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Preface

The issue of ‘‘stress’’ is important influencing plant growth and crop production in
different parts of the world. Stress is a situation with unfavorable conditions for
plant growth. There have been different methods of alleviating stress such as use of
plants, which are naturally tolerant or plants which have been tolerant using the
related stress genes. However, the use of microbes including arbuscular mycor-
rhizal (AM) fungi and plant growth promoting rhizobacteria (PGPR) has also been
proved to be effective under stress. Such microbes can symbiotically or non-
symbiotically enhance plant growth under different conditions including stress.
Hence, different microbial species and strains are being tested, produced, and used
as microbial inoculums in different parts of the globe. The great contribution of
soil microbes to the growth of plant and production of crop plants can be of
significance environmentally and economically. It is, hence, recommendable to
persuade the farmers use microbial inoculums (biological fertilization) for plant
growth and crop production. New research work contributes to the utilization of
newer and more efficient microbial strains and species indicating the importance of
literature, which has to be updated on a regular basis.

Mohammad Miransari
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Chapter 1
Plant-Growth-Promoting Rhizobacteria:
Potential Candidates for Gibberellins
Production and Crop Growth Promotion

Sang-Mo Kang, Muhammad Waqas, Abdul Latif Khan
and In-Jung Lee

Introduction

Rhizosphere, the layer of soil influenced by plant root (Saharan and Nehra 2011;
Antoun and Prévost 2005), is known to play pivotal role in plant growth and
development (Hrynkiewicz and Baum 2012). Highest proportion of microbial
groups such as bacteria, fungi, nematodes, protozoa, and microarthropods inhabit
rhizosphere (Lynch and Whipps 1990; Raaijmakers 2001; Morgan et al. 2005).
Members of these microbial groups have beneficial, neutral, or harmful effects on
the plant growth (Nihorimbere et al. 2011; Bais et al. 2006). The rhizosphere is
diversely populated by bacteria known as rhizobacteria. Rhizospheric bacteria feed
on the available soil nutrients and root exudates of plants (Bais et al. 2006; Rovira
1991; Dodd et al. 2010). Currently, the term plant-growth-promoting bacteria
(PGPB) is used to encompass all those bacteria that enhance plant growth (Tarkka
et al. 2008; Brencic and Winans 2005). However, among PGPB, plant-growth-
promoting rhizobacteria (PGPR) are studied more because of their ability to col-
onize the plant roots (Kamilova et al. 2005; Sturz and Nowak 2000). Due to
potential application of the beneficial effects of PGPR, scientists from multiple
discipline have been involved to elucidate the underlying mechanisms of plant
growth. PGPR influence the plant growth through direct or indirect mechanisms.
In direct mechanism, PGPR facilitate the growth promotion by nutrient acquisition
and alter the physiological signaling by synthesizing bioactive constituents
(Welbaum 2004; Brimecombe et al. 2007), while in indirect mechanism, PGPR
enhance plant growth via a set of biocontrol mechanisms. Some PGPR decrease or
combat the adverse effects of pathogenic microorganisms, by colonizing plants in
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high population during pathogen attack (Nihorimbere et al. 2011). These PGPR are
capable of producing antagonistic metabolites such as antibiotics (Compant et al.
2005; Haas and Défago 2005), siderophores (RodrÍgueza and Fragaa 1999), HCN
(Ahmad et al. 2008), phenazines (Pierson and Pierson 2010), pyoluteorin (Nowak-
Thompson et al. 1999), pyrrolnitrin (Hwang et al. 2002). Furthermore, the PGPR
must be able to deliver the chemical constituents in right amount, time, and place
to effectively combat the adverse effects of pathogenic attack (Lugtenberg and
Kamilova 2009).

In case of direct mechanism, PGPR can stimulate plant growth in the absence of
pathogenic attack by secreting plant growth substances. Nitrogen-fixing bacteria
such as Bradyrhizobium and Rhizobium fixes atmospheric N2 by reducing it into
ammonia that can be used by legume plants as a nitrogen source (Franche 2009).
Some PGPR help in plant growth by their enhanced potential to solubilize soil
phosphate (Bertrand et al. 2000). PGPR have also recently known to produce
phytohormones such as auxin, cytokinin, and gibberellins which are synthesized
through plant-secreted precursors (Baca and Elmerich 2003). These bacteria-
derived phytohormones subsequently facilitate plant growth by promoting cell
division under varying environmental conditions. In abiotic stresses, like salinity,
drought, and heavy metal, the ethylene production is stimulated in plants, which
subsequently inhibits plant growth. Some PGPRs have shown the ability to
stimulate the activity of enzymes called 1-aminocyclopropane-1-carboxylate
deaminase (ACC) that can hydrolyze ACC into 2-oxobutanoate and ammonia via
modulation of plant hormonal level (Glick 2005; Mayak et al. 2004). Glick et al.
(1998) previously reported that the continuous exudation of ACC from plant roots
under abiotic stress is converted by PGPRs containing ACC deaminase and might
be used for their own growth (Siddikee et al. 2010; Nadeem et al. 2010).

Looking at the great potential of PGPR, in this chapter, we focused on gib-
berellins producing PGPR and its role in abiotic stress particularly drought and
salinity stress. Gibberellins (GAs) are ubiquitous plant hormones that elicit various
metabolic function required during plant growth like seed germination, stem
elongation, sex expression, flowering, formation of fruits, and senescence (Hedden
1997; Hedden and Kamiya 1997). Exogenous applications of GAs (GA3 and GA4)
have been reported to improve plant growth and biomass while counteracting
abiotic stresses in plants (Hedden and Kamiya 1997). The production of such plant
growth regulators like auxin, cytokinin, and gibberellins by PGPR can give an
additional support to the growth of host plants (Joo et al. 2004, 2005, 2009; Kang
et al. 2009, 2010). There are few previous studies (Table 1.1) which elucidated the
GA production by PGPR (Joo et al. 2004, 2005, 2009; Kang et al. 2009, 2010;
Atzhorn et al. 1988; Bastian et al. 1998; Bottini et al. 1989; Gutierrez-Manero
et al. 2001; Janzen et al. 1992; Mansour et al. 1994); here, we further elaborated
the role of PGPR in plant growth regulation during abiotic stress.

2 S.-M. Kang et al.



Gibberellin Biosynthesis in PGPR

Phytohormones are organic in nature and effective in very low amount. They are
usually synthesized in tissues of plants and are transported to their specific site of
action. Upon transport to the targeted tissues, the hormone causes physiological
changes in plants such as fruit ripening, lateral root formation, flowering, and bud
initiation. Each response is often the result of antagonistic or synergistic action of
two or more hormones. Plant physiologists had categorized the hormones into five
major groups: auxins, gibberellins, ethylene, cytokinins, and abscisic acid.
Recently, two new hormones have also been recognized and known as brassi-
nosteroids and strigolactones. Gibberellin is responsible for active role in seed
germination, seedling emergence, stem and leaf growth, floral induction, and
flower and fruit growth. Similarly, gibberellin production by PGPR promotes the
growth and yield of many crop plants. A small number of PGPR have been
identified to produce gibberellins (GA). These PGPR regulate the plant hormone
level in three ways either by direct synthesis of GA itself, de-conjugation of
glucosyl gibberellins, and change of inactive status of gibberellins into active GA
(Lucangeli and Bottini 1997; Piccoli et al. 1997, 1999; Cassán 2001).

Table 1.1 PGPR species reported for producing gibberellins

PGPR species GAs potential References

Acetobacter diazotropicus GA1, GA3 Bastian et al.
(1998)

Azospirillum lipoferum GA1, GA3 Bottini et al.
(1989)

Azospirillum brasilense GA1, GA3 Janzen et al.
(1992)

Bacillus licheniformis GA1, GA3, GA4, GA20 Gutierrez-Manero
et al. (2001)

Herbaspirillum seropedicae GA3 Bastian et al.
(1998)

Rhizobium phaseoli GA1, GA4 Atzhorn et al.
(1988)

Bacillus pumilus GA1, GA3, GA4, GA20 Gutierrez-Manero
et al. (2001)

Bacillus pumilus CJ-69 GA1, GA3, GA4, GA5, GA7, GA8, GA9, GA12,
GA19, GA20, GA24, GA44

Joo et al. (2004)

Bacillus cereus MJ-1 GA1, GA3, GA4, GA7, GA9, GA12, GA19, GA20,
GA24, GA34, GA36, GA44, GA53

Joo et al. (2004)

Bacillus macroides CJ-29 GA1, GA3, GA4, GA7, GA9, GA12, GA19, GA20,
GA24,GA34, GA36, GA44, GA53

Joo et al. (2004)

Acinetobacter
calcoaceticus

GA1, GA3, GA4, GA9, GA12, GA15,GA19,
GA20, GA24, GA53

Kang et al. (2009)

Burkholderia cepacia GA1, GA3, GA4, GA9, GA12, GA15, GA20,
GA24

Joo et al. (2009)

Promicromonospora sp. GA1, GA4, GA9, GA12, GA19, GA20, GA24,
GA34, GA53

Kang et al. (2012)

1 Plant-Growth-Promoting Rhizobacteria 3



In bacteria, the elucidation of GA biosynthesis pathway is based upon the
knowledge from plants and fungi. Usually, GAs are biosynthesized from gera-
nylgeranyl-PP (Fig. 1.1), which is converted into ent-kaurene via ent-copalyl
diphosphate, and ent-kaurene is converted into GA12-aldehyde via ent-kaurene
oxidase and ent-kaurenoic acid oxidase. GA12-aldehyde is then oxidized into GA12

and metabolized into other GA (Fig. 1.1; Baca and Elmerich 2003; Bomke and
Tudzynski 2009). Morrone et al. (2009) have also reported the involvement of
operan whose enzymatic composition indicates that gibberellin biosynthesis
operate a third independent assembled pathway relative to plants and fungi. The
reported pathway has superficial similarity to plants instead of fungi. GAs have
been identified and isolated from higher plants, fungi, and bacteria. Up until now,
136 GAs from higher plants (128 species), 28 GA from fungi (7 species), and only
4 GA (GA1, GA3, GA4, and GA20) from bacteria (7 species) have been identified
(Table 1.1; Hedden and Thomas 2012).

Gibberellin Quantification and Analysis in Microbial
Culture

Until now, universal methods to quantify and analyze the gibberellins from
microbes does not exist. However, modern analytical techniques such as GC-MS
and LC-MS have enabled the plant physiologist to analyze and quantify the minute

Fig. 1.1 Proposed and comparative GA biosynthesis pathway in bacteria based on the current
knowledge from plant and fungi
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quantities of GA in any culture sample. These advance equipments are sufficiently
sensitive and selective to measure any phytohormones including GA at low con-
centrations. For gibberellin quantification and analysis, the microbes are grown
initially in specific cultural broth. After a period of time (one week or ten days),
the pure cultural filtrate (CF) is separated from growing cells by centrifugation or
filtration. Onward several tedious steps are involved to remove interfering sub-
stances and bring it to a stage to be analyzed for the presence of GA. The con-
centrations of GA are very low (ng ml-1) in the cultural broth of bacteria and
require very sensitive methods for their detection. The analytical procedure must
be able to identify the GA from other components of secondary metabolites.
Furthermore, the choice of extraction and purification depends on analyte, type of
analysis to be performed, and the equipments available. For GA characterization,
extensive purification and standardization with pure substances are needed. The
steps followed for GA analysis must eliminate potential impurities from analyte.

Extraction and Purification of Microbial Cultural Filtrate
for Gibberellins

For extraction and purification of microbial cultural filtrate, the required strains are
grown in nutrient broth (100 ml) for 7 days at 30 �C (shaking incubator at
200 rpm) (Kang et al. 2009, 2010; Lee et al. 1998). The culture and bacterial
biomass are separated by centrifugation (2,5009 g at 4 �C for 15 min). The cul-
ture medium (50 ml) is used to extract and purify GA as described by Kang et al.
(2009). GAs have functional groups, highly oxidized and may be relatively labile
to extreme pH in aqueous solutions. In alkaline conditions, epimerization is
another reason due to which the extraction and purification procedures should be
performed within certain range of pH like 2.5–8.5 (Urbanova et al. 2011). All the
process of purification and especially the aqueous solution containing GA must be
handled at temperature below 40 �C. Therefore, the pH of CF is adjusted to 2.5
using 6N HCl and partitioned with ethyl acetate (EtOAc) to obtain the extract.
Before partitioning, deuterated stable GA internal standards (20 ng; [17, 17-2H2]
GA1, GA3, GA4, GA7, GA12, GA19, GA24, GA34, and GA53) are added in the CF.
Tritiated GA, i.e., [1, 2-3H2] GA9 and [1, 2-3H2] GA20 are also added (can be
obtained from Prof. Lewis N. Mander, Australian National University, Canberra,
Australia). The organic layer is vacuum dried and added with 60 % methanol
(MeOH), while the pH is adjusted to 8.0 ± 0.3 using 2N NH4OH. The bacterial
cultures are subjected to chromatographic and mass spectroscopy techniques for
identification and quantification of GA (Table 1.2).

1 Plant-Growth-Promoting Rhizobacteria 5



Chromatography for Purification

The extracts are passed through a Davisil C18 column (90–130 lm; Alltech,
Deerfield, IL, USA). The eluent is reduced to near dryness at 40 �C in vacuum. The
samples are then dried onto celite and then loaded onto SiO2 partitioning column
(deactivated with 20 % water) to separate the GA as a group from more polar
impurities. GAs are eluted with 80 ml of 95:5 (v / v) EtOAc: hexane saturated with
formic acid. This solution is dried at 40 �C in vacuum, redissolved in 4 ml of
EtOAc, and partitioned three times against 4 ml of 0.1 M phosphate buffer (pH 8.0).
Dropwise addition of 2N NaOH is required during the first partitioning to neutralize
residual formic acid. One gram of polyvinylpolypyrrolidone (PVPP) is added to the
combined aqueous phases, and this mixture is slurried for 1 h. The pH is reduced to
2.5 with 6N HCl. The extract is partitioned three times against equal volumes of
EtOAc. The combined EtOAc fraction is dried in vacuum, and the residues are
dissolved in 3 ml of 100 % MeOH. This solution is dried in a Savant or a steam of
nitrogen. The dried samples are subjected to preparative high-performance liquid
chromatography (HPLC) for fractionations. To improve the purification efficiency,
a 3.9 9 300 m Bondapak C18 column (Waters Corp., Milford, MA, USA) is used
and eluted at 1.0 ml/min with the following gradient: 0–5 min, isocratic 28 %
MeOH in 1 % aqueous acetic acid; 5–35 min, linear gradient from 28 % to 86 %
MeOH; 35–36 min, 86–100 % MeOH; and 36–40 min, isocratic 100 % MeOH.
Forty-eight fractions of 1.0 ml are collected.

Table 1.2 GC-MS analysis of HPLC fractions from ethyl acetate fractions of bacterial culture

Fraction no. GA KRIa m/z (%, relative intensity of base peak)b

6–8 GA8 2,818 Sample 594(100) 448(25) 379(20) 375(15) 238(28)
2,818 standard 596(100) 450(24) 381(21) 375(11) 240(26)

12–14 GA1 2,674 Sample 506(100) 448(20) 313(17) 491(13) 377(12)
2,674 standard 508(100) 450(19) 315(14) 493(11) 379(13)

24,25 GA20 2,485 Sample 418(100) 375(45) 403(14) 359(12) 301(13)
2,485 standard 420(100) 377(45) 405(13) 361(10) 303(11)

26–28 GA44 2,789 Sample 432(63) 238(41) 417(12) 373(17) 207(100)
2,789 standard 434(62) 240(39) 419(10) 375(16) 209(100)

29–31 GA19 2,600 Sample 434(100) 374(59) 402(41) 462(10) 375(57)
2,600 standard 436(100) 376(57) 404(40) 464(9) 377(55)

37,38 GA53 2,450 Sample 448(47) 251(30) 235(30) 389(25) 241(18)
2,450 standard 450(47) 253(28) 237(28) 391(25) 243(19)

42–44 GA12 2,335 Sample 300(100) 240(31) 328(31) 360(2) 285(19)
2,335 standard 302(100) 242(32) 330(29) 362(2) 287(20)

a KRI Kovats retention index
b Identified as methyl ester trimethylsilyl ether derivatives by comparison with reference spectra
and KRI data (Gaskin and MacMillan 1991)

6 S.-M. Kang et al.



GC/MS: SIM for Hormonal Analysis

Qualitative and quantitative analysis is very important for the GA produced by
bacterial strains. GA identification requires physicochemical detectors having the
ability to distinguish structurally unique compounds from each other. Only nuclear
magnetic resonance (NMR) and mass spectrometry (MS) are commonly used
techniques to fulfill this condition. MS is more useful than NMR as it is very
sensitive to analyse the extremely low concentration of GA. However, NMR is
useful for identification of unidentified GA and completes structure elucidation of
known GAs. Liquid chromatography has also been remained a choice of qualitative
analysis of derivatized GA. Moreover, the lack of efficiency to selectively detect
(UV or fluorescence) the carboxylic acid derivatization has limited its use (Urba-
nova et al. 2011; Crozier and Durley 1983; Reeve and Crozier 1978; Heftmann et al.
1978; Morris 1978). Another great achievement of MS in terms of tandem instru-
ments has improved the identification of GA and made easy the qualitative analysis
(Urbanova et al. 2011). Here, we will focus on the qualitative analysis of GA
through MS in combination with gas chromatography, and the scheme of whole
process is described in Fig. 1.2. In GC-MS, the samples are injected and converted
into gas form and then introduced into mass spectrometer ion source serving as a
highly versatile GC detector (Urbanova et al. 2011; Hedden 1986).

The fractions are then prepared for gas chromatography/mass spectrometry
(GC/MS) with selected ion monitoring (SIM) system (6890N Network GC System,
and 5973 Network Mass Selective Detector; Agilent Technologies, Palo Alto, CA,
USA). Inside GC, derivatization of GA is important for enhancing their volatility
to reproduce good peaks. Before analysis with GC-MS, the ethereal diazomethane
and BSTFA (N,O-bistrimethyl silyltrifluoroacetamide) or MSTFA (N-methyl-N-
trimethyl silyltrifluoroacetamide) are added to GAs to decrease the polarity of the
emergent molecule and, more importantly, improve its mass spectral characteris-
tics (step 1, Fig. 1.2). For each GA, 1 ll of sample is injected in GC/MS (step 2,
Fig. 1.2); inside GC column, GA are separated (step 3, Fig. 1.2) and introduced

Fig. 1.2 Schematic process of GA identification through GC/MS SIM analysis
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into the mass spectrometer (step 4, Fig. 1.2), where they undergo extensive
fragmentation (Table 1.2).

The bacterial CF containing GA are calculated from the peak area ratios of
sample GA to corresponding internal standards (step 5, Fig. 1.2). The retention
time/identity of GA is determined using hydrocarbon standards to calculate the
Kovats retention index (KRI) value. The KRI confirms the identity of GA. The GA
quantification is based on the peak area ratios of non-deuterated (extracted) GA to
deuterated GA (Kovats 1958).

Crop Growth and Abiotic Stress

Crop growth is the accumulative irreversible increase in crop plants. Abiotic and
biotic stresses, mostly due to anthropogenic activities, cause losses to the crop
yield. This is impossible until we understand inside the plant knowledge that how
it interacts with outside environment including beneficial microbes (Mittler 2006)
in abiotic stress. In abiotic stresses drought, salinity, and extreme temperature are
most common all over the world (Khan et al. 2011). The interaction in such harsh
conditions is very complex and may vary from crop to crop and growth stages. The
impact is also highly variable on plant growth and biomass production (Tuteja
2007). Drought stress reduces the plant cell water potential and turgor pressure
followed by increase in solute concentrations in the cytosol. In response to
drought, increase in ABA, compatible osmolytes, and overproduction of reactive
oxygen species occur. Overall, the important process for growth and development
like acquisition of mineral and cellular metabolism are arrested (Khan et al. 2011;
Lisar et al. 2012; Christensen et al. 2007; Munns and Tester 2008).

Salinity has devastated the crop production on more than 45 million hectares of
irrigated land around the globe (Munns and Tester 2008; Carrillo et al. 2011).
Salinity stress creates osmotic stress, ion toxicity, nutritional disorders, oxidative
stress, change in metabolic functions, membrane disintegration, genotoxicity, and
negatively influences cell division and expansion (Mittler 2006; Carrillo et al.
2011; Zhu 2007; Hossain et al. 2007, 2008; Türkan and Demiral 2009). The
fluctuation in climatic conditions due to global warming has tremendously chan-
ged the general pattern of crop plant growth (Mahajan and Tuteja 2006; KohIba
2002; Shah et al. 2011). A high temperature exposure can injure the plant cell and
cause cell death in a minute (Schöffl et al. 1999; Wahid et al. 2007). Overall,
combination of such stresses cause starvation, growth retardation, abridged ion
flux, and production of toxic compounds and reactive oxygen species (Wahid et al.
2007; Howarth 2005; Smertenko et al. 1997; Heidarvand and Amiri 2010; Wang
et al. 2003), hence reducing the crop yield.

Different crop plants have devised various strategies to cope abiotic stresses and
possess a cascade of signals ranging from primary to secondary responses. In pri-
mary response, plant maintains cell ionic and osmotic balance, which is followed
by secondary response of activation of hormone, and secondary metabolites
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formation occurs. As we know, different abiotic stresses share some common
symptoms and mitigation strategies (Hossain et al. 2007; Mahajan and Tuteja 2006;
Wang et al. 2003). For example, drought and salinity cause ionic and osmotic stress,
and in both cases, plant activates genes related to stress resistance and brings ionic
and osmotic homeostasis through salt overly sensitive genes pathway or other
related pathways. Drought and low temperature cause the same damage (disinte-
gration of membrane, dehydration, and solute leakage). In perception of both
stresses, crop plants either turn on detoxification signaling or activate stress genes
which control damage and repair of cell membrane (Fig. 1.3; Lisar et al. 2012;
Carrillo et al. 2011; Mahajan and Tuteja 2006; Wahid et al. 2007).

Sustainability of agricultural production is very important to fulfill the growing
demands of food for human population. However, there is a need to minimize such
abiotic stress in an eco-friendly way (Wang et al. 2003). Use of PGPR as a
biocontrol and a biofertiliser seems an ideal strategy to mitigate various extreme
environmental conditions like salinity, drought, and temperature stress (Fig. 1.3).

GA-Producing PGPRs and Crop Growth Amelioration

The ability of PGPR to produce phytohormones is one of the most important
mechanisms by which many rhizobacteria promote plant growth (Spaepen et al.
2007; Martínez-Viveros et al. 2010). Several fungal and bacterial species are
reported for phytohormone production (Tsavkelova et al. 2006). The phytohor-
mone producing ability is widely distributed among bacteria associated with soil
and plants. Research on PGPR has established that it can stimulate plant growth
through the production of auxins, gibberellins, and cytokinins (Spaepen et al.
2008; Bottini et al. 2004; Timmusk et al. 1999), or by regulating the high levels of
endogenous ethylene in the plant (Table 1.3; Glick et al. 1998).

Fig. 1.3 Mechanism involved in PGPR role in crop tolerance against abiotic stress. The upward
arrow indicates activation of effects, while the downward shows reduction
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Table 1.3 Reported PGPR species and their role in plant growth and development

PGPR species Target plants Observed effects Reference

Pseudomonas
fluorescens

Bean Higher lignin content Anderson and
Guerra
(1985)

Serratia plymuthica Cucumber Against disease Benhamou et al.
(2000)

Pseudomonas
aeruginosa

Bean Increased activity of
phenlyalanine
ammonia lyase

De Meyer et al.
(1999)

Pseudomonas
corrugata

Cucumber Induced peroxidase (PO)
activity

Chen et al.
(2000)

Azospirillum brasilense Maize and rice Gibberellin production Cassán et al.
(2001)Azospirillum lipoferum

Bacillus subtilis Arabidopsis Elevated levels of L-
malic acid

Thimmaraju
et al. (2008)

Bacillus cereus Tomato Induced systemic
resistance

Bernardo de
et al. (2006)

Variovorax paradoxus Indian mustard Cadmium tolerant Belimov et al.
(2005)

Acinetobacter
calcoaceticus

Cucumber, Chinese
cabbage, crown daisy

Gibberellin production—
Phosphate
solubilization

Kang et al.
(2009)

Rhizobium Rice Produced auxin (IAA)
and gibberellins

Yanni et al.
(2001)

Bacillus
amyloliquefaciens

Tomato Nutrient (nitrogen and
phosphorus) uptake

Adesemoye et al.
(2009)

Azotobacter Wheat Antifungal activity
produced IAA

Zarrin and
Sharon
(2010)

Brevibacterium
iodinum

Pepper ACC deaminase
producing

Siddikee et al.
(2010)

Bacillus licheniformis
Zhihengliuela alba
Stenotrophomonas

maltophilia
Arabidopsis Production of

siderophores and
chitinases

Domenech et al.
(2007)

Pseudomonas monteilii Sweet basil Nutrient uptake,
antagonist

Rakshapal et al.
(2013)Cronobacter

dublinensis
Bacillus spp.
Azospirillum lipoferum Maize Accumulation of free

amino acids, soluble
sugars, proline, and
soluble protein
contents

Qudsia et al.
(2013)

(continued)
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Gibberellin-producing PGPR are very little known for their plant growth pro-
motion. In PGPR, the phytohormones are secondary products and are suggested for
beneficial effects in plant growth. Several types of PGPR have been identified for
their potential to produce gibberellins. These are isolated from rhizosphere and
preliminarily selected for plant growth promotion. Plant growth promotion by
PGPR species that produce GAs has been previously reported (Bastian et al. 1998;
Gutierrez-Manero et al. 2001; Atzhorn et al. 1988). In cultures of wild-type and
mutant strains of Rhizobium phaseoli, Atzhorn et al. (1988) found GA1 and GA4

along with smaller quantity of GA9- and GA20-like compounds. In another
experiment, Bastian et al. (1998) detected phytohormones indole-3-acetic acid and
gibberellins GA1 and GA3 from chemically defined cultures of Acetobacter dia-
zotrophicus and Herbaspirillum seropedicae. Both bacteria are associated with
Gramineae species in endophytic mode of life and were found to promote plant
growth and yield (Table 1.1).

Gutierrez-Manero et al. (2001) isolated the plant-growth-promoting rhizobac-
teria (PGPR), Bacillus pumilus and Bacillus licheniformis, from the rhizosphere of
alder (Alnus glutinosa [L.]). Full-scan gas chromatography–mass spectrometry
analyses on extracts of these media showed the presence of GA1, GA3, GA4, and
GA20 in addition to the isomers 3-epi-GA1 and iso-GA3. Bioassay data showed
that all the three strains have a strong growth-promoting activity in alder seedlings.

Joo et al. (2004) isolated Bacillus cereus, B. macroides, and B. pumilus and
found the production of GA5, GA8, GA34, GA44, and GA53 for the first time by
bacteria. The newly identified PGPR were also evaluated for growth promotion in
red pepper which showed that they not only enhanced different plant growth
parameters but also increased endogenous gibberellin level (Joo et al. 2004, 2005).

Table 1.3 (continued)

PGPR species Target plants Observed effects Reference

Azospirillum sp., Canola Antioxidant enzymes and
Microelements

Noorieh et al.
(2013)Pseudomonas sp.

Azospirillum brasilense Tomato Fixing atmospheric
nitrogen, protecting
the host plant from
pathogens

Anna et al.
(2013)Gluconacetobacter

diazotrophicus
Herbaspirillum

seropedicae
Burkholderia ambifaria
Bacillus pumilus Brassicaceae Effective metal

immobilizing
Wafae et al.

(2013)Micrococcus spp.
Mesorhizobium sp.
Pseudomonas

aeruginosa
Chickpea Uptake of nitrogen and

phosphorus (P)
Jay et al. (2013)

Production of
phytohormone (IAA)

1 Plant-Growth-Promoting Rhizobacteria 11



PGPB are also investigated in vegetables. In one experiment, Kang et al. (2012)
investigated the symbiotic effect of gibberellin and organic acids producing PGPR
(Acinetobacter calcoaceticus) on cucumber plant growth. In symbiotic association,
the PGPR has significantly ameliorated cucumber plants to higher growth. The
PGPR application had higher shoot length, plant biomass, and chlorophyll contents
as compared to distilled water and nutrient broth-treated control plants. The
bacterial culture-treated plants have also increased the amino acid and crude
protein contents as compared to control plants. The improved effects were also
observed by the regulation of stress-related abscisic acid which was significantly
lower in PGPR-inoculated plants as compared to controls. Contrarily, the
endogenous GA quantity was up-regulated, indicating the activation of GA bio-
synthesis pathway by which it increased the shoot lengths of cucumber plant.

Similar studies were also investigated in tomato plants. Promicromonospora sp.
SE188 was producing gibberellins and had higher phosphate solubilisation
potential. Its inoculation to the tomato plants resulted in higher plant biomass and
shoot length as compared to distilled water-treated control plants. The presence of
Promicromonospora sp. SE188 significantly up-regulated the non-C-13 hydrox-
ylation GA biosynthesis pathway (GA12?GA24?GA9?GA4?GA34) in tomato
plants as compared to the control plants. Endogenous abscisic acid was signifi-
cantly down-regulated in the presence of Promicromonospora sp. SE188. Con-
trarily, endogenous salicylic acid was significantly higher in the tomato plant after
Promicromonospora sp. inoculation as compared to the control.

Karako and Aksoz (2006) isolated the potent Pseudomonas sp. from soil of
olive waste. The Pseudomonas sp. was capable of producing gibberellins. How-
ever, no investigation was reported on plant growth promotion. Furthermore, on
optimization of nutrient broth, the Pseudomonas sp. yielded the highest level of
gibberellic acid (285.06 mg/l) upon incubation at 30 �C for 72 h at pH 7 using
rotary shaker under dark conditions.

The role of ecological significance must be considered when using PGPR.
Barea et al. (1976) isolated fifty phosphate-dissolving bacteria from rhizospheres
of various crop plants. Assessing their potential to secrete gibberellins, IAA, and
cytokinins, only 29 rhizobacterial strains were active to produce gibberellins.

Another study showed that mutualistic symbiosis of maize and Pseudomonas
fluorescent enhanced the drought stress tolerance of the host (Ansary et al. 2012).
Results showed that drought stress triggered a change in plant phytohormonal
balance, including an increase in leaf proline and abscisic acid content, and a
decline in auxin, gibberellin, and cytokinin synthesis. In comparison with control,
plants inoculated with P. fluorescens showed highest level of proline, abscisic
acid, auxin, gibberellin, and cytokinin in the leaves. This study indicates that
application of PGPR can enhance phytohormone content of maize under water-
deficit stress conditions. In addition to maize, Pseudomonas strains associated with
rapeseed exhibited higher growth and more oil yield in drought stress (Arvin et al.
2012). Results showed that drought stress reduced yield up to 152.5 %, oil content,
and yield components. It was also concluded that inoculation treatment had better
effects than either no inoculation (control) or co-inoculation.
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From the semi-arid ecosystem of south-east Spain, Kohler et al. (2008) isolated
PGPR along with arbuscular mycorrhizal fungi and rhizobium bacteria. The
symbiotic association was evaluated alone or in combination with each other using
Anthyllis cytisoides L., a test plant. The parameters evaluated were biomass
accumulation and allocation, N and P uptake, N2-fixation (15N), and specific root
length. Many microbial combinations were effective in improving plant devel-
opment, nutrient uptake, N2-fixation, or root system quality. It was also concluded
that beneficial microbes native to the environment are more effective than the
exotic species and instead of selecting a multifunctional microbial inoculum.
Appropriate microbial combinations can be recommended for a given biotech-
nological input related to improvement of plant performance.

To assess the effects and intensity of abiotic stress tolerance of GA-producing
PGPR, Kang et al. (2012) applied novel strains, viz., Promicromonospora sp.
SE188, Burkholderia cepacia SE4, and A. calcoaceticus SE370 to cucumber
plants. The experimental design comprised of eight sets of cucumber (Cucumis
sativus L) plants with (1) PGPR interactions; (2) non-PGPR interactions; (3) PGPR
interactions salt; (4) non-PGPR interactions salt; (5) PGPR interactions drought;
and (6) non-PGPR interactions drought. B. cepacia SE4, Promicromonospora sp.
SE188, and A.calcoaceticus SE370 were assessed for their potential to resist high
salinity (120 mM) and drought (15 % PEG) stress continuously for 7 days.
Parameters like plant growth parameters, relative water content, electrolytic
leakage, antioxidant activities, and endogenous hormonal regulation were studied.
Other functional biochemicals like crude protein contents, amino acids, and
nitrogen content were also evaluated. Overall, the effect was very satisfactory, and
the application significantly enhanced the growth parameters of the plants. How-
ever, B. cepacia SE4 was more prominent to extend the abiotic stress tolerance in
cucumber plants. Such kind of studies should be extended to other important
agronomic crops to save the agriculture loss during harsh climatic conditions.

Future Perspectives

Our current knowledge about PGPR is still very limited, and to understand it
better, we have to explore, isolate, and screen the PGPR wealth available with
different agricultural crops. More investigations are needed to analyze and assess
the role of active PGPR in crop growth under various abiotic environmental cir-
cumstances like salinity and drought. Furthermore, the mechanism needs to be
explored in phytohormonal regulation (abscisic acid, salicylic acid, jasmonic acid,
and gibberellins) during the PGPR interaction with crop host plants under abiotic
stress, to further improve strategies for sustainable crop production.

Acknowledgments This work is supported by Korean Ministry of Environment through ‘‘The
Eco-Innovation Project’’ and Basic Science Research Program through the National Research
Foundation of Korea (NRF) founded by the Ministry of Education, Science and Technology
(2012-0008183).

1 Plant-Growth-Promoting Rhizobacteria 13



References

Adesemoye AO, Torbert HA, Kloepper JW (2009) Plant growth promoting rhizobacteria allow
reduced application rates of chemical fertilizers. Microb Ecol 58:921–929

Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their
multiple plant growth promoting activities. Microbial Res 163(Suppl 2):173–181

Anderson AJ, Guerra D (1985) Responses of bean to root colonization with Pseudomonas putida
in a hydroponic system. Phytopathology 75:992–995

Anna LB, Alessandra S, Claudia E, Paola C, Maddalena DG (2013) In vitro and in vivo
inoculation of four endophytic bacteria on Lycopersicon esculentum. New Biotechnol (in
press). http://dx.doi.org/10.1016/j.nbt.2013.01.001

Ansary MH, Rahmani HA, Ardakani MR, Paknejad F, Habibi D, Mafakheri S (2012) Effect of
Pseudomonas fluorescent on proline and phytohormonal status of maize (Zea mays L.) under
water deficit stress. Ann Biol Res 3(2):1054–1062

Antoun H, Prévost D (2005) Ecology of plant growth promoting rhizobacteria. In: Siddiqui ZA
(ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 1–38

Arvin P, Vafabakhsh J, Mazaheri D, Noormohamadi G, Azizi M (2012) Study of drought stress
and plant growth promoting rhizobacteria (PGPR) on yield, yield components and seed oil
content of different cultivars and species of Brassica Oilseed Rape. Ann Biol Res
3(9):4444–4451

Atzhorn R, Crozier A, Wheeler CT, Sandberg G (1988) Production of gibberellins and indole-3-
acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta
175:532–538

Baca BE, Elmerich C (2003) Microbial production of plant hormones. In: Elmerich C, Newton
WE (eds) Associative and Endophytic Nitrogen-fixing Bacteria and Cyanobacterial Associ-
ations. Kluwer Academic Publishers, The Netherlands

Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2007) The role of root exudates in
rhizosphere interactions with plants and other organisms. Ann Rev Plant Biol 57:233–266

Barea JM, Navarro E, Montoya E (1976) Production of plant growth regulators by rhizosphere
phosphate-solubilizing bacteria. J Appl Microbiol 40(2):129–134

Bastian F, Cohen A, Piccoli P, Luna V, Baraldi R, Bottini R (1998) Production of indole-3-acetic
acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum
seropedicae in chemically defined media. Plant Growth Regul 24:7–11

Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR
(2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian
mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–250

Benhamou N, Gagné S, Quéré DL, Dehbi L (2000) Bacterial-mediated induced resistance in
cucumber: beneficial effect of the endophytic bacterium Serratia plymuthica on the protection
against infection by Pythium ultimum. Biochem Cell Biol 90(1):45–56

Bernardo de AH, José RVJ, Reginaldo da SR, Harllen SAS, Maria CBP (2006) Induction of
systemic resistance in tomato by the autochthonous phylloplane resident Bacillus cereus. Pesq
Agropec Bras 41(8):1247–1252

Bertrand H, Plassard C, Pinochet X, Touraine B, Normand P, Cleyet-Marel JC (2000) Stimulation
of the ionic transport system in Brassica napus by a plant growth-promoting rhizobacterium
(Achromobacter sp.). Can J Microbiol 46:229–236

Bomke C, Tudzynski B (2009) Diversity, regulation, and evolution of the gibberellin biosynthetic
pathway in fungi compared to plants and bacteria. Phytochemistry 70:1876–1893

Bottini R, Fulchieri M, Pearce D, Pharis RP (1989) Identification of Gibberellins A1, A3, and iso-
A3 in cultures of Azospirillum lipoferum. Plant Physiol 90:45–47

Bottini R, Cassán F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in
plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497–503

Brencic A, Winans C (2005) Detection of and response to signals involved in host-micobe
interactions by plant-associated bacteria. Microbiol Mol Biol R 69:155–194

14 S.-M. Kang et al.

http://dx.doi.org/10.1016/j.nbt.2013.01.001


Brimecombe MJ, De Leij FAAM, Lynch JM (2007) Rhizodeposition and microbial populations.
In: Pinton R, Veranini Z, Nannipieri P (eds) The rhizosphere biochemistry and organic
substances at the soil-plant interface. Taylor & Francis Group, New York

Carrillo G, Troch PA, Sivapalan M, Wagener T, Harman C, Sawicz K (2011) Catchment
classification: hydrological analysis of catchment behavior through process-based modeling
along a climate gradient. Hydrol Earth Syst Sci 15:3411–3430

Cassán F, Bottini R, Schneider G, Piccoli P (2001) Azospirillum brasilense and Azospirillum
lipoferum hydrolyze conjugates of GA20 and metabolize the resultant aglycones to GA1 in
seedlings of rice dwarf mutants. Plant Physiol 125:2053–2058

Chen C, Bélanger RR, Benhamou N, Paulitz T (2000) Defense enzymes induced in cucumber
roots by treatment with plant growth promoting rhizobacteria (PGPR) and Pythium
aphanidermatum. Physiol Mol Plant Pathol 56:13–23

Christensen JH, Hewitson B et al (2007) Regional climate projections. In: Solomon S, Qin D,
Manning M et al (eds) Climate change 2007: the physical science basis. Contribution of
Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate
Change. Cambridge University Press, Cambridge, New York

Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting
bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future
prospects. Appl Environ Microbiol 71:4951–4959

Crozier A, Durley RC (1983) Modem methods of analysis of gibberellins. In: Crozier A (ed) The
biochemistry and physiology of Gibberellins, vol I. Praeger Scientific, New York, pp 485–560

De Meyer G, Capieau K, Audenaert K, Buchala A, Métraux JP, Höfte M (1999) Nanogram
amounts of salicylic produced by Pseudomonas aeruginosa 7NSK2 activate the systemic
acquired resistance pathway in bean. Mol Plant Microbe Interact 12:450–458

Dodd IC, Zinovkina NY, Safronova VI, Belimov AA (2010) Rhizobacterial mediation of plant
hormone status. Ann Appl Biol 157:361–379

Domenech J, Ramos SB, Probanza A, Lucas GJA, Gutierrez MFJ (2007) Elicitation of systemic
resistance and growth promotion of Arabidopsis thaliana by PGPRs from Nicotiana glauca: a
study of the putative induction pathway. Plant Soil 290:43–50

Franche C, Lindström K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous
and non-leguminous plants. Plant Soil 321:35–59

Gaskin P, MacMillan J (1991) GC-MS of Gibberellins and related compounds: methodology and
a Library of Spectra. Cantock’s Enterprises, Bristol

Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase.
FEMS Microbiol Lett 251:1–7

Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by
plant growth-promoting bacteria. J Theor Biol 190:63–68

Gutierrez-Manero FJ, Ramos-Solano B, Probanza A, Mehouachi J, Tadeo FR, Talon M (2001)
The plant-growth-promoting rhizobacteria Bacillus pumilis and Bacillus licheniformis
produce high amounts of physiologically active gibberellins. Physiol Plant 111:206–211

Haas D, Défago G (2005) Biological control of soilborne pathogens by fluorescent pseudomo-
nads. Nat Rev Microbiol 3:307–319

Hedden P (1986) Gas Chromatography/Mass spectrometry. In: Linskens HF, Jackson HF (eds)
Modern methods of plant analysis, New series, vol 3. Springer, Berlin, pp 1–22

Hedden P (1997) The oxidases of gibberellin biosynthesis: their function and mechanism. Physiol
Plant 101:709–719

Hedden P, Kamiya Y (1997) Gibberellin biosynthesis: enzymes, genes, and their regulation.
Annu Rev Plant Physiol Plant Mol Biol 48:431–460

Hedden P, Thomas SG (2012) Gibberellin biosynthesis and its regulation. Biochem J 444:11–25
Heftmann E, Saunders GA, Haddon WF (1978) Argentation high performance liquid

chromatography and mass spectrometry of gibberelline esters. J Chromatogr 156:71–77
Heidarvand L, Amiri RM (2010) What happens in plant molecular responses to cold stress? Acta

Physiol Plant 32:419–431

1 Plant-Growth-Promoting Rhizobacteria 15



Hossain MM, Sultana F, Kubota M, Koyama H, Hyakumachi M (2007) The plant growth-
promoting fungus Penicillium simplicissimum GP17-2 induces resistance in Arabidopsis
thaliana by activation of multiple defense signals. Plant Cell Physiol 48:1724–1736

Howarth CJ (2005) Genetic improvements of tolerance to high temperature. In: Ashraf M, Harris
PJC (eds) Abiotic stresses: plant resistance through breeding and molecular approaches.
Howarth Press Inc., New York

Hrynkiewicz K, Baum C (2012) The potential of rhizosphere microorganisms to promote the
plant growth in disturbed soils. In: Malik A, Grohmann E (eds) Environmental protection
strategies for sustainable development. Springer, Berlin, pp 35–64

Hussain TM, Chandrasekhar T, Hazara M, Sultan Z, Saleh BK, Gopal GR (2008) Recent
advances in salt stress biology–a review. Biotechnol Mol Biol Rev 3:8–13

Hwang J, Chilton WS, Benson DM (2002) Pyrrolnitrin production by Burkholderia cepacia and
biocontrol of Rhizoctonia stem rot of poinsettia. Biol Control 25:56–63

Iba K (2002) Acclimative response to temperature stress in higher plants: approaches of gene
engineering for temperature tolerance. Annu Rev Plant Biol 53:225–245

Janzen R, Rood S, Dormar J, McGill W (1992) Azospirillum brasilense produces gibberellins in
pure culture and chemically-medium and in co-culture on straw. Soil Biol Biochem
24:1061–1064

Jay PV, Janardan Y, Kavindra NT, Ashok K (2013) Effect of indigenous Mesorhizobium spp. and
plant growth promoting rhizobacteria on yields and nutrients uptake of chickpea (Cicer
arietinum L.) under sustainable agriculture. Ecol Eng 51:282–286

Joo GJ, Kim YM, Lee IJ, Song KS, Rhee IK (2004) Growth promotion of red pepper plug
seedlings and the production of gibberellins by Bacillus cereus Bacillus macroides and
Bacillus pumilus. Biotechnol Lett 26:487–491

Joo GJ, Kim YM, Kim JT, Rhee IK, Kim JH, Lee IJ (2005) Gibberellins-producing rhizobacteria
increase endogenous gibberellins content and promote growth of red peppers. J Microbiol
43:510–515

Joo GJ, Kang SM, Hamayun M, Kim SK, Na CI, Shin DH, Lee IJ (2009) Burkholderia sp. KCTC
11096BP as a newly isolated gibberellin producing bacterium. J Microbiol 47:167–171

Kamilova F, Validov S, Azarova T, Mulders I, Lugtenberg B (2005) Enrichment for enhanced
competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ
Microbiol 7:1809–1817

Kang SM, Joo GJ, Hamayun M, Na CI, Shin DH, Kim HY, Hong JK, Lee IJ (2009) Gibberellin
production and phosphate solubilization by newly isolated strain of Acinetobacter calcoace-
ticus and its effect on plant growth. Biotechnol Lett 31:277–281

Kang SM, Hamayun M, Joo GJ, Khan AL, Kim YH, Kim SK, Jeong HJ, Lee IJ (2010) Effect of
Burkholderia sp. KCTC 11096BP on some physiochemical attributes of cucumber. Eur J Soil
Biol 46:264–268

Kang SM, Khan AL, Muhammad H, Zabta KS, Kim YH, Joo GJ, Lee IJ (2012a) Acinetobacter
calcoaceticus ameliorated plant growth and influenced gibberellins and functional biochem-
ical. Pak J Bot 44(1):365–372

Kang SM, Khan AL, Hamayun M, Hussain J, Joo GJ, You YH, Kim JG, Lee IJ (2012b)
Gibberellin-producing Promicromonospora sp. SE188 improves Solanum lycopersicum plant
growth and influences endogenous plant hormones. J Microbiol 50(6):902–909

Karako S, Aksoz N (2006) Some optimal cultural parameters for gibberellic acid biosynthesis by
Pseudomonas sp. Turk J Biol 30:81–85

Khan AL, Hamayun M, Ahmad N, Hussain J, Kang SM, Kim YH, Adnan M, Tang DH, Waqas
M, Radhakrishnan R, Park ES, Lee IJ (2011) Salinity stress resistance offered by endophytic
fungal interaction between Penicillium minioluteum LHL09 and Glycine max. L. J Microbiol
Biotechnol 21(9):893–902

Kovats E (1958) Gas-chromatographische charakterisierung organischer Verbindungen. Teil 1:
retentionsindices aliphatischer halogenide, alkohole aldehyde und ketone. Helv Chim Acta
41:1915–1932

16 S.-M. Kang et al.
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Chapter 2
Mycorrhizal Fungi to Alleviate Drought
Stress on Plant Growth

Francesca Rapparini and Josep Peñuelas

Introduction

Plants are frequently subjected to different abiotic environmental stresses that
determine geographic distribution and adversely affect growth, development, and
agronomic yield. Drought is one of the major constraints on plant productivity
worldwide and is expected to increase with climatic changes (IPCC 2007 and EEA
2011). The symbiotic relationship between arbuscular mycorrhizal (AM) fungi and
the roots of higher plants is widespread in nature, and several ecophysiological
studies have demonstrated that AM symbiosis is a key component in helping plants
to cope with water stress and in increasing drought resistance, as demonstrated in a
number of host plant and fungal species (Augé 2001; Ruiz-Lozano 2003; Smith
and Read 2008; Ruiz-Lozano and Aroca 2010).

The alleviating effect of AM symbiosis in response to drought generally relies
on the positive effects of AM fungi on the uptake and transport of water and on an
improved uptake of nutrients, especially of available soil phosphorus (P) and other
immobile mineral nutrients, resulting in the hydration of plant tissues, a sustain-
able physiology and a clear promotion of growth (Fig. 2.1; Augé 2001). AM
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symbiosis has a variety of effects on the defensive responses of host plants,
depending on the species of host plant and the AM fungus involved (Bezemer and
van Dam 2005).

Fig. 2.1 Arbuscular mycorrhizal (AM) symbiosis can help plants to cope with the detrimental
effects of soil water deficit acting, directly or indirectly, on plant functionality both above- and
belowground. At the levels of both leaves and roots, the osmotic stress usually caused by drought
is counteracted by mycorrhizal plants through biochemical changes that mostly include increased
biosynthesis of metabolites (mainly proline and sugars) that act as osmolytes. These compounds
contribute to the lowering of the osmotic potential, and in turn, of the leaf water potential. These
lower potentials allow the plants to maintain high organ hydration and turgor that sustain overall
cell physiological activity, mainly related to the photosynthetic machinery. AM plants withstand
drought-induced oxidative stress by the increased production of antioxidant compounds that
scavenge ROS and enhance the activities of antioxidant enzymes. AM root colonization can
enhance root growth, architecture, and hydraulic properties and can thus induce the formation of
a highly functional root system for nutrient/water uptake. At the same time, AM fungal hyphae in
the soil provide an efficient pathway for nutrient/water uptake and transport, allowing a more
efficient exploitation of the water and nutrient reservoirs in the soil where only fungal hyphae can
grow, thereby bypassing the zones of water and nutrient depletion around the roots. Molecular
mechanisms activated by AM symbiosis to counteract drought include gene activation of
functional proteins, such as the membrane transporter aquaporins and, potentially, ion and sugar
transporters, in both roots and fungi. Improved nutrient/water uptake and transport in roots
translates into enhanced hydration of the aboveground organs that in turn affects physiological
and biochemical processes. In addition, AM symbiosis can increase the resistance of plants to
drought through secondary actions such as the improvement of soil structural stability that in turn
increases the retention of soil water
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In addition, the numerous confounding influences and system feedbacks
inherent to the nature of AM symbiosis must be differentiated when describing the
effects of AM on water balance. The AM-mediated response of many physio-
logical and biochemical traits to changes in water availability may be confounded
by concurrent changes in plant growth and nutrient availability (Smith and Read
2008) and can cause some drawbacks that limit our ability to clearly understand
how AM fungi enable drought resistance in plants.

The comparison of plants of similar size and nutritional status is thus recog-
nized as a fair requirement when evaluating the function of AM fungi during
drought stress. Extensive study has demonstrated AM-mediated plant resistance to
drought conditions, but the underlying mechanisms have not yet been clearly
elucidated. Our incomplete understanding of how AM symbiosis affects the ability
of plants to withstand conditions of limited water represents an important chal-
lenge to meeting the goal of improved plant productivity under the projected
critical global scenarios.

AM-Mediated Plant Strategies to Cope with Drought:
Avoidance Versus Tolerance

Despite the large variability in the effects of water stress on plants, they are able to
respond to drought through two major strategies: avoidance of water stress and
drought tolerance (Bray 1997). According to accepted terminology (Levitt 1980;
Ludlow 1989; Turner 1997), plants can be classified as drought avoiders or as
drought tolerant based on the absolute value of leaf water potential: drought
avoidance allows the plant to withstand water-limiting conditions by maintaining a
higher water status, mainly through enhanced water uptake and/or minimized
water loss; tolerance to dehydration is associated with survival and sustained
physiological activity when the leaf water potential is low, resulting in the ability
of leaves to endure dehydration.

AM symbiosis protects host plants against the detrimental effects of drought
stress through mechanisms of drought avoidance (Augé 2001; Ruiz-Sanchez et al.
2010). Strategies of drought avoidance in mycorrhizal plants rely on the ability to
maintain an adequate hydration status on the level of whole plants as characterized
by relative water content, although a thorough review of the literature indicates
that leaf water potential was not measured in some experiments (Augé 2001; Augé
and Moore 2005).

The improved capability of drought avoidance mediated by AM colonization
has often been associated with the AM promotion of plant growth through
enhanced nutrition. However, when not considering shoot size and nutritional
effects, the influence of AM symbiosis on leaf hydration, mainly via the increased
water uptake characteristic of mycorrhizal plants, may be the basis for their
improved drought resistance. On top of being drought avoiders, mycorrhizal plants
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have also been characterized as drought tolerant, mainly because of more
improved osmotic adjustment, which allows the hydration and turgor of leaves to
be sustained when leaf water potentials are low.

This distinction between drought strategies related to the AM-mediated
responses of plants is fundamental for a better comprehension of the ecological
and agricultural consequences for a plant species, because the AM-mediated
response to drought is a complex process involving numerous metabolites and
metabolic pathways. Studies to date investigating the role of AM symbiosis in
ameliorating plant responses to drought stress have suggested the up-regulation
and down-regulation of several physiological and biochemical processes. (1) The
direct uptake and transfer of water and nutrients by AM fungi, (2) increased
osmotic adjustment, (3) enhanced gas exchange and water use efficiency, and (4)
better protection against oxidative damage when water is limiting may ameliorate,
mitigate, and compensate the negative impacts of water stress in mycorrhizal
plants.

Augé (2001) compiled a comprehensive review of the literature covering
subjects such as plant strategies for controlling water status under drought and the
metabolic processes underlying responses of mycorrhizal plants to oxidative stress.
Ruiz-Lozano (2003) reviewed several aspects in need of investigation at the
molecular level for understanding the different mechanisms by which AM sym-
biosis protects host plants from the detrimental effects of water deficit in terms of
osmotic stress. These authors have provided new perspectives for molecular
studies that could contribute to a global understanding of the different mechanisms
by which AM symbiosis protects host plants against water deficit. Progress has
also been made on the interpretation of the relationships between the different
pathways regulated by the host plant or by the AM symbiotic relationship (Smith
et al. 2010).

The aim of the present review is to outline the recent advances in the study of
drought resistance by AM symbiosis with a particular focus on nutrient and water
uptake/transport and on the lesser-known protective metabolites.

Biochemical–Metabolomic Responses of AM Plants
to Drought

Role of Metabolic Changes in Osmoregulation

When water is limiting, decreased stomatal conductance and increased diffusive
resistance to CO2 could lead to increased plant water potential. To maintain water
uptake from the soil, though, the water potential must be reduced. To achieve such
an effect, plants can rely on mechanisms of ‘osmotic adjustment’ or ‘osmoregu-
lation’ that decrease the osmotic potential resulting from the accumulation of
compatible solutes or osmolytes (Munns 1988; Serraj and Sinclair 2002).
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Osmolytic accumulation in plant cells can act as a mechanism of osmotic
adjustment for decreasing the cellular osmotic potential and thus for maintaining
water absorption and turgor. Osmolytic accumulation can also protect cellular
components, such as cell membranes and proteins, and sustain the physiological
activity of plants (Serraj and Sinclair 2002).

The accumulation of metabolites alone, however, may not always be sufficient
to account for their effect on osmotic adjustment under drought stress. An alter-
native role for osmolytes as scavengers of reactive oxygen species (ROS) has been
suggested (Hoekstra et al. 2001). Typical metabolites that can prevent the negative
effects of drought include amino acids such as proline, other nitrogenous com-
pounds such as polyamines, and a wide range of sugars and alcohol sugars. AM-
mediated biochemical changes under conditions of drought stress principally
involve the accumulation of protective metabolites such as osmolytes.

The colonization of roots by AM fungi in various plant species induces proline
accumulation when water is limiting (Ruiz-Lozano et al. 1995; Azcón et al. 1996;
Goiochea et al. 1998; Yooyongwech et al. 2013). The enhanced accumulation of
proline in these studies was linked to AM-induced drought resistance with proline
acting as osmoprotectant. Conversely, in several studies, while proline content
increased in response to water deficit, a lower accumulation of proline has been
observed in mycorrhizal plants relative to nonmycorrhizal counterparts (Ruiz-
Lozano and Azcón 1997; Wu and Xia 2006; Aroca et al. 2008; Ruiz-Sánchez et al.
2010; Abbaspour et al. 2012; Fan and Liu 2011; Asrar et al. 2012; Doubková et al.
2013), suggesting that AM symbiosis enhanced host plant resistance to drought.

In fact, proline could also be considered as a marker of the potential injury
caused by water deficit, indicating that mycorrhizal plants, characterized by lower
proline accumulation, were less stressed than the nonmycorrhizal plants. Fur-
thermore, proline can act as an effective scavenger of ROS in the protection
against denaturation and in the stabilization of membranes and subcellular struc-
tures (Kishor et al. 2005). The levels of free polyamines, other soluble nitrogenous
compounds, increased in the leaves of drought-stressed mycorrhizal plants, and
this increase was interpreted as indicating that free polyamines could serve as
osmoprotectants under drought conditions, conferring drought resistance to
mycorrhizal plants (Goicoechea et al. 1998).

AM symbiosis can increase the drought tolerance of plants if the commonly
observed higher rates of photosynthesis lead to an increased accumulation of
nonstructural carbohydrates that, acting as osmoprotectants, can lower the osmotic
potential (Augé 2001; Porcel and Ruiz-Lozano 2004; Khalvati et al. 2005). Several
studies have reported the accumulation of carbohydrates when plants are subjected
to water stress in both woody species such as Citrus (Wu and Xia 2006) and
Macadamia cultivars (Yooyongwech et al. 2013) and in herbaceous species such
as lettuce cultivars (Baslam and Goicoechea 2012) and pistachio (Abbaspour et al.
2012). Carbohydrate accumulation in these studies was correlated with improved
plant performance under drought stress, but the leaf osmotic potential was not
evaluated; so correlating changes in carbohydrate levels with differential capacities
of osmoregulation in mycorrhizal plants was thus not possible.
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In addition, other reports have observed an AM-mediated decrease in soluble
sugars in Erythrina variegata (Monoharan et al. 2010) and Casuarina equisetifolia
(Zhang et al. 2010) exposed to drought stress, and this pattern was correlated with
lower amounts of drought injury in the host plant. Furthermore, considering the
positive mycorrhizal effect on plant growth, transport to sink organs and higher
turnover rates of carbohydrates are likely to occur and suggest that the increased
net assimilation rates do not necessarily indicate the accumulation of carbohy-
drates. In addition to the dynamic balance between the demands of growth and
osmotic adjustment, another significantly relevant and competitive sink for car-
bohydrates is represented by the AM fungi themselves, which commonly drain
photosynthate from the plants.

New insights are emerging into the regulation of uptake, exchange, and com-
petition for carbohydrates by membrane transporters at the cellular plant–fungus
(symbiotic) interface (see review by Doidy et al. 2012). Genes encoding transport
proteins specific to the uptake of sucrose and hexoses have been identified by
transcriptomic and genomic analyses at the AM symbiotic interface, in both plants
and fungi (Doidy et al. 2012). The future application of combined physiological
and molecular genetic approaches will open promising perspectives for a better
understanding of the regulatory role of sugar transporters in the partitioning and
allocation of carbohydrates between plants and AM fungi and hence of the effects
of AM symbiosis in response to environmental limiting conditions, such as
drought.

The above findings support the assessment that the direct measurement of
physiological parameters such as soil and/or leaf water potential and turgor are
fundamental for clearly interpreting the significance of AM-induced biochemical
changes and for unambiguously interpreting the data (Augé 2001). Changes in
metabolite levels could then be more confidently attributed to the strategies of
drought tolerance or avoidance. Decreases in osmolytes have previously been
interpreted as a mechanism of drought avoidance, while accumulation of osmo-
protectants has been associated with drought tolerance (Augè and Moore 2005,
2010; Ruiz-Sánchez et al. 2010). Metabolic profiling of plants exposed to stress
conditions is an important tool for studying stress-induced changes in metabolites,
including osmolytes, but we lack knowledge of the regulation of the genes
encoding enzymes of the osmolytic biosynthetic pathway.

Protection Against Oxidative Stress: Antioxidant Metabolites

Protection against oxidative damage by various antioxidants is another funda-
mental mechanism that can enhance drought resistance in mycorrhizal plants
(Ruiz-Lozano 2003). Drought involves the production of excess ROS, such as
singlet oxygen, superoxides, hydrogen peroxide, and hydroxyl radicals, leading to
cell damage or death (Smirnoff 1993). Plants are characterized by a complex
response network of antioxidant compounds and enzymes that defend plant cells
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against excess ROS. Direct reactions can quench ROS activity, as can indirect
responses such as hormone-mediated signaling to up-regulate primary and activate
secondary defense genes (see review Apel and Hirt 2004; Kwak et al. 2006).

Oxidative stress occurs when the antioxidant defense system is overloaded and
is unable to maintain an adequate cellular redox balance. The antioxidant system
includes both enzymatic (e.g., superoxide dismutases, ascorbate peroxidases, and
catalases) and nonenzymatic molecules (e.g., ascorbate, glutathione, flavonoids,
carotenoids, and tocopherols; Mittler 2002). Antioxidants act not only as direct
ROS scavengers but also as key sensors of the cellular redox status, so they trigger
a number of signaling events for tightly controlling cellular ROS levels.

The amelioration of stress resistance by AM symbiosis is often related to the
enhancement of antioxidant levels or activities in plants (Wu et al. 2006a, b; Wu
and Zou 2009; Ruiz-Sánchez et al. 2010; Baslam and Goicoechea 2012). Ruiz-
Sánchez et al. (2010) found that AM symbiosis ameliorated the response of plants
to drought by improving photosynthetic performance but mainly through the
accumulation of the antioxidant compound glutathione, which was concomitant
with a reduction in oxidative damage to membrane lipids and to low cellular levels
of hydrogen peroxide. In the same study, while glutathione levels increased,
ascorbate levels decreased in mycorrhizal plants compared to nonmycorrhizal
counterparts. This comprehensive study further supports the premise that mycor-
rhizal protection against drought-induced oxidative stress may be a crucial
mechanism by which AM symbiosis increases the resistance of host plants to
drought (Ruiz-Lozano 2003). In addition, it suggests differential up-regulation of
the various antioxidant systems, with preferential activation of the systems that are
more effective in protecting plants against drought. As already discussed in the
case of changes in proline levels in response to drought, these antioxidant com-
pounds can also be viewed as markers of drought stress: low accumulations of both
glutathione and ascorbate in mycorrhizal plants of lavender under drought con-
ditions were correlated with a high level of resistance to plant drought (Marulanda
et al. 2007).

Among other potential ROS scavengers, flavonoids might also play a role in
protecting mycorrhizal plants against oxidative damage: AM-mediated increases
in the amounts of these compounds were sometimes found when plants were
exposed to drought conditions (Abbaspour et al. 2012). Several studies suggest
that AM symbiosis helps plants to alleviate drought stress by enhancing the
activities of antioxidant enzymes, such as superoxide dismutase, guaiacol perox-
idase, peroxidase, and catalase (Ruiz-Lozano et al. 1996; Wu and Zou 2009).
Increased activity of superoxide dismutase was confirmed by transcriptomic
analysis of the genes encoding this enzyme (Ruiz-Lozano et al. 2001). Protection
against drought stress in soybean plants may originate from an enhanced activity
of glutathione reductase concomitant with lower glutathione levels and decreased
oxidative damage to biomolecules (Porcel et al. 2003; Ruiz-Lozano et al. 2001).
Increases in the activities of several antioxidant enzymes induced by mycorrhizae
have been associated with an AM-mediated enhancement in photosynthetic
activity, plant biomass, and nutrient status (Alguacil et al. 2003; Roldán et al.
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2008). The response of the specific antioxidant compound or enzyme, however,
may depend on the host plant and the fungal species.

Even though most research on plant antioxidants has focused on nonvolatile
compounds, volatile organic compounds emitted by leaves may contribute to an
additional protective system against abiotic stresses (Kesselmeier and Staudt 1999;
Peñuelas and Munné-Bosch 2005). Accumulating evidence supports the hypoth-
esized role of volatile isoprenoids, in particular isoprene, in the protection against
oxidative stress by mediating the oxidative status of plants through direct ROS
scavenging, indirect alteration of ROS signaling, and/or membrane stabilization
during abiotic stress, including drought (Peñuelas and Munné-Bosch 2005;
Vickers et al. 2009).

Many plants that form AM mycorrhizae emit isoprenoids involved in the
protection against several stresses, but the contribution of the mycorrhizae to the
production of isoprenoids by plants has been scarcely investigated, especially
under drought stress (Rapparini et al. 2008; Asensio et al. 2012). Moreover, the
roots of mycorrhizal plants produce high amounts of specific isoprenoid-derived
apocarotenoids (Walter and Strack 2011) and strigolactones (Lopez-Ráez et al.
2008).

We recently tested whether AM symbiosis affected the allocation of carbon
resources to different classes of isoprenoids such as the volatile nonessential iso-
prenoids (monoterpenes and sesquiterpenes) and the nonvolatile essential isopre-
noids (abscisic acid (ABA), chlorophylls, and carotenoids; Asensio et al. 2012).
By subjecting tomato plants to stressors such as drought and to an exogenous
application of jasmonic acid, we examined the AM symbiotic interaction in
conditions where isoprenoids usually play a role in resistance to stress and in plant
defense. Our results suggested that mycorrhizal plants use complex feedback
responses associated with the activation of different pathways of isoprenoid pro-
duction. Root colonization favored the production of essential rather than nones-
sential isoprenoids, especially under conditions of drought stress or after the
application of jasmonic acid. In an overall view of the mycorrhizal plant system,
carotenoids are both a sink of the universal precursors of isoprenoids and a con-
comitant source of important growth regulators such as apocarotenoids, ABA, and
strigolactones, which are specifically produced when plant roots are colonized by
AM fungi (Bouwmeester et al. 2007; Cazzonelli and Pogson 2010). We, accord-
ingly, proposed that a more important demand of carotenoid-derived compounds
and pigments is expected to increase in AM plants, especially under stress con-
ditions where these isoprenoid compounds might play a role in plant protection
and defense. The accumulation of carotenoids has also been found in lettuce plants
(Baslam and Goichoechea 2012). Increased production of strigolactones in host
plants during nutrient deficiency and salt stress (Yoneyama et al. 2007; Lopez-
Ráez et al. 2008; Aroca et al. 2013) promoted AM fungal development and
symbiotic establishment, suggesting a potential function of these compounds in
enabling plants to overcome these abiotic constraints.
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Physiological Responses of AM Plants to Drought

Aboveground Processes Affecting Plant–Water Relations

The physiological effects of AM symbiosis include aboveground modifications of
water relations and physiological status in terms of leaf water potential, relative
water content, stomatal conductance, CO2 assimilation, and efficiency of photo-
system II as compared to nonmycorrhizal plants (Augé 2001; Barzana et al. 2012).
Many studies have shown an enhancement of the rates of gas exchange (stomatal
conductance, transpiration, and photosynthetic rates) in mycorrhizal plants over
nonmycorrhizal counterparts under water-limited conditions, independently of
growth- or nutrition-mediated effects (see review Augé 2001; Ruiz-Lozano 2003;
Sanchez-Blanco et al. 2004; Khalvati et al. 2005; Lee et al. 2012).

The mechanism by which AM symbiosis affects these physiological parameters
is still unclear. The role played by ABA has been suggested as one of the nonnu-
tritional mediated mechanisms by which AM symbiosis influence stomatal
conductance and other physiological traits when plants are drought stressed
(Ludwig-Müller 2010). In support of this hypothesis, recent studies have shown that
ABA levels increased in response to water deficit and increased more in nonmy-
corrhizal plants than in mycorrhizal plants, suggesting that AM plants experience
less intense drought stress (Doubková et al. 2013). Furthermore, these physiological
processes may vary depending on host plant and especially on fungal species. Both
stomatal conductance and photosynthesis varied widely during drought depending
on the AM fungal species, even when comparing plants of similar size.

Several studies have reported that gas exchange in host plants is often related to
the effect of AM symbiosis on the hydration of leaves (Augé 2001). Despite the
numerous findings showing the positive effects of AM symbiosis on foliar gas
exchange, the influence of these processes on leaf water potential in mycorrhizal
plants subjected to drought is still unclear. In several studies, leaf water potential
did not differ between mycorrhizal and nonmycorrhizal plants under drought stress
(Augé 2001). Nevertheless, recent studies have demonstrated a higher (less neg-
ative) leaf water potential in mycorrhizal plants in water-limited conditions, which
was interpreted as an AM-mediated mechanism of avoidance to mitigate the
negative impact of drought on plant growth (Porcel and Ruiz-Lozano 2004; Asrar
et al. 2012).

Leaf water potential is recognized as an index of the water status of an entire
plant and hence represents a fundamental trait revealing a potentially improved
resistance of plants to drought through better hydration. Hence, measurements of
water use efficiency (WUE) provide an integrated measure of plant water use and
thus allow a further dissection of the plant–water relations of mycorrhizal plants
when water is limiting.

The extensive survey of the literature by Augé (2001) covered repeated
attempts to examine the impacts of AM symbiosis on WUE. At the time these
studies were conducted, however, the response in WUE was highly variable under
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water stress: increases or decreases in WUE with AM symbiosis were observed. A
sampling of the recent literature confirmed this variable response, showing an
increase in WUE in Antirrhinum majus L. (Asrar et al. 2012) and the lack of a
positive AM effect on this trait in Knautia arvensis during drought (Doubkóva
et al. 2012).

A large part of plant resistance to drought is the ability to manage excess
radiation resulting from limitation of photosynthesis by drought (for a review see
Chaves et al. 2003) and reduced CO2 availability leading to an inefficient use of
incident light and to an increased susceptibility to photodamage (Powles 1984).
Photoprotective mechanisms regulate the excitation energy that reaches the
reaction centers of the photosystem by the dissipation of thermal energy (Demmig-
Adams and Demmig 2006); the mechanisms also scavenge oxidative molecules
and repair oxidative damage (Fernandez-Marın et al. 2009).

Recent reports have indicated that AM symbiosis under drought conditions
enhances the photochemical efficiency of photosystem II, given by Fv/Fm,
assessed by chlorophyll fluorescence in rice plants (Ruiz-Sánchez et al. 2011) and
in woody tree nut species (Yooyongwech et al. 2013). Such results indicate the
improved performance of the photosynthetic machinery and the absence of pho-
toinhibition when mycorrhizal plants were exposed to water deficit. These findings
are consistent with those of another recent study investigating the effect of root
inoculation of different tree species with a combination of both AM and ecto-
mycorrhizal fungi (Fini et al. 2011). The dynamics of photosystemic function and
the potential forms of thermal dissipation, including those regulated by xantho-
phylls, however, have not yet been studied in detail.

Belowground Role of Root Systems and AM Fungi

Drought resistance in plants is strongly affected by their nutritional status. Soil–
water deficit is tightly linked to low nutrient availability and to poor soil structure,
so various hypotheses have been formulated to explain the underlying plant
nutrition mechanisms involved in AM-induced resistance to drought. Improved
nutrient uptake by AM fungi is a fundamental mechanism that can alleviate the
adverse effects of water stress on plant growth.

One of the most common explanations for the improved nutrient status in
mycorrhizal plants is the enhanced absorbing surface provided by the hyphae in
the soil together with the ability of fungi to take up water from soil with low water
potential (Augé 2001; Ruiz-Lozano 2003). The diameter size of hyphae (2–5 lm)
is one or two times smaller than the diameter size of roots (10–20 lm), a trait
conferring the ability to access very small soil pores that retain water and nutrients
as soil dries. This allows to bypass the zones of water and nutrient depletion
around the roots and, thus, a more extensive exploration of the soil (Miransari et al.
2007; Smith et al. 2010, 2011) that in turn may induce dense growth of roots
(Miransari et al. 2007; Subramanian et al. 2006).
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AM symbiosis is considered the most common strategy for enhancing P
availability in the soil or P uptake capacity (Smith et al. 2011). Recent findings
have provided new evidence for the contribution of the two well-recognized
pathways (roots and fungal hyphae) by which P can be absorbed in mycorrhizal
plants. These results suggest a pivotal role of a ‘hidden P uptake’ into plants via
the AM fungal pathway (AM fungal hyphae; Smith et al. 2011), including when
mycorrhizal plants experience conditions of drought stress (Smith et al. 2010). The
authors suggested that the AM pathway may be active in P uptake even in plants
that do not grow during drought conditions.

The relative contribution of the AM pathway to P uptake by plants and hence the
contribution of direct uptake by roots under water stress has not yet been estimated.
New molecular genetic studies investigating the expression of genes encoding high-
affinity P transporters in the root cells of mycorrhizal plants will provide further
information on the functional relevance of the direct pathway in P uptake and on the
interplay of these two pathways of P uptake in AM plants when exposed to envi-
ronmental conditions of stress (Smith et al. 2009; Smith and Smith 2011).

The fundamental contribution of P nutrition in the promotion of plant growth by
AM symbiosis is well documented, but little information is available on the role of
nitrogen (N) nutrition in the AM-mediated responses of plants to environmental
limiting conditions, including drought. Even though few studies have investigated
N uptake, an increased uptake of ammonium by fungal hyphae and the significant
transfer of N from the fungus to the roots have been demonstrated (He et al. 2003),
especially under drought conditions (Subramanian and Charest 1999). This
increase was concomitant with increased activities of the main N-assimilating
enzymes (Ruiz-Lozano and Azcón 1996).

Improved N uptake and assimilation have been associated with enhanced P
nutritional status or is independent of P nutrition (Ruiz-Lozano and Azcón 1996).
A recent review (Smith and Smith 2011) suggested that mycorrhizal plants could
benefit from N uptake and transfer to the roots via the AM fungal pathway when
exposed to water-limited conditions. Lee et al. (2012) recently investigated the
role of N uptake and assimilation in the promotion of AM-mediated growth of
perennial ryegrass using an N-labeled tracing technique. They found that AM
symbiosis improved plant fitness under drought mainly by improving the plant
water status and N uptake that, together with an enhancement of the activities of
N-assimilating enzymes, resulted in increased amounts of proteins and amino
acids.

The role of AM fungal hyphae in water uptake when water is limiting, as with P
uptake, is still a matter of debate (Augé 2001; Smith et al. 2010). Difficulties in
clearly interpreting the physiological and biochemical outcomes of AM symbiosis
under drought conditions are due to the nature of AM symbiosis, because differ-
entiating the effects of roots alone or of AM fungi alone from their combined
effects is difficult (Ruth et al. 2011). This distinction becomes crucial when
investigating the plant–fungus water relations where isolating the direct effect of
AM symbiosis and understanding the real contribution of the AM fungi to the
water balance of entire plants are also difficult. Specialized compartmented pot
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systems have been designed for separating whole plants, including the root system,
from the hyphal structure, but only a few attempts have been made to estimate the
relative contribution of AM fungi to the total water uptake of the plant and the bulk
flow velocity within the hyphae (Faber et al. 1991; Ruiz-Lozano and Azcón 1995).

In a recent study on barley plants inoculated with Glomus intraradices, Ruth
et al. (2011) used a compartmented ‘split plant-hyphal’ chamber together with a
specifically adapted online system for monitoring the soil water content to provide
an accurate estimate of the water content of the two compartments and thus to
derive the hyphal water flow. They monitored the presence of the water flow in the
fungal hyphae and estimated the hyphal water flow at approximately 20 % of the
total water uptake of the plant. These findings are consistent with earlier results
that suggested a direct uptake and transfer to the host plants via the AM hyphae
(Ruiz-Lozano and Azcón 1995; Marulanda et al. 2003; Khalvati et al. 2005),
confirm previous estimates of the hyphal water flow (Faber et al. 1991; Cui and
Nobel 1992) and support the premise of a significant contribution of fungal hyphae
to plant water uptake (Allen 1982; Ruiz-Lozano and Azcón 1995). Discrepancies
with other studies that found a low (Khalvati et al. 2005) or negligible contribution
of the hyphae to the water balance of the plant (Cooper and Tinker 1981; Fitter
1985; George et al. 1992; Koide 1993) may be due to functional differences in the
experimental designs of the compartmented systems.

In light of the enhanced water uptake by AM symbiosis during drought from
improved P nutrition or growth, both of these mechanisms may also affect root
hydraulic conductivity (Koide 1993). The hydration of leaves is indeed caused by
the balance between the transpiration stream and water uptake by roots. AM
symbiosis improves the plant water content by regulating the properties of plant
hydraulics, including root hydraulic conductivity, although some authors have
reported an enhanced (Sanchez-Blanco et al. 2004; Aroca et al. 2008) or reduced
(Aroca et al. 2007; Ruiz-Lozano et al. 2009) effect of AM fungi on this trait. The
role of the membrane transporter aquaporins in root hydraulic conductivity at the
cellular level and their contributions to the transpiration stream have been inves-
tigated (Conner et al. 2013; Maurel et al. 2008) and will be discussed in the next
section.

In addition to the effects of AM symbiosis on plant–water relations where AM
fungi act independently and directly on nutrient and water uptake, AM symbiosis
could increase drought resistance in plants through secondary actions such as the
improvement of soil structural stability that in turn increases the retention of soil
water (Augé 2001; Ruiz-Lozano 2003). AM fungal hyphae can enhance soil
structure through the entanglement of soil particles to form aggregates and through
the production of the glycoprotein glomalin (Rillig and Mummey 2006; Singh
et al. 2011). AM fungi, in part due to their filamentous structure, also influence the
development of soil structure both in the rhizosphere and in bulk soil (Miransari
et al. 2007).

Augé et al. (2001) reported that the soil in which mycorrhizal plants were
grown was characterized by more water-stable aggregates and substantially higher
extraradical hyphal densities than the soils of nonmycorrhizal plants, and this
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pattern correlated well with the improved retention of moisture of the mycorrhizal
soil. By binding roots to the soil, fungal hyphae may even maintain liquid con-
tinuity and limit the loss of hydraulic conductivity caused by air gaps (Augé 2001;
Augé et al. 2001).

New Insights into the Molecular Genetic Basis of Water
Relations in AM Symbiosis Under Drought: Membrane-
Protein Water Transporters

The physiological responses of mycorrhizal plants to drought stress can be regu-
lated by the expression of drought-related plant genes, e.g., those involved in
signaling and regulatory pathways or those encoding enzymes that synthesize
functional or structural metabolites. Emerging insights are provided by studies on
the regulation of important genes that encode significant components of the cel-
lular water transport system, such as the aquaporins. These components are
membrane proteins that channel water, uncharged molecules, across cell mem-
branes in both roots and leaves (Conner et al. 2013; Maurel et al. 2008). These
proteins may even increase root hydraulic conductivity and leaf water potential
and decrease the transpiration rate in the leaves of mycorrhizal plants (Ruiz-
Lozano et al. 2006, 2009; Aroca et al. 2008).

Both regulation and activity of aquaporin genes are modulated by conditions of
water stress and thus have a potential role in the symbiotic exchange of water and
nutrients between AM partners. Aquaporins are generally considered to be
involved in the processes of symbiotic exchange at the plant–fungus interface,
suggesting a fine regulation of water relations and the determination of the
transport properties of the two partners (Maurel and Plassard 2011).

AM regulation of plant aquaporin genes under drought stress generally
improves plant water status and drought tolerance (Aroca et al. 2007; Aroca and
Ruiz-Lozano 2009; Li et al. 2012). In particular, the expression of genes encoding
aquaporins has been demonstrated (Uehlein et al. 2007), and an aquaporin has
been identified in AM fungal structures, both in the periarbuscular membrane and
the extraradical mycelia (Aroca et al. 2009; Li et al. 2012). Both plant and fungal
aquaporins are affected by stresses, including drought (Uehlein et al. 2007; Aroca
et al. 2009; Li et al. 2012).

A relevant decrease in the expression of aquaporin genes in mycorrhizal plants
compared to nonmycorrhizal plants has been observed under conditions of drought
stress (Porcel et al. 2006 and Aroca et al. 2007), but other properties of these
membrane proteins may also play a relevant role in the overall water relations of
AM plants when water is limiting. An earlier study in Phaseolus vulgaris inocu-
lated with G. intraradices found the commonly observed positive AM-mediated
effect on plant water content but also found different effects of AM plant responses
to drought on the regulation of aquaporins (Aroca et al. 2007). The authors
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observed a lower expression of aquaporin genes in roots of mycorrhizal plants
compared to nonmycorrhizal plants under drought conditions, suggesting that a
mechanism of water conservation was employed by the AM plants. In the same
experiment, AM symbiosis did not affect the phosphorylation state and amount of
aquaporins and in particular the abundance of those proteins more functionally
active in water transport, and this pattern was associated with a concomitant
decrease in root hydraulic conductivity and foliar transpiration rates. The regu-
lation of root hydraulic properties by AM symbiosis was strongly correlated with
the regulation of aquaporin levels and phosphorylation state, and the authors
suggested that down-regulating the activity of these proteins might provide a better
explanation for these changes during water deficit. The drought-induced decrease
in the transpiration stream observed in Phaseolus mycorrhizal plants, however,
was concomitant with an increased free exuded sap flow, suggesting a higher water
uptake from the soil in mycorrhizal plants compared to nonmycorrhizal plants
under water-limited conditions and explaining the overall AM-improved water
status (Aroca et al. 2007).

Li et al. (2012), however, recently reported an enhanced expression of two
functional genes encoding aquaporins in both the roots of maize plants and in AM
fungi when plants were subjected to drought stress. Since this pattern was con-
comitant with protein accumulation and a significant increase in root water con-
tent, the authors suggested that AM fungi improved plant water status by
regulating the expression and activity of aquaporins in both plants and fungi.
These studies provide molecular support for potential water transport via AM
fungi to the host plant, suggesting that the simultaneous regulation of both
expression and activity of aquaporins in host plants and fungi might represent a
mechanism for enhancing plant tolerance to drought.

Another recent study used an appropriate inhibitor of aquaporin activity and an
apoplastic tracer dye to separately measure the flow of water through the apo-
plastic pathway and via the root aquaporins (‘cell-to-cell’ pathway; Bárzana et al.
2012). The authors found an enhanced apoplastic water flow in the mycorrhizal
roots that was competitive to the ‘cell-to-cell’ pathway during drought stress. The
ability of AM plants to switch between the two transport pathways has thus been
hypothesized as a mechanism that confers a higher flexibility in drought responses
compared to nonmycorrhizal plants.

The mechanisms of nutrient exchange between the symbionts are not well
defined, so the study of these membrane proteins should also provide a better
understanding of the preferred mechanism of nutrient exchange in this symbiotic
association. Recent findings suggest a potential involvement of the aquaporins
themselves. Uehelin et al. (2007) identified various transmembrane aquaporins in
the periarbuscular membranes of Medicago truncatula and found an AM-induced
expression of specific aquaporin genes. They also suggested that aquaporins could
act as low-affinity transporters of ammonia and/or ammonium. Further research is
evidently necessary to fully understand the contribution of aquaporin genes to the
enhanced drought resistance of AM plants.
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Ecological Effects of AM Symbiosis: Ecosystem Services

Plants in ecosystems perform a series of functions (defined as ‘ecosystem ser-
vices’) that are beneficial to the well-being of humans, providing multiple
resources and processes (Daily 1997). Trade-offs and links between plants and soil
microbial communities can act as drivers of a wide range of processes in eco-
systems (Lavorel 2013 and Grigulis et al. 2013). Given the beneficial functions of
AM fungi on plant fitness, resilience against environmental stresses, nutrient
cycling, and soil quality, AM symbiosis is now recognized to play a fundamental
role as a provider of ecosystem services.

Various ecosystem services delivered by AM have been identified: biofertil-
ization from the AM promotion of plant growth, which in turn reduces fertilizer
requirements, stabilization of soil structure, and bioregulation consequent to the
plant metabolic modifications by AM fungi (Gianinazzi et al. 2010). Linking
functional traits of plants and soil microbes, such as AM fungi, with their delivery
of multiple ecosystem services is currently considered a rational mean for
assessing the functioning of a given ecosystem (De Bello et al. 2010).

Less attention, however, has been given to beneficial soil organisms in general
and AM in particular and their influence on the processes of ecosystems that
contribute to the ecosystem services in agroecology. In this context, Gianinazzi
et al. (2010) recently examined several aspects of plant–AM combinations that
should be investigated further for appropriately managing the contribution of
mycorrhizal fungi to ecosystem services and thus for optimizing the impact of
these beneficial organisms while guaranteeing plant productivity and quality in
agrosystems. The positive effect of AM on the ability of plants to counteract the
conditions of drought confers to AM a pivotal role as a valuable technology not
only for the sustainability of agricultural systems, but also for the restoration of
degraded natural arid and semi-arid areas, where multiple environmental stresses,
including drought, occur (Gianinazzi et al. 2010; Barea et al. 2011).

In light of the assessment of the multiple ecosystem services provided by AM,
critical advances are required for elucidating the functional importance and value
of plant and mycorrhizal diversity that are necessary for the functioning of eco-
systems. These are also required for clarify the links among plant traits and their
associated AM fungal characteristics to quantify the contribution of plant–AM
fungi associations to ecosystem services under various environmental constraints
(Barea et al. 2011; Grigulis et al. 2013; Lavorel 2013).

The role of AM symbiosis in the functional traits of both plants and microbes
that could characterize above- and belowground ecosystem services has not yet
been explored. Despite the recent advance in knowledge on mycorrhizal func-
tioning, further research is necessary to better understand the significance and
value of AM symbiosis in delivering ecosystem services in both agrosystems and
natural environments.
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An appropriate assessment of plant–AM feedbacks is therefore essential for
predicting the effects of environmental constraints such as drought on ecosystem
processes and, thus, for the provision of ecosystem services. Various advanced
approaches can provide new insight to this field. The application of a trait-based
approach to both plant and AM fungal communities represents a promising
opportunity to understand how functional AM feedbacks between plant and AM
fungi translate into interactions between ecosystem services (Lavorel 2013).

The new field of system biology that investigates plants at an ecological level,
including all relationships and networks of plant communities, benefits from the
different ‘omic’ technologies, from transcriptomics to proteomics, functional
genomics, and metabolomics. New advances are represented by the emerging
‘ecometabolomic’ approach that aims to dissect the global metabolomic response
of an organism to environmental changes (Sardans et al. 2011; Peñuelas et al.
2013). In particular, this new ‘omic’ system will allow the detection of the main
metabolic pathways responsible for organismic responses and could provide
improved knowledge of plant and mycorrhizal genes and their regulatory networks
involved in the responses.

These integrated studies should provide the possibility of extrapolating plant
responses from individual components to the level of ecosystems and of taking a
step forward in our knowledge of the mechanisms and processes underlying the
changes in resource use under future global change (Peñuelas et al. 2013). These
pioneering approaches provide interesting perspectives and a very valuable
framework for further studies focusing on integrated analyses of the effects of AM
symbiosis under abiotic constraints for better quantifying the ecosystem services
delivered by symbiosis, which has important implications for ecosystems in water-
limited environments under future climatic changes.

Concluding Remarks

To summarize, mycorrhizal plants employ various protective mechanisms to
counteract drought stress. Considerable progress has been made in understanding
the role of AM symbiosis in conferring drought resistance to plants, but different
aspects still require attention for unraveling novel metabolites and hidden meta-
bolic pathways. The accumulated physiological, biochemical, and molecular data
based on classical approaches will benefit from the various ‘omic’ techniques and
their combinations. An in-depth investigation using the advanced methodologies
could help to elucidate the mechanisms of drought avoidance and/or tolerance
induced by AM symbiosis and to discriminate the drought-induced processes of
the protective mechanisms regulated by AM symbiosis.
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Chapter 3
Role of Arbuscular Mycorrhizal Fungi
in Alleviation of Acidity Stress on Plant
Growth

Thangavelu Muthukumar, Perumalsamy Priyadharsini,
Eswaranpillai Uma, Sarah Jaison and Radha Raman Pandey

Introduction

A large number of abiotic and biotic factors influence the establishment, health, and
productivity of plants in both natural and agroecosystems. Among these, soil factors
influence various plant processes to a greater extent since soil is the natural sub-
strate for plants to anchor and take up nutrients and water. Around 30–40 % of the
1.44 billion ha arable land worldwide has suboptimal conditions for crop growth
and thus has an adverse influence on agriculture (FAO 1992). Soil fertility is one of
the major determinants for plant growth in both natural and agricultural ecosystems.

The adverse effects of soil fertility on plant growth and yield are mainly due to
the deficiency of one or more essential nutrients necessary for plant growth.
Factors such as acidity, alkalinity, salinity, erosion, and farming practices are the
main causes for the decline in the availability of nutrients in the soil. Among the
various factors that influence soil fertility, soil acidity is an important factor
affecting plant growth worldwide (Iqbal 2012).

Soil pH is a highly sensitive factor, as it determines plant’s survival, distribu-
tion, and its interactions with microorganisms, which are rather vital for the
availability of essential nutrients and soil fertility (Marschner 1995). An increase
in the H+ ion concentration in the soil solution results in a decrease in soil pH, and
soils with a pH \ 5.5 or lower are categorized as acid soils. These soils occupy
around 30 % (4 billion ha) of the world’s total land area and 50 % of the world’s
cultivable lands (Von Uexküll and Mutert 1995; Baligar et al. 2001). Further, more
than half of the world’s acid soils (60 %) occur throughout the tropics and
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subtropics (Baligar and Fageria 1997; Fischer 1998). Therefore, acid soils affect
crop yields in many ‘hunger hot spots’ of the world.

In natural ecosystems, soil acidity determines the availability of mineral nutrients
such as phosphorus (P) and also determines the level and severity of phytotoxic
elements such as aluminum (Al), manganese (Mn), and iron (Fe) (Kochian et al.
2004). When Al concentration increases in the soil solution in response to a
reduction in pH, induction of reactive oxygen species and lipid peroxidation damage
of root plasma membrane occur reducing root growth and plant’s response to stress
conditions (Yamamoto et al. 2001, 2002). Though Al ions present in acidic soils
prevent the intrinsic toxicity of H+, it can concurrently cause an extrinsic toxicity
through calcium (Ca) and magnesium (Mg) deficiency (Kinraide et al. 2005).

Causes for Soil Acidity

Natural causes for acid soils include high rainfall, resulting in leaching of basic
cations, acidic parental material, and decomposition of organic matter. Biological
processes such as root and microbial respiration and uptake of cations such as
ammonium (NH4

+) also influence soil pH. Cultivation of legumes acidifies soils
more as they take up more cations than anions compared to non-legumes. In
addition to these above-mentioned natural causes, human activities, such as the
extensive use of NH4

+ fertilizers for crop production, industrial emission of
nitrogen oxides and sulfur di-oxide resulting in acid rain and mining activities, all
contribute to the acidification of soils.

Acid rain, an environmental hazard, is one of the primary reasons for soil
acidification. Acid rain results in the leaching out of basic cations, reduces
evaporation, releases bound Al into the soil solution, and increases the oxidative
biological activities (Carver and Ownby 1995). During precipitation, water per-
colates through the soil particles washing away the basic cations from the soil,
which are replaced by acidic cations such as Al3+, Mn2+, and H+ ions (Sumner
et al. 1991). However, the CO2 containing water molecules entering the soil profile
replaces the free salts quite rapidly in contrast to basic cations, which are replaced
rather more slowly. This results in acidic soils under high rainfall regions (Brady
1990). Increased presence of SO4

2- ions in rain water leads to the considerable
eradication of H+ and other cations from the soil profiles (Overrein et al. 1980).
Biological oxidation of carbon (C), nitrogen (N), and sulfur (S) in the way of
burning fossil fuels also results in acid rain.

Modern agriculture mainly focuses on higher yields with large inputs of syn-
thetic fertilizers. However, the chemicals present in these fertilizers react with the
soil mineral nutrients, resulting in changes in the soil pH. This indirectly affects
plant growth and health. It has also been shown that the forms of N present or
applied could influence soil pH (Marschner 1995). A significant correlation
between soil pH and Al3+ was reported by Rout et al. (2001) in acidic soils in
response to trim down the basic ions.
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Results of Soil Acidity

Soil acidification leads to changes in the soil environment as well as in plant
growth and metabolism, which can be summarized as follows:

1. Increase in the availability of Al, Mn, and H+ ions in the soil solution (Kochian
et al. 2004, 2005).

2. Reduction in the availability of essential nutrients such as P, N, Mg, Ca,
molybdenum (Mo), and zinc (Zn) (Kochian et al. 2004).

3. Negative effects of Al and other ions on plant growth especially the root system
resulting in reduced nutrient and water uptake (Barcelo and Poschenrieder
2002).

4. Defects in shoot growth and appearance of necrotic spots due to Mn toxicity
(Schier and McQuattie 2000).

5. Changes in plant physiology, metabolic, and biochemical activities leading to
mortality (Heijne et al. 1996; Kochian et al. 2005).

6. Accumulation of organic acids in the roots (Adams et al. 1999; Kinraide et al.
2005).

7. Changes in microbial populations and their activities, which are known to affect
plant growth (Miller and Kissel 2010; Kaps and Kering 2011; Chen et al. 2012).

Influence of Soil Acidity on Al Availability and Toxicity

The third most ubiquitous element Al is a light metal comprising of 7 % of the
earth’s crust and usually represented in the form of oxides and aluminosilicates
(Ma et al. 2001). In the soil solution, Al is present as Al(OH)2+ and Al(OH)2

+ at pH
4–5, Al3+ at pH 5.5–7, and Al(OH)4

- at pH 7–8 (Drabek et al. 2003). Nevertheless,
soils differ in their potential to sustain it (Scancar and Milacic 2006). Forms of Al
such as AlSO4

+ and Al(SO4)2
- or Al–F lack rhizotoxicity.

According to Kochian (1995), toxicity has been convincingly demonstrated only
for Al13 and Al3+. Consequently, when the soil pH drops to below 5.5, Al containing
compounds tend to dissociate, resulting in the abundance of aluminum-hydroxy
cations and Al3+ in soil solutions. In soils, the soluble forms of Al are present in two
forms: monomeric in the form of Al3+, Al–OH, Al–F, and Al–SO4 (highly toxic)
and acid-soluble Al in the form of polymer state (less toxic) (Xu and Ji 1998).

The Al3+ also forms mononuclear species that are more toxic in nature
(Kochian 1995; Panda and Matsumoto 2007). Even at micromolar level, Al3+ ions
can modify the morphology and physiology of plant roots as well as alter the
activities of certain enzymes (Simon et al. 1994; Alvarez et al. 2012). Under acidic
conditions, the complex forms of Al dissociate, resulting in the release of toxic
form of Al as shown below:
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Al OHð Þ3þ 3Hþ $ Al3þ þ 3H2O

Aluminum toxicity is one of the key factors that are harmful for plant growth in
acidic soils. Acid soils generally have high amounts of the mineral oxides, which
readily inactivate or fix P by precipitation or forming complexes of Al and Mn
oxide radicals, thus making it unavailable. The symptoms of Al toxicity in plants
include inhibition of root growth, decline in the uptake of water and other essential
nutrients (N, P, and Ca), and overall stunting of plant growth (Matsumoto 2000;
Purcell et al. 2002; Fukrei et al. 2011). Formation of both primary and lateral roots
is affected by high concentrations of Al in the soil solution, and even when the
roots are formed, they are devoid of root hairs, thickened, brittle, and brown in
color (Wang et al. 2006; Claudio et al. 2008; Gazey and Davies 2009; Bhalerao
and Prabhu 2013). Aluminum is strongly adsorbed onto the plant root surface
either by the exchange process or by formation of complexes.

Influence of Soil Acidity on Mn Availability and Toxicity

Manganese is an essential micronutrient that plays a vital role in plant metabolism
but toxic when present in excess. Manganese aids in the synthesis of chlorophyll
and assimilation of nitrate and activates enzymes involved in the fat biosynthesis.
Functional role of Mn involves the formation of riboflavin, ascorbic acid and leaf
carotene. Normal or adequate level of Mn in plants is 30–500 mg/kg dry mass
(Clarkson 1988), and deficiency occurs when the levels drop below 10–20 mg/kg
dry mass (Marschner 1995). Manganese toxicity is an important factor limiting
plant growth in acidic soils and especially in poorly drained soils (Horst 1988a, b;
Delhaize et al. 2004). Manganese toxicity is possibly the second most important
metal toxicity limiting crop production in acid soils next to Al (Foy et al. 1973;
Sumner et al. 1991).

Manganese availability in the soil solutions is strongly dependent on soil pH.
The availability of Mn increases in the soil as pH decreases. Soils tend to become
deficient in Mn at pH 6.5 and toxic when the pH drops below 5.5 (Hue et al. 2001;
Kochian et al. 2004; Ducic and Polle 2005). The Mn toxicity symptoms in plants
include stunted growth and necrotic spots on shoots (Alam et al. 2000), but the
physiological mechanisms for these symptoms are still elusive. Greenhouse
experiments carried out to determine the adequate and toxic levels of Mn in five
different crop species [rice (Oryza sativa), common bean (Phaseolus vulgaris),
maize (Zea mays), soybean (Glycine max), and wheat (Triticum aestivum)] in an
Oxisol indicated that 60–520 mg/kg of Mn was adequate for plant growth and
720–4,560 mg/kg of Mn was toxic to plant species (Fageria 2001).
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Plants Tolerant to Acid Soils

Intense research has been carried out over the past two decades to identify,
characterize, and understand the mechanisms adopted by plants to survive and
thrive in acid soils. The results of these investigations reveal that three possible
group of mechanisms appear to operate in plants to tolerate acidic conditions.
These include the following: (1) exclusion of toxic ions such as Al and Mn from
the root apex, (2) tolerance to toxic levels of Al and Mn through detoxification in
the plant symplasm, and (3) enhanced efficiency in the uptake of limiting nutrients
from acid soils (Kochian et al. 2004; Bhalerao and Prabhu 2013) (Fig. 3.1).

In the exclusion of toxic ion mechanism, roots tend to release organic acids
such as maltate, citrate, and oxalate in response to the presence of metal ions in the
soil solution (Hue et al. 1986; Adams et al. 1999; Kinraide et al. 2005; Iqbal 2012).
These organic acids complex with the toxic ions in the rhizosphere and prevent
their entry into roots. Therefore, tolerant crop genotypes such as wheat, maize, and
sorghum (Sorghum bicolor) accumulate toxic ions several folds less in their tissues
than the sensitive genotypes. Plants with internal detoxification mechanism
complex toxic metal ions with organic acids (e.g., Al-oxalate) and store them in
the vacuoles. Thus, plant like buck wheat can accumulate Al as high as
15,000 ppm in their leaves when grown on acid soils (Ma et al. 2001).

Phosphorus availability is one of the major constrains for plant growth in most
of the tropical soils. Generally, the low availability of P in the soils is due to its low
mobility, fixation into organic forms, and high adsorption to soil particles
(Marschner 1995). In acid soils, P availability is limited due to its fixation with Al
and Fe oxides on the clay particles (Kochian et al. 2004). Therefore, P is one of the
major limiting factors for plant growth in acid soils. Nevertheless, plants have
developed several morphological, physiological, and biochemical adaptations to
acquire P from such acid soils. These include mechanisms for increased P
mobilization and uptake, changes in root structure, and association with arbuscular
mycorrhizal (AM) fungi.

Plant Mechanisms for P Mobilization in Acid-Stressed Soils

Exudation of organic acids is one of the most common mechanism plants adopt to
mobilize P in acid soils. Phosphorus deficiency triggers the exudation of organic
acids such as malate and citrate from the roots which dissociate bound P from
mineral surfaces, solubilizes it from Al, Fe and Ca oxides and hydroxides through
metal complexation. Such type of organic acid exudation also occurs in cluster
roots, which are produced in response to P stress (Wasaki et al. 2003). There is
also enhanced mobilization of sparingly available P through proton secretion (Yan
et al. 2002; Gao et al. 2010; Yang et al. 2013). In addition, many plants exude
phosphatases and RNAases under P stress. Plant phosphatase activity is not
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Fig. 3.1 Schematic presentation of the different mechanisms involved in plants acid tolerance.
1. Exclusion of toxic ions, 1a. organic acid (OA) complexation with toxic ions (T) to form OA-T
complex, 1b. binding of toxic ions with glomalin (G) of arbuscular mycorrhizal (AM) fungus
forming a complex (G-T), and 1c. binding of toxic ions to AM fungal structures; 2. internal
detoxification of toxic ions. Toxic ion complexation with organic acids (OA-T) and their storage
in vacuoles; 3. tolerance to phosphorus (P) stress: increased translocation of carbon (C) to roots,
3a. changes in root structure and function, 3b. phosphatases (PE) produced by roots and hyphae
of AM fungi dissociates the bound P(Pb), and 3c. uptake of available P(Pa) by AM fungal hyphae
and their transfer to plant roots
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constant, but may vary greatly across plant species and environmental conditions
(Venterink 2011). These enzymes catalyze the hydrolysis of organic P, thereby
enabling its uptake by roots. Furthermore, overexpression of transcription factor
genes such as OsPTF1, AtPHR1, and OsPHR2 enhances P uptake and accumu-
lation under P-limiting conditions (Nilsson et al. 2007; Zhou et al. 2008). Like-
wise, plants with overexpression of the regulatory element miR399 tend to
accumulate more P in plant parts under P-limiting conditions (Chiou et al. 2006;
Lin et al. 2008; Gao et al. 2010).

One of the efficient strategies plants adopt to improve P uptake in the soils low
in available P is to modify the architecture and morphology of their roots, thereby
increasing the surface area of roots that are in contact with the soil. These could be
achieved in several ways: (1) increasing the root:shoot ratio through modified
allocation of carbon to the root system, (2) increased branching and production of
thinner roots, (3) production of more profuse and long root hairs, and (4) formation
of special type of roots such as cluster or proteoid roots (Niu et al. 2013).

Arbuscular Mycorrhizal Fungi

Another most common strategy plants adopt to uptake P from acid soils is to
associate with the most common and widespread AM fungi. Belonging to
Glomeromycota, AM fungi associate with roots of over 80 % of the wild and
cultivated plant species (Selosse and Rousset 2011). Plants depend on AM fungi
for the uptake of nutrients, especially P from nutrient-stressed soils, and the fungi
in turn depend on plants for carbon (Smith and Read 2008).

Arbuscular mycorrhizal fungi contain two distinct phases: one within the roots
(intraradical) that enables the transfer of nutrients taken up from the soil in
exchange for carbon and another in the soil that is involved in nutrient exploration
and reproduction. The extraradical fungal hyphae can be further distinguished into
runner and absorptive hyphae. The runner hyphae grow externally to the root
system and run between the root segments of single or multiple hosts. The main
function of the runner hyphae is to initiate new colonization points (appressoria)
on the root epidermis. The absorptive hyphae arising from the runner hyphae
extend beyond the nutrient depletion zone and take up the inorganic minerals,
especially P from the soil and translocate it to the host (Marschner 1991). Phos-
phorus is not easily accessible to plants in acidic soil due to its sparingly or
insoluble nature. However, under such P-deficient conditions, mycorrhizal roots or
AM fungal hyphae secrete phosphatase or phytase enzyme to solubilize insoluble
P (Khalil et al. 1994; Tawaraya et al. 2006).

The AM fungi shield the root system of the host plant from the toxicity of
Al and other ions under acidic conditions (Marschner 1995). It is well known that
the effectiveness of AM fungal species in supporting P transfer to the host plant
differs in response with the extent of colonization (Abbott and Robson 1981;
Kittiworawat et al. 2010). Likewise, plant genotypes also exhibit variation in
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tolerance to acidic conditions similar to AM fungal isolates (Sieverding 1991;
Clark et al. 1999a, b). The AM fungal species tends to differ in their response to
varying soil pH (Sano et al. 2002). Nevertheless, most investigations on the
influence of soil acidity on AM fungi have focused on selecting suitable AM
fungal species for growing plants in acidic soils (Cavallazzi et al. 2007).

Distribution of AM Fungal Spores and Phylotypes in Acid
Soils

Though fewer or no spores have been found in acid soils with pH less than 5.5
(Wang et al. 1993), AM fungal spores have been found in acidic soils with pH as
low as 2 (Cano et al. 2009). Distribution of certain AM fungal species appears to
be strongly influenced by soil acidity. For example, spores of Funneliformis
mosseae do not occur in soils with pH \ 5.5 (Sieverding 1991). Although taxa of
acidic soils mostly comprise species belonging to Acaulospora in soils with
pH \ 3.6–6.2 (Morton 1956; Oehl et al. 2006), spores of other taxa such as
Glomus (Cano et al. 2009) and Scutellospora (Walker et al. 1998) have also been
reported in low-pH soils with pH \ 3.0. Further, spores of particular taxa could
also occur in a wide range of acidic pH levels. For example, spores of Glomus
corymbiforme have been reported to occur in acid soils, with pH ranging from 3.8
to 6.7 (Blaszkowski 1995).

A study on the distribution and abundance of AM fungi in Western Australian
soils indicated that Acaulospora was the predominant fungus in low-pH soils or
was the only species to be present in soils with pH \ 5.0 (Nicolson and Schenck
1979). The influence of soil acidity on the restricted distribution and diversity of
AM fungi do not always hold true. An assessment of AM fungal spore populations
associated with sugar maple (Acer saccharum) in Eastern Canada showed that AM
fungal species richness (number of spore morphotypes) and abundance were
maximum in high acidic soils (pH 4.3) compared to moderate (pH 5.6–5.7) and
low acidic soils (pH 6.0–6.3) (Moutoglis and Widden 1996).

An assessment of the community structure of AM fungi associated with
Miscanthus sinensis in acid sulfate soils (pH 2.7–5.4) by An et al. (2008) suggested
that soil pH could be the driving force for shaping up the community structure. In a
later study, Higo et al. (2011) found that seven operational taxonomic units of AM
fungal both from roots of Wedelia and from spores belonging to Acaulospora,
Glomus, Paraglomus, and Entrophospora were reported in acid sulfate soils with a
pH of 3.24 from Thailand.

Siqueira et al. (1990) showed that AM fungal spore production and species
compositions were highly affected by changes in soil pH. As liming of acid soils
favored the presence of Claroideoglomus etunicatum, Rhizophagus diaphanus and
Paraglomus occultum originating from non-acidic soils predominated unlimed
soils. Further, sporulation of Gigaspora margarita was abundant in unlimed soils,
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but was rare in limed soils. A similar observation was noted by Coughlan et al.
(2000) while examining the pH-induced changes in the diversity and sporulation of
AM fungi associated with healthy and declining maple forests. While species such
as Rhizophagus clarus and Acaulospora spp. sporulated in a wide range of soil pH
from 4 to 7, certain species such as Scutellospora calospora sporulated only in
soils with pH 5 or above.

Influence of Soil Acidity on AM Colonization

Many plants thrive at soil pH \ 4 (Falkengren-Grerup 1994), and roots of these
plants either lack or are minimally colonized by AM fungi (Higo et al. 2011).
Arbuscular mycorrhizal fungal colonization has been observed in plants growing
in soils with pH as low as 2.7 (Daft et al. 1975) and 3.5–3.9 (An et al. 2008).
Studies by Clark et al. (1999a, b) have shown that root colonization of switchgrass
(Panicum virgatum) by species of Acaulospora, Claroideoglomus, Gigaspora,
Glomus, and Rhizophagus tended to decline with increasing soil acidity (Fig. 3.2).
In contrast, root colonization in M. sinensis was maximum when raised on high
acidic sulfate soils (up to 63 %, pH 3.5–3.9) compared to those raised under less
acidic conditions (1.9 to 15.6 %, pH 5.4–6.1). However, the reduction in
AM fungal colonization of root with increasing soil acidity has been reported in a
number of species such as Leucaena leucocephala (Habte et al. 2011),
A. saccharum (St Clair and Lynch 2005), barley (Hordeum vulgare) (Borie and
Rubio 1999), Clusia multiflora (Cuenca et al. 2001), apple (Malus prunifolia)
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Fig. 3.2 Influence of soil acidity on the extent of root colonization by different arbuscular
mycorrhizal (AM) fungi in switchgrass (data from Clark et al. 1999a)
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(Cavallazzi et al. 2007), Maianthemum bifolium, Glium odoratum, Mericurialis
perennis, Stellaria memorum (Postma et al. 2007), Bupleurum falcatum, Cinidum
officinale, Gentiana lutea (Ueda et al. 1992), mung bean (Phaseolus radiata), and
crotalaria (Crotalaria mucronata) (Lin et al. 2001).

Studies on the influence of soil acidity on root colonization by AM fungi also
indicate the levels of total colonization, and root length with different AM fungal
structures could vary with both the host and fungal genotypes. Root colonization
of barley by C. etunicatum was found to be higher for the cultivar that was tolerant
to Al (37.4 %) than for the cultivar that was sensitive to Al (26.9 %) raised
on acidic soils (pH 5.15–5.70). Similarly, Habte et al. (2011) also showed that
colonization of L. leucocephala roots by G. aggregatum varied with cultivars
raised on acidic soils (pH 4.5).

Like the host genotypes, AM fungi also vary in their response in colonizing host
roots under acidic conditions. For example, root colonization of switchgrass by
different Gigaspora species (G. albida, G. rosea, and G. margarita) in acidic soils
indicates differences in the extent of colonization (Clark et al. 1999a, b) (Fig. 3.2).
Production of intraradical hyphae by Rhizophagus species and arbuscule pro-
duction by Gigaspora species in switchgrass was found to be higher at low pH
(Clark et al. 1999a) (Fig 3.3).

The influence of soil acidity on root colonization by AM fungi could be due to
its effect on spore germination (Lambais and Cardoso 1989) and/or hyphal
regrowth from mycorrhizal roots (Abbott and Robson 1985). However, the ten-
dency of root colonization to increase with pH can be either due to the increase in
the number of taxa involved in colonization or due to an enhanced ability of the
associated taxa to colonize host roots (Yoshimura et al. 2013). The first possibility
is supported by the observations of An et al. (2008) where the number of AM
phylotypes detected in roots of M. sinensis increased with increasing soil pH. The
second possibility is supported by a study by Clark (2002) who showed that five of
the eight AM fungal species showed higher colonization levels in switchgrass with
increasing soil pH.

Role of Soil pH on Extraradical Hyphae

The role of extraradical mycelium growing out from colonized roots in the symbiosis
is well documented. In addition to initiating colonization of new roots, the extra-
radical mycelium acts as an extension of the root system in enhancing plants access
to soil nutrients and water (Rohyadi 2008). Although the production of extraradical
mycelium is an inherent characteristic of the fungi (Abbott and Robson 1985), it
could be substantially influenced by soil conditions (Abbott and Robson 1981). In
spite of their importance, studies on the effect of soil acidity on extraradical
mycelium are limited. These limited studies suggest that the ability of AM fungi to
form extraradical mycelium differs with substrate pH (Abbott and Robson 1985;
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Porter et al. 1987). van Aarle et al. (2002) tested the response of extraradical mycelia
formation of two AM fungi, S. calospora and Rhizophagus intraradices, exposed to
different acidic pH levels (4 and 5 or 6). The results of this study indicated that though
both AM fungi were capable of forming extraradical mycelium at the higher pH, no
detectable extraradical mycelium was detected for R. intraradices at lower pH.

Abbott and Robson (1985) showed that the spread of extraradical mycelium by
a Glomus isolate was strongly inhibited at low soil pH, which was speculated to be
caused by the aversion to the substrate (van Aarle et al. 2002). Similarly, extra-
radical mycelia formation by G. margarita originating from an acid soil was found
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Fig. 3.3 Influence of soil acidity on root length containing hyphae a and arbuscules/vesicles b in
switchgrass colonized by different arbuscular mycorrhizal (AM) fungi (data from Clark et al. 1999a)
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to be higher in low-pH conditions (4.6–5.6), whereas C. etunicatum also origi-
nating from an acid soil required a pH of 5.2 or higher for increased extraradical
mycelia formation (Rohyadi 2008) (Fig. 3.4). These observations clearly suggest
that the quantity of extraradical mycelium produced depends on specific pH ranges
even for taxa originating from acid soils. In addition to these, host species could
also influence the quantity of the extramatrical hyphae to certain extent as shown
by Lin et al. (2001). Fungal species such as Diversispora epigaea and Rhizophagus
manihotis produce more extraradical mycelium when associated with crotalaria
than with mung bean (Fig. 3.5). The enzyme activities such as the alkaline

Fig. 3.4 Extraradical hyphal length density of Gigaspora margarita and Claroideoglomus
etunicatum at different soil pH (data from Rohyadi 2008)
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Fig. 3.5 Influence of soil acidity on extraradical hyphal length of different arbuscular
mycorrhizal fungi in the rhizospheres of mung bean and crotalaria (data from Lin et al. 2001)
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phosphatase and NADH-diaphorase activities in the external mycelium of
AM fungi appear to be more sensitive to soil acidity (Vosatka et al. 1999;
Malcova et al. 1999).

Effect of Soil Acidity on AM Spore Germination

Soil pH is one of the important soil factors that play a vital role in AM spore
germination and presymbiotic hyphal growth. Most of the information on the
influence of substrate acidity arises from the in vitro monoxenic cultures of AM
fungi. A pH of 5.5 is usually maintained for standard monoxenic culture systems to
maintain solubility and balance of the media components (Dalpé et al. 2005).
However, the standard acidic pH maintained in monoxenic culture systems could
affect the growth of certain AM fungal isolates. Maximum spore germination of
Acaulospora laevis occurs between pH 4 and 5 and between pH 5 and 6 for Racocetra
coralloidea and Fuscutata heterogama (Hepper 1984; Green et al. 1976).

The optimum pH for spore germination appears to be linked to the pH of the
soil where the AM fungus originated. For example, the germination percentage of
A. laevis spores originating from acidic soils tend to decline with increasing pH
and the germination percentage drops to 10 % or less in neutral and alkaline soils
(Hepper 1984).

Vosatka et al. (1999) tested the influence of simulated acid rain individually, or
along with Al, amendment was on the germination of AM fungal spores belonging
to F. mosseae, Claroideoglomus claroideum, and Acaulospora tuberculata asso-
ciated with the rhizosphere of Deschampsia flescuosa seedlings (Vosatka et al.
1999). The results of this study suggested that A. tuberculata originating from high
acidic soil exhibited greater tolerance to soil acidity than others.

Growth of AM Plants in Acid Soils

Compared with the amount of work done on the role of AM fungi on plant growth
in non-acidic soils, less research has been done on acidic soils. The limited studies
that have examined the role of AM fungi on plant growth in acidic soils have
clearly revealed several benefits imparted by AM fungi on their associated host
plants. In a greenhouse experiment, Heijne et al. (1996) determined the cause for
the decline of two heathland herbs Arnica montana and Hieracium pilosella by
growing them in the presence or absence of an AM fungus (Rhizophagus fascic-
ulatus) on an extremely nutrient-poor sandy soil and irrigated with nutrient
solutions with pH values ranging between 2.5 and 5.5. The results of the study
showed that A. montana failed to survive and H. pilosella hardly grew in the
absence of AM fungus, suggesting that AM symbiosis decreased the stress caused
by soil acidity. Growth and mycorrhizal dependency of switchgrass varied with
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AM fungal species and pH of the soil (Clark 2002) (Table 3.1). Shoot dry weights
of switchgrass colonized by G. margarita, G. albida, and C. etunicatum were
higher in low-pH soil than at a slightly higher-pH soil (Clark 2002) (Fig. 3.6).

Both shoot biomass and root biomass of C. etunicatum-colonized wheat plants
were higher on an acid Andisol (pH 5.42) that was either unamended or amended
with partly acidulated phosphate rock at the rate of 17, 43, or 86 kg/ha (Rubio
et al. 2002). Nevertheless, C. etunicatum colonization was not effective in
improving plant growth at any of these three levels when soluble P was added
(Rubio et al. 2002). Grain and straw yield of wheat colonized by R. intraradices or
two isolates of F. mosseae alone was higher in an acidic Alfisol (pH 5.2) soil
treated with 50 and 75 % of recommended phosphorus pentoxide (P2O5) dose
based on the targeted yield concept (Suri et al. 2011). Colonization of AM fungi
along with increasing application rates of P2O5 resulted in consistent and signif-
icant improvements in straw and grain yields. All the three fungi along with 75 %
P2O5 dose though produced acceptable yields; it was less than the yield at sole
100 % P2O5 dose (Suri et al. 2011).

Total biomass of broomsedge (Andropogon virginatus) colonized with isolates
of R. clarus, Acaulospora morrowiae, and R. heterogama originating from acid or
neutral soils was 2.3-, 2.0-, and 2.2-folds higher than the non-mycorrhizal plants
when grown on sand culture and irrigated with nutrient solution at pH 4
(Kelly et al. 2005). The plant growth response was further amplified for R. clarus
(12.89-folds) and F. heterogama (5.35-folds), but not for A. morrowiae when
grown in sand culture containing 400 lm Al.

Shoot biomass of L. leucocephala cultivars (cv. K-8 and cv. K-636) colonized
with Glomus aggregatum grown on Al-rich Oxisol and Mn-rich Vertisol acid soils
increased with an increase in pH. Shoot biomass of mycorrhizal L. leucocephala
cv. K-636 cultivar was higher than that of mycorrhizal cv. K-8 cultivar at pH 4.5
and 6.4, but was almost similar at the intermediate pH (Habte et al. 2011). Shoot
and root dry mass of mung bean and crotalaria colonized by ten AM fungal species
increased with increasing pH when grown on an acidic red soil. However, the
growth response tends to vary with the AM fungi, host, as well as the growth
period (Lin et al. 2001) (Fig. 3.7). Mycorrhizal dependency of both mung bean and
crotalaria varied with soil acidity (Table 3.1). A reduction in shoot biomass was
more prominent in crotalaria than for mung bean at pH 3.5. The increase in
mycorrhizal dependency with increasing soil pH from 3.6 to 6.0 was more intense
for crotalaria than mung bean (Table 3.1).

Plant dry weight of micropropagated apple rootstocks colonized by C. etunic-
atum, S. pellucida, A. scrobiculata, or F. heterogama was higher than
non-mycorrhizal rootstocks when grown on acid soils with a pH of 4.0 or altered to
pH 5.0 or 6.0 by adding CaCO3 (Cavallazzi et al. 2007). However, root dry
weights of apple rootstocks colonized by F. heterogama and A. scrobiculata were
slightly less than the non-mycorrhizal rootstocks. The R/S ratios of mycorrhizal
rootstocks were less than the non-mycorrhizal rootstocks. Mycorrhizal dependency
of apple rootstocks colonized by C. etunicatum and S. pellucida was generally
higher compared to those colonized by A. scrobiculata and F. heterogama
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Table 3.1 Influence of soil acidity on mycorrhizal dependencya in different hosts

pH 3.5 pH 4.5 pH 6.0
Mung bean (Lin et al. 2001) Acaulospora sp. 34 -1.67 62.50 200.00

Acaulospora sp. 53 1.67 -37.50 70.00
Diversispora epigaea 0.00 -12.50 0.00
Funneliformis caledonius 0.00 50.00 160.00
Funneliformis mosseae -3.33 75.00 90.00
Fuscutata heterogama -3.33 0.00 60.00
Gigaspora sp.47 5.00 25.00 -10.00
Rhizophagus manihotis 38 6.67 100.00 180.00
Rhizophagus manihotis 49 0.00 25.00 30.00
Scutellospora calospora 0.00 0.00 0.00

pH 3.5 pH 4.5 pH 6.0
Crotalaria (Lin et al. 2001) Acaulospora sp. 34 415.38 1946.67 1331.58

Acaulospora sp. 53 23.08 53.33 178.95
Diversispora epigaea -15.38 33.33 252.63
Funneliformis caledonius -30.77 153.33 226.32
Funneliformis mosseae -15.38 120.00 421.05
Fuscutata heterogama 69.23 106.67 52.63
Gigaspora sp.47 -15.38 146.67 315.79
Rhizophagus manihotis 38 69.23 346.67 794.74
Rhizophagus manihotis 49 -30.77 40.00 236.84
Scutellospora calospora -38.46 33.33 78.95

pH 4.6 pH 4.9 pH 5.2
Cowpea (Rohyadi 2008) Claroideoglomus etunicatum 13 14 47

Gigaspora margarita 81 65 53
pH 4 pH 5

Switchgrass (Clark 2002) Acaulospora morrowiae 2075.00 2112.50
Claroideoglomus etunicatum 1743.75 3475.00
Gigaspora albida 518.75 1712.50
Gigaspora margarita 1856.25 3181.25
Gigaspora rosea 12.50 6.25
Rhizophagus clarus 4443.75 3018.75
Rhizophagus diaphanus 3731.25 3531.25
Rhizophagus intraradices -25.00 1087.50

pH 5.15 pH 5.7
Barley ‘Carmen’

(Borie and Rubio 1999)
Claroideoglomus etunicatum 719 98

pH 5.15 pH 5.7
Barley ‘teffi’

(Borie and Rubio 1999)
Claroideoglomus etunicatum 6.67 -17.6

pH 4.48
Chickpea (Alloush et al. 2000) Rhizophagus clarus 18.39

pH 5.2
Wheat (Suri et al. 2011) Funneliformis mosseae (IARI) 15.39

Funneliformis mosseae (Local) 13.40
Rhizophagus intraradices (TERI) 14.02

a Calculated from the cited studies according to Plenchette et al. (1983)
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(Cavallazzi et al. 2007). As the mycorrhizal dependency of apple rootstocks
colonized by C. etunicatum and S. pellucida increased with an increase in soil pH
from 4 to 6, a decline in mycorrhizal dependency was evident for rootstocks
colonized by A. scrobiculata and F. heterogama.

Clusia multiflora seedlings inoculated with AM fungal inocula originating
from acid or neutral soils accumulated more shoot and root masses and had
increased root lengths than non-mycorrhizal seedlings grown on an acid humic
Ultisol at pH 4.2 and irrigated with acidified water of pH 3, 4, and 5 (Cuenca
et al. 2001). The shoot/root ratio of mycorrhizal seedlings was higher than that
of non-mycorrhizal seedlings irrespective of pH levels and origin of AM inocula
(Cuenca et al. 2001).

Sweet potato (Ipomoea batatus) plants colonized by G. margarita and raised
on an acidic soil that was either unlimed (pH 4.2) or limed (pH 5.2) had sig-
nificantly higher plant biomass than non-mycorrhizal plants at pH 4.2 and not at
pH 5.2 (Yano and Takaki 2005). Shoot biomass of cowpea (Vigna unguiculata)
colonized by G. margarita was higher than those colonized by C. etunicatum
when grown on an acidic Podozole (pH 4.9) (Rohyadi 2008). As the AM fungal
benefit on plant growth declined from 81 to 39 % with an increase in pH from
4.6 to 5.2 for plants colonized by G. margarita, it increased from 13 to 33 % for
plants colonized by C. etunicatum. Such an inverse pattern was also evident
for mycorrhizal dependency of cowpea plants colonized by G. margarita and
C. etunicatum (Table 3.1).

Fig. 3.6 Influence of soil acidity on shoot dry weight of switchgrass colonized by different
arbuscular mycorrhizal fungi (calculated from Clark 2002)
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An investigation on the role of C. etunicatum on growth of barley cultivars that
were either tolerant or sensitive to Al on an unlimed (pH 5.15) or limed (pH 5.70)
Andisol indicated that the growth benefit of C. etunicatum association was more
pronounced in Al-tolerant (‘Carmen’) than in Al-sensitive (‘Steffi’) barley cultivar
(Borie and Rubio 1999).

Efficiency of AM Fungi in Ameliorating Al Toxicity

The AM fungal association can modify the interaction between plant and soil and
also protect the host plant under stress environments such as heavy metals (Smith
and Read 2008; Muthukumar and Bagyaraj 2010). The presence of high concen-
trations of Al3+ in the soil is deleterious to the survival and activity of the
microorganisms (Rohyadi 2006). The uptake of Al by roots and its translocation
within plants are greatly reduced by AM fungal association. The production of

Fig. 3.7 Influence of soil acidity on growth of mung bean and crotalaria colonized by different
arbuscular mycorrhizal fungi after 45 days of growth (calculated from Lin et al. 2001)
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exudates by the extraradical mycelium results in the chelation of heavy metals in
the mycorrhizosphere (Tonin et al. 2001; Hall 2002).

Mycorrhizal tulip-poplar (Liriodendron tulipifera) seedlings had higher
concentrations of P in their leaves and higher biomass in contrast with the
non-mycorrhizal plants when raised on substrates amended with various concen-
trations of Al (Lux and Cumming 2001). Kelly et al. (2005) inoculated brooms-
edge with five isolates of three AM fungal species (R. clarus, A. morrowiae, and
F. heterogama) in substrates amended with 400 lm Al. The results of this study
indicated that R. clarus was more resistant to Al toxicity (22.4–92.7 %) and
growth inhibition, followed by F. heterogama and A. morrowiae (Kelly et al.
2005). Rohyadi et al. (2004) also showed that plant growth especially the shoot
and root dry weights of cowpea plants inoculated with G. margarita was higher
compared to plants inoculated with C. etunicatum at different soil acidic levels
(4.4, 4.9, and 5.2).

However, the resistivity for Al appears to be much higher for AM fungal
isolates originating from Al-rich soils compared to those from non-contaminated
soils. For instance, C. multiflora seedlings inoculated with natural inoculum of AM
fungi originating from acidic as well as neutral soils and watered with acidic
solution indicated that seedlings inoculated with AM fungal inoculum originating
from acidic soil accumulated less Al and root growth was normal compared to
seedlings inoculated with AM fungal inoculum from neutral soil (Cuenca et al.
2001). In general, the abundance of vesicles in the roots colonized by AM fungi
originating from non-acidic soil indirectly indicates that the plants are under some
sort of stress as vesicle production tends to peak under stress conditions (Cooke
et al. 1993). Though several factors are shown to affect AM fungi under low pH,
the crucial or dominant ones are still elusive.

Aluminum toxicity affects root architecture as mentioned earlier, which affects
nutrient and water uptake (Foy et al. 1978). Compared to roots, the extraradical
mycelium of AM fungi can spread beyond the nutrient depletion zone surrounding
the root and take up low mobile nutrients like P from the soil and translocate it to
the host (Smith et al. 2000). The extraradical hyphae of AM fungi can spread up to
10 cm from the root surface (Jakobsen et al. 1992), and the smaller diameter of the
fungal hyphae than roots (Bolan 1991) increases the surface area for absorption by
fourfold. This favors the efficient uptake of P and other soil nutrients by the
mycorrhizal roots in nutrient-stressed soils.

Like plants, AM fungi also possess certain defense mechanisms to protect
themselves against various stress conditions. There is enough evidence to believe
that exudation of organic acids by AM fungal hyphae (Plassard and Fransson
2009) especially the citrate, malate, and acetate (Tawaraya et al. 2006; Toljander
et al. 2007) could ameliorate the Al toxicity. Therefore, AM fungi-colonized roots
are well protected from the deleterious effects of the metal toxicities (Clark and
Zeto 1996; Maddox and Soileau 1991) through extensive hyphal network and root
exudates.

In addition, root colonization by AM fungi could also influence the release of
carbon by plant roots into the rhizosphere, increasing the availability of organic
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acids and other substrates (Seguel et al. 2013). For example, Klugh and Cumming
(2007) showed altered concentrations of organic acids in the root zones of AM
tulip-poplar raised on sand culture and irrigated with a nutrient solution of pH 4.0.
In addition, the organic acid production by AM plants was independent of the
degree of colonization. A similar observation was also made in a later study by
Klugh-Stewart and Cumming (2009) for AM broomsedge. The fungal hyphae bind
the toxic metals like Al extracellularly to the cell walls or sequestrate intracellu-
larly in vacuoles by phosphate granules (Toler et al. 2005; González-Guerrero
et al. 2008; Zhang et al. 2009).

Certain studies indicate that AM fungi could also sequester Al in their vesicles
and auxiliary cells (Yang and Goulart 1997; Cuenca et al. 2001). Investigations by
Yano and Takaki (2005) and Cuenca et al. (2001) showed that sweet potato and
C. multiflora could accumulate [200 % of the normal Al concentration in their
roots without exhibiting any toxic symptoms when colonized by G. margarita and
Acaulospora species, respectively. Likewise, a 51 % increase in tissue Al level
was noted in the roots of tulip-poplar inoculated with R. clarus and R. diaphanus.

In addition, the production of glomalin, which is an abundant glycoprotein in the
soil, is produced by the hyphal wall of AM fungi (Treseder and Turner 2007). The
glomalin deposited in the soil when the hyphae senescence is reported to sequester
toxic minerals considerably. Etcheverría (2009) showed that glomalin-related
protein (GRSP) could bind around 4.2–7.5 % of Al in acidic soils of a temperate
forest in southern Chile. The production of GRSP has been shown to be directly
proportional to the adverse soil conditions, especially low pH (Vodnik et al. 2008;
Cornejo et al. 2008). These mechanisms significantly reduce the deleterious effects
of Al and improve the functionality of plants. Altogether, AM fungi play a vital role
in ameliorating the effects of Al stress by various detoxifying mechanisms.

Efficiency of AM Fungi in Ameliorating Mn Toxicity

The concentration of Mn in shoots and roots of mycorrhizal plants is often lower
than that in non-mycorrhizal plants (Kothari et al. 1991; Nogueira and Cardoso
2000; Nogueira et al. 2004). Similar concentrations of Mn have been reported in
shoots (1.02 and 1.04 mg/g) and roots (0.38 and 0.33 mg/g) of non-mycorrhizal
and mycorrhizal (G. margarita) sweet potato grown on an acid soil (pH 4.2) (Yano
and Takaki 2005). Likewise, Mn toxicity was less severe in mycorrhizal plants
than in non-mycorrhizal soybean plants in spite of similar concentrations of Mn in
these plants (Bethlenfalvay and Franson 1989).

Habte et al. (2011) speculated that AM fungal colonization in L. leucocephala
cultivars (cv. K-636 and cv. K-8) was low in Mn-rich acid Oxisol soil at pH 4.5
because of the high similarity in the reactivity of the host and the fungi to Mn
toxicity. The tolerance of L. leucocephala seedlings to acid toxicity in Mn-rich
Oxisol varied with the pretransplant mycorrhizal status of the seedlings. Tolerance
level of L. leucocephala cv.K-636 that was less tolerant than cv. K-8 in Mn-rich
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Oxisol improved when the seeds were mycorrhized prior to transplantation.
Nogueira et al. (2002) also reported that soybean inoculated with C. etunicatum
under different levels of Mn (0, 5, 10, 20, and 40 mg/kg) exhibited better growth
and less Mn toxicity symptoms (callose deposition).

Earlier studies on the influence of AM in acid soils suggested that colonization
by AM fungi generally enhanced the uptake of Mn2+ by host plants (Mederios
et al. 1994; Clark and Zeto 1996; Clark et al. 1999b; Lux and Cumming 2001).
Nogueira and Cardoso (2003) investigated the effectiveness of three AM fungi
(Glomus macrocarpum, C. etunicatum, and R. intraradices) on soybean in two
different soils (sandy and clay). The results of this study showed that soybean
plants had lower Mn content and biomass in sandy soil compared to clayey soil.
Nevertheless, plants inoculated with C. etunicatum and R. intraradices, and
G. macrocarpum exhibited Mn toxicity symptoms and had reduced biomass in
clayey soil indicating the soil-type influence on Mn toxicity.

Most of the studies on the role of AM fungi on plant nutrient uptake in acid soils
indicate an enhanced Mn uptake by AM plants. Nevertheless, the influence of AM
fungi on Mn uptake by plants in acid soils could be time dependent as shown by
Nogueria et al. (2007) where soybean plants colonized by C. etunicatum or
G. macrocarpum had higher concentrations of Mn during initial stages of growth
and lower concentrations during later phase of plant growth. There are also studies
indicating that AM fungi reduce the amount of Mn entering the roots by suppressing
the activity of Mn oxidizing and reducing bacteria in the rhizosphere at pH 5.7 or
higher (Bethlenfalvay and Franson 1989; Kothari et al. 1991; Nogueria et al. 2007).

AM Fungal Amelioration of Plant P Deficiency

In contrast to an increment in the concentrations of Al and Mn in the soil, there is a
simultaneous decline in the availability of essential nutrients such as P, K, and Mo
(Fageria et al. 1990). Depletion of these essential mineral nutrients inversely affects
the plant growth, leading to reduction in crop production. As already mentioned, P
fixation and availability depend mainly on soil pH (Hsu 1964). Minimal availability
of P is one of the common and well-known limiting factors for plant growth and
development in soils with a pH range of 2–4 (Bowden et al. 1980; Nian et al. 2003).

The worldwide distribution and causes for P-limiting soils have recently been
discussed in detail by Lynch and Brown (2008). In acid soils, P exists in the form
of insoluble mineral complexes such as Al–P and Fe–P and therefore is not
available for uptake by plants (Sample et al. 1980). Complexolysis is a process in
which the complexing agents such as the exudated organic acids liberate minerals
from their complex insoluble forms through organic acidolysis, and complex and
chelate formations (Courty et al. 2010). These processes are most suited for the
solubilization of P adsorbed to Al or Fe oxyhydroxides.

The development of extensive hyphal network in the soil ameliorates the effects
of extremely low pH through improved uptake of P. Smith et al. (2000) showed
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that about 80 % of the total P acquired by AM Medicago truncatula were provided
by the extraradical mycelium of the fungi associated with those plants. The
functions of the fungal hyphae radiating out from the colonized roots are more
important in acid soils as the development and proliferation of roots are severely
affected in soils with low pH.

Rohyadi (2008) observed an increase in P uptake in maize colonized by
G. margarita under acidic conditions and suggested that the enhanced P levels in
AM maize tissues could be due to the greater exploration of soil by the AM fungal
hyphae. This suggestion is supported by the observation where the P-uptake
response of cowpea plants colonized with G. margarita was 104 and 46 % higher
compared to plants colonized with C. etunicatum at pH 4.6 and 4.9. Similarly, the
amount of P uptake per unit root length of G. margarita- and C. etunicatum-
colonized cowpea plants were 75–144 % and 41–88 % higher compared to non-
mycorrhizal plants.

Toro et al. (1998) stated that AM fungi not only had the access, but also could
reach to the unexploited sources of P in deficient soils. The enhanced growth of
maize colonized by C. etunicatum, Glomus diaphanum, and R. intraradices in
spite of the low number of arbuscules in the roots in an acidic soil (pH 4.2–4.5)
was attributed to the hyphal network in the soil reaching for the sparingly available
P sources (Clark and Zeto 1996).

In a later study, Clark (2002) showed that the P inflow rates per unit root length of
mycorrhizal switchgrass were around 18-fold higher compared to non-mycorrhizal
plants when grown on soil with pH 4. However, the inflow rates declined to half when
the plants were raised on a slightly higher pH of 5. The effectiveness of AM fungi on
stress amelioration under acidic conditions could be attributed to the proliferation of
external hyphae rather than colonization (Rohyadi 2008).

The AM fungi associated root system are highly efficient than non-mycorrhizal
root systems as they could use various forms of phosphate such as inorganic and
organic P sources (Tarafdar and Marschner 1994; Ravnskov et al. 1999), which are
limited in acid soils. Colonization of switchgrass by four different AM fungal isolates
(R. intraradices WV894, R. clarus WV751, C. etunicatum WV579A, and Acau-
lospora mellea BR152A) in five acid soils (Lily, Porters, Tatum, Rayne, and Pacolet)
resulted in varied extractable plant P pools (Clark et al. 2005). These differences
in P pools were attributed to the varied uptake of P by different AM plants, similar to
the observations made by Graw (1979), Saif (1987) and da Silva et al. (1994).

Role of AM Fungi in the Uptake of Other Nutrients

Plants growing on acidic soils also have limited access to several essential mineral
nutrients other than P such as Ca, Mg, potassium (K), copper (Cu), and zinc (Zn).
Low levels of ions migrate to the exchange sites in the rhizospheric region under
acidic conditions, rendering it less available for the plants (Sumner et al. 1991).
These nutrient limitations are often compensated by extended extraradical hyphal
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network of AM fungi. Enhanced acquisition of several mineral nutrients (including
Zn and Cu) was reported in maize in response to colonization by C. etunicatum,
G. diaphanum, and R. intraradices in acidic soils with a pH of 4.2–4.5 (Clark and
Zeto 1996).

Alloush and Clark (2001) demonstrated a better uptake and translocation of Ca,
Mg, and K by R. clarus in maize when grown on soils with a pH 4.7. A similar
increase in K, Ca, and Mg uptake was also reported for maize plants in acidic soils
(Liu et al., 2000). Siqueira et al. (1990) also reported higher concentrations of Ca
in the tissues of Brachiaria grass (Brachiaria decumbens) colonized by AM fungal
assemblage with taxa originating from different acidity compared with non-
mycorrhizal plants when grown on soils with pH 4.5.

Certain studies in contrast to the above-mentioned observations have reported
the lack of plant benefit from AM fungi in acid soils. Sweet potato plants colonized
by G. margarita failed to improve the uptake of P, K, Ca, and Mg when grown on
soils with pH ranging from 4.2 to 5.2 (Yano and Takaki 2005). A similar obser-
vation was made in wheat colonized by species of Funneliformis and Rhizophagus
failed to improve plant N, P, K, Fe, Mn, Zn, and Cu concentrations when grown on
an acid Alfisol (Suri et al. 2011).

Conclusions and Future Considerations

Acidic syndrome is a major factor that limits crop production worldwide. Research
over the past two decades has contributed immensely to our understanding on the
various adaptations plants have evolved to ameliorate the effects of soil acidity.
Conventional agricultural practices involve the application of lime, gypsum, and P
fertilizer to improve crop growth and yield in acid soils. These amendments
though achieved the desired target to certain extent, high input costs, and depleting
reserves of raw materials, and their unavailability restricts their widespread and
long-term use.

Breeding plant genotypes that are tolerant to acidic soils or genotypes with high
nutrient use efficiency may be one possible solution. Nevertheless, available evi-
dence indicates the potential role of AM symbiosis in improving plant growth in
acidic soils. Further, studies examining the role of AM fungi on plant growth and
yield in acidic soils have been conducted under controlled conditions with a
limited number of fungal isolates. Results of such studies though help to elaborate
our understanding on AM symbiosis in acid soils; it could substantially differ
under field conditions.

Furthermore, there are clear indications that continuous culture of AM fungal
genotypes originating from acid soils under normal soil conditions would result in
the loss of the acquired characters. Therefore, standardization of culture conditions is
essential to retain the acquired characters and exploit these fungi as bioinoculants.
An alternative strategy to exploit the symbiosis for the maximum benefit in acid soils
would be to understand and manipulate the factors that influence AM symbiosis.
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Chapter 4
Use of Plant Growth-Promoting
Rhizobacteria to Alleviate Salinity Stress
in Plants

Dilfuza Egamberdieva and Ben Lugtenberg

Introduction

Salinization is recognized as the main threat to environmental resources in many
countries and affects almost one billion hectares worldwide (Munns and Tester
2008; FAO Land and Nutrition Management Service 2008). Major factors
increasing salinity include irrigation of cultivated lands with saline water, poor
cultural practices, and low precipitation. Almost 300 million hectares in the world
are irrigated. Irrigated agriculture consumes about 90 % of the total water with-
drawal to produce 36 % of the global food (Rengasamy 2006; ICID 2009). It has
been estimated that inappropriate irrigation/drainage practices affect approxi-
mately fifty percent of the global irrigated areas, with an annual increase of up to
500,000 ha. These facts represent a serious threat to sustainable food production
and to our natural resources (Ondrasek et al. 2009).

Natural salinity is the result of long-term natural accumulation of salts in the
soil or in surface water. Secondary (anthropogenic) salinity results from irrigation
and is widely responsible for increasing the concentration of dissolved salts in the
soil profile to a level that impairs plant growth and that will result in abandoning
agricultural land (Munns 2005; Egamberdiyeva et al. 2007; Manchanda and Garg
2008). Many of the most cultivated and widely used crops (cereals, horticultural
crops, etc.) in human/animal nutrition are susceptible to salt stress ([4 dS m-1),
and their productivity is considerably reduced due to improper nutrition of the

D. Egamberdieva (&)
Department of Microbiology and Biotechnology, Faculty of Biology and Soil Sciences,
National University of Uzbekistan, University Street 1, Tashkent, Uzbekistan100174,
e-mail: egamberdieva@yahoo.com

B. Lugtenberg
Institute of Biology, Sylvius Laboratory, Leiden University, PO BOX 9505 2300 RA,
Leiden, The Netherlands
e-mail: Ben.Lugtenberg@gmail.com

M. Miransari (ed.), Use of Microbes for the Alleviation of Soil Stresses, Volume 1,
DOI: 10.1007/978-1-4614-9466-9_4, � Springer Science+Business Media New York 2014

73



plant (Chinnusamy et al. 2005; Mantri et al. 2012). Salinity and drought also
strongly influence many other properties and processes of living organisms
(Ondrasek et al. 2009).

Climate change may lead to even more saline landscapes in many non-irrigated
regions since it is accompanied by less rainfall and higher temperatures in most
agricultural regions. It will result in a change toward again a more arid climate,
which is conducive to salt accumulation (Othman et al. 2006). Limiting crop losses
due to salinity and drought is a major area of concern to cope with the background
of increasing food requirements (Shanker and Venkateswarlu 2011). In a meeting
in October 2012, the World Food Security Committee addressed the effects of
climate change on food security and invited world leaders (1) to integrate food
security and climate change concerns, (2) to increase resilience of food systems to
climate change, and (3) to develop agricultural strategies that take into account the
need to respond to climate change and to safeguard food security (CFS 2012).
Novel agricultural technologies are required to improve food production in saline
and dry soils (Wehrheim and Martius 2008). Many scientists have attempted to
develop salt-tolerant crops through breeding, but these efforts have met with
limited success due to the genetically and physiologically complexity of the salt
tolerance trait (Flowers 2004; Araus et al. 2008; Dwivedi et al. 2010).

Promising measures for improving plant health in salinated soils are the use of
microbial inoculants, which can ameliorate salt stress, promote plant growth
(Lugtenberg et al. 2013a), and control diseases (Lugtenberg and Kamilova 2004;
Lugtenberg and Kamilova 2009; Mayak et al. 2004; Lugtenberg et al. 2013b;
Egamberdieva et al. 2008; Pliego et al. 2011). The utilization of root-associated
bacteria that interact with plants by mitigating stress opens a new advanced
technology for combating salinity. Many studies have demonstrated that the use of
beneficial microbes can enhance a plant’s resistance to adverse environmental
stresses, e.g., drought, salinity, nutrient deficiency, and heavy metal contamina-
tion. Such inoculants contribute to the development of sustainable agriculture
under stressed conditions (Glick et al. 2007; Dodd and Perez-Alfocea 2012; Berg
et al. 2013).

The inoculation of seeds of various crop plants, such as tomato, pepper, canola,
bean, and lettuce, with PGPR can result in increased root and shoot growth, dry
weight, fruit and seed yield and in enhanced tolerance of plants to salt stress (Glick
et al. 1997; Mayak et al. 2004; Yildirim and Taylor 2005; Barassi et al. 2006;
Egamberdieva et al. 2013a). According to Creus et al. (2004), PGPR may alter
plant–water relationships and show enhanced osmotic adjustment.

In the present chapter, we will review the current status of our understanding of
the action of PGPR in crop cultivation under conditions of abiotic stress. We will
start with studies about the effect of salt stress on plant growth and physiology,
followed by the role of plant growth-promoting rhizobacteria in alleviating salt
stress in plants and end with the main mechanisms involved in improvement of
plant tolerance to salt stress caused by these microbes.
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Effects of Soil Salinity on Plant Growth and Physiology

Seed germination and early seedling growth are the most salt-sensitive plant
growth stages under environmental stresses, because the seedling root is in direct
contact with soil and is affected by many soil changes, including salt stress
(Rahman et al. 2000; Jamil et al. 2006). Many studies have demonstrated that
salinity inhibits seed germination of various crops such as wheat (Egamberdieva
2009), faba bean (Rabie and Almadini 2005), rice (Xu et al. 2011), maize
(Khodarahmpour et al. 2012), and soybean (Essa 2002). Moreover, Jamil et al.
(2006) observed significant reductions in germination percentage, in germination
rate, and in seedling root and shoot lengths of cabbage, sugar beet, paniculate
amaranth, and pak-choi.

In our previous work, we observed that increasing salt content reduced the
shoot length (50 %) and root length (7 %) of bean seedling grown in a gnotobiotic
sand system in a growth cabinet (Egamberdieva 2011). These observations are in
line with earlier reports about ground nut (Mensah et al. 2006), and chickpea (Al-
Mutawa 2003), for which was reported that increased salinity leads to decreased
root length. A similar result was observed by Demir and Arif (2003), who reported
that the root growth of safflower was more inhibited by salinity than shoot growth.
Ashraf (2004) and Razmjoo et al. (2008) found that high salt causes a significant
reduction in the growth of shoot and root as well as in the essential oil content of
Ammolei majus, Hyoscyamus niger, and Matricaria chamomile. Salinity also
decreases photosynthesis, stomatal conductance, chlorophyll content, and mineral
uptake of basil (Ocimum basilicum) (Golpayegani and Tilebeni 2011).

Several explanations for these effects have been proposed, such as disturbance
of the hormonal balance (Prakash and Prathapasenan 1990), alteration of protein
metabolism (Dantas et al. 2005), inhibition of the activity of enzymes involved in
nucleic acid metabolism (Arbona et al. 2005), and the loss of control on nutrient
uptake. These effects are assumed to be caused by the osmotic effect (Shirokova
et al. 2000) and the ion toxicity of salt (Munns 2002; Tavakkoli et al. 2011).

The inhibition of root growth by salinity may be caused by a reduction in water
uptake and an unbalanced nutrient uptake by the seedling (Dolatabadian et al.
2011). In addition, Atak et al. (2006) and Neamatollahi et al. (2009) pointed out
that higher saline concentrations may reduce the germination percentage due to
increased osmotic pressure. Abundance of Na+ and Cl- ions can lead to a
reduction in accessibility and uptake of some elements such as N, P, K, and Mg by
the plant (Heidari and Jamshid 2010). In another study, Xiong and Zhu (2002)
reported that salinity induces inhibition of phytohormone synthesis and maturation
of cell walls.

Most legumes are sensitive to salinity. Soil salinity particularly disturbs the
symbiotic interaction between legumes and Rhizobium bacteria. These bacteria
form root nodules in which they fix atmospheric nitrogen through the nitrogenase
complex and make it available to the plant (Quispel 1988). Soil salinity reduces N2

fixation and nitrogenase activity of several legumes such as soybean (Glycine max)
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(Singleton and Bohlool 1984), common bean (Phaseolus vulgaris), and faba bean
(Vicia faba) (Rabie et al. 2005).

Only a few agronomical legumes can grow in salt-affected soils (Ashraf and
McNeilly 2004). Galega offfcinalis L (goat’s rue, French lilac) might be a good
candidate to cultivate in salt-affected soils because they are perennial, deep rooted,
and grow fast after initial establishment. We have observed that G. officinalis
plants inoculated with their rhizobial symbiont Rhizobium galegae suffer from
retarded growth and impaired nodulation when grown under 75 mM NaCl con-
ditions (Fig. 4.1). Salt stress also decreased the number of Rhizobium cells able of
colonize G. officinalis root tips (Egamberdieva et al. 2013a).

An explanation for the reduction in symbiotic legume growth might be that the
salt stress causes a failure of the infection and nodulation process. For example,
according to Bouhmouch et al. (2005), salt inhibits the absorption of Ca2+ ions,
which causes reduction in the growth of roots, root tips, and root hairs, thereby
decreasing sites for potential rhizobial infection and further nodule development.

Fig. 4.1 Effect of 50 mM NaCl on growth of goat’s rue plants (Galega officinalis L.). The effects
of the treatment of G. officinalis with NaCl solutions were evaluated after plants were grown for
eight weeks in lowly fertilized potting soil in the greenhouse. A salt concentration of 50 mM
NaCl retarded significantly the growth of shoots and roots, as well as the nodulation of G.
officinalis plants inoculated with Rhizobium galegae
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Rhizobacteria in Saline Soils

Soil salinity not only inhibits plant growth and development, but also negatively
affects the composition and activities of rhizosphere bacteria (Ofek et al. 2006).
Nelson and Mele (2007) reported that sodium chloride affects the rhizosphere
microbial community structure through its influence on the quantity and/or quality
of root exudates. Also, increasing salinity decreases the diversity of Pseudomonas
species associated with rice. Pseudomonas species found in saline soil include
P. aeruginosa, P. fluorescens, P. putida, P. stutzeri, P. mendocina, P. mallei, and
P. diminuta (Nagarajan et al. 2002). Non-saline soil favors the growth of the
fluorescent Pseudomonas population, whereas in saline soil the dominant Pseu-
domonas subpopulation consists of P. alcaligenes and/or P. pseudoalcaligenes.

Loganathan and Nair (2004) isolated salt-tolerant, nitrogen-fixing bacteria from
mangrove-associated wild rice and identified them as Swaminathania salitolerans.
Tripathi et al. (2002) isolated and identified salt-tolerant rhizobacteria from rice
roots, including Serratia marcescens, P. aeruginosa, Alcaligenes xylosoxidans,
and Ochrobactrum anthropi.

Potential human pathogenic bacteria have been found in saline soils in a sur-
prisingly high frequency. Egamberdieva et al. (2008) have isolated salt-tolerant
rhizobacteria with high rhizosphere competence from wheat roots grown in sali-
nated Uzbek desert soils. They observed that many of the root-associated bacteria
are potential human pathogens, which were identified as Alcaligenes faecalis,
Acinetobacter sp., Enterobacter hormaechei, Pantoea agglomerans, P. aerugin-
osa, Bacillus cereus, and Staphylococcus saprophyticus.

The presence of other human pathogens on plant roots in saline environments,
such as Salinivibrio, Halomonas, Chromohalobacter, Bacillus, Salinicoccus,
Candida tropicalis, Alcaligenes faecalis, S. marcescens, and A. xylosoxidans, was
also reported (Tripathi et al. 2002; Sanchez-Porro et al. 2003; Bastos et al. 2004).
Salt-tolerant Mycobacterium phlei strains were also found in association with roots
of corn planted in saline soils of Uzbekistan (Egamberdieva 2011).

The presence of P. aeruginosa in the rhizosphere of wheat has been reported
previously (Morales et al. 1996; Germida and Siciliano 2001). The consistent pres-
ence of P. aeruginosa in saline soils indicates a widespread incidence of this bacte-
rium in the rhizosphere of plants growing in saline soil. Microorganisms compete for
nutrients and niches in the plant rhizosphere. Exudates are thought not only to attract
beneficial bacteria to colonize the roots, but also human pathogens which apparently
have evolved to respond to the same signals (Roberts et al. 2000; Ji and Wilson 2002).

Morales et al. (1996) and Jablasone et al. (2005) reported that the survival and
colonization of potentially pathogenic human-associated bacteria in the rhizo-
sphere of plants are poor and that their persistence and colonization on plants are
decreased by co-inoculation of pathogens with naturally occurring bacteria. We
have also observed that the potential human pathogenic strains B. cereus,
S. saprophyticus, P. aeruginosa, and Acinetobacter sp., isolated from roots of
wheat plants growing in salinated soils, showed poor competitive colonization of
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the wheat rhizosphere when compared with P. fluorescens WCS365, an excellent
root tip colonizer (Egamberdieva and Kucharova 2009). Since the potential
pathogens were probably derived from manure used for fertilization, it is likely
that the root-derived bacteria out compete the potential pathogens derived from
humans and animals (Egamberdieva et al. 2011).

Egamberdieva and Kucharova (2009) have selected enhanced root tip colo-
nizing bacteria from wheat grown in saline soil using an enrichment procedure
described by Kamilova et al. (2005). The four selected strains were identified as
P. putida, P. extremorientalis, P. chlororaphis, and P. aureantiaca, and since they
do not belong to risk group 2 (Anonymous 1998), they are nonpathogenic. Those
findings suggest that the screening procedure for the selection of enhanced root-
colonizing rhizobacteria can select for environmentally save bacterial strains,
which can be applied for plant growth promotion in salinated and stressed soil
conditions. Moreover, they are likely to out compete potential pathogens of human
and animal origin.

Plant Salt Stress Alleviation Using Plant Growth-
Promoting Rhizobacteria

The rhizosphere is colonized more intensively by microorganisms than the other
regions of the soil. These microbes can be beneficial, neutral, or pathogenic. Ben-
eficial rhizobacteria can improve seed germination, root and shoot growth, nutrient
uptake, and plant stress tolerance. Moreover, they are able to control various dis-
eases. They are often referred to as plant growth-promoting rhizobacteria (PGPR)
(Hiltner 1904; Lugtenberg et al. 2001; Compant et al. 2005; Arora et al. 2008;
Lugtenberg and Kamilova 2009). A range of salt-tolerant rhizobacteria (e.g., Rhi-
zobium, Azospirillum, Pseudomonas, Flavobacterium, Arthrobacter, and Bacillus)
has so far shown beneficial interactions with plants in stressed environments
(Egamberdieva and Islam 2008; Egamberdieva et al. 2011; Adesemoye et al. 2008).

The majority of cultivated plant species, especially widely grown horticultural
and cereal crops, are susceptible to excessive concentrations of dissolved ions (e.g.,
[30 mM or [3.0 dS/m) in the rhizosphere (Ondrasek et al. 2009). For example,
the yield of crops such as potato, corn, onion, and bean can be reduced by 50 %
when the soil EC is increased to 5.0 dS/m (Horneck et al. 2007).

Earlier reports claim that salinity negatively affects soil bacterial activity by
high osmotic strength and toxic effects by salts, but that salt-tolerant bacteria can
survive and proliferate in the soil and in the rhizosphere in a harsh environment
(Garcia and Hernandez 1996). Diby et al. (2005) observed that the population of
the salt-tolerant P. pseudoalcaligenes strain MSP-538 did not change considerably
with increasing salinity in the soil. Root-associated bacteria are more tolerant to
salt stress than soil bacteria, since salinity stress is higher in the rhizosphere due to
depletion of water by the plant root, resulting in an increase in both ionic strength
and osmolality (Tripathi et al. 1998).
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Several PGPR strains, such as Serratia plymuthica RR2-5-10, S. rhizophila
e-p10, P. fluorescens SPB2145, P. chlororaphis TSAU 13, P. putida TSAU1,
P. extremorientalis TSAU20, P. fluorescens PCL1751, and P. aureofaciens
TSAU22, are salt tolerant up to at least 3 % NaCl and temperature resistant up to
40 �C (Egamberdieva and Kucharova 2009; Egamberdieva et al. 2011). Thus, it is
likely that salt-tolerant PGPR strains are able to survive in the rhizosphere of
plants due to their persistence and competitiveness under saline arid soil conditions
(Mayak et al. 2004; Yasmin et al. 2007).

There are many reports on the improvement of plant growth, development, and
nutrient uptake by salt-tolerant bacterial inoculants (Dodd and Perez-Alfocea
2012). An overview of ameliorative effects of PGPR on various plants mentioned
in the literature is presented in Table 4.1. For example, Heidari et al. (2011)
reported that plant growth, as well as auxin and protein contents of Ociumum
basilicm inoculated with Pseudomonas sp. under conditions of drought stress
increased. Golpayegani and Tilebeni (2011) observed that inoculation of basil with
Pseudomonas sp. and Bacillus lentus alleviated the salinity effects on growth,
photosynthesis, mineral content, and antioxidant enzymes. Dardanelli et al. (2008)
observed that Azospirillum brasilense promoted root branching in bean seedling
roots and increased secretion of flavonoids and lipochitooligosaccharides.

Inoculation of wheat with the halotolerant A. brasilense strain NH improved
germination and growth of wheat under saline soil conditions (Nabti et al. 2010).
Similar results were obtained by Abbaspoor et al. (2009) who reported increased
plant growth, grain yield, and 1,000 grain weight of wheat by inoculation with
P. fluorescens 153 and P. putida 108. In one of our studies, plant treatments with
salt-tolerant strains, such as P. chlororaphis TSAU13 and P. extremorientalis
TSAU20, increased shoot growth and dry weight of wheat at 50, 100, and 125 mM
NaCl, compared to control plants (Figs. 4.2 and 4.3). The nutrient (N, P, K, and
Mg) uptake of wheat was also increased by Mycobacterium phlei MbP18 and
Mycoplana bullata MpB46 (Egamberdieva and Hoflich 2003).

According to Sivritepe et al. (2003), an increase in the potassium content in
roots and shoots of plants grown under salt stress can reduce the negative effect of
salinity on plant growth. A similar observation, namely that plants with a higher
potassium content are more tolerance to salt stress, was reported by Kaya et al.
(2003) for pepper and cucumber. P. chlororaphis TSAU13 and P. extremorientalis
TSAU20 are able to stimulate root length (by 47 %) and dry weight (by 50 %) of
bean (Egamberdieva 2011). Salinity did not inhibit the plant stimulating properties
of salt-tolerant bacterial strains for wheat.

Hasnain and Sabri (1996) reported that inoculation of wheat with Pseudomonas
sp. stimulated plant growth by reducing the uptake of toxic ions and increasing the
auxin content. In another study, the PGPR strains P. alcaligenes PsA15,
P. chlororaphis TSAU13, P. extremorientalis TSAU20, and B. amyloliquefaciens
BcA12 significantly (P \ 0.05) increased the length and dry weight of cotton roots
and shoots in saline soil in comparison with the uninoculated control plants (E-
gamberdieva and Jabborova 2013). Similar results were reported by Yue et al.
(2007) for Klebsiella oxytoca which, upon inoculation, was able to relieve salt
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stress and promote the growth of cotton seedlings in salinated soil. Moreover, plant
height and dry weight of cotton increased by 14.9 and 26.9 %, respectively.

Rabie and Almadini (2005) reported that inoculation of bean with the AMF
(arbuscular mycorrhizal fungus) Glomus clarum and the bacterium Azospirillum
brasilense significantly increased plant growth, nodule number, protein content,
and nitrogen and phosphorus uptake in comparison with uninoculated plants and
also improved plant stress tolerance. Yildirim et al. (2008) studied the ameliorative

Fig. 4.2 Effect of P. chlororaphis TSAU13 and P. extremorientalis TSAU20 on shoot growth of
wheat under salinated soil. Pot experiments, NaCl concentrations are 50, 100, 125 mM

Fig. 4.3 Effect of P. chlororaphis TSAU13 and P. extremorientalis TSAU20 on dry weight of
wheat in salinated soil. Pot experiments, NaCl concentrations are 50, 100, 125 mM
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effect of Staphylococcus kloosii strain EY37 and Kocuria erythromyxa strain EY43
on radish growing in saline soil. They observed that bacterial inoculants signifi-
cantly increased shoot/root dry weight, leaf number per plant, relative water
content of the leaf, and chlorophyll content of radish fruit. Bharti et al. (2013)
observed that salt-tolerant Bacillus pumilus and Exiguobacterium oxidotolerans
stimulated plant growth and bacoside-A content of brahmi (Bacopa monnieri).

In all reports presented above, the bacterial inoculant strains were isolated from
the rhizosphere of plants naturally growing in saline soils. We observed that for the
application of bacteria in salinated soils, there is no strict need to isolate these
bacteria from plants grown in salinated soil. In our study (Egamberdieva et al.
2011), S. plymuthica strain RR2-5-10, S. rhizophila strain e-p10, and P. fluores-
cens strain SPB2145, all isolated from regions with a moderate to cold climate and
non-saline soil, were able to increase cucumber growth and yield in salinated soil
of Uzbekistan. These results are consistent with observations showing that the
rhizosphere is characterized by changing osmotic conditions, and that its microbial
inhabitants can adapt to increased osmolarity, for example by producing osmo-
protective substances (Miller and Wood 1996).

Rhizobium–Legume Symbiosis Improved by PGPR

Under saline conditions, the symbiosis of legumes with Rhizobium spp. can be
improved by co-inoculation with PGPR (Valverde et al. 2005; Yadegari and
Rahmani 2010). Dual inoculation with Rhizobium and PGPR result in an increase
in the total nodule number of pigeon pea (Cajanus cajan) compared to inoculation
with Rhizobium alone (Tilak et al. 2006).

We have investigated whether the PGPR strains P. extremorientalis TSAU20
and P. trivialis 3Re27 have the ability to alleviate salinity stress in G. officinalis L
(goat’s rue). In comparison with plants inoculated with R. galegae alone, co-
inoculation of both unstressed and salt-stressed goat’s rue with Rhizobium galegae
HAMBI 1141 and either P. trivialis 3Re27 or P. extremorientalis TSAU20 sig-
nificantly improved root and shoot growth as well as nodulation of the plants. This
was the case in both gnotobiotic sand and low-fertilized potting soil. The nitrogen
content of the co-inoculated plant roots was significantly increased at both 50 and
75 mM NaCl in potting soil (Fig. 4.4) (Egamberdieva et al. 2013a).

Figueiredo et al. (2008) studied the effect of Rhizobium tropici, when co-inoc-
ulated with Paenibacillus polymyxa, on growth, nitrogen content, and nodulation of
the common bean (Phaseolus vulgaris L.) under conditions of drought stress. They
observed that plants co-inoculated with both R. tropici and P. polymyxa showed
improved plant growth, shoot dry matter, nodule dry matter, and N uptake as well as
higher nodule numbers than those inoculated with R. tropici alone.

Rokhzadi et al. (2008) showed that the combined inoculation of Azotobacter,
Azospirillum, Pseudomonas, and Mezorhizobium resulted in promotion of the grain
yield and biomass in chickpea. Han and Lee (2005) observed that inoculation of
non-legume lettuce with Serratia sp. and Rhizobium sp. alleviated the negative
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effects of salinity on the plant. The inoculation resulted in increased plant growth
and N, P, and K uptake. Also, stomatal conductance, chlorophyll content, and the
activities of antioxidant enzymes such as ascorbate peroxidase and glutathione
reductase increased.

Rabie and Almadini (2005) examined tripartite interactions among a bacterium
(A. brasilens), an AMF (G. clarum), and a legume plant (Vicia faba) under
increased NaCl levels in pot cultures. Significant positive effects of inoculation
were found in the plants with respect to salinity tolerance, mycorrhizal depen-
dence, phosphorus level, phosphatase enzymes, nodule number, nitrogen uptake,
protein content, and nitrogenase activity. Based on these findings, the authors
suggested that bacterial–AMF–legume tripartite symbioses could be a new
approach for increasing the salinity tolerance of legume plants.

The studies mentioned above indicate that PGPR are able to alleviate salt stress
in leguminous plants, whereas more nodules might develop into nitrogen-fixing
ones, thereby enabling the plant to obtain part of its nitrogen from the atmosphere.
Co-inoculation techniques could be a new approach to increase the salt tolerance
and yield of legumes used for the food and green manure production in salt-
affected soils, providing a supply of biologically fixed N at low cost.

Mechanisms of Action by Which PGPR Alleviate Salt
Stress

PGPR can use various mechanisms to stimulate plant growth and development, to
protect plants from soilborne diseases, and to increase plant stress tolerance. These
mechanisms include (1) the production of phytohormones, antifungal metabolites,

Fig. 4.4 Effect of the salt-tolerant bacterium Pseudomonas trivialis 3re27 on the growth of
Galega officinalis inoculated with Rhizobium galegae R1141
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and/or lytic enzymes, (2) increasing the availability of plant nutrients, (3) reduction
in stress-induced ethylene production, and (4) induction of systemic resistance
(Lugtenberg and Kamilova 2009; Pliego et al. 2011; Egamberdieva et al. 2013a;
Penrose et al. 2001; Glick 2005).

Phytohormone Production

Phytohormones have a major role in plant growth development and in stress
responses (Shaterian et al. 2005). They may enhance different cellular defence
systems for the protection of plants from external adverse conditions (Bianco and
Defez 2009). Salinity and drought stresses inhibit the production of auxins, gib-
berellins, and zeatin in the roots and leaves of plants (Sakhabutdinova et al. 2003;
Figueiredo et al. 2008; Perez-Alfocea et al. 2010).

The decrease in hormone levels in the root system of plants results in a
reduction in the germination percentage, and of plant growth and development
(Werner and Finkelstein 1995; Sakhabutdinova et al. 2003). Salt stress reduces the
supply of cytokinin from root to shoot (Naqvi and Ansari 1974) and also the
recovery of diffusible auxin from maize coleoptile tips (Itai et al. 1968).

Salinity does not inhibit auxin production of salt-tolerant PGPR. Nabti et al.
(2007) isolated the halotolerant A. brasilense strain NH which is able to produce
auxin at a concentration of 200 mM NaCl. A similar observation was reported in
our previous work in which the PGPR strains S. plymuthica RR2-5-10, S. rhizo-
phila e-p10, P. fluorescens SPB2145, and P. chlororaphis TSAU13 were shown to
produce auxin at 1.5 % NaCl (Egamberdieva et al. 2011; Egamberdieva 2012).

Root-colonizing bacteria which produce auxin under saline condition may
supply additional auxin into the rhizosphere, which could help to maintain root
growth under stress, and also can contribute to maintaining leaf growth (Albacete
et al. 2008). In one of our studies, the inoculation of wheat with the individual
auxin-producing bacterial strains P. aureantiaca TSAU22, P. extremorientalis
TSAU6, and P. extremorientalis TSAU20 significantly increased seedling root
growth up to 40 % and shoot growth up to 52 % at 100 mM NaCl compared to
control plants (Egamberdieva 2009). Arkhipova et al. (2007) also observed
increased root and shoot growth as well as cytokinin concentrations in plants by
treatment with a cytokinin-producing B. subtilis strain.

In conclusion, PGPR can have multiple impacts on the phytohormone status,
modifying root-to-shoot signalling and shoot hormone concentrations, which may
improve growth, development, and physiological processes of plants under salt
stress (Dodd et al. 2010).

Osmolites

Plants may protect themselves from drought and salt stress by accumulating
compatible solutes such as sugars and amino acids to osmotically adjust
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themselves (Serraj and Sinclair 2002; Evelin et al. 2009). Jha et al. (2010) reported
that paddy rice (Oryza sativa L.) inoculated with P. pseudoalcaligenes showed a
significantly higher concentration of glycine betaine-like quaternary compounds
and a higher shoot biomass under salinity conditions. Bano et al. (2013) observed
that A. lipoferum increased accumulation of free amino acids and soluble sugars in
maize, as compared to the control, under drought stress conditions.

Azospirillum inoculation leads to an increased content of proline (Kandowangko
et al. 2009) and free amino acids in maize under drought stress conditions (Sandhya
et al. 2010). Verbruggen and Hermans (2008) reported that the accumulation of
proline is one of the best-known alterations induced by water and salt stress in
plants. Kandowangko et al. (2009) observed that inoculation of corn with Azo-
spirillum causes an increase in leaf proline content. Several PGPR strains, such as
Burkholderia (Barka et al. 2006), Arthrobacter, and Bacillus (Sziderics et al. 2007),
enhance proline synthesis in stressed plants, which helps in maintaining the cell
water status, thereby helping the plant to cope with the salinity stress. Proline may
enhance the activity of various enzymes, stabilizing the pH within the cell
and maintaining antioxidant activity by scavenging reactive oxygen species
(Verbruggen and Hermans 2008).

Ashraf (2004) observed that bacterial exopolysaccharides bind the Na+ ion in
the root, through which the plant’s Na+ accumulation decreases. In that way,
bacteria may alleviate salt stress in plants. Sandhya et al. (2009) reported that
exopolysaccharides produced by PGPR exhibit increased plant resistance to water
stress. Kerepesi and Galiba (2000) indicated that the accumulation of sugars in
salinity-stressed plants prevents the destruction of soluble proteins. Co-inoculation
of Phaseolus vulgaris L. with R. tropici and the PGPR Paenibacillus polymyxa
(which produces trehalose) increased plant growth, N content, and nodulation
under drought stress (Figueiredo et al. 2008).

ACC Deaminase

The hormone ethylene is involved in the plant developmental cycle, and it may be
stimulatory or inhibitory, depending upon its concentration (Penrose et al. 2001).
Ethylene has previously been found to be an inhibitor of plant root elongation in
several different systems (Glick 2005). The production of ethylene in plants is
highly dependent on the endogenous levels of 1-aminocyclopropane-1-carboxylate
(ACC). The enzyme ACC deaminase is present in many rhizosphere bacteria
(Glick 2010). Such bacteria can take up ACC from the plant root and convert it
into a-ketobutyrate and ammonia. This results in the decrease in ACC levels and
therefore also in ethylene levels in the plant and in decreased plant stress (Bianco
and Defez 2009; Pliego et al. 2011).

PGPR containing the enzyme ACC deaminase decrease the ethylene level,
enhance the survival of some seedlings, and improve root growth and development
in various plants such as tomato, pepper, and bean under stressed conditions (Glick
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et al. 1998; Mayak et al. 2004; Nadeem et al. 2009). We have previously reported
that PGPR strain P. trivialis 3Re27 is able to utilize ACC as its sole N source,
indicating that it contains ACC deaminase. This observation suggests that the
presence of ACC deaminase leads to an increase in salt tolerance and a stimulation
of shoot and root growth of goat’s rue in salinated soil (Egamberdieva et al. 2013a).

ACC deaminase-producing Achromobacter piechaudii strain ARV8 confers
‘induced systemic tolerance’ (IST) against drought and salt stress in pepper and
tomato (Mayak et al. 2004). Shahzad et al. (2010) observed that rhizobacteria con-
taining ACC deaminase increase the number of lateral roots, lateral root length, and
root dry weight of chickpea seedlings and a direct correlation has been found between
in vitro bacterial ACC deaminase activity and root growth (Shaharoona et al. 2006).
Longer roots may take up relatively more water from deep soil under stress condi-
tions, thus increasing the water use efficiency of the plants (Zahir et al. 2008).

In another study, P. fluorescens strain TDK1, which produces ACC deaminase,
improved the plant growth parameters and the salt stress resistance of groundnut
seedlings under saline condition as compared to plants inoculated with Pseudo-
monas strains lacking ACC deaminase activity (Saravanakumar and Samiyappan
2007). Similar results were observed by Kausar and Shahzad (2006), who reported
that P. fluorescens containing ACC deaminase stimulated root growth of maize
under saline conditions.

It is assumed that ACC exuded from the root will be degraded by ACC
deaminase and that the products of hydrolyzed ACC will be used by root-colo-
nizing bacteria. In that way, both plant and bacteria benefit from this process
(Glick et al. 1998; Bianco and Defez 2012). In our opinion, a more likely and more
efficient explanation is that the ACC deaminase-producing bacterium uses the
needle of the type three secretion system to suck up plant sap containing ACC and
deliver it in the bacterial cytoplasm where the enzyme ACC deaminase is located.

Root Colonization

Efficient colonization of the plant surface is the only option for bacterial soil
inoculants to survive under adverse soil conditions and to compete with the better
adapted native microflora in this highly competitive environment (Van Overbeek
and Van Elsas 1997; Lugtenberg et al. 2001; Rekha et al. 2007; Lugtenberg and
Kamilova 2009). The successful colonization of the rhizosphere by introduced
beneficial bacteria also requires that these bacteria are well adapted to the rhizo-
sphere and have some selective advantage over the numerous indigenous bacteria
which have the potential to colonize that rhizosphere (Kawaguchi et al. 2002).

In one of our studies, the salt-tolerant bacterial strains P. cholororaphis
TSAU13 and P. extremorientalis TSAU20 were able to colonize the rhizosphere of
wheat under saline conditions up to 125 mM NaCl (Table 4.2). The colonization
of P. chlororaphis TSAU13 was slightly inhibited, from 4.1 to 3.2 [Log (CFU)/cm
of root tip], at 125 mM NaCl (Table 4.2). These results show that both bacterial
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strains are able to survive on the root of wheat under saline soil condition. Sim-
ilarly, Diby et al. (2005) reported that the population of P. pseudoalcaligenes
MSP-538 in rice root was not inhibited with increasing salinity. Paul and Nair
(2008) also observed that the root colonization potential of the salt-tolerant strain
P. fluorescens MSP-393 is not hampered by high salinity in the soil.

In our previous study, rifampicin-resistant mutants of the effective biocontrol
strains P. alcaligenes PsA15, P. chlororaphis TSAU13, P. extremorientalis
TSAU20, and B. amyloliquefaciens BcA12 were able to colonize the rhizosphere
of cotton and persisted in saline soil (Egamberdieva and Jabborova 2013). Strain
P. extremorientalis TSAU20, which was isolated as an enhanced wheat root col-
onizer (Egamberdieva and Kucharova 2009), showed high colonization ability in
the rhizosphere of cotton, whereas B. amyloliquefaciens BcA12 had lower colo-
nization ability. Bacterial motility could contribute to survival in the soil and the
initial phase of colonization, where attachment and movement toward the root
surface are important (Turnbull et al. 2001). Pseudomonas strains are motile and
able to colonize the entire root system, in contrast to Bacillus which was unable to
effectively colonize the rhizosphere of plants (Fukui et al. 1994).

Conclusion and Future Prospects

The present review indicates that soil salinity decreases germination, plant growth,
plant development, and nutrient uptake. PGPR isolates are able to alleviate salt
stress in plants, increase germination, shoot/root length, dry matter production, and
yield in various agricultural and horticultural plants. Thus, PGPR can contribute
significantly to solving the plant production problems caused by high salinity.
Elucidation of the mechanisms of alleviation of salt stress and plant growth pro-
motion by PGPR, such as stimulation of root growth by the production of phy-
tohormones, decreasing ethylene levels by the enzyme ACC deaminase,
production of osmoprotectants, and competition for nutrient and niches has pro-
vided a greater understanding of possible ways to open new doors for strategies
which can improve the efficacy of PGPR agents. However, there is still a lot that is
not understood regarding the functioning of these organisms under stressed soil
conditions and also with respect to their interactions with the host plant. Knowl-
edge of the mechanisms contributing to plant stress tolerance by PGPR as well as

Table 4.2 Effect of salt stress on the colonization of bacterial strains P. chlororaphis TSAU13
and P. extremorientalis TSAU20 in the rhizosphere of wheat (Log CFU/cm of root tip), grown in
a gnotobiotic sand system for 7 days

Bacteria NaCl concentrations (mM)

0 50 100 125

P. chlororaphis TSAU13 4.1 ± 0.2 4.1 ± 0.3 4.0 ± 0.2 3.2 ± 0.2
P. extremorientalis TSAU20 4.6 ± 0.2 4.6 ± 0.1 4.4 ± 0.1 3.8 ± 0.2
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the constraints to their activity under severe conditions can facilitate a more
effective use of bacterial inoculants. More detailed studies are needed on the role
of abiotic factors in altering the activity of rhizobacteria and managing plant–
microbe interactions, with respect to their adaptability to extreme environments.
Aspects which have to be included in future research are (1) mechanisms involved
in alleviation of salt stress in plants, (2) potential competition between PGPR
strains and indigenous soil microflora in the rhizosphere of plants grown in
stressed environments, and (3) induction of salt stress tolerance at plant tissue, cell,
and molecular level.
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Chapter 5
Drought Stress and Mycorrhizal Plant

Marcela Claudia Pagano

Introduction

Interest in stressful conditions is rising with increasing the recognition that global
changes can negatively affect ecosystems (Firbank et al. 2008; Scherr and
McNeely 2008). The environment affects organisms in many ways named
environmental factors, which can be biotic or abiotic. The effect of abiotic envi-
ronmental factors (temperature, humidity, light, water supply, nutrients, and CO2)
(see Table 5.1) differs with their intensity as they regulate plant growth (Schulze
et al. 2005).

Plant tolerance to abiotic stresses such as drought has been reported for dif-
ferent plant species. For example, Eucalypts species are known for their capacity
to tolerate several stresses. Olive trees (Sofo et al. 2008), Agave, and native cactus
from Mexico (Monroy-Ata and García-Sánchez 2009) as well as some native trees
from semiarid of Brazil (Pagano et al. 2013) are able to survive under soil water
conditions. It is worth noting, moreover, that these plant species require symbiotic
fungal endophytes for growth under abiotic stress (see below).

Plants are sessile organisms exposed to natural climatic or edaphic stresses
(drought, high irradiation, heat, frost, flooding, nutrient differences) and to envi-
ronmental changes from human activities (air and soil pollution, soil degradation)
(Schützendübel and Polle 2002). Nowadays, biotechnological techniques of stress
tolerance in plants are increasingly pursued. For example, under stress, arbuscular
mycorrhizal fungi (AMF) are able to modify plant physiology in a way so that the
plant can subsist with those environmental factors (Miransari et al. 2008).
Accordingly, the use of mycorrhizas as plant inoculants is being recommended to
help plants to prosper in degraded arid/semiarid areas.
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Several reports have showed that mycorrhizal symbiosis improves plant health
through increased protection against environmental stresses such as drought
(Azcón and Barea 2010; Barea et al. 2005a, b). Additionally, recent investigations
pointed to the increasing recognition of the occurrence of AMF in dry forests of
Brazil (Pagano et al. 2010, 2012, 2013) and northern Ethiopia (Birhane et al. 2010,
2012). Moreover, some plant species need to cope the severe conditions caused by
flooding and drought, as in the Netherlands, where riparian edge forests dominated
by Salix (well adapted to anaerobic soil conditions) associate with only a limited
number of mycorrhizal fungi (ectomycorrhizas) (Parádi and Baar 2006). Most of
the research is based on limited experiments done in glasshouse or nursery. For
example, in India, an important multipurpose fruit tree of arid and semiarid regions
(Ziziphus mauritiana) showed great dependency on AMF under water stress
conditions (Mathur and Vyas 2000).

To finish, there is an increased interest on biochar soil amendment not only to
improve soil fertility and plant productivity, but also to alleviate drought stress
(Elad et al. 2011). The mechanisms by which biochar increases water retention are
scarcely understood; however, it promotes mycorrhizal fungi and modifies soil
microbial populations and functions (Elad et al. 2011). The promotion of AMF by
biochar is also poorly understood, further studies being needed (Warnock
et al. 2007).

This chapter examines the current information on the AM symbioses with
respect to the research results on plant growth as affected by drought. Additionally,
soil amendments that may have a synergistic influence are discussed.

Table 5.1 Abiotic plant stress factors. Adapted from Schulze et al. (2005)

Type

Abiotic Water Drought
Flooding

Temperature Heat
Cold Chilling

Frost
Radiation Light

UV
Ionizing radiation

Chemical stress Mineral salts Deficiency, over-supply
pH, salinity

Pollutants Heavy metals
Pesticides

Gaseous toxins
Mechanical stress Wind

Soil movement
Submergence
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Plants and Drought Stress

Of severe significance are the effects of global change on soils: increased soil
temperatures, increased nutrient availability, increased ground instability in
mountainous regions, increased erosion from floods to name just a few (Simard
and Austin 2010). It is known that abiotic stresses (Table 5.1), such as drought,
adversely affect plant growth, productivity and generate morphological, physio-
logical, biochemical, and molecular changes in plants. However, different plant
species can vary in their sensitivity and response to water deficit (Schulze
et al. 2005).

Plant reactions to water deficiency (including stress avoidance or tolerance) are
complex. Stomata close in response to water deficit; however, it is more related to
soil moisture than to leaf water status, involving chemical signals produced by roots
(Chaves et al. 2002). Among abiotic stresses, drought and salinity stress are con-
sidered to be the most important factors limiting plant growth (Ruiz-Lozano 2003).
The symptoms of drought are leaf wilting, reductions in the net photosynthesis rate,
stomatal conductance, water use efficiency, relative water content, and gradually
diminution in total chlorophyll content.

Plants can react to drought at morphological, physiological, and cellular levels
with modifications that allow the plant to avoid the stress or to increase its tol-
erance (Ruiz-Lozano 2003). These morphological and physiological adaptations
can be of vital importance for some plant species, but they are not a general
response of all plant species. In contrast, the cellular responses to drought stress
seem to be conserved in the plant kingdom. To date, reports including plant
tolerance to drought (18,264 documents in SCOPUS from 1984 to June 2013) have
increased in the last 10 years (69 % of which were published in the recent decade).

Mycorrhizal Fungi and Drought

It is known that drought can decrease plant growth and production. AMF can
improve plant growth and production under different conditions, including various
soil stresses (reviewed by Miransari 2010). This was explained in terms of plant
allocation of more photosynthate to mycorrhizal hyphae to increase soil resource
uptake as nutrient and water limitations increase and can be seen in high latitude
and altitude ecosystems (see Simard and Austin 2010).

With regard to ectomycorrhizas, the complex transport of water from deep soil
to the mycorrhizal sporocarps has served to understand the dynamic and important
complex structural elements of the soil–fungal–plant interface (Allen 2007, 2009).
Special attention on trees, e.g., in Europe, showed that oak species (Quercus
robur, Quercus petraea, Quercus pubescens) inoculated with ectomycorrhiza
(Cenococcum geophilum) tolerated strong drought. Moreover, the relative
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abundance of ectomycorrhizal species in the community will be manipulated by
drought (Herzog et al. 2013).

With regard to AMF, they can promote plant growth increasing plant produc-
tion under stress due to the establishment of extensive hyphal networks and
secretion of glomalin, which enhance water and nutrient uptake meliorating soil
structure (Miransari 2010).

Interestingly, biotechnology offers new strategies that can be used to develop
transgenic crop plants with improved tolerance to stresses. Moreover, germplasm
collected from high-altitude and low-temperature areas, cold-tolerant mutants, and
wild species can be exploited for improved tolerant genotypes in other regions.

Earlier studies (Augé et al. 1987; Duan et al. 1996; Subramanian et al. 1995)
showed a higher stomatal conductance, transpiration rate, and leaf water potential
in mycorrhizal plants under drought. This was attributed to a higher water uptake,
which allows plants to maintain higher rates of photosynthesis and higher water
contents than non-mycorrhizal plants. The mechanism of modification of host-
plant–water relations rests unknown.

However, different hypotheses have been tested with inconclusive results.
Among those hypotheses, the following were proposed: (1) an indirect effect of
improved P nutrition in mycorrhizal plants (Augé et al. 1986; Fitter 1988), (2) an
improvement in water uptake in mycorrhizal roots by the extraradical hyphae
(Ruiz-Lozano and Azcón 1995), by increasing effective root hydraulic conduc-
tivity or by modifying root architecture, (3) a biochemical modification of water
regulation in the host plant through changes in hormonal signaling, (4) stimulation
of osmoregulatory responses in mycorrhizal plants (Augé et al. 1986), and
(5) changes in soil water retention properties (Morte et al. 2000).

It has been shown that Arbuscular mycorrhizal (AM) symbiosis can modify
water relations and drought responses of host plants (Augé 2001). Numerous
reports have compared mycorrhizal plants with control plants; however, more
suitable comparisons (with different fungal species) are nowadays required (Augé
et al. 2003). Among the AM symbiotic characteristics associated with water
relations, some authors focused on the extent of extraradical hyphal development
in the soil. This was explained in terms of contribution to root water absorption
(Ruiz-Lozano and Azcón 1995) or by moisture retention and modification of
drainage properties (Augé et al. 2001; Bearden 2001).

Several authors suggested that extraradical hyphal development in mycorrhizal
fungi was associated with greater drought resistance of plants growing in those
soils or observed a significant occurrence of extraradical hyphae in semiarid
ecosystems. To such aim, glasshouse experiments by Augé et al. (2003) showed
that soil hyphal colonization (extraradical hyphae) had superior effects on both
lethal leaf water potential and soil water potential than did root hyphal coloni-
zation, root density, soil aggregation, soil glomalin concentration, and other
variables. Moreover, a semiarid mix of mycorrhizal fungi used as inocula was
superior to the single inoculation of Glomus intraradices. They highlighted the
importance of soil hyphae on the water relations of host plants. In semiarid plants
of Mexico, Monroy-Ata and García-Sánchez (2009) also showed better water
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relations, plant growth, and survival in plants associated with AMF. They tested
species of Fabaceae, Cactaceae, and Agavaceae mainly in greenhouse, showing
the magnitude of AMF inoculation.

Since the publication of the seminal books of Sieverding (1991), Smith and
Read (2008), van der Heijden and Sanders (2003) and Miransari et al. (2008,
2011) and several reports (see Table 5.2), the need for more information on how
AMF influence plant drought stress in different plant and crop species was high-
lighted. However, to increase our ability to optimize AMF research, experiments
under field situations are still urgently needed. Most recently, Gholamhoseini
et al. (2013) showed that inoculation of AM such as Glomus mosseae can be more
benefic under drought stress, e.g., for the cultivation of sunflowers under arid and
semiarid ecosystems, where water is the most important factor in determining
plant yield. Additionally, inoculation of Glomus spp. offered a better seedling
resistance (improved plant growth and physiological performance) in Sophora
davidii—spiny, multistemmed, deciduous shrub native to southwestern China,
under water stress (Gong et al. 2013). The last plant species has important use for
revegetation in the semiarid Loess Plateau and arid valley areas of China.

Mycorrhizal plants under drought conditions increase stomatal conductance,
transpiration rate and leaf water potential due to a higher water uptake (Augé 2001)
than non-mycorrhizal plants. The mechanism by which mycorrhizas modify host-
plant–water relations remains unknown (different hypotheses have been tested with
inconclusive results (Morte et al. 2000) and the contribution of AM symbiosis
to plant drought tolerance is now seen as the product of accumulative effects
(physical, nutritional, physiological, and cellular) (Ruiz-Lozano 2003).

Evidence from different continents indicates that most vegetation types sub-
jected to drought stress present AMF. Monroy-Ata and García-Sánchez (2009)
compiled the benefits of AMF in semiarid plants of Mexico. They showed more
improved water relations and plant growth in such environments in comparison
with uninoculated control plants. In southeastern Spain, Barea et al. (2011)
compiled the diversity of mycorrhizas found in semiarid Mediterranean ecosystem.
They showed the benefit of mycorrhizal fungi to help plants to establish and deal

Table 5.2 Some recent book and reviews* dealing with occurrence of AMF in drought-stressed
conditions

Reports References

Reports on plant–water relations, drought, and AM symbiosis Augé (2001)*
Reports on molecular studies of Arbuscular mycorrhizal

symbiosis and alleviation of osmotic stress
Ruiz-Lozano (2003)*

AMF and soil stresses Miransari (2010)*
Drought tolerance and AMF in Grassland, Argentina Busso and Bolletta (2010)
AMF and alleviation of soil stresses Miransari et al. (2008)
AMF and alleviation of soil stresses Siddiqui et al. (2008)
AMF and environmental stresses Smith and Read (2008)

reviews
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with nutrient deficiency, drought, soil disturbance, and other environmental
stresses characteristically involved in soil degradation.

Modern research (Fig. 5.1) suggests a high diversity of AMF in natural
ecosystems, since reports from highland fields as well from deciduous forest (see
Pagano and Araújo 2011; Pagano 2012) pointed out a total of *28 AM plant
species and at least 36 AM species that occurs in those ecosystems (Pagano et al.
2013). Additionally, de Carvalho et al. (2012) reported 49 AMF species in high-
land fields from Brazil (23 AMF species are in common with the reports cited
above). It is worth noting, moreover, that arid and semiarid regions of Argentina
present in general xerophytic plants, forming dry forests, open scrublands, shrub
steppe, etc. Different vegetal types such as Jarillal and Puna presented 225 AM
plant species (Pagano et al. 2012), some of them also associated with dark septate
endophytic fungi (DSE) (Lugo and Cabello 2002; Lugo et al. 2008). Moreover, in
dry Puna ecosystem (2,000–4,400 m above the see level), ten AMF species were
found, and Glomus was the predominant genus.

Reverse flows (hydraulic redistribution from plant to fungus) were recognized
but we know little about this (they could play a critical role in supporting hyphae
through drought). Moreover, the crucial importance of mycorrhizae in plant–water
relations is influenced by the drying patterns, the soil pore structure, and the
number of hyphal connections extending from the root into the soil (Allen 2007,
2009).

Recently, Li et al. (2013) revealed higher relative water content in colonized
roots of maize by G. intraradices. The increased expression of two aquaporins
genes in both root cortical cells containing arbuscules and extraradical mycelia
under drought stress was reported. Moreover, the observed higher hyphal growth
can be related to extension of the water absorption area.

Fig. 5.1 Number of papers on AMF and drought published annually since 1983, included in the
SCOPUS. Database survey conducted on June 2013
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Thus, new directions in microbial ecology must include the integration of
microbial physiological ecology, population biology, and process ecology as
microorganisms have a diversity of evolutionary adaptations and physiological
mechanisms to cope with the environmental stress (Schimel et al. 2007).

Drought Stress and Agriculture

Maintenance of soil health has become a serious issue of agriculture, and the
sustainable management of agricultural land has gained increasing relevance
(Pagano et al. 2011). Moreover, the current intensive farming and agriculture are
based on high-yielding cultivars which demand more nutrients, water, and
chemicals (Tilman et al. 2002). Additionally, drought has proved to be a usual
stress affecting agriculture and forestry, being able to change soil microbial
abundances, including mycorrhizas composition. Few projects were based on field
experiments (Pagano and Covacevich 2011; Schalamuk and Cabello 2010; Oehl
et al. 2010) and showed that AMF occurs in high diversity in the fields (also in soil
depth).

The use of different soil amendments in rotation to select AMF in order to
benefit a particular crop as well as AMF inoculation is a topic that needs more
detailed research and basic knowledge of AMF ecology (Jaison et al. 2011).
Mycorrhizal plants can present higher water potential being capable to improve
plant growth at a faster rate when irrigation is restored (van der Heijden and
Sanders 2003; Miransari et al. 2011).

Little attention has been paid to the soil stresses and their effect on roots.
Tillage promotes disruption of the AMF hyphal network and dilution of the
propagule-rich topsoil (Schalamuk and Cabello 2010), which disturbs the soil
physical and chemical properties, modifying the number, diversity, and activity of
the soil microbiota, including both free and symbiotic fungal populations
(Pagano 2011).

In this sense, anthropogenic alterations (perturbation stresses) to improve the
productivity of crops (e.g., tillage, monoculture, crop rotation, irrigation, amend-
ments and crop protection) result in disruption of the native soil microbial
ecosystem. While moderate perturbation will be benefic in the short term, higher
levels of stress may result in the degraded soils (Sturz and Christie 2003). The
conventional tillage system, still commonly used in some countries, usually
consists of moldboard plowing and additional secondary operations to prepare the
seedbed. However, field traffic or intensive tillage result in excessive soil com-
paction and soil water loss. It is recognized that most plant species of agricultural
interest associate with AMF (Miransari et al. 2011; Pagano and Covacevich 2011;
Miranda 2008).

As tillage reduce AMF spore and hyphal length densities, AM fungi can be
strongly decreased by conventional agricultural practices, possibly due to distur-
bance of AM fungal hyphal networks, changes in soil nutrient content, and altered

5 Drought Stress and Mycorrhizal Plant 103



microbial activity (Jansa et al. 2003, 2006), which can reduce glomalin content and
thus the tolerance to drought.

In Argentina, earlier studies have found less management of AMF in order to
increase plant productivity (Covacevich and Echeverría 2009). Soils of the Pampas
region present high native AMF that colonize crop plants under different man-
agement systems (Covacevich et al. 2006, 2007; Schalamuk et al. 2006); however,
they are not yet manipulated. More recently, Schalamuk and Cabello (2010)
showed that different types of AM inocula from a field experiment with tilled and
no-tilled wheat and from non-disturbed sites (spontaneous vegetation) presented
different proportions of AM families, between field and trap cultures. Glomeraceae
were higher in the trap cultures, which was attributed to the use of intra- and/or
extraradical mycelium, showing advantages in the use of these propagules.
Furthermore, those results suggested a huge importance of the selection of AMF
species to be included under agricultural practices.

Biochar and Drought Stress

Biochar soil amendment can contribute to improved soil fertility and assumed the
potential benefits to the agricultural productivity. However, the mechanisms by
which it is effective in enhancing plant growth are scarcely understood, as well as
the indirect effects (increased water and nutrient retention, improvements in soil
pH, increased soil cation exchange capacity, effects on P and S transformations,
neutralization of phytotoxic compounds, improved soil physical properties, and
alteration of soil microbiota) (Elad et al. 2011).

In this regard, biochar promotes AMF, but few studies were performed in order
to elucidate the ‘‘Biochar Effect’’ (Warnock et al. 2007), indicating the need to
more future research to elucidate it (Elad et al. 2011). Recent studies, for example,
showed that biochar addition improved AMF colonization of asparagus roots,
contributing to the control of diseases (Elmer and Pignatello 2011; Elmer 2012).
Nevertheless, the relevance of studies on biochar associated with AMF is still
unknown since few studies have been published (13 documents in SCOPUS from
2007 to June 2013).

Reports including biochar and drought are lesser (only 10 documents in
SCOPUS from 2009 to June 2013) and have increased in the last four years.
Working with maize (Zea mays L.) under field conditions, Liu et al. (2012)
demonstrated a synergistic positive effect of compost and biochar on soil fertility
and water storage capacity. Working with wheat, Solaiman et al. (2010) suggest
improved water supply to reduce drought stress with the addition of AMF. These
fungi can prolong crop exploration of water from the wide inter-rows, improving
grain yield and survival. Additionally, they tested the residual effect of biochar
(after 2 years) and mineral fertilizers in a bioassay showing the improved condi-
tions for root colonization after application of biochar.
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Later, LeCroy et al. (2013) examined the interaction between biochar, AMF
(G. intraradices), and nitrogen on sorghum seedling growth in greenhouse. They
showed that addition of mycorrhizae and low nitrogen caused more oxidation
(biotic oxidation) of the biochar surface than the other tested combinations and
found a greater fraction of carbon present as carbonyl groups. Moreover, they
suggested that the greater oxidation can be related to the AMF behavior with a
more activity in their search for nutrients in a nitrogen-limited situation. A pro-
tocol for studying the effect of drought stress and biochar effect on AM plants is
presented in Fig. 5.2.

It is also known that biochar may help to remove allelopathic effects via
adsorption and detoxification (Wardle et al. 1998). However, further studies
assessing the types of biochar (depending on original feedstock and pyrolysis
conditions) (Downie et al. 2009; Krull et al. 2009) that induce resistance responses
in plants against pathogens and parasites including fungi, bacteria, viruses, and
nematodes are urgently needed.

Fig. 5.2 Protocol for
studying the effect of drought
stress and biochar effect on
AM plants. Roots of plants
are stained for AM
colonization (a).
Determination of infective
propagules including spores
(b) and bioassays against soil
samples are required (photos
by M. Pagano)
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Conclusion

In the introduction to this chapter, I briefly described plant stress factors and the
benefits that mycorrhizal fungi provide to their plant hosts. Throughout the
chapter, I have showed that stress affects soil physical and chemical properties,
influencing the population, diversity, and activities of soil microbes, including
symbiotic fungal populations. To identify mycorrhizal fungal species, which may
contribute to plant growth under stress, the mycotrophic status of plant species is
crucial, especially with regard to drought stress, as the fungi mediate the link of the
plant to the soil. Additionally, anthropogenic alterations (tillage) were discussed
with regard to drought although more detailed studies are lacking. The alleviation
of drought stress would have great implication in the manipulation of AMF species
able to colonize plants in arid and semiarid soils approving the potential of AMF to
be inoculated. This chapter argues that AMF alleviate drought stress, which has
great effect on plant growth; however, development of technologies and protocols
to cope with drought are crucial. Lastly, the potential benefits to the agricultural
productivity of biochar soil amendment and their interactions with mycorrhizal
plants under drought were also pointed.
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Chapter 6
PGPR to Alleviate the Stress
of Suboptimal Root Zone Temperature
on Leguminous Plant Growth

Narjes H. Dashti, Donald L. Smith and Vineetha M. Cherian

Effect of Low RZTs on Legume Nodulation
and Nitrogen Fixation

Legumes—soybean, pea, and lentil are medicinally important, health-promoting
plants with great nutritive value (Lee 2009). Leguminous plants are capable of
meeting much of their nitrogen requirement from symbiotic nitrogen fixation.
Certain subtropical legumes, such as soybean, require a temperature in a range
from 25 to 30 �C for optimal symbiotic activity. When root zone temperature
(RZT) drops below this range, a stress is created, which in turn affects legume
nodulation and nitrogen fixation, negatively (Zhang et al. 2002; Madhavi et al.
2007). Lie (1974) noted that all stages of nodule formation and functioning are
affected at low RZT. Perhaps one of the reasons for this is that at low temperatures,
expression of the nod genes is inhibited, resulting in delayed onset of nodulation
(Zhang et al. 2002). Low RZTs have shown to inhibit the biosynthesis and rhiz-
osecretion of plant-to-bacteria signal molecules such as genistein in soybean roots
which are necessary for the induction of the nod gene of Bradyrhizobium japonicum
(Zhang et al. 2002; Lee 2009). The disruption of the production/excretion of the nod
factor at low RZTs in B. japonicum has also been reported by Duzan et al. (2004). In
a review of the data on environmental effects on the legume–Rhizobium symbiosis,
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Gibson (1971) suggested that low RZTs retard root growth infection more than
nodule initiation, nodule development, or N assimilation. Studies of the effects of
suboptimal RZTs on soybean [Glycine max (L.) Merr.] have shown that these con-
ditions decrease N2 fixation activity by the nitrogenase enzyme complex (Layzell
et al. 1984) and suppress and/or delay root infection and nodulation (Walsh and
Layzell 1986). The effects of low temperature on the function of N2-fixing nodules
may be, in part, due to changes in nodule O2 permeability (Sinclair and Weisz 1985;
Weisz and Sinclair 1988). Plants such as soybean export the N2 fixed from the
nodule, mainly in the form of ureide. The solubility of ureide is low and decreases
sharply as temperature declines. Therefore, low RZTs may also limit the rate of
export of fixed N from the nodule. Decreased temperature resulted in progressively
less bacteroid tissue (Lie 1974) and a decrease in its formation rate (Fyson and Sprent
1982). The effect of low RZT on temperate zone legumes has been investigated. Low
RZT decreases both nodulation and N2 fixation rates affecting all stages of nodule
formation and function (Lee 2009). Lynch and Smith (1993) observed that a RZT of
15 �C severely restricted both infection and nodule development and delayed the
onset of nitrogen fixation until approximately 7–8 weeks after inoculation. In
Canadian soybean-growing areas, soil temperatures at a depth of 10 cm during the
early growing season often range from 10 to 15 �C. Soybean production in eastern
Canada is at the most northern limit of North American crop.

Zhang et al. (1995) demonstrated that (1) RZTs less than 17 �C strongly
inhibited both infection and nodule development, (2) the early nodule development
stages (within 14 days after inoculation) were very sensitive to RZT, (3) an early
infection step (within 12 h after inoculation) is most sensitive to low RZTs, and (4)
before flowering, inoculated plants at RZTs between 17 and 25 �C fixed some
nitrogen, but plants at 15 �C RZT had not began to fix nitrogen.

Root hair infection of Trifolium subterraneum is more sensitive to low RZT
than nodule development or nitrogen assimilation (Gibson 1971). Lower RZTs
decrease nodule growth and total nitrogen fixed per plant by inhibiting infection
and nodule initiation (Matthews and Hayes 1982). These RZTs primarily retard
root infection (Lindemann and Ham 1979).

Plant Growth-Promoting Rhizobacteria: Benefits
and Mechanisms of Growth Promotion

Understanding the rhizosphere biology has progressed with the discovery of a
specific group of microorganisms, now called plant growth-promoting rhizobac-
teria (PGPR), that can colonize plant roots and stimulate plant growth and
development (Bianciotto et al. 2000). Most of the identified strains of rhizobacteria
occur within gram-negative genera, of which fluorescent pseudomonads are
most characterized (Adesemoye and Ugoji 2009). Several gram-positive strains of
root-colonizing bacteria were reported such as an Arthrobacter-like genus and
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Bacillus (Kloepper et al. 2004). Other documented PGPR include Azotobacter
species, Azospirillum species, and Acetobacter species (Bashan and Levanony
1990; Tang et al. 1994).

PGPR have many benefits. PGPR’s ability to increase crop yields under diverse
conditions has been reported (Zehnder et al. 2000; Nelson 2004; Sahran and Nehra
2011; Dashti et al. 2012). PGPR were reported to increase plant yields 10–30 % in
non-legume crops such as potato, radish, tomato (Dashti et al. 2007, 2012) and
sugar beet.

Studies have shown that simultaneous infection with rhizobia and rhizospheric
bacteria increases nodulation and growth in a wide variety of legumes. Such
nodule-assisting bacteria may be either epiphytic or endophytic (Dashti et al. 2005;
Rajendran et al. 2012).

Specific root-colonizing bacteria can increase seedling emergence. This was
first reported with strains that caused increases in emergence rates of soybean and
canola seedlings under cold field conditions in Canada (Kloepper et al. 1986). The
new class of PGPR strains was termed emergence-promoting rhizobacteria (EPR).
Inoculation of conifer seeds with Bacillus strains caused increased seedling
emergence and biomass (Chanway et al. 1991). Chanway (1995) also reported that
seed inoculation with Bacillus polymyxa can result in the colonization of western
hemlock root systems and increase seedling emergence.

The mechanism by which the PGPR promote plant growth is unknown for
many of the bacteria involved; however, a wide range of mechanisms were pos-
tulated such as mobilization of insoluble nutrients (e.g., phosphate) and resulting
enhancement of uptake by the plant (Nelson 2004), associative nitrogen fixation
(Dashti et al. 2007), production of antibiotics toxic to soilborne pathogens (Nelson
2004), production of plant growth regulators that promote plant growth (Joseph
et al. 2007), and siderophore production (Dashti et al. 2012). Specific pseudo-
monad strains have established yield increases, control of soilborne plant patho-
gens, promotion of seedling emergence, and promotion of legume nodulation by
nitrogen-fixing (Brady)rhizobium spp. under field conditions.

PGPR–Legume Interaction and Symbiosis Establishment
Under Suboptimal Root Zone Temperature Conditions

The effects of PGPR under suboptimal root zone temperature conditions have been
investigated for leguminous plants, in particular soybean. Soybean is a subtropical
legume; RZTs in the 25–30 �C range are optimal for symbiotic activity, compared to
20–24 �C for temperate legumes (Duzan et al. 2004; Subramanian and Smith 2013).
Under normal growth conditions, a complex process is involved in the development
of symbiotic association between PGPR and the soybean. The first stage of this
interaction is the signal exchange between the two. The plant-to-rhizobacteria
signals are usually isoflavonoids such as genistein and daidzein, which induce the
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nod gene expression. The bacteria-to-plant return signals, the lipo-chitooligosac-
charides (LCO) or nod factors, induce nodule formation on the plant roots (Bai et al.
2002). Over the last few decades, the cultivation of soybean has been extended into
cool temperate areas where soil temperatures, in comparison with those of its natural
habitat, are low during the first part of the growing season. Under such conditions,
the poor adaptability of soybean to cool soils is considered the primary factor
limiting yield. Another environmental factor affecting yield is the RZT. Studies on
the effects of suboptimal RZT (\25 �C) on nitrogen fixation by soybean and other
subtropical legume crops have indicated that at low RZT, the production of the
plant-to-rhizobacteria isoflavonoid signals is inhibited, which in turn inhibits the
subsequent root nodulation process (Bai et al. 2002). In addition to this, low RZTs
suppress the bacterial nod gene expression. The time between soybean inoculation
with certain bacteria such as B. japonicum and the beginning of nitrogen fixation
increases by 2–2.5 days for every degree between 25 and 17 �C (Zhang et al. 1995).
Below 17 �C, the time from inoculation to nitrogen fixation is delayed by a week per
degree (Zhang et al. 1994). The greater sensitivity below 17 �C is due to an event
that occurs within the first 12 h after inoculation, at 25 �C RZT (Lynch and Smith
1993; Zhang and Smith 1994); the greater inhibition by temperatures below 17 �C is
due to an inability of the plant to either synthesize or excrete the plant-to-bacterium
isoflavone signal molecule (40, 5, 7-trihydroxyisoflavone, or genistein) at the
beginning of symbiosis establishment (Zhang and Smith 1995). Slow nodule
development in cool soils prolongs the period of nitrogen deficiency that occurs
between the depletion of cotyledonary nitrogen reserves and the beginning of
nitrogen fixation. A period of slow growth early on is reflected in growth throughout
the remainder of the season.

PGPR produce many phytohormones and signal molecules, such as genistein,
the plant-to-bacteria signal involved in the soybean nodule infection and formation
processes. Therefore, inoculation of soybean plants with B. japonicum together
with a PGPR or genistein may produce better symbiotic relationships at low RZTs
as this results in higher relative increases in nitrogen fixation and subsequent
soybean growth and yield than B. japonicum or PGPR alone (Zhang and Smith
1995). Second, PGPR stimulate overall plant growth, leading to greater nitrogen
demand by the developing soybean plants, leading, in turn, to greater nodulation
and nitrogen fixation. The addition genistein has shown to partially alleviate the
inhibition of the plant-to-rhizobacteria isoflavonoid signals (Bai et al. 2002).

Plant Growth-Promoting Rhizobacteria Accelerate
Nodulation and Increase Nitrogen Fixation Activity
of Leguminous Plants at Different Root Zone Temperatures

Application of PGPR has been reported to increase nodulation and nitrogen fix-
ation of soybean over a range of RZTs under controlled-environment conditions
(Dashti 1997). Co-inoculation of other PGPR with rhizobia is envisaged as an
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important practice in the development of sustainable agriculture (Rajendran et al.
2012). Two rhizobacteria, Serratia proteamaculans 1–102 and Serratia liquefac-
iens 2–68, co-inoculated with B. japonicum 532C were tested, in two separate
experiments, for their ability to reduce the negative effects of low RZT on soybean
nodulation and nitrogen fixation (Dashti 1997). Three RZTs were tested: 25
(optimal), 17 ± 5 (somewhat inhibitory), and 15 �C (very inhibitory). At each
temperature, some PGPR strains increased the number of nodules formed and the
amount of fixed nitrogen when co-inoculated with B. japonicum, but the stimu-
latory strains varied with temperatures. The strains that were most stimulatory
varied among temperatures and were as follows: 15 �C, S. proteamaculans 1–102;
17 ± 5 �C, S. proteamaculans 1–102; 25 �C, S. liquefaciens 2–68 (Zhang et al.
1996). The total fixed nitrogen, fixed nitrogen as a percentage of total plant
nitrogen, and the nitrogen yield also increased due to PGPR application. Inter-
actions existed between PGPR application and soybean cultivars, suggesting that
application of the PGPR to cultivars with higher yield potentials was more
effective. Inoculation with PGPR only also increased soybean nodulation and
nitrogen fixation by native B. japonicum. Nodule dry weight per plant was
increased, the onset of nitrogen fixation was hastened by B. japonicum co-inoc-
ulation with PGPR, and total fixed nitrogen and nitrogen yield per plant were
increased (Tables 6.1, 6.2).

Co-inoculation of soybean plants with PGPR strains produced a wide range of
effects which varied among PGPR and over RZTs. S. proteamaculans 1–102 and
S. liquefaciens 2–68 were reported to enhance nodulation and nitrogen fixation at
suboptimal RZTs (Zhang et al. 1996). Bai et al. (2002) have shown that application
of a known isoflavonoid root activator showed the same efficacy in promoting root
nodulation in soybeans as that of the PGPR S. proteamaculans 1–102. This shows
that the PGPR S. proteamaculans is capable of producing similar root activator
compounds by which they promote nodulation. Moreover, it was capable of
activating these compounds even at suboptimal RZTs. At an optimal RZT (25 �C),
S. liquefaciens 2–68 increased nodule dry weight per plant, nodule size, and ratio
of nodule weight to plant weight. The increase in the ratio of nodule weight to
plant weight was due to increased nodule size (as indicated by the higher average
weight per nodule). At 15 �C RZT, S. proteamaculans 1–102 increased nodule
number, nodule dry weight per plant, nodule size, and ratio of nodule weight to
plant weight, again, confirming the results of Zhang et al. (1996). Other studies on
leguminous plants, in which PGPR were co-inoculated with a suitable rhizobac-
teria at both optimal and suboptimal RZTs, have also reported similar results.
Bai et al. 2003 reported three Bacillus strains, B. subtilis NEB4, B. subtilis NEB5,
and B. thuringiensis NEB17, in order to test their ability to improve soybean
nodulation and growth under low RZTs, and these strains were co-inoculated onto
soybean plants, with B. japonicum, under greenhouse conditions at RZTs of 25, 17,
and 15 �C and under field conditions in a short growing season area. All the three
Bacillus strains enhanced soybean nodulation and growth in greenhouse and field
experiments. Co-inoculation of some Pseudomonas and Bacillus strains along with
effective Rhizobium sp. is shown to stimulate chickpea growth, nodulation, and
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nitrogen fixation (Parmar and Dadarwal 1999; Rajendran et al. 2012). Stajcovic
et al. (2011) showed that co-inoculation of PGPR of the Pseudomonas and Bacilli
species along with rhizobacteria Rhizobium phaseoli showed increased nitrogen
content and nitrogen fixation in the common bean (Phaseolus vulgaris L.).

A controlled-environment experiment was also conducted to examine the
combined ability of both PGPR and genistein to reduce the negative effects of low
RZT on soybean nodulation and nitrogen fixation (Dashti et al. 2000). Genistein,
the most important plant-to-bacterial signal in the soybean-B. japonicum symbi-
osis, is a part of the earliest phase of the nodulation process, the release of signal
molecules that trigger the coordinated expression of a series of bacterial nodula-
tion (nod) genes in the bacterial symbiont (Bai et al. 2002). The isoflavones
daidzein and genistein are the major components of the soybean root extracts
responsible for inducing the nod genes of B. japonicum (Dashti et al. 2000).
Genistein and/or related molecules are essential for the development of effective
root nodules and responsible for inducing the nod genes of B. japonicum. Zhang
and Smith (1996) have shown that the roots of plants germinated and grown at
lower RZTs have lower genistein concentrations and contents than plants grown at
higher RZTs. The beneficial effects of genistein increased with decreasing RZT
(Zhang and Smith 1995). At suboptimal RZTs (17.5 and 15 �C), the most effective
concentrations are in the 15–20 lM range, whereas at an optimal (25 �C) RZT,
5 lM is most effective. PGPR strains, S. proteamaculans 1–102 and S. liquefac-
iens 2–68, were co-inoculated with B. japonicum USDA110 or 532C preincubated
with different concentrations of genistein (0, 15, or 20 lM). The resulting inocula
were added to a soybean rooting medium to test their ability to reduce the negative
effects of low RZT on soybean growth and development by improving the phys-
iological status of the plants (Tables 6.3, 6.4).

Three RZTs were tested: 25 (optimal), 17.5 (somewhat inhibitory), and 15 �C
(very inhibitory). At each temperature, PGPR strains and genistein together
increased the number of nodules formed and the amount of fixed nitrogen, but the
most stimulatory combination of PGPR, genistein concentration, and B. japonicum
strain varied with temperature. The combinations that were most stimulatory at
each temperature were as follows: at 15 �C—S. proteamaculans 1–102, genistein
concentration 0 lM, and B. japonicum USDA110; at 17.5 �C—S. proteamaculans
1–102, genistein concentration 15 lM, and B. japonicum USDA110; and at
25 �C—S. proteamaculans 1–102, genistein concentration 5 lM, and B. japoni-
cum USDA110. In at least some cases, these stimulatory effects can be attributed
to additive effects of both PGPR and genistein in enhancing the number of nodules
formed and the amount of nitrogen fixed by soybean plants.

The combinations of PGPR and genistein showed additive effects, when
compared to PGPR or genistein alone, at higher RZT (25 �C), while they show
antagonistic effects at lower RZT (15 �C). Genistein effects increased with
decreasing RZT (Zhang and Smith 1995). At suboptimal RZTs (17.5 and 15 �C),
the most effective concentrations were in the 15–20 lM range, whereas at an
optimal (25 �C) RZT, 5 lM was most effective. At 25 �C, addition of PGPR plus
genistein generally resulted in greater, and approximately additive, increases than
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Table 6.3 Effects of co-inoculation of B. japonicum with PGPR on nitrogen concentrations of
different soybean tissues and nitrogen concentration ratios for nodule:shoot, nodule:root, and
shoot:root at three temperatures (experiment 1)

PGPR B.
japonicum

Genistein
(lM)

Nitrogen
concentrations
(mg g-1)

Nitrogen concentrations ratios

Nodule Shoot Root Nodule:shoot Shoot:root Root:root

15 �C
1–102 USDA110 0 56.7 24.7 12.6 2.3 4.5 1.4

20 47.3 19.7 11.7 2.4 4.0 1.7
532C 0 61.0 17.9 12.9 3.4 4.7 1.4

20 46.0 21.3 11.3 2.2 4.1 1.9
2 2–68 USDA110 0 53.1 18.0 13.0 2.9 4.1 1.4

20 49.0 18.9 12.3 2.6 4.0 1.5
532C 0 37.7 18.1 12.4 2.1 3.0 1.5

Control USDA110 0 46.0 16.6 11.8c 2.8 3.9 1.4
20 55.3 22.3 13.2 2.5 4.2 1.7

532C 0 46.0 17.6 11.4 2.6 4.0 1.5
20 65.7 17.9 13.0 3.7 5.1 1.4

LSD0.05 4.5 3.4 1.8 0.5 0.6 0.4
17 �C
1–102 USDA110 0 32.6 21.1 14.1 1.5 2.7 1.5

15 35.4 25.0 14.8 1.4 2.4 1.7
532C 0 32.3 17.2 14.1 1.9 2.3 1.2

15 41.0 24.3 13.4 1.7 3.1 1.8
2 2–68 USDA110 0 52.4 21.2 9.6 2.1 5.5 2.5

15 52.2 20.5 13.7 2.5 3.8 1.5
532C 0 42.7 23.3 14.8 2.0 2.9 1.4

Control USDA110 0 35.3 19.3 12.2 1.8 2.9 1.6
15 48.0 23.7 15.7 2.0 3.1 1.5

532C 0 37.7 17.0 10.4 2.2 3.6 1.6
15 50.7 20.4 13.5 2.5 3.8 1.5

LSD0.05 8.2 2.8 2.6 0.5 1.1 0.4
25 �C
1–102 USDA110 0 52.8 35.9 16.1 1.5 3.3 2.2

5 50.2 38.2 16.1 1.3 3.1 2.4
532C 0 39.5 28.0 14.3 1.5 2.8 2.0

5 50.4 34.6 13.5 1.5 3.7 2.6
2 2–68 USDA110 0 49.0 32.3 16.5 1.5 3.0 2.0

5 50.7 33.8 16.2 1.5 3.1 2.1
532C 0 51.5 34.8 14.5 1.5 3.6 2.4

Control USDA110 0 40.9 30.3 13.8 1.3 3.0 2.2
5 49.7 32.5 16.5 1.5 3.0 2.0

532C 0 37.7 24.0 13.9 1.6 2.7 1.7
5 52.8 36.0 14.3 1.5 3.7 2.5

LSD0.05 10.0 4.4 2.5 0.37 0.8 0.4

Means the same column an experiment were analyzed by an ANOVA-protected LSD test
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Table 6.4 Effects of co-inoculation of B. japonicum with PGPR on nitrogen concentrations of
different soybean tissues and nitrogen concentration ratios for nodule:shoot, nodule:root, and
shoot:root at three temperatures (experiment 2)

PGPR B.
japonicum

Genistein
(lM)

Nitrogen
concentrations
(mg g-1)

Nitrogen concentrations ratios

Nodule Shoot Root Nodule:shoot Nodule:root Shoot:root

15 �C
1–102 USDA110 0 46.2 35.4 13.8 1.3 3.3 2.6

20 47.1 31.7 12.4 1.5 3.8 2.6
532C 0 47.0 19.5 12.4 2.4 3.8 1.6

20 46.8 24.1 12.8 1.9 3.7 1.9
2 2–68 USDA110 0 44.4 21.3 13.9 2.1 3.2 1.5

20 63.6 20.4 13.1 3.1 4.9 1.6
532C 0 39.2 21.8 12.0 1.8 3.3 1.8

Control USDA110 0 43.0 15.7 10.3 2.7 4.2 1.5
20 54.7 22.3 13.2 2.5 4.1 1.7

532C 0 39.1 18.9 9.7 2.1 4.0 1.9
20 52.4 19.9 10.6 2.6 4.9 1.9

LSD0.05 15.2 1.4 2.1 0.6 1.4 0.3
17 �C
1–102 USDA110 0 48.4 25.4 15.4 1.9 3.1 1.6

20 55.0 25.8 16.8 2.1 3.3 1.5
532C 0 43.0 30.3 15.8 1.4 2.7 1.9

20 49.4 28.4 17.7 1.7 2.8 1.6
2 2–68 USDA110 0 44.7 23.2 13.5 1.9 3.3 1.7

20 46.2 28.8 15.8 1.6 2.9 1.8
532C 0 41.7 27.3 16.1 1.5 2.6 1.7

Control USDA110 0 41.7 26.3 15.2 1.6 2.7 1.7
20 53.7 27.1 17.4 2.0 3.1 1.6

532C 0 41.0 27.5 16.6 1.5 2.5 1.7
20 52.0 28.5 17.1 1.8 3.0 1.7

LSD0.05 5.6 6.9 1.9 0.6 0.5 0.4
25 �C
1–102 USDA110 0 49.1 43.6 16.6 1.4 3.0 2.1

20 46.9 35.0 19.5 1.3 2.4 1.8
532C 0 42.7 28.5 17.6 1.5 2.4 1.6

20 45.9 35.2 18.3 1.3 2.5 1.9
2 2–68 USDA110 0 48.1 32.1 17.5 1.5 2.7 1.8

20 48.0 24.4 17.4 2.0 2.8 1.4
532C 0 45.3 34.1 16.4 1.3 2.8 2.1

Control USDA110 0 47.3 31.4 17.0 1.5 2.8 1.8
20 47.6 35.7 17.7 1.3 2.7 2.0

532C 0 41.4 29.7 15.4 1.4 2.7 1.9
20 48.0 34.4 18.6 1.4 2.6 1.8

LSD0.05 3.9 1.9 2.5 0.17 0.5 0.3

Means the same column an experiment were analyzed by an ANOVA-protected LSD test
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the addition of either alone. However, while co-inoculation of soybean plants with
B. japonicum USDA110 and PGPR 2–68 increased nodule dry weight per plant
(26 %), nodule size (40 %), and the ratio of nodule dry weight to plant dry weight
(13 %) over B. Japonicum or preincubation of B. japonicum USDA110 with 5 lM
genistein, which was reported to be most effective at 25 �C (Zhang and Smith
1995), the addition of PGPR 2–68 and genistein resulted in an antagonistic
interaction between the PGPR and the genistein.

Nodule dry weight per plant, nodule size, and the ratio of nodule dry weight to
plant dry weight were decreased when compared to B. japonicum USDA110 co-
inoculated with PGPR 2–68. The combination of B. japonicum USDA110 and
PGPR 2–68 or 5 lM genistein showed the largest proportional increases of any of
the possible combinations of B. japonicum strains, PGPR strains, and genistein,
when compared to B. japonicum USDA110 alone, but when genistein and PGPR
were added together, an antagonistic effect was observed.

In the same way, the largest proportional increases in nodulation variables and
nitrogen fixation (ranging up to 2–3 times), due to the addition of either PGPR or
genistein, occurred at 15 �C RZT, and it was at this RZT that antagonistic effects
were observed between PGPR and genistein additions. Although the underlying
cause for this is unclear, it appears that when the increases are largest, due to the
addition of PGPR or genistein alone, the probability of antagonistic interactions
between the two is the greatest.

Some PGPR and genistein combinations showed additive effects. The combi-
nation of PGPR 1–102, B. japonicum USDA110, and 5 lM genistein had an
additive effect on the nodule dry weight per plant at 25 �C. At 25 �C RZT, many
of the additive effects were approximately complete, with the increases due to
genistein addition being nearly the same in the presence or absence of PGPR. On
the other hand, the combination of PGPR 2–68, B. japonicum USDA110, and
5 lM genistein showed an antagonistic effect on almost all plant variables at 25 �C
in contrast with PGPR 2–68, B. japonicum USDA110 alone, which was previously
reported to increase plant nodule number, nodule weight, nodule size, and nitrogen
fixation capacity (Zhang et al. 1996).

At 17.5 �C, there was still evidence of additivity, for instance, the combination
of PGPR 1–102, B. japonicum USDA110, and 15 lM genistein had an additive
effect on the nodule number and on nodule size. However, the level of additivity
was not complete, with the increases due to the addition of genistein being smaller,
or non-existent, in the presence of genistein than in its absence. As at 25 �C RZT,
the combination of B. japonicum USDA110, PGPR 2–68, and 5 lM genistein
resulted in antagonism between the genistein and the PGPR.

At 15 �C, the combination of PGPR 1–102, B. japonicum USDA110, and
20 lM genistein had an antagonistic effect on all measured variables. PGPR 1–102
performed better by itself than with genistein at RZT 15 �C.

The additive effects observed at 25 and 17.5 �C RZT could be explained in that
genistein and PGPR may work by different mechanisms, stimulating different
aspects of soybean plant physiology at optimum RZTs. At a suboptimal RZT
(15 �C) or for the combination of B. japonicum USDA110, PGPR 2–68, and 5 lM
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genistein at 25 �C, the effects are antagonistic. The cause of the antagonistic
effects is unclear and requires further study.

The frequent increases in the ratio of nodule weight to plant dry weight dem-
onstrate that plants treated with genistein or PGPR, or both required more nodule
mass to achieve each gram of accumulated dry weight. Thus, while the additions
of PGPR, genistein, or both increase nodule dry weight per plant and plant
nitrogen fixation, it appears that the efficiency with which the additional nodule
mass is able to support plant growth is less than for the nodule mass formed
without the addition of these materials. These decreases in efficiency could be due
to decreased relative efficiency for nitrogenase or greater restrictions of O2 entry
into the nodules (Hunt and Layzell 1993).

The nitrogen distribution data indicated that the applied treatments variably
affected nitrogen translocation from root nodules to shoot tissues. The nitrogen
concentrations of plant shoots and whole plants grown at 15 �C were lower than
those at 17.5 and 25 �C RZT. These results agree with those of Zhang et al. (1996).
B. japonicum and S. proteamaculans 1–102 showed a lower nitrogen concentration
ratio for nodule to shoot tissues when compared to plants receiving B. japonicum
alone. Co-inoculation of B. japonicum with S. proteamaculans 1–102 was shown
to increase nitrogen concentration of plant shoots at 15 �C RZT. In the recent
years, Zhang et al. (2002) used UV mutagenesis to generate mutants from
B. japonicum that were capable of expressing the nod genes responsible for
nodulation at low temperatures even in the absence of plant-to-bacteria signal
molecules such as Genistein. This is a cost-effective alternative to using more
genistein to trigger nodulation in leguminous plants at low RZTs.

Application of PGPR to Leguminous Plants Increases
Protein and Dry Matter Yield Under Short-Season
Conditions

Experiments conducted on the soybean were expanded further to determine the
ability of the PGPR to increase the proteins and dry matter in leguminous plants.
Plant growth and development were found to be drastically reduced under con-
ditions of suboptimal root zone temperature. Field experiments were conducted on
two adjacent sites, one fumigated with methyl bromide and one non-fumigated
(Dashti 1997). Two experiments were conducted at each site: one involving
combinations of two soybean cultivars and two PGPR strains and the other
involving the same factors, but also in combination with two strains B. japonicum.
Soybean’s grain yield and protein yield were measured.

The results of these experiments indicated that co-inoculation of soybean with
B. japonicum and S. liquefaciens 2–68 or S. proteamaculans 1–102 increased
soybean’s grain yield, protein yield, and total plant protein production, compared
to the non-treated controls, in an area with low spring soil temperatures.
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Interactions existed between PGPR application and soybean cultivar, suggesting
that PGPR applied to cultivars with higher yield potentials were more effective.
PGPR applied to the rhizosphere without addition of B. japonicum only increased
plant leaf area and seed number at the fumigated site. Overall, inoculation of
soybean plants with PGPR in the presence of B. japonicum increased soybean’s
grain yield, grain protein yield, and total plant protein production under short-
season conditions (Tables 6.5, 6.6). S. liquefaciens 2–68 performed well at optimal
RZT (25 �C), while S. proteamaculans 1–102 performed best at suboptimal RZTs
ranging from 18 to 15 �C. Co-inoculation with PGPR and B. japonicum improved
plant growth, development, yield components, and final grain and protein yield in
the presence and absence of methyl bromide fumigation.

Inoculation of soybean plants with a mixture of B. japonicum and PGPR not
only increased plant dry matter accumulation, but also increased grain protein and
total protein production at both sites in experiment 1. Zhang et al. (1996) reported
that co-inoculation of some PGPR with B. japoniucm could reduce the negative
effects of low RZT on soybean nodulation and nitrogen fixation. Bai et al. (2003)
found that co-inoculation of Bacillus strains with B. japonicum enhanced the
growth of the soybean plants.

Study at McGill University, Montreal, Canada, found that co-inoculation of
PGPR and B. japonicum accelerated the processes of soybean nodulation and the
onset of nitrogen fixation under short-season field conditions. Sprent (1979) pos-
tulated that an increase of 10 % in the period of nodule activity of a grain legume,
particularly between the onset of nitrogen fixation and the attainment of maximum
fixation, could double the seasonal level of nitrogen fixation.

In a controlled-environment experiment, the onset of nitrogen fixation by plants
co-inoculated with B. japonicum and the most effective PGPR strains began
2–3 days earlier than those receiving only B. japonicum (Zhang et al. 1996).
Therefore, it is possible that application of PGPR increased grain and total protein
yield under field conditions.

The effects of PGPR application without B. japonicum addition on soybean
growth and development were different in comparison. At the non-fumigated site,
although both PGPR S. liquefaciens 2–68 and S. proteamaculans 1–102 numeri-
cally increased plant growth variables such as leaf area and seed numbers, there
were no statistically significant differences among treatments. At the fumigated
site, both S. liquefaciens 2–68 and S. proteamaculans 1–102 increased leaf area
and seed number.

When each of two PGPR strains, S. proteamaculans 1–102 and S. liquefaciens
2–68, was applied to B. japonicum USDA110 or 532C preincubated with different
concentrations of genistein (0, 15, or 20 lM) at three RZTs, 25, 17.5, and 15 �C,
respectively, it was found that some combinations of PGPR strains and genistein
concentration increased plant growth and development, but the most stimulatory
combinations of PGPR strains, genistein concentration, and B. japonicum strains
varied with temperature (Table 6.7). The combinations that were most stimulatory
at each temperature were as follows: at 15 �C—S. proteamaculans 1–102, geni-
stein concentration 0 lM, and B. japonicum USDA110; at 17.5 �C—S.
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proteamaculans 1–102, genistein concentration 15 lM, and B. japonicum
USDA110; and at 25 �C—S. proteamaculans 1–102, genistein concentration
5 lM, and B. japonicum USDA110. In at least some cases, these stimulatory
effects can be attributed to the additive effects of both PGPR and genistein in
enhancing soybean growth and early development. At 25 �C, some combinations
of PGPR strains, genistein concentration, and B. japonicum strains have shown an
additive effects, while at 15 �C, others have antagonistic effects.

At an optimal (25 �C) RZT, B. japonicum USDA110 preincubated with 5 lM
genistein increased leaf number, and increased leaf number, leaf area and pod
number. At suboptimal RZT (17.5 �C), B. japonicum USDA110 preincubated with
15 lM genistein increased leaf number, leaf area, and total plant dry weight in
experiment 1 compared to B. japonicum USDA110 alone, while in experiment 2,
either B. japonicum USDA110 or 532C co-inoculated with 15 lM genistein
increased leaf number, leaf area, pod number, and total plant dry weight compared
to either B. japonicum USDA110 or 532C.

Table 6.7 Effects of PGPR application, B. japonicum strains, and soybean cultivars on soybean
growth variables, grain yield, and final protein and grain yield in a non-fumigated field trial
(experiment 2)

PGPR Cultivar Leaf (plant-1) Number
(plant-1)

1,000
seeds

Yield (t ha-1)

Number Area
(cm2)

Pod Seed Weight
(g)

Grain Grain
protein

Total
protein

1–102 AC
Bravor

32.0 754.8 28.3 52.7 177.1 3.2 1.2 1.7

Maple
Glen

23.6 500.8 26.3 73.3 170.9 3.3 1.0 1.4

2–68 AC
Bravor

30.3 767.8 20.7 49.7 179.0 3.6 1.2 1.4

Maple
Glen

28.7 866.2 21.7 50.7 177.9 3.2 1.0 1.4

Control AC
Bravor

23.0 740.4 16.0 35.3 151.3 3.4 1.5 1.7

Maple
Glen

22.7 720.3 15.3 35.0 163.1 3.5 1.0 1.6

LSDa 15.6 510.2 14.8 29.7 20.0 0.4 0.4 0.4
LSDb 14.6 445.9 13.9 29.6 18.3 0.4 0.3 0.3
PGPR NS NS NS NS NS NS NS NS
Cultivar NS NS NS NS NS NS NS NS
PGPR*cultivar NS NS NS NS NS NS NS NS

Means of leaf number and leaf area, and seed number represent four plants from each subplot
unit, at crop maturity. Means of 1,000 seed weight calculated from the one meter middle row of
each subplot unit at harvest maturity. LSD0.05a is for comparison of means within the same main-
plot unit, and LSD0.05b is for comparison of means across levels of the same main-plot factor. NS,
*, **, and *** indicated no significant difference or significant differences at the 0.1, 0.05, and
0.01 levels, respectively
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At 15 �C, B. japonicum USDA110 or 532C preincubated with 20 lM genistein
increased leaf and total plant dry weight. B. japonicum USDA110 co-inoculated
with 20 lM genistein increased leaf number, while B. japonicum 532C co-
inoculated with 20 lM genistein increased leaf number and total plant dry
weight. Zhang and Smith (1995) showed that genistein effects on photosynthesis
were only seen after the onset of nitrogen fixation, while the effects of PGPR
were seen prior to the onset of nitrogen fixation (Zhang et al. 1996). The changes
in photosynthetic rate over time showed that plant photosynthesis was increased
by some PGPR strain, genistein, and B. japonicum strain combinations over a
wide range of plant growth stages. As photosynthesis was increased by stimu-
latory strain combinations before the onset of nitrogen fixation, the improvements
in plant growth, development, and physiological activities must have been
through an effect of PGPR on overall plant physiology, followed by a genistein
effect on nitrogen fixation. Since PGPR and genistein stimulations appear to take
place by different mechanisms, they might reasonably be additive.

Growth, Survival, and Root Colonization of PGPR Under
Short-Season Conditions

Root colonization by introduced bacteria is considered as an important step in the
interaction of beneficial bacteria with the host plant. A rapid growth rate was
suggested to be an important characteristic for successful rhizosphere colonization
(Rovira et al. 1983; Schorth and Weinhold 1986). De Weger et al. (1987) sug-
gested that non-motile mutants colonize the roots less efficiently than the corre-
sponding wild types, while others found that non-motile mutants and the
corresponding wild types do not differ in their colonizing ability (Scher et al.
1988).

Chemotaxis of bacteria to exudates was reported (Scher et al. 1985), but the
direct relationship between chemotaxis and successful colonization remains
unclear. Movement along the root was also reported to be very important for
successful root colonization (Chao et al. 1986; Schippers et al. 1987). Adherence
has also been suggested as an important feature for rhizosphere competence and
survival (Schippers et al. 1987; Vesper 1987). Cells of bacteria in the genus
Serratia are motile (Prescott et al. 1993).

Fluorescent pseudomonads, isolated from the crop rhizosphere, are character-
ized as a highly rhizosphere competent as they are capable of root colonization.
This accounts for their predominance among the PGPR. Several traits of the
pseudomonads aid them in seed colonization, such as higher cell division and
motility (Arora et al. 1983; Scher et al. 1985). However, these traits may not be
directly relative to subsequent root colonization. For example, Howie et al. (1987)
found that three non-motile mutants of Pseudomonas fluorescence colonized
wheat roots as effectively as their motile parents.
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Fluorescent pseudomonads are able to establish high population densities in the
rhizosphere (Suslow 1982; Bahme and Schorth 1987), an important characteristic
for the production of consistent plant growth responses (Kloepper et al. 1980,
1985, 1991; Parke 1991). Van Elsas and Heijnen (1990) reported that lack of
consistent effectiveness of the inoculant prevents successful application of PGPR
strains into the soil. This always was related to ineffective colonization of the
plant, as well as poor survival and/or low activity of the introduced population. Xu
and Gross (1986) and Bull et al. (1991) demonstrated a positive relationship
between root colonization by a PGPR strain and disease suppression, suggesting
that methodologies that improve root colonization may also improve the perfor-
mance of a PGPR strain in the soil. The extent and amount of root colonization
needed by a PGPR strain to increase plant growth rely on numerous interrelated
factors. The choice of methods used to try to increase rhizosphere colonization and
plant growth has to take these factors into consideration (Stephens 1994a).

Hebbar et al. (1992) reported that the colonization and spread of Pseudomonas
cepacia (which acts as a biocontrol agent against Fusarium moniliforme) on the
roots and in the rhizosphere of maize depend on the amount of inoculum on the
seed. However, this was not a universal observation. For example, the colonization
of introduced pseudomonad strains on maize (Scher et al. 1984) and wheat was
shown to be independent from the initial inoculum level. It is obvious that under
certain conditions, increasing the level of inoculum could increase the rhizosphere
competence of some, but not all bacteria.

Some PGPR strains are able to colonize soybean root plants more efficiently
than others, while others proliferated more successfully in the rooting medium. In
the research conducted with soybeans, at 15 �C RZT, PGPR S. proteamaculans
(1–102) had a higher population density associated with the soybean roots, while
its population density was reduced in the rooting medium. The same pattern was
seen for the PGPR S. liquefaciens (2–68) at its more appropriate RZT, 25 �C.
These results indicate that the colonization of soybean roots and the rhizosphere by
PGPR is altered by temperature.

Zhang et al. (1996, 1996a) have shown that co-inoculation of B. japonicum with
some PGPR strains increased soybean nodulation and nitrogen fixation and
increased soybean growth and development, but the stimulatory effect varied with
the RZT. The ability of the PGPR to colonize roots effectively is probably a
prerequisite to the stimulation of soybean growth, nodulation, and nitrogen
fixation.

RZT exerts a clear effect on the ability of PGPR to colonize soybean roots, and
this probably explains at least part of the differences in the colonization and plant
growth-stimulating abilities of PGPR 2–68. Elements of the soil flora and fauna
and aspects of the soil chemistry may play a significant role to the differences in
performance of the two PGPR tested.
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Root and Rhizosphere Colonization of Soybean [Glycine
max (l.) merr.] by Plant Growth-Promoting Rhizobacteria
at Low RZTs

Survival and growth of seven PGPR inoculated on soybean in a sterile rooting
medium were studied under low RZTs. Three RZTs were tested: 25, 17.5, and
15 �C. In general, population densities varied with temperature. At each temper-
ature, populations of some PGPR strains increased either on the root or in the
rooting medium (rhizosphere). RZT affected the distribution of PGPR populations
between the root surface and in the rooting medium (rhizosphere).

The strains with higher population densities on the root, which reflects their
ability to colonize the root more rapidly, were as follows: 15 �C PGPR 1–102 S.
proteamaculans, 17.5 �C G11-32 Pseudomonas putida, and 25 �C 2–68 S. lique-
faciens. These PGPR strains had lower population densities in the rooting medium
(rhizosphere) at these temperatures. Other PGPR strains were not able to effec-
tively colonize the roots of the soybean plants, and their population densities
remained very high in the rooting medium (rhizosphere). The strains that colo-
nized soybean roots best at 25 and 15 �C were previously shown to be effective at
promoting soybean growth at 25 and 15 �C.

Some PGPR are able to grow better and can colonize soybean roots effectively
at lower RZTs, while, at the same time, their numbers in the rooting medium
decline. Those PGPR that are not able to colonize the root will be present in the
rooting medium in relatively high numbers. Other PGPR are able to colonize roots
at higher temperatures, and their numbers were higher in the root and lower in the
rooting medium at such temperatures. Also, in as much as the PGPR strains that
colonized the roots well have been shown to be best at promoting soybean growth
at each RZT, some strains that colonized the roots well were shown not to be
effective at plant growth promotion (Zhang et al. 1996, 1996a). It seems likely that
an ability to effectively colonize plant roots, as affected by PGPR strain, plant type,
and environmental conditions, is necessary, but not sufficient condition for the
stimulation of plant growth.

In summary, the ability of PGPR strains to grow, multiply, and survive is strain
specific and temperature dependent. Some PGPR strains are able to grow and
multiply effectively at low RZTs and colonize the roots effectively. Others are able
to grow and multiply effectively at higher RZTs and colonize the roots effectively.
It was shown that in the optimum RZT range, an effective PGPR would be heavily
present on the root, but was relatively less present in the surrounding rooting
medium, while outside the optimum RZT range, the reverse was true. Also, the
ability of the PGPR to colonize the root effectively could be a prerequisite to the
stimulation of growth, nodulation, and nitrogen fixation of soybean plants.
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PGPR Growth and Survival Under Field Conditions

Co-inoculation of B. japonicum with PGPR has been shown to increase soybean
nodulation, nitrogen fixation, and growth, compared to the non-treated controls, in
areas with low spring soil temperatures. The survival and growth of rhizosphere
populations of two PGPR S. liquefaciens 2–68 and S. proteamaculans 1–102
inoculated on soybean were examined under short-season conditions. Colonization
of soybean plants varied among PGPR strains and soil conditions.

At an unfumigated site, PGPR 2–68 colonized soybean plant roots more effi-
ciently than PGPR 1–102 in the first sampling, while there was no difference by
the second sampling, which indicated that PGPR 2–68 was able to grow and
colonize the soybean root more effectively, initially, but over time, PGPR 2–68
was able to grow and colonize soybean roots as effectively as PGPR 1–102. PGPR
2–68 was able to proliferate successfully in the soil at both samplings. The pop-
ulation density of both PGPR 68 and PGPR 1–102 with the different combinations
of B. japonicum strains and soybean cultivars decreased over time except for the
combination of PGPR 2–68, B. japonicum USDA110, and cultivar AC Bravor
where the population density increased over time at the unfumigated site. These
observations indicated that PGPR 2–68 can survive and colonize the roots of the
soybean plants effectively in the presence of other microflora.

At the fumigated site, where no other microflora was assumed to compete with
the PGPR, PGPR 2–68 showed the same pattern as at the unfumigated site. Also,
the population density of both PGPR increased over time. These observations
suggest that both PGPR were able to survive and increase in number in the absence
of other microflora elements.

Studies on rhizosphere colonization have been reviewed by van Elsas and
Heijnen (1990), Kloepper and Beauchamp (1992). Lack of consistent effectiveness
of the inoculant was found to be the major problem preventing successful appli-
cation of PGPR strains to the soils (Van Elsas and Heijnen 1990). This has always
been caused by ineffective colonization of the plant, as well as poor survival and/or
low activity of the introduced population.

Xu and Gross (1986) and Bull et al. (1991) demonstrated a positive relationship
between root colonization by a PGPR strain and disease control, suggesting that
methods applied that improve root colonization may also improve the establish-
ment of a PGPR strain in the soil. The extent and amount of root colonization
required by a PGPR strain to increase plant growth depend on numerous interre-
lated factors. The choice of methods used to try to increase rhizosphere coloni-
zation and plant growth should take these factors into account (Stephens 1994b).

Previous studies have suggested that the fitness of a bacterial strain in the
rhizosphere may be dependent on the plant species (van Peer and Schippers 1989;
Beauchamp et al. 1993) and even plant cultivar (Weller 1986). One method of
increasing rhizosphere colonization by certain PGPR strains may be through
maximizing the bacterial inoculum load on the seed. Hebbar et al. (1992) reported
that the colonization and spread of P. cepacia (which acts as a biocontrol agent
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against F. moniliforme) on the roots and in the rhizosphere of maize correlated
with the amount of inoculum on the seed. However, the dependence of final
colonization level on the initial inoculum level has not been a universal obser-
vation. For example, the colonization of introduced pseudomonad strains on maize
(Scher et al. 1984) and wheat has been shown to be independent of the initial
inoculum level. It is apparent that, under certain conditions, increasing the level of
inoculum may increase the rhizosphere competence of some, but not all, bacteria.

Beneficial bacteria that are introduced into the rhizosphere are involved in a
complex of biological interactions with the host plant. The introduced bacteria are
nourished by root exudates and are thus dependent on the host plant. At the same
time, the introduced bacteria may affect the host plant by inducing physiological
changes (Kloepper et al. 1988). The genetic marking of bacteria with antibiotic
resistance for identification purposes allows the study of population dynamics of
soil-inhabiting bacteria. Specific PGPR that cause marked increases in plant
growth and yield have been marked to follow their populations during the various
stages of plant development (Polonenko et al. 1987).

Co-inoculation with PGPR and B. japonicum improved plant growth, devel-
opment, yield components, and final grain and protein yield under field conditions
at both fumigated and unfumigated sites. Also, application of PGPR with the
B. japonicum directly onto the seeds in the furrow at the time of planting also
improved plant growth and increased grain and protein yield at the fumigated site.
The effects of PGPR S. liquefaciens 2–68 and S. proteamaculans 1–102 on plant
growth, development, and final protein yield were shown to be not different, which
was attributed to variations in field soil temperature during the entire soybean-
growing season. In addition, co-inoculation of PGPR and B. japonicum accelerated
soybean nodulation and the onset of nitrogen fixation under short-season condi-
tions. This study indicated that PGPR 2–68 was able to grow and survive better
than PGPR 1–102 under short-season conditions. Inoculation with PGPR 2–68
generally increased soybean nodulation, nitrogen fixation, growth, and yield more
than PGPR 1–102. These findings suggest that there is a direct relationship
between the ability of these PGPR to colonize the roots of the soybean plants and
their ability to stimulate soybean nodulation, nitrogen fixation, plant growth, and
physiological activities under short-season conditions.

Conclusion

All stages of symbiotic establishment investigated to date, such as root hair
curling, infection thread formation and penetration, and nodule development and
function, are inhibited by suboptimal RZTs. PGPR are capable of combating these
negative effects by increasing plant growth, photosynthesis, amount of fixed N, and
number of nodules formed. However, RZT exerts a clear effect on the ability of
PGPR to colonize soybean roots and this probably explains at least part of the
differences in the colonization and plant growth-stimulating abilities of PGPR. The
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ability of PGPR to colonize the root effectively is a prerequisite to their stimu-
latory effects. The addition of genistein to PGPR was found to further alleviate the
effects of RZT. Addition of the PGPR supernatant results in stimulation, which is
strain specific and temperature dependent; each PGPR probably releases a different
growth-stimulating substance. Although given that they have similar effects on
plant growth, they may be similar molecules.
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Chapter 7
Salinity Stress and Arbuscular
Mycorrhizal Symbiosis in Plants

Asiya Hameed, Egamberdieva Dilfuza, Elsayed Fathi Abd-Allah,
Abeer Hashem, Ashwani Kumar and Parvaiz Ahmad

Introduction

Plants being sessile experience various abiotic stresses including salt stress, which
limits plant growth and yield and in severe cases leads to cell death. This mainly
confers its ionic imbalances, nutritional deficiencies, and also due to changes in the
osmotic effects (Zhang et al. 2010; Wu et al. 2010; Zou et al. 2013; Koyro
et al. 2012). Various species of plants respond differently to salt stress, such as
citrus and many others are salt-sensitive plants. Increasing rate of saline water in
agricultural fields leads to a major threat to plant production and hence retards the
growth and development of plants (Rabie and Almadini 2005; Pascal et al. 2005;
Shokri and Maadi 2009) by affecting various metabolic processes.
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Toxicity of ions results in the disruption of enzyme activity, photosynthesis,
respiration, as well as protein synthesis, and damaging of plasma membrane
including cell organelles (Feng et al. 2002). Scientists have put an effort to min-
imize the crop loss due to salt stress by providing salt-tolerant crop plants
(Gallagher 1985; Evelin et al. 2009) and also established salt-tolerant crops
through breeding (Cuartero and Fernandez-Munoz 1999; Evelin et al. 2009). In
addition, different genes have also been employed to enhance the salt tolerance in
different plants (Wei-Feng et al. 2008; Tang et al. 2005; Evelin et al. 2009).
Leaching of excess accumulated salts in groundwater also provides an alternative
means to alleviate the salt stress. But these techniques are very costly and unaf-
fordable to underdeveloped countries.

Among the environmental stress, soil salinity globally results in the greater loss
in agricultural productivity and therefore affecting the lives of humans and animals
(Aggarwal et al. 2012). Evelin et al. (2009) reported that 50 % loss of cultivated
land affected by salinity and also the photosynthesis, protein synthesis, lipid and
energy metabolism.

Salinity not only reduces yield of crops but also disrupts the ecological balance
of the area (Aggarwal et al. 2012). Several literatures have reported that arbuscular
mycorrhizal (AM) fungi act as growth regulator and mitigate the harmful effects of
plants exposed to salt stress. Plants grown in fields are surrounded by various
microorganisms such as bacteria and fungi that help and improve the plant growth
and yield under various stress conditions (Creus et al. 1998). To cope with this
stress, AM fungi play a key role in alleviating the toxicity induced by salt stress,
thus normalizing the uptake mechanism in plants by supplying the essential
nutrients. In this way, the plant recovers the water balance machinery, enhancing
their tolerance capacity and thereby enduring the salt stress (Carretero et al. 2008;
Porcel et al. 2012).

AM fungi form symbiotic associations with most of the plants and enhance the
tolerance capacity to withstand the abiotic stresses including salinity besides
increasing the uptake of inorganic nutrients (Hajbagheri and Enteshari 2011;
Rabie and Almadani 2005). AM fungi supply mineral nutrients to plants, espe-
cially phosphorus, which is precipitated by the ions such as Ca, Mg, Zn (Al-Karaki
et al. 2001).

Different mechanisms are required for the efficient growth and yield of plants.
Reactive oxygen species (ROS) produced during salinity stress are detoxified by
AM fungi as it has the tendency to enhance the production of antioxidant enzymes.
Mycorrhizal plants regulate the various gene expressions affecting water balance
in their tissues. AM fungi favor plant growth against the salt stress by improving
the host plant nutrition, increasing K/Na ratios and efficiently influencing osmo-
regulation (i.e., osmotic adjustment) by accumulation of compatible solutes such
as proline, glycine betaine, and soluble sugars (Porcel et al. 2012).
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Mycorrhizal Plants Under Salt Stress

Mycorrhizae are ubiquitous in most temperate and tropical ecosystems including
agricultural systems and form symbiotic relationship with the roots of higher
plants (mycorrhizosphere). They act as channel for the exchange of energy and
matter between plants and soil (Cardon and Whitbeck 2007). The most important
property of AM fungi is to enlarge the surface area of the host plant roots due to an
extensive hyphal network that helps to combat against stressed conditions. Mutual
benefits between mycorrhizal fungi and the host plants include the exchange
of carbon coming from photosynthesis and mineral nutrients, respectively
(Mohammadi et al. 2011).

Formation of arbuscules in AM fungi is characterized by an extensive branched
haustorium-like structure in the root cortical cells affecting nutrient exchange;
however, these arbuscules are considered as the non-living part during the growth
of AM fungi (Bonfante and Perotto 1995; Hause and Fester 2005) and are finally
decomposed. Once grown inside, i.e., the cortical layer, the tree-like fungal
structures called arbuscules are formed within the cortex of root by subsequent
division of the fungal hyphae (Smith and Read 1997; Hause and Fester 2005).
After the fungal entrance, these differentiated cortical cells simultaneously
undergo reorganization by means of skeletal structures (i.e., microtubules and
microfilaments).

Besides the exchange of mineral nutrients and phosphates, AM fungi show a
positive effect toward stress conditions including osmotic potential (Augé 2001).
Colonizing mycorrhizal fungi also play a key role as bioprotector under different
pathogen attack (Slezack et al. 2000; Elsen et al. 2001; Strack et al. 2003).
Alleviation of salt stress in plants by AM fungi is also mediated by growth hor-
mones (Barker and Tagu 2000). Among these growth hormones, the level of
cytokinin is found higher in shoots and roots of mycorrhizal plants as compared to
non-mycorrhizal plants (Allen et al. 1980), whereas the amount of Abscisic acid
(ABA) has also been found higher in AM roots (Bothe et al. 1994).

Anastomosing or networking hyphae of AM with the roots of plant attributes
to an efficient soil texture as well as water relation (Bethlenfalvay and
Schuepp 1994). Therefore, these AM fungi provide significant applications in
sustainable agriculture (Schreiner and Bethlenfalvay 1995). Colonization of red
tangerine (Citrus reticulata) by Glomus mosseae and Paraglomus occultum has
shown better growth and increased photosynthetic performance and ionic balance
implying the higher tolerance level under salt stress. These positive effects of AM
fungi provide a good indicator of bio-amelioration of plants on exposure to salt
stress (Zou et al. 2013).

The existence of AM colonization in the roots of halophytic plants has also
been reported (Carvalho et al. 2001; Hilderbrandt et al. 2001). Besides this, AM
fungi spores have also been obtained abundantly in extremely alkaline soils
(Landwehr et al. 2002). It is likely that under increased levels of NaCl stress,
mycorrhizal fungi do not affect the growth of the host plants, which is due to the
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adverse effects of salinity on the growth and activity of the fungi (Sheng
et al. 2008; Juniper and Abbott 2006). Mycorrhizal fungal symbioses have also
been reported to enhance tolerance under salt stress in various host plants such as
maize, clover, tomato, and lettuce (Feng et al. 2002; Al-Karaki et al. 2001).
Mycorrhizal colonization improves not only the yield of plants but also the quality
of fruit, for example in water melon (Kaya et al. 2009).

Plant Growth and Salinity

Salinity stress adversely affects plant morphology and physiology. Various studies
reveal that AM fungi improve plant growth and yield under salt stress conditions
(Al-Karaki et al. 2001; Tsang and Maun 1999). This could be possible by means
of adequate supply of mineral nutrients, particularly phosphorus with the help of
AM fungi by the host plant (Marschner 1986; Al-Karaki 2000). Published data
showed the higher growth of mycorrhizal plants under salt stress (Giri et al. 2003;
Sannazzaro et al. 2007; Zuccarini and Okurowska 2008).

Hajbagheri and Enteshari (2011) reported maximum plant growth and biomass
under salt stress. Similarly, roots colonization by AM fungi resulted in the
enhanced growth of tomato (Al-Karaki 2006), soybean (Sharifi et al. 2007), and
citrus (Ying-Ning et al. 2013) on exposure to salt stress. Phosphorus limits plant
growth due to its poor mobility in the soil. However, its increased availability due
to AM fungi symbiosis with the host plant has been reported to enhance plant
growth and biomass.

Application of mycorrhizal plants has proved to significantly increase plant
growth as the uptake of phosphorus in chickpea (Azcón-Aguilar et al. 2003).
Combination of mycorrhizal fungi with natural rock phosphate based on nutri-
tional content is found to be more effective on Sesbania (Mohammadi et al. 2011).
AM fungi colonization has found to be effective in several crop plants such as
sunflower, maize, soybean, potato, and wheat (Dahlgren et al. 2004; Mohammadi
et al. 2011).

Lin et al. (1991) reported phosphorus in double concentrations in the shoots and
roots of mycorrhizal Trifolium repens, indicating that AM colonization provides
higher percentage of phosphorus concentration than non-mycorrhizal plants (Ortas
et al. 2011; Mohammadi et al. 2011). In another study, luxuriant growth has been
observed in mycorrhizal garlic plants with increased fresh weight under salt stress
(Cho et al. 2006; Al-Karaki 2006). Mehdi et al. (2006) also found the increased
dry biomass of lentil shoots by mycorrhizal colonization.

In response to salt stress, reduction in root growth of tomato (Latef and
Chaoxing 2011) and Jatropha curcas (Kumar et al. 2010) has been reported even
when the plants were inoculated with the fungi. Similar results are also reported by
Hajbagheri and Enteshari (2011). In this study, root dry weight increased due to
enhanced salinity and root fresh weight decreased due to reduced osmotic potential
of soil and also due to its low water absorption capacity (Hajbagheri and
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Enteshari 2011). Similar results were obtained by Ghoulam et al. (2002) in beet
root. When inoculated AM fungi were introduced, the fresh and dry weight of root
increased because of its increased nutrient and water absorption by the fungal
hyphae network. Mycorrhizal fungal fibers entering the plants increase cytokinin
content resulting in higher water absorption and formation of extensive root
system in plants. Other group of fibers presented outside the root system produces
organic acids solubilizing phosphorus like malic acid, thereby enhancing phos-
phorus absorption and hence plant dry matter. Phosphorus plays a crucial role in
cellular division by regulating the activity of growth hormones. Growth and
biomass inhibition under salt stress is reported by Siddiqui et al. (2009) and Afroz
et al. (2005) due to high accumulation of NaCl salt.

Chlorophyll Content

Chlorophyll content reduces under salt stress due to its enzyme inhibition required
for biosynthesis of chlorophyll (Sheng et al. 2008; Murkute et al. 2006) and also
by limited uptake of nutrients. Mycorrhizal plants in response to salt stress have
been observed to increase the chlorophyll content (Sannazzaro et al. 2006; Colla
et al. 2008; Zuccarini 2007), suggesting the less interference of salt with chloro-
phyll biosynthesis (Giri and Mukerji 2004). Also, the negative effect of Mg on
chlorophyll molecules is counterbalanced in the presence of AM fungi under salt-
stressed conditions (Giri et al. 2003; Zuccarini 2007). Salt stress causes alterations
in the activities of enzyme, affecting the synthesis of chlorophyll, and results in the
loss of pigments (Parida and Das 2005). El-Tayeb (2005) found the same in maize
and barley plants. Reduction in chlorophyll activity is attributed to diffusional
limitations, i.e., stomatal and mesophyll conductance (Paranychianakis and
Chartzoulakis 2005).

With increasing the salinity level, photosynthesis is reduced in plants; however,
in mycorrhizal plants, the chlorophyll activity is restored due to presence of
specific enzymes required for its biosynthesis (Sheng et al. 2008; Hajbagheri and
Enteshari 2011). Since mycorrhization increases the absorption of Mg in plants,
the synthesis of chlorophyll increases in mycorrhizal plants. Increasing chlorophyll
activity in AM-inoculated plants decreases Na level under salt stress. Zhu
et al. (2010) found similar results in maize plants inoculated with Glomus
etunicatum. These results are corroborated with the findings of Kumar
et al. (2010). AM symbiosis enhanced the photosynthesis rate under salt stress in
garlic plants (Borde et al. 2010). This is in accordance with the result of other
studies (Sannazzaro et al. 2006; Sheng et al. 2008; Colla et al. 2008).

Yang et al. (2010) also reported the blockage of water absorbance by cucumber
roots, thereby influencing stomatal opening and hence decreased biochemical
reactions. According to Evelin et al. (2009), a tremendous loss in chlorophyll
content and nutrient imbalances is among the adverse effects of salinity on the
growth of plants.
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Unavailability of carbon dioxide leads to increased stomatal closure due to its
reduced consumption of NADPH produced by Calvin cycle (Ruiz-Lozano et al.
2012). Microorganisms such as bacteria and fungi increase plant growth and yield
under adverse environmental conditions as they have the tendency to resist the
damage and hence develop resistance against harmful effects of salinity stress.

The increased photosynthetic pigments by mycorrhizal colonization in plants is
due to the inhibition of Na transport, which leads to better functioning of photo-
synthetic machinery (Borde et al. 2010; García-Garrido and Ocampo 2002).
Production of proline by the application of mycorrhizal fungi demonstrates the
high tolerance capacity in wheat plants by stabilizing the osmotic balance and
scavenging the toxic radicals (García-Garrido and Ocampo 2002).

Under salt stress, AM fungi increase the rate of chlorophyll contents that is
attributed to higher translocation of photosynthase by the fungi (Lösel and Cooper
1979). Levy and Krikun (1980) reported the same in mycorrhizal citrus plants
related to water uptake as affected by stomatal regulation. Similar results were
observed in grass by Allen and Allen (1981). This improvement with AM fungi is
also due to enhancement in the cytokinin concentrations (Allen et al. 1980).
Salinity stress adversely affects all different parameters, i.e., chlorophyll, growth,
biomass, water status, nutrient uptake; however, inoculation with mycorrhizal
fungal may simultaneously improve these parameters (Yohannes 2006).

Water Status

Kumar et al. (2010) have demonstrated normal levels of water in leaves of
mycorrhizal J. curcas under salt stress. This symbiosis results in efficient water
conductance in roots and simultaneously increases stomatal conductance and
hence transpiration (Colla et al. 2008; Jahromi et al. 2008). AM inoculation helps
the host plant to acquire nutrients and thereby improves the photosynthetic rate as
well as water osmotic homeostasis (Porras-Soriano et al. 2009; Sheng et al. 2008;
Zuccarini 2007).

Water status is disrupted by salt stress; however, mycorrhizal colonization
prevents the host plant from dehydration and thereby increases the root hydraulic
conductivity at low water potential (Aroca et al. 2007). These inoculated plants
allow fixing carbon dioxide freely relative to the non-colonized plants (Querejeta
et al. 2007). Increased transpiration rate by AM symbiosis is related to the changes
of ABA:cytokinin ratio (Gorcoechea et al. 1997; Porcel et al. 2012). Mycorrhizal
fungal colonization enables the host plants to absorb higher water through their
hyphal network, and hence, water status (Khalvati et al. 2005; Bolandnazar et al.
2007; Porcel et al. 2012) and the intercellular carbon dioxide concentration are
maintained in plant. Lower water saturation deficit and higher turgor potential in
mycorrhizal plants efficiently regulate plant water status (Sheng et al. 2008).
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Relative Cellular Permeability

Mycorrhizal plants improve the stability as well as the integrity of membrane
proteins by maintaining higher relative permeability of the cell (Kaya et al. 2009;
Garg and Manchanda 2008). This results in increased phosphorus uptake as well
as antioxidant enzymes production (Feng et al. 2002). Cajanus cajan shows higher
relative permeability when treated with AM fungi (Kaya et al. 2009). Also elec-
trical conductivity of mycorrhizal plants was found higher in certain plant roots
(Garg and Manchanda 2008). Mycorrhizal pigeon pea showed similar results as
exposed to different levels of salt stress; this has been attributed to the higher
electrolyte permeability of root plasma membrane (Feng et al. 2002), which is a
result of higher phosphorus uptake and enhanced production of antioxidant
enzymes. Proper combinations of mycorrhizal fungal species and the host plant
result in the alleviation of the salt stress and make the cultivation of plants even
more likely under stress.

Betaines

Betaines belong to N-methylated derivatives of amino acids and provide an
effective indicator of salt stress like proline (Duke et al. 1986; Evelin et al. 2009).
In addition, it has an osmotic regulating mechanism, protecting and stabilizing the
integrity of cell membrane structure against the negative effects of excess salt
accumulation. Mycorrhizal plants have found to be more effective during accu-
mulation of betaines under salt stress (Al-Garni 2006; Evelin et al. 2009). In
higher plants, proline is catalyzed by pyrroline-5-carboxylate synthetase (P5CS)
and pyrroline-5-carboxylate reductase (P5CR). P5CS over-expressed gene in
transgenic tobacco leads to enhanced production of proline under salinity (Kishor
et al. 1995; Porcel et al. 2012). Glycine betaine protects the plants against adverse
effects of salinity stress. Plants treated with mycorrhizal fungi accumulate betaine
under stress and thus prevents plants from any stress damage. Various reports have
shown that AM-treated plants enhanced the production of betaines that contribute
to the osmotic adjustment of plants and hence results in a more efficient photo-
synthesis process (Sheng et al. 2011).

Proline

Proline accumulation is one of the natural means to adapt to environmental stress
conditions. Proline is a non-toxic and good osmolyte and maintains the osmoreg-
ulation under salt stress (Ahmad and Jhon 2005; Ahmad and Sharma 2008; Ahmad
2010; Ahmad et al. 2010b, 2011, 2012a; Katare et al. 2012; Rasool et al. 2013a, b).
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Plants when colonized by AM fungi show high degree of protection by accumu-
lating more and more solute as it has been indicated in mung bean (Jindal
et al. 1993; Evelin et al. 2009). Such solutes have been found more in roots than
shoots as roots are the primary sites of water absorption. Proline accumulation is not
only due to salinity stress but also by mycorrhizal colonization. In some plants,
proline accumulation is observed due to salt stress and not by mycorrhizal colo-
nization, and hence, it is required to clarify such finding to assess the mechanisms of
salt tolerance in various plants. Proline also acts as energy storage (i.e., C and N)
during salt stress (Goas et al. 1982; Aggarwal et al. 2012). Enhanced proline
accumulation can be linked with increased N-fixing ability of plants as demon-
strated by Evelin et al. (2009) in pigeon pea.

Symbiotic plants, under salt stress, are thought to prevent nodule destruction by
avoiding the protein denaturation (Irigoyen et al. 1992). Maximum proline
synthesis has been found in salt-stressed plants in the presence of bacteria Burk-
holderia (Barka et al. 2006), Arthrobacter, and Bacillus (Sziderics et al. 2007).
The introduction of proBA gene extracted from Bacillus subtilis into Arabidopsis
thaliana enhances proline accumulation and increased salt tolerance in transgenic
plants (Chen et al. 2007). Proline accumulation was found to increase tremen-
dously when the host plant gets stimulated by colonization under salt stress.

Carbohydrates

Carbohydrates lower the water potential of plants and provide defensive mecha-
nism against salt stress (Thanna and Nawar 1994; Ahmad and Jhon 2005; Koyro
et al. 2012). Increased carbohydrate content due to salinity stress has been observed
in Phragmites australis and corresponds to mycorrhizal plants (Glomus fascicul-
atum) (Al-Garni 2006; Thomson et al. 1990). Similar results have been observed in
soybean roots colonized by Glomus intraradices (Porcel and Ruiz-Lozano 2004).
Enhanced level of soluble sugar in the host plants is resulted by mycorrhizal
symbiosis (Evelin et al. 2009).

Trehalose among the non-reducing sugar is the main storage part of carbohy-
drate in extra-radical mycelium as well as in spores of AM fungi and plays a key
role in maintaining the integrity of biological membranes against salt stress.
Trehalose accumulation has been exploited as a stress protector and has the
potential to adapt to hyperosmotic conditions of symbiotic bacteria and in turn
provides a powerful tool in the response of AM fungi under salt stress (Lopez
et al. 2008).

This forms the close association to withstand the capacity to endure salt stress
(Borde et al. 2010). Conversely, some scientists have shown negative effects
regarding the mycorrhizal association and sugar accumulation in host plants during
salt stress.

Furthermore, carbohydrate accumulation is associated with the transport and
supply of food to different parts of plants necessary for plant adaptation, growth,
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photosynthesis, and biomass allocation (Balibrea et al. 2000). Eventually, the
accumulation of carbohydrate in the sink associated with salt stress represents the
first limiting step for salt tolerance and can be restored and enhanced in mycor-
rhizal plants (Perez-Alfocea et al. 2010; Dodd and Perez-Alfocea 2012). High
sugar content in maize plants due to AM symbiosis was observed under salt stress
by Feng et al. (2002). This result can lead to improved plant water level, efficient
chlorophyll synthesis, and increased tolerance level (Sheng et al. 2008).

Polyamines

Polyamines play a significant role in response to various abiotic stresses including
salinity (Krishnamurthy and Bhagwat 1989; Ahmad et al. 2012b) and high osmotic
potential (Besford et al. 1993) as they act as a defense strategy (Kurepa
et al. 1998). They also play an important role in the architecture of roots under salt
stress (Couée et al. 2004). Salinity decreases the level of polyamines; however, in
mycorrhizal plants, the activity of polyamines is improved (Sannazzaro et al.
2007).

Various species of salt-tolerant mycorrhizae have been observed to enhance the
adaptability to salinity stress of Lotus glaber (Sannazzaro et al. 2007). Spermine
and spermidine are formed from methionine and ornithine, whereas putrescine is
produced from arginine. The initial step undergoes the loss of carbon dioxide
catalyzed by ornithine decarboxylase (Ahmad et al. 2012b; Evelin et al. 2009).
Nevertheless, associated enzymes linked with polyamines are increased under
salinity (Lefevre and Lutts 2000). This might lead to an extensive enhancement of
polyamines in plants when inoculated by mycorrhizal fungi. Polyamine also
stimulates various protein biosyntheses via nucleic acid interaction and thereby
stabilizes the biomembranes (Evelin et al. 2009).

Antioxidants

ROS generated under salt stress become a major devastating effect in plants. The
radicals are leaked during the aerobic respiration in chloroplast and mitochondria
(Møller 2001; Asada 1999). These in turn damage the photosynthetic machinery
of the cell. ROS negatively affects biomolecules such as proteins, carbohydrates,
nucleic acids, and membrane lipids. To combat the stressful environment, plants
possess several antioxidant enzymes to protect them from such harmful effects of
ROS. Therefore, antioxidative enzymes play a key role as a defense mechanism in
various plant species and hence salt tolerance level (Yamane et al. 2004; Jiang and
Zhang 2002; Evelin et al. 2009; John et al. 2007; Ahmad 2010; Ahmad
et al. 2008a, b, 2009, 2010a, b, 2011, 2012a, c, 2013; Ahmad and Umar 2011;
Koyro et al. 2012; Ahmad and Prasad 2012a, b; Rasool et al. 2013a, b).
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Besides antioxidant enzymes, several non-enzymatic compounds such as
carotenoids, glutathione, tocopherols, and ascorbic acid are also responsible to
scavenge the oxygen radicals (Alguacil et al. 2003; Wu et al. 2006; John
et al. 2007; Ahmad 2010; Ahmad et al. 2008a, b, 2009, 2010a, b, 2011, 2012a, c,
2013; Ahmad and Umar 2011; Koyro et al. 2012; Ahmad and Prasad 2012a, b;
Rasool et al. 2013a, b). Incorporation of AM symbiosis helps to endure the salt
stress and increases the antioxidant enzymes (Ocon et al. 2007; Harinasut et al.
2003).

Enhanced antioxidant enzymes associated with AM plants have been demon-
strated by many scientists. Catalase (CAT), ascorbate peroxidase (APOX), and
superoxide dismutase (SOD) have shown increased activity in Olea europaea and
Retana splaerocarpa (Alguacil et al. 2003). Smirnoff (1993) reported detoxifica-
tion of superoxide to hydrogen peroxide by enhanced SOD. This produced
hydrogen peroxide is in turn scavenged by CAT and peroxidase and APOX (Lopez
et al. 1996; Benavides et al. 2000). Mycorrhizal plants enhance the production of
antioxidant enzymes as affected by the micronutrients available to the enzymes
such as CAT, POX, and SOD (Alguacil et al. 2003). Deficiencies and excess of
micronutrients alter the expressions of metalloenzymes, e.g., Fe increases the CAT
and APX activities in Nicotiana plumbaginifolia (Kamfenkel et al. 1995). Accu-
mulation of ROS depends upon the balance between ROS production and ROS
scavenging (Miller et al. 2010). There are many reports that showed mycorrhizal
plants provide higher accumulation of antioxidative enzymes and thereby improve
the whole plant growth under stress (Miller et al. 2010; Scheibe and Beck 2011).

Ascorbate plays a crucial role to protect the chlorophyll activity during salt
stress (Shao et al. 2008; Noctor and Foyer 1998). Türkan and Demiral (2009) have
reported the tremendous link between antioxidant capacity and salinity tolerance.
Studies reveal that mycorrhizal symbiosis enables the host plant to survive under
salt or water deficit stresses by enhancing the production of various antioxidant
enzymes (Zhong Qun et al. 2007; Ruíz-Sánchez et al. 2010; Talaat and
Shawky 2011).

Manchanda and Garg (2011) also reported that POX and CAT activity
enhances salt tolerance in C. cajan (Mehdy 1994). Soybean plants colonized with
AM fungi indicate the increased antioxidant capacity with the potential to adapt to
the various salt stress conditions (Ghorbanli et al. 2004). Increased level of anti-
oxidant enzymes might also result in the efficient colonization of mycorrhizal
fungi under salt stress (Alguacil et al. 2003). Similar results were obtained with
Gmeline arbarea inoculated with Glomus fasciculatum (Dudhane et al. 2010;
Aggarwal et al. 2012).

Root colonization by mycorrhizal fungi induces accumulation of proline and
thereby facilitates osmotic adjustment (Sheng et al. 2011; Ruiz-Lozano and
Azcon 1995). Proline is an indicator of salt and other stresses that scavenge the
free radicals and stabilize the water balance mechanisms in plants (Yang
et al. 2009; Dodd and Perez-Alfocea 2012). Under salt stress, levels of antioxi-
dants enzymes vary depending on the species, metabolic state of plant, and also the
intensity of stress (Reddy et al. 2004). Enhancement of antioxidant enzymes is
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also associated with increased potential to withstand the stress indicating the
tolerance of mycorrhizal garlic plants to salt stress (Borde et al. 2010). Evidences
show the greater and increased growth of AM-treated plants on exposure to dif-
ferent levels of salt concentrations.

Abscisic Acid

AM fungi have the capacity to alter the levels of ABA and thereby adapt to
different environmental stresses including salinity (Estrada-Luna and
Davies 2003). ABA levels are found higher in L. glaber colonized by AM fungi
(Sannazzaro et al. 2007). Spermine content in mycorrhizal plant tends to regulate
the ABA activity in the shoot. Nevertheless, some authors have reported less
accumulation of ABA in association with mycorrhizal fungi under salt stress
(Evelin et al. 2009). ABA is one of the growth hormones responsible to protect the
plant against salt stress (Miransari et al. 2013).

Nodulation and Nitrogen Fixation

During the symbiosis process, nitrogen-fixing bacteria form nodules on the roots,
especially in leguminous plants. The number of nodules decreases under salt stress
as the process of nitrogen fixation is adversely affected by the stress due to the
inhibition of leg-hemoglobin production, thereby reducing the nitrogenase activity
(Garg and Manchanda 2008; Rabie and Almadini 2005; Harinasut et al. 2003).
Reduction in nodulation and nodule activity has also been observed by Serraj et al.
(2001), Tejera et al. (2005), Bolanos et al. (2006), and Garg and Manchanda (2008)
in different plants.

Under salt stress, mycorrhizal plants improve their productivity due to their
adequate leg-hemoglobin content and nitrogenase activity. Therefore, nodulation
seems to enhance at low salt concentration (Johansson et al. 2004; Rabie and
Almadini 2005; Garg and Manchanda 2008). AM fungi possess the ability to
alleviate the harmful effects of salinity during the process of nitrogen fixation and
nodulation in legumes as AM fungi increase the number of nodules (Garg and
Manchanda 2008; Giri and Mukerji 2004; Ruiz-Lozano et al. 2001; Porcel
et al. 2003). Exogenous application of AM fungi improved the pink color of leg-
hemoglobin, indicating the higher pigment content and hence higher nitrogenase
activity and nitrogen fixation in mycorrhizal plants. This is also attributed to the
free availability of phosphorus required for nitrogenase enzyme of bacterial
symbionts and also uptake of essential micronutrients, leading to the enhanced
growth and yield of plants (Founoune et al. 2002; Evelin et al. 2009). Therefore, to
prevent from such harmful effects of abiotic stress, association of AM fungi under
salinity stress can alter various changes and make the plants to adapt to different
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types of stress including salt stress. Mycorrhiza-treated plants enhanced nodule
formation, photosynthesis, and water status in S. helvola under salt stress (Tsang
and Maun 1999).

Under extreme conditions of salinity stress, the AM fungi have been found to
alleviate these stresses and create a strong association with their host plants (Dodel
and Ruíz-Lozano 2012; Wilde et al. 2009; García-Garrido and Ocampo 2002).
Several studies have reported a tremendous yield loss under salt stress (Al-Karaki
et al. 2001; Cantrell and Linderman 2001; Hajiboland et al. 2010).

Nutrient Uptake

Nutrients are essential for the proper functioning of plants and any deficiency
hamper plant growth and yield production. All essential nutrients seem to be
adversely affected by salt stress. Accordingly, to combat the poor supply of
nutrients from the soil, mycorrhizal fungi help their host plant to restore the uptake
of mineral nutrients and hence plant growth (Giri and Mukerji 2004; Sharifi
et al. 2007).

Phosphorus is essential for plant growth and is not readily available as the
phosphate precipitates with some of the cations such as Ca, Mg, and Zn. However,
AM fungal symbiosis plays a key role in supplying the poor mobility nutrients like
phosphorus to the host plant by the roots and hence suppress the negative effects of
salt (Feng et al. 2002; Al-Karaki and Clark 1998). This is attributed to the
extensive network of AM fungal hyphae that explore higher volume of soil (Ruiz-
Lozano and Azcón 2000). In fact, depleted areas around the plant roots can also
become fertile due to the presence of mycorrhizal hyphae, which acquire nutrients
from the soil under the salinity stress.

During salt stress, plants absorb Na more than K (Rus et al. 2001), thereby
providing the competition for K within the same binding site. Potassium has its
peculiar functions such as participating in the activities of various enzymes, reg-
ulating the stomatal movement, and also involving in the synthesis of proteins
(Blaha et al. 2000). Salinity cause imbalance in K+/Na+ ratio adversely affecting
the plant growth. Since mycorrhizal plants possess higher Na+/K+ (higher K+

uptake in shoots), they are able to mitigate the salt stress by the dilution effect
(Juniper and Abbott 1993). Similar results in the concentration of K have been
demonstrated by Ojala et al. (1983) and Mohammad et al. (2003) who showed
higher K+ accumulation and hence higher K/Na ratio by mycorrhizal plants,
favorably affecting the enzymatic processes as well as protein synthesis under salt
stress (Audet and Charest 2006). Calcium act as a second messenger to transducer
signals. Calcium ions have tendency to raise K uptake, thereby adapting various
changes under salt stress. Therefore, Ca accumulation under salt stress has been
found to enhance the colonization as well as sporulation of mycorrhizal fungi
(Jarstfer et al. 1998).
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Conclusion and Future Prospects

Salt stress has been shown to adversely affect plant growth and physiology;
however, association with AM fungi seems to effectively enhance plant growth
under stress through the accumulation of different solutes and higher uptake of
water and nutrients. Investigations have been carried out to find the depth of
mycorrhizal symbiosis and activity under stress. Enhanced production of antiox-
idative enzymes in mycorrhizal plants needs to be further evaluated to reveal
the ultrastructure aspects of AM fungi. These in turn would open new avenues for
the alternative way of increasing tolerance by AM symbiosis in order to overcome
the adverse effects of salt stress. AM symbiosis plays a crucial role in plant growth
promotion and prevents the plants from the adverse effects of various stresses
including salinity. Genetic techniques and molecular approaches may indicate new
insight in the alleviating role of mycorrhizal symbiosis under stress.
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