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General Preface

The nine volumes of the series Basic Course: Theoretical Physics are thought to be
textbook material for the study of university-level physics. They are aimed to impart,
in a compact form, the most important skills of theoretical physics which can be
used as basis for handling more sophisticated topics and problems in the advanced
study of physics as well as in the subsequent physics research. The conceptual
design of the presentation is organized in such a way that
Classical Mechanics (volume 1)
Analytical Mechanics (volume 2)
Electrodynamics (volume 3)
Special Theory of Relativity (volume 4)
Thermodynamics (volume 5)

are considered as the theory part of an integrated course of experimental and
theoretical physics as is being offered at many universities starting from the first
semester. Therefore, the presentation is consciously chosen to be very elaborate and
self-contained, sometimes surely at the cost of certain elegance, so that the course
is suitable even for self-study, at first without any need of secondary literature. At
any stage, no material is used which has not been dealt with earlier in the text. This
holds in particular for the mathematical tools, which have been comprehensively
developed starting from the school level, of course more or less in the form of
recipes, such that right from the beginning of the study, one can solve problems in
theoretical physics. The mathematical insertions are always then plugged in when
they become indispensable to proceed further in the program of theoretical physics.
It goes without saying that in such a context, not all the mathematical statements
can be proved and derived with absolute rigor. Instead, sometimes a reference must
be made to an appropriate course in mathematics or to an advanced textbook in
mathematics. Nevertheless, I have tried for a reasonably balanced representation
so that the mathematical tools are not only applicable but also appear at least
‘plausible’.
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The mathematical interludes are of course necessary only in the first volumes
of this series, which incorporate more or less the material of a bachelor program.
In the second part of the series which comprises the modern aspects of Theoretical
Physics,

Quantum Mechanics: Basics (volume 6)
Quantum Mechanics: Methods and Applications (volume 7)
Statistical Physics (volume 8)

Many-Body Theory (volume 9),

mathematical insertions are no longer necessary. This is partly because, by the
time one comes to this stage, the obligatory mathematics courses one has to take
in order to study physics would have provided the required tools. The fact that
training in theory has already started in the first semester itself permits inclusion
of parts of quantum mechanics and statistical physics in the bachelor program itself.
It is clear that the content of the last three volumes cannot be part of an integrated
course but rather the subject matter of pure theory lectures. This holds in particular
for Many-Body Theory which is offered, sometimes under different names as, e.g.,
Advanced Quantum Mechanics, in the eighth or so semester of study. In this part new
methods and concepts beyond basic studies are introduced and discussed, which are
developed in particular for correlated many particle systems which in the meantime
have become indispensable for a student pursuing master’s or a higher degree and
for being able to read current research literature.

In all the volumes of the series Basic Course: Theoretical Physics numerous
exercises are included to deepen the understanding and to help correctly apply the
abstractly acquired knowledge. It is obligatory for a student to attempt on his own
to adapt and apply the abstract concepts of theoretical physics to solve realistic
problems. Detailed solutions to the exercises are given at the end of each volume.
The idea is to help a student to overcome any difficulty at a particular step of the
solution or to check one’s own effort. Importantly these solutions should not seduce
the student to follow the easy way out as a substitute for his own effort. At the end
of each bigger chapter I have added self-examination questions which shall serve as
a self-test and may be useful while preparing for examinations.

I should not forget to thank all the people who have contributed one way or other
to the success of the book series. The single volumes arose mainly from lectures
that I gave at the universities of Muenster, Wuerzburg, Osnabrueck, and Berlin
(Germany), Valladolid (Spain), and Warangal (India). The interest and constructive
criticism of the students provided me the decisive motivation for preparing the rather
extensive manuscripts. After the publication of the German version I received a lot
of suggestions from numerous colleagues for improvement and this helped to further
develop and enhance the concept and the performance of the series. In particular
I appreciate very much the support by Prof. Dr. A. Ramakanth, a long-standing
scientific partner and friend, who helped me in many respects, e.g., what concerns
the checking of the translation of the German text into the present English version.
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Special thanks are due to the Springer company, in particular to Dr. Th. Schneider
and his team. I remember many useful motivations and stimulations. I have the
feeling that my books are well taken care of.

Berlin, Germany Wolfgang Nolting
December 2017



Preface to Volume §

In the prefaces of the preceding volumes I have already set out the goal of the basic
course in Theoretical Physics. This goal, explained and justified in the General
Preface, remains of course unchanged for the present eighth volume of the series
on Statistical Physics also.

The Statistical Physics represents in almost all courses of study on physics
the closure of the basic education in Theoretical Physics and is offered, as a
rule, in the sixth semester, at least when the training in Theoretical Physics starts
already in the first semester. It belongs, besides Quantum Mechanics (Vols. 6
and 7), to the modern disciplines of Theoretical Physics, whose understanding is
mandatory either in elementary form for the bachelor program or in an advanced
version for the master program. In contrast, Classical and Analytical Mechanics
(Vols. 1 and 2), Electrodynamics (Vol. 3), Special Theory of Relativity (Vol. 4), and
Thermodynamics (Vol. 5) are ascribed to the classical disciplines. Normally they
are parts of the bachelor program in the course of study on physics.

The underlying volume on Statistical Physics is subdivided into four larger
chapters. In the first chapter, the most important concepts and methods for classical
systems are explained and exercised. It is demonstrated how the large number
of degrees of freedom of macroscopic systems can lead to completely novel
phenomena. As an example it may be mentioned here the irreversible transition of
a thermodynamic system into equilibrium, which, although actually all microscopic
equations of motion are time-reversal invariant, has to, as everyday observation,
be accepted and understood. The Method of Statistical Ensembles (microcanonical,
canonical, grandcanonical) turns out to be a successful approach for the description
of macroscopic physical systems. The proof of the equivalence of these three
ensembles is an important subject of the first chapter.

The second chapter deals with Quantum Statistics. A double indeterminacy is
characteristic of it, which requires two averaging processes of completely different
nature. Besides the indeterminacy due to the large number of degrees of freedom,
which is of course present also for classical systems, there appears the principally
unavoidable quantum-mechanical uncertainty (measurement process!). This fact
necessitates the development of genuine quantum-statistical concepts.

ix
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A first important application of the general theory concerns the Ideal Quantum
Gases in Chap. 3, for which the quantum-mechanical Principle of Indistinguishabil-
ity of Identical Particles plays an extraordinary role. Systems of identical Fermions
and systems of identical Bosons underlie different physical principles, which lead
to physical behaviors strongly deviating from one another. As a further important
application of the Statistical Physics I have chosen the highly topical branch of the
Phase Transitions and Critical Phenomena in Chap. 4.

This volume on Statistical Physics arose from lectures I gave at the German
universities in Wiirzburg, Miinster, and Berlin. The animating interest of the students
in my lecture notes has induced me to prepare the text with special care. The present
one as well as the other volumes are thought to be the textbook material for the study
of basic physics, primarily intended for the students rather than for the teachers.

I am thankful to the Springer company, especially to Dr. Th. Schneider, for
accepting and supporting the concept of my proposal. The collaboration was always
delightful and very professional. A decisive contribution to the book was provided
by Prof. Dr. A. Ramakanth from the Kakatiya University of Warangal (India), a
long-standing scientific partner and friend, who helped me in many respects. Many
thanks for it!

Berlin, Germany Wolfgang Nolting
December 2017
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Chapter 1 )
Classical Statistical Physics s

1.1 Preparations

1.1.1 Formulation of the Problem

The Thermodynamics, discussed in Vol. 5 of this basic course in Theoretical
Physics, is a phenomenological theory, which, being based on a few fundamental
postulates (laws of thermodynamics), describes macroscopic systems in equilibrium
with the help of a few variables as, for instance, pressure, volume, temperature,
particle density, ... . However, Thermodynamics is not at all a closed, complete
theory. So it finds, by reason of empirical findings, that macroscopic systems strive
to go from the non-equilibrium into the equilibrium. Thermodynamics, though, is
not able to reenact the irreversible setting of the equilibrium. The facts of experience,
gathered in the laws of thermodynamics, build the basis of Thermodynamics,
but are not explained by it. Fundamental terms such as femperature and heat
count, in a certain sense, to the elementary equipment, but their existence must be
postulated (zeroth law of thermodynamics) or must be ‘justified’ by an intuitive self-
understanding. The actual justification of the Thermodynamics is delegated to
Statistical Physics .

The macroscopic systems, to which Thermodynamics is addressed, consist of
many individual entities (atoms, molecules, clusters,...), the behavior of which is
fixed by microscopic, classical or quantum-mechanical equations of motion. It is
therefore thinkable, at least in principle, to derive the laws and rules of Thermody-
namics from microscopic data, and exactly that is the concern of Statistical Physics.
Because of the unimaginably great number of particles (typically 10?* in a few
cubic centimeters of a crystal), however, an exact solution is almost always out of
reach. Even if a super-computor of sufficient capacity were available, from where
should one take the information about the huge set of initial conditions necessary
for the solution of the equations of motion? Who should be able to evaluate the
horseload of single data with an acceptable expenditure of time? Since, particularly

© Springer International Publishing AG 2018 1
W. Nolting, Theoretical Physics 8, https://doi.org/10.1007/978-3-319-73827-7_1


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-73827-7_1&domain=pdf
https://doi.org/10.1007/978-3-319-73827-7_1

2 1 Classical Statistical Physics

the available initial information, is thus in any case incomplete, the attempt of a
precise microscopic description must be given up from the very beginning.
postulate of the equal ‘a-priori’-probabilities ,

which implies that the system can be in any of these thinkable states with
equal probability. This hypothesis is not provable. It takes its justification only
in retrospect (‘a posteriori’) from the unambiguous comparison of the statistical
results with the empirical findings. On the other hand, it is surely indeed the only
plausible assumption, any other assumption would be tainted with the ‘aura of
arbitrariness’.

Let us consider once more the above conclusion from another point of view,
namely, that Statistical Physics, and therefore also Thermodynamics, can be reason-
able only for asymptotically large systems. Let us think about the term equilibrium,
which is so important for Thermodynamics, and again about the example of the
isolated system. When the system is, according to macroscopic criteria, in its
equilibrium, i.e., its macroscopic observables do not change with the time, then
this does not at all mean that it is also microscopically valid. To the best of
our knowledge, in the micro-world it can not be spoken of temporal constancy,
if one has in mind, e.g., the rapid motion of gas molecules. But how does the
state of equilibrium now really manifest itself, and in particular what concerns
the irreversible evolution of the system into this state? It seems that we reached
here a decisive question of Statistical Physics. The theory will have to explain,
how the empirically uniquely manifested irreversibility of macroscopic systems is
to be understood, although all microscopic equations of motion are time-reversal
invariant and therewith reversible. We can solve the dilemma, for the present,
only by the supposition that the macroscopic description of the phenomenological
Thermodynamics and the exact microscopic analysis must distinctly be bordered to
each other. In the following chapters we will indeed get to know that in the case
of very large systems (N — o00) certain observables, which we then will denote
as macroscopic, obey other laws, by which irreversible tendency into equilibrium
is admitted and explainable, in contrast to microscopic observables, by which
equilibrium can not be defined. Although the finite system and the asymptotic
system (N — oo, V — oo, N/V — const) are microscopically subject to
exactly the same laws of Classical Mechanics or Quantum Mechanics, only the
huge number of degrees of freedom of the asymptotic system thus leads to the
special behavioral codes, which dominate the Thermodynamics. The microscopic
justification of the, in this sense, asymptotic correctness of the Thermodynamics
is executed in the framework of Statistical Physics. That involves, in particular, a
microscopic-mechanical justificatin of the basic quantities temperature and entropy,
by which the basic relation of Thermodynamics can be formulated as a provable
statement. But that also means, on the other hand, that Thermodynamics is not
applicable to systems of only a few particles.

One distinguishes Classical Statistical Physics and Quantum Statistics,
depending on whether the microscopic equations of motion are taken from Classical
Mechanics or from Quantum Mechanics. At first, it is an interesting fact that the
general rules and connections of the phenomenological Thermodynamics, which
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we are going to justify in the framework of Statistical Physics, are independent of
whether we derive them classically or quantum-mechanically. That is the reason
why we could discuss Thermodynamics already in Vol. 5 of this basic course
in Theoretical Physics, i.e., before the Quantum Mechanics, without putting up
with any restrictions. This statement of course refers only to the general laws and
equations. It is clear that, for instance, special forms of the equations of state,
and therewith also explicit dependencies of the thermodynamic potentials on their
natural variables can very well be different, depending on whether they are seen in
the framework of Classical Mechanics or in the framework of Quantum Mechanics.
In the following first chapter we will at first deal with Classical Statistics, while
from Chap. 2 on the focus is exclusively on the super-ordinate Quantum Statistics.

One has to divide Statistical Phsics into a theory of equilibrium states and a
theory of non-equilibrium processes. In the first case one is focused on quantities,
which are not time-dependent (probabilities, distributions, average values, ...!), in
the second case one is focused on those with time-dependencies. The more compre-
hensive, but also rather involved Non-Equilibrium Statistical Physics exceeds the
framework of this basic course in Theoretical Physics, and is regarded, if at all, only
in the form of side-remarks.

1.1.2 Simple Model System

By inspecting a very simple abstract model system we want to prepare ourselves for
the above mentioned problems, and in particular we try to get a certain visualization
how the large number of degrees of freedom (large particle number) of macroscopic
systems can lead to extraordinary effects. We will use this model system every now
and then for later statements as a ‘view help’, for instance, when we discuss in
Sect. 1.3.2 the fundamental concepts of entropy and temperature in the framework
of Statistical Physics.

N particles of a classical ideal gas are enclosed in an isolated container of the
volume V. The container consists of two chambers (I) and (IT) with the volumes V
and V>, respectively (Fig. 1.1). We assume that the particles of the gas can arbitrarily
change the chambers, where, however, a certain particle property A has in (I) the
value a; and in (IT) the value a,. That one can imagine to be realized by any electric
or magnetic field. Details of the realizations, though, do not play any role for the

N=N+N, (D
v

Fig. 1.1 Classical ideal gas (particle number N) in an isolated container (volume V) with a wall,
permeable for particles
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following. In addition, it is for our purposes here sufficient to know that a given
particle is either in chamber (I) or in chamber (II). Its actual position within the
respective chamber, however, is unimportant. Since for each of the N particles it
holds that it must be in (I) or in (II), one finds

2N different states

of the total system. On the other hand, the observable A of the total system can take
(N + 1) values, namely:

Nay, (N—1a;+ay, (N—2)a; +2ay,..., ai + (N—1)ay, Na, .
The measured value
Niay + Nra = Niay + (N —Npaz ,

except for Ny = 0 and N, = N, will be highly degenerate, because it is only decisive
that N, particles are in chamber (I) and N, particles in chamber (II), while it does
not matter which individual particle is in which chamber. There are

N!

V) NiIN2! NN — N)!

(1.1)

different possibilities to bring, out of N particles, N; into (I) and N, = N — N, into
(IT). The degree of degeneracy of the above measured value is correspondingly high.
We check:

N

N
N' _ N Ny 1N—N; _ N __ AN
ZNl!(N—Nl)!_Z<N1)1 1 =1+1V =2V,

N1=0 N1=0

We see that indeed all states are encompassed. We denote the probability that a given
particle is in V; or V, by p; and p,, respectively. These probabilities are of course
for all particles the same and easily be given:

Vi Vs
= ; = =1—-p. 1.2
n=y 2=y P (1.2)
When we now pick out N; particles and ask for the probability that these given
particles are all in V|, and the other N, = N — N; all in V5, then we find
Py
If one is only interested in the probability wy (N;) that anyhow N, and N, particles
are in V| and V>, respectively, then one has to simply multiply this expression by



1.1 Preparations 5

the number of possibilities of realization (1.1):

|
_ * N1 N—N1
wy(Ny) = Ny LN = W) Py P . (1.3)

We check the normalization:
N NN
Do) =) (N )pllVll’Izv_Nl =P +p)=1"=1.
N1=0 N1=0 1

Since the binomial series is used here, one calls (1.3) a binomial distribution.

We get the average value (N;) of the particle number in V; in such a way that
each number N is multiplied by its probability wy (), and then it is added up over
all possible numbers:

N
(M) =) Niwy(Ny) . (1.4)
N1=0

In the same manner one calculates the average value of the square of the particle
number,

(NT) = > Niwy(N))

N1=0

and therewith the mean square deviation:

ANy = (V) = (V2) = V@ — (V))?) (1.5)
For the binomial distribution (1.3) one finds:
(M) =Npi: ANy = {Npi (1=p)). (1.6)
The explicit derivation of these expressions is offered as Exercise 1.1.1.
The maximum of the distribution wy(N;) defines the most probable particle

number N;. For its calculation it is more comfortable to inspect the logarithm of
wy, which of course becomes maximal at the same position:

! .
lan(Nl)\M:jv\l = maximum .

Here we can exploit the extremely useful Stirling formula,

1
N! = V22NNV exp(—N+ oy T ) : (1.7)
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the derivation of which is offered in many textbooks on advanced mathematics. For
very large N (1.7) permits the simple estimation

InN! ~ N(InN — 1) (1.8)

(Exercise 1.1.2), which is acceptable, though, only for the logarithm, for which
on can confidently neglect terms of the order of magnitude In N compared to N.
(Example: N = 10" = InN = 10-1n10 = 10-1.370 = 13.70 < N). It thus
holds to a good approximation for N, Ny, N, > 1:

Inwy(Ny) &~

~ANIWN—-N—-NInN, +N —N,InN, + N> + Ny Inp; + N> Inp;

= NInN —N;InN; — (N=N;) In(N—N,) + Ny Inp; + (N—=N;) Inp, .

We consider N, approximately, and for the moment, as a continuous variable and
exploit the extreme value condition:

danN ! ~ ~
=0=—InN;—1+In(N—Ny)+1+1Inp; —1Inp;
dN, 7\,\1
N
< In 1,\ élnpl .
N—N1 P2

For the binomial distribution (1.3), the most probable value of the particle number
is thus identical to the average one:

~

Ny = Np; = (N1) . (1.9)
Because of
d’ 1 1
2IIIWN =—_. - ~ <0
dNj N Ny N-N,

wy becomes indeed maximal at the position N; = N 1.

We now come across the property of the model system, which is most decisive
for our considerations, when we inspect a bit more carefully the behavior of the
binomial distribution in the neighborhood of the maximum. It will turn out that
wy (Ny) has an extremely sharp peak there.

Let x be in the following the deviation of the particle number N; from its most
probable value Ny

Ny=N; +x: Ny=N-N;—x: 1 < x<N;.
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This we insert into (1.3) and discuss then succesively the single terms:
Nit=Ni! (N1 +1)... (N; + ),
~ ~ ~ ~ -1
(N=Ny)! = (N=N;)! [(N—Nl)(N—Nl—l) . (N—Nl—x+1)] .

It follows therewith:

InN!=InNy!+ ) In(Ny +) .
y=1

In(N —N)!=In(N =N)! =) "In(N—Ny—y+1).
y=1

In the last term we could confidently neglect the 1 compared to N — Ni:

1n[N1! (N—Nl)!] = ln[ﬁll (N—I/\\fl)!] + Zln Nl,j_y

o ON-Ni-y

One can apply for the logarithm of the last summand, because of In(1 £ z) ~ +£z
for z < 1, the following estimation:

Y = 14+ 2
N N
In 1A+y = In R A}],‘
N—Nl—y N—N1 I_N—7v\1
(L9) . pi 1 1 D1 y
~In" 4y (A + ~ ) =ln "+ :
P2 N, N-N,; p>  Npi(1—p1)

If we insert this into the above sum, it remains:

~ ~ p1 1/2x(x+1)
InfN'(N=N)!'| ~In|[N{!(N=N)!|+xIn" " + .
[Vt 0 [Vit( 0 P2 Npi(1—p1)

According to (1.3) it holds then for N, close to N 1

~ ~ 1
Inwy (N7) %1nN!—{ln<N1!(N—N1)!)+x1n1’1 4 x(x+1)
P2 2Npi(1 —py)

+(N1 +x)Inp; + (N =N, —x) Inp,
x(x+1)

=1 Ni) — .
mwn (V1) 2Np1(1 —p1)
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We still neglect the 1 compared to x and recognize then that for the here assumed
large particle numbers the binomial distribution (1.3) represents, at least near its
maximum, a Gaussian bell:

(1.10)

~\2
- (N1 —N))
wy(N1) &~ wy (N exp(— .

(V) 2Np1 (1 —p1)
The maximum value wy (]/\7 1) directly arises from an insertion of N 1 = Np; into the
definition (1.3). Sometimes, however, it is more convenient to fix the coefficient of
the exponential function in (1.10) by the normalization condition

ZWN(NI) =1.
Ny

If we replace the sum by an integral, where the limits of integration for x = N, -N;
can be put without substantial mistake to oo, then it results with the standard
integral,

+o00

/ dxe " = \/n ,
o

—0o0

an alternative expression for wy(Ny),

wy(Ny) = (1.11)

(M=)’ ) |

exp| —
V2rNpy (1 = py) ( 2Np1 (1 —p1)

which approximates the exact formula 1.3 not so well as (1.10), but is instead
suitably normalized. Both approximations, (1.10) and (1.11), are called Gaussian
distributions and exhibit equally well what is here essential for us.

The Gaussian distribution is symmetrically concentrated around the maximum
Ni = N,. One defines appropriately as width of the distribution the distance
between N 1 and the Nj-values, at which wy has dropped to the e-th part of the
maximum value:

|ANi|_; = V2Npi (1 = p1) .

Absolutely seen, that is for the macroscopic systems, we are interested in, a very
large number. However, related to the full interval of values 0 < N; < N,

ANy _ \/2p1 (1=p) (1.12)

N N

it is negligibly small.
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Example
1 1 1
=_: N=_-10% ANy|_; = 10",
=, 2 = ANl =,
IAN1|—l:10—ll
N .

|AN1|_;/N is a measure for the relative width of the Gaussian distribution. The
distribution possesses a very sharp peak at the most probable value N,. That is
now the decisive point for the fact that Statstical Physics really works. For the
macroscopic measurement of the observable A, the actual particle numbers in the
chambers (I) and (I) are not decisive, but rather, with which relative accuracy
the macroscopic measuring value can be predicted. The relative deviation of the
measuring value from

]/\71a1 + (N—]Vl)az

is given by (1.12) and therewith almost zero for the asymptotically large system.
Hence, although the microscopic uncertainty increases with increasing particle
number, the relative accuracy of the measurement becomes better and better. In this
sense, for macroscopic systems in the framework of Statistical Physics, it will be
allowed to speak of definite values of the observables. They are fixed ‘practically
fluctuation-free’.

Let us finally consider once more the above numerical example. What is the
probability that a measuring value is observed, which deviates from the most
probable value only by

Ni =N, = 10710,
N

i.e., extremely slightly? According to (1.10) we find with

WN(NI) _ 6‘_1()0
WN(Nl)

a probability which has already dropped off to its e!°’-th part. The total probability
to obtain with a measurement a value outside the interval
N — N,

—1071% < <+10710,

amounts to

+100

1 2
1— et < 1074000
J / ‘

—100
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and is therewith unimaginably small. —Let us assume that a particle of the gas
changes the chamber 10'°-times per second. This means 10'°- 102> = 1032 changes
of the micro-state per second. According to that we would have to wait 10732 -
e'%s ~ 10732.10% s = 10'% s, in order to find a relative deviation of the measuring
value of the order of magnitude 107'°, This corresponds to about the 100 to 1000-
fold of an average human age. We can definitely presume that we will never observe
such an occurrence:

It goes without saying that the presented estimations can be valid only for
asymptotically large particle systems. For small numbers the deviations will become
pretty substantial.

1.1.3 Exercises

Exercise 1.1.1
Consider the binomial distribution (1.3)!

1. Calculate the average values

(N1) = D Niwy(V),

N1=0

(NT) = )~ Njwn()

N1=0

and therewith the mean square deviation:
ANy = (V) — ()2

What follows for the relative deviation AN;/{N;) in the limit N — 00?

2. Assume p; = p; = 1/2. Calculate wy (N;) explicitly for N = 4.

3. Assume p; = pp = 1/2and N = 10%. How large are (N;), AN;, AN;/{(N;)?
Give the probability for the situation where all the particles are found in the
volume V1 (N1 = N, Nz = 0)

Exercise 1.1.2
The Stirling formula (1.7) turns out to be very useful for the Statistical Physics. Find
simple reasons for the estimation

Inm! ~ mlnm—m meN, m>1).
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Exercise 1.1.3
Show that for p; < 1, N < N the binomial distribution (1.3) becomes a Poisson
distribution:

)M

wy(Ny) = Wi

Ny exp(—(N1))

Exercise 1.1.4

Let abook of 500 pages contain 500 misprints, which are distributed completely ran-
domly over the book. Calculate by means of the Poisson distribution (Exercise 1.1.3)
the probability that a given page contains

1. no mistake,
2. at least three mistakes.

Exercise 1.1.5

1. N uniform but numbered bullets can arbitrarily be distributed over N boxes, from
which k are red and N — k are blue. Each box can receive exactly one bullet. For
a random distribution of the bullets over the boxes, how large is the probability
that k pre-given bullets occupy just the k red boxes?

2. We again pick out k bullets and search for the probability that in the case of an
arbitrary distribution X" < k bullets are in the red boxes and the other k — k” ones
in the blue boxes.

3. Use the results of part 2., in order to determine the probability to correctly
forecast in a lottery (6 from 49) six(five, four, three) numbers.

Exercise 1.1.6

Let a system consist of N = 4 particles. The advance information is so that for
each particle two states a and b are realizable. Let n, and n; be the numbers of the
particles in the states a and b.

1. List the possible distributions (n,, ).

2. Give explicitly all the thinkable states of the system, which belong to the
individual distributions (n,, np).

3. Determine the probabilities of the distributions (n,, np).

1.2 Micro-Canonical Ensemble

1.2.1 State, Phase Space, Time Average

The system, which we are interested in, and for which we want to assume for the
following considerations that it is isolated, may possess s degrees of freedom. For
its description we therefore need an equally large number of generalized coordinates
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(see section 1.1, Vol. 2),

q:(qlqus---sQJ)v

with the corresponding generalized momenta:

p=(pi.p2....ps) -

The generalized coordinates and the generalized momenta span, in the form of
Cartesian axes, the so-called phase space (see subsection 2.4.1, Vol. 2). This in the
Statistical Physics sometimes is also called the I'-space. As independent variables
of equal footing, momenta and coordinates can be combined to a phase and a phase
vector, respectively:

T = (71’1,71’2,...,71’25) = (ql,q%...,qy,pl,...,ps).

Each micro-state then corresponds to a definite phase point & of the phase space. In
the framework of Classical Mechanics, the state of the system is completely defined
by the phase w. As phase curve or phase trajectory one denotes the set of all phase
points # = (q, p), which the system passes through in course of time (Fig. 1.2).
With given initial conditions

(1 = 0) = (q(0), p(0))

these phase points m(#) are uniquely calculable by the means of the Hamilton’s
equations of motion ((2.11), (2.12), Vol. 2),

. oH . oH )
pi=— ; qi = ) 121,...,S, (113)
aq; op;

provided the Hamilton function,
H=H(q....q5 P1.---.Ps)
is known. For an isolated, conservative system, H can not be explicitly time-

dependent. When there are in addition holonomic-scleronomic constraints ((1.3),

Fig. 1.2 Phase trajectory in P
the two-dimensional phase
space
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a b

p
1 1
I
e

P
\_\/ q =40 +qo1 41

Fig. 1.3 (a) Phase trajectory of the linear harmonic oscillator, (b) phase trajectory for the particle
motion in a potential well with ideally reflecting walls

Vol. 2), then H is identical to the total energy of the system:
H=H(q,p) =E. (1.14)

Hamilton’s equations of motion (1.13) are differential equations of the first order,
and hence have unique solutions. The trajectory therefore never intersects itself and
represents a closed curve. Furthermore, it is bound to the (25 — 1)-dimensional
hyper-surface of the phase space (energy-surface), defined by (1.14). As is known
(subsection 2.4.1, Vol. 2), the trajectory of the linear harmonic oscillator represents
an ellipse in its two-dimensional phase space, with semi-axes determined by the
energy E (Fig.1.3). Since the state of the system is uniquely determined by
x (1), all quantities of Classical Mechanics, which are measurable on the system
(observables), can of course also be interpreted as phase-space functions:

F=F(qp.t)=F(r.1) . (1.15)

These functions obey the equation of motion ((2.105), Vol. 2):

dF oF
={F,.H . 1.16
g = EHPE (1.16)
{...,...} means here the Poisson bracket ((2.104), Vol. 2):
.\ (0F 0H OF 0H
{F,H} = ( - ) . (1.17)
2 dg; dp;  dpj 9q;

Jj=1

The bracket possesses several remarkable properties, for instance the one that
its value does not depend on the special choice of the canonically conjugate
coordinates and momenta. (Q,P) are also canonically conjugate like (q,p), if
for them, after insertion of ¢ = q(Q,P) and p = p(Q,P) into the Hamilton
function H(q, p), equations of motion of the form (1.13) are valid. Further important
properties of the Poisson bracket have been discussed in section 2.4 of Vol. 2.

The rigorous solution of the equation of motion (1.16) is out of question because
of the reasons discussed in Sect. 1.1.1 for the macroscopic systems of Statistical
Mechanics. In an isolated system, the observable F will not ‘explicitly’ depend
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on time, but the system will, in the course of time, change its position within the
phase space (r = m(7)). The actual values of F will therewith of course also
change with time. It is, as mentioned, impossible to determine this time-dependence
in a detailed manner, but perhaps also it is neither imperatively necessary, if one
takes into consideration the fact that each experiment indeed lasts a finite time.
The experimental measuring value thus is already an average value. Quantities,
which are by no means (!) measurable, are, strictly speaking, also for the theory
not interesting. From the very beginning thus, only the determination of the time-
average appears to be of importance:

fo

1
Flo = . /F(q,p)dt. (1.18)

0

For finite fy this will depend, though, on the initial conditions. In this sense, F ig
not determinable, either, because the complete pre-information about the considered
system is lacking. Therefore we (have to) postulate that at least the limiting value

F = lim F" (1.19)

h—> 00

does exist and is independent of the initial conditions. Later we will realize that
the validity of this postulate is fundamental for Statistical Physics. The statement of
the postulate appears indeed quite plausible, but is nevertheless not at all a matter
of course. A strict mathematical proof does not exist up to now. It is just a special
formulation of the quasi-ergodic hypothesis (P. and T. Ehrenfest, 1911):
The phase trajectory, bound in the phase space to the
H(q, p)=E-hyper-surface, approaches in the course of time each
point of this surface arbitrarily closely!

On the H(q,p)=E-hyper-surface, around a phase point # = (q,p), when
one puts a raster A*q A’p (Fig. 1.4), then one can indicate a time ty, surely co-
determined by the size of the raster, within which the trajectory has at least once
traversed the raster.—As plausible as this hypothesis may appear, it is nevertheless
unprovable. Indeed, there are even a few counter-examples (non-ergodic systems),
which, however, are of such special kind that we will not further consider them here.

We can now decompose, as indicated in Fig. 1.4, the phase space into small
volume elements A°q A°p, and can then simply count, how often the trajectory of

Fig. 1.4 Cross-line screen P
(rasterization) of the = =
two-dimensional phase space =AqAp
™.
NP [
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Fig. 1.5 Illustration of the p
density distribution function

the system has traversed within the time #; the individual elements (see Fig. 1.5).
This can be expressed by a
density-distribution function

£(q, p. 1)

in such a sense that

E(qs P, tO)AJq Asp

represents the frequency, with which the trajectory has passed within the time #, the
volume element A*q A’p around the phase point (q, p). The actual number of events
of course depends on 7y and will increase with 7y over all limits. It is therefore
recommendable to normalize the density distribution, where we simultaneously
make the phase-space volume element become infinitesimally small (A°q A’p —

d*qd’p):

£(q. p. to)

d . 1.20
I d*qd*p p(q. p. to) (120

p(q,p. 1) =

If 1y is sufficiently large, then p will represent, to a good approximation, a continuous
phase space function, and

p(q,p. 10)d*qd’p

can be interpreted as the probability that, at a given point of time in between 0 and
to, the system can be found in the volume element d°qd’p at (q, p). As soon as the
system is in the element d°qd°p at (q, p), the observable F' adopts the value F(q, p).
Its time-average value (1.18) can therewith be expressed also by the distribution
function, because, for getting the average value, it does not matter, at which concrete
point of time in the interval [0, #o] the observable F has adopted a certain value:

F = / / d’qd’p p(q, p, t0)F(q,p) . (1.21)

This representation, of course, is still a time average, because p results from the
time-behavior of the trajectory of the system. But it already delivers a clear hint
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to the concept of the statistical ensemble, which traces back to Boltzmann and
Gibbs, and turns out to be basic for Statistical Physics. We will refer to it in the
next subsection.

The quasi-ergodic hypothesis (1.19) now requires that for f — oo the
distribution function of macroscopic systems (s — o00) becomes independent of
the initial conditions:

lim_p(q,p. 1) = p(q. p) - (1.22)
0—>00

This is a decisive precondition for the validity of the Statistical Physics of
macroscopic systems. As already mentioned, this hypothesis can not be proven in a
mathematically strict sense. It gets its justification exclusively by the consistency of
the Statistical Physics, developed on the basis of this hypothesis, compared to the
experimental observations.

1.2.2 Statistical Ensemble, Ensemble Average

The goal consists of describing a system, about which we have only an incomplete
information. The exact (micro-) state can not be precisely specified. In a way, we
can only ‘delimit’ it, and can therefore also hope only for statements, which are
‘correct on average’, as explained in detail in Sect. 1.1.1. It is therefore particularly
an issue of calculating average values. In order that these become independent
of the (unknown) initial conditions, we need the validity of the quasi-ergodic
hypothesis (1.19), and an, in principle, infinitely long observation time. In general,
however, the Hamilton’s equations of motion (1.13) can not be integrated in closed
form, and therewith the phase 7 () can not at all be given explicitly as function of
time. That excludes then of course also the time-integration needed for the average
value (1.18). It therefore seems so as if we would not have made yet any substantial
progress by the considerations of the last section.

The reformulation of the time-average value (1.18) to the equivalent ver-
sion (1.21), with the aid of a distribution function p, however, gives first indications
to an alternative method of calculating average values. The idea consists in the
introduction of the concept of a

statistical ensemble .

By this one understands a ‘family’ of ‘thought’ systems, which are all identical
copies of the actual real system, and therewith are physically completely identical
to it. Each member of the family is in one of the micro-states, which are conceivable
(possible) for the real system, and which are compatible with its (incomplete)
boundary conditions, and which evolve according to suitable equations of motion.
If there are Z conceivable micro-states, which, according to our pre-information,
are, in principle, accessible to the real system, and which the system will indeed
occupy, according to the quasi-ergodic hypothesis, somewhere along the way, then
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the ensemble consists of Z members, each of them completely equivalent to the real
system. At a single definite moment, the entirety of ensemble systems simulates
the full time evolution of the real system, however, only then, when the quasi-
ergodic hypothesis is indeed valid. Exactly then it is possible to replace the time
averaging (1.19) by an instantaneous averaging over the members of the ensemble.
That corresponds to the formulation (1.21) of the time-average, when we replace
the distribution function (1.22) by a respective one over the ensemble systems. The
statement ’
time-average = ensemble-average

is indeed the basic presumption of the Gibb’s method of the construction
of Statistical Physics. But if it is so, then the necessity to completely integrate
the Hamilton’s equations of motion is done away with, because we perform the
ensemble averaging at a fixed point of time. This shall now be formulated in more
detail.

At a given point of time the ensemble systems occupy definite points in the phase
space. These points build something like an amount of a liquid (liguid drop), which
moves through the phase space in a form, which is still to be investigated. Other
than in a real liquid, however, there are of course no interactions between the single
constituents, i.e. between the members of the ensemble. Especially, it is the local
density of this phase-space liquid, which is now interesting. For this purpose we
decompose, as in the last subsection, the phase space into small volume elements,

dTl = d°qd’p = dq1dq; . . . dqydpdp; . . . dps = l—[dqjdpj , (1.23)
=1

and define a distribution function,

0(q1, -1 Gs, P1s--- pss 1) = P(Q, P, 1),

by the requirement that

dZ = p(q.p.)d’qd’p

represents the number of systems, which are located in the volume element d T"
around the phase point (q, p) at the time z. It is clear then that

Z= / / p(q.p.d’qd’p (1.24)

must be the time-independent total number of the ensemble members. The normal-
ized distribution function,

1.
p(q.p.1) = Zp(q, p.1), (1.25)
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will change almost continuously, for sufficiently large Z, from volume element to
volume element, and can then be interpreted as probability density for the fact that
at the time 7 one ensemble member can be found in the phase = = (q, p). Using this
consideration, we can express each observable F(q, p) by the distribution function

p(q,p.1):

(F), = / / da ... dps F(Q. D)P(Q. P. 1) (1.26)

This representation strongly resembles that in (1.21), although the starting points are
different. The formulation (1.21) represents a time-average, while (1.26) means an
ensemble-average. Their equivalence appears, according to our pre-considerations,
to be rather plausible. However, it is not strictly provable, because its validity needs
the validity of the quasi-ergodic hypothesis.

To the question, which value the property F gets in our system, about which
only incomplete information is available, the Statistical Physics gives the answer :
“(F) I". Of course, we can not assume that this is in any case really exact. In order
to make the scattering around this value sufficiently small, we will later demand that
the relative, mean square deviation is a very small quantity:

\/(FZ) — (F)? <1 (1.27)

We recognize with (1.26) that stationary distributions (dp/dt = 0) yield for
all not explicitly time-dependent observables time-independent ensemble-average
values. It will be the task in the following to find ways for the determination
of the density-distribution function p(q,p,?) for physically relevant situations.
Systems in thermodynamic equilibrium must obviously be described by stationary
distributions. Only these are therefore of interest in the following.

1.2.3 Liouville Equation

We want to derive in this subsection some very general properties of the density-
distribution function p(q, p, f), especially the laws and concepts, which determine
its time-dependence. With the 2s-dimensional phase-space velocity

V= (QDQZv""q‘Y’ 1.7171‘)27”"1‘)5‘) (128)

a current density of the phase points, which are occupied by the ensemble systems,
can be defined:

j=opv. (1.29)
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This current density is to be understood completely along the lines of the more
familiar electric current density (see subsection 2.1.1, Vol. 3). The only difference
is that there are not electric charges, which move through the real position space,
but phase points moving in the phase space. Let now G be an arbitrary region in the
phase space with the surface S(G), then

/ ds-j (dS = dSn; n: surface normal)
SG)

is the number of phase points, which are flowing per unit time through the surface S.
Since there are no sources and sinks for ensemble systems, this number is of course
equal to the change in the number of phase points in the region G per time unit:

(] a A A
/dS-JZ—at/dqdpp(q,p,t)-
G

SG)

The surface integral on the left side can be changed, by the use of the Gauss
theorem ((1.59), Vol. 3), into a volume integral:

[0 -
/d‘qdép [atp(q, p.t) + lej:| =0. (1.30)
G

The divergence is to be built by the 2s-dimensional gradient in the phase space,

VE( 9 3’ 9 sy 8) : (1.31)

g dgs  Op1 aps
divj=V-j= Z[ ? (oa) + (ppf)] (132)
q; ap; -

Jj=1

The relation (1.30) must hold for arbitrary regions G of the phase space, which
enforces the conclusion that the integrand must already vanish. The density-
distribution function thus fulfills a continuity equation,

9 .
5 P@ P D) + div(v- p(q.p.1)) =0, (1.33)

which, of course, implies nothing but the conservation of the total number of
ensemble systems. It can further be reformulated with (1.32):

o : ap )i
ar‘z(’a “”a )“’Z(aq/ )

J=1
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All ensemble systems are of course described by the same (not explicitly time-
dependent) Hamilton function H(q, p). If one then inserts the Hamilton’s equations
of motion (1.13) into the above equation, one recognizes that each term of the
second sum is equal to zero. It results the

Liouville Equation
dp 9  ~~(dp. , Op.
= ; 1=0. 1.34
i~ e +; (aq,q’ T ap (139

The total time-differential of the density-distribution function vanishes. It holds
therefore for all times #:

p(a@), p(0). 1) = p(q(0), p(0), 0) . (1.35)

Ilustratively, this relation states that an observer, co-moving with the ensemble flow,
sees in its surroundings always the same, i.e., temporally constant, density of phase
points. The ensemble ‘liguid’ moves in the phase space as an incompressible liquid.

The Liouville equation can also be formulated with (1.17), in a compact manner,
with the help of the Poisson bracket:

3
a‘; o H = 0. (1.36)

A further equivalent representation follows with (1.28) and (1.31):

dp
-Vp=0. 1.37
at+V P (1.37)

It depends on the actual type of problem which of the three formulations of the
Liouville equation, (1.34), (1.36) or (1.37) is the more convenient one. For Quantum
Statistics, to be discussed in Chap. 2, in particular the representation (1.36) turns out
to be interesting, since the principle of correspondence ((3.229), Vol. 6) uniquely
prescribes how the Poisson bracket has to be transferred into Quantum Mechanics.

The idea of the incompressible liquid, mediated by the Liouville equation, can
further be formulated a bit more precisely:

Liouville Theorem

Let Gy be a region of the phase space with the volume Ty, whose points are all
occupied by ensemble systems at the time t = 0. These are moving in the phase
space and fill at the time t the region G; of the volume T';. In general, G; will be
different from Gy. It holds, however, for all times t:

r,=T,. (1.38)
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Fig. 1.6 Illustration of the P
Liouville theorem 7(t)

Go

Note that the statement of the theorem refers only to the conservation of the
phase space volume (Fig. 1.6). Nothing is said about the shape of the region G;
in comparison to that of Gy. Arbitrary deformations are allowed. We perform
the rigorous proof of (1.38) as Exercise 1.2.3, and restrict ourselves here to an
illustrative explanatory statement: Starting point is, at first, a region AGy around
7(0) = (q(0),p(0)), which is so small that the density p in the inside can be
assumed to be practically constant. All points of this region move according to the
Hamilton’s equations of motion, and reach at the time ¢ the region AG, around
w(t) = (q(t), p(t)). During the motion the trajectories of the individual points do
not intersect. In particular, the trajectories of the surface points of AGy can not
be intersected by those of the inner points of AGy, and of course also not by the
trajectories of any phase points, which at t = 0 were outside of AGy. AGy and AG,
thus contain exactly the same number of phase points! On the other hand, according
to (1.35), the point density is the same for AGy and AG;,. Consequently, the volumes
ATy and AT, must be of equal size. The same is then also valid for the volumes Iy,
I'; of finite regions Gy, G,, when we divide these finite regions, for the proof, into
small regions AGy, AG, in the above described form.

As already mentioned at the end of Sect. 1.2.2, one speaks of a stationary
distribution or of a static equilibrium, if, beyond the always valid statement (1.34),
also the local temporal change of density vanishes:

dp 0p

= =0. 1.39
dt ot (1.39)
The probability, to find ensemble systems at definite positions of the phase space,
is then the same for all times. That is trivially the case, when the ensemble-liguid
is homogeneously ‘smeared’ over the entire phase space, i.e., when the density-
distribution function p is everywhere constant:

0 0
P_% 0 vj.
g 9pj
With (1.34) it follows then immediately (1.39).
A distribution is, however, also stationary, when p depends on q and p only via
an integral of motion c:

p=plc,t); c=c(q,p). (1.40)
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Integral of motion means:
dc : (BC . dc .
0= = q;i + p-) ,
dt ; dg; ! ap; !

where of course on the right-hand side each summand need not necessarily be equal
to zero. It follows then from the Liouville theorem (1.34),

dp dap\ dc ap ap
0 = = =
dt (8c), dt+(3t)c (a;)C ’

and therewith in particular:
9
( P ) =0.
0t ) yp

The Hamilton function H(q, p) = E = const is an important constant of motion of
an isolated system. If the density-distribution function thus depends on q and p only
via H,

p=p(H(q.p)) . (1.41)

then the distribution is stationary (see Exercise 1.2.2). Stationary distributions are,
as already mentioned, important for the description of systems in the thermody-
namic equilibrium. All the concrete distribution functions, which we discuss in the
following sections, will therefore be of the type (1.41).

1.2.4 Micro-Canonical Ensemble

According to the pre-considerations of the last subsections, the main problem of
Statistical Physics consists obviously of finding the density-distribution function
p(q,p.7) of a statistical ensemble, where, for the equilibrium statistics, only
stationary distributions are of interest. Our considerations so far concerned isolated,
or better, quasi-isolated systems for which we have

E<H(qp) <E+A (AKE). (1.42)

We had asserted in Sect. 1.1.1 that for realistic macroscopic systems the exact energy
constancy (H = E) can not be guaranteed. On the other hand, it goes without saying
that in an isolated system particle number and volume are strictly constant (N =
const, V = const).
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All conceivable micro-states, which are compatible with (1.42), appear, accord-
ing to the postulate agreed upon in Sect. 1.1.1, with the same a priori-probability.
On the other hand, according to (1.25), p(q, p, ?) is the probability density to find at
the time ¢, an ensemble member at the phase # = (q, p). Together with (1.42) this
means for the density-distribution function of a statistical ensemble of quasi-isolated
systems:

=const, ifE<H(qp) <E+ A,
p(@p.0) =" A(a.p) (1.43)
0 otherwise .

The constant pg is determined by the normalization of the distribution. The density
function (1.43) is dependent on coordinates and momenta only via the Hamilton
function, and describes therewith according to (1.41) a stationary distribution. The
corresponding ensemble averages (1.26) are therefore time-independent. This is
important, because we want to link them later to the observables of the equilibrium-
thermodynamics. One calls the statistical ensemble, defined by (1.43), a
micro-canonical ensemble .
This occupies, homogeneously smeared, the so-called
phase volume

I'E)=« // d’qd’p . (1.44)

E<H(q,p)<E+A

For the following considerations it is advantageous to incorporate a factor ¢« directly
into the definition. In particular, it shall make I"(E) dimension-less. d°qd’p has the
dimension [action]*. We therefore choose

o= , (1.45)

where £ is Planck’s quantum of action ((1.3), Vol. 6). In the framework of the
classical theory that is more or less playing around, and can of course not yet point
to any quantum property. For systems of N particles without constraints, which
represent the normal case for the following considerations

s=3N. (1.46)

We still leave open in (1.45) a dimensionless constant «*, which will be fixed only
later. With the choice «* = 1 contradictions can be constructed in the further course
of our considerations, which appear to be unsolvable in the framework of Classical
Statistical Physics. Only the take over of certain quantum-mechanical aspects will
lead to an ansatz for o, which removes the dilemma (correct Boltzmann-counting,
Sect. 1.3.7). Let us not specify, however, a* before it becomes really necessary.
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For the constant py of the micro-canonical ensemble (1.43) it now holds
obviously:

o

= ) (1.47)

Po

Sometimes one denotes as phase volume also the total volume, enclosed in the
phase space by the hyper-surface H(q, p) = E:

o(E) =« // d’qd’p . (1.48)
H(q.p)<E
The comparison with (1.44) yields the connection:
I'E) =9o(E+ A)—9(E) . (1.49)
Eventually, we still define the density of states:

D(E) = d‘p? =

1
P ilino A I'E) . (1.50)

For A < E, which is always assumed, we have to a good approximation:
I'(E) ~ AD(E) . (1.51)

For the classical observable F = F(q,p) the ensemble-average value over the
micro-canonical ensemble, now reads, if one inserts (1.43), (1.44) and (1.47)

into (1.26):
/ / d’qd’p F(q.p)

E<H(q,p)<E+A

J oo

E<H(q.p)<E+A

(F) (1.52)

For certain purposes it still makes sense to represent the phase volume I'(E),
occupied by the micro-canonical ensemble, by a manner somewhat different from
that in (1.44). The phase-space volume I'(E), enclosed by the hyper-surfaces H =
E + A and H = E, results from a summing up of the volume elements (Fig. 1.7)

dT = dfpdn, .

df is the surface element of the H = E-surface and dr the perpendicular distance
between the two hyper-surfaces. The vector VH stands perpendicularly on the
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Fig. 1.7 Volume element d I' dr
in the phase space between dm/‘ H=FE+A
two infinitesimally /

neighboring hyper-surfaces 4 H=E
dfg

H=E=const-surface. For the change of H with the transition from the one to the
other surface it must therefore be:

A = |VHdm,| .
The volume element d I can therewith be represented as:

dfe

dT = A .
|VH|

(1.53)

In the case of sufficiently small A the volume integral in (1.44) can thus be replaced
by a surface integral:

dfs
I'(E) ~ A . 1.54
&) “mL|VHm4m (139

According to (1.51) this means for the density of states:

~ df
D(E) = ozH=/E VH(q.p)| (1.55)

We have therewith found, in particular, an alternative representation of the
ensemble-average value, when we insert (1.53) and (1.55) into (1.52):

o« F(q,p)
I~ ey / Ve \Vr(q.p)| - (136
H(q.p)=E

In this version, the averaging is carried out by a surface integral. That looks actually
more complicated than (1.52), but can be, in certain cases, more comfortable for
application. A special phase-space observable is the Hamilton function. For the
average value via the micro-canonical ensemble it follows from (1.56):

(H) ~ E . (1.57)

We will identify in the next chapter the average value (H) with the internal energy
U of the respective system.
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We now have rounded up the most important basic concepts of Classical
Statistical Physics. The next topic of the program consists in creating the link to
the equilibrium thermodynamics. Especially it is required to statistically justify the
terms entropy and temperature, which are of central importance for Thermodynam-
ics, so that the basic relation of thermodynamics ((2.55), Vol. 5), which corresponds
to a combination of the first two laws of Thermodynamics, becomes a provable
assertion.

1.2.5 Exercises

Exercise 1.2.1
Show that the classical linear harmonic oscillator with the Hamilton function

P2 1 2 2
Iﬂ%p)=2m-+2qu

fulfills the quasi-ergodic hypothesis. Calculate for this purpose the phase-space
trajectory

(1) = (q(n).p()) .

Exercise 1.2.2
Let the density-distribution function p of a statistical ensemble depend on q and p
only via the Hamilton function H = H(q, p). By using the Liouville equation in the
form of (1.37),

dp
+v-Vp=0,
ot P
show that p must be a stationary distribution.

Exercise 1.2.3
Let Gy be a region of the phase space, which is occupied at the time # = 0 by the
members of a statistical ensemble. Gy may have the volume I'y:

Lo = | dq(0)d’p(0) .
/

The region G;, which arises after the time 7 by the motions of the points from Gy,
then possesses the volume:

r, = / dq(d*p(1)

Gy
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Prove the Liouville theorem (1.38):
Fr == F() .

Because of

I = / det F9d*q(0)d*p(0)
Go

it will be mandatory to show that the functional determinant (Jacobian determi-
nant) ((1.363), Vol. 1),

(1D, 0), pr(D).....py(D)

det F0 = ,
a(Ql(O)s cee QS(O)v pl(o)s cee 7ps(0))

is equal to one.

Exercise 1.2.4
Consider the classical linear harmonic oscillator:

p2

1
H(g.p) =, + zmwzq2 -

1. Determine the normalized density-distribution function of the micro-canonical
ensemble.
2. Calculate therewith the average values of the potential and the kinetic energy.

Exercise 1.2.5
A particle of the mass m moves freely in the one-dimensional interval 0 < x < Xy,
and is elastically reflected by the walls at x = 0 and x = xy.

1. Sketch the trajectory of the system in the phase space.
2. Calculate the classical phase volume ¢ (E).

Exercise 1.2.6
N noninteracting particles, each of the same mass m, move on a plane in the potential

0, if0<x=<xand0=<y=<y,
Vix,y) = _
oo  otherwise .

Calculate the classical normalized density distribution p(q,p) of the micro-
canonical ensemble.
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Exercise 1.2.7
Discuss the phase volume and the phase trajectory

1. of a particle, which, on its linear motion, is subject only to a frictional force,
which is proportional to the particle velocity,
2. of a linear harmonic oscillator with weak friction.

Exercise 1.2.8
Calculate the phase volume ¢ (E) of a relativistic particle of the energy E, which
moves in a box of the volume V.

Exercise 1.2.9
For N classical particles there are available two energy levels

e1=e>0; & =-¢.

The energy E of the total system is then determined by the distribution of the
particles over both the levels:

E=EN,,N;) = Nig; + Nyeo = (N —Ny)e ; N = N; + N, = const.

Determine the phase volume I'y(E) as function of the particle numbers ;. Show
that

In FN(E) XN .

1.3 Connection to Thermodynamics

1.3.1 Considerations on Thermal Equilibrium

We now want to bring the elements of Statistics, as we have introduced them in the
last section, into contact with the fundamental quantities of the Phenomenological
Thermodynamics. That is conceptually not a trivial task, and it therefore needs some
preparation. For this purpose we will come back once again to the simple and exactly
solvable model system, which we introduced in Sect. 1.1.2. It concerns a gas of
N particles in an isolated container of the volume V, which is divided into two
chambers (I) and (II) (volumes: V;, V,). The particles can arbitrarily change the
chambers, where, however, certain properties take different values in (I) and (I).
That holds, in particular, for the energy, which is equal to ¢ for a particle in chamber
(I) and (—¢) for a particle in chamber (IT). The total energy of the system is then
determined by the excess

1
y=N- N (1.58)
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) (1) V=Vi+V,

VI’NI ‘/Z’NZ N:N1+N2

O VOND L VOND | @ Va=V?+Vi?; No=N® 4N

@ v®,N® VOND | (b) V= Vl(b) N Vz(b) N, =N{b) .\ Néb) ;
L — Thermal contact:
(a) py(@) (a) n(a) (a) Vo= V1(a) + Vz(a) =const .
@O WMOLNT L BTN (D) V, = Vl(b) N Véb) — const .

_._._._._._._._5 .................. ——
N, =N + NI? = const .

O VOND L v N @ | s ;
: N, =N”

+ Néh) = const .

Fig. 1.8 Schematic decomposition of a gas of N particles in a volume V into several subsystems

of particles in chamber (I) (N = N; + N,):
E =Nie—(N—Nj)e =2y¢c. (1.59)

We have commented on the accuracy of an energy measurement and the fluctuations
around the most probable value in detail in Sect. 1.1.2.

We will now extend this thought experiment by an essential aspect. We let
the system be composed of two partial systems (a) and (b) of the described kind
(Fig. 1.8):

Vi+ V=V N, +Np,=N.

The subdivision into the chambers (I) and (II) within the partial systems shall take
place in such a way that the probability p; for a particle to be in (I) (see (1.2)), is the
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same for both the partial systems, and is equal to that of the total system:

Vl(a) 3 Vfb)

A

i P+
=y = vt

The at first isolated partial systems have the energies,
E, =2y Ep = 2y,e .

which are fixed, as the energy of the total system (1.59), by the particle excesses in
the respective chambers (I):

o 1 1
Yo =N — JNaw = N — 5N (1.60)

To an energy E,, given by y,, the isolated a-partial system possesses ['n, (Va)
different micro-states. For macroscopic particle numbers N, (¢ = a, b) we get the
previous result (1.10):

1.61
2p1 (1= p1)Na (1.61)

o =a,b.

N©@ _ @ 2
Ty, (o) = 2N WNH(Nf"‘)) = ™ exp |:_ ( 1 1 )

2Ne s the total number of states of the partial system «, and wNa(Nfa) ) is the

probability that out of the N, particles Nfa) are in chamber (I). According to (1.9)
this probability distribution has its maximal value at

7\75”) = Nyp1 (¢ =a,b).
That is then also true for the number of micro-states
I = (T, 0),, = 2% wh, (V1) . (1.62)

When the two partial systems (a) and (b) remain to be isolated, then, of course,
nothing new will come out compared to that discussed in Sect. 1.1.2.
In the next step, however, a
thermal contact
between (a) and (b) will be installed. That means that the partial systems can now
exchange energy, without changing in the process their particle numbers and their
volumes. We assume that the energy exchange is due to a replacement of particles
between the chambers (I) and (II) within the respective container (a) and (b),
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respectively. The technical realization of this process must not be of interest here.
However, it should be guaranteed in particular that the energy exchange passes off in
such a way that interactions between particles of (a) and those of (b) continue to be
neglected. The total system (super system) remains to be isolated. Its energy (1.59)
is thus strictly fixed, so that at the thermal contact of (a) and (b) the boundary
condition

Y=Y+ (1.63)

is to be fulfilled. But that can be happen now in a variety of ways. We therefore
ask ourselves what happens really as a consequence of the contact between the
two partial systems? How is the energy E of the super system distributed over the
subsystems under the boundary condition (1.63)? The most probable distribution
will be the one, which guarantees a maximal number of micro-states for the super
system. Let us at first search for this special distribution.

Each state of (a) can be combined with each state of (b) to result in a micro-state
of the super system. The total number of states, compatible with (1.63), is therewith

+1/2N,

TvG) = Y TwOa) TvG —Ya) (1.64)

Ya=—1/2N,

if we presume N, > N,. I'y, and I'y, are defined by (1.61). Each summand belongs
to a definite distribution of the energy E = 2ye over the partial systems (a) and (b).
Which summand in (1.64) is maximal? To answer this question we have to build, as
for quite a normal extreme-value problem, the first derivative of the summand with
respect to y, and then to put the result equal to zero. We use for a better overview,
transiently, the abbreviations:

pr=pi(1=p1),

~ 1

Za :N§a)_N(la) = Yo + No (2 _pl) (@ =a,b),
~ 1

z=N —N;=y+N , P =z.+ -

Then (1.61) reads

2

. z
I, (zo) = T exp (_ 2[?10}\7 ) (@ =a,b),
o

and it holds for the summands in (1.64):

2 Y
a Z”)] (1.65)

Tv/(za) Tz — 20) = T T exp |:_ Za -
' ’ 2plNa 2p1Nb



32 1 Classical Statistical Physics

When seeking for the maximum, it is convenient to differentiate the logarithm of
this expression, which of course becomes maximal at the same point:

2 2
I z (z—za)
In(T'yv(za) Tz — 20)) = In(D*0)™) — ¢ — 7
( ’ ) ( ) 2p1N, 2p1N;
The zero of the first derivative,

0 1 ad ln(FNa(Za)FN/,(Z - Za)) Ea 4 (Z — Ea)
aZa 2a lalNa ﬁle

yields the extreme-value condition:

za _ 217 L Z
N, N, N’
If we revoke the above agreed abbreviations, we get

&a _ j\)b _ y i (166)

N, Ny, N
and we recognize that the most probable configuration is acclaimed by the fact that
the relative excess of particles in chamber (I) is the same for the partial systems (a)
and (b), and is identical to that of the super system. We further check whether the
extremum is really a maximum:

O [Cae -] = = <
n a —Za)| — — -~ - .
972 NelGa) T Np& = DPiNa  PiNy

a

0.

The most probable (maximal) summand in (1.64) is therefore of the following form:

2

1
= [P ey [— ¢ } . (1.67)

[FN,,(Za)FNb(Z - Za)] 2 "N

max

Of decisive importance for the validity of Statistical Physics is now the observation
that the distribution of the number of micro-states, which are summed up in (1.64),
is similarly sharply bunched around the maximum (1.67), as we already could
recognize it for the isolated single system (Sect. 1.1.2). This has namely the
consequence that only a few configurations (summands in (1.64)) do really influence
the physical properties of the super system. To confirm this fact let us investigate the
number of micro-states near the maximum:

AZQZZa_zazya_j}asza (Oé=a,b).
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Instead of (1.65) we write:

1 1 . R
v (za)Tn(zp) = T 0 exp [_ (ZZ + 22, Az, + AZZ)

2131 {Na
T, N

+ (3 +2%Az + Azi)H .
N

Because of y = y, + y, = J. + y» = const we have Ay, = —Ay, and therewith
also Az, = —Agz,. Furthermore it holds (1.66):

2 2

z Az 1 1
Iy (z)T == ['maxpmax - = — + .
N2 Tril2) { a °b eXp( 2Np1)}eXp|: 2p1 (Na N,,)}

The term in the curly bracket is, according to (1.67), the maximal summand
in (1.64). When we replace again the z-variable by the original y-variable, then we
have found with

NAyfl
1—‘N,, (ya)FNb(y - ya) = [FN,, (ya)FN/,(y - y“)]max exp |:_ 2[31N Nb:| (168)

arepresentation, which indeed demonstrates, that the number of micro-states, which
are available for the isolated super system, and which are possible, according
to (1.64), in the case of thermal contact of its two subsystems (a) and (b), exhibits
a distinct maximum as function of y, at the point y, = (N,/N)y. As measure of
the width of the distribution we take, as in (1.12), the distance between y, and the
two y,-values, which are symmetrically located to the maximum, and for which the
distribution (1.68) drops down to the e-th part of its maximal value (1.67). This
distance amounts to:

2
|Aya|l_ = \/NNaNbpl (I=p1).

In relation to the total range of values of y, it results as relative width:

Ayq|_ 2N, 1—
|y|1:\/ D1 ( Pl)' (1.69)

N, N,N

With a characteristic numerical example such as

1
pl: Na:Nb:zN:lozz

2 ,
one finds:

|Aya|— _ 1 10711
N, 2 '
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The distribution of the number of micro-states is thus extremely sharply bunched.
Already for such a minor relative deviation as

Ay“ — 10—10
N,

the distribution I'n(y,)'n,(y — y.) would have dropped in our numerical example,
according to (1.68), onto the
e 4%_fold of the maximal value.

What is the conclusion that can be drawn from this?

When the macroscopic partial system (a), within an isolated super system, is
brought into thermal contact with another macroscopic partial system (b), then there
are at its disposal unimaginably many micro-states (order of magnitude 21022), and
accordingly great is our lack of knowledge about the micro-structure of this system.
But if we are interested only in the macroscopic property energy E,, then we can
say with utmost probability that a measurement of the energy yields a result, which
deviates, at the very most, by 107! relatively from the most probable value. The
measuring value

. . N,
Ey =29 =2y ¢ (1.70)

can be predicted, except for a completely unimportant relative error.

After these exemplary considerations we can get now a first conception of the

important term
thermal equilibrium .

Two partial systems, which are being in thermal contact, have reached thermal
equilibrium, as soon as the isolated super system, composed by them, is found in
its most probable configuration (1.66, 1.67). When we prepare partial system (a)
to be in any initial state, and bring it into thermal contact with partial system (b),
then energy will be exchanged between (a) and (b) until, after a certain relaxation
time, the super system has reached its most probable configuration. According to
the quasi-ergodic hypothesis, in the course of time it approaches each state, which
is compatible with the boundary conditions, arbitrarily closely. As demonstrated at
the end of Sect. 1.1.2 in another context, here also it can be estimated that the system
will not leave this most probable configuration in a time that exceeds our expectation
of life by several orders of magnitude. Thus we can speak of an

irreversible transition into thermal equilibrium .

In the introductory Sect. 1.1.1 we had already pointed out the difficulty, to
microscopically justify thermal equilibrium and the irreversible transition into it,
because all microscopic equations of motion are time-reversal invariant. We see
here with the example of our model system, how the large number of degrees of
freedom of the macroscopic systems opens quite novel possibilities of explanation.

The essential statements, derived in this subsection from a very abstract, very
simple model, are confirmed by all the other exactly calculable models. The
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assumption that they are even generally valid, has, up to now, not yet led to any
contradiction between theory and experiment.

1.3.2 Entropy and Temperature

We know from the considerations on Phenomenological Thermodynamics in Vol. 5
that the entropy is a very important, but also a rather abstract (not easy to visualize)
physical quantity. ‘Most imaginative’ is, if at all, its characterization as measure for
the disorder of a system. For the statistical reasoning of the entropy, we therefore
can not start from a plausibility ansatz for this basic quantity, but have to proceed
essentially more formally. We will put the statistical definition of the entropy at the
very beginning, and that, too, without further justification, i.e., without any hint by
what this definition is actually motivated. By the discussion of the consequences of
this ‘arbitrary’ definition we will then convince ourselves that it is indeed the same
quantity as that, which we used in the Phenomenological Thermodynamics.

For an isolated system with N particles in the volume V (without constraints,
therefore s = 3N), we define the entropy as the natural logarithm of the phase
volume (1.44) of the corresponding micro-canonical ensemble:

S(E.V,N) = kg InTy(E. V) . (1.71)

The definition (1.44) immediately reveals that the phase volume is determined,
besides by the energy E, also by the particle number N and the volume V of
the considered systems. We therefore write here, more precisely than in (1.44),
I'v(E,V) instead of I'(E). The constant kg is conveniently identified with the
universal Boltzmann constant ((1.6), Vol. 5),

kg = 1.3805- 1073 J/K , (1.72)

which at this stage, however, does not yet have any deeper meaning. We achieve
therewith that the statistical temperature, later to be derived from (1.71), agrees
with the absolute temperature of Thermodynamics, even including the unit (Kelvin-
, Celsius-degree). For the now immediately following considerations kg in (1.71)
is, at first, only a constant, which is not specified any further.—More problems
could arise from another detail of the definition (1.71). The phase volume I'y(E, V)
of the micro-canonical ensemble follows, according to (1.44), from a phase-
space integration over an energy shell of the thickness A. The statistical entropy,
introduced with (1.71), seems therefore to be dependent on a further parameter,
namely A. That would be fatal, though, since we do not know any thermodynamic
analog to it. However, we will be able to show at the end of this subsection that for
the macroscopic system (N — o0) the dependence on A becomes asymptotically
unimportant. That has a consequence, which appears somewhat srange at first, that
the following two representations of the statistical entropy are completely equivalent



36 1 Classical Statistical Physics
to (1.71):

S(E,V,N) = kglngy(E, V), (1.73)
S(E,V,N) = kg InDy(E, V) . (1.74)

Thereby, gy (E, V) in (1.48) and Dy(E, V) in (1.50) are defined as phase volume and
density of states, respectively. The equivalence of (1.71), (1.73) and (1.74) results,
in the last analysis, from the mathematical fact that in a (phase) space of high
dimension, the volume, which is confined by a closed area, lies almost exclusively
within a very thin surface layer (see Exercise 1.3.1). The more precise reasoning
of (1.73) and (1.74) at the end of this section will yield a further indication,
how the large number of degrees of freedom of macroscopic systems can lead to
unexpected phenomena. What microscopically is certainly wrong, can turn out to
be asymptotically (macroscopically) correct.

In order to show that the statistical entropy (1.71) can be identified with the
thermodynamic entropy, two essential statements are to be verified:

1. § is extensive (additive) (section 3.3, Vol. 5),
2. S fulfills the second law of Thermodynamics: For all (irreversible) processes,

which take place even in an isolated system, the entropy does not decrease (dS >
0, subsection 3.7.1, Vol. 5)!

We will deal with point 2 in the next subsection. Here we will at first consider the
additivity and extensivity, respectively, of the statistical entropy (1.71).

We first consider two isolated systems, each of which defines a micro-canonical
ensemble:

Ey <Hi(q,p) <Ei+ Ay,
E, < Hz(q, p) <E,+ A, (1.75)

They have the entropies:

S1(E1, Vi,N1) = kg In 'y, (E1, V1),
Sz(Ez, Vz,Nz) = kB In FNZ(Ez, Vz) . (176)

The phase volume of the total system (N = Ny + N,, V = V| 4+ V»),
E=FE +E <H(qp) =Hi(q,p1) + H(q.p2) <E+ A, (1.77)
is, for the case that there does not exist any exchange-contact between the systems,

nothing else but the product of the two partial phase volumes, because each
conceivable state of system 1 can be combined with every conceivable state of
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system 2 to give a thinkable state of the total system:

a*
]"N(E,V): h3N/.../d3qu3Np
E<H<E+A

a*
h3N / . / d3NllZ1d3N1P1d3N2qzd3N2P2

E1<Hi(q1.p1)<E1+A;
Er<Hz(q2.p2)<Ex+Az

af 3N ) 3N, 3N,
A B (P R B g

E\<H|<E1+A Ey<Hy<Er+Ar

= Iy, (E1, Vi)', (E2, V) . (1.78)

(The justification for o™ — «f ey will be later presented (Sect. 1.3.7).) The entropy
is therewith trivially additive:

S(E,V,N) = S|(E1,V1,N) + S$2(Ez, Vo, No) . (1.79)

However, what happens when we allow thermal contact between the partial
systems? A case such as the one we had defined, in connection with our model
system in Sect. 1.3.1, a contact, by which the systems 1 and 2 can exchange energy,
while their particle numbers and volumes stay constant. Furthermore, there shall not
be any significant interactions between the systems, so that the Hamilton function
of the super system is composed additively by those of the partial systems:

H(q.p) = H(q1.q2. P1.P2) = Hi(q1.p1) + Ha(q2. p2) - (1.80)

It is clear that in principle the energy exchange can not take place without
interaction. However, since we are developing here the Statistical Equilibrium
Physics, the time, which the system needs to reach equilibrium, does not play a
role. We can therefore assume that, in the framework of a thought experiments, the
exchange is brought about by a few particles only, which interact with those of
system 1 as well as those of system 2. These very few particles contribute such a
minor interaction energy that (1.80) can be seen as practically exact.

The isolated total system defines, in the sense of (1.77), a micro-canonical
ensemble. However, since energy exchange is now possible between the partial
systems, the conditions (1.75) are no longer valid. But the weaker condition (1.77)
can be satisfied in manifold ways.

For simplifying the following considerations let us decompose the energy E into
small, atomic units ¢, and let us assume that the energy exchange between the two
systems, which are in thermal contact, takes place in packets of this quantity &:

E = nge; E,, = me; 0<m<ngp. (1.81)



38 1 Classical Statistical Physics

With the discrete energies of the quantum systems, this decomposition is manage-
able without any difficulty. For the continuous energies of the classical systems
it means, though, a certain simplification. If, however, the decomposition is
sufficiently fine (¢ — 0), then a negligible error arises, when E,, is considered as the
average energy of the respective interval. Because of H = E, E must be bounded
below, and the always free choice of the energy zero allows to identify it with
the lowest energy of the total system. Since the energy E can be distributed in all
possible ways over the two partial systems (E| = E,,, E, = E—E,,, m=0,...,ng),
it follows with the same justification as that for (1.78):

no

TN(E. V) =Y Tw (En. VO T, (E = En, V2) . (1.82)

m=0

The statistical entropy of the total system therefore reads:

no
S(E.V.N) =k In Y T, (Ew. V)T, (E — Ep, V)

m=0

(V=Vi+Vy;, N=N+N,). (1.83)

We know from our discussion of the model system in the preceding subsection that
the distribution [FNI (Em, VO I'n, (E—E,, VZ)] will exhibit an extremely sharp max-
imum at the most probable configuration, which defines the thermal equilibrium.
(One may think about the fact that the phase volume I'y(E, V) in the case of discrete
states is identical to the number of these states for E < H < E + A!) In (1.82) there
will thus exist a dominating summand,

Ty (B Vi) Ty (E = E, V2)
which admits the estimation
Ty (B Vi) Ty (E — E, Vo) < Tw(E, V) < (1.84)
< 1oTn, (Ems Vi) Ty (E = Eny V2)
This means for the entropy:
S1(Ems Vi, N1) + S2(E — Ep, V2, N2) < S(E, V,N) <
<kglnng + S (En, Vi,N1) + S2(E—E, Vo, N2) . (1.85)

We had found for the model system in Sect. 1.3.1 with (1.61), (1.62) or (1.67) (see
also Exercise 1.2.9):

In Ty, (Em, Vi) ~ N1 ,

Ty, (E —Ep, V2) ~ N> . (1.86)
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ng is at most of the order of magnitude of the particle number N = N; + N,. If
now at least one of the two particle numbers Ny, N, is macroscopic, i.e., of the order
of magnitude 1022, for instance, then InN = 221n10 & 50, and thus in any case
negligible compared to In I'y, 4 In'y,. The estimation (1.86) holds for all exactly
tractable model systems, making therewith, for the not exactly solvable general case,
the assumption ln([I‘Nl FNZ]max) > In N atleast plausible. But that means according
to (1.85) the

extensivity of the entropy

S(E,V,N) = Si(E1, Vi,N1) + S2(E2, Va2, N2)  (+O(InN)) (1.87)

for two macroscopic systems, which are in thermal contact, when the isolated super
system, which is composed by them, is in its most probable configuration. The latter
is equivalent to thermal equilibrium between the two partial systems.

The results of this section can be still extended to a further important aspect,
which will lead us to the statistical concept of temperature. In Sect. 1.3.1, with
the discussion of a model system, we used for the first time the term thermal
equilibrium. In an isolated system (E,V,N), this situation is given, when for
each two subsystems, which can exchange energy with each other, the product
I'n, (E1, Vi)Ty, (E2, V») is maximal, where the boundary conditions E = E; + E»,
N = N; + N, and V = V| + V; are to be fulfilled.

That is, as we have seen above, the situation, for which the extensivity of the
entropy (1.87) is valid. For fixed particle numbers N, N, and fixed volumes V;, V>,
especially the energy differentiation of the product I'y, I'y, must vanish:

or or |
d(T'y, Ty,) = (8};\?) Ly, dE; + Ty, (aEA;Z) dE, =0 .
Ni.Vi Ny, Vo

After division by I'y, n,,
1 (0T 1 (or
0= ( M ) dE| + ( NZ) dE,
Iy, \OE1 Jy, v, Ty, \ 0By )y, v,

dlnT dlnT
= ( . Nl) dE1+( N NZ) dE, ,
3E1 NV, BEZ N Vs

and fulfilling the boundary condition,
dE =dE, +dE, =0,

it can be recognized that ultimately the energy-dependence of the entropy deter-
mines thermal equilibrium:

E = E E
(asl( 1,V1,N1)) (B, =Fy) 2 (352( 2,V2,N2)) (B2 =E) .
dE, VI OE, V2.N2
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We define:

1 (3S(E,V,N) ks AT (E, V) 189
T=( IE )VN_FN(E,V)( IE )VN’ (1.89)

T: temperature .

Temperature thus corresponds, in the sense of Statistical Physics, to the relative
change of the phase volume of a micro-canonical ensemble with the energy.
That sounds rather abstract and far-fetched. The interpretation of the equilibrium
condition (1.88) appears here to be more revealing. Two arbitrary subsystems of
an isolated total system with thermal contact are in thermal equilibrium, if they
possess the same temperature. However, the two mentioned subsystems are in no
way specified up to now. We can therefore generalize:
In an isolated system at thermal equilibrium,
the temperature remains the same at all positions

But exactly this actual situation we got to know in the Phenomenological
Thermodynamics as the equilibrium condition for isolated systems. The quantity
T, introduced by (1.89), is indeed the absolute temperature of Thermodynamics.
Formally the same connection between temperature, entropy, and (internal) energy,
we had also found there ((3.5), Vol. 5).

With (1.71), the product kg7, which is usually abbreviated in Statistical Physics
by

1

kT = g (1.90)

has the dimension ‘energy’. The choice of the Boltzmann constant kg as the
coefficient in the definition (1.71) of the entropy takes care for the fact that T obtains
the unit (Celsius-, Kelvin-)degree.

For the considerations, which led to the statements (1.87) and (1.88), we have
used the representation (1.71) of the statistical entropy. Let us close this subsection
with the proof that for the asymprotically large systems of Statistical Physics, the
formulations (1.73) and (1.74) are equivalent to (1.71). The line of proof is very
similar to that by which we have verified the additivity of the entropy.

When the hyper-surface H = E is closed, then we can divide the enclosed phase
volume (1.48) into slices of the thickness A, and can then estimate:

on(E, V) <nol'ny(E, V) .

The uppermost layer is I'y(E, V), which contains the largest volume. ng is the
number of slices. Since H is bounded below, for finite A, ny will also be finite,
and will be at most of the order N. (Remember the reasoning for the energy-
indeterminacy A in Sect. 1.1.1). In

Inpy(E,V) <Inny+ InTy(E,V)
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the first summand on the right-hand side, for macroscopic systems (N — 00), can
therefore be neglected compared to the other term, which is proportional to N, which
proves the equivalence of (1.73) and (1.71). In addition, it holds, according to (1.51):

kB In FN(E, V) = kB 11’1(A DN(E, V)) = kB InA + kB In DN(E, V) .

Since In A is independent of N, here the first summand is asymptotically (N — o0)
negligible with respect to the second summand. Therewith, (1.74) is also confirmed.
The statistical entropy therefore does not depend on A, in contrast to what the
definition (1.71) at first let suppose.

1.3.3 Second Law of Thermodynamics

In order to be able to indeed identify the statistical entropy (1.71) with the
thermodynamical one, we still have to establish the validity of the second law of
Thermodynamics. Since our definitions and conclusions so far referred exclusively
to isolated systems, it therefore remains to verify that for all processes, which take
place in an isolated system, the entropy can not decrease. After the preparations
of the last subsection the proof is no longer very difficult.

Given are two at first isolated systems 1 and 2 (Fig.1.9), the corresponding
micro-canonical ensembles of which possess the phase volumes

I'n,(E1, V1) and I'y,(E, Va).
The phase volume ascribed to the total system then amounts to, according to (1.78):
I\ (E.V) = Dy (E1, V) Tag (B2, V) (1.91)
This leads to the entropy:

SW(E,V,N) = kg InTy, (E1, Vi) + kg In Ty, (E2, V) .

Fig. 1.9 Composition of two a
at first isolated partial systems
(a) to an isolated total system
with thermal contact of the E, E,
two subsystems (b)

NV N,V

Nl’Vl NZ’VZ

E=E +E,
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In the next step (b) we allow thermal contact and therewith energy fluctuations
between the systems (Fig. 1.9). The initial state corresponds to (1.91). The final
state, after achieving thermal equilibrium, possesses, in contrast, a phase volume of
the kind (1.82),

TV(E V) =Y Ty, (i + AE. V)T, (Es — AE, V2) | (1.92)
AE

where it is summed (or integrated) over all possible energy-exchange values AE.
The initial state (a) is represented in this sum by a single term, namely the
term AE=0. All the summands are positive, by what it becomes clear that, at
the transition (a) — (b), which means the irreversible transition into thermal
equilibrium, the phase volume I'y(E, V), and therewith also the entropy cannot
decrease. When the two systems (a), before the process, are not at the same
temperature, then there will be, according to our considerations for (1.87), among
the summands in (1.92) a maximal term with AE # 0, which strongly dominates
the others, and which marks the equilibrium state. This will take care for the actual
entropy increase. The entropy thus has in any case the tendency to increase. It
is thereby actually not so decisive that in (1.92) there appear, compared to (1.91),
additional positive-definite summands, but it is decisive that among them there is an
extremely dominating one. Of course, the first part of the statement to the proof of
the entropy increase is completely sufficient, we have to only note that we have not
used for the entropy of the final equilibrium state the exact expression (1.92), but
under the neglecting of the contributions of the order of magnitude (In N), only the
maximal summand. Otherwise, we could not have assumed the extensivity of the
entropy (1.87).

The genuine cause of the entropy increase is qualitatively rather easy to
understand. In the initial state (a) there are with £y < H; < E; + A; and
E, < H, < E; + A, two conditions imposed, in the final state (b) still only one:
Ei + E, < H < E| + E; + A. Less restrictive boundary conditions, however,
mean that more states have access to the system. Hence, a greater phase volume is
entitled to the system, which means a greater entropy. For this reason, the above
considerations are not only valid for energy fluctuations, but also for particle and
volume exchange.

After having satisfactorily shown the validity of the second law of Thermody-
namics for the entropy defined in (1.71), we can also make statements about in
which direction energy is exchanged between the systems. Before the contact let
the two just discussed systems be at different temperatures, with 77 > T5. If now the
energy exchange takes place without particle and volume changes and additionally
with constant total energy (AE| = —AE>), then it must be:

3 3s
AS=( 1) AE1+( 2) AE,
O )y n, 0, )y, v,

1 1 !
:( — )AEle
T, T
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This inequality can be fulfilled only for AE; < 0. The energy of system 1 thus
decreases. Energy has flown from the system of higher temperature to the system
of lower temperature. Even this covers the statements of the Phenomenological
Thermodynamics.

We have now already collected several important arguments, which documents
that the statistical entropy is identical to the thermodynamical entropy.

The chain of proof, though, is not yet consistent. We have permitted up to
now only energy fluctuations by thermal contact between the two subsystems of
the isolated total system, while the particle exchange and the volume exchange
were excluded. We could therewith statistically justify an important statement of
Thermodynmics, namely that in an isolated system in the equilibrium the same
temperature prevails at all positions. The equilibrium condition for isolated systems,
however, includes, as is well-known, two further statements ((3.72), Vol. 5), which
concern the chemical potential and the pressure. These terms have something to
do with the up to now not considered particle fluctuations and volume fluctuations.
That will be investigated in the next subsections.

1.3.4 Chemical Potential

In the test arrangement of Fig. 1.9 between the two subsystems 1 and 2 we now want
to allow also a particle-exchange contact. Therewith, only the particle number N
of the isolated super system is constant; N1 and N,, however, are no longer constant:

E =E| + E, = const <= dE| = —dE, ,
N = N; + N, = const <= dN, = —dN, . (1.93)
The initial state (a) is the same as in the preceding subsection. The phase

volume (1.91) is ascribed to it. But for the final state (b) now instead of (1.92)
holds:

TV (E.V) =) Ty (Er. Vi)Twy=n-w, (Ey = E— E1. V) . (1.94)
E1.N

The equilibrium state corresponds again to the configuration (Ey, Ny; E>, N,), for
which the maximal phase volume is available. We determine the maximal summand
in (1.94) by the condition:

T T
+Ty, N2 dNy + (7 dE, | .
oN, V) 0E, MoV
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We divide by I'y, I's,, exploit the boundary conditions (1.93), and use the defini-
tion (1.71) of the entropy:

0= (BSI) _(852) N, + (BSI) _(352) dE, .
Ny ) gy, N2 ) g, v, 0E1 )y, v, 0E> [y, v,

Since N; and E; are independent variables, each summand itself must already
vanish. By the second summand it is then reproduced the old result (1.88), according
to which in thermal equilibrium the two systems in contact exhibit the same
temperature:

1 1

T T

On the other hand, the first summand leads to a new condition:

), ()
I .V oON, EyVs

We formally define, as in Thermodynamics:

aS
u=-T ;  chemical potential. (1.96)
oN Jpv

Therewith (1.95) reads:

M1 K2
T, T,
or equivalently because of T} = T5:
M1 = 2 (1.97)

As already shown after (1.88) with respect to the temperature, this statement can be
generalized:
In an isolated system at thermal equilibrium
there prevails the same chemical potential at all positions

This statement coincides with that of the corresponding Phenomenological
Thermodynamics. For us, this is a further hint that the statistical definitions of
entropy, temperature, and chemical potential are consistent with the thermodynamic
concepts. The chemical potential i, however, can now be calculated microscopically
with the Hamilton function of the system, via the phase volume, when (1.71)
and (1.89) are inserted into (1.96):

-1
(T aTy
(W), 9
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For the complete equivalence of the equilibrium conditions of the isolated system
in Statistical Physics and Thermodynamics we still need a statement, corresponding
to (1.97) and (1.88), about the pressure. For this, though, we do no longer have the
freedom, to statistically define it like T and (1. Pressure is a mechanical quantity and
is therewith, in contrast to ¢ and 7', already undisputedly preset by the concepts and
laws of Classical Mechanics. According to the rules of Statistical Physics, we will
have to average the corresponding phase-space function with the micro-canonical
ensemble. We show in the next subsection that the thermodynamic relation

as
p= T(aV)E,N (1.99)

remains also statistically correct. That means that, when we insert into the right-
hand side of this relation the statistical definitions of T and S, we get the mechanical
definition of the pressure.

1.3.5 Basic Relation of Thermodynamics

The Hamilton function of a system can depend on, in addition to its dynamical
variables (q, p), also on the so-called external parameters. By these one under-
stands such quantities, which do not change during the dynamical movement of the
system in the phase space due to the Hamilton’s equations of motion (1.13), which,
however, are externally adjustable, and whose variation of course influences the
properties of the system. The most obvious example is the volume V of a container,
in which the N particles of a gas are moving around:

H=H(q,p;V). (1.100)

If an interference into the physical system takes place exclusively via the external
parameters, then it is called adiabatic (see Exercise 1.3.7). In order to see, how
the pressure is to be incorporated into the statistical description, we consider such
an adiabatic change of the state for a system, which is described by a Hamilton
function of the type (1.100). In Classical Mechanics the pressure represents the
negative partial derivative of H with respect to the external parameter volume. That
means for Statistical Physics,

pressure

OH
p=—<av> , (1.101)

where the bracket (...) means, according to (1.26), averaging over the micro-
canonical ensemble. This definition is mandatory for us. We want to investigate
whether (1.101) is equivalent to (1.99), that is whether the pressure can indeed
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be expressed by the statistical quantities S and 7. Let the starting point be the
representation (1.99), into which we insert (1.73) for the entropy and (1.48) for
the phase volume:

aS kgT d
p= T( ) = B on(E. V)
E.N

E)% ~ on(E, V) OV
_ ksT . o 3N 3N 3N 3N
= on(E.V) V0 AV /f 4"qd"p /f ¢"qd”p
H(q,p; V+AV)<E H(q.p; V)<E

With

0H
H(q.p; V + AV) = H(q, p: V)+Avav +...

it further follows:

ksT o
= lim PNad®Np
D= on(E. V) 8V50 AV // a@p
E<H(q.p; V)<E—AV(dH/dV)

For the volume integral on the right-hand side we use, in analogy to (1.54), the
formulation as surface integral:

E—AV(3H/9V)

kT d
p= B fim / e / dE’

on(E, V) V0 AV |VH|

H(q.p; V)=E E
_ kT / dfe ( OH
T on(E. V) IVH| \ 2V
H(q.p; V)=E

ksT

~ oH
~ on(EV) >

o f-3

In the last step we have applied the representation (1.56) of the micro-canonical
ensemble-average. It follows further with the density of states Dy (E, V) according
to (1.50):

oH ksT aqu(E,V)
_<_3V>(pN(E)( OE )VN

< 8H>T (8(kBln¢N(E,V))>VN

)% IE
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(113)<_8H>T dS(E,V,N)
v OE VN

(),
\%

The statistical definition (1.99) of the pressure is therewith indeed traced back to the
mechanical formulation (1.101). The pressure p is now introduced by (1.99) into the
Statistical Physics, where we have just convinced ourselves of the consistency of it
with respect to the presetting of Classical Mechanics.
The term
quasi-static change of state

is of great importance for Thermodynamics as well as for the Statistical Physics of
the equilibrium. By this one understands a continuous and sufficiently slow variation
of E, V, and N, so that at each moment a micro-canonical ensemble can be defined.
When these quantities are changing, then of course, strictly speaking, the system
is no longer isolated. Such a change can indeed be caused only by ‘influence from
the outside’. As already explained in connection with the justification of (1.80), the
time, which the process needs, does not matter in the equilibrium statistics. The
process can therefore be executed so extremely slowly that a minimal ‘influence
Jfrom the outside’ is sufficient, and at each moment the system can be considered
as isolated and being in equilibrium. In particular, an entropy is thus definable at
each moment of the course of the quasi-static change of state. For an infinitesimal
change of the entropy it must then hold:

ds = 05 dE + o5 v + o5 dN
\9E )y V) ey NJpy

But with (1.89), (1.96) and (1.99) this is nothing else but the first law of
Thermodynamics,

TdS = dE + pdV — pdN | (1.102)

which we have derived here for the special case of a gas of N particles in the
volume V.—If we also assume the validity of the second law of Thermodynamics
(Sect. 1.3.3), then the basic relation of Thermodynamics is confirmed, which
corresponds to a combination of the first two laws of Thermodynamics ((2.55),
Vol. 5):

TdS > dE + pdV — pudN . (1.103)

The third law of Thermodynamics is of quantum-mechanical nature. We therefore
consider it only in Chap. 2.
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Therewith we have reached our goal. The basic relation, and hence the full
macroscopic Thermodynamics, could be statistically justified. All observables can
be traced back, by the use of the phase volume and the Hamilton function, to
microscopic interactions.

The implementation concept of the Statistical Physics thus consists in the
following partial steps:

1. Formulation of the Hamilton function

H = H(q,p; 2)

z : external parameter,e.g.z =V

by specification of the microscopic interactions.

2. Determination of the phase volume ¢y (E, V) and I'y(E, V), respectively, by
using H'!

3. Derivation of the entropy S = S(E,V,N) from ¢y(E, V) with (1.73) or from
I'n(E, V) with (1.71)!

4. Fixing the temperature 7 according to (1.89), the chemical potential n
according to (1.98), and the pressure p according to (1.99)!

5. Determination of the

internal energy: U= (H). (1.104)

Because of (1.57), (H) = E, U results from solving the entropy expression in 3.
for E:

U=E(S,V,N). (1.105)
6. By Legendre transformation fixing the other thermodynamic potentials:

[free energy: F(T,V,N)=U-T8, (1.106)
enthalpy:  H(S,p,N) = U + pV, (1.107)
[free (Gibbs) enthalpy: G(T,p,N) =U+pV —T8. (1.108)

7. For further evaluation, application of the well-known laws of Phenomenological
Thermodynamics (Vol. 5)!

The motivation for the introduction and the discussion of the pressure, at the
beginning of this chapter, was the still lacking third equilibrium condition for the
isolated system. Because of 7., the proof for the fact that there is
in an isolated system at equilibrium, at each point of the volume,
the pressure is the same
can now be taken over word-for-word from Thermodynamics ((3.71), (3.72), Vol. 5).
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1.3.6 Egquipartition Theorem

With the Statistical Physics, developed so far, we are already able to derive, in
the framework of the micro-canonical ensemble, some important thermodynamic
consequences. This will be demonstrated in this subsection with the example of a
generalized equipartition theorem.

For a classical system with the Hamilton function H(q, p) let us calculate the
statistical average

<m §:> 7 € {q,p}

in the framework of the micro-canonical ensemble. According to (1.52) one
therefore has to evaluate:

aH I d°qd’pmi(30H/dm))
< > _ E<H<E+A
ff dsqdsp

T
aﬂj
E<H<E+A

AD(E) BE // d‘qdpn, e (1.109)

H<E

We reformulate at first the curly bracket with the aid of an integration by parts:

oH ad
/ / dqd'pri, = / / d'qd’pm;, (H—E)
aﬂj BJTI'

H<E H<E
s s 3 s s aﬂi
=//d‘qd‘pa (m(H—E))—[[d‘qd‘p(H—E) .
7 o
H<E H<E

In the second step we could insert the constant E into the integrand, since, because
of dE/dm; = 0, its contribution vanishes. 7; is one of the 2s integration variables
{q1,...,9s, P1,-..,ps}. The integrated first summand is therefore equal to zero,
because, with the other variables {m;, i # j} fixed, the limits of integration are
just given by H(.. ..) = E. The remaining second summand is inserted
into (1.109):

oH o d -
(”" anj> = D(E) OE /f d'qd’p (E—H)

H<E

o 0 1
=5 1+E Lad'p — li dqd'p H
" D(E) ( + aE) // 9P = M AE // @p

H<E E<H<E+AE
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The second and the third term cancel each other:

< 3H> _ o PE) _ dij 8ij 73 ik

Yol T Y D(E) T (1/@(E)B/0E)G(E) T (/0E)Ing(E)  (3/IE)S(E)

When we now insert the definition (1.89) of the temperature, then we finally get the
generalized equipartition theorem

oH
<7Ti > = §;jkgT; (mi € {q.p}) . (1.110)
aﬂj

which, with the Hamilton’s equations of motion (1.13), can also be written as
follows:

(pigi) = —(qipi) = ksT: i=12,....s (L.111)

If one evaluates (1.110) especially for an N-particle system,

qi = Xi; i=1,...,3N: Cartesian position coordinates,
: v .
pi = mxi; pi=—. ; V: potential,
8x,~

it results the statement that the statistical average of the virial of forces ((3.33),
Vol. 1) is proportional to the number of degrees of freedom (3N) and proportional
to the temperature:

3N % 3N
i = — i'i = 3Nk T . 1.112
<;x 8x,-> <qu> 3Nkg ( )

i=1

When we also calculate the average of the kinetic energy,

2 2

~ [ 1 X 3N
@) =<Z x2>= > aip) =" kaT . (1.113)
i=1
we obtain the equipartition theorem of the energy, which states that each degree
of freedom contributes, on an average, 1/2 kgT to the kinetic energy. One notes in
passing that the result (1.113) makes the statistical temperature, defined abstractly
in (1.89), for the first time illustrative and measurable.

When we finally combine (1.112) and (1.113), then we recognize the virial
theorem, known from Classical Mechanics ((3.33), Vol. 1), according to which the
average of the kinetic energy is just half the virial of the system:

~ 1
T) = 2<;xiaxi>‘ (1.114)
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Note that we have proved this statement in the Classical Mechanics (Vol. 1) for the
corresponding time-averages. The fundamental presumption of Statistical Physics,
time-average = ensemble-average, thus finds its confirmation in this special case.

1.3.7 Ideal Gas

We consider as a further example the classical ideal gas, i.e., the noninteracting gas
consisting of N atoms (= mass points) in the volume V. Let us choose the line
of solution in the way, as was described in the form of a ‘recipe’ at the end of
Sect. 1.3.5. In this sense, the first point of program consists in the formulation of the
Hamilton function:

3N 2

P; s

H=22m+V(q1,...,q3N). (1.115)
i=1

The potential V shall realize the constraint, which keeps the particles within the
volume V, which we can assume to be a cuboid with the edge length L. The
concrete shape of the container, though, does not play any role for the following. It is
important that the particles are elastically reflected at the walls, so that their kinetic
energy thereby does not change. The walls then need not be explicitly included in
the considerations. They only realize the potential

L
0, ifall|gl < _,
if all |g;| 5

V(g) = (1.116)

oo otherwise .

In the next step the phase volume,

on(E, V) = ot// dqy...dgsydp; ...dpsy ,

H<E

has to be calculated. The space integrations can immediately be done, because
of (1.116). They obviously yield a factor VV:

on(E, V) = aVV // dp, ...dpsy . (1.117)
H<E

The Hamilton function depends, for particles within the volume V, only on the
squares of the particle momenta. For all combinations, which fulfill

\/p%+...+p§N<~/2mE,
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H < E holds. The corresponding phase points thus belong to ¢y(E, V). The
remaining multifold integral in (1.117) hence represents a sphere in the 3N-
dimensional momentum space with the radius

R = \/p%+...+p§N= V2mE .
We have calculated the volume of such a sphere as Exercise 1.3.1:
VP = Cay 2mE)N? .

We can assume, w.l.o.g., N to be an even number. If the particle number is actually
odd, then we add (subtract) a particle, without influencing the physics of the system
even in the least, because of N ~ 10%2. For even N, 3N is also even, and we take
from Exercise 1.3.1:

3N/2

CN = vy

The phase volume of the ideal gas is therewith determined:

v )N T3N/2

) G/ (2mE)3N/? (1.118)

w@w=M(

We have also inserted here @ = o*/h*", according to (1.45). With the defini-
tion (1.73) and the Stirling formula

N
In 3 !5\33N ln3N—1 ,
2 2 2

we now have found the entropy of the ideal gas:

wly (4mE 23
8 ( 32 N) ty
In this form, the entropy is determined only up to the term kg In ™. If one assumes
that here it is only an arbitrary constant, then this fact would not bother us too
much. We also know from Thermodynamics (Vol. 5) that only entropy-differences
are relevant. One would then take, out of convenience, «® = 1. But this choice leads

to contradictions. For instance, Phenomenological Thermodynamics deduces from
the extensivity of the entropy the so-called homogeneity relation ((3.39), Vol. 5):

S(E,V,N) = kg Ina* + Nkg (1.119)

S(AE, AV, AN) = AS(E,V,N);: A eR. (1.120)
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This is violated by (1.119) if @* = 1 (or «* = const). The In V-term in (1.119) is
disturbing. The still undetermined quantity «* must therefore represent something
more than an unessential constant. Let us try to collect additional information
about o*.

The energy-differentiation of the entropy should, according to (1.89), lead to
the temperature. With the assumption that «* does not depend on E, it follows

from (1.119):
AN _ 3 Nks
T \OE/)y, 2 E

This leads with
3
U=E= 2NkBT (1.121)

to the exact thermodynamic relation for the internal energy of the ideal gas (caloric
equation of state). The assumption of the energy-independence of o* thus seems
to be justified. It does not come into conflict with Thermodynamics.—Let us
investigate in the same manner the volume-dependence! Presuming that o* does
not depend on V, one finds, with (1.99), from (1.119) for the pressure:

T(aS) TNKs
p = = B
WV )iy 14

But this is just the correct thermal equation of state of the ideal gas:
pV = NkgT . (1.122)

We conclude therefrom that «* can not be a function of V, either. It remains then
only a possible dependence on the particle number. How might this look like?

The homogeneity relation (1.120) will be violated, because of the factor V in
the argument of the logarithm in (1.119), if one takes a* = 1. If there stood the
intensive quantity V /N instead of V, everything would obviously be in order. But
that can be achieved by the choice

ot = , (1.123)
and by the use of the Stirling formula Ina* ~ —N (InN — 1). Hence, (1.119) reads:

SE.V.N) = Nkg 41| ¥ ("M E v 40 (1.124)
BAREREED bl DA N VERS 2 - '
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This equation turns out to be indeed the correct entropy expression for the ideal gas.
According to its discoverers it is called the Sackur-Tetrode equation. From this
equation it follows, by solving for E, the thermodynamic potential internal energy
U = E as function of its natural variables S, V and N:

32\ (N3 28 5
UGS, V,N) =N -7 . 1.125
( ) (47rm) (V) eXp(3NkB 3) (1.125)

One easily realizes that this result agrees with that of the Phenomenological
Thermodynamics ((3.44), Vol. 5), which must be considered as a further support of
the ansatz (1.123). In contrast to (1.124), though, in Thermodynamics, we had to still
let an entropy constant o free.—Nevertheless, there is some evidence that (1.123)
indeed is the correct choice for o*. But we will not yet be content therewith and
look for further arguments for (1.123).

Already for the Phenomenological Thermodynamics there appeared a major
problem in connection with the mixing of two ideal gases, which is known under
the keyword Gibb’s paradox. Let us briefly recall the situation. An isolated system
(volume V = V) + V>, particle number N = N; + N,) may at first be divided
by a wall into two chambers, in which there are at the same temperature 7" two
ideal gases (Vi2, Ni») (Fig. 1.10). The wall shall be mobile, so that in both the
chambers the same pressure p arises. One is now interested in the change of entropy
(entropy of mixing), which results as a consequence of the mixing of the two gases
after the removal of the wall. Since both the gases had before the mixing the same
pressure and the same temperature, these two quantities will not have changed after
the mixing. In particular, it holds because of (1.122):

NN N N
=" (1.126)
Vi oV, Vv

For the entropy change one finds with formula (1.119) and with ¢* = 1, when we
replace E/N according to (1.121) by (3/2)kgT:

AS = Safler - Sbefore

2
= > (S(T.V.N;) = S(T. V;. Ny))
i=1

\% \%4
=kg |[NiIn + N> In 1.127
|: v, Vy ( )
Fig. 1.10 Arrangement for H
the interpretation of the N,V H o,V
entropy of mixing of two H
ideal gases Lp i Tp
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(see (3.54), Vol. 5). For two different gases this expression is surely correct, and
also experimentally verifiable. The same result, by the way, is given also by the
Sackur-Tetrode equation (1.124).

The same experiment is now performed with two identical gases. The o¢* = 1-
formula (1.119) then yields as entropy of mixing

2
AS = S(T.V.N) = > _S(T.V;.N;)
i=1

= NkB InV _leB In Vl —Nsz In Vz

|4 \%4
= kg [N 1 + N> 1 >0.
B|:1I1V1 2nV21|

That is the same expression as that, which is found in the case of the mixing of
different gases (1.127). This fact is called the Gibb’s paradox. AS > 0 for the
mixing of identical gases would indeed be fatal, since then the state quantity
entropy would depend on the previous history of the system. Depending on whether
or not the state (N, V,T) was prepared by removing a wall would yield another
entropy. It would even be possible to create arbitrarily large entropies, simply
by dividing the container into arbitrarily many chambers of the same pressure
and the same temperature, before the removal of the corresponding walls.—The
right formula (1.124) for the entropy, however, does not know the Gibb’s paradox.
Because of (1.126) it follows:

2
AS =S(T.V.N)= > S(T.V;i,N;) =0 (1.128)

i=1

This is a further hint that the choice (1.123) for «™, which is called the correct
Boltzmann-counting, is exact.

With it, the ‘right’ phase volume (1.44) of the micro-canonical ensemble for an
N-particle system in the volume V reads:

1
I'n(E,V) = NN / / a*Nqd®p . (1.129)

E<H(q,p)<E+A

Up to now we have justified the factor 1/N! by physical evidence because without
this factor certain basic properties of the entropy would we violated. It would of
course be desirable, to be able to recognize its meaning somewhat more directly. In
particular, it raises the question, what happens, when the system consists of two or
more types of particles. Do we have then the same factor 1/N!, where N = )N,

J
is the total particle number, or do we have to choose something different, maybe

(TN
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For a deeper justification of the correct Boltzmann-counting some quantum-
mechanical aspects must be taken into account. Quantum Mechanics teaches us
that the physical properties of systems of identical particles and those of systems
of distinguishable particles can be very different (section 8.2, Vol. 7). Typical
phenomena result alone from the fact that the interchange of two identical particles
can not yield a new state. More precisely: All states of systems, which consist of
identical particles, are (anti)symmetric with respect to particle interchanges. The
principle of indistinguishability is actually alien to Classical Physics. All classical
particles are considered as distinguishable, being identifiable for all arbitrary later
times by the use of the Hamilton’s equations of motion. That means in particular,
that the interchange of two particles of the same kind leads classically to a new
state, although the corresponding states, arising out of each other, can by no means
be distinguished macroscopically by a measurement. For N particles there are N!
possibilities for interchanges of this kind. Each possibility corresponds to another
classical state. The volume of the phase space is in this sense inflated; in particular
also when by removal of separating walls, as in the above example, the possibilities
of interchanges increase. The question is, whether this ‘inflating’ of the phase space
is really reasonable.

We have realized again and again, when dealing with Quantum Mechanics
(Vol. 6,7), that Classical Mechanics can be considered, under certain conditions,
as a correct limiting case of Quantum Mechanics. One therefore might suppose
that, at least in the here interesting context, the quantum-mechanical principle of
indistinguishability of identical particles does not get lost by the limiting process
Quantum Mechanics —> Classical Mechanics. But if this were indeed the case,
then the factor 1/N! in (1.129) would just offset the mentioned ‘inflating’ of
the phase volume as a consequence of identical particles, and would therewith
let the volume of the phase space correspond to the number of really different
states. Furthermore, it would answer the above addressed question, what happens
when the total system is composed by ng different particle types. Of course,
only the interchanges within one and the same sort will not change the state. The
corresponding generalization of (1.129) thus reads:

1
I'n(E, V) = o /[ d*Ngd*Np . (1.130)

3N Al
h 1_[1 Nl' E<H(q.p)<E+A
j=

Equation (1.129) is contained herein as the nop = 1-special case.

The same conclusion, namely to see Classical Mechanics realized as the limiting
case of Quantum Mechanics, also enforces the choice of the factor #*V, where & is
the well-defined Planck’s quantum of action. This factor we had introduced in (1.45)
at first only to get the correct dimension.
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1.3.8 Exercises

Exercise 1.3.1

1. For the surface Sy(R) of an N-dimensional sphere of radius R it holds:

Sn(R) = NCyR"™! .

Verify:
N2 '
, if N even,
Cv = 4 (N/2)!
N = 2 2m)N-D/2
, if Nodd

N

(double factorial: N!'' =1-3-5---N).
2. Show that for large dimensions N, practically the full volume of the sphere is
compressed in a thin surface layer.

Exercise 1.3.2

For the two-level system determine from Exercise 1.2.9 the entropy S(E, N). Derive
the temperature-dependence of the (internal) energy E and show that the entropy
can be expressed by

1

n(T) = exp(2Be) +1°

Which meaning does n(7T) have? How does S(T', N) behave for T — 0?

Exercise 1.3.3
Let the phase volume of a gas of N particles in the volume V be given by

ITv(E,V) = f(N)VVE3N?
1. Calculate the caloric equation of state:
U=ET,V,N).
2. Calculate the thermal equation of state:
p=p(T,V.N).
3. Verify for an adiabatic change of state (S = const, N = const):

pVS/3 = const
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Exercise 1.3.4
Consider two ideal gases in an isolated box of volume V (particle numbers N, N;;
particle masses mj, my).

1. From the phase volume (partition function) ¢y (E, V) of the total system, derive
the conditions for the thermal equilibrium!

2. How do the temperatures 7}, 7, of the two gases behave in relation to the
temperature of the total system?

3. How does one get the total gas pressure p from the partial pressures p;, p, of the
two partial gases?

Exercise 1.3.5
Consider, as in Exercise 1.2.6, a system of N noninteracting particles each of mass
m, which move within the xy-plane in the potential

0, if0<x=<ux0 0=y=yo
Vix,y) = ) .
oo otherwise

1. Demonstrate the equivalence of the two representations (1.71) and (1.73) of the
entropy for large particle numbers N:
S(E, V,N) = kB In (pN(E, V) s
S(E, V,N) = kB In FN(E, V) .
2. Calculate the temperature 7, and represent the entropy S and the free energy F

as functions of 7, V and N. For this purpose choose the quantity «*, which is not
yet fixed by the definition of the phase volume (1.45), as:

, 1
o= Gee(1129).

3. Determine the chemical potential © = w(E, V, N) and compare the result with
the thermodynamic relation:

_(F) = (T.V.N)
=\ ), ~ 57

Exercise 1.3.6
Let a system of N independent linear harmonic oscillators be given.

1. Calculate the phase volume gy (E).
2. Find the entropy S(E, N) and calculate the temperature 7 = T(E, N). (V in this
example is not an external parameter!)
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Exercise 1.3.7
Let the Hamilton function of an isolated thermodynamic system depend, besides on
the canonical variables q and p, also on the external parameters zy, 22, . . . , Zy:

H=H(q,p; 21,22, -+ 2) -

Show that for the change (dU),q of the internal energy U = (H), it must be in the
case of a purely adiabatic change of state:

n

(dU)as = Z(aH>dzi .

i=1 dzi

Exercise 1.3.8

1. For the system, described in the preceding exercise, calculate the change of the
phase volume

OE ez ) = 0 // dqd'p

H(q.p;z1.....z0)<E

due to a general change of the variables:
E - E + dE; i =~z +dz (i=12,...,n).

2. Show that for a purely adiabatic change of state (dE = (dU),) the phase volume
remains uninfluenced. One speaks of adiabatic invariance of the phase volume.

Exercise 1.3.9

Consider a system of N noninteracting atoms of a gas in the volume V (cuboid of
the edge length L). This is described by a micro-canonical ensemble, where, under
neglect of the energy smearing A, it can be assumed for the density distribution
function

. L
p(q,p) ~ 8[(p} + P} + ... +ply) —2mE] ifall g < 5

1. Show that the probability that a given particle has a velocity component in the
interval (vy, v1 + dv) is given by Maxwell’s velocity distribution

w(vy)dvy = _mv%
1)dv; = Cexp s T dvy

(C = normalization constant).
2. How does the probability distribution read for the magnitude of the velocity v of
a particle?
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3. Which is the most probable magnitude of velocity?
4. Calculate (v), (v) and /(v2).

Exercise 1.3.10

The functions f(E) = EV with N = O(10?®) and Inf(E) are to be expanded around
E = E, in a Taylor series. Which conditions must be fulfilled, in order that the term
of the first order is very much smaller than that of the zeroth order? For which of
the two functions is thus a Taylor series more reasonable?

Exercise 1.3.11
Calculate the density of states Dy (E, V) of the ideal gas (N particles in the volume
V). Use the definition (1.74) of the entropy,

S(E, V,N) = kB ll’lDN(E, V) B

in order to calculate, by means of the density of states, the temperature of the gas.
How does this differ from the temperature (1.121), which is calculated by using the
phase volume gy (E, V)?

1.4 Canonical Ensemble

In the micro-canonical ensemble the selecting point of view for the systems,
which belong to this statistical ensemble, is that they have, except for a small
indeterminacy A, all the same energy:

micro-canonical ensemble

E ~const, V =const, N = const.

This ensemble is thus suitable for the description of an isolated or quasi-isolated
system. From the given quantities £, V and N the entropy and the basic relation of
Thermodynamics can be derived.

Frequently, however, the (experimental) starting situation is different, e.g., when
the considered system is in thermal contact with a heat bath. Heat bath is to be
understood here in the same manner as in Thermodynamics (subsection 1.1, Vol. 5),
namely as a very much larger system, whose energy content practically will not
change by the contact with our reference system, and by the therewith caused energy
fluctuations. In particular, for the reference system, it defines a constant temperature.
The corresponding statistical ensemble is called
canonical ensemble

T =const, V =const, N = const.

The canonical ensemble is characterized, as the micro-canonical ensemble, by a
certain density distribution function p(q, p). To find this function and to motivate
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it will be the first point of program of this section. The second point will consist
in the effort to demonstrate the statistical equivalence of the micro-canonical and
the canonical ensembles. The latter is indispensable, since the two ensembles
actually correspond to physically completely different starting situations.—A third
important statistical ensemble, namely the so-called grand-canonical ensemble, will
be discussed in Sect. 1.5.

1.4.1 Partition Function

We choose as our reference system X; a small, but nevertheless macroscopic part of
a very large isolated system, for which a micro-canonical ensemble can be defined

E<H(q,p) <E+A.

It shall be in its thermal equilibrium. That means (Sect. 1.3.2) that at each point of
this super system the same temperature 7 has been established, thus in particular
also in X;. In the following we are exclusively interested in the properties of
31, which is in thermal contact with the very much larger complementary partial
system X, (Fig.1.11). It can therefore exchange energy, but without particle or
volume fluctuations. A corresponding situation we have already discussed once,
namely in connection with the proof of the additivity of the entropy, in Sect. 1.3.2.
Now, however, the systems %, and X,, which come into question, shall be of very
different orders of magnitude.

The thermal contact must of course be managed by interactions between X, and
3. As exemplified in connection with the reasoning of (1.82), these interactions
can be assumed, however, as asymptotically small, since the time required to reach
the equilibrium does not actually matter, so that to a good approximation holds:

H(q,p) = H(q1,q2, p1.P2) ~ Hi(q1,p1) + Ha(q2,p2) - (1.131)

H, and H, are the Hamilton functions of X; and X,, respectively. Since the super
system is isolated, the energies E, E; of the partial systems are restricted by

E<E +E <E+ A,

Fig. 1.11 Small system X,
Wlthm the heat bath of an X, :(E,, V5, Ny)
isolated super system X,.
Schematic representation for /EI
the interpretation of the

canonical ensemble 21 : (El W )Nl)
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which, however, can be fulfilled in a manifold manner. The equilibrium state
(EI,EZ) is, as discussed in detail in Sects. 1.3.1 and 1.3.2, marked by the maximal
number of possibilities of realization.

We now want to build a statistical ensemble consisting of systems which are
identical to ¥, and have to derive, for this purpose, the corresponding density
distribution function. According to (1.25) this function has the meaning of a
probability density, which we will exploit for its determination. Let p(q, p) be the
density distribution function of the micro-canonical ensemble of the super system.
Then one can interpret

o(q,p) = o(q1. 92, P1.P2)

as the probability density to find the partial system X in the phase 7, = (qi, p1)
and the complementary partial system X, in the phase @2 = (q2,p2). By this
one gets the special probability density for X; by integrating over all the X,-
possibilities:

p1(q1,p1) /,,,/d3qu2d3sz2 p(q1, q2, p1,P2)

= rN(z V) / / d™q2d"p, ©(H(q, p)—E)O(E+A~H(q,p)) -

In the second step we have inserted (1.43) and (1.47) for the micro-canonical
distribution p of the super system. ®(x) is the step function:

1, ifx>0,
o) = na= (1.132)
0, ifx<0.

When we take H;(q1, p1) = E}, then it can further be reformulated:

o
, _ . d3N2 d3N2
p1(qi,p1) = T'v(E, V)/ / q>2 P2

O[Ha(q2. p2) — (E— E))|O(E — E; + A — Hy(q2. p2))
_ I'n,(E—E, Vs)

R (1.133)

The reservoir X, can in principle be made arbitrarily large (N, >> N;). Furthermore,
we know, due to previous considerations, that the distribution of the configurations
I, (E1, V)TN, (E — Ey, V2) will exhibit an extremely sharp maximum at the most
probable configuration (E1 JE—E 1), so that in reality only energies E; ~ E 1 are of
interest. In each case it will hold for the relevant energies E;

E1%E1 <<E—El%E
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For the logarithm of the phase volume I'y, (E—Ej, V») in (1.133) a Taylor expansion
therefore offers itself:

kB In FNZ(E — El, Vz) = SQ(EZ =F—- El, Vz,Nz)

LAY

= S(E,Vo,N,) — FE
NANA 1(3E2

) (Ex =E)+ O(E}) .
N2, V>

The first summand is, with respect to X, a constant (Sy). For the second summand

we write with (1.89):
as 1
( 2) (Ey=E)= _ .
0E> [y, v, T

Actually, on the right-hand side, there should appear the temperature, which the
system X, would take at the energy E. Because of £, = E — E| ~ E the deviation
from the temperature T of the heat bath is, however, negligibly small:

So Ei
InI'y,(E—E,V,) ~ — .
n Nz( 1 2) kB kBT
This means, when we still use the abbreviation (1.90) (8 = 1/kgT), usual in

Statistical Physics:
Ty, (E—E;, V) ~ e50/kB p=BEL — ,So/ks ,~BHI(q1.p1)
According to (1.133), we have therewith found for the density distribution function:

p1(a1, p1) ~ exp(—BH;(q1,p1)) -

The index 1 can now be left out because it only served to distinguish from 3.
As a heat bath it fixes the temperature T, but otherwise it no longer influences the
further considerations. The canonical ensemble, as a group of congeneric systems
in thermal contact with a heat bath of the temperature 7T, is thus described by the
following distribution function

exp(—BH(q.p))

/B3NN [+ [ dNqd*Np exp(—pH(q.p)) (139

p(q.p) =

which, according to

1
LA /---/dwqdwpp(q,p) =1,
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is normalized to one. The characteristic pre-factor is justified in the same manner
as commented on in connection with (1.129). In contrast to the micro-canonical
distribution function (1.43), it is here a function, which is continuous function in the
entire phase space, a fact that can lead to substantial mathematical advantages.

The density distribution function p(q,p) of the canonical ensemble depends
on q and p only via the Hamilton function. It is therefore, according to (1.41), a
distribution function of a stationary ensemble. With (1.26) the average of a phase-
space observable F(q, p) is now given by

eee f d3qu3Np e_ﬁH(q'P)F(q’ p)

(F) = /
f...fd3qu3Np e—ﬁH(q,p) ’

(1.135)

where a possible temperature-dependence is brought into play by .
The central role, which in the micro-canonical ensemble is attached to the phase
volume 'y (E, V) ((1.47), (1.71),..), is adopted in the canonical ensemble by the
partition function Zy (7, V) .

1 _
Zn(T,V) = LN /---/d3qu3Npe PH(P) (1.136)

With respect to applications, this is probably the most important formula of the
whole Classical Statistical Physics. We will demonstrate in the next subsection
that all the relevant quantities of Thermodynamics can be directly derived from
Zn(T, V). As soon as Zy(T, V) is determined, the problem can already be considered
as practically solved. The pre-factor can again be motivated as that of the phase
volume (1.129) in the micro-canonical ensemble.

If the Hamilton function of the N-particle system has the usual form

N2
pi £y
Hap =) ' +V@,

i=1
then the integrations over the momenta in (1.136) can directly be done. When we

denote by pi,pa, ..., psn the Cartesian components of the N-particle-momentum
vectors p;, it follows:

+00 ,3
/"'/dpl...dp3N exp|:—2 (P%++P%N)i|
m
—00

+oo N 3N
2
= / dpl exp (— 'B p%) = |:\/ mn:| (27rkaT)3N/2 .
2m B

—00
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With the so-called
thermal de Broglie wavelength

h

MT) = ,
(D 2wmkgT

(1.137)

which has to be distinguished from the quantum-mechanical de Broglie wave-
length ((2.14), Vol. 6), the partition function reads:

Zn(T, V) = dNge V@ (1.138)

1
AN (T)N! /V

Because of its fundamental meaning we will present also a third possibility of
representation for the partition function, which uses the density of states Dy(E, V)
defined in (1.50):

1
Dy(E, V)dE = NN / / a*Nqd*Np . (1.139)
.E<H(q,p)<E+dE

The comparison with (1.136) leads to:
Zy(T, V) = / dEDN(E, V)e PE . (1.140)

Dn(E, V)dE corresponds to the number of states in the energy interval (E; E + dE).
The full integrand in (1.140) therewith represents the number of states of this energy
interval, which are at the temperature 7 occupied by the canonical ensemble.

1.4.2 Free Energy

In the micro-canonical ensemble the internal energy U is equated with the energy
variable E. Strictly speaking, however, it is an ensemble average of the Hamilton
function (1.104):

U= (H).

This definition holds very generally. It leads with (1.135) and (1.136) to the
following connection with the partition function:

U=UT,V,N)= —373 InZy(T.V) = kgT? BaT InZy(T.V) . (1.141)
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It is, however, by no means clear from the beginning that the internal energy,
calculated by the canonical ensemble, has anything to do with the energy, which
is micro-canonically interpreted as internal energy. The equivalence of (1.141)
and (1.104) is not at all trivial, because the physical starting situations of the two
ensembles are simply too different. While, namely, in the micro-canonical ensemble
all ensemble systems have the same energy, except for a small indeterminacy A, so
that (H) ~ H & E, in the canonical ensemble all energies appear, so that (H)
is a real average. Only if the distribution of the system energies exhibit at (H) a
pronounced maximum, can we therefore expect that the two descriptions (canonical,
micro-canonical) yield equivalent results. We will show that this is indeed the case,
however, only for the asymptotically large, macroscopic system.

As discussed in connection with (1.99), the definition of the pressure is uniquely
preset by Classical Mechanics. Using (1.101) one finds a rather simple connection
with the partition function:

dH\ 10
p= _<av>: 5oy MATY). (1.142)

The micro-canonical ensemble is determined by the variables U = E, V, and N.
These are, as we know from Thermodynamics ((3.9), Vol. 5), the natural variables
of the thermodynamic potential entropy S = S(U,V,N), which thus plays the
central role in the micro-canonical ensemble.

The internal energy U (1.141), represented by the canonical variables T, V, N,
is not a thermodynamical potential. These are in fact the natural variables of the
free energy F(7,V,N), which is therefore of similar importance for the canonical
ensemble as the entropy is for the micro-canonical ensemble. In order to show, how
the free energy arises from the partition function, we at first recall its thermodynamic
definition ((3.10), Vol. 5):

F(T,V,N)=U(,V,N)—TS(T,V,N) . (1.143)
We use the total differential
dF = —8dT — pdV (N = const)

for the investigation of

F 1 U
d(—BF) = k2T g (SAT +pdV) = FAT +pdv | .

1
ksT
From this we get after insertion of (1.141) for U and (1.142) for p:

de ) = (aanN(T, V)) . (aanN(T, V)
V.N

av.
T v )T,N
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Except for an unimportant constant one finds therewith the following important
connection between the free energy and the partition function:

F(T,V,N) = —kgTInZy(T,V) . (1.144)
Sometimes one also writes:
ZN(T.V) = exp(—BF(T,V,N)) .

A further important requirement for the free energy concerns its extensivity. This
can be relatively easily shown for (1.144). For two partial systems in thermal
equilibrium, the interaction between which can be neglected in the sense of (1.131),
the common partition function can be written as:

1 _
Zn(T,V) = NN /---/d3qu3Npe B(H1+Hy) (N=N+Ny) .

The pre-factor is justified as in (1.130). The interchange of a particle from the one
partial system to the other partial system yields, though, a new state. Therefore the
denominator is N;!N,! instead of N!:

1 —
Zy(T,V) = BN, | /"'/d3qud3N1pe BH1(q1.p1)

.h3N21N | / / Vg p e P @)
H!

=Zn, (T, V1)Zy,(T, V>) .

Therewith, according to (1.144), the extensivity of the statistical free energy is
evident:

F(T,V,N) = F\(T.Vi,Ny) + F»(T. V5,N>) . (1.145)

The still remaining, distinctly more difficult task consists in proving the equivalence
of the statements of Statistical Physics, which are, on the one hand, derivable with
the micro-canonical ensemble, and on the other hand, with the canonical ensemble.
We have formulated the problem for the internal energy already in connection
with (1.141). A further important example is the entropy, which, in the concept
of the canonical ensemble, can be derived from the partition function:

OF 0
S(T,V,N) = — (BT)V,N = kg [BT (TInZy(T, V))LN ) (1.146)

We will have to demonstrate in Sect. 1.4.4 that the so determined entropy is
consistent with the micro-canonical definition (1.71) and (1.73), respectively.
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With (1.141), (1.142), (1.144), and (1.146) all thermodynamic potentials can be
ultimately traced back to the partition function. The solution of a physical problem
within the framework of the canonical ensemble therefore starts always with the
attempt to determine the partition function Zy (7, V), with the Hamilton function
H(q, p) and the definition equation (1.136). As soon as this is achieved, the problem
is practically already solved, because the thermodynamic potentials can be deduced
from Zy(T, V) in a rather simple manner. That is what was meant above, when we
denoted the partition function as the probably most important quantity of the whole
Statistical Physics.

1.4.3 Fluctuations

In Thermodynamics (see (4.33), Vol. 5) we had denoted as thermal stability
condition the fact that the heat capacity Cy can not become negative:

co=1(%) >0 (1.147)
=i \er), T :

This relation is surely plausible (isochoric heat supply raises the temperature!),
but could not strictly be proven in the framework of Thermodynamics. Statistical
Physics verifies (1.147) as a result of an energy fluctuation formula, which at this
stage, though, helps us, above all, to recognize the equivalence of micro-canonical
and canonical ensembles:

U 3 9
Cy = ( ) =— InZy(T. V)
or ), T 0B

92 (1 0Zy
= kB> InZy = kpfB>
BB B,BZHN BB 98 (ZN 3,3)

| 12y 1 (0zy
= foh [ZN 0> va(aﬁ) '
Insertion of (1.135) and (1.136),
Cy = ks> ({H) — (HY) = knp*((H — (H))*) 2 0., (1.148)

proves the thermal stability (1.147).—We can, however, get still further information
from this important formula. Other than in the micro-canonical ensemble, the
energies of the systems of the canonical ensemble are distributed around the average
value U = (H). There appear in principle all energies. As already commented on
in connection with (1.141), an equivalence of the statistical descriptions, given on
the one hand by the micro-canonical ensemble and, on the other, by the canonical
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ensemble, is to expect only for the case that the distribution of the canonical system
energies has a pronounced maximum at the mean value (H). That can easily be
checked with the fluctuation formula (1.148). The relative mean square deviation of
a system energy from the mean value (H) is given in a canonical ensemble by

V(H?) — (H)? _ VCyksT?

(AE) = (H) - U

(1.149)

Since one can always assume
Cy <N ; UxN,

(e.g.,ideal gas (1.121): U = (3/2)NksT, Cy = (3/2)Nkg), (1.149) means a relative
width of the energy distribution around (H) of

1
SRy =l

which for macroscopic systems (N ~ 10?%) becomes extraordinarily narrow. It is
indeed true that in the canonical ensemble all energies appear, but, on the other
hand, at a given temperature T almost all systems have obviously an energy, which
deviates only non-essentially from U = (H). For asymptotically large systems the
internal energy U must be considered as practically sharp. That is the decisive
fact with respect to the statistical equivalence of micro-canonical and canonical
ensemble. In the next subsection we develop the analogous considerations for the
entropy.

1.4.4 Egquivalence of Micro-Canonical and Canonical
Ensemble

The micro-canonical and the canonical ensemble are based on completely different
starting situations. It can therefore not at all be considered as a matter of course
that for the macroscopic systems, which we are here interested in, they come to
consistent physical statements. We will convince ourselves in this subsection that
this is indeed the case, because the whole concept of the Statistical Physics stands
or falls therewith.

In both ensembles there are prescriptions (definitions or derivations) for the
fundamental quantities temperature and entropy. To demonstrate the physical
equivalence of micro-canonical and canonical descriptions we have therefore, above
all, to prove that entropy and temperature do really mean exactly the same in both
ensembles. According to our pre-considerations in the last subsection concerning
the internal energy, we can consider the two ensembles as equivalent if temperature
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and entropy of the canonical ensemble agree with the corresponding quantities of a
micro-canonical ensemble with the energy E = U = (H):

T"(E=U=(H))«— T,
S"(E = U = (H), V,N) <> S(T, V,N) . (1.150)

Thereby it is to be taken into consideration that for the canonical ensemble the
temperature 7" and for the micro-canonical ensemble the energy E are fixedly pre-
given quantities. First condition for the proof of equivalence is thus that the energies
of the systems, which are not fixedly pre-given in the canonical ensemble, are
sharply concentrated around the mean value U = (H), so that almost all ensemble-
systems have an energy, which differs only non-essentially from U. Then it is
allowed to treat the internal energy U as a variable which characterizes the full
ensemble. That this indeed is the case in the asymptotically large system, we have
shown in the last subsection. But a sharply concentrated energy distribution means
also that the quantity

Dy(E, V)e PEdE |

which is proportional to the probability that the considered system has an energy
from the interval (E; E + dE), possesses a sharp maximum at E = U = (H). That
holds then of course also for the logarithm of this expression. We investigate the
corresponding extreme-value condition:

0

!
0= BEln(

DA(E.V)EHP),_,

aaE (InDy(E, V) — BE)

1 3 mce j—
=+, (BES (E, v,zv)) (E=1U).

V.N

=

In the last step we have inserted the definition (1.74) of the micro-canonical entropy.
The extreme-value condition leads with (1.89) eventually to:

1 9 mce _ _ 1
(Tm(_e(E)) (E=U) = (aES (E. V,N))V’N E=0)= . (1.151)

This relation represents one of the two conditions of equivalence (1.150). The
fixedly pre-given temperature T of the canonical ensemble corresponds exactly
to the temperature, which belongs in the micro-canonical ensemble to the energy
E = U = (H), i.e., to the energy, which almost all systems of the canonical
ensemble possess.



1.4 Canonical Ensemble 71

We attach a Taylor expansion to the just investigated term around its maximum
atE = U:

In(Dy(E, V)e PF) = InDy(E, V) — BE
2

= In(Dn(U, V)e PY) + ;(E—U)z ( 3222

InDy(E, V)) (E=U) + ...
V.N

The second summand can be evaluated as follows:
4 InDy(E, V) (E=U) = ! 0 ! (E=10)
op2 T ) T T T T e \ETe(E) )y

1 BT'”“(E)) ey
kB(T’"“(U))2 ( OE V,N( )

Because of (1.151) one can identify 7 (U) with T

D e (T
(MT QOWGLJ” QULW_Cf

It remains therewith for the above expansion:

1 1
In(Dyn(E, V)e PE) = In(Dy(U, V)e PU) — _(E — U)?
n(DN(E.V)ePF) = In(Dy(U.V)e) = J(E=UY o+
The so estimated expression ,
—BE kB:BZ 2
Dy(E.V)e ™ ~ Dy(U. V) exp(—=pU)exp| — ) - (E—U)7| .
14
represents just the integrand of the partition function (1.140):
kg B* 2
Zn(T, V) =~ Dy(U, V) exp(—BU) | dEexp|— 2C (E-U)~|.
v

On the right-hand side there appears a standard integral when we fix the integration
limits at 00, which is always allowed because of the quickly decreasing exponen-
tial function:

ZJTCV

o’ (U = (H)). (1.152)

Zy(T, V) ~ Dy(U, V)e_ﬂU\/

This very useful formula leads us to an estimation for the free energy (1.144) of a
macroscopic system:

27tCV

1 1 1
F(T,V,N) = 4 InZy(T.V) = U — 5 InDy(U.V) + , In wp?
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For the asymptotically large system the last summand (InCy ~ InN) can be
neglected in comparison to the two others (U ~ N, In Dy ~ N). The free energy of
the canonical ensemble,

F(T,V,N) =U(T,V,N) —TS“(T,V,N) ,
can therefore also be written as follows:
F(T,V,Ny=U-TS"(E=U,V,N). (1.153)

We have thereby exploited the definition (1.74) for $™“. The comparison of the
last two equations reveals that for the macroscopic system the entropy of the
canonical ensemble agrees with that of the micro-canonical ensemble, if the latter
is defined to the energy E = U, where U = (H) represents the extremely sharp
maximum of the canonical energy distribution. The second of the two conditions of
equivalence (1.150) is also therewith verified. However, it cannot be stressed often
enough that this equivalence holds only for asymptotically large systems, because
the neglect of In N-ferms with respect to terms, which are proportional to the particle
number N, is of course only asymptotically correct.

Hence, although the two ensembles correspond to two completely different
starting situations, nevertheless for macroscopic systems they come to consistent
statements. For the treatment of a concrete physical problem we can choose,
according to expedience, the one or the other representation. In most cases the one
that is mathematically better tractable is the canonical ensemble. The equivalence
of the two ensembles obviously depends decisively on the fact, investigated in
Sect. 1.4.3, that the distribution of the system energies of a canonical ensemble
exhibits an extraordinarily sharp maximum at the energy E = (H) = U so that
almost all members of the ensemble have this energy. Hence, although in principle
all energies appear in the canonical ensemble, nevertheless there is de facto a unique
relation between the fixedly pre-given temperature 7 and the energy. From this
reason, the canonical ensemble is de facto equivalent to a micro-canonical ensemble
with the energy £ = (H) = U.

1.4.5 Exercises

Exercise 1.4.1
Determine the classical canonical partition function of the linear harmonic oscilla-
tor!

Exercise 1.4.2
Consider a classical ideal gas in an infinitely high cylindrical container. In the
direction of the cylinder axis a homogeneous gravitational field acts. Calculate by
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means of the canonical ensemble

1. the average kinetic energy of a particle of the gas,
2. the average potential energy of a particle of the gas.

Exercise 1.4.3
A system of N noninteracting two-atomic molecules are encased at the temperature
T in the volume V. The Hamilton function of a single molecule reads:

1 1
Hy(p1,p2: 11, 12) = 2m(l’% +p3) + 59 Ir; — s (@>0).

Calculate

. the classical canonical partition function,

. the equation of state f(p, T, V,N) = 0,

. the heat capacity Cy,

. the mean square diameter of the molecule (r?) = (|Jr; — r»|?).

Exercise 1.4.4
Given is a classical ideal gas of N particles of the same kind in the volume V.

AW N =

1. Calculate with the canonical ensemble the free energy F (T, V, N).

2. Determine with F(T, V, N) the entropy S(T, V, N), and compare the result with
the micro-canonically derived Sackur-Tetrode equation (1.124).

3. Verify the thermal equation of state of the ideal gas.

Exercise 1.4.5
Consider a system of N particles of the same kind in the volume V, which interact
with each other by a repulsive pair potential of the form

o

/V(ri,rj)z a>0, n>3.

|r; — ;"

1. With the canonical ensemble calculate the partition function, except for the
position integrals.
2. With the ansatz

exp (—/3 V(ri - rjl)) = 1+/(Iri — 1))

decompose the integrand of the position integral into a reasonable formation of
products of the functions f(|r; — r;|). Consider for this purpose how large the
function values f(|r|) can become.

3. Show that the canonical partition function can be written, for large N and for
large V, as

2 4

Zu(T.V) = Zo(T) (1 Mo+

v Vzaz(T)-f-...) .
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where Zj is the partition function of the free system, and a;(7) and a,(T) are
given by

a(n = / rf (r)),
a(T) = (ar(T))” .

4. Determine for the given pair potential the expansion coefficients a1 (7") and a,(T).

Exercise 1.4.6
A thermodynamic system consists of N atoms in the volume V, each of which carries
a magnetic moment ; (|p;| = p fori = 1,2,...,N). The Hamilton function is

composed of two parts

H(q,p) = Ho(q.p) + Hi(q,p) .

Hy(q, p) describes the system in the absence of a magnetic field, while H,(q, p)
comprises the influence of the homogeneous field B = Be,. Let Hy be independent
of the angles ¢;, ¥; between the field B and the moment g ; .

1. How does the field term H; read?

2. Calculate the canonical partition function.

3. Determine the temperature-dependence and the field-dependence of the average
total magnetic moment:

m:<izj=v;ui>.

4. Discuss the total magnetic moment for the two limiting cases fuB > 1 and
BuB < 1 (Classical Langevin paramagnetism).

Exercise 1.4.7
Consider a system of N particles in the volume V. Prove by means of the canonical
ensemble the generalized equipartition theorem (1.110):

oH
<m 37fj> = diksT

Tij € {q1.-- - q3N- P1s - D3NS -

7;, 7; denote Cartesian components of one of the particle momenta or particle
positions.
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Exercise 1.4.8
N classical particles of the mass m are moving, without any mutual interactions,
with the potential energy

N
V@ =a) (¢h+qh+4ql)  a>0
i=1

in the volume V. Calculate the temperature-dependencies of the internal energy U
and the entropy S'!

Exercise 1.4.9

Think of a system of N charged particles, for instance, a solid consisting of ions
and electrons. Let this system be in a magnetic field B. Its magnetic moment m is
calculated with the Hamilton function H according to

m = —VBH.

Vg means the gradient with respect to the external magnetic field B.

1. Express the average magnetic moment (m) by the canonical partition function
Zy. Find Zy for the N-particle system (mass m;, charge ¢;, i = 1,2,...,N) in the
magnetic field B.

2. Show that in any case, even for B # 0:

(Bohr-van Leeuwen theorem).

Exercise 1.4.10
N noninteracting particles of a gas are at the temperature 7 in a volume V.
Justify, by using the canonical ensemble, Maxwell’s velocity distribution (see also
Exercise 1.3.9),

m \? mv?
w(v)d*v = exp | — d*v ,
2]TkBT ZkBT

which indicates, with what a probability a particle of the gas has a velocity from the
volume element d*v at v.

Exercise 1.4.11

In a box of the volume V there are at the temperature 7 N atoms of a gas, all of
the same mass m. The atoms are at first in an excited state. With the transition
into the ground state they are emitting light, which is observed in z-direction by
a spectrometer. An atom at rest would emit a single sharp line Ey. Because of the
Doppler effect, and because of the finite temperature 7, the detector receives an
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energy band with an intensity distribution /(E). Calculate

1. the average energy (E) of the observed light,

2. the mean square deviation of the energy (AE) = \/ ((E — (E))?) of the observed
light,

3. the intensity distribution /(E).

Exercise 1.4.12

An ideal gas of N atoms is at the temperature 7 in a container (cuboid) of the volume
V (V = L;L,L;). In the middle of one of the walls of the container there is a small
hole of the area f. Outside the container there is vacuum.

1. How many atoms leave the container per unit time?

2. After how much time does the pressure drop in the inside to the 1/e-fraction of
the pressure value before the hole was opened?

3. How large is the average kinetic energy per particle in the exterior of the
container relatively to that in the interior?

Exercise 1.4.13

1. An ideal gas of N atoms in the volume V is at the temperature 7 in an external
potential V:

p;
2m

N
H(g.p) = T(0) + V(@ — Y ( " v(r») .
i=1

Calculate the position-dependence of the particle density n(r) (barometric
equation). Hint:

N
n(r) = <Z §(r— r,-)> ; 1y position of the i-th atom.

i=1

2. Let Vbe especially the gravitational field of the earth. Calculate how the pressure
of the gas changes with the distance from the ground.

Exercise 1.4.14
A relativistic ideal gas consists of N particles, all with the mass m = 0, in the
volume V.

1. Calculate the canonical partition function.

2. Calculate the internal energy U(T, V, N).

3. Find the thermal equation of state p = f(T, V, N).

4. Determine the free energy F = F(T,V,N) and test p = —(dF/dV)ry with
part 3.

5. Give the enthalpy H.

6. Derive the entropy.

7. Calculate the heat capacities C,, Cy.
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Exercise 1.4.15
Consider a classical system of N particles in the volume V, described by the
Hamilton function

H(q,p) = Ho(q.p) + Hi(q. p).

Expand the free energy F(T,V,N) as a functional of H; around H; = 0 up to
quadratic terms in H;. Present the result in dependence of the free energy Fy of the
‘unperturbed’ system (Hp), and of suitable mean values of powers of H;!

1.5 Grand-Canonical Ensemble

The canonical ensemble from Sect. 1.4 still admits a further generalization, namely
to systems, which are subject, besides to energy fluctuations, also to particle
fluctuations. A variable particle number can arise in the considered system by an
exchange of particles with its surroundings, and also by creation and annihilation
of particles of a certain type. One may think of the magnons of a ferromagnet, the
phonons of a crystal lattice, or the photons of the electromagnetic radiation.

At first let us recall once more that for the micro-canonical ensemble the
variables E = U, V, and N are fixedly pre-given. These are, as we know from
Thermodynamics (section 3.1, Vol. 5), the natural state variables of the entropy
S(E,V,N), which therefore represents the central thermodynamic function of the
micro-canonical ensemble. In the experiment, though, in general,we have to do not
with really isolated systems, but rather with those, which are in contact with a heat
bath of the temperature 7. The temperature is a relatively manageable parameter,
i.e., experimentally easily adjustable. This motivates the concept of the canonical
ensemble, for which the variables T, V, and N are pre-given. These are the natural
state variables of the free energy F(7,V,N), which takes over the central role in
the canonical ensemble, which is played in the micro-canonical ensemble by the
entropy.—For all the other state quantities, which are not fixedly pre-given in the
respective ensemble, Statistical Physics provides only average values.

Now one can naturally argue that also the particle number N of macroscopic
systems may hardly be exactly known. Furthermore, there are physically important
cases, as already mentioned above, for which N changes already with the variation
of state variables, as, e.g., the temperature, by the creation and the annihilation,
respectively, of particles. This fact is accounted for by the grand-canonical
ensemble. Its fixedly pre-given variables are the temperature 7, the volume V,
and the chemical potential ;. These are the natural state variables of the so-called
grand-canonical potential 2(7,V, i), which, up to now, we have not yet got to
know. It is defined as the difference of free energy F and free enthalpy G:

Q=F-G=—pV. (1.154)
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When we now insert for G the Gibbs-Duhem relation ((3.35), Vol. 5) G = uN and
build the total differential,

dQY = dF — judN — Ndp = —SdT — pdV — Ndy. (1.155)

then we explicitly recognize the (7, V, u)-dependence of the grand-canonical
potential. This replaces in the grand-canonical ensemble the free energy of the
canonical ensemble and the entropy of the micro-canonical ensemble, respectively.
That will be discussed and worked out in the following subsections.

1.5.1 Grand-Canonical Partition Function

We had seen in Sect. 1.4 that all thermodynamic properties, we are interested in, are
accessible by simple mathematical operations, as soon as the canonical partition
Sfunction Zy(T, V) is known. This function can, in principle, exactly be calculated by
means of the Hamilton function H(q, p) (1.136). For the grand-canonical ensemble,
too, there exists such a central quantity, namely the grand-canonical partition
Sunction 8,(T, V). Its line of derivation is very similar to that of Zy(T,V) in
Sect. 1.4.1.

As in the case of a canonical ensemble, we investigate a reference system X,
which shall be a small, but nevertheless macroscopic part of a very large isolated
super system %. In difference to Sect. 1.4.1, ¥ (E}, V1, N} ) shall be able to exchange
with the surrounding complementary system ¥,(E,,V,,N,) besides energy also
particles! The isolated super system (£ = X; U X;), for which a micro-canonical
ensemble is definable, shall be in its thermal equilibrium. According to (1.89)
and (1.97) this means that at all points in ¥ the same temperature 7 and the
same chemical potential ;. must prevail. We assume once again, as justified more
precisely in connection with (1.131), that the interactions, necessary for establishing
the equilibrium between X, and 3, are asymptotically small, so that they need not
be taken into consideration for the following steps.

Except for the usual energy-indeterminacy A of the micro-canonical ensemble,
the energy of ¥ is fixed by that of X,. The same holds for the particle number N;:

E=E +E;; N=N,+N,.

Of course, these boundary conditions (E, N fixedly pre-given) are again realizable
in a manifold manner. According to our considerations in the Sects. 1.3.1 and 1.3.2
the equilibrium state,

E<—>E1+Ez; N<—>1’\\/1+I/\72,

is characterized by the maximal number of possibilities of realization. The interest-
ing partial system X, is very much smaller than X,, so that

E\<E: N <N, (1.156)
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may be assumed. We look for a statistical ensemble consisting of systems which are
equivalent to ;. For this purpose, we need the corresponding density distribution
function pn,(qi, p1), for which it is to be taken into consideration, of course, that
there belong to different particle numbers also different phase spaces. A change of
N, immediately provokes, e.g., a changed dimension of the phase space. This we
will indicate by the index N, at the symbol of the density distribution function. If,
at first, N; is kept constant, then the same argumentation as that for (1.133) leads to
the following ansatz for py, in the N;-particle phase space:

oy (@1, P1) ~ Tveny(E — E, Va) . (1.157)

Because of (1.156), the phase-space volume on the right-hand side can be expanded
around I'\(E, V), at least for the actually interesting particle numbers and energies
in the neighborhood of the equilibrium. V>, in contrast, is fixed:

keInTy_n(E—E, Vo) = S2(Ey =E—E(,V,,N, =N —Ny)

AP

= S(E,V,,N) — FE
XA 1(8E2

) (Ey = E,N, =N)
Ny, Vo

3s
—Nl( 2) (Ex=E,N,=N) +...
BNZ Ey, V>

The first summand is, with respect to X, a constant Sy. For the second and the third
summand we write because of (1.89) and (1.96), respectively, applying (1.156):

o~ 1
(asz) (E,N) ~ (352) (ErNo) = .
0E, N2,V IE, N2,Va T

(352) (EN) ~ (352) (Ez,ﬁz) __M
IN, Vs oN, EyVs T

This leads to:

Se E N
In Ty_y,(E — E1, V2) ~ k;’ — kB‘T + ’;BTI

or equivalently to:
Tn-n(E — E1, V) ~ exp(—B (Ey — uN1)) = exp [—f (Hn, (q1. p1) — uN1)] .

This transfers to the density-distribution function in the N;-particle phase space
of the system X;:

on; (qu, p1) ~ eXP[—,B (Hy, (q1,p1) — MN]):I ) (1.158)
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Obviously, it is a stationary distribution, because the (q, p)-dependence comes into
play only by the Hamilton function Hy (see 1.43). We will fix the coefficients
in (1.158) at a later stage.—From now on we can leave out the index ‘1’, which
helped to distinguish X from the complementary system X, which, on its part, only
served to fix T and /T, and does not play any role in the following considerations.

We now define the grand-canonical partition function E, (T, V), which has for
the grand-canonical ensemble the same fundamental importance as Zy (7', V) for the
canonical ensemble

> 1

Eu(T,V) = Z LA /---/d3qu3Np o~ B (Hx(@p)—iN)
N=0 :

=Y NZu(T. V). (1.159)

N=0

One denotes the abbreviation
7= et (1.160)

as fugacity. The reason for the factor (2*VN!)~! is the same as for that explained
in connection with (1.129). With a known Hamilton function Hy(q, p) the grand-
canonical partition function E, is in principle calculable. The summation over N
runs up to infinity because the super system (heat bath and particle reservoir) can
be, according to our preceding considerations, arbitrarily large.

Like Zy(T,V) (1.140), we can of course express also the grand-canonical
partition function by an energy integral over the density of states (1.50) Dy(E, V):

o0
B.(T,V) = Z/dEDN(E, V)e P E-LN) (1.161)
N=0

Since py(q, p) represents the probability density to find the N-particle system in the
phase # = (q, p), one gets with (1.158) for the ensemble-average of an arbitrary
phase-space observable Fy(q, p):

1 1 _ _
(F> = EM(T, V) Z h3NN! / o / d3qu3Np e b (Hn(a.p) MN)FN(qv P) .
N=0 (1.162)

If one compares this with the corresponding expression (1.135) of the canonical
ensemble (F).., one realizes the following relationship:

Nfio N2 (T, V) {Fy)ee
(F) ="="_ . (1.163)
> NZy(T, V)
N=0
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The representation (1.162) corresponds in the N-particle phase space to a density-
distribution function of the form

1
,p) = —B (Hy(q,p) — uN 1.164
o (q. p) 2 ,(T,V) exp(—B (Hy(q, p) — uN)) (1.164)
with the normalization:
> 1
Z B3NN /"'/d?)qu?’NPPN(q, p=1. (1.165)
N=0 :

1.5.2 Connection to Thermodynamics

The next task consists in representing the state quantities, relevant for Thermo-
dynamics, in the framework of the grand-canonical ensemble, i.e. ultimately, to
express them by the grand-canonical partition function.

We begin with the particle number, which was in the canonical ensemble only
a parameter, however, has now become in the grand-canonical ensemble a variable
because of the particle fluctuations. From the very beginning, it appears therefore to
be clear that a physical equivalence of canonical and grand-canonical ensemble is
to be expected only when almost all the members of the grand-canonical ensemble
possess the same particle number N. Thus the particle-number distribution should
exhibit a sharp maximum at the average (N). For its calculation (1.163) appears to
be convenient, where the canonical average (N)., is trivially equal to N which is
constant in a canonical ensemble:

Ny =" =Y Nwy(T.V). (1.166)
Y NZy(T, V)  N=0

o0
3 NZNZy(T, V)
N=
N=0

0

wn(T,V) denotes the probability that the considered system is found at the
temperature 7 with N particles in the volume V:

NZN(T, V)

wn(T, V) =
C‘M(T’ V)

(1.167)

The comparison of (1.166) with (1.159) leads to an alternative representation of (N):

1

ad
N) = InE2,(T,V . 1.168
M= 4 (ynzrv) (L168)
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This relation can be used, at least in principle, to represent the chemical potential
in the variables 7, V, and (N):

pw=pu(T.V,(N))) . (1.169)

That will be needed at a later stage.—The second version of the grand-canonical
partition function in (1.159) gives evidence that &, depends only via the fugacity
z on the chemical potential. When one replaces E,(7, V) by the corresponding
E.(T,V),i.e., regarding z instead of p as variable,

Eu(T,V) — EJ(T,V), (1.170)
n=1/B1Inz
then one also gets:
0
(N) =1z InE,(T,V) . (1.171)
8Z T.V

Next we investigate the pressure p, whose mechanical definition (1.101) reads
with (1.162)

p=—(8H>= ! ( 9 E,.(T. V)) . (1.172)
vl = g \av -

Later we will find a still more direct way, by the use of the grand-canonical
potential (1.154), in order to express p by the partition function & ,.

The internal energy U is the average of the Hamilton function H, so that it
immediately follows with (1.162):

U:(H):—( lnEM(T,V)) + u(N) (1.173)

ad
313 'A%
When we write the partition function, according to (1.170), as function of 7', V, and
7, and insert Eq. (1.141) into (1.163) for the canonical average (Hy) ., then it results
an expression for the internal energy formally completely equivalent to (1.141)

-
U= _(8,3 In E,(T, V))Z!V . (1.174)

We have only to replace on the right-hand side the canonical by the grand-canonical
partition function. Note, however, that U in (1.141) is to be read as U(T, V,N),
in (1.173)as U(T,V, ), and in (1.174) as U(T, V, 2).

Let us at this stage briefly deviate from the subject in order to discuss some
first considerations on the statistical equivalence of canonical and grand-canonical
ensembles. As already mentioned, such an equivalence can be expected certainly
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only when the probability (1.167) wy(T, V) exhibits at N = (N) a pronounced
maximum, so that one can assume for almost all the systems the same particle
number (N). For the grand-canonical partition function (1.159) one could then take
approximately

BT, V) ~ 2Nz (T, V), (1.175)

so that with (1.173) the known result (1.141) of the canonical ensemble for the
internal energy would be reproduced:

U(T,V,(N)) ~ — ( InZ gy (T, V)) . (1.176)

0
ap V.(N)

Under the discussed presumptions canonical and grand-canonical ensemble are thus
equivalent with respect to U, if one interprets the average (N) as the thermodynamic
state variable particle number.

The central role, which is played in the micro-canonical ensemble by the entropy
S(E,V,N), and in the canonical ensemble by the free energy F(T,V,N), is taken
over in the grand-canonical ensemble from the so-called

grand-canonical potential Q(7,V, u) .

For its differential dQ2 it holds according to (1.155) with (N) as ‘particle

number’:

dQ = —SdT — pdV — (N)du . (1.177)
This is equivalent to
i E)=- 2 ar- ! (SdT + pdV + (N)dp)
)~ T T P #
U — p(N)
= — dT — dV + (N)du) .
kT2 kBT(p + (N)dp)

Here we now insert (1.168), (1.172) and (1.173):
Q a a
d = — InE,(T,V) daT — InE,(T,V) av
kgT oT wy av wT
0
—( InE,(T, V)) du=—-dmnZ,(T,V).
o T,V

Except for an unimportant additive constant it must therefore hold:

QT V., 1) = —kgTIn €, (T, V) . (1.178)
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This relation is frequently also used in the form
Eu(T.V) = exp(—=B QT. V., p)) . (1.179)

Between the grand-canonical potential €2 and the grand-canonical partition function
B, there thus exists formally the same connection as in the canonical ensemble
between Zy (T, V) and the free energy F(T, V, N). With (1.154) the relation (1.178)
can also be written as follows:

pV

=InE, (T,V). 1.180
ke T n u( ) ( )

From Thermodynamics we know the connection

P="9v"

F is the central quantity of the canonical ensemble, pV that of the grand-canonical
ensemble. Equivalence of the statistical descriptions then means in particular the
fulfilling of the above relation, where p is determined grand-canonically and F
canonically. To prove this we formulate at first the free energy F in the sense of
the grand-canonical ensemble, where we interpret (N) again as the state variable
‘particle number’:

F(T,V.(N)) = u(N) + QT.,V.u) = u(N) —kgTIn E (T, V) . (1.181)

In order that the right-hand side is really a function of T, V and (N), u must be
inserted according to (1.169), i.e., (1.168) must be solved for p. That sounds quite
complicated, and in principle it is so. The natural variables of the free energy are
indeed not identical with the variables (7, V, u) of the grand-canonical ensemble.
If we can assume, however, as we have already done once, above in connection
with the internal energy, that almost all ensemble systems possess the same particle
number (N), then we can approximately apply for the partition function (1.175)
in (1.181), finding then with

F(T.V.(N)) ~ —kgT InZy(T, V) (1.182)

a representation, which exactly corresponds to that of the canonical ensemble.
When we substitute in the free energy (1.181) by the use of a suitable Legendre
transformation the variable (N) by u,

~

~ oF
F(T,V,(N)) :F(TvVvH)—MaM s
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we recognize, if we still include (1.168), that the Legendre transform F is identical
to the grand-canonical potential:

F(T,V, 1) = —kgTIn E (T, V) = Q(T,V, ) . (1.183)

The partial differentiations with respect to the passive variables T and V must
therefore be the same for F and 2 (see (2.5), Vol. 2), if one still inserts (1.169)

for w:
F Q
(a ) :(a ) , (1.184)
T Sy iny T )y p=p(v.(vy)

(3F) _ (39) (1.185)
V) 7wy WV )1 u=prvivy .

We now use the second relation for the determination of the pressure. Grand-
canonically it holds at first for the pressure, according to (1.177):

Q2 oF
p=p(T,V,(N) :_( ) :—( ) . (1.186)
( ) WV ) 1 p=urv.iny) WV /1wy

If we eventually are still allowed to use for the macroscopic systems, we are
interested in, approximately (1.182), then we obtain with

p(T.V.(N)) ~ kBT( 9

gy M Z (T V)) (1.187)

T, (N)

an expression, which agrees exactly with the canonical result (1.142). On the left
there is the grand-canonical pressure, on the right the canonical partition function.
Under the mentioned presumptions, (1.187) thus testifies the equivalence of the
statistical descriptions in the framework of, respectively, the canonical and the
grand-canonical ensemble.

Let us finally check the entropy:

s, v, (ny) "2V - ( ) (184 ( )
aT V, u(T,V,(N)) T )y )

(1.182) 0
~ kg InZy) (T,V) . (1.188)
BT V, (N)

The comparison with the canonical result (1.146) confirms also in this case the
statistical equivalence of the two ensembles.

Using the example of important thermodynamic state quantities as the
internal energy (1.176), the free energy (1.182), the pressure (1.187). and the
entropy (1.188), we were able to demonstrate in this subsection that the results
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of the grand-canonical ensemble agree with those of the canonical ensemble, if
the grand-canonical average (N) can be identified with the particle number N of
the canonical ensemble. That is surely the case when almost all systems of the
grand-canonical ensemble have the same particle number (N), so that, in spite of
the admitted particle fluctuations, (N) represents a quantity, which is characteristic
for the physical system. Exactly this fact remains to be shown. It will indeed turn
out to be correct in the next subsection, again, however, only for macroscopic,
asymptotically large systems.

1.5.3 Particle Fluctuations

We had denoted in Thermodynamics (see (2.71), (4.34), Vol. 5) as mechanical
stability condition the requirement that the compressibility cannot be negative:

1 [0V
Kr = — >0. (1.189)
14 (3P)T

It is of course plausible that a system can be stable only when a volume reduction
(AV < 0) is accompanied by an enhancement of the pressure (Ap > 0).
Nevertheless, the criterion is not provable by the means of Phenomenological
Thermodynamics. The Statistical Physics verifies (1.189) via a formula of particle-
number fluctuations, which here, however, will help us above all to close the last
gap in our chain of conclusions for the proof of the equivalence of canonical and
grand-canonical ensemble.

We start with the expression (1.168) for (N) as well as the average of the square
of the particle number:

o0
> N?NZy(T, V) )
N2y = =0 _ e (1.190)
- T ,328,&2““‘ :
Y NZN(T, V) a
N=0
We find therewith:
d 1 0
IngE, = _ E, = B(N),
o SR CE /T
¥ 1 (8 _\ 1 & _
3uzln‘:‘/*:_'::2 (3;1:‘“) + - BMZQM:_'B2(N)2+’32(N2>.
— up,

Then comes out the important intermediate result:

(N*) — (N)? = ! ( ” InE, (T V)) _ ! ( 9 (N)) (1.191)
B> \ou? e rv B \ou TV ' .
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Let us evaluate this formula at first for the simplest thermodynamic system, namely
the ideal gas. As Exercise 1.5.1 we determine its grand-canonical partition function:

EV(T. V) = exp (Zo (1.192)

v
13(T)) '

A(T) is the thermal de Broglie wavelength (1.137). The particle number (N), can
easily be found with (1.171):

Vi s Vo _ PV

Mo =225y = @) T kT

(1.193)

In the last step we still have applied (1.180) to find therewith the thermal equation
of state in the well-known form. The fluctuation formula (1.191) can directly be
evaluated via (1.193):

(N*)o — (N)3 = (N)o . (1.194)

The relative mean square deviation of the particle number

AN N2y — (N)?
(AN), = @n _ [ 2( ) (1.195)
(N) (N)
tends for the ideal gas to zero for the asymptotically large system:
1
(AN)© = — 0. (1.196)
V(N)o N=oe

For the special case of the ideal gas it can therefore indeed be assumed that almost
all systems of the grand-canonical ensemble have the same particle number (N),
by which the decisive precondition for the statistical equivalence of canonical and
grand-canonical ensemble is fulfilled.

That this assertion is correct not only for the ideal gas, but is very generally valid
for all macroscopic systems, can be recognized, if one reformulates a bit the right-
hand side of (1.191) by a suitable transformation of the state variables. Applying
purely thermodynamic considerations we prove as Exercise 1.5.5 the relation:

2
B(N)) :_(BV) (ap) 1197
( au TV ap T, (N) |: ou TV . (157

The first factor is essentially the compressibility (1.189). The second factor can be
evaluated with (1.180) and (1.168):

3])) ksT ( a . _ ) (N)
= InE,(T,V = .
(au TV vV \dp ul ) .V 4
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Hence

(8(1\/)) = T vy, (1.198)
o T.V

When one inserts this result into (1.191),
= = , (1.199)

then, for a start, the validity of the stability criterion (1.189) is proven. If we still
normalize k7 with respect to the compressibility of the ideal gas,

o 1 BV
Kp' = = ,
r (N)

then it follows for the relative mean square deviation of the particle number:

KT 1
AN), = . 1.200
(AN) \/K}(” o (1.200)

If one excludes points of phase transitions, then the first factor is always finite.
The relative mean square deviation of the particle number thus becomes unimag-
inably small for macroscopic systems. That means that almost all systems of a
grand-canonical ensemble possess the same particle number (N). The statistical
equivalence of canonical and grand-canonical ensembles is therewith proven.

When we add the considerations from Sect. 1.4.4 then it is now certain that for
macroscopic systems all the three ensembles (micro-canonical, canonical, grand-
canonical) are physically equivalent. For the solution of a concrete problem one
can therefore decide on one or the other, only with respect to expedience. However,
it should warningly be stressed once more that the consistency of all the so far
derived formulas and functions is guaranteed really only for macroscopic systems.
Of course, they can purely formally be calculated also for small systems, but it
can then not be expected that the laws and concepts of Thermodynamics and the
Statistical Physics keep their validity.

1.5.4 Exercises

Exercise 1.5.1
An ideal gas of identical particles each of mass m is at the temperature 7 in the
volume V.

1. Calculate the classical grand-canonical partition function &, (7, V).
2. Determine the equation of state p = f (T, V, (N ))
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3. Represent the chemical potential as a function of the temperature and the
pressure.

4. Show that the probability wy (T, V) to find the gas at the temperature T with N
particles in the volume V, obeys a Poisson distribution.

Exercise 1.5.2
In the framework of the grand-canonical ensemble prove the thermodynamic

relation:
( JoF ) —
HN) )1y '
Exercise 1.5.3

Calculate grand-canonically for an ideal gas of identical particles each of mass m the
entropy and compare the result with the micro-canonically derived Sackur-Tetrode
equation (1.124).

Exercise 1.5.4

Let a system (e.g. a gas) be at the temperature 7 in the volume V. Let it consist of n
different particle components. They may differ, for instance, by the particle masses
mp,mp,...,my.

1. As generalization of (1.159), how does the grand-canonical partition function
Euy (T, V) read?
2. Show that the grand-canonical partition functions factorizes,

Equy(T.V) = By (T.V) -+ By, (TV)

if particles of different components do not interact with each other.

3. Calculate especially the grand-canonical partition function for an n-component
ideal gas.

4. How does the thermal equation of state of the ideal gas-mixture read?

Exercise 1.5.5
Prove the relation (1.197):

() =l

1. Express the relative mean square energy-deviation

I CETNE
(AE)V—\/ 2

Exercise 1.5.6

by the grand-canonical partition function E (7T, V).
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In the case of the ideal gas, how is (AE), connected with the particle number
(N)?

1.6 Self-Examination Questions

To Section. 1.1

—_—

03 N L

. Why can Thermodynamics not be considered as a closed, complete theory?
. What is the main goal of Statistical Physics?
. Why can Statistical Physics yield trusted statements actually only for the

asymptotically large systems?

. What is the hypothesis of the same ‘a-priori’-probabilities? To which systems

does it refer?

. Can thermal equilibrium be explained microscopically?

. Is Thermodynamics valid also for systems of few particles?
. What does one understand by a binomial distribution?

. How does the Stirling formula read?

To Section. 1.2

ENEV RPN

10.
11.

12.

13.

Which meanings do the terms phase vector, phase trajectory, and phase space
have?

How is the time-average of the classical observable F(q, p) defined?

What is the statement of the quasi-ergodic hypothesis?

What does one understand by a statistical ensemble?

. . !
What is expressed by the catch phrase time-average = ensemble-average?

Which relation exists between the assumption time-average < ensemble-
average and the quasi-ergodic hypothesis?

How does Statistical Physics answer the question which value the property of
the system F(q, p) possesses?

What does divv yield, when v = s means the 2s-dimensional phase-space
velocity, and div the divergence in the phase space?

Which continuity equation is fulfilled by the density-distribution function
p(q, p, ?) of the statistical ensemble? What is its physical background?

How does the Liouville equation read, and how can it be interpreted?

Why do the ensemble systems move in the phase space like an incompressible
liquid?

The Liouville theorem speaks of the conservation of the phase-space volume.
What does that mean?

When do we call a density distribution stationary?
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14.
15.
16.
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How does the density-distribution of a micro-canonical ensemble read?
Which type of system is represented by the micro-canonical ensemble?
How are the phase volumes I'(E) and ¢(E), respectively, defined?

To Section. 1.3

D=

10.
11.
12.
13.
14.

15.
16.

17.
18.
19.
20.

21.
22.

How can one exemplarily explain thermal equilibrium?

. In what way is the irreversible transition into thermal equilibrium understand-

able only for systems with very many degrees of freedom?

How does Statistical Physics define entropy?

How can one justify the equivalence of the expressions InIy(E,V),
Ingy(E,V),and InDy(E, V)?

. For which essential properties of the statistical entropy must evidence be

provided, in order to be able to identify it with the entropy known from
Thermodynamics?

In what way is the entropy of two systems in thermal contact additive? Which
conditions are to be fulfilled?

. How can one formulate the condition for thermal equilibrium in an isolated

system by the energy-dependence of the entropy?

What is the connection between the statistical temperature and the phase
volume 'y (E, V) of the micro-canonical ensemble?

Which connection exists between temperature, entropy and energy in an
isolated system?

How does the Statistical Physics for isolated systems justify the second law of
thermodynamics?

What is the connection between the chemical potential u, the entropy S, and
the temperature 77

How can the chemical potential p be derived from the phase volume I'y (E, V)?
How does u appear in the equilibrium conditions of an isolated system?

Why is for Statistical Physics the pressure p a physical quantity, which is
qualitatively different from the quantities p and 7?7

How is the pressure of a gas determined by its Hamilton function?

What does one understand by an external parameter of the Hamilton function?
Give examples!

What does one understand in Statistical Physics by a quasi-static change of state
of an isolated system?

Formulate the general implementation concept of the Statistical Physics!

How does the generalized equipartition theorem read?

How much energy does each degree of freedom contribute, on average, to the
virial of forces?

What is the assertion of the virial theorem?

What is expressed by Gibb’s paradox?
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23.

24.
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What is to be understood by the correct Boltzmann-counting? Give reasons
for it!

How does the phase volume I'y(E, V) of an N-particle gas look like, when the
gas is composed by n different kinds of particles (Zj'.’ii N; = N)?

To Section. 1.4

12.
13.

14.

15.

16.

17.

18.

How do the canonical and the micro-canonical ensemble differ from one
another?
To which physical situation does the canonical ensemble correspond?

. How does the normalized density-distribution function p(q, p) of the canonical

ensemble read?
Is the canonical ensemble stationary?

. How does one calculate the average of a classical observable F(q, p) in the

framework of the canonical ensemble?

How is the classical (canonical) partition function defined?

What is the connection between the partition function and the thermal de
Broglie wavelength?

. Express the partition function as an energy integral over the density of states

Dy(E, V)!

. How is the internal energy U related to the Hamilton function H?
10.
11.

How can U be derived from the partition function?

Why is the free energy F for the canonical ensemble the central thermodynamic
potential?

What is the relationship between free energy and canonical partition function?
What are the important requirements that must be fulfilled by the free energy,
which is defined via the canonical ensemble, in order that it can be identified
with the corresponding thermodynamic potential?

What is to be understood by thermal stability?

What has to be presumed for the distribution of the energies of the systems of
a canonical ensemble around the average value U = (H), in order to guarantee
the statistical equivalence with the micro-canonical ensemble?

What is the order of magnitude of the relative mean square deviation of the
energy in the canonical ensemble?

Why can we not expect for systems of only few particles that canonical and
micro-canonical ensemble yield identical results?

What must be shown in order to prove the equivalence of canonical and micro-
canonical ensemble?
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To Section. 1.5

10.

11.

12.
13.

. What type of physical systems can be conveniently described by the grand-

canonical ensemble?
How is the grand-canonical potential Q(7, V, i) defined?

. What are the central thermodynamic functions of the micro-canonical, the

canonical, and the grand-canonical ensemble? How are they labeled?

How is the grand-canonical partition function &, (7, V) related to the canonical
partition function Zy(T, V)?

Which quantity is called fugacity?

How does the ensemble-average of an observable Fy(q, p) read in the grand-
canonical ensemble?

. How can the average particle number (N) be expressed by the grand-canonical

partition function &, ?

How do, in the grand-canonical ensemble, the representations U(T, V, i) and
U(T,V,z) of the internal energy differ?

What is the connection between the grand-canonical potential (7, V, 1) and
the grand-canonical partition function &, (T, V)?

What is the decisive precondition for the statistical equivalence of canonical
and grand-canonical ensemble?

What is the connection between the grand-canonically calculated free energy
F(T,V,(N)) and the grand-canonical partition function E (T, V)?

What is denoted as mechanical stability condition?

How does the relative mean square deviation of the particle number look like
for the ideal gas?



Chapter 2 )
Quantum Statistics Gt

2.1 Basic Principles

Our rather detailed considerations on Statistical Physics have so far been purely
of classical nature. It goes without saying that we would not have any problem to
uncover the limits of its validity, i.e., to expose inconsistencies with the experiment,
as we have been with the Classical Mechanics. Ultimately, the correct description
of nature needs the superordinate Quantum Mechanics. We therefore will have to
rewrite the Classical Statistical Physics of the first chapter to a Quantum Statistics.
It will turn out thereby that the basic concepts will remain the same, but they will
have to be combined, though, with some typical quantum-mechanical aspects. Let
us recall once more: Classically the complete description of a physical system is
accomplished by the specification of the phase # = (q,p), which changes with
time in the phase space according to Hamilton’s equations of motion (1.13) and
defines therewith the phase trajectory of the system. Statistical methods become
necessary in the case of incomplete information about the initial conditions, which
are indispensable for the solution of the equations of motion. Such an incomplete
information is the normal case for macroscopic systems.

Quantum-mechanically one meets a completely different situation, which is
characterized, in a certain sense, by a twofold lack of knowledge. There is at first the
specific quantum-mechanical indeterminism. Even if the state of the system actu-
ally is known (pure state), the results of measurements are in general not precisely
predictable. The measurement itself leads to an uncontrollable perturbation of the
system. This uncertainty manifests itself in the statistical interpretation of the wave
function (subsection 2.2.1, Vol. 6), and in the uncertainty relation ((1.5), (3.155),
Vol. 6). Positions g; and momenta p; are no longer simultaneously precisely mea-
surable. Therewith, terms like phase space and phase trajectory are automatically
losing their sense in Quantum Mechanics; terms which are, on the other hand, of
great importance in Classical Statistical Physics. The second uncertainty is then the
incomplete information, which calls for macroscopic systems classically as well
as quantum-mechanically for statistical concepts to get the solution of a problem.
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96 2 Quantum Statistics

This uncertainty is in principle treated in Quantum Statistics in the same manner
as in Classical Statistics. The main task will therefore consist in an extension of
the methods, which were developed in Chap. 1, by the above mentioned typical
quantum-mechanical aspect.

2.1.1 Statistical Operator (Density Matrix)

Strictly speaking, we have already discussed the just formulated set of problems
of the twofold indeterminacy, which is to be handled by Quantum Statistics, in the
Quantum Mechanics (subsection 3.3.4, Vol. 6). The simultaneous carrying out of
both the qualitatively drastically different average processes succeeds by the use
of the statistical operator, sometimes also called the density matrix, an operator,
whose manner of action we will recall with the following list. The presentation
in the following will be brief and compact and details can be found in Vol. 6 of
this basic course in Theoretical Physics. The statistical operator for Quantum
Statistics, though, is of such a central importance that a certain repetition of the
basic facts is surely justified.

Quantum Mechanics distinguishes two types of states for the physical systems,
the pure and the mixed state.

1) Pure State

This state is prepared by the measurement of a complete set of commutable
observables, i.e., by a set of measuring processes which is sufficient for the unique
identification of the state. To a pure state there can therefore always be ascribed a
Hilbert vector |{). Nevertheless, even for a system in such a pure state, the results
of measurements are normally not precisely predictable.

Let F be an observable with the eigen-value equation:

Flfy =l s ol fn) = Sum -

The eigen-states {| f,,)} shall represent a complete orthonormalized (CON) system.
Each state |y) can then be written, according to the expansion law ((3.27), Vol. 6),
as linear combination of the |f,):

W)= alf):  a=(hlv).

(We disregard here, at first, the so-called improper Dirac states (subsection 3.2.4,
Vol. 6), for which the sum would have to be replaced by an integral.) The square of
the absolute value of the coefficient, |c,|?, represents the probability to obtain with
a measurement, on the state |1) of the system, of the observable F the measuring
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value f,,. It is a number in between 0 and 1, which expresses the quantum-mechanical
uncertainty mentioned above. A precise statement is possible only if |1/} is prepared
as eigen-state of F. It is therefore reasonable to introduce a mean value as the
average value of many measurements performed on one and the same system under
always the same conditions, or simultaneously on many congeneric systems. The
latter strongly reminds of the concept of the ensemble, fundamental for the Statistics,
which we encountered in this connection indeed already in Quantum Mechanics:

= faleal® =D LW 1) | )
Z |FIf W) = (v | F|y). @2.1)

In the last step we exploited the completeness relation.

2) Mixed State

If only an incomplete advance information about the system is present, i.e., if a
complete set of commutable observables could not be measured, then one says that
the system is in a mixed state. This situation is typical for macroscopic systems;
but not only for these, when we, e.g., remember our standard example in Vol. 6, the
unpolarized electron beam. To the mixed state no Hilbert vector can be ascribed.
But characterizations of the following kind are thinkable:
The system is with the probability p,, in the pure state |V,,);
m=1,2,...

We do not know, because of our incomplete advance information, in which state the
system really is, but we are able to cut down the possibilities a bit. Let |1,,) be one
of the thinkable states of the system, which we want to presume as orthonormalized:

(Y | Vi) = Sum - (2.2)

The assumption of the orthogonality is convenient, but actually not necessary.
We demonstrate in Exercise 2.1.2 that the assumption of the normalizability is in
principle already sufficient. The main task will later consist in fixing the probability
pm With which the system occupies the state |1,,).

We now perform a measurement of the observable F.If the system were without
a doubt in the state |,,), we would obtain, according to (2.1) the average

(Y | F | Ym) -
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Because of incomplete information we do not have this doubtlessness, but are forced
to apply an additional statistical averaging:

(F) =" "pu(Ym | F| V) - (2.3)

This average value now contains two different processes, where the quantum-
mechanical one is of intrinsic nature, (2.1), and can therefore be by no means
avoided. It comes into play by the states themselves, which are influenced by the
respective measuring processes. Typical consequences are the known interference
effects (section 2.1, Vol. 6). The statistical averaging (p,) is a result of the
incomplete advance information, and therefore in principle removable. It is thus
not of such a basic nature, and takes place via expectation values (numbers!), and
does therefore not lead to any interference effects.
The following representation is equivalent to (2.3):

(F) = fuwn -

w,, is thereby the probability to find, with a measurement of F on the system in the
mixed state, the eigen-value f,. W, = |{f, | ¥m)|? is the corresponding probability
for the case that the system is definitely in the pure state |v,,). Then it obviously
holds

Wp = mewnm , (2.4)

which expresses once more the twofold nature of the Quantum Statistics. The
central quantity of Quantum Statistics, which in a certain sense encompasses
simultaneously both the averaging processes, is the statistical operator p:

p="Y Pul¥m)(Wnl. 2.5)

We compile its most important properties (see subsection 3.3.4, Vol. 6):

1. Mean values
(F) = Tr(pF) . (2.6)

The term trace (Tr) we have got to know in subsection. 3.2.8 in Vol. 6 as the sum
of the diagonal elements of a matrix. It has, amongst others, the useful property
that it is independent of the CON-basis used. That can bring about computational
advantages, because one can choose the basis according to expedience. We recall
further useful properties of the trace in Exercise 2.1.1. Because of its fundamental
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significance we will sketch once more the proof of the relation (2.6). Let {|¢;)}
be a CON-system:

FY = pulWm | F 1 V) = D> PV | @)0i | F | @) | ¥n)

iy
-y (me«oj | Vo) (U | qo,->)<<p,- 17l
ij m

= Z ﬁiiﬁii = Z(ﬁﬁ),, = Tr(ﬁﬁ) )

ij J

2. Hermiticity: p = p*
This fact is immediately read off from the definition (2.5). The projection
operator |,,) (V| is Hermitian ((3.84), Vol. 6), and p,, is real.
3. Trace

Trp=1. 2.7

This follows directly from (2.6) for F=1
4. p non-negative
This means that the expectation value of the operator p, taken in any arbitrary
state |¢), can not be negative:

(@1p1e)=> pulle|ym|*=0.

If |¢) is normalized, this expectation value can also be interpreted as the
probability to find the system, described by p, in the state |¢).
5. Eigen-values
0 as a Hermitian operator possesses real eigen-values, and eigen-states
which are orthogonal to each other. Since we have presumed the |v,,) as
orthonormalized (2.2), they are already the eigen-states with the probabilities
Pm as corresponding eigen-values. This statement is obviously no longer correct
when the [v,,,) are normalized, but not orthogonal (Exercise 2.1.2).
6. Pure state
Even this special case can formally be treated by the use of a statistical
operator. In the relation (2.5) there is then only one of the p,, equal to 1, while
all the others are zero (complete information!). g is in this special case therefore
identical to the projection operator on the pure state:

py =PW) = [¥)(¥] . (2.8)
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All the general properties of the statistical operator of course remain valid. Let
us check ({|¢,) }-CON-system):

Trpy = 3 A@n | By | @a) = D (W [ @adlen | V) = (W | ¥) =1 = 7).

n n

Te(pyF) = Y 0n | yF L @) = > (W | F | @udlen | ¥)

n n

= (y |F|y) < (2.1), (2.6).

7. Operator square
Because of the orthonormality of the thinkable states |v,,) one obtains from
the definition (2.5):

PP =Y prlm) (Yl - (2.9)

This means in particular:
Trp? = Z P2 (2.10)

Because of 0 < p,, < I:
D) pm=1.

The equality sign holds for pure states.
8. Time-evolution
We have derived the equation of motion of the statistical operator in the
Schrodinger picture with equation (3.167) in Vol. 6:
dp

lhBt =

[H, p]- . (2.11)
We will see in the next subsection that it can be interpreted as the quantum-
mechanical analog of the classical Liouville equation (1.36).

Since all observable properties of a physical system can be determined by the
use of the statistical operator, we can call, consequently, two mixed states to be
identical, if the same statistical operator is ascribed to both.
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2.1.2 Principle of Correspondence

We now look for an assignment, i.e., for a ‘translation requirement’ between
Quantum Statistics and Classical Statistical Physics. For this purpose we have first
to think about the fundamental concept of the statistical ensemble. This, however,
does not mean a serious problem for us, because we can introduce this concept into
Quantum Statistics in complete analogy to the classical counterpart (Sect. 1.2.2).

By a statistical ensemble one understands a set (‘mixture’) of (‘thought’,
‘virtual’) identical systems, which are all exact copies of the real system. About
the latter only incomplete information is available, which is therefore in a mixed
state. Each member of the ensemble occupies one of the thinkable states |,,) of the
real system. It is an important fact that the ensemble takes up an incoherent amount
of states. The systems of the ensemble do not interact with each other, the states do
not interfere.

This definition is completely identical to the corresponding classical definition,
which also implies that the statistical operator p must be seen by direct analogy
with the classical density-distribution function. That becomes particularly evident
when we contrast the ensemble averages, the determination of which represents the
predominant goal of Statistical Physics:

Classical ((1.26), (1.52), (1.134), (1.135)):
1
(F> = h3NN! /'.'/d3qu3Np p(qﬂ p)F(qv P) ’

Co
1= /---/d3qu3Npp(q,p)-

Quantum-mechanical:
(F) = Tr(pF) ,
I=Trp.

A further hint is given by the equations of motion:

Classical: (Liouville equation (1.36))

0
a’? = {H, p} (H: Hamilton function) .

Quantum-mechanical:

ap [~ =
af = —;l [H, p]— (H: Hamilton operator) .
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In order to be able to take over practically all the results of the Classical Statistical
Physics from Chap. 1 for the Quantum Statistics, we only have to remember the
principle of correspondence (section 3.5 (3.228), (3.229), Vol. 6). This suggests
the following assignments (left: classical, right: quantum-mechanical):

1) phase space function <= observable (operator)

F(q.p) F
2) density-distribution function <> statistical operator

r(4.p) p
3) Poisson bracket <= commutator

{F.G} = 4 [F.Gl-

— OF 3G _ 3G OF _ (PR _ AP

- ;(qu ap; A E)p_,-) - Lh(FG—GF)
4) phase-space integration <= trace

1 3N, 3N
wva | dqd"p--- Tr(...)

5) stationary ensemble

{p,H} =0 — [0,H]- = 0.

(2.12)

Also in Quantum Statistics only stationary ensembles are interesting, because only
these lead to time-independent ensemble-averages. It holds for not explicitly time-
dependent observables ((3.211), Vol. 6):

i (F) = ([F,H]-).

We reformulate the right-hand side by exploiting the cyclic invariance of the trace
(see Exercise 2.1.1):

(F. H]-) = Tr(p(FH — HF)) = Tr(HpF — pHF) = Tr([H, p]_F) .
Therewith it follows indeed:

d ~ -
G FY =0 [Hp-=0. (2.13)
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2.1.3 Exercises

Exercise 2.1.1
Let F, G, H be quantum-mechanical operators and «, f complex numbers. Prove
the following useful properties of the trace:

. TeFt = (TeF)*,

. Tr(otf + ,Ba) = oTrF + ,BTré,

. Te(F+F) > 0,

. Tr(ﬁaﬁ) = Tr(f-\lﬁa) = Tr(/G\i-\IF) (cyclic invariance of the trace),
. Tr(ﬁ*’ﬁ/lj) =TeF, U: unitary operator.

Exercise 2.1.2
Prove that the characteristic properties of the statistical operator,

[T I S ONT SR

p=">_PulVm) (V.

remain valid even when the states |,,) are normalized, but not orthogonal.

Exercise 2.1.3
Is it possible that the statistical operator

121
p=al 003 (o real)
121

describes a pure state? If yes, what must be assumed for «?

2.2 Micro-Canonical Ensemble

We will now start to transfer the statistical ensembles, which we got to know in the
Classical Statistical Physics of the first chapter, to Quantum Mechanics.

The task can be considered as done, when we succeed to formulate the statistical
operator responsible for the respective ensemble. We begin also here with the
micro-canonical ensemble, for which the statistical operator is easily derivable,
if one accepts the validity of the postulate of the same ‘a-priori’ probabilities
(Sect. 1.1.1). For the detailed discussion of the micro-canonical ensemble we will
restrict ourselves only to facts, which are really new and hence are of quantum-
mechanical nature. The further considerations, which proceed completely parallel
to the classical line in Chap. 1, will only be briefly indicated. It is, however,
recommendable to look up, in the case of need, the corresponding passages in
Chap. 1. That also holds for the following two sections concerning the canonical
ensemble (Sect. 2.3) and grand-canonical ensemble (Sect. 2.4), respectively.
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After having developed the micro-canonical ensemble we will be able to
comment on the third law of Thermodynamics (Sect. 2.2.2), which is of quantum-
mechanical nature, and had therefore to be left open in Chap. 1.

2.2.1 Phase Volume

The characterizing viewpoint of the micro-canonical ensemble is, as in the Classical
Statistical Physics, the fact that it shall describe an
isolated system

with a quasi-sharp energy between E and E + A. A is thereby a small energy-
tolerance (Fig.2.1). The exact energy constancy can not be expected for the here
interesting macroscopic systems (see remarks in Sect. 1.1.1). The system, whose
Hamilton operator is surely time-independent, shall of course be in its thermal
equilibrium. The corresponding ensemble must therefore be characterized in any
case by a stationary distribution. This means, according to (2.13), that the statistical
operator 6 commutes with the Hamilton operator. Quantum Mechanics tells us that
in such a case p and H must have a common set of eigen-states. This fact will help
us in the following derivation of p.

Conceivable states of the system are such that their energies lie between E and
E + A. The energy representation will therefore be convenient:

H|E,) = E,|E,).
(En | En) = 8w (Ex| H|En) = Enbum . (2.14)

0, too, must be diagonal in the energy-representation:
(En | :5 | En) ~ Sum -

For (quasi-)isolated systems the fundamental postulate of the same ‘a priori’-
probabilities (Sect. 1.1.1) holds. All states, which are compatible with the boundary
conditions, should appear with the same probability. Then the following ansatz is
obvious:

Pmece = szcelEm)(EM )
m

t, fE<E,<E+A,
e — const, i + 2.15)

0 otherwise .

Fig. 2.1 Energy tolerance of —— E+A
a (quasi-)isolated —
macroscopic system
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The constant is easily derivable from the condition Trp = 1. At first we define:

E<E,,<E+A

F(E):Tr( > |Em)(Em|). (2.16)

m

This is the quantum-mechanical analog to the classical phase volume (1.44). We
recognize its meaning, when we evaluate the trace in the energy representation:

E<E,<E+A . .
X number of states with energies

I'E) = =
(E) Z between E and E + A.

m

In the concrete case, ['(E) will of course also still depend on other parameters, as
for instance on N and V. That we will label, in the case of need, by corresponding
indexes.

It therefore follows from Trp = 1 for the weights p,, of the micro-canonical
ensemble according to (2.15):

1
e = r'(E) forallmwithE < E,, <E+ A . 2.17)

Mean values of observables F are then calculated in the concept of the micro-
canonical ensemble according to:

E<E,,<E+A

~ 1 ~
(F>=F(E)Tr( ; |Em><Em|F). (2.18)

If one applies the principle of correspondence of the last section to this, and
compares it with the classical ensemble-average (1.52), then the full equivalence
is easily recognizable. Note that in (2.18) the summation is over states and not over
energies. In the case of degeneracy all the states are to be counted explicitly.

All the further considerations, in particular what concerns the connection to
Thermodynamics, turn out to be exactly the same as in the Classical Statistical
Physics (Sect. 1.3). The arguments can be taken over word-by-word. There is
therefore no need to repeat them here in complete detail. As an example we mention
the internal energy U, only:

E<E,<E+A

Uz<ﬁ>—F(IE)Tr( > |E,,,><Em|ﬁ)

1 E<E,<E+A

= @ Xm: E,~E. (2.19)
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This agrees with (1.57)!—The entropy represents also in the Quantum Statistics the
central quantity of the micro-canonical ensemble, because its variables U = E, V,N
are the natural variables of the entropy. Its definition reads, analogous to (1.71):

S =kgInT(E) . (2.20)

(More precisely: I'(E) — I'y(E, V) for an N-particle quantum system in the volume
V). By the way, with the definition (2.20) a Gibb’s paradox (Sect. 1.3.7) is avoided
in the Quantum Statistics. The correct counting of the states is already guaranteed
by (2.16).—If one finally introduces via

D(E) = lim F(AE) 2.21)

a density of states D(E), then the representation
S = kg In D(E) (2.22)

is for macroscopic systems equivalent to (2.20). The proof corresponds to that
for (1.74).—Sometimes the quantum-mechanical analog to the classical phase
volume ¢(E) (1.48),

Elﬂ SE

pE)=> 1, (2.23)
can be useful. There exist, as in the Classical Statistical Physics, the connections:
d
[(E) = (E+ A) — ¢(E); D(E) = dEfp(E) : (2.24)

@(E) is simply the number of eigen-states of the Hamilton operator with energies
less than or equal to E.

2.2.2 Third Law of Thermodynamics

The first two laws of Thermodynamics could be explained within the framework
of the Classical Statistical Physics. That we have demonstrated in the Sects. 1.3.3
and 1.3.5, and we combined them in form of the basic relation of Thermodynam-
ics (1.103). The discussion of the third law of Thermodynamics we had to postpone,
because it is of quantum-mechanical nature. It reads ((3.82), (3.83), Vol. 5):

The entropy of a thermodynamic system at the absolute zero (T = 0)

is a universal constant, which can be chosen to be zero. This holds
independently of the values of the other state variables.
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The practical consequences (e.g., the unattainability of the absolute zero) of the
third law of Thermodynamics, which is also called Nernst’s heat theorem, have
been discussed in section 3.8 of Vol. 5. We can now try to even justify the law on
the basis of the quantum-statistical formulations (2.20) and (2.22), respectively, of
the entropy.

If the system possesses a discrete energy spectrum, then there is an energetically
lowest state, the ground state. Exactly this state is taken by the system for 7 — 0.
If the ground state is g-fold degenerate, then it follows from (2.20) for the entropy
at the absolute zero:

S(T=0)=kglng. (2.25)

In the case that there is no degeneracy (g = 1) the third law of Thermodynamics
can directly be read off from this formula because of In 1 = 0. However, a problem
arises for g > 1, when the ground state is degenerate because of internal symmetries
of the Hamilton operator. S would then not be equal to zero. To say it the other way
round, since so far the Nernst’s heat theorem has always proven to be correct, one
might also conclude that such symmetries are broken and the degeneracy is lifted at
T = 0, for instance due to phase transitions.

For systems with quasi-continuous spectra (e.g. macroscopic solids) one better
investigates the entropy using the representation (2.22), according to which the 7 —
0 -behavior of the density of states D(E) becomes decisive. In all calculable (!) cases
the density of states indeed appears for T — 0 in such a way that the third law of
Thermodynamics is fulfilled. As an example, for the lattice dynamics of a solid
at very low temperatures the Debye theory is applicable, by which one calculates
a contribution to the heat capacity of the type Cy = oT" (see Exercise 2.3.12 and
Sect. 3.3.7). The entropy thus vanishes at the absolute zero like 7°. Another example
is Sommerfeld’s theory of the electrons in a metallic solid (Sect. 3.2), which predicts
a linear temperature-behavior of the heat capacity (Cy = yT), in accordance with
the third law of Thermodynamics. The latter is, however, violated by the classical
ideal gas, which, on the other hand, is not a realistic model system for 7" — O (phase
transitions!).

We assert that even in the framework of Quantum Statistics, the third law of
Thermodynamics is not generally and rigorously provable. It thus remains actually
a theorem, based on empirical observation, and is strongly supported by quantum-
statistically evaluable special cases and model systems

2.2.3 Exercises

Exercise 2.2.1
Express the probability p,, appearing in the general definition of the statistical
operator

p= Z P | Vm) (Yl
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for the micro-canonical ensemble by the entropy S and the free energy F = U — T8,
respectively!

Exercise 2.2.2

1. Let

1 E<E,<E+A

PE) = 1 g ; |En) (Enl
be the micro-canonical statistical operator in the energy-representation. Which
form does p get, when instead of the eigen-states |E,,) of the Hamilton operator
H another CON- system is used for the representation? Does the quantum-
mechanical phase volume T'(E) thereby change?

2. Let A be an observable, which does not commute with H. For its eigen-states
|a,) to the eigen-value a, there exists an expansion in the |E,). Calculate the
micro-canonical average (:4\)'

Exercise 2.2.3

Let a system of N S = 1/2-spins, localized at lattice sites, be in a homogeneous
magnetic field B. To each spin there is ascribed a magnetic moment pg. The energy
of the system is then given by

E=—(Ny —N,)upB = —MugB ,

where Ny (N,) denote the numbers of spins parallel (antiparallel) to B. Calculate
with the micro-canonical ensemble as functions of N and M

. the entropy S of the system,
. the temperature 7,

. the internal energy U,

. the heat capacity Cy.

Exercise 2.2.4
Consider a system of N distinguishable particles, whose energies are &, (r =
1,2,3,...).

RIS S

1. Calculate the entropy S(E) of the system. Assume for simplicity that all
occupation numbers N, of the levels ¢, allow for the application of the Stirling
formula!

2. Calculate the equilibrium distribution {N,} of the occupation numbers N,, i.e.,
the most probable distribution under the boundary conditions:

fixed V=) "N,

fixed E = ZN,s, .
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Take these boundary conditions into consideration according to the method of
the Lagrange multipliers (subsection 1.2.5, Vol. 2).
3. Discuss the physical meaning of the multipliers!

Exercise 2.2.5

Calculate the expectation values (52), (57), (q3), (q7), (T) and (V) (T(V): operator
of the kinetic (potential) energy) via the micro-canonical ensemble for a two-
dimensional, quantum-mechanical, harmonic oscillator of the mass m and the
frequency w.

Exercise 2.2.6
Consider a system of N harmonic oscillators, all with the same mass m and the same
frequency w. Let it have the energy

1
E = 2Nha) + Nohw (Ny > 0; integer) .

1. Calculate the quantum-mechanical phase volume I'y(E).
2. Calculate the entropy S and the temperature 7" as functions of the energy E.
3. Find the connection between the quantum number N, and the temperature 7.

2.3 Canonical Ensemble

The micro-canonical ensemble with its variables E, V, N is adapted to the descrip-
tion of isolated or quasi-isolated systems. This actually corresponds rather seldom to
the experimental situation. Instead, the case, where the system is with fixed particle
number N and with constant volume V in thermal contact with a heat bath of the
temperature 7, is surely more common. In Sect. 1.4, we have already got to know,
in the framework of the Classical Statistical Physics, the canonical ensemble as
such a statistical ensemble which belongs to the variables 7, V, N. When deriving
the concept of the canonical ensemble from that of the micro-canonical ensemble
in Sect. 1.4.1 we actually did not apply any specific classical viewpoints. That
means that we now can execute the corresponding quantum-mechanical transition
in almost identical manner. This will be performed in Sect. 2.3.1, where, though,
because of this reason not all details have to be presented with the same level
of thoroughness as in Sect. 1.4.1. In fact we will deal with two further methods,
which permit a direct access to the canonical partition function, without any
reference to the micro-canonical ensemble. In particular, we will thereby get to
know mathematical procedures, which have proved their worth for the solution of
typical problems of Quantum Statistics.
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2.3.1 Canonical Partition Function

The partition function, which we are going to derive in analogy to (1.136), turns
out to be also in Quantum Statistics the central quantity, from which all important
relations can be derived. Let us briefly sketch its determination in this subsection.
For this purpose we consider, as for the classical chain of conclusions in Sect. 1.4.1,
a reference system X; as a very small, but nevertheless macroscopic part of a very
large isolated system X, for which a micro-canonical ensemble can be defined.
This total system or superordinate system ¥ may be in thermal equilibrium, so that
an entropy can be defined, and that everywhere in X, i.e., also in X, the same
temperature 7 is set up. The complementary system ¥, (¥ = X U X,) represents
for the essentially smaller ¥ a heat bath of the temperature 7. For installing the
thermal equilibrium ¥, and X, must of course exchange energy, i.e. they must
interact. As already assumed several times (see reasoning of (1.82)), however, the
contact can be considered as to be so weak that one can refrain from an explicit
taking into account of the interaction energy in the following considerations.

The canonical ensemble shall consist of systems, which are physically equivalent
to X1, where each system occupies a state |v,,,), which is conceivable for %. For the
derivation of the statistical operator p we need, according to (2.5), the probability p,,,
with which X is now indeed in the state |v,,). As to |1,,), it shall be an eigen-state
of the Hamilton operator H with the eigen-value E,,. The total system is isolated
and has the energy E. It must therefore hold

E=E,+E,

where E, is the energy of the complementary system 3,. The number of states of
the total system with the energy E is given by

T(E) =) TW(ENTL(E — E);

E;

where the sum runs over all energies E; of the small subsystem X;. When, however,
3 is in a well-defined state |v,,) with E; = E,,, then there remain for the total
system only I,(E — E,,) possibilities. According to the postulate of the same
‘a priori’-probabilities (Sect. 1.1.1) all these possibilities appear with the same
probability. The more states of the total system are coming into question for a certain
3-state |,,), the more probable it is then that X; is indeed in just this state [1,):

pm~ o(E—Ey) .

This explanatory statement corresponds exactly in every detail to that which we
have applied in the classical case for (1.133).—Because of the chosen differences in
the order of magnitudes between X1, on the one hand, and X, ¥,, on the other hand,
we can assume that E,, < E, so that a Taylor expansion can be justified. One can
easily convince oneself that such an expansion is not so reasonably done directly for
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the phase volume T",, but rather for its logarithm:

In FQ(E — Em) =In Fz(E) — Em ( J

InTo(E
O, n I ( 2)) +

E»=E
Ey,
~ InI'L(E) — e
2(E) kaT +

On the right-hand side, T should actually be the temperature, which X, takes in
the thermal equilibrium at the energy E and not at the energy E — E,,. Because of
E — E,, ~ E, however, this temperature will hardly differ from the temperature T
of the isolated total system. The same simplification we used, by the way, also for
the classical derivation! The first summand in the above expression is a constant for
>21. It thus holds:

Pm ~ F2(E - Em) ~ eXP(—,BEm) .

That, in turn, means for the statistical operator:

On the right-hand side we have the identity for the states of the ¥;-Hilbert space.
The proportionality constant is fixed by the normalization condition (2.7):

e PH

. (2.26)
Tre—FH

b=
p is therewith completely determined for the canonical ensemble. In order to
recognize the full equivalence, one should compare this expression with the
classical canonical density-distribution function p(q, p) in (1.134) taking thereby
into consideration the principle of correspondence from Sect. 2.1.2.

Obviously, p commutes with the Hamilton operator H describing therewith
a stationary ensemble. The denominator in (2.26) represents the extraordinarily
important
partition function (sum of states) of the canonical ensemble

Z(T) = Tre P71 . (2.27)

If the system is an N-particle system in the volume V, then we will later write, as in
the classical case, Zy(T, V). Furthermore, we will predominantly use the notion
‘partition function’ even if ‘sum of states’ would actually be more appropriate.
Equation (2.27) is the representation-independent formulation of the partition
function. For practical purposes the energy-representation turns out to be the most
important one:

Z(T) =Y e P (2.28)

n
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The evaluation of the trace in (2.27) in the CON-system of the energy-eigen states
|E,) makes clear that it is summed in (2.28) over all states. The exponential
functions e P& which correspond to degenerate states, have to be counted as often
as the degree of degeneracy is.

With (2.26) one finds for the expectation value of an arbitrary observable Fin
the canonical ensemble an expression equivalent to (1.135):

Te(e PHF)

(F) = Tr(pF) = .
Tre—BH

(2.29)

We have therewith all the means to create the connection to Thermodynamics,
and also to demonstrate the equivalence of the micro-canonical and the canonical
ensemble. That we will not do here in all the details, though, because the derivations
and justifications are exactly the same as the classical ones in the Sects. 1.4.2
and 1.4.4. So one gets directly from (2.29) the representation of the internal energy
(N-particle system in the volume V):

U= (H) =— aaﬂ InZy(T,V) . (2.30)

The important fluctuation formula (1.149) holds classically as well as quantum-
mechanically (see Exercise 2.3.1), one has to, of course, only replace for the
Quantum Statistics the Hamilton function by the Hamilton operator:

2.31)

~

(H2) —(H)> _ /CvksT? 1

(H)? u VN
By this formula it is confirmed that in the case of macroscopic systems almost all
members of the canonical ensemble have the same energy E = (H). That we have
already realized in Sect. 1.4 as the decisive precondition for the canonical ensemble
to be statistically equivalent to a micro-canonical ensemble of the energy E = U =
(H). The variables of the canonical ensemble, (7', V, N), are the natural variables of
the free energy,

F(T,V,N) = —kgTInZy(T.V) , (2.32)

whose connection with the partition function is found as in Sect. 1.4.2. For
pressure and entropy the formulas (1.142) and (1.146), respectively, remain valid
if one interprets there Zy (7, V) as the quantum-mechanical partition function. The
equivalence of micro-canonically and canonically introduced quantities such as
entropy and temperature is proven, without any change, as in Sect. 1.4.4.

If the system to be investigated is composed of two non-interacting or only
very weakly interacting partial systems X, and X, then the partition function will
factorize, since the eigen-states of the total system can be written as direct products
of the individual eigen-states and the eigen-energies as the sum of one energy from
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Y., and one from X:

Z(T) =) e PEatEn) = 7,(1)Z,(T) . (2.33)

Ng  Np

That demonstrates the additivity of the free energy:

F(T) = Fo(T) + Fy(T) . (2.34)

2.3.2 Saddle-Point Method

In the preceding subsection we have derived the canonical partition function,
actually, from the micro-canonical ensemble. There exists a more direct way, which
will be introduced in Sect. 2.3.3 as Darwin-Fowler method. This method uses
a procedure, which plays an important role also in other contexts of Statistical
Physics. It shall therefore be developed here, at first irrespectively of its actual
subject matter, as a general method of solution for Classical Statistical Physics as
well as for Quantum Statistics. It refers to the so-called saddle-point method.

In Statistical Physics one has to deal very often with integrals of the type

Iy = / exp (Mg (2)dz . (2.35)
C

where M is a very large number (M — o0), and where

g(2) = u(x,y) +iv(x,y) (z=x+iy)

represents an analytic function in a region which contains the path C. Let the first
derivative of g(z) vanish at the point z = z; so that real and imaginary parts of g(z)
adopt there extremal values:

dg(z)

=0. 2.36
dz ( )

z=z0=x0+iyo

For the following it will become a decisive fact that the path C can be arbitrarily
shifted and deformed within the region of analyticity, without changing thereby the
value of the integral Ij;. We thus can also lay the path through z,.

Real and imaginary parts of a differentiable complex function obey the two-
dimensional Laplace equation, i.e., the Cauchy-Riemann differential equations
(Exercise 2.3.18):

32u+32u_0_ 32v+82v_0
x2 9y o2 9y
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Fig. 2.2 Representation of a
saddle point

If one combines these equations with the extremal condition (2.36),

du
ox

_8u
= 4

v
ox

av

fr— f— O’
dy

20

20 20 20

then one realizes that real and imaginary parts of the function g(z) possess at zy a
saddle point (Fig.2.2). Because of

0%(u, v)
0x?

_ P
= =" o

20 20

the extremum of u and v, respectively, is at zo in x-direction a minimum and in y-
direction a maximum or vice versa.—Of course, not only g(z) has a saddle point at
20, but also the total integrand in (2.35):

J(z) = exp (Mg(z)) .
Because of
J"(z = z0) = Mg"(20)J (20) ,

for M — oo, at the saddle point zp an extremely sharp minimum encounters an
extremely sharp maximum. For large M that allows for special approximations.

We choose the path C such that the real part u(x, y) of g(z) has a maximum at z,
while the imaginary part v(x,y) is practically constant in the close neighborhood
of 7z, so that not all too strong oscillations of J(z) are to be feared. For large
M an extremely sharp maximum of the magnitude of the integrand in (2.35) will
be the consequence. When no further point on C exhibits a similarly pronounced
maximum, then only the immediate neighborhood of z, will essentially contribute
to the integral. We therefore expand g(z) up to the second order around zy,

80 ~ 8) + 8 @G~

and insert this into (2.35):

Iy ~ exp (Mg(z0)) / exp (;Mg”(m)(z - 20)2)2 .
C
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The path C is chosen such that at least in the immediate neighborhood of zy the term

= v/—£"(20)(z— 20)

is real. (If, for instance, zo = xo and g”(xo) > 0 both are real, then the path C would
to be chosen parallel to the imaginary axis through xy (Exercise 2.3.19)). It follows:

_exp (Mg(z0)) ( B 1M Z)d
A /) /exp M )dr.

Because of the rapidly decreasing integrand we can push, in a further harmless step
of approximation, the bounds of integration to =0o. The integral then simply takes
the value \/ 2n/M:

2
Iy ~ eMs) 2.37
M \/—Mg”(Zo) (2.37)

This very useful estimation of the integral is the more precise the larger M is. Of
course, this presumes g’ (z9) # 0.

Very often one needs in Statistical Physics not so much Iy, but rather the
logarithm of Ij;. Then (2.37) can for large M further be simplified, because the root
only provides a contribution of the order O(In M):

Inly ~ Mg(zo) .

2.3.3 Darwin-Fowler Method

Because of its fundamental importance for Quantum Statistics, the canonical
partition function (2.28) will be derived in this subsection in a somewhat more direct
manner than in Sect. 2.4.1. For this purpose we use a procedure given by Darwin and
Fowler (RH. Fowler, Statistical Mechanics, Cambridge University Press, Cambridge
1966). This procedure applies, in particular, the just presented saddle-point method.
The following line of thought, however, will not lead to new results, but will only
confirm the considerations of Sect. 2.4.1.

We start with the assumption that for the macroscopic system, in which we are
interested, there are available the energy levels

Ey<E<Ey<:---<E;<-:-,.

Because of the always free choice of the energy zero, we can assume that all the
energies are positive. Furthermore, we choose the energy unit such that the E; are
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relatively prime, integral numbers. That can always be achieved and somewhat
simplifies the following considerations. It will of course be again important to find
out, with which probabilities the system will occupy the respective energy states at
the temperature 7, in order to fix therewith the statistical operator (2.5).

For this purpose we think of an ensemble of M systems, which are all physically
completely identical to the actually to be investigated real system, and which are
distributed in a certain manner over the conceivable energy levels Ey, Ey, ..., E,,
.... Let the systems be completely equivalent, but nevertheless distinguishable,
i.e., somehow indexable. One could for instance imagine a certain fixed spatial
arrangement. Between the systems, there exists a certain thermal contact, which,
however, can be assumed, as done already several times before, as so weak that
the interactions between the systems remain negligible. We can then consider the
entirety of the systems as a huge isolated superordinate system, whose particles are,
in a certain sense, represented by the single systems, which are distributed with the
occupation numbers

{Mm} = no,n1, ... Ry, ..

n,=0,1,2,3,...

over the available energy levels. The superordinate system defines a fixed energy
E and a constant particle number M (number of the systems in the ensemble), for
which it must hold:

E= Y MnEw: M=) n,. (2.38)

All distributions {n,,}, which are compatible with these boundary conditions are
‘a priori’ of equal probability. Thermal equilibrium of the superordinate system is
therefore defined by the most probable distribution {n,,}, i.e., by the sequence of
occupation numbers, to which the maximal number of possibilities of realization is
ascribed. The individual systems are all physically equivalent and indexable. The
number of possibilities of realization for a special distribution {n,,} then obviously
amounts to:

M!
W({nm}) = . (2.39)
nolnyl--ny!---
The total number of states, which are available for the superordinate system, i.e., its
quantum-mechanical phase volume, is given by

N (2.38)
Tw(E) = Y W(ina}) . (2.40)
{nm}
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It is summed over all distributions {n,,}, which are compatible with the boundary
conditions (2.38). In the thermal equilibrium in the isolated superordinate system
there will be the same temperature T everywhere:

1 0 ~
=kg InTy(E). 2.41
T BaEH m(E) (2.41)

All the individual systems thus possess the same temperature, and of course,
trivially, the same volume and the same particle number. But these are just the
boundary conditions of a canonical ensemble.

The number W({n,,}) in (2.40) is proportional to the probability, to find indeed
the sequence {n,}, which is compatible with the boundary conditions (2.38). It
therefore holds for the mean value (n;) of a certain occupation number:

(2.38)

Z ”IW({”m})
{nm}
{mj) = (2.38)

Y W(tna})

{nm}

(2.42)

A primary concern in the following will consist in the explicit calculation of these
mean values. That is to say, if we then are still able to show that the relative mean

square deviation
2y _ (p)2
() = \/<n,-> ()

(”j)2

tends to zero for M — oo, this will mean that the scattering of the n;-values around
(n;) vanishes. The average configuration {(n,,)} is in such a case identical to the
the most probable one, thus being identical to the configuration which defines
the thermal equilibrium. For almost all states of the superordinate system the
occupation number #; then has the value (n;). On the other hand, this can also be
interpreted in such a way that

= tim Y

gm (2.43)

represents the probability that the actually interesting system under consideration
is in the conceivable energy-eigen state |E;). That, in turn, is exactly the quantity,
which we need for the construction of the statistical operator p of the respective
ensemble.
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It is recommendable to calculate, at first, the phase volume FM(E). For that we
define the auxiliary function

On(2) =Y FTu(E) . (2.44)

E=0

Since all the E,, are integers, E = ) n;E; is also an integer. We insert (2.39)
i

and (2.40) into (2.44):
o (23%) oo (238)
—_ E M! ' Eo+niEy+-
Ou(z) = ZZ Z {nm} Z Z nol - o0Eo+n1El
E=0 " {nn} E=0 {ny}

Since the E-sum runs through all non-negative integers, and the sum over {n,}
comprises of all the sequences of occupation numbers, which are compatible with
the boundary conditions (2.38), Oy (z) can be expressed as follows:

QM(Z) Z Z Z no |n " Eo)no (ZEl)nl oe (ZEm)n’” e

np=0n;=0 ny =0

(Y _n=m).

J
Except for the boundary condition ) n; = M the summations over the occupation

J
numbers run independently of each other. With the multinomial theorem it eventu-
ally follows:

Ou@) =+ 4+ 45+ ---)M = [q@I™ . (2.45)

q@) =) . (2.46)
J

According to our ansatz (2.44), FM(E) is the coefficient of z/E\ in the expansion of
QOu in powers of z. In the Laurent expansion ((4.320), Vol. 3) of the function

Oum(2)

ZE+1

FM(E) thus represents the residue. According to Cauchy’s residue theorem ((4.424),
Vol. 3) it then holds,

R M
Iy(E) = 271”, 95 4 4O (2.47)

E+1
z
c
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where C is a closed path in the complex plane (e.g. a circle) around the singularity
z = 0. With

1 ~
8(z) =Inqg(z) — M (E+1)Inz (2.48)
FM(E) has now exactly the structure of (2.35):

~ 1
I'w(E) = o 9£exp (Mg(2))dz . (2.49)
C

We write, as in the last subsection, for abbreviation
J(z) = exp(Mg(z)) (2.50)
and investigate at first the function g(z). On the positive-real axis, g(x) (2.46) is a
monotonously increasing function of x with a radius of convergence R (0 < R <
+00). We thus have:
gz=x—>R) = +0c0.

In the case of a finite radius of convergence R it follows from that immediately
with (2.48):

glz=x—>R) = +o0.

But this holds also for R — +o00, which one realizes straightaway, when one
represents (2.48) as follows:

glx) = anxE-f — InxnEHD
J

Except for the trivial special case that all the systems are in the same energy state,
there exists at least one E; with E; > All/bf Hence, g(x) diverges in either case for
X — R < +o0.

For x — 0 we estimate, with (2.46) and (2.48), as follows:

1 ~ 1 ~
glx = 0) ~ P A g(x—)O)mlan"—M(E—i—l)lnxz (EO—ME) Inx .

For x — 0 it holds Inx — —oo. If we exclude that all the systems are in the lowest
energy state Ey, so that ny < M, then (Ey — A14E) < 0 and hence

gx = 0) = 4o00.
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Fig. 2.3 Qualitative behavior
of the function g(z) (2.48) on
the real axis

I
0 X0 X

Along the real axis, g(z) therefore shows the behavior, schematically plotted in
Fig.2.3, with a minimum at x (0 < xo < R). It thus holds:

dg(z) 9%g(2)

=0 d
dz an ox2

Z=X0

Z=X0

Exceptat z = 0, g(z) is analytic in the whole complex plane, in particular at the point
z = xo. The Cauchy-Riemann differential equations (see Sect. 2.4.2) are therefore
valid. That has the consequence:

g(2)
0y?

Z=X0

g(z) thus exhibits a minimum along a path on the real axis at z = xy, and has there,
along a path parallel to the imaginary axis (y-axis) through z = xp, a maximum.
7 = xp therefore represents a saddle point for g(z).

When we again assume that not all the systems occupy the same state, then there
is at least one E; > A1/1E and at least one E; < AI,I/E\ Since, in addition, x is positive
(greater or less than 1), it can be concluded:

E; \E
q(xo) = Z X, =x' o~ glxo) =0.
J

These properties transfer to the integrand J(z) (2.50). Because of

0 = M)
74

dZ
27 @ =M @@ + M (£ )" T

we have:
d
J(xp) =0 dzJ(Z) =0
Z=X0
02J(z) 02 M—>+00
=M, g Jx) — +oo

axz I=X0 axz I=X0
821 Z 82 M—+

3(2) =M, ,20@)|  J(x) = 0 (2.51)

y Z=X0 y Z=X0
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At the saddle point, an extremely sharp minimum thus encounters a very steep
maximum for J(z) (see Fig.2.2). The preconditions for the saddle-point method,
developed in Sect. 2.4.2, are obviously fulfilled. The saddle point itself results from
the extremum condition for g(z):

' q(x0) 1 (A 1
= — E+1 =0.
g @l qgxo) M * ) 20

In the bracket, we can surely neglect the 1 in relation to the macroscopic integer E,
to find then an implicit conditional equation for xy:

> Exy
;

E=M"'_ _

]
2%
J

(2.52)

In order to finally be able to perform the saddle-point method, we still have now to
fix the (closed) path C in (2.49). This must take course in the region, in which the
integrand J(z) is analytic. Furthermore, the path should run through the saddle point
Z = X, but, on the other hand, should not contain any other point, which provides
a comparably large contribution to the integral as the saddle point. We consider the
path C therefore as a circle around z = 0 with the radius xy:

C={z=x0¥ 0<¢p <27} .

C therefore passes through the saddle point z = x, parallel to the imaginary axis.
On C there appears at xj then a sharp maximum (!) of the integrand in (2.49). Are
there further maxima of the integrand on C? There we have:

M

1 B
MO I (we)”
xE

0| J

This expression is maximal, exactly when all summands on the right-hand side are
positive-real! That means:

¢~Ejé27raj a; € L.
One possibility is ¢ = 0 < «; = 0. This corresponds indeed to the discussed saddle

point z = x¢. For other points of the circle, ¢ # 0, so that the above condition must
be fulfilled by
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Since the E; are, according to the prerequisites, relative prime, this condition then
requires ¢ = 2m, which, however, is equivalent to ¢ = 0. There is therefore for
the integrand in (2.49) on C only one maximum at ¢ = 0, i.e., at z = xp. The
preconditions for the applicability of the saddle-point method are thus all fulfilled.
Formula (2.37) can therefore be directly used to solve (2.49):

@ ~ | 2T Mgt0) b et (2.53)
2mi \| —Mg" (xo) 2 Mg" (xo)
One finds with (2.48):
q'(x0) (dx)\* | E
g _, - + .,
0 q(xo) q(xo) M
(E 1 -~ ~
2LEE=DY% - Fyy (B/m—1)
- S %
J
~ \2] g
> |:E.2 —(E/M i| X,
(2500 _5 j ! ( ) 0
= xo E; .
> Xy

g"(xo) will turn out to be, except for the factor x 2, the relative mean square
deviation of the energy of a single system of the ensemble. In

~ 1
InTy(E) = - In27Mg" (xo) + Mg(xo)

one can therefore neglect for M — oo the first summand compared to the second
term:

InTy(E) ~ Mg(xo) . (2.54)

Insertion into (2.41) allows for the determination of xy:

1 0 (2.48)
=kg Mg(xo) ~ —kglnxy.
T oF

This means:

xw=e?f  p= ) (2.55)
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We can now go over to the initially formulated task, namely to the calculation of the
average occupation number (n;). For this purpose we apply a ‘computational trick’.
We integrate into the probabilities W({n,,}) ‘artificially’ factors {w,,}, which at the
end of the calculation are set to 1. That means, we now write instead of (2.39):

M! o n
Wa({nm}) = a()oall o
olny!---
This transfers via (2.40) to the phase volume,
Tw(E) — T(E) ,
and via (2.45) to

9(@) — qa(2) = Y 0;d .
J

We can now write for (2.42):

d PN (252 d
) = (a0, 0TEE) 2 (01, nguo)
o fa}=1 a;j {a;}=1

Ej
= (M %o ) .
4o (X()) {a=1

With (2.55) it follows therewith for the average occupation number:

e PE;

(}’lj> = MZe_ﬁEj .
J

2.38

> nIZW({nm})
{nm} _ |:

We now check the mean square deviation of the occupation number:
2y
) = 238
> W(ina})

Lo (0
IS AN
{nm}

a1 9 1 9 2
— . . r¢ 2 re
[a] 30{/(sz‘4% darj M)]{a,-}=1 - [a" (FXZ darj M) }

{ai}=1

{ai}=1

(2.56)
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From this expression we get by manifold application of the formula before
Eq. (2.56):

d d
n2) = (n) = [ (a- 1nF“)i|
( ]) ( J) aaj JBO{j M =1

82
=)+ | 502 10 Ty
J {oi}=1

—(n-)+ o 9 M x?
= (n; 7 dayj qa(x0) (=1

ng E:
=(nj)+M|— x,
( j) 3 (x0) 0

« {ai}=1

(”fz>—(”j)2 11 (2;6)0(1) |

A

The relative mean square deviation can therefore be estimated to

1
(Anj), =~ O (\/M) — 0

In the limit M — oo, there thus belong to almost all states of the superordinate
system occupation numbers 7n;, which practically agree with their mean values (n;).
The sequence of the (n;) determines the thermal equilibrium. The probability p;, to
find the real single system in the energy state |E;), is according to (2.43) and (2.56)
given by

e PE

pj = S b5 (2.57)
J

But this is exactly the same result as the one we have already derived for the
canonical ensemble in another way in Sect. 2.2.1. The statistical operator p is
therewith confirmed in the form (2.26), and all the further formulas are replicated.
So we have, e.g., for the internal energy

U= ZE,-p,- = _aaﬁ InZ, (2.58)
J
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if we define the partition function Z as in (2.28). The entropy is found
with (2.48), (2.50) and (2.54) to be:

1 -
§= ks InTu(E) = kng(xo) ~ ks In X,: e PB4 kgBU . (2.59)

From this it follows for the free energy
F=U—-TS=—kgTIhZ,

the well-known result (2.32) of the canonical ensemble.

2.3.4 The Method of Lagrange Multipliers

The Darwin-Fowler method of the last subsection suggests, from the vanishing
of the relative mean square deviation in the limit M — oo, that the sequence
{(nm)} of the average values of the occupation numbers n,, represents the most
probable distribution of the M individual systems over the energy levels E,
Ei,..., E,,..., and therewith defines the thermal equilibrium. This means for the
isolated superordinate system, which is composed by the M individual systems,
that the number of possibilities of realization W({n,,}), defined in (2.39), exhibits
a sharp maximum at {(n,)}. Out of all the states of the superordinate system,
which are compatible with the boundary conditions (2.38), the overwhelming
majority corresponds to the distribution {(n,,) }. The canonical ensemble is therewith
uniquely defined, and we can draw, by the means of it, the known conclusions with
respect to the thermodynamic properties of the actual system of interest.

Following these considerations, we could have also used from the beginning,
for the derivation of the canonical partition function, our previous knowledge about
macroscopic (asymptotically large, M — 00) systems, which we got in several parts
of Chap. 1 (e.g., Sects. 1.1.2, 1.3.1). According to this precognition, the distribution
function (2.39) possesses such a pronounced maximum that, for instance, for the
calculation of the equilibrium temperature T of the superordinate system according
to (2.41), the full phase volume FM(E) actually could have been reduced to this
maximal term only:

1 9 ~ 9
=k InTy(E) ~ kg . In Wy . (2.60)
T oE oE

We want to show in this subsection that the distribution {n,(,?) }, which makes
W({n,,}) maximal, and which determines therewith the equilibrium properties of
the superordinate system, is indeed identical to the sequence {(n,)} of the average
occupation numbers. The determination of Wy« leads to the same canonical
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partition function Z as that, which was found by the use of the procedure presented
in the Sects. 2.2.1 and 2.2.3.

For fixing Wp.x we use the method of Lagrange multipliers (sub-
sections 1.2.5, 1.2.6, Vol. 2). Since, when seeking the maximum of the
expression (2.39), the boundary conditions (2.38) must of course be fulfilled, it
is not sufficient, simply to set the first variation of W({n,,}) with respect to the n,,
equal to zero. Because of the boundary conditions the n,, can not be varied freely
and independently of each other. The free variation is guaranteed only when the
two constraints (2.38) are coupled to the quantity, which is to be varied, by two
Lagrange multipliers A1 and A, ((1.97), Vol. 2):

8(1nW{n<°> Z nOEn—Xy <°>) =0. (2.61)

It proves to be convenient not to vary W but In W, because then one can make use
of the helpful Stirling formula (1.8). It is clear that In W is maximal at the same
point as W. We assume that the number of systems M is so large that the occupation
numbers n,, by themselves allow for the application of the Stirling formula, and that
they can be considered as practically continuous variables.

The variation is quickly done. With

nW({n,}) = M (n M—1)—an(lnnm— )

(2.61) becomes:

> (nn® + AiEy + 228l =0.

m

All the n,(,? ) are subject, after coupling to the boundary conditions, to free variations.
We can, for instance, single out a special §n'Y and set it unequal zero, while all the
other 8n) are chosen to be zero. This means nothing but that already each term in
the sum must vanish separately. This, in turn, immediately leads to the intermediate
result:

n9 = exp(—AE, — A2) . (2.62)

The boundary conditions (2.38) yield two implicit conditional equations for the
multipliers A1 and A;:

M=¢h Z e MEn (2.63)

E=e") E,e b, (2.64)
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Ay and A, are thus fixed by the given quantities M and E. We can, however, also
exploit the relation (2.62), therewith bringing into play the temperature 7 of the
canonical ensemble:

InWpax & MInM — Z nﬁ? In nﬁ?

m

=MInM+ Y 0 (ME,+ A) = MInM + L E + 1M .

m

It follows then with (2.60) and (2.63):

M
A = = ’ —)»2 = .
! kB T ﬂ ¢ Z e_ﬁEm

When we insert these expressions into (2.60), then we realize that the occupation
numbers ni,?), which make W({n,,}) maximal, coincide indeed with the average
values (n,,), which we have derived by the Darwin-Fowler method (2.56) in the

last subsection:

(0) e_ﬂEm
n, = MZe—ﬂEm = (ny) . (2.65)
m
This means in particular that
ni,?) e PEm

= = 2.66
P M =Y e bEn (2.66)

can be considered as the probability for the single system to be in the state |E,,), at

thermal equilibrium. This is now the third time that we have derived just this result,
which defines the canonical ensemble.

2.3.5 Exercises

Exercise 2.3.1
Let H be the Hamilton operator of a physical system of N particles in the volume V.
Prove the fluctuation formula (2.31)

\/ (H2) — (HY? _ CyksT?
g2 U

by a direct calculation of the expectation values (ﬁz) and (ﬁ ).
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Exercise 2.3.2
Consider the statistical operator p of the linear harmonic oscillator (frequency w,
mass m) in the canonical ensemble.

1. Verify that the diagonal element of p in the position representation,

ol@=1{qlplaq) .

fulfills the differential equation

d 2mw 1
dqp(q) = (— , tanh (2ﬂhw)) qp(q) .

2. Which meaning does p(g) have? Why should we have

+o00

[ dar@ =1
—0o0
Solve therewith the differential equation from part 1.!

Exercise 2.3.3
Find the canonical partition function Z, of the two-dimensional harmonic oscillator:

Ly, L5 5
H:zm(px+py)+2ma) x+y)

It should also be possible to understand the oscillator as the total system of two
decoupled one-dimensional oscillators. Show that indeed:

Z = (Z1)*.

Exercise 2.3.4
An ideal gas of N distinguishable particles, all of the same mass m, is enclosed in a
volume (cuboid) V = L, - L, - L,. For the energy of a single particle we have

h2k?

ek = 2m

’

where the components of the wave vector k take discrete values due to ‘periodic
boundary conditions’:

ki = n;; i=x,Y,2 Ny, iy, n; run through all the integers.
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1. Formulate the canonical partition function Zy (7', V) of the ideal gas.
2. In the macroscopic system discrete sums can be replaced by integrals:

+o0
Z — / d}’l,’ .
n; SN

Calculate therewith Zy (T, V)!
3. Show that for the internal energy the classical result is valid:

3
U= _NkgT
5 1VkB

Exercise 2.3.5
Calculate the canonical partition function of a system of N independent linear
harmonic oscillators, all with the same frequency w.

Exercise 2.3.6
For a physical system (gas!) the canonical partition function

N
Zy(T.V) = (y ' ;P)

is given (y = const).

1. Calculate the internal energy U(T, V, N) and the entropy S(7, V, N).

2. Find reasons why the formula for the entropy can be correct only for temperatures
T > T* (T* > 0). Calculate T*!

3. Choose an ansatz for the thermal equation of state by analogy with the ideal gas

pV=x-U.
What is x?
4. Calculate the chemical potential ¢ as a function of the temperature 7!
Exercise 2.3.7

Graphite has a strongly anisotropic structure. Consider for the calculation of the
heat capacity the following simplified model: Each of the N C-atoms oscillates
harmonically in the three space directions x, y, z with the eigen-frequencies w,
wy, w,. Calculate

1. the partition function Z,
2. the internal energy U,
3. the heat capacity Cy. Simplify the expression of Cy for the case

hw, = hwy, > kgT; hw, < kgT.
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Exercise 2.3.8

Consider a linear chain of N magnetic moments. Each moment is duetoa § = 1/2-
spin and thus possesses only two possibilities of orientation (parallel or antiparallel
to the z-direction):

Silo10y---0,) = 0j|0102 -+ - 0,); o=+

A spontaneous order of the moments (ferromagnet!) is possible only if there is an
interaction between the spins (moments) (Ising model):

N—1
H=- Z JiSiSi (J;: interaction constant) .
i=1

1. How many different spin states |0} ---0,) do exist? Formulate the canonical
partition function Zy by means of the spin-values o;!
2. Enlarge the chain by one link (N — N + 1). Derive the recursion formula

1
Zni1(T) = 2Zy(T) cosh (4 ,BJN) .
3. Explain why it holds for the single spin

Calculate therewith Zy(T)!
4. Calculate the ‘correlation function’

(SiSi) !

Exercise 2.3.9

Consider the canonical ensemble of a system of N noninteracting spatially fixed,
i.e., distinguishable spins S = 1/2, which are in a homogeneous external magnetic
field B = Be,. The Hamilton operator is then given by

n

H= —Zﬂi'B = —ZMBBXVL:EZ'
i=1

i=1

(up: Bohr magneton). The eigen-states

Hlo105--0y) = —2u8B ) _ Si|0102---0n) ,

i=1
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fulfill:
—~ 1
Stlo102 -+ -oN) = 0i|o102 - - ON); aie{—2,+2}.

Determine therewith

. the possible energy-eigen values and their degrees of degeneracy,
. the partition function,

. the free energy and the internal energy,

. the entropy,

. the heat capacity Cg,

. the average magnetic total moment:

AN A W=

N
M= <2MB Z§Z> .
i=1

7. Discuss the result for high and low temperatures, i.e., BugB < 1 and fugB > 1,
and compare it with the classical result from Exercise 1.4.6.
8. Does the system obey the third law of Thermodynamics?

Exercise 2.3.10
Consider, as in the preceding exercise, a system of noninteracting spatially fixed
magnetic moments g, in a homogeneus magnetic field B = Be,. However, let the

moments j1; now be caused by an arbitrary angular momentum :]\l Assume that the
quantum numbers of the angular momentum J; = J are for all moments the same.
The system can then be described by the following Hamilton operator (Langevin
paramagnetism):

ﬁ=—ZﬂpB=—g1uBZji-B

(gs: Landefactor).

1. Calculate the canonical partition function.
2. Show that we now have for the average value of the magnetic total moment

M = MyB;(B gsus B) ,

where

2J+1 2J+1 1
B;(x) = + coth + x| — coth( * )
2J 2J 2J 2J
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represents the so-called Brillouin function and
Mo =NgyJ s

the saturation moment.
3. Discuss M forJ = 1/2, J — oo, BusB > 1, BusB < 1.

Exercise 2.3.11
After transformation to the so-called normal coordinates ((2.152), Vol. 9) one can
approximately express the Hamilton function of a solid of N atoms by

(1
H(q,p) =) (2,;1 + mequ) 3

j=1
i.e., by a system of 3N uncoupled, linear harmonic oscillators.

1. Calculate with the classical equipartition theorem the internal energy and the
heat capacity of the solid.

2. Derive with the Hamilton operator, which corresponds to the function H(q, p),
(gj, pj: now observables), quantum-mechanically the canonical partition function,
and from that once more the heat capacity. For this purpose use the so-called
Einstein-assumption w; = wg Vj.

3. Discuss the result of part 2. for T > O and T <K g, respectively, where
O = hwg/ks is the so-called Einstein-temperature. Compare it with the
classical result from part 1. and check the third law of Thermodynamics. What
can be said about the validity of the classical equipartition theorem?

Exercise 2.3.12

Consider, as in Exercise 2.3.11, the normal oscillations of a solid. Calculate again
the heat capacity, but now not in the framework of the Einstein model (w; =
wg Vj), but by the use of the Debye model, which distributes the frequencies of
the uncoupled oscillators according to the density of states

9N ,
N forw < wp,
D(w) = { @p
0 otherwise .

D(w)dw thus is the number of oscillator frequencies between @ and @ + dw. The
Debye frequency wp is fixed by the condition

o0
/ D(w)dw = 3N (total number of the eigen-oscillations of the crystal) ,

0

where N is the number of lattice sites.
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Discuss the heat capacity at high and low temperatures, check the validity of the
third law of Thermodynamics, and check the validity of the classical Dulong-Petit
law (C*5 = 3Nkg).

Useful formula:

v 46 4

/ * dx= _7*.
(e —1)2 15

0

Exercise 2.3.13
Molecular hydrogen (H,) appears as ortho-hydrogen with parallel nuclear spins of
the H-atoms and as para-hydrogen with antiparallel nuclear spins. Both types can
be, under certain conditions, at equilibrium to each other.

In a most simple model for H, only the rotational energy is to be taken into
consideration

~ 1 ~
H= _L>  (dumbbell model),
2J
J = moment of inertia,
L: operator of the nagular momentum; f2|l) =11+ D)),

ortho-H,: lodd,

para-H,: leven.

1. Calculate the partition functions, the internal energy, and the heat capacities for
the different components.

2. Discuss the results for high and low temperatures.

3. Calculate the partition function, the internal energy, and the heat capacity for the
ortho-para mixture at thermal equilibrium. How does the equilibrium-ratio

Zortho (T)

“ (T) - Zpara (T)

depend on temperature? Discuss again the limiting cases of high and low
temperatures! Is the third law of Thermodynamics fulfilled?

Exercise 2.3.14
Let a system of N particles be at the temperature 7 in the volume V, and let Zy (T, V)
be the canonical partition function. Prove the following relation:

nZ nZ
N(anN) +v(an’v) =1InZy.
N )y v )y
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Exercise 2.3.15
Derive by the use of the saddle-point method from the Gamma function

I'(N+1)= /e_"dex =N!

0

the useful Stirling formula
N!' ~ /2uNNVe™ |
Exercise 2.3.16
Let H be the Hamilton operator of a physical system with a discrete eigen-value

spectrum:

H|E,) = E,|E,)
(Ep | Ep) = Spm -

1. Introduce average values by
(E) =) dEy;  (F(B) =) diF(E,),
where the coefficients d,, fulfill
dyz0; Y di=1,

but being otherwise completely arbitrary. Show that then it holds for each convex
function F(E) ((F"(E) > 0):

(F(E)) = F((E)) .
2. Let {|¢p,)} now be an arbitrary orthonormal, but not necessarily complete set of

quantum-mechanical states. By using 1., show that for the free energy F of the
systems the inequality

Fs—taTin| Yexp(=5 loa | 7 100)]

is valid, which enables a variational procedure for the determination of F. When
does the equality sign hold?



2.3 Canonical Ensemble 135

Exercise 2.3.17

In connection with the solution of the quantum-mechanical eigen-value problem of
a particle in the homogeneous force field (electric field, gravitational field close to
the earth surface) one encounters the Airy-function:

1 T s
Ai(n) = /ds cos ( + sn) .
b4 3
0

For large n we have the asymptotic formula:
1 2
Ai(n) ~ ~l/4e ).
i(m) A G

1. Justify this formula by means of the saddle-point method!
2. Why is the saddle-point method applicable only with respect to the saddle point
in the upper complex half plane?

Exercise 2.3.18
Let the function

g(2) = ulx,y) +iv(x,y)

be analytic in the neighborhood of z = x + iy.

1. Show that for u(x, y) and for v(x,y) the Cauchy-Riemann differential equations
must be valid.
2. Let g(z) have at z = zp = xp + iyo an extremal value. Show that then it must hold

u
0x

_3u
=

v
0x

_81}
= 3

=0!

20

20 20 20

Exercise 2.3.19

For the derivation of the ‘saddle-point formula’ (2.37) it had to be assumed that, at
least in the immediate neighborhood of the saddle point zp, on the integration path
C the quantity

t=v/—g"(z0) (- 20)
is real. The notation is the same here as in the main text.

1. Show that this assumption can always be fulfilled!
2. What holds for the special cases

(a)

20=x0€R; g"(z)>0
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(b)

2w=1in, neR; g'(z)<0?

2.4 Grand-Canonical Ensemble

In connection with the quantum-mechanical formulation of the canonical ensemble
in the Sect. 2.2.1 we recognized that all important quantities, and the rela-
tions between them, could directly be transferred, with the aid of the principle
of correspondence (Sect. 2.1.2), from Classical Statistical Physics to Quantum
Statistics. For the argumentation in Sect. 2.2 we could very often refer to the
considerations in Sect. 1.4. So that we could spare, for instance, the explicit proof
of the quantum-mechanical equivalence of the micro-canonical ensemble and the
canonical ensemble, because the proof follows word-by-word the classical line of
thought. The situation is completely analogous for the grand-canonical ensemble.
When deriving it in Sect. 1.5.1 classically from the micro-canonical ensemble,
we applied hardly any specifically classical argumentation, so that the quantum-
mechanical reasoning of the grand-canonical ensemble is almost superimposable
with the classical reasoning. We can therefore restrict our review on the partition
function to the bare necessary, i.e., to those details, which are of typical quantum-
mechanical nature and therefore do not appear in the classical representation.

2.4.1 Grand-Canonical Partition Function

The grand-canonical ensemble shall describe, also in Quantum Statistics, situations,
in which the physical system under investigation exhibits besides thermal contact
also particle exchange contact with its surroundings. By thermal contact with a
heat bath its temperature T is definitely given as in the canonical ensemble, while
for this purpose the energy may fluctuate. The new feature is the particle exchange
contact with a particle reservoir, which takes care for a definite chemical potential
M, whereas the number N of particles is variable.

(T,V,u): state variables of the grand-canonical ensemble.

The corresponding thermodynamic potential, introduced in (1.154) is the
grand-canonical potential

Q(T,V, 1) = F—G=F — u(N) = —pV |
dQY = —SdT — pdV — (N)dp. .
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E,Np,Vy
;'_ - h]
2L

2. E;,N,,V,

Fig. 2.4 Small system X; with walls permeable for particles in the heat bath of an isolated
superordinate system ¥ = ¥; U X,. Schematic representation for the interpretation of the grand-
canonical ensemble

We imagine the reference system X;, which is to be investigated, as a small, but
nevertheless macroscopic part of an isolated superordinate system ¥ = ¥, U X,.
It is delimited against the very much larger complementary system X, by walls,
which are permeable for energy and particles (Fig. 2.4). The volumes V; and V, are
fixed. For the isolated superordinate system X with the total volume V = V| +
V> a micro-canonical ensemble can be defined, and therewith an entropy. In the
thermal equilibrium, the same temperature 7" and the same chemical potential y are
established at all points of X, and therewith also in X;. The necessary interaction
between X; and ¥, may again be negligibly weak. For the equilibrium values of
the energy and the particle number it must be assumed in any case that

El < Ez; ﬁl < ﬁz-

The grand-canonical ensemble shall consist of systems, which are physically
equivalent to X, where each of them is in one of the states, which are conceivable
for ;. As such states we take the common eigen-states |E,,(N;)) of the Hamilton
operator H) and the particle number operator N

H|EW(Ny) = En(NDIEn(N)))
Ni|Ex(N1)) = Ni|En(N1)) (2.67)

We thus presume that H 1 and N 1 commute. Let £ and N be the fixed values for the
energy and the particle number of the superordinate system X:

E=EN,) +E.N)); N=N +N,. (2.68)

(We disregard here the small micro-canonical energy-uncertainty A with respect
to X.) E»(N,) is the energy of the complementary system X,. For the statistical
operator p of the grand-canonical ensemble the following ansatz suggests itself,
because of (2.5):

p =33 DN En(ND) (En(N)] (2.69)

Ny m
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The remaining task consists in finding the probability p,,(N;), with which X is
really in the state |E,,(N,)). The total number of states (phase volume), which are at
the disposal of the superordinate system, amounts to:

m

IV(E. V) =YY T En(N). V)T (E — En(N1). V2) .
Ny

If we fix the X;-state |E,,(N;)) then there remain still
T\ v (E = En(Ny), V.
N—N, m 1)7 2)

possible states for X, and therewith also for X. All these states appear ‘a priori’
with the same probability. The more of such states exist, the larger is the probability
that Xy is indeed in the state |E,,(N;). We can therefore assume

Pu(N1) ~ T2 p (E = En(N1), V2) -

Because of the different orders of magnitude of 3| and %, at least for the interesting
constellations near the equilibrium, E, <« E and N; < N can be presumed. A
Taylor expansion is therefore obvious, which we perform for the logarithm of the
phase volume, and which we terminate after the linear term:

Em(Nl) ( BSZ

1
InT?  (E—E,(N),Vs) ~ = S»(E,N,V,) —
nIyZy( (N), V2) ke 2( 2) ks OE,

) (E,N,V>)
N2,Va

Ny (8S2

- (E,N, V) .
kg 8N2)E2’V2 2)

The first summand is for ¥, a constant, and therefore here uninteresting. For the
two others we have:

as as SN 1
( 2) (E,N,vz)ae( 2) (ExNo Vo) =
IE> )y, v, IE> )y, v, T

as as ~ o~
( 2) (E,N, V) ~ ( 2) (Ez,N27V2)=—'u
N, EyVs N, Vs T

It remains therewith:
PNt ~ T\ (E = En(N1), V) ~ ¢ (=it (2.70)

This result we use in (2.69) for the statsitical operator:

p ~ Z Z e B (Em(Nl)_MNl)IEm(Nl)(Em(Nl)
Ny

m

— B EI—uN) DO IEANDER(N) -

Ny m
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On the right-hand side there appears the identity of the X -Hilbert space. The not yet
determined proportionality constant follows by the normalization condition (2.7).
From now on the index 1 can be dropped because the complementary system ¥, no
longer plays any role in the following considerations.

Statistical operator of the grand-canonical ensemble

Iy
p= ~ - (2.71)
Tre—B (H—uN)
p commutes with H, and thus describes a stationary ensemble. The denominator is
the representation-independent formulation of the

partition function of the grand-canonical ensemble
E,(T,V) = Tre PHMN) (2.72)

The energy-particle representation

Bu(T.V) =) ) exp[ = BE.N) — puN)] . (2.73)
N=0 m

EAT.V) =) Z'Zy(T.V) (2.74)
N=0

reveals the equivalence to the classical result (1.159), if one takes into consideration
the principle of correspondence (2.12). Zy(T, V) is the canonical partition function
of the N-particle system (2.28), and

7 =ePH

is the fugacity (1.160). One should notice that, because of the variable particle
number, there does not exist a direct classical analog to p. The classical density-
distribution function (1.164) can be defined only for fixed N, since different N lead
to different phase spaces.

With (2.71) the average value of an arbitrary observable F is calculated as
follows:

Tr(e=P E-1NF)

(F) (p Tet E—s)
This means in the energy-particle number representation:
1 o0
(F) = . Z Z e_ﬁ (Em(N)_MN)me(N) , (276)

K N=0 m

Fun(N) = (En(N) | F | En(N)) . (2.77)
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If (fN)L.e is the corresponding average value of the canonical N-particle ensemble
then one has as a third alternative:

o)

Z ZNZN(Ts V) (ﬁN>ce

(F)y = "=° . (2.78)

(e

Y NZN(T.V)
N=0

We have now gathered all that we need to be able to create the connection of
the grand-canonical ensemble to Thermodynamics. We are here, however, content,
more or less, with a compilation of the important formulas only. Their derivations
are, namely, exactly the same as those in Sect. 1.5.2 for the classical case.

One finds the average particle number, because of (1/\7 Jee = N, most directly
with (2.78):

~ 1 /0
N) = In&E,(T,V 2.79
® =y (4 mErm) 1)
=2 ( 9 BT, V)) . (2.80)
0z TV

One has to distinguish 8, (2.73) and E; (2.74)! (2.79) can in principle be used
to represent the chemical potential p as function of 7', V and (N). With (2.80) one
easily realizes that, as in the classical case (1.167),

NZW(T, V
wn(T, V) = ZE PZ; V)) (2.81)

can be interpreted as the probability to find the system at the temperature 7 with N
particles in the volume V. The equivalence of the canonical and the grand-canonical
ensemble is certainly guaranteed only if the distribution wy has an extremely sharp
maximum at N = (1/\\7 }. That this is indeed the case one recognizes by the fluctuation

formula
(AN), = \/,BV \/ © (2.82)

the proof of which was done with Eq. (1.200) in Sect. 1.5.3. In the case of
macroscopic particle numbers the relative fluctuation practically vanishes, i.e.,

almost all systems of the ensemble possess the same particle number (N). To a
good approximation, one can then apply instead of (2.72) also

(T, V) ~ M2z (T, V) . (2.83)
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For the internal energy it holds as in (1.173) and (1.174):

U=— ( 1 2 (T, V)) + u(N) (2.84)
313 w,v

9
=— ( 9 In E,(T, V))Z’V . (2.85)

The meaning, which the entropy has in the micro-canonical ensemble, and the free
energy in the canonical ensemble, is taken over in the grand-canonical ensemble by
the grand-canonical potential:

QT.V.p) = —ksTIn B, (T, V) = —pV . (2.86)
Eu(T,V) =exp(—BR2(T.V.1)) . (2.87)

We have developed in this subsection the concept of the grand-canonical ensemble
out of that of the micro-canonical ensemble. There are further possibilities. One
possibility is to derive the partition function Z,(T, V) also with the method of
Lagrange multipliers, which we have used in subsection 2.3.4 for the determination
of the canonical partition function Zy(7, V). The corresponding explicit derivation
will be performed as Exercise 2.4.1.

2.4.2 Exercises

Exercise 2.4.1

Consider a system of M physically equivalent systems. Each of them has a thermal
contact to a heat bath of the temperature 7" and has a particle exchange contact to
a particle reservoir. Let |E,,(N)) be simultaneous an eigen-state of the Hamilton
operator H and the particle number operator N of the single system. We understand
the entirety of the systems as an isolated superordinate system of the energy E,
and the particle number N,. The occupation numbers n,,(N) indicate the number of
single systems in the states |E,,(NV)). Let these be for M — oo so large that, when
needed, the Stirling formula can be applied.

1. Find the number of possibilities of realization

W ({nn(N)})

for a certain distribution {n,,(N)} of the M systems over the available states
|E,,(N)). Formulate the boundary conditions.

2. Determine, using the method of Lagrange multipliers (subsection 2.3.4), the
distribution {n,(,?)}, which makes, under the given boundary conditions, W
maximal.
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3. Fix the Lagrange multipliers of part 2. by the fact that the maximum of W is
extremely sharp, so that for the phase volume of the superordinate system it holds
approximately

InTy(E;) =~ In Wiy -
4. Verify with the results of part 1. and part 3. the representation (2.71) of the grand-

canonical statistical operator p.

Exercise 2.4.2
Show that the canonical partition function Zy can be expressed as follows by the
grand-canonical partition function E:

7o 1 95 g, i
NZ opi o N1
C: closed path in the complex plane around z = 0.

Exercise 2.4.3
Evaluate the integral in Exercise 2.4.2 by using the saddle-point method. Show that
the saddle-point condition requires

N = (1/\7 ) (]/\7 :  operator of the particle number) ,
and that the saddle-point approximation leads to
F=Q+ u(N).

F is thereby the free energy, and €2 is the grand-canonical potential.

Exercise 2.4.4
Prove the following inequality:

2.5 Extremal Properties of the Thermodynamic Potentials

Important equilibrium properties of thermodynamic systems are due to the tendency
of their potentials to achieve extremal values. For all (irreversible) processes, which
are possible under certain boundary conditions, the potential with the corresponding
natural variables can only increase or only decrease (section 3.7, Vol. 5). This
we have already discussed in Sect. 1.3.3 for the entropy of the micro-canonical
ensemble. We will now formulate the extremal properties on a more general basis.
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2.5.1 Entropy and Statistical Operator

We show at first that for all the three ensembles (micro-canonical, canonical, grand-
canonical) the following important connection exists between the entropy S and the
statistical operator p:

S = —kgTr(pln p) = —kp(In p) . (2.88)

The entropy is thus essentially equal to the expectation value of the logarithm of the
statistical operator, whose eigen-values are probabilities (property 5 in Sect. 2.1.1),
and therewith numerical values between 0 and 1. The logarithm will therefore be
negative, and hence the entropy is surely positive. We will prove (2.88) separately
for the three ensembles, where we begin with the micro-canonical ensemble.
Starting point is (2.15):

1 E<E,<E+A

Amce = E ) {Ey 2.89
Pree = 1) Z |Em) (En] (2.89)
With the eigen-value equation
1 .
R |Eyn), fE<E,<E+A,
0 otherwise

and the hermiticity of the statistical operator (P = ;") we have:

Tr(,émce 11’1 /A)mce) = Z(Ei|,5mce 11’1 /A)mce |Ez)

1

E<E;<E+A
1 1

- Z rE) " reE

1

(Ei | Ei)
=—InT(E).
With (2.20) it already follows therewith the assertion:
S = kgInT(E) = —kgTr(Dmee In Pince) - (2.91)

The proof of (2.88) for the canonical ensemble is equally simple. Starting point is
here (2.26):

1 o~
poe = e PH . 2.92
I 7¢ (2.92)
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Z is the canonical partition function. According to (2.32) it has the following
connection to the free energy:

Z=ePr. (2.93)
This yields with (2.92)
pee = P (2.94)
Therewith we get the expectation value
~knlin ) =~k (F — (B) =~ (F~U) = —_(-T$) =5

which verifies (2.88) also for the canonical ensemble.
Finally what remains is the relation of the grand-canonical ensemble with the
statistical operator (2.71)

—_—

ﬁgce = _ e PN s (2.95)

]

for which the partition function & can directly be expressed by the grand-canonical
potential Q = F — G = F — u(N) (2.87):

E=eF2, (2.96)
It therefore holds
Poce = &F @HTIN) (2.97)
We average the logarithm of fg.:
~hlin ) = — (€ — () + (W)

:—;(F—U)zS.

That proves, also in this case, Eq. (2.88).
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2.5.2 Boltzmann’s H-Function

The now to be introduced function H (H: Greek capital letter) looks at first rather
abstract, but can be exploited to a very large extent. Let:

p : statistical oprator in the equilibrium
(mixed state),
P : statistical operator in any

non-equilibrium state.
We assume that both operators are normalized as follows:
Trp=Trp = 1. (2.98)
As statistical operators, p and p’ are both Hermitian with the eigen-value equations:

Bloa) = palpa) s A'l0OL) = pplo)) - (2.99)

We define therewith the
H-function

H=Tr[p (Inp—Inp"]. (2.100)

For later applications, the fact will turn out to be useful that H has an upper bound,
which we now want to fix by some simple estimations:

H =" ({o,|8' nplp},) — (p},16' 0 §']},))
=Y o, ({0l 10 lo},) —n g}, (0], | b)) -

Here we have at first utilized the hermiticity of p’. The completeness of the eigen-
states |p,,) allows for further rearrangements:

H="p, (6} [ 10| pu){on | p},) =0}, (0} | £4)] %)

m,n

= 2ot {(ehy L on)|

For an estimation one considers the function

f(x)=x—1—Inx forx>0
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This function has a minimum at x = 1 (f(1) = 0, (1) = 0, f” = 1/x*> > 0), so
that it holds:

f@) >0 x—1>Inx forx>0

The eigen-values p,, p), are, as probability quantities, positive-semidefinite so that
the inequality

mPn <Pn_1

P~ P

can be exploited for an estimation of H:

H =< Zp:,,(”:’ —1) AP

Prm

= (pultn | D) (O | £n) = P30l | oo | £},))

=D Apu 1AL pa) = D (00 1 B 1 £)

=Trp—Trp'=0.

It holds therewith for arbitrary mixed non-equilibrium states, which are character-
ized by the statistical operator 0’

Tr[p'(np—Inp)] <0. (2.101)

This extremal condition of the H-function shall be utilized in the following to come
to concrete physical statements.

2.5.3 Entropy

Starting point is (2.88) as representation of the entropy:

S = —kgTr(p'Inp’) .

The Boltzmann’s H-function can therewith be written as follows:

ksH = S’ + ksTr(p' Inp) . (2.102)
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We consider at first the second term on the right-hand side of this equation:
ke Tr(p'Inp) = ks ) (pu | 'Inf | pu)
n

=kn ) _Inpufon | ' pu) - (2.103)

The entropy is the central thermodynamic potential of the micro-canonical ensem-
ble, for which it holds because of (2.90)

T ) = kol RIS
= —kgIn[(E)Trp = -5,
so that we have:
ksH=S —S<0.

This means

§'<Ss. (2.104)
In the equilibrium the entropy is therefore never smaller than it would be in any other
non-equilibrium state. All processes, which can take place in an isolated system,
and which lead (irreversibly) to equilibrium, let the entropy increase or at least not

decrease. This is nothing else but the ‘second law of Thermodynamics’:

ds>0. (2.105)

2.5.4 Free Energy

We use again the H-function in the formulation (2.102), and the intermediate
result (2.103), into which we insert the eigen-values of the statistical operator of
the canonical ensemble

1
on = Ze—ﬂEn;. (2.106)
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Because of (2.92) the eigen-states of Oce are simultaneoualy those of the Hamilton
operator H:

kBTl’(ﬁ/ 11’1,5) = kB Z(_ 1nZ_,3En)(pn | ﬁ/ | pn)
= koI ZTep — S E (o | 7 | )
T - n n n

1 o~
=—ksnZ— % (pu | F'H | pn)

1 ~ 1
= —kglnZ— Tr(p'H) = —kglnZ— _ U’
BInZ— 1(p'H) BInZ-—
= (F-U)
=, .
U’ is the internal energy of the non-equilibrium state. The temperature T is as

natural variable of the canonical ensemble the same for both states which are to
be compared. Equations (2.100), (2.101), and (2.102) then lead to the estimation:

ksH = S — 1U’+ Tp 1(F—F’)<O
B T T T =
This means:

F<F < dF<0. (2.107)

For all processes, which are still possible in a system with 7 = const, V = const,
N = const, the free energy can never increase. The free energy is minimal at
equilibrium ((3.73), Vol. 5).

2.5.5 Grand-Canonical Potential

Also in this case we start with (2.102) and (2.103), being interested in such
processes, which can take place in systems with

T = const , V = const , [ = const .

The eigen-values of the statistical operator of the grand-canonical ensemble,

B En(N)—pN) , (2.108)

o] —

pn(N) =
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as well as the eigen-states | pn), wWhich are, because of (2.95), also eigen-states of the
Hamilton operator H and of the particle-number operator N, help with the following
rearrangement:

keTr(p'np) = ks ) Y (= E — B (EN) = uN))(pu(N) | B | pu(N))
n N

o 1 ny
—ksIn & Trp — D 7> " (Ea(N) = i) (pu(N) | | pu(N))
n N

1 ~ -~
= —ksInE— > > (on(N)P' (H — i) |ou(N))
n N

—kgIn E — ;Tr(ﬁ’ (H— uﬁ))

2 1 ~ 2 1
- U —-pN)y=_—- (F+T15-C
U =n®)) = = (F 415 =)

1
R-02)-5.
S22

Chemical potential i and temperature 7 are same in both the states which are to be
compared. This means according to (2.102)

kpH = '+ ;(Q—Q’)—S’éo,
where (2.101) causes the inequality. We are left with the important statement:
Q<N <= dQ<0. (2.109)
In all processes, which are possible at constant temperature 7', constant volume V

and constant chemical potential u, the grand-canonical potential does not increase.
2 is thus minimal at equilibrium.

2.6 Approximation Methods

Only very few problems of Quantum Mechanics and Quantum Statistics are
mathematically rigorously tractable. Approximation methods have to be developed,
and, above all, must be tolerated. We will find in this section at first a perturbational
approximation of the canonical partition function and the free energy, in order to
discuss at the end a variational procedure for the same quantities.
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2.6.1 Thermodynamic Interaction Representation

Let the Hamilton operator be decomposable into a ‘free part’ Hy, whose eigen-value
problem can be considered as solved, and an ‘interaction part’ Hy, which prevents

the exact solution of the full problem:

H=H,+H,.

(2.110)

We are seeking something like an ‘interaction representation’ (subsection 3.4.4,

Vol. 6) of the statistical operator. We introduce
x=e¢P" =x(B)

with the differential equation:

) = —(Ho + H)
aﬂx_ 0 l-xv

which we try to solve by the ansatz

x(B) =Py, GO)=1) :

ox _ ady
— ¢ P [ _g
B ( v aﬁ)

dy

By
= _H —BHo
= ox+e 9

= —Hye PH 4 ¢~ PHo
0 9B

= —(Hy + Hy)e P! .

It remains the intermediate result:

a
e PHo 3; = —Hle_ﬂH )
which in the form
gg — —(eﬁH"Hle_ﬂH“)(eﬂH“e_ﬁH)

= (™ Hye )y (p)

suggests the introduction of a ‘modified’ interaction representation:

A(x) — xH()Ae—xH()

(2.111)

(2.112)

(2.113)

(2.114)

(2.115)
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(see (3.201), Vol. 6 for x <> i/ht). We get therewith from (2.114):

d
a; — —H\(B)y(B) . (2.116)

The formal solution (y(0) = 1),

B
y(B) =1— [ dxHi(x)y(x),
/

yields an integral equation, which obviously can be solved by iteration:

YB) =14 (=)"y"(B) . 2.117)
n=1
B X1 Xn—1
Y (B) Z/dm/dxz'” / dx, Hy(x1)H(x2) -+ - Hy(x,)
0 0 0
B=x1>2x>->x,>0. (2.118)

A more compact representation succeeds with the following analog to the Dyson’s
time ordering operator ((3.173), Vol. 6):

A(xl)B(Xz) , ifxl > X
B(x)A(x1) ifxy > x

T(A(x1)B(x2)) = (2.119)

The same considerations as those in Vol. 6, which there have led to Eq. (3.176),
yield here:

B
W= /m/dxl"-dan(Hl(xl)mHl(xn)) .
0

Inserting this into (2.117), one finds as first important result the
‘thermodynamic interaction representation’ of the unnormalized statistical
operator

p
e PH = ¢7PHy(B) = e PHoT exp | — / dxH(x) | . (2.120)
0
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For the special case that Hy and H; commute, we have H(x) = H,. The right-hand
side of (2.120) therewith simplifies to e #H0e=AH1

We will use the result (2.120) in the next subsection for an approximate
determination of the canonical partition function and the free energy.

2.6.2 Perturbation Theory of Second Order

We start with the canonical partition function, where we presume that the ‘unper-
turbed’ problem, given by Hy, is solved:

Holn) = g,|n) . (2.121)

The eigen-states |n) build a complete orthonormal system, so that the partition
function can be represented as follows:

Z=Y (n|e?|n). (2.122)

We expand e~ according to (2.120) up to the second order of the perturbation H:

B

Z= Yt = Y tule ™ [ an i)
n n 0
B X1
+Z(i’l|€_ﬂH°/dx1/dszl(xl)Hl(x2)|n)
n 0 0

B
=S et 1 / dx (nlHy (v)]n)

0

X1

B
+ dxl de (n|H1(x1)H1 (.X2)|I’l>
fo ]

0

The modified interaction representation (2.115) leads to

(n | Hi(x) | m) =~ (n | Hy | m) .
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This also means

y y{n| Hy | m) forn=m,
(

/dxex(gn_gm)(” | Hy | m) =\ (n| H | m) (eenem) 1) forn#m
0 &n — Em '

In second order it must be calculated:

X1

B
/de/dxz (n| Hi(x))H(x2) | n)
0 0

x|

B
= Z dx; | dxy(n| Hi(x1) | m)(m | Hi(x2) | n)
o

0
B
— [ |1 1)
0
+Z/d X ”l | Hl |m>| Xl(sn_gm)(exl(gm_sn) _ 1)
2
=t ]2
L8 e m [6-, ! @]
" Em — E&n En—Em .

Inserted into the expansion of the partition function the last term

"¢m|an1|m\

A= Z ey ( —Bem _ e—ﬂsn) )

vanishes because one recognizes, when interchanging the summation indexes (n <
m), that A is equal to —A and therewith equal to zero. The canonical partition
function in second order perturbation theory thus reads

Za Y (1=l a 1)+ L oy ]

,BZ | ”'H_llm| ) (2.123)
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All the terms on the right-hand side are calculated with eigen-values and eigen-
states of the ‘free’ system. The expression (2.123) can further be rearranged a bit.

With the eigen-values p’(10) of the ‘free’ statistical operator,

1
o _ 1 g L
= et Zy=Y et (2.124)

n

one finds, for instance,

ePer = 7,0 ; Z p© —
so that (2.123) can also be read as follows:

1
22 2(1=p o e mel? 4 385 o

n#m
n | Hy|m
~ B Z i . W <°>) (2.125)
Therewith we now calculate the free energy
F=—kgTInZ=Fy+ F*, (2.126)

F() = —kBTan() .

F* is determined by the bracket in (2.125). The correction terms, caused by the
‘perturbation’ Hy, are to be considered as small, so that the series expansion of the
logarithm,

1
In(1 +x) ~ x— 2x2,

allows for the following consistent estimation up to quadratic terms of the perturba-
tion H;:

F*~ ) (n|H | n)p” - ﬁ}j\nuﬁ|nv<m

n

"¢m‘n|H1|m

3 0 (S 1)

n
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The first and the fourth summand contain the mean value of the ‘perfurbation’ in
the ‘unperturbed’ system:

(H)© = Tr(poH1) = Y _(n | Hy | n)p” . (2.127)

n

The second and the third summand can be combined by the following considera-
tions:

n#m n?ém
n | H, | m) n | H, | m
O D S
(0) 0) _ _/3 (em—¢n)
l1—e
lim P — P p(o) lim ,3,0(0) .
n—>m g, — &, n—m En— Em

We have therewith found in second order perturbation theory the following expres-
sion for the free energy:

© _ ()
1 n m
F~Fy+ (H) + N ((H)©@)? § [(n | Hy | m) |2p s (2.128)

If one can restrict oneself for practical applications to corrections of first order, then
it remains to be calculated, besides Fy, only the ‘unperturbed’ average (H;)® of
the ‘perturbation’.

2.6.3 Variational Procedure

We finally discuss a further approximation procedure, which plays an important
role for the quantum-statistical calculation of thermodynamic functions. It concerns
a variational method for the canonical partition function and the free energy,
respectively. Let H* be a Hermitian ‘fest-Hamilton operator’, the eigen-value
problem of which can be considered as solved:

H*[00) = al ) - (2.129)

With this test-operator and its eigen-values, the corresponding partition function Z*
and the statistical weights p can formally be defined:

1
Z* — Ze—ﬂﬂm; p:‘n — 7+ e-ﬂ’lm; Zp;; =1. (2130)

m
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The |n,,) can be expanded using the complete set of the ‘true’ eigen-states of the
‘real’ Hamilton operator:

M) = Y E(En | 1) - (2.131)

We assume thereby that the |7,,) are normalized:

> HEm)|>=1. (2.132)

Together with (2.130) this also means:

> PaEm)|*=1. (2.133)

We fix the averaging process with respect to the ‘test-system’ as follows:
(H—H*)* =" pk (| (H—H*) | 1)
= Pt | (H—H*) | E))(Ey | ) -

With the hermiticity of H* it remains:

(H—H*Y* = (E,—nu)p}y | (0w | E)|* . (2.134)

m,n

Analogously one finds:
(eI = " pr (i | e PP | )

=Y P (| e P ENEL] T | 1)

m,n

=Y e P ETmp G | En)|? (2.135)

m,n

Thereby it is not presumed that the operators H and H* commute. We now exploit
the Taylor-series expansion (Lagrange-reminder term):

10 = ) + (= x0)f (o) + (= 0 (v + @ (x =)

O<a<l.
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If in addition f(x) is convex, i.e. it holds f”(x) > 0, then it can be estimated:

f(x) = f(x0) + (x — x0)f" (xo) -

The tangent at a convex curve lies always below the curve. e % is, as function of
E, convex, so that it can be concluded: (x <> E,, — 0, xo <> (H — H*)™):

e_ﬁ(En_nm) > e_ﬂ (H—H*)* + (En — N — (H_ H*)*)(_ ﬂe_ﬂ (H_H*)*) .

We multiply this inequality by p |(nm | E,) | 2 > 0, and sum over all # and m. The
comparison with (2.133) and (2.134) then yields:

(e—ﬂHeﬂH*>* > o PH-H")" (2.136)

The normalization (2.133) has thereby been used. We are now able to formulate an
upper bound for the free energy:

Z = Tre PP = Tr(e_ﬂHeﬂ (H*_H*)) = Tr(e_ﬂH*e_ﬂHeﬂH*)
— Z*Tr(,é*e_ﬂHeﬂH*) — 7% (e—ﬂHeﬂH*)* '

Note that H and H* need not necessarily commute. The second step therefore uses
the ‘cyclic invariance of the trace’. With (2.136) the above, still exact relation for
Tre=PH leads to an estimation for the canonical partition function:

ZzZ*exp(—,B(H—H*)*) . (2.137)
This result can immediately be transferred to the free energy:
InZ>InZ"—B(H—H*"Y = —kgTInZ < —kgTInZ* + (H — H*)* .
If now
F* = —kgTlnZ* (2.138)
is the free energy of the test-system, then it follows eventually:
F<F*+ (H—-H"". (2.139)

If the Hamilton operator can be decomposed as in (2.110) (H = Hy + H)), and if
H* is identified with Hp, then (2.139) corresponds as equation to the perturbational
result of first order, derived with Eq. (2.128). The worth of the inequality (2.139)
lies, however, in the fact that one can implement into the test-Hamilton operator
H* some ‘free variational parameters «;’, by which one can look for a minimal
F* + (H — H*)*, for which of course (2.139) remains valid:

ai-(F* +(H—H*)*)£0. (2.140)
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In this way one gets optimal parameters o;, which yield a minimal upper bound
for the ‘true’ free energy. So one can approach very closely the exact result by a
‘convenient choice’ of the test-operator.

2.6.4 Exercises

Exercise 2.6.1
The Hamilton operator of the linear harmonic oscillator is given in the form:

H = Hy + H,

p2

1 1
m + 2mwzq2 , H, = azmw2q2 ; la| < 1

Hy =

1. Calculate the free energy in perturbation theory of the first order!
2. Compare the result with the exact solution!

Exercise 2.6.2
The Hamilton operator of the anharmonic oscillator is given as

2 2,2

p Ly, mw- 4
H= + w + o ; a>0
o 2" n 9
1. Calculate with
2
p 2
H =_ + mo*
P

as test-Hamilton operator an upper bound for the free energy of the anharmonic
oscillator (variational procedure).

2. Derive a conditional equation for the ‘optimal’ variational parameters w™*.
Discuss the resulting transcendental conditional equation for the special case
T =0!

Exercise 2.6.3
Let A and B be two operators, which do not necessarily commute, and let x be a real
parameter. Show that

d

der(eXA+B) — Tr(AexA-'rB)

is valid even if [A, B]— # 0.
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2.7 Self-Examination Questions

To Section 2.1

Hw

11.

S0P W

. What is the fundamental difference between the concepts of the Classical
Statistical Physics and the Quantum Statistics?

Why does Quantum Mechanics not know a phase space?

What does one understand by a mixed state?

One says that Quantum Statistics deals with two different types of averaging
processes. Characterize them!

How is the statistical operator p defined?

How does one calculate, by the use of p, averages of observables?

Which properties of 5 do you know?

Which special form does p take for a pure state?

How does the equation of motion of the statistical operator read?

What does Quantum Statistics understand by a statistical ensemble? Are there
essential differences to the classical concept?

When is a quantum-statistical ensemble stationary?

To Section 2.2

AN AW =

. What is the quantum-statistical analog to the classical phase volume?

. Write down the statistical operator in the micro-canonical ensemble!

. How are averages of observables calculated in the micro-canonical ensemble?

. Does the Quantum Statistics know a Gibb’s paradox? Explain!

. What is the meaning of the quantum-statistical phase volume " (E)?

. How does the entropy read at 7 = 0 for a system with a discrete energy

spectrum?

. Is it possible to prove the third law of Thermodynamics in a strict mathematical

sense? Explain!

. Does the classical ideal gas fulfill the third law of Thermodynamics?

To Section 2.3

. Write down the statistical operator in the canonical ensemble? Why does it

concern a stationary ensemble?

. What is the relation between the canonical partition function and the statistical

operator p?

. How does the expectation value (f) of an observable F look like in the canonical

ensemble?
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. Which type of integral can be successfully treated, under which preconditions,

by the saddle-point method?

. What is the basic idea of the Darwin-Fowler method for the calculation of the

canonical partition function?

. Does the Darwin-Fowler method also work in Classical Statistical Physics?
. How is the Darwin-Fowler method influenced by the postulate of the equal ‘a-

priori’-probabilities?

. How can the canonical partition function be derived by the method of Lagrange

multipliers?

. How do the average ({n,,)) and the most probable (ni,?) ) occupation numbers, by

which the systems of a canonical ensemble populate the given energy levels E,,,,
m=0,1,2,...,depend on the temperature?

To Section 2.4

Nk »D

S

10.

In which way does the postulate of the equal ‘a-priori’-probabilities enter the
derivation of the statistical operator of the grand-canonical ensemble?

How does the statistical operator p of the grand-canonical ensemble read?
How does one recognize that /6 describes a stationary ensemble?

Is there a direct classical analog to p in the grand-canonical ensemble?

How does the representation-independent formulation of the grand-canonical
partition function &, (T, V) look like?

Which form does 8, (7, V) exhibit in the energy-particle representation?
Which difference exists between &, (T, V) and E.(T, V)?

How does one calculate in the quantum-mechanical grand-canonical ensemble
the average of an observable F?

How can the mean value of the particle number operator be expressed by
E.(T,V)and by E.(T, V), respectively?

Which formula guarantees for macroscopic systems the equivalence of canoni-
cal and grand-canonical ensemble?

To Section 2.5

. Which general relation, valid for all the three ensembles, exists between the

statistical operator p and the entropy S?

. How can the statistical operator of the canonical ensemble be represented by the

free energy F and by the Hamilton operator H?

. How can the statistical operator of the grand-canonical ensemble be expressed

by the grand-canonical potential €2, the Hamilton operator H and the particle
number operator N?
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W

. How is the Boltzmann’s H-function defined? In which respect can this function

be useful for practical applications?

. Which extremal properties are fulfilled by the H-function?
. In which way does the Boltzmann’s H-function lead to an extremal property of

the entropy?

. What holds for the free energy in the case of (irreversible) processes, which are

still possible to take place in a system at constant 7', V, N?

To Section 2.6

. How does the ‘thermodynamic interaction representation’ for the term e —pH

read, if H can be decomposed as HO + H1

2. How does e~ present itself, when H o and H 1 commute?

AN

. How can one develop with the ‘interaction representation’ for e P# a perturba-

tion theory for the canonical partition function and the free energy?

. How does the canonical partition function look like up to the first order in the

perturbation?

. How does the free energy present itself in first order of the perturbation theory?
. How can one determine the free energy by means of a variational procedure?
. Which relation can be recognized between the perturbation theory and the

variational procedure?



Chapter 3 )
Quantum Gases fleckir

We have got to know the basic concepts of Classical Statistical Physics and Quantum
Statistics in the first two chapters. This and the following chapter deal with some
characteristic applications of these concepts and with very special, complementary
problems. Let us start with the important guantum gases.

The treatment of many-particle systems almost always requires model assump-
tions and special approximate techniques of solution (see Vol. 9). Only for very
few, generally strongly idealized systems can the partition function be exactly
calculated. The problems, which prevent a rigorous evaluation, are always to be
ascribed to particle interactions. Therefore, the most drastic model assumption is
to completely neglect, at first, all particle interactions (free system, ideal gas).
This, on the one hand, normally excludes from the beginning a quantitative
comparison of the theoretical results with experimental data, but, on the other
hand, helps to become familiar with the fundamental concepts of the theory by an
exactly calculable example. However, the treatment of the free systems need not
necessarily be exclusively justified by didactic points of view. There are important
physical border zones, in which real systems can be reasonably substituted by the
corresponding ideal ones. In this sense, the so-called Sommerfeld-model of non-
interacting electrons (ideal Fermi gas (see Sect. 3.2)) could provide, some decades
ago, seminal contributions to the understanding of the conduction electrons of a
metal. Something similar holds for the phonon-picture of the crystal lattice, which
quantum-statistically is to be treated as ideal Bose gas (see Sect. 3.3). Thus, there
are sufficiently many reasons to deal at this stage with the ideal quantum gases.

We have already treated the classical ideal gas in Sect. 1.3.7 in the framework of
the micro-canonical ensemble. Quantum-mechanically we expect, according to the
extensive investigations in chapter 8 of Vol. 7, the statistical properties of systems of
distinguishable and those of indistinguishable particles to be significantly different
from each other. In the case of distinguishable particles, classical and quantum-
mechanical considerations come in the usual way to possibly deviating results,
caused, however, alone by the fact that Classical Mechanics represents only a
limiting case of the superordinate Quantum Mechanics. In contrast, we expect really
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novel phenomena from the quantum gases of indistinguishable particles, which
shall therefore be exclusively the topic of this section. For this purpose, however,
we should recall at first some of the facts, which we have worked out for systems of
identical particles in the framework of Quantum Mechanics (see chapter 8, Vol. 7),
when we reflected on the special regularities for the description of such systems.

3.1 Basics

3.1.1 Identical Particles

Particles are denoted as identical if they coincide in all their particle properties
(mass, charge, spin, magnetic moment,. .. ). According to the principle of indistin-
guishability (see subsection 8.2.1, Vol. 7) such particles in Quantum Mechanics are
by no measurement individually identifiable. In particular, they are not indexable.
Even Classical Mechanics knows identical particles, which are, however, always
distinguishable. When we have been able to measure their momenta and their
positions at a single point of time fy, then we can exactly follow up their paths for
all times due to the Hamilton’s equations of motion. The classical particle describes
in the phase space a well-defined individual trajectory. This concept loses its sense
in Quantum Mechanics. The indistinguishability of identical quantum-mechanical
particles has far-reaching consequences, which we have discussed and reasoned in
detail in chapter 8 of Vol. 7. We restrict ourselves here to a compact compilation of
the fundamental facts.
The corresponding one-particle problem is presumed to be solved:

H|p0) = eqlol) . G.1)

The eigen-states |<p¢§f;) ) of the one-particle Hamilton operator H (li) shall represent
a complete orthonormal system. ¢; is a set of quantum numbers, being complete
for the characterization of the state (e.g. o; <> (n, [, my, my), (kg, ky, k;,ms)). The
upper index i formally indexes the particles. (3.1) is therefore the eigen-value
equation of the Hamilton operator H (1’) of the i-th particle. The indexing is, even for
systems of identical particles, unavoidable because of computational reasons, e.g.
for the discrimination of the integration and summation variables, although actually
physically unreasonable and obviously contradicting the principle of indistinguisha-
bility. One has therefore to make sure that this ‘forbidden indexing’ does not have
any physical consequences, i.e., physically relevant quantities (measurands) should
not be affected by this indexing. This fact alone leads to a series of very special
properties of the systems of identical particles.

In the case of N distinguishable particles the indexing is of course not only
reasonable but also allowed. The states of such systems are then all direct products
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of the one-particle states,

lon) = 100y Pay) = 10102 - l9V) (3.2)

or linear combinations of them. If the |¢,,) build a basis in the one-particle Hilbert
space, then the product states (3.2) form a basis of the N-particle space. On the
other hand, the N-particle state |@y) possesses the same statistical interpretation
(see chapter 2, Vol. 6) as the one-particle state. Systems of distinguishable particles
thus do not bring about any new physics.

In the case of identical particles the principle of indistinguishability brings about
special symmetry properties. Each interchange of two particle numbers in (3.2) must
lead at most to a change of the sign of the N-particle state. This requires a proper
(anti)symmetrization of the state product:

lo5”) = 1 - goaN><i>—N, Z(i)f’ Ple)e@) 1)) . (3.3)

It is summed over all permutations of the N-tuple (1,2, ..., N) of the upper particle
indexes. The exponent p is the number of pairwise interchanges (transpositions),
which build up the permutation P. The states of a given system of identical particles
are all symmetric of the type |g0(+) ), or all antisymmetric of the type |<p1(\,_) ).
The symmetry character is temporally unchangeable and can by no means, by no
operation, be altered. States with different symmetry character are orthogonal to
each other. They are elements of two different Hilbert spaces (see subsection 8.2.3,
Vol. 7). The spin-statistics theorem, proven quantum-field theoretically by W.
Pauli, explains which particle type is to be ascribed to which Hilbert space:

H](V+): Space of the symmetric states |<p(+) ).

§=0,1,2,...). Name:

Identical particles of integer spin

bosons.
Examples: photons (S = 1), phonons (S = 1), magnons (S = 1), «-particles
$§=0),...
Hz(v_) . Space of the antisymmetric states |‘P1(v_) ). Identical particles of half-integer
spin S = 2 2, ..). Name:
fermions.

Examples: electrons, protons, neutrons (S = 1/2).

On recognizes a specialty of the fermion systems with (3.3). Their states can be
written as determinants (Slater determinant):

(1)> (2)> (N))

|@er’) 1P - o
|¢1<V—)) = : . (3.4)
o5 <2>> o)

N N
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This determinant is zero as soon as two rows are same. That is the case when there
are two identical sets of quantum numbers «; = «;. This statement represents the
fundamental Pauli principle:

Two identical fermions can never have all their quantum numbers
same!
Such a restriction does not exist for bosons.
An especially elegant and transparent representation lends itself in the case of

a discrete one-particle basis {|¢q,)}. It is obvious that the N-particle states are
completely determined by listing the occupation numbers 7, i.e., the frequencies

with which the |¢,,) appear in |<p,(\,i) ). However, one has to obey certain rules:

N o) = e 3 PPNy - 1N
(3.5)

In these Fock states, all the occupation numbers of the complete one-particle basis
{|¢q;)} must be indicated. One-particle states, which do not explicitly appear in

|<p(i)) are marked by n, = 0. The declaration of the total particle number N in

the state symbol is because of N = ) n,, actually superfluous, being, however,
i

—-1/2
c+ = (N! H”ai!)

takes care for a proper normalization of the orthogonal Fock states:

sometimes rather helpful.
The factor

EN: - ongy ANy )E =8 5 [ S, -

It holds for the occupation numbers:

ng; = 0orl <> fermions
nyg =0,1,2,... <= bosons.

The Fock states (3.5) build for the H ;vi) a complete orthonormal basis.

Many-body problems are nowadays mostly treated in the formalism of second
quantization, which we introduced and extensively discussed in section 8.2 of Vol. 7.
Characteristic is the introduction of a creation operator a ", which creates the one-
particle state |@qy,) out of the vacuum state |0):

|¢e) = ag,|0) .
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Its adjoint operator a,, has the opposite effect. It is therefore called annihilation
operator:

adi|§0ai> = |0> ; aai|0> =0.

Taking into consideration symmetry and normalization we find for the actions on a
general N-particle Fock state:
Bosons

alfIN:.ng, . )P = ng 1IN+ 1 ng, + 1.0
Ao, IN; ..o, . YD = ng IN—1;.. g, — 1))
ng, =0,1,2,... (3.6)

Fermions

a;'r|N; ol )T = (=1D)VS

Ao, IN; ... ng, .Y = (=D)N8, 1IN =15 ng, — 1.0,

r

oIN+ 1. ong, + 1.,

r° Nay s

na, =0.1:  Ny=Y ny. (3.7)

Each Fock state can be created out of the vacuum state |0) by a repeated application
of suitable creation operators:

ag )"
IN:...ng, .. )& = ]_[ (i)NJ|O) (3.8)

By the introduction of the operators a and at we get rid of the nasty
(anti)symmetrization of the N-particle state. The full symmetry problem is now
covered by three

fundamental commutation relations:

[aa, . aa,)+ = [ag .af]le =0 [ag,.a] ]+ =8 . (3.9)

For fermions it holds the anticommutator [. . ., ...]+ , and for bosons the commuta-
tor[...,...]—.

In order to really be able to apply the formalism of the second quantization, of
course one has to not only represent states, but also observables in terms of creation
and annihilation operators (see subsection. 8.3.2, Vol. 7). The observables ﬁN of the
N-particle systems, which are of relevance here, consist of one- and two-particle
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parts:
R N t#]
FN — ZF(I) + ZF(U) .
i=1 ij

For the one-particle part one finds ((8.113), Vol. 7):

N
SF — S (Foapatas:  (Foap=@" 1F 16y, (3.10)
i=1 a,f

With a given basis {|@,)} the matrix element ((pél)|F(ll)|<pél)) is in general easily
calculable. This holds also for the matrix element needed for the two-particle part
((8.114), Vol. 7):

1751
ZFW) Z(Fz)aﬂ af af asa, (3.11)

1,2 2
(F2)ly = <qo,§}>|< FIF 1 oMe?) .

Let us finally recall a few special operators, as for instance the occupation number
operator:

fo, = a7 Qa, . (3.12)

One easily verifies with (3.6) and (3.7), respectively, that the Fock states (3.5) are
eigen-states of 71, with the occupation number n,, as eigen-value:

B, N3 .. iy . VB =ng NG ng, ) E) (3.13)

The particle number operator
N=> "k =) afa, (3.14)

obviously has the same eigen-states with the particle number N = )_ n,, as eigen-
r
value.

The ideal quantum gases, which we will be mainly interested in the following
subsections, are characterized by the absence of interactions between the particles.
Their Hamilton operator,

N
~ (7 (i 1 A A
H=Y"HY: H)=_ p}+ V(). (3.15)
m

i=1
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thus consists only of one-particle operators. That is, on the one hand, the kinetic
energy, on the other hand, possibly in addition, the interaction of the particle with
an external potential V (electric field, magnetic field, periodic lattice potential,...).
These special operators are written in second quantization, when one uses the eigen-
states |&,) of H, as one-particle basis:

H= Zera;aar = Zsrﬁa,‘ (3.16)

&:8ps = (87’ | I/_}l | 85) .

The Fock states (3.5) are eigen-states also of H:

HIN; ... ng, ..)® = (Zsrnar)lN; g, )@ (3.17)

3.1.2 Partition Functions of the Ideal Quantum Gases

The most direct access to the statistical treatment of the ideal quantum gases is
provided by the grand-canonical partition function:

B, (T, V) = Tre PHMN)
H is here the Hamilton operator (3.16) and N the particle number operator (3.14).

For the evaluation of the trace it is recommendable to use the Fock states (3.13),
because these are eigen-states simultaneously of H and N:

Zn,=N
EG(T.V) = Z Y exp[— B n (e — )]
N=0 {n,} P
an=N
_Z Z ]_[exp —Bn (e, — ] . (3.18)
N=0 {n,}

The sign (4) holds for bosons, the sign (—) for fermions. Moreover, we have writ-
ten, for simplicity, n, instead of n,,. The sum over {n,} concerns all combinations of
occupation numbers, which are possible for a given total number N. This restriction
of the summation is, however, set aside by the sum over all total particle numbers N:

an=N
00

DD IREEES ) 38 2

N=0 {n} ny ny
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The combination of sums in (3.18) can be replaced by independent summations over
the individual occupation numbers. To verify that, one can check the fact that indeed
each term on the left-hand side appears also on the right-hand side, and vice versa.
By the way, the possibility, to modify the summation processes, required for the
partition function, in the indicated manner, is the reason why the grand-canonical
treatment of the quantum gases is essentially easier than the canonical one. The
canonical partition function Zy (7, V) can not be evaluated in closed form, because
of the fixed particle number.—We write for (3.18):

EL:E)(T’ V) = (Z e hm (SI—M)) (Z e hm (Sz—M)) . (Z e B (Sr—M)) .
n n ny
— l_[ (Z e B (Sr—lt)) )

ny

For bosons, n, runs through all non-negative integers. The bracket thus represents
just the geometric series:

1
= () —
E, (T,V) = | | |:1 _e—ﬁ(sr—u):| . (3.19)

For fermions, on the other hand, the sum over n, contains, because of n, = 0,1,
only two terms:

E(_)(T, V) — l—[ [1 + e_ﬁ (gr_/*)} . (320)

r

From the equations for the partition functions of the ideal Bose gas and the ideal
Fermi gas all the desired thermodynamic statements can be derived. So it follows
with (2.86) for the total grand-canonical potential:

QT V. p) = ke TIn EC(T. V)

- kBTZIn[l —e_ﬂ(g"_")], (3.21)

QT V.p) = —ke T E(T. V)

= kT Y In[1+ P, (3.22)
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The volume-dependence, by the way, is hidden in the one-particle energies &,. When
the particles of the ideal gas are confined to a finite volume V, then this means
quantum-mechanically that they move in a potential well with infinitely high walls.
In this sense the energies ¢, become dependent on the spatial dimensions of the well
(see, e.g., exercise 4.2.1, Vol. 6).

To come with (3.21) and (3.22) to the thermal equations of state of the ideal
Fermi and Bose gases, the chemical potential p has to be still replaced by the
expectation value of the particle number. We use (2.79):

~ 19 1
+) — = () —
(N = 84 mEM(T.v) =) :eﬂ(&_m v (3.23)
(N = Loy EQT V) =) ! (3.24)
18 au " ’ - gﬂ (er—p) + 1 ’ :

At least in principle, these equations can be solved for w:
w=pu(T.v.(N)&). (3.25)

When one inserts the result into (3.21) and (3.22), one obtains the thermal
equations of state of the ideal quantum gases:

_ = ()
PV =ksTInE") o (T.V). (3.26)

The internal energy is calculated with (2.84):
0 ~ (3.21) & — U ~
+) — _ = (+) (+) = r (+)
Ut = aﬁlnuM (T.V) + (N =7 eﬁ(gr_m_lJru(N) .

From that it follows with (3.23):

+) _ Er
U =% et _ 1 (3.27)

r

Analogously one finds for fermions:

) — Er
v =3 B 41 (3.28)

r

When we insert (3.25) for u into U™, then we have found the caloric equations
of state of the ideal quantum gases.
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A revealing quantity, which will keep us occupied in the next sections also,
is the average occupation number (71,)® of the r-th one-particle state. For its
calculation one advisably starts at (3.18):

> np=N

X 1 !
()@ = ) Z Z n, exp [ —-p Zn,, (&p — u)]
S N {”p} P
19 _
= —’3 9 In aLi)(T, V).

This yields with (3.21) for bosons the
Bose-Einstein distribution function

1
Ay —
R Y 329

and for fermions with (3.22) the
Fermi-Dirac distribution function

1

(ﬁr>(_) = .
exp[B (er — )] + 1

(3.30)

For fermions the chemical potential 4 can adopt in principle any arbitrary value. It
is always:

0< () <1. (3.31)

Some peculiarities appear in the case of bosons, which we will still refer to in
detail later, but which we will already foreshadow a bit at this stage. At first one
recognizes that ;& must in any case be smaller than the lowest one-particle energy
&0, because otherwise some of the occupation numbers would be negative. ;& must
even be truly smaller than &g, because &g = u would let (no) diverge. That, however,
creates problems when 7" — 0, since then all occupation numbers would be zero
and therewith also the total number N of the bosons.

In principle, the theory does not exclude such a situation, since the grand-
canonical systems are coupled to particle reservoirs which permit particle fluctu-
ations and do not necessarily forbid N = 0. But how are we have to understand
the limiting case 7 — 0, when the particle number N is strictly pre-given? We get
rid of the dilemma obviously only by the assumption that for 7 — 0 the chemical
potential u of the ideal Bose gas fends to €¢, and that in such a way thatat 7 = 0
the lowest one-particle state is macroscopically occupied:

()T =0)=N. (3.32)
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This phenomenon is known as Bose-Einstein condensation. We will dedicate to it,
in view of its importance, the Sect. 3.3.3.

By comparison of (3.29) and (3.30) with (3.23) and (3.24), on the one hand,
and with (3.27) and (3.28), on the other hand, one finds the following physically
plausible connections between the average occupation numbers and the average
number operator and the internal energy, respectively:

(M@ = (7,)® (3.33)

U = e i) ® . (3.34)

For large one-particle energies, &, — i > kg7, Bose-Einstein- and Fermi-
Dirac distribution function turn into the classical Maxwell-Boltzmann distribution
function:

(A)E ~e P (e, — > kpT) . (3.35)

In the classical limit the differences between bosons and fermions are washed out.
It is now recommendable to perform the further detailed discussions separately
for the ‘Fermi-case’ and the ‘Bose-case’.

3.1.3 Exercises

Exercise 3.1.1

1. Express the average occupation number (i) of the ideal quantum gases by the
canonical partition function Zy (7, V).
2. Calculate approximately with the Darwin-Fowler method (saddle-point method)

In ZN(T, V) .

3. Fix the physical meaning of the saddle point by the thermodynamic relation

oF
w= (p: chemical potential, F: free energy)
ON )1y

and determine the explicit temperature-dependences of the average occupation
numbers (71,). Compare the results with the grand-canonical expressions (3.29)
and (3.30).
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Exercise 3.1.2
S = 1/2-fermions occupy at the temperature 7 a finite number of one-particle
energy levels e,, r = 1,2,..., M.

1. How large can be, at most, the expectation value of the particle number (1/\7 )?
2. Formulate the grand-canonical partition function.
3. Show by the use of the relation

~

F=—ksTInE, + u(N) .

that the thermodynamic properties of this system come out in the same way when
one distributes (2M—(N)) ‘holes’ with the chemical potential —u over the energy
levels —e,.

Exercise 3.1.3
For the quantum gases calculate the relative mean square deviation of the one-
particle occupation numbers:

(Aflr)z =

Exercise 3.1.4
Are the following particles fermions or bosons:

H,-molecule, “He™-ion, SLiT-ion, 3He-atom?

Exercise 3.1.5
Let the one-particle energies of an ideal quantum gas in the volume V,; be given by

h2i?

o(k) = 2m

Due to periodic boundary conditions the wave vectors k are discrete. The grid
volume in the k-space, which contains just one allowed k-state, is given by

_ @y

Agk
d v,

d: dimension of the space, V,;: volume of the ideal quantum gas. Calculate for
arbitrary dimensions d the density of states D(E):

25+ 1 ”
D(E)dE = dk .
(E) Ak
E<e(k)<E+dE

Give the density of states explicitly ford = 1, 2, 3!
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Exercise 3.1.6
Consider a system of N electrons (wave vector k, spin projection o =1, |). Use for
their description the simultaneous eigen-states

ko) = |k)|o)
of the wave-vector operator K,
klk) = k|k)

and the electron-spin operator o;:

h
CTZ|CT) = (SUT - 8al,) 2|CT)

U_h 10
fT 2 \0-1

Formulate therewith in second quantization:

1. the operator of the total momentum

N
P= Zpi,
i=1

2. the operator of the x-component of the total spin

N
SX = ZO',’X .
i=1
3. Calculate with the results from 1. and 2. the commutator

[S*, P]_ .

3.2 Ideal Fermi Gas

In this section we will be concerned with the rigorously calculable case of the ideal
Fermi gas, whose properties are strongly influenced by the action of the Pauli
principle. That particularly holds for the so-called degenerate Fermi gas, which
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is defined by
> kT <= Bu > 1. (3.36)

In this limit, quantum-mechanical elements especially strongly stand out, so that
the degenerate Fermi gas has little in common with the classical ideal gas. At first,
we will try to become familiar with the general properties, in order to then discuss
concrete applications, in particular with respect to the important case of the meral
electrons. For simplicity, and because there are no mix-ups to be feared, we will
suppress in this section the index (—) at the functions and the quantities, which refer
to Fermi systems. We will re-introduce it, as soon as a delimitation towards the
corresponding quantities of the Bose systems becomes necessary.

3.2.1 Equations of State

The grand-canonical potential provides the access to the thermal equation of state.
In the evaluation of the relation (3.22), we have to think about the summation X,
over the one-particle states. We remember that it is to sum over states and not
over energies. The eigen-functions of non-interacting particles are plane waves. A
complete set of quantum numbers thus consists of, for instance, the three Cartesian
components of the wave vector k and the spin projection myg of the fermion spin S.
Over these quantum numbers it must be summed in (3.22):

r= (k,mg) .
Since the Hamilton operator (3.16) does not contain any spin part, the eigen-states
will be spin-degenerate, i.e., they will be independent of mg (mg = —S,—S +
1,...,98:

dYo..=@s+D) ...
r k

The fermions are in a container of finite volume V, which we can imagine, without
restricting the general validity of our considerations, as a cuboid with the edge
lengths L., Ly, L.. The boundary condition, that at the walls the wave function must
vanish, leads to discrete wave vectors k. The same could be achieved by boundary
conditions ((2.77), Vol. 7), which are a bit more convenient to work with, and the
application of which is likewise allowed, at least for the asymptotically large system:

2

Neyz s Ney, €1 .
Lyy.;

kx,y,z =



3.2 Ideal Fermi Gas 177

To each state there is thus assigned in the k-space an average

(2n)* (271)3

grid volume Ak =
L.L,L, Vv

In the so-called thermodynamic limit (V — oo, N — oo with n = N/V = const,
see Sect. 4.5) the possible k-values lie quasi-densely (Ak — 0). One can therefore
replace the sums by integrals:

1
Z...—>(25+1)Ak/d3 (2S+1)(2 )3/d3k...

r

=25+ 1):3 /d3p... (3.37)

The last expression explains, by the way, the appearance of the factor 1/4* in
the correct Boltzmann counting (1.45) of the Classical Statistical Physics. The
grand-canonical potential (3.22) can now be calculated with (3.37). For the concrete
evaluation, though, we still have to fix the one-particle energies ¢,. We choose the
simplest case (no external potential!):

h24>
g=el) =" . (3.38)

Therewith (3.22) and (3.26), respectively, reads:

o0

h2k?
—BQUT,V, ) = (25 + 1)(2 )3 /dkkzln[l +zexp( B )} .

We substitute

B :3 5 B om 3/2
x_hk\/zm:wcdk_ B2 x>dx

and have then to evaluate:

m 3/200 2
—BQUT, V., p) = (2S+1)\/ (2 ﬂhz) /dxlen(l—f-ze_x).
0

We remember the definition (1.137) of the thermal de Broglie wavelength

i \/ 27 B2
m
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and write therewith:

o0
25+ 1 4V
;,: Jr /dxx2 In (1 + ze_xz) .

0

With the series expansion of the logarithm,

Il 4+y) =Y+ 0 st (3.39)

n=1

the integral can be further evaluated:

dxx’e”

0o 00 Y
2 -2\ _ 1%
O/dxx In (1 + ze ) = nE:l( 1) ;

o\ag

o0 n d 0
Z(_l)n-i-lz _ /dxe—nxz
= n dn
n= 0
o0
¢ d1 1
_ 1yt —
nz=:l( ) n( anJﬂJn)
VT o at1 2
=" ;(—1) 572
One defines:

fs2(2) = /dxlen (1+ze™ xz Z( 1)’”’1 5 (3.40)
0

4
JT
where the power of n explains the index 5/2. This holds analogously for

fn@) =z f5/2(z) Z( S ¢ (3.41)

n=1

With (3.40), the grand-canonical potential of the ideal Fermi gas is determined, by
which all the other thermodynamical quantities become derivable:

25 +1

BQT,V,z) =— Pt

Vfsa(2) . (3.42)
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It follows immediately, because of 2 = —pV:
2S5+ 1
= . 3.43
Bp 23(T) f52(2) (3.43)

In order to come eventually to the thermal equation of state, the fugacity z on
the right-hand side still has to be replaced by the particle density n = (N)/V.
Thereby (2.78) helps:

It results with (3.41):

(N) _25+1
vV AT

n=

f3/2(Z) . (3.44)

From the two Eqs. (3.43) and (3.44), z can, at least in principle, be eliminated, and
one obtains therewith the thermal equation of state of the ideal Fermi gas.

For the caloric equation of state we need the internal energy. A possible
representation is (3.28). In the case here it is, however, more reasonable to start
once again at (2.84):

. ~
U:—aﬂlnaﬂ—i-,u(N).

We rewrite the second summand with the aid of (3.44):

- 2541 d 25+1 0 23
N) = puv —v In &
W) =1V s 24 S50 PERNFY: (V(25+1) ! ")
S g, + tma, = Pme, 4 v
= n = n=, = n«- .
g T g g IR T g T P
It follows:
30 2541 3
U= szTV 13 Sf52(2) = 2pV. (3.45)

When we still replace, by the use of (3.44), z by a function of 7, V and (]/\7), then
we have the caloric equation of state of the ideal Fermi gas. The right-hand part
of (3.45), U = 3/2pV, is in this form also valid for the classical ideal gas. One
should, however, not forget that for the one-particle energy the relation (3.38) was
presumed. For relativistic fermions, for instance, with one-particle energies being
different from (3.38), (3.45) gets modified (see Exercise 3.2.10)
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3.2.2 Classical Limiting Case

For the limiting case
7K1 (3.46)

we want to calculate explicitly the equation of state of the ideal Fermi gas. Looking
at the average occupation number (3.30),

1

~ _ﬁsr
= ze
T leber +1

(’%’) =

3

which in this case goes over into the classical Maxwell-Boltzmann distribution, one
realizes that (3.46) represents indeed the classical limiting case (non-degenerate
Fermi gas).

As to the series expansions (3.40), (3.41) we can restrict ourselves to the first two
terms:

2
fp@~a— g,

2
fp@ 2=y,

Therewith (3.43) and (3.44) simplify to:

Bprd ~ 28+ 1)z (1-272%),
ndd a2 (28 + Dz (1-273%) .

Solving the equation for the particle density yields in the simplest approximation:

By this it becomes clear that the condition (3.46) is equivalent to
n’ <1, (3.47)
The classical limiting case is thus given for low particle density and small de

Broglie wave length. Small A, on the other hand, means, because of A ~ T2,
high temperature.
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If we execute the approximation one step further (1 —x)™! ~ 1 +x;x < 1),
dD 2O (1 4 273/240) = 2O (1 = 1©273/2) 7" & 2O (1 4 Z0732)
and insert this into the equation for the pressure,
BpA’ ~ (28 + D[ (14 2027/2) - 272 (0)]

— a3 (142792 nA?
2541)°

then it is left as thermal equation of state:

V= (N)k T(1+ n’ ) (3.48)
Py =1 42028+ 1)) '

The first term corresponds to the equation of state of the classical ideal gas. The
second summand represents a first quantum-mechanical correction. More refined
approximations would follow an expansion up to higher powers of nA>.

In an analogous manner, all the other thermodynamic functions can be expressed
by those of the classical ideal gas together with small quantum corrections.

3.2.3 Density of States, Fermi Function

In the last subsection we have treated the classical limiting case of low particle
densities and high temperatures. For applications, particularly in solid state physics
(metal electrons!), the opposite limiting case of the degenerate Fermi gas, on which
we now will concentrate, is still more interesting. For its description the density of
states D(E) (2.21) is a useful and important quantity, which we therefore will at first
derive explicitly for the ideal Fermi gas.

D(E)dE is the number of states with energies between E and E + dE, which we
can easily count by means of the considerations on (3.37):

25+ 1 X
&’k . 3.49
Ak (3.49)

E<e(k)<E+dE

D(E)dE =

It is integrated over a shell in the k-space, which contains all those states, whose
energy values are between E and E + dE. We use for (k) the isotropic energy
relation (3.38). Therefore, the spin-degeneracy (25 + 1) remains to be taken into
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consideration. With the phase volume

@(E) = / &’k

e(k)<E

and the relation Ak = (27r)3/V for the grid volume, (3.49) can be written as follows:

D(E) = (2S+1) (E) .

%
@)} dE¥

Because of the isotropic energy relation (3.38) ¢(E) represents in the k-space a
sphere of the volume
_4n (2mE)3/ 2
e(k)=E 3 h? ‘
Therewith it holds for the

density of states of the ideal quantum gas:

4
o(E)= K

dVvE, ifE>0,
D(E) = VE. ifE> (3.50)
0 otherwise .
v (2m\*?
d=(@S+1), , (hZ) . (3.51)

Up to now we did not have to utilize special properties of the Fermi gas. (3.50)
is therefore valid also for Bose systems, if their one-particle energies correspond
to (3.38). A typical feature is the ~/E-dependence of the density of states.

D(E) delivers information about the density of the available energy states. The
next information we obviously need is, with which probability these states are
actually occupied at the temperature 7. That, however, we have already calculated
with (3.30). The average occupation number (7,) is a number in between 0 and 1,
which is given by the Fermi-Dirac distribution function

fo(E) = [£E0 4 1] (3.52)
(n,) =f-(E =¢) .
(In most cases f_(E) is shortly referred to as Fermi function.) Therewith it is

D(E)f—(E) the density of the states, which are occupied at the temperature T .
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~

For the internal energy U and the particle number (N) of the ideal Fermi gas
there are obviously the following integrals to be calculated:

+o0

(N) = / dEf-(E)D(E) , (3.53)
+o00

U= / dEEf_(E)D(E) . (3.54)

—0o0

Before we evaluate these functions, let us inspect the Fermi function f_(E) in some
more detail. When f_ (E) is the probability for the fact that a state of the energy E is
occupied at the temperature 7', then (1 —f- (E)) obviously represents the probability
that just this state is unoccupied. Because of

ePh 1

=1- =1- =1—f(u—A 3.55
efr + 1 efr 41 e A+ 1 fu=8) (335

J~(p+4) =

the state with the energy E = p + A is occupied with the same probability as the
state with £ = p — A is unoccupied. In particular it holds for all temperatures:

1
SE=w= . (3.56)

The chemical potential p by itself is temperature-dependent (see Sect. 3.2.5). —At
T = 0, the Fermi function f_(E) is a step function (Fig.3.1):

f=YE) = 0(u(T = 0)—E) . (3.57)
One denotes
w(T =0) = Eg (3.58)
Fig. 3.1 Fermi function as f_(E)
average occupation number
of the ideal Fermi gas 11 \
2 N
\\ 1 /'/ E/,U
\‘ . ’,
1
1 L
e y
fL(E)
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as Fermi energy. At finite temperatures (7 > 0), the Fermi function softens up at
the Fermi edge with a width of about 4kgT (Fig.3.1), as one easily realizes by

Bel E=1) 1

/ _ d = — — —
fE) = o f-E) = [ef B 4 1]? Eon 4ksT

(3.59)

This ‘softening up’ of the Fermi function is responsible for many electronic
properties of the solid state which are of rather crucial importance, what we will
demonstrate in the following subsections by some simple examples.—An estimation
for metal electrons (S = 1/2),

Er=1...10eV,
TK]

kpT[eV] = . T,=300K 3.60
BT [eV] 11605 t ( )
kBTrt 1
< 1),
Er ~ 40 @>1)

shows that at normal temperatures, e.g. room temperature 7,,, only a very small
region around the Fermi edge will be softened up. Outside this layer it is

d
" (E) ~ —Be PIE-1 0
dEf() Be

The physical background of the behavior of the Fermi function can rather easily be
understood. Because of the Pauli principle, two fermions can never occupy the same
state. In the ground state of the system (7 = 0) the particles fill up the lowest energy
levels up to a maximal energy Er. If we further presume the isotropic one-particle
energy relation (3.38), it means that in the k-space all states within a sphere (Fermi
sphere) of the radius kr (Fermi wave vector) (Fig. 3.2) are occupied, each by 25+ 1
fermions, which differ by the spin quantum number mg. The quantities kg and Er
obviously depend on the particle number N = (ﬁ ), and are easily determined if one
assumes N as fixedly pre-given:

1 47
Ak 3

| 1%
N = KQRS+1) = 6ﬁ2k§(2S+ 1).

Fig. 3.2 Fermi sphere in the
space of the wave vectors of
the radius kg (Fermi wave
vector)
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With the particle density n = (1/\7 }/V = N/V one finds:

612 1/3
ki = (2s+ ln) , (3.61)
hZ 6 2 2/3
Er = S (3.62)
2m \ 25 + 1

Furthermore, one calculates as average energy per fermion at T = 0 (see Exer-
cise 3.2.3):

1 3
= U{T=0)=  Er. 3.63
£= o ( ) SEr (3.63)

For comparative purposes, the definition of a Fermi temperature T,

E
Te= T, (3.64)
kg
appears sometimes to be rather reasonable. The following table contains some
typical numerical values for conduction electrons of the simple metals.

nlem™3] kg [em™'] Er [eV] Tk [K]

Li 46-102 1.10-10% 4.7 5.5-10%
Na 2.5-10%2 0.90-10% 3.1 3.7-10*
K 1.34-1020.73-10% 2.1 2.4-10*
Cu850-10*21.35-108 7.0 8.2-10*
Ag 5.76-102 1.19-108 55 6.4-10*
Au5.90-1021.20-108° 55 6.4-10%

At finite temperatures the fermions will try to use the thermal energy for excitations
into higher levels. Because of the Pauli principle, though, only those fermions will
succeed to do that, which before the excitation have an energetic distance from the
Fermi edge Ep, which is at most of the order of kgT. For the others there are no
free states available, which they can reach by exploiting the thermal energy. That
explains the softening up of the Fermi function only in a thin layer around Ef.

3.2.4 Sommerfeld Expansion

When evaluating the thermodynamic properties of the ideal Fermi gas we meet,
again and again, integrals of the type (3.53) for (N) or (3.54) for U. The Fermi
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function f_ (E), which essentially determines the temperature-dependences, raises
thereby certain difficulties. For the classical limiting case (z <« 1) we could
terminate the exact series expansions of the Sect. 3.2.1 after a few terms obtaining
therewith the results of Sect. 3.2.2. Unfortunately, this works no longer for the
degenerate Fermi gas (z > 1). The integrals to be solved have all the structure:

+o00
I(T) = / dE g(E)f—(E) . (3.65)
—00
f—(E) is thereby the Fermi function which takes care for the fact that this integral
deviates from its 7 = 0 -value,

Ep
I(T=0)= / dEg(E) , (3.66)

—0o0

by a contribution which is exclusively determined by the behavior of the function
g(E) in the a few kgT broad Fermi layer around E = pu. If g(E) is there
well-behaved, then series expansions become promising. An extraordinarily useful
expansion, because it rapidly converges for the interesting systems, we will discuss,
as an insertion in this subsection. It will be of great use for us in the following
subsections when we discuss the thermodynamics of the Fermi gas. We will agree
upon three preconditions for the function g(E):

L. g(E) — 0,

2. g(E) remains finite for E — 400 or diverges at most with a finite power of E'!
3. g(E) is regular within the Fermi layer.

We define

E

d
pE) = [ dve) = o) = 1p(E)

—0o0

and obtain then by integration by parts:

+00 +00
oo d
/ dE (EYf-(E) = p(E)-(E)[ 7 - / ap

The integrated part vanishes, because f_(E) disappears for E — +oo more rapidly
than any power of E diverges. At the lower bound, f_(E) = 1 and p(E) = 0. It thus
remains as intermediate result for the integral in (3.65):

+o00
I(T) = — / dE (E)af &) (3.67)

—0o0
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We know that the derivative of the Fermi function is distinctly different from zero
only in the narrow Fermi layer. We therefore insert the Taylor expansion of p(E)
around E = p,

00 (E— M)n ( )
) = n E :
p(E) = p(n) ; l den? P& E=p

into (3.67). The first summand yields the following contribution to I(T):

+o0 2
I0(T. 1) = —p(u) / ae ") = py = / dxg(x) .

—0o0
From the above sum only the even powers of (E — u) contribute to (3.67), because

Af—(E) _ B (E—11) _ -B
0E — [epE=m 417 4cosh® ((1/2)B (E— )

is an even function of (E — u):

o0 —
1 d2n 1
IT) = Io(T. 1) + B ( g(E)) BT . (G68)
nZ:; (2n)! \ dE?—! E=p
We have defined here for abbreviation:
e B (E—p)
e
Ln(T, ) = | dE (E — p)* . 3.69
o) = [ dEE =0 e 4 1] (3.69
—00

This can be further evaluated:

+o00

o0
) . e ) d K21
BT ) = oy / DX 1y T ﬂ2"+1(da/ g 1)a=1
0

_ 2 d o ]od yZn—l jod 2n 1
T pt da” Ve 41 wel ﬂ2"+1 Vet
0 0

The integral in the bracket is a standard integral, well-known in mathematical
physics (e.g. M. Abramowitz, 1. A. Stegun: Handbook of Mathematical Functions,
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p. 807, Dover, New York, 1972). It is a substantial part of Riemann’s {-function:

0 1 1 ® yn—l
= = d , 3.70
(=3, (1_21—n)r(n)/ o (3.70)
p=1 0
which is available in tabulated form:
2 a* 0
2) = ; 4) = ; 6) = T 3.71
(=" W=y = (371

I'(n) is the Gamma function with I'(n) = (n — 1)!, if n is a natural number. It
remains therewith for the integral (3.69):

Ln(T, ) = 2 (1 =272 =D 2n)1 ¢ (2n) .

When we insert this into (3.68), then the integral (3.65) is represented by its
Sommerfeld expansion

I 0 2n—1
I(T) = / dEg(E)+ZZ(1—21_2”)§(2n)(kBT)2”I:ddEzf_(ff)L_M . (372
n=1 =

—0o0

That looks, though, rather complicated. The real value of this expansion therefore
becomes noticeable above all in the case where a function can be approximately
estimated

n

T e

8w
dEn n

E=p j2%

The density of states D(E) of the ideal degenerate Fermi gas, for instance, belongs
to this class of functions. In such cases the expansion converges extremely rapidly
because the ratio of subsequent members of the series is of the order of magnitude
(ksT/1)*. For the important example of application of the conduction electrons of
simple metals (see the above table) the ratio is about 10™* at room temperature! In
most of the cases of interest already the very first summands of the expansion (3.72)
are therefore sufficient:

+o0o " ]Tz
[ Eswr-® = [ aEa®+ 7 wrree

L (ks T)*¢" (1) + - -- (3.73)
360 ° '

With this useful formula we will be able to derive in the next subsection statements
about the thermodynamic properties of the ideal Fermi gas.
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3.2.5 Thermodynamic Properties

We presume for the following an ideal Fermi gas with a fixed particle number
(]/\7 ) = N. Via the particle number we want to investigate, at first, the temperature-
dependence of the chemical potential ;1. According to formula (3.53), N is
determined by the integral over the density of the occupied states (Fig. 3.3)

D(E)f-(E) .

The temperature-dependence in (3.53) can of course be only of formal nature.
The fermion number is the same for all temperatures. The density of states
D(E) (3.50) fulfills all preconditions for the applicability of the Sommerfeld
expansion. With (3.73) we then have:

"
2
N ~ / dE D(E) + ”6 (ks T)*D' (1) + - -

—00

In the case of the degenerate Fermi gas, we can cut the expansion for all
‘reasonable’ temperatures already after the first correction term. We insert D(E)
according to (3.50), where, however, it is advisable to use for the constant d, instead
of (3.51), the equivalent expression (Exercise 3.2.3, part 4.):

3N

3/2

d=
2}

(3.74)

N is then canceled out:

1~ (H 3/21+”2 kT’
g g " .
The second summand is for typical cases of the order of magnitude 10™*. With
(1 4+x)""~ 1+ " x, if x < 1, we thus obtain:

2 (kgT\’
pL(T)zEp|:l—71t2 (;F )] . (3.75)

Fig. 3.3 Density of states
D(E) and density of the
occupied states D(E)f—(E) of
the ideal Fermi gas as
function of the reduced

energy E/u

1 Elu
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Under normal conditions in degenerate Fermi gases, the temperature-dependence
of the chemical potential is therefore almost negligible. As a rule, u(7) is well
approximated by the Fermi energy Er. It decreases only slightly with increasing
temperature.

In the next step we calculate the internal energy of the ideal Fermi gas, for which
it must be evaluated with (3.54) and (3.73):

2
UT) ~ | dEED(E) + " (T)*(uD' () + D(w))

St~

2 2
= Jdw + ’; (ks T)2dp?

_alEr| (M ” + St (kT * ()2 .
5% | \Er 8 \ Er Er
In front of the bracket there stands the 7 = 0 -value of the internal energy:

2 s 3G
d BN B T =0).

Furthermore, we can estimate with (3.75):

M " w2 ksT 2
~1l—n .
Er 12 \ Er
The internal energy of the ideal Fermi gas thus changes with the temperature as
follows:

57'[2 kBT 2
U(T) ~ U(0) [1 + 0 (EF ) ] . (3.76)

The result concerning the temperature-behavior of the heat capacity, following
from (3.76), belongs to the most important successes of the ‘early’ Quantum
Statistics. The classical metal physics was completely unable to understand, why, on
the one hand, electrons (S = 1/2-fermions) participate in the electric conduction,
as if they were quasi-freely movable, but, on the other hand, do not contribute in a
significant manner to the heat capacity. From a classical point of view, according to
the equipartition theorem (1.113), N quasi-free electrons should exhibit an internal
energy of (3/2)NkgT. This means:

3
C ~ 2NkB (Dulong-Petit) .
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We know that this result is correct for T — oo. For moderate and low temperatures,
on the other hand, it is observed:

Cy < 107%C¢; Cy = Cy(T) — 0.
T—0

The explanation is given by the Pauli principle, according to which with a heating
of the metal from 7 = 0 to T > 0, in contrast to the classical assumption, only very
few electrons can indeed accept the thermal energy kg7. Only for the electrons in
the thin Fermi layer free states are within reach, on to which they can be excited
by absorbing thermal energy. The number of these electrons can be estimated to be
about N (kB T/ Ep). The internal energy of the Fermi gas thus changes approximately
by AU(T) = N(kgT/ Ep)kB T. The heat capacity can therewith be given as Cy ~
(Nkf3 / Ep) T. These estimations are actually not so bad, as one recognizes when one
differentiates (3.76) with respect to the temperature:

Cy =yT, (3.77)
y = =bD(E) (3.78)
F
1 212 . 1 212
a= 2N7r kg b= 37 kg . (3.79)

The Quantum Statistics is therefore able to reproduce and to explain the experi-
mentally observed linear temperature-dependence of the heat capacity. The ideal
Fermi gas therefore fulfills also the third law of Thermodynamics (Fig. 3.4). When
comparing it with the classical expectation

CV _ b/ 2 (kBT)

c! 3 \Ep
for metals at room temperature this fraction is indeed of the order of magnitude
1072, In a real metallic solid, besides the electrons, the phonons of the crystal
lattice also contribute to the heat capacity. Phonons are bosons. We will therefore

concentrate on them in Sect. 3.3. At low temperatures they yield a 73-contribution
to Cy (Debye’s T?-law, Exercise 2.3.12). It then holds in good approximation for a

Fig. 3.4 Temperature Cy
behavior of the heat capacity 3
of an ideal Fermi gas 5 Nkp |f-=----- o——
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Fig. 3.5 Low-temperature CyIT
behavior of the heat capacity

of a metallic solid having

regard to the contribution of

phonons ¥

solid at sufficiently low temperatures:
Cy =yT +al’ . (3.80)

When one plots the experimental values of the heat capacity in the form of C};/T as
a function of 72, it results, at least for the simple metals, a straight line (Fig. 3.5),
whose axis intercept is equal to the electronic y, and whose slope is equal to the
phononic o. The following table contains some measured values and the comparison
to their theoretical values (3.78). Deviations are of course to be ascribed to the
neglected electron-electron and to the electron-ion interactions.

y [m]J mol™! K_z] Vex/V

Na 1.38 1.22
K 2.08 1.23
Cu 0.695 1.38
Ag 0.646 1.01
Au 0.729 1.09

With (3.45) we have derived the relation, which is exact for the ideal Fermi gas:

U= _pV
ZP

Since we know U, (3.76), we can now explicitly write down the thermal equation

of state:
2 572 (kgT\*
V= NEg|1 . 3.81
p 5 F|: t (EF) (3.81)

pV is therefore only very weakly temperature-dependent, since the fermions,
because of the Pauli principle, react only very ‘lazily’ on temperature variations.
The Pauli principle is furthermore the only reason why the Fermi gas, in contrast to
the classical ideal gas, exhibits a zero-point pressure:

2/3 5/3
2N . ¢ey 2 W2 [ 677 N
T =0) = Er = . 3.82
PT=0=q B =" o) \ast1 % (3.82)
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The Pauli principle permits only (25 + 1) particles to have the momentum p = 0.
All the other fermions have even at T = 0 finite momenta causing therewith the
pressure (3.82), which is surely non-negligible, as it is documented by the numerical
values in Exercise 3.2.3 (part 4.). When we think of the electrons of a metallic solid,
the zero-point pressure must obviously be compensated by the here still neglected
attractive forces of the positively charged ions, in order to prevent the electrons from
leaving the solid.

Let us finally calculate the entropy of the ideal Fermi gas. For this purpose we
use the thermodynamic relation (1.155):

Q
S(T, v, p) 2 (a ) - ( 9 kBTlnE,L(T,V))
V.

oT oT

V.

G2 (0 B (e—
= (aTkBTzrjln(l—f-eﬁ( W))

V.
e_ﬂ (er—p)

1
— —B (er—11) —
= ks§ In(1+e )+T§ 1+e_ﬂ(€r_u)(s, W .
We can express the various terms by the average occupation numbers (7,):

e_lg (er—n)
1 4+ e Bl -
1 —_—
14+ e Bl

=B (e, — ) = In(i,) —In (1 - (’%)) :

It remains as entropy of the ideal Fermi gas:

iy 3 n (1= () kBan (1n(i) —1n (1-(3)))

~ks ) [(1—<ﬁr>)ln (1—(7,) + (Ar) 1n(ﬁr)] . (3.83)

S(T,V,u)

Since (I — (n,)) is the probability that the corresponding one-particle state is
unoccupied, the first summand represents the contribution of the holes to the
entropy, the second summand the contribution of the particles. Let us finally
investigate the behavior for T — 0:

> Er: (A, 0; In(1 — (1, 0,
& > LF (”)T—_)B n( (”))Tjs
e <Ep:{(n)—1; In{n,) — 0.
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Altogether we have found, as required by the third law of Thermodynamics:

S—0.
T—0

3.2.6 Spin-Paramagnetism

The ideal quantum gases are characterized by the absence of interactions between
the particles. They can, however, possibly be influenced by external (magnetic,
electric) fields. We want to investigate in this and the following subsections some
effects, which appear in an ideal Fermi gas due to the switching on of a magnetic
field. These effects are detectable for the quasi-free conduction electrons (S =1/ 2)
of the metals. We know from the relativistic Dirac theory (section 5.3, Vol. 7) that
the electron possesses a permanent magnetic moment u ¢ which is related to its spin
S ((5.240), Vol.7):

UB eh
=-2""S; = .
Ks A B m
This magnetic moment interacts with the external field By, which we assume to be
homogeneous:

B() = B()eZ .

(We denote magnetic moments of single particles by u, those of systems of particles
by m.) In the Hamilton operator an additional term of the form ((5.239), Vol. 7)
appears:

N N
Hy==Y n{By=+2""8 )55
i=1 i=1

In the formalism of second quantization the total Hamilton operator of the ideal
Fermi gas then reads, when we here, at first, disregard the coupling of the magnetic
field to the orbital motion of the electrons (Sect. 3.2.7):

H= Z (e(k) + zo 1B Bo)ay axo (3.84)
k.o

(zp =41,z =-1).

The one-particle energies of the electrons with a moment parallel to the field are
shifted downwards by ugB, while the energies of the electrons with an antiparallel
moment increase by the same amount of energy. Note that the magnetic moment and
the spin of the electron point into opposite directions. This is very often overlooked
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in the literature. One therefore finds sometimes in the bracket of (3.84) a minus sign
instead of the actually correct plus sign. This is for the following statements without
any significance, strictly correct is, however, only the representation (3.84).

By paramagnetism one understands the reaction of the permanent magnetic
moments on an external magnetic field

By = uoH

(By: magnetic induction of the vacuum, H: magnetic field, wo: permeability of
the vacuum). We now want to investigate the paramagnetism of the conduction
electrons of a metal (electron gas). When the external field is switched off, the
directions of the magnetic moments will be statistically distributed, so that the toral
magnetization M (total magnetic moment per volume) is zero.

In the field By # 0 the magnetic moments try to orient themselves parallel
to the field, because therewith the internal energy U = (f-\l) decreases. This is
opposed by the disordering tendency of the entropy. The at the finite temperature
T resulting total magnetization therefore corresponds to an optimal compromise,
which minimizes the free energy F = U — TS. From the susceptibility

v = 1 (am) :(BM) (3.85)
V\0H ), 0H ) ;
one should therefore expect that it is positive and strongly temperature-dependent.
The experimental observation, which was for a long time absolutely unexplainable,
does not, however, confirm this expectation. Compared to the susceptibility of
localized moments (Langevin paramagnetism) the susceptibility of the conduction
electrons is very small and almost temperature-independent. Besides the already
mentioned interpretation of the linear low-temperature behavior of the heat capacity,
a further great success of the ‘early’ Quantum Statistics consists in being able to
explain this behavior of the susceptibility. The reason again is the Pauli principle.
One speaks therefore also of Pauli paramagnetism. We will, at first, with a
few simple considerations work out what is physically essential. A more precise
derivation, being, though, mathematically much more demanding, will follow in the
next subsections.
We decompose the density of states D(E) of the conduction electrons into two
spin parts:

D(E) = D4+(E) + Dy (E) , (3.86)
Dy for electrons with field-parallel spin (mg = +1/2), D, the one with field-

antiparallel spin (mg = —1/2) (Fig.3.6). When the field is switched off, By = 0,
the two parts are of course the same,

DI(E) = Dy(E) = | D(E).
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Fig. 3.6 Spin-resolved a D

density of states of the ideal T
Fermi gas as function of the
energy, with magnetic field

switched off (a) and in a Ep E
homogeneous magnetic T=0
field (b). Hatched regions D 0 By=0

indicate the at T = 0K
occupied states

.
)\

D, By# 0

so that the system contains the same number of - and |-electrons. The resulting
total magnetic moment,

m = pug(N, —Ny) , (3.87)

is therefore equal to zero.—When the field is switched on, the one-particle energies
change,

e(k) = 1, (k) = &(k) + zusBo , (3.88)

becoming in particular spin-dependent (Fig. 3.6). The densities of states D4 and D
are rigidly shifted against each other (Exercise 3.2.12):

1
Do (E) = ,D(E = 2o 1t5.Bo) (3.89)

For the build-up of a common chemical potential i 1-electrons will spill into the
-part (Fig.3.6). For By # 0 we therefore expect Ny > N4 and thus a total moment
m unequal zero. So the task is to determine the electron numbers Ny :

+o00 +o00

/ dEf-(E)D,(E) = ; / dEf-(E)D(E — z, 5 Bo)

—00 2o 4B Bo

No

o =

/ dyf-(y + zopBo)D(y) .
0
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We presume a degenerate electron gas. We can therefore assume that everywhere,
where the Fermi function f_ remarkably deviates from its constant values 0 and
1, respectively, upBy will be very small compared to y. One should note in this
connection that

v
s = 0.579- 107 eT (3.90)

Strong magnetic fields are of the order of magnitude of 10 tesla, i.e., ugBy will
hardly be larger than 103 eV. So we can confidently terminate the Taylor expansion
of f_ (y + Zo pLBBo) around f_(y) after the linear term:

o0

1 af—
Ny ~ ) /dy (f—(y) + zouBBo ;y)D(Y) .

0

One finds therewith for the magnetization

0o
m="Ewy Ny == i p / D(y)
Vv Vv
0
and for the Pauli susceptibility y,:
o0
Xp uou / D(y) (3.91)
0

This expression is brought, by integration by parts, where the integrated part
vanishes, into a form,

[o,]

1
Xp = Vuou?g/dyf—(y)D’(y),

0
which permits the application of the Sommerfeld expansion (3.73):

n

1
w0~ Lot | [ D0+ w00
0

1 2 w 2, -3
= — (kT2
Hopgd [\/,u 24( sT) 1
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We finally still use (3.74) and (3.75):
7T2 kBT 2
~ +VEr|1—
Vi \/ F( 24 (EF )

3N U3 72 (ksT\*
T) = 1- . 92
1) = 5 o [ 12\ Ex (3.92)

The susceptibility of the Pauli paramagnetism of the conduction electrons thus is,
contrary to the classical expectation, only very weakly temperature-dependent, and
is for normal temperatures very well approximated by its 7 = 0 -value

3N ui 1
Lol = | HonED(Er) . (3.93)

0) =
Xp() OEF v

The reason is given, as in the case of the heat capacity Cy, by the Pauli principle,
which allows only for the electrons in the thin Fermi layer to absorb the thermal
energy. The Pauli principle is also responsible for the tiny order of magnitude (~
107%) of the susceptibility, because only those electrons can react on the field, which
are not farther away from the Fermi edge than about ugBy.

3.2.7 Landau Levels

For the calculation of the Pauli-spin paramagnetism we got away with a rather rough
simplification, which consisted in the assumption that the magnetic field couples
only to the spin of the electron, but not to its orbital motion. Strictly speaking, this
procedure is justified exclusively only by the result. The more thorough treatment
of the problem, which will now be done, reveals that the Pauli susceptibility x, is
indeed an additive part of the complete result. The exact isothermal susceptibility of
the free electron gas is composed, though, of three terms:

oM
- - 3.94
XT (BH)T X+ xp+x (3.94)

The coupling of the field with the spin leads, as explicitly shown in Sect. 3.2.6,
to paramagnetism. The Pauli susceptibility y, is positive. The coupling with the
orbital motion yields diamagnetism. The so-called Landau susceptibility x) is
therefore negative. (as to the concepts of dia-, paramagnetism see subsection 3.4.2,
Vol. 3.) However, the two phenomena cannot be completely separated. There appear
interference terms, which, according to the strength of the magnetic field, show
either paramagnetic or diamagnetic behavior. yos. 0oscillates as function of the field
By = uoH, and leads to the de Haas-van Alphen effect.
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As Exercise 1.4.9 we have proven the Bohr-van Leeuwen theorem, whose
statement is that strictly classically neither diamagnetism nor paramagnetism can
really exist. With quantum-mechanical considerations, however, partly performed
already as exercise 4.4.15 in Vol. 6, we can show that the magnetic field gives rise
to a quantization of the orbital motion of the electrons, which, in the last analysis,
explains the diamagnetism. The orientation quantization of the electron spin leads
to paramagnetism.

We consider a free electron gas of N particles in the volume V = L,L,L., onto
which a homogeneous magnetic field, By = Bpe, = poHe,, is switched on in
the z-direction. We ask ourselves, which one-particle energies are available for the
system. Since the electrons do not interact, we can restrict our considerations for the
present to a single electron. Its energy-eigen states will separate into a space and a
spin part. We look at first only to the orbital motion.

According to ((2.39), Vol. 2) the classical Hamilton function reads:

H:JApmMm?

By the ansatz
A(r) = (0,Box,0)
for the vector potential the Coulomb gauge,
divA =0,
is realized and
curlA = By = Bye;

is guaranteed. The transition to Quantum Mechanics takes place, as usual, by replac-
ing the dynamical classical variables by quantum-mechanical operators (observ-
ables). In the Hamilton operator

A_lA ~2
H—M@+A), (3.95)

because of the Coulomb gauge, the operators of the momentum and the position-
dependent vector potential do commute (proof?),

p.Al- =0, (3.96)
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so that H can be written as follows:

7 _ 1 ~D 272 n ~
H_zm(p + ¢°A” + 2¢A - P)

1/, N R R n

o (pﬁ F P2+ (P2 + B+ 2eBoxpy)) (3.97)
U (520 820 (5t oBs)

= o (BB (b + eBo?))

For the solution of the time-independent Schrodinger equation we use the position
representation and choose for the wave function the ansatz:

¥(r) = e”‘fzeikyyu(x) .

We are then left with the eigen-value problem:

h? d? 1 2 hzkf
|:— e + om (fiky + eBox) :| ulx)=|E - o u(x) .

With the definition of the cyclotron frequency,

EB()
we = < hw. = 2upBy , (3.98)
m
and with the substitution,
hk,
=x+ )
4 * eB()

it results the eigen-value equation of the linear harmonic oscillator:

e, ., -
" omdg? + ,mecq u(q) = Eu(q) , (3.99)
~ h2k?
E=E— _°.
2m

The solution is known to us. The eigen-functions are the Hermite polynomials with
the eigen-energies E, = hw. (n 4+ 1/2), n = 0,1,2,.... For the electron in the
magnetic field there are at its disposal the quantized energies

K2

3.100
o ( )

1
E,(k;) = ha)c(n + 2) +

n=0,1,2,....
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Fig. 3.7 Landau levels of the
ideal Fermi gas in the
magnetic field as a function
of the wave-vector
component in field direction

These energies are denoted as Landau levels. The solution describes a quantized
motion in the plane perpendicular to the field and a completely undisturbed motion
in the direction parallel to the field. Taking account of the electron spin (Fig.3.7)
there still appears the additional term known from (3.88):

h2k?

1
Eno(k;) = hoe | n+ + %+ zouBBo (3.101)
2 2m

n=20,1,2,...

The space-part of the eigen-wave function has the structure

Y = e (g)

The eigen-energies E,; (k;) are thus still degenerate with respect to k,. The degree
of degeneracy g, can easily be calculated for periodic boundary conditions

2

Nyy.z Ny €4L.
Ly,

k/\f.,y.,z =

We have only to divide the distance between the maximal and the minimal k, by the
raster 21 /Ly:

Ly Jmax _ kmin)
, y .

gy:Zn(>

The particle is in a cuboid with the edge lengths L, L,, L;. This means in particular

Li _yo ke
X
2 -2

or
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. 1
It is therefore k;?‘ax — k;m“ = theBo. Each Landau level is thus degenerate

according to

eL,L,

By . 3.102
oo B0 ( )

8y(Bo) =
The degree of degeneracy is independent of the Landau-quantum number n, but is
a linear function of the magnetic field. In order to understand the consequences, let
us consider, for a moment, for simplicity a two-dimensional system of N spin-less
electrons. Let the field be oriented in z-direction, and let the motion of the electrons
be restricted to the xy-plane. For a very strong field itis g,(By) > N. All the electrons
find a place in the n = 0-Landau level. For a further rising strength of the field the
total energy E, will linearly increase because of w.. With decreasing field, however,
a critical value B, is achieved at

!
N = gy(Bc) s

because then electrons will have to shift into the n = 1-level. As a consequence,
the energy will at first increase with decreasing field. For By < 1/2 B, the n = 2-
level will be populated, and so on. There result characteristic oscillations of the
energy (Fig. 3.8), by which many other physical quantities are also influenced, as
for instance the magnetization and the susceptibility. This we will investigate in
detail in the next subsection. When the magnetic field is switched on, the number of
states will of course not change. On the other hand, it holds the assignment:

2 1
(k; + k) (Bo =0) < ho. (n + ) + 2By (Bo #0).
2m 2

The k-values, which are without field regularly and rectangularly arranged in
the (three-dimensional) k-space (Fig.3.9a), condense, when a field is applied, on
cylinder surfaces (Fig. 3.9b), the axes of which coincide with the field direction. It

Ey

z 1 B,/B.

N
W=

Fig. 3.8 Oscillations of the ground-state energy of the ideal Fermi gas as function of the
(normalized) magnetic field. B, is the critical field, below which electrons become able for the
first time to change from the n = 0-Landau level into the n = 1-level
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Fig. 3.9 Arrangement of the
states of the free electron gas
in the xy-plane of the k-space,
without field (a) and with
field (b)

holds for the face surface of the cylinder:
S =7 (1) =7 2n+1 +zg);Bo. (3.103)

The radius of the cylinder thus increases proportionally to +/Bp. On the ring surface
between two neighboring Landau-cylinders of the same spin there would be without
field

Sn-HU - Sm‘r LxLy
= By = 2g,(B
@2 /Ldy) ~ o P02

states (factor 2 because of spin degeneracy!). On a Landau-circle in the xy-plane
there therefore lie just as many states as one finds, without field, in the corresponding
ring-region. The area of a ring increases with the field to the same degree as the
degree of degeneracy g,.

Somewhat more generally, we can write instead of (3.103)

Sy = 27 (n + %)ZBO , (3.104)

where in the case of free electrons ¢, = 1/2(1 + z,). If we leave ¢, at first
undetermined, then this formula for the front surface of the Landau cylinder
possesses a larger region of application.—If with a field change each electron of
the N-particle system remained in its Landau level, then the ground-state energy
(T = 0) would linearly increase with By because hw, ~ By.

Since the degree of degeneracy g,(Bo) changes with By, in reality electrons
can jump from outer to inner cylinders, and can shift on the cylinders themselves
from larger to smaller |k,|. By these processes the ground state energy is kept
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Fig. 3.10 Arrangement of

the Landau cylinders within
the Fermi sphere of the free
electron gas

to its smallest possible value. When leaving the Fermi sphere (Fig.3.10), the
Landau cylinder empties. The n-th cylinder slips out of the Fermi body just when
the front surface coincides with the Fermi body’s maximal cross-section area Ag
perpendicular to the field:

Spo = 27 (n + %);Bg’) LA,

The next cylinder empties at the critical field Bi"_l):
- €pgn-1 L
S,,_lg—27r(n—1+<pg)th =A.

This leads to a period independent of the Landau-quantum number n:

(T 11 e 5105
By) B™ BV hAy .

Certain physical quantities, as for instance the susceptibility y,s, exhibit as a
function of the field an oscillating behavior with this period. The measurement of
this period yields therewith A, the extremal cross-section area of the Fermi body
perpendicular to the field. By variation of the field direction this can be used to gain
a picture of the form of the Fermi surface. That explains the practical importance of
the de Haas-van Alphen effect (Sect. 3.2.10).

In the special case of free electrons

E
Ay =nki =1 re
us h

and therewith:

1 2
A( ) = kB (3.106)
Bo Er
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3.2.8 Grand-Canonical Potential of Free Electrons
in the Magnetic Field

With (3.101) and (3.102) we know the one-particle energies and their degrees
of degeneracy for a system of N non-interacting electrons in the magnetic field
H and By = poH, respectively. In principle, we are now prepared to calculate
partition functions. Our actual goal is the derivation of the magnetization and the
susceptibility, respectively. For this purpose we use the grand-canonical potential
Q(T, By, 1), where we have to replace the volume work —pdV by the magnetization
work in the expression (1.155) for the differential d€2,. Unfortunately, the definition
of the magnetization work is not completely unique (see subsection 1.5 in Vol. 5).
The reason is that, in order to magnetize the system, an external magnetic field is
mandatory, from which one does not know, whether or not it has to be incorporated
into the thermodynamic energy balance (first law of Thermodynamics). Since By
is only a fool for the realization of the magnetic moment m, it appears naturally to
subtract again the pure field energy. That we did in the subsection 1.5 of Vol. 5,
having found therewith as magnetization work:

8W(1) = Bodm ((137), Vol. 5) .

It is then

mi
W(l) = /Bodm
0

the work, which is necessary to magnetize the system in the zero-field from 0 to m,
(Bo = f(m,T), see Fig. 3.11). In this formulation the analogy to the volume work is
the most elegant one:

p <— By (intensive),
V <— —m (extensive) .

There is an alternative definition:
SW(Q) = —mdBy ,

where

B

Wo) = — / mdBy
0
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Fig. 3.11 Illustration
concerning the definition of
the magnetization work

T fixed

represents the work, which must be brought up to bring the system from the field-
free space into the field Bg)l) . W) and W) just differ by the potential energy
—mlB(()l) of the magnetic moment m; in the field Bg)l) (see (3.52), Vol. 3). This
potential energy is not accounted for in the definition of W(j) (see rectangle in
Fig.3.11).

We have to of course apply here the definition, which is compatible with our

~

definition of the internal energy U as expectation value (H) of the Hamilton
operator. But that is W(y),

Wiy = (H(Bo) — H(0)) ,

as it already became evident by the definition of the quantum-mechanical observable
m as gradient of the Hamilton operator with respect to the field By (see subsection
5.2.1 and (5.125), Vol. 7). It holds therewith for the grand-canonical potential (the
volume V is here not to be considered as thermodynamic variable!):

dQ = —=SdT —mdBy — Nd . . (3.107)

For the ensemble average of the magnetic moment it must therefore be calculated:

mz—(m) . (3.108)
0Bo ) 1.,

This means, according to (3.22):

0
m = kBT( In EM(T,B()))
0

0B

T.p

d
— =B (er—1)
kBT[aBO Er In (1 +e ):| . (3.109)

T.p

The &, correspond to the Landau levels E,; (k;). The scope of work is therewith
clear. We have to at first determine the grand-canonical potential (7', By, it).
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‘We write:

¢s(E) = number of the o-states with E,,; < E ,

dos

Dy (E) = -

: o-density of states .

Because of the term hzk2 /2m the Landau levels are arbitrarily densely arranged
for the asymptotically large system (thermodynamic limit). Sums can therefore be
represented by integrals:

o0
Q(T.Bo.p) = —ksT ) / In(1+ e PEM)D,(E)E .

The lower bound of integration is given by ¢, (E) = 0, but need not yet be explicitly
specified here. With integration by parts it further follows:

QT.Bo.t) = —ksT Y . ¢ (E) In[1 + ¢# EW]|
o

B (E—p)
_Z/dE(pa(E)l+ —B(E-p) °

The integrated part vanishes, at the lower bound because of ¢, (E), and at the upper
bound because of the logarithm. In the integrand we recognize the Fermi function

J-(E):
1o =~ Y. [ dEwEF-©). (3.110)

It remains as the main task, the determination of the phase volume ¢, (E). Let us
at first think about how many energy-eigen values E,, (k;) < E exist for a fixed
Landau-quantum number n. Because of (3.101), these energies must fulfill:

2m 1
k2 < 5 [E how, (n + 2) —Za,uBBO:|

(m is here of course the electron mass, not to be confused with the magnetic
moment (3.108).) Hence, there is a maximal and a minimal k,. The difference,
divided by the raster 27t /L, yields the number of energies:

kP — k;“i“ L, 1
o = 2m | E — hw, n+2 — ZeMpBo | -

L,



208 3 Quantum Gases

For ¢, (E) we have to count all states, i.e., we have to bring into play the degree of
degeneracy (3.102):

V2mv & 1
woE)=" ", eB(); E — ho. (n+ 2) — o8By . (3.111)

The maximal quantum number #y is the highest number, for which the radicand is
still positive. We write for abbreviation:

E R _
€= o Mo = o b= pho.,  [f-(e) = {H—exp [b(s—,uo)]} B

(3.112)

hw,

Therewith (3.110) reads:

Q(T, By, ) = —;O(Z/def_(e)z \/e—n— ;(1 +2) (3.113)
o . n=0

8 v (MBmBo)S/2
3 mm2h3

After a further integration by parts the integrated term again vanishes:
+0o 1 no 1 3/2
—_— A/ — —_—
QT.Bo.p) =y / dnf’ (n—i—zza)Z(n n 2) . (3.114)
0 5o n=0
We have substituted n = ¢ — 1/2z,, and we could choose the lower bound of

integration to be —oo, because of the §-function character offl .
In the next step we inspect the sum in the integrand of (3.114):

no 1 3/2
=(n) EZ(n—n—z)

n=0

1 +o00 1
=/dx('7—x)3/2 Z S[x—(n+2):| :

0 n=—00

Here we have exploited that it must be 7 > n+ 1/2 and n < ny. The sum in the last
row can be written as Fourier series (see Exercise 3.2.14):

+o0 1 +o0 ‘
Z 8 |:x— (n + 2):| = Z (—1)PelZmx
n=—00 p=—00
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Therewith we have:

+o00
S = Y (=1L,

p=—00
n
I,(n) = /dx (n —X)3/Zei21’”x '
0

The p = 0-term can of course be easily evaluated:

2
I(n) = 5775/2 -

For the p # 0 -integrals the substitution u = ,/n — x is useful. One obtains then
after twofold integration by parts:

i 3 3 v
i . . 2
I, — 3/2 + 1/2 _ z2pﬂn/d —i2pmu .
o (M) 2pm 7 8p2m? 7 8p2m? ¢ e
0

When we insert this result into X(n), then the first term vanishes after summation
over p. For the second term we can apply

3 (_12)p _— (3.115)

getting therewith:

16 82

p=—00

(p#0) 0

2 1 30X (-1 v
() = 5,75/2_ n1/2_ Z (pZ) ei2pﬂn/due—i2pﬂu2' (3.116)

We apply this result in the expression (3.114) of the grand-canonical potential. The
first two terms can be easily evaluated. We therefore forestall them here:

+o00
A 1 2 |
Qn — dn? 5/2 1/2
0 azg:/ nf_(n+2za)(sn 16"
—0Q

+o00
. 2 1\ 1 1 \"?
:aZ/dst(s) |:5 (s—zzg) ~ 16 (s—zzg) :| .
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The integrand is, because of f‘L , essentially unequal zero only for ¢ ~ puo.
Furthermore, at normal metallic electron densities (u: some eV) and normal
magnetic fields (Aw.: some 1073 eV) it is to assume o > 1. For this reason, we
can expand the brackets as usual:

LY (Y
Ho 21{7 = MKy 2ZU,LL()

-1 2
= ug l—nZG —}—n(n ) (= — |
Z/LO 2! ZMO

The linear terms drop out by the spin summation because of z. It thus remains:

4 1
Qo(T, By, ) ~ —a [Sug/z + SHé/Z (32 — 1)} . (3.117)
Thereby we have approximately taken
FL(e) ~ =8(e — o) - (3.118)

The partial result (3.117) for the grand-canonical potential is responsible for the
Landau diamagnetism and the Pauli spin-paramagnetism, while the still to be
calculated oscillating remainder term in (3.116) leads to the de Haas-van Alphen
effect. Intentionally, we have left the term (3z§ - 1) in (3.117) as it is, although
it is of course equal to 2, in order to later be able to separate out the spin and the
orbital contributions. All the contributions of the electron spin carry the sign factor
o (zp = 1,2y = —1).

Before further evaluating (3.117) let us determine the contribution of the
oscillating summands in (3.116) to the grand-canonical potential. This requires,
though, a bit more effort.

The integral in (3.116) is of the type of an error integral:

JN J2ripn

. 1 2 2

) = | due %7 = / dxe™ .

n) / ue 2 2ip x e
0 0

We need /(n) in the integrand of (3.114), which is, because offL , unequal zero only
for n &~ po > 1. For such values of 7, one can expand the error function in a
fast converging series (M. Abramowitz, T. A. Stegun: Handbook of Mathematical
Functions, Dover, New York, 1972; formulas: 7.1.1,7.1.2,7.1.14): For our purposes
here, we can even take it equal to 1:

1

1(7) 1 ( M p)
n) & o= exp | —i .
22ip  24/2|p] 4 |pl
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The third summand in (3.116) can therewith be approximated as follows:

b)) (7]) - E ( l)p Ccos (2[7.7‘6 n— )
~ .
osc 8\/2 2 = P5/2 4

This has to be inserted into (3.114). After having retracted there the substitution n =
& — (1/2)zs, and after having performed the spin summation, we have to calculate
for the oscillatory part of the grand-canonical potential:

3a (=P
QOSC(TsBOsM) 4\/2 zpz:l 5/2 COS(ZGPJT)
+o00
~ _ T
/dsf_(e)cos (me; 4) .
—0o0

In the remaining integral, though, now we can not apply (3.118) for ﬂ, since,
because of the cosine-function, in the interesting region of integration the integrand
will very strongly oscillate. Fortunately, one can use the residue theorem to solve the
integral even exactly. We perform the explicit derivation as Exercise 3.2.15, citing
here only the result:

+o00
A T 27%p cos (/4 — 2pm i)
de f! pre= ) ==
/ ef_(e)cos ( pre 4 ) b sinh 272p/b)
—00

Qosc 18 therewith completely determined:

(-1 cos (/4 — 2pm o)
Qose(T, Bo. p) = 2J2bz 3/2 COS(U ) sinh 22p/b) (3.119)

Let us point out once more that the actually superfluous sign-factor z, (= =%1)
in the argument of the first cosine-function is retained only as an indicator for
contributions of the electron spin. The remaining task now consists only in retracting
the abbreviations (3.112), (3.113) in the partial results (3.117) and (3.119):

Q(T, By, ) = Qo(T, Bo, ) + Qosc (T, Bo, 1) , (3.120)

3/2 2
I 2 (1BBo)” ., ,
Qo(T, By, = -N 3z2—-1) |, 3.121
o(T. By, ) (EF) [5u+ 4 3z, —1) (3.121)



212 3 Quantum Gases

3 nsBo\ " o (=1
QOSC(TvBOs /*’L) = 2kBTN( EF ) Z p3/2 COS(ZUPJT)
p=1

cos[n/4 — p(wu/upBo)]

, 3.122
sinh (p(72kgT/usBo)) ( )

We have applied here (3.62) for Er. The grand-canonical potential is therewith
completely determined as a function of 7, By, and w. In the next step, by means
of (3.94) and (3.108), the magnetization and the susceptibility of the free electron
gas can be calculated. We realize that in spite of the very simple initial model (free
(!) particles) the derivations require substantial effort.

3.2.9 Landau Diamagnetism

We had seen in Sect. 3.2.6 that the coupling of the electron spin to the homogeneous
magnetic field leads to paramagnetic effects. Paramagnetism is characterized by a
positive susceptibility. However, magnetic moments are also due to the quantized
orbital motion. With the results of the last subsection we will now be able to
show that these induced moments give rise to diamagnetism, i.e., they try to
orient themselves antiparallel to the field, by which they are created (induced).
Characteristic feature is thus a negative susceptibility.

For the calculation of the magnetization, according to formula (3.108), we have
to differentiate the grand-canonical potential 2 with respect to the field B,

1 /0
M(T,Bo)=—v 9B, ,
T.p

where p must be expressed by T,Bp and by the (fixed) particle number N.
Let us start with the last point. We determine the chemical potential from the

thermodynamic relation
N = (89 )
o T.By '

The partial differentiation of (3.120) is quickly done leading, with the abbreviations

2 1/2

B ksT B

wigy = 1) yam = (PO) () G
8ul/2E; EF EF
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to the equation:

" 3/2
(EF) = 1—a(B)(3z2 - 1)

3 > (—1y sin (/4 — p(w/ usBo))
T,B o ;
+2V( 0)1; pl2 c0s(zpr) sinh (pr2kgT /g Bo)

For a degenerate electron gas (Eg = 1...10eV), the factors @ and y are at normal
temperatures and for normal fields very much smaller than 1, as can easily be
realized because of

eV eV
=0.579-107% " ; kg ~ 0.862- 1074 .
MUB T B K

(3.124)
But this means that p differs only very slightly from Er. We can therefore replace
on the right-hand side of the above equation, as a well justifiable approximation,
the chemical potential & by Ep, and can use the already several times applied
approximation (1 — x)" ~ 1 — nx:

A Ep[l — ia(Bo)(3z§ —1) (3.125)

1 €08(zop) sinh (p(w2ks T/ 15 Bo))

+y(T, Bo)i (;l)p sin (”/4_P”EF/MBBO):| .
p=1

When comparing this expression with (3.75) with respect to the temperature-
dependence, it must be taken into consideration that we have approximated at some
points of the calculation (e.g. in (3.118)) the derivative of the Fermi function by
a §-function. The finite width of f” around u takes care just for the correction
term (72/12) - (kgT/Eg)? in (3.75). For the oscillating third summand in the square
bracket, though, the mentioned simplification was not used.

In any case we can read off from (3.125) that, for the calculation of the
magnetization, u &~ Ep can be assumed with sufficient accuracy.—We now derive,
at first, that contribution to the magnetization which results from the non-oscillating
part of the grand-canonical potential (3.121):

1 (09 1IN 1
Mo(T. By) = — = M2 _q)p,. (3.126)
v\oBo) w2V Es

The susceptibility of the conduction electrons, which in first approximation is
neither temperature-dependent nor field-dependent,

M 3N A, 1
_ _ ~ 1. 3.127
X0 “O(aBO)T 2y g\ T3 (3.127)
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obviously possesses a diamagnetic component as well as a paramagnetic one:

Xo=JXp+ L. (3.128)

We remember that the sign-factor z, was left in the formulas only as an indicator
for spin parts. (Of course: z2 = +1.) This spin part,

3N}

= 0, 3.129
Xp ZVHOEF > ( )

is called Pauli spin-paramagnetism, which we have derived already with (3.93) in
Sect. 3.2.6 in a simpler and physically more transparent manner.
The second part,

IN uj

0, 3.130
2V’LLOEF < ( )

AL =
is a diamagnetic component and is denoted as Landau diamagnetism. This arises
by the ordering of the quantized orbital momenta, which are induced by the
magnetic field. In the free electron gas it then holds:

1

3Xp . (3.131)

XL =-
The free electron gas is of course a strongly over-idealized model of the conduction
electrons. So the influence of the crystal lattice, for instance, is completely
disregarded. For simple structures this influence can be brought into play in a
first approximation by the concept of an effective mass m* of the electron. m* is
thereby relevant only for the orbital motion of the electron, and not for the spin
interaction with the external field (see Exercise 3.2.17). This means for the Landau
energies (3.101):

1 2k2
Eu (k) = 2MEBO (I’l + 2) + Zmi + ZouBBo , (3.132)
. eh . eh
HB = om’ HB = e -

With this distinguishing of m and m*, the results (3.121) and (3.122) for the grand-
canonical potential change in such a way that everywhere in both the formulas up is
to be replaced by i, and z, by m* /m. As to the susceptibilities (3.129) and (3.130),
the Pauli component y, as the pure spin part remains unchanged, while in y there
appears ugz instead of u3. In place of (3.131) it holds then for the ratio of the two
components:

1 (m >
XL =— L X (3.133)
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For some metals m™* distinctly deviates from m, so that sometimes the diamagnetic
Landau component even predominates. Normally, however, | x| and x, are of the
same order of magnitude. The measurement of the susceptibility of a metal always
yields the total susceptibility, which is composed of yr, xp and yos as well as of a
contribution of the ion cores, which is denoted as Larmor susceptibility yiyarmor- A
separate determination of yr, or x, is therefore not at all a trivial task.

3.2.10 De Haas-Van Alphen Effect

By de Haas-van Alphen effect one understands the oscillations of the magnetic
susceptibility as function of the external field By, or better 1/Bj. One observes
these oscillations also for other physical quantities such as the electrical and thermal
conductivities, the magnetostriction, and the Hall effect. We have already discussed
the physical origin of the oscillations in Sect. 3.2.7. Their manifestation in the
susceptibility stems of course from the not yet evaluated part (3.122) of the grand-
canonical potential. Three terms in (3.122) are field-dependent. The magnetization,

1 /0Q
Mose(T, Bo) = —V( an°) =M + M, + M, (3.134)
T.pn

is therefore composed, according to the product rule of differentiation, of three
summands. As reasoned in the preceding subsection we can assume for the low-
temperature region, which we are interested in here, that © =~ Ep. With the

abbreviations
3 (kgT\ ( uBBo 1/2
T,By) = , 3.135
o(T, By) 2(E)(E) (3.135)
kgT
b(T,Bo):n2( i ) , (3.136)
1BBo
E;
c(Bo):n( F ) (3.137)
UBBo

the three magnetization parts then read:

[e.]

3 N =1y cos (/4 — pc)
M, = — . _ , 3.138
1 M |, ; P2 c0s(zopr) sinh( pb) ( )
u Ni (=1yP ( )sin(:r/4—pc) (3.139)
= COS k] N
Ty L pir COPT) G pi)
N o= (=1)? cos (7r/4 — pc)
M3 = —abugp v Z Il cos(zgpm) sinh( pb) coth(pb) . (3.140)

p=1
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One more differentiation then yields the susceptibility

OM o
osc — . 3.141
X Ho ( 9B, )T ( )

It results a rather involved expression (see Exercise 3.2.18). But let us assume
here that the sums in (3.138) to (3.140) are all of the same order of magnitude,
then the pre-factors determine their importance. But for a degenerate electron
gas, at normal temperatures and for normal fields, these are of different orders of
magnitude (3.124):

c(Bo) > b(T,Bo) > a(T, By) .

When we differentiate the sine in M, with respect to the field, there appears a
contribution proportional to ¢?. This term dominates under normal circumstances:

N3 kT { Ep \'?
2B ( F) (3.142)

0sc ~ ]T
Hose M HOy ™ g2 \ usBo
cos (/4 — pr(Eg/usBo))

N el)2
Z( 1)?p'/? cos(zoprr) sinh (pr2 (ke T/ 15 Bo))

p=1

The factor cos(z,pm) traces back to the spin of the electron. The other terms are
all to be ascribed to the orbital motion. Orbital contributions and spin parts of
the susceptibility thus do not behave simply additively. So they cannot be treated
separately. That was what was meant in Sect. 3.2.6, when we remarked that the
assumption that the magnetic field couples only to the electron spin, is justified
‘only by the result’. We could better demonstrate with this assumption the physical
origin of the Pauli spin-paramagnetism, freed from all the mathematical ballast.

The signature of the de Haas-van Alphen effect is the y-oscillations with the
period

A(1)= 1218 (3.143)

which are caused by the cosine-term in y,s. Figure 3.12 shows a typical example
for T = 1 K, and for an electron density r; = 4 (7, is defined in Exercise 3.2.3). The
period A (1/By) is temperature-independent. The basic oscillation (first harmonic)
p = 1 agrees with (3.106). The oscillations are of course the better recognizable the
larger the period A is. That is the case for small EF, i.e., according to (3.62), for as
small an electron density as possible (as large as possible ). Note, however, that at
several points of the derivation of y.s a degenerate electron gas was presumed.
The amplitudes of the oscillations are substantially influenced by the hyperbolic
sine in the denominator of (3.142). It takes care for the fact that the amplitudes
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Fig. 3.12 Oscillations of the 2
susceptibility of the free os¢
electron gas as function of the
inverse magnetic field
1020 1030
\/ 1010 N Ep
HpBy

decrease for very small fields as

exp (—prr2 kT )
usBo )
Furthermore, the hyperbolic sine is the reason that the sum in (3.142) converges
very rapidly, so that one can restrict oneself very often to the p = 1 -term, only.

3.2.11 Exercises

Exercise 3.2.1
Let the particle density n of an ideal Fermi gas be given. Show that for 7 — 400
the chemical potential p must tend to —oo.

Exercise 3.2.2
When treating high-energy fermions relativistic effects are to be taken into consid-
eration. The one-particle energies read in such a case:

e(p) = Veip? + mict.

~

Show that it holds for the average particle number (N), and for the internal energy
U of the ideal relativistic Fermi gas:

o0
~ m3c3 sinh? @ cosh
N)y=(2S+1 |4 da
(N) =5+ )27t2h3 / exp(—Bu + Bmc? cosha) + 1 *
o0
m*c® sinh? & cosh® o
U=025+1 % da .
@5+ )27t2h3 / exp(—Bu + Bmc? cosha) + 1 *
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(The chemical potential 4 contains the rest energy mc?!) Evaluate the integrals for
the case of low temperatures.

Exercise 3.2.3
Consider a system of N noninteracting electrons in the volume V. (¢(k) =
hk2/2m).

1. Show that it holds for the internal energy
UT=0) = NiEF .
2. Calculate the Fermi energy Ef for
N=6-10%, V=2m*, m=91-1038g.

3. Express the internal energy from part 1. by the dimensionless density parameter
T

vV 4 4regh?
N ;(aBrs)3 ; ag = 7;1;2 Bohr radius .
Use as energy unit:
1 e
lryd = .
471’8() 261]3

4. How is the constant d in the density of states (3.51) related to the Fermi energy
Eg?
5. Calculate the zero-point pressure p(T = 0) of the Fermi gas.

Exercise 3.2.4

Consider a pure semiconductor with a band gap E, between the valence band and
the conduction band. Conduction electrons and holes behave both like free fermions
with the effective masses m. and my. Let the zero point of energy coincide with the
upper edge of the at T = 0 completely filled valence band. Assume for the following
questions that the inequalities

E; > ksT; > hkeT;  Eg—p > keT

are valid, which is indeed the case for many semiconductors even at high tempera-
tures (300 K).

1. Show that in the here considered region of ‘intrinsic conduction’ the following
relation is valid for the electron density #. in the conduction band, and for the
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hole density ny, in the valence band:

\/memth T 3/2 Eg
= =2 — .
e = Mt ( 2 P\ 2kp T

2. Show in addition that the chemical potential p is given by

1 3 nmy
W= 2Eg + 4kBTln .
Exercise 3.2.5
Let a wide-gap semiconductor (band gap E,;) be doped by impurity atoms (con-
centration n;), which lead to discrete energy levels at a distance ¢; below the lower
conduction band edge, where we assume

E;, > ¢ .

The conduction electrons and the holes behave like free fermions with, what
concerns the order of magnitude, similar effective masses m, and m,. We put the
energy zero at the upper edge of the valence band. As to the temperature we presume

E, > ksT |

which, in the case of wide-gap semiconductors, applies to low temperatures as well
as even to room temperature. Furthermore, it shall be allowed to assume

/‘L_Eg

A =exp kT

<1 and p~E,.

1. Derive, under these conditions, the relation

&i mekBT 3/2
2A | Aexp kaT +1 2 =n;,

in which it is particularly taken into account that the valence band does not play
any role as source for conduction electrons!
2. Show that one obtains, under the condition

&
A ex >1,

P ket
for the density of conduction electrons n. and for the chemical potential u the

expressions

m kBT 3/4 —&
ne = v/2np ( Zezrhz ) exp ZkBlT
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and
& 1 47t3h3ni
=E, - kgT In .
H=bem ks T)32
Interpret this result!
3. Consider now the opposite limiting case,
Aexp <1
ex ,
P ket
and show that
Ne X Ny
and
E,+keTin 0
= n
B B T B G ek T)32

are valid. Interpret also this result!
4. Let the doped wide-gap semiconductor be characterized by the following
material parameters:

E,=2eV, &=002eV, m=10"g, n=10%cm™.

In connection with the low-temperature condition
Aexp > 1
ex
P raT
it is assumed 7 = 3 K, and in connection with the condition

A exp & <1
B

ks T

it is assumed room temperature with 7 = 300 K. Verify that by application of
these numerical values all the above-mentioned conditions are fulfilled!

Exercise 3.2.6
Calculate the low-temperature behavior of the chemical potential of a one-
dimensional Fermi gas!

Exercise 3.2.7
Derive the low-temperature behavior of the free energy of the (three-dimensional)
ideal Fermi gas up to terms of the order of magnitude (kg7/Er)>.
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Fig. 3.13 Tllustration of the Vo
work function of a metal Eg W,

0 z
Exercise 3.2.8

The quasi-free conduction electrons have a lower potential energy within a metal
than in the exterior space. Therefore they cannot leave the metal at T = 0. The
energetic distance Wy between the outside potential V; and the Fermi energy Er
inside the metal is called the work function (Fig.3.13). At finite temperatures,
though, some of the electrons, which occupy states of the high-energy tail of the
Fermi-Dirac distribution function, will be able to leave the metal. Let the metal be
in a closed container, where that part of the container, which is not filled by the
metal, is vacuumat 7 = 0.

1. Find the density of states of the electrons in the exterior space. What are the
average occupation numbers (ﬁl(f(f)) there? (0 =7 or | for the two possible spin
projections.)

2. Determine the electron density n,, outside the metal at the temperature T (—>
vapor pressure of the metal electrons).

3. Assume that the metal occupies the half space z < 0. Calculate the density of the
emission-current density:

k,>0
X —€ ~— hk A (ex)
Jz = v %: m? (nko )

It should result in the well-known Richardson formula ((1.47), Vol. 6).

Exercise 3.2.9
Let N noninteracting spin-; fermions be restricted in their motion to the surface of
a sphere (radius R).

1. How does the one-particle Hamilton operator read?
2. Let the ground-state energy

2
o _ 27h

E
mR2

be measured. Calculate the Fermi energy Er = w(7 = 0) and the particle
number N.
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Exercise 3.2.10
Consider a system of N noninteracting extremely relativistic fermions in the volume
V with the one-particle energies:

Vep? + mict —s cp = chk = e(k) .

. Calculate the density of states D(E) of the Fermi gas!

. Non-relativistically it holds (3.45) for the relation between pressure and internal
energy. Show that in the case of extremely relativistic fermions it is found instead
of that:

DN =

U=3pV

3. Determine the zero-point pressure.

Exercise 3.2.11
Calculate for the extremely relativistic, degenerate Fermi gas the temperature-
dependence

1. of the chemical potential u,
2. of the internal energy U,
3. and of the heat capacity.

Compare the results with the non-relativistic ones.

Exercise 3.2.12

Calculate the density of states of free fermions (spin S) in the homogeneous
magnetic field B = Be, under the precondition that the field couples only to the
spin.

Exercise 3.2.13

Calculate for a degenerate system of free electrons in the homogeneous magnetic
field Bp = Bye; the field- and temperature-dependences of the chemical potential
w up to terms of the order (kg7/Eg)? and (upBy/Er)?, respectively. Assume for
simplicity that the field couples to the spin only.

Exercise 3.2.14
Show that

400 1
= §lx—
= 3 s ()]
n=—00
can be written as follows as a Fourier series:

+o00
f@) = Y (=1ypemrr.

p=—00



3.2 Ideal Fermi Gas 223

Exercise 3.2.15
For the calculation of the oscillatory part of the grand-canonical potential of free
electrons in the magnetic field one needs the integral (see (3.119)):

+o00

I, = / de f (g) cos (2]Tp8 - Z) ,

—0o0

where f 7 _is the derivative of the Fermi function:

() = ;i{l + exp [b(e—,uo)]}_l )

Calculate I, by using the residue theorem.

Exercise 3.2.16
Consider a system of N noninteracting spin-less electrons in a homogeneous
magnetic field By = Bye;.

1. Calculate the canonical partition function Z; of a single electron.

2. Let the temperature be so high that approximately Boltzmann Statistics can be
applied to the N-electron system. In particular, this means for the canonical
partition function:

_A

Zy e

Calculate the average magnetic moment .

Exercise 3.2.17
Calculate for a non-degenerate electron gas, to which, as in the preceding exercise,
Boltzmann Statistics can be applied, the magnetic zero-field susceptibility:

o ( Om
w0 =" () B0,

For the separation of the orbital and the spin part, assume that the orbital motion of
the electron takes place with an effective mass m* different from the free electron
mass m. (The latter is to be distinguished from the magnetic moment used above for
the susceptibility.)

Exercise 3.2.18
Calculate explicitly the oscillatory part of the susceptibility of a free electron gas in
the homogeneous magnetic field By = Bye,.
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3.3 Ideal Bose Gas

After studying the properties of the ideal Fermi gas we will now investigate the
properties of systems on N noninteracting bosons (spin S) in the volume V. We
learned in Sect. 3.1 that the canonical partition function of the N-particle system,
in spite of the absence of interactions, does not simply factorize, as it would be
the case in the classical Boltzmann Statistics. The symmetry condition for many-
boson systems, due to the principle of indistinguishability, has very far-reaching
consequences. This we will recognize already with the general equations of state
in Sect. 3.3.1, which we discuss at first in complete analogy to the ideal Fermi
gas (Sect. 3.2.1). With the investigation of the classical limiting case z <K 1
(Sect. 3.3.2) we will find correction terms with respect to the classical ideal gas
equation, which have a formal similarity to those, which result in a real gas from
the attractive interaction between the particles.—The most spectacular consequence
of the quantum-mechanical symmetry condition is the Bose-Einstein condensation
(Sect. 3.3.3), which exhibits all features of a phase transition of first order, and that
too, in a system of noninteracting particles.—As important examples of application
of the theory of this chapter we will investigate the photon gas (Sect. 3.3.6) and the
phonon gas (Sect. 3.3.7).

3.3.1 Equations of State

Starting point for the derivation of the thermal and the caloric equation of state of
the ideal Bose gas is the grand-canonical potential (3.21). (We omit the index (+)
for the identification of bosonic quantities and functions, because in this section
we will deal exclusively with Bose systems.) In the following it is thought of non-
relativistic bosons with a spin S and the same isotropic one-particle energies

27,2
e(k) = e(k) = hzi , (3.144)

which we have used also for the ideal Fermi gas in Sect. 3.2. One should note,
however, that some details of the upcoming results are influenced by this choice of
£(k). For the photon gas as well as for the phonon gas we will have to replace (3.144)
by other expressions.—The lowest one-particle energy (3.144) is zero. As already
explained, subsequent to (3.31), the chemical potential has then to fulfill

—oo<u<0. (3.145)
Let the Bose gas be in a cuboid of the volume V = L.L,L. with periodic boundary

conditions for the wave function. In the case of an asymptotically large system (N —
00, V — o0, N/V — n = finite) we can then replace, as in (3.37), sums by
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integrals. Furthermore, the ideal Bose gas possesses exactly the same density of
states (3.50) as that of the ideal Fermi gas discussed in Sect. 3.2.

In connection with the replacement of sums by integrals, for instance in the grand-
canonical potential, for the Bose gas there can arise a difficulty, namely then, when
the chemical potential i approaches too closely the value 0. According to (3.29),
under the precondition —fu < 1, it holds for the occupation of the energetically
lowest one-particle level ((0) = 0):

1 1 1

~

(nomq):e_ﬂﬂ_lzl_ﬂ“_i__1m—ﬂu
(Mom,) can thus adopt arbitrarily large macroscopic values. On the other hand,
the density of states D(E) ~ +/E vanishes at zero-energy. There obviously

exists a serious source of error. For, if we replace for instance the sum >_ ... by
r

[ dED(E) ..., then the ground state gets the weight zero, i.e., it will be completely
disregarded, although being possibly macroscopically occupied. Because of the
Pauli principle (0 < (i1,) < 1) such a problem does not appear in Fermi systems. We
solve it for Bose systems in such a way that we separately extract the contributions
of the ground state. This means for the grand-canonical potential (3.21):

BQUT.V.2) = (25 + 1) (2Z)3 47r/dkk2 In(1—ze#*®) + 25+ 1)In(1 —2) .
0 (3.146)

The factor (25 + 1) is due to the spin degeneracy.

Before we evaluate (3.146), we should assure ourselves that the extraction of the
ground-state contribution is really sufficient. With periodic boundary conditions we
get for the one-particle energies (L, = L, = L, = L):

K2 472

o) — e

2 2, 2).
ny +ny + ny) ; Ney, €L .

In the asymptotically large system the lowest excited energy

K% 472

&1 =
" oom 12

(L2 — V2/ 3)

approaches arbitrarily closely the ground-state energy zero. It is therefore not at
all a matter of course that we have to single out in (3.146) only the ground-state
contribution. We therefore check the contribution of the first excited state. In the
here interesting region it is

1
(ﬁ0m5> ~ — = VN ,
Bu
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where y is a number of the order of magnitude 1. Furthermore it can also be
estimated:

(i) 1 1

i) = ~ ,

lms eﬂ(sl—ﬂ) —1 ﬂgl — ﬂu

W oan (B, 1
— — /3
Per = 0Py = (2m4” " ﬂ) N2/3
1 1

_(92.2/3 _
= (7A’n )N2/3 =%N\2s

By assumption the particle-number density # is finite. Quantum-phenomena become
relevant when the de Broglie wavelength A becomes of the order of magnitude of
the average particle distance (~ (V/N)'/3 = n=!/3). The number o will therefore
be in our case here also of the order 1. This means:

(um) ! ~ N3 (3.147)
(nOWts) Ol]/Nl/3 +1
We see that in the region, where the extraction of the two terms might be of
importance for the grand-canonical potential (3.146), (711,,) is smaller than (7, )
by a huge factor (~ 1077). This term is therefore not at all of any weight. This holds
even more for the higher excited states. This is an important point, to which we will
come back once more in Sect. 3.3.3. Equation (3.146) is therefore the correct ansatz
for the grand-canonical potential of the ideal Bose gas:
The further procedure now runs completely analogously to that for the Fermi gas in
Sect. 3.2.1. With the substitution, already used there,

B

2m’

x = hk

and with the definition (1.137) of the thermal de Broglie wavelength A, (3.146)
becomes

(e9)
25+ 1 4V

BT, V,z) = ;
YRRV 4 )

deIn(1—z¢™) + 25+ ) In(1 - 2) .

With the series expansion of the logarithm,

mi-»=-"" (<.
n=1
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we evaluate the remaining integral:

o0 \/ 00 n

2 T z
/dxlen(l—ze ):— 4 ElnS/z'
0 n=

The calculation process is practically identical to that we performed subsequent
to (3.39). We define:

o0 00 n

8s/2(2) = /dxx In I—Ze * Z S/ (3.148)
J !

83/2(2) = 2, 85/2(Z) Z 132 (3.149)

(cf. (3.40), (3.41)). The grand-canonical potential therewith reads:

BT, V,z) =— 1Vgs/z(z) + 2SS+ 1)In(l —2). (3.150)

A3

Except for the additive additional term, this is formally the same relation as that
for fermions (3.42), only the function fs/>(z) was replaced by gs,»(z). It follows
immediately from (3.150) because of 2 = —pV:

25+ 1 25+ 1

Bp = PE gs/2(2) — v In(1—2z). (3.151)

This is not the thermal equation of motion yet. The fugacity z has still to be
expressed by the particle density n. For that we use (2.80):

(N) d 25+ 1 25+1 z
= = = . 3.152
n= -, =z aZ,BP . e 83/2(2) + Vo ol—z ( )

The combination of the two relations (3.151) and (3.152) leads to the thermal
equation of state. The last summand in (3.152) represents the contribution of the
ground state to the particle density,

1 . 1 1 1 z ng

(noms): —1 = =

\% V-1 Vi—-z 25+1
(mg=-8,—-S+1,...,+9),

(3.153)

and can become, as mentioned, macroscopically large. This phenomenon is denoted
as Bose-Einstein condensation, the in-depth investigation of which is the topic of
Sect. 3.3.3.
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We come to the caloric equation of state via the internal energy U (2.85):

U=-— (3; In E,(T, V))Z’V = (;3,3 QT Vv, Z))z,v .

The insertion of (3.150) yields:

3 25 +1
U= _kgTV +

5 o & (3.154)

The internal energy of the ideal Bose gas has therewith formally the same structure
as that of the ideal Fermi gas in (3.45). If we eliminate from the Egs. (3.152)
and (3.154) the fugacity z, then we have the caloric equation of state of the ideal
Bose gas.

The combination of (3.151) with (3.154) yields for U and pV the connection,

3 3
U= 2pV+ szT(zs +1)In(1 —72) ., (3.155)

which differs by the second summand from the corresponding formula of the
classical ideal gas and also from that of the ideal Fermi gas (3.45).

3.3.2 Classical Limiting Case

We will investigate, for the Bose gas also, at first the limiting case z < 1, for which,
because of

1

— ~ —Ber
= e 1 ze <1,

()
all levels are only very sparsely occupied. The probability of double occupations
is almost zero. It is therefore not astonishing that in this limit the differences of
Bose, Fermi, and Boltzmann Statistics are more or less washed out. The series
expansions (3.148) and (3.149) can be restricted to the first two terms:

2 2

8s/2(2) ~ 72+ 25/ ; 832 ~z+ 232

It follows therewith in a very first approximation for the particle density (3.152):

X3
nA3 ~ (28 + 1)z2© (1+ v) :

) nA3

ST RS+ A3V
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As for the ideal Fermi gas (3.47), the classical limiting case z < 1 thus comes up
for

<1,

i.e., for a low particle density and for a small de Broglie wave length, where the
latter means high temperature. When, however, nA3 <« 1, then it holds all the
more: A3/V < 1. The correction term in (3.152) is then of course also negligible. It
is clear that for z < 1 the extraction of the ground-state contribution would actually
not be necessary. We have motivated this extraction in the last subsection only for
the problematic limit 4 — 0 and z — 1, respectively, for which the ground state
can be macroscopically occupied.—Hence we can write:

©) nA3

S5

We had found the same result in Sect. 3.2.2 for fermions. In order to get the next
higher correction, we use this result once more in the expression (3.152) for the
particle density:

niA3 7z
29~ ~7ZV 1+ .
25+ 1 23/2

This leads to

M o 0 29
M a7 (1—23/2) .

When we now insert this into the relation (3.151) for the pressure of the ideal Bose
gas, we obtain an equation of state,

V = (N)k T[l— na’ } (3.156)
pr= s 42025+ 1) ] '

which differs from the analog (3.48) of the Fermi gas only by the sign before
the quantum correction.—If one inspects for comparison the equation of state of
(classical) real gases, by the inclusion of particle interactions one reaches formally
similar corrections to the ideal gas equation (s. van der Waals gas, (1.14) in Vol. 5).
One then recognizes that the symmetry conditions on N-particle states (3.3), due to
the principle of indistinguishability, appear for the ideal Fermi gas like a repulsion,
and for the ideal Bose gas like an attraction between the particles. Numerically,
however, the quantum corrections in (3.48) and (3.156) are very much smaller than
the usual correction terms which result from the real particle interactions.
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3.3.3 Bose-Einstein Condensation

The region of high particle densities and low temperatures is much more interesting
than the classical limiting case 7 < 1 (nA*> < 1), discussed in the preceding
subsection, because there are serious discrepancies to the ideal Fermi gas and to the
classical ideal gas. Under such boundary conditions, for which quantum-mechanical
aspects are especially strongly effective, one speaks of a degenerate Bose gas.

In order that the Eq. (3.151) for the pressure of the ideal Bose gas can be understood
as the thermal equation of state, by means of the relation (3.152) we have to
eliminate the fugacity z, i.e., we have to find z as a function of the temperature T
and the particle density n. The function g3/,(z) will thereby play an important role,
where, though, because of —oo < u < 0, only the region 0 < z < 1 is interesting.
The functions

X n
Z
= E 3.157
84(2) 2 e ( )
are linked with each other by
d
8u—1(0) =2, 8a(2), (3.158)
dz

representing in the interval 0 < z < 1 positive, monotonously increasing functions
of z (Fig.3.14). For z = 1 they are identical with the Riemann’s {-function (3.70):

gsp(1) =¢ (;) =1342;  gp(l)=¢ (;) =2.612. (3.159)

81/2(z) diverges at z = 1. According to that, g3/2(z) is finite at z = 1, but has a
vertical tangent there.
We now write (3.152) in the form

25+1
mp=n-—, 83/2(2) , (3.160)
Fig. 3.14 Qualitative
behavior of the Ea
functions (3.157), important X
for the ideal Bose gas, as 2612F--=----+/-~- |
function of the fugacity z a=1/2 L o=3/2

1,342 "')é a=5/2
]
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where, according to (3.153), ny is the particle density of the (25 + 1)-fold degenerate
lowest one-particle energy level e(k = 0) = 0. Since g3/2(z) is for 0 < z < 1
restricted to the numerical interval [0, 2.612], such temperatures 7 and such particle
densities n are conceivable for which

285 +1
n> g32(1) .

A3
But then ny > 0, i.e., a finite (macroscopic) part of the bosons occupies the ground-
state level. According to our pre-considerations in Sect. 3.3.1, in such a case |Bu|
must be very close to zero. This phenomenon is called
Bose-Einstein condensation
Strictly speaking, this macroscopic occupation of the ground state would not be
noteworthy in particular, if it took place at temperatures, for which

kBT<£1—8(k=O)=81,

where ¢ is the first excited level. With the considerations subsequent to Eq. (3.146)
this can be estimated for macroscopic systems to about 7 < 1072 K. The states
of a Bose system are not subject to any occupation restriction, as it is imposed on
Fermi systems by the Pauli principle. At T = 0, all particles of the ideal Bose gas
should indeed populate the lowest energy level. What is spectacular with the Bose-
Einstein condensation, however, is the fact that the occupation of the ground state
starts already at an essentially higher temperature.

The transition into the region of condensation is regulated by the condition

nA® = (28 + l)gsp(l) . (3.161)
At fixed particle density,

_25+1

27 h? 32
A= " 83/2(1)=( ) ,

ka TC

a critical temperature 7 is therewith defined

2 h? n 2/3
Bl = ((2S+1)g3/2(1)) ' (.16

At fixed temperature 7 Eq. (3.161) determines a critical particle density 7nc:

25 +1

ne(M) =,

ks T\ />
g32(1) = (25 + 1) (’Zﬂ;z) g32(1) (3.163)

Since n is inversely proportional to the third power of the average particle distance,
it becomes clear from the last two relations that the condensation sets in when the
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thermal de Broglie wavelength A gets the order of magnitude of the average particle
distance.
If one compares the critical temperature 7¢ of the ideal Bose gas with the Fermi
temperature Ty of the ideal Fermi gas, defined in (3.64), then one finds for § = 1/2 -
fermions of the mass m, and for § = 0-bosons of the mass ny, with equal particle
densities:

)2/3 mp my

T 1
P = 7 (3r%gn(1) ~ 1.45
4 '

TC 4 ny

In the case of equal masses the two temperatures are of the same order of magnitude.
For the prototypes, however, conduction electrons and 4He-atoms, the mass ratio is
my/my ~ 8 - 10%. Although Fermi temperatures in general amount to some 10*K,
nevertheless T¢ is always still to be found at some Kelvin degrees. If one takes
the mass of the *He-atom and the empirical density of liquid “He, then it results
from (3.162):

Tc ~3.13K  (‘He) . (3.164)

In any case T¢ is still too large in order to be able to explain ‘in a normal way’ the
transition of the bosons into the ground state. It rather exhibits the feature of a real
phase transition, about which we will convince ourselves in the following.

At first we have to find an idea how the fugacity z looks like as a function of T
and n. When one plots for fixed T and n the quantity g3/2(z) + A3z/[V(1 —z)] as a
function of z (Fig. 3.15), then the intersection point with the constant nA3/(2S + 1)
yields, according to (3.152), just the fugacity z belonging to the given 7 and n. This
is schematically plotted in Fig. 3.15 for a large but finite volume V.

We are now able to provide graphically step by step z as function of T and n, but for
fixed V. The solution z;, stems from the region of condensation (Fig. 3.16) because

nA3 - 0
25+1), 8-

Fig. 3.15 Graphical solution A
for the fugacity of the ideal (
Bose gas as a function of the

temperature 7" and the particle

density n 2,6121

! 3

, Aoz
+__

)r/gs/z(z) Vi-z

7zl

1
T—g32(2)
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Fig. 3.16 Fugacity of the z
ideal Bose gas as a function 1 e
of the temperature and the
particle density

»,Condensate“

&32(1) nA?
2§+1
Fig. 3.17 Occupation 1y
density of the ground-state -
level of the ideal Bose gas as
a function of the temperature n fixed

If we now go to the thermodynamic limit (N — oo, V — 0o, n — finite; see
Sect. 4.5), then, in spite of V — oo, the correction term A3z/[V(1 — z)] must remain
finite, in order to realize (n)k3 /(28 + 1)) b This means, on the other hand, that in the
region of condensation (1 —z) must during the limiting process V — oo behave like
1/V. Thus we can write for very large V (V — o0) approximately:

) e el
solution of: 2811 =g3p(2), if 25%1—1 < g3n(l),
L (3.165)

. na3
1, if 2 > g3p(l) .

Outside the region of condensation (upper row in (3.165)) the correction term
A3z/[V(1 — z)] is unimportant because of V — oo. We can now use this result
in (3.160) in order to get information about the occupation of the ground state
(Fig.3.17):

no oAl
Va0 i <en(). (3.166)
no 28 + 1 /\3
. 1- e g32(1) =1— Ag
T\*? onAd
=1 ) - iy, ZenO). (3.167)

This behavior, however, strongly reminds of a phase transition, and that too
remarkably in a system of particles, which do not interact with each other. One
can assume for 0 < T < T¢ a mixture of two phases. One phase (condensate) is
built up by the macroscopic part Ny of the altogether N bosons, which occupy the
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lowest energy level e(k = 0) = 0:

T\32
N0=N|:1—(T ) ] . (3.168)
C

The other phase, which we will denote as gaseous, is built up by the remaining
particles, which are in excited (k # 0)-levels:

T\ 32
N1=N—N0=N(T ) . (3.169)
C

The estimation (3.147) implies in addition that these N; bosons are distributed
asymptotically thinly over the excited states, i.e., the occupation number of a
single level is practically zero. That holds at T > T also for the (k = 0)-
level (3.166). At T = 0 all particles are in the energetically lowest state. Just this
phenomenon (3.168) is called Bose-Einstein condensation. In the next subsection
we will be able to further delve into the analogy to a phase transition.

3.3.4 Isotherms of the Ideal Bose Gas

The idea of the phase mixture in the region of condensation manifests a strong
analogy to the gas-liquid phase transition. Furthermore, the abrupt change of ng at
Tc leads to discontinuities in the thermodynamic quantities. We will see that for this
reason the thermodynamic potentials of the ideal Bose gas are represented above and
below the transition point (7¢, nc) by two different analytical expressions. Even
that is typical for a phase transition, as will be shown in Chap. 4.

We investigate the thermal equation of state of the ideal Bose gas for the
asymptotically large system (N — oo, V. — o0, n — finite). Starting point is
Eq. (3.151), in which the second term on the right-hand side vanishes for V — co:

25 +1

v In(1 —2) V:;O. (3.170)

For z < 1,1i.e., n < nc, it is trivial, but not at all for the region of condensation
n > nc because of z — 1. However, we have realized in the last subsection, in
connection with the graphical solution for z(T, n), that in the region of condensation
(1—z) behaves like 1/V. The above expression therefore tends as In V/V for V — oo
towards zero.

With (3.151) and (3.165) it thus holds for the pressure of the ideal Bose gas:

2541
W esp(r) forn <nc,

Bp = (3.171)

zsli_lgs/z(l) forn > nc .
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In the region of condensation the pressure is thus independent of the volume and the
particle density, respectively, being a function of the temperature only. But that is
not different from the phase transition between gas and liquid. We obtain the phase
boundary curve in the (p — (1/n))-diagram by eliminating the temperature from the
two critical equations:

25 +1
pc(T) = kgT ;_ gs2(1) , (vapor pressure) (3.172)
28 +1
ne(M) =5 &pl). (3.173)

With

_ 2h? (25+ 1)g5/2(1)

C
"Tom [es+ Dgpm]”

(3.174)

we obviously have:
pc = Con” . (3.175)
The
isotherms of the ideal Bose gas

therefore indeed exhibit a strong similarity to those of the gas-liquid system
(Fig.3.18).

In the two-phase region between A and B there is a mixture of a gaseous
phase of the composition B and a condensate of the composition A (Fig.3.18).
The condensate has the density oo and the specific volume (volume per particle)
v = 1/n = 0, respectively. The gas in the transition region has the density nc.

In the region 1/n > 1/nc there is only gas. Since in the gas-phase, according to
our graphical solution in the preceding subsection, z decreases at fixed temperature
monotonously with decreasing particle density n, and the same does gs/»(z), it

Fig. 3.18 Isotherms of the
ideal Bose gas

1 1/n
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results, according to (3.171), a continuous drop of the pressure with an increasing
specific volume v = 1/n.

The Bose-Einstein condensation obviously exhibits the characteristic attributes
of a phase transition of first order. It should therefore be also possible to find an
analog to the Clausius-Clapeyron equation ((4.19), Vol. 5):

dpc _ AQ

= . 3.176
dT TAv ( )

When we differentiate the vapor pressure (3.172) with respect to the temperature,
then it follows:

dpc 5, 285+1 (3173) 5

kg gs2(1) "=

r 8s/2(1)
dT 2 A3

nc .
2 Bg3/2(1) ¢

It now holds for the difference of the specific volumes of the two co-existing phases:

Av=vc—0=vc =
nc

The Clausius-Clapeyron equation (3.176) is therewith formally fulfilled, when we
define as latent heat per particle:

5. 8&s2(1)

AQ = .
Q 2" g3/2(1)

(3.177)

The analogy of the Bose-Einstein condensation to a phase transition of first order
becomes complete, when we also succeed to express the latent heat by the entropy
difference AS of the co-existing phases in the form NAQ = TAS. For this purpose
we investigate in the next subsection the thermodynamic potentials of the ideal Bose
gas.

3.3.5 Thermodynamic Potentials

We begin with the internal energy U, which we want to find for the ideal Bose gas
in the thermodynamic limit (N — oo, V — 0o, n — finite). Since U, as also all the
other thermodynamic potentials, is an extensive state quantity, the calculation makes
of course sense only for the internal energy per particle. Let the particle number be
fixed (N = (]V)). Because of

u 1U
N nV
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the second term in (3.155) vanishes for V — oo, as has been proven in connection
with (3.170). So, for the calculation of the internal energy, we can directly apply the
result (3.171) for the pressure p:

1 13 35T (28 + 1)gsa(z)  forn <nc |
U - p =

2
N ! ;’;ﬁ(zs + 1)gs2(1)  forn> nc .

(3.178)

The fugacity z on the right-hand side is fixed by (3.165) as function of T and n. This
holds for all the subsequent expressions.
For the free energy we have to calculate

1F— kT11u+ = + kgT'1
= _ nE —_! nz,
N BN ’ N i ¢

which, however, can be immediately achieved with (3.171):

25+1

1 ~gs2(z) —Inz  forn <nc,
F=—keT (3.179)
N 25+1
o 8s/2(1) forn > nc .

With regard to the Clausius-Clapeyron equation (3.176) or the latent heat (3.177)
of the Bose-Einstein condensation, the entropy is of special interest. It follows with

S U-F
Nkg ~ NkgT
from the above results for U and F:
S 35k gs(2) —Inz forn < nc,
- 3.180
Nkg 52541 ( )
> s 8s/2(1) forn > nc .

In the two-phase region, A3 gives rise to a temperature-dependence of the form:

-~

Ny 73 (n>ne). (3.181)

In particular, the third law of Thermodynamics is therewith fulfilled. At 7 = 0 only
the condensate is present. Obviously this does not have any entropy. We thus can
assume that at each temperature 0 < T < T the entropy stems exclusively from
the gas phase. For the entropy difference this has the consequence:

5 25+1 3.173) 5, g572(1)

1 1
AS = _S(T, = k 1 3.182
N N (T, nc) kB s gs/2(1) 5 Bg3/2(1) ( )
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The comparison with (3.177) then yields
NAQ =TAS , (3.183)

and confirms therewith our classification of the Bose-Einstein condensation as phase
transition of first order.

Eventually, we also calculate the heat capacity Cy. For that we have to
differentiate the entropy with respect to the temperature. This is no problem in the
region of condensation n > nc, because, according to (3.180), the temperature-
dependence arises only from the de Broglie wavelength A:

Cy T ([0S 1525 +1
NkB = NkB (BT)V = 4 a3 85/2(1) (n > nc) . (3184)

The heat capacity thus behaves as 7°/2 (Fig.3.19). For n < nc, though, we have to
take into consideration that the fugacity z is also temperature-dependent. With

S=S(T.V,«T,V))

s\ (3 N s 0z
or ), \or),. \oz ), ,\or),"

Because of (3.165) we can write instead of (3.180):

it follows:

s _ 5 g5/2(2)
Nkg 2 g3/2(2)

Cy T (3 0z
Nkg  Nkg\ 0z J;,\OT /)~

~Inz (n<nc). (3.185)

We have therewith:

Fig. 3.19 Temperature- Cy
behavior of the heat capacity W
of the ideal Bose gas B
15 £(5/2)
4 §(3/2) 1
I
32 ---- k- -===
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In (3.165),
A’ = (28 + 1)g32(2) ,

we differentiate both sides with respect to the temperature,

3nA3 d 0z
R 28 + 1)(dzg3/2(z)) (BT)V ,

and we obtain then with (3.158):
(32) _ _3 z 83/2(2)
aT )y 2T g1)2(2)
Again with (3.158), it results from (3.185):

1 (8§) _ 1[_585/2(2)31/2(Z)+3:|
keN\dz /)7y z[ 2 g%/z(z) 2l

The heat capacity per particle therewith reads:

Cv _ 15gs5p2(x)  9832(2)

= . 3.186
Nkg 4 g32(2) 481202 (n < nc) ( )

The fugacity on the right-hand side is again to be understood as solution z(T, n)
of (3.165). For a given n we have to equate T — T¢ with z — 1. For z — 1
the second summand in (3.186) becomes zero because of the divergence of gy;.
Therefore at the critical temperature 7¢c we get:

Cy _15¢(5/2)
(NkB)TC 403/ G-187)

It will be shown in the solution of Exercise 3.3.1 that for T — oo the chemical
potential tends to —oo, and that, too, so strongly that it even holds: fu — —oo.
Hence, the fugacity z tends to zero for 7 — oo. In the functions g, (z) (@ = 1/2,
3/2,5/2,...), defined in (3.157), the first summand then dominates:

goc(Z) Z
— =1.
gp(z) =0 z

According to (3.186) we get therewith, as not unexpected, for T — oo the classical
limiting case of the heat capacity:

C 3
( v ) =, (3.188)
Nk ) 700 2
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With (3.184), (3.187), and (3.188) we now know already quite precisely the
qualitative temperature-behavior of the heat capacity (Fig.3.19).

At the end, one is of course confronted with the question, whether the spectacular
Bose-Einstein condensation of the ideal Bose gas can also be experimentally
detected. At first, the assumption of a noninteracting system is of course such a
strong idealization that a quantitative agreement of theory and experiment cannot
be expected, in particular, if one takes into consideration that for T — 0 no
system will exist in the gaseous state. The only system, which might behave, at
least approximately, for low temperatures like an ideal Bose gas, would be liquid
4He. This indeed shows a phase transition at 2.18 K, which is called A-transition,
because the temperature-behavior of the heat capacity near 7¢ bears a resemblance
to the Greek letter A. Strictly speaking, Cy exhibits there a logarithmic divergence.
Is this transition a Bose-Einstein condensation modified by particle interactions? A
positive answer is supported by the estimation (3.164) for T, which comes with
3.13K very close to the experimental value. A further support is due to the fact
that the so-called two-phase theory of “He for T < Tc describes the phenomena
rather well. This theory assumes the co-existence of two phases, a superfluid phase,
which may correspond to the Bose-Einstein condensate (atoms in the ground-state),
and a normal phase, which may be ascribed to the atoms in the excited states.
Furthermore, it was a strong argument for a long time for the interpretation of the A-
transition as a Bose-Einstein condensation that superfluidity was observed only for
“He, but not for the Fermi system 3He. In the meantime, though, one knows that at
very low temperatures *He also becomes superfluid. Furthermore, the A-transition
is not a phase transition of first order, so that it is at least not a case of a pure
Bose-Einstein condensation. The problem must be seen as up to now not completely
solved. On the other hand, there does exist a first experimental realization of the
Bose-Einstein condensation, seen in 1995 by E.A. Cornell, C.E. Wiemann, and W.
Ketterle, who received the Nobel prize for their work (Phys. Rev. Lett. 75, 3969
(1995)).

3.3.6 Photons

For the treatment of the ideal Bose gas we have so far always assumed that the
particle number N can be arbitrarily given, independent of the variables temperature
and volume. In the grand-canonical ensemble the particle number is regulated by
the chemical potential p (Lagrange multiplier!). But this is not guaranteed for
some important Bose systems, in which, in an unrestricted manner, particles can
be created and annihilated, respectively. To this class of systems there belong the
photons of the electromagnetic radiation, the phonons of the crystal lattice, and the
magnons of the ferromagnet. We discuss the photons in this subsection, the phonons
in the next subsection, while the magnons are intensively investigated in section 2.4
of Vol. 9. All these systems have in common that at the equilibrium the number of
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bosons will adjust itself so that the free energy F (T, V, N) becomes minimal:

(%) <o.
oN /vy

The left-hand side, however, represents nothing else but the definition of the
chemical potential p. Thus it holds likewise for photons, phonons, and magnons:

nw=0. (3.189)

Let us now concentrate ourselves at first on the photon gas.

In the introductory section 1.2 of Vol. 6 we had denoted Planck’s treatment
of the heat radiation as the hour of birth of the Quantum Mechanics. The topic
thereby was the spectral energy distribution of the electromagnetic radiation inside
a hollow (box) of the volume V, whose walls are kept at the fixed temperature 7.
The atoms of the walls of the hollow emit and absorb electromagnetic radiation, so
that a thermal equilibrium is installed between the electromagnetic field inside the
hollow and its walls. Planck’s groundbreaking idea consisted in the assumption that
the electromagnetic energy is not unrestrictively divisible, but rather is composed
of a certain number of finitely big parts (quanta). This picture led to the term of the
photon.

Classically, the radiation field inside the box (vacuum!) is determined by the

homogeneous wave equation ((4.128), Vol. 3)
1 0%y
c? o’

Ay =

where 1 can be any component of the electric field E, of the magnetic induction B
or of the vector potential A as well as the electrostatic potential ¢. If one expands
the solution in plane waves,

Y — Yk e,

then the wave equation turns into the equation of motion
U0+ (K)y k1) =0

of a linear harmonic oscillator with the frequency @ = c|k|. One can therefore write
the Hamilton function of the electromagnetic field as a sum of such linear electro-
magnetic oscillators. After quantization the radiation field is therewith equivalent to
a gathering of quantum-mechanical harmonic oscillators with a typically discrete
eigen-value spectrum (section 4.4, Vol. 6):

1
E,.(kK) = hclk| (n + 2) n=0,1,2,... (3.190)



242 3 Quantum Gases

The picture is now that the oscillator energy E, (k) is caused by n photons, where
each of them contributes the

energy: E =hw =hclkl|=cp. (3.191)
It follows then from the relativistic particle-energy relation ((2.63), Vol. 4) that the
mass of the photon: m =0 (3.192)

It moves with the velocity of light v = ¢ and the momentum Ak = E/c. Radiation
results from transitions between the oscillator levels, i.e., in the final analysis from
changes in the numbers of photons. Photons are thereby created and annihilated.
In this sense the introductory remarks before (3.189) are to be understood. The
zero-point energy (n = 0 in (3.190)) obviously does not play a role in the
photon picture of the electromagnetic radiation, whose exact description, by the
way, must be performed in the framework of the Quantum-Electrodynamics. For
our purposes here, however, the above simple considerations completely suffice.
Advanced relativistic considerations show that the

photon spin: S=1, (3.193)

as the spin of a particle with the rest mass zero, can only have two directional
possibilities, namely parallel or antiparallel, but not perpendicular to the direction of
the momentum %K. This corresponds to two independent directions of polarization
of the electromagnetic wave. A given spin state can be identified, respectively, as
a right-circularly polarized and as left-circularly polarized electromagnetic wave
((4.150), Vol. 3).—The assignment photon<=> electromagnetic field represents an
important realization of the particle-wave dualism of the Quantum Theory.

Let the hollow, which is filled by heat radiation, be sufficiently large so that
we can assume that the thermodynamic properties of the radiation field are not
influenced by the actual shape of the hollow. Hence, we can exploit ‘convenient’
boundary conditions. In this sense, let the hollow be a cuboid with the edge length L
(V = L?). Periodic boundary conditions then lead to the discretization of the wave
numbers which was already utilized several times:

2
k = Z(nx,ny,nz) ; Ny, € L.

In the grid volume

_ (@n)?
Ty

Ak

of the k-space there is then exactly one k-state, which is twofold degenerate,
though, because of the two independent directions of the polarization. Because of
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the isotropic energy relation (3.191), the phase volume @(E) can be very easily
calculated:

-V IS
k=E/hc 372

2 (4m/3)k>

1%
E)=2 3
Ak?® Ak

werhe | 3m3(he)?

Differentiation with respect to E yields the density of states D(E):

\%4 2
wE* forE>0,
D(E) = { 7'’ (3.194)
0 forE <O.

According to (3.191) there are only positive photon energies. The energy-
dependence of the density of states is here different from that in (3.50). The only
reason for that is the different k-dependence of the one-particle energy in (3.38)
and (3.191).

In the next step we determine the grand-canonical potential of the photon gas.
According to (3.21) it is to be calculated:

Q(T. V) = 2kT ) " In[1 — exp(—Bhck)]
k

- ZkBT/d3k In[1 —exp(—phck) | = "BT,:/zJ(ﬂ)'

Ak

The factor 2 is due to the two degenerate spin-polarization directions. The remaining
integral J(f) we rearrange at first by an integration by parts:

J(B) = / dkk* In[1 — exp(—Bhck)]
0

o 00
— ;k3ln[1—exp(—,3hck)] _;/dkk:;ﬁhCGXp( ,Bth)
0

1 — exp(—Bhck)

The integrated part vanishes (why?), and it remains with the substitution y = Bhck:

Iy 3
%

1
1P) = 3 (Bhe)? /dy e —1"

0

This integral is of the type, which is investigated in Exercise 3.3.3:

[x27 =rer@ (3.195)
0
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(' (er): Gamma function; ¢ (er): Riemann’s ¢-function.) With ¢(4) = 7*/90 it thus
follows for J(B):

4

1) == 45 (Bhe)?

This leads to the following temperature- and volume-dependence of the grand-
canonical potential:

2

QTY) == 45 (hey

(ksT)* . (3.196)

The pressure of the photon gas (radiation pressure) p = —(1/V)Q is therewith
only a function of the temperature:

1
p= 3aT4 =p(T). (3.197)

Here we have introduced for abbreviation the Stefan-Boltzmann constant

2k4
T8 75781071

%= 15 (he)? m K

(3.198)

Because of 1 = 0 and because of the Gibbs-Duhem relation G = (N, the grand-
canonical potential 2 is for the photon gas identical to the free energy F. For the
entropy we have:

S(T,V) = — (?Tz) = jaVT3 . (3.199)
\4

We determine the average number of photons, which are present at equilibrium at
the temperature 7', via (3.23) by means of the density of states (3.194):

+o00

) = / JED(EY(E) .

—0o0

f+(E) is the Bose function (see (3.29)), the counterpart of the Fermi function (3.52):

1
B = ey (3.200)
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With (3.194) as well as u = 0 we again obtain an integral of the type (3.195):

v +o00 E2 v +o00 x2
N = 2(heps / 9E e _ 1 = 22(he) / oy
0 0
3
- VZ(kBT) rG3)t(3). (3.201)
T hic

When one inserts the constants ({(3) = 1.202), one gets:
(N) ~2.032-107 - VT? [K*m’] . (3.202)

The average number of photons thus becomes zero for T — 0.
The internal energy can be calculated quite analogously to (3.201):

+00 +oo
_ _ V(ksT)* X
U(T,V) = /dEED(E)f+(E)— () /dxex_l
—00 0
k 4
e T

The T*-dependence is known as Stefan-Boltzmann law ((1.12), Vol. 6),
U(T,V) = aVT*, (3.203)

which can be derived also classically ((2.64), Vol. 5), where, though, the coefficient
o remains undetermined. With (3.196) and (3.199) we can test:

U=F+TS=Q+TS.

The energy density of the photon gas is, as the pressure, a pure function of the
temperature:

U
6=, = aT* = &(T) . (3.204)

With (3.197) it results a simple relation between pressure and energy density,

p(T) = ;S(T) , (3.205)
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to which we have connected in Vol. 5 a series of thermodynamic considerations and
evaluations (section 2.8, Vol. 5). We note in passing that the coefficient 1/3 does not
contradict our previous result (3.155), but is explained by the different one-particle
energies (e(k) ~ k for (3.205); e(k) ~ k? for (3.155)).

If one finally defines via

o
U= V/é(a),T)da)
0

the spectral energy density £(w, T) of the electromagnetic radiation in the hollow,
then the comparison with the above expression for U,

1
8w, T)dw = tha)da) D(E = ho)f+(E = ho) ,

leads to the famous Planck’s radiation formula:

hw? dw
E(w, T)dw = . 3.206
fo, Tdw w23 exp (Bhow) — 1 ( )
This turns for low frequencies,
hw < kBT s
because of
— ksT
[exp (Bhw) — 1] "x B
ho
into the classical Rayleigh-Jeans formula ((1.20), Vol. 6),
>
gw,Tdw ~ ) 3kBwa , (3.207)
w2c

and for high frequencies,
hw > kBT s

into the Wien’s formula ((1.14), Vol. 6):

# 3
Ew,Tdw ~ :)3 exp (—fhw)dw . (3.208)
n2c
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3.3.7 Phonons

The N atoms of a crystalline solid execute oscillations around their equilibrium
positions R; (i = 1,2,...,N), which, for their part, are defined by the minimal
potential energy of the system. These oscillations, which are ultimately caused
by the restoring bonding forces between the atoms, are significantly involved
in the thermodynamic properties of the solid. As collective oscillations of the
lattice elements (lattice vibrations) they are quantized just as the electromagnetic
waves. The quantization unit is called phonon. Although the solid does not have
the slightest similarity to a gas in the conventional sense, it can nevertheless
be shown by suitable transformations, as for the electromagnetic waves, that the
thermodynamic properties of the crystal lattice are equivalent, to a good (low-
temperature) approximation, to those of an ideal Bose gas. Here we will not only
hint at these transformations, but rather perform them explicitly. It is clear that these
transformations by themselves are not of decisive importance for the ‘genuine’
Statistical Physics. So they could also be skipped, if one accepts, without further
justification, Eq. (3.235) as the model-Hamilton operator of the lattice dynamics.

(A) Model-Hamilton Operator Let the solid consist of only a single type of
atoms, so that the lattice elements (atoms) build a so-called Bravais lattice. We
define

{R;} : equilibrium positions of the N atoms,
X;(f) : momentary position of the i-th atom,
u;(r) = X;(r) — R; : displacement of the i-th atom out of its rest position.

For the kinetic energy of the lattice ions we have:

1
T = ZM%:uga(t) o a=x.z7. (3.209)

The potential energy is a function of the instantaneous atom positions V({X;}). The
minimum Vy = V({R;}) defines the bonding energy. We expand V around V:

1 .
V(X)) = Vo + Za: Giattia + Z P uuip + OGS) . (3.210)

«f
At not too high temperatures, the atoms will be only slightly displaced from their

equilibrium positions. The expansion can then be terminated after the first non-
trivial term, which is, because of

v
Gio = =0 3211
0Xia |,y
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Fig. 3.20 Tllustration of the Vv , .
harmonic approximation for 1 ,,harmoplc L«
the pair potential between the I’ approximation
lattice elements of a solid /

IR, —R:|

(equilibrium condition!), the quadratic term. One speaks in this case of the
harmonic approximation. The higher summands of the expansion in (3.210)
are denoted as anharmonic terms. The harmonic approximation corresponds to a
replacement of the interaction potential by an (oscillator-)parabola, which near the
minimum of the potential certainly represents a good approximation (Fig. 3.20). The
3N x 3N-matrix of the atomic constants,

B 0V

P = 3.212
T = a0k (3.212)

{R;}

determines in the framework of the harmonic approximation the physical properties
of the crystal lattice. Thereby it means

—l) - wp
the force in ¢-direction, which acts on the i-th atom (ion), if the j-th atom (ion) is
displaced in B-direction by ujg, while all the other particles are kept fixed in their

equilibrium positions.—By reason of the neglect of higher terms in (3.210) it results
a linear force law:

Mg ==V = Z%ujﬂ (3.213)

When we shift the crystal as a whole, i.e., each atom by the same amountAx, then
there will not be any action of force, and we have therefore according to (3.213):

>l -
{02
iB
A further obvious symmetry relation of the force matrix is

(,0’ _quﬂ’

and in the case of translational symmetry it holds in addition:

iB 08
(p;oc = wi—ja .
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If we presume such a translational symmetry, then the following ansatz for the
solution of the equation of motion (3.213) would be appropriate:

g = »_ ca(q)e’ @R (3.214)
q

With the orthogonality relation

the system of the 3N equations of motion (3.213) is reduced to the eigen-value
equation

w’ca(q) = Y Kap(q)cp(q) (3.215)
B

of the transformed 3 x 3 -force matrix:

1 i —iq -«(Ri—R;
Kp@ = > gl ®R) (3.216)
iy

This matrix is real and symmetric, and possesses therefore real eigen-values w?. The
eigen-frequencies

w=o0(); r=123 (3.217)

are thus also real or purely imaginary, where of course only the (positive) real
frequencies are physically interesting. One denotes w,(q) as dispersion branch.

As a side remark, we mention that for a more complicated solid with p atoms
in the elementary cell, there are 3p dispersion branches. Three of them are called
acoustic branches, being characterized by w(q = 0) = 0, while for the other 3(p —
1) so-called optical branches w(q = 0) # 0. For our purposes here, though, the
restriction to p = 1 suffices, which excludes optical branches.

A further side note concerns the reciprocal lattice vector G, which is defined by

SORi =1 v,

The force matrix (3.216) therefore does not change if one adds to the wave vector q
an arbitrary reciprocal lattice vector. This has the consequence

o(q+G) =w(q) Vi



250 3 Quantum Gases

and allows for the restriction of the wave vectors to the first Brillouin zone. The
reader, who is not familiar with terms like reciprocal lattice vectors, Brillouin
Zone,. .., may be referred to the textbook literature on solid state physics. On the
other hand, these terms are not of importance in the context of the here interesting
Statistical Physics. We will therefore presume in the following that all wave vectors
belong to the first Brillouin zone.

The eigen-functions, which belong to the eigen-frequencies (3.217),

Ca (q) — &ra (q)

will always permit an orthonormalization:

nga(q)sr/a(q) =68 . (3.218)

The general solution of the equation of motion (3.213) will be a linear combination
of the special solutions &,4(q):

1 < .
uWPuWZXpMMm@WV (3.219)
r=1 q

We have the time-factor e~ incorporated into the so-called normal coordinates
0,(q, t). For these one finds with (3.218) and with

1 i (0—a')-Rs
Nzezm DR — 5

i

after the reversal of (3.219):
1 iR,
0.(q,0) = N > uia (D (e TR (3.220)
o

One recognizes with (3.213) to (3.216) that the normal coordinates fulfill the
equation of motion of the harmonic oscillator:

0-(a.1) + 0} (@0-(q.)) = 0. (3.221)

From the fact that the displacements u;, (f) must be real, we can further conclude

07 (q,1) = 0,(—q.1); en (@) = e4(—q) , (3.222)
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so that the kinetic energy and the potential energy of the lattice take, written in nor-
mal coordinates, the following simple forms (explicit derivation as Exercise 3.3.13):

1 . .
T=,M}) 074000, (3.223)
q.r
1 *
V= 2M;w3(q)gr(q, DO (q.0) + Vo . (3.224)

The Lagrangian function L = T — V provides the generalized momentum P,(q, t),
which is canonically conjugate to Q,(q, t) ((1.52), Vol. 2):

oL .
Pia.n = o = MO, (3.225)

Note that, because of (3.222), the term O, appears twice in the sum in (3.223), which
compensates for the factor 1/2.
The Hamilton function of the crystal lattice

1 1
H=Y |, PaPi@n+ Mi@oangian] 62
q.r

remarkably decomposes, in the framework of the harmonic approximation, into a
sum of Hamilton functions of 3N independent linear harmonic oscillators. From
now on, the unimportant constant V is set to zero.

In the next step we have to convert, according to the principle of correspondence
(section 3.5, Vol. 6), the classical dynamical variables to quantum-mechanical
observables (operators) :

displacement u;, —> i

mechanical momentum Mitj,—> Dig .

The following commutator relations hold for the observables of position and
momentum:

A N N h
[Mia,ujﬂ]_ = [pioupjﬂ]_ = O , [pia,ujﬂ]_ = 18U8aﬁ . (3227)

We show in Exercise 3.3.14, how these relations transfer to the quantized normal
coordinates and their canonically conjugate momenta:

~ ~ ~ ~ ~ ~ h
[Qr(q)s Oy (q)]_ = [Pr(q)s Pr’(q)]_ =0, [Pr(q)v Qr’(q)]_ = I.Srr’(sqq’ .
(3.228)
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The further procedure is now carried out as for the harmonic oscillator in
section 4.4 of Vol. 6. We define creation and annihilation operators b;rr, by, ((4.127),
(4.128), Vol.6):

0 — h +\ _ At
0,(q) = \/ 2o (@M (bgr +b7,) = OF (—q) (3.229)

~ 1 ~
P (q) = —i \/ 2thr(q) (bgr —bTy,) = PF(—q) . (3.230)

The reversal reads:

1 ( ~ l ~
by = \/er(Q)Qr(Q) + Pr(q)) , (3.231)
v Vam VMo, (q)
1 -~ i ey
bt = ( Mo, (—q) — P.(— ) . (3.232)
N th (@0,(—q) ﬂmm)(m
One recognizes, by means of (3.228), that these are Bose operators:
[bar » by ] = [bgr - b;“/r,]_ =0, (3.233)
[bqr s b:;,/]_ = Sqq/grr’ . (3.234)

The Hamilton operator, which results from (3.226) and (3.229) to (3.234),
1
_ +
H= qE, hw,(q) (bqrbqr + 2) , (3.235)

corresponds to the operator of 3N uncoupled linear harmonic oscillators. The
interpretation is very similar to that we used for the photon gas (Sect. 3.3.6):

b;’r : creation operator of a phonon,
by, : annihilation operator of a phonon,

hw,(q) : energy of a phonon.

Phonons are bosons! The physics of the lattice vibrations is, in the framework of
the harmonic approximation, equivalent to the physics of an ideal Bose gas. It is
determined by the distribution {ng,} of the phonon-occupation numbers. Phonons
can in principle be created in arbitrary quantities. Therefore their chemical potential
is also zero, as that of the photons (see (3.189)).

We still want to add a remark on the time-dependence of the quantized normal
coordinates

0:(@.1) = Or(@e .
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This time-dependence transfers to bg,:
bg,(t) = bge @' (3.236)

That is now tantamount to the Heisenberg representation ((3.193), Vol.6),

bqr(t) = exp (;Ht) bgrexp (—;lHt) ,

and also to the resulting equation of motion:

ad .
it bar®) = [bar H]_ (0“2 hoo @b 0

Integration yields indeed with b4,(0) = b, the Eq. (3.236). The transformation of
the lattice dynamics to the free phonon gas thus seems to be consistent in every
respect.

(B) Phonon Statistics We will now deal with the thermodynamic properties of
the phonon gas. We have seen that the vibrational state of a crystal lattice is fixed by
the phonon distribution over the dispersion branches 7w, (q). The spectrum of these
dispersion branches ultimately depends of course on the special lattice structure,
being therefore differing from solid to solid. When we intend to calculate, as, e.g.,
for the photon gas in the last subsection, the grand-canonical potential according
to (3.21)

QT.V)=kT Y In [1 —exp(— ,Bhw,(q))] - kBT/ ED(E)In (1 — e PE) |
v (3.237)

then we obviously have to know the density of states D(E) of the phonon gas, which,
like the one-particle energies hw,(q), will be different for different lattice types. In
order to get general statements, only those are interesting for us, we will have to
accept some simplifications.

The harmonic approximation is basically a low-temperature approximation. On
the other hand, at low temperatures the thermal excitations of oscillations of low
frequencies are the most important ones. This corresponds to long-wave eigen-
oscillations (acoustic waves). For these waves the atomic structure of the solid is not
so decisive, so that approximations appear reasonable. The solid can be considered
as an elastic continuum. In the expression

1
D,(E)dE = / d’q (3.238)
A3g

shell
(hoy, ho,+dE)
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for the density of states, with respect to the r-th dispersion branch, A3g is the
grid (raster) volume (A3q = (2m)*/V) of the g-space, caused by the boundary
conditions which were already used several times. Exactly one state is located in
this grid volume. When we denote by

1
Vi (E = ho(q))

(r) —
vm =

the group velocity ((2.44), Vol. 6), then it holds for the distance dE of the two
surfaces E = const and E + dE = const in the g-space:

dE = |dq-V4E| = dqy |V4E| = hv{(E)dq. .

If df denotes an element of the surface E = const, then it follows for the volume-
element of the shell, over which the integration is performed in (3.238):

1
&g =dfpdgr = dfgdE .
hvg ' (E)

The following representation results for the density of states, as an alternative
to (3.238):

Vv f
D,(E) = / B (3.239)
(2m)3 ho (E)
E=const
The
Debye model
uses two simplifying assumptions:

1. The wave vector summation over the first Brillouin zone is replaced by a
corresponding one over a sphere of the same volume. The same volume means
that the sphere contains the same number of states as the Brillouin zone. The
latter incorporates exactly N states, where N is the number of atoms, by which
the solid is composed.

2. The group velocities (sound velocities) are assumed to be isotropic,

VO(E = ho(q) = vé’)g ’

what is equivalent to

hop(q) = hv{q . (3.240)
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With these two assumptions, (3.239) can easily be evaluated:
Vv 1 )

Di(E) = 27?2 (hv(r))3
g

1% 1
4rq’(E) =

34

(2m) hvg

The three possibilities r = 1,2, 3 correspond to the three independent polarization
directions of the lattice waves which one usually chooses as longitudinal and
transversal to the direction q/q of the wave propagation. The two transvesal
dispersions are in general degenerate:

U(,,)_) vy }"Zl,
¢ v: r=2.3.

For each dispersion branch, q runs through the N states of the first Brillouin zone.
Therefore there are a total of 3N states. Because of D,(E) ~ E?, there must thus
exist an upper energy limit Ep = Awp. With the abbreviation

] + 2 (3.241)
03 v} w3 ’
the following condition is to be fulfilled,
hwp
3N = / (Di(E) + 2D(E))dE = 3V l(ha) )3
N : ! T oomdp3 3
0
which fixes the limiting frequency wp:
Debye frequency
N\ /3
wp = (6n2ﬁ3v) ) (3.242)

In the framework of the Debye model, the density of states of the phonon gas can
therewith finally be written as follows (Fig. 3.21):

oV E? - for0 < E < hap
D(E) = “b (3.243)
0 otherwise .

The only lattice-specific quantity is the Debye frequency wp. The Debye model
is therewith surely too simple to reproduce every detail of the physical properties
of a particular solid. The quantum-statistical evaluation of the Debye model
features, however, some spectacular successes with respect to general solid state
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Fig. 3.21 Comparison of the
density of states of a real D
solid with that of the < Debye
simplifying Debye model »real model
lattice®
A D E

properties. The classical equipartition theorem (1.113), e.g., argues for the averages
of the kinetic and the potential energy of a system described by the Hamilton
function (3.226):

3
(T) = (V) = 2NkBT.
This means an internal energy U = 3NkgT and therewith a temperature-
independent heat capacity:
CY = 3Nkg .

This agrees indeed at high temperatures with the experimental observation, being,
however, in blatant contradiction to it at low temperatures. It is an outstanding
success of the Quantum Statistics, similarly to the interpretation of the linear low-
temperature behavior of the electronic contribution to the heat capacity ((3.77):
Cy = yT), to be able to explain, via the picture of a gas of phonons, the T3-part of
the heat capacity of the crystal lattice. That shall be reproduced in the following.

We use (3.237) for the calculation of the grand-canonical potential (7', V) of
the phonon gas, which, because of 1 = 0, is identical with the free energy F (7, V).
Insertion of the Debye density of states (3.243) leads at first to:

th
ON 2 —BE
Q(T,V) = (th)3kBT/ dEE*In (1 — e PF)
0
Bhwp
9N

= (th)3(kBT)4 / dxx’In(1 —e™) .

For abbreviation one defines the Debye temperature 7p:

kBTD = th . (3244)
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In Q(T, V), as well as in the other still to be discussed thermodynamic potentials,
there appear two typical integrals,

—~ r X3
D(y) = / dx , (3.245)
er —1
0
r 1
J(y) = /dxlen(l—e_") =, [y3 1n(1—e—y)—f)(y)] . (3.246)
0

which cannot be integrated in a closed form, but which can further be estimated in
the limits y > l and y < 1:

3
x5 P rwee) = (3.247)

y> 1t ﬁ(y)w
e —1

- o\ag

x2
y<1l Dy~ / 1+ (1/2)x + (1/6)x?

/ [ (b L) (L ;xzy]

L o0 (3.248)

31+
YT 60

8

The grand-canonical potential of the phonon gas therefore has the following form:
9 o

QT,V ksT)*J : 3.249

v = o ' (77 (3.249)

From this we obtain the entropy by differentiation with respect to the temperature:

IQ 9Nk ; ™\ =~ (Tp
ST, V) =— =— ksT)’ | J -D . 3.250
e o B o R ! (3.250)
Here we have used:

J(y) (3J(y) +D(») -

Without the (unimportant) zero-point energy of the 3N independent oscillators of
the model-Hamilton operator (3.235) one finds as internal energy of the phonon
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gas:

ON

UT.V)=F+TS=Q+TS =
(T,V) =F+ + (heop)?

wﬂyﬁ(?). (3.251)

What now remains is the heat capacity, which we have already discussed once as
Exercise 2.3.13 on the basis of the canonical ensemble. With the following relation,
which one easily verifies, e.g., by means of integration by parts,

~ d ~ Y e
4D — D = dx
0 -vg b= [
one finds via (3.250):
Tp/T
s T\’ 4er
Q:T( ):m%%i)‘/m e (3.252)

aT v Tp J (ex _ 1)

It appears to be reasonable, to investigate the internal energy and the heat capacity
in the limiting regions of very high and very low temperatures. We begin with the
low-temperature region:

~(Tp ~ (3.247) 4
T <« Tp: D ~ D = .
< Tp (T) (c00) 15
It follows for the internal energy in this limit:
3 TY
U(T,V) ~ _a*NkgT ) (3.253)
5 o

We have derived therewith for the heat capacity the famous, but classically not
understandable
Debye’s 73-law:

e =" ne(TY (3.254)
vV = 5 B TD . .

As already mentioned, this result must be considered as a spectacular success of the
Quantum Statistics, because it describes essentially correctly the low-temperature
behavior (Fig. 3.22). Minor deviations from the experimental data are to be ascribed
to the actually rather crudely approximated density of states (3.243). In particular,
the third law of Thermodynamics is fulfilled.
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Fig. 3.22 Schematic Cy
temperature behavior of the W
: B
heat capacity of the free £y
phonon gas

For the limiting case of high temperatures 7 > Tp we can use the expan-

sion (3.248):
~ (T 1 (Tp\’ 1 /(Tp\" 1 (Tp)’
5™ ~ D\ D) b\
T 3\T 8\ T 60\ T

Inserted into (3.251) it then results the following expression for the internal energy,

37 1 (T’
U(T,V) ~ 3NkgT | 1 — , 3.255
(T.v) B[ 8T+20(T)] (3.255)
and for the heat capacity:
1 (To\’
Cy =3Nkg | 1 — SR 3.256
v B|: ZO(T) + :| ( )

For sufficiently high temperatures the classical result C} = 3Nkg is reproduced
(Fig.3.22). On the other hand, for high temperatures the harmonic approxima-
tion (3.210), which forms the basis of the results of this subsection, becomes
more than questionable. The amplitudes of the oscillations of the atoms around
their equilibrium positions grow very large. The solid expands, in order to finally
even melt. The picture of the free phonon gas breaks down. A first potential
improvement might consist in the introduction of interactions between the phonons,
which, however, would in general have the consequence that the model is no longer
rigorously solvable. Here we will not further follow this train of thought.

3.3.8 Exercises

Exercise 3.3.1
Let the particle density n of an ideal Bose gas be given. Show that for T — o0 the
chemical potential x4 must tend to —oo.
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Exercise 3.3.2

Calculate the entropy S of an ideal Bose gas. Express S(7, V, 1) by the average
occupation number (7). Check the behavior of the entropy for T — 0, and that for
the case of a fixed number N of bosons as well as for the case N(T) ;6 0 (magnons,

phonons, photons). Compare the result with that of the ideal Fermi gas.

Exercise 3.3.3
When treating the ideal Bose gas one frequently has to work with the functions

o0 Z"
8a (Z) = Z 7
n=1
Verify the following representation,
o0
1 xo1

dx ,

8a(2) = M) ) z7ler—1
0

where I'(@) is the Gamma-Funktion,

(o]

I'(a) = /t“‘le_’dt.

0

Exercise 3.3.4

Show that for a d-dimensional quantum gas with one-particle energies (k) =
h2k2 /2m the following relation exists between pressure p, volume V, and internal
energy U:

The relation is valid for bosons as well as for fermions, where, however, the bosons
do not be in the condensate (z < 1). Hint: Use the d-dimensional density of states
from Exercise 3.1.5.

Exercise 3.3.5
Consider an ideal quantum gas of bosons of the mass zero:

(k) — hck .
1. Calculate the grand-canonical potential

Q=Q(,V,2).
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2. Determine the pressure p, the particle density n, and the internal energy U as
functions of 7', V and z.
3. Show that it holds in the thermodynamic limit (N — oo, V — 0o, n — finite)

U=3pV.

4. Determine the critical temperature 7¢ and the critical density nc of the Bose-
Einstein condensation.

5. How does the number N, of bosons in the ground state depend on the temperature
in the region of condensation (z = 1)?

6. Derive the phase-boundary curve pc = f(nc) of the p-(1/n)-diagram.

Exercise 3.3.6
Consider a two-dimensional ideal Bose gas (particle number N, ‘volume’ V = L?)
with one-particle energies

h2k?

ek = 2m

1. Calculate the grand-canonical potential.
2. Represent the particle density n as a function of 7', V and z.
3. Give reasons why a Bose-Einstein condensation can not take place.

Exercise 3.3.7

For a two-dimensional ideal Bose gas with a constant particle number and with
one-particle energies e(k) = #%k?*/2m calculate the chemical potential 1 as a
function of the particle density n and the temperature 7!

Exercise 3.3.8
Consider a non-degenerate ideal Bose gas (classical limit, z < 1) with the one-

particle energies
h2k?
e(k) = .
2m

and with fixed particle number N. Show that the thermal equation of state can be
written as virial expansion (cf. (3.156)):

1 1 2
_ _ ©) _ 012 4 ...
pV = NkBT(l 25/22 + (8 35/2)(1 )+ ) ,

Exercise 3.3.9
For a non-degenerate ideal Bose gas of N particles, each of the mass zero (see
Exercise 3.3.5), in the volume V write the thermal equation of state as a virial
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expansion with respect to the particle density

pV = NkgT (1 + 129 + @) +--+) |

Z(o) — nz(ﬂhC)S
25 +1

Determine the coefficients y; and y».

Exercise 3.3.10
Consider a two-dimensional ideal quantum gas of bosons of the mass zero:

e(k) = hck .

1. Calculate the grand-canonical potential Q(7, V, z).

2. Represent the particle density as a function of 7, V and z.

3. Investigate, whether a Bose-Einstein condensation can exist. Compare it with
part 3. of Exercise 3.3.6.

Exercise 3.3.11

Electromagnetic waves within a big box of the volume V are at the temperature 7 at
thermal equilibrium with the walls. In one of the box walls there is a hole of the area
dS, which may be so small that the equilibrium inside is not disturbed. Calculate the
spectral intensity I, (T, ), i.e., the energy which per time unit and per area unit is
transported out of the box with wavelengths between A and A + dA into the solid
angle d€2, which builds an angle ¥ with the surface normal of dS (Fig. 3.23).

Exercise 3.3.12

1. Show that the spectral energy density &(w,T) of the electromagnetic hollow-
radiation exhibits a maximum, which is determined by the transcendental
equation

B—x)e"=3

with x = Bhw.

Fig. 3.23 Solid-angle
dependence of the spectral
intensity of electromagnetic
radiation
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2. How are the frequencies w; and w, related to each other, for which the spectral
energy densities of two different hollows of the temperatures 7} and 7, become
maximal (Wien’s displacement law)?

Exercise 3.3.13
Show that the kinetic energy and the potential energy of a crystal lattice can be
expressed as follows by normal coordinates Q,(q, t):

1 . .
T = ZMZQ:(q’ t)QV(qs t) s
q.r
1
V=Vt MY @2@0 e 00} (a0
q.r

Use the transformation formulas (3.219) and (3.220).

Exercise 3.3.14
Prove the fundamental commutator relations of the normal coordinates Q,(q, t) and
their canonically conjugate momenta P,(q, t):

[0.(a.0,0-(a.0]_ = [P/(q.0),Pr(q.0]_=0,

S ~ A
[P’(q’ t)’ Ql"(qv t)]_ = . 8rr’8qq’ .

i
Exercise 3.3.15

For the heat capacity Cy of the lattice vibrations in good approximation for low
temperatures the Debye’s T-law (3.254) holds. Calculate in the framework of the
Debye model (3.243) the leading temperature corrections for the internal energy
U(T, V) and also for the heat capacity Cy!

Exercise 3.3.16
Calculate for the Debye model the average phonon number (N,) at the temperature
T > 0. Evaluate the analytic result for low and for high temperatures!

3.4 Self-Examination Questions

To Section 3.1

What are identical particles?

What does the principle of indistinguishability imply?

How does a general N-particle state look like in the case of identical particles?
What is implied by the spin-statistics theorem?

What are bosons, what are fermions?

Dok =
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6. How does one recognize the Pauli principle in the Slater determinant, which is
valid for fermions?
7. What does one understand by a Fock state?
8. Which occupation numbers n, of the one-particle states |¢,) are available for
bosons, and which ones for fermions?
9. How do the fundamental commutation rules between creation and annihilation
operators read for bosons and for fermions, respectively?
10. How are the occupation number operator and the particle number operator
defined?
11. How does the Hamilton operator of the ideal quantum gases read in second
quantization. Which are its eigen-states?
12. Why are the grand-canonical partition functions of bosons and fermions
different?
13. How do the average occupation numbers (i,)® of the one-particle states look
like for bosons and fermions?
14. Which values can the chemical potential u take in the case of fermions, and
which in the case of bosons?
15. What are the problems that arise at 7 = 0 for the average bosonic occupation
number?
16. How does the internal energy of the ideal Bose (Fermi) gas depend on the
average occupation number?
To Section 3.2
1. According to which rule and under which preconditions can sums over one-
particle energies (D, .. .) be converted into integrals?
2. How are the functions fs/(2), f3/2(z) defined? What is the relation between
them?
3. By which relations for the pressure p and the particle density # is the thermal
equation of state of the ideal Fermi gas fixed?
4. How does the caloric equation of state of the ideal Fermi gas read?
5. Which connection exists between U and pV? How does the corresponding
relation look like for the classical ideal gas?
6. What does one understand by, respectively, a degenerate and a non-degenerate
Fermi gas?
7. When is the classical limiting case realized?
8. How does the thermal equation of state of the ideal Fermi gas read in the
classical limit?
9. Which characteristic energy-dependence does the density of states D(E) of the
ideal quantum gases exhibit (g(k) ~ k?)?
10. What s the probability that a state of the energy E is occupied at the temperature

T in an ideal Fermi gas?
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11.

12.

13.
14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.
30.

31.
32.

33.
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Which quantity specifies the density of those states which are occupied by an
ideal Fermi gas at the temperature 77

Which shape does the Fermi-Dirac function f_(E) at T = 0 have? What
happens at T > 0?

What is the relation between the Fermi energy Er and the chemical potential (+?
How are the Fermi wavevector kg and the Fermi energy Er with the particle
density n related to each other?

What is the order of magnitude of the Fermi temperature of simple metals?
Which types of integrals can be conveniently evaluated by the Sommerfeld
expansion?

Of which form and of which order of magnitude is the first temperature
correction for the chemical potential x of an ideal Fermi gas (metal electrons!)
compared to the T = 0 -value Ex?

How does the internal energy of the Fermi gas change with the temperature?
What is the characteristic temperature behavior of the heat capacity Cy? How
can this be physically interpreted?

How is the coefficient y of the heat capacity Cy related to the density of states
of the Fermi gas?

How can the zero-point pressure of the ideal Fermi gas be explained?

What is the form of the entropy of the Fermi gas? Of which kind is the
contribution of the holes (unoccupied one-particle states), and of which kind
is the contribution of the particles?

Why should the susceptibility of a system of particles with permanent magnetic
moments actually exhibit a distinct temperature-dependence? What is observed
in this respect for quasi-free conduction electrons?

How does the density of states of the ideal Fermi gas change in the magnetic
field, if it couples only to the spin?

What is the order of magnitude of the energy upB, when the field B amounts to
about 10 Tesla?

How does the Pauli susceptibility x,(T = 0) depend on the density of states
D(EF) at the Fermi edge?

Why is xp(T) only very weakly temperature-dependent and relatively very
small?

Of which three parts is the isothermal susceptibility of the free electron gas
composed?

How is the cyclotron frequency w. defined?

Which well-known eigen-value equation can the time-independent Schrodinger
equation of an electron in the homogeneous magnetic field be traced back to?
What is a Landau level?

Which quantization does the motion of an electron experience in the homoge-
neous magnetic field?

Which typical dependence does the degree of degeneracy of the Landau levels
exhibit? Does it depend on the Landau-quantum number n?



266

34.

35.
36.

37.

38.
39.

40.
41.
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How do the states order within the Fermi sphere after switching on a homoge-
neous magnetic field in z-direction?

Which measuring possibility is given by the de Haas-van Alphen effect?

For the magnetization work of a thermodynamic system one writes sometimes
Bydm and sometimes —mdB. Can you comment on this seeming discrepancy?
Which thermodynamic connection exists between magnetization and grand-
canonical potential?

How does Landau diamagnetism arise?

In which relation do the susceptibilities of the Pauli paramagnetism and the
Landau diamagnetism stand to each other?

What is the distinguishing mark of the de Haas-van Alphen effect?

Which characteristic dependencies show the period and the amplitude of the
oscillation of the isothermal susceptibility of the free electron gas?

To Section 3.3

10.
11.
12.
13.

14.

. Which range of values is available for the chemical potential of the ideal Bose

gas, if the lowest one-particle energy coincides with the energy-zero?

Which difficulty can arise for the ideal Bose gas, when one wants to replace for
macroscopic systems sums by integrals in the thermodynamic relations? How
is the problem solved? Why did we not meet this problem for the ideal Fermi
gas?

. In what respect does the grand-canonical potential of the ideal Bose gas differ

from that of the ideal Fermi gas?
How are the functions gs/2(z), g3/2(z) defined?

. What is the relation between the occupation of the lowest energy level and the

Bose-Einstein condensation?

What is the relation between U and pV for the ideal Bose gas? Is it formally
identical to that of the classical ideal gas and that of the ideal Fermi gas,
respectively?

What is the explanation for the fact that for z < 1 the differences between
Bose, Fermi, and classical Boltzmann Statistics become unimportant?

. For which particle densities and temperatures is the classical limiting case of

the ideal Bose gas realized?

How does the thermal equation of state of the ideal Bose gas read in the
classical limit? How does it differ from that of the ideal Fermi gas?

When does one speak of a degenerate Bose gas?

Which condition determines the beginning of the Bose-Einstein condensation?
Which value does the fugacity z take in the region of condensation for V.— 00?
Which temperature-dependence does the number N of bosons, which are
condensed in the lowest energy level, show?

One says that below the critical temperature 7¢ the ideal Bose gas presents
itself as a mixture of two phases. What does that mean?
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Which qualitative behavior do the isotherms of the p-(1/n)-diagram exhibit for
the ideal Bose gas?

How does the pressure of the ideal Bose gas depend in the region of condensa-
tion on the particle density?

Which densities do the condensate and the gaseous phase possess in the region
of condensation, where they are at equilibrium with each other?

How does the entropy behave at the absolute zero? Is the third law of
Thermodynamics violated as in the case of the classical ideal gas?

What is the qualitative behavior of the heat capacity of the ideal Bose gas as a
function of the temperature?

Which value does the heat capacity take at the critical temperature 7c? How
does it behave for T — oco?

How does the chemical potential & behave for T — o00? Towards which
limiting value does the fugacity tend for 7 — 00?

Why is the chemical potential i of photons, phonons, and magnons equal to
zero?

Which characteristic properties does the photon possess?

Which possibilities of orientation does the photon spin possess?

Which energy-dependence does the density of states of the photon gas have?
Which temperature-dependence does the pressure of the photon gas have?
How does the average photon number depend on the temperature? What
happens for T — 07

What does the Stefan-Boltzmann law tell us for the photon gas?

What is the relation between pressure and energy density of the electromagnetic
radiation?

Which physical quantity does Planck’s radiation formula refer to?

What does one understand by the harmonic approximation in connection with
the lattice vibrations of a solid?

What are dispersion branches?

Which structure has the (classical) Hamilton function of the crystal lattice in
the harmonic approximation after transformation to normal coordinates?
What is a phonon?

How can one recognize that phonons are bosons?

How is the vibration state of a crystal lattice fixed?

For which temperature region does the harmonic approximation represent a
reliable approach?

At which simplifying assumptions does the Debye model start?

By what is the Debye frequency wp determined?

What an energy-dependence does the density of states of the phonon gas have
in the Debye model?

What has classically to be expected as heat capacity of the phonon gas?

What does one understand by the Debye temperature Tp?

Which temperature-dependencies do appear for the internal energy of the
phonon gas in the regions 7 > Tp and T K Tp?
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44. How does the heat capacity of the phonon gas behave for low temperatures? Is
the third law of Thermodynamics fulfilled?
45. Which value does the heat capacity take for very high temperatures?



Chapter 4 )
Phase Transitions Check for

The question regarding the reasons and the mechanisms of the phase transitions
is one of the oldest problems of physics. Since the commencement of the study
of natural philosophy, scientists have been thinking about why the four different
elements fire, water, earth, air do exist and under which conditions these mani-
festations of matter can convert into each other. We have dealt with the theory of
phase transitions, which is still highly topical and represents an important region
of application of Statistical Physics, in Vol. 5 of this basic course in Theoretical
Physics, as far as it was possible to do within the framework of the classical
phenomenological Thermodynamics. In Sect. 4.1, we will gather once more in a
very short and compact form the most important results and concepts, and we will
formulate some amendments which will be important for the following, in order to
then look in Sect. 4.2 more closely to the critical phenomena, which are observed
in connection with the so-called second-order phase transition.

Perhaps one can denote as the hour of birth of the modern era theory of phase
transitions the publication of the dissertation thesis of J.D. van der Waals (1873),
which comprises a first qualitative interpretation of this phenomenon for the
example of the real gas. P. Weiss (1907) succeeded already before the development
of the Quantum Theory in a modeling of the phase transition of a ferromagnet,
although in the case of ferromagnetism, it is actually a purely quantum-mechanical
phenomenon (Bohr-van Leeuwen theorem, Exercise 1.4.9, part 2.). The Weiss-
ferromagnet turns out to be thermodynamically equivalent to the van der Waals-gas,
both of which belong to the so-called classical theories of phase transition. To this
class it also belongs the Ornstein-Zernike theory, by which one can understand the
phenomenon of the critical opalescence in the light scattering, as well as the general
Landau theory. These classical theories are all discussed in Sect. 4.3.

The first non-trivial model of a ferromagnet with the inclusion of microscopic
interactions is ascribed to E. Ising, and is consequently named after him. It is defined
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by the Hamilton function,

H= —JZSiSj — uBy ZSi (Bo = woH ; H:magnetic field) , “4.1)
ij i

for which we use here, in order to distinguish it from the magnetic field H, as an
exception the notation H. H is the model-Hamiltonian of a system of magnetic
moments p;, which reside at certain lattice sites of a solid and interact with
each other. These moments are simulated by classical one-dimensional spins S;
(ui = uS;) with two possibilities of orientation which are antiparallel to each other
(S; = £1 Vi). The interaction is mediated by J and takes place only between
adjacent spins. Probably there does not exist any other theoretical model, which has
been investigated in the past so intensively as this Ising model. Ising by himself got
as doctoral candidate the task to find out, whether, due to the microscopic interaction
J, a spontaneous order of the spins, i.e., an order which is not enforced by an
external magnetic field H, can be explained, since it is typical for ferromagnets. Ising
rigorously solved the one-dimensional (d = 1-)model (Z. Phys. 31, 253 (1925)),
but did not find a phase transition, as it was actually suggested by the Weiss theory,
which predicts such a phase transition for each lattice dimension d. On the other
hand, he could not solve the d = 2-model. The fact that the two-dimensional Ising
model, in contrast to the one-dimensional model, exhibits indeed a phase transition,
has been demonstrated only very much later, namely by R. Peierls (1936: existence
proof of a phase transition for d > 2), by H. A. Kramers and G. H. Wannier (1941:
Tc-determination for the d = 2-model) as well as, in particular, by L. Onsager
(1944: free energy of the d = 2-model, 1948: magnetization curve, critical exponent
B = 1/8) and by C. N. Yang (1952: first published derivation of the spontaneous
magnetization in the d = 2-model). The complete analytical solution of the three-
dimensional model is even today still lacking. However, the known approximations
in the meantime are so convincing that one does not expect any substantial additional
information from the still pending analytically exact solution. The Ising model,
which is so important for the theory of phase transitions, will be investigated in
Sect. 4.4.

At different stages of the preceding sections we realized already the meaning of
the thermodynamic limit. We have, e.g., learned that it can be expected that
the micro-canonical, canonical, and grand-canonical ensembles come to physically
equivalent statements only for the asymptotically large system. On the other hand,
it is of course not at all trivial that the relevant quantities, such as the canonical
or the grand-canonical partition function do actually exist in the limit N — oo,
V — oo0. In Sect. 4.5 the consequences of the thermodynamic limit will therefore
be discussed in detail. This becomes important particularly for the microscopically
correct description of the phase transition, developed by T. D. Lee and C. N. Yang
(1952), with which we will deal at the end in Sect. 4.6. The phase transition gives
itself away by certain irregularities, i.e., by non-analyticities, in the thermodynamic
potentials at the transition points, which, in turn, are mathematically detectable only
for the infinitely large system.
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4.1 Concepts

At first we want to collect, in concise form, some results, which we have already
derived in the framework of the phenomenological Thermodynamics (Vol. 5).

4.1.1 Phases

Of fundamental importance is the term phase, by which one denotes a possible
form of the state of a macroscopic system at thermal equilibrium. One and the same
matter can exist in quite different phases, depending on the external conditions. The
phases distinguish from each other by the fact that certain macroscopic observables
adopt quite different values for them. Distinguishing marks are for instance:

. density: gas, liquid, solid;

. magnetization: paramagnet, ferromagnet, antiferromagnet;

. electric dipole moment: paraelectric, ferroelectric;

. electrical conductivity: insulator, metal, superconductor;

. crystal structure: e.g. « — Fe (body-centered cubic (bcc)), y — Fe (face-centered
cubic (fce)).

AW =

In many systems there exist for certain variables, as the temperature 7, the pressure
p, the magnetic field H, ... the so-called critical regions, in which changes of these
variables induce transitions from one phase to the other. We will think about these
transitions in the following.

Let us recall at first the general case of a system, which is composed of «
components (j = 1,2,...,a), where each of them can exist in & phases (v =
1,2,...,m). As to the different components one can for instance think of different
particle types. If the system is isolated, then, as we know, all the still possible
processes will run in such a way that the entropy thereby can never decrease.
At the equilibrium we have dS = 0. From this fact we were able to derive in
subsection 4.1.1 (Vol. 5) that all co-existing phases have the same temperature T
and the same pressure p, as well as the same chemical potential ;.

If it is, on the other hand, a closed system (N = const) with 7 = const and p =
const, then the free enthalpy G becomes minimal at the equilibrium, dG = 0. From
that one can conclude that all phases of a certain component must possess the same
chemical potential (u;, = p; Vv; (4.11), Vol. 5). A further important implication
concerns the number f of the degrees of freedom, i.e., the number of independent
variables which fulfills the Gibbs phase rule ((4.15), Vol. 5),

f=24+a-m. 4.2)

One should realize once more the meaning of this rule by the well-known example
of the H,O-phase diagram («¢ = 1) (Fig.4.1).
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Fig. 4.1 Phase diagram of p
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At the triple point (po, Ty) three phases (wx = 3) are at equilibrium with each
other. This means f = 0. For the triple point there does not exist, of course, an
independently adjustable variable. On the vaporization (sublimation, melting) curve
there are two phases at equilibrium (7 = 2) so that f = 1. One variable is thus still
freely selectable, e.g. the temperature. All the other quantities are then fixed.

On the vaporization curve the free enthalpies of the liquid (Gp) and the vapor (gas)
(G,) are the same. They thus change along the curve in an identical manner: dG, =
dG,. From that the Clausius-Clapeyron equation ((4.19), Vol. 5) is derived:

dp _ A0 (4.3)
dT  T(vg — 1)

AQ = T(sg — s1) is the latent heat per particle, which is needed for overcoming the
cohesive forces. v, (v;) and s, (s1) are, respectively, the volume and the entropy per
particle in the gas (liquid) phase. In both cases, these are the first partial derivatives
of the free enthalpy. Obviously they must be different for the two phases, gas and
liquid, because otherwise (4.3) would not make any sense. When traversing the
coexistence line, the free enthalpy by itself behaves continuously, while its first
derivatives exhibit discontinuities. These are the characteristics of a first-order phase
transition.

4.1.2 First-Order Phase Transition

In the experiment one observes different types of phase transitions. Their oldest
classification traces back to Ehrenfest (1933), which ascribes an order to the phase
transition. An
n-th order phase transition

is thereby characterized by the observation that the (n — 1) first partial derivatives of
the free enthalpy G with respect to its natural variables (T and p for the fluid system,
T and By = uoH for the magnet) are continuous at the transition point, while at
least one of the n-th derivatives exhibit a discontinuity there. With increasing order
of the phase transition, however, the physical differences between the phases, which
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coexist at the transition point, will become more and more insignificant so that the
question arises, up to which order it actually makes sense to speak of two different
phases. Only the lowest orders can be of practical interest. The
first-order phase transition

we have already briefly broached. For this transition the Clausius-Clapeyron
equation (4.3) is valid. Let us recall at this stage for a moment the geometrical
interpretation of the first-order transition from subsection 4.2.1 in Vol. 5, and that
too at first for the fluid system. Starting point is the assertion (subsection 4.2.1,
Vol. 5) that the free enthalpy G(T,p) in both the variables 7 and p is a concave
function, which can be easily proved by means of the stability conditions ¢, > 0,
kr > 0 for the heat capacity and the compressibility. In this connection, one calls
a function f(x) concave at x, if it holds for all A with 0 < A < 1 and for arbitrary
pairs of points x, x; (x; > x):

Fxi 4+ (1= x2) = Af(x1) + (1 = D)f (x2) .

On the other hand, one calls f(x) a convex function, if —f(x) is concave, i.e., when in
the above relation the inequality-sign is reversed. For a concave (convex) function
f(x), the secant, which connects the points f(x;) and f(xy), is always in the region
x1 < x < x, above (below) the curve f(x). If f(x) is even two times differentiable,
then concavity (convexity) follows for all x from /" (x) < 0 (> 0).

The free enthalpy G(7, p), at the transition point, is represented qualitatively by the
picture, which is sketched in Fig.4.2. The potential by itself is continuous, while
the first derivatives exhibit continuity-jumps. The jump AS of the entropy defines
the latent heat AQ = Ty AS. The free energy F(T, V) is as function of T concave
and as function of V convex. As function of T at a fixed volume V the free energy
behaves qualitatively very similar to the free enthalpy G at fixed p. At T = T, also
S(T,V) = — (dF/AdT),, shows a discontinuity. The volume-dependence of the free
energy allows to recognize, however, the first-order phase transition by a linear

¢ T=const _- G S~ _p =const
bi-27, ﬂlv\:-—
a-q ! ! RN

1 1

Py p T
v \ s .
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vhoo o (185 L sap=-(%9)

L 1
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Fig. 4.2 Qualitative behavior of the free enthalpy and its first derivatives with respect to the natural
variables at the transition point of a phase transition of first order
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segment in the region V| < V < V, (Fig.4.3). There:

In the pV-diagram this corresponds to a horizontal piece of the isotherm. A
typical feature of first-order transitions is the experimentally proved existence
of metastable phases, e.g., overheated liquid, supersaturated vapor,...). These
suggest the idea that thermodynamic potentials such as G(7,p) are represented
for each phase by a stand-alone analytic expression, which can be continued into
the respective other phase (Fig.4.4). At a given pressure p the two enthalpy-curves
intersect at T = Ty (g: gaseous, [: liquid). The phase with the smaller G is stable.
The resulting stable G-curve then has a kink at T = Ty, being thus still continuous
there, but with a discontinuous first derivative.

Fully analogous considerations can be applied for the magnetic system, if one takes
the magnetic induction By = uoH in analogy to the pressure p and the magnetic
moment m in analogy to the volume V. In detail considerations, however, one has
to take into account some minor differences (Fig.4.5). The phase diagram already
exhibits a peculiarity. A phase transition can take place in the magnetic system only
in the zero-field and for temperatures T < T¢ (Tc: critical temperature), which
is then of first order. The magnetic moment changes its sign when one traverses
the phase boundary, which is identical to the line segment 0 < T < T¢ of the
T-axis (path (a) in Fig.4.5). Because of the positive-definite heat capacities, the
thermodynamic potentials G(7', By) and F(T,m) are both, as in the fluid system,
concave as functions of 7.

F p
T=const VT " 9F
=cons __(9F
b : : p__(aV)T
a bupF---

Fig. 4.3 Qualitative behavior of the free energy and the pressure of a fluid system at the first-order
phase transition. V} (V): volume of the liquid (gaseous) part in the two-phase regime

G g

!
1
\g
N
! T, T

Fig. 4.4 Schematic representation of the free enthalpy of a fluid system for the explanation of
metastable phases at a first order transition (/: liquid; g: gaseous)
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T fixed

T fixed

my m

Fig. 4.6 Qualitative behavior of the free enthalpy G and the free energy F as well as that of their
first partial derivatives with respect to the field By and the magnetic moment m, respectively, at the
first-order transition

However, since the susceptibility yr, the magnetic analog to the compressibility
k7 of the fluid system, can also be negative (diamagnetism!), the statements about
the By- and the m-dependencies are actually not unique. But if one excludes
diamagnetism from the following consideration, then it can be stated that G(T, By)
is concave as function of By, and F(T, m) convex as function of m. The first-order
transition can therewith be qualitatively sketched easily also for the magnetic system
(Fig. 4.6).

Because of By = 0 at the phase-transition point, the linear segment of the free
energy in the transition region (Fig.4.3) is now horizontal. The magnetic moment
m is an odd function of the field. At the pole reversal of the field the magnetic
moment flips into the opposite direction. That is possible, on the other hand, only
if F as function of m is even. The first-order phase transition manifests itself by
the discontinuous jump of the moment at By = 0. With increasing field strength
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the moment steadily increases and approaches asymptotically the saturation value
+my. The free enthalpy G(T, By) thus becomes for large fields a linear function of
By, while the free energy as function of m diverges at £my, and is of course not
defined for |m| > my.

4.1.3 Second-Order Phase Transition

The phase transition of first order is correctly described by the Ehrenfest-scheme,
while for the second- and higher-order transitions doubts and critics are indicated. In
the strict Ehrenfest sense at a second-order phase transition the following conditions
should be fulfilled:

1. G(T, p) continuous at the transition point;

2. S(T,p), V(T, p) continuous at the transition point;
3. C,, kr discontinuous at the transition point;

4. phase-boundary curve fixed by the

Ehrenfest equations:

1 2
b _ 1 _pvpo

= = . 4.4
dar TV B — B K;I) _ K;_2) (4.4)
The indexes (1) and (2) refer to the two phases, which are at equilibrium at the phase
boundary.  means here the isobaric expansion coefficient (8 = (1/V)(dV/dT),)
and not the reciprocal temperature. The derivation of the Ehrenfest equations was
performed in connection with equation (4.41) in Vol. 5. Thereby the above point 2.
is exploited, i.e. more precisely, the fact that along the coexistence line it must be:
dsV = dS® and dv\) = qv®.

The Ehrenfest-definition of a second-order phase transition has been accepted for a
long time, because at first any counter-example was not known, and because it was
strictly confirmed by the classical theories (Sect. 4.3). A prominent experimental
realization represents the superconductor. The superconducting phase, being present
below the critical temperature 7¢ can be destroyed by a magnetic field. For
B > Bc = puoHc the respective metal becomes again normal-conducting (Fig. 4.7).
When at a temperature 7T < T the coexistence line is passed (path (a) in
Fig.4.7), then it results evidently a first-order transition. Even the already mentioned
metastable phases can be observed. For extremely pure aluminum one could restore
the normal-conducting phase down to & 1/20 B¢ (subcooling).

If, on the other hand, the transition takes place in the zero-field (path (b) in Fig. 4.7),
then it is of second order in the strict Ehrenfest sense. The heat capacity Cy—o
exhibits a finite jump at T¢ (see Fig. 4.8).

The present day criticism of the Ehrenfest classification is quite manifold. Phase
transitions, which are not of first order, are characterized in the experiment, except
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Fig. 4.7 .«
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for the superconductor, rather by singularities than by finite jumps of the heat
capacities and compressibilities (susceptibilities). Strictly speaking, it is of course
experimentally hardly possible to distinguish a singularity from a very big jump. The
indications, however, very strongly point to real divergences. The exact Onsager-
solution of the d = 2-Ising model (Sect. 4.4) leads to a logarithmic Cy-singularity,
which does not fit the scheme, either. The criticism that the Ehrenfest classification
is too restrictive is surely with a good basis.

Also the metastable phases can lead to a certain confusion, because they suggest
the idea of two enthalpy-curves, a stand-alone one for each of the two participating
phases. That seems to be indeed reasonable for first-order phase transitions. If,
on the other hand, that applied also to second-order transitions, then there would
arise serious contradictions. Concavity and continuous differentiability of the stable
enthalpy-curve do namely prevent an intersection point of G| and G,. The two
curves thus must ‘huddle against each other’ at Ty, (Fig.4.9). But then one may not
be able to recognize a phase transition. The phase 1 would be stable everywhere.
This contradiction can be resolved only such that in the above argumentation
a wrong analogy of first-order and second-order phase transitions was taken.
Indeed, metastable phases, which actually are the reason for the assumption of two
independent enthalpy-curves, are realized only for first-order transitions. This is
impressively to observe for the superconductor (see Fig. 4.7).
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AV,my

| T T

Fig. 4.10 Temperature-dependence of the discontinuities in the first partial derivatives of thermo-
dynamical potentials at the first-order phase transition: volume-jump AV of the fluid system and
spontaneous magnetic moment m; of the magnetic system

Ultimately, from the above mentioned reasons, the Ehrenfest scheme could not assert
itself. Today one distinguishes only two types of phase transitions, namely those of
first order, which are also denoted as discontinuous, and those of second order,
which are called continuous transitions. The first-order transitions remain so as
defined in Sect. 4.1.2. They can be observed by certain discontinuities of the first
partial derivatives of the thermodynamic potentials, as for instance by the ‘volume
Jjump’ AV = V, — V) (see Fig.4.2) or by the spontaneous total magnetic moment
ms (see Fig.4.6). But the magnitude of these jumps turns out to be temperature-
dependent. Normally it decreases with increasing temperature, in order to vanish at
the critical temperature Tc (Fig. 4.10). The first derivatives thereafter are then again
continuous. In the fluid system, e.g., there no longer appears a latent heat. However,
if it turns out that at least one of the second partial derivatives is non-analytical at Tc,
then this means that there is a second-order phase transition. This is experimentally
observable via the so-called response functions:

heat capacity:
. as _ 9°F
Cvim=T (BT)V(m) -T (BTZ)V(m)
2
Coany=T =-T (8 G)
p(H) (3T)p(H) 02 ) p(a)
compressibility:
_ _1(ov (G
KT v \ap T vV \ op? T
susceptibility:
148 _ _1(#c
AT=y (a;nI)T 14 <3H2)T

(H: magnetic field) .

The non-analyticities can be finite discontinuities (see the superconductor) or real
divergences (Fig.4.11). That the second-order transitions are normally denoted as
continuous transitions is due to the continuity of the first derivatives.
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Fig. 4.11 Schematic Cy» kp> Xp
illustration of a second-order
phase transition

4.1.4 Order Parameter

Besides the mentioned non-analyticities, to indicate as further typical characteristics
of the continuous phase transitions, there are the so-called order parameters.
By these one understands the macroscopic variables, which can be reasonably
defined exclusively only in one of the phases which participate in the transition.
The nomenclature expresses that these variables have something to do with the
change of the order in the state at the transition. In a thermodynamic many-particle
system namely, two opposing tendencies are always competing, which can be easily
understood with the free energy F = U—TS. This potential must come to a minimum
at the equilibrium. An internal energy U as small as possible is thus convenient,
which normally, as a consequence of the particle interactions, is achieved by a high
order in the system. For the Ising model, described by the Hamilton function (4.1),
for instance, a collective orientation of all spins parallel to an external magnetic field
makes, for positive coupling constants J > 0, the internal energy U = (I:I ) minimal.
On the other hand, a large entropy S would also be convenient. But this implies now
a disorder as high as possible. These two obviously opposing tendencies require a
compromise, which certainly will depend on the temperature 7. At high temperature
the disorder-tendency will dominate, and at low temperatures the order-tendency. If
it comes therewith to a phase transition, then the low-temperature phase will be
acclaimed, compared to the high-temperature phase, as a higher state of order.

We list some examples of order parameters:

1. Gas-liquid
If one cools along the path, indicated in Fig.4.12, at the critical particle density
nc = N/ V¢, then below T¢, the system, being before homogeneous, decays into
two phases, liquid and gas, with different particle densities n. g = NLg/VLg- A
new variable is therewith defined,

An=n. —ng, 4.5)

which is meaningless in the high-temperature phase (T > T¢). An is the order
parameter of the gas-liquid system.
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Fig. 4.12 Isotherms of the
fluid system (gas-liquid) for
the definition of the order
parameter

Fig. 4.13 Phase diagram of a !
mixed crystal A;_,B, for Mel\t S

fixing the order parameter T :

2. Ferromagnet
Below the Curie temperature (7' < T¢) the ferromagnet possesses a spontaneous,
i.e. not enforced by an external field, magnetic moment ms. Order parameter
of the phase transition ferromagnet-paramagnet is therefore the spontaneous
magnetization Ms = mg/V, i.e. the spontaneous magnetic moment per volume.
3. Mixed Crystal
Below the critical temperature 7T¢ the mixed crystal A;—.B,, which consists of
the two components A and B, decays into two different mixed crystals «; and
o, with different concentrations x; and x, of the component B (Fig.4.13). The
difference of the concentrations

Ax = x; — x; (4.6)

is the order parameter of the mixed crystal.

4. Superconductor
The superconducting state is characterized by an energy gap A in the one-
electron excitation spectrum (exercise 3.3.2, Vol. 9):

E(K) = \/ (e(k) — p)’ + A2 4.7)

e(k) are the one-particle energies of the normal-conducting state; p is the
chemical potential. The gap parameter A proves to be temperature-dependent
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Fig. 4.14 A
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(Fig.4.14). The microscopic BCS theory (Bardeen, Cooper, Schrieffer) yields
the implicit condition equation

X tanh((1/2)8 00 - ) + &)

A= AV (4.8)
2 k \/(e(k) - ,u)z + A?

Above a certain critical temperature T¢ there does not exist a solution A # 0
(Fig. 4.14); the system behaves as a normal conductor. The gap parameter A
thus is different from zero only in the superconducting low-temperature phase
(T < T¢) being therewith a suitable order parameter.

4.1.5 Critical Fluctuations

A deep insight into the behavior of the thermodynamic systems in their critical
regions, i.e. in those regions, where phase transitions take place, is provided by the
so-called

correlation function of the physical quantity X

g(r.r') = (x(r)x(r')) — (x(r))(x(x")) . (4.9)

x(r) is here the density of the quantity X:

X = [ &rxx).
[ drato

g(r, ') represents a measure for the correlation between the positions r and r’ with
respect to the physical property X. In the case of spatial homogeneity it must hold

gr.r') =g(r—r'|).

If there are no correlations between the positions r and r/, then the first term in (4.9)
will factorize, (x(r)x(r')) — (x(r)){x(r")), and g(r, r’) becomes zero. We look at two
examples:
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Fig. 4.15 Typical g(r) T

distance-dependence of the /\
V / ;

pair-correlation function

1. density correlation, pair correlation

x(r) = n(r) (particle density)
X=N (particle number)
g(r,r') = (n(r)n(r")) — (n(r)){n(r")) . (4.10)

In the case of spatial homogeneity g usually exhibits a damped oscillatory
behavior (Fig.4.15). With increasing distance |r — r’| the correlations become
weaker and weaker:

/ N 2
(n(r)n(r )) Ir—moo (V) .

Particles, far away from each other, ‘do not know anything about each other’.
2. spin correlation
Let the Ising model (4.1) be the reference system:

X=m=pu Z S; : total magnetic moment ,
x(r) «— S; : Ising spin .
In the definition (4.9) x(r) is now a discrete function of the position:
gij = (SiSj) — (Si)(S)) . 4.11)

We will later get to know that in the critical regions the correlation function
g(r, 1) takes approximately the form

exp (—|r—r'|/£(T))

4.12
Ir—r| (4.12)

gr,r) =co

(Ornstein-Zernike behavior, see Sect. 4.3.9), by which a further important
quantity is introduced, namely the

correlation length  £(7)
It represents a measure of the range of the correlation.
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We will now derive, for the example of the Ising model (4.1), a connection between
the correlation function (4.11) and the isothermal susceptibility:

1 (0m Wo [ Om
= = , 4.13
*r V(3H)T v (3BO)T 19

With the canonical partition function,

Z(T.Bo) =Y exp| =B [ =D SiS;—uBo ) _Si| | . (4.14)
(s} ij i

the average magnetic moment m of the Ising-spin system can be written as:

i i i

{si}

InZ(T, BO)) . (4.15)
T

1 (0

B \ 9By
In the expressions (4.14) and (4.15) it is summed over all possible spin configura-
tions. By inserting (4.15) into (4.13) and executing the differentiations with respect
to the field, one easily finds the mentioned connection between the susceptibility

xr and the spin correlation g; (4.11), which is known as fluctuation-dissipation
theorem:

Mo
=P, ng, : (4.16)

Because of

—1<(SS)) <+l <= —2<g; <+2

each summand in (4.16) is finite. On the other hand, it is observed in experiments
on the magnetic systems that, in the case of second-order phase transitions, the
susceptibility yr diverges at the critical point:

XT —> 0.
T—Tc

This behavior, however, can be understood with (4.16) only under two conditions:
1. The number of summands in the double sum must be infinitely large!

That is a further hint that Statistical Physics can be correct only for the asymprot-
ically large system. We find therewith a further motive to deal in more detail with
the thermodynamic limit (N — oo, V — oo, N/V = n)in Sect. 4.5.
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2. The range of the correlation has to diverge in order that infinitely many terms in
the sum are unequal zero.

We have encountered therewith an important characteristic of the second-order
phase transitions. The correlation length, introduced via (4.12), diverges in the
critical region:

E(T) = oo 4.17)

This leads to the concept of the

critical fluctuations,
which are spoken of, when & (7) is of a macroscopic order of magnitude. In order to
get a certain impression of it, the following typical numerical values may help:
T—-1Tc R N A
‘ To ~ 1077 (1077, 1077) <= £ ~ 100 (500, 2000) A .

In the region of critical fluctuations the correlation length & is essentially larger
than the effective range of normal particle interactions, which in general amount to
few atomic distances. This has the remarkable consequence that physical properties
are not so much determined by the particular form of the particle interactions, but
rather by the extension & of the coherent fluctuations of these properties around
their average values. This leads to an astonishingly universal behavior of physical
quantities near the critical point. Very different properties of very different systems
obey near the critical temperature T, which by itself can still vary from system to
system by orders of magnitude, completely analogous laws and rules. One speaks of
critical phenomena. Their universality is the reason for the intense interest in these
phenomena, although they appear only in the region of the critical fluctuations, i.e.
in a very narrow temperature interval.

Since the correlation length £ remains finite for first-order phase transitions, critical
phenomena are observed only in connection with second-order phase transitions.

4.1.6 Exercises

Exercise 4.1.1
Show that for the Ising model (4.1),

H=-J) S§—uByY Si. Si==l,
ij i

the free energy F(T, m) is an even function of the magnetic momentm = Y S,.
i
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Exercise 4.1.2
Let H be the Hamilton operator of a magnetic system, which is in a homogeneous
magnetic field By. The operator of the magnetic moment 7 is defined by

d .
H
dBy

m=—

(equation (5.125) in Vol. 7). Let 7 be a permanent magnetic moment, diamagnetic
effects are excluded, i.e.

d
m=20
dB,

Magnetization M and susceptibility yr are essentially determined by the statistical
average of the magnetic moment:

M—l(A)' _ oM
_Vm » XT = Mo 0By ),

Mo is the vacuum permeability. Verify the following connection between the
susceptibility and the fluctuations of the magnetic moment (fluctuation-dissipation
theorem):

AT = k]:T lizo ((”A’ - W))Z>

Exercise 4.1.3
For a first-order phase transition in a fluid system derive the Clausius-Clapeyron
equation

dp _ $H-58
ar v, -V’

The indexes 1, 2 refer to the two phases which are at equilibrium on the phase
boundary. S; are the entropies and V; the volumes of the two phases i = 1, 2.

Exercise 4.1.4
For a second-order phase transition in a fluid system prove the Ehrenfest equations:

1 2
dp _1¢’-c¢?  BO-pO
TIVROL gD T O
dr B —BO T D _ ¢

The indexes 1, 2 refer to the two phases which are at equilibrium on the phase
boundary. § is the isobaric expansion coefficient,

#=y ),
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and k7 the isothermal compressibility:

o 1 [0V
=y o J)r
Exercise 4.1.5

(Gorter model) A container of the volume V contains a small amount of liquid
(volume Vp). The rest of the volume (Vg = V — V1) is filled by the saturated vapor
(pressure p;) of the liquid. Treat the vapor as an ideal gas. The walls of the container
have a negligible heat capacity. They are, however, not fixed, but react elastically on
the excess pressure,

T=p—Di;
where p means the external pressure, and the elasticity is given by

dv
=—a a>0.

dr

If the system is heated at p = const, then liquid vaporizes. Let T = T¢ be
the temperature at which the last drop is vaporized. Show that the system at 7¢
undergoes a second-order phase transition in the ‘strict Ehrenfest sense’. For this
purpose work out the following partial steps:

1. Calculate the slope dp/dT of the coexistence curve!
2. Show that the isobaric expansion coefficient,

1 oV
ﬂ:V(M)’
P
makes a finite jump at 7¢!

3. How does the isothermal compressibility,

oL
T — V ap Ta

behave at the transition point?
4. Demonstrate the validity of the Ehrenfest equation:

dp AB

dT AKT ’
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Exercise 4.1.6
Show that the Gorter model from Exercise 4.1.5 fulfills also the second Ehrenfest
equation

& 1¢"-c?
dr 1V g — @ °

The indexes 1, 2 again refer to the two phases which are at equilibrium on the phase
boundary. B is the isobaric expansion coefficient and C;,’) the heat capacity.

Exercise 4.1.7
By the use of the first law of Thermodynamics for a magnetic system,

dU = 5Q +B()dm (B() = ,u()H) s

derive for the heat capacities,

_ (%0 (80
Cn = (3T)m Crean) = (aT)H(Bo)

the following equivalent connections:

e (%),
e (.G
et ()] o
e tml(3)] o

xr 1s the isothermal susceptibility.

Exercise 4.1.8

When one brings a superconductor of the first kind into a magnetic field H, it shows
the so-called MeiBiner-Ochsenfeld effect, i.e., except for a thin negligible surface
layer, in its inside

B():,LL()(H+M):O

When H exceeds a critical temperature-dependent field strength H¢, then a phase
transition into the normal-conducting state takes place. To a good approximation
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one finds:

2 4
Hc(T) :H() |:1—(1—Ol) (;;) —(X(IY‘;) ]

(Tc= critical temperature, o: material constant).

1. Calculate the latent heat at the phase transition by the use of the Clausius-
Clapeyron equation. Thereby, the magnetization of the normal-conducting phase
(M,) can be neglected compared to that of the superconducting phase (Mj).

2. Calculate the stabilization energy AG of the superconductor:

AG = G(T, H=0) — Gy(T, H = 0)

(n: normal-conducting, s: superconducting). Use once more M, < M;.
3. Calculate the entropy difference

AS = S(T) — $u(T)

using part 2. Compare the result with that from part 1.
4. What follows from the third law of Thermodynamics for

dHc 0

Iy
. Calculate the difference AC = C; — C, of the heat capacities!
6. Classify the phase transition!

9]

4.2 Critical Phenomena

4.2.1 Critical Exponents

In the critical regions of the second-order phase transitions, the behavior of many
physical quantities can each be characterized by a certain number, the critical
exponent. One observes, for instance, very often that a physical property F' depends
on the reduced temperature,

T —Tc
e = , (4.18)
Tc

in the following form:

F(e) = ae’ (1 + be* +---); x>0.
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Fore — 0,1i.e., T — Tc, all terms in the bracket vanish except of the 1, so that F(¢)
follows in the immediate neighborhood of 7 a power law. This is expressed by the
shorthand notation

F(e) ~ &%, (4.19)

which is to be read as: ‘F(e) behaves in the critical region as €¢’. The number ¢
therewith ultimately determines the temperature behavior in the critical region. The
number is called the critical exponent.

The power-law behavior is typical, and, as mentioned, is rather often indeed
observed. However, there are also deviations. We will see, for instance, that the heat
capacity of the Ising model diverges logarithmically. The assumption of a power-law
behavior thus is too restrictive. One therefore generalizes:

critical exponent

In|F
¢ = lim nlFee)l . (4.20)
>0 Ine
In|F
o = lim M FOL 421)
eSo In(=#)

By ¢ and ¢’ it is at first distinguished, from which side the critical point is
approached. It need not necessarily be ¢ = ¢’. The power-law behavior is
contained in the definitions (4.20) and (4.21). Though, other situations also are
allowed. Corresponding examples we will get to know later. The symbolic shorthand
notation (4.19), however, will be retained also for those cases, which do not really
follow a power law.

There exists a finite set of critical exponents, a part of which we have already
introduced in subsection 4.2.3 of Vol. 5. These we will gather briefly here once more
and extend them by a few important other exponents, which were not yet accessible
for us with the preconditions in Vol. 5.

For the definition of a critical exponent the exact definition of the path is necessary,
on which the state change takes place. For the gas-liquid system (real gas) the three
paths I, II und III, sketched in Fig.4.16 come into question. For the magnet the
change of the state has in general to be performed in the zero field.

1. heat capacities: o, o’
It holds for the real gas:

(—e)™: pathll, T=Tc, n=ngL,
Cy ~ (4.22)
e pathl, T Tc, n=nc.
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Fig. 4.16 Fixing the paths in p
the pV-diagram of the real

gas (n = N/V), on which the

critical exponents are defined

Cy has thus to be measured for 7 < T¢ at a particle density, which steadily
changes towards nc. Because of n = ngp(T) this particle density is at
equilibrium, on the path II, uniquely connected to the temperature.

For the magnet one schedules:

(—e)™®: T<Tc, Bo=pH=0,
Cy ~ (4.23)
e T>Tc, By=puH=0.

2. order parameter: 3
Real gas:

An~ (—¢)f: pathl. (4.24)
Magnet:
Ms ~ (—¢)P: Bo=oH =0. (4.25)

The prime on the critical exponent f is here left out, although the change of the

<
state takes place according to T — T¢. The distinction of 8 and 8’ is superfluous
for the order parameter because the latter is defined only in the low-temperature

phase.
3. compressibilities, susceptibilities: y, y’
Real gas:
(—e)7": path IT ,
Kr ~ (4.26)
e pathI.
Magnet:

(). TS Te, Bo=poH=0,
Xr ~ . 4.27)
e T—Tc, Byo=uoH=0.



4.2 Critical Phenomena 291

4. critical isotherm: §
Real gas:

p—pc~(A/n—1/nc)’: pathlll, T =Tc. (4.28)
Magnet:
By ~ M°: T=Tc. (4.29)
5. correlation length: v, v/, 5

The correlation length £(7) is introduced by (4.12). It diverges when the critical
point is approached:

Real gas:
(—&)™": pathlII,
&~ (4.30)
eV pathI.
Magnet:
/ <
(&)™ T—>Tc, By=puH=0,
£~ N (4.31)
eV T—Tc, Bo=uoH=0.

Via the following ansatz for the correlation function g(r,r’) at the critical
temperature T¢ one introduces a further critical exponent

1 T=Tc, p=pc: realgas,
g(r,r) ~ a2t (4.32)
r—r| T =Tc, Bo =0: magnet.

d is the dimension of the system. Since according to (4.31) § = oo for T =
Tc, it should be, according to (4.12), n = 3 — d. The introduction of 1 would
therewith be superfluous. The indeed a bit unimaginative exponent n expresses,
how the correlation function of a real system deviates at 7 = T¢ from the simple
formula (4.12) (Ornstein-Zernike behavior, Sect. 4.3.9).

The Greek letters, chosen in the above relations for the critical exponents, are con-
vention, and should not be replaced by others, in order to avoid misunderstandings.
They are all non-negative numbers.

Why at all is one interested in critical exponents, although these are relevant only
in a very narrow temperature region? Firstly, they are measurable. According to the
definitions (4.20) and (4.21) the plot of In| F(¢)| versus In(%e¢) should yield for
sufficiently small ¢ a straight line with the slope ¢.
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From a fundamental point of view, however, above all the universality of physical
properties at the phase transition is fascinating, which manifests itself in the concept
of the critical exponents:

Universality Hypothesis
(R. B. Griffiths: Phys. Rev. Lett. 24, 1479 (1970)). The critical exponents are
almost universal, i.e., practically for all thermodynamic systems the same. They
only depend on:

1. the dimension d of the system,
2. the range of the particle interaction,
3. the spin dimensionality 7.

The points 2 and 3 should be commented on. For the classification of the range of a
particle interaction, we assume that the interaction decreases with the distance » of
the interacting particles as

yd+2+)

If x > 0, then one denotes the interaction as short range. Because of the diverging
correlation length &, details of the particle interaction then do not play any role.
Then really universal behavior appears. On the other hand, if one has to assume
x < (d/2) —2 < 0, then the interaction is considered as long range. In such a
case the so-called classical theories, which will be discussed in Sect. 4.3, become
valid, with a special set of critical exponents.—For intermediate range interactions
(d/2 — 2 < x < 0) one finds rather complicated behavior. The exponents can then
depend also on x.

The spin dimensionality n becomes important for magnetic systems, which are often
modeled as interacting spin systems:

H=-Y"1S:"8;. (4.33)
ij

By n one then understands the number of relevant components of the spin vectors
SiI

n = 1: Ising model (4.1) ,
n = 2 : XY model (two-dimensional spin vectors) ,
n = 3 : Heisenberg model (three-dimensional spin vectors) .

We list some typical numerical values for the critical exponents «, o', 8, v, ¥/,
and §:
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o a B y y/ §

real gas, exp. 0 0 035 1.37 1.0 4.4
(log) (log) +02 +03 +04

magnet, exp. 0 0 0.34 133 133 >42
(log) (log) 40.03 £0.03

class. theories 0 0 05 1 1 3
(dis) (dis)

d = 2-Ising, exact 0 0 0.1251.75 1.75 15
(log) (log)

d = 3-Ising, approx. 0.11 0.11 0.3251.24 1.24 =~4.82

d = 3-Heisenberg, approx. ? ? 0.3651.39 139 4.80

The critical exponent 0 is not unique. It can be a logarithmic singularity, but it can
also characterize a finite discontinuity in the respective physical property. This is
indicated accordingly in the above table.

We further add typical values for the exponents v, V', and 7:

/

v v n

real gas, exp. 0.64 064 =0

magnet, exp. 0.65 065 =0
40.03 £0.03

class. theories 025 025 0

d = 2 -Ising, exact 1 1 0.25

d = 3 -Ising, approx. 0.63 0.63 =~0.03

d = 3-Heisenberg, approx. 0.705 0.705 0.034

It should be noted that the listed numerical values of the experimentally determined
exponents are to be considered as typical values. Even today the published values
still vary a little bit, depending on the method by which they have been measured.
So one finds in the literature for the exponent § of the order parameter instead of
0.34 also 0.36 or 0.37. The values for @ and 7 are the most uncertain ones.

The theoretical results for the d = 3-Ising model and the d = 3-Heisenberg
model are based on unavoidable, but in the meantime extremely trustworthy
approximations. The values for the classical theories are rigorously derivable
(Sect. 4.3). This also holds for «, " and B of the d = 2-Ising model.
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The calculated exponents of the d = 2- and d = 3-Ising model (n = 1) as well as
of the d = 3-Heisenberg model (n = 3) clearly demonstrate the dependences on the
lattice dimension d and the spin dimension n.

The universality hypothesis has shown its worth and is considered as practically
proven after the development of the Nobel-prize awarded renormalization group
theory by K. Wilson.

Interestingly, the different critical exponents are not completely independent of each
other. There exist thermodynamically exact relations (inequalities) between them,
the most important ones of which we have already derived in subsection 4.2.4 in
Vol. 5:

Rushbrooke inequality: o +28+y' =2, (4.34)
Griffiths inequality: o +B(1+8)>2, (4.35)
Widom inequality: Y =806 -1). (4.36)

There are strong hints that these exponent-inequalities are to be read even as
equalities. The above table shows that this is true in any case for the classical
theories and for the d = 2-Ising model. A further confirmation can be drawn from
the scaling laws, which will be discussed in the next subsection.

4.2.2 Scaling Laws

With a consideration concerning the Ising model (4.1) we want to make plausible
in this subsection, why the thermodynamically exact exponent-inequalities (4.34)
to (4.36) are presumably to be read even as equalities. These relations are then
called scaling laws for reasons which will become clear in the following. The
mentioned consideration traces back to a heuristic argument of L.P. Kadanoff
(Kadanoff construction), which will be illustrated here in connection with the Ising
model, but which should have a substantially more general validity. The decisive
aspect is namely the diverging of the correlation length & (7') at the critical point 7¢.
The spatial extension of the fluctuations, i.e., the coherent deviations of physical
quantities from their mean values, will then become arbitrarily large, so that special
details of the particle interactions do no longer play a role. That Kadanoft’s idea
indeed hits the point is quantitatively reasoned by the renormalization group theory
of Wilson, into which, though, we cannot go in detail in this basic course of
Theoretical Physicsvon.

The result of the Kadanoff construction tells us that the critical part of the free
enthalpy G(T, By) represents a generalized homogeneous function. This means that
there exist two fixed numbers a, and ag, with which it follows for all A € R:

G (X%, A®By) = AG(s, By) . 4.37)
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Before we draw conclusions from this scaling hypothesis, also called homogeneity
postulate, let us try to make it plausible in the framework of the Ising model. The
numbers a, and ag will not be further specified thereby, so that one cannot derive
from (4.37) concrete numerical values for the critical exponents. It will, however,
be possible to construct relationships between different exponents (scaling laws).
The Hamilton function H appears, via the (grand-)canonical partition function, in
the thermodynamic potentials exclusively in the form SH. We therefore investigate
for the Ising-spin system instead of (4.1) directly the combination:

BH =—j> SiSi—bY_S;. (4.38)
ij i
, J 1By
I = et kT (4.39)

The first step consists in the decomposition of the spin lattice into elementary cells
(blocks), in each of which there are L single spins (Fig.4.17). d is again the lattice
dimension. To the L? spins of the elementary cell there can now be ascribed a
common block spin. Since in the critical region the correlation length increases
over all limits, the scaling-transformation factor L can always be chosen so that

a<<La<<§. (4.40)

In a cluster of correlated, i.e., predominantly parallel spins there are then many cells
(blocks) of the edge length La. We introduce the notation:

block a (x=1,2,...,4) ; block spin§ = ZSi . “4.41)

i€a

For the ‘normal’ Ising-spins only S; = =1 is possible. If the block lies entirely
inside a cluster of correlated spins, then the block spin, too, has only two possibilities

X & S=+1

i O & §=-1
a
La

O x x|O O x|0O

X X O|x x 0O]|0

X X X |[x O X |O

X X O|x x O]|x
X O O|x O X |Xx
O O X |0 x X |x
O O O|O0O O O|x
O x 0|0 x O|x
O O x |0 O x |x

Fig. 4.17 Definition of the block (cell) spin in the Ising-spin lattice with the lattice constant a
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of orientation:
S~ +17. (4.42)

Slight deviations will appear for the blocks at the margin of the cluster. Furthermore,
the correlated spins within the cluster of course are oriented in a preferred direction,
single spins, however, can still ‘break ranks’. For this reason we have put in (4.42)
the ‘approximation-sign’. For T — T (¢ — 0), because of § — 00, one can
consider the Ising-system in the same manner as being composed of clusters of
correlated single spins as well as of clusters of correlated block spins. In connection
with (4.42) that must then mean that block spins interact with each other and with an
external magnetic field in completely analogous manner as the single spins: Block
spins behave in the critical region like Ising spins!. We can therefore also expect
that the non-analytical behavior of thermodynamic potentials at the critical point
is described in both pictures likewise correctly. The respective partition functions
should thermodynamically be completely equivalent. The expression corresponding
to (4.38) will have in the block-spin system a very similar structure, though surely
with modified coupling constants:

BH =) 8.5 -b) S,. (4.43)
a.p o

Just because of the modified coupling constant (j — }), the critical region in the
single-spin picture will be different from that in the block-spin picture. That holds
of course also for the reduced temperature:

~

E—>E.

The thermodynamic equivalence of the block-spin and the single-spin partition
functions transfers to the thermodynamic potentials. In the critical region, the free
enthalpy per single spin will exhibit as function of the variables ¢ and b the same
critical behavior as the free enthalpy per block spin as function of the variables é
and b:

&block spin (é, b) — &single spin (Sa b) .

Therefore we can omit already now the indexes block spin and single spin because
both g’s have the same functional form. When we still recall the extensivity of the
thermodynamic potentials, then we can represent the free enthalpy per block spin in
two different ways what leads to the equation:

g(8,b) = Li(e, b) (4.44)
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This relation can of course be correct only for that part of the potential, which
produces the critical behavior, but not necessarily also for the part which is regular
at the critical point. The latter can be drastically different in the two pictures.
It is, however, of no significance for the critical phenomena, which we are here
interested in,.

It now remains to establish the relationship between (e, b) and (&, 13). The critical
points must of course be identical:

(6=0,b=0)<= (=0, b=0). (4.45)

For the field-term it should hold in the critical region

by S by Si=—bY Y

o jEa

so that b ~ b. Because the transformation is determined by L, we choose the
following ansatz

b=f(L)b (4.46)
with an at first still unknown function f. Since in both systems the same critical
behavior is to be expected, in particular with the same critical exponents, it must

analogously be assumed

&

p(L)e . (4.47)

Equation (4.45) is therewith also fulfilled. The equivalence relation (4.44) now
reads:

g(p(L)e. f(L)b) = Lig(e.b) . (4.48)
Although this is already completely sufficient for the confirmation of the homogene-

ity postulate (4.37), we will fix p and f still a bit more precisely. For this purpose
we connect in series two scaling transformations:

(LM)g(e.b) = g(p(L)p(M)e, f(L)f (M)b)

= g(p(LM)e, F(LM)D) .

It follows from this relation:

p(LM) =p(L)p(M) ;  f(LM) = f(L)f (M) .
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We presume f and p to be differentiable:

3 DUM) = My M) = . (p(Lp(M) = p(M)p'(L) .
With
PL=1=y
it then results:
p(M) = M .

The fully analogous consideration for (L) yields:
fL="r".
Hence we can write instead of (4.48):
g(L’e, I*b) = Lg(e, b) .
x and y are thereby still undetermined numbers. It eventually follows with A = L¢:
g(W4e, 2*1p) = Ag(e, b) . (4.49)
Except for the restriction

1<<L<<E —> 00,

a T—Tc

L is arbitrarily selectable and therewith also A. When one overlooks this restric-
tion, then g(e, b) indeed represents a generalized homogeneous function of the
type (4.37):

Y. X

a, = g ag = J (4.50)
That we work here with b = BuBy instead of By, does not falsify the statements
concerning the critical exponents. These are explained for state changes, which are
all performed in the zero field or, if not (exponent §!), along the critical isotherm
(see (4.22) to (4.32)). By = 0 entails b = 0, while on the critical isotherm the
pre-factor .0 = pu/kgTc becomes trivial.

We will show in the next step how the numbers x and y in (4.49) can be expressed
by critical exponents. For this purpose we differentiate (4.49) with respect to the
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field b,

X a y X _ a
A /d[a (Ax/db)g()k /e, A /db)L = /\[ab (g(e. b))} ,

&

and obtain then, using the thermodynamic relation,

G
(aBo)T — (T By) = —VM(T.By) .

a useful relation for the magnetization M as function of the variables ¢ and b:
AAM (29, A¥b) = AM (e, b) . (4.51)

The changes of state, which are relevant for the critical exponents, take place in the
zero-field (b = 0), so that M becomes the spontaneous magnetization Mg,

AMs (A4, 0) = AMs(e,0) | (4.52)
or they are performed on the critical isotherm (¢ = 0):
A7M(0, 279p) = AM(0,b) . (4.53)
These relations are valid for arbitrary A. If one chooses in (4.53)
A= b
it remains:
b'M(0,1) = b=Y*M(0,b) .
M(0, 1) is a constant number, so that one can also write:
b~ [M(©,5)]™. (4.54)
The sign ~ is here, as explained in (4.19), to be understood as ‘behaves in the

critical region as . .. . The comparison of (4.54) with (4.29) thus yields a connection
between the critical exponent § and the number x:

§ = . (4.55)

If one chooses in (4.52)
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an analogous consideration leads to
Ms(e,0) ~ (—g) =9/, (4.56)

The comparison with (4.25) then yields for the critical exponent of the order
parameter:

B = . 4.57)

x and y are now already determined by (4.55) and (4.57):

8 d 1

:d ’ = .
S B YT B4

(4.58)

If we are now able to express a further exponent by x and y, then this will lead
eventually to relations between the exponents.
For the isothermal susceptibility

_ oM
Xr = Ko 0B, ),

we have to differentiate (4.51) once more with respect to the field:

AZ"/"[ ’ M(A}’/de,kx/db):| = A ( ’

d(A¥/4b) ap™ P )

&

From that we get for the susceptibility in the zero-field:

AZ Dy (A, 0) = Axr(e,0) . (4.59)
If we now insert here
A= (+e) ™,
we have:
yr(e,0) ~ (&)™ F=D (4.60)

This means according to (4.27) a connection of x and y with the critical exponents
y and y’, respectively:

2x—d
y=y = xy . 4.61)
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In order to finally fix the critical exponents of the heat capacity,

92G
Cy=-T ,
o (aTZ)BO

we have to differentiate the homogeneity relation (4.49) twice with respect to &:

82
=2 (382g(8, b))b .

The critical behavior of the zero-field heat capacity results therewith from the
relation:

_ 9 s
M) s 0)|
b

APCy (W96, 0) = ACh(e, 0) . (4.62)
If we insert
A= (+e) ™,
it follows:
Cp(e,0) ~ (£e) =4 (4.63)

The comparison with (4.23) leads to
a=ao = ) (4.64)

The critical exponents &, ', 8, y, y’, 8 are now all expressed by x and y. This means,
on the other hand, that the measurement of two exponents uniquely fixes all the other
exponents, provided that the scaling hypothesis (homogeneity postulate (4.49)),
which could be made plausible by the Kadanoff construction, is indeed exact.
One important consequence consists in the statement that the critical exponents are
independent of whether the critical point is approached from below (T < T¢) or from
above (T > Tc) (@ = o', y = y’). A further important consequence concerns the
thermodynamically exact exponent-inequalities (4.34) to (4.36). One easily verifies
with (4.55), (4.57), (4.61), and (4.64) that they are to be read as equalities:

a+28+y=2, (4.65)
a+p(1+8 =2, (4.66)
y=B@B-1). (4.67)
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These equations, together with « = o’ and y = )/, are denoted as scaling laws.
Further scaling laws, which concern the critical exponents v, v’ and 7, we will get
to know in the next subsection.

4.2.3 Correlation Function

We will now show that the correlation function defined in (4.9) also represents a
generalized homogeneous function. That will lead to statements about the critical
exponents v, v/, and 7, where it will even be possible to connect these with the
exponents «, f, y and §, i.e with quantities, which regulate the critical behavior of
certain derivatives of the thermodynamic potentials. As in the last subsection, our
plausibility-consideration concerns the Ising model:

g(r.e) = (SiS;) — (S)*. (4.68)

We presume a spatially homogeneous system so that the correlation g (not to be
confused with the free enthalpy!) will depend only on the distance

_ |IRi—Ry|
r= .
a

We choose the distance as dimensionless, because the absolute distance of course
does not matter, but only the number of interacting spins in between the two points
under consideration. Furthermore, the spatial homogeneity manifests itself also in
the fact that the average values, (S;) = (S) Vi, do not depend on the special lattice
site.

With the same justification as that before Eq. (4.44) we exploit here also the
plausible assumption that the correlation function in the block-spin picture,

g(.8) = (SuSp) — (5)2. (4.69)
should have as function of the scaled variables 7 and & the same functional form as
the correlation function in the single-spin picture (4.68) as function of the variables

r and &. The connection between the reduced temperatures ¢ and £ we know already
from the last subsection:

(4.70)

For 7 we have simply:

- - 471
" La L “.71)
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For the right-hand side of this equation it is thereby presumed that i and j denote
equivalent positions in the blocks « and S.

Somewhat differently from what we used in the preceding subsection, we normalize
by

LY Si=pSe  (Sa==%1) (4.72)

i€

the block spin ga exactly to 1, which is regulated by the factor p. p by itself should
be of the order 1.

In the critical region (§ — o00) the average value (S;S;) will be same, to a good
approximation, for all i € ¢ and all j € 8. This means:

(551 =150 X(s) = 5,50

i€a jeP
For the same reason we have:

(S) =17 (S = p(Sa) -

i€a

This yields the following relation between the correlation functions in the two
pictures:

g(r.e) = p’g(7.8) . (4.73)
We can find out something about the number p with the aid of the field term in the

Ising-Hamilton function: we can find out something with the aid of the field term in
the Ising-Hamilton function:

bY 5. =b> 3 si=6L"" (pS.)

o i€a o
— b= (pLYb .
When we combine this with the previous result b = L[*b (4.46), we get:
p=L". (4.74)

Equation (4.73) therewith takes the form:

g(r,e) = L2(x—d)g (27 L)’g) . (4.75)
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If we further use

L — A~V/Qe=d)

then we realize that the critical part of the correlation function indeed represents a
generalized homogeneous function:

g(A%r, A%e) = Ag(r,e) , (4.76)
1 ) y

= okx—d) ’ %= Ton—a)

According to (4.12), (4.31) and (4.32) we have in the critical region:

g(r.e) ~ expr(d__rzﬁ(g)) Dt~ 4.77)

This we will exploit, in order to search out, by means of (4.76), scaling laws for the
critical exponents v, v’ and 7.
At first we use in (4.76) forthe case ¢ = 0 (<= T = T¢):

A= 2D

This leads to:

g(r,0) = »Dg(1,0) .
g(1,0) is here an unimportant number so that the comparison with (4.77) yields:

d—2+n=-2(x—d) (4.78)
If we choose instead

A= (iS)Z(x—d)/y ,
it follows from (4.76):
g(r.e) = (£e) 20D g(r(xe)', £1) .

This we insert into (4.77):

_r _r(:l:s)l/y)
exp ( E<s>) ()20 eXP( £
yd—2+n rd—2+n(i8)(d—2+n)/y ’
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From this we get with (4.78):
E(e) ~ E(E1)(xe)™ 1. (4.79)

According to (4.31) this means:
v=1v'= . (4.80)

The results (4.78) and (4.80), derived from the property (4.76) of the correlation
function, lead with our previous results (4.58) for x and y to a series of new scaling
laws. One immediately obtains, for instance, with (4.80) in (4.64):

a=do =2—-dv=2—-dv. (4.81)
If one combines (4.58), (4.66), (4.78), and (4.81), one easily finds:

2dP 2d 28

d—2 = = = . 4.82
o 2—a 1496 v ( )
It follows from (4.65) with (4.81) and (4.82):
y=QC-nyv, (4.83)
§—1 dy
d = 2—1. (4.84)

§+1 284y

To the last scaling law there exist the thermodynamically exact Buckingham-
Gunton inequalities:

dy’ ) §—1

213_}_)//22 n; d8+122 n. (4.85)
The scaling laws, which contain the lattice dimension d (hyperscaling), are of spe-
cial importance. It is a shortcoming of the classical theories, which we investigate
in the next section, that their critical exponents are all independent of d. Only for
d = 4 the classical theories fulfill also the hyperscaling. The multitude of scaling
laws offers a series of possibilities for testing the scaling hypothesis. So one finds,
for instance, for the product dv several relations, which are checkable by model
calculations or by the experiment:
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dv=2—-« 2 2
=2—-a 2 2
=y+28 2 2
=y +28 2 2
=BG +1) 2 2
=dv 2 1.5
= 2 1.5
= 2 1.5
=dv 2 1.5
0 1 0
scaling laws d = 2-Ising model d = 3-classical theories

The scaling laws are fully confirmed by the exactly calculable d = 2-Ising model.
They have been derived here on the basis of the Kadanoff construction, which,
however, because of the various assumptions, can be considered as only plausible
and not at all as exact. The scaling laws are actually confirmed only when the
free enthalpy and the correlation function are indeed generalized homogeneous
functions.

4.2.4 Exercises

Exercise 4.2.1
A physical quantity f behaves in the critical region as

f(I)=aT In|T—T,| +bT?.

What is the corresponding critical exponent?

Exercise 4.2.2
Show that for second-order phase transitions in the Ehrenfest sense only critical
exponents ¢ = 0 are possible.
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Exercise 4.2.3

Determine the critical exponents of
1. f(T)=aT’?>—b,
2. f(T)=aT>+c(T-T)™",
3. f(T)=a/|IT-T.|+4d,

a, b, c, d: constants, unequal zero.

Exercise 4.2.4
Let the ratio of the heat capacities

Cn
R =
Cu

be temperature-independent. Show that the equal-sign in the Rushbrooke relation
o +28+y =2

holds only if R # 1.

Exercise 4.2.5
Derive for a magnetic system with the scaling hypothesis the following relation for
the magnetization M:

M(e, H) —ps
(£0)8 =M (%1, ()™ H) .

Do you see a possibility to check by this equation experimentally the scaling
hypothesis?

Exercise 4.2.6
Prove by the use of the scaling hypothesis the following exponent equations:

. y6+DH=Q2-a)(6-1),
_2—a+y

2. 8= .
2—a—y
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4.3 Classical Theories

4.3.1 Landau Theory

Problems of Statistical Physics can be considered as being solved as soon as a
relevant thermodynamic potential, as for instance the free enthalpy G(7, p), could
be completely determined. Rigorously in a strict mathematical sense, that is rarely
possible, though. The surprisingly universal behavior of physical quantities in the
neighborhood of phase transition points, however, gives hope that possibly the
problem: phase transition, at least in the critical region, is treatable in a very general
way. The first attempt of such a general description stems from L. D. Landau (1937).
The idea consists in a representation of the behavior of the free enthalpy G in the
critical region as a functional of the order parameter ¢, which we introduced in
Sect. 4.1.4, or of its density Y (r):

=0 forT > Tc,
0= / dPry(r) (4.86)
#0 forT <Tc.

One may think for instance of the ferromagnet, for which ¢ means the magnetic
moment m and ¥ (r) the local magnetization M(r). The observation that ¥ tends

. < o, . . .
continuously to zero for T — T, suggests for the critical region something like a
power series expansion:

6rip) = [ Ere(rivm) = [ @ faoto) - 2w )
+ a(T)Y2(x) + bT)YPH(r) + c(T)(VIp(r))z] . (487

@ (or ¥) can of course not be considered as a thermodynamic variable like the
temperature 7', but must ultimately be fixed by thermal equilibrium conditions. At
a given temperature, the equilibrium value of ¢ will be that for which G(T;¢)
becomes minimal.—The second thermodynamic variable besides 7, e.g. the pres-
sure p, is not interesting for the following, and can therefore be suppressed in (4.87).
The expansion (4.87) is of course not a priori clear, but represents at first a more or
less arbitrary assumption of the theory. It appears indeed not unproblematic, since
the phase transition provokes a singular point in the thermodynamic potential. That
can transfer to the coefficients of the expansion. The magnitude of the individual
terms in (4.87) must therefore not exclusively be determined by the power of .
When using (4.87) it is implicitly assumed that the coefficients a, b, ¢ behave
smoothly.

In (4.87) 7 (r) denotes the conjugate force, which belongs to the order-parameter
density ¥ (r), as for instance the magnetic induction By(r) to the magnetization
M(r) for the ferromagnet. go(r) is the enthalpy density at vanishing order parameter
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(T > Tc). Due to symmetry reasons, the expansion (4.87) contains only even
powers of ¥ (r), because G(T;¢) should not change with a simultaneous sign-
change of ¥ and n (see ferromagnet). For the same reason only rotation-invariant
combinations of the gradient of ¥ come into question.

All the statements of the Landau theory are consequences of the expansion (4.87),
which is universal, i.e. independent of the material. We will at first begin with the
important special case that the order-parameter density ¥ and the conjugate force
are position-independent. Then (4.87) simplifies to:

1 1
G(T;9) =G(T;9 =0)—7mp + Va(T)<p2 + v b(T)p* . (4.88)

At vanishing force (7 = 0) the equilibrium value of ¢ must be zero for T > T¢ and
for T < T¢ unequal zero (Fig. 4.18). For T > T¢ the extreme-value condition of the
free enthalpy,

G | 2 4
Lo0= T b(T)¢p>
(8<p)7 0 Va( )<p+v3 (T,

is indeed fulfilled by ¢ = 0, while the minimum-requirement,

0°G 2 !
(5,:) =0 = pan >0,

can be realized only with
a(T)y>0 for T>Tc.
No statement about b(T) is at first possible for T > Tc.

In the low-temperature phase (T < T¢) the extreme-value condition reads, because
of ¢y # 0 (Fig.4.18),

2
2

a(T) + V2 b(TMpy =0, (4.89)

Fig. 4.18 Schematic T>T
G > =

behavior of the free enthalpy ¢ T=TIc
as function of the order T<1Tc
parameter ¢ at constant
temperature )

4
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which is fulfilled by

T
0o = i\/ _szab(( T)) . (4.90)

The extremum is a minimum if it holds additionally
6 2

a(T) + V2 b(T)py; > 0. (4.91)
When one subtracts (4.89) from (4.91), it remains to require:

b(Ty>0 for T<Tc. (4.92)
But because of (4.89) that has also the consequence

a(T)y <0 for T<Tc.
The coefficient a(T') thus changes its sign at 7 = T what suggests the ansatz

a(T) =ap (T —T¢) , ap>0. (4.93)

This step of course involves once more a certain arbitrariness, because each other
odd power of (T — T¢) would also guarantee the sign-change. However, later we
will be able to demonstrate that higher powers of (7' — T¢) lead to contradictions in
other respects.
At the critical temperature 7¢ it holds for the order parameter ¢y = 0, so that for

T = T¢ the first three derivatives of G with respect to ¢ vanish. The minimum-
condition must therefore refer to the fourth derivative:

*G !
( 4) (p=90=0)>0.
a(p T=Tc

From that we read off
b(Tc) > 0. (4.94)

Because of (4.92) and for reasons of continuity one can thus assume for the entire,
very small critical region

B(T) ~ b(Tc) =b > 0. (4.95)

We have motivated (4.93) and (4.95) for a system with position-independent ¥y and
7. Because of the universality of the Landau ansatz (4.87), however, the structures
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of the two equations should be generally valid. Only the concrete numerical values
for the constants ag, b and T¢ will be material-specific.

4.3.2 Spatial Fluctuations

Before we explicitly calculate the critical exponents of the Landau theory, we will
have to still look at the important correlation function of the order parameter, for
which it must hold according to (4.9):

g(r.¥) = (YY)~ [P O)v @)
= (W ® - @) ) - (). (4.96)

It describes the connection between the deviations of the order-parameter density
from its average values at the positions r and r’. We apply the Hamilton operator in
the following form,

H=H,— / a&r (v '), (4.97)

where Hy means the force-free operator. We are at first interested in the response
8{y(r)) of the order-parameter density to a variation §7 (r’) of the conjugate force.
We calculate the average value ((r)) in the canonical ensemble:

1
(pm)= Tr [v(r)e?1] | (4.98)
Z = Tr(e PH) .
The variation

1
z

Sy ) = T [y (r)(—psH)e "]
— Tl Te [y e )

—B (v (r)8H) — ($H)(y (1))}

yields with

§H = — / &Ar Yy )sn(r)
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a connection between the response of the order parameter to the external perturba-
tions and the internal fluctuations of the system:

Sly(r)) =B / &*r g(r,¥)sn(r') . (4.99)

This is nothing else but the, compared to (4.16), generalized
fluctuation-dissipation theorem

In the homogeneous case (§(y) and 8 are position-independent!) it follows

from (4.99) the to (4.16) corresponding connection between susceptibility (k:

constant),
k(00 L o
=y on r \or )’

and correlation function:
xr = kB / &r g(r,r) . (4.100)

Here we have presumed that the most probable and the average order-parameter
density are same:

Yo = (¥) . (4.101)

Equation (4.101) is in general surely correct, but becomes questionable just in the
region of strong fluctuations and has therefore later still to be commented on.

The further discussion will be performed again for the compared to (4.100) more
general expression (4.99) of the fluctuation-dissipation theorem. The most probable
value (equilibrium value) of the order parameter is that which minimizes G(T’; ¢).
The first variation of the free enthalpy with respect to i must therefore vanish at

Yo:

0= / d&’r [=7() + 2a(T)yo(r) + 4b(T) Y5 (1) = 2¢(T) Ao (1) | 69/ (r) -
(4.102)

Maybe the origin of the last term in the bracket should be commented on a bit. We
made ourselves somewhat familiar with the calculus of variation in subsection 1.3.2
of Vol. 2. It is common for all functions ¥ (r), which are admitted to the so-called
competing ensemble, that they coincide on the surface of the integration volume, so
that their variation there vanishes. According to (4.87) we need then for §G, among
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other things, the following contribution:

§ | &@r(Vym) =2 | &@rvy®svy(r)
fortvar =2

v
= 2/d3r [div(Vyéy) — SYAY] .
4
We have here exploited: §(Vi) = V(§y). The first term in the bracket vanishes,
/d3rdiv (Vysy) = /df.waw =0,
v v

because 81 is zero on the surface dV of V. The variation of the last term in (4.87)
yields

5 / dre() (VY )” = / dr (= 2e(DAY)SYx) .
v 14

which explains (4.102).—Since 1 can be arbitrarily chosen, except for the already
used boundary condition, it must even hold, beyond (4.102),

7(r) = 2a(T)Yo(r) + 4b(T) Y (r) — 2c(T) Ao (r) . (4.103)
When we now still accept (4.101) in (4.103), i.e. identifying the most probable

order-parameter density with the average one, and vary (4.103) with respect to the
force m, then it remains after exploiting the fluctuation-dissipation theorem:

Sn(r) = /d3r’8(r—r’)8n(r’)

=B (2a(T) + 12b(T)(w(r))2 — 2c(T)A,) / v g(r, v )sn(r) .

Since 87, too, can be arbitrarily chosen, it finally results the following conditional
equation for the correlation function g(r, r'):

(Za(T) + 12b(T)(1//(r))2 — ZC(T)A,) g(r,r') = kgTS(r — ') . (4.104)
This equation will be integrable only with simplifying assumptions concerning

(¥(r)). Let ¥(r) be almost homogeneous, i.e. only weakly position-dependent.
Furthermore, g(r,r’) interests us only with respect to its critical behavior, i.e.
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according to (4.31) for the case w — 0. But then we can use approximately (4.90):

a(T)
T>Te:(y@) —0, T<Toly®m) — b7y (4.105)
and (4.104) simplifies to
(o1 —2A)g(r,x') = kgT8(r —1') (4.106)

where it must be taken (o, oz) = (2a,2¢) for T > T¢ and (a1, o) = (—4a,2c)
for T < Tc. After Fourier transformation,

1 ke (r—t
g(r, l'/) — 2 /d3kg(k)€lk (r—r’) ,

1 ; /
S(r_ r/) — (zn)S /d?)ketk-(r—r) ,

(4.106) goes over into the algebraic equation :

ksT

g(k) = (@ + k)

=g(k) .
Inverse transformation with trivial angle integration leads to:

g(r,r) = g(r—r)

_ kBT /dk 1 + 1 eik|l'—l'/\ .
8m2ayilr — /| k+l~\/a1 k_l'\/al
i~ o

Only the second term possesses a pole in the upper half-plane. According to the
residue theorem ((4.425), Vol. 3) it thus follows

fr—r'|
keT ©*P (_ &) )

8rc(T) |r—7/| (4.107)

glr.r') =

as solution for the correlation function of the order parameter in a three-dimensional
system. Thereby it holds for the correlation length £:

c(T)
a(T)’

—c(T)

2a(T) (4.108)

T>Tc:§(T)=\/ T<Tc:§(T)=\/
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4.3.3 Critical Exponents

The Landau ansatz (4.87) is much more detailed than the scaling hypothesis (4.37).
In contrast to the latter, the Landau theory is therefore able to deliver concrete
numerical values for the critical exponents.

The temperature-dependence of the order parameter in the critical region can be
read off from (4.90), when one inserts (4.93) into (4.95):

¢0:iv¢mWT—n$” (T < Tc) .

2b

The critical exponent of the order parameter is therewith directly available:
B=_. (4.109)

For the heat capacity,

O = T *°G
=0 — BTZ o ’

the temperature-dependence of the free enthalpy is decisive, which we find for the
homogeneous system (Y (r) = v, ¢ = Vi) by insertion of (4.90) into (4.88):
T>Tc: G(T) = G(T,9=0),

_ 1 1
T<Q;an“;mmn¢=0y+vqn%+

V3
2
(4.90) a*(T)
=" G(T,9o=0)-V .

(T:9 =0) 1b

bey

From that it follows with (4.93):

2
ay

Coma(T = TE) = Comol(T = TE) + TV

(4.110)

The heat capacity thus exhibits a finite jump at T¢. According to (4.20) and (4.21)
this corresponds to a critical exponent:

a=d =0. (4.111)

Note that the choice of a higher odd power of T — T¢ in (4.93) would guarantee the
sign-change of a(T) at T¢, but, on the other hand, it would cause Cﬂ=0(Té_) ) =

Cﬂ=0(Té+)). The heat capacity would then not show at 7¢ any peculiarity. That
excludes a(T) ~ (T — Tc)*' ™! withn > 1.
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For the derivation of the exponent § we exploit the extremal condition

G 2 4
=0=— T b(T)e? 4.112
() =0=—n+ amw+ Lo @112

for the case of a non-vanishing conjugate force m. Since the coefficients a(T),
b(T) in (4.88) should be independent of 7, it can be assumed, according to (4.93),
a(Tc) = 0 and, according to (4.95), b(T) = b(T¢) = b. It holds therewith on the
critical isotherm T = T¢:

4
T = V3b¢3 (T =Tc) .

We read off
§=3 (4.113)

(see (4.28) and (4.29), respectively).
For the (generalized) isothermal susceptibility, defined before Eq. (4.100), one
differentiates the extremum condition (4.112) with respect to =:

2a 12b

1= SXT -
k XT + sz%XT

If one approaches the critical temperature 7¢ in the low-temperature phase (T —
Té_) ), then one has to insert (4.90) for @y:

4a(T)
ok

1 =
This means because of (4.93):
k —1 <
xr = T —T¢| (T - Tc) . (4.114)
4a0

If one approaches the critical point in the high-temperature phase, then one has to
take go = O:

k
ar=_ |T-Tc|?"  T5T0). (4.115)
2610

The critical exponents y, y’ are therefore determined in the framework of the
Landau theory:

y=y =1. (4.116)
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Fig. 4.19 Temperature -1
profile of the inverse
isothermal susceptibility
close to a second-order phase
transition

The ratio of the so-called critical amplitudes in (4.114) and (4.115) yields the value
C'/C = 1/2 typical for all classical theories (Fig.4.19).

The remaining critical exponents v, v’ and 7 are to be derived via the correlation
function (4.107). When one assumes, without being able, though, to precisely
justify it, that the coefficient ¢(T') in the Landau expansion (4.87) does not, or only
uncritically, depend on the temperature in the critical region (c(T) =~ c¢(T¢)), then it
holds for the correlation length & (7'), when one inserts (4.93) into (4.108):

ao

T
E(T) ~ \/C( c) T —Tc| 7/ for T > Tc

E(T) ~ \/C(TC) |T —Tc| ~"/* for T < Tc . (4.117)
2610

The Landau theory therewith confirms the diverging of the correlation length when
one approaches the critical point. The comparison with (4.31) yields the critical
exponent:

v=v' = . (4.118)

Because of the diverging correlation length, Eq. (4.107) simplifies for 7 = T¢ to:

kgTc 1
r) = T=Tc).
g(r,r’) 8e(Te) [r — v ( c)

The relation (4.107) has been calculated for a three-dimensional system (d = 3).
The definition (4.32) of the exponent 7 then fixes for the Landau theory

n=0. (4.119)

The critical exponents, which we derived in this subsection, have already been listed
in Sect. 4.2.1.
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4.3.4 Region of Validity of the Landau Theory

After the considerations of the last three subsections it remains to be stated that the
Landau theory is based, in a not insignificant manner, on unproven assumptions.
The concrete conclusions are accordingly uncertain. We should therefore give some
thought to the region of validity of the theory. Let us at first consider once more
the fluctuation-dissipation theorem (4.99), into which we insert for the correlation
function g(r, r’) the expression (4.107):

oo
kT kT
/‘p/g(r,r’)= ’ /U@_"/$= g
C

2c
0

Hence, there exists for the infinitely large system (V — oo) a simple connection
between the susceptibility yr and the correlation length &(7):

k -
tr=, &M ~IT=Tc|™". (4.120)

The results (4.116) for y, ¢’ and (4.118) for v, v’ are obviously consistent.

As already discussed in Sect. 4.1.5, the diverging of the susceptibility at 7 = T¢ is
directly tied in with the existence of critical fluctuations, which manifest themselves
in the long range of g(r,r’). But here the Landau theory seems to contradict itself,
because large fluctuations of the order parameter in the critical region put into
question the basic ansatz (4.87). Note that the fluctuations found their way into the
Landau theory only by the fluctuation-dissipation theorem (4.99) (see the derivation
of (4.104)). In the ansatz (4.87) they do not appear, because then this ansatz would
have to incorporate besides the terms of the form ¥2(r) also such of the type
¥ (r)y¥ (r'). Furthermore, in the case of strong fluctuations, the validity of (4.101)
is no longer guaranteed. The most probable order-parameter density, which realizes
8G = 0, must not necessarily be identical to the average value ().

The Landau theory can therefore be valid only as long as the fluctuations are small
compared to the thermal average of the order parameter:

(v = (¥)?) < (). (4.121)

This should be fulfilled particularly for all distances |r — r’| within the correlation
length £. Now one can estimate for a d-dimensional system,

tr =k [ dirote) ~ kB glr) ~ kB (0 - (9)7)

with 0 < ry < &. We assume that it is even in the general d-dimensional system
possible to associate the correlation length £ by (4.120) with the susceptibility y7.
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Then it results with (4.114) for T — T(c_) :

N kd/2—l —a)

¥ Bee(Te)?2 T
rd/2—1 K1=d/2

T Be Qe(Te))? (4ap)' =42

(= w)) ir

T = Tel>" .

Thus it remains to be required, if the validity of (4.93) and (4.95) can be assumed:

kg Tc

(4 7o) < -1

ao |T — ) < -1

(2e(Te)?? ‘ "

This leads for the critical region (" — T(c_) ) to the so-called Ginzburg criterion
for the region of validity of the Landau theory:

2b

d/2—2
(e ke T (Zao T — Tl ) <1 (4.122)
C

For d > 4 the criterion is satisfiable, for d < 4 it is always violated. It is
therefore not astonishing that the critical exponents of the Landau theory deviate
rather substantially from the experimentally found values for one-, two-, and three-
dimensional systems. The superconductor represents an exception, for which the
pre-factor in (4.122) is very small, so that the criterion can be fulfilled even for
d = 3 very close to Tc.—We had already pointed out in connection with the table
at the end of Sect. 4.2.3 that for d = 4 the classical Landau theory even fulfills the
scaling laws, which contain the dimension d (‘hyperscaling’).

In the next subsections we want to present some simple model systems, which are
to be considered as concrete microscopic realizations of the Landau theory.

4.3.5 Model of a Paramagnet

By paramagnetism one understands the reaction of a system of permanent magnetic
moments to an external magnetic field By = woH. These permanent moments
may be, e.g., those of the itinerant conduction electrons in a metallic solid.
The corresponding Pauli spin-paramagnetism we have extensively discussed in
Sect. 3.2.6. The topic of this subsection shall therefore be the paramagnetism of
insulators (Langevin paramagnetism). This phenomenon underlies the perception
that permanent magnetic moments are fixedly localized at certain lattice sites of
a solid. They stem from incompletely filled atomic electron shells, e.g., from the
3d-shell of the transition metals, from the 4f-shell of the rare earths or the 5f-
shell of the actinides. At first we assume that there are no appreciable interactions
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between these moments. In an external magnetic field By the moments (vectors!)
try to orient themselves parallel to the field, because then the internal energy U of
the system decreases. This tendency is counteracted by the temperature 7, which
tries to maximize the entropy S by an as large as possible disorder. The total
magnetization at a finite temperature is then fixed by the requirement that the free
energy F = U — TS has to become minimal. The magnetization will therefore be a
function of the temperature 7 and the field By.

The just described paramagnet is characterized by the following Hamilton operator:

N
Hy=-Y p;-By. (4.123)
i=1
J; 1s the operator of the magnetic moment at the i-th lattice site:

1
wi=—, 8 sl (4.124)

Ji is the operator of the total angular momentum of the i-th particle, g, is the Lande-
factor, and up the Bohr magneton. Let By be a homogeneous magnetic field:

1 N
Hy = i+ Bo . 4.125
0 hgmB;J 0 (4.125)

The quantum-mechanical directional quantization permits for the vector J; only
(2J + 1) different directions relative to the field:

Ji+Bo = hm;By ,
m==J,—-J+1,...,+J.

Hence, Hy possesses (2J + 1)V eigen-states. The canonical partition function can
then be formulated as follows:

Zn(T, By) = Tre PHo

+7 +7 N
DS exp(—ﬁmei),
i=1

my=—J my=—J

S
I

= gsusBo .
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Because of missing interactions, these are N independent summations, which can
be easily performed:

N +J

Zn(T, By) = l_[ ( Z e(—ﬂhmi))

i=1 mi=—J

= [eﬁbj(l e Pyl 44 e_zﬁbj)]N

[ awl- o—Bb QI+ N B B (IH+1/2) _ p=Bb(J+1/2) N
= ¢ | — e—Pb e(1/2)Bb _ o—(1/2)pb

The partition function is therewith already completely determined:

. N
sinh[Bb (J + 1/2)] } (4.126)

sinh((1/2)8b)

The magnetization has a component unequal to zero only in field direction:

ZN(Tv BO) = {

N

1 grus d
M(T,By) = — > (mi) = Z
(T. Bo) 81 1B, (m;) Vpzy db2Y

i=1

1

d
- InZy .
v B g N

It follows after simple rearrangements:
M(T, By) = MoB;(Bg, iJBo) - (4.127)

Here we have used

N
Mo =" g sl (4.128)

as the saturation magnetization, while

2J+1 2J+1 1 1
Bj(x) = + coth + x ) — _ coth X 4.129)
2J 2J 2J 2J

is the so-called Brillouin function. Let us list some of the most important properties
of this function, which is so essential for the theory of magnetism:
1.J=1/2.

For this special case (L = 0,J = S = 1/2) the Brillouin function simplifies to:

Bi/>(x) = tanhx . (4.130)
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2. J—>o00.
In this so-called classical limiting case B;(x) is identical to the Langevin
function L(x), which appears in a classical treatment of the paramagnet ((1.23),
Vol. 5), which, in particular, disregards the directional quantization of the angular
momentum:

Boo(x) = cothx — i = L(x) . (4.131)

3. Small argument.
When one uses the series expansion of the hyperbolic cotangent,

1
¥+ 0K),

11
thx = _
cothx= T35

in the definition Eq. (4.129), then one finds:

J+1  J+1272+2/+1
e ,

B =" 37 3002 (4.132)

This has especially the consequence (Fig. 4.20)
B;(0) =0. (4.133)
According to (4.127) the magnetization will thus vanish for By = 0 or

T — oo. Therefore there does not exist a spontaneous magnetization, which is
characteristic for the ferromagnet at temperatures below the Curie temperature
Tc.

4. Symmetry.
Because of coth(—x) = — cothx it is also:

B;(—x) = —B;(x) . (4.134)
Referred to (4.127) this means that with a pole reversal of the external field

(By — —By) the magnetization, too, turns over.
5. Saturation.

Fig. 4.20 Qualitative B J=1 / 2
behavior of the Brillouin J
function for different 1 +—— i_ ——

quantum numbers J of the
angular momentum
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Because of cothx — 1 for x — oo the Brillouin function runs asymptotically
towards a finite limiting value (Fig. 4.20):

Bj(x) — 1. (4.135)

That means physically that the magnetization (4.127) is driven by a strong field
(By — 00) into saturation. When all magnetic moments are oriented parallel,
M has reached its maximum value M), and can no longer increase even with a
further enhancement of the field strength.

Eventually the high-temperature behavior (BupBo<1) of the magnetization is
still interesting, for which it approximately holds with (4.132):

C
M(T,Bo) ~ By, (4.136)
moT
N J(J+1
C= (gJHB)ZMO (1) (Curie constant) .
\%4 3kg

The susceptibility of the paramagnet,

oM C
= = 4.137
X = Ho (3Bo)T T (4.137)

shows for high temperatures a characteristic (1/7)-dependence, which is known as
Curie law.

4.3.6 Mean-Field Approximation of the Heisenberg Model

Equation (4.133) points out that without particle interactions no spontaneous
magnetization can appear. The paramagnet therefore does not exhibit any phase
transition. For the description of the phenomenon ferromagnetism the model (4.125)
has to be accordingly extended. In simplest form, the interaction between the
localized moments can be written as scalar product between the participating
operators of angular momentum. This corresponds to the extensively discussed
Heisenberg model

~ 1
H:—;JUJi-Jj+hg1uBXi:Ji-Bo, (4.138)
from which one knows in the meantime that, in many cases, it comes to very realistic

statements about magnetic properties of insulators. One can find microscopic
reasons for the operator (4.138) and, in particular, for the so-called exchange
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integrals ?,7, which, however, we will not present here in detail. We restrict
ourselves only to the remark that the coupling constants J;;,

-~

Ti=Ti: Ji=0, (4.139)

are due to an only quantum-mechanically justifiable exchange interaction. The
Heisenberg model finds its best realizations among magnetic insulators such as

EuO, EuS, CdCr;Ses, HgCr;Sey,... d=3)
K2CuF4, CI'BI’3, . (d = 2) s
CsCuCls, ... d=1).

But also in magnetic metals like Gadolinium, the magnetism is due to localized
moments. These materials are successfully described by this model, as long as
only their purely magnetic properties are concerned. In spite of its rather simple
structure, the Heisenberg model could exactly be solved up to now only for a few
special cases. In general, approximations cannot be avoided. We will here perform
the really simplest approximation, the so-called mean-field approximation, because
this proves to be equivalent to the Landau theory.

At first we bring the model-Hamilton operator (4.138) by the use of (4.139) into a
somewhat different form:

. . 1
H==>"Ty(JTI7 + ) + § 8 usBo Y J7 . (4.140)
ij i

The homogeneous field By defines the z-direction (By = Boe;). The mean-field
approximation now consists in a linearization of the operator products. In the
following still exact expression for the product of two operators A and B,

AB=(A—(A))(B— (B)) +A(B) + (A)B — (A)(B) .

one neglects the first summand which represents the fluctuations of the operators A,
B around their mean values:

~~ MFA ~ ~ ~ ~

AB =5 A(B) + (A)B — (A)(B) . (4.141)

If one applies this approximation to the operator products in (4.140), then just the
‘exchange terms of the angular momentum’ are suppressed,

o, (4.142)
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since for reasons of the angular-momentum conservation it must be
(= )y=0 Vi.

It thus remains:

H— =3 T5(F0) + U +
ij

1
g/ usBo Y J; + D(T. Bo) .

D(T, By) is a temperature-dependent and a field-dependent number, i.e. not an
operator,

D(T.Bo) = ) _T{J5) ;) «

iy

which for our purposes can be neglected here. In any case, it would later drop
out during the calculation of the magnetization.—We concentrate ourselves in the
following on the homogeneous ferromagnet, for which translational symmetry can
be assumed in the form

(3 = () Vi.

If one further defines
To=>Ti=> Ty, (4.143)
i J

the Heisenberg-Hamilton operator (4.138, 4.140) in the mean-field approximation
reads:

N
1
Hypa = 581 1B (Bo + Bex) ;Jf . (4.144)
B, is an effective field, which is called the ‘exchange field’:

~ h
B.. = —2(J%)J, .
&8s 4B

It turns out to be proportional to the magnetization,

M= N I(JZ>
= VgJMBh )
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so that we can write:

B = poAM (4.145)
Vo 2J0R?
N po(gs us)?

The mean-field version (4.144) of the Heisenberg-Hamilton operator (4.138) obvi-
ously has the same structure as the Hamilton operator (4.125) of a paramagnet. The
many-particle problem has reduced into a one-particle one. The influence of the
particle interactions is simulated, to a first approximation, by an effective magnetic
field, which must be determined self-consistently, since it depends by itself on the
magnetization of the system. We can accordingly adopt all the results of the last
subsection. For the magnetization we get an expression of the form (4.127):

M(T, Bo) = MoB;(Bgs it (Bo + Bey)) . (4.146)

We are only interested in the spontaneous magnetization, since a phase transition is
to be expected exclusively in the zero-field:

Ms(T) = M(T.0) = MoB,(Bg, tropst AMs) . (4.147)

This is an implicit conditional equation for Ms. Because of (4.133), Ms = 0
(paramagnetism!) is always a solution. The question is, whether and under which
conditions there exists an additional solution Ms # 0. In an illustrative manner, this
can graphically be discussed (see Weiss ferromagnet, subsection 1.4.4 in Vol. 5),
when one plots the left-hand side and the right-hand side of (4.147) both as functions
of My searching for intersection points (Fig.4.21). There obviously exists such an
Mg # 0-solution, when the initial slope of the right-hand side of Eq. (4.147) is
greater than 1:

(4.132) J+1

d
MyB JAM, M JA
ang, MoBs (Bgs mopsJ AMs) oo 3 o(Bgs opsJA)
@128 NJ+ 1 2 A
vV 3 B (gJ MB) Mo T
Fig. 4.21 Graphic solution y y=Ms

for the spontaneous
magnetization of a U A — = L.
Heisenberg ferromagnet in y=M,B,
the mean-field approximation |




4.3 Classical Theories 327

C is the Curie constant defined in (4.136). The slope of MyB; increases with
decreasing temperature. For all T < T¢ there exists a non-trivial solution for
the spontaneous magnetization, where the Curie temperature 7¢ results from the
requirement

A
C. Z1eTc=AC. (4.148)
Tc

One easily realizes that, as soon as a solution Mg # 0 exists, this will be more stable
compared to the always present Mg = O-solution. Accordingly, at the temperature
T = Tc a phase transition indeed takes place:

T < Tc: ferromagnetism (Ms # 0) ,
T > Tc: paramagnetism (Ms = 0) .

However, it must be considered as a serious shortcoming of the mean-field approxi-
mation that it indicates this phase transition independently of the lattice dimension
d, already as soon as Jo, and therewith A are unequal zero. This result strongly
conflicts with the experiment as well as with a few exact model calculations, but is
typical for all the classical theories, in particular also for the Landau theory.

Finally we will derive a characteristic result of the mean-field approximation, which

concerns the susceptibility yr in the paramagnetic phase (7' > T¢) for By 501t
then holds in any case

BgrusJ(Bo + Bex) < 1, (4.149)

so that the magnetization (4.146) can be simplified when one uses the expan-
sion (4.132) for the Brillouin function:

N J+1
M(T,By) =~ (VgJMBJ) 3J Bgr usJ(By + Bex)

(4.136) C T

4.148

=9 ™ Byt "CM(T.By).
woT T

c 1
M(T,By) = — MOBO. (4.150)

The expression for the susceptibility, which results from that,

BM) C
XT = Ko = , 4.151)
(aBO T.By—>
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Fig. 4.22 High-temperature ~1
behavior of the inverse XT para
isothermal susceptibility of,
respectively, a paramagnet
and a ferromagnet in its
paramagnetic phase. The oS
broken line shows a typical ?‘?,

experimental course Tc (] T

ferro

is called Curie-Weiss law. This is, at least for high temperatures, experimentally
excellently confirmed. The inverse susceptibility shows in every case a linear high-
temperature behavior (Fig. 4.22). The extrapolation of this linear behavior onto the
T-axis defines the
paramagnetic Curie temperature ©

In the mean-field approximation ® is identical to T¢. In the experiment, ® is always
a bit higher than T¢. According to (4.137) one can consider the paramagnet as a
limiting case of the ferromagnet with T¢c = 0 (Fig. 4.22).

We will extend the expansion (4.150) by a further step, but we will thereby now

. . . . .. . <
presume that the magnetic system is in its critical region (T — T¢, By JO0M~
Ms)I

J+1
Ms ~ Mo[ 3J Bgs pusJ (Bo + Bex)

JH+ 1272427 +1 3
~ 4 3072 (Bgs 1487 (B + Bex)) } :
By can always be chosen so that

BO < Bex - A/JLOZWS

can be assumed. Therefore, we can neglect, in the last term of the bracket, By in
relation to Bey:

M “136) C By + TCM
s & 0T ot - Ms
2242J+1 C 2
— J AMs)? .
3072 MoT('BgJ ud) (oAMs)

This can also be written as follows:

2 4b
By ~ ms (Va(T) + V(f)mg) . (4.152)
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ms = VMs is thereby the spontaneous magnetic moment. Furthermore, the
following abbreviations were used:

a(T) = ao (T — Tc); ap = gg . (4.153)
272 +2J + 1 IN? [ poTe \?
b(T) = +2J + 87 4B Kolc . (4.154)
1202 ke T C

In the critical region it can be taken b(T) =~ b(Tc) = b > 0.

ms = VMs corresponds to the order parameter ¢ of the Landau theory. By is the
force  which is conjugate to mg.

Equation (4.152) is therewith the exact counterpart to the conditional equa-
tion (4.112) for the order parameter in the Landau theory. The equivalence of
the mean-field approximation of the Heisenberg model (4.144) with the Landau
theory is thus shown. By the example of the ferromagnet we have been able to
demonstrate a microscopic realization of the more general Landau theory. Above
all, the characteristics of the approximation thereby became clear, which consists in
the neglect of fluctuations (4.141).

Because of the equivalence of (4.112) and (4.152), we can identify, without
further calculation, the critical exponents of the ferromagnet in the mean-field
approximation with those of the Landau theory:

1
,3:2, §=3, y=vy =1, a=ad =0. (4.155)

y = 1 was explicitly shown with (4.151). The Landau theory yields for the
susceptibility in the paramagnetic phase the expression (4.115), where the constant
is to be chosen as k = o (cf. the yr-definitions (4.100) and (4.151)). This means:

Mo 1

AT = ZaoT—TC ’

If one inserts into this Eq. (4.153) for ay, then it results exactly the Curie-Weiss
law (4.151). That confirms once more the equivalence of the two theories.

It is recommended to the reader, as an exercise, to explicitly re-calculate the other
exponents of the ferromagnet in (4.155).

4.3.7 Van der Waals Gas

In the introduction of this chapter we have marked the dissertation thesis of van
der Waals on the real gas (gas-liquid) as the hour of birth of the new-age theory of
phase transition. Because of this, we should still give some thought to the fitting
of this theory into the context of the considerations of this chapter. The van der
Waals model was already the topic of extensive considerations in Vol. 5 of this
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basic course in Theoretical Physics, which we will not repeat here. Instead, we
are now mainly focussed on the thermodynamic equivalence of the model with
the just discussed mean-field approximation of the Heisenberg ferromagnet and
therewith also with the more general Landau theory. The typical of the mean-
field approximation consists in replacing the microscopic particle interactions by an
effective, infinitely long-range magnetic field, along which the localized moments
then have to orient themselves independently of each other. By this, the actual many-
particle problem becomes a one-particle problem, being therewith solvable. We will
now show that also the van der Waals equation of state ((1.14), Vol. 5) can be derived
by the introduction of a mean field.

We think of a real gas, whose properties are affected by two-particle interactions.
A typical interaction potential, as for instance that by Lennard-Jones,

wo=wf(?)2()]

possesses a repulsive ‘hard core’-region, a minimum in the attractive part, after
which very rapidly drops down to zero with increasing distance r of the interaction
partners (Fig. 4.23). In a rough approximation the entirety of all particle interactions
will now be replaced by an average infinitely long-range potential field ¢ (Fig. 4.24).
The single particle thus moves in a homogeneous mean field built by all the other
particles,

oo} ifr<r,
o(r) = (4.156)
—@o ifr>ry,

Fig. 4.23 Pair-interaction )
potential as function of the
particle distance

—pop---

Fig. 4.24 Strongly simplified —

pair-interaction potential as a ¢

function of the particle

distance

o
_ r
_¢0 I
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where of course a ‘hard core’ remains to be taken into consideration, because the
classical particles can not approach each other arbitrarily closely, because of their
finite volumes. In a magnetic system, the rigid arrangement of the spins on the lattice
correspond to the ‘hard core’.
But if the effective field is built up by all the other particles, then the constant ¢,
should be proportional also to the particle density N/V:

a N an?

- =" 4.157
NV NV @157

Yo

a is an unknown coefficient, N, is the Avogadro number ((1.8), Vol. 5), and n =
N /N, is the number of moles in the considered gas. The classical partition function
Zy will factorize because of the missing particle interactions,

/d3p /d3r exp[—ﬁ (;’; +(p(r)):|§N,

where we are interested only in the spatial part, which can easily be calculated
with (4.156):

Iy ~

Zy ~ [(V - nb)eﬁ‘p"]N .
Here
Vmin =nb

means the entirety of all the ‘hard core’-volumes. b is thus the ‘proper volume’ of
all particles of a mole. We now can formulate the pressure of the gas:

=— oF —kTaan
P==\av), =™ \av "),

1+ (V—nb)B dg,/0V =NkBT( 1 ﬁanz)

= NkgT _
B V —nb V_nb NV

But that is just the van der Waals equation of state ((1.14), Vol. 5):
an?
(p+ Vz)(V—nb) = NkgT = nRT . (4.158)

It is shown therewith that the van der Waals model indeed corresponds to a mean-
field approximation and must therefore be ascribed to the classical theories. We
have calculated the critical exponents of the van der Waals gas as exercise 4.3.8 in
Vol. 5. They are identical to those of the Landau theory (Sect. 4.3.3).
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4.3.8 Pair Correlation and Structure Factor

In this subsection we will consider a further example of a classical theory,
namely the Ornstein-Zernike theory. It refers to the gas-liquid system, and thereby
especially to the density-correlation function g(r,r’), which is also called pair
correlation, which we got to know already with (4.10) and (4.96). We therefore
know already that it plays a decisive role in connection with critical phenomena:

3(r.r) = {(20) = (1)) () = (n(x'))))
= (n(r) - n(r)) —n*. (4.159)

n(r) is the microscopic particle density:
N
n(r) = Z S(r—R;) . (4.160)
i=1

(n(r)n(r’ )) can be understood as the conditional probability to find a particle at the
position r, if there is definitely another particle at the position r’. The pair correlation
by itself represents a measure for the correlation between the deviations of the
particle density n(r) from its average value (n(r)) at the positions r and r'.—We
will presume a homogeneous system:

(N)

(n))=n= v

: gr,r)y =g(r—r). (4.161)
The exact form of g(r, r’) of course depends on the type of the particle interaction.
However, it holds always:

(n(r)n(r’)) — nz,

[r—r’|—>o00

gr,ry — 0.

[r—r’|—>00

For infinitely large distances |r — r'|, the events at r and r’ are no longer correlated,
i.e., they are independent of each other.

The pair correlation can be associated with the compressibility «7 of the fluid
system. The latter could be connected in Eq. (1.200) with the particle fluctuations:

ke _ (N = (N)? (V= (N))?)

O T W)

K(TO) = BV/(N) = 1/p is thereby the compressibility of the ideal gas. We have
previously used this formula, in order to prove the equivalence of the statistical
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descriptions (canonical and grand-canonical ensembles). Here we are interested in
another connection:

(v = )?) = / &r / &7 ((n(0) = (n(x) (') = (n(x'))))

= /d3r /d3r’g(|r—r/|) = v/d3rg(r).

This leads to the analog of the fluctuation-dissipation theorem (4.16) for the fluid
system:

1
K(g = /d3rg(r). (4.162)
o n
T v

A diverging kr for T — T¢ is conceivable only with a diverging range of the
correlation, as we have already realized in connection with (4.16) for the special
example of the Ising-spin system.

The spatial Fourier transform of the pair correlation is the static structure factor:

S(q) = / dre " g(r) . (4.163)

This quantity is directly accessible in the experiment, e.g. via the scattering of
radiation (X-rays, neutrons, light) on the liquid or on the gas. If we denote with kg
(k) the wave vector of the incident (scattered) radiation, and with q the momentum
transfer in the case of quasi-elastic scattering (Fig. 4.25),

lko| ~ |ks| = &,

then we have at a scattering angle v
L0
|q| = 2ksin 5 (4.164)

Let I(q) be the intensity of the radiation scattered by q, and f;(q) be the scattering
amplitude for the corresponding scattering at the i-th particle. The ‘scattering
ability’ for each of the N identical particles each is the same. The scattering
amplitudes can therefore differ at most by a phase factor:

fil@) = fil@e &)

Fig. 4.25 Definition of the k

; A
scattering angle for Sﬁ

quasi-elastic scattering
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For the scattered intensity it then holds ((9.14), Vol. 7):

I(q) ~ < ‘ > f(@ 2> = <Zﬁ(q)f,~* (q)>
i ij
~ i@ )
iy

In the case of missing particle correlations we would have:

I(q) ~ (N) [fo(q)|* .
The intermediate result
1(q) _ 1 < —iq-(R,-—Rj)>
ho(@ ~ (V) Zde

can be further reformulated:

I(q) _ 1 3 3./ —iq-(r—r’)
Io(q) (N)/dr/dre

4 Phase Transitions

.<(;5(r— Ri))(;‘g("' - R"))>

(]10 / d’r / &*r e n(r)n(r))

1 . .
@159 /d3re_’q'rg(r) + 11/d3re_"l'r )
n

The second summand only concerns the non-deflected radiation,

n/d‘%re_"q"r = (N)é(q) .

and is therefore normally left out. We now recognize with (4.163) the connection

between the scattered intensity and the static structure factor:

I(q 1
@~ @

(4.165)

S(q) thus describes how the intensity /(q) of the radiation, which is scattered by
q, deviates from the intensity, which would come out in the absence of particle
correlations. The structure factor represents therewith a measure of the influence of

the particle correlations.
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If one combines (4.165) and (4.162),

(@) _ kr

im = , 4.166
B fo(@) (3160

then one sees that the criticality of the compressibility leads to an enormous increase
of the scattered intensity for small deflections. This phenomenon is experimentally
observable as the so-called critical opalescence.

4.3.9 Ornstein-Zernike Theory

The critical behavior of the correlation function g(r) will now be investigated.
According to (4.12) and (4.32) it is to be expected:

exp(— o/m)
s~ L5

The temperature-dependence of the correlation length,

(—e)™, TS Tc,
£(T) ~ c

—V . >
& s 1fT—>Tc,

defines the critical exponents v and v’. In the following, we are interested in a
determination of the exponents v, v’, and 7 for the fluid system, which are accessible
only with some difficulty. For this purpose we reformulate the pair correlation a bit:

g(r—1') = (n(®)n(r)) —n* = < > S(r—R,-)S(r/—Rj)> —n’
ij

i
= 8(r—r’)< Z 8(r—Ri)> + < Z S(r—R;)8(r'— j)> —n*.
i ij
In the last step we have extracted the self-correlation function (i = j). We define,
1 i#j
I'r—r) = n2<Z8(r—Ri)8(r’—Rj)>—l, (4.167)
i

and obtain:

gr—r)=nd(r—r)+n’Tr—-r). (4.168)



336 4 Phase Transitions

The criticality of g transfers to I'. For the following series expansions it is therefore
recommendable to introduce the direct correlation function D(r — r’):

IF'r—r)=Dr—r)+n / &r" Dr — ") — ). (4.169)

The reason for the introduction of D becomes evident when one Fourier-transforms
the so-called Ornstein-Zernike integral equation (4.169) by the use of the
convolution theorem ((4.188), Vol. 3):

r(g) = / #rT(m)e ™ = D(q) + nD(QT(q) -

This means:

I'(q)

D@= ira-

(4.170)

For T — oo the correlation I' vanishes (I'(q) — 0), so that D(q) =~ I'(q). For
T — Tc T diverges (I'(q = 0) — o0), but D remains finite (D(q = 0) ~ 1/n).
Contrary to the other correlations D thus does not become critical, so that one can
assume that this function can be expanded at each temperature, i.e. also at T = T,
as a Taylor series around g = 0:

D(q) = D(0) + Y _ cuq” . 4.171)

a=1

This formulation presumes, in addition, an isotropic system, so that angle-

dependences are not to be taken into account. Because of D(r) = D(r) and
therewith
(o 1o [ T
Co = D(q) = 27 / dx / dre” 2 D(r)
a! | 0g” g=0 o!| 9g”
-1 0 q=0
o +1 0o
=2r (_l') /dxx“/drr““D(r)
o!
~1 0

all the coefficients ¢, with odd « are zero:

D(q) = D(q) = D(0) + Y _ cauq™ .

a=1
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The region of small wave-number transfers is of special interest. The Ornstein-
Zernike approximation therefore consists in terminating the expansion of D(q)
after the first non-vanishing term:

D(q) ~ D(0) + c2q” . (4.172)

We use it to calculate the static structure factor, for which we get with (4.163),
(4.168), and (4.170):

n
S(q) = T(q) = .
(@) =n+n"T(q) | — nD(q)
With the abbreviation
2 —ncy
= 4.173
s 1 —nD(0) ( )
and the Ornstein-Zernike approximation (4.172) one finds:
1 1 @ies) 1(q)
S(q) ~ — ='n . (4.174)
Y R A )

The scattered intensity thus exhibits at ¢ = 0 a Lorentz peak, whose half width
is obviously given by £~!. That the quantity £ defined in (4.173) is indeed related
to the correlation length one recognizes after inverse transformation into the three-
dimensional (d = 3) position space (Exercise 4.3.9):

2 _r
o) = =7 exp (=) . (4.175)
oV r

In the Ornstein-Zernike approximation the pair correlation has therewith exactly the
form (4.12). The other way round, one ascribes to every system, whose correlation
function has the structure (4.175), an Ornstein-Zernike behavior. Note that with
the transformation from (4.174) to (4.175) it is integrated over all wave vectors (,
which makes the Ornstein-Zernike approximation (4.172) somewhat questionable.
The comparison of (4.175) with (4.32) fixes the critical exponent n (d = 3):

n=20. (4.176)
Strictly speaking, this result was of course to be expected, since the exponent 7

actually characterizes just the deviation from the Ornstein-Zernike behavior.
For fixing the exponents v and v" we use (4.174) and (4.166):

£2 = —28(0) = —nc; K(g) .
fer
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Fig. 4.26 Prediction of the Io(q)
Ornstein-Zernike theory with Tq)
respect to the inverse

scattered intensity when one

approaches the critical point

’T9 TC

£2 therefore becomes critical in the same manner as the compressibility so that,
consequently, it must be

") = ! y? . (4.177)
2

Equations (4.176) and (4.177) correspond to the statements (4.116), (4.118),
and (4.119) of the superordinate Landau theory.
The correlation length & is experimentally observable by the scattered light intensity
I(g). Because of (4.174) the plot of Iy(¢)/I(g) as function of ¢ (Fig.4.26) should
yield a straight line with the slope —nc, (7)) and an axis intercept —nc, /£2. The latter
approaches zero for T — Tc.—These predictions of the Ornstein-Zernike theory are
qualitatively very well confirmed by the experiment.

4.3.10 Exercises

Exercise 4.3.1
Show that the internal energy of the van der Waals gas is of the form

Uur.v) =f(1) —ar‘lj ,

where f(T) is a not in detail determined function of the temperature. Let the mole
number n, and therewith also the particle number N be constant. Calculate the
entropy S(7, V) and therewith the latent heat AQ = T,(S¢ — SL) at the phase
transition!

Exercise 4.3.2
A ferromagnetic solid is described by the Heisenberg model of interacting localized
spins S; in the homogeneous magnetic field B = Be;:

H=-Y 18-S —2ugB» S:.
ij i
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These are thought to be § = é-spins, whose exchange interactions are restricted to
next neighbors:

7o = J if i and j next neighbors
/ 0 otherwise

1. Introduce as ‘fest system’ the paramagnet H* from Exercise 2.3.9:
H* = —2uB* ) &
i

B*: ‘mean field’ (variational parameter!)
Calculate therewith by using (2.139)

F<F*+ (H—H")*=F*

an upper boundary F* for the free energy F of the spin system.

2. Calculate the optimal mean field Bj as that field B*, which makes F* to the best
possible approximation for F.

3. Define with

1
kBTC = ZZJ

(z: number of next neighbors of a given lattice point) the Curie temperature 7¢.
Show that there is a phase transition at T¢:

T < Tc : ferromagnetism

T > Tc : paramagnetism
4. Show that for T > Tc, B — 07 the susceptibility

d
0(T) = M(T.B)|;_,

D
= 2MB 8B (SZ> |B=0

(M(T, B): magnetization) fulfills the Curie-Weiss law

1
T) ~
x(T) T Te
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Exercise 4.3.3
Calculate the critical exponents B, y, y’, and § of the van der Waals gas:

1. Show at first that the van der Waals-equation of state, by the use of the reduced
quantities

—1; e= -1,

T
T:
can be written as follows:

pr(2+ 7V +8V2 +3V)) = =3V) + 8e (1 + 2V, + V?) .

2. How does the reduced volume V; behave for T S Tcand T > Tc?
. Determine the critical exponent f.
4. Show that it holds on the critical isotherm

(O8]

3 7
== V1= Vi4...
P 2f( ) )

5. Determine the critical exponent §.
6. Derive with the compressibility k7 the values for the critical exponents y and y’.
What can be said about the critical amplitudes C and C"?

Exercise 4.3.4
Investigate the critical behavior of the isobaric thermal expansion coefficient

1 (oV
B =
v\air/,
for the van der Waals gas.

Exercise 4.3.5
Discuss the critical behavior of the Weiss ferromagnet. This obeys the equation of
state ((1.4.4), Vol. 5):

By + ApuoM
M:MOL(m 0+ Alo )

ksT

1. Show that, with the reduced quantities

~ M m By T-—T.
M = . b= e =
M, kg T T.
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(m: magnetic moment; My = ]xm: saturation magnetization), the equation of
state can be written as follows:

(L(x) = cothx — )1(: Langevin function). It further holds T, = AC with

C— N m?
ROy 3k

2. Calculate the critical exponent f.

. What is the value of the critical exponent §?

4. Derive the critical exponents y, Y’ and determine the ratio C/C’ of the critical
amplitudes.

Exercise 4.3.6
The Landau theory for the homogeneous ferromagnet leads, in the critical region, to
the following ansatz of the free energy:

(O8]

F(T,m) = Loy(T)m”
n=0

Ly(T) =Y Ly(T—Tcy .

J=0

Iyj: constants; Tc: Curie temperature

1. Determine the equation of state
By = Bo(T,m) (Bo = poH). (1)

2. Calculate the susceptibility

_ Mo (Om
="t (aBO)T_xTa,m) @)

and show that from the experimentally observed divergence of yr for T — Tc it
must necessarily follow

lo=0. (3)
3. Calculate the critical exponents

B,y,y and § )]



342 4 Phase Transitions

under the presumption:
l40>0;1217é0;1027é0 (5)

Can l4 > 0 be justified?

Exercise 4.3.7
The Landau theory of the homogeneous ferromagnet leads to the following ansatz
for the free energy in the critical region (see Exercise 4.3.6):

F(T.m) = Lyy(T)m™
n=0

L(T) = ) LT —Tcy

J=0

Iyj: constants; Tc: Curie temperature

Calculate the heat capacity
C T ( as )
H =
I/ o)

Show that it performs at the Curie point 7¢ a finite jump ACy 5 0! Is this also true
for C,,? What follows for the critical exponents & and «’?

Exercise 4.3.8

Consider as in Exercise 4.3.6 the homogeneous ferromagnet in the Landau for-
mulation. A certain arbitrariness seems to be due to the choice of the expansion
coefficients I,,. [o = 0 is necessary according to Exercise 4.3.6. Which values
result for the critical exponents B, v, ¥/, §, «, &, if it is additionally assumed

140:0, 160>0?

Discuss in particular the thermodynamically exact inequality: y(6 + 1) > (2 —
a)(§ —1).

Exercise 4.3.9
Show that the expression (4.175) follows by Fourier transformation from
Eq. (4.174)!
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4.4 Ising Model

With the Hamilton operator (4.138) we have got to know the Heisenberg model,
which is known today to be able to provide a rather realistic description of
ferromagnets and antiferromagnets, whose spontaneous magnetization results from
strictly localized magnetic moments (EuO, EuS, EuTe, Gd,...). The Heisenberg
model allows for further specializations, if one decomposes the product of the
angular-momentum operators J; - J; into weighted components:

a=f=y=1 Heisenberg model,
a=0=1; y=0:XY-model,
o =p=0; y=I1:Ising model.

In this subsection we will concentrate ourselves on the Ising model, which was
already mentioned several times in the preceding subsections. Its importance lies
even today in the fact that it represents so far the only quasi-realistic model of an
interacting many-particle system, which shows a phase transition and can be treated,
within certain limits, in a rigorous mathematical manner.

The idea of the model has already been briefly interpreted in connection with
Eq. (4.1). At each of N lattice points, which build a d-dimensional periodic lattice
(d = 1,2, 3), there is a permanent magnetic moment,

wi=puS;, 8=l i=1,2,...,N, (4.178)

which can adopt only two possibilities of orientation relative to an somewhat given
direction. That is regulated by the classical spin variable S; = =£1. The localized
moments interact with each other; otherwise there of course could not be expected
a phase transition. Let us denote the coupling constants, a bit more generally as
in (4.1), by J;;/ w?. The Hamilton function then reads:

H=— J;SiSi—uBo» Si. (4.179)
- ,-

The magnetic induction By = (0, 0, By) defines the z-direction, relative to which the
moments will align themselves parallel or antiparallel.

The significance of the Ising model is, not the least, due to the multitude of exact
results, atypical for many-particle models. The one-dimensional (d = 1) model with
and without field By can rigorously be treated (Sects. 4.4.1, 4.4.2), if the interactions
Jjj are restricted to next neighbors, only. The d = 2-model is also mathematically
strictly tractable (Sect. 4.4.4), though only for By = 0. The exact solution for the
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three-dimensional (d = 3)-Ising system is so far not available. There exist, however,
so-called extrapolation methods, the results of which are judged as quasi-exact.
The application spectrum of the Ising model is of rather multifaceted nature.
In the first place, it is, according to the original objective, a simple model for
magnetic insulators. The restriction to the z-component of the spin vectors, though,
is reasonable only for systems with strongly uniaxial symmetry, for which the
permanent moments are fixed to a special direction in space (DyPOy4, CoCs3Cl,...).
In the region of magnetism, the Ising model is therefore today rather seldom applied.
In fact, it has developed into a general demonstration model of Statistical Physics.
As certainly the simplest microscopic model, which exhibits a second-order phase
transition for d > 2, it is in the center of many considerations and investigations
concerning the general theory of phase transitions and critical phenomena.

4.4.1 The One-Dimensional Ising Model (By = 0)

We are interested in finding out whether or not the d = 1-Ising spin system
(Fig.4.27) exhibits a phase transition, i.e., whether a critical temperature T¢
exists, below which the spins order themselves spontaneously. Therefore, at first,
no magnetic field is switched on. The interaction may be restricted to directly
neighboring spins: J;;+1 — J;.

N—1
H=-Y ISS . (4.180)

i=1

We calculate with the Hamilton function the classical canonical partition function.
Because in the latter H appears only in the form of exp(—BH) the following
abbreviation

Ji

= " =BJ 4.181
ks T B ( )

Ji
turns out to be reasonable. Each Ising spin S; has two possibilities for its orientation.

There are therefore altogether 2V different spin arrangements and accordingly 2V
different states of the system, over which it must be summed in the partition

Fig. 4.27 Symbolic Jia J;
representation of the
Ising-spin chain

Jin

i—1 i i+l i+2
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function:
N—1
Zy = Zy(jiojos - dnm1) = ) ) o> exp (ZjiSiSi+l) -
St S SN i=1

We determine Zy by a recursion formula, for the derivation of which we extend the
chain by one Ising spin:

N—1
Zny1 = Z---Zexp(ZjiSiSi+l) Z exp (jNSNSN+1) .
S| Sy i=1

SN+1
The factor to the right can easily be calculated:

+1
Z exp (jNSNSN+1) = 2 cosh(jySy) = 2cosh(jn) -
SN+1

We have therewith already found the mentioned recursion formula,
Zn+1 = 2Zy cosh(jy) ,

which leads to

N
Zy1 = 2,2V | [ cosh(js)

i=1

where Z; means the partition function of the single spin. The latter has two eigen-
states (|1), [{)), both with zero energy, because the single spin has no possibility of
interaction:

Zi=) & =2. (4.182)
S1

The partition function of the N-spin Ising system on the one-dimensional lattice is
therewith determined:

N—1
Zy(T) =2V [ [ cosh(BJ:) . (4.183)
i=1

This function further simplifies for the usual special case J; = J Vi to:

Zn(T) = 2Y cosh 1 (BJ) . (4.184)
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Using the partition function we calculate in the next step the spin correlation
function (4.11) (J > 0):

(SiSia) = Z(S Sitj) exp[ijS SWH}

N s m=1

Z(S Si)(Siss Siva): - +(Sitj1 Sivi) exl-. ]

—_—

s PR i

o (a d 0 )Z
Zy \ 9ji dji+1  Ofitj—1 N

coshjy - --sinhj; - - -sinhjj4 ;1 - --cosh jy_
coshjj - --coshyj; - - - cosh jipj—1 - - -coshjy—1 -

For (S;Si+;) we have therewith found:

(S:Si4j) = l—[tanh(ﬁJH_k D . (4.185)
k=1

In spite of the extremely short-range interaction (next neighbors!) there result
nevertheless long-range correlations between the Ising spins. For the usual special
case J; = J Vi the spin correlation becomes independent of i, and depends only on
the distance j between the two spins:

(SiSix)) = tank/ (BJ) . (4.186)

We are now in a position to calculate the spontaneous magnetization of the
Ising chain, being therewith able to investigate the possibility of a phase transition
(Fig. 4.28). In the case of homogeneous interactions J; = J Vi the average value
(S;) = (S) is same for all i, possibly except for the edge points of the chain. We get
the spontaneous magnetization,

Ms(T) = p(S) ,
Fig. 4.28 Spontaneous Mg
magnetization of the linear
Ising chain I
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by the fact that it must hold in the infinitely large system

(SiSit) v (S} (Sies) = (S)*.
That means

M3(T) = p? lim (S;Si4)) - (4.187)
J—>00

Because it is always | tanh x| < 1 for x # oo, it follows after insertion of (4.186)
into (4.187):

0 forT>0,
M(T) = ort = (4.188)
u forT=0.

At finite temperatures a spontaneous magnetization is impossible in the one-
dimensional Ising model (Fig.4.28)! Consequently, there does not exist a phase
transition!

4.4.2 Transfer-Matrix Method

The one-dimensional Ising model, in the presence of an external magnetic field
(Bo#0), shall now be investigated. For the calculation of the partition function
we use the transfer-matrix method, which was introduced in 1944 by Onsager
for the solution of the two-dimensional Ising model. Because we will investigate
the two-dimensional model in Sect. 4.4.4 applying a graphical method, we will
demonstrate here the transfer-matrix method on the one-dimensional model. We
restrict ourselves again to next-neighbor interactions, which from the beginning
shall be same for all pairs of spins:

N N
i=1 i=1

We now use periodic boundary conditions by closing the linear spin chain to a ring:
Sn+1 =81 .
We have already previously worked out that such special boundary conditions do

not mean any restriction in the thermodynamic limit N — oo (see Sect. 4.5), but of
course can have certain effects for the finite system.
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For the calculation of the canonical partition function we now introduce the transfer
function:

1
T;i+1 = exp |:jSiSi+1 + 2b (S; + Si+1):| ) (4.190)
Because of the agreed periodic boundary conditions it can be written:

e P =Ti2Tos3 Ty,

Obviously there are for 7; ;4 four different spin combinations (S;==+1, S; ;=% 1),
by which the elements of the transfer matrix are calculated:

o (ot g
T= (e—f ef—b) . (4.191)

With the spin states,

ISi = +1) = (;) L si=—1) = (?) ,

one gets the relation,
(S| T | Siv1) = Tiir (4.192)

which helps to formulate the partition function:

Zy(T.Bo) = Y Y -+ TioTas- Ty
SN

St S

= > ASUIT [ S2)(Sa | T [ S)--(Sw | T | 1)
S1 SN

= (S| TV | 81) =TeT" .
N

Here the completeness of the spin states was exploited. The rrace is independent of
the basis which is used for the representation of the matrix. In its eigen-basis, T is
diagonal:

Zy(T,Bo) = TiT" = EY + EV . (4.193)

E and E_ are the two eigen-values of the 2 x 2-matrix (4.191)

det |T—E1| =0.



4.4 Ising Model 349

One easily finds:
Ei = ef[ coshb + \/ cosh> b — 2e=2% sinh(2j)} ) (4.194)

Because of E4 > E_ only E plays a role for the asymptotically large system
(thermodynamic limit):

E_ N
Zn(T, Bo) = EY, [1 + (E+) } P EY . (4.195)

When the field is switched off (By = 0) the eigen-values E+ simplify to

Ee el [1 + /1 —e (el — e—zj)] =el ke
0=

This means for the partition function:

Zy(T.,0) = 2" cosh™(BJ)[1 + tanh" (BJ)]
N N
1@ 2% cosh™ (BJ) (T #£0). (4.196)
The comparison with (4.184) confirms the equivalence of the results for the ring and

for the open chain in the case of the asymptotically large system. For a finite number
of spins, though, the special boundary conditions actually become noticeable.

4.4.3 Thermodynamics of the d = 1-Ising Model

At first, we will derive the thermal equation of state of the one-dimensional
Ising magnet. That can be done via the magnetic moment and the magnetization,
respectively:

1 1/ 9
M(T, By) = S; Je P = ( InZy(T. B )
<o>%§@;) b (o, M2vT.0))
It follows with (4.195):

N 1 9E,

M(T,By) = 8 E, 3B, °
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That is easily evaluated:

sinh(BuBo)

M(T,By) =N .
(50 : V/cosh®(BuBo) — 2¢=287 sinh(28J)

(4.197)

For all finite temperatures the magnetic moment (the magnetization) vanishes when
the field is switched off (By = 0) (Fig.4.29). As already stated in (4.188) there is no
spontaneous magnetization. The d = 1-Ising model is for all temperatures T # 0
paramagnetic.—For very strong fields By the magnetization runs into saturation
(Fig. 4.29):

M(T, By) ~ Nutanh(BuBy) — N .
The M-By-isotherms look very much like those of the ideal S = 1/2-paramagnet in
Sect. 4.3.5.
The free energy F of the field-free (By = 0) one-dimensional Ising model can
directly be read off from (4.196):
F(T) = —kgTInZy(T,0) = —NkgT In [2 cosh(BJ])] . (4.198)

With this function we calculate the entropy S:

§ ==y = Nk {In [2cosh(B/)] - B/ tanh(B7)} . (4.199)

It fulfills the third law of Thermodynamics (Fig. 4.30)
Nk - =0.

S — Nks {BJ—BI} =0
Fig. 4.29 Isotherms of the

paramagnetic d = 1-Ising
model

Fig. 4.30 Temperature S Nk In2
behavior of the entropy of the B
d = 1-Ising model
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Fig. 4.31 Temperature Cg =0
behavior of the zero-field heat
capacity of the d = 1-Ising
model

For very high temperatures it results a thermal equivalence of all the 2" spin states.
That means (Fig. 4.30):

S —> kgIn2" = NkgIn?2 .
T—00

By the entropy we get the heat capacity:

aS) B B2
By=0

o P cosh?(B)) (4.200)

CB()=O =T (

Cgy=0 — 0 for T — 0 (Fig.4.31) is a further hint that the third law of
Thermodynamics is fulfilled.

For the calculation of the isothermal susceptibility yr we conveniently start at the
Sfluctuation-dissipation theorem (4.16), which we have actually derived there for the
Ising-spin system:

xrBo=0) = B’ 37 ((85) — (S)(S)

N .
U= B Z tankf (8J) .

Because of By = 0, the expectation values (S;) and (S;) vanish. The remaining sum
is just twice the geometric series except for the j = O-term :

N l+tanh(8J) N _,, ,
B, = 0) = 2 = I 4.201
xr(Bo ) v B o I —tanh(BJ) _ V B poe ( )

This expression agrees with the susceptibility in (4.13), which one finds with (4.197)
for By — 0. The susceptibility fulfills for high temperatures the Curie law (4.137)
of the paramagnet and diverges for 7 — 0 (Fig. 4.32).
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Fig. 4.32 Temperature
behavior of the inverse
isothermal susceptibility of
the d = 1-Ising model

Fig. 4.33 Two-dimensional
Ising-spin lattice with
isotropic spin coupling

4.4.4 Partition Function of the Two-Dimensional Ising Model

The evaluation of the d = 2-model turns out to be very much more complicated
than that of the one-dimensional system. However, since it is a problem statement
typical for the theory of phase transitions, we will perform the due derivations in
a very detailed manner. Thereby we will follow a method, which was proposed by
M. L. Glasser (Am. J. Phys. 38, 1033 (1970)).

Starting point is again the Hamilton function (4.179), where, however, only isotropic
next-neighbor interactions shall be taken into consideration (Fig.4.33). An external
field is not switched on (By = 0):

H=-])5S;. (4.202)
@)

The calculation will at first be performed for a finite system of N Ising-spins on a
quadratic lattice. The transition into the thermodynamic limit will be done only at
the end of the calculation. The summation in (4.202) runs over all pairs (i, j) of next
neighbors on the lattice. The objective is the calculation of the canonical partition
function:

Zy(T) = Z exp(—BH) . (4.203)
{8}

The summation comprises all the 2V spin configurations.
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We begin with a suitable high-temperature expansion of the partition function.
The spin variable can only take the values 41 or —1. It therefore holds for arbitrary
neZz:

(Sisj)zn =1 (SiSi)an

=85S .
When one uses this in the series expansion of the exponential function, it follows
immediately:

ePSiSi = cosh(BJ) + (S;S;) sinh(BJ) = cosh(,BJ)[l +v (SiSj)] .
By v we have introduced a variable convenient for high-temperature expansions:
v = tanh(8J) . (4.204)

On the quadratic lattice, each Ising-spin has four next neighbors. If one neglects
boundary effects, because later the transition to the infinitely large system is
performed anyway, then one counts 2N different pairs of next neighbors. One finds
therewith, rather directly, the following first intermediate result for the canonical
partition function:

2 = Y[

{si} ()

2N
= cosh™(B) ) [1 +v) 8.8,

{si} v=1

2N

+02 > (84,55,)(5:,5,) +} . (4.205)
v,u=1
by

In the next step the spin products are graphically represented by diagrams. The
interaction v corresponds to a solid line between respective lattice points (Fig. 4.34).
Each line carries the factor v and links two next neighbors. The points are called
vertexes. To each vertex an order can be ascribed, defined by the number of
interaction lines which are coupled to this point (Fig. 4.35). Thus there are the orders
1to4.

Fig. 4.34 Elementary i
module of the diagram
expansion for the canonical v

partition function of the <= v(§S;)

d = 2-Ising model j
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Fig. 4.35 Typical spin
products in the diagram j ¢—e

expansion for the canonical > VZ( $,5:)(S;5;)
partition function of the J
d = 2-Ising model P

ie - .
v v = VSIS S Sm)
. @ m

Fig. 4.36 Examples of

diagrams, which give a finite 1=8
contribution to the canonical

partition function of the

d = 2-Ising model I=4

In a typical spin product of (4.205),

Y81 (55)

{Si}

it is summed over all 2V spin configurations. If there appear in the product one or
more spins S with odd powers (1 or 3), the total expression vanishes, because then
there exists to each summand in {S;} a counterpart, which differs from it only by the
fact that S; = +1 is replaced by —S}. These terms compensate each other. When,
however, all spins appear in the above product even-numbered (two times or four
times), then the total product yields the value 41, and, after summation over all
spin configurations, the contribution 2. Therefore one can obviously write instead
of (4.205):

Zy(T) = 2V cosh™ (1)) "g' . (4.206)
=0

g1 is thereby the number of diagrams, which are built by / lines with exclusively
even vertexes (go = 1). Only closed polylines possess nothing but even vertexes
(Fig.4.36). ] = 4 is thus the lowest finite power of v in (4.206).

The remaining task consists in fixing g;. For this purpose, we introduce at first two
new terms:

Node: vertex of the fourth order (Fig. 4.37).
Loop: closed polyline without nodes.

In order to avoid later ambiguities, we agree upon a prescription how to unlock
nodes. That is sketched in Fig. 4.38. As shown, each node can be unlocked in three
different ways. The third variant we will call self-intersection (SIS). Each diagram
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Fig. 4.37 Node of a diagram
+ = o — ; —0 ;

Fig. 4.38 Prescription for the unlocking of nodes

]
= Q) e—/4 »Family® of 1 loop

[ ] .
o
b) .:j. »Family* of 2 loops

Ll

B

9] »Family“ of 1 loop

Fig. 4.39 Definition of a ‘family of loops’

with k nodes decays, according to this prescription, into 3* families of loops. We
present an example for k = 1 in Fig. 4.39.

The unlocking of the nodes leads of course to a substantial multiplication of the
number of diagrams, which can again be outweighed by the introduction of weight
factors n for loops and families, respectively:

3

n(loop) = (—1)"umber of SIS

n (famlly) — (_ l)number of SIS in the family .

In the sketched example in Fig.4.39 it is n(a) = —1, n(b) = +1, n(c) = +1. The
sum of the n’s is thus equal to 1! That can be generalized:

g1 = sum of the weights of all families of loops

of altogether / lines.
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This one understands as follows:

1. A diagram without nodes consists of one single loop or of a family of loops
without SIS, and is therefore counted with the weight = (—1)° = +1.

2. For a diagram with k nodes we have (f) possibilities to choose j nodes, which an
SIS should have after the unlocking. For each of the (k—j) nodes, which after the
unlocking are without SIS, there are two possibilities. Thus there are altogether
2k=i (II‘) possibilities to build from a diagram with k nodes a family of loops with

j self-intersections. Each of these families carries the weight (—1).—The total
weight of all families of loops, which can be built from a diagram with k nodes,
amounts to:

* (k
> (j)zk—f(—l)f =2-1DF=1.
j=0

After unlocking the nodes, according to the above prescription, the number of
diagrams has multiplied. The weight factors, however, take care for the fact that
all families of loops, which arise from a given diagram, yield the total weight +1.
The quantity g;, which was introduced for (4.206) as the number of diagrams built
up by [ lines with exclusively even vertexes, can now also be seen as sum of the
weights of all families of loops with altogether / lines.
We define in the next step:

D; = sum of the weights of all loops of [ lines.
Since each family is composed by one or more loops, g; can be expressed by D;:

(o]

1
=y . > DyD,--Dy: 1#0 (4.207)
n=1""1
Zl:l,:l

(go = 1). The product Dy Dy, ---D;, comprises all possible decompositions of a
family of [ lines into loops, where of course the constraint Y /; = [ must be
fulfilled. Summands in (4.207), which differ only by the sequence of the factors
(Dy,), describe the same family, therefore must be counted actually only once. This
is regulated by the factor (1/n!). The summation over # in (4.207) can formally run
up to infinity, since for /; < 4 D;, = 0, because loops with less than four lines do
not exist.

It still remains, however, to clarify a problem in connection with the representa-
tion (4.207). Since the /; summations are to be performed completely independently
of each other, at least except for the constraint Y [, = [, there will appear also
double occupancies of single lines (Fig. 4.40). These belong to non-existing loops
on the quadratic lattice, therefore do not appear in the initial equation (4.205). We
thus have to weight them in such a way that they do not yield any contribution.
Simply to extract them out from (4.207) would be too complicated. We agree to
treat a double occupancy as sketched in Fig. 4.41, i.e., to count them twice. In the
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111

Fig. 4.40 Double occupancy of lines in the diagram expansion for the canonical partition function
of the d = 2-Ising model

_++_ _+ +_; 0 e

Fig. 4.41 Resolving a double occupancy of lines in the diagram expansion for the canonical
partition function of the d = 2-Ising model

I ° ®
/ﬁ o 1 I n=HNH+1) =1 A n=-1
D4 D4 DS

Fig. 4.42 Example for the resolving of a double occupancy of lines in the diagram expansion for
the canonical partition function of the d = 2-Ising model

second version a self-intersection is produced, while in the first no self-interaction
is produced. The weights of the two types of diagrams thus compensate each other.
We can therefore formally take into consideration even the in principle forbidden
double occupancies in (4.207). An example is given in Fig. 4.42.

With this description, (4.207) can now be used, in order to get a further intermediate
result for the canonical partition function. We need in (4.206):

o
WSS D) ot)  a£0).

When we sum this expression over all / from 1 to oo, then all the /;-summations
become independent of each other. The constraint ) _ /; = / is then meaningless:

00 00 1 00 n 00
Zglvl =14+ Z n||: ZD[*UZ :| = exp[ ZD1U1:| .
1=0 n=1 =1 =1
We can now replace (4.206) by the new intermediate result:
o0
Zv(T) = 2" cosh®™ (BJ) exp [ ZD,M} . (4.208)
=1

It thus remains, because of Dy, to add together the weights of all the loops, which
can be built by / lines.
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Fig. 4.43 Introduction of
‘directed paths’ in the
diagram expansion for the
canonical partition function
of the d = 2-Ising model

The remaining task consists in counting the self-intersections within a loop. This can
be done in an elegant manner by the introduction of directed paths (Fig. 4.43). For
this purpose we represent the two-dimensional Ising-lattice in the complex plane,

Z=x1 +ixp,

with integral real and imaginary parts for the individual lattice points.
A single step p = (z, «) is defined by its starting point z and its

direction a=1,i,—1,—i,

so that z + « represents the endpoint of the step. A path from z to 7" in m steps is a
sequence of m single steps,

po = (20,@0), p1, P2+ s Pm—1 = (@n—1, Wm—1) .
with
0=2; Zitl =i+ o] m =2z .
In order to avoid turning points, we still require:
At 7 —0; .

For fixing D; we need the weight of a loop. This we will relate to the following
weight of the path:

n(path) = exp [l (arg My arg o )} . (4.209)
2 (o)) Op—1

Because of &;+1/a; = 1, %iit canbe

arg it =0, :I:ﬂ
o; 2

It represents the change of direction between the i-th and the (i + 1)-st single step.
arg(ai4+1/a;) = £ does not appear, because direct reversal steps shall be excluded.



4.4 Ising Model 359

We now introduce the matrix M,,, whose elements are defined as follows:

(p | M,, | ') = sum of the weights of all paths from p to p’

in m single steps.

The matrix element shall be zero, if p’ cannot be reached from p by m steps. Of
course, for m = m; + m;, it also holds:

P M| p') = (p | My, | P")P" | My | ')

P
= M, = My M,, .

The decomposition can be continued:
M, =M .

Since there are for N lattice sites and four possibilities for @ (boundary effects
neglected) 4N different single steps p, M| must be a 4N x 4N-matrix. However,
the matrix contains a lot of zeros, namely for all the p, p’, which are not bridgeable
by a single step.

The matrix M; has a direct relationship to the quantity D; we are actually interested
in:

1 1
D= — M =—_ TrM! . 4.210
i 21;(1” 1| p) 2l M ( )

One recognizes the validity of this relation as follows: At first, D; refers to loops,
i.e., to closed paths, so that only the diagonal elements p = p” will play a role. In the
sum over p each of the / points of the loop can be the starting point. Furthermore,
the loop can be run through in two different directions. This ambiguity is accounted
for by the factor 1/2/. In addition, for a closed path, the total angle of rotation is
always an integral multiple of 2sr. This means in every case

n(path) = £1 .

This statement can still be formulated a bit more precisely. If there is no self-
intersection or an even number of self-intersections, then the angle of rotation is
+27. In the case of an odd number of SIS the angle is zero. The examples plotted
in Fig. 4.44 may help to clarify this point (¢: total angle of rotation).

According to (4.209) we thus have

n(path) = —n(loop) ,
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e e E
@ Ly

0=0 mum p=-m

Fig. 4.44 Examples for the evaluation of directed paths

which explains the minus sign in (4.210). When the eigen-values my, my,. .., may of
the matrix M; are known, then we can write:

4N
TI‘MZI = Z(mj)l .
j=1

For (4.208) we need:

4N oo

> 1 (mv) 1 N
> Dzvl=—2§ » jz =2§:ln(1—vm,~)
=1 j=1

j=1 I=1
4N

—In []‘[(1 - vmj)l/zi| = In [ det(1l — vM;)]"? .
j=1

We have therewith found a further intermediate result for the partition function:
Zy(T) = 2V cosh™ (BJ)[ det(1l — vM)] /7 . (4.211)

To avoid edge points we now introduce periodic boundary conditions, which is
allowed only now, because otherwise the counting would have been erroneous. A
path, which takes course from the left edge to the right edge of the plane lattice,
would be on the torus, which originates by periodic boundary conditions, also a
loop.

The elements of the matrix M; read:

i o
(p|I M |p) =exp [2 arg } (1= 80—o')8tar - (4.212)

The first term explains itself by (4.209) as the weight of the single step, the second
prevents turning points, and the third takes care that the step from z to 7’ takes place
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in direction . By the boundary conditions translational symmetry is guaranteed.
The matrix element (4.212) will depend, for given «, ¢’, only on the distance z —
7. Therefore a Fourier transformation recommends itself, because the transformed
matrix M, will then be diagonal as function of the variable g, which is conjugate
to z:

N=NNyz=x1+ixy, xi=1,...,N; (i=12),

a=q+ig; =312, N,

~ 1 . . / /
(qa | My | q/a/) = Ze—l(qm-i-qzxz) (za | M, | Z/a/)el(qixrf'qéxz)

X1X2
X1%2
) , 1
_ 1 arg o
=e2 ¢ (1 - 80{,—&’)1\]2 E 8x1+Rea,xi
X1%2
X1%2
B 4 man € (@1¥+ a5 —qx1—q2x2)
X

= ebmEd (] — 50[,_“,)1;2 el

X1X2

_ei (qé—qg)xz ei (qi Rea+qé[ma)

. /
_ i(qiRea+qrIma) ! arg * _
=e )62 « (1 5a,_a/)8qqu 8612613 .

The matrix M 1 consists of 4 x 4 -blocks along the diagonal, and otherwise of only
Zeros:

(qa | My | g’y = 84y (e | m(q) | &), (4.213)

(@ | m(q) | o) = @Reataime barely (1 _g, )

With « in the order +1, +i, —1, —i as row index, and «’ accordingly as column
index, as well as with the abbreviations,

A=em*, Q) =", 0, =€,
the matrix m(q) reads:

01 AQ1 0 A*Qy
A*Qy QO AQ, O
= . 4214
D=0 g 0 Ao @2
/\Q; 0 A*Q; Q;
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For the partition function (4.211) the determinant

det(l — vM;) = det(ll — UM]) = l—[ det (]1 - vm(q))
q

is needed:

1/2
Zn(T) =2V costh(,BJ)l: ]_[ det (11— vm(q)):| ) (4.215)

q

Therewith we have reached our goal, because the determinant of the 4 x 4 -matrix is
rather easily determined:

12
Zn(T) = 2V costh(,BJ)[ l_[ {(1 4+ v%)? —2v (1 —v?)(cos g + cos qz)}i| .
q1.92

(4.216)

4.4.5 The Phase Transition

A possible phase transition becomes noticeable as some anomaly of a suitable
thermodynamic potential. We therefore calculate now by the canonical partition
function (4.216) the free energy. Because of the mandatory transition into the
thermodynamic limit, of course only the free energy per spin is interesting:

1
f(T) = lim (—kgTInZy(T)) = —kBT{ In2 + 21Incosh(BJ) (4.217)
N—oo N
: 1 2\2 2
+Nll)n;o N ng In[(1 +v*)* = 2v (1 —v?)(cosq; + cosqa)] ¢ -
1,92

The double sum can be turned into a double integral. Since in the g-space per raster
volume 27 /N; there is just one g;-value (i = 1,2; NiN, = N), the transition-
prescription reads:

91,92

2
N
dqidgs - -
Z —>4ﬁ2// q149>
0
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If one still uses

1
Incosh(BJ) = In =4 In(1 —v?)~2

1
V1—v?

2

1 2—2
L6522 /f dgidg; In(1 —v°)™= |

0

1402 5 ' , .
(1—v2) cosh®(2J) = (1 — sinh(28J))” + 2sinh(2B/) ,
2v
1 —v?

2 sinh(B8J) cosh(BJ) = sinh(28J) ,

then one gets the following expression for the free energy:

2

1
In2 + // dgdq; (4.218)
872
0

f(T) = —kgT

-In [(1 - sinh(Z,BJ))2 + sinh(Z,BJ)(Z — Ccosg] — cos qz)] } .

Even at a possible phase transition, the free energy remains continuous, but not the
derivatives. Unfortunately, the double integral can not further be treated analytically.
Something anomalous is actually to be expected only for the case that the argument
of the logarithm vanishes. But then both summands must be zero, in particular it
must be fulfilled

1L sinn 2 (4.219)
= sin , .
ksTc
whereby the critical temperature would be fixed:
o] In (1 4+ v2) = 0.4407 (4.220)
keTc 2 o ' '

That indeed at T it is a second-order phase transition we will analyze by an
estimation of the integral in (4.218). For this purpose we use the following Taylor
expansion around 7 = T¢:

sinh(28J) = sinh(2BcJ) + (T — Tc) cosh(2BcJ) (_ kZ; 2) 4.
BlC

_ 1 _ T_TC(ZIBQ]COSh(Z,BCJ)) +
Tc

:1_a8+...
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The constant a is of the order of magnitude 1:

24 V2
a = 2BcJ cosh(2Bct) = 0.8814° V2 _ 1.2465 .

142
According to (4.218) near T, the free energy should thus be of the form

2

1
In2 dq,d
n+8ﬂ2/fq1q2

0

f(T) ~ —kgT

‘In[a’e® + (1 — ag)(2 — cos g1 — cos qy)]

Only the double integral can become critical:

2

I(e) = // dgidg>In[a*e” + (1 — ag)(2 — cos g1 — cos q2)] .
0
The first derivative

2
da //‘ 2a%¢ —a (2 —cosq; — cosqy)
de

dand — —adx?
NG 262 L (1~ ag)(2 = cos g — cos qa) o0
0

does not show for T — T¢ (¢ — 0) any anomaly. The phase transition, if there is
any, is certainly not of first order.
However, the second derivative

2

2
//‘ dqldqza (cosq; + cosqy)

2 —cosq; —cosq;

d*1
de?

e—>0
0

2

dq,d
= —a*4n’ + 24° // N
2 —cosq; —cosq;

0

exhibits a logarithmic divergence. That one sees most clearly, when one investi-
gates the integral close to the lower integration limit,

1
2 —cosq) —CoSqy ~ —Z(CI%‘Fqg) ’
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and introduces plane polar coordinates:

g1 =qcosg, g =gqsing: dqidg, = qdqdy .
Then one can estimate:

2

‘dqlqu 1
) — | gdq , = Ing|, .
—C0Sqg] — COSqn q
0

0

The second derivative of I with respect to ¢ thus indeed diverges logarithmically for
e = 0 (T — Tc¢). That transfers to the second derivative of the free energy with
respect to the temperature, and therewith to the heat capacity:

oy

Como =T -

The two-dimensional Ising model undergoes a second-order phase transition at a
critical temperature T, which is defined by (4.220). The logarithmic divergence of
the heat capacity corresponds to a critical exponent:

a=0. (4.221)

The temperature behavior of the spontaneous magnetization Mg(7T) ultimately
justifies the assumption of a phase transition at 7 = T¢:

(1—sinh2pN)"*: T <1Tc,
Ms(T) = (4.222)
0: T>Tc.

Normally one would find the spontaneous magnetization by differentiating the
free energy with respect to the field with a subsequent limiting process By — 0.
However, since for the d = 2-model the free energy in a finite field (By # 0) could
not be calculated so far, one has to determine Mg(T) by the relation (4.187). Such a
calculation was first performed by C. N. Yang (1952), after in 1944 L. Onsager had
already made known the result (4.222) as a contribution to a seminar discussion,
without publishing, though, its derivation. One reads off from (4.222) the critical
exponent of the order parameter of the two-dimensional Ising model:

B = (4.223)
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4.4.6 The Lattice-Gas Model

The lattice-gas model represents, according to its original intention, a simple
modeling of the fluid system (gas-liquid), where, however, interestingly enough,
a close correspondence to the Ising model is recognizable. That is the reason why
we will briefly discuss it at this stage.

Assume that the system possesses the constant volume V and the constant particle
number N. One now decomposes V into small parcels of the volume v, which
corresponds approximately to the (classical) particle volume. That means that each
parcel can be occupied by at most one (classical) particle. The particles are thereby,
in fact, not arranged on a rigid lattice, but are freely mobile. At the moment,when
the center of the particle (molecule) is in a certain cell, this cell is considered as
‘occupied’. For the fractional amount of the occupied cells in the entire V it then
holds:

x(V) =

N
v (4.224)
v

‘g is the total number of the cells in V, and thus corresponds to the highest possible
particle number. The particle number in V is constant. But that does not hold,
because of the particle movements, for any macroscopic partial volume AV of V.
The partial system in AV is thus statistically to be described in the framework of
the grand-canonical ensemble.

How can one recognize a phase transition in such a lattice gas?

o T > TC
The free motion of the particles takes care for strong fluctuations of the particle
number N(AV) in AV. For the individual parcels there is a rapid change between
‘occupied’ and ‘unoccupied’. On an average, however, the fractional amount of
the occupied cells in AV will agree with that in the entire V (4.224):

x(AV) =x(V). (4.225)

The system is in its gas phase!

o Tx TC
Because of the strongly increasing correlation length there will appear larger
regions being occupied or unoccupied, respectively. The fractional amount of
occupied cells in AV will thus distinctly deviate from its average value (4.224).
A formation of droplets (clusters) sets in:

x(AV) <x(V) or x(AV)>x(V). (4.226)
s TKTc

Now there will be macroscopic, occupied and unoccupied regions. Except for
certain edge effects, AV will be completely occupied or completely unoccupied,
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where hardly any fluctuations of the particle number will be observed. The
system is in its liquid phase. Thereby it is to be taken into consideration that
the model disregards the gravitational force. Therefore there can not exist a
horizontal interface between gas and liquid.

If one ascribes to the parcels a cell variable
1, if cell i occupied
P = ] i 4.227
" { 0, if cell i unoccupied ( )

and compares that with the Ising model

S — +1, if spin i equals 1
" | =1 ,ifspiniequals | ’

then one finds already here indications of a close correspondence between lattice-
gas model and Ising model:

That shall in detail be investigated in the following.

It proves to be convenient to distinguish two types of lattice gases, which turn out,
though, to be thermodynamically equivalent, as we will see later.

Lattice gas I:

We fix

K : set of all parcels of the partial volume AV
X : set of the occupied parcels of the partial volume AV .

We choose here, differently from the above considerations, a somewhat more
abstract formulation, in order to distinguish, which properties are due to the
(compact) region K (or X), and which are determined by the corresponding volume
AV. There might be properties, which do not depend only on AV but also on the
special shape of the volume. In fact, however, this will not play a major role in what
follows.

The interaction energy reads in its natural version:

1
Uix) =, Z i(i.J) - (4.229)
jex
¢;(i,)) is a translational-invariant pair potential of finite range. There is no need,
however, to further specify it. Because each cell can only be occupied by at most
one particle, it is automatically a hard-core-potential, and represents therewith,
according to the considerations in the later following Sect. 4.5.3, a stable potential,
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for which a physically reasonable grand-canonical partition function can be defined
(see (4.263)):

EV(T.K) = exp (B(LN(X) — Ui(X))) (4.230)
XCK

It is summed over all conceivable subsets X of K. N(X) is the number of elements
of X, i.e. the number of the occupied parcels (= number of the lattice-gas particles
in AV'). u is as usual the chemical potential. ELI) (T, K) is obviously a polynomial
of the fugacity

z = exp(Bp)
of the degree N(K):
1
ENT,K) = Z N l_[exp (—2,3g01(i,j)) (4.231)
XCK e

When we formulate the volume AV = N(K) v in units of v, we can also interpret
N(K) already as the volume of the partial lattice K. According to Eq. (2.86) it then
follows for the pressure of the lattice gas:

pi(T, . K) = InE{(T.K) . (4.232)

1
BN(K)

With (2.79) one finds the specific volume v = N(K)/N(X) and the particle density
n = v~} respectively:

11 9
v BN(K) o

n=

9
mENT.K) =, pi(T.pu.K). (4.233)
Iu

With the Egs. (4.232) and (4.233) the chemical potential p can be eliminated, at
least in principle, and one then gets the pv-isotherms of the lattice gas.

An alternative to the lattice gas I represents the

Lattice gas II:

One can normalize the interaction energy also such that it is composed by (particle-
hole)-pair potentials between occupied and unoccupied parcels:

Un(X) = euinj) - (4.234)

In the case of symmetric pair interaction it must hold:

Un(X) = Un(K - X) .
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By this one finds some symmetry relations for the grand-canonical partition function
of the lattice gas II:

EUN(T.K) =) exp (B(uN(X) — Un(X)))
XCK

= D_exp (BuN(K) + (- (N(K) = N(X))

XCK

X exp ( — BUn(K — X))

= exp (BuN(K)) Y _ exp (B(—uN(Y) — Un(Y))) .

YCK
It thus holds:
E()(T.K) = exp (BuN(K)) EYN(T.K) . (4.235)

As an immediate consequence of this symmetry it follows for the pressure of the
lattice gas:

= (D)
e84y InE8, (T, K)
pu(T, p. K) "=
BN(K)

and for the particle density (n = (Op/0)r.nk)):

= p+ pu(T, —p, K) (4.236)

nH(Tv “, K) =1- nH(Ts —HM, K) . (4237)

Let us now check the

Equivalence of the two lattice gases:

For this purpose we reformulate a bit the interaction energy of the lattice
gas 11 (4.234):

Un(X) =Y ou(i.j) = Y euli.j) -
i€X i€X
JEK JjEX

Because of the assumed translational symmetry, the first term can be simplified:

> eni.) =N Y en(0.)) = NX)pi (K) .

i€x JEK
jEK

For given K gol(lo ) (K) is only an unimportant constant. It thus holds:

Un(X) = NOOgy (K) = > pu(i.)) - (4.238)
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We now choose a lattice gas I such that

@r(i.j) = —2¢n(.j) . (4.239)

Then we can write:

UN GO — Un(X) = (1= () NX) = ) Y 1t )

= (n-0l ) NCO = UI(X)

It follows eventually for the partition function and the lattice-gas pressure:

EU(Tr.K)=8" ,(T.K) (4.240)
%
pu(T. . K) = pi(T. pp — gy . K) (4.241)

Under the presumption (4.239), the two lattice gases are thus thermodynamically
equivalent. They both have, for instance, the same p-v-diagram. Only the chemical
potential is shifted due to the different energy normalizations.

4.4.7 Thermodynamic Equivalence of Lattice-Gas Model and
Ising Model

We now will show that the lattice gases of the preceding subsection are thermo-
dynamically equivalent to the Ising model with external magnetic field By (!). The
energy of a certain configuration S of Ising-spins on the lattice K in the presence of
a magnetic field reads:

US)=—Y JSiSi—bYy S (b=gusBo) . (4.242)
"_Eﬁ i€K
JjE

We assume thereby, somewhat more general as usual, that the coupling constants
can actually still depend on the lattice site:

Ti=0: Jy=Jii Jo=Y_Jy=Y ;. (4.243)
i€k jek

Let

X be the set of the lattice points with S; = +1
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and
1, ifieX
m=3 '€ (4.244)
0, ifi¢gX.
This means:

Therewith the interaction energy U(S(X)) reads:

USX) ==Y Jj@ni—1)Q2nj—1) = by (2n;— 1)

i€k i€K
JEK
=4 T2 T +2) Ji= Y
i€eX i€eX i€K i€K
JjEX JEK JjEX jEK
—2b) 1+bY 1
ieX i€K
=2) Ji+2) Jj—N(K)Jy— 2bN(X) + bN(K) .
jex =
It thus remains:
U(S(X)) =4 Jij + N(K)(b — Jo) — 2bN(X) . (4.246)
i€eX
JEX

We now search for the equivalence to the lattice gas II. That succeeds with the choice
eu(i,j) =44y, (4.247)

because then it remains:
U(S(X)) = Un(X) + (b — Jo)N(K) — 2bN(X) . (4.248)
Because of the constant number of spin-lattice sites the ‘natural’ framework for
the Ising model should be the canonical ensemble. With respect to the lattice-gas

model, only the 1-sites are considered as ‘particles’. Their number, however, is not
constant. The goal must therefore be to find a connection between the canonical
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partition function of the Ising model and the grand-canonical partition function of
the lattice gas.

Zi(T,Bo) = ) _exp(—BU(S)) = Y exp(—BU(S(X)))

{S} XCK
= )" exp(=B(Un(X) — 2N (X)) exp(~B(b — JoN(K))
XCK
= EY,,(T.K) exp(—B(b — Jo)N(K)) . (4.249)

One recognizes a close relationship between the two partition functions, if one
identifies the chemical potential p of the lattice gas with the field term 2b = 2gugBy
of the Ising system.

The free energy per spin of the Ising model corresponds to the pressure of the lattice
gas:

f(T, B(),M) = IHZK(T, Bo) = —pH(T, M= 2]9,K)+(b—]0) . (4250)

1
BN(K)
With the symmetry relation (4.236), we control:

f(T,=Bo,K) = —pn(T, —2b,K) + (—b — Jo) = —pu(T,2b,K) + (b — Jo)
=f(T,By.K) . (4.251)

The free energy per spin is thus an even function of the field, as it must be, in order
to make the magnetization, as the first derivative with respect to By, an odd function
of the magnetic field.

We have finally still to think about what in the Ising model corresponds to the
specific volume v of the lattice gas. v is the volume, which, on an average, is
available for every ‘particle’. We had identified N(K) in suitable units as the total
volume. Therefore it can be taken (see (4.233)) v = N(K)/N(X). For comparison
we consider the (dimensionless) magnetization of the Ising model:

_ Ny—=N,  2N(X)—-N(K) 2

M N N(K) v

—1.

It thus holds:

2

v = .
M+1

(4.252)

The correspondence is thus complete. The lattice-gas problem, having regard
to (4.247), is identical to that of an Ising-spin system in the magnetic field. Because
of this fact, the results found for the Ising model can rather directly be transferred
to the lattice-gas model.
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We compile once more the most important assignments:

e The volume AV of the lattice gas II corresponds to the number of spins in the
Ising lattice.

¢ The number of gas atoms (occupied cells) correlates with the number of 1-Ising
spins.

* The average particle volume v in the lattice gas is related via Eq. (4.252) to the
magnetization M of the Ising spins.

* The role of the chemical potential © of the lattice gas undertakes, according
to (4.249), in the Ising model the magnetic field By (it <> 2b = 2gupBy).

* The grand-canonical partition function EL”) (T, K) of the lattice gas corresponds,
according to equation (4.249), to the canonical partition function of the Ising
model.

e The pressure pyu(T, 1, K) of the lattice gas is, according to equation (4.250),
equivalent to the free energy per spin f(7', By, K) of the Ising model.

4.4.8 Exercises

Exercise 4.4.1
A magnetic system is described by the Ising model (N localized spins).

1. Express the canonical partition function Zy (7, By) by the moments m; of the
Hamilton function H:

_ Tr(H Z) )

- L 1=1,2,3,---
" Ty

What is the meaning of Tr(1l) for the Ising system?
2. Verify for the heat capacity Cp, the high-temperature expansion

Cg, = (my —mi) + O(1/T°%) .

1
kpT?
Exercise 4.4.2
Consider a spin system with the total magnetic moment

%:MZSM

described by the Ising model. By the use of the fluctuation-dissipation theo-
rem (4.16) express the isothermal susceptibility yr by the spin correlation (S;S;).

1. Calculate therewith the ‘field-free’ (By = 0)-susceptibility of an ‘open’ chain of
N Ising spins. Find yr as a function of v = tanh 8J.
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2. Discuss the result for the thermodynamic limit N — oo, and compare it with the
results from Sect. 4.4.3.

Exercise 4.4.3

1. Calculate for the one-dimensional Ising model (linear open chain), without
external magnetic field, the four-spin-correlation function

(SiSix1S;Si+1) -

2. Calculate with the result in 1. the heat capacity Cp;—o.

Exercise 4.4.4
According to (4.206), the partition function of the Ising model (N spins, only
isotropic next-neighbor interactions) can be formulated as follows:

Zy(T) = 2" cosh?(B1) Y g0’
=0

g1 is thereby the number of diagrams of / lines with exclusively even vertexes. A
line corresponds to an interaction

v = tanh(BJ)

between Ising spins at respective lattice sites. Only closed paths of lines possess
exclusively even vertexes. Details can be found in Sect. 4.4.4. p is the number
of the pairwise different interactions between next-neighbor spins. For the two-
dimensional quadratic lattice, e.g., it holds p = 2N if edge effects are neglected
(see (4.206)).

The above expression for the partition function is valid independently of the
dimension of the lattice. Evaluate Zy(T)

1. for the linear open spin chain,
2. for the closed ring of Ising spins!

Exercise 4.4.5
Consider an Ising model of N spins with an isotropic interaction restricted to next
neighbors J.

1. Use the diagram technique of Sect. 4.4.4, which has led to the expression (4.206)
for the partition function Zy(T), in order to expand also the spin correlation
(S,uSy) in powers of the high-temperature variable v = tanh(8J):

(SwSn) = ABD) D _ pun(l) '
=7

Find A(BJ) and interpret p,,,({)!
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2. Evaluate the so obtained expression of the spin correlation for the linear open
spin chain!
3. What is the result for the closed ring?

Exercise 4.4.6

The fluctuation-dissipation theorem (4.16) and the results from Exercise 4.4.5
for the spin correlation (S;S;) show that the isothermal susceptibility yr can be
expanded as series in powers of 8.J:

xr = Za,(ﬂj)l .
]

In the case of a phase transition at T = T¢, yr becomes singular. The series can
thus have only a finite radius of convergence R. There can exist of course further
singularities in the complex plane. We will, however, assume that the physical
singularity j. = f.J is the nearest one, and determines therewith the radius of
convergence,

—1
R=j.=fJ = (hm i )

=00 01

Since yr becomes critical at T, the following representation is also valid:

T=Te\ (1 pa(T2T0)
=C a e .
XT Te Te
The second term on the right-hand side can explicitly have, as correction term (x >

0), a completely different form. It is only important here that it becomes negligible
forT — Tc.

1. For a real system it is normally impossible to determine all coefficients ¢; in
the above expansion of yr. Show how one can, nevertheless, infer the critical
temperature T¢ and the critical exponent y from the calculation of only a finite
number of «; with a suitable extrapolation.

2. Show that the procedure from 1. yields for the mean-field approximation (Curie-
Weiss law)

XT = (C : Curie constant)

the correct T¢ and the correct exponent y.

3. Investigate the one-dimensional Ising model (linear open chain in the thermody-
namic limit N — 00). Show that y7 can be brought into the above form, and
determine via the ratio of subsequent coefficients «; the radius of convergence R!
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Exercise 4.4.7

A powerful method for the determination of critical quantities at the second-order
phase transition is delivered by the renormalization-group theory. The basic idea
will be worked out in this exercise on the exactly calculable one-dimensional Ising
model, although it actually represents an unrealistic example because it does not
exhibit a phase transition. Its partition function as well as its free energy can be
determined also with such a renormalization procedure.

1. Discuss the canonical partition function Zy(j) (j = BJ) of a ring of interacting
Ising spins without external field (4.189):

N
H=-JY SSy (v =5).
i=1

Show by the use of suitable spin summations that Zy(j) can be expressed by the
partition function Zy ,(j’) for half the original particle number and for a weaker
effective coupling ;'

Zy(j) = 2V* cosh™/*(2)) Zy 2 (')

1
J 5 In (cosh(2))) .

Show that indeed j’ < j, where weaker effective coupling at fixed J means higher
temperature.

2. Because the free energy as thermodynamic potential is an extensive quantity, it
must hold:

InZy(j) = N P()) -

Express P(j) by j’ and P(j'). Consider how one can get from that, iteratively (‘by
renormalization’), the free energy for any arbitrary temperature.

3. Show that the renormalization formula from 2. reproduces the known exact
result (4.198) for the free energy of the Ising ring.

Exercise 4.4.8
Verify, starting at equation (4.215), the expression (4.216) for the partition function
Zn(T) of the two-dimensional Ising model!



4.5 Thermodynamic Limit 377

4.5 Thermodynamic Limit

4.5.1 Set of Problems

At several stages of the theories developed so far, we already met the necessity
to extrapolate the respective considerations on the infinitely large system. This has
to be done for an N-particle system in the volume V according to the following
prescription:

N — o0 N
n= __ — const (4.253)
V= oo 14

The particle density n remains finite during the process. One calls this limiting
process thermodynamic limit. It is necessary, among others, for

1. the validity of the usual thermodynamic relations (equations of state, inten-
sive/extensive quantities),

2. the equivalence of the various statistical descriptions,

3. the appearance of phase transitions.

Thermodynamic potentials of a macroscopic system are considered as extensive
quantities (~ V, ~ N). When one now decomposes the system at constant
temperature 7 and at constant particle density n into macroscopic partial systems,
then the extensivity means that the total energy is equal to the sum of the energies
of the partial systems. Strictly speaking, that can of course be correct only if the
interactions between particles of different partial systems can be neglected, and that
is the case only in the thermodynamic limit, in principle, we have already used this
limit very often without explicitly mentioning it. When discussing the equations
of state of real gases we have, for instance, presumed, more or less unconsciously,
that the pressure of the gas does not depend on the concrete form of the container,
but only on the temperature and on the density of the gas. Also this can surely be
correct only in the thermodynamic limit, when surface effects do not play any role
(counterexample: H,O-droplet).

We know from the preceding sections that only in the thermodynamic limit micro-
canonical, canonical, and grand-canonical ensembles lead to strictly the same
results.

If one wants to recognize a phase transition by the means of Statistical Physics,
the partition function must exhibit certain non-analyticities. We will realize in the
next subsections that partition functions of finite systems are analytical in the entire
physical region. In this connection, also the fluctuation-dissipation theorem (4.16)
may be recalled, which permits only in the thermodynamic limit a diverging of the
susceptibility yr for T — Tc.
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With the thermodynamic limit, however, there are also connected some non-trivial
questions and problems, which shall be outlined by the example of a

classical continuous system
We let N particles be in the volume V with the particle-coordinates,

r:{rlsr27"'vr1\/}; p:{plvp25---spN}v
and the Hamilton function:
N p2 1 i#j
H= . r,—r) =T(p) + Ur) . 4.254
;m 2iZJ_<o( ) =T(p) + U(r) (4.254)
For the canonical partition function it holds according to (1.138):

1
TV = / d*Np / d*Nr e PH®D

1
= N / dNre PO (4.255)
’ 14

A(T) is thereby the thermal de Broglie wave length (1.137). In the finite system the
free energy per particle fy,

1
fN(Ts V) = _kBTN anN(Ts V) s

can definitely still depend on the particle number N. The reversal reads:
ZN(T.V) = exp (= NBf(T.V)) .

In the expression (1.159) for the grand-canonical partition function,

EAT.V) =Y "Zy(T.V) = exp (BVpv(T.2)) . (4.256)
N=0

the pressure py (7, z) is also that of a finite system.
In the thermodynamic limit one has the limiting functions:

f(T,v) = lim fy(T, V), (4.257)

V—00
V/N—v

p(T,2) = lim py(T,2) . (4.258)
V—o00
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At first we have to know whether these functions really exist. This is actually not
a matter of course, as we will get to know in the next subsection. In the second
step we have to fulfill the stability criteria (Cy > 0, k7 > 0), and to guarantee the
equivalence of canonical and grand-canonical statistics. That means, for instance,
that the canonically determined free energy f and the grand-canonically derived
pressure must be connected with each other by the thermodynamic relation

(af ) =—p. (4.259)

/),

We will work out in the next subsection at first the conditions for the existence of
the limiting functions (4.257), (4.258).

4.5.2 ‘Catastrophic’ Potentials

Interaction potentials are called catastrophic if one cannot define with them, even
for a finite volume V, a grand-canonical partition function E so that from the
very beginning the requirements on the thermodynamic limit, which we formulated
after (4.258), are not satisfiable.

We start with an example: Let the interaction potential ¢ in the Hamilton func-
tion (4.254) be constant, equal to —u for particle distances r; < a and otherwise

zero (Fig.4.45). It is then easy to write down the partition function for a volume Vj
of a sphere of the radius rp < a

N
Zy(T, Vo) = 1\1” (j{g) exp(;ﬂuN(N— 1)) .

(1/2)N (N — 1) is the number of pair interactions for N particles. The integrand in
the definition (4.255) of Zy is positive definite. It follows therefore with V > V;

Zy(T,V) = Zy(T, Vy) .

Fig. 4.45 Simple example [
for a ‘catastrophic potential’ a
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and for the grand-canonical partition function it even holds:

- 2N (VoY 1
E.(T,V) ZNz::ON! (/\2) exp(z,BuN(N— 1)) =00.

The divergence results from the N?-term in the argument of the exponential function.
B, diverges for all V > V; and z # 0. ¢(r) is therewith a catastrophic potential!
This statement can be generalized:

Assertion 4.5.1
Let ¢(r) be an interaction potential with the following properties:

1. ¢(r) is continuous, i.e. in particular that ¢(0) is finite!
2. There exists at least one configuration

ry,...,r, (n arbitrary),

for which

> eri—r)<0. (4.260)
ij
Note that the sum contains also the diagonal terms ¢(0)!

Then the grand-canonical partition function E,(7, V) diverges for sufficiently large
V and for all z # 0. ¢(r) is therefore ‘catastrophic’.

Proof We assume that there exists such a configuration ry,...,r,. Let us then
consider a special situation, for which there are each k particles located in certain
neighborhoods of the ry, ..., r, (Fig.4.46):

N =kn.
In the general definition of the partition function Zy it is to integrate over all

conceivable arrangements, which all lead to positive contributions. The special case,
sketched in Fig.4.46, thus represents only a lower bound for Zy. The potential

Fig. 4.46 Special particle

configuration for the @
investigation whether or not a o
pair potential is ‘catastrophic’ D
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energy U(r) can be estimated for this special case as follows:

! | (2 L
k= 1ng(0) + R g —r) ~ " 3 glri—x) <0.
ij iy

The first summand represents the interactions within the clusters and exploits the
continuity of ¢. The second summand embraces the interactions between particles
from different clusters. The right-hand side is negative because of the assumption 2.,
and finite because of the assumption 1.. In every case it holds:

b
U(r) ~ —k’b = —N* b>0.
n

For the partial volume Vj, consisting of the n clusters, we thus have:

1 (Vo) N?
(T, Vo) =~ Nl (A?’) exp (,Bb n2) ,
ZN(T, V) > Zy(T. Vo). ifV>V,.

Because of the square of the particle number in the exponential function, the grand-
canonical partition function E, diverges in the above example for each z # 0! That
proves the assertion.

Catastrophic behavior obviously seems to arise always when arbitrarily many
particles can be pulled together in a confined region. Physical potentials should
have something like a repulsive ‘hard core’.

Example As to the potential course, plotted in Fig.4.47, one can imagine that
the edges are a bit rounded off to make ¢ continuous. Then ¢ might simulate
the potential of a solid with interactions only between nearest neighbors. Let the
configuration ry, ..., r, correspond to a segment of a face-centered cubic lattice.
Each lattice atom has then 12 nearest neighbors with the distance a:

1,...n
> ot — 1)) = np(0) + 12n¢(a) = 1lnu—12nu < 0 .

i

Fig. 4.47 Example of a pair )
potential with ‘hard core’,
which nevertheless is
‘catastrophic’

11u

—ul - - L—1 T
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According to the just proven assertion this ¢(r) is thus also catastrophic. The
repulsion at the zero-point is still too weak.

4.5.3 ‘Stable’ Potentials

For a continuous ¢(r), which in particular gives rise to a finite ¢(0), it must hold,
in accordance with the assertion proven in the last subsection, in order to guarantee
the convergence of the grand-canonical partition function:

1...n
1 Lo
22@(ri—rj)20 Vn and Vry,...,r,. 4.261)

ij

This requirement turns out to be a sufficient condition for a ‘physically acceptable’
potential. One namely realizes, when one brings the diagonal terms to the right-hand
side of the inequality,

i#j 1
Uy =, Y ¢(ri—x) = — Ne(0),
ij

that there exists a finite constant B, by which the potential energy can be estimated
as follows:

U(ry,...,ry) >—-NB VN, Vry,...,r,. (4.262)

That is the basic condition for stable potentials. In this case the canonical partition
function possesses an upper bound,

1 (Vv 2\
6B
awWEN(pe),

so that the grand-canonical partition function definitely converges:

- SV g\ V
C‘Z(T’V)SZN! Z,5¢ =exp(z,,¢" ) <oo.

For the finite system, E,(7, V) is then well-defined for all values of the fugacity z
and all temperatures 7.

For continuous potentials ¢ the condition (4.261) is not only sufficient, but also
necessary, in order to be stable. There are, however, also discontinuous stable
potentials, for instance those with a ‘hard core’ and an effective finite range R
(Fig. 4.48). Each (classical) particle can then interact only with a maximal number
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Fig. 4.48 Typical curve of a 1)
particle-pair potential

-4 —

n of other particles. This corresponds to the number of particles (spheres of radii a),
which will go in the volume (477 /3)R3. For all ry, ..., ry we have therewith:

U(ry,....ry) > —Nnu . (4.263)

The ‘hard core’-potential is therefore stable!

4.5.4 Canonical Ensemble

From now on we restrict our considerations to interacting particle systems, which
fulfill the following conditions:

1. ¢(r) is stable,
2. ¢(r) <0forr>R.

We let R thereby be any typical microscopic length. For non-stable potentials
Statistical Physics is absolutely impossible. But even for stable ¢(r) we have to
ask ourselves whether in every case the thermodynamic limit exists. This question
will be investigated at first for the canonical ensemble. Above all, we are thereby
interested in the free energy per particle. Does the limiting function (4.257) really
exist?

f(Tov) = lim fy(T.V).

N—00
V/N—v

In order to investigate this, we construct at first a suitable sequence V — oo. The
starting volume V may be a cube, which contains N particles. The partition function
is then of the form (4.255). In the next step we distribute the N particles into equal
portions N; over eight smaller cubes Vi (N = 8N;), which are located in the
corners of the initial cube (Fig. 4.49). Between the ‘sub-cubes’ there are corridors
of the width R, which do not contain particles. When we integrate in (4.255)
exclusively over the sub-cubes, we get a lower bound for Zy, since, because of
8V1 < V, the positive integrand is integrated over a smaller volume. Furthermore,
the configuration space is additionally restricted by the requirement N; = const
in each cube V. Eventually, we still suppress the interactions between particles
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Fig. 4.49 Nesting of cubes

for the demonstration of the NV
N,V N,V

limiting function of the free i i /

energy in the canonical R$

ensemble

N,V N

from different cubes. Because of the condition 2., it holds for these interactions
@(r) < 0, since r > R. The exponential function exp(—f¢(r)) is thus greater than
1. The neglect of these interactions makes the estimation, as a lower bound of the
partition function, even safer. When, however, no interactions exist between the sub-
cubes, then the partition function will factorize. One should notice that the correct
Boltzmann counting (1.129) requires, because of the absence of contacts between
the sub-cubes, as factor in front of the partition-function integral in (4.255), (N;!)~®
instead of (N!)~!. (Only the interchange of two particles from the same sub-cube
does not lead to a new state; see the explanatory statement after (1.129)). Hence we
obtain the estimation:

Zy—sw (T, V) > (Zw, (T. V1)* .
This also means
exp (— BNfy(T,V)) > exp (— 8BNify, (T, V1)) ,

so that thefree energy per particle increases with the subdivision:

N V) < fn, (T, V1) .

The stability of the interaction potential ¢(r) has, according to (4.262), the
consequence

U(ry,...,ry) > —NB (B finite)
and therewith
1 [V N
BB
(V) < (pe ) )

Let N be so large that the Stirling formula (InN! ~ N (InN — 1)) is applicable:

—BNfy(T,V) =InZy(T,V) <N(BB+ 1)+ Nl (/\YN) .
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All in all we have found therewith the following estimation for the free energy:

\%
—B—kBT|:1 + In (A-”N

)| =@ <.
When we now understand the thermodynamic limit as a sequence of cubes in the
above described nesting,

N — o0, V—o0, V/N — v (finite),

then the free energy fy(7,V) turns out to be a bounded below, monotonically
decreasing function. It is shown therewith that the limiting function f (7', v) (4.257)
does exist for all potentials, which fulfill the two conditions formulated at the
beginning of this subsection!

It is recommended to the reader, to show as an exercise, that the considered cube-
sequence let the ratio V/N indeed approach asymptotically a finite particle volume
v.—The proof of existence for f(7, v) was performed here only by the special cube-
nesting. It contains, however, already all the essentials. We therefore retain from the
generalization to arbitrary volumes at the limiting process V — oo.

But we still have to concern ourselves with the stability conditions of the canonical
ensemble:

1 (dv
Cy > 0; Kr = — >0. (4.264)
v\dp/)r

The criterion, which refers to the heat capacity, has already been proven with (1.148)
for every finite system. The second condition is identical to

p\ 0°f
B

and states that f as a function of v must be convex. This in turn means that it should
holdforall0 < A < 1:

F(Avr + (1 =)y) < Af(v1) + (1 = A)f (v2) . (4.266)
For the proof we modify the above line of thought in such a way that we take the
same cube-nesting, but we fill four of the cubes each with N particles and the other
four each with N, particles:
N = 41/\\71 + 4]/\72 .

The same considerations as those above, then lead to the estimation

ZN(T, V) = (Z, (T, V) (25, (T. V)"
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and equivalently therewith to:

4N 4N,
NIV = R/ TV + R TV

In the thermodynamic limit,

Vi Vi
~ T U1 ; ~ v,
N, N,
= 7\7\1 1
4N1 Vi V] U2
N ~ ~ T 1 T
N N- v U
V11 + Vlz vy + v2 ! 2
4N2 U1

ﬁ s
N v + vy

one thus finds for the free energy per particle:

. 1%} V1

lim fy(T,V)=f(T,v) < f(T,vy) + f(T,vy) .
V=00 v + V2 v + U2
N—o00
V/N—v

As consecutive members of the cube-nesting, V/N and V;/ ;(1’\7 1+ ﬁz) have of
course the same limiting value v. But otherwise it also holds:

V1 2 21)1 1%)

T T RO S .
2(N1+N2) + V1 + U2

V1 v2

The above inequality therewith reads:

2010y ) vy V1
T? = T,U + T,U .
f( o1+ v v1+v2f( 1) vl—i—vzf( 2)
If one takes
A= 2
v + Uy

then one finds exactly (4.266). The limiting function f(T, v) is therefore indeed as a
function of v convex. The stability conditions (4.264) are therewith fulfilled.
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4.5.5 Grand-Canonical Ensemble

As to the interaction potential we agree upon the same preconditions as those
at the beginning of Sect. 4.5.4. Furthermore, we use for the transition into the
thermodynamic limit the same volume-nesting, now, however, with variable particle
numbers in the cubes. Since, as before, corridors of the width R are left open, and
interactions between particles of different cubes are again neglected, one gets the
following inequality:

Y Ni=N
i

ZN(T. V) > Y Zy(T. V1) -+ Zyg (T, V1) .

We multiply this expression by zV and sum over all particle numbers from 0 to co.

By this summation the constraint ) N; = N becomes redundant:
i

o0 o0
DTy > Y My (T V) - 2y (T V1)

N=0 Ni....Ng=0

= [i MZy, (T, vl)}

N1=0

8

For this we can also write:

E(T,V) = exp (BVpv(T,2)) > (ET, V1))* = exp (88Vipv, (T, 2)) .
(4.267)

In the sense of the cube-nesting one can read off from this result the following
inequality for the pressure

8V,
Py, (T.2) > pv,(T.2) . (4.268)
Vt1

n

V., is the volume of the cube in the n-th step of the nesting. One takes from Fig. 4.50:

ay+1 =2a, +R.

Fig. 4.50 Volume-nesting T
Vn Vn+1

for the investigation of the
thermodynamic limit in the

. An1 ¢ R
grand-canonical ensemble
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This means:

8V, 1
- , — 1. (4.269)
Vn+l (1 + R ) n—>00

2ay,
The inequality sign in (4.267) results to a great extent from the neglected inter-
actions between particles of different cubes. Their percentage of the total number
of the interactions is, however, in each step practically the same, so that, because
of (4.269), for sufficiently large n, it must even hold instead of (4.268)

vy (T.2) > py, (T, 2) .

On the other hand, we had found, very generally, for stable potentials

~ Vv
ET,V) < exp (z e eﬂB) :
where B is any finite constant. For the pressure this has the consequence

1 1
Pl = | InEAT.V) < P

B pAse

The right-hand side of this inequality remains unaffected by the limiting process
V — o0, so that py (T, z) turns out to be an upper-bounded monotonously increasing
function. The limiting function

p(T.2) = lim py(T,z) (4.270)
V—o00

therefore does exist.

The stability conditions of the grand-canonical ensemble are fulfilled, on the basis
of fluctuation formulas, already for finite systems. So we have for instance proven
with (1.199) that k7 > 0.

4.6 Microscopic Theory of the Phase Transition

When we now want to summarize at the end of this section, what really characterizes
and defines a phase transition, then we could come to the following qualitative
statement:
phase transition <=
singularity, non-analyticity or discontinuity of a relevant thermodynamic
Sfunction, which otherwise is everywhere analytical.

A theory of phase transitions therefore consists in an investigation, whether
thermodynamic functions are piecewise analytical, and in a discussion of the
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nature of possibly existing singularities. The complete theory must be able to
interpret macroscopic phenomena as condensation, spontaneous magnetization, . . .
as consequences of microscopic (atomic) interactions. In this section we will discuss
a proposal by C. N. Yang and T. D. Lee (Phys. Rev. 87, 404 (1952)), which seems to
be acceptable, although one does not know whether it represents the only access to
the phenomenon phase transition, and whether it really covers the full, very complex
problem.

4.6.1 Finite Systems

We concentrate our considerations on a
classical system of N particles in the volume V
with the Hamilton function:

N pz 1 i#j
H=T@) +Ur) =) B > i) .
i=1 ij

Let ¢(r) be a pair interaction with ‘hard core’ (Fig.4.51). Hence, it is definitely a
stable potential. The grand-canonical partition function exists and converges for all
values of the fugacity z = exp(Bu):

EAT.V) =14 NzZy(T.V). (4.271)

n=1
For the pressure we had found in (1.180)
1 ~
p= Vg InE,(T,V), 4.272)
while the specific volume v = V /{N) was calculated in (1.168):

1 1 9 9
= InE.(T,V) = . 4.27
b = Vi AT,V) ﬂzazp (4.273)

Fig. 4.51 Pair-interaction @
potential with ‘hard core’

QM r
b V> —
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From the two last equations z must be eliminated in order to get the equation of
state

p=pT,v).

When will this equation of state show an anomalous behavior, which might indicate
a phase transition? The partition function by itself converges for all z, and therefore
is in particular finite. Consequently, something can happen only at the zeros of 2,
for which the logarithm diverges (In 2, — —o0). Thus we state:
zeros of 2. (T, V) < phase transitions.

Where are these zeros and how can we find them? Because ¢(r) is a ‘hard core’-
potential, we can imagine the (classical) particles as hard spheres. That, however,
means that there is a maximal number of particles N* (V) which will fit into the
(finite) volume V. For N > N* we have U(r) = oo and therewith

Zv(T,V) =0, ifN>N*(V).

The grand-canonicalpartition function therewith is a polynomial in z of the degree
N*:

EAT.V) = 1 4+ 2Z(T. V) + 2Z(T. V) 4 -+ 2V Zy=(T, V) . (4.274)

The canonical partition function Zy is positive definite, i.e., all coefficients of the
polynomial are positive. We therefore state:

E.(T, V) has no real positive zero as long as V is finite.
The N* zeros of the polynomial are either negative real or are pairwise conjugate
complex (Fig.4.52). In the physical region

0<z=¢éM <00

there is no zero. This forces us to state:

in a finite system a phase transition does not appear.
In order to substantiate this, we build the equation of state of a finite system.
According to (4.272) the pressure p is positive in the physical region 0 < z < 00
and is a monotonically increasing function of z, because E, represents a polynomial
in z with only positive coefficients. Because of E,—9 = 1 one finds p(z = 0) = 0

Fig. 4.52 Distribution of the Z Im z
zeros of the grand-canonical

partition function of a finite N
system as function of the :
fugacity z L
I
I
X

Re z

x——F - —x
x—-==-]---—x
x—-F —x
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Fig. 4.53 Pressure as a
function of the fugacity for a

finite system ~Inz

(Fig.4.53). For large z the highest power of the polynomial dominates,
BT, V) — V" Zy« (T, V),
Z—>00

so that,according to (4.272), the pressure p can be estimated to (Fig.4.53)

*

N*Inz+InZy«] — Inz

p— z—)ooVIB .

1
vl

For the specific volume v it remains to be evaluated, according to (4.273),

The denominator does not possess any zero in the physical region. 1/v therewith
is analytical in a region, which contains the real positive axis. We eventually
investigate the derivative of 1/v with respect to z:

a1 1|1 1 (0 _\ =z &
= NNz — g g
0z v V|:’:‘ ZN: &z ‘g2 (az Z) tg 322"

1T(N) 1 1

= v[ . —zz2<N>2+ Z(N(N—l))}
1

= [V =]

1/v obviously is also a monotonically increasing function of z (Fig. 4.54):

a1 1 )
Sy = V((N— (V) >z 0. (4.275)

Because of E,—¢ = 1 it holds, as for the pressure p:

1(ZZO):0.
v
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Fig. 4.54 Inverse specific /v
volume as a function of the
fugacity for a finite system 1/1/0 __________
z
Fig. 4.55 Pressure-volume p

isotherm of a finite system

It follows asymptotically:

1 d d (N* N* 1

v = PP S P, (V,B 1“) TV
vp is the minimal specific volume, the smallest possible volume per particle.
We have seen that both p(z) and v~ (z) are analytical and monotonically increasing
in a neighborhood of the positive real axis. Hence, there exist also the respective
inverse functions, for instance z = z(v~'). Without explicitly determining it we
know that z(v™") is a monotonically increasing function of v™! in the interval 0 <
vl < 2y !, Consequently, z is monotonically decreasing as a function of v in the
region vp < v < oo. This transfers to the pressure and to the equation of state
of the system: p(v) is continuous and monotonically decreasing for vo < v < o0
(Fig. 4.55). The equation of state does not exhibit any peculiarities. Indications of a
phase transition are not recognizable.
We formulate a first conclusion:

1. It is not easy to recognize a phase transition for a finite V, as large as it may be,
if the equation of state is not explicitly available:
phase transition <= limiting property.
This already came up in the discussion of the fluctuation-dissipation
theorem (4.16), but there only in connection with second-order phase transitions.
2. To recognize a phase transition, one has to investigate the respective system in the
thermodynamic limit,
what leads to the non-trivial question whether this limit actually exists for p
and v:

p(T,z) = lim py(T,z2), (4.276)
V—o00

1 0
(T,z) = B lim z_ py(T.z2) . (4.277)
v V—oo 07
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According to Sect. 4.5 the answer depends on the type of the interaction potential.
No problems arise for classical systems with ‘hard core’-potentials.

. If in the experiment, for instance by an horizontal segment of the p-v-isotherms,

a first-order phase transition is recognized (Fig. 4.56), so, nevertheless, p can not
be strictly constant in the transition region for a finite V, because p is an analytic
function of v. It could, however, be that the derivative dp/dv is so extremely
small that macroscopically the difference to p = const is not detectable. The
experiment would then decide that there is a phase transition, while for the
theory there does not exist a simple possibility to recognize that, by inspecting
the partition function. For this purpose an explicit determination of p = p(v)
would be necessary!

4.6.2 The Theorems of Yang and Lee

What can change in the thermodynamic limit compared to the finite system

(Fig.4.57)?

1. The number of zeros increases, since the degree N*(V) of the polynomial E,
tends to infinity.

2. The positions of the zeros in the complex z-plane will change.

3. Zeros, which are at first isolated, can be shifted to build continuous distributions
(Fig.4.58).

4. Single points of the real z-axis can become accumulation points of the zero

setof E .

The theorems of Yang and Lee are of decisive importance in this connection. We
present them here without proof (Fig. 4.58).

Fig. 4.56 p-V-isotherm of a

real gas with a first-order p
phase transition
I I
v
Fig. 4.57 Distribution of the X
z I
z-zero set of the | A
grand-canonical partition x - :’ - I
function of a finite system R VY SR !
: NGO I Rez
~ 1
X \:\ —_
*
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Fig. 4.58 Conceivable z-zero
distribution of the

grand-canonical partition ’I‘
function of a thermodynamic x 1 _
system in the thermodynamic 1 /T -
limit Y’ oG,
~L | Rez
1N
X T—_
I
&
Theorem 4.6.1 For a stable interaction potential ¢(r), the limiting function
ol
Foo(z,T) = lim _ InE,(T,V) = Bp(z, T) (4.278)
V—oo V

exists for all z > 0, i.e., in the entire physical region. It is independent of the form
of the volumes during the limiting process, and it represents a continuous non-
decreasing function of z.

Theorem 4.6.2
Let Gy be a simply connected region of the complex z-plane, which contains a part
of the positive-real z-axis, but no zero of B,(T, V) (Fig. 4.58). Then it holds:

1. (1/V)InE (T, V) o Foo(z, T) converges uniformly for all 7 in the inside of
—00
G!
2. Fo(z, T) is analytical in G,!

The proof of Theorem 4.6. 1 was essentially performed in Sect. 4.5.5. We discuss here
the consequences of these two theorems:

1. Because of the uniform convergence, the limiting process limy_.o, and the
differentiation 0/ 0z can be interchanged. Therewith also 1/v is analytical in G,
i.e., arbitrarily often differentiable:

Br(z,T) = Fol(z, T) , (4.279)
v T) =z aaZFoo(z, T) . (4.280)

With the statement of Theorem 4.6.1 and the same considerations as in the last
subsection for the finite system, one realizes that the equation of state does not
exhibit any peculiarity in the region G,. There is no phase transition in G!

2. As phase of the system one can interpret the set of all the thermodynamic states,
which correspond to a z > 0 from the inside of G.
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continuous, but 0

p -1
not differentiable Yy
| y v, 1

@ T = const

first-order

I phase transition

I
e de
v A 2

Fig. 4.59 Illustration of a phase transition of first order

3. Under which conditions is actually a phase transition possible? In the thermody-
namic limit the E,-zeros can shift in such a way that a certain 7o (0 < zo < 00)
becomes an accumulation point of these zeros (Fig. 4.58). The point zo separates
two regions G and G, of the kind as meant in the Theorem 4.6.2. As edge point,
z0 is neither in the inside of Gi nor in the inside of G,, so that Theorem 4.6.1
is still valid for zy, but not the Theorem 4.6.2. This means that p(z,T) is still
continuous in zo, but possibly no longer analytical, i.e., not arbitrarily often
differentiable (see Fig. 4.59).

4. Illustration (Fig. 4.59):
vz, T) must indeed take all values between the points a and b, because
vz, T) represents a limiting function for V. — oo, and because v="' is for
every value of V a continuous, non-decreasing function of z.

5. It would also be thinkable:

3"p(z, T
pa(Zv ) continuous at zo forv =0,1,...,.n—1,
Z
"p(z, T
pa( Zn ) discontinuous at zo .
Z

The result would be a phase transition of higher order. Also singularities in any
derivative can appear. The type of the phase transition is thus determined by the
analytical behavior of p(z) at 2.

In order to prove or disprove the correctness of the Yang-Lee theory of the phase
transition, the grand-canonical partition function E, would have to be explicitly
calculated for real systems. That, however, almost always exceeds our mathematical
capabilities. For this reason, simple models are of interest.
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4.6.3 Mathematical Model of a Phase Transition

For an illustration of the Yang-Lee theory we consider a completely abstract model,
at first without any claim of a relationship to a real system. This fictitious system
shall possess the grand-canonical partition function:

VL
V) =1+ | © (4.281)
—Z

]

At the transition into the thermodynamic limit the volume V shall be measured in
suitable units, so that we can assume it to be an integer:

V=123,... > 0.

When we insert the known series expansions

14

falt (1+z)V=Z(V) 2
q=0 1

1 _ZV+1

14
-z =0
into (4.281) and arrange according to powers of z, then 2, takes an almost familiar
form:

E(V) =) zZu(V) (4.282)

(4.283)

The temperature-dependence of the canonical partition function Zy shall not play
a decisive role during the limiting process V' — oo and is therefore not explicitly
covered by the model.

Where are the E,-zeros?
One reads off from (4.281):

= —1: V-fold zero,

1. z
2. z= "1 = z, = € with ¢, = sz_’ln, n=1,2,...,V; Vsimple zeros.

&, is a polynomial of the degree 2V, and possesses therefore 2V zeros, which are all
located on the unit circle in the complex z-plane with angular distances (Fig. 4.60)

2

= i1 (4.284)

Agp
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Fig. 4.60 Distribution of the Im z

zeros of the grand-canonical +1

partition function in the Ui

mathematical model AN RS
ON /St

z = 41 is not a zero, because according to I’Hospital’s rule:

. 1=t . =(V+ 1D
lim = lim 1

=V+1#0
—=>+1 11—z 7—>+1 * 7&

We see that there is no zero on the positive-real axis (physical region), as long as
a finite system is considered (V < oo). There is no phase transition in the finite
system!

We now investigate the thermodynamic limit. The two zeros z; and zy, which are
next to the real z-axis, have an angular distance from the axis of

2

Ap = —
V+1vVv-ooo

which becomes zero in the infinitely large system. That holds also for all the other
angular distances between neighboring zeros. In the thermodynamic limit the zeros
thus build a continuous covering of the unit circle, which even comes up to the
positive-real axis. According to the general theory,

a phase transition atz = +1
is therefore possible! We have to investigate in the following whether this is indeed
the case, and if yes, of which kind the phase transition will be.
At first we calculate the pressure p of the system in the thermodynamic limit
using (4.279):
lz| < 1:

N L 1 ven 1
Vli)ngovln UZ(V)—VILH;O [ln(1+z)+ Vln(l—z )—Vln(l—z)i|

In(1+42z).

|z| > 1:

1
N G .1 v 1
lim  InE,(V)=In(1+2) + vlggo v <lnz + In |1 )

V—o00

=In(l14+2)+1Inz.
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The pressure p(z) is obviously represented by two analytic functions, neither of
which exhibits something special at z = +1:

In(14+z) forlz] <1,
Br(z) = (4.285)
Inz(l1 +z) forlz]>1.

As required by the first theorem of the Yang-Lee theory, p(z) is continuous and
non-decreasing for all 0 < z < oo, also for z = +1.
For the calculation of the specific volume we take the formula (4.280):

9 -1
v(z) = (ﬂza p(z)) :
Z

One easily finds with (4.285):

e forz] < 1,
v(z) = (4.286)
5 for|z] > 1.

With this in mind we realize already that at 7 = +1 a phase transition indeed takes
place:

lir£1 v(z) = 2 # 1in<1 v(z) =2.

lz] =1 lz] =1

Furthermore, one easily verifies that, for all positive-real z, v(z) is a monotonically
decreasing function of z:

d
dzv(z) <0

Because of v(z) — ; for |z| — oo there is a
minimal specific volume: vy = 1/2.
This means:

7l <l v=>2: ‘gas’,
|| g

4.287
>l v <v=<?2: ‘liquid’. ( )
3
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Fig. 4.61 Phase transition of Bp
first order in the mathematical
model

In2

It eventually remains to evaluate the equation of state:
gaseous phase (|z| < 1):

1+

This is inserted into (4.285):

1 v
= In . 4.288
P=ghhy ( )
For v — oo the pressure vanishes.
liquid phase (|z| > 1):
1+z 1—v v
V= —1 = s 1 + =

T 142 YT -t Tow—1

This yields the pressure:

1 v(l—-v)
p= _In

5 2y 1y (4.289)

The pressure becomes infinitely large when v approaches the minimal volume vy =
1/2. p is in both phases monotonically decreasing as a function of v. The saturation
pressure at the phase transition (z = +1) amounts to

pr(1) =In2,

according to (4.285). Our model fulfills therefore all the details of the general theory
with a phase transition of first order, which exhibits an astonishing similarity to the
real gas-liquid system (Fig.4.61)!
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4.6.4 Exercises

Exercise 4.6.1
Consider the possibility of a phase transition in the one-dimensional Ising model
with ferromagnetic coupling (J > 0) in the framework of the Yang-Lee theory.

1.

Represent the canonical partition function Zy (T, By) as a function of the fugacity
z = exp(2Bb) with b = gugBy. The here actually unimportant factor gug is
the magnetic moment connected with the Ising-spin. Why is here the variable z
reasonable?

. Determine the distribution of the zeros {z,} of the partition function of the finite

system.

. What happens to the distribution of the zeros in the thermodynamic limit (N —

00)? How does one recognize that in the one-dimensional Ising system no phase
transition can appear?

Exercise 4.6.2

Let {z,} be the (complex) zeros of the grand-canonical partition function
Eﬁ”’ (T, K) of the lattice gas II. The pair potential shall be of the form ¢y (i,j) >
0 for all parcels i, j. (Notations as in Sect. 4.4.6).

1.

Why should each of the two (non-real) zeros be conjugate complex?

. Show that with z, also z, ! is a zero of the grand-canonical partition function.
. Since both the {z,} and the {z,'} build a complete set of zeros, there must be

a connection between these two sets. The most obvious assumption would be
to identify each z, with 1/z, or with 1/z;; (see Exercise 4.6.1). Which of the
two assumptions were conceivable, and what would follow from that for the
distribution of the zeros in the complex z-plane?

. Start from the validity of the assumption in part 3., in order to show that the

lattice gas, independent of the range of the interaction and also independent of
the dimension of the system, can not perform a phase transition for u # 0!

. Can there exist a phase transition in the Ising model of arbitrary lattice dimension

if a field is switched on (By # 0)?

4.7 Self-Examination Questions

To Section 4.1

—

What does one understand by the term phase?

. What is stated by the Gibbs phase rule?
. State the Clausius-Clapeyron equation? To which type of phase transition is the

equation applicable?
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10.
11.

12.
13.
14.
15.
16.

17.

18.
19.
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What does one understand, according to Ehrenfest, by the order of a phase
transition?

. When is a function f(x) concave, and when it is convex? What can be said in

this respect about G(7', p)?

How does a first-order phase transition manifests itself in the volume-
dependence of the free energy F?

Sketch the phase diagram of the magnet in the By-T-plane?

How does a first-order phase transition of a magnetic system presents itself in
the m-dependence of the free energy?

How does the heat capacity Cy— of the superconductor behave at the critical
temperature?

What does one understand by continuous and discontinuous phase transitions?
By which measured quantities can the continuous phase transition be experi-
mentally observed?

Which meaning does the order parameter have?

Which order parameter determines the gas-liquid transition?

What does one understand by the correlation function of a physical quantity x?
What does the correlation length & (T) represent?

Which connection can be built up, in the framework of the Ising model, between
isothermal susceptibility y7 and spin correlation g;;?

What follows from the divergence of yr at the second-order phase transition
for the correlation function g;;?

How does £(T) behave for T — T¢?

In which temperature region do the principles (laws) come into effect, which
are called critical phenomena?

To Section 4.2

Nownkwb

I

10.
11.

How are critical exponents defined? For which type of phase transition are they
introduced?

To which physical quantity are the critical exponents v and v’ ascribed?

What does the universality hypothesis tell us?

Which situations can be described by the critical exponent zero?

Which parameters restrict the universality of the critical exponents?

Which thermodynamically exact exponent-inequalities do you know?

What does one understand by the homogeneity postulate and the scaling
hypothesis, respectively?

What is the basic idea of the Kadanoff construction?

Which consequence does the thermodynamic equivalence of single-spin picture
and Block-spin picture with respect to the free enthalpy have?

How does the lattice dimension d enter the homogeneity postulate?

What does one understand by scaling laws?
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12.
13.
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Which are the most important consequences of the scaling hypothesis?
Via which property of which function can the scaling laws for the critical
exponents v, v’ and 1 be derived?

To Section 4.3

10.
11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

. How does the Landau ansatz for the free enthalpy in the critical region of a

second-order phase transition read?

. Could you list some points of criticism with respect of the Landau ansatz?
. Which relation exists between the response of the order parameter to external

perturbations and the internal fluctuations of the system, expressed by the
correlation function of the order parameter?

. Which structure does the correlation function g(r, r’) of the order parameter in

the Landau theory have?

. Which are the numerical values of the critical exponents in the Landau theory?
. Which connection exists in the critical region between the susceptibility yr and

the correlation length £?

. Which general precondition must be fulfilled for the applicability of the Landau

theory?

. What is the basic statement of the Ginzburg criterion?
. What is a Langevin paramagnet? By which Hamilton operator is it described?

Of which structure is the canonical partition function of the paramagnet?
Which structure does the Brillouin function have? Which relation does it have
to the magnetization?

Which characteristic properties of the Brillouin function do you know?

For which limiting case is the Brillouin function identical to the classical
Langevin function?

Which characteristic high-temperature behavior does the susceptibility of the
paramagnet show?

In which form is the particle interaction taken into consideration in the
Hamilton operator of the Heisenberg model?

What is a mean-field approximation?

How does the Heisenberg-Hamilton operator look like in the mean-field
approximation? How does it differ from the Hamilton operator of a param-
agnet?

Does the lattice dimension d play a role for the phase transition ferro- <—
paramagnetism in the mean-field approximation of the Heisenberg model?
What does the Curie-Weiss law tell us? How is the paramagnetic Curie
temperature defined?

Which relationship exists between the mean-field approximation of the Heisen-
berg model and the general Landau theory?

Do the critical exponents of the mean-field approximation differ from those of
the Landau theory?
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22.

23.
24.

25.
26.
217.
28.

29.
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In what way can the van der Waals model of a real gas be understood as mean-
field approximation?

Which physical meaning does the pair correlation g(r, ') have?

Which connection exists between the compressibility k7 and the pair correlation
g(r,r')?

How is the static structure factor S(q) defined?

What does one understand by critical opalescence and how can it be explained?
Which form does the structure factor S(q) take in the Ornstein-Zernike
approximation?

Can the Ornstein-Zernike theory provide explicit numerical values for the
critical exponents v and v’?

How can the correlation length £ be experimentally determined?

To Section 4.4

e

SN

10.

. By what do the Hamilton operators of the Heisenberg, the XY, and the Ising

model differ?

What is the model conception of the Ising model?

How many eigen-states does a one-dimensional chain of N Ising spins have?
How can one calculate by means of the spin correlation (S;S;) the magnetization
of the Ising system?

Is there a phase transition in the one-dimensional Ising model?

Which connection exists between transfer matrix and transfer function?

How can the partition function of the d = 1-Ising model be expressed by the
transfer matrix?

Which qualitative course do the M-By-isotherms of the one-dimensional Ising
model exhibit?

Which reasons are in favor, and which facts do not support the interpretation of
the one-dimensional Ising model as a ferromagnet with 7c = 07?

By which simple equation is the critical temperature of the d = 2-Ising model
determined?

11. Which numerical values do the critical exponents « and 8 of the d = 2-Ising
model have?

To Section 4.5

1. How is the thermodynamic limit performed for an N-particle system in the

volume V?

2. When is the thermodynamic limit indispensable?

3. When does one call an interaction potential catastrophic? What does that mean?

4. Under which conditions is a continuous potential ¢(r; — r;) catastrophic?
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O 0 3 N L

. What does one understand by a stable potential?

. What is the basic condition for a stable potential?

. Are classical ‘hard core’-potentials stable?

. How do the stability conditions of the canonical ensemble read?

. In the thermodynamic limit, why should the free energy per particle represent a

convex function of the particle volume v?

To Section 4.6

e

10.

. How does a phase transition manifest itself in the grand-canonical partition

function?

. Which functional form does E,(7, V) take for a particle system with a ‘hard

core’-interaction potential in the finite volume V?

Why can no phase transition appear in a finite system?

Which course does the p-v-isotherm of a particle system with ‘hard core’-
interaction in the finite volume V show?

. How can one explain the discrepancy that in the experiment phase transitions

are observed always in finite systems, while the theory excludes such a
transition?

Which are the essential changes, with respect to the phase transition, when one
goes from the finite system to the thermodynamic limit?

Which are the statements of the theorems of Yang and Lee?

What does one understand in the Yang-Lee theory by the term phase?

Under which condition is a phase transition possible?

What determines the type of the phase transition?



Appendix A
Solutions of the Exercises

Section 1.1.3

Solution 1.1.1

1. Trick: At first we consider p; and p, as independent variables, and set at the end
of the calculation p; 4+ p, = 1!

N

9 N! Ny N—N
(N1) =p pi'py
: Lopy le=:0 NN — NP2

p1+p2=1

= Npi(p1+p2)" ™|

d
=Py (p1+p2)"
D1 pitpa=1

papr=1 = NP1,

a ad ad _
(ND) =p1 [pl (p1+pz)N} = [Pl Npi (pr+p2)" 1}
ap1 P1 _ ap1 -
p1tp2=1 p1tp2=1
= [Np1 (p14+p2)" ™" + NN — Dpi (p1+p2)" 2]
pi+p2=1
=Npi +N(N—1)p}.
Mean square deviation:
ANy = (V) = (N1)? = /Np1 (1= p1)
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Fig. A.1 W,
6/164

4/164

1/16 1 |

0 1 2 3 4N
For p; = 0 and p; = 1 the deviation is of course equal to zero. Apart from that

it increases with N over all limits.
Relative mean square deviation (Fig. A.1):

AN, I—pi
= — 0.
<N1> Npl N—o0

2.
1
pP1r=p2= o
1
0) = 4) = ,
wa(0) = wa(4) 16
4
1) = 3) = ,
w() =wi@) =
6
2) = .
w4(2) 16
3.
1 23 1 11.5
(N) = _10%; AN, = _10'"%,
2 2
AN — 10115
(N1)
1 '0” ”
wN(1023)=(2) =271 ~0.
Solution 1.1.2

S=lnm!'=Inl+I2+m3+--+lnm=) Inn.

n=1
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Fig. A.2 Inn

’_F

407

1234567 89101112

S: Area under the step curve in Fig. A.2. Obviously the estimate holds:

m m

/dxln(x—l)fo/dxlnx.

2 1
The integrals can be easily evaluated:

m—1

/dnmp4)=/ﬁ@mw=bmy—ﬂTl
2

1
=m—-—DInm—-1)—@m—1)+1

=(m—1)(Inm—1)—1)+1,

/dx Inx = [xInx—x] =m(nm—1)+1
|
= (m—-1)(In(m—-1)—1)<S—1 < m(nm—1);

m — 00: S—>m(nm—1).

Solution 1.1.3

Ny <N, P <1,
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Estimation:

N!
(N —N))! =NN—-DN=2)---(N=N + 1) ~ N"

—ivV1)-
Inp)l™ = (N = N) In(1 —p1) ~ NIn(1 —p;) ~ —=Np; = —(N,)

= py M &~ exp(—(M1)) .
Ni (Nl> M
P :( N )

_ NV
= wn(N1) = NipNNE (V) e M)

!
NI (N = NP1 P2 Ny!
Solution 1.1.4
p = probability that a particular mistake appears on a particular page

1
500

(equal a priori-probability),

N = total number of mistakes = 500

—> mean value per page:
(M) =Np=1.

Poisson distribution:

1. wy(0) = ¢! = 0.368.
2. wy(Ny = 3) = 1—wy(0) —wy (1) —wn(2) = 1-0.368 —0.368 —0.184 = 0.080
(actually astonishingly small!).

Solution 1.1.5

1. There are N! possibilities to distribute N bullets over the N boxes. The first bullet
has N possibilities, the second then N — 1 possibilities, the third N —2, and so on.
We ask ourselves how many pairwise different occupancies of the k red boxes
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exist. Among the N! possibilities of distribution there are of course also those,
which differ from each other only by an interchange of bullets between the k red
boxes and between the N — k blue boxes, respectively. Such distributions should
be counted only once. The number of the pairwise different occupancies of the
red boxes is therefore:

N!
k) = .
v ®) = v — ko
All these occupancies are of the same probability. The probability to find a
special set of k bullets just in the k red boxes is therewith:

v_ 1 _ RN
ay (k) N

2. We consider again a particular set of k bullets. As just calculated, the probability
that all are in red boxes is equal to wkN . Each other occupancy of the red boxes
appears with the same probability. In the next step, out of the particular set of k
bullets k¥ < k bullets shall be in the red boxes, the other k — k’, however, in the
blue boxes. There are o (k") possibilities to distribute kX objects over  sites, and
an—x(k — k') possibilities for the other kK — k" objects to be distributed over the
remaining N — k sites. There are thus

ar (k') - an—x(k — k')

realizations, for which from the k given bullets k" are put into red boxes and
k — k' into blue boxes. Each of these realizations appears, according to 1., with
the probability wY. The probability to find from a chosen group of k bullets a
special set of &’ bullets in the red boxes and the other k — k' in the blue boxes is
thus:

wiy (k) = wi o (K') - oy (k — K')
RN =R K (N —k)!
TN KWk =K)! (k—K)I(N — 2k + K)!

3. The numbers, drawn by the lottery company, correspond to the £ = 6 ‘red boxes’.
From the k = 6 numbers I have tipped, X < 6 go into the ‘red boxes’, being
therefore ‘hits’, k — k' = 6 — k’ go into the ‘blue boxes’, belonging therefore to
the N — k = 49 — 6 = 43 not drawn numbers (‘blanks’).

(a) Six hits:

61431

~715-1078
49!

K=k : w29(6) = w29
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(b) Five hits:

6! 43!
K=k—1:wd®6)=w- S 11401 = we +258 ~ 0.185-107*
(c) Four hits:
6! 43!
K=k—2:w’(6)=wg- a1 Al = wi? 13545 ~ 0.968 - 1073
(d) Three hits:
6! 43!
K=k—3:wy(6)=wg - 3131 31401 = we - 246820 ~ 0.0176
Solution 1.1.6
1. (4,0), (3.1),(2.2),(1,3), (0, 4).
2. Possibilities of realization (1.1):
4!
Ty(ng, ny) = .
na!nh!
I'y(4,0)=1: |aaaa)
M

particles 1234

ry(3,1)=4: |aaab
|aaba
|abaa
|baaa
I'4(2,2) =6: |aabb
|bbaa
|abab
|baba
|abba

)
)
)
)
)
)
)
)
)
|baab)
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Tu(1,3) = 4: |abbb)
|babb)
|bbab)
|bbba)

40,4) = 1: |bbbb) .

3. Equal a priori-probability for all the 16 thinkable states:

1 4 6
w(4,0) = w(0,4) = 16 ; w3, 1) =w(l,3) = 16 ; w(2,2) = 16

Section 1.2.5

Solution 1.2.1
2 2
p q !
H s = F = t =1.
(¢.p) const —> mE + ,,ifz

Areas of constant energy in the phase space are similar ellipses with the semi-axes:

2E
po(E) = /2mE; qo(E) = \/ =
mw
Phase trajectory:
0H p . 0H )
op m dq
—> dq = P dr.
m

p from the equation of the ellipse:
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Separation of variables:

t

q
dq’ d.
/ g :pO/dt’pot, / 2x 2=arcsinx+c
\/(1_{1/2/%) m m Va? —x |al

a1 0
- Pot = qo[arcsin 1 _ arcsin q1i|
m 90 q0
= ¢(1) = qosin (o1 + £(q1. E))

e(q1, E) = arcsin 0 : fixed by initial conditions at t = 0,
q0

2
= 23 (4 — 4*) = m**q cos’ (w1 + (g1, E))
0

= p(1) = pocos (ot + £(q1,E)) .

The phase trajectory is therewith determined:

2E
x(t|q,E)= (\/ 5 sin(wt + ¢), \/2mEcos(a)t+e)) .
mw
¢q1 = q(t = 0) as initial condition and E determine also the initial momentum p;:

w(t|qi.E) — w(t| qi.p1) = m(r | £(0)) .

7 (1) describes the motion of an oscillator, which is at the time ¢t = 0 at 7 (0) =
(g1,p1), as a function of time. After the period t = 2n/w each point of the
H(q,p) = E-hyper surface was run through. The quasi-ergodic hypothesis is
therefore exact for the one-dimensional harmonic oscillator!

Solution 1.2.2

H:H(q,p), p:p(Hvt)

dp

VH .
0H
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Because of
VH:(E)H’W’E)H’ aH“MaH)
g, dqs dp1 aps
= (=Pl =P q1ee1Gs)
VZ(él,---»éw i’lv---va)

we have

v.-VH =0
and therewith also:

v-Vp=0.

This means according to the Liouville equation:

dp

81‘:0'

Solution 1.2.3

It holds for det F; as for every determinant ((1.332), (1.336), Vol. 1):

2s
Z a,-kUjk = 5,']' det F(t’o) .
k=1
Thereby
a7 (1) d(det F))
ik = ; ik =
C T am(0) ¢ da

are the elements of the determinant and their algebraic complements ((1.327),
Vol. 1), respectively. We build therewith:

d d(det F(t’o)) daj daj
det F*0 = =N ok
dt € %: daj dt %: “ar
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For this expression we use:

dag, . d a]t,'([) . d .
dt " dt (Bzrk(O)) = om0 F)

B (1) dmi(H) 07 (1)
B XJ: (1) dm (0) ;ajk am; (1)

This is inserted into the above equation:

orr; (¢ o (t
detF(IO) ZUL/( jk ]T() = Z&'jdetF(r’O) T[()
ij

m O7;(1) d7; (1)
a7 (1)
_ 00§
det F' : o) °

(1) < ( ¥H  PH ):
Zi:f)m’(t) _j; dg;(r) dp;(r)  Ip;(t) 9g;(1)

It follows:
d (t,0) (2,0) (0,0)
dtdetF* =0= detF""”’ =detF""’ =1.

This proves the assertion: I', = I’y = 1.

Solution 1.2.4

1. Phase volume:

p(E) = a// dqdp

H<E

= « - surface area of the phas-space ellipse (see Exercise 1.2.1)

= & - TPpogo
2F
= a'nx/2mE\/ )
mw
2

= () =a- E.
1)
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It follows therewith:

2
T(E) = o(E+ A) — 9(E) = a - a’)’A.
It holds:
. o _ w
P=rE) T 2ea

Normalized density-distribution function:

w/2rA ifE<H(q,p)<E+ A,
p(q.p.t) = p(q.p) =

otherwise .
2. Kinetic energy:
Lo
(1 =, /f dqdpp® |
m
E<H<E+A
++/2mE
2 2 2 2E p?
dgdpp” = dpp dg = dpp~2 -
mw?  mlw?
H<E pr<2mE q2<m2sz_mgiz —/2mE
++/2mE

dp p*v/2mE — p? .
mo

—/2mE

Formulary:

4
/dxxz\/az—xz = g(ZxZ—az)x/az—xz + C; arcsin |x| +c.
a

Therewith:

2 4m’E?
// dgdp p* = oo m8 (arcsin 1 — arcsin(—1)) = rrz)rr E?.

H<E



416 A Solutions of the Exercises
It follows:
w mx
T) = E+ AP —E? = 2EA + A%},
(T) =\ o \EFA?—E = {EA+ A%
1 1
T = E A
() 2 + 4
Potential energy:
1, 2
(V) = oM po dqdpq~,

2E
+-V/mw2

/ f dqdp ¢*

H<E

2

= 2mw / dqqz\/ ,
mw

-/
e

E<H<E+A

+ \/2mE—m2 w?q?

dq q* /

— \/2mE—m2a)2q2

dp

2E
mw?

dq ¢*/2mE — m*»?q?
V/nii
+_V/;Z§

2F
9.

_\/ 2F
mw2

That is the same type of integral as that for the calculation of the average kinetic

energy:

2 1 4E? . .
dqdp q° = Zma)8 2t (arcsin 1 — arcsin(—1)) =

H<E
‘We calculate therewith:

, W T
me

vy =
n 2 A mw3

2

TE?

mw3

{(E+A)—E*} = 41A QEA+A?) = ;E+iA =(T).
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Fig. A.3 p
+YN 2mE T—)—:
A Y
| | X0 q=x
—\2mE i—(—:
Solution 1.2.5
(Fig. A.3)
1.
0 forO0<x<xp,
V(x) =
oo otherwise
e
= H= =E<=p=+V2mE for0<x<x.
m
2.
X0 +«/2mE
9(E) = a/dq / dp = a 2x08/2mE .
0 —~/2mE
Solution 1.2.6
po, IfE<H(q,p)<E+ A,
p(q.p) = .
0 otherwise ,

o

Po = T'(E) ;

E<H(q.p)<E+A

N
H(q.p) = Y _Hi(q:.p;) . where
i=1

1

Hi(qi,p) = Zm(pﬁc +p;). if0<gyx<x and

T(E) =« /f d'qd’p  (s=2N),

0=<giy=<yo.
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When dealing with the phase volume
9(E) = a / f d*Nqd™p
H(q.p)<E

the position-integrals are directly calculable:

@(E) = o (xoy0)" - Van 5 Voy = / / dpidp; ...dpoy .
2N
Y. p;<2mE
i=1

Von is the volume of the 2N-dimensional sphere of the radius V2mE. Using
spherical coordinates one finds:

2mE

Von = Qon /dPPZN_l
0

= 212\]/\] (x/ZmE)ZN .

Qyn: surface of the 2N-dimensional unit sphere. This can be determined by the

Gaussian integral in the 2N-dimensional space:

oy Toe

/dZNxe (4422 H/ — \/n) —

Alternately by the use of spherical coordinates:

o0
2 e
GZN:/dZNxe x :QZN/dxXZN e,
0

dy

2.y

With the substitution y = x*> ~, dx = and the definition of the Gamma-

function:

00
1 o1 1
G2N = 292]\/ /YyN_l e = 292]\/ F(N) = 292]\/ (N— 1)'
0
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Comparison of the two results for Goy:

27N 27N

QN = royy T -

The volume of the 2N-dimensional sphere of the radius \/ 2mE is therewith
determined:

N

I N _ i N
= NTW) 2mE)" = N1 2mE)™ .

Von

Insertion yields the phase volume and the required normalization constant of the
micro-canonical ensemble:

o(E) = 1 @rmigy)" - EY

N
T'(E) = ¢(E+ A) — g(E) = ]‘\’]‘! QrmxoyoE)" [(1 + 2) - 1}

N!
Po = :
N AN
(2rmxoyoE) [(1 + E) — 1]

Solution 1.2.7

1. Equation of motion ((2.109), Vol. 1):
mg+aqg=0.

Solution ((2.111), Vol. 1):

a
q(t) = a; + ayexp (— t) ,
m

o
p(t) = mg(t) = —Gaz exp (— t) .
m
Initial conditions:

q(t = 0) = qo; pt=0)=po

= po = —Qa; qo=a1 +ay,

Po
a =—_; a =4qo+ _
a
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Fig. A4 p o

Slope: —a

| I~

qo+po/
Po o
— a0 =g+ [1—exp (= 1)] .
p(t) = poexp (— N r) :
m
Phase trajectory (Fig. A.4):
p(t) + aq(t) = po + &qo = const .
3(q(1). p(t g [1=exp(=50)]
dawap = 90" 4010y = - "7 dgodpy
3(4(0)717(0)) 0 exp (—f[nt)

= exp (— * t) dqodpo
m
= temporally variable phase volume!

2. Equation of motion ((2.169), Vol. 1):

., 2
g+ q+wqg=0.
m

Solution for weak friction ((2.174), Vol. 1):

_ ’ _
q(t) = exp|— * t) | gocoswt + Potado sin wt
2m 2mw

. 0! 2 o x X 2 o
= ¢(1) = exp (— * t) [( Potago _ O“‘m)coscz)t— ( * Zpotaqo + qoa))sina)t] R

2m 2m 2m 2m  2mw

- B -
p(t) = exp (— * t) [po cos wt — (a Potaqo + mqow)sinwt] .

2m 4mw
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Weak friction:

<1
mw

a
= q(t) ~ exp (— t) (qo cos wt + Po gin a)t) ,
2m mw
a .
p(1) ~ exp (—2 t) (po cos wt — mgow sin wt) .
m

It follows with sin® x + cos?x = I:

1, Loy, o [P S a
2mp (t)+2ma)q(t)—exp —mt 2mp0+2ma) qy | = Eoexp —mt .

This is an equation of an ellipse with time-dependent semi-axes:

a= \/ZmEo exp (—;nt) ,

) \/ 2E, @ )
mw? P 2m

=  phase trajectory: elliptical spiral,

d ,
da(t)dp(e) = (3,1(2 ’ g) ) daodps

5 5 dqodpo

_ N
exp(—,, 1) coswt  exp(—, 1), ~sinwt
—exp(—,, Hhmw sinwt exp(—,, 1) cos wt

@
exp(— " Hdgodpo

—  temporally variable phase volume!

Solution 1.2.8

Energy-volume relationship of a relativistic particle ((2.63), Vol. 4):

cp = VE2 — m2ct .
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Phase volume:

4 4 [ E? 3/2
@(E) :05// dqdp = aV ;P3(E) =aV 3”( 5 —mzcz) )
C

H<E

Solution 1.2.9

Number of different possibilities to distribute N particles over the two levels and
thereby to realize the energy E = E(N;, N,):

N!

Tv(E) = NN,

Stirling formula:

N NV NV
InN!~ N(InN—1) = NlIn zln( ) N N!m( )
e e

e

Therewith the phase volume I'y(E) can be estimated:

) NN NN N T
VTN T\ ) ) T\ ) v

It holds:

E=02N,—N)e=(N—-2N)¢

N _1(TE L\ M _L( 1E N (E
YN Taolen N 2 eN N i\n

()] v ()= ()

is an intensive variable. It thus follows:

®

~ I'n(E)

E
N

InTw(E) x N .



A Solutions of the Exercises 423

Section 1.3.8

Solution 1.3.1

1. We calculate

+o00 +o00
1= /dylm/dyNeXP(—(y?Jr---erﬁ))
—00 —00

in two different ways, on the one hand by factorization of of the exponential-
function,

+o00

N
I = ( / dye_yz) — N2 )

on the other hand by introducing spherical coordinates:

0o
I= / dR SN(R)e_R2 = (isotropic problem)
0
00 00
= NCy / dRRN 1R ) ;NCN / dx XVl g
0 0

— 1= ‘ner (VY
R )

ZJTN/2

NT(5)

:>CN:

Gamma function:

Fx+1)=xI'(x), raq) =t; F(l)an.

2
N even N =2n; neN:
N N 2 (N
r =T =mh-1!= —1)'= !
(3)=ro=e-m=(F-1)=(5)
aN/2
:>CN=
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()=o)
-6 )

= 21 (2n—1)2n—3) -+ 11 = 2(1;{7;/2 (N—2)(N—4) -+~ 1
— NT (IZ) - Z(N‘{]f)/zN!!
2 (2m)N=h/2
= Cy = v .
2. Volume of the sphere:
Vn(R) = CyR" .

Volume of a surface layer of the thickness A < R:

AVy(A) = Vv(R) — V(R — A) = Cy[RY — (R — A)"]

A N
= AVy(A) = Vy(R) [1 - (1 - R) ] .

A, R fixed:
AVy(A AN
T I R =1, ifA>o0.
N—oo Vy(R) N—>00 - R_{
1
Solution 1.3.2

Phase volume according to Exercise 1.2.9:

Ni N>
o= () (w)
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Thereby it holds:
N—N 1E+1 N—Nl 1E
"o \enN ) eN) "’
Hence it follows for the entropy:

N N
S(E,N) = kB In FN(E) :kB N1 In +N211’1
N N,

=) (L )m(5 Ly 1))
(=G =5))]

With (1.89) we then get for the temperature:

D_(0SEN)Y _ N[ (LTE
T E )y Palen \2\enN

e N
kg 1—1%
= In \E
2¢e 1+3N
oy = | o (/3 1)
X £ = = .
oo 1+ !k kT

That can be resolved for the energy:

_ 1 —exp(2Be) B
E = N¢ |+ exp2Be) Ne tanh(B¢) .

N1 (V) is the number of particles in the upper (lower) level +& (—¢). So N; /N can
be considered as occupation probability for the upper level and N, /N for the lower
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level!
N 1 1E 11— 2 1
LU TEY exp(e) |\ _ -
N 2 eN 2 \ 1 + exp(2B¢) exp(2fe) + 1
N. N
21" =1—nm.
N N

It follows for the entropy:
S(T,N) = —kBN(n(T) Ina(T) + (1 — n(T)) In(1 — n(T))) .
Because of n(T) — 0 for T — 0, one recognizes:
}i_r)r%) S(T,N)=0.

This corresponds to the third law of Thermodynamics (see subsection 2.2.2 and
section 3.8 Vol. 5).

We started for the solution of this exercise with a classical particle system. The
considerations, however, remain word-for-word the same for a quantum-mechanical
system of distinguishable particles. That will be demonstrated in Exercise 2.2.2.

Solution 1.3.3

as kg (0ly N
W) Ty vV )y 14

3. Adiabatic: S = const <= I'y = const

0 = dE + pdV — pdN

(o
P==\ov )y

~ Ty 2/3N_ Ty \2/3N n
E= (f(N)VN) = (f(N)) v
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OE\ 2 o Ty
:(aV)m__sv (f(N))

2/ Ty \
= pV°/3 = ( = const.
3\/WV)

Solution 1.3.4

1. Equilibrium:
Ideal gases do not possess any interactions. Each state of gas 1 can thus be
combined with each state of gas 2 =

oN(E, V) =) on, (E1, VIgn,(E— Ey, V)
E,

Ni+N;=N E+E=E

For the phase volume of the ideal gas we have Eq. (1.118) (i = 1, 2):

1(v\Y oY v
on(Ei V) = i\ s  CmiE;) 2

‘Equilibrium’ (E, = El) < maximal summand of the phase volume! As usual
it is convenient to investigate the logarithm:

2
In (g, (E1, V)gn, (E — E1, V) = ) Ingy,(E;, V)

i=1

Stirling formula:

3N; 3N; 3N;
In | = In -1 InN;! = N;(InN; — 1)
2 2 2

It follows therewith:

oy (E.V) = N, [ | V(47 E v 40
ny\Li, = V| In
N N\ 3m2 N, 2

Nn V4 SN D N
= /N; In iin iinc¢;
N, 27N,
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For the summand in the total phase volume it can then be written:

\%4 |4
In (n, (E1, V)on, (E2,V)) = NiIn - + N> In
N N,

I L VA
n n
27PN T2 N,
+Nilnc; + N> Incy

‘Equilibrium’ (E, = E))

ad
0= E In(ew, - ¢n,)

ad

3N 1 n 3N —1
= 1~ 2 ~

2 E 2 E-E

_3(1\71 Nz)
2\E B

Equilibrium is thus existent when the energy per particle is same for both gases!

Ei _E . o~ =
= th E\+E,=E
N Ny wi 1+ E»
2. Temperatures:
1 d 3 1
= ks Ingn.(E;, V)| _~ = _Nikp -
T = ag® n gy, ( )iE,-=E,- o Nike 2

‘Partial gases’ at equilibrium (see 1.):
N 3
T, =T, with Ei,= leyszTl,Z

Temperature of the ‘total gas’:

1 d
7= opke (e (B VIgw(E—ELV)) |, o

d

3 1 3 1
= M ~ = _ N>

2 "E—E 2 "F,
_l
=

The temperatures of the ‘partial gases’ and of the ‘total gas’ are thus same!

T'=T,=T
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3. Pessures:
It follows with

E, 3 )

= _ksT i=1,2
N 2
for the entropy of the ‘total system’ at equilibrium:

S =kgln (‘le : §0N2)
2

3N; 3 \%4
= kBZ( 5 In (ZkBT) +N,-lnN‘ + N;Inc;

i=1 !

=85+95

Partial pressures of the ‘partial gases’:

_T aS; —kTNi
pi = 9V Ni—B v

The result is the total pressure as sum of the partial pressures:

3s 2N &
p=T(aV)N=kBT; v =;pi

Solution 1.3.5

1. We take from Exercise 1.2.6:

*

o

V=xy: o= 12N (1.45)
Evy=2 (v NEN
@N( s ) - N' ]’l2 m
oar (27w N N N
ITv(E,V) = v\ mV ) [(E+ A)Y —EY]

N
(pN(E, V) |:(1 + 2) - 1:| .

InN! ~ N(InN — 1)

With

429



430 A Solutions of the Exercises

it follows:
o EV) =N\ (Tm E)+1]+mna*
n = n n
¢N(LE, hsz o
AN
InTy(E,V) zlnqu(E,V)+ln|:(1+ E) —1] .

Because of A « E it can further be approximated:
A" A
In| {1+ —1|~In{N .
E E

InTy(E,V) = Ingy(E, V) + O(nN) .

That means:

The equivalence is therewith shown, because In gy = O(N) (see above) so that
the second summand is negligible for large N in comparison to the first summand.

2. Temperature:
as ad 2V 1
7! = =kN. In( " m E)=kN
IE )y OE \ 2N E

Entropy:
2V N
S(E,V,N) = kglngyn(E,V) = Nkg |In Jr mNE +1|+kglna

1
o = ; Ina*=—InN!~ —-N(nN —1)
N!

2 VE
S(E,V,N) = Nkg |1 2
A SE.V.N) B[n(hszN)+ }

2V
= Nkg [ln ( 2 meBT) + 2} =S(T,V,N).

Free energy:
F=U-TS; U=E=NksT

2V
~ F(T,V,N) = —NkgT [ln ( 2 meBT) + 1:| .
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3. Chemical potential:

= T(aS)
ON )y
aS 2 VE 2
=kg |1 2| + NkgN? | —
(8N)E,V B[“(hszN)+}+ P (N»*)
2n VE
=kgl .
B n(h2 mNN)
It follows eventually with kg7 = E/N:

2V
,LL(T, v, N) = —kgT In ( % meBT) .

This is obviously identical with

(T,V.N) = oF
S ON T,V'

Solution 1.3.6

1. Hamilton function:

1 N
Higp) =, > (1} +m'e’q).

i=1

Phase volume:

a*
oN(E) =a // d" qd" p; =,

H(q.p)<E

Transformation of variables:

Xi = mwq;
1 N
— H(x,p) = o Xj(pl2 +x?) ,

i=1
_ NN
CE |

H(x,p)<E
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The multiple integral represents a 2N-dimensional sphere of the radius /2mE:

*

o
(mah)V Con(2mE)N .

on(E) =

It holds thereby according to Exercise 1.3.1:

N
b4
v =
a* (2m\N
— E = EN .
en(E) NI (wh)
2. Entropy:
a* (2m\"
S=kpql NInE
B§ H[N! (a)h) ]+ g
Temperature:
as Nky
T7' = = E = NkgT .
(aE)N E B
Solution 1.3.7

An adiabatic change of state results from an interaction of the system with
exclusively external parameters. We formally consider them as time-dependent and
calculate:

d d
GlGapa) = [ ¢adp e pia)om. 0 piz0)
Exploitation of the Liouville equation (1.34),

d
mee(ds P I :07
gy Pmee(@-P-1)
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leads to:

d
P(CR 0N // d*qd’p Z 2, M e (a.p.1)
. dz; [0H
_Zzlfqudp ,Omceqpv Z <8Z>

i=1

> Ut = ((H))oa = Z<8H >dz,- .

i=1 dz;

Solution 1.3.8

1. In general it holds:

g ‘ 3(,0)
do(E;z) = dE + dz;
v ( 3E)z ; ( 9zi E.zi(j7) :

"y
— D(E.2)dE + ) ( ‘p) dz;
i=1 i) Ezj(j#i)

D(E,z): density of states (1.50) .
We look at the second summand separately:

9
(a‘”) — lim // & qd’p — // dqd’p | .
Zi Ez(j#i) Azi—>0 AZi

H(zi+Az)<E H(z)<E

Because of

oH
H(zi + Az) = H(z) + Az 92 + .-
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it further follows:

0
((p) = lim * /f d*qd’p
9z ) .0 A0 Az

E<H(z))<E—Az 35

1.54) .. o dfg oH
=" lim —Az
Azi—>0 Az; |VH| az;

H(z)=E
dfe 0H \ (1.56) 0H
= : — = D(E,z){ — .
¢ / IVHI( az,-) B2\~ g,
H(z)=E
This means altogether:
"\ |0H
do(E;z) = D(E,z)| dE — Z dz; | .
i=1
2. Adiabatic change of state (see Exercise 1.3.7):

n

oH
dE = (dU)as = Z<az< >dZi = (dp(E:2)),,=0.
i=1 !

Solution 1.3.9
1. Probability to find the momentum component of a particle in the interval
(pi:p1 +dp1):

Jfdq [ [dps---dpsn p(q,p)
f dqdp p(q. p)

VY [ f s dp @)
VN [dp p(q.p)

w(p1)dp) = dp;
= dpl

~dp1/"-/dpz"-dp3N5[(P%+--'+P§N)_(ZmE_P%)]‘

On the right-hand side we have a volume-integral over the (3N — 1)-dimensional
space with an isotropic integrand. After angle-integration over the (3N — 1)-
dimensional unit sphere we find a contribution ~ p*¥~2, where p is the absolute
value of the vector

p = (p2.p3.....P3n) -
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It thus remains to be calculated:
o0
w(p1)dpy ~ @(2mE —p%)dpl / dpp3N—28[p2 — (2mE —p%)] .
0

Substitution:

y =7~ (mE—p}) <= p = \/y+ (2mE—p}) .

1
dp = 2pﬁly ,
5 T L 16N-3)/2
w(ondpr ~ 0@nE=pdp [ as[y+ @ne-p)] " 80
—(ZmE—p%)

= @(ZmE —p%)dpl (ZmE —p%)(3N_3)/2 .

m and E are constant:

EENC L
dpy ~ O(2mE —p?)dp; |1 - ! .
w(p1)dp (2mE — p})dp: ( 2mE)

N is of the order of magnitude 10?>. We can thus confidently neglect in the
numerator of the exponent the 3 compared to 3N. The expression in the second
bracket is smaller than 1. In order that the right-hand side actually is essentially
different from zero in spite of the very large exponent, the value of the bracket
by itself must be very close to 1. This means:

Pl

1.
2mE <

That permits the estimation:

L P
— ~exp|— ,
2mE 2mE

2 3N—3 2 3N 2
D1 ’ P\’ 3N pi
1-— ~|(1- ~exp|— .
2mE 2mE 2 2mE
We further insert, according to (1.121), E = (3/2)NkgT and then have:

2
p
w(p1)dpy ~ ©(2mE — p?) exp (— 2mleT) dp1 .
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It follows from that with p; = mv; ‘almost’ the Maxwell’s velocity distribution:

2E 2
w(vy)dvy ~ @( m vf) exp (—2’7{:1],) dvy .

The ‘almost’ refers to the step function. The micro-canonical ensemble gives an
upper limit for the velocity!—We will, however, disregard this restriction for the
next partial solutions.

2. With 1. it also holds:

2
w(v)d>v = ¢ exp (— Z’ZVT) v .
B

The constant ¢ follows from the normalization condition:

o0 o
d
1= /w(v)d3v = 4nc/exp(—av2)v2dv = d4nc — /exp(—avz)dv
o
0 0

d
= —2nc \/ﬂ = weN/ma™?
da \V «

3/2
_— Cc = mn
(27TkBT) '

The probability distribution of the absolute value of the velocity follows by
integration over the angles:

2 +1

2
w)dv = /d@/dcosﬁw(v)vzdv =4mcexp | — " v2dv .
2kgT
0o -1

3. Most probable absolute value of the velocity:

v d mv? 5 m
0= w() =4dncexp|— 2v —2v
dv ZkBT ZkBT

\/ 2kgT
= Umax = .
m

4. Mean values:

(vy) = /vxw(v)d?’v

vy = vsinvcosg ,
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[ed] 2 2 k4
(vy) = c/exp (_ZHIZUT) v3dv/d<p cosgo/dl? sin? 9 = 0
B
0 0 0

2
because of / dp cosp =0.
0

Analogously the other components:

(vy) = (v;) =0

= (v) = 0:isotropic velocity distribution.

Average absolute value of the velocity:

(v) = | w)vdv = 4mc | viexp ( — avz)dv
[romae=s]

Average square of velocity:

o0 o0
(V) = /w(v)v4dv = 47‘[C/ v exp(—avz)dv
0 0

2
=d4mrc d 1\/n = 7t3/2c3ot_5/2
4
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3 32 (2kgT\>?  kgT
= 72 " B =3"
2 2mkgT m m

= \/(V2> = \/3kBT = \/;Umax .

m

Comparison:

<
S
%
=
=
<
=
|
—
[\
&
W
X
—

:1.13 1 1.22.

Solution 1.3.10

Taylor expansion for f(E):

f(E) = f(Eo) + f'(Eo)(E — Eo) + ...
= E) + NEY " (E—Eo) + ...

Ratio of the first two terms:

NEY "W E-E E—E
A= 0 (N O) =N 0
E, Ey
Requirement:

AL]l AE<<1
Ey N

ie. for N = O(10%): extremely small region of convergence, Taylor expansion
presumably unusable!
On the other hand, Taylor expansion for Inf(E):

Inf(E) = Inf(Eo) + (E — Eo)fc ((5;))) +...

NEN—I
= NInEy + (E — E) EON +...
0

N
=NInEy+(E—Ey) . +...
Ey

E—-Ey
— A =
E()ll’lE()
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Fig. A.5
(E/EQ)'0

10 In(E/E,)

Requirement:

AE
AL] E, < InEy ~InN,
i.e., the Taylor expansion is now possibly useful. The behavior of the logarithm
remains even for 10 ‘moderate’ (Fig. A.5).

Discussion: In Statistical Physics one has to often deal with functions of the
type EVN with N = ((10%), as for instance the phase volume of the micro-
canonical ensemble ['y(E, V). Necessary discussions of curves are therefore in
general performed with the ‘better-behaved’ function Inf(E).

Solution 1.3.11

The density of states was defined in (1.50):

d
Dn(E,V) = E, V).
WEV) = on(E.V)
The phase volume ¢y (E, V) of the ideal gas was calculated in (1.118):

1 (v\YNa™N23N
_ /2 12(3N/2)—1
DNEV) = (h*) ()1 2 2m)*N’E :
! V)1

It holds for the temperature:

I (3S\ ke ) k(N
T \0E/)y, DyEWW\E"T"), TE\2

E

:>kBT= W

2
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This is to be compared with (1.121):

E
kT = 3, -
2

For N — oo the expressions are equivalent! On the other hand, it obviously does not
make sense to define a temperature for systems with only a few degrees of freedom.

Section 1.4.5

Solution 1.4.1

Hamilton function:

PZ 1 22
H(g,p) = o T oM

According to (1.136) it is to be calculated:

1 +o00 +o00
zZ= / dq/ dp e~ PH@P)
a1 o oo

+o00 +o0
! / q e‘g”"“z‘lz / dpe™” 5'2"
h J-o ’ —00

ﬁfnf;z \/ZJEW
C12r kT
ChBe  ho

Solution 1.4.2

Ideal gas in the gravitational field:

p?
H:Z(zl;1+mgzi) .

i=1
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1. Average kinetic energy:

2
/ / dNgd™p Pi o—PH@D)
_ 2m

(r) =
/f & gd® p e—PHD)
° 2
B 2 ,BP% /dplp?eXp (_:351 )
R At W ™ I "
C 2m p’ 2m % 1\
3 _a P
/dpl exp( 'BZm) /dplp%exp(—ﬂé)l)
m
0
Formulary:

=)= o
L))
F'x+1) =xI'(x); ra=i; r (;) =.Jr.

Average kinetic energy per particle:

3
t) = kgT.
() = ks

We found the same result with the micro-canonical ensemble (1.113).
2.

o0
// d3qu3Np ngle—ﬂH(q,p) / dz, Zle—ﬂmgzl
0

(U> = =mg )
/ le e—ﬂmgm
0

/ f & gd®Np —PHD)

o0
d d 1 1
_ 1 —Bmgz) [ 1 — _ _ .
dp “/d“ dp “(ng) ﬂmg( mgﬂz)
0
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Average potential energy per particle:

(U)Z;:kBT.

Solution 1.4.3
1. No interactions between the molecules
wrvy= ! / e / Iprd’prd’rid’ry e P ’
' hON (2N)! ’
The momentum-integrations can be immediately performed (1.137):
p?
/d3p exp (—,3 ) = Q2umkgT)*? .

2m

It remains to be calculated for the partition function:

(ZJT ka T) 3N
hN (2N)!

Qu(T) = // d*rid®ry exp (_,lerl —l‘2|2) .

oN(T),

Zn(T,V) =

Center of gravity coordinates and relative coordinates:

1
R:2(r1+rz); r=r;—rp,
a(rm RX) -
dr.dR, = dridry, = - dridryy .
a(}’]x, r2x) 2 2

Analogously the other components:

d’rd’R = d’rid’ry

= Qu(T) = // d’Rd’r exp (—,BZrz) = V4r f)drr2 exp (—,BZrz)
0

B 2\ 1_(3) _ 2\¥? 32
() () (2)
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Partition function:

27wmkyT)3N 2k T\ N2
Zy(1,v) = 1) VN(”B )

HSN (2N)! o

= CNVN(kBT)9N/2 .
2. Free energy:

F(T,V,N) = —kgTInZy(T, V)

ON
Z—kBT lncN+N1nV+ 2 ll’lkBT .

Pressure:

= Equation of state of the ideal gas:
pV = NkgT .

3. Internal energy:

d ad 9N
U=- anN(T,V):—aIB (lncN+Nan— 5 ln,B)

ap
_ONL_9N,
T 28 27

Heat capacity:

o
[ #naraie = elexw (85 10 - x:p)

// d*rid’ry exp (—,33 r) — l‘2|2)

(e =) =
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All the other factors cancel each other:

= () = _021 82,)3 In |:// d*rid®r, exp (—,BZ |r1—r2|2):| L _021 8?3 In Q,(T)
239 2\ o 2 31
T [V(ﬂa) =0 (53)

= () = 2kBT.

Solution 1.4.4

1. For the partition function of the ideal gas it holds according to (1.138):

VN

Zy(T,V) = AN(TINT
h

AT) = .

( ) \/ZﬁkaT

Free energy:

F(T,V,N) = —kgT [Nln V—3NInA(T) = N(InN — 1)] .
We have thereby applied the Stirling formula:
InN!~N(nN—-1).
2. Entropy:
won=-(%),

_ V 2umkgT)3/? 1 AMT)
= kBN {ln |:N 3 +1; — 3NkBT/X(T) dT

with
L odxr) _ 11
MT) dT 2T
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follows the Sackur-Tetrode equation:

V (2xmksT\*| 5
In + ,
N h? 2
if one inserts E = 3Nk T (1.121) into (1.124).

3. Thermal equation of state:
p = = NknT
)

S(T,V,N) = Nkg

oV )y

—> pV = NkgT .

Solution 1.4.5

1. This is nothing else but the representation (1.138) of the partition function:

1 ~
Zn(T, V) = Zy(T) v /d‘wq e PV@

\%4

Zy(T) is the partition function of the non-interacting system:

Zo(T) = (NN (1))~ WY

h
AT) = thermal de Broglie wave length) ,
(1) Sk T ( g gth)
1
Zy(T,V) = Zo(T) /---/d3r1---d3rN exp|: B> V(Iri—rjl }

i<j
2. Visa repulsive pair potential and therewith positive. This has the consequence:
0 <exp ( - ,3/\7(|ri - rj|)) <1 Vij.
Therewith

f(|l'i_rj|) negative with V(|ri_rj|)‘ <1.
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An expansion in products of the functions f (|ri - rj|) thus appears reasonable,
since the products become smaller with increasing order.

exp (=B Y V(I =) = [Texp (~AV(r. —x))

i<j i<j

=TT (1 +s(ri =)

i<j
=1+ Y f(ri—xl) + D> f(ri—rl)f(Ire—rl) +

i<j i<j k<l
(i.j) # (kD).
3.
/---/d3r1---d3er(|ri—rj|) = /---/d3r1---d3ri_1d3ri+1---d3rNA,
A= / (=) = / Erif () = 2ai(T)
It follows:
/.../d3,1...d3m > flri— ) = Zal(T);N(N— Hyht
i<j

~ a)(T)N*VN !, because N > 1 .

As to the second term of the expansion we have to distinguish whether all the
four indexes are pairwise different; i # j # k # 1,

/---/d3r1---d3"NZZ.f(|ri_rjl)f(lrk_rll)

i<j k<l
=y ;N N - 1);(N — DV = 3) 2a1(D) (2a1(D))

~ VV2NH (ai(T))” = VN2 N*au(T)

or whether two of the indexes are the same; i = k, j # [:

/---/d3r1---d3rNZZf(|ri_lfi|)f(|ri_rll)

i<j i<l

— yN-2 31'N(N — (N =2)(2ai(T))* ~ §N3VN_2Q2(T) :
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This term is by the factor N smaller than the above summand, and can therefore,

because of N >> 1, confidently be neglected. It thus remains for the expansion of
part 1.:

Zo(T
Zy(T, V) = (;/(N) (VY + ai(DN* VY + ay(T)VV 2N + 1)

) 4
= Zo(T) (1 + A‘l/ a(T) + ]‘\/lzaz(T) + )

1 T Ba
ai(T) Erf(r)=2n | drr? [exp (— ., ) - 1i|
2/ 0/ r
1 Ba © op T nBo Ba
2 { 3r3 |:exp (— o ) — 1i|}0 ~ 5 O/drr3 [,,n+1 exp (— o )i|

Substitution:

r X

dx Ba X
=-n =-n

dr il r

0 o0
2 2
= ai(T) = + 37T/cl)cr3e_)C = :(ﬂa)3/”/dxx—3/ne—x
&0 0

o0
_ _237t (ﬂa)3/n / dxe =3 /n=1] j=x
0
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Gamma function:

(o]

'@ = /dxx’_le_x

0
— == g (")

a(T) = (ai(T))” .

Solution 1.4.6

1. Energy of the magnetic dipole in the magnetic field ((3.52), Vol. 3):

E=—n-B
N

— H, = —p,BZcosz?i,
i=1

¥;: angle between the field B and the

magnetic moment u; of the i-th atom.

1 _
ZNT.B) = / / &N gdN p e~ PH@D)

Z(O)(T) +1 N
= (Z W (Zn)N/~~~/dcosz91~~~dcosﬁN exp(—l—ﬁuBZcosz%)
T
—1 =1

1

17 N
]! ao]
-1

1 N

Z](\? ) (T)  : partition function without magnetic field,

sinh BuB )N

Zy(T.B) = Z\(T) ( BB
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N
/ / a3V g dSNp (Z IM’) e PH@p)
i=1
/ / 43N qd3N p e PH@p

; = W (sin ¥; cos ¢;, sin ¥; sin ¢;, cos ;) .

m =

Because of the ¢;-integration:

m, = my, = 0; m = mge, ,

m= (ZB) InZy(T. B) .

It follows with the partition function from 2.:

m;, =N (;i(ln sinh px — In ,ux)) (x =BB)

h
N (cos px

1
: ) (x=pB)
sinh ux  ux

1
— m=Nu (coth(,BpLB) - ) e,
puB
(classical Langevin paramagnetism)
4. BuB > 1 Low temperatures, strong fields.

1
coth(BuB) — 1; -0 = m ~ Nue,
puB

saturation: all moments parallel.

BuB <« 1  High temperatures, weak fields.

1
cothx =  + ;C O (<)
X

1 uB
= m~Nu (3 IZT) e, (Curie law).
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Solution 1.4.7

oH
. —BH@P) g4 ... g
< 8H> / /”’a ¢ qveapan
oy / / “PHAP) dg, - .. dpsy '

We investigate the partial integral:

/ - 0H e PH@P gy — / 7 —ﬂH(q,p))dﬁj
871']' ,3

— (rr,-e—ﬂH(qp) ‘ / omi —ﬂH(qp)dn
p p

The integrated part vanishes. If 7; is the Cartesian component of a particle
momentum, then the limits of integration are o0, the kinetic energy thus becomes
infinite and e ~## vanishes. If 7tj is a position coordinate, then the potential energy
becomes infinite at the edges of the volume (wall):

/ 7 oH e PH@P) g — 8 / e PHaP) g,
871']' ﬂ

It follows therewith the equipartition theorem:

oH
i = 5,/( T.
<n 37fj> i

Solution 1.4.8

Hamilton function:

=z

N
H = H(q,p) :Z (P ph+pE) +a Y (6 +di + ai)
i=1

Canonical Partition Function

1
INT V)= v /m/qud3 TPHAR) = Py (T) - Q(T)
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with Py(T), Oy (T): momentum integrations and space integrations, respectively:

| +o00 +o00 '3
_ 2 2
Py(T) = BN / / dpi ---dpsy exp (—Zm(l’l +. +P3N))
—00 —00
+o00 3N
1 B 5
= VN / dpi exp (_Zmp ")
— 00
3N
_ 1 2mm
I B
_ 1
— A3N(T)N!
with A(T) = thermal de Broglie wave length
0 2wmkgT & &

Space integration (V — 00):

+o0
onN(T) = / / dqp - -dgsn exp( Ba (ql 4 qu))
+o0 3N
= / dgi exp (—pag;)
We define
+oo +o0
f(Ba) 2_4 dq exp (—Bag’) :_4 Zi;y e ho?
N v
— (o =, [ / D exp (—Ba (2 + 1)

Plane polar coordinates:

X=rcosg;y=rsing
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Therewith:

, 1 T 1 a2
(f(Ba))* = 4/d¢/rdr r\/cosgosin(peXp( Bar?)
0 0

The @-integration yields a constant which is unimportant for the following:

o}
b/

1 r do . e
€= 4/ Jcos g sing (f(Ba)) —C/dre _C'\/,Boz
0

0

3N/4
_ v [T
— QuT) = C ( ﬂa)

It follows for the partition function:

| 5 3N/2 3N/4
Z(T) = ( ’"”) C3N/2( iy )

MBVNNI\ B Ba
C3N/2 4273 3N/4 on /i
EYY! ( o ) P

Internal Energy
U= (H) = f . "fd3qu3NpH(q, p) o—PH@p)
N B [ [dPNgd*Np e=PH@P)
d

With the abbreviation

C3N/2 (4273 3N/4
gN(a)thN!( o )

it follows

9N
InZy = Ingy(a) — 1 In 8

_9N1 9N

= keT.
486 4"
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Entropy
§— (3F)
T Jwy
F= —kBTll’lZN(T)
ON
= —kBTll’lgN(Ol) — 4 kBTll’l(kBT)
ON
— S(T) = kg lngN((x) + 4 kg(In(kgT) + 1)
ON
= S() + kB InT
4
Solution 1.4.9

1. H: Hamilton function of the particle system in the magnetic field B:

/ f &N gd® p me—PHED)
1
(m) = = VBZN .

/ / &N gd® p e FHED) BZy

B = curlA; A = A(r): vector potential.
Hamilton function of the charged particles in the magnetic field ((2.39),
Vol. 2):

1
H=)_ o (P GA@)” + Hi(@) .
j=1

Partition function:

1
A= /"'/d3(]1"'d3fm exp (— BHi(q))
N

2. Substitution:

u; = p; — g;jA(qg)) -
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The limits of integration do not change:

+00 +oo
/d3pj--~ — /// dpjdpjydp;. -+ = /// dujduydu;, -+ = /d3’4i"'
—00 —00

The partition function can thus also be written as follows:

1
Zy(T.V) = N!hw/"'/d341"'d3fZNeXP(—,3H1(Q))

N
. exp (— P w2
l—[/dujexp( 2mju]).
j=1

Zy is obviously field-independent in spite of B # 0:
ZN 7é ZN(B) < VgZy =0.

This means according to part 1.:

This result corresponds to the so-called Bohr-van Leeuwen theorem:

Magnetism is a quantum-mechanical effect. Strictly classically the

resulting magnetic moment is always zero!

Solution 1.4.10

Because of thze absence of interactions the Hamilton function factorizes:

N

N 1 =R
H(a.p) =) Hiq.p) =) (2m_p,2 + V(q/)) :
=1 j=1 !

According to (1.134)

exp (— BH(q.p))

p(q,p) =
// d*qd*p exp (— BH(q.p))
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is the normalized probability that the total system is at the temperature T in the
phase T = (q, p). We are only interested in the i-th particle:

J# BH(a b
pi(qis pi) = / e / 1_[ d3qjd3pj p(q, p) = eXp ( ,3 l(qlv PL)) )
j // d*qid’p; exp (— BHi(q:, pi))

It is asked for the momentum distribution in the gas:
2
p;
exp (— B 2m)

N
fonen(-55)
2m

The normalization integral was already calculated for (1.137). The probability that
a gas particle possesses a momentum in the element d>p at p, reads, when we from
now on suppress the index i:

w(p;) = /dSCli pi(qi. pi) =

2
W(p)d’p = (2mmksT) " exp (‘ 2rr3cBT) &p.

Because of the one-to-one relationship between particle momentum and particle
velocity it must hold:

Wp)dPp = wv)d®v

Maxwell’s velocity distribution is therewith proven:
3/2 2
m mv
v = — &
w(v)dv (anBT) eXp( 2kBT) v

Solution 1.4.11

1. Velocity distribution of the gas atoms according to Exercise 1.4.10:

3 m \? mv:\
v = - P .
w(v)dv (27thT) P ( 2kBT) v
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We need here the distribution of the z-components of the velocities:

w(v;)dv,

+o0 +

fdvx
VAN _
+o00 +00
3/2 2 2 2
= " /exp _ M dv;, f dvy exp _ M /dv,exp _
2k T 2UpT : 2kgT Y 2UpT
—00

—00
m 172 mvz2
= exp | — | dv; .
2mkgT 2kgT

Doppler effect: energy or frequency change by a moving radiation source:

o0
dvy w(v)dv,

o0

E=E (1 + UZ) , ¢ = velocity of light.
c

Average energy of the observed light:

(E) = E, (1 n (UZ>) .

C
It holds:
+o0 +o0 )
muv
(v,) = / v,w(v)dv, ~ / veexp|—. * |dv,=0 — (E)=E,.
2kgT
—00 —00
2.
v E
E—(E)=E0(1+ Z)—Eg: %,
C C
Ey
— @B =" Ju2,
+ +
/ood 2¢ m; 2w ¢ /Ood e g
VU,V X — = — U, €X —
SV PN\ T ot BY dm T,
—00 —00

d (2mksT\'"?
= —2kgT ( T ) = @m) P (ksT)
dm m

+o00
— (vzz) = /dvzvzzw(vz)z

—00

ksT
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This corresponds to the equipartition theorem (see Exercise 1.4.7)!

(AE) = Eo \/kBT .

C m

3. I(E)dE: Probability to observe a light energy from the interval (E; E + dE).
Because of the bi-unique relation between E and v, we have:

I(E)dE = w(v,)dv,

c c
v, = EO(E—EO) = dv, = EOdE

12 2 2
m mc*= (E — Ey) c
= I(E)dE = — dE .
(E) (ZkBT) eXp( UsT  E2 ) E

Solution 1.4.12

1. The velocities of the gas atoms obey a Maxwell distribution at the temperature
T. A particle of the velocity

v = (Vy, Uy, V7) (v; > 0)

reaches within the time At the hole if it is at the beginning in the inclined cylinder
sketched in Fig. A.6. This cylinder contains

b v

particles, each possesses with the probability w(v)d>v the respective velocity. In
the time A¢

I‘X (fv. ADw(v)d v

Fig. A.6 f

\
\ \
N \

\

\ \\ v,

z

NV

N \
\

At
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particles with a velocity in the volume element d>v at v pass the hole. We obtain
the total number of all atoms, which escape through the hole, by summing over
all velocities which come into question:

+oo  + +

AN N cor
A T Vf/dvx / dvy / dv, v,w(V)
—00 —00

0

]‘if/dvz A.6)v,w(v,) .
0

Because of the finite dimensions of the container, this expression is of course
not completely correct. As an example, the height v, Az of the inclined cylinder
(Fig. A.6) can of course not be larger than L.. Furthermore, |v,| and |vy| can
actually not become arbitrarily large, if the cylinder has to completely fit into
the container. However, since the velocity components vy, vy, v, take care, in
the form of exp ( — a (v; + v} + v?)), for a rapid decline of the Maxwell
distribution w(v), we make surely only an unimportant mistake, when we choose
as limits of integration £oo for v, and vy, and correspondingly permit arbitrarily
large positive v, -values. - We have calculated the Maxwell distribution w(v,) in
Exercise 1.4.11. With At — dt it remains to be calculated:

dN N m 12 fd mv?
“at T v onkeT Ve Ve O\ T g
0

N m 12 kgT T d mvz2
= —Vf 5 /dvZ exp | — :
ﬂkBT m J dl)z ZkBT

_, AN _ N (T 12
d v \2mm '

2. Integration of the above differential equation:

N f (kT \'"?
Ny P |:_V (27rm) (t_t‘))] ‘
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Ideal gas: pV = NkgT

p N
T,V fixed =~ = ,
Po No
p . 1% (27tm)1/2
=e!l=1t—1= :
Po f \ kT

3. We decompose the kinetic energy as follows:

(Tx,y,z> = m(vx,y,z> .

The x- and y-contributions inside and outside the container are the same, and it
holds according to the equipartition theorem ((1.113) and Exercise 1.4.7):

1
(Tx>out,in = (Ty>out,in = 2kBT .
The z-contribution is, however, different. According to part 1. it holds outside:

o0 o0
2 1 3 mvzz
dv, v;w(v;) vaZAt dv v exp | — ks T
0

0
(vz )()ut = 00 =
mvz

o
1 2
/dvZ w(v,) vazAt /dvZ v, exp <_2kBT)
0

0

T 1T . d 17

/dv Pl = _ /dv p?2 ¢ et = /dv ve v’ ,
2a dv o

0 0 0

2kgT
m

= (Uz2>out =

:> (TZ>0MT = kBT .
It is therefore:
3 (T) o 4
T)our = 2kgT ; T)in = kT <— = .
Do =283 D =l =y, = 5
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Solution 1.4.13
N
1. Particle density: n(r) = (Y §(r —r;))
i=1
/---/d3r1 o dPryd’py - dpy (ZNzl S(r— ri))e_ﬂH
/---/d3r1---d3rNd3p1---d3pNe_ﬂH
N N
/.../d3rl "'d3VN (ZS(I’—I‘,)) eXp(—,BZU(ri))
i=1 i=1
N
/---/d3r1 ---d3rNexp(—ﬂZv(l‘i))
i=1

/d3r18(r—r1)eXp(—,BU(l‘1))
/d3r1 exp (— Bu(r1))

n(r) =

=N

== Barometric equation

exp ( — ﬂv(r))

n(r) =N .
/ &ry exp (- Bu(rn))

2. Gravitational field: v(r) = v(z) = mgz (z-axis vertically upwards!)

= n(r) = n(z) = cexp(—pmgz) = n(0) exp(—pmgz) .
Pressure of the ideal gas:

(@) = n(2)ksT

= p(2) = p(0) exp(—Pmgz) .

Solution 1.4.14

1. Ideal gas:

N
H(q.p) = Y _Ti(p)) -
i=1
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Relativistic one-particle energies ((2.63), Vol. 4):

Ti(pi) = \/Czpiz + m?c? — i

Partition function:

1 YN N
ZVTV) = )y // dNgdNpe D = ( / &p e—ﬂcp) ,

3, B — i —Bep _— 4 i xz_x: 4 _ 8
/dpe 4n0/dpp e (Bo)? O/dx e ('BC)3F(3) By
s L[ 8T N
— A )_N![(ﬂchﬁ}

2. Internal energy (1.141):

0 1

3. Pressure p (1.142):

_ ., _IN
P= oy "N = gy
N 1U

(Attention: ! Yinstead of 2 Y as in the non-relativistic case).
3y 3V

4. Free energy (1.144):

1 87V
FT.V.N) = = InZy = —NkBT[ln ((52)3) +3InkgT — InN + 1} .

Thereby we have used the Stirling formula

InN!'=N({nN-1).

We check:

Y = iwer! 2
v ), ey TP

5. Enthalpy: H = U + pV = 4NkgT.
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6. Entropy:

1 oF
S(T,V,N) = U—F)=Nkg|In I§ 3InkgT + 4 .
& ) T( ) B( +n(h)3+ et ) (3T)VN

7. Heat capacities:

oH
Cp == ( ) == 4NkB N
T ), N

U
Cy = = 3Nkg .
Y (8T)MN N

Solution 1.4.15

1 _
Zn(T,V) = VAL /"'/d3qu3Npe BH(Q.p) — exp(—ﬂF(T, v, N))
H = Hy+ H;
= exp(—fBF) = h3NN'/ /dwqdwp exp(—BHp) (1 ﬂHH- ﬁZHZ )

For the free system one has:

1 -
exp(—BFy) = VAL /.../d3qu3Npe BHo

Averages in the free system:
/ /dzw 4N pA(q.p)e” BHo(q.p)
(0)
/ / &V gd® p e—PHoaD)

_ ,+BFo 3N _ 13N BHo
=e h3NN'/ /d qd’pA(q,p)e P70 .

This is used in e AF:

exD(~BF) = exp(~BFo) — B(H) Ve 4 DO

= exp(—BFo) {1 — BH)” + ;,BZ(HIZ)(O) 4.
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It thus holds (In(1 & x) ~ £x — (1/2)x?):

—BF = —BFy +In { 1= B(H)? + ;ﬁsz)@ + }

%

By~ BN + 7 (1) — () °)

—s F(T.V.N) = Fo(T, V,N) + (H)© — B () — (1))

Compare this expression with the quantum-mechanical result (2.126).

Section 1.5.4

Solution 1.5.1

1. Canonical partition function for N noninteracting particles in the volume V
according to (1.138):

©) v

Zy' (T, V) = ;

v (T.V) A3N(T)N!

h

AT) = .

D 2mmksgT

Grand-canonical partition function (1.159):
o0
1% Vv
2O 1 v) = - . = ePro
w (T.V) NZ;)Z{)VPN(T)N! exp(zop(T)) ;. w=e

2. Grand-canonical potential:

1%
QT.V. o) = —keTIn EQ(T. V) = —kgT (zo A3)

1 0 1% 1 d
—  —jaT = kT nz2O(rT, v
BB o (ZW) » ﬂ(auo nE( ))

"2V kT (N)
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3. Fugacity, chemical potential

Vv —(0) 2.
Z()/\3 =1na§?)=(N),
N)A3
]

o = ksT In ((N)R*/V(2mksT)/?)

ph’

= kgT1
Bl ((kBT)S/Z(znmwz

) = po(T,p) .
4. According to (1.167):

NZy(T.V).

wy(T. V) = 0 . BOT, V) 2 exp ((N)
o (T,V) K ( )
3 A3N VN
- WN(Tv V) =e ) ((N)N VN) A{3NN!
N
_ )
N!

Poisson distribution.

Solution 1.5.2

Free energy according to (1.181):

F(T,V,(N)) = w(N) —ksTIn E,(T, V)
with = u(T,V.(N)).

It follows:

(a?f%) = “*(33;>)T,V<N) "‘BT(aiI“E“(T’V))T,V(3?Z>)T,V

(1.168) o B 3#) _
- M+(8(N>)T,V(N) <N>(8(N) TV WLV, (V)
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Solution 1.5.3

Entropy as a function of T, V, u:

(1.177) 194 (1.178) 0
S(T,V, =" — = kg|InE, (T,V T InE .
( ®) (3T)v,u B |:n w(T,V) + (aT n M)V,M:|

Exercise 1.5.1 —
\%
EM(T,V):exp(zA?)); 7= ePt .

With

oA _ 1A iz B
ot~ 21 or M

it follows:

vV 1_3VA VvV B V5
e )T

S(T,V,u) = kg (ZA3+2T T
We take from Exercise 1.5.1

p(T. V. (N)) = kgTIn ((NW)

Vv

and insert it into the above equation:

S(T,V.(N)) = kg(N) B +1n ((1‘\/7) ;3)} .

That exactly agrees with the Sackur-Tetrode equation, if one identifies the ensemble
average (N) with the thermodynamic state variable ‘particle number’.

Solution 1.5.4

1. Hamilton function:

Hy n,(q.p) = Hy y,(1, 72, ..., TT,) 7 = (qi, pi) -

We have to take into consideration that only the interchange of particles of one
and the same component does not lead to a new state. That modifies the factor of
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the correct Boltzmann counting as for the phase volume I'(E) in (1.130). It thus
holds for the expectation value (1.162) of a phase-space observable:

<F) “{Mz}(T V) Z Z H hSN,N|

: /---f]_[d3N"qid3N"pi eXP[—ﬂ (HZN,(q,p)—ZmNz)]FzN,(q,p)-
i=1

l

If one uses this formula especially for F' = 1, then it follows:
o0 [e9] 1 N
= = 3Nig. ?Nip.
2@ = 33 oy [ [ T
Ny=0 N,=01Lli=1 e i=1

-exp | B(Hyn(@.p) - XH:WNZ)] '

=1
2. In the case of missing interaction between the components:
n
Hy y,(q.p) = ) Hy,(qu.p)) -
=1
It is clear therewith that the partition function factorizes:

n

E{m}(T’ V) = l—[ Eu(T,V),

=1
o
- 1 3N, 3N,
Eu(T,V) = Z HENIN! ™ qd®™'py exp [ — B(Hy (@i 1) — V)] -
N;=0 :

3. Partial results can be taken from Exercise 1.5.1:

\%
=(0) —
h
AA(T) = ; 7 = Pt .
( ) \/Zer,kBT

This means:

" e n
B (T, V) = exp [VZ ;(T)] = exp [Z(N,)} .
r=1 "7
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4.
pV N n
—1ng© = =
T = In8y) (T, V) = ;(N,), pV = kBT;(N,) .
Solution 1.5.6

At first it follows with the chain rule ((1.237), Vol. 1):

d(N) _ av d(N)
( op )T,V T (aM)T,(N) ( v )T,;L
_ av op d(N)
T (3P)T,(N) (aH)T,(N) ( av )T,M '

From (1.177) one reads off the following Maxwell relation of the grand-canonical

potential:
()., =)
v T au T,V.
Intermediate result:

(o ),y == G ) (o), ()
o .V ap T.(N) ou T.(N) au T,V.

For the grand-canonical potential a homogeneity relation is valid as for the other
thermodynamic potentials (see section 3.3, Vol. 4):

QT AV, 1) = AQT,V, 1) AeR.
This also means:
p(T. AV, W)(AV) = Ap(T, V., )V .
Hence it must be for arbitrary real A
p(T AV, ) =p(T.V,p) .

p is therefore only dependent on T and w:

p=p(T,
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(see (1.193) for the special case of the ideal gas). Therewith it is formally of course

(EILL)I (Elu)lv
,(N) B ‘

The indexings (N) and V are redundant. The above intermediate result therewith
yields already the assertion addressed by the exercise.

Solution 1.5.6

1. Grand-canonical partition function according to (1.159):

o0 N
—_ Z —
ET.V) =) :WN! // d*Nqd*Np e~PHv@p)
N=0

It then holds obviously according to (1.162):

1 ad 0
H) = — g.1,V))] =—(. me(r,vVv ,
( ) EZ (aﬁ ( ))z,V (aﬁ ! ( ))z,V

2

0
1) = 5 (- v)

.V

It results the energy fluctuation:

((H— (H))’) = (H*) — (H)’

1 (& 1 /9 2

=2 (gpaan) -5 (pen)
=z Vv ~z Vv

¥
— (8,32 In E (T, V))ZV
It thus holds:
(2 InE.(T,V)) v
(aB), = | T

[(4 mET, V))Z’V]2
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2. Ideal gas (see solution of Exercise 1.5.1):

= _ ZV _ . _ 1/2
InE(T,V) = () = (N),  (1137): A=oap
3 3 1
— () = (NkaT = (V)
Furthermore:
* o 15zvil 15 1
(aﬂ2 i V))Z,V Sanp = aNp
51 1/2
= 0n =)
Section 2.1.3

Solution 2.1.1

1. {|gu|}: CON-system

TFT = {pa [F* 1) =) (lon| Floa)" = (TtF)*

n n

2. That follows directly from:

(¢n | (@F + BG) | @) = a(@n | F | @) + B{0n | G| 00) -

Te(FYF) = > {ou | FYF @) = > {0u | Y | (o | F | 1)

n nm

=> |{@n | Fle|>=0.

nm

4. It holds for two operators:

Te(FG) = Y (¢n | FG 1 @) =D {@u | F | o) (0m | G | ¢0)

n nm

= (e |G 1o {n | F I on) =) (¢n | GF | @) = Tr(GF) ,

nm m
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The assertion follows immediately from this cyclic invariance, for instance:
Tr(F(GH)) = Tr((GH)F) .

5. 00t =UtU=1.
We use the cyclic invariance of the trace, proven in part 4.:

Tr(UYFU) = Te(FUU™Y) = Te(F1) = TrF .

Solution 2.1.2

mewfm (Vml: (Y | Ym) =1,
{l¥m)} mot orthogonal; Z pm=1.

1. p Hermitian, because the projector |,,){V,,) is Hermitian, and all the p,, are
real.
2. {|@:)} basis of the Hilbert space:

W—ZWZ%WMWM D oW | Yy =Y pm=1.

3. p is also now non-negative:

for arbitrary |@).
4,

15|pn> = pn|pn> .

Because of 1. the |p,) are orthonormal. The eigen-values p, are real, and
according to 3., even non-negative. Furthermore, because of 2.:

IS
Spectral decomposition:

p="_ oulpa){pnl -

The presumption (2.2) for the statistcal operator is actually redundant.
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Solution 2.1.3
121 121 2 ...
p’=a*[003 |- {003 |=a*|... 6 ...
121 121/  \...... 8
This means:
Spp* =a?-16

For o = 1/4 p thus describes a pure state!

Section 2.2.3

Solution 2.2.1

Micro-canonical ensemble (2.17):

rpy TE<En<E+A

0, otherwise .

Pm =

Phase volume, partition function:
E<E,<E+A

rE)y= Y 1.

m

Entropy and phase volume (2.20):

S
S(E)y=kgInT(E) ~ T(E)=exp (k ) .
B
Free energy in the micro-canonical ensemble:

F—E
F=U-TS=E-TS ~ T(E)y=exp(-— .
ksT

It thus remains:

oy = exp(—ki):exp(ﬁ(F—E)), ifE<E,<E+A

0, otherwise .
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Solution 2.2.2

1. {|<pi) } : CON-system

|Em = Z |(pi>((pi | Em)

1 E<E,<E+A
=/=rE L i2j|¢i><¢i|Em><Em|<oj><so,-|
= L) Z el
tJ
E<E,<E+A
ai(E) = Y (i | En)(En| @) .

Matrix elements of § in the basis {|¢;)}:

(p(9),, = r (E) an(E) .

Phase volume:

r(o) =1 Yool

ij

E<E,<E+A
=Y anE) =) Y (el EEnl o)
E<E,<E+A E<E,<E+A
. <Em(Z|¢n><¢n)|Em>= S =T,

The phase volume is of course representation-independent.
2.

Alay) = ayay).
lan) = ZlE | @n)

1 E<E,<E+A
— A = E ) (EnA
A= g 2 EnEl

m



A Solutions of the Exercises 473

1 E<E,<E+A
i = pgy L el En)EnlAla)
E<E,<E+A

1
= e Z aj ai | En){En | ) .

The trace is independent of the representation:

E<E,<E+A

@) = Tr(5A) = Z(pA),,zr(lE) S Y ala En)?

The interpretation of the result is evident.

Solution 2.2.3

I'(E) = number of the possible states with the energy E

= number of the different possibilities to distribute the spins
for a given energy, determined by M = Ny — N, over N sites
=~ degree of degeneracy of the energy E.

N!

I'(E) = .
(E) NyIN!

Entropy: S = kg InT'(E).
Stirling formula for N > 1: InN!~ N (InN — 1)

— S(E,N) ~ kB{N(lnN— 1) — Ny (InNy — 1) = Ny (InN| — 1)} :

N =Ny +N, .
N N
S(E,N) = kg { N4 1 N1 ,
(E,N) B% TnN¢+ ¢HN¢
1 1
Ny = (N+M): Np= (V-M)

1 2N 2N
SM,N) = kg (N+ M)l N—-M)1
— 5000 = o fv s 2w
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2. Temperature:

—

s\ _ (9 MY _ 1 [(ds
T E)y \oM)y\OE )y  wB\M),’

BSY _hdn N e (- !
M)y 21 N+M N+M

+(N=M) |+ ! m 2N
- —In
N-M N-M
1 N-M
= kBll’l
2 N+M

1 kg N+M
= = In .
T 2upB N—M

The temperature can thus become even negative, if namely N - M > N + M,
i.e. Ny > Nj. In this case the majority of the spins is oriented antiparallel to the
field. Parallel orientation means for a spin the energy level —upB, antiparallel
orientation +ugB. Negative temperatures appear when the energetically higher
level is more (!) occupied.

3. Internal energy:

Ny
=e 2ugB) ,
N, = xP(F2unB)
NT_I
M=Ng =Ny
N1

1 —exp(2BusB)
1+ exp(2BusB)

= —NugBtanh(BugB) = U(T,N,B) .

= E = —MugB = NugB

4. Heat capacities:

o (Y _ g
Y=o ), T T

B’ 1

tanh B) =N .
(BusB) ksT? cosh?(BjigB)
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Solution 2.2.4

N, = occupation number of the level ¢, ,
E=)&N,.
r

The energy is thus determined by the distribution {N,} of the occupation
numbers. Let us assume that at first this distribution is given:

N!
F({Nr}) = 1—[ N, s

S(E) = S({N,}) = kg InT({N,}) = ks [N (InN—1) =Y "N, (InN, — 1)} ,

2. The most probable distribution of the N particles over the various levels is that
with the highest number of possibilities of realization. We thus have to find the
maximum of F({N,}), which of course agrees with that of InI". Thereby the
following constraints are to be fulfilled:

N=Y'N: E=)_gN,

These we couple, according to Lagrange’s variational principle, with at first still
undetermined multipliers o1, o to the extremal condition:

S(Inl" + o ZN, + oy ZS,N,) L0
= =Y NN, — 1) = D> SN+ Y SN+ Y &8N, =0
& Y (N, —a; — as6,)6N, = 0.,

By the introduction of the Lagrange multiplier the variation is now free. We can
choose the §N, arbitrarily, for instance such that only one §N, # 0, while the
others are all equal to zero. This means:

InN, = o1 + e, <= N, = exp(a; + az¢,) .
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3. The extremal condition can obviously be written as follows:

8S + kpa\SN + kpas8E = 0 .

Therewith:
aS (196) M
= —kpay = —_,
oN J T
as ~ ke (1.89) 1
E), O T T
—au= " =p L=
o = = 5 oy = — = — .
R 2T T T
Distribution:

N, =exp[ —B(e, — )] .

The chemical potential p is eventually determined by the condition:
!
N =) exp[—Ble— )]

The &, are known!
Essential parts of this derivation will appear once more in subsection 2.3.4 in
connection with the canonical ensemble.

Solution 2.2.5

Two-dimensional harmonic oscillator:
Known eigen-values of the harmonic oscillator:

Epn, =hon+1) =hon+n,+1) = ha)[nx + (n—ny) + 1] =E,,
0<n,<n.
Eigen-states are product states (subsection 4.4.6, Vol. 6):
|ne,n—ny) = [ng)|n—ny)

|ne):  |ny)-th eigen-state of the oscillator in x-direction,

|n—mny):  (n— ny)-th eigen-state of the oscillator in y-direction.
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Quantum-mechanical phase volume:
I'(E,): number of states |n,,n — n,) of the energy E, (degree of degeneracy!) .
n, can take the n + 1 values 0, 1,2, ..., n, n, = n — n, is then already fixed:
= T(E)=n+1.
Statistical operator:
p(E,) = ntl nz_:omx, Y, n—ny .
Expectation values for A = p,. Gy
(A%) = Tr(pA%) = Z Z v | nen—ny)(nn—n, | A% pov) .
©v ne=0
A =A% acts only on the x-component:

CA\Z) = n—i—lZZS’L"‘ - ntV(nX|A+A|:Uv>

©v ne=0
_ ! Xn:(n|X+K|n).
n—i—lnzox *

According to (4.127), (4.128) in Vol. 6:

. h . A__,\/hma)_+

. h
= qxlny) =

2mw (a|nx) +at |nx))

z\/ h (Jnx|nx—1)+\/nx+1|”x+l)),

2mw

i’xlnx> =—i \/h’;lw (a|nx> - Cl+|l’lx))

_ \/hma) (\/nxlnx _ \/nx + 1jn, + 1) )
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s h
:>(nX|‘ZXQX|"’X>= (ny+n.+1),
2mw

kA hmw
(nX|P:pX|"’X>= 2 (e +nc+1),

> @ne+1) = ;(n+ DC2n+2)=(n+1)>.

n,y=0

We have therewith found:
2 1 a2 h
(py) = _hmon +1); (q;) = n+1).
2 2mw
Expectation values for B= Dy, gy: The analogous derivation yields:
) =00 @) =)
Kinetic energy:
(T) = : (pr+p2) = lha)(n—i— 1) = e
2m T2 2"
Potential energy:

~ 1 1 1
(V) = zmwz(c})zc + 2]}2) = 2h wn+1) = 2En .

Solution 2.2.6

1. Ty(E) is the number of the conceivable states of the energy E and therewith
equal to the number of possibilities to assign Ny oscillator quanta to N oscillators.
Ey = 1/2Nhw is just the zero-point energy of the total system.

Let us mark the N, oscillator quanta by crosses (x x xx) and the N oscillators
by full circles (e @), so that we can, for the counting, schematically ascribe to
each oscillator vertically all the quanta which belong to it:

X
X X X
X X X X
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This can also be brought into a horizontal version by arranging the oscillator
quanta adjacent to the respective oscillator bringen:

OX X000 X X XOeXXe0e0X

I'y(E) is then obviously equal to the number of different possibilities to
collocate the Ny + N symbols. (Ny + N)! is the total number of possibilities of
arrangement. The Ny! possibilities to interchange the oscillator quanta (crosses)
among themselves does not lead to a new arrangement (to a new state). The same
holds for the N! interchanges of the oscillators (full circles) among themselves.
That means:

(No + N)!
Tw(E) =
v(E) No! N!

2. Using the Stirling formula one gets for the entropy:
SN(E) = ki | (No + N) (In(No + N) — 1)
—No (InNg — 1) = N(InN — 1) }
- kB{(No + N)In(No + N) — No In No —NlnN} .

N is fixed. The energy-dependence is therefore due to Ny:

N—E 1N
" b 20

1 (3s\ _(dS Ny
T \OE)y \oNo)y\OE )y

k
— B {1n(N0+N)+1—1nN0—1}
hw

Temperature:

U _ ks No+N
= n .
YT he N

_ No+N _ N
exp(fho) =y v N = Bhw) — 1
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Section 2.3.5
Solution 2.3.1
~ L3 _ 1
N I _1(3 )2_8(18 )
= )= = 002~ n\9p%) = op 2987
_ 0 d 220_3 _ 23U
= 38 (aﬂan) = BIBU—kBT .
= CykgT?

. \/ (F2) — () _ JCukaT?
(B U

Solution 2.3.2

1. Statistical operator in the canonical ensemble:

R
p=, > e P E, ) (En -

m

has to be investigated for the linear harmonic oscillator:
HI|E,) = En|Ey) .

Position representation:

1
pla) =3 e |lg| En)|*:

(q | Em) = ¢m(q) : real eigen-function of the harmonic oscillator.

Differentiation with respect to g:

d 2 d
= —BEn
dq p(q) 7 Em € ©m(q) dq om(q) -
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Reminder of Quantum Mechanics:

d  |mw i _ \/ h i
dg — \/Zh (@=at)i =y, @+td).
The above differential equation therewith reads:
d 1 [2mw
J— _ﬁEm — +
" @ = Z\/ \ ;e on(@)(@—a®)en(g) .
With
aPm = M@t ;A n = Vm+1@ut
it follows:
d 1 [2mw
i _ﬁEm —
WO Z\/ p 2 o) (Vs @) = Vm+ 190i@)

In the first summand we use E,,+1 = E,, + hw andm —> m + 1 :

d 12
" @ = Z\/ e Xm:e_ﬁE’" Vi + 1 (g1 @em(@e P — g (@gnt1@)) -

It thus remains:

d 1 2mw , _g. -
" @ = Z\/ y (=1 3V 1o (@gm(g)e

We now exploit the recursion formula ((4.168), Vol. 6):

2
\/ ’qu(pm(q) = Vm+ 1 om+1(q) + \/m(/’m—l(q} .

Therewith:

1 _
ap(@) = , Y e qpi(a)

m

ho1
\/2ma) 7 Ze‘ﬂEm(x/m + 1 ou+1(q) + Jm (Pm—l(q))(pm(q)

hol ~ »
- \/zmwzze PEn /i + 1 9ns1(@) (@) (1 + e7PH)
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By comparison we find:

d ()_Zma)e_ﬁh“’—l @
quQ— A 1+e_5hwquZ-

It remains eventually:

d
@ = (=7 ann (1pha) ) anta)

(g1 p]q): partwith which the mixed state, described by p,
is contained in |g).
The temperature-dependent position probability should be normalized:

+o00

/ dgp(q) =1.

—0o0

Solution of the differential equation:

0(q) = Ae 0" o= n;lw tanh () fh ) .

Normalization condition:

+o00

/UMM@=A¢241.

—0o0

mw 1
A= tanh h .
\/ o 0 (2 B a))
The ‘thermal’ position probability extends more and more with increasing
temperature!

It follows:
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Solution 2.3.3

The energy eigen-values of the 2d-oscillator are known:

1 1
En:ha)(nl+ +n2+2)

2
=hon+1)

n=n+n=0,1,2,...
For a given n, n; goes through the values 0, 1,2, ...,n and n, through the values

n — n;. The degree of degeneracy therefore amounts to g, = n + 1. Therewith the
partition function of the oscillator reads:

o0
22 — Z(n + l)e—ﬂha)(n-i-l)
n=0

That can further be reformulated:

a o0
7, = — —Bhw —Bhw\n
2=~ aBhe)° Zﬁ(e )
9 g Pho
T (Bhw) 1 — e Pho
+ePho
- (1- e—ﬂhw)z
- 2
IV
e, 1]

— 00 2
— e—;ﬁhw Z(e—ﬁhw)n]

L n=0

— 00 2
_ Z e—ﬂhw(n+;):|
L n=0

The bracket contains the partition function of the one-dimensional oscillator.
Therefore:

Z, =7}
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Solution 2.3.4

1. Because there are no interactions in the ideal gas,it holds:

Zy(T, V) = (Zi(T.V))" .

#2 5 n2 ”5 n2
_ X z —
Zi(T.V) =YY" exp R RS | E A A
ny ny ng X y Z

272h? nﬁ)

Zx:Zexp(—,B m L2

Z,, Z, . analogously .

2.
+ +
z /'OOX /32712712 x2 L, |m /oo 2 L, |mm
x = ex — = e =
£ exp m 2] " an\op | Y xh \ 28
00 —00
m \3/2 _3 N N3N W m
— W(TV) = LXLyLZ(Znhz) pra| =Vip e YT o2
3. Internal energy:
U 9 InZ
= — n B
B
3 3
InZy(T,V) = NInV — 2Nln,B + 2Nlnoc
— U= 3N1 = 3Nk T
T2t 2P

Solution 2.3.5
Eigen-states in the occupation-number representation:
IN = |n1)|n2) - [ny) = [mina - -ny) .

Eigen-energies of the single oscillator:

1
e = h ; .
En, a)(n+2)
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Total energy:

Ew = E({n}) = ha)i (ni + ;) )

Partition function:
Zy(T) = Tre P =Y (N | P | N)
IN)

N

= Zexp[—ﬂth(nj—i- ;)}

{ni} j=1

= exp (—IBthw) Ze—ﬂhwnl _‘_Ze—ﬂhwm\,

ni ny

ha) N e’}

:exp(—ﬂN ) )H(Ze_ﬂhw”’)
i=1 “n=0

ha) > —Bhw\" N

:exp(—ﬁNz)l:Z(e ):|
n=0

A N
:exp(—ﬂN 2“’)[1_2_%@}
_ 3 ho exp(éﬂha)) N
_exp( AN 2 )[exp(éﬂhw)—exp(—;ﬂhw)

. N
= (D) = |:2sinh(é,3hw):|
Solution 2.3.6

1. Internal energy, Eq. (2.30):

)
U= ~ap InZy(T,V) = kBTza

InZy(T,V) = N(ny +InV —InN + 3InT)

F)
FInZy(T.V)

485
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d 3N
= InZy(T,V) =
o 0 N(T. V) T
Entropy:

OF
S(T,V.N) = — (BT)
V.N

F = —kBTanN(T, V)

9
= S(I.V.N) = ko, (TInZy(T.V))

d
=kglnZy(T,V kgT
B InZy( )+BaT

A Solutions of the Exercises

In ZN(T, V)

1%
= kg (Nln (yNT3) + 3N)

Vv
= Nkg In (e3yNT3)

2. In general it holds: S > 0 (see (2.20)). It is therefore to be required for the S in

part 1.:

\%
3 3
T°>1.
e)/N

The S-formula is thus useful only for 7 > T*, where

T*_l N\
e \yV

3. Thermal equation of state

o T (2 mzy) = ket
= — = n = .
P ov )y ey TN Ty

Hence:

as for the ideal gas, but

(see 1.)
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i.e., x = 1/3 (in contrast, x = 2/3 for the classical ideal gas). x = 1/3 is typical
for relativistic particles!
4. Chemical potential

Ty = (F
SR =v ),

d
= —kgT InZ
b (aN " ”)

1%
—kgT1 T3 ksT
B n(yN )+ B

(- (17)

\%
forT=T" : In (yNT3) =3 = u=4ksT

forT — o0 : u~ —=3kgTInT

Solution 2.3.7

1. The oscillations in the three space-directions are uncoupled. The partition
function thus factorizes:

Z = (2.2,Z,)" .

As in Exercise 2.3.5:

hwyy 1 1
Zive =Y exp|— X’”( - )}= '
iz Xn: p [ kgT n 2 2 sinh (éﬁh wx,y,z)

F)
—aﬂan:N(UX—}—Uy—i-Uz),

0 hwyy. 1
Uey: = 8 InZ,, = 5 7% coth (2ﬂh wx,y,z) )

xQ
|
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3. Heat capacity:
Cy =N (CVx + CVy + CVz) ’

coth = —

dx sinh?x
oU, 1 -1 1 1
Cy, = = ho, hoy| —
T 2 sinh® ) Bh w, 2 kgT?
ph ’
Wy,
= CVx,y,z = kg . 1 . s
2sinh , Bh wyy
X forx < 1,

sinhx ~
;e" forx > 1.

It follows therewith for i w, = hwy > kgT; how, K kgT:
o~k | 2 (MY hod)
~ exp | — .
VRN et ) TP\ kT

Solution 2.3.8

1. Each spin §; has two possibilities of orientation —> 2" different spin states.
Canonical partition function:

1 :tl N—1
- 2 2
Zy(T) = Tre PH = Z .. Zexp (,B Z],-U,-U,-+1) .
a1 ON i=1

N—1 i‘l‘
— N —
ZN+1 = Z---Zexp ,BZJiGiUi+1 exXp (,BJNCTNCTN+1)
(o1 ON i=1 ON+1
~ - - = - -
Zn(T) 2 cosh( Al‘ ﬂJN)

= 2Zx(T) cosh (1,3]1\/) .
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2. Recursion formula from part 1.:

Zy(T) = 2Zy—1(T) cosh (, BIy-1)

= 2%Zy_»(T) cosh (iﬂJN_l) cosh (iﬂJN—z) =

N—1
=2V l_[ cosh (3 87;) .

i=1

3. The single spin does not interact, but has two possibilities of orientation:

:t2
7=y =2.
o1

4.
1 o 119 o 1 d
Z 4 —BH) — —BHY —
(Si85,,) = ZNT r(SiS7, e P Zu B aJiTr(e ) 84, InZy .
It follows with the above result for Zy(7T):
(5555, = 1 1IB[H 1cosh( BIm )] sinh( BJ:) []_[m H_lcosh( ,BJ,,,)]
SRR NN 1cosh( BJm)

= itanh(iﬂ]i) .

Solution 2.3.9

1. Eigen-values:
E, = —ZMBBZ@ ; lo) = |o102---0n) .

Each o; can adopt two values. Hence there are altogether 2V possibilities for the
spin state |o). Two states have always then the same energy when the number of
field-parallel spins (and therewith also the number of field-antiparallel spins) is
same. The two extremal values of E, are those for which all spins are oriented
parallel and antiparallel, respectively, to the field. All in all the following energies
are possible:

E, = —ugB(2n — N); n=01,...,N.
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Degree of degeneracy g,: number of possibilities to sort out n from N lattice sites.

N (N
gn_n!(N—n)!_ nl’

2. Z(T,B) = Tre FH energy representation:
N N (N
Z(T,B) = Zgne_ﬂE” = Z ( )(e+ﬂ“33)n(e_ﬂ“BB)N_n
n=0 n=0 n
— (otBuBB o p—BusB)\N _ N
= (e +e )" = [2cosh(BusB)]|" .
3. Free energy:
F(T,B) = —kgTInZ(T, B) = —NkgT In[2 cosh(BugB)] .

Internal energy:

U(T,B) = — 9

9 InZ = —NpgBtanh (BugB) .

4. Entropy (Fig. A.7):

oF

S(T,B) = — (8T) = +NkB[1n(2 cosh,B,uBB) — ,B,uBBtanh(,BuBB)] .

B

5. Heat capacity (Fig. A.7):

C —T(BS) _— B(tanhﬂ B — BusB tanh B)
B = ot ), = TMB HB HB cosh? BuupB B
BusB
Cg = kgN .
— B i [cosh BusB

6. Average magnetic moment
N
M= Tr(,[) > ZuBSf)
i=1

1 1
7 Z gne PEn (— BE") = (energy representation)
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S Cs_
Nkg Nkg
o7k -———= 1{1_2____ 0)4
: 03
0.5 0.2
0,3 01
0,1 .
1 2 345 kT b1 2 3kgT
ugB UgB
Fig. A.7
10 nZ
= n
BB

= M(T,B) = Nugtanh(BugB) .
. BusB K 1:

usB

tanh(BugB) ~ pugB — M(T,B) ~ Nug T
B

(Curie law) .

This agrees, except for the factor i with the classical result!
BusB > 1:

tanh(BugB) ~1 =— M(T,B) ~ Nug (saturation) .

This agrees with the classical result! All spins (moments) are oriented field-
parallel.
. The third law of Thermodynamics is fulfilled:
S(T — 0,B) ~ Nkg[ In(e”***) — BugB] = 0 (independent of B!) ,

CB — 0.
T—0

Solution 2.3.10

1. Noninteracting moments:
N
Z(T.B) = (Zi(T.B))" .

Z|(T.B) = Tr[exp(+Bi - B)] .
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B = g;ugM;B (eigen-values!) ,

M; = magnetic quantum number going through the values J,J — 1,...,—J

+7
= Z(T.B) = Z exp(+pgsusM,B)

M;=—J
2J

exp(BesusIB) Y [exp(—BginsB)]"
n=0

—exp[ — BesunB 27 + 1)]
1 —exp(—BgsusB)

exp [BgsusB (J + ;)] —exp[—BgiusB (J + )]
exp[3BgsusB] — exp[—)B8supB]

sinh [,ng,uBB (J+ é)]
sinh (3Bg/upB)

1
= exp(BgsusJB)

Z\(T,B) =

2. Magnetic moment:

M = N{g;usJ?) "Nz a.p=" ! 04,1 B)
= ) = n =
8 B g NN BZ(T,B) 9

. 1
d smh[x (Jl+ 2] _ 11 (J+ 1)cosh[x(f+ 1):|
dx  sinh (}x) sinh , x 2 ?
inh [ (7 4+ 1
_1 sin [x( + 2)] cosh(;X)

2 sinh? (éx)

1 1 1 1
M = Ngyug | J + 5 coth | Bg;usB | J + i coth 2,3gj,uBB

= MoB;(BgsJB) .
3a) J=1/2:
th? x + 1 1
Bi/2(x) = 2coth(2x) — cothx = ZCO el cothx = = tanhx .
2 cothx cothx

For J = ; the result of the last exercise is reproduced, as it should be, where,
forJ =S =}, g, = 2isstill to be included.
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3b) J — oo (classical limiting case):
1
Boo(x) = cothx —
X

Thereby we use in the second summand, because the argument tends to zero,
the series expansion

1z 2 5
cothz—z-i-3 45+(9(Z)
Boo(x) is the classical Langevin function. As we have calculated in the
solution of Exercise 1.4.6, the Langevin function fixes the magnetic moment
in a classical treatment of the problem, when the directional quantization is
disregarded.
3c) BusB > 1: Low temperatures, high fields:

By—> 1= M—> M, saturation.

All magnetic moments are oriented parallel to the field!
3d) BupB <K 1: We terminate the above series expansion after the linear term:

1| 2741\ 1 J+1
B = — O3 ~
s) 3[( 2J )x (21)2x}r SR
J+1 c
- M:NgJJ,uB 3 IBgJJ,lLBBZ TB,

2

C= N[g%.l “+ 1)]5 Curie constant.

B.
kg’
This is the well-known Curie law for the Langevin paramagnet (see (1.25),
Vol. 5) for B = poH. Sometimes one puts [ into the Curie constant C, as well

as the volume V, when the magnetization M/V is discussed (see (4.136)). Vis
in such a case only a parameter, and not at all a thermodynamic variable!

Solution 2.3.11

1. Classical equipartition theorem (1.110):

" dp; dg;
OH\ 1., oH -
<pj 3Pj> = i <qj 3%’> ey )
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— v j (5,21 + el

~.
%)

N1 1
keT + ksT | = 3NkgT .
‘=1(2B 23) B

~

Heat capacity:

oUu
C= T = 3Nkg (Dulong-Petit law).
2. Einstein assumption: wj = wg  Vj:
Quantum-mechanical canonical partition function according to the solution of
Exercise 2.3.5:

1 3N
Zn(T) = .
D=t

Internal energy:

1
U(T,N) = _aaﬂ InZy(T) = 3N§3 In [2 sinh (2,3h a)E):|
3 1 3N
= 2I\IhwECOth (Z,Bha)E) T—)—>0 ’ hog.

Heat capacity:

U 3 hog)® 1 O\’ Op/T
c="2" = NkB( wE) e =3NkB( E) *p(Ox/T)
T 4 kT ) sinh? ;% T ) [exp(®g/T) —1]

High temperatures: 7' >> ®p:

eOr/T 1
or 2 , = C=3Nks.
(e9/T—=1)" (14 (Og/T)—1)

For high temperatures the quantum-mechanical result approaches the classical
one. The latter violates the third law of Thermodynamics, must therefore fail for
low temperatures.

Low temperatures: T < ®p:

O \?
C ~ 3Nkg ( ) e 9T 5 0,
T T—0
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Fig. A.8

The Einstein theory of the crystal lattice obviously fulfills the third law of
Thermodynamics.

The classical equipartition theorem is acceptable only in the limit of high
temperatures (Fig. A.8).

Solution 2.3.12

The partition function for a single oscillator is the same as in the preceding exercise:

; 1

()

Z,°(T) = .
v 2sinh (18h ;)

Since the oscillators are uncoupled, the total partition function reads:

3N

Zy() =[]z () .

j=1

It follows for the internal energy:

9 A 1
U(T,N) a8 InZy(T) = +3ﬁ21n [2 sinh(zﬁh w,-)}
j=1

| 1
Zzhchoth(zﬂhwj) .
j=1

That we express by the density of states:

oo

U(T,N) :/da)D(w) (;ha)) coth(;ﬂha)) .

0
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Heat capacity:

o

k ho\? 1
c=Y_ B/de(w)( ‘”) L
aT 4 ksT ) sinh’ (;Bhw)
0

_ Nk [(ho)P e
N 0)13) kgT (eﬂhw_l)zw @-
0

Substitution of variables:

h
x = pho; Op = ka Debye temperature
B
5 ©p/T
T s €
C = 9Nk d .
- B(®D) / XX (e —1)

High temperatures: ®p/T <« 1: x is then in the integrand of course also small
compared to 1:

xte* _ AA+x+-9) ~ 2
(=12 (I4x+---—1)2"
:>C%3NkB

This is just the classical Dulong-Petit result!
Low temperatures: ®p/T > 1: The upper limit of the integration can then be
approximately chosen to be +oo:

o0
T\° X 12, Nk
C ~ 9Nkp /dxx4 ¢ =aT?, a= _ = B .
®p (e —1)2 5 @f)

This is the famous Debye’s T>-law. The third law of Thermodynamics is obviously
fulfilled.

Solution 2.3.13

Ortho-H,: parallel nuclear spins

= triplet-spin state:

IL1) = NI .
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1
v

IL=1) = [L))

I1,0) = 2(IT)Ii) + 1011

= space-part of the wave function antisymmetric
= [=135,...
Para-H>: antiparallel nuclear spins

=  singlet-spin state:

10,0 = D) = 1911)

X
V2
= space-part of the wave function symmetric

= [=0,2,4,6,...

1. Partition functions:
h2
Z = - I+, o d f d ,
Zl:gz exp[ '321( + )} gr: degree of degeneracy.

g?ﬂho =3QI+1) (21 4 1): due to ZZ , 3 due to the triplet) ,
g?m =2l+1.

1,3,5,...

2
Zono(T) = Y 321+ 1)exp [—/3 7;1(1 + 1)}

l

o0 2
3% (4n+3)exp [—,3 §J(2n +1)2n + 2)} ,

n=0

0.2.4,...

2
Zora(T) = Y 21+ 1)exp [—/3 ;ljl(l e 1)}

l

oo

2
> (@n+ exp [—,3 ;’Jzn n + 1)} .

n=0
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Internal energies:

7= aan_ 10Z
T T zog
1" w? h?
Uortho(T) = 3. @I+DI(I+Dexp|—B. 1(1+1)|,
) = 13 3, G DI+ Desp| 10+
02,4,.. 29 2
Upara(T) = 204+ DI+ 1 —B_I(I+1)].
para () me;21< +)(+)exp[ﬂy<+)}
Heat capacities:
co U __ 1y
T AT kT20B
1, [ h? g h?
Cortho = _kBT2 {Uorlho(T)_ Zorho 23(214_1)[2‘/1(14_1)] exp|:_ﬁ2]l(l+1)]} 5

1 1 0,2,... hz 2 hz
— 2 _ _
Cpara = kBTz{Upmm me;(zm)[zjl(m)] exp[ ﬂzjz(l+1)]}.

2. Low temperatures: 8(A%/2J) > 1:

h? h?
Zortho(T) =~ 9exp (—,B 2]2) + 2l exp (—,3 2J12) ,

#H2
Zoara(T) ~ 1 + 5exp (—,B 2]6) ,
18exp (—B42) +252exp (—B%12) 2

9exp (—/32‘;2) +2lexp (—/3 " 12) 2]

A2 2 4 28exp (—5,3’1]2) #2 35 #2
=, ; o %J|:1+3exp(—5,3]):|,
1+ 3vaxp(—S,Bj)

Uortho (T) ~

12 30exp (—,32;6) K2 K2
Upara(T) ~ 5 ,\ A 15 exp (—3,3 ) ,
T14sep(-phe) 7 J
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9 175 [ h2\° h?
Cortho :_kB,B 313 orlho"\'kB 3 (IB J) exp (_SIBJ) T—>—>OO7

n\’
Cpara ~ kp45 (,3 ]) exp( 38 ) P

High temperatures: 8(42/2J) < 1:

The discrete energy-eigen values of the partition function move closer
together, practically building a continuum, so that the sums can be replaced by
integrals:

2

h
0nh0~3/(4x+3)exp|: :3 2]

o] ) 2
=3/(4x+3)exp{—,32] [4 (x+ i) - i:|} dx .
0

Substitution: y = x + 3/4:

2x+ D(2x+ 2):| dx

B2 B2
dyyexp ( 2J 4y2)

/
07 ® [ e (~677)] (~aies)
)~
R

Zotho = 12 exp ( )
H2
)

(i

= 1Zexp(

Zpara ~ /(4x+ 1) exp
N 2 2
= exp (,B ZJ) /(4x+ 1) exp |:—,B 2? (x+ i) :|dx
0
= 4exp( )fdyyexp( hzyz)
J J

2x (2x + 1)}
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J P\ [ d W
= " pn2 P (ﬂSJ)/dydy X (_ﬂ J y)
0

J ﬂfﬂ J
= ex ~ ,
pr2 “P\Pgr ) ™~ n2p
U 0 InZ ! kgT
ortho = — N ZLortho = = s
rl 3,3 t ,3 B
Upara = kgT

= Cortho = Cpara =kg.

3. Mixture at thermal equilibrium: All states are now available for the system.
Therefore:

Z(T) = Zorno(T) + Zpara(T) .

Low temperatures:

The third law of Thermodynamics is fulfilled!
Ratio at equilibrium:

9exp (—,3”]2) .
— 0.

a(T) ~
1+ 5exp (—3,3 hjz) =0

For T — 0 the particle is in the para-state. The ground state of the system (I = 0)

is of para-type.
High temperatures:

_3J/RB

PR
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All levels are equiprobable at high temperatures. Ortho-states are weighted by a
factor 3.

Solution 2.3.14

We have the relations:

(R (O
P="\ov),, "7 \n),, -

Gibbs-Duhem relation ((3.35), Vol. 5):
F+pV =uN.

It follows therewith:

9nZ 9InZ
—kBTanN(T,V)+kBTV( N N) :—kBTN( N N) .
T.N TV

IV oN
This means:

InZy(T,V) =V (alél)lVZN)T,N N (BI;NZN)T.V '
Solution 2.3.15
Choose:

x=Nz.
Then it holds:
o 00

I'(N+1) :NN'H/e_NZszz:NN+1/exp[N(lnz—z)]dz.
0 0
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The integral has the structure of (2.35) with:
gz) =Inz—z

1
:>g’(2)=z—1:>z<)=l,

1
g’ =- , = g"(z0) = —1 (maximum at zo).
Z
Insertion into the saddle point formula (2.37):

2

v eV = V2xNNVe™ = NI

C(N+1)= NN+1\/

Solution 2.3.16

1. Taylor expansion (Lagrange-remainder term)

1

F(E) = F((E)) + (E — (E))F'((E)) + 5 (E— (E))’F'(E*) ,

E*: any fixed real number. We average the above equation:

1

(F(B) = F((E))+2

(= E))F &),
F'(E*) = 0= (F(E)) > F((E))

2. We discuss at first the corresponding inequality for the partition function.
Assertion:

7>7 = Ze—ﬁm,\ﬁw '

For the proof we can assume that {|¢,)} is a complete set. In the case of

incompleteness there would be absence of some positive terms on the right-hand

side of the inequality so that the inequality would more than ever be valid.
Eigen-states of H represent in any case a complete system:

lgn) = chm|Em> ; Z |Cnm|2 =1,

m

(@ | H | @) =Y oo B | H| Ew) = |cun|*En -

m,m’
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Canonical partition function Z:

z="Te( ) =Y 4gu | 7 | g}

n

= >3 e { (En | €7 | Ey) Z(Z|Cnm|2 ﬂEm).

n mm

For Z it holds:

/Z\ = Z e_ﬂ((pnlﬁl(pn) — Z e_ﬂ %: |Ci’lm|2Em .

n n

Let it be now:
F(E) = e’ = F'(E)>0,

dm > |Cnm|2

(E) = D lenlEn

(F(E)) = Z|cnm|ze_ﬁE’".

The preconditions of part 1. are fulfilled:
(F(B)) = F((E))

z : — —B Z ‘Cllmlem
—t |Cnm|2g ﬂE’” 2 e m
m

— -8 Z |Cnm‘2Em
= > > el =N e
n m n

z

%

== Z
= F = —kgTInZ < —kgTIn (Ze_ﬂ(‘ﬂnH%))

That was to be proven. The equality sign holds then and only then when the |¢,)
are the eigen-states of H.
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Solution 2.3.17

1. Reformulation of the Airy-function:

| +o00 | +o00
3 .
Ai(n) = / dse' 311 = / ds ")
2 2
—00 —00
Here we have defined:
3
gls) =is+ is
3n
We investigate
. . ) (x+iy)?
g(x) =glx+iy) =i(x+iy) + i« 3ny) =
= u(x,y) +iv(x,y)
with
3 2 3 2
y X7y X Xy
ul,y) =, — 7 =y vy =, — 7 +x.
3n 3n
Because of

, . .7 N . 3
g(z)zl—i-l,7 and g'(z0) =0=1i l—i-)7

there is a saddle point at

Zéi) =i /1.

The path C (Fig. A.9) is chosen such that it runs, for a finite x-interval, parallel
to the x-axis (z = x +i,/n), but apart from that leading at =00 into the real axis.

Fig. A.9 y

_ i

/
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According to Cauchy’s integral theorem ((4.413), Vol. 3) the integration along
the real axis can be replaced by that along C. One easily recognizes that u(x, y)
becomes maximal at zéﬂ =i

d 2x d
u(x, 77) = - ? M(xs 7’}) =0 s
dx v VL dx v =0
d’ 2
u(x, /n) = — <0 (maximum) .
dx? Nz

In order to exploit the integral-estimation (2.37) we need:

&) = 2y
2
v

Z
g”(z)zzz,7 = @)=

This eventually yields the assertion:

Ai(n) 1 27 o180 — 1 2m A
27\ —ng"(z5") 20\ =n (= 7,)

1 _1 _230
= 4730
24/ "

2. The saddle-point method presumes for its applicability that only the immediate
neighborhood of the saddle point on the path C contributes to the integral. This
requires in particular that the integrand must not diverge at infinity.

Investigation of the integrand ¢"¢® at infinity:

[

7= Re" = R(cos¢ + ising) .

Integrand:
R .. .
e = exp (i 3 e+ inRe"")

I 5. . (1.3
= exp —3R‘ sin(3p) — nRsing | exp | i 3R‘ cos(3¢) + nRcos g | | .

The asymptotic behavior (R — o©00) is determined by the term exp
(— iR%sin(39)).

. /4 2 4 5
sin(3p) > 0 for 05(/)53, 3§¢§7r, 35905
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Fig. A.10

In the other sectors: sin(3¢) < 0. Only in the (hatched) regions (Fig. A.10) with
sin(3¢) > 0 the integrand vanishes at infinity, in the other regions with sin(3¢) <
0 it diverges. When we would put the path C through the lower saddle point

zé_) = —i,/n, then the integrand would grow beyond all limits at infinity.
Solution 2.3.18
dz 0dg du v
! — o — = [
§0) = g(z)ax S 0x Ox —HBx
dz ag du Jv
/ — o —1) = —i = —
§@ =@y () =iy =iy +

The two equations must agree with respect to the real part as well as the
imaginary part:

auiav. v 1 du

ax dy ox dy

u and v are both at least twofold continuously differentiable because g(z) is
analytic:

u _ 0%v _ v _ 0u

0x2  oxdy  dydx  0y?

This means:

Pu  u

ox2 + 0y? =0
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Analogously one finds:

0%v N Pv 0
ox2 9y
2.
d
& 0.
dZ =20
According to part 1. it must then hold:
0 0 0 d
u ny v —0 A wl _ v ~0
ox ox % ox % ox 0
( Ou n 81)) 0 ou v 0
—1 = (\, = = .
dy dy 20 dy 20 dy 20
Solution 2.3.19
1. Take

V—¢"(z0) = a+ib (a, b known) .

Then we have on C:

t
z=x+iy=a+ib+zo

a . —b
= (a2+b2t+xo)+l (a2+b2t+yo) .

We have therefore to choose C such that for z = x + iy:

t+x0; y= + Yo .

a _
= t
YT 2 @2+ b2

With a real ¢ that is obviously always satisfiable!
2. (a)

2=x0€R; g"(z2)>0.

This means

=0: a=0: b=+/g"(x)
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and therewith on C:

1
z=x+iy=xp—1i_ 1.
y 0 b

It is thus a line parallel to the imaginary axis through the point x( on the real
axis (see Darwin-Fowler method in subsection 2.3.3)!

(b)
w=in,neR; g'(z)<0.
This means
Yo=n: x=0 b=0: a=/~g"(y)

and therewith on C:
. 1 .
z=x+1y= t+1n.
a

This is a line parallel to the real axis through the point z = in (see
Exercise 2.3.16).

Section 2.4.2

Solution 2.4.1

1. Possibilities of realization:

M!

W({nn(N)}) = [Ty (V)L

Boundary conditions:

> nuN) =M,

m,N

Y En(N)nu(N) = E; ,

m,N

> Nnw(N) =N .
m,N
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InW({n,(N)}) ~ M (InM —1) = ny(N) (Innu(N) — 1) .

m,N

A1, Az, A3: Lagrange multipliers.
0= 8|:1n WO N} = A1 Y nD ()
m,N
—A2 ) En(N)nO(N) = A3 Y Nnly) (N)}
m,N m,N

=3 5n,<,?>(N)[1nn,<,?>(N) 14 14 A+ MEn(N) + A3N] :
m,N

Free variation = each summand by itself must already be zero.

== n,(,?)(N) = exp ( — A — AME,(N) — AgN) .

In Wax ~ MInM =Y "0 (N) InnP (N)

m,N

=MInM =" nfO(N)( = A = A2En(N) — A3N)

m,N
== MlnM"‘A.]M"— A.zEt + A.?,Nt 5
1 d
T ~ aErkB In Wiax = kBAZ s
m 0
-~ kg In Wiax = ki3 .
T aN, B In BA3

Intermediate result:

nOW) = e ¢ PEnW=an)
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The parameter A, is fixed by the boundary condition:
M=3 0w =ehy o B(EnN)—uN)
m.N m,N

~B(En(W)—uN)
—nOW) =M ¢ .
3~ ¢ F(En )
m,N

pn(N) = : probability to find one of the M single systems

in the state |E,,(N)).

ny) (N)
M

It follows therewith for the statistical operator:

p = PuN)IE(N))(En(N)|

m,N
3 e B EN=uN|E, (N))(E,(N))|
m,N
Z e_ﬂ (Em(N)_/’LN)
m,N
—B(H—uN)
e
- 3 B EnN) =) Z [En(N))/(En(N)
m,N G

~ - -

1

o—BH—N) o BH—N)

T Y e BEM-N) T g )
m,N

— (271).

Solution 2.4.2
5T, V) = Y21 V) .
N

We consider z as complex variable. Zy is then the residue of the complex function:
E./7ZVT1. According to the residue theorem we thus have:

1 [ E.
Zy = dz ,
N ZniggczNH ¢

C: closed path around the singularity z = O in the complex plane.
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Solution 2.4.3

We use the Eq. (2.87):
EZ(Tv V) = exp(_lBQ(Tv Va Z)) k)

where the T, V-dependences do not play a role here, so that these variables can be
suppressed. With

=2
—z

=) 80 =~ R - (1 + Ilv) Iz~ — (;V/m 4 m)

the integral

1 g,
Iy = dz
N 2mﬁ Nt

has, except for the factor 1/2xi, the form of the integral in (2.35). It can therefore
be evaluated according to the saddle-point method.
Saddle-point condition (2.36)
d 1 dQe 1
| om0
dz |, N dz z

20

According to (2.80):

~ d z Q2
N) = InE (T, V =— .
W)=z (8z n & ))T,V kgT ( 0z )T,V

The saddle-point condition thus reads:

1,1 (N ~
LW @i = e
20 N 20

w is thereby the chemical potential for N = (1/\\7 ).
The saddle point zy = €P* is real.

1

1 d*Q 1
” _ .
g k) = (N'B dz2 22)

20
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The grand-canonical potential is extensive (o< N). Therefore:
InNg”(z0) = O(InN) .

When we now exploit the saddle-point approximation (2.37),

1 2 ~
InZy ~ In o T In \/N(zo)g”(ZO) + N(20)g(z0) ;5 N(z0) = (N),

then we can confidently neglect for large particle numbers the first two summands
compared to the third term:

InZy ~ (V) g(z0) = =B (2 + n(W)) .
This yields:

F=—ksT InZy = Q + pn(N) .

Solution 2.4.4

d (dInE;\ Bm,: N 92 nE. —
07 ‘ 0z I Zazz e
1 92 1 (02.\* 1 &E
= _ Z_ZHZ( z) +ZH 21’
g, 0z E2 N\ 0z B, 0z
10 1 _ 1
550 = g 2N = (),
Z ¥4 N
1 (98,)\° 1~
—Z - — N )
E%(Bz) z( )
1 &#E. 1 ., 1~
in g2 ~ig S ONW -1 ZN:Z((N)—(N))
—z —z N

9 (za In az) 1((&)—(ﬁ)2+ (W)—(ﬁ))

Z

1<(N_ (N>)2> >0, sincez>0.
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Section 2.6.4

Solution 2.6.1

H=H0+H1;

P L5, L 5,
Hy = + mwq, H =a_mwq ; la] < 1.
2m 2 2

1. Introduction of creation and annihilation operators ((4.125) and (4.126), Vol. 6):

0= gy (vmoari )= (vmeasi f)

The reversal yields

h 1
61:\/ (a+a"), pz—i\/ hmow(a —a™)
2mw 2

and leads to:

1
Hy = ha)(a+a+ 2) .

The solution of the eigen-value problem is known:

1
Hyln = E,|n, E, =ho n+2 ; n=0,1,2,...

Free energy:

a) ‘unperturbed’ system:

FO = —kBTan()(T) s
Zy = Tre PHo = Z(n | e PHo | )
n
o0
_ Ze—ﬁhw(w;) _ e—;ﬂhw Z (e—ﬂhw)n
n n=0
1 1

1
:}Z T :g_lﬂhw =
o7) 1 —ePho 2ginh ) Bhow
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1
= Fo(T) = kgTIn (2 sinh(zﬂh a)))
1 —Bhw
= 2hw+kBTln(l—e ).

b) Perturbation theory of first order:
F~ Fy+ (H)© .

Thereby

1 _ 1 _
(Hl)(O) — ZOTr(e ﬁHoHl) — 2 Z(n | e /BHoHl | n)

n

1
=, S e et Hy )

n

It remains to be calculated:

—_—

(n|Hy|n) =a mo*(n|q|n)

D= N

h
mw? (n|a™>+da®>+aat +avaln)
2mw

ahw(n| 2ata+1) | n)

1 1
ahwn+1) = Zaha) (n+ 2) .
It follows therewith:

(H)© = laha) ! i n-4 1 o Bhom+)) — _ lad 201
2 ZO 2 ZO 28,3

n=0

a 0 al
=— InZy(T) = _ _hwcoth(!Bhw) .
208 nZy(T) 59  co (2,3 a))

Free energy:
F(T) = kgT In (2 sinh(} B7 w)) + Zh wcoth (3 ph w) .
2. The problem is of course exactly solvable:

w—>d=0wv]l+ta.



A Solutions of the Exercises 515

Partition function:

Z= 2oVl +a) =2 (a)(l + ;H...))

d
=Zy(w)+ aw  Zy(w)+---
dw

d
/A
a'Bd,B o +

= Zy— BZo(H1)* = Zo(1 — B(H)?) .

= Zy(w) +

N =N =

Free energy:
F=—kgTInZ = Fo—kgTIn (1 — B(H)?¥) ~

~ Fo+ ksTBH) O = Fo + (H)®  q.e.d.

Solution 2.6.2

1. Upper limit for the free energy (2.139):
F<F*+(H—-H"".
It holds thereby:

1 m*w?
H—-H* = 2m(a)z—a)*z)qz+oz 5 q*.

The free energy F* of the test-system corresponds to the F in Exercise 2.6.1:
1 *
F* = ho"+ksTIn(1— e Phety

With

1
N (‘Bose function’)

fr(@*) = Bho*

w

F* can also be written as follows:

1
F* = _Zh C()* —kBTlnf+(a)*) .
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The test-Hamilton operator is that of the harmonic oscillator. The solution of the
respective problem is known:

1
H*|n)*:hw*(n+2)|n)*; n=20,1,2,...

It thus remains to be calculated:

1

_ * 1
(qZ)* — - Ze Bho™(n+,) *(n | qZ | n)* ,
n
W= Yo PR | gt m)*
Z*
n
Because of
2 h 2 + 4+ +2 +
q :2ma)*(a 4+aat +aTa+a ) and [a,a"]- =1
one finds:

i m* = ] @ata+ D mT= " @at).

Analogously:

“(nlq*|n)*

h2
= A2 *<n‘ (a4 + aat + a*ata + a*at? + aata® + aaada" + ad™a
m-w
+aa+3 + a+a3 + a+a2a+ + ataata + a+aa+2 + a+2a2
*
+a2adt + dta +a+4)‘n>
hz
= 4m2w*2
2
- 4m2w*2(

2

*
*<n‘ (aza+2 + aaaa® + aa+2a + a+a2a+ + ataata + a+2a2) ‘n>
n+1)(n+2) + n+1)> +n(n+1) +n(n+1) +n* +n (n—l))

= g O 61+ 3).

It was used:

at|n)* = Vn+1n+1)*, aln)* = /nln—1)* .
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The partition function Z* was calculated as Z; in Exercise 2.6.1:

. 1
2sinh () phw*)
Therewith we determine:
(q2>* _ h 1 Ze—ﬂhw*(n-f—é)(zn_}_ 1)
2mw* Z* -

mw* Z* B = hw* mw*2 Z* 0

1

9 h 1 *
mew*? 9f ln[ . coth(zﬂha) ) .

2sinh (3 hw*)]| = s

We still use

e+ e e 4+ 1 2
cothx = = =

= 1.
eX —e e —1 ez"—l+

getting therewith the first intermediate result:

@ o) = 0 @) + ).

We still need

3p% 1 *
(q4>* — 4m2w*2 7+ Ze—ﬂhw (n+é)[2n2 4 (2” 4 1)]

W1 . 1
_ —Bho™ (n+
= e 7 Xn:e o) ("+ 2)

3p% 1 * *
+2 22 7 Ze—ﬂhw nn2e—;ﬂhw
m
321 1
= zmzw*z 2C0th(2,3h (1)*)
LN L I

+2m2a)*2e (hw*)Z 7% 3ﬂ2 1 — e Pho*
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3h?
= 4m2w*2 coth (éﬂh (1)*)
N 3 g 110 —efhe”
e
2m2w*? how* Z* 0B (1 — e Pho™)2
2

3h .
= 4m2w*2 [Coth (éﬂh(!) )

Ze—éﬂh w* e—ﬂh w* | Ze—ﬂh w*
+ 7* (1 — e Bho* )2 + 1 — e~ Bho*

e—ﬂh w* (1 _ e—ﬂh w*):|

2
coth (1% w*) |:1 +2

T amle®? (1 — ePho*)2
3h? | 2
= i [coth (38 w™)]
It remains therewith
m2w? 3hw? ’
o ) =, L (@) 1)

For the free energy of the anharmonic oscillator we have found the following
estimation:

F<F"+(H-H")" = —kgTInfy (0*) — ;hw* (f+(w*) + ;)

2 2

1 oo 1) 3 .
+2hZ* (f+(w )+ 2) + 4ha:)u*2(2f+(w )+ 1)% .

™ remains at first a free variational parameter, which can be adjusted in such a
manner that the right-hand side of the inequality becomes minimal.

2. We look for the minimum of the upper bound of F, in order to achieve in this
way an optimal estimation for F.

0
dw*

fl 1 1, o? 1
_ + *
= —kgp (f++2)—2ha) f_/,_—zhw*z (f++2)

1. w? 3. ? w?
+2hw*fjr — 2;‘104(0*3(2f+ + 1>+ 3haw*2f;(2f+ +1).

(F* + (H—H*)*)
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For the derivative f, we get:

, d . eﬂhw*
f+ = dw*f+(w ) = _IBh (eﬁhCU* . 1)2

1 1
’ [(eﬂhw —1 (e - 1)2]
= —Bhfr (") (1 + f+(@")) .
Therewith the extremal condition can be written as follows:

0

1
0=
ow

h 3 hlw*
LT (f+ + 2) LTRSS

1 2 1 1 A2w?
e (f++ ) R )

2" w*? 2)  2kpTo*
3, w? , 3ha o?
e G+ kaT ol t TG+ 1)
h 1 w? h? w?
5 (f+ + 2) ( w*z) + ZkBTf+( +/+) (w a)*)

w? w?

1\ #a 1
_6h0lw*3 (f+ + 2) —6kBTf+(l +f+) (f+ + 2) 02

h 1 w? w? 1
= 1-“ —12
2 (‘f++2)[ w2 T (f++ 2)}

602 2

hlw* w 1
+2kBTf+(1 +f4) |:1 TR 12aw*3 (f+ + 2)i| .

This can be compressed as follows:

2 2kgT

, h 1 hz * 2 2
0= [ (f+ + 2) + 2 C fa +.f+)} [1 - e (f+ +,

519
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Fig. A.11

The first bracket is in any case unequal zero, so that we are left with a
transcendental conditional equation for the ‘optimal’ parameter w*:

1 0)*2
12 e -1 .
“(f++2) © (aﬂ )

Specialcase: T=0 — fy =0.
It then only remains to solve: w*?/w? — 1 = 6a/w* (Fig. A.11).

(1 a=0 = o* = w: plausible

2 asmall = o*=w+xr = Z~%(1-F)
= x= 3 — w*xow+3a

(3)  averylarge: = o*~x (605(02)1/3 )

Solution 2.6.3

Consider at first: n € N; [A, B]— # 0.

di Tr(xA + B)" = Tr (;i(xA + B)") =Tr [Zc(xA +B)---(xA + B)i|

:ZTrI:(xA+B)---dicgcAiBl"'(xA+B):|

i=1 . .
! i—th position

=) Tr[6A+B)--- _A_ ---(xA+B)]

i=1 i—th position

= Z Tr[A (xA + B)"'] (cyclic invariance)

i=1

= nTr[A (xA + B)""'] .
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It follows therewith:

d Tr(e"*?) = d Tr( i ! (xA + B)”) = Tr( i 1d (xA + B)")
dx X = n! = n! dx
1 21 ,
- Tr( ZO A (A + B)”_l) = Tr( /Z:()An/!(xA + B)”)

= Tr(Ae"*?) .

Section 3.1.3

Solution 3.1.1

1. Canonical partition function of the ideal quantum gases:

;n,:N
Zy(T,V) = Z exp ( - B Zn,er) .
{n} r
Average occupation number:
Sn=N
(nj) = Tr(pnj) = ZIN Z nj exp ( - B Zn,e,)
{n:} r

Lo, Zy(T, V)
=— n V).
Bae "

2. We define:
0@z) = ZZNZN .
N=0

Exactly the same justification as that after (3.18) leads to:

[T, (1 +ze7#):  fermions,

00 = ][ X )" -
: U ;(Ze ) I, 1—ze1—ﬁ8r: bosons.
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In addition it holds:

Z(T, V) = 21 @,

. < .
i 7N+l

c

C: closed path in the complex plane around z = 0. It holds also:

1
VT, V) = ggeNg@z :
2mi
1 N+1 1
g2 = Nan(z)— ]_\7'_ Inz ~ Nan(z)—lnz.
Saddle point:
d | 10
Z =0= InQ(z)| —
dzg( ) P, N 0z @) o 20
5 1 fermi
. fermions,
— N = r eﬂ5r1+ 20
0 bosons.
TP —z

2o is therewith implicitly determined!
Saddle-point method:

InZy(T, V) ~ Ng(zo) ~ InQ(z0) —Nlnz

> In (1 + zOe_ﬁsr) — Nlnzp: fermions,

—> In(1—zeP) —Nlnz: bosons.

oF d
= = —kgT In Zy(T, V = +kpT1
" (aN)N,V B (aN“ A )) el

— 20 = eﬂ# ,
L e
e Xr: Bl 4 1 ermions,

1
> B _ 1 bosons.

r
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Average occupation numbers:

Fermions:
N L —pef !
(}’lj> _ﬂ agl anN(Tv V) - _ﬁ 1 + e—ﬂ (Sj—ll) - eﬂ (Sj_ll) + 1 '
Bosons:

) 1 +Be Pl 1
() = B1—e Pl P ICEN I

These are exactly the expressions (3.29) and (3.30).

Solution 3.1.2

1. Because of the Pauli principle each energy level can be occupied by at most two
fermions with opposite spin projections (m; = +; and — ;). This means:

~

(N) <2M .

2. For the grand-canonical partition function we have (3.20), where [ |, is to be built
over all states. Degenerate energy levels appear as factors so often as given by
their degree of degeneracy:

M
EL_)(T, V) = l_[ [1 + e P (a,—M)]Z '

r=1

F((I’\\/)particles, /L) = (ﬁ)u —kgTInE,

M
= (N)u —2kgT Y In[1+ P lerm)]

r=1

M

~ 1 B (er—1)
= (N)u— 24T Y _In te
r=1

gﬂ (er—pt)

M M
= (N)u—2kgT Y _In[1 + e# =] 4+ 2kgT > B (e — 1)

r=1 r=1
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—ZZEV )( W)

M
—kgTIn [ [ {1+ [(—ar)—(—u)]}z _
r=1

On the other hand:

F[(ZM — (IV)) holes, —u]

M
= (2M — (N)) (=) —kpTIn [ ] {1 + &P [en=im2
r=1

M
The difference thus lies only in the constant term 2 ) &,, which does not

influence the thermodynamic properties of the system. (Free choice of the
energy-zero!)

== particle-hole symmetry.

Solution 3.1.3
%:np=N
. 1
()& = P Z Z n,exp |: - B Z n,(ep — ,u):| .
C‘M N {”p} P
This we use to calculate:
SN
a(Ber)
Zn,,—N
= ,_,(i) Z Z n exp[—ﬂan(sp—,u)}
N {np} p
an—N 5
H(i)z{ Z Z n,exp[ an(gp_ﬂ)}}
o N {np} p

= (i) + (3) 2.
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Therefore:
2 -1 a .
An,)” = )E
(Am)"= G y@2 agge,) ™)
With
1
AN(E)
(nr> - gﬂ (er—p) F 1
it further follows:
(Anr)z — A_l —eﬂ (er—p) _ eﬁ (1)
(nr)(:t)z [6‘/3 (G ) ¥ 1]2
2 1

()@ =
(=: upper sign for bosons, lower sign for fermions.)

For fermions there exists of course, because of ﬁf = 7,, a more direct way of
solution!

Solution 3.1.4

If the particle is composed by an even (odd) number of fermions, it is a boson
(fermion):

H,-molecule: 2 protons + 2 electrons — boson ,
*He™ -ion: 2 protons + 2 neutrons + 1 electron — fermion ,
TLit-ion: 3 protons + 3 neutrons + 2 electrons — boson ,
3He-atom: 2 protons + 1 neutrons + 2 electrons —> fermion .
Solution 3.1.5

D(E) dE: number of states with energies between E and dE; in the d-dimensional
space:

25+ 1 ;
D(E) dE = d%k
(E) o /
E<e(k)<E+dE
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with

(2n)?

Agk =
d v,

e(K) = h%k?/2m isotropic in the k-space = phase volume ¢(E) is a d-dimensional
sphere in the phase space:

@(E) = / dk
e(k)<E

Relation to the density of states:

D(E) = 25+ 1) ( d go(E)) O(E) .

(2 )"

The factor (25 + 1) describes the spin degeneracy, and ®(FE) guarantees (k) > 0.

A2 2
e(k) = &k = \/ Ak
2m

Therewith:
93
k4
@(E) = Qd/dk'kd_l =Qu £,

d
0

Q,: surface of the d-dimensional unit sphere (see below).

DE)=[@s+1 2m d/zlz EY . o(E
:><)—<+>(2)d()-/ ‘0.

Calculation of the surface of the d-dimensional unit sphere by means of the Gaussian
integral in the d-dimensional space

G, = /ddp e

Cartesian coordinates:

i=1

=1i[7 ~ (va’
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Spherical coordinates:
o0
Gy = Qd/dp.pd—le—pz'
0

Substitution: y = p> = dp = 2«l/ydy, yields
T 1
G = dy - d@-0/2 ,—y
d d/ 2y Yy €
0

1 o0
= Qd/dyyd/z_1 e
2
0

1
=, QI d/2) .
Comparison with the Cartesian result =

27td/2
‘T rw
Explicit evaluation ford = 1, 2, 3:
d=1:T(}))=vnr =Q =2
d=2:T() =1 = Q, =271
d=3:T ()= ,v/n = Qs=4n

It follows with V|, = L, V, = L2, V3 = L3:

i) d=1:
1
D(E) =d; - -O(E
(E) e (E)
L |2m
dl:(25+1)27[\/h2
(i) d=2:

D(E) = d» - O(E)
2

2
h=0s+1 "
4

hZ



528 A Solutions of the Exercises
(i) d = 3:
D(E) = d3 - VE - O(E)

L3 [2m\*?
d=@2S+1) . - )
472

Solution 3.1.6

1. It holds according to (3.10)

P— Z Z (ko |plK'o’) af awer

kK o0’
Calculation of the matrix element:

(ko |p|K'o’) = (ko|hk|K'o")
= (k|7k|K ){o]o”)
= 8501k (K|K')
= HKi 1 807

It therewith results:

P= Z hkalj;aka
ko

2. x-component of the total spin:

§*—> Z Z (kolo,K'o")ayt awer

kK’ 0,0’

Pauli-spin matrix:

Matrix element:

(kolo,K'0’) = (k|K')(o]ox]0”)

h
-t (0} 2]
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h

= S [651 (0] 1) + 851y (o] 1)]
h

= Skk’ 2 [80/T80l, + 8a/l,8aT]

This means for the spin operator in second quantization:

h
5=, Xk: (et + a0

3. We suppose that $* commutes with P:

[$*,P]_ = Zth [ ay | Akt +akTak¢,ak, aw's ]

k Ko

Zth ([amakT ak, ak's ] + I:Cll_:Tak¢va;—/aak’o:|_)

k Ko

h
=, th (S,TTal'('laka — 8@(1:'661“ + 8a¢a|'("Taka — 80T“1tyak¢)
ko

h
— 5 th (a:ﬂkT — a;lakT + a;'TaN — a:¢“k¢)
Kk

=0
Section 3.2.11
Solution 3.2.1
Equation (3.44):
nA3(T) = 25 + Dfsa(2) A7) 0.

Therefore it must hold

f2() e 0,

529
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since 7 is to be considered as fixed.

(o]

d d 4
f2(@) = ZdeS/Z(Z) =4y I /dxx2 In (1 4 z¢™)
0

oo oo

4 2 —x2 4 2
= /dx we , = /dx 2x
T 14 ze™ JT e~

0 0 +1
z

f3/2(z) = 0 obviously means z — 0. This in turn can be valid only if

Bu — —oo .
T—o00

Eventually, this has the consequence

n —> —00.
T—o00

Solution 3.2.2

Substitution:

p = mcsinho

= &(p) = V22 + mct = mc*V/sinh? @ + 1 = mc? coshe .
For the average particle number we have according to (3.24):

o0
~ 1 (3.37) 47V p*dp
(N> - Z eﬂ (er—p) +1 o (2S + 1) h3 / eﬂ (e(p)—p) +1 ’
" 0
24 _ 312
p-dp = (mc)” sinh” o cosh ada

o

m3c3 / sinh? & cosh ado

N)y=(@2S+1 14
= (N) = (25 + )2n2h3 exp (—Bu + Bmc? coshar) + 1

In an analogous manner the internal energy is derived from (3.28):

&
U= Z ePler—m o]
-
m*cd / sinh” o cosh” ada

=25+1 |4 .
@5+ )27r2h3 exp (—Bu + Bmc? coshar) + 1
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Low temperatures:

1 1, if u>mc®cosha ,

exp (—Bu + Bmc? cosha) + 1 -0 0, if u <mccosha .

Let ar be defined by

er = w(T = 0) = mc? coshay .
Fermi momentum:

pr = mcsinhogp .

Average number of particles:

afF
/ sinh? & cosh ada

0

m3c

(W)~ @S+ 1), oV

oF
m3c3

1 d .
=25+ 1)2n2h3v3 / ot sinh” ado
0

m3c

6203 V sinh? or .

=(@2S+1)

The same relation with the Fermi momentum is obtained as in the non-relativistic
case:

Ny _25+1
v 67r2h3pF‘
Internal energy:
m*c® ¥
Un@2S+1), 5, V/ sinh” o cosh” ada ,
0
1
sinh® @ cosh®> o = 16 (820‘ e 2) (eza +e 2 4 2)
= (e +e—2) = I(COSh4a —1)
16 8
— U~ (25+1) mie g h(4ar)
~ sinh(4ar) —arp| .
167243 | 4 F F
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Solution 3.2.3

kske 22 v of o
_ _ _ 4
ur=0=>% L, =S+ 1)8ﬁ34n/dkk .
k 0

V kK Gen V  6n? N
=(2S+1 P R2V Er2S + 1
@S+D,y 25 om F(25 + )1071225+1V
= 3NE
= _NE.
2.
h = 1.054- 10734 Js
(3.62) B2 (672N 2/3
Er =
2m\ 2V
(1.054 - 10734)’ (322)" 6-10% 2/31
frnd . e N
2.9.1-1073 25.10-6
= 6.098-1073%.9.571-8.320-10'%7J
= 486-1077
= Er = 3.03eV.
3.

h2 N\
EF= (3]T2 )

2m \%4
N -3
v = 4 (anv)
K2 age?

e o \*? 1
= Er =
F 8megag ( 4 ) r?

397\ 1 2.21
= U(T=0)=N i [ryd] =N [ryd] .
5\ 4 r2 r2

S
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4,
vV (2m\*? (362 6?2 1
d=02S+1 28
@5+ )4712(7‘12) @5+ )4 225+ 1" g2
3N
—d= ",
2E
5.
2N 2 6-10% J
Ry . 4.86-1071°
5V 5 25.-10°¢ m3
= 4.6656-10°Pa = 4.6632- 10" bar .
Solution 3.2.4

N: Total number of electrons in the valence band and in the conduction band:

VB CB
N=Y fle)+ Y f(e).
i J

N is temperature-independent. At 7 = 0 all electrons are in the valence band, which
is then fully occupied.

VB
N=)"1.

If one combines the two equations for N,

VB
> (1 =f-) = Zf () ,

one recognizes that the number of holes in the valence band is of course equal to the
number of electrons in the conduction band:

Ny = Ne .
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Energy zero = upper edge of the valence band. One-particle energies:

h2k?
holes: & = — )
2mh
h2k?
electrons: g =E; + e

Densities of states: (3.50)

Vo(2my\?
holes: Dy(E) =2 —E,
oles h(E) A2 ( 42 ) v

vV o(2me\*?
electrons: D.(E) = 247r2 ( 42 ) \/E—Eg .

Particle densities:
o0
1 (2m.\"? E — E,dE
electrons: Nne = ( me) / \/ 8

272 \ A2 ePE—) 417
Eg

holes: nnh =

0
1 [ 2my\? V—EdE
2n2 \ A2 ef CE+w) 417

—00

Because of the given inequalities the number 1 in the denominators of the integrands
can be neglected, in both cases, compared to the exponential function:

2me \
e —B(E-p)
ne & 2;12( ) /\/E Ege WE |

0
e~ 1 (th) /\/_Eeﬂ(E WJE
—00

22

‘We substitute for 7,:
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o0

[ =r(2) = Lo

0

32
= ne ~ 2 (mekBT) e P EW

‘We substitute for ny,:

o

Lo2m\? 1 .
= np & P ﬁ3/2e dx A/xe™™ ,
0

Myke T) v e Pr

~2
— (Zﬁhz

Chemical potential:

m
= w(l) = 2Eg + 4kBT1n s

1
w(T =0) = 2Eg

Particle densities:

e\ 4
em:wmm(h) ,
me

It therewith follows the assertion:

3/2
A/ Me mpkgT —(1)2)BE
Ne = np ~ 2 e s,
¢ " ( 27 h?

ne =np, —> 0.
T—0
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Solution 3.2.5

1. The one-particle energies and densities of states for electrons and holes are
exactly the same as in Exercise 3.2.4:
Electrons (conduction band):

h2K> Vo(2me\*?
(kK)=FE ; D.(E) =2 E—-FE,,
e(K) g+2me (&) 47r2(h2) v

Holes (valence band):

h2K2 Vo 2my\?
k) = — ; Dy(E) =2 —E .
el =—, WE) =2, , ( 2 ) Vv

The given inequalities correspond to those of Exercise 3.2.4. For the densities of
electrons and holes (n., ny,) one finds therefore the same approximated formulas:

3/2 3/2
ne ~o 2 ("B g o (kBTN
2h? 2h? ’

Also the donor levels now contribute electrons for the conduction band. Their
number corresponds to the number of unoccupied donor levels, which can at
most be simply ionized:

1 1 1)) np
D _ _ _ _ .
M = \% Z (1 eP Eg—ep—i) 4 1) T oeBlutep—E) L1 AePep +1°
np = : density of the donor levels.
Neutrality condition:

D
Ne = Ny + 1y, .

3/2e_ﬁ (ZM_Eg

Because of " & () ) and p ~ E, one can estimate:
e me

np X e_ﬂEgne < ne .
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ny, can thus be neglected compared to ., and the neutrality condition simplifies:

3/2
D mekBT np
. A ; 2A ~
e % T ( 2h? ) Aeben 41
m, kBT 3/2
= np =24 (AP + 1) °
" (4™ + 1) ( 27h? )
2. It is now presumed:
Aefr > 1.
This simplifies the last relation from part 1.:
kT 32
—Ben o, 242 MeKB
npe ( 27 h? )

It thus follows for A:

3/4
A~ \/nD i em2ben
2 mekBT

This is inserted into the relation for n. from part 1.:

mekBT 3/2 mekBT 3/4 1
R 2 Ax /2 ~2Pep
" ( 27 h? ) V2 ( 27 h? ¢

The chemical potential results from

uw=E,+kgTInA
4]T3h3nD

1 1
— u=E,— ep+ _kgTln
) 2 (27rmekBT)%

Since, according to the precondition, A < 1, the given condition can be fulfilled

only for ep > kT — low-temperature region; n. very small, i.e., only very

few electrons are excited into the conduction band. For these it holds: n. ~ /np.
3. Now

Aeﬂgl) << 1

is presumed. According to part 1. this means:

mekB T) 3/2

~ 2A
" ( 27 h?
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That means (part 1.): np & n.. Almost all donor levels are emptied. Because of
A < 1 the np-relation is satisfiable only for high temperatures.
Chemical potential:

4713h3nD
w=E;+kgTlnA =E, + kgTIn 5 -
(2mmekgT)2
4. Material parameters:
E,=2V; e =002V; m=10"g; np=10%m>.

a) T =3K
We calculate at first (see part 2.)

2\ 3/4
A= \/nD 2R ) et
2 mekBT
kg =0.862-107* = kpT =2.586-10""eV

= Bep = 77.34 — P =387.10%,
e2b = 1.607-10717 .

A =1.055-10"%Js = 1.055-10 g™ — F — 1055

h =0.6585-10""eV -5 == ka =0.2546- 1075
12 1 [ 2mh2
T~ 1.688-10 em? ; § = 5.889- 10 cm?/?
mekpT V2 \mekgT
= A~ J/np-9.463-107%° =9.463-107'%; AePr =3.662-10'° .
The conditions
AL AP > 1

are therefore optimally fulfilled. In addition
u=E;+kgTlnA = E, —0.010eV ,

so that also the precondition u ~ E, is confirmed.
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b) T = 300K:
We have to check (see part 3.)

LD ( 2h> )3/2 |

2 mekBT
2h? 2k \*?
T 168810 %em?  — g = 6.935-10"2%cm®
mekB mekBT
= A ~0.000347 < 1
Bep = 0.7734 = P =2.167

= AP ~0.00752 < 1.

Also here the two conditions are optimally fulfilled.

Chemical potential:
uw=E;+kgTlnA = E, —0.206eV .
The comparison with the low-temperature case a) demonstrates the distinct

temperature-dependence of the chemical potential. u ~ E, is no longer well
fulfilled.

Solution 3.2.6

For the one-dimensional density of states it holds according to Exercise 3.1.5:

d jE forE >0,
0 otherwise .

Di(E) =

The constant d,

25 +1 m
d = L ,
! T \/2h2

can be expressed also by N and Ef:

EF
N = /dEDl(E) = 2d,/Er
0

1 N

—d = .
"7 2 VEr
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We calculate (3.53) by exploitation of (3.73):

oo n
N = / dE D\(E)f—(E) ~ / JED,(E) + (kBT)ZD’(u)

1 1 w  w? (kT 2 w
2d kg T =N — N
1\/M+ (B )’ ( ’ 1,u3/2) \/EF 24(# Ep
o
=1~ 1-—
\/EF[ }
2 (kT
— uM) ~Ep |1+ (" .
12\ u

In contrast to the three-dimensional case, (7)) increases in the one-dimensional
system with increasing temperature!

Solution 3.2.7

We use the thermodynamic relation (1.154) and the Gibbs-Duhem relation:
F=-pV+G=—-pV+uN.

It follows then with (3.75) and (3.81):
2 (kTN 2 572 (kgT\*
FaNEp|1=" (™ —ONER |1+ ("
12 \ Er 5 12 Er
3 572 (ksT\*
= "NEp|1- )
5 12 Er
Solution 3.2.8

1. The same energy zero inside as well as outside the metal.
One-particle energies:

h2k?
2m

h2k?
2m

inside: ¢&;,(k) =

outside: e, (k) = Vy +
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Density of states:

dvE, ifE>0,

inside: Dy (E) =
0 otherwise ,

d\/E—E(), ifE>V,,

0 otherwise .

g G v (2m\Y?
- 2n2 \ A2 ’

ool (5]}

2> -
outside: (ﬁl(g)) = {exp [,3 ( 5 +Vo— u):| + 1} ,
m

outside: D (E) =

Average occupation numbers:

inside:  (A™)

1 T Du(E)
Rex = /dE eﬂ (E—p) +1 ’

Vo

The work function is of the order eV. Therefore for realistic temperatures § (Vo—
@) > 1. (Otherwise the metal would not be stable!) We thus can confidently
neglect the 1 in the denominator compared to the exponential function.

o0 o0
1 1 (2m\*?
% / dE Do (E)e P 1) = ( ) /dE VE — Voe P E=

S
%

272 \ A2
V() V()

32 P
_ 1 (Zm) /dexe_ﬂ(x+Vo—u)

272 \ A2
0

12\ i [ -
=, ('th) e P /dy\/ye v
0

_— =

r()=tvs

3/2
Ny A 1 (2mksT e B Vo)
4\ mh?

Vo — 1 is practically equal to the work function.
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3. Because of f (Vo=1) > |
h2k?
(ex)
e — Vo — .
(g ) ~ Xp[ B (2m +Vo u)}

‘We calculate therwith the emission current:

+o00

o0
—e \%4 hk
. A —B(Vo—p)]2 dk, || dk.dk,
jer |, exp[ =B (Vo] (2n)3/ o /f )
0 —00
h2 2 2 2
- exp [—,3 o (k2 + ky + kz)i| .

The factor 2 stems from the spin summation!

P too P
Jj. = —2eexp[—ﬁ(V0—M)] dpy exp( B “) /dpx exp(—ﬂz;)

o0
(1.137) 4ﬂkaT P2
= e ep[-BV- u)( )fd eXp( 2;)
0

—4mme

=~y T exp[ =B (Vo—w)]

Richardson formula ((1.47), Vol. 6).

Solution 3.2.9

1. We use for the one-particle Hamilton operator of noninteracting electrons,

hz
0 _
H" = —2mA ,

spherical coordinates

190 0
A_rzar( 8)+A1W

1 d a 9?
- . .
be T a2 (smz&‘al9 (smz&‘aﬂ) + 8@2)
L2
TR
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L? is the operator of the square of the angular momentum. The fermions are
thought to be bound to the surface of a sphere r = R. Hence in particular, the
derivatives with respect to the variable r will vanish, so that it is left for the one-
particle Hamilton operator:

L2

© _
&=+ 2mR2

The eigen-states of H §0) are eigen-states of the angular momenta |/ m; mg). This
yields the energy-eigen values

2

E =
'™ omR2

I+ 1) 1=0,1,2,...

Degree of degeneracy:
a=0QS+D2I+1)=22I+1)

2. Including the Pauli principle it holds for the ground-state energy E© of the
fermions:

o _ 21 R
E —Zngz—mRz_ZmR2(2.0+6.2+x.6)
]

x is the number of fermions with the energy E, for realizing the total energy E©.
It results x = 7 and therewith the particle number:
N=24+6+x=15

Fermi energy as the highest occupied level at 7 = 0:

3h?
Ep=p(T=0)= MR

Solution 3.2.10

1. The derivation of the density of states follows the same line as that for (3.50):

DE) = (2S+ 1) (E).

@) dE¥
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The phase volume, though, now looks different:

4
o(E)= "k

_ dr 4
333
chk=g ~ 3Ch

S+ 1), 5 E? forE>0,

= D(E) =
otherwise .

2. Let
1
Q(E) = / D(E)E = , ED(E)

be the antiderivative of the density of states. According to (3.22):

Bpv = Y In[1+ e

o0
N / dE D(E) 1n[1 T <E—ﬂ>]
0

o0

—Be B E—W)

- —pE-w]|® _ e

= Q(E)ll’l [1 +e :HO /dEQ(E)l +€_ﬂ(E_“) '
0

The integrated part vanishes (why?):

i dE i 1
pV = / QE) pew 41 = 3 / ED(E)f-(E)E = U
0 0

PSR _
p(T=0)= 3VU(T— 0)

Ep
U(T = 0) = / ED(E)dE =
0

VRS+ 1)1,
223K 4 F

6 2 N 1/3
EF = thF (321) ch i .
25+ 1V
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Zero-point pressure:
1 67'[2 1/3 N 4/3
T=0)= A .
P ) 4(2S+1) ¢ (V)

Solution 3.2.11

According to Exercise 3.2.10 the density of states of extremely relativistic fermions
is given by

v 2 _ 12
D(E)=(@S+1), ,,E =dE* for E20.

(D(E) = 0 forE < 0.)

1. Chemical potential:
D(E) fulfills the preconditions of the Sommerfeld expansion. The particle
number N is T-independent. Therefore it holds

Ep
N = / dE D(E) (T=0)
—00
as well as

m
2
N = / dED(E) + ”6 (ks T)2D' (1) .

—00
Equating yields:
1 1 w2
Ei~ i@ ksT)?2
N (ksT)"21n

aksT\2 173
Er Er

:>,LL%EF|:1—(

degenerate Fermi gas = the second term is very small, u ~ Ep

2 k 2
:>u(T)%EF|:1—jT3 (EB:):| .
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This result has the same structure as in (3.75), only the numerical factor in front
of the correction term has changed.

6 2 N 1/3
Er = ch (257:— ! V) (see Exercise 3.2.10) .

2. Internal energy:

VeS+ D EE 1.,
T = = = E
VI=00=neps 4 = 4%
I 2
b
ur) ~ [dEEDE) + T G (1D (0 + D)
0

Lry n? 2275, 2
= 4du + 6 (ksT)"3dp

4 2 2
124 2 ((keT M
=U(0 2 .
()[(EF) e (EF) (EF)]
According to 1.:
M " w? ksT 2
~l—n

272 kT’ 3
— um =v0 |1+ (" . U0) = "NEx.
3 Er 4
3. Heat capacity:
N N 2k2
Cy =T, y = Nﬁ B
Er

Cy has the same low-temperature dependence as in the non-relativistic case. Even
the coefficient 7, except for the factor é, has the same structure as y. The Fermi
energies, though, are different:

y _ h 6712N1/3>>1
y mc\25+1V ’
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Solution 3.2.12

One-particle energies:

Nms(K) = &(K) + 2mgsupB

mg=—-S§, —=S+1,...,+S.

mg-part of the density of states:

1 V o d
Dng (E)dE = &'k = s (E)AE .
EE= / @y dg?"s ")
E<)g (K)<E+dE
Phase volume:
Oms(E) = / &’k = / &Ik .
g (K)<E e(k)<E—2mgupB

e(k) >0 = necessary: E > 2mgupB
omg(E) = 0, if E <2mgsupB,

otherwise
4 4 [2m 3/2
(pms(E) = 3 K = 3 |:h2 (E— st,uBB)i|
e(k)=E—2mgsupB
dnsVE —2 B, ifE>2 B,
— D, (E) = s\/ msiB 1 msiB
otherwise ,
d = V (2m 3/2(331) 1 d
" 4x2 \ A2 To25+1
Hence it is:
1
Dyg(E) = 25 4+ 1D(E —2mgsugB) .
Total density of states:
1 +S
Dtol(E; B) = 25+ 1 Z D(E— 2m5pLBB)
mg=—S

with D as in (3.50).
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Solution 3.2.13

Spin-dependent particle numbers (Sect. 3.2.6):

+o0
1
N, = 5 / dEf_(E)D(E — zougB) .

—0o0

Sommerfeld expansion (3.73):

2

—00

n
1 w’
N, = [ / dED(E — 7z ugB) + 6 (kBT)ZD’(M—ZoMBB)}

d
2

_ lN(u)” (l_zauBB)3/2+ n? (kBT)Z(l_zauBB)‘”z
2" \Er 0 8 \ u I ’

Series expansion:

2 72 _
[3 (4= 2B+ (T~ Zo5B) 1/2}

n n(m—n) ,

A4+x0)""=14+ x— T (-1 <x < +1)
m m
1w\ 3usB | 3 (B’
’ 2(Ep) Z”2M+8(M)+

2 (kT 1 usB 3 (usB\’
+ T B 1+ 2, HB i HB e '
8 n 2 un 8\
Summation over both spin-directions and dividing by N = Ny + N :
32 3 (wsB\® % (kT
1=(" 1+ (77) + ) o+
Er 8\ u 8 U

It follows therewith, if we exploit once more the above series expansion and replace
eventually in the quadratic correction terms y by Ep:

1 (usB\> 72 (ksT\>
T.B) ~ Erp|1— - .
w(T.B) F[ 4(EF) 12 \ Er

For B = 0 we regain the ‘old’ result (3.75).
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Solution 3.2.14

One can write for f(x):
fx) =5(x— ;) +8(x+ ;) for —1<x=<+I1
with f(x) =f(x+2).
f(x) is thus periodic with the period 2, and furthermore symmetric:

J(=) =/ .

Ansatz as Fourier-series ((4.174), Vol. 3):

f) =f+ Z [am cos(mmx) + by sin(mmx)]

m=1

+1
1
fo= [ feoe=1.
5

+1
O f = 2 1 ,
am = /f(X) cos(mmx)dx = orm=2p+
1 2(=1)? form=2p,
b, =0, becausef(x) symmetric
> o0
= f() =1+ 2(=1) cos(2prx) = 1 + Z(—l)P(eiZPUX n e"'zf'”)
p=1 =
+o00
= Z (—I)Peizpﬂx.
p=—00
Solution 3.2.15

Special representation of the derivative of the Fermi function:

b

S =  4cosh? [1b(e—po)]
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With p = b(e — o) it then remains to be calculated:
) b4
I, = —Re [exp (z 27 po — 4 ) K,,] ,

+/°° exp (i 2”h"p )

d .
P 4 cosh? (ép)

—00

K, =

The integral is solved by the use of the residue theorem, where, because of p > 0,
the integration path is closed in the upper complex half plane. Because of coshx =
cos(ix) the integrand has poles at the positions p = p,,

on=iQ2n+ m,

where only those with n > 0 lie inside the region of integration. We get with

1 1
h ] =0; inh w | =i(=1)"
cos (2,0) sin (2,0) i(—=1)

the Taylor expansion:

1
h
cos (2,0)

1
1= ) + i (1) (= pn)’ + e

[N I S

. 1 5
i(=1) (p—pn)[l+24(p—pn) +} .

Therewith it also holds:

1 —4

p— J— 1 j— 2 e
cosh? (ép) - (p — pn)? [1 lz(p pn)” + :| .

The integrand of K, thus has at p, a pole of second order. We calculate the residue:

exp (i 2”bpp ) d , eXp (i 2”bpp )
Spn 2 (1 = lim (P—Pn) 21
4cosh’ (yp) e dp 4cosh’ (,p)
2npp 1 2
-1 1— — o) e
o dp [eXp (’ b )( PP )}
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With the residue theorem it then follows:

2P - 2m? 4 22 > 472
Kp:4anexp—b 2n+ 1)p :4nbexp—bp Zexp—bnp
n=0 n=0

272
by_ exp(— 4Z2p) b sinh (2712?)

Because K, is real, it follows therewith immediately for /, the formula, which we
have applied in (3.119):

2P o8 (% —2pmio)

I, = .
P b Slnh(Z]Tz[;)

Solution 3.2.16

1. Energy levels (3.100):

A2

1
E,(k,) = 2ugB .
(k;) B 0(n+2)+2m

Degree of degeneracy (3.102):

el L,
(By) = By .
8y(Bo) ooy B0
Partition function:
| +oo 00
Z = [ a3 s B0 expl-pE 1)
27r/LZ_oo et
+o00
VB P\ _ i
— d _ptz BusBo B2upBon
(2nh>2[/ ”Ze"p( ﬁzm)]e X_;
—00 n=

(1.137) eVBy 27m e BrBBo
T o@rh)\ B 1 —e2busBo

3/2
m BusBo eh
7 =V =
! (2nh2ﬂ) sinh(B1sBo) (“ b 2m)
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2. Free energy:
dF = —SdT — mdB,

(as to the magnetization work see Sect. 3.2.8).

== oF kT 9 InZ NkgT 9 InZ
m= — = =
0By B 9By N B 0By !
ad B d inh
= NkgT In . BisBo = —N,uB( In s x) .
aB() Slnh(ﬂMBBo) dx X x=pupBo

In the bracket we find the classical Langevin function (see the solution of
Exercise 1.4.6):

1
L(x) = cothx —
X

BBy
m M“B ( kT )

sign — induced magnetic moment is oriented antiparallel
to the field

— diamagnetism.

Solution 3.2.17

Eigen-energies (3.101):
. 1\ AR
Eu(k) = 2u3Bo (n+ ) )+ © +2anBo

HB = ; Ky =
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The partition function is calculated as in the preceding exercise:

Z

+o00
1 o
2L, _/ dk;, ,; &y(Bo) 25: exp| — BEx (k)]

* 3/2 *
m BigBo
2 cosh(BsB
(anﬂﬂ) sinh(ByzBo) ~ <O P

= average magnetic moment:
m = —NpugL(BugBo) + Nup tanh(BugBo) ,
I x I x

. — ~

1
L(x) = cothx— —> .. .
(x) = cothx Ty + 3 + B 3

Weak field:
1
ma — 3Nug2ﬂ30 + Nui BBy .

Zero-field susceptibility:

N 2 1 ,,%2
x(T) = ro” B . 3T” B (cf. Sect. 3.2.9)
B

Solution 3.2.18

Starting point is the intermediate result (3.134) to (3.140) for the oscillatory part of
the magnetization of a free electron gas in the homogeneous magnetic field:

— o (™) =t
Xosc Mo 330 , X1 X2 X3 -
-1y cos (/4 — pc)

3a N (zpT)
— — cos b4
X1 = Mo 4B, 1B Vp§=1: P2 P sinh( pb)

3ac N (=1) sin (7t /4 — pc)
+ ZBOMBVPE:1 pl/2 cos(zop7) sinh( pb)

3ab N (=1) cos (/4 — pc)
— ¢ th(pb) | ,
25,0y 2o g ) oo
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lac N i (=17 ( )sin (/4 —pc)
= — cos(zgpm
X2 = Mo 2B, HB szl pl/2 2D sinh( pb)

ac> N cos (/4 — pc)
E —1yYp'/?
+ By KBy, p=1( )P cos(zop) sinh( pb)

abc N & sin (/4 — pc)
—1)yrp!/? - th(pb) | ,
g, by 2P eosopm) L T coth(ph)

p=1

lab N & (=17 cos (/4 — pc)
- . th( pb
X3 = Ko |:ZBOMB VI; P12 cos(zopr) sinh( pb) coth(pb)

abc N & sin (/4 — pc)
—1)p'/? th(pb
+ g, MBVZ( ypVcos(zapm) L Ly coth(pb)

p=1

ab> N & cos (/4 — pc)
- —1)p'/? cos(z,pr 1 + cosh?(pb .
5 MBV;( P cos(apm) ™ (pb))

Section 3.3.8
Solution 3.3.1

Equations (3.152), (3.153):

(n = no)A*(T) = (25 + g3 (a)
(n — ng) bounded, A(T) . 0. It must therefore hold
832(2) —> 0.
83/2(z) — 0 obviously means z — 0, and therefore
B — —oo .
Because S tends to zero for T — oo, it must necessarily be

—> —O0 .
T—00
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Solution 3.3.2

Grand-canonical potential of bosons:

QT V. 1) = ksT Y In(1— e Plemm)

oT

= —kp Zln (1 — e P lerm)

(gr — /*’L)e_ﬂ (er—pt) 1
—kgT Xr: | — 0B ) _kBT2 .
_ 1
- gﬂ (er—p) — 1

= S(T,V,u) =-— (89)
V.

(i)
— Bler—w =In( 1) = In(1 + (i)~ In(i)
In(1—e P& M) = —In(1 + (A,))

— STV =ks Y [m (1+ (A)) + () (In(1 + (3,)) — 1n(ﬁ,))]

= kp 3 [(1+ (i) In (1 + () — () Ingi) | -

r

>

(n,) = (a;"a,): ‘particles’ ,

1+ (i) = (a,af): ‘holes’ .
Behavior for T — 0:

a) N fixed: go: lowest particle energy
(i) — N = 1+ (i) ~ (i)

(thermodynamic limit)
= S(T,V,u) — 0,
T—0

T—0 T—0

555
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Solution 3.3.3

(o]

o0 o0 oo
xa—l o8]
1o (2) E/ dx = /ze_xx“_l Z(ze_x)”dx = z”/x”‘_le_mdx.
77l —1 — —
0 n= R

0 n

Substitution ¢t = xn:

o0 00 o0 Zn
I,(2) = Zz"n_“ / e ldt = T'(a) Z ;
n=1 0 n=1 n
1
= ga(2) = r (a)I“(Z) q.ed

Solution 3.3.4
In general (see (3.21), (3.22), (3.26)):

(PV)® = FhgT Y In (1 F e Pe)

Upper (lower) sign: bosons (fermions)
Density of states from Exercise 3.1.5:

Dy(E) = d; - EY*7' . O(E)

d;: known constants (see Exercise 3.1.5). Therewith

o0
(pV)® = FhsT / dED4(E) In (1 F & PE—)

—00

Attention: Since there is no condensate, i.e., z < 1, the (¢, = 0)-term for bosons
need not be treated separately. Even the states with &, = 0 are ‘asymptotically
thinly’ occupied. Reformulation of

o0
(pV)(:I:) — :FkBTdd/dEEd/Z—l In (1 T e—ﬂ(E—[l.))
0
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by integration by parts. For the two functions f(E) and g(FE) it generally holds

oo

/ JEF (E)g(E) = f(E)S(B)| - /0 JEf(E)g (E) .

0

We choose here
d/2

fE =B = fE)=,,

and

g(E) =1In (1 F e_ﬂ(E_“))
+Be PE-W
1 F e PE-)

1
= b - F1

= £ (W(E))™

= ¢'(E) =

where 71 is the occupation number operator. After integration by parts the integrated
term vanishes:

E— O:
2 4 —B(E—p) 2
dEZIn(liFe “)—>dE21n(1:FZ)—>O
E — oo
2 2 e PE—1)
E2In(1F e PEM) = — E’ +1y¢
J n(lFe 4 Z( )
2 —B(E—)
—>—dE2(:b1)e H
—> 0
It follows:
9] Ed/2
(P = tksTd, / aE", B ()
0

2 © d_y . )
= ddd dEE-E2""(n(E))
0
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_ j /_ dEE-DyB)G(E)™)

2
=y
d

In the last step (3.54) was exploited for fermions, and the analogous equation for
bosons.

Solution 3.3.5

1. According to (3.146) it is to be calculated:

o
1%
B =(2S+1) 4n/dkk21n(1 —ze ™) + (25 + 1) In(1 —2),
(2m)3
0
a=Phc>0.

Integration by parts (the integrated part vanishes; why?):

o0 1 o0 1 o0 + —ak
dki2In(1—ze™) =  Kln(l—z%)| — /dkk3 wze
/ n (1 —ze™) 3 n(l—ze )0 3 R

0 0
7 1
- —O‘/dkk3
3 Z—leak_l
0
17 3 1
(x=atk) X
=0 _ d —— " r¢4 .
3a3/ ¥ g1 T Tagn ] W8

0

In the last step we have used the integral formula from Exercise 3.3.3. With
I'(4) = 3! it finally remains:

@S+ 1)V
pR =@+ Din( -9~ 0 aila).
2.
pV =-Q
—pr=s+n| S0~ na-o)
w2(Bhc)? V '
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Particle density according to (2.80):

Ny (D
== (),

83(2) 1z }

=>n:(2.5'—}-1)[]T2(137%)3 Viez

Internal energy according to (2.85):

d - _ d
v=- (3/9 o “) = [Bﬂ ® Q)}

3 (25+1
2s+1nv @.

U =
— T e

3. We have according to 2.:
U=3pV+3kgT(2S + 1)In(1 —7) .

So it is to show:
li ! In(1 )=20
VLH;OV n v=u-

That is trivial for z < 1. For z — 1 it follows from the relation for the particle
density n:

1 z n g3(1)

Viez 2541 w(phep )

g3(2) is monotonically increasing in the interval 0 < z < 1 with a finite value for
z=1

g3(1) =£§(3) =1.202.

x(T) is thus finite. This means that (1 — z) must behave in the limit z — 1,
V — oo like 1/V. Then, however, (1/V)In(1 — z) indeed tends to zero, and the
second term in the above equation for U can be neglected:

U=3pV,

25+1 1
P= g nz(hc)3g4(2) :
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4. The relation for n from part 2. can be written as follows:

25 +1
" 2(Bhe)? 83(2) .

nog =

ny: particle density in the ground state (Ny/V). If

25 +1

" 2 Bhep S

1.

then n takes macroscopic values = Bose-Einstein condensation. Critical data
from

o 285 +1
= 1).
n 7r2(,8hc)3g3( )
n fixed:
’n 1/3
kgT.(n) = h .
plelm = he [(2S+ 1)g3(1)}

T fixed:

25+ 1
w0 = ().

no_ 2S+lg3(1)_1_(.3c)3_1\/0

no "~ n2(Bhe)® n B N

:,Noz[l_(;)3]N.

6. From the equations

28 +1
Pl = (1) (;c)3g4<1> ,

25 +1

ne(T) = (kgT)?* 22(he)? g3(1)

the temperature must be eliminated:

4/3
pe =cn*’?,

e (1)
T @S+ DB (g3(1))43
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Solution 3.3.6

Vv
d =05+ /dzk..., d*k = kdkdg .
- 472
With (3.21) it follows at first:
V o0
BQUT,V,z) = 25+ 1) oy / dkkln (1 —ze P®) + (25 + 1) In(1 —2) .
b4
0
The second summand explains itself as demonstrated for (3.146). Substitution:

h2k?
- 2m

A2K? A2

— dy = kdk .
Y P 4 Y 2

The above integral can be reformulated:

PEN WK
ot /dkkln [1 — zZexp (—,B 2m))i|
0

o0

= /dy In(1—2ze™)

0

7 Yy
o0 Ze_

—yIn(l— —y) [ a
yin(l—ze™) | /yyl_ze_y

0

o0
y
—— [ ) =T @80 = 6.
77ty —1

0
At the end we have used the integral formula from Exercise 3.3.3.

@S+ 1V

BQT,V,z) = 52

2@+ Q2S5+ 1)In(l1 —2).

2. With (2.80) and (3.158) one finds for the particle density:

) ) BQ 241 L L
n = = — =
a:"" TV Noz v TV PENE V 1-z
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X n
g1(z) = Z Zn diverges for 7 — 1.

n=1

The condition for the transition into the region of condensation would be in
analogy to (3.161):
n fixed and finite:

2= 25+ )g()=c0 = Tc=0.

There is thus no Bose-Einstein condensation in the two-dimensional ideal Bose
gas, if the one-particle energies are of the given type (cf. Exercise 3.3.10).

Solution 3.3.7

We start at (3.23) and evaluate the equation in the thermodynamic limit (3.37):

1 1 1 1
"= 1% Z e 1~ Cy Zr: ePer — 7

r

1 1
z2S + 1) / dk

@) ePe —
N -

—_—

14(2)

1(2)
2S+1)z1,(0) 1,(0)
1

hz
d
oy | Akexp=p ) )
d +o0

1 n
=11 dkiexp(=p ) k7)
il 27t_ 2m

o0

1 2rm
l—[ 2 \/,th

i=1

- (Zn’;hz)

1,(0) =

d
2
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Because of the isotropic energy dispersion it can be written by means of a suitable
substitution:

(o]

Li(z)  Au2) . / o1
= th Ay(z) = [ dex?™! .
1) = ag0) VA AR
0
Then:
7 1 7 1 d
A0) = [ dex?1e = /d =le = (Y.
50 = [acere® = fayytrer = Jr())
0 0

In the second step y = x> was substituted; on the right-hand side the Gamma-
function appears. It therewith remains for the particle density:

d o0
m 22 1
=02S+1 dxx¥! .
n=(2S+ )Z(Znﬂhz) F(;‘)/ X e
0
Ba(z)
B,(z) can be calculated analytically for d = 2.
o0 o0 o0
B.(2) /d 1 1 /d 1 1 /d e’
= X X = = .
2(Z e"z—Z 2 yey_z 2 yl_ze_y
0 0 0
We choose:
! d . 1
v=1—-2z" ~ v =ze’ ~ eYdy= dv.
dy z

One finds therewith:

1 1 1
Bs(z) = dv =—_In(1—2).
2(2) 2 / vy 2 n(l —z)

1—z

One therefore gets for the particle density of the two-dimensional ideal Bose gas

(r'(1) = 1

m

11:—(25’—}-1)27113%2

In(l1 —z) .
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With the abbreviation

2h?
o =
2S5+ )m
it follows:
o —n,® —n, |
In(l1—2) =—-n A l—z=e"wl A z=1—¢"w" =M,

ks T

This eventually leads to :

Tl (1 2 h? n
= = n|{l—exp|— . .
Ha=2 =15 P\T@s+ m kst

Solution 3.3.8

In the gaseous phase of the ideal Bose gas it holds according to (3.152):

2541
n= 23 g3/2(Z) ,
o0 Z"
gp@ =3 L,
n=1
In lowest order (Sect. 3.3.2):
XS
s 0= M
2541

Ansatz:
2= + @ 0 + a3 (@) + -
Insertion into the relation for n:
20 = 6,29 £ gy 2) + a3 (29) + -

2
+ 129 + oy 219)* + )

1
23/2(
1

3
+33/2(alz(0) +az(z(°))2+---) e
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Grouping according to the powers of z(*:

0= (a; — 1)z©® = a1 =1,
O = (Olz + 22‘/12)(Z(0))2 :> oy = _231/2 ’
3
O = (a3 + 232/2a1a2 + 3‘2}2)(Z(0))3 = a3 = i - 331/2 .

The pressure results from (3.151):

QS+ 1)V QS+ 1)V Z z
Brv="",3 &p@=" N N

_@s+1v

13 [012” + 0 (29 + 03 29) + -

1 2
+ o5 (12? + a2 (20 +--+)

1 3
+35/2 (OllZ(O) + (Z(O))2 + ) + i|

1
=nV [1 +79 (Olz + 25/2)

20[10[2 1
+E) (a3+ S5 T 35/2) +} :

Inserting the numerical values for oy, o, @3:

1 1 2
_ ©0) 02
pV_NkBT(l—ZS/ZZ +(8—35/2)(z ) +) .

The first two terms of the expansion were already found in (3.156).

Solution 3.3.9
28 +1
= nz(ﬂhc)3g3(1) :
C28+1 1 ke T

n
P= g JTZ(hC)3g4(Z) = .0 84(2) .
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In lowest order (z < 1):
9 =g ~z.

Ansatz:

Z—Za (0"

Inserting into

o0 Z"
(U
S Z n3
n=1
and grouping according to powers of z(®:
0= (a; — 1)z = o =1,
2
o:(m+30@@) R

3 3
o:(%+;m@+gywn =Ll

Thermal equation of state:

1 2 Z3
PV =NT (24 5, + 3+

= NkBT[al + azz(o) + a3 (Z(O))2

1 2
©) (©)
+ 24,0 (12” + @z + 1)

) © 3
+ 34,0 (12 + a2 +---) +}

— pV = NkBT[l =+ ylZ(O) + VZ(Z(O))Z + :| ,

1 1
)/1=062-|-24 = "o
Y2 =03+ 54 %1002 + 34¢

1 1 1 1 1 2

25 33 26 ' 34 26 34
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Solution 3.3.10

1. According to (3.146) it is to be calculated:

o0
1%
BQUT,V.,z) = (25+1) 42 27 f dickIn (1 — ze PR¥) 4 (2841) In(1—2)
0
o0

/dyyln (1—ze™) + (25+1)In(1—2) ,
0

&0 100 ze™”
_ dvyv?
. 2/ PV e
0

1 T 2 1
y
_ /dy - reme.
Z 2
0

1%
- (25+1)2n(ﬂhc)2

o

1
/dyyln(l —ze ) = 2y2ln (1—ze™)
0

2 —ley —1

In the last step we have used the integral formula from Exercise 3.3.3:

@2s+1nv
QT =— 2 1)In(1 —2) .
PAUTV.0 ==, ) 6@ +(S+ DIl —2)
2. It follows with (2.80) and (3.158):
d R 2541 ()+25+1 z
n—=-— =
Noz v ),y ™ 2n(Bhep ™ A

3. g»2(1) finite = a Bose-Einstein condensation does exist!
For fixed n:

n

T
oSt e BH=t@=".

kBTc(n) = hC\/

Solution 3.3.11

Planck’s radiation formula (3.206) has at first to be rewritten for wave lengths:

_27tc_> dw _27rc
R ar| "oz
2nc) |dw
s, Td\ = ¢ = A
&N, T)d s(a) /\)'d/\'d
8mhe 1

=1 =", exp (8%) -1
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Fig. A.12

Photons move with the velocity of light. All the photons, which are in the sketched
cylinder (Fig. A.12) with a suitable direction of motion, arrive in the time dt at
the hole dS. The directions of the velocity vectors are isotropically distributed.
The fractional amount d€2 /4 will have the right direction. The cylinder has the
volume:

(cdt)(dS cos D) .

The per time unit escaping spectral energy is therewith given by:

aQ
(T, 9)dAdQdS = 8(4. T)dA (cdS cos D)’
T

— L(T,0) =2 phe? !
, ) = 2cos i .
* A% exp(B) —1

Solution 3.3.12

1. It holds according to (3.206):

hm X3

o, T) = (mBc)ier—1°

T fixed — extremal condition:

d x° _(e"—l)3x2—x3e"
dees—1 (er—1)2
:}0:3(€X—1)—x€x

!
0=

— B—x)e' =3 <— x=1xp.

2. The maximum is given, independently of the temperature 7, always by the same
X0

how W wy
X0 = —1 = .
kgT T, T
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Solution 3.3.13

Kinetic energy:

Z i (1) = Z 11/ Z Z 0.(q1) 0r(q, 1) &4 (q) r0(q) o @td)R;

i io rr’ q.q

Z Z 8(]—(1/ Qr(q’ 1) Qr/ (q/a D e (q) &1 (q/)

rr q.q
13

(3.2:22) Z Z Qr(qv t) Qr’ (—q, 1) Z Era (Q) 8:’0( (q)
rr’q *

CZV 5" 00(a. ) 0F (. 1)

rq

1 . 1 . .
=T = M) ig()= M) 0(a 0.
io rq
Potential energy:

1 .
Vo= Vot ) D) daiaw

ij ap
1 ; Sy
= Yot 2N Z (p;ol? Z Z 0.(q,H0r (q/7 Dera(Q)erp (q/)el @Ri+q'R;)
ij rr’ q.q
opB

= ot Y Y 000G e @)er (@) -

jap rr’ qq
2 : 08 JiqR,, i(q+q)R;
¢mae "e !
m

1
= Vot , 0.0 ) 0@.00 (. Der(@ers(@)MKap (@)

aB rr oqq

1
VO + 2M Z Z Z Qr(qs t)Qr’ (_qs t)groc (q)wf’ (_q)sr’a (_q)

a ' oq

1
Vo + 2M Z Z Qr(qt)Q:(’ (q’ t)wg’ (q)Srr’

rr’ q

1
=V = Vot M Y0} (@)0,(q1) O (q0) -
q,V

(3.216)

(3.218)

For this derivation we have exploited

o (q = o(-q) ; Kop(q) = Kop(—9q)

(inversion symmetry, time reversal invariance).
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Solution 3.3.14

The first two relations follow immediately from (3.220) and (3.227). We prove the
third relation:

/ﬁr(qs t)s @r’ (qv t) _ = M Z Z ’;ia (t)v ﬁ]ﬂ (t) _gra (q)s;k/ﬂ(q/)ei(qRi_q/Rj)
N

o jp

h a_a R,
> en@e(q)e R

ia

(3.227) 1
N

h . 3.218) h
= ; Zsm(q)gwﬂ(q/)gqq/ = I-SW’S‘]‘]/ :

Solution 3.3.15

According to (3.251) it holds for the internal energy in the Debye model:

Tp
x

X 9N
U(T,V) =y (kT)* [ d ;oY= :
vy =y @' [a " oy=
0
Low temperatures ~, Tp/T > 1:

Tp
- 3 e 3 < 3

. X X
/dx * :/dx —/dx .

er—1 ef—1 e*—1

0 0 Tp

- -_— - T

74/15 (3.247)

The first summand leads to the well-known result (3.253) for the internal energy.
The second summand can be approximated because of Tp/T > 1:

o0 3 o0
X _
dx ~ [ dxx’e™
et —1
Tp Tp
T T
o0

= —e_"x3|37) +3/dxxze_x
p

Tp
T
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™\ (Tp\’ o\ (Tp\’
—on(=7) (7) +3e0(-7) (7)
Tp Tp Tp
6 — 6 —
+ exp( T)(T)+ exp( T)
TD TD 3 TD 2 TD
= — 3 6 6] .
exp( T)[(T) " (T) )T
Internal energy at low temperatures:
T\*| * o\ (Tn\’
U(T,V) ~ 9Nh - — .
.0~ (1) [ 15 o0 (-7) (7)
Heat capacity:
U T\ | »* ™\ (Tn\’
Cy = = 36Nk — —
YT er B(TD) [15 exp( T)(T)
T\'1.T3 n\ T3 Tp
+9Nhwp (TD) |:3 T4 €XP (— T ) = 75 €XP (— T ):|

Tp 3 1Tp
= CP — 36Nk - 1— .
v BeXp( T)( 4+4T)

CP is the Debye formula (3.254) for the heat capacity. Because of Tp/T > 1 it
remains as the leading temperature-correction:

T, T,
Cy — CP ~ —9Nky TDexp (— TD) .
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Solution 3.3.16

With (3.243) it is to be calculated (1 = 0 see (3.189)):

+o00 |
(N,) = /dED(E) E 1
—00
ha)D

1
2
/dEE oPE_ 1
0

N
~ (hwp)?

XD 2
9N X
= dx ;
Xp e —1
0

Bhwp =

e Low temperatures: T <K Tp ,i.e. xp > 1:

3 2
X3 X
N)~ | d
ony o) Yoo
0
o0
/ —x 2 1
= | dxe*x
1—e™>
0
00 o0
= /dxe_’(x2 Ze_’”‘ =
0 n=0
o0 o0 o0
&2 - a2 1
:Zdnz/dxe :Zdnzn
n=1 0 n=1
21
= 22 2 =2¢(3) =2.402

n=1

A Solutions of the Exercises

Tp
T

= Xp .

(see Exercise 3.3.3)

Hence it holds for the average phonon number in the low-temprature region:

ksT\*
(1\71,):\321.62-N( B ) .

ha)D
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* High temperatures: 7 > Tp, i.e. xp < 1:

XD ) XD 1
dx * :/dxx2
et —1 x4+ I3+
0 0
r o1, 1
2 /dxx(l— 2x) = 2)%_ 6)%

0

ON (1 1
N,) ~ 2_ 3.
= (b5 )

Hence it holds for the average phonon number in the high-temperature region:

9 kBT 3 ha)[)
) = N — .
(IVI> 2 ha)[) 2N+O(kBT)
Section 4.1.6

Solution 4.1.1

In the classical Ising model the magnetic moment is given by
m= [ Z S i

and therewith
H=—J]) S5 —mBy.
ij
Partition function:
Z(T,m) = Zexp -B —JZ SiS; — mBy

{si} iy

It is summed over all spin configurations. The substitution §; — —S; Vi can
therefore not affect the partition function. In the exponent the first term does not
change thereby its sign, but the second term does: m — —m. This means

Z(T,m) = Z(T,—m)
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and therewith:

F(T, m)

—kgTInZ(T, m)
—ksTIn Z(T, —m)
= F(T,—m)

Solution 4.1.2

With the definition of the canonical partition function
Z="Tr (e_ﬂH )

it follows for the average magnetic moment:

1 R ~
(m)y=_Tr(- 4 foph
V4 dBy

119 =
= Tr (e P
B 7 9B, r(e )
110z
 BZOBy

From that one gets for the susceptibility:

=" 2 @
"= v \e, "),

w1 [0z 2+1azz
BV \ z2\09B, ZoB | -

1 (0Z\* 55
pﬂﬁ)—ﬂmw

The second term is calculated in a bit more involved manner:

1922 19 OH 5
= —8T —BH
Z B2 ZaBo( P r(BBoe ))

—~ ~\ 2

— 0’H _ oH m

= P Tr 5 e Pl _ B e PH
z B> 9Bo

The first term is clear:
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B om\
= Tr e PH
Z 0By

In the third step we have exploited the precondition that it is a permanent magnetic
moment. It is left for the susceptibility:

_ Mo

W () - @) = - @)

X1 T kT V

Solution 4.1.3

Along the coexistence line the two phases 1 and 2 are at equilibrium. This means
for the free enthalpy

G\(T.p) = Gx(T.p)
(dT, dp): State change along the coexistence line, i.e.
dG, = dG; .
This means
() () - () 4 (5)
P T P T

With the partial derivatives of the free enthalpy,

(BG,-) _ g (BG,-) v
aT » > Bp . >

it follows the assertion
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Solution 4.1.4

For a second-order phase transition (‘in the Ehrenfest sense’) the thermodynamic
potentials and their first derivatives are continuous along the coexistence line. This
means for entropies and volumes, which are first derivatives:

dSi1 =dS,; dVy =dV, .

From that it follows with the thermodynamic variables 7 and p, the ‘natural
variables’ of the free enthalpy G(T, p):

851) (E)Sl) (852) (852)
dT + dp = dT + dp
( BT p ap T aT P 3[7 T
8V1) (8V1) (BVZ) (BVZ)
daT + dp = dT + dp .
( T ), op Jr a /, ap )1
This can be resolved:

EAYS _ (9851
dp aT » aT »

T, -, (), - (),

There are the known relations:

s\ G
(8T)p T

S v
(i), == Cor), =2

aV — vk
dp T_ r

In the second line a Maxwell relation of the free enthalpy was used. Therewith it
follows

dp 1 cV-c?

dr TV B — O
and

dp B —p@
ar — W@
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Solution 4.1.5

1. Slope of the coexistence curve
We write

To=Tc(p=0): po=pi(To); Vo= Vv(To) =V(To) .
Enhancement of the external pressure by dp leads to
To — Tc(dp) = Ty + dT
po = pi(To +dT) = po + dp; .
The vapor is an ideal gas = equation of state:
NkgdT = d(piVv)o = Vodpi(To) + podV(To) . (A1)

We exploit that at Tc, Vv = V. As vapor pressure, p; fulfills the Clausius-
Clapeyron equation (4.3):

Sv—3SL

dp;=A-dT A= .
Vy— VL

Sv, SL: entropies for the case that all the material consists only of vapor and
liquid, respectively. Accordingly the volumes.
Volume change due to dp, dp;:

dV = —adn = —a(dp — dp;) = a(AdT — dp) .
That yields in (A.1):
NkgdT = VoAdT + poa(AdT — dp) .

It thus remains for the coexistence curve:

dp  A(Vo + apo) — Nks

A2
dr apo (A-2)

2. Isobaric expansion coefficient

#=y ),

At constant external pressure it must be:

dV = —adr = adp; .
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It thus remains to be calculated:
a (op;
B = :
vV \aT »

The vessel contains only vapor (ideal gas). We therefore use (A.1)

T>T()Z

NkwdT = Vodp; + poadpr — Nks
= i a i = .
B oapi — poaap dT Vo + apo
This means:
IBH_) _ aNkB '
Vo(Vo + apo)
T < T() .

Some liquid is still present so that p; can be read off from the Clausius-Clapeyron
equation:

dpi =A — ,3(_) = al .
dT Vo

It is typical for a second-order phase transition that § exhibits a finite disconti-
nuity at T¢:

a Nkg — A(Vy + apo)

AB = g _ g —
p=" P Vo Vo + apo

(A3)

3. Isothermal compressibility
1 [0V
Ky = — .
’ V\dp /),

The vessel contains only vapor (ideal gas) at a fixed temperature (d7° = 0).
Therefore it holds with (A.1):

T>T1):

podV + Vodp; = 0

1
dpi=dp—dmn =dp+ dV
a

v,
a(m+O)W=—%@.
a



A Solutions of the Exercises 579

One reads off

e
apo + Vo

T < T() .

Since liquid is still present, p; obeys the Clausius-Clapeyron equation. At
constant temperature the vapor pressure p; is also constant.

1
dpi=0 - dp=dn=— dV.
a

It follows therewith:

- _ ¢
K = .
T VO

The compressibility, too, exhibits a finite discontinuity at the transition point:

Akr = ) O = @ a0 Ad
KT = Ky Ky Vo Vo + apo (A4)
4. Second-order phase transition
Equations (A.2), (A.3), and (A.4) lead to:

dp  AB

T AKT ’

This is one of the two Ehrenfest equations. The Gorter model thus performs a
second-order phase transition ‘in the Ehrenfest sense’.

Solution 4.1.6

This Ehrenfest equation contains heat capacities. We therefore have to think about
entropies. Sy, S are the entropies for the case that at (Ty, pg) the entire material
consists only of vapor and liquid, respectively. Thereby, as in Exercise 4.1.5:

To =Tc(p =0); po =pi(To) .

For the latent heat, which is necessary to transform the entire material from the
liquid into the gaseous state, we have:

AQ = To(Sv —SL) .



580 A Solutions of the Exercises

1. T =Ty+dT In this case there is only vapor and no liquid. The Clausius-

Clapeyron equation is therefore not applicable. For the entropy Sv, only infinites-
imally different compared to Sy, it then holds:

~ aSv aSv api
Sy —Sv = dT daT .
¥ v (BT)p +(apl)T(aT
aSy _ IC(V)
oT » T?
and the Maxwell relation:

aSv _ aVv _ VV

i )r T ), T
The last equality sign results from the fact the the vapor is considered as ideal
gas:

We use

~ 1 ap;
— (V) !
Sy — Sy = T(Cp —Vv(aT))dT. (A.5)

We exploit once more that the vapor represents an ideal gas:
NkgdT = d(p;Vv)o = podVy + Vodp; .

This means
1
dpi = _ (NkpdT — podVv) .
Vo

Above Ty the vessel contains only vapor (Vy = V), therefore:
dVy =dV = —adnr = adp; .

Here it was used that for the calculation of C,, a constant external pressure is to
be assumed. Therewith:

1
dp; = _ (NkpdT — apodp;)
Vo

Nkg

— dp; = dar
P Vo + apo
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Hence:

dpi _ Nkg
dr =~ Vo + apo ’

This is inserted into (A.5):

ds=3y—sy =" (cw_ Ns¥o
T\"? Vo + apo
This means eventually:
NkgV,
i =cW - TR (A.6)
Vo + apo

2. T = Ty — dT This case turns out to be a bit more complicated, because there is

now also liquid. Let 3\1 be further on the contribution of the vapor to the entropy
according to (A.5). The pressure p;, however, is now determined by the Clausius-
Clapeyron equation:

Sy—S
dpi=AdT; A= "" "t
V-V,

(A.5) therewith yields for dT — —dT:
Sy—Sy=— ! (C™Y) — AVy)dT
T, 7 '

Let now dg be the fractional amount of the total material which is condensed.
That yields the total entropy:

1
S=5Sv- . (C™) — AVo)dT — dg(Sy — S1) - (A7)
0

Sv — S can be expressed by the latent heat (1/7yAQ). But what is dg? The
determination succeeds by inspecting the volume change dVy, which can be
found in two different ways:

(@)

Ideal gas equation, which according to the precondition always holds for 7', Vv,
and p; (see above):

1 dT
dVV = (NdeT — V()dp,') = (NkB — V()A) .
Po Po
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®

Detailed itemization of the contributions to dVvy:
dVy =dV, +dV,
dV) by condensation:
dVy =dq(VL—Vy) <0.

Vy and Vi are thereby the volumes of the entire material as gas and liquid,
respectively, at p = 0, p; = po, T = Tp.

dV, results from the change of the vapor pressure and the elasticity of the
walls:

dV, = —adn = adp; = aAdT (p = const.)
Altogether:

dVv = dq(VL - Vv) + aAdT
AQ  AQNkg

1
VW= (SL—Sy)=— =~ = .
L v A( L V) ATO APOVO

We have therewith for dg:

ApoVo

dg = —
1= 7 AONKg

(dVy — aAdT) .

With dVy from («):

AVy

d fr—
1= AONkg

(A(apo + Vo) — Nkg)dT .

This we use in (A.7) together with dS = § — Sy:
dT A%V,
ds=—_" (cV) —24v, + +Vo) ) .
7, ( » 0% Nk (apo + Vo)
This means for the heat capacity (temperature change: —dT)

2

A2V,
=) — V) _ 0
G =Gl —24Vo+ " Hapo+ Vo). (A.8)
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3. Phase transition
We now discuss the phase transition. With (A.6) and (A.8) we find the
discontinuity at the transition point:

_ NkgVy A%V,
AC, =CH — ) = — 24V, — Vi
" y 5 Vo + apo + 24V, Nkg (apo + Vo)
Vo 242 2
= — apo + Vo) °A° + (Nkg)” — 2ANkg (apy + V,
Nks (Vo + apo) ((apo + Vo) (Nks) B(apo + Vo))
Ty

= — A(apo + Vo —Nk)z.
Po(Vo—i-aPo)( (ap ) ’

In Exercise 4.1.5 the discontinuity of the isobaric expansion coefficient was
calculated:

_y _ a Nkg —A(Vo + apo)
A,B=,3(+)—,3()= .
Vo Vo + apo
Therewith:
AC, To Vi
P = "0 (A(Vo + apo) — Nks)
AB  poa

We compare this with the result for the coexistence curve from Exercise 4.1.5:

dp _ A(Vy + apy) — Nkg
dr apo ’

From that we recognize the validity of the Ehrenfest equation (4.4):

dp 1 ACG,
dr — VoTy AB

Solution 4.1.7

(1:
First law of Thermodynamics with U = U(T, m):

§Q = dU — Bodm

(). [(2), e
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One reads off:
80 ou
&= (ar), = (or),
Coo = 50\ _ (doU n au B om
"= \ar), \or), om), “°|\or),
Therewith the first relation is proven:

e [(2), =),

In the first law of Thermodynamics,

Q2):

17dS = dU — Bodm ,

we consider the entropy S and the internal energy U as functions of T and m,
and use the integrability conditions for the total differentials dS and dU. From

1
as= (YY) ara [ (YY) ZBoum
T \oT /,, T\om), T
it then follows the condition
9 (1 (U _ (31 (38U B
am\1T\or),)), \or | T\om/), T]),
_ 1w +1 9 (U
- 12 \om), T\IT\Om),),
By 1 /0By
+T2_T(8T)m‘

The term on the left-hand side and the second summand on the right-hand side
are identical because of the integrability condition for U. Hence it is left

W\ _ (0B
m), " oT ),

Also the second assertion is therewith proven:

Co—C. = —_T aB() om
e or ), \oT ),
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3):

‘We use the chain rule

3B T om\ _
ar ), \om), \0By);

and the susceptibility:

Mo [ Om
=y \oB, ),

aB() _ Bm Mo
or ), \oT ), Var’

This is inserted into (2) and yields the third variant:

2
Mo —1 om
Cyu—Cn="0°T .
H v [(ST)J

(4): We can resolve the above chain rule alternatively also as follows:

(Gr),) = () (o)) = (). e

This we insert into (3) obtaining the fourth version for the difference of the

heat capacities:
-z i [() T
H m = 1o AT or ) |

That means

Solution 4.1.8

1. It holds the mapping (Fig. A.13):

p & Bo=puoH,
V &~ -m=-VM.
Clausius-Clapeyron equation (4.3):

dp  AQ
dT ~ Ty AV’
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Fig. A.13 By

This means for the superconductor:

dB
AQ =T, d;C (—Am)

Am = V(My— M) ~ -V M, = VHc .

The last step is an expression of the Meilner-Ochsenfeld effect:

dBoc _ dHc
ar ~ Mar
dH.
= AQ=-T,Vu (Hc C) .
dr )=y,

G(T.H) = U—TS—puoVHM ,
M, verysmall =— G.(T,H)~ Gy(T,0),
dG = —SdT —uoVMdH .

MeiBner-Ochsenfeld effect:
dGy, = —=SsdT + po VHdH .
We are interested in the isothermal process:
dGs)r = no VHdAH
= G,(T.H) = G(T,0) + ;uo VH? .
Phase equilibrium:

Gu(T.Hc) = Gy(T. He) ~ Go(T.0) .
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Out of this, we obtain the stabilization energy:
AG = G4(T,0) — G,(T,0) =~ Gs(T,0) — Gs(T, Hc)

1
— AG= =, Ho VHT) .

3.
Sy = — aG(TH) ~ — BG(TH—O)
n — aT ~ 8T n ) - o )
9 d
S, = (aTG (T, H)) =~ 7 O(T.0)
s s-8,=-9ac= o V He(T) C(T)

T

This is in compliance with part 1.!
Because of (dHc¢ / dT) < O:

Sa(T) > Sy(T) .

The superconductor thus has the state of higher order. Because of Hc(T¢) = 0
one finds at the critical point:

Sa(Tc) = Ss(Tc) -

4. Independently of the values of other parameters it holds according to the third
law of Thermodynamics:

Ss(T) ) 0; Su(T) e 0.

Since on the other hand it shall be

Hc(T) ) Hy #0,

it must be fulfilled, according to part 3.

. dHc
lim =0,
T—0 dT

which is indeed guaranteed by our ansatz for Hc.
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5.
C—Cy=T a(S Sh)
N n — aT S n
2 2
C dHc(T)
=uw VT Hc(T ,
Ko |:(d ) + He(T) T2
dHc T 3
dT :—2H0(1—Ol)Tg—4OlH0T§
2 H r 1 +2 I
=- - o ,
12 T2
dHC 2 2T2 TZ 2
(dT) =4H0T§ 1—0{+20¢Tcz ,
dZHC H, T2
=-2 1-— 6
dr? Tg( “ “Tg)
H} T2 5
= Cs—Cn=,roT2T2 |:oc—1+3T2(1—oc) +
C C
T ,T¢
+ 150{(1—0{)7? + 4« Tfi| .
The critical point T = T¢ is interesting:
HZ
(Cs—Cir=1. = 4MOVT0 (1+a).
6. T<Tc

Sa(T) # So(T)

=  phase transition of first order.

Sn(TC) = Ss(TC) s
Cu(Tc) # Cy(Tc)  (finite discontinuity)

=  phase transition of second order.



A Solutions of the Exercises 589

Section 4.2.4

Solution 4.2.1

T=T(¢+1).
f(T) can be written as function of &:
fe) =aT(e+ 1)In|T.e| +bT (e + 1)*.
The critical exponent is then determined as follows:

In[f(e)| lim In|laT.(e + 1) In|T e

e—>0 Inle| £—0 In|e|

. InlaT.eln|T.e| + aT.In|T.e|| . InlaT.;In|T.¢||
= lim = lim

e—0 In |g] e—0 In |g]
. InfaT|+In|In|Tcell . Inf[InT. + Inle]|
T e>0 In e T e>0 In|e|

11

- InfInfell _ o el el _ g ]
= lim = lim = =

e—>0 In|g| £—0 I;\ e—0 |In|el]

Solution 4.2.2

Second-order phase transitions according to the Ehrenfest classification are defined
by finite discontinuities of the second derivatives of the free enthalpy or free energy:

(T > TH)  fle) —Ar: Ay #A-

1 In]A
— = lim PHOl_ DAl
e—0 Inlg| e—0 Inje|

Solution 4.2.3

T=T(e+1) = fl&)=aT’*c+1)*—b

1
= ¢ = lim nlf@l =0.
e—>0 In|eg|
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2.
C1
fle) =aT?(s + 1)* +
T. ¢
1n|TC | In ||
1 fl— = —
= ¢ >0 In |g] e—0 In|¢]|
3.
f&) =aT.\|e|+d
. In|d]|
=1 =0.
= ¢ e0 In |g|
Solution 4.2.4

We use part 3. of Exercise 4.1.7:

oM
x7(Cr— Cw) = o VT Bi; Bu = (8 )
T H

= 1-R=puoVTBLx;' Cy'.
Critical behavior T — TC(_) :
M~ (=) By~(=* 2 '~ (o) Cy' ~ (o)
N 1_RN(_£)2ﬂ—2+y/+a"

We read off:

I.R#1:
The above equation is satisfiable only if:

224y 4+d' =0 < A +2B+y =2.
2.R=1:
In the above relation the left-hand side is now zero, and the relation can therefore

be fulfilled only by

2B-24y' 4+d' >0 < d+28+y >2.
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Solution 4.2.5

The scaling hypothesis (4.37) brings about (4.52). There we put
A= (:l:g)_(l/ae)
and obtain with H instead of By = o H:
M(s,H) = (o) =)/ M (£1, (£e)~ /) H) .
We use (4.50), (4.55) and (4.57):

l—aB ag

=B =ps.

ag dg
It immediately follows therewith the assertion:

M(e,H) iy
(o)’ =M (%1, (+e) P H) .

One measures the magnetization M for a multitude of external magnetic fields H as
a function of the temperature (or ¢). If one then plots

M(e,H)
versus ,
lel? |e|P

this multitude will be reduced to two curves, one for T < T, and one for T > T,
provided the scaling hypothesis is valid.

Solution 4.2.6
We exploit:
1—
457: p= ",
ae
4.55: §= T |
1— ap
2ag — 1
@6l p=y ="""",
ag
20, — 1

4.64): a=da =
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1. y(§4+1) = (2 —a) (8 — 1) is valid exactly when

2a—1 1 | 12ap—1

as 1 —ag a. 1—ap

is fulfilled. That is obviously the case!
2.6=Q—-a+vy)/(2—a—y)iscorrect if

_ 2a.—1 2ag—1
as i 2 ae + ag
1 —ag - 7 _ 2a,—1 _ 2ag—1

ag ag

is fulfilled:
ag i2a€—208+1+2aB—1
l—ag 2a.—2a,+1—2ag+1
ag 1 2ap
= = .e.d.
l—ag  2—2a5 €
Section 4.3.10
Solution 4.3.1

It was shown as equation (2.59) in Vol. 5 (one should recall the derivation!):

aUu 7 ap B
av ), "\or), "

This means for the van der Waals gas:
ou n’
=a_, .
v ), V2

n2
U@I.v)=f(1)~a,, .

After integration:

The heat capacity

Cv(T) = (BU) _
v

T ),  dr’
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is therefore independent of the volume, as in the case of the ideal gas. We determine
from it the entropy S = S(7, V):

dS:(aS) dT+(aS) dv
ar ), v ),

— @y (ap) A%
\%4

T oT
Cv(T) NkB
= dar av .
T + V —nb

In the second step the Maxwell relation of the free energy F,

dF = —saT—pav — () = (%
- P av ), ~\or),

was used, and in the last step the equation of state. One gets then for the entropy:

T

Cu(T' V —nb

S(T, V) = S(Ty, Vo) + / ar ¢ )+Nk31n "
T V()—nb

To

’

We use this for calculating the latent heat:

AQ = T(Sc — SL)
VG —nb
= NkBTln
VL —nb
Vo
= NkBT/ dv

VL

\ ¢! )
an
=/dV(p+ V2)

VL

1 1
=p(Vg— VL) —an® —
p(Vg — VL) —an (VG VL)

A L
= (Ve L\pr VeV )

V —nb
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Solution 4.3.2

1. Determination of F*
Eigen-states of H*:

) 1
loyoy...on) = |o1)|oz) ... lox) with o; = :i:2

Eigen-values:

H*|O'10'2...O'N> = —2,LLBB* (ZO’,’) |O'10'2...O'N> .

With the solution of Exercise 2.3.9 one finds:
Zt =z = (eﬁuBB* " e—ﬂuBB*)N
F% = —kTNIn (eWBB* + e—ﬁMBB*) .

We still need

(H— H**—< > JiSi+S;—2up(B - B)ZSZ> ,

ij

i.e., in particular (S; - S;)* and (S7)*.
It holds:

1 _ _
Sio8 = (sFs7+s7sF) + it
and
(0102...0n |SZ+S,_| 0107...0yN) = (O’,' )Sﬂ') 0,->(q,~ |SJ_| o) =0

(single-spin states are orthonormalized!). Hence it remains:

*
(H — H*)* —< 21-555;—2MB(B—B*)ZS§> .
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‘We calculate in detail:

1 2ﬂ;LBB*ZS;
(Slz>* = 7+ Z <O'1...O'N e T f o1 O'N>
N(T]...(TN
1 2BupB* S
:Z* Z(Gle 1‘01>-...
‘N o

D for e

Oi

O','> L
2 o [ty

> w)

(Z*)N—l
N 1z;; 2o

O

1 leﬂMBB* _ le—ﬂMBB* )
zZr \2 2

* o2
2PHBBS; Sf

0

‘We have therewith:
* 1 *
(Sf) =, tanh(BugB™) .

(Sf)* is thus independent of the lattice site i (translational symmetry).
We further calculate

* 1 2BupB**Y. S5,
(Sfo.> = _, Z <01...0N PRt Sfo 01...0N>
ZN 01...0N
(ZN 2 2BuBB* (5459
= Zlolle[erer st siso) o)
i:0j

1 2BuBB*S;
zm%Z@MBﬁﬂ
Z <0j ‘ezﬁMBB*Sj Sf Uj>
gj

2
— 1 leﬂMBB* _ 16—/3%3* )
@2 \2 2
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We obtain:
zer\* 1 2 * % [ez\*
<SiSj> =, nh’(BuB") = () <Sj> .
We find therewith as upper bound of the free energy:
F* = —kgTN In(eP"s8" 4 ¢~ ProB™)
1 2
—zNJ (2 tanh(,BpLBB*))
1
—2ugN(B — B¥) - ) tanh(BugB*) .

2. ‘Optimal’ mean field B} < F* minimal (B*: variational parameter)

0 =

0=
oB*

* — *
ePrBB* _ ,—PunB

- _kBTNﬁMB : gﬂl‘BB* + e_lglLBB*

1 a (1
—2zNJ | , tanh B* tanh B*
o tannpn)) o () aprans®) )
2usN(B — B*) 9 (1 tanh(BugB™)
HMB aB* \ 2 HMB
1 *
+2upN 2tanh(,B,uBB ).
The first and the last term compensate each other. It remains:
a 1 * * *
0= 25* \ 2 tanh(BugB™) | | — zNJ tanh(BugB™) — 2ugN(B — B*)
= self-consistent conditional equation for the ‘optimal’ mean field:

J
By = ¢ tanh(BugBy) + B
2B

ZJ(

S + B.
KB

One sees that the mean value (zJ)/(14g) (S%) acts as an effective field, in addition
to the external field B!
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3. Phase transition

ferromagnetism
g
spontaneous magnetization, i.e. Ms(T) = 2ug (Sf); #0forB=0
<
By #0forB=0.

Evaluation of the Bj-conditional equation from part 2. for B = 0: Introduce the
Curie temperature 7¢ by

zJ
kgTc = 5

Hence:

tanh(BugB;) = tanh ( 5

T
=tanh(x- C)
T
s x = tanh (x- €
x =tanh | x- .
T

x = 0 is always a solution,but does there also exist a solution x # 07?
Assumption: B} and therewith also x become small for T — T¢:

<1 TC 1 3 TC 3
X X X — X
T 3 T

T\ (T
3 C
=3 -1
o (%)X(T )
T\?2 T\ T~Tc T
3 x|1-— — 3x(1 - .
Tc Tc Tc

2BusBy  zJ
zJ

with x = (2us)/(2J)B;.

Two cases:

() T > Tc:

X = —3x

Tc—T
Ic

Only x = 0 is solution = By = 0 = M,(T) = 0, paramagnetism.
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(i) T < Tc:
x = 0 continues to be a solution, but also x = \/ 3 TCTET
KB

B} = pupx
70 HUB

= M(T) =2up (5%)g = 2us i

Tc—T
= U \/ 3 CT # 0, ferromagnetism .
C

M;: ‘order parameter’ (= 0 in the paramagnetic phase, # 0 in the ferromagnetic
phase)
Critical exponent 8: M(T) ~ (Tc —T)/ (TC))ﬂ ,1.e. here: B = 1/2, typical
for mean field theories
Tc = (zJ)/(2kp): transition temperature
4. Curie-Weil} law, susceptibility:

0

1 L\ 9B
. tanh(ﬁuBBw) 0

3
Z\*
<S)°_aB;; (2 B

1 0
- (zﬂuB) (1 —tanh2<ﬂuBB:;)) (;{3 5055 1)

For T > Tc, B—> 0 follows:
Bf =0 = tanh’(...) =0,

ie.:

ad * zJ J15:]
5 (1= =
ap 5o =0 ( 2kBT) 2kgT

Susceptibility:
0
0(T) = M(T.B)|,_,

0 s
=21 5 (S5 |50

_ M ]
ks T—Tc

Critical exponent y: y(T) ~ (T — Tc)/(Tc)) 7, i.e. here: y = 1; x(T) diverges
forT — T¢!
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Solution 4.3.3

1. We can begin with the law of corresponding states ((1.19) Vol. 5):

(JT+U32) Bv—-1)=8t,

Thereby we use:

Recall the derivation of this law!

pp=n—1; Vi=v—-1; e=1—1

= [(1+p) +30+ V)] BVi+ D —1]=8(1+¢)
= [442Vi+V:+p(1+2V,+ V)] BV +2)
=8(1+e)(14+2V, +V?).

Rearranging leads to:
pR+TVe+8V24+3V) =3V +8e(1+2V, +V?).

2. In the critical region all the three quantities p;, V;, and ¢ become very small. To a
first approximation we can therefore linearize the equation of state from part 1.:

prrde.

In the next step of approximation we insert this lowest-order result again into the
equation of state:

4eQ+TVi+8VZ+3V) = -3V) +8e(l+2V,+V?)

= 0~ V,3V>+12e+24V,e+12eV?)
— 0~ Vi(V2+8Vie+4e).

This equation has the solutions:

VO =0; V& = det2/—ev1-4¢.
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TSTe < &50:
Only V; = 0 can be a solution, because Vr(i) are complex.

TSTe < £50:
‘We know that the solution V, = 0 is unstable. For the reduced volume of the
van der Waals gas it therefore holds:

VS = d4e42/—sV1—de~+2{—¢.
3. B determines the behavior of the order parameter ((4.52) Vol. 5):

Ap Lp~—pt Vevt—v-
2 pc 2 pc 2 VoVy

(Ve Ve 1 1 1
Co2\ve vy ) T2\ v 4

1=V = (1= V)] = (= ve)

&

A
= p ~24/—¢
2 pc

1
= B= 5" critical amplitude B =2.
4. T = Tc means ¢ = 0. Then the equation of state from part 1. reads:
pr=-3V2Q2+TV,+8V24+3V3) .

Expansion for small V,:

3 7
pr=—2v3 (1— 2vr+(9(vf)) .

5. The critical exponent § is defined by (4.28):

RT. 8

0 — ,
¢ Ve 3

p Pec -

We have thereby exploited the property (p.V.)/(nRT,) = 3/8 of the van der
Waals gas (see (1.17) in Vol. 5). Therefore:

p=pre_3(r _ :3p
p¥ 8 \pe g
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It further holds:

1Y 1_Vc 1_1 1= _Vr
oc v Vi1 Vi1

= -V, (1-V, +O(V?)) .

On the critical isotherm we have, if we use part 4. and apply V; — 0 for p — p.:

3

p=pe 9P _
p  16]pc
The comparison with (4.28) yields:
9
§=3; D= .
16

6. Compressibility:

LAV 1 (v,
v\ ), vi\ep ),

1
dpr:d(p—l): dp
Pc Pc

1 V. (avr)
Kt = — .
Vpe \p: ) 7
Normalization factor:

o 1 Ve 3

Ky = = = .
T O " nRT.  8p.

In the last step we have again exploited (p.V.)/(nRT.) = 3/8:

kr 8 1 (BVr)
e 3 Ve+1\ap ),
One finds according to part 1.:
I _ —9VI+16e(1+ V)
Ve )r 24TV +8V243V3

[-3VP+8e(1+2V,+VH](T+16V,+9V?)
Q+7V,+8V24+3V3)? '
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a)T>T, p=pcieV,=0
—

Opr kro_ 4
- (BV,) . =8¢c—14e=—-6 — K(To) = 98
V,=0 ¢

That holds even everywhere on the critical isochore (V; = 0), not only for
T3 T,

b) T < T
—
In the critical region we have according to part 2.:

V2~ —de.

This means:

e 1 1
( p) ~ (36e+168)— 56e=12¢,
e—>0 2 4

A
—
Vi+1 e>0
Hence it remains:
Kr 8 1 2 4
0 T30 T 9T
T.
By comparison with (4.26) follows:
=1, C'= 2 _ 1C
re== 9 2

Solution 4.3.4

Chain rule:

(i) (o), (o0 ), =
= wn(), ()=

~ oen(3),
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For the van der Waals gas it holds especially:

p= KT(vn—Ijab) '

The expresion in the bracket behaves analytically for T — T, so that the critical
behavior of B corresponds to that of the compressibility k7.

Solution 4.3.5

1. According to ((1.28) Vol. 5) the equation of state of the Weil} ferromagnet reads:

Bo+ A poM
M:AhLGnO+ Ho ),
kg T
N_2
mApoM _ M ymA po :M3kBCA :M3TC'
ks T My kT kT T

It follows immediately:

- 3IM
M:L(b+ )
e+1

2. L(x) = (1/3)x—(1/45x> + O@°)

Byp=0 =— b=0,

T<T. = M very small.
—

It then holds:
o M 3 M
Te4+1 5(e+1)3
€ 3 M

_ 5
~ — —1 MZQ— 12.
e+1 0 5@ +1) 364D

Since (¢ + 1) — 1 for T — T, it follows:

. 5
M~¢JﬁW?
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Hence we have, as for the van der Waals gas:

3. Critical isotherm: T = T.; By — 0

— ¢e=0; M and b very small.
This means:

1
3
— 15ba (b+3M)) < b+3M=~(15b)"/3
= 3M~(15b)"3 b~ (15b)'/3, since b—0.

o~ ~ 1 o~
M ~ b+M—45(b+3M)3

This yields
3~
b~ _M
5
and leads to the critical exponent
§=3

. (aM) Mo pom (aM) 3 (aM)
T: = = .
o0 ), kT \b) _ ~Ae+n\d)

In the critical region M is very small:

oL ox (1 1,

b|,_, b (3 N 15x)

%AI;I _(1+sj-l?l;l )<;_115(89—11—V112)2)+’”
b=0 b=0

:>az\71 11+91\712 .9 w
| _ e+1 5(6+1)3) 3 5(+1)2)°
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T — Tc means M — 0:

(aM) 1 1
b - 3 ¢ 9 w2
T.b=0 et+1 + 5 (e+1)

a) T > Tc:
—
Above Tc itis M = 0, so that with (e+1) > 1forT — Tc follows:

M\ 1 _,
| 3%

This means for the susceptibility:

I _
XT"’ASI = y=1.

b)) T<T.:
—
According to part 2. we now have to insert M?~5 / 3(—¢):

1

2A(—e)_l = ' =1.

XT ~

For the critical amplitude one finds, as for the van der Waals gas:

, 1
cC=_°C.
2

Solution 4.3.6

1. One finds the equation of state with the free energy:

By = (BF) = Bo(T, m)
T

om

o0
= Bo(T.m) = Y _ Ly, (T) - 2n-m™""

n=0

= 20,(T) - m + 4L4(T) -m? + ...
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2. Susceptibility:

Mo om -1 \%4 aB()
= — = .
=y (3BO)T 7 e Lom /),
Volume V: parameter, not a thermodynamic variable in the case of the magnetic

system.
With part 1. the inverse susceptibility can be expanded:

-1 2n—2
T,m E Ly, (T)-2n(2n—1) -m
XT( ) . 2 (T) ( )

n=0

v (2Lo(T) + 12Ly(T) - ma* +-++) .
Ho

m = 0 for temperatures above T¢. It then remains:

2V

x7 ' (T.0) Ly(T)
Mo

2V
=, (o 2T =Te) + (T - Te) +--+) .
0
This means in the critical region:
—1 2V
17 (T — Tc,0) ~ o (lo + (T = Tc)) - (A9)

)(;1 should have a zero at T, what can only be the case when /o = 0.

3. We calculate at first 8. For By = 0 and in the neighborhood of 7¢ , (T < T¢),
m is very small, but unequal zero. We therefore divide the equation of state from
part 1. by 2m:

0 = Ly(T) 4+ 2L4(T) - m* + - -
= (Li(T —Tc) + O (T — Tc)?))
+2m (lag + L (T = Te) + O (T = Tc)?)) -

T<TC:

I I
m= 2 (Te-T) = m= . > Tc-T). (A.10)
2l40 240
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Therewith it holds for the critical exponent of the order parameter:

We now discuss the critical exponents y, y’ of the susceptibility:
-1 4 2
xr (T',m) = " QL (T) + 12L4(Tym” +--+) . (A.11)
0

T>Tc:
That means m = 0, if By = 0. It follows therewith according to part 2.:

_ 2V
A7 (1,00~ " by (T —Tc). (A.12)
Ko
One reads off:

y=1.

T <Tc:
Now m # 0, but it becomes arbitrarily small for 7 — T¢ (see (A.10)):

Ho _
VOXTI(T,m) =2l (T —Tc) +---

+12m*(lao + 1y (T — Tc) +++)
~ 2 (T—Tc)+ -+ 6l (Tc—T) +---

In the second step we have exploited the result (A.10) for the magnetization.
Hence it remains:

_ 4v
A7 (T,m) = by(Tc—T). (A.13)
Ho
It follows for the critical exponent:
y =1.
Note the twice as much pre-factor in (A.13) compared to that in (A.12)!
We discuss at the end the critical isotherm and use for that the equation of state
for T = T¢. From the sum for an L,-coefficient only the j = O-terms contribute,

where in addition l,y = O:

Bo(Tc.m) = 4lyo-m> + - -+ (6) (A.14)
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That means:
§=3.

Equation (A.14) gives evidence that for a ferromagnet or paramagnet /4o > 0!

Solution 4.3.7

The case
T > TC

is relatively simple because then the magnetization vanishes in case of a switched
off field By = 0, and therewith:

Cn=Cq
It follows
°F
Cu=o = —-T
0 (aT2 )m=0

_ d*L,

o dar?

= —T (2lpp + 6lo3(T — Tc) + O((T — Tc)?)) .
This means

P =t - —aTcly, . (A.15)

It yields the critical exponent:

The case
T < TC

is somewhat more complicated because now m # 0. It follows from the equation of
state (Exercise 4.3.6):

0By

=2m- (I + 2n(T —Tc) +-+) +4m’ - (L + 2z (T —Tc) + ) + -+
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For T — T¢ and therewith m — 0 it thus holds:

0B
( a;)m —> 2m121 .

In Exercise 4.3.6 we had found for the susceptibility:

~ MOl_l 1

A P

We insert the two last equations into the relation for the difference of the two heat
capacities, derived in Exercise 4.1.7,

1% B\ T
Cy—Cyh = T .
" Ko x [( oT )WJ

It is then left for the critical region:
By
Cy—Cn = Tcl 1+0Tc-1) .
40

We now still need C,, with m? from Exercise 4.3.6:

2

Cn = Lo+ Ly-m* + )

_TaTz (

=-T(L{+Ly-m+-)
[

= —T(2102+6lo3 (T—Tc)+"'+2[222§1 (TC—T)+---)
40

— 2Tclpy + O (Tc—T) .

In the third step we have inserted the result m? = 21124‘0 (Tc — T) from Exercise 4.3.6.
Therewith we have:

_ 12
)~ Te (—2102 + 121 +O(Tc — T)) . (A.16)
40

For [y, # 0 one therewith gets for the critical exponent of the heat capacity:

o =0

Finally, it follows from (A.15) and (A.16):

o B
Acﬁ=c;+’—c§[’=—lzérc.



610 A Solutions of the Exercises

If I,y # 0, then the heat capacity exhibits a finite discontinuity according to a

second-order phase transition in the Ehrenfest sense. Note, however:

ACyp=CH —c =0,

Solution 4.3.8

Equation of state:
o0
Bo(M.T) = " 2n- Loy (T) - m™ " .
n=1
Susceptibility:
V o0
xr (Tom) = > " 2n(@n— D)Lyy(T)m™ 2 .
Ho ‘=
It holds for the coefficients
o0
Lon(T) = Y (T = Te)™ .
m=0

In addition it shall be assumed:
lo=0,1l;0=0,lgp>0.

Critical exponents:
1. order parameter (B) :

We investigate:
—0- )
Bo=0;T—>T," .

We divide the equation of state for By = 0 by 2m:

0= (Li(T—Tc) +--) + 2m* (s (T — Tc) + --

+3m*(loo + lot (T —Tc) ++++) + -+
= 0~ (T —Tc)(ly +-+-) + 3m'lgy + -

NG
— m~ (Tc —T)"* (3160) .

*)

(A.17)

(A.18)

(A.19)

(A.20)

(A21)
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That yields the critical exponent of the order parameter:

1
= . A.22
p=, (A22)
2. Susceptibility (y, y’) :
We investigate:
Bo=0:T— T . (A.23)

Then the above expansion of the susceptibility yields:

‘ﬁ)x;l(nm) — 2T —Tc) + ) +12-m2 (U (T = Te) +---)

+30 - m*(lgo + Lot (T = Tc) ++++) + -+

T— T
m:O:>)(;l=2;/0(121(T—Tc)+---). (A.24)
This means
y=1. (A.25)
T TS

Now m # 0. We use for m? the result from Exercise 4.3.6, where, because of l49 = 0
it must now hold m* ~ 3%6‘0 (Tc —T):

~ ] 1/2
%TI(T, m) = 2l (T = Tc) +-++) + 12 (320) (—ln(Te =) +--)

l
+10 ' (Te = T)lso + It (T = Te) +++) + -+
60
% 8[21(TC — T) .
This gives the critical exponent:

Yy =1. (A.26)
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3. Critical isotherm (§)

On the critical isotherm there are, because of I,y = lyy = 0, also L,(T¢) =
Ly(T¢) = 0. It thus holds:

Bo(Tc,m) = 6Le(Tc) -m® + -+ = 6lgy - m° + - -+ (A.27)
One thus finds:

§=5. (A.28)

4. Heat capacity (o, o’)

We use the definition

02F
Cpn=-T o2 (A.29)

and the relation derived in Exercise 4.1.7

v BB() 2
Cu=Cn+ Tyr . (A.30)
Mo or /,,

T T
By = 0 brings about m = 0 and therewith
9’F d*Lo(T)
Ch=o = Cpy=o = —T =T
=0 ’ (3T2)1n=0 dTZ
=Tl + 6lo3(T —Tc) +--+) .

If lp, # 0, this means:
a=0. (A.31)

T—T)

Now it holds because of m # 0:

d’L, d’L
Cn,=-T ( 20) +(m2 22) 4.
dT T—Tc dT T—Tc

= —Tc (2lon + 6lo3(T = Tc) + 2Ly -m* +---) .
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It remains because of m? o (T — T¢)'/?
Cm ~ —21()2TC . (A32)

Cp 1s thus non-critical. We still need:

9By dly, 5 dLs
S am3 -
(aT) mar T e T

m

=2m (o) + 2bo(T — Tc) + -+ + 2m* (lyg + 20o(T — Tc) ++++)) .

It follows with the above results for the susceptibility and the magnetization:

0By oo Te 1 5 [ 1/2
crar (( T )m) V 8y Te—T (3160( c=1

to Tely (I "2 -

From that one reads oft:

o = . (A.33)
But now we have the thermodynamically exact inequality:

y6+1)>2—-a)d—-1). (A.34)

That would require here
I6+1)=6>(2-0)4=8. (A.35)
The choice o = 0, I40 = 0, lgp > 0 thus leads to a contradiction, is therefore not
acceptable for thermodynamic reasons. One should note, however, that all the other

known thermodynamically exact inequalities are fulfilled, as for instance (4.34)
to (4.36).

Solution 4.3.9

1 .
s =, [@as@er

1 1 .
—_ d3 iqr
Ve, / 1 £+ 47 ¢
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i1 1 1 ,
= T /dq + . elqr.
Vey r g+ é q— .

£

Let the path of integration consist of the real axis and the semi-circle closed at
infinity in the upper complex half-plane. On the semi-circle the integrand does not
anyway contribute. Only the second summand has a pole in the circumvented region
at ¢ = i/& with the residue exp(—r/£), so that it eventually follows with the residue
theorem:

272 exp(—¢)

r)=—
8 Ves r

Section 4.4.8

Solution 4.4.1

Zn(T. Bo) = Tr (exp(—pH))

= Tr(1l) — BTr(H) + ; B*Tr(H?) — 31!,33Tr(H3) +---

=3 BT
=0

© ]
:Tr(]l)|:1+z( 1?) m1:| .
I=1 :
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Each spin has two possibilities of orientation S; = 4-1. That yields altogether 2
spin configurations. Therefore:

Tr(ll) =2V .

2Fy(T, B
CBO:—T(a Na(z’ 0))
T 5

32
(—kgTIn Zy(T, B )))
(8T2 B ‘N 0 5

= kof” (( e 2ap) (7 30)))30
),

In ZN(T B())

1 %zy 1

{t
(
(72 (%))
¢
(

3 3ﬂZN(T BO)
9B Zn(T, Bo)

2
Tr (1) 1(1 2 (T S L
E ( B) —( Z 1§=1 ”(—ﬁ) 'm)

2
= ke | 2 —mi + 0(/3))
1 2
= g2

In the last step we have restricted ourselves to the lowest term in 1/7 (Trll/Zy =
1 + O(p)). Note that the moments are temperature-independent. This result for
the high-temperature behavior of the heat capacity holds, by the way, for all (!)
magnetic systems, not only for Ising-spins.

Solution 4.4.2

According to (4.16) we have:

1
= g1 TS 6 (5 - ()
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or:

Lo | > ~\2
- S:5)) —
= ry | # Eij (8i8j) — (m)

1. The spin chain does not show a spontaneous magnetization. Therefore (m) = 0
in the case of a switched off external field. According to (4.186) it holds for the
spin correlation in the one-dimensional chain:

(8i5) = vl
One now easily realizes that there are N terms in the double sum with |i —j| = 0
and the contribution v° = 1; 2(N — 1) terms with |i —j| = 1 and v'; 2(N — 2)

terms with |i — j| = 2 and v?, ..., and finally 2 terms with |i —j| = N — 1 and
the contribution v¥~!. That can be gathered to

N—1
1 Mo 2 k
T,By) = N+2 N —k .
x7(T, Bo) kBTV’u ( + k§=1( )V

One calculates:

N—1 1—UN
221\71;":21\7 —2N
P 1—v

N—1 N—1 d 11—V
2 "k =-2) kf=-2

(I =v)(=NV¥" 1 + (1 =")
2v

(1—-v)?
N—1
v 11—V
2) (N —kw* =2N -2 )
~ ;( ) 1—v v(l—v)2

It follows from that:

I o , 2v 1—oV
T,Byp =0 N|1 -2 .
xr(T,By = 0) M( ( +1_v) v(l_v)2
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2. For N — oo the expression for the susceptibility can be simplified:
T,By =0) =
NX 7(T,By = 0) kT V L.
1 o , 14 tanh(BJ)
kT V1= tanh(B)
1 po , e +e P el —e P
kT V H ePl 4 e~ — Bl 4 B/

_ Lo 5 oo
T T vH e

Although at first glance distinctly different from the result (4.201) for the Ising-
ring, nevertheless the same qualitative temperature behavior results. For high
temperatures the Curie law (4.137) is obviously fulfilled. For T — 0 yr diverges.

Solution 4.4.3

1. The partition function

N—1
Zn(T) = Z Z e Z exp (Z IBJiSiSi+1)
SN

N i=1

we have already calculated with (4.183):

N—1

Zy(T) =2 [ ] cosh BJ; .

i=1

Four-spin correlation function i # j:

N—1
1
(SiSix18iSj+1) = Z Z Z a ZSiSi+1Sij+1 exp (Z ,BJiSiSi+l)

SiS Sy i=1
1 ¥zy
B*Zy 0J;0J;
cosh BJ; -+ -sinh BJ;---sinh BJ; - - - cosh BJy—1
cosh BJ; - --cosh BJy_1
= tanh BJ; tanh B8J; .
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For i = j the four-spin correlation is equal to 1. When we now still take J; =
J Vi, itis left:

1 if i=j

(SiSie155Sj41) {tanhzﬂjlfz;éj.

2. We adopt from the solution of Exercise 4.4.1:

1 82y 1 [(3Zy)*
Cp, = kB’ —
By BIB (ZN 3[32 Z[%/ ( 8,3)
= kn? ((H?) — (H)) .
With
(H*) =T Z(Sisi+lsjsj+l>
ij

follows:

N—1

Cpy=0 = kgB>J? Z ((SiSi+18iSj+1) — (SiSi1)(SjSj+1))
ij=1
N—1
= kpp>J? Z (8; + (1 =8y tanh? BJ — tanh? BJ)
ij=1
N—1
= ksB>J* Y _ 8;(1 — tanh’ j)
ij=1
2p 1
Chomo = (V= Dkef™J cosh? BJ

One should compare the result with (4.200).

Solution 4.4.4

1. The open linear chain does not possess closed polygons of interaction lines. It
therefore holds

go=1; g=0VI#0; p=N-1



A Solutions of the Exercises 619

and therewith
Zn(T) = 2" cosh 1 (BJ) .

That corresponds to (4.184).
2. For the ring we have:

go=gv=1; g=0VI#0,N; p=N.
It follows:
Zy(T) = 2V cosh™(BJ) (1 + %)
= 2" cosh"(BJ) (1 + tanh™(BJ))
s 2N cosh™(BJ) .

This corresponds to (4.196).

The two results for the partition function of the 1d-Ising model therefore match
only in the thermodynamic limit, because then the special boundary conditions
do no longer play a role.

Solution 4.4.5

1. It holds (reason as to (4.204)):
exp(BJS;S;) = cosh(BJ) (1 + v(S:S))) -

It follows analogously to (4.205)

1
(SnSa) =, {XS;S'"S" ﬂexp(ﬁJSiSj)
i Y

1 P
=, cosh’(B)) 3 [smsn + 0SuSn Y (S,S5,)
N

{si}

v=1

p
07808 D (8,8i,)(S,,8,) + -+
v,u=1

p is the number of the pairwise different next-neighbor interactions. The single
spin products can be represented as in Sect. 4.4.4 by diagrams. In a typical spin
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product

SmSn Z(Siv Sjv) T (SipSfp)
{si}

the summation ) (s;y 1s performed over all 2V spin configurations. Because of
Si = =£1 only those terms deliver a finite contribution, which contain only even
powers of the S; (even vertexes), except for the spins at the sites m and n, which
because of the pre-factor S,,S,, must exhibit an odd power. If this is the case, then
the spin products yield all +1 and therewith after spin summation the factor 2.

We define:

Pmn(l) = number of diagrams of 1 (I > 1) pieces, which somehow contain the
points n and m. All vertexes are even, except for those at n and m, which shall be
odd.

Then it obviously holds:

2N - Z
(SmSn) = Zn cosh”(BJ) ;pmn(l) v .

2. For the linear open chain there is only one diagram, which fulfills the conditions,
namely that for which m and n are directly connected:

1 for = |m—n|
0 otherwise .

Pan(l) = {

With p = N — 1 and Zy from Exercise 4.4.4 it then remains:
N

TN cosh1(BJ)

= tanh ™" (BJ) .

(SS) cosh™ ™' (BJ) v/

This is identical to (4.186).

3. For the ring we have two allowed diagrams, because the points m and n can be
connected on the circle in two directions. Lengths: [ = |m—n|and [ = N—|m—n]|.
It follows then with p = N and Zy from Exercise 4.4.4:

1
1 + tanh™(BJ)

1+ tanh™2"="l (B7)
1 + tanh™ (BJ)

(SuSu) (tanh"="1(8) + tanh¥=""="1(B))

= tanh" " (BJ)
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The second factor becomes equal to 1 in the thermodynamic limit (N — 00),
because tanh(8J) < 1 for T > 0. The two expressions for the open chain and for
the ring are therewith same in the thermodynamic limit.

Solution 4.4.6

1. We investigate yr in the critical region,

. T—Tc\ ™
=C
At Te

and try to bring it into the form
Xp =Y (Bl
I
by the following manipulations:
¢ JBe 1\ e\
=C —_ =C —
AN j
. y . —y
() ()
Je Je
. y . 1 . 2
:c({) 1+y7 4 'y(y—i—l)({) +--
J Je o 2! Je

DG D k=) (j)k+...) |
k! Je

This means:

. Y o0
. J g o o~ Yty I
AT C(jc) ZH w R i

The pre-factor behaves uncritically for T — T¢ (¢(j/j.)¥ — c¢). The radius of
convergence of yr is thus identical with that of the sum. It then remains:

& y4l—-1 [y—1\1 1
o= =7t =( A
a1 Jel Je L e
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f () represents as function of 1// a straight line with the slope (y — 1)/} and the
axis intercept 1/j. = kgT¢/J. As expected:

~ —1
R:(lim NG ) — .= B.J.

[—o0 o1

If one knows only a finite number of «;, then one can hope to get by an
extrapolation of «;/o—; as function of 1// an (approximative) determination of
y from the slope of f(I) and T¢ from the axis intercept. The correction terms
in the ansatz for yr can still lead for small / to oscillations. With increasing
[, however, the critical behavior will dominate. The method of extrapolation
therefore represents a powerful means for the determination of critical quantities
of not exactly solvable models (e.g. the 3d-Ising model).

2. The mean-field approximation of the Heisnberg model predicts for the isothermal
susceptibility the Curie-Weil} law (4.151):

p C C
T = . = 1 1
T=Tc  \4p = ope
Ckg B ! Ckgf !
- B C _ - B Jﬂ
B.—B 1— I8,
00 1 00
JB Ckg 1 I+1
:CkB'BZ( ):Z 1 g OB
= \JB. — JT B,
o0
=Y B)
1 gl-1
=1 g J_f_c
o
It thus follows:
Q Jl—l -2 1

o JBE - JBe

That means

and

This is the well-known result!
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3. According to part 2. of Exercise 4.4.3 it holds for N — oo (the ‘volume’ of the
spin-chain is the length of the chain):

N
x7(T, By = 0) = Bop? y B

00 I
= ﬁuouzl‘i > (2/;!1)
=0

-1

_ - 2N 2 !
=2 (o sy ) 80

N 21—1

D) with = 2 )
(B with o = pop™y, 5y,

e

~

1
Therewith

oi+1 _ 21 (l—l)' _ 2
o 027t

The radius of convergence is thus infinitely large, what corresponds to T¢ = O:
-1
J
R=(1im ") =oco= :
=00 kB TC

Solution 4.4.7

1. The partition function

+1 +1 +1 N
=33 S e (jz sisi+l)
ST S SN i=1
can be reformulated as follows:
+1 +1
Zv(j) = Z o Z o/ (S1525283) 4i(S3Sa+5485)  Li(SN—1SN+SNS1)
] Sy

We can assume, without any restriction of generality, that N is an even number.
We now perform the summations over all spins with even (!) indexes:

+1 +1 +1
Zn() =YY D () 4 eSS
S 83 SN—1

X (e/(S3+Ss) 4 e—j(S3+Ss)) X ... X (e/(SN71+S1) 4 e_j(SN71+Sl)) .
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Because of

2cosh(2j) ifSi=S;
2 if §; ==5;.

JEHS) | St

it can be written for arbitrary i, j:
ei(Si+Sj) 4 e—j(Si+Sj) :f(]) ei'SiSj
with
£(j) = 2cosh= (2))

i ; In(cosh(2))) . (A.36)

~
|

That means for the partition function:

+1 +£1 +1
* * N i
ZnG) = (fG)2 YD ... Y & SisHssst)
S1 083 SN—1

On the right-hand side there appears a partition function with half the spin
number and with modified coupling:

Zy(j) =23 cosh* (2)Zx () -
Because of
. . . 1 . .
>0 e >e VY > 2(€Zj + e %) ~ 2j > In(cosh(2)))) = 2/

J < J, i.e. the modified coupling is weaker than the original one. At fixed J this
means that the new partition function belongs to a higher temperature.
2. Extensivity of the free energy:

InZy(j) = NP()) -
Then it holds with the results from part 1.:
. N . i
InZx(j) = ) Inf(j) +InZy(})
. _ N N N
& NP(j) =, Inf(j)) + , P()

& P(j) = ; (ln2 + ;lncosh(2j) + P(j/)) .
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It remains:

1
PG) =, (1n2 17+ P j’)) . (A.37)

J < 1 means at fixed J very high temperature. But then the interaction between
the Ising-spins becomes relatively unimportant, and Zy =~ 2V. If one thus starts
with aj/ < 1, then one can at first assume P(j’)  In2. In the next step it is then
fixed a new j by (A.36) and a new P(j) by (A.37). By iteration In Zy(T) can in
this way be determined for arbitrary temperatures.

3. According to (4.198) we have:

F(j) = —NkgT'In(2coshj) ~  P(j) = In(2coshj) .

We thus insert into (A.37)

1
P(j') =In(2coshj) ; j = In(cosh(2)) .

That leads to:

coshj = ; (exp <ln cosh? (2j)) + exp (— In cosh? (2j)))

_ 1 (coshé(Zj) N 1 ) _ lcosh(21j) +1
2 cosh2 (2j) 2 cosh2 (2))
cosh(2j) + 1
cosh? 2)
A j + P(j') = In(2cosh?(j))

A In2+j + P(j) = In(2*cosh?(j)) = 21n (2 cosh(j)) = 2P(j) .

1
~ P(j)=In = In (2 cosh®(j)) — 5 In cosh(2j)

It is shown therewith that the recursion formula (A.37) reproduces the exact
solution.

Solution 4.4.8

It is to be calculated:

1—v0; —vAQ, 0 —vA*Q;

_ _ —UA*QZ 1-— UQZ —UA.QQ 0
det(l =vm@) =14 ™ _ 30 1 —v0r —vA0t
—vAQj 0 —vA*0; 1 —v0j
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Expansion with respect to the first line:

1—v0, —vAQ; 0
det(l —vm(q)) = (1 —vQy) |[—vA*Q] 1 —vQ] —vAQ}
0 —vA 03 1 —v0;

—UA*QZ _UA,QZ 0
+vAQ) 0 1-v0; —vAQ}
—vAQ; —vA* Q5 1 —vQ}
—UA*QZ 1-— UQZ —UA.QQ
+vA* 0y 0 —vA Q7 1 —vQ7
—vAQ3 0 —vA*0;

= detA + detB + detC .

We use in the following
AMA'=010]=0:05=1; A=1"=-1; Q2+0},=2cosqi>

and evaluate the various summands separately:
detd = (1-v0)((1 = v0>)(1 = vO})(1 - v03)
—020;05(1 = v02) — v3(1 = v03)0; 0> )
= (1= v0)((1 =20 (1 = v(Q2 + 03) +?)
—v*Q}(Q2 + 03) + 2v-”QT)
= (- le)(l —2vcosgs + v2 —vQ} + U3Q;)
=1 —2v(cos g1 + cosqz) + 2v*(1 4+ Q) cos q2) + v*(Q — Q1) — v*
detB = vAQ, ( — A 0a(1 — 00O} (1 — v03) — V230! + v3A*Q’f)
= —’010:(1 - v(Q] +03) + 70103 ) + 20
=010+ v (@2 + Q1) + v*
detC = vA*Q, ( — VAP0 —vA0i(1 — v0o)(1 — vQY) + vi”AQ;)
=v' = 120105(1-v(Q> + 0}) +v°0:07 ) + v*

=20* 020105 + v} (Q1 + 03) —v*
= —*0105 + v (Q1 + 03) +v*.
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Summary:

det(1 —vm(q)) = 1 —2v(cosq; + cos qz)
+07(2 4 201 cos g2 — 01(Qa + 03))
+0)(Q] = Q1 + 01 + O + 01 + 03) + v
= 1—2v(cosq; + cos qy) + 2v* + 2v*(cos g1 + cos qy) + v*
= (1 +v%? = 2v(1 —v?)(cosq; + cosqy) .

This inserted into (4.215) yields (4.216).

Section 4.6.4

Solution 4.6.1

1. In Sect. 4.4.7 the equivalence of the Ising model and the lattice-gas model is
shown. This presumes that the field term 2b in the canonical partition function
of the Ising-spin system is to be identified with the chemical potential © of
the grand-canonical partition function of the lattice gas (see text after (4.249)
in Sect. 4.4.7). According to the Yang-Lee theory of the phase transition we
have to look for the zeros of the partition function as a function of the fugacity
z = eP*. We therefore try to represent the Ising-partition function as a function
of z = exp(28b).

According to (4.193) the partition function can at first be written as follows:

Zu(T,Bo) = EY + EY

Ey = M {cosh(ﬂb) + y/cosh?(Bb) — 2 e=28/ sinh(Z,BJ)} .
With the fugacity z = ¢ one finds:

cosh(Bb) = ; («/z+ jz) ; cosh?(Bb) = i (z+ i + 2) _

In addition we still introduce the quantity x, which is independent of z:

1/1
x=¢# ~ sinh(2BJ) = ( —x) .
2 \x
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Therewith:

Ey = \}xgé(\/z+jz)i\/i(z+i)—;+x2

The z-dependence of the partition function Zy is therewith determined.
2. For the Zy-zeros z, it must hold:

N _ N
EY = —EV.

This is equivalent to:
1 1 1 1 1 !
— 2 -
2(\/zn+\/2n)+\/4 (zn+zn) , T
! 1 1 1 1 1
= (-1 1/N _ - _ 2
1) {2(¢zn+ﬁn) \/4(z+zn) L

We try the ansatz

7 = exp(ig,)

and can then use:

; (\/zn + \/lzn) = cos (2") = \/;(1 + cos ¢,)

Furthermore:

2n—1

L= (=D = '
Y (=1 exp(m N

) ;o n=12,...,N.

Therewith it is to be solved:

cos ((/;1) (1—-y) =-(1 +yn)\/;(cos<pn —1) + x2

1 1
Ay eosg(1 =5 = (3 ((eose, — 1)+ )

a +yn)2} _ 0 e

~ cosp,ql— =
% (1= yn)? (1= yn)?
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A cos@, {—4y,p = (1 + yn)z(_l + sz) - _yn)z
= 2(1 +2) + 2°(1 4+ y?) + 4y,x°
= 2(1 =21 4+ y?) + 4y,

1

1
~ COS@, = 5 (y +yn) (1—=x%)—x*.

The zeros of the canonical partition function

2n—1
7 = exp(ig,) ;  cosg, = (1 —x%)cos (7[ nN ) e

are thus located on the unit circle in the complex z-plane (Fig. A.14). Note that the
necessary condition | cos ¢, |< 1 can only be fulfilled for 0 < x = exp(—28J) <
1. For x > 1, cos ¢, is always smaller than —1. For this reason a ferromagnetic
coupling J > 0 must be assumed.

In the finite system all zeros lie on the unit circle to the left of the vertical
parallel line to the imaginary axis, which intersects the real axis at 1 —2x?. There
is thus no zero in the physical region, i.e. on the real axis z > 0 (Sect. 4.6.1).

3. In the thermodynamic limit, which is given for the spin lattice with constant
lattice distances by N — oo, the zeros move closer and closer together,
eventually building a homogeneous covering of the unit circle to the left of the
vertical line through Rez = 1 — 2x? (see Fig. A.15).

For the endpoints it holds:

cosgL = 1 —2x%
singr = £v/1— (1 —2x2)2 = +£2xv1 — 22
A ze=1-22) +i2xvV1—22.

A
'\'\IJ
| Re z
/L >
=)

1-2x°




630 A Solutions of the Exercises

Fig. A.15 Im z
A
z,
Re z
>
1-2x°
Z

x # 0 for all T > 0. The endpoints of the distribution z4+ have thus for finite
temperatures a non-vanishing imaginary part. The zero-distribution therefore
even in the thermodynamic limit does not reach the positive-real axis. The
Yang-Lee theory confirms therewith the already otherwise found result that
the one-dimensional Ising model does not let allow a phase transition at finite
temperatures.

AtT = 0 we have x = 0 and therewith z+ = 41. Formally, a phase transition
thus appears to be possible at T = 0 (4.188). For T — oo we find x = 1. Even
then the imaginary parts of z4+ vanish; the zeros (z+ = —1), however, do not lie
within the physical region.

Solution 4.6.2
1. Partition function of the lattice gas II in the z-representation

EMNT.K) =) exp (B(uN(X) — Un(X)))

xCK
= Z AN l_[exp (—=Beu(i.j)) -
XCK ieX

JEX

We use here the same notation as in Sect. 4.4.6. z = eP*: fugacity; K: set of
all parcels of the lattice gas; X: set of all occupied parcels; N(X): number of the
occupied parcels in the set X.

It is summed over all conceivable partial sets X C K. ES“ (T, K) is obviously
a polynomial of z of the degree N(K)

EMTK)=1+giz+ g +...+gyd'®
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with real non-negative coefficient g,. None of the N(K) zeros lies on the positive-
real (physical) axis, at most on the negative-real axis. Apart from that, the zeros
are complex (Sect. 4.6.1). If the equation for the zeros

Oél+glzn+gzzﬁ+...+gNan(K)

is fulfilled by z,, then obviously also fulfilled by z;,, because the g, are all real.
2. According to (4.235) in Sect. 4.4.6 it holds for the lattice gas II the symmetry:

E(T. K) = exp(BuN(K)) B (T.K) .
That means in the z-representation:
(1. K) = "0 E{NT.K) .
Because of V&) =£ 0 it follows from
2M(T.K) =0
also

~ (I _
nl/zn(T,K) =0.
Together with z,, it is thus also 1/z, a zero!
3. The {z,} build a complete set of N(K) zeros, the {1/z,} likewise. There must
exist a connection.
Proposal 1:

znzz;l Vn zi:l.

This could only be fulfilled by the real zeros (z, = =£1), but not by the (N(K)—2)
other, complex zeros!
Proposal 2:

=1/ Vn A |z *=1.

That would be conceivable (see special case in Exercise 4.6.1)!

The whole lot of the zeros lie on the unit circle in the complex z-plane.

That the plausible proposal 2 is indeed correct, is the statement of the so-
called circle theorem (T.D. Lee, C.N. Yang, Phys. Rev. 87, 410 (1952)), the
explicit proof of which, though, proves to be rather involved.

4. In the thermodynamic limit (N — oc0) the zeros will densely cover the unit circle,
totally or partially. Then a phase transition might become possible at z = +1.
That can be so, but need not necessarily be so. It is sure that at z # +1 a phase
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transition can take place in no way. z # +1 means u # 0. For non-vanishing
chemical potential a phase transition in the lattice-gas model is thus excluded.

5. In Sect. 4.4.7 the thermodynamic equivalence of lattice-gas model and Ising
model is shown, where the assignment holds

m <= 2b = 2g,LLBB() .
1 # 0 therefore means By # 0. In a finite magnetic field a phase transition is

hence impossible, and that too independent of the lattice dimension of the Ising
model!
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K
Kadanoff construction, 294, 301, 306

L

A-transition, 240

Landau ansatz, 310, 315

Landau cylinder, 203, 204
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