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General Preface

The seven volumes of the series Basic Course: Theoretical Physics are thought to be
textbook material for the study of university-level physics. They are aimed to impart,
in a compact form, the most important skills of theoretical physics which can be
used as basis for handling more sophisticated topics and problems in the advanced
study of physics as well as in the subsequent physics research. The conceptual
design of the presentation is organized in such a way that

Classical Mechanics (volume 1)
Analytical Mechanics (volume 2)
Electrodynamics (volume 3)
Special Theory of Relativity (volume 4)
Thermodynamics (volume 5)

are considered as the theory part of an integrated course of experimental and
theoretical physics as is being offered at many universities starting from the first
semester. Therefore, the presentation is consciously chosen to be very elaborate and
self-contained, sometimes surely at the cost of certain elegance, so that the course
is suitable even for self-study, at first without any need of secondary literature. At
any stage, no material is used which has not been dealt with earlier in the text. This
holds in particular for the mathematical tools, which have been comprehensively
developed starting from the school level, of course more or less in the form of
recipes, such that right from the beginning of the study, one can solve problems in
theoretical physics. The mathematical insertions are always then plugged in when
they become indispensable to proceed further in the program of theoretical physics.
It goes without saying that in such a context, not all the mathematical statements can
be proved and derived with absolute rigour. Instead, sometimes a reference must
be made to an appropriate course in mathematics or to an advanced textbook in
mathematics. Nevertheless, I have tried for a reasonably balanced representation
so that the mathematical tools are not only applicable but also appear at least
‘plausible’.
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vi General Preface

The mathematical interludes are of course necessary only in the first volumes of
this series, which incorporate more or less the material of a bachelor program. In the
second part of the series which comprises the modern aspects of theoretical physics,

Quantum Mechanics: Basics (volume 6)
Quantum Mechanics: Methods and Applications (volume 7)
Statistical Physics (volume 8)
Many-Body Theory (volume 9),

mathematical insertions are no longer necessary. This is partly because, by the
time one comes to this stage, the obligatory mathematics courses one has to take
in order to study physics would have provided the required tools. The fact that
training in theory has already started in the first semester itself permits inclusion
of parts of quantum mechanics and statistical physics in the bachelor program
itself. It is clear that the content of the last three volumes cannot be part of an
integrated course but rather the subject matter of pure theory lectures. This holds in
particular for Many-Body Theory which is offered, sometimes under different names
as, e.g., Advanced Quantum Mechanics, in the eighth or so semester of study. In this
part, new methods and concepts beyond basic studies are introduced and discussed
which are developed in particular for correlated many particle systems which in the
meantime have become indispensable for a student pursuing master’s or a higher
degree and for being able to read current research literature.

In all the volumes of the series Basic Course: Theoretical Physics, numerous
exercises are included to deepen the understanding and to help correctly apply the
abstractly acquired knowledge. It is obligatory for a student to attempt on his own
to adapt and apply the abstract concepts of theoretical physics to solve realistic
problems. Detailed solutions to the exercises are given at the end of each volume.
The idea is to help a student to overcome any difficulty at a particular step of the
solution or to check one’s own effort. Importantly these solutions should not seduce
the student to follow the easy way out as a substitute for his own effort. At the end
of each bigger chapter, I have added self-examination questions which shall serve
as a self-test and may be useful while preparing for examinations.

I should not forget to thank all the people who have contributed one way or
an other to the success of the book series. The single volumes arose mainly from
lectures which I gave at the universities of Muenster, Wuerzburg, Osnabrueck,
and Berlin in Germany, Valladolid in Spain and Warangal in India. The interest
and constructive criticism of the students provided me the decisive motivation for
preparing the rather extensive manuscripts. After the publication of the German
version, I received a lot of suggestions from numerous colleagues for improvement,
and this helped to further develop and enhance the concept and the performance
of the series. In particular I appreciate very much the support by Prof. Dr. A.
Ramakanth, a long-standing scientific partner and friend, who helped me in many
respects, e.g. what concerns the checking of the translation of the German text into
the present English version.



General Preface vii

Special thanks are due to the Springer company, in particular to Dr. Th. Schneider
and his team. I remember many useful motivations and stimulations. I have the
feeling that my books are well taken care of.

Berlin, Germany Wolfgang Nolting
May 2015





Preface to Volume 1

The first volume of the series Basic Course: Theoretical Physics presented here
deals with Classical Mechanics, a topic which may be described as

analysis of the laws and rules according to which physical bodies move in space and time
under the influence of forces.

This formulation already contains certain fundamental concepts whose rigorous
definitions appear rather non-trivial and therefore have to be worked out with
sufficient care. In the case of a few of these fundamental concepts, we have to even
accept them, to start with, as more or less plausible facts of everyday experience
without going into the exact physical definitions. We assume a material body to be
an object which is localized in space and time and possesses an (inertial) mass. The
concept is still to be discussed. This is also valid for the concept of force. The forces
are causing changes of the shape and/or in the state of motion of the body under
consideration. What we mean by space is the three-dimensional Euclidean space
being unrestricted in all the three directions, being homogeneous and isotropic, i.e.
translations or rotations of our world as a whole in this space have no consequences.
The time is also a fact of experience from which we only know that it does exist
flowing uniformly and unidirectionally. It is also homogeneous which means no
point in time is a priori superior in any manner to any other point in time.

In order to describe natural phenomena, a physicist needs mathematics as
language. But the dilemma lies in the fact that theoretical mechanics can be
imparted in a proper way only when the necessary mathematical tools are available.
If theoretical physics is started right in the first semester, the student is not yet
equipped with these tools. That is why the first volume of the Basic Course:
Theoretical Physics begins with a concise mathematical introduction which is
presented in a concentrated and focused form including all the material which is
absolutely necessary for the development of theoretical classical mechanics. It goes
without saying that in such a context not all mathematical theories can be proved
or derived with absolute stringency and exactness. Nevertheless, I have tried for
a reasonably balanced representation so that mathematical theories are not only
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x Preface to Volume 1

readily applicable but also at least appear plausible. Thereby only that much math-
ematics is offered which is necessary to proceed with the presentation of theoretical
physics. Whenever in the presentation one meets new mathematical barriers, a
corresponding mathematical insertion appears in the text. Therefore, mathematical
discourses are found only at the positions where they are directly needed. In this
connection, the numerous exercises provided are of special importance and should
be worked without fail in order to evaluate oneself in self-examination.

This volume on classical mechanics arose from respective lectures I gave at the
German Universities in Muenster and Berlin. The animating interest of the students
in my lecture notes has induced me to prepare the text with special care. This
volume as well as the subsequent volumes is thought to be a textbook material
for the study of basic physics, primarily intended for the students rather than for
the teachers. It is presented in such a way that it enables self-study without the
need for a demanding and laborious reference to secondary literature. I had to
focus on the essentials, presenting them in a detailed and elaborate form, sometimes
consciously sacrificing certain elegance. It goes without saying that after the basic
course, secondary literature is needed to deepen the understanding of physics and
mathematics.

I am thankful to the Springer company, especially to Dr. Th. Schneider, for
accepting and supporting the concept of my proposal. The collaboration was always
delightful and very professional. A decisive contribution to the book was provided
by Prof. Dr. A. Ramakanth from the Kakatiya University of Warangal (India). Many
thanks for it!

Berlin, Germany Wolfgang Nolting
May 2015
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Chapter 1
Mathematical Preparations

The basic differential and integral calculus are normally part of the content of
curriculum in secondary school. However, experience has shown that the knowledge
of basic mathematics has a large variation from student to student. The things
which are completely clear or even trivial to one can pose high barriers to another.
Therefore, in this introductory chapter the most important elements of differential
and integral calculus will e recapitulated which are vital for the following course of
Theoretical Physics. It is clear that this cannot replace the precise representation of
a mathematics course. It is to understand only as an ‘auxiliary program’ to provide
the basic tools for starting Theoretical Physics. The reader who is familiar with
elementary differential and integral calculus may either use Sects. 1.1 and 1.2 as a
revision for a kind of self-examination or simply skip them.

1.1 Elements of Differential Calculus

1.1.1 Set of Numbers

One defines the following types of numbers:

N D f1; 2; 3; : : :g natural numbers
Z D f: : : ;�2;�1; 0; 1; 2; 3; : : :g integer numbers

Q D
n
xI x D p

q I p 2 Z; q 2 N

o
rational numbers

R D fxI continuous number lineg real numbers :

Therefore

N � Z � Q � R :

© Springer International Publishing Switzerland 2016
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2 1 Mathematical Preparations

The body of complex numbers C will be introduced and discussed later in
Sect. 2.3.5. For the above-mentioned set of numbers the basic operations addition
and multiplication are defined in the well-known manner. We will remind here only
shortly to the process of raising to a power.

For an arbitrary real number a the n-th power is defined as:

an D a � a � a � : : : � a„ ƒ‚ …
n-fold

n 2 N : (1.1)

There are the following rules:

1.

.a � b/n D .a � b/ � .a � b/ � : : : � .a � b/„ ƒ‚ …
n-fold

D an � bn (1.2)

2.

ak � an D a � a � : : : � a„ ƒ‚ …
k-fold

� a � a � : : : � a„ ƒ‚ …
n-fold

D akCn (1.3)

3.

.an/k D an � an � : : : � an„ ƒ‚ …
k-fold

D an�k : (1.4)

Even negative exponents are defined as can be seen by the following consideration:

an D anCk�k D an � a�k � ak Õ a�k � ak D 1 :

Therefore we have:

a�k � 1

ak
8a 2 R .a ¤ 0/ : (1.5)

Furthermore, we recognize the important special case:

ak�k � a0 D 1 8a 2 R : (1.6)

This relation is valid also for a D 0.
Analogously and as an extension of (1.4) split exponents can be defined:

bn D a D
�

a
1
n

�n
Õ b D a

1
n :
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One denotes

a
1
n � n
p

a W n-th root of a (1.7)

Thus it is a number the n-th power of which is just a.

Examples

2
p
4 � 4 12 D 2 because: 22 D 2 � 2 D 4

3
p
27 � 27 13 D 3 because: 33 D 3 � 3 � 3 D 27

4
p
0:0001 � 0:0001 14 D 0:1 because: 0:14 D 0:1 � 0:1 � 0:1 � 0:1 D 0:0001 :

Eventually we can accept also rational exponents:

a
p
q � q
p

ap � � q
p

a
�p
: (1.8)

The final generalization to arbitrary real numbers will be done at a later stage.

1.1.2 Sequence of Numbers and Limiting Values

By a sequence of numbers we will understand a sequence of (indexed) real numbers:

a1; a2; a3; � � � ; an; � � � an 2 R : (1.9)

We have finite and infinite sequences of numbers. In case of a finite sequence the
index n is restricted to a finite subset of N. The sequence is formally denoted by the
symbol

fang

and represents a mapping of the natural numbers N on the body of real numbers R:

f W n 2 N �! an 2 R .n �! an/ :

Examples

1.

an D 1

n
�! a1 D 1; a2 D 1

2
; a3 D 1

3
; a4 D 1

4
� � � (1.10)
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2.

an D 1

n.nC 1/ �! a1 D 1

1 � 2 ; a2 D 1

2 � 3; a3 D 1

3 � 4 ; � � � (1.11)

3.

an D 1C 1

n
�! a1 D 2; a2 D 3

2
; a3 D 4

3
; a4 D 5

4
; � � � (1.12)

Now we define the

Limiting value (limit) of a sequence of numbers

If an approaches for n ! 1 a single finite number a, then a is the limiting value
(limes) of the sequence fang:

lim
n ! 1 an D a I an

n!1�! a : (1.13)

The mathematical definition reads:

fang converges to a

”8" > 0 9 n" 2 N so that jan � aj < " 8n > n" : (1.14)

Does such an a not exist then the sequence is called divergent. In case fang converges
to a, then for each " > 0 only a finite number of sequence elements has a distance
greater than " to a.

Examples

1.

fang D
�
1

n

�
�! 0 .null sequence/ (1.15)

2.

fang D
�

n

nC 1
�
�! 1 (1.16)

because:

n

nC 1 D
1

1C 1
n

�! 1

1C 0 D 1 :

In anticipation, we have here already used the rule (1.22).
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3.

fang D fqng �! 0 ; if jqj < 1 : (1.17)

The proof of this statement is provided elegantly by the use of the special function
logarithm, which, however, will be introduced only with Eq. (1.65). Thus we
present the justification of (1.17) after the derivation of (1.70).

4.

an D
�
1C 1

n

	n

�! e D 2:71828 : : : Euler number : (1.18)

The limiting value of this sequence, which is very important for applications, is
given here without proof. For details the reader is referred to special textbooks
on mathematics.

Again without proof we list up the following

rules for sequences of numbers

the explicit, rather straightforward derivation of which shall be left to the reader.
Assuming the convergence of the two sequences fang and fbng:

lim
n ! 1 an D a I lim

n ! 1 bn D b :

we get:

lim
n ! 1.an ˙ bn/ D a˙ b (1.19)

lim
n ! 1.c � an/ D c � a .c 2 R/ (1.20)

lim
n ! 1.an � bn/ D a � b (1.21)

lim
n ! 1

�
an

bn

	
D a

b
.b; bn ¤ 0 8n/ : (1.22)

1.1.3 Series and Limiting Values

Adding up the terms of an infinite sequence of numbers leads to what is called a
series:

a1; a2; a3; � � � ; an; � � � Õ a1 C a2 C a3 C � � � C an C � � � D
1X

m D 1

am : (1.23)
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Strictly, the series is defined as limiting value of a sequence of (finite) partial sums:

Sr D
rX

m D 1

am : (1.24)

The series converges to S if

lim
r ! 1 Sr D S (1.25)

does exist. If not then it is called divergent.
A necessary condition for the series

P1
m D 1 am to be convergent is

lim
m ! 1 am D 0 (1.26)

For, if
P1

m D 1 am is indeed convergent then it must hold:

lim
m ! 1 am D lim

m ! 1 .Sm � Sm�1/ D lim
m ! 1 Sm � lim

m ! 1 Sm�1 D S � S D 0 :

However, Eq. (1.26) is not a sufficient condition. A prominent counter-example
represents the harmonic series:

1X
m D 1

1

m
D 1C 1

2
C 1

3
C � � � : (1.27)

It is divergent, although limm ! 1 1
m D 0! The proof of this is given as an

Exercise 1.1.3. In mathematics (analysis) one learns of different necessary and
sufficient conditions of convergence for infinite series:

comparison criterion ,
ratio test ,
root test

In the course of this book we do not need these criteria explicitly and thus restrict
ourselves to only making a remark.

The geometric series turns out to be an important special case of an infinite
series being defined as

q0 C q1 C q2 C � � � C qm C � � � D
1X

m D 1

qm�1 : (1.28)
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The partial sums

Sr D q0 C q1 C � � � C qr�1

can easily be calculated analytically. For this purpose we multiply the last equation
by q,

q Sr D q1 C q2 C � � � C qr

and build the difference:

Sr � q Sr D Sr.1 � q/ D q0 � qr D 1 � qr :

Then we get the important result:

Sr D 1 � qr

1 � q
: (1.29)

Interesting is the limit:

lim
r ! 1 Sr D 1 � limr ! 1 qr

1 � q
:

For this, Eqs. (1.19) and (1.20) have been exploited. Because of (1.17) we arrive at:

S D lim
r ! 1 Sr D

8̂
<
:̂

1
1�q , if jqj < 1

not existent, if jqj � 1
: (1.30)

1.1.4 Functions and Limits

By the term function f .x/ one understands the unique attribution of a dependent
variable y from the co-domain W to an independent variable x from the domain of
definition D of the function f .x/:

y D f .x/ I D � R
f�! W � R : (1.31)

We ask ourselves how f .x/ changes with x. All elements of the sequence

fxng D x1; x2; x3; � � � ; xn; � � �
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shall be from the domain of definition of the function f . Then for each xn there
exists a

yn D f .xn/

and therewith a ‘new’ sequence f f .xn/g.
Definition f .x/ possesses at x0 a limiting value f0, if for each sequence fxng ! x0
holds:

lim
n ! 1 f .xn/ D f0 : (1.32)

That is written as:

lim
x ! x0

f .x/ D f0 : (1.33)

Examples

1.

f .x/ D x3

x3 C x � 1 I lim
x ! 1 f .x/ D ? (1.34)

This expression can be reformulated for all x ¤ 0:

f .x/ D 1

1C 1
x2
� 1

x3

:

For all sequences fxng, which tend to1, 1
x2

and 1
x3

become null sequences. That
means:

lim
x ! 1

x3

x3 C x � 1 D 1 :

2.

f .x/ D .1C x/
1
x I lim

x ! 0
f .x/ D ? (1.35)

For the special null sequence fxng D f 1ng according to (1.18) we know the limit
of this function. It can be shown, however, that the same is true for arbitrary null
sequences:

lim
x ! 0

.1C x/
1
x D e : (1.36)
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In case of a one-to-one mapping

x
f ! y (1.37)

one can define the so-called

‘inverse function’ f �1

belonging to f which comes out by solving y D f .x/ with respect to x:

f �1.f .x// D x : (1.38)

Example

y D f .x/ D axC b a; b 2 R

Õ x D f �1.y/ D 1

a
y � b

a
:

Later we will encounter some further examples. Note that in general

f �1.x/ 6� 1

f .x/
:

It is important to stress once more the uniqueness of f �1, because only then f �1
can be defined as ‘function’. In this respect the ‘inverse’ of y D x2 is not unique:
x D ˙py. However, if the domain of definition for f is restricted, e.g., to non-
negative x, then the inverse does exist.

1.1.5 Continuity

We are now coming to the very important concept

continuity

y D f .x/ is called continuous at x0 from the domain of definition of f if for all " > 0
a ı > 0 exists so that for each x with

jx � x0j < ı

holds:

jf .x/� f .x0/j < " :
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Alternative formulation:
y D f .x/ is continuous at x0 from the domain of definition of f if for each

sequence fxng ! x0 follows:

lim
x ! x0

f .x/ D f .x0/ D f0 :

The limiting value f0 is therefore just the function value f .x0/. We elucidate the term
of continuity by two examples:

f .x/ D
�

x W x � 1
1 W x < 1

: (1.39)

The function (1.39), represented in Fig. 1.1, is obviously continuous, in contrary
to the function from Fig. 1.2:

f .x/ D
�

x � 1 W x � 1
1 W x < 1

: (1.40)

which is apparently discontinuous at x D 1:

lim
x ! 1�

f .x/ D C1 ¤ lim
x ! 1C

f .x/ D 0 :

Fig. 1.1 Example of a
continuous function

x

f

1

1

Fig. 1.2 Example of a
discontinuous function

x

f

1

1
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1.1.6 Trigonometric Functions

It can be assumed that the trigonometric functions are well-known from school-
mathematics. Therefore, only the most important relations shall be compiled in this
subsection.

• Radian measure
Figure 1.3 illustrates that the angle ' can be expressed not only by angular

degrees ı, but equally uniquely also via the arc of the circle s:

s D s.'/ W s.360ı/ D 2�r I s.180ı/ D �r I s.90ı/ D �

2
r I : : :

One introduces the dimensionless quantity

' D s

r
‘radian’ (1.41)

'.ı/ D 360.180; 90; 45; 1/�! 2�
�
�;
�

2
;
�

4
;
�

180

�
rad : (1.42)

• Trigonometric functions
In the right-angled triangle in Fig. 1.4 a and b, adjacent and opposite to angle

˛, respectively, are called the leg (side, cathetus) and c the hypothenuse. With
these terms one defines:

sin ˛ D b

c
(1.43)

cos˛ D a

c
(1.44)

tan˛ D sin ˛

cos˛
D b

a
(1.45)

cot˛ D cos˛

sin ˛
D 1

tan˛
D a

b
: (1.46)

Fig. 1.3 To the definition of
radian measure
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Fig. 1.4 To the definition of trigonometric functions

Fig. 1.5 Graphical representation of the sine function

According to Pythagoras’ theorem it holds:

a2 C b2 D c2 Õ a2

c2
C b2

c2
D 1 :

That leads to the important and frequently used formula:

sin2 ˛ C cos2 ˛ D 1 : (1.47)

• Sine function
The sine function can be graphically illustrated as in Fig. 1.5. Thereby one

should notice that the angle ˛ has to be counted in the mathematically positive
sense, i.e. counterclockwise. The sine is periodic with the period 2� . It is an odd
function of the angle ˛:

sin.�˛/ D � sin.˛/ : (1.48)

As an insertion, let us investigate a special limiting case in connection with the
sine:

f .x/ D sin x

x
I lim

x ! 0
f .x/ D ? (1.49)

At first glance the limit appears to be undefined (00=00). We try a graphic solution
by use of Fig. 1.6. x shall be a piece (from B to C) of a circle with radius R D 1

around the center O (radian measure). Then it holds for the segment fixed by the
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Fig. 1.6 For the calculation
of limx ! 0 sin x=x

points O, B and C:

F.OBC/ D �R2 � x

2�R
D x R

2
D x

2
:

Furthermore, one reads from the sketch:

OB D OC D 1 I OA D cos x I BA D sin x :

In addition the intercept theorem yields:

DC

BA
D OC

OA
Õ DC D sin x � 1

cos x
D tan x :

Obviously, the following estimation for the areas holds:

F.OBA/ < F.OBC/ < F.ODC/ :

That means:

1

2
cos x sin x <

x

2
<
1

2
tan x

Õ cos x <
x

sin x
<

1

cos x
.sin x > 0/

Õ 1

cos x
>

sin x

x
> cos x :

Eventually we can exploit that for the limiting process x! 0 it follows cos x! 1

and 1
cos x ! 1 leading therewith to:

lim
x ! 0

sin x

x
D 1 : (1.50)
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Fig. 1.7 Graphical representation of the cosine function

In (1.94) we shall derive a series expansion for the sine:

sin ˛ D ˛ � 1

3Š
˛3 C 1

5Š
˛5 C : : : D

1X
n D 0

.�1/n ˛2nC1

.2nC 1/Š : (1.51)

Here we used the term

nŠ D 1 � 2 � 3 � : : : � n I 0Š D 1Š D 1 .n-factorial/ : (1.52)

In particular, the series expansion makes clear that for small angles ˛ (radian
measure!) it is approximately

sin˛ � ˛ : (1.53)

This once more confirms the limit (1.50).
If the angle ˛ is restricted to the interval Œ��=2;C�=2�, then the sine function

has a unique inverse which is denoted as ‘arc sine’:

˛ D sin�1.y/ D arcsin.y/ : (1.54)

This function maps the interval Œ�1;C1� for y onto the interval Œ��=2;C�=2�
for ˛. This inverse function delivers the value of the angle ˛ in radian measure,
whose sine-value is just y.

• Cosine-function
While, according to Fig. 1.5, the sine is fixed by the side opposite to the angle in
the right-angled triangle the cosine-function is determined in a analogous manner
by the adjacent side (Fig. 1.7). One recognizes from the right-angled triangles in
the Figs. 1.5 and 1.7 that the cosine is nothing else but the �=2-shifted sine:

cos.˛/ D sin
�
˛ C �

2

�
: (1.55)
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If the angle ˛ is restricted to the interval 0 � ˛ � � a unique inverse function
does exist which is called the ‘arc cosine’:

˛ D cos�1.y/ D arccos.y/ : (1.56)

The cosine is an even function of ˛:

cos.�˛/ D cos.˛/ : (1.57)

As Exercise 1.1.12 we derive the series expansion of the cosine:

cos.˛/ D 1 � ˛
2

2Š
C ˛4

4Š
� ˛

6

6Š
C : : : D

1X
n D 0

.�1/n ˛
2n

.2n/Š
: (1.58)

From this expansion we conclude that for small angles ˛ (radian measure!)
approximately holds:

cos˛ � 1 (1.59)

Extremely useful are the ‘addition theorems’ for trigonometric functions,
the relatively simple proofs of which are provided in a subsequent section
(Exercise 2.3.9) with the aid of Euler’s formula for complex numbers:

sin.˛ ˙ ˇ/ D sin˛ cosˇ ˙ sinˇ cos˛ (1.60)

cos.˛ ˙ ˇ/ D cos˛ cosˇ 	 sin˛ sinˇ (1.61)

1.1.7 Exponential Function and Logarithm

• Exponential function
By this one understands the following function:

y D ax : (1.62)

a is called the ‘basis’ and x the ‘exponent’. Here a may be an arbitrary real
number. Very often one uses Euler’s number e (1.18) writing:

y D y0 e˛x � y0 exp.˛x/ : (1.63)

This function is of great importance in theoretical physics and appears often in
a variety of contexts (rate of growth, increase of population, law of radioactive
decay, capacitor charge and discharge, . . . ) (Fig. 1.8).
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Fig. 1.8 Schematic behavior
of the exponential function

In Sect. 1.1.10 we will be able to prove, by using the Taylor expansion, the
following important series expansion of the exponential function:

ex D
1X

n D 0

xn

nŠ
: (1.64)

• Logarithm
It is just the inverse function of y D ax being defined only for y > 0:

Logarithm to the base a

x D loga y : (1.65)

Thus, if a is raised to the power of loga y one gets y. Rather often one uses
a D 10 and calls it then ‘common (decimal) logarithm’:

log10 100 D 2 I log10 1000 D 3 I : : :

However, in physics we use most frequently the ‘natural logarithm’ with base
a D e denoted by the symbol loge � ln. In this case the explicit indication of the
base is left out:

ln.ex/ D x ” eln x D x : (1.66)

With y D ex and y0 D ex0

as well as a; c 2 R we can derive some important rules
for the logarithm:

ln
�
y � y0� D ln

�
ex � ex0

�
D ln

�
ex C x0

�
D xC x0

D ln yC ln y0 (1.67)

ln.c � y/ D ln.c � ex/ D ln
�
eln c � ex

� D ln
�
eln c C x

� D ln cC x

D ln cC ln y (1.68)
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ln.ya/ D ln ..ex/a/ D ln .eax/ D a x

D a ln y : (1.69)

One still recognizes the special cases:

ln.1/ D ln.e0/ D 0 I ln x < 0 if 0 < x < 1 : (1.70)

Finally, let us still work out the proof of (1.17) which we had to postpone because
it exploits properties of the logarithm. Equation (1.17) is concerned with the
following statement about the limit of the sequence

fang D fqng �! 0 ; if jqj < 1 :

We assume

jan � 0j < " < 1 :

That means (Fig. 1.9):

jqnj D jqjn < " < 1 , ln jqjn < ln " < 0

, n ln jqj„ƒ‚…
<0

< ln " < 0 ) n >
ln "

ln jqj > 0 :

If n" is the smallest natural number (integer) with

n" � ln "

ln jqj ;

then the starting inequality is fulfilled for all n � n" and 0 is indeed the limit of
the sequence for all jqj < 1.

Fig. 1.9 Schematic behavior
of the natural logarithm
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In addition one sees:

jqj > 1 ) n <
ln "

ln jqj < 0 ) sequence divergent

q D 1 ) lim
n ! 1 an D 1 ) sequence convergent

q D �1 ) �1;C1;�1;C1; � � � ) sequence divergent (but bounded) :

1.1.8 Differential Quotient

The ‘slope (gradient)’ of a straight line is the quotient of ‘height difference’�y and
‘base line’ �x (see Fig. 1.10). For the gradient angle ˛ we obviously have:

tan˛ D �y

�x
: (1.71)

Analogously one defines the slope (gradient) of an arbitrary function f .x/ at a
point P (see Fig. 1.11). The secant PQ has the increase

�y

�x
D tan˛0 :

One denotes

�y

�x
D f .xC�x/� f .x/

�x
(1.72)

as ‘difference quotient’. If we now shift the point Q along the curve towards the
point P then the increase of the secant becomes the increase of the tangent on the

Fig. 1.10 Slope of a straight
line
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Fig. 1.11 To the definition of
the derivative of a function
y D f .x/

curve f .x/ at P (broken line in Fig. 1.11),

tan˛ D lim
˛0!˛

tan˛0 D lim
�x ! 0

�y

�x

and one arrives at the ‘differential quotient’

lim
�x ! 0

�y

�x
� dy

dx
: (1.73)

which is called the ‘first derivative of the function f .x/ with respect to x at the
point x’:

dy

dx
� d

dx
f .x/ � f 0.x/ : (1.74)

Example

f .x/ D x2

Difference quotient:

�y

�x
D .xC�x/2 � x2

�x
D 2x�xC .�x/2

�x
D 2xC�x :

Thus the first derivative is:

f 0.x/ D 2x :

All the differential quotients do not exhibit a unique limit everywhere! The curve
in Fig. 1.12 is continuous at P, but has there different slopes if we come, respectively,
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Fig. 1.12 Example of a
function y D f .x/ being not
differentiable in the point P

from the left and the right hand side. One says that f .x/ is ‘not differentiable’ at
the point P.

Definition

• y D f .x/ is differentiable at x0 if and only if f .x0/ is defined and a unique
limiting value of the difference quotient exists:

f 0.x0/ D lim
�x ! 0

f .x0 C�x/� f .x0/

�x

• The function y D f .x/ is differentiable in the interval Œa; b� if it is differentiable
for all x 2 Œa; b�!

From a graphic view, one denotes f 0.x/ as the ‘slope’ of the curve f .x/ in x.
If we look at the change of the value of the function between the two points P

and Q (Fig. 1.11),

�y D f .xC�x/ � f .x/ D f .xC�x/� f .x/

�x
�x ;

then we realize that for �x ! 0 the prefactor becomes the tangent in x. That leads
to the

‘differential’ of the function y D f .x/

dy D f 0.x/ dx : (1.75)

In general it holds dy ¤ �y.

Examples

1.

y D f .x/ D c � xn I n 2 N I c 2 R : (1.76)

This function is differentiable for all x yielding:

f 0.x/ D n c � xn�1 (1.77)
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That can be seen as follows:

.xC�x/n D
�

n
0

	
xn C

�
n
1

	
xn�1�xC : : :C

�
n
n

	
�xn

�
n
r

	
D nŠ

rŠ.n � r/Š

Õ �y

�x
D c

.xC�x/n � xn

�x
.n � 2/

D c

�x

��
n
1

	
xn�1�xC

�
n
2

	
xn�2�x2 C : : :

: : :C
�

n
n

	
�xn

	

D c

�
n xn�1 C

�
n
2

	
xn�2�xC : : :C�xn�1

	

Õ lim
�x ! 0

�y

�x
D c n xn�1 :

For n D 0 (or n D 1) the difference quotient is already identical to zero (or c),
i.e. independent of �x, so that the assertion is immediately fulfilled.

2.

y D f .x/ D c I c 2 R H) f 0.x/ � 0 (1.78)

because:

�y

�x
D c � c

�x
D 0 :

This is of course simply the n D 0-special case of the first example.
3.

y D f .x/ D ex H) f 0.x/ D ex : (1.79)

The exponential function is differentiable for all x as can be seen as follows:

�y

�x
D exC�x � ex

�x
D ex e�x � 1

�x

D ex 1C�xC 1
2
�x2 C : : : � 1
�x
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D ex

�
1C 1

2
�xC 1

6
�x2 C : : :

	

Õ lim
�x ! 0

�y

�x
D ex :

Here we have used the anticipated series expansion (1.64) of the exponential
function, which will be explicitly derived in (1.95).

4.

y D f .x/ D sin x H) f 0.x/ D cos x : (1.80)

sin x is differentiable for all real x, because:

�y

�x
D sin.xC�x/� sin x

�x

D sin x cos�xC cos x sin�x � sin x

�x

D sin x.cos�x � 1/
�x

C cos x
sin�x

�x
:

In the second step we have applied the addition theorem (1.60). If we furthermore
use the relation proved as Exercise 1.1.5,

1 � cos�x D 2 sin2
�x

2
;

then it remains to calculate:

f 0.x/ D lim
�x ! 0

 
� sin x sin

�x

2

sin �x
2

�x
2

C cos x
sin�x

�x

!
D cos x :

At the end we exploited (1.50) for the terms in the parenthesis.
5.

y D f .x/ D cos x H) f 0.x/ D � sin x : (1.81)

The cosine, too, is differentiable for all real x. The calculation of the first
derivative is performed in a completely analogous manner as that for the sine
in the preceding example and will be explicitly done as Exercise 1.1.6.

The derivative of a function f .x/ is in general again a function of x and can
possibly also be further differentiated. That leads to the concept of

‘higher’ derivatives
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In case the respective limits exists, one writes:

y D f .x/ D f .0/.x/

y0 D f 0.x/ D d

dx
f .x/

y00 D f 00.x/ D d2

dx2
f .x/

: : : : : :

y.nC1/ D f .nC1/.x/ D dnC1

dxnC1 f .x/ D d

dx

�
f .n/.x/

� � �y.n/�0

Examples

f .x/ D x3 Õ f 0.x/ D 3x2 Õ f 00.x/ D 6x

Õ f .3/.x/ D 6 Õ f .4/ D 0 Õ f .n/.x/ � 0 8 n � 4

Functions which are differentiable to arbitrary order are called ‘smooth’.

1.1.9 Rules of Differentiation

We list some of the central rules for differentiating functions of one independent
variable:

1. constant factor:

y D c � f .x/ H) y0 D c � f 0.x/ ; (1.82)

proof:

y0 D lim
�x ! 0

c � f .xC�x/� c � f .x/
�x

D c � lim
�x ! 0

f .xC�x/� f .x/

�x
D c � f 0.x/ :

2. sum:

y D f .x/C g.x/ H) y0 D f 0.x/C g0.x/ : (1.83)

This can directly be read off from the definition.
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3. product:

y D f .x/ � g.x/ H) y0 D f 0.x/ � g.x/C f .x/ � g0.x/ ; (1.84)

proof:

y0 D lim
�x ! 0

1

�x
.f .xC�x/ � g.xC�x/� f .x/ � g.x//

D lim
�x ! 0

1

�x

�
.f .xC�x/ � f .x// � g.xC�x/

C g.xC�x/ � f .x/ � f .x/ � g.x/
�

D lim
�x ! 0

f .xC�x/ � f .x/

�x
� g.xC�x/

C lim
�x ! 0

f .x/ � g.xC�x/� g.x/

�x

D f 0.x/ � g.x/C f .x/ � g0.x/ :

In the last step we have exploited the fact that the functions g and f of course
have to be continuous since otherwise the derivatives would not exist.

Example Suppose n 2 N, then:

xn � 1
xn
D 1 Õ .xn/0 � 1

xn
C xn �

�
1

xn

	0
D 0

Õ nxn�1 � 1
xn
D �xn � .x�n/0 :

As an extension to (1.77) we now have a code for how to differentiate a power
of x with negative exponent:

.x�n/0 D �n x�.nC1/ : (1.85)

4. quotient

y D f .x/

g.x/
I g.x/ ¤ 0 H) y0 D f 0.x/ � g.x/� f .x/ � g0.x/

g2.x/
; (1.86)

proof:
First we investigate the derivative of

h.x/ D 1

g.x/
;
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where we can again presume the continuity of g.x/:

h0.x/ D lim
�x ! 0

1

�x

�
1

g.xC�x/
� 1

g.x/

	

D � lim
�x ! 0

g.xC�x/� g.x/

�x
� 1

g.xC�x/ � g.x/

D �g0.x/ � 1

g2.x/
:

With the product rule (1.84) the assertion is then proven.
5. chain rule:

y D f .g.x// H) y0 D df

dg
� g0.x/ ; (1.87)

Proof Let u D g.x/ be differentiable in x and y D f .u/ differentiable in u D g.x/,
then it can be written with g.xC�x/ D uC�u (continuity!):

f .g.xC�x//� f .g.x//

�x
D f .uC�u/� f .u/

�u
� g.xC�x/� g.x/

�x
:

Utilizing once more the continuity of u D g.x/ .�x! 0 Õ �u! 0/ we get:

lim
�x ! 0

f .g.xC�x//� f .g.x//

�x
D d

du
f .u/ � d

dx
g.x/ :

Formally we thus obtain a result which appears to be taken from ‘normal
fractional arithmetic’:

dy

dx
D dy

du
� du

dx
:

Example We demonstrate the chain rule in connection with an important appli-
cation. For this purpose we calculate the first derivative of

y D f .x/ D ln x ;

which exists for all positive x. We use the chain rule together with (1.79) to
differentiate the expression x D eln x with respect to x:

1 D eln x d

dx
ln x :
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Obviously this yields:

d

dx
ln x D 1

eln x
D 1

x
; (1.88)

Now we can generalize once more the rules of differentiation (1.77) and (1.85),
respectively. Suppose that ˛ is now an arbitrary real number. Then we have:

x˛ D eln x˛ D e˛ ln x

Õ dx˛

dx
D deu

du

ˇ̌
ˇ̌
u D˛ ln x

� d.˛ ln x/

dx
D e˛ ln x � ˛1

x
D x˛˛

1

x
:

That yields the generalization of (1.77) and (1.85), respectively,

dx˛

dx
D ˛ x˛�1 ; (1.89)

which is thus proven now for arbitrary real numbers ˛.

6. Finally, we will consider the inverse function (1.38):

f �1 .f .x// D x :

With the chain rule we have:

d

df

�
f �1� .f / � f 0.x/ D 1 :

That means:

d

df

�
f �1� .f / D 1

f 0.x/
: (1.90)

With

y D f .x/ Õ x D f �1.y/ Õ d

dy

�
f �1.y/

� D dx

dy

we get an expression which again seems to stem from elementary fractional
arithmetic:

dx

dy
D 1

dy
dx

: (1.91)

At the end, to demonstrate the above-derived rules, let us inspect the following
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Examples

• to 1.:

f .x/ D a sin x I a 2 R H) f 0.x/ D a cos x

• to 2.:

f .x/ D x5 � 3 ln x H) f 0.x/ D 5x4 � 3
x

• to 3.:

f .x/ D x3 cos x H) f 0.x/ D 3x2 cos x � x3 sin x

• to 4.:

f .x/ D x2

sin x
H) f 0.x/ D 2x sin x � x2 cos x

sin2 x

• to 5.:

f .x/ D 3 sin.x3/ H) f 0.x/ D 3 cos.x3/ � 3x2 D 9x2 cos.x3/

1.1.10 Taylor Expansion

Occasionally it is unavoidable for a physicist to digress from rigorous mathematical
exactness in order to come by adopting some ‘reasonable’ mathematical simplifica-
tions to concrete physical results. In this respect, the so-called ‘Taylor expansion
(series)’ of a mathematical function y D f .x/ represents a very important and
frequently used auxiliary means. We assume that this function possesses arbitrarily
many continuous derivatives at x D x0. Then the following power series expansion
is valid what is explicitly proved as Exercise 1.1.9:

f .x/ D f .x0/C f 0.x0/
1Š

.x � x0/C f 00.x0/
2Š

.x � x0/
2 C : : :

D
1X

n D 0

f .n/.x0/

nŠ
.x � x0/

n (1.92)

f .n/.x0/ D f .n/.x/
ˇ̌
x D x0

:

The assumption jx � x0j < 1 guarantees the convergence of the series. Then one
can assume that the terms of the series become smaller and smaller with increasing
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index n, so that it should be allowed, in the sense of a controlled approximation, to
cut the series after a finite number of summands. The error can strictly be estimated
as will be demonstrated in Sect. 1.2 of volume 3.

However, the Taylor expansion can also be used for the derivation of exact series
as is shown by the following examples:

1.

f .x/ D 1

1C x
I x0 D 0 I jxj < 1 :

We use

f .0/ D 1 I f 0.0/ D �1.1C 0/�2 D �1 I f 00.0/ D 2.1C 0/�3 D 2 : : :
Õ f .n/.0/ D .�1/n nŠ I x � x0 D x :

That means

1

1C x
D

1X
n D 0

.�x/n : (1.93)

Compare this result with (1.30)!
2.

f .x/ D sin x I x0 D 0 :

Now we apply the following terms in the Taylor series (1.92):

f .0/ D 0 I f 0.0/ D cos.0/ D 1 I f 00.0/ D � sin.0/ D 0 I
f 000.0/ D � cos.0/ D �1 I : : :

Õ f .2n/.0/ D 0 I f .2nC1/.0/ D .�1/n :

Thus we find in this case:

sin x D x � 1

3Š
x3 C 1

5Š
x5 C : : : D

1X
n D 0

.�1/n x2nC1

.2nC 1/Š : (1.94)

This expansion has already been anticipated in (1.51).
3.

f .x/ D ex I x0 D 0 :
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With (1.79) it holds:

e0 D 1 I d

dx
ex D ex Õ dn

dxn
ex D ex Õ dn

dxn
ex

ˇ̌
ˇ̌
x D 0

D 1 :

Therewith we get:

ex D
1X

n D 0

xn

nŠ
: (1.95)

We have already used this result in (1.64).

1.1.11 Limiting Values of Indeterminate Expressions

We now consider expressions of limiting values of type 0=0 and ˙1=1, respec-
tively, which, of course, are not defined as well as in the following special
examples:

•

ln.1C x/

x

x!0�! 0

0

•

sin x

x

x!0�! 0

0

•

ln x
1
x

x!0�! �1
1

For expressions of this kind we have the very useful l’Hospital’s rule, which,
however, has to be presented here without proof. If the function

f .x/ D '.x/

 .x/

gives for x! a an indetermined expression of the above kind then one can use

lim
x ! a

f .x/ D lim
x ! a

' 0.x/
 0.x/

: (1.96)
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If the right-hand side persists to be not defined one replaces the first by the
second derivatives. If even then the quotient on the right-hand side continues to be
undetermined one takes the third derivatives, and so on. Hence, the above examples
are calculated as follows:

lim
x ! 0

ln.1C x/

x
D lim

x ! 0

1
1Cx

1
D 1 (1.97)

lim
x ! 0

sin x

x
D lim

x ! 0

cos x

1
D 1 (1.98)

lim
x ! 0

ln x
1
x

D lim
x ! 0

1
x

� 1
x2

D lim
x ! 0

.�x/ D 0 (1.99)

1.1.12 Extreme Values

For an actual sketching of a curve it is useful and necessary to know the (local,
global) minima and maxima of the corresponding function f .x/. We establish:

f .x/ has a local maximum (minimum) at x0,

if there exists a ı > 0 so that it holds for all x 2 Uı.x0/:

f .x/ � f .x0/ H) maximum

f .x/ � f .x0/ H) minimum

Here we understand by Uı.x0/ the ı-neighbourhood of x0:

Uı.x0/ D fx I jx � x0j < ıg : (1.100)

Proposition

If f .x/ is differentiable at x0

having there a (local) extremum, then it must hold:

f 0.x0/ D 0

We demonstrate the proof for the case of a minimum (Fig. 1.13). In this case it holds
if only jx � x0j is sufficiently small:

f .x/ � f .x0/

x � x0
�!

� � 0 for x > x0
� 0 for x < x0
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Fig. 1.13 Example of a
function y D f .x/ with,
respectively, a (local)
maximum and minimum at x0

Fig. 1.14 Inflection point of
a function f .x/ at x D x0

Then it must necessarily be concluded:

lim
x ! x0

f .x/ � f .x0/

x � x0
D f 0.x0/ D 0 :

However, one has to bear in mind that f 0.x0/ D 0 turns out to be only a necessary but
not a sufficient condition for an extremum. It could also be an ‘inflection point’!
For the example in Fig. 1.14 the slope f 0.x/ is monotonically decreasing if x < x0
and monotonically increasing if x > x0. That means:

f 00.x/
� � 0 for x < x0
� 0 for x > x0

and therewith:

f 00.x0/ D 0 (inflection point) (1.101)
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Fig. 1.15 Function f .x/ with
a maximum at x D x0 and its
derivative f 0.x/

Fig. 1.16 Function f .x/ with
a minimum at x D x0 and its
derivative f 0.x/

A sufficient criterion for an extremum at the point x D x0 can easily be read off
from Figs. 1.15 and 1.16:

f 0.x0/ D 0 and f 00.x0/
�
> 0 W minimum
< 0 W maximum

: (1.102)

Regarding (1.101) it is to be noted that it is also only a necessary condition for an
inflection point, while a sufficient condition would be:

f 0.x0/ D f 00.x0/ D 0 and f 000.x0/ ¤ 0 : (1.103)

The general case, however, must be accepted here again without proof:
Let us assume a sufficiently often differentiable function f .x/ with the following

properties at x D x0:

f 0.x0/ D f 00.x0/ D : : : D f .n/.x0/ D 0 with f .nC1/.x0/ ¤ 0 .n � 3/ ; (1.104)
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Fig. 1.17 Schematic behavior of the functions f1.x/ D x3 and f2.x/ D x4 in the vicinity of x D 0

then f .x/ exhibits at x D x0

• a maximum if n is an odd integer and f .nC1/.x0/ < 0,
• a minimum if n is an odd integer and f .nC1/.x0/ > 0,
• an inflection point (with horizontal tangent) if n is an even integer.

The above discussed special cases are obviously contained herein.
Let us consider two examples to visualize (1.104) (see Fig. 1.17)

1.

f1.x/ D x3 at x D 0

One immediately finds:

f 0
1.0/ D f 00

1 .0/ D 0 I f 000
1 .0/ D 6 > 0 :

Thus the function has an inflection point at x D 0.
2.

f2.x/ D x4 at x D 0

In this case holds:

f 0
2.0/ D f 00

2 .0/ D f 000
2 .0/ D 0 I f .4/2 .0/ D 24 > 0 :

This function exhibits a minimum at x D 0.

1.1.13 Exercises

Exercise 1.1.1 Determine the limiting values of the sequences fang for n ! 1
(n 2 N)
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1.

an D
p

n

n

2.

an D n3 C 1
2n3 C n2 C n

3.

an D n2 � 1
.nC 1/2 C 5

Exercise 1.1.2

1. Calculate the following sums:

S3 D
3X

m D 1

3

�
1

2

	m

I S D
1X

m D 1

3

�
1

2

	m

:

2. Is 1:111 : : : a rational number? If yes, which one?

Exercise 1.1.3 Show that the harmonic series (1.27) does not converge in spite of
limm ! 1 1

m D 0!

Exercise 1.1.4 Try to simplify the following expressions for trigonometric func-
tions:

•

cos2 ' � tan2 ' C cos2 '

•

1 � cos2 '

sin ' � cos'

•

1 � 1

cos2 '

•

1

1 � sin '
C 1

1C sin'
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•

sin.'1 C '2/C sin.'1 � '2/
cos.'1 C '2/C cos.'1 � '2/

•

cos2 '

sin 2'

Exercise 1.1.5 Prove the formula

1 � cos' D 2 sin2
'

2
:

which has been used for the derivation of (1.80).

Exercise 1.1.6 Verify the following relations for the first derivatives of the trigono-
metric functions:

1.

d

dx
cos x D � sin x

2.

d

dx
tan x D 1

cos2 x

3.

d

dx
cot x D � 1

sin2 x
:

Exercise 1.1.7 Find the first derivatives of the following functions:

1.

f1.x/ D 3x5

2.

f2.x/ D 7x3 � 4x
3
2

3.

f3.x/ D x3 � 2x

5x2
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4.

f4.x/ D 3
p

x

5.

f5.x/ D
p
1C x2

6.

f6.x/ D 3 cos.6x/

7.

f7.x/ D sin.x2/

8.

f8.x/ D exp.2x3 � 4/

9.

f9.x/ D ln.2xC 1/ :

Exercise 1.1.8 Use the rule of differentiation for the inverse function (1.90) in
order to find the derivatives of the arc functions (inverses of the trigonometric
functions):

1.

d

dx
arcsin x D 1p

1 � x2

2.

d

dx
arccos x D � 1p

1 � x2

3.

d

dx
arctan x D 1

1C x2

4.

d

dx
arccotx D � 1

1C x2
:
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Exercise 1.1.9 Assume that the function f .x/ is arbitrarily often differentiable. In
addition, an expansion into a power series shall exist:

f .x/ D
1X

n D 0

an xn :

All x for which the series converges constitute the so-called region of convergence
of the function f .x/.

1. Determine the coefficients an from the behavior of the function f and its
derivatives at x D 0.

2. Verify Eq. (1.92):

f .x/ D
1X

n D 0

f .n/.x0/

nŠ
.x � x0/

n :

Exercise 1.1.10 Why can the function

f .x/ D .1C x/n

for x
 1 be replaced to a good approximation by

f .x/ � 1C n xC n.n � 1/
2

x2 ‹

Exercise 1.1.11 Verify the series expansion of the logarithm (jxj < 1):

ln.1C x/ D
1X

nD1

.�1/n�1

n
xn D x � 1

2
x2 C 1

3
x3 � 1

4
x4 C : : :

Exercise 1.1.12 Verify the series expansion (1.58) of the cosine!

Exercise 1.1.13 Given the function

f .x/ D x � sin x

ex C e�x � 2 :

Find the value f .0/, on the one hand by use of the series expansions for the
exponential function and the sine, on the other hand by applying l’Hospital’s
rule (1.96).

Exercise 1.1.14 Find the zeros and the extreme values of the following functions:

1.

f .x/ D 2x4 � 8x2
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2.

g.x/ D sin

�
1

2
x

	
:

1.2 Elements of Integral Calculus

1.2.1 Notions

The technique of ‘differentiation’, which we discussed in the previous section,
follows the scope of work:

given: y D f .x/

finding: f 0.x/ D df
dx W ‘derivation’ ;

The reverse program, namely

given: f 0.x/ D df
dx

finding: y D f .x/

leads to the technique of ‘integration’. Consider for example

f 0.x/ D c D const ;

then we remember according to (1.77) that

y D f .x/ D c � x

fulfills the condition f 0.x/ D c.

Definition F.x/ is the ‘antiderivative (primitive function)’ of f .x/, if it holds:

F0.x/ D f .x/ 8x : (1.105)

In this connection the above example means:

f .x/ � c Õ F.x/ D c � xC d : (1.106)
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Because of the constant d the result comes out as a full family of curves. Fixing d
needs the introduction of ‘boundary conditions’. We accept that:

‘Integration’ : Searching for the antiderivative (primitive function)

To generate a graphic image, the integral can be interpreted as the area under
the curve y D f .x/. If the curve y D f .x/ is given then we ask ourselves how
we can determine the area F in Fig. 1.18 under the curve between the limits x D
a and x D b. This can easily be done for the special case that f .x/ represents a
straight line. However, how can we calculate the area under an arbitrary (continuous)
function f .x/?

In a first step, we approach the calculation of the area by decomposing the
interval Œa; b� in n equal sub-intervals�xn,

�xn D b � a

n
n 2 N=0 ; (1.107)

where xi is the center of the i-th partial interval:

xi D aC
�

i � 1
2

	
�xn I i D 1; 2 : : : ; n : (1.108)

Then f .xi/�xn is the area of the i-th pillar in Fig. 1.19. Hence it holds approximately
for the area F:

F �
nX

i D 1

f .xi/�xn : (1.109)

Fig. 1.18 Interpretation of
the integral as area under the
curve y D f .x/

Fig. 1.19 Riemann sum for
calculating the integral
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For n ! 1 the sub-intervals become arbitrarily small (�xn ! 0), and it appears
obvious that the mistake which results from approximating F by the sum of the
‘pillar areas’ also becomes arbitrarily small. The limiting value for n !1 comes
out as a real number and is called:

‘definite (Riemann) integral’

F D lim
n ! 1

nX
i D 1

f .xi/�xn �
Z b

a
f .x/ dx : (1.110)

One identifies a as the lower and b as the upper limit of integration. f .x/ is the
integrand and x the integration variable. The equivalence of the definition (1.105) of
F.x/ as antiderivative of f .x/ and the above definition as definite integral, however,
has still to be demonstrated.

1.2.2 First Rules of Integration

Some important rules follow directly from the definition of the integral:

• Identical bounds of integration:
Z a

a
f .x/ dx D 0 (1.111)

• The ‘area’ in the sense of an integral has a sign because of f .x/
>
< 0!

For the example in Fig. 1.20 one recognizes:

F1 D
Z x1

a
f .x/ dx > 0

F2 D
Z x2

x1

f .x/ dx < 0

F3 D
Z x3

x2

f .x/ dx > 0

Fig. 1.20 Illustration of the
sign fixing of the definite
integral
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• Constant factor c 2 R:

Z b

a
c � f .x/ dx D lim

n ! 1

nX
i D 1

c � f .xi/�xn D c � lim
n ! 1

nX
i D 1

f .xi/�xn :

Hence it holds:

Z b

a
c � f .x/ dx D c �

Z b

a
f .x/ dx : (1.112)

• Sum:
Assume

f .x/ � g.x/C h.x/ :

then it follows from the definition of the Riemann integral:

Z b

a
f .x/ dx D lim

n ! 1

nX
i D 1

.g.xi/C h.xi//�xn

D lim
n ! 1

nX
i D 1

g.xi/�xn C lim
n ! 1

nX
i D 1

h.xi/�xn :

That means:

Z b

a
f .x/ dx D

Z b

a
g.x/ dxC

Z b

a
h.x/ dx : (1.113)

The last two rules of integration (1.112) and (1.113) demonstrate the linearity of
the integral.

• Partitioning the interval of integration:

�xn D b � a

n
D �x.1/n C�x.2/n D

x0 � a

n
C b � x0

n

Therewith we can write:

Z b

a
f .x/ dx D lim

n ! 1

nX
i D 1

f
�

x.1/i

�
�x.1/n C lim

n ! 1

nX
i D 1

f
�

x.2/i

�
�x.2/n :
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Fig. 1.21 Partitioning the
interval of integration

x.1;2/i are defined as in (1.108) with corresponding �x.1;2/n
�
x.1/i D a C .i �

1
2
/ x0�a

n ; x.2/i D x0 C .i � 1
2
/ b�x0

n

�
(Fig. 1.21). Thus it holds:

Z b

a
f .x/ dx D

Z x0

a
f .x/ dxC

Z b

x0

f .x/ dx .a � x0 � b/ : (1.114)

• Interchanged bounds of integration:
Formally (1.111) and (1.114) imply:

0 D
Z a

a
f .x/ dx D

Z b

a
f .x/ dxC

Z a

b
f .x/ dx :

Consequently:

Z b

a
f .x/ dx D �

Z a

b
f .x/ dx : (1.115)

One should notice that on the right-hand side it must hold that dx < 0 because of
b > a!

1.2.3 Fundamental Theorem of Calculus

We consider the definite integral over a continuous function f .t/, but now with
variable upper limit:

F.x/ D
Z x

a
f .t/ dt ‘area function’ (1.116)
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The area under the curve f .t/ in this case is not constant but a function of x
(Fig. 1.22). If the upper bound of integration is shifted by �x the area will change
by:

�F D F.xC�x/� F.x/ D
Z xC�x

a
f .t/ dt �

Z x

a
f .t/ dt D

Z xC�x

x
f .t/ dt :

In the last step we have used the rule (1.114). Without explicit proof we accept the
important

‘mean value theorem of integral calculus’

This theorem implies:

9 Ox 2 Œx; xC�x� with �F D �x � f .Ox/ : (1.117)

Although not exactly proven the theorem appears rather plausible according to
Fig. 1.23. So we can further conclude:

F0.x/ D lim
�x ! 0

�F

�x
D lim

�x ! 0
f .Ox/ D f .x/ :

Thus after (1.105), the area function is the antiderivative of f .x/! Furthermore,
the equivalence of the definitions (1.105) and (1.110) for the antiderivative, which

Fig. 1.22 Definition of the
area function

Fig. 1.23 To the mean value
theorem (1.117)
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Fig. 1.24 To the influence of
the lower bound of integration
on fixing the antiderivative

remained unsettled in Sect. 1.2.1, is now settled.

‘fundamental theorem of calculus’

d

dx
F.x/ � d

dx

Z x

a
f .t/ dt D f .x/ : (1.118)

The successive performing of integration and differentiation obviously cancel each
other!

integrationŠ inversion of differentiation

The influence of the lower limit of integration in (1.118) still appears unsettled
(Fig. 1.24). To clarify this we therefore investigate:

QF.x/ D
Z x

a0

f .t/ dt D
Z a

a0

f .t/ dt
„ ƒ‚ …

DA; independent of x

C
Z x

a
f .t/ dt

„ ƒ‚ …
F.x/

:

Therewith it follows that both F.x/ and QF.x/ are antiderivatives of f .x/:

QF.x/ D F.x/C A Õ d

dx
QF.x/ D d

dx
F.x/ D f .x/ :

The lower limit of integration is therefore in a certain sense dummy, the antideriva-
tive is uniquely fixed except for an additive constant:

F.x/ ” QF.x/ D F.x/C A : (1.119)

Therefore one introduces the

‘indefinite integral’: F.x/ D
Z

f .x/ dx : (1.120)

defining therewith the set of all antiderivatives of f .x/!
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Fig. 1.25 To the definite
integral of the cosine

The ‘definite integral’, already known to us, can also be expressed by the
antiderivative:

F.x/C ˛ D
Z x

a
f .t/ dt Õ F.a/C ˛ D 0 Õ F.a/ D �˛ :

Therewith it follows that when we take x D b:

Z b

a
f .x/ dx D F.b/C ˛ D F.b/� F.a/ � F.x/

ˇ̌
ˇ
b

a
: (1.121)

At the extreme we have introduced the usual symbol for the definite integral.

Example

f .x/ D cos x Õ F.x/ D sin xC c .c 2 R/ : (1.122)

The antiderivative can easily be guessed with (1.80) (Fig. 1.25). Hence we obtain
the following definite integrals for the cosine:

•

Z C �
2

� �
2

cos x dx D sin x
ˇ̌C �

2

� �
2
D 1 � .�1/ D 2

•

Z C �
2

0

cos x dx D sin x
ˇ̌ �
2

0
D 1 � 0 D 1

•

Z 3�
2

�
2

cos x dx D sin x
ˇ̌ 3�
2
�
2
D .�1/� 1 D �2 (sign of the area!)

•

Z 2�

3�
2

cos x dx D sin x
ˇ̌2�
3�
2
D 0 � .�1/ D 1
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•
Z �

0

cos x dx D sin x
ˇ̌�
0
D 0 � 0 D 0 (sign of the area!)

1.2.4 The Technique of Integration

The goal is to find the antiderivative F.x/ of a given function f .x/ such that F0.x/ D
f .x/! Firstly one has to realize that there does not exist a generally valid algorithmic
procedure of integration. Instead of this one has to act heuristically.

1. ‘Guess’ and ‘Verify’

Let the function f .x/ be given, then the correct form of F.x/ can be ‘guessed’ and
subsequently be verified by differentiation: F0.x/ D f .x/Š An important help in this
respect are of course integral tables. We list here some examples:

•

f1.x/ D xn .n ¤ �1/ Õ F1.x/ D xnC1

nC 1 C c1

•

f2.x/ D x�2:3 C x Õ F2.x/ D x�1:3

�1:3 C
x2

2
C c2

•

f3.x/ D 1

x
.x > 0/ Õ F3.x/ D ln xC c3

•

f4.x/ D sin x Õ F4.x/ D � cos xC c4

•

f5.x/ D cos x Õ F5.x/ D sin xC c5

•

f6.x/ D ex Õ F6.x/ D ex C c6
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The last three relations can of course be proven also directly via corresponding series
expansions. We briefly demonstrate them:

Z
sin x dx D

1X
n D 0

.�1/n
Z

x2nC1

.2nC 1/Š dx D
1X

n D 0

.�1/n x2nC2

.2nC 2/Š C c

D
1X

n0D1
.�1/n0�1 x2n0

.2n0/Š
C c D �

1X
n0D0

.�1/n0
x2n0

.2n0/Š
C 1C c

D � cos xC c4
Z

cos x dx D
1X

n D 0

.�1/n
Z

x2n

.2n/Š
dx D

1X
n D 0

.�1/n x2nC1

.2nC 1/Š C c5

D sin xC c5
Z

ex dx D
1X

n D 0

Z
xn

nŠ
dx D

1X
n D 0

xnC1

.nC 1/Š C c

D
1X

n0D1

xn0

.n0/Š
C c D

1X
n0D0

xn0

.n0/Š
� 1C c

D ex C c6 :

2. Substitution of the Variable

One tries to modify the integration variable in such a way that the integral becomes
a well-known standard integral. That is done according to the following steps:

• Replace

x �! u D u.x/ Õ dx �! du D du

dx
dx Õ dx D

�
du

dx

	�1
.u/ du :

In case of a definite integral we have to notice that the limits of integration are
also usually changed with the substitution (xi �! ui D u.xi/).

• It is integrated now with respect to u. The integrand changes accordingly:

f .x/ �! Qf .u/ D f .x.u// :

• Antiderivative is now QF.u/:

QF.u/ D
Z u Qf .u0/

�
du0

dx

	�1
.u0/ du0 :
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• Back transformation:

QF.u/ �! QF.u.x// � F.x/ :

We demonstrate the procedure by two examples:

(a)

F.x/ D
Z

eax dx .a 2 R/ :

We substitute advantageously u D ax Õ du D adx I Qf .u/ D eu. Therewith
follows:

Z
eax dx D 1

a

Z
eu du D 1

a
eu C c D QF.u/ :

Hence we have found:
Z

eax dx D 1

a
eax C c : (1.123)

c is a real constant.
(b)

F.x/ D
Z
.3C 4x/5 dx :

In this case we substitute u D 3C 4x Õ du D 4dx I Qf .u/ D u5. That leads to:

Z
.3C 4x/5 dx D 1

4

Z
u5 du D u6

24
C c D QF.u/ :

So we are left with:
Z
.3C 4x/5 dx D 1

24
.3C 4x/6 C c : (1.124)

c is again an arbitrary real constant.

3. Integration by Parts

Starting point is the product rule of differentiation (1.84)

d

dx
.f1.x/ � f2.x// D df1.x/

dx
f2.x/C f1.x/

df2.x/

dx
:
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which also means

f1.x/
df2.x/

dx
D d

dx
.f1.x/ � f2.x//� df1.x/

dx
f2.x/

and therewith
Z

f1.x/
df2.x/

dx
dx D f1.x/ � f2.x/ �

Z
df1.x/

dx
f2.x/ dxC c : (1.125)

The method thus consists in splitting the integrand f .x/ D f1.x/f 0
2.x/ into f1.x/ and

f2.x/ in such a way that the resulting g.x/ D f 0
1.x/f2.x/ is easier to integrate than

f .x/. We demonstrate this again with two examples:

(a)

F1.x/ D
Z

x e˛x dx :

We take

f1.x/ D x and f 0
2.x/ D e˛x :

That means

f 0
1.x/ D 1 and f2.x/ D e˛x

˛
:

With this we find:

F1.x/ D 1

˛
x e˛x �

Z
1 � e˛x

˛
dxC c0 D 1

˛
x e˛x � 1

˛2
e˛x C c :

Consequently, the result is:

Z
x e˛x dx D 1

˛
e˛x

�
x � 1

˛

	
C c : (1.126)

(b)

F2.x/ D
Z

sin2 x dx :

We choose:

f1.x/ D sin x and f 0
2.x/ D sin x :
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Then it must hold:

f 0
1.x/ D cos x and f2.x/ D � cos x :

That can be evaluated as follows:
Z

sin2 x dx D � sin x cos xC cC
Z

cos2 x dx

D � sin x cos xC cC
Z
.1 � sin2 x/ dx

D � sin x cos xC OcC x �
Z

sin2 x dx :

Therewith the antiderivative is found:
Z

sin2 x dx D �1
2

sin x cos xC x

2
C c0 : (1.127)

1.2.5 Multiple Integrals

Multiple integrals as volume or surface integrals are reduced for their calculation to
a set of simple one-dimensional integrals of the kind we have inspected up to now
in the preceding sections (Fig. 1.26). Let us consider, as an popular example, of the
total mass of a sphere with

‘mass density’ �.r/ D �.x; y; z/ D dm

dV

ˇ̌
ˇ̌
r
D dm

dxdydz

ˇ̌
ˇ̌
r
:

The volume element dV D dx dy dz � d3r at r then contains the (infinitesimal)
mass dm D �.r/ dV . Thus the total mass is given by the triple integral:

M D
Z

V
d3r �.r/ D

Z Z

V

Z
dx dy dz �.x; y; z/ :

Fig. 1.26 To the calculation
of the mass of a sphere by a
triple integral
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Therefore we have to perform three integrations over integrals which are fixed by the
total volume. Here the limits of a particular integration may depend on the variables
of the other integrations. For this reason we will distinguish two cases:

1. Constant Bounds of Integration

This is the simpler case. All single integrations are performed one after another
according to the rules of the preceding subsections where while performing one the
other variables are fixed:

M D
Z

V
d3r �.r/ D

Z Z

V

Z
dx dy dz �.x; y; z/

D
Z c2

c1

dz
Z b2

b1

dy
Z a2

a1

dx�.x; y; z/

„ ƒ‚ …
N�.y;zI a1;a2/

D
Z c2

c1

dz
Z b2

b1

dy N�.y; zI a1; a2/

„ ƒ‚ …
NN�.zI a1;a2;b1;b2/

D
Z c2

c1

dz NN� .zI a1; a2; b1; b2/

D M .a1; a2; b1; b2; c1; c2/ :

The result is a real number. In the case of constant bounds of integration and a
continuous integrand the various integrations are allowed to be interchanged.

Let us calculate as an example the mass of a rectangular air column above the
earth’s surface assuming it to be flat (Figs. 1.27 and 1.28). As a consequence of

Fig. 1.27 To the calculation
of the mass of a rectangular
air column above earth’s
surface
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Fig. 1.28 Mass of a
rectangular air column of
height h above earth’s surface
as function of h

gravitation the air density decreases exponentially with increasing height:

� D �.z/ D �0 e�˛z :

M D
Z h

0

dz
Z b

0

dy
Z a

0

dx �0 e�˛z D �0 � a
Z h

0

dz
Z b

0

dy e�˛z

D �0 � ab
Z h

0

dz e�˛z D �0 � ab

�
� 1
˛

	
e�˛z

ˇ̌
ˇ
h

0

D �0 ab

˛

�
1 � e�˛h

�
:

2. Non-constant Bounds of Integration

For at least one of the variables the multiple integral must have fixed bounds of
integration and one of the variables must not appear in any of the other bounds
of integration. The latter is the first to be integrated. Subsequently, that variable is
integrated which after the first integration does not appear in any of the remaining
bounds, and so on:

M D
Z c2

c1

dz
Z b2.z/

b1.z/
dy
Z a2.y;z/

a1.y;z/
dx �.x; y; z/

„ ƒ‚ …
N�.y;z/„ ƒ‚ …

NN�.z/

: (1.128)

Let us practice the procedure by inspecting two special examples.

(a) surface integral
As sketched in Fig. 1.29 the two curves y1 D 2x2 and y2 D x3 enclose between
x D 0 and x D 2 an area the amount of which shall be calculated. That can be
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Fig. 1.29 Area S as example
for the calculation of a double
integral

Fig. 1.30 To the calculation
of the sphere volume

managed by ‘adding stripe by stripe’ the area elements of infinitesimal width
dx:

S D
Z 2

0

dx
Z 2x2

x3
dy D

Z 2

0

dx
�
2x2 � x3

� D
�
2

3
x3 � 1

4
x4
	ˇ̌
ˇ̌
2

0

D 4

3
:

We can verify the result by subtracting the two areas S1 and S2 under the two
curves in between 0 and 2:

S1 D
Z 2

0

dx 2x2 D 2

3
x3
ˇ̌
ˇ̌
2

0

D 16

3
I S2 D

Z 2

0

dx x3 D x4

4

ˇ̌
ˇ̌
2

0

D 4 :

It is indeed S D S1 � S2 D 4
3

(b) volume integral
We calculate the volume of a sphere of radius R by applying Cartesian
coordinates (Fig. 1.30). On the surface we have:

R2 D x2 C y2 C z2 :

That defines the limits of integration for the calculation of the volume V of the
sphere:

V D
Z CR

�R
dz
Z Cp

R2�z2

�p
R2�z2

dy
Z C
p

R2�y2�z2

�
p

R2�y2�z2
dx :
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This can be evaluated:

V D
Z CR

�R
dz
Z Cp

R2�z2

�p
R2�z2

dy 2
p

R2 � y2 � z2

D
Z CR

�R
dz 2�

"
1

2

�
R2 � z2

�
arcsin

�
yp

R2 � z2

	

C y

2

p
R2 � z2 � y2

#Cp
R2�z2

�p
R2�z2

D 2

Z CR

�R
dz
1

2

�
R2 � z2

� � �

D �

�
R2z � z3

3

	ˇ̌
ˇ̌
CR

�R

D �R3
�
2 � 2

3

	

D 4

3
�R3 :

In the second step, for the y integration, we had to take the help of an appropriate
table of integrals.

Later in this course, we will see that very often multiple integrals with
not constant bounds can be substantially simplified by a transformation to so-
called ‘curvilinear coordinates’ which we introduce and inspect in Sect. 1.7.
The calculation of the volume of a sphere, e.g., by use of spherical coordinates
(Sect. 1.7.4) turns out to be much quicker and distinctly more elegant than that
with the above used Cartesian coordinates.

1.2.6 Exercises

Exercise 1.2.1 Solve using integration by parts:

1.
Z

cos2 x dx

2.
Z

x2 cos2 x dx
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3.
Z

x sin x dx

4.
Z

x ln x dx

Exercise 1.2.2 Calculate the following definite integrals by proper substitution of
variables:

1.

Z 1

0

.5x � 4/3 dx

2.

Z 3
2

1

sin

�
�xC 5�

2

	
dx

3.

Z 2

1

dxp
7 � 3x

4.

Z C1

�1
x2
p
2x3 C 4 dx

Exercise 1.2.3 Evaluate the following multiple integrals:

1.

Z 1

xD0

Z 2

yD0
x2 dx dy

2.
Z �

xD0

Z �

yD 1
2 �

sin x � sin y dx dy
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3.

Z 2

xD0

Z 3x

yDx�1
x2 dx dy

4.

Z 1

xD0

Z 2x

yD0

Z xCy

zD0
dx dy dz

1.3 Vectors

In order to fix a physical quantity one needs three specifications:

dimension, unit of measure, coefficient of measure.

Physical quantities are classified as

scalars, vectors, tensors, . . .

Tensors will not appear in the first parts of this course. Thus we explain the term
tensor at a later stage.

Scalar:
An object which after fixing the dimension and the unit of measure is completely

characterized by stating one coefficient of measure
(e.g. mass, volume, temperature, pressure, wavelength, . . . ).

Vector:
An object which in addition needs the specification of a direction
(e.g. displacement, velocity, acceleration, momentum, force, . . . )

The conceptually simplest vector is the displacement or

position vector

by which the points of the Euclidean space E3 can be specified. For this purpose one
first defines an

origin of coordinates O
and connects it by a straight line with the considered point A of the E3 (Fig. 1.31).

Fig. 1.31 To the definition of
the position vector
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The connecting line gets a direction by convention to run through the line from
the origin of coordinates O to A. In the following we will mark vectors by bold
letters. Each vector a has a length, also called magnitude,

a D jaj

and a direction, the unique fixing of which requires a reference direction, i.e. a
reference system. The simplest system of reference is built up by three straight lines,
perpendicular to each other and intersecting in one common point, the origin of
coordinates O (six ray star). One assigns directions to the three lines, and that in
such a way to build in the sequence .1; 2; 3/ and .x; y; z/, respectively, a right system
(‘right-handed trihedron’). If one rotates on the shortest way from axis 1 to 2, the
axis 3 has the direction into which a right-twisted screw would move (see Fig. 1.32).
This is called a

Cartesian coordinate system

Once the reference system is fixed the orientation of a position vector in the E3 is
uniquely determined by two numbers, e.g. two angles what can be demonstrated on
the unit sphere (see Fig. 1.33).

One denotes two vectors as equal if they have the same lengths and the same
directions. Notice, however, that it is not at all required that they have the same
starting points. Parallel vectors of the same lengths are in this sense ‘equal’ (see
Fig. 1.34).

Fig. 1.32 Cartesian system
of coordinates as a right
system

Fig. 1.33 Description of the
direction of a vector by
quoting two angles
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Fig. 1.34 Example of two
‘equal’ vectors

Fig. 1.35 Two ‘antiparallel’
vectors

Fig. 1.36 Addition of two
vectors

To each vector a there does exist an equally long but antiparallel vector
(Fig. 1.35) which we denote �a.

A unit vector is a vector of the magnitude 1.

1.3.1 Elementary Mathematical Operations

(a) Addition

Two vectors a and b are added by a parallel translation of one of the vectors, say
b, such that the base point of b coincides with the arrowhead of the other vector a
(Fig. 1.36). The sum vector .a C b/ then starts at the base point of a and goes to
the arrowhead of b. One recognizes that .aC b/ corresponds to the diagonal of the
parallelogram spanned by a and b (parallelogram law). We list up some obvious
rules for vector sums:

(˛) Commutativity

aC b D bC a : (1.129)

This follows directly from the definition of the sum vector and becomes immediately
clear with Fig. 1.37. Decisive for the commutativity is the free parallel mobility of
the vectors in the plane.

(ˇ) Associativity

.aC b/C c D aC .bC c/ : (1.130)
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Fig. 1.37 Commutativity of
the vector sum

Fig. 1.38 Associativity of
the vector summation

Fig. 1.39 Subtraction of two
vectors

The validity of (1.130) can easily be read off from Fig. 1.38.

(�) Vector Subtraction

a � b D aC .�b/ : (1.131)

Subtracting a from itself yields the so-called

zero (null) vector: 0 D a � a ; (1.132)

the only vector which has no definite direction (Fig. 1.39). For all vectors holds:

aC 0 D a : (1.133)

Because of (1.129), (1.130), (1.132) and (1.133) the set of all position vectors build
a (commutative) group.

(b) Multiplication by a (Real) Number

Let ˛ be a real number (˛ 2 R) and a be an arbitrary vector.
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Definition (˛ a) is a vector with the following properties:

1/ ˛ a D
� "" a if ˛ > 0
"# a if ˛ < 0

2/ j˛ aj D j˛j a (1.134)

Special cases:

1 a D a ; 0 a D 0 ; .�1/ a D �a : (1.135)

Calculation rules:
In the following let ˛; ˇ; : : : be real numbers and a;b; : : : any arbitrary vectors.

(˛) Distributivity

Valid are the following distributive laws:

.˛ C ˇ/a D ˛aC ˇa ; (1.136)

˛.aC b/ D ˛aC ˛b : (1.137)

The proof of (1.136) immediately results from the definition of the vector. The proof
of (1.137) runs as follows:

Proof According to Fig. 1.40 it holds .˛ > 0/ W

˛aC x D y ;

x D Ǫb . Ǫ > 0/ ;
y D ˛.aC b/ .˛ > 0/ :

The assertion is proved if Ǫ D ˛ D ˛:

1. Intercept theorem:

jyj
jaC bj D

j˛aj
jaj D ˛ H) ˛ D ˛ :

Fig. 1.40 Demonstration of
the distributivity of a vector
sum with respect to
multiplication with a real
number



1.3 Vectors 61

2. Intercept theorem:

jxj
jbj D

j˛aj
jaj D ˛ H) Ǫ D ˛ :

Insertion into ˛aC x D y validitates the assertion (1.137). The proof for ˛ < 0

is performed analogously (Exercise 1.3.6).

(ˇ) Associativity

˛.ˇa/ D .˛ˇ/a � ˛ˇa : (1.138)

Because of j˛ˇj D j˛jjˇj the proof is immediately clear.

(�) Unit Vector

From each vector a one can construct a unit vector in the direction of a by
multiplying the vector with its reciprocal magnitude jaj�1:

ea D a�1a with jeaj D a�1a D 1
ea "" a : (1.139)

Unit vectors are normally denoted by the letters e or n.
Up to now our considerations have been focussed more or less directly on the

position vectors of the E3. However, we can also interpret the above listed properties
of the position vectors as general axioms. All objects which fulfill these axioms shall
therefore be called in the following as vectors. The position vector is only a self-
evident special realization of the abstract term vector. The ensemble of all vectors
then build a

linear (vector) space V over the body of real numbers R

which, to gather once more, fulfills the following axioms:

Axiom 1.1 Between two elements a, b 2 V a connection (‘addition’) is defined

aC b D d 2 V

with

1: .aC b/C c D aC .bC c/ (associativity)

2: zero (null) element 0 2 V W aC 0 D a 8a
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3: (additive) inverse: For all a 2 Vexists an element .�a/ 2 V so that

aC .�a/ D 0

4: aC b D bC a (commutativity)

Axiom 1.2 Multiplication of a vector with elements ˛; ˇ; : : : 2 R

˛ 2 R a 2 V H) ˛a 2 V

1: .˛ C ˇ/a D ˛aC ˇa

˛.aC b/ D ˛aC ˛b (distributivity)

2: ˛.ˇa/ D .˛ˇ/a (associativity)

3: It exists a unity (identity) element 1, so that

1 � a D a for all a 2 V

We have introduced in this section the multiplication of vectors with scalars. Is
it also possible to multiply vectors with vectors? The answer is yes, but the type of
multiplication must be specified with care. One knows two types of products built
by vectors, the scalar (inner, dot) product and the vector (outer, cross) product.

1.3.2 Scalar Product

As scalar (inner, dot) product of two vectors a and b is denoted by the following
number (scalar):

.a;b/ � a � b D ab cos# ; # D ^.a;b/ : (1.140)

Illustratively, it is the product of the length of the second vector with the
projection of the first vector on the direction of the second (see Fig. 1.41).

a � b D 0 ; if 1) a D 0 or/and b D 0
or 2) # D �=2 : (1.141)

Fig. 1.41 To the definition of
the scalar product between
two vectors



1.3 Vectors 63

Fig. 1.42 Distributivity of
the scalar product

a and b are orthogonal (a?b) if

a � b D 0 with a ¤ 0 and b ¤ 0 : (1.142)

Properties

(a) Commutativity

a � b D b � a : (1.143)

This relation is directly perceptible from the definition of the scalar product.

(b) Distributivity

.aC b/ � c D a � cC b � c : (1.144)

Figure 1.42 gives immediately the proof, which again exploits the free relocatability
of the vectors in the plane.

(c) Bilinearity (Homogeneity)

For each real number ˛ holds:

.˛a/ � b D a � .˛b/ D ˛.a � b/ : (1.145)

Proof (Fig. 1.43)

˛ > 0 W .˛a/ � b D ˛ab cos#

a � b D ab cos#
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Fig. 1.43 To the proof of the
bilinearity of the scalar
product of two vectors

H) ˛.a � b/ D .˛a/ � b
˛ < 0 W a � b D ab cos#

.˛a/ � b D j˛jab cos.� � #/ D
D �j˛jab cos# D
D ˛ab cos# D
D ˛.a � b/ :

(d) Magnitude (Norm) of a Vector

Because cos .0/ D 1 we have:

a � a D a2 � 0” a D pa � a : (1.146)

The equality sign is valid only for the zero vector:

e � e D 1 ” unit vector :

(e) Schwarz’s Inequality

ja � bj � ab : (1.147)

Since j cos#j � 1 this statement follows directly from the definition (1.140). The
latter, however, is related to the intuitive position vectors of the E3. For the elements
of an abstract vector space the scalar product is defined by the properties (1.143)–
(1.146). More strictly that means:

A connection between two elements a and b of the vector space V , which assigns
to it a real number ˛ 2 R

a � b D ˛ ;
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is denoted as scalar product if the axioms (1.143)–(1.146) are fulfilled. A vector
space, for which a scalar product is defined is called a unitary vector space.
Therefore, we want to prove (1.147) by using these properties without referring
to the special case of position vectors.

If a D 0 or/and b D 0 holds, Eq. (1.147) is fulfilled with the equal sign. Therefore
we now assume a ¤ 0 and b ¤ 0. Then one finds for all real ˛:

0
(1.146)� .aC ˛b/ � .aC ˛b/ D
(1.144)
(1.145)D a2 C ˛2b2 C ˛b � aC ˛a � b D
(1.143)D a2 C ˛2b2 C 2˛a � b :

Since ˛ is arbitrary we can specifically choose

˛ D �a � b
b2
2 R

But therewith follows:

0 � a2 C .a � b/2b2
b4

� 2.a � b/
2

b2
;

” 0 � a2b2 � .a � b/2 H) q. e. d.

(f) Triangle Inequality

ja � bj � jaC bj � aC b : (1.148)

The proof exploits the Schwarz’s inequality:

�ab � a � b � ab

” a2 C b2 � 2ab � a2 C b2 C 2a � b � a2 C b2 C 2ab

” .a � b/2 � .aC b/2 � .aC b/2

” ja � bj � jaC bj � jaC bj D aC b :

A special application of the scalar product leads to the cosine rule (Fig. 1.44)

c D a � b ;

c2 D .a � b/2 D a2 � 2a � bC b2

H) c2 D a2 C b2 � 2ab cos^.a;b/ : (1.149)
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Fig. 1.44 Demonstration of
the cosine rule

Fig. 1.45 To the definition of
the vector product

1.3.3 Vector (Outer, Cross) Product

The product discussed in the last section assigns a number, i.e. a scalar, to the
product of two vectors of a vector space. However, there exists a second type of
product which addresses to two vectors a third vector from the same vector space.
This is known as vector product, outer product, or cross product

c D a � b

This vector has the following properties:

1.

c D a b sin# I # D ^.a; b/ : (1.150)

The magnitude c of the resulting vector corresponds to the area of the parallelo-
gram spanned by the vectors a and b (Fig. 1.45).

2. c is oriented perpendicular to the area defined by a and b in such a way that a, b,
c in this sequence build a right-handed coordinate system.

The second point indicates that the vector product does not simply characterize a
direction but more a ‘direction of rotation, rotation sense’. Thus, in various respects
the properties of a vector product are different from those of a ‘ordinary’ (polar)
vector. c is a so-called axial vector (pseudovector). The strict distinction becomes
clear with the term

Space Inversion

Reflection of all space points (E3) with respect to a fixed, given point,
e.g. the origin of coordinates.
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Fig. 1.46 Space inversion of a polar vector

Fig. 1.47 Space inversion of an axial vector

Polar vectors change their signs by inversion (see Fig. 1.46). On the other hand,
since the rotation sense does not change after inversion, the axial vector will not
change its sign (see Fig. 1.47).

We add a remark. It is clear that the scalar product of either only polar vectors or
only axial vectors does not change its sign with inversion, being therefore a genuine
scalar. The scalar product of a polar and an axial vector, however, changes into its
negative and is for this reason called a pseudoscalar.

One has to bear in mind that the scalar product (Sect. 1.3.2) is defined between
vectors of an arbitrary-dimensional vector space, while the vector product holds
only for three-dimensional vectors.

1.3.3.1 Properties of the Vector Product

(a) Anticommutative

a � b D �b � a : (1.151)

This property becomes immediately evident as consequence of the right-handed
cork rule (see Fig. 1.45).

(b)

a � b D 0 ; if 1) a D 0 or/and b D 0 ;
2) b D ˛a I ˛ 2 R :

Two collinear (equidirectional) vectors cannot span a surface area .sin 0 D 0/.
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Fig. 1.48 Auxiliary sketch
for the proof of the
distributivity of the vector
product

(c) Distributive

.a C b/ � c D a � cC b � c : (1.152)

Proof The proof is done in two steps:

.˛/ The vector c in (1.152) is obviously in some way distinguished. We decom-
pose therefore the three vectors a, b and .aC b/ into components, respectively,
parallel and perpendicular to c (Fig. 1.48):

a D ak C a?
b D bk C b?

I aC b D .aC b/k C .aC b/? : (1.153)

Only the components perpendicular to c, however, contribute to the vector
product:

a � c D a? � c : (1.154)

For it holds:

ja? � cj D a?c sin
�

2
D

D a?c D a c sin# D
D ja � cj :

Since, in addition, the directions of a�c and a?�c coincide, (1.154) is obviously
correct. Thus we can assume, without loss of generality, for the second part of
the proof that a and b are already orthogonal to c.

.ˇ/ By the vector products a � c, b � c, .a C b/ � c new vectors arise from
a;b; .a C b/, the magnitudes of which are altered by a factor c. All the three
vectors are located in the plane orthogonal to c which is spanned by a and b.
They are rotated relatively to the original vectors by �=2. The angles between
a� c; b� c and .aCb/� c, on the one hand, are thus the same as those between
a;b and .aC b/, on the other hand (Fig. 1.49):

1

c
.a � c/C 1

c
.b � c/ D 1

c
Œ.aC b/ � c� : (1.155)
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Fig. 1.49 Another auxiliary
sketch for the proof of the
distributivity of the vector
product

With (1.137) follows:

1

c
Œ.a � c/C .b � c/� D 1

c
Œ.aC b/ � c� ; (1.156)

That proves the above statement.

(d) Not Associative

The positions of the brackets in the double vector product are not arbitrary. In
general it holds:

a � .b � c/ ¤ .a � b/ � c : (1.157)

The resulting vector on the left-hand side lies in the .b; c/ area, whereas the one on
the right-hand side, however, in the .a;b/ area.

(e) Bilinear for Real Numbers ˛

.˛a/ � b D a � .˛b/ D ˛.a � b/ : (1.158)

For ˛ > 0 the proof follows directly from the definition, for ˛ < 0 one has to take
into consideration the right-handed cork screw rule.

Example (Fig. 1.50)

aC bC c D 0

H) a � b D a � .0� a � c/ D
D a � .�c/ D
D c � a :
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Fig. 1.50 To the derivation
of the sine rule

Simultaneously it holds:

a � b D .0 � b � c/ � b D .�c/ � b D b � c :

That means:

a � b D c � a D b � c ; if aC bC c D 0 : (1.159)

For the magnitudes it follows that:

ab sin.� � �/ D ca sin.� � ˇ/ D bc sin.� � ˛/

or

a

sin˛
D c

sin�
D b

sinˇ
: (1.160)

This is the well-known sine rule of trigonometry.

1.3.4 ‘Higher’ Vector Products

We have learned about two possibilities to connect two vectors multiplicatively. Let
us now investigate how to build products of more than two vectors. The scalar
product of two vectors leads to a (real) number, which, as defined in (1.134), can
of course be multiplied with a third vector.

.a � b/ c D d : (1.161)

d has the same direction as c.
The vector product results in a new vector and can therefore be multiplicatively

connected with a further vector in the already discussed two different manners:

.a � b/ � c I .a � b/ � c :
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We discuss at first the scalar triple product:

V.a; b; c/ � .a � b/ � c : (1.162)

Geometrically the scalar triple product can be understood as the volume of the
parallelepiped spanned by the three vectors a, b, and c (see Fig. 1.51).

volume D basal plane F � height h D
D ja � bj � c � cos' D
D .a � b/ � c :

Since it does not matter which side of the parallelepiped is chosen as basal plane F,
the scalar triple product will not change by a cyclic permutation of the three vectors
(Fig. 1.52):

V D .a � b/ � c D .b � c/ � a D .c � a/ � b : (1.163)

One sees that for a fixed (!) sequence of vectors one can interchange the symbols �
and �:

.a � b/ � c D a � .b � c/ :

In case of an anticyclic interchange V changes its sign. Therefore one denotes V as
a pseudoscalar.

Another ‘higher’ product of vectors is the double vector product:

p D a � .b � c/ : (1.164)

Fig. 1.51 Illustration of the
scalar triple product as the
volume of a parallelepiped
spanned by three vectors

Fig. 1.52 Possible cyclic (!)
interchanges in the scalar
triple product
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Fig. 1.53 Direction of the
vector product of two vectors

The vector .b� c/ is perpendicular to the .b; c/-plane, so that p must lie within this
plane. Thus we can start with (Fig. 1.53):

p D ˇbC �c : (1.165)

On the other hand p is also orthogonal to a:

0 D a � p D ˇ.a � b/C �.a � c/ :

That means:

ˇ D ˛.a � c/ I � D �˛.a � b/ : (1.166)

Insertion into (1.165) yields the intermediate result:

p D ˛ Œb.a � c/� c.a � b/� : (1.167)

Later we will show explicitly that ˛ D 1 must be. The result is the expansion rule
for the double vector product:

a � .b � c/ D b.a � c/� c.a � b/ : (1.168)

By this equation one can easily demonstrate the non-associativity of the vector
product:

.a � b/ � c D �c � .a � b/ D �a.c � b/C b.c � a/
¤ a � .b � c/ : (1.169)

Finally one can prove with the aid of this expansion rule the important Jacobi
identity (Exercise 1.3.12):

a � .b � c/C b � .c � a/C c � .a � b/ D 0 : (1.170)
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1.3.5 Basis Vectors

In (1.139) we have defined what are known as unit vectors. Since, by definition,
their magnitude is equal to 1 they are in particular suitable to identify directions.
If one intends to separate statements on direction and magnitude of a vector a, the
following representation is recommendable:

a D a ea : (1.171)

Two vectors a and b with the same direction e are called collinear. For such vectors
one can find real numbers ˛ ¤ 0, ˇ ¤ 0 so that the equation

˛aC ˇb D 0 (1.172)

is fulfilled. One says that a and b are linearly dependent. We generalize this term
as follows:

Definition n vectors a1, a2, : : :, an are called linearly independent if the equation

nX
j D 1

˛jaj D 0 (1.173)

can be fulfilled only by

˛1 D ˛2 D : : : D ˛n D 0 (1.174)

Otherwise they are called linearly dependent.

Definition The dimension of a vector space is given by the maximal number of
linearly independent vectors required to span the space.

Theorem 1.3.1 In a d-dimensional vector space each ensemble of d linearly
independent vectors build a basis of the space, i.e. any other element of this space
can be expressed as linear combination of these d vectors.

Proof Let a1; : : : ; ad be linearly independent vectors of the d dimensional space
V and b another arbitrary vector in V . Then fb; a1; : : : ; adg are certainly linearly
dependent because otherwise V would be at least .dC 1/-dimensional.

Thus there exist coefficients

fˇ; ˛1; : : : ; ˛dg ¤ f0; 0; : : : ; 0g
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with

dX
j D 1

˛jaj C ˇb D 0 :

Moreover ˇ ¤ 0 must hold because otherwise it would be:

dX
j D 1

˛jaj D 0 with f˛1; : : : ; ˛dg ¤ f0; : : : ; 0g

Contrary to the initial assumption the aj; j D 1; :::; d then would be linearly dependent.
With ˇ ¤ 0, however, we can write:

b D �
dX

j D 1

˛j

ˇ
aj D

dX
j D 1

�jaj q. e. d.

In many cases especially comfortable as basis vectors are unit vectors which are
pairwise orthogonal to each other. Then one speaks of an

orthonormal system ei; i D 1; 2; : : : ; d;
for which holds:

ei � ej D ıij D
(
1 for i D j ;

0 for i ¤ j :
(1.175)

An orthonormal system being simultaneously the basis of the vector space V is
denoted as ‘complete’. For an arbitrary vector a 2 V we can then write:

a D
dX

j D 1

ajej : (1.176)

The aj are the components of the respective vector a with respect to the basis
e1; : : : ; ed.

The components aj are of course dependent on the non-unique choice of the
basis. They are nothing but the orthogonal projections of a onto the basis vectors:

ei � a D
dX

j D 1

aj
�
ei � ej

� D
dX

j D 1

ajıij D ai ; i D 1; 2; : : : ; d : (1.177)
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For a fixed given basis the vector a is uniquely determined by its components. So
other representations of the vector may appear reasonable, e.g. as

column vector W a D

0
BBB@

a1
a2
:::

ad

1
CCCA or

row vector W a D .a1; a2; : : : ; ad/

Examples

1. Plane
All pairs of non-collinear vectors a and b are linearly independent (Fig. 1.54).

Each third vector c in the plane is then linearly dependent. a and b thus build a
possible basis which of course does not necessarily need to be orthonormal:

c D ˛aC ˇb � .˛; ˇ/ : (1.178)

2. Euclidean space E3
All sets of three non-complanar vectors (not lying in one and the same plane)

are always linearly independent. Each fourth vector is then linearly dependent.
So the dimension of the E3 is d D 3. A often used orthonormal basis of the
E3 is the Cartesian system of coordinates as plotted in Fig. 1.55 with the basis
vectors: e1; e2; e3 (also ex; ey; ez). For the vector a 2 E3 then holds:

a D a1e1 C a2e2 C a3e3 D axex C ayey C azez : (1.179)

Fig. 1.54 Two non-collinear
vectors as basis vectors for
the plane

Fig. 1.55 Cartesian system
of coordinates
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For the (Cartesian) components ai it can be written:

ai D ei � a D a cos#i ; #i D ^ .ei; a/ ; (1.180)

cos#i D ai
a W directional cosine : (1.181)

The components ai also fix uniquely the magnitude (norm) of the vector:

a D pa � a D
vuut

3X
i; j D 1

aiaj
�
ei � ej

� D
sX

i; j

aiajıij D
q

a21 C a22 C a23 :

(1.182)
The magnitude (length) of the vector a is therefore determined by the square root
of the sum of the component squares. Thus it also holds:

cos2 #1 C cos2 #2 C cos2 #3 D 1 ; (1.183)

so that by two directional cosines the third is already fixed, at least except for the
sign.

1.3.6 Component Representations

In this section we want to rewrite the previously derived calculation rules for vectors
by use of components. We restrict our considerations to the E3:

e1; e2; e3 ; orthonormal basis of the E3,

a D .a1; a2; a3/ D
3X

i D 1

aiei vector of the E3 ;

analogously W b; c;d; : : :

(a) Special Vectors

zero vector:

0 � .0; 0; 0/ : (1.184)

basis vectors:

e1 D .1; 0; 0/ ; e2 D .0; 1; 0/ ; e3 D .0; 0; 1/ : (1.185)
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(b) Addition

c D aC b D
3X

j D 1

�
aj C bj

�
ej D

3X
j D 1

cjej

H) ei � .aC b/ D ai C bi D ci ; i D 1; 2; 3 (1.186)

H) c D .a1 C b1; a2 C b2; a3 C b3/ : (1.187)

One therefore adds two vectors by adding their components using for both the
vectors the same basis.

(c) Multiplication by Real Numbers

b D ˛a I ˛ 2 R ;

˛a D
3X

j D 1

�
˛aj
�

ej D
3X

j D 1

bjej ;

bj D ˛aj I ˛a D .˛a1; ˛a2; ˛a3/ : (1.188)

Thus one multiplies a vector by a real number by multiplying each component by
this number.

(d) Scalar Product

.a � b/ D
 

3X
i D 1

aiei

!0
@

3X
j D 1

bjej

1
A D

D
3X

i; j D 1

aibj
�
ei � ej

� D
3X

i; j D 1

aibjıij

H) .a � b/ D
3X

j D 1

ajbj : (1.189)

We see that the scalar product of two vectors can be written as the sum of the
component products. Consider herewith the projection of a given vector a onto
a given direction n:

n D .n1; n2; n3/ I jnj D 1 I ni D cos^ .n; ei/ :
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According to (1.189) holds:

.a � n/ D
3X

j D 1

ajnj D a cos^.n; a/ ;

where in view of (1.180) we must also have aj D a cos^.a; ej/. Combining these
equations one comes to the useful relation:

cos^.n; a/ D
3X

j D 1

cos^
�
a; ej

�
cos^

�
n; ej

�
: (1.190)

(e) Vector Product

We start with the orthonormal basis vectors which are thought to build a right-
handed system:

e1 � e2 D e3I e2 � e3 D e1I e3 � e1 D e2 : (1.191)

Together with the anticommutativity of the vector product and the orthonormality
relation (1.175) one finds:

ei �
�
ej � ek

� D

8̂
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
:̂

1 ; if .i; j; k/ cyclic permutation

of .1; 2; 3/ ;

�1 ; if .i; j; k/ anticyclic permutation

of .1; 2; 3/ ;

0 in all other cases :

(1.192)

As an abbreviation one writes:

"ijk D ei �
�
ej � ek

� D �ei � ej
� � ek : (1.193)

These are the components of the so-called fully antisymmetric tensor of third
rank.

Therewith the vector products of the basis vectors can be formulated in a compact
manner:

�
ei � ej

� D
3X

k D 1

"ijkek : (1.194)
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For the general vector product we then have:

c D a � b D
X

i; j

aibj
�
ei � ej

� D
X
i; j; k

"ijkaibjek D
X

k

ckek

H) ck D
X

i; j

"ijkaibj : (1.195)

This is a condensed version of the following three equations:

c1 D a2b3 � a3b2 I c2 D a3b1 � a1b3 I c3 D a1b2 � a2b1 : (1.196)

(f) Scalar Triple Product

With (1.192) and (1.193) this is simply expressible:

a � .b � c/ D
X
i; j; k

aibjckei �
�
ej � ek

� D
X
i; j; k

"ijkaibjck : (1.197)

(g) Double Vector Product

We consider the k-th component of the double vector product a � .b � c/:

Œa � .b � c/�k D
P
i; j
"ijkai.b � c/j DP

i; j

P
l;m
"ijk"lmjaiblcm D

D �P
i; j

P
l;m
"ikj�jlmaiblcm :

One can apply here the following formula (proof as exercise!):

X
j

"ikj"jlm D ıilıkm � ıimıkl : (1.198)

That we use in the above equation:

Œa � .b � c/�k D
X
i; l;m

aiblcm .ıimıkl � ıilıkm/ D

D
X

i

.aibkci � aibick/ D bk.a � c/� ck.a � b/ D

D Œb.a � c/� c.a � b/�k :
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This holds for k D 1; 2; 3, so that the expansion rule for the double vector
product (1.168) is now completely proven:

a � .b � c/ D b.a � c/� c.a � b/ (1.199)

Further, the reader should verify as an exercise the following important relations:

.a � b/ � .c � d/ D .a � c/.b � d/ � .a � d/.b � c/ ; (1.200)

.a � b/2 D a2b2 � .a � b/2 : (1.201)

1.3.7 Exercises

Exercise 1.3.1 e1, e2, e3 are orthogonal unit vectors in x, y, z-direction, respec-
tively.

1. Calculate

e3 � .e1 C e2/ ;

.5e1 C 3e2/ � .7e1 � 16e3/ ;

.e1 C 7e2 � 3e3/ � .12e1 � 3e2 � 4e3/ :

2. Determine ˛ so, that the vectors

a D 3e1 � 6e2 C ˛e3

and

b D �e1 C 2e2 � 3e3

are orthogonal to each other!
3. How long is the projection of the vector

a D 3e1 C e2 � 4e3

onto the direction of

b D 4e2 C 3e3 ‹

4. Decompose the vector

a D e1 � 2e2 C 3e3 D ak C a?
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into a vector a? perpendicular and a vector ak parallel to the vector

b D e1 C e2 C e3 :

Verify:

ak � a? D 0 :

5. Determine the angle between the vectors

a D .2Cp3/e1 C e2

and

b D e1 C .2C
p
3/e2 :

Exercise 1.3.2

1. Given are two vectors a and b with the lengths a D 6 cm, b D 9 cm enclosing the
following angles: ˛ D ^.a;b/ D 0; 60ı; 90ı; 150ı; 180ı. Determine the length
of the vector sum aC b and the angle ˇ

ˇ D ^.a C b; a/ :

2. Given are two vectors a and b

a D 6 cm I ^ .a; e1/ D 36ı ;

b D 7 cm I ^ .b; e1/ D 180ı :

Determine sum and difference of the two vectors as well as the angles each of
them encloses with the e1-axis

3. Find the equation of the straight line which passes through the point P0 whose
position vector is

r0 D x0e1 C y0e2 C z0e3

and which is parallel to the vector

f D ae1 C be2 C ce3

Exercise 1.3.3 Prove:

1.

.a � b/2 D a2b2 � .a � b/2 ;
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2.

.a � b/ � .c � d/ D .a � c/.b � d/� .a � d/.b � c/ ;

3.

.a � b/ � Œ.b � c/ � .c � a/� D Œa � .b � c/�2 :

Exercise 1.3.4 Let e1, e2, e3 be unit vectors along x, y, z directions, respectively.

1. For the vectors

a D 2e1 C 4e2 C 2e3

and

b D 3e1 � 2e2 � 7e3

find the components along the above unit vectors for the following expressions:
.a C b/, .a � b/, .�a/, 6.2a � 3b/. Calculate the lengths of these vectors and
demonstrate the validity of the triangle inequality:

jaC bj � aC b :

2. Calculate:

a � b ; .aC b/ � .a � b/ ; a � .a � b/ :

3. Calculate the area of the parallelogram spanned by the vectors a and b and
determine the unit vector orthogonal to this area.

Exercise 1.3.5 Prove Thales’ theorem by use of the vector calculation.

Exercise 1.3.6 Prove the distributive law for the multiplication of vectors a, b by a
negative real number ˛:

˛.aC b/ D ˛aC ˛b

Exercise 1.3.7 Decompose the vector b into a parallel and a perpendicular part
relatively to vector a (Fig. 1.56):

b D bk C b?
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Fig. 1.56 Decomposition of
vector b into a perpendicular
and parallel component with
respect to vector a

and show:

bk D 1

a2
.a � b/ a ;

b? D 1

a2
a � .b � a/

Exercise 1.3.8 Verify the following equality

.a � b/ � Œ.aC b/ � c� D 2a � .b � c/

Exercise 1.3.9 Calculate for the three vectors

a D .�1; 2; �3/ ; b D .3; �1; 5/ ; c D .�1; 0; 2/

the following expressions:

a � .b � c/ ; .a � b/ � c ; j.a � b/ � cj ;
ja � .b � c/j ; .a � b/ � .b � c/ ; .a � b/.b � c/ :

Exercise 1.3.10 Calculate:

.a � b/ � .c � d/C .b � c/ � .a � d/C .c � a/ � .b � d/ :

Exercise 1.3.11 a and b are two noncollinear vectors. Does the equation

a � y D b

have a solution for y? Justify!

Exercise 1.3.12 Prove the Jacobi identity (1.170):

a � .b � c/C b � .c � a/C c � .a � b/ D 0 :
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Exercise 1.3.13 a1, a2, a3 are three noncoplanar (not lying in the same plane)
vectors. Three so-called reciprocal vectors b1, b2, b3 are defined by:

b1 D a2 � a3
a1 � .a2 � a3/

;

b2; b3 are given by cyclic permutation of the indexes (1, 2, 3).

1. Show for i; j D 1; 2; 3:

ai � bj D ıij :

2. Verify:

b1 � .b2 � b3/ D Œa1 � .a2 � a3/�
�1 :

3. Show that the ai are the reciprocal vectors of the bj!
4. If ei, i D 1; 2; 3; are three orthonormal basis vectors. Find the corresponding

reciprocal vectors!

Exercise 1.3.14 For two vectors a, b 2 R2 the following relations are found:

1.

a � b D 4a1b1 � 2a1b2 � 2a2b1 C 3a2b2 ;

2.

a � b D a1b1 C a2b2 C a2b1 C 2a1b2 :

Are these products scalar products? Justify!

Exercise 1.3.15 Consider the ensemble V of real polynomials in one variable
(degree� 3):

V D ˚p.x/ D a0 C a1xC a2x
2 C a3x

3 I a0; : : : ; a3 2 R



1. Show that V is a vector space over the body of real numbers.
2. Are the following elements linearly independent?

(a)

p1.x/ D x2 � 2x I p2.x/ D 7x2 � x3 I p3.x/ D 8x2 C 11 ;
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(b)

p1.x/ D �18x2 C 15 I p2.x/ D 3x3 C 6x2 � 5 I p3.x/ D �x3 :

1.4 Vector-Valued Functions

By a ‘vector-valued function’ one understands a function of one independent
variable to which not just one single dependent variable is assigned but in fact n > 1
entities which together form an n-dimensional vector:

f W M � R1 �! V � Rn :

In this section we want to work out some important properties of such functions,
which have a wide field of application in Theoretical Physics. We presume that
the basic rules concerning continuity, differentiation, and integration of functions
of one independent variable are known, e.g. from our introductory Sects. 1.1
and 1.2. We shall combine these tools with the vector algebra developed in the last
chapter.

1.4.1 Parametrization of Space Curves

In physics space curves are typical examples of vector-valued functions. To start
with we choose in the E3 an arbitrary but fixed origin of coordinates O. Then the

momentary position P of a ‘particle’ is determined by the position vector r D �!0P
(Fig. 1.57). By a ‘particle’ we understand a physical body of mass m but with
negligible extension in all directions. Later we will introduce for it the term ‘mass
point’. In course of time the particle will in general change its position, i.e. r
will change direction and magnitude. In a time-independent, complete orthonormal
system (CONS) ei the components of the position vector become normal time-

Fig. 1.57 Definition of the
space curve of a particle by
the temporally variable
position vector
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dependent functions:

r.t/ D
3X

j D 1

xj.t/ej � .x1.t/; x2.t/; x3.t// : (1.202)

This is called the trajectory or the path line of the particle.
The set of space points the particle passes through over the time define the so-

called

space curve WD fr.t/; ta � t � teg : (1.203)

One calls (1.202) a parametrization of the space curve (1.203). The independent
parameter in this case is the time t. Of course there also exist other possibilities of
parametrization as we will see later in this section. Furthermore, it is clear that
different path lines may parametrize the same space curve. For example this is
already true when one and the same space curve is run through in opposite directions
or in different time intervals.

Examples

1. Circular motion in the xz-plane
Let the circle have the radius R and let its center point be at the origin of

coordinates (Fig. 1.58). Then a self-evident parametrization is via the angle ':

M D f' I 0 � ' � 2�g ;
r.'/ D R.cos'; 0; sin'/ : (1.204)

Another parametrization can use, e.g., the x component x1 W

M D fx1 I �R � x1 � CRg ;

r.x1/ D
�

x1; 0; ˙
q

R2 � x21

	
;

where the plus sign holds for the upper, the minus sign for the lower half-plane.

Fig. 1.58 Parametrization of
a circular motion by the angle
'
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Fig. 1.59 Helical line as
parametrized space curve

2. Helical line
Let the independent parameter be t with

M D ft I �1 < t < C1g ;
r.t/ D .R cos!t;R sin!t; b t/ : (1.205)

R, b and ! are constants (Fig. 1.59). After one circulation ! �t D 2� x and y
components come back again to their initial values, while the z component has
increased by the pitch of the screw (also called height of ascent) z0:

z0 D b�t D b
2�

!
: (1.206)

The continuity of path lines is defined analogously to that of normal functions
( see Sect. 1.1.5).

Definition 1.4.1 r.t/ is continuous at t D t0, if for each " > 0 there exists a ı."; t0/
so that for jt � t0j < ı is always valid jr.t/� r.t0/j < ".

If one realizes that

jr.t/ � r .t0/j D
q
Œx1.t/ � x1 .t0/�

2 C Œx2.t/ � x2 .t0/�
2 C Œx3.t/ � x3 .t0/�

2 �
�p3 max

i D 1; 2; 3
jxi.t/ � xi .t0/j :

then it becomes clear that r.t/ is continuous if and only if all component functions
are continuous in the ordinary sense.
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1.4.2 Differentiation of Vector-Valued Functions

We consider a vector-valued function a.t/ and look into the differential changes
of the vector, i.e. the changes due to very small changes in time. Practically
such a time interval, being determined by the measuring process, is of course
always finite. Mathematically, however, an infinitely small time interval shall be
considered. Furthermore, instead of time t any other parameter can also be used in
the following formulae. The vector-valued function a.t/ in general has at different
times (parameters) t and tC�t different magnitudes and/or different directions. The
magnitude of the difference vector

�a D a.tC�t/� a.t/

will become smaller with decreasing time difference �t, whereby its direction can
change continuously in order to arrive for very small �t in the corresponding
direction of the respective tangent.

Definition 1.4.2 Derivation of a Vector-Valued Function

da
dt
D lim

�t!0

a.tC�t/ � a.t/
�t

: (1.207)

This definition clearly presumes that such a limiting vector does exist at all
(Fig. 1.60). For time-derivatives sometimes one writes briefly:

Pa.t/ � da
dt
:

Fig. 1.60 To the definition of
the derivative of a
vector-valued function
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We represent a.t/ in a time-independent basis system feig :

a.t/ D
X

j

aj.t/ej :

Then it holds:

a.tC�t/� a.t/ D
X

j

�
aj.tC�t/ � aj.t/

�
ej :

Therewith the differentiation of a vector-valued function is obviously and com-
pletely expressed in terms of derivatives of the time-dependent component func-
tions:

Pa.t/ D da
dt
D
X

j

Paj.t/ej : (1.208)

Correspondingly it holds also for all higher derivatives:

dn

dtn
a.t/ D

X
j

�
dn

dtn
aj.t/

	
ej I n D 0; 1; 2; : : : : (1.209)

Then it is not difficult to prove the following rules of differentiation

1)
d

dt
Œa.t/C b.t/� D Pa.t/C Pb.t/ ; (1.210)

2)
d

dt
Œf .t/ a.t/� D Pf .t/ a.t/C f .t/ Pa.t/ ; (1.211)

if f .t/ is a differentiable, scalar function,

3)
d

dt
Œa.t/ � b.t/� D Pa.t/ � b.t/C a.t/ � Pb.t/ ; (1.212)

4)
d

dt
Œa.t/ � b.t/� D Pa.t/ � b.t/C a.t/ � Pb.t/ : (1.213)

In 4) we have to be very careful about the correct order of the factors.

Examples

a) velocity: v.t/ D Pr.t/ (1.214)

(always tangential to the path line) ;

acceleration: a.t/ D Pv.t/ D Rr.t/ : (1.215)
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b) unit vector: ea.t/ D a.t/
ja.t/j :

e2a.t/ D 1 H)
d

dt
e2a.t/ D 0 (1.212)D 2ea.t/ � Pea.t/

H) d

dt
ea.t/ ? ea.t/ : (1.216)

The derivation of a unit vector with respect to a parameter yields a vector which is
always orthogonal to the original unit vector.

1.4.3 Arc Length

The integration of vector-valued functions can also be transferred to the corre-
sponding integration of parameter-dependent component functions:

teZ

ta

a.t/ dt D
3X

j D 1

ej

teZ

ta

aj.t/ dt : (1.217)

If the basis vectors are parameter-independent they can be drawn in front of the
integral. Thus in such a case one integrates the vector by integrating its components
in the ordinary manner. However, it should be expressly indicated that the so defined
integral of course depends on the special choice of the parameters and therefore does
not at all represent a genuine curve property. During the course of this book we will
meet other integrals of totally different type. However, at this stage we will make do
with (1.217).

From now on, temporarily, we want to concentrate ourselves exclusively on space
curves and path lines as examples of vector-valued functions. Thereby we assume
for the following that the curve under consideration is ‘smooth’.

Definition 1.4.3 A space curve is denoted as smooth, if there exists at least one
continuously differentiable parametrization r D r.t/ for which at no point we have:

dr
dt
D 0

For such smooth space curves it often appears convenient to use the so-called arc
length s as curve parameter.

Definition 1.4.4 The arc length s is the length of the space curve, measured along
the curved line starting from an arbitrarily chosen initial point.
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Fig. 1.61 Definition of the
arc length as curve parameter

This we want to explain a bit in more detail. For this purpose and to be concrete,
at first we still consider the time as the curve parameter and divide the time interval
from ta D t0 to te D tN into N partial intervals �tN such that (see the marks on the
space curve (Fig. 1.61)):

tn D ta C n�tN I n D 0; 1; 2; : : : ;N with t0 D ta; tN D te :

These time marks correspond to position vectors r.tn/. If we connect the time marks
by straight lines then we get a polygonal line of the length:

LN .ta; te/ D
N�1X
n D 0

jr .tnC1/ � r .tn/j D
N�1X
n D 0

ˇ̌
ˇ̌r .tnC1/ � r .tn/

�tN

ˇ̌
ˇ̌�tN :

In the limit N ! 1 the length LN of the polygonal line corresponds to the arc
length s between the endpoints r.ta/ and r.te/. N ! 1, however, implies that �tN
approaches zero. Then, according to (1.207), we have, after the sum symbol, just
the derivative of the position vector with respect to time:

r .tnC1/ � r .tn/
�tN

����������!
N!1”�tN!0

dr
dt

ˇ̌
ˇ̌
t D tn

:

So the sum becomes an integral in Riemannien sense. If we now replace te by t then
we have as arc length:

s.t/ D
tZ

ta

ˇ̌
ˇ̌dr.t0/

dt0

ˇ̌
ˇ̌ dt0 : (1.218)

Furthermore, we have also shown that for differential changes of the arc length it
holds:

ds

dt
D
ˇ̌
ˇ̌dr.t/

dt

ˇ̌
ˇ̌ > 0 (1.219)

Thus according to (1.218) we calculate the arc length s.t/ by use of the path line
r D r.t/. The arc length is obviously a monotonically increasing function of t
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which therefore can be uniquely inverted to give t.s/. Therewith we obtain the
unambiguous parametrization of the space curve by the arc length s;

r.t/! r .t.s// D r.s/ : (1.220)

This representation is denoted as natural parametrization of the space curve.

Examples

1. Circular motion
In (1.204) we set ' D !t (uniform circular motion) getting therewith as path

line:

r.t/ D R.cos!t; 0; sin!t/

H) dr
dt
D R!.� sin!t; 0; cos!t/

H)
ˇ̌
ˇ̌dr

dt

ˇ̌
ˇ̌ D R!

H) s.t/ D
tZ

0

R! dt0 D R!t .ta D 0/

H) t.s/ D s

R!
:

Therewith we have the natural representation of the circular motion:

r.s/ D R
�

cos
s

R
; 0; sin

s

R

�
: (1.221)

After going through a full circle we must have:

s

R
D 2�

That corresponds to the arc length s D 2�R being just the circumference.
2. Helical line

We derive from (1.205):

dr
dt
D .�R! sin!t; R! cos!t; b/

H)
ˇ̌
ˇ̌dr

dt

ˇ̌
ˇ̌ D

p
R2!2 C b2
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H) s.t/ D
p

R2!2 C b2 t

H) t.s/ D sp
R2!2 C b2

:

Then we get the natural representation of the helical line:

r.s/ D
�

R cos
!sp

R2!2 C b2
; R sin

!sp
R2!2 C b2

;
bsp

R2!2 C b2

	
:

(1.222)

1.4.4 Moving Trihedron

In this section we introduce a new system of orthonormal basis vectors, the
directions of which can be different from point to point on the space curve. Thus
they are functions of the arc length, in a certain sense accompanying the mass point
as it moves along the space curve. One therefore speaks of a moving trihedron
consisting of

Ot W tangent-unit vector ;
On W normal-unit vector ;
Ob W binormal-unit vector :

The three unit vectors build an orthonormal right-handed trihedron. That means:

Ot D On � Ob and cyclic : (1.223)

We know that the vector Pr.t/ D d
dt r.t/ is oriented tangentially to the path line. The

tangent-unit vector is therefore defined in an obvious manner as follows:

Ot D
dr
dtˇ̌
ˇ̌dr

dt

ˇ̌
ˇ̌
D

dr
dt
ds

dt

: (1.224)

On the right-hand side we have used Eq. (1.219). If r is parametrized by the arc
length s, r D r.s/, then we can exploit in (1.224) the chain rule (1.87):

Ot D dr.s/
ds
D Ot.s/ : (1.225)

Ot thus lies tangentially to the path line in direction of increasing arc length
(Fig. 1.62). Ot.s/ can change its direction as function of s so that it can be considered
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Fig. 1.62 Illustration of the
tangent-unit vector

as a measure of the curvature of the path. Logically consistently one defines:

� D
ˇ̌
ˇ̌
ˇ
dOt.s/

ds

ˇ̌
ˇ̌
ˇ curvature ;

� D ��1 radius of curvature :

(1.226)

If the direction of Ot.s/ is constant for all s then the path is obviously a straight line.
In this case � is zero and � D1.

Since Ot is oriented tangentially to the path line the two other unit vectors must lie
within the plane perpendicular to the tangent. Because of (1.216) the vector

N D dOt
ds

will definitely be orthogonal to Ot. In addition, normalizing to unity will result in a
unit vector which is called

normal-unit vector: On D
dOt.s/

dsˇ̌
ˇ̌
ˇ
dOt.s/

ds

ˇ̌
ˇ̌
ˇ

D 1

�

dOt.s/
ds
D On.s/ : (1.227)

The plane spanned by the vectors On and Ot is referred to as osculating plane. For a
complete characterization of the motion in space we still need a third unit vector,
namely the

binormal-unit vector Ob.s/ D Ot.s/ � On.s/ : (1.228)

Ob stands perpendicular to the osculating plane. If the motion happens in a fixed
plane then this plane is simultaneously also the osculating plane, and therefore
is independent of s. Consequently, the direction of Ob is certainly constant, the
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Fig. 1.63 Representation of
the moving trihedron

magnitude is anyway constant, so that it must generally hold:

Ob D const ; if the motion happens in a fixed plane :

If however Ob does explicitly change with s, then it provides obviously a measure
to which degree the space curve is screwing itself out of the osculating plane
(Fig. 1.63). Therefore again, the derivative with respect to s will be of interest:

d Ob
ds D dOt

ds � OnC Ot � d On
ds D � On � OnC Ot � d On

ds

H) d Ob
ds D Ot � d On

ds : (1.229)

From this we can conclude:

d

ds
Ob?Ot :

Furthermore, since Ob is a unit vector we have,

d

ds
Ob?Ob ;

so that the following ansatz appears reasonable:

d

ds
Ob D �	 On : (1.230)

The binormal is thus twisting perpendicular to Ot into the direction of the principal
normal On:

	 W torsion of the space curve


 D 1=	 W torsion radius :

We still do not have the change of the normal-unit vector On with the arc length s:

On D Ob � Ot H) d On
ds
D d Ob

ds
� OtC Ob � dOt

ds
D �	 On � OtC � Ob � On D 	 Ob � �Ot :
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The three relations which describe the change of the moving trihedron as function
of the arc length s are known as the Frenet’s formulae:

dOt
ds
D � On ;

d Ob
ds
D �	 On ;

d On
ds
D 	 Ob � �Ot : (1.231)

1.4.4.1 Applications

1. Circular motion:
With the natural representation of the space curve r D r.s/ (1.221) the

tangent-unit vector is very easily calculated:

Ot D dr
ds
D
�
� sin

s

R
; 0; cos

s

R

�
: (1.232)

It is obviously a vector of length 1. Differentiating once more with respect to s
yields the curvature �:

dOt
ds
D 1

R

�
� cos

s

R
; 0; � sin

s

R

�

H) � D
ˇ̌
ˇ̌
ˇ
dOt
ds

ˇ̌
ˇ̌
ˇ D

1

R
: (1.233)

For the radius of curvature we thus have found the self-evident result:

� D R : (1.234)

The normal-unit vector On lies in the xz plane pointing to the center of the circle
(Fig. 1.64) (Verify On � Ot D 0!).

On D � dOt
ds
D
�
� cos

s

R
; 0; � sin

s

R

�
(1.235)

Since the motion takes place n a fixed plane we have to expect that
the binormal-unit vector Ob.s/ is constant with respect to direction and
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Fig. 1.64 Normal- and
tangent-unit vectors at a circle

magnitude:

Ob.s/ D e1 .t2n3 � t3n2/C e2 .t3n1 � t1n3/C e3 .t1n2 � t2n1/ D
D e1 � 0C e2

�
� cos2

s

R
� sin2

s

R

�
C e3 � 0 :

This indeed is the case:

Ob.s/ D .0; �1; 0/ : (1.236)

The unit vector points into the negative y-direction.
2. Helical line

According to (1.222), introducing the abbreviation � D 1=
p

R2!2 C b2, we
have for the helical line:

Ot D dr
ds
D .�R!� sin.!s�/; R!� cos .!s�/; b�/ : (1.237)

For the magnitude of Ot one finds

jOtj D
p
.R2!2 C b2/�2 D 1 ;

as it must be.

dOt
ds
D ��R!2�2 cos.!s�/; �R!2�2 sin.!s�/; 0

�
:

The curvature � then reads:

� D
ˇ̌
ˇ̌
ˇ
dOt
ds

ˇ̌
ˇ̌
ˇ D R!2�2 D R!2

R2!2 C b2
: (1.238)

The curvature of the helical line is obviously smaller than that of the circle, as
it is geometrically evident since the elongation along the spiral axis of course
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reduces the curvature.

radius of curvature W � D R2!2 C b2

R!2
> R : (1.239)

The normal-unit vector lies in the xy plane and points into the inside of the
screw

On D .� cos.!s�/; � sin.!s�/; 0/ : (1.240)

The binormal-unit vector is now a function of the arc length s because the
motion is not bounded to a fixed plane:

Ob.s/ D e1 ŒCb� sin.! s�/�C e2 Œ�b� cos.! s�/�C
Ce3

�
R!� sin2.! s�/C R!� cos2.! s�/

�

H) Ob.s/ D �.b sin.! s�/; �b cos .! s�/;R!/ : (1.241)

The torsion 	 of the space curve is calculated according to (1.230) by a
comparison of

d Ob
ds
D b!�2 .cos.! s�/; sin.! s�/; 0/

with On (1.240) so that we get

	 D b! �2 : (1.242)

The torsion radius


 D 1

	
D R2!2 C b2

b!
(1.243)

will become infinitely large for b! 0 (circular motion).
3. Velocity and acceleration of a mass point

According to (1.214) the velocity v is always tangentially oriented to the path
line r.t/:

v.t/ D dr
dt
D dr

ds

ds

dt
D ds

dt
Ot

H) jv.t/j D ds

dt
: (1.244)
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Differentiating once more with respect to time gives the acceleration a:

a.t/ D d2r
dt2
D PvOtC v dOt

dt
D PvOtC v dOt

ds

ds

dt

H) a.t/ D PvOtC v2

�
On : (1.245)

The acceleration vector thus always lies in the osculating plane. One distin-
guishes:

at D Pv (tangential acceleration) (1.246)

and

an D v2

�
(normal , centripetal acceleration) : (1.247)

We notice that for curved path lines (� ¤1) an accelerated motion occurs even
when the velocity magnitude v does not change with time ( Pv D 0). An exception
is only the straight line (� D1), only.

1.4.5 Exercises

Exercise 1.4.1 e0
1 and e0

2 are two orthonormal vectors which define the x0 axis and
the y0 axis, respectively. A mass point moves along the path line:

r.t/ D 1p
2
.a1 cos!tC a2 sin!t/ e0

1 C
1p
2
.�a1 cos!tC a2 sin!t/ e0

2 ;

a1, a2, ! are constant and > 0.

1. Go over from e0
1, e0

2 to a new basis e1, e2, i.e. to new x and y axis, and that in
such a way that the representation of the space curve becomes especially simple.
What is the parameter representation of the space curve in the x; y-system with
!t as parameter?

2. Which geometrical form does the space curve have?
3. Determine the angles

'.t/ D ^ .e1; r.t// ;

 .t/ D ^ .e2; r.t// :

4. Calculate the magnitudes of r.t/, v.t/ D Pr.t/, a.t/ D Rr.t/. Which relation does
exist between jr.t/j and ja.t/j?
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Fig. 1.65 Mass point m on a
thread which is fixed on an
horizontally mobile
suspension A

5. Calculate Pr.t/ D d
dt jr.t/j.

6. Determine the angles:

˛.t/ D ^ .r.t/; v.t// ;

ˇ.t/ D ^ .v.t/; a.t// ;

�.t/ D ^ .r.t/; a.t// :

Exercise 1.4.2

1. Determine the parameter representation of the cycloid. This curve is described
by a fixed point on a circle where the latter rolls off on a straight line.

2. What is the parameter representation of a mass point on a thread which swings
back and forth with a time-dependent angle '.t/ where simultaneously the
suspension A moves with constant velocity v in e1 direction (Fig. 1.65)?

Exercise 1.4.3 Calculate for the path line

r.t/ D e� sin te1 C 1

cot t
e2 C ln

�
1C t2

�
e3

the expressions:

1) jr.t/j I 2) Pr.t/ I 3) jPr.t/j I 4) Rr.t/ I 5) jRr.t/j

and that always for the time t D 0.

Exercise 1.4.4 Prove the following rules of differentiation for vector-valued func-
tions a.t/, b.t/:

1)
d

dt
Œa.t/ � b.t/� D Pa.t/ � b.t/C a.t/ � Pb.t/ ;

2)
d

dt
Œa.t/ � b.t/� D Pa.t/ � b.t/C a.t/ � Pb.t/ ;

3) a.t/
da.t/

dt
D
ˇ̌
ˇ̌a.t/

ˇ̌
ˇ̌ d

dt

ˇ̌
ˇ̌ a.t/

ˇ̌
ˇ̌ :
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Exercise 1.4.5 For the following path line

r.t/ D
�
3 sin

t

t0
; 4

t

t0
; 3 cos

t

t0

	
:

calculate:

1. the arc length s.t/ where s.t D 0/ D 0,
2. the tangent-unit vector Ot,
3. the curvature � and the radius of curvature � of the curve,
4. the normal-unit vector On,
5. the moving trihedron .Ot; On; Ob/ for t D 5�t0,
6. the torsion 	 of the space curve.

Exercise 1.4.6 Show that the curvature � of a space curve fulfills the relation

� D 1

jPrj3 jPr � Rrj

Exercise 1.4.7 Express in a as simple as possible manner

dr
ds
�
�

d2r
ds2
� d3r

ds3

	

in terms of the curvature � and the torsion 	 of the space curve.

Exercise 1.4.8 Given is the path line

r.t/ D
�

t; t2;

�
2

3

	
t3
	
:

The components are assumed to have coefficients of magnitude 1 in order to provide
for correct dimensions.

1. Determine the arc length s.t/ where s.t D 0/ D 0.
2. Calculate the tangent-unit vector Ot as function of time t.
3. Express the curvature � as a function of t.
4. Determine the moving trihedron as function of t.
5. Derive the torsion 	 as function of t.

Exercise 1.4.9

1. Calculate the curvature, the torsion, and the moving trihedron of the space curve

r.'/ D R.' C sin '; 1C cos'; 0/ :
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2. Determine the curvature of the planar space curve

r.'/ D .'; f .'/; 0/ :

1.5 Fields

In the last section we have become acquainted with vector-valued functions as e.g.
the path line of a particle. Therewith we describe the trajectory of the particle
through space. However, we do not yet know what ‘happens’ to the mass point on
its path, which situations it encounters. For instance, the temperature might differ at
different space points and therefore could influence therewith the nature of motion.
The electric field intensity can be space dependent what would be of importance
for the path of a charged particle. For the description of physical phenomena it
is therefore very often necessary to attach to each space point r the value A.r/
of a certain physical quantity. This can be a scalar, a vector, a tensor . . . , as e.g.
the temperature, the mass density, the charge density as scalars or the gravitational
force, the electric field strength, the flow velocity of a liquid as vectors and the
stress tensor as a tensorial quantity. One speaks of a scalar, vectorial, tensorial
field of the physical quantity A. In general the attached values will still depend on
time: A D A.r; t/. The following considerations will, however, be restricted to time
independent, i.e. static fields. An orthonormal basis is assumed to be given.

1.5.1 Classification of the Fields

Definition 1.5.1 A scalar field is the ensemble of numerical values '.r/ D
'.x1; x2; x3/ of a physical quantity ' which are ascribed to each point r D .x1; x2; x3/
in a particular region of space:

M � R3

'! N � R1 :

Then it is a scalar-valued function of three independent variables. The domain of
definition M is fixed by the physical problem under study.

Graphically such fields are exhibited by two-dimensional profiles in which the
areas '.r/ D const appear as so-called contour lines. The distance between
the lines corresponds to a predetermined increase or decrease of the value of the
constant (Fig. 1.66).

There are some other possibilities of field characterization. For instance, one can
plot ' in dependence of one especially significant variable keeping thereby the other
variables constant (Fig. 1.67).



1.5 Fields 103

Fig. 1.66 Contour lines of the scalar field '.r/ D ˇ r

Fig. 1.67 The scalar field '.r/ D .˛=r/ represented by its contour lines (left) and by its radial
dependency (right)

Definition 1.5.2 The vector field is the collection of vectors, each marked by a
direction and a magnitude (length, norm)

a.r/ D .a1 .x1; x2; x3/ ; a2 .x1; x2; x3/ ; a3 .x1; x2; x3// ;

which are dedicated to each point r D .x1; x2; x3/ in a region of space M of interest:

M � R3 ! N � R3 :

Hence it is about a vector-valued function of three independent variables.

Examples

a.r/ D ˛r ;

a.r/ D q

4�"0

r
r3

(electrical field of a point charge q) ;
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a.r/ D ˛

ˇ2 C x22 C x23
e1 I ˛; ˇ D const ;

a.r/ D 1

r
Œ! � r� I ! D !0e3 I !0 D const :

Graphically these vector fields can be exhibited by two-dimensional profiles (cuts)
in which the areas of constant field strength ja.r/j D const appear as contour lines
to which the field itself is locally attached as a vector arrow (Fig. 1.68).

Example

a.r/ D ˛r .˛ > 0/ :

The length of the vector arrow is equal to ˛ r and the direction of the arrow
perpendicular to the circles ja.r/j Dconst.

A further frequently used possibility of representation applies so-called ‘field
(force) lines’, the local directions of which characterize the respective field direction
while their line density is a measure of the strength of the field (see Fig. 1.69).

In the following we want to investigate the special properties of fields, where,
however, because of the necessary conciseness of the presentation extensive and
precise considerations must be left to relevant mathematics courses.

Fig. 1.68 Representation of
the vector field ˛r

Fig. 1.69 Field line
representation of the velocity
of a flowing liquid
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Fig. 1.70 Schematic field
line representation of the
earth magnetic field

Since the fields (Fig. 1.70) are functions of several independent variables terms
such as continuity, derivative and integral must be handled with care.

Definition 1.5.3

1. A scalar field '.r/ is called ‘continuous’ at the point r0, if there does exist to
each " > 0 a ı.r0; "/ > 0 so that for all r with jr � r0j < ı it holds:

j'.r/� '.r0/j < "

2. The field ' is called continuous in a region of space M if it is continuous in each
point of M.

3. A vector field a.r/ D .a1.r/; a2.r/; a3.r// is continuous at r0 if this is true in the
above sense for each of the scalar component fields ai.r/.

We have to investigate a little further when we think of the derivatives of fields.

1.5.2 Partial Derivatives

Now we are interested in how a field changes from space point to space point.
Information about this will be given by the derivative of the field with respect
to position. We comment on this operation at first for a scalar field. Generalizations
to vector fields will then be not too difficult. We demand basically only that the
criteria which we derive for scalar functions are fulfilled by each of the component
function.

We first consider the change of the field ' along a way

parallel to an axis of the coordinates,
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then, strictly speaking, on this path the field depends only on one true variable
since the other two are held constant. Then one can differentiate with respect to
this effectively single variable in the usual manner,

lim
�x1 ! 0

' .x1 C�x1; x2; x3/� ' .x1; x2; x3/
�x1

�
�
@'

@x1

	

x2;x3

; (1.248)

and one speaks of a partial derivative of ' with respect to x1.

 
Notations:

�
@'

@x1

	

x2; x3

” @'

@x1
” @x1'” @1'” 'x1

!
:

During the process of differentiation the other variables are strictly kept constant.
The result is again a scalar field which depends on the three variables x1, x2, x3. The
partial derivatives with respect to the two other variables are of course defined fully
analogously:

lim
�x2!0

' .x1; x2 C�x2; x3/ � ' .x1; x2; x3/
�x2

D
�
@'

@x2

	

x1; x3

D @2' ; (1.249)

lim
�x3!0

' .x1; x2; x3 C�x3/ � ' .x1; x2; x3/
�x3

D
�
@'

@x3

	

x1; x2

D @3' : (1.250)

Examples

' D x1x
5
2 C x3 H) @1' D x52 I @2' D 5x1x

4
2 I @3' D 1 ;

' D x3 ln x1 H) @1' D x3
x1
I @2' D 0 I @3' D ln x1 ;

' D r D
q

x21 C x22 C x23 H) @1' D x1
r
I @2' D x2

r
I @3' D x3

r
:

Vector fields are differentiated partially by differentiating partially each of its scalar
component functions.

Examples

•

a.r/ D ˛r D ˛ .x1; x2; x3/

H) @1a D ˛.1; 0; 0/ D ˛e1 ;

@2a D ˛.0; 1; 0/ D ˛e2 ;

@3a D ˛.0; 0; 1/ D ˛e3 :



1.5 Fields 107

•

a.r/ D ˛ r
r3

(e.g. electrical field)

H) @1a1.r/ D @1
�
˛

x1
r3

�
D ˛

�
1

r3
� 3x1

r4
x1
r

	
D ˛

r5
�
r2 � 3x21

�
;

@1a2.r/ D @1
�
˛

x2
r3

�
D �3˛ x2x1

r5
;

@1a3.r/ D @1
�
˛

x3
r3

�
D �3˛ x3x1

r5
:

Altogether we then get:

@1a.r/ D ˛

r5
�
r2 � 3x21; �3x1x2; �3x1x3

�
:

The other two partial derivatives are recommended as exercises.

Looking at the definition (1.248) one realizes that for the partial derivative practi-
cally the same differentiation rules are valid as for scalar and vectorial functions
of one variable:

@i .'1 C '2/ D @i'1 C @i'2 ; (1.251)

@i.a � b/ D .@ia/ � bC a � .@ib/ ; (1.252)

@i.a � b/ D .@ia/ � bC a � .@ib/ : (1.253)

Since the partial derivative of a field is again a field multiple differentiations are
recursively definable:

@2'

@x2i
D @

@xi

�
@'

@xi

	
; (1.254)

@n'

@xn
i

D @

@xi

�
@n�1'
@xn�1

i

	
D @

@xi


@

@xi

�
@n�2'
@xn�2

i

	�
: (1.255)

Even mixed derivatives make sense:

@2'

@xi@xj
D @

@xi

�
@'

@xj

	
: (1.256)

In general, however, one has to respect the sequence of the derivatives. The
differentiation processes are to be performed step by step one after the other from
the right to the left. In the case, however, when the field has continuous partial
derivatives at least up to second order one can prove the permutability of the
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differentiations:

@2'

@xi@xj
D @2'

@xj@xi
: (1.257)

The explicit proof of this statement must be reserved for relevant textbooks of
mathematics.

Example

' D x51 C x32x3 H)
@'

@x1
D 5x41 I

@2'

@x21
D 20x31 I : : :

@'

@x2
D 3x22x3 I

@'

@x3
D x32 I

@2'

@x1 @x2
D 0 D @2'

@x2 @x1
I

@2'

@x2 @x3
D 3x22 D

@2'

@x3 @x2
and so on.

All that we have learned up to now in connection with partial derivatives could
be transferred more or less directly to the already familiar differentiation rules for
scalar functions of one single variable. The situation is somewhat different for the
chain rule which we know in the form:

df Œx.t/�

dt
D df

dx
� dx

dt
(1.258)

In case of more than one variable nothing changes as long as each of these variables
depends on a different parameter:

' Œx1.t1/; x2.t2/; x3.t3/� H) d'

dt1
D @'

@x1

dx1
dt1

: (1.259)

It becomes interesting when all the components depend on the same parameter t.
That means all the variables simultaneously change as functions of t:

' Œr.t/� D ' Œx1.t/; x2.t/; x3.t/� :

We set

�xi D xi.tC�t/ � xi.t/
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and calculate therewith the difference quotient D:

D D ' Œx1.tC�t/; x2.tC�t/; x3.tC�t/� � ' Œx1.t/; x2.t/; x3.t/�

�t
:

Later we shall interpret the limiting value of D due to the transition �t ! 0 as
derivative of ' with respect to t. For this purpose we reformulate D a little bit:

D D 1

�t
Œ' .x1 C�x1; x2 C�x2; x3 C�x3/� ' .x1; x2 C�x2; x3 C�x3/C

C' .x1; x2 C�x2; x3 C�x3/� ' .x1; x2; x3 C�x3/C
C' .x1; x2; x3 C�x3/� ' .x1; x2; x3/� D

D 1

�x1
Œ' .x1 C�x1; x2 C�x2; x3 C�x3/�

�' .x1; x2 C�x2; x3 C�x3/�
�x1
�t
C

C 1

�x2
Œ' .x1; x2 C�x2; x3 C�x3/� ' .x1; x2; x3 C�x3/�

�x2
�t
C

C 1

�x3
Œ' .x1; x2; x3 C�x3/� ' .x1; x2; x3/� �x3

�t
:

We can now conclude, because of the continuity of the functions xi.t/, that �xi !
0 if �t ! 0. If we furthermore presume continuity of the first partial derivatives
of ' then it obviously follows:

lim
�t ! 0

D D @'

@x1

dx1
dt
C @'

@x2

dx2
dt
C @'

@x3

dx3
dt

:

One denotes this limit as the total derivative of ' with respect to t:

d'

dt
D

3X
i D 1

@'

@xi

dxi

dt
(1.260)

and denotes

d' D
3X

i D 1

@'

@xi
dxi (1.261)

as the total differential of the function '.
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1.5.3 Gradient

With the aid of the partial derivative we have the possibility to find out how a field
alters as we proceed along one of the axis of coordinates. We want to investigate
now how a scalar field changes along an arbitrary (!) space direction e, i.e. we are
interested in the term

�' D '.rC�r/� '.r/ ;
�r D .�x1; �x2; �x3/ "" e : (1.262)

If �r were, e.g., parallel to the 1-axis then for sufficiently small changes �r D
�x1e1 we would have:

�' D @'

@x1
�x1 Œ'.rC�r/ D ' .x1 C�x1; x2; x3/� :

This presumption is not in general fulfilled (Fig. 1.71). It is,however, possible to
realize it by a proper rotation of the coordinate axes. The physical field ' is of
course not affected by such a redefinition of the axes directions. We execute the
rotation in such a way that the new 1 axis coincides with the e direction. Then we
must have:

�' D @'

@Nx1�Nx1 : (1.263)

We now can express �r in the new and old system of coordinates, respectively, as
follows:

�r D �Nx1Ne1 D �x1e1 C�x2e2 C�x3e3 : (1.264)

From this relation it follows in particular that after scalar multiplication with ei W

�xi D �Nx1 .Ne1 � ei/ ; (1.265)

Fig. 1.71 To the introduction
of the gradient
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so that we can write for sufficiently small shifts along the Nx1-axis:

dxi

dNx1 D Ne1 � ei : (1.266)

This we exploit together with (1.265) and the chain rule in Eq. (1.263):

�' D
3X

j D 1

@'

@xj

dxj

dNx1�Nx1 D
3X

j D 1

@'

@xj

�Ne1 � ej
�
�Nx1 :

The change in the field in an arbitrary space direction is thus additively composed
of the corresponding changes in the three basis directions:

�' D
3X

j D 1

@'

@xj
�xj : (1.267)

The result has the form of a scalar product between the vectors

.�x1; �x2; �x3/ and

�
@'

@x1
;
@'

@x2
;
@'

@x3

	
:

This leads to the following definition:

Definition 1.5.4 To a continuously differentiable scalar field '.r/ a vectorial field
is ascribed, called the gradient field:

grad' D
�
@'

@x1
;
@'

@x2
;
@'

@x3

	
: (1.268)

So one denotes as gradient of ' the vector whose i-th component is just the partial
derivative of ' with respect to xi.

Definition 1.5.5 The vector-differential operator

r �
�
@

@x1
;
@

@x2
;
@

@x3

	
D e1

@

@x1
C e2

@

@x2
C e3

@

@x3
(1.269)

is called the ‘nabla-operator’.

The operator acts on all functions to the right of it. One can write:

grad' D r' ; (1.270)
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and for the field change�' in Eq. (1.267) now holds:

�' D grad' ��r D r' ��r : (1.271)

For the interpretation of the gradient vector we inspect in particular a direction in
which ' does not change:

0 D grad' ��r ” grad'?�r :

We see that the gradient vector grad ' D r' is oriented perpendicular to the planes
' D const. The magnitude jgrad'j is a measure of the degree of the change in ' if
one proceeds perpendicular to the ' D const planes.

By using the calculation rules (1.251) and (1.252) for partial differentiations one
proves directly the following rules of gradient formation:

grad .'1 C '2/ D grad'1 C grad'2 ; (1.272)

grad .'1'2/ D '2grad'1 C '1grad'2 : (1.273)

We want to practice, what we have derived, by some examples:

Examples

1. grad.a � r/ D ? .a W constant vector/

a � r D
3X

j D 1

ajxj H) @.a � r/
@xi

D ai H) grad.a � r/ D a : (1.274)

2. grad r D ?

�
r D

q
x21 C x22 C x23

	

@r

@xi
D xi

r
H) gradr D r

r
D er (1.275)

3. grad 1=r2 D ?

@

@xi

1

r2
D
�

d

dr

1

r2

	
@r

@xi
D � 2

r3
xi

r
H) grad

1

r2
D � 2

r3
er : (1.276)

4. gradf .r/ D ?

@

@xi
f .r/ D

�
df

dr

	
@r

@xi
D f 0.r/

xi

r
H) gradf .r/ D f 0.r/er : (1.277)

2., 3. are special examples for f .r/.
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1.5.4 Divergence and Curl (Rotation)

The gradient, nabla operator introduced in the last section acts exclusively on scalar
fields ', while the resulting gradient field grad' D r' is itself a vector. An obvious
question then is whether it is possible to apply the nabla operatorr, formally defined
in (1.269) as vector-differential operator, also to vectors. The answer is yes! There
are again two kinds of application, similar to the previously discussed multiplicative
connection of two ordinary vectors, one in the sense of a scalar product, the other
in the sense of a vector product.

Definition 1.5.6 Let a .r/ � .a1.r/; a2.r/; a3.r// be a continuously differentiable
vector field.

Then one calls

3X
j D 1

@aj

@xj
� div a.r/ � r � a.r/ (1.278)

the divergence (the source field) of a.r/.
By this definition, to a given vector field a.r/ a new scalar field div a.r/ is

assigned. The illustrative interpretation of div a.r/ as a source field of a.r/ will
become understandable later by some examples from physics.

The reader should prove as an exercise the following calculation rules:

div.aC b/ D divaC divb ; (1.279)

div.� a/ D �diva I � 2 R ; (1.280)

div.' a/ D 'divaC a � grad' (1.281)

(': scalar field; a: vectorial field).
Via the divergence we introduce a further important operator:

Definition 1.5.7 Divergence of a gradient field:

div grad' D
3X

j D 1

@2'

@x2j
� �' ;

where

� � @2

@x21
C @2

@x22
C @2

@x23
(1.282)

is called the Laplace operator.
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Examples

1) ˛ W constant vector H) div˛ D 0 : (1.283)

2)div r D
3X

j D 1

@xj

@xj
D 3 : (1.284)

3) ˛ W constant vector

div .r � ˛/ D
3X

k D 1

@

@xk
.r � ˛/k D

X
i; j; k

@

@xk

�
"ijkxi˛j

� D

D
X
i; j; k

"ijkıik˛j D
X

i; j

"iji˛j D 0 : (1.285)

One calls .r � ˛/ a source-free field.

The vectorial application of the nabla operator on a vector field leads to the
following definition:

Definition 1.5.8 Let a.r/ � .a1.r/; a2.r/; a3.r// be a continuously differentiable
vector field.

Then

curl a D
�
@a3
@x2
� @a2
@x3

	
e1 C

�
@a1
@x3
� @a3
@x1

	
e2 C

�
@a2
@x1
� @a1
@x2

	
e3

is denoted as curl or rotation (the curl field) of a.r/. Short-hand notation:

curl a � r � a D
X
i; j; k

"ijk

�
@

@xi
aj

	
ek : (1.286)

By this operation the vector field a.r/ is related to another vector field. The
illustrative interpretation of curl a as curl field of a will later become evident in
connection with certain examples.

The following properties and calculation rules are rather directly derivable from
the bare definition of the curl.

1.

r � .aC b/ D r � aCr � b : (1.287)

2.

r � .˛a/ D ˛r � a I ˛ 2 R : (1.288)
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3.

r � .'a/ D 'r � aC .r '/ � a (1.289)

(' W scalar field; proof as Exercise 1.5.7!)
4.

r � .r '/ D 0 (1.290)

(' two times continuously differentiable)
The statement, which is very important for later considerations, is that the

gradient fields are always curl-free. We demonstrate the correctness of this
statement by inspecting the 1-component:

.r � r '/1 D @

@x2
.r '/3 � @

@x3
.r '/2 D @2'

@x2 @x3
� @2'

@x3 @x2
D 0

(according to (1.257)). One can show the same for the other components.
5.

r � .r � a/ D 0 (1.291)

(a: two times continuously differentiable)
Curl-fields are always source-free!

Proof

r � .r � a/ D
3X

j D 1

@

@xj
.r � a/j D

X
j

@

@xj

X
l;m

"lmj
@am

@xl
D

D
X

m

X
l; j

"lmj
@2am

@xj @xl
D

D
X

m

1

2

0
@X

l; j

"lmj
@2am

@xj @xl
C
X

j; l

"jml
@2am

@xl @xj

1
A D

(1.257)D 1

2

X
m

X
j; l

�
"lmj C "jml

�
„ ƒ‚ …
.D 0 why?/

@2am

@xj @xl
D 0 :

6.

r � Œf .r/r� D 0 : (1.292)
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f .r/may be any scalar-valued function which depends only on r D jrj. The proof
of this important relation will be provided in Exercise 1.5.7.

7.

r � .r � a/ D r.r � a/��a : (1.293)

This statement can be verified component by component (Proof in Exer-
cise 1.5.7!).

1.5.5 Exercises

Exercise 1.5.1 Given are the following vector fields:

(a) a.r/ D 1
r Œ! � r� I ! D !0e3 I !0 D const ;

(b) a.r/ D ˛r I ˛ < 0 ;

(c) a.r/ D ˛ .x1 C x2/ e1 C ˛ .x2 � x1/ e2 I ˛ > 0 ;

(d) a.r/ D ˛

x22Cx23Cˇ2
e1 I ˛; ˇ > 0 :

1. Plot the pictures of the field lines for cuts perpendicular to the x3-axis .x3 D 0/.
2. Calculate the partial derivatives of the fields!
3. Calculate r � a.r/ and r � a.r/.

Exercise 1.5.2 To a good approximation the scalar electrostatic potential of a
point charge embedded in a plasma (’gas’ consisting of charged particles) can be
described by the following formula:

'.r/ D q

4�"0

e�˛r

r

1. Determine the partial derivatives of ' and write down r'.
2. Calculate �' where� is the Laplace operator (1.282)

� D @2

@x21
C @2

@x22
C @2

@x23
:

Exercise 1.5.3 A prolate atomic nucleus can be described as an ellipsoid of
revolution (‘cigar’):

x21
a2
C x22

a2
C x23

b2
D 1 :

1. Determine the outwardly pointing surface normal vector n!
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2. Calculate and plot n at the points

(a) .a=
p
2; a=

p
2; 0; / ;

(b) .a=
p
3; a=

p
3; b=

p
3/ ;

(c) .�a=2; a=
p
2; �b=2/ ;

(d) .0; 0; b/ ;
(e) .0; �a; 0/ :

Exercise 1.5.4

1. Given are the scalar fields

'1 D cos.˛ � r/ I '2 D e��r2 .˛ D const , � = const/ :

Calculate the gradient fields grad 'i and their sources

r � r'i D �'i :

2. Calculate the divergence of the unit vector er D r�1r .
3. Under what conditions is the vector field a.r/ D f .r/r source-free?
4. Determine the divergence of the vector field a.r/ D r'1 � r'2

('1; '2: two times continuously differentiable scalar fields ).
5. ' shall be a scalar field, a a vector field. Prove:

r � .'a/ D 'r � aC a � r' :

Exercise 1.5.5 How must the constant � be chosen so that the vector field

a.r/ � ��x1x2 � x33; .� � 2/x21; .1 � �/x1x23
�

becomes ‘curl-free’ (r � a D 0)? Is it also possible to make a.r/ ‘source-free’
(r � a D 0)?

Exercise 1.5.6

1. Show that the vector field

b.r/ D �x2x3 C 12x1x2; x1x3 � 8x2x
3
3 C 6x21; x1x2 � 12x22x

2
3

�

is ‘curl-free’ .r � b D 0/.
2. Determine a scalar field '.r/ if:

r'.r/ D b.r/
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Exercise 1.5.7

1. Show: r � Œf .r/r� D 0 :
2. ' shall be a scalar field, a a vector field.

Prove: r � .'a/ D 'r � aC .r'/ � a.
3. Verify: r � .r � a/ D r.r � a/��a .

The components of a are two times continuously differentiable.
4. What do we find for r � � 1

2
˛ � r

�
if ˛ is a constant vector?

Exercise 1.5.8

1. Prove:

@

@xi
.a � b/ D

�
@

@xi
a
	
� bC a �

�
@

@xi
b
	
I i D 1; 2; 3

a.r/;b.r/: vector fields; r D .x1; x2; x3/.
2. Prove:

r.'1'2/ D '1r'2 C '2r'1
'1.r/; '2.r/: scalar fields.

3. Let a.r/ and b.r/ be two vector fields.
Express

r � .a � b/

by r � a and r � b!
4. '1.r/ and '2.r/ shall be two times continuously differentiable scalar fields.

Calculate the divergence of the vector field

d.r/ D r'1.r/ � r'2.r/ :

1.6 Matrices and Determinants

Matrices and determinants are important auxiliary means for the mathematician with
the aid of which many statements and formulations can be written in an elegant,
compact, and neatly arranged manner. Therefore, the prospective physicist must
learn the correct handling of matrices and determinants as soon as possible. Here
we want to gather the most important theorems and definitions for matrices and
determinants and demonstrate their usefulness by some simple applications.
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1.6.1 Matrices

Definition 1.6.1 A rectangular array of numbers .aij 2 R/ of the kind

A �

0
B@

a11 : : : a1n
:::

:::

am1 : : : amn

1
CA � .aij/ i D 1;:::;m

j D 1;:::; n
(1.294)

is called an .m � n/-matrix. It consists of m rows .i D 1; 2; : : : ;m/ and n columns
.j D 1; 2; : : : ; n/. If m D n then one speaks of a square matrix.

Definition 1.6.2 Two matrices A D .aij/; B D .bij/ are equal (identical) if:

aij D bij ; 8 i; j (1.295)

Above all A and B must be of the same .m � n/-type.

In the following we define and list up a few special matrices:

1. By a zero matrix one understands a matrix all the elements of which are zero.
2. A symmetric matrix is an .n � n/-matrix the elements of which obey:

aij D aji ; 8 i; j (1.296)

It is symmetric for reflection at the principal diagonal.

Example

A D
0
@
1 5 �1
5 2 4

�1 4 3

1
A :

3. A diagonal matrix has non-zero elements only on the principal diagonal:

dij D di � ıij 8ij ”

0
BBBBB@

d1
d2 0

0
: : :

dn

1
CCCCCA
: (1.297)
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4. A unit matrix 1 is a special diagonal matrix with

1ij D ıij ”

0
BBBBB@

1

1 0
: : :

0

1

1
CCCCCA
: (1.298)

5. To each given .m � n/-matrix A D .aij/ belongs a corresponding transposed
matrix AT resulting from an interchange of rows and columns:

AT D �aT
ij D aji

� D

0
B@

a11 a21 : : : am1
:::

:::
:::

a1n a2n : : : amn

1
CA : (1.299)

AT is a .n �m/-matrix.
6. A column vector is a .n � 1/-matrix.
7. A row vector is a .1 � n/-matrix.

One can interpret the rows (columns) of a matrix as row- (column-) vectors. The
maximal number of linearly independent row vectors (column vectors) of a given
matrix is denoted as row rank (column rank). Since one can show very generally
that always row rank and column rank are identical one speaks only of the ‘rank of
a matrix’.

Example

A D
�
3 0 1

4 1 2

	
:

The row rank is 2 since the two row vectors .3; 0; 1/ and .4; 1; 2/ are not proportional

to each other and therefore are linearly independent. The column vectors

�
0

1

	
and

�
1

2

	
are also linearly independent, while this does not hold for the third vector

�
3

4

	
because of:

�
3

4

	
D 3

�
1

2

	
� 2

�
0

1

	
. Hence the column rank is also 2.
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1.6.2 Calculation Rules for Matrices

Let us first agree upon what we want to understand as the sum of two matrices:

Definition 1.6.3 If A D .aij/; B D .bij/ are two .m � n/-matrices then the sum is
given as the matrix C D AC B D .cij/ with the elements:

cij D aij C bij ; 8 i; j : (1.300)

C is again a .m � n/-matrix.

Example

A D
�
6 3 0

1 4 5

	

B D
�
1 3 5

2 4 6

	 H) C D AC B D
�
7 6 5

3 8 11

	
:

The so defined addition is obviously commutative as well as associative.

The next step concerns the multiplication of a matrix by a real number:

Definition 1.6.4 If A D .aij/ is a .m � n/-matrix then the matrix �A .� 2 R/ is to
understand as the .m � n/-matrix:

�A D ��aij
�
: (1.301)

Hence each matrix element is multiplied by �

Example

3

�
5 �3 1

0 2 �1
	
D
�
15 �9 3

0 6 �3
	
:

We know from normal vectors, which represent nothing else than special
matrices, namely .n � 1/- and .1 � n/-matrices, respectively, that they can be
multiplicatively connected in form of scalar products. That is generalized corre-
spondingly for matrices.

Definition 1.6.5 Let A D .aij/ be a .m � n/-matrix and B D .bij/ a .n � r/-matrix,
i.e. the number of columns in A is equal to the number of rows in B. Then one
understands by product matrix

C D A � B D �cij
�
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an .m � r/-matrix with the elements

cij D
nX

k D 1

aikbkj : (1.302)

Thus the element cij of the product matrix is just the scalar product of the i-th row
vector in A with the j-th column vector in B.

Column j Column j

Row i Row i

It can directly be seen that this definition incorporates as special case the scalar
product of two ordinary vectors. It is important to stress once more that A � B
makes sense only if the number of columns in A is the same as the number of rows
in B.

Example

A D
�
1 3 1

4 5 6

	

B D
0
@
0 1 4

5 �1 0

0 0 1

1
A

H) A � B D
�
15 �2 5

25 �1 22

	
:

In general the matrix multiplication is not commutative:

A � B ¤ B � A .in general/ : (1.303)

For m ¤ r this is immediately clear since then B � A is not defined. For m D r
A �B would be an .m�m/-matrix and B �A an .n� n/-matrix. Commutativity would
then come into play, if at all, only for m D r D n, i.e. for square matrices. But
even then the product is in general not commutative as is shown by the following
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example:

Example

A D
�
1 3

4 5

	
; B D

�
0 1

2 1

	

H) A � B D
�
6 4

10 9

	
I B � A D

�
4 5

6 11

	

H) A � B ¤ B � A :

In the next section we will get to know of a first important application of the
matrix notation.

1.6.3 Transformation of Coordinates (Rotations)

Let †, † be two systems of coordinates specified by the orthonormal basis vectors
(Fig. 1.72):

e1; e2; e3 and Ne1; Ne2; Ne3 ; respectively :

Translations are relatively uninteresting. We therefore assume that the origins of †
and † coincide. Let us now consider an arbitrarily chosen position vector r:

r D .x1; x2; x3/ in † Œr .†/�

r D .Nx1; Nx2; Nx3/ in †
�
r
�
†
��
:

Let us presume that the elements xi in † are known while the elements Nxj in †
are to be determined. r itself is of course independent of the special choice of
the system of coordinates, both with respect to direction as well as magnitude.

Fig. 1.72 Rotation of a
system of coordinates
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Therefore:

3X
j D 1

xjej D
3X

j D 1

Nxj Nej : (1.304)

The basis vectors Nej can be represented in †:

Nej D
X

k

djkek : (1.305)

We determine the expansion coefficients djk by scalar multiplication of this equation
by em:

djm D Nej � em D cos'jm : (1.306)

'jm is the angle enclosed by the j-th axis in † and the m-th axis in †. The ensemble
of real numbers djm defines the .3 � 3/-rotation matrix D:

D D �dij D cos'ij
� D

0
@d11 d12 d13

d21 d22 d23
d31 d32 d33

1
A : (1.307)

Some important properties of the rotation matrix are the direct consequences of the
orthonormality of the basis vectors Nej:

Nei � Nej D ıij D
X
k;m

dikdjm .ek � em/ D
X

m

dimdjm :

This refers to the scalar product of two row vectors of the rotation matrix D.
Hence the rows of the rotation matrix D are obviously orthonormal-
ized:

X
m

dimdjm D
X

m

cos'im cos'jm D ıij : (1.308)

To get more information about D we multiply (1.304) scalarly by the basis vector
Nei:

Nxi D
3X

j D 1

xj
�
ej � Nei

� D
3X

j D 1

cos'ijxj I i D 1; 2; 3 : (1.309)
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In matrix notation this linear system of equations reads:

0
@
Nx1
Nx2
Nx3

1
A D

0
@

d11 d12 d13
d21 d22 d23
d31 d32 d33

1
A
0
@

x1
x2
x3

1
A” r

�
†
� D D � r.†/ : (1.310)

Inspecting this expression component by component we can satisfy ourselves of the
correctness of this relation. Hence D obviously describes the rotation†! †.

We introduce via

D�1D D DD�1 D 1 (1.311)

the inverse matrix D�1 belonging to D and apply this to (1.310):

D�1 r
�
†
� D D�1D r.†/ D E r.†/ D r.†/

D�1
0
@
Nx1
Nx2
Nx3

1
A D D�1D

0
@

x1
x2
x3

1
A D E

0
@

x1
x2
x3

1
A D

0
@

x1
x2
x3

1
A : (1.312)

D�1 describes apparently the back rotation from † to †. We get the elements of
D�1 by scalarly multiplying (1.304) now by ei:

xi D
3P

j D 1

Nxj
�Nej � ei

� D
3P

j D 1

cos'ji Nxj I i D 1; 2; 3 ; (1.313)

0
@

x1
x2
x3

1
A D

0
@

d11 d21 d31
d12 d22 d32
d13 d23 d33

1
A
0
@
Nx1
Nx2
Nx3

1
A” r.†/ D D�1 r

�
†
�
: (1.314)

D�1 thus results from D by interchanging rows and columns and therefore,
according to (1.299) D�1 is the transposed matrix of D:

D�1 D DT D
��

d�1�
ij
D dji

�
: (1.315)

From (1.311) we then get the relations:

ıij D
X

m

dim
�
d�1�

mj D
X

m

dimdjm ;

ıij D
X

m

�
d�1�

im
dmj D

X
m

dmidmj : (1.316)
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Fig. 1.73 Rotation of the
axes of coordinates in the
plane

The first equation is identical to (1.308) expressing the orthonormality of the rows
of the rotation matrix which is already known. The second equation tells us that the
columns, too, are orthonormal.

Examples

(1) Rotation in the plane

We start with a purely geometrical consideration (Fig. 1.73):

x1e1 D x1 cos' Ne1 � x1 sin ' Ne2 ;
x2e2 D x2 cos' Ne2 C x2 sin' Ne1 :

It follows:

r D x1e1 C x2e2 D .x1 cos' C x2 sin '/ Ne1 C .x2 cos' � x1 sin'/ Ne2 ŠD
ŠD Nx1 Ne1 C Nx2Ne2 :

The comparison yields:

Nx1 D x1 cos' C x2 sin ' ;

Nx2 D x2 cos' � x1 sin ' : (1.317)

Which result would we have got by the use of the rotation matrix?

cos'11 D Ne1 � e1 D cos' I cos'12 D Ne1 � e2 D cos.�=2 � '/ I
cos'21 D Ne2 � e1 D cos.�=2C '/ I cos'22 D Ne2 � e2 D cos' :

Therewith the rotation matrix D has the following form:

D D
�

cos' sin'
� sin' cos'

	
: (1.318)
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The orthonormality of rows and columns is obvious. D�1 D DT of course
corresponds to a rotation by the angle .�'/.

�Nx1
Nx2
	
D D

�
x1
x2

	
D
�

x1 cos' C x2 sin '
�x1 sin ' C x2 cos'

	

This result is identical to (1.317) as it should be.

(2) Multiple rotation in the plane

We execute two rotations by the angles '1, '2 in series:

Di D
�

cos'i sin 'i

� sin'i cos'i

	
I i D 1; 2 ;

�Nx1
Nx2
	
D D2


D1

�
x1
x2

	�
D .D2 � D1/

�
x1
x2

	
:

The total rotation is mediated by the product matrix D2 � D1. For this holds:

D2 � D1 D
 

cos'2 cos'1 � sin '2 sin'1 cos'2 sin '1 C sin '2 cos'1
� sin'2 cos'1 � cos'2 sin'1 � sin'2 sin '1 C cos'2 cos'1

!
:

With the aid of the addition theorems (1.60) and (1.61)

cos.xC y/ D cos x cos y � sin x sin y ;

sin.xC y/ D sin x cos yC cos x sin y

we can cast D2 � D1 into the form

D2 � D1 D
�

cos .'1 C '2/ sin .'1 C '2/
� sin .'1 C '2/ cos .'1 C '2/

	
D D1 � D2 (1.319)

which apparently fits our expectation.

(3) Space rotation around the 3-axis

The rotation around the 3-axis (z-axis) means that the 'ij for i; j D 1; 2 are to be
chosen as in example .1/. The 3-axis remains fixed, i.e. Ne3 D e3 W

'33 D 0 I '31 D '13 D '23 D '32 D �=2 :



128 1 Mathematical Preparations

That means for the rotation matrix:

D D
0
@

cos' sin ' 0

� sin ' cos' 0

0 0 1

1
A : (1.320)

We have already compiled quite a number of typical properties of the rotation
matrix. Let us now assume that a ‘complete orthonormal basis system’ (CONS)
feig and an arbitrary matrix D are given. Let us find the conditions which must
be fulfilled by D in order to describe a rotation. Firstly the orthonormality of
rows (1.308) and columns (1.309) must be realized. That, however, is not quite
sufficient, since we still have to require that the new system of coordinates, too,
must represent a right system, i.e. along with

e1 � .e2 � e3/ D 1

it should also hold:

Ne1 � .Ne2 � Ne3/ D 1 (1.321)

This is ensured by the use of the ‘determinant’ of D which must be equal to C1.
That leads us to a new term which is dealt with in the next section.

1.6.4 Determinants

Definition 1.6.6 If

A D �aij
� D

0
B@

a11 : : : a1n
:::

:::

an1 : : : ann

1
CA

is an .n � n/-matrix then one defines as ‘determinant’ of A the following number:

det A D

ˇ̌
ˇ̌
ˇ̌
ˇ

a11 : : : a1n
:::

:::

an1 : : : ann

ˇ̌
ˇ̌
ˇ̌
ˇ
D
X

P

.signP/ a1p.1/ � a2p.2/ � : : : anp.n/ : (1.322)

Here the sequence of numbers

Œp.1/; : : : ; p.n/� � P.1; 2; : : : ; n/
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represents a special permutation of the natural sequence

.1; 2; : : : ; n/ :

The sum contains all the thinkable permutations P, including the identity.
The expression in (1.322) thus consists of nŠ summands (remember (1.52) :
nŠ D 1 � 2 � 3 : : : � n; read: n-factorial). Each summand obviously contains
exactly one element from each row and one element from each column of the
matrix A.

sign P W sign of the permutation P :

Each permutation can be realized successively by pairwise permutation of
neighboring elements (transposition). The sign of the permutation is positive if
the number of transpositions necessary to reach the respective permuted sequence
of numbers is even. Otherwise it is negative.

Example

P.123/ D .231/
realizable by two transpositions:

.123/! .213/! .231/

H) sign P D C1 :

The general definition (1.322) looks rather complicated. Let us therefore inspect
how one can calculate det A explicitly.

n D 1 W det A D ja11j D a11 : (1.323)

n D 2 W det A D
ˇ̌
ˇ̌a11 a12
a21 a22

ˇ̌
ˇ̌ D sign.12/a11a22 C sign.21/a12a21 D

D a11a22 � a12a21 : (1.324)

Scheme (Rule of Thumb)
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The connecting lines symbolize the products of the various summands, solid line
with positive sign, broken line with negative sign.

n D 3 W

det A D
ˇ̌
ˇ̌
ˇ̌
a11 a12 a13
a21 a22 a23
a31 a32 a33

ˇ̌
ˇ̌
ˇ̌ :

There appear 3Š D 6 summands:

This means:

det A D a11 .a22 a33 � a23 a32/� a12 .a21 a33 � a23 a31/C
C a13 .a21 a32 � a22 a31/ :

With (1.324) this expression can also be written in the following form:

det A D a11

ˇ̌
ˇ̌a22 a23
a32 a33

ˇ̌
ˇ̌� a12

ˇ̌
ˇ̌a21 a23
a31 a33

ˇ̌
ˇ̌C a13

ˇ̌
ˇ̌a21 a22
a31 a32

ˇ̌
ˇ̌ : (1.325)

This is called the determinant expansion with respect to the first row (see (1.327)).

Scheme (Sarrus-Rule)

: (1.326)
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It goes without saying that for n � 4 the representation becomes very soon
very much more complicated. The majority of applications in Theoretical Physics,
however, fortunately manages with n � 3. If not, the so-called expansion theorem
helps, which we quote here without proof:

Theorem 1.6.1 Expansion with respect to a row

det A D ai1Ui1 C ai2Ui2 C : : :C ainUin D
nX

j D 1

aijUij (1.327)

Uij D .�1/i C jAij: algebraic complement to aij,
Aij: subdeterminantD determinant of the ..n� 1/� .n� 1//-matrix originating
from A by eliminating the i-th row and the j-th column.

The calculation of the .n�n/-determinant is replaced by the expansion rule to that
of ..n� 1/� .n� 1//-determinants. To the latter one can apply again the expansion
theorem thereby reducing the dimensions of the remaining determinants further on.
After .n� 2/-fold expansion (1.324) comes into operation. The practical evaluation
appears to be the simpler the more zeros are in the row of expansion. In this respect,
in order to enhance the number of zeros in the row, one or more of the following
calculation rules for equivalent rearrangings of the determinant may be helpful.

1.6.5 Calculation Rules for Determinants

Some of the important properties of the determinant can be read off rather directly
from the definition (1.322):

1. Multiplication of a row or a column by a real number ˛

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

a11 : : : a1n
:::

:::

˛ai1 : : : ˛ain
:::

:::

an1 : : : ann

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
D ˛

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

a11 : : : a1n
:::

:::

ai1 : : : ain
:::

:::

an1 : : : ann

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
: (1.328)

After (1.322) the proof is immediately clear since each of the nŠ summands in
det A contains exactly one element from, respectively, each row and each column
of A. In particular it holds:

det.˛A/ D ˛n det A : (1.329)
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2. Likewise directly from the definition (1.322) it follows for the addition with
respect to a row or a column, respectively:

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

a11 C b11 : : : a1n C b1n

a21 : : : a2n
:::

:::

an1 : : : ann

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ
D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

a11 : : : a1n

a21 : : : a2n
:::

:::

an1 : : : ann

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ
C

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

b11 : : : b1n

a21 : : : a2n
:::

:::

an1 : : : ann

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

(1.330)

3. The permutation of two neighboring rows (columns) changes the sign of the
determinant. For a proof one should remember that thereby sign P reverses since
the number of transpositions necessary for P alters by˙1.

4. The matrix A may possess two identical rows (columns). By a sufficient number
of permutations we can bring these two rows (columns) into neighboring
positions (A ! A0). The value of det A can thereby have changed at most by
its sign:

det A D ˙ det A0 :

Now we interchange still once more in A0 the two identical rows (columns) where
the matrix A0 does not change, however, the determinant does:

det A0 D � det A0 :

That means the determinant must vanish:

det A0 D 0 D det A :

5.

det A D det AT (1.331)

The proof is recommended as Exercise 1.6.4. It exploits again directly the
definition (1.322). The statement (1.331) has the important consequence
that one can expand a determinant obviously not only with respect to a
row but also with respect to a column. Namely, along with (1.327) we also
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have:

det A D det AT D
nX

j D 1

aT
ijU

T
ij D

nX
j D 1

ajiUji : (1.332)

6. If one adds to a certain row (column) the elements of another row (col-
umn) multiplied by any real number ˛ then the determinant remains unaf-
fected:

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

:::
:::

ai1 C ˛aj1 : : : ain C ˛ajn
:::

:::

aj1 : : : ajn
:::

:::

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

D (1.333)

D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

:::
:::

ai1 : : : ain
:::

:::

aj1 : : : ajn
:::

:::

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

C ˛

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

:::
:::

aj1 : : : ajn
:::

:::

aj1 : : : ajn
:::

:::

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

„ ƒ‚ …
D 0

:

7. Multiplication theorem (without proof!):

det.A � B/ D det A � det B : (1.334)

8. For a matrix with triangle shape

TR D

0
BBB@

a11 a12 � � � a1n

0 a22 � � � a2n

: : :
:::

0 ann

1
CCCA

one easily finds by expansion with respect to the first column:

det TR D a11 � a22 � � � � � ann :

In particular it follows then for the diagonal matrix D from (1.297):

det D D d1 � d2 � � � � � dn :
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That means for the unit matrix 1 (1.298):

det1 D 1 (1.335)

9. Multiplying the elements of a row (column) of a determinant with the algebraic
complement Uij of another row (column) and summing these products yields
zero:

nX
k D 1

aikUjk D 0 (rows) ;

nX
k D 1

akiUkj D 0 (columns) : (1.336)

Proof Let B be an .n � n/-matrix, which except for the j-th row is identical to A. In
the j-th row of B there appears once more the i-th row of A. Because of point 4. then:

det B D 0 :

One expands B according to (1.327) with respect to the j-th row:

0 D det B D
X

k

bjkUjk D
X

k

aikUjk I q. e. d.

1.6.6 Special Applications

1.6.6.1 Inverse Matrix

Definition 1.6.7 A D .aij/ is a given .n�n/-matrix. Then one denotes as its inverse
matrix

A�1 D
��

a�1�
ij

�

just the .n � n/-matrix, for which holds:

A�1A D A A�1 D 1 : (1.337)

Theorem 1.6.2 A�1 exists only when det A ¤ 0. The elements are then found by:

�
a�1�

ij D
Uji

det A
: (1.338)

(Note the order of the indexes!)
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Proof Let bA D .˛ij D Uji/ be an .n � n/-matrix. With the expansion theo-
rems (1.327) and (1.332) we find:

det A D
X

j

aijUij D
X

j

aij˛ji D
�

A �bA
�

ii
;

det A D
X

i

aijUij D
X

i

˛jiaij D
�bA � A

�
jj
:

The diagonal elements of the product matrices A �bA andbA � A are thus all identical
to det A. What about the non-diagonal elements? With (1.336) one finds:

�
A �bA

�
ij
D
X

k

aik˛kj D
X

k

aikUjk D 0 for i ¤ j :

It follows that A �bA andbA � A are diagonal matrices with

A �bA DbA � A D det A � 1 :

With det A ¤ 0 and by comparison with (1.337) the theorem is proved:

bA
det A

D A�1” Uji

det A
D �a�1�

ij
:

1.6.6.2 Vector Product

The vector product can be written as determinant in a very memorable form.
According to (1.196) holds:

a � b D
X
i; j; k

"ijkaibjek D

D e1 .a2b3 � a3b2/C e2 .a3b1 � a1b3/C e3 .a1b2 � a2b1/ D

D e1

ˇ̌
ˇ̌a2 a3
b2 b3

ˇ̌
ˇ̌� e2

ˇ̌
ˇ̌a1 a3
b1 b3

ˇ̌
ˇ̌C e3

ˇ̌
ˇ̌a1 a2
b1 b2

ˇ̌
ˇ̌ :

This can be written as .3 � 3/-determinant:

a � b D
ˇ̌
ˇ̌
ˇ̌
e1 e2 e3
a1 a2 a3
b1 b2 b3

ˇ̌
ˇ̌
ˇ̌ : (1.339)
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1.6.6.3 Curl (Rotation)

Also this vector differential operator can be expressed as determinant:

r � a D�
ˇ̌
ˇ̌
ˇ̌
e1 e2 e3
@1 @2 @3
a1 a2 a3

ˇ̌
ˇ̌
ˇ̌ : (1.340)

1.6.6.4 Scalar Triple Product

a � .b � c/ �
ˇ̌
ˇ̌
ˇ̌
a1 a2 a3
b1 b2 b3
c1 c2 c3

ˇ̌
ˇ̌
ˇ̌ : (1.341)

One recognizes the correctness of this representation by (1.339) or by a direct
evaluation. A cyclic permutation of the vectors in the scalar triple product in any
case means two interchanges in the determinant each involving two rows, so that
the value of the determinant remains unchanged.

In particular for orthonormalized basis vectors ei we get:

e1 � .e2 � e3/ �
ˇ̌
ˇ̌
ˇ̌
1 0 0

0 1 0

0 0 1

ˇ̌
ˇ̌
ˇ̌ D 1 : (1.342)

1.6.6.5 Rotation Matrix

We remember the question which came up in connection with (1.321). Under what
conditions an arbitrary matrix D based in a given CONS feig is a rotation matrix?
At first it must satisfy the orthonormality relations (1.308) and (1.316):

X
m

dimdjm D ıij ;

X
m

dmidmj D ıij :

What is more, the new basis system f Nejg originating from the original system feig by
rotation shall again be a right-handed trihedron, i.e. (1.342) must also be valid for
the Nej. That is not yet guaranteed by the conditions (1.308) and (1.316). For instance,
if we replace in the i-th row of D the dij by .�dij/, the orthonormality relations will
still be valid. On the other hand, however, according to (1.305) f Neig transfers into
.�Nei/. Thus the right-handed trihedron becomes a left-handed one. However, we
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notice with (1.305):

Ne1 � .Ne2 � Ne3/ D
X

m; n; p

d1md2nd3p em �
�
en � ep

� D

D
X

m; n; p

"mnpd1md2nd3p D det D : (1.343)

That means that besides the orthonormality of rows and columns a rotation matrix
D still must fulfill:

det D D 1 (1.344)

1.6.6.6 Linear Systems of Equations

As the fourth very important field of application of determinants we finally
discuss solutions and solvability conditions for linear systems of equations. We
ask ourselves under which conditions a system of n equations with n unknowns
x1; : : : ; xn of the following type

a11x1 C a12x2 C : : : C a1nxn D b1
:::

:::
:::

:::

an1x1 C an2x2 C : : : C annxn D bn

(1.345)

possesses a uniquely determined solution. Let us assume that the coefficients aij are
all real. They build up the so-called matrix of coefficients A:

A �

0
BBB@

a11 a12 : : : a1n

a21 a22 : : : a2n
:::

:::
:::

an1 an2 : : : ann

1
CCCA : (1.346)

If only one of the bi in (1.345) turns out to be unequal zero, one speaks of an
inhomogeneous system of equations. If all bi D 0, then it is a homogeneous system
of equations.

Now we multiply each of the n equations in (1.345) by the corresponding
algebraic complement Uik, where k is kept fixed while i is the respective row index:

�
a11x1 C a12x2 C : : : C a1nxn

�
U1k D b1U1k

:::
:::

:::
:::

:::�
an1x1 C an2x2 C : : : C annxn

�
Unk D bnUnk :
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We then add all the equations together:

nX
j D 1

 
nX

i D 1

aijUik

!
xj D

nX
j D 1

bjUjk :

Because of (1.336) the expression in the bracket vanishes for j ¤ k so that we are
left with:

nX
i D 1

aikUikxk D
nX

j D 1

bjUjk

On the left-hand side we recognize detA, expanded according to (1.332) with respect
to the k-th column:

det A � xk D
nX

j D 1

bjUjk : (1.347)

We define a new matrix Ak as the matrix identical to A except for the fact that the
k-th column is replaced by a column vector which is built up by the inhomogeneities
of the linear system of equations (1.345):

0
B@

b1
:::

bn

1
CA

But then the right-hand side of (1.347) is just det Ak, expanded according to the k-th
column:

xk det A D det Ak : (1.348)

Therewith follows the

Cramer’s rule.

The linear inhomogeneous system of equations (1.345) possesses a unique solution
only when

det A ¤ 0 :
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The solution is then given by:

xk D det Ak

det A
k D 1; 2; : : : ; n : (1.349)

Let us illustrate the procedure by the following

Example

x1 C x2 C x3 D 2 ;
3x1 C 2x2 C x3 D 4 ;
5x1 � 3x2 C x3 D 0

A D
0
@
1 1 1

3 2 1

5 �3 1

1
A H) det A D �12 ;

A1 D
0
@
2 1 1

4 2 1

0 �3 1

1
A H) det A1 D �6 ;

A2 D
0
@
1 2 1

3 4 1

5 0 1

1
A H) det A2 D �12 ;

A3 D
0
@
1 1 2

3 2 4

5 �3 0

1
A H) det A3 D �6 :

According to Cramer’s rule the system of equations is uniquely solvable since
det A ¤ 0 and the solution is:

x1 D 1

2
I x2 D 1 I x3 D 1

2
:

We now consider the special case of homogeneous systems of equations, i.e. we
assume that all bi in (1.345) are zero. But then it must also hold that det Ak � 0, so
that according to (1.348) what remains is to solve:

xk det A D 0 (1.350)

If det A ¤ 0, then the homogeneous system of equations has only the trivial zero
solution, which of course always exists:

x1 D x2 D : : : D xn D 0 : (1.351)



140 1 Mathematical Preparations

Hence, non-trivial solutions of a homogeneous system of equations can be expected
only if

det A D 0 (1.352)

That means, however, that not all rows (columns) can be linearly independent. For
the rank of the matrix one therefore has to conclude:

rank A D m < n : (1.353)

Let us presume that the first m equations in (1.345) are the linearly independent ones.
(If that is not the case we can arbitrarily interchange the order of the equations!)
Then we can write for these equations:

a11x1 C : : :C a1mxm D � .a1mC1xmC1 C : : :C a1nxn/
:::

:::
:::

:::

am1x1 C : : :C ammxm D � .ammC1xmC1 C : : :C amnxn/ :

(1.354)

For the .m � m/ matrix of coefficients A0,

A0 D

0
B@

a11 : : : a1m
:::

:::

am1 : : : amm

1
CA ; (1.355)

one can now assume

det A0 ¤ 0

so that Cramer’s rule (1.349) becomes applicable. The matrix Ak then has, as k-th
column vector, the following expression:

0
BBBBB@

�
nP

j D m C 1

a1jxj

:::

�
nP

j D m C 1

amjxj

1
CCCCCA

(1.356)

The solution thus will still depend on the arbitrarily choosable parameters
xm C 1; : : : ; xn.
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Example

x1 C4x2 �x3 D 0 ;
2x1 �3x2 Cx3 D 0 ;
4x1 C16x2 �4x3 D 0 I

A D
0
@
1 4 �1
2 �3 1

4 16 �4

1
A :

It is obviously

det A D 0 :

The first two rows are linearly independent:

x1 C 4x2 D x3
2x1 � 3x2 D �x3

H) det A0 D �11 :

With

det A1 D
ˇ̌
ˇ̌ x3 4

�x3 �3
ˇ̌
ˇ̌ D x3 ;

det A2 D
ˇ̌
ˇ̌1 x3
2 �x3

ˇ̌
ˇ̌ D �3x3

follows

x1 D � x3
11
I x2 D 3

11
x3 ;

where x3 remains arbitrary.

1.6.7 Exercises

Exercise 1.6.1 Construct for the matrices

A D
0
@
0 1 2

3 0 4

0 0 5

1
A ; B D

0
@
1 0 0

1 1 0

0 0 1

1
A

the product matrices A � B, B � A.
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Exercise 1.6.2

A � .aij/ W .m � n/�matrix

B � .bij/ W .n � r/ �matrix

1. Show that for the transposed matrices holds:

.A � B/T D BTAT

2. Let m D n. Then A�1 is the inverse matrix of A if it fulfills the relation

A�1 � A D A � A�1 D 1

Prove the validity of

.A�1/T D .AT/�1

3. Let m D n D r. Verify the relation

.A � B/�1 D B�1A�1

Exercise 1.6.3 Calculate the following determinants:

1)

ˇ̌
ˇ̌
ˇ̌
4 3 2

1 0 �1
5 2 2

ˇ̌
ˇ̌
ˇ̌ ; 2)

ˇ̌
ˇ̌
ˇ̌
ˇ̌

1 6 8 7

�2 3 11 5

5 0 6 7

�1 9 19 12

ˇ̌
ˇ̌
ˇ̌
ˇ̌
;

3)

ˇ̌
ˇ̌
ˇ̌
ˇ̌

4 3 0 1

6 7 8 �1
0 1 0 7

3 �4 0 6

ˇ̌
ˇ̌
ˇ̌
ˇ̌
:

Exercise 1.6.4

1. Let AT be the transposed matrix of the .n � n/-matrix A. Prove:

det AT D det A :

2. Let B be an antisymmetric .n � n/-matrix

B D .bij/ with bij D �bji :
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Demonstrate that

det B D 0 ;

must be if n is an odd integer.

Exercise 1.6.5 The matrix A is given by

A D

0
BB@

a b c d
�b a �d c
�c d a �b
�d �c b a

1
CCA :

Show that

det A D �a2 C b2 C c2 C d2
�2
:

Hint: Multiply first A by its transposed matrix AT .

Exercise 1.6.6 Inspect the following systems of equations with respect to solvabil-
ity and, if solvable, find the solution

1) 2x1 C x2 C 5x3 D �21 ;
x1 C 5x2 C 2x3 D 19 ;

5x1 C 2x2 C x3 D 2 :

2) x1 � x2 C 3x3 D 4 ;

9x1 C 3x2 � 12x3 D �3 ;
3x1 C x2 � 4x3 D �1 :

3) x1 C x2 � x3 D 0 ;

�x1 C 3x2 C x3 D 0 ;

x2 C x3 D 0 :

4) 2x1 � 3x2 C x3 D 0 ;

4x1 C 4x2 � x3 D 0 ;

x1 � 3
2
x2 C 1

2
x3 D 0 :

Exercise 1.6.7 Given is the matrix A:

A D
0
@
� 1
2

p
2 0 � 1

2

p
2

0 1 0
1
2

p
2 0 � 1

2

p
2

1
A :
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1. Does A describe a rotation? If yes what kind of rotation?
2. How do the vectors

a D .0;�2; 1/ ; b D .3; 5;�4/

change after the rotation? Calculate the scalar product a � b before and after the
rotation.

Exercise 1.6.8

1. Determine for the matrices

A D 1p
2

0
@
�1 0 �1
0
p
2 0

1 0 �1

1
A I B D

0
@
1 0 1

0 1
2
0

�1 0 1

1
A

the product matrices AB and BA!
2. Calculate the determinants of A and B as well as those of AB and BA!
3. Are A and B rotation matrices? Give reasons for your answer!
4. Determine the inverse matrix A�1!

Exercise 1.6.9 Prove the following statements!

1. During a rotation the length of a vector is unchanged.
2. For the elements dij of the rotation matrix the relations

dij D Uij ; i; j D 1; 2; 3 ;

are valid, where Uij is the algebraic complement to dij.

Exercise 1.6.10 D1 and D2 are two rotation matrices. Show that rows and columns
of the product matrix D D D1 � D2 are orthonormal.

1.7 Coordinate Systems

1.7.1 Transformation of Variables, Jacobian Determinant

For our considerations so far we have presupposed, directly or at least indirectly,
a Cartesian system of coordinates. However, in subsequent applications we shall
use, as a rule, those coordinate systems which best fit the underlying problem with
respect to its inherent symmetry. That will then not necessarily be the Cartesian
coordinates. Therefore we consider in the following the principles for the transition
from one set of coordinates to another one.

Let us inspect first, as an introductory example, plane polar coordinates by
which the position of a point P in the plane can almost always be defined as
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Fig. 1.74 To the definition of
plane polar coordinates

conveniently as by Cartesian coordinates x1, x2. In Fig. 1.74 r is the distance between
P and the origin of coordinates O and ' is the angle between the straight line OP
and the 1-axis.

The mapping

.r; '/ H) .x1; x2/

is described by the transformation formulae

x1 D r cos' D x1.r; '/ ;

x2 D r sin ' D x2.r; '/ (1.357)

One speaks of a two-dimensional point transformation which maps the (r; ')-
plane point by point onto the (x1,x2)-plane. We must reasonably require from the
new coordinates that they catch each point of the plane. This is here obviously the
case. However, it should also be guaranteed that each point P Š .x1; x2/ is uniquely
ascribed to a definite .r; '/ pair. But here difficulties appear with .x1 D 0; x2 D 0/
since all pairs .0; '/ are mapped on .0; 0/. The mapping (1.357) is for r D 0 not
uniquely reversible, but otherwise for r ¤ 0:

r D
q

x21 C x22 ;

' D arctan
x2
x1
: (1.358)

The trigonometric function arc tangent has to be restricted to the branch which
delivers the values 0 � ' < 2� . Hence the transformation (1.357) is almost always
reversible.

Let us now consider a general transformation of variables in a d-dimensional
space:

xi D xi .y1; : : : ; yd/ I i D 1; : : : ; d : (1.359)
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As in the introductory example we require:

1. Each point of the space under consideration must be specifiable by the general-
ized coordinates yi.

2. The transformation must be ‘almost always locally reversible’.

That means:

(a) ‘Locally reversible’: To any arbitrary point P there exists a neighborhood
U.P/ in which the mapping is absolutely unique, i.e. to each set of d elements
.x1; : : : ; xd/ there belongs exactly one set of d elements .y1; : : : ; yd/.

(b) ‘Almost always’: The condition of local reversibility is allowed to be violated
at most in regions of lower dimensionality d0 < d. The transformation between
Cartesian coordinates and plane polar coordinates is, as we have seen, almost
always locally reversible except for the one-dimensional manifold fr D 0I 0 �
' � 2�g.

How can we check the local reversibility? P may be an arbitrarily chosen but fixed
point of the d dimensional space with the coordinates

.x1; : : : ; xd/ and .y1; : : : ; yd/ ; respectively :

A differentially small neighborhood of P will then be covered by:

.y1 C dy1; : : : ; yd C dyd/ :

For the corresponding coordinates xi one thus has to assume :

dxi D xi .y1 C dy1; : : : ; yd C dyd/� xi .y1; : : : ; yd/ I i D 1; : : : ; d :

Since the coordinates of P have to remain fixed, the requirement of a one-to-one
mapping means that the differential changes dyi are in one-to-one relation to the
differential changes dxi. For the latter according to (1.261) we have:

dxi D
dX

j D 1

@xi

@yj
dyj

ˇ̌
ˇ̌
P

I i D 1; : : : ; d : (1.360)

With the so-called Jacobian matrix,

F.xy/ D

0
BB@

@x1
@y1

: : : @x1
@yd

:::
:::

@xd
@y1

: : : @xd
@yd

1
CCA I F.xy/

ij D
@xi

@yj
; (1.361)
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which of course depends on the coordinates of the point under consideration P, we
can write (1.360) also in matrix form:

0
B@

dx1
:::

dxd

1
CA D F.xy/

P

0
B@

dy1
:::

dyd

1
CA : (1.362)

An inversion is possible exactly then when the inverse
�

F.xy/
P

��1
does exist. Accord-

ing to (1.338), however, that means that the so-called ‘Jacobian determinant’ must
be unequal zero:

det F.xy/ D @.x1; : : : ; xd/

@.y1; : : : ; yd/
D

ˇ̌
ˇ̌
ˇ̌
ˇ̌

@x1
@y1

: : : @x1
@yd

:::
:::

@xd
@y1

: : : @xd
@yd

ˇ̌
ˇ̌
ˇ̌
ˇ̌

(1.363)

Let us formulate this issue as follows:

Theorem 1.7.1 The transformation of variables

xi D xi .y1; : : : ; yd/ I i D 1; 2; : : : ; d

with continuously partially differentiable functions xi is in the proximity of a point
P bijective, i.e. uniquely solvable, if and only if:

@.x1; : : : ; xd/

@.y1; : : : ; yd/

ˇ̌
ˇ̌
P

¤ 0 (1.364)

As an example we consider plane polar coordinates d D 2:

@x1
@r
D cos' ;

@x1
@'
D �r sin ' ;

@x2
@r
D sin' ;

@x2
@'
D r cos'

H) @.x1; x2/

@.r; '/
D
ˇ̌
ˇ̌ cos' �r sin '

sin ' r cos'

ˇ̌
ˇ̌ D r :

We see that the mapping is everywhere locally reversible except for r D 0.
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The following statement is important and also is easily provable:

Theorem 1.7.2 Let

xi D xi .y1; : : : ; yd/

yi D yi .z1; : : : ; zd/
I i D 1; : : : ; d

be two continuously partially differentiable transformations. Then it holds for the
double transformation:

xi D xi Œy1 .z1; : : : ; zd/ ; : : : ; yd .z1; : : : ; zd/� ;

@ .x1; : : : ; xd/

@ .z1; : : : ; zd/
D @ .x1; : : : ; xd/

@ .y1; : : : ; yd/
� @ .y1; : : : ; yd/

@ .z1; : : : ; zd/
: (1.365)

Proof The proof uses the chain rule (1.87):

@xi

@zj
D

dX
k D 1

@xi

@yk

@yk

@zj
” F.x; z/ D F.x; y/ � F.y;z/ :

Applying the multiplication theorem (1.334) immediately leads to the above
statement:

det F.x; z/ D det F.x; y/ det F.y;z/ :

In particular it follows from this theorem for the special case zi D xi:

@.y1; : : : ; yd/

@.x1; : : : ; xd/
D 1

@.x1;:::;xd/

@.y1;:::;yd/

: (1.366)

That means: If @.x1;:::;xd/

@.y1;:::yd/
¤ 0, then it must also be true that @.y1;:::;yd/

@.x1;:::;xd/
¤ 0. This, in

turn, corresponds to the almost self-evident conclusion that

xi D xi .y1; : : : ; yd/ I i D 1; 2; : : : ; d

together with

yj D yj .x1; : : : ; xd/ I j D 1; 2; : : : ; d

represents an unambiguously reversible transformation.
For the cases d D 2 and d D 3, which we are of course most interested in,

the Jacobian determinant has a rather illustrative geometrical meaning. For d D 2,
it indicates how a surface element will be changed by the transformation and for
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d D 3 it characterizes the change of a volume element. Let us inspect the situation
for d D 3 in a bit more detail. For this purpose we first introduce a new term, namely
the ‘coordinate line’.

Definition 1.7.1 If in all formulae of the transformation

x D x .y1; : : : ; yd/

one keeps .d � 1/ of the d coordinates yi constant, i.e. yi D const for i ¤ j, then it
results a space curve parametrized by yj which is called the yj-coordinate line.

Examples .d D 2/
(a) Cartesian coordinates:

The coordinate lines build a rectangular, rectilinear grid (Fig. 1.75).
(b) Plane polar coordinates:

The lines ' D const are again straight lines, the lines r D const, however,
are circles (Fig. 1.76). One therefore speaks of ‘curvilinear coordinates’.
Nevertheless, one recognizes that the network of coordinate lines is locally still
rectangular (curvilinear-orthogonal).

We now consider an infinitesimally small volume element dV in the three-
dimensional space which is restricted by such curvilinear coordinate lines. For
sufficiently small edges one can approximate the small volume by a parallelepiped

Fig. 1.75 Coordinate lines in
case of Cartesian coordinates

Line

Line

Fig. 1.76 Coordinate lines in
case of plane polar
coordinates

Line

Line
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Fig. 1.77 Coordinate lines in the case of arbitrary curvilinear coordinates

bounded by the vectors:

da �
�
@x1
@y1

dy1;
@x2
@y1

dy1;
@x3
@y1

dy1

	
� @r
@y1

dy1 ;

db �
�
@x1
@y2

dy2;
@x2
@y2

dy2;
@x3
@y2

dy2

	
� @r
@y2

dy2 ;

dc �
�
@x1
@y3

dy3;
@x2
@y3

dy3;
@x3
@y3

dy3

	
� @r
@y3

dy3 :

The volume dV of the parallelepiped is then given by the scalar triple product built
by da, db, dc (Fig. 1.77). For this holds:

dV D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

@x1
@y1

dy1
@x2
@y1

dy1
@x3
@y1

dy1

@x1
@y2

dy2
@x2
@y2

dy2
@x3
@y2

y2

@x1
@y3

dy3
@x2
@y3

dy3
@x3
@y3

dy3

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

D

(1.328)D dy1dy2dy3

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

@x1
@y1

@x2
@y1

@x3
@y1

@x1
@y2

@x2
@y2

@x3
@y2

@x1
@y3

@x2
@y3

@x3
@y3

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

(1.331)D dy1dy2dy3

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

@x1
@y1

@x1
@y2

@x1
@y3

@x2
@y1

@x2
@y2

@x2
@y3

@x3
@y1

@x3
@y2

@x3
@y3

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

D

D @.x1; x2; x3/

@.y1; y2; y3/
dy1 dy2 dy3 D dx1 dx2 dx3 :
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Hence the Jacobian determinant describes indeed how the representation of the
volume element will change as a consequence of the variable transformation. The
relation (1.367) is of course not only valid for d D 3 but holds with an analogous
generalization for all dimensions d. This turns out to be especially important for the
change of variables in multiple integrals.

1.7.2 Curvilinear Coordinates

We want to investigate with which basis vectors the curvilinear coordinates are to
be described. We first start with the already familiar Cartesian coordinates,

x1; x2; x3 ;

defined by the CONS:

e1 D
0
@
1

0

0

1
A I e2 D

0
@
0

1

0

1
A I e3 D

0
@
0

0

1

1
A : (1.367)

For the position vector r we then have,

r D
3X

j D 1

xjej ;

and for its differential:

dr D
3X

j D 1

dxjej D
3X

j D 1

@r
@xj

dxj :

That means

ej D @r
@xj

; (1.368)

which obviously agrees with (1.367). ej is the tangent-unit vector to the xj coordinate
line.

This we now generalize to arbitrary curvilinear coordinates y1, y2, y3: The
basis vectors are defined in such a way that they are oriented tangentially to the
coordinate lines. The vector @r=@yi lies obviously tangentially to the yi coordinate
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Fig. 1.78 Basis vectors for
curvilinear coordinates

line which, however, in general is not normalized to one. With

byi D
ˇ̌
ˇ̌ @r
@yi

ˇ̌
ˇ̌ (1.369)

one then obtains as unit vector:

eyi D b�1
yi

@r
@yi

: (1.370)

In contrast to the Cartesian basis vectors (1.368) the above unit vectors in
general do not form a space-fixed orthonormal trihedron but rather will be position
dependent, namely the so-called ‘local trihedron’ (Fig. 1.78).

Example: Plane Polar Coordinates

@r
@'
D .�r sin '; r cos'/ ;

b' D
ˇ̌
ˇ̌ @r
@'

ˇ̌
ˇ̌ D r ;

@r
@r
D .cos'; sin '/ ;

br D
ˇ̌
ˇ̌@r
@r

ˇ̌
ˇ̌ D 1 :

This yields as basis vectors:

e' D .� sin '; cos'/ I er D .cos'; sin '/ : (1.371)

These basis vectors are evidently orthonormal. One speaks of

curvilinear-orthogonal
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Fig. 1.79 Basis vectors for
plane polar coordinates

basis vectors if

eyi � eyj D ıij (1.372)

is fulfilled (Fig. 1.79).
For the differential of the position vector r one finds with curvilinear coordinates:

dr D
3X

j D 1

@r
@yj

dyj D
3X

j D 1

byj dyjeyj : (1.373)

Example: Plane Polar Coordinates

dr D dr er C r d' e' : (1.374)

To conclude we still want to rewrite the vector-differential operators, intro-
duced in Sect. 1.5.3, for curvilinear coordinates:

(a) Gradient

For the yi component of the gradient of a scalar, sufficiently often differentiable field
' holds:

ryi' D eyi � r' D b�1
yi

@r
@yi
� r' D

D b�1
yi

�
@x1
@yi

@'

@x1
C @x2
@yi

@'

@x2
C @x3
@yi

@'

@x3

	
:
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With the chain rule (1.260) we get:

ryi' D b�1
yi

@'

@yi
: (1.375)

The nabla-operator introduced in (1.269) has here the more general shape:

r D
�

b�1
y1

@

@y1
; b�1

y2

@

@y2
; b�1

y3

@

@y3

	
D

3X
j D 1

eyj b
�1
yj

@

@yj
: (1.376)

(b) Divergence

Let

a D
3X

i D 1

ayieyi

be a sufficiently often partially differentiable vector field. Then we have:

r � a D 1

by1by2by3


@

@y1

�
by2by3ay1

�C @

@y2

�
by3by1ay2

�C @

@y3

�
by1by2ay3

��
:

(1.377)

Proof In the first step with (1.376) we have:

r � a D
X
i; j

�
eyi b

�1
yi

@

@yi

	
� �ayjeyj

� D

D
X

i

1

byi

@ayi

@yi
C
X

i; j

ayj

byi

eyi �
@eyj

@yi
: (1.378)

We exploit

@2r
@yi@yj

D @2r
@yj@yi

and deduce with (1.370):

@

@yi

�
byjeyj

� D @

@yj

�
byieyi

�

” byj

@

@yi
eyj C

@byj

@yi
eyj D byi

@eyi

@yj
C @byi

@yj
eyi :
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We multiply this expression scalarly by eyi :

byj eyi �
@

@yi
eyj C ıij

@byj

@yi
D byieyi �

@eyi

@yj
C @byi

@yj
;

eyi �
@eyi

@yj
D 1

2

@

@yj

�
e2yi

� D 0 :

so that we have:

byj eyi �
@

@yi
eyj D

@byi

@yj
� ıij

@byj

@yi
D
8
<
:
0 for i D j ,
@byi

@yj
for i ¤ j :

This result we now use in (1.378):

r � a D
X

i

b�1
yi

@ayi

@yi
C

i ¤ jX
i; j

ayj

byibyj

@byi

@yj
D
X

i

b�1
yi

0
@@ayi

@yi
C

¤ iX
j

ayi

byj

@byj

@yi

1
A D

D 1

by1by2by3


@

@y1

�
ay1by2by3

�C : : :
�
I q. e. d.

In the second step, in the double sum we have interchanged the indexes i and j.

(c) Curl (Rotation)

Analogously to the derivation of the divergence one gets the expression for the
rotation:

r � a D 1

by1by2by3

ˇ̌
ˇ̌
ˇ̌
ˇ̌

by1ey1 by2ey2 by3ey3
@

@y1

@

@y2

@

@y3
by1ay1 by2ay2 by3ay3

ˇ̌
ˇ̌
ˇ̌
ˇ̌
: (1.379)

1.7.3 Cylindrical Coordinates

Cylindrical coordinates .�; '; z/ correspond to the planar polar coordinates .�; '/
which are for the three-dimensional space supplemented by an additional vertical
coordinate z. They are conveniently used for problems which exhibit a rotation
symmetry with respect to a fixed axis. The latter is then declared as x3 axis
(Fig. 1.80).
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Fig. 1.80 Cylindrical
coordinates

Fig. 1.81 Volume element in
cylindrical coordinates

1.7.3.1 Transformation Formulae

x1 D � cos' ;

x2 D � sin' ;

x3 D z : (1.380)

1.7.3.2 Jacobian Determinant

@ .x1; x2; x3/

@.�; '; z/
D
ˇ̌
ˇ̌
ˇ̌
cos' �� sin ' 0

sin ' � cos' 0

0 0 1

ˇ̌
ˇ̌
ˇ̌ D � : (1.381)

Thus the mapping is uniquely reversible except for � D 0.
The volume element, which is the volume increase due to infinitesimal changes

of the coordinates, can be read off from Fig. 1.81:

dV D � d� d' dz : (1.382)

This follows already from the general relation (1.367):

dV D @ .x1; x2; x3/

@.�; '; z/
d� d' dz : (1.383)
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1.7.3.3 Coordinate Lines ŒŠ r D r.yi W yj D const for j ¤ i/�

� line: radial ray in the x1; x2 plane starting from the z-axis.
' line: circle in the x1; x2 plane with its center on the z-axis.
z line: straight line parallel to the x3 axis.

We derive the unit vectors:

@r
@�
D .cos'; sin '; 0/ H) b� D 1 ;

@r
@'
D .�� sin'; � cos'; 0/ H) b' D � ; (1.384)

@r
@z
D .0; 0; 1/ H) bz D 1 :

Therewith the unit vectors in cylindrical coordinates are given by:

e� D .cos'; sin '; 0/ ;

e' D .� sin '; cos'; 0/ ; (1.385)

ez D .0; 0; 1/ :

These are curvilinear-orthogonal and are oriented tangentially at the respective
coordinate line. For the differential of the position vector according to (1.373) we
have with cylindrical coordinates:

dr D d� e� C � d' e' C dz ez : (1.386)

1.7.3.4 Gradient

It follows immediately from (1.376):

r �
�
@

@�
;
1

�

@

@'
;
@

@z

	
D e�

@

@�
C e'

1

�

@

@'
C ez

@

@z
: (1.387)

Divergence and curl can be read off with (1.384) directly from (1.377) and (1.379).

1.7.4 Spherical Coordinates

Spherical (polar) coordinates are especially suited to problems with radial symme-
try.
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Fig. 1.82 To the definition of spherical coordinates

1.7.4.1 Transformation Formulae

x1 D r sin# cos' ;

x2 D r sin# sin' ; (1.388)

x3 D r cos# :

r is the length of the position vector (Fig. 1.82);
# D ^.r; x3 axis) with 0 � # � � (‘polar angle’);
' D ^(projection of r onto the x1; x2 plane, x1 axis) with 0 � ' � 2�

(‘azimuthal angle’)

1.7.4.2 Jacobian Determinant

@ .x1; x2; x3/

@.r; #; '/
D
ˇ̌
ˇ̌
ˇ̌
sin# cos' r cos# cos' �r sin# sin '
sin# sin' r cos# sin ' r sin# cos'

cos# �r sin# 0

ˇ̌
ˇ̌
ˇ̌ D

D r2 cos2 # sin# cos2 ' C r2 sin3 # sin2 'C
C r2 sin# cos2 # sin2 ' C r2 sin3 # cos2 ' D

D r2 sin# : (1.389)

So the mapping is uniquely reversible except for r D 0 and/or # D 0; � .
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1.7.4.3 Volume Element

dV D @ .x1; x2; x3/

@.r; #; '/
dr d# d' D r2 sin# dr d# d' : (1.390)

One should try to visualize this result geometrically!
As an example of use we calculate the volume of a sphere with radius R. For this

purpose we have to sum up all volume elements dV within the sphere in Riemannian
sense.

V D
Z

sphere

dV D
RZ

0

�Z

0

2�Z

0

r2 dr sin# d# d' D ' j2�0 � .� cos#/ j�0 �
r3

3

ˇ̌
ˇ̌
R

0

D 4�

3
R3 :

Compare this with the much more cumbersome calculation in Sect. 1.2.5 to
appreciate the usefulness of curvilinear (here spherical) coordinates!

1.7.4.4 Coordinate Lines

r line: radial ray starting from the origin of coordinates.
' line: circle, parallel to the x1; x2 plane with its center on the x3-axis.
# line: marginated by a semicircle with the origin of coordinates as its center and
by the x3 axis.

For the unit vectors we need:

@r
@r
D .sin# cos'; sin# sin '; cos#/ H) br D 1 ;

@r
@#
D r.cos# cos'; cos# sin '; � sin#/ H) b# D r ;

@r
@'
D r.� sin# sin'; sin# cos'; 0/ H) b' D r sin# : (1.391)

This yields the curvilinear unit vectors (Fig. 1.83):

er D .sin# cos'; sin# sin '; cos#/ ;

e# D .cos# cos'; cos# sin '; � sin#/ ; (1.392)

e' D .� sin'; cos'; 0/ :

By construction these basis vectors are oriented tangentially to the coordinate
lines. Obviously they are curvilinear-orthogonal. For the differential dr of the
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Fig. 1.83 Basis vectors for
spherical coordinates

position vector we find according to (1.373) and (1.385):

dr D dr er C r d# e# C r sin# d' e' : (1.393)

1.7.4.5 Nabla Operator (Gradient)

r �
�
@

@r
;
1

r

@

@#
;

1

r sin#

@

@'

	
� er

@

@r
C e#

1

r

@

@#
C e'

1

r sin#

@

@'
: (1.394)

Divergence and curl can be directly found with (1.391) from (1.377) and (1.379),
respectively.

1.7.5 Exercises

Exercise 1.7.1

1. Verify for the variable transformation

xi D xi .y1; y2/ I i D 1; 2

the following symmetries:

@.x1; x2/

@.y1; y2/
D @.x2; x1/

@.y2; y1/
D �@.x1; x2/

@.y2; y1/
:



1.7 Coordinate Systems 161

2. Calculate the Jacobian determinants

@.x1; x2/

@.x1; x2/
and

@.x1; y2/

@.y1; y2/
:

Exercise 1.7.2 Derive for

x D x.y; z/ ;

y D y.x; z/ ;

z D z.x; y/

the following relations:

�
@x

@y

	

z

D
�
@y

@x

	

z

��1
and

�
@x

@y

	

z

�
@y

@z

	

x

�
@z

@x

	

y

D �1 :

Exercise 1.7.3 x1; x2; x3 are Cartesian coordinates. Parabolic cylindrical coordi-
nates .u; v; z/ satisfy the transformation formulae:

x1 D 1

2

�
u2 � v2� ;

x2 D u v ;

x3 D z :

1. Calculate the Jacobian determinant

@.x1; x2; x3/

@.u; v; z/
:

2. How does the volume element dV D dx1dx2dx3 transform itself?
3. Determine the unit vectors

eu; ev; ez Š

Illustrate the coordinate lines!
4. Derive the differential dr of the position vector and the nabla-operator r in

parabolic cylindrical coordinates.

Exercise 1.7.4 If a point P has the Cartesian coordinates .3; 3/. What are its plane
polar coordinates?
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Exercise 1.7.5 Represent the points Pi D .xi; yi; zi/:

P1 D .1; 0; 1/ I P2 D .0; 1;�1/ I P3 D .0;�3; 0/

by

1. spherical coordinates .r; #; '/,
2. cylindrical coordinates .�; '; z/!

Exercise 1.7.6 How does the equation of the circle with radius R look like in
Cartesian coordinates and in plane polar coordinates, respectively.

Exercise 1.7.7 Formulate the vector field

a D x3e1 C 2x1e2 C x2e3

in cylindrical coordinates and in spherical coordinates!

Exercise 1.7.8

1. Calculate the area of circle by use of

(a) Cartesian coordinates .x; y/ (Fig. 1.84),
(b) plane polar coordinates .�; '/ (Fig. 1.85).

2. Calculate the volume of a sphere with radius R!
3. Calculate the cylinder segment plotted in Fig. 1.86. Thereby R1 is the inner

radius, R2 the outer radius and z0 the height of the cylinder!

Fig. 1.84 Calculation of the
area of a circle by use of
Cartesian coordinates

Fig. 1.85 Calculation of the
area of a circle by use of
planar polar coordinates
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Fig. 1.86 To the calculation
of the volume of a cylinder
segment

1.8 Self-Examination Questions

To Section 1.1

1. Denominate the most important types of numbers!
2. What does one understand by a convergent, divergent sequence of numbers?
3. Which calculation rules hold for convergent sequences of numbers?
4. How are harmonic and geometric series defined?
5. What does one understand by the domain of definition D and the co-domain W

of a function f .x/?
6. When is f .x/ continuous at x0?
7. When does f .x/ have a unique inverse function f �1?
8. Give the series expansions of the cosine and the sine function!
9. To which function the logarithm to the basis a is the inverse function?

10. When is f .x/ differentiable at x0?
11. How is the quotient f .x/=g.x/ .g.x/ ¤ 0/ to be differentiated?
12. What does the chain rule tell us?
13. Under which conditions does l’Hospital’s rule become useful?
14. When does f .x/ exhibit a maximum, a minimum, an inflection point at x0?

To Section 1.2

1. What is the relationship between differentiation and integration?
2. What do we understand by antiderivative (primitive function) of f .x/?
3. Formulate the antiderivative of sin x!
4. What is the illustrative meaning of the (definite) integral of the function f .x/?
5. How does the value of a definite integral change when we interchange the lower

and the upper limits?
6. What does the mean value theorem of integral calculus imply?
7. Formulate the fundamental theorem of calculus!
8. Explain the technique of integration by parts!
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9. When is the substitution of the variable useful?
10. What is to be taken care of in multiple integrals with non-constant limits of

integration?

To Section 1.3

1. Which parameters are needed to define a vector?
2. Which vector does not have a well-defined direction?
3. Which multiplicative connections do exist for vectors?
4. Formulate Schwarz’s inequality! Try to outline the proof!
5. What is a linear vector space? When is it called unitary?
6. What is the illustrative meaning of the magnitude of a vector product? How can

we fix its direction?
7. What is the difference between a polar and an axial vector?
8. What is a pseudoscalar?
9. Formulate the sine (cosine) rule!

10. Which geometrical meaning can be given to the scalar triple product?
11. How can we treat the double vector product?
12. How is the basis of a linear vector space defined?
13. What do we interpret as directional cosine?
14. Give the component representation of the scalar product between two vectors!
15. Find the component representations of the vector product, the double vector

product, and the scalar triple product!

To Section 1.4

1. What is a space curve? How is the path line (trajectory) of a mass point defined?
2. How does one parametrize a space curve?
3. What is a vector-valued function?
4. Parametrize the planar circular motion and helical line!
5. Define the continuity of space curves!
6. How is the derivative of a vector-valued function defined?
7. What is the arc length of a space curve?
8. What is called the natural parametrization of a space curve?
9. Which are the unit vectors of the moving trihedron?

10. Explain the terms curvature, radius of curvature, osculating plane, torsion, and
torsion radius!

11. Formulate Frenet’s formulae!
12. Which space curve has the smaller curvature: the circle or the helical line, if

both have the same radius in the xy plane?
13. Which torsion radius has the circular motion?
14. Which direction does the normal-unit vector of the helical line have?
15. What do you understand by tangent acceleration and centripetal acceleration of

a mass point?
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To Section 1.5

1. What is a scalar field and what is a vector field? Give examples!
2. Interpret the term contour line! What is a field line?
3. Define the continuity of fields!
4. What do we understand by the partial derivative of a scalar field with respect to

a space coordinate?
5. Give the total derivative of a scalar field with respect to a space coordinate!
6. What is a gradient field? Which direction does the gradient vector have?
7. Define the divergence and the curl of a vector field!
8. How is the Laplace operator defined?
9. When is a vector field source-free and when is it curl-free?

10. What can generally be said about the curl (rotation) of a gradient field, what
about the divergence of a curl-field?

To Section 1.6

1. What is a matrix?
2. What do we understand in particular by a zero matrix, a diagonal matrix, a unit

matrix, a symmetric matrix, a transposed matrix?
3. How is the rank of a matrix defined?
4. Explain the sum of two matrices, the multiplication of a matrix with a real

number, and the product of two matrices!
5. Is the matrix multiplication commutative?
6. How is the rotation matrix defined?
7. Show that the columns and the rows of the rotation matrix are orthonormal!
8. How is the transposed rotation matrix related to the inverse rotation matrix?
9. How does the rotation matrix look like for the special case of a rotation by the

angle ' within the plane?
10. Which conditions are to be fulfilled by a rotation matrix?
11. How is the determinant of a square matrix defined?
12. When does the Sarrus-rule help?
13. What is meant by the algebraic complement to a certain matrix element?
14. How can we expand a determinant with respect to a row?
15. Justify why it is allowed to add to a row (column) of a determinant another

row (column) of the same determinant multiplied by a real number ˛ without
changing the value of the determinant.

16. When does the inverse to a given matrix exist? How can we calculate the
elements of the inverse matrix?

17. Write down the vector product of two vectors, the rotation of a vector, and the
scalar triple product of three non-complanar vectors in terms of determinants!

18. Under which condition is a linear inhomogeneous system of equations uniquely
solvable? What does the Cramer’s rule tell us?

19. When does a homogeneous system of equations possess non-trivial solutions?
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To Section 1.7

1. Which general conditions must be fulfilled by a correct transformation of
variables?

2. What do we understand by a Jacobian determinant?
3. What is a coordinate line?
4. When do we speak of a curvilinear-orthogonal coordinate?
5. How does one calculate the volume element dV D dx1 dx2 dx3 after transforma-

tion of variables .x1; x2; x3/! .y1; y2; y3/ in the new variables y1; y2; y3?
6. How are the basis vectors of curvilinear systems of coordinates oriented

relatively to the coordinate lines? How can we determine such basis vectors?
7. How does the nabla operator generally look like by the use of curvilinear

coordinates?
8. What are the transformation formulae between Cartesian and cylindrical (spher-

ical) coordinates?
9. Formulate the volume element dV in cylindrical (spherical) coordinates!

10. Characterize the coordinate lines for cylindrical and spherical coordinates!



Chapter 2
Mechanics of the Free Mass Point

The concept of the mass point is basic to the theory of mechanics. As we have
already defined earlier (Sect. 1.4.1) we understand by the term ‘mass point’ a
physical body of mass m but with negligible extension in all directions. One has
to note that the concept of mass point does not necessarily presume small bodies.
The term mass point is rather used for problems for which it is sufficient to observe
only the behavior of one salient point of the macroscopic body, e.g. the center of
gravity, without considering the movement of all the other points of the body. So it
is to treat even the whole earth as a mass point if one is interested only in the path
of the earth around the sun. That is obviously no longer allowed when we want to
understand the origin of earth tides. We denote a mass point as free when it can
react to the applied forces without being bound by any restraining condition.

2.1 Kinematics

Kinematics compiles the mathematical and physical terms and theorems necessary
to describe the movement of a mass point, at first without explicitly questioning
for the cause of this motion. The necessary preparations for this purpose have been
made in the introductory Chap. 1. Hence we can restrict ourselves here to a concise
recapitulation.

© Springer International Publishing Switzerland 2016
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168 2 Mechanics of the Free Mass Point

2.1.1 Velocity and Acceleration

The motion of a mass point is characterized by:

position vector W r.t/ ;

velocity vector W v.t/ D Pr.t/ ;
acceleration vector W a.t/ D Rr.t/ :

Higher time derivatives do not interest us in mechanics; very often they even fail to
exist because in many realistic cases the acceleration is not a continuous function of
time.

The typical task for mechanics consists of the calculation of the path line
(trajectory) r.t/ on the basis of a given acceleration a.t/ D Rr.t/. For this purpose
one has obviously to integrate a.t/ twice with respect to time. After each integration
an integration constant appears which remains undetermined unless we have two
initial conditions at our disposal to fix these constants. In this connection let us
assume that we know the velocity and the position of the mass point (particle) at a
certain time t0, i.e.

a.t/ for all t ; v .t0/ ; and r .t0/

are given. Then the velocity of the particle is determined by

v.t/ D v .t0/C
tZ

t0

dt0a
�
t0
�

(2.1)

and the position vector by:

r.t/ D r .t0/C v .t0/ .t � t0/C
tZ

t0

2
4

t0Z

t0

dt00a
�
t00
�
3
5 dt0 : (2.2)

Before we inspect these relations using simple examples we want to formulate
the characteristic parameters of a mass point r.t/; v.t/; a.t/ in different systems
of coordinates.

(a) Cartesian Coordinates

The trajectory is described by the three time-dependent component functions
x1.t/; x2.t/; x3.t/:

r.t/ D .x1.t/; x2.t/; x3.t// D
3X

jD1
xj.t/ej : (2.3)



2.1 Kinematics 169

Fig. 2.1 Trajectory of a mass
point in Cartesian coordinates

The basis vectors are time-independent and fixed in space (Fig. 2.1). The velocity

v.t/ D
3X

jD1
Pxj.t/ej (2.4)

is a vector which is oriented tangentially to the trajectory. It provides information
about the distance covered by the mass point in the time interval dt. For a com-
parison with the experiment, however, one has to bear in mind that a measurement
always happens in a finite time interval so that the mathematical limit in (2.4) is
in a sense a fiction which can only be ‘guessed’ by performing finer and finer
experiments.

The temporal change of the velocity is called acceleration:

a.t/ D
3X

jD1
Rxj.t/ej (2.5)

(b) Natural Coordinates

The ‘moving trihedron’, discussed in Sect. 1.4.4, represents a coordinate system
directly attached to the space curve. We found in (1.244) and (1.245):

v.t/ D vOt I v D ds

dt
I (2.6)

a.t/ D PvOtC v2

�
On : (2.7)

Ot is the tangent-unit vector, s the arc length, � the radius of curvatures, and On the
normal-unit vector. Ot lies tangentially on the path line and On describes the change of
the Ot direction with s (1.227). The vector of acceleration always lies in the so-called
osculating plane spanned by the vectors On and Ot (Fig. 2.2) and is decomposed into
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Fig. 2.2 Definition of the
osculating plane spanned by
the tangent- and the
normal-unit vector

Fig. 2.3 Representation of
the mass point velocity in
plane polar coordinates

two parts which are due to, respectively, the change of magnitude and the change of
direction of the velocity.

(c) Plane Polar Coordinates

These coordinates, which we considered several times in Sect. 1.7 in diverse
examples, are of course applicable only for motions in a fixed plane. The basis
vectors e'; er are given in Eq. (1.371). For the position vector holds:

r.t/ D r.t/er : (2.8)

For the differential dr we find with (1.374):

dr D dr er C r d' e' :

The velocity follows immediately from above (Fig. 2.3):

v.t/ D Pr er C r P' e' : (2.9)

Furthermore, one can also directly differentiate (2.8):

v.t/ D Pr er C r Per : (2.10)

The comparison of these two expressions for the velocity yields the time-derivative
of the unit vector er:

Per D P' e' : (2.11)
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According to (1.216) the time-derivative of the unit vector e' must be orthogonal to
e' and therefore parallel or antiparallel to er:

Pe' D ˛ er :

Because of er � e' D 0 it is Per � e' D �er � Pe' and therewith

˛ D er � Pe' D �Per � e' D � P' e' � e' D � P' :

Hence we have:

Pe' D � P' er : (2.12)

The differentiation with respect to time in (2.9) thus results in the following
expression for the acceleration:

a.t/ D arer C a'e' ;

ar D Rr � r P'2 ;
a' D r R' C 2Pr P' : (2.13)

(d) Cylindrical Coordinates

These were broadly discussed in Sect. 1.7.3. For the position vector we have here:

r.t/ D � e� C z ez : (2.14)

The differential appeared already in (1.386):

dr D d� e� C � d' e' C dz ez : (2.15)

This yields the velocity:

v.t/ D P� e� C � P' e' C Pz ez : (2.16)

ez is constant with respect to direction as well as magnitude, i.e. Pez D 0. Both
the other unit vectors, however, can change as function of time. The differentiation
of (2.14) yields:

Pr.t/ D P� e� C � Pe� C Pz ez :

The comparison with (2.16) leads to

Pe� D P' e' : (2.17)
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Pe' is perpendicular to e' :

Pe' D ˛e� C ˇez :

Because of

e' � e� D 0 H) Pe' � e� D �e' � Pe� ;
e' � ez D 0 H) Pe' � ez D �Pez � e' D 0

the first consequence is ˇ D 0 and furthermore:

˛ D e� � Pe' D �Pe� � e' D � P' :

This shows the change of the basis vector e' as function of time:

Pe' D � P' e� : (2.18)

Hereafter it does not pose any difficulty to fix the acceleration in cylindrical
coordinates by time differentiation of (2.16):

a.t/ D a� e� C a' e' C az ez ;

a� D R� � � P'2 ;
a' D � R' C 2 P� P' ;
az D Rz : (2.19)

(e) Spherical Coordinates

These coordinates have been introduced in Sect. 1.7.4. The position vector is
written as:

r.t/ D r er : (2.20)

With the differential derived in (1.393)

dr D dr er C rd# e# C r sin# d' e'

it follows immediately for the velocity:

v.t/ D Pr er C r P# e# C r sin# P' e' : (2.21)
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The calculation of the acceleration turns out to be rather lengthy. First we differen-
tiate (2.20) with respect to time,

Pr.t/ D Pr er C r Per ;

and compare this with (2.21):

Per D P# e# C sin# P' e' : (2.22)

We still need the time-derivatives of the two other basis vectors. Since both are unit
vectors Pe# and Pe' are orthogonal to e# and e' , respectively:

Pe# D ˛ e' C ˇer ;

Pe' D � e# C ıer :

Furthermore it holds:

0 D e# � er D e# � e' D e' � er

H) Pe# � er D �e# � Per :

It follows:

ˇ D Pe# � er D �e# � Per D � P# ;
˛ D Pe# � e' D �e# � Pe' D �� ;
ı D Pe' � er D �e' � Per D � sin# P' :

We have now the intermediate result:

Pe# D ˛e' � P# er ;

Pe' D �˛ e# � sin# P' er :

Obviously we still need a further conditional equation. e' has in Cartesian coordi-
nates a vanishing x3 component (1.392). That holds of course also for Pe' . Thus we
can conclude with (1.392):

0 D �˛.� sin#/ � sin# P' cos# H) ˛ D P' cos# :

That leads to:

Pe# D P' cos# e' � P# er ; (2.23)

Pe' D � P' cos# e# � sin# P' er : (2.24)
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By a further differentiation in (2.21) we eventually arrive at the acceleration in
spherical coordinates:

a.t/ D arer C a#e# C a'e' ; (2.25)

ar D Rr � r P#2 � r sin2 # P'2 ;
a# D r R# C 2Pr P# � r sin# cos# P'2 ;
a' D r sin# R' C 2 sin# Pr P' C 2r cos# P# P' :

2.1.2 Simple Examples

(a) Mass Point on a Straight Line

We can describe the motion without referring to any special system of coordinates.
If c is a vector in the direction of the motion and b a vector perpendicular to it then
we can write for the position vector of the mass point (Fig. 2.4):

r.t/ D bC ˛.t/c : (2.26)

From this, the respective time derivatives give us the velocity and acceleration:

v.t/ D P̨ .t/ c I a.t/ D R̨ .t/ c : (2.27)

(b) Uniform Straight-Line Motion

Therewith it is meant the most simple form of motion, namely the one without any
acceleration:

a.t/ D 0 I v.t/ D v0 for all t :

Fig. 2.4 Rectilinear motion
of a mass point
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Fig. 2.5 Acceleration-free
motion of a mass point

The third summand in (2.2) then disappears:

r.t/ D r .t0/C v0 .t � t0/ : (2.28)

This formally agrees with (2.26). The motion is thus carried out rectilinearly in the
direction of the constant velocity vector v0. It is called ‘uniform’ since the same
distances are covered in equal time intervals (Fig. 2.5).

(c) Uniformly Accelerated Motion

Now we assume a constant acceleration

a.t/ D a0 (2.29)

That means in (2.2):

tZ

t0

2
4

t0Z

t0

dt00a
�
t00
�
3
5 dt0 D

tZ

t0

�
a0
�
t0 � t0

��
dt0 D

D a0

�
t2

2
� t20
2

	
� a0t0 .t � t0/ D

D 1

2
a0 .t � t0/

2 :

We therewith get as path line:

r.t/ D r .t0/C v .t0/ .t � t0/C 1

2
a0 .t � t0/

2 : (2.30)

The velocity of the mass point increases linearly with time (Fig. 2.6):

v.t/ D v .t0/C a0 .t � t0/ : (2.31)
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Fig. 2.6 Typical course of a
uniformly accelerated motion

Fig. 2.7 Circular motion of a
mass point

The trajectory results from a superposition of a uniform straight-line motion in the
direction of the initial velocity v.t0/ and a straight-line accelerated motion in the
direction of a0.

(d) Circular Motion

This we have already extensively investigated in Sect. 1.4.4 in connection with the
introduction of natural coordinates. Other suitable coordinates are the plane polar
coordinates. Since the radius of the circle is constant it follows from (2.8), (2.9)
and (2.13):

r.t/ D R er ; v.t/ D R P' e' ; (2.32)

a.t/ D ar er C a' e' ; ar D �R P'2 ; a' D R R' : (2.33)

P'.t/ denotes the change in angle per time unit (Fig. 2.7). One therefore defines:

! D P' angular velocity : (2.34)
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Therewith it also holds:

v DR! (velocity magnitude) ; (2.35)

ar D� R!2 (centripetal acceleration) ; (2.36)

a' DR P! (tangential acceleration) (2.37)

(compare with (1.246) and (1.247)). A special case is:

! D const” uniform circular motion : (2.38)

Sometimes it appears reasonable to assign to the angular velocity an axial vector in
the direction of the axis of rotation. In the present case that is the 3-axis:

! D ! e3 : (2.39)

Hence the magnitude of this vector is !. So we can write:

v.t/ D ! � r.t/ D ! R e' : (2.40)

2.1.3 Exercises

Exercise 2.1.1 A mass point moves on a circular path with constant velocity v D
50 cm/s. Thereby the velocity vector v changes its direction in 2 s by 60ı.

1. Calculate the velocity change j�vj in the time interval of 2 s.
2. What is the magnitude of centripetal acceleration of the uniform circular motion?

Exercise 2.1.2

1. A body rotates around an axis through the origin of coordinates with the angular
velocity

! D .�1; 2; 1/ :

What is the velocity of the point P of the body with the position vector

rP D .2; 0; 1/ ?

2. How would its velocity change when the rotation axis is shifted parallel in such
a way that the origin (on the axis) now comes to a D .1; 1; 1/?

Exercise 2.1.3 Consider the equation of motion

Rr D �g
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of a particle in the earth’s field near the earth surface. The x3-axis of a Cartesian
system of coordinates is upwardly oriented, i.e. g D .0; 0; g/.

1. Find the solution of the equation of motion for the case that the particle starts at
the time t D 0 from the origin with the initial velocity

v0 D .v01 ; v02 ; v03/

2. Show that the motion is restricted to a fixed plane. What is the direction of the
surface normal of the orbital plane?

3. Now choose the direction of the initial velocity as 10-axis of a new system of
coordinates with the same origin given by the unit vector e0

1. Find another unit
vector e0

2 orthogonal to e0
1 which together with e0

1 spans the orbital plane and
defines the 20-axis.

4. Choose e0
3 so that e0

1, e0
2, e0

3 represent an orthonormal right-handed system.

Exercise 2.1.4 For the movement of a crashing earth satellite, which experiences
the gravitational as well as a frictional force, the following space dependent
acceleration is found:

a D � �
r2

er � ˛.r/Pr I ˛ > 0

r W distance from the earth’s center.

1. Which conditional equations are fulfilled by the components ar; a# ; a' of the
acceleration in spherical coordinates?

2. How should ˛.r/ and ˇ be chosen so that

r.t/ D r0.1 � ˇt/2=3

#.t/ D �#0 ln.1 � ˇt/2=3 I #0 > 0

'.t/ � const

solve the conditional equations. Calculate the trajectory r D r.#/.
3. Calculate the magnitude jvj of the velocity!

2.2 Fundamental Laws of Dynamics

Up to now we have restricted ourselves to describe the motion of a mass point
without investigating the primary cause of the motion. From now on, the latter will
be the focus of our considerations. The goal is to develop procedures by which one
can derive the explicit movement of the mass point from a known driving cause.
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We start with a few very general remarks concerning the challenges and
possibilities of every physical theory; here, however, with the special perspective
on Classical Mechanics. Like any physical theory mechanics also is based on

definitions and theorems

The definitions are reasonably separated into basis definitions and following
definitions:

By basis definitions we mean concepts like position, time, mass, : : :, which are no
further commented on in the course of the theory. Following definitions are entities
derived from the basis definitions such as velocity, acceleration, momentum, : : :.
Analogously we have also to decompose the theorems:

Axioms are a matter of basic empirical facts which are mathematically not provable
and will not be further justified within the theory. In the framework of Classical
Mechanics these are ‘Newton’s axioms of motion’. By conclusions we understand
the actual results of the physical theory. By use of the concept of the ‘mathematical
proof’ they emerge out of the basis definitions and axioms which together are called
the postulates of the theory.

The ‘ultimate judge’ of any physical theory is the experiment. The value of
a theory is measured by the degree of agreement of its conclusions with the
manifestations of nature. It is known today that Classical Mechanics is not able
to correctly describe all movements and manifestations of the inanimate nature. In
particular in atomic and subatomic regions modifications have become necessary.
But one can regard Classical Mechanics as a self-consistent limiting case of a higher
all-embracing theory, if it is finally found.

2.2.1 Newton’s Laws of Motion

When formulating the fundamental laws of dynamics we find ourselves in a harsh
dilemma. We have to introduce two new terms, namely

force and mass
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The physical term ‘force’ can be defined only indirectly via its effect. If we want
to change the state of motion or the shape of a body by exertion of our muscles,
e.g., it needs an effort, which must be the bigger the greater the temporal change
in velocity (acceleration) should be or the stronger the deformation has to result.
This effort is called ‘force’. As an immediate sensation it can not be defined more
precisely. The direction along which we let our muscles work fixes the direction of
the velocity change and the direction of the deformation, respectively. That has the
important implication:

force is a vectorial physical quantity.

As a matter of fact, we observe all over in our environment changes in the state
of motion of bodies, and that, too, without being influenced by our muscles. We
interpret the cause also as force which in the same manner as our muscles act on
the bodies. The investigation of the nature of such forces constitutes a central task
of physics.

We are left with the simple statement

forceD cause of movement

In this form the statement is certainly not generally valid and can quickly be
disproved by several counterexamples. A disk gliding on a frozen surface moves
with almost constant velocity, and without any application of force. A body which
in principle is at rest appears to move if one observes it from a moving train, i.e.
the state of motion does depend on the system of coordinates chosen. In order to
investigate this issue we start with the definition

Force-Free Body
A body which does not experience any external influence.
This definition contains a rather risky, albeit plausible extrapolation of our daily
experience. A completely isolated body does not exist!

Axiom 2.1 (Lex Prima, Galilei’s Law of Inertia) There are systems of coordi-
nates in which a force-free body (mass point) persists in the state of rest or in the
state of uniform straight-line motion. Such systems shall be called ‘inertial systems’.

Newton’s original formulation is a bit less restrictive:
Each body persists in the state of rest or in the state of uniform straight-line motion
if it does not experience any forces to change its state.
Next we ask ourselves how the bodies behave in such special inertial systems under
the influence of forces. Here again we have to make use of our daily experience.
We observe that to produce the same acceleration of different bodies with identical
volumes different exertions are necessary. It is easier to move a block of wood than
a block of iron. The effect of the force is obviously also dependent on a material
property of the body which is to be moved. This property opposes, as we observe,
the change of motion a certain resistance of inertia which does not depend on the
actual strength of the influencing force.
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Postulate
Every body (every particle) possesses a scalar property given by a positive real
number which we call

inertial mass min

Definition 2.2.1 The product of inertial mass and velocity is denoted as

(linear) momentum W p D min v : (2.41)

Therewith we now formulate:

Axiom 2.2 (Lex Secunda, Law of Motion) The rate of change in the momentum
is proportional to the impact of the driving force and takes place in the direction of
the force:

F D Pp D d

dt
.min v/ : (2.42)

It is important to stress that this axiom is exclusively formulated for the inertial
systems defined by Axiom 2.1. Let us add some auxiliary remarks:

1. If the mass does not depend on time, then, but really only then, we have:

F D min Rr D min a : (2.43)

This relation can be regarded as basic dynamical equation of Classical Mechan-
ics. Like the most physical laws it also has the form of a differential equation
from which one eventually arrives at the path of the particle r.t/ by continued
integration provided the force is known. The dynamical equation will therefore
be at the center of the following considerations.

2. In the definition (2.41) of the momentum the mass min is considered as constant.
In relativistic mechanics the latter remains true only if we understand by mass
the rest mass m0. In the definition of the momentum we then have to interpret
min as

min D m0q
1 � v2ıc2

(2.44)

v is here the particle velocity and c the velocity of light in vacuum. The latter
represents an absolute upper bound for v. However, in almost all the cases which
we are interested in here it is v 
 c and therefore min � m0.

3. Temporal changes of mass do appear of course not only in the relativistic
mechanics. Examples are

the rocket, the car with internal-combustion engine, . . .
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4. In Newton’s original formulation only a proportionality between F and Pp is
postulated. But since up to now we are not able to concretely define force or
mass, nothing can hinder us to choose the equality sign.

5. The law of motion (2.43) anyway allows us already to define the ratio of force
and mass:

F
min
D a :

The acceleration on the right-hand side is measurable as well as well-defined.
One should notice, however, that Eq. (2.43) actually does not define either force
or mass.

As yet we have discussed only the action of a force on a mass point (body), but not
the retroaction of the mass point on the source of force. That is the subject of

Axiom 2.3 (Lex Tertia, Law of Reaction, ‘actio=reactio’)

F12 W Force of body 2 on body 1 ;

F21 W Force of body 1 on body 2 :

Action and retroaction are equal:

F12 D �F21 : (2.45)

Example Support pressure of a sphere shown in Fig. 2.8.

This third axiom now provides the way to indeed define the inertial mass. If we
combine (2.43) with (2.45) so it holds for two mass points which execute forces on
each other if all other influences are switched off :

min; 1 a1 D �min; 2 a2 : (2.46)

In this equation the forces are completely eliminated so that the mass ratio is fixed
by the measurement of accelerations. Let us consider a practical realization:
On two mass points we let two forces equal in magnitude and opposite in direction
act. This can be realized by cutting a compressed spring connecting the two mass
points (Fig. 2.9). One observes that the ratio of, respectively, the velocities v1, v2

Fig. 2.8 Support pressure of
a sphere as example for
‘actio=reactio’
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Fig. 2.9 Thought experiment
for fixing the inertial mass

and accelerations a1, a2 is independent of the acting force jF12j. This shows that the
mass is indeed a material property and is independent of the strength of the acting
forces. We can now introduce a mass standard having therewith uniquely defined
the measurement of the mass. We can add the mass, more precisely the inertial mass,
to the basis definitions, whilst the definition of the force then represents according
to (2.42) a following definition.

SI: International System of Units

Œmin� D 1 kg ;

ŒF� D 1N.D 1Newton/ D 1 kg m s�2 :

The last axiom that is still to be considered is almost a matter of course after we
have identified beforehand the force as a vectorial entity:

Axiom 2.4 (Corollarium, Superposition Principle) If several forces F1;F2;
: : : ;Fn act on a mass point then these add up to a resultant like normal vectors :

F D
nX

iD1
Fi : (2.47)

2.2.2 Forces

At the beginning of this chapter we recognized as the elementary task of each
physical theory, in particular the Classical Mechanics, to derive conclusions from
preformulated postulates (basis definitions, axioms). The axioms and the fundamen-
tal definition of mass are now available. The law of motion (2.42) and (2.43), respec-
tively, have become the principal dynamical equation of Classical Mechanics.
This equation is to be solved. As a rule, mathematically that means, for a given
force F, one has to solve a differential equation of second order.

More precise than the term force in this connection is, strictly speaking, the
concept of the

‘Force Field’

F D F .r; Pr; t/ :
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To each space point a force that acts on the mass point is assigned, which in general
can even be time dependent and, additionally, may depend on the particle velocity.
Dependence on acceleration Rr, however, will not appear.

All the matter is built by elementary constituents (molecules, atoms, nucleons,
electrons, . . . ). Therefore, in the last analysis each force can be traced back to
the interactions between these elementary constituents. To do this in all detail,
however, is beyond the framework of Classical Mechanics which only asks for
the consequences and not for the elementary causes of the forces. Normally one
restricts oneself to mathematically as simple as possible and empirically reasoned

model representations

Some frequently used examples are listed in the following:

(a) Weight, Gravitational Force

Each body is ‘heavy’. 1m3 of iron is ‘heavier’ than 1 cm3 of iron. By this everyday
experience a new material quantity is documented which is denoted as

gravitational (heavy) mass mh .

It manifests itself in the ‘gravitational force’

Fg D mh g ; (2.48)

which acts on a stationary (motionless) mass point in the gravitational field of
the earth. g close to the earth’s surface is a nearly constant vector always pointing
downwards in direction to the earth’s center. If we define this direction as the
negative x3 direction of a Cartesian coordinate system then we write

g D �.0; 0; g/ I g D 9:81m s�2 ‘gravity acceleration’. (2.49)

The gravitational mass mh, which in homogeneous materials turns out to be
proportional to the volume, can be determined via the gravitational force (2.48),
e.g., by use of a spring balance (Fig. 2.10). The deflection �x of the spring caused
by mh can be normalized which fixes the unit of the heavy mass. As mass standard
a platinum-iridium brick is stored in a special laboratory near Paris. Thereafter
1 kilogram (1 kg) corresponds exactly to the mass of 1 dm3 of water at a temperature
of 4 ıC.

As weight of a body one denotes the force Fg from (2.48) which acts on the body
on the earth’s surface. Here the mass of 1 kg experiences the gravitational force of
9:81N.
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Fig. 2.10 Thought
experiment for the description
of the gravitational (heavy)
mass

The inertial mass min has been introduced as resistance of inertia with which a
body opposes a change of its state of motion. Because of the different experimental
situations the identity

mh D min D m (2.50)

is therefore not at all a matter of course. However, it can be experimentally shown
that for all bodies the ratio mh=min is constant so that in any case at least mh /
min holds. To demonstrate this one measures the acceleration of a body with the
gravitational mass mh during its free fall in the earth’s gravitational field. One finds
that

a D mh

min
g (2.51)

is independent of the respective substance so that it necessarily follows that

mh / min (2.52)

Einstein’s Equivalence Principle
The measuring methods for mh and min are in principle equivalent. Therefore
Eq. (2.50) is valid.
This principle represents the basis of the ‘general theory of relativity’. For the
following we thus drop the indexes in and h.

(b) Central Forces

Forces of the type

F.r/ D f .r; Pr; t/ r D . f .r; Pr; t/ r/ er (2.53)

appear very often in nature. The force acts radially from a center at r D 0 outwardly
. f > 0/ or inwardly towards the center . f < 0/.
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Examples

(1) Isotropic harmonic oscillator

f .r/ D const < 0 : (2.54)

(2) Gravitational force,
executed by a mass M, located at the origin, on a particle with mass m at the
point r:

f .r/ D �� mM

r3
: (2.55)

(3) Coulomb force,
executed by a charge q1, located at the origin, on another charge q2 at r:

f .r/ D q1q2
4� "0r3

: (2.56)

In the end, practically all classical interactions can be traced back to
either (2.55) or (2.56). The constants � , "0, qi will be explained later.

(c) Lorentz Force

It is the force experienced by a particle with the charge q in an electromagnetic field:

F D q ŒE.r; t/C .v � B.r; t//� (2.57)

(B: magnetic induction; E: electric field strength). The special aspect of this force is
its dependence on the particle velocity v. The same is the case also for the

(d) Frictional Force

F D �˛.v/ � v : (2.58)

In many respects this represents a very complicated type of force for which, strictly
speaking, up to now there does not exist a closed satisfying theory. It merely appears
confirmed that to a good approximation the dependency on .�v/ holds. The most
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frequently used entries for the coefficient ˛ are:

˛.v/ D ˛ D const (Stokes-friction) ; (2.59)

˛.v/ D ˛ � v (Newton-friction) : (2.60)

2.2.3 Inertial Systems, Galilean Transformation

Newton’s axioms deal with the motion of physical bodies. But motion is a relative
term; the motion of a body can be defined only relative to a system of coordinates.
However, regarding the choice of such systems of coordinates there are hardly any
limits. Coordinate systems which are solely rigidly shifted or rigidly inclined to each
other are completely equivalent with respect to the dynamics of the mass point. The
components of the trajectory r.t/ will of course change from system to system, but
not the geometrical shape of the path or the temporal process of the particle motion.

If the different frames of reference are moving relatively to each other then of
course the situation is different. A mass point which in a certain frame moves
straight-line uniformly will experience an acceleration in another frame which is
rotating relative to the first. Hence, Newton’s axioms make sense only if they are
referred to a definite system of coordinates or, at least, to a definite class of systems.

The genuine coordinate systems of Classical Mechanics are the ‘inertial sys-
tems’, introduced by Axiom 2.1, in which a force-free mass point moves on a
straight line with

v D const

We want to investigate these systems, which are obviously somehow highlighted, in
a little more detail. For this purpose we study the forces which act on a mass point
in two different systems of coordinates moving relative to each other. For simplicity
we choose two Cartesian systems. In both systems the observer sits at the origin of
coordinates.

1. Statement:
Not all systems of coordinates are inertial systems.

This statement is more or less trivial. In a system, which rotates relative to an inertial
system, a force-free mass point executes an accelerated motion.

2. Statement:
There exists at least one inertial system, for instance that in which the fixed stars
are at rest.

In a certain sense, here Newton’s fiction of the ‘absolute space’ is hidden away.
This idea is lost in the theory of Special Relativity. However, there is no need to
postulate here the existence of the absolute space. The second statement refers only
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to the indisputable fact that there indeed exist systems in which Newton’s mechanics
is valid.

We determine the totality of all inertial systems by finding out which transforma-
tions of coordinates transfer one inertial system into another one.

Let † and † be two different coordinate systems where we assume † D † at
t D 0. Let† be an inertial system. We know that† is also an inertial system only if

mRr D 0 results in: mRNr D 0

A time-dependent rotation of † relative to † is therewith excluded from the very
beginning because it always automatically generates an acceleration connected with
the change of the direction of velocity. A constant inclination (time-independent
rotation) is of course thinkable since it does not lead to any acceleration. But that
is not interesting here. Hence, we can restrict our considerations to systems moving
relatively with parallel (Cartesian) axes.

The mass point m is described at time t by the position vector (Fig. 2.11)

r.t/ D r0.t/C Nr.t/

The transformation is completely characterized by r0 D r0.t/. For the acceleration
of the mass point holds:

Rr D Rr0 C RNr :

† is obviously also an inertial system exactly then when the transformation fulfills
the condition:

Rr0 D 0” r0.t/ D v0t (2.61)

This equation defines a so-called ‘Galilean transformation’ which transforms one
inertial system into another inertial system.

r D v0tC Nr I t D Nt : (2.62)

Notice that we have not transformed time as well. This implies the assumption of
an absolute time, a view no longer maintainable in Special Relativity. There the

Fig. 2.11 Position vector of
the mass point m in two
reference systems that move
relative to each other
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Galilean transformation is to be replaced by the Lorentz-transformation which
affects also the time variable.

3. Statement:
There are infinitely many inertial systems moving relatively to each other with
constant velocities.

In such systems it holds:

NF D F ” mRNr D mRr ; (2.63)

so that not only the first but also the second Newton’s axiom remains unaffected by
the transformation. One should bear in mind, however, that in case of a space and
velocity dependent force F D F.r; Pr; t/ the vectors r and Pr have to be transformed
properly.

2.2.4 Rotating Reference Systems, Pseudo Forces (Fictitious
Forces)

In this section we want to discuss an example for non-inertial systems. We consider
two coordinate systems †;†, the origins of which, for simplicity, shall coincide.
Let † be an inertial system while † rotates relative to † with constant angular
velocity! around the x3 axis. The application of cylindrical coordinates (Sect. 1.7.3)
is certainly convenient in this case.

† W .�; '; z/ I † W .� ; '; Nz/ :

The following relations of the coordinates are obvious:

� D � I ' D ' C !t I z D Nz : (2.64)

According to (2.19) in † we have for the force components:

F� D m
� R� � � P'2� I F' D m .� R' C 2 P� P'/ I Fz D mRz : (2.65)

We now want to convert these force components into the rotating reference system
† (Fig. 2.12). From (2.64) follows:

P� D P� I P' D P' C ! I Pz D PNz ;
R� D R� I R' D R' I Rz D RNz :
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Fig. 2.12 Two reference
frames with a common origin
rotating relative to each other

By insertion into (2.65) we obtain the force equations in †:

m
�R� � � P'2

�
D F� C 2m� ! P' C m!2� D F� (2.66)

m
�
� R' C 2 P� P'

�
D F' � 2m! P� D F' (2.67)

mRNz D Fz : (2.68)

If † were an inertial system, then we would have had: F� D F� ; F' D F' ; Fz D
Fz. However, since † is not an inertial system there appear additional forces which
one calls

‘pseudo forces’

even though they exhibit rather real consequences. They are called pseudo because
they appear only in non-inertial systems and because they appear there ‘to bring
the Newton mechanics into order’. They take care that a force-free mass point
experiences in the non-inertial system † such a pseudo force so that, observed from
the inertial system †, its motion appears uniformly rectilinear.

2.2.5 Arbitrarily Accelerated Reference Systems

We consider two coordinate systems which are arbitrarily accelerated relative to
each other:

† W .x1; x2; x3/ I .e1; e2; e3/ ;

† W .Nx1; Nx2; Nx3/ I .Ne1; Ne2 ; Ne3/ :

Let † be an inertial system. The full relative movement can be thought to be
composed of a motion of the origin of † and a rotation of the axes of † around
its own origin, both relative to † (Fig. 2.13).
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Fig. 2.13 Position vector of a mass point in two relative to each other arbitrarily accelerated
reference systems

It holds for the position vector of the mass point m:

r D r0 C Nr D r0 C
3X

jD1
Nxj Nej : (2.69)

This we use to calculate the velocities in both systems by time differentiation:

† W PNr D
3X

jD1
PNxj Nej : (2.70)

For a co-rotating observer the axes in † of course do not change, but surely for the
observer in †:

† W Pr D Pr0 C
3X

jD1

�PNxj Nej C Nxj PNej
�
: (2.71)

It is easy to interpret the three terms on the right-hand side:
Pr0: Relative velocity of the origins of coordinates.P

j

PNxj Nej: Velocity of the mass point in † (2.70).

P
j
Nxj PNej: Velocity of a rigidly with† co-rotating point seen from†. For such a point

the directions of the axes change, but not the components Nxj.
We reformulate this last term with the aid of the angular velocity! which describes
the rotation of † around its own origin. ! has the direction of the momentary axis
of rotation. The velocity of the rigidly co-rotating point is perpendicular to Nr and
also perpendicular to ! (Fig. 2.14). For the magnitude holds:

ıNr D jNrj sin ˛ ! dt

D ˇ̌�Nr �!�ˇ̌ dt :
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Fig. 2.14 Temporal change
of the position vector of a
mass point which is rigidly
co-rotating with a certain
reference system, observed
from a space-fixed system

Altogether we thus have:

ı Nr
dt
D

3X
jD1
Nxj PNej D ! � Nr : (2.72)

This we insert into Eq. (2.71):

Pr D Pr0 C PNrC! � Nr : (2.73)

With (2.69) this can also be read as follows:

d

dt
.r � r0/ D d

dt
Nr D PNrC! � Nr : (2.74)

This equation provides very generally a prescription how one has to differentiate
with respect to time a vector in the inertial system †, which is represented in a
rotating reference system †.

d

dt
D
Nd
dt
C! � : (2.75)
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We directly apply this prescription once more to (2.73):

d

dt

�Pr � Pr0
� D d

dt

�PNrC! � Nr� D d

dt
PNrC d

dt
.! � Nr/ D

D RNrC �! � PNr�C �� P! � Nr�C �! � PNr��C �! � �! � Nr�� D
D RNrC �! � �! � Nr��C 2�! � PNr�C � P! � Nr� : (2.76)

That eventually gives the equation of motion in the non-inertial systems †:

mRNr D F �mRr0 �m! � �! � Nr� � m
� P! � Nr� � 2m

�
! � PNr� ; (2.77)

NFc D �2m
�
! � PNr� W Coriolis force ; (2.78)

NFz D �m
�
! � �! � Nr�� W centrifugal force : (2.79)

The implication of these rather involved pseudo forces, which show up in addition
to F on the right-hand side of the equation of motion (2.77), is again nothing other
that they fix the motion of a force-free mass point in the non-inertial system † in
such a (complicated) manner that this motion appears rectilinearly for an observer
in the inertial system †. In the final analysis they rely on the inertia of the particle
and are therefore sometimes also called:

‘inertia forces’

2.2.6 Exercises

Exercise 2.2.1 Let † and † be two Cartesian systems of coordinates moving
relative to each other with parallel axes. The position of a particle at an arbitrary
time t is described in † by

r.t/ D �6˛1t2 � 4˛2t
�

e1 � 3˛3t3e2 C 3˛4e3

and in † by

Nr.t/ D �6˛1t2 C 3˛2t
�

e1 �
�
3˛3t

3 � 11˛5
�

e2 C 4˛6te3

1. What is the velocity of † relative to †?
2. Which acceleration does the particle experience in, respectively,† and †?
3. If † is an inertial system, is then †, too, an inertial system?

Exercise 2.2.2 In an inertial system the time t0 is measured with a somewhat
‘inaccurate’ clock. The ‘true’ time in the inertial system is t. However, it is found
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that:

t0 D tC ˛.t/ :

With the ‘inaccurate’ clock it is (misleadingly) observed for the force-free, one-
dimensional movement of a mass point m an acceleration to be of the form:

a0 D F0

m
D d2x

dt02
¤ 0

Calculate the correspondingly acting force F0!

Exercise 2.2.3 Although equations of motion in inertial systems are simpler, one
describes movements on the earth normally in the reference system co-rotating with
the earth (laboratory coordinate (lab) system). This system, strictly speaking, is no
longer an inertial system because of the earth’s rotation.

On the earth’s surface let there be a Cartesian coordinate system † fixed at a
certain point whose geographical latitude angle is ':

Nx3 axis: vertically upwards
Nx2 axis: northward
Nx1 axis: eastward.

The angular velocity of the earth amounts to

j!j D 2�

24
h�1 D 7:27 � 10�5 s�1 :

1. How does the equation of motion of a mass point appear in this coordinate system
close to the earth’s surface? Neglect terms of order !2!

2. Calculate the acceleration Rr0 of the origin of † relative to a reference system †

fixed and at rest in the earth’s center.
3. How big is the true earth’s acceleration Og measured in †? How does the earth’s

surface adjust itself?
4. How does the Coriolis force depend on the geographical latitude?
5. Locate the coordinate system † in such a way that the Nx3 axis stands perpendic-

ular to the real earth’s surface. Which equations of motion are then to be solved
for a mass point near the earth’s surface? The Coriolis force can be taken to a
good approximation from 4. since g and Og enclose only a very small angle.

6. A body is dropped from rest in a free fall from the height H. Solve the equations
of motion in 5. under the assumption that PNx1 and PNx2 remain small during the time
of the fall. Determine the eastward-deviation as a consequence of the earth’s
rotation!
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2.3 Simple Problems of Dynamics

The basic program of Classical Mechanics consists of the calculation of the path
of motion of a physical system with the aid of Newton’s laws of motion (2.42)
and (2.43), respectively. For this purpose the force F must be known. The solution
of the fundamental task generally takes place in three steps:

1. Setting up the equation of motion,
2. Solution of the differential equation by use of purely mathematical methods,
3. Physical interpretation of the solution.

Until otherwise stated, let us consider in the following treatments the mass m as
time-independent material constant so that we can apply the law of motion in the
form (2.43).

The simplest problem is of course given by the force-free motion, the result of
which must agree with Axiom 2.1. The equation of motion has the form:

F D mRr � 0 : (2.80)

Strictly speaking, this equation must be solved separately for each component. It
actually represents therefore a short-hand notation for a set of three equation of the
type,

mRx1 D 0 ;

mRx2 D 0 ;

mRx3 D 0 ;

(2.81)

where each of them is a so-called differential equation of second order. In simple
cases, such as the present one, it is, however, reasonable to discuss directly the more
compact representation (2.80), the solution of which is immediately found:

r.t/ D v0tC r0 : (2.82)

It describes either a motionless mass point .v0 D 0/ or a mass point moving
with constant velocity v0. The mass m does not influence the solution. What is the
meaning of the two constant vectors v0 and r0? That is already indicated by the
chosen notation:

v0 D Pr.t D 0/ W velocity at time t D 0 ;
r0 D r.t D 0/ W particle position at time t D 0 :

The motion of the mass-point is completely fixed if the initial position r0 and the
initial velocity v0 are given. Since these are vectors that means the specification of
six initial conditions, two per each of the three equations in (2.81).
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2.3.1 Motion in the Homogeneous Gravitational Field

According to the above-given program we have to at first formulate the equation of
motion. Using (2.48) together with (2.43) and exploiting the equality of inertial and
heavy mass we can write:

Rr D g I g D .0; 0;�g/ : (2.83)

The mass is eliminated; in the gravitational field all bodies are therefrom equally
accelerated. It results in a

uniformly accelerated motion

as we have discussed it already in Sect. 2.1.2. We can directly take the former
results (2.30) and (2.31):

v.t/ D v .t0/C g � .t � t0/ ; (2.84)

r.t/ D r .t0/C v .t0/ .t � t0/C 1

2
g � .t � t0/

2 : (2.85)

This is the purely mathematical result which we want to interpret physically a little
bit more:

To begin with, we recognize that the actual geometrical shape of the path line
depends strongly on the initial conditions r.t0/, v.t0/. That we demonstrate with
two special cases:

(a) Free Fall from the Height h

The initial conditions in this case are .t0 D 0/:

r.t D 0/ D .0; 0; h/ ;
v.t D 0/ D 0 :

(2.86)

Then we have the solution:

x1.t/ D x2.t/ D 0 I Px1.t/ D Px2.t/ D 0 :

Hence, it turns out to be a one-dimensional motion (Fig. 2.15):

x3.t/ D h � 1
2

g t2 I Px3.t/ D �g t : (2.87)

As ‘fall time’ tF one denotes the time the body needs to arrive at the earth’s surface
.x3 D 0/.
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Fig. 2.15 Time-dependence
of the distance between a
mass m and the earth’s
surface during the free fall in
the gravitational field

x3 .tF/
ŠD 0 D h � 1

2
g t2F

H) tF D
p
2h=g :

(2.88)

For the final velocity at the impingement then holds:

vF D jPx3 .tF/j D
p
2hg : (2.89)

(b) Vertical Throw Upwards

This corresponds to the initial conditions .t0 D 0/:

r.t D 0/ D 0 ;
v.t D 0/ D .0; 0; v0/ : (2.90)

Inserting into (2.84) and (2.85) we first get:

x1.t/ D x2.t/ D 0 I Px1.t/ D Px2.t/ D 0 :

Thus it is again a one-dimensional motion:

x3.t/ D v0t � 1
2

g t2 I Px3.t/ D v0 � g t : (2.91)

We add a brief interpretation of the result (Fig. 2.16): The velocity of the thrown
body decreases at first with increasing time becoming zero as soon as the maximum
height is reached. That is the case after the time tH:

Px3 .tH/ ŠD 0 D v0 � g tH

H) tH D v0

g
: (2.92)
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Fig. 2.16 Time-dependent
devolution of the distance of a
mass m from the earth’s
bottom during the vertical
throw upwards in the
gravitational field

Subsequently the direction of the motion reverses and Px3.t/ becomes negative. For
the maximal flight altitude holds:

H D x3 .tH/ D v20
2g
: (2.93)

After the time 2tH the projectile reaches the earth’s surface again with the velocity
�v0 at the impingement.

For arbitrary initial conditions we have to evaluate the general result (2.84), (2.85)
in the same manner as demonstrated for the above two special cases. The
general procedure was already performed in Sect. 2.1.2 (see Fig. 2.6, ‘trajectory
parabola’). One can show (Exercise 2.1.3) that thereby the motion happens always
in a fixed plane spanned v.t D t0/ and g.

Up to now we could refer to previous calculations and results. If we now turn
to somewhat more sophisticated problems of motion then we have to integrate
explicitly a linear differential equation of second order. For this reason we want
to first deal with the general theory of linear differential equations in the form of a
short mathematical insertion.

2.3.2 Linear Differential Equations

We refer to

x.n/.t/ D dn

dtn
x.t/ (2.94)

as the n-th derivative of the function x.t/. A relation which contains one or more
derivatives of a given function, where the n-th derivative appears as the highest,

f
�
x.n/; x.n � 1/; : : : ; Px; x; t� D 0 ; (2.95)
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is called a differential equation of n-th order. The goal is to derive the solution
function x.t/ from such a relation. The basic dynamical equation of Classical
Mechanics (2.43) written in Cartesian coordinates, e.g., has just this shape:

mRxi � Fi .Px1; Px2; Px3; x1; x2; x3; t/ D 0 ; i D 1; 2; 3 : (2.96)

This is a coupled system of three differential equations of second order for the three
functions x1.t/; x2.t/; x3.t/.

Let us first focus, however, on a general relation of the type (2.95). The central
statement is formulated in the following

Theorem 2.3.1 The general solution of a differential equation of n-th order (2.95)
is an ensemble of solutions

x D x .t j�1; �2; : : : ; �n / ;

which depends on n independent parameters �1; �2; : : : ; �n. Every set of �i’s which
are fixed in advance then leads to a special (particular) solution.

One should compare, e.g., the solution (2.85) for the motion in the homogeneous
gravitational field with this theorem. It represents the solution of a differential
equation of second order. For each component solution xi.t/ there appear two
independent parameters xi.t0/ and vi.t0/. Equation (2.85) therefore turns out to be
the general solution. Special solutions we found in the examples (a) and (b) by
fixing the initial values in (2.86) and (2.90), respectively.

It is important that the reverse of the above theorem is also valid.

Theorem 2.3.2 If the solution of a differential equation of n-th order (2.95) does
depend on n independent parameters then it is the general solution.

It is usual but not at all necessary to identify the parameters �1; : : : ; �n with the
initial values x.t0/, Px.t0/; : : : ; x.n�1/.t0/.

The special case important for us is the

linear differential equation.

So one denotes a relation of the type (2.95) in which the derivatives x.j/ appear solely
linearly,

nX
jD0

˛j.t/ x.j/.t/ D ˇ.t/ ; (2.97)

where the differential equation with ˇ.t/ � 0 is called homogeneous and with
ˇ.t/ 6� 0 inhomogeneous.

We consider first the homogeneous, linear differential equations. For these the

superposition principle
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holds. This confirms that when x1.t/ and x2.t/ solve the differential equation then
c1x1.t/ C c2x2.t/ with arbitrary coefficients c1, c2 also solves it. Because of the
linearity of the differential equation the proof is obvious.

Furthermore, as for normal vectors, one can define a linear independency of
solutions:

m solution functions x1.t/; : : : ; xm.t/ are called linearly independent if

mX
jD1

˛jxj.t/ D 0 (2.98)

is an identity only for ˛1 D ˛2 D : : : D ˛m D 0.
If m is the maximal number of linearly independent solution functions then one

can write the general solution x.tj�1; : : : ; �n/ for any fixed choice of the parameters
�i in the form:

x .t j�1; : : : ; �n / D
mX

jD1
˛jxj.t/ : (2.99)

If that were not possible then x.tj::/ itself would be a linearly independent solution
and therefore m is not the maximal number. Furthermore, the right-hand side in
principle depends on m independent parameters ˛j. That means that m must not be
smaller than n because otherwise x.tj::/ would not be the general solution. However,
it is also true that m must not be greater than n because otherwise x.tj::/ would
depend on more than n independent parameters. Consequently, we must have m D
n. We conclude:
The general solution of the homogeneous, linear differential equation of n-th order
can be written as linear combination of n linearly independent (special) solution
functions.
In a certain sense, this fact can be used as recipe for the solution of a homogeneous,
linear differential equation of n-th order. One tries to find by ‘guessing and trying’
n linearly independent solutions. Then we can be sure that every linear combination
of them represents the general solution.

Let us now inspect the inhomogeneous differential equation of n-th order. We
presume to have found with x.tj�1; : : : ; �n/ the general solution of the associated
homogeneous equation and, additionally, with x0.t/ a special solution of the inho-
mogeneous equation. Then it becomes immediately clear, because of the linearity of
the differential equation, that

Nx .tj�1; : : : ; �n/ D x .tj�1; : : : ; �n/C x0.t/ (2.100)

is in the first place certainly a solution of the inhomogeneous equation. But what’s
more, it is already the general solution since it depends already on n independent
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parameters. Out of this fact we derive a practicable recipe for solving linear,
inhomogeneous differential equations:
Look for the general solution of the associated homogeneous differential equation
and try to find any special solution of the inhomogeneous equation. According
to (2.100) the sum is then already the required general solution of the inhomoge-
neous differential equation.
We shall apply this recipe over and over in the following.

2.3.3 Motion with Friction in the Homogeneous Gravitational
Field

Every moving macroscopic body becomes to a certain degree decelerated by
interaction with its environment. Thus during the motion frictional forces appear
which are opposed to the motion. Although little is known till today about the causes
of friction it is clear that it must be a macroscopic phenomenon. The equations of
motion of atomic and nuclear physics do not contain friction terms.

(a) Friction in Gases and Liquids

In viscous media the ansatz (2.58) can be considered as a good approximation:

FR D �˛.v/v : (2.101)

where ˛.v/ has to be determined empirically. The versions given in (2.59) and (2.60)
are special types:

(1) Newton’s law of friction

FR D �˛ v v : (2.102)

For the usefulness of this ansatz the velocity of the moving body mast exceed
a certain limiting value which depends on the respective rubbing material (fast
projectiles, movement in viscous liquids, . . . ).

(2) Stokes’s law of friction
If the relative velocities in viscous media are smaller than the mentioned
limiting velocity then it appears to be better to apply the ansatz:

FR D �˛ v : (2.103)



202 2 Mechanics of the Free Mass Point

Fig. 2.17 Simple
arrangement for the
illustration of friction
between solids

(b) Friction Between Solids

A solid body presses with the force F? on a substratum. For forward motion only
the tangential component Fk of the external force plays a role (Fig. 2.17).

(1) Sliding friction
One observes that the force of friction is to a large extent independent of the
supporting surface and also of the relative velocity:

FR D ��g F?
v
v
; if v > 0 : (2.104)

One speaks of Coulomb friction. �g is the sliding friction coefficient.
(2) Static friction

For the case v D 0 static friction occurs which compensates the parallel
component Fk of the external force:

FR D �Fk .v D 0/ : (2.105)

Of course that holds only as long as the pulling force does not exceed a certain upper
bound which is fixed by the static friction coefficient �H:

Fk < �H F? : (2.106)

Experiments show that in general 0 < �g < �H is valid.
After these preliminary remarks we now want to discuss the movement of a body,
e.g. a parachute, in the earth’s gravitational field, which is under the influence of
friction. As a reasonable model we assume Stokes’s friction. The equation of motion
then reads:

m Rr D �m g � ˛ Pr g D .0; 0; g/ : (2.107)

This is an inhomogeneous differential equation of second order,

mRrC ˛Pr D �m g ;
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with the inhomogeneity .�m g/. In order to find the general solution of this equation
we at first seek the general solution of the associated homogeneous equation:

m RrC ˛ Pr D 0 : (2.108)

Strictly speaking, we have to solve this equation for each component separately:

m Rxi C ˛Pxi D 0 I i D 1; 2; 3 : (2.109)

For such differential equations with constant coefficients the following ansatz is
typical and mostly successful:

xi D e� t :

Insertion yields:

e� t
�
m�2 C ˛�� D 0” m�2 C ˛� D 0 :

This equation has the solutions:

�1 D 0 I �2 D �˛
m
:

That corresponds to the two linearly independent solutions of (2.109):

x.1/i .t/ D 1 I x.2/i .t/ D e�.˛=m/t :

As explained in Sect. 2.3.2 the linear combination of these two functions represents
the general solution:

x.0/i .t/ D a.1/i C a.2/i e�.˛=m/t : (2.110)

This result corresponds to the motion under the sole influence of the friction
(Fig. 2.18). For the general solution of the inhomogeneous equations we need

Fig. 2.18 Schematic
representation of the time
dependence of the three
Cartesian components
.i D x; y; z/ of the position
vector of a mass point under
the sole action of friction (ai:
initial conditions)
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to investigate only the x3-component since g D .0; 0; g/. For the two other
components the respective inhomogeneity vanishes so that Eq. (2.110) is already
the complete solution:

mRx3 C ˛Px3 D �mg : (2.111)

We look after a special solution in order to combine it then with the general solution
of the homogeneous equation. We can arrive at this by the following consideration.
The gravitational force will enhance the velocity of the mass point until the frictional
force, increasing simultaneously with the velocity, will balance the gravitation:

˛Px.E/3 D �mg”Px.E/3 D �
m

˛
g : (2.112)

As soon as the mass point has reached this velocity, according to (2.107) a force-free
motion sets in. The same motion, however, occurs when we release the mass point
directly with the initial velocity Px.E/3 . It then performs a uniform straight-line motion

with the constant velocity Px.E/3 . Therewith we have already found a special solution
of the inhomogeneous equation (2.111):

x3.t/ D �m

˛
g t : (2.113)

That helps us to formulate the general solution for the x3 component:

x3.t/ D a.1/3 C a.2/3 e�.˛=m/t � m

˛
g t : (2.114)

For the two other components (2.110) is already the final solution:

x2.t/ D a.1/2 C a.2/2 e�.˛=m/t ;

x1.t/ D a.1/1 C a.2/1 e�.˛=m/t : (2.115)

Each component solution contains two independent parameters. For the velocities it
holds:

v1.t/ D �a.2/1
˛

m
e�.˛=m/t ;

v2.t/ D �a.2/2
˛

m
e�.˛=m/t ; (2.116)

v3.t/ D �
�

a.2/3
˛

m
e�.˛=m/t C m

˛
g
�

(2.117)

H)
t ! 1 �m

˛
g :
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Fig. 2.19 Time dependence
of the velocity of a mass m
during its vertical fall with
friction ˛ in the earth’s
gravitational field

If we choose as initial conditions those of the vertical fall,

r.t D 0/ D .0; 0;H/ ; v.t D 0/ D .0; 0; 0/ ;

we first get:

x1.t/ D x2.t/ � 0 : (2.118)

So it turns out to be a linear motion.

H D a.1/3 C a.2/3 ;

0 D a.2/3
˛

m
C m

˛
g H) a.2/3 D �

m2

˛2
g; a.1/3 D H C m2

˛2
g :

Hence, we get the concrete result:

v3.t/ D m

˛
g
�
e�.˛=m/t � 1� ; (2.119)

x3.t/ D H C m

˛
g
hm

˛

�
1 � e�.˛=m/t

� � t
i
: (2.120)

For t!1 the velocity v3.t/ approaches the limiting value Px.E/3 (Fig. 2.19).

2.3.4 Simple Pendulum

As an additional simple problem of dynamics we will now discuss the simple
(thread) pendulum (Fig. 2.20), which sometimes is also called mathematical pen-
dulum because it represents a somewhat mathematical abstraction. One considers
the motion of a mass point which is fixed by a massless thread. The latter has a
constant length l so that the mass point performs a planar motion on a circular arc
with radius l. The gravitational force acts on the mass point:

F D ms g I g D .g; 0; 0/ : (2.121)
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Fig. 2.20 Forces and
coordinates concerning the
simple (thread) pendulum

The simple pendulum is excellently suited to demonstrate the equivalence of the
inertial and the gravitational mass. To show this, we will first distinguish again
between these two masses.

The application of plane polar coordinates is the natural choice:

F D Frer C F'e' ;

Fr D mh g cos' ; (2.122)

F' D �mh g sin' :

The equation of motion written in detail by use of (2.13) reads as:

min
��Rr � r P'2� er C .r R' C 2Pr P'/ e'

� D .Fr C FF/ er C F'e' :

FF is called the

‘thread tension’

It is about a so-called ‘constraining force’ which realizes certain ‘constraints’.
Here the constraint is the constant distance of the mass point from the center of
rotation:

r D l D const I Pr D Rr D 0 :

FF thus prevents the free fall of the mass point and takes care for a static problem in
the radial direction:

FF D �mh g cos' � min l P'2 : (2.123)

So only the movement in e'-direction is of interest:

min l R' D �mh g sin' H) R' C g

l

mh

min
sin ' D 0 : (2.124)
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The non-linear function of ' which appears together with R' makes the solution a bit
elaborate. The calculation leads to the so-called elliptic integrals of the first kind.

To simplify the task we restrict ourselves here to small deflections of the
pendulum so that we can assume:

sin ' � '

The equation of motion then takes the form of an oscillation equation:

R' C g

l

mh

min
' D 0 : (2.125)

That is again a homogeneous differential equation of second order. '.t/ must be a
function which after twofold differentiating, except for the sign, reproduces itself.
Therefore

'1.t/ D sin!t and '2.t/ D cos!t

are two linearly independent solutions provided one chooses:

!2 D g

l

mh

min

The general solution is then:

'.t/ D A sin!tC B cos!t : (2.126)

A and B can be fixed by initial conditions:

A D 1

!
P'.t D 0/ ; B D '.t D 0/ :

Experimentally the angular frequency ! turns out to be independent of the mass of
the oscillating particle. That in turn can be explained only if mh / min. We therefore
assume as in (2.50) mh D min:

angular frequency ! D
r

g

l
: (2.127)

As (oscillation) period 	 one denotes the time needed for a full oscillation, i.e. the
time after which the mass point arrives again at its starting point:

!	 D 2�” 	 D 2�
s

l

g
: (2.128)
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This result enables a rather accurate determination of the gravitational accelera-
tion g.

By frequency one means the number of full oscillations per second:

 D 1

	
D 1

2�

r
g

l
D !

2�
: (2.129)

The solution (2.126) corresponds to a superposition of two oscillations with the
same frequency but with different amplitudes A and B. The amplitude is thereby the
maximal deflection out of the equilibrium position. Instead of (2.126) we can also
write:

'.t/ D
p

A2 C B2
�

Ap
A2 C B2

sin!tC Bp
A2 C B2

cos!t

	
:

If we now define

A0 D
p

A2 C B2 I cos˛ D Ap
A2 C B2

I sin ˛ D Bp
A2 C B2

and exploit the addition theorem (1.60)

sin.xC y/ D sin x cos yC cos x sin y

then we arrive at an alternative representation of the solution '.t/:

'.t/ D A0 sin.!tC ˛/ : (2.130)

The superposition of the two oscillations in (2.126) results again in an oscillation of
exactly the same frequency but with a phase shift ˛ (Fig. 2.21).

Fig. 2.21 Time dependence
of the angle deflection for the
thread pendulum
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2.3.5 Complex Numbers

For the solution of the oscillation equation (2.125) we looked for a function which
essentially reproduces itself after twofold differentiation. That happens indeed to
the trigonometric functions sine and cosine. But the exponential function, which
for a variety of reasons is tractable mathematically easier, also possesses a similar
property. However, the ansatz e˛t would have led to the conditional equation

e˛t
�
˛2 C g

l

�
D 0 I e˛t ¤ 0 ;

an equation being not solvable for real ˛. The equation becomes, however, solvable
if one allows for complex numbers which we did not yet introduce so far.

By application of complex numbers and functions many issues in Theoretical
Physics turn out to be mathematically essentially simpler. it is needless to say that
all measurable quantities, which we call ‘observables’, are in any case real so that
we must be able uniquely to relate real and complex representations. That will be
treated in this section.

(a) Imaginary Numbers

The new number type of the imaginary numbers is characterized by the fact that
their squares are always negative real numbers.

Definition 2.3.1 ‘Unit of imaginary numbers’

i2 D �1” i D p�1 : (2.131)

Each imaginary number can be written as

i � y

with real y.

Examples

(1)
p�4 D p�1 � p4 D ˙2i ;

(2) i3 D i � i2 D �i ;

(3) ˛2 C g
l D 0 H) ˛1;2 D ˙i

q
g
l :
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(b) Complex Numbers

Definition 2.3.2 The complex number z is the sum of a real and an imaginary
number:

z D xC iy ; (2.132)

where x is the real part and y the imaginary part of z.
One calls

z? D x � iy (2.133)

the conjugated complex number to z.
A complex number is equal to zero only if both real and imaginary part vanish.

The purely real and purely imaginary numbers are special complex numbers with
vanishing imaginary and real part, respectively.

(c) Calculation Rules

For setting up calculation rules we allow us to be guided by the corresponding rules
of the real numbers since these can be considered as special complex numbers.

One adds (subtracts) two complex numbers

z1 D x1 C iy1 I z2 D x2 C iy2 ;

by adding (subtracting) separately the real and the imaginary parts:

z D z1 ˙ z2 D .x1 ˙ x2/C i.y1 ˙ y2/ : (2.134)

The product is given by a formal expansion taking into consideration (2.131):

z D z1z2 D .x1x2 � y1y2/C i .x1y2 C y1x2/ : (2.135)

Obviously the product is equal to zero only if one of the two factors vanishes. In the
same manner one can introduce the quotient (ratio) of two complex numbers,

z D z1
z2
D z1z?2

z2z�
2

D 1

x22 C y22
Œ.x1x2 C y1y2/C i .y1x2 � x1y2/� ; (2.136)

where z2 ¤ 0 has to be stipulated.
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(d) Complex Plane

One can interpret real and imaginary part of a complex number as the two
components of a two-dimensional vector:

z D xC iy D .x; y/ : (2.137)

The real part then corresponds to the projection on the real axis, the imaginary part
to that on the imaginary axis. Basis vectors of the so-called complex plane are
then:

1 D .1; 0/I i D .0; 1/ : (2.138)

Like the normal two-dimensional vectors one can represent the complex num-
bers, too, by plane polar coordinates (‘polar representation’) (Fig. 2.22):

x D r cos' ;
y D r sin'

H) z D r.cos' C i sin'/ ;
z� D r.cos' � i sin '/ :

(2.139)

Thus z� follows from z by reflection on the real axis. One defines:

Magnitude (Absolute Value) of z

jzj D r D
p

x2 C y2 : (2.140)

Argument of z

' D arg.z/ D arctan
y

x
: (2.141)

For each value of y=x D tan' in between �1 and C1 there exist two '-values
between 0 and 2� (see Fig. 2.23). One has to take just that '-value with which the
transformation formulae (2.139) can be exactly fulfilled.

Fig. 2.22 Polar
representation of a complex
number
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Fig. 2.23 General behavior
of the trigonometric function
tan'

For the magnitude holds

jzj D pz � z� ; (2.142)

as can easily be verified:

z � z� D .xC iy/.x � iy/ D x2 C y2 C i.yx � xy/ D x2 C y2 D jzj2 :

(e) Exponential form of a Complex Number

For the exponential function ex the series expansion (1.64) holds:

ex D 1C xC x2

2Š
C x3

3Š
C : : : D

1X
n D 0

xn

nŠ
: (2.143)

Corresponding expansions one knows also for the trigonometric functions
sine (1.51) and cosine (1.58):

sin x D x � x3

3Š
C x5

5Š
� : : : D

1X
n D 0

.�1/n x2n C 1

.2nC 1/Š D
1

i

1X
n D 0

.ix/2n C 1

.2nC 1/Š ;
(2.144)

cos x D 1 � x2

2Š
C x4

4Š
� : : : D

1X
n D 0

.�1/n x2n

.2n/Š
D

1X
n D 0

.ix/2n

.2n/Š
: (2.145)

From this one reads off the very important

Euler’s Formula

ei' D cos' C i sin' (2.146)



2.3 Simple Problems of Dynamics 213

Therewith and according to (2.139) the complex number can now be represented
also as follows:

z D jzjei' : (2.147)

Since the cosine is an even and the sine an uneven function of ' it holds:

e�i' D cos' � i sin ' (2.148)

That means for the conjugated complex number:

z� D jzje�i' : (2.149)

The inversion formulae are also useful:

cos' D 1

2

�
ei' C e�i'

� I sin ' D 1

2i

�
ei' � e�i'

�
: (2.150)

Notice the important fact that every complex number, considered as a function of
', is periodic with the period 2�:

jzjei' D jzjei.'C 2n�/ ; n D ˙1;˙2; : : : (2.151)

(f) Further Calculation Rules

Multiplication: [cf. (2.135)]

z D z1 � z2 D jz1j � jz2j ei.'1 C '2/

H) jzj D jz1j � jz2j I arg.z/ D '1 C '2 : (2.152)

Division: [cf. (2.136)]

z D z1
z2
D jz1jjz2j e

i.'1�'2/

H) jzj D jz1jjz2j I arg.z/ D '1 � '2 : (2.153)
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Fig. 2.24 The number
z D 1� i in the complex
plane

Raising to a Power: [cf. (1.1)]

z D zn
1 D jz1jn ein'1

H) jzj D jz1jn I arg.z/ D n'1 : (2.154)

Extracting a Root: [cf. (1.7)]

z D n
p

z1 D n
p
jz1j ei'=n

H) jzj D n
p
jz1j I arg.z/ D '=n : (2.155)

Examples

1. ln.�5/ D ln.5 � ei�/ D ln 5C ln ei� D ln 5C i� .
2. z D 1 � i (see Fig. 2.24)

jzj D p2 ;

arg.z/ D arctan

��1
C1

	
D 7�=4 ;

z D p2 ei.7�=4/ :

3.
p
1 � i D 21=4 ei.7�=8/ :

4. ln.1C 3i/ D ln
�p

10 ei arctan 3
�
D 1

2
ln 10C i arctan 3 :

5. 1
i D �i .

6. jei' j D �cos2 ' C sin2 '
�1=2 D p1 D 1 :

The complex numbers ei' thus lie in the complex plane on the unit circle around
the origin of coordinates.

2.3.6 Linear Harmonic Oscillator

The harmonic oscillator belongs to the most important and to the most intensively
discussed model systems of Theoretical Physics. The range of its application range
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Fig. 2.25 Elastic spring as a
possible realization of a free
harmonic oscillator

far exceeds thee canopy of Classical Mechanics. We will be dealing again and
again with this model in Electrodynamics and in particular in Quantum Theory.
The relevance of this model lies above all in the fact that it belongs to the very
few mathematically strictly tractable systems by which many of the fundamental
principles of Theoretical Physics can be illustrated. One understands by the
harmonic oscillator a self-oscillating system that obeys a characteristic equation of
motion of the same type as that for the simple pendulum (2.125).

In order to discuss the basic phenomena we first have in mind an elastic spring to
which a mass point m is attached. For small deflections the mass point experiences
a backwards directed force being proportional to the displacement jxj. According
to the sketched arrangement in Fig. 2.25 the gravitational force will be ignored.
The movement happens one-dimensionally along the spring axis. Then Hooke’s law
holds:

F D �k x : (2.156)

k is the spring constant. As equation of motion er have the following linear
homogeneous differential equation:

mRxC kx D 0 : (2.157)

In it is the same differential equation as that for the simple pendulum (2.125). From
reasons which become clear later the entity

!0 D
r

k

m
(2.158)

is called eigen frequency of the harmonic oscillator. When a physical system is
described by an equation of motion of the type given in (2.157) then we always
speak of a linear harmonic oscillator.

An interesting non-mechanical realization of the harmonic oscillator is repre-
sented by the electrical oscillator circuit consisting of a coil with the self-inductance
L and a capacitor with the capacity C (Fig. 2.26). The electrical current I then fulfills
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Fig. 2.26 Electrical
oscillator circuit as a possible
realization of the free
harmonic oscillator

the differential equation

LRI C 1

C
I D 0 I !20 D

1

LC
: (2.159)

We already solved the differential equation (2.157) in Sect. 2.3.4 (see (2.126)
and (2.130)):

x.t/ D A sin!0tC B cos!0t I x.t/ D A0 sin .!0tC ˛/ : (2.160)

It is a characteristic of the harmonic behavior of the oscillator that the frequency
!0 is independent of the amplitude of the oscillation. Hence !0 must be considered
as a pure system property.

After having introduced in the last section the complex numbers we want to solve
the equation

RxC !20 x D 0

once more, but now with the ansatz e˛t. One finds by insertion:

e˛t
�
˛2 C !20

� D 0” ˛2 D �!20 :

This yields two imaginary values for ˛

˛˙ D ˙i!0

and therewith the following two linearly independent solutions,

x˙.t/ D e˙i!0t ;

from which we get the general solution:

x.t/ D ACei!0t C A�e�i!0t : (2.161)

When interpreting this type of solution one has to be a bit cautious. x.t/ must
of course be a real quantity. The functions e˙i!0t are, however, complex. The
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coefficients A˙ therefore have to fulfill certain conditions. First it follows
with (2.146):

x.t/ D .AC C A�/ cos!0tC i .AC � A�/ sin!0t : (2.162)

If the quantities A˙ were real, then we would have necessarily to require that
AC D A�. However, the consequence would then be that x.t/ contains only one
independent parameter and thus could not be the general solution. Consequently we
have to assume that AC and A� are complex. At first glance this, however, would
mean that there were four independent parameters. But this is really not the case
because the requirement of a real x.t/ leads to:

x.t/ D x�.t/” ACei!0t C A�e�i!0 t D A�C e�i!0t C A�� ei!0t :

Because of the linear independency of ei!0t and e�i!0t this equation can only be
fulfilled if AC D A�� and A� D A�C hold. So AC and A� are conjugate-complex
quantities,

AC D A�� D aC ib ;

so that indeed we are left with only two independent parameters a and b. Inserted
into (2.162) it follows:

x.t/ D 2a cos!0t � 2b sin!0t :

The two types of solution (2.161) and (2.160) are therefore absolutely equivalent.
As general solution of a homogeneous differential equation of second order

both (2.160) and (2.161) still contain two free parameters which must be fixed by
initial conditions. We discuss two different situations:

(a) At time t D 0 let the oscillator be displaced by x D x0 and then released. That
corresponds to the initial conditions:

x.t D 0/ D x0 I Px.t D 0/ D 0 : (2.163)

This we insert into (2.160):

x0 D B I 0 D !0A H) A D 0 :

The special solution then reads:

x.t/ D x0 cos!0t : (2.164)

The initial displacement becomes the amplitude of the oscillation.
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(b) Let the oscillator be kicked off from its equilibrium position with the initial
velocity v0:

x.0/ D 0 I Px.0/ D v0 : (2.165)

We use again (2.160):

B D 0 I v0 D A!0 :

In this case we obtain a further special solution:

x.t/ D v0

!0
sin!0t : (2.166)

2.3.7 Free Damped Linear Oscillator

Each real oscillator eventually comes to stop because of the unavoidable frictional
forces. We therefore want to now include them into our considerations where,
however, we will restrict ourselves to the simplest case of the Stokes’s friction. Then
the extended equation of motion reads:

mRx D �kx � ˛Px : (2.167)

One can realize this situation by a ‘tongue’, dipping into a liquid and being fixed to
the mass m (Fig. 2.27). While the frictional term in Eq. (2.167) in general represents
a certain approximation, there exists an exact non-mechanical realization of the
damped harmonic oscillator by the electrical oscillator circuit. The sum of the partial
voltages in the circuit sketched in Fig. 2.28 must be zero. The electrical current
therefore obeys the following differential equation:

LRI C RPI C 1

C
I D 0 : (2.168)

The ohmic resistance R simulates the frictional term.

Fig. 2.27 Elastic spring as a
possible realization of a free
harmonic oscillator with
friction
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Fig. 2.28 Electrical
oscillator circuit as a possible
realization of a free harmonic
oscillator with friction

After division by m we get from (2.167) the following homogeneous differential
equation of second order:

RxC 2ˇPxC !20x D 0 I ˇ D ˛

2m
: (2.169)

As ansatz an exponential function appears again plausible:

x.t/ D e�t :

It is exactly then a solution if � fulfills the following relation:

�2 C 2ˇ�C !20 D 0 :

Therefrom one finds:

�1; 2 D �ˇ ˙
q
ˇ2 � !20 : (2.170)

If the root is not equal to zero then we have found two linearly independent
solutions. The general solution therefore reads:

x.t/ D a1 e�1t C a2 e�2t : (2.171)

When discussing the solutions we have to distinguish three cases.

(a) Weak Damping (Oscillatory Case)

It refers to the situation:

ˇ < !0 :
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Then the root in Eq. (2.170) is purely imaginary:

! D
q
!20 � ˇ2” �1; 2 D �ˇ ˙ i! : (2.172)

The general solution (2.171) is therewith written as:

x.t/ D e�ˇt
�
a1 ei!t C a2 e�i!t

�
: (2.173)

A comparison with (2.161), the solution for the free oscillation, shows that it comes
out as an oscillation with smaller frequency .! < !0/ and with an exponentially
decaying amplitude as function of time.

With the initial conditions

x0 D x.t D 0/ ; v0 D Px.t D 0/

we can bring (2.173) into yet another form :

x0 D a1 C a2 ; v0 D �ˇ .a1 C a2/C i! .a1 � a2/ D �ˇx0 C i! .a1 � a2/ :

That means:

x.t/ D e�ˇt

�
x0 cos!t C v0 C ˇx0

!
sin!t

	
: (2.174)

We find a third representation herefrom by the following definitions:

A D 1

!

q
x20 !

2 C .v0 C ˇx0/
2 ; (2.175)

sin ' D x0
A

cos' D v0Cˇx0
!A

�
H) ' D arctan

�
!x0

v0 C ˇx0

	
: (2.176)

Therewith we get:

x.t/ D Ae�ˇt sin.!t C '/ : (2.177)

Now A and the phase shift ' are the free parameters of the general solution. The
amplitude of the oscillation

A e�ˇt

is exponentially damped. Thus in a strict sense one cannot speak of a purely
periodic motion since the initial situation is not periodically reproduced. Terms
like frequency and time period are therefore no longer uniquely defined (Fig. 2.29).
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Fig. 2.29 Time dependence
of the amplitude of a weakly
damped linear harmonic
oscillator

Merely the zero crossings are still periodic with the time separation 	=2 where

	 D 2�

!
D 2�q

!20 � ˇ2
: (2.178)

Sometimes one calls

Ae�ˇt

the envelope of the damped oscillation.

(b) Critical Damping (Aperiodic Limiting Case)

This is the limiting case

˛2 D 4 k m I ˇ2 D !20 ” ! D 0 : (2.179)

Now the root in (2.170) disappears so that one gets with the ansatz x.t/ D e�t

because of

�1; 2 D �ˇ

only one special solution. From this one can not yet construct the general solution.
We still need a second special solution. For that the following trick helps. In the
solution (2.174) we perform the limiting process ! ! 0 whereby we exploit the
fact that according to (2.144) and (2.145) it must hold:

cos!t �!
!! 0

1 I sin!t �!
!! 0

!t :
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Therewith follows:

x.t/ D e�ˇt Œx0 C .v0 C ˇ x0/ t� : (2.180)

This solution contains the two independent parameters x0 and v0. It fulfills
with (2.179) the homogeneous differential equation (2.169) and is therefore the
general solution.

It is interesting that one can also find the result (2.180) a little bit more
systematically. The ansatz x.t/ D e�t leads to only one special solution. We
therefore tentatively extend it:

x.t/ D '.t/ e�ˇt : (2.181)

Then for the derivatives needed in (2.169) we have:

Px.t/ D . P' � ˇ'/ e�ˇt ;

Rx.t/ D � R' � 2ˇ P' C ˇ2'� e�ˇt :

Insertion into (2.169) with !20 D ˇ2 leads to R' � 0 and therewith to

'.t/ D a1 C a2t

and finally to

x.t/ D .a1 C a2t/ e�ˇt : (2.182)

That is identical to (2.180).
The actual behavior of the solution curve very strongly depends on the initial

conditions (Fig. 2.30). There does not appear any oscillation, only one zero crossing

Fig. 2.30 Possible
(schematic) time
dependencies of the harmonic
oscillator in the aperiodic
limiting case (critical
damping)
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is still possible, and that if the initial conditions are chosen just so that

t D tN D � x0
v0 C ˇx0

(2.183)

can be realized with tN > 0.

(c) Strong Damping (Creeping Case)

We now assume:

ˇ > !0 :

According to (2.170) there are now two negative-real solutions:

�1;2 D �ˇ ˙ � I 0 < � D C
q
ˇ2 � !20 < ˇ :

Hence, the general solution in this case reads:

x.t/ D e�ˇt
�
a1 e� t C a2 e�� t

�
: (2.184)

Because � > 0 the second summand will be quickly damped. The system is not
capable of oscillation. It displays at most still one zero crossing. a1 and a2 are again
fixed by initial conditions:

a1 D 1

2

�
x0 C v0 C ˇx0

�

	
;

a2 D 1

2

�
x0 � v0 C ˇx0

�

	
: (2.185)

A zero crossing happens if

a1
a2
D �e�2� t ” t D � 1

2�
ln

�
�a1

a2

	

can be fulfilled. That means that

a1
a2
< 0 and

ˇ̌
ˇ̌a1
a2

ˇ̌
ˇ̌ < 1

must be realized by the initial conditions. One can demonstrate that in the aperiodic
limiting case the system is damped quicker than in the genuine creeping case.
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2.3.8 Damped Linear Oscillator Under the Influence of an
External Force

Because of the unavoidable friction every oscillating process is exponentially
damped unless an additional external force acts. We will now include the latter in
our considerations. The equation of motion (2.169) is then to be replaced by

RxC 2ˇPxC !20x D 1

m
F.t/ : (2.186)

We choose the same denotations as in the last section and restrict ourselves to the
important special case of a periodic force:

F.t/ D f cos!t : (2.187)

One can realize the periodic force by, for instance, a wheel spinning with constant
angular velocity and being connected via a drive rod to the oscillating body
(Fig. 2.31).

Here again we have an exact non-mechanical realization (Fig. 2.32) by the
electrical oscillator circuit if one applies to it a periodic alternating voltage U0 sin!t:

LRI C RPI C 1

C
I D U0! cos!t : (2.188)

Fig. 2.31 Mechanical realization of the damped harmonic oscillator under the influence of a
periodic external force

Fig. 2.32 Electrical realization of the damped harmonic oscillator under the influence of a periodic
external force
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The eigen frequency of the oscillator circuit is obviously:

!20 D
1

LC
;

while the damping constant is given by:

ˇ D R

2L

We look for the general solution of the inhomogeneous differential equation
of second order (2.186). We know already the general solution of the associated
homogeneous equation from the last section. Therefore we first try to find a special
solution of the inhomogeneous differential equation. The easiest way to do this
is probably if we first rewrite the differential equation (2.186) by use of complex
quantities:

RzC 2ˇPzC !20z D f

m
ei!t : (2.189)

Naturally, physical forces are always real. However, to calculate with the expo-
nential function is especially comfortable. That is the reason why one uses such
complex ansatz-functions. One therewith comes to a complex solution from which
one eventually takes the real part as the physically relevant result. This works
because of the linearity of the differential equation which prevents the real and
imaginary parts from mixing.

After a certain settling time the oscillator will essentially follow the driving force
F.t/. A self-evident solution ansatz therefore should be

z.t/ D A ei!t

Insertion into (2.189) yields in this case a conditional equation for the amplitude A:


A
��!2 C 2iˇ ! C !20

� � f

m

�
ei!t D 0 :

Thus for A must hold:

A D � f

m

1�
!2 � !20

� � 2iˇ !
D jAj ei' : (2.190)

A is of course complex:

A D � f

m

�
!2 � !20

�C 2iˇ !
�
!2 � !20

�2 C 4ˇ2!2
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whose magnitude is

jAj D f=mq�
!2 � !20

�2 C 4ˇ2!2
: (2.191)

Real and imaginary parts can then be written as follows:

ReA D �m

f
jAj2 �!2 � !20

�
;

ImA D �2m

f
ˇjAj2! : (2.192)

For ' D arg.A/ it therefore holds:

tan ' D ImA

ReA
D 2ˇ !

!2 � !20
: (2.193)

Since for positive ! the numerator ImA is always less than zero, ' will always lie
in between �� and 0.

We have now found a special solution for (2.189), namely:

z.t/ D jAj ei.!t C '/ :

Only the real part is physically relevant which represents a special solution
of (2.186):

x0.t/ D jAj cos .!tC '/ : (2.194)

Therewith the problem is in principle solved because we know the general solution
of the associated homogeneous equation:

xinh.t/ D xhom.t/C x0.t/ : (2.195)

Independently of which of the three cases discussed in the last section (oscillatory
case, aperiodic limiting case, creeping case) does appear, the homogeneous solution
exhibits in any case an exponentially damped motion which after a sufficiently long
time .t > 1=ˇ/ will hardly carry any significant weight. It plays a role only during
the so-called ‘settling process’. One can use it to fulfill the given preconditions.
After a certain time the mass point m oscillates with the frequency ! of the driving
force. The motion then becomes independent of the initial conditions. Therefore, we
can concentrate the following discussions on the special solution x0.t/.

The amplitude jAj of the enforced oscillation is proportional to the amplitude f of
the driving force and otherwise is essentially dependent on system properties such
as .m; !0; ˇ/ as well as the frequency !. Furthermore, jAj is a symmetric function
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of !. The limiting cases

jAj!D 0 D f

m!20
D f

k
;

jAj!! 1 � 1

!2
�! 0 (2.196)

one can read off directly from (2.191).
If one sets the derivative of jAj with respect to ! equal to zero one finds a

conditional equation for the extreme values of jAj:

!1 D 0 I !˙ D ˙
q
!20 � 2ˇ2 : (2.197)

The values !˙ have a certain formal similarity to the eigen frequency ! of the
damped harmonic oscillator (2.172) being, however, because of the factor 2 in front
of ˇ, not identical to it. The !˙ are of course frequencies for A extreme values only
as long as they are real, i.e. for 2ˇ2 < !20 . In case !˙ are real, then one finds at !1 a
minimum and at !˙ maxima. If however the !˙ turn out to be imaginary numbers,
then jAj has a single maximum at !1 D 0 (Fig. 2.33).

The appearance of a pronounced maximum of the amplitude is called

‘resonance’

The resonance frequency
q
!20 � 2ˇ2 shifts with increasing friction to lower

values. In the special case of the undamped oscillator it coincides with the eigen

Fig. 2.33 Resonance behavior of the amplitude of the harmonic oscillator under the influence of
a periodic external force for different damping strengths ˇ
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Fig. 2.34 Phase shift between the oscillation amplitude of the harmonic oscillator and the driving
force as function of the frequency of the periodic external force

frequency !0 of the oscillator. The amplitude then becomes infinitely large and one
speaks of a resonance catastrophy. For real systems, however, one has to take
into consideration that near the resonance the amplitude can become so big that
the preconditions of the harmonic oscillator are no longer fulfilled. We think, as an
example, of the assumed small deflections of the simple thread pendulum.

Let us finally still consider the phase shift ' of the oscillation amplitude jAj
relatively to the driving force for which we have already found out in (2.192)
and (2.193) that always

�� � ' � 0

holds. The amplitude thus drags behind the force (Fig. 2.34). The displacement
maximum is reached only after the force reaches maximum. For ! D !0 the phase
shift ' independently of ˇ is always equal to ��=2. For the undamped oscillator
' jumps at ! D !0 discontinuously from 0 to �� . With ˇ ¤ 0 the phase shift '
becomes a continuous function of !.

2.3.9 Arbitrary One-Dimensional Space-Dependent Force

As a last simple problem of dynamics we want to discuss the case of an in principle
arbitrary but one-dimensional and only space-dependent force:

F D F.x/ : (2.198)
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In such a case a general procedure for solving the equation of motion

mRx D F.x/ (2.199)

can be developed that ultimately reduces the problem to so-called ‘quadratures’,
i.e. to the explicit evaluation of well-defined integrals. This method leads at first
to purely mathematically defined auxiliary quantities (e.g. constants of integration),
which, however, later will acquire fundamental physical meanings, such as energy,
potential, work, power, : : :.

We multiply (2.199) with Px:

mRx Px D F.x/Px :

This can then obviously also be written in the following form:

d

dt

�m

2
Px2
�
D � d

dt
V.x/ ; (2.200)

if one understands by V.x/ the following indefinite integral:

V.x/ D �
xZ

F.x0/dx0 : (2.201)

V.x/ is in a certain sense the antiderivative of the force F.x/ being therefore a known
quantity except for an additive constant. The minus sign is simply a convention
without any deeper physical meaning.

By the integration process the Eq. (2.200) provides a new constant which we
want to denote by E:

m

2
Px2 D E � V.x/ : (2.202)

This equation can further be rewritten by use of the so-called separation of
variables:

dt D dxq
2
m .E � V.x//

; t � t0 D
xZ

x0

dx0
q

2
m .E � V.x0//

: (2.203)

Therewith the problem is in principle solved. After the evaluation of the integral we
obtain

t D t.x/
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and after reversal

x D x.t/ :

The two independent parameters of this solution are now t0 and E. Notice that x0 is
not an additional free parameter.

The expressions (2.201) and (2.203) contain some terms with a deep physical
meaning. Such a double role, namely on the one hand being simply an auxiliary
quantity in connection with the integration of equations of motion and on the other
hand manifesting fundamental physical statements, is rather typical for many terms
in physics.

(1) Work

Let us consider at first the integrand in (2.201). There is no need to further convince
that the motion of a body in a force field requires an ‘effort’. One says one has to
carry out work. A measure for that is the product of force and the covered distance.
One thus defines

dW D �F dx (2.204)

as (infinitesimal) work which must be done to shift the mass point by a distance dx
in the force field F. For a finite piece of path it holds then:

W21 D �
x2Z

x1

F.x/dx : (2.205)

If a mass point is moved against an acting force it experiences work from outside.
This we count as positive. In case of a motion in field direction then the mass point
itself executes work which we define as negative.

Examples

(a) Harmonic oscillator (spring): F D �kx

H) W21 D k

2

�
x22 � x21

�
; (2.206)

(b) Gravitational field: F D �mg ex

H) W21 D mg .x2 � x1/ : (2.207)
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(2) Potential, Potential Energy

If it is possible to find for a force F an antiderivative as in (2.201) then one calls it a
conservative force and

V.x/ W potential of the force F :

In the simple special case F D F.x/ considered here such an antiderivative can
always be found. That does not hold for velocity- and/or time-dependent force fields.
In the next section we will derive the general criteria for the existence of a potential.

At this stage we have to point out a certain definition muddle in literature
concerning the terms potential and potential energy. Under a potential one
understands in the framework of Classical Mechanics the potential energy per mass
unit. The discrimination does not appear very profound; so we will not retrace it
here. But one should bear in mind that in some textbooks the two terms do not
exactly mean the same.

Obviously it holds:

W21 D V .x2/� V .x1/ : (2.208)

If a mass point possesses the potential energy V then it is ‘potentially’ able to carry
out work.

Examples

(a) Harmonic oscillator (spring):

V.x/ D k

xZ
x0dx0 D k

2
x2 C c ; (2.209)

(b) Gravitational field:

V.x/ D mg

xZ
dx0 D mg xC c : (2.210)

Potentials are defined only up to an additive constants. Only potential differences
are unique and therefore physically meaningful.

(3) Kinetic Energy

In the Eqs. (2.200) and (2.202) there appears a quantity which is unequal zero only
for moving masses .Px ¤ 0/. One calls it the kinetic energy:

T D m

2
Px2 : (2.211)
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One reads off from (2.200) and (2.208) that the change �T of the kinetic energy
corresponds to the work done on the body by the external force:

�T D ��W : (2.212)

Hence T has the dimension of work.

(4) Total Energy

The integration constant E represents the sum of kinetic and potential energies:

E D T C V D m

2
Px2 C V.x/ : (2.213)

For conservative forces such as F.x/ assumed here according to (2.200) the energy
conservation law holds:

dE

dt
D 0” E D const : (2.214)

Like V of course E is also fixed only up to an additive constant.

(5) Classical Particle Paths

Our very general considerations already permit us to draw far reaching conclusions
about possible particle paths. Since T is non-negative it follows from (2.213):

classically allowed region of motion W E � V.x/ ; (2.215)

classically forbidden region of motion W E < V.x/ ; (2.216)

classical turning points W E D V.x/ : (2.217)

The supplement classical is important since the above statement has to be com-
mented on when dealing with the all-embracing quantum theory.

Examples

(a) Harmonic oscillator:
Because of (2.215) it is to be expected that an oscillatory motion takes place
between the two turning points˙x0. The distance between E D E0 and V.x/ is
a measure for the velocity of the mass point (Fig. 2.35). At the turning points
the velocity of the particle is zero. The direction of motion reverses.

(b) General state dependence of potential:
For x � x1 no movement is possible, and so is the case between x2 and x3, also.
Between x1 and x2 an oscillatory behavior takes place, whilst a particle coming
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Fig. 2.35 Potential course
for the linear harmonic
oscillator with turning points

Fig. 2.36 Regions of motion
of a particle of energy E0 with
a preset state dependence of
potential

from C1 is reflected at x3 (Fig. 2.36). Possible equilibrium positions of the
particle are those points where no forces act. Obviously these are the extremal
values of the potential V:

F D 0 D �dV

dx
” V extremal :

In case of a maximum the particle is in an unstable equilibrium. The smallest
position change lets it fall down the potential wall. In case of a minimum the
particle finds itself in a stable equilibrium.

Finally we add a remark about the dimension, which is the same for T;W; V and E:

ŒE� D kg m2 s�2 D Joule : (2.218)

2.3.10 Exercises

Exercise 2.3.1

1. Given the linear homogeneous differential equation of third order:

3X
j D 0

˛j.t/x
.j/.t/ D 0 ;

demonstrate that the three solution functions

x1.t/ ; x2.t/ ; x3.t/
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are exactly then linearly independent when the so-called Wronski-determinant

W.x1; x2; x3I t/ �
ˇ̌
ˇ̌
ˇ̌

x1.t/ x2.t/ x3.t/
Px1.t/ Px2.t/ Px3.t/
Rx1.t/ Rx2.t/ Rx3.t/

ˇ̌
ˇ̌
ˇ̌

does not vanish.
2. Given is the linear homogeneous differential equation

:::
x .t/� 6

t2
Px.t/C 12

t3
x.t/ D 0 :

Examine by insertion whether or not

x1.t/ D 1

t2
I x2.t/ D t2 I x3.t/ D t3

are special solutions. Are they linearly independent? What is the general
solution?

Exercise 2.3.2 In the earth’s gravitational field two stones are vertically thrown
upwards with identical initial velocities v0 but in a temporal separation of t0.

1. Formulate and integrate the equations of motion!
2. After what time do the two stones meet each other?
3. How big are then their velocities at the time of their meeting?

Exercise 2.3.3 Two masses m1 and m2 .m1 < m2/ are connected by a thread of
length L. The earth’s gravitational field acts along x direction (see Fig. 2.37).

1. What are the equations of motion for m1 and m2?
2. Calculate the accelerations of both the masses as functions of m1 and m2.
3. How large is the thread tension?

Exercise 2.3.4 Two masses m1 and m2 .m2 > m1/ can move without any friction in
the earth’s gravitational field on two planes being inclined relatively to the horizontal
by angles ˛ and ˇ. They are connected by a thread of constant length L, both
therefore perform in principle one-dimensional motions (see Fig. 2.38).

1. Formulate the equations of motion of the two masses m1 and m2.
2. Express the accelerations in terms of m1; m2; ˛; ˇ and g.
3. Calculate the thread tension S.
4. Under what conditions are the masses at rest or in uniform straight-line motion?

Exercise 2.3.5 A rope of mass m and length l is sliding over an edge under the
influence of the earth’s gravitational field in x direction (see Fig. 2.39). The friction
between the rope and the supporting surface is neglected.
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Fig. 2.37 Atwood’s
(free-fall) machine

Fig. 2.38 Two masses
connected with each other on
a wedge in the earth’s
gravitational field

Fig. 2.39 A rope moving
over an edge under the
influence of the earth’
gravitational field

1. What is the equation of motion?
2. Find the solution for the case that at the time t D 0 the rope is released where the

piece x0 of the rope is already suspended?
3. How big is the velocity when the end of the rope is just slipping over the edge?

Exercise 2.3.6 An inclined plane with the inclination angle ˛ is balanced on a
scales. On the inclined plane there is, somehow fixed, a mass m. The scales exhibits
the weight.
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1. The fixing is removed and the mass slides frictionlessly down the inclined plane.
Will the display of the scales change?

2. How does the contact force change?

Exercise 2.3.7 Discuss the vertical throw of a mass m in the earth’s gravitational
field

�
F D �� mM

r3
r
�
.

1. The initial velocity at the time of throwing of the mass from the earth’s surface
is v0. Find the velocity v of the mass as function of its distance z from the earth’s
center.

2. How large must the minimum value of v0 be for the mass to leave the gravity
region?

Exercise 2.3.8 Test by the following arithmetic problems your capability to work
with complex numbers.

1. Calculate

.�i/3; i15 ;
p
4.�25/ ; ln.1C i/ ; ei.�=3/ ; ei.�=2/ :

2. Calculate the product z D z1z2:

a) z1 D 1C i I z2 D 1 � i ;

b) z1 D 3 � 2i I z2 D 5C 4i :

3. Mark the points zi and z�
i in the complex plane :

z1 D �1 � i ; z2 D �3C 1=2i ; z3 D 3C 2i ; z4 D 3=2i :

4. Find the polar representation of the following complex numbers:

z1 D i� 1 ; z2 D �.1C i/ ; z3 D e3C 2i ; z4 D 1

2

p
3C i

2
; z5 D �i :

5. Determine real and imaginary parts of the following complex numbers:

z1 D e1=2C i� ; z2 D e�1� i.3=2�/ I z3 D e3� i :

6. z.t/ is a linear function of time:

a) z.t/ D �tC i 2�t ;

b) z.t/ D 2t � i 3=2t :

How does the real part of ez.t/ read and what is its period?
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Exercise 2.3.9 Prove by exploiting certain properties of the complex numbers the
following addition theorems of the trigonometric functions:

1) sin.˛ C ˇ/ D sin ˛ cosˇ C sinˇ cos˛

2) cos.˛ C ˇ/ D cos˛ cosˇ � sin˛ sinˇ

Exercise 2.3.10 Determine the general solution of the following inhomogeneous
differential equations:

1) 7Rx � 4Px � 3x D 6 ;
2) Rz � 10PzC 9z D 9t :

Exercise 2.3.11 Try to guess (‘targetedly’) for each of the following inhomoge-
neous differential equations a special solution:

1) RyC PyC y D 2tC 3 ;
2) 4RyC 2PyC 3y D �2tC 5 :

Exercise 2.3.12 Solve the differential equation:

RzC 4z D 0

with the boundary conditions:

1) z.0/ D 0 I z.�=4/ D 1 ;
2) z.�=2/ D �1 I Pz.�=2/ D 1 :

Exercise 2.3.13 A body of mass m is moving in the earth’s gravitational field under
the influence of Newton-friction.

1. What is its equation of motion? You may restrict yourself to the vertical
component.

2. At which initial velocity would a uniform straight-line motion occur?
3. Determine the time dependence of the velocity in the case where the body starts

to fall at t D 0 with the velocity v.t D 0/ D 0.
4. Calculate the drop distance as function of the time if the body is released at t D 0

in the height H. Discuss also the limiting case ˛! 0.

Exercise 2.3.14 A body of mass m is subjected to the gravitational force and
Stokes-friction.

1. Write down its equation of motion. Which type of differential equation one has
to deal with?

2. Determine the general solution of the differential equation!
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3. The body is shot at time t D 0 from the ground under the angle of inclination
� D 45ı relative to the earth’s surface with the velocity

p
2 v0. What are the

initial conditions?
4. Calculate the path line r D r.t/ with the initial conditions of 3..
5. Calculate the maximum flight altitude attained by the body. After what time is

this altitude reached?

Exercise 2.3.15 We discuss the general solution

x.t/ D A cos!0tC B sin!0t .A; B known/

of the linear harmonic oscillator

RxC !20x D 0 :

1. At which time t1 does the oscillator achieve its maximum displacement xmax?
How big is xmax? What is the value of the acceleration at time t1?

2. At what time t2 does the oscillator reach its maximum velocity Pxmax? What is the
value of Pxmax? How large is the displacement at t2? Which simple relation exists
between xmax and Pxmax?

3. At what time t3 does the oscillator experience the maximum acceleration Rxmax?
How large is it? What are the values of displacement and velocity at time t3?

Exercise 2.3.16 A linear harmonic oscillator (!20 D k
m ; k: spring constant, m: mass)

is subjected to Stokes-friction (FR D �˛Px) and gets in its rest position (x D 0; Px D
0) an external impulse at time t D 0:

F.t/ D
8
<
:

mv0
t0

for 0 � t � t0

0 otherwise

1. Determine the deflection x.t/ for 0 � t � t0!
2. The force F.t/ performs a finite jump at t D t0. Find out which boundary

conditions follow from that for t > t0. Fix therewith x.t/ for t > t0.
3. Discuss the extremely short impulse of force: t0 ! 0!
4. What are the results for the long-lasting impulse of force t0  m=˛?

Exercise 2.3.17 A ball-shaped waterdrop (radius R, volume V , mass m) falls
vertically downwards in the earth’s gravitational field. Thereby on the drop acts
a friction force

FR D �b̨R2 � v .b̨> 0/

The fall starts at t D 0 .v.0/ D 0/. In the air the volume of the drop increases
because of condensation of water vapour from the atmosphere, and it is proportional
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to its surface:

V.
t.
D � � 4� � R2.t/ .R.t D 0/ D R0/ :

The density � of the water thereby remains constant so that the mass of the
drop increases. Formulate the equation of motion and try to integrate it. It is
recommended to use R instead of the time t as independent variable.

Exercise 2.3.18 A particle of mass m and charge q moves under the influence of a
temporally and spatially constant magnetic induction B. It experiences the Lorentz
force F D q.v � B/ where v is the particle velocity.

1. What is its equation of motion?
2. Show that jPrj is constant.
3. Show that the angle between Pr and B is constant.
4. Find out by a first integration a relation between r and Pr. Use the initial

conditions r.t D 0/ D r0 and Pr.t D 0/ D v0.
5. What can be said about the field-parallel component Prk and the component

perpendicular to the field Pr? of the velocity Pr?
6. If '.t/ is the angle between Pr? and e1-axis, show that

'.t/ D �!tC ˛ I ! D qB

m
I ˛ D const :

7. The choice of the directions of e1 and e2 is still available. Choose

e2 "" v0? D
�
e3 �

�
v0 � e3

��
(see Exercise 1.3.7) :

Verify that then we must have

e1 "" .v0 � e3/ and ˛ D �=2

Give therewith the full solution for Pr.t/.
8. Find by a further integration r.t/.
9. Under what conditions does the particle move on a circular path perpendicular

to the field B? Express the radius R by the magnitude of the initial velocity v0.
10. Which geometrical form does the general solution have?

Exercise 2.3.19 A mass point moves linearly under the influence of the force

F D F.x/ D �kx � �x3 :
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Here � is a very small correction. Calculate the period of the (weakly) anharmonic
oscillation. For an approximate solution use:

1)
p
1C x � 1C 1

2
x

2)
p
1C x � 1C 1

2
x � 1

8
x2 :

2.4 Fundamental Concepts and Theorems

In this section we want to investigate in more detail some of the fundamental
concepts and terms of Classical Mechanics such as

work, power, energy, angular momentum, torque (moment), . . .

which, to some extent, we have already introduced in the last chapter for the
special case F D F.x/ex. For these terms, under certain conditions, conservation
laws become valid which can provide important information about the particle’s
movement pattern and in addition, more technically, can substantially simplify the
integration of the equations of motion.

2.4.1 Work, Power, and Energy

We start with the term ‘work’ which has to be generalized for arbitrary force fields,

F D F .r; Pr ; t/

in analogy and compared to (2.204). To produce an infinitesimal displacement dr
the work

ıW D �F � dr (2.219)

has to be invested. The sign convention is the same as explained after (2.205).
The symbol ı is chosen consciously since this expression does not necessarily
represent a total differential as we will see in the following. Here it merely denotes
an infinitesimally small quantity.

For finite pathways (Fig. 2.40) it holds:

W21 D �
P2Z

P1

F .r; Pr ; t/ � dr : (2.220)
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Fig. 2.40 To the illustration
of the line integral of the
work

Fig. 2.41 For the evaluation
of the line integral of the
work by parametrization of
the corresponding space
curve

This quantity normally depends on:

1) force field F ,

2) endpoints P1; P2 ,

3) path C ,

4) temporal course of movement .

If F D F.r/ then of course point 4) becomes meaningless, i.e. W21 depends
only on the shape of the path and no longer on the temporal course of motion
of the mass point along the trajectory. The integration in (2.220) represents a so-
called curvilinear (line) integral. One evaluates such line integrals by tracing
them back, in some way, to normal Riemann-integrals. That can be done with
the parametrization of the space curve C introduced in Sect. 1.4.1 (Fig. 2.41). The
parameter ˛ can but need not necessarily be the time t:

C W r D r.˛/ I ˛1 � ˛ � ˛2 I

dr D dr.˛/
d˛

d˛ :

Therewith Eq. (2.220) can also be written as follows:

W21 D �
˛2Z

˛1

F .r; Pr ; t/ � dr.˛/
d˛

d˛ : (2.221)

The shape of the path C manifests itself in the term d
d˛ r.˛/. In order to become

familiar with such curvilinear integrals let us insert an exercising example.
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Fig. 2.42 For the
demonstration of the possible
path dependence of the work
integral for a given force field

Example We consider the vector field

F D �2x21 � 3x2; 4x2x3; 3x21x3
�

(2.222)

and calculate the work along two different paths C1 and C2 (Fig. 2.42):

C1 W straight line: r.˛/ D .˛; ˛; ˛/ I 0 � ˛ � 1 ;
C2 W r.˛/ D �˛; ˛2; ˛3� I 0 � ˛ � 1 :

At first we need:

dr
d˛
D
(
.1; 1; 1/ W C1

.1; 2˛; 3˛2/ W C2 ;

H) F D
( �
2˛2 � 3˛; 4˛2; 3˛3� W C1�
2˛2 � 3˛2; 4˛5; 3˛5� W C2 ;

H) F � dr
d˛
D
(
3˛3 C 6˛2 � 3˛ W C1

9˛7 C 8˛6 � ˛2 W C2 :

Now we are able to calculate the works carried out on the two different paths:

WC1 D �
1Z

0

�
3˛3 C 6˛2 � 3˛� d˛ D �5=4 ;

WC2 D �
1Z

0

�
9˛7 C 8˛6 � ˛2� d˛ D �325=168 :

This example demonstrates that the work performed can be dependent on the chosen
path. This path dependence is a very important point to which we shall come back
more elaborately in the next section.
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With (2.221) we now define as the next fundamental term, namely, the power P,
as ‘rate of work done’:

P D ıW

dt
D � d

dt

tZ

t0

F
�
r
�
t0
�
; Pr �t0� ; t0� � Pr �t0� dt0

H) P D �F .r.t/; Pr.t/; t/ � Pr.t/ : (2.223)

The dimension comes out according to (2.218):

ŒP� D Joule=s DWatt : (2.224)

The power P naturally depends, for all types of force fields, on the time schedule of
the particle motion. We encounter P when we multiply Newton’s equation of motion
scalarly with the velocity:

m Rr � Pr D F � Pr :

The left-hand side we recognize to be the time derivative of the

Kinetic Energy

T D m

2
Pr2 ; (2.225)

which we have already introduced in (2.211) for the one-dimensional motion:

d

dt
T D d

dt

m

2
Pr2 D F � Pr D �P : (2.226)

The comparison with (2.223) then yields after integration from t1 to t2 > t1:

W21 D T1 � T2 D m

2

�Pr2 .t1/� Pr2 .t2/
�
: (2.227)

The work done on a mass point along its path produces a change in its state of
motion.

In case of a one-dimensional motion it was always possible to interpret in
Eq. (2.200), which is the analogue to (2.226), the right-hand side as time derivative
of a pure space function. For three-dimensional motion and arbitrary forces that
does not necessarily remain valid. Forces for which this nevertheless holds are
special cases which are called ‘conservative’:

d

dt
V.r/ D �F � Pr : (2.228)
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One then refers to V.r/ as the ‘potential of the force F’ or as the ‘potential energy’.
We shall investigate in the next section how one can find out whether a given force
is conservative or not. The friction is an example for a non-conservative force.

We decompose the forces acting on the mass point into conservative and non-
conservative parts, where the latter are also denoted as ‘dissipative’:

F D Fcons C Fdiss :

Fcons has a potential V.r/. That we insert into (2.226):

d

dt
ŒT C V.r/� D Fdiss � Pr : (2.229)

One defines again as

Energy of the Mass Point

E D m

2
Pr2 C V.r/ : (2.230)

Equation (2.229) then represents the energy theorem:
The time rate of change of energy is equal to the power of the dissipative forces.
If all the forces are conservative, then we have the

energy conservation law

m

2
Pr2 C V.r/ D E D const : (2.231)

One has to bear in mind that ‘energy’ here always means mechanical energy.
Dissipative forces transform this energy into other types of energy such as, for
instance, heat. The sum of all energy contributions of course remains always
constant.

2.4.2 Potential

Let us now investigate under what conditions a force is conservative. For this
purpose we explicitly perform the time differentiation in (2.228):

d

dt
V .x1; x2; x3/ D @V

@x1

dx1
dt
C @V

@x2

dx2
dt
C @V

@x3

dx3
dt
D

D Pr � rV :
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Therewith we get the result that if F is conservative:

Pr � rV D �F � Pr : (2.232)

From this we conclude that a force is conservative if it can be written as the gradient
of a scalar potential. That means in particular that F must not depend either on Pr or
on t:

F D F.r/ D �rV.r/ : (2.233)

The minus sign is a convention. We presume that the potential V possesses
continuous partial derivatives up to at least second order. Then, according to (1.257),
the second partial derivatives of V are interchangeable:

@2V

@xi@xj
D @2V

@xj@xi
I i; j D 1; 2; 3 :

With (2.233) this leads to:

@Fi

@xj
D @Fj

@xi
I i; j D 1; 2; 3 :

By comparing this equation with (1.286) one recognizes that a conservative force F
has to fulfill (cf. (1.290)):

r � F D 0 (2.234)

One can show that this condition is not only necessary but also sufficient:
A force F has a potential if and only if r � F vanishes!
Further we can formulate a third, now an integral criterion. With (1.261) it holds for
the total differential of the scalar function V:

dV D rV � dr :

If we denote by
H

the line integral over a closed path then it follows:

I
rV � dr D

I
dV D Vfinal � Vinitial D 0 :

This, however, means with (2.233):

I
F � dr D 0” F conservative : (2.235)

A conservative force does not carry out any work on a closed path!
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Fig. 2.43 Decomposition of
a closed path

Now we can construct a closed path also by combination of two different paths C1
and C2 which are connected at two points P1;P2 (Fig. 2.43):

0 D
Z

C1

F � drC
Z

�C2

F � dr D
Z

C1

F � dr �
Z

C2

F � dr

H)
Z

C1

F � dr D
Z

C2

F � dr : (2.236)

A force field F is conservative if and only if the work necessary to move the mass
point between two space points turns out to be path-independent!
For this reason, the force field (2.222), previously considered as an example, is not
conservative!

If one wants to calculate the potential of a force one should first check whether
or not r � F D 0 is fulfilled. If yes, then one can exploit the path-independence
in order to determine the potential at the point P via a ‘calculationally convenient’
path:

V.P/ D
PZ

P0

dV D �
PZ

P0

F � dr (2.237)

It is fixed only up to an additive constant. One therefore sets the potential of an
arbitrarily chosen reference point P0 equal to zero. Very often it appears convenient
to choose the infinitely distant point. The potential V.P/ then corresponds to the
work that is needed to bring the mass point from the reference point P0 to P.

Examples

(a) Linear harmonic oscillator
As discussed elaborately in Sect. 2.3.9 the forces F D F.x/ of one-dimensional
motion always possess a potential. The oscillator potential we have already
given in (2.209):

V.x/ D k

2
x2 C c :

Here one normally agrees to put V.x D 0/ D 0 and consequently c D 0.
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(b) Linear harmonic oscillator with friction
For the total force it holds according to (2.167):

F D �kx � ˛Px :

Because of the Px-dependency it can not be conservative. The energy theo-
rem (2.229) reads in this case:

d

dt

�
m

2
Px2 C k

2
x2
	
D �˛Px2 : (2.238)

The energy steadily decreases because of the friction.
(c) Spatially isotropic harmonic oscillator

This oscillator is defined by the force

F.r/ D �kr : (2.239)

One easily checks (see (1.292)) that

r � F D 0

The force thus possesses a potential which we calculate using (2.237):

V.r/ D �
rZ

0

F � dr0 D k

r D .x; y; z/Z

0

�
x0dx0 C y0dy0 C z0dz0� D

D k

xZ

0

x0dx0 C k

yZ

0

y0dy0 C k

zZ

0

z0dz0 D k

2

�
x2 C y2 C z2

�
:

This yields:

V.r/ D k

2
r2 : (2.240)

2.4.3 Angular Momentum and Torque (Moment)

If we multiply the basic dynamical equation (2.43) vectorially by r,

m .r � Rr/ D .r � F/ ; (2.241)
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then there appears on the left-hand side the time-derivative of an important physical
quantity:

L D m .r � Pr/ D .r � p/ angular momentum : (2.242)

Since both position r and momentum p are polar vectors the resulting L must be
an axial vector oriented perpendicularly to the plane spanned by r and p. With the
further definition,

M D .r � F/ torque (moment) ; (2.243)

it follows from (2.241):

d

dt
L DM : (2.244)

This equation represents the angular-momentum law:
The time rate of the change of angular momentum is equal to the applied torque.
If the torque is identical to zero then this theorem becomes the

Law of Conservation of Angular-Momentum

M D 0” d

dt
L D 0 I L D const : (2.245)

There are two possibilities for getting M D 0:

1) F � 0 (trivial case) ;
2) F "" r (central field) :

(2.246)

Case (1) is identical to the uniform straight-line motion of the mass point:

Pr D v D const :

At first glance it appears astonishing that a uniform straight-line movement
possesses any, even if constant, angular momentum. In Fig. 2.44 L is perpendicular
to the plane of the paper with the magnitude m v d. Only if the reference point

Fig. 2.44 To the angular
momentum of a uniform
straight-line movement
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(origin of coordinates) lies on the straight line then L indeed disappears. That gives
evidence that the angular momentum is not at all a genuine particle property, but
rather depends on the choice of the reference point.

A shift of the origin of coordinates by the constant vector a,

r0 D rC a I Pr0 D Pr H) p0 D p ;

means for the angular momentum:

L0 D �r0 � p0� D .r � p/C .a � p/ D LC .a � p/ : (2.247)

If L is constant then L0 is also constant only if simultaneously the conservation of
momentum also holds p D const. Furthermore, it does not necessarily follow from
L D 0 that also L0 D 0. In general that is indeed not the case.

The second possibility for M D 0 in (2.246) shall be discussed in a separate
section.

2.4.4 Central Forces

A force-type of the profile

F D f .r; Pr ; t/ er (2.248)

is called a ‘central force’. Thus the force is directed along the radial rays which
start from the center (origin) of the force (Fig. 2.45). For such forces the angular
momentum L, if referred to the force center, is constant, according to (2.245).

Central forces in the general form (2.248) are not necessarily conservative. It
rather holds:

Central force F conservative ” F D f .r/ er : (2.249)

Fig. 2.45 Impact lines of a
central force
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It is clear that F must not depend on Pr and t to be conservative. For a proof of (2.249)
we therefore can restrict ourselves to forces F of the form:

F D f .r/ er :

According to (2.234) the force F is conservative if and only if the curl of F vanishes.
That we inspect with (1.289):

r � F D f .r/
r
r � rC

�
r f .r/

r

	
� r
�
:

After (1.292) we can exploit r � r D 0, so it remains to require:

0
ŠD

r
�

f .r/
r

	
� r
�
:

Hence the two vectors in the square bracket have to be parallel. In view of (1.271)
and the subsequent discussion one realizes that the gradient vector is orthogonal to
the planes f .r/=r D const. Hence these planes must simultaneously be orthogonal
to r. That means, however, that f .r/=r has to be constant on the surface of a sphere.
This is possible only if f .r/ D f .r/. That proves (2.249)!

We can add a further statement:
A conservative force F is a central force if and only if it holds:

V.r/ D V.r/ (2.250)

Proof

(a) We assume that F is conservative and V.r/ D V.r/ then it follows:

F D �rV.r/
(1.277)D �dV

dr
er :

Thus F is a central force of type (2.249).
(b) We assume that F is a conservative central force then it follows:

F D �rV D f .r/er ” @V

@xi
D � f .r/

r
xi D

D �f .r/
@r

@xi
:

We choose Of .r/ so, that f .r/ D dOf .r/
dr . Then the last relation reads:

@

@xi
V D � @

@xi

Of .r/ 8i :

Therewith V can depend only on r.



2.4 Fundamental Concepts and Theorems 251

If conservation of angular momentum is valid as in the case of central forces,
then quite far-reaching statements about the type of motion of the mass point can
already be formulated. From the definition of L it follows after scalar multiplication
with r:

r � .m .r � Pr// D 0 D r � L :

If L is a constant vector then this equation represents a plane which is perpendicular
to L and contains the origin:
In the case the angular-momentum is conserved the mass point moves on a plane
which is perpendicular to the angular momentum and contains the origin of
coordinates!
From the constancy of jLj follows a further important statement. If the position
vector sweeps an area dS in time dt then dS is just half of the parallelogram spanned
by r.t/ and r.tC dt/ (see Fig. 2.46):

dS D 1

2
j.r.t/ � r.tC dt//j D 1

2
j.r.t/ � .r.t/ C Pr.t/dt/j D

D 1

2
dt j.r.t/ � Pr.t//j :

That means:

dS

dt
D 1

2m
jLj : (2.251)

Therewith we have found the ‘area conservation principle’:
In the case of angular-momentum conservation the position (radius) vector of the
mass point sweeps equal areas in equal times.

Fig. 2.46 Sketch for the
derivation of the area
conservation principle
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2.4.5 Integration of the Equations of Motion

If the law of conservation of angular-momentum

L D m .r � Pr/ D const

or the energy conservation law

E D m

2
Pr2 C V.r/ D const

are valid then one speaks of

first integrals of motion

The original equations of motion are always differential equations of second order,
the conservation laws, on the other hand, are only of first order. Furthermore, on the
basis of the conservation laws a general procedure for the complete solution of the
equations of motion can be developed.

We have shown that the angular-momentum conservation law holds if and only
if the acting force is a central force:

F D f .r; Pr ; t/ r :

(The trivial case F � 0 shall be excluded!)
If simultaneously the energy conservation law holds then definitely a potential

must exist. Hence, the central force is conservative and must be of the form:

F D f .r/r:

Moreover we know that in such a case the potential can depend only on the
magnitude of r:

V D V.r/ :

Therewith we will further evaluate the conservation laws. Because of the constancy
of the angular momentum the motion will happen in a fixed plane. Let this be the
xy plane. For the description we choose spherical coordinates .r; #; '/where we can
directly exploit

# D �

2
H) P# D 0
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In (2.21) we derived:

r D r er ;

Pr D Pr er C r P# e# C r sin# P' e' :

That means here:

Pr D Pr er C r P' e' ; (2.252)

and for the angular momentum we get:

L D �m r2 P' e# D m r2 P' ez :

Because of

Pr2 D Pr � Pr D Pr2 C r2 P'2

the energy theorem reads:

E D m

2

�Pr2 C r2 P'2�C V.r/ : (2.253)

Using the angular-momentum law we can now eliminate P' from the energy theorem:

E D m

2
Pr2 C L2

2mr2
C V.r/ : (2.254)

When we introduce the effective potential

Veff.r/ D L2

2mr2
C V.r/ (2.255)

the energy theorem has mathematically the same structure as that for the one-
dimensional movement discussed in Sect. 2.3.9. We therefore can proceed for the
integration in the same manner. Analogously to (2.203) we now get:

t � t0 D
rZ

r0

dr0
q

2
m ŒE � Veff.r0/�

: (2.256)

By inversion one comes to:

r D r.t/ :
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For the complete solution r.t/ D r.t/
�

cos'.t/; sin '.t/; 0
�

we still need ' D '.t/.
At first we can exploit the angular-momentum law in order to derive ' D '.r/:

d' D L

mr2
dt D L

mr2
dr

Pr D
L

mr2
drq

2
m ŒE � Veff.r/�

:

That can formally be integrated:

' � '0 D
rZ

Nr0

L dr0

r02p2m ŒE � Veff.r0/�
: (2.257)

By inversion we obtain herefrom the path r D r.'/ and after insertion of r D r.t/
also ' D '.t/.

The shape of the trajectory and its the temporal evolution depend on two essential
integration constants L and E. The other constants r0; Nr0; '0; t0 can be fixed for the
sake of convenience by a suitable choice of the system of coordinates and the time
zero!

The discussion in Sect. 2.3.9 about classically forbidden and allowed regions of
the respective motion can be transferred literally by simply replacing V.x/ by Veff.r/.

Example: Attractive Coulomb Potential

Veff.r/ D � q1q2
4� "0r

C L2

2m r2
: (2.258)

For E D E0 < 0 we have a bonded oscillatory motion. For E D E1 > 0 the particle
can in principle run up to infinity (’scattering states’) without returning (Fig. 2.47).

Fig. 2.47 The effective
potential belonging to the
Coulomb potential
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2.4.6 Exercises

Exercise 2.4.1

1. Investigate whether or not the following force field is conservative:

F.r/ D �˛1y2z3 � 6˛2xz2
�

ex C 2˛1xy z3ey C
�
3˛1xy2z2 � 6˛2x2z

�
ez

2. A mass point is moved in the force field F from the origin O to the space point
P.x0; y0; z0/ along the following path (Fig. 2.48),

0
C1�!P1

C2�!P2
C3�!P ;

i.e. piecewise along the coordinate axes.
Give a parametrization of the path and calculate therewith the work executed on
the body when it is shifted from O to P.

3. Does F have a potential? If yes, find it?

Exercise 2.4.2 Calculate the work which has to be performed against the field

F.r/ D ˛ � r .˛ D const/

when going from the point P1 to the point P2. Evaluate the relevant line integrals
along the paths in, respectively, Figs. 2.49, 2.50, and 2.51:

Determine the potential of the given force and verify therewith the above results.

Fig. 2.48 Sketch of the path,
mentioned in Exercise 2.4.1,
between the points .0; 0; 0/
and .x0; y0; z0/

Fig. 2.49 Special path for
the calculation of the work
that must be carried out
against the field F D ˛ � r on
the way from P1 to P2
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Fig. 2.50 Special path for
the calculation of the work
that must be carried out
against the field F D ˛ � r on
the way from P1 to P2

Fig. 2.51 Special path for
the calculation of the work
that must be carried out
against the field F D ˛ � r on
the way from P1 to P2

Exercise 2.4.3 Given is the force field

F.x; y; z/ D f

�
3

˛2
x2 C 2

˛
y; � 9

˛2
yz;

8

˛3
xz2
	

˛ D const :

1. Is the force conservative?
2. Which work must be done in order to move the mass point m in the field F on a

straight line from .0; 0; 0/ to .˛; ˛; ˛/?
3. Calculate the work for the case where as the path the polygonal line .0; 0; 0/!
.˛; 0; 0/! .˛; ˛; 0/! .˛; ˛; ˛/ is chosen.

4. Which work must be brought up on the parabolic arc .y D x2; z D y2/ from
.0; 0; 0/ to .˛; ˛; ˛/?

5. The mass point moves on a circle with radius ˛ within the xy-plane around the
origin of coordinates. What work has to be performed for a motion over a full
circle?

Exercise 2.4.4 A force

F.r/ D F.x; y; z/ D ˛ �xy;�z2; 0
�
:

acts on a mass point m.
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1. Is F conservative? Justify your answer!
2. What work is necessary to move the mass point linearly

from P1 D .0; 0; 0/ to P2 D .1; 2; 3/ ‹

3. Calculate the work necessary for moving the mass point on the ‘curved’ path
.x D y2; z D 3 � py/ from P1 to P2!

Exercise 2.4.5 Given is the force field

F.r/ D .a � r/ .a D const/ :

Calculate the work using the same line integrals as in Exercise 2.4.2. Does a
potential exist?

Exercise 2.4.6 A mass point moves in the force field

F.r/ D .ay; ax; b/ ;

where a; b are positive constants.

1. Show that it is a conservative force.
2. Calculate the needed work to move the mass point along a straight line from

P0 W .0; 0; 0/ to P W .x; y; z/.
3. What is the potential of the force F?
4. How does the needed work change when the mass point is moved parallel to the

coordinate axes from P0 to P:

.0; 0; 0/! .x; 0; 0/! .x; y; 0/! .x; y; z/ ‹

Exercise 2.4.7 Given are the potentials:

1. V.r/ D 1

2
k.x2 C y2 C z2/,

2. V.r/ D m

2

�
.! � r/2 � !2r2�

(!: constant vector).

Calculate the force F D F.r/ which is generated by the potentials. Are they central
forces? What is the physical meaning of the given potentials?

Exercise 2.4.8 A particle of mass m moves under the influence of a conservative
central force on a circular path with radius R through the origin of coordinates as
plotted in Fig. 2.52.

1. Determine r D r.'/.
2. Formulate the energy conservation law in terms of r and dr=d'.
3. Which force acts on the mass point?
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Fig. 2.52 Motion of a mass
point m on a circular path

Exercise 2.4.9 A particle with the mass m D 3g moves in a homogeneous time-
dependent force field

F D �45t2; 6t � 3; �18t
� � 10�5N

(t: time measured in seconds) with the initial conditions:

r.t D 0/ D .0; 0; 0/ cm ;

Pr.t D 0/ D .0; 0; 6/ cm s�1 :

1. Calculate the velocity of the particle after 1 s.
2. Which kinetic energy does the particle have after 1 s?
3. What is the work W10 done by the field when moving the particle from r.t D 0/

to r.t D 1/?
Exercise 2.4.10 We discuss once more, just as in Exercise 2.3.15, the general
solution of the linear harmonic oscillator; however now starting from the energy
conservation law:

1. Why is this law valid?
2. Use the energy conservation law for calculating x.t/. Thereby the independent

parameters shall be the total energy E and the time t1 at which the oscillator
reaches its maximum deflection xmax.

3. Now choose the solution so that E and t2 become the independent parameters,
where t2 is the time at which the oscillator assumes its maximum velocity.

Exercise 2.4.11 A mass point m moves frictionless in a potential V.x/ that has a
minimum at x D 0 (see Fig. 2.53).
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Fig. 2.53 Motion of the mass
point m in a one-dimensional
potential V.x/

1. How can one generally solve the equation of motion

mRx D �dV

dx

by a quadrature (integral)?
2. For not too high energies E, .E < V0/, the mass point performs in general an

anharmonic oscillation. How are the oscillation amplitudes (D turning points)
for given energy E determined?

xmin D �a ; xmax D b

How can we fix the oscillation period with the result from 1.? Which symmetry
properties must V.x/ have in order to ensure a D b for all energies E?

3. Calculate with the result from 2. the period of the harmonic oscillation.
4. Under what conditions for V.x/ and E will the oscillation period 	 become

infinite with a finite oscillation width b?
5. Let us assume an equation of motion of the form

mRx D �m
�
!20xC "x3� D �dV

dx
;

where for the energy E of the mass point holds:

"E
 m!40

Calculate approximately the oscillation period 	 in dependence of the oscillation
amplitude a up to linear terms in "!

6. For the potential V.x/ from 5. solve the equation of motion of the mass point up
to linear terms in " by use of the quadrature from 1.. Choose as initial condition
x.0/ D 0. Calculate within the same approximation out of E D V.�a/ the initial
velocity Px.0/.
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Fig. 2.54 Different ways of
the mass point m in the
gravitational potential

Exercise 2.4.12 A mass point m moves in the gravitational field

V.r/ D �˛
r
I ˛ D �mM

(m
 M; � : gravitational constant)

1. Calculate the time which the mass point needs to come from point A to B (see
Fig. 2.54) if it travels

(a) on a circle (time ta)
(b) on a parabola (time tb)

2. Calculate for both cases the kinetic energy at A and the corresponding velocity.
How much time would the mass point need if it traveled with the same velocity
(uniformly in a straight-line) directly from A to B?

3. On the mass point in addition to the gravitational attraction also acts a small
friction force

FR D �m Ǫ Pr
�
jFRj 


ˇ̌
ˇ ˛
r2

ˇ̌
ˇ
�

(1) Write down the equation of motion!
(2) Starting from a circular path (radius R, angular velocity !0) it shall be shown

that for small times the ansatz

r D R.1C c1t/ I P' D !0.1C c2t/

fulfills the equation of motion to first approximation. Calculate c1 and c2 and
estimate for which times the approach is useful.

(3) In the framework of the approximation (2) how do the radius, angular
velocity, path velocity, kinetic, potential, and total energy change with time?

(4) How much of the (mechanical) energy is destroyed by friction? Where does
it come from?
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Exercise 2.4.13 A mass point moves on an ellipse in the xy plane

x2

a2
C y2

b2
D 1

and runs through it three times in 2 s.

1. What is the trajectory

r.t/ D .x.t/; y.t/; z.t// ;

if x.t/ D a cos!t is given?
2. Which force does act on the mass point?
3. Calculate the angular momentum of the mass point. Why should this be constant

with respect to direction as well as magnitude?
4. Calculate the area �S which the position vector sweeps in 1 s.

2.5 Planetary Motion

The potential

V.r/ D �˛
r

(2.259)

is the most important example that leads to a central force field. It has significant
applications in celestial mechanics and for the semiclassical atom model. We want
to investigate its properties in connection with the special example of the planetary
motion around the sun.

Starting point for the solution of the equation of motion in a conservative central
field is the validity of the energy and the angular-momentum conservation law which
manifests itself in the equation (m: planet mass):

E D m

2
Pr2 C L2

2m r2
C V.r/ (2.260)

Here V.r/ is the gravitational potential:

V.r/ D �� mM

r
(2.261)

(M: mass of the sun; � : Newton’s gravitational constant .6:67 � 10�11m3 kg�1 s�3/).
For the explicit solution of the problem, however, we will not choose the general

procedure described in the last section, but prefer a more direct integration. For this



262 2 Mechanics of the Free Mass Point

purpose we introduce a new variable

s D 1

r

and try at first to determine s as function of ':

ds

d'
D d

dt

�
1

r

	
dt

d'
D � Pr

r2
1

P' D �
Pr
r2

mr2

L

H) Pr D � L

m

ds

d'
: (2.262)

With V.1=s/ D V.s/ D �� m M s (2.260) reads:

L2

2m

"�
ds

d'

	2
C s2

#
C V.s/ D E : (2.263)

We differentiate this equation once more with respect to ':

L2

2m


2

ds

d'

d2s

d'2
C 2s

ds

d'

�
C dV

ds

ds

d'
D 0 :

It follows:

d2s

d'2
C s D � m

L2
dV

ds
D � m2 M

L2
: (2.264)

This is an inhomogeneous differential equation of second order. The general
solution of the associated homogeneous equation reads:

s0.'/ D ˛ sin ' C ˇ cos' :

It is not difficult to identify the following function as a special solution of the full
inhomogeneous equation:

s1.'/ � � m2 M

L2
:

That leads immediately to the general solution of the inhomogeneous differential
equation of second order:

s.'/ D ˛ sin ' C ˇ cos' C � m2 M

L2
: (2.265)
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The two independent parameters ˛ and ˇ are fixed by the initial conditions. So we
demand that the point closest to the sun (s maximal) is found at ' D 0:

ds

d'

ˇ̌
ˇ̌
'D 0

ŠD 0 D .˛ cos' � ˇ sin '/j'D 0 D ˛ ;

d2s

d'2

ˇ̌
ˇ̌
'D 0

D .�˛ sin' � ˇ cos'/j'D 0 D �ˇ
Š� 0

H) ˇ � 0 :

That leads to the trajectory:

s D 1

r
D ˇ cos' C � m2 M

L2
: (2.266)

We introduce the following constants:

k D L2

� M m2
I ˇ D "

k
� 0 : (2.267)

Therewith we have found:

1

r
D 1

k
.1C " cos'/ : (2.268)

This is the equation of a conic section in polar coordinates. Therewith the
geometrical shapes of the planetary paths are determined. The parameter ", which is
related to the positive integration constant ˇ, can assume arbitrary positive values:

" < 1 W ellipse ;

" D 1 W parabola ;

" > 1 W hyperbola :

Finally we want to consider how the crucial integration constants L and E will
influence the shape of the path:

(a) Ellipse
The ellipse is the geometric locus of all those points for which the sum of their

distances to two different ‘focal points’ is constant D 2a (Fig. 2.55). Therewith
evidently a represents the semi-major axis. Furthermore we have according to
Pythagoras’s theorem:

a2 D e2 C b2 H) b2 D a2 � e2 :
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Fig. 2.55 Characteristic
parameters of the ellipse

With (2.268) we have for the ‘point closest to the sun’:

r0 D r.' D 0/ D a � e D k

1C "
and for the point ‘point farthest from the sun’:

r1 D r.' D �/ D aC e D k

1 � " :

Combining the last two equations leads to the numerical eccentricity:

" D e

a
:

This we insert into r0,

r0 D a � e D ka

aC e
;

finding therewith

b2

a
D k D L2

�Mm2
: (2.269)

Thus the angular momentum L influences both the semi-axes!
We recognize the influence of the energy when we inspect (2.268) for the point

closest to the sun:

Pr.' D 0/ .2:262/D � L

m

ds

d'

ˇ̌
ˇ̌
'D 0

D 0 :
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This yields for the total energy E:

E D L2

2m r20
� �m M

r0
D � m M

�
k

2r20
� 1

r0

	
D

D � m M
a2 � e2 � 2a.a� e/

2a.a� e/2

H) E D �� m M

2a
H) a D �� m M

2E
: (2.270)

We see that the energy E determines uniquely the semi-major axis a of the ellipse.
Since it is a bounded motion we have E < 0. For the semi-minor axis it then
immediately results from (2.269):

b D Lp�2m E
: (2.271)

(b) Hyperbola
The path of hyperbola is often marked by the

‘impact parameter’ d,

which is the distance by which the particle would pass the scattering center if there
were no deviation, and by the angle # by which it is actually deflected when flying
around the center (see Fig. 2.56). How are these quantities linked with L and E?
The directions of the asymptotes .r!1/ according to (2.268) are given by

cos'1 D �1
"

Obviously it holds:

� � # D 2 .� � '1/ H) #=2 D '1 � �=2 :

Hence it follows:

sin#=2 D sin .'1 � �=2/ D � cos'1 D 1=" :

Fig. 2.56 Characteristic
parameters of the hyperbola
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Let Pr1 be the velocity of the particle at the point at infinity. From the energy
conservation law follows then:

E D m

2
Pr21 > 0 (2.272)

and from the angular-momentum conservation law:

L D m j.r � Pr/j D m j.r1 � Pr1/j D m d jPr1j :

That yields the relation:

L2 D 2m E d2 : (2.273)

Just as for the ellipse it also holds here for the point closest to the sun Pr0 D 0 and
r0 D k=.1C �/ and thereby for the energy:

E D L2

2m r20
� � m M

1

r0
D � M m

�
k

2r20
� 1

r0

	
D

D � M m


.1C "/2
2k

� .1C "/
k

�
D � M m

."C 1/." � 1/
2k

:

It follows:

"2 � 1 D 2k E

� M m
D 2L2E

�2M2m3
D 4E2d2

�2M2m2
D 1

sin2 #=2
� 1 D cot2

#

2
:

For the hyperbolic path we have therewith found the following relations for the
impact parameter d and the deflection angle # :

d D Lp
2m E

I tan
#

2
D � M m

2 d E
: (2.274)

We notice that the energy E and the angular momentum L uniquely establish d and
# . These relations play an important role also in atomic physics, since the deflection
of charged particles due to the positively charged nucleus takes place by the same
type of potential ˛=r.

(c) Curve Sketching
We close this section with a descriptive discussion of the types of motion in the

gravitational potential (see Fig. 2.57).
The mass point can reach only those regions for which holds:

Veff.r/ D L2

2m r2
� � m M

r
� E (2.275)
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Fig. 2.57 The effective potential belonging to the gravitational potential for two different values
of the angular momentum L

The angular momentum contributes a repulsive term to the effective potential which
dominates for small r.

For negative energies .E D E1/ there is always only a finite region of allowed
values for the magnitude of the position vector. A satellite, as an example, will
thus always stay within the attraction region of the earth if E < 0. On the other
hand, it should not penetrate the earth. Therefore, the region r � R must be
excluded by a sufficiently large angular momentum. The required minimum angular
momentum determines the minimum velocity tangential to the earth’s surface. This
consideration leads to (see Exercise 2.5.4):

First Cosmic Velocity

v1 D
p

gR D 7:9 km s�1 : (2.276)

In order to leave the attraction region of the earth the satellite needs at least
the energy E D 0. On the earth’s surface it has the potential �� m M

R where the
gravitational force amounts to m g D � m M

R2
. From that follows

0 D m

2
v22 �m g R :

The satellite therefore needs as minimum initial velocity the so-called

Second Cosmic Velocity

v2 D
p
2g R D 11:2 km s�1 : (2.277)
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(d) Kepler’s Laws Let us finally still recall Kepler’s laws, which we have derived
in this section in a rather general manner:

1. The planets move along ellipses with the sun at one of the focal points.
2. The radius vector from the sun to the planet sweeps equal areas in equal times

(’areal velocity is constant’).
3. The ratio of the squares of the orbital periods of two planets is the same as that

of the cubes of the respective semi-major axes of the ellipses.

The first and second law follow directly from the energy and angular-momentum
conservation laws. The second law is nothing else but the area conservation
principle (2.251). The validity of the third law is not yet clear up to now. This is,
however, easily done when we inspect the total area of the ellipse and apply suitably
the area conservation principle (2.251):

s D � a b D 	 ds

dt
D 	 L

2m
(	 W orbital period)

H) 	2

a3
D �2b24m2

L2a
D 4m2�2k

L2
D 4�2

� M
D const : (2.278)

2.5.1 Exercises

Exercise 2.5.1 The ellipse is the geometric locus of all those points M D .x; y/
for which the sum of their distances to two given fixed points F1 D .e; 0/ and
F2 D .�e; 0/ (F1; F2: focal points) is constantD 2a (Fig. 2.58).

1. Express b by a and e.
2. Determine the equation of the ellipse in Cartesian coordinates.
3. Determine the equation of the ellipse in polar coordinates, i.e. find r D r.'/. For

that use the quantities k D b2=a and " D e=a < 1 (": eccentricity).

4. Determine the parameter form of the ellipse:

�
x
y

	
D
�

f .t/
g.t/

	
.

Exercise 2.5.2 A particle of mass m possesses in a force field the potential

V.r/ D ˛

r2
:

Fig. 2.58 Characteristic
parameters of the ellipse
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1. What can generally be said about force, energy, and angular momentum?
2. Time zero and origin of coordinates are chosen just so that for ˛ > 0 (repulsive

potential) it holds:

rmin D r.t D 0/ ; '.rmin/ D 0

Calculate rmin as function of L and E.
3. Determine the function r D r.t/ and the path r D r.'/ for E > 0 and ˛ > 0.

What is the path for the special case ˛ D 0?
4. Under which conditions will an attractive potential .˛ < 0/ lead to a bound

motion? Determine for this case rmax.
5. Calculate with the initial condition r.t D 0/ D rmax the time t0, after which the

particle will land in the center r D 0.
6. Calculate the trajectory r D r.'/ with '.rmax/ D 0.

Exercise 2.5.3 The vector

A D .Pr � L/C V.r/ r .L W angular momentum/

is denoted as ‘Lenz vector’ belonging to the central potential V.r/.

1. Demonstrate that for the potential

V.r/ D �˛
r

.˛ > 0 ; Kepler, Coulomb/

the Lenz vector is a conserved quantity.
2. Calculate the magnitude of A.
3. Bring the path equation by use of the Lenz vector into the form

1

r
D 1C " cos'

k
.' D ^.A ; r//

and express the parameters k and " by the mass m, the constant ˛, the total energy
E and the angular momentum L. Hint: Investigate the scalar product A � r.

Exercise 2.5.4

1. How does the effective potential Veff.r/ for the path of an earth satellite of mass m
read? Assume that the earth satellite moves on a circular path. Determine the
radius R0 as a function of the rotational frequency of the satellite. Find the radius
in case of a geostationary orbit?

2. The satellite moves in the attractive region of the earth. Determine the first cosmic
velocity (2.276) as the minimum velocity tangential to the earth’s surface which
is necessary for the satellite in order not to drop back to earth!

3. Which minimum initial velocity (second cosmic velocity, (2.277)) must the
satellite get to be able to leave the attraction region of the earth?



270 2 Mechanics of the Free Mass Point

Exercise 2.5.5 For a conservative central force field

F.r/ D f .r/ er

the path line r D r.'/ is given. Using this path line the function f .r/ can be
deduced.

1. Verify the relation

f .r/ D L2

mr4

 
d2r

d'2
� 2

r

�
dr

d'

	2
� r

!
:

L is the magnitude of the angular momentum.
2. The path line may be an ellipse with the force center in one of its focal points.

Show that it must hold:

f .r/ / � 1
r2

3. The path line is given by

r D r0 e�'

Find f .r/?

Exercise 2.5.6

1. Show that the force

F.r/ D � ˛
rn

er I ˛ > 0 I n > 1

is conservative!
2. Verify that the angular momentum L of a particle of mass m in the force field F

from 1. is a conserved quantity. What does follow from that for the particle
motion?

3. For the field F from 1. the energy theorem is brought into the form

E D m

2
Pr2 C Veff.r/ :

How does the effective potential Veff.r/ look like?
4. Determine under which conditions concerning n the particle can move in a stable

circular orbit .r � r0/. Calculate the radius r0!
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2.6 Self-Examination Questions

To Section 2.1

1. What does the term mass point mean?
2. What is provided by kinematics?
3. What do we understand by path line, position vector, velocity, and acceleration

of a mass point?
4. Formulate the components of the velocity of a mass point in, respectively,

cylindrical and spherical coordinates!
5. Sketch the position and the velocity vector of a mass point for the uniform

straight-line and the uniformly accelerated motion!
6. What is characteristic for a uniform circular motion?

To Section 2.2

1. List Newton’s axioms.
2. What do we understand as inertial and gravitational (heavy) mass? What is the

connection between them?
3. Which law is called the basic dynamical equation of Classical Mechanics?
4. What is a central force?
5. What is an inertial system?
6. What are the rules of a Galilean transformation?
7. Define the term pseudo force.
8. Interpret the meaning of the Coriolis force and the centrifugal force!

To Section 2.3

1. What is the equation of a force-free motion?
2. Which kind of movement does the mass point perform in the homogeneous

gravitational field?
3. How does the final velocity of a body of mass m, which is dropped with the

initial velocity zero from the height h in the earth’s gravitational field, depend
on the height h and the mass m at the impingement on the earth’s surface?

4. Which equation is called a linear differential equation of n-th order?
5. Describe the general procedure for solving linear inhomogeneous differential

equations.
6. What are the most popular ansaetze for frictional forces?
7. How does the equation of motion of a material body read when the motion takes

place in the earth’s gravitational field under the influence of Stokes’s friction?
Which type of differential equation does one get? Find a special solution!

8. What do we understand by a simple (mathematical, thread) pendulum?
9. What is thread tension? What kind of force is it?

10. Formulate the oscillation equation of the simple pendulum!
11. With respect to the example of the thread pendulum interpret the terms

oscillation period, frequency, and angular frequency!
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12. How can we use the thread pendulum to demonstrate the equivalence of inertial
and heavy mass?

13. How is the unit i of imaginary numbers defined?
14. What is meant by the polar representation of a complex number?
15. What do we understand by Euler’s formula?
16. Define the harmonic oscillator and name some possibilities of realization. What

is called the eigen-frequency of an oscillator?
17. Formulate the equation of motion of the free damped linear harmonic oscillator

(Stokes’s friction). Distinguish the oscillatory case, the aperiodic limiting case,
and the creeping case!

18. Plot qualitatively for the aperiodic limiting case the solution x.t/ of the damped
harmonic oscillator. How many zero crossings are possible?

19. In which case is the harmonic oscillator more strongly damped, in the aperiodic
limiting case or in the creeping case?

20. Formulate the equation of motion of the linear damped harmonic oscillator
under the influence of a time-dependent external force F.t/. Find a mechanical
and a non-mechanical realization!

21. Describe the term resonance. How is the resonance frequency influenced by
friction? Plot qualitatively the behavior of the oscillation amplitude as function
of the frequency of a periodic external force, and that for different values of the
damping!

22. What is meant by phase shift? How does it depend in the case of a damped
oscillator on the frequency of the driving periodic force?

23. Derive by integration of the basic dynamical equation for one-dimensional
motion the fundamental terms of work, potential and kinetic energy, as well
as the total energy. Define therewith the classically allowed and the classically
forbidden regions of motion!

24. Starting from a given potential discuss qualitatively the one-dimensional
motion of a mass point.

To Section 2.4

1. Which work has to be done to move a mass point in the field F D F.r; Pr ; t/ by
the distance dr? Discuss in particular the choice of the sign!

2. Which factors do determine the work to be done for shifts of the mass point via
finite distances?

3. How is the power P defined? What is the dimension of power?
4. When are forces conservative? Name a few criteria!
5. What do we understand by the potential of a force?
6. Formulate the energy theorem!
7. How does the potential of the spatially isotropic harmonic oscillator look like?
8. Define angular momentum and torque!
9. Investigate with the example of a uniform straight-line motion whether or not

the angular momentum is a pure particle property! How does L depend on the
choice of the reference point?

10. What is the angular-momentum law?
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11. Under which conditions is a central force conservative?
12. When does conservation of angular-momentum hold?
13. What is stated by the area conservation principle?
14. How can we construct by use of angular-momentum conservation law and

energy conservation law a general procedure for the solution of the equation
of motion?

To Section 2.5

1. Which type of potential determines the planetary motion?
2. What are the types of geometrical shapes of planetary paths?
3. If the planetary path is an ellipse how do angular momentum L and total energy E

determine the two semi axes?
4. What are the indicators for the path of hyperbola?
5. What is meant by the impact parameter d?
6. How do the impact parameter d and the deflection angle # depend on L and E?
7. Define the first and second cosmic velocities!
8. State and interpret Kepler’s laws!



Chapter 3
Mechanics of Many-Particle Systems

The most real physical systems are composed of many single particles which are
influencing each other, i.e. interacting with each other. Think of the atoms of a solid,
of a several-atom molecule, of the planetary system of the sun, . . . . Normally it
is inexpedient or even impossible to consider separately the equation of motion
for each of the mass points of the many-particle system. One therefore gathers the
particles into a

mass-point system

and tries to derive statements about the total system as a whole. Let N be the total
number of mass points in this system which we number from i D 1 to i D N:

mi W mass of the i-th particle ;

ri W position vector of the i-th particle ;

Fi W total force acting on particle i ;

F.ex/
i W external force acting on particle i ;

Fij W force executed by the particle j on the particle i (internal force) :

One distinguishes between internal and external forces. By ‘internal’ forces one
understands those forces which are executed from the particles of a mass-point
system on each other. ‘External’ forces have their origin outside the system, as e.g.
the gravitational force. We denote the mass-point system as closed if no external
forces are present. In mechanics, in fact practically in all branches of physics,
one takes into consideration as internal forces only two-particle forces, which
exclusively depend on the positions and possibly also on the velocities of two
particles.

© Springer International Publishing Switzerland 2016
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For each single particle, of course, Newton’s equation of motion holds:

mi Rri D Fi D F.ex/
i C

X
j

Fij : (3.1)

Obviously the third of Newton’s axioms is important for the treatment of internal
forces:

Fij D �Fji I Fii D 0 : (3.2)

We discuss at first some conservation laws which indicate under which conditions
certain mechanical quantities are time invariant.

3.1 Conservation Laws

3.1.1 Principle of Conservation of Linear Momentum (Center
of Mass Theorem)

We add up the equations of motion (3.1) for all N particles. Because of (3.2) the
contributions of the internal forces fall out of the sum:

X
i; j

Fij D 1

2

X
i; j

�
Fij C Fji

� D 0 : (3.3)

So we are left with:

NX
i D 1

mi Rri D
NX

i D 1

F.ex/
i :

This equation is given a compact form by the following definitions:

Definition 3.1.1

M D
X

i

mi W total mass ; (3.4)

R D 1

M

X
i

mi ri W center of mass ; (3.5)

P D
X

i

mi Pri D M PR W total linear momentum ; (3.6)

F.ex/ D
X

i

F.ex/
i W total external force : (3.7)
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Therewith follows:

M RR D
X

i

F(ex)
i D F(ex) : (3.8)

That is the
center of mass theorem:
The center of mass of a mass-point system moves as if the total mass is

concentrated at this point and all external forces are acting on it.
The internal forces have no influence on the movement of the center of mass. The

center of mass theorem provides retroactively the justification for the introduction
of the mass-point concept. As long as one is not interested in particular details of
the single particle movements one can indeed replace the motion of the total body
consisting of N individual particles by that of a single mass point, namely, the center
of gravity.

The center of mass theorem corresponds to the principle of linear momentum
of the N particle system:

PP D F.ex/ : (3.9)

Momentum Conservation Law

F.ex/ � 0” P D const : (3.10)

In the case of vanishing total external force the total linear momentum remains
constant both with respect to direction and magnitude.

Examples

(1) Exploding grenade:
The motion of the center of mass remains uninfluenced by the explosion.

(2) Rocket:
The expulsion of the exhaust gas is compensated by the forward motion of

the rocket.

3.1.2 Conservation of Angular Momentum

We define as total angular momentum of the N particle system:

L D
NX

i D 1

Li D
NX

i D 1

mi .ri � Pri/ : (3.11)
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Fig. 3.1 The distance vector
rij for the determination of
the contribution of the
internal forces to the total
angular momentum

For its time-dependence holds:

PL D
X

i

mi Œ.Pri � Pri/C .ri � Rri/� D
X

i

mi .ri � Rri/ D
X

i

.ri � Fi/ D

D
X

i

�
ri � F(ex)

i

�
C
X

i; j

�
ri � Fij

�
:

Again we are able to demonstrate that the contribution of the internal forces drops
out (Fig. 3.1):

X
i; j

�
ri � Fij

� D 1

2

X
i; j

��
ri � Fij

�C �rj � Fji
�� D 1

2

X
i; j

�
rij � Fij

� D 0 ;

since, as a general rule, the two-body forces have the property:

Fij / rij :

With

M.ex/
i D

�
ri � F(ex)

i

�
external torque (3.12)

we therewith have derived the angular-momentum law:

d

dt
L D

NX
i D 1

�
ri � F(ex)

i

�
D

NX
i D 1

M.ex/
i D M.ex/ : (3.13)

The time rate of change of the total angular momentum is equal to the sum of the
external torques. The internal forces have no influence.

In a closed system the angular-momentum conservation law also holds:

M.ex/ D 0” L D const : (3.14)
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Fig. 3.2 Definition of the
mass center

Sometimes the decomposition of the angular momentum into relative and center of
mass contributions appears reasonable:

L D
X

i

mi .ri � Pri/ D
X

i

mi

h
.RC Nri/ �

� PRC PNri

�i
D

D
X

i

mi

h�
R � PR

�
C �R � PNri

�C
�
Nri � PR

�
C �Nri � PNri

�i
:

Now it is (Fig. 3.2)

X
i

mi Nri D
X

i

miri �
X

i

miR D M R �M R D 0 :

Therewith the angular momentum of the N particle system reads:

L D .R � P/C
NX

i D 1

.Nri � Npi/ D Ls C Lr : (3.15)

Ls D .R � P/ W angular momentum of the total mass (3.16)

concentrated in the center of mass,

with reference to the origin of coordinates

Lr D
NX

i D 1

.Nri � Npi/ W total angular momentum of N particles, (3.17)

with reference to the center of mass

Unlike the total linear momentum (3.6) the total angular momentum is not
exclusively expressible only by coordinates of the center of gravity.
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3.1.3 Conservation of Energy

We multiply the equation of motion (3.1) for the single particles scalarly by Pri and
then sum up over all the N particles:

X
i

mi .Rri � Pri/ D
X

i

Fi � Pri :

On the left-hand side we recognize the time derivative of the total kinetic energy:

T D 1

2

NX
i D 1

mi Pr2i : (3.18)

If Fi is a conservative force, for which

ri � Fi D 0 I i D 1; 2; : : : ;N (3.19)

holds, then a potential V does exist with

Fi D �riV .r1; : : : ; rN/ ; (3.20)

where the index i indicates that the partial differentiations are only with respect to
the coordinates of the i-th particle. But from that we can also argue:

X
i

Fi � Pri D �
X

i

.riV/ � Pri D �dV

dt
: (3.21)

We want to generalize the issue, as we previously did for the single mass point, by
splitting the actual forces into conservative and dissipative parts, where of course
only for the conservative part the Eq. (3.21) can be used. We then obtain the

Energy Theorem

d

dt
.T C V/ D

NX
i D 1

F(diss)
i � Pri : (3.22)

The rate of time change of the total mechanical energy of a mass-point system is
equal to the power of the dissipative forces. If the latter are absent then we get the

Energy Conservation Law

T C V D E D const ; if F(diss)
i � 0 8i : (3.23)

It is useful also to split the potential with respect to internal and external contribu-
tions.
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The two-particle forces Fij D �Fji acting between the particles i and j are to
be assumed as conservative in all known physically relevant cases. Fij is the force
which particle j exerts on particle i. If one chooses the current site of the particle j
as the origin of coordinates (force center) then Fij represents a central force which
additionally is supposed to be conservative. Consequently, the interaction potential
Vij can depend only on the particle distance:

rij D
ˇ̌
ri � rj

ˇ̌
(3.24)

That means:

Vij D Vij
�
ri; rj

� D Vij
�
rij
�

H) Vij D Vji ; Vii D 0 : (3.25)

With

ri D
�
@

@xi
;
@

@yi
;
@

@zi

	
;

rij D
�
@

@xij
;
@

@yij
;
@

@zij

	
;

xij D xi � xj; : : :

follows:

Fij D �riVij D �rijVij D CrjVij
VijDVjiD �Fji : (3.26)

Therewith we can write:

X
i; j

Fij � Pri D 1

2

X
i; j

�
Fij � Pri C Fji � Prj

� D 1

2

X
i; j

Fij � Prij D

D �1
2

X
i; j

rijVij � Prij D �1
2

d

dt

X
i; j

Vij : (3.27)

The external force acting on particle i is of course independent of the coordinates of
the other mass points. If it is, additionally, conservative then the associated potential
can also depend only on ri:

Vi D Vi .ri/ I F(ex)
i D �riVi : (3.28)

That means:

X
i

F(ex)
i � Pri D �

X
i

riVi � Pri D � d

dt

X
i

Vi : (3.29)
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Therewith we finally get for the total potential used in (3.22) and (3.23):

V .r1; : : : ; rN/ D
NX

i D 1

Vi .ri/C 1

2

X
i; j

Vij
�
rij
�
: (3.30)

3.1.4 Virial Theorem

Due to the particle motion in mass-point systems kinetic energy is steadily converted
into potential energy and vice versa. Think of harmonic oscillators which possess at
the turning points only potential energy while the kinetic energy becomes maximal
when passing through the zero level of potential energy. So the virial theorem
is sometimes useful because it provides information about the time-averaged
contributions of kinetic and potential energy to the total energy. To derive the
theorem we at first multiply the equation of motion scalarly by ri:

X
i

mi .Rri � ri/ D
X

i

Fi � ri :

This can be reformulated as follows:

X
i

d

dt
mi .Pri � ri/�

X
i

miPr2i D �
X

i

riV � ri : (3.31)

We restrict ourselves here to conservative forces.
The time average of an arbitrary time function f .t/ is defined as follows:

hf i D lim
	 ! 1

1

	

	Z

0

f .t/dt : (3.32)

We now apply this prescription to the first summand in (3.31):

*X
i

d

dt
Œmi .Pri � ri/�

+
D
X

i

lim
	 ! 1

1

	

	Z

0

d

dt
Œmi .Pri � ri/� dt D

D lim
	 ! 1

1

	

"X
i

mi .Pri � ri/

#ˇ̌
ˇ̌
ˇ
	

0

:

If we restrict ourselves to motions which take place in a finite region of space
(hyperbolic comet orbits, e.g., are excluded) and the velocities of the particles
are always finite, then the right-hand side of this equation vanishes. Hence after
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averaging what remains of (3.31) is:

2 hTi D
*X

i

ri � riV

+
: (3.33)

The right-hand side is the so-called virial of the forces. The virial theorem (3.33)
tells us that under the mentioned assumptions the time average of the kinetic energy
is equal to one half of the virial of the system.

Special statements can be derived for closed systems

V .r1; : : : ; rN/ D 1

2

X
i; j

Vij
�
rij
�

(3.34)

if the internal potential Vij can be written as

Vij D ˛ij rm
ij I m 2 Z (3.35)

Then it follows (proof?):

X
i

ri � riV D m V ; (3.36)

whereby the virial theorem simplifies to

2 hTi D m hVi (3.37)

Examples

(1) coupled oscillators

Vij D 1

2
kij r2ij

m D 2 H) hTi D hVi : (3.38)

(2) Coulomb and gravitational potential

Vij D ˛

rij

m D �1 H) 2 hTi D � hVi : (3.39)

So it holds for the total energy:

E D hTi C hVi D � hTi : (3.40)
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We see that the total energy is always negative as long as the movement is
restricted to a finite space region (bounded motion).

3.2 Two-Particle Systems

3.2.1 Relative Motion

We now want to discuss a system of two mass points as an important special case
of our considerations of the last section. For this purpose we introduce according
to (3.5) a center-of-mass coordinate

R D m1r1 C m2r2
m1 C m2

(3.41)

and a relative coordinate

r D r1 � r2 (3.42)

The position vectors of the two particles r1 and r2, respectively, can be expressed
by r and R:

r1 D RC m2

M
r ; (3.43)

r2 D R � m1

M
r : (3.44)

We transform the coupled equations of motion for r1; 2 into those for r and R.
According to the center of mass theorem (3.8) it directly holds:

M RR D F.ex/ : (3.45)

For the relative coordinate we find:

Rr D Rr1 � Rr2 D F.ex/
1

m1

� F.ex/
2

m2

C F12
m1

� F21
m2

:

Definition 3.2.1 ‘Reduced mass’

1

�
D 1

m1

C 1

m2

” � D m1m2

m1 C m2

: (3.46)
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That yields as relative acceleration:

Rr D F.ex/
1

m1

� F.ex/
2

m2

C 1

�
F12 : (3.47)

In a closed system
�

F(ex)
i D 0

�
the two equations of motion (3.45) and (3.47)

completely decouple. Strictly speaking, only for a closed system the splitting into
relative and center-of-mass parts makes sense:

P D M PR D const ; (3.48)

F12 D �Rr / r : (3.49)

Thus the relative motion takes place as if the reduced mass � moves in the central
field F12 which has its origin at r2 (H) effective one-particle problem!).

In a similar manner we can decompose the kinetic energy T by use of (3.43)
and (3.44) into a relative and a center-of-mass part. One easily finds:

T D Ts C Tr ;

Ts D 1

2
M PR2 ; (3.50)

Tr D 1

2
�Pr2 :

If we still assume that all forces are conservative then we can define as in (3.30) a
potential:

V .r1; r2/ D
2X

i D 1

Vi .ri/C 1

2

2X
i; j D 1

Vij.r/ ;

F.ex/
i D �riVi .ri/ ;

Fij D �riVij :

This yields for the total energy E:

E D Es C Er ;

Es D Ts C V1 C V2 ; (3.51)

Er D Tr C V12 ;

where for closed systems one has to put V1 D V2 D 0.
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Analogously a decomposition of the angular momentum is also possible. We
had already found in (3.15):

L D Lr C Ls ; (3.52)

Ls D .R � P/ D M
�

R � PR
�
: (3.53)

For the two-particle system we reformulate the relative part that represents the
angular momentum of the mass-point system with respect to the center of mass:

Lr D
X

i

mi
�Nri � PNri

� D

D m1

�
�

m1

r
	
�
�
�

m1

Pr
	�
C m2

�
� �

m2

r
	
�
�
� �

m2

Pr
	�
D

D �2 .r � Pr/
�
1

m1

C 1

m2

	
:

That results in:

Lr D � .r � Pr/ : (3.54)

In a closed system all relevant quantities are thus decomposable into relative and
center-of-mass portions. The original two-body problem has changed into two
effective one-particle problems.

3.2.2 Two-Body Collision

By collision or scattering one denotes the interaction of two mass points m1 and
m2, which together represent a closed system. As to the interaction we assume
that the potential between them depends only on the separation of the particles
and is sufficiently short-range. For large distances between the particles the
interaction potential V becomes ineffective. Details concerning the immediate
region of interaction are normally not available. Nevertheless it is possible to derive
statements about the movement of the bodies after the collision since the (in general
rather involved) internal forces do not influence the center-of-mass motion. Outside
the interaction zone both bodies perform a force-free and therefore uniformly
straight-line motion.
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We assume that the initial momenta p1; p2 are known. We look for general
statements about the final momenta p0

1; p0
2. The number and the masses of the

particles are assumed to remain unchanged during the collision process (non-
reactive collisions).

For the investigation of the collision processes one uses two different reference
systems. Experiments are done in the

lab(oratory) system †L;

theoretically better tractable system is often the

center-of-gravity (mass) system †S,

in which the center of mass is assumed to be stationary. The conversion between the
two systems is simple:

Pri; Pr0
i W velocities in †L ;

PNri; PNr0
i W velocities in †S :

It holds the connection (Fig. 3.3):

Pri � PNri D Pr0
i � PNr0

i D PRL ; (3.55)

PRS D 0 I RS D 0 : (3.56)

Since we presume a closed system †S is an inertial system (Fig. 3.4). Decisive
support for the study of collisions is given by the energy and momentum theorems
which we now want to formulate for both the reference systems:

Fig. 3.3 Center-of-mass and
relative coordinates of two
mass points

Fig. 3.4 Schematic sketch of
the collision process between
two mass points
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(a) Momentum Conservation

The conservation of the linear momentum holds in both reference systems since†S

represents an inertial system:

†L W p1 C p2 D p0
1 C p0

2 D P D const ;

†S W Np1 C Np2 D Np0
1 C Np0

2 D 0
� Npi D miPNri

�
: (3.57)

This results in:

Np1 D �Np2 I Np0
1 D �Np0

2 : (3.58)

The momentum theorem thus provides three equations for the determination of the
six unknowns p0

1; p0
2.

(b) Energy Conservation

†L W
2X

i D 1

p2i
2mi
D

2X
i D 1

p02
i

2mi
CQ ; (3.59)

†S W
2X

i D 1

Np2i
2mi
D

2X
i D 1

Np02
i

2mi
CQ : (3.60)

The quantities Q and Q include the conversion of mechanical energy into other
forms of energy during the collision process. We show at first that Q D Q must
hold:

Q D
X

i

1

2mi

�
p2i � p02

i

� D 1

2

X
i

mi
�Pr2i � Pr02

i

� D

D 1

2

X
i

mi

�PNri C PRL

�2 �
�PNr0

i C PRL

�2� D

D QC
X

i

mi
�PNri � PNr0

i

� � PRL D

D Q ; since
X

i

mi Nri D
X

i

mi Nr0
i D 0 :
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Q D 0 W elastic collision ,
Q > 0 W inelastic (endothermal) collision; kinetic energy

is converted into internal energy of the collision partners
(excitation of the collision partners) ,

Q < 0 W inelastic (exothermal) collision; internal energy
is converted into kinetic translational energy
(de-excitation of the collision partners) .

From (3.58) follows:

Np21 D Np22 I Np02
1 D Np02

2 ; (3.61)

so that the energy theorem (3.60) in the center-of-gravity system can also be brought
into the form

Tr D Np
2
i

2�
D Np

02
i

2�
C Q D T 0

r C Q (3.62)

That holds both for i D 1 and i D 2. Therewith the energy theorem provides one
further parameter. It fixes the magnitude of Np0

i:

Np0
i D

q
Np2i � 2�Q : (3.63)

The direction is still free, i.e. two further parameters are lacking. These are available
only in case of a more detailed knowledge of the collision process.

In Fig. 3.5 N# D ^
� Np1; Np0

1

�
denotes the scattering angle in†S, which can assume

arbitrary values:

0 � # � � :

Fig. 3.5 Scattering angle and momenta before and after the elastic (left), the inelastic endothermal
(middle), inelastic exothermal (right) collision of two mass points
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Furthermore, we have to take into consideration that the p1;p2- and the p0
1;p

0
2-planes

of course do not necessarily coincide in †L. The azimuthal angle ' therefore also is
undetermined.

3.2.3 Elastic Collision

Let us investigate the special case Q D 0 a bit more in detail. For that we start from
the usual assumption that one of the collision partners does not move before the
collision (stationary target):

r2 D 0 I Pr2 D 0 :

That means:

p1 D P I p2 D 0 : (3.64)

With (3.55) we have for the momenta after the collision:

p0
1 D m1

PRL C Np0
1 D

m1

M
p1 C Np0

1 : (3.65)

The momentum theorem (3.57) still delivers:

p0
2 D p1 � p0

1 D
m2

M
p1 � Np0

1 : (3.66)

Therewith the momenta p0
1; 2 are fixed except for the summand Np0

1. So there are still
lacking three unknowns. For Np0

1 we still can find the magnitude with (3.63) : Np0
1 D Np1.

Because of

p1 D m1

�PNr1 C PRL

�
D Np1 C m1

M
p1 D M

m2

Np1 (3.67)

we get

Np0
1 D Np1 D

m2

M
p1 :

Thus, except for the directions of Np0
1, given by #; ', the momenta after the collision

are fixed in the lab system.
In the special case discussed here of a stationary target (3.64) all involved

momenta lie in the same plane (scattering plane). Thus there is no need to look
for the azimuth .' D '/. The relation between the scattering angles # and # is
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determined as follows:

x D Np0
1 sin# I y D Np0

1 cos#

H) tan# D x

yC m1
M p1

D sin#

cos# C � : (3.68)

where we have defined:

� D m1

M

p1
Np0
1

D m1

m2

: (3.69)

(a) � > 1 W m1 > m2

This case is represented in Fig. 3.6:

Np0
1 D

m2

M
p1 <

m1

M
p1 :

Obviously there exists a maximal scattering angle #max:

sin#max D Np0
1

m1

M
p1
D m2

m1

D 1

�
< 1

H) 0 � # � #max <
�

2
: (3.70)

Thus the scattering takes place independently of the type of particle interaction only
in the forward direction. For each # < #max two scattering angles # and therewith
two pairs of final momenta exist in †s.

Fig. 3.6 Momenta and
scattering angles in the
scattering plane for the elastic
collision of two mass points
(m1 > m2, m2 at rest before
the collision)
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Fig. 3.7 Momenta and
scattering angles in the
scattering plane for the elastic
collision between two mass
points (m1 < m2, m2 at rest
before the collision)

Fig. 3.8 Momenta and
scattering angles within the
scattering plane for the elastic
collision of two mass points
(m1 D m2, m2 at rest before
the collision)

(b) � < 1 W m1 < m2

According to (3.67) it is now

Np0
1 >

m1

M
p1 :

That means that ultimately all scattering angles # between 0 and � are possible
(Fig. 3.7).

(c) � D 1 W m1 D m2

After the Thales theorem, in this special case the angle between the two final
momenta just amounts to �=2. The two particles are always scattered into directions
which are perpendicular to each other, forming a right angle, and that again
independent of the actual interaction (Fig. 3.8).

The central collision defined by

# D � (3.71)
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constitutes an exception. In this case it is obviously p0
2 D p1 I p0

1 D 0 : Hence,
particle 1 is at rest after the collision while particle 2, which was at rest before the
collision, now takes over the whole momentum.

Let us ask ourselves at the end about the energy transfer for the elastic collision
in the laboratory system:

before the collision: T D T1 D p21
2m1

; T2 D 0 ;
after the collision: T 0 D T 0

1 C T 0
2 D p02

1

2m1
C p02

2

2m2
:

Definition 3.2.2 ‘energy transfer’

� D T 0
2

T1
: (3.72)

For this one finds:

� D m1

m2

p02
2

p21

(3.66)D m1

m2

1

p21

�
m2
2

M2
p21 �

2m2

M
p1 � Np0

1 C Np02
1

	
D

D m1

m2

�
m2
2

M2
� 2m2

M

m2

M
cos# C m2

2

M2

	
D 2m1m2

M2

�
1 � cos#

�
D

D 2 �
M

�
1 � cos#

�
: (3.73)

Obviously the energy transfer is maximal for the central collision # D �:

�
�
# D �

�
D 4 m1m2

M2
: (3.74)

In case of equal masses m1 D m2 it is � D 1, i.e., particle 2 takes the whole kinetic
energy from particle 1 after the collision.

3.2.4 Inelastic Collision

The inelastic collision is defined by Q ¤ 0. The total kinetic energy after the
collision is therefore different from that before. In principle the same considerations
are applicable as for the elastic collision. The momentum relations (3.57) and (3.58)
do not change, i.e. the motion of the center of gravity remains unaffected. However
it now holds (3.63):

Np0
i D

q
Np2i � 2�Q ¤ Npi : (3.75)
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Because of (3.67)

p1 D M

m2

Np1 (3.76)

we get, e.g., for the quantity � in (3.69):

� D m1

M

p1
Np0
1

D m1

m2

Np1q
Np21 � 2�Q

D m1

m2

s
Tr

Tr � Q
: (3.77)

With this expression for � , slightly different compared to (3.69), the case-by-case
analysis of the last section has to be repeated which will not be done here in detail.
� ? 1 is now realizable not only by m1 ? m2 but is also determined by Q.

(1) Capture Reaction

By this we understand the case where the two particles move on as a unit after the
collision excluding therewith any relative motion:

H) T 0
r D 0” Q D Tr H) � D1 : (3.78)

For the velocities in the laboratory system then holds:

Pr0
1 D Pr0

2 D PRL D m1

m1 C m2

Pr1 H) p0
1 D

�

m2

p1 ;

p0
2 D

�

m1

p1 H) # D 0 : (3.79)

Hence, no change of direction takes place.

(2) Particle Decay

Both particles are at first bound to as a single unit, the energy before the collision is
zero:

Pr1 D Pr2 D 0 :

But that means also:

PRL D 0 and p0
1 D �p0

2 :
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With (3.55) it follows Pr0
i D PNr0

i; so the velocities in †L and †S are equal:

p0
i D Np0

i I pi D Npi D 0 :

Furthermore, according to (3.62) it must be:

Np02
i

2�
D �Q D p02

i

2�

That leads to:

p0
1 D p0

2 D
p�2�Q : (3.80)

The two particles thus fly apart in opposite directions with velocity magnitudes
according to:

�Pr0
1

�2 D � m2

m1 C m2

2Q

m1

D
�

m2

m1

	2 �Pr0
2

�2
; (3.81)

ˇ̌Pr0
1

ˇ̌
ˇ̌Pr0
2

ˇ̌ D m2

m1

(3.82)

3.2.5 Planetary Motion as a Two-Particle Problem

We have already extensively discussed the planetary motion in Sect. 2.5 as a one-
body problem by assuming a space-fixed center of force thereby neglecting its co-
movement. Strictly speaking, that is an approximation. We want to show in this
section that this simplification is allowed as long as the masses of the interacting
bodies (sun–planet, earth–satellite) are of different orders of magnitude, however, it
is not allowed if they are of the same order of magnitude.

Between two masses m1; m2 with position vectors r1; r2, if only the gravitational
force acts, the potential is given as in (2.261) by

V .r1; r2/ D �� m1m2

r12
(3.83)

This corresponds to the internal force:

F12 D �r1V D �r12V .r12/ D � d

dr12
V .r12/r12r12 D

D �� m1m2

r312
r12 : (3.84)
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We assume that there are no external forces so that the center of gravity performs a
uniform straight-line motion:

P D const : (3.85)

We can therefore concentrate ourselves according to (3.49) exclusively on the
relative motion,

F12 D � Rr12 � Rr12 I � D m1m2

m1 C m2

; (3.86)

which represents an effective one-particle central problem. It is to solve the
following equation of motion:

�Rr12 D ���M
r12
r312

: (3.87)

The mathematical scope of work is formally the same as in Sect. 2.5. It corresponds
to the movement of a mass � in the gravitational field of a motionless force center
of the mass M D m1Cm2, so that in particular according to (2.260) conservation of
relative energy and relative angular momentum hold:

Er D �

2
Pr212 C

L2r
2� r212

C V .r12/ ; (3.88)

Lr D � .r12 � Pr12/ : (3.89)

The relative movement takes place in a fixed plane. With the same procedure as in
Sect. 3.2.5, we find that the solutions of the differential equation (3.88) represent
conic sections:

1

r12
D 1

kr
.1C " cos'/ ; (3.90)

kr D L2r
� M�2

(3.91)

(" < 1: ellipse; " D 1: parabola; " > 1: hyperbola).
The vector r12 thus describes, for instance, an ellipse for " < 1. Now we can

easily find expressions for the space coordinates r1; r2 of the two interacting bodies.
If we put the zero of the coordinates into the center of gravity, R D 0 (center-of-
mass system), then it holds according to (3.43) and (3.44):

r1 D m2

M
r12 I r2 D �m1

M
r12 : (3.92)
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Fig. 3.9 Relative motion of
two masses under the
influence of the gravitational
force

The two masses thus move on geometrically similar and equidirectionally placed
ellipses around the common center of gravity which coincides with one of the two
focal points of each ellipse (Fig. 3.9). For the semi-major axis ar of the ellipse of the
relative movement one finds according to (2.270):

ar D �� �M

2Er
:

The paths of the two masses m1 and m2 are then ellipses with semi-major axes:

a1 D �� �m2

2Er
I a2 D �� �m1

2Er
:

That means:

a1
a2
D m2

m1

: (3.93)

Just as Lr, the angular momenta of the two masses are also constants of motion:

Li D mi .ri � Pri/ D �

mi
Lr I i D 1; 2 : (3.94)

The orbital periods are of course identical!
If the mass of one of the bodies is very much larger than that of the other (e.g.

mass of the sun mass of a planet),

m1  m2 ;

then one can assume

� � m2 ; a1 
 a2 ;

so that the co-movement of the mass m1 can be neglected to a good approximation.
Then the results of Sect. 2.5 become valid.
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3.2.6 Coupled Oscillations

As a further example of a two-particle system we now consider a pair of mass
points which are connected with each other by springs and with two fixed walls
(Fig. 3.10). Thereby the masses shall perform only a one-dimensional motion along
the x axis. This is a simple system with both internal and external forces which are
all conservative:

F(ex)
1 D �k1 .x1 � x01/” V1 .x1/ D k1

2
.x1 � x01/

2 ;

F(ex)
2 D �k2 .x2 � x02/” V2 .x2/ D k2

2
.x2 � x02/

2 ; (3.95)

F12 D �k12 Œ.x1 � x01/� .x2 � x02/� D �F21 (3.96)

” V12 .x12/ D k12
2
Œ.x1 � x01/ � .x2 � x02/�

2 :

x01 and x02 are the equilibrium positions of the two masses. Since all forces present
are conservative the energy conservation law holds:

E D m1

2
Px21 C

m2

2
Px22 C V1.x1/C V2.x2/C V12.x12/

ŠD const : (3.97)

It is convenient to introduce new coordinates:

yi D xi � x0i I i D 1; 2

Then we have to solve the following system of coupled equations of motion:

m1 Ry1 D �k1y1 � k12 .y1 � y2/ ;
m2 Ry2 D �k2y2 C k12 .y1 � y2/ :

(3.98)

We seek the solution using the ansatz:

yi D ˛i cos!t I i D 1; 2 : (3.99)

Fig. 3.10 Coupled
oscillation of two mass points
under the influence of spring
forces
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It results in the following homogeneous system of equations:

�
k1 C k12 �m1!

2 �k12
�k12 k2 C k12 � m2!

2

	�
˛1

˛2

	
D
�
0

0

	
: (3.100)

Condition for a non-trivial solution is according to (1.352) that the determinant of
the .2 � 2/-matrix of coefficients (secular (characteristic) determinant) vanishes:

0
ŠD �k1 C k12 �m1!

2
� �

k2 C k12 �m2!
2
� � k212 :

This is a quadratic equation for !2 the solution of which yields the following two
eigen frequencies:

!2˙ D
1

2

�
1

m1

.k1 C k12/C 1

m2

.k2 C k12/˙

˙
s

1

m1

.k1 C k12/ � 1

m2

.k2 C k12/

�2
C 4k212

m1m2

9
=
; : (3.101)

In case of a switched off inter particle interaction k12 D 0 and one gets the eigen
frequencies of two independent oscillators:

!
.0/2
C D k1

m1

I !.0/2� D k2
m2

:

The interaction obviously modifies the eigen frequencies. For the amplitude ratio
of our solution ansatz (3.99) one finds:

˛
.˙/
2

˛
.˙/
1

D 1

k12

�
k1 C k12 �m1!

2
˙
� D k12

�
k2 C k12 � m2!

2
˙
��1

: (3.102)

For clarity let us focus the following discussion on a symmetric system of coupled
oscillators, i.e. we assume:

m1 D m2 D m I k1 D k2 D k (3.103)

Then the eigen frequencies simplify to

!2C D
kC 2k12

m
I !2� D

k

m
; (3.104)
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and for the associated amplitudes follows:

˛
.�/
1 D ˛.�/2 ;

˛
.C/
1 D �˛.C/2 :

(3.105)

In the first case the two masses are oscillating synchronously with identical
amplitudes in the same direction. The inner spring is thereby neither stretched nor
compressed playing therewith no active role. That explains why !� agrees with the
eigen frequency of the uncoupled oscillators. In the second case the two masses are
oscillating against each other with equal amplitudes. That affects of course the inner
spring; k12 therefore appears explicitly in !C.

Hence we have found the two special solutions

y.�/1 .t/ D ˛ cos!�t D y.�/2 .t/ ;
y.C/1 .t/ D ˇ cos!Ct D �y.C/2 .t/ :

(3.106)

The general solution can then be written as linear combination and represents a
superposition of two harmonic oscillations with different frequencies:

x1.t/ D x01 C ˛ cos
�
!�tC '.�/

�C ˇ cos
�
!CtC '.C/

�
;

x2.t/ D x02 C ˛ cos
�
!�tC '.�/

� � ˇ cos
�
!CtC '.C/

�
:

(3.107)

˛; ˇ; 'C; '� are to be fixed by initial conditions.

3.3 Exercises

Exercise 3.3.1 Two masses m1 and m2 are connected by springs with each other
and with two fixed walls. The movement takes place in x direction; x01 and x02 are
the equilibrium positions of the masses and k1; k2; k12 are the spring constants
(Fig. 3.11). We choose:

m1 D 1

2
m2 D m ;

k12 D 1

5
k2 D 1

2
k1 D k :

Fig. 3.11 Coupled
oscillation of two mass points
under the influence of spring
forces
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Fig. 3.12 Planar oscillations of a coupled thread pendulum

Fig. 3.13 One-dimensional movement of two coupled thread pendula

Fig. 3.14 Linear chain as one-dimensional model of a crystal for investigating lattice vibrations

1. Which forces act on the two masses?
2. Write down the equations of motion!
3. Calculate the eigen frequencies ! of the coupled oscillation!

Exercise 3.3.2 Two simple thread pendula of equal lengths L are coupled by a
spring k (Fig. 3.12). The pendular oscillation takes place in a fixed plane. Discuss
the motion for small oscillations about the equilibrium positions. Use the initial
conditions: x1.0/ D 0; x2.0/ D x0; Px1.0/ D Px2.0/ D 0:
Exercise 3.3.3 Two masses m1 and m2 are connected with each other by springs
and with a fixed wall (Fig. 3.13). The two spring constants are equal. Write down
and solve the equations of motion! Determine the oscillation frequencies!

Exercise 3.3.4 ‘One-dimensional model of a crystal’

1. The masses mn D m with n D 0;˙1;˙2; : : : are able to move along the
x axis. Springs (spring constants k) take care for restoring forces (Hooke’s law)
between neighboring masses therewith defining equilibrium positions Rn D n � a.
The length a is the lattice constant of this infinite linear chain (Fig. 3.14). The
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Fig. 3.15 Linear chain with alternating spring constants

displacements out of the equilibrium are denoted by

un.t/ D xn.t/ � Rn :

Solve the equations of motion with the ansatz:

un.t/ D Aei.qRn�!t/ :

Determine the ‘dispersion relation’

! D !.q/ :

State a reason why the ‘wave number’ q can be restricted to the region

��
a
� q � C�

a
:

2. Investigate the same problem for the case where the spring constants possess
alternatingly the values f1 and f2 ¤ f1 (Fig. 3.15).

How should the ansatz for un.t/ from part 1. be modified?

Exercise 3.3.5 Two masses m1; m2 are connected with each other by a ‘mass-less’
bar of length l. The dumbbell, being in the earth’s gravitational field, is thrown from
the origin of coordinates in an arbitrary direction.

1. Write down the equation of motion of the center of mass!
2. Which path does the center of mass follow if the initial velocity is v0?
3. Decompose the total angular momentum into a relative and a center-of-mass part

Lr and Ls. Calculate Ls.
4. Formulate the equation of motion for the relative motion. What can be said about

the relative angular momentum Lr?
5. Show that the masses m1 and m2 describe circular paths around the center of mass

with constant angular velocity. What can be said about the radii?

Exercise 3.3.6 A particle of mass m with momentum p hits a particle of the same
mass which is at rest in the laboratory system (see Fig. 3.16).

1. Derive a relation between jpj and the angles ˛ and ˇ.
2. Discuss the case ˛ D ˇ. How large is ˛ if the collision is elastic .Q D 0/? Which

part of the kinetic energy can be maximally lost during an inelastic collision
.Q > 0/?
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Fig. 3.16 Collision between
two particles of the same
mass

Fig. 3.17 Collision of two
billiard balls with the same
radius A and a center-of-mass
distance A

Exercise 3.3.7 Consider the elastic collision between two hard spheres (billiard
balls) with masses m1; m2 and equal radii A (see Fig. 3.17). In the laboratory system
sphere 2 is at rest with its center on the x axis. Sphere 1 moves before the collision
with constant momentum p1 D p1ex .p1 > 0/. The path of the center of gravity is a
parallel line to the x axis at a distance A.

1. Which momenta p0
1;p

0
2 are found in the laboratory system after the collision?

(No friction effects during the collision!)
2. What are the momenta Np1; 2; Np0

1; 2 in the center-of-mass system?

3.4 Self-Examination Questions

To Section 3.1

1. What do we understand by internal and external forces acting on a mass-point
system? When is such a mass-point system denoted as closed?

2. What is the definition of the center of mass?
3. Formulate and describe by examples the center of mass theorem!
4. Which information is given by the angular-momentum law?
5. Decompose the total angular momentum of a mass-point system in relative and

center of mass contributions Lr and Ls. Which are the reference points of Lr and
Ls?

6. Which information is given by the energy theorem?
7. What is the physical statement of the virial theorem?

To Section 3.2

1. How are center-of-mass coordinate and relative coordinate defined for a two-
particle system?

2. How is the reduced mass defined?
3. How do the relative parts of angular momentum and energy look like in a two-

particle system?
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4. What does one understand by the collision of two mass points?
5. What are elastic and inelastic collisions?
6. Under which special conditions are two particles scattered into mutually per-

pendicular directions, independent of the actual interaction during the collision
process?

7. Discuss the central collision!
8. Describe qualitatively two-particle collisions as the capture reaction and the

particle decay as special cases!
9. Discuss qualitatively the planetary motion as a two-body problem! What are

the trajectories of the moving sun and planet? In case of elliptical paths what
can be said about the semi axes and the orbital periods?

10. Formulate the (one-dimensional) equations of motion for the coupled oscilla-
tion of a pair of mass points being connected with each other by springs and
with two walls!

11. Determine the eigen frequencies of the above coupled oscillation for the special
case when the two masses and also the two spring constants, which connect the
two masses with the external walls, are identical!



Chapter 4
The Rigid Body

4.1 Model of a Rigid Body

Up to now we have discussed the phenomena of Classical Mechanics for the single
mass point and for systems of mass points. Thereby, the respective physical problem
was always considered to be solved as soon as the path line ri.t/ of each mass point
had been derived from given force equations. For a macroscopic solid body with
its particle number in the range of 1023 per cm3 the mass-point concept of course
becomes questionable. On the other hand, however, it is to be reflected whether one
is really interested in the detailed microscopic particle motions. From a macroscopic
point of view the solid appears as a continuum. Observables such as

1. displacements, translations,
2. rotations,
3. deformations

are applicable to microscopic particle paths only to a very limited degree. Thus we
would rather treat the body as a whole, as a macroscopic unit. This fact allows for
drastic idealizations (‘models’) which, on their part, are often necessary to make a
mathematical treatment of the problem feasible in the first place. The construction
of

theoretical models

is typical for (theoretical) physics. In a certain sense a model can be compared with
a caricature which tries to emphasize the essentials of the current problem while all
the ‘unnecessary ballast’ is dumped. That means, as a down side, normally a model
can be valid only in a restricted, well-defined context; outside that it is either useless
or even misleading.
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Fig. 4.1 Model of the rigid
body (fixed particle
distances rij/

Fig. 4.2 To the
determination of the degrees
of freedom of the rigid body

The ‘model of a rigid body’ is a system of N mass points such that the distances
between the mass points are fixed for ever (Fig. 4.1)

rij D jri � rjj D cij D const : (4.1)

Hence the rigid body is by definition not deformable. Investigations concerning
deformations, typical for elasticity theory, hydrodynamics, : : :, are excluded from
the very beginning.

Let us first try to find out the number of degrees of freedom of a rigid body.
For this purpose we pick out three non-collinear (Fig. 4.2). For the description we
need for each of them three Cartesian coordinates. These are at first nine parameters,
which, however, have to fulfill, because of (4.1), three constraints:

r12 D c12 ; r13 D c13 ; r23 D c23

So there are only six independent parameters. Each additional mass point of the rigid
body introduces three more new coordinates, but also three more new constraints,

rj1 D cj1 ; rj2 D cj2 ; rj3 D cj3 ;

so that no additional free parameters come into play. The rigid body has therefore
only

six degrees of freedom.

For a complete description of a rigid body one therefore needs only six
independent quantities. Normally, however, one does not choose for this purpose the
coordinates of three arbitrarily selected points of the body, but prefers to describe
the movement as a whole in space:

1. By the translation of a special point S which is very often, but not necessarily
always, the center of gravity of the body. It must be a point which is fixedly
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Fig. 4.3 Translation and
rotation of the rigid body

connected with the body, which, however, need not necessarily lie within the
body. That means we then have three degrees of freedom for the translation of
the body (Fig. 4.3).

2. By the rotation around an axis through the point S. The axis does not need to be
body- or space-fixed, it must only go through the point S. That yields three more
degrees of freedom due to the rotation, namely two specifications of angles for
specifying the rotation axis and one for the rotation angle.

For a general motion of the rigid body translation and rotation are coupled in a rather
complicated manner. The translation, however, we have elaborately discussed as
mechanics of the free mass point in Chap. 2. Therefore we will concentrate ourselves
here primarily on two special cases:

(a) (spinning) top:
The rigid body is fixed at one point (no translation) therewith being left with
only three degrees of freedom,

(b) physical pendulum:
The rigid body can rotate only around a fixed axis being therefore left with only
one degree of freedom, namely the rotation angle.

For later applications an essential complication will arise, e.g., in the fact that
rotations around different axis are not commutable.

We have introduced in Sect. 3.1 for the N-particle systems some important
quantities which are of significance for the total system, e.g.:

total mass: M D
X

i

mi ;

center of gravity: R D 1

M

X
i

mi ri ;

total momentum: P D
X

i

miPri ;

total angular momentum: L D
X

i

mi .ri � Pri/ ; : : : ;

They are given by summation over the respective single-particle quantities. How
are these terms now calculated for the continuum? We explain the procedure by the
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Fig. 4.4 Volume
decomposition for continuum
integrations

example of the total mass: One first decomposes the rigid body into small partial
volume elements�Vi.ri/, each of which contains a mass �mi.ri/. ri is the position
vector of a certain point in the i-th volume element (Fig. 4.4). Then it holds of
course:

M D
X

i

�mi D
X

i

�mi

�Vi
�Vi :

In a limiting process we now let the volumes �Vi become smaller and smaller
.�Vi ! 0 H) �mi ! 0/ finding therewith the definition of the

mass density W �.r/ D lim
�V ! 0

�m.r/
�V.r/

: (4.2)

Since both �m and �V are quantity terms (extensive quantities) this limiting value
will in general be unequal zero. It is then:

�.r/d3r D mass of the volume element

d3r D dx dy dz at r D .x; y; z/ : (4.3)

The sum over all volume elements now becomes in the familiar Riemann’s sense a
so-called volume (triple) integral introduced in Sect. 1.2.5:

M D
Z

d3r �.r/ ; (4.4)

R D 1

M

Z
d3r �.r/r ; (4.5)

P D
Z

d3r �.r/v.r/; : : : (4.6)

The integration is formally done over the entire space where, however, finite
contributions come only from the space region occupied by the rigid body.
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4.2 Rotation Around an Axis

We investigate at first a special form of motion of the rigid body, namely the rotation
around a fixed axis. The system then possesses only one degree of freedom, that is
the rotation angle around the axis. We will see in the following that energy theorem,
angular-momentum law and center-of-mass theorem are sufficient to write down the
equations of motions which in principle can be solved.

4.2.1 Conservation of Energy

We presume that all external forces are conservative thus possessing a potential. So
the energy conservation law (2.231) holds. For its evaluation we first discuss the
kinetic energy

T D
X

i

mi

2
Pr2i

of the rigid body. We assume a space-fixed axis and choose the z axis of the system
of coordinates in such a way that it coincides with the rotation axis (Fig. 4.5). For
the angular velocity ! then holds:

! D .0; 0; !/ I ! D P' : (4.7)

Each point of the rigid body performs a circular motion, the linear velocity of which
results according to (2.40) in

Pri D .! � ri/ D ! .�yi; xi; 0/ : (4.8)

Fig. 4.5 Rotation of a rigid
body around a space-fixed
axis
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Therewith we can specify the kinetic energy:

T D 1

2

X
i

mi
�
x2i C y2i

�
!2 D 1

2
J !2 : (4.9)

This equation defines the

Moment of Inertia

J D
X

i

mi
�
x2i C y2i

�
(4.10)

as the sum of the products of the masses with the square of their distances from
the rotation axis. J is a temporally constant scalar quantity which depends on the
position and the direction of the axis within the rigid body. For concrete calculations
one in general goes over from the discrete summation to an integration:

J D
Z
�.x; y; z/

�
x2 C y2

�
dx dy dz D

Z
d3r �.r/.n � r/2 ; (4.11)

where n D !=! .

Examples

(1) Sphere with homogeneous mass distribution
The axis runs through the center of gravity (center of the sphere) but, apart from
that, having an arbitrary direction (Fig. 4.6). For the mass density holds in this
case:

�.r/ D
8<
:
�0 ; for r � R

0 ; otherwise .

Fig. 4.6 For the calculation
of the moment of inertia of a
sphere with homogeneous
mass distribution
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That yields with (4.11):

J D
Z

d3r �.r/r2 sin2 # D �0
RZ

0

�Z

0

2�Z

0

r4dr sin3 # d# d' D

D 2� �0
RZ

0

r4dr

C1Z

�1

�
1 � cos2 #

�
d cos# D 2�

5
�0R

5

�
2� 2

3

	
D

D
�
4�

3
R3�0

	
2

5
R2 D 2

5
MR2 : (4.12)

(2) Cylinder with homogeneous mass distribution
As axis we choose the symmetry axis of the cylinder (length L, radius R,
see Fig. 4.7). It is recommendable to use the cylindrical coordinates .�; '; z/
(coordinate � not to be confused with the density �!) for the calculation:

J D
Z

d3r �.r/�2
(1.382)D �0

RZ

0

2�Z

0

C L
2Z

� L
2

�3d� d' dz D

D 2� L �0
R4

4
D 1

2
MR2 : (4.13)

Let us now come back to the energy theorem, for the formulation of which the
potential energy is still lacking. Since the body has only one rotational degree of
freedom the potential V can depend only on the rotation angle ': V D V.'/. The

Fig. 4.7 For the calculation
of the moment of inertia of a
cylinder with homogeneous
mass distribution
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energy conservation law

E D T C V D 1

2
J !2 C V.'/ D 1

2
J P'2 C V.'/ (4.14)

has then mathematically the same structure as that for the one-dimensional
motion (2.202). Hence it can be integrated in the same manner by separation
of variables:

t � t0 D
'Z

'0

d' 0
q

2
J .E � V .' 0//

: (4.15)

The function t D t.'/, therewith in principle deduced, or its inverse ' D '.t/
determine uniquely and completely the motion of a rigid body which is rotatable
around a fixed axis. This we will demonstrate with an example in section after the
next.

4.2.2 Angular-Momentum Law

Only in special cases, e.g. for rotationally symmetric mass distributions, the angular
momentum L is parallel to !. We will therefore be interested here only in the
component parallel to !, i.e. the z component of the angular momentum:

L! D L � n D
X

i

mi .ri � Pri/ � n D
X

i

mi .n � ri/ � Pri D

D
X

i

mi .n � ri/ � .! � ri/ D
 X

i

mi .n � ri/
2

!
! ;

H) L! D L � n D J ! D J P' : (4.16)

From that we can construct an equation of motion where we exploit the general
angular-momentum law (3.13):

d

dt
L D

X
i

�
ri � F(ex)

i

�
D
X

i

M(ex)
i D M(ex) ;

At first it follows for the component along the rotation axis:

J R' D J P! D
X

i

�
ri � F(ex)

i

�
� n D M(ex)

! : (4.17)
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Fig. 4.8 Parameters for the
calculation of the paraxial
component of the angular
momentum of a rigid body

The right-hand side can further be rewritten:

1

!

X
i

�
ri � F(ex)

i

�
�! D 1

!

X
i

.! � ri/ � F(ex)
i D

X
i

�i

�
F(ex)

i � e'i

�
:

Hence the equation of motion reads:

J R' D
X

i

�i

�
F(ex)

i � e'i

�
: (4.18)

e'i is the azimuthal unit vector (1.392) for the i-th mass element:

e'i D .� sin 'i; cos'i; 0/ I 'i D 'i0 C ' :

In case of a vanishing external torque M.ex/, we know that ! D const. This means
according to (4.9) the kinetic energy of the rotation is a conserved quantity:

M(ex)
! DM(ex) � n D 0 H) ! D const H) T D const : (4.19)

It is clear from (4.16) that then the paraxial component of the angular momentum is
also constant (Fig. 4.8).

4.2.3 Physical Pendulum

By the term ‘physical pendulum’ one understands a rigid body which is situated in
the homogeneous earth’s gravitational field and is rotatable around a horizontal axis
(Fig. 4.9). The latter is again assumed to coincide with the z axis (4.7):

F(ex)
i D .mig; 0; 0/ : (4.20)
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Fig. 4.9 Rigid body as
physical pendulum

With (4.17) it then holds:

J R' D �
X

i

miyig D �Mg Ry : (4.21)

Ry is the y component of the position vector of the center-of-gravity. If we choose
the zero on the rotation axis such that

R D �Rx;Ry; 0
� D R.cos'; sin'; 0/ ;

then it follows from (4.21) for the pendular motion ' D '.t/ a non-linear
differential equation of second order:

J R' CMg R sin' D 0 : (4.22)

Therewith we have derived the equation of motion from the angular-momentum
law. The comparison with the equation of motion (2.124) of the thread (simple)
pendulum (‘mathematical pendulum’),

R' C g

l
sin ' D 0 ;

shows that the physical pendulum oscillates just like the mathematical pendulum
with a thread length of

l D J

M R
: (4.23)

With this substitution we can thus adopt all the statements of Sect. 2.3.4. For small
amplitudes we can approximate sin ' � '. Then (4.22) is solvable with the ansatz:

'.t/ D A sin!tC B cos!t
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and the angular frequency

! D
r

Mg R

J
: (4.24)

A and B are fixed by the necessary initial conditions.
The equation of motion (4.22) can also be derived via the energy theorem. For

the potential of the mass mi in the gravitational field holds (2.210)

Vi D �mig xi : (4.25)

The total potential of the external forces is then given by:

V D
X

i

Vi D �g
X

i

mixi D �Mg Rx ;

V D �Mg R cos' D V.'/ : (4.26)

That yields the energy conservation law of the physical pendulum:

E D 1

2
J P'2 �Mg R cos' D const : (4.27)

After differentiating this expression once more with respect to time we indeed get
again the equation of motion (4.22).

4.2.4 Steiner’s Theorem

The moment of inertia J defined in (4.11) is an important characteristic parameter
of the rotary motion of a rigid body which depends on both the direction and the
actual position of the rotation axis. According to Steiner’s theorem the moment of
inertia about a given axis can be determined in a simple manner if the moment of
inertia Js with regard to an axis through the center of gravity and parallel to the given
one is known.
The moment of inertia J about an arbitrary rotation axis is additively composed by
the moment of inertia Js about a parallel axis through the center of gravity and the
moment of inertia for the total mass M concentrated in the center of gravity about
the original axis:

J D Js CM S2 (4.28)

(S D perpendicular distance of the center of gravity from the rotation axis, i.e.
‘distance between the axes’).
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Fig. 4.10 Illustration for the
derivation of Steiner’s
theorem

Proof Without loss of generality we can as usual assume that the rotation axis
defines the z axis. Then the moment of inertia about the actual rotation axis is

J D
X

i

mi
�
x2i C y2i

�

and that about the parallel axis through the center of gravity (Fig. 4.10):

Js D
X

i

mi
�Nx2i C Ny2i

�
:

From Fig. 4.10 we have:

xi D Nxi C Sx ; yi D Nyi C Sy :

Therewith follows:

J D
X

i

mi

h
.Nxi C Sx/

2 C �Nyi C Sy
�2i D

D
X

i

mi
�Nx2i C Ny2i

�C �S2x C S2y
�X

i

mi C 2Sx

X
i

mi Nxi C 2Sy

X
i

mi Nyi D

D Js CM S2 C 2SxM RNx C 2Sy M RNy :

With RNx D RNy D 0 (x and y components of the center of gravity in a coordinate
system in which the center of gravity lies on the z axis) it results:

J D Js CM S2:

As a special detail one reads off from (4.28) that out of an ensemble of parallel
axes the one through the center of gravity always yields the smallest moment of
inertia.
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4.2.5 Rolling Motion

As a further important example of a rigid body with only one rotational degree of
freedom we consider the

homogeneous cylinder rolling off an inclined plane

Though the rotation axis is again body-fixed it is not space-fixed. It is shifting in
parallel to itself (Fig. 4.11). The velocity of each of the cylinder points is composed
by two contributions, a rotational contribution due to the rotation around the
cylinder axis during the rolling motion and a translational contribution which is
the same for all points of the cylinder and happens in s direction:

Pri D PriR C PriT : (4.29)

The rotational contribution we have already calculated in (4.8):

PriR D .! � Nri/ : (4.30)

The translational contribution is obtained from the rolling off condition

�s D R�' H) jPriT j D jPsj D R j P'j : (4.31)

The cylinder shall roll, not slide.

(a) Kinetic Energy

T D 1

2

X
i

mi Pr2i D
1

2

X
i

mi

h
.! � Nri/

2 C 2Ps � .! � Nri/C Ps2
i
:

The mixed term disappears because in a homogeneous cylinder two volume
elements located diametrally opposite to the rotation axis have the same mass but

Fig. 4.11 Rolling cylinder
on an inclined plane under the
influence of the gravitational
force
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Fig. 4.12 Sketch for the
derivation of the kinetic
energy of a cylinder rolling
on an inclined plane

rotation velocities are in opposite directions (Fig. 4.12). The sum over all elements
is therefore zero. It can of course be shown also by a direct calculation that

X
i

mi .! � Nri/ D 0

must hold.
The first term is the kinetic energy of the rotational motion as we have found

in (4.9). Thus it remains if one exploits (4.9), (4.13), and (4.30):

T D 1

2
J !2 C 1

2
MPs2 D 1

2

�
1

2
MR2

	�
1

R2
Ps2
	
C 1

2
MPs2 :

This results in the simple expression:

T D 3

4
MPs2 : (4.32)

(b) Potential Energy

The gravitational force acts on the cylinder:

V D
X

i

Vi D
X

i

mig xi D Mg Rx : (4.33)

Rx is the x-component of the center of gravity of the cylinder. By use of (4.5) it can
be shown that the center of gravity of the homogeneous cylinder lies at the mid-point
of the axis. So it is (Fig. 4.11)

Rx D .l � s/ sin ˛

and therewith

V D Mg.l� s/ sin ˛ : (4.34)

Hence the total potential agrees with the potential of the total mass concentrated at
the center of gravity.
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(c) Energy Theorem

Since only conservative forces act the total energy E is a conserved quantity:

E D T C V D 3

4
MPs2 C .l � s/Mg sin ˛ D const : (4.35)

Differentiating this relation with respect to time and then dividing it by .3=2/MPs
leads to the equation of motion

Rs D 2

3
g sin˛ : (4.36)

In case of a frictionless sliding of the body the acceleration on the inclined plane
would be

Rs D g sin˛

as can easily be demonstrated with Fig. 4.11. The acceleration of the rolling off
cylinder thus amounts to only two-thirds of this value.

4.2.6 Analogy Between Translational and Rotational Motion

We have discovered in the preceding sections a strong analogy between the
rotational motion around a body-fixed axis and the one-dimensional particle motion
which, finally, we want to gather once more at the end of this section:

particle rotator
position: x rotation angle: '
mass: m moment of inertia: J

velocity: v D Px angular velocity: ! D P'
momentum: p D m v angular momentum: L! D J !
force: F torque: M(ex)

!

kinetic energy: T D .m=2/v2 kinetic energy: T D .1=2/J !2
equation of motion: F D mRx equation of motion: M(ex)

! D J R'

4.3 Inertial Tensor

In Sect. 4.2 we discussed the motion of a rigid body around a fixed axis. Thereby
it was found that the moment of inertia J about a rotation axis is the fundamental
quantity for the rotational movement. If the rotation axis has a temporally changing
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direction,

n.t/ D !.t/

!.t/
; (4.37)

then the moment of inertia, too, will become a time-dependent quantity. Problems
of this kind are dealt with by the introduction of the inertia tensor. To understand
this some preparations are necessary.

4.3.1 Kinematics of the Rigid Body

In our introductory Sect. 4.1 we had already decomposed the general motion of a
rigid body into

1. the translation of an arbitrarily chosen point S of the body
and

2. the rotation around an axis through this point S .

We now introduce two reference systems which are initially both Cartesian:
b†: space-fixed reference system with a space-fixed origin of coordinates O. It is
assumed to be an inertial system. Axis : Oe˛; ˛ D 1; 2; 3.
†: body-fixed reference system with the body-fixed origin S. Axes: e˛.t/; ˛ D
1; 2; 3.

The point S has the position vector r0.t/ as seen from b†. Then it holds for the
points of the rigid body:

Ori.t/ D
3X

˛D1
Oxi˛.t/Oe˛ .in b†/ ; (4.38)

ri.t/ D
3X

˛D1
xi˛e˛.t/ .in †/ (4.39)

with the obvious relation:

Ori.t/ D r0.t/C ri.t/ : (4.40)

The coordinates xi˛ in the body-fixed system† are by the definition of the rigid body
time-independent quantities. The position of the rigid body is therewith completely
given by the position of † relative to b†.

We are now interested in the velocities of the mass points of the rigid body
(Fig. 4.13). These we find rather easily with the general theory of arbitrarily relative
to each other moving reference systems that we derived in Sect. 2.2.5. The full time
derivative of a vector represented in † seen from b† can be written as the operator
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Fig. 4.13 Sketch for the
calculation of the velocity of
a mass point in a rigid body

identity (2.75):

The first term on the right-hand side plays by definition no role for the rigid body.
Thus it remains:

Pri D .! � ri/ (4.41)

or with (4.40):

POri.t/ D Pr0.t/C .! � ri/ : (4.42)

This is an important result. It signifies that at any moment of time the motion of a
rigid body can be resolved into the translational motion r0.t/ of the origin of the
body-fixed system and the rotation around the momentary rotation axis !.t/ where
the latter always passes through the origin S of the body-fixed system.

4.3.2 Kinetic Energy of the Rigid Body

We start from the definition of the kinetic energy T,

T D 1

2

X
i

mi
POr2i ;
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and insert the expression (4.42) for the velocity:

T D 1

2

X
i

mi Pr20 C
1

2

X
i

mi .! � ri/
2 C

X
i

mi .! � ri/ � Pr0 : (4.43)

The third term is a scalar triple product and can therefore be rewritten as follows:

X
i

mi ri � .Pr0 �!/ :

There are two typical cases for the discussion of the rigid body:

1. One point of the body remains space-fixed, while the body rotates with the
angular velocity !. Then it appears absolutely reasonable to choose this point
as the origin S of † and in general also as the origin of b†. One then speaks of a
spinning top for which holds:

r0 D 0 ; Pr0 D 0

2. If no point is space-fixed one usually chooses the origin S at the center of mass
and that means:

X
i

miri D 0 :

We see that these two cases, the only relevant ones, both let the third term in (4.43)
disappear. We therefore apply from the beginning the kinetic energy in the form:

T D 1

2
MPr20 C

1

2

X
i

mi .! � ri/
2 D TT C TR : (4.44)

Hence we have a clear separation of the kinetic energy into a rotational and
translational part where we are interested mainly in the rotational part. We will
inspect its dependence on the angular momentum a bit more in detail. The
translational energy appears only in the case 2. stated above being then identical
to the kinetic energy of the total mass concentrated at the center of mass.

It holds according to (1.201),

.a � b/2 D a2b2 � .a � b/2 ;

and therewith

.! � ri/
2 D!2r2i � .! � ri/

2 D �!21 C !22 C !23
� �

x2i1 C x2i2 C x2i3
��

� .!1xi1 C !2xi2 C !3xi3/
2 :
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Insertion into (4.44) and arranging according to the components of ! yields:

2TR D!21
X

mi
�
x2i2 C x2i3

� � !1!2
X

mixi1xi2 � !1!3
X

mixi1xi3�

� !2!1
X

mixi2xi1 C !22
X

mi
�
x2i1 C x2i3

� � !2!3
X

mixi2xi3�

� !3!1
X

mixi3xi1 � !3!2
X

mixi3xi2 C !23
X

mi
�
x2i1 C x2i2

�
:

We define as

Components of the Inertial Tensor

Jlm D
X

i

mi
�
r2i ılm � xilxim

� I l;m D 1; 2; 3 : (4.45)

Therewith we can abbreviate and write as rotational kinetic energy:

TR D 1

2

3X
l;m D 1

Jlm!l!m I ! D .!1; !2; !3/ : (4.46)

We see that TR is homogeneously quadratic with respect to the components of the
angular velocity. That means:

@TR

@!1
!1 C @TR

@!2
!2 C @TR

@!3
!3 D 2TR :

The ensemble of coefficients is called

Inertial Tensor

J D .Jlm/ D

0
BBB@

P
i

mi
�
x2i2 C x2i3

� �P
i

mixi1xi2 �P
i

mixi1xi3

�P
i

mixi2xi1
P

i
mi
�
x2i1 C x2i3

� �P
i

mixi2xi3

�P
i

mixi3xi1 �P
i

mixi3xi2
P

i
mi
�
x2i1 C x2i2

�

1
CCCA : (4.47)

With a given system of coordinates the elements of the inertia tensor are uniquely
fixed by the mass distribution of the rigid body. If the mass is continuously
distributed with a known mass density �.r/ then one can switch for the actual
calculation of the elements from the discrete summation to a continuous integration:

Jlm D
Z

d3r �.r/.r2ılm � xlxm/ : (4.48)

Before proceeding with the physical discussion let us first inspect in the next section
some of the most important tensor properties.
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4.3.3 Properties of the Inertial Tensor

(1) What Is a Tensor?

Strictly speaking it is nothing other than a proper extension of the term ‘vector’.
By a

tensor of k-th rank in an n-dimensional space

one understands an nk number of elements

.Fi1;i2;:::;ik / I ij D 1; : : : ; n ;

which for coordinate rotations transform linearly satisfying certain rules. The
elements are called the components of the tensor. They carry k indexes each of
which runs from 1 to n. The rules are chosen just so that the ‘normal’ vectors are
first-rank tensors. One requires that in connection with coordinate rotations a tensor
of k-th rank transforms itself with respect to all k indexes like a ‘normal’ vector.
According to our underlying physical problems of course only the cases n D 1; 2; 3
are interesting. Furthermore, in physics we can restrict ourselves to k D 0; 1; 2.
k D 0: scalar: Nx D x
k D 1: vector, n D 3 components (in the three-dimensional space), for which,
according to (1.309), it holds after a coordinate rotation:

Nxi D
X

j

dijxj

(dij: components of the rotation matrix (1.307)),
k D 2: .Fij/i; j D 1; 2; 3 W n2 D 9 components with

NFij D
X
l;m

dildjmFlm (4.49)

and so on.
Second-rank tensors can always be written as square matrices. However, in contrast
to normal matrices which are represented by collections of elements (numbers),
which may behave arbitrarily with coordinate transformations, the above-mentioned
transformation behavior is absolutely mandatory for the elements of a tensor.

Why is it necessary that the system of coefficients (4.47) does exhibit tensor
properties? The components of the inertial tensor in a given system of coordinates
are uniquely determined by the mass distribution of the rigid body. But with a
rotation of the system of coordinates the components will change. Furthermore,
of course also the components of the angular velocity ! will undergo a change.
However, it is clear that a rotation of the coordinate system should not influence the
(measurable) rotational kinetic energy TR. Equation (4.46) shows that this is then
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and only then the case when J exhibits the transformation properties of a second-
rank tensor:

TR D 1

2

X
l;m

Jlm! l!m D 1

2

X
l;m

X
i; j

dlidmjJij

X
s; t

dlsdmt!s!t D

D 1

2

X
i; j

X
s; t

Jij!s!tıisıjt D 1

2

X
i; j

Jij!i!j D TR :

In the penultimate step we have exploited the orthonormality relations (1.316) for
rows and columns of the rotation matrix.

(2) Connection Between Moment of Inertia and Inertial Tensor

For the case of a fixed axis we had introduced the moment of inertia by the
relation (4.9)

TR D 1

2
J !2

With the components n1; n2; n3 of the unit vector in the direction of the rotation axis

n D !

!

we can alternatively write for (4.46):

TR D 1

2

 X
l;m

Jlmnlnm

!
!2 :

The comparison yields the following important relationship between the moment
of inertia, related to a fixed axis, and the inertial tensor:

J D
X
l;m

Jlmnlnm : (4.50)

So we see that from a known inertial tensor it is rather easy to calculate the moment
of inertia related to an arbitrary axis n. The terms on the principal diagonal of the
inertial tensor are then obviously the moments of inertia along the Cartesian coor-
dinate axes since it holds for these rotation axes n D .1; 0; 0/ ; .0; 1; 0/ ; .0; 0; 1/.
In general one can say that by the inertia tensor J there is assigned to each space-
direction n a moment of inertia Jn.
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Fig. 4.14 For the calculation
of the inertial tensor of a cube
of edge length a with
homogeneous mass density

(3) Example

We calculate the inertial tensor of a cube with homogeneous mass density. The point
of reference S shall be in the bottom left corner of the cube (Fig. 4.14)

J11 D �0
a•

0

dx dy dz
�
y2 C z2

� D �0a2
�

a3

3
C a3

3

	
D 2

3
Ma2 ;

J13 D ��0
a•

0

dx dy dz xz D ��0 a2

2
a

a2

2
D �1

4
M a2 :

The other elements are determined analogously:

J D M a2

0
@
2=3 �1=4 �1=4
�1=4 2=3 �1=4
�1=4 �1=4 2=3

1
A : (4.51)

(4) Principal Axes of Inertia

The inertial tensor J is

symmetric .Jlm D Jml/ and real
�
Jlm D J�

lm

�
.

For such a tensor it can generally be shown that for a fixed origin of coordinates
there does exist a special rotation of the reference system so that all the off-diagonal
elements disappear:

J D
0
@

A 0 0

0 B 0

0 0 C

1
A : (4.52)
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One speaks of a ‘principal axes transformation’ and denotes the respective
coordinate axes as principal axes of inertia. A;B;C are the principal moments
of inertia. Later we will show how to determine the principal moments of inertia in
practical applications.

(5) Inertial Ellipsoid

The inertial ellipsoid is introduced to illustrate the connection between moment of
inertia and inertial tensor. Starting from the relation (4.50) between these two terms
one ascribes to J an area in the three-dimensional space, and that by the equation:

1 D
X
l;m

Jlmxlxm D J11x
2
1 C J22x

2
2 C J33x

2
3C

C 2J12x1x2 C 2J13x1x3 C 2J23x2x3 : (4.53)

It is the equation of an ellipsoid.
If we insert into the picture of the ellipsoid (Fig. 4.15) an arbitrary axis defined

by the unit vector n, then we can read off the coordinates of the intersection point
P. Because of (4.50) it must hold:

P W xi D nip
J
: (4.54)

The distance � between this point and the origin of coordinates S

� D
sX

i

x2i D
r
1

J

�
n21 C n22 C n23

� D 1p
J
; (4.55)

delivers immediately the moment of inertia J with respect to the axis n. If the inertial
ellipsoid is known then J can very easily determined for arbitrary directions of the
axis.

Fig. 4.15 Representation of
the inertial ellipsoid of a rigid
body rotating around the
axis n
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Every ellipsoid can be brought by a proper rotation of the coordinate system
into its ‘normal form’ for which the coordinate axes coincide with the symmetry
axes so that the mixed terms disappear. That corresponds to the principal axes
transformation mentioned under point (4). One denotes these special coordinate
axes by

�; �; � ;

for which then holds with (4.52) and (4.53):

1 D A�2 C B�2 C C�2 : (4.56)

The inertial ellipsoid thus has the edge lengths

1=
p

A ; 1=
p

B ; 1=
p

C :

The rotational kinetic energy adopts in the principal axes system �; �; � according
to (4.46) the simple form:

TR D 1

2

�
A!2� C B!2� C C!2�

�
: (4.57)

The symmetric inertial tensor J contains six independent elements being therefore
characterized by six independent quantities. We can consider the three principal
moments of inertia A; B; C and the three angles which fix the spatial orientation of
the principal axes of inertia �; �; � as the six independent quantities. Later we will
see that these are just the so-called Euler’s angle to be discussed in a forthcoming
section.

(6) Denotations

asymmetric spinning top: A ¤ B ¤ C
symmetric spinning top: A D B ¤ C

or A D C ¤ B
or B D C ¤ A

spherical spinning top: A D B D C:
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4.3.4 Angular Momentum of the Rigid Body

In this section we want to find out the connection between the angular momentum
and the inertial tensor of a rigid body. For the rotation around a fixed axis we
found the relatively simple expression (4.16) for the paraxial angular-momentum
component

L! D J! :

Via the general relation for the angular momentum

bL D
X

i

mi

�
Ori � POri

�

one gets by insertion of (4.40) for Ori and (4.42) for POri:

bL D
X

i

mi r0 � Pr0.t/C
X

i

mi r0 � .! � ri/C

C
X

i

mi ri � Pr0.t/C
X

i

mi ri � .! � ri/ :

The second and the third summand vanish since we had agreed upon in Sect. 4.3.2
to choose as origin S in † a point in the rigid body which is fixed in space if such a
point exists .r0 D 0; Pr0 D 0/ or, if it does not exist, to identify the center of gravity
with S

�P
i mi ri D 0

�
:

bL D M r0.t/ � Pr0.t/C
X

i

mi ri � .! � ri/ D Ls C L : (4.58)

The first summand is zero, when S as space-fixed point is simultaneously the origin
in both † and b†, otherwise it represents the angular momentum of the total mass
concentrated in the center of gravity and therefore is relatively uninteresting. Hence
we can restrict our considerations to the body’s own angular momentum which
refers to the origin S in †:

L D
X

i

mi ri � .! � ri/

D
X

i

mi
�
r2i ! � .ri �!/ ri

�
: (4.59)



330 4 The Rigid Body

Multiplying this expression scalarly with ! leads to:

! � L D
X

i

mi

h
r2i !

2 � .ri �!/2
i
D
X

i

mi .ri �!/2 :

The comparison with (4.44) shows that between angular momentum and rotational
kinetic energy the following relation exists:

TR D 1

2
.! � L/ : (4.60)

As will be shown later, in general L does not have the same direction as!. However,
since TR is definitely a positive number we can conclude from (4.60) that ! and L
will always enclose an acute angle.

Let us explicitly write down according to (4.59) the components of L:

L1 D !1
X

i

mi
�
x2i2 C x2i3

� � !2
X

i

mixi1xi2 � !3
X

i

mixi1xi3 ;

L2 D �!1
X

i

mixi2xi1 C !2
X

i

mi
�
x2i1 C x2i3

� � !3
X

i

mixi2xi3 ;

L3 D �!1
X

i

mixi3xi1 � !2
X

i

mixi3xi2 C !3
X

i

mi
�
x2i1 C x2i2

�
:

In view of (4.47) the following relationship between angular momentum and angular
velocity is found:

Ll D
3X

m D 1

Jlm!m ” L D J! : (4.61)

The components of the angular momentum are thus linear functions of the angular-
velocity components. In the principal axes system the relations become especially
simple:

L D �A!�;B!�;C!�
�
: (4.62)

The connection between angular momentum and angular velocity can also be
demonstrated graphically by the use of the inertial ellipsoid. For the surface of the
inertial ellipsoid (4.56) holds F.�; �; �/ D 1 with

F D A�2 C B�2 C C�2 D F.�; �; �/ :

From (1.271) we know that the gradient of F is orthogonal to the area F D const:

rF D .2A�; 2B�; 2C�/ :
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Fig. 4.16 Angular
momentum and inertial
ellipsoid in the principal axes
system of a rigid body

For the components of the intersection point P of the rotation axis with the ellipsoid
surface (Fig. 4.16) one gets because of (4.54):

�p D n�p
J
I �p D n�p

J
I �p D n�p

J
: (4.63)

Therewith follows:

rFjp D 2p
J

�
An� ; Bn�; Cn�

� D 2

!
p

J
L :

The angular-momentum vector therefore stands perpendicularly on the tangential
plane constructed at the intersection point P of the rotation axis with the inertial
ellipsoid (Fig. 4.16). Furthermore, L is of course related to the origin S of †.
Figure 4.16 illustrates that! and L are parallel then and only then when the rotation
is carried out around one of the principal axes of inertia. Then only one component
in (4.62) is different from zero and the proportionality of! and L becomes obvious.

This last fact can be exploited to determine the principal axes and the principal
moments of inertia. We assume an arbitrary body-fixed system of coordinates. The
angular velocity ! may have the direction of one of the principal axes of inertia.
Then it must hold:

L D J! D J ! : (4.64)

That is a so-called ‘eigenvalue equation’ of the matrix J. Unknowns are the
scalar J, which is named the eigenvalue of the matrix J, and the corresponding
eigenvector of the matrix !. Equation (4.64) is equivalent to the following
homogeneous system of equations:

�
J11 � J

�
!1 C J12 !2 C J13 !3 D 0 ;

J21 !1 C
�
J22 � J

�
!2 C J23 !3 D 0 ; (4.65)

J31 !1 C J32 !2 C
�
J33 � J

�
!3 D 0 :
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this homogeneous system of equations has non-trivial solutions according to (1.352)
only when the determinant of the coefficient matrix vanishes:

det

0
@

J11 � J J12 J13
J21 J22 � J J23
J31 J32 J33 � J

1
A D det

�
J � J � E� ŠD 0 : (4.66)

If we evaluate this equation by the use of the Sarrus’rule (1.326) then it results in
a polynomial of third degree for the unknown moment J, which is called

characteristic (secular) equation.

Such an equation has three solutions:

J1 D A ; J2 D B ; J3 D C ;

Since J is symmetric and real each of the three solutions is real. They are just the
principal moments of inertia.

Inserting the solutions for J one after another into the system of equations (4.65)
leads to conditional equations for the three components of the angular velocity in
direction of the respective principal axis of inertia. The rank of the coefficient matrix
is according to (1.353) smaller than three so that always only the ratios !.i/1 W !.i/2 W
!
.i/
3 of the components of the eigenvector !.i/; i D 1; 2; 3 are determinable. That,

however, turns out to be sufficient to fix the directions of the !.i/, which as per the
ansatz (4.64) do agree with the principal axes of inertia.

4.4 Theory of the Spinning Top

From now on we assume that the rigid body possesses one space-fixed point which
we take as the origin S of the body-fixed system of coordinates†.

4.4.1 Euler’s Equations

We exploit the angular-momentum law (3.13)

d

dt
L D M ; (4.67)

in order to derive equations of motion for the spinning top. M is the external torque
where, for simplicity, we leave out from now on the superscript ex. In this form,
however, the angular-momentum law holds only in the inertial system b†. In this
system, however, not only the components of the angular velocity but also the
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elements of the inertial tensor turn out to be time-dependent. It appears therefore
not very reasonable for L to work with the result (4.61) of the last section.

It is more advisable to formulate the angular-momentum law in the co-rotating
body-fixed reference system † where we choose as coordinate axes just the princi-
pal axes of inertia. Following convention we denote from now on the components
of the angular velocity by p; q; r:

! D p e� C q e� C r e� ; (4.68)

L D A p e� C B q e�C C r e� : (4.69)

For the time differentiation required in (4.67) we now apply again the operator
identity (Sect. 4.2.1)

�
d

dt

	

b†
D
�

d

dt

	

†

C!� ; (4.70)

by which we are led to the following angular-momentum law:

M D PLC .! � L/ : (4.71)

The time differentiation on the right-hand side has now to be performed in the
body-fixed system for which the components A; B; C of the inertial tensor are time-
independent:

M D A Pp e� C B Pq e� C C Pr e� C
ˇ̌
ˇ̌
ˇ̌

e� e� e�
p q r

A p B q C r

ˇ̌
ˇ̌
ˇ̌ :

In detail that means:

M� D A PpC .C � B/ q r ;

M� D B PqC .A � C/ r p ; (4.72)

M� D C PrC .B � A/ p q :

These equations are called Euler’s equations which for known components of the
torque M in the body-fixed principal axes system represent a coupled system of
differential equations for the components p; q; r of the angular velocity !. They are
the equations of motion for the rotational motion of the rigid body.

For the concrete evaluation of the system of equations one needs the components
of the torque M with respect to the principal axes of inertia. Since M is caused
by external forces there will appear on the left-hand side of (4.72) therefore also
quantities which are defined in the space-fixed system b†. Thus we have to establish
relations between space-fixed and body-fixed reference systems. Of course we also
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need them in order to be able to find the actual position of the rigid body in the
space-fixed system b† from the solutions p; q; r of Euler’s equations.

4.4.2 Euler’s Angles

Euler’s angles indicate how a body-fixed co-rotating system is oriented with respect
to a space-fixed system.

The space-fixed system of coordinates b† may be defined by the coordinates
Ox; Oy; Oz, the body-fixed system by x; y; z. As line of nodes K one denotes the
intersection line of both the (Ox; Oy)- and (x; y) equatorial planes perpendicular to Oz
and z, respectively. There appear the following angles (Fig. 4.17):

' D ^(Ox axis, line of nodes) ;

# D ^(Oz axis, z axis) ;

 D ^(line of nodes, x axis) :

We can make the two systems of coordinates b† and † coincide with each other
by three single rotations. At first we perform a rotation of the space-fixed initial
system around the Oz axis in the mathematically positive sense by the angle '; the
Ox axis then coincides with line of nodes. In the next step we rotate the system
around this line by the angle # ; the Oz axis therewith becomes the new z axis. Around
that we finally rotate the reference system by the angle  in order to get the new
x axis. The order of the various rotations is very important. Rotations by finite angles
are normally not commutable. For given Euler’s angles '; #;  we therefore are
always able to rotate the space-fixed axis system in such a way that it coincides
with the body-fixed system. That means that for known ' D '.t/, # D #.t/, and
 D  .t/ the position of the spinning top is determinable for all times.

Fig. 4.17 Demonstration of
Euler’s angles for the motion
of a spinning top
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We now need the time-derivatives of Euler’s angles and the components of the
angular momentum. Rotation means changing the angles #; ';  :

P# H) rotation around the line of nodes ;

P' H) rotation around the Oz axis ;

P H) rotation around the z axis :

We can treat these partial rotations as vectors along the respective directions and
decompose them into components along the body-fixed axes:

P#eK D P# cos ex � P# sin ey ;

P' Oez D P' sin# sin ex C P' sin# cos ey C P' cos# ez ;

P ez D P ez :

The total angular momentum is then the vector sum of these three contributions. If
we choose the body-fixed system as the principal axis system

ex D e� ; ey D e� ; ez D e�

then the comparison with (4.68) gives us the components of the angular velocity:

p D P' sin# sin C P# cos ;

q D P' sin# cos � P# sin ; (4.73)

r D P' cos# C P :

As soon as one has determined p; q; r as solutions of Euler’s equations (4.72)
then via (4.73) the equations of motion for Euler’s angles are known, by which
the position of the rigid body relative to the space-fixed system can be finally found.
This is the general procedure which will now be tested by some relevant special
cases.

4.4.3 Rotations Around Free Axes

If we assume at first that the external torques vanish so that we get from (4.72) the
equations of the force-free spinning top:

A PpC .C � B/ q r D 0 ;
B PqC .A � C/ r p D 0 ; (4.74)

C PrC .B � A/ p q D 0 :
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Multiplying the first equation by p, the second by q, the third by r and then adding
up the three equations leads to:

d

dt

1

2

�
A p2 C B q2 C C r2

� (4.57)D d

dt
TR D 0 : (4.75)

This is the energy conservation law for the body-fixed system.
Now we multiply the first equation in (4.74) by A p, the second by B q, the third

by C r, and add them together to get:

d

dt

1

2

�
A2p2 C B2q2 C C2r2

� (4.62)D d

dt

1

2
jLj2 D 0 : (4.76)

The magnitude of L is thus a conserved quantity in the body-fixed system, provided
that the torque vanishes. If the direction of L is also to be constant, then according
to (4.69) we get APp D BPq D CPr D 0. So it follows from (4.74):

.C � B/ q r D .A � C/ r p D .B � A/ p q D 0 : (4.77)

If we assume that the principal moments of inertia A; B; C are pairwise different
then necessarily two of the components q; p; r must be zero. ! has therewith the
direction of one of the principal axes of inertia, i.e. L and ! are parallel. Since L
is constant with respect to both direction and magnitude in the space-fixed system,
too, the same must also hold for !. Therewith the direction of the rotation axis is
constant in the body-fixed as well as in the space-fixed system. One calls such axes
‘free axes’. A rigid body rotating around a free axis does not swerve from side to
side.

Whether or not such a rotation represents a really stable state of motion one finds
out by inspecting the influence of a small perturbation. The rotation may take
place, e.g., around an axis close to the � axis, i.e. close to the axis belonging to the
principal moment of inertia A. Then we have

p D !� D p0 C�p0 I p0 D const

with a small correction�p0. The other components

q H) �q I r H) �r

are then also small. That we insert into (4.74) and neglect the terms of second order
in the corrections:

A�Pp0 D 0 H) �p0 D const ;

B�PqC .A � C/ p0 �r D 0 ;
C�PrC .B � A/ p0 �q D 0 :
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We differentiate once more with respect to time:

B�RqC .A � C/ p0 �Pr D B�Rq� .A � C/.B � A/

C
p20 �q D 0 ;

C�RrC .B � A/ p0 �Pq D C� Rr � .B � A/.A� C/

B
p20 �r D 0 :

With the definition

D2 D p20
BC

.A � C/.A � B/ (4.78)

we find the differential equations

�RqC D2 �q D 0 ;
�RrC D2 �r D 0 ; (4.79)

which can easily be solved. One gets oscillations in case of D2 > 0. If the quantities
�q and �r are small at the beginning they remain small for ever. The axis is
therefore stable. However, in case of D2 < 0 there result exponentially decreasing
and increasing solutions of the type

�q D �q0 e˙jDjt ;

�r D �r0 e˙jDjt : (4.80)

The initial state is therefore not stable. The axis is unstable. D2 > 0 holds if A >

C; A > B or A < C; A < B. Rotations around the axis with the largest and smallest,
respectively, principal moment of inertia are thus stable. The rotation around the axis
with the intermediate principal moment of inertia (C < A < B or B < A < C) is
unstable because D2 < 0. Already very small deviations of the rotation axis from
the � direction increase exponentially according to (4.80).

4.4.4 Force-Free Symmetric Spinning Top

We speak of a symmetric spinning top if two of the principal moments of inertia
are equal, for instance:

A D B ¤ C : (4.81)

In such a case the direction of the rotation axis, i.e. !, cannot remain fixed. One
denotes the distinguished third axis (here: � axis) as the

body axis
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of the rigid body. The force-freeness can always be realized for a rigid body by
choosing the center of gravity as fixpoint S because then the total torque due to the
gravitational field disappears:

M D
X

i

ri � mi g D M .R � g/ D 0 for R D 0 :

Under the precondition (4.81) the equations of motion (4.74) of the force-free
spinning top simplify as follows:

A PpC .C � A/ q r D 0 ;

A PqC .A � C/ r p D 0 ;

C Pr D 0 :

(4.82)

The solution for r D !� comes out immediately:

r D r0 D const : (4.83)

We can always choose the � direction so that r0 is positive. Then

� D A � C

A
r0 (4.84)

becomes positive for A > C and negative for A < C. From (4.82) we find with (4.83)
and (4.84):

Pp �� q D 0 I PqC� p D 0 : (4.85)

We differentiate once more with respect to the time:

Rp ��Pq D RpC�2 p D 0 ;
RqC�Pp D RqC�2 q D 0 : (4.86)

These are again oscillation equations. The solutions which simultaneously sat-
isfy (4.85) are:

p D ˛ sin.� tC ˇ/ ;
q D ˛ cos.� tC ˇ/ : (4.87)

˛; ˇ are integration constants. From (4.83) and (4.87) we draw the following
conclusions:
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1. The � component r of the angular velocity!, i.e. the projection on the body axis
is constant,

2. ! D j!j is constant,
3. the projection of ! on the �; � plane, which corresponds to the p; q components,

describes a circle of radius ˛.

Conclusion 1. is just the statement (4.83), conclusion 3. results from (4.87) and
conclusion 2. holds because of:

!2 D r2 C p2 C q2 D r20 C ˛2 D const : (4.88)

! thus describes a circular cone around the body axis with the aperture angle � :

tan � D ˛

r0
: (4.89)

One calls this cone the pole cone.!moves on the pole-cone mantle with the angular
velocity� (4.84).

Example The earth is an oblate ellipsoid of revolution, thus to good approximation
a symmetric spinning top (Fig. 4.18). During the rotation, the body axis (geometric
north pole) and the rotation axis! (kinematic north pole) do not exactly coincide.!
moves on a cone around the body axis. The kinematic north pole describes a circle
with a radius of about 10m around the geometric north pole with a period of about
433 days (Chandler’s period).
Up to now we have discussed the movement of the symmetric force-free spinning
top in the body-fixed (�; �; �) system. We still have to transform it to the space-
fixed system. For this purpose we determine Euler’s angles as functions of time. For
a start we have with (4.73):

p D ˛ sin.� tC ˇ/ D P' sin# sin C P# cos ;

q D ˛ cos.� tC ˇ/ D P' sin# cos � P# sin ; (4.90)

r D r0 D P' cos# C P :

Fig. 4.18 Movement of the
rotation axis around the body
axis for the case of a
force-free symmetric
spinning top
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Since the motion is force-free the angular momentum L in the space-fixed system
b† is a constant with respect to both direction and magnitude. We can then always
place the Oz axis so that:

L D L Oez (4.91)

In the body-fixed system .�; �; �/ the unit vector Oez has the components:

.Oez/� D sin# sin ;

.Oez/� D sin# cos ; (4.92)

.Oez/� D cos# :

This leads with (4.90) to the following system of equations:

L� D A p D A P' sin# sin C A P# cos 
ŠD L sin# sin ;

L� D A q D A P' sin# cos � A P# sin 
ŠD L sin# cos ;

L� D C r D C P' cos# C C P ŠD L cos# :

This system of equations can be solved only with

# D #0 D const ; P' D const (4.93)

Therewith (4.90) reads:

˛ sin.� tC ˇ/ D P' sin#0 sin ;

˛ cos.� tC ˇ/ D P' sin#0 cos ;

r0 D P' cos#0 C P :

(4.94)

The ratio of the first two equations yields:

 D � tC ˇ D A � C

A
r0tC ˇ : (4.95)

If one inserts this for instance into the first equation it follows ˛ D P' sin#0 and
therewith

' D ˛

sin#0
tC '0 : (4.96)

The third equation in (4.94) then still leads to

# D #0 I tan#0 D ˛ A

r0C
: (4.97)
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Equations (4.95)–(4.97) represent the full solution of the equation of motion of the
force-free symmetric spinning top. We are left with four independent integration
constants ˛; ˇ; '0; r0. In principle it should be six but two of them we have already
implicitly used for fixing the Oz direction!

4.4.4.1 Discussion of the Spinning Top Motion

(a) # : Angle between space-fixed Oz axis and body-fixed z axis. The Oz axis is given
according to (4.91) by the direction of the angular momentum L. The z axis is
the body axis (� axis). From that it follows:
The body axis moves with constant aperture angle # D #0 and with constant
angular velocity P' around the direction of the angular momentum. The cone
described by the body axis is called ‘nutation cone’.

(b) P : Angular velocity by which the body (more strictly the body-fixed �; � plane)
rotates around the body axis.

(c) !: The angular velocity ! is equal to the vector sum of P' and P . It always lies
in the Oz; � plane, thus rotates together with the body axis around the direction of
the angular momentum (Oz axis) enclosing with the body axis the angle � (4.89).
The momentary rotation axis defined by ! moves therefore on the so-called
space cone around the space-fixed angular-momentum direction.

The pole cone rolls off with its outside mantle on the space-fixed space cone and
therefore directs the body axis on the nutation cone.

For A > C it is P "" e� . Then the outside area of the pole cone rolls off the
space-cone mantle (Fig. 4.19).

For A < C it is P "# e� . The pole cone rolls off with its inside area on the
space-fixed space cone where again the body axis is directed on the nutation cone
(Fig. 4.20).

Fig. 4.19 Course of motion
for the force-free symmetric
spinning top with principal
moments of inertia
A D B > C

axis
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Fig. 4.20 Course of motion
for the force-free symmetric
spinning top with principal
moments of inertia
A D B < C

axis

4.5 Exercises

Exercise 4.5.1 Calculate the moment of inertia

1. of a homogeneous spherical shell (outer radius R, thickness d
R, mass M) with
respect to a rotation axis through the center,

2. of a cube with homogeneous mass density (edge length a, mass M) with respect
to one of the cube edges as rotation axis,

3. of a cylinder with the mass M and radius R with respect to the symmetry axis.
The mass distribution is such that the mass density increases outward linearly
with the radius starting with zero at the symmetry axis.

Exercise 4.5.2 The cube from part 2. of Exercise 4.5.1 is hanging on one of
its edges vertically down in the earth’s gravitational field (Fig. 4.21). It performs
small oscillations around this axis. Write down the equation of motion and find
the oscillation period and the angular frequency. What would be the length of an
equivalent thread pendulum?

Exercise 4.5.3 A thin-walled hollow cylinder (radius R, mass M) is rolling down
an inclined plane. It starts to roll at the time t D 0, where v.t/ is the velocity of a
point on its axis.

1. Formulate the energy theorem and express the total kinetic energy by v.t/.
2. Calculate v.t/!

Exercise 4.5.4 Two homogeneous cylinders with masses M1, M2, radii R1, R2 are
wrapped by a thread and therewith connected to each other (Fig. 4.22). The axis of
first cylinder is tightly horizontally pivoted. However, it can be rotated frictionlessly.
The second cylinder falls in the earth’s gravitational field in x direction where
on both the cylinders the thread is unrolling. Formulate by use of the angular-
momentum law the equation of motion and determine in particular the thread
tensions F1 and F2!
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Fig. 4.21 Rotation of a cube
with homogeneous mass
density around one of the
edges in the earth’s
gravitational field

Fig. 4.22 Two frictionlessly
rotatable cylinders coupled by
a thread

Exercise 4.5.5 A torque Mex acts on a rigid body. It is oriented always perpendic-
ularly to the angular momentum L and is also perpendicular to a given fixed axis in
n direction:

Mex D M.n � l/ I l D L
L
:

1. Verify that

jLj D const I L � n D const :

2. Describe the time dependence of the angular-momentum vector L. For this
purpose investigate dL

dt !

Exercise 4.5.6

1. A rigid body possesses an inertial tensor J D .Jij/, where this tensor is related
to a body-fixed system of coordinates † the origin of which coincides with the
center of gravity. How does the inertia tensor alter for a system of coordinates†0
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that compared to † has parallel axes but is shifted by the vector a (generalized
Steiner’s theorem)?

2. Show that the inertial tensor transforms as follows as a consequence of a rotation
of the body-fixed system of coordinates:

J0
nm D

X
ij

dnidmjJij :

Here dij are the elements of the orthogonal rotation matrix.

Exercise 4.5.7 Inspect a cuboid with the edge lengths a; b; c and homogeneous
mass density �0.

1. Let b† be a body-fixed Cartesian system of coordinates with its origin in the
lower left corner of the cuboid and with axes along the cuboid edges. Determine
the inertia tensorbJ!

2. The cuboid rotates with the angular velocity ! around its space diagonal.
Calculate via the inertial tensor the moment of inertia with respect to this axis!

3. Let † also be a body-fixed Cartesian system of coordinates with axes parallel
to those from 1. The origin, however, is now at the center of gravity of the
cuboid. Determine the inertial tensor J! What is now the moment of inertia for
the rotation around the space diagonal?

4. Use the inertial tensors calculated in 1. and 3. to fix the moments of inertia
related, respectively, to a rotation axis which coincides with a cuboid edge, e.g.
in y direction, and to an axis parallel to the former through the center of gravity
of the cuboid. Verify Steiner’s theorem!

Exercise 4.5.8 Use the solution in the first part of Exercise 4.5.7 in order to find
the inertial tensor of a cube with an edge length a and with homogeneous mass
density for a Cartesian system of coordinates, the origin of which lies in one of the
cube corners while the axes coincide with the cube edges. Calculate the principal
moments and axes of inertia!

4.6 Self-Examination Questions

To Section 4.1

1. Describe the model of the rigid body!
2. How many degrees of freedom does the rigid body have?
3. What do we understand by mass density?
4. What is a spinning top?
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To Section 4.2

1. Define for the rotation around a given axis the moment of inertia of the rigid
body! Which parameters do play a role?

2. What is a physical pendulum? Which relation does it have to the mathematical
pendulum?

3. Formulate and interpret Steiner’s theorem!
4. How many degrees of freedom has a cylinder rolling down an inclined plane?

Find its equation of motion!
5. Which analogies do exist between translational and rotational motion?

To Section 4.3

1. How are the components of the inertial tensor defined?
2. How does the rotational kinetic energy depend on the components of the angular

velocity? What does these components fix for a given system of coordinates?
3. Explain the term tensor! When is a square matrix a tensor of second rank?
4. What is the relation between the moment of inertia with respect to a fixed axis

and the inertial tensor?
5. What do you understand by principal axes transformation? Explain the concepts

principal axes of inertia and principal moments of inertia?
6. How can one use the inertial ellipsoid to get the moment of inertia with respect

to a given axis?
7. What are the differences between symmetric, asymmetric and spherical spinning

top?
8. Express the angular momentum of a rigid body by its inertial tensor!
9. Demonstrate with the inertial ellipsoid the relation between angular momentum

L and angular velocity !. When are ! and L parallel?

To Section 4.4

1. What information is provided by Euler’s equations?
2. Define Euler’ angles!
3. What are the equations of motion of the force-free spinning top?
4. What is meant by free axes?
5. Explain the terms body axis, pole cone, nutation cone, and space cone for the

spinning-top motion!



Appendix A
Solutions of the Exercises

Section 1.1

Solution 1.1.1 We use the rules (1.19)–(1.22) and solve the exercises by tracing
back the various terms to null sequences.

1.

an D
p

n

n
D 1p

n

n ! 1�! 0

2.

an D n3 C 1
2n3 C n2 C n

D 1C 1
n3

2C 1
n C 1

n2

n ! 1�! 1

2

3.

an D n2 � 1
.nC 1/2 C 5 D

1 � 1
n2

1C 2
n C 1

n2

C 5 n ! 1�! 1C 5 D 6 :

Solution 1.1.2

1. We use (1.29):

S3 D
3X

m D 1

3

�
1

2

	m

D 3 � 1
2

3X
m D 1

�
1

2

	m � 1

D 3

2

1 � � 1
2

�3
1 � 1

2

D 3

2

7
8
1
2

D 21

8
:
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With (1.30) follows:

S D
1X

m D 1

3

�
1

2

	m

D 3

2

1X
m D 1

�
1

2

	m � 1
D 3

2

1

1 � 1
2

D 3 :

2. The answer is yes because:

1;111 : : : D 1C 1

10
C 1

100
C � � � D

1X
m D 1

�
1

10

	m � 1

D 1

1 � 1
10

D 10

9

Solution 1.1.3 It obviously holds for the harmonic series (1.27):

S2n � Sn D
2nX

k D n C 1

1

k
�

2nX
k D n C 1

1

2n
D n � 1

2n
D 1

2
:

Thus it is

lim
n ! 1 .S2n � Sn/ � 1

2
:

Therefore the series cannot converge!

Solution 1.1.4

•

cos2 ' � tan2 ' C cos2 ' D sin2 ' C cos2 ' D 1

•

1 � cos2 '

sin ' � cos'
D sin2 '

sin ' � cos'
D sin '

cos'
D tan'

•

1 � 1

cos2 '
D cos2 ' � 1

cos2 '
D � sin2 '

cos2 '
D � tan2 '

•

1

1 � sin'
C 1

1C sin '
D 1C sin' C 1 � sin'

1 � sin2 '
D 2

cos2 '
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•

sin.'1 C '2/C sin.'1 � '2/
cos.'1 C '2/C cos.'1 � '2/ D

2 sin '1 � cos'2
2 cos'1 � cos'2

D tan'1 :

Here we have exploited the addition theorems (1.60) and (1.61).
•

cos2 '

sin 2'
(1.60)D cos2 '

2 sin' � cos'
D 1

2

cos'

sin '
D 1

2
cot' :

Solution 1.1.5 The derivation is easily found with the addition theorem (1.61):

1 � cos' D 1 � cos2
'

2
C sin2

'

2

(1.47)D sin2
'

2
C sin2

'

2
D 2 sin2

'

2
:

Solution 1.1.6

1.

y D f .x/ D cos x H) f 0.x/ D � sin x :

The reasoning is completely analogous to that for the derivative of the sine
in (1.80).

�y

�x
D cos.xC�x/� cos x

�x

D cos x cos�x � sin x sin�x � cos x

�x

D cos x.cos�x � 1/
�x

� sin x
sin�x

�x

D � cos x sin
�x

2
� sin �x

2
�x
2

� sin x
sin�x

�x
:

In the next to last step we have applied the formula from Solution 1.1.5. For the
remaining limiting process�x! 0 we can exploit (1.50):

f 0.x/ D lim
�x!0

 
� cos x sin

�x

2
� sin �x

2
�x
2

� sin x
sin�x

�x

!
D � sin x :
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2. With the quotient-rule (1.86) one calculates

d

dx
tan x D d

dx

�
sin x

cos x

	
D cos x sin0 x � cos0 x sin x

cos2 x

D cos2 xC sin2 x

cos2 x

D 1

cos2 x
:

3. It follows again with quotient-rule (1.86):

d

dx
cot x D d

dx

�cos x

sin x

�
D cos0 x sin x � cos x sin0 x

sin2 x

D � sin2 x � cos2 x

sin2 x

D � 1

sin2 x

Solution 1.1.7 We apply the rules of differentiation from Sect. 1.1.9:

1.

f 0
1.x/ D 15x4

2.

f 0
2.x/ D 21x2 � 6x

1
2

3.

f 0
3.x/ D

�
3x2 � 2� 5x2 � 10x

�
x3 � 2x

�

25x4
D 5x4 C 10x2

25x4
D x2 C 2

5x2

4.

f 0
4.x/ D

1

3
x� 2

3 D 1

3
3
p

x2

5.

f 0
5.x/ D

1

2

�
1C x2

�� 1
2 � 2x D xp

1C x2
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6.

f 0
6.x/ D 3.� sin.6x// � 6 D �18 sin.6x/

7.

f 0
7.x/ D cos x2 � 2x D 2x cos x2

8.

f 0
8.x/ D 6x2 exp

�
2x3 � 4�

9.

f 0
9.x/ D

2

2xC 1 :

Solution 1.1.8 The derivatives of the trigonometric functions needed in the follow-
ing have been derived in (1.80) and in Solution 1.1.6.

1. Let

y D sin x

so that

f �1.y/ D arcsin y D x :

Then it holds with (1.91):

dx

dy
D 1

dy
dx

D 1

cos x
D 1p

1 � sin2 x
:

That yields the assertion:

d

dy
arcsin y D 1p

1 � y2
:

2. We now choose

y D cos x

and therewith

f �1.y/ D arccos y D x :
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It is then:

dx

dy
D 1

dy
dx

D 1

� sin x
D � 1p

1 � cos2 x
:

That proves the assertion:

d

dy
arccos y D � 1p

1 � y2
:

3. Next we investigate

y D tan x

and therewith

f �1.y/ D arctan y D x :

It then holds:

dx

dy
D 1

dy
dx

D 1

tan0 x
D cos2 x D 1

1C tan2 x
:

That yields:

d

dy
arctan y D 1

1C y2
:

4. Finally we inspect

y D cot x

and therewith

f �1.y/ D arccot y D x :

It then holds:

dx

dy
D 1

dy
dx

D 1

cot0 x
D � sin2 x D � 1

1C cot2 x
:

That proves the assertion:

d

dy
arccot y D � 1

1C y2
:
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Solution 1.1.9

1.

a0 D f .0/

a1 D f 0.0/

a2 D 1

2
f 00.0/

� � � D � � �

an D 1

nŠ

dnf

dxn

ˇ̌
ˇ̌
x D 0

Õ f .x/ D
1X

n D 0

f .n/.0/

nŠ
xn :

2. We substitute

u D x � x0 I g.u/ � f .uC x0/ � f .x/ :

Then it holds with part 1.:

g.u/ D
1X

n D 0

g.n/.0/

nŠ
un :

Because of

g.n/.0/ D f .n/.x0/

Immediately it follows the assertion.

Solution 1.1.10 The reasoning works with the aid of the Taylor expansion (1.92)
which we perform around x D 0.

f .x/ D .1C x/n Õ f .0/ D 1
f 0.x/ D n .1C x/n � 1 Õ f 0.0/ D n

f 00.x/ D n.n � 1/ .1C x/n � 2 Õ f 00.0/ D n.n� 1/
f 000.x/ D n.n � 1/.n � 2/ .1C x/n � 3 Õ f 000.0/ D n.n � 1/.n � 2/
� � � D � � � :
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That yields in (1.92):

.1C x/n D 1C n xC n.n � 1/
2Š

x2 C n.n � 1/.n � 2/
3Š

x3 C : : :

If x
 1 then the series can be cut off with sufficient accuracy after a finite number
of terms.

Solution 1.1.11 We use the Taylor expansion (1.92) for f .x/ D ln.1C x/ at x D 0:

f .x/ D ln.1C x/ Õ f .0/ D ln.1/ D 0

f 0.x/ D 1

.1C x/
Õ f 0.0/ D 1

f 00.x/ D �1
.1C x/2

Õ f 00.0/ D �1

f 000.x/ D C2
.1C x/3

Õ f 000.0/ D 2

� � � D � � � :

We show that

dn

dxn
ln.1C x/ D .n � 1/Š.�1/n � 1

.1C x/n
.n � 1/ :

holds. For n D 1; 2; 3 this relation is obviously correct. By iterated induction we
conclude from n to nC 1, i.e. we show that if the expression is correct for n then it
is also correct for nC 1:

dn C 1

dxn C 1
ln.1C x/ D d

dx

.n � 1/Š.�1/n � 1

.1C x/n
D �n

.n� 1/Š.�1/n � 1

.1C x/n C 1
D .n/Š.�1/n
.1C x/n C 1

:

Therewith:

f .n/.0/ D .n � 1/Š.�1/n � 1 :

Taylor expansion:

ln.1C x/ D
1X

n D 0

f .n/.0/

nŠ
xn D

1X
n D 1

.�1/n � 1

n
xn :

That is the assertion. We remark that nothing is said as yet about the convergence of
the series. Considerations, which we cannot follow here, show up that convergence
is guaranteed for jxj < 1.
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Solution 1.1.12

f .x/ D cos x I x0 D 0 :

For the Taylor expansion (1.92)we use:

f .0/ D 1 I f 0.0/ D � sin.0/ D 0 I f 00.0/ D � cos.0/ D �1 I
f 000.0/ D sin.0/ D 0 I f .4/ D cos.0/ D 1 I : : :

Õ f .2n/.0/ D .�1/n I f .2nC1/.0/ D 0 :

That means:

cos x D 1 � 1

2Š
x2 C 1

4Š
x4 C : : : D

1X
n D 0

.�1/n x2n

.2n/Š
:

Solution 1.1.13 We write

f .x/ D f1.x/

f2.x/
:

With the series expansions (1.94) and (1.51) we find:

f1.x/ D x � sin x

D x �
�

x � 1

3Š
x3 C 1

5Š
x5 � : : :

	

D x3

3Š
� x5

�
1

5Š
� x2

7Š
C : : :

	

f2.x/ D ex C e�x � 2

D
�
1C xC x2

2Š
C : : :

	
C
�
1 � xC x2

2Š
� : : :

	
� 2

D x2 C 2x4
�
1

4Š
C x2

6Š
C : : :

	

Therewith it follows:

f .x/ D
x3

3Š
� x5.: : :/

x2 C 2x4.: : :/
D

x
3Š
� x3.: : :/

1C 2x2.: : :/

x ! 0�! 0 � 0
1C 0 D 0 :
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We now investigate the same expression by applying l’Hospital’s rule:

lim
x ! 0

f .x/ D lim
x ! 0

f 0
1.x/

f 0
2.x/
D lim

x ! 0

1 � cos x

ex � e�x
D 1 � 1
1 � 1 :

This expression is still indeterminate. Therefore, we have to proceed one step
further:

lim
x ! 0

f .x/ D lim
x ! 0

f 00
1 .x/

f 00
2 .x/

D lim
x ! 0

sin x

ex C e�x
D 0

2
D 0 :

Solution 1.1.14

1.

f .x/ D 2x4 � 8x2 :

Zeros:

0
ŠD 2x4 � 8x2 D 2x2

�
x2 � 4� D 2x2.xC 2/.x � 2/

Õ x1 D x2 D 0 I x3 D �2 I x4 D C2 :

Extreme values:

f 0.x/ ŠD 0 D 8x3 � 16x D 8x
�
x2 � 2�

Õ xa D 0 I xb D
p
2 I xc D �

p
2 :

From

f 00.x/ D 24x2 � 16 D 8 �3x2 � 2�

follows

f 00.xa/ D �16 < 0 Õ xa W maximum

f 00.xb/ D f 00.xc/ D 32 > 0 Õ xb;c W minima

with

f .xa/ D 0 I f .xb/ D f .xc/ D �8 :

2.

g.x/ D sin

�
1

2
x

	
:
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Zeros:

xm D 2m� m 2 Z :

Extreme values:

0
ŠD g0.x/ D 1

2
cos

�
1

2
x

	
Õ xn D .2nC 1/� I n 2 Z :

One decomposes the zeros conveniently according to n D 2n1 and n D 2n2 C 1;
n1;2 2 N:

xṅ1 D ˙ .4n1 C 1/� I xṅ2 D ˙ .4n2 C 3/ � :

That results in

g00 �xC
n1

� D �1
4

sin
�
.4n1 C 1/ �

2

�
D �1

4
Õ maxima

g00 �x�
n1

� D C1
4

sin
�
.4n1 C 1/ �

2

�
D C1

4
Õ minima

g00 �xC
n2

� D �1
4

sin
�
.4n2 C 3/ �

2

�
D C1

4
Õ minima

g00 �x�
n2

� D C1
4

sin
�
.4n2 C 3/ �

2

�
D �1

4
Õ maxima

with

g.xC
n1/ D g.x�

n2/ D C1 I g
�
x�

n1

� D g
�
xC

n2

� D �1 :

Section 1.2

Solution 1.2.1

1. Choose

f1.x/ D cos x I f 0
2.x/ D cos x

Õ f 0
1.x/ D � sin x I f2.x/ D sin x :
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Therewith we can write:
Z

cos2 xdx D cos x sin x �
Z
.� sin2 x/dxC c

D cos x sin xC
Z
.1 � cos2 x/dxC c

D cos x sin xC x �
Z

cos2 xdxC Oc

D 1

2
cos x sin xC x

2
C OOc :

2. Choose

f1.x/ D x2 I f 0
2.x/ D cos2 x

Õ f 0
1.x/ D 2x I f2.x/ D 1

2
cos x sin xC x

2
:

Here we have already exploited the result from part 1. Therewith we get:

Z
x2 cos2 xdx D 1

2
x2.cos x sin xC x/�

Z
.x cos x sin xC x2/dx

D 1

2
x2.cos x sin xC x/� x3

3
� A

A D
Z

x cos x sin xdx D 1

2

Z
x

d

dx
sin2 xdx

D x

2
sin2 x � 1

2

Z
sin2 xdxC c1

D x

2
sin2 x � x

2
C 1

2

Z
cos2 xdxC c2

D x

2
sin2 x � x

2
C 1

4
.cos x sin xC x/C c3 :

So the result is:

Z
x2 cos2 xdx D 1

2
.cos x sin xC x/

�
x2 � 1

2

	
C x

2
cos2 x � x3

3
C c :

3. Choose

f1.x/ D x I f 0
2.x/ D sin x

Õ f 0
1.x/ D 1 I f2.x/ D � cos x :
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Then it follows immediately:

Z
x sin xdx D �x cos xC

Z
cos xdx D �x cos xC sin xC c :

4. Choose

f1.x/ D ln x I f 0
2.x/ D x

Õ f 0
1.x/ D

1

x
I f2.x/ D 1

2
x2 :

Thus it is to calculate:

Z
x ln xdx D 1

2
x2 ln x �

Z
x

2
dx D 1

2
x2
�

ln x � 1
2

	
C c :

Solution 1.2.2

1. We substitute

u D 5x � 4 Õ du D 5dx Õ dx D 1

5
du Õ u.x D 1/ D 1I u.x D 0/ D �4 :

It follows:

Z 1

0

.5x � 4/3 dx D 1

5

Z 1

�4
u3 du D 1

20
u4
ˇ̌1
�4 D

1

20
.1 � 44/ D 1

20
.�255/

D �51
4
:

2. We substitute

u D �xC 5�

2
Õ du D �dx Õ dx D 1

�
du Õ u.x D 1/ D 7�

2
I u
�

x D 3

2

	
D 4� :

It follows:

Z 3
2

1

sin

�
�xC 5�

2

	
dx D 1

�

Z 4�

7�
2

sin u du D � 1
�

cos u
ˇ̌4�
7�
2
D � 1

�
.1 � 0/

D � 1
�

3. We substitute

u D 7 � 3x Õ du D �3dx Õ dx D �1
3

du Õ u.x D 1/ D 4I u.x D 2/ D 1 :
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It follows:

Z 2

1

dxp
7� 3x

D �1
3

Z 1

4

dup
u
D �2

3
u
1
2

ˇ̌1
4
D �2

3
.1 � 2/

D 2

3
:

4. We substitute

u D 2x3 C 4 Õ du D 6x2dx Õ dx D 1

6x2
du Õ u.x D �1/ D 2I u.x D C1/ D 6 :

It follows:

Z C1

�1
x2
p
2x3 C 4 dx D 1

6

Z 6

2

p
u du D 2

18
u
3
2

ˇ̌6
2
D 1

9

�
6
3
2 � 2 32

�

D 2

9

p
2
�
3
p
3 � 1

�
D 1; 32 :

Solution 1.2.3

1.

Z 1

xD0

Z 2

y D 0

x2 dxdy D
Z 1

0

x2dx
Z 2

0

dy D
Z 1

0

x2dx � y
ˇ̌
ˇ
2

0

D 2
Z 1

0

x2dx D 2

3
x3
ˇ̌
ˇ
1

0

D 2

3

2.
Z �

xD0

Z �

y D 1
2 �

sin x � sin y dxdy D
Z �

0
sin x dx

Z �

1
2 �

sin y dy

D .� cos x/
ˇ̌
ˇ
�

0
� .� cos y/

ˇ̌
ˇ
�

1
2 �
D .C1 � .�1//.C1 � 0/

D 2
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3.

Z 2

xD0

Z 3x

y D x�1
x2 dxdy D

Z 2

0

x2 dx
Z 3x

x�1
dy D

Z 2

0

x2 dx .3x � xC 1/

D
Z 2

0

.2x3 C x2/ dx D
�
1

2
x4 C 1

3
x3
	 ˇ̌
ˇ
2

0
D 8

�
1C 1

3

	

D 32

3

4.

Z 1

xD0

Z 2x

y D 0

Z xCy

zD0
dxdydzD

Z 1

0

dx
Z 2x

0

dy
Z xCy

0

dz D
Z 1

0

dx
Z 2x

0

dy .xC y/

D
Z 1

0

dx

�
xyC 1

2
y2
	 ˇ̌
ˇ
2x

0
D 4

Z 1

0

dx x2 D 4

3
x3
ˇ̌
ˇ
1

0

D 4

3

Section 1.3

Solution 1.3.1

1. With the orthogonality relation

ei � ej D ıij

it follows immediately:

e3 � .e1 C e2/ D e3 � e1 C e3 � e2 D 0 ;
.5e1 C 3e2/ � .7e1 � 16e3/ D 35 ;

.e1 C 7e2 � 3e3/ � .12e1 � 3e2 � 4e3/ D 12 � 21C 12 D 3 :

2. Requirement: a � b ŠD 0.

a � b D �3 � 12� 3˛ H) ˛ D �5 :
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Fig. A.1

3. Projection of a on the direction of b (Fig. A.1):

x D a cos^.a ;b/ D 1

b
.a � b/ ;

b2 D b � b D 16C 9 D 25 H) b D 5 ;

a � b D 4 � 12 D �8 H) x D �8
5
:

4. eb: Unit vector in b-direction.

b D 1p
3
H) eb D 1p

3
.e1 C e2 C e3/ :

eb � a D 1p
3
.1 � 2C 3/ D 2p

3
:

Therewith one finds:

ak D eb � .eb � a/ D 2

3
.e1 C e2 C e3/ ;

a? D a � ak D 1

3
.e1 � 8e2 C 7e3/ :

Test: ak � a? D 2
9
.1 � 8C 7/ D 0:

5. cos.^a;b/ D 1
a b .a � b/.

a D b D
q
1C .2Cp3/2 D

q
8C 4p3 D 2

q
2Cp3 :

a � b D 2 .2Cp3/ H) cos.^a;b/ D 1

2
H) ^.a;b/ D 60ı :
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Fig. A.2

Solution 1.3.2

1. Cosine rule (Fig. A.2):

.aC b/2 D a2 C 2 a � bC b2 :

jaC bj D
p

a2 C b2 C 2ab cos˛ :

Insertion of the given numbers:

jaC bj D p117C 108 cos˛ ;

cos.0/ D 1 ; cos.60ı/ D 1

2
; cos.90ı/ D 0 ;

cos.150ı/ D �1
2

p
3 ; cos.180ı/ D �1 :

H) jaC bj D p225 cm D 15 cm ” ˛ D 0ı ;
D p171 cm D 13:1 cm ” ˛ D 60ı ;
D p117 cm D 10:8 cm ” ˛ D 90ı ;
D
p
117� 54p3 cm D 4:8 cm” ˛ D 150ı ;

D p9 cm D 3 cm ” ˛ D 180ı :

For the angle ˇ holds:

cosˇ D .aC b/ � a
ajaC bj D

aC b cos˛

jaC bj D
6

jaC bj C 9
cos˛

jaC bj :

˛ D 0:

cosˇ D 1 H) ˇ D 0 ;

˛ D 60ı:

cosˇ D 10:5

13:1
D 0:8 H) ˇ D 36:87ı ;
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˛ D 90ı:

cosˇ D 6

10; 8
D 0:56 H) ˇ D 55:94ı ;

˛ D 150ı:

cosˇ D 6 � 4:5p3
4:8

D �0:37 H) ˇ D 111:95ı ;

˛ D 180ı:

cosˇ D 6 � 9
3
D �1 H) ˇ D 180ı :

2. See Fig. A.3

# D ^.a;b/ D 180ı � 36ı D 144ı ;

cos# D �0:809 :
jaC bj2 D a2 C b2 C 2a � b D 36C 49C 84 cos#

H) jaC bj D 4:13 cm ;

ja� bj2 D a2 C b2 � 2a � b D 36C 49 � 84 cos#

H) ja � bj D 12:37 cm ;

cosŒ^.aC b; e1/� D .aC b/ � e1
jaC bj

D 6 � cos 36ı C 7 � cos 180ı

4:13
D �0:520

H) ^.aC b; e1/ D 121:32ı ;

cosŒ^.a � b; e1/� D .a � b/ � e1
ja� bj D

6 cos 36ı C 7
12:37

D 0:958

H) ^.a � b; e1/ D 16:61ı :



A Solutions of the Exercises 365

Fig. A.3

Fig. A.4

3. P0P D r � r0 D ˛f :
An arbitrary point P on the sought-after straight-line has then the following

position vector (Fig. A.4):

r D r0 C ˛f D .x0 C ˛a/e1 C .y0 C ˛b/e2 C .z0 C ˛c/e3

(x0; y0; z0; a; b; c are known, ˛ 2 R).

Solution 1.3.3

1.

.a � b/2 D a2b2 sin2Œ^.a;b/� ;

.a � b/2 D a2b2 cos2Œ^.a;b/� :

Since sin2 xC cos2 x D 1 it follows:

.a � b/2 C .a � b/2 D a2b2 :

2.

.a � b/ � .c � d/ D c � Œd � .a � b/� D (scalar triple product)

D c � Œa.d � b/ � b.d � a/� D (double vector product)

D .a � c/.d � b/� .b � c/.a � d/ :
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3.

.a � b/ � Œ.b � c/ � .c � a/� D .a � b/ � fc Œ.b � c/ � a� � a Œ.b � c/ � c�g D
D Œ.a � b/ � c� Œ.b � c/ � a� D (double vector product)

D Œa � .b � c/�2 (scalar triple product) :

Solution 1.3.4

1.

a D .2; 4; 2/ I b D .3;�2;�7/ H) a D p24 I b D p62 :
.aC b/ D .5; 2;�5/ H) jaC bj D 3p6 ;
.a � b/ D .�1; 6; 9/ H) ja� bj D p118 ;

.�a/ D .�2;�4;�2/ H) j � aj D p24 D 2p6 ;
6.2a� 3b/ D .�30; 84; 150/ H) 6j2a� 3bj D 18p94 :

Test of the triangle inequality:

jaC bj D 3 � p6 � aC b D 2p6Cp62 :

This is obviously correct since
p
6 � p62.

2.

.a � b/ D .a2b3 � a3b2; a3b1 � a1b3; a1b2 � a2b1/

D .�28C 4; 6C 14;�4� 12/ D 4.�6; 5;�4/ ;
.aC b/ � .a � b/ D �2.a � b/ D 8.6;�5; 4/ ;

a � .a � b/ D 24� .6 � 8 � 14/ D 40 :

3. Area of the parallelogram:

ja � bj D 4p77:

unit vector W e D a � b
ja � bj D �

1p
77
.6;�5; 4/:

Solution 1.3.5 Thales theorem:‘The angle in the semicircle is a right one’. Accord-
ing to Fig. A.5 it is to show:

.aC b/ � .b � a/
ŠD 0 :
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Fig. A.5

Fig. A.6

This is exactly then the case if

a � b � a2 C b2 � b � a ŠD 0 ” a2 D b2 :

That is obviously fulfilled.

Solution 1.3.6 It holds:

.�a/C .�b/ D �.aC b/ :

We recognize in Fig. A.6:

xC j˛j .�a/ D y ;

x D Ǫ .�b/ ;

y D ˛ Œ�.aC b/� :

The first intercept theorem yields:

jyj
j � .aC b/j D

j˛jj � aj
j � aj D j˛j H) ˛ D j˛j :

The second intercept theorem leads to:

jxj
j � bj D

j˛jj � aj
j � aj D j˛j H) Ǫ D j˛j :
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Thus it holds

Ǫ D ˛ D j˛j

and therewith

x D �j˛j b I y D �j˛j .aC b/ ;

so that finally the assertion is proven:

�j˛j .aC b/ D �j˛j b � j˛j a

Solution 1.3.7 Apply the expansion rule for the double vector product:

a � .b � c/ D b.a � c/� c.a � b/ :

For a D c holds:

a � .b � a/ D a2b� .a � b/ a

H) b D a � b
a2

aC 1

a2
Œa � .b � a/� D bk C b? :

Solution 1.3.8

.a � b/ � Œ.aC b/ � c� D .a � b/.a � cC b � c/ D
D a � .a � c/C a � .b � c/� b � .a � c/� b � .b � c/ D
D 2a � .b � c/ :

Solution 1.3.9

.a � b/ D
ˇ̌
ˇ̌
ˇ̌

ex ey ez

�1 2 �3
3 �1 5

ˇ̌
ˇ̌
ˇ̌ D .7;�4;�5/ ;

.b � c/ D
ˇ̌
ˇ̌
ˇ̌

ex ey ez

3 �1 5
�1 0 2

ˇ̌
ˇ̌
ˇ̌ D .�2;�11;�1/ :

Therewith one easily finds:

a � .b � c/ D .�1; 2;�3/ � .�2;�11;�1/ D �17 ;
.a � b/ � c D .7;�4;�5/ � .�1; 0; 2/ D �17
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Note the cyclic invariance of the scalar triple product!

j.a � b/ � cj D
������

ex ey ez

7 �4 �5
�1 0 2

������
D j.�8;�9;�4/j D p161 ;

ja � .b � c/j D
������

ex ey ez

�1 2 �3
�2 �11 �1

������
D j.�35; 5; 15/j D 5 � p59

Note that the vector product is not associative!

.a � b/ � .b � c/ D
ˇ̌
ˇ̌
ˇ̌

ex ey ez

7 �4 �5
�2 �11 �1

ˇ̌
ˇ̌
ˇ̌ D .�51; 17;�85/ ;

.a � b/.b � c/ D 7.7;�4;�5/ :

Solution 1.3.10 In Exercise 1.3.3 we showed

.a � b/ � .c � d/ D .a � c/.d � b/� .b � c/.a � d/ :

Therewith one finds:

.a � b/ � .c � d/C .b � c/ � .a � d/C .c � a/ � .b � d/ D
D .a � c/.d � b/ � .b � c/.a � d/C .b � a/.c � d/ � .c � a/.b � d/C
C .c � b/.a � d/� .a � b/.c � d/ D 0 :

Solution 1.3.11 Decomposition of y relative to a:

y D yk C y?

yk "" a and distributivity of the vector product

H) a � y D a � y?
ŠD b

y? can be determined

• Magnitude

ja � y?j D ay? sin
�

2
D ay?

ŠD b

H) y? D b

a



370 A Solutions of the Exercises

• Direction

a � y? D b ) a; y?;b W right-handed system

) b; a; y? W also right-handed system

) y? "" b � a

Therewith it follows:

y? D b

a

b � a
jb � aj

b?aD 1

a2
.b � a/

However yk completely undeterminedH) no unique solution y D yk C y?!

Solution 1.3.12 The proof succeeds by direct exploitation of the expansion rule for
the double vector product:

a � .b � c/C b � .c � a/C c � .a � b/ D
D b.a � c/� c.a � b/C c.b � a/� a.b � c/C a.c � b/ � b.c � a/ D 0 :

Solution 1.3.13

1. Take V D a1 � .a2 � a3/.

(a)

b1 ? a2; a3

H) b1 � ai D 0 für i D 2; 3

H) a1 � b1 D 1

V
a1 � .a2 � a3/ D 1 :

(b)

b2 ? a1; a3

H) b2 � ai D 0 für i D 1; 3

H) a2 � b2 D 1

V
a2 � .a3 � a1/ D 1 :

(c)

b3 ? a1; a2

H) b3 � ai D 0 für i D 1; 2

H) a3 � b3 D 1

V
a3 � .a1 � a2/ D 1 :
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2.

b2 � b3 D 1

V2
.a3 � a1/ � .a1 � a2/ D

D 1

V2
fa1Œ.a3 � a1/ � a2� � a2Œ.a3 � a1/ � a1�g D 1

V
a1

H) b1 � .b2 � b3/ D 1

V
b1 � a1 D 1

V
D Œa1 � .a2 � a3/��1 :

3. According to 2. holds:

b1 � .b2 � b3/ D 1

V
:

That means:

.b2 � b3/ D 1

V
a1 H) a1 D V.b2 � b3/ :

Therewith:

a1 D b2 � b3
b1 � .b2 � b3/

:

Analogously we calculate the other ai!
4.

Ne1 D e2 � e3
e1 � .e2 � e3/

D e2 � e3 D e1 :

In the same manner we obtain:

Ne2 D e2 I Ne3 D e3 :

Solution 1.3.14 Test the axioms:

1. a � b D 4a1b1 � 2a1b2 � 2a2b1 C 3a2b2.

commutativity: a � b D b � a obviously fulfilled!
distributivity: .aC c/ � b D a � bC c � b

can be verified by insertion!
bilinearity: ˛ 2 R: from the definition follows immediately:

.˛a/ � b D a � .˛b/ D ˛.a � b/ :
magnitude: a � a D 4a21 � 4a1a2 C 3a22 D .2a1 � a2/2 C 2a22 � 0

a � a D 0 only for a D .0; 0/ :

Hence, it is indeed a scalar product!



372 A Solutions of the Exercises

2. a � b D a1b1 C a2b2 C a2b1 C 2a1b2.
It cannot be a scalar product because of a � b� b � a ¤ 0.

Solution 1.3.15

1. The axioms of the vector space are easily verifiable. They are all fulfilled.
2.a The vectors are linearly independent because from

0 D ˛1p1 C ˛2p2 C ˛3p3
follows:

˛1 C 7˛2 C 8˛3 D 0 ;
�˛2 D 0 ;
11˛3 D 0 :

But that leads to:

˛1 D ˛2 D ˛3 D 0 :

2.b The vectors are linearly dependent since from

0 D ˛1p1 C ˛2p2 C ˛3p3
follows:

�18˛1 C 6˛2 D 0 ;
3˛2 � ˛3 D 0 ;
15˛1 � 5˛2 D 0 :

This means:

˛2 D 3˛1 ; ˛3 D 3˛2 :

Thus the above condition can be fulfilled by

˛1 D 1 ; ˛2 D 3 ; ˛3 D 9

The ˛i are then not necessarily all of them equal to zero.
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Section 1.4

Solution 1.4.1

1. We obtain the new basis by rotating the old system of coordinates (Fig. A.7).
The representation becomes especially simple for a rotation by the angle 45ı.

e1 D 1p
2

�
e0
1 � e0

2

�
;

e2 D 1p
2

�
e0
1 C e0

2

�
:

The factor 1p
2

takes care for the correct normalization:

e1 � e2 D 0 I e1 � e1 D e2 � e2 D 1 :

Parameter representation of the space curve with !t in the x; y-system:

r.t/ D a1 cos!t e1 C a2 sin!t e2 :

2.

r.t/ D
�

x.t/
y.t/

	
D
�

a1 cos!t
a2 sin!t

	
:

That leads to the midpoint equation of an ellipse:

x2.t/

a21
C y2.t/

a22
D 1

Fig. A.7
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Fig. A.8

3.a

e1 � r.t/ D jr.t/j cos'.t/ D a1 cos!t

H) '.t/ D arccos

0
B@ a1 cos!tq

a21 cos2 !tC a22 sin2 !t

1
CA :

Geometric interpretation (Fig. A.8):

tan'.t/ D a2
a1

tan!t :

Because of

tan2 ' D 1

cos2 '
� 1

this is obviously equivalent to the above result.
3.b Analogously one finds:

 .t/ D arccos

0
B@ a2 sin!tq

a21 cos2 !t C a22 sin2 !t

1
CA D �

2
� '.t/ :

4.

jr.t/j D
q

a21 cos2 !tC a22 sin2 !t ;

v.t/ D Pr.t/ D �a1! sin!t e1 C a2! cos!t e2

H) jv.t/j D !

q
a21 sin2 !t C a22 cos2 !t ;

a.t/ D Rr.t/ D �!2r.t/
H) ja.t/j D !2jr.t/j :

5. Notice that in general:

Pr.t/ D d

dt
jr.t/j ¤ jPr.t/j
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This one sees as follows:

d

dt
jr.t/j D d

dt

p
r.t/ � r.t/ D r.t/ � Pr.t/

jr.t/j D jPr.t/j cosŒ^.r; Pr/� :

In our case we have:

d

dt
jr.t/j D !

�
a22 � a21

�
sin!t cos!tq

a21 cos2 !t C a22 sin2 !t
:

6.

cos˛.t/ D r.t/ � Pr.t/
jr.t/j � jPr.t/j

e/D Pr.t/
jPr.t/j ;

˛.t/ D arccos

2
64

�
a22 � a21

�
sin!t cos!tq�

a21 � a22
�2

sin2 !t cos2 !t C a21a
2
2

3
75 ;

�.t/ D � ; since a.t/ � �r.t/ ;

ˇ.t/ D � � ˛.t/ :

(Fig. A.9)

Solution 1.4.2

1. The x1-component consists of two contributions, a contribution because of the
rolling off of the wheel, R', and another one due to the rotation of the wheel,
R sin '.

That means:

x1.'/ D R' C R sin' :

Fig. A.9
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Fig. A.10

For the other component one can read off from Fig. A.10

x2.'/ D 2R� .R � R cos'/ D RC R cos'

The full parameter representation for the cycloid that we are looking for is then
given by:

r.'/ D R.' C sin '; 1C cos'; 0/ :

2.

x1.t/ D v � tC l sin'.t/ ;

x2.t/ D l cos'.t/ :

This means:

r.t/ D Œv tC l sin '.t/; l cos'.t/; 0� :

Solution 1.4.3

1.

jr.t/j D
r

e�2 sin t C 1

cot2 t
C ln2.1C t2/

H) jr.t D 0/j D 1 :

2.

Pr.t/ D
�
� cos t e� sin t;

1

cos2 t
;

2t

1C t2

	

H) Pr.t D 0/ D .�1; 1; 0/ :
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3.

jPr.t/j D
s

cos2 t e�2 sin t C 1

cos4 t
C 4t2

.1C t2/2

H) jPr.t D 0/j D p2 :

4.

Rr.t/ D
�
.cos2 tC sin t/e� sin t;

2 sin t

cos3 t
;
2.1� t2/

.1C t2/2

	

H) Rr.t D 0/ D .1; 0; 2/ :

5.

jRr.t/j D
"
.cos2 tC sin t/2 e�2 sin t C 4 sin2 t

cos6 t
C 4 .1 � t2/2

.1C t2/4

#1=2

H) jRr.t D 0/j D p5 :

Solution 1.4.4

1.

d

dt
Œa.t/ � b.t/� D d

dt

X
i; j

ai.t/bj.t/.ei � ej/ D

D
X

i

�Pai.t/bi.t/C ai.t/Pbi.t/
� D

D Pa.t/ � b.t/C a.t/ � Pb.t/ :

2. We calculate the k-th component:

d

dt
Œa.t/ � b.t/�k D

d

dt

X
i; j

"ijkai.t/bj.t/ D

D
X

i; j

"ijk
�Pai.t/bj.t/C ai.t/Pbj.t/

� D

D
h
Pa.t/ � b.t/

i
k
C
h
a.t/ � Pb.t/

i
k
:

This holds for k D 1; 2; 3.
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3. The definition of the scalar product yields at first:

a.t/ � Pa.t/ D
X
i; j

ai.t/Paj.t/.ei � ej/ D
X

i

ai.t/Pai.t/ :

Otherwise it holds:

ja.t/j � d

dt
ja.t/j D

sX
i

a2i .t/

P
j

aj.t/Paj.t/

rP
j

a2j .t/
D

D
X

j

aj.t/Paj.t/ :

Hence the two expression are equal!

Solution 1.4.5

1. We need at first:

dr
dt
D 1

t0

�
3 cos

t

t0
; 4;�3 sin

t

t0

	
H)

ˇ̌
ˇ̌dr

dt

ˇ̌
ˇ̌ D 5

t0
:

Therewith the arc length is calculated with s.t D 0/ D 0 to:

s.t/ D
tZ

0

ˇ̌
ˇ̌dr.t0/

dt0

ˇ̌
ˇ̌ dt0 D 5 t

t0
:

2. With

t.s/ D t0
5

s

we find the natural parametrization:

r.s/ D
�
3 sin

s

5
;
4

5
s; 3 cos

s

5

	
:

Hence it follows for the tangent-unit vector:

Ot.s/ D dr.s/

ds
D 1

5

�
3 cos

s

5
; 4;�3 sin

s

5

�
:
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3.

dOt.s/
ds
D 3

25

�
� sin

s

5
; 0;� cos

s

5

�
;

curvature: � D
ˇ̌
ˇ dOt

ds

ˇ̌
ˇ D 3

25
, radius of curvature: � D ��1 D 25

3
.

4. The normal-unit vector is determined with the preceding results:

On D � dOt
ds
D
�
� sin

s

5
; 0;� cos

s

5

�
:

5. For the complete derivation of the moving trihedron we still need the binormal-
unit vector:

Ob D Ot � On D 1

5

ˇ̌
ˇ̌
ˇ̌

e1 e2 e3
3 cos s

5
4 �3 sin s

5

� sin s
5
0 � cos s

5

ˇ̌
ˇ̌
ˇ̌ D

D 1

5

�
�4 cos

s

5
; 3; 4 sin

s

5

�
:

The point at time t D 5� t0 means s D 25�:

Ot.25�/ D 1

5
.�3; 4; 0/ ; On.25�/ D .0; 0; 1/ ; Ob.25�/ D 1

5
.4; 3; 0/ :

6. For the torsion of the space curve we first calculate:

d Ob
ds
D 1

25

�
4 sin

s

5
; 0; 4 cos

s

5

�
ŠD �	 On :

The comparison with 4. yields:

	 D 4

25
:

Solution 1.4.6 Acceleration and velocity of the particle motion:

Pr.t/ D v.t/ D v.t/ � Ot .Ot; On; Ob/ moving trihedron

v.t/ D jPr.t/j D s.
t.

s W arc length
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According to (1.245) it holds:

Rr.t/ D a.t/ D at � OtC an � On
at D Pv tangential acceleration

an D v2

�
D �v2 centripetal acceleration

Therewith it follows:

v � a D v Pv Ot � Ot„ƒ‚…
D 0

C�v3 Ot � On„ƒ‚…
D Ob

H) v � a D �v3 Ob
H) jv � aj D �v3

H) � D 1

v3
jv � aj

Solution 1.4.7 For a rearranging we use Frenet’s formulae (1.231):

dr
ds
�
�

d2r
ds2
� d3r

ds3

	
D Ot �

 
dOt
ds
� d2Ot

ds2

!
D

D �2Ot �
�

n � d On
ds

	
D �2Ot �

�
n � .	 Ob� � Ot/

�
D

D �2	 Ot � .n � Ob/ D �2	 :

Solution 1.4.8

1.

Pr.t/ D .1; 2t; 2t2/ H) jPrj D .1C 2t2/ :

With s.t D 0/ D 0 one obtains:

s.t/ D
tZ

0

.1C 2 t02/ dt0 D tC 2

3
t3 :

2. Actually Ot is defined as a function of the arc length s. However, Ot is here sought
for as function of the time t:

Ot D dr.t/
dt

dt

ds
D Pr.t/
jPr.t/j H) Ot D

1

1C 2t2
.1; 2t; 2t2/ :
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3.

� D
ˇ̌
ˇ̌
ˇ
dOt
ds

ˇ̌
ˇ̌
ˇ D

ˇ̌
ˇ̌
ˇ
dOt
dt

dt

ds

ˇ̌
ˇ̌
ˇ D

ˇ̌
ˇ̌
ˇ
dOt
dt

ˇ̌
ˇ̌
ˇ
1

jPr.t/j D
2

.1C 2t2/2
:

4.

On D 1

�

dOt
ds
D 1

�

1

jPr.t/j
dOt
dt
D 1

1C 2t2
.�2t; 1 � 2t2; 2t/ ;

Ob D Ot � On D 1

1C 2t2
.2t2;�2t; 1/ :

5.

d Ob
ds
D d Ob

dt

dt

ds
D 2

.1C 2t2/3
.2t; 2t2 � 1;�2t/

ŠD �	 On :

From this it follows that:

	 D 2

.1C 2t2/2
:

Solution 1.4.9

1. According to Exercise 1.4.2 it is about the parameter representation of the cycloid
with the tangent-unit vector:

Ot D dr
d'
� d'

ds

It holds:

dr
d'
D R .1C cos';� sin'; 0/

Therewith:
ˇ̌
ˇ̌ dr
d'

ˇ̌
ˇ̌ D R

q
.1C cos'/2 C sin2 '

D R
q
1C 2 cos' C cos2 ' C sin2 '

D R
p
2.1C cos'/

ŠD ds

d'

H) Ot D 1

R
p
2.1C cos'/

� dr
d'
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D 1p
2.1C cos'/

.1C cos'„ ƒ‚ …
2 cos2 '2

; � sin'„ƒ‚…
�2 sin '

2 cos '2

; 0/

D
�

cos
'

2
;� sin

'

2
; 0
�

curvature:

dOt
ds
D dOt

d'
� d'

ds
D 1

R
p
2.1C cos'/

� 1
2

�
� sin

'

2
;� cos

'

2
; 0
�

D �1
4R cos '

2

�
sin

'

2
; cos

'

2
; 0
�

H) � D
ˇ̌
ˇ̌
ˇ
dOt
ds

ˇ̌
ˇ̌
ˇ D

1

4R cos '
2

normal-unit vector:

On D 1

�

dOt
ds
D �

�
sin

'

2
; cos

'

2
; 0
�

binormal-unit vector:

Ob D Ot � On
D e1.0 � 0/C e2.0 � 0/C e3

�
� cos2

'

2
� sin2

'

2

�

D �e3 D .0; 0;�1/

That means:

d Ob
ds
D 0 ŠD �	 On H) 	 D 0

moving trihedron:

Ot D
�

cos
'

2
;� sin

'

2
; 0
�

On D
�
� sin

'

2
;� cos

'

2
; 0
�

Ob D .0; 0;�1/
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2.

r.'/ D .'; f .'/; 0/

arc length:

dr
d'
D �1; f 0.'/; 0

� H)
ˇ̌
ˇ̌ dr
d'

ˇ̌
ˇ̌ D

p
1C f 02.'/

s.'/ D
'Z

'0

d' 0p1C f 02.' 0/ H) ' D '.s/

H) ds

d'
D
p
1C f 02.'/

tangent-unit vector:

Ot D @r
@'
� d'

ds
D 1p

1C f 02.'/
�
1; f 0.'/; 0

�

H) @Ot
@'
D �f 0 � f 00

.1C f 02/ 32
.1; f 0; 0/C 1

.1C f 02/ 12
.0; f 00; 0/

D 1

.1C f 02/ 32
.�f 0f 00; f 00; 0/

H) @Ot
@s
D @Ot
@'
� @'
@s
D f 00

.1C f 02/2
.�f 0; 1; 0/

curvature:

� D
ˇ̌
ˇ̌ d

ds
Ot.s/

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
ˇ

f 00.'/
.1C f 02/ 32

ˇ̌
ˇ̌
ˇ

alternatively:

' D '.s/

Ot D @r
@s
D
�

d'

ds
;

df

ds
; 0

	

H) dOt
ds
D
�

d2'

ds2
;

d2f

ds2
; 0

	

H) � D
s�

d2'

ds2

	2
C
�

d2f

ds2

	2
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Example: ‘circle’

x D '

y D
(
CpR2 � '2 upper half-plane

�pR2 � '2 lower half-plane

H) f .'/ D ˙
p

R2 � '2

f 0.'/ D ˙ �'p
R2 � '2 D

�'
f .'/

f 00.'/ D �1
f
C 'f 0

f 2
D �1

f
.1C f 02/

H) f 00

.1C f 02/ 32
D �1

f .1C f 02/ 12
D �1

f
�
1C '2

f 2

� 1
2

D �1
. f 2 C '2/ 12

D � 1
R

H) � D
ˇ̌
ˇ̌
ˇ

f 00

.1C f 02/ 32

ˇ̌
ˇ̌
ˇ D

1

R

Section 1.5

Solution 1.5.1

1.a

a.r/ D 1

r
.! � r/ D !0

r
.�x2; x1; 0/ :

In the x3 D 0-plane it holds r D
q

x21 C x22 . This means:

ja.r/jx3 D 0 D !0 :

The field lines represent arrows of constant length !0 being perpendicular to r
and perpendicular to e3. Thus they are located tangentially to a circle around
the origin of coordinates with radius !0 (Fig. A.11).

1.b

a.r/ D ˛r I ˛ < 0:
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Fig. A.11

Fig. A.12

The contour lines

ja.r/j D j˛jr

are equally spaced concentric circles. The field is characterized by arrows of the
length j˛jr, which because of ˛ < 0 are pointing radially towards the origin of
coordinates (Fig. A.12).

1.c

a.r/ D ˛.x1 C x2/ e1 C ˛.x2 � x1/ e2I ˛ > 0:

The contour lines

ja.r/jx3 D 0 D ˛
p
.x1 C x2/2 C .x2 � x1/2 D

p
2 ˛r

are same as in part 1.b concentric circles with from line to line constant radius
change. The arrow lengths are radially increasing according to

p
2 ˛r. Their

directions are exhibited in Fig. A.13.
1.d

a.r/ D ˛

x22 C x23 C ˇ2
e1 I ˛; ˇ > 0 :
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Fig. A.13

Fig. A.14

The contour lines follow from

ja.r/jx3D0 D
˛

x22 C ˇ2
:

The field-line arrows are parallel to the x1-axis. Their lengths decrease with
increasing x2 values (Fig. A.14).

2.a

a.r/ D !0

r
.�x2; x1; 0/:

With

@

@xi

1

r
D � xi

r3

follows:

@

@x1
a D !0

r3
�
x1x2; r

2 � x21; 0
�
;

@

@x2
a D !0

r3
�
x22 � r2;�x1x2; 0

�
;
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@

@x3
a D !0

r3
.x2x3;�x1x3; 0/ :

2.b

a.r/ D ˛.x1; x2; x3/ ;
@

@xi
a.r/ D ˛ei I i D 1; 2; 3 :

2.c

a.r/ D ˛.x1 C x2; x2 � x1; 0/ ;

@

@x1
a.r/ D ˛.1;�1; 0/ ;

@

@x2
a.r/ D ˛.1; 1; 0/ ;

@

@x3
a.r/ D ˛.0; 0; 0/ :

2.d

a.r/ D ˛

x22 C x23 C ˇ2
e1 ;

@

@x1
a D 0 ;

@

@x2
a D �2˛x2�

x22 C x23 C ˇ2
�2 .1; 0; 0/ ;

@

@x3
a D �2˛x3�

x22 C x23 C ˇ2
�2 .1; 0; 0/ :

3.a

r � a D
3X

j D 1

@aj

@xj
D !0

r3
.x1x2 � x2x1/ D 0 ;

r � a D
�
@a3
@x2
� @a2
@x3

;
@a1
@x3
� @a3
@x1

;
@a2
@x1
� @a1
@x2

	
D

D !0

r3
�
x1x3; x2x3; r

2 C x23
�
:
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3.b

r � a D 3˛ ;

r � a D 0 ; since
@ai

@xj
D 0 for i ¤ j :

3.c

r � a D 2˛ ;
r � a D ˛.0 � 0; 0 � 0;�1 � 1/ D �2˛.0; 0; 1/ :

3.d

r � a D 0 ;

r � a D � 2˛�
x22 C x23 C ˇ2

�2 .0; x3;�x2/ :

Solution 1.5.2

1.

d

dr

e�˛r

r
D
�
� 1

r2
� ˛

r

	
e�˛r ;

@r

@xi
D xi

r
:

The partial derivatives of the potential ' thus read:

@

@xi
'.r/ D � q

4�"0
xi.1C ˛r/

e�˛r

r3
:

That yields for the gradient field:

r'.r/ D � q

4�"0
� 1C ˛r

r2
e�˛rer :

2.

@2'

@x2i
D � q

4�"0
e�˛r


1C ˛r

r3
C xi˛

xi

r

1

r3
C xi.1C ˛r/

�
� 3

r4
xi

r
� ˛

r3
xi

r

	�
D

D � q

4�"0
� e�˛r

r5
�
r2 C ˛r3 C ˛x2i r � x2i .1C ˛r/.3C ˛r/

�
:
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With
P

i
x2i D r2 eventually follows:

�' D ˛2 q

4�"0
� e�˛r

r
D ˛2'.r/ :

Solution 1.5.3

1. We define the scalar field

'.x1; x2; x3/ D x21
a2
C x22

a2
C x23

b2

knowing then that the gradient field r'.r/ has a direction perpendicularly to
the plane ' D const. The sought-after surface-normal vector n follows from
that as:

n D r'jr'j :

One finds very easily:

r' D 2
� x1

a2
;

x2
a2
;

x3
b2

�
:

This yields for n:

n D
� x1

a2
; x2

a2
; x3

b2

�
q

1
a4

�
x21 C x22

�C 1
b4

x23

:

Thereby x1; x2; x3 are to be chosen so that the following relation is fulfilled:

x21
a2
C x22

a2
C x23

b2
D 1

2.a n D 1p
2
.1; 1; 0/ ;

2.b n D 1r
2C a2

b2

�
1; 1; a

b

�
;

2.c n D 1r
3C a2

b2

�
�1;p2;� a

b

�
;

2.d n D .0; 0; 1/ ;
2.e n D .0;�1; 0/ :
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Solution 1.5.4

1.

@

@xi
'1.r/ D �˛i sin.˛ � r/ I i D 1; 2; 3

H) r'1.r/ D �˛ sin.˛ � r/ ;
@2

@x2i
'1.r/ D �˛2i cos.˛ � r/

H) �'1.r/ D �j˛j2'1.r/ :

The calculation for '2.r/ runs analogously:

@

@xi
'2.r/ D �2� r

xi

r
e�� r2 I i D 1; 2; 3 ;

@2

@x2i
'2.r/ D e�� r2

��2� C �2x2i
�

H) r'2.r/ D �2� e��r2r :

�'2.r/ D 2�.2�r2 � 3/e��r2 :

2.

@

@xi

�xi

r

�
D 1

r
� x2i

r3
H) rer D 2

r
:

3. We seek the conditions for

r � a.r/ ŠD 0 :

Because of

@ai

@xi
D @

@xi
f .r/xi D f .r/C df .r/

dr

x2i
r

it holds

r � a.r/ D 3f .r/C r
df .r/

dr
;

so that the condition for a source-free field reads:

df

dr
D �3

r
f .r/
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Hence, if f .r/ is of the form

f .r/ D ˛

r3
.˛ arbitrary/

then the divergence of the field a.r/ vanishes.
4. For the k-th component of the vector field it holds:

.r'1 � r'2/k D
X

i; j

"ijk
@'1

@xi

@'2

@xj
:

Therewith it follows:

@

@xk
ak.r/ D

X
i; j

"ijk

�
@2'1

@xk@xi

@'2

@xj
C @'1

@xi

@2'2

@xk@xj

	
:

This helps to calculate the divergence:

r � a.r/ D
X
i; j; k

"ijk

�
@2'1

@xk@xi

@'2

@xj
C @'1

@xi

@2'2

@xk@xj

	
D

D 1

2

X
i; j; k

@'2

@xj

�
"ijk

@2'1

@xk@xi
C "kji

@2'1

@xi@xk

	
C

C1
2

X
i; j; k

@'1

@xi

�
"ijk

@2'2

@xk@xj
C "ikj

@2'2

@xj@xk

	
:

In the brackets of the second summand we have simply interchanged the
summation indexes i and k as well as j and k. '1 and '2 are two times
continuously differentiable so that the sequence of the partial differentiations is
arbitrary:

r � a.r/ D 1

2

X
i; j; k

@'2

@xj

@2'1
@xk@xi

�
"ijk C "kji

�
„ ƒ‚ …

0

C

C1
2

X
i; j; k

@'1

@xi

@2'2

@xk@xj

�
"ijk C "ikj

�
„ ƒ‚ …

0

D 0 :

5.

r � .'a/ D
3X

j D 1

@

@xj
.' aj/ D

3X
j D 1

'
@aj

@xj
C

3X
j D 1

aj
@'

@xj
D 'r � aC a � r' :



392 A Solutions of the Exercises

Solution 1.5.5

r � a.r/ D e1

�
@

@x2
a3 � @

@x3
a2

	
C e2

�
@

@x3
a1 � @

@x1
a3

	
C e3

�
@

@x1
a2 � @

@x2
a1

	

It is to inspect:

a.r/ D ��x1x2 � x33; .� � 2/x21; .1 � �/x1x23
�

@

@x2
a1 D �x1 I @

@x3
a1 D �3x23

@

@x1
a2 D 2.� � 2/x1 I @

@x3
a2 D 0

@

@x1
a3 D .1 � �/x23 I

@

@x2
a3 D 0

H) r � a.r/ D �0 � 0;�3x23 � .1 � �/x23; 2.� � 2/x1 � �x1
�

D �0;�.4 � �/x23; .� � 4/x1
�

‘curl-free’ (r � a D 0) if � D 4!

r � a.r/ D
3X

jD1

@

@xj
aj

D �x2 C 0C 2.1� �/x1x3
‹D 0

” 0 D 2x1x3 � �.2x1x3 � x2/

” � D 2x1x3
2x1x3 � x2

¤ const

H) r � a.r/ D 0 can not be realized with � D const!



A Solutions of the Exercises 393

Solution 1.5.6

1.

b.r/ D �x2x3 C 12x1x2; x1x3 � 8x2x
3
3 C 6x21; x1x2 � 12x22x

2
3

�

.r � b/1 D @

@x2
b3 � @

@x3
b2

D x1 � 24x2x
2
3 � x1 C 24x2x

2
3 D 0

.r � b/2 D @

@x3
b1 � @

@x1
b3

D x2 � x2 D 0

.r � b/3 D @

@x1
b2 � @

@x2
b1

D x3 � x3 D 0

H) r � b D 0 ” ’curl-free’ :

2.

r'.r/ D b.r/

(a)

@'

@x1

ŠD b1 D x2x3 C 12x1x2

H) '.r/ D x1x2x3 C 6x21x2 C f .x2; x3/

(b)

@'

@x2

ŠD b2 D x1x3 � 8x2x
2
3 C 6x21

ŠD x1x3 C 6x21 C
@f

@x2

H) @f

@x2
D �8x2x

2
3 H) f .x2; x3/ D g.x3/� 4x22x

2
3

H) '.r/ D x1x2x3 � 4x22x
2
3 C 6x21x2 C g.x3/
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(c)

@'

@x3

ŠD b3 D x1x2 � 12x22x
2
3

ŠD x1x2 � 8x22x3 C
@g

@x3

H) @g

@x3
D 8x22x3 � 12x22x

2
3 H) g.x3/ D 4x22x

2
3 � 4x22x

3
3 C c

H) '.r/ D x1x2x3 � 4x22x
2
3 C 6x21x2 C 4x22x

2
3 � 4x22x

3
3 C c

D x1x2x3 C 6x21x2 � 4x22x
3
3 C c .c D const/:

Test:

@'

@x1
D x2x3 C 12x1x2 D b1

@'

@x2
D x1x3 C 6x21 � 8x2x

3
3 D b2

@'

@x3
D x1x2 � 12x22x

2
3 D b3 q.e.d.

Solution 1.5.7

1. The proof is carried out by directly exploiting the definition:

r � Œf .r/r� D
�
@

@x2
fx3 � @

@x3
fx2;

@

@x3
fx1 � @

@x1
fx3;

@

@x1
fx2 � @

@x2
fx1

	
D

D df

dr

�x2
r

x3 � x3
r

x2;
x3
r

x1 � x1
r

x3;
x1
r

x2 � x2
r

x1
�
D 0 :

2.

r � .'a/ D e1

�
@

@x2
'a3 � @

@x3
'a2

	
C e2

�
@

@x3
'a1 � @

@x1
'a3

	
C

Ce3

�
@

@x1
'a2 � @

@x2
'a1

	
D

D '


e1

�
@a3
@x2
� @a2
@x3

	
C e2

�
@a1
@x3
� @a3
@x1

	
C

Ce3

�
@a2
@x1
� @a1
@x2

	�
C e1

�
a3
@'

@x2
� a2

@'

@x3

	
C

Ce2

�
a1
@'

@x3
� a3

@'

@x1

	
C e3

�
a2
@'

@x1
� a1

@'

@x2

	
D

D 'r � aC .r'/ � a :
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3. We verify the relation representatively for the 1-component:

.r � .r � a//1 D @

@x2
.r � a/3 � @

@x3
.r � a/2 D

D @

@x2

�
@a2
@x1
� @a1
@x2

	
� @

@x3

�
@a1
@x3
� @a3
@x1

	
D

D ��a1 C @2

@x21
a1 C @2a2

@x2@x1
C @2a3
@x3@x1

D

D ��a1 C @

@x1
r � a :

With the respective analogous calculation for the other components the assertion
is proven.

4.
�
r �

�
1

2
˛ � r

		

1

D 1

2


@

@x2
.˛ � r/3 � @

@x3
.˛ � r/2

�
D

D 1

2

@

@x2

X
i; j

"ij3˛ixj � 1
2

@

@x3

X
i; j

"ij2˛ixj D

D 1

2

X
i

."i23 � "i32/ ˛i D ˛1 :

Analogously the two other components are found. It follows:

r �
�
1

2
˛ � r

	
D ˛ :

Solution 1.5.8

1. a.r/;b.r/ are vector fields with r D .x1; x2; x3/
Vector product:

a � b D
X
ijk

"ijkaibjek ; where fekg complete and orthonormal

@

@xm
.a � b/ D

X
ijk

"ijk
@

@xm
.aibj/ek

D
X
ijk

"ijk

�
@ai

@xm
bj C ai

@bj

@xm

	
ek

D
�
@

@xm
a
	
� bC a �

�
@

@xm
b
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2. '1;2.r/: scalar fields

r.'1 � '2/ D
3X

j D 1

ej
@

@xj
.'1 � '2/

„ ƒ‚ …
@'1
@xj
'2 C '1

@'2
@xj

D '2
3X

j D 1

ej
@'1

@xj
C '1

3X
j D 1

ej
@'2

@xj

D '2r'1 C '1r'2
3. According to (1.195) it holds:

a � b D
X
ijk

"ijkaibjek

r � a D
X
ijk

"ijk

�
@

@xi
aj

	
ek

Therewith:

r � .a � b/ D
3X

k D 1

@

@xk
.a � b/k

D
X

k

@

@xk

X
i; j

"ijkaibj

D
X
ijk

"ijk

�
@ai

@xk
bj C ai

@bj

@xk

	

D
X

j

bj

X
i; k

"ijk„ƒ‚…
D "kij

@ai

@xk
C
X

i

ai

X
j; k

"ijk„ƒ‚…
D �"kji

@bj

@xk

D
X

j

bj.r � a/j �
X

i

ai.r � b/i

D b � r � a � a � r � b

4.

d.r/ D r'1 � r'2
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With part 3.:

r � d.r/ D r'2 � .r � .r'1//„ ƒ‚ …
D 0 (see (1.290))

�r'1 � .r � .r'2//„ ƒ‚ …
D 0

D 0

Section 1.6

Solution 1.6.1

A � B D
0
@
1 1 2

3 0 4

0 0 5

1
A I B � A D

0
@
0 1 2

3 1 6

0 0 5

1
A :

Solution 1.6.2

1.

.A � B/T D BTAT

That appears at least reasonably because AT �BT would not be defined for m ¤ r;
BT � AT , however, is defined.

C D A � B D �cij
�

cij D
nX

k D 1

aikbkj

CT D �cT
ij

� D �cji
�

cji D
nX

k D 1

ajkbki D
nX

k D 1

bT
ikaT

kj D
�
BT � AT

�
ij

H) .A � B/T D BTAT

2. For m D n A is a square matrix.
Obviously it holds ET D E

E D �A�1A
�T 1:D AT � �A�1�T

D AT � �AT
��1

H) �
A�1�T D �AT

��1
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3. m D n D r
Determine the matrix C so that

C � .A � B/ D E

H) C � .A � B/ � B�1 D C � A D E � B�1 D B�1

H) C � .A � B/ � B�1 � A�1 D C � A � A�1 D C

D B�1 � A�1

H) C D B�1A�1 D .A � B/�1

Solution 1.6.3

1. Sarrus-rule:

det A D 0 � 15C 4C 0C 8 � 6 D �9 :

2. det A D 0, since the fourth row can be written as sum of the first and the second
row.

3. An expansion with respect to the third column suggests itself:

det A D �8 det

0
@
4 3 1

0 1 7

3 �4 6

1
A

D �8.24C 63� 3C 112/ D �1568 :

Solution 1.6.4

1. Complete induction:

n D 1 W det A D ja11j D a11 D det AT

n D 2 W det A D
ˇ̌
ˇ̌a11 a12
a21 a22

ˇ̌
ˇ̌ D a11a22 � a12a21

det AT D
ˇ̌
ˇ̌a11 a21
a12 a22

ˇ̌
ˇ̌ D a11a22 � a21a12

H) det A D det AT

n ! nC 1 W Assume AT to be an ..nC 1/ � .nC 1// matrix.

det AT D
nX

j D 1

aT
ij �Uij

�
AT
�

„ ƒ‚ …
determinant of an
.n � n/ matrix
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With the induction hypothesis it follows:

det AT D
nX

j D 1

aT
ijUji.A/

D
nX

j D 1

ajiUji.A/

That holds for all i:

det AT D 1

n

X
i; j

ajiUji.A/

D 1

n

X
i; j

aijUij.A/

D 1

n

X
i

det A

D det A

2. B antisymmetric .n � n/ matrix

H) BT D �bT
ij

�
with bT

ij D bji D �bij

H) BT D �B

H) det BT D .�1/n det B
1:D det B

H) with n odd:

� det B D det B H) det B D 0

Solution 1.6.5

A � AT D

0
BB@

a b c d
�b a �d c
�c d a �b
�d �c b a

1
CCA �

0
BB@

a �b �c �d
b a d �c
c �d a b
d c �b a

1
CCA

D

0
B@

�
a2 C b2 C c2 C d2

�
0

: : :

0
�
a2 C b2 C c2 C d2

�

1
CA :
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The determinant of the product matrix is by direct reading:

det.A � AT/ D .a2 C b2 C c2 C d2/4 :

On the other hand it also holds:

det.A � AT/ D det A � det AT D .det A/2 :

Therewith it follows:

det A D �a2 C b2 C c2 C d2
�2
:

Solution 1.6.6

1. The matrix of coefficients A ,

A �
0
@
2 1 5

1 5 2

5 2 1

1
A ;

has a non-vanishing determinant:

det A D �104 :

The system of equations is therefore uniquely solvable:

det A1 D
ˇ̌
ˇ̌
ˇ̌
�21 1 5
19 5 2

2 2 1

ˇ̌
ˇ̌
ˇ̌ D 104 ;

det A2 D
ˇ̌
ˇ̌
ˇ̌
2 �21 5
1 19 2

5 2 1

ˇ̌
ˇ̌
ˇ̌ D �624 ;

det A3 D
ˇ̌
ˇ̌
ˇ̌
2 1 �21
1 5 19

5 2 2

ˇ̌
ˇ̌
ˇ̌ D 520 :

Hence, according to Cramer’s rule the system of equations has the following
solutions:

x1 D 104

�104 D �1 I x2 D �624�104 D 6 I x3 D 520

�104 D �5 :
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2. The second and the third equation are linearly dependent. It thus remains only

x1 � x2 D 4 � 3x3 ;

3x1 C x2 D �1C 4x3

with the ‘solutions’:

x1 D 1

4
.3C x3/ I x2 D 13

4
.x3 � 1/ :

3. The matrix of coefficients A ,

A D
0
@
1 1 �1
�1 3 1

0 1 1

1
A ;

of the homogeneous system of equations possesses a non-vanishing determinant:

det A D 4 :

Therefore only the trivial solution is possible:

x1 D x2 D x3 D 0 :

4. The determinant of the coefficient matrix is zero:

det A D
ˇ̌
ˇ̌
ˇ̌
2 �3 1

4 4 �1
1 � 3

2
1
2

ˇ̌
ˇ̌
ˇ̌ D 0 :

Non-trivial solutions we can get as follows:

2x1 � 3x2 D �x3 ;

4x1 C 4x2 D x3 :

det A0 D 20 I det A1 D �x3 I det A2 D 6x3

H) x1 D � 1
20

x3 I x2 D 3

10
x3 :
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Solution 1.6.7

1. A represents a rotation since

(a) rows and columns are orthonormalized,
(b) det A D 1.

It represents a rotation around the 2-axis by the angle ' D 135ı (Fig. A.15):

A D
0
@

cos' 0 � sin'
0 1 0

sin ' 0 cos'

1
A :

2.

0
@
Na1
Na2
Na3

1
A D A

0
@
0

�2
1

1
A D

0
@
� 1
2

p
2

�2
� 1
2

p
2

1
A ;

0
@
Nb1
Nb2
Nb3

1
A D A

0
@
3

5

�4

1
A D

0
@
1
2

p
2

5
7
2

p
2

1
A :

The scalar product does not change with the rotation:

a � b D Na � Nb D �14 :

Fig. A.15
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Solution 1.6.8

1.

AB D 1p
2

0
@
�1 0 �1
0
p
2 0

1 0 �1

1
A
0
@
1 0 1

0 1
2
0

�1 0 1

1
A

D 1p
2

0
@
0 0 �2
0 1
2

p
2 0

2 0 0

1
A

BA D 1p
2

0
@
1 0 1

0 1
2
0

�1 0 1

1
A
0
@
�1 0 �1
0
p
2 0

1 0 �1

1
A

D 1p
2

0
@
0 0 �2
0 1
2

p
2 0

2 0 0

1
A

H) AB D BA

2.

det A D
�
1p
2

	3 ˇ̌ˇ̌
ˇ̌
�1 0 �1
0
p
2 0

1 0 �1

ˇ̌
ˇ̌
ˇ̌

D
�
1p
2

	3 �p
2Cp2

�
D C1

det B D
ˇ̌
ˇ̌
ˇ̌
1 0 1

0 1
2
0

�1 0 1

ˇ̌
ˇ̌
ˇ̌ D

1

2
C 1

2
D C1

det.A � B/ D det A � det B D det.B � A/ D C1

3. Conditions for a rotation matrix:

(a) rows and columns orthonormal
(b) det D D C1
det A D det B D C1
A: rows and columns orthonormalH) A is rotation matrix
B: rows and columns orthogonal but not normalized H) B is not a rotation

matrix
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4. A rotation matrix

H) A�1 D AT

H) A�1 D 1p
2

0
@
�1 0 1

0
p
2 0

�1 0 �1

1
A

Solution 1.6.9

1.

a D
0
@

a1
a2
a3

1
A I Na D

0
@
Na1
Na2
Na3

1
A :

Na may be a vector which is related to a by rotation. Then it holds (1.310):

Nai D
3X

j D 1

dijaj :

dij are the elements of the rotation matrix:

X
i

Na2i D
X

i

X
j; k

dijdikajak D
X
j; k

�X
i

dijdik

�
ajak :

Since the columns of the rotation matrix are orthonormalized the bracket is just
ıjk:

X
i

Na2i D
X
j; k

ıjkajak D
X

j

a2j q. e. d.

2. †;† shall be two right-handed systems emerging from each other by a rotation:

ei D
�
ej � ek

�
;

Nei D
�Nej � Nek

� I .i; j; k/ D .1; 2; 3/ and cyclic :

It holds the mapping:

Nem D
X

l

dmlel :
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This we insert into the above scalar triple product of the unit vectors:

X
l

dilel D
X
m; n

djmdkn.em � en/ :

We multiply this equation scalarly by er:

dir D
X
m; n

"rmndjmdkn :

Evaluation for i D 1:

d1r D
X
m; n

"rmnd2md3n

H) d11 D d22d33 � d23d32 D
ˇ̌
ˇ̌d22 d23
d32 d33

ˇ̌
ˇ̌ D A11 ;

d12 D d23d31 � d21d33 D �
ˇ̌
ˇ̌d21 d23
d31 d33

ˇ̌
ˇ̌ D �A12 ;

d13 D d21d32 � d22d31 D
ˇ̌
ˇ̌d21 d22
d31 d32

ˇ̌
ˇ̌ D A13 :

That means on the whole:

d1r D .�1/1CrA1r D U1r :

Analogously one verifies:

d2r D .�1/2CrA2r D U2r ;

d3r D .�1/3CrA3r D U3r :

The proof can of course be carried out in a very much shorter way: Because
of (1.315), (1.338), and (1.344) it holds:

dij D
�
d�1�

ji
D Uij

det D
D Uij :

Solution 1.6.10 With (1.315) we can use:

D�1
1 D DT

1 I D�1
2 D DT

2

Exercise 1.6.2, part 1.:

.AB/T D BTAT I .AB/�1 D B�1A�1
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This means:

D�1 D .D1 � D2/
�1 D D�1

2 D�1
1 D DT

2DT
1

D .D1 � D2/
T D DT

Furthermore:

det D D det.D1D2/ D det D1 det D2

D .C1/ � .C1/
D 1

H) D is a rotation matrix
H) rows and columns are orthonormal.

Section 1.7

Exercise 1.7.1

1.

@.x1; x2/

@.y1; y2/
D
ˇ̌
ˇ̌
ˇ̌

�
@x1
@y1

�
y2

�
@x1
@y2

�
y1�

@x2
@y1

�
y2

�
@x2
@y2

�
y1

ˇ̌
ˇ̌
ˇ̌ :

One recognizes immediately:

@.x1; x2/

@.y1; y2/
.˛/D �@.x1; x2/

@.y2; y1/
.ˇ/D @.x2; x1/

@.y2; y1/
;

.˛/: interchange of two columns of the Jacobian determinant, .ˇ/: subsequent
interchange of two rows of the Jacobian determinant.

2. The first example concerns the identical transformation:

.x1; x2/ H) .x1; x2/ :

@.x1; x2/

@.x1; x2/
D
ˇ̌
ˇ̌ 1 0
0 1

ˇ̌
ˇ̌ D 1 :



A Solutions of the Exercises 407

The second example concerns the transformation:

x1 D x1.y1; y2/ I x2 D y2 :

@.x1; x2/

@.y1; y2/
D @.x1; y2/

@.y1; y2/
D
ˇ̌
ˇ̌
ˇ

�
@x1
@y1

�
y2

�
@x1
@y2

�
y1

0 1

ˇ̌
ˇ̌
ˇ

H) @.x1; y2/

@.y1; y2/
D
�
@x1
@y1

	

y2

:

Solution 1.7.2 With (1.366) it firstly holds:

@.x1; x2/

@.y1; y2/
D

@.y1; y2/

@.x1; x2/

��1
:

According to Exercise 1.7.1 this has the special consequence:

�
@x

@y

	

z

D @.x; z/

@.y; z/
D

@.y; z/

@.x; z/

��1
D
�
@y

@x

	

z

��1
:

For the second part of the exercise we exploit (1.365):

@.x; z/

@.y; z/
� @.y; z/
@.x; y/

� @.x; y/
@.x; z/

D 1 :

That agrees with

�
@x

@y

	

z

�
"
�
�
@z

@x

	

y

#
�
�
@y

@z

	

x

D 1 ;

and therewith directly follows the assertion!

Solution 1.7.3

1.

@.x1; x2; x3/

@.u; v; z/
D
ˇ̌
ˇ̌
ˇ̌

u �v 0
v u 0

0 0 1

ˇ̌
ˇ̌
ˇ̌ D u2 C v2 :

Thus the transformation is everywhere locally reversible except for .u D 0; v D
0; z/.
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2.

dV D dx1dx2dx3 D @.x1; x2; x3/

@.u; v; z/
du dv dz

H) dV D .u2 C v2/du dv dz :

3. Position vector:

r D
�
1

2
.u2 � v2/; uv; z

	
:

@r
@u
D .u; v; 0/ H) bu D

p
u2 C v2 ;

@r
@v
D .�v; u; 0/ H) bv D bu ;

@r
@z
D .0; 0; 1/ H) bz D 1 :

Therewith we get the following curvilinear-orthogonal unit vectors:

eu D 1p
u2 C v2 .u; v; 0/ ;

ev D 1p
u2 C v2 .�v; u; 0/ ;

ez D .0; 0; 1/ :

u-coordinate lines: x1 D 1
2v2

x22� 1
2
v2 .v D const/ (parabola about the x1 axis),

v-coordinate lines: x1 D � 1
2u2

x22 C 1
2
u2 .u D const/ (parabola about the

negative x1 axis),
z-coordinate lines: parallels to the x3 axis.
u- and v-coordinate lines intersect at right angles (Fig. A.16).

4. For the differential of the position vector equation (1.373) holds. That yields with
the above results:

dr D
p

u2 C v2 du eu C
p

u2 C v2 dv ev C dz ez :

To get the nabla-operator we apply the general relation (1.376):

r D eu
1p

u2 C v2
@

@u
C ev

1p
u2 C v2

@

@v
C ez

@

@z
:
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Fig. A.16

Fig. A.17

Solution 1.7.4 See Fig. A.17

tan' D 1 H) ' D �

4
I � D 3p2 :

Solution 1.7.5

1. Spherical coordinates:

P1 W .1; 0; 1/

r sin# cos' D 1
r sin# sin ' D 0

r cos# D 1

H) r D p2 I cos# D 1p
2
H) # D �

4

cos' D 1 H) ' D 0
H) P1 W .

p
2;
�

4
; 0/
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P2 W .0; 1;�1/

H) r D p2 I cos# D � 1p
2
H) # D 3�

4

H) ' D �

2

H) P2 W
�p

2;
3�

4
;
�

2

	

P3 W .0;�3; 0/

H) r D 3 I cos# D 0 H) # D �

2

sin# sin' D �1 H) ' D 3�

2

H) P3 W
�
3;
�

2
;
3�

2

	

2. Cylindrical coordinates:

P1 W .1; 0; 1/

� cos' D 1
� sin' D 0

z D 1 H) � D 1 I ' D 0 I z D 1
H) P1 W .1; 0; 1/

P2 W .0; 1;�1/

H) � D 1 I ' D �

2
I z D �1

H) P2 W
�
1;
�

2
;�1

�

P3 W .0;�3; 0/

H) � D 3 I z D 0 I cos' D 0

sin' D �1 H) ' D 3�

2

H) P3 W
�
3;
3�

2
; 0
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Solution 1.7.6 Cartesian coordinates: R2 D x21 C x22, planar polar coordinates: R D
�.

Solution 1.7.7

1. Vector field in cylindrical coordinates:

a D a�e� C a'e' C azez :

We have to determine a�; a'; az! The unit vectors are:

e� D cos' e1 C sin ' e2 ;

e' D � sin ' e1 C cos' e2 ;

ez D e3 :

The reversal reads:

e1 D cos' e� � sin ' e' ;

e2 D sin ' e� C cos' e' ;

e3 D ez :

With the transformation formulae

x1 D � cos' I x2 D � sin' I x3 D z

we then obtain by insertion:

a D z.cos' e� � sin' e'/C 2� cos'.sin ' e� C cos' e'/C � sin ' ez :

Finally it follows by comparison:

a� D z cos' C 2� sin ' cos' ;

a' D �z sin ' C 2� cos2 ' ;

az D � sin ' :

2. Vector field in spherical coordinates:

a D ar er C a#e# C a' e' :

With

x1 D r sin# cos' I x2 D r sin# sin' I x3 D r cos#
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and

e1 D cos' sin# er C cos' cos# e# � sin ' e' ;

e2 D sin' sin# er C sin' cos# e# C cos' e' ;

e3 D cos# er � sin# e#

we now have:

ar D cos' C r sin# cos# sin ' ;

a# D r cos' cos2 # C 2r sin# cos# sin ' cos' � r sin2 # sin ' ;

a' D �r cos# sin ' C 2r sin# cos2 ' :

Solution 1.7.8

1.(a) When using Cartesian coordinates for the calculation of the circular area S we
have to take the condition x2C y2 D R2 into account for fixing the integration
limits:

S D
Z CR

�R
dy
Z C
p

R2�y2

�
p

R2�y2
dx D 2

Z CR

�R
dy
p

R2 � y2

D 2
�

R2

2
arcsin

y

R
C y

2

p
R2 � y2

	 ˇ̌
ˇ̌
CR

�R

D 21
2

R2�

D �R2 :

(b) With planar polar coordinates the surface element reads:

dx dy D @.x; y/

@.�; '/
d�d' D � d�d' :

Therewith it follows immediately:

S D
Z R

0

Z 2�

0

�d�d' D 2�
Z R

0

�d� D �R2 :

The application of plane polar coordinates obviously means a substantial
advantage.

2. It is clear that for the calculation of the volume of a sphere spherical coordinates
.r; #; '/ are highly recommendable:

dV D @.x; y; z/

@.r; #; '/
D r2 sin#drd#d' :
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So it is to evaluate:

V D
Z

dV D
Z R

0

Z �

0

Z 2�

0

r2 sin#drd#d'

D 2�
Z R

0

r2dr .� cos#/

ˇ̌
ˇ̌
�

0

D 4� r3

3

ˇ̌
ˇ̌
R

0

D 4�

3
R3 :

3. One uses conveniently cylindrical coordinates .�; '; z/ for the calculation of the
multiple integral. For the volume element it holds according to (1.382):

V D
Z R2

R1

�d�
Z �

2

0

d'
Z z0

0

dz D z0

Z R2

R1

�d�
Z �

2

0

d'

D 1

2
�z0

Z R2

R1

�d� D 1

2
�z0

1

2
�2
ˇ̌
ˇ
R2

R1

D 1

4
�z0

�
R22 � R21

�
:

Section 2.1

Solution 2.1.1

1. The velocity magnitude v does not change so that it holds with the cosine
rule (1.149) (Figs. A.18 and A.19):

�v D
p
v2 C v2 � 2v2 cos 60ı

H) v D 50 cm s�1 :

Fig. A.18
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Fig. A.19

2. For the centripetal acceleration we need according to (2.36):

ar D �R!2er ;

! D 2� 60
360

2 s
D �

6
s�1 :

From v D R! it follows then:

R D 300

�
cm

and therewith:

jarj D R!2 D � � 50
6

cm s�2 :

Solution 2.1.2

1.

v D ! � rp D .2; 3;�4/ :

2. ! remains unchanged.

v0 D �
! � .rp � a/

� D Œ.�1; 2; 1/� .1;�1; 0/�
H) v0 D .1; 1;�1/ :

Solution 2.1.3

1.

Rr.t/ D �g D �.0; 0; g/ ;
Pr.t/ D �g tC v0 ŒPr.t D 0/ D v0� ;

r.t/ D �1
2

g t2 C v0t Œr.t D 0/ D 0� :
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Fig. A.20

2. The ‘orbital plane’ is the plane which is spanned by the vectors r and Pr. So it
holds for �F (Fig. A.20):

�F D 1

2
.r � Pr/dt :

With 1. we can calculate the vector product r � Pr:

r � Pr D
�
�1
2

t2gC t v0

	
� .�t gC v0/ D

D �1
2

t2.g � v0/� t2.v0 � g/ D 1

2
t2.g � v0/ :

One recognizes that, although the vector product r � Pr is time-dependent, its
direction is fixed. The surface normal is always parallel to .g � v0/.

3.

e0
1 D

1

v0
.v01; v02; v03/ :

For the unit vector e0
2 three conditions are to be fulfilled:

(a) e0
2 lies in the orbital plane: e0

2?g � v0,
(b) e0

2 is orthogonal to e0
1: e0

2 � e0
1 D 0,

(c) e0
2 is normalized: e0

2 � e0
2 D 1.

With

e0
2 D .x1; x2; x3/

and

g � v0 D .�v02g; v01g; 0/

condition (a) leads to the conditional equation:

g .x1v02 � x2v01/ D 0 :
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From condition (b) it follows

1

v0
.x1v01 C x2v02 C x3v03/ D 0 ;

while condition (c) means:

x21 C x22 C x23 D 1

These are three equations for the unknowns x1; x2; x3:

e0
2 D

˙1
v0

q
v201 C v202

��v01v03; �v02v03; v201 C v202
�
:

The sign remains free.
4.

e0
3 D e0

1 � e0
2 D

˙1q
v201 C v202

.v02 ; �v01 ; 0/ :

Solution 2.1.4

1. Spherical coordinates.

r.t/ D rer

Pr.t/ D Prer C r P#e# C r sin# P'e'

Rr.t/ D arer C a#e# C a'e'

with

ar D Rr � r P#2 � r sin2 # P'2
a# D r R# C 2Pr P# � r sin# cos# P'2
a' D r sin# R' C 2 sin# Pr P' C 2r cos# P# P' :

The given acceleration,

a.t/ D � �
r2

er � ˛.r/Pr

D
�
� �

r2
� ˛.r/Pr

�
er C

�
�˛.r/r P#

�
e# C .�˛.r/r sin# P'/ e' ;



A Solutions of the Exercises 417

leads to the conditional equations:

Rr � r P#2 � r sin2 # P'2 ŠD � �
r2
� ˛.r/Pr

r R# C 2Pr P# � r sin# cos# P'2 ŠD �˛.r/r P#
r sin# R' C 2 sin# Pr P' C 2r cos# P# P' ŠD �˛.r/r sin# P' :

2. The third equation is trivially fulfilled (' D const), the two others can be written
as:

Rr � r P#2 ŠD � �
r2
� ˛.r/Pr

r R# C 2Pr P# ŠD �˛.r/r P# :

The input requirement of the exercise yields:

Pr D �2ˇ
3

r0.1 � ˇt/�1=3 D �2ˇ
3

r0

r
r0
r

Rr D �2ˇ
2

9
r0.1 � ˇt/�4=3 D �2ˇ

2

9

r30
r2

P# D 2

3
#0ˇ

1

1 � ˇt
D 2ˇ

3
#0

� r0
r

�3=2

R# D 2

3
#0ˇ

2 1

.1 � ˇt/2
D 2ˇ2

3
#0

� r0
r

�3
:

Insertion into the above conditional equations leads to:

(i)

�2ˇ
2

9

r30
r2
� r

4ˇ2

9
#20

� r0
r

�3 D � �
r2
C ˛.r/2ˇ

3
r0

r
r0
r

” �2ˇ
2

9

r20
r2
.r0 C 2#20 r0/ D � �

r2
C ˛.r/2ˇ

3
r0

r
r0
r
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(ii)

2ˇ2

3
#0r

� r0
r

�3 C 2
�
�2ˇ
3

r0

r
r0
r

	
2ˇ

3
#0

� r0
r

�3=2 D �˛.r/r2ˇ
3
#0

� r0
r

�3=2

” ˇr
� r0

r

�3=2 � 4ˇ
3

r0

r
r0
r
D �ˇ

3
r
� r0

r

�3=2 D �˛.r/r

H) ˛.r/ D ˇ

3

� r0
r

�3=2
:

Because of ˛ > 0 it follows immediately ˇ > 0. Insertion of ˛ into (i):

�2ˇ
2

9

r20
r2
�
r0 C 2#20 r0

� D � �
r2
C 2ˇ2

9
r0
� r0

r

�2

H) ˇ2 D 9

4

1

r30
�

1

1C #20
(�)

H) ˇ D 3

2

1

r0

s
�

r0
�
1C #20

� :

Trajectory:

#.t/ D �#0 ln.1 � ˇt/2=3 D �#0 ln

�
r

r0

	

H) r.#/ D r0 e�#=#0

3. Square of velocity

v2 D Pr � Pr D Pr2 C r2 P#2

D 4ˇ2

9
r20

r0
r
C r2

4ˇ2

9
#20

� r0
r

�3 D 4ˇ2

9

r30
r

�
1C #20

�
„ ƒ‚ …

from (�)

D �

r
:

In spite of friction the velocity of the satellite increases when it approaches the
earth’s surfaceH) ansatz for the friction may not be realistic enoughH) better
(?): FR � v2:
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Section 2.2

Solution 2.2.1

1. According to Fig. A.21:

r0.t/ D r � Nr D
D .�7˛2t;�11˛5; 3˛4 � 4˛6t/ :

Relative velocity:

Pr0.t/ D .�7˛2; 0;�4˛6/equiv Pr0 :

2.

Rr.t/ D .12˛1;�18˛3t; 0/ ;
RNr.t/ D .12˛1;�18˛3t; 0/ :

3. If † is an inertial system then † is also an inertial system, because Rr0 D 0 and
Rr D RNr, respectively. If a force-less body moves uniformly in a straight line in †
then this is also the case in †.

Solution 2.2.2 For the actual velocity v D const it holds:

v D dx

dt
D dx

dt0
dt0

dt
:

Therewith it follows for the actual acceleration:

a D d2x

dt2
D d2x

dt02

�
dt0

dt

	2
C dx

dt0
d2t0

dt2

D a0
�

dt0

dt

	2
C v d2t0

dt2

�
dt0

dt

	�1
:

Fig. A.21
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Fig. A.22

Force-free movement means a D 0. Therefore it must be

a0 D �v d2t0

dt2

�
dt0

dt

	�3
:

With

dt0

dt
D 1C P̨ .t/ I d2t0

dt2
D R̨ .t/

one obtains:

F0 D m a0 D �mv
R̨ .t/

.1C P̨ .t//3 :

Solution 2.2.3

1. We introduce two systems of coordinates (Fig. A.22):

†: System of coordinates fixed at the earth’s center, which does not follow the
rotation being therefore an inertial system.

†: Co-rotating Cartesian system of coordinates at the earth’s surface.
r0: Position vector of the origin of † as seen from †.
Nr: Position vector of the mass point in †.

With P! D 0 the equation of motion reads according to (2.77):

mRNr D �m g �mRr0 �mŒ! � .! � Nr/� � 2m.! � PNr/ ;
NFc D �2m.! � PNr/ I (Coriolis force) ;

NFz D �m Œ! � .! � Nr/� I (centrifugal force) :

NFz is here negligible since !2 and also the distance Nr from the earth’s surface can
be assumed to be small. Approximately it is left as equation of motion:

RNr � �g � Rr0 � 2.! � PNr/ :
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2. The origin of † moves on a circle with radius R cos' around the !-axis. That
means after (2.33):

jRr0j D !2R cos' ;

Rr0 D !2R cos' .sin ' Ne2 � cos' Ne3/ :

3. The force stemming from Rr0 is also to be taken into consideration:

Og D gC Rr0 D
�
0; !2R cos' sin ';�!2R cos2 ' C g

�
:

Liquids orient their surfaces always perpendicular to Og, not to g. Og determines
the vertical, which deviates a bit from the radial direction. Og is dependent on the
geographical latitude. The real earth’s surface is perpendicular to Og (‘flattening
of the earth’).

4.

! D .0; ! cos' ; ! sin '/ :

According to 1. it then holds for the Coriolis force:

NFc D �2m.! � PNr/ D �2m!.PNx3 cos' � PNx2 sin'; PNx1 sin ';�PNx1 cos'/ :

5. Equations of motion:

mRNx1 D �2m!.PNx3 cos' � PNx2 sin '/ ;

mRNx2 D �2m! PNx1 sin' ;

mRNx3 D �m OgC 2m! PNx1 cos' :

Og is the measured earth’s acceleration.
6. After precondition one can assume that PNx1 � 0; PNx2 � 0 holds during the fall

time. We then have to solve the following system of equations of motion:

RNx1 D �2! PNx3 cos' ;

RNx2 D 0 ;
RNx3 D �Og :

With the initial conditions

Nr.t D 0/ D .0; 0;H/ I PNr.t D 0/ D .0; 0; 0/



422 A Solutions of the Exercises

one gets the solution:

Nr.t/ D
�
1

3
! cos' Og t3; 0;�1

2
Og t2 CH

	
:

The fall time tF results from

Nx3.t D tF/
ŠD 0

to

tF D
s
2H

Og :

That yields the east-deviation:

Nx1.tF/ D 1

3
! cos' Og

�
2H

Og
	3=2

:

As cos' is always positive the earth’s rotation .! ¤ 0/ provokes an east-
deviation on both hemispheres of the earth.

Section 2.3

Solution 2.3.1

1.(a) Presumption:

W.x1; x2; x3I t/ ¤ 0 :

It may hold:

3X
i D 1

�ixi.t/ D 0 �i 2 R ; 8t : (�)

Differentiating gives in addition:

3X
i D 1

�i Pxi.t/ D 0 I
3X

i D 1

�iRxi.t/ D 0 :
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Let us consider these three equations as linear homogeneous system of
equations for the �i:
H) W.x1; x2; x3I t/ corresponds to the coefficient-determinant of this
system of equations
H) non-trivial solutions only for W D 0, but W unequal zero as per
assumption!
H) (�) satisfiable only for �1 D �2 D �3 D 0!
H) xi.t/ .i D 1; 2; 3/ linearly independent!

(b) Presumption:
x1.t/; x2.t/; x3.t/: Three linearly independent solutions of the linear homoge-
neous differential equation of third order.
If for an arbitrary t0

W.x1; x2; x3I t0/ D 0

holds then the above system of equations will have for t D t0 a non-trivial
solution: O�1; O�2; O�3.
So

f .t/ �
3X

i D 1

O�ixi.t/

is as linear combination of the solutions xi.t/ also a solution of the differential
equation with

f .t0/ D 0 I Pf .t0/ D 0 I Rf .t0/ D 0 :

Now it is

Nf .t/ � 0

also a solution of the differential equation with the same initial conditions for
t D t0. From the uniqueness theorem follows

Nf .t/ � f .t/ ” 0 D
3X

i D 1

O�ixi.t/ :

Not all O�i are equal to zero. Therefore the x1; x2; x3 should be linearly
dependent contrary to the presumption

H) W.x1; x2; x3I t/ ¤ 0 8t :



424 A Solutions of the Exercises

2.

:::
x .t/ � 6

t2
Px.t/C 12

t3
x.t/ D 0 .t ¤ 0Š/

Special solutions:

(a)

x1.t/ D 1

t2
H) Px1.t/ D � 2

t3

Rx1.t/ D C 6
t4

:::
x1.t/ D �24

t5

H) �24
t5
C 12

t5
C 12

t5
D 0

(b)

x2.t/ D t2 H) Px2.t/ D 2t

Rx2.t/ D 2
:::
x2.t/ � 0

H) 0 � 12
t
C 12

t
D 0

(c)

x3.t/ D t3 H) Px3.t/ D 3t2

Rx3.t/ D 6t
:::
x3.t/ � 6

H) 6 � 18C 12 D 0
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Wronski-determinant:

W.x1; x2; x3I t/ D

ˇ̌
ˇ̌
ˇ̌
ˇ

1
t2

t2 t3

� 2
t3
2t 3t2

C 6
t4
2 6t

ˇ̌
ˇ̌
ˇ̌
ˇ

D 12C 18� 4 � 12 � 6C 12
D 20 ¤ 0

H) linearly independent
General solution:

f .t/ D �1 1
t2
C �2t2 C �3t3 .t ¤ 0/

Solution 2.3.2

1.

v0 D v0ez :

It is a one-dimensional problem:

Rz D �g H) Pz.t/ � Pz .ts/ D �g.t � ts/ I ( ts: start time) :

Pz.ts/ D v0 H) Pz.t/ D v0 � g.t � ts/ :

z.ts/ D 0 (ground)H) z.t/ D v0.t � ts/ � 1
2

g.t � ts/
2 :

2. 1. stone: ts D 0 H) z1.t/ D v0t � 1
2
g t2.

2. stone: ts D t0 H) z2.t/ D v0.t � t0/� 1
2
g.t � t0/2.

The two stones meet at the time tx,

z1.tx/ D z2.tx/;

i.e.

tx D v0

g
C 1

2
t0

3.

Pz1.tx/ D v0 � g tx D �1
2

g t0 (downward motion) ;

Pz2.tx/ D v0 � g.tx � t0/ D C1
2

g t0 (upward motion) :
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Solution 2.3.3

1. Equations of motion:

m1 Rx1 D m1gC S1 ;

m2 Rx2 D m2gC S2 ;

thread tension: S1 D S2 D S,
constraint: x1 C x2 D length of the thread H) Rx1 D �Rx2. So one gets:

m1 Rx1 D m1gC S ;

�m2 Rx1 D m2gC S :

2.

Rx1 D m1 � m2

m1 C m2

g D �Rx2 :

It represents the retarded free fall. Equilibrium happens for m1 D m2.
3. The thread tension

S D m1.Rx1 � g/ D � 2m1m2

m1 Cm2

g

is maximal at the equilibrium.

Solution 2.3.4

1. These are one-dimensional motions:

m1Rz1 D m1g sin˛ C S ;

m2Rz2 D m2g sinˇ C S

(S: thread tension).
2. The constant length of the thread brings about:

Rz1 D �Rz2 :

By subtraction of the two equations of motion in 1. we obtain the accelerations:

Rz1 D m1 sin˛ �m2 sinˇ

m1 C m2

g D �Rz2 :

That is the retarded free fall.
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3. The thread tension S arises out of 1. and 2.:

S D m1.Rz1 � g sin˛/ D �m1m2 g
sin ˛ C sinˇ

m1 C m2

:

4.

Rz1 D 0 D Rz2 ” m1 sin ˛ D m2 sinˇ :

Solution 2.3.5

1. The forces of the resting piece of the rope are compensated by the base. On the
overhanging piece of the length x the force

F D m
x

l
g :

is acting. That yields the equation of motion:

mRx D m
x

l
g :

2. Ansatz for the solution:

x / e˛t :

The equation of motion is fulfilled if one chooses

˛2 D g

l
” ˛1; 2 D ˙

r
g

l

The general solution of the homogeneous differential equation of second order
therewith reads:

x.t/ D ACe
p

g=l t C A� e�p
g=l t :

The initial conditions

x.0/ D x0 I Px.0/ D 0

fix A˙:

AC D A� D 1

2
x0 :
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It follows:

x.t/ D x0 cosh

�r
g

l
t

	
;

Px.t/ D x0

r
g

l
sinh

�r
g

l
t

	
:

3. At the time te the end of the rope is just at the edge of the base:

x.te/ D l D x0 cosh

�r
g

l
te

	
;

Px.te/ D x0

r
g

l
sinh

�r
g

l
te

	
:

Squaring the last equation leads to:

ŒPx.te/�2 D x20
g

l
sinh2

�r
g

l
te

	
D

D x20
g

l


cosh2

�r
g

l
te

	
� 1

�
D

D g

l

�
l2 � x20

�

H) Px .te/ D
r

g

l
.l2 � x20/ :

Solution 2.3.6

1. Let F be the force which the scales contribute to the equilibrium. Its direction is
at first undetermined (Fig. A.23). For equilibrium it must hold:

m.g � Rx/C F D 0 :

Fig. A.23
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(a) fixed mass:

Rx D 0 H) F D �m g :

The force F fully compensates the gravitational force being parallel to g.
Weight-display:

Fk D �1g .F � g/ D m g :

(b) mobile mass:

F D �m.g � Rx/ ;
m Rx D m g sin˛ ex

H) F D m g cos˛ ey :

Weight-display:

Fk D �.F � g/1g D �m g cos˛
1

g
.ey � g/ D m g cos2 ˛ :

As long as the mass is in motion the scales exhibit a smaller amount. The limiting
case ˛ D �

2
corresponds to the free fall. The scales then show the value zero.

2. The contact force is in both cases the same:

(a) Fy D F � ey D �m .g � ey/ D m g cos˛;
(b) Fy D m g cos˛ .ey � ey/ D m g cos˛:

Solution 2.3.7

1. The vertical throw (Fig. A.24) represents a one-dimensional motion:

mRz D �� m M

z2
:

Especially at the earth’s surface it holds:

m g D � m M

R2
” � M D g R2 :

Fig. A.24
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The above equation of motion can therefore also be written as follows:

Rz D �g
R2

z2
:

This we rewrite furthermore by use of the chain rule .v D Pz/:

Rz D dv

dt
D dv

dz
v D ��M

z2
:

Separation of variables leads to:

vZ

v0

v0 dv0 D �� M

zZ

R

dz0

z02

H) 1

2

�
v2 � v20

� D � M

�
1

z
� 1

R

	
:

That yields the distance-dependence of the velocity:

v.z/ D
r
v20 C 2� M

R � z

Rz
:

2.

v.z!1/ D
r
v20 �

2� M

R
:

In order that the particle can leave the gravitational region it must necessarily be:

v.z!1/ � 0

That is possible only if

v0 �
r
2� M

R
:

Numerical values:

� D 6:67 � 10�11N m2 kg�2 ; M D 5:98 � 1024 kg ; R D 6:37 � 106 m W
v0 � 11:2 km s�1 :



A Solutions of the Exercises 431

Fig. A.25

Solution 2.3.8

1.

.�i/3 D i ; i15 D �i ;
p
4.�25/ D 10 i ; ln.1C i/ D ln

p
2C i

�

4
;

ei.�=3/ D 1

2
C 1

2

p
3 i ; ei.�=2/ D i :

2.(a) z D 2;
(b) z D 23C 2i.

3. See Fig. A.25!
4.

z1 D
p
2 ei.3�=4/ ; z2 D

p
2 ei.5�=4/ ; z3 D e3 � e2i ;

z4 D ei.�=6/ ; z5 D e�i.�=2/ :

5.

z1 D �
p

e ; z2 D �i e�1 ;

z3 D .e3 cos 1/� i .e3 sin 1/ :

6.(a) Re ez.t/ D e�t cos 2� t I 	 D 1 ;
(b) Re ez.t/ D e2t cos

�
3
2
t
� I 	 D 4�

3
.

Solution 2.3.9 The proof turns out very simple by use of Euler’s formula:

exp.i.˛ C ˇ// D cos.˛ C ˇ/C i sin.˛ C ˇ/
D exp.i˛/ exp.iˇ/

D � cos˛ C i sin˛
�
.cosˇ C i sinˇ/

D .cos˛ cosˇ � sin ˛ sinˇ/C i .sin ˛ cosˇ C cos˛ sinˇ/ :
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Real and imaginary parts of complex numbers are independent of each other.
Therefore the comparison yields directly the assertion:

sin.˛Cˇ/ D sin˛ cosˇCsin ˇ cos˛ I cos.˛Cˇ/ D cos˛ cosˇ�sin ˛ sinˇ :

Solution 2.3.10

1.

7Rx � 4Px � 3x D 6 :

For the respective homogeneous equation,

7Rx � 4Px � 3x D 0 ;

it is convenient to use the ansatz:

x D e� t :

Insertion provides a conditional equation for � ,

7�2 � 4� � 3 D 0 ;

which is solved by

�1 D 1 and �2 D �3
7

The general solution of the homogeneous differential equation therefore reads:

xhom.t/ D a1 et C a2 e�.3=7/t :

It is easy to guess a special solution of the inhomogeneous equation:

xs.t/ D �2 :

Therewith the general solution is determined:

x.t/ D a1 et C a2 e�.3=7/t � 2 :

2.

Rz � 10 PzC 9 z D 9 t :
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A special solution can easily be guessed:

zs.t/ D tC 10

9
:

The respective homogeneous differential equation

Rz � 10 PzC 9 z D 0

is solved by

z.t/ D e� t

if

�2 � 10 � C 9 D 0

is fulfilled. That is the case for

�1 D 1 and �2 D 9
H) zhom.t/ D ˛1 et C ˛2 e9t :

The general solution of the inhomogeneous differential equation eventually
reads:

z.t/ D ˛1et C ˛2 e9t C tC 10

9
:

Solution 2.3.11

1.

RyC PyC y D 2tC 3 :

There should exist a special solution which is linear in t (why?)!

y.t/ D 2tC ˛ :

Insertion yields:

2C 2tC ˛ D 2tC 3 H) ˛ D 1 H) ys.t/ D 2tC 1 :

2.

4RyC 2PyC 3y D �2tC 5 :
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Here, too, there should exist a special solution being linear in t:

y.t/ D ˛ � tC ˇ :

Insertion yields now:

2˛ C 3˛ tC 3ˇ D �2tC 5 H) ˛ D �2
3
I ˇ D 19

9

H) ys.t/ D �2
3

tC 19

9
:

Solution 2.3.12 The homogeneous differential equation

RzC 4z D 0

is solved by the ansatz

z.t/ D e� t

if

e� t.�2 C 4/ D 0

is fulfilled. That is the case for

�1 D C2 i and �2 D �2 i

The general solution has therefore the form:

z.t/ D a1e
2i t C a2e

�2i t :

1. Boundary conditions: z.0/ D 0 I z
�
�
4

� D 1

H) a1 C a2 D 0 I i.a1 � a2/ D 1
H) z.t/ D sin 2t :

2. Boundary conditions: z
�
�
2

� D �1 I Pz ��
2

� D 1

H) a1 C a2 D 1 I 2i.�a1 C a2/ D 1

H) z.t/ D cos 2t � 1
2

sin 2t :
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Fig. A.26

Solution 2.3.13

1.

g D .0; 0; g/ :

Equation of motion:

mRr D �˛ v Pr �m g :

The first term on the right-hand side is the Newton-version of the friction force
.v D jPrj/. Restriction to the vertical motion yields (Fig. A.26):

mRz D �˛ v Pz � m g :

2. The uniform straight-line motion corresponds to the force-free motion. The
initial velocity must therefore be chosen so that the friction force compensates
the gravitational force:

jPz0j D
r

m

˛
g :

3. Motion of falling:

Pz D �v � 0 :

The equation of motion to be solved reads then as follows:

� d

dt
v D ˛

m
v2 � g :

Separation of variables leads to:

dt D dv

g � ˛
mv

2
:

That can easily be integrated Œv.t D 0/ D 0�:

t D 1

g

vZ

0

dv0

1 � ˛
m gv

02 D
r

m

˛ g
arctanh

�r
˛

m g
� v
	
:
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Fig. A.27

Therewith we have determined the time-dependence of the velocity (Fig. A.27;
.tanh xx ! 1 �! 1/):

Pz.t/ D �v.t/ D �
r

mg

˛
tanh

 r
˛ g�

m
t

!
:

4. With
Z

tanh x dx D ln.cosh x/C c0

and the result for Pz.t/ in part 3. it follows by integrating once more:

z.t/ D �m

˛
ln


cosh

�r
˛g

m
t

	�
C c0 ;

z.t D 0/ D H D c0

H) z.t/ D H � m

˛
ln


cosh

�r
˛g

m
t

	�
:

We still discuss the limiting case of vanishing friction .˛ ! 0/: Because of

cosh x �!
x � 1

�
1C x2

2

	
;

ln.cosh x/ �!
x � 1

x2

2

it follows

z.t/ �!
˛! 0

H � m

˛

˛g

2m
t2 D H � 1

2
g t2 :

This is the free fall!

Solution 2.3.14

1. Equation of motion:

mRr D �˛Pr � m g I g D .0; 0; g/ :
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For the single components it is to solve:

mRxi D �˛ Pxi � mg ıi3 I i D 1; 2; 3 :

That is a linear differential equation of second order being homogeneous for
i D 1; 2 and inhomogeneous for i D 3.

2. The solution of the related homogeneous differential equation

mRxi C ˛ Pxi D 0

succeeds with the ansatz

xi.t/ D e� t

where � is determined by

.m �2 C ˛ �/e� t D 0

One sees that the values

�1 D 0 and �2 D � ˛
m

are possible. That yields the general solution of the homogeneous equation:

xi.t/ D a.1/i C a.2/i e�.˛=m/t :

For i D 3 we still need a special solution of the respective inhomogeneous
differential equation:

x3s.t/ D �m

˛
g t :

This solution can be guessed rather easily or can be found more systematically
by a physical consideration as in part 2. of Exercise 2.3.13.
Eventually we have found therewith the general solution of the equation of
motion:

xi.t/ D a.1/i C a.2/i e�.˛=m/t � m

˛
g t � ıi3 :

3.

r.t D 0/ D .0; 0; 0/ I Pr.t D 0/ D .v0; 0; v0/ :
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4.a

Px1.t/ D �˛
m

a.2/1 e�.˛=m/t

H) x1.0/ D a.1/1 C a.2/1 D 0 ;
Px1.0/ D �˛

m
a.2/1 D v0

H) x1.t/ D m v0
˛

�
1 � e�.˛=m/t

�
:

4.b

x2.0/ D a.1/2 C a.2/2 D 0 ;
Px2.0/ D �˛

m
a.2/2 D 0

H) x2.t/ � 0 :

4.c

x3.0/ D a.1/3 C a.2/3 D 0 ;
Px3.0/ D � ˛

m
a.2/3 �

m

˛
g D v0

H) x3.t/ D m

˛

h�m

˛
gC v0

� �
1 � e�.˛=m/t

� � g t
i
:

5. The maximum flight altitude is given by

Px3.tH/ ŠD 0

It is reached after the time

tH D �m

˛
ln

m g

m gC ˛ v0
and amounts to

x3.tH/ D m

˛

�
v0 C m g

˛
ln

m g

m gC ˛ v0
	
:
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Solution 2.3.15

1.

x.t/ D A cos!0tC B sin!0t ;

Px.t/ D �A!0 sin!0tC B!0 cos!0t ;

Rx.t/ D �!20 x.t/ :

At the maximum deflection it must hold:

Px.t1/ D 0 I Rx.t1/ < 0 :

Therewith it follows:

t1 D 1

!0
arctan

B

A
:

With

cos x D 1p
1C tan2 x

; sin x D tan xp
1C tan2 x

we get by insertion:

xmax D x.t1/ D
p

A2 C B2 ;

Rx.t1/ D �!20
p

A2 C B2 :

2. The maximum velocity is fixed by the requirement

Rx.t2/ ŠD 0 Œ«x.t2/ < 0� :

That is equivalent to

x.t2/
ŠD 0 :

resulting in:

t2 D 1

!0
arctan

�
�A

B

	
:

At this time t2 the oscillator reaches its maximum velocity

Pxmax D Px.t2/ D !0
p

A2 C B2 D !0xmax :
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3. The maximum acceleration implies

«x.t3/ D 0 I x.4/.t3/ < 0

Because of

«x.t/ D �!20 Px.t/ ;
x.4/.t/ D !40 x.t/ ;

one could suppose from part 1. that t3 D t1. However, in view of x.t1/ D xmax > 0

Rx has a minimum at t1. We therefore have to assume

t3 D t1 C �

!0

It is then

«x.t3/ D �!20 Px.t3/ D 0 ;
x.4/.t3/ D !40 x.t3/ D �!40 x.t1/ D �!40 xmax < 0

H) x.t3/ D �xmax I Px.t3/ D 0 I Rx.t3/ D !20 xmax :

Solution 2.3.16

1. 0 � t � t0:
Equation of motion:

RxC 2ˇPxC !20x D v0

t0

where:

!20 D
k

m
I ˇ D ˛

2m
:

General solution of the inhomogeneous differential equation of second order:

x.t/ D xhom.t/C xS.t/ :

The general solution of the related homogeneous differential equation has been
derived already with (2.173):

xhom.t/ D e�ˇt
�
aCei!t C a�e�i!t

�
with ! D

q
!20 � ˇ2 :
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Special solution:

xS.t/ � v0

t0!20

H) general solution (for 0 � t � t0):

x.t/ D e�ˇt
�
aCei!t C a�e�i!t

�C v0

t0!20
:

Initial conditions:

x.0/ D 0 I Px.0/ D 0
H) 0 D .aC C a�/C v0

t0!20

” aC C a� D � v0

t0!20

0 D �ˇ.aC C a�/C i!.aC � a�/

H) aC � a� D �i
ˇ

!
.aC C a�/ D i

ˇ

!

v0

t0!20

x.t/ D e�ˇt ..aC C a�/ cos!tC i.aC � a�/ sin!t/C v0

t0!20

H) x.t/ D v0

t0!20

�
1 �

�
cos!tC ˇ

!
sin!t

	
e�ˇt

�
:

2. t > t0:
Force switched off

H) RxC 2ˇPxC !20x D 0 :

The general solution is known:

x.t/ D e�ˇt fbC cos!t C b� sin!tg :

F makes a finite jump at t D t0. The same must then hold for Rx, too, but Px.t/; x.t/
are continuous at t D t0! That leads to boundary conditions which fix bC; b�.
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Continuity of x.t/:

0 D � � e�ˇt0

�
.� C bC/ cos!t0 C

�
�
ˇ

!
C b�

	
sin!t0

�
with � D v0

t0!20

H) bC cos!t0 C b� sin!t0 D �
�

eˇt0 � cos!t0 � ˇ
!

sin!t0

	
� �1 : (�)

Continuity of Px.t/:

�ˇe�ˇt0

�
cos!t0 C ˇ

!
sin!t0

	
� �e�ˇt0 .�! sin!t0 C ˇ cos!t0/

ŠD
ŠD �ˇe�ˇt0 .bC cos!t0 C b� sin!t0/C e�ˇt0! .�bC sin!t0 C b� cos!t0/

” bC .ˇ cos!t0 C ! sin!t0/C b� .ˇ sin!t0 � ! cos!t0/ D

D ��
�
ˇ2

!
C !

	
sin!t0 � �2 : (��)

We combine (�) and (��):

�
cos!t0 sin!t0

ˇ cos!t0 C ! sin!t0 ˇ sin!t0 � ! cos!t0

	

„ ƒ‚ …
D A

�
bC
b�

	
D
�
�1
�2

	

H) det A D ˇ sin!t0 cos!t0 � ! cos2 !t0 � ˇ cos!t0 sin!t0 � ! sin2 !t0

D �!

AC D
�
�1 sin!t0
�2 ˇ sin!t0 � ! cos!t0

	

det AC D �1.ˇ sin!t0 � ! cos!t0/� �2 sin!t0

D �
�

eˇt0 � cos!t0 � ˇ
!

sin!t0

	
.ˇ sin!t0 � ! cos!t0/C

C �
�
ˇ2

!
C !

	
sin2 !t0

D � ˚eˇt0 .ˇ sin!t0 � ! cos!t0/� ˇ cos!t0 sin!t0 C ! cos2 !t0�

�ˇ
2

!
sin2 !t0 C ˇ sin!t0 cos!t0 C

�
ˇ2

!
C !

	
sin2 !t0

�

D � ˚eˇt0 .ˇ sin!t0 � ! cos!t0/C !


:



A Solutions of the Exercises 443

Cramer’s rule:

bC D det AC
det A

D �
�

eˇt0

�
cos!t0 � ˇ

!
sin!t0

	
� 1

�

A� D
 

cos!t0 �1

ˇ cos!t0 C ! sin!t0 �2

!

H) det A� D �2 cos!t0 � �1.ˇ cos!t0 C ! sin!t0/

D ��
 
ˇ2

!
C !

!
sin!t0 cos!t0 � �

�
eˇt0 � cos!t0 � ˇ

!
sin!t0

	
�

� .ˇ cos!t0 C ! sin!t0/

D ��
 
ˇ2

!
C !

!
sin!t0 cos!t0 � �eˇt0 .ˇ cos!t0 C ! sin!t0/�

� �
�
� ˇ cos2 !t0 � ! cos!t0 sin!t0�

� ˇ
2

!
sin!t0 cos!t0 � ˇ sin2 !t0

	

D ��
�

eˇt0 .ˇ cos!t0 C ! sin!t0/ � ˇ
�
:

Cramer’s rule:

b� D det A�
det A

D �
�

eˇt0

�
sin!t0 C ˇ

!
cos!t0

	
� ˇ
!

	

cos!t � cos!t0 C sin!t � sin!t0 D cos.!.t � t0//

� sin!t0 � cos!tC sin!t � cos!t0 D sin.!.t � t0// :

H) solution for t > t0:

x.t/ D v0

t0!20

�
e�ˇ.t�t0/

�
cos!.t � t0/C ˇ

!
sin!.t � t0/

	
�

�e�ˇt

�
cos!tC ˇ

!
sin!t

	 �
:

This represents a damped oscillation with x.t/
t!1�! 0, i.e. transition into the

original rest position!
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3. Extremely short impulse: t0 ! 0

The time interval relevant in part 1. approaches zero. Thus the solution of part 1.
does not play a role for the now considered case, only part 2. is decisive. When
performing the limiting process t0 ! 0 for the results in part 2. we have to bear
in mind that � / t�10 . We have therefore to apply l’Hospital’s rule (1.96):

bC D lim
t0 ! 0

�
1

!20
v0

�
ˇeˇt0

�
cos!t0 � ˇ

!
sin!t0

	
C

C eˇt0

�
�! sin!t0 � ˇ

!
! cos!t0

		�

D v0

!20
.ˇ.1� 0/C 1.�0� ˇ//

H) bC D 0

b� D lim
t0!0

1

!20
v0

�
ˇeˇt0

�
sin!t0 C ˇ

!
cos!t0

	
C

C eˇt0

�
! cos!t0 � ˇ

!
! sin!t0

	�

D v0

!20

�
ˇ2

!
C !

�
D v0

!20
� ˇ

2 C !2
!

H) b� D v0

!

H) x.t/ D v0

!
sin!t e�ˇt

The short impulse on the oscillator in its rest position (x.t D 0/ D 0) brings
about the initial velocity Px.0/ D v0 and leads therewith to the known result for
the linear oscillator with friction (Fig. A.28).

Fig. A.28
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Fig. A.29

4. Long acting impulse of force: t0  m
˛

, i.e. t0  1
ˇ

The solution of part 1. converges to v0
t0!20

.

The solution of part 2. starts at t D t0 with the value v0
t0!

2
0

(horizontal tangent) and

is then rapidly damped (Fig. A.29). The second summand in x.t/ of part 2.does
not play any appreciable role because of t0  1

ˇ
and t � t0!

Solution 2.3.17 Volume change proportional to the surface:

dV

dt
ŠD �4�R2 I V D 4�

3
R3

H) 4�R2 � PR ŠD �4�R2

H) PR D �
H) R.t/ D R0 C � t :

Time-dependence of the mass (density � of the water is constant):

m D � � 4�
3

R3

H) Pm D �4�R2 � PR D 3m

R
PR D 3m

R
� :

Equation of motion:

d

dt
.m.t/ � v.t// D FS C FR

v D .0; 0; v/
g D �.0; 0; g/

H) Pmv C m Pv D �mg � ǪR2v
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H)
�3m�

R
C ǪR2„ƒ‚…

Ǫ 3m
4�� � 1R

�
v D �m Pv �mg

H) Pv C v

R

�
3� C 3 Ǫ

4��

	

„ ƒ‚ …
� "

D �g

H) Pv C "

R
v D �g

Rewriting with R as independent variable:

Pv D dv

dR
� PR D �v0

v0 C "

�R
v D � g

�
:

Solution of the homogeneous equation:

vhom D c

R
"
�

:

Special solution of the inhomogeneous equation:

vS D x � R
H) xC "

�
x D � g

�

H) x D
� g
�

1C "
�

:

H) general solution:

v.R/ D c

R
"
�

� g

� C "R :

Initial conditions:

v.t D 0/ D 0 I R.t D 0/ D R0

H) 0 D v.R0/ H) c D g

� C "R
1C "

�

0

H) v.R/ D g

� C "R0

(�
R0
R

	 "
�

� R

R0

)
:
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Finally we still insert R.t/ D R0 C � t:

v.t/ D gR0
� C "

(�
1C �

R0
t

	� "
�

�
�
1C �

R0
t

	)
:

Limiting cases:

1. � t
 R0:

v.t/ � gR0
� C "

�
1 � "

�

�

R0
tC � � � � 1 � �

R0
t

�

D gR0
� C "

�
� �

R0
t

	�
1C "

�

	

H) v.t/ � �gt :

The waterdrop is still falling almost freely; v is so small that the momentum
change due to the increase of mass persists insignificantly. The friction force,
either, does not play a big role.

2. � t R0:

v.t/ � � gR0
� C "

�

R0
t D � g�

� C " � t :

Because of mass increase and friction force the acceleration decreases from g to
g �

�C" .

Solution 2.3.18

1. An electromagnetic field exerts on a particle of mass m and charge q the so-
called ‘Lorentz force’:

F D q EC q.v � B/ :

Here it is assumed that the magnetic induction B is homogeneous,

B D B e3 ;

and E � 0. The equation of motion therefore reads:

m Rr D q.Pr � B/ :

That is equivalent to

d

dt
Pr D !.Pr � e3/ I ! D q

m
B :
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2.

Pr � .Pr � B/ D 0
H) Pr � Rr D 0
H) d

dt
.Pr � Pr/ D 0

H) d

dt
jPrj D 0 H) jPrj D const

3.

^.Pr;B/ D const

” cos .Pr;B/ D const

”Pr � B D const

” d

dt
.Pr � B/ D 0 D Rr � B

” q

m
.Pr � B/ � B D 0 :

4. Since B is assumed to be time-independent it holds:

q.Pr � B/ D q
d

dt
.r � B/ :

Therewith the equation of motion in part 1. can immediately be integrated:

m Pr D q.r � B/C c :

The constant vector c is fixed by initial conditions:

t D 0 I m v0 D q.r0 � B/C c :

Thus a first intermediate result is found:

m Pr D q.r � B/C Œm v0 � q.r0 � B/� :

5.

Pr D Prk C Pr? :
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The Lorentz force has no field-parallel component. Therefore we expect that Prk
is about a constant vector:

jPrkj D Pr � e3 D q

m
.r � B/ � e3 C v0 � e3 � q.r0 � B/ � e3 D

D v0 � e3 D const � vk :

The magnitude of Prk thus is constant, the direction because of B D const
anyway:

jPrj2 D jPrkj2 C jPr?j2 H) jPr?j D const D v? :

It follows that Pr? is a vector with constant magnitude lying in the plane which
is perpendicular to B.

6. It is shown in part 5.:

Pr D .v? cos'.t/; v? sin '.t/; vk/

H) Rr D v? P'.t/.� sin '.t/; cos'.t/; 0/ :

On the other hand, from part 1. it also holds:

Rr D !.Pr � e3/ D !.v? sin'.t/;�v? cos'.t/; 0/ :

Comparison leads to:

P'.t/ D �! H) '.t/ D �! tC ˛ :

7. In 5. it was shown:

jPr?j D v? D const H) v? D jv0?j D jŒe3 � .v0 � e3/�j D j.v0 � e3/j :

Hence we can write:

e2 D 1

v?
Œe3 � .v0 � e3/� I e1 D 1

v?
.v0 � e3/ :

Now it is

'.t D 0/ D ^ .Pr?.t D 0/; e1/ D ^ .v0?; e1/ D �

2

H) '.t/ D �!t C �

2
:

Therewith the complete solution for Pr.t/ reads:

Pr.t/ D .v0 � e3/ sin!tC Œe3 � .v0 � e3/� cos!tC .v0 � e3/ e3 :
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8. A further time-integration yields:

r.t/ D � 1
!

cos!t � .v0 � e3/C 1

!
sin!t � Œe3 � .v0 � e3/�C .v0 � e3/ t e3 C Nr0 :

The initial condition

r0 D r.t D 0/ D � 1
!
.v0 � e3/C Nr0

then leads to the complete solution for the trajectory:

r.t/ D � 1
!
.cos!t�1/.v0�e3/C 1

!
sin!t � Œe3� .v0�e3/�C .v0 �e3/ t e3Cr0 :

9. Movement in a plane perpendicular to the field means in the first step:

Pr.t/ ? B or vk D 0 :

According to part 5. this is exactly then the case if

v0 ? B; e3 H) v? D v0 :

is given because that means:

Or.t/ � r.t/ �
�

r0 C v0

!
e1
�
D v0

!
.� cos!t; sin!t; 0/

It corresponds to a circular motion in a plane perpendicular to B with the
frequency

! D qB

m

and the radius

R D v0

!
D v0 m

q B
:

10. The general solution in part 8.

Or.t/ D
�
�v?
!

cos!t;
v?
!

sin!t; .v0 � e3/t
�

represents a helical line.
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Solution 2.3.19 Antiderivative (‘potential’) of the force:

V.x/ � �
Z x

F.x0/dx0 D 1

2
x2 C 1

4
�x4 I F.x/ D � d

dx
V.x/ :

We multiply the equation of motion by Px:

mRx � Px D F.x/ � Px D � d

dx
V.x/ � Px

D � d

dt
V.x.t// D d

dt

�m

2
Px2
�

Õ d

dt

�m

2
Px2 C V.x/

�
D 0

Õ m

2
Px2 C V.x/ D E :

E is here a constant of integration (total energy).
Separation of variables with subsequent integration:

t � t0 D
Z x

x0

dx0
q

2
m .E � V.x0//

D
r

m

2E

Z x

x0

dx0
q
1 � V.x0/

E

:

1. Substitution:

V.x0/
E
D sin2 ' :

Possible since V.x/ > 0 and therewith 0 � V.x0/

E � 1. That means:

1

4
�x4 C 1

2
kx2 � E sin2 ' D 0 Õ x4 C 2k

�
x2 D 4E

�
sin2 ' :

Solution:

x2 D � k

�
C
s

k2

�2
C 4E

�
sin2 ' :

x is real, therewith x2 positive; so only the positive root is relevant.

x2 D � k

�

 
1 �

r
1C 4E�

k2
sin2 '

!
:
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Because of 4E�
k2

 1 the root can be expanded:

x2 � � k

�

�
1 �

�
1C 2E�

k2
sin2 '

		
D 2E

k
sin2 ' :

Thus it holds approximately:

x �
r
2E

k
sin ' I dx �

r
2E

k
cos'd' :

Using these expressions we are able to perform the above integrations:

t � t0 D
r

m

2E

r
2E

k

Z '

'0

cos' 0d' 0
p
1 � sin2 ' 0 D

r
m

k

Z '

'0

d' 0 D
r

m

k
.' � '0/ :

Turning points of the oscillation are given by Px D 0, i.e. by E D V.x/ and
sin2 ' D 1, respectively. That means:

'1;2 D ˙�
2
:

Hence, the oscillation period 	 follows from:

1

2
	 D

r
m

k
.'2 � '1/ D �

r
m

k
:

We recognize that to a first approximation the oscillation period does not at all
deviate from that of the purely harmonic oscillator:

	 D 2�
r

m

k
:

2. This becomes of course different when we go one step further in the above
expansion for x2:

x2 D � k

�

 
1 �

r
1C 4E�

k2
sin2 '

!

� � k

�

�
1 �

�
1C 2E�

k2
sin2 ' � E2�2

2k4
sin4 '

		

D 2E

k
sin2 ' � E2�

2k3
sin4 '

D 2E

k
sin2 '

�
1 � �E

4k2
sin2 '
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Õ x �
r
2E

k
sin '

r
1 � �E

4k2
sin2 '

�
r
2E

k
sin '

�
1 � �E

8k2
sin2 '

	

Õ dx �
r
2E

k

�
1 � 3�E

8k2
sin2 '

	
cos'd' :

In the next step we get with the above used separation of variables:

t � t0 D
r

m

2E

r
2E

k

Z '

'0

cos' 0d' 0
p
1 � sin2 ' 0

�
1 � 3�E

8k2
sin2 ' 0

	

D
r

m

k

Z '

'0

d' 0
�
1 � 3�E

8k2
sin2 ' 0

	
:

The turning points are the same as in part 1.:

1

2
	 D

r
m

k

�
' 0 � 3�E

8k2

�
�1
2

sin ' 0 cos' 0 C ' 0

2

		C �
2

� �
2

D
r

m

k

�
� � 3�E

16k2
�

	
:

Finally we get as result for the oscillation period of the (weakly) anharmonic
oscillator:

	 D 2�
r

m

k

�
1 � 3�E

16k2

	
:

Section 2.4

Solution 2.4.1

1.

.r � F/x D @Fz

@y
� @Fy

@z
D 6˛1xyz2 � 6˛1xyz2 D 0 ;

.r � F/y D @Fx

@z
� @Fz

@x
D 3˛1y2z2 � 12˛2xz � 3˛1y2z2 C 12˛2xz D 0 ;

.r � F/z D @Fy

@x
� @Fx

@y
D 2˛1yz3 � 2˛1yz3 D 0

H) r � F D 0 H) F conservative :
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2. Parametrization:

C1 W r.t/ D .x0t; 0; 0/ ;
C2 W r.t/ D .x0; y0t; 0/ ;
C3 W r.t/ D .x0; y0; z0t/ :

9=
; 0 � t � 1 :

We calculate the work-contributions executed on the three partial paths:

W.C1/ D �
Z

C1

FŒr.t/� � Pr.t/dt D �x0

1Z

0

Fx.x0t; 0; 0/dt D 0 ;

W.C2/ D �
Z

C2

FŒr.t/� � Pr.t/dt D �y0

1Z

0

Fy.x0; y0t; 0/dt D 0 ;

W.C3/ D �
Z

C3

FŒr.t/� � Pr.t/dt D �z0

1Z

0

Fz.x0; y0; z0t/dt D

D �z0

1Z

0

�
3˛1x0y

2
0z
2
0t
2 � 6˛2x20z0t

�
dt D �˛1x0y20z30 C 3˛2x20z20

H) W D 3˛2x20z20 � ˛1x0y20z30 :

3. F is conservative and therefore possesses a potential:

V.r/ D �˛1xy2z3 C 3˛2x2z2 C V0 :

Solution 2.4.2 Path C1: parameter representation:

C11 W r.t/ D .1 � t/r1 I Pr.t/ D �r1 I .0 � t � 1/ ;
C12 W r.t/ D t � r2 I Pr.t/ D r2 I .0 � t � 1/ :

work:

WC1 D �˛
Z

C11

r � dr � ˛
Z

C12

r � dr D ˛ r21

1Z

0

.1 � t/ dt � ˛ r22

1Z

0

t dt

D 1

2
˛
�
r21 � r22

�
:
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Path C2: parameter representation:

C21 W r.t/ D r1Œcos.' � t/; sin.' � t/� I .0 � t � t/ ;

Pr.t/ D r1'Œ� sin.' � t/; cos.' � t/�
H) r.t/ � Pr.t/ D 0 :

C22 W r.t/ D .r2 � rA/ tC rAI .0 � t � 1/ ;
Pr.t/ D r2 � rA

H) r.t/ � Pr.t/ D .r2 � rA/
2tC rA � .r2 � rA/ :

work:

WC2 D 0 � ˛.r2 � rA/
2

1Z

0

t dt � ˛ rA � .r2 � rA/

1Z

0

dt

D 1

2
˛
�
r21 � r22

� I �
r2A D r21

�
:

Path C3: parameter representation:

C31 W r.t/ D .rA � r1/tC r1 I .0 � t � 1/ ;
Pr.t/ D rA � r1

H) r.t/ � Pr.t/ D .rA � r1/
2 tC r1 � .rA � r1/ :

C32 W as C22 :

work:

WC3 D WC31 CWC32 ;

WC31 D �
1

2
˛.rA � r1/2 � ˛ r1 � .rA � r1/ D 0

H) WC3 D WC32 D WC22 D WC2 D
1

2
˛
�
r21 � r22

�
:

The carried out work is obviously the same on each of the three paths. However,
that is not at all astonishing since

r � F.r/ D r � .˛r/ D 0
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(see Exercise 1.3.5). F.r/ is therefore a conservative force and

BZ

A

F � dr

is path-independent! Thus there exists a potential V D V.r/ ,

F.r/ D �
�
@V

@x1
;
@V

@x2
;
@V

@x3

	
;

which can be determined as follows:

� @V

@x1
D ˛ x1 H) V.x1; x2; x3/ D �˛

2
x21 C g.x2; x3/ ;

� @V

@x2
D ˛ x2 D � @g

@x2
H) V.x1; x2; x3/ D �˛

2

�
x21 C x22

�C f .x3/ ;

� @V

@x3
D ˛ x3 D � df

dx3
H) V.x1; x2; x3/ D �˛

2

�
x21 C x22 C x23

�C C :

Hence, the potential of the force F reads:

V.r/ D �˛
2

r2 C C :

The work

WP1!P2 D V.P2/ � V.P1/ D 1

2
˛
�
r21 � r22

�

is path-independent!

Solution 2.4.3

1. No, because:

r � F D f

�
0C 9

˛2
y; 0 � 8

˛3
z2; 0 � 2

˛

	

D f

�
9

˛2
y;� 8

˛3
z2;� 2

˛

	
6� .0; 0; 0/

Line integrals will be path-dependent!
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2. Parametrization of the path:

r.t/ D .˛t; ˛t; ˛t/ I 0 � t � 1

H) @r
@t
D .˛; ˛; ˛/

F D f
�
3t2 C 2t;�9t2; 8t3

�

H) F � @r
@t
D f˛

�
3t2 C 2t � 9t2 C 8t3

�

D f˛
�
8t3 � 6t2 C 2t

�

H) W1 D �
1Z

0

F � @r
@t

dt

D �f˛

�
8

4
� 6
3
C 2

2

	

D �f˛

3. Parametrization:

r.t/ D
8<
:
.˛t; 0; 0/
.˛; ˛t; 0/
.˛; ˛; ˛t/

0 � t � 1

W2 D W2x CW2y CW2z

W2x W F D f .3t2; 0; 0/ I @r
@t
D .˛; 0; 0/

H) W2x D �
1Z

0

f˛3t2dt D �f˛

W2y W F D f .3C 2t; 0; 0/ I @r
@t
D .0; ˛; 0/

H) W2y D �
1Z

0

f˛.1 � 0/dt D 0

W2z W F D f .5;�9t; 8t2/ I @r
@t
D .0; 0; ˛/

H) W2z D �
1Z

0

8t2˛fdt D �8
3

f˛
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It follows:

W2 D �11
3

f˛

4.

r.t/ D ˛.t; t2; t4/ 0 � t � 1
H) F D f .3t2 C 2t2;�9t6; 8t9/

@r
@t
D ˛.1; 2t; 4t3/

H) F � @r
@t
D f˛.5t2 � 18t7 C 32t12/

H) W3 D �f˛

1Z

0

.5t2 � 18t7 C 32t12/dt

D �f˛

�
5

3
� 18
8
C 32

13

	

D �f˛
293

156

5.

r.'/ D ˛.cos'; sin '; 0/ 0 � ' � 2�
F D f

�
3 cos2 ' C 2 sin'; 0; 0

�

@r
@'
D ˛.� sin '; cos'; 0/

H) F � @r
@'
D f˛.�3 cos2 ' sin' � 2 sin2 '/

D f˛

�
d

d'
cos3 ' � 2 sin2 '

	

H) W D �
I

F � @r
@'

d'

D 2f˛
Z 2�

0

sin2 'd'

D 2f˛

�
�1
2

sin ' cos' C '

2

	2�
0

D 2f˛� (path-dependent!)
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Solution 2.4.4

1.

r � F D
ˇ̌
ˇ̌
ˇ̌

ex ey ez

@x @y @z

˛xy �˛z 0

ˇ̌
ˇ̌
ˇ̌

D ex.0C 2˛z/C ey.0 � 0/C ez.0 � ˛x/ � ˛.2z; 0;�x/

6� 0 :

Õ The force is not conservative!
2. ‘direct path’: .0; 0; 0/ �! .1; 1; 3/

We choose as parameter the (dimensionless) ‘time’ t.

r.t/ D .t; t; 3t/

Pr D .1; 1; 3/
F.r.t// D ˛.t2;�9t2; 0/

F.r.t// � Pr.t/ D ˛.t2 � 9t2/ D �8˛t2

Õ W.b/ D C˛
Z 1

0

8t2dt D 8

3
˛ :

3. Parametrization of the ‘curved’ path [.0; 0; 0/ �! .1; 1; 3/]:

0 � t � 1 W y D t ; x D t2 ; z D 3pt :

Therewith holds:

r.t/ D .t2; t; 3
p

t/

Pr D .2t; 1;
3

2
p

t
/

F.r.t// D ˛.t3;�9t; 0/

F.r.t// � Pr.t/ D ˛.2t4 � 9t/

Õ W.c/ D C˛
Z 1

0

.2t4 � 9t/dt D ˛
�
2

5
� 9
2

	
D 41

10
˛

¤ W.b/ :

Solution 2.4.5

r � F.r/ D r � .a � r/ D 2a
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[see Exercise 1.5.7]. This force is not conservative. Consequently the line inte-
gral will be path-dependent. We use for the various paths the same parameter-
representations as in Exercise 2.4.2.

Path C1:

Z

C11

F � dr D C.a � r1/ � r1
1Z

0

dt.1 � t/ D 0 ;

Z

C12

F � dr D �.a � r2/ � r2
1Z

0

dt t D 0

H) WC1 D 0 :

Path C2:

C21 W .a � r/ D r1 .�a3 sin.'t/; a3 cos.'t/; a1 sin.'t/ � a2 cos.'t// ;

.a � r/ � Pr D r21'Œa3 sin2.'t/C a3 cos2.'t/� D a3r
2
1'

H) WC21 D �a3r
2
1'

1Z

0

dt D �a3r
2
1' :

C22 W .a � r/ � Pr D tŒa � .r2 � rA/� � .r2 � rA/C .a � rA/ � .r2 � rA/ D
D .a � rA/ � r2 D 0 ; since rA "" r2

H) WC22 D 0 :

Altogether it holds for the path C2:

WC2 D �a3r
2
1' :

Path C3:

C31 W .a � r/ � Pr D .a � r1/ � .rA � r1/ D .a � r1/ � rA

H) WC31 D �.a � r1/ � rA I

C32 as C22, therefore WC32 D 0

H) WC3 D �.a � r1/ � rA :

The works to be carried out on the various paths are obviously rather different!



A Solutions of the Exercises 461

Solution 2.4.6

1.

r � F D
�
@b

@y
� @ax

@z
;
@ay

@z
� @b

@x
;
@ax

@x
� @ay

@y

	
D

D .0; 0; a� a/ D 0
H) F is conservative!

2. Parameter-representation of the path:

r.˛/ D .˛x; ˛y; ˛z/ I .0 � ˛ � 1/

H) dr
d˛
D .x; y; z/ I FŒr.˛/� D .a˛y; a˛x; b/

H) F � dr
d˛
D 2a˛xyC bz :

Therewith we get the needed work for moving the mass point:

WP0!P D
1Z

0

F � dr
d˛

d˛ D axyC bz :

3.

�@V

@x
D ay H) V D �axyC g.yz/ ;

�@V

@y
D ax D axC @g

@y
H) @g

@y
D 0 H) V D �axyC g.z/ ;

�@V

@z
D b H) g.z/ D �bzC c

H) V.r/ D �axy � bzC c :

4. The work is the same as in part 2. because F is conservative.

Solution 2.4.7

1.

F D �rV D �.kx; ky; kz/ D �kr :

It is the potential of the harmonic oscillator. F.r/ is a central force.
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Fig. A.30

2.

@

@x
V.r/ D m

2
Œ2!x.! � r/� 2!2x� :

Analogous expressions hold for the other two components:

F.r/ D �rV.r/ D �mŒ!.! � r/� !2r� D �mŒ! � .! � r/� :

It is about the potential of the centrifugal force (2.79). In this case F is not a
central force!

Solution 2.4.8

1. The angle in the semicircle is a right angle (90ı) (Thales theorem, see Exer-
cise 1.3.5) (Fig. A.30).

x D r cos'

y D Or cos
��
2
� '

�
D Or sin'

Or D
p
4R2 � r2

2R D xC y

D r cos' C
p
4R2 � r2 sin '

H) �
4R2 � r2

�
sin2 ' D 4R2 C r2 cos2 ' � 4Rr cos'

4Rr cos' D 4R2
�
1� sin2 '

�C r2

0 D .2R cos' � r/2

H) r D r.'/ D 2R cos' :

2. Conservative central force F
) 9 potential with V.r/ D V.r/
) angular momentum L D const, jLj D mr2 P'
) F D f .r/erI f .r/ D �dV=dr.
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Energy theorem

E D m

2

�Pr2 C r2 P'2�C V.r/ D m

2
Pr2 C L2

2mr2
C V.r/

Pr D d

dt
r D dr

d'

d'

dt
D L

mr2
dr

d'

H) m

2
Pr2 D L2

2mr4

�
dr

d'

	2

H) E D L2

2mr4

"�
dr

d'

	2
C r2

#
C V.r/ :

3.

f .r/ D �dV

dr

Differentiate the energy theorem with respect to r:

0 D � 2L2

mr5

"�
dr

d'

	2
C r2

#
C L2

2mr4

"
d

dr

�
dr

d'

	2
C 2r

#
C dV

dr

dr

d'
D �2R sin' H)

�
dr

d'

	2
D 4R2 sin2 ' D 4R2.1 � cos2 '/

D 4R2
�
1 � r2

4R2

	
D 4R2 � r2

H) d

dr

�
dr

d'

	2
D �2r :

Insertion:

�dV

dr
D �8R2L2

mr5
:

Central force:

F.r/ D �8R2L2

mr5
er :
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Solution 2.4.9

1.

F D mRr D m
d

dt
Pr

H) Pr.t/ � Pr.t D 0/ D 1

m

tZ

0

F.t0/dt0 D

D
tZ

0

.15 t02; 2t0 � 1;�6t0/ dt0 cm s�1 D

D .5t3; t2 � t;�3t2/ cm s�1

H) Pr.t D 1/ D .5; 0;�3/C .0; 0; 6/ D .5; 0; 3/ cm s�1 :

2.

Pr2.t D 1/ D 34 cm2s
�2

H) T1 D 3

2
� 34 cm2 g s

�2 D 51 cm2 g s
�2
:

3. W10 D T0 � T1.

T0 D 3

2
36 cm2 g s

�2 D 54 cm2 g s
�2

H) W10 D 3 cm2 g s
�2
:

Solution 2.4.10

1. The force F.x/ D �kx is conservative thus possessing a potential:

V.x/ D k

2
x2 C C :

No other forces are present so that according to Eq. (2.231) the energy conserva-
tion law holds:

E D m

2
Px2 C k

2
x2 D const
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This one easily sees as follows:

0 D mRxC kx D .mRxC kx/Px D dE

dt
:

2. The energy conservation law leads to:

Px2 D 2E

m
� !20x2 I !20 D

k

m
:

This we exploit for a separation of variables:

dt D dxq
2E
m � !20x2

:

After Exercise 2.3.15 the velocity Px is zero for x D xmax. That means:

2E

m!20
D x2max :

Therewith follows:

t � t1 D 1

!0

xZ

xmax

dx0
p

x2max � x02 D
1

!0

x=xmaxZ

1

dyp
1 � y2

D

D 1

!0


arcsin

�
x

xmax

	
� arcsin 1

�

H) arcsin

�
x

xmax

	
D !0.t � t1/C �

2
:

The quantity xmax is fixed by t1 so that there is no additional free parameter:

x.t/ D 1

!0

r
2E

m
cos .!0.t � t1// :

3. After Exercise 2.3.15 the maximal velocity is reached at the zero crossing. Hence
it follows from x.t2/ D 0

t � t2 D 1

!0

x=xmaxZ

0

dyp
1 � y2

H) x.t/ D 1

!0

r
2E

m
sin .!0.t � t2// :
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Solution 2.4.11

1.

mRx D �dV

dx
D F.x/ (conservative!)

” mRxPx D �dV

dx
Px

” d

dt

�m

2
Px2
�
D � d

dt
V.x/

” d

dt

�m

2
Px2 C V.x/

�
D 0

m

2
Px2 C V.x/ D E D const :

The constant of integration E corresponds to the total energy.

H) Px D
r
2

m
.E � V.x//

Separation of variables:

dt D dxq
2
m .E � V.x//

H) t � t0 D
xZ

x0

dy
1q

2
m .E � V.y//

free parameters: t0;E.
2. From Px D 0 for the oscillation amplitude one can conclude:

E D V.�a/ D V.b/ :

Oscillation period:

	

2
D

bZ

�a

dy
1q

2
m .E � V.y//

Symmetry:

E D const ” parallels to the x axis

8E a D b ” V.x/ D V.�x/ 8 x
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3.

V.x/ D k

2
x2 D 1

2
m!20x2

Turning points (a D b):

E D V.�a/ D V.a/ D 1

2
m!20a2

	

2
D 1

!0

aZ

�a

dyp
a2 � y2

D 1

!0
arcsin

y

jaj
ˇ̌
ˇ̌
a

�a

D 1

!0

h�
2
�
�
��
2

�i
D �

!0

H) 	 D 2�

!0

It is typical for harmonic oscillations that 	 is independent of the amplitude.
4. E chosen so that V.x/ maximal at x D b .E D V.b//. Because of

dV

dx

ˇ̌
ˇ̌
xDb

D 0 D F.x D b/

the restoring force is zero at the turning point.
H) particle does not come back H) 	 !1.

5. Potential energy:

V.x/ D 1

2
m!20x2 C 1

4
m"x4

V.x/ D V.�x/ H) a D b

E D V.a/ D 1

2
m!20a2 C 1

4
m"a4

H) E � V.x/ D 1

2
m!20

�
a2 � x2

�C 1

4
m"
�
a4 � x4

�

D 1

2
m!20

�
a2 � x2

� 
1C "

2!20

�
a2 C x2

��

H) 1q
2
m .E � V.x//

D 1

!0

1p
a2 � x2

1q
1C "

2!20
.a2 C x2/
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Series expansion:

.1C x/
n
m D 1C n

m
x � n.m � n/

2Šm2
x2 C : : :

H) 1q
2
m .E � V.x//

� 1

!0

1p
a2 � x2


1 � "

4!20

�
a2 C x2

��

D
1 � "a2

4!20

!0
p

a2 � x2
� "

4!30

x2p
a2 � x2

With the standard integrals

Z
dxp

a2 � x2
D arcsin

x

jaj C c1

Z
x2dxp
a2 � x2

D � x

2

p
a2 � x2 C a2

2
arcsin

x

jaj C c2

the oscillation period can be estimated:

	

2
D
1 � "a2

4!20

!0
.arcsin.1/� arcsin.�1//� "

4!30

a2

2

�
arcsin.1/„ ƒ‚ …

D�=2

� arcsin.�1/„ ƒ‚ …
D ��=2

�

H) 	 D 2�

!0

�
1 � 3

8

a2

!20
"

	

Now 	 does explicitly depend on the amplitude a H) ‘anharmonicity’.
6.

t0 D 0 I x.0/ D 0

H) t D
xZ

0

dyq
2
m.E � V.y//

� 1

!0

�
1 � "a2

4!20

	 xZ

0

dyp
a2 � y2

� "

4!30

xZ

0

dy y2p
a2 � y2

D 1

!0

�
1 � "a2

4!20

	
arcsin

x

a
C "

4!30

x

2

p
a2 � x2 � "a2

8!30
arcsin

x

a
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H)
�
!0t � "x

8!20

p
a2 � x2

	
D arcsin

x

a

�
1C 3"a2

8!20

	

H) arcsin
x

a
�
�
!0t � "x

8!20

p
a2 � x2

	�
1 � 3"a

2

8!20

	

� !0
�
1C 3a2

8!20
"

	
t � "x

8!20

p
a2 � x2 CO."2/ :

For abbreviation:

! � !0
�
1C 3a2

8!20
"

	
:

x

a
D sin

�
!t � "x

8!20

p
a2 � x2

„ ƒ‚ …
D " � Ox

	

D sin!t cos "Ox„ƒ‚…
D 1CO."2/

� cos!t sin "Ox„ƒ‚…
D "Ox CO."3/

D sin!t � "Ox cos!t

D sin!t CO."/

Ox D x

8!20
a

s
1 � x2

a2
D a2

8!20

x

a

s
1 � x2

a2

D a2

8!20
sin!t cos!tCO."/

H) x.t/ � a sin!t

�
1 � "a2

8!20
cos2 !t

	

Initial velocity:

(a)

Px.t/ D a! cos!t

�
1 � "a2

8!20
cos2 !t

	
C a sin!t

d

dt

�
1 � "a2

8!20
cos2 !t

	

H) Px.0/ D a!

�
1 � "a2

8!20
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(b) from the energy theorem

E D m

2

�
!20a2 C 1

2
"a4
	
D m

2
Px2 C m

2

�
!20x2 C 1

2
"x4
	

x.0/ D 0

H) Px.0/ D
r
!20a2 C 1

2
"a4 D a!0

s
1C "a2

2!20

� a!0

 
1C "a2

4!20

!
D a!

1C "a2

4!20

1C 3"a2

8!20

� a!

 
1C "a2

4!20

! 
1 � 3"a

2

8!20

!

H) Px.0/ D a!

�
1 � 3"a

2

8!20
CO."2/

	
(as above!)

Solution 2.4.12

1. Possible starting point: ‘area conservation principle’

dS

dt
D 1

2
jr � Prj D L

2m
D const

H) ta;b D 2m�Sa;b

L

�Sa;b is the area swept by the position vector during the time ta;b.
central forceH) L Dconst: motion takes place in a fixed plane perpendicular to
L
spherical coordinates: r; # D �

2
; '

After (2.267):

r D k

1C " cos'
I k D L2

˛m
conic section !

(a) Circle (Fig. A.31)H) " D 0

r D R D k D L2

˛m

H) L D p˛mR

�Sa D 1

2
�R2

H) ta D �R

r
R

m

˛
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Fig. A.31

Fig. A.32

Fig. A.33

(b) Parabola (Fig. A.32)H) " D 1

r D k

1C cos'
I r
�
' D �

2

�
D R

H) k D R H) L D p˛mR

r.' D 0/ D 1

2
k D 1

2
R (Fig. A.33)
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y D c
p�x W R D c

r
R

2
H) c D p2R

1

2
�Sb D

Z 0

� R
2

p�2Rxdx

D �p�2R
2

3

�
�R

2

	r
�R

2

D 1

3
R2

H) tb D 2
r

m

˛R
� 2
3

R2

tb D 4

3
R

r
R

m

˛
.tb < ta/

2. Total energy:

E D m

2
Pr2 C L2

2mr2
� ˛

r

D m

2
Pr2 C ˛

�
k

2r2
� 1

r

	

(a) Circle:

r D R D const I k D R

H) E D � ˛
2R

It holds energy conservation:

T D E � V D � ˛
2R
C ˛

R
D ˛

2R

velocity:

Pr D R P'e'

va D jPrj D
r

˛

mR
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direct way from A to B (uniformly straight-line):

Ota D 2R

va
D 2R

r
mR

˛
< ta

(b) Parabola: ‘point closest to the sun’: ' D 0

Pr.' D 0/ D 0 I r.' D 0/ D k

2

H) E D 0 H) T D �V

H) T.A/ D C˛
R

vb.A/ D
r
2˛

mR

direct way:

Otb D 2R

vb
D p2R

r
R

m

˛
> tb .Š/

Altogether:

tb < Otb < Ota < ta

It obviously brings a gain of time by flying by close to the planet!

3. # D �
2
H) P# D 0: Motion in the xy plane

r D rer H) Pr D Prer C r P'e'

Rr D �Rr � r P'2� er C .r R' C 2Pr P'/ e'

(a) Equations of motion:
Components of the force of friction

FR D �m Ǫ �Prer C r P'e'
�

radial motion:

m
�Rr � r P'2� D � ˛

r2
�m Ǫ Pr

Rr � r P'2 D � ˛

mr2
� Ǫ Pr (1)
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azimuthal motion:
force of friction H) torque H) time-dependent change of angular momen-
tum
angular momentum:

L D m.r � Pr/ D �mr2 P'e#
# D �

2D mr2 P'ez

L D mr2 P'

M D r � FR D d

dt
L

” �m Ǫr2 P' .�e#/ D m
�
2rPr P' C r2 R'� ez

H) r R' C 2Pr P' D � Ǫ r P' (2)

because friction is not a central-force problem!
(b) Circular path

r D R.1C c1t/ W Pr D c1R I Rr D 0
P' D !0.1C c2t/ W R' D c2!0

Insertion into (1):

�R.1C c1t/!
2
0 .1C c2t/

2 D � ˛

mR2.1C c1t/2
� Ǫc1R

All terms quadratic in .c1; c2; Ǫ / can be neglected (for not too large times t!):

�R!20.1C .c1 C 2c2/t/ � � ˛

mR2
.1 � 2c1t/

t D 0 H) !20 D C
˛

mR3�
test: !0

1:a/D 2�

2ta
D 1

R

r
˛

mR

	

H) 1C .c1 C 2c2/t � 1 � 2c1t

Equation is satisfied if

3c1 C 2c2 D 0 (�)



A Solutions of the Exercises 475

Insertion into (2):

R.1C c1t/c2!0 C 2c1R!0.1C c2t/ D � ǪR.1C c1t/!0.1C c2t/

H) R!0.c2 C 2c1/ � � ǪR!0
H) 2c1 C c2 D � Ǫ (��)

Combination of (�) and (��):

c1 D �2 Ǫ I c2 D 3 Ǫ

However, the approximation is valid only for times for which Ǫ t
 1 holds!
Then:

r � R.1� 2 Ǫ t/
P' � !0.1C 3 Ǫ t/

(c) Radius:

d

dt
r D �2 ǪR becomes smaller!

Angular velocity:

d

dt
P' D 3 Ǫ!0 becomes larger!

Path velocity:

jPrj D
p
Pr2 C r2 P'2

�
q
.�2 ǪR/2 C R2.1 � 2 Ǫ t/2!20.1C 3 Ǫ t/2

�
q

R2!20.1C 2 Ǫ t/
� R!0.1C Ǫ t/

H) d

dt
jPrj � R!0 Ǫ becomes larger!

Kinetic energy:

Pr2 � R2!20 .1C 2 Ǫ t/

H) d

dt
T � mR2!20 Ǫ„ ƒ‚ …

Ǫ ˛R

becomes larger!
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Potential energy:

V D �˛
r
� � ˛

R.1 � 2 Ǫ t/ � �
˛

R
.1C 2 Ǫ t/

H) d

dt
V � �2 Ǫ ˛

R
becomes smaller!

Decreases twice as strongly as T increases!
Total energy:

d

dt
E D d

dt
.T C V/ � � Ǫ ˛

R
becomes smaller!

(d) Friction energy:

d

dt
ER D �FR � Pr D m Ǫ Pr2

� m ǪR2!20 .1C 2 Ǫ t/
� m ǪR2!20
D Ǫ ˛

R

Friction energy is taken from the potential energy!

Solution 2.4.13

1.

x.t/ D a cos.!t/ H) y2.t/

b2
D 1 � cos2.!t/ D sin2.!t/ :

Thus it is:

y.t/ D b sin.!t/ :

The angular frequency ! is given by

! � 2 D 6� H) ! D 3� s�1 :

The trajectory therewith reads:

r.t/ D .a cos.3� t/; b sin.3� t/; 0/ :

2. It obviously holds:

Rr.t/ D �!2r.t/ D �9�2r.t/ :
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Therefore the force acting on the mass point is:

F.r; t/ D �m!2r.t/ :

3. Angular momentum:

L D m.r � Pr/ D m

ˇ̌
ˇ̌
ˇ̌

ex ey ez

x y 0

Px Py 0

ˇ̌
ˇ̌
ˇ̌ D m.xPy � yPx/ez D

D mŒa cos!t.b! cos!t/C b sin!t.a! sin!t/�ez D m a b! ez :

L is constant with respect to direction as well as magnitude since F is about a
central force.

4.

dS

dt
D 1

2
j.r � Pr/j D L

2m
D 1

2
a b! D const

H) �S D dS

dt
�t D 3

2
� a b :

Section 2.5

Solution 2.5.1

L1 C L2 D 2a

1. We choose M D M.0; b/. Then it is L1 D L2 D a (Fig. A.34). Hence, we can use
Pythagoras’ theorem to get:

b2 D a2 � e2 :

Fig. A.34
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2.

L21 D y2 C .x � e/2 I L22 D y2 C .xC e/2 :

By inserting this into the defining equation of the ellipse

L1 C L2 D 2a” L21 C L22 C 2L1L2 D 4a2

one gets after simple rearrangings and with the result from part 1. the so-called
midpoint equation of the ellipse:

x2

a2
C y2

b2
D 1 :

3.

L22 � L21 D .L2 C L1/.L2 � L1/ D 2a.L2 � L1/ :

After part 2. it also holds:

L22 � L21 D 4ex D 2a
2ex

a
D 2a 2"x :

The comparison leads to:

L2 � L1 D 2"x :

Combination with L1 C L2 D 2a yields:

L1 D a � "x D a � ".eC L1 cos'/

H) L1.1C " cos'/ D a � "e D a � e2

a
D b2

a
D k :

Putting still L1 D r we have found the equation of the ellipse in polar coordinates:

r D k

1C " cos'
:

4. The parameter-representation

x D a cos t ;
y D b sin t

�
0 � t � 2�
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obviously fulfills the midpoint equation (2):

r.t/ D
�

a cos t
b sin t

	
:

Solution 2.5.2

1. It belongs to the potential

V.r/ D V.r/ D ˛

r2

the conservative central force

F.r/ D �2˛
r3

er :

The angular momentum L is therefore a conserved quantity

L D const

The motion occurs in a fixed orbital plane. That shall be the xy plane .# D �=2/.
Then it holds after (2.252):

L D m r2 P' ez :

The energy E is likewise a conserved quantity:

E D m

2
Pr2 C L2

2mr2
C ˛

r2
(see (2.260)) .

One defines as effective potential (Fig. A.35):

Veff.r/ D L2

2mr2
C ˛

r2
:

Fig. A.35
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2. At r.t D 0/ D rmin it must be Pr.t D 0/ D 0. Then it follows from the energy
conservation law:

rmin D
s

L2 C 2m˛

2mE
:

Because of ˛ > 0 only for E > 0 an actual motion is possible.
3.

E D m

2
Pr2 C E

r2min

r2

H) Pr D 1

r

r
2E

m

q
r2 � r2min :

Separation of the variables:

dt D
r

m

2E

rdrq
r2 � r2min

D
r

m

2E

d

dr

q
r2 � r2min dr :

That allows with rmin D r.t D 0/ a simple integration:

t D
r

m

2E

q
r2 � r2min

H) r.t/ D
r

r2min C
2E

m
t2 :

To determine the path r D r.'/ we start with the angular-momentum conserva-
tion law:

P' D L

mr2
H) d' D L

mr2
� dr

Pr D

D Lp
2mE

� 1
r2
� drp

1 � .rmin=r/2
:

With '.rmin/ D 0 the formal solution reads:

' D
rZ

rmin

Lp
2mE

dr0

r02p1 � .rmin=r0/2
:
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Proper substitution:

y D rmin

r0 H) dy D � rmin

r02 dr0

H) ' D �L

rmin

p
2mE

rmin=rZ

1

dyp
1 � y2

D

D �L

rmin
p
2mE

h
arcsin

� rmin

r

�
� �
2

i
:

The reversal yields:

rmin

r
D cos

 
rmin

p
2mE

L
� '
!
:

We still insert into the cosine function rmin from 2.:

r.'/ D rmin

cos

�q
L2C2m˛

L2
� '
	 :

The special case ˛ D 0 leads to

rmin D r cos' :

The path is then a straight-line (Fig. A.36):

��
2
� ' � C�

2
:

4. It is now (Fig. A.37)

Veff.r/ D 1

r2

�
L2

2m
� j˛j

	
:

Fig. A.36
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Fig. A.37

The bound motion in Fig. A.37 requires:

j˛j > L2

2m
I E < 0 :

Using the same way of computation as in part 2. one arrives at:

rmax D
s
2mj˛j � L2

2mjEj :

5. We can express the constant total energy E by rmax:

E D m

2
Pr2 C E

r2max

r2
:

The same considerations as in part 3. then lead to:

r.t/ D
r

r2max �
2jEj
m

t2 :

So the particle is landing after the time

t0 D rmax �
r

m

2jEj
in the center r D 0 .

6. The calculation of the path line r.'/ runs analogous to that in part 3.:

d' D L

mr2
dr

Pr D
Lp
2mjEj

1

r2
drq� rmax

r

�2 � 1
:

With '.rmax/ D 0 and the substitution y D rmax
r ,

dy D � rmax

r2
dr ;
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it follows:

' D L

rmax

p
2mjEj

1Z

rmax =r

dyp
y2 � 1 D

�L

rmax

p
2mjEjarccosh

� rmax

r

�
:

The energy theorem still delivers:

rmax D
s
2mj˛j � L2

2mjEj :

Inserted into the above expression it eventually yields the required path line:

r.'/ D
s
2mj˛j � L2

2mjEj � 1

cosh

�q
2mj˛j

L2
� 1 � '

	 :

This is the equation of a helical line. The particle touches down in the center
r D 0 after infinitely many circulations .' !1/, but after a finite time t0.

Solution 2.5.3

1.

PA D .Rr � L/C .Pr � PL/C .rV � Pr/rC V.r/Pr :

In a central potential it is PL D 0 and furthermore:

Rr D � 1
m

dV

dr
er :

This has the consequence:

PA D � 1
m

dV

dr

m

r
Œr � .r � Pr/�C dV

dr

1

r
.r � Pr/rC V.r/Pr D

D Pr


r
dV

dr
C V.r/

�
D 0 for V.r/ D �˛

r
:

2. We obtain the magnitude of the Lenz vector from:

A � A D Œ.Pr � L/C V.r/r� � Œ.Pr � L/C V.r/r� :

For the central potential it is Pr ? L:

A2 D Pr2L2 C V.r/ Œr � .Pr � L/C .Pr � L/ � r�C V2.r/r2 :
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With

.Pr � L/ � r D L � .r � Pr/ D L2

m

it furthermore follows:

A2 D 2L2

m

h
V.r/C m

2
Pr2
i
C V2.r/r2

H) jAj D
s
˛2 C 2L2

m
E :

3.

A � r D .Pr � L/ � rC V.r/r2 D L2

m
C V.r/r2 D jAjr cos' :

If one abbreviates

" D jAj
˛
D
s
1C 2L2

m˛2
E I k D L2

m˛
;

then one gets the compact result:

r D k

1C " cos'
:

for E < 0 follows: " < 1 H) ellipse,
for E > 0 follows: " > 1 H) hyperbola.
A lies in the orbital plane pointing from the center to the perihelion (Fig. A.38)
and has the magnitude

˛" D ˛ e

a
:

Fig. A.38
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Solution 2.5.4

1. According to Sect. 2.4.5 it holds for the conservative central field:

E D m

2
Pr2 C Veff.r/

Veff.r/ D V.r/C L2

2mr2
D �˛

r
C L2

2mr2

˛ D �mM :

� is the gravitational constant, m the mass of the earth satellite and M the mass
of the earth.
Force of gravity:

mg
ŠD �mM

R2
Õ �M D gR2

R D 6370 km .earth radius/

g D 9; 81
m

s2
:

The satellite is on a circular path (r D const D R0) if and only if r corresponds
to the minimum of Veff (see Fig. 2.54).

0
ŠD dVeff

dr

ˇ̌
ˇ̌
r D R0

D ˛

R20
� L2

mR30

Õ R0 D L2

m˛
D k :

Comparison with (2.268) (conic section)

r D k

1C " cos�
Õ r D R0 for " D 0 .circle/ :

in addition, because of the central force

L D mr2 P' �! mR20!

Õ R0 D m2R40!
2

m�mM
D R40!

2

�M
D R40!

2

gR2

Õ R0 D
�

gR2

!2

	 1
3
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geostationary orbit:

satellite remains always above the same point of the earth’s surface!

Õ ! D 2�

24h
� 7; 29 � 10�5 1

s
:

That means

R0 � 4; 22 � 107m � 6; 6 � R :

2. Minimum requirement:

R0
ŠD R :

angular momentum for r D R:

L D m jr � Prj �! mRv1 .Pr ? r/

R0 D R D L2

m˛
D m2R2v21

m�mM
D R2v21

�M
D R2v21

gR2
:

First cosmic velocity:

v1 D
p

gR D 7; 9 km

s
:

3. To leave the attracting region of the earth the satellite needs at least the energy
E D 0 (see Fig. 2.54). That means:

0
ŠD m

2
v22 �

˛

R
D m

2
v22 �

mgR2

R
:

Second cosmic velocity:

v2 D
p
2gR D 11; 2 km

s
:

Solution 2.5.5

1. Because of the central field:

L D const :
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The motion takes place within a plane perpendicular to L, which contains the
origin. If L / ez then the motion takes place in the xy plane with (equation
after (2.252)):

L D mr2 P' ez :

r; ': plane polar coordinates. With these the acceleration reads according
to (2.13):

Rr D �Rr � r P'2� er C .r R' C 2Pr P'/ e' :

Therewith, out of

f .r/er D mRr

the following two conditional equations arise:

f .r/ D mRr �mr P'2 (1)

0 D mr R' C 2mPr P' : (2)

In addition it holds:

Rr D d

dt

�
dr

d'
P'
	
D d2r

d'2
P'2 C dr

d'
R' :

Equation (1) now becomes:

f .r/ D m

�
d2r

d'2
� r

	
P'2 C m

dr

d'
R' :

Equation (2) can be rewritten as:

R' D �2Pr P'
r
D �2

r

�
dr

d'

	
P'2 :

Inserting into the previous equation:

f .r/ D m P'2
 

d2r

d'2
� 2

r

�
dr

d'

	2
� r

!
:
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Now we still exploit the angular-momentum conservation P'2 D L2

m2r4
:

f .r/ D L2

mr4

 
d2r

d'2
� 2

r

�
dr

d'

	2
� r

!
:

That was to be shown.
2. Mass point on an ellipse (conic section) in a central field, the center of which lies

at one of the two focal points (2.268):

r D r.'/ D k

1C " cos.'/
." < 1/ :

k is here undetermined. It follows

dr

d'
D k" sin.'/

.1C " cos.'//2

d2r

d'2
D 2k"2 sin2.'/

.1C " cos.'//3
C k" cos.'/

.1C " cos.'//2
:

Insertion into f .r/:

f .r/ D L2

mr4

 
2k"2 sin2.'/

.1C " cos.'//3
C k" cos.'/

.1C " cos.'//2

�2 1C " cos.'/

k

k2"2 sin2.'/

.1C " cos.'//4
� k

1C " cos.'/

!

D L2

mr3

�
" cos.'/

1C " cos.'/
� 1

	

D L2

mr3
�1

1C " cos.'/

D � L2

mk

1

r2

/ � 1
r2
:

That is related to a potential of the form:

V.r/ D V.r/ / �1
r

(gravitation, Coulomb) :
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In case of a conservative central-force field one can uniquely propose the explicit
force F.r/ from the path line r D r.'/!

3. It holds

r.'/ D r0 e�' Õ dr

d'
D �r I d2r

d'2
D r

Õ f .r/ D L2

mr4
.r � 2

r
r2 � r/ D � 2L2

mr3

Õ f .r/ / � 1
r3
I V.r/ D � 1

r2

Solution 2.5.6

1.

F.r/ D f .r/ er I f .r/ D � ˛
rn
:

We use (1.289):

r � F D r � .f .r/er/ D r �
�

f .r/

r
r
	

D f .r/

r
r � r„ƒ‚…

D 0

Cr
�

f .r/

r

	
� r

D d

dr

�
f .r/

r

	
er � err

D 0

Hence, F is conservative!
2.

L D m .r � Pr/

Õ d

dt
L D m .Pr � Pr/„ƒ‚…

D 0

Cm.r � Rr/ D r � F D f .r/

r
r � r

D 0
Õ L D const :

The motion thus takes place in a fixed plane perpendicular to L, which contains
the origin.
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3. The fixed plane may be chosen as the xy-plane. For spherical coordinates .r; #; '/
that means # D �

2
and therewith according to (2.21):

Pr! Prer C r P'e'

conservative central field Õ energy conservation with V.r/ D V.r/:

E D m

2
Pr2 C V.r/ D m

2

�Pr2 C r2 P'2�C V.r/ :

P' from angular-momentum conservation:

L D m .r � Pr/ D mr2 P'.er � e'/

D mr2 P'.�e#/ D mr2 P'ez D const

Õ P'2 D L2

m2r4
:

Thus it is left:

E D m

2
Pr2 C L2

2mr2
C V.r/ D m

2
Pr2 C Veff.r/

Veff.r/ D V.r/C L2

2mr2
:

With

F.r/
ŠD �rV.r/ D �dV

dr
er

ŠD � ˛
rn

er

it holds except for an unimportant additive constant:

V.r/ D � ˛

n � 1 �
1

rn�1 :

4. Condition for a circular path:

Veff.r/ D �˛
.n � 1/rn�1 C

L2

2mr2

must possess a minimum!

• Necessary condition:

d

dr
Veff.r/jr D r0 D

˛

rn
0

� L2

mr30

ŠD 0 Õ r3�n
0 D L2

m˛
:
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• Sufficient condition:

d2

dr2
Veff.r/jr D r0 D �

n˛

rn C 1
0

C 3L2

mr40

Š
> 0

Õ �n˛ C 3L2

mr3� n
0

D �n˛ C 3˛ Š
> 0 Õ ˛.3 � n/

Š
> 0 .˛ > 0/ :

Conclusion:

condition for a circular path: n < 3

radius: r0 D
�

L2

m˛

	 1
3�n

:

Section 3.3

Solution 3.3.1

1. The forces which act on m1 are:

F1 D �k1.x1 � x01/ ;

F12 D �k12 Œ.x1 � x01/� .x2 � x02/� :

The forces which act on m2 are:

F2 D �k2.x2 � x02/ ;

F21 D �F12 :

2. With the abbreviations

Nxi D xi � x0i I i D 1; 2

the equations of motion read:

m1
RNx1 D �k1 Nx1 � k12.Nx1 � Nx2/ ;

m2
RNx2 D �k2 Nx2 C k12.Nx1 � Nx2/ :

3. Using the ansatz

Nxi D ˛i cos!t
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Fig. A.39

one gets the following homogeneous system of equations:

�
k1 C k12 � m1!

2 �k12
�k12 k2 C k12 � m2!

2

	�
˛1
˛2

	
D
�
0

0

	
:

For a non-trivial solution the secular-determinant must vanish:

0
ŠD �

k1 C k12 �m1!
2
� �

k2 C k12 �m2!
2
� � k212 D

D .3k �m!2/.6k � 2m!2/ � k2 D 2.3k �m!2/2 � k2

H) !2˙ D
�
3˙ 1p

2

	
k

m
:

Solution 3.3.2 Oscillation equation of the simple pendulum:

R' C g

L
sin ' D 0 :

For small pendulum oscillations (Fig. A.39):

x

L
D sin ' � '

H) approximate equation of motion for x

RxC g

L
x D 0 :

That corresponds to the ‘external’ force on the mass m:

F.ext/ � �m
g

L
x :

Additionally there is an ‘internal’ force due to the coupling of the pendulums:

F12 D �k.Ox1 � Ox2/ with Oxi D xi � xi0

xi0: rest position.
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H) Coupled equations of motion:

ROx1 C g

L
Ox1 C k

m
.Ox1 � Ox2/ D 0

ROx2 C g

L
Ox2 � k

m
.Ox1 � Ox2/ D 0 :

Subtraction and addition, respectively, of the two equations lead to:

d2

dt2
.Ox1 � Ox2/C

�
g

L
C 2k

m

	
.Ox1 � Ox2/ D 0

d2

dt2
.Ox1 C Ox2/C g

L
.Ox1 C Ox2/ D 0 :

Change of variables

u D Ox1 � Ox2 I v D Ox1 C Ox2
and

!2 � g

L
C 2k

m
I !20 D

g

L

where !0 is the eigenfrequency of the simple pendulum yields

RuC !2u D 0

Rv C !20v D 0 :

General solutions of the decoupled(!) equations of motion:

u D a sin!tC b cos!t ” inversely phased oscillation

v D A sin!0tC B cos!0t ” in phase oscillation .

Initial conditions:

u.0/ D �x0 ; v.0/ D x0

Pu.0/ D Pv.0/ D 0
H) b D �x0 I B D x0 I a D A D 0 :
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Solution:

Ox1.t/ D x0
2
.� cos!t C cos!0t/

Ox2.t/ D x0
2
.cos!t C cos!0t/ :

For a simpler interpretation we still reformulate the solution a bit:

! D ! � !0
2
C ! C !0

2
I !0 D ! C !0

2
� ! � !0

2

cos.˛ ˙ ˇ/ D cos˛ cosˇ 	 sin˛ sinˇ

H) Ox1.t/ D x0 sin
�! � !0

2
t
�

sin

�
! C !0
2

t

	

Ox2.t/ D x0 cos
�! � !0

2
t
�

cos

�
! C !0
2

t

	
:

For ‘weak’ coupling

!0 D
r

g

L
� ! D

r
g

L
C 2k

m

Ox1;2.t/ represent oscillations with the frequency 1
2
.! C !0/ � !0, which are via the

amplitude functions

x0 sin
�! � !0

2
t
�
I x0 cos

�! � !0
2

t
�

‘weakly’, i.e. with small frequency 1
2
.! � !0/, temporally modulated H) ‘beat of

oscillation’.

Solution 3.3.3 Equations of motion

mRx1 D �kx1 C k.x2 � x1/ D �2kx1 C kx2

mRx2 D �k.x2 � x1/

x1; x2: deviations from the rest positions. Ansatz for the solution:

xi D Ai cos!t I i D 1; 2 :
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Insertion yields:

�
2k � m!2

�
A1 � kA2 D 0

�kA1 C
�
k �m!2

�
A2 D 0

, linear, homogeneous system of equations for A1; A2. Solvability condition:

0
ŠD
ˇ̌
ˇ̌ 2k � m!2 �k
�k k �m!2

ˇ̌
ˇ̌ D m2!4 � 3km!2 C k2

” !4 � 3!20!2 C !40 D 0 with !20 �
k

m

”
�
!2 � 3

2
!20

	2
D 5

4
!40

H) !2C D
 
3

2
C
p
5

2

!
!20 I !2� D

 
3

2
�
p
5

2

!
!20 :

Eigenfrequencies must be positive:

!C D 1p
2

q
3Cp5 !0 inversely phased oscillation

!� D 1p
2

q
3 �p5 !0 in phase oscillation .

Ratio of the amplitudes

A.˙/1

A.˙/2

D k

2k � m!2˙
D 1

2 � 1
2

�
3˙p5

� D 2

1	p5

A2̇ D
1

2

�
1	p5

�
A1̇

General solution

x1.t/ D ˛C cos.!CtC 'C/C ˛� cos.!�tC '�/

x2.t/ D 1

2

�
1 �p5

�
˛C cos.!CtC 'C/C 1

2

�
1Cp5

�
˛� cos.!�tC '�/

The four constants ˛˙; '˙ are fixed by initial conditions.
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Fig. A.40

Fig. A.41

Solution 3.3.4

1. Equation of motion of the n-th atom (Fig. A.40):

mRun D k.unC1 � un/C k.un�1 � un/

D k.unC1 � 2un C un�1/

Ansatz:

�m!2Aei.qRn�!t/ D kAe�i!t
�
eiqRnC1 � 2eiqRn C eiqRn�1

�

” �m!2eiqna D k
�
eiq.n C 1/a � 2eiqna C eiq.n � 1/a

�

” !2 D � k

m

�
eiqa � 2C e�iqa

�

D 2k

m
.1 � cos qa/

H) ! D !.q/ D
r
2k

m
.1 � cos qa/

The resulting eigenfrequency ! is periodic with the period 2�
a . Therefore we

can restrict our considerations to the interval ��a � q � C�
a (1. Brillouin zone)

(Fig. A.41).
2. The sites Rn and Rn˙1 are no longer equivalent:

u2n.t/ D Aei.q2na �!t/

u2n C 1.t/ D Bei.q.2n C 1/a �!t/
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Equations of motion:

mRu2n D f1 .u2n C 1 � u2n/C f2 .u2n � 1 � u2n/

mRu2n � 1 D f2 .u2n � u2n � 1/C f1 .u2n � 2 � u2n � 1/

H) �m!2A D f1
�
Beiqa � A

�C f2
�
Be�iqa � A

�

�m!2B D f2
�
Aeiqa � B

�C f1
�
Ae�iqa � B

�

homogeneous system of equations:

A
��m!2 C f1 C f2

�C B
��f1e

iqa � f2e
�iqa

� D 0
A
��f2e

iqa � f1e
�iqa

�C B
��m!2 C f2 C f1

� D 0 :

Non-trivial solution” det.: : :/ D 0:

0 D ��m!2 C f1 C f2
�2 � �f1eiqa C f2e

�iqa
� �

f2e
iqa C f1e

�iqa
�

D ��m!2 C f1 C f2
�2 � �f 21 C f 22 C 2f1f2 cos.2qa/

�
:

As solution we get the dispersion relation:

!2˙.q/ D
1

m

�
f1 C f2 ˙

q
f 21 C f 22 C 2f1f2 cos.2qa/

	
:

The eigenfrequency is now periodic with the period �
a H) q can be restricted

to the region � �
2a � q � C �

2a , H) compared to the situation in part 1. the
Brillouin zone has halved.
Discussion (Fig. A.42):

• q D 0:

!C.q D 0/ D
q

2
m .f1 C f2/ (optical branch)

!�.q D 0/ D 0 (acoustical branch)

• q
 �
a :

!2�.q/ �
1

m

 
f1 C f2 �

s
f 21 C f 22 C 2f1f2

�
1 � 1

2
.2qa/2

	!

D 1

m

�
f1 C f2 �

p
.f1 C f2/2 � 4f1f2a2q2

�
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Fig. A.42

D 1

m
.f1 C f2/

 
1 �

s
1 � 4f1f2

.f1 C f2/2
a2q2

!

� 1

m
.f1 C f2/

�
2f1f2

. f1 C f2/2
a2q2

	

D 2f1f2
m.f1 C f2/

a2q2

H) !�.q/ D vs � q :

This behavior is typical for the acoustical branch. vs is the sound velocity:

vs D a

s
2f1f2

m.f1 C f2/
:

• q D ˙ �
2a :

!2˙
�
˙ �
2a

�
D
"

f1� f2

1

m
.f1 C f2 ˙ .f1 � f2//

H) !C
�
˙ �
2a

�
D

r
2f1
m

!�
�
˙ �
2a

�
D

r
2f2
m

Solution 3.3.5

1.

g D .0; 0;�g/ :
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Fig. A.43

Equations of motion:

m1 Rr1 D F.ex/
1 C F12 ;

m2 Rr2 D F.ex/
2 C F21 :

It holds for the involved forces:

F.ex/
1 D m1g I F.ex/

2 D m2g I F12 D �F21 :

The total external force

F.ex/ D
X

i

F.ex/
i D M g I M D m1 C m2

moves the center of gravity (Fig. A.43)

R D m1r1 Cm2r2
m1 Cm2

fulfilling the center of mass theorem:

M RR D F.ex/ D M g :

2. With the initial conditions

R.t D 0/ D 0 I PR.t D 0/ D v0

the center of gravity follows the path:

R.t/ D 1

2
g t2 C v0 � t :

3. The total angular momentum L can be decomposed into a relative part Lr and a
center-of-gravity part Ls:

L D
2X

i D 1

mi.ri � Pri/ D Lr C Ls ;



500 A Solutions of the Exercises

for which we have found in (3.53) and (3.54):

Ls D M.R � PR/
Lr D �.r � Pr/ ; � D m1 � m2

m1 Cm2

Ls can explicitly be calculated:

Ls D M

�
1

2
g t2 C v0t

	
� .g tC v0/ D

D 1

2
M.v0 � g/t2 :

4.

Rr D Rr1 � Rr2 D F.ex/
1

m1

� F.ex/
2

m2

C F12
m1

� F21
m2

D 1

�
F12

H) F12 D �Rr I F12 / r :

It is about an effective one-particle-central-field problem. Hence it must be:

Lr D const

5. Because of Lr D const the relative motion takes place within a fixed orbital plane
and therefore can be conveniently described by use of plane polar coordinates
(Fig. A.44).

r D jr1 � r2j D l D const

Equations (2.8) till (2.13) provide in our case because of Pr D 0:

r.t/ D l er.t/ ;

Pr.t/ D l P' e' ;

Rr.t/ D �l P'2 er C l R' e' :

Fig. A.44
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Since a central force is present it must be

Rr / er

That means

R' D 0 H) P' D ! D const

and therewith

Rr D �l!2 er D �!2r :

So the solutions are of the type

r.t/ D l.cos!t ex C sin!t ey/ :

The motions of the masses m1;m2 relative to the center of gravity are described
by ((3.43), (3.44)) (Fig. A.43):

Nr1 D m2

M
r I Nr2 D �m1

M
r

Nr1.t/ D l
m2

M
.cos!t ex C sin!t ey/ ;

Nr2.t/ D �l
m1

M
.cos!t ex C sin!t ey/ :

These are obviously circular paths with radiuses

�1 D l
m2

M
I �2 D l

m1

M
I �1

�2
D m2

m1

;

which are passed through with constant angular velocity !.

Solution 3.3.6 Particle 2 is at rest before the collision (Fig. A.45) H) the motion
happens in a fixed plane.

1. momentum conservation law

p D p0
1 C p0

2

component by component:

p D p0
1 cos˛ C p0

2 cosˇ

0 D p0
1 sin ˛ � p0

2 sinˇ :
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Fig. A.45

This can be gathered as follows:

p sin˛ D p0
2.cosˇ sin˛ C sinˇ cos˛/

D p0
2 sin.˛ C ˇ/

p sinˇ D p0
1.cos˛ sinˇ C sin ˛ cosˇ/

D p0
1 sin.˛ C ˇ/ :

energy theorem:

p2

2m
D p0

1
2

2m
C p0

2
2

2m
C Q

” p2 D p0
1
2 C p0

2
2 C 2mQ

D p2
sin2 ˇ

sin2.˛ C ˇ/ C p2
sin2 ˛

sin2.˛ C ˇ/ C 2mQ

H) sin2.˛ C ˇ/
sin2 ˛ C sin2 ˇ

D p2

p2 � 2mQ

2. Special case ˛ D ˇ:

sin2.2˛/

2 sin2 ˛
D 4 sin2 ˛ cos2 ˛

2 sin2 ˛
D 2 cos2 ˛

H) cos2 ˛ D 1

2

p2

p2 � 2mQ

elastic collision .Q D 0/:

H) cos2 ˛ D 1

2
H) ˛ D 45ı :
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Fig. A.46

inelastic collision .Q > 0/:

H) cos2 ˛ becomes bigger H) ˛ smaller :

Q D p2

2m

�
1 � 1

2 cos2 ˛

	
> 0 H) 2 cos2 ˛ > 1 H) 0 � ˛ < 45ı

˛ D 0 W

Q D 1

2

p2

2m
D 1

2
T

That is the maximum energy which can be detracted from the kinetic energy of
the collision partners.

Solution 3.3.7

1. The initial momentum p1 is decomposed in its components parallel and per-
pendicular to the contact plane .p1k;p1?/ (Fig. A.46). Since according to the
precondition friction effects do not appear there is no force transfer within the
contact plane. The parallel component of the momentum thus does not change:

p1k D p0
1k I p2k D p0

2k D 0 :

momentum conservation law:

p1 C p2 D p0
1 C p0

2

H) p1? C p2? D p0
1? C p0

2? D p1? :

Furthermore we exploit the energy conservation law:

1

2m1

p21? D
1

2m1

p02
1? C

1

2m2

p02
2? :
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The two conservation laws lead to the following conditional equations:

p21? D p02
1? C p02

2? C 2p0
1? p0

2? ;

p21? D p02
1? C

m1

m2

p02
2? :

These are solved by:

p0
1? D

m1 � m2

m1 C m2

p1? ;

p0
2? D

2m2

m1 C m2

p1? :

That can be evaluated a bit further:

p1? D p1 cos' I p1k D p1 sin ' ;

sin ' D A

2A
D 1

2
H) ' D 30ı H) cos' D 1

2

p
3 :

Therewith it follows:

p0
1 D

1

2
p1

�p
3

m1 � m2

m1 Cm2

e? C ek
	
;

p0
2 D
p
3 p1

m2

m1 C m2

e? :

With

e? D cos' ex � sin' ey D 1

2

�p
3;�1

�
;

ek D cos
��
2
� '

�
ex C sin

��
2
� '

�
ey D 1

2

�
1;
p
3
�

the momenta after the collision read:

p0
1 D

1

2

p1
m1 C m2

�
2m1 �m2;

p
3m2

�
;

p0
2 D

1

2

p1
m1 C m2

�
3m2;�

p
3m2

�
:
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An interesting special case appears for equal masses m1 D m2 D m:

p0
2? D p1? ; p0

1? D 0 :

That means for the final momenta:

p0
1 � p0

2 D 0” p0
1? p0

2 :

2. In the center-of-gravity system it holds for the momenta:

Npi D pi � mi

M
P ;

Np0
i D p0

i �
mi

M
P :

Here it is

P D p1 C p2 D p0
1 C p0

2 D p1 :

Before the collision it therefore holds:

Np1 D p1 � m1

M
p1 D m2

M
p1 ;

Np2 D 0 � m2

M
p1 D �Np1 :

After the collision the two balls have the following momenta:

Np0
1 D p0

1 �
m1

M
p1 D 1

2

m2p1
m1 C m2

.�1;p3/ ;

Np0
2 D p0

2 �
m2

M
p1 D 1

2

m2p1
m1 C m2

.1;�p3/ :

Section 4.5

Solution 4.5.1

1. Mass density (Fig. A.47):

�.r/ D
�
�0 ; for R � d � r � R
0 otherwise
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Fig. A.47

Moment of inertia:

J D
Z

d3r �.r/.n � r/2 D

D �0

RZ

R�d

r4dr

2�Z

0

d'

C1Z

�1
d cos#.1 � cos2 #/ D

D 8�

15
�0
�
R5 � .R � d/5

�
:

Since d
 R it holds approximately:

.R � d/5 D R5
�
1 � d

R

	5
� R5 � 5d R4 :

That means:

J � 8�

3
�0 d R4 :

For the mass M of the spherical shell one calculates

M D 4�

3
�0
�
R3 � .R � d/3

� � 4��0R2d

and therewith for the moment of inertia:

J � 2

3
M R2 :
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Fig. A.48

2. The z axis may be the rotation axis (Fig. A.48):

J D
Z

d3r �.r/.x2 C y2/ D

D �0
Z aZ

0

Z
dx dy dz .x2 C y2/ D

D �0a2 a3

3
2 :

For the mass M holds:

M D �0 � a3 :

That means:

J D 2

3
M a2 :

3. Mass density (Fig. A.49) (cylindrical coordinates: � ; ' ; z):

�.r/ D
�
˛ � � ; if 0 � � � R and � L

2
� z � CL

2

0 otherwise.

For the mass M it holds in this case:

M D
Z
�.r/d3r D ˛

RZ

0

�2d�

2�Z

0

d'

C L
2Z

� L
2

dz D ˛R3

3
2� L :

That determines the constant ˛:

˛ D 3M

2� L � R3 :
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Fig. A.49

Fig. A.50

Now we calculate the moment of inertia:

J D
Z

d3r �.r/�2 D 2� L ˛

RZ

0

�4d� D 2� L˛

5
R5 D 3

5
M R2 :

Solution 4.5.2 It is about a realization of the physical pendulum treated in
Sect. 4.2.3 (Fig. A.50). The equation of motion is derived in (4.22):

J R' CM g R sin' D 0 :

R is the vertical distance of the center of gravity to the rotation axis

R D ap
2
:

The moment of inertia J we have calculated in part 2. of Exercise 4.5.1:

J D 2

3
M a2 :

For small oscillations .sin ' ' '/ the equation of motion then reads:

R' C 3g

2
p
2 a
' D 0 :
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The oscillation period and the angular frequency one can take directly from this
expression:

! D 2� 3
4

r
3g

a
I 	 D 2�

!
:

According to Eq. (4.23) the thread length of the equivalent mathematical pendulum
would be:

l D J

M R
H) l D 2

p
2

3
a :

Solution 4.5.3

1. We use the same notation as in Fig. 4.11. For the potential energy we can directly
adopt Eq. (4.34):

V D M g.l� s/ sin ˛ :

For the kinetic energy it holds:

T D 1

2
J !2 C 1

2
M Ps2 :

J is the moment of inertia with respect to the symmetry axis of the infinitely
thin-walled hollow cylinder:

J D M R2 :

From the rolling off condition (4.31)

�s D R�'”Ps D R P'

it follows with P' D ! and Ps D v:

! D v.t/

R
:

The total kinetic energy T is then:

T D Mv2.t/

At t D 0 the potential energy amounts to

V.s D 0/ D M g l sin˛ � V0 :
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The kinetic energy is zero at t D 0. Therewith the energy theorem reads:

V.s/C T.Ps/ D const D V0

H) M g.l� s/ sin ˛ CM v2.t/ D M g l sin ˛

H) v2.t/ D g s sin ˛ D Ps2.t/ :

2. The last relation can be written as:

ds

dt
D pg sin˛ � s1=2 :

We separate the variables and integrate:

sZ

0

ds0
p

s0 D
p

g sin˛

tZ

0

dt0

H) 2
p

s.t/ D t �pg sin˛ :

That gives the solution:

s.t/ D 1

4
t2 g sin˛ :

The sought-after velocity v.t/ D Ps.t/ therewith reads:

v.t/ D 1

2
t g sin˛ :

Solution 4.5.4 Starting point shall be two body-fixed Cartesian systems of coordi-
nates with parallel axes as sketched in Fig. 4.22. The origins of the coordinates are
at the middle of the respective cylinder axis. Directions of the rotation axes:

n1 D n2 D �ez :

Let r1, r2 be the support points and therewith the points where the thread tensions
are acting:

r1 D .0;R1; z1/ I r2 D .0;�R2; z2/ :

Thread tensions:

F1 D .F; 0; 0/ D �F2 :
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Torques:

M.1/
ex D .0;R1; z1/ � .F; 0; 0/ D .0; z1F;�R1F/

M.2/
ex D .0;�R2; z2/ � .�F; 0; 0/ D .0;�z2F;�R2F/ :

Paraxial components:

M.1/
ex � n1 D R1F I M.2/

ex � n2 D R2F :

Angular momentum law (4.17):

J1 R'1 D R1F I J2 R'2 D R2F :

Moments of inertia of the cylinders with their homogeneous mass density are given
in (4.13):

J1 D 1

2
M1R

2
1 I J2 D 1

2
M2R

2
2 :

Rolling off condition:

x2 D constC R1'1 C R2'2

Õ Rx2 D R1 R'1 C R2 R'2 :

Translation of cylinder 2 according to the center of mass theorem:

M2 Rx2 D M2g � F :

It follows then by inserting:

M2R1 R'1 CM2R2 R'2 D M2g � F

Õ M2R1
R1F

J1
CM2R2

R2F

J2
D M2g � F

Õ F

�
1C R21M2

J1
C R22M2

J2

	
D M2g

Õ F

�
1C 2M2

M1

C 2
	
D M2g :

Therewith it holds for the thread tension:

F D M1M2

3M1 C 2M2

g :
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Solution 4.5.5

1. Angular-momentum law:

d

dt
L D dL

dt
lC L

dl
dt
DMex D M.n � l/ :

Scalar multiplication of this equation by n, where n is the unit vector of the
fixed (!) axis, i.e. d

dt n D 0:

n � d

dt
L D d

dt
.n � L/ D n �Mex D 0 :

That means:

n � L D const :

Now scalar multiplication of the angular momentum law by l:

l � d

dt
L D dL

dt
l2 C Ll � dl

dt
D dL

dt
C 1

2
L

d

dt
l2

„ƒ‚…
D 0

D dL

dt
ŠD l �Mex D 0 :

That means:

jLj D const :

2. Because of dL
dt D 0 it follows from the angular momentum law:

L
dl
dt
DMex D M.n � l/ :

That means:

d

dt
L D M

L
.n � L/ :

The angular momentum L is precessing around the axis n with the angular
velocity:

!p D M

L
n :
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Solution 4.5.6

1. Components of the inertial tensor in the particle picture (4.45):

Jmn D
NX

i D 1

mi
�
r2i ımn � xinxim

�
ri .xi1; xi2; xi3/

†! †0 Õ ri ! r0
i D ri C a :

Therewith it follows:

J0
mn D

X
i

mi
�
r20i ımn � x0

inx0
im

�

D
X

i

mi
�
.ri C a/2ımn � .xim C am/.xin C an/

�

D
X

i

�
r2i ımn � ximxin

�C
X

i

mi
�
a2ımn � aman

�

C2a �
X

i

miriımn �
X

i

.ximan C amxin/ :

The origin in † coincides with the center of gravity. That means:

X
i

miri D MR D 0
X

i

mixim D MRm D 0
X

i

mixin D MRn D 0 :

That leads us to the generalized Steiner’s theorem:

J0
mn D Jmn CM

�
a2ımn � aman

�
:

2. Rotation †! †0 means:

x0
i D

X
j

dijxj I dij D cos'ij D e0
i � ej :

Inertial tensor in †0 (particle picture):

J0
ij D

X
˛

m˛

�
r02
˛ ıij � x0

i˛x0
i˛

�
˛ D 1; 2; : : : ;N :
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We calculate step by step the various terms in this expression:

r02
˛ D

3X
kD1

x02
˛k D

X
k

X
st

dksdktx˛sx˛t

D
X

st

ıstx˛sx˛t D
X

s

x2˛s

D r2˛ :

Here we have exploited the orthogonality of the columns of the rotation matrix.
It is clear that the length of a vector cannot change with the rotation.

ıij D
X

m

dimdjm D
X
mn

dimdjnımn

x0̨
ix

0̨
j D

X
mn

dimdjnx˛mx˛n :

That eventually yields:

J0
ij D

X
mn

dimdjn

(X
˛

m˛

�
r2˛ımn � x˛mx˛n

�
)

D
X
mn

dimdjn Jmn :

Thus the inertial tensor transforms as it is expected for a second-rank tensor.

Solution 4.5.7

1. b†: body-fixed Cartesian system of coordinates with its origin in the lower-left
edge of the cuboid and axes along the edges of the cuboid. Inertial tensor:

Jmn D
Z

V
d3Or�.Or/ �Or2ımn � OxmOxn

� Or D .Ox1; Ox2; Ox3/ :

Homogeneous mass density �0: Mass: M D �0abc. Therewith it holds:

J11 D �0
Z a

0

dOx
Z b

0

dOy
Z c

0

dOz �Oy2 C Oz2�

D �a
Z b

0

dOy
Z c

0

dOz �Oy2 C Oz2�

D �0a
Z b

0

dOy
�

cOy2 C 1

3
c3
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D �0a
�
1

3
cb3 C 1

3
c3b

	

D �0abc
1

3

�
b2 C c2

�

D 1

3
M
�
b2 C c2

�
:

Symmetry:

J22 D 1

3
M
�
a2 C c2

� I J33 D 1

3
M
�
a2 C b2

�

J12 D �0
Z a

0

dOx
Z b

0

dOy
Z c

0

dOz .�OxOy/

D ��0c
Z a

0

dOx Oxb2

2
D ��0ca2

2

b2

2

D �1
4

M ab D J21 :

Symmetry:

J13 D J31 D �1
4

M ac I J23 D J32 D �1
4

M bc :

Inertial tensor:

bJ D M

0
@

1
3

�
b2 C c2

� � 1
4
ab � 1

4
ac

� 1
4
ba 1

3

�
a2 C c2

� � 1
4
bc

� 1
4
ca � 1

4
cb 1

3

�
a2 C b2

�

1
A :

2. Rotation around the space diagonal of the cuboid:

! D ! n n D 1p
a2 C b2 C c2

0
@

a
b
c

1
A :

Moment of inertia related to n (4.50):

Jn D
X

i;j

Jij ninj :
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That means:

Jn D M

a2 C b2 C c2

�
1

3
a2
�
b2 C c2

� � 1
4

a2b2 � 1
4

a2c2 � 1
4

b2a2

C1
3

b2
�
a2 C c2

� � 1
4

b2c2 � 1
4

c2a2 � 1
4

c2b2 C 1

3
c2
�
a2 C b2

�	

D M

a2 C b2 C c2

�
2

3
� 2
4

	 �
a2b2 C a2c2 C b2c2

�
:

Therewith we have found an expression likewise valid for all the four space
diagonals:

Jn D 1

6
M

a2b2 C a2c2 C b2c2

a2 C b2 C c2
:

3. †: System of coordinates with axes parallel to the edges of the cuboid as in
part 1., but now with its origin at the center of gravity of the cuboid. Seen from
b† the latter lies because of the homogeneous mass density at R D 1

2
.a; b; c/.

(Verify that explicitly!)

NJ11 D �0

Z C a
2

� a
2

dNx
Z C b

2

� b
2

dNy
Z C c

2

� c
2

dNz �Ny2 C Nz2�

D �0a
Z C b

2

� b
2

dNy
�
Ny2cC 1

12
c3
	

D �0a

�
1

12
b3cC 1

12
c3
	

D 1

12
M
�
b2 C c2

�
:

Symmetry:

NJ22 D 1

12
M
�
a2 C c2

� NJ33 D 1

12
M
�
a2 C b2

�
:

Non-diagonal elements:

NJ12 D �0

Z C a
2

� a
2

dNx
Z C b

2

� b
2

dNy
Z C c

2

� c
2

dNz .�NxNy/

D �0c
Z C a

2

� a
2

dNx.�Nx/
�

c2

4
� c2

4

	

D 0 :
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Analogously we get the other non-diagonal elements of the inertial tensor! The
Cartesian axes of N† thus represent the principal axes of inertia of the cuboid:

J D 1

12
M

0
@

b2 C c2 0 0

0 a2 C c2 0

0 0 a2 C b2

1
A :

Moment of inertia with respect to the space diagonal n as in part 2.:

Jn D
X

i;j

Jijninj

D 1

a2 C b2 C c2
1

12
M
�
a2
�
b2 C c2

�C b2
�
a2 C c2

�C c2
�
a2 C b2

��

D 1

6
M

a2b2 C a2c2 C b2c2

a2 C b2 C c2
:

That is the same result as in part 2. Clear, because for b† as well as for † the
origin lies on the rotation axis.

4. Rotation axis now coincides with the cuboid-edge in y direction. Then b† from
part 1. has its origin on the rotation axis, however † does not. Therefore the
inertial tensor from part 1. has to be used. Rotation axis:

n D eOy D .0; 1; 0/ :

It follows:

Jy DbJ22 D 1

3
M
�
a2 C c2

�
:

Now the rotation axis shall be again in y direction but passing through the center
of gravity of the cuboid. Now† has the origin on the axis, butb† does not. Hence,
the inertial tensor from part 3. has to be applied. The direction of the rotation axis
in †, however, is analog.

n D eNy D .0; 1; 0/ :

That means

J D J22 D 1

12
M
�
a2 C c2

�
:

Steiner’s theorem:

Jy D J CM s2 D 1

12
M
�
a2 C c2

�CM s2 :
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Thereby s is the vertical distance of the origin of † (cuboid corner) from the
parallel axis through the center of gravity of the cuboid:

s D 1

2

p
a2 C c2 :

Therewith:

Jy D J CM s2 D 1

12
M
�
a2 C c2

�C 1

4
M
�
a2 C c2

� D 1

3
M
�
a2 C c2

�
:

That was to be shown!

Solution 4.5.8 The principal moments of inertia are found by solving the eigen-
value equation:

J! D j! :

The angular velocity ! has thereby the direction of one of the principal axes of
inertia. After Exercise 4.5.6 it holds here:

J D 1

4
Ma2

0
@

8
3
�1 �1

�1 8
3
�1

�1 �1 8
3

1
A :

Condition for a non-trivial solution of the homogeneous system of equations which
results from the eigenvalue equation:

det
�
J � j�

� ŠD 0

or

det
�
J0 � j0 �

� D 0 with j0 D 4

Ma2
j

and

J0 D
0
@

8
3
�1 �1

�1 8
3
�1

�1 �1 8
3

1
A :
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1. Eigenvalues (principal moments of inertia)

ˇ̌
ˇ̌
ˇ̌
8
3
� j0 �1 �1
�1 8

3
� j0 �1

�1 �1 8
3
� j0

ˇ̌
ˇ̌
ˇ̌
ŠD 0 :

With x D 8
3
� j0 one has to solve:

x3 � 3x � 2 D 0 Õ x1 D 2 I x2 D x3 D �1

That means:

j01 D
8

3
� x1 D 2

3
I j02;3 D

8

3
� x2;3 D 11

3
:

Principal moments of inertia:

A D 1

4
Ma2 j01 D

1

6
Ma2

B D C D 1

4
Ma2 j02;3 D

11

12
Ma2 :

2. Eigenvectors (principal axes of inertia)
Eigenvectors of J are also eigenvectors of J0!

(a) A D 1
6
Ma2

�
J0 � j01�

�
0
@

a1
a2
a3

1
A D

0
@
2 �1 �1
�1 2 �1
�1 �1 2

1
A
0
@

a1
a2
a3

1
A D 0 :

This is equivalent to:

2a1 D a2 C a3

2a2 D a1 C a3

Õ a1 D a2 D a3 :

(normalized) unit vector:

e� D 1p
3

0
@
1

1

1

1
A :
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One of the principal axes of inertia thus is the space diagonal of the cube.
The two others must therefore lie within the plane perpendicular to the space
diagonal being orthogonal to each other. Apart from that, however, they
should be arbitrarily rotatable in this plane.

(b) B D 11
12

Ma2

�
J0 � j02�

�
0
@

b1
b2
b3

1
A D

0
@
�1 �1 �1
�1 �1 �1
�1 �1 �1

1
A
0
@

b1
b2
b3

1
A D 0 :

It follows

b1 C b2 C b3 D 0 :

i.e. only one conditional equation. If one chooses b1 D b2 D 1 it arises as
(normalized) unit vector:

e� D 1p
6

0
@
1

1

�2

1
A :

Orthogonality:

e� � e� D 0 :

(c) C D 11
12

Ma2

From

�
J0 � j03�

�
0
@

c1
c2
c3

1
A D

0
@
�1 �1 �1
�1 �1 �1
�1 �1 �1

1
A
0
@

c1
c2
c3

1
A D 0

it follows now analogously:

c1 C c2 C c3 D 0 :

That leads to the ansatz

e� /
0
@

c1
c2

�c1 � c2

1
A ;
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where

e� � e� D 0

is already guaranteed. Furthermore it should hold:

0
ŠD e� � e� D 1p

6
.c1 C c2 C 2c1 C 2c2/ Õ c1 D �c2 :

That yields the (normalized) unit vector:

e� D 1p
2

0
@
�1
1

0

1
A :

The arbitrariness in the last step concerning the sign is removed by the
requirement that the unit vectors build a right-handed system:

e� �
�
e� � e�

� ŠD 1 :

The unit vectors e� ; e�; e� define the directions of the principal axes of inertia!
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Antiderivative, 38–40, 43–47, 50, 163, 229,
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Antisymmetric tensor of third rank, 78
Aperiodic limiting case, 221, 222, 226,

272
Arc cosine, 15
Arc length, 90–93, 95, 96, 98, 101, 164, 169,

378–380, 383
Arc sine, 14
Area conservation principle, 251, 268, 273,

470
Area function, 42, 43
Atwood’s free-fall machine, 235

B
Basis definitions, 179, 183
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136, 151–153, 159, 161, 166, 169,
172, 173, 211

Bilinearity, 63, 64, 371
Binormal-unit vector, 93, 94, 96, 98, 382
Body axis, 337, 339, 341, 345
Body of complex numbers, 2

C
Capture reaction, 294, 304
Cartesian coordinate system, 57, 184, 194
Center of gravity, 167, 279, 287, 289, 293, 296,

297, 303, 306, 307, 310, 314–316,
318, 329, 338, 343, 344, 499, 501,
505, 508, 513, 516, 518

Center of mass
coordinate, 284, 303
theorem, 277, 284, 303, 309, 499, 511

Central collision, 292, 293, 304
Central force, 185–186, 249–252, 257, 261,

270, 271, 273, 281, 461–463, 470,
474, 477, 479, 485, 489, 501

Centrifugal force, 193, 271, 420, 462
Chain rule, 25, 26, 93, 108, 111, 148, 154, 163,

430
Chandler’s period, 339
Circular motion, 86, 92, 96, 98, 164, 176–177,

271, 309, 450
Circular orbit, 270
Classically allowed region, 232, 272
Classically forbidden region, 232, 272
Classical turning points, 232
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Co-domain, 7, 163
Complex plane, 211, 214, 236
Component representation, 76–80, 164
Conic section, 263, 296, 470, 485, 488
Conjugated complex number, 210, 213
Conservative force, 231, 232, 245, 250, 256,

257, 280, 282, 319, 456
Constraining force, 206
Constraint, 206, 306, 426
Continuity, 9–10, 25, 85, 87, 105, 109, 164,

165, 442
Contour lines, 102–104, 165, 385, 386
Convergent, 6, 18, 163
Coordinate line, 149–151, 157, 159–161, 166,

408
Coriolis force, 193, 194, 271, 420, 421
Cosine function, 14, 481
Coulomb force, 186
Coupled oscillation, 298–301, 304
Coupled oscillators, 283, 300
Coupled thread pendulum, 301
Cramer’s rule, 138–140, 165, 400, 443
Creeping case, 223, 226, 272
Critical damping, 221, 222
Curl, 113–116, 136, 155, 157, 160, 165, 250
Curl field, 114, 115, 165
Curvature, 94, 96–98, 101, 102, 164, 379, 382,

383
radius of, 94, 96, 98, 164, 170, 379

Curvilinear coordinates, 54, 149–155
Curvilinear-orthogonal, 149, 152, 157, 159,

166, 408
Curvilinear unit vector, 159
Cylindrical coordinates, 155–157, 161, 162,

171–172, 189, 311, 410, 411, 413,
507

D
Damped harmonic oscillator under the

influence of a periodic external,
224

Degrees of freedom, 306, 307, 344, 345
Derivative

first, 19, 25, 35
higher, 22, 89

Determinant
multiplication theorem, 133, 148
subdeterminant, 131

Differentiable, 20–23, 25, 30, 32, 37, 89, 90,
111, 113–115, 117, 118, 147, 148,
153, 154, 163, 391

Differential calculus, 1–38
Differential equation of second order, 183,

195, 198, 202, 207, 217, 262, 314,
427, 437, 440

Differential quotient, 18–23
Differentiation, 38, 44, 46, 85, 88–90,

106–108, 112, 163, 171, 172,
174, 191, 209, 244, 280, 333,
391

rules of, 23–27, 36, 48, 89, 100, 350
Dimension of a vector space, 73
Directional cosine, 76, 164
Divergence, 113–118, 154, 155, 157, 160, 165,

391
Divergent, 4, 6, 18, 163
Domain of definition, 7–10, 102, 163
Double vector product, 69, 71, 72, 79–80, 164,

365, 366, 368, 370

E
Effective potential, 253, 254, 267, 269, 270,

479
Eigen frequency, 215, 225, 227, 272, 300, 493,

496, 497
Eigenvalue, 331, 519
Eigenvalue equation, 331, 518
Eigenvector, 331, 332, 519
Einstein’s equivalence principle, 185
Elastic collision, 289–293, 303, 502
Electrical oscillator circuit, 215, 216, 218, 219,

224
Ellipse, 261, 263–266, 268, 270, 273, 296, 297,

373, 478, 484, 488
Energy conservation law, 244, 252, 257, 258,

273, 280, 298, 309, 312, 315, 336,
465, 503

Energy theorem, 244, 253, 270, 272, 280, 289,
303, 309, 311, 315, 319, 342, 463,
470, 483, 502, 510

Energy transfer, 293
Euclidean space, 56, 75–76
Euler number, 5, 15
Euler’s angles, 328, 334–335, 339, 345
Euler’s equations, 332–335, 345
Euler’s formula, 15, 212, 272, 431
Exponential function, 15–18, 21, 37, 209, 212,

219
External force, 202, 224–228, 232, 272,

275–277, 281, 296, 298, 303, 309,
315, 333, 492, 499

Extreme values, 30–33, 37, 227, 356, 357
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F
Fall time, 196, 422
Field

scalar, 102, 103, 105, 106, 110, 111, 113,
115, 117, 118, 165, 389, 396

vector, 103–106, 113, 114, 116–118, 154,
162, 165, 242, 391, 395, 411

Field lines, 104, 105, 116, 165, 384, 386
First cosmic velocity, 267, 269, 486
Focal point, 263, 268, 270, 297, 488
Following definition, 111, 114, 179, 183, 220,

276
Force, 56, 167, 275, 305
Force field, 183, 230, 231, 240–243, 246,

255–258, 261, 268, 270
Force-free motion, 195, 271, 435
Force-free spinning top, 335, 338, 345
Free axes, 335–337, 345
Free damped linear oscillator, 218–223
Free fall, 185, 194, 196–197, 206, 235, 426,

429, 436
Frenet’s formulae, 96, 164, 380
Frequency, 208, 216, 220, 225–228, 269, 271,

272, 450, 494
Frictional force, 178, 186, 201, 271
Fundamental theorem of calculus, 42–46, 163

G
Galilean transformation, 187–189, 271
Geometric series, 6, 163
Geostationary orbit, 269, 486
Gradient, 18, 110–113, 153–154, 157, 160,

245, 250, 330
Gradient field, 111, 113, 115, 117, 165, 388,

389
Gravitational force, 184–186, 204, 205, 215,

237, 267, 275, 297, 317, 318, 429,
435

Gravitational potential, 260, 261, 266, 267, 283
Gravity acceleration, 184

H
Hard sphere, 303
Harmonic oscillator, 186, 214–216, 218, 219,

222, 227, 228, 230–232, 247, 272,
282, 452, 461

Harmonic series, 6, 34, 348
Helical line, 87, 92–93, 97–98, 164, 450, 483
Hyperbola, 263, 265, 273, 296, 484

I
Imaginary axis, 211
Imaginary number, 209, 210, 227, 272
Imaginary part, 210, 211, 225, 226, 236, 432
Impact parameter, 265, 266, 273
Inelastic collision, 293–295, 302, 304, 503
Inertia force, 193
Inertial ellipsoid, 327–328, 330, 331, 345
Inertial mass, 181–183, 185
Inertial system, 180, 187–190, 192–194, 271,

287, 288, 320, 332, 419, 420
Inertial tensor, 319–333, 343–345, 513–515,

517
Inflection point, 31–33, 163
Initial conditions, 168, 195–198, 203, 205,

207, 217, 220, 223, 226, 238, 258,
259, 263, 269, 300, 315, 421, 423,
427, 441, 446, 448, 450, 493, 495,
499

Integral
calculus, 1, 38–56, 163
definite, 40, 42, 45, 47, 55, 163
indefinite, 44, 229
multiple, 50–55, 151, 164, 413

Riemann, 40, 41, 241
surface, 50, 52
volume, 53–54

Integration
constant bounds of integration,

51–52
integration by parts, 48–50, 54, 163, 272
non-constant bounds of integration,

52–54
rules of integration, 40–42

Internal force, 275–278, 286, 295, 492
International system of units, 183
Inverse function, 9, 14–16, 26, 36, 163

J
Jacobian determinant, 144–151, 156, 158, 161,

166, 406

K
Kepler’s laws, 268, 273
Kinetic energy, 231–232, 243, 258, 260, 272,

280, 282, 283, 285, 289, 293, 302,
309, 310, 313, 317–319, 321–324,
328, 330, 342, 345, 475, 503, 509,
510
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L
Laboratory system, 194, 290, 293, 294, 302,

303
Laplace operator, 113, 116, 165
Lattice vibrations, 301
Law of conservation of angular-momentum,

248, 252
Law of motion, 181–183, 195
Law of reaction, 182
Lex Prima, 180
Lex Secunda, 181
Lex Tertia, 182
l’Hospital’s rule, 29, 37, 163, 356, 444
Limiting values, 3–8, 10, 20, 29–30, 33, 40,

109, 201, 205, 308
Linear differential equation, 198–201, 271, 437
Linear harmonic oscillator, 214–218, 221, 233,

238, 246, 247, 258, 272
Linearly dependent, 73–75, 372, 401
Linearly independent, 73, 75, 84, 120, 140,

141, 200, 203, 207, 216, 219, 234,
372, 423, 425

Linear momentum, 181, 276–277, 279, 288
Linear vector space, 61, 164
Line of nodes, 334, 335
Logarithm, 5, 15–18, 37, 163

natural, 16, 17
Lorentz force, 186, 239, 447, 449

M
Magnitude of a vector, 73, 164
Mass density, 50, 102, 308, 310, 323, 326,

342–344, 445, 505–508, 511, 514,
516

Mass point, 93, 98–100, 102, 164, 167–273,
277, 280, 281, 284, 286, 287, 289,
291, 298, 300, 303, 304, 306, 307,
320, 321, 420, 461, 477, 488

system, 275, 277, 280, 282, 286, 303, 305
Matrix

diagonal, 119, 120, 135, 165
inverse, 125, 134–135, 142, 144, 165
product, 121–122, 127, 135, 141, 144, 400
rank of a, 120, 140, 165, 332
rotation, 124, 126, 128, 136–137, 144, 165,

324, 325, 344, 403, 404, 406, 514
symmetric, 119, 165
transposed, 125, 142, 143, 165
unit, 120, 134
zero, 119, 165

Mean value theorem of integral calculus, 43,
163

Moment of inertia, 310, 311, 315, 316, 319,
320, 325–327, 336, 337, 342, 344,
345, 506, 508, 509, 515, 517

Momentum conservation law, 277, 288,
501–503

Moving trihedron, 93–99, 101, 164, 169, 379,
382

N
Nabla operator, 111, 113, 114, 154, 160, 161,

166, 408
Natural coordinates, 169–170, 176
Newton’s law

of friction, 201
of motion, 179–183, 195

Normal form, 328
Normal-unit vector, 93–96, 98, 101, 164, 169,

170, 379, 382
North pole

geometric, 339
kinematic, 339

Numbers
complex, 2, 15, 209–214, 216, 236, 237,

272, 432
integer, 1
natural, 1, 3, 17
rational, 1, 34
real, 1–3, 26, 40, 51, 59–61, 63, 64, 69, 70,

73, 77, 82, 84, 121, 124, 131, 133,
209, 210

Numerical eccentricity, 264
Nutation cone, 341, 345

O
Orthogonal, 63, 68, 72, 74, 80, 82, 90, 94, 171,

173, 178, 250, 330, 344, 403, 415,
520

Orthonormal system, 74
Oscillation equation, 207, 209, 271, 338, 492
Oscillation period, 207, 259, 271, 342, 452,

453, 466, 468, 509
Osculating plane, 94, 95, 99, 164, 169–170

P
Parabola, 198, 260, 263, 296, 408, 471–473
Parabolic cylindrical coordinates, 161
Parametrization of space curves, 85–87, 92,

241
Partial derivative, 105–110, 116, 165, 245,

388
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Particle decay, 294–295, 304
Path line, 86, 87, 89–91, 93, 94, 99–102, 164,

168, 169, 175, 196, 238, 270, 271,
305, 482, 483, 489

Pendular motion, 314
Pendulum

mathematical, 206, 271, 314, 345, 509
simple, 205–208, 215, 271, 314, 492,

493
thread, 205, 206, 208, 228, 271, 272, 301,

314, 342
Phase shift, 208, 220, 228, 272
Physical pendulum, 307, 313–315, 345, 508
Plane polar coordinates, 144–147, 149,

152–153, 162, 170–171, 176, 206,
211, 412, 487, 500

Planetary motion, 261–270, 273, 295, 304
as a two-particle problem, 295–297

Point transformation, 145
Polar representation of a complex number, 211,

236, 272
Pole cone, 339, 341, 345
Position vector, 56, 57, 59, 61, 64, 65, 81,

85–86, 91, 123, 151, 153, 157, 158,
160, 161, 168, 170–172, 174, 177,
188, 191, 192, 203, 261, 267, 271,
275, 284, 295, 314, 320, 365, 408,
420, 470

Postulates, 179, 181, 183, 187
Potential

energy, 231, 232, 244, 272, 282, 311, 318,
467–468, 476, 509

of the force, 231, 244, 257, 451, 456
wall, 233

Power, 2, 3, 16, 24, 27, 37, 214, 229, 240–244,
272, 280

Principal axes of inertia, 326–328, 331–333,
336, 345, 517–521

Principal axes transformation, 327, 328, 345
Principal dynamical equation of classical

mechanics, 183
Principal moments of inertia, 327, 332, 336,

337, 341, 342, 345, 518, 519
Pseudo force, 189–190, 193, 271
Pseudoscalar, 67, 71, 164
Pythagoras’ theorem, 12, 263, 477

R
Radian, 11

measure, 11, 12, 14, 15
Raising to a power, 2, 214
Rational exponents, 3
Real axis, 211

Real part, 210, 211, 225, 226, 236
Reduced mass, 284, 285, 303
Region of convergence, 37
Relative angular momentum, 296, 302
Relative coordinate, 284, 287, 303
Relative energy, 296
Relative motion, 284–286, 294, 296, 297, 302,

500
Resistance of inertia, 180, 185
Resonance

catastrophy, 228
frequency, 227, 272

Rest mass, 181
Riemannien sense, 91, 159
Right-handed trihedron, 57, 93, 136
Rigid body, 305–345
Rolling motion, 317–319
Rolling off condition, 317, 509, 511
Root, 3, 6, 76, 214, 219–221, 451, 452
Rotation angle, 307, 309, 311, 319
Rotation in the plane, 126–127

S
Sarrus rule, 130–131, 165, 332, 398
Scalar product, 62–67, 77–78, 84, 111, 113,

121, 122, 124, 144, 164, 269, 371,
372, 378, 402

Scalar triple product, 71, 79, 136, 150, 164,
322, 365, 366, 369, 405

Scattering angle, 289–292
Schwarz’s inequality, 64–65, 164
Second cosmic velocity, 267, 269, 273, 486
Separation of variables, 430, 435, 451, 453,

465, 466
Sequence of numbers, 3–5, 128, 163

rules for, 5
Series, 5–7, 14–16, 22, 27–28, 34, 37, 47, 127,

163, 212, 348, 354, 355, 468
Settling time, 225
Sine function, 12, 14, 163, 209
Sine rule, 69, 70, 164
Sliding friction, 202
Source field, 113
Space cone, 341, 345
Space curve, 85–87, 90–93, 95, 96, 98, 99,

101, 102, 149, 164, 169, 241, 373,
379

Space inversion, 66, 67
Space rotation, 127–128
Spherical coordinates, 54, 157–160, 162, 166,

172–174, 178, 252, 271, 409–412,
416–417, 470, 490

Spinning top
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asymmetric, 328, 345
spherical, 328, 345
symmetric, 328, 337–342, 345

Spring constant, 215, 238, 300–302, 304
Static friction, 202
Steiner’s theorem, 315–316, 344, 345, 513,

517
Stokes’s law of friction, 201
Superposition principle, 183, 199

T
Tangent-unit vector, 93, 94, 96, 97, 101, 151,

169, 378, 381, 383
Taylor expansion, 16, 27–29, 353–355
Taylor series, 28
Tensor, 56, 78, 102, 319–333, 343–345,

513–515, 517
Thales theorem, 82, 292, 366–367, 462
Thread tension, 206, 234, 271, 426, 427, 510,

511
Torque, 240, 247–249, 272, 278, 313, 319,

332, 333, 335, 336, 338, 343, 474,
511

Torsion
radius, 95, 98, 164
of the space curve, 95, 98, 101, 379

Total derivative, 109, 165
Trajectory, 86, 102, 164, 168, 169, 176, 178,

187, 241, 254, 261, 263, 269, 304,
418, 450, 476

parabola, 198
Transformation of variables, 144–151
Triangle inequality, 65, 82, 366
Trigonometric functions, 11–15, 34, 145, 209,

212, 237, 351
Two-body collision, 286–290
Two-particle force, 275, 281

U
Uniform circular motion, 92, 177, 271
Uniformly accelerated motion, 175–176, 196,

271
Uniform straight-line motion, 174–175, 180,

204, 234, 237, 248, 272, 296,
435

Unitary vector space, 65

V
Vector

addition of vectors, 58, 61, 77
associativity, 58–59, 61, 62
axial vector, 66, 67, 164, 177, 248
column vector, 75, 120, 122, 138, 140
commutativity, 58, 59, 62, 63, 122, 371
distributivity, 60, 62, 63, 68, 69, 369, 371
multiplication by a real number, 59, 77
polar vector, 67, 248
product, 66–72, 78–79, 113, 135, 164, 165,

365, 366, 368–370, 395, 415
pseudovector, 66
row vector, 75, 120, 124
subtraction of vectors, 59, 426, 493
unit vector, 58, 61, 64, 73, 74, 80, 82, 90,

93, 94, 97, 117, 152, 157, 159, 161,
164, 170–171, 178, 313, 325, 327,
340, 362, 366, 379, 405, 408, 411,
415, 512, 519–521

zero vector, 64, 76
Vector-valued function

differentiation of a, 88–90
integration of a, 90

Velocity, 56, 89, 98–100, 102, 104, 168–182,
184, 186, 188, 189, 191, 193–195,
197, 198, 201, 202, 204, 205,
218, 224, 232, 234, 236–239, 243,
258–260, 266–269, 271, 273, 275,
282, 287, 294, 295, 317, 319–322,
342, 379, 413, 418, 419, 430, 435,
436, 439, 444, 465, 469, 472, 475,
486, 498, 501, 510, 512

Vertical throw, 197–198, 236, 429
Virial of the forces, 283
Virial theorem, 282–284, 303
Volume element, 50, 149, 151, 156, 159, 161,

166, 308, 413
Volume integral, 53–54

W
Weak damping (oscillatory case), 219–221
Weight, 184–185, 226, 235
Work, 17, 38, 85, 180, 225, 229–232, 236,

240–246, 255–258, 272, 296, 333,
353, 454–456, 461

Wronski-determinant, 234, 425
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