

d

dλ
E0(λ)

〉
=

= 〈E0(λ)|υ|E0(λ)〉+E0(λ)

〈
d

dλ
E0(λ)

∣∣∣∣E0(λ)

〉
+E0(λ)

〈
E0(λ)

∣∣∣∣
d

dλ
E0(λ)

〉
=

= 〈E0(λ)|υ|E0(λ)〉+E0(λ)
d

dλ
〈E0(λ)|E0(λ)〉 =

= 〈E0(λ)|υ|E0(λ)〉.

With η0 = E0(0), we then find:

�E0 = E0 − η0 =
λ∫

0

dλ′〈E0(λ
′)|υ|E0(λ

′)〉.

Solution 5.1.3

1. Clearly, we have:

H0 =
∑

kσ

(Hkσ )0,
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where in the basis
∣∣ψα

kσ

〉 = a+kσα|0〉; α = A, B

the following holds:

(Hkσ )0 ≡
(
ε(k) t (k)
t∗(k) ε(k)

)
,

det
[
η −

(
H
αβ

kσ

)

0

] != 0

�⇒ η
(0)
± (k) = ε(k)± |t (k)|.

Eigenstates:
(∓|t (k)| t (k)

t∗(k) ∓|t (k)|
)(

CA

CB

)
= 0,

C±A = ±γCB; γ = t (k)
|t (k)| .

Normalisation:
∣∣∣η(0)± (k)

〉
= 1√

2
(a+kσA ± γ a+kσB) |0〉.

Because of (−σ,B)⇐⇒ (σ,A), the right-hand side is not really spin dependent!
2. First-order energy correction:

〈
η
(0)
± (k)

∣∣∣H1

∣∣∣η(0)± (k)
〉
= 1

2

(
−1

2
g〈Sz〉

)
〈0|(akσA ± γ ∗akσB)

∑

σ ′
zσ ′ ·

· (a+kσ ′Aakσ ′A − a+kσ ′Bakσ ′B)(a
+
kσA ± γ a+kσB)|0〉 =

= −1

4
gzσ

〈
Sz
〉 〈0|(akσA ± γ ∗akσB)

(
a+kσA ∓ γ a+kσB

) |0〉 =

= −1

4
gzσ

〈
Sz
〉 〈0|(1− |γ |21)|0〉 = 0

�⇒ η
(1)
± (k) ≡ 0.

Second-order energy correction:

〈
η
(0)
− (k)

∣∣∣H1

∣∣∣η(0)+ (k)
〉
=

= −1

4
gzσ

〈
Sz
〉 〈0|(akσA − γ ∗akσB)

(
a+kσA − γ a+kσB

) |0〉 =



646 Solutions of the Exercises

= −1

4
gzσ

〈
Sz
〉 〈0|

(
1+ |γ |21

)
|0〉 = −1

2
gzσ

〈
Sz
〉

�⇒ η
(2)
± (k) =

∣∣∣
〈
η
(0)
∓ (k)

∣∣∣H1

∣∣∣η(0)± (k)
〉∣∣∣

2

η
(0)
± (k)− η

(0)
∓ (k)

= ±1

8
g2 〈Sz〉2
|t (k)|2 .

Up to second order, Schrödinger perturbation theory thus yields:

η
(S)
± (k) = ε(k)± |t (k)| ± 1

8
g2 〈Sz〉2
|t (k)|2 +O(g3).

There are problems at the zone boundary, since t (k) vanishes there.
3. The first-order energy correction of Brillouin-Wigner is the same as that of

Schrödinger:

η
(1)
± (k) ≡ 0.

In second order, we have:

η
(2)
± (k) =

∣∣∣
〈
η
(0)
∓ (k)

∣∣∣H1

∣∣∣η(0)± (k)
〉∣∣∣

2

η±(k)− η
(0)
∓ (k)

�⇒ η
(BW)
± (k) = η

(0)
± (k)+ 1

4
g2 〈Sz

〉2 1

η
(BW)
± (k)− η

(0)
∓ (k)

�⇒
(
η
(BW)
± (k)

)2 − η
(BW)
± (k)

(
η
(0)
± (k)+ η

(0)
∓ (k)

)
=

= 1

4
g2 〈Sz

〉2 − η
(0)
± (k)η(0)∓ (k)

�⇒
(
η
(BW)
± (k)− ε(k)

)2 = 1

4
g2 〈Sz

〉2 + |t (k)|2,

η
(BW)
± (k) = ε(k)±

√
1

4
g2〈Sz〉2 + |t (k)|2.

There is now no problem at the zone boundary; a splitting of |g〈Sz〉| appears
there (Slater gap).

4. Exact eigenenergies:

H =
∑

kσ

Hkσ ,

Hkσ =
(
ε(k)− 1

2gzσ 〈Sz〉 t (k)
t∗(k) ε(k)+ 1

2gzσ 〈Sz〉
)
,
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det(E −Hkσ )
!= 0

�⇒ (E − ε(k))2 − 1

4
g2 〈Sz

〉2 = |t (k)|2

�⇒ E±(k) = ε(k)±
√

1

4
g2〈Sz〉2 + |t (k)|2.

Brillouin-Wigner perturbation theory is thus exact already to second order, whilst
Schrödinger perturbation theory gives only the first term in the expansion of the
root!

Section 5.2.3

Solution 5.2.1

1. We employ Wick’s theorem:

Tε{akσ (t1)a
+
lσ ′(t2)amσ (t3)a

+
nσ ′(t3)} =

= N{akσ (t1)a
+
lσ ′(t2)amσ (t3)a

+
nσ ′(t3)}+

+ akσ (t1)a
+
lσ ′(t2)N{amσ (t3)a

+
nσ ′(t3)}+

+ amσ (t3)a
+
nσ ′(t3)N{akσ (t1)a

+
lσ ′(t2)}+

+ akσ (t1)a
+
nσ ′(t3)N{a+lσ ′(t2)amσ (t3)}+

+ a+lσ ′(t2)a mσ (t3)N{akσ (t1)a
+
nσ ′(t3)}+

+ akσ (t1)a
+
lσ ′(t2)amσ (t3)a

+
nσ ′(t3)+

+ akσ (t1)a
+
nσ ′(t3)a

+
lσ ′(t2)amσ (t3).

Only the contractions between creation and annihilation operators can be nonva-
nishing!

2. The expectation value of a normal product in the ground state |η0〉 is always zero:

〈η0|Tε{akσ (t1)a
+
lσ ′(t2)amσ (t3)a

+
nσ ′(t3)}|η0〉 =

= akσ (t1)a
+
lσ ′(t2) amσ (t3)a

+
nσ ′(t3)+ akσ (t1)a

+
nσ ′(t3) a

+
lσ ′(t2)a mσ (t3) =

= −δklδmnδσσ ′G
0,c
kσ (t1−t3)G0,c

mσ
(
0−
)+δknδlmδσσ ′G

0,c
kσ (t1−t3)G0,c

mσ (t3 − t2) =
= δσσ ′

[
δknδlmG

0,c
kσ (t1 − t3)− iδklδmnG

0,c
kσ (t1 − t3)〈nmσ 〉(0)

]
.
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Solution 5.2.2
We adopt the solution of the previous exercise:

〈η0|Tε{akσ (t1)a
+
kσ (t2)akσ (t3)a

+
kσ (t3)}|η0〉 =

= iG0,c
kσ (t1 − t3)

[
−iG0,c

kσ (t3 − t2)− 〈nkσ 〉(0)
]
.

1. t1 > t2 > t3:

〈η0|Tε{akσ (t1)a
+
kσ (t2)akσ (t3)a

+
kσ (t3)}|η0〉 =

= e−
i
h̄
(ε(k)−μ)(t1−t3)

(
1− 〈nkσ 〉(0)

)
〈nkσ 〉(0)

(
e−

i
h̄
(ε(k)−μ)(t3−t2) − 1

)
= 0.

Check by direct computation:

〈η0|Tε{akσ (t1)a
+
kσ (t2)akσ (t3)a

+
kσ (t3)}|η0〉 =

= −〈η0|akσ (t1)a
+
kσ←−= 0 for k≤ kF

(t2)nkσ (t3)|η0〉−→= 0 for k > kF

= 0.

2. t1 > t3 > t2:

〈η0|Tε{akσ (t1)a
+
kσ (t2)akσ (t3)a

+
kσ (t3)}|η0〉 =

= e−
1
(
h̄ε(k)−μ)(t1−t3)

(
1− 〈nkσ 〉(0)

)
·

·
[
−(1− 〈nkσ 〉(0))e− i

h̄
(ε(k)−μ)(t3−t2) − 〈nkσ 〉(0)

]
=

= −(1− 〈nkσ 〉(0))e− i
h̄
(ε(k)−μ)(t1−t2) =

=
⎧
⎨

⎩
0 for k ≤ kF,

− exp
[
− i
h̄
(ε(k)− μ)(t1 − t2)

]
for k > kF.

Check through direct computation:

〈η0|Tε{akσ (t1)a
+
kσ (t2)akσ (t3)a

+
kσ (t3)}|η0〉 =

= −〈η0|akσ (t1)nkσ (t3)a
+
kσ (t2)|η0〉 =

= −e−
1
h̄
(ε(k)−μ)(t1−t2) 〈η0| akσ nkσ a

+
kσ |η0〉 =

= −(1− 〈nkσ 〉(0))e− i
h̄
(ε(k)−μ)(t1−t2).
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Section 5.3.4

Solution 5.3.1
For the vacuum amplitude, according to (5.92) we have from first-order perturbation
theory:

〈η0|U(1)
α

(
t, t ′
) |η0〉 = U1

⎛

⎝ i

2h̄

t∫

t ′
dt1 e−α|t1|

⎞

⎠ .

The integral over time can be easily computed:

U1 ≡
∑

kl

〈nk〉〈nl〉[υ(kl; lk)− υ(kl; kl)].

1. Hubbard model

k ≡ (k, σk), . . .

From Exercise 4.1.1, we find for the interaction term:

V = 1

2

∑

klmn

υH(kl; nm)a+k a+l aman,

υH(kl; nm) ≡ U

N
δk+l,m+nδσkσnδσlσmδσk−σl .

One can see immediately that:

υH(kl; lk) = U

N
δk+l,k+lδσkσl δσlσk δσk−σl = 0,

υH(kl; kl) = U

N
δk+l,l+kδσkσk δσlσl δσk−σl =

U

N
δσk−σl .

We thus have:

U1 = −U
N

∑

klσ

〈nkσ 〉〈nl−σ 〉 = −U
N
NσN−σ ,

Nσ =
∑

k

〈nkσ 〉 is the number of electrons with spin σ.

2. Jellium model

υj (kl; nm) = υ(k− n)(1− δkn)δk+l,m+nδσkσnδσmσl .
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For the special cases required here, this means that:

υj (kl; lk) = υ(k− l)(1− δkl)δσkσl ,

υj (kl; kl) = υ(0)(1− δkk) = 0.

Bubbles make no contribution!
We then find:

U1 =
∑

klσ

υ(k− l)(1− δkl)〈nkσ 〉〈nlσ .〉

This term was explicitly evaluated in Sect. 2.1.2 (see (2.92)).

Solution 5.3.2

1. Contribution of the diagram according to the rules in Sect. 5.3.1:

(D) = 1

2!
(
− i

2h̄

)2 ∫ t

· · ·
t ′

∫
dt1 dt ′1 dt2 dt ′2 δ (t1 − t ′1) δ (t2 − t ′2) e−α(|t1|+|t2|)·

·
∑

k1l1m1n1
k2l2m2n2

υ(k1l1; n1m1)υ(k2l2; n2m2)(−1)2·

·
[
iG0,c

l1

(
t ′2 − t ′1

)
δl1m2

]
[iG0,c

n1
(t1 − t ′2)δn1l2 ]·

· (−〈nk1〉δk1m1)(−〈nk2〉δk2n2) =

= 1

8h̄2

t∫∫

t ′
dt1 dt2 e−α(|t1|+|t2|)·

·
∑

k1,l1,n1,k2

υ(k1l1; n1k1)v(k2n1; k2l1)·

·G0,c
l1
(t2 − t1)G

0,c
n1
(t1 − t2)〈nk1〉〈nk2〉.

2. Hubbard model:

υH(k1l1; n1k1) = U

N
δl1,n1δσk1σn1

δσl1σk1
δσk1−σl1 = 0

�⇒ (D) = 0.

3. Jellium model:

υj (k2n1; k2l1) = υ(0)
(
1− δk2k2

)
δn1l1δσl1σn1

= 0
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�⇒ (D) = 0.

Solution 5.3.3
In the following, the indices correspond to the diagram notation as in Sect. 5.3.1:
h(�1) = 8 −→ A(�1) = 1,
h(�2) = 4 −→ A(�2) = 2,

same contributions from the diagrams (2), (8),
h(�3) = 2 −→ A(�3) = 4,

same contributions from the diagrams (3), (6), (15), (22),
h(�4) = 1 −→ A(�4) = 8,

same contributions from the diagrams (4), (5), (9), (12), (13), (16), (20),
(21),
h(�7) = 8 −→ A(�7) = 1,
h(�10) = 2 −→ A(�10) = 4,

same contributions from the diagrams (10), (11), (14), (19),
h(�17) = 4 −→ A(�17) = 2,

same contributions from the diagrams (17), (24),
h(�18) = 4 → A(�18) = 2,

same contributions from the diagrams (18), (23).

Section 5.4.3

Solution 5.4.1
For the electron-electron interaction, we find in the Hubbard model (cf. Exer-

cise 5.3.1):

υH(kl; nm) = U

N
δk+l,n+mδσkσnδσlσmδσk−σl .

The following two diagrams contribute in first order to the self-energy:

1.

k = (k+ q, σ ), l = (k, σ ), m = (k+ q, σ ), n = (k, σ )

�⇒ υH(kl; nm) = 0 due to δσk−σl = 0.

Fig. A.11



652 Solutions of the Exercises

Fig. A.12

2.

k = (k, σ ), l = (l, σ ′), m = (l, σ ′), n = (k, σ ),

υH(kl; nm) = U

N
δσ−σ ′

�⇒ Contribution to the self-energy:

− i

h̄
!
(1)
kσ (E) = − i

h̄
(−1)

1

2πh̄

U

N

∑

l

∫
dE′

(
iG0,c

l−σ (E
′)
)

�⇒ !
(1)
kσ (E) = −U

N

∑

l

(
iG0,c

l−σ (0
−)
)
= U

N

∑

l

〈nl−σ 〉(0) = U 〈n−σ 〉(0).

This yields the following causal single-particle Green’s function:

Gc
kσ (E) =

h̄

E − (ε(k)+ U 〈n−σ 〉(0) − εF
)± i0+

.

It is essentially identical to that of the T = 0 -Stoner model (4.23), and
thus corresponds to the Hartree-Fock approximation of the equation of motion
method. However, here 〈n−σ 〉 is the expectation value of the number operator for
the non-interacting system. The same holds for the chemical potential, μ(T =
0) = εF.

Solution 5.4.2

1. The annotation of the diagram is given by conservation of momentum and energy
at the vertex, conservation of spin at the vertex point, and

υH(kl; nm) ∼ δσk−σl .

Following the diagram rules from Sect. 5.4.1, we still have to evaluate the
following:

− i

h̄
!
(2,a)
kσ (E) =

∫∫
dE′dE′′

∑

l,l̄

(−1)2
(
− i

h̄

)2 ( 1

2πh̄

U

N

)2

·

·
(

iG0,c
l−σ (E

′)
)2 (

iG0,c
l̄σ
(E′′)

)
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Fig. A.13

�⇒ !
(2,a)
kσ (E) = U2〈nσ 〉(0)

(
− i

h̄

)
1

N

∑

l

1

2πh̄

∫
dE′

(
iG0,c

l−σ (E
′)
)2
.

2. The annotation of the diagram is motivated as above.

Fig. A.14

�⇒ !
(2,b)
kσ (E) = U2 i

h̄

1

N2

∑

lq

1

(2πh̄)2

∫∫
dE′dE′′

(
iG0,c

k+qσ (E + E′)
)
·

·
(

iG0,c
l+q−σ (E

′′)
) (

iG0,c
l−σ (E

′′ − E′)
)
.

All of the other second-order diagrams are zero due to

υH(kl; nm) ∼ δσk−σl .

Solution 5.4.3
First-order perturbation theory:

iGc
kσ (E) ≈ iG0,c

kσ (E)−
i

h̄
U 〈n−σ 〉(0)

(
iG0,c

kσ (E)
)2

�⇒ Gc
kσ (E) ≈ G

0,c
kσ (E)

[
1+ 1

h̄
U 〈n−σ 〉(0)G0,c

kσ (E)

]
.

Dyson equation (Exercise 5.4.1):

Gc
kσ (E) ≈ G

0,c
kσ (E)

[
1+ 1

h̄
U 〈n−σ 〉(0)Gc

kσ (E)

]
.

First-order perturbation theory thus corresponds to the first term in the expansion of
the infinite partial series, which is mediated by the Dyson equation.
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Solution 5.4.4

Fig. A.15

Via the Dyson equation, this gives the following diagrams for the one-electron
Green’s function up to second order:

Fig. A.16

Solution 5.4.5

− i

h̄
!̂
(1)
kσ (E) =

= − i

h̄

1

2πh̄

∑

l,σ ′

∫
dE′

[−υ(kl; kl)(iGc
lσ ′(E

′))+ υ(lk; kl)δσ ′σ (iG
c
lσ (E

′))
]
.

We have:

1

2πh̄

∫
dE′Gc

lσ ′(E
′) = −i

〈
Tε[alσ ′(t)c

+
lσ ′(t + 0+)

]〉 = +i〈nlσ ′ 〉.

Here, we have made use of the equal-time convention:

!̂
(1)
kσ (E) =

∑

l,σ ′
[υ(kl; kl)− υ(lk; kl)δσ ′σ ]〈nlσ ′ 〉.

The difference compared to the solution of Exercise 5.4.4 consists merely in the fact
that the expectation value of the occupation-number operator is now to be taken for
the interacting system, not for the free system.

The renormalisation leads to a whole series of new diagrams, such as e.g.

Fig. A.17
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Section 5.6.4

Solution 5.6.1

1. We write:

χ±q (E) = − γ

N
χ̂±q (E).

iχ̂±q (E) has, except for the spins of the propagators involved, the same structure
as iDq(E) in (5.180). The expansion described in Sect. 5.6 can therefore be
adopted almost directly up to (5.198). We must only take note of the fact that
the incoming or outgoing propagators at the fixed times t and t ′ (see e.g. (5.182))
have different spins.

Fig. A.18

Following Fourier transformation to the energy domain, the second term in
the Dyson equation which is analogous to (5.184) vanishes, since owing to
conservation of spin at the vertex point at the endpoints of the above diagrams,
no interaction line can be attached.

2. The vertex function in the ladder approximation:

Fig. A.19

 
↑↓
L (qE; kE′) =

= 1+ 1

2πh̄

U

N

(
− i

h̄

)∑

p

∫
dE′′

(
iG0,c

p↑ (E
′′)
) (

iG0,c
p+q↓(E

′′+E)
)
 
↑↓
L (qE; pE′′).
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Since in the Hubbard model, the interaction matrix element is a constant, the
right-hand side is independent of (k, E′). This means that

 
↑↓
L (qE; kE′) ≡  

↑↓
L (qE)

and therefore:

 
↑↓
L (qE) =

= 1+ ↑↓L (qE)

⎧
⎨

⎩
i

h̄

U

N

(
− 1

2πh̄

)∑

p

∫
dE′′

(
iG0,c

p↑ (E
′′)
) (

iG0,c
p+q↓(E

′′+E)
)
⎫
⎬

⎭
=

= 1+  
↑↓
L (qE)

{
i

h̄

U

N

(
ih̄#(0)

q↑↓(E)
)}

.

The ladder approximation for the Hubbard model can thus be summed exactly:

 
↑↓
L (qE) = 1

1+ U
N
#
(0)
q↑↓(E)

.

3. It holds exactly that:

Fig. A.20

4.

iχ̂±q (E) ≈ − 1

2πh̄

∑

k

∫
dE′

(
iG0,c

k↑ (E
′)
) (

iG(0,c)
k+q↓(E + E′)

)
 
↑↓
L (q, E).

The first factor comes from the outer attachments on the left!

iχ̂±q (E) ≈ ih̄#(0)
q↑↓(E) 

↑↓
L (q, E).

For the susceptibility, we then obtain:

χ±q (E) = −γ
h̄
N
#
(0)
q↑↓(E)

1+ U
N
#
(0)
q↑↓(E)

.
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Except for the factor
(− γ

N

)
,#

(0)
q↑↓ is identical to the free susceptibility. The

above result thus agrees with (4.183)! #(0)
q↑↓(E) was computed in ((5.192)).

Solution 5.6.2

: − i

h̄
Tkσ (E)

All the other symbols have the same meanings as in the text:

Fig. A.21

T-matrix equation:

iGc
kσ (E) = iG0,c

kσ (E)+ iG0,c
kσ (E)

(
− i

h̄
Tkσ (E)

)
iG0,c

kσ (E),

Gc
kσ (E) = G

0,c
kσ (E)+

1

h̄
G

0,c
kσ (E)Tkσ (E)G

0,c
kσ (E).

Comparison with the Dyson equation:

Fig. A.22

This implies that:

Fig. A.23

− i

h̄
Tkσ (E) = − i

h̄
!kσ (E)+

(
− i

h̄
!kσ (E)

)
iG0,c

kσ (E)

(
− i

h̄
Tkσ (E)

)

�⇒ Tkσ (E) = !kσ (E)

1− 1
h̄
G

0,c
kσ (E)!kσ (E)

.

Solution 5.6.3
The following two-particle spectral density is to be computed:

S
(2)
iiσ (E − 2μ) = − 1

π

1

N

∑

q

Im D̂q(E − 2μ).
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Here, we have:

iD̂qσ (E) =
+∞∫

−∞
d(t − t ′) e

i
h̄
E(t−t ′)·

·
∑

kp
σ

〈E0|Tε{ak−σ (t)aq−kσ (t)a
+
q−pσ (t

′)a+p−σ (t ′)}|E0〉.

1. The general diagram has the form:

Fig. A.24

Except for the annotation and the directions of the arrows, we have the same
diagram types as in the density correlation Dq(E) in Sect. 5.6. The diagram rules
correspond for the most part to those following (5.183) in Sect. 5.6.1. We merely
have to index the outer attachments (Rule 4) as in the figure above. Because of the
particular directions of the arrows, there can however be no reducible polarisation
parts in the sense of Sect. 5.6.1.

Fig. A.25

2.

ih̄#̂(0)
qσ = − 1

2πh̄

∑

k

∫
dE′

(
iG0,c

q−kσ (E
′)
) (

iG0,c
k−σ (E − E′)

)
.

As in Exercise 5.6.1, we find:

 σ−σL (q, E) = 1

1+ U
N
#̂
(0)
qσ (E)

.
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This yields:

D̂qσ (E) = h̄
#̂
(0)
qσ (E)

1+ U
N
#̂
(0)
qσ (E)

.

#
(0)
qσ (E) is computed in complete analogy to (5.192).

3. Replace the free propagators in #̂(0)
qσ (E) by the full propagators!

Solution of Exercise 6.3.5

To carry out the energy summation for the function defined in Eq. (6.193),

−h̄Λ̂qσ (E0) = ε

h̄β

∑

pE1

GM
pσ (E1)G

M
p+qσ (E1 + E0) ,

we make use of the spectral representation of the single-particle Matsubara func-
tion (6.20):

GM
pσ (E1) =

∫ +∞

−∞
dE′

Spσ (E
′)

iE1 − E′
.

We then still have to calculate

Λ̂qσ (E0) = −ε
h̄2β

∑

p

∫ +∞

−∞
dx

∫ +∞

−∞
dy Spσ (x)Sp+qσ (y)FE0(x, y) ,

with the abbreviation

FE0(x, y) =
∑

E1

1

iE1 − x

1

iE1 + iE0 − y
=
∑

E1

Hx,y(iE1) .

The summation over the Matsubara energies E1 can be carried out using Eq. (6.75);
or, since Hx,y(E) vanishes more rapidly than 1

E
at infinity, we could use the

equivalent formula proved in Exercise 6.2.5:

∑

E1

Hx,y(iE1) = −εβ
∑

Êi

fε(Êi)
(

ResÊiH(E)
)
.

H(E) has two poles:

iÊ1 = x , ResÊ1
= (x + iE0 − y)−1

iÊ2 = y − iE0 , ResÊ2
= (y − iE0 − x)−1 .
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With this, we find

FE0(x, y) = −εβ
(

fε(x)

x + iE0 − y
+ fε(y − iE0)

y − iE0 − x

)
.

E0 is a bosonic Matsubara energy, so that we have

e−iβE0 = +1 .

Then the remaining form

FE0(x, y) = −εβ fε(x)− fε(y)

iE0 + x − y
,

inserted into the above expression for Λ̂qσ (E0), yields precisely Eq. (6.197):

Λ̂qσ (E0) = 1

h̄2

∑

p

∫ +∞

−∞
dx

∫ +∞

−∞
dy

Spσ (x)Sp+qσ (y)

iE0 + x − y

(
fε(x)− fε(y)

)
.

Solutions of the Exercises

Section 6.1.4

Solution of Exercise 6.1.1

We insert (6.44)

G
0,M
k (τ ) = − exp

(
−1

h̄
(ε(k)− μ)τ

){
�(τ)

(
1+ ε〈nk〉(0)

)
+�(−τ)ε 〈nk〉(0)

}

into (6.16):

G
0,M
k (En) =

∫ h̄β

0
dτ G

0,M
k (τ ) exp

(
i

h̄
Enτ

)
.

Evidently, only the first summand contributes:

G
0,M
k (En) = −

(
1+ ε〈nk〉(0)

) ∫ h̄β

0
dτ exp

(
−1

h̄
(ε(k)− μ− iEn)τ

)

=
(

1+ ε〈nk〉(0)
) h̄

ε(k)− μ− iEn
exp

(
−1

h̄
(ε(k)− μ− iEn)τ

)∣∣∣∣

h̄β

o
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= h̄

ε(k)− μ− iEn

(
1+ ε〈nk〉(0)

) (
e−β(ε(k)−μ−iEn) − 1

)

= h̄

ε(k)− μ− iEn

eβ(ε(k)−μ)

eβ(ε(k)−μ) − ε
e−β(ε(k)−μ)

(
ε − eβ(ε(k)−μ)

)

= h̄

iEn − ε(k)+ μ
(6.46)

In the next-to-last step, we inserted (6.45) for the occupation number, and further-
more made use of

eiβ En ≡ ε

according to (6.17).

Solution of Exercise 6.1.2

1. In the definition (6.38) of the single-particle Matsubara function, it is presup-
posed that the construction operators are expressed in the single-particle basis in
which H0 is diagonal:

GM
k (τ) = − 〈Tτ

(
ak(τ ) a

+
k (0)

)〉
.

We then have

GM
k (0

+)−GM
k (0

−) = −
〈
Tτ
(
ak(0

+) a+k (0)
)− Tτ

(
ak(0

−) a+k (0)
) 〉

= −
〈
ak(0

+) a+k (0)− ε a+k (0) ak(0
−)
〉

= −
〈 [
ak(0), a

+
k (0)

]
−ε︸ ︷︷ ︸

=1

〉

= −1 .

If the construction operators are expressed in some arbitrary single-particle basis
|α〉, then the corresponding generalised single-particle Matsubara function is
given by

GM
αβ(τ) = −

〈
Tτ

(
aα(τ) a

+
β (0)

)〉
.



662 Solutions of the Exercises

For the latter, one can derive in a completely analogous manner the following:

GM
αβ(0

+)−GM
αβ(0

−) = −δαβ .

2. From (6.15), we have

1

h̄β

+∞∑

n=−∞
GM
k (En)

as the Fourier representation of the time-dependent single-particle Matsubara
function at the position τ = 0. Due to the discontinuity, according to the rules of
the theory of Fourier transformations, we thus have:

1

h̄β

+∞∑

n=−∞
GM
k (En) =

1

2

{
GM
k (0

+)+GM
k (0

−)
}

= 1

2

{
−
〈
Tτ
(
ak(0

+) a+k (0)
)+ Tτ

(
ak(0

−) a+k (0)
) 〉}

= 1

2

{
−
〈
ak(0

+) a+k (0)+ ε a+k (0) ak(0
−)
〉}

= −ε 〈nk〉 − 1

2
.

We will derive this result explicitly in Exercise 6.2.6.
Now, on the other hand, with an infinitesimally small but still finite 0+

1

h̄β

+∞∑

n=−∞
GM
k (En) exp

(
i

h̄
En0+

)
= GM

k (−0+)

= −
〈
ε a+k (0) ak(−0+)

〉
= −ε 〈nk〉 .

This consideration makes the significance of the factor exp
(

i
h̄
En0+

)
apparent

(see the diagram rules in Sects. 6.2.2 and 6.2.4).

Solution of Exercise 6.1.3

In the entire complex plane, with the exception of the real axis, GAB(E) is analytic.
The same holds for FAB(E), and furthermore, FAB(iEn) = GAB(iEn). Substitution
of variables:
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E→ z = 1

E
GAB(E)→ ĜAB(z) FAB(E)→ F̂AB(z) .

The reciprocal Matsubara energies represent a null sequence:

zn = −iβ
n π

n→∞−→ 0 .

Due to

ĜAB(zn) = F̂AB(zn) ∀ n ,

then, according to the identity theorem of complex analysis,

ĜAB(z) ≡ F̂AB(z)

must hold in the entire complex plane C with the exception of the real axis. This
naturally also applies to the original functions:

GAB(E) ≡ FAB(E) .

Thus, the claimed uniqueness of the analytic continuation of the Matsubara function
has been demonstrated.

Solution of Exercise 6.1.4

Using (6.23), one readily finds that:
[
ap, H0

]
− = (ε(p)− μ) ap .

This means that
∑

p

a+p
[
ap, H0

]
− = H0 .

With (6.24), one calculates

[
ap, V

]
− =

1

2

∑

klmn

v(kl; nm) (δpk a+l aman − δpl a
+
k aman

)

= 1

2

∑

lmn

(v(pl; nm)− v(lp; nm)) a+l aman

�

∑

p

a+p
[
ap, V

]
− =

1

2

∑

plmn

(v(pl; nm)− v(lp; nm)) a+p a+l aman
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=
∑

plmn

v(pl; nm) a+p a+l aman

= 2V .

All together, we have thus found

∑

p

a+p
[
ap, H

]
− = H0 + 2V .

If we now compute the thermodynamic expectation values, we initially find:

〈H〉 = 〈H0 + V 〉 = 1

2

(
∑

p

〈
a+p
[
ap, H

]
−
〉
+
∑

p

(ε(p)− μ)
〈
a+p ap

〉)

.

The expectation values can be expressed via the single-particle Matsubara func-
tion (6.38):

〈
a+p ap

〉
= −ε lim

τ→−0+
GM
p (τ)

〈
a+p
[
ap, H

]
−
〉
= lim

τ→−0+

〈
a+p (0)

(
−h̄ ∂

∂τ
ap(τ )

)〉

= −h̄ ε lim
τ→−0+

∂

∂τ

〈
Tτ

(
ap(τ)a

+
p (0)

) 〉

= ε h̄ lim
τ→−0+

∂

∂τ
GM
p (τ) .

From this, the assertion (H0 = H0(μ = 0)) follows:

U = 〈H 〉 = −1

2
ε lim
τ→−0+

∑

p

(
ε(p)− h̄

∂

∂τ

)
GM
p (τ) .

Solution of Exercise 6.1.5

From part 2 of Exercise 6.1.2, we have (see also part 1 of Exercise 6.2.6):

1

h̄β

+∞∑

n=−∞
G

0,M
k (En) = 1

h̄β

+∞∑

n=−∞

h̄

iEn − ε(k)+ μ
= −ε 〈nk〉(0) − 1

2
.

This proves the assertion!
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Section 6.2.12

Solution of Exercise 6.2.1

1. We are seeking the total pairing of the “free” mean value of the time-ordered
product

〈
Tτ

{
akσ (τ1)a

†
lσ ′(τ2)amσ (τ3)a

†
nσ ′(τ3)

}〉(0)

= akσ (τ1)a
†
lσ ′(τ2)amσ (τ3)a

†
nσ ′(τ3)+ akσ (τ1)a

†
lσ ′(τ2)amσ (τ3)a

†
nσ ′(τ3)

= akσ (τ1)a
†
lσ ′(τ2)amσ (τ3)a

†
nσ ′(τ3)+ ε2 akσ (τ1)a

†
nσ ′(τ3)a

†
lσ ′(τ2)amσ (τ3) .

Only contractions between annihilation and creation operators can be nonzero.
2.

〈
Tτ

{
akσ (τ1)a

†
lσ ′(τ2)amσ (τ3)a

†
nσ ′(τ3)

}〉(0) =

= δklδmnδσσ ′
(
−G(0)

kσ (τ1 − τ2)
) (
−G(0)

mσ (−0+)
)
+

+δknδlmδσσ ′
(
−G(0)

kσ (τ1 − τ3)
) (
−ε G(0)

mσ (τ3 − τ2)
)

= δσσ ′
{
δklδmn(−ε) 〈nmσ 〉(0) G(0)

kσ (τ1 − τ2)+

+ε δknδlmG
(0)
kσ (τ1 − τ3)G

(0)
mσ (τ3 − τ2)

}
.

Solution of Exercise 6.2.2

In first-order perturbation theory, according to (6.61), we must evaluate the follow-
ing expression

(
(�/�0)

(0) = 1
)
:

(
�

�0

)(1)
= − 1

2h̄

∑

klmn

v(kl; nm)
∫ h̄β

0
dτ
〈
Tτ

(
a

†
k (τ )a

†
l (τ )am(τ)an(τ )

)〉(0)
.

The total pairing of Wick’s theorem then yields the two diagrams shown in
Fig. A.26, which we can then evaluate
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Fig. A.26

•

•

•

•

>

>

>

>

(a) (b)

using the diagram rules from Sect. 6.2.2.

1. Hubbard model
The Coulomb matrix element, according to (6.112), has the form:

vH (kl; nm) = U

N
δk+l,m+n δσkσn δσlσm δσk−σl .

With this it is clear that diagram (b) makes no contribution, since that would
require σk = σm. Only diagram (a) remains:

(
�

�0

)(1)
= − 1

2h̄

∑

klmn

∑

σkσlσmσn

∫ h̄β

0
dτ
U

N
δk+l,m+n δσkσn δσlσm δσk−σl ·

· ε2
(
εδlmδσlσm

〈
nlσl
〉(0)) ·

(
εδknδσkσn

〈
nkσk

〉(0))

= − 1

2h̄

U

N

∑

klσ

∫ h̄β

0
dτ 〈nkσ 〉(0) 〈nl−σ 〉(0)

�

(
�

�0

)(1)
= − U

2kBT

1

N

∑

klσ

〈nkσ 〉(0) 〈nl−σ 〉(0)

= −1

2
βU

1

N

∑

σ

Nσ ·N−σ .

Here, we have

Nσ =
∑

k

〈nkσ 〉(0) ,

as the number of electrons with spin σ .
2. Jellium model

The Coulomb matrix element now takes on the form (6.119):

vJ (kl; nm) = v(k− n) δk+l,m+n(1− δkn) δσkσn δσlσm .
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Due to (1− δkn), the “bubbles” cause diagram (a) to vanish. Then only diagram
(b) now remains:

(
�

�0

)(1)
= − 1

2h̄

∑

klmn

v(kl; nm)
∫ h̄β

0
dτ ε

(
εδkm 〈nk〉(0)

)
·
(
εδln 〈nl〉(0)

)

= − 1

2h̄
ε3
∑

klmn

∑

σkσlσmσn

v(k− n) δk+l,m+n(1− δkn) δkmδln ·

· δσkσnδσmσl δσkσmδσlσn
∫ h̄β

0
dτ
〈
nkσk

〉(0) · 〈nlσl
〉(0)

�

(
�

�0

)(1)
= β

2

∑

klσ

v(k− l)(1− δkl) 〈nkσ 〉(0) · 〈nlσ 〉(0) .

Solution of Exercise 6.2.3

1. Using the rules from Sect. 6.2.2, we find

D = 1

2!
(
− 1

2h̄

)2 ∫ h̄β

0

∫ h̄β

0
dτ1dτ2

∑

k1l1m1n1
k2l2m2n2

v(k1l1; n1m1)v(k2l2; n2m2) ·

· ε2
(
−δk1m1G

(0)
k1
(−0+)

) (
−δl1m2G

(0)
l1
(τ2 − τ1)

)
·

·
(
−δn1l2G

(0)
n1
(τ1 − τ2)

) (
−δk2n2G

(0)
k2
(−0+)

)

= 1

2!
(
− 1

2h̄

)2 ∫ h̄β

0

∫ h̄β

0
dτ1dτ2

∑

k1l1n1k2

v(k1l1; n1k1)v(k2n1; k2l1) ·

· 〈nk1

〉(0) 〈
nk2

〉(0)
G
(0)
l1
(τ2 − τ1)G

(0)
n1
(τ1 − τ2) .

2. The Coulomb matrix element in the Hubbard model, according to (6.112), has
the form:

vH (kl; nm) = U

N
δk+l,m+n δσkσn δσlσm δσk−σl .

This means that

v(k1l1; n1k1) ∝ δσk1σn1
δσl1σk1

δσk1−σl1 = 0 � D = 0
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3. The Coulomb matrix element in the Jellium model takes the form (6.119):

vJ (kl; nm) = v(k− n) δk+l,m+n(1− δkn) δσkσn δσlσm .

Owing to (1− δkn), the “bubble” causes the diagram to vanish:

v(k2n1; k2l1) ∝ (1− δk2k2) = 0 � D = 0 .

4. We have to rewrite the notation of the diagram in Fig. 6.25 and A.26, respectively,
and evaluate it according to the rules following Eq. (6.72).

Fig. A.27

•

• •

•

>

>>
k ,E1 1

k ,E2 2

l ,E1 3

n ,E1
4

D = 1

2!
(
− 1

2h̄

)2

ε2
∑

E1E2E3E4
k1k2 l1n1

v(k1l1; n1k1)v(k2n1; k2l1) ·

· 1

(h̄β)2
δE1+E3,E4+E1δE3+E2,E2+E4

(
−G(0)

k1
(E1)e

i
h̄
E10+

)
·

·
(
−G(0)

l1
(E3)

) (
−G(0)

n1
(E4)

) (
−G(0)

k2
(E2)e

i
h̄
E20+

)

= 1

8h̄2

∑

k1k2l1n1

v(k1l1; n1k1)v(k2n1; k2l1)
〈
nk1

〉(0) 〈
nk2

〉(0) ·

·
∑

E3

G
(0)
l1
(E3)G

(0)
n1
(E3) .

In the last step, we made use of the fact that

1

h̄β

∑

E1,2

G
(0)
k1,2
(E1,2)e

i
h̄
E1,20+ = −ε 〈nk1,2

〉(0)

holds.
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Solution of Exercise 6.2.4

We first carry out the summation over Matsubara energies E2 according to (6.75):

FE(x, y, z) = 1

h̄β

∑

E1

1

iE1 − x

ε

2π ih̄
·

·
∮

C′
dE′ 1

eβE
′ − ε

· 1

E′ − y
· 1

i(E − E1)+ E′ − z
.

Here, C′ is the path within the complex E′ plane shown in Fig. 6.3. Inside the
enclosed area, the integrand has two poles, at E′ = i(E1 − E) + z and at E′ = y,
around which the contours are traversed in the mathematically negative sense. Then
the residual theorem gives

FE(x, y, z) = 1

h̄β

∑

E1

1

iE1 − x

−ε
h̄
·

·
{

1

eβy − ε
· 1

i(E − E1)+ y − z
+ 1

eβ(i(E1−E)+z) − ε
· 1

i(E1 − E)+ z− y

}
.

The energy difference E1 − E is in every case bosonic and thus equal to 2nπ/β.
That yields as intermediate result

FE(x, y, z) = −ε
h̄2β

∑

E1

1

iE1 − x
· 1

iE1 − iE + z− y

{
fε(z)− fε(y)

}
.

fε is defined in (6.107). Now we carry out the E1 summation:

FE(x, y, z) =
{
fε(z)− fε(y)

} −ε2

2π ih̄2

∮

C′
dE′ 1

eβE
′ − ε

1

E′ − x
· 1

E′ − iE + z− y

= 1

h̄2

{
fε(z)− fε(y)

} [ 1

eβx − ε
· 1

x − iE + z− y
+

+ 1

eβ(iE−z+y) − ε
· 1

iE − z+ y − x

]

= 1

h̄2

fε(z)− fε(y)

iE − x + y − z

{
1

eiβEeβ(y−z) − ε
− fε(x)

}
.

In the first summand, we can make use of eiβE = ε. We then still must compute
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ε

eβ(y−z) − 1

{
fε(z)− fε(y)

}
= ε

eβ(y−z) − 1

(
1

eβz − ε
− 1

eβy − ε

)

= εeβz

eβy − eβz
fε(y)

(
eβy − ε

eβz − ε
− 1

)

= εeβz

eβy − eβz
fε(y)

eβy − eβz

eβz − ε

= εeβz

eβz − ε
fε(y)

= 1

ε − e−βz
fε(y)

= −fε(−z)fε(y) .

We can then summarise:

(
fε(z)−fε(y)

){ 1

eiβEeβ(y−z) − ε
− fε(x)

}
= −fε(−z)fε(y)−fε(z)fε(x)+fε(y)fε(x) .

This yields the desired result (6.106):

FE(x, y, z) = 1

h̄2

−fε(−z)fε(y)− fε(z)fε(x)+ fε(y)fε(x)

iE − x + y − z
.

Solution of Exercise 6.2.5

1. We write

fε(E) = 1

E − iEn
gε(E) gε(E) = E − iEn

eβE − ε

and show that gε(E) is finite at E = iEn. That is possible using l’Hospital’s rule:

lim
E→iEn

gε(E) = lim
E→iEn

d
dE
(E − iEn)

d
dE
(eβE − ε)

= lim
E→iEn

1

βeβE
= 1

βε
= ε

β
.

fε(E) thus has first-order poles at E = iEn with identical residuals ε
β

for
all poles.
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2. Let C be a circle in the complex plane of radius R and its midpoint e.g. at the
coordinate origin. We consider the integral

IC ≡
∮

C

H(E)

eβE − ε
dE .

For R → ∞, C certainly encloses all the poles of the integrand. Owing to the
assumed properties of H(E)fε(E), however, the integrand vanishes for R→∞
on C more rapidly than 1

E
. This means that

IC(R→∞) = 0 .

On the other hand, with the residual theorem, we have:

IC(R→∞) = ±2π i
∑

En

(
ResiEnfε(E)

)
H(iEn)±

±2π i
∑

Êi

fε(Êi)
(

ResÊiH(E)
)
.

With part 1., we than can assert that:

− ε
β

∑

En

H(iEn) =
∑

Êi

fε(Êi)
(

ResÊiH(E)
)
.

The same result is found by applying the residual theorem to Eq. (6.75) for the
integral on the right-hand side. Under the given assumptions, one may replace
the integration path C as in Fig. 6.3 by the path C′, which is traversed in the
mathematically negative sense.

Solution of Exercise 6.2.6

1. We have to calculate

G
0,M
k (τ = 0) = 1

h̄β

∑

En

h̄

iEn − ε(k)+ μ
= − ε

β

∑

En

Ĥ (iEn)

with

Ĥ (E) = −ε 1

E − ε(k)+ μ
.
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To this end, we consider the complex path integral, analogously to the procedure
used in Exercise 6.2.5:

IC ≡
∮

C

Ĥ (E)

eβE − ε
dE .

C is again a circle in the complex E plane with radius R and its midpoint at
E = 0. The points on C are thus given by

E = R (cosϕ + i sinϕ) .

For R→+∞, all the singularities of the integrand lie within the region enclosed
by C. The conclusions reached in Exercise 6.2.5 require that the integrand in IC
vanishes for R→+∞ more rapidly (!) than 1

E
on C. Due to

lim
R→+∞

1

eβE − ε
= lim

R→+∞
1

eβR(cosϕ+i sinϕ) − ε
=
{

0 for cosϕ > 0
−ε for cosϕ < 0

this is clearly the case only on the semicircle ReE > 0. We thus cannot directly
use the formula from Exercise 6.2.5.

However, if we write

G
0,M
k (τ = 0) = 1

h̄β

∑

En

h̄

iEn − ε(k)+ μ
= 1

β

∑

En

iEn + ε(k)− μ

(iEn)2 − (ε(k)− μ)2
,

then we can make use of the fact that

∑

En

iEn
(iEn)2 − (ε(k)− μ)2

= 0

must hold, since every non-vanishing Matsubara energy En has a corresponding
energy with the opposite sign. What thus remains is

G
0,M
k (τ = 0) = − ε

β

∑

En

H(iEn)

with

H(E) = −ε ε(k)− μ

E2 − (ε(k)− μ)2
.
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Now, all the requirements have been fulfilled in order to be able to use the formula
from Exercise 6.2.5 (or (6.75)):

G
0,M
k (τ = 0) = − ε

β

∑

En

H(iEn) =
∑

Êi

fε(Êi)
(

ResÊiH(E)
)
.

We thus still need only the poles Êi of the function H(E) and their residuals:

H(E) = ε

2

(
1

E + (ε(k)− μ)
− 1

E − (ε(k)− μ)

)
.

Poles lie at ±(ε(k)− μ) with residuals ∓ ε
2 . We thus have:

G
0,M
k (τ = 0) = −ε

2

1

eβ(ε(k)−μ) − ε
+ ε

2

1

e−β(ε(k)−μ) − ε
.

With

1

e−β(ε(k)−μ) − ε
= −ε

(
1+ ε

eβ(ε(k)−μ) − ε

)
,

it finally follows that

G
0,M
k (τ = 0) = 1

h̄β

∑

En

h̄

iEn − ε(k)+ μ

= −ε 1

eβ(ε(k)−μ) − ε
− 1

2
= −ε 〈nk〉(0) − 1

2
.

This is verified by the result from Exercise 6.1.2.
2. We now investigate

G
0,M
k (τ = −0+) = 1

h̄β

∑

En

G
0,M
k (En) exp

(
i

h̄
En0+

)
= − ε

β

∑

En

H(iEn)

with

H(E) = −ε
exp

(
1
h̄
E 0+

)

E − ε(k)+ μ
.

The path integral IC is assumed to be defined as in part 1. In order to guarantee
IC(R→+∞) = 0, the integrand mist vanish more rapidly than 1

E
on C. This is

the case iff

lim
R→+∞

exp
(

1
h̄
E 0+

)

exp(βE)− ε
= 0
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holds for points on C. That is indeed the case:

lim
R→+∞

exp
(

1
h̄
E 0+

)

exp(βE)− ε
= lim

R→+∞
1

exp
(
(β − 0+

h̄
) E
)
− ε exp

(
− 1
h̄

0+ E
)

≈ lim
R→+∞

1

exp (β E)− ε exp
(
− 1
h̄

0+ E
)

= lim
R→+∞

1

eβR cosϕ eiβR sinϕ − ε e
−R
h̄

0+ cosϕ
e
− i
h̄
R 0+ sinϕ

= 0 .

For cosϕ > 0, the first summand in the denominator causes the term to vanish;
for cosϕ < 0, the second summand accomplishes this. Thus, the requirements
for being able to apply the ‘convenient’ formula from Exercise 6.2.5 are met.

G
0,M
k (τ = −0+) = − ε

β

∑

En

H(iEn) =
∑

Êi

fε(Êi)
(

ResÊiH(E)
)
.

H(E) has a first-order pole at ε(k)−μwith the residual−ε exp
(

1
h̄
(ε(k)− μ) 0+

)
.

This finally leads to

G
0,M
k (τ = −0+) = 1

h̄β

∑

En

1

iEn − ε(k)+ μ
e

i
h̄ En 0+

= −εe 1
h̄
(ε(k)−μ) 0+

eβ(ε(k)−μ) − ε
≈ −ε
eβ(ε(k)−μ) − ε

= −ε 〈nk〉(0) .

After (!) carrying out the integration, we can of course set e
1
h̄
(ε(k)−μ) 0+ ≈ 1;

but, as shown by part 1, only afterwards ! This result is also verified by the
considerations in part 2 of Exercise 6.1.2.

Solution of Exercise 6.2.7

From (6.75), it must hold that

〈nk〉 = −1

2π ih̄

∮

C

dE
Gk(E) exp

(
E
h̄
· 0+

)

exp(βE)+ 1
.
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C denotes the path in the left-hand part of Fig. 6.3. The generally-valid high-energy
expansion (3.180) requires that Gk(E) vanish at infinity at least as rapidly as 1

E
.

In part 2 of Exercise 6.2.6, it is shown that also
exp
(
E
h̄
·0+
)

exp(βE)+1 vanishes at infinity,
so that we can conclude that the entire above integrand tends toward zero more
rapidly than 1

E
. Thus, we can replace the path C by the path C′ in Fig. 6.3. Since

the fermionic Matsubara energies iEn which are closest to the zero point lie at ±π
β

,
we can modify the path of integration initially once more to C′′ as indicated in
Fig. A.27, because the contributions on the two small segments close to the zero
point just cancel each other out. In the region enclosed by C′′, there are only real
poles of Gk(E). Therefore, the path of integration can finally be deformed from C′′
to C′′′, that is essentially to two lines parallel to the real axis and shifted by ±i0+ in
the respective semi-planes. This means that:

^

^^

^

^

^

^

^

•
•

•
•

•
•

•
•

•

•
•

•C’’

>

>>

C’’’
>

+i0+

-i0+

Fig. A.28

〈nk〉 = i

2πh̄

∮

C′′′
dE

Gk(E) exp
(
E
h̄
· 0+

)

exp(βE)+ 1

= i

2πh̄

∫ +∞

−∞
dE

exp(βE)+ 1

(
Gk(E + i0+)−Gk(E − i0+)

)

= 1

h̄

∫ +∞

−∞
dE

Sk(E)

exp(βE)+ 1
.

Sk(E) is the single-particle spectral density (3.153). Thus, the spectral theorem has
been verified. The representation for 〈nk〉 as given in the statement of the exercise
is therefore obviously correct.
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Section 6.3.5

Solution of Exercise 6.3.1

1. The starting point is Eq. (6.178), whereby in the Jellium model, we must set

vσ ′′σ ′′′(q) ≡ v(q) .

With this, we have

Dqσσ ′(E0) = h̄#qσσ ′(E0)+ v(q)
∑

σ ′′σ ′′′
#qσσ ′′(E0)Dqσ ′′′σ ′(E0) .

For the actual density correlation, (6.180) holds:

Dq(E0) =
∑

σσ ′
Dqσσ ′(E0) =

= h̄
∑

σσ ′
#qσσ ′(E0)+ v(q)

(
∑

σσ ′′
#qσσ ′′(E0)

)(
∑

σ ′′′σ ′
Dqσ ′′′σ ′(E0)

)

= h̄#q(E0)+ v(q)#q(E0)Dq(E0) .

In the last step, we have also made use of (6.182). Then (6.183) is verified:

Dq(E0) = h̄#q(E0)

1− v(q)#q(E0)
.

2. Now, the starting point is (6.179):

Ṽ (q) · D̃(q) = v(q)
(

1 1
1 1

)(
Dq↑↑ Dq↑↓
Dq↓↑ Dq↓↓

)

= v(q)
(
Dq↑↑ +Dq↓↑ Dq↑↓ +Dq↓↓
Dq↑↑ +Dq↓↑ Dq↑↓ +Dq↓↓

)
.

With

#̃q(E0) =
(
#q↑↑(E0) #q↑↓(E0)

#q↓↑(E0) #q↓↓(E0)

)
,
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it further follows that

(
#̃q(E0)Ṽ (q)D̃(q)(E0)

)
↑↑ = v(q)

(
#q↑↑(Dq↑↑ +Dq↓↑)+#q↑↓(Dq↑↑ +Dq↓↑)

)

(
#̃q(E0)Ṽ (q)D̃(q)(E0)

)
↑↓ = v(q)

(
#q↑↑(Dq↑↓ +Dq↓↓)+#q↑↓(Dq↑↓ +Dq↓↓)

)

(
#̃q(E0)Ṽ (q)D̃(q)(E0)

)
↓↑ = v(q)

(
#q↓↑(Dq↑↑ +Dq↓↑)+#q↓↓(Dq↑↑ +Dq↓↑)

)

(
#̃q(E0)Ṽ (q)D̃(q)(E0)

)
↓↓ = v(q)

(
#q↓↑(Dq↑↓ +Dq↓↓)+#q↓↓(Dq↑↓ +Dq↓↓)

)
.

One can recognize that

∑

σσ ′

(
#̃q(E0)Ṽ (q)D̃(q)(E0)

)
σσ ′ =

= v(q)
(
#q↑↑ +#q↑↓ +#q↓↑ +#q↓↓

)
·
(
Dq↑↑ +Dq↑↓ +Dq↓↑ +Dq↓↓

)

= v(q)

(
∑

σσ ′
#qσσ ′

)(
∑

σσ ′
Dqσσ ′

)

= v(q)#q(E0)Dq(E0) .

With this, the assertion is proved:

∑

σσ ′
Dqσσ ′ = h̄

∑

σσ ′
#qσσ ′ +

∑

σσ ′

(
#̃q(E0)Ṽ (q)D̃(q)(E0)

)
σσ ′

� Dq(E0) = h̄#q(E0)+ v(q)#q(E0)Dq(E0) .

Solution of Exercise 6.3.2

1. Because of

vσσ ′(q) ≡ U

N
δσ,−σ ′ ,

according to (6.178) we must still calculate:

Dqσσ ′(E0) = h̄#qσσ ′(E0)+ U

N

∑

σ ′′
#qσσ ′′(E0)Dq−σ ′′σ ′(E0) .
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This means, element by element:

Dq↑↑ = h̄#q↑↑ + U

N

(
#q↑↑Dq↓↑ +#q↑↓Dq↑↑

)

Dq↑↓ = h̄#q↑↓ + U

N

(
#q↑↑Dq↓↓ +#q↑↓Dq↑↓

)

Dq↓↑ = h̄#q↓↑ + U

N

(
#q↓↑Dq↓↑ +#q↓↓Dq↑↑

)

Dq↓↓ = h̄#q↓↓ + U

N

(
#q↓↑Dq↓↓ +#q↓↓Dq↑↓

)
.

It follows from the first and the third lines that:

Dq↑↑ = h̄#q↑↑
1− U

N
#q↑↓

+
U
N
#q↑↑

1− U
N
#q↑↓

Dq↓↑

Dq↓↑ = h̄#q↓↑
1− U

N
#q↓↑

+
U
N
#q↓↓

1− U
N
#q↓↑

Dq↑↑ .

Inserting,

Dq↑↑

⎛

⎝1−
U2

N2 #q↑↑#q↓↓
(
1− U

N
#q↑↓

) (
1− U

N
#q↓↑

)

⎞

⎠ = h̄#q↑↑
(
1− U

N
#q↓↑

)+ h̄ U
N
#q↑↑#q↓↑

(
1− U

N
#q↑↓

) (
1− U

N
#q↓↑

) .

Resolving this expression, we finally obtain

Dq↑↑ = h̄
#q↑↑

1− U
N
(#q↑↓ +#q↓↑)+ U2

N2 (#q↓↑#q↑↓ −#q↑↑#q↓↓)
.

With this, Dq↓↑ is also determined. The two other matrix elements Dq↓↓ and
Dq↑↓ are then found simply by spin flips (↑→↓, ↓→↑), in each case on both
sides of the equations.

2. Due to

Dq(E0) =
∑

σσ ′
Dqσσ ′(E0) #q(E0) =

∑

σσ ′
#qσσ ′(E0) ,

the formulas from part 1 yield:

Dq(E0) = h̄#q(E0)+ U

N

(
Dq↑↑ +Dq↑↓

)(
#q↑↓ +#q↓↓

)
+

+U
N

(
Dq↓↑ +Dq↓↓

)(
#q↑↑ +#q↓↑

)
.
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In the paramagnetic system, we can make use of

#qσσ ′(E0) = #q−σ−σ ′(E0) .

This means that:

#q↑↑ +#q↓↑ ≡ #q↓↓ +#q↑↓ ≡ 1

2
#q(E0) .

Thus, the equation above can be simplified to:

Dq(E0) = h̄#q(E0)+ U

2N
#q(E0)

∑

σσ ′
Dqσσ ′(E0)

= h̄#q(E0)+ U

2N
#q(E0)Dq(E0) .

One thus obtains a greatly simplified result for the density correlation in the
Hubbard model, which is similar in structure to that in the Jellium model:

Dq(E0) = h̄#q(E0)

1− U
2N#q(E0)

.

3. For the polarisation propagator in the simplest approximation, we take the result
#
(0)
q (E0) (6.176), i.e. we compute the latter in the non-interacting system, which

is in particular paramagnetic; we thus employ the so-called ‘random phase
approximation’:

Dq(E0) = h̄#
(0)
q (E0)

1− U
2N#

(0)
q (E0)

.

4. In the case of ferromagnetic saturation, the system contains only ↑ electrons. In
the framework of the Hubbard model, there are therefore no interactions:

Dq(E0) ≡ Dq↑↑(E0) = h̄#q(E0) = h̄#q↑↑(E0) = h̄#(0)
q (E0) .

Solution of Exercise 6.3.3

1. We evaluate (6.187) for the Jellium model with

vσσ ′(q) ≡ v(q) .

This gives:
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veff,σσ ′(q, E) = v(q)+ v(q)
∑

σ ′′σ ′′′
#qσ ′′σ ′′′(E) veff,σ ′′′σ ′(q, E) .

The right-hand side does not depend on σ , and the effective interaction is thus at
least not dependent on its first spin index. We can therefore separate the effective
interaction on the right-hand side from the sum as a prefactor. Formally, we then
obtain:

veff,σσ ′(q, E0) = v(q)+ v(q) veff,σσ ′(q, E)
∑

σ ′′σ ′′′
#qσ ′′σ ′′′(E)

= v(q)+ v(q) veff,σσ ′(q, E0)#q(E) .

This means that the effective interaction in the Jellium model is independent of
the spin of the interaction partner:

veff,σσ ′(q, E0) ≡ veff(q, E0) = v(q)
1− v(q)#q(E0)

.

2. The same result must naturally follow from a formal investigation of the matrix
equation (6.188). Initially, we find:

Ṽ (q) #̃q(E0) = v(q)
(
#q↑↑ +#q↓↑ #q↑↓ +#q↓↓
#q↑↑ +#q↓↑ #q↑↓ +#q↓↓

)
.

From this, we have:

(
Ṽ (q) #̃q(E0)̃veff(q, E)

)

↑↑ = v(q)
(
veff↑↑(#q↑↑ +#q↓↑)+ veff↓↑(#q↑↓ +#q↓↓)

)

(
Ṽ (q) #̃q(E0)̃veff(q, E)

)

↓↑ = v(q)
(
veff↑↑(#q↑↑ +#q↓↑)+ veff↓↑(#q↑↓ +#q↓↓)

)
.

The two expressions are evidently identical. From (6.188) it then follows that

veff,↑↑(q, E0) = v(q)+v(q)
(
veff,↑↑(#q↑↑+#q↓↑)+veff,↓↑(#q↑↓+#q↓↓)

)

= veff↓↑(q, E0)

� veff,↑↑(q, E0) = v(q)+v(q)
(
#q↑↑+#q↓↑ +#q↑↓ +#q↓↓

)
veff,↑↑(q, E0)

= v(q)+ v(q)#q(E0)veff,↑↑(q, E0)

� veff,↑↑(q, E0) = v(q)
1− v(q)#q(E0)

= veff,↓↑(q, E0) .
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In complete analogy, we can calculate the other two matrix elements. This
calculation again verifies that in the Jellium model, the effective interaction is
independent of the spins of the electrons involved:

veff,σσ ′(q, E0) ≡ veff(q, E0) = v(q)
1− v(q)#q(E0)

.

Solution of Exercise 6.3.4

1. In the case of the Hubbard model, we have to insert

vσσ ′′(q) ≡ U

N
δσ−σ ′′

into (6.187), thereby finding

veff,σσ ′(q, E0) = U

N
δσ−σ ′ + U

N

∑

σ ′′′
#q−σσ ′′′veff,σ ′′′σ ′(q, E0) .

This means that:

veff,↑↑(q, E0) = U

N

(
#q↓↑veff↑↑ +#q↓↓veff↓↑

)

� veff,↑↑(q, E0) =
U
N
#q↓↓

1− U
N
#q↓↑

veff↓↑(q, E0)

veff,↓↑(q, E0) = U

N
+ U

N

(
#q↑↑veff↑↑ +#q↑↓veff↓↑

)

� veff,↓↑(q, E0) =
U
N

1− U
N
#q↑↓

+
U
N
#q↑↑

1− U
N
#q↑↓

veff↑↑(q, E0) .

Inserting and resolving:

veff,↑↑(q, E0)

⎛

⎝1−
U2

N2 #q↓↓#q↑↑
(

1−U
N
#q↓↑

) (
1−U

N
#q↑↓

)

⎞

⎠=
U2

N2 #q↓↓
(

1−U
N
#q↓↑

) (
1−U

N
#q↑↓

) .

We thus obtain as the first result:
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veff,↑↑(q, E0)=
U2

N2 #q↓↓(E0)
(

1−U
N
#q↓↑(E0)

) (
1−U

N
#q↑↓(E0)

)
−U2

N2 #q↓↓(E0)#q↑↑(E0)
.

We now set this into the above expression for the non-diagonal element:

veff,↓↑(q, E0)=
U
N

1−U
N
#q↑↓

⎛

⎝1+
U2

N2 #q↓↓#q↑↑
(

1−U
N
#q↓↑

) (
1−U

N
#q↑↓

)
−U2

N2 #q↓↓#q↑↑

⎞

⎠ .

This yields as second result:

veff,↓↑(q, E0)=
U
N
(1−U

N
#q↓↑(E0))(

1−U
N
#q↓↑(E0)

) (
1−U

N
#q↑↓(E0)

)
−U2

N2 #q↓↓(E0)#q↑↑(E0)
.

The other two elements can be found simply by spin exchange (↑↔↓). In the
Hubbard model, the effective interaction thus carries an explicit spin dependence.
Here, in contrast to the “bare” interaction, this is in general non-zero even for
interaction partner with the same spins.

2. For the paramagnetic case, we can assume that:

#qσσ ′(E0) ≡ #q−σ−σ ′(E0) .

Using the abbreviations

#(+)
q (E0) = #qσσ (E0) #(−)

q (E0) = #qσ−σ (E0) ,

the effective interaction can then be written as follows:

veff,σσ (q, E0) =
U2

N2#
(+)
q (E0)

(
1− U

N
#
(−)
q (E0)

)2 − U2

N2 #
(+)2
q (E0)

veff,σ−σ (q, E0) =
U
N

(
1− U

N
#
(−)
q (E0)

)

(
1− U

N
#
(−)
q (E0)

)2 − U2

N2 #
(+)2
q (E0)

.

3. The special case

#q(E0)→ #(0)
q (E0) � #qσσ ′(E0)→ 1

4
#(0)

q (E0)
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leads to the so-called ‘random phase approximation’:

vRPAeff,σσ (q, E0) =
(
U

2N

)2
#
(0)
q (E0)

1− U
2N#

(0)
q (E0)

vRPAeff,σ−σ (q, E0) =
U
N

(
1− U

4N#
(0)
q (E0)

)

1− U
2N#

(0)
q (E0)

.
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A
Absorption, 78, 79, 81, 83
Adiabatic, see Switching-on, adiabatic
AES, see Auger Electron Spectroscopy (AES)
Alloy analogy, 278, 280, 303–305, 318, 319
Alloy, binary, 278, 280
Annihilation

operator, 1, 7, 12, 13–15, 20, 24, 27, 30,
35, 41, 43, 53, 75, 84, 86, 100, 107,
129, 133, 197, 297, 334, 338–341,
343, 344, 347, 348, 362, 407, 413,
419, 426, 430, 432, 433, 537, 579,
629, 671

time, 341, 348, 354
Anticommutator Green’s function, 147, 148,

156, 165, 170, 176, 177, 282
Anticommutator spectral density, 145
Antiferromagnet, 92, 93, 105, 196, 232, 317
Antiferromagnetism, 92
Appearance-potential spectroscopy (APS),

128, 129, 255–257, 412
Approximation, harmonic, 65–70, 74, 75,

76, 77
ATA, see Average T-matrix approximation

(ATA)
Atomic Limit, see Limit, atomic
Auger electron spectroscopy (AES), 128–130,

255–257,412
Average T-matrix approximation (ATA),

272–275

B
Baker-Hausdorff theorem, 338
Band

correction, 222, 223–225
exactly half-filled, 228–232

infinitely narrow, 205–208, 233, 236,
297–303, 639

limit, 216, 217, 219, 233, 633, 668
magnetism, 59, 94, 219
occupation, 225, 226, 227, 302, 304,

305, 307
shift, 94, 213, 221, 225

spin-dependent, 94, 210, 213, 221
splitting, 196, 200, 216, 217, 278, 629

Basis
states, 2, 11, 14, 18, 19, 25, 27, 531
vector, 13

BCS superconductivity, 83, 86, 88, 178,
180, 236

BCS theory, 86, 88, 178
Binding energy, 66
Bloch band, 217, 227, 302, 304, 310,

312, 313
Bloch density of states, 88, 196, 225, 226, 257,

308, 312, 654
Bloch electrons, 39, 40, 41, 44, 157–164, 195
Bloch energy, 40, 41, 57, 58, 65, 78, 105, 181,

182, 193, 307, 337
Bloch functions, 40, 41, 45, 56, 57, 80, 105,

181, 561, 604
Bloch operators, 41, 44, 60
Bloch representation, 46, 49, 135, 181, 232,

579, 603, 608, 630
Bloch states, 40
Bloch’s T 3/2 law, 103, 254, 283, 293, 593
Bloch theorem, 57, 65
Bogoliubov inequality, 104, 105, 235, 595,

598, 639
Bohr magneton, 254
Bohr radius, 52, 385, 556
Bonding, metallic, 56
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Bose-Einstein distribution, 77
function, 102, 165

Bose function, 432
Boson operators, 11, 13, 24, 74,101, 137, 289,

334
Bosons, 7, 11, 13, 22, 23, 24, 25, 28, 30, 32,

33, 75, 86, 99, 163, 422–424, 432,
441, 530, 540–543

Boundary conditions, periodic, 40, 45, 51, 60,
61, 69, 76, 77, 117, 120, 140, 158,
159, 164, 334, 530, 553, 554, 574,
575, 616, 617

Branch, acoustic, optical, 69
Bravais lattice, 39, 66, 76, 77, 81, 570, 575,

576
Brillouin-Wigner perturbation theory, 325,

337, 413, 670, 671
Brillouin zone, first, 40, 60, 76, 77, 81, 103,

105, 292, 312, 314, 337, 570, 572,
593, 598

Bubble, 40, 60, 76, 77, 81, 103, 105, 292, 312,
314, 337, 570, 572, 593, 598

C
Cauchy’s principal value, 144
Centroid function, 218
Chain

diatomic linear, 69
of equations of motion, 139, 140, 612
linear, 69, 76

Charge density, 122, 125, 126, 239, 242, 245,
250, 478

waves, 236, 241–250
Coherent potential approximation (CPA), 266,

267, 274–278, 279, 304, 305, 318,
417

Commutation relations, 13, 14, 20, 28, 30, 44,
72, 73, 96, 101, 233, 234, 639

fundamental, 1, 17, 19, 25, 27, 32, 60, 86,
158, 165, 338, 579

Commutator
Green’s function, 134, 147, 156, 163, 165, 169,

174, 177, 197, 281, 282
spectral density, 146, 147, 256

Completeness, 10, 14, 20, 23, 105, 230, 424,
565, 594, 651

relation, 10, 14, 20, 105, 230, 594
Conduction electrons, 56, 86, 91, 94, 125, 127,

295–297, 302, 460
Conductivity, electrical, 94, 116, 122–124,

134, 197, 201, 468
Configurational averaging, 260, 261, 268

Conservation
of energy

at a vertex, 369, 481
of momentum

at a vertex, 398, 480, 676
of spin, 398

at a vertex point, 444, 676, 679
Contraction, 339, 340–345, 346, 347, 348, 349,

350, 352, 353, 355, 358, 433, 436,
437, 447, 474, 509, 671

Cooper
model, 87
pairs, 83, 86–88, 178, 579, 580, 584, 585,

587, 588, 590
creation operator, 88, 178
state, 87, 88

Core
electrons, 37, 129, 255
state, 129, 255

Correlation
energy, 55, 385, 390, 393
function, 109, 134, 138, 140, 141, 145–147,

154, 166, 170, 172, 174, 223, 256,
418, 429, 603

Coulomb interaction, 38, 46–49, 59, 83, 93,
198, 207, 208, 225, 226, 227, 296,
304, 338, 381, 385, 390, 460, 535,
562, 568

Coulomb matrix element, 387, 458, 463, 477,
509–511

Coulomb potential, screened, 240, 392
CPA, see Coherent potential approximation

(CPA)
Creation

and annihilation operators, 1, 7, 14, 15,
20, 24, 27, 30, 84, 86, 100, 297,
338–340, 347, 362, 419, 426, 430,
432, 433, 537, 579, 629, 671

operator, 11, 17, 19, 24, 25, 53, 75, 88, 101,
178, 339, 341, 343, 344, 348, 407,
439, 509, 588

time, 341, 348, 354
Curie law, 91
Curie temperature, 91, 212, 213, 227, 283

paramagnetic, 92
Curie-Weiss law, 92
Current density, 123

operator, 135, 604, 605

D
Damped excitation, 472
Debye frequency, 77, 86, 577
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Debye model, 77
Delta function (δ-function), 139, 141, 161,

186, 187, 193, 212, 220, 232, 236,
307, 369, 370, 394, 403, 469, 472,
631, 641

Density
correlation, 63, 64, 397, 401, 407, 408,

477–481, 482, 483–487, 489, 491,
496–498, 519, 523, 682

matrix, 32, 110, 115, 117, 118, 540
operator, 49, 50, 63, 155, 156, 241, 397,

418, 477, 480, 604, 605
parameter, 52, 55, 62, 240, 389
of states, 62, 76, 77, 88, 95, 129, 160, 161,

194–196, 200, 208, 211, 218, 225,
226, 227, 254,256, 257, 267, 278,
279, 304, 305, 308, 311–313, 315,
552, 576–578, 629, 644, 649, 654

electronic, 62
Diagonal elements, 147
Diagram expansion, 363, 377, 397, 404, 461,

466
for the Green’s function, 365, 402, 403, 408

Diagram representation, 350
of the Dyson equation, 373, 414

Diagram rules, 268, 272, 350, 355, 358, 361,
371, 374, 399, 401, 403, 404, 441,
443, 447, 449, 450, 456–458, 482,
506, 509, 676, 682

for the grand canonical partition function,
441

Diagram techniques, 116, 153, 267, 371, 376,
405, 406, 417

Diagrammatic representation, 412, 498
Diagrams

closed, 363
connected, 358, 359–366, 368, 371, 377,

398, 437, 438, 439, 447, 448, 479,
480

crossed, 272, 273
non-connected, 359, 438, 480
open, 362, 363, 379, 447, 479, 480
of the same structure, 356, 357, 366, 379,

386, 437
stretched, 367
topologically distinct, 358, 365, 366, 367,

377, 379, 386, 437
topologically equivalent, 358, 359, 377,

378, 386, 438, 445
Diagram rules for the spin-resolved density

correlation, 482
Diamagnet, 90
Diamagnetism, 90

Dielectric function, 116, 125–127, 201, 240,
245, 248, 249, 397, 405, 408, 478,
484, 488, 491, 497

static, 249
Dipole-moment operator, 122, 135, 603
Dirac identity, 144, 152, 465, 472
Dirac representation, 109, 114, 115, 117, 119,

330, 332, 338, 362, 376, 425, 426,
479

Dirac state, 115, 327
Direct term, 53, 457, 462, 492
Disorder, structural, 258
Dispersion

branches, 69, 76, 77, 573, 575, 577
spectrum, 78

Distinguishability, principle of, see Principle
of indistinguishability

Dressed skeleton diagram, 453, 455, 457
Drude theory, 124
Dyson equation, 184, 202, 260, 267, 269, 272,

371, 373, 397, 402, 403, 405, 411,
412, 427, 451, 452, 485–487, 491,
495, 497, 498, 677–679, 681

Dyson-Maleév transformation, 288
Dyson spin-wave theory, 291
Dyson’s time-ordering operator, 111, 112, 137,

334, 419, 430, 439

E
Earths, rare, 37, 91, 295
Effective interaction, 403–413, 489–493, 500,

523, 524, 526
Effective-medium method, 261–263
Eigenfrequency, 76, 571
Eigenfunctions, 28, 40, 61, 530, 553
Eigenstate, 1, 5, 8, 18–21, 27, 28, 29, 30, 34,

39, 41, 61, 64, 65, 97–99, 108, 109,
130, 140, 141, 180, 189–191, 198,
229, 288, 327, 328, 331, 336, 337,
451, 529, 541–543, 545, 546, 596,
626, 669

Eigenstate energies, 61
Eigenvalue

equation, 40, 68, 69, 105, 130, 229, 323,
540, 545

problem, 57, 116, 321
Electron

correlation, 216
density, 56, 62, 126, 237, 238, 241, 385,

390, 393, 397, 555
mean, 52
operator, 49, 50, 63
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Electron (cont.)
gas, 126, 127, 133, 194, 376–396, 407, 450,

644
number, 34, 51, 63, 128, 161
pair formation, 83
system, 241

interacting, 161, 162, 181, 191, 412,
497

non-interacting, 154, 161, 195, 254
vacuum, 306

Electron-electron interaction, 59, 88, 89, 236,
385, 558, 675

effective, 82–86
Electronic correlations, 214–217, 257
Electronic system, 41, 65, 127, 157, 233, 241,

245
interacting, 157, 233, 241, 245

Electron-magnon interaction, 294–316
Electron-phonon coupling, 81
Electron-phonon interaction, 38, 78–89, 294
Electrons in solids, 135, 205–236
Elementary process, 78, 79, 82, 128, 130, 312,

313
Energy

average, per particle, 49, 52, 55
band, 40, 56, 59, 94, 129, 235, 236,

255–257, 297, 302, 304, 462, 653,
conservation at a vertex, 371, 399, 448,

456, 481
eigenfunction, 28
eigenstate, 191
eigenvalue, 28, 34, 97, 130, 140, 180, 337,

530, 554, 621
free, 162, 163, 165, 198, 613
inner, 371
internal, 33, 62, 77, 162, 165, 178,

196–199, 233, 284, 285, 542, 577,
615

kinetic, 38, 46, 49, 50, 55, 59, 66, 87, 129,
255, 296, 378, 537, 557, 636

potential, 66, 71, 87, 237, 538, 588
representation, 121, 123, 139, 140, 475,

480, 481
of the spectral density, 472

Entropy, 62, 559
Equal-time diagram, 445
Equation of motion

of the density matrix, 115, 117
of the Green’s function, 138, 154, 156, 164,

175, 180, 183, 198, 199, 206, 243,
244, 251, 252, 257, 667

of Heisenberg operators, 113, 138, 151,
223, 600

of the harmonic oscillator, 70

of the one-electron Green’s function, 214,
632, 664, 667

of the single-particle Green’s function, 199,
310

of the spin-flip function, 308
of the time-evolution operator, 110, 116

Exchange
energy, 55, 378
integrals, 93, 96, 232, 283, 291, 293
interaction, 91, 93, 94, 166, 296
splitting, 95, 212
term, 53, 458

Excitation energy, 99, 191, 213
Expectation value, 3, 33, 87, 88, 99, 109, 113,

117–119, 123, 146, 150, 156, 160,
162, 164, 167, 170, 197, 198, 207,
208, 210, 220, 221, 223, 224, 284,
286, 288, 301, 332, 333, 338, 346,
347, 385, 424, 429, 433, 435, 456,
476, 507, 508, 542, 577, 588, 597,
616, 632, 647, 650, 671, 676, 678

F
Fermi energy, 51, 52, 62, 94, 95, 212, 254, 466,

468, 469, 554
Fermi function, 160, 198, 208, 225, 256, 643
Fermi layer, 60, 61, 551, 557
Fermi liquid, 467–474
Fermi sphere, 53, 86, 199, 338, 585, 633
Fermi surface, 468–474
Fermi system, 337, 468, 470, 473
Fermi vacuum, 339, 343, 413
Fermi wavevector, 51, 62, 189, 554
Fermion operators, 180, 334, 341, 364, 497
Fermions, 7, 11, 13, 21–23, 24, 25, 26, 28, 30,

32, 33, 55, 137, 157, 158, 160, 180,
188, 207, 334, 341, 342, 354, 355,
362, 364, 401, 419, 422–424, 432,
441, 443, 457, 460, 467, 468, 470,
474, 475, 530, 531, 539–543, 579,
580, 620

Ferrimagnetism, 92
Ferromagnet, 91, 104, 122, 208, 212, 213, 219,

225, 255, 647
Ferromagnetism, 91, 104, 122, 208, 212, 213,

219, 225, 255, 647
Feynman diagrams, 347–365, 377, 437, 440
Field operators, 20, 31, 41, 44, 63, 537
Fock representation, discrete, 7–28
Fock states, 24, 27, 28, 32, 34, 540–543, 545,

546
Fock term, 456, 461
4f system, 295

magnetic, 295–297
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Fourier expansion, 421
Fourier representation, 79, 505
Fourier transform, 31, 119, 121, 154, 182, 251,

281, 306, 368, 371, 400, 482
Fourier transformation, 127, 132, 141, 148,

163, 209, 216, 259, 271, 653, 666,
667, 679

Friedel oscillations, 318

G
Gap parameter, 89, 179
Gell-Mann–Low theorem, 327, 328, 331, 332,

385, 413, 451
Green’s function

advanced, 136, 143, 149, 155, 424
causal, 136, 143–145, 153–155, 159,

321–337, 340, 342, 346, 347, 372,
381, 405, 417, 418, 491

diagrams, 373
higher-order, 139, 167, 169, 206, 209, 214,

244, 252, 257, 281, 306, 313–315,
406, 608, 646, 664, 665

matrix, 259, 260
retarded, 116, 119, 121, 124, 125, 127, 132,

136, 141, 142, 158, 180, 242, 257,
294, 307, 417, 418, 423, 424, 477,
642

Grid volume, 51, 77, 554, 576
Ground state

degenerate, 229
diagrams, 407
energy, 28, 51, 52, 54, 55, 62, 83, 88, 89,

97, 101, 178, 284, 336, 376–397,
407, 408, 443, 530, 590, 592

of the interacting electron gas, 376, 407
unperturbed, 52

unperturbed, 53, 324, 336, 385
Group velocity, 76, 77, 576

H
Hamilton function, 72, 74
Hamiltonian

effective, 229, 230, 260
of the jellium model, 49, 50, 51, 63, 232,

233
Hamilton’s equations of motion, 3
Hartree-Fock approximation, 209–214, 233,

316, 385, 411, 456–457, 461, 631,
667, 668, 676

Hartree-Fock energy, 378
Hartree-Fock self energy, 457
Hartree-Fock solution, 385

Hartree term, 456, 461, 463
Heisenberg model, 93, 94, 95, 100, 102, 104,

105, 106, 228, 232, 235, 280, 293,
296, 639

Heisenberg representation, 113, 114, 119, 133,
134, 136, 332, 339, 419, 425, 428,
429, 479

modified, 419, 428, 429, 479
Hilbert space

of the antisymmetric states, 5, 7
of the symmetric states, 5

Holstein-Primakoff transformation, 100, 102,
288, 289

Hopping integral, 43, 182, 235, 258, 629
Hubbard approximation, 233, 633, 634
Hubbard decoupling, 219
Hubbard model, 56–60, 59, 94, 205, 209,

214, 217–221, 226–228, 232, 233,
235, 236, 252, 255, 256, 280, 288,
364, 375, 411, 412, 460–463, 475,
478, 488, 491, 495, 497, 499, 500,
509, 511, 523, 524, 526, 639, 645,
673–675, 679, 680

Hubbard solution, 216, 217, 219, 220, 222,
223, 225

I
Interaction(s)

effective, 403–408, 489–493, 500, 503,
524, 526

energy, 78, 125, 126
line, 269, 273, 348, 384, 397, 402–404,

409, 455, 480, 485, 489, 491, 493,
494, 679

operator, 326, 376
potential, 31
representation, 114, 327, 425

Interpolation method, 217–219, 218
Invariance, cyclic, of the trace, 119, 138, 418,

435, 602, 606
Irreducible self-energy contribution, 372,

452–454
Irreducible spin-resolved polarization

contribution, 485, 486
Irreducible vertex contribution, 493

J
Jellium model, 44–56, 56, 63, 94, 125, 205,

232, 233, 364, 374, 376–398, 407,
443, 449, 462–464, 475, 478, 484,
487, 488, 491, 493, 497, 500, 510,
511, 519, 523, 524, 561, 563, 566,
631, 632, 673–675
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K
Kramers-Kronig relations, 152–153
Kubo formula, 119, 120, 127
Kubo identity, 134, 602

L
Ladder approximation, 410, 411, 412,

495–497, 499, 679, 680
Lagrange function, 70, 71
Landé g-factor, 93
Langevin paramagnet, 91
Lattice

ions, 37, 56, 57, 65, 66, 74, 75, 78, 95
potential, 39, 40, 45, 56, 61, 157, 161, 181,

182, 246, 296
simple cubic, 58, 312, 314, 315
structure, 59, 65, 225, 258, 283, 292
vibrations, 65–78, 95, 294

Law of thermodynamics, third, 162
Level

atomic, 56, 228, 259, 271, 278–280
shift, 322, 324, 336, 376, 408

Lifetime, 159, 183, 190–193, 198, 199, 217,
220, 307, 311, 312, 397, 466, 473,
627

Limit
atomic, 216–220, 222, 228, 233, 279, 316,

633, 634, 668
of an infinitely narrow band, 205–208, 236,

303, 639
thermodynamic, 45, 49, 53, 105, 389, 390,

553, 598, 656
Lindhard correction, 249, 250
Lindhard function, 245, 246
Line

non-propagating, 349, 350, 354, 355, 361,
368, 371, 440, 441, 449, 482

propagating, 354, 355, 361, 365, 368, 371,
372, 409, 439–441, 451

Linear response, 116–120
theory, 116–120, 122

Linked-cluster theorem, 356–361, 439
Lonke’s theorem, 236
Loop, 353–355, 368, 398, 401, 404, 410, 440,

441, 449, 481, 483, 495
rule, 353, 354, 398, 401, 410, 440, 481, 495

Lorentz function, 187, 220
Lorentz peak, 188, 193
Lorentz shape, 187

M
Magnetisation, 90, 92, 93, 102–105, 121, 167,

169, 172, 173, 210, 211, 212, 219,
225, 226, 235, 254, 280, 292, 294,
296, 298, 302–304, 593, 642, 656

spontaneous, 92, 93, 103, 105, 169, 173,
211, 212, 226, 235, 292, 294, 656

Magnetism
collective, 90, 91, 92, 94
localised, 94–95

Magnons
emission, 313
energy, 103, 165, 310, 311, 593
occupation density, 165
occupation-number operator, 289
vacuum, 306

Many-body effects, 214
Many-body functions, 133, 137
Many-body problem, 1, 109, 181, 261, 280,

297, 298, 321
Many-body system, 1, 2, 37, 181, 199
Many-body theory, 55, 90, 133, 137, 189, 205,

280, 291, 464, 467
Mass, effective, 193, 194, 199, 246
Matrix element, 4, 17, 25, 27, 41, 43, 46, 49,

50, 59, 80, 81, 82, 93, 131, 135,
143, 229, 348, 369, 376, 387, 449,
458, 460, 461, 463, 467, 478, 500,
509–511, 522, 524, 534, 535, 561,
562, 585, 594, 603, 679

of the electron-phonon coupling, 81
Matrix of the atomic force constants, 67
Matsubara energies, 442, 449, 475, 476,

482–484, 506, 512, 518, 527, 683
Matsubara function, 417, 421–424, 427–429,

431–433, 439, 440, 446–453, 459,
474, 476–500, 505, 507, 527

Matsubara method, 417–432
Maxwell equations, 126
Medium, effective, 261–263, 266, 274
Mermin-Wagner theorem, 105, 235, 639
Mesons, 7
Method of moments, 219–228, 288, 291, 292,

417
Mode, collective, 245, 254
Model system, 37–105, 166, 181, 205, 218,

460, 584
Modified propagator method (MPM), 272, 276
Molecular field approximation, 270, 312
Moment, magnetic, 90–94, 99, 120, 121, 295
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Momentum conservation, 244, 365, 368, 478
at a vertex, 365, 368, 378

Mott insulator, 196, 460
MPM, see Modified propagator method

(MPM)
Multi-subband structure, 304
Multiple occupation corrections, 274

N
Néel temperature, 92
Nested diagrams, 274
Normal coordinates, 70–72, 81
Normal processes, 81, 82
Normal product, 337–342, 345, 346, 417, 671

O
Observable(s), 1–5, 7–9, 14, 16–21, 30, 31,

109, 113, 116, 119, 150, 209, 333
Occupation-density operator, 18, 27
Occupation number

average, 160, 194, 233, 431
mean, 429
operator, 27, 289, 456, 543, 605, 678
representation, 23

Ohm’s Law, 123
One-electron Green’s function, 157, 179,

181, 182, 198, 199, 205, 206, 210,
213–215, 236, 301, 302, 316, 336,
368, 369, 375, 376, 397, 412, 413,
632, 664, 667

causal, 336, 368
One-electron spectral density, 158, 179, 182,

185, 194, 198, 219, 233, 236, 301,
618, 648

One-magnon Green’s function, 163
One-magnon spectral density, 164, 289
One-magnon state, 288
One-phonon Green’s function, 178
One-pole approach, 290
Operator

effective, 84, 93, 228, 231
for the electron density, 62, 63, 126, 560
identity, 4, 11, 287, 294, 342, 433, 531, 657
representation, 113

Orbital contribution, 93
Order of a diagram, 269, 455
Orthogonal projector, 322, 336
Orthonormalisation, 9, 23
Oscillator, harmonic, 70, 72, 74, 164,

191, 241
Overcorrection, 273
Overlap integral, 58

P
Pair distribution function, static, 64, 65
Pair interaction, 30, 31, 337, 347
Pairing, total, 342, 346, 351, 353, 358, 362,

365, 377, 433, 436, 437, 508, 509
Paramagnet, 90, 91, 92, 173, 232
Paramagnetism, 90, 91
Partial series, infinite, 184, 225, 374, 375, 397,

402, 406, 453, 485, 488, 491, 677
Partial sum, 390, 397–413, 451, 453, 477, 479
Particle

correlations, 214
density, 210, 211, 219, 237, 238, 303
hole symmetry, 302, 304
identical, 2–7, 22, 28, 55
number operator, 18, 19, 28, 31, 33, 46,

129, 254, 433
N -particle state

antisymmetrised, 1, 6, 21
non-symmetrised, 8, 17, 21, 27, 29
symmetrised, 6, 8, 17, 21

Partition function, 33, 62, 130, 136, 166, 198,
424–426, 431, 432, 436, 439, 441,
443–445, 447, 475, 542

grand canonical, 33, 62, 130, 136, 424–427,
432, 436, 441, 443–445, 447, 475,
541

Pauli paramagnetism, 91
Pauli principle, 22, 55, 59, 91, 232, 385, 530,

539, 568
Pauli susceptibility, 254, 643
Permutation operator, 3, 6, 8, 30
Perturbation

charge, 125, 127
expansion, 324, 325, 347–356, 359, 362,

363, 365, 371, 377, 390, 397, 400,
401, 408, 418, 436–438, 447

field, 126, 127
theory

basic formula of, 264
diagrammatic, 446, 467, 474, 478
first-order, 54, 229, 376–378, 450,

509, 673
second-order, 229, 232, 337, 389,

457, 458
third-order, 386
time-independent, 324

Perturbative charge, 242
Phase transition, 292
Phonon gas, 70–75, 133, 178, 600
Phonon-phonon interaction, 83
Phonons, 7, 65, 75, 78, 79, 81–84, 178, 257,

294, 613
longitudinal acoustic, 82, 577
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Photoemission, 128, 195
Photons, 7, 129
Plasma

frequency, 247
oscillation, 245, 246

Plasmon dispersion, 246, 248
relation, 246, 248

Plasmon excitation, 488
Plasmons, 127, 236, 241–250, 478, 484, 488
Poisson equation, 238, 250
Polarisation

diagram, 409, 493
part, 402, 403, 404, 407

irreducible, 402, 403, 407, 489, 490
propagator, 397–403, 405–408, 410, 412,

485–489, 491, 493–495, 498, 500,
523

Polaron, magnetic, 305–313, 316
Position operator, 20
Potential

chemical, 61, 62, 117, 129, 164, 178, 196,
212, 225, 301, 302, 466, 468, 472,
652, 654, 676

electrostatic, 237
screened, 250

Principal theorem of connected diagrams,
361–364

Principle of indistinguishability, 3, 55
Projection operator, 230, 322, 326
Propagator

free, 274, 275, 278, 397, 411, 412, 451,
453, 491, 495, 496, 682

full, 272, 275, 397, 412, 453, 492, 495,
496, 682

Q
Quantisation, second, 1–33, 34, 37, 43, 46,

58, 63, 79, 80, 100, 126, 135, 297,
540, 561

Quasi-(crystal-)momentum of the phonons,
81

Quasi-particles
concept, 181–199, 472, 628
density of states, 161, 194–196, 200, 208,

216, 218, 225–227, 256, 267, 304,
305, 308, 313, 315, 629, 649

energy, 179, 192, 193, 210, 212, 213, 216,
217, 220, 222, 236, 270, 272, 282,
283, 286, 304, 307, 471, 472, 627,
656

lifetime, 190, 193, 397, 473
pole, 220
weight, 471, 472, 474

R
Random phase approximation (RPA), 244,

245, 248, 250, 252, 253, 255, 406,
410, 488, 647

Rare earths, 37, 91, 295
Rayleigh-Ritz variational principle, 385
Renormalisation, 375, 453–455, 492, 678
Residual theorem, 141, 188, 443, 515
Resonance, 127, 185–187, 189, 470
Response functions, 116, 121, 149, 150, 152,

196, 417
Riemann’s zeta function (ζ function), 61, 552,

593, 656
Ring diagrams

approximation, 444, 445
topologically equivalent, 444

RPA, see Random phase approximation (RPA)

S
s-f interaction, 297, 308
s-f model, 296, 297, 303, 305, 308, 313,

314–316, 337
Scalar product, 3, 7, 12, 96, 103, 104, 113,

593–595, 597
of two (anti-)symmetrisedN -particle states,

9
Scattering matrix, 260, 263, 333, 361

atomic, 263, 265
Scattering spectrum, 312
Schrödinger equation, 1, 2, 198, 237, 257, 553
Schrödinger perturbation theory, 324, 327,

670, 671
Schrödinger representation, 109, 113, 117,

118, 330, 425
Screening

effect, 125, 240, 392
length, 238, 240

Secular equation, 229, 571
Self-energy

contribution, 371, 372, 373, 452–454
diagrams, 373, 375, 409, 452–455, 457,

489, 492, 493
part, 372, 397, 412, 451

irreducible, 451
Single-electron Green’s function, 162, 306,

402
Single-electron operator, 80
Single-electron spectral density, 158, 179, 182,

185, 194, 198, 219, 233, 236, 301,
618

Single-magnon state, 99, 100
Single-particle basis, 29, 63, 505
Single-particle continuum, 246
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Single-particle energy, 185, 202, 217, 229, 230
Single-particle function, 429, 453
Single-particle Green’s function, 184, 199,

218, 264, 272, 274, 310, 365–375,
399, 403, 408, 476, 666, 676

causal, 365
Single-particle Matsubara function, 427–432,

446–453, 464, 474, 476, 481, 483,
485, 486, 489, 491, 495, 505, 508,
527, 683

free, 428, 440, 474
Single-particle model, 214
Single-particle observable, 7, 19, 21
Single-particle operator, 32, 39, 41, 49, 214,

535, 540, 603
Single-particle part, 15
Single-particle problem, 2, 529
Single-particle spectral density, 467, 470, 473,

519
Single-particle state, 2, 7, 9, 11, 13, 22, 23, 28,

31, 33, 129, 622
Single-particle terms, 257
Single-particle wavefunctions, 1, 17
Single-site approximation (SSA), 271–272
Skeleton diagram, 397, 405, 451–460,

462–464, 466, 491
Slater determinant, 21
Solid, 37

state electrons, 196
Sommerfeld model, 51, 61, 62, 65, 237, 238,

552, 556, 568, 644
Spectral density, 127–133, 144–147, 150–153,

155, 160, 164, 166, 179, 182, 184,
185, 187–189, 191, 193–195, 198,
207, 210, 216, 219, 220, 225, 233,
236, 256, 282, 285, 286, 290, 291,
301, 302, 312–314, 412, 423, 457,
465, 467–470, 472, 473, 519, 610,
614, 617, 618, 632, 641, 648–650,
681

higher-order, 302
Spectral moments, 151, 155, 179, 219, 220,

222, 228, 236, 289, 291, 300, 610,
618, 619, 640, 641

Spectral representation
of the advanced Green’s function, 143, 424
of the causal Green’s function, 144, 145
of the retarded Green’s function, 142, 424
of the spectral density, 141, 472

Spectral theorem, 145–148, 156, 160, 164,
170, 175, 176, 179, 197, 208, 210,
220, 223, 224, 233, 282, 285, 286,
291, 301, 457, 469, 473, 476, 519,
614, 617, 648, 659

Spin
conservation, 252, 368, 478, 495, 498, 632

at vertex points, 478
density waves, 236, 250–254
flip, 213, 214, 252, 253, 297, 307, 308, 311,

522, 665, 668
processes, 243, 311, 668

half-integer, 7
integer, 7
operators, 29, 94–97, 100, 101, 102, 230,

233, 234, 280, 288, 293, 297, 497,
634, 639

part, 40
state, 93
statistics relation, 7
susceptibility, 497–499
systems, 167, 251, 254, 280–294, 298, 307,

316, 337
waves, 90–105, 127, 163–166, 251, 253,

254, 280, 285, 288–292, 310, 667
Spin-resolved density correlation, 479, 482,

485, 486, 498
Spin-resolved polarization contribution, 503
Spin-resolved polarization propagator, 503
Spin-wave approximation, 100–102, 103, 280,

288
Spin-wave energy, 251, 288, 289, 291, 310,

667
renormalised, 288, 291

SSA, see Single-site approximation (SSA)
Standard arrangement, 15
Standard ordering, 8, 21
State

adiabatically switched-on, 451
antisymmetric, 5, 7
antisymmetrised, 21
mixed, 110, 155
non-magnetic, 211
non-symmetrised, 17
pure, 110
representation, 109, 200
stationary, 190, 191, 199, 626
symmetric, 5, 7
unperturbed, 230

Step function, 141, 154, 395, 419, 468, 474
Stoner approximation, 233, 633
Stoner criterion, 212, 219, 647
Stoner model, 209, 213, 214, 219, 243, 251,

252, 255, 256, 648, 649, 676
Structure factor

dynamic, 63, 564
static, 64, 65

Structure of a diagram, 358, 489, 490
Sublattice magnetisation, 105
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Substitutional disorder, 258, 259
Superconductivity, 59, 83, 86, 88, 178, 180,

236, 294, 328, 460, 624
Superconductor, 179, 180, 624
Susceptibility

diagonal, 255
of the free system, 243
generalised, 242, 243, 245, 254
longitudinal, 121
magnetic, 90, 116, 120–122, 197, 468
transverse, 122, 250, 252, 411, 412

Switching-on, adiabatic, 328, 431, 451
of the interaction, 327

Symmetrisation operator, 6
Systems

disordered, 257, 267, 270
of identical particles, 3, 5, 55

T
T-matrix, 261, 262, 264, 265, 272, 274, 412,

681
atomic, 271, 274

T-matrix approximation (TMA), 265, 266, 274
T-matrix equation, 681
Temperature, 62, 75, 77, 91, 92, 101, 102, 103,

130, 137, 163, 195, 208, 211–213,
227, 254, 280, 282, 283, 288,
292, 295, 296, 302, 304, 305, 308,
417–528, 552, 556–559, 577, 578,
593, 655

critical, 91, 92, 212, 227, 295
Tensor

of the electrical conductivity, 134
of the magnetic susceptibility, 121

Term
anharmonic, 67
direct, 53, 457, 462, 492

Thomas-Fermi approximation, 237–241
Thomas-Fermi screening length, 392
Tight-binding approximation, 58, 65, 106, 312,

630
Time-evolution operator, 110, 112, 114, 116,

325, 326, 332, 334, 347, 359, 408,
431

Time-ordering operator, 111, 112, 137, 334,
419, 430, 439

TMA, see T-matrix-approximation (TMA)
Topologically equivalent, distinct, see

Diagrams; Ring diagrams
Trace, 119, 138, 156, 418, 430, 435, 541, 542,

602, 606
Transformation, canonical, 83, 89
Translational symmetry, 68, 127, 207, 215,

257, 259, 266, 280, 365, 608, 647

Transposition operator, 4, 29
Two-particle Green’s function, 397, 399, 401,

403
Two-particle matrix element, 27
Two-particle Matsubara function, 477–500
Two-particle operator, 46
Two-particle part, 15, 16, 27
Two-particle spectral density, 256, 412, 649,

681
Two-particle state, 17, 29, 531
Two-pole approach, 179, 225
Two-pole function, 236, 299, 641
Two-pole structure, 220
Two-spin problem, 166–177
Two-spin system, 172, 280
Tyablikow approximation, 280–288, 293, 294,

659
Type of disorder, 257, 258

U
Umklapp processes, 81

V
Vacuum amplitude, 347, 347–356, 361, 362,

364, 365, 367, 376, 379, 431,
437, 673

Vacuum fluctuation diagrams, 363
Vacuum state, 10, 17, 24, 30, 131, 339, 620
Valence electrons, 37, 38
Variational principle, 51

of Rayleigh-Ritz, 385
VCA, see Virtual crystal approximation (VCA)
Vertex

contribution, 493
function, 408–411, 412, 493–499, 679
part, 409

irreducible, 409
point, 271, 273, 348, 357, 365, 368, 397,

437, 440, 450, 461, 478, 491,
493–495, 676, 679

Virtual crystal approximation (VCA), 270, 271
Volume, 41, 44, 51, 52, 60, 61, 77, 105, 134,

213, 467, 553–555, 575, 576, 598
integral, 77

von Neumann’s series, 111

W
Wannier function, 42, 57, 135, 182, 561, 563,

604
Wannier operators, 44, 60, 498
Wannier representation, 135, 182, 259, 260,

266, 460, 604, 629
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Wannier state, 43, 63, 561
Wavefunction, 1, 17, 20, 31, 56–59, 65, 295

atomic, 56–59
Weight, spectral, 179, 188, 192, 193, 203, 208,

217, 222, 236, 279, 299–303, 619,
627

Wick theorem, 346
generalised, 432, 433, 436, 437

Wick’s time-ordering operator, 137, 333

Y
Yukawa potential, 240

Z
Zeeman term, 96
Zustandssumme

großkanonische, 443
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