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Preface to the Second Edition

The first part of this book concerns classical stochastic models and the second
part concerns spatial stochastic models. For this second edition, the classical part
of the book has been completely rewritten. The most important models, such as
random walks, branching processes, and the Poisson process, are treated in separate
chapters. For both discrete and continuous time models, we first study interesting
examples and then we look at the general theory. Another important difference with
the first edition is that most models are applied to population biology questions.
We use stochastic models to test theoretical biology questions such as “Can the
immune system be overcome by a fast mutating virus?” or “How far away is the
next influenza pandemic?”

The second part of the book has been updated and streamlined. We cover the
same spatial models as in the first edition. It is a small introduction to spatial
stochastic models. We show that interesting results can be obtained with relatively
elementary mathematics.

We also have added a first chapter that reviews important probability tools.
The reader, however, is supposed to have had a first probability course. Many
computations require solid Calculus (series in particular) and some proofs require
knowing classical analysis. The appendix covers a few advanced probability results
that are needed for the spatial models part. I have tried to make the chapters as
independent as possible. At the beginning of each new chapter, there are some words
about what is needed from previous chapters.

Acknowledgements. I would like to thank the colleagues who had kind words for
the first edition of this book and, in particular, Norio Konno for translating the book
into Japanese. I also thank Claude Bélisle for pointing out several typos and Bruno
Monte for sharing his Latex expertise.

Colorado Springs, CO, USA Rinaldo B. Schinazi
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Preface to the First Edition

This book is intended as a text for a first course in stochastic processes at upper
undergraduate or graduate levels, assuming only that the reader has had a serious
Calculus course—advanced Calculus would even be better—as well as a first course
in probability (without measure theory). In guiding the student from the simplest
classical models to some of the spatial models, currently the object of considerable
research, the text is aimed at a broad audience of students in biology, engineering,
mathematics, and physics.

The first two chapters deal with discrete Markov chains—recurrence and
transience, random walks, birth and death chains, ruin problem, and branching
processes—and their stationary distributions. These classical topics are treated
with a modern twist: in particular, the coupling technique is introduced in the first
chapter and used throughout. The third chapter deals with continuous time Markov
chains—Poisson process, queues, birth and death chains, stationary distributions.

The second half of the book treats spatial processes. This is the main difference
between this work and the many others on stochastic processes. Spatial stochastic
processes are (rightly) known to be difficult to analyze. The few existing books
on the subject are technically challenging and intended for a mathematically
sophisticated reader. We picked several interesting models—percolation, cellular
automata, branching random walks, contact process on a tree—and concentrated on
those properties that can be analyzed using elementary methods. These methods
include contour arguments (for percolation and cellular automata) and coupling
techniques (for branching random walks and the contact process). Even though this
is only a small introduction to the subject, it deals with some very important and
interesting properties of spatial stochastic processes, such as the existence of phase
transitions, the continuity of phase transitions, and the existence of multiple critical
points.

Colorado Springs, CO, USA Rinaldo B. Schinazi
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Chapter 1
A Short Probability Review

In this chapter we will review probability techniques that will be useful in the sequel.

1 Sample Space and Random Variables

1.1 Sample Space and Probability Axioms

The study of probability is concerned with the mathematical analysis of random
experiments such as tossing a coin, rolling a die, or playing at the lottery. Each time
we perform a random experiment there are a number of possible outcomes. The
sample space � of a random experiment is the collection of all possible outcomes.

An event is any subset of �. A sequence of events Ai is said to be disjoint if for
i 6D j we have

Ai \ Aj D ;:

Example 1.1. Roll a die. The sample space is � D f1; 2; 3; 4; 5; 6g. The event
B D f1; 3; 5g is the same as the event “the die showed an odd face.”

Example 1.2. We count the number of rolls until we get a 6. Here � D f1; 2; : : : g.
The sample space consists of all strictly positive integers. Note that this sample
space has infinitely many outcomes.

Definition 1.1. A probability is a function with the following properties.

1. The probability P.A/ of an event A is in Œ0; 1�.
2. The probability of the whole sample space P.�/ is 1.
3. For a finite or infinite sequence of disjoint events Ai we have

P.
[

i

Ai / D
X

i

P.Ai /:
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1.2 Discrete Random Variables

A discrete random variable is a function from a sample space � into a countable
set (usually the positive integers). The distribution of a random variable X is the
sequence of probabilities P.X D k/ for all k in the range of X . We must have

P.X D k/ � 0 for every k and
X

k

P.X D k/ D 1:

1.2.1 Expectation and Variance

The expected value (or mean) of a discrete random variable is denoted by E.X/.
The definition is

E.X/ D
X

k

kP.X D k/;

where the sum is on all possible values that X takes. More generally, for a function
g we have

E.g.X// D
X

k

g.k/P.X D k/:

Note that the expected value need not exist (the corresponding series may diverge).
An important particular case of the preceding formula is g.x/ D x2 for which
we get

E.X2/ D
X

k

k2P.X D k/:

The following property is quite important. Let X and Y be two random variables
then

E.X C Y / D E.X/ C E.Y /:

We define the variance of a random variable by

Var.X/ D E.X2/ � E.X/2:

The expected value is a measure of location of X while the variance is a measure of
dispersion of X .

We now give two examples of important discrete random variables.
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1.2.2 Bernoulli Random Variables

These are the simplest possible random variables. Perform a random experiment
with two possible outcomes: success or failure. Set X D 1 if the experiment is
a success and X D 0 if the experiment is a failure. Such a 0–1 random variable
is called a Bernoulli random variable. The usual notation is P.X D 1/ D p and
P.X D 0/ D q D 1 � p. Moreover,

E.X/ D 1 � p C 0 � .1 � p/ D p;

and

E.X2/ D 12 � p C 02 � .1 � p/ D p:

Hence, E.X/ D p and Var.X/ D p � p2 D pq:

Example 1.2. Roll a fair die. We define success as rolling a 6. Thus, the probability
of success is P.X D 1/ D 1=6. We have p D 1=6 and q D 5=6.

1.2.3 Poisson Random Variables

The random variable N is said to have a Poisson distribution with parameter � if

P.N D k/ D e�� �k

kŠ
for k D 0; 1; : : : :

As we will see below � is also the mean of N .
The Poisson distribution is a good model for counting the number of occurrences

of events that have small probabilities and are independent.

Example 1.3. Consider a fire station that serves a given neighborhood. Each
resident has a small probability of needing help on a given day and most of the time
people need help independently of each other. The number of calls a fire station
gets on a given day may be modeled by a Poisson random variable with mean �.
Assume that � D 6. What is the probability that a fire station get 2 or more calls in
a given day?

P.N � 2/ D 1 � P.N D 0/ � P.N D 1/ D 1 � e�� � �e�� D 1 � 7e�6 � 0:98:

Recall that

ex D
1X

kD0

xk

kŠ
for every x:
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Hence,

1X

kD0

P.N D k/ D
1X

kD0

e�� �k

kŠ
D e��e� D 1:

This shows that the Poisson distribution is indeed a probability distribution.
We are now going to compute the mean of a Poisson random variable N with

mean �. We have

E.N / D
1X

kD0

kP.N D k/ D
1X

kD1

ke�� �k

kŠ
D e���

1X

kD1

�k�1

.k � 1/Š
:

By shifting the summation index we get

1X

kD1

�k�1

.k � 1/Š
D

1X

kD0

�k

kŠ
D e�:

Thus,

E.N / D e���

1X

kD1

�k�1

.k � 1/Š
D e���e� D �:

2 Independence

Definition 2.1. Two events A and B are said to be independent if

P.A \ B/ D P.A/P.B/:

Two discrete random variables X and Y are said to be independent if for all possible
values k and m we have

P.fX D kg \ fY D mg/ D P.X D k/P.Y D m/:

Instead of the notation P.fX D kg \ fY D mg/ we will often use the notation
P.X D k; Y D m/. Intuitively, the event A is independent of the event B if
knowing that B happened does not change the probability of A happening. This
will be made clear with the notion of conditional probability that we will see below.
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2.1 Binomial Random Variables

Consider n independent and identically distributed Bernoulli random variables
X1; X2 : : : Xn. Let p be the probability of success. That is, for i D 1 : : : n

P.Xi D 1/ D p:

Let B be the number of successes among these n experiments. Since trial i is a
success if Xi D 1 and a failure if Xi D 0 we have

B D X1 C X2 C � � � C Xn:

The random variable B is called a binomial distribution with parameters n and p.
We now compute P.B D k/ for k D 0; 1 : : : ; n.

We first do an example. Assume n D 3 and k D 2. That is, we have two successes
and one failure. There are three ways to achieve that. We may have SSF (first two
trials are successes, the third one is a failure), SFS or FSS where S stands for success
and F for failure. By independence, each possibility has probability p2q. Moreover,
the three possibilities are disjoint. Hence,

P.B D 2/ D 3p2q:

More generally, the number of possibilities for k successes in n trials is

�
n

k

�
D nŠ

kŠ.n � k/Š
:

Each possibility has probability pk.1 � p/n�k and the different possibilities are
disjoint. Hence, for k D 0; 1; : : : ; n we have the binomial distribution

P.B D k/ D
�

n

k

�
pk.1 � p/n�k:

We can easily check that this is indeed a probability distribution by using the
binomial theorem

.a C b/n D
nX

kD0

�
n

k

�
akbn�k:

Hence,

nX

kD0

P.B D k/ D
nX

kD0

�
n

k

�
pk.1 � p/n�k D .p C 1 � p/n D 1:
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We now turn to the expected value. By using the linearity of the expectation
we get

E.B/ D E.X1 C X2 C � � � C Xn/ D E.X1/ C E.X2/ C � � � C E.Xn/ D np:

2.2 Geometric Random Variables

Example 2.1. Roll a fair die until you get a 6. Assume that the rolls are independent
of each other. Let X be the number of rolls to get the first 6. The possible values of
X are all strictly positive integers. Note that X D 1 if and only if the first roll is
a 6. So P.X D 1/ D 1=6. In order to have X D 2 the first roll must be anything
but 6 and the second one must be 6. By independence of the different rolls we get
P.X D 2/ D 5=6 � 1=6: More generally, in order to have X D k the first k � 1

rolls cannot yield any 6 and the kth roll must be a 6. Thus,

P.X D k/ D .5=6/k�1 � 1=6 for all k � 1:

Such a random variable is called geometric.
More generally, we have the following. Consider a sequence of independent

identical trials. Assume that each trial can result in a success or a failure. Each
trial has a probability p of success and q D 1 � p of failure. Let X be the number
of trials up to and including the first success. Then X is called a geometric random
variable. The distribution of X is given by

P.X D k/ D qk�1p for all k � 1:

Note that a geometric random variable may be arbitrarily large since the above
probabilities are never 0. In order to check that the sum of these probabilities is 1
we need the following fact about geometric series.

X

k�0

xk D 1

1 � x
for all x 2 .�1; 1/:

Hence,

X

k�1

P.X D k/ D
X

k�1

qk�1p D p
X

k�0

qk D p

1 � q
D 1:

By taking the derivative of the geometric sum we get for x in .�1; 1/

X

k�1

kxk�1 D 1

.1 � x/2
:
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Applying this formula we get

E.X/ D
X

k�1

kqk�1p D p
1

.1 � q/2
D 1

p
:

Not unexpectedly we see that the less likely the success the larger the expected
value.

2.3 A Sum of Poisson Random Variables

Assume that N1 and N2 are independent Poisson random variables with parameters
�1 and �2, respectively. What is the distribution of N D N1 C N2?

Let n � 0. We have

fN D ng D
n[

kD0

fN1 D k; N2 D n � kg:

This is so because if N D n then N1 must be some k � n. If N1 D k then
N2 D n � k. Moreover, the events fN1 D k; N2 D n � kg for k D 0; : : : n are
disjoint (why?). Hence,

P.N D n/ D
nX

kD0

P.N1 D k; N2 D n � k/:

Since N1 and N2 are independent we have for every k

P.N1 D k; N2 D n � k/ D P.N1 D k/P.N2 D n � k/:

Therefore

P.N D n/ D
nX

kD0

P.N1 D k/P.N2 D n � k/:

Up to this point we have only used the independence assumption. We now use that
N1 and N2 are Poisson distributed to get

P.N D n/ D
nX

kD0

e��1
�k

1

kŠ
e��2

�n�k
2

.n � k/Š
:

By dividing and multiplying by nŠ we get

P.N D n/ D 1

nŠ
e��1��2

nX

kD0

�
n

k

�
�k

1�n�k
2 D 1

nŠ
e��1��2.�1 C �2/n;

where the last equality comes from the binomial theorem. This computation proves
that N D N1 C N2 is also a Poisson distribution. It has rate �1 C �2.
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3 Conditioning

Conditioning on the event B means restricting the sample space to B . The possible
outcomes are then in B (instead of all of �). We define conditional probabilities
next.

Definition 3.1. The probability of A given B is defined by

P.AjB/ D P.A \ B/

P.B/
;

assuming P.B/ > 0.

The formula above is also useful in the form

P.A \ B/ D P.AjB/P.B/:

Proposition 3.1. The events A and B are independent if and only if

P.AjB/ D P.A/:

In words, the probability of A does not change by conditioning on B . Knowing
that B occurred does not add any information about A occurring or not. The proof
of this result is easy and is left as an exercise.

The following rule is called the Rule of averages. It will turn out to be quite
useful in a number of situations.

Proposition 3.2. Assume that the events B1, B2, : : : are disjoint and that their
union is the whole sample space �. For any event A we have

P.A/ D
X

i

P.AjBi /P.Bi /;

where the sum can be finite or infinite.

To prove the formula note that the events A \ Bi for i D 1; 2; : : : are disjoint
(why?) and that their union is A (why?). By the probability rules we have

P.A/ D
X

i

P.A \ Bi /:

By the definition of conditional probability we have for every i

P.A \ Bi / D P.AjBi /P.Bi /:

Hence,

P.A/ D
X

i

P.AjBi /P.Bi /;

and this proves the formula.
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Example 3.1. We have three boxes labeled 1, 2, and 3. Box 1 has 1 white ball and
2 black balls, Box 2 has 2 white balls and 1 black ball, and Box 3 has 3 white balls.
One of the three boxes is picked at random and then a ball is picked (also at random)
from this box. For i D 1; 2; 3 let Ai be the event “Box i is picked” and let B be the
event “a white ball is picked.” Are A1 and B independent?

Given that the boxes are picked at random (uniformly) we have P.A1/ D 1=3.
To compute P.B/ we use the rule of averages

P.B/ D P.BjA1/P.A1/ C P.BjA2/P.A2/ C P.BjA3/P.A3/:

We have P.BjA1/ D 1=3, P.BjA2/ D 2=3 and P.BjA3/ D 3=3. Hence,

P.B/ D 1

3
.
1

3
C 2

3
C 3

3
/ D 2

3
:

Therefore, P.BjA1/ is not equal to P.B/. The events A1 and B are not independent.

3.1 Thinning a Poisson Distribution

This is another application of the rule of averages.
Assume that N has a Poisson distribution with rate �. Think of N as being

the (random) number of customers arriving at a business during 1 h. Assume that
customers arrive independently of each other. Assume also that the proportion of
female customers is p. Let N1 be the number of arriving female customers. The
random variable N1 is said to be a thinning of N (we only count the female
customers). We will show now that N1 is also a Poisson random variable.

Observe that given N D n we can think of each arriving customer as being
a failure (male customer) or success (female customer). Since we are assuming
independence of arrivals and identical probability of success p we see that N1

follows a binomial with parameters n and p. That is, for k D 0; 1 : : : n we have

P.N1 D kjN D n/ D
�

n

k

�
pk.1 � p/n�k:

By the rule of averages we have

P.N1 D k/ D
1X

nDk

P.N1 D kjN D n/P.N D n/:

We now use the distribution of N and the conditional distribution of N1 to get

P.N1 D k/ D
1X

nDk

�
n

k

�
pk.1 � p/n�ke�� �n

nŠ
:
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Expressing the binomial coefficient in terms of factorials

P.N1 D k/ D 1

kŠ
pk�ke��

1X

nDk

1

.n � k/Š
.1 � p/n�k�n�k:

By a shift of index

1X

nDk

1

.n � k/Š
.1 � p/n�k�n�k D

1X

nD0

1

nŠ
.1 � p/n�n D e�.1�p/:

Therefore,

P.N1 D k/ D 1

kŠ
pk�ke��e�.1�p/ D e��p .�p/k

kŠ
:

In words, the thinned random variable N1 is also a Poisson random variable. Its rate
is �p.

4 Generating Functions

We conclude this quick overview with the notion of generating function.

Definition 4.1. Let X be a discrete random variable whose values are positive
integers. The generating function of a random variable X is defined by

gX .s/ D E.sX / D
X

n�0

snP.X D n/:

Note that gX is a power series. We have

jsnP.X D n/j � jsjn

and since the geometric series
P

n�0 jsjn converges for jsj < 1 so doesP
n�0 snP.X D n/ (by the comparison test). In other words, the generating

function gX is defined for s in .�1; 1/. It is also defined at s D 1 (why?).

Example 4.1. What is the generating function of a Poisson random variable N with
rate �?

By definition

gN .s/ D
X

n�0

P.N D n/sn D
X

n�0

e�� �n

nŠ
sn:
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Summing the series yields

gN .s/ D e��e�s D e�.�1Cs/:

The next result shows that there is one-to-one correspondence between generating
functions and probability distributions.

Proposition 4.1. Let X and Y be random variables with generating functions gX

and gY , respectively. Assume that for jsj < 1

gX .s/ D gY .s/:

Then, X and Y have the same distribution.

This is a direct consequence of the uniqueness of power series expansions. More
precisely, if there is R > 0 such that for jsj < R we have

X

n�0

ansn D
X

n�0

bnsn

then an D bn for all n � 0. For a proof see Rudin (1976), for instance.

Example 4.2. Assume that a random variable X has a generating function

gX .s/ D ps

1 � qs

where p is in .0; 1/ and q D 1 � p. What is the distribution of X?
We use the geometric series to get

1

1 � qs
D

X

n�0

.qs/n

and therefore

gX .s/ D ps
X

n�0

.qs/n D
X

n�0

pqnsnC1 D
X

n�1

pqn�1sn;

where the last equality comes from a shift of index. Let Y be a geometric random
variable with parameter p. We have for n � 1

P.Y D n/ D pqn�1

and therefore

gY .s/ D
X

n�1

pqn�1sn:

Hence, gY D gX and by Proposition 4.1 X is also a geometric random variable with
parameter p.

The following property is quite useful.
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Proposition 4.2. If X and Y are two independent random variables, then

gXCY .s/ D gX .s/gY .s/:

Proof of Proposition 4.2.

gXCY .s/ D
X

n�0

snP.X C Y D n/

but

P.X C Y D n/ D
nX

kD0

P.X D kI Y D n � k/ D
nX

kD0

P.X D k/P.Y D n � k/

where the last equality comes from the independence of X and Y .

gXCY .s/ D
X

n�0

sn

nX

kD0

P.X D k/P.Y D n � k/ D
X

n�0

snP.X D n/
X

n�0

snP.Y D n/

where the last equality comes from results about the product of two absolute
convergent series, see Rudin (1976) for instance. This completes the proof of
Proposition 4.2.

4.1 Sum of Poisson Random Variables (Again)

Assume that X and Y are two independent Poisson random variables with rates �

and �, respectively. What is the distribution of X C Y ?
We start with the generating function of X :

gX .s/ D
X

k�0

ske�� �k

kŠ
D e�.s�1/:

By Proposition 4.2 and Example 4.1 we have

gXCY .s/ D gX .s/gY .s/ D e�.s�1/e�.s�1/ D e.�C�/.s�1/:

This is the generating function of a Poisson distribution with rate � C �. Thus, by
Proposition 4.1, X C Y has a Poisson distribution with rate � C �.

Note that we have already solved this problem in Sect. 2.3 by a different method.
Using generating functions is easier and faster.
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4.2 Thinning a Poisson Distribution (Again)

Assume that N has a Poisson distribution with rate �. If N D 0, then let N1 D 0.
Assume n � 1. Given N D n let the conditional distribution of N1 be a binomial
with parameters n and p. Hence, given N D n we can write N1 as the sum

N1 D
nX

iD1

Xi

where the random variables are independent Bernoulli random variables with
distribution P.Xi D 1/ D p and P.Xi D 0/ D 1 � p.

We now compute the generating function of N1.

gN1.s/ D E.sN1/ D
X

n�0

E.sN1 jN D n/P.N D n/;

where we are using a rule of averages for expectations. The conditional distribution
of N1 is a sum of independent Bernoulli random variables. Hence,

E.sN1 jN D n/ D E.s
Pn

iD1 Xi / D E.sX /n:

Therefore,

gN1.s/ D
X

n�0

E.sX /nP.N D n/ D gN .E.sX //:

Since N is a Poisson random variable with rate � we have gN .s/ D e�.�1Cs/: Since
X is a Bernoulli random variable we have E.sX / D 1 � p C ps: Hence,

gN1.s/ D gN .E.sX // D exp.�.�1 C 1 � p C ps// D exp.�p.�1 C s//:

This proves that N1 is a Poisson distribution with rate �p. Here again using
generating functions simplifies the computations.

Problems

1. Show that the probability rules imply the following.

(a) If A \ B D ;, then

P.A [ B/ D P.A/ C P.B/:

(b) If Ac is the complement of A (everything not in A), then P.Ac/ D 1 � P.A/:
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(c) P.;/ D 0: (Observe that �c D ;.)
(d) For any events A and B we have

P.A/ D P.AB/ C P.ABc/:

(e) If A � B , then P.AcB/ D P.B/ � P.A/:

2. Let N be a Poisson random variable with rate �.

(a) Show that

E.N.N � 1// D �2:

(b) Use (a) to show that

E.N 2/ D �2 C �:

(c) Show that

Var.N / D �:

3. Assume that the events B1, B2, : : : are disjoint and if that their union is the whole
sample space �. Let A be an event.

(a) Let Ci D A \ Bi for i D 1; 2; : : : . Show that the sets Ci are disjoint.
(b) Show that the union of the sets Ci is A.

4. Prove Proposition 3.1.

5. Let A and B two events such that P.A/ > 0 and P.B/ > 0. Show that A and B

are disjoint if and only if they are not independent.

6. Let X be a geometric random variable with parameter p and let q D 1 � p.

(a) Show that for k � 1

P.X > k/ D qk:

(b) Show that

P.X > r C sjX > r/ D P.X > s/:

(c) Why is the property in (b) called the memoryless property of the geometric
distribution?

7. (a) What is the generating function of a Bernoulli random variable with
parameter p?
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(b) Use (a) to show that the generating function of a binomial random variable with
parameters n and p is

.1 � p C ps/n:

8. Assume that X and Y are independent binomial random variables with parame-
ters .n; p/ and .m; p/, respectively. Show that X CY is a binomial random variables
with parameters .n C m; p/. (Use problem 7.)

9. The generating function of the random variable X is

gX .s/ D 1

n C 1

1 � snC1

1 � s
;

where n is a fixed natural.

(a) Show that for k D 0; 1; : : : ; n

P.X D k/ D 1

n C 1
:

(Recall that 1 C s C � � � C sn D 1�snC1

1�s
:)

(b) What is the distribution of X called?

10. Let N � 0 be a discrete random variable. Given N D n we define

Y D
nX

iD1

Xi

where X1; X2; : : : are independent and identically distributed random variables.
Show the following relation between the different generating functions

gY .s/ D gN .gX .s//:

Notes. There are many introductory texts in probability, see Schinazi (2011) for
instance. Port (1994) is more advanced. It is neatly divided in self-contained short
chapters and is a great reference for a number of topics. Rudin (1976) is a classic in
analysis.
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Chapter 2
Discrete Time Branching Process

We introduce branching processes. They are a recurring theme throughout the book.
In this chapter we use them to model drug resistance and cancer risk.

1 The Model

In this chapter we are concerned with modeling population growth. Typically we
start the population with a single individual. This individual has a random number
of offspring. Each child has itself a number of offspring and so on. The first
question is about survival. Can such a process survive forever? Can we compute
the survival probability? In order to be able to do computations we need to make
some assumptions. We will assume that different individuals have independent but
identical offspring distributions. Hence, all individuals are put in the same condition
(offspring wise) and we get a branching (or cascading) effect. We will concentrate
on biological applications. This process turns out to be also a good model for a
number of physical phenomena.

This stochastic process was introduced independently by Bienaymé (who got the
mathematics right and was forgotten for many years) and by Galton and Watson
(who got the mathematics wrong but got their names attached to this process) to
model the survival of family names. An initial set of individuals which we call the
zeroth generation have a number of offspring that are called the first generation;
their offspring are called the second generation and so on. We denote the size of the
nth generation by Zn, n � 0.

We now give the mathematical definition of the Bienaymé–Galton–Watson
(BGW) process .Zn/n�0. The state space S of .Zn/n�0 is the set of positive
(including zero) integers. We suppose that each individual gives birth to Y particles
in the next generation where Y is a positive integer-valued random variable with
distribution .pk/k�0. In other words

© Springer Science+Business Media New York 2014
R.B. Schinazi, Classical and Spatial Stochastic Processes: With Applications
to Biology, DOI 10.1007/978-1-4939-1869-0__2
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18 2 Discrete Time Branching Process

P.Y D k/ D pk; for k D 0; 1; : : : :

Moreover we assume that the number of offspring of the various individuals in the
various generations are chosen independently according to the distribution .pk/k�0.

The process is governed by the so-called one-step transition probabilities

p.i; j / D P.ZnC1 D j jZn D i/:

That is, p.i; j / is the conditional probability that ZnC1 D j given that Zn D i . We
also have

p.0; i/ D 0 if i � 1 and p.0; 0/ D 1:

That is, once the process is at 0 (or extinct) it stays there. State 0 (no individuals) is
also said to be an absorbing state (or trap) for .Zn/n�0.

Observe that

p.i; j / D P.ZnC1 D j jZn D i/ D P.

iX

kD1

Yk D j / for i � 1; j � 0;

where .Yk/1�k�i is a sequence of independent identically distributed (i.i.d.) random
variables with distribution .pk/k�0. This shows that the distribution of ZnC1 can
be computed using the distribution of Zn only. That is, there is no need to know the
complete history of the process given by Z0, Z1,: : : , Zn in order to compute the
distribution of ZnC1. It is enough to know Zn. This is called the Markov property.

A word on notation. For Zn D i we should have written ZnC1 as

ZnC1 D
iX

kD1

Yk;n D j

where .Yk;n/1�k�i is an i.i.d. sequence. The subscript n is to indicate that we use a
different independent sequence for every n. We omit the n in the notation to avoid a
double index.

Let the mean offspring be

m D
1X

kD0

kpk;

where m is possibly C1 if the series does not converge. Let q be the probability
that the BGW process starting from a single individual eventually dies out. We also
introduce the generating function of the offspring distribution

f .s/ D
1X

kD0

pksk for jsj � 1:
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We now state the main result of this chapter. The process will be said to survive if
there exists at least one individual for every generation n. Mathematically, surviving
means

fZn � 1; for all n � 0g:

Theorem 1.1. Let .Zn/n�0 be a BGW process with offspring distribution .pk/k�0.
Assume that p0 C p1 < 1.

If m � 1, then P.Zn � 1; for all n � 0jZ0 D 1/ D 0:

If m > 1, there exists q in Œ0; 1/ such that P.Zn � 1; for all n � 0jZ0 D 1/ D
1 � q > 0: Moreover q, the extinction probability, is the unique solution in Œ0; 1/ of
the equation f .s/ D s when m > 1.

The process BGW is said to be subcritical, critical, and supercritical according to
whether m < 1, m D 1, or m > 1. Observe that the BGW process may survive
forever if and only if m > 1. So the only relevant parameter of the offspring
distribution for survival is m. However, the probability 1 � q of surviving forever
depends on the whole distribution .pk/k�1 through its generating function.

The proof of Theorem 1.1 will be given in the last section of this chapter.
It is useful to have a graphical representation of the process .Zn/n�0. See

Fig. 2.1. Survival of the process corresponds to an infinite tree. Death of a process
corresponds to a finite tree.

We now apply Theorem 1.1 to a few examples.

Example 1.1. Consider a BGW process with the offspring distribution P.Y D
0/ D p0 D 1=6, P.Y D 1/ D p1 D 1=2, and P.Y D 2/ D p2 D 1=3. We
first compute the average offspring per individual.

m D E.Y / D 7=6 > 1:

So the survival probability 1 � q is strictly positive in this case. The generating
function of Y is

f .s/ D 1=6 C s=2 C s2=3:

Fig. 2.1 This is a graphical representation of a BGW. The process starts with one individual at the
top of the tree. We see that Z0 D 1, Z1 D 2, Z2 D 3 and Z3 D 4
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The extinction probability q is the only solution strictly less than 1 of f .s/ D s.
This equation can be written as

1

6
� 1

2
s C 1

3
s2 D 1

3
.s � 1/.s � 1

2
/ D 0:

There are two solutions s D 1 and s D 1=2. We know that q is the solution in Œ0; 1/.
Hence, q D 1=2. So starting with a single particle there is a probability 1/2 that the
process will survive forever.

Example 1.2. Lotka (1939) has used a geometric distribution to fit the offspring of
the American male population. He found that

p0 D P.Y D 0/ D 1=2 and pi D P.Y D i/ D .
3

5
/i�1 1

5
for i � 1;

where Y represents the number of sons that a male has in his lifetime. Recall that

X

n�0

xn D 1

1 � x

X

n�1

nxn�1 D 1

.1 � x/2
for jxj < 1:

So

m D
X

n�1

npn D
X

n�1

n.
3

5
/n�1 1

5
D 5

4
> 1:

Hence, the extinction probability is strictly less than 1 and is a solution of f .s/ D s

where

f .s/ D 1

2
C

X

n�1

.
3

5
/n�1 1

5
sn D 1

2
C s

5 � 3s
:

Solving the equation f .s/ D s yields

3

5
s2 � 11

10
s C 1

2
D 0:

As always s D 1 is a solution. The unique root strictly less than 1 is q D 5=6.
So under this model a given male has a probability of 1/6 of generating a family that
survives forever.

Proposition 1.1. Assume that m (the mean offspring) is finite. We have

E.ZnjZ0 D 1/ D mn for n � 0:

Proof of Proposition 1.1. We do a proof by induction. Note that

E.Z1jZ0 D 1/ D E.Y / D m D m1:
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Hence, the formula holds for n D 1. Assume now that it holds for n. By conditioning
on Zn we get

E.ZnC1jZ0 D 1/ D
X

k�1

E.ZnC1jZn D k/P.Zn D kjZ0 D 1/;

where by the Markov property we are using that

E.ZnC1jZ0 D 1; Zn D k/ D E.ZnC1jZn D k/:

For every k � 1,

E.ZnC1jZn D k/ D E.

kX

iD1

Yi / D km:

Thus,

E.ZnC1jZ0 D 1/ D
X

k�1

kmP.Zn D kjZ0 D 1/ D mE.ZnjZ0 D 1/:

Since by the induction hypothesis we have E.ZnjZ0 D 1/ D mn we can conclude
that

E.ZnC1jZ0 D 1/ D mmn D mnC1:

This completes the proof of Proposition 1.1.

Problems

1. Consider a BGW process with offspring distribution

P.Y D 0/ D 1 � p and P.Y D 2/ D p

where p is a fixed parameter in .0; 1/.

(a) Compute the mean offspring m.
(b) For which p does the process have a positive probability of surviving?
(c) Sketch the extinction probability q as a function of p.

2. Consider a BGW with offspring distribution .pk/k�0 and extinction
probability q.

(a) Show that q � p0.
(b) Show that q D 0 (survival is certain) if and only if p0 D 0.
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3. Let r be in .0; 1/. Consider a BGW with the offspring distribution

pk D .1 � r/rk for k � 0:

Find the extinction probability q as a function of r .

4. Find the extinction probability q if the offspring distribution .pk/k�0 is given by

pk D
�

3

k

�
.1=2/3

for k D 0; 1; 2; 3.

5. Consider a BGW with mean offspring m.

(a) Show that

P.Zn � 1/ � E.Zn/:

(b) Assume that the mean offspring m D 1=2. Show that the probability that Zn

has survived ten generations is less than 1
210 :

6. Redo Example 1.2 with a truncated geometric distribution. More precisely, take
p0 D P.Y D 0/ D 1=2 and

pi D P.Y D i/ D .
3

5
/i�1c for 1 � i � 10:

(a) Find c.
(b) Compute (approximately) the extinction probability.

7. Find approximately the extinction probability in the case pk D e�22k=kŠ for
k � 0.

8. Discuss the behavior of Zn in the case p0 C p1 D 1.

9. Consider an isolated island where the original stock of surnames is 100. Assume
that each surname has an extinction probability q D 9=10.

(a) After many generations how many surnames do you expect in the island?
(b) Do you expect the total population of the island to be increasing or decreasing?

10. Consider a supercritical BGW for which the extinction probability q D 1=2.
Start the process with five particles. What is the probability that the process will
survive forever?

11. Consider a supercritical BGW with offspring distribution .pk/k�0. Let the
extinction probability be q.
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(a) Show that for every integer k � 0 we have

P. extinctionjZ1 D k/ D qk:

(b) Show that

P.Z1 D kjZ0 D 1/ D pk:

(c) Use (a) and (b) to show that

P. extinctionjZ0 D 1/ D
1X

kD0

pkqk:

(d) Use (c) to show that q is a solution of the equation f .s/ D s where f is the
generating function of the offspring distribution.

12. Let f be the generating function of the probability distribution .pk/k�0.

(a) Show that f is increasing on Œ0; 1�.
(b) Show that f .0/ � 0 and f .1/ D 1.
(c) Show that f is concave up on Œ0; 1�.
(d) Graph three functions with properties (a), (b), and (c) and f 0.1/ < 1, f 0.1/ D 1

and f 0.1/ > 1, respectively.
(e) Using the graphs in (d) show that the equation f .s/ D s has a solution 0 � q <

1 if and only if f 0.1/ > 1.
(f) How does (e) relate to Theorem 1.1?

13. Consider a BGW process Zn with offspring distribution

P.Y D 0/ D 1 � p and P.Y D 2/ D p

where p is a fixed parameter in .0; 1/. A simulation of the offspring distribution Y

with p D 3=4 has yielded the following observations 2,2,0,2,2,0,2,2,2,2,0.

(a) Use the simulation to graph the corresponding BGW tree.
(b) Use the simulation to find Zn for as many n as possible.

14. Consider the following algorithm. Let U be a continuous uniform random
variable on .0; 1/. If U < p set Y D 2, if Y > p set Y D 0.

Show that this algorithm generates a random variable Y with the distribution

P.Y D 0/ D 1 � p; P.Y D 2/ D p:

(Recall that P.U < x/ D x for x in .0; 1/.)

15. Use Problem 13 to simulate a BGW process Zn with offspring distribution

P.Y D 0/ D 1 � p and P.Y D 2/ D p;

for p D 1=4, p D 1=2 and p D 3=4. Do multiple runs. Interpret the results.



24 2 Discrete Time Branching Process

2 The Probability of a Mutation in a Branching Process

Consider the following question. We have a population modeled by a BGW process.
Each time an individual is born in the population it has a probability � of having
a certain mutation. We want to compute the probability that this mutation will
eventually appear in the population. We will actually do the computation for a
particular BGW and we will need several steps.

2.1 An Equation for the Total Progeny Distribution

We will start by finding the probability distribution of

X D
X

n�0

Zn D 1 C
X

n�1

Zn:

The random variable X counts all the births that ever occur in the population
(i.e., the total progeny) as well as the founding individual (as usual we are taking
Z0 D 1). Our first goal is to find the distribution of X . The main step is to find the
generating function g of X . Let

g.s/ D
X

k�1

skP.X D k/ D E.sX /:

The sum above starts at 1 since X is always at least 1. We know that a generating
function is always defined (i.e., the power series converges) for s in Œ0; 1�.

We will find an equation for g by conditioning on the first generation Z1. We have

g.s/ D E.sX / D
X

k�0

E.sX jZ1 D k/P.Z1 D kjZ0 D 1/ (2.1)

Given that Z1 D k we have k individuals at time 1 starting k independent BGW.
Hence, X is the sum of the founding individual and all the individuals in these k

BGW. Moreover, for each one of these k BGW the total number of births (plus the
founding individual) has the same distribution as X . Therefore,

E.sX jZ1 D k/ D E.s1CX1CX2C���CXk /

where the Xi , 1 � i � k, are independent random variables with the same
distribution as X . Thus, by independence

E.sX jZ1 D k/ D sE.sX1/E.sX2/ : : : E.sXk /:



2 The Probability of a Mutation in a Branching Process 25

Since the Xi , 1 � i � k, have the same distribution as X we get

E.sX jZ1 D k/ D sE.sX /k:

Using the last equality in (2.1) yields

g.s/ D E.sX / D
X

k�0

sE.sX /kP.Z1 D kjZ0 D 1/ D s
X

k�0

g.s/kpk

since

P.Z1 D kjZ0 D 1/ D P.Y D k/ D pk:

Hence,

g.s/ D s
X

k�0

pkg.s/k:

Observe now that the generating function f of the offspring distribution is

f .s/ D
X

k�0

pksk:

Therefore,

g.s/ D sf .g.s// (2.2)

This is an elegant equation for g but for most offspring distributions (represented
by f ) it cannot be solved. Next we solve the equation in a particular case.

2.2 The Total Progeny Distribution in a Particular Case

Consider the following offspring distribution: p0 D 1 � p and p2 D p where
p is a fixed parameter in Œ0; 1�. That is, for n � 0, every individual of the nth
generation gives birth to two individuals with probability p or does not give birth at
all with probability 1 � p. This yields the .n C 1/th generation. Biologically, we are
thinking of a population of bacteria or virus that either divide into two individuals
(corresponding to births in the model) or die.

Recall that g is the generating function of X :

g.s/ D
1X

nD1

P.X D 2n � 1jZ0 D 1/s2n�1:
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We take into account only the odd values for X because the births that occur
always occur by pairs and since we start with a single individual the random variable
X is odd.

By (2.2) g is the solution of the equation

g.s/ D sf .g.s//;

where f is the generating function of the offspring distribution. For this particular
case

f .s/ D 1 � p C ps2:

Hence,

g.s/ D s.1 � p C pg.s/2/;

and

psg.s/2 � g.s/ C s.1 � p/ D 0:

For a fixed s let g.s/ D u, we get

psu2 � u C s.1 � p/ D 0

and

u2 � 1

ps
u C s.1 � p/

ps
D 0:

This is a quadratic equation in u. We complete the square to get

.u � 1

2ps
/2 � 1

4p2s2
C s.1 � p/

ps
D 0:

Hence,

.u � 1

2ps
/2 D 1

4p2s2
� s.1 � p/

ps
D 1 � 4ps2.1 � p/

4p2s2
:

Note that 1 � 4ps2.1 � p/ > 0 if and only if

s2 <
1

4p.1 � p/
:
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Since 4p.1 � p/ � 1 for p in .0; 1/ (why?) we have that 1
4p.1�p/

� 1. Hence, for s

in .0; 1/ we have

s2 <
1

4p.1 � p/
:

Therefore, we have two solutions for u D g.s/

u1 D 1

2ps
�

s
1 � 4ps2.1 � p/

4p2s2
or u2 D 1

2ps
C

s
1 � 4ps2.1 � p/

4p2s2
:

We need to decide which expression is g.s/. Observe that

u2 D 1

2ps
C

s
1 � 4ps2.1 � p/

4p2s2
� 1

4ps

where f � g means that

lim
s!0

f .s/

g.s/
D 1:

Since 1
4ps

is not bounded near 0 and g is defined at 0 (in fact g.0/ D 0) g.s/ cannot
be u2. It must be u1. Hence,

g.s/ D 1

2ps
�

s
1 � 4ps2.1 � p/

4p2s2
(2.3)

Since

g.s/ D
1X

nD1

P.X D 2n � 1jZ0 D 1/s2n�1

the expression in (2.3) is useful in computing the distribution of X only if we can
find a power series expansion for that expression. This is our next task.

Using the binomial expansion from Calculus we have the following lemma.

Lemma 2.1. For jxj < 1 we have

1 � p
1 � x D

1X

nD1

cnxn

where

cn D .2n � 2/Š

22n�1nŠ.n � 1/Š
for n � 1:
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Lemma 2.1 will be proved in the exercises. Going back to (2.3) we have

g.s/ D 1

2ps
�

s
1 � 4ps2.1 � p/

4p2s2
D 1

2ps
.1 �

p
1 � 4ps2.1 � p//:

Let x D 4ps2.1 � p/ in Lemma 2.1 to get

g.s/ D 1

2ps

1X

nD1

cn.4p.1 � p/s2/n D
1X

nD1

.2n � 2/Š

nŠ.n � 1/Š
.1 � p/npn�1s2n�1:

This power series expansion shows that g has no singularity at s D 0. In fact, it
is infinitely differentiable at any s in .�1; 1/. We now have a power series expansion
for g and this yields the distribution of X . We get for n � 1 that

P.X D 2n � 1jZ0 D 1/ D .2n � 2/Š

nŠ.n � 1/Š
.1 � p/npn�1:

2.3 The Probability of a Mutation

We are finally ready to compute the probability that a certain mutation eventually
appears in a population modeled by a BGW. We will do the computation for the
particular BGW we have been considering so far. Recall that in this particular case
the offspring distribution is p0 D 1 � p and p2 D p. We also assume that at each
birth in the BGW there is a probability � that the new individual has the mutation.
Moreover, the new individual has the mutation (or not) independently of everything
else. Let M be the event that the mutation eventually appears in the population. Let
M c be the complement of M , that is, the event that the mutation never appears in
the population. Let

X D
X

n�0

Zn D 1 C
X

n�1

Zn;

where the BGW starts with one individual, that is, Z0 D 1. Note that X can be
infinite. In fact, the process .Zn/n�0 survives if and only if X D C1 (why?).
Intuitively it is clear that if there are infinitely many births and each birth has a
fixed probability � of a mutation independently of all other births then the mutation
will occur with probability 1. We will examine this issue more carefully in the last
subsection of this section.

The probability that the mutation never appears in the population is therefore

P.M c/ D P.M c I X < C1/:
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By the rule of averages we have

P.M c/ D
1X

kD1

P.M c jX D k/P.X D k/ D
1X

kD1

.1 � �/k�1P.X D k/:

Recall the total progeny distribution

P.X D 2n � 1jZ0 D 1/ D .2n � 2/Š

nŠ.n � 1/Š
.1 � p/npn�1:

Hence,

P.M c/ D
1X

nD1

.1 � �/2n�2P.X D 2n � 1jZ0 D 1/

D
1X

nD1

.1 � �/2n�2 .2n � 2/Š

nŠ.n � 1/Š
.1 � p/npn�1:

To sum this series we will use Lemma 2.1. We first rearrange the general term of the
series to get

P.M c/ D 1

2p.1 � �/2

1X

nD1

.2n � 2/Š

22n�1nŠ.n � 1/Š

�
4.1 � �/2.1 � p/p

�n

:

Therefore,

P.M c/ D 1

2p.1 � �/2

1X

nD1

cn

�
4.1 � �/2.1 � p/p

�n

where the sequence cn is defined in Lemma 2.1. By that lemma we have

P.M c/ D 1

2p.1 � �/2

�
1 �

p
1 � 4p.1 � p/.1 � �/2

�
(2.4)

This is the probability no mutation ever appears in the population. Of course, the
probability that a mutation does eventually appear is P.M/ D 1 � P.M c/.

2.4 Application: The Probability of Drug Resistance

Drug resistance is a constant threat to the health of individuals who are being treated
for a variety of ailments: HIV, tuberculosis, cancer to cite a few. It is also a threat
to the population as a whole since there is a risk that a treatable disease may be
replaced by a non-treatable one. This is the case, for instance, for tuberculosis.
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We are interested in evaluating the risk of a treatment induced drug resistance.
In the presence of a drug the drug sensitive strain is weakened (how much it is
weakened depends on the efficacy of the drug) and this gives an edge to the drug
resistant strain if it appears before the drug is able to eradicate all pathogens.
Therefore, what determines the treatment outcome is whether total eradication takes
place before the appearance of a drug resistance mutation. We propose a model to
compute the probability of pathogen eradication before drug resistance appears.

We now recall the model we have been studying in the previous subsections. We
assume that at every unit time a given pathogen may die with probability 1 � p

or divide in two with probability p. Thus, the mean offspring per pathogen is 2p.
We assume that p is strictly between 0 and 1. If 2p > 1, then there is a positive
probability for the family tree of a single drug sensitive pathogen to survive forever.
If 2p � 1, then eradication is certain for drug sensitive pathogens. The parameter p

is a measure of efficacy of the drug. The smaller the p the more efficient the drug is
and the more likely eradication of the drug sensitive pathogen is.

As always for branching processes, we assume that the number of pathogens
each pathogen gives birth to is independent of the number of pathogens any other
pathogen gives birth to at the same time. We also assume that for each birth of
pathogen there is a probability � that the new pathogen is drug resistant. We denote
by N the number of pathogens at the beginning of treatment.

Recall from (2.4) above that the probability of no mutation starting with a single
pathogen is

P.M c jZ0 D 1/ D 1

2p.1 � �/2

�
1 �

p
1 � 4p.1 � p/.1 � �/2

�
(2.5)

Usually the treatment will start when the patient has some symptoms. These
symptoms start when the number of pathogens is high enough. Therefore we are
interested in the model for Z0 D N where N is a rather large number. Define
the function f as

f .N; �; p/ D P.M c jZ0 D N /:

That is, f is the probability that the drug resistance mutation never appears given
that the treatment starts with N pathogens. In our model each of the N pathogens
starts its own independent BGW. Hence, the probability that there is no mutation in
the population is the probability that none of the N independent BGW generate a
mutation. Therefore,

f .N; �; p/ D f .1; �; p/N D
� 1

2p.1 � �/2

�
1 �

p
1 � 4p.1 � p/.1 � �/2

��N

:

We are now going to see that the function f behavior changes drastically
depending whether p < 1=2 or p > 1=2.
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• Subcritical case: p < 1=2. In order to obtain a friendlier expression for f we
compute a linear approximation in � as � approaches 0. Note that the linear
approximation for .1 � �/�2 is 1 C 2�. A little algebra shows

p
1 � 4p.1 � p/.1 � �/2 D j1 � 2pj

s

1 C 8p.1 � p/

.1 � 2p/2
� � 4p.1 � p/

.1 � 2p/2
�2:

By the binomial expansion

p
1 C x � 1 C 1

2
x

where f � g means that

lim
x!0

f .x/

g.x/
D 1:

Hence,

p
1 � 4p.1 � p/.1 � �/2 � j1 � 2pj.1 C 4p.1 � p/

.1 � 2p/2
�/

as � ! 0. Thus, for p < 1=2 we have the linear approximation

f .1; �; p/ � 1 � 2p

1 � 2p
�:

Since f .N; �; p/ D f .1; �; p/N we have for p < 1=2

f .N; �; p/ � .1 � 2p

1 � 2p
�/N � exp.� 2p

1 � 2p
N�/ (2.6)

where we are using that

.1 � x/N � exp.�Nx/

as x approaches 0. Formula (2.6) tells us that the critical parameter for a
successful drug treatment is N�. The smaller N� the larger f .N; �; p/ and
therefore the larger the probability of no drug resistance. The model confirms
what has been found by experience. For HIV for instance better start the
treatment early (smaller N ) than late (larger N ). It also has been found that it
is better to use simultaneously three drugs rather than one. The probability � of
the appearance of a mutation which is resistant to all three drugs is much smaller
than the probability of the appearance of a mutation which is resistant to a single
drug. The model also suggests that it is not necessary to have both N and � small.
It is enough to have N� small.
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• Supercritical case: p > 1=2. In this case too we may do an approximation
similar to what was done in the subcritical case. But more importantly we have
for p > 1=2

f .N; �; p/ � .
1 � p

p
/N (2.7)

We will prove (2.7) below. First note that 1�p

p
< 1 (for p > 1=2) and N is

very large. Therefore, f .N; �; p/ will be very small. That is, drug resistance will
almost certainly appear. In this case, the model suggests that treatment is futile
at best. The drug will make appear something worse (a drug resistant strain) than
what it is supposed to cure.

We now prove (2.7). Starting with one pathogen the probability that the BGW
will go extinct is 1�p

p
. See the exercises. Starting with N pathogens in order for

the drug resistant mutation not to appear it is necessary (but not sufficient) that
all N independent BGW to go extinct. For if one the BGW survives forever the
mutation is certain to appear (in a BGW that survives forever there are infinitely
many births and each one has the constant probability � > 0 of being resistant).
Hence, the event “Drug resistance does not occur” is included in “All N BGW
go extinct.” Therefore, the probability of the first event (i.e. f .N; �; p/) is less
than the probability of the second event. Now the probability that N independent
BGW go extinct is .

1�p

p
/N . This proves (2.7).

2.5 Application: Cancer Risk

Cancer has long been thought to appear after several successive mutations.
We assume here that a cancerous cell appears after two successive mutations.
We consider a tissue in the human body (a tissue is an ensemble of similar cells
that together carry out a specific function). The cells of this tissue undergo a fixed
number D of divisions over the lifetime of the tissue. We also assume that there
is a probability �1 per division of producing a cell with a type 1 mutation. A cell
carrying a type 1 mutation is a pre-cancerous cell. If a type 1 cell appears, it starts
a BGW process. At each unit time each cell in this BGW may die with probability
1 � p1 or divide in two type 1 cells with probability p1. At each division of a type
1 cell there is a probability �2 for each daughter cell that it be a type 2 cell. A type
2 cell is a cancerous cell. We are interested in computing the probability that a
cancerous cell appear over the lifetime of the tissue.

In order for a cancerous cell to appear we first need a type 1 mutation and then
a type 2 mutation appearing in the BGW started by the type 1 cell. Assume that
at each of the D divisions we have the same probability p that the two successive
mutations appear. Assuming also independence of these D events we get

P.no cancer/ D .1 � p/D:
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We now compute p. At a given cell division let A1 be the event of a first mutation
and letA2 be the event that a second mutation eventually occurs. The probability of
A1 \ A2 is exactly p. Therefore,

p D P.A1 \ A2/ D P.A1/P.A2jA1/:

We know that P.A1/ D �1 and P.A2jA1/ is the probability that a mutation occurs
in a BGW starting with a single individual with mutation probability �2 and division
probability p1. Hence,

P.A2jA1/ D 1 � f .1; �2; p1/

where

f .1; �2; p1/ D 1

2p1.1 � �2/2

�
1 �

p
1 � 4p1.1 � p1/.1 � �2/2

�
;

has been computed in Sect. 2.4. Recall that f .1; �; p/ is the probability that no
mutation occurs in a BGW with mutation probability � and division probability p.
So 1 � f .1; �2; p1/ is the probability that a mutation does occur. Therefore,

p D �1.1 � f .1; �2; p1//:

Let

S.p1; �2/ D 1 � f .1; �2; p1/:

Hence,

P.no cancer/ D .1 � p/D � exp.�pD/ D exp.�`S.p1; �2//

where ` D �1D and the approximation holds for p approaching 0. The formula
above is interesting in several ways. It shows that �1 and D are important only
through their product `. Moreover, the parameter ` determines whether p1 and �2

are important. We now see why.

• Small `. Note that S.p1; �2/ is a probability and is therefore in Œ0; 1� for all p1

and �2. Hence, `S.p1; �2/ � ` and

P.no cancer/ � exp.�`/ � 1 � `

where the approximation holds for ` approaching 0. That is, the risk of cancer is
of order `. The parameters p1 and �2 are almost irrelevant. This is so because
if ` is small then the first mutation is unlikely during the lifetime of the tissue.
If the first mutation is unlikely, then so is the second mutation since the second
mutation can only happen on top of the first.
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• Large `. If ` is large, then it is quite likely that a first mutation will occur during
the lifetime of the tissue. Whether the second mutation occurs depends on p1 and
�2. It turns out that what determines whether the second mutation occurs is p1.
The parameter �2 is not really relevant. See the problems.

2.6 The Total Progeny May Be Infinite

We now revisit the distribution of the total progeny computed in Sect. 2.2. Recall
that the total progeny X is defined by

X D
X

n�0

Zn D 1 C
X

n�1

Zn;

where the BGW .Zn/n�0 starts with one individual, that is, Z0 D 1. If the
distribution of X is correct, then

P1
nD1 P.X D 2n � 1jZ0 D 1/ should be 1.

Or should it? We now do the computation.

1X

nD1

P.X D 2n � 1jZ0 D 1/ D
1X

nD1

.2n � 2/Š

nŠ.n � 1/Š
.1 � p/npn�1:

We will use Lemma 2.1 to compute this infinite series. In order to do so we rearrange
the general term of the series. We have

.2n � 2/Š

nŠ.n � 1/Š
.1 � p/npn�1 D .2n � 2/Š

22n�1nŠ.n � 1/Š
22n�1.1 � p/npnp�1

D .2n � 2/Š

22n�1nŠ.n � 1/Š
.4p.1 � p//n.2p/�1:

Hence,

1X

nD1

P.X D 2n � 1jZ0 D 1/ D 1

2p

1X

nD1

.2n � 2/Š

22n�1nŠ.n � 1/Š
.4p.1 � p//n

D 1

2p

1X

nD1

cn.4p.1 � p//n

where the sequence .cn/n�1 is defined in Lemma 2.1. We now let x D 4p.1 � p/ in
Lemma 2.1 to get

1X

nD1

P.X D 2n � 1jZ0 D 1/ D 1

2p
.1 �

p
1 � 4p.1 � p//:
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Note that 1 � 4p.1 � p/ D .1 � 2p/2. Hence,
p

1 � 4p.1 � p/ D j1 � 2pj:
Therefore,

1X

nD1

P.X D 2n � 1jZ0 D 1/ D 1

2p
.1 � j1 � 2pj/:

There are two cases to consider. If p � 1=2 then j1 � 2pj D 1 � 2p and

1X

nD1

P.X D 2n � 1jZ0 D 1/ D 1

as expected. However, if p > 1=2, then j1 � 2pj D �1 C 2p and

1X

nD1

P.X D 2n � 1jZ0 D 1/ D 1

2p
.2 � 2p/ D 1 � p

p

which is not 1 (except when p D 1=2)! What is going on? Recall our definition
of X .

X D
X

n�0

Zn

where .Zn/n�0 is a BGW. Now note that the Zn are positive or 0 integers. So X is
finite if and only if Zn D 0 for all n larger than some fixed integer (why?). This is
the same as saying that X is finite if and only if the BGW .Zn/n�0 dies out. It is
easy to check (see the exercises) that for this particular BGW extinction occurs if
and only if p � 1=2. If p > 1=2, then there is a positive probability that the BGW
does not die out. That is, there is a positive probability that X is infinite. Observe
also that

P1
nD1 P.X D 2n � 1jZ0 D 1/ is the probability that X takes a finite

value. This series does not include the possibility that X is infinite. This is why
when p > 1=2 the series is strictly less than 1. We have

1X

nD1

P.X D 2n � 1jZ0 D 1/ D P.X < C1jZ0 D 1/ D 1 � p

p
:

We will check in the exercises that if p > 1=2 the probability that .Zn/n�0 dies out
is indeed 1�p

p
:

We now tie another loose end. What is the probability that a mutation appears
when X is infinite? We will show below that this probability is 1. Let M be the
probability that a mutation occurs at some point in the process .Zn/n�0. Let k be a
positive integer. We have

P.M c I X � k/ D P.M c jX � k/P.X � k/ � .1 � �/k�1P.X � k/ (2.8)
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This is so because given X � k there are at least k � 1 births in the population
and each birth has independently failed to carry the mutation. Observe also that the
sequence fX � kg for k � 1 is decreasing. That is, for k � 1

fX � k C 1g � fX � kg:
Hence, by Proposition 1.1 in the appendix

lim
k!1 P.X � k/ D P.

\

k�1

fX � kg/:

Note that if X � k for every k � 1 then X D C1. Thus,

lim
k!1 P.X � k/ D P.X D C1/:

With a similar argument we show that

lim
k!1 P.M c I X � k/ D P.M c I X D C1/:

Letting k go to infinity in (2.8) yields

P.M c I X D C1/ � P.X D C1/ lim
k!1.1 � �/k�1 D 0

since 0 < 1 � � < 1. Hence, a mutation occurs with probability 1.

Problems

1. Let

X D
X

n�0

Zn D 1 C
X

n�1

Zn;

where the BGW .Zn/n�0 starts with one individual, that is, Z0 D 1. Show that the
process .Zn/n�0 survives if and only if X D C1.

2. Consider a BGW with the following offspring distribution: p0 D 1 � p and
p2 D p where p is a fixed parameter in Œ0; 1�.

(a) Show that the BGW may survive if and only p > 1=2.
(b) Show that the moment generating function of the offspring distribution is

f .s/ D 1 � p C ps2:

(c) Show that the extinction probability is 1�p

p
when p > 1=2.
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3. Consider a BGW with the offspring distribution

pk D .1 � r/rk for k � 0;

where r is in .0; 1/.

(a) Show that the generating function of the offspring distribution is for s � 1

f .s/ D 1 � r

1 � rs
:

(b) Let g be the generating function of the total progeny for this BGW starting with
a single individual. Use Eq. (2.2) to show that

rg.s/2 � g.s/ C s.1 � r/ D 0:

(c) The quadratic equation in (b) has two solutions. Explain why g.s/ is in fact

g.s/ D 1

2r
.1 �

p
1 � 4s.1 � r/r/:

(d) Use Lemma 2.1 to show that

g.s/ D 1

2r

X

n�1

cn4n.1 � r/nrnsn

where cn is defined in Lemma 2.1.
(e) Let X be the total progeny of this BGW starting with a single individual. Show

that

P.X D njZ0 D 1/ D 1

2r
cn4n.1 � r/nrn:

(f) Use (e) and Lemma 2.1 to show that

X

n�1

P.X D njZ0 D 1/ D 1

2r
.1 � j1 � 2r j/:

(g) Show that
P

n�1 P.X D n/ D 1 for r � 1=2 and
P

n�1 P.X D n/ < 1 for
r > 1=2. Could you have known that without computing the distribution of X?

(h) Set r D 1=4. Compute P.X D n/ for n D 1; 2 : : : 10:

(i) Set r D 3=4. Compute P.X D n/ for n D 1; 2 : : : 10:

4. In this problem we compute the probability of a given mutation for the BGW
studied in Problem 3. Let M c be the event that no mutation ever appears in the
BGW that started with a single individual. Assume that for each birth in the BGW
there is a probability � that the new individual has the mutation.
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(a) Show that

P.M c jZ0 D 1/ D
X

n�1

P.X D njZ0 D 1/.1 � �/n�1

where X is the total progeny of the BGW.
(b) Use Problem 2 (e) and Lemma 2.1 in (a) to show that

P.M c jZ0 D 1/ D 1

2r.1 � �/
.1 �

p
1 � 4.1 � r/r.1 � �//:

(c) Explain why for every integer N � 1

P.M c jZ0 D N / D P.M c jZ0 D 1/N :

(d) Set r D 1=10. Compute P.M c jZ0 D N / for several values of N and � for
which N� D 1. What do these computations suggest?

(e) Set r D 6=10 and N D 10. Compute P.M c jZ0 D N / for � D 10�4, � D
10�5, � D 10�6. What do these computations suggest?

5. Recall from Calculus the binomial expansion. Let ˛ be a real number. Then, for
all x in .�1; 1/,

.1 C x/˛ D 1 C
1X

kD1

akxk

where

ak D ˛.˛ � 1/ : : : .˛ � k C 1/

kŠ

for k � 1. Use the binomial expansion (in the case ˛ D 1=2) to prove Lemma 2.1.
Do a proof by induction.

6. For p < 1=2 we have approximated

f .N; �; p/ D f .1; �; p/N D
� 1

2p.1 � �/2

�
1 �

p
1 � 4p.1 � p/.1 � �/2

��N

by using

h.N; �; p/ D exp.� 2p

1 � 2p
N�/

as � ! 0.
How good is the approximation? Compute f and h for p in Œ0:1; 0:4�, � in

Œ10�8; 10�4� and N in Œ10; 106�. Find out the maximal error for this approximation.
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7. The cells of a tissue undergo a fixed number D of divisions over the lifetime of
the tissue. Assume that there is a probability �1 per division of producing a cell with
a type 1 mutation.

(a) Show that the probability of having at least one type 1 mutation over the lifetime
of the tissue is

s D 1 � .1 � �1/D:

(b) Show that

s � 1 � exp.��1D/

as �1 approaches 0.
(c) Let m D �1D. Sketch the graph of s as a function of m.

8. In the cancer risk model of Sect. 2.6 we have shown that the risk r of cancer for
a certain tissue is

r � 1 � exp.�`S.p1; �2//:

Let �2 D 10�6. Sketch the graphs of r as a function of p1 for ` D 0:01, ` D 0:1,
and ` D 1. Interpret these graphs.

3 Proof of Theorem 1.1

This proof involves mostly analysis arguments and is not important for the sequel.
We include it for the sake of completeness.

Before proving Theorem 1.1 we will need a few properties of generating
functions. Recall that the generating function of the probability distribution
.pk/k�0 is

f .s/ D
X

k�0

pksk:

We have seen already that a generating function is defined on .�1; 1/. Since f is
also defined at 1 and we are only interested in positive numbers we will take the
domain of f to be Œ0; 1�.

An useful Analysis lemma is the following.

Lemma 3.1. Let .bn/n�0 be a positive sequence and let

g.t/ D
X

n�0

bntn:
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Assume that g is defined on Œ0; 1/. Then

lim
t!1�

g.t/ D
X

n�0

bn

where both sides are possibly C1.

For a proof see Proposition A1.9 in the Appendix of “Theoretical Probability for
applications” by S.C. Port.

Applying Lemma 3.1 to the generating function f we see that

lim
s!1�

f .s/ D
X

n�0

pn D 1:

Since f .1/ D 1, f is left continuous at 1. On the other hand, a power series is
infinitely differentiable (and hence continuous) on any open interval where it is
defined. Therefore f is continuous on Œ0; 1�.

We will need another application of Lemma 3.1. As noted above the function f

is differentiable on .0; 1/ and since a power series can be differentiated term by term

f 0.s/ D
X

n�1

npnsn�1:

By Lemma 3.1

lim
s!1�

f 0.s/ D
X

n�1

npn D m

where lims!1� f 0.s/ and m may be both infinite.
We now go back to the BGW process and compute the generating function of Zn

for n � 1.

Proposition 3.1. Let f1 D f and fnC1 D f ı fn for n � 1. For n � 1, the
generating function of Zn conditioned on Z0 D 1 is fn.

Proof of Proposition 3.1. We prove this by induction. Let gn be the generating
function of Zn given that Z0 D 1. We have

g1.s/ D E.sZ1 jZ0 D 1/ D E.sY / D f .s/ D f1.s/;

so the property holds for n D 1. Assume that gn D fn. Given Zn D k, the
distribution of ZnC1 is the same as the distribution of

Pk
iD1 Yi where the Yi are

i.i.d. with distribution .pk/k�0. Hence,

E.sZnC1 jZn D k/ D E.s
Pk

i D 1 Yi / D E.sY1/E.sY2/ : : : E.sYk / D .E.sY1//k D f .s/k:
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By the Markov property

gnC1.s/ DE.sZnC1 jZ0 D 1/

D
1X

kD0

E.sZnC1 jZn D k/P.Zn D kjZ0 D 1/

D
1X

kD0

P.Zn D kjZ0 D 1/f .s/k

Dgn.f .s//

and by our induction hypothesis we get gnC1 D gn ı f D fn ı f D fnC1. This
completes the proof of Proposition 3.1.

We now prove Theorem 1.1. We start by dealing with the easiest case: m < 1.
For any positive integer valued random variable X

E.X/ D
X

k�0

kP.X D k/ �
X

k�1

P.X D k/ D P.X � 1/:

Hence,

P.X � 1/ � E.X/:

We use the preceding inequality and Proposition 1.1 to get

P.Zn � 1jZ0 D 1/ � E.ZnjZ0 D 1/ D mn:

Since m < 1

lim
n!1 P.Zn � 1jZ0 D 1/ D 0;

and the convergence occurs exponentially fast. Observe that since 0 is a trap for
.Zn/n�0 the sequence of events fZn � 1g is decreasing. That is,

fZnC1 � 1g � fZn � 1g:

In words, if ZnC1 � 1 then we must have Zn � 1 (why?).
By Proposition 1.1 in the Appendix

lim
n!1 P.Zn � 1jZ0 D 1/ D P.

\

n�0

fZn � 1gjZ0 D 1/ D

P.Zn � 1 for all n � 0jZ0 D 1/ D 0:

This proves Theorem 1.1 in the case m < 1.
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For the cases m D 1 and m > 1 we will need the following observations. For any
positive integer valued random variable X we can define the generating function gX

on Œ0; 1� by

gX .s/ D
1X

kD0

P.X D k/sk:

If we let s D 0, we get gX .0/ D P.X D 0/.
Since fn is the moment generating function of Zn conditioned on fZ0 D 1g

we get

P.Zn D 0jZ0 D 1/ D fn.0/;

and since the sequence of events fZn D 0g is increasing (why?) we have by
Proposition 1.1 in the Appendix

lim
n!1 fn.0/ D P.

[

n�1

fZn D 0gjZ0 D 1/ (3.1)

Let q to be the probability of extinction. Define

q D P.Zn D 0 for some n � 1jZ0 D 1/:

Observe that

fZn D 0 for some n � 1g D
[

n�1

fZn D 0g:

Hence, by (3.1)

q D P.Zn D 0 for some n � 1jZ0 D 1/ D P.
[

n�1

fZn D 0gjZ0 D 1/ D lim
n!1 fn.0/:

Therefore,

q D lim
n!1 fn.0/ (3.2)

Now

fnC1.0/ D f .fn.0// (3.3)

Since fnC1.0/ and fn.0/ both converge to q and f is continuous on Œ0; 1� we get
f .q/ D q by letting n go to infinity in (3.3). That is, q is a fixed point of f .
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Our task now will be to show that depending on m we will have q D 1 (extinction
is certain) or q < 1 (survival has positive probability).

We first consider m D 1.

f 0.s/ D
X

k�1

kpksk�1 <
X

k�1

kpk D m D 1 for s < 1:

Therefore, for any s < 1, by the Mean Value Theorem there is a c in .s; 1/ such that

f .1/ � f .s/ D f 0.c/.1 � s/ < 1 � s;

and so for any s < 1

f .s/ > s:

Therefore there is no solution to the equation f .s/ D s in the interval [0,1] other
than s D 1. Hence, we must have q D 1. This completes the proof of Theorem 1.1
for the case m D 1.

Consider now m > 1. We have for s in Œ0; 1/ that

f 0.s/ D
1X

kD1

kpksk�1:

Moreover, by Lemma 3.1 we have that

lim
s!1

f 0.s/ D
1X

kD1

kpk D m:

Hence, there exists an � > 0 such that if s � 1 � � then 1 < f 0.s/ < m. By the
Mean Value Theorem, for any s in .1 � �; 1/ there is a c in .s; 1/ such that

f .1/ � f .s/ D .1 � s/f 0.c/:

Since f .1/ D 1 and f 0.c/ > 1 (since c > s > 1 � �) we have 1 � f .s/ > 1 � s.
Hence, there is an � > 0 such that

f .s/ < s for s in .1 � �; 1/ (3.4)

Let g.x/ D x � f .x/. This is a continuous function on Œ0; 1�. By (3.4) g.s/ > 0

for s > 1 � �. Moreover, f .0/ � 0 and therefore g.0/ � 0. By the Intermediate
Value Theorem we have at least one solution in Œ0; 1 � �/ � Œ0; 1/ to the equation
g.s/ D 0 or equivalently to the equation f .s/ D s. Denote this solution by s1.

We now show that there is a unique solution to the equation f .s/ D s in [0,1).
By contradiction assume there is another solution t1 in [0,1). Assume without loss
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of generality that s1 < t1. Since f .1/ D 1 we have at least three solutions to the
equation g.s/ D 0 on Œ0; 1�. We apply Rolle’s Theorem on Œs1; t1� and on Œt1; 1� to
get the existence of �1 in .s1; t1/ and �2 in .t1; 1/ such that g0.�1/ D g0.�2/ D 0.
Hence, f 0.�1/ D f 0.�2/ D 1. Observe that

f 00.s/ D
X

k�2

k.k � 1/pksk�2:

Since p0 C p1 < 1 we must have pk > 0 for at least one k � 2 (why?). Therefore
f 00.s/ > 0 for s in (0,1) and f 0 is strictly increasing on .0; 1/. Therefore, we cannot
have �1 < �2 and f 0.�1/ D f 0.�2/ D 1. We have reached a contradiction. Hence,
there is a unique solution to the equation f .s/ D s in [0,1).

At this point we know that q D s1 or q D 1 since these are the two only
solutions of f .s/ D s in [0,1]. By contradiction assume that q D 1. By (3.2),
limn!1 fn.0/ D q D 1. Hence, for n large enough, fn.0/ > 1 � �. By (3.4) (let
s D fn.0/ there) this implies that f .fn.0// < fn.0/. That is, fnC1.0/ < fn.0/. But
this contradicts the fact that .fn.0//n�1 is an increasing sequence. Hence q cannot
be 1. It must be the unique solution of f .s/ D s which is strictly less than 1. This
completes the proof of Theorem 1.1.

Problems

1. Show that for every n � 1 we have

fZnC1 � 1g � fZn � 1g:

2. Show that for every n � 1 we have

fZn D 0g � fZnC1 D 0g:

3. Consider a probability distribution .pk/k�0. Show that if p0 C p1 < 1 we must
have pk > 0 for at least one k � 2.

4. Let f be the generating function of the probability distribution .pk/k�0.

(a) Show that if p0 < 1 then f is strictly increasing on .0; 1/.
(b) Show that if p0 C p1 < 1 then f 0 is strictly increasing on .0; 1/.

5. Consider the generating function f of the offspring distribution .pk/k�0. We
assume that p0 C p1 < 1 and therefore f is strictly increasing. Assume also that
the mean offspring distribution m > 1.

(a) We have shown in (3.4) that f .s/ < s for all s in .1 � �; 1/ where � is some
positive real number. Show that in fact

f .s/ < s for all s in .q; 1/:
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(Do a proof by contradiction. Show that if f .s0/ � s0 for some s0 in .q; 1/

then the equation f .s/ D s would have at least two solutions in Œ0; 1/.)
(b) Recall that fn is the nth iterate of the generating function f (see Proposi-

tion 3.1). For a fixed s in .q; 1/ define the sequence an D fn.s/ for n � 1.
Show that for every n � 1

an > q:

(c) Show that the sequence an is decreasing.
(d) Show that an converges to a limit ` which is in Œq; 1/. Show also that f .`/ D `:

(e) Show that ` is in fact q. That is, we have shown that for any s in .q; 1/, fn.s/

converges to q.
(f) Do steps similar to (a) through (e) to show that fn.s/ converges to q for any s

in Œ0; q/.

6. By Proposition 3.1 fn is the generating function of Zn. That is, for n � 1

fn.s/ D
X

k�0

P.Zn D kjZ0 D 1/sk:

(a) In Problem 5 we proved that fn.s/ converges to q for any fixed s in Œ0; 1/.
Show that

lim
n!1 P.Zn D 0jZ0 D 1/ D q:

(b) Show that for any fixed k � 1

lim
n!1 P.Zn D kjZ0 D 1/ D 0:

(c) If Zn does not get extinct, where does it go to?

Notes

For a history of the Bienaymé–Galton–Watson process see Kendall (1975). There
are entire books on branching processes. My favorite is Harris (1989). The
drug resistance application is based on Schinazi (2006a,b), see also Iwasa et al.
(2004) for another stochastic model. See Nowak and May (2000) for differential
equation models for drug resistance. The cancer risk application is based on
Schinazi (2006a,b). Durrett et al. (2009) and Schweinsberg (2008) have also studied
stochastic models for multi-stage carcinogenesis but their models lead to rather
involved mathematics. Schweinsberg (2008) gives a nice account of the history of
the multi-stage carcinogenesis hypothesis.
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Chapter 3
The Simple Symmetric Random Walk

A simple random walk is a discrete time stochastic process .Sn/n�0 on the
integers Z. Let

S0 D 0

and for n � 1

Sn D Sn�1 C Xn;

where X1; X2; : : : is a sequence of independent identically distributed random
variables with the following distribution,

P.X D 1/ D p and P.X D �1/ D q D 1 � p:

Hence, Sn D Sn�1 C 1 with probability p and Sn D Sn�1 � 1 with probability q. In
this chapter we consider the symmetric case p D q D 1=2.

Here are two possible interpretations. We may think of Sn as the winnings
(possibly negative) of a certain gambler after n one dollar bets. For each bet the
gambler wins $1 with probability p and loses $1 with probability q. Another (more
poetic) interpretation is to think of Sn as the position of a walker after n steps on Z.
The walker takes one step to the right with probability p or one step to the left with
probability q.

Given the simplicity of the model random walks have a surprisingly rich
mathematical behavior and can be used to model many different questions.

© Springer Science+Business Media New York 2014
R.B. Schinazi, Classical and Spatial Stochastic Processes: With Applications
to Biology, DOI 10.1007/978-1-4939-1869-0__3
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1 Graphical Representation

Consider the simple symmetric random walk .Sn/n�0 on Z. The event fSn D sg
is represented in the plane by the point .n; s/. Starting with S0 D 0 (which is
represented by the point .0; 0/) there are a number of ways to get Sn D s. We
now give an example.

Example 1.1. What outcomes yield S4 D 2?
First note that the gambler must have won 3 bets and must have lost 1 bet. There

are four ways to achieve that:

.S0; S1; S2; S3; S4/ D .0; �1; 0; 1; 2/

.S0; S1; S2; S3; S4/ D .0; 1; 0; 1; 2/

.S0; S1; S2; S3; S4/ D .0; 1; 2; 1; 2/

.S0; S1; S2; S3; S4/ D .0; 1; 2; 3; 2/

Each one of these four ways corresponds to a certain path in the plane. For
instance, .S0; S1; S2; S3; S4/ D .0; 1; 0; 1; 2/ corresponds to the path in Fig. 3.1.

We now give a formal definition of a path.

Definition 1.1. Let n � m be two positive integers. Let s and t be two integers.
A path from .n; s/ to .m; t/ is a sequence of points .i; si /n�i�m such that sn D s,
sm D t , and jsi � siC1j D 1 for all integers i in Œn; m � 1�.

Let n and k be two integers such that 0 � k � n. Recall the definition of the
binomial coefficient

�
n

k

�
D nŠ

kŠ.n � k/Š

n

s

2 4

1

2

Fig. 3.1 This is one of the four possible paths from .0; 0/ to .4; 2/
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where if k � 1

kŠ D 1 � 2 � : : : � k

and 0Š equals 1.
Recall also that the number of ways to place k identical objects in n different

spots is given by

�
n

k

�
. Going back to Example 1.1, for S4 D 2 we have three

upwards steps and one downwards step. The number of ways to position the three
upwards steps among a total of four steps is

�
4

3

�
D 4

If we know in which position the upwards steps are we also know in which position
the downwards step is. This determines a unique path. Hence, there are four possible
paths from .0; 0/ to .4; 2/.

We are now ready to count the number of paths from the origin to some fixed
point.

Proposition 1.1. Let s and n � 0 be integers. If n C s is even, then the number of
paths from .0; 0/ to .n; s/ is

�
n

nCs
2

�

If n C s is odd, then there are no paths going from .0; 0/ to .n; s/. For instance,
there are no paths going from .0; 0/ to .3; 0/ (why?).

Observe also that in order to go from .0; 0/ to .n; s/ we must have �n � s � n.

Proof of Proposition 1.1. Any path from .0; 0/ to .n; s/ has exactly n steps. Each
step in the path is either C1 or �1. Let nC � 0 be the number of C1 steps and
n� � 0 be the number of �1 steps. Since the total number of steps is n we must
have

n D nC C n�:

After n steps the path has reached nC � n� (why?). Hence,

s D nC � n�:

Solving for nC and n� we get

nC D n C s

2
and n� D n � s

2
:
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The solutions nC and n� need to be positive integers. Hence, n C s must be even.
As noted above a path is uniquely determined by the position of its C1 (or

upwards) steps. Hence, there are

�
n

nC
�

paths going from .0; 0/ to .n; s/. We could have used the downwards steps instead
of the upwards steps. It is easy to check that

�
n

nC
�

D
�

n

n�
�

;

see the problems. This completes the proof of Proposition 1.1.

Consider a path with points

.n; s1/; .n C 1; s2/ : : : .m; sm�n/:

This path is said to intersect the n-axis if and only if there is at least one i in
Œ1; m � n� such that si D 0.

A very useful tool to count the number of paths in certain situations is the
following so-called Reflection Principle.

Proposition 1.2. Let 0 � n < m and 0 � s < t be four integers. Let A, A’, and C
have coordinates .n; s/, .n; �s/, and .m; t/, respectively. The number of paths from
A to C that intersect the n axis equals the total number of paths from A’ to C (see
Fig. 3.2).

Proof of Proposition 1.2. Consider a path from A to C that intersects the n axis. It
is a sequence of points with coordinates .n; s1/, .n C 1; s2/ : : : .m; sm�n/ such that
s1 D s and sm�n D t and jsi � siC1j D 1 for all integers i in Œ1; m � n�. Moreover,
since the path intersects the n axis we must have si D 0 for at least one i . Let b be
the smallest of such indices. That is,

b D minfi 2 Œ1; m � n� W si D 0g:

Let the point B have coordinates .b; 0/, see Fig. 3.2. Consider now the path

.n; �s1/; .n C 1; �s2/ : : : .b; 0/.b C 1; sbC1/ : : : .m; sm�n/:

That is, we take the reflection of the first b points (with respect to the n-axis) and
keep the other points as they are to get a new path going from A’ to C.
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B

C
A

A’

n

s

Fig. 3.2 A has coordinates .n; s/, A’ has coordinates .n; �s/, and B has coordinates .m; t/. A’ is
the reflection of A with respect to the n axis. There are as many paths from A to C that intersect
the n axis as the total number of paths from A’ to C

This construction shows that for every path from A to C that intersects the n axis
corresponds a path from A’ to C. Conversely we can start with a path from A’ to C.
It must intersect the n axis and we may define the point B as above. By taking the
reflection of the points up to B we get a new path going from A to C. Hence, there is
one-to-one correspondence between the paths from A to C that intersect the n axis
and the paths from A’ to C. This proves Proposition 1.2.

We now give a first application of the Reflection Principle.

Proposition 1.3. Let 0 < s < n such that n C s is even. The number of paths from
.0; 0/ to .n; s/ such that s0 D 0; s1 > 0; s2 > 0 : : : ; sn D s is

�
n � 1

nCs
2

� 1

�
�

�
n � 1

nCs
2

�
D s

n

�
n

nCs
2

�

Paths with the property described in Proposition 1.3 will be said to be in the
positive quadrant.

Note that if s D n there is only one path from .0; 0/ to .n; s/ since all steps need
to be upwards.

By Proposition 1.1. the total number of paths from .0; 0/ to .n; s/ is

�
n

nCs
2

�
.

Hence, by Proposition 1.3 the fraction of paths that stay in the positive quadrant
is s

n
.

Proof of Proposition 1.3. We are counting the number of paths that stay in the
positive quadrant. The first step must be upwards. Therefore the second point in
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the path must be .1; 1/. The total number of paths from .1; 1/ to .n; s/ equals the
total number of paths from .0; 0/ to .n � 1; s � 1/ (why?). By Proposition 1.1 this
number is

�
n � 1

n�1Cs�1
2

�
D

�
n � 1

nCs
2

� 1

�

But we want only the paths from .1; 1/ to .n; s/ that do not intersect the n axis. By
Proposition 1.2 the number of paths we want to exclude is the total number of paths
from .1; �1/ to .n; s/. That is,

�
n � 1

nCs
2

�

Therefore, the number of paths that stay in the positive quadrant is

�
n � 1

nCs
2

� 1

�
�

�
n � 1

nCs
2

�

It is now easy to show that this difference can also be written as s
n

�
n

nCs
2

�
. See the

problems. This concludes the proof of Proposition 1.3.

Example 1.2. Going back to Example 1.1, how many paths go from .0; 0/ to .4; 2/

and stay in the positive quadrant?
As we already saw the total number of paths from .0; 0/ to .4; 2/ is 4. The fraction

that stay in the positive quadrant is s
n

D 2
4
. Hence, there are two such paths. We can

check this result by direct inspection. The two paths are

.S0; S1; S2; S3; S4/ D .0; 1; 2; 1; 2/

.S0; S1; S2; S3; S4/ D .0; 1; 2; 3; 2/

2 Returns to 0

So far we have counted paths. Now we are going to use the path counting to compute
probabilities. Consider all the paths starting at .0; 0/ with n steps. At each step
there are two choices (upwards or downwards), hence there are 2n such paths. Since
upwards and downwards steps are equally likely all 2n paths are equally likely. That
is, the probability of any given path is 1

2n .
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Example 2.1. As we have seen in Example 1.1 there are four paths from .0; 0/ to
.4; 2/. The paths from .0; 0/ to .4; 2/ form a subset of all possible paths with four
steps starting at .0; 0/. Hence,

P.S4 D 2jS0 D 0/ D 4

24
D 1

4
:

On the other hand if we want the probability of reaching .2; 4/ only through paths
in the positive quadrant we have only two such paths. Hence,

P.S1 > 0; S2 > 0; S3 > 0; S4 D 2jS0 D 0/ D 2

24
D 1

8
:

We are particularly interested in paths that return to 0. Returns to 0 can only
happen at even times. Let

u2n D P.S2n D 0jS0 D 0/ D P0.S2n D 0/:

By Proposition 1.1 there are

�
2n

n

�
paths from .0; 0/ to .2n; 0/. Each path has 2n

steps. Hence,

u2n D 1

22n

�
2n

n

�

for all n � 0. Note that u0 D 1.
As the next three propositions will show probabilities of more involved events

can be computed using u2n. These propositions will be helpful in the finer analysis
of random walks that will be performed in the next section. Their proofs illustrate
the power of the graphical method and of the reflection principle.

Proposition 2.1. We have for all n � 1

P.S1 > 0; S2 > 0; : : : ; S2n > 0jS0 D 0/ D 1

2
u2n:

Proof of Proposition 2.1. Observe that S2n is even and can be anywhere from 2 to
2n if S2n > 0. Hence,

P0.S1 > 0; S2 > 0; : : : ; S2n > 0/ D
nX

kD1

P0.S1 > 0; S2 > 0; : : : ; S2n D 2k/;

where P0 denotes the conditioning on S0 D 0. If k � n � 1, we can use
Proposition 1.3 (where 2n plays the role of n and 2k plays the role of s) to get
that
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P0.S1 > 0; S2 > 0; : : : ; S2n D 2k/ D 1

22n

� �
2n � 1

n C k � 1

�
�

�
2n � 1

n C k

� �

For 1 � k � n let

ak D 1

22n�1

�
2n � 1

n C k � 1

�

Note that ak depends on k and n. A better (but more cumbersome) notation is ak;n.
We choose to omit n in the notation since n remains constant in our computation
below. For k � n � 1

P0.S1 > 0; S2 > 0; : : : ; S2n D 2k/ D 1

2

� 1

22n�1

�
2n � 1

n C k � 1

�
� 1

22n�1

�
2n � 1

n C k

� �

D 1

2
.ak � akC1/:

On the other hand, if k D n, then

P0.S1 > 0; S2 > 0; : : : ; S2n D 2n/ D 1

22n
:

Note that the r.h.s. equals 1
2
an. Therefore,

P0.S1 > 0; S2 > 0; : : : ; S2n > 0/ D
nX

kD1

P0.S1 > 0; S2 > 0; : : : ; S2n D 2k/

D 1

2

n�1X

kD1

.ak � akC1/ C 1

2
an:

All the terms in the previous sum cancel except for the first one. Thus,

P0.S1 > 0; S2 > 0; : : : ; S2n > 0/ D 1

2
a1:

A little algebra shows that a1 D u2n. This completes the proof of Proposition 2.1.

Proposition 2.2. We have for all n � 1

P0.S1 6D 0; S2 6D 0; : : : ; S2n 6D 0/ D u2n

Proof of Proposition 2.2. Observe that

P0.S1 6D 0; S2 6D 0; : : : ; S2n 6D 0/ D P0.S1 > 0; S2 > 0; : : : ; S2n > 0/

CP0.S1 < 0; S2 < 0; : : : ; S2n < 0/:
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Note now that there as many paths corresponding to the event fS0 D 0; S1 > 0; S2 >

0; : : : ; S2n > 0g as there are corresponding to fS0 D 0; S1 < 0; S2 < 0; : : : ; S2n <

0g (why?). Hence, by Proposition 2.1

P0.S1 6D 0; S2 6D 0; : : : ; S2n 6D 0/ D 2P0.S1 > 0; S2 > 0; : : : ; S2n > 0/ D u2n:

This completes the proof of Proposition 2.2.

Proposition 2.3. We have for all n � 1

P0.S1 � 0; S2 � 0; : : : ; S2n � 0/ D u2n

Proof of Proposition 2.3. This proof is similar to the proof of Proposition 2.1. Note
first that

P0.S1 � 0; S2 � 0; : : : ; S2n � 0/ D P0.S1 > �1; S2 > �1; : : : ; S2n > �1/:

We have

P0.S1 > �1; S2 > �1; : : : ; S2n > �1/ D
nX

kD0

P0.S1 > �1; S2 > �1; : : : ; S2nD2k/:

The event fS0 D 0; S1 > �1; S2 > �1; : : : ; S2n D 2kg corresponds to paths
from .0; 0/ to .2n; 2k/ that do not intersect the s D �1 axis. We can easily adapt
the Reflection Principle to this situation. Doing a reflection with respect to the line
s D �1 shows that the number of paths from .0; 0/ to .2n; 2k/ that do intersect the
s D �1 axis equals the total number of paths from .0; �2/ to .2n; 2k/. This in turn
is the same as the total number of paths from .0; 0/ to .2n; 2k C 2/. Therefore, the
number of paths from .0; 0/ to .2n; 2k/ that do not intersect the s D �1 axis is

�
2n

n C k

�
�

�
2n

n C k C 1

�

for k � n � 1. For k D n there is only one such path. Hence,

P0.S1> �1; S2> �1; : : : ; S2n> �1/D
nX

kD0

P0.S1> �1; S2> �1; : : : ; S2n D 2k/

D
n�1X

kD0

1

22n

� �
2n

n C k

�
�

�
2n

n C k C 1

� �
C 1

22n
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It is easy to see that all the terms in the last sum cancel except for the first one.
That is,

P0.S1 > �1; S2 > �1; : : : ; S2n > �1/ D 1

22n

�
2n

n

�
D u2n:

This completes the proof of Proposition 2.3.

3 Recurrence

We now turn to the probability of first return to the origin. As noted before a return
to the origin can only occur at even times. The probability f2n of a first return to the
origin at time 2n is defined for n D 1 by

f2 D P.S2 D 0jS0 D 0/

and for n � 2 by

f2n D P.S2 6D 0; S4 6D 0; : : : ; S2n�2 6D 0; S2n D 0jS0 D 0/:

It turns out that f2n can be expressed using u2n. Recall that u2n is the probability of
a return (not necessarily the first!) to 0 at time 2n. We know that

u2n D P.S2n D 0jS0 D 0/ D 1

22n

�
2n

n

�

and that u0 D 1.

Proposition 3.1. We have for all n � 1

f2n D u2n�2 � u2n:

Proof of Proposition 3.1. We first recall an elementary probability fact. We denote
the complement of B (everything not in B) by Bc .

Lemma 3.1. Assume that A and B are two events such that B � A. Then

P.A \ Bc/ D P.A/ � P.B/:

Proof of Lemma 3.1. We have

P.A/ D P.A \ B/ C P.A \ Bc/:

Since B � A then A \ B D B . Hence,
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P.A/ D P.B/ C P.A \ Bc/:

That is,

P.A \ Bc/ D P.A/ � P.B/:

This completes the proof of Lemma 3.1.

Back to the proof of Proposition 3.1. Consider first the case n � 2. Define the
events A and B by

A D fS2 6D 0; S4 6D 0; : : : ; S2n�2 6D 0g
B D fS2 6D 0; S4 6D 0; : : : ; S2n�2 6D 0; S2n 6D 0g:

Note that

A \ Bc D fS2 6D 0; S4 6D 0; : : : ; S2n�2 6D 0; S2n D 0g:

Since B � A Lemma 3.1 applies and we have

P.A \ Bc/ D P.A/ � P.B/:

Note that

P.A \ Bc/ D f2n:

By Proposition 2.2

P.A/ D u2n�2

and

P.B/ D u2n:

Hence, for all n � 2

f2n D u2n�2 � u2n:

We now deal with n D 1. Note that

f2 D u2 D P.S2 D 0jS0 D 0/:

Moreover, it is easy to see that P.S2 D 0jS0 D 0/ D 1
2

(why?). Since u0 D 1

we have that f2 D u0 � u2. Hence, the formula holds for n D 1 as well and this
completes the proof of Proposition 3.1.
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We have an exact formula for u2n. However, it will be useful to have an estimate
for u2n that does not involve binomial coefficients. This is what we do next.

Lemma 3.2. We have that

u2n D P.S2n D 0jS0 D 0/ D 1

22n

�
2n

n

�
� 1p

�n
;

where an � bn indicates that an

bn
converges to 1 as n goes to infinity.

Proof of Lemma 3.2. The proof is a simple application of Stirling’s formula:

nŠ � p
2�nnC 1

2 e�n:

For a proof of this formula see, for instance, Schinazi (2011).
By definition of a binomial coefficient we have

�
2n

n

�
D .2n/Š

nŠnŠ
:

By Stirling’s formula

�
2n

n

�
�

p
2�.2n/2nC 1

2 e�2n

.
p

2�nnC 1
2 e�n/2

:

After simplification of the ratio we get

�
2n

n

�
� 22n

p
�n

and hence

u2n � 1p
�n

:

This completes the proof of Lemma 3.2.

Proposition 3.1 and Lemma 3.2 are useful to prove the following important result.

Theorem 3.1. Starting at 0 the probability that the symmetric random walk will
return to 0 is 1. The symmetric random walk is said to be recurrent.

Proof of Theorem 3.1. We want to show that with probability 1 there is a finite
(random) time at which the walk returns to 0. It is obvious that the walk may return
to 0 with some positive probability (why?). What is not obvious is that the walk will
return to 0 with probability 1.
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Let F be the time of the first return to 0. That is,

fF D 2ng D fS2 6D 0; S4 6D 0; : : : ; S2n�2 6D 0; S2n D 0g:

In particular,

P.F D 2n/ D f2n:

The event “the random walk will return to 0” is the same as the event fF < 1g.
Now

P.F < 1/ D
1X

nD1

P.F D 2n/ D
1X

nD1

f2n:

To prove the Theorem it is necessary and sufficient to show that this infinite series
is 1. We first look at the partial sum. Let

a2k D
2kX

nD1

f2n:

By Proposition 3.1 we have

a2k D
2kX

nD1

.u2n�2 � u2n/:

All the terms of the sum cancel except for the first and last. Hence,

a2k D u0 � u2k:

By Lemma 3.2

lim
k!1 u2k D 0:

Since u0 D 1 we get that

lim
k!1 a2k D 1:

We may conclude that the series
P1

nD1 f2n converges to 1. This completes the proof
of Theorem 3.1.

We finish this section with a rather intriguing result.

Theorem 3.2. Starting at 0 the expected time for the symmetric random walk to
return to 0 is infinite.
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Theorem 3.1 tells us that a return to 0 happens with probability 1. However,
Theorem 3.2 tells us that the expected time to return is infinite! The symmetric
random walk is said to be null recurrent. Theorem 3.2 shows that it may take a very
long time for the walk to return.

Proof of Theorem 3.2. With the notation of the proof of Theorem 3.1 we want to
prove that the expected value of F is infinite. We have

E.F / D
1X

nD1

.2n/f2n:

From Proposition 3.1 and the exact formula for u2n it is not difficult to show (see
the problems) that for n � 1

f2n D 1

2n � 1
u2n:

Therefore, by Lemma 3.2

f2n � 1

2n � 1

1p
�n

� 1

2
p

�n
3
2

:

Hence,

.2n/f2n � 1p
�n

1
2

:

Therefore, the series
P1

nD1.2n/f2n diverges (why?) and E.F / D C1. This
completes the proof of Theorem 3.2.

4 Last Return to the Origin

Starting the random walk at 0 let L2n be the time of the last return to the origin up
to time 2n. That is, for k D 0; 1; : : : ; n

P.L2n D 2kjS0 D 0/ D P.S2k D 0; S2kC2 6D 0; : : : ; S2n 6D 0jS0 D 0/:

The next result gives the distribution of this random variable.

Theorem 4.1. Let L2n be the time of the random walk last return to the origin up
to time 2n. We have for k D 0; 1; : : : ; n

P.L2n D 2kjS0 D 0/ D u2ku2n�2k
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where

u2n D 1

22n

�
2n

n

�

This result is interesting in several ways.

1. Note that the distribution is symmetric in the sense that

P.L2n D 2kjS0 D 0/ D P.L2n D 2n � 2kjS0 D 0/:

In particular, assuming n is odd

P.L2n < n/ D P.L2n > n/ D 1

2
:

From a gambler’s perspective this means that there is a probability 1/2 of no
equalization for the whole second half of the game, regardless of the length of
the game!

2. The most likely values for L2n are the extreme values 0 and 2n. The least likely
value is the mid value (i.e., n if n is even, n � 1 and n C 1 if n is odd). See
the problems. From a gambler’s perspective this shows that long leads in the
game (i.e., one gambler is ahead for a long time) are more likely than frequent
changes in the lead.

3. Theorem 4.1 is called the discrete arcsine law because the distribution of L2n

can be approximated using the inverse function of sine. See Feller (1968) or
Lesigne (2005).

Proof of Theorem 4.1. Since L2n is the time of last return we have

P.L2n D 2kjS0 D 0/ D P.S2k D 0; S2kC2 6D 0; : : : ; S2n 6D 0jS0 D 0/:

By the definition of conditional probability we have

P.L2nD2kjS0D0/DP.S2kC2 6D 0; : : : ; S2n 6D 0jS0D0; S2kD0/P.S2kD0jS0D0/:

By definition of u2n we have

P.S2k D 0jS0 D 0/ D u2k:

To complete the proof we need to show that

P.S2kC2 6D 0; : : : ; S2n 6D 0jS0 D 0; S2k D 0/ D u2n�2k:

Given that S2k D 0 the information S0 D 0 is irrelevant for the process Sn for
n � 2k (this is the Markov property). Hence,



62 3 The Simple Symmetric Random Walk

P.S2kC2 6D 0; : : : ; S2n 6D 0jS0D0; S2kD0/DP.S2kC2 6D 0; : : : ; S2n 6D 0jS2kD0/

and by shifting the time by 2k we get

P.S2kC2 6D 0; : : : ; S2n 6D 0jS2k D 0/ D P.S2 6D 0; : : : ; S2n�2k 6D 0jS0 D 0/:

By Proposition 2.2 we have

P.S2 6D 0; : : : ; S2n�2k 6D 0jS0 D 0/ D u2n�2k:

This completes the proof of Theorem 4.1.

Problems

1. (a) For integers n and k such that 0 � k � n show that

�
n

k

�
is equal to

�
n

n � k

�
.

(b) With the notation of Proposition 1.1 show that

�
n

nC
�

is equal to

�
n

n�
�

2. Show that
�

n � 1
nCs

2
� 1

�
�

�
n � 1

nCs
2

�
D s

n

�
n

nCs
2

�

3. Show that

1

22n�1

�
2n � 1

n

�
D 1

22n

�
2n

n

�

4. Let

A D fS0 D 0; S1 > 0; S2 > 0; : : : ; S2n > 0g
and

B D fS0 D 0; S1 < 0; S2 < 0; : : : ; S2n < 0g:

(a) Show that there are as many paths in A as there are in B .
(b) Show that

P.S0 D 0; S1 6D 0; : : : ; S2n 6D 0/ D P.A/ C P.B/:
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5. (a) Show that the number of paths from .0; 0/ to .2n; 2k/ that do intersect the
s D �1 axis equals the total number of paths from .0; �2/ to .2n; 2k/.

(b) Show that the total number of paths from .0; �2/ to .2n; 2k/ is the same as the
total number of paths from .0; 0/ to .2n; 2k C 2/.

6. Recall that u2n is the probability of a return to 0 at time 2n and that

u2n D P.S2n D 0jS0 D 0/ D 1

22n

�
2n

n

�

(a) Compute u2n for n D 0; 1; : : : ; 10.
(b) Compare the exact computations done in (a) to the approximation done in

Lemma 3.2.
(c) Show that u2n is a decreasing sequence.
(d) Show that limn!1 u2n D 0:

(e) Show that

1X

nD0

u2n D C1:

7. (a) Show that

P.S2 D 0jS0 D 0/ D 1

2
:

(b) Theorem 3.1 states that starting at 0 the symmetric random walk returns to
0 with probability 1. Without using this result show that the probability of
returning to 0 is at least 1/2. (Use (a)).

8. (a) Use that f2n D u2n�2 � u2n and that

u2n D 1

22n

�
2n

n

�

to show that

f2n D 1

2n � 1
u2n;

for n � 1.
(b) For which n do we have u2n D f2n?

9. Let Un be a sequence of i.i.d. uniform random variables on .0; 1/. Let S0 D 0

and for n � 1 let
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Sn D Sn�1 C 2.Un <
1

2
/ � 1;

where .Un < 1
2
/ D 1 if Un < 1

2
and .Un < 1

2
/ D 0 if Un > 1

2
.

(a) Explain why the algorithm above simulates a random walk.
(b) Use the algorithm to simulate a random walk with 10;000 steps.

10. (a) Use the algorithm in 9 to simulate the first return time to 0 (denoted by F ).
(b) Show that F is a very dispersed random variable.

11. Recall that

u2n D 1

22n

�
2n

n

�

(a) Compute

ak D u2ku10�2k

for k D 0; 1; : : : ; 10.
(b) For which k is ak maximum? Minimum?

12. Recall that L2n is the time of the random walk last return to the origin up to
time 2n. Let n be odd.

Show that

P.L2n < n/ D P.L2n > n/ D 1

2
:

13. I am betting 1$ on heads for 100 bets.

(a) What is the probability that I am ahead during the whole game?
(b) What is the probability that I am never ahead?

14. Let n and k be positive integers such that 0 � k � n.

(a) Show that

P.S2n D 0jS0 D 0/ � P.S2n D 0; S2k D 0jS0 D 0/:

(b) Show that

P.S2n D 0; S2k D 0jS0 D 0/ D P.S2n�2k D 0jS0 D 0/P.S2k D 0jS0 D 0/:

(c) Use (a) and (b) to show that

u2n � u2n�2ku2k:
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15. I place $1 bets 30 times in a fair game.

(a) What is the probability that I make a gain of $6?
(b) What is the probability that I make a gain of $6 and that at some point in the

game I was behind by $5 or more?

Notes

We followed Feller (1968) in this chapter. There are many more results for random
walks there. A more advanced treatment that concentrates on limit theorems for
random walks is Lesigne (2005). An advanced beautiful book on random walks is
Spitzer (1976).
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Chapter 4
Asymmetric and Higher Dimension
Random Walks

In this chapter we extend our study of random walks to more general cases. We state
an important criterion for recurrence that we apply to random walks.

1 Transience of Asymmetric Random Walks

We have seen in the preceding chapter that the symmetric random walk on Z
is recurrent. That is, a walk starting at the origin will return to the origin with
probability 1. We computed the probability of return and we showed that this
probability is 1. In many cases it is easier to apply the following recurrence criterion
rather than compute the return probability.

First we recall the notation from the preceding chapter.
Let Sn be the position of the walker at time n � 0 and let

u2n D P.S2n D 0jS0 D 0/:

Theorem 1.1. The random walk .Sn/n�0 is recurrent if and only if

1X

nD0

u2n D C1:

In fact Theorem 1.1 is a general result that applies to all Markov chains. We will
prove it in that context in the next chapter.

Example 1.1. Recall that in the symmetric case we have

u2n D P.S2n D 0jS0 D 0/ D 1

22n

�
2n

n

�
� 1p

�n
:
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Hence, the series
P1

nD0 u2n diverges. This is another proof that the one dimensional
symmetric random walk is recurrent.

Consider the one dimensional random walk .Sn/n�0 on Z. We have
Sn D Sn�1 C 1 with probability p and Sn D Sn�1 � 1 with probability q D 1 � p.

We will now show that if p 6D 1
2

the random walk is transient. We use
Theorem 1.1 to determine for which values of p 2 Œ0; 1� the one dimensional
random walk is recurrent.

We take p to be in (0,1). It is easy to see that in order for the walk to come back
to the origin at time 2n we need n steps to the right and n steps to the left. We have
to count all possible combinations of left and right steps. Thus,

u2n D
�

2n

n

�
pnqn D .2n/Š

nŠnŠ
pnqn:

In order to estimate the preceding probability we use Stirling’s formula:

nŠ � nne�n
p

2�n

where an � bn means that limn!1 an

bn
D 1: Stirling’s formula yields

u2n � .4pq/n

p
�n

:

It is easy to check that 4pq < 1 if p 6D 1
2

and 4pq D 1 if p D 1
2
.

Assume first that p 6D 1
2
. By the ratio test from Calculus we see that

X

n�0

u2n

converges. Hence, the random walk is transient.
The one dimensional simple random walk is recurrent if and only if it is

symmetric. In other words, in the asymmetric case there is a strictly positive
probability of never returning to the origin.

2 Random Walks in Higher Dimensions

2.1 The Two Dimensional Walk

We consider the two dimensional simple symmetric random walk. The walk is on
Z2 and at each step four transitions (two vertical transitions and two horizontal
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transitions) are possible. Each transition has probability 1=4. For instance, starting
at .0; 0/ the walk can jump to .0; 1/, .0; �1/, .1; 0/ or .�1; 0/.

In order for the two dimensional random walk to return to the origin in 2n steps
it must move i units to the right, i units to the left, j units up, and j units down
where 2i C 2j D 2n. Hence

u2n D
nX

iD0

.2n/Š

i Ši Š.n � i/Š.n � i/Š
.
1

4
/2n:

Dividing and multiplying by .nŠ/2 yields

u2n D .2n/Š

nŠnŠ

nX

iD0

nŠnŠ

i Ši Š.n � i/Š.n � i/Š
.
1

4
/2n;

hence

u2n D
�

2n

n

� nX

iD0

�
n

i

� �
n

n � i

�
.
1

4
/2n:

We have the following combinatorial identity.

nX

iD0

�
n

i

� �
n

n � i

�
D

�
2n

n

�
:

See the problems for a proof. Hence,

u2n.O; O/ D
�

2n

n

�2

.
1

4
/2n:

Using Stirling’s formula we get

u2n.O; O/ � 1

�n
:

By Theorem 1.1 this proves that the two dimensional random walk is recurrent
(why?).

2.2 The Three Dimensional Walk

We now turn to the analysis of the three dimensional simple symmetric random
walk. The walk is on Z3 and the only transitions that are allowed are plus or minus
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one unit for one coordinate at the time, the probability of each of these six transitions
is 1

6
. By a reasoning similar to the one we did in two dimensions we get

u2n D
nX

iD0

n�iX

j D0

.2n/Š

i Ši Šj Šj Š.n � i � j /Š.n � i � j /Š
.
1

6
/2n:

We multiply and divide by .nŠ/2 to get

u2n D .
1

2
/2n

�
2n

n

� nX

iD0

n�iX

j D0

.
nŠ

i Šj Š.n � i � j /Š
/2.

1

3
/2n:

Let

c.i; j / D nŠ

iŠj Š.n � i � j /Š
for 0 � i C j � n;

and

mn D max
i;j;0�iCj �n

c.i; j /:

We have

u2n �
�

2n

n

�
.
1

2
/2n.

1

3
/nmn

nX

iD0

n�iX

j D0

nŠ

i Šj Š.n � i � j /Š
.
1

3
/n;

but

.
1

3
C 1

3
C 1

3
/n D

nX

iD0

n�iX

j D0

nŠ

i Šj Š.n � i � j /Š
.
1

3
/n D 1:

Hence

u2n � .
1

2
/2n

�
2n

n

�
.
1

3
/nmn:

We now need to estimate mn. Suppose that the maximum of the c.i; j / occurs at
.i0; j0/ then the following inequalities must hold:

c.i0; j0/ � c.i0 � 1; j0/

c.i0; j0/ � c.i0 C 1; j0/

c.i0; j0/ � c.i0; j0 � 1/

c.i0; j0/ � c.i0; j0 C 1/:
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These inequalities imply that

n � i0 � 1 � 2j0 � n � i0 C 1

n � j0 � 1 � 2i0 � n � j0 C 1:

Hence,

n � 1 � 2j0 C i0 � n C 1

n � 1 � 2i0 C j0 � n C 1:

Therefore, the approximate values for i0 and j0 are n=3. We use this to get

u2n � .
1

2
/2n

�
2n

n

�
c.

n

3
;

n

3
/.

1

3
/n:

We use again Stirling’s formula to get that the right-hand side of the last inequality
is asymptotic to C

n3=2 where C is a constant. This proves that
P

n�0 u2n is convergent
and therefore the three dimensional random walk is transient. In other words there
is a positive probability that the three dimensional random walk will never return
to the origin. This is in sharp contrast with what happens for the random walk in
dimensions one and two.

3 The Ruin Problem

Consider a gambler who is making a series of 1$ bets. He wins $1 with probability
p and loses $1 with probability q D 1 � p. His initial fortune is m. He plays until
his fortune is 0 (he is ruined) or N. We would like to compute the probability of
ruin. Note that

P.ruin/ D P.F0 < FN jX0 D m/;

where Fi is the time of the first visit to state i . That is,

Fi D minfn � 1 W Xn D ig:

The following result gives explicit formulas for the probability of ruin.

Proposition 3.1. Assume that the initial fortune of the gambler is m and that
he plays until he is ruined or his fortune is N > m. For p 6D q the probability of
ruin is
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P. ruin/ D
.

q

p
/m � .

q

p
/N

1 � .
q

p
/N

:

For p D q D 1
2

we have

P. ruin/ D 1 � m

N
:

Proof of Proposition 3.1. Let 0 < m < N and let

u.m/ D P.F0 < FN jX0 D m/:

That is, u.m/ is the probability of ruin if the starting fortune is m. Set u.0/ D 1 and
u.N / D 0. We condition on the first bet to get

u.m/ D P.F0 < FN I X1 D m�1jX0 D m/CP.F0 < FN I X1 D mC1jX0 D m/:

By the Markov property this implies that for 1 � m < N

u.m/ D qu.m � 1/ C pu.m C 1/ (3.1)

Equation (3.1) for m D 1; : : : ; N � 1 are called difference equations. We look
for r such that u.m/ D rm is a solution of (3.1). Therefore,

rm D qrm�1 C prmC1:

Hence, r must be a solution of

r D q C pr2:

This quadratic equation is easily solved and we see that r D 1 or r D q

p
. There are

two cases to consider.

• If q

p
6D 1, then we let

u.m/ D A.1/m C B.
q

p
/m D A C B.

q

p
/m:

It is easy to check that A C B.
q

p
/m is a solution of (3.1). It is also possible to

show that A C B.
q

p
/m is the unique solution of (3.1) under the boundary conditions

u.0/ D 1 and u.N / D 0, see the problems. This is important for we want to be sure
that u.m/ is the ruin probability, not some other solution of (3.1). We now find A

and B by using the boundary conditions. We get

u.0/ D A C B D 1
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u.N / D A C B.
q

p
/N D 0:

The solution of this system of linear equations is

A D �
.

q

p
/N

1 � .
q

p
/N

; B D 1

1 � .
q

p
/N

:

Hence, for q

p
6D 1 and 1 < m < N

u.m/ D A C B.
q

p
/m D

.
q

p
/m � .

q

p
/N

1 � .
q

p
/N

:

• If q

p
D 1, then the equation r D q C pr2 has a double root r D 1. In this case

we let

u.m/ D A C Bm:

Again we can check that ACBm is the unique solution of (3.1) under the conditions
u.0/ D 1 and u.N / D 0, see the Problems. We find A and B using the boundary
conditions. From u.0/ D 1 we get A D 1 and from u.N / D 0 we get B D � 1

N
:

Hence, for q

p
D 1 and 1 < m < N we have

u.m/ D 1 � m

N
:

This completes the proof of Proposition 3.1.

Example 3.1. A roulette has 38 pockets, 18 are red, 18 are black, and 2 are green.
A gambler bets on red at the roulette. The gambler bets 1$ at a time. His initial
fortune is 90$ and he plays until his fortune is 0$ or 100$. Note that p D 18

38
and so

q

p
D 20

18
: By Proposition 3.1

P.ruin/ D P.F0 < F100jX0 D 90/ D . 20
18

/90 � . 20
18

/100

1 � . 20
18

/100
� 0:65:

Hence, even though the player is willing to lose $90 to gain $10 his probability
of succeeding is only about 1/3. This is so because the game is unfair.

Example 3.2. We continue Example 3.1. What if the game is fair (i.e., p D q)?
This time the probability of ruin is

P. ruin/ D P.F0 < F100jX0 D 90/ D 1 � 90

100
D 1

10
:

So in a fair game the probability of success for the player goes up to 90 %.
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Example 3.3. Going back to Example 3.1. What if the gambler plays 10$ a bet
instead of 1$?

Our ruin probability formula holds for games that go up or down one unit at a
time. To use the formula we define one unit to be $10. Hence,

P.ruin/ D P.F0 < F10jX0 D 9/ D . 20
18

/9 � . 20
18

/10

1 � . 20
18

/10
� 0:15:

Therefore, this is a much better strategy. The probability of success goes to 85 % if
the stakes are 10$ instead of 1$. However, this is still an uphill battle for the gambler.
He makes 10$ with probability 85 % but loses 90$ with probability 15 %. Hence his
average gains are

10 � 0:85 � 90 � 0:15 D �5$:

That is, the gambler is expected to lose $5.

3.1 The Greedy Gambler

Assume now that our gambler is greedy. He is never happy with his gains and goes
on playing forever. What is his probability of ruin?

Recall that for p 6D q we have

P.ruin/ D P.F0 < FN jX0 D m/ D
.

q

p
/m � .

q

p
/N

1 � .
q

p
/N

:

Since the gambler will never stop unless he is ruined we let N go to infinity in the
formula. There are three cases.

• Assume that p > q (the gambler has an advantage). Since .
q

p
/N goes to 0 as N

goes to infinity we have

P.ruin/ ! .
q

p
/m:

Hence, ruin is not certain and the probability of ruin goes down as the initial fortune
m goes up.

• Assume that p < q (the gambler has a disadvantage). Since .
q

p
/N goes to infinity

with N
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P.ruin/ �
�.

q

p
/N

�.
q

p
/N

D 1:

Hence, ruin is certain in this case.

• Assume that p D q D 1
2
. In this case ruin is certain as well. See the problems.

3.2 Random Walk Interpretation

We can also interpret these results using random walks. Assume that a random walk
starts at some m > 0. What is the probability that the random walk eventually
reaches 0?

Note that the probability of eventually reaching 0 is exactly the probability of
ruin. Hence, we have

• Assume that p > q. Then the probability that the random walk eventually reaches
0 is .

q

p
/m. Therefore, the probability of never reaching 0 is 1 � .

q

p
/m < 1. This is

not really surprising since the random walk has a bias towards the right.
• Assume that p < q. Then the probability that the random walk eventually reaches

0 is 1. In this case the walk is biased towards the left and will eventually reach 0.

3.3 Duration of the Game

We continue working on the ruin question. We now compute the expected time the
game lasts. Starting with a fortune equal to m the gambler plays until his fortune is
0 or N . We are interested in Dm the expected duration of the game.

Proposition 3.2. Assume that the initial fortune of the gambler is m and that he
plays until he is ruined or his fortune is N > m. Let Dm be the expected duration
of the game. For p 6D q

Dm D m

1 � 2p
� N

1 � 2p

1 � .
q

p
/m

1 � .
q

p
/N

:

For p D q

Dm D m.N � m/:

Proof of Proposition 3.2. We will use the same technique used for Proposition 3.1.
We set D0 D DN D 0. Assume from now that 0 < m < N . Condition on the

outcome of the first bet. If the first bet is a win, then the chain is at m C 1 after one



76 4 Asymmetric and Higher Dimension Random Walks

step and the expected remaining number of steps for the chain to be absorbed (at 0
or N ) is DmC1. If the first bet is a loss, then the chain is at m � 1 after one step and
the expected remaining number of steps for the chain to be absorbed is Dm�1. Thus,

Dm D p.1 C DmC1/ C q.1 C Dm�1/:

Hence, for 0 < m < N we have

Dm D 1 C pDmC1 C qDm�1 (3.2)

In order to solve these equations, it is convenient to get rid of the 1 in (3.2). To do
so we set am D Dm � Dm�1 for m � 1. Therefore,

am D pamC1 C qam�1: (3.3)

We look for solutions of the type ai D ri for a constant r . Setting ai D ri in (3.3)
gives the following characteristic equation.

r D pr2 C q:

Note this is the same equation we had in proof of Proposition 3.1. The characteristic
equation has two solutions 1 and q

p
. As before it is important to know whether these

roots are distinct. We will treat the case p 6D q and leave the case p D q for the
problems.

The unique solution of (3.3) is

am D A C B.
q

p
/m

where A and B will be determined by the boundary conditions.
We sum the preceding equality for j D 1 to m to get

mX

j D1

aj D
mX

j D1

.Dj � Dj �1/ D
mX

j D1

.A C B.
q

p
/j /:

This yields

Di � D0 D Di D iA C q

p

1 � .
q

p
/i

1 � q

p

B for i � 1 (3.4)

We now use boundary conditions to compute A and B . Writing DN D 0 yields

NA C q

p

1 � .
q

p
/N

1 � q

p

B D 0: (3.5)
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By (3.2) D1 D 1 C pD2. Using (3.4) to substitute D1 and D2 we get

A C q

p
B D 1 C p.2A C q

p

1 � .
q

p
/2

1 � q

p

B/: (3.6)

Note that (3.5) and (3.6) is a system of two linear equations in A and B . The solution
is given by

A D 1

1 � 2p
and B D 1

q

N
.1 � .

q

p
/N /

:

We use these values in (3.5) to get for m � 1

Dm D m

1 � 2p
� N

1 � 2p

1 � .
q

p
/m

1 � .
q

p
/N

:

This completes the proof of Proposition 3.2 for the case p 6D q. The case p D q

is treated in a similar fashion. See the problems.

The numerical values of Dm turn out to be quite large.

Example 3.4. We go back to Example 3.1. Hence, q

p
D 20

18
, N D100$ and the initial

fortune is m D90$. By Proposition 3.2 we get

D90 D 90

1 � 2 9
19

� 100

1 � 2 9
19

1 � . 20
18

/90

1 � . 20
18

/100
� 1;048:

That is, the game is expected to last $1,048 steps. This is unexpectedly long!
After all the player will stop if he makes 10$ or loses his 90$.

Example 3.5. We use the same values as in Example 3.5 with the difference that
p D q. We get by Proposition 3.2

D90 D 90.100 � 90/ D 900:

Again this is quite long. We need an average of 900 bets to gain $10 or lose $90.

Problems

1. A gambler makes a series of one dollar bets. He decides to stop playing as soon
as he wins 40$ or he loses 10$.

(a) Assume this is a fair game, compute the probability that the player wins.
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(b) Assume this is a slightly unfair game:

p D 9=19 q D 10=19;

and compute the probability that the player wins.
(c) Compute the expected gains in (a) and (b).

2. My initial fortune is $980. I stop playing when I reach $0 or $1,000. Assume
that the probability of winning a bet is p D 18

38
:

(a) Assume that I bet $1 at a time. Compute the probability of ruin.
(b) Compute the probability of ruin if I bet $20 at a time.
(c) I use the strategy in (b) once a year. What is the probability that I win 10 years

in a row?

3. Show that if the game is fair (i.e., p D 1=2) the probability of ruin does not
change if the stakes are changed.

4. Assume that p D 1=2 and let N go to infinity in the ruin probability. What is the
limit of the ruin probability? Interpret the result.

5. Consider the following (hypothetical) slot machine. Bets are 1$ each. The player
wins 1$ with probability 0.49 and loses 1$ with probability 0.51. Assume that the
slot machine starts with $100.

(a) What is the probability that the slot machine eventually runs out of money?
(b) Same question as (a) if the stakes are 10$.
(c) With 1$ bets, what is the probability that at least one of 20 machines eventually

runs out of money?

6. A gambler makes a series of one dollar bets. He decides to stop playing as soon
as he wins 40$ or he loses 10$.

(a) Assume this is a fair game, compute the expected number of bets before the
game stops.

(b) Assume this is a slightly unfair game with p D 9=19. Compute the expected
number of bets before the game stops.

7. Assume that the probability of winning a bet is p D 9
19

, the initial fortune is
m D90$ and N D100$. The gambler plays until he is ruined or his fortune is N .
Simulate the duration of the game 10 times.

8. Using the same values as in Problem 7 except that p D 1
2

do 10 simulations of
the duration of the game.

9. Assume that p 6D q. Show that A C B.
q

p
/m is a solution of (3.1).

10. Assume that p 6D q. Assume also that .bm/m�0 is a solution of (3.1).

(a) Show that there are A and B such that
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b0 D A C B

b1 D A C B
q

p

(b) Show (by induction) that for all m � 0

bm D A C B.
q

p
/m

for the constants A and B found in (a).
(c) Conclude that there exist A and B so that A C B.

q

p
/m is the unique solution

of (3.1).

11. Assume that p D q. Show that there exist A and B so that A C Bm is the
unique solution of (3.1). (Use steps similar to the ones in problems 9 and 10.)

12. Assume that p D q D 1
2
.

(a) Show that all the solutions of (3.3) are of the type am D A C Bm.
(b) Show that Dm D Am C B

2
m.m C 1/:

(c) Show that Dm D m.N � m/ for 0 � m � N .

13. We give a combinatorial proof of the following identity.

�
2n

n

�
D

nX

iD0

�
n

i

� �
n

n � i

�
:

Assume that we have n black balls (numbered from 1 to n) and m white balls
(numbered from 1 to m). The balls are mixed and we pick k balls.

(a) Show that there are

�
m C n

k

�

ways to pick k balls.
(b) By counting the number of black balls among the k balls show that there are

nX

iD0

�
n

i

� �
m

k � i

�

ways to select k balls.
(c) Prove the identity.

14. We give another proof of the identity in 14. Write Newton’s formula for .1Ct /n

and .1 C t /2n in the identity



80 4 Asymmetric and Higher Dimension Random Walks

.1 C t /n.1 C t /n D .1 C t /2n;

and identify the coefficients of the polynomials on both sides of the equality.

15. Consider a two dimensional random walk Sn D .Xn; Yn/. Let S0 D .0; 0/.
At each step either the first coordinate moves or the second coordinate moves but
not both. We define a new stochastic process .Zn/n�0 by only keeping track of the
first coordinate when it moves. For instance, if the path of Sn is .0; 0/, .0; 1/, .0; 2/,
.�1; 2/ and .�2; 2/ we set Z0 D 0, Z1 D �1 and Z2 D �2.

(a) Show that .Zn/n�0 is one dimensional random walk.
(b) Use .Zn/n�0 to show that if .Sn/n�0 is not symmetric in its first coordinate then

.Sn/n�0 is transient.
(c) Show that any asymmetric random walk in any dimension is transient.

16. Show that symmetric random walks in dimensions d � 4 are transient.
(Use the method of problem 15.)

Notes and references. See the notes and references of the preceding chapter.



Chapter 5
Discrete Time Markov Chains

Branching processes and random walks are examples of Markov chains. In this
chapter we study general properties of Markov chains.

1 Classification of States

We start with two definitions.

Definition 1.1. A discrete time stochastic process is a sequence of random variables
.Xn/n�0 defined on the same probability space and having values on the same
countable space S .

We will take S to be the set of positive integers in most of what we will do in this
chapter.

Definition 1.2. A Markov process is a stochastic process for which the future
depends on the past and the present only through the present. More precisely, a
stochastic process Xn is said to be Markovian if for any states x1; x2; : : : ; xk; xn in
S , any integers n1 < n2 < : : : < nk < n we have

P.Xn D xnjXn1 D x1; Xn2 D x2; : : : ; Xnk
D xk/ D P.Xn D xnjXnk

D xk/:

We define the one-step transition probability by

p.i; j / D P.XnC1 D j jXn D i/ for all i; j 2 S and all n � 0:

Observe that we are assuming that the transition probabilities do not depend on
thetime variable n, that is, we consider Markov chains with homogeneous transition

© Springer Science+Business Media New York 2014
R.B. Schinazi, Classical and Spatial Stochastic Processes: With Applications
to Biology, DOI 10.1007/978-1-4939-1869-0__5
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probabilities. The p.i; j / must have the following (probability) properties

p.i; j / � 0 and
X

j 2S
p.i; j / D 1:

We are now going to compute the transition probabilities for two examples.

Example 1.1. Consider a simple random walk .Sn/n�0 on Z. If the walk is at i it
jumps to i C 1 with probability p or to i � 1 with probability q D 1 � p.

This is a Markov chain since once we know Sn we can compute the distribution
of SnC1. We have that S D Z and the transition probabilities are

p.i; i C 1/ D p and p.i; i � 1/ D 1 � p D q for all i 2 Z:

All other p.i; j / are zero.

Example 1.2. Consider a Bienaymé–Galton–Watson (BGW) process .Zn/n�0. The
state space S of .Zn/n�0 is the set of positive (including zero) integers. We suppose
that each individual gives birth to Y particles in the next generation where Y is a
positive integer-valued random variable with distribution .pk/k�0. In other words

P.Y D k/ D pk; for k D 0; 1; : : : :

Observe that

p.i; j / D P.ZnC1 D j jZn D i/ D P.

iX

kD1

Yk D j / for i � 1; j � 0;

where .Yk/1�k�i is a sequence of independent identically distributed (i.i.d.) random
variables with distribution .pk/k�0.This shows that the distribution of ZnC1 can
be computed using the distribution of Zn only. Hence, .Zn/n�0 has the Markov
property.

Define the n-steps transition probability by

pn.i; j / D P.XnCm D j jXm D i/ for all i; j 2 S and all m � 0:

In particular, p1.i; j / D p.i; j /. We will set p0.i; i/ D 1 and p0.i; j / D 0

for i 6D j .

1.1 Decomposition of the Chain

We will show that a Markov Chain can be decomposed in classes. We start with two
useful properties.
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Proposition 1.1. For all n � 2 and i; i1; : : : ; in�1; j in S we have

pn.i; j / � p.i; i1/p.i1; i2/ : : : p.in�1; j /:

We will not give a formal proof of Proposition 1.1. All it says is that the
probability to go from i to j in n steps is larger than the probability to go from i to
j using the specific path i; i1; i2; : : : ; in�1; j . Moreover, by the Markov property the
probability of this specific path is p.i; i1/p.i1; i2/ : : : p.in�1; j /:

Another useful property is the following.

Proposition 1.2. For all positive integers n and m and for all states i , j , ` we have

pnCm.i; j / � pn.i; `/pm.`; j /:

To go from i to j in n C m steps we may go from i to ` in n steps and from `

to j in m steps. This is one possibility among possibly many others this is why we
have an inequality. By the Markov property the probability of going from i to ` in
n steps and from ` to j in m steps is pn.i; `/pm.`; j /.

We now turn to the decomposition of a Markov chain.

Definition 1.3. Consider a Markov chain .Xn/n�0. We say that two states i and j

are in the same class if there are integers n1 � 0 and n2 � 0 such that pn1.i; j / > 0

and pn2.j; i/ > 0. In words, i and j are in the same class if the Markov chain can
go from i to j and from j to i in a finite number of steps.

We defined p0.i; i/ D 1 for every state i , so every state i is in the same class as
itself. Note that we may have classes of one element.

Example 1.3. Consider the following chain on f0; 1; 2g with the transition matrix

0

@
0 1 0

0 1
2

1
2

0 1
3

2
3

1

A

The first line of the matrix gives the following transition probabilities: p.0; 0/D0,
p.0; 1/ D 1, p.0; 2/ D 0. The second line gives p.1; 0/ D 0, p.1; 1/ D 1

2
,

p.1; 2/ D 1
2
.

We see that from state 0 we go to state 1 with probability one. But from state 1 we
cannot go back to state 0. So 1 and 0 are in different classes. We have p.1; 2/ D 1

2

and p.2; 1/ D 1
3
. Thus, states 1 and 2 are in the same class. We have two classes for

this chain: f0g and f1; 2g.

Example 1.4. Consider the random walk on the integers. Take p in (0,1). Let i; j

be two integers and assume that i < j . By Proposition 1.1 we have

pj �i .i; j / � p.i; i C 1/p.i C 1; i C 2/ : : : p.j � 1; j / D pj �i > 0:
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We also have

pj �i .j; i/ � p.j; j � 1/p.j � 1; j � 2/ : : : p.i C 1; i/ D qj �i > 0:

Thus, all states are in the same class for this Markov chain and the chain is said to
be irreducible.

Definition 1.4. A Markov chain is said to be irreducible if all states are in the same
class.

Note that the chain in Example 1.3 is not irreducible while the chain in
Example 1.4 is.

1.2 A Recurrence Criterion

Definition 1.5. Consider a Markov chain .Xn/n�0. We say that state i is recurrent
for this chain if starting at i the chain returns to i with probability 1. A non-recurrent
state is said to be transient.

The next theorem gives us a recurrence criterion in terms of the pn.i; i/.

Theorem 1.1. Consider a Markov chain .Xn/n�0. A state i in S is recurrent if and
only if

1X

nD0

pn.i; i/ D 1:

Proof of Theorem 1.1. Let fk.i; i/ be the probability that starting at i the chain
returns to i for the first time at time k. Consider

f D
1X

kD1

fk.i; i/:

The number f is the probability that the chain eventually returns to i . This is so
because the events fthe first return occurs at kg are mutually exclusive for k D
1; 2; : : :. By adding the probabilities of these events we get the probability that the
chain will return to i in a finite (random) time. Hence, the state i is recurrent if and
only if f D 1. This proof will show that f D 1 if and only if

P1
nD0 pn.i; i/ D 1:

We have that

pn.i; i/ D
nX

kD1

fk.i; i/pn�k.i; i/ (1.1)
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This is so because if the chain is to return to i at time n then it must return to i

for the first time at some time k � n. If the chain is at i at time k (where k is
possibly n), then it has to return to i in n�k steps. By the Markov and homogeneity
properties of the chain this probability is pn�k.i; i/. Note that since fk.i; i/ is the
first return to i events corresponding to different k’s are mutually exclusive and
we may add the different probabilities. We now use (1.1) to get a relation between
moment generating functions. For s in Œ0; 1� we have for all n � 1

snpn.i; i/ D sn

nX

kD1

fk.i; i/pn�k.i; i/:

Summing the preceding equality over all n � 1 yields

1X

nD1

snpn.i; i/ D
1X

nD1

sn

nX

kD1

fk.i; i/pn�k.i; i/ (1.2)

Let U and F be defined by

U.s/ D
1X

nD0

snpn.i; i/

and

1X

nD1

snfn.i; i/:

Note that the sum for U starts at n D 0 while it starts at n D 1 for F . Recall from
Calculus that if the series

P1
nD1 an and

P1
nD0 bn are absolutely convergent then

1X

nD0

an

1X

nD1

bn D
1X

nD1

nX

kD1

akbn�k (1.3)

Applying this fact to the r.h.s. of (1.2) with an D fn.i; i/sn and bn D pn.i; i/sn

we get

1X

nD1

sn

nX

kD1

fk.i; i/pn�k.i; i/ D
1X

nD1

nX

kD1

skfk.i; i/sn�kpn�k.i; i/ D U.s/F.s/:

On the other hand, for the l.h.s. of (1.2) we have

1X

nD1

snpn.i; i/ D U.s/ � s0p0.i; i/ D U.s/ � 1:
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Hence, for s in Œ0; 1�

U.s/ � 1 D U.s/F.s/ (1.4)

In order to finish the proof we need the following lemma from Analysis. For a proof
see, for instance, Proposition A 1.9 in Port (1994).

Lemma 1.1. Let bn � 0 for all n � 1. Assume that the series
P1

nD1 bnsn converges
for all s in Œ0; 1/ then

lim
s!1�

1X

nD1

bnsn D
1X

nD1

bn;

where both sides of the equality may be infinite.

We now apply Lemma 1.1 to U and F . By Lemma 1.1

lim
s!1�

F.s/ D
1X

nD1

fn.i; i/ D f;

where f is in Œ0; 1� (it is a probability). Similarly,

lim
s!1�

U.s/ D
1X

nD0

pn.i; i/ D u;

where u is either a positive number or C1.
If u is a finite number, then letting s ! 1� in (1.4) yields

u.1 � f / D 1

and we have f < 1. The state i is transient.
Assume now that u D C1. By (1.4) we have

U.s/ D 1

1 � F.s/
:

By letting s ! 1� we see that since u D C1 we must have 1 � f D 0. That is, i

is recurrent. This completes the proof of Theorem 1.1.
Next we will give several important consequences and applications of

Theorem 1.1.

Corollary 1.1. All states that are in the same class are either all recurrent or all
transient.

A class of recurrent states will be called a recurrent class. An irreducible chain
with recurrent states will be called a recurrent chain.
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Proof of Corollary 1.1. Assume that states i and j are in the same class. By
definition this means that there are positive integers m and n such that

pn.i; j / > 0 and pm.j; i/ > 0:

Observe that by Proposition 1.2 we have for any states i , j , `

pmCn.i; j / � pm.i; `/pn.`; j /:

We iterate twice the preceding inequality to get

pmCnCr .j; j / � pm.j; i/pr.i; i/pn.i; j /;

for any positive integer r . We sum over all r to get

1X

rD0

pmCnCr .j; j / �
1X

rD0

pm.j; i/pr.i; i/pn.i; j / D pm.j; i/pn.i; j /

1X

rD0

pr.i; i/:

Since pm.j; i/pn.i; j / > 0 if
P1

rD0 pr.i; i/ diverges so does
P1

rD0 pr.j; j /

(why?). On the other hand, if
P1

rD0 pr.j; j / converges so does
P1

rD0 pr.i; i/. This
completes the proof of Corollary 1.1.

The next result will be helpful in the sequel.

Corollary 1.2. Let j be a transient state then for all i

1X

nD1

pn.i; j / < 1:

Proof of Corollary 1.2. With the notation of Theorem 1.1 we have

pn.i; j / D
nX

kD1

fk.i; j /pn�k.j; j /:

In words, if the chain is to go from i to j in n steps it must get to j for the first time
at some time k � n and then it has n � k steps to get to j . Summing both sides for
all n � 0 we get

1X

nD0

pn.i; j / D
1X

nD0

nX

kD1

fk.i; j /pn�k.j; j /:

Observe now that
P1

kD1 fk.i; j / is the probability that the chain starting at i

eventually gets to j and is therefore less than or equal to 1. By Theorem 1.1P1
nD0 pn.j; j / converges. Hence, by (1.3)
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1X

nD0

nX

kD1

fk.i; j /pn�k.j; j / D
1X

kD1

fk.i; j /

1X

nD0

pn.j; j / < C1:

This completes the proof of Corollary 1.2.

1.3 Finite Markov Chains

We say that a set C of states is closed if no state inside of C leads to a state outside
of C. That is, C is closed if for all i in C and j not in C we have p.i; j / D 0.

Example 1.5. Consider a Markov chain with the transition probabilities

0

BBBBB@

0 1 0 0 0
1
3

1
3

1
3

0 0

0 0 1
2

1
2

0

0 0 0 1
2

1
2

0 0 0 1
2

1
2

1

CCCCCA
:

Let the states be S D f1; 2; 3; 4; 5g. There are three classes: f1; 2g, f3g, and f4; 5g.
There is only one closed class: f4; 5g. We now give a graphical method to decide
whether a class is closed, see Fig. 5.1.

We now examine the relation between closed and recurrent.

Example 1.6. A closed set is not necessarily recurrent.
We give an example. Consider the simple random walk on Z with p 6D 1

2
. This is

an irreducible chain (all states are in the same class). Hence, Z is a closed class for
this chain (why?). But we know that this chain is transient.

As the next result shows a recurrent class has to be closed.

1 2

3 4

5

Fig. 5.1 We draw an arrow from state i to state j whenever the entry p.i; j / is strictly positive.
We see that no arrow leaves the class f4; 5g so this is a closed class. On the other hand, there are
arrows leaving classes f1; 2g and f3g. Hence, these two classes are not closed
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Theorem 1.2. (a) A recurrent class is closed.
(b) A finite closed class is recurrent.

This is a very useful result for finite chains for it is easy to check whether a class
is closed. For instance, going back to Example 1.5, we have that f4; 5g is recurrent
because it is finite and closed while the two other classes are transient since they are
not closed.

Proof of Theorem 1.2. We first prove (a). We prove the contrapositive. Assume that
C is not closed. Therefore, there exist i in C, j not in C such that p.i; j / > 0.
Observe that the chain cannot go from j to i . If it could j and i would be in the
same class and they are not. Hence, once the chain reaches j it never comes back to
i . Therefore,

Pi .no return to i/ � p.i; j / > 0:

Hence, C is not recurrent (why?). This proves (a).
We now turn to (b).
We do a proof by contradiction. Assume C is a finite closed transient class. Let i

and j be in C. By Corollary 1.2 we have

lim
n!1 pn.i; j / D 0;

(why?) and so

X

j 2C
lim

n!1 pn.i; j / D 0:

Since C is finite we may exchange the limit and the sum to get (1.4),

lim
n!1

X

j 2C
pn.i; j / D 0;

but
P

j 2C pn.i; j / D P.Xn 2 CjX0 D i/. Since C is closed the preceding
probability is one. This contradicts (1.4). Therefore C must be recurrent and this
completes the proof of Theorem 1.2.

An easy but useful consequence of Theorem 1.2 is the following.

Corollary 1.3. A finite irreducible chain is always recurrent.

The proof is left as an exercise.
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Problems

1. Consider a random walk on f0; 1; : : : ; 5g. The walker flips a fair coin and goes
to the right if it is tail and to the left if it is head. If the walker hits the boundaries 0
or 5, then at the following step he goes to 1 or 4, respectively. Write the transition
matrix for this random walk.

2. Assume that there are ten balls, five black and five white. The ten balls are
distributed among two urns A and B with five balls each. At each step one ball
is picked at random from each urn and they are switched from one urn to the other.
Let Xn be the number of white balls at time n in urn A. Write the transition matrix
for this chain.

3. A gambler has the following strategy. He bets 1$ unless he has won the last two
bets in which case he bets 2$. Let Xn be the fortune of the gambler at time n. Is this
a Markov chain?

4. At the roulette game there are 38 equally likely outcomes: numbers 0 through
36 and 00. These 38 possible outcomes are divided into 18 numbers that are red, 18
that are black, and 0 and 00 that are green. Assume that a gambler bets repeatedly
on black, 1$ each time. Let Xn be the fortune of the gambler after n bets. Assume
also that the gambler quits when he is broke or when his fortune is 10$. Write the
transition probabilities for this chain.

5. Consider r balls labeled from 1 to r. Some balls are in box 1 and some balls are
in box 2. At each step a number is chosen at random and the corresponding ball is
moved from its box to the other box. Let Xn be the number of balls in box 1 after n

steps. The chain Xn is called the Ehrenfest chain. Write the transition probabilities
for this chain.

6. Assume that i and j are in the same recurrent class.
Show that

1X

nD1

pn.i; j / D C1:

7. Prove that if the distribution of X0 and the p.i; j / are given then the distribution
of the Markov chain is completely determined. More precisely, prove that for any
n � 0 and any i0; i1; : : : ; in in S we have

P.X0 D i0; X1 D i1; : : : ; Xn D in/ D P.X0 D i0/p.i0; i1/p.i1; i2/ : : : p.in�1; in/:

8. Prove that the relation “to be in the same class as” is an equivalence relation
on S .

9. Consider a Markov chain with an absorbing state 0. That is, p.0; 0/ D 1. Assume
also that every state i we have p.i; 0/ > 0:
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(a) Is this be an irreducible chain?
(b) Show that all states except 0 are transient for this chain.

10. Consider the Markov chain on f1; 2; 3; 4; 5; 6g having transition matrix

0

BBBBBBB@

1
6

5
6

0 0 0 0
1
3

2
3

0 0 0 0

0 0 1
2

0 1
2

0
1
4

1
4

0 0 1
4

1
4

0 0 1
2

0 1
2

0

0 1
6

0 1
6

1
6

1
2

1

CCCCCCCA

Find all the classes and determine which are transient and which are recurrent.

11. Consider a Markov chain on f0; 1; 2; : : :g for which 0 is a trap, that is, p.0; 0/ D
1. Assume also that f1; 2; : : :g is another class and that p.i; 0/ > 0 for some i � 1.

(a) What can you say about the recurrence of each class.
(b) Can you guess the possible evolutions of such a chain?

12. Consider the Markov chain on f0; 1; 2; 3g having transition matrix

0

BB@

0 1
2

1
2

0

0 0 0 1

0 1 0 0

0 0 1
2

1
2

1

CCA

Find all the classes and determine which are transient and which are recurrent.

13. Give an example of a closed infinite class which is transient.

14. Show that the Ehrenfest chain defined in Problem 5 is irreducible and recurrent.

15. Consider the one dimensional random walk. Prove that if p D 0 or 1 then all
states are transient.

16. Show that if p 2 .0; 1/ then the one dimensional random walk is irreducible.

2 Birth and Death Chains

A birth and death chain is a Markov chain on the positive integers S D f0; 1; : : :g.
The transition probabilities are

p.i; i C 1/ D pi p.i; i/ D ri p.i; i � 1/ D qi :
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where pi C qi C ri D 1 for each i 2 S . We assume that qi > 0 for i � 1, pi > 0

for all i � 0 and ri � 0 for all i � 0.
Observe that in one time step the chain may move one unit to the left or to the

right or stay put.
Next we compute the probability for the chain to reach state i before state j .

Note that this is a generalization of the probability of ruin. Recall that Fk is the time
of first visit to state k.

Proposition 2.1. Let 0 � i < m < j , the probability that starting at m the birth
and death chain visits i before j is

P.Fi < Fj jX0 D m/ D
Pj �1

kDm Pk
Pj �1

`Di P`

;

where P0 D 1 and for ` � 1

P` D q1

p1

q2

p2

: : :
q`

p`

:

Note that Proposition 2.1 is a generalization of the ruin problem.

Proof of Proposition 2.1. We introduce the following notation. Let i < k < j and

u.k/ D P.Fi < Fj jX0 D k/:

Set u.i/ D 1 and u.j / D 0. We condition on the first step to get

u.k/ DP.Fi < Fj I X1 D k � 1jX0 D k/ C P.Fi < Fj I X1 D kjX0 D k/C
P.Fi < Fj I X1 D k C 1jX0 D k/:

By the Markov property this implies that

u.k/ D qku.k � 1/ C rku.k/ C pku.k C 1/ for all k 2 .i; j /

Replacing u.k/ by .qk C rk C pk/u.k/ on the left-hand side we get

u.k C 1/ � u.k/ D qk

pk

.u.k/ � u.k � 1//:

We iterate the preceding equality to get

u.k C 1/ � u.k/ D qk

pk

qk�1

pk�1

: : :
qiC1

piC1

.u.i C 1/ � u.i//:



2 Birth and Death Chains 93

It is now convenient to introduce the following notation

P0 D 1

Pk D …k
lD1

ql

pl

for all k � 1:

Note that

qk

pk

qk�1

pk�1

: : :
qiC1

piC1

D Pk

Pi

:

Hence,

u.k C 1/ � u.k/ D Pk

Pi

.u.i C 1/ � u.i//; (2.1)

for i < k < j . Observe that (2.1) holds for k D i as well. Summing (2.1) for all k

in Œi; j / we get

j �1X

kDi

.u.k C 1/ � u.k// D .u.i C 1/ � u.i//

j �1X

kDi

Pk

Pi

(2.2)

Note now that all the terms in the l.h.s. sum cancel except for the first and last.
That is,

j �1X

kDi

.u.k C 1/ � u.k// D u.j / � u.i/:

Using the last equality and u.i/ D 1, u.j / D 0 in (2.2) yields

�1 D .u.i C 1/ � u.i//

j �1X

kDi

Pk

Pi

:

Hence,

u.i/ � u.i C 1/ D 1
Pj �1

kDi
Pk

Pi

D PiPj �1

`Di P`

:

So (2.1) can be written as

u.k/ � u.k C 1/ D PkPj �1

`Di P`

:
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Summing the preceding equality on all k D m; : : : ; j � 1 we get

j �1X

kDm

u.k/ � u.k C 1/ D u.m/ � u.j / D
Pj �1

kDm Pk
Pj �1

`Di P`

:

Since u.j / D 0 we have

u.m/ D P.Fi < Fj jX0 D m/ D
Pj �1

kDm Pk
Pj �1

`Di P`

:

This completes the proof of Proposition 2.1.

We now use Proposition 2.1 to get a convenient recurrence criterion for birth
and death chains. Recall that qi > 0 for i � 1, pi > 0 for all i � 0. We make
the additional assumption that q0 D 0 so that we have a reflective boundary at the
origin. Under these assumptions the birth and death chain is irreducible, see the
problems.

Proposition 2.2. A birth and death chain on the positive integers with a reflective
boundary at the origin is recurrent if and only if

1X

kD1

Pk D 1:

Proof of Proposition 2.2. Since the chain is irreducible it is enough to show that
state 0 is recurrent.

By Proposition 2.1 we have

P.F0 < FnjX0 D 1/ D
Pn�1

kD1 PkPn�1
`D0 P`

D
Pn�1

kD0 Pk � P0Pn�1
`D0 P`

D 1 � P0Pn�1
`D0 P`

(2.3)

for n � 2. Note that Sn D Pn�1
`D0 P` is an increasing sequence. It either converges

to a finite number or goes to infinity. In any case

lim
n!1 1 � P0Pn�1

`D0 P`

D 1 � P0P1
`D0 P`

where P0C1 is taken to be 0.
Hence, the l.h.s. of (2.3) P.F0 < FnjX0 D 1/ must also have a limit as n goes to

infinity. This limit can be written as a probability as we now show. Since the chain
moves one unit at most at a time we must have F2 < F3 < : : :. That is, .Fn/n�1 is a
strictly increasing sequence of integers. Therefore this sequence must go to infinity
as n goes to infinity. It turns out that this is enough to show that
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lim
n!1 P.F0 < FnjX0 D 1/ D P.F0 < C1jX0 D 1/:

We will not give a formal proof of this fact. Letting n go to infinity in (2.3) yields

P.F0 < 1jX0 D 1/ D 1 � P0P1
`D0 P`

:

So P.F0 < 1jX0 D 1/ D 1 if and only if
P1

`D0 P` D 1. To conclude the proof
we will show that P.F0 < 1jX0 D 1/ D 1 if and only if P.F0 < 1jX0 D 0/ D 1.

We have

P.F0 < 1jX0 D 0/ D r0 C p0P.F0 < 1jX0 D 1/:

To see the preceding equality, observe that at time 1 either the chain stays at 0 with
probability r0 and then F0 D 1 or the chain jumps to 1 with probability p0 and by
the Markov property we may consider that 1 is the initial state. Since r0 C p0 D 1,
P.F0 < 1jX0 D 0/ D 1 if and only if P.F0 < 1jX0 D 1/ D 1 (why?). We have
already shown that this in turn is equivalent to

P1
`D0 P` D 1. This completes the

proof of Proposition 2.2.

We now give an application of Proposition 2.2.

Example 2.1. Consider the random walk on the positive integers. That is, consider
the birth and death chain with pi D p for i � 1 and qi D q for i � 1, p0 D 1 and
q0 D 0. For what values of p is the random walk on the half line recurrent?

We have Pk D .
q

p
/k and so

P
k�1.

q

p
/k is a geometric series with ratio q

p
. Thus,

this series converges if and only if q

p
< 1. Since q D 1 � p, we conclude that the

random walk on the half line is recurrent if and only p � 1
2
.

We next show that we can generalize the preceding result.

Corollary 2.1. Consider a birth and death chain with reflecting boundary at 0 (i.e.,
q0 D 0). Assume that

lim
n!1

qn

pn

D `:

• If ` < 1, the chain is transient.
• If ` > 1, the chain is recurrent.

Proof of Corollary 2.1. By Proposition 2.2 the chain is recurrent if and only if the
series

P1
kD1 Pk diverges. Note that

PkC1

Pk

D qkC1

pkC1

:
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We assume that the r.h.s. has a limit `. By the ratio test the series
P1

kD1 Pk converges
for ` < 1 and diverges for ` > 1. The test is not conclusive for ` D 1. This
completes the proof of Corollary 2.1.

2.1 The Coupling Technique

Using Corollary 2.1 it is easy to see that if limn!1 pn > 1
2

then the chain is
transient. If limn!1 pn < 1

2
, the chain is recurrent. If the limit is equal to 1

2
, the

chain can be recurrent or transient, see the problems. However, we can prove the
following.

Example 2.2. Assume that there is a positive integer N such that for all n � N

pn � 1

2
:

Then the chain is recurrent.

Recurrence will be the proved using the so-called coupling technique. We
construct the chain .Xn/n�0 with birth probabilities pn and the symmetric chain
.X 0

n/n�0 on the same probability space. To simplify matters we will take rn D 0 for
all n � 0 but the same ideas apply in general.

Let .Un/n�1 be a sequence of independent uniform random variables on .0; 1/.
That is, for n � 1 and x 2 .0; 1/

P.Un � x/ D x:

Let X0 D X 0
0 D N . There are two cases to consider.

• If X1 D N � 1, then the chain will return to N with probability 1. This is so
because the chain is trapped in the finite set f0; 1; : : : ; N g and is irreducible.
Therefore, it is recurrent.

• If X1 D N C 1, then we use the coupling to show that the chain returns to N

with probability 1. Assume Xn D i � N C 1 for n � 1. If Un � pi , we set
XnC1 D Xn C 1. If Un > pi , we set XnC1 D Xn � 1. Observe that this gives the
right probabilities for the jumps to the left and to the right: p.i; i C 1/ D pi D
P.Un � pi /.

We use the same Un for X 0
n: If X 0

n D i and Un � 1
2
, then X 0

nC1 D X 0
n C 1 while

if Un > 1
2
, then X 0

nC1 D X 0
n � 1.

Here are two important remarks.

1. Since pi � 1
2

if Un � pi then Un � 1
2
. That is, if Xn D X 0

n D i and Xn jumps to
the right so does X 0

n.
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2. We start with X0 D X 0
0 and Xn D X 0

n until X 0
n jumps to the right and Xn jumps

to the left. This happens if pn < Un < 1
2
. The important point is that if X0 D X 0

0

then X 0
n � Xn � 0 is always even or zero. For the chains either move in the same

direction and the difference X 0
n � Xn does not change or they move in opposite

directions and that adds C2 or �2 to the difference. In particular in order to have
Xn > X 0

n for some n the two chains would have to meet at some prior time. But
when the chains meet we are back to step 1 above. Hence, at all times n � 0 we
have Xn � X 0

n.

The final step is to note that .X 0
n/n�0 is a recurrent chain and therefore returns to

N with probability 1. Since Xn � X 0
n for all n � 1 the chain .X 0

n/n�0 returns to N

as well. This completes the proof.

Example 2.3. By the preceding example if there is J such that pi � 1
2

for all i > J

the chain is recurrent. In this example we show that a chain may have pi > 1
2

for
every i and still be recurrent. Let

pj D 1

2
C s.j /; qj D 1

2
� s.j /; s.j / � 0 for all j � 0; and lim

j !1 s.j / D 0:

That is, we assume that pj approaches 1
2

from above. This example will show that
if pj approaches 1

2
fast enough then the chain is recurrent. More precisely, we will

show that if the series
P1

j D0 s.j / converges then the chain is recurrent.
By Proposition 2.2 a birth and death chain is recurrent if and only if

P
k�0 Pk D

1, where

Pk D …k
lD1

ql

pl

for all k � 1:

We have

qj

pj

D
1
2

� s.j /
1
2

C s.j /
D 1 � 2s.j /

1
2

C s.j /
:

We will need the following fact about infinite products. Consider a sequence sj in
(0,1), we have that

…1
j D0.1 � sj / > 0 if and only if

1X

j D0

sj < 1:

For a proof see, for instance, the Appendix. So

lim
k!1 Pk > 0 if and only if

1X

j D0

2s.j /
1
2

C s.j /
< 1:



98 5 Discrete Time Markov Chains

Hence, if
P1

j D0
2s.j /

1
2 Cs.j /

converges, then limk!1 Pk > 0. Therefore, the series
P

k�0 Pk diverges (why?). Recall that limj !1 s.j / D 0, hence as j goes to infinity

2s.j /
1
2

C s.j /
� 4s.j /:

Therefore,
P1

j D0
2s.j /

1
2 Cs.j /

converges if and only if
P1

j D0 s.j / converges. In particu-

lar, if

s.j / � C

j ˛

for some positive C and ˛ > 1 the birth and death chain is recurrent.

2.2 An Application: Quorum Sensing

“Quorum sensing” describes a strategy used by some bacteria under which the
bacteria multiply until a critical mass is reached. At that point the bacteria turn
on their virulence genes and launch an attack on their host. Several human diseases
(such as cholera) are caused by quorum sensing bacteria. We are interested in the
following question. Is it obvious that there is always strength in numbers? We exhibit
a simple probability model that shows that things may be less simple than they
appear.

We now describe the model. We start with one individual. There are two phases
in the process. In the first phase either the population (of bacteria, for instance)
disappears or it gets to the quorum N where N is a natural number. We will use
a birth and death chain to model this first phase. If the population reaches N , then
the second phase kicks in. In the second phase we assume that each one of the
N individuals has a probability 	 of being successful. Success may mean different
things in different situations. For a bacterium it may mean not being eliminated
by the host. There is evidence that in the case of cholera not only do the bacteria
multiply but they also evolve into more pathogenic strains before launching their
attack on the host. So we may think of N as the number of strains rather than the
number of individual bacteria and we may think of 	 as the probability that a given
strain escapes the immune system of the host.

Let AN be the event that the population or the number of strains eventually
reaches N (starting with one individual). The alternative to the event AN is that
the population gets killed off before reaching N . In order for at least one individual
in the population to be successful we first need the population to reach N and then
we need at least one of the N individuals to be successful. Note that the probability
that all N individuals are (independently) unsuccessful is .1 � 	/N . Hence, the
probability that at least one of the N individuals is successful is 1 � .1 � 	/N .
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Therefore, the probability that the population will reach the quorum N and then
have a successful individual is

f .N; 	/ D P.AN /.1 � .1 � 	/N /;

where we are assuming that the two phases are independent. The function f

represents the probability of success under a quorum sensing strategy, N represents
the quorum. We are interested in f as a function of N . If there is always “strength
in numbers,” then f must be always increasing. In fact, we will show that f may
be increasing, decreasing or neither.

We use a birth and death chain to model the first phase. Assume that there are n

individuals at some point where 1 � n < N . Then there is a death with probability
qn or a birth with probability pn. We also assume that if the chain gets to 0 before
getting to N then it stays there. By Proposition 2.1 we have

P.AN / D 1
PN �1

iD0 Pi

;

where P0 D 1 and for i � 1

Pi D …i
kD1

qk

pk

:

We now assume that the birth and death probabilities are constant. That is, pn D
p for all n in Œ1; N � 1� and therefore qn D 1 � p D q for all such n. Let r D q=p.
We get Pi D ri ;

P.AN / D r � 1

rN � 1

and

f .N; 	/ D P.AN /.1 � .1 � 	/N / D r � 1

rN � 1
.1 � .1 � 	/N /:

A factorization yields

f .N; 	/ D 	
1 C .1 � 	/ C : : : C .1 � 	/N �1

1 C r C : : : C rN �1
:

Using this last expression and some simple algebra it is not difficult to show that f

is decreasing as a function of N if r > 1 � 	 and increasing if r < 1 � 	, see the
problems. Note that if r � 1 then f is always decreasing. Hence, there is a dramatic
change depending whether 	 is smaller than or larger than 1 � r provided r < 1.
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In fact, in the problems section we will give an example of another birth and
death chain for which the function f is neither increasing nor decreasing. So to the
question “Is there strength in numbers?” the answer is “Not always!”

Problems

1. Decide whether the following chains are recurrent or transient:

(a) pi D 100
100Ci

and qi D i
100Ci

for all i � 0

(b) pi D 3iC1
4iC1

and qi D i
4iC1

for i � 1.

2. Consider the Ehrenfest chain. It is defined as follows. There are r balls labeled
from 1 to r. Some balls are in box 1 and some balls are in box 2. At each step a
number is chosen at random and the corresponding ball is moved from its box to
the other box. Let Xn be the number of balls in box 1 after n steps. Show that the
Ehrenfest chain is a birth and death chain.

3. Are the following birth and death chains recurrent or transient?

(a) pi D 100
100Ci

and qi D i
100Ci

for all i � 0.
(b) pi D 3iC1

4iC1
and qi D i

4iC1
for i � 1.

4. Assume that

lim
n!1 pn D p:

(a) Show that if p < 1
2

the chain is recurrent. (Use Corollary 2.1.)
(b) Show that if p > 1

2
the chain is transient.

5. The following two examples show that if limi!1 pi D 1
2

the chain may be
transient or recurrent.

(a) Let

pi D i C 2

2.i C 1/
qi D i

2.i C 1/
:

Is this chain transient or recurrent?
(b) Let

pi D i C 1

2i C 1
qi D i

2i C 1
:

Is this chain transient or recurrent?
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6. Consider a birth and death chain with J such that pi � 5
8

for all i � J . Show
that this chain is transient. Use the coupling method.

7. Consider a birth and death chain with J such that pi � 1
2

C a where a is a fixed
number in .0; 1

2
/.

(a) Show that the chain is transient. Use the coupling method.
(b) What can you say about the chain when a D 0?

8. From Example 2.3 we know that if

pj D 1

2
C s.j / and s.j / � C

j ˛

for some ˛ > 1 the chain is recurrent.
Use this criterion to show that the chain with

p.j / D j 2 C 2

2.j 2 C 1/

is recurrent.

9. Let f and g be increasing functions. Let X be a random variable. We want to
prove that f .X/ and g.X/ are positively correlated. That is we want to show that

E.f .X/g.X// � E.f .X//E.g.X//:

We do a proof by coupling. Define X and Y to be two independent copies of the
same random variable.

(a) Show that for all x and y we have

.f .x/ � f .y//.g.x/ � g.y// � 0:

(b) Show that

E..f .X/ � f .Y //.g.X/ � g.Y /// � 0:

(c) Expanding (b) show that f .X/ and g.X/ are positively correlated.

10. Consider a birth and death chain with absorbing barriers at 0 and 3 with p1 D 1
3
,

q1 D 2=3, p2 D 3=4, q2 D 1
4
. Write a relation between Di , Di�1 and DiC1 (see the

ruin problem). Compute D1 and D2.

11. Consider a birth and death chain on Œ0; N �, where N is a positive integer, with
absorbing barriers at 0 and N . That is, p.0; 0/ D 1 and p.N; N / D 1. We also
assume that pi > 0 and qi > 0 for all i in .0; N /.

(a) Show that this chain has two recurrent classes and one transient class.
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(b) Let Di be the (random) time it takes for the chain starting at i in Œ0; N � to get
absorbed at 0 or N . Show that if fDi D 1g then the chain must visit at least
one state in .0; N / infinitely often.

(c) Use (b) to show that with probability one Di is finite.

12. Consider the quorum sensing model with constant pn D p D 0:55.

(a) Graph the function f .N; 	/ for 	 D 0:17.
(b) Graph the function f .N; 	/ for 	 D 0:19.
(c) Interpret (a) and (b).

13. Consider the quorum sensing model for which

pn D n C 1

2n C 1
and qn D n

2n C 1
;

for n in Œ1; N � 1�.

(a) Show that for i � 0, Pi D 1
iC1

.
(b) Show that

P.AN / D 1
PN

iD1
1
i

;

and therefore

f .N; 	/ D 1
PN

iD1
1
i

.1 � .1 � 	/N /:

(c) Show by graphing f as a function of N for a fixed 	 that f is increasing for
small values of 	, decreasing for large values of 	 and neither for intermediate
values of 	.

14. (a) Assume that a; b; c; d are strictly positive numbers. Show that if c < d then

a

b
>

a C c

b C d
:

(b) Use (a) to show that

f .N / D 	
1 C .1 � 	/ C : : : C .1 � 	/N �1

1 C r C : : : C rN �1

is increasing (as a function of N ) if r < 1 � 	 and decreasing for r > 1 � 	.
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Notes

There are many good books on Markov chains. At an elementary level see, for
instance, Feller (1968), Hoel et al. (1972) or Karlin and Taylor (1975). A more
advanced book is Bhattacharya and Waymire (1990).
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Chapter 6
Stationary Distributions for Discrete Time
Markov Chains

We continue the study of Markov chains initiated in Chap. 5. A stationary
distribution is a stochastic equilibrium for the chain. We find conditions under which
such a distribution exists. We are also interested in conditions for convergence to a
stationary distribution.

1 Convergence to a Stationary Distribution

1.1 Convergence and Positive Recurrence

We will use the notation and results from Sect. 1.1 of the preceding chapter.
Consider a discrete time Markov chain .Xn/n�0. Let i and j be two states. As n

goes to infinity, when does

pn.i; j / D P.Xn D j jX0 D i/

converge? In words, does the distribution of Xn converge as n goes to infinity?
It is easy to think of examples for which the answer is no.

Example 1.1. Consider the Markov chain on f0; 1g with transition probabilities

�
0 1

1 0

�

Note that pn.0; 0/ D 0 if n is odd and pn.0; 0/ D 1 if n is even (why?). Thus,
pn.0; 0/ does not converge.

© Springer Science+Business Media New York 2014
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The preceding example illustrates the importance of the notion of periodicity that
we now introduce.

Definition 1.1. Assume that j is a recurrent state for the chain Xn with transition
probabilities p.i; j /. Let

Ij D fn � 1 W pn.j; j / > 0g

and let dj be the greatest common divisor (g.c.d.) of Ij . We call dj the period of
state j .

Note that if j is recurrent we know that
P

n�1 pn.j; j / D 1. In particular Ij is
not empty and dj is well defined. In Example 1.1 we have the periods d0 D d1 D 2

(why?). We now show that periodicity is a class property.

Proposition 1.1. All states in the same recurrent class have the same period.

Proof of Proposition 1.1. Assume i and j are in the same recurrent class. Then
there are two integers n and m such that

pn.i; j / > 0 pm.j; i/ > 0:

We have

pmCn.j; j / � pm.j; i/pn.i; j / > 0

so m C n belongs to Ij and dj must divide m C n. Let n0 be in Ii . Then

pmCnCn0.j; j / � pm.j; i/pn0.i; i/pn.i; j / > 0

so m C n C n0 is in Ij and therefore dj divides m C n C n0. Since dj divides
m C n it must also divide n0. Hence, dj divides every element in Ii . It must divide
di . But i and j play symmetric roles so di must divide dj . Therefore, di D dj . This
completes the proof of Proposition 1.1.

Definition 1.2. A class with period 1 is said to be aperiodic.

Recall that given X0 D i , fn.i; i/ is the probability that the chain returns for the
first time to i at time n � 1. A state i is said to be recurrent if given X0 D i the
chain eventually returns to i with probability 1. This is equivalent to

X

n�1

fn.i; i/ D 1:

A state i is recurrent if and only if (see Theorem 1.1 in the preceding chapter)

X

n�1

pn.i; i/ D C1:
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Let Fi be the (random) time of the first visit to state i . Hence, for n � 1

P.Fi D njX0 D i/ D fn.i; i/:

Therefore, the expected value of Fi is

E.Fi jX0 D i/ D
X

n�1

nfn.i; i/

where the series is possibly infinite.

Definition 1.3. Let i be a recurrent state. If E.Fi jX0 D i/ < C1, then i is said to
be positive recurrent. If E.Fi jX0 D i/ D C1, then i is said to be null recurrent.

Example 1.2. We have shown in a previous chapter that the simple symmetric
random walk on Z is null recurrent. On the other hand, we will show in the sequel
that a finite irreducible Markov chain is always positive recurrent.

We now state the main convergence result for Markov chains.

Theorem 1.1. Consider an irreducible aperiodic recurrent Markov chain. Then,
for all i and j

lim
n!1 pn.i; j / D 1

E.Fj jX0 D j /
:

If state j is null recurrent we have E.Fj jX0 D j / D C1. In this case we set

1

E.Fj jX0 D j /
D 0:

Note that there are several hypotheses for the theorem to hold. Note also that
the limit does not depend on the initial state i . For a proof of Theorem 1.1 see
Sect. 3.1 in Karlin and Taylor (1975). We now state several interesting consequences
of Theorem 1.1.

Corollary 1.1. All states in a recurrent class are either all positive recurrent or all
null recurrent.

Proof of Corollary 1.1. We will give this proof in the particular case when the class
is aperiodic. For the general case see Sect. 3.1 in Karlin and Taylor (1975).

Assume that i and j belong to the same aperiodic recurrent class. Hence, there
are natural numbers n and m such that

pn.i; j / > 0 and pm.j; i/ > 0:

For any natural k

pnCkCm.i; i/ � pn.i; j /pk.j; j /pm.j; i/:
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Let k go to infinity in the inequality above and use Theorem 1.1 to get

1

E.Fi jX0 D i/
� pn.i; j /

1

E.Fj jX0 D j /
pm.j; i/:

Assume now that j is positive recurrent. The r.h.s. is strictly positive and so i is
also positive recurrent. On the other hand, if i is null recurrent, then the l.h.s. is 0
and therefore j is also null recurrent. This concludes the proof of Corollary 1.1.

Corollary 1.2. If state j is null recurrent or transient, then for all i

lim
n!1 pn.i; j / D 0:

Proof of Corollary 1.2. Assume that j is null recurrent. If j is aperiodic by
Theorem 1.1

lim
n!1 pn.i; j / D 0:

If j is null recurrent and periodic, the result still holds but the argument is more
involved and we omit it.

If j is transient, then Corollary 1.2 of the preceding chapter states that for all i

1X

nD1

pn.i; j / < C1:

Hence, limn!1 pn.i; j / D 0 and this completes the proof of Corollary 1.2.

Example 1.3. Consider a random walk on Z. It moves one step to the right with
probability p and one step to the left with probability q D 1 � p. We know that the
random walk is transient for p 6D q and null recurrent for p D q D 1

2
. We now

check that Corollary 1.2 holds in this example.
It is easy to see that

p2n.0; 0/ D
�

2n

n

�
pnqn:

By Stirling’s formula we get as n goes to infinity that

p2n.0; 0/ � .4pq/n

p
�n

:

Since 4pq � 1 for all p in Œ0; 1� we have

lim
n!1 p2n.0; 0/ D 0:
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1.2 Stationary Distributions

We will show that for a positive recurrent chain the limits of pn.i; j / play an
important role for the chain. We start with a definition.

Definition 1.4. Assume that Xn is a Markov chain p.i; j /. A probability distribu-
tion � is said to be a stationary distribution for Xn if for all j we have

X

i

�.i/p.i; j / D �.j /

where the sum is taken over all states i .

Example 1.4. Consider a Markov chain with states in f0; 1g. Let the transition
probabilities be

P D
�

1=2 1=2

1=3 2=3

�

Then � is a stationary distribution if

�.0/=2 C �.1/=3 D �.0/

�.0/=2 C �.1/2=3 D �.1/:

Observe that this system may also be written with the following convenient matrix
notation. Let � be the row vector � D .�.0/; �.1//. The preceding system is
equivalent to

�P D �:

Note that �.0/ D 2=3�.1/. This together with �.0/ C �.1/ D 1 gives �.0/ D 2=5

and �.1/ D 3=5.
Next we are going to show that the distribution � D .2=5; 3=5/ is an equilibrium

for this chain in the following sense. If X0 has distribution � , i.e. P.X0 D 0/ D 2=5

and P.X0 D 1/ D 3=5, then at all times n � 1, Xn has also distribution � .

Proposition 1.2. Assume that � is a stationary distribution for the Markov chain
with transition probabilities p.i; j /. Then for any n � 1 and any state j

X

i

�.i/pn.i; j / D �.j /:

To prove Proposition 1.2 we will need the following.
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Proposition 1.3. For any n � 0 and states i and j we have

pnC1.i; j / D
X

k

pn.i; k/p.k; j /:

The proof of Proposition 1.3 follows from conditioning on Xn D k for all states
k and the Markov property. We can now turn to the proof of Proposition 1.2.

Proof of Proposition 1.2. We do an induction proof. By definition of stationarity we
have that

X

i

�.i/pn.i; j / D �.j /

holds for n D 1. Assume the equality holds for n. By Proposition 1.3 we have

X

i

�.i/pnC1.i; j / D
X

i

�.i/
X

k

pn.i; k/p.k; j /:

Since the terms above are all positive we may change the order of summation to get

X

i

�.i/pnC1.i; j / D
X

k

X

i

�.i/pn.i; k/p.k; j /:

By the induction hypothesis we have

X

i

�.i/pn.i; k/ D �.k/:

Hence,

X

i

�.i/pnC1.i; j / D
X

k

�.k/p.k; j / D �.j /:

This completes the induction proof of Proposition 1.2.

Let X0 be distributed according to � . That is, for any state i

P.X0 D i j�/ D �.i/:

If � is stationary, then by the Markov property and Proposition 1.2

P.Xn D j j�/ D
X

i

�.i/pn.i; j / D �.j /:

Therefore for any n � 0, Xn is distributed according to � . This is why such a
distribution is called stationary. It is stationary in time.
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Theorem 1.2. Consider an irreducible positive recurrent Markov chain. Then, the
chain has a unique stationary distribution � given by

�.i/ D 1

E.Fi jX0 D i/
:

By Theorems 1.1 and 1.2 we see that for an irreducible aperiodic positive
recurrent Markov chain pn.i; j / converges to �.j / for all states i and j . Moreover,
� is stationary. In other words, the chain converges towards the equilibrium � .

Proof of Theorem 1.2. We prove the theorem in the particular case when the number
of states is finite and the chain is aperiodic. For the general case see Hoel et al.
(1972).

Define

�.k/ D 1

E.FkjX0 D k/
:

We are first going to show that � is a probability distribution. Since the chain is
positive recurrent we know that �.k/ > 0 for every k. We now show that the sum
of the �.k/ is 1.

We have for all n � 0 and j

X

k

pn.j; k/ D 1:

We let n go to infinity to get

lim
n!1

X

k

pn.j; k/ D 1:

Since we are assuming that there are finitely many states the sum is finite and we
may interchange the sum and the limit. Hence,

X

k

lim
n!1 pn.j; k/ D 1:

By Theorem 1.1 we have

X

k

�.k/ D 1:

Hence, � is a probability distribution.
The second step is to show that � is stationary. By Proposition 1.3

pnC1.i; j / D
X

k

pn.i; k/p.k; j /:
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We let n go to infinity

lim
n!1 pnC1.i; j / D lim

n!1
X

k

pn.i; k/p.k; j /:

Since the sum is finite we may interchange the sum and the limit to get

lim
n!1 pnC1.i; j / D

X

k

lim
n!1 pn.i; k/p.k; j /:

By Theorem 1.1 we have that

�.j / D
X

k

�.k/p.k; j /:

This proves that � is stationary.
The last step is to prove that � is the unique stationary distribution.
Assume that a is also a stationary distribution. By Proposition 1.2 we have

a.i/ D
X

j

a.j /pn.j; i/:

We let n go to infinity and interchange the limit and the finite sum to get

a.i/ D
X

j

a.j /�.i/ D �.i/
X

j

a.j /:

Since a is a probability distribution we have

a.i/ D �.i/
X

j

a.j / D �.i/:

Hence, a is necessarily equal to � . This completes the proof of Theorem 1.2.

Next we show that an irreducible chain that has a stationary distribution must be
positive recurrent.

Theorem 1.3. Consider an irreducible Markov chain. Assume that it has a station-
ary distribution. The chain must be positive recurrent.

Proof of Theorem 1.3. Again we prove the theorem in the finite case but it holds in
general.

By contradiction assume that the chain is transient or null recurrent. Then, by
Corollary 1.2 we have for all i and j

lim
n!1 pn.i; j / D 0:
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Let � be the stationary distribution of the chain. By Proposition 1.2 we have

X

i

�.i/pn.i; j / D �.j /:

Letting n go to infinity and interchanging the finite sum and the limit we get

�.j / D
X

i

�.i/ lim
n!1 pn.i; j / D 0;

for every j . But the sum of the �.j / is 1. We have a contradiction. The chain must
be positive recurrent.

Example 1.5. Consider a simple random walk on the integers. That is, p.i; i C1/ D
p and p.i; i � 1/ D 1 � p D q. We know that the chain is transient if p 6D q and is
null recurrent if p D q. Since this is an irreducible chain Theorem 1.3 applies. For
any p in .0; 1/ the random walk has no stationary distribution.

1.3 The Finite Case

In this section we consider a Markov chain Xn on a finite set. We start with an
example.

Example 1.6. This example will show that if the chain is reducible (i.e., the chain
has two or more classes) then we may have several stationary distributions.

Consider the Markov chain on f1; 2; 3; 4; 5g with transition probabilities

P D

0

BBBBB@

1=2 1=2 0 0 0

1=2 1=2 0 0 0

0 1=2 0 1=2 0

0 0 0 1=2 1=2

0 0 0 1=3 2=3

1

CCCCCA

A stationary distribution � is a solution of

�P D �

where � is a row vector. Solving the system of equations gives �.1/ D �.2/,
�.3/ D 0, �.4/ D 2�.5/=3. Thus, there are infinitely solutions even with the
restriction that the sum of the �.i/ is one. Note that there are two closed classes
C1 D f1; 2g and C2 D f4; 5g. Note that the chain may be restricted to C1. Since
C1 is closed if the chain starts in C1 it will stay there forever. The Markov chain
restricted to C1 has transition probabilities
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�
1=2 1=2

1=2 1=2

�

and there is a unique stationary distribution �1.1/ D 1=2 �1.2/ D 1=2. Moreover,
this is an aperiodic chain (why?) and Theorem 1.1 holds. Thus,

lim
n!1 pn.i; j / D �1.j / for i; j 2 C1:

Likewise we may restrict the chain to C2 D f4; 5g. This time the transition
probabilities are

�
1=2 1=2

1=3 2=3

�

We find the unique stationary distribution �2.4/ D 2=5, �2.5/ D 3=5. Again this is
an aperiodic chain and therefore

lim
n!1 pn.i; j / D �2.j / for i; j 2 C2:

We extend �1 and �2 to the whole set by setting �1.3/ D �1.4/ D �1.5/ D 0 and
�2.3/ D �2.1/ D �2.2/ D 0: It is easy that �1 and �2 are stationary distributions.
Moreover, if we have two or more stationary distributions, then there are infinitely
many stationary distributions. See the problems.

Observe also that �.3/ is zero for all the stationary distributions � . This must be
so since state 3 is transient.

Theorem 1.4. Assume that Xn is a finite Markov chain. Then Xn has at least one
stationary distribution.

For a proof of Theorem 1.4 see Levin et al. (2008).
We have the following consequences.

Corollary 1.1. Assume that Xn is an irreducible finite Markov chain. Then all
states are positive recurrent.

Proof of Corollary 1.1. By Theorem 1.4 the chain has a stationary distribution. By
Theorem 1.3 the chain must be positive recurrent. This proves Corollary 1.1.

Corollary 1.2. Assume that Xn is a finite Markov chain. Then there are no null
recurrent states.

Proof of Corollary 1.2. Assume that i is a recurrent state. Then the class of i is
closed. Therefore, if the chain starts in this class it will stay there at all times. The
class must also be finite since the state space is finite. Hence, the restriction of
the chain to this finite class is irreducible. Therefore, by Corollary 1.1 the chain
restricted to this class is positive recurrent and so is state i . Hence, we have proved
that if a state is recurrent it must be positive recurrent. This proves Corollary 1.2.



1 Convergence to a Stationary Distribution 115

Note that Example 1.6 is the typical situation for a finite chain. Each closed class
C has a stationary distribution �C which can be extended to the whole space by
setting �C .j / D 0 for j not in C .

Problems

1. Consider a simple random walk on f0; : : : ; N g:

p.i; i C 1/Dp p.i; i � 1/D1 � p for 1 � i � N � 1; p.0; 1/D1Dp.N; N � 1/

(a) Show that this chain is irreducible. What is the period?
(b) Is there a stationary distribution for this chain?
(c) Does pn.i; j / converge as n goes to infinity?

2. Assume that p.0; 0/ > 0 and that this chain is irreducible. What is the period of
this chain?

3. Consider a Markov chain with transition probabilities

0

@
1=2 0 1=2

1=2 0 1=2

1=2 1=2 0

1

A

Show that for every i and j pn.i; j / converges as n goes to infinity.

4. Consider a random walk on circle marked with points f0; 1; 2; 3; 4g. The walker
jumps one unit clockwise with probability 1/3 or one unit counterclockwise with
probability 2/3. Find the proportion of time that the walker spends at 0.

5. Let Xn be the sum of n rolls of a fair die. Let Yn be the integer rest of the division
by 5 of Xn.

(a) Find the transition probabilities for the Markov chain Yn.
(b) Find

lim
n!1 P.Xn is a multiple of 5/:

6. Find the stationary distributions if the transition probabilities are

0

@
1=3 2=3 0

1=2 0 1=2

1=6 1=3 1=2

1

A
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7. Assume that a Markov chain has a trap at state 0. That is, p.0; i/ D 0 for all
i 6D 0. Show that the distribution � defined by �.0/ D 1 and �.i/ D 0 for all i 6D 0

is stationary.

8. (a) Assume that �1 and �2 are stationary distributions. Show that t�1C.1�t /�2

is also stationary for all t in [0,1].
(b) Show that if a chain has two stationary distributions then it has infinitely many

stationary distributions.

9. Let p be in .0; 1/. Consider a chain on the positive integers such that

p.i; i C 1/ D p and p.i; 0/ D 1 � p for i � 0

where p is a fixed number strictly between 0 and 1.

(a) Prove that this chain is irreducible.
(b) Find the periodicity.
(c) Find a stationary distribution.
(d) Prove that this is a positive recurrent chain.

10. The transition probabilities p.i; j / are said to be doubly stochastic if

X

i

p.i; j / D 1 and
X

j

p.i; j / D 1:

Assume that there are N states. Find a stationary distribution.

11. Assume that a chain is irreducible aperiodic positive recurrent. Show that for
every state j

X

i

1

E.Fi jX0 D i/
p.i; j / D 1

E.Fj jX0 D j /
;

where Fk denotes the time of first visit to state k.

12. Assume that Xn is irreducible and recurrent. Show that for any i and j the
random time the chain takes to go from i to j is finite with probability 1.

13. Consider the chain with transition probabilities

0

BB@

0 1=2 1=2 0

0 1 0 0

0 0 1=3 2=3

0 0 1=2 1=2

1

CCA :

(a) Find the stationary distributions of this chain.
(b) Find all the limits of pn.i; j / that exist.
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14. Same questions as above for

0

BB@

1=2 1=2 0 0

1=5 4=5 0 0

1=2 0 0 1=2

0 0 1=2 1=2

1

CCA :

15. Consider a finite Markov chain on f0; 1g with probability transitions

P D
�

1=3 2=3

1=2 1=2

�
:

(a) Find the stationary distribution for this chain.
(b) Let M be

M D
�

1 �4

1 3

�

and D be

D D
�

1 0

0 �1=6

�
:

Show that P D MDM �1

(c) Compute pn.0; 0/ and show that

jpn.0; 0/ � �.0/j � 4

7.6/n
:

In words, the convergence occurs exponentially fast.

2 Examples and Applications

2.1 Reversibility

A notion which is interesting in its own right and also helpful in computations is the
following.

Definition 2.1. A probability distribution � is said to be reversible with respect to
a Markov chain with transition probabilities p.i; j / if for all states i and j we have

�.i/p.i; j / D �.j /p.j; i/:
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It is much easier to find a reversible distribution (if it exists) than to find a
stationary distribution. Reversible distributions are helpful because of the following.

Proposition 2.1. A reversible probability distribution is stationary.

Proof of Proposition 2.1. Assume � is reversible with respect to the Markov chain
with transition probabilities p.i; j /. By reversibility,

X

i

�.i/p.i; j / D
X

i

�.j /p.j; i/:

Note now that

X

i

�.j /p.j; i/ D �.j /
X

i

p.j; i/ D �.j /:

This shows that � is a stationary distribution and completes the proof of Proposi-
tion 2.1.

As the next example shows the converse of Proposition 2.1 does not hold.

Example 2.1. Consider the following chain in f0; 1; 2g.

0

@
0 1=4 3=4

3=4 0 1=4

1=4 3=4 0

1

A

It is easy to check that the unique stationary distribution � is given by �.0/ D
�.1/ D �.2/ D 1

3
. However,

�.0/p.0; 1/ 6D �.1/p.1; 0/:

Hence, � is not reversible.

2.2 Birth and Death Chains

Recall that a birth and death chain on the positive integers with a reflective boundary
at 0 is given by

p.i; i C 1/ D pi p.i; i � 1/ D qi p.i; i/ D ri

where we assume that pi C qi C ri D 1, q0 D 0, qi > 0 for i � 1 and pi > 0 for
i � 0. As noted before this chain is irreducible.

Note that if ji � j j > 1 then

�.i/p.i; j / D �.j /p.j; i/
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is always true since both sides are 0. We now turn to the case ji � j j D 1. If � is a
reversible measure we must have for i � 1

�.i � 1/p.i � 1; i/ D �.i/p.i; i � 1/:

That is,

�.i � 1/pi�1 D �.i/qi

so that

�.i/ D �.i � 1/
pi

qiC1

:

Iterating this equality gives for i � 1

�.i/ D pi�1pi�2 : : : p0

qi qi�1 : : : q1

�.0/:

We also want � to be a probability distribution. Hence,

X

i�0

�.i/ D 1:

That is,

�.0/ C �.0/
X

i�1

pi�1pi�2 : : : p0

qi qi�1 : : : q1

D 1:

This equation has a strictly positive solution �.0/ if and only if

X

i�1

pi�1pi�2 : : : p0

qi qi�1 : : : q1

converges. We have proved the following.

Proposition 2.2. A birth and death chain has a reversible distribution if and only if

C D
X

i�1

pi�1pi�2 : : : p0

qi qi�1 : : : q1

< 1: (2.1)

If (2.1) holds, then the reversible distribution � is given by

�.0/ D 1

C C 1
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and

�.i/ D 1

C C 1

pi�1pi�2 : : : p0

qi qi�1 : : : q1

for i � 1:

Condition (2.1) is sufficient to have a stationary distribution (why?). Is it
necessary? It turns out that for an irreducible recurrent chain if we have � such
that for all j

�.j / D
X

i

�.i/p.i; j / (2.2)

and
X

i

�.i/ D C1 (2.3)

then the chain cannot have a stationary distribution. This is an advanced result, see,
for instance, Durrett (2010). If (2.1) fails, we have � satisfying (2.2) and (2.3).
Hence, there can be no stationary distribution.

Proposition 2.3. The condition (2.1) is necessary and sufficient in order to have a
stationary distribution. In particular, this shows that for birth and death chains the
existence of a stationary distribution is equivalent to the existence of a reversible
distribution.

Recall that a birth and death chain is recurrent if and only if

X

k�1

qkqk�1 : : : q1

pkpk�1 : : : p1

D C1:

On the other hand, condition (2.1) is necessary and sufficient to have positive
recurrence (why?). Therefore, we have the following.

Proposition 2.4. A birth and death chain is null recurrent if and only if

X

k�1

qkqk�1 : : : q1

pkpk�1 : : : p1

D C1 and
X

i�1

pi�1pi�2 : : : p0

qi qi�1 : : : q1

D C1:

2.3 The Simple Random Walk on the Half Line

Consider a simple random walk on the positive integers with a reflective boundary
at 0. This is a particular birth and death chain. Given some p in .0; 1/ we have

p.i; i C 1/ D p p.i; i � 1/ D q D 1 � p p.i; i/ D 0

for i � 1. We also assume that q0 D 0, p0 D p and r0 D 1 � p.
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We will show that depending on p the random walk may be transient, null
recurrent, or positive recurrent. Consider the Condition (2.1) in this particular case.

X

i�1

pi�1pi�2 : : : p0

qi qi�1 : : : q1

D
X

i�1

pi�1

qi
:

Note that this series is convergent if and only if p < q (i.e. p < 1
2
).

• Assume that p < 1
2

then (2.1) holds and

C D p

q � p
:

Hence, by Proposition 2.2 we have a reversible (and hence stationary) distribution
given by

�.0/ D 1

C C 1
D 1 � p

q

and for i � 1

�.i/ D .1 � p

q
/.

p

q
/i :

We also note that the random walk is positive recurrent (by Theorem 1.3) if and only
if p < 1

2
.

• Assume that p D 1
2
. Since p D q we get

X

k�1

qkqk�1 : : : q1

pkpk�1 : : : p1

D
X

k�1

1 D C1:

Moreover,

X

i�1

pi�1pi�2 : : : p0

qi qi�1 : : : q1

D
X

i�1

1 D C1:

Hence, by Proposition 2.4 the random walk is null recurrent for p D 1
2
:

• Assume that p > 1
2

then

X

k�1

qkqk�1 : : : q1

pkpk�1 : : : p1

D
X

k�1

.
q

p
/k < C1

since q < p. Hence, the random walk is transient when p > 1
2
:
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2.4 The Ehrenfest Chain

The Ehrenfest chain was introduced to model the process of heat exchange between
two bodies that are in contact and insulated from the outside. The temperatures of
the bodies are represented by the number of balls in two boxes. There are r balls
labeled from 1 to r . Initially some of the balls are in box 1 and some of the balls are
in box 2. At each step an integer between 1 and r is chosen at random and the ball
with the corresponding label is moved from its box to the other box. Let Xn be the
number of balls in box 1 at time n. The set of states is f0; 1; : : : ; rg. The transition
probabilities are easy to compute:

p.i; i C 1/ D pi D r � i

r
and p.i; i � 1/ D qi D i

r
for 0 � i � r:

Hence, this is a birth and death chain with reflecting boundaries at 0 and r .

2.4.1 The Reversible Distribution

We use Proposition 2.2 to get

C D
rX

iD1

pi�1pi�2 : : : p0

qi qi�1 : : : q1

D
rX

iD1

.r � i C 1/.r � i C 2/ : : : r

i.i � 1/ : : : 1
D

rX

iD1

�
r

i

�
:

Hence,

C C 1 D
rX

iD0

�
r

i

�
:

By Newton’s formula

C C 1 D
rX

iD0

�
r

i

�
D .1 C 1/r D 2r :

Therefore,

�.0/ D 2�r

and for i � 1

�.i/ D
�

r

i

�
2�r :
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Hence, the reversible distribution is a binomial distribution with parameters r

and 1/2. In particular, the mean number of balls in box 1 at equilibrium is r=2. That
is, at equilibrium we expect the temperatures of the two bodies to be the same.

2.4.2 Newton’s Law of Cooling

We now derive Newton’s law of cooling from the Ehrenfest chain. Let Xn be the
number of balls in urn 1 at time n. We start by conditioning on Xn to get

E.XnC1/ D
rX

kD0

E.XnC1jXn D k/P.Xn D k/:

But

E.XnC1jXn D k/ D .k C 1/
r � k

r
C .k � 1/

k

r
D k C r � 2k

r
:

Thus,

E.XnC1/D
rX

kD0

.kC r � 2k

r
/P.Xn D k/DE.Xn/C1� 2

r
E.Xn/D.1� 2

r
/E.Xn/C1:

Let Yn be the difference of balls between the two urns at time n. That is, Yn D
Xn � .r � Xn/ D 2Xn � r . We are going to compute the expected value of Yn. We
have

2E.XnC1/ � r D 2.1 � 2

r
/E.Xn/ C 2 � r D .1 � 2

r
/.2E.Xn/ � r/:

Using that Yn D 2Xn � r in the preceding equality, we get

E.YnC1/ D .1 � 2

r
/E.Yn/:

We iterate the preceding equality to get

E.Yn/ D .1 � 2

r
/nE.Y0/:

This is the Newton’s well-known law of cooling. We see that the expected
temperature difference between the two bodies (i.e., E.Yn/) decreases exponentially
fast as a function of time n.
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2.4.3 Reversibility Versus Irreversibility

The Ehrenfest model is supposed to model the transfer of heat from a warmer body
into a colder body. This transfer, according to thermodynamics is irreversible: the
heat transferred cannot go back. But in the Ehrenfest chain all possible transitions
occur with probability one in a finite time since this is a positive recurrent chain
(why?). So there seems to be a contradiction here. But we are going to show that
the time it takes for the chain to make a transition opposite to the equilibrium is so
large that if we look at this chain on a reasonable physical time scale it is extremely
unlikely that we will see such a transition unless the chain is already very close to
equilibrium.

Let t .i; i C 1/ be the random time it takes for the Ehrenfest chain to go from
i to i C 1. We condition on the first transition. If the chain jumps to i C 1 then
t .i; i C 1/ D 1, if the chain jumps to i � 1 then the chain needs to go to i first and
then to i C 1. Thus,

E.t.i; i C 1// D pi C qi .E.t.i � 1; i/ C E.t.i; i C 1///:

Solving for E.t.i; i C 1// we get for i � 1

E.t.i; i C 1// D 1 C qi

pi

E.t.i � 1; i//:

The preceding formula holds for any birth and death chain with a reflecting
boundary at the origin (i.e., p0 D 1). Now we go back to the Ehrenfest chain.
Recall that in this case

qi

pi

D i

r � i
for 0 � i � r � 1:

We set si D E.t.i; i C 1//. The induction formula is then

si D 1 C i

r � i
si�1 for 1 � i � r � 1:

Since there is a reflecting barrier at 0 we get t .0; 1/ D 1 and s0 D 1. Using the
preceding formula with r D 20 gives s0 D 1; s1 D 20=19; s2 D 191=171; s3 D
1160=969 : : :. The interesting part is that the first si are of the order of 1, s10 is
about 4, s12 is about 10, s15 is about 150, and s19 is about 524,288. For r D 20 there
is already a huge difference between the first si and the last ones. Note that 20 is
a ridiculously small number in terms of atoms, we should actually be doing these
computations for r D 1023. For this type of r the difference between the first si and
the last ones is inconceivably large. This shows that there is really no contradiction
between the irreversibility in thermodynamics and the reversibility of the Ehrenfest
model.
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2.5 The First Appearance of a Pattern

Consider independent tosses of a coin that lands on heads with probability p and on
tails with probability q.

Example 2.2. What is the expected number of tosses for T to appear? Denote by
FT the number of tosses for T to appear for the first time.

Since the tosses are independent, we get

P.FT D n/ D pn�1q for n � 1:

Hence,

E.FT / D
1X

nD1

npn�1q:

Recall the geometric series for jxj < 1

1X

nD0

xn D 1

1 � x
:

Taking derivatives yield for jxj < 1

1X

nD1

nxn�1 D 1

.1 � x/2
:

Therefore,

E.FT / D
1X

nD1

npn�1q D q
1

.1 � p/2
D 1

q
:

Example 2.3. What is the expected number of tosses for the pattern T T to appear?
We need to look at two consecutive tosses. Thus, we lose the independence

between the outcomes. The number of steps to get T T is no longer geometric.
To solve the problem we introduce a Markov chain. Let Xn be the last two
outcomes after the nth toss. For n � 2, this is a Markov chain with four states
fT T; TH; HT; HH g. It is also aperiodic since

P.XnC1 D T T jXn D T T / D q > 0:
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We know that a finite irreducible aperiodic chain has a unique stationary distribution
that we denote by � . The convergence Theorem 1.1 holds and we have

lim
n!1 P.Xn D T T / D �.T T /:

In order for Xn D T T we need tails on the nth and on the .n � 1/th tosses. This
happens with probability q2. Thus, P.Xn D T T / is constant and �.T T / D q2, see
the problems for a different argument. According to Theorem 1.1

E.FT T jX0 D T T / D 1

q2
;

where FT T is the time of first appearance of T T . Note now that to get T T we first
need to get T and then we need to go from T to T T . If we couple two chains, one
starting from T and one starting from T T they will agree from the first step on
(why?). So the number of steps to go from T to T T is the same as the number of
steps to go from T T to T T . Therefore,

E.FT T / D E.FT / C E.FT T jX0 D T T / D 1

q
C 1

q2
:

Problems

1. Give an example of a stationary measure which is not reversible.

2. Assume Xn is an irreducible Markov chain with a reversible distribution � . Show
that if p.i; j / > 0 then p.j; i/ > 0.

3. Consider the chain with transition probabilities

0

@
1=2 1=2 0

0 1=2 1=2

1=2 0 1=2

1

A :

(a) Use the preceding problem to show that this chain has no reversible distribution.
(b) What about a stationary distribution?

4. Take p in (0,1). Consider the one dimensional random walk on the positive
integers

p.i; i C 1/ D p p.i; i � 1/ D 1 � p for i � 1; p.0; 1/ D 1:
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that this chain is identical to the random walk on the half-line except that there
p.0; 1/ D p.

(a) For what values of p is the chain positive recurrent? Find the stationary
distribution in this case.

(b) For what values of p is the chain null recurrent?

5. Consider the Ehrenfest chain with r D 1023. Compute the expected time the
chain takes to return to the 0 state. (Use the stationary distribution.)

6. Decide whether the following birth and death chain is transient, positive
recurrent, or null recurrent. Let p0 D 1 and

pi D i

4i C 1
qi D 3i

4i C 1
for i � 1:

7. We know that the random walk on the half line is null recurrent when p D 1=2.
In this problem we will show that a birth and death chain with limi!1 pi D 1=2

may be transient, null recurrent, or positive recurrent. Decide whether the following
birth and death chains are transient, positive recurrent, or null recurrent.

(a)

pi D i C 2

2i C 2
qi D i

2i C 2
:

(b)

pi D i C 1

2i C 1
qi D i

2i C 1
:

(c) Let p0 D 1, p1 D q1 D 1=2 and

pi D i � 1

2i
qi D i C 1

2i
for i � 2:

8. Consider an irreducible Markov chain with the property that p.i; j / D p.j; i/

for all i; j . Assume that there are only finitely many states. Find the reversible
distribution for this chain.

9. Let p be in .0; 1/. Consider N points on a circle. A random walk jumps to the
nearest point clockwise with probability p and counterclockwise with probability
1 � p.

(a) Show that this chain has a unique stationary distribution for all p in .0; 1/. Find
the stationary distribution.

(b) Show that this chain has a reversible distribution if and only if p D 1
2
.
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10. Consider a birth and death chain with a reflecting barrier at 0 (i.e., p0 D 1).
Let t .i; i C 1/ be the random time it takes for chain to go from i to i C 1. Let
si D E.t.i; i C 1/. We have shown that s0 D 1 and for i � 1

si D 1 C qi

pi

si�1:

(a) Consider a random walk on the half-line with a reflecting barrier at 0 and such
that p D 1=4 and q D 3=4. Use the formula above to compute the expected
time the walk takes to go from 9 to 10.

(b) How long does the walk take to go from 0 to 10?

11. Using the notation of the preceding problem show that for all i � 1 we have

si D 1 C qi

pi

C qi qi�1

pi pi�1

C : : : C qi qi�1 : : : q1

pi pi�1 : : : p1

:

12. Consider independent tosses of a coin that lands on heads with probability p

and on tails with probability q. Let Xn be the last two outcomes after the nth toss.
For n � 2, this is a Markov chain with four states fT T; TH; HT; HH g.

(a) Write the transition matrix P for the chain Xn.
(b) Let

� D .q2; pq; pq; p2/:

Check that �P D � .

13. We use the notation of Example 2.3.

(a) Show that the expected number of tosses for the pattern HT to appear is 1
pq

.
(b) Compare (a) to Example 2.3.
(c) Set p D q D 1

2
. Do computer simulations to check the results in Example 2.3

and in (a).

Notes

We chose to omit a number of proofs in this chapter. The proofs of convergence
and existence of stationary distributions are really analysis proofs and do not use
many probability ideas. The reader may find the missing proofs in the references
below. The Ehrenfest chain is analyzed in more detail in Bhattacharya and Waymire
(1990). More in-depth exposition of the material can be found in the latter reference
and in Karlin and Taylor (1975). Levin et al. (2008) provide a nice account of more
modern topics such as mixing times.



References 129

References

Bhattacharya, R., Waymire, E.: Stochastic Processes with Applications. Wiley, New York (1990)
Durrett, R.: Probability: Theory and Examples, 4th edn. Cambridge University Press, Cambridge

(2010)
Hoel, P., Port, S., Stone, C.: Introduction to Stochastic Processes. Houghton Mifflin, Boston (1972)
Karlin, S., Taylor, H.: A First Course in Stochastic Processes, 2nd edn. Academic, New York

(1975)
Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. American Mathematical

Society, Providence (2008)



Chapter 7
The Poisson Process

In this chapter we introduce a continuous time stochastic process called the Poisson
process. It is a good model in a number of situations and it has many interesting
mathematical properties. There is a strong link between the exponential distribution
and the Poisson process. This is why we start by reviewing the exponential
distribution.

1 The Exponential Distribution

A random variable T is said to have an exponential distribution if it has a density
f .t/ D ˛e�˛t for t � 0, where ˛ > 0 is the rate of the exponential distribution. In
particular,

P.T > t/ D
Z 1

t

f .s/ds D e�˛t for t � 0:

We may easily compute the mean and variance of T by integration by parts.

E.T / D
Z 1

0

tf .t/dt D 1

˛
;

Var.T / D E.T 2/ � E.T /2 D 1

˛2
:

The main reason the exponential distribution comes into play with Markov chains
is the following property:
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Proposition 1.1. The exponential distribution has the following memoryless prop-
erty. Assume T is a random variable with an exponential distribution. Then

P.T > t C sjT > s/ D P.T > t/:

In words, waiting t units of time given that we have already waited s units of
time is the same as waiting t units of time. That is, the system has no memory of
having waited already s.

Proof of Proposition 1.1. By definition of conditional probability we have

P.T > t C sjT > s/ D P.T > t C sI T > s/

P.T > s/
:

But the event fT > t C sg is included in the event fT > sg. Thus,

P.T > t C sjT > s/ D P.T > t C s/

P.T > s/
D e�˛.tCs/

e�˛s
D e�˛t D P.T > t/:

This completes the proof of Proposition 1.1.

The exponential distribution is the only continuous distribution with the memo-
ryless property, see Problem 1.1 for a proof.

We now turn to properties involving several independent exponential distri-
butions. In particular, we are interested in the minimum of several independent
exponential random variables. For instance, assume that T1 and T2 are exponentially
distributed. We can define the minimum of T1 and T2. It is a new random variable
which is T1 when T1 < T2 and T2 when T1 > T2 (the probability that T1 D T2 is
0). It turns out that the minimum of two independent exponential random variables
is also an exponential variable whose rate is the sum of the two rates. We state the
general result below.

Proposition 1.2. Let T1; T2; : : : ; Tn be independent exponential random variables
with rates ˛1; ˛2; : : : ; ˛n. The random variable min.T1; T2; : : : ; Tn/ is also exponen-
tially distributed with rate ˛1 C ˛2 C � � � C ˛n.

Proof of Proposition 1.2. Observe that

P.min.T1; T2; : : : ; Tn/ > t/ D P.T1 > t I T2 > t I : : : I Tn > t/

and by independence we get

P.min.T1; T2; : : : ; Tn/ > t/ D P.T1 > t/P.T2 > t/ : : : P.Tn > t/ D

e�˛1t e�˛2t : : : e�˛nt D e�.˛1C˛2C:::˛n/t :
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This is enough to prove that min.T1; T2; : : : ; Tn/ is exponentially distributed with
rate ˛1 C ˛2 C � � � C ˛n. This completes the proof of Proposition 1.2.

The following is another useful property.

Proposition 1.3. Let T1; T2; : : : ; Tn be independent exponential random variables
with rates ˛1; ˛2; : : : ; ˛n. The probability that the minimum of the Ti , 1 � i � n, is
Tk for a given k is

P.min.T1; T2; : : : ; Tn/ D Tk/ D ˛k

˛1 C ˛2 C � � � C ˛n

:

Proof of Proposition 1.3. Let Sk D minj 6Dk Tj . Recall that the probability that two
continuous and independent random variables be equal is zero. Thus,

P.min.T1; T2; : : : ; Tn/ D Tk/ D P.Tk < Sk/:

But according to the computation above, Sk is exponentially distributed with rate
ˇk D P

j 6Dk ˛j and Sk and Tk are independent. Thus,

P.Tk < Sk/ D
Z Z

0<t<s

˛ke�˛kt ˇke�ˇksdtds D ˛k

˛k C ˇk

D ˛k

˛1 C ˛2 C � � � C ˛n

:

This completes the proof of Proposition 1.3.

We will use many times the following particular case of Proposition 1.3.

Corollary 1.1. Let X and Y be two independent exponential random variables with
rates a and b, respectively. We have that

P.X < Y / D a

a C b
:

The proof of Corollary 1.1 is an easy consequence of Proposition 1.3 and is left
as an exercise.

Example 1.1. Assume that a system has two components A and B. The time it takes
for components A and B to fail are exponentially distributed with rates 1 and 2,
respectively. The components fail independently, and if one component fails the
whole system fails. What is the expected time for the system to fail?

The time for the system to fail is the minimum of the failure times of components
A and B. According to Proposition 1.2 this minimum is exponentially distributed
with rate 3. Thus, the expected time for the system to fail is 1/3.
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Problems

1. In this problem we show that the only continuous distribution with the memory-
less property is the exponential. Let X be a random variable such that

P.X > t C sjX > t/ D P.X > s/ for all t > 0; s > 0:

Let u.t/ D P.X > t/.

(a) Show that for all t > 0 and s > 0 we have

u.t C s/ D u.t/u.s/:

(b) Show that if there is a such that u.a/ D 0 then u.t/ D 0 for all t > 0.
(c) Question (b) shows that we may consider u to be strictly positive. Define e�˛ D

u.1/. Show that for every rational r > 0 we have

u.r/ D e�˛r :

(d) Use the continuity of the function u to show that for every real t > 0 we have

u.t/ D e�˛t :

2. Assume that a system has two components A and B. The time it takes for
components A and B to fail are exponentially distributed with rates 2 and 3,
respectively. The components fail independently and in order for the system to fail
both components must fail.

(a) What is the distribution of the failure time for the system?
(b) What is the expected time for the system to fail?
(c) What is the probability that component A fails first?

3. Let Sn be a geometric random variable with success probability pn. That is,

P.Tn D k/ D .1 � pn/k�1pn for k D 1; 2; : : : :

Assume that limn!1 npn D ˛. Compute

lim
n!1 P.Tn=n > k/:

4. Assume that the lifetime of a radio is exponentially distributed with mean
5 years.

(a) What is the probability that a new radio lasts more than 5 years?
(b) If the radio is already 5 years old, what is the probability that it lasts another

5 years?

5. Prove Corollary 1.1.
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2 The Poisson Process

A stochastic process .N.t//t�0 is a collection of random variables N.t/. One of
the most important stochastic processes is the so-called Poisson process. In many
situations where we want to count the number of a certain type of random events
happening up to time t the Poisson process turns out to be a good model. For
instance, N.t/ may count the number of customers that visited a bank up to time
t , or N.t/ could count the number of phone calls received at a home up to time t . In
order to be Poisson a counting process needs to have the following properties.

Definition 2.1. A counting process .N.t//t�0 is said to be Poisson if it has the
following properties:

(i) N.0/ D 0

(ii) If 0 � s < t , then N.t/ � N.s/ has a Poisson distribution with parameter
�.t � s/. That is, for all integers k � 0

P.N.t/ � N.s/ D k/ D e��.t�s/�k.t � s/k

kŠ
:

(iii) N.t/t�0 has independent increments. That is, if 0 < t1 < t2 < � � � < tn, then
the random variables N.t2/ � N.t1/; N.t3/ � N.t2/; : : : ; N.tn/ � N.tn�1/ are
independent.

Note that (ii) implies that the distribution of N.t/�N.s/ only depends on t and s

through the difference t � s. The process N.t/ is said to have stationary increments.
Property (iii) tells us that knowing what happened between times 0 and 1 does not
give any information about what will happen between times 1 and 3. Hence, the
events that we are counting need to be quite random for (iii) to be a reasonable
hypothesis.

Example 2.1. Assume that phone calls arrive at a hospital at rate 2/min according
to a Poisson process. What is the probability that 8 calls arrive during the first 4 min
but no call arrives during the first minute?

The event we are interested in is fN.4/ D 8I N.1/ D 0g. By (iii) we have

P.N.4/ D 8I N.1/ D 0/ D P.N.1/ D 0I N.4/ � N.1/ D 8/

By (iii)

P.N.1/ D 0I N.4/ � N.1/ D 8/ D P.N.1/ D 0/P.N.4/ � N.1/ D 8/:

By (ii),

P.N.4/ � N.1/ D 8/ D P.N.3/ D 8/ D e�3� .3�/8

8Š
D e�8 68

8Š
:
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Since, P.N.1/ D 0/ D e�� we get

P.N.4/ D 8I N.1/ D 0/ D e��e�3� .3�/8

8Š
D e�8 68

8Š
:

We now give another characterization of the Poisson process. We first need a new
notation. A function r.h/ is said to be o.h/ if

lim
h!0

r.h/

h
D 0:

For instance, r.h/ D h2 is a o.h/ (why?). This is a convenient notation to avoid
naming new functions in a computation.

Theorem 2.1. Assume that .N.t//t�0 is a process on the positive integers with the
following properties. There is a constant � > 0 such that

(a) N.0/ D 0.
(b) .N.t//t�0 has stationary and independent increments.
(c) P.N.h/ D 1/ D �h C o.h/:

(d) P.N.h/ � 2/ D o.h/:

Then .N.t//t�0 is a Poisson process with rate �.

Theorem 2.1 is interesting in that it shows that a process with properties (a)
through (d) is necessarily a Poisson process. There is no other choice!

Proof of Theorem 2.1. Since we are assuming N.0/ D 0 and that .N.t//t�0 has
stationary and independent increments we only need to check that N.t/ has a
Poisson distribution for all t > 0.

Let pn.t/ D P.N.t/ D n/ for n � 0. We first find p0. We have

p0.t C h/ D P.N.t C h/ D 0/ D P.N.t/ D 0I N.t C h/ D 0/

where we are using that if N.t C h/ D 0 then N.s/ D 0 for all s < t C h. By
independence of the increments we have

P.N.t/ D 0I N.t C h/ D 0/ D P.N.t/ D 0I N.t C h/ � N.t/ D 0/

D P.N.t/ D 0/P.N.t C h/ � N.t/ D 0/:

Since N.t C h/ � N.t/ has the same distribution as N.h/ we get

P.N.t/ D 0I N.t C h/ D 0/ D P.N.t/ D 0/P.N.h/ D 0/:



2 The Poisson Process 137

Hence,

p0.t C h/ D p0.t/p0.h/:

Observe now that by (c) and (d)

p0.h/ D P.N.h/ D 0/ D 1�P.N.h/ D 1/�P.N.h/ � 2/ D 1��h�o.h/�o.h/:

Since a linear combination of o.h/ is an o.h/ (why?) we get

p0.h/ D 1 � �h C o.h/ (2.1)

Therefore,

p0.t C h/ D p0.t/.1 � �h C o.h//

and

p0.t C h/ � p0.t/

h
D p0.t/.�� C o.h/

h
/:

Since limh!0
o.h/

h
D 0, by letting h go to 0 we get

d

dt
p0.t/ D ��p0.t/:

Integrating this differential equation yields

p0.t/ D Ce��t

where C is a constant. Note that p0.0/ D P.N.0/ D 0/ D 1 by (a). Hence, C D 1

and

p0.t/ D e��t :

We now compute pn for n � 1. If N.t C h/ D n, then N.t/ D n, N.t/ D n � 1 or
N.t/ < n � 1. We now compute the corresponding probabilities.

Using (b) we have

P.N.t/ D nI N.t C h/ D n/ D pn.t/p0.h/

and

P.N.t/ D n � 1I N.t C h/ D n/ D pn�1.t/p1.h/:
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Observe that in order for N.t/ < n � 1 and N.t C h/ D n there must be at least two
events occurring between times t and t C h. Hence,

P.N.t/ < n�1I N.tCh/ D n/ � P.N.tCh/�N.t/ � 2/ D P.N.h/ � 2/ D o.h/:

Using the preceding three equations we get

pn.t C h/ D pn.t/p0.h/ C pn�1.t/p1.h/ C o.h/:

By (2.1) and (c) we have

pn.t C h/ D pn.t/.1 � �h C o.h// C .�h C o.h//pn�1.t/ C o.h/:

Note that multiplying an o.h/ by a bounded function (such as pn.t/) yields another
o.h/. Hence,

pn.t C h/ D pn.t/.1 � �h/ C �hpn�1.t/ C o.h/:

and

pn.t C h/ � pn.t/

h
D ��pn.t/ C �pn�1.t/ C o.h/

h
:

Letting h go to 0 we get for all n � 1

d

dt
pn.t/ D ��pn.t/ C �pn�1.t/:

We now transform this differential equation by multiplying both sides by e�t .

e�t d

dt
pn.t/ D ��e�t pn.t/ C �e�t pn�1.t/:

So

e�t d

dt
pn.t/ C �e�t pn.t/ D �e�t pn�1.t/:

Observe that the l.h.s. is exactly the derivative of e�t pn.t/. Hence,

d

dt
.e�t pn.t// D �e�t pn�1.t/ for all n � 1 (2.2)
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We use (2.2) to compute pn.t/. We will prove by induction that

pn.t/ D e��t .�t/n

nŠ
for all n � 0 (2.3)

We know that p0.t/ D e��t . Hence, (2.3) holds for n D 0. Assume now that (2.3)
holds for n and use (2.3) to get

d

dt
.e�t pnC1.t// D �e�t pn.t/ D �e�t e��t .�t/n

nŠ
:

Hence,

d

dt
.e�t pnC1.t// D �

.�t/n

nŠ
D �nC1

nŠ
tn:

We integrate both sides with respect to t to get

e�t pnC1.t/ D �nC1

nŠ

tnC1

n C 1
C C D .�t/nC1

.n C 1/Š
C C:

Note that pnC1.0/ D P.N.0/ D n C 1/ D 0. Therefore, C D 0 and we have

pnC1.t/ D e��t .�t/nC1

.n C 1/Š
:

Therefore, (2.3) holds for n C 1 and this formula is proved by induction. This
completes the proof of Theorem 2.1.

The next result is important for at least two reasons. It shows that the Poisson
process is closely related to the exponential distribution and it gives a method to
construct a Poisson process.

(I) Let 
1; 
2 : : : a sequence of independent random variables with the same rate �

exponential distribution. Let T0 D 0 and for n � 1 let

Tn D 
1 C 
2 C � � � C 
n:

(II) For t � 0 let

N.t/ D maxfn � 0 W Tn � tg:

In words, 
1 is the time of the first event and for n � 2, 
n is the time between
the .n � 1/ � th event and the n-th event. For n � 1, Tn is the time of the n-th
event. For t � 0, N.t/ counts the number of events occurring by time t .
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Theorem 2.2. A counting process .N.t//t�0 defined by (I) and (II) is necessarily a
Poisson process with rate �.

Proof of Theorem 2.2. We first show that the distribution of N.t/ is Poisson. Note
that if N.t/ D n then the n-th event has occurred by time t but the .n C 1/-th has
not. Hence,

P.N.t/ D n/ D P.Tn � t < TnC1/:

Since Tn is the sum of n i.i.d. exponential random variables it has a � distribution
and its density is

f .s/ D �nsn�1

.n � 1/Š
e��s:

Note also that

TnC1 D Tn C 
nC1

and that Tn and 
nC1 are independent. The joint density of .Tn; 
nC1/ is

g.s; u/ D �nsn�1

.n � 1/Š
e��s�e��u:

Therefore,

P.N.t/ D n/ D P.Tn � t < Tn C 
nC1/ D
Z Z

s�t<sCu

�nsn�1

.n � 1/Š
e��s�e��udsdu:

Integrating first in u yields

Z

u>t�s

�e��udu D e��.t�s/:

Hence,

P.N.t/ D n/ D
Z t

0

�nsn�1

.n � 1/Š
e��se��.t�s/ds D e��t

Z t

0

�nsn�1

.n � 1/Š
ds D e��t �n tn

nŠ
:

This shows that N.t/ has a Poisson distribution with parameter N.t/. In order
to prove that .N.t//t�0 is actually a Poisson process we still need to show that the
increments of this process are stationary and independent. We will not quite prove
that. The formal proof is a little involved, see, for instance, Durrett (2010). Instead,
we will show that the location of the first event after time t is independent of N.t/.
This is really the critical part of the proof and it is the following lemma. First, a new
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notation. Recall that up to time t there are N.t/ events. So the last event before time
t occurs at time TN.t/ and the first event after time t occurs at time TN.t/C1.

Lemma 2.1. Assuming hypotheses (I) and (II) the random variables TN.t/C1 � t

and N.t/ are independent. That is, the location of the first event after time t is
independent of N.t/. Moreover, the random variable TN.t/C1 � t is exponentially
distributed with rate �:

The event N.t/ D n is the same as the event Tn � t < TnC1. Hence,

P.TnC1 � t C vI Nt D n/ D P.TnC1 � t C vI Tn � t /:

Using again the joint density of .Tn; 
nC1/ we have

P.TnC1 � t C vI Tn � t / D
Z Z

s�t IsCu�tCv

�nsn�1

.n � 1/Š
e��s�e��udsdu:

Integrating first in u yields

P.TnC1 � t C vI Tn � t / D
Z

s�t

�nsn�1

.n � 1/Š
e��se��.tCv�s/ds

D e��.tCv/

Z

s�t

�nsn�1

.n � 1/Š
ds D e��.tCv/ �ntn

nŠ
:

Using now that

P.N.t/ D n/ D e��t �ntn

nŠ

we have

P.TnC1 � t � vI N.t/ D n/ D P.TN.t/C1 � t � vI Nt D n/ D e��vP.N.t/ D n/:

That is, the probability of the intersection

fTN.t/C1 � t � vg \ fNt D ng

is the product of the corresponding probabilities. Hence, the random variables
TN.t/C1 � t and N.t/ are independent. The time it takes for the first event after
time t to occur (i.e., TN.t/C1 � t ) is independent of what occurred before time t .
This is a consequence of the memory less property of the exponential distribution.
This completes the proof of Lemma 2.1 and of Theorem 2.2.

We now show that the converse of Theorem 2.2 is also true.

Theorem 2.3. Assume that .N.t//t�0 is a Poisson process. Then the inter arrival
times between two events are independent and exponentially distributed.
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Proof of Theorem 2.3. We will give an informal argument that should convince the
reader that the Theorem is true. A formal proof can be found in a more advanced
text such as Bhattacharya and Waymire (1990).

We are given a Poisson process .N.t//t�0. Let 
1 be the time of the first event,
let 
2 be the time elapsed between the first and second event and so on. Note that

P.
1 > t/ D P.N.t/ D 0/ D e��t :

This shows that 
1 is exponentially distributed with rate �. We now show that 
2 has
the same distribution as 
1 and that these two random variables are independent.

Conditioning on the first arrival time we have

P.
2 > t I 
1 > s/ D
Z 1

s

P.
2 > t j
1 D u/P.
1 D u/du

D
Z 1

s

P.
2 > t j
1 D u/�e��udu:

Note that

P.
2 > t j
1 D u/ D P.N.t C u/ � N.u/ D 0j
1 D u/:

Since .N.t//t�0 has independent increments we can argue that the events fN.t C
u/ � N.u/ D 0g and f
1 D ug are independent. This is so because the first event
depends on what happens between times u and t Cu while the second event depends
on what happens between times 0 and u. Hence,

P.
2 > t j
1 D u/ D P.N.t C u/ � N.u/ D 0j
1 D u/

D P.N.t C u/ � N.u/ D 0/ D P.N.t/ D 0/ D e��t :

Going back to the integral we get

P.
2 > t I 
1 > s/ D
Z 1

s

e��t �e��udu D e��t e��s:

This shows that 
1 and 
2 are independent and that they are exponentially
distributed. This argument can be easily generalized to any finite number of 
i ’s.
This completes the proof of Theorem 2.3.

Example 2.2. Consider phone calls arriving at a hospital at rate 2/min according to
a Poisson process.

(a) What is the expected time of the third call?
The third call occurs at time T3. We have

T3 D 
1 C 
2 C 
3:
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We now use that each interarrival time has mean 1=� D 1=2. Thus,

E.
3/ D 3=2:

(b) What is the probability that the third call arrives after 2 min?
We want to compute the probability of event fT3 > 2g. This is the same as

the event fN.2/ < 3g. Since N.2/ follows a Poisson distribution with parameter
2� D 4 we have

P.N.2/ < 3/ D P.N.2/ D 0/ C P.N.2/ D 1/ C P.N.2/ D 2/

D e�4.1 C 4 C 42

2Š
/ D 13e�4:

Example 2.3. Consider the following problem. Assume that calls arrive to a fire
station according to a Poisson process with rate 20/h. Assume also that only about
20 % of these calls are emergency calls. Consider the process of emergency calls
only. Is this still a Poisson process? If this is the case at what rate do the emergency
calls arrive? These questions are answered by the following theorem.

Theorem 2.4. Let .N.t/t�0 be a Poisson process with rate �. Occurrences of
the Poisson process may be of type 1 or type 2 with probability p and 1 � p,
respectively, independently of all other events. Let N1.t/ and N2.t/ be the processes
of occurrences of type 1 and type 2, respectively. Then N1.t/ and N2.t/ are
independent Poisson processes with rates �p and �.1 � p/, respectively.

It is not so surprising that N1.t/ and N2.t/ are Poisson processes with the stated
rates. What might seem surprising at first glance is that they are independent.

Going back to Example 2.3. We have � D 20, p D 1=5. Hence, the emergency
calls form a Poisson process with rate �p D 4/h.

Proof of Theorem 2.4. We start by computing the joint distribution of .N1.t/; N2.t//.
Note that

N.t/ D N1.t/ C N2.t/:

Let k and n be positive integers.

P.N1.t/DkI N2.t/ D n/DP.N1.t/DkI N2.t/DnjN.t/Dk C n/P.N.t/Dk C n/:

Given N.t/ D k C n, since occurrences are of type 1 or 2 independently of all other
events, the number of type 1 events follows a binomial with parameters n C k and
p. Thus,

P.N1.t/ D kI N2.t/ D njN.t/ D k C n/ D
�

n C k

k

�
pk.1 � p/n
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and

P.N1.t/ D kI N2.t/ D n/ D
�

n C k

k

�
pk.1 � p/n .�t/kCn

.k C n/Š
e��t :

A little algebra gives

P.N1.t/ D kI N2.t/ D n/ D .�pt/k

kŠ
e��pt .�.1 � p/t/n

nŠ
e��.1�p/t : (2.4)

We may now compute the distribution of N1.t/:

P.N1.t/ D k/ D
X

n�0

P.N1.t/ D kI N2.t/ D n/

D
X

n�0

.�pt/k

kŠ
e��pt .�.1 � p/t/n

nŠ
e��.1�p/t :

We sum the series to get that

P.N1.t/ D k/ D .�pt/k

kŠ
e��pt :

This shows that N1.t/ has a Poisson distribution with rate �pt . A similar computa-
tion shows that

P.N2.t/ D n/ D .�.1 � p/t/n

nŠ
e��.1�p/t :

Hence, using (2.4)

P.N1.t/ D kI N2.t/ D n/ D P.N1.t/ D k/P.N2.t/ D n/

showing that the two processes are independent.
We now prove that .N1.t//t�0 has stationary increments. We have for s < t and

any positive integer k

P.N1.t/ � N1.s/ D k/ D
X

n�0

P.N1.t/ � N1.s/ D kI N.t/ � N.s/ D k C n/:

We use again that given N.t/ � N.s/ D k C n, the distribution of N1.t/ � N1.s/ is
a binomial distribution with parameters k C n and p. Thus,

P.N1.t/ � N1.s/ D k/ D
X

n�0

�
n C k

k

�
pk.1 � p/nP.N.t/ � N.s/ D k C n/:
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Since N.t/ � N.s/ has a Poisson distribution with rate �.t � s/ we get

P.N1.t/ � N1.s/ D k/ D
X

n�0

�
n C k

k

�
pk.1 � p/ne��.t�s/ .�.t � s//kCn

.k C n/Š
;

so

P.N1.t/ � N1.s/ D k/ D pke��.t�s/ .�.t � s//k

kŠ

X

n�0

.1 � p/n .�.t � s//n

nŠ
:

After summing the series we have

P.N1.t/ � N1.s/ D k/ D e��p.t�s/ .�p.t � s//k

kŠ
:

That is, N1.t/�N1.s/ has the same distribution as N1.t � s/. Hence, .N1.t//t�0 has
stationary increments.

Note that the distribution of N1.t/ � N1.s/ depends only on the distribution of
N.u/ for u in Œs; t �. So, using the fact that the increments of N.t/ are independent,
we see that the increments of N1.t/ are also independent.

We have checked (i), (ii), and (iii) from Definition 2.1 for N1.t/. Thus, this
is a Poisson process. The process N2.t/ has the same properties as the process
N1.t/. Hence, N1.t/ and N2.t/ are independent Poisson processes and the proof
of Theorem 2.4 is complete.

2.1 Application: Influenza Pandemics

Since 1700 there have been about ten worldwide severe influenza pandemics. The
dates are 1729, 1781, 1799, 1830, 1847, 1889, 1918, 1957, 1968, 1977. There are
not really enough data points to decide whether the times between pandemics are
exponentially distributed. Even so a Poisson process gives a model that does not
appear unreasonable and for which we may compute probabilities. The average
interarrival time between two pandemics is about 25 years. We take 1700 as time 0
and we use a Poisson process to model the number of pandemics with � D 1=25.

The main question of interest in this section is to compute the probability of
long periods without pandemics. One of the reasons for the anxiety about the 2008
influenza season was that the last pandemic had occurred 30 or 40 years earlier and
therefore we were due for a new pandemic. Or were we?

With the notation of this section, there are N.t/ pandemics up to time t and the
first pandemic after time t occurs at time TN.t/C1. The time between t and the next
pandemic (i.e., TN.t/C1 � t ) was shown to be exponentially distributed with rate �

in Lemma 2.1.
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The probability that the first pandemic after time t be at least twice the mean time
1=� is therefore

Z C1

2=�

� exp.��x/dx D exp.�2/ � 14%:

Similarly the probability that the first pandemic after time t be at least three times
the mean is exp.�3/ � 5 %. Hence, under this model it is not unlikely that starting
today we have no pandemic for another 50 years or even 75 years.

Problems

1. Show that if N.t/ is a Poisson process and s < t then

P.N.s/ D kjN.t/ D n/ D
�

n

k

�
.
s

t
/k.1 � s

t
/n�k

for k D 0; : : : ; n.

2. Let N.t/ be a Poisson process with rate �. Compute E.N.t/N.t C s//.

3. Assume N1.t/ and N2.t/ are independent Poisson processes with rates �1 and
�2. Show that N1.t/ C N2.t/ is a Poisson process with rate �1 C �2.

4. Assume that N.t/ is a Poisson process and let 
1 be the time of the first event.
Prove that if s � t then

P.
1 < sjN.t/ D 1/ D s

t
:

5. Assume N.t/ is a Poisson process with rate �, and .Yi /i�1 are i.i.d. random
variables. Assume also that N.t/ and the Yi are independent. Define the compound
Poisson process by

X.t/ D
N.t/X

iD1

Yi :

Show that

E.X.t// D �tE.Y1/:

6. Assume that certain events occur according to a Poisson process with rate 2/h.

(a) What is the probability that no event occurs between 8:00 and 9:00 PM?
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(b) What is the expected time at which the fourth event occurs?
(c) What is the probability that two or more events occur between 8:00 and

9:00 PM?

7. Emails arrive according to a Poisson process with rate 20/day. The proportion of
junk email is 90 %.

(a) What is the probability of getting at least one non-junk email today?
(b) What is the expected number of junk emails during 1 week?

8. Customers arrive at a bank according to a Poisson process with rate 10/h.

(a) Given that exactly two customers came the first hour, what is the probability
they both arrived during the first 20 min?

(b) What is the probability that the fourth customer arrives after 1 h?

9. The following ten numbers are simulations of exponential random variables with
rate 1: 4.78, 1.05, 0.92, 2.21, 3.22, 2.21, 4.6, 5.28, 1.97, 1.39. Use these numbers to
simulate a rate 1 Poisson process.

10. Consider a Poisson process .N.t//t�0 with rate �. Let Tn be the arrival time of
the n-th event for some n � 1.

(a) Show that

P.N.t/ < n/ D P.Tn > t/:

(b) Show that

P.Tn > t/ D
n�1X

kD0

e��t .�t/k

kŠ
:

(c) Show that the density of the distribution of Tn is

f .t/ D �ntn�1

.n � 1/Š
e��t :

(Use (b) and recall that d
dt

P.Tn � t / D f .t/.)

11. Recall that the distribution function of a random variable X is defined by

FX .x/ D P.X � x/:

(a) Let T be exponentially distributed with rate �. Show that for t � 0 we have

FT .t/ D 1 � e��t :
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(b) Find the inverse function F �1
T .

(c) Let U be a uniform random variable on Œ0; 1�. Let Y D F �1
T .U /. Show that

FY .y/ D P.Y � y/ D FT .y/:

That is, the random variable

Y D � 1

�
ln.1 � U /

is exponentially distributed with rate �.

12. (a) Simulate 10 independent exponential observations with rate 1/25. (See the
method in problem 11.)

(b) Use these observations to simulate 10 pandemic dates. Take the origin to be year
1700.

(c) Compare your simulation to the real data.

13. Let X and Y be independent random variables with rates a and b,
respectively.

(a) Show that

P.0 < X < h/ D ah C o.h/:

(b) Show that

P.f0 < X < hg \ f0 < Y < hg/ D o.h/:

(c) Show that

P.fX > hg \ fY > hg/ D 1 � .a C b/h C o.h/:

14. (a) Show that a linear combination of o.h/ is o.h/.
(b) Show that a product of o.h/ and a bounded function is o.h/.

Notes

We give a very short introduction of the Poisson process. Kingman (1993) is an
excellent reference on the subject. At a higher mathematical level Durrett (2010)
and Bhattacharya and Waymire (1990) are good references for the Poisson process
and more generally for probability and stochastic processes.
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Chapter 8
Continuous Time Branching Processes

We introduce continuous time branching processes. The main difference between
discrete and continuous branching processes is that births and deaths occur at
random times for continuous time processes. Continuous time branching processes
have the Markov property if (and only if) birth and death times are exponentially
distributed. We will use several properties of the exponential distribution.

1 A Continuous Time Binary Branching Process

We define a continuous time binary branching process by the following rules. Each
individual gives birth to a new individual at rate � or dies at rate 1. Individuals are
independent of each other.

More precisely, each individual in the population has two independent expo-
nential random variables attached to it. One random variable has rate �, the
other one has rate 1. If the rate � exponential random variable happens before
the rate 1 exponential, then the individual is replaced by two individuals. If the
rate 1 exponential random variable happens before the rate � exponential then
the individual dies with no offspring. Every new individual gets two independent
exponential random variables attached to it (one with rate � and the other with rate
1) and so on.

The number of individuals at time t is denoted by Zt . We start the process with
Z0 D 1.

The following is the main result of this section.
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Theorem 1.1. Consider a binary branching process .Zt /t�0 with birth rate � and
death rate 1. The process has a strictly positive probability of surviving if and only
if � > 1. Moreover, for any � > 0 we have

E.Zt/ D e.��1/t :

Proof of Theorem 1.1. Consider the process Zt at integer times n. Assume that at
time n � 1 there are Zn�1 D j � 0 individuals. If j D 0, then Zt D 0 for all
t > n � 1. If j � 1, then label each of the individuals present at time n � 1. For
1 � k � j let Yk be the number of descendants (which can possibly be 0) of the
kth individual after one unit time. If the kth individual has not undergone a split
between times n � 1 and n it means that this individual is still present at time n and
we let Yk D 1. Note that the .Yk/1�k�j are independent and identically distributed.
Moreover,

Zn D
jX

k�0

Yk for all n � 1:

Thus, Zn is a discrete time branching process. Observe also that Zt D 0 for some
t > 0 if and only if Zn D 0 for some n � 1 (why?). Hence,

P.Zt 6D 0; for all t > 0/ D P.Zn 6D 0; for all n > 0/:

In other words, the problem of survival for the continuous time branching process
is equivalent to the problem of survival for the corresponding discrete time process.
We know that the discrete time process survives if and only if E.Y1/ > 1. The only
difficulty is that we do not know the distribution of Y1. It is however possible to
compute the expected value of Y1 without computing the distribution of Y1. We do
this now.

Denote the expected number of particles at time t by

M.t/ D E.Zt jZ0 D 1/:

Next we derive a differential equation for M.t/. We condition on what happens
between times 0 and h where h is small (we will let h go to 0). At time 0 we have a
single individual. There are three possibilities.

(1) The individual gives birth between times 0 and h. This happens with probability
�h C o.h/ (why?).

(2) The individual dies. This happens with probability h C o.h/.
(3) Nothing happens at all with probability 1 � .� C 1/h C o.h/.

We have

M.t C h/ D �h.2M.t// C .1 � .� C 1/h/M.t/:
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This is so because of our three possibilities above. If there is a birth, then at time
h there are two individuals and each one founds a new process that runs until time
t C h. If the individual dies, then M.t C h/ D 0 and we can ignore this term. If
nothing happens by time h, then we have a single individual at time h.

Therefore,

M.t C h/ � M.t/

h
D �M.t/ � M.t/ C o.h/

h
:

Letting h go to 0 we have

M 0.t/ D .� � 1/M.t/:

Integrating this differential equation with the initial value M.0/ D 1 gives

M.t/ D e.��1/t :

So E.Z1/ D E.Y1/ D e��1. Note that E.Y1/ > 1 if and only if � > 1. That is,
the process Zt survives forever with positive probability if and only if � > 1. This
completes the proof of Theorem 1.1.

Remark. Consider a continuous time branching process with Z0 D 1. Say that
Z1 D 3. Each one of these three individuals has appeared at a different time between
times 0 and 1. However, we claim that .Zn/n�0 is a discrete time branching process.
In particular, we claim that each one of these three individuals starts processes at
time 1 that have the same distribution. This is so because of the memoryless property
of the exponential distribution. It does not matter how old the individual is at time
1. All that matters is that the individual is present at time 1.

Problems

1. In this problem we give a more general definition of a continuous time branching
process.

After an exponential time with parameter a a given individual is replaced by
k � 0 individuals with probability fk , where .fk/k�0 is a probability distribution on
the positive integers. Hence, an individual dies leaving no offspring with probability
f0. Each individual evolves independently of the others. Denote by Zt the number
of individuals at time t . Let M.t/ D E.Zt /.

(a) Show that

M.t C h/ D ah

1X

kD0

kfkM.t/ C .1 � ah/M.t/ C o.h/:
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(b) Show that

d

dt
M.t/ D a.c � 1/M.t/

where c is the mean offspring

c D
1X

kD0

kfk:

(c) Show that

M.t/ D ea.c�1/t :

(d) Show that the process survives if and only if c > 1.

2. Consider a particular case of the process in problem 1 with fk D 1
2

1

2k for
k � 0.

(a) Does this process survive?
(b) Compute E.Zt jZ0 D 1/.

3. In this problem we show that the binary branching process is a particular case of
the branching process defined in problem 1. We assume that the birth rate is � and
the death rate 1. We need to find a and the probability distribution .fk/k�0.

(a) Show that after an exponential time with rate a D � C 1 an individual in the
binary branching process is replaced by 0 or 2 individuals.

(b) Show that the probability for an individual to be replaced by 0 individuals is
f0 D 1

�C1
and to be replaced by 2 individuals is f2 D �

�C1
.

4. Consider a continuous time binary branching starting with a single individual.
We assume that the birth rate is � and the death rate 1.

(a) Show that the probability that there is a birth between times 0 and h is 1�e��h.
(b) Show that

1 � e��h D 1 � �h C o.h/:

(c) Show that the probability that there is no birth and no death between times 0

and h is e�.�C1/h.
(d) Show that

e�.�C1/h D 1 � .� C 1/h C o.h/:
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2 A Model for Immune Response

We introduce a stochastic model designed to test the following hypothesis: can
a pathogen escape the immune system only because of its high probability of
mutation? For instance, the HIV virus is known to mutate at a very high rate and it is
thought that it overwhelms the human immune system because of this high mutation
rate.

We now describe the model. We have two parameters � > 0 and r in Œ0; 1�.
Births. We start the model with a single pathogen at time zero. Each pathogen

gives birth to a new pathogen at rate �. That is, a random exponential time with rate
� is attached to each pathogen. These exponential times are independent of each
other. When the random exponential time occurs a new pathogen is born. The new
pathogen has the same type as its parent with probability 1 � r . With probability
r , a mutation occurs, and the new pathogen has a different type from all previously
observed pathogens. For convenience, we say that the pathogen present at time zero
has type 1, and the kth type to appear will be called type k. Note that we assume the
birth rate � to be the same for all types and we therefore ignore selection pressures.

Deaths. Each pathogen that is born is killed after an exponentially distributed
time with mean 1. When a pathogen is killed, all pathogens of the same type are
killed simultaneously. In other words, each pathogen is born with an exponential
clock which, when it goes off, kills all pathogens of its type.

The rule that all pathogens of the same type are killed simultaneously is supposed
to mimic the immune response. Note that types that have large numbers of pathogens
are more likely to be targeted by the immune system and eliminated.

We start with the following result.

Proposition 2.1. If � � 1, then the pathogens die out for all r in Œ0; 1�.

In words, even if the probability of mutation is very high the pathogens cannot
survive for a birth rate � less than 1. Proposition 2.1 is actually included in
Theorem 2.1 below. We include Proposition 2.1 because its proof is elementary
and uses an important technique, the so-called coupling technique.

Proof of Proposition 2.1. Let .Xt /t�0 be the number of pathogens at time t � 0.
We start the process with one pathogen so that X0 D 1. Consider now the process
.Zt /t�0. We let Z0 D 1 and let .Zt /t�0 evolve as .Xt /t�0 with the same birth and
death rates. The only difference between the two processes is the following. Just
one pathogen dies at a time for the process .Zt /t�0 while for the process .Xt /t�0 all
the pathogens of the same type are killed simultaneously. We will construct these
processes so that for all t � 0 we have

Xt � Zt :

At time t D 0 we have X0 D Z0 D 1 so that X0 � Z0. Assume that at some time
s > 0 the inequality Xs � Zs holds. We will now show that no transition can break
this inequality.
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Assume first that the first transition after time s for the process .Zt /t�0 is a birth.
There are two possibilities: either the pathogen giving birth exists for .Xt /t�0 or it
does not. If it does, then the birth occurs for both processes. If it does not, then the
birth occurs for .Zt /t�0 but not for .Xt /t�0. In both cases Zt is larger than Xt after
the birth.

Assume now that the first transition after time s for the process .Zt /t�0 is a death.
Again there are two possibilities: either the killed pathogen exists for .Xt /t�0 or it
does not. If it does, then the pathogen is killed in both processes. Moreover, for
the process .Xt /t�0 all the pathogens of the same type are killed. Hence, the death
does not change the inequality between the processes. Now if the pathogen does not
exist in .Xt /t�0, then it means that the inequality at time s is strict: Xs < Zs (Zs

has at least one more pathogen than Xs). The death occurs for .Zt /t�0 but not for
.Xt /t�0. Since the inequality was strict (and hence there was a difference of at least
1 between the processes) we have that Xt � Zt after the death.

This completes the proof that .Xt /t�0 and .Zt /t�0 can be constructed simultane-
ously in a way that Xt � Zt for all t � 0. The simultaneous construction of two
processes is called a coupling.

To complete the proof of Proposition 2.1 we need the following observation. The
process .Zt /t�0 is a binary branching process with birth rate � and death rate 1. By
Theorem 1.1 it survives if and only if � > 1. Since we are assuming that � � 1

the pathogens in .Zt /t�0 die out with probability one. By our coupling Xt � Zt

for all t � 0 and therefore .Xt /t�0 dies out as well. The proof of Proposition 2.1 is
complete.

Our main result is the following theorem, which specifies the values of r and �

for which there is a positive probability that the pathogens survive, meaning that for
all t > 0, there is at least one pathogen alive at time t .

Theorem 2.1. Assume � > 0 and r is in Œ0; 1�. The pathogens survive with positive
probability if and only if r� > 1.

Observe that if � � 1 then r� � r � 1. Hence, survival is impossible if � � 1

(which we already knew by Proposition 2.1). On the other hand, if � > 1, then
survival of pathogens (and therefore failure of the immune system) is possible if
and only if r > 1=�. This (very) simple model suggests that the immune system
may indeed be overwhelmed by a virus if the virus has a mutation probability high
enough.

The key to proving Theorem 2.1 is the tree of types that we now introduce.

2.1 The Tree of Types

We will construct a tree which keeps track of the genealogy of the different types of
pathogens. Each vertex in the tree will be labeled by a positive integer. There will be
a vertex labeled k if and only if a pathogen of type k is born at some time. We draw
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1

2
3 4

5

67

Fig. 8.1 This is an example of a tree of types. We see that type 1 has given birth to types 2 only.
Type 2 has given birth to types 3, 4, and 5. Types 3 and 4 do not give birth to any new type

a directed edge from j to k if the first pathogen of type k to be born had a pathogen
of type j as its parent. This construction gives a tree whose root is labeled 1 because
all types of pathogens are descended from the pathogen of type 1 that is present at
time zero. Since every type is eliminated eventually (why?), the pathogens survive
if and only if infinitely many different types of pathogens eventually appear or, in
other words, if and only if the tree described above has infinitely many vertices.

The tree of types can be thought of as representing a stochastic process .Zn/n�0.
For n � 0 we define Zn as being the number of types in the nth generation. In
Fig. 8.1 we have Z0 D 1 (one type at the root of the tree), Z1 D 1 (type 1 gave birth
to only one type), Z2 D 3 (type 2 gave birth to three types) and so on.

We will now show that the process .Zn/n�0 is a discrete time branching process
(i.e., a BGW process). Note that all the types behave independently. Knowing, for
instance, that there are many type 1 pathogens does not yield any information on
how type 2 is doing. More generally, once the first pathogen of type k is born, the
number of mutant offspring born to type k pathogens is independent of how the
other types evolve. This is so because each pathogen gives birth independently of
all other pathogens and death of a pathogen affects only pathogens of the same
type. Moreover, each type has the same offspring distribution: every time a new
type appears it has the same offspring distribution as type 1 which initiated the
process. Therefore, the tree constructed above represents a BGW tree. Hence, the
process survives with positive probability if and only if the mean of the offspring
distribution is strictly greater than one.

We now compute the mean offspring distribution for the tree of types.

Proposition 2.2. The number of types that a given type gives birth to before dying
has the distribution

P.X D k/ D .r�/k

.r� C 1/kC1
;

for k D 0; 1; : : : .
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Proof of Proposition 2.2. We start with the construction of the process. We attach
to each pathogen three independent exponential random variables with rates 1, �r

and �.1 � r/, respectively. The rate 1 exponential corresponds to the death of the
pathogen. The rate �r exponential corresponds to the birth of a pathogen with a type
different from the parent. The rate �.1 � r/ exponential corresponds to the birth of
a pathogen with the same type as the parent.

We compute now the rate at which a type disappears. Whenever there are n

pathogens of a given type, the type is destroyed at rate n. This is so because each of
the n pathogens dies after a rate 1 exponential time, these n exponential times are
independent and the type disappears when the minimum of these exponential times
happens. We then use the fact that the minimum of independent exponential random
variables is also an exponential and its rate is the sum of the rates.

We now turn to the rate at which a type appears. A pathogen gives birth to a
pathogen of a new type after a rate r� exponential time. If there are n pathogens
of a given type, then a pathogen of this type gives birth to a pathogen of a different
type after a rate nr� exponential time. This is again due to the independence of the
exponential times involved.

Let X be the number of types (different from type 1) that are offspring of type
1 parents. Let T be the total number of births from type 1 parents before the type
disappears. We have

P.X D 0/ D
X

n�0

P.X D 0jT D n/P.T D n/:

Since each birth is independently of a different type with probability r we have

P.X D 0jT D n/ D .1 � r/n:

Observe now that in order for T D n we need n births followed by a death of a type
1 pathogen. Note also that if there are k type 1 pathogens at a given time then the
rate at which a pathogen is born is k� and the death rate of the type is k. Hence, the
probability of a birth is for any k � 1

k�

k� C k
D �

� C 1
:

Therefore,

P.T D n/ D .
�

� C 1
/n 1

� C 1
:

Hence,

P.X D 0/ D
X

n�0

.1 � r/n.
�

� C 1
/n 1

� C 1
:



2 A Model for Immune Response 159

By summing the geometric series we get

P.X D 0/ D 1

1 C r�
:

Let k � 1. We have for n � k

P.X D kjT D n/ D
�

n

k

�
rk.1 � r/n�k:

For we have n births of which k are of a different type. Given that births are of a
different type or not independently we get a binomial distribution. Therefore,

P.X D k/ D
X

n�k

P.X D kjT D n/P.T D n/

D
X

n�k

�
n

k

�
rk.1 � r/n�k.

�

� C 1
/n 1

� C 1

Using the definition of the binomial coefficient we get

�
n

k

�
D n.n � 1/ : : : .n � k C 1/

kŠ
:

Hence,

P.X D k/ D .
�

� C 1
/k 1

� C 1

rk

kŠ

X

n�k

n.n�1/ : : : .n�k C1/.1�r/n�k.
�

� C 1
/n�k:

This series can be computed by the following method. For jxj < 1 we have

1

1 � x
D

X

n�0

xn:

By differentiating both sides k times (recall that power series are infinitely
differentiable and can be differentiated term by term) we get

kŠ

.1 � x/kC1
D

X

n�k

n.n � 1/ : : : .n � k C 1/xn�k:

Hence, by letting

x D .1 � r/�

� C 1
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we get

X

n�k

n.n � 1/ : : : .n � k C 1/.1 � r/n�k.
�

� C 1
/n�k D kŠ

.1 � .1�r/�

�C1
/kC1

:

Therefore,

P.X D k/ D .
�

� C 1
/k 1

� C 1

rk

kŠ

kŠ

.1 � .1�r/�

�C1
/kC1

:

A little algebra yields

P.X D k/ D .r�/k

.r� C 1/kC1
:

This completes the proof of Proposition 2.2.

We are now ready for the proof of Theorem 2.1.

Proof of Theorem 2.1. The tree of types has a positive probability of being infinite
if and only if the mean offspring E.X/ > 1. We have

E.X/ D
X

k�1

kP.X D k/ D
X

k�1

k
.r�/k

.r� C 1/kC1
:

Using the formula

1

.1 � x/2
D

X

k�1

kxk�1

we get

E.X/ D r�

.r� C 1/2

1

.1 � r�
r�C1

/2
D r�:

It follows that the mean of the offspring distribution is greater than one if and
only if r� > 1. This concludes the proof of Theorem 2.1.

Problems

1. The immune response model starts with a single pathogen. What is the probabil-
ity that the immune system eliminates this single pathogen before it gives birth to
any other pathogen?
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2. Let D be the time it takes to eliminate type 1 pathogens.

(a) Show that

P.D > t/ � e�t :

(b) What is limt!1 P.D > t/?
(c) Explain why (b) implies that type 1 pathogens will eventually be eliminated.

What can we say about the other types?

3. Show that if the tree of types has finitely many vertices then the pathogens
die out.

4. Let Xt be the total number of pathogens at time t � 0. We start with one
pathogen so X0 D 1. Let � > 0 and r < 1.

(a) Explain why .Xt /t�0 is not a binary branching process.
(b) In the proof of Proposition 2.1 we introduced a continuous time binary

branching process .Zt /t�0. The only difference between .Xt /t�0 and .Zt /t�0

is that we kill one pathogen at a time for .Zt /t�0 instead of killing the whole
type. We know that .Zt /t�0 survives if and only if � > 1. Why is r not relevant
for the survival of .Zt /t�0?

5. The tree of types represents a discrete time BGW with an offspring distribution
given by

P.X D k/ D .r�/k

.r� C 1/kC1

for k D 0; 1; 2; : : : .

(a) Show that the probability that this BGW survives is 1 � 1
r�

for r� > 1 and 0 for
r� � 1.

(b) The tree of types is defined to analyze the process of pathogens .Xt /t�0. What
does the survival probability of the tree of types represent for the process
.Xt /t�0?

6. Consider the process .Xt /t�0 in the particular case when r D 0. We start the
process with a single pathogen. Describe the evolution of the process.

7. Consider the process .Xt /t�0 in the particular case when r D 1. We start the
process with a single pathogen.

(a) Show in this particular case .Xt /t�0 is actually a continuous time binary
branching process. (Recall that no two types are the same.)

(b) Give a direct proof (not using the results of this section) that the pathogens
survive if and only if � > 1.



162 8 Continuous Time Branching Processes

8. Let k � 1 and x in .�1; 1/.

(a) Show (by induction) that the kth derivative of 1
1�x

is

kŠ

.1 � x/kC1
:

(b) Show that the kth derivative of
P

n�0 xn is

X

n�k

n.n � 1/ : : : .n � k C 1/xn�k:

(c) Show that

kŠ

.1 � x/kC1
D

X

n�k

n.n � 1/ : : : .n � k C 1/xn�k:

3 A Model for Virus Survival

Compared to other species a virus replicating through (single strand) RNA has a
very high mutation rate and a great deal of genomic diversity. From the virus point of
view a high mutation rate is advantageous because it may create rather diverse virus
genomes, this may overwhelm the immune system of the host and ensure survival
of the virus population. This was seen in the previous section. On the other hand,
a high mutation rate may result in many nonviable individuals and hurt survival. It
seems therefore that mutation rates should be high but not too high in order for the
virus to survive. This is the hypothesis we will test in this section. In fact, we will
show that our model allows survival of the virus for even very high mutation rate.
This contradicts the widely accepted hypothesis that survival should not be possible
above a certain mutation threshold.

Note that the immune response model of the previous section gives the same
birth rate to all types. In this section each type will have a different birth rate. This
is necessary in order to test the hypothesis of this section.

We now describe our model. We have two parameters: a > 0 and r in Œ0; 1�. Start
with one individual at time 0, and sample a birth rate � from the uniform distribution
on Œ0; a�. Recall that the uniform distribution on Œ0; a� has a flat density

f .x/ D 1

a
for all x 2 Œ0; a�;

and that its expected value is

E.X/ D a

2
:
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The initial individual gives birth at rate � and dies at rate 1. As always these are
the rates of exponential distributions. Every time there is a birth the new individual:
(1) with probability 1 � r keeps the same birth rate � as its parent, and (2) with
probability r is given a new birth rate �0, sampled independently of everything
else from the same uniform distribution. We think of r as the mutation probability
and the birth rate of an individual as representing the fitness or genotype of the
individual. Since uniform distributions are continuous, a genotype cannot appear
more than once (why?). For convenience we label the genotypes (or types) in the
order of their appearance.

We say that the virus survives if the probability that there is at least one virus at
all times is positive. Hence, the virus dies out if after a finite (random) time no virus
is left. The first question we address is whether the initial type 1 virus may survive
forever. More generally, we now give a necessary and sufficient condition for a fixed
type to survive.

Proposition 3.1. A fixed type survives if and only if a.1 � r/ > 1.

Intuitively, a large a allows for large �’s to appear and therefore should help the
virus to survive. However, even if a is large Proposition 3.2 shows that a fixed type
can survive only if the mutation probability r is not too large (why?).

Proof of Proposition 3.1. All types appear through a single individual whose � has
been sampled from the uniform distribution on Œ0; a�. Hence, the survival probability
is the same for any given type. For the sake of concreteness we concentrate on type
1. Let Xt be the number of type 1 individuals alive at time t . A type 1 individual
gives birth at rate � and dies at rate 1. The new individual is a type 1 individual with
probability 1�r and of a different type with probability r . Hence, a type 1 individual
gives birth to another type 1 individual at rate �.1 � r/. Hence, conditional on the
rate �, Xt is a continuous time binary branching process.

Let A be the event that Xt survives. That is,

A D fXt > 0; 8t > 0g:

By Theorem 1.1, P.Aj�/ > 0 if and only if �.1 � r/ > 1. By conditioning on �,

P.A/ D 1

a

Z a

0

P.Aj�/d�:

If a.1 � r/ � 1, then �.1 � r/ < 1 and P.Aj�/ D 0 for every � in Œ0; a�. Hence,

P.A/ D 1

a

Z a

0

P.Aj�/d� D 0:
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On the other hand, if a.1 � r/ > 1, then P.Aj�/ > 0 for � in Œ 1
1�r

; a�. It turns
out that this is enough to show that

1

a

Z a

0

P.Aj�/d� > 0 (3.1)

and therefore that P.A/ > 0. We will indicate the proof of (3.1) in the Problems.
This completes the proof of Proposition 3.1.

We now turn to the second (and more interesting) way the virus may survive.
First, we need the tree of types that was introduced for another model in the

preceding section. We recall the definition. Each vertex in the tree will be labeled
by a positive integer. There will be a vertex labeled k if and only if a virus of type k

is born at some time. We draw a directed edge from j to k if the first virus of type k

to be born had a virus of type j as its parent. Similarly to the model in Sect. 2 each
type has the same offspring (i.e., the number of types that each type gives birth to)
distribution and each type is independent of all other types. Hence, here too the tree
represents a discrete time BGW process.

With the tree of types in hand we are ready to give necessary and sufficient
conditions for the survival of the virus population.

Since the tree of types is a BGW it is infinite if and only if the corresponding
mean offspring distribution is strictly larger than 1. We now proceed to compute this
mean. Let m.r/ be the mean number of types that are born from type 1 individuals.

Proposition 3.2. Let m.r/ be the mean number of types that are born from a fixed
type. If a.1 � r/ < 1, then

m.r/ D 1

a

Z a

0

r�

1 � .1 � r/�
d�:

If a.1 � r/ � 1, then m.r/ D C1.

Proof of Proposition 3.2. Let Xt be the number of type 1 individuals alive at time t .
Let Yt be the number of individuals born up to time t that are offspring of genotype
1 individuals and have a different type. That is, Yt counts all the new types born
from type 1 parents up to time t . Some types will have disappeared by time t but are
still counted.

Let h > 0 be close to 0. Each type 1 virus gives birth between times t and t C h

to a single new type with probability �rh. The probability that a type 1 virus gives
birth to 2 or more new types is of order h2 or higher for small h. Therefore,

E.YtCh � Yt j�/ D �rhE.X.t// C o.h/:
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By dividing both sides by h and letting h go to 0 it follows that

d

dt
E.Yt j�/ D �rE.Xt j�/:

Given �, Xt is a continuous time BGW and so by Theorem 1.1

E.Xt j�/ D exp..�.1 � r/ � 1/t/:

Hence,

d

dt
E.Yt j�/ D �r exp..�.1 � r/ � 1/t/:

Integrating between times 0 and t yields

E.Yt j�/ D r�

Z t

0

exp..�.1�r/�1/s/ds D r�

�1 C .1 � r/�
Œexp..�.1�r/�1/t/�1�:

Conditioning with respect to � (which is uniformly distributed on Œ0; a�)

E.Yt / D 1

a

Z a

0

E.Yt j�/d� D 1

a

Z a

0

r�

�1 C .1 � r/�
Œexp..�.1 � r/ � 1/t/ � 1�d�:

By definition, E.Yt / is the expected number of types that type 1 individuals give
birth to up to time t . Hence, the limit of E.Yt / as t goes to infinity is the expected
total number of types that are ever born to type 1 individuals. That is, this limit is
m.r/. We now compute this limit.

lim
t!1 E.Yt / D 1

a

Z a

0

r�

�1 C .1 � r/�
lim

t!1Œexp..�.1 � r/ � 1/t/ � 1�d�:

Interchanging the limit and the integral as we did above is not always possible.
Here, it can be justified but we omit this part.

At this point there are two possibilities.

• If a.1 � r/ � 1 we have that �.1 � r/ � 1 < 0 for all � in Œ0; a/. Hence,

lim
t!1 exp..�.1 � r/ � 1/t/ D 0:

Therefore,

m.r/ D lim
t!1 E.Yt / D 1

a

Z a

0

r�

1 � .1 � r/�
d�:
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Note that if a.1�r/ < 1 this is a proper integral. On the other hand, if a.1�r/ D
1 this is an improper integral (singularity at � D a) that diverges (why?). Hence,
m.r/ D C1 for a.1 � r/ D 1.

• If a.1 � r/ > 1, then for � in . 1
1�r

; a� we have

lim
t!1 exp..�.1 � r/ � 1/t/ D C1

and

m.r/ D lim
t!1 E.Yt / D C1:

This completes the proof of Proposition 3.2.

We are now ready for the main result of this section.

Proposition 3.3. The virus survives if and only the tree of types is infinite. That is,
if and only if m.r/ > 1.

Proof of Proposition 3.3. One direction is easy. If the tree of types is infinite it
means that the process gave birth to infinitely many individuals and hence survives
forever.

For the converse assume that the tree of types is finite. Since this is a BGW we
must have m.r/ � 1. By Proposition 3.2 we have a.1 � r/ < 1. Therefore, by
Proposition 3.1 any fixed type dies out. Hence, only finitely many types appeared
and each one of these types died out after a finite random time. Since there are only
finitely many types all types will have disappeared after a finite random time (why?).
Therefore, the process dies out after a finite random time. This completes the proof
of Proposition 3.3.

We now turn to explicit computations.

Proposition 3.4. Let a > 2. Then the virus survives if the mutation probability r is
large enough.

Proposition 3.4 shows that the hypothesis that the virus is doomed if the mutation
probability is too high is not true when a > 2.

Proof of Proposition 3.4. It is enough to show that the tree of types is infinite. Recall
that the mean offspring for the tree is

m.r/ D 1

a

Z a

0

r�

1 � .1 � r/�
d�:

Since .1 � r/� � 0 we have 1 � .1 � r/� � 1 and

m.r/ D 1

a

Z a

0

r�

1 � .1 � r/�
d� � 1

a

Z a

0

r�d� D 1

2
ra:
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Therefore, if r > 2
a

then m.r/ > 1 and the tree of types is infinite. Note that because
we picked a > 2 we have that 2

a
< 1. The tree of types is infinite for any r in . 2

a
; 1�.

This completes the proof of Proposition 3.4.

It turns out that a D 2 is a critical value. We will show in the Problems that if
1 < a < 2 then survival is not possible when r is too large. Therefore, the model
behaves quite differently depending on whether a < 2 or not.

The last case we deal with is a � 1.

Proposition 3.5. Assume that 0 < a � 1. Then survival is not possible for any r in
Œ0; 1�.

Proposition 3.5 is not really surprising. Since � � a the birth rate is always less
than the death rate (which is 1) and we expect the virus to die out.

Proof of Proposition 3.5. Recall that

m.r/ D 1

a

Z a

0

r�

1 � .1 � r/�
d�:

We compute the following derivative

d

dr

r�

1 � .1 � r/�
D �.1 � �/

.r� C 1 � �/2
:

Observe that for � in Œ0; a� and a � 1 this derivative is positive. Hence,

r�

1 � .1 � r/�

is increasing as a function of r . Therefore, m.r/ is also increasing as a function of r

(why?). This implies that for all r in Œ0; 1�

m.r/ � m.1/ D 1

a

Z a

0

�d� D a

2
� 1

2
:

That is, m.r/ < 1 for all r . Hence, the tree of types is finite. By Proposition 3.3 the
process dies out. This completes the proof of Proposition 3.5.

Remark. By doing a finer analysis it is possible to have a complete picture of the
behavior of the model. In particular, for 1 < a < 2 there exists a critical value for
r above which survival is possible and below which it is not. For a > 2, survival is
possible for all r in Œ0; 1�. For a D 2 survival is possible for all r except r D 1. See
the notes and references at the end of the chapter.
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Problems

1. In the model for immune response of Sect. 2 any fixed type dies out. On the
other hand, for the virus population model of this section we know a fixed type may
survive by Proposition 3.2. Explain what makes the models behave differently.

2. Show that the same type cannot appear twice.

3. Let a > 1. Show that a fixed type can survive if and only r < 1 � 1=a.

4. Show that for a.1 � r/ < 1

m.r/ D � r

1 � r
� 1

a

r

.1 � r/2
ln.1 � a.1 � r//:

5. Use the expression for m.r/ found in Problem 4 to plot m as a function of r (for
r > 1 � 1=a) when

(a) a D 5=4.
(b) a D 7=4.
(c) a D 3.
(d) Intuitively, the larger r the more types should appear and therefore the larger

m.r/ should be. Is this intuition correct?

6. Proposition 3.4 shows that when a > 2 the virus survives provided r is large
enough. In this problem we show that when 1 < a < 2 the virus dies out when r

is too large. Hence, the behavior of the model changes drastically depending on the
value of a.

(a) Show that if � is in Œ0; a� then

1 � .1 � r/� � 1 � .1 � r/a:

(b) Use (a) to show that

m.r/ D 1

a

Z a

0

r�

1 � .1 � r/�
d� � 1

a

Z a

0

r�

1 � .1 � r/a
d� D 1

2

ar

1 � .1 � r/a
:

(c) Use (b) to show that m.r/ < 1 when r is above a certain threshold.
(d) Show that the virus die out when r is large enough.
(d) Compute a numerical value for r above which the virus die out when a D 3=2.

7. Assume that r D 0. That is, there is no mutation. Show that survival is possible
if and only if a > 1.
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8. Assume that r D 1. That is, every birth has a different type.

(a) Assume that type 1 has birth rate �. Let X be the number of offspring of the
type 1 individual. Show that for all k � 0 we have

P.X D kj�/ D .
�

� C 1
/k 1

� C 1
:

(b) Show that

E.X j�/ D �:

(c) Show that

E.X/ D a

2
:

(d) Show that survival is possible if and only if a > 2.

9. Consider the process .Zt /t�0 for which an individual gives birth to a single
particle after an exponential time with rate �1 or dies after an exponential time
with rate 1. All individuals evolve independently of each other. Consider .Xt /t�0

which evolves as .Zt /t�0 except that its birth rate is �2. Assume also that �2 > �1.
Start both processes with a single individual. Construct simultaneously .Zt /t�0 and
.Xt /t�0 so that for all t � 0 we have

Zt � Xt :

(A similar construction is given in the proof of Proposition 2.1).

10. Consider a function f strictly positive and increasing on Œc; d � for c < d . Show
that

Z d

c

f .t/dt > 0:

11. Use problems 9 and 10 to prove (3.1). (Let f .�/ be P.Aj�/).

4 A Model for Bacterial Persistence

Since at least Bigger (1944) it is known that antibiotic treatment will not completely
kill off a bacteria population. For many species a small fraction of bacteria is not
sensitive to antibiotics. These bacteria are said to be “persistent.” It turns out that
persistence is not a permanent state. In fact a bacterium can switch back and forth
between a “normal” (i.e. non-persistent) state and a “persistent” state. In a normal
state a bacterium can reproduce but is killed by an antibiotic attack. In the persistent
state a bacterium does not reproduce (or very seldom) but is resistant to antibiotics.
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We propose a model in this section that will show that persistence is a very good
strategy (from the bacterial point of view) in the sense that even under stressful
conditions it can ensure survival of the bacteria.

We now describe the model. Consider the following continuous time model.
Bacteria can be in one of two states. We think of state 1 as being the normal (i.e.
non-persistent) state and state 2 as being the persistent state. Note that the normal
state is vastly predominant in the population. A bacterium in state 1 is subject to two
possible transitions. It can give birth at rate � to another state 1 individual or it can
switch to state 2 at rate a. A bacterium in state 2 has only one possible transition.
It can switch to state 1 at rate b. Moreover, the bacteria in state 1 can be killed in
the following way. Let Ti D iT for i � 1 where T is a fixed positive constant.
This defines a sequence of killing times T1; T2; : : : . At each killing time Ti all the
bacteria in state 1 are killed but the bacteria in state 2 are unaffected.

The model mimics the observed behavior. State 1 bacteria multiply until disaster
strikes and then they all die. State 2 bacteria cannot give birth but persist under
disasters. Hence, state 2 bacteria ensure survival through disasters but cannot give
birth.

The main question we are concerned with is for which parameter values do the
bacteria survive? The following result answers this question.

Theorem 4.1. For any a > 0, b > 0 and � > 0 there is a critical value Tc such
that the bacteria survive forever with positive probability if and only if T > Tc .

Note that if at some killing time Ti all the bacteria are in state 1 (which is
possible) then the bacteria die out. So it is not so clear whether this model allows
for survival. Theorem 4.1 shows that it does.

The exact value of Tc depends on the parameters a, b, and �. However, Tc varies
very little with a and b, see the problems. This shows that survival is possible for a
wide range of parameters.

Proof of Theorem 4.1. We start the model with finitely many bacteria. We define an
auxiliary discrete time stochastic process Zn, n � 0. We wait until the first killing
time T and we let Z0 be the number of bacteria in state 2 at time T . If Z0 D 0, we
set Zi D 0 for i � 1. If Z0 � 1, then we wait until the second killing time 2T and
let Z1 be the number of state 2 bacteria at time 2T . More generally, for any k � 1

let Zk be the number of state 2 individuals at the .k C 1/th killing time .k C 1/T .
We claim that the process .Zk/k�0 is a discrete time BGW. This can be seen

using the following argument. Each state 2 bacterium present at time T1 D T starts
a patch of bacteria. Note that in order for the patch to get started we first need the
initial state 2 bacterium to switch to state 1. At the second killing time T2 all the
individuals in state 1 are killed and we are left with Z1 individuals in state 2. If
Z1 D 0, the bacteria have died out. If Z1 � 1, then each 2 present at time T1

starts its own patch. Each patch will live between times T2 and T3. These patches
are independent and identically distributed. At time T3 each 2 (if any) starts a new
patch and so on. This construction shows that .Zk/k�0 is a discrete time BGW.
Moreover, the bacteria population survives forever if and only if Zk � 1 for all
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k � 0. For if Zk D 0 for some k � 1 this means at the corresponding killing time
TkC1 there are no type 2 individuals and no type 1 individuals either. That is, the
bacteria have died out. If, on the other hand, Zk � 1 for all k � 0, the bacteria will
survive forever.

Now, the process .Zk/k�0 survives if and only if E.Z1jZ0 D 1/ > 1. Hence, the
problem of survival for the bacteria population is reduced to computing the expected
value E.Z1jZ0 D 1/. We do this computation next.

For t < T1 let x.t/ be the expected number of type 1 bacteria and y.t/ be the
expected number of type 2 bacteria at time t , starting at time 0 with a single type 2
and no type 1. We have for h > 0

x.t C h/ � x.t/ D �hx.t/ � ahx.t/ C bhy.t/ C o.h/;

y.t C h/ � y.t/ D ahx.t/ � bhy.t/ C o.h/:

This is so because in the time interval Œt; t C h� a type 1 bacterium gives birth to
another type 1 bacterium at rate �h or switches to a type 2 at rate ah. On the other
hand, a type 2 bacterium switches to a type 1 at rate bh.

By dividing both equations by h and letting h to 0 we get the following system
of differential equations

d

dt
x.t/ D .� � a/x.t/ C by.t/;

d

dt
y.t/ D ax.t/ � by.t/:

This is a linear system with constant coefficients. The corresponding matrix

A D
�

� � a b

a �b

�

has two real distinct eigenvalues �1 and �2

�1 D �a � b C � C p


2

�2 D �a � b C � � p


2
;

where

 D .a C b � �/2 C 4b� > .a C b � �/2:

Note that the determinant of A is ��b < 0. The determinant is also the product of
the two eigenvalues. Hence, the eigenvalues have opposite signs. Since �1 > �2 we



172 8 Continuous Time Branching Processes

must have �1 > 0 and �2 < 0. A standard computation yields the solution of the
system of differential equations, see, for instance, Hirsch and Smale (1974). We get

x.t/ D c2

b � a C � C p


2a
exp.�1t/ � c1

a � b � � C p


2a
exp.�2t/

y.t/ D c1 exp.�2t/ C c2 exp.�1t/:

We can find the constants c1 and c2 by using the initial conditions x.0/ D 0 and
y.0/ D 1. We get

c1 D b � a C � C p


2
p


and c2 D 1 � c1:

Since
p

 > ja C b � �j we have c1 > 0. It is also possible to check that c1 < 1.
Hence, c2 > 0.

The function y drops from y.0/ D 1 to some minimum and then increases to
infinity as t goes to infinity. Hence, there is a unique Tc > 0 such that y.Tc/ D 1.
We will check these claims on a particular case in the problems section.

The critical value Tc can be computed numerically by solving the equation
y.t/ D 1. For any T > Tc the Galton–Watson process Zk is super-critical and
survives forever with a positive probability. For T � Tc the process Zk dies out.
This completes the proof of Theorem 4.1.

Problems

In all the problems below we set � D 2, a D b D 1.

1. Show that the eigenvalues of A are �1 D p
2 and �1 D �p

2.

2. Check that the solution of the system of differential equations

d

dt
x.t/ D x.t/ C y.t/;

d

dt
y.t/ D x.t/ � y.t/:

with x.0/ D 0 and y.0/ D 1

is

x.t/ D
p

2

4
e

p
2t �

p
2

4
e�p

2t ;

y.t/ D 2 � p
2

4
e

p
2t C 2 C p

2

4
e�p

2t :
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3. Show that the function y defined in Problem 2 has a minimum at

t0 D
p

2

2
ln.

p
2 C 1/:

4. Recall that y.t/ is the expected number of bacteria in state 2 at time t . Did you
expect the function y to behave as described in Problem 3? Why or why not?

5. (a) Let X D e
p

2t in the equation y.t/ D 1 and show that the equation can be
transformed into

X2 � 2
p

2.
p

2 C 1/X C .
p

2 C 1/2 D 0:

(b) Show that X D 1 is a solution of the equation (a).
(c) Show that the other solution of the equation in (a) is X D .

p
2 C 1/2:

(d) Use (c) to show that the solutions of y.t/ D 1 are t D 0 and

Tc D p
2 ln.1 C p

2/:

6. Graph the critical value Tc as a function of a and b. Let the parameters a and b

vary from 10�6 to 10�3 and set � equal to 2. Interpret the graph.

Notes

Section 2 is based on Schinazi and Schweinsberg (2008) where the reader can find
several other models for immune response. Section 3 is based on Cox and Schinazi
(2012). In that reference a complete analysis of the virus model is done. Section 4
comes from Garet et al. (2012) where a model with random killing times is also
treated.
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Chapter 9
Continuous Time Birth and Death Chains

In this chapter we look at a more general class of continuous time Markov processes.
The main constraint is that the process changes state by one unit at a time. An
important tool to study these processes is again differential equations.

1 The Kolmogorov Differential Equations

A continuous time birth and death chain is a stochastic process that we denote by
.Xt /t�0. For all t � 0 Xt is a positive integer or 0. This process jumps at random
times by one unit at a time. More precisely, let .�i /i�0 and .�i /i�0 be two sequences
of positive real numbers. If Xt D i � 1, then after an exponential time with rate
�i C �i the chain jumps to i C 1 with probability �i

�i C�i
or jumps to i � 1 with

probability �i

�i C�i
. We take �0 D 0. That is, the transition from 0 to �1 is forbidden.

The chain remains on the positive integers at all times. If Xt D 0 after an exponential
time with rate �0, the chain jumps to 1. The rates �i and �i are called the birth and
death rates of the chain, respectively.

We now give several examples of birth and death chains.

Example 1.1. Consider a continuous time random walk on the half line defined
as follows. After a mean 1 exponential time the walker jumps to the right with
probability p or to the left with probability q. Show that this is a birth and death
chain.

We are going to find the rates �i and �i for this chain. Let �i D p for i � 1,
�0 D 1, �i D q for i � 1 and �0 D 0. Then after a random time with parameter
�i C �i D p C q D 1 the walker moves to i C 1 with probability �i

�i C�i
D p or

moves to i �1 with probability �i

�i C�i
D q. This shows that this is a continuous birth

and death chain.

© Springer Science+Business Media New York 2014
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Example 1.2. Consider a bank with N tellers. Customers arrive at rate �. Service
of a customer is also exponentially distributed with rate �. Let Xt be the number of
customers being helped or waiting in line. Show that Xt is a birth and death chain.

Assume Xt D i � 0. A new customer arrives at rate �. Hence, we let �i D � for
i � 0. Let i � 1. If i � N , then all the customers in the system are being helped.
Each service happens at rate �. Therefore, Xt decreases by 1 when the minimum
of i independent exponential random variables happens. This minimum is also an
exponential random variable and it has rate i� (see the properties of the exponential
distribution). So we let �i D i� for 1 � i � N . If i > N , then �i D N�. This is
so because we have N tellers and therefore at any given time at most N customers
can be helped.

Example 1.3. A Poisson process is a birth and death chain.
If the birth rate of the Poisson process is � > 0, then we set �i D � and �i D 0

for all integers i � 0. Hence, the Poisson process is a birth and death chain.

Example 1.4. Some continuous time branching processes are also birth and death
chains. Consider a population where each individual gives birth at rate � or dies at
rate �. Assume also all individuals behave independently. We now show that the
number of individuals alive at time t is a birth and death chain.

Assume that there are n individuals at some time t . Then there is a birth in the
population at rate n� and a death at rate n�. That is, this is a birth and death chain
with rates �n D n� and �n D n� for all n � 0.

The birth and death process .Xt /t�0 has the following Markov property. For all
times s and t , for all positive integers, i , j , and for any collection of positive integers
.ku/0�u<s we have

P.XtCs D j jXs D j I Xu D ku for 0 � u < s/ D P.XtCs D j jXs D j /:

In words, the Markov property states that the process depends on the past and
the present only through the present. The process .Xt /t�0 also has the following
homogeneous property. For any integers i , j and any real numbers t � 0 and s � 0

we have

P.XtCs D j jXs D i/ D P.Xt D j jX0 D i/:

Let i � 0 and j � 0 be two integers. We define the transition probability Pt .i; j / by

Pt .i; j / D P.Xt D j jX.0/ D i/:

That is, Pt .i; j / is the probability that the chain is in state j at time t given
that it started at time 0 in state i . We now turn to the properties of the transition
probabilities.
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In most cases we cannot find Pt .i; j /. However, they are the solution of certain
differential equations and this turns out to be quite helpful.

Proposition 1.1. The transition probabilities of a birth and death chain satisfy a
system of differential equations known as the backward Kolmogorov differential
equations. These are given by

d

dt
Pt .i; j / D �i Pt .i�1; j /�.�i C�i /Pt .i; j /C�i Pt .iC1; j / for i � 1 and j � 0

and

d

dt
Pt .0; j / D ��0Pt .0; j / C �0Pt .1; j /for j � 0

together with the initial condition P0.i; j / D 0 for i 6D j and P0.i; i/ D 1.

Sketch of the Proof of Proposition 1.1. We will give an informal derivation of this
system of differential equations.

Assume that i � 1 and j � 0. Conditioning on what happens between times 0

and h we get the following.

PtCh.i; j / D h�i Pt .i C 1; j / C h�i Pt .i � 1; j / C .1 � .�i C �i /h/Pt .i; j / C o.h/

(1.1)
This equation is obtained as follows. Assume that there is a birth between times

0 and h. Since the chain is at i this happens with rate �i . The chain jumps to i C
1. Hence, the chain now has to go from i C 1 to j between times h and t C h.
Because of the Markov property (we only need the state of the chain at time h to
have the distribution of the chain at further times) and the homogeneous property
of the process (the distribution of the chain between times h and t C h is the same
as the distribution between times 0 and t ) this has probability Pt .i C 1; j /. This
explains the first term on the r.h.s of (1.1). The second term on the r.h.s. of (1.1)
corresponds to a death between times 0 and h and is obtained in a similar way as
the first term. The third term on the r.h.s. of (1.1) corresponds to nothing happening
between times 0 and h. Finally, o.h/ corresponds to the probability that two or more
events happen between times 0 and h. In fact, the probability that two or more events
happen between times 0 and h is less than h2 (which is an o.h/).

Going back to (1.1) we get

PtCh.i; j / � Pt .i; j /

h
D �i Pt .i C1; j /C�i Pt .i �1; j /�.�i C�i /Pt .i; j /C o.h/

h
:

Letting h go to 0 we get

d

dt
Pt .i; j / D �i Pt .i � 1; j / � .�i C �i /Pt .i; j / C �i Pt .i C 1; j /:
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This is the backward Kolmogorov equation when i � 1. Note that if i D 0 then
there can be no death and this actually simplifies the equations. The case i D 0 is
left as an exercise. This completes the proof of Proposition 1.1.

Observe that we have found the backward equations by conditioning on what
happens between times 0 and h. We get another set of equations if we condition
on what happens between times t and t C h. These are the so-called forward
Kolmogorov differential equations. We give an informal derivation of the forward
equations. Let i � 0 and j � 1 be two states. We have

PtCh.i; j / D �j �1hPt .i; j �1/C�j C1hPt .i; j C1/C.1�.�i C�i /h/Pt .i; j /Co.h/:

Thus,

PtCh.i; j / � Pt .i; j /

h
D �j �1Pt .i; j � 1/ � .�j C �j /Pt .i; j / C �j C1Pt .i; j C 1/ C o.h/

h
:

Letting h go to 0 yields the forward Kolmogorov equations

d

dt
Pt .i; j / D �j �1Pt .i; j � 1/ � .�j C �j /Pt .i; j / C �j C1Pt .i; j C 1/:

So we have proved

Proposition 1.2. The transition probabilities of a birth and death chain satisfy
a system of differential equations known as the forward Kolmogorov differential
equations:

d

dt
Pt .i; j / D �j �1Pt .i; j � 1/ � .�j C �j /Pt .i; j / C �j C1Pt .i; j C 1/ for i � 0 and j � 1

and for j D 0 we get

d

dt
Pt .i; 0/ D ��0Pt .i; 0/ C �1Pt .i; 1/ for i � 0:

In very few cases we can integrate the Kolmogorov differential equations and
get an explicit expression for Pt .i; j /. Even so these differential equations are a
valuable tool in the analysis of continuous time stochastic processes.

1.1 The Pure Birth Processes

We consider a pure birth process. That is, �i D 0 for all i . The forward equations
simplify to

d

dt
Pt .i; j / D �j �1Pt .i; j � 1/ � �j Pt .i; j / for i � 0 and j � 1:

This is a first order system of linear equations. Recall the following.
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Lemma 1.1. Assume that g is continuous and that � is a constant. The first order
linear equation

y0 D ��y C g

has a unique solution given by

y.t/ D y.0/e��t C e��t

Z t

0

e�sg.s/ds:

The Lemma can be easily proved by checking that y is indeed a solution of the
differential equation. See the exercises.

Applying Lemma 1.1 to the forward equation with g.t/ D �j �1Pt .i; j � 1/ we
get

Pt .i; j / D P0.i; j /e��j t C e��j t

Z t

0

e�j s�j �1Ps.i; j � 1/ds (1.2)

Since there are no deaths, the chain moves only to the right and Pt .i; j / D 0 for
j < i . For the same reason, the only way the chain can go from i to i is to stay at i .
That is, the exponential time with rate �i must be larger than t . Hence,

Pt .i; i/ D
Z C1

t

�i e
��i sds D e��i t :

Assume now that j > i , then P0.i; j / D 0 and (1.2) yields

Pt .i; j / D e��j t

Z t

0

e�j s�j �1Ps.i; j � 1/ds (1.3)

If we let j D i C 1, we get

Pt .i; i C 1/ D e��iC1t

Z t

0

e�iC1s�i e
��i sds:

Thus,

Pt.i; i C 1/ D �i

�iC1 � �i

.e��i t � e��iC1t / if �i 6D �iC1

and

Pt .i; i C 1/ D �i te
��i t if �i D �iC1:
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We may find any Pt .i; j / recursively as follows. Using (1.2) for j D i C 2 we get

Pt .i; i C 2/ D e��j t

Z t

0

e�j s�iC1Ps.i; i C 1/ds:

Since Ps.i; i C 1/ is known we may compute the integral and have an explicit
formula for Pt .i; i C2/. We may iterate this method to get Pt .i; i Ck/ for all k � 0.

1.2 The Yule Process

This is a particular case of pure birth. Let �i D i� and �i D 0 for all i � 0. We
will show that for all n � 1 and t � 0 we have

Pt .1; n/ D e�n�t .1 � e��t /n�1 (1.4)

We do a proof by induction. Let n D 1. The only jump that may occur is to 2, the
rate is �. Hence, Pt.1; 1/ is the probability that the jump did not occur by time t .
Therefore,

Pt .1; 1/ D e��t ;

and (1.4) holds for n D 1. Assume now that (1.4) holds for n. By (1.3) we have

Pt .1; n C 1/ D e�.nC1/�t

Z t

0

e.nC1/�sn�Ps.1; n/ds:

We now use the induction hypothesis for Ps.1; n/ to get

Pt .1; n C 1/ D e�.nC1/�t

Z t

0

e.nC1/�sn�e��s.1 � e��s/n�1ds:

Note that

e.nC1/�se��s.1 � e��s/n�1 D .e�s � 1/n�1e�s:

Hence,

Pt .1; n C 1/ D e�.nC1/�t

Z t

0

n�.e�s � 1/n�1e�sds:

The integral is now easy to compute and

Pt .1; n C 1/ D e�.nC1/�t .e�t � 1/n:
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A

B

C

DE

Fig. 9.1 This is an example of tree simulated using a Yule process. Species A gave birth to species
B. Species B gave birth to species C. Species C gave birth to species D and E

Hence, (1.4) holds for n C 1 and therefore the formula is proved by induction.
This process was introduced by Yule in 1924 to model speciation (i.e., the

birth of new species). Starting with one species Pt .1; n/ is the probability that the
original species has given birth to n species by time t . This model also allows to
simulate trees that keep track of which species gave birth to which, see Fig. 9.1. The
parameter � is interpreted as a mutation rate (a species gives birth to a new species
at rate �).

Yule model is surprisingly successful (given how simple it is) at explaining
evolutionary patterns. It continues to be used to this day, see Nee (2006) for a review.

1.3 The Yule Process with Mutations

We use a modified Yule process to model the growth of pathogens in a human body
before drug treatment starts. We modify the process in the following way. Every
time there is a birth there is a fixed probability � > 0 that the new individual
carry a given drug resistant mutation. We will compute the probability that the drug
mutation has not occurred by time T . We think of T as the starting time for drug
treatment.

Let A be the event that no mutation has appeared by time T . Assume that T is a
fixed deterministic time. Assume that we start the process with a single individual.
Conditioning on the number of individuals at time T we have

P.AjX.T / D n/ D .1 � �/n�1:

This is so because we have n � 1 individuals that were born by time T and each can
acquire the mutation independently of the other individuals. Hence,

P.AjX.0/ D 1/ D
X

n�1

P.AjX.T / D n/P.X.T / D njX.0/ D 1/

D
X

n�1

.1 � �/n�1e��T .1 � e��T /n�1:
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Recall the geometric series for jxj < 1

1X

kD0

xk D 1

1 � x
:

We use the series for x D .1 � �/.1 � e��T / to get

P.AjX.0/ D 1/ D e��T

1 � .1 � e��T /.1 � �/
:

It is easy to see that

P.AjX.0/ D 1/ � 1

�
e��T

as T goes to infinity. That is, the probability of no drug resistant mutation decreases
exponentially fast with T . This confirms the idea that treatment should start as early
as possible.

1.4 Passage Times

Consider a continuous time birth and death chain. What is the expected time it takes
for the chain to go from one state to another?

Assume that the birth and death rates are �i and �i . We assume that these rates
are all strictly positive except for �0 D 0. We are interested in computing the time it
takes to go from i to j , i < j . Since a birth and death chain moves only one step at
the time, it is enough to compute the time it takes to go from i to i C 1, from i C 1

to i C 2, : : : and from j � 1 to j and then sum these times. Let Mi be the expected
time to go from state i to state i C 1. We have

M0 D 1

�0

:

This is so because we assume that �0 D 0. For i � 1, after an exponential time with
rate �i C �i the chain jumps. Hence, the expected waiting time to jump is 1

�i C�i
.

It jumps to i C 1 with probability �i

�i C�i
or to i � 1 with probability �i

�i C�i
. If the

chain jumps to the right, then it reaches i C 1. If it jumps to the left, it reaches i � 1.
In order to get to i C 1 the chain has to go to i first. Thus, conditioning on the first
jump we have

Mi D �i

�i C �i

1

�i C �i

C �i

�i C �i

.
1

�i C �i

C Mi�1 C Mi /:
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Solving for Mi we get

Mi D 1

�i

C �i

�i

Mi�1 for i � 1 (1.5)

We now apply this formula.

Example 1.5. What is the expected time to go from 0 to 2?
We have

M0 D 1

�0

:

We use (1.5) to get

M1 D 1

�1

C �1

�1

M0:

The expected time to go from 0 to 2 is

M0 C M1 D 1

�0

C 1

�1

C �1

�1

1

�0

:

Example 1.6. Assume that �i D � for all i � 0 and �i D � for all i � 1.
Then (1.5) becomes

Mi D 1

�
C �

�
Mi�1 for i � 1:

Since

Mi�1 D 1

�
C �

�
Mi�2 for i � 2

we have

Mi � Mi�1 D �

�
Mi�1 � �

�
Mi�2

for i � 2. Let ai D Mi � Mi�1, then

ai D �

�
ai�1 for all i � 2:

Thus,

ai D .
�

�
/i�1a1 for all i � 1:
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Note that a1 D M1 � M0 D �

�

2. Hence,

Mi � Mi�1 D �i

�iC1
for all i � 1:

Note that

jX

iD1

.Mi � Mi�1/ D Mj � M0 D
jX

iD1

�i

�iC1
:

Assuming that � 6D � and summing the geometric sequence we get

Mj D 1

�
C �

�2

1 � .
�

�
/j

1 � �

�

for all j � 0:

Problems

1. Consider a birth and death chain on f0; 1g. The only �i and �i that are non-zero
are �0 and �1. We simplify the notation by letting � D �0 and � D �1.

(a) Write the backward Kolmogorov equations for this process.
(b) From (a), get that

.Pt .0; 0/ � Pt.1; 0//0 D �.� C �/.Pt .0; 0/ � Pt .1; 0//:

(c) Using (b), compute Pt .0; 0/�Pt .1; 0/ and then Pt .0; 0/, Pt .1; 0/, Pt .1; 1/, and
Pt .0; 1/.

(d) Compute limt!1 Pt .i; j / for i; j D 0; 1.

2. Consider a queue with a single server. Assume that the interarrival times of
customers are exponentially distributed with rate 2 and assume that the service time
is exponentially distributed with rate �. Show that this is a birth and death chain and
find the birth and death rates �i and �i .

3. Same question as in Problem 2 with infinitely many servers and rate � per service
time per server.

4. Write the forward and backward equations for Example 1.1.

5. Write the forward and backward equations for a queue with infinitely many
servers, arrival rate � and service rate �.

6. Consider a Yule process with � D 1. Compute Pt .0; 0/, Pt .1; 0/, Pt .0; 1/, and
Pt .1; 2/.
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7. Consider a birth and death chain. Compute the backward differential equation
for the transition probability Pt .0; j / where j � 0.

8. Consider the Poisson process with birth rate �. That is, �i D � and �i D 0

for all i � 0. Use the method of Sect. 1.1. to compute the transition probabilities
Pt .0; i/ for all i � 0.

9. Write the backward equations for the Poisson process.

10. Consider a birth and death chain with �n D n� and �n D n�. Let M.t/ D
E.X.t//.

(a) Show that

d

dt
M.t/ D .� � �/M.t/:

(b) Find M.t/.

11. Consider the Yule process. Show that for i � 1 and j � i we have

Pt .i; j / D
�

j � 1

j � i

�
e�i�t .1 � e��t /j �i :

Show that this formula is correct by checking that it satisfies the differential
equations

d

dt
Pt .i; j / D �j �1Pt .i; j � 1/ � �j Pt .i; j /:

12. In Example 1.6, show that if � D � then

Mj D j C 1

�
for all j � 0:

13. In Example 1.6 compute the time it takes to go from 1 to 5 in the following
cases

(a) � D � D 1.
(b) � D 2, � D 1.
(c) � D 1, � D 2.

14. Consider a birth and death chain. Compute the expected time it takes to go from
1 to 0 as a function of the �i ’s and �i ’s.

15. Use a Yule process with � D 1 to simulate an evolutionary tree such as the one
in Fig. 9.1.

16. Prove Lemma 1.1.
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2 Limiting Probabilities

Recall that � is a probability distribution on the positive integers if

�.i/ � 0 for all i � 0 and
1X

iD0

�.i/ D 1:

Definition 2.1. Let � be a probability distribution on the positive integers. Then �

is a stationary distribution for a continuous time chain with transition probabilities
Pt .i; j / if

X

j �0

�.j /Pt .j; k/ D �.k/ for all states i; j; and all times t � 0:

Example 2.1. Consider a chain .Xt /t�0 with transition probabilities Pt and station-
ary distribution � . Assume that the chain starts in a state picked according to the
stationary distribution � . What is the probability that at time t the chain is in state k?

By conditioning on the initial state we have

P�.Xt D k/ D
X

i�0

P.Xt D kjX0 D i/P.X0 D i/:

By assumption P.X0 D i/ D �.i/. Hence, using that � is stationary

P�.Xt D k/ D
X

i�0

�.i/Pt .i; k/ D �.k/:

Therefore, the distribution of Xt is � for every t � 0. It does not depend on t . This
is why it is called a stationary distribution.

Definition 2.2. A chain is said to be irreducible if its transition probabilities
Pt .i; j / are strictly positive for all t > 0 and all states i and j .

In words an irreducible chain can go from any state to another in any fixed time.
This is not a strong constraint. It can be shown that either Pt .i; j / > 0 for all t > 0

or Pt .i; j / D 0 for all t > 0. In particular, for a birth and death chain with �0 D 0,
�i > 0 for all i � 1 and �i > 0 for all i � 0 this condition holds. See the problems.

We now state the main theorem of this section. The proof can be found in more
advanced books such as Feller (1971) (see Sect. XIV.9).

Theorem 2.1. Consider an irreducible continuous time chain on the positive
integers. For all i � 0 and j � 0 the following limit exists.

lim
t!1 Pt .i; j / D L.j /:
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Moreover, there are two possibilities, either

(i) L.j / D 0 for all j

or
(ii) L.j / > 0 for all j and L is then the unique stationary distribution of the chain.

In words, Theorem 2.1 tells us that for an irreducible chain Pt .i; j / always
converges. The limits are all zero or all strictly positive. Moreover, in the latter
case the limits form the (unique) stationary distribution. Note also that the limit of
Pt .i; j / does not depend on the initial state i .

Example 2.2. Consider the Poisson process N.t/ � 0 with rate � > 0. Note that
this is not an irreducible chain (why?). However, the limits of Pt .i; j / exist and can
be computed. We concentrate on Pt .0; n/ since the Poisson process starts at 0 by
definition. We know that

Pt .0; n/ D P.N.t/ D n/ D e��t .�t/n

nŠ
:

Recall that for all x we have power series expansion

ex D
1X

nD0

xn

nŠ
:

Hence, for any n � 0 and all x � 0 we have

ex � xnC1

.n C 1/Š
:

Therefore,

ex

xn
� x

.n C 1/Š

and

xne�x � .n C 1/Š

x
:

Thus, for any fixed n � 0 as x goes to infinity we have

lim
x!C1 xne�x D 0:

We apply this limit to x D �t to get

lim
t!C1 Pt .0; n/ D 0:
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This limit is not really surprising given that this is a pure birth process with constant
birth rate. We expect the Poisson process to go to infinity as t goes to infinity.

As the next result shows finite chains always have a stationary distribution.

Corollary 2.1. Consider an irreducible continuous time chain on a finite set. Then,
the chain has a unique stationary distribution � . Moreover,

lim
t!1 Pt .i; j / D �.j / for all i; j:

Proof of Corollary 2.1. According to Theorem 2.1 there is a limit for each Pt .i; j /

that we denote by �.j /. We also have

X

j

Pt .i; j / D 1:

This is a finite chain so the preceding sum is finite and we may interchange sum and
limit to get

lim
t!1

X

j

Pt .i; j / D
X

j

lim
t!1 Pt .i; j / D

X

j

�.j / D 1:

This is the critical point of the proof and it depends heavily on having a finite chain.
Interchanging infinite sums and limits is not always allowed. Since

P
j �.j / D 1

at least one of the �.j / is strictly positive. Thus, by Theorem 2.1 all the �.j / are
strictly positive. Therefore, � is a stationary distribution for the chain.

By Theorem 2.1 we know that the stationary distribution (if it exists) is unique. In
the case of finite chains the proof of uniqueness is simple so we give it now. Assume
there is another stationary distribution a.j /. Then by definition

X

j

a.j /Pt .j; k/ D a.k/:

Letting t go to infinity on both sides yields

lim
t!C1

X

j

a.j /Pt .j; k/ D a.k/:

Again since this is a finite sum we may interchange limit and sum to get

X

j

a.j /�.k/ D a.k/:
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Since

X

j

a.j /�.k/ D �.k/
X

j

a.j /

and since the sum of the a.j / is 1 we get that �.k/ D a.k/ for every k. This
proves that there is a unique stationary distribution and concludes the proof of
Corollary 2.1.

We now turn to the question of computing the stationary distribution for birth
and death chains. In most examples Pt .i; j / is not known explicitly so we cannot
use Theorem 2.1 to find � . Instead we use the Kolmogorov differential equations.
Recall that the Kolmogorov forward differential equations are

P 0
t .i; j /D�j �1Pt .i; j �1/�.�j C�j /Pt .i; j /C�j C1Pt .i; j C1/ for j �1 and i �0

and

P 0
t .i; 0/ D ��0Pt .i; 0/ C �1Pt .i; 1/ for i � 0:

Letting t go to infinity in the forward equations and assuming that

lim
t!1 Pt .i; j / D �.j /

lim
t!1 P 0

t .i; j / D 0;

we get the following.

Theorem 2.2. A birth and death chain with rates �i and �i has a stationary
distribution � if and only if � is a solution of

0 D �j �1�.j � 1/ � .�j C �j /�.j / C �j C1�.j C 1/ for j � 1

0 D ��0�.0/ C �1�.1/

and

X

j

�.j / D 1:

A good way to remember these equations is to write that when the process is in
steady state the rate at which the process enters state j is equal to the rate at which
the process leaves state j :

�j �1�.j � 1/ C �j C1�.j C 1/ D .�j C �j /�.j / (2.1)
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See Liggett (2010) for a proof of Theorem 2.2. We will now solve this system of
equations to find � and the condition of existence for � . From

0 D �j �1�.j � 1/ � .�j C �j /�.j / C �j C1�.j C 1/ for j � 1

we get for j � 1

�j C1�.j C 1/ � �j �.j / D �j �.j / � �j �1�.j � 1/ (2.2)

Let

aj D �j �.j / � �j �1�.j � 1/:

By (2.2) we see that for all j � 1 we have aj C1 D aj . Hence, aj D aj �1, aj �1 D
aj �2 and so on. Therefore,

aj C1 D a1:

That is, for j � 1

�j C1�.j C 1/ � �j �.j / D �1�.1/ � �0�.0/:

Note now that a1 D �1�.1/ � �0�.0/. Since � is stationary a1 D 0. Therefore,
aj D 0 for all j � 1. Hence,

�.j / D �j �1

�j

�.j � 1/:

We now show by induction that for all j � 1

�.j / D �0 : : : �j �1

�1 : : : �j

�.0/:

Since a1 D 0 the formula holds for j D 1. Assume now that the formula holds
for j . Since aj C1 D 0 we get

�.j C 1/ D �j

�j C1

�.j /:

Using the induction hypothesis

�.j C 1/ D �j

�j C1

�0 : : : �j �1

�1 : : : �j

�.0/:

This completes the induction proof.
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We also need

X

j �0

�.j / D 1:

That is,

�.0/
�
1 C

X

j �1

�0 : : : �j �1

�1 : : : �j

� D 1:

This equation has a solution �.0/ > 0 if and only if

X

j �1

�0 : : : �j �1

�1 : : : �j

< 1:

We have proved the following.

Proposition 2.1. Consider a birth and death chain with rates �0 D 0, �i > 0 for
all i � 1 and �i > 0 for all i � 0. The chain has a stationary distribution if and
only if

C D
X

j �1

�0 : : : �j �1

�1 : : : �j

is finite.

Then the stationary distribution is given by

�.0/ D 1

C C 1

�.j / D �0 : : : �j �1

�1 : : : �j

�.0/ for j � 1:

Proposition 2.1 applies to birth and death chains on infinite sets. We already knew
by Corollary 2.1 that irreducible birth and death chains on finite sets always have a
unique stationary distribution. We now turn to a few examples.

Example 2.3. Consider the infinite server queue. Assume that the interarrival times
have rate �. Assume that there are infinitely many servers and that the rate of service
per server is �. Let Xt be the number of customers in the queue.

If Xt D n, then the chain jumps to n C 1 with rate � or it jumps to n � 1 (if
n � 1) with rate n�. This is so because in order to jump to n�1 one of the n servers
must finish their job and we know that the minimum of n independent exponential
distributions with rate � is an exponential distribution with rate n�. Thus, this is an
irreducible birth and death chain on the positive integers with rates:

�i D � and �i D i� for i � 0:
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We have

�0 : : : �j �1

�1 : : : �j

D �j

�j j Š
:

Recall that for all x

X

k�0

xk

kŠ
D ex;

so

C C 1 D 1 C
X

j �1

�j

�j j Š
D e�=� < 1:

Hence, by Proposition 2.1 the infinite server queue has a stationary distribution �

for all strictly positive values of � and �. And � is given by

�.j / D �j

�j j Š
e��=�:

That is, � is a Poisson distribution with parameter �=�.

Example 2.4. Our second example is a birth and death chain on a finite set.
Consider a job shop with two machines and one serviceman. Suppose that

the amount of time each machine runs before breaking down is exponentially
distributed with rate �. Suppose the time it takes for a serviceman to fix a machine
is exponentially distributed with rate �. Assume that these exponential times are
independent.

We say that the system is in state n when n machines are broken. This is a birth
and death chain on f0; 1; 2g. For 0 � n � 2, �n is the rate at which we go from n

to n � 1 broken machines and �n is the rate at which we go from n to n C 1 broken
machines. Since there is only one serviceman we have

�n D � for 1 � n � 2:

Since there are two machines

�n D .2 � n/� for 0 � n � 2:

This is an irreducible finite chain. Therefore it has a stationary distribution. By (2.1)
we have

��.1/ D 2��.0/

��.2/ C 2��.0/ D .� C �/�.1/

��.1/ D ��.2/:
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Solving this system yields

�.0/ D �

2�

1

1 C �=� C �=2�

�.1/ D 1

1 C �=� C �=2�

�.2/ D �

�

1

1 C �=� C �=2�
:

Problems

1. Consider a single server queue with arrival rate � and service rate �.

(a) Show that the stationary distribution exists if and only if �=� < 1. Find the
stationary distribution under this condition.

(b) What is the average length of the queue after a long time?

2. Consider an N server queue with arrival rate � and service rate �.

(a) Find a condition on �, � and N which ensures the existence of a stationary
distribution.

(b) What is the probability that there are exactly two individuals in the queue after
a long time, under the condition found in (a)?

3. Consider a queue with two servers and arrival rate �. Assume that a maximum
of three people can be in the system. Assume that the service rate per server is �.

(a) Explain why you know without doing any computation that there is a stationary
distribution.

(b) Find the stationary distribution.

4. Show that a pure birth process has no stationary distribution. (Show that the only
solution of the equations in Theorem 2.2 is � identically 0.)

5. Consider a walker on the positive integers. After a mean 1 exponential time the
walker jumps one unit to the left with probability q or one unit to the right with
probability p where p C q D 1. When the walker is at 0 it jumps to 1 (after a mean
1 exponential time). See Example 1.1.

(a) Show that this process has a stationary distribution if and only if p < 1=2.
(b) What happens to the walker when p > 1=2?

6. Consider a population where each individual gives birth with rate � or dies with
rate �. Moreover, there is a constant rate � of immigration if the population is below
N . If the population is above N , no immigration is allowed.
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(a) Find a condition on �, �, N , and � in order to have a stationary distribution for
the size of the population.

(b) Assume that N D 3, � D � D 1, and � D 2. What is the proportion of time
that immigration is not allowed?

7. A car wash has room for at most two cars (including the one being washed). So
if there are already two cars in the system the following potential customers do not
wait and leave. Potential customers arrive at rate 3 per hour. The service time rate is
4 per hour.

(a) In the steady state, what is the expected number of cars in the car wash?
(b) What is the proportion of potential customers that enter the car wash?
(c) If the car wash were twice as fast, how much more business would it do?

8. Consider a job shop with two machines and two servicemen. Suppose that the
amount of time each machine runs before breaking down is exponentially distributed
with rate 10. Suppose the time it takes for a serviceman to fix a machine is
exponentially distributed with rate 3. Assume that all these exponential times are
independent.

(a) What is the mean number of machines in use in the long run?
(b) What proportion of time are the two servicemen busy in the long run?

9. Consider a taxi station where interarrival times for taxis and customers, are
respectively, 1 and 3 per minute. Assume that taxis wait in line for customers but
that customers do not wait for taxis.

(a) What is the mean number of taxis waiting in the long run?
(b) What is the probability for a customer to find a taxi in the long run?

10. Consider a single server queue with arrival rate � and service rate �. Assume
that � < �.

(a) Show that this chain has a stationary distribution

�.n/ D .
�

�
/n.1 � �

�
/ for n � 0:

(b) Consider the chain in its stationary state. Let T be the waiting time of an arriving
customer including his own service time. If there are n customers at the arriving
time, show that T is the sum of nC1 independent exponential random variables.

(c) Recall that a sum of n C 1 independent exponential distributions with rate � is
a � distribution with parameters n C 1 and �. The density of �.n C 1; �/ is
given by

1

nŠ
�nC1tne��t for t � 0:
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Compute P.T � t / by conditioning on the number of customers in the queue
at the customer arrival time.

11. Let t > 0 and i � 1.

(a) Show that

Pt .i; i C 1/ � .1 � e��i t /e��i t e��iC1t e��iC1t :

(One way to be in i C 1 at time t is to have a jump forward from i to i C 1,
no jump backward from i to i � 1 and to stay put at i C 1.)

(b) Show that Pt .i; i C 1/ > 0.
(c) Show that Pt .i; i � 1/ > 0.
(d) Show that a birth and death chain with �0 D 0, �i > 0 for all i � 1 and �i > 0

for all i � 0 is irreducible.

Notes

In order for a birth and death chain to be properly defined the rates �n cannot
increase too rapidly with n. The question of existence and construction of continu-
ous time Markov chains involves higher mathematics (in particular measure theory).
Good books on the subject are Bhattacharya and Waymire (1990), Feller (1971), or
Liggett (2010). Here we concentrate on Markov chains on finite or countable sets.
Things get more complicated for chains on uncountable sets. See, for instance, the
voter model in Liggett (2010).
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Chapter 10
Percolation

Percolation is the first spatial model we will consider. The model is very easy to
define but not so easy to analyze. Elementary methods can however be used to prove
a number of results. We will use combinatorics, discrete branching processes, and
coupling techniques.

1 Percolation on the Lattice

We start with some definitions. Let Zd be the d dimensional lattice. We say that
x D .x1; x2; : : : ; xd / and y D .y1; y2; : : : ; yd / in Zd are nearest neighbors if

dX

iD1

jxi � yi j D 1:

Let p be a real number in Œ0; 1�. For each x 2 Zd there are 2d edges linking x to
each of its 2d nearest neighbors. We declare each edge open with probability p and
closed otherwise, independently of all other edges (see Fig. 10.1.)

We say that there is a path between x and y if there is a sequence .xi /0�i�n

of sites in Zd such that x0 D x, xn D y, xi and xiC1 are nearest neighbors for
0 � i � n � 1. The path is said to be open if all the edges xi ; xiC1 are open for
0 � i � n � 1.

For a fixed x in Zd let C.x/ be the (random) set of y’s such that there is an open
path from x to y. We call C.x/ the open cluster of x. By convention we assume
that x belongs to C.x/. Note that the distribution of C.x/ is the same for all x.
Hence, we concentrate on C.0/ that we also denote by C . Let jC j be the number of
elements in C .

© Springer Science+Business Media New York 2014
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Fig. 10.1 This is part of the percolation model on Z2. Solid lines indicate open edges

Definition 1.1. Let �.p/ be the probability that the origin is in an infinite cluster.
That is, �.p/ D P.jC j D 1/. If �.p/ > 0, we say that there is percolation.

Observe that if p D 0 then all edges are closed and therefore �.0/ D 0. On the
other hand, if p D 1, then all edges are open and �.1/ D 1.

Proposition 1.1. The function � is increasing.

Proof of Proposition 1.1. We use a coupling argument. We construct simultane-
ously percolation models for all p 2 Œ0; 1�. For each edge e in Zd let U.e/ be a
uniform random variable on [0,1]. Moreover, we take all the U.e/ to be mutually
independent. We declare an edge e to be open for the percolation model with
parameter p if and only if U.e/ < p. Since P.U.e/ < p/ D p an edge is open with
probability p and closed with probability 1 � p.

This gives a simultaneous construction for all percolation models (i.e., for all p

in Œ0; 1�). In particular, take p1 < p2 and note that if U.e/ < p1 then U.e/ < p2.
Thus, letting Cp denote the open cluster of the origin for the model with parameter
p, we get

Cp1 � Cp2 for p1 < p2:

So

fjCp1 j D 1g � fjCp2 j D 1g for p1 < p2:

Hence,

�.p1/ D P.jCp1 j D 1/ � �.p2/ D P.jCp2 j D 1/ for p1 < p2:

This shows that � is an increasing function of p and completes the proof of
Proposition 1.1.

Let pc.d/ be the critical value of the percolation model on Zd . We define it by

pc.d/ D supfp W �.p/ D 0g:
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Since � is an increasing function, if p < pc.d/ then �.p/ D 0 (there is no
percolation) while if p > pc.d/ then �.p/ > 0 (there is percolation). In other
words, if p < pc.d/, the origin is in a finite cluster with probability one. If
p > pc.d/, the origin has a strictly positive probability of being in an infinite
cluster. Both behaviors actually occur if pc.d/ is not 0 or 1. If pc.d/ is in (0,1),
the model is said to exhibit a nontrivial phase transition. What makes percolation an
interesting model is that there is a phase transition for all d � 2 (but not for d D 1).
We will now show this for d D 2, see the problems for d 6D 2.

Theorem 1.1. We have a nontrivial phase transition for percolation on Z2 in the
sense that 0 < pc.2/ < 1. More precisely, we have the following bounds

1=3 � pc.2/ � 11 C p
13

18
:

It turns out that pc.2/ is exactly 1/2 (see Grimmett 1999). The proof is very
involved so we will only show the rather crude bounds stated in Theorem 1.1. No
other pc.d/ is known exactly and even good bounds are very hard to get.

Proof of Theorem 1.1. We start by showing that pc.2/ � 1=3. It is enough to show
that for all p < 1=3 we have �.p/ D 0 (why?).

Recall that a path is defined as being a sequence of nearest neighbor sites in Zd .
A self-avoiding path is a path for which all sites in the path are distinct. Let S.n/

be the total number of self-avoiding paths starting at the origin and having length n.
The exact value of S.n/ becomes very difficult to compute as n increases. We will
compute an upper bound instead. Observe that starting at the origin of Z2 there are
four choices for the second site of the self-avoiding path. For the third site on of the
path there is at most three possible choices since the path is self-avoiding. Hence,
S.n/ is less than 4.3/n�1.

Let N.n/ be the (random) number of open self-avoiding paths starting at the
origin and having length n. The random variable N.n/ can be represented as

N.n/ D
S.n/X

iD1

Xi

where Xi D 1 if the i -th self-avoiding path is open and Xi D 0 otherwise. Since a
path of length n has probability pn of being open we have

P.Xi D 1/ D pn:

Hence,

E.N.n// D S.n/pn � 4.3/n�1pn:
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Note that if the origin is in an infinite open cluster there must exist open paths of
all lengths starting at the origin. Thus for all n

�.p/ � P.N.n/ � 1/:

Note that

E.N.n// D
X

k�1

kP.N.n/ D k/ �
X

k�1

P.N.n/ D k/ D P.N.n/ � 1/:

Thus, for every n � 1 we have

�.p/ � P.N.n/ � 1/ � E.N.n// � pn4.3/n�1:

Take p < 1
3

and let n go to infinity in the preceding inequality to get �.p/ D 0. This
proves that

pc.2/ � 1

3
:

This gives the lower bound in Theorem 1.1.
We now deal with the upper bound. It turns out that Z2 has some special

properties that make the analysis much easier than for Zd when d > 2. We define a
dual graph of Z2 by

fx C .1=2; 1=2/ W x 2 Z2g:

We join two such nearest neighbor vertices by a straight line. The dual graph looks
exactly like Z2 (and this is particular to dimension 2). We declare an edge in the
dual to be open if it crosses an open edge in Zd . We declare an edge in the dual to
be closed if it crosses a closed edge in Zd . A circuit is a path that ends at its starting
point. A circuit is self-avoiding except that the first and last points are the same.
The crucial remark in this proof is the following. The open cluster of the origin is
finite if and only if there is a closed circuit in the dual that surrounds the origin (see
Fig. 10.2).

Fig. 10.2 A finite open cluster (solid lines) surrounded by a closed circuit (dotted lines) in the
dual lattice
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Define

An D f there is a closed circuit of length n in the dual surrounding the origing:

Then

fjC j < 1g D
[

n�1

An

and so

P.jC j < 1/ �
X

n�1

P.An/:

We now count the closed circuits of length n. If a circuit surrounds the origin,
then it must pass through some vertex .k C1=2; 1=2/ where k � 0. Since the circuit
has length n we must have k < n. Otherwise the circuit would be longer than 2n.
Hence, there is at most n choices for the starting vertex .k C 1=2; 1=2/. We have
three choices for each of the n � 1 remaining vertices of the circuit. Therefore the
number of circuits of length n surrounding the origin is at most n3n�1. Moreover
the probability that all edges of the circuit are closed is .1 � p/n. Thus,

P.jC j < 1/ �
X

n�1

n3n�1.1 � p/n:

Recall that

X

n�1

nxn�1 D 1

.1 � x/2
:

Let

f .p/ D
X

n�1

n3n�1.1 � p/n D 1 � p

.�2 C 3p/2
:

Observe that f is defined for p in .2=3; 1� and that f .p/ < 1 if and only if p >
11Cp

13
18

. This proves that

P.jC j < 1/ � f .p/ < 1 for p >
11 C p

13

18
:

So pc.2/ � 11Cp
13

18
< 1 and this completes the proof of Theorem 1.1.

If p > pc we know that with positive probability the origin is in an infinite open
cluster. But unless p D 1 we know that �.p/ < 1 (why?), so there is also a positive
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probability that the origin is not in an infinite open cluster. Do we have an infinite
open cluster somewhere else? The answer is yes.

Proposition 1.2. If p > pc.d/, the probability that there is an infinite open cluster
somewhere in Zd is one. If p < pc.d/, the probability that there is an infinite open
cluster somewhere in Z2 is zero.

Proof of Proposition 1.2. Let A be the event “there is an open cluster somewhere in
Zd .” In order for A to happen at least one cluster C.x/ must be infinite. Thus,

P.A/ �
X

x2Zd

P.jC.x/j D 1/:

If p < pc.d/, then by translation invariance of the model

P.jC.x/j D 1/ D P.jC j D 1/ D 0

for every x. Therefore, P.A/ D 0 for p < pc.d/.
On the other hand, for A to happen it is enough to have the origin in an infinite

cluster. Thus,

P.A/ � P.jC j D 1/ D �.p/:

So, if p > pc.d/ then P.A/ > 0. The event A does not depend on any finite set of
edges. That is, we may close or open a finite number of edges without changing the
outcome: A occurs or A does not occur. Such an event is called a tail event. Since
the states of the edges are mutually independent we may use Kolmogorov’s 0–1 law
(see, for instance, Durrett 2010) to deduce P.A/ D 0 or 1. Thus, when p > pc.d/,
P.A/ D 1. The proof of Proposition 1.2 is complete.

Problems

1. Consider the percolation model on Z. Let C be the open cluster of the origin.

(a) Show that for all n � 2

P.jC j D n/ � .n C 1/pn:

(b) Show that

P.jC j � n/ �
X

k�n

.k C 1/pk:

(c) Show for n � 1 that
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�.p/ D P.jC j D 1/ � P.jC j � n/:

(d) Show that if p < 1 then �.p/ D 0.
(e) Show that the critical value pc.1/ is 1.

2. Consider the percolation model on Zd .

(a) Show that if �.p1/ D 0 for some p1 then pc.d/ � p1.
(b) Show that if �.p2/ > 0 for some p2 then pc.d/ � p2.

3. Consider percolation on Zd for d � 2.

(a) Show that

�.p/ � pn.2d/.2d � 1/n�1:

(Find an upper bound for the number of self-avoiding random walks such as in
the proof of Theorem 1.1.)

(b) Show that

pc.d/ � 1

2d � 1
:

4. (a) Use uniform random variables U.e/ such as in the proof of Proposition 1.1
to construct the model on ZdC1.

(b) Show that the construction in (a) also provides a construction of percolation
on Zd .

(c) Let �d .p/ be the probability that the origin of Zd is in an infinite open cluster.
Show that for all p in Œ0; 1� we have

�d .p/ � �dC1.p/:

(d) Show that

pc.d/ � pc.d C 1/:

(e) Using (d) and Theorem 1.1 show that pc.d/ < 1 for all d � 2.

5. Show that the critical value pc.d/ is in .0; 1/ for all dimensions d � 2. (Use
Problems 3 and 4.)

6. Show that the percolation probability �.p/ D 1 if and only if p D 1.

7. Let S.n/ be the total number of self-avoiding paths starting at the origin and
having length n in Zd .

(a) Show that

S.n/ � 2d.2d � 1/n�1:
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(b) Show that

S.n/ � d n:

(A path that moves from site to site increasing by 1 one of its d coordinates is
self-avoiding.)

(c) Use (a) and (b) to argue that S.n/ increases exponentially with n.

8. Let S.n/ be the total number of self-avoiding paths starting at the origin and
having length n in Zd .

(a) Show that for n and m we have

S.n C m/ � S.n/S.m/:

(Observe that breaking a self-avoiding path in two pieces yields two self-
avoiding paths.)

(b) Define a.n/ D ln S.n/: Show that

a.m C n/ � a.n/ C a.m/:

A sequence with the property above is said to be subadditive. It can be shown
that

a.n/

n

converges to some limit `.d/ (see, for instance, Lemma 5.2.1 in Lawler 1991).
(c) Show that

d � `.d/ � 2d � 1:

(Use Problem 7.)

9. So far we have dealt with bond (or edge) percolation: every bond is open
with probability p independently of all other bonds. We now consider the slightly
different model of site percolation. Again every site is open with probability p

independently of all other sites.

(a) Simulate a 50 � 19 matrix A such that every entry is uniform on Œ0; 1�.
(b) Let p be in .0; 1/ and let B be the matrix derived from A in the following way.

If A.i; j / < p, then set B.i; j / D 1. If A.i; j / > p, then set B.i; j / D 0.
Show that the matrix B can be thought of as a simulation of site percolation
on Z2.

(c) Simulate B for p D 0:1, p D 0:5 and p D 0:8. Try to find the biggest open
cluster in each case.

(d) Based on your simulations do you think this model exhibits a phase transition?

10. Show that if X is a positive integer-valued random variable then P.X � 1/ �
E.X/.
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2 Further Properties of Percolation

2.1 Continuity of the Percolation Probability

Recall that �.p/ is the probability that the origin is in an infinite open cluster for the
percolation model with parameter p. We have shown that there is a value pc (that
depends on the dimension of the lattice Zd ) in .0; 1/ such that �.p/ D 0 for p < pc

and �.p/ > 0 for p > pc .
What happens at pc? This has been an open question for more than 50 years. It is

known that �.pc/ D 0 in d D 2 and for large d but the question is open for d D 3,
for instance. This is an important question since its answer would tell us whether
the phase transition is continuous or discontinuous.

As the next result shows right continuity is not an issue.

Proposition 2.1. The function � is right continuous on [0,1].

As we see next left continuity at pc is the open question.

Proposition 2.2. The function � is left continuous on [0,1] except possibly at pc .

By Propositions 2.1 and 2.2 � is continuous everywhere except possibly at pc .
Unfortunately this is exactly the point we are really interested in!

Proof of Proposition 2.1. We need two lemmas from analysis. First a definition.

Definition 2.1. A real valued function g is said to be upper semicontinuous at t if
for each constant c such that c > g.t/ there is a ı > 0 such that if jhj < ı then
c � g.t C h/.

Lemma 2.1. Assume that the functions gi are continuous at t . Then g D infi gi is
upper semicontinuous at t .

Proof of Lemma 2.1 . Assume c > g.t/ then by definition of g there is i0 such that
c > gi0.t/ � g.t/. But gi0 is continuous so for any � > 0 there is ı > 0 such that if
jhj < ı then

gi0.t C h/ � gi0.t/ C �:

Pick � D .c � gi0.t//=2 > 0 to get

gi0.t C h/ � c:

This implies that

g.t C h/ � c:

This concludes the proof that g is upper semicontinuous at t .

We also need the following.



206 10 Percolation

Lemma 2.2. If g is upper semicontinuous and increasing, it is right continuous.

Proof of Lemma 2.2. Fix t > 0, let c D g.t/ C �, by semicontinuity there is ı > 0

such that if jhj < ı then

g.t C h/ � c D g.t/ C �:

Now take h in .0; ı/. We use that g is an increasing function to get

0 � g.t C h/ � g.t/ � �:

and this shows that g is right continuous. This concludes the proof of Lemma 2.2.

We are now ready for the proof of Proposition 2.1.
Let S.n/ be the boundary of the square with side length 2n. That is,

S.n/ D f.x1; x2/ 2 Z2 W jx1j D n or jx2j D ng:

Let f0 �! S.n/g be the event that there is a path of open edges from the origin
to some point in S.n/. Note that the sequence of events f0 �! S.n/g is decreasing
in n. That is, if there is an open path from the origin to S.n C 1/, then there must
be an open path from the origin to S.n/ (why?).

By Proposition 1.1 in the Appendix

lim
n!1 P.0 �! S.n// D P.

\

n�1

f0 �! S.n/g/:

But the event \n�1f0 �! S.n/g happens if and only if the origin is in an infinite
open cluster. Therefore, if we let gn.p/ D P.0 �! S.n//, we have

�.p/ D lim
n!1 gn.p/ D inf

n
gn.p/

where the last equality comes from the fact the sequence .gn.p//n�1 is decreasing
for any fixed p. Note that the event f0 �! S.n/g depends only on the edges inside
the finite box B.n/ where

B.n/ D f.x1; x2/ 2 Z2 W jx1j � n and jx2j � ng:

That is, if we open or close edges outside B.n/ it does not affect whether f0 �!
S.n/g happens (why?). Using that there are finitely many edges in B.n/ it is not
difficult to show that gn is continuous on Œ0; 1�, see the problems.

For fixed p, �.p/ is the limit of gn.p/ as n goes to infinity. However, a pointwise
limit of continuous functions is not necessarily continuous (see the problems).
We can only say (by Lemma 2.1) that � is upper semicontinuous. Since � is also
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increasing (Proposition 1.1) it is right continuous (by Lemma 2.2) on [0,1]. This
completes the proof of Proposition 2.1.

A self-contained proof of Proposition 2.2 is beyond the scope of this book.
We will use without proving it the following important result.

Theorem 2.1. There is at most one infinite open cluster for the percolation model
on Zd .

For a proof of Theorem 2.1 see Bollobas and Riordan (2006) or Grimmett (1999).
Putting together Theorem 2.1 and Proposition 1.2 we see that with probability one
there is a unique infinite open cluster when p > pc .

Proof of Proposition 2.2. Recall the following construction from the previous sec-
tion. For each edge e in Zd let U.e/ be a uniform random variable on [0,1]. The
U.e/ are mutually independent. We declare an edge e to be open for the percolation
model with parameter p if and only if U.e/ < p. This allows the simultaneous
construction of percolation models for all p 2 Œ0; 1�.

Let Cp be the open cluster of the origin for the percolation model with
parameter p. According to the construction we know that

if p1 < p2 then Cp1 � Cp2:

Fix p > pc . We want to show that � is left continuous at p. That is, we want to
show that the limit from the left limt!p� �.t/ is �.p/. Note that

lim
t!p�

�.t/ D lim
t!p�

P.jCt j D 1/ D P.jCt j D 1 for some t < p/;

where we are using the fact that the events fjCt j D 1g are increasing in t .
Since Ct � Cp for all t < p we have

0 � �.p/ � lim
t!p�

�.t/ DP.jCpj D 1/ � P.jCt j D 1 for some t < p/

DP.jCpj D 1I jCt j < 1 for all t < p/

where the last equality comes from the elementary fact that if A � B then P.B/ �
P.A/ D P.B \ Ac/. We now have to show that

P.jCpj D 1I jCt j < 1 for all t < p/ D 0:

Assume that jCpj D 1. Let pc < t0 < p. It follows from Proposition 1.2 that with
probability one there is somewhere an infinite cluster for the model with parameter
t0. We denote this infinite cluster by Bt0 . Moreover, Bt0 must intersect Cp , otherwise
we would have two infinite clusters for the model with parameter p (recall that
t0 < p), contradicting Theorem 2.1. Thus, there must exist an open path � from the
origin to some point in Bt0 for the percolation model with parameter p. This open
path is finite and for every edge in the path we must have U.e/ strictly less than p
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(i.e., every edge is open). Let t1 be the maximum of the U.e/ for all the edges in � .
This maximum is necessarily strictly less than p (why?). Now take t2 D max.t0; t1/.
The path � is open for the model with parameter t2 and the infinite open cluster Bt0

is also open for the percolation model with parameter t2. Thus, the origin is in an
infinite cluster for the model with parameter t2. In other words jCt2 j D 1 for some
t2 < p. This shows that

P.jCpj D 1I jCt j < 1 for all t < p/ D 0:

This proves that � is left continuous on .pc; 1�. By definition � is identically 0 on
Œ0; pc/ so it is continuous on Œ0; pc/. This concludes the proof of Proposition 2.2.

2.2 The Subcritical Phase

We have seen that if p > pc then there is a unique infinite open cluster with
probability one. If p < pc we know that all clusters are finite. What else can we
say about this subcritical phase? Recall that S.n/ is the boundary of the square with
side length 2n:

S.n/ D f.x1; x2/ 2 Z2 W jx1j D n or jx2j D ng:

Let f0 �! S.n/g be the event that there is a path of open edges from the origin to
some point in S.n/. The next theorem shows that the probability that the origin be
connected to S.n/ decays exponentially in n if p < pc .

Theorem 2.2. Assume that p < pc . Then there is ˛ > 0 (depending on p) such
that for all n � 1

P.0 �! S.n// � e�˛n:

Our proof of Theorem 2.2 will not be self-contained. We will need two important
results that we will not prove.

First we will need a result relating the expected size of the open cluster containing
the origin to the critical value pc . Define another critical value by

pT D inffp W E.jC j/ D 1g:

Do we have that pc D pT ? This question was open for a long time and is known
as the question of uniqueness of the critical point. It is easy to see that pc � pT

(see the problems). What is much less clear is whether pc D pT . The answer is yes
but the proof is fairly involved so we will skip it. See Grimmett (1999) for a proof.

Second we will need a version of the van den Berg–Kesten (BK) inequality. Let
A be the event that there is an open path joining vertex x to vertex y and let B be the
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event that there is an open path joining vertex u to vertex v. Define AıB as the event
that there are two disjoint open paths, the first joining x to y the second joining u to
v. Note that A ı B � A \ B . The BK inequality states that

P.A ı B/ � P.A/P.B/:

To give some intuition on the BK inequality, consider the conditional probability
P.A ı BjA/. That is, given that there is at least one open path from x to y what
is the probability that there is an open path from u to v that uses none of the open
edges of one of the paths linking x to y. Intuitively, this condition should make the
occurrence of B more difficult. That is, we should have

P.A ı BjA/ � P.B/:

This is precisely what the BK inequality states. For a proof of the BK inequality see
Grimmett (1999). We will now give a proof of Theorem 2.2 that uses the equality
pc D pT and the BK inequality.

Proof of Theorem 2.2. Let S.x; k/ be the square with side 2k and center x. In other
words,

S.x; k/ D fy 2 Z2 W y D x C z for some z 2 S.k/g:

Observe that in order to have a path of open edges from 0 to S.n C k/ we must have
a path of open edges from 0 to some x in S.n/ and then a path from x to S.x; k/.
Moreover, we may take these two paths to be disjoint (why?). Thus,

P.0 �! S.n C k// �
X

x2S.n/

P.f0 �! xg ı fx �! S.x; k/g/:

By the BK inequality we get

P.0 �! S.n C k// �
X

x2S.n/

P.0 �! x/P.x �! S.x; k//:

By translation invariance we have that P.x �! S.x; k// D P.0 �! S.k// for
any x. Therefore,

P.0 �! S.n C k// � P.0 �! S.k//
X

x2S.n/

P.0 �! x/:

If we let

a.n/ D P.0 �! S.n//
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and

b.n/ D
X

x2S.n/

P.0 �! x/

then the preceding inequality can be rewritten as

a.n C k/ � a.k/b.n/: (2.1)

This completes the first step of the proof.
The next step will be to show that b.n/ converges to 0 and this together with (2.1)

will imply that a.n/ goes to 0 exponentially fast.
In order to interpret b.n/ we need a little more notation. Let 1A be the indicator

of the event A. If A occurs then the random variable 1A is 1, if A does not occur
then 1A is 0. In particular the expected value E.1A/ D P.A/. Note that

X

x2S.n/

1f0�!xg

counts the number of points of S.n/ that can be joined to the origin by using an
open path. Thus,

E.
X

x2S.n/

1f0�!xg/ D
X

x2S.n/

P.0 �! x/ D b.n/:

Therefore, b.n/ is the expected number of points of S.n/ that can be joined to the
origin by using an open path. Observe now that

jC j D
X

x2Zd

1f0�!xg D
X

n�0

X

x2S.n/

1f0�!xg

where the last equality comes from the fact that the sets S.n/ for n � 0 partition Zd .
Since all terms are positive we may interchange the infinite sum and the expectation
to get

E.jC j/ D
X

n�0

b.n/:

We now use that pc D pT . Since p < pc D pT we have that E.jC j/ < 1. Thus,

lim
n!1 b.n/ D 0:

This completes the second step of the proof.
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In the third and final step of the proof we use (2.1) and the convergence of b.n/

to show the exponential convergence of a.n/. Since b.n/ converges to 0 there is an
N such that if n � N then b.n/ < 1=2. Take n > N . We have n D Ns C r for
some positive integers r < N and s. Since n � Ns,

a.n/ D P.0 �! S.n// � P.0 �! S.Ns// D a.Ns/:

Using (2.1) we get

a.Ns/ � a.N.s � 1//bN :

Since bN < 1
2

we have for every natural s that

a.Ns/ � 1

2
a.N.s � 1//:

It is now easy to show by induction on s that

a.Ns/ � .
1

2
/sa.0/ D .

1

2
/s

since a.0/ D 1. Hence,

a.n/ � .
1

2
/s D .

1

2
/

n�r
N � .

1

2
/

n
N �1 D 2e� ln 2

N n for n � N

where the second inequality comes from the fact that r < N .
At this point we are basically done. We just need to get rid of the “2” in the

formula above and of the condition n � N . Note that for any 0 < � < ln 2=N there
is an integer N1 such that

2e� ln 2
N n < e��n for all n � N1:

This is so because the ratio of the l.h.s. over the r.h.s. goes to 0 as n goes to infinity.
Let N2 D max.N; N1/. We have

a.n/ � e��n for all n � N2:

We now take care of n < N2. Note that a.n/ < 1 for n � 1. Hence, there is
an ˛.n/ > 0 such that a.n/ D e�˛.n/n for n � 1. Let ˛ be the minimum of
f˛.1/; : : : ; ˛.N2 � 1/; �g. Then ˛ > 0 (why?) and we have

a.n/ � e�˛n for all n � 1:

This completes the proof of Theorem 2.2.
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Problems

1. Show that the function � is continuous at pc if and only if �.pc/ D 0.

2. Let

B.n/ D f.x1; x2/ 2 Z2 W jx1j � n and jx2j � ng:

Let gn.p/ D Pp.0 �! S.n// where S.n/ is the boundary of B.n/. For each edge
e in Z2 let U.e/ be uniform in Œ0; 1�. Take the U.e/ mutually independent. These
variables have been used to construct simultaneously the percolation models for all
p in Œ0; 1�, see the proof of Proposition 1.1.

(a) Let p1 < p2. Show that an edge e is open for the model with p2 and closed for
the model with p1 if and only if p1 < U.e/ < p2.

(b) Use (a) to show that

0 � gn.p2/ � gn.p1/ � jB.n/j.p2 � p1/:

(c) Use (b) to show that gn is a continuous function on Œ0; 1�.

3. In this problem we give an example of a sequence of continuous functions that
converge pointwise to a discontinuous function.

Let fn.p/ D 1 � np for p in Œ0; 1=n� and fn.p/ D 0 for p in .1=n; 1�.

(a) Show that for each n � 1, fn is continuous on [0,1].
(b) Show that for each p in [0,1], limn!1 fn.p/ exists. Denote the limit by f .p/.
(c) Show that f is not a continuous function on [0,1].

4. Let

a.n/ D P.0 �! S.n//

and

b.n/ D
X

x2S.n/

P.0 �! x/:

(a) Show that a.n/ < 1 for every n � 1.
(b) Show that a.n/ � b.n/ for every n � 1.

5. (a) Prove that for any n � 1

E.jC j/ � nP.jC j � n/ � nP.jC j D 1/:
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(b) Prove that if p > pc then E.jC j/ D 1.
(c) Prove that pT � pc .

6. Let A be the event that there is an open path joining vertex x to vertex y and let
B be the event that there is an open path joining vertex u to vertex v.

(a) Explain why A and B are not independent.
(b) Define AıB as the event that there are two disjoint open paths, the first joining x

to y the second joining u to v. Show that if P.AıBjA/ � P.B/ then P.AıB/ �
P.A/P.B/.

7. Let

S.n/ D f.x1; x2/ 2 Z2 W jx1j D n or jx2j D ng:

Let S.x; k/ D S.k/ C x for x in Z2. We pick x so that S.n/ and S.x; k/ do not
intersect. Let

A D f0 �! S.n/g

and

B D fx �! S.x; k/g:

Show that A and B are independent.

8. Assume that a.n/ is a sequence of positive real numbers such that

a.n C k/ � a.n/a.k/ and lim
n!1 a.n/ D 0:

Show that there are real numbers c > 0 and ˛ > 0 such that

a.n/ � ce�˛n for all n � 1:

9. A real function g is said to be lower semicontinuous if �g is upper
semicontinuous.

(a) State and prove a result analogous to Lemma 2.1 for a lower semi-continuous
function.

(b) State and prove a result analogous to Lemma 2.2 for a lower semi-continuous
function.

(c) Prove that g is continuous at x if and only if g is upper and lower semi-
continuous at x.
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3 Percolation On a Tree and Two Critical Exponents

As pointed out in previous sections, critical values such as pc.d/ (the critical value
of percolation on the lattice Zd ) are usually unknown (a notable exception is in
dimension d D 2, pc.2/ D 1

2
). Moreover, it is believed that critical values depend

rather heavily on the details of the models making them not that interesting. On
the other hand, critical exponents, which we introduce below, are more interesting
objects since they are believed to be the same for large classes of models. This is
known, in mathematical physics, as the universality principle. This principle has
been rigorously verified in only a few cases.

The main purpose of this section is to compute two critical exponents that we
now introduce.

It is believed that the limit from the right

lim
p!p

C
c

log �.p/

log.p � pc/
D ˇ exists.

In other words, it is believed that near pc �.p/ behaves like .p � pc/ˇ . The number
ˇ is an example of a critical exponent. It is also believed that the limit from the left

lim
p!p�

c

log EjC j
log.pc � p/

D �� exists

and � is another critical exponent.
We will now compute these two critical exponents for percolation on a tree. We

first describe the rooted binary tree. There is a distinguished site that we call the
root. The root has two children and each child has also two children and so on. The
root is generation 0, the children of the root are in generation 1 and so on. In general,
generation n has 2n individuals (also called sites). Observe that the root has only two
nearest neighbors while all the other sites have three nearest neighbors. So there are
three edges at each site except for the root. See Fig. 10.3.

The big advantage of this graph over Zd (for d � 2) is that on the tree there are
no loops and exact computations are possible.

Let p be in Œ0; 1�. We declare each edge open with probability p and closed with
probability 1 � p independently of all the other edges. Let C be the set of sites that

Root

Fig. 10.3 This is part of the infinite rooted tree
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are linked to the root by an open path in the tree. In other words, C is the open
cluster containing the root. It turns out that there is a second interpretation for C

that is very useful. Define Z0 D 1. For a given parent, the number Y of children
that are linked to the parent by an open edge is a binomial .2; p/ random variable.
That is,

P.Y D k/ D
�

2

k

�
pk.1 � p/2�k for k D 0; 1; 2:

Let Zn be the number of individuals in the nth generation that are connected to the
root by an open path. Then we have for n � 1

Zn D
Zn�1X

iD1

Yi

where the Yi are i.i.d. random variables with a binomial .2; p/ distribution. Thus,
Zn is a Bienaymé–Galton–Watson process. A little thought reveals that the relation
between Zn and C is given by

jC j D
X

n�0

Zn:

From this we see that

�.p/ D P.jC j D 1/ D P.Zn � 1; for all n � 1/:

We know that a BGW survives if and only if the mean offspring is strictly larger than
1. Hence, �.p/ > 0 if and only if E.Y / D 2p > 1. Thus, the critical parameter
pc D 1

2
for the percolation model on the binary tree.

If p > 1=2, the extinction probability is the unique solution smaller than one of
the equation f .s/ D s where f is the generating function for Y . We have

f .s/ D p2s2 C 2p.1 � p/s C .1 � p/2:

We solve

f .s/ D s

and get two roots: s D 1 and s D .1�p/2

p2 . So the survival probability is

�.p/ D 1 � .1 � p/2

p2
for p > 1=2:
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A little algebra gives

�.p/ D 2p � 1

p2
:

We may compute the limit from the right

lim
p!1=2C

ln.�.p//

ln.p � 1=2/
D 1:

This shows that the critical exponent ˇ exists for percolation on this tree and that it
is equal to 1.

We now turn to the computation of EjC j. We know that for a BGW process

E.Zn/ D .EY /n D .2p/n:

Thus, for p < 1=2

EjC j D E.
X

n�0

Zn/ D
X

n�0

.2p/n D 1

1 � 2p
:

Thus, the limit from the left is

lim
p!p�

c

log EjC j
log.pc � p/

D �1;

and this shows that the critical exponent � exists and that it is also equal to 1.

Problems

1. Consider percolation on a rooted tree where each site has three children instead
of two.

(a) Compute the critical value pc .
(b) Show that the critical exponents are the same as for two children.
(c) Can you guess what happens for percolation on a tree with d children?

2. Explain why the relation

jC j D
X

n�0

Zn

is true.
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3. Consider percolation on the binary tree. Show that

(a)

lim
p!1=2C

ln.�.p//

ln.p � 1=2/
D 1:

(b)

lim
p!1=2�

log EjC j
log.1=2 � p/

D �1:

4. (a) Show that the function � is continuous on Œ0; 1� for the percolation model on
the tree.

(b) Is the function � differentiable at pc?

5. Assume that p < pc . Show that there exists a in .0; 1/ such that

P.jC j � n/ � an:

6. (a) Assume that there is some ` such that

lim
x!1

f .x/

.x � 1/2
D `:

Compute

lim
x!1C

ln.f .x//

ln..x � 1/2/
:

(b) Give an example of f for which limx!1C
ln.f .x//

ln..x�1/2/
exists but limx!1

f .x/

.x�1/2

does not.

Notes

This chapter is a small introduction to the subject. We have mentioned some
important questions. Is there a phase transition? How many infinite open clusters
are there? Is there percolation at pc.d/? What is the typical size of a cluster in
the subcritical region? We only proved a small part of the corresponding results.
Grimmett (1999) gives a self-contained exposition of percolation theory. See also
Bollobas and Riordan (2006). Percolation on the tree is somehow trivial since it is
equivalent to a branching model. However, it suggests conjectures on more intricate
graphs.
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Chapter 11
A Cellular Automaton

Cellular automata are widely used in mathematical physics and in theoretical
biology. These systems start from a random state and evolve using deterministic
rules. We concentrate on a specific model in this chapter. The techniques we use are
similar to the ones used in percolation.

1 The Model

We define a cellular automaton on Z2. Each site of Z2 is in state 1 or 0. Let �n be
the state (or configuration) of the system at time n where n is a positive integer. Let
x be in Z2. We let �n.x/ D 1 if x is occupied at time n. We let �n.x/ D 0 if x is
empty at time n.

The initial state for the cellular automaton is the following. Let p be in [0,1]. For
each site x of Z2 we put a 1 with probability p and a 0 with probability 1 � p. This
is done independently for each site. Thus, for each x in Z2

P.�0.x/ D 1/ D p P.�0.x/ D 0/ D 1 � p:

The system evolves according to the following rules. If �n.x/ D 1, then
�nC1.x/ D 1. If �n.x/ D 0 and if at least one neighbor in each of the orthogonal
directions is a 1, then �nC1.x/ D 1. In words, once a site is occupied it remains
occupied forever. An empty site becomes occupied if it has at least two (among
four) occupied nearest neighbors in two orthogonal directions. We see that the initial
state is random but that the evolution is deterministic. We now give an example to
illustrate the rules of evolution of this system. We consider a part of Z2 where we
have the following configuration at time 0:

© Springer Science+Business Media New York 2014
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1 1 1 1 1

1 0 0 0 1

1 0 0 0 1

1 1 1 1 1

Then at time 1 we have in the same region

1 1 1 1 1

1 1 0 1 1

1 1 0 1 1

1 1 1 1 1

and at time 2 we have

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

Define

An D f�n.0/ D 1g

where 0 is the origin of Z2. Since a 1 does not change its state, An � AnC1. So
P.An/ is an increasing sequence in [0,1] and therefore, converges. We define

lim
n

P.An/ D 	.p/:

By Proposition 1.1 in the Appendix we get

	.p/ D P.
[

n�1

An/:

That is, 	.p/ is the probability that the origin will eventually be occupied. It is
natural to define the critical value

pc D inffp 2 Œ0; 1� W 	.p/ D 1g:

This model is translation invariant so 	.p/ is the same for all the sites of Z2. In
particular if 	.p/ D 1 it means that all the sites of Z2 will eventually be occupied.
It is actually possible to compute pc .

Theorem 1.1. The cellular automaton on Z2 has pc D 0.
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Theorem 1.1 tells us that the cellular automaton started with any density p > 0

will fill the whole space. This result is far from obvious. If p is very small there are
very few 1’s at the beginning and it is not clear that the whole space is going to get
filled by 1’s. The following proof gives some intuition on how the space gets filled.

Proof of Theorem 1.1. We say that site x is a good site if for each integer k larger
than 1 the square whose center is x and whose sides have length 2k has at least one
1 on each of its four sides (excluding the four vertices) at time 0. An induction proof
on k shows that if x is a good site then each square whose center is x will eventually
be filled by 1’s. Thus, if x is a “good site” the whole space will eventually be filled.
Let Sk be the square whose center is the origin of Z2 and whose sides have length 2k.
For k � 1 let Bk D f each side of Sk has at least one 1 at time 0 that is not on one
of the vertices of the square g. Let B0 be the event that the origin is occupied at time
0.

Since each side of Sk has 2k � 1 sites that are not vertices of the square we get
for k � 1,

P.Bk/ D .1 � q2k�1/4

where q D 1 � p. Let Ck D Tk
nD0 Bn. Note that .Ck/k�0 is a decreasing sequence

of events, thus

lim
k!1 P.Ck/ D P.

1\

kD0

Ck/:

Let

E D
\

k�0

Bk:

Observe that E D f the origin is a good site g. Note that E can also be written as

E D
\

k�0

Ck:

Since the Bn are independent events (why?) we have

P.Ck/ D p.1 � q/4.1 � q3/4 : : : .1 � q2k�1/4:

Hence,

P.E/ D lim
k!1 p.1 � q/4.1 � q3/4 : : : .1 � q2k�1/4:

That is, P.E/ is the infinite product
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…1
kD1.1 � q2k�1/4:

Observe that the series

X

k�1

q2k�1

converges for every p > 0. This implies that the infinite product …1
kD1.1 � q2k�1/4

is strictly positive (see the Appendix). So we have

P.0 is a good site/ D P.E/ > 0:

Consider the event

F D
[

x2Z2

fx is a good siteg:

That is, F is the event that there is a good site somewhere in Z2. This is a
translation invariant event that depends only on the initial distribution which is a
product measure. By the ergodic Theorem (see Durrett 2010) P.F / D 0 or 1. Since
P.F / � P.E/ > 0 we have that P.F / D 1. Thus, Z2 will eventually be filled by
1’s for any p > 0. This shows that pc D 0 and completes the proof of Theorem 1.1.

Problems

1. Consider the cellular automaton in a finite subset of Z2. Show that pc D 1.

2. Consider a cellular automaton on Z for which a 0 becomes a 1 if one of its two
nearest neighbors is a 1.

(a) Show that

f�n.0/ D 0g D f�0.x/ D 0 for x D �n; : : : ; ng:

(b) Show that for any p > 0

lim
n!1 P.�n.0/ D 0/ D 0:

(c) Show that pc D 0.
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3. Consider a cellular automaton on Z2 with a different rule. This time a 0 becomes
a 1 if at least two of its four nearest neighbors are occupied by 1’s. Let �n be the
configuration of this automaton at time n and let �n be the automaton we have
considered so far.

(a) Show that we can couple the two automata in such a way that for every x in Z2

and every n � 0 we have

�n.x/ � �n.x/:

(b) Use (a) to show that the pc corresponding to �n is also 0.

4. Consider a cellular automaton on Z2 for which a 0 becomes a 1 if at least three
of its four nearest neighbors are occupied by 1’s.

(a) Assume that the 3 � 3 square centered at the origin of Z2 is empty. That is,
assume that the initial configuration is

0 0 0

0 0 0

0 0 0

Explain why all the sites of the square will remain empty forever.
(b) Show that pc D 1.

5. Let

An D f�n.0/ D 1g:

Show that An � AnC1.

6. Let Sk be the square whose center is the origin of Z2 and whose sides have length
2k. For k � 1 let

Bk D f each side of Sk has at least one 1 at time 0 that is not on one of the
vertices of the square g:

Let B0 be the event that the origin is occupied at time 0.

(a) Draw a configuration for which B0, B1, B2 and B3 hold.
(b) Show that for k � 1,

P.Bk/ D .1 � q2k�1/4

where q D 1 � p.
(c) Let Ck D Tk

nD0 Bn. Show that .Ck/k�0 is a decreasing sequence of events.
(d) Show that

Tk
nD0 Cn D Tk

nD0 Bn.
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2 A Renormalization Argument

Let T be the first time the origin is occupied:

T D inffn � 0 W �n.0/ D 1g:

Note that

P.T > n/ D P.�n.0/ D 0/:

Theorem 1.1 shows that for any p > 0 we have

lim
n!1 P.�n.0/ D 1/ D 1:

Therefore,

lim
n!1 P.�n.0/ D 0/ D lim

n!1 P.T > n/ D 0:

The sequence of events fT > ng is decreasing. Hence,

lim
n!1 P.T > n/ D P.

1\

nD0

fT > ng/ D 0:

Observe that T > n for all n if and only if T D C1 (i.e., the origin stays empty
forever). Hence,

P.T D C1/ D 0:

Thus, with probability one there is an n such that the origin is occupied after time n.
In other words, the random time T is finite with probability one. The main purpose
of this section is to prove that T decays exponentially for any p > 0 in dimension
2. We will proceed in two steps. First we will prove that T decays exponentially for
p > 2=3. The second step will be to show that when p is in .0; 2=3/ we may rescale
time and space so that the rescaled system is a cellular automaton with p > 2=3.
This will prove the exponential decay for all p > 0.

Theorem 2.1. For any p > 0 there are �.p/ and C.p/ in .0; 1/ such that

P.T � n/ � C.p/e��.p/n:

Proof of Theorem 2.1.
First step
We prove the Theorem for p > 2=3. We will use a technique we have used in

percolation.
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Let Cn.0/ be the empty cluster of the origin at time n. That is, x is in Cn.0/ if
there is an integer k � 1 and if there is a sequence of sites x0; x1; : : : ; xk in Z2 such
that x0 D 0, xk D x, xi and xiC1 are nearest neighbors for i D 0; : : : ; k � 1, and
�n.xi / D 0 for i D 1; : : : ; k: Let

Dk D f.m; n/ 2 Z2 W jmj C jnj D kg

and let

Rn.0/ D supfk W Cn.0/ \ Dk 6D ;g:

That is, Rn.0/ plays the role of a radius for the empty cluster. We first show that
R0.0/ is finite. For R0.0/ � n there must be at time 0 a self-avoiding walk of empty
sites that starts at the origin and reaches some site in Dn. There are at most 4.3/l�1

self-avoiding walks with l sites and to reach Dn we need l � n C 1. Thus,

P.R0.0/ � n/ �
1X

lDnC1

4.3/l�1.1 � p/l (2.1)

The geometric series is convergent if and only if p > 2=3. Hence, if p > 2=3 we
have

lim
n!1 P.R0.0/ � n/ D 0:

Since the sequence of events fR0.0/ � ng is decreasing we have

lim
n!1 P.R0.0/ � n/ D P.

\

n�1

fR0.0/ � ng D P.R0.0/ D C1/ D 0:

Hence, the empty cluster of the origin is finite at time 0. Next we show that this
cluster decreases with time. Observe that if Rn.0/ D k then every site in Cn.0/\Dk

will have at least two occupied nearest neighbors, one in each direction (why?) and
hence they will become occupied at time n C 1. Thus, RnC1.0/ � Rn.0/ � 1. That
is the radius of the empty cluster will decrease by at least 1 from time n to time
n C 1. In order for the origin to be empty at time n we therefore need the radius of
the empty cluster to be at least n at time 0. That is,

P.T > n/ � P.R0.0/ � n/:

Summing the geometric series in (2.1) yields for p > 2=3

P.R0.0/ � n/ � 4.1 � p/.3.1 � p//n 1

1 � 3.1 � p/
D C.p/e��.p/n
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where

C.p/ D 4.1 � p/
1

1 � 3.1 � p/
�.p/ D � ln..3.1 � p//:

That is, if p > 2=3 P.T > n/ decays exponentially with n. This completes the first
step of the proof.

Second step
To prove Theorem 2.1 for p < 2=3 we first need some new notation. Recall that

SN is the square centered at the origin whose sides have length 2N . Assume we
start with 1’s with probability p and 0’s with probability 1 � p inside SN and all
the sites outside SN empty. We do not allow creation of 1’s outside the square SN .
The rules inside SN are the same as before. If all the sites of SN eventually become
occupied with the above restrictions, then SN is said to be internally spanned. Let
R.N; p/ be the probability that SN is internally spanned.

Lemma 2.1. For any 0 < p � 1 we have

lim
N !1 R.N; p/ D 1:

Proof of Lemma 2.1. Let M be the largest integer below N=4 and let

EN D fthere is a good site in SM g

where the definition of a good site has been given in the proof of Theorem 1.1.
Observe that EN is an increasing sequence of events and that

[

N �1

EN D
[

x2Z2

fx is a good siteg:

The event on the r.h.s. has been shown to have probability 1 in the proof of
Theorem 1.1. Thus,

lim
N !1 P.EN / D P.

[

N �1

EN / D 1:

Let FN be the event that for all k � M each side of the square Sk has at least one
occupied site that is not a vertex. Hence,

P.FN / D …1
iDM .1 � q2i�1/4

and since

1X

iD1

� ln.1 � q2i�1/ < 1
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we have

lim
N !1 P.FN / D 1:

See the problems.
Observe now that if EN occurs then SM will eventually be fully occupied in the

system restricted to SN (why?). If FN and EN occur simultaneously, then SN is
internally spanned. Thus,

R.N; p/ � P.EN \ FN /

and

lim
N !1 R.N; p/ D 1:

This completes the proof of Lemma 2.1.

We are now ready to introduce the renormalization scheme. We start with the
renormalized sites. Let SN be the square whose sides have length 2N and that is
centered at the origin of Z2. And for k in Z2, let the renormalized site k be

SN .k/ D fx 2 Z2 W x � k.2N C 1/ 2 SN g:

The squares SN .k/ cover Z2.
We say that the renormalized site k is occupied if all the sites in SN .k/

are occupied. Observe that if the renormalized site k has at least one occupied
renormalized neighbor in each of the orthogonal directions and if k is not occupied
at time n then it will be occupied at time n C 2N C 1. Observe also that if SN .k/ is
internally spanned it must be so by time jSN .k/j D .2N C1/2. This is so because if
by time .2N C1/2 the renormalized site is not internally spanned it means that there
is a time n < .2N C 1/2 at which no change happened in the square and after that
time there can be no change. The two preceding observations motivate the definition
of the renormalized time 
 by the following equation.

n D .2N C 1/2 C .2N C 1/
:

We now describe the dynamics of the renormalized system. For each SN .k/ we
do not allow creation of 1’s from inside to outside of SN .k/ up to time .2N C
1/2. At time n D .2N C 1/2 we keep the 1’s that are in renormalized sites SN .k/

that are fully occupied and we replace all the 1’s by 0’s in the SN .k/ that are not
fully occupied. Thus, at time 
 D 0 (n D .2N C 1/2/) each renormalized site is
occupied with probability R.N; p/ independently of each other. After time 
 D 0,
the restriction is dropped and 1’s may be created from one renormalized site into
another. The crucial remark is that the system with renormalized time and space
behaves exactly like a cellular automaton on Z2 with initial density R.N; p/. To
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be more precise, if we identify SN .k/ and k and we look at the system at times

 D 0; 1; : : : then the renormalized system is a cellular automaton on Z2 with initial
density R.N; p/.

The preceding construction couples the cellular automaton and the renormalized
system in such a way that if the origin is empty for the cellular automaton at time n

then the renormalized origin is also empty at the corresponding rescaled time


 D Œ
n � .2N C 1/2

.2N C 1/
�

where Œx� is the integer part of x. This is so because of the restrictions we impose
on the creation of 1’s for the renormalized system up to time .2N C 1/2. Thus,

Pp.T > n/ � PR.N;p/.T > Œ
n � .2N C 1/2

.2N C 1/
�/

where the subscripts indicate the initial densities of the two cellular automata we are
comparing. By Lemma 2.1, for any p > 0 there is N such that

R.N; p/ > 2=3:

We pick such an N . We proved Theorem 2.1 for p > 2=3 and since R.N; p/ > 2=3

we have the existence of � and C (depending on p and N ) such that

Pp.T > n/ � PR.N;p/.T > Œ
n � .2N C 1/2

.2N C 1/
�/ � Ce

��Œ
n�.2N C1/2

.2N C1/ �
:

This completes the proof of Theorem 2.1.

Problems

1. Let

sn D …n
iD1.1 � q2i�1/4

In the proof of Theorem 1.1 we have shown that sn has a strictly positive limit. Use
this fact to prove that for 0 � q < 1

lim
M!1 …1

iDM .1 � q2i�1/4 D 1:
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2. Show that if

lim
N !1 P.FN / D 1 and if lim

N !1 P.EN / D 1

then

lim
N !1 P.EN \ FN / D 1:

3. Show that Theorem 2.1 holds for the cellular automaton in dimension 1.

4. Consider the following initial configuration

1 0 0 0 1

1 0 0 0 1

1 1 0 0 1

1 1 0 0 1

1 1 1 1 1

The origin is at the center of the matrix (third row, third column). For the notation
see the proof of Theorem 1.2.

(a) What is R0.0/ in this case?
(b) What is R1.0/?
(c) How long does it take for the origin to be occupied?

5. See the definitions of EN and FN in the proof of Theorem 1.2. Set N D 8 and
M D 2.

(a) Give an initial configuration for which EN and FN occur.
(b) Show on your example that if EN occurs then SM will eventually be fully

occupied in the system restricted to SN .
(c) Show on your example that if FN and EN occur then SN is internally spanned.

Notes

We have followed the treatment of Schonmann (1992). Using the renormalization
argument Schonmann goes on to prove that pc D 0 and that convergence to the all
1’s state occurs exponentially fast in any dimension.
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Chapter 12
A Branching Random Walk

In this chapter we consider a continuous time spatial branching process. Births and
deaths are as in the binary branching process. In addition we keep track of the spatial
location of the particles. We use results about the binary branching process.

1 The Model

Consider a system of particles which undergo branching and random motion on
some countable set S . Our two main examples of S will be the lattice Zd and the
homogeneous tree. Let p.x; y/ be the probability transitions of a given Markov
chain on S . Hence, for every x we have

X

y2S

p.x; y/ D 1:

The evolution of a continuous time branching random walk on S is governed by the
two following rules.

1. Let � > 0 be a parameter. If p.x; y/ > 0, and if there is a particle at x then this
particle waits a random exponential time with rate �p.x; y/ and gives birth to a
new particle at y.

2. A particle waits an exponential time with rate 1 and then dies.

Let b
x;�
t denote the branching random walk starting from a single particle at x

and let b
x;�
t .y/ be the number of particles at site y at time t .

© Springer Science+Business Media New York 2014
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We denote the total number of particles of b
x;�
t by jbx;�

t j D P
y2S b

x;�
t .y/. Let

O be a fixed site of S . We define the following critical parameters.

�1 D inff� W P.jbO;�
t j � 1; 8t > 0/ > 0g

�2 D inff� W P.lim sup
t!1

b
O;�
t .O/ � 1/ > 0g:

Note that the event flim supt!1 b
O;�
t .O/ � 1g is the event that there will be at least

one particle at O at arbitrarily large times.
In words, �1 is the critical value corresponding to the global survival of the

branching Markov chain while �2 is the critical value corresponding to the local
survival of the branching Markov chain.

Note that

flim sup
t!1

b
O;�
t .O/ � 1g � fjbO;�

t j � 1; 8t > 0g:

That is, if the process survives locally it survives globally. Thus, it is clear that
�1 � �2. We are interested in necessary and sufficient conditions to have �1 < �2.
When the strict inequality holds we say that we have two phase transitions.

When there will be no ambiguity about the value of � that we are considering we
will drop � from our notation.

Let Xt denote the continuous time Markov chain corresponding to p.x; y/. More
precisely, consider a particle which undergoes random motion only (no branching).
It waits a mean 1 exponential time and jumps from x to y with probability p.x; y/.
We denote by Xt the position in S at time t of this particle. We define

Pt .x; y/ D P.Xt D yjX0 D x/:

We will show below the following result.

lim
t!1

1

t
log Pt .O; O/ D �� D sup

t>0

1

t
log Pt .O; O/:

Note that � � 0 and since Pt .O; O/ � e�t (if there are no jumps up to time t , the
chain remains at O) we get that � is in [0,1].

We are now ready to state the main result of this section.

Theorem 1.1. The first critical value for a branching Markov chain is

�1 D 1:
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The second critical value is

�2 D 1

1 � �
if � in Œ0; 1/

�2 D 1 if � D 1:

In particular there are two phase transitions for this model if and only if � 6D 0.

Theorem 1.1 shows that the existence of two phase transitions is equivalent to the
exponential decay of Pt .O; O/. This transforms a problem involving many particles
into a problem involving only one particle.

The computation of �1 is easy and we do it now. Note that the process jbO
t j is

a continuous time binary branching process. Each particle gives birth at rate � and
dies at rate 1. We have seen that this process survives with positive probability if
and only if � > 1. Hence, �1 D 1.

The computation of �2 is more involved and will be done below. We first give
two applications of Theorem 1.1.

1.1 The Branching Random Walk on the Line

In this application we take S D Z and

p.x; x C 1/ D p p.x; x � 1/ D q D 1 � p:

The system of particles evolves as follows. A particle at x gives birth to a particle
at x C 1 at rate �p. A particle at x gives birth to a particle at x � 1 at rate �q.
A particle dies at rate 1.

We now compute � .

Lemma 1.1.

lim
t!1

1

t
log Pt .O; O/ D 2

p
pq � 1 D ��:

Proof of Lemma 1.1. Since the continuous time Markov chain Xt with transition
probabilities Pt .x; y/ waits a mean 1 exponential time between two jumps, the
number of jumps up to time t is a Poisson process with parameter t . If we condition
on the number of jumps up to time t we get:

Pt .x; y/ D
X

n�0

e�t t n

nŠ
pn.x; y/

where pn.x; y/ is the probability that the discrete time chain goes from x to y in n

steps.
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Observe that pn.O; O/ D 0 if and only if n is odd. Therefore,

Pt .O; O/ D
X

n�0

e�t t 2n

.2n/Š
p2n.O; O/:

We have seen that for a random walk on the line we have

lim
n!1

p2n.O; O/

.4pq/n.�n/�1=2
D 1:

Hence, there are strictly positive constants C1 < 1 and C2 > 1 such that for all
n � 1

C1.4pq/n.�n/�1=2 � p2n.O; O/ � C2.4pq/n.�n/�1=2:

Therefore,

Pt .O; O/ � e�t C
X

n�1

e�t t 2n

.2n/Š
C2.4pq/n.�n/�1=2:

Note that

e�t C
X

n�1

e�t t 2n

.2n/Š
C2.4pq/n.�n/�1=2 � C2et.�1C2

p
pq/:

Hence,

Pt .O; O/ � C2et.�1C2
p

pq/:

We now find a lower bound.

Pt .O; O/ � e�t C
X

n�1

e�t t 2n

.2n/Š
C1.4pq/n.�n/�1=2:

Set C3 D C1=
p

� and observe that
p

n � 2n C 1 to get

Pt .O; O/ � e�t

t

X

n�0

t2nC1

.2n C 1/Š
C3

p
4pq

2nC1
:

But

X

n�0

t2nC1

.2n C 1/Š
D et � e�t

2
:



1 The Model 235

Thus, for t large enough we have (see the problems)

X

n�0

t2nC1

.2n C 1/Š
� et =4:

Hence,

Pt .O; O/ � 1

4t
C3et.�1C2

p
pq/:

We now put together the two inequalities to get, for t large enough,

1

4t
C3et.�1C2

p
pq/ � Pt .O; O/ � C2et.�1C2

p
pq/:

We have

lim
t!1

1

t
log.

1

4t
C3et.�1C2

p
pq// D lim

t!1
1

t
log.C2et.�1C2

p
pq// D 2

p
pq � 1:

Thus,

lim
t!1

1

t
log Pt .O; O/ D 2

p
pq � 1

and this completes the proof of Lemma 1.1.

Now that � has been computed we may apply Theorem 1.1 to get

�1 D 1 �2 D 1

2
p

pq
:

Observe that pq � 1=4 and that the equality holds if and only if p D q D 1=2.
Therefore, the simple branching random walk on Z has two phase transitions if and
only if p 6D q. In other words, any asymmetry in this model provokes the appearance
of two phase transitions.

1.2 The Branching Random Walk on a Tree

The other application we will consider is the branching random walk on a
homogeneous tree. Here S is a homogeneous tree (also called Bethe lattice) which
is an infinite connected graph without cycles, in which every vertex has the same
number of neighbors that we denote by d � 3, see Fig. 12.1.
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Fig. 12.1 This is part of the infinite binary tree (d D 3)

We assume here that p.x; y/ D 1=d for each of the d neighbors y of x. So in
this sense this is a symmetric model, but we will see that the behavior is very similar
to the one of the asymmetric branching random walk on Z.

Sawyer (1978) has computed asymptotic estimates of pn.O; O/ for a large class
of random walks on a homogeneous tree. In our particular case (nearest neighbor
symmetric random walk) his computation gives

lim
n!1

p2n.O; O/

n�3=2R2n
D C

where C > 0 is a constant and R D 2
p

d�1
d

. Doing the same type of computation as
in Lemma 1.1 gives

lim
t!1

1

t
log Pt .O; O/ D R � 1 D 2

p
d � 1

d
� 1 D ��:

By Theorem 1.1

�1 D 1 �2 D d

2
p

d � 1
:

It is easy to check that for any d � 3,

d

2
p

d � 1
> 1

and therefore there are two distinct phase transitions for the simple symmetric
branching random walk on any tree. For the symmetric simple random walk on
the tree the probability that a walker goes back to the site he just left is 1

d
while the

probability he goes on to some other site is d�1
d

. Hence, the walker is more likely
to drift away rather than come back. In this sense this is similar to an asymmetric
random walk on the line.
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1.3 Proof of Theorem 1.1

We have already shown that �1 D 1. We now compute �2.
Our first step is to prove the existence of the limit

lim
t!1

1

t
log Pt .O; O/ D �� D sup

t>0

1

t
log Pt .O; O/:

Using the Markov property it is easy to see that

PtCs.O; O/ � Pt .O; O/Ps.O; O/:

The existence of the limit � is a direct consequence of the following lemma
applied to the function f .t/ D log Pt .O; O/.

Lemma 1.2. If a continuous function f has the property that

f .t C s/ � f .t/ C f .s/

then

lim
t!1

1

t
f .t/ exists and is D sup

t>0

1

t
f .t/ 2 .�1; 1�:

Note that

Pt .x; y/ D
X

n�0

e�t t n

nŠ
pn.x; y/:

This power series has an infinite radius of convergence (why?). Therefore, f .t/ D
log Pt .O; O/ is continuous for all t � 0.

Proof of Lemma 1.2. Fix s > 0. Then for t > s we can find an integer k.t; s/ such
that

0 � t � k.t; s/s < s:

Iterating the inequality f .t C s/ � f .t/ C f .s/ yields

f .t/ � k.t; s/f .s/ C f .t � k.t; s/s/:

Let m.s/ D inf0<r<s f .r/. We get

1

t
f .t/ � 1

t
k.t; s/f .s/ C 1

t
m.s/:
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We now let t go to infinity and use the fact that k.t; s/=t converges to 1=s to get

lim inf
t!1

1

t
f .t/ � 1

s
f .s/:

Hence

lim inf
t!1

1

t
f .t/ � sup

s>0

1

s
f .s/:

On the other hand, we have

lim sup
t!1

1

t
f .t/ � sup

s>0

1

s
f .s/:

This shows that

lim inf
t!1

1

t
f .t/ D lim sup

t!1
1

t
f .t/ D sup

s>0

1

s
f .s/:

This completes the proof of Lemma 1.2

Our second step in the proof of Theorem 1.1 is the following

Proposition 1.1. For all x in S and for all times t we have the representation
formula

E.bx
t .O// D e.��1/t P�t .x; O/:

Proof of Proposition 1.1. We use the Kolmogorov backward differential equation
for the random walk in continuous time. Conditioning on what happens in the time
interval Œ0; h� we have that

PtCh.x; O/ D
X

y2S

hp.x; y/Pt .y; O/ C .1 � h/Pt .x; O/

where we are neglecting terms of order higher than h. As h ! 0 we get

P 0
t .x; O/ D

X

y

p.x; y/Pt .y; O/ � Pt .x; O/: (1.1)

Define m.t; x/ D E.bx
t .O//. We write again a backward equation. Conditioning

on what happens in the interval Œ0; h� and using that bO
t is a Markov process gives

m.t Ch; x/ D
X

y2S

�hp.x; y/.m.t; x/Cm.t; y//C .1� .�C1/h/m.t; x/: (1.2)
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Again we are neglecting terms of order higher than h. As h ! 0 in (1.2) we get

m0.t; x/ D
X

y2S

�p.x; y/m.t; y/ � m.t; x/ (1.3)

where the derivative is taken with respect to t . Equation (1.1) has a unique solution
with the initial conditions P0.x; O/ D 0 for x 6D O and P0.O; O/ D 1 (see
Bhattacharya and Waymire 1990, Chap. IV, Sect. 3). This implies that

t ! e.��1/t P�t .x; O/

is the unique solution to (1.3) with the initial value m.0; x/ D 0 for x 6D O and
m.0; O/ D 1.

This completes the proof of Proposition 1.1.

To prove Theorem 1.1 the crucial step is the following

Lemma 1.3. If there is a time T such that E.bO
T .O// > 1, then

lim sup
t!1

P.bO
t .O/ � 1/ > 0:

Proof of Lemma 1.3. We will construct a supercritical Bienaymé–Galton–Watson
process which is dominated (in a certain sense) by the branching Markov chain.
To do so we will first consider a Markov process Qbt that is coupled to bO

t in the
following way. Up to time T Qbt and bO

t are identical. At time T we suppress all the
particles of Qbt which are not at site O and we keep the particles which are at O .
Between times T and 2T the particles of Qbt which were at O at time T evolve like
the particles of bO

t which were at O at time T . At time 2T we suppress again all the
particles of Qbt which are not at O . And so on, at times kT (k � 1) we suppress all
the particles of Qbt which are not at O and between kT and .k C 1/T the particles of
Qbt evolve like the corresponding particles of bO

t .
Now we can define the following discrete time process Zk . Let Z0 D 1 and

Zk D QbkT .O/. We may write

Zk D
Zk�1X

iD1

Yi for k � 1;

where Yi is the number of particles located at O that a single particle initially
located at O generates in T units time. In other words each Yi has the same law as
bO

T .O/. Moreover the Yi are independent one of the other and of the ones appearing
in previous generations. Therefore Zn is a Bienaymé–Galton–Watson process. By
hypothesis, E.Z1/ D E.bO

T .O// > 1, so Zk is a supercritical BGW process.
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On the other hand, by our construction we have coupled the processes bO
t and Qbt

in such a way that Qbt .x/ � bO
t .x/ for all x in S and all t � 0. Thus,

P.Zk � 1/ � P.bO
kT .O/ � 1/:

But P.Zk � 1; 8k � 0/ > 0 so making k go to infinity in the last inequality
concludes the proof of Lemma 1.3.

We are finally ready to compute �2. Using

lim
t!1

1

t
log Pt .O; O/ D �� D sup

t>0

1

t
log Pt .O; O/ (1.4)

and Proposition 1.1 we get that for all k � 0

E.bO
k .O// � eC k

where C D � � 1 � �� .
	 Consider first the case � < 1. Observe that if � < 1

1��
then C < 0. Let

Ak D fbO
k .O/ � 1g:

We have

P.Ak/ � E.bO
k .O// � eC k:

By the Borel–Cantelli Lemma (see Sect. 2 of the Appendix),

P.lim sup
k

Ak/ D 0: (1.5)

In other words P.bO
k .O/ � 1 for infinitely many k/ D 0. So the process is dying

out locally along integer times. We now take care of the noninteger times. If we had
particles at O for arbitrarily large continuous times it would mean that all particles
at O disappear between times k and k C 1, for infinitely many integers k. But for
distinct k’s these are independent events which are bounded below by a positive
probability uniform in k. So the probability that this event happens for infinitely
many k’s is zero and (1.5) implies that

P.lim sup
t!1

bO
t .O/ � 1/ D 0:

This shows that

�2 � 1

1 � �
:



1 The Model 241

We will now prove the reverse inequality showing that �2 is actually equal to the
r.h.s. Suppose that � > 1

1��
. For � > 0 small enough we have that � > 1

1����
.

By (1.4) there is T large enough so that

1

T
log PT .O; O/ > �� � �

and therefore by Proposition 1.1.

E.bO
T .O// � eDT

with D D �.�� � � C 1/ � 1 > 0. Since E.bO
T .O// > 1 we can apply Lemma 1.3

to get

lim sup
t!1

P.bO
t .O/ � 1/ > 0: (1.6)

We also have that

P.bO
t .O/ � 1/ � P.9s � t W bO

s .O/ � 1/:

We make t ! 1 and get

lim sup
t!1

P.bO
t .O/ � 1/ � P.lim sup

t!1
bO

t .O/ � 1/

this together with (1.6) shows that

P.lim sup
t!1

bO
t .O/ � 1/ > 0:

Hence,

�2 � 1

1 � �
:

This shows that if � < 1 then

�2 D 1

1 � �
:

	 Consider now � D 1. We use again that

P.Ak/ � E.bO
k .O// � eC k;



242 12 A Branching Random Walk

where C D � � 1 � �� D �1 for any � > 0. Hence, by Borel–Cantelli for any
� > 0

P.bO
k .O/ � 1 for infinitely many k/ D 0:

Therefore, � < �2 for any � > 0. This shows that �2 D 1.
This concludes the proof of Theorem 1.1.

Problems

1. Show that

flim sup
t!1

b
O;�
t .O/ � 1g � fjbO;�

t j � 1; 8t > 0g:

2. Show that �1 � �2:

3. Show that

e�t C
X

n�1

e�t t 2n

.2n/Š
C2.4pq/n.�n/�1=2 � C2et.�1C2

p
pq/:

4. Let

�� D sup
t>0

1

t
log Pt .O; O/:

Show that � is in Œ0; 1�.

5. Show that for t large enough

X

n�0

t2nC1

.2n C 1/Š
� et =4:

6. Consider the simple branching random walk on Z2. Show that any asymmetry
provokes two phase transitions.

7. Consider an irreducible continuous time Markov chain on a finite graph with
transition probabilities Pt .x; y/.

(a) Show that the corresponding � is 0.
(b) How many phase transitions does a branching random walk on a finite graph

have?



2 Continuity of the Phase Transitions 243

8. Show that � D 1 if and only if for all k � 1 we have pk.O; O/ D 0. Use that

Pt .O; O/ D
X

k�0

e�t t k

kŠ
pk.O; O/:

9. Prove that

PtCs.O; O/ � Pt .O; O/Ps.O; O/:

10. Show that

Pt .x; y/ D
X

n�0

e�t t n

nŠ
pn.x; y/

is continuous for all t � 0.

11. To compute the critical values for the branching random walk on a tree we used
that if

lim
n!1

p2n.O; O/

n�3=2R2n
D C

then

lim
t!1

1

t
log Pt .O; O/ D R � 1:

Prove this implication. (Use a method similar to the one in Lemma 1.1.)

2 Continuity of the Phase Transitions

We will show that the first phase transition is continuous while the second one (when
it exists) is not.

2.1 The First Phase Transition Is Continuous

Denote the global survival probability by

	.�/ D P.jbO;�
t j � 1; 8t > 0/:
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Recall that the first critical value �1 has been defined as

�1 D inff� > 0 W 	.�/ > 0g:
Theorem 2.1. The first phase transition is continuous in the sense that the function

� ! 	.�/

is continuous at �1.

Proof of Theorem 2.1. As noted before the total number of particles jbO;�
t j is a

continuous time branching process. We have shown that this allows to compute
�1 D 1. Moreover, the critical process dies out. Thus, 	.�1/ D 0.

If � < �1, then 	.�/ D 0. So the limit from the left at �1 is

lim
�!��

1

	.�/ D 0:

This together with 	.�1/ D 0 shows that 	 is left continuous at �1.
We now turn to the right continuity. This proof is very similar to a proof we did

for percolation. We may simultaneously construct two branching Markov chains
with birth rates, respectively, equal to �1p.x; y/ and �2p.x; y/ where �1 < �2.
Denote the two processes by b

O;�1
t and b

O;�2
t . To do our simultaneous construction

we construct b
O;�2
t in the usual way. That is, for all sites x; y in S each particle at

x waits an exponential time with rate �2p.x; y/ and gives birth to a new particle
located at y. After each birth we consider a Bernoulli random variable independent
of everything else which has a success probability equal to �1=�2. If we have a
success, then a particle is also created at y for the process b

O;�1
t provided, that the

particle at x which gives birth in the process b
O;�2
t also exists in the process b

O;�1
t .

This construction shows that the process with higher birth rates has more particles
on each site of S at any time. In particular this implies that 	.�/ is increasing as a
function of �.

Consider now for a fixed time t the following function

ft .�/ D P.jbO;�
t j � 1/:

We will show that ft .�/ is continuous as a function of �. By constructing the
branching Markov chains with parameters � and � C h we get for h > 0

0 � ft .� C h/ � ft .�/ D P.jbO;�Ch
t j � 1I jbO;�

t j D 0/: (2.1)

Consider N.t/ the total number of particles born up to time t for the process b
O;�Ch
t .

That is, we ignore the deaths and we count the births up to time t . From (2.1) we
get for any positive integer n

0 � ft .� C h/ � ft .�/ � P.N.t/ � nI jbO;�Ch
t j � 1I jbO;�

t j D 0/ C P.N.t/ > n/:

(2.2)
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In order to have jbO;�Ch
t j > jbO;�

t j, at least one of the Bernoulli random variables
involved in the simultaneous construction must have failed. Therefore from (2.2)
we get

0 � ft .� C h/ � ft .�/ � 1 � .
�

� C h
/n C P.N.t/ > n/:

We now make h ! 0 to get

0 � lim sup
h!0

ft .� C h/ � ft .�/ � P.N.t/ > n/: (2.3)

Note that N.t/ is a continuous time branching process. Each particle after an
exponential time with parameter a D � C h is replaced by two particles with
probability f2 D 1. Hence,

E.N.t// D e.�Ch/t :

Observe that

P.N.t/ > n/ � E.N.t//

n

see the problems. Note that, since t is fixed, the r.h.s. goes to 0 as n goes to
infinity. Using the fact that the sequence fN.t/ � ngn�0 is decreasing we have
by Proposition 1.1 in the Appendix and the above inequality

lim
n!1 P.N.t/ > n/ D P.

\

n�1

fN.t/ > ng/ D P.N.t/ D 1/ D 0: (2.4)

Letting n go to infinity in (2.3) shows that � ! ft .�/ is right continuous. The
proof of left continuity is similar and we omit it. This proves that ft is continuous.

Note that fjbO;�
t j � 1g � fjbO;�

s j � 1g if s < t . By a continuous version of
Proposition 1.1 in the Appendix we have

lim
t!1 P.jbO;�

t j � 1/ D P.jbO;�
t j � 1; 8t � 0/ D 	.�/:

Moreover, since ft .�/ D P.jbO;�
t j � 1/ is decreasing as a function of t we have

	.�/ D inf
t>0

ft .�/:

We proved (in the Percolation chapter) that the inf of continuous functions is
upper semicontinuous and that a semicontinuous and increasing function is right
continuous. This proves that 	 is right continuous and completes the proof of
Theorem 2.1.
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Remark. Observe that the proof that 	 is right continuous is fairly general and can
be applied to a wide class of processes. That the limit from the left is zero at �1 is
always true. So the main problem in showing that the phase transition is continuous
is proving that 	.�1/ D 0. This is in general a difficult problem but here we take
advantage of the branching structure of the process and there is no difficulty.

2.2 The Second Phase Transition Is Discontinuous

We say that the second phase transition is discontinuous in the following sense.

Theorem 2.2. Assume that p.x; y/ is translation invariant. If the branching
Markov chain has two distinct phase transitions, i.e. �1 < �2, then the function
� defined by

�.�/ D P.lim sup
t!1

b
O;�
t .O/ � 1/

is not continuous at �2.

Proof of Theorem 2.2. We will prove that if � > �2 then

�.�/ D P.lim sup
t!1

b
O;�
t .O/ � 1/ D P.jbO;�

t j � 1; for all t > 0/ D 	.�/: (2.5)

In words, above �2 the process must survive locally if it survives globally. We now
show that Theorem 2.2 follows directly from (2.5). Make � approach �2 from the
right in (2.5). Since 	 is continuous we have that 	.�/ approaches 	.�2/. But this
last quantity is strictly positive if �1 < �2 (why?). This shows that � has a limit
from the right at �2 which is strictly positive. But the limit from the left at �2 is zero
(why?). So there is a discontinuity at �2.

We now turn to the proof of (2.5). For x; y in S we define B
y
x , the event that

the site x is visited infinitely often by the offspring of a single particle started at the
site y. That is,

By
x D flim sup

t!1
b

y
t .x/ � 1g:

Define

C y D
\

x2S

By
x :

In words, C y is the event that the offspring of a particle initially at y visits all the
sites infinitely often. Under the translation invariance assumptions for S and p.x; y/

we get P.B
y
y / D P.BO

O / D �.�/ > 0 if � > �2. Observe that

jP.By
y / � P.By

x /j � P.By
y \ .By

x /c/ C P.By
x \ .By

y /c/:
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In order for B
y
y \.B

y
x /c to happen it is necessary that y gets occupied at arbitrarily

large times while after a finite time x is empty. But y is occupied at arbitrarily large
times only if there are infinitely many distinct particles that occupy y after any
finite time. Each of these particles has the same positive probability of occupying x

and since distinct particles are independent of each other, x will get occupied with
probability one at arbitrarily large times. Therefore P.B

y
y \ .B

y
x /c/ D 0 and

P.By
y / D P.By

x / D �.�/:

We now consider

P.By
x / � P.C y/ D P.By

x \ .C y/c/ �
X

z2S

P.By
x \ .By

z /c/:

For the same reason as above each term in this last sum is zero so

P.C y/ D P.By
x / D �.�/ (2.6)

for any x; y 2 S . We have for any integer time k and integer n that

P.C O/ � P.C O jfjbO
k j � ng/P.jbO

k j � n/: (2.7)

If the number of particles of bO
k is m we denote by BO

k D fy1; y2; : : : ; ymg an
enumeration of the sites that are occupied by a particle at time k. Note that a site y

will appear in BO
k as many times as we have particles at y. We have

P.C O jfjbO
k j � ng/ D

X

m�n

X

y1;:::;ym

P.C O I BO
k D fy1; : : : ; ymgjfjbO

k j � ng/:

Note that if we have particles at sites y1, y2; : : : ; ym at time k, by the Markov
property, in order to have C O it is necessary and sufficient that one of the C yi

occurs for i D 1; 2; : : : ; m. Thus,

P.C O jfjbO
k j � ng/ D

X

m�n

X

y1;:::;ym

P.

m[

iD1

C yi /P.BO
k D fy1; : : : ; ymgjfjbO

k j � ng/:

By the translation invariance of the model, we have P.C y/ D P.C O/ for every y.
Since offspring generated by different particles are independent we have for every
sequence of sites y1; : : : ; ym

P.[m
iD1C yi / D 1 � .1 � P.C O//m:

Since m � n, we get
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P.C O jfjbO
k j � ng/ � .1 � .1 � P.C O//n/

X

m�n

X

y1;:::;ym

P.BO
k D fy1; : : : ; ymgjfjbO

k j � ng/ D

1 � .1 � P.C O//n:

Using this lower bound in (2.7) gives

P.C O/ � .1 � .1 � P.C O//n/P.jbO
k j � n/: (2.8)

Recall that Zk D jbO
k j is a BGW. For a fixed n � 1, let

Ak D f1 � Zk < ng:

By Proposition 1.2 in the Appendix

P.lim sup
k

Ak/ � lim sup
k

P.Ak/:

The event lim supk Ak is the event that for infinitely many times k, Zk is between 1
and n. This excludes the possibility that Zk goes to zero or to infinity as k goes to
infinity. But we know that a BGW either gets extinct or goes to 1 as time goes to
infinity. So, the event lim supk Ak must have probability zero. Therefore,

lim
k!1 P.Ak/ D 0:

Observe that

P.Ak/ D P.jbO
k j � 1/ � P.jbO

k j � n/;

so

lim
k!1 P.jbO

k j � n/ D lim
k!1 P.jbO

k j � 1/ D 	.�/:

We use this observation and make k go to infinity in (2.8)

P.C O/ � .1 � .1 � P.C O//n/	.�/:

By (2.6) P.C O/ D �.�/ > 0 for � > �2, using this and making n go to infinity in
the preceding inequality yields

�.�/ � 	.�/ for � > �2:

Since the reverse inequality is also true this concludes the proof of (2.5) and of
Theorem 2.2.
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Problems

1. Let X be a positive integer valued random variable with a finite expectation
E.X/.

(a) Show that

P.X � n/ � E.X/

n
:

(b) Show that P.X D 1/ D 0.

2. Assume that � > �1. Show that 	.�/ > 0 where 	 is the probability of global
survival.

3. Show that

lim
�!��

2

�.�/ D 0:

Notes

Branching random walks is one of the simplest spatial stochastic systems. It is
possible to do explicit computations of critical values. As the next chapter illustrates
this is rarely possible for other spatial stochastic processes. Theorem 1.1 was first
proved in the particular case of trees by Madras and Schinazi (1992). The general
case was proved by Schinazi (1993). Theorem 2.2 is due to Madras and Schinazi
(1992). For more results on branching random walks see Cox (1994) and Liggett
(1999).
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Chapter 13
The Contact Process on a Homogeneous Tree

The contact process has the same birth and death rates as the branching random
walk of the preceding chapter. The difference between the two models is that there
is at most one particle per site for the contact process. The one particle per site
condition makes offsprings of different particles dependent (unlike what happens for
branching models). Exact computations become impossible. However, branching
models are used to analyze the contact process.

1 The Two Phase Transitions

Let S be a homogeneous tree in which d branches emanate from each vertex of
S . Thus, S is an infinite connected graph without cycles in which each site has d

neighbors for some integer d � 3.
We consider the contact process on S whose state at time t is denoted by �t . It

evolves according to the following rules.

(i) If there is a particle at site x 2 S , then for each of the d neighbors y of x it
waits a mean 1

�
exponential time and then gives birth to a particle on y.

(ii) A particle waits a mean 1 exponential time and then dies.
(iii) There is at most one particle per site: births on occupied sites are suppressed.

The contact process follows the same rules as a branching Markov chain with the
additional restriction (iii) that there is at most one particle per site for the contact
process. This additional rule breaks the independence property between offspring
of distinct particles that holds for branching Markov chains. Without independence
we will not be able to make exact computations for the contact process. Instead, we
will have to proceed by comparisons to simpler processes.

Let O be a distinguished vertex of the tree that we call the root. Let �x
t be the

contact process with only one particle at time 0 located at site x 2 S . Let �x
t .y/ be

© Springer Science+Business Media New York 2014
R.B. Schinazi, Classical and Spatial Stochastic Processes: With Applications
to Biology, DOI 10.1007/978-1-4939-1869-0__13
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the number of particles at site y and let j�x
t j D P

y2S �x
t .y/ be the total number of

particles. We define the critical values �1 and �2 corresponding to global and local
survival, respectively.

�1 D inff� W P.j�O;�
t j � 1; 8t > 0/ > 0g

�2 D inff� W P.lim sup
t!1

�
O;�
t .O/ D 1/ > 0g:

We include � in the notation only when there may be an ambiguity about which
value we are considering.

Our first result concerns bounds for the critical values.

Theorem 1.1. We have the following bounds for the critical values.

1

d
� �1 � 1

d � 2
;

and

�2 � 1

2
p

d � 1
:

In particular we have two phase transitions for the contact process (i.e. �1 < �2)
on trees if d � 7.

Theorem 1.1 is a partial result. There are actually two phase transitions for any
d � 3. However, the proof is rather involved. Our proof works only for d � 7 but
is elementary.

Proof of Theorem 1.1. To get lower bounds for �1 and �2 we will consider a
branching Markov chain that has more particles than the contact process. Define the
branching Markov chain bO

t where a particle at x gives birth to a particle at y with
rate �dp.x; y/, where p.x; y/ D 1=d if y is one of the d neighbors of x. A particle
dies at rate 1. Since there is no restriction on the number of particles per site for bO

t

we may construct �O
t and bO

t simultaneously in such a way that �O
t .x/ � bO

t .x/ for
each x in S . We denote the two critical values of bt by �1.b/ and �2.b/. Since bt

has more particles than �t we have

�1 � �1.b/ and �2 � �2.b/:

We have computed the critical values for this branching Markov chain. Observe that
the parametrization is slightly different here and d� plays the role here that �. So
we get

d�1.b/ D 1 and d�2.b/ D d

2
p

d � 1
:

This gives the lower bounds for �1 and �2 in Theorem 1.1.
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To get an upper bound for �1, consider a process Q�t with the following rules.
Start the process with a single particle at the root. Pick d � 1 sites among the d

nearest neighbors. The particle at the root gives birth to a new particle at rate � on
each of the d � 1 sites previously picked. Each new particle can give birth on all
neighboring sites but the parent site. Once a site has been occupied by a particle and
this particle dies, the site remains empty forever. The death rate for each particle is
1 and there is at most one particle per site.

Define the distance between sites x and y in the homogeneous tree to be the
length of the shortest path between x and y. Define Z0 D 1 and Zk to be the
number of sites at distance k from O that will ever be occupied by a particle of Q�t .
Observe that each particle in Q�t gives birth (before dying) with probability �

�C1
on

each of the d � 1 sites on which it is allowed to give birth. So the expected size of
the offspring of each particle is

.d � 1/
�

� C 1
:

Since a tree has no cycles two distinct particles of Q�t have independent offspring.
Hence Zk is a BGW and it is supercritical if and only if

.d � 1/
�

� C 1
> 1:

The last inequality is equivalent to � > 1
d�2

. On the other hand, it is clear that if the
process Zk survives if and only if the process Q�t survives. Hence, the first critical
value of Q�t is 1

d�2
. Since the birth rules for Q�t are more restrictive than the one for

�t , we may construct �t and Q�t simultaneously in such a way that Q�t .x/ � �t .x/

for each x in S . This implies that 1
d�2

is an upper bound for �1. This concludes the
proof of Theorem 1.1.

Problems

1. Use the bounds in Theorem 1.1 to show that �1 < �2 if d � 7.

2. Show that the second critical value of the process Q�t (in the proof of
Theorem 1.1) is infinite.

3. What are the critical values of a contact process on a finite graph?
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2 Characterization of the First Phase Transition

While it is possible to improve the bounds in Theorem 1.1 (see the notes and
references at the end of the chapter), the exact computation of the critical values is
hopeless. In order to study the phase transitions we need to characterize the critical
values in a way that is amenable to analysis. This is what we do next. Most results
will not be proved, see the references for the proofs.

We start with the following.

Theorem 2.1. For the contact process on a homogeneous tree with degree d � 3,
there exist constants c.�; d/ and C.d/ such that

ec.�;d/t � E.j�O
t j/ � C.d/ec.�;d/t :

Moreover, c.�; d/ is continuous as a function of �.

Observe that is reminiscent of what happens for a branching process. In that case
the expected number of particles is exactly an exponential function.

It is easy to prove the following.

Theorem 2.2. If � > �1, we have that c.�; d/ > 0.

The following converse of Theorem 2.2 is much harder to prove.

Theorem 2.3. If c.�; d/ > 0, then � � �1.

We can now state the characterization of the first phase transition.

Corollary 2.1. We have that

�1 D supf� W c.�; d/ � 0g:

Moreover, c.�1; d/ D 0.

Hence, �1 is the largest possible value for which we have c.�; d/ D 0.

Proof of Corollary 2.1. From Theorems 2.2 and 2.3 we get that

lim
�!��

1

c.�; d/ � 0 and lim
�!�

C
1

c.�; d/ � 0:

Now using the fact that � ! c.�; d/ is a continuous function we get c.�1; d/ D 0.
From Theorem 2.2 we know that �1 is an upper bound of the set f� W c.�; d/ �

0g. We just saw that �1 is also in this set therefore

�1 D supf� W c.�; d/ � 0g:

This completes the proof of Corollary 2.1.
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An immediate consequence of Corollary 2.1 and Theorem 2.1 is

Corollary 2.2. We have that at � D �1

1 � E.j�O;�1
t j/ � C.d/

where C.d/ is a constant depending on d only.

That is, the expected value of the number of particles of the critical contact
process remains bounded at all times. This is similar to the critical branching process
for which this expected value is a constant equal to one.

Corollary 2.3. The survival probability for the contact process on a homogeneous
tree with d � 3

� ! P.j�O;�
t j � 1; 8t > 0/

is continuous at �1, i.e., the first phase transition is continuous.

It is also known that the first phase transition is continuous for the contact process
on Zd . For that model there is only one phase transition (i.e., �1 D �2). The question
on Zd was open for a long time and the proof is rather intricate (see Bezuidenhout
and Grimmett 1990). In contrast, we are able to prove this result on the tree using
elementary methods.

As for the second phase transition, the same type of argument that we used for
Branching Markov chains works here too. The proof is complicated by the lack of
independence in the contact process. See Madras and Schinazi (1992) for a proof of
the following.

Theorem 2.4. If �1 < �2, then the function

� ! P.lim sup
t!1

�
O;�
t .O/ D 1/

is not continuous at �2.

Problems

1. Show that Theorems 2.2 and 2.3 imply that

lim
�!��

1

c.�; d/ � 0 and lim
�!�

C
1

c.�; d/ � 0:

2. Prove Corollary 2.2.

3. Show that Theorem 2.2 implies that �1 is an upper bound of the set

f� W c.�; d/ � 0g:
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Notes

The contact process is an example of an interacting particle system. These are
spatial stochastic models for which space is discrete and time is continuous. The
analysis of these models requires advanced mathematics. Liggett (1985, 1999) has
provided excellent accounts of the progress in this field.

The contact process (on Zd ) was first introduced by Harris (1974). Pemantle
(1992) started the study of the contact process on trees and proved that there are two
phase transitions for all d � 4. Liggett (1996) and Stacey (1996) have independently
proved that there are two phase transitions for d D 3 as well.

The proofs that are not provided here can be found Madras and Schinazi (1992)
and Morrow et al. (1994).
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Appendix A
A Little More Probability

In this appendix we review a few more advanced probability tools. These are useful
in the analysis of the spatial models.

1 Probability Space

Consider � a countable space. A probability P is a function from the set of subsets
of � to [0,1] with the two following properties.

P.�/ D 1

and if An � � for n � 1, and Ai \ Aj D ; for i 6D j then

P.
[

n�1

An/ D
X

n�1

P.An/:

The subsets of � are called events. We say that the sequence of events An is
increasing if An � AnC1 for n � 1. The sequence An is said to be decreasing if
AnC1 � An for n � 1.

Proposition 1.1. Let (�; P / be a probability space, A, B , and An be events. We
have the following properties:

(i) If B � A, then P.A \ Bc/ D P.A/ � P.B/.
(ii) For any sequence of events An we have P.

S
n�1 An/ � P

n�1 P.An/.
(iii) If An is a sequence of increasing events, then limn!1 P.An/ D P.

S
n�1 An/.

(iv) If An is a sequence of decreasing events, then limn!1 P.An/ D P.
T

n�1 An/.
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Proof of Proposition 1.1. Observe that B and A \ Bc are disjoint and their union is
A. Hence

P.A/ D P.A \ Bc/ C P.B/

and this proves (i).
To prove (iii) assume An is an increasing sequence of events. Define

A D
[

n�1

An and B1 D A1; Bn D An \ Ac
n�1 for n � 2:

The Bn are disjoint and their union is still A (why?) therefore

P.A/ D
X

n�1

P.Bn/ D P.A1/ C lim
n!1

nX

pD2

.P.Ap/ � P.Ap�1//:

So we get

P.A/ D P.A1/ C lim
n!1.P.An/ � P.A1//

and this proves (iii).
We now use (iii) to prove (ii). For any sequence of events An we may define

Cn D
n[

pD1

Ap:

Cn is increasing. We also have that for any two events A and B

P.A [ B/ D P..A \ .A \ B/c/ [ B/ D P.A \ .A \ B/c/ C P.B/:

Since

P.A \ .A \ B/c/ D P.A/ � P.A \ B/

we have

P.A [ B/ D P.A/ C P.B/ � P.A \ B/:

Hence,

P.A [ B/ � P.A/ C P.B/
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and by induction we get for any finite union

P.Cn/ D P.

n[

pD1

Ap/ �
nX

pD1

P.Ap/: (1.1)

Using (iii) we know that P.Cn/ converges to the probability of the union of Cn

which is the same as the union of the An. Making n go to infinity in (1.1) yields

lim
n!1 P.Cn/ D P.

1[

pD1

Ap/ �
1X

pD1

P.Ap/:

This concludes the proof of (ii).
For (iv) it is enough to observe that if An is a decreasing sequence then Ac

n is an
increasing sequence and by (iii)

lim
n!1 P.Ac

n/ D P.
[

n�1

Ac
n/ D P..

\

n�1

An/c/ D 1 � P.
\

n�1

An/

and this concludes the proof of Proposition 1.1.

Let .an/n�1 be a sequence of real numbers. Observe that bn D supp�n ap defines
a decreasing sequence (if the supremum does not exist we take bn D 1). Then
limn!1 bn D infn�1 bn exists (it may be finite or infinite) and we denote

lim sup an D lim
n!1 bn D inf

n�1
sup
p�n

ap:

In a similar way one can define

lim inf an D sup
n�1

inf
p�n

ap:

The next result gives the relation between limits and lim sup and lim inf.

Theorem 1.1. The limit of an exists if and only if lim inf an D lim sup an and in
that case we have

lim
n!1 an D lim inf an D lim sup an:

For a proof and other properties of sequences see an analysis text such as Rudin
(1976).

We will also need the following property: if .an/n�1 and .cn/n�1 are two
sequences of real numbers such that for each n � 1; an � cn, then

lim inf an � lim inf cn:
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By analogy with the real numbers, for any sequence of events An we define the
events

lim sup An D
\

n�1

[

p�n

Ap and lim inf An D
[

n�1

\

p�n

Ap:

Proposition 1.2. We have the following inequalities for any sequence of events An

P.lim inf An/ � lim inf P.An/

P.lim sup An/ � lim sup P.An/:

Proof of Proposition 1.2. Define Bn D \p�nAp and observe that Bn is an increas-
ing sequence of events. Hence by Proposition 1.1

lim
n!1 P.Bn/ D P.

[

n�1

Bn/ D P.lim inf An/:

Since P.An/ � P.Bn/ we get

lim inf P.An/ � lim
n!1 P.Bn/ D P.lim inf An/

and this proves the first inequality in Proposition 1.2. The second inequality is left
to the reader.

Problems

1. Prove that P.;/ D 0 and that P.Ac/ D 1 � P.A/ for any subset A of �.

2. Show that for any events A and B

P.A/ D P.A \ B/ C P.A \ Bc/:

3. Prove that for any events A and B we have

jP.A/ � P.B/j � P.A \ Bc/ C P.Ac \ B/:

4. Check that ! is in lim sup An if and only if ! is in An for infinitely many distinct
n. Check that ! is in lim inf An if and only if ! is in An for all n except possibly for
a finite number of n.

5. Prove the second inequality in Proposition 1.2.
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2 Borel–Cantelli Lemma

Given an event B such that P.B/ > 0 we define the conditional probability

P.AjB/ D P.A \ B/

P.B/
:

We say that the events A and B are independent if P.A\B/ D P.A/P.B/. More
generally we say that the events A1; A2; : : : ; An are independent if for all integers
i1; i2; : : : ; ip in f1; : : : ; ng we have

P.

p\

j D1

Aij / D …
p
j D1P.Aij /:

We now state a very useful property.

Borel-Cantelli Lemma If An is a sequence of events such that

X

n�1

P.An/ < 1

then P.lim sup An/ D 0.
Conversely, if the An are independent events and

X

n�1

P.An/ D 1

then P.lim sup An/ D 1.
Observe that the independence assumption is only needed for the converse.

Proof of the Borel–Cantelli Lemma We first assume that
P

n�1 P.An/ < 1.
Define Bn D S

p�n Ap . Since Bn is a decreasing sequence we have by
Proposition 1.1

lim
n!1 P.Bn/ D P.

\

n�1

Bn/ D P.lim sup An/:

On the other hand

P.Bn/ �
X

p�n

P.Ap/;
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but the last sum is the tail of a convergent series, therefore

lim
n!1 P.Bn/ D P.lim sup An/ � lim

n!1
X

p�n

P.Ap/ D 0:

For the converse we need the two assumptions. The An are independent and the
series is infinite. Using the fact that the Ac

n are independent, for any integers m < n

we have that

P.

n\

pDm

Ac
p/ D …n

pDmP.Ac
p/ D …n

pDm.1 � P.Ap//:

Since 1 � u � e�u we get

P.

n\

pDm

Ac
p/ � e� Pn

pDm P.Ap/: (2.1)

Fix m and define Cn D Tn
pDm Ac

p . The sequence Cn is decreasing and

\

n�m

Cn D
1\

pDm

Ac
p:

We now make n go to infinity in (2.1) to get, by Proposition 1.1,

lim
n!1 P.Cn/ D P.

\

n�m

Cn/ D P.

1\

pDm

Ac
p/ � lim

n!1 e� Pn
pDm P.Ap/ D 0

where we are using that for any m,

lim
n!1

nX

pDm

P.Ap/ D 1:

So we have that

P..

1\

pDm

Ac
p/c/ D P.

1[

pDm

Ap/ D 1 for every m � 1:

Since Dm D S1
pDm Ap is a decreasing sequence of events, we let m go to infinity

to get

P.
\

m�1

1[

pDm

Ap/ D P.lim sup An/ D 1:

This completes the proof of the Borel–Cantelli Lemma.
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2.1 Infinite Products

We use Borel–Cantelli Lemma to prove useful results on infinite products.
Consider a sequence sj in (0,1). Define Pn D …n

j D0.1 � sj /. Pn is a decreasing
sequence (why?) and it is bounded below by 0. Therefore Pn converges. We define
the following infinite product as the limit of Pn.

P D …1
j D0.1 � sj / D lim

n!1 Pn:

Note that for all n � 0 we have 0 < Pn < 1 and so 0 � P � 1. We would like to
know when P D 0. We will show that

P D …1
j D0.1 � sj / > 0 if and only if

1X

j D0

sj < 1:

We now introduce some probability in order to prove the claim. Consider a
sequence of independent random variables .Xn/n�0 such that P.Xn D 0/ D 1 � sn

and P.Xn D 1/ D sn. Let

An D fXn D 0g and Bn D
n\

j D0

Aj :

Note that

Pn D …n
j D0.1 � sj / D P.Bn/:

Moreover Bn is a decreasing sequence of events and so by letting n go to infinity in
the preceding equality we get by Proposition 1.1

P D …1
j D0.1 � sj / D P.

1\

j D0

Bj /:

Note that

f
1\

j D0

Bj g D f
1\

j D0

Aj g:

Hence, P is the probability that all Xn are 0.
Assume first that the series

P1
j D0 sj diverges. Thus,

X

n�0

P.Ac
n/ D 1
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and since the events An are independent we may conclude (by Borel–Cantelli) that

P.lim sup Ac
n/ D 1:

That is, with probability one there are infinitely many Xn D 1. So P (the probability
that all Xn D 0) must be 0. This proves half of the claim.

We now assume that the series
P1

j D0 sj converges. By definition of convergence,
we have that for k large enough

1X

j D0

sj �
k�1X

j D0

sj D
X

j �k

sj < 1:

Fix k so that the inequality above holds. Now consider the inequality

P.
[

j �k

Ac
j / �

X

j �k

P.Ac
j / D

X

j �k

sj < 1:

In other words, this shows that the probability of having at least one Xj D 1 for
j � k is strictly less than 1. Therefore, we have

1 � P.
[

j �k

Ac
j / D P.

\

j �k

Aj / > 0:

We now write the infinite product as a finite product:

P D P.\j �0Aj / D P.A0/P.A1/ : : : P.Ak�1/P.\j �kAj /:

Since each factor in the finite product on the right hand-side is strictly positive, P is
also strictly positive and we are done.

Problems

1. Prove that if A and B are independent so are A and Bc , and Ac and Bc .

2. A coin is tossed until it lands on heads. The probability that the coin lands on
heads is p. Let X be the number of tosses to get the first heads.

(a) Show that

P.X D k/ D .1 � p/k�1p for k D 1; 2; : : : :

(b) Show that for k � 1
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P.X > k/ D .1 � p/k:

(c) Consider now a sequence Xn, n � 1, of independent identically distributed
random variables, each with the distribution above. Show that

.1 � p/nac � P.Xn > a ln n/ � nac;

where c D ln.1 � p/ and a > 0.
(d) Show that if ac < �1 then with probability one there are only finitely many n

for which Xn > a ln n.
(e) Show that if ac � �1 there are infinitely many n such that Xn > a ln n.

Notes

Feller (1968) is a great reference for probability theory on countable spaces. At a
more advanced level (using measure theory) there are the books of Durrett (2010)
and Port (1994).

References

Durrett, R.: Probability: Theory and Examples, 4th edn. Cambridge University Press, Cambridge
(2010)

Feller, W.: An Introduction to Probability Theory and its Applications, vol. I, 3rd edn. Wiley, New
York (1968)

Port, S.C.: Theoretical Probability for Applications. Wiley, New York (1994)
Rudin, W.: Principles of Mathematical Analysis, 3rd edn. McGraw-Hill, New York (1976)



Index

A
Absorbing state, 18, 90, 101
Aperiodic state, 106

B
Backward Kolmogorov differential equation,

177
Bacterial persistence, 169–173
Bienaymé–Galton–Watson (BGW)

process, 17
Binomial distribution, 5
Birth and death chain

continuous time, 175–195
discrete time, 92

Borel–Cantelli lemma, 261–265
Branching process

continuous time, 151–173
discrete time, 17–45

Branching random walk, 231–249

C
Cancer risk, 32–34
Cellular automaton, 219–229
Conditional probability, 8
Contact process, 251–256
Coupling technique, 96–98, 155, 198

D
Drug resistance, 29–32

E
Ehrenfest chain, 122–124
Exponential distribution, 131–134

F
Forward Kolmogorov differential equations,

178

G
Generating function, 10–15
Geometric distribution, 6

I
Immune response, 155–162
Independence, 4–7
Independent increments, 135
Infinite product, 263–265
Influenza pandemic, 145–148
Irreducible, 84

K
Kolmogorov differential equations, 175–185

L
Limiting probabilities

continuous time, 186
discrete time, 107

© Springer Science+Business Media New York 2014
R.B. Schinazi, Classical and Spatial Stochastic Processes: With Applications
to Biology, DOI 10.1007/978-1-4939-1869-0

267



268 Index

M
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Random walk
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Reflection principle, 50
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