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General Preface

The seven volumes of the series Basic Course: Theoretical Physics are thought to be
textbook material for the study of university-level physics. They are aimed to impart,
in a compact form, the most important skills of theoretical physics which can be
used as basis for handling more sophisticated topics and problems in the advanced
study of physics as well as in the subsequent physics research. The conceptual
design of the presentation is organized in such a way that

Classical Mechanics (volume 1)
Analytical Mechanics (volume 2)
Electrodynamics (volume 3)
Special Theory of Relativity (volume 4)
Thermodynamics (volume 5)

are considered as the theory part of an integrated course of experimental and
theoretical physics as is being offered at many universities starting from the first
semester. Therefore, the presentation is consciously chosen to be very elaborate and
self-contained, sometimes surely at the cost of certain elegance, so that the course
is suitable even for self-study, at first without any need of secondary literature. At
any stage, no material is used which has not been dealt with earlier in the text. This
holds in particular for the mathematical tools, which have been comprehensively
developed starting from the school level, of course more or less in the form of
recipes, such that right from the beginning of the study, one can solve problems
in theoretical physics. The mathematical insertions are always then plugged in
when they become indispensable to proceed further in the programme of theoretical
physics. It goes without saying that in such a context, not all the mathematical
statements can be proved and derived with absolute rigour. Instead, sometimes a
reference must be made to an appropriate course in mathematics or to an advanced
textbook in mathematics. Nevertheless, I have tried for a reasonably balanced
representation so that the mathematical tools are not only applicable but also appear
at least ‘plausible’.

The mathematical interludes are of course necessary only in the first volumes of
this series, which incorporate more or less the material of a bachelor programme.
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vi General Preface

In the second part of the series which comprises the modern aspects of theoretical
physics,

Quantum Mechanics: Basics (volume 6)
Quantum Mechanics: Methods and Applications (volume 7)
Statistical Physics (volume 8)
Many-Body Theory (volume 9),

mathematical insertions are no longer necessary. This is partly because, by the time
one comes to this stage, the obligatory mathematics courses one has to take in order
to study physics would have provided the required tools. The fact that training in
theory has already started in the first semester itself permits inclusion of parts of
quantum mechanics and statistical physics in the bachelor programme itself. It is
clear that the content of the last three volumes cannot be part of an integrated
course but rather the subject matter of pure theory lectures. This holds in particular
for Many-Body Theory which is offered, sometimes under different names as, e.g.,
advanced quantum mechanics, in the eighth or so semester of study. In this part, new
methods and concepts beyond basic studies are introduced and discussed which are
developed in particular for correlated many particle systems which in the meantime
have become indispensable for a student pursuing master’s or a higher degree and
for being able to read current research literature.

In all the volumes of the series Basic Course: Theoretical Physics, numerous
exercises are included to deepen the understanding and to help correctly apply the
abstractly acquired knowledge. It is obligatory for a student to attempt on his own
to adapt and apply the abstract concepts of theoretical physics to solve realistic
problems. Detailed solutions to the exercises are given at the end of each volume.
The idea is to help a student to overcome any difficulty at a particular step of the
solution or to check one’s own effort. Importantly these solutions should not seduce
the student to follow the easy way out as a substitute for his own effort. At the end
of each bigger chapter, I have added self-examination questions which shall serve
as a self-test and may be useful while preparing for examinations.

I should not forget to thank all the people who have contributed one way or
an other to the success of the book series. The single volumes arose mainly from
lectures which I gave at the universities of Muenster, Wuerzburg, Osnabrueck,
and Berlin in Germany, Valladolid in Spain, and Warangal in India. The interest
and constructive criticism of the students provided me the decisive motivation for
preparing the rather extensive manuscripts. After the publication of the German
version, I received a lot of suggestions from numerous colleagues for improvement,
and this helped to further develop and enhance the concept and the performance
of the series. In particular, I appreciate very much the support by Prof. Dr. A.
Ramakanth, a long-standing scientific partner and friend, who helped me in many
respects, e.g. what concerns the checking of the translation of the German text into
the present English version.
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Special thanks are due to the Springer company, in particular to Dr. Th. Schneider
and his team. I remember many useful motivations and stimulations. I have the
feeling that my books are well taken care of.

Berlin, Germany Wolfgang Nolting
May 2015





Preface to Volume 2

The concern of classical mechanics consists in the setting up and solving of
equations of motion for

mass points, system of mass points, rigid bodies

on the basis of as few as possible

axioms and principles.

The latter are mathematically not strictly provable but represent merely up to now
self-consistent facts of everyday experience. One might of course ask why one
even today still deals with classical mechanics although this discipline may have
a direct relationship to current research only in very rare cases. On the other
hand, classical mechanics represents the indispensable basis for the modern trends
of theoretical physics, which means they cannot be put across without a deep
understanding of classical mechanics. Furthermore, as a side effect, mechanics
permits in connection with relatively familiar problems a certain habituation to
mathematical algorithms. So we have exercised intensively in the first volume of
this Basic Course: Theoretical Physics in connection with Newton’s Mechanics the
input of vector algebra.

Why, however, are we dealing in this second volume once more with classical
mechanics? The analytical mechanics of the underlying second volume treats
the formulations according to Lagrange, Hamilton, and Hamilton-Jacobi, which,
strictly speaking, do not present any new physics compared to the Newtonian version
being, however, methodically much more elegant and, what is more, revealing a
more direct reference to advanced courses in theoretical physics such as the quantum
mechanics.

The main goal of this volume 2 corresponds exactly to that of the total Ground
Course: Theoretical Physics. It is thought to be an accompanying textbook material
for the study of university-level physics. It is aimed to impart, in a compact form,
the most important skills of theoretical physics which can be used as basis for
handling more sophisticated topics and problems in the advanced study of physics
as well as in the subsequent physics research. It is presented in such a way that
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x Preface to Volume 2

it enables self-study without the need for a demanding and laborious reference
to secondary literature. For the understanding of this volume, familiarity with the
material presented in volume 1 is the only precondition. Mathematical interludes
are always then presented in a compact and functional form and practiced when it
appears indispensable for further development of the theory. For the whole text,
it holds that I had to focus on the essentials, presenting them in a detailed and
elaborate form, sometimes consciously sacrificing certain elegance. It goes without
saying that after the basic course, secondary literature is needed to deepen the
understanding of physics and mathematics.

This volume on classical mechanics arose from relevant lectures I gave at the
German Universities in Münster and Berlin. The animating interest of the students
in my lecture notes has induced me to prepare the text with special care. This volume
as well as the subsequent volumes is thought to be a textbook material for the study
of basic physics, primarily intended for the students rather than for the teachers.

I am thankful to the Springer company, especially to Dr. Th. Schneider, for
accepting and supporting the concept of my proposal. The collaboration was always
delightful and very professional. A decisive contribution to the book was provided
by Prof. Dr. A. Ramakanth from the Kakatiya University of Warangal (India). Many
thanks for it!

Berlin, Germany Wolfgang Nolting
October 2015
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Chapter 1
Lagrange Mechanics

1.1 Constraints, Generalized Coordinates

The Newtonian mechanics, which was the subject matter of the considerations in the
first volume of the series Basic Course: Theoretical Physics, deals with systems
of particles (mass points), where each particle follows an equation of motion of the
form:

mi Rri D F.ex/
i C

X

j ¤ i

Fij (1.1)

F.ex/
i is the external force acting on particle i, Fij the (internal) force executed by

particle j on particle i. In the case of N particles we get from (1.1) a coupled
system of 3N differential equations of second order the solution of which requires
the knowledge of a sufficiently large number of initial conditions. Typical physical
systems of our environment are, however, very often not typical particle systems.
Let us consider as an example the model of a piston machine (Fig. 1.1). The
machine itself consists of almost infinitely many particles. The state of the machine
is, however, in general already reasonably characterized by a specification of the
angle '. Forces and tensions, for instance within the piston rod, are normally not of
interest. They cause certain geometric constraints between the particles. Because of
these the particle movements of a macroscopic system are as a rule not completely
free. It is said that they are restricted by certain

forces of constraint

To take them in detail into consideration by the internal forces Fij in (1.1) practically
always means a hopeless endeavor.

© Springer International Publishing Switzerland 2016
W. Nolting, Theoretical Physics 2, DOI 10.1007/978-3-319-40129-4_1
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2 1 Lagrange Mechanics

Fig. 1.1 Model of a piston
machine

We introduce two for the following very important terms:

Definition 1.1.1

1. ‘Constraints’ are conditions which limit the free motion of the particles of a
physical system (geometric bounds).

2. ‘Forces of constraint’ are forces which cause the constraints impeding the free
particle movement (tracking force, thread tensions, . . . .).

In the description of a mechanical system there arise two profound problems:

(a) Forces of constraint are in general unknown. Only their impact is known. The
system (1.1) of coupled equations of motions is therefore hardly ever possible
to formulate, let alone to solve. We thus try to restate the mechanics in such
a way that the forces of constraint are not included anymore. Exactly this idea
leads to the Lagrange-version of Classical Mechanics!

(b) The particle coordinates

ri D .xi; yi; zi/ ; i D 1; 2; : : : ;N

are, because of the forces of constraint, not independent of each other. We
therefore intend to replace them later by linearly independent generalized
coordinates. As a consequence these generalized coordinates will be in general
rather unimaginative, on the other hand, however, mathematically simpler to
handle.

It is immediately clear that the constraints play an important role in the concrete
solution of a mechanical problem. A classification of mechanical systems with
respect to nature and type of their constraints thus surely appears reasonable.

1.1.1 Holonomic Constraints

By these one understands connections between particle coordinates and possibly
even the time of the following form:

f� .r1; r2; : : : ; rN ; t/ D 0 ; � D 1; 2; : : : ; p : (1.2)



1.1 Constraints, Generalized Coordinates 3

(1) Holonomic-Scleronomic Constraints

These are holonomic constraints which do not depend explicitly on time, i.e.
conditions of the form (1.2) for which additionally holds:

@f�
@t
D 0 ; � D 1; : : : ; p (1.3)

Examples

(1) Dumbbell
The constraint concerns the constant distance between the two masses m1

and m2 (Fig. 1.2):

.x1 � x2/
2 C .y1 � y2/

2 C .z1 � z2/
2 D l2 : (1.4)

(2) Rigid body
A rigid body is characterized by constant inter-particle distances ((4.1),

Vol. 1). That corresponds to the constraints:

.ri � rj/
2 � c2ij D 0 ; i; j D 1; 2; : : : ;N ; cij D const : (1.5)

(3) Particle on the surface of a sphere
The mass m is bound to the surface of a sphere by the constraint (Fig. 1.3):

x2 C y2 C z2 � R2 D 0 (1.6)

Fig. 1.2 Schematic representation of a dumbbell consisting of two masses m1 and m2 which are
kept at a constant distance by a massless rod

Fig. 1.3 Particle of mass m on the surface of a sphere
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(2) Holonomic-Rheonomic Constraints

These are holonomic constraints with an explicit time-dependence:

@f�
@t
¤ 0 : (1.7)

We want to illustrate this term by some examples:

Examples

(1) Particle in an elevator
The particle can freely move only within the xy plane while for the

z coordinate the constraint

z.t/ D v0.t � t0/C z0 ; (1.8)

holds, because the elevator shifts upwards with constant velocity v0 (Fig. 1.4).
(2) Mass on an inclined plane with variable slope

The time variation of the inclination of the plane (Fig. 1.5) causes a
holonomic-rheonomic constraint:

z

x
� tan'.t/ D 0 : (1.9)

Holonomic constraints do reduce the number of degrees of freedom. An N particle
system without constraints has 3N degrees of freedom, but in the presence of
p holonomic constraints the number of degrees of freedom is only

S D 3N � p : (1.10)

Fig. 1.4 Particle of mass m
on a plane that moves with
velocity v0 in z direction

Fig. 1.5 Mass m on an
inclined plane whose angle of
slope changes with time
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A possible numerical procedure can be to eliminate p of the 3N Cartesian coor-
dinates by exploiting the constraints (1.2) and to integrate for the rest Newton’s
equations of motion. However, it is more elegant and more efficient to introduce

‘generalized coordinates’ q1; q2; : : : ; qS,

which have to fulfill two conditions:

1. The current configuration of the physical system is uniquely fixed by q1; : : : ; qS.
In particular, the transformation formulas

ri D ri .q1; : : : ; qS; t/ ; i D 1; 2; : : : ;N ; (1.11)

must implicitly include the constraints.
2. The qj are independent of each other, i.e. there does not exist a relation of the

type F.q1; : : : ; qS; t/ D 0.

The concept of the generalized coordinates will play an important role in the
following. We therefore add to the above definition some additional remarks:

(a) By the

configuration space

one understands the S-dimensional space which is spanned by the generalized
coordinates q1; : : : ; qS. Each point of the configuration space (configuration
vector)

q D .q1; q2; : : : ; qS/ (1.12)

corresponds to a possible state of the system.
(b) One denotes

Pq1; Pq2; : : : ; PqS ‘generalized velocities’ :

(c) With known initial conditions

q0 D q.t0/ � .q1.t0/; : : : ; qS.t0// ;

Pq0 D Pq.t0/ � .Pq1.t0/; : : : ; PqS.t0//

the state of the system in the configuration space is determinable by equations
of motion which are still to be derived.



6 1 Lagrange Mechanics

(d) The choice of the quantities q1; : : : ; qS is not unique, only their number S is
fixed. One chooses the coordinates according to expediency, which in most
cases is clearly predetermined by the physical problem under question.

(e) The quantities qj are arbitrary. They are not necessarily quantities with the
dimension ‘length’. They characterize ‘in their entirety’ the system and do
no longer describe unconditionally single particles. As a disadvantage it may be
considered that then the problem becomes a bit less illustrative.

Examples

(1) Particle on the surface of a sphere
There is one holonomic-scleronomic constraint:

x2 C y2 C z2 � R2 D 0 :

That means for the number of degrees of freedom:

S D 3 � 1 D 2 :

As generalized coordinates two angles would be appropriate (Fig. 1.6):

q1 D # I q2 D ' :

The transformation formulas

x D R sin q1 cos q2 ;

y D R sin q1 sin q2 ;

z D R cos q1

include implicity the constraint. q1; q2 uniquely codify the state of the system.

Fig. 1.6 Generalized
coordinates for a particle of
mass m bound to the surface
of a sphere
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Fig. 1.7 Generalized
coordinates for the planar
double pendulum

(2) Planar double pendulum
There are altogether four holonomic-scleronomic constraints (Fig. 1.7):

z1 D z2 D const ;

x21 C y21 � l21 D 0 ;
.x2 � x1/

2 C .y2 � y1/
2 � l22 D 0 :

Hence the number of degrees of freedom amounts to:

S D 6 � 4 D 2 :

‘Convenient’ generalized coordinates are obviously in this case:

q1 D #1 I q2 D #2 :

The transformation formulas

x1 D l1 cos q1 I y1 D l1 sin q1 I z1 D 0 ;
x2 D l1 cos q1 C l2 cos q2 I y2 D l1 sin q1 � l2 sin q2 I z2 D 0

include again implicitly the constraints.
(3) Particle in the central field

In this case there are no constraints. Nevertheless, the introduction of
generalized coordinates can be expedient:

S D 3 � 0 D 3 :

‘Convenient’ generalized coordinates are now:

q1 D r I q2 D # I q3 D ' :
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The transformation formulas ((1.389), Vol. 1)

x D q1 sin q2 cos q3 ;

y D q1 sin q2 sin q3 ;

z D q1 cos q2

are already known to us from many applications (see Vol. 1). They illustrate that
the use of generalized coordinates can be reasonable also in systems without
constraints, namely when because of certain symmetries the integration of the
equations of motion is simplified by a point transformation onto curvilinear
coordinates.

1.1.2 Non-holonomic Constraints

Therewith one understands connections between the particle coordinates which can
not be represented as in (1.2) so that they cannot be used to eliminate dispensable
coordinates. For systems with non-holonomic constraints there does not exist a
general numerical procedure. Special methods will be discussed at a later stage.

(1) Constraints as Inequalities

If the constraints are on hand only as inequalities then using them it is obviously
impossible to reduce the number of variables.

Examples

(1) Pearls of an abacus (counting frame)
The pearls (mass points) perform one-dimensional movements only between

two fixed limits. The constraints are then partly holonomic,

zi D const I yi D const ; i D 1; 2; : : : ;N ;

but partly also non-holonomic:

a � xi � b ; i D 1; 2; : : : ;N :

(2) Particle on a sphere in the earth’s gravitational field
The constraint

�
x2 C y2 C z2

� � R2 � 0

confines the free motion of the mass m, but cannot be used to eliminate
superfluous coordinates (Fig. 1.8).
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Fig. 1.8 Particle of mass m
on the surface of a sphere in
the earth’s gravitational field
as an example for
non-holonomic constraints

(2) Constraints in Differential, but Not Integrable Form

These are special constraints which contain the particle velocities. They have the
general form

3NX

m D 1

fim dxm C fit dt D 0 ; i D 1; : : : ; p ; (1.13)

where the left-hand side can not be integrated. It does not represent a total
differential. That means that there does not exist a function Fi with

fim D @Fi

@xm
8m I @Fi

@t
D fit :

If such a function Fi existed, then it would follow from (1.13)

Fi .xi; : : : ; x3N ; t/ D const

and the corresponding constraint would thus be holonomic.

Example ‘Rolling’ wheel on a rough undersurface
The movement of the wheel disc (Radius R) happens so that the disc plane always

stands vertically. The movement is completely described by

1. the momentary support point .x; y/,
2. the angles '; # .

Hence the problem is solved if these quantities are known as functions of time
(Fig. 1.9).

The constraint ‘rolling’ concerns the direction and the magnitude of the velocity
of the support point:

magnitude: jvj D R P' ;
direction: v perpendicular to the wheel axis ,

Px D vx D v cos# ;

Py D vy D v sin# :
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Fig. 1.9 Coordinates for the
description of a rolling wheel
on a rough undersurface

The combination of the constraints yields

Px � R P' cos# D 0 I Py � R P' sin# D 0

or

dx � R cos# d' D 0 I dy� R sin# d' D 0 : (1.14)

These conditions are not integrable since the knowledge of the full time-dependence
of # D #.t/ would be necessary which, however, is available not before the full
solution of the problem. Hence the constraint ‘rolling’ does not lead to a reduction
of the number of coordinates. In a certain sense it delimitates microscopically
the degrees of freedom of the wheel, while macroscopically the number remains
unchanged. Empirically we know that the wheel can reach every point of the plane
by proper transposition manoeuvres.

1.2 The d’Alembert’s Principle

1.2.1 Lagrange Equations

According to the considerations of the last section the most urgent objective must be
to eliminate the in general not explicitly known constraint forces out of the equations
of motion. Exactly that is the new aspect of the Lagrange mechanics compared to
the Newtonian version. We start with the introduction of another important concept:
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Definition 1.2.1 ‘virtual displacement’ ıri

This is the arbitrary (virtual), infinitesimal coordinate change which has to be
compatible with the constraints and is instantaneously executed. The latter means:

ıt D 0 : (1.15)

The quantities ıri are not necessarily related to the real course of motion. They are
therefore to be distinguished from the real displacements dri in the time interval dt,
in which the forces and the constraint forces can change:

ı  ! virtual I d  ! real :

Mathematically we treat the symbol ı like the normal differential d. We elucidate
the matter by a simple example (Fig. 1.10):

Example: Particle in an Elevator
The constraint (holonomic-rheonomic)has already been given in (1.8). A suitable

generalized coordinate is q D x. But then it holds because of ıt D 0:

real displacement: dr D .dx; dz/ D .dq; v0 dt/ ;
virtual displacement ır D .ıx; ız/ D .ıq; 0/ :

Definition 1.2.2 Virtual work

ıWi D �Fi � ıri : (1.16)

Fi is the force acting on particle i:

Fi D Ki C Zi D mi Rri : (1.17)

Ki is the driving force acting on the mass point which is somewhat limited in its
mobility because of certain constraints. Zi is the constraint force.

Fig. 1.10 To the distinction
between real and virtual
displacements by the example
of a particle on a plane which
moves upwardly with
constant velocity v0
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Obviously it holds:

X

i

.Ki � mi Rri/ � ıri C
X

i

Zi � ıri D 0 : (1.18)

The fundamental
Principle of virtual work

X

i

Zi � ıri D 0 (1.19)

will not be mathematically derived being, however, considered as unambiguously
empirically proven. It expresses the fact that for each thought movement, which is
compatible with the constraints, the constraint forces do not execute any work. One
should notice that in (1.19) only the sum, not necessarily each summand, has to be
zero.

Examples

(1) Particle on a ‘smooth’ curve (Fig. 1.11)
‘Smooth’ means that there does not exist any component of the constraint

force Z along the path line. Without any concrete knowledge about Z we
conclude therewith that Z must be perpendicular to the path line and thus also
to the virtual displacement ır:

Z � ır D 0 :

(2) Dumbbell (Fig. 1.12)
It holds:

Z1 D �Z2 :

Fig. 1.11 Constraint force
for a particle on a smooth
curve

Fig. 1.12 Constraint forces
for a dumbbell consisting of
two masses m1 and m2
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The virtual displacements of the two masses can be written as a common
translation ıs plus an additional rotation ıxR of mass m2 around the already
shifted mass m1:

ır1 D ıs I ır2 D ısC ıxR :

Inserted into (1.19) it results,

ıW D �Z1 � ır1 � Z2 � ır2 D �.Z1 C Z2/ � ıs � Z2 � ıxR D 0 ;

since ıxR is perpendicular to Z2 and the sum .Z1CZ2/ vanishes. We recognize
with this example, which can directly be generalized to the rigid body, that only
the sum of the contributions in (1.19) must be zero, not necessarily each single
summand.

(3) Atwood’s free-fall machine (Fig. 1.13)
For the thread tensions Z1;Z2 we will find (see (1.49)):

Z1 D Z2

That means for the virtual work ıW:

ıW D �Z1 � ıx1 � Z2 � ıx2
D Z1.ıx1 C ıx2/
D Z1 ı .x1 C x2/„ ƒ‚ …

const

D 0 :

Fig. 1.13 Forces of
constraint appearing in
Atwood’s free-fall machine
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Fig. 1.14 Demonstration of
the virtual work of the
friction force R

(4) Frictional forces (Fig. 1.14)
Friction forces are not considered as constraint forces because they violate

the principle of virtual work:

ıW D �R � ır D R ır ¤ 0 :

Therefore, the friction forces will demand special attention in the following.

The principle of virtual work (1.19) can be reformulated by use of (1.18) and is
then denoted as
d’Alembert’s principle

NX

i D 1

.Ki � mi Rri/ � ıri D 0 : (1.20)

Hence, the virtual work of the ‘lost forces’ is zero. So a first provisional goal is
reached. The constraint forces do no longer appear. Indeed, simple mechanical
problems can already be solved with (1.20). However, it still remains a disadvantage:
The virtual displacements ıri are because of the constraints not independent of each
other. That is why Eq. (1.20) is not yet suitable to derive expedient equations of
motion using it. Therefore we try to transform the quantities ıri into generalized
coordinates. From

ri D ri .q1; q2; : : : ; qS; t/ ; i D 1; 2; : : : ;N (1.21)

we have:

Pri D
SX

j D 1

@ri

@qj
Pqj C @ri

@t
D Pri .q1; : : : ; qS; Pq1; : : : ; PqS; t/ : (1.22)

This means in particular:

@Pri

@Pqj
D @ri

@qj
: (1.23)

For the virtual displacements equation (1.22) reads because of ıt D 0:

ıri D
SX

j D 1

@ri

@qj
ıqj : (1.24)
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That yields for the first summand in (1.20):

� ıWK D
X

i

Ki � ıri D
NX

i D 1

SX

j D 1

Ki
@ri

@qj
ıqj �

SX

j D 1

Qj ıqj : (1.25)

We have introduced a further ‘generalized quantity’ by the definition:

Definition 1.2.3 ‘Generalized force components’

Qj D
NX

i D 1

Ki � @ri

@qj
: (1.26)

Since the terms qj are not necessarily ‘lengths’, the quantities Qj also do not
necessarily have the dimension of a ‘force’. However, it is always true that

�
Qj qj

� D energy :

The conservative systems represent an important special case, since they possess a
potential ((2.233), Vol. 1),

V D V .r1; : : : ; rN/ ; (1.27)

which in particular does not depend on velocities Pri and is closely related to the
forces:

Ki D �riV (1.28)

In such a case it holds for the generalized force components:

Qj D
NX

i D 1

.�riV/ � @ri

@qj
D �@V

@qj
; j D 1; 2; : : : ; S : (1.29)

We now analyze the second summand in (1.20). Thereby we use:

d

dt

@ri

@qj
D

SX

l D 1

@2ri

@ql @qj
Pql C @2ri

@t @qj

D @

@qj

(
SX

l D 1

@ri

@ql
Pql C @ri

@t

)
D @Pri

@qj
: (1.30)
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It is assumed here that the transformation formulas (1.21) have continuous partial
derivatives at least up to second order ((1.257), Vol. 1):

X

i

mi Rri � ıri D
NX

i D 1

SX

j D 1

mi Rri
@ri

@qj
ıqj

D
NX

i D 1

SX

j D 1

mi

�
d

dt

�
Pri � @ri

@qj

�
� Pri

d

dt

@ri

@qj

	
ıqj

(1.23, 1.30)D
NX

i D 1

SX

j D 1

mi

�
d

dt

�
Pri � @Pri

@Pqj

�
� Pri � @Pri

@qj

	
ıqj

D
NX

i D 1

SX

j D 1

mi

�
d

dt



@

@Pqj

�
1

2
Pr2i
��
� @

@qj

�
1

2
Pr2i
�	

ıqj

D
SX

j D 1

�
d

dt

�
@T

@Pqj

�
� @T

@qj

	
ıqj : (1.31)

T D 1=2
P

i mi Pr2i is the kinetic energy of the particle system. We insert (1.31)
and (1.25) into (1.20) and then get the
d’Alembert’s principle

SX

j D 1

�

d

dt

�
@T

@Pqj

�
� @T

@qj

�
� Qj

	
ıqj D 0 : (1.32)

In this form the principle still holds very generally. The following specializations
are important:

(1) Holonomic Constraints

In this case the coordinates qj are independent of each other, the quantities ıqj are
accordingly freely selectable. We could, e.g., put to zero all ıqj except for one.
That has the consequence that in (1.32) not only the sum but even each summand
vanishes:

d

dt

�
@T

@Pqj

�
� @T

@qj
D Qj ; j D 1; 2; : : : ; S : (1.33)
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(2) Conservative System

In this case (1.29) is valid. Moreover, V does not depend on the generalized
velocities Pqj so that we can write instead of (1.32):

SX

j D 1



d

dt

@

@Pqj
.T � V/ � @

@qj
.T � V/

�
ıqj D 0 :

With the definition of the fundamental
Lagrangian function

L .q1; : : : ; qS; Pq1; : : : ; PqS; t/ D T .q1; : : : ; qS; Pq1; : : : ; PqS; t/ � V .q1; : : : ; qS; t/ ;
(1.34)

which is very important for the further considerations, it follows then:

SX

j D 1



d

dt

@L

@Pqj
� @L

@qj

�
ıqj D 0 : (1.35)

(3) Conservative System with Holonomic Constraints

This is the case which will be discussed most frequently in the following:
Lagrange equations of motion (of second kind)

d

dt

@L

@Pqj
� @L

@qj
D 0 ; j D 1; 2; : : : ; S : (1.36)

The dominant quantities of the Newtonian mechanics are momentum and force and
these are vectors. On the other hand, energy and work play the corresponding role in
the Lagrangian version of mechanics, and these are scalars. That may be considered
as a certain advantage. The Lagrange equation (1.36) replace Newton’s equations
of motion (1.1). They are differential equations of second order, for the complete
solution of which

2S initial conditions

must be given. The constraint forces are eliminated, they do no longer appear in the
equations of motion.

We investigate the Lagrange equations for arbitrary, general coordinates.
With (1.22) the kinetic energy can be written as

T D 1

2

NX

i D 1

mi Pr2i D
1

2

SX

j; l D 1

�jl Pqj Pql C
SX

j D 1

˛j Pqj C ˛ ; (1.37)
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with the following abbreviations:

˛ D 1

2

NX

i D 1

mi

�
@ri

@t

�2
; (1.38)

˛j D
NX

i D 1

mi

�
@ri

@t

�
�
�
@ri

@qj

�
; (1.39)

�jl D
NX

i D 1

mi

�
@ri

@qj

�
�
�
@ri

@ql

�
W ‘generalized masses’: (1.40)

The Lagrangian function therefore has the following general structure:

L D T � V D L2 C L1 C L0 ; (1.41)

L2 D 1

2

SX

j; l D 1

�jl Pqj Pql ; (1.42)

L1 D
SX

j D 1

˛j Pqj ; (1.43)

L0 D ˛ � V .q1; : : : ; qS; t/ : (1.44)

The quantities Ln are homogeneous functions of the generalized velocities of order
n D 2; 1; 0. Homogeneous functions are generally defined as follows:

Definition 1.2.4 f
�
x1; : : : ; xm

�
is homogeneous of order n if it holds:

f .ax1; : : : ; axm/ D anf .x1; : : : ; xm/ 8 a 2 R : (1.45)

At an earlier stage we stated that the choice of the generalized coordinates is more
or less arbitrary, only their total number S is fixed. We now demonstrate that

Lagrange equations are forminvariant
under (differentiable) point transformations

.q1; : : : ; qS/  ! .Nq1; : : : ; NqS/

We start with the transformation formulas

Nqj DNqj .q1; : : : ; qS; t/
ql Dql .Nq1; : : : ; NqS; t/

	
j; l D 1; : : : ; S :
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Under the presumption

d

dt

@L

@Pqj
� @L

@qj
D 0 for j D 1; 2; : : : ; S

it follows for

eL
� Nq; PNq; t� D L

�
q . Nq; t/ ; Pq � Nq; PNq; t� ; t�

the assertion:

d

dt

@eL
@PNql
� @eL
@Nql
D 0 ; l D 1; 2; : : : ; S : (1.46)

Proof

Pqj D
X

l

@qj

@Nql

PNql C @qj

@t
H) @Pqj

@PNql
D @qj

@Nql
;

@eL
@Nql
D
X

j

�
@L

@qj

@qj

@Nql
C @L

@Pqj

@Pqj

@Nql

�
;

@eL
@PNql
D
X

j

@L

@Pqj

@Pqj

@PNql
D
X

j

@L

@Pqj

@qj

@Nql

H) d

dt

@eL
@PNql
D
X

j

��
d

dt

@L

@Pqj

�
@qj

@Nql
C @L

@Pqj

�
d

dt

@qj

@Nql

�	

D
X

j

��
d

dt

@L

@Pqj

�
@qj

@Nql
C @L

@Pqj

@Pqj

@Nql

	

H) d

dt

@eL
@PNql
� @eL
@Nql
D
X

j

�
d

dt

@L

@Pqj
� @L

@qj

	
@qj

@Nql
D 0 :

For the term ‘form invariance’ it is not really decisive thateL arises from L simply
by inserting the transformation formulas. It is only important that there does exist
at all for L.q; Pq; t/ a uniqueeL. Nq; PNq; t/ so that the Langrange equations are formally
identical in both systems of coordinates.
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1.2.2 Simple Applications

In this section we want to demonstrate and practice extensively the algorithm
which is usually applied for the solution of mechanical problems by exploiting the
Lagrange equations. Throughout the following considerations we will presume

holonomic constraints, conservative forces

The solution method then consists of six sub-steps:

1. Formulate the constraints.
2. Choose proper generalized coordinates q.
3. Find the transformation formulas.
4. Write down the Lagrangian function L D T � V D L.q; Pq; t/.
5. Derive and solve the Lagrange equation (1.36).
6. Back transformation to the original, ‘illustrative’ coordinates.

We want to exercise this procedure with some typical examples.

(1) Atwood’s Free-Fall Machine

It is about a conservative system with holonomic-scleronomic constraints
(Fig. 1.15):

x1 C x2 D l � �R D const ;

y1 D z1 D z2 D 0 ; y2 D 2R :

There thus remains

S D 6 � 5 D 1

Fig. 1.15 Atwood’s free-fall
machine
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degree of freedom. As a suitable generalized coordinate we may choose:

q D x1 .H) x2 D l � �R � q/ :

Therewith the transformation formulas are already known.
With the kinetic energy

T D 1

2

�
m1 Px21 C m2Px22

� D 1

2
.m1 C m2/ Pq2

and the potential energy

V D �m1g x1 � m2g x2 D �m1g q �m2g.l� �R � q/

we have the Lagrangian function

L D 1

2
.m1 C m2/ Pq2 C .m1 �m2/ g qC m2g.l� �R/ : (1.47)

By differentiating the Lagrangian

d

dt

@L

@Pq D .m1 C m2/ Rq I @L

@q
D .m1 �m2/ g

one finds with (1.36) the following simple equation of motion:

Rq D m1 �m2

m1 C m2

g : (1.48)

That is just the ‘delayed’ free fall. With the presetting of two initial conditions
equation (1.48) can easily be integrated. Therewith the problem is solved.

We now have even the possibility by comparison with Newton’s equations of
motion

m1 Rx1 D m1gC Z1 I m2 Rx2 D m2gC Z2

to determine explicitly the constraint forces (thread tensions). Because of

Rx1 D �Rx2 D Rq

it holds:

m1 Rx1 � m2Rx2 D .m1 �m2/ gC .Z1 � Z2/ D .m1 C m2/ Rq D .m1 � m2/ g :
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This means:

Z1 D Z2 D Z :

Therewith it follows further:

m1 Rx1 C m2 Rx2 D .m1 Cm2/ gC 2Z D .m1 � m2/ Rq :

The thread tension Z hence reads:

Z D �2g
m1 m2

m1 Cm2

: (1.49)

(2) Gliding Bead on a Uniformly Rotating Rod

The conservative system possesses two holonomic constraints; one of them is
scleronomic, the other rheonomic:

z D 0 ;
y D x tan!t :

As generalized coordinate the distance between bead and the center of rotation
suggests itself (Fig. 1.16):

q D r :

With the transformation formulas

x D q cos!t I y D q sin!t I z D 0

one finds the kinetic energy

T D m

2

�Px2 C Py2� D m

2

�Pq2 C q2!2
�
;

Fig. 1.16 Gliding bead on a
rod that rotates with constant
angular velocity !
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which because of V � 0 is identical to the Lagrangian:

L D T � V D m

2

�Pq2 C q2!2
� D L2 C L0 : (1.50)

The function L1 does not appear in spite of rheonomic constraints. However, that
is purely accidental. Normally the function L1 (1.43) shows up explicitly in such
a case. On the other hand, the function L0 is here indeed a consequence of the
rheonomic constraint.

The equation of motion

d

dt

@L

@Pq D m Rq D @L

@q
D m q!2

leads to:

Rq D !2q :

The general solution reads:

q.t/ D A e!t C B e�!t :

With the initial conditions

q.t D 0/ D r0 > 0 I Pq.t D 0/ D 0

one gets A D B D r0=2 and therewith

q.t/ D 1

2
r0
�
e!t C e�!t

�
:

The bead thus moves outwards with growing acceleration for t ! 1. Thereby the
energy of the bead steadily increases since the constraint force carries out work. At
first glance that appears to be a contradiction to the principle of virtual work (1.19).
However, that is not the case! The real displacement of the mass m in the time
interval dt is not identical to the virtual displacement ır since the latter is done at
fixed time. Thus the work really executed by the constraint force

dWZ D Z � dr ¤ 0
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Fig. 1.17 Demonstration of
the difference between real
and virtual work using the
example of the gliding pearl
on a rotating rod

Fig. 1.18 In the earth’s
gravitational field oscillating
dumbbell where one of its
masses m1 can move
frictionlessly in x direction

is to distinguish from the virtual work (Fig. 1.17)

ıWZ D Z � ır D 0 ; since Z? ır ;

(3) Oscillating Dumbbell

The mass m1 of a dumbbell of length l can move frictionlessly along a horizontal
straight line (Fig. 1.18). We ask ourselves which curves will be described by the
masses m1 and m2 under the influence of the gravitational force.

There are on hand four holonomic-scleronomic constraints:

z1 D z2 D 0 I y1 D 0 I .x1 � x2/
2 C y22 � l2 D 0 :

Thus there are left

S D 6 � 4 D 2

degrees of freedom. Convenient generalized coordinates are then most probably:

q1 D x1 I q2 D '

That yields as transformation formulas:

x1 D q1 I y1 D z1 D 0 ;
x2 D q1 C l sin q2 I y2 D l cos q2 I z2 D 0 :
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Therewith we calculate the kinetic energy:

T D 1

2
m1 Px21 C

1

2
m2

�Px22 C Py22
�

D 1

2
.m1 C m2/ Pq21 C

1

2
m2

�
l2 Pq22 C 2l Pq1 Pq2 cos q2

�
:

For the potential energy we find:

V1 � 0 I V2 D �m2 g l cos' I V D �m2 g l cos q2 :

This leads to the following Lagrangian:

L D 1

2
.m1 C m2/ Pq21 C

1

2
m2

�
l2 Pq22 C 2 l Pq1 Pq2 cos q2

�C m2 g l cos q2 : (1.51)

Before we continue to consider the concrete procedure of solution we want to
introduce two terms which are eminently important for following discussions.

Definition 1.2.5 Generalized momentum

pi D @L

@Pqi
: (1.52)

Definition 1.2.6 Cyclic coordinate

qj cyclic ” @L

@qj
D 0 ” pj D @L

@Pqj
D const : (1.53)

Each cyclic coordinate automatically leads to a conservation law. For this reason
one should always choose the generalized coordinates such that a maximal number
of them are already cyclic.

In our example here q1 is cyclic. That means:

p1 D @L

@Pq1 D .m1 Cm2/ Pq1 C m2 l Pq2 cos q2 D const :

We solve this equation for Pq1,

Pq1 D c � m2 l

m1 C m2

Pq2 cos q2 ;

and integrate:

q1.t/ D c t � m2 l

m1 C m2

sin q2.t/C a :
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We need four initial conditions:

q1.t D 0/ D 0 I q2.t D 0/ D 0 I
Pq1.t D 0/ D � m2

m1 Cm2

l!0 I Pq2.t D 0/ D !0 : (1.54)

A first consequence herefrom is:

a D 0 ; c D 0 :

Therewith we have the interim solution:

q1.t/ D � m2

m1 C m2

l sin q2.t/ :

For the motion of mass m1 it therefore holds:

x1.t/ D � m2

m1 C m2

l sin '.t/ I y1.t/ D z1.t/ D 0 : (1.55)

With the transformation formulas it follows for mass m2:

x2.t/ D m1

m1 C m2

l sin'.t/ I y2.t/ D l cos'.t/ I z2.t/ D 0 : (1.56)

In a combined form that can be written as the midpoint equation of an ellipse:

x22�
m1 l

m1 C m2

�2 C
y22
l2
D 1 : (1.57)

The mass m2 is thus running through a part of an ellipse with the horizontal semiaxis
m1 l=.m1Cm2/ and the vertical semiaxis l. In the limit m1 !1 that reduces to the
simple mathematical pendulum (Sect. 2.3.4, Vol. 1).

With (1.55) and (1.56) the problem is not yet completely solved since '.t/ is still
unknown. However, we still have at our disposal a further Lagrange equation:

@L

@Pq2 D m2

�
l2 Pq2 C l Pq1 cos q2

�
;

d

dt

@L

@Pq2 D m2

�
l2 Rq2 C l Rq1 cos q2 � l Pq1 Pq2 sin q2

�
;

@L

@q2
D m2 .�l Pq1 Pq2 sin q2 � g l sin q2/ :
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Insertion into (1.36) yields the following equation of motion:

l2 Rq2 C l Rq1 cos q2 C g l sin q2 D 0 : (1.58)

For ‘small’ values of q2 D ' we can assume

cos q2 � 1 I sin q2 � q2

whereby (1.58) is simplified to

l Rq2 C Rq1 C g q2 � 0

From (1.55) we read out:

q1 � � m2

m1 C m2

l q2 H) Rq1 � � m2 l

m1 C m2

Rq2 :

This yields for q2 the following equation of motion:

Rq2 C g

l

m1 Cm2

m1

q2 � 0 :

It appears recommendable as solution to propose:

q2 D A cos!t C B sin!t :

The chosen initial conditions (1.54) require A D 0 and B! D !0. Therewith it
finally follows:

'.t/ D !0

!
sin!t I ! D

r
g

l

m1 C m2

m1

: (1.59)

(4) Cycloidal Pendulum

A particle of mass m moves in the earth’s gravitational field on a cycloidal curve.
The latter is realized by the rolling of a wheel (radius R) on a flat plane without
slipping. It has the following parameter representation (Fig. 1.19):

x D R ' C R sin' D R.' C sin '/ ;

y D 2R� R.1 � cos'/ D R.1C cos'/ : (1.60)
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Fig. 1.19 Realization of a
cycloidal curve by rolling
(without slipping) a wheel on
a plane

The first term for x is just the unrolling condition, the second is due to the rotation of
the wheel. We can solve the y equation for ' and insert the result into the x equation.
Equation (1.60) therewith brings about one constraint. A further one is z � 0.
So there is left for the mass point m only S D 3 � 2 D 1 degree of freedom. A
recommendable generalized coordinate q is surely the angle '. With

Px D R Pq.1C cos q/ I Py D �R Pq sin q

we now calculate the kinetic energy:

T D m

2

�Px2 C Py2� D m R2 Pq2.1C cos q/ :

For the potential energy we have:

V D �m g y D �m g R.1C cos q/ :

That leads to the Lagrangian function:

L D T � V D m R .1C cos q/
�
R Pq2 C g

�
: (1.61)

From L we get by differentiation:

@L

@Pq D 2m R2.1C cos q/Pq ;

d

dt

@L

@Pq D 2m R2
�Rq.1C cos q/� Pq2 sin q

�
;

@L

@q
D �m R sin q

�
R Pq2 C g

�
:

With .1 C cos q/ D 2 cos2.q=2/ and sin q D 2 sin.q=2/ cos.q=2/ we find the
equation of motion which is to solve:

2 Rq cos
q

2
� Pq2 sin

q

2
C g

R
sin

q

2
D 0 :
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That can be reformulated as:

d2

dt2
sin

q

2
C g

4R
sin

q

2
D 0 : (1.62)

The cycloidal pendulum thus obeys an oscillation equation for sin.q=2/ D sin.'=2/
with the frequency

! D 1

2

r
g

R
: (1.63)

The general solution reads:

'.t/ D 2 arcsin
�
A ei!t C B e�i!t

�
; (1.64)

where A; B are to be fixed by initial conditions.
In the case of the simple pendulum (Sect. 2.3.4, Vol. 1) the oscillation frequency

does depend on the amplitude of the oscillation. The usual assumption sin' � '

which leads to the oscillation equation is clearly allowed only for small amplitudes
and is wrong for large amplitudes. In the present case we have found a geometric
motion of the mass point for which the oscillation period is strictly independent of
the oscillation amplitude.

(5) N-Particle System Without Constraints

We have to expect that in this special case the Lagrange equations are identical
to Newton’s equations of motion. Because of the absence of constraints there are
S D 3N degrees of freedom, and as generalized coordinates one could think for
instance of the Cartesian ones. From the Lagrangian

L D T � V D
NX

i D 1

mi

2

�Px2i C Py2i C Pz2i
� � V .x1; : : : ; zN ; t/ (1.65)

it follows:

d

dt

@L

@Pxi
D mi Rxi I @L

@xi
D �@V

@xi
D Fxi :
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The Lagrange equations of motion,

d

dt

@L

@Pxi
D @L

@xi
” mi Rxi D Fxi ;

indeed lead directly to Newton’s equations of motion. Adding the form invariance
in connection with point transformations proved in (1.46) the Lagrange-Newton
equivalence does hold also for arbitrary curvilinear coordinates.

(6) Kepler Problem

We consider the motion of a particle of mass m in the central field (see Example 3
in Sect. 1.1.1) with the potential energy ((2.259) in Vol. 1):

V.x; y; z/ D �˛
p

x2 C y2 C z2
.z. B. ˛ D � m M/ :

Cartesian coordinates lead to rather complicated equations of motion. In connection
with Example 3 in Sect. 1.1.1 we have already recognized that spherical coordinates
would be a much more convenient starting point. By using these coordinates the
Lagrangian reads:

L
�
r; #; '; Pr; P#; P'� D m

2

�Pr2 C r2 P#2 C r2 sin2 # P'2�C ˛

r
: (1.66)

Simply the immediate observation that the coordinate ' is cyclic results in some
important physical consequences:

p' D @L

@ P' D m r2 sin2 # P' D Lz D const : (1.67)

The z component of the angular momentum L D r�p is a constant of motion. Since
the z direction is by no means special we have to conclude that even the full angular
momentum must be constant:

L D m r � Pr D const : (1.68)

(One has to distinguish the vector L (angular momentum) from the scalar L
(Lagrangian function)). Without any restriction of generality we can position the
z axis of our system of coordinates parallel to the angular momentum L so that
automatically must be Lx D Ly � 0. The orbital plane spanned by Œr � Pr� is then
the xy plane. That brings about # � �=2 and therewith P# � 0 which simplifies the
Lagrangian

L D m

2

�Pr2 C r2 P'2�C ˛

r
(1.69)
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Then one has to only discuss the equation of motion

d

dt

@L

@Pr D m Rr ŠD @L

@r
D m r P'2 � ˛

r2
(1.70)

1.2.3 Generalized Potentials

The simple examples of the last section presume the validity of the Lagrange
equations in the form (1.36). They concern conservative systems with holonomic
constraints. For non-conservative systems, but with holonomic constraints, instead
of that, the starting point must be (1.33):

d

dt

@T

@Pqj
� @T

@qj
D Qj ; j D 1; 2; : : : ; S :

However, we come to formally unchanged Lagrange equations for the so-called
Generalized potentials

U D U .q1; : : : ; qS; Pq1; : : : ; PqS; t/ ;

if the generalized forces Qj are derivable from U by:

Qj D d

dt

@U

@Pqj
� @U

@qj
; j D 1; 2; : : : ; S : (1.71)

The first term on the right-hand side is new compared to the case of a conservative
system. For the
Generalized Lagrangian function

L D T � U (1.72)

the equations of motion are obviously valid, because of (1.71), in the formally
unchanged version (1.36). On the other hand, the requirement (1.71) appears to be
very special. However, there does exist a very important application example:

Charged particle in an electromagnetic field

In Vol. 3 we will learn that a particle with charge Nq which moves with the velocity v
in an electromagnetic field (electrical field E, magnetic induction B) experiences the
so-called ‘Lorentz force’

F D Nq ŒEC .v � B/� (1.73)
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This force is not conservative. It possesses, though, a generalized potential U in the
sense of (1.71). To show this we first express F by the electromagnetic potentials,

'.r; t/ W scalar potential I A.r; t/ W vector potential ;

They are chosen in such a way that in the Maxwell equations, which in electrody-
namics take over the same fundamental role as Newton’s axioms in mechanics,

r � EC @

@t
B D 0 I r � B D 0 I (1.74)

r �H � @

@t
D D j I r � D D � ; (1.75)

the two homogeneous equations (1.74) are automatically fulfilled:

B D r �A I E D �r' � @

@t
A : (1.76)

In the inhomogeneous equations (1.75), which we do not need in the following, H
denotes the magnetic field, D the dielectric displacement, j the current density, and
� the charge density. Further details will be discussed in Vol. 3.

With (1.76) the Lorentz force reads

F D Nq


�r' � @

@t
AC .v � .r � A//

�
: (1.77)

Corresponding to this force we try to find a generalized potential

U D U .x; y; z; Px; Py; Pz; t/

taking as generalized coordinates just the Cartesian coordinates of the charged
particle. Therewith the generalized force components become identical to Fx;y;z:

.v � .r �A//x D Py.r �A/z � Pz.r � A/y

D Py
�
@

@x
Ay � @

@y
Ax

�
� Pz

�
@

@z
Ax � @

@x
Az

�

D Py @

@x
Ay C Pz @

@x
Az C Px @

@x
Ax

�Px @

@x
Ax � Py @

@y
Ax � Pz @

@z
Ax

D @

@x
.v � A/ �

�
d

dt
Ax � @

@t
Ax

�
:
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Therewith the x component of the Lorentz force reads:

Fx D Nq


�@'
@x
� d

dt
Ax C @

@x
.v � A/

�
:

We still use

d

dt
Ax D d

dt



@

@Px .A � v/
�
I d

dt

@

@Px ' D 0

finding therewith:

Fx D Nq


� @
@x
.' � v � A/C d

dt

@

@Px .' � v � A/
�
:

We define the
generalized potential of the Lorentz force

U D Nq.' � v � A/ ; (1.78)

which fulfills for the x component the requested relation (1.71):

Fx D d

dt

@U

@Px �
@U

@x
D Qx :

The same can be shown analogously for the other two components Fy; Fz. Therewith
we have found as an important result the
Lagrangian function of a particle with mass m and charge Nq in the electromag-
netic field:

L .r; Pr; t/ D m

2
Pr2 C Nq .Pr � A/ � Nq ' : (1.79)

Although we have chosen as generalized coordinates the Cartesian spatial coordi-
nates the generalized momenta p are not identical to the mechanical momenta m v.
According to (1.52) it holds instead:

px D @L

@Px D m PxC Nq Ax I py D @L

@Py D m PyC Nq Ay I pz D @L

@Pz D m PzC Nq Az :

(1.80)
The real experimentally measured quantities are the electromagnetic fields E and B.
The potentials'; A are, however, only auxiliary quantities. Gauge transformations
of the form

A �! ACr� I ' �! ' � @

@t
� ; (1.81)
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are therefore allowed, where � may be an arbitrary scalar function, since thereby
according to (1.76) the fields E and B do not change by the transformation. However,
as the Lagrangian (1.79) directly depends on the potentials '; A this function can
not be gauge-invariant. In contrast, however, the Lagrange-equation of motion

m Rr D Nq ŒEC .Pr � B/� (1.82)

is gauge-invariant because here only the fields E and B and not the potentials appear.
The Lagrangian itself changes according to

L �! LC Nq
�
Pr � r�C @

@t
�

�
D LC Nq d

dt
�.r; t/ : (1.83)

Now one can show very generally that for a
mechanical gauge transformation

L �! LC L0 I L0.q; Pq; t/ D d

dt
f .q; t/ (1.84)

the equations of motion do not change if f is an almost arbitrary but sufficiently
often differentiable function exclusively depending on q and t. That is because:

@L0
@qj
D @

@qj

df

dt
D @2f

@qj @t
C
X

l

@2f

@qj @ql
Pql ;

d

dt

@L0
@Pqj
D d

dt

@

@Pqj

df

dt
D d

dt

"
@

@Pqj

 
@f

@t
C
X

l

@f

@ql
Pql

!#

D d

dt

@f

@qj
D @2f

@t @qj
C
X

l

@2f

@ql @qj
Pql :

Using this it follows with

d

dt

@L0
@Pqj
� @L0
@qj
D 0 8 j (1.85)

just the assertion. Gauging the Lagrangian according to (1.84) leaves the equation
of motion and therewith the path line q.t/ in the configuration space invariant.
Note that only q.t/ is empirically observable. Therefore the electromagnetic gauge
transformation (1.81) turns out to be irrelevant in this sense.
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1.2.4 Friction

Frictional forces cannot be derived as in (1.71) from any generalized potential U.
Thus we have to incorporate them in a special manner into the equations of motion.
They cannot be considered as constraint forces in the literal sense. They do not fulfill
the d’Alembert’s principle.

According to (1.33) it holds in case of holonomic constraints:

d

dt

@T

@Pqj
� @T

@qj
D Qj �

NX

i D 1

Ki � @ri

@qj
D Q.V/

j CQ.R/
j : (1.86)

Thereby, the part Q.V/
j is derivable from a potential

�
K.V/

i � �riV
�
, while Q.R/

j
provides the influence of the friction force.

The Lagrangian

L D T � V
�

V from Q.V/
j




then obeys the equations of motion:

d

dt

@L

@Pqj
� @L

@qj
D Q.R/

j ; j D 1; 2; : : : ; S : (1.87)

The following expression represents a suitable, rather general phenomenological
ansatz for the friction forces (see (2.59), Vol. 1):

Q.R/
j D �

SX

l D 1

ˇjl Pql
�
ˇjl D ˇlj

�
(1.88)

Forces of this kind are described by
Rayleigh’s dissipation function

D D 1

2

SX

l;m D 1

ˇlm Pql Pqm (1.89)

Therewith we get ‘modified’ Lagrange equations of the form:

d

dt

@L

@Pqj
� @L

@qj
C @D

@Pqj
D 0 ; j D 1; 2; : : : ; S : (1.90)

For a detailed formulation of the equations of motion two scalar functions L and D
must be known.
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We still want to amplify the physical meaning of the dissipation function.
In systems with friction the sum of kinetic and potential energy is no longer a
conserved quantity since the system has to do work against the friction:

dW.R/ D �
X

j

Q.R/
j dqj D

X

j;l

ˇjl Pql dqj :

Thus:

dW.R/

dt
D 2D .energy dissipation/ : (1.91)

The energy dissipation corresponds to the temporal change of the total energy
.T C V/:

d

dt
.T C V/ D

SX

j D 1

�
@T

@qj
Pqj C @T

@Pqj
Rqj

�
C dV

dt
;

SX

j D 1

@T

@Pqj
Rqj D d

dt

0

@
SX

j D 1

@T

@Pqj
Pqj

1

A �
SX

j D 1

Pqj
d

dt

@T

@Pqj
:

We presume scleronomic constraints. The kinetic energy T is then according
to (1.37) a homogeneous function of the generalized velocities of second order.
Furthermore, except for the friction terms, the system shall be conservative:

SX

j D 1

@T

@Pqj
Rqj D d

dt
.2T/ �

SX

j D 1

Pqj
d

dt

@L

@Pqj
:

From this it follows with (1.90):

d

dt
.T C V/ D

SX

j D 1

@T

@qj
Pqj C d

dt
.2T/C dV

dt
�

SX

j D 1

Pqj

�
@L

@qj
� @D

@Pqj

�

D
SX

j D 1

@V

@qj
Pqj C d

dt
.2T C V/C 2D

D d

dt
.2T C 2V/C 2D :

That means:

d

dt
.T C V/ D �2D : (1.92)



1.2 The d’Alembert’s Principle 37

Example A particle of mass m may fall vertically under the influence of gravity
where friction forces occur according to a dissipation function (Stokes’ friction,
(2.59), Vol. 1):

D D 1

2
˛ v2

With v D �Pz (one-dimensional motion!) we get the Lagrangian:

L D T � V D m

2
Pz2 �m g z :

After (1.90) we have to solve the following modified Lagrange equation:

m RzCm gC ˛ Pz D 0 :

Rewriting

d

dt
v D g � ˛

m
v H) dt D dv

g � ˛
m v

:

this can easily be integrated:

t � t0 D �m

˛
ln

˛ v �m g

˛ v0 �m g
:

We choose as initial conditions

t0 D 0 I v0 D 0

ending up with the familiar result ((2.119), Vol. 1):

v D m g

˛

h
1 � exp

�
� ˛

m
t

i

:

Because of the friction the velocity v remains finite even for t!1!

1.2.5 Non-holonomic Systems

Holonomic constraints can be written as in (1.2). By introduction of S D 3N�p (p D
number of the holonomic constraints) generalized coordinates q1; : : : ; qS, which are
independent of each other and do uniquely fix the configuration of the system, it is
pointed out, inter alia, that the holonomic constraints reduce the number of degrees
of freedom from 3N to S D 3N � p.
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In the case of non-holonomic constraints such a reduction is no longer possible.
One cannot find a set of independent generalized coordinates so that their number is
identical to the number of degrees of freedom. In particular the Lagrange equations
are no longer applicable in the form (1.36). After the considerations in Sect. 1.1 non-
holonomic constraints may be given as inequalities or as differential non-integrable
relations. For the latter case there does exist an algorithm, namely the

method of the Lagrange multipliers

which we now want to introduce. For this purpose we consider a system that is
subject to Np constraints. Among these p � Np shall be given in the following non-
holonomic form:

3NX

m D 1

fim .x1; : : : ; x3N ; t/ dxm C fit .x1; : : : ; x3N ; t/ dt D 0 ; i D 1; : : : ; p :
(1.93)

Let us develop the ‘recipe of solution’ step-by-step:

1. In general the system will possess both holonomic as well as non-holonomic
constraints. The holonomic ones we use for a partial reduction of the number of
coordinates 3N to

j D 3N � .Np � p/ :

Hence we express the particle positions ri by j generalized coordinates q1; : : : ; qj:

ri D ri
�
q1; : : : ; qj; t

�
: (1.94)

It is clear that the coordinates qj cannot all be independent of each other.
2. The conditions (1.93) will be adapted to the q1; : : : ; qj:

jX

m D 1

aim dqm C bit dt D 0 ; i D 1; : : : ; p : (1.95)

3. The constraints are then formulated for virtual displacements .ıt D 0/:
jX

m D 1

aim ıqm D 0 ; i D 1; : : : ; p : (1.96)

4. We now introduce so-called ‘Lagrange multipliers’ 	i which shall be indepen-
dent of q but possibly may depend on t. In trivial consequence of (1.96) it is:

pX

i D 1

	i

jX

m D 1

aim ıqm D 0 : (1.97)
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5. The system shall be conservative so that a Lagrangian is definable for which the
equations of motion are of the type (1.35):

jX

m D 1

�
@L

@qm
� d

dt

@L

@Pqm

�
ıqm D 0 : (1.98)

These equations we now combine with (1.97):

jX

m D 1

(
@L

@qm
� d

dt

@L

@Pqm
C

pX

i D 1

	i aim

)
ıqm D 0 : (1.99)

The ıqm are not independent of each other, i.e. we can not conclude that already
each summand is equal to zero.

6. Because of the constraints only j � p D 3N � Np coordinates are actually freely
selectable. We specify:

qm W m D 1; : : : ; j� p W independent ;

qm W m D j � pC 1; : : : ; j W dependent :

The p Lagrange multipliers 	i are still undetermined. We choose them so that it
holds:

@L

@qm
� d

dt

@L

@Pqm
C

pX

i D 1

	i aim
ŠD 0 ; m D j � pC 1; : : : ; j : (1.100)

These are p equations for p unknown	i which are now fixed by (1.100). Insertion
into (1.99) then leads to

j � pX

m D 1

(
@L

@qm
� d

dt

@L

@Pqm
C

pX

i D 1

	i aim

)
ıqm D 0 :

These quantities qm, however, are now independent of each other so that each
summand separately must already be zero:

@L

@qm
� d

dt

@L

@Pqm
C

pX

i D 1

	i aim D 0 ; m D 1; 2; : : : ; j � p : (1.101)
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7. Eventually we combine the equations (1.101) and (1.100) getting therewith the
important

Lagrange equations of motion of the first kind

d

dt

@L

@Pqm
� @L

@qm
D

pX

i D 1

	i aim ; m D 1; : : : ; j : (1.102)

These are j equations for a total of jC p unknowns, namely j coordinates qm and
p multipliers 	i. The missing conditional equations are the p constraints (1.95):

jX

m D 1

aim Pqm C bit D 0 ; i D 1; : : : ; p : (1.103)

These constraints can not directly be integrated but possibly in conjunction with
the above equations of motion. That we will demonstrate later by examples.
Using this procedure we get more information than originally intended, namely
besides the qm additionally we get the 	i.

What is the physical meaning of the 	i? If one compares (1.102) with (1.33) then it
becomes clear that

Qm D
pX

i D 1

	i aim (1.104)

can be interpreted as a component of a generalized constraint force which realizes
the non-holonomic constraints. Hence we can write (1.97) also as follows:

jX

m D 1

Qm ıqm D 0 : (1.105)

In a certain sense that can be seen as d’Alembert’s principle for the generalized
constraint force.

One can apply the method of Lagrange multiplier of course also to systems with
solely holonomic constraints. To show this we rewrite the p holonomic constraints
(out of altogether Np � p),

fi.r1; : : : ; rN ; t/ D 0 ; i D 1; : : : ; p ;

as functions of the generalized coordinates q1; : : : ; qj:

Nfi
�
q1; : : : ; qj; t

� D 0 ; i D 1; : : : ; p :
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Therewith we also have the relation

dNfi D
jX

m D 1

@Nfi
@qm

dqm C @Nfi
@t

dt D 0 ;

which is formally identical to (1.95) and (1.103), respectively, with

aim D @Nfi
@qm

and bit D @Nfi
@t

Therewith (1.102) and (1.103) are to be solved. This method provides now
additional information about constraint forces at the same time, however, it is also
more complicated since instead of j � p now jC p equations must be handled. The
examples in Sect. 1.2.6 will help to become familiar with the abstract formalism
presented here.

But before that we want to present an alternate and somewhat more direct method
for treating the above special case. In the method described so far holonomic
constraints at hand are not used only for reducing the number of variables but to
get additionally access to the constraint forces which are otherwise pretty difficult
to approach .

Let us consider an N particle system with p holonomic constraints:

f�.r1; : : : ; rN ; t/ D 0 I � D 1; : : : ; p : (1.106)

Since none of the constraints shall be used to eliminate certain variables it stands
to reason to choose as ‘generalized’ coordinates just the components (Cartesian,
cylindrical, spherical,. . . ) of the particle positions:

ri D .xi1; xi2; xi3/ (1.107)

The constraints (1.106) react on real displacements as follows:

df� D
NX

i D 1

3X

j D 1

@f�
@xij

dxij C @f�
@t

dt D
NX

i D 1

ri f� � dri C @f�
@t

dt D 0

Õ
NX

iD1
Pri � ri f� D �@f�

@t
: (1.108)

On the other hand, it holds for virtual displacements because of ıt D 0:

NX

i D 1

ri f� � ıri D 0 : (1.109)
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The principle of virtual work (1.19) leads with (1.18) to the equations of
motion (1.20) ‘to which we couple’ the p side conditions (1.109) by use of
p Lagrange multipliers 	� :

NX

i D 1

 
Ki �mi Rri C

pX

�D 1

	�ri f�

!
� ıri D 0 : (1.110)

Ki is the driving force on particle i. By the third summand we simply added zero
to the equation of motion (1.20). Because of the constraints not all of the ıri are
independent of each other. With the same justification as that for (1.100) we consider
3N�p of the variations ıxij as independent. For the remaining p variations we choose
the p multipliers 	� in such a way that each of the corresponding brackets in (1.110)
already vanishes. Then we are left with the 3N�p independent (!) variations so that
we can conclude eventually:

mi Rri D Ki C
pX

�D 1

	�ri f� : (1.111)

That can be interpreted as ‘Newton’s analogue’ to the Lagrange equations of motion
of the first kind (1.102). In this case, too, there are 3N equations for .3N C p/
variables .x11; : : : ; xN3I 	1; : : : ; 	p/. The missing conditional equations we take
from the p constraints (1.106).

The comparison with (1.17) now permits an explicit specification of the con-
straint force Zi that acts on the i-th particle in the real three-dimensional space:

Zi D
pX

�D 1

	�ri f� : (1.112)

The possibility of such a direct determination of the usually not so descriptive
constraint forces can be considered as a weighty advantage of the procedure
presented here.

With the aid of the method of Lagrange multiplier the influence of the constraint
forces on the energy law of the particle system can be immediately understood. Let
us assume that the driving force can be derived from a potential V:

Ki D �riV :
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Therewith for the temporal change of the kinetic energy T we have:

d

dt
T D d

dt

1

2

NX

i D 1

mi Pr2i D
NX

i D 1

Pri � .miRri/

D
NX

i D 1

Pri � .Ki C Zi/ D � d

dt
V C

NX

iD1
Pri � Zi

Õ d

dt
.T C V/ D

NX

i D 1

Pri � Zi
(1.112)D

NX

i D 1

pX

�D 1

	� Pri � ri f� :

If we still exploit (1.108) then we come to:

d

dt
.T C V/ D �

pX

�D 1

	�
@f�
@t

: (1.113)

In case of exclusively scleronomic constraints f� the energy conservation law
therefore holds. On the other hand, in case of rheonomic constraints the constraint
forces in general carry out work on the system. Energy conservation is then no
longer valid (see Example 2 in Sect. 1.2.2).

1.2.6 Applications of the Method of Lagrange Multipliers

We discuss three simple physical problems.

(1) Atwood’s Free-Fall Machine

As an in principle holonomic system we discussed the fall machine already as
application Example (1) in Sect. 1.2.2. Here it serves as illustration of the method of
Lagrange multipliers (Fig. 1.20).

There are five constraints

y1 D z1 D z2 D 0 ; y2 D 2R

x1 C x2 � lC �R D 0

from which we take only the first four for a reduction of the number of coordinates:

j D 6 � 4 D 2 :
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Fig. 1.20 Atwood’s free-fall
machine

As generalized coordinates we choose:

q1 D x1 I q2 D x2 :

The remaining constraint then reads:

f .q1; q2; t/ D q1 C q2 � lC �R D 0 .p D 1/
H) df D dq1 C dq2 D 0 :

The comparison with (1.95) yields

a11 D a12 D 1 :

Because of p D 1 only one Lagrange multiplier 	 is necessary:

Q1 D Q2 D 	 thread tension :

With the Lagrangian

L D 1

2

�
m1 Pq21 C m2 Pq22

�C g .m1q1 C m2q2/

we get according to (1.102) the equations of motion:

m1 Rq1 �m1g D 	 I m2 Rq2 �m2g D 	 :

Furthermore, the constraint contributes corresponding to (1.103)

Pq1 C Pq2 D 0 :
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These are now three equations to be solved instead of one previously as the free-fall
machine was treated as a pure holonomic system. In return, however, we now get
additional information about the constraint force. As solution of the above system
of equations we are able to confirm the previous results (1.48) and (1.49):

Rq1 D �Rq2 D m1 � m2

m1 C m2

g I 	 D �2g
m1 m2

m1 C m2

:

(2) Rolling Barrel on an Inclined Plane

The ‘barrel’ is a hollow cylinder of mass M whose moment of inertia J has been
calculated in Sect. 4.3 of Vol. 1:

J D
Z
�.r/r2 d3r D M R2 (1.114)

�.r/ is the mass density of the hollow cylinder. As a repeating exercise, the reader
should verify the expression (1.114). It is here again about a holonomic problem.
We consider as generalized coordinates (see Fig. 1.21)

q1 D x I q2 D # . j D 2/

with the rolling off condition

R d# D dx

as constraint. This is of course integrable and therewith holonomic. But intention-
ally, that shall not be exploited here. From

R dq2 � dq1 D 0 . p D 1/

it follows:

a11 D �1 I a12 D R :

Fig. 1.21 Rolling hollow
cylinder on an inclined plane
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The rolling barrel possesses the Lagrangian:

L D M

2
Pq21 C

1

2
J Pq22 �M g .l� q1/ sin ' :

Because of p D 1we need one Lagrange multiplier 	. According to (1.102) we then
have:

d

dt

@L

@Pq1 �
@L

@q1
D M Rq1 �M g sin ' D 	 a11 D �	 ;

d

dt

@L

@Pq2 �
@L

@q2
D J Rq2 D 	 a12 D R	 :

The coordinate q2 seems to be cyclic. But this fact does not lead to a conservation
law since q1 and q2 are not independent of each other. The constraint provides,
according to (1.103), still a third conditional equation:

�Pq1 C R Pq2 D 0 :

One easily finds as preliminary solution:

Rq1 D Rx D 1

2
g sin ' ;

Rq2 D R# D 1

2R
g sin ' ;

	 D M

2
g sin' :

The linear acceleration of the rolling cylinder thus is only half as large as that of
a body which glides frictionless on the inclined plane (cf. (4.36), Vol. 1). For the
generalized constraint forces we find

Q1 D 	 a11 D �M

2
g sin ' I Q2 D 	 a12 D 1

2
M g R sin' :

Q1 can be identified with the x component of the constraint force that results
from the ‘roughness’ of the undersurface causing the ‘rolling’ of the barrel. It
diminishes the actually acting gravitational force from Mg sin' to .1=2/Mg sin'.
Q2 corresponds to the torque on the cylinder also imposed by the ‘roughness’ of the
undersurface.
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(3) Rolling of a Wheel on a Rough Undersurface

We discussed this system already in Sect. 1.1 as an application example for non-
holonomic constraints. Let us adopt the notation of example (B,2) in Sect. 1.1 and
choose as ‘generalized’ coordinates:

q1 D x I q2 D y I q3 D ' I q4 D # :

The constraint ‘rolling’ is given according to (1.14) by

Px � R cos# P' D 0 I Py � R sin# P' D 0

This means after (1.95) . p D 2/:

a11 D 1 I a12 D 0 I a13 D �R cos# I a14 D 0 I
a21 D 0 I a22 D 1 I a23 D �R sin# I a24 D 0 :

We need two Lagrange multipliers 	1 and 	2. Following (1.104), the generalized
constraint forces then read:

Q1 D 	1 I Q2 D 	2 I Q3 D �R cos# 	1 � R sin# 	2 I Q4 D 0 :

The wheel disc shall move in a force-free space, therefore possesses only kinetic
energy:

L D T D M

2

�Px2 C Py2�C 1

2
J1 P'2 C 1

2
J2 P#2 :

J1 is the moment of inertia with respect to the wheel axis and J2 that with respect to
the axis which goes through the disc center and the support point. As an exercise,
verify that J1 D .1=2/MR2, J2 D .1=4/M.R2 C .1=3/d2/ where d is the disc
thickness. The Lagrange equation (1.102) now appear as follows:

M Rx D 	1 I M Ry D 	2 I J1 R' D �R	1 cos# � R	2 sin# I J2 R# D 0 :

Together with the above constraints there are now six equations for six unknowns.
In a first step it follows from R# D 0 with #.t D 0/ D 0:

# D !t .! D const/ :

We differentiate the constraints once more with respect to the time:

Rx D �R! P' sin!tC R R' cos!t ;

Ry D R! P' cos!tC R R' sin!t :
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Therewith also the multipliers 	1 and 	2 are fixed:

	1 D �M R! sin!t P' CM R cos!t R' ;
	2 D M R! cos!t P' CM R sin!t R' :

The last, up to now not yet exploited Lagrange equation yields then after insertion
of 	1 and 	2:

J1 R' D M R2! sin!t cos!t P' �M R2 cos2 !t R'
�M R2! cos!t sin!t P' �M R2 sin2 !t R'
D �M R2 R' :

This equation, however, can have only the solution

R' � 0 ” P' D P'0 D const

It remains to integrate:

Rx D �R! P'0 sin!t I Ry D R! P'0 cos!t ;

That is easily possible with the given initial conditions for x.t/ and y.t/. The
constants ! and P'0 follow from the initial conditions for #.t/ and '.t/. Even the
constraint forces are now completely determined:

Q1 D �M R! P'0 sin!t I Q2 D M R! P'0 cos!t I Q3 D Q4 D 0 : (1.115)

They take care for the disc to roll vertically on the xy plane. If the wheel moves
solely straight ahead, ! is zero so that all the constraint forces disappear.

1.2.7 Exercises

Exercise 1.2.1 Discuss the motion of a bead that glides frictionlessly on a uni-
formly rotating wire. r is its distance from the center of rotation. Given are the
initial conditions

r.t D 0/ D r0 I Pr.t D 0/ D �r0!

!: constant angular velocity of the wire.
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Exercise 1.2.2 We consider once more, as in Exercise 1.2.1 or in the application
Example (2) of Sect. 1.2.2, a bead of mass m which is gliding frictionlessly on a wire
that rotates with constant angular velocity ! (Fig. 1.17). For the interpretation of
the results we made in Sect. 1.2.2 the plausible assumption that the acting constraint
force Z.t/ is oriented always perpendicular to the rotating wire.

1. Confirm this plausible assumption by an explicit derivation of Z.t/. Use the same
initial conditions as in Sect. 1.2.2.

r.t D 0/ D r0 I Pr.t D 0/ D 0 :

2. Discuss the energy law:

d

dt
.T C V/ D ‹

Exercise 1.2.3 Consider again a bead of mass m frictionlessly gliding on a wire
which rotates with constant angular velocity !. Different from Exercise 1.2.1 the
bead shall now additionally move in the earth’s gravitational field (Fig. 1.22).

1. Which constraint forces are present?
2. Formulate the Lagrangian function for the bead!
3. Determine the Lagrange equation of motion and find its general solution!
4. Use the initial conditions

r.t D 0/ D r0 I Pr.t D 0/ D 0 :

How large must ! be at the least to force the bead to move outwards for t!1?
5. How would we have to treat the problem in Newton’s mechanics?

Fig. 1.22 Bead on a rotating
wire in the earth’s
gravitational field
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Fig. 1.23 Bead on a rotating
parabolic wire in the earth’s
gravitational field

Exercise 1.2.4 A parabolically curved wire rotates with constant angular velocity!
around the z axis. On this rotating wire a bead of mass m moves frictionlessly in
the earth’s gravitational field .g D �gez/. If the wire is just within the yz plane
(Fig. 1.23) then it holds for the position of the mass

z D ˛y2 .˛ > 0/ :

1. Find the constraints! How many degrees of freedom are left?
2. Use cylindrical coordinates .�; '; z/ to represent the Lagrangian!
3. Calculate for the special case

! D p2˛g

the Lagrange equations of the second kind and show that

�
1C 4˛2�2� P�2

is an integral of motion (conserved quantity)!

Exercise 1.2.5 Let the position of a particle be described by cylindrical coordinates
.�; '; z/. The potential energy of the particle is given as

V.�/ D V0 ln
�

�0
; V0 D const ; �0 D const :

1. Write down the Lagrangian!
2. Formulate the Lagrange equations of motion!
3. Find and interpret at least two conservation laws!
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Fig. 1.24 Cylinder rolling on
the inner surface of the side
wall of another (‘larger’)
cylinder

Fig. 1.25 Point mass m on
the inner surface of a circular
cone in the earth’s
gravitational field

Fig. 1.26 Two connected
spheres gliding under the
influence of the gravitational
force in different wells

Exercise 1.2.6 On the inner surface of a cylinder side wall (radius R) rolls another
cylinder (radius r, mass density � D const) (Fig. 1.24).

1. What is the Lagrangian of the system?
2. Formulate the Lagrange equations of motion!
3. Integrate the equation of motion for small ‘deflections’ '.

Exercise 1.2.7 A mass point m rolls frictionlessly on the inner surface of a circular
cone (cone angle ˛) in the gravitational field of the earth (Fig. 1.25).

1. Formulate the constraints and choose appropriate generalized coordinates.
2. Seek the Lagrangian and write down the equations of motion of the second kind!
3. Which coordinate is cyclic? Specify the corresponding conservation law!

Exercise 1.2.8 Two spheres of equal masses m are connected with each other by a
(mass-less) rod of length l. As indicated in Fig. 1.26 the spheres move frictionlessly
in two given wells under the influence of the gravitational force.
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Fig. 1.27 A rod slipping on a
wall in the earth’s
gravitational field

Fig. 1.28 Bead on a rotating
wire-ring under the influence
of the gravitational force

Fig. 1.29 On a table
frictionlessly rotating mass m
being connected by a thread
to another mass M which
experiences the gravitational
force

1. Introduce suitable generalized coordinates and find the Lagrangian!
2. Solve the Lagrange equations of motion!

Exercise 1.2.9 A rod of the length 2L with circular cross-section �R2 is slipping
down a wall (y axis) because of the gravitational force (Fig. 1.27). The rod possesses
a homogeneous mass distribution (mass M, homogeneous density �0). ' is the time-
dependent inclination angle with respect to the ground (x axis). Discuss the time-
dependence of '!

Exercise 1.2.10 A bead of mass m is gliding frictionlessly on a wire-hoop with the
radius R. The hoop rotates with constant angular velocity ! around its diameter in
the gravitational field g (Fig. 1.28).

1. Formulate and classify the constraints!
2. Find the Lagrange equation of motion!
3. Integrate the equation of motion for # 	 1!

Exercise 1.2.11 A mass m rotates frictionlessly on a tabletop. Via a thread of the
length l .l D rC s/ it is connected through a hole in the table with another mass M
(Fig. 1.29). How does M move under the influence of the gravitational force?
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1. Formulate and classify the constraints!
2. Find the Lagrangian and its equations of motion!
3. Under what conditions does the mass M slip upwards or downwards?
4. Discuss the special case ! D 0.

Exercise 1.2.12 Consider a planar thread pendulum with the thread-length l in the
homogeneous gravitational field (Fig. 1.30). Only small deflections of the pendulum
are to be discussed.

1. Find the Lagrangian and the equation of motion! Choose the initial conditions
such that at time t D 0 the pendulum swings through its equilibrium position.
How big is the frequency !0 of the oscillation?

2. Calculate the thread tension!

Exercise 1.2.13 A particle with the mass m oscillates in the xy plane on a mass-less
thread of length l in the earth’s gravitational field (Fig. 1.31).

1. Formulate the constraints!
2. Do not use all the constraints for eliminating variables, but choose ' and r as

generalized coordinates. Calculate the Lagrangian

L D L .r; '; Pr; P'/

Fig. 1.30 Thread pendulum
of length l in the earth’s
gravitational field

Fig. 1.31 Oscillating mass in
the earth’s gravitational field
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3. Introduce a proper Lagrange multiplier and derive for ' and r the Lagrange
equations of the first kind. Use the equation of motion for r for the determination
of the ‘thread tension’ Qr.

4. Solve the equation of motion for ' with the initial conditions

'.0/ D 0 P'.0/ D
r

g

l
'0 .'0 	 1/

under the presumption of only small pendulum deflections .' 	 1/!

Exercise 1.2.14 A block of mass M is gliding frictionlessly under the influence of
the gravitational force on an inclined plane with the inclination angle ˛. A mass m
is attached to the center of gravity of the block by a mass-less thread of length l
(Fig. 1.32).

1. What is the Lagrangian L.'; s; P'; Ps/?
2. Show that a solution '.t/ D '0 D const does exist!
3. Find a closed differential equation for '. Solve this equation for M
 m and for

small angle deflections (' � ˛)!

Exercise 1.2.15 Two masses m1 and m2 are moving frictionlessly on a wedge under
the influence of the gravitational force (Fig. 1.33). They are connected with each
other by a massless thread of length l D l1 C l2.

1. Formulate the constraints! Of which type are these? How many degrees of
freedom S does the system have?

2. Choose suitable generalized coordinates and write down the transformation
formulas!

3. Find the Lagrangian!

Fig. 1.32 Thread pendulum
coupled to a mass on an
inclined plane

Fig. 1.33 Two masses
connected with each other by
a thread on a wedge in the
earth’s gravitational field
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4. Write down the Lagrange equations of motion and solve them! Determine r1.t/
with the initial conditions:

r1.t D 0/ D r0 I Pr1.t D 0/ D 0 :

Find the equilibrium conditions!
5. Do not use the (holonomic) constraint ‘constant thread length’ to eliminate

variables. Apply instead a Lagrange multiplier 	 to find the ‘thread tension’!
How large is this in equilibrium?

Exercise 1.2.16 Two homogeneous cylinders with masses M1, M2 and radiuses
R1, R2 are wrapped by a thread and therewith connected with each other. The first
cylinder is firmly horizontally pivoted but can be rotated frictionlessly. The second
cylinder drops down in x direction due to the earth’s gravitational field while on both
the cylinders the thread is unwinding (Fig. 1.34).

1. Use the angular-momentum law to find the equation of motion and in particular to
determine the thread tensions F1 and F2! (This problem has already been treated
as Exercise 4.5.4 in Vol. 1)

2. Formulate the Lagrangian! To this use '1 and '2 (see Fig. 1.34) as generalized
coordinates.

3. Determine x2.t/ with the initial conditions:

x2.0/ D 0 I Px2.0/ D 0 :

4. Verify the result for the thread tension from part 1.!

Fig. 1.34 Two rotatable
cylinders coupled by a thread
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Exercise 1.2.17 A homogeneous hollow cylinder (mass M, radius R) is pivoted
around a horizontal axis through the center of mass P in the gravitational field g D
�gez. Within this hollow cylinder a homogeneous solid cylinder (mass m, radius r)
can roll without any gliding. The two cylinder axes are parallel (Fig. 1.35).

Figure 1.35 is to be read as follows: O and P are points fixed in space while A, B,
C, and S are body fixed, i.e. connected to the rolling cylinder. Thus in equilibrium C
coincides with O, B with O, and S is on the line OP.  describes the deflection of the
hollow cylinder from the equilibrium position. � is a measure of the displacement of
the solid cylinder from its equilibrium position, while ' gives the angular position
of the center of gravity of the solid cylinder.

1. List the constraints and fix generalized coordinates!
2. Determine the Lagrangian!
3. Find the equations of motion!
4. Calculate the eigen-frequencies in case of small deflections!

Exercise 1.2.18 Two point masses m1 D m2 D m are connected by a mass-less
rod of length l to build a dumbbell (Fig. 1.36). They are moving in the xy plane
being thereby subject to a friction force which is proportional to the velocities of the
masses. (Fi D �˛ Pri; i D 1; 2)

Fig. 1.35 A solid cylinder that rolls on the inner surface of a hollow cylinder driven by the earth’s
gravitational field

Fig. 1.36 Motion of a dumbbell under the influence of a friction force
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Fig. 1.37 Mass point on an
inclined plane in the earth’s
gravitational field

1. Formulate the constraints and choose suitable generalized coordinates!
2. Friction forces are not conservative. Derive the corresponding generalized forces

Qj!
3. Which equations of motion are to be solved?
4. Solve these equations by use of the initial conditions:

center of gravity: x.0/ D y.0/ D 0 I Px.0/ D vx I Py.0/ D vy

angle: '.0/ D 0 I P'.0/ D !

Exercise 1.2.19 A mass point slips without friction down an inclined plane expe-
riencing the earth’s gravitational field (Fig. 1.37). The plane moves with constant
inclination ˛ in x direction where the intersection point with the x axis exhibits the
time-dependence

a.t/ D 1

2
ct2 .c > 0/

1. Write down the constraints and the Lagrangian L. Thereby, do not exploit the
constraint for the motion of the inclined plane for a reduction of the number of
coordinates.

2. Determine the Lagrange equations of the first kind and use these to fix the
generalized constraint forces Qx , Qy.

3. Solve the equations of motion with the initial conditions

Px.0/ D 0 I x.0/ D x0 :

Exercise 1.2.20 A mass point m is on a spherical surface of radius R and experi-
ences the earth’s homogeneous gravitational field.

1. Specify the constraints and formulate the Lagrangian!
2. Set up the Lagrange equation of the second kind and find an integral of motion!
3. What is the height z0 at which the mass point hops from the sphere if it was

initially in an unstable equilibrium state at the highest point of the sphere and
then gets an infinitesimal initial velocity?
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Exercise 1.2.21 A particle of mass m moves in a plane under the influence of a
force that acts in the direction to a force center. For the magnitude F of the non-
conservative force it holds if r is the distance from the center of force:

F D ˛

r2

�
1 � Pr

2 � 2rRr
c2

�
.˛: constant of appropriate dimension/ :

Determine the generalized potential

U D U .r; Pr/

and therewith the Lagrangian for planar motion!

Exercise 1.2.22 A homogeneous circular disc (radius R, mass M) with a point-
shaped mass fixed on its edge,

m D 1

2
M

moves without gliding frictionlessly on a horizontal straight line under the influence
of the gravitational force (Fig. 1.38).

1. Calculate the coordinates xM , yM of the center of the disc as functions of the roll
angle '. Fix them so that ' D 0 for xM D 0.

2. Calculate as functions of ' the coordinates xm, ym of the mass point as well as
the coordinates xS, yS of the common center of gravity of the disc and the mass
point! Of which type are the trajectories?

3. Calculate the kinetic energy T.'; P'/ and the potential energy V.'/ of the total
system!

4. Find the Lagrangian L.'; P'/ and the corresponding equation of motion for '.
What is the value of the frequency for small oscillations around the equilibrium
position ' D 0?

5. Determine the constraint force Z.'; P'; R'/ that is exerted by the horizontal straight
line onto the disc!

Fig. 1.38 Homogeneous
circular disc with a mass
point m on its edge
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6. For sufficiently high initial velocity v D PxM, referred to the support point at
' D 0, the disc is able to take off from the horizontal straight line because of the
additional mass m. How large must v be in order to guarantee the ‘take off’ at
' D 2�=3?

7. Finally demonstrate the equivalence of Newton and Lagrange mechanics! Gen-
erally we describe the movement of a solid body by ˛/ the translation of the
center of gravity and ˇ/ the rotation around the center of gravity. Derive with the
constraint force Z.'; P'; R'/ from part 5. the equation of motion for ˇ/. It should
be identical to that of part 4).

Exercise 1.2.23 A mass point P is kept by a thread on a circular path with the initial
radius R0 (no gravitational field!). The thread is then shortened, e.g. by putting the
thread through a pipe constructed just in the midpoint of the circle and vertical to
the plane of the circle and then pulling on the thread (Fig. 1.39). At first the thread
shortening takes place so slowly that the respective radial kinetic energy can be
neglected.

1. Determine an integral of motion!
2. Which work W is executed on the system when the path radius changes from R0

to R < R0?
3. Now let the thread be shortened with finite velocity,

Pr.t/ D �b t ; .b > 0/ ;

starting with the thread length R0 at t D 0. Is the integral of motion from 1. still
valid?

4. How does the constraint force Z, which produces the constraint Pr.t/ D �b t, look
like?

5. How large is now the work to be done by the system in order to shorten the thread
length from R0 to R < R0?

Fig. 1.39 Mass point on a
circular path
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Fig. 1.40 Mass point P on a
thread which is attached to a
cylinder jacket

Fig. 1.41 Mass m hanging
on a thread attached to a
roller which is rotatable
around a horizontal axis

Exercise 1.2.24 A thread of total length l is fixed on a cylinder which has a
radius R0 and stands vertically to the drawing plane in Fig. 1.40. A revolution of
the mass point P around the firm cylinder means that the thread is wrapped up and
the ‘free’ thread length r D P O0 is correspondingly shortened.

1. Determine an integral of motion and compare it with part 1. of Exercise 1.2.23.
2. Derive the equation of motion for the angle ' and solve it with the initial

conditions

'.t D 0/ D 0 I l P'.t D 0/ D v0
(' D 0 means the completely unwounded thread). After which time is the thread
completely wrapped up?

3. Demonstrate that the generalized momentum p' belonging to ' is just the
magnitude of the angular momentum of the mass point with respect to O.

Exercise 1.2.25 On a cylindrical roller (radius R, mass M), rotatable around a
horizontal axis, a thread of length l 
 R is wrapped up. One end of the thread
is fixed on the roller while a mass m is hanging on the other free end (Fig. 1.41).
The mass density of the roller increases linearly with the radius, starting with zero
at the axis. The coordinate z of the mass m starts at the roller axis and is counted
downwards (Fig. 1.41).
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1. Find the equation of motion of the system for 0 � z � l and integrate it with
the initial condition that the mass m is released at time t D 0 at the height of the
roller axis.

2. What can be said about the course of motion in the region l � z � R C l if
M 
 m is assumed? How does the motion continue after the minimum point is
reached?

3. How strong is the thread tension in the regions 0 � z � l and l � z � R C l,
respectively?

Exercise 1.2.26 Consider the planar motion of a dumbbell in the gravitational field
defined by the potential energy

V D �� m

r
.� > 0/

which belongs to a point mass m at the distance r from the field center P. The
dumbbell consists of two mass points of equal mass m which are connected by a
mass-less rod of length 2a (Fig. 1.42).

1. Introduce besides r two suitable angles as generalized coordinates, set up the
Lagrangian and derive therewith the equations of motion of the dumbbell.

2. Find the conservation law for the total angular momentum of the dumbbell.
Define in a proper way an orbital angular momentum and an intrinsic (eigen)
angular momentum.

3. Expand the Lagrange equations in ascending powers of .a=r/ up to the order
.a=r/2. Show that for .a=r/ 	 1 the orbital motion can approximately be
decoupled from the intrinsic self-rotation!

4. Investigate the two special motions for which the center of gravity S moves
uniformly on a circle with radius R around P while the dumbbell-rod, in the first
case, points steadily to the center P and, in the second case, lies always tangential
to this circle. Show that these two cases are possible special solutions of the
Lagrange equations. How large are thereby the angular velocities !1 and !2,
respectively, of the motions of S ? (Accuracy up to .a=r/2 is sufficient!) Is the
fact that !1 and !2 are found to be different a contradiction to the general rule
that the center of mass of a system moves as if the total mass were concentrated
in the center and all external forces were acting on it?

Fig. 1.42 Dumbbell
consisting of two equal
masses with constant distance
2a in the earth’s gravitational
field
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Exercise 1.2.27 Which of the two Lagrangians

L1 D m

2
Pr2 C qE � r

L2 D m

2
Pr2 � qE � Prt

describes a charged particle (mass m, charge q) in the constant homogeneous electric
field E?

1.3 The Hamilton Principle

In this section we will become familiar with a new fundamental principle of
Classical Mechanics which turns out to be at least equivalent to the up to now
discussed principles (Newton, d’Alembert). The physical laws, rules and theorems
of Classical Mechanics can be derived from two different types of variational
principles. By the

(1) differential principle (d’Alembert)

one compares a present state of the system with small (virtual) deviations from this
state. As result one gets fundamental equations of motion. In contrast, an

(2) integral principle (Hamilton)

concerns a finite (!) path element between fixed times t1 and t2 which is related to
small (virtual) displacements of the total path from the real course of the system.
Here, too, the principle leads to equations of motion.

1.3.1 Formulation of the Principle

For a better understanding of the integral principle let us recall once more two
previous definitions. We understand by the

configuration space

the S-dimensional space the axes of which are given by the generalized coordinates
q1; : : : ; qS. Each point of the configuration space specifies a possible state of the
total system. There need not necessarily exist a compelling link between the
configuration space and the three-dimensional physical space. The curve in the
configuration space which the system runs through in the course of time is called

configuration path: q.t/ D .q1.t/; : : : ; qS.t// :
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On this path the system moves as a whole. Therefore, it may be that the configuration
path does not have the slightest similarity to the actual particle paths.

We restrict the following considerations at first to

holonomic, conservative systems.

Generalizations are discussed later in the text. If one inserts into the Lagrangian
the configuration path q.t/ and its time-derivative Pq.t/ then L becomes a pure time-
function:

L .q.t/; Pq.t/; t/ �eL.t/ : (1.116)

We define:

S fq.t/g D
t2Z

t1

eL.t/ dt : (1.117)

S has the dimension of ‘action’(=energy � time) and is dependent on the times t1,
t2 as well as on the path q.t/. For fixed t1, t2 to each path q.t/ a pure number
Sfq.t/g is ascribed. This is called a ‘functional’. To each point of the system’s path
a manifold of virtual displacements ıq exists which along the path form something
like a continuum. One can now consider virtual displacements to be composed in
such a way that they, on their own part, represent a continuously differentiable
‘variational orbit’. Such a composition of virtual displacements may be done in
totally different manners so that a full manifold of variational orbits can be found.

Definition 1.3.1

M � fq.t/ W q.t1/ D qa I q.t2/ D qeg (1.118)

is the ensemble of configuration paths (‘competitive set’) with the following
properties:

1. Equal endpoints of time t1, t2, i.e. equal ‘pass-through times’ for the system.
2. Each path arises by virtual displacements from the real one, being therefore

compatible with the constraints.
3. The virtual displacements of the endpoints qa, qe are for all paths equal to zero:

ıqa D ıqe D 0 : (1.119)

Figure 1.43 shows a one-dimensional illustration of the competitive set M. The solid
line represents the ‘real’ path.
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Fig. 1.43 One-dimensional
illustration of the competitive
set of configuration paths
introduced in Definition 1.3.1

We define as

action functional: S fq.t/g D
t2Z

t1

L .q.t/; Pq.t/; t/ dt ; (1.120)

which helps us to formulate the Hamilton principle.

Hamilton’s principle

(A) The motion of the system takes place such that Sfq.t/g becomes extremal
(stationary) among the competitive set M, defined in (1.118), just for the real
path.

(B) The motion of the system takes place such that the variation of S on M vanishes
for the real path q.t/:

ıS D ı
t2Z

t1

L .q.t/; Pq.t/; t/ dt
ŠD 0 : (1.121)

(A) and (B) are of course equivalent statements. How to perform explicitly the
variation in (1.121) that we will learn in the next section. The result will be again the
Lagrange equations of motion in the form (1.36). The Hamilton principle, however,
shows up some remarkable advantages:

1. It is a very ‘elegant’ modeling which in a nutshell contains the whole Classical
Mechanics of conservative, holonomic systems.

2. The principle is not only applicable to typical mechanical systems being actually
a superordinate principle.

3. It is independent of the system of coordinates by which L is expressed.
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We show next the

equivalence to d’Alembert’s principle

The latter we have formulated in (1.20):

NX

i D 1

.mi Rri �Ki/ � ıri D 0 : (1.122)

The virtual displacements ıri are differentiable functions of time:

Rri � ıri D d

dt
.Pri � ıri/ � Pri � ı Pri D d

dt
.Pri � ıri/ � 1

2
ı
�Pr2i
�
:

We remember that with respect to ‘calculatory terms’ we can work with the
symbol 0ı0 exactly as we do it with the total differential 0d0. We now integrate (1.122)
between two fixed times t1 and t2:

t2Z

t1

 
NX

i D 1

.mi Rri �Ki/ � ıri

!
dt

D
t2Z

t1

 
NX

i D 1



d

dt
.mi Pri � ıri/ � mi

2
ı
�Pr2i
� �Ki � ıri

�!
dt D 0 :

The first summand can directly be evaluated:

t2Z

t1

NX

i D 1

d

dt
.mi Pri � ıri/ dt D

NX

i D 1

mi Pri � ıri

ˇ̌
ˇ̌
ˇ

t2

t1

D 0 :

This expression vanishes since only such paths are allowed for the variation which
coincide at the endpoints with the real path:

ırijt D t1; t2 D
SX

j D 1

@ri

@qj
ıqj

ˇ̌
ˇ̌
ˇ̌
t D t1; t2

D 0 : (1.123)

Therefore what is left from the d’Alembert’s principle is:

t2Z

t1

NX

i D 1

h
ı
�mi

2
Pr2i


CKi � ıri

i
dt D 0 : (1.124)
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By the use of the transformation formulas

ri D ri .q1; : : : ; qS; t/ ; i D 1; 2; : : : ;N

we can rewrite this expression using generalized coordinates. According to (1.26)
and (1.29) it holds for a conservative system:

NX

i D 1

Ki � ıri D
SX

j D 1

Qj ıqj D �
SX

j D 1

@V

@qj
ıqj D �ıV :

Therewith (1.124) reads:

t2Z

t1

ı.T � V/ dt D ı
t2Z

t1

.T � V/ dt D ı
t2Z

t1

L dt D 0 : (1.125)

For the last two relations we have exploited that for virtual displacements the times
are not varied at all .ıt D 0/ so that we could draw, for instance, the variation ı to
the front of the integral.

Equation (1.125) is the Hamilton principle. For all processes going on in nature
the time integral of the Lagrangian will attain an extreme value in comparison to all
virtual neighboring paths which connect the same time points t1 and t2 and the same
end-configurations qa, qe.

The Hamilton principle can be transferred into a system of differential equations
by applying methods from the calculus of variations. We therefore will deal in the
next section, as an insertion, a little bit with the calculus of variations.

1.3.2 Elements of the Calculus of Variations

How can we exploit in practice the Hamilton’s principle, i.e. how can we infer the
‘stationary’ path from the action functional Sfq.t/g? The task to find the curve for
which a definite line integral becomes extremal represents a typical

variational problem

At first we will outline the main features for a one-dimensional problem
(Fig. 1.44).
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Fig. 1.44 One-dimensional
illustration of the ensemble of
paths permitted for the
variational problem

We define as
‘competing ensemble M’

M � fy.x/ ; at least twofold differentiable with y .x1/ D y1 and y.x2/ D y2g ;
and on this the functional:

J fy.x/g D
x2Z

x1

f .x; y; y0/ dx D
x2Z

x1

Qf .x/ dx ; (1.126)

where y0 D dy=dx, while f .u; v;w/ represents a differentiable function with
continuous partial derivatives.

The problem is to find out for which y.x/ the functional Jfy.x/g becomes
extremal, i.e. ‘stationary’. This particular problem reminds us of an elementary
extreme value problem and is indeed treated correspondingly. We characterize
and distinguish the curves y.x/ under consideration from M by an ensemble
parameter ˛, which may be chosen in such a way that

y˛D 0.x/ D y0.x/

is the extremal path we want to find. This succeeds, e.g., by the following parameter
representation:

y˛.x/ D y0.x/C �˛.x/ : (1.127)

�˛.x/ is thereby an ‘almost arbitrary’ function which shall be sufficiently often
differentiable and has to fulfill:

�˛ .x1/ D �˛ .x2/ � 0 8˛ ;
�˛D 0.x/ � 0 8 x (1.128)

A possible, very simple choice for �˛.x/ could be, for instance:

�˛.x/ D ˛ 
.x/ with 
 .x1/ D 
 .x2/ D 0 :
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�˛.x/ and therewith also y˛.x/ are for a given x quite normal functions of ˛ which
can be expanded in a Taylor series:

�˛.x/ D ˛

�
@�˛.x/

@˛

�

˛D 0

C ˛2

2

�
@2�˛.x/

@˛2

�

˛D 0

C � � � ;

y˛.x/ D y0.x/C ˛
�
@�˛.x/

@˛

�

˛D 0

C � � � :

We denote as

variation of the path y˛.x/

the displacement ıy of the path that appears as a consequence of a parameter change
from ˛ D 0 to d˛:

ıy D yd˛.x/ � y0.x/ D d˛

�
@�˛.x/

@˛

�

˛D 0

: (1.129)

This displacement is done for a fixed x, therefore reminds of a virtual displacement
which is performed at a constant time.

Fully analogously we define the

variation of the functional J{y(x)}

ıJ D J fyd˛.x/g � J fy0.x/g D
�

dJ.˛/

d˛

�

˛D 0

d˛

D
x2Z

x1

dx
�

f
�
x; yd˛; y

0
d˛

� � f
�
x; y0; y

0
0

��
: (1.130)

If one manages to determine a y0.x/ such that J.˛/ becomes extremal at ˛ D 0

for all (!) �˛.x/ then y0.x/ will obviously be the required stationary path. Thus the
extreme value condition reads:

Choose y0.x/ so that it holds

�
dJ.˛/

d˛

�

˛D 0

D 0 for arbitrary (!) �˛.x/

That means according to (1.130):

‘stationary’ path ” ıJ
ŠD 0 : (1.131)
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We now can further evaluate this prescription:

d

d˛
J.˛/ D

x2Z

x1

dx

�
@f

@y

@y

@˛
C @f

@y0
@y0

@˛

�
:

The endpoints x1, x2 as well as the variable x itself are uninfluenced by the variation.
Therefore, the ˛-differentiations can be drawn into the integrand:

x2Z

x1

dx
@f

@y0
@y0

@˛
D

x2Z

x1

dx
@f

@y0
d

dx

�
@y

@˛

�

D @f

@y0
@y

@˛

ˇ̌
ˇ̌
x2

x1

�
x2Z

x1

dx

�
d

dx

@f

@y0

�
@y

@˛
:

The first summand disappears because of (1.128). It remains:

d

d˛
J.˛/ D

x2Z

x1

dx

�
@f

@y
� d

dx

@f

@y0

�
@y

@˛
;

That means with (1.129) and (1.130):

ıJ D
x2Z

x1

dx

�
@f

@y
� d

dx

@f

@y0

�
ıy :

Except for being zero at the integration limits the variation ıy is arbitrary. Thus the
requirement (1.131) is satisfiable only if

Euler’s equation:
@f

@y
� d

dx

@f

@y0 D 0 (1.132)

is fulfilled! Let us add some remarks:

1. The requirement ıJ D 0 is realizable by minima, maxima or inflection points.
The decision what is really on hand is given by the second variation ı2J.
However, that is rather uninteresting in our context here, because Hamilton’s
principle requires only ıS D 0. S is thereby mostly minimal, in some cases,
however, also maximal.
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2. Euler’s equation is a differential equation of second order which written in detail
reads:

@f

@y
� @2f

@x @y0 �
@2f

@y @y0 y0 � @2f

@y02 y00 D 0 (1.133)

y.x/ thus must be at least two times differentiable.
3. In this context one could ask of course whether it were not possible that even a

function y.x/which is only one time differentiable could make the functional J.x/
extremal. This is not true. The proof, however, turns out to be a rather involved
problem of the functional analysis and therefore will not be outlined here.

Let us exercise the formalism with three typical application examples:

(1) Shortest Connection Between Two Points in the Plane

For the element of the arc length in the xy plane it holds:

ds D
p

dx2 C dy2 D
p
1C y02 dx :

The full path length is then given by:

J D
2Z

1

ds D
x2Z

x1

p
1C y02 dx : (1.134)

We seek the shortest connection and therewith the minimum of J for which as
necessary condition ıJ D 0 must be fulfilled (Fig. 1.45). That corresponds to the
above treated situation so that the Euler’s equation (1.132) can be applied. It must
be formulated for

f .x; y; y0/ D
p
1C y02 :

Because of

@f

@y
� 0 I @f

@y0 D
y0

p
1C y02

Fig. 1.45 To the calculation
of the shortest connection
between two points in the
plane by use of the variational
technique
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it is to require:

d

dx

y0
p
1C y02 D 0 ”

y0
p
1C y02 D const

This means y0 D a D const. Hence, no surprise, the shortest connection is a straight
line:

y.x/ D a xC b : (1.135)

The constants a, b are fixed by the prescription that y.x/ should run through the
points .x1; y1/, .x2; y2/.

(2) Minimum Area of Rotation

We ask ourselves how the connecting line between the points .x1; y1/ and .x2; y2/
must be shaped to make the lateral surface of the hollow body, which is generated
by a rotation of the connecting line around the y axis (Fig. 1.46), minimal. The stripe
area of width ds, indicated in Fig. 1.46, amounts to

2�x ds D 2�x
p
1C y02 dx :

That yields as total area

J D 2�
x2Z

x1

x
p
1C y02 dx : (1.136)

Fig. 1.46 To the calculation
of the connecting line
between two points of a plane
where this line shall lead to a
minimal lateral surface of the
hollow body that arises by a
rotation of the connecting line
around the y axis
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We require ıJ D 0 so that the function

f
�
x; y; y0� D x

p
1C y02

has to fulfill the Euler’s equation (1.132). Because of

@f

@y
� 0 I @f

@y0 D
xy0

p
1C y02

that means:

xy0
p
1C y02 D a D const ” y0 D ap

x2 � a2
:

In case of a minimal rotation area it thus holds:

y.x/ D a arccosh
� x

a



C b ” x D a cosh

�
y � b

a

�
: (1.137)

The constants a and b are uniquely fixed by the endpoints of the connecting line.

(3) Brachistochrone Problem

What is the way y.x/ on which a frictionlessly gliding mass point m under the
influence of the gravitational force needs the shortest time to get from .x1; 0/ to
.x2; y2/ (Fig. 1.47)? Let the initial velocity be zero:

J D
t2Z

t1

dt D
2Z

1

ds

v

ŠD minimum ” ıJ
ŠD 0 :

The velocity v we take from the energy law:

m

2
v2 � m g y D const D m

2
v21 �m g y1 D 0 :

Fig. 1.47 Geometry for the
brachistochrone problem
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Thus it is:

v Dp2 g y :

With ds D pdx2 C dy2 D p1C y02 dx one has to calculate:

ı

Z s
1C y02

y
dx

ŠD 0 : (1.138)

Hence the function

f
�
x; y; y0� D

s
1C y02

y

must fulfill the Euler’s equation (1.132):

@f

@y0 D
y0

p
y .1C y02/

D Of �y; y0� ;

d

dx

@f

@y0 D
@Of
@x
C @Of
@y

y0 C @Of
@y0 y00

D � y02

2y3=2
p
1C y02 C

y00
p

y .1C y02/
� y02y00

.1C y02/3=2py
;

@f

@y
D �

p
1C y02
2y3=2

:

Insertion into the Euler’s equation leads to:

�
1C y02� D �2y y00 C y02 C 2y y02y00

1C y02 :

That is equivalent to:

1C y02 C 2y y00 D 0 ” d

dx
y
�
1C y02� D 0 :

It follows with a constant a which is to be determined later:

y02 D a � y

y
I dx D

r
y

a � y
dy :
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We substitute

y D a sin2 ' H) dy D 2a sin' cos' d'

and integrate therewith the above equation:

x � x1 D
yZ

0

dNy
s
Ny

a � Ny D 2a

'Z

0

d' sin' cos'
sin'

cos'

D 2a
1

2
.' � sin' cos'/ :

So we have found:

x D a

�
' � 1

2
sin 2'

�
C x1 ;

y D a sin2 ' D a

2
.1 � cos 2'/ :

We still replace

R D a

2
I x1 D R� I  D 2' C � : (1.139)

Therewith we arrive at:

x D R . C sin / I y D R .1C cos / : (1.140)

The comparison with (1.60) shows that the curve we sought for represents a cycloid
with a peak at the initial point .x1; 0/.

1.3.3 Lagrange Equations

We have first to generalize the variational calculus to more than one variable. From
the requirement

ıJ D ı
x2Z

x1

dx f
�
x; y1.x/; : : : ; yS.x/; y0

1.x/; : : : ; y
0
S.x/

� ŠD 0 (1.141)
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the extremal (stationary) path y.x/ D .y1.x/; : : : ; yS.x// is to be derived. For each
single component we define a ‘competing ensemble’ Mi by:

Mi D fyi.x/ ; at least two times differentiable
with yi.x1/ D yi1 and yi.x2/ D yi2g :

We use here again a parameter representation for the component function yi.x/:

yi˛.x/ D yi0.x/C �i˛.x/ ; i D 1; 2; : : : ; S : (1.142)

yi0.x/ are here the solutions of the extreme-value problem and �i˛.x/ ‘almost
arbitrary’, but sufficiently often differentiable functions with

�i˛ .x1/ D �i˛ .x2/ D 0 8˛; i ;
�i˛D 0.x/ D 0 8 x; i : (1.143)

The variations ıyi of the path components,

ıyi D
�
@yi˛

@˛

�

x; ˛D 0

d˛ ; (1.144)

and the variation ıJ of the functional,

ıJ D
�

dJ.˛/

d˛

�

˛D 0

d˛ D
x2Z

x1

dx
SX

i D 1

�
@f

@yi

@yi

@˛
C @f

@y0
i

@y0
i

@˛

�

˛D 0

d˛ ; (1.145)

are defined analogously to the special cases .S D 1/ (1.129) and (1.130),
respectively. A partial integration of the second term in (1.145) yields:

x2Z

x1

dx
@f

@y0
i

@y0
i

@˛
D

x2Z

x1

dx
@f

@y0
i

d

dx

@yi

@˛
D @f

@y0
i

@yi

@˛

ˇ̌
ˇ̌
x2

x1

�
x2Z

x1

dx

�
d

dx

@f

@y0
i

�
@yi

@˛
:

The first summand disappears because of (1.143) so that it remains in (1.145):

ıJ D
x2Z

x1

dx
SX

i D 1

�
@f

@yi
� d

dx

@f

@y0
i

�
ıyi

ŠD 0 : (1.146)
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According to the assumption the ıyi are freely selectable except for being zero at
the integration limits. That means that Eq. (1.141) is exactly then fulfilled when the
following relations hold:
Euler-Lagrange differential equations

d

dx

@f

@y0
i

� @f

@yi
D 0 ; i D 1; 2; : : : ; S (1.147)

We now come back to our original task, namely the evaluation of Hamilton’s
principle (1.121). For this purpose we substitute in (1.147):

x H) t I yi H) qi I y0
i H) Pqi I f .x; y; y0/ H) L .t;q; Pq/

getting therewith immediately from the Hamilton principle the
Lagrange equations of motion of the second kind

d

dt

@L

@Pqi
� @L

@qi
D 0 ; i D 1; 2; : : : ; S : (1.148)

Let us remember once more the preconditions which were necessary for the
above derivation of these equations. They hold for conservative systems, because
otherwise the Lagrangian L D T � V is not definable. Furthermore, their derivation
presumed holonomic constraints so that the ıqi are independent of each other.
Under these preconditions d’Alembert’s and Hamilton’s principle are equivalent as
we have shown.

We now want to relax these preconditions a bit. What follows from the Hamilton
principle in case of
conservative systems with non-holonomic constraints in differential form

jX

m D 1

aim Pqm C bit D 0 ; i D 1; : : : ; p (1.149)

The Lagrangian L D T � V in such a case is still definable but the conclusion
from (1.146) to (1.147) is no longer allowed because of the non-holonomic
constraints. The Hamilton principle (1.121) leads at first only to (1.146):

t2Z

t1

dt
jX

m D 1

�
@L

@qm
� d

dt

@L

@Pqm

�
ıqm D 0 (1.150)
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We rewrite the constraints (1.149) for virtual displacements .ıt D 0/ as we did
in (1.96),

jX

m D 1

aimıqm D 0 ; i D 1; 2; : : : ; p ;

coupling them via Lagrange multipliers 	i,

t2Z

t1

dt

 
pX

i D 1

	i

jX

m D 1

aimıqm

!
D 0 ;

to Eq. (1.150):

t2Z

t1

dt
jX

m D 1

 
@L

@qm
� d

dt

@L

@Pqm
C

pX

i D 1

	iaim

!
ıqm D 0 : (1.151)

Using exactly the same considerations as the ones following (1.99) we can choose
the multipliers 	i in such a way that already each summand in (1.151) is zero.
Because of the constraints (1.149) only j � p coordinates are freely selectable.
Therefore we set:

qm W m D 1; : : : ; j � p independent ;

qm W m D j� pC 1; : : : ; j dependent :

The p multipliers 	i are then chosen so that the bracket in the sum in (1.151)
becomes identical to zero for each of the ‘dependent’ qm. That means then all in
all:
Lagrange equations of motion of the first kind

d

dt

@L

@Pqm
� @L

@qm
D

pX

i D 1

	iaim (1.152)

Together with (1.149) there are now . j C p/ equations for the determination of
j coordinates qm and p multipliers 	i. We conclude that for conservative systems
even with non-holonomic constraints d’Alembert’s and Hamilton’s principle prove
to be equivalent.
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1.3.4 Extension of the Hamilton Principle

We want to further relax the hitherto existing precondition

conservative systems with holonomic constraints

and modify the Hamilton principle so that it becomes applicable also for

non-conservative systems

That means, we now allow that the driving forces Ki are not derivable from a scalar
potential. The suitably extended principle should of course be formulated so that it
reduces to (1.121) for the special case of conservative systems. For this purpose we
define a modified
action functional

eS fq.t/g D
t2Z

t1

.T �W/ dt ; (1.153)

W D �
NX

i D 1

Ki � ri : (1.154)

The ‘extended’ Hamilton’s principle tells us that the ‘real’ path can be derived
by the requirement that

ıeS ŠD 0 (1.155)

holds on the ‘competing ensemble’

M D fq.t/ W q .t1/ D qa ; q .t2/ D qeg (1.156)

The set M of the paths which are admitted to the variational procedure is defined
exactly as in (1.118). Since the time is not co-varied we can also write instead
of (1.155):

t2Z

t1

ı.T �W/ dt
ŠD 0 (1.157)

The extended Hamilton principle thus indicates that the variation of the time integral
over the sum of kinetic energy and virtual work, to be done due to the path variation,
must be zero. As in (1.26) we introduce generalized force components Qj:

Qj D
NX

i D 1

Ki � @ri

@qj
: (1.158)
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Because of

ri D ri.q; t/ H) dri D
SX

j D 1

@ri

@qj
dqj C @ri

@t
dt

H) ıri D
SX

j D 1

@ri

@qj
ıqj .ıt D 0/

the virtual work reads:

� ıW D
NX

i D 1

Ki � ıri D
NX

i D 1

SX

j D 1

Ki � @ri

@qj
ıqj D

SX

j D 1

Qjıqj : (1.159)

As contribution of the kinetic energy T we find:

t2Z

t1

ıT dt D
t2Z

t1

SX

j D 1

�
@T

@qj
ıqj C @T

@Pqj
ı Pqj

�
dt ;

t2Z

t1

@T

@Pqj
ı Pqj dt D

t2Z

t1

@T

@Pqj

�
d

dt
ıqj

�
dt D @T

@Pqj
ıqj

ˇ̌t2
t1„ƒ‚…

D 0

�
t2Z

t1

�
d

dt

@T

@Pqj

�
ıqj dt :

That means:

t2Z

t1

ıT dt D
t2Z

t1

SX

j D 1

�
@T

@qj
� d

dt

@T

@Pqj

�
ıqj dt : (1.160)

This we insert together with (1.159) into (1.157):

SX

j D 1

t2Z

t1

�
@T

@qj
� d

dt

@T

@Pqj
C Qj

�
ıqj dt D 0 :

Because of the holonomic constraints the ıqj are independent of each other. Hence
it follows with

d

dt

@T

@Pqj
� @T

@qj
D Qj ; j D 1; 2; : : : ; S (1.161)

exactly the same result as in (1.33) which we found on the basis of d’Alembert’s
principle.
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Finally we still investigate the special case of a conservative system:

Ki D �riV H) Qj D �
NX

i D 1

riV � @ri

@qj
D �@V

@qj
:

For the virtual work ıW it therewith follows:

ıW D �
SX

j D 1

Qj ıqj D
SX

j D 1

@V

@qj
ıqj D ıV :

The postulation (1.157) then reads:

ıeS D
t2Z

t1

ı.T � V/ dt D
t2Z

t1

ıL dt D ıS ŠD 0 :

We see that the extended Hamilton principle (1.155) is for conservative systems
identical to the original principle (1.121).

Therewith we have shown that all statements of the d’Alembert’s principle follow
also in identical manner from the Hamilton’s principle. The two principles are
obviously completely equivalent.

1.3.5 Exercises

Exercise 1.3.1 Determine by use of the variational calculus the shortest link
between a given point A of the xy plane and a straight line g parallel to the y axis
which does not run through A (Fig. 1.48).

1. Show that the shortest distance between A and a fixed point B of the straight
line g its just the line segment AB.

2. Investigate then all line segments from A to any points on g.

Exercise 1.3.2 Determine the shortest connection between two points P1 and P2 on
a cylinder barrel!

Fig. 1.48 Arrangement for
the determination of the
shortest distance between a
point and a straight line
within the xy plane
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Fig. 1.49 Deflection of an
oscillating string

Exercise 1.3.3 It is sought the displacement y.x; t/ of an oscillating string with a
mass distribution m.x/

�D dm
dx .x/

�
(Fig. 1.49).

1. What is the kinetic energy T?
2. Find an expression for the potential energy V if this is proportional to the

elongation of the string during the oscillation.
3. Derive for small displacements of the string by use of Hamilton’s principle a

differential equation for y.x; t/!

Exercise 1.3.4 A particle of mass m moves in the earth’s gravitational field (g D
�gez). It thereby performs a one-dimensional motion z D z.t/. Calculate the action
functional

S D
t2Z

t1

L .z; Pz/ dt

for the path

z.t/ D �1
2

gt2 C f .t/ :

Thereby f .t/ may be an in principle arbitrary but continuously differentiable
function with f .t1/ D f .t2/ D 0. Show that S becomes minimal for f .t/ � 0!

Exercise 1.3.5 Try to find the function y.x/ for which the functional

Jfy.x/g D
x2Z

x1

f .x; y; y0/dx

will be extremal. Show that for the case that f does not explicitly depend on x,
.f D f .y; y0//, the solution complies with

f � y0 @f

@y0 D const :

Exercise 1.3.6 A rope of length l lies in the xy plane being fixed at P1 D .�d; 0/
and P2 D .d; 0/. For which position of the rope will the area F between rope and
x axis become maximal?
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Fig. 1.50 High-voltage cable
between two posts of height
H with a distance A in the
earth’s gravitational field

Hint: Couple the constraint with a Lagrange multiplier 	 to the variational task,
i.e., investigate

ı.F � 	l/
ŠD 0 :

The result of Exercise 1.3.5 might be helpful!

Exercise 1.3.7 A high-voltage cable is hanging between two posts of height H and
with a distance A (Fig. 1.50). It possesses a constant mass density

dm

ds
D ˛ D const .ds: line element of the cable)

Because of the gravitational force (/ g) the cable tends to sag. If the cable length L
were just equal to the pole distance A then there would act on the two poles strong
side tensions which would make the system unstable towards other strains as, e.g.,
external weather conditions. Thus one has to choose from the beginning L > A.

1. Which kind of curve y.x/ will the cable take for given L > A if one assumes that
it corresponds to the minimum of the potential energy?

2. How to find the optimal cable length?

1.4 Conservation Laws

During the motion of a mechanical system the 2S quantities qj, Pqj . j D 1; 2; : : : ; S/
in general change in the course of time. However, occasionally one finds certain
functions Fr of the qj, Pqj, which remain constant during the motion being fixed
exclusively by the initial conditions of the system. Among these functions Fr there
are some whose constancies are connected to basic properties of time and space
(homogeneity, isotropy). One calls

Fr W integrals (constants) of motion (conserved quantities) ; r D 1; 2; : : : ;

if they are functions of the qj, Pqj, but not of Rqj, having a constant value cr for the full
path of the system:

Fr D Fr .q1; : : : ; qS; Pq1; : : : ; PqS; t/ D cr ; r D 1; 2; : : : : (1.162)
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A system with S degrees of freedom is described by S differential equations of
second order the solution of which requires the knowledge of 2S initial conditions.
In case that 2S integrals of motion are known then the problem would already be
solved:

qj D qj .c1; c2; : : : ; c2S; t/ ; j D 1; 2; : : : ; S :

Normally of course not all the 2S constants cr will be on hand. However, already
the knowledge of some of these cr can help us to learn much about the physical
properties of the system and can considerably the integration of the equations of
motion. Thus it is recommendable to detect before the explicit evaluation of a
physical problem as many integrals of motion as possible.

Certain integrals of motion follow immediately from the cyclic coordinates
introduced in (1.53). The generalized momenta pj attributed to the cyclic coordi-
nates qj are the first integrals of motion. One should therefore choose the generalized
coordinates always such that as many qj as possible are cyclic. We illustrate that by
an example:

two-body problem

For a two-body interaction which depends only on the particle distance

V .r1; r2/ D V .jr1 � r2j/

the splitting into a relative and a center-of-gravity motion (Fig. 1.51) appears
advisable (see Sect. 3.2, Vol. 1):

total mass: M D m1 C m2 ;

reduced mass: � D m1 m2
n1Cm2

;

center of gravity: R D 1
M .m1r1 C m2r2/ � .X;Y;Z/ ;

relative coordinate: r D r1 � r2 D r.sin# cos'; sin# sin '; cos#/ :

Fig. 1.51 Center-of-gravity
and relative coordinates for
the two-body problem
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The relative motion takes place as if the reduced mass � moves in the central field
V.r/ D V.r/ (see Sect. 3.2.1, Vol. 1). With the generalized coordinates

q1 D X ; q2 D Y ; q3 D Z ; q4 D r ; q5 D # ; q6 D ' (1.163)

the Lagrangian thus reads:

L D M

2

�Pq21 C Pq22 C Pq23
�C �

2

�Pq24 C q24 Pq25 C q24 sin2 q5 Pq26
� � V .q4/ : (1.164)

One recognizes immediately that

q1; q2; q3; q6

are cyclic coordinates leading directly to four integrals of motion. The first three,

p1 D @L

@Pq1 D M Pq1 D M PX D const ;

p2 D @L

@Pq2 D M Pq2 D M PY D const ;

p3 D @L

@Pq3 D M Pq3 D M PZ D const ;

result combined in the center-of-mass theorem for closed systems ((3.48), Vol. 1):

P D M PR D const : (1.165)

The fourth integral of motion:

p6 D @L

@Pq6 D � q24 sin2 q5 Pq6 D �r2 sin2 # P' D L.z/r D const

concerns the z-component of the relative angular momentum. Since no space
direction is specified, we can even conclude:

Lr D const : (1.166)
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Had we formulated the problem by Cartesian coordinates,

L D m1

2

�Px21 C Py21 C Pz21
� C m2

2

�Px22 C Py22 C Pz22
�

� V
h
.x1 � x2/

2 C .y1 � y2/
2 C .z1 � z2/

2
i
;

none of the coordinates would have been cyclic although, of course, nothing of the
system had changed. The conservation laws (1.165) and (1.166) of course would
still be valid, but to recognize that would have turned out to be very much more
complicated.

In the framework of Newton’s version of Classical Mechanics (see Vol. 1) we
got to know a series of physically fundamental conservation laws (for energy, for
linear momentum, for angular momentum, etc.). These we find of course also
in the Lagrangian formulation. They have then, however, sometimes a somewhat
different shape and can lead to new aspects with their interpretations. In the
subsequent sections we will be able to interpret them as direct consequences of
basic symmetries of the physical system (Noether’s theorems). Thereby we will
assume, without mentioning it always explicitly,

holonomic, conservative systems.

1.4.1 Homogeneity of Time

We call a system ‘temporally homogeneous’ if its properties prove to be invariant
under time translations. The results of measurements performed under exactly the
same boundary conditions are independent of the point in time of the measurement.
The ensemble of all possible paths which start at a certain given time is independent
of the choice of this initial time but only dependent on the initial configuration qa.
If q.t/ is the configuration path which the system is passing through between the
times ta and te with the initial- and end-configurations

q .ta/ D qa and q .te/ D qe ;

then the ‘temporally shifted’ configuration path between ta C �t and te C �t will
go through, provided the temporal homogeneity is given, exactly the same points of
the configuration space if only the initial- and end-configurations are the same:

q .ta C�t/ D qa I q .te C�t/ D qe :

This means, however, that the Lagrangian L of the system by which we calculate its
path can not explicitly depend on the time:

homogeneity of time ” @L

@t
D 0 : (1.167)
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That we now want to analyze a bit more precisely. At first it follows for the total
time differential

d

dt
L D

SX

j D 1

�
@L

@qj
Pqj C @L

@Pqj
Rqj

�
D

SX

j D 1


�
d

dt

@L

@Pqj

�
Pqj C @L

@Pqj
Rqj

�

D d

dt

SX

j D 1

@L

@Pqj
Pqj ;

where we have exploited in the second step the Lagrange equations of motion (1.36):

d

dt

0

@L�
SX

j D 1

@L

@Pqj
Pqj

1

A D 0 : (1.168)

According to (1.52) @L=@Pqj is just the generalized momentum pj. We define already
at this stage the so-called
Hamiltonian function

H D
SX

j D 1

pj Pqj � L ; (1.169)

which we will deal with in a greater detail in the next section. It obviously represents
according to (1.168), in case of temporal homogeneity of the system, an integral of
motion:

homogeneity of time ” @L

@t
D 0 ;

‘system motion such that’ H D const : (1.170)

How can we interpret this conservation law? If we presume scleronomic constraints,
or more precisely, transformation formulas ri.q; t/ of the particle coordinates which
do not explicitly depend on time,

@ri

@t
� 0 ; i D 1; 2; : : : ;N ;

then the kinetic energy T according to (1.37) and (1.39) is a homogeneous function
of second order of the generalized velocities Pqj, i.e.

T .aPq1; : : : ; aPqS/ � a2T .Pq1; : : : ; PqS/ :
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That means for arbitrary real a:

@T

@a
D

SX

j D 1

@T

@
�
aPqj
� Pqj D 2a T

or especially for a D 1:

SX

j D 1

@T

@Pqj
Pqj D 2T : (1.171)

Since the considered system is assumed to be also conservative it holds additionally

@V

@Pqj
D 0 ; j D 1; : : : ; S : (1.172)

It follows therewith

2T D
X

j

@T

@Pqj
Pqj D

X

j

@L

@Pqj
Pqj D

X

j

pj Pqj :

In this case it thus holds for the Hamiltonian function:

H D T C V D E ” total energy :

Equation (1.170) then states that the energy conservation law for holonomic-
scleronomic conservative systems is, in the last analysis, a consequence of the
homogeneity of time.

Why was it necessary here to presume scleronomic constraints? Let us remember
the characteristic difference between Newton’s and Lagrange’s version of mechan-
ics. In Newton’s mechanics all forces appear in the equations of motion, the
constraint forces included, while in Lagrange’s mechanics the constraint forces are
eliminated. According to d’Alembert’s principle constraint forces do not do work for
virtual displacements. Virtual displacements differ from real ones by the additional
requirement ıt D 0. For scleronomic constraints therefore holds virtual D real, but
not for rheonomic constraints. In the latter case constraint forces can indeed execute
work which, however, do not appear in H since constraint forces are eliminated in
the Lagrange formalism. The conservation law holds then only in the form of (1.170)
H D const, but H can not be interpreted as total energy.

We illustrate the issue for the Example (2) in Sect. 1.2.2, the gliding bead on a
uniformly rotating rod (Fig. 1.52). Besides the holonomic-scleronomic constraint

z D 0
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Fig. 1.52 Gliding bead on a
rotating rod

there is also a holonomic-rheonomic condition:

y D x tan!t :

Nevertheless, the Lagrangian (1.50)

L D T D m

2

�Pq2 C q2!2
�

is not explicitly time-dependent so that we have:

@L

@t
D 0

That gives the conservation law:

H D p Pq� L D const :

On the other hand, one finds:

H D @L

@Pq Pq � L D m Pq2 � 1
2

m
�Pq2 C q2!2

� D 1

2
m
�Pq2 � q2!2

�

¤ T D T C V D E :

Hence the above conservation law is not identical to the energy law!

1.4.2 Homogeneity of Space

A system is called ‘spatially homogeneous’ if its properties are independent of its
position, i.e. if a rigid shift of the system as a whole does not change the results of
measurement. That, for instance, is the case when the considered system is subject
exclusively to (internal) forces which depend only on the interparticle-distances.
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Fig. 1.53 Illustration of the
cyclic coordinate which
corresponds to the
homogeneity of space

Fig. 1.54 Change of particle
coordinates in consequence of
a shift of the total system by
�qj in the direction nj

The generalized coordinate qj may be chosen in such a way that �qj means a
translation of the total system (Fig. 1.53). That can be realized, e.g., by the Cartesian
components of the center of mass. Then it follows as sufficient condition for spatial
homogeneity:

@L

@qj
D 0 : (1.173)

qj is therefore cyclic leading to the conservation law:

pj D @L

@Pqj
D const : (1.174)

But what is the physical meaning of pj? Since the system is thought to be
conservative it holds:

@V

@Pqj
D 0

and therewith also:

pj D @L

@Pqj
D @T

@Pqj
D

NX

i D 1

mi Pri
@Pri

@Pqj
D

NX

i D 1

mi Pri
@ri

@qj
: (1.175)

In the last step we have used (1.23).
nj shall be the unit vector in the direction of the translation (Fig. 1.54). All particle

coordinates are changed by the same constant vector:

�qj D �qjnj :
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It follows:

@ri

@qj
D lim

�qj ! 0

ri
�
qj C�qj

� � ri
�
qj
�

�qj
D lim

�qj ! 0

�qj nj

�qj
D nj : (1.176)

Hence pj is the component of the total momentum belonging to qj in the direction
of the translation nj:

pj D nj

NX

i D 1

mi Pri D nj � P : (1.177)

Since nj can be chosen arbitrarily it holds the following conservation law:
homogeneity of space”momentum conservation law

P D
NX

i D 1

mi Pri D const : (1.178)

Let us add a short discussion:

1. The generalized force component Qj is related to the coordinate qj by:

Qj D
NX

i D 1

Fi � @ri

@qj
D nj �

NX

i D 1

Fi D nj � F : (1.179)

Because of ‘action D reaction’ the internal forces (particle interactions) cancel
each other so that F represents the total external force. In a conservative system
it holds (1.29):

Qj D �@V

@qj
:

Furthermore, (1.176) yields:

@Pri

@qj
D d

dt

@ri

@qj
D d

dt
nj D 0 :

This means:

@T

@qj
D 0
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and therewith:

Qj D @L

@qj
:

Because of (1.173) we have then:

Qj D nj � F D Ppj D 0 : (1.180)

This relation is fulfilled if

F � 0 or F? nj

2. For external fields, which are finite but with given symmetries, the coordinate
qj can be cyclic for translations in certain space directions, namely for those for
which nj is orthogonal to F (see (1.172)). We have found therewith an important
relationship:

momentum conservation in symmetry directions

Examples

(1) Field of an infinite homogeneous plane
Each point of the plane is the source of a spherically symmetric field so that

after superposition of all contributions only a resultant z component remains
finite. The force on particle i, executed by all points of the infinite .xy/ plane,
has therefore only a non-zero z component. That holds then of course also for
the total force:

F D
NX

i D 1

Fi � .0; 0;F/ : (1.181)

For nj D ex; ey (1.180) is obviously fulfilled. That yields the integrals of motion:

Px D const I Py D const : (1.182)

(2) Field of an infinite homogeneous circular cylinder
The rotational symmetry around the cylinder axis suggests the use of

cylindrical coordinates (see Sect. 1.7.3, Vol. 1):

�; '; z W x D � cos' I y D � sin ' I z D z ;

e� D .cos'; sin'; 0/ ;

e' D .� sin '; cos'; 0/ ;

ez D .0; 0; 1/ :
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Since the circular cylinder shall be infinitely long and homogeneous the field
will be independent of ' and z:

Fi D Fi e�i H) F D
X

i

Fi D
�
Fx;Fy; 0

�
: (1.183)

This means according to (1.177):

Pz D const : (1.184)

1.4.3 Isotropy of Space

One calls a system ‘spatially isotropic’ if the system properties do not change on
arbitrary rotations. We now choose the generalized coordinate qj such that �qj

represents a rotation of the system by an angle �' around the axial direction nj

(see Fig. 1.55):

j�rij D �qj ri sin#i :

�ri is orthogonal to ri and to nj. It therefore holds:

�ri D �qj nj � ri : (1.185)

It follows as sufficient condition for spatial isotropy:

@L

@qj
D 0 : (1.186)

Fig. 1.55 Illustration of the
cyclic coordinate due to the
isotropy of space
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The so defined coordinate qj is therefore cyclic and leads to the conservation law:

pj D @L

@Pqj
D const : (1.187)

What is the meaning of pj? Since the system is again thought to be conservative
equation (1.175) is valid. With

@ri

@qj
D lim

�qj ! 0

�ri

�qj
D nj � ri (1.188)

it follows:

pj D
NX

i D 1

mi Pri �
�
nj � ri

� D nj �
NX

i D 1

.ri �mi Pri/ :

Hence pj is the component of the total angular momentum L in nj direction:

pj D nj �
NX

i D 1

Li D nj � L : (1.189)

Since the axial direction nj can be chosen arbitrarily we come to the conclusion:
isotropy of space” angular momentum conservation law

L D
NX

i D 1

mi ri � Pri D const : (1.190)

We want to further comment briefly on this result:

1. The coordinate qj is related to the force component Qj for which one finds
with (1.188):

Qj D
X

i

Fi �
�
nj � ri

� D nj �
X

i

.ri � Fi/ D nj �
X

i

Mi D nj �M (1.191)

Thus it is the component of the total torque in rotational direction nj.
Because of

@T

@qj
D
X

i

mi Pri � @Pri

@qj
D
X

i

mi Pri

�
d

dt

@ri

@qj

�
D
X

i

mi Pri �
�
nj � Pri

� D 0
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it follows with (1.186):

Qj D �@V

@qj
D @L

@qj
D 0 : (1.192)

We see that according to (1.191) and (1.192) spatial isotropy is equivalent to the
disappearance of the total moment of rotation (torque) M acting on the system.

2. In case of incomplete spatial isotropy equation (1.192) can nevertheless be
fulfilled, namely when the external fields exhibit symmetries so that M is
orthogonal to certain directions in space nj. Again we illustrate this fact by some
examples:

(a) Field of an Infinite Homogeneous Plane

As explained before (see (1.181)) the force on particle i reads:

Fi � .0; 0;Fi/ :

That leads to

Mi D ri � Fi? ez

yielding eventually the conservation law:

Lz D const : (1.193)

(b) Field of an Infinite Homogeneous Circular Cylinder

As in (1.183) we use cylindrical coordinates for the representation of the force Fi

which acts on particle i:

ri D .�i cos'i; �i sin'i; zi/ D �ie�i C ziez ; (1.194)

Fi D Fi�e�i D Fi� .cos'i; sin'i; 0/ : (1.195)

Though the torque M is not at all zero,

M D
X

i

.ri � Fi/ D
X

i

zi Fi� .� sin 'i; cos'i; 0/ ;

its z component vanishes:

ez �M D 0 : (1.196)
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That leads to the conservation law:

Lz D const : (1.197)

(c) Field of a Homogeneous Circular Ring (Annulus)

We choose the axis of the ring as z axis. Then the field must be rotationally
symmetric to the z axis so that again cylindrical coordinates are recommendable.
The force Fi acting on particle i cannot have a finite ' component:

Fi D Fi�e� C Fizez D
�
Fi� cos'i; Fi� sin 'i; Fiz

�
: (1.198)

It holds with (1.194):

ri � Fi D
�
�ie�i C ziez

� � �Fi�e�i C Fizez
�

D ���iFiz C ziFi�
�

e'i

That means for the torque:

M D
X

i

.ri � Fi/ �
�
Mx;My; 0

�
; (1.199)

so that also in this case (1.196) and (1.197) are valid.

1.4.4 Exercises

Exercise 1.4.1 Consider a conservative system with holonomic constraints. Fur-
thermore let there exist a one-to-one mapping of coordinates:

q �! q0 D q0.q; t; ˛/

q0 �! q D q.q0; t; ˛/ :

Thereby ˛ may be a continuously adjustable parameter. The transformation formu-
las are continuously differentiable with respect to this parameter. For ˛ D 0 we
have the identity transformation q0.q; t; ˛ D 0/ D q. Insertion of the transformation
formulas into the Lagrangian yields:

L .q; Pq; t/ D L
�
q.q0; t; ˛/; Pq.q0; Pq0; t; ˛/; t

� � L0 �q0; Pq0; t; ˛
�
:
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We now require that the transformation is just such that the Lagrangian remains
invariant, i.e.

L0 �q0; Pq0; t; ˛
� D L

�
q0; Pq0; t

� 8˛ :

Show then that

I .q; Pq; t/ D
SX

j D 1

@L

@Pqj

@qj .q0; t; ˛/
@˛

ˇ̌
ˇ̌
˛D 0

represents an integral of motion (Noether’s theorem)!

Exercise 1.4.2 A particle of mass m is described by the Lagrangian:

L .q; Pq/ D m

2

�Px2 C Py2 C Pz2� � V
�
x2 C y2; z

�

Show that L remains invariant on a rotation around the z axis (rotation angle ˛). Find
then with the result of Exercise 1.4.1 an integral of motion!

Exercise 1.4.3 As in Exercise 1.4.1 we consider a conservative system with holo-
nomic constraints. There exists again a one-to-one transformation of coordinates
with a continuous parameter ˛:

q �! q0 D q0.q; t; ˛/

q0 �! q D q.q0; t; ˛/

The transformation formulas are continuously differentiable with respect to ˛. For
˛ D 0 it is the identity transformation. Insertion of the transformation formulas into
the Lagrangian yields:

L .q; Pq; t/ D L
�
q
�
q0; t; ˛

�
; Pq �q0; Pq0; t; ˛

�
; t
� � L0 �q0; Pq0; t; ˛

�
:

1. Now let the transformation change the Lagrangian in the following manner:

L0 �q0; Pq0; t; ˛
� D L

�
q0; Pq0; t

�C d

dt
f
�
q0; t; ˛

�
:
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Thereby f .q0; t; ˛/ can be an arbitrary, but sufficiently often differentiable
function in all variables (mechanical gauge transformation (1.84)). Show then
that

bI .q; Pq; t/ D
SX

j D 1

@L

@Pqj

@qj .q0; t; ˛/
@˛

ˇ̌
ˇ̌
˛D 0

� @

@˛
f
�
q0; t; ˛

�ˇ̌ˇ̌
˛D 0

represents an integral of motion!
2. Consider as an application example the free fall of the mass m in the homoge-

neous earth’s gravitational field: L.x; Px/ D m
2
Px2 � mgx. Show that the Galilei

transformation

x �! x0 D xC ˛t

fulfills the preconditions of part 1. and find the corresponding conserved
quantity!

1.5 Self-examination Questions

To Section 1.1

1. What does one understand by constraints, what are constraint forces?
2. Which difficulties arise by the existence of constraints when treating a mechani-

cal problem?
3. What are holonomic, holonomic-scleronomic, holonomic-rheonomic, non-

holonomic constraints?
4. Which conditions are to be fulfilled by generalized coordinates?
5. How is the configuration space defined?

To Section 1.2

1. What is understood by a virtual displacement and by virtual work?
2. Formulate the principle of virtual work!
3. Why are friction forces not counted as constraint forces?
4. What are generalized force components?
5. What does the d’Alembert’s principle state?
6. Under which conditions do the Lagrange equations of the second kind follow

from the d’Alembert’s principle?
7. How do the Lagrange equations behave under point transformations?
8. How is a generalized momentum defined?
9. What is a cyclic coordinate?

10. How does the parameter representation of the cycloid look like?
11. Of which type are the equations of motion which follow from the d’Alembert’s

principle for non-conservative systems with holonomic constraints?
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12. Which conditions must be fulfilled by ‘generalized potentials’? Can they
depend even on generalized velocities?

13. Which Lagrangian is found for the charged particle in an electromagnetic field?
What can be said about its generalized momentum?

14. How does the Lagrangian of a charged particle behave when being subject to a
gauge transformation ' ! ' � .@=@t/� I A ! AC r� ? What does thereby
happen to the equations of motion?

15. What do we understand by a mechanical gauge transformation?
16. How are systems to be described which are influenced by friction forces?
17. Which physical meaning is ascribed to the dissipation function?
18. Explain the method of the Lagrange multipliers!
19. What are Lagrange equations of motion of the first kind?
20. Which physical meaning can be ascribed to the Lagrange multipliers?

To Section 1.3

1. Comment on the difference between differential and integral principles!
2. What do we understand by a configuration path?
3. Formulate Hamilton’s principle! What kind of paths are admitted to the

variational process?
4. What is an action functional?
5. Explain the term variation of the functional Jfy.x/g.
6. Write down Euler’s equations and outline their derivation!
7. What is the brachistochrone problem?
8. How does one derive from the Hamilton’s principle the Lagrange equations

of motion of the first kind for conservative systems with non-holonomic
constraints?

9. How does the Hamilton’s principle read for non-conservative systems? Which
action functional is then to be varied?

10. Of which kind are the equations of motion which follow from the ‘extended’
Hamilton principle?

To Section 1.4

1. What is an integral of motion?
2. Why is it convenient in the Lagrange formulation of a problem in physics to

choose the generalized coordinates such that as many of them as possible are
cyclic?

3. When is a system called temporally homogeneous? What does it then hold for
the Lagrangian?

4. How is the Hamilton function defined?
5. Which conservation law follows from the temporal homogeneity of a physical

system?
6. Under which conditions is the Hamilton function identical to the total energy

of the system?
7. When can a system be termed spatially homogeneous? What does it then hold

for the Lagrangian?
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8. Which conservation law is a consequence of the homogeneity of space?
9. Which connection does exist between momentum conservation and symmetry

directions?
10. How does spatial isotropy manifest itself in the Lagrangian of a physical

system?
11. Which conservation law is due to spatial isotropy? What must hold for the total

torque?
12. Which symmetry condition must be addressed to the force acting on particle

i in order to guarantee that the x component of the angular momentum is an
integral of motion?



Chapter 2
Hamilton Mechanics

This chapter goes in for a

further development of the theory of Classical Mechanics

The main goal is thereby not so much the evolution and presentation of new
auxiliary calculation tools. Furthermore, we will see that the Hamiltonian version
of Classical Mechanics does not provide any new physics. Its range of validity and
application corresponds namely rather exactly to that of the Lagrangian version.
What it is about is rather to gain a deeper insight into the formal mathematical
structure of the physical theory, and to investigate all thinkable reformulations of the
basic principles. Aside from that we have to bear in mind that Classical Mechanics
as any other physical theories possesses only a restricted range of validity which
is not ‘a priori’ clear, however, the representation will turn out to be especially
convenient for subsequent generalizations. Concept formations and mathematical
correlations of the Hamiltonian formalism will prove to be helpful for a connection
to the principles of the superordinate Quantum Mechanics. In the last analysis,
that is the decisive motivation to deal with the Hamiltonian version of Classical
Mechanics.

As a certain ‘review of situation’, let us contrast the various concepts which
we discussed so far. The Newtonian Mechanics represents a very general concept.
All types of forces are admitted and involved. The solutions of the equations of
motion manifest themselves very descriptively as particle trajectories. The Newto-
nian Mechanics is, however, valid only in inertial systems. In non-inertial systems
suitable pseudo forces must be introduced. The rather ‘cumbersome’ constraint
forces are to be considered explicitly in the equations of motion. Furthermore,
the Newton equations turn out not to be form-invariant with respect to coordinate
transformations.

The Lagrangian Mechanics, on the other hand, is valid in all systems of coordi-
nates. Its special advantage lies in the fact that the ‘cumbersome’ constraint forces
are eliminated. The Lagrange equations of motion turn out to be form-invariant
with respect to point transformations. They are derived from basic principles, the

© Springer International Publishing Switzerland 2016
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differential principle of d’Alembert or the integral principle of Hamilton, which
replace Newton’s axioms. In holonomic and conservative systems they are about
S differential equations of second order for S generalized coordinates q1; : : : ; qS, for
the solution of which 2S initial conditions must be given. Since the generalized
coordinates can be arbitrary physical quantities, i.e. not necessarily with the
dimension ‘length’, the solutions of the equations of motion are correspondingly less
descriptive than those of the Newton equations. Only after a back transformation to
particle coordinates r1; : : : ; rN one gets the classical particle trajectories. That may
be seen as a certain disadvantage of the Lagrangian formalism, as well as the fact
that there does not exist a unique prescription for the treatment of all thinkable types
of constraints.

The Hamiltonian Mechanics, which we are now going to discuss, shall construct
a bridge between the classical theories and the non-classical ones (Quantum
Mechanics, Statistical Mechanics). The most important result will be the finding
that Classical Mechanics and Quantum Mechanics can be regarded as different
realizations of one and the same superordinate abstract mathematical structure.
When going over from the Lagrangian to the Hamiltonian formalism the generalized
velocities are replaced by the generalized momenta:

.q; Pq; t/ ) .q;p; t/ :

q and p are considered as variables which are independent of each other. A
consequence of these transformations will be a set of 2S differential equations of
first order for S generalized coordinates q1; : : : ; qS and S generalized momenta
p1; : : : ; pS. The number of initial conditions necessary for a full solution thus
remains unchanged to be 2S. As method for the change of coordinates the so-
called Legendre transformation is chosen. Its technique will be introduced in the
next section.

2.1 Legendre Transformation

We discuss as mathematical interlude a procedure for the transformation of the
variables which is important for theoretical physics:

Let a function f D f .x/ be given with the differential

df D df

dx
dx D u dx :

and we look for a function g D g.u/ for which it holds:

dg

du
D ˙x
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This is found very easily as follows:

df D u dx D d.ux/� x du

H) d. f � ux/ D �x du H) d

du
. f � ux/ D �x :

One therefore defines:
Legendre transform of f (x):

g.u/ D f .x/ � ux D f .x/ � x
df

dx
: (2.1)

Why is the transformation of the variables not simply carried out ‘by insertion’?
The following example makes clear that then the transformation would not be a
one-to-one mapping. The transformation

df

dx
D u.x/ H) x D x.u/ H) Qf .u/ D f .x.u//

would for instance mean that the two functions

f .x/ D ˛ x2 and Nf .x/ D ˛.xC c/2

both have the same transform Qf .u/:

u D df

dx
D 2 ˛ x

Nu D dNf
dx
D 2 ˛.xC c/

9
>>=

>>;
H)

x D u

2˛

x D Nu
2˛
� c

9
>=

>;
H)

Qf .u/ D u2

4˛

Qf .Nu/ D Nu
2

4˛

:

Hence the back-transformation cannot be unique. In contrast, a Legendre transfor-
mation is unique as can be read off from the following pattern:

(2.2)
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Obviously this pattern is applicable only if additionally

d2f

dx2
¤ 0 (2.3)

holds because otherwise u cannot really be a variable. From
�
d2f
�ı�

dx2
� D 0 it

would namely follow .df /=.dx/ D u D const. In the above pattern (2.2) no point is
special. The back-transformation is therefore unique.

Let us extend the theory to functions of two variables. It is now given the function

f D f .x; y/ H) df D u.x; y/ dxC v.x; y/ dy ;

where it holds:

u.x; y/ D
�
@f

@x

�

y

; v.x; y/ D
�
@f

@y

�

x

: (2.4)

We want to find another function

g D g.x; v/ H) dg D u dx � y dv

with

u .x; y.x; v// D
�
@g

@x

�

v

; y.x; v/ D �
�
@g

@v

�

x

: (2.5)

One denotes x as the passive and y as the active variable. The function g.x; v/ we
are looking for is found as follows:

df D u dxC v dy D u dxC d.vy/� y dv

H) d. f � vy/ D u dx � y dv

H)
�
@. f � vy/

@x

�

v

D u ;

�
@. f � vy/

@v

�

x

D �y :

One now defines:
Legendre transform of f (x,y) with respect to y :

g.x; v/ D f .x; y/ � vy D f .x; y/ � y

�
@f

@y

�

x

(2.6)
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The transformation pattern (2.2) is only slightly to be changed:

(2.7)

The generalization of the algorithm to more than two variables is obvious.

2.1.1 Exercises

Exercise 2.1.1 Determine the Legendre transform

1. g.u/ of the function f .x/ D ˛ x2,
2. g.x; v/ of the function f .x; y/ D ˛ x2y3.

Exercise 2.1.2 Determine the Legendre transform

1. g.u/ of the function f .x/ D ˛.xC ˇ/2 .˛; ˇ W constants/
2. g.x; v/ of the function

f .x; y/ D ˛x3y5 :

For checking purposes perform the back-transformation!

Exercise 2.1.3 A frequent application of the Legendre transformation is found in
thermodynamics (see Vol. 4 of this basic course), e.g. in connection with calculation
and disposition of the ‘thermodynamic potentials’. These are energy quantities
which as functions of their so-called ‘natural variables’ exhibit some useful and
special properties. The internal energy of a gas U, e.g., possesses as natural variables
the entropy S and the volume V . A change of the internal energy is calculated
according to

dU D TdS � pdV :
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p is the pressure and T the temperature of the gas. Since S and V are not always
optimal variables for experimental targets, alternative potentials are brought into
play:

1. free energy: F D F.T;V/
2. enthalpy: H D H.S; p/
3. free enthalpy: G D G.T; p/

These potentials differ from each other and from U by proper Legendre transforma-
tions. Find out the connections of the potentials F, H, G with U and determine the
partial derivatives with respect to their natural variables!

2.2 Canonical Equations of Motion

2.2.1 Hamilton Function

We transform the Lagrangian,

L D L .q1; : : : ; qS; Pq1; : : : ; PqS; t/ ;

considering the generalized velocities Pq1; : : : ; PqS as active variables and replace
them by the generalized momenta

pi D @L

@Pqi
; i D 1; : : : ; S

The Legendre-transform we got to know already in (1.169), except for the sign, as
Hamilton function

H .q1; : : : ; qS; p1; : : : ; pS; t/ D
SX

i D 1

pi Pqi � L .q1; : : : ; qS; Pq1; : : : ; PqS; t/ : (2.8)

We have seen in Sect. 1.4.1 that there exists a close relationship between this
function and the energy of the system. But before we come back to this point let us
first derive the equations of motion which are connected to the Hamilton function H.
For this purpose we build the total differential:

dH D
SX

i D 1

.dpi Pqi C pi d Pqi/�
SX

i D 1

�
@L

@qi
dqi C @L

@Pqi
d Pqi

�
� @L

@t
dt

D
SX

i D 1

�
Pqi dpi � @L

@qi
dqi

�
� @L

@t
dt :
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We still exploit the Lagrange equations:

dH D
SX

i D 1

.Pqi dpi � Ppi dqi/ � @L

@t
dt : (2.9)

On the other hand it of course also holds:

dH D
SX

i D 1

�
@H

@pi
dpi C @H

@qi
dqi

�
C @H

@t
dt : (2.10)

Since qi, pi, t are independent coordinates the direct comparison of (2.9) and (2.10)
yields:

Pqi D @H

@pi
; i D 1; : : : ; S ; (2.11)

Ppi D �@H

@qi
; i D 1; : : : ; S ; (2.12)

�@L

@t
D @H

@t
: (2.13)

We have therewith found

Hamilton’s equations of motion

which are also called

canonical equations (of motion)

These are 2S equations of motion, of first order in the time, which supersede the
S Lagrange equations which are of second order. One should keep in mind the
remarkable symmetry of the equations with respect to the qi and the pi. They
describe the motion of the system in the 2S-dimensional

phase space

whose axes are defined by the generalized coordinates qi and the generalized
momenta pi.

We should concern ourselves a little bit more with the physical meaning of
the Hamilton function. Thereto we remember the general structure (1.41) of the
Lagrangian L:

L D T � V D L2 C L1 C L0 :
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The Li are here homogeneous functions of the generalized velocities Pqj of
order i (1.45). That means (see (1.171)):

SX

j D 1

@L

@Pqj
Pqj D 2L2 C L1 : (2.14)

It follows then with (2.8) for the Hamilton function:

H D L2 � L0 : (2.15)

Hence it does not contain the term L1. In case of scleronomic constraints (more
exactly, for @ri=@t � 0) one finds according to (1.38) and (1.39) ˛ D ˛j D 0. That
leads to:

L0 D �V ; L1 D 0 ; L2 D T : (2.16)

H is then identical to the total energy:

H D T C V D E : (2.17)

Because of the missing term L1 this is no longer true in case of rheonomic
constraints, which give rise to @ri=@t ¤ 0.
For the total time differential of H we get:

dH

dt
D

SX

j D 1

�
@H

@qj
Pqj C @H

@pj
Ppj

	
C @H

@t
D

SX

j D 1

�
@H

@qj

@H

@pj
� @H

@pj

@H

@qj

	
C @H

@t
:

Total and partial derivatives of H with respect to the time are obviously the same:

dH

dt
D @H

@t
D �@L

@t
: (2.18)

H is thus an integral of motion if there is no explicit time-dependence:

H D const ” @H

@t
D 0 : (2.19)

According to (2.17) this is the energy conservation law if there are no rheonomic
constraints. If, however, they do exist then we have L1 ¤ 0 with the consequence
that H is not the total energy.
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The Hamiltonian formalism becomes especially expedient when cyclic coordi-
nates are present. We remember:

qj cyclic ” @L

@qj
D 0 ” pj D const D cj : (2.20)

But this also brings about

Ppj D 0 D �@H

@qj
; (2.21)

so that a cyclic coordinate qj does not appear in H, either. The corresponding
momentum pj D cj is not an actual variable being fixed instead by initial conditions.
H just contains only .2S � 2/ variables, the number of degrees of freedom has
practically dropped from S to .S � 1/:

H D H
�
q1; : : : ; qj � 1; qj C 1; : : : ; qS; p1; : : : ; pj � 1; pj C 1; : : : ; pS; tjcj

�
: (2.22)

In contrast, the Lagrangian L still contains all Pqj, the number of the degrees of
freedom remains unchanged:

L D L
�
q1; : : : ; qj � 1; qj C 1; : : : ; qS; Pq1; : : : ; PqS; t

�
: (2.23)

As regards the computational aspect one can say that the Hamiltonian formalism
offers a real advantage compared to the Lagrangian formalism, strictly speaking,
only if cyclic coordinates are present. The so-called

Routh-formalism

thus takes in a certain sense an intermediate position between Lagrangian
and Hamiltonian formalism because it performs the Legendre transformation
fq; Pq; tg ! fq;p; tg only for cyclic coordinates since only then an advantage
is in evidence. Let

q1; q2; : : : ; qn be cyclic coordinates ;

then Pq1; : : : ; Pqn are the active and q1; : : : ; qS; Pqn C 1; : : : ; PqS; t the passive transforma-
tion variables. That leads to the
Routh function

R .q1; : : : ; qS; p1; : : : ; pn; Pqn C 1; : : : ; PqS; t/

D
nX

i D 1

�
@L

@Pqi

�
Pqi � L D

nX

i D 1

pi Pqi � L D H �
SX

i D n C 1

pi Pqi : (2.24)
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For n D S of course R D H and for n D 0 R D �L. We determine the equations of
motion again via the total differential, now of the Routh function:

dR D
SX

i D 1

�
@R

@qi

�
dqi C

nX

i D 1

�
@R

@pi

�
dpi C

SX

i D n C 1

�
@R

@Pqi

�
d Pqi C

�
@R

@t

�
dt

D
nX

i D 1

.pi d Pqi C Pqi dpi/ �
SX

i D 1

�
@L

@qi

�
dqi �

SX

i D 1

�
@L

@Pqi

�
d Pqi �

�
@L

@t

�
dt

D
nX

i D 1

Pqi dpi �
SX

i D 1

�
@L

@qi

�
dqi �

SX

i D n C 1

�
@L

@Pqi

�
d Pqi �

�
@L

@t

�
dt :

By equating coefficients we get:

@R

@pi
D Pqi ; i D 1; : : : ; n ; (2.25)

@R

@qi
D � @L

@qi
D �Ppi ; i D 1; : : : ; n ; (2.26)

@R

@t
D �@L

@t
: (2.27)

That corresponds for the cyclic coordinates to Hamilton’s equations of motion.

@R

@qi
D � @L

@qi
D �Ppi ; i D nC 1; : : : ; S ; (2.28)

@R

@Pqi
D � @L

@Pqi
D �pi ; i D nC 1; : : : ; S : (2.29)

The last two equations can be combined to

d

dt

@R

@Pqi
� @R

@qi
D 0 ; i D nC 1; : : : ; S (2.30)

Thus the non-cyclic coordinates obey Lagrange’s equations of motion.
Since it holds @L=@qi D 0 for i D 1; : : : ; n it is also true that

@R

@qi
D �Ppi D 0 ” pi D consti D ci : (2.31)

Thus cyclic coordinates do not appear neither in L or H nor in R. The corresponding
momenta occur only as parameters fixed by initial conditions:

R D R .qn C 1; : : : ; qS; Pqn C 1; : : : ; PqS; tjc1; : : : ; cn/ : (2.32)
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The Routh formalism does not bring about any decisive computational advantage
compared with the Hamiltonian version. It therefore did not become generally
accepted. In the framework of our theory course here we will not further go into it.

2.2.2 Simple Examples

The theory of the last section for the solution of problems in mechanics in the
framework of the Hamiltonian formalism can be summarized by the following
scheme:

1. Selection of proper generalized coordinates:

q � .q1; q2; : : : ; qS/ :

2. Preparation of the transformation formulas:

ri D ri .q1; : : : ; qS; t/ ;
Pri D Pri .q; Pq; t/ : i D 1; 2; : : : ;N :

3. Formulation of kinetic and potential energy as functions of the particle coordi-
nates, then insertion of 2.:

L .q; Pq; t/ D T .q; Pq; t/ � V.q; t/ (conservative system) :

4. Derivation of the generalized momenta:

pj D @L

@Pqj
H) pj D pj.q; Pq; t/ ; j D 1; 2; : : : ; S :

5. Solving for Pqj:

Pqj D Pqj.q;p; t/ ; j D 1; 2; : : : ; S :

6. Lagrangian:

L .q; Pq.q;p; t/; t/ D QL.q;p; t/ :

7. Legendre transformation:

H.q;p; t/ D
SX

j D 1

pj Pqj.q;p; t/ � QL.q;p; t/ :

8. Formulation and integration of the canonical equations.
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For practicing the procedure let us derive according to this scheme the Hamilton
function and its equations of motion for some rather simple examples.

(1) Pendulum Oscillation

The mass point m is subject to the constraints (Fig. 2.1)

z D const D 0 ;
x2 C y2 D l2 D const ;

therewith having exactly one degree of freedom .S D 1/. With the generalized
coordinate

q D '

the transformation formulas come out as follows:

x D l sin q I y D l cos q ;

Px D l Pq cos q ; Py D �l Pq sin q :

Kinetic and potential energy then read:

T D 1

2
m
�Px2 C Py2� D 1

2
m l2 Pq2 ;

V D �m g y D �m g l cos q

H) L D T � V D 1

2
m l2 Pq2 C m g l cos q :

From that we derive the generalized momentum p:

p D @L

@Pq D m l2 Pq H) Pq D p

m l2
:

Fig. 2.1 Pendulum
oscillation of the mass m as
one-dimensional problem of
motion
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This we insert into L.q; Pq/,

QL.q;p/ D p2

2m l2
C m g l cos q ;

and perform therewith the Legendre transformation:

H D p Pq � L D p2

m l2
� QL.q;p/

H) H D p2

2m l2
� m g l cos q : (2.33)

Hamilton’s equations of motion

Pq D @H

@p
D p

m l2
H) Pp D m l2 Rq ;

Pp D �@H

@q
D �m g l sin q

yield, when combined, the well-known oscillation equation:

RqC g

l
sin q D 0 : (2.34)

(2) Harmonic Oscillator

We think of a mass m on a spring with the spring constant k which obeys Hooke’s
law

F D �k x

where x represents the displacement of the mass from its rest position (Fig. 2.2). The
constraints

y D z � 0

Fig. 2.2 Spring within
Hooke’s law as a realization
of the harmonic oscillator
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take care for a one-dimensional motion of the mass m. With the generalized
coordinate

q D x

we find immediately:

T D 1

2
m Pq2 ; V D 1

2
k q2 ; L D 1

2
m Pq2 � 1

2
k q2 :

In the last equation we replace Pq by the generalized momentum

p D @L

@Pq D m Pq :

With

QL.q; p/ D p2

2m
� 1
2

k q2

we get the Hamilton function H D p Pq� QL of the harmonic oscillator:

H D p2

2m
C 1

2
m!20q2 ; !20 D

k

m
: (2.35)

It is the case of a conservative system with scleronomic constraints. Because of

@H

@t
D 0 ” H D E D const

H is identical to the total energy E. Reformulating Eq. (2.35) still a bit,

p2

2m E
C q2

2E

m!20

D 1 ; (2.36)

then yields the midpoint equation of an ellipse. The path of the system in the .q; p/-
phase space is thus an ellipse with the semiaxes

a D p2m E and b D
s

2E

m!20
:
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The canonical equations

Pp D �@H

@q
D �m!20q ;

Pq D @H

@p
D p

m
H) Pp D m Rq

lead directly to the oscillation equation:

RqC !20q D 0 : (2.37)

(3) Charged Particle in the Electromagnetic Field

We have already investigated in Sect. 1.2.3 the motion of a particle with the mass m
and the charge Nq in the electromagnetic field. The particle is subject to the non-
conservative Lorentz force

F D Nq.EC v � B/ ;

where v is its velocity. We had derived in (1.78) the generalized potential of the
Lorentz force

U D Nq.' � v � A/

for which we have, if the Cartesian coordinates are chosen as generalized coordi-
nates:

Qj D F � @r
@qj
D Fj D d

dt

@U

@Pqj
� @U

@qj

For the Lagrangian we found in (1.79):

L D 1

2
m Pr2 C Nq.Pr � A/� Nq' D T � U :

As generalized momentum, which differs from the mechanical momentum, we get:

p D m PrC Nq A.r; t/ : (2.38)

That leads via

H D p � Pr � L D m Pr2 C Nq A � Pr � 1
2

m Pr2 � Nq .Pr � A/C Nq'
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to the Hamilton function

H D 1

2m
.p� Nq A.r; t//2 C Nq'.r; t/ ; (2.39)

which turns out to be identical to the total energy, which is not at all always a matter
of course for generalized potentials. With the expression (2.39) we will extensively
deal in Quantum Mechanics (Vol. 5), and there as Hamilton operator.

(4) Particle Without Constraint

Even if the particle does not experience any constraint the application of special
curvilinear coordinates can be advised by the symmetry of the problem, e.g. in order
to let as many coordinates as possible to be cyclic. We therefore want to write down
now for a conservative system the Hamilton function by use of three of the most
common systems of coordinates.

(a) Cartesian coordinates (x,y,z)

Since no constraint is present it holds of course H D T C V and L D T � V ,
respectively:

H D 1

2m

�
p2x C p2y C p2z

�C V.x; y; z/ : (2.40)

The generalized momenta are in this case identical to the mechanical ones:

px D @L

@Px D m Px I py D @L

@Py D m Py ; pz D @L

@Pz D m Pz : (2.41)

(b) Cylindrical coordinates (�,',z)

According to ((1.381), Vol. 1) the transformation formulas read:

x D � cos' I y D � sin ' I z D z :

Herefrom one gets the velocities:

Px D P� cos' � � P' sin ' I Py D P� sin ' C � P' cos' I Pz D Pz :
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Kinetic and potential energy,

T D 1

2
m
�Px2 C Py2 C Pz2� D 1

2
m
� P�2 C �2 P'2 C Pz2� ;

V D V.�; '; z/ ;

lead by the Lagrangian L D T � V to the generalized momenta:

p� D @L

@ P� D m P� I p' D @L

@ P' D m �2 P' I pz D @L

@Pz D m Pz : (2.42)

With

H D p� P�C p' P' C pz Pz � L

it follows for the Hamilton function:

H D 1

2m

 
p2� C

p2'
�2
C p2z

!
C V.�; '; z/ : (2.43)

(c) Spherical coordinates (r,# ,')

According to ((1.389), Vol. 1) the transformation formulas are given by

x D r sin# cos' I y D r sin# sin' I z D r cos# :

Therewith one easily calculates:

T D 1

2
m
�
Pr2 C r2 P#2 C r2 sin2 # P'2



I V D V.r; #; '/ :

This yields via L D T � V the generalized momenta:

pr D @L

@Pr D m Pr I p# D @L

@ P# D m r2 P# I p' D @L

@ P' D m r2 sin2 # P' : (2.44)

Eventually, the Hamilton function reads:

H D 1

2m

 
p2r C

p2#
r2
C p2'

r2 sin2 #

!
C V.r; #; '/ : (2.45)
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2.2.3 Exercises

Exercise 2.2.1 Given the Hamilton function H D H.q;p; t/ of a mechanical system
and its equations of motion (2.11), (2.12) and (2.13). The Lagrangian is the negative
Legendre-transform of the Hamilton function:

L.q; Pq; t/ D
SX

j D 1

pj
@H

@pj
� H

Use Hamilton’s equations of motion in order to derive with this relation the
Lagrange equations of motion of the second kind!

Exercise 2.2.2 Determine the Routh function and its equations of motion for
the two-body problem already treated in Sect. 1.4 (masses m1, m2 with distance-
dependent pair interaction in the otherwise force-free space).

Exercise 2.2.3 A particle of mass m performs a two-dimensional motion in the xy-
plane under the influence of the force

F.r/ D F.x; y/ D �
�
˛ C ˇ

r

�
r ˛; ˇ: positive constants :

Choose plane polar coordinates (�; ') as generalized coordinates!

1. Write down the kinetic and the potential energy in plane polar coordinates!
2. Calculate the generalized momenta p� and p'!
3. Formulate the Hamilton function! Find and interpret two integrals of motion

(conservation laws)!

Exercise 2.2.4 The potential energy of a particle of mass m is given in cylindrical
coordinates .�; '; z/:

V.�/ D V0 ln
�

�0
I V0 D const ; �0 D const :

1. What is the Hamilton function?
2. Derive Hamilton’s equations of motion!
3. Find three conservation laws!

Exercise 2.2.5 A box is gliding without friction along the x axis with constant
velocity v0. On the bottom of the box there oscillates, also in x direction and
frictionlessly, a mass m being fixed by a spring (spring constant: k) at the back-wall
of the box (Fig. 2.3).
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Fig. 2.3 Oscillating mass in
a with constant velocity
frictionlessly gliding box

Fig. 2.4 Oscillations of a
three-atom molecule

1. Find the Hamilton function in the rest system of coordinates†. Is H a conserved
quantity? Is H identical to the total energy E? Derive Hamilton’s equations of
motion!

2. Investigate the same problem in the co-moving system of coordinates†0!

Exercise 2.2.6 Consider a three-atom molecule. It exhibits one-dimensional oscil-
lations with equal spring constants k. x1; x2; x3 are the displacements out of the rest
positions. The two outer atoms have the same mass m1 (Fig. 2.4). Write down the
Hamilton function, find the equations of motion and solve them!

Exercise 2.2.7 A mass point moves in a cylindrically symmetric potential V.�/.
Determine the Hamilton function and the canonical equations with respect to a
system of coordinates that rotates with constant angular velocity ! around the
symmetry axis, and that

1. in Cartesian coordinates,
2. in cylindrical coordinates.

Exercise 2.2.8 A particle of mass m moves within a plane under the influence of a
non-conservative force which acts in the direction towards the center of force:

F.r/ D F.r; Pr; dPr/ er I F.r; Pr; dPr/ D ˛

r

�
1 � Pr

2 � 2rdPr
c2

�

r is the distance to the force center; ˛ and c are constants of proper dimension.
Determine the Hamilton function of the particle! Note that the Lagrangian of the
particle has already been calculated as Exercise 1.2.21!
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2.3 Action Principles

We got to know in Sect. 1.3.3 the integral principle of Hamilton from which we were
able to derive the basic Lagrange equations. It is typical for integral principles to
compare finite path elements, which the system traverses in a finite time span, with
their related thought (‘virtual’) neighboring path elements. According to the type of
this relationship one distinguishes different integral principles. The most important
ones of them will be discussed and contrasted with each other in this section.

2.3.1 Modified Hamilton’s Principle

A weighty advantage, among others, of Hamilton’s principle considered in Sect. 1.3
lies in the fact that it is applicable also to systems which are not of typical
mechanical nature. We now want to reformulate it in such a way that the equivalence
to the canonical equations becomes evident. For this purpose we briefly recall the
essential elements of this principle. It states that the system movement always takes
place such that the action functional

S fq.t/g D
t2Z

t1

L .q.t/; Pq.t/; t/ dt (2.46)

becomes extremal on the set M of the admitted configuration paths q.t/ (Fig. 2.5),

M � fq.t/ W q .t1/ D qa; q .t2/ D qeg ; (2.47)

for the actual path we are interested in:

.ıS/M
ŠD 0 : (2.48)

Of decisive importance for the evaluation of the principle is the variational
condition: The variation of the action functional S is done by a variation of the

Fig. 2.5 One-dimensional
illustration of the ensemble of
configuration paths admitted
to the variational problem of
Hamilton’s principle
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path-piece between fixed end-configurations qa D q .t1/ and qe D q .t2/. The indi-
vidual points of the different paths arise out of each other by virtual displacements
ıq which are done always at fixed time .ıt D 0/ and therefore need not necessarily
agree with the actual displacements dq. The evaluation of the Hamilton principle is
performed by use of a parameter representation of the competing paths:

qj˛.t/ D qj.t/C �j˛.t/ ; j D 1; 2; : : : ; S : (2.49)

qj.t/ is the actual path and �j˛.t/ a sufficiently often differentiable function with

�j˛ .t1/ D �j˛ .t2/ D 0 8˛ ; (2.50)

�j˛D0.t/ � 0 : (2.51)

Therewith we must then calculate:

ıS D S fqd˛.t/g � S fq0.t/g D
�

dS.˛/

d˛

�

˛D 0

d˛ ; (2.52)

ıq D
�
@q˛
@˛

�

˛D 0

d˛ : (2.53)

Hence the ı-variation is representable by normal differentiating:

ı ” d˛
@

@˛
: (2.54)

In this manner we have derived the Lagrange equations of motion from Hamilton’s
principle.

We now formally replace in the action functional S the Lagrangian by the
Hamilton function using the expression (2.8):
Modified Hamilton’s principle

ıS D ı
t2Z

t1

dt

0

@
SX

j D 1

pj Pqj � H.p;q; t/

1

A ŠD 0 : (2.55)

The new feature is that the momenta pj, besides the qj, are independent variables on
an equal footing. The variation of the path has therefore to be done in the

phase space
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which is spanned by the qj and the pj:

S D S fq.t/; p.t/g : (2.56)

As far as the coordinates qj are concerned the same conditions hold as in the previous
version (2.47). In analogy to (2.49) we now introduce also for the momenta a
parameter representation:

pj˛.t/ D pj.t/C O�j˛.t/ ; j D 1; 2; : : : ; S : (2.57)

The projections of the ‘admitted’ paths in the phase space on the .q; t/-plane must
all coincide for t1 and t2. On the other hand, it need not necessarily be O�j˛.t1/ D
O�j˛.t2/ D 0, but only

O�j˛D 0.t/ � 0 (2.58)

is to be required (Fig. 2.6).
According to (2.54) and (2.55) we have to evaluate now:

ıS D d˛

8
<

:
@

@˛

t2Z

t1

dt

0

@
SX

j D 1

pj˛ Pqj˛ �H .p˛;q˛; t/

1

A

9
=

;
˛D 0

ŠD 0 : (2.59)

The times are uninfluenced by the variation so that the differentiation with respect
to ˛ can be drawn into the integrand:

0 D ıS D d˛

t2Z

t1

dt
SX

j D 1

�
@pj˛

@˛
Pqj˛ C pj˛

@Pqj˛

@˛
� @H

@qj˛

@qj˛

@˛
� @H

@pj˛

@pj˛

@˛

�

˛D 0

:

(2.60)

Fig. 2.6 One-dimensional
illustration of the
configuration paths which are
admitted to the variation
process in the modified
Hamilton principle
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We exploit

@Pqj˛

@˛
D d

dt

@qj˛

@˛

and perform an integration by parts:

d˛

8
<

:

t2Z

t1

dt pj˛
@Pqj˛

@˛

9
=

;
˛D 0

D d˛

�
pj˛
@qj˛

@˛

	

˛D 0

ˇ̌
ˇ̌
t2

t1

� d˛

8
<

:

t2Z

t1

dt Ppj˛
@qj˛

@˛

9
=

;
˛D 0

:

Since the virtual displacements ıqj are assumed to be zero at the endpoints the first
term vanishes. With (2.53) and the analogous expression for the momenta

ıpj D
�
@pj˛

@˛

�

˛D 0

d˛ (2.61)

it then follows from (2.59):

0
ŠD ıS D

t2Z

t1

dt
SX

j D 1



ıpj

�
Pqj � @H

@pj

�
� ıqj

�
Ppj C @H

@qj

��
:

ıqj, ıpj are freely selectable. Therefore we can read off from this expression
Hamilton’s equations of motion (2.11) and (2.12):

Pqj D @H

@pj
I Ppj D �@H

@qj
; j D 1; 2; : : : ; S : (2.62)

2.3.2 Principle of Least Action

A further principle dates back to Maupertuis (1747) which has the same explanatory
power as Hamilton’s principle. We will formulate it and prove its equivalence to the
principle of Hamilton. Let us define:

Definition 2.3.1 ‘action’

A D
t2Z

t1

SX

j D 1

pj Pqj dt : (2.63)

A has the dimension ‘energy � time’. We express the ‘principle of least action’ as
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Theorem 2.3.1 For conservative systems with

H D T C V D E D const (2.64)

it holds:

�A D �
t2Z

t1

dt
SX

j D 1

pj Pqj D 0 (2.65)

for the path in phase space actually chosen by the system.

In order to correctly understand the theorem the new path variation � must be
defined very carefully. In Hamilton’s principle (1.121) and (2.55), respectively, the
paths which are admitted to the

ı-variation

arise from each other by the virtual displacements ıq, which are performed at
constant time. All paths assume for t1, t2 the same end-configurations qa, qe.
Common characteristic of all paths is thus the same pass-through time. For the

�-variation ,

too, the end-configurations shall be fixed:

�qa D �qe D 0 : (2.66)

The common characteristic of all paths admitted to this variation is now an identical
Hamilton function:

�H D 0 ” �T D ��V : (2.67)

The pass-through times for the various trajectories, however, must not necessarily
be the same (Fig. 2.7).

It is quite possible that certain paths are admitted to both variation procedures
.ı;�/, where, however, the system moves along the paths with different velocities,
on the one hand, in order to realize a given pass-through time .ı/, and on the other
hand, in order to ensure H D const .�/.

Fig. 2.7 One-dimensional
illustration of the paths
admitted to the variation in
the principle of least action
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Since for the�-variation the pass-through times need no longer be the same, the
time, too, has to be varied now. We use again a ‘parameter representation’ for the
paths which are admitted to the variation:

q˛ .t˛/ W t1˛ � t˛ � t2˛ ;

q.t/ W actual path : (2.68)

The paths fulfill the boundary conditions:

q˛ .t1˛/ D q .t1/ D qa 8˛;
q˛ .t2˛/ D q .t2/ D qe 8˛ : (2.69)

With the parameter representation the path variations can be written down explicitly:

ı-procedure W ıq D d˛

�
@q˛
@˛

�

˛D 0

; (2.70)

�-procedure W �q D d˛

�
dq˛
d˛

�

˛D 0

D d˛

�
@q˛
@˛
C Pq˛ dt˛

d˛

�

˛D 0

: (2.71)

This can be combined as follows:

�q D ıqC Pq�t with �t D d˛
dt˛
d˛

ˇ̌
ˇ̌
˛D 0

: (2.72)

We have often exploited previously that the ı-variation and the time differentiations
can be interchanged:

ı
d

dt
� d

dt
ı : (2.73)

That was allowed because the time was not co-varied. But this does no longer apply
to the �-variation. In general we have to accept:

�
d

dt
¤ d

dt
� (2.74)

That has to be taken carefully into consideration. Apart from that the symbol � is
treated as quite a normal differential:

f D f .q; t/ H) �f D
SX

j D 1

@f

@qj
�qj C @f

@t
�t

D
SX

j D 1

@f

@qj
ıqj C

0

@
SX

j D 1

@f

@qj
Pqj C @f

@t

1

A �t :
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From this one reads off:

�f D ıf C Pf �t : (2.75)

With these preparations we are now able to prove the principle of least action (2.65)
if we presume that Hamilton’s principle is known and valid. At first it holds:

A D
t2Z

t1

dt
SX

j D 1

pj Pqj D
t2Z

t1

.LC H/ dt D
t2Z

t1

L dtC H .t2 � t1/ : (2.76)

One has to bear in mind that for different paths the end-times t1 and t2 are also
different. We now prove that A becomes extremal on the actual path. For the line
of argument the actual path is thereby the path for which Hamilton’s principle is
fulfilled:

�A D �
t2Z

t1

L dtC H .�t2 ��t1/ : (2.77)

In the first term � can not be taken simply into the integral because t1, t2 have to be
co-varied. On the other hand, H is the same for all the paths of the competitive set.
We put:

t2Z

t1

L dt D I .q; t2/ � I .q; t1/ :

For a preset path I is a pure time function. With (2.75) now follows:

�

t2Z

t1

L dt D �I .q; t2/ ��I .q; t1/

D ıI .q; t2/� ıI .q; t1/C PI .q; t2/ �t2 � PI .q; t1/ �t1

D ı
t2Z

t1

L dtC ŒL.t/�t�t2t1 : (2.78)
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The first term is not at all zero as one could perhaps argue misleadingly from
Hamilton’s principle. The latter requires for the end-points ıqa; e D 0, while here
�qa; e D 0 holds. It is in fact:

ı

t2Z

t1

L dt D
t2Z

t1

ıL dt D
t2Z

t1

SX

j D 1

�
@L

@qj
ıqj C @L

@Pqj
ı Pqj

�
dt

D
SX

j D 1

t2Z

t1


�
d

dt

@L

@Pqj

�
ıqj C @L

@Pqj

d

dt
ıqj

�
dt

D
SX

j D 1

t2Z

t1

d

dt

�
@L

@Pqj
ıqj

�
dt D

SX

j D 1

@L

@Pqj
ıqj

ˇ̌
ˇ̌
t2

t1

D
SX

j D 1

�
@L

@Pqj
�qj � @L

@Pqj
Pqj�t

�ˇ̌
ˇ̌
t2

t1

:

Hence it follows with �qj

ˇ̌t2
t1
D 0:

ı

t2Z

t1

L dt D �
SX

j D 1

@L

@Pqj
Pqj�t

ˇ̌
ˇ̌
t2

t1

:

This we insert into (2.78):

�

t2Z

t1

L dt D
0

@L �
SX

j D 1

@L

@Pqj
Pqj

1

A �t

ˇ̌
ˇ̌
ˇ̌

t2

t1

:

With (2.77) it eventually results in:

�A D
0

@L �
SX

j D 1

pj Pqj C H

1

A �t

ˇ̌
ˇ̌
ˇ̌

t2

t1

: (2.79)

If we still insert the definition (2.8) of the Hamilton function H then the assertion
�A D 0 is proven. Under the presumption, that the Lagrange equations of motion
are valid, which we have exploited in the above chain of proof, the principle of least
action (2.65) fixes the actual path of the system. Therefore it possesses the same
informative power as the Hamilton principle!
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2.3.3 Fermat’s Principle

We want to apply the just discussed principle of least action further to a special case,
namely to the

force-free motion ” V D const ;

Since already H D T C V D const was presumed it now even holds:

SX

j D 1

pj Pqj D H C L D 2 T D const : (2.80)

On all the admitted paths the kinetic energy is therefore a conserved quantity. The
principle (2.65) then simplifies to the statement:

�

t2Z

t1

dt D �.t2 � t1/
ŠD 0 : (2.81)

In case of a force-free movement the system always seeks the path for which the
pass-through time becomes extremal (minimal). That is the

principle of least time

first formulated by Fermat that is known in geometrical optics as Fermat’s principle.
It says there that the light ray moves between two points of space such that the
pass-through time becomes minimal. This principle can successfully be applied, for
instance, to light refraction leading to the law of reflexion.

If we specialize furtheron to a

force-free mass point

then we have because of T D const even v D const and (2.81) reads:

�

t2Z

t1

dt D �
t2Z

t1

vdt D �
2Z

1

ds
ŠD 0 : (2.82)

This is the

principle of the shortest path

It determines the force-free movement of a mass point on a curved plane along a so-
called geodesic line. In general one understands by this the shortest line connecting
two points on a given plane.
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2.3.4 Jacobi’s Principle

Sometimes it appears reasonable to eliminate the time completely out of the
principle of least action so that the variation does not refer to anything else except
the spatial character of the path of the system. According to (2.65) first we have:

�

t2Z

t1

dt
SX

j D 1

pj Pqj D �
t2Z

t1

2 T dt
ŠD 0 : (2.83)

For an N particle system the kinetic energy reads:

T D 1

2

NX

i D 1

mi

�
dri

dt

�2
H) dt D 1p

2T

sX

i

mi .dri/
2 :

With T D E � V it follows then from (2.83):

�

2Z

1

p
2.E � V/

sX

i

mi .dri/
2 ŠD 0 : (2.84)

In this version the variation affects indeed only the spatial course of the path; pass-
through times do no longer play any role. �-variation and ı-variation are then
identical.

Let us still look for a somewhat more general representation. Because of H D
E D const, which in particular means scleronomic constraints, it holds according
to (1.38) to (1.42) for the kinetic energy T:

T D 1

2

X

j; l

�jl Pqj Pql : (2.85)

�jl are the generalized masses (1.40). We define:

.d�/2 D
X

j; l

�jl dqj dql : (2.86)

d� is the most general form of the line element in the S-dimensional configuration
space the axes of which are given by the generalized coordinates q1; : : : ; qS. In this
sense the �jl are the elements of the so-called

metric tensor
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By this the differential geometry understands the transformation matrix between the
square .d�/2 of the line element in the S-dimensional space and the infinitesimal
changes of the coordinates. We illustrate this by well-known examples of the three-
dimensional space of our experience:

.d�/2 D .dr/2 H) �jl D @r
@qj
� @r
@ql

: (2.87)

(1) Cartesian:

q1 D x I q2 D y I q3 D z I r D .x; y; z/
H) �jl D ıjl : (2.88)

(2) Cylindrical:

q1 D � I q2 D ' I q3 D z I r � .� cos'; � sin '; z/

H) @r
@�
D .cos'; sin '; 0/ ;

@r
@'
D � .� sin'; cos'; 0/ ;

@r
@z
D .0; 0; 1/ :

The off-diagonal elements of the metric tensor obviously disappear. The system
of coordinates is curvilinear-orthogonal:

��� D 1 I �'' D �2 I �zz D 1 : (2.89)

That means:

.dr/2 D .d�/2 C �2.d'/2 C .dz/2 : (2.90)

(3) Spherical:

q1 D r I q2 D # I q3 D ' ;
r � r.sin# cos'; sin# sin '; cos#/

H) @r
@r
D .sin# cos'; sin# sin '; cos#/ ;

@r
@#
D r.cos# cos'; cos# sin '; � sin#/ ;

@r
@'
D r.� sin# sin'; sin# cos'; 0/ :
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The spherical coordinates, too, represent a curvilinear-orthogonal system. The off-
diagonal elements of the metric tensor are thus equal to zero:

�rr D 1 I �## D r2 I �'' D r2 sin2 # : (2.91)

The square of the line element therefore reads:

.dr/2 D .dr/2 C r2.d#/2 C r2 sin2 #.d'/2 : (2.92)

The metric of the configuration space is normally non-Cartesian but curvilinear with
in general non-zero off-diagonal elements. According to (2.85) and (2.86) it holds:

T D 1

2

.d�/2

.dt/2
” dt D d�p

2T
: (2.93)

Therewith (2.83) becomes
Jacobi’s principle

�

2Z

1

p
E � V.q/ d�

ŠD 0 : (2.94)

For the special case of the force-free motion one finds:

�

2Z

1

d�
ŠD 0 : (2.95)

The system seeks the shortest configuration path, i.e. it moves along a geodesic line
in the configuration space. That need not necessarily mean straight-lined in this
abstract space.

2.3.4.1 Application Examples

(1) Path of a force-free particle in the three-dimensional space of experience
Since time does not appear in the Jacobi’s principle the �- and ı-variational

procedures are identical:

�

2Z

1

d� D ı
2Z

1

d�
ŠD 0 : (2.96)
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We have therefore to calculate:

ı

2Z

1

p
m.dx2 C dy2 C dz2/

ŠD 0 :

This is equivalent to

ı

x2Z

x1

p
1C y02 C z02 dx

ŠD 0 :

We perform the variation by use of the Euler-Lagrange differential equa-
tion (1.147):

f
�
x; y; z; y0; z0� �

p
1C y02 C z02

H) @f

@y
� d

dx

@f

@y0
ŠD 0 D � d

dx

y0
p
1C y02 C z02 ;

@f

@z
� d

dx

@f

@z0
ŠD 0 D � d

dx

z0
p
1C y02 C z02 :

From this one reads off:

y02 D c1
�
1C z02� I z02 D c2

�
1C y02�

H) y02 D const1 I z02 D const2 :

The particle path is therefore, not surprisingly, a straight line:

y.x/ D c xC Nc ;
z.x/ D d xC Nd :

�
c; d; Nc; Nd D const

�
(2.97)

(2) Electron-optical law of refraction

The x-axis may be the place of a potential jump from V1 D const to V2 D const.
In both half planes the electron performs a force-free motion, which according to
Example (1) must be straight-lined (Fig. 2.8). We ask ourselves how should C and x

Fig. 2.8 Force-free motion
of an electron in two regions
which border on each other
having constant but different
potentials (electron-optical
law of refraction)
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be chosen in order to guarantee that the electron arrives at B when starting at A?
That we clarify with (2.94):

�

BZ

A

p
2m T

p
dx2 C dy2 D �

CZ

A

p
2m .E � V1/ dsC�

BZ

C

p
2m .E � V2/ ds

D p
2m .E � V1/�

�q
x2 C y2A

�

Cp2m .E � V2/ �

�q
.xB � x/2 C y2B

�

D p
2m .E � V1/

�
d

dx

q
x2 C y2A

�
�x

Cp2m .E � V2/

�
d

dx

q
.xB � x/2 C y2B

�
�x

ŠD 0 :

Because of �x ¤ 0 it follows:

0 D
p

E � V1
x

q
x2 C y2A

�
p

E � V2
xB � x

q
.xB � x/2 C y2B

D
p

E � V1 sin˛ �
p

E � V2 sinˇ :

Therewith we find eventually:

sin˛

sinˇ
D
s

E � V2
E � V1

D
s

T2
T1
D v2

v1
: (2.98)

2.4 Poisson Brackets

2.4.1 Representation Spaces

We want to discuss in this section some abstract terms which will turn out to be
useful for our further considerations. Some of them we have already repeatedly
used. We start with a classification of the representation spaces.
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Fig. 2.9 Path of the linear
harmonic oscillator in the
configuration space

(1) Configuration Space

This representation space is already known to us. It has the

dimension: S

and as

axes: q D .q1; q2; : : : ; qS/ :

Example: Linear Harmonic Oscillator
(see Example 2 in Sect. 2.2.2)

The configuration space is here the x-axis. The configuration path is built by all x
for which jxj � A.

By specification of the configuration path the mechanical problem is not yet
solved because it remains unclear where the system finds itself at a certain point
of time (Fig. 2.9).

(2) Event Space

dimension W SC 1 ;
axes W q D .q1; q2; : : : ; qS/ and t :

The path in the event space .q; t/ is definitely calculable if 2S initial conditions
are given. These can be the configurations at two different times, .q.t1/; q.t2//, or
S generalized coordinates and the corresponding S generalized velocities at a certain
point of time t0; .q.t0/; Pq.t0//:

Lagrange formalism” event space.

Example: Linear Harmonic Oscillator
Because of S D 1 two initial conditions are necessary in order to fix uniquely the

path in the event space (Fig. 2.10).
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Fig. 2.10 Path of the linear
harmonic oscillator in the
event space

Fig. 2.11 Path of the linear
harmonic oscillator in the
phase space for two different
energies

(3) Phase Space

dimension W 2 S ;

axes W q D .q1; q2; : : : ; qS/ I p D . p1; p2; : : : ; pS/ :

Since coordinates qj and momenta pj are to be seen as equitable variables one
occasionally merges them to a single phase and to a phase vector, respectively:

ı D .�1; �2; : : : ; �2S/ � .q1; : : : ; qS; p1; : : : ; pS/ : (2.99)

As phase curve or phase trajectory one denotes the set of all phases ı which the
physical system can assume in the course of time.

Example: Linear Harmonic Oscillator
According to (2.36) the phase curves are now ellipses (Fig. 2.11)

p2

2m E
C q2

2E

m!20

D 1

with energy-dependent semiaxes:

A D
s

2E

m!20
I B D p2m E :
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Fig. 2.12 Trajectory of the
linear harmonic oscillator in
the state space

(4) State Space

dimension W 2 SC 1 ;
axes W q D .q1; : : : ; qS/ I p D .p1; : : : ; pS/ and t :

This is the most general representation space (phase space plus time axis). All the
other spaces are special cases, i.e. projections of the state space onto certain planes
or axes.

Example: Linear Harmonic Oscillator
The path �.t/ is now a helical line (Fig. 2.12) which by a preset

initial phase: �0 D
�

q.0/1 ; : : : ; p
.0/
S



D �.t0/

is uniquely fixed for all times.
Since the phase trajectory �.t/ is found by solving Hamilton’s equations of

motion, i.e. from a set of differential equations of first order, it is sufficient to know
the phase point of the mechanical system at a single point of time in order to fix the
phase �.t/ for all times:

Hamilton formalism” state space.

With the introduction of the state space we encounter a term that is of great
importance for almost all branches of physics:

Definition 2.4.1 ‘state’
Minimal but complete set of determinants (parameters) which is sufficient to

describe all properties of the system

This is a very abstract definition which for each physical theory must be substanti-
ated and interpreted since for different disciplines the actually interesting properties
may be different.

Which ‘minimal information’ determines the mechanical properties of a mass
point? Statements about position, velocity, momentum, angular momentum,
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energy etc. would be interesting. But it is obviously not necessary to measure
all of them at the same time. Position and momentum suffice to fix simultaneously
the other quantities. On the other hand, both quantities must really be measured,
one alone is not enough:

each mechanical property
of the mass point

” f .r;p/ :

In the same manner the mechanical properties of a general N-particle system are
established by generalized coordinates and generalized momenta:

each mechanical property
of a physical system

” f .q;p/ D f .�/ :

This means:

state  of a
mechanical system

” point � in the
state space .

According to our definition of the term ‘state’ even its time evolution must uniquely
be determined already by the fixation of a minimal set of determinants at any given
point of time t0 . 0 D  .t0//:

 .t/ D  .tI 0/ : (2.100)

From a mathematical point of view  .t/ must therefore arise from a differential
equation of first order with respect to the time:

P .t/ D Qf . .t// : (2.101)

That means for mechanics:

P�.t/ D Qf .�.t// : (2.102)

Hamilton’s equations of motion are indeed of this kind. On the other hand, it is
then also clear that the configuration q.t/ itself can not be a state yet because its
time evolution obeys differential equations of second order with respect to the time
(Lagrange’s equations of motion).
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2.4.2 Fundamental Poisson Brackets

We now want to introduce the concept of the Poisson brackets. This concept allows
for an especially concise formulation of the classical equations of motion and the
conservation laws. That will be demonstrated in the following.

After the pre-considerations of the last section we know that any arbitrary
mechanical observable can be represented as a phase function:

f .�; t/ D f .q;p; t/

Let us investigate its equation of motion:

df

dt
D

SX

j D 1

�
@f

@qj
Pqj C @f

@pj
Ppj

�
C @f

@t

D
SX

j D 1

�
@f

@qj

@H

@pj
� @f

@pj

@H

@qj

�
C @f

@t
: (2.103)

Definition 2.4.2 f D f .q;p; t/, g D g.q;p; t/: scalar functions of the vector pairs
q D .q1; : : : ; qS/, p D .p1; : : : ; pS/.

f f ; ggq;p �
SX

j D 1

�
@f

@qj

@g

@pj
� @f

@pj

@g

@qj

�
: (2.104)

‘Poisson bracket’ of f with g.

By the subscripts at the bracket-symbol on the left-hand side it is referred to the
variables with respect to which the differentiations have to be performed. However,
later we will recognize that this is in principle unnecessary. As an important result
it will turn out that the Poisson bracket is independent of the choice of canonical
variables by which the differentiations are explicitly done.

The equation of motion (2.103) now reads:

df

dt
D f f ;Hgq; p C

@f

@t
: (2.105)

At this stage it is about only an abbreviating notation. This result will become
important only after we show that the Poisson bracket is independent of the .q;p/-
choice.

For (2.104) and (2.105) one easily realizes the following special cases:

Pqj D
˚
qj; H

�
q; p ; (2.106)

Ppj D
˚
pj; H

�
q; p : (2.107)
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The following three relations are denoted as
fundamental Poisson brackets

˚
qi; qj

�
q; p D 0 ; (2.108)

˚
pi; pj

�
q; p D 0 ; (2.109)

˚
qi; pj

�
q; p D ıij : (2.110)

We justify only (2.110). For that purpose we insert f D qi and g D pj into the
definition (2.104):

˚
qi; pj

�
q; p D

SX

k D 1

�
@qi

@qk

@pj

@pk
� @qi

@pk

@pj

@qk

�

D
SX

k D 1

�
ıik ıjk � 0

� D ıij q.e.d.

In the next step we now show that the fundamental brackets are independent of the
special choice of the canonical variables.

Theorem 2.4.1 .q;p/ and .Q;P/ may be two sets of canonical variables for both
of which Hamilton’s equations of motion are valid with respect to:

H.q;p/ D eH.Q;P/ :

Thereby eH.Q;P/ shall result from H.q;p/ simply by insertion of q D q.Q;P/ and
p D p.Q;P/. Then it holds:

˚
Qi; Qj

�
q; p D 0 I ˚

Pi; Pj
�

q; p D 0 ; (2.111)
˚
Qi; Pj

�
q; p D ıij : (2.112)

Proof

PQi D d

dt
Qi.q;p/ D

SX

k D 1

�
@Qi

@qk
Pqk C @Qi

@pk
Ppk

�
D

SX

k D 1

�
@Qi

@qk

@H

@pk
� @Qi

@pk

@H

@qk

�

D
X

k; l



@Qi

@qk

�
@eH
@Ql

@Ql

@pk
C @eH
@Pl

@Pl

@pk

�
� @Qi

@pk

�
@eH
@Ql

@Ql

@qk
C @eH
@Pl

@Pl

@qk

��

D
X

k; l



@eH
@Ql

�
@Qi

@qk

@Ql

@pk
� @Qi

@pk

@Ql

@qk

�
C @ QH
@Pl

�
@Qi

@qk

@Pl

@pk
� @Qi

@pk

@Pl

@qk

�#

D
X

l

��PPl fQi; Qlgq; p C PQl fQi; Plgq; p
�
:
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The comparison yields:

fQi; Qlgq; p D 0 I fQi; Plgq; p D ıil :

By PPi one finds analogously the third bracket.

Theorem 2.4.2 The value of a Poisson bracket is independent of the set of canoni-
cal coordinates with respect to which the differentiation processes are performed

Proof Let F and G be arbitrary phase functions and .q;p/, .Q;P/ two sets of
canonical variables for which one has:

q D q.Q; P/ I p D p.Q; P/ ;

Q D Q.q; p/ I P D P.q; p/

Therewith we calculate:

fF;Ggq; p D
SX

j D 1

�
@F

@qj

@G

@pj
� @F

@pj

@G

@qj

�

D
X

j; l



@F

@qj

�
@G

@Ql

@Ql

@pj
C @G

@Pl

@Pl

@pj

�
� @F

@pj

�
@G

@Ql

@Ql

@qj
C @G

@Pl

@Pl

@qj

��

D
X

l

�
@G

@Ql
fF; Qlgq; p C

@G

@Pl
fF; Plgq; p

�
:

From this expression we can read off two useful intermediate results. If we put
especially F D Qk and exploit (2.111) as well as (2.112) then it follows:

fG; Qkgq; p D �
@G

@Pk
: (2.113)

Choosing, on the other hand, F D Pk, leads to:

fG; Pkgq; p D
@G

@Qk
: (2.114)

These two intermediate results are used in the above expression:

fF; Ggq; p D
X

l

�
@G

@Ql

�
� @F

@Pl

�
C @G

@Pl

@F

@Ql

�
D fF; GgQ;P :

That was to be proven. Hence from now on we can skip the indexes at the bracket
symbol. The basis can be built by arbitrary sets of canonical variables.
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2.4.3 Formal Properties

Up to now the introduction of the Poisson bracket implied solely a simplification
of the scientific notation and does not bring us a step further in the solution of a
practical problem. Important are, however, some algebraic properties which allow
for a generalization going distinctly beyond the framework of classical mechanics.
First we list these properties and bring the proof, where it is not obvious, afterwards:
antisymmetry

f f ; gg D �fg; f g I f f ; f g D 0 8f : (2.115)

linearity

fc1f1 C c2f2; gg D c1f f1; gg C c2f f2; gg ; c1; c2 W constants : (2.116)

zero (null) element

fc; gg D 0 8g D g.q;p/ ; c W constant : (2.117)

product rule

f f ; g hg D g f f ; hg C f f ; gg h : (2.118)

Jacobi identity

f f ; fg; hgg C fg; fh; f gg C fh; f f ; ggg D 0 : (2.119)

Equations (2.115)–(2.117) follow directly from the Definition (2.104) of the bracket.
The same holds for (2.118), too, when the product rule for differentiations is applied.
The proof of Eq. (2.119) follows, even though a bit lengthy, simply by insertion or
more elegantly as follows:

At first we express the Poisson bracket by a differential operator,

fg; hg D Dg h ;

where

Dg D
SX

j D 1

�
@g

@qj

@

@pj
� @g

@pj

@

@qj

�
�

2SX

i D 1

˛i.g/
@

@�i
:
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Therewith we can write:

f f ; fg; hgg C fg; fh; f gg
D f f ; fg; hgg � fg; f f ; hgg D Df .Dg h/�Dg.Df h/

D
X

i;j



ˇi. f /

@

@�i

�
˛j.g/

@h

@�j

�
� ˛j.g/

@

@�j

�
ˇi. f /

@h

@�i

��

D
X

j

(
X

i


�
ˇi. f /

@

@�i
˛j.g/

�
�
�
˛i.g/

@

@�i
ˇj. f /

��)
@h

@�j
:

The expression in the square bracket depends on f and g being, however, indepen-
dent of h. We can therefore write,

f f ; fg; hgg C fg; fh; f gg D
SX

j D 1

�
Aj
@h

@qj
C Bj

@h

@pj

�
;

where Aj, Bj are independent of h. Hence we can determine these terms by special
choices of h:

h D qi:

Ai D f f ; fg; qigg C fg; fqi; f gg D �
�

f ;
@g

@pi

	
C
�

g;
@f

@pi

	
D � @

@pi
f f ; gg :

Here we have used (2.113). In the next step we apply (2.114):
h D pi:

Bi D f f ; fg; pigg C fg; fpi; f gg D
�

f ;
@g

@qi

	
�
�

g;
@f

@qi

	
D @

@qi
f f ; gg :

We insert these results for Aj and Bj into the above equation:

f f ; fg; hgg C fg; fh; f gg D
SX

j D 1

�
� @

@pj
f f ; gg @h

@qj
C @

@qj
f f ; gg @h

@pj

�

D ff f ; gg; hg :
That proves the assertion!

2.4.4 Integrals of Motion

According to (2.105) the temporal change of a state variable is essentially given by
the Poisson bracket of this quantity with the Hamilton function H. That stresses once
more the importance of H. The Hamilton function determines the time evolution of
mechanical observables.
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Let us consider a physical quantity

F D F.q;p; t/

which has for all times the same value:

dF

dt
D 0 ” F W integral of motion : (2.120)

According to (2.105) this is exactly then fulfilled if it holds

fH;Fg ŠD @F

@t
(2.121)

We see that the constant of motion itself can absolutely depend explicitly on time.
If this is not the case then the Poisson bracket of H with F vanishes. Therewith we
have found a rather concise criterion for the decision whether or not an integral of
motion is on hand. Compare this with the original definition (1.162) for the motion
in the event space.

For the Hamilton function H particularly one finds:

dH

dt
D fH;Hg C @H

@t
D @H

@t
: (2.122)

That agrees with the previous result (2.18). If H does not depend explicitly on
time then it is an integral of motion, which, as we know, in case of scleronomic
constraints is identical to the energy conservation law.

Poisson’s theorem The Poisson bracket of two integrals of motion is itself again an
integral of motion.

Proof Let f ; g be integrals of motion. That means because of (2.121):

fH; f g D @f

@t
I fH; gg D @g

@t
:

We exploit the Jacobi identity (2.119):

0 D f f ; fg;Hgg C fg; fH; f gg C fH; f f ; ggg

D �
�

f ;
@g

@t

	
C
�

g;
@f

@t

	
C fH; f f ; ggg :

This reads with the result from Exercise 2.4.4, part (1):

fH; f f ; ggg D @

@t
f f ; gg ;

With (2.121) the assertion is verified. f f ; gg is again an integral of motion.
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Sometimes it is possible to construct by application of Poisson’s theorem a whole
sequence of integrals of motion. That would mean of course an important step
towards the full solution of the mechanical problem. However, occasionally the
Poisson bracket of two integrals of motion leads only to a trivial constant or simply
to a function of the initial integrals of motion. That does of course not represent a
new integral of motion.

2.4.5 Relationship to Quantum Mechanics

Let us forget for the moment the actual definition of the classical Poisson bracket
and relate the

abstract bracket f: : : ; : : :g
with the properties (2.115) to (2.119) to a

system of axioms of an abstract mathematical structure

A possible concrete realization would then be the classical Poisson bracket (2.104).
But there are also further thinkable realizations. One important possibility concerns

linear operatorsbA; bB; bC; : : :,
represented by square matrices.

One defines for these operators the so-called
commutator

h
bA; bB

i

� � bAbB �bBbA : (2.123)

Since the order of operators is not arbitrary the commutator is normally unequal
zero and is itself again an operator. If one understands by ‘constant’bA a multiple
of the unit matrix and strictly respects in (2.118) the order of the operators then the
commutator fulfills the axioms (2.115) to (2.119). The replacement of the abstract
bracket by the commutator (2.123) decisively rules the so-called

quantum mechanics

In this sense classical mechanics and quantum mechanics are due to the same super-
ordinate abstract mathematical structure. They are ‘merely’ different realizations of
the abstract bracket. The realization of quantum mechanics can be substantiated by
the following

correspondence principle :

1. measurable physical quantity A (observable)” Hermitean linear operatorbA,
represented by a square matrix in a special vector space (Hilbert space).

2. measured values” eigenvalues or expectation values of these operators.

3. f: : : ; : : :g ” 1
i„
h
bA; bB

i

� ,

where „ D h
2�

and h D 6;626 � 10�34 J s: Planck’s constant.
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4. fundamental brackets:

�Oqi; Opj
�

� D i „ ıij ; (2.124)
�Oqi; Oqj

�
� D

�Opi; Opj
�

� D 0 : (2.125)

5. Hamilton function H.q;p; t/ ” Hamilton operator bH. Oq; Op; t/.
6. equation of motion:

d

dt
bA D 1

i„
h
bA;bH

i

� C
@

@t
bA: (2.126)

Let us finally demonstrate by a simple example how physical problems can be
solved by use of the abstract bracket without referring to a special representation of
the bracket.

We seek the equation of motion of the harmonic oscillator, which according
to (2.35) is defined by

H D p2

2m
C 1

2
m!20q2 :

Because of @H=@t D 0 it holds at first:

Pp D fp;Hg D 1

2m

˚
p; p2

�C 1

2
m!20

˚
p; q2

�

D 1

2m
.p f p; pg C f p; pg p/C 1

2
m!20 .qf p; qg C f p; qg q/

D �m!20q :

Analogously one finds

Pq D fq;Hg D p

m
:

These are, however, just the Hamilton’s equations of motion,

Pp D �@H

@q
I Pq D @H

@p
;

being derived without the need at any point of the special definition of the abstract
bracket as a classical Poisson bracket. Consequentially

POp D �m!20 Oq ; (2.127)

POq D 1

m
Op : (2.128)
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must be valid in quantum mechanics, too, as the equations of motion of the
harmonic oscillator if one interprets Oq; Op as operators according to the prescriptions
of quantum mechanics.

2.4.6 Exercises

Exercise 2.4.1

1. Determine the Poisson brackets which are built by the Cartesian components of
the linear momentum p and the angular momentum L D r � p of a mass point.

2. Calculate the Poisson brackets which consist of the components of L.

Exercise 2.4.2 Given is the angular momentum L D r � p of a mass point m.

1. Let it be:

L2 D L2x C L2y C L2z :

Calculate:

˚
L2;Lx;y;z

�
:

2. Demonstrate that if two components of L are integrals of motion then the same
holds also for the third component. Thereby we assume that Lx;Ly;Lz are not
explicitly time-dependent!

Exercise 2.4.3 A particle of mass m moves in a central field.

1. What is the Hamilton function? Which generalized coordinates are convenient?
2. Demonstrate by use of the Poisson bracket that the z-component Lz of the angular

momentum is an integral of motion!

Exercise 2.4.4 Show that for the functions

f D f .q;p; t/ I g D g.q;p; t/ I h D h.q;p; t/

the following relations are valid:

1)
@

@t
f f ; gg D

�
@f

@t
; g

	
C
�

f ;
@g

@t

	
;

2)
d

dt
f f ; gg D

�
df

dt
; g

	
C
�

f ;
dg

dt

	
;

3) f f ; g � hg D gf f ; hg C f f ; ggh :
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Exercise 2.4.5

1. Give the expression for the Poisson bracket of the angular momentum with an
arbitrary vector A that depends on r and p.

2. Calculate therewith in particular fLi; xjg,
3. fLi; pjg,
4. fLi;Ljg and
5. fA2;Ljg.
Exercise 2.4.6 Two particles of masses m1 and m2 move in an arbitrary force field
without any constraints. They have the angular momenta L1 and L2, respectively.

1. Why must the Poisson brackets between these two observables fulfill:

fL1;L2g D 0 :

2. Verify the following relation:

fL1;L1 � L2g D � .L1 � L2/ :

3. Prove with part 2.:

fL1; .L1 � L2/ng D �n .L1 � L2/n�1 .L1 � L2/ n D 1; 2; 3 : : :

Exercise 2.4.7

1. Let the mechanical observable f .q;p; t/ as well as the Hamilton function H be
integrals of motion. Show that @f=@t, too, is an integral of motion.

2. Consider the linear force-free motion of a particle of mass m. Show that H is an
integral of motion and verify for the observable

f .q; p; t/ D q � pt

m

the statement of part 1. That means, demonstrate that f as well as @f=@t are
integrals of motion.

Exercise 2.4.8 Check whether for the linear harmonic oscillator the mechanical
observable

f .q; p; t/ D p sin!t � m!q cos!t

is an integral of motion.
Validate the result by a direct calculation of df=dt!

Exercise 2.4.9 Let

A D A .q.t/;p.t//
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be a not explicitly time-dependent phase-space function:

@A

@t
D 0 :

The Hamilton function H of the system shall be not explicitly time-dependent,
either:

@H

@t
D 0 :

Express the time-dependence of A by H and A.0/ D A.q.0/;p.0//!

2.5 Canonical Transformations

2.5.1 Motivation

Classical Mechanics appears in four equivalent formulations:

1. Newton (Vol. 1),
2. Lagrange (Sect. 1),
3. Hamilton (Sect. 2),
4. Hamilton-Jacobi (Sect. 3).

The transition from the Lagrange to the Hamilton formalism was mathematically
carried out by use of a Legendre transformation. In the next section the Hamilton-
Jacobi theory will be based on the Hamilton mechanics, discussed in this section
with the aid of a so-called ‘canonical transformation’. For this purpose, some
preliminary considerations are certainly advisable.

We have shown previously that in the Lagrange formalism the choice of the
generalized coordinates q1; : : : ; qS is in principle arbitrary, only the total number S
is fixed. That is because the Lagrange equations

d

dt

@L

@Pqj
� @L

@qj
D 0 ; j D 1; 2; : : : ; S ;

are in the configuration space forminvariant with respect to point transformations.
That we proved in Sect. 1.2.1. For the transformation

.q1; : : : ; qS/ ” .Nq1; : : : ; NqS/

with

Nqj D Nqj.q; t/ I qj D qj . Nq; t/ ; j D 1; 2; : : : ; S
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formally unchanged Lagrange equations arise,

d

dt

@L

@PNqj
� @L

@Nqj
D 0 ; j D 1; 2; : : : ; S ;

where the new Lagrangian L emerges from the old one simply by insertion of the
transformation formulas:

L D L
�
q . Nq; t/ ; Pq � Nq; PNq; t� t

� D L
� Nq; PNq; t� :

In addition, the Lagrange equations are also invariant with respect to so-called
mechanical gauge transformations (1.84):

L ) LC L0 I L0 D d

dt
f .q; t/ :

Thereby f is allowed to be an almost arbitrary function of q and t. The actual
reason for these invariances stems from the action functional Sfq.t/g (1.120), which
becomes always extremal for the same path in M (1.118) independently of the
special choice of coordinates. On the other hand, the Lagrange equations of motion
result from the requirement ıS D 0.

With the modified Hamilton’s principle (2.48) we got to know such a formulation
from which Hamilton’s equations of motion are derivable if one only treats the
coordinates q and the momenta p as autonomous variables which are to be varied
independently of each other. Consequentially the canonical equations, too, are
forminvariant with respect to point transformations if one properly co-varies the
momenta according to their definition

pj D @L

@Pqj

Also the mechanical gauge transformation (1.84) can be shown to provide not
only an equivalent Lagrangian but also an equivalent Hamilton function. Thereby
‘equivalent’ is to be understood in such a manner that the canonical equations,
which determine the dynamics of the system, remain forminvariant under this gauge
transformation as the Lagrange equations do. That one can see as follows: Because
of qj D qj for all j and

Npj D @L

@Pqj
D @L

@Pqj
C @

@Pqj

d

dt
f .q; t/

D @L

@Pqj
C @

@Pqj

 
@

@t
f .q; t/C

SX

l D 1

@f

@ql
Pql

!
D @L

@Pqj
C @f

@qj
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the mechanical gauge transformation leads to the following new variables:

Nqj D qj I Npj D pj C @f

@qj
: (2.129)

Therewith we construct the new Hamilton function:

H D
X

j

Npj PNqj � L D
X

j

�
pj C @f

@qj

�
Pqj � L � d

dt
f

D H C
X

j

@f

@qj
Pqj �

X

l

@f

@ql
Pql � @f

@t
:

With the so transformed Hamilton function,

H D H .q;p . Np;q; t/ ; t/ � @f .q; t/
@t

; (2.130)

we check the canonical equations:

@H

@Nqj
D @H

@qj
D @H

@qj
C
X

l

@H

@pl

@pl

@qj
� @2f

@qj@t

D �Ppj �
X

l

Pql
@2f

@qj@ql
� @2f

@qj@t

D �Ppj � d

dt

@

@qj
f .q; t/ :

Eventually it remains with (2.129):

@H

@Nqj
D �PNpj : (2.131)

Analogously one finds:

@H

@Npj
D

SX

l D 1

@H

@pl

@pl

@Npj
D

SX

l D 1

@H

@pl
ıjl D Pqj ;

@H

@Npj
D PNqj : (2.132)

Equations (2.131) and (2.132) show the form-invariance of the canonical equations.
The above derivation contains an important detail, namely, we could show that
besides the set of variables

qj; pj ; j D 1; 2; : : : ; S
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also

qj; pj C @

@qj
f .q; t/ ; j D 1; 2; : : : ; S

with arbitrary f .q; t/ represent a ‘canonically conjugate’ pair of variables. The
presetting of q thus does not at all uniquely fix the corresponding canonically
conjugate momenta.

This is typical for Hamilton’s formulation of Classical Mechanics for which
the momenta pj are on an equal footing with the coordinates qj. The set of
allowed transformations for which the fundamental equations of motion remain
forminvariant is therefore in the Hamilton mechanics substantially larger than in
the version of Lagrange. That is an advantage of the Hamilton formalism which we
will investigate and exploit in the following in more detail.

By a
‘phase transformation’

Nqj D Nqj.q;p; t/ I Npj D Npj.q;p; t/ ; j D 1; 2; : : : ; S (2.133)

one understands a point transformation in the phase space. While all point transfor-
mations in the configuration space result in an equivalent Lagrangian, not all phase
transformations let the Hamilton’s equations of motion to be forminvariant. On the
other hand, only those transformations of the Hamilton mechanics are interesting
which do not change the form of the equations of motion. They are denoted as
canonical transformations.

Definition 2.5.1 The phase transformation

.q;p/ �! . Nq; Np/
is called canonical if a function

H D H . Nq; Np; t/ (2.134)

does exist for which we have:

PNqj D @H

@Npj
I PNpj D �@H

@Nqj
; j D 1; 2; : : : ; S (2.135)

In this context how H arises from H is in principle dispensable. For the proof of the
form-invariance of the Lagrange equations L was found from L simply by insertion
of the transformation formulas. If that is the case also for the Hamilton function H,
i.e.

H D H .q . Nq; Np; t/ ; p . Nq; Np; t/ ; t/ ; (2.136)

then one calls the transformation canonical in the narrower sense.
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Before we try to work out practical criteria for canonical transformations two
special examples will give us an idea what canonical transformations are able to
accomplish.

(1) Interchange of Coordinates and Momenta

The phase transformation

Nqj D Nqj.q;p; t/ D �pj ; (2.137)

Npj D Npj.q;p; t/ D qj (2.138)

is canonical in the narrower sense since with

H D H.q;p; t/ ;

H D H . Nq; Np; t/ D H . Np;�Nq; t/ (2.139)

we find:

@H

@Npj
D @H . Np;�Nq; t/

@Npj
D @H.q;p; t/

@qj
D �Ppj D PNqj ;

@H

@Nqj
D @H . Np;�Nq; t/

@Nqj
D �@H.q;p; t/

@pj
D �Pqj D �PNpj :

The canonical equations thus remain forminvariant after the transformation (2.137)
and (2.138). This phase transformation interchanges positions and momenta there-
with impressively indicating that the conceptual assignment q ” position
and p ” momentum becomes rather worthless within the framework of
Hamilton’s mechanics. One should consider q and p as abstract, completely
equitable independent variables.

(2) Cyclic Coordinates

Already several times we realized that the ‘right’ choice of the generalized
coordinates qj can be decisively important for the practical handling of a mechanical
problem. If we succeeded to make the choice such that

all qj are cyclic

then the solution of the problem would be trivial if in addition one can assume

@H

@t
D 0 (H: constant of motion) :
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‘All qj cyclic’ means:

@H

@qj
D 0 8j ” H D H.p/ : (2.140)

It holds then:

Ppj D 0 8j ” pj D const D cj : (2.141)

It follows from the other canonical equation:

Pqj D @H

@pj
D Pqj .p1; : : : ; pS/ D Pqj .c1; : : : ; cS/ :

But that means

Pqj D const D ˛j 8j ; (2.142)

what can easily be integrated:

qj D ˛j tC dj ; j D 1; 2; : : : ; S : (2.143)

The ˛j are known because of (2.142) and the cj; dj by initial conditions. With (2.141)
and (2.143) the problem is therefore elementarily solved.

The decisive question is of course whether the above assumption ‘all qj cyclic’
can indeed be realized. That is found to be in principle possible and is worked
out by the Hamilton-Jacobi theory (Chap. 3) to a mighty method of solution. It
is to be expected, however, that the physically plausible, obvious coordinates do
not fulfill this condition. At first they have to be canonically transformed in a
proper manner. The careful investigation of canonical transformations is therefore
sufficiently motivated.

2.5.2 The Generating Function

Starting point for the following considerations is the modified Hamilton’s princi-
ple (2.55). This states that the motion of the system takes place in such a way that
the action functional

Sfq.t/;p.t/g D
t2Z

t1

dt

0

@
SX

j D 1

pj Pqj �H.p;q; t/

1

A (2.144)

becomes extremal for the actual path on the competing set M of admitted phase
paths:

M D f.q.t/;p.t// W q.t1/ D qa;q.t2/ D qeI p.t1/;p.t2/ arbitraryg (2.145)
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What is now to be taken into consideration with respect to this principle when we
perform a phase transformation

.q;p/ �! . Nq; Np/ ‹

1. The boundary conditions will possibly change! After the transformation the
paths which belong to M do not necessarily have the same initial and end-
configurations since

Nq .t1/ D Nq .qa; p.t1/; t1/ ; (2.146)

Nq .t2/ D Nq .qe; p.t2/; t2/ (2.147)

can depend on p.t1/ and p.t2/, respectively, and therefore might be different for
different paths.

2. If, additionally, the transformation shall be canonical then there must exist for
the new variables, too, a modified Hamilton’s principle:

ı

t2Z

t1

dt

0

@
SX

j D 1

Npj PNqj �H . Nq; Np; t/
1

A ŠD 0 : (2.148)

Thereby the variation possibly concerns paths others than those of the original
competing set (2.145), namely such paths which have in common the fixed initial
and end-configurations Nqa and Nqe.

Hereto we prove the following assertion:

Theorem 2.5.1 The phase transformation .q;p/ �! . Nq; Np/ is canonical, if

SX

j D 1

pj Pqj � H D
SX

j D 1

Npj PNqj � H C dF1
dt

: (2.149)

Thereby

F1 D F1 .q; Nq; t/ (2.150)

is an arbitrary but sufficiently often differentiable function of the ‘old’ and the ‘new’
coordinates.

Proof We show at first that F1 completely determines the transformation and also
H so that the denomination

F1 D F1 .q; Nq; t/ ” generating function of the transformation
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appears to be justifiable. We start with:

dF1 D
SX

j D 1

�
@F1
@qj

dqj C @F1
@Nqj

d Nqj

�
C @F1

@t
dt :

For comparison we rewrite (2.149):

dF1 D
SX

j D 1

�
pj dqj � Npj d Nqj

�C �H � H
�

dt :

With respect to F1 the variables q, Nq and t are to be taken as independent; thus it
follows by equating coefficients:

pj D @F1
@qj
I Npj D �@F1

@Nqj
I H D H C @F1

@t
: (2.151)

Thereby the transformation is already completely determined. If q, p and F1 are
preset then one solves

pj D @F1
@qj
D pj .q; Nq; t/

with respect to Nq and gets therewith the first half of the transformation equations:

Nqj D Nqj.q;p; t/ :

That we insert into

Npj D �@F1
@Nqj
D Npj.q; Nq; t/

and obtain:

Npj D Npj.q;p; t/ :

This consideration presumes as usual that the function F1.q; Nq; t/ fulfills all
necessary requirements concerning the differentiability and invertibility.

The new Hamilton function, too, is completely fixed by F1.q; Nq; t/:

H . Nq; Np; t/ D H .q . Nq; Np; t/ ; p . Nq; Np; t/ ; t/C @

@t
F1 .q . Nq; Np; t/ ; Nq; t/ : (2.152)
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We now show as second step that the phase transformation generated by F1.q; Nq; t/
is indeed canonical. For this purpose we consider the action functional:

S D
t2Z

t1

dt

0

@
SX

j D 1

pj Pqj �H.q;p; t/

1

A D
t2Z

t1

dt

0

@
SX

j D 1

Npj PNqj �H . Nq; Np; t/C dF1
dt

1

A

D
t2Z

t1

dt

0

@
SX

j D 1

Npj PNqj �H . Nq; Np; t/
1

AC F1 .qe; Nq.t2/; t2/ � F1 .qa; Nq .t1/ ; t1/ :

S must now be varied with respect to Nq and Np instead of q and p, where one has to
take into consideration what is said under the above point 1.:

0
ŠD ıS D ı fF1 .qe; Nq.t2/; t2/� F1 .qa; Nq.t1/; t1/g

C
t2Z

t1

dt

2

4
SX

j D 1

 
ı Npj PNqj C Npj ı PNqj �

@H

@Nqj
ı Nqj � @H

@Npj
ı Npj

!3

5 :

Since qa, qe are uninfluenced by the variation it holds:

ı fF1 .qe; Nq.t2/; t2/� F1 .qa; Nq.t1/; t1/g D
SX

j D 1

@F1
@Nqj

ı Nqj

ˇ̌
ˇ̌
t2

t1

:

If we now perform an integration by parts,

t2Z

t1

dt Npj ı PNqj D Npj ı Nqj

ˇ̌t2
t1
�

t2Z

t1

dt PNpj ı Nqj ;

then we are left with:

0
ŠD ıS D

SX

j D 1

�
Npj C @F1

@Nqj

�
ı Nqj

ˇ̌
ˇ̌
t2

t1

C
t2Z

t1

dt
SX

j D 1

"
ı Npj

 
PNqj �

@H

@Npj

!
� ı Nqj

 
PNpj C

@H

@Nqj

!#
:

(2.153)

Following our foregoing considerations we can not conclude for the first summand
that ı Nqj vanishes at t1 and t2, respectively. Because of (2.151), however, the bracket
is already equal to zero. Using the independency of the new variables Nqj, Npj, (2.153)
eventually leads to Hamilton’s equations of motion:

PNqj D
@H

@Npj
I PNpj D �

@H

@Nqj
: (2.154)

The transformation, generated by F1.q; Nq; t/, is thus indeed canonical.
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2.5.3 Equivalent Forms of the Generating Function

The .q; Nq/-dependence of the generating function F1 is in principle by no means
selfevident. Applying Legendre transformations one can find three further types of
generating functions:

F2 D F2 .q; Np; t/ ; (2.155)

F3 D F3 .p; Nq; t/ ; (2.156)

F4 D F4 .p; Np; t/ : (2.157)

The generating functions always combine a new and an old coordinate. The ongoing
statement of the problem decides which form is most convenient. For all the three
functions there exists a theorem as that for F1 in (2.149) and (2.150) which we have
proved in the last section. Let us inspect this point in the following in a little bit
more detail.

F2 D F2 .q; Np; t/

F2 one obtains from F1 by a Legendre transformation with respect to Nq:

F2 .q; Np; t/ D F1 .q; Nq; t/ �
SX

j D 1

@F1
@Nqj
Nqj D F1 .q; Nq; t/C

SX

j D 1

Npj Nqj : (2.158)

From the relation, already used to find (2.151),

dF1 D
SX

j D 1

�
pj dqj � Npj d Nqj

�C �H � H
�

dt (2.159)

it follows for F2:

dF2 D dF1 C
SX

j D 1

�Npj d Nqj C Nqj d Npj
� D

SX

j D 1

�
pj dqj C Nqj d Npj

�C �H � H
�

dt :

(2.160)
That means:

pj D @F2
@qj
I Nqj D @F2

@Npj
I H D H C @F2

@t
: (2.161)

By inverting and resolving one shows, as explicitly demonstrated in the last section
for F1, that from (2.161) the transformation formulas .q;p/ �! . Nq; Np/ are uniquely
derivable.
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To demonstrate that F2, too, provides a canonical transformation we first have to
rearrange the expression (2.149) according to (2.160):

SX

j D 1

pj Pqj � H D
SX

j D 1

Npj PNqj �H C dF1
dt

D
SX

j D 1

Npj PNqj �H C dF2
dt
�

SX

j D 1

�Npj PNqj C Nqj PNpj

�
:

By putting instead of (2.149) now the relation

SX

j D 1

pj Pqj �H D �
SX

j D 1

Nqj PNpj �H C dF2
dt

(2.162)

into the modified Hamilton’s principle and performing the variation with respect to
Nq and Np one finds out that F2, too, generates a canonical phase transformation.

F3 D F3 .p; Nq; t/

F3 one gets from F1 by a Legendre transformation with respect to q:

F3 .p; Nq; t/ D F1 .q; Nq; t/ �
SX

j D 1

@F1
@qj

qj D F1 .q; Nq; t/ �
SX

j D 1

pj qj : (2.163)

We build again the total differential:

dF3 D dF1 �
SX

j D 1

�
dpj qj C pj dqj

�
:

Inserting (2.159) for dF1 yields:

dF3 D �
SX

j D 1

�
qj dpj C Npj d Nqj

�C �H � H
�

dt : (2.164)

From this one reads off:

qj D �@F3
@pj
I Npj D �@F3

@Nqj
I H D H C @F3

@t
: (2.165)

When we invert these expressions and solve them for Nq, Np then we obtain the explicit
transformation formulas mediated by F3.
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We rearrange (2.149) with (2.163):

SX

j D 1

pj Pqj � H D
SX

j D 1

Npj PNqj � H C dF1
dt

D
SX

j D 1

Npj PNqj � H C dF3
dt
C

SX

j D 1

�Ppj qj C pj Pqj
�
:

If one uses now

SX

j D 1

pj Pqj � H D
SX

j D 1

�Npj PNqj C Ppj qj C pj Pqj
�� H C dF3

dt
(2.166)

instead of (2.149) in the modified Hamilton’s principle and performs the variation of
the action functional with respect to Nq; Np then one gets again Hamilton’s equations
of motion in the form of (2.154).

F4 D F4 .p; Np; t/

F4 follows from F1 by a double Legendre transformation with respect to the two
variables q and Nq:

F4 .p; Np; t/ D F1 .q; Nq; t/ �
SX

j D 1

�
@F1
@qj

qj C @F1
@Nqj
Nqj

�

D F1 .q; Nq; t/C
SX

j D 1

�Npj Nqj � pj qj
�
: (2.167)

From the total differential

dF4 D dF1 C
X

j

�
d Npj Nqj C Npj d Nqj � dpj qj � pj dqj

�

D
SX

j D 1

�
pj dqj � Npj d Nqj

�C �H �H
�

dt
X

j

�
d Npj Nqj C Npj d Nqj � dpj qj � pj dqj

�

D
SX

j D 1

�Nqj d Npj � qj dpj
�C �H �H

�
dt (2.168)

we can again read off the partial derivatives:

Nqj D @F4
@Npj
I qj D �@F4

@pj
I H D H C @F4

@t
: (2.169)
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The transformation formulas, mediated by F4, follow in this case by inverting and
resolving with respect to Nq, Np. For proving the canonicity of the phase transformation
we now use

X

j

pj Pqj � H D
X

j

Npj PNqj � H C dF1
dt

D
X

j

Npj PNqj � H C dF4
dt
�
X

j

�PNpj Nqj C Npj PNqj � Ppj qj � pj Pqj
�

and therewith

SX

j D 1

pj Pqj � H D
SX

j D 1

�Ppjqj C pj Pqj � PNpj Nqj
� � H C dF4

dt
(2.170)

for the modified Hamilton’s principle. The resulting expression is now to be varied
with respect to Nq, Np in order to verify therewith the Hamilton’s equations of motion.
(This is explicitly performed as Exercise 2.5.1!)

For a better overview we gather the derived transformation formulas once
more:

(1) F1.q; Nq; t/

pj D @F1
@qj
I Npj D �@F1

@Nqj

(2) F2.q; Np; t/

pj D @F2
@qj
I Nqj D @F2

@Npj

(3) F3.p; Nq; t/

qj D �@F3
@pj
I Npj D �@F3

@Nqj

(4) F4.p; Np; t/

qj D �@F4
@pj
I Nqj D @F4

@Npj

The time-dependence is in all the four cases the same:

H D H C @Fi

@t
; i D 1; 2; 3; 4 : (2.171)
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2.5.4 Examples of Canonical Transformations

We want to discuss some characteristic applications of the up to now still rather
abstract formalism.

(1) Interchange of Momenta and Coordinates

We choose

F1 .q; Nq; t/ D �
SX

j D 1

qj Nqj (2.172)

and have then produced with

pj D @F1
@qj
D �Nqj I Npj D �@F1

@Nqj
D qj (2.173)

an interchange of momenta and coordinates (sites):

.q;p/
F1�! . Np;�Nq/ : (2.174)

This transformation we got to know already as preparative example with (2.137)
and (2.138). Obviously the same effect can be achieved by use of

F4 .p; Np; t/ D �
SX

j D 1

pj Npj : (2.175)

(2) Identity Transformation

We choose

F2 .q; Np; t/ D
SX

j D 1

qj Npj (2.176)

finding then with (2.161):

pj D @F2
@qj
D Npj I Nqj D @F2

@Npj
D qj : (2.177)
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Thus it is obviously the identity transformation which we could have generated
also by

F3 .p; Nq; t/ D �
SX

j D 1

pj Nqj : (2.178)

(3) Point Transformation

If we choose

F2 .q; Np; t/ D
SX

j D 1

fj.q; t/Npj ; (2.179)

it follows:

Nqj D @F2
@Npj
D fj.q; t/ ; (2.180)

which corresponds to a point transformation in the configuration space and we have
already argued in Sect. 2.5.1 that it is canonical.

As canonically conjugate variables the momenta are of course also affected by
the point transformation:

pj D @F2
@qj
D

SX

l D 1

@fl
@qj
Npl : (2.181)

These relations are to be solved for the Npl!

(4) Harmonic Oscillator

We want to demonstrate with this example that a properly chosen canonical
transformation can indeed greatly simplify the integration of the equations of
motion, sometimes even make them redundant.

According to (2.35) the Hamilton function of the harmonic oscillator reads:

H D p2

2m
C 1

2
m!20q2 :

We choose the following generating function:

F1 .q; Nq/ D 1

2
m!0q

2 cot Nq : (2.182)
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This function we use in (2.151) to get:

p D @F1
@q
D m!0q cot Nq ; (2.183)

Np D �@F1
@Nq D

1

2
m!0q

2 1

sin2 Nq : (2.184)

The actual transformation formulas we find by resolving with respect to q and p:

q D
s

2Np
m!0

sin Nq ; (2.185)

p D p
2Np m!0 cos Nq : (2.186)

Because of @F1=@t D 0 we find for the new Hamilton function:

H .Nq; Np/ D H .q .Nq; Np/ ; p .Nq; Np//

D 1

2m
2Np m!0 cos2 NqC 1

2
m!20

2Np
m!0

sin2 Nq :

Therewith it takes an especially simple form:

H .Nq; Np/ D !0 Np : (2.187)

The coordinate Nq is now cyclic. That means:

Np.t/ D Np0 D const : (2.188)

One has in addition:

PNq D @H

@Np D !0 ;

Nq.t/ D !0tC Nq0 : (2.189)

The solution is complete if we further insert (2.188) and (2.189) into the transfor-
mation formulas (2.185) and (2.186):

q.t/ D
s
2Np0

m!0
sin .!0tC Nq0/ ; (2.190)

p.t/ D p
2Np0 m!0 cos .!0tC Nq0/ : (2.191)



164 2 Hamilton Mechanics

That is the already known solution of the harmonic oscillator. Nq0 and Np0 are fixed by
initial conditions. This example illustrates that a physical problem can be decisively
simplified by a suitably chosen canonical transformation if this, for instance, makes
all coordinates to be cyclic. The new momenta then are all integrals of motion. The
far from being a trivial problem, however, consists of course in finding the right
generating function (2.182). This, by the way, is just the statement of the central
problem of the Hamilton-Jacobi theory which we are going to work out in the next
chapter.

(5) Mechanical Gauge Transformation

For this transformation we have already shown in Sect. 2.5.1 that it is canonical. It
leads with (2.129) to the following transformation formulas:

Nqj D qjI Npj D pj C @f

@qj
I H D H � @f

@t
: (2.192)

Thereby

f D f .q; t/

is an arbitrary function of the coordinates and the time. The transformation (2.192)
corresponds to the already several times discussed re-calibration of the Lagrangian,

L �! L D LC df

dt
;

which lets the Lagrange’s equations of motion invariant. It is generated by:

F2 .q; Np/ D
SX

jD1
qj Npj � f .q; t/ : (2.193)

since it follows with (2.161):

Nqj D @F2
@Npj
D qj I pj D @F2

@qj
D Npj � @f

@qj
;

H D H C @F2
@t
D H � @f

@t
:

This is exactly related to (2.192).
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2.5.5 Criteria for Canonicity

How can we recognize whether or not a given phase transformation

Nqj D Nqj.q;p; t/ I Npj D Npj.q;p; t/ ; j D 1; 2; : : : ; S (2.194)

is canonical if the corresponding generating function is not explicitly known? We
discuss two different procedures.

(1) We solve (2.194) for p and Np:

pj D pj .q; Nq; t/ I Npj D Npj .q; Nq; t/ : (2.195)

In the case that the transformation is canonical there must exist a generating
function F1.q; Nq; t/ with

pj D @F1
@qj
I Npj D �@F1

@Nqj
; j D 1; 2; : : : ; S :

But that also means:

@pj

@Nqm
D @2F1
@Nqm@qj

D @2F1
@qj@Nqm

D �@Npm

@qj
:

We thus investigate whether

�
@pj

@Nqm

�

q; t
Nql; l ¤ m

ŠD �
�
@Npm

@qj

�

q; t
Nql; l ¤ j

(2.196)

is valid for all pairs of indexes .j;m/. Analogously thereto it must of course also
hold:

�
@pj

@qm

�

Nq; t
ql; l ¤ m

ŠD
�
@pm

@qj

�

Nq; t
ql; l ¤ j

; (2.197)

�
@Npj

@Nqm

�

q; t
Nql; l ¤ m

ŠD
�
@Npm

@Nqj

�

q; t
Nql; l ¤ j

: (2.198)

It stands immediately to reason that in spite of the simple concept the practical
handling of these formulas will be rather cumbersome. The procedure to be
discussed next will turn out to be essentially more convenient.
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The solution of the transformation formulas (2.194) for p and Np as in (2.195)
is of course not at all compulsory. Important for the solution is only that it
is done for an old in combination with a new coordinate. Further possible
combinations are therefore:

qj D qj .p; Np; t/ I Nqj D Nqj .p; Np; t/ ” F4 .p; Np; t/ (2.199)

qj D qj .p; Nq; t/ I Npj D Npj .p; Nq; t/ ” F3 .p; Nq; t/ ; (2.200)

pj D pj .q; Np; t/ I Nqj D Nqj .q; Np; t/ ” F2 .q; Np; t/ : (2.201)

(2) We introduce the second method for examining the canonicity of a phase
transformation in the form of a theorem:

Theorem 2.5.2 The phase transformation (2.194) is canonical if and only if the
fundamental Poisson brackets in the new variables,

˚Nqi; Npj
� D ıij ; (2.202)

˚Nqi; Nqj
� D ˚Npi; Npj

� D 0 ; (2.203)

are fulfilled.

Proof We present the proof for not explicitly time-dependent phase transforma-
tions,

@F

@t
D 0 ” H . Nq; Np; t/ D H .q . Nq; Np/ ; p . Nq; Np/ ; t/ ;

which we therefore investigate for canonicity in the narrower sense. After the
theorem proven in Sect. 2.4.2 the Poisson bracket is independent of the set of
canonical coordinates which are chosen as basis. Let us take here the old variables
q and p. According to the general equation of motion (2.105) it holds at first:

PNqj D
˚Nqj;H

�
q; p D

SX

l D 1

�
@Nqj

@ql

@H

@pl
� @Nqj

@pl

@H

@ql

�
;

PNpj D
˚Npj;H

�
q; p D

SX

l D 1

�
@Npj

@ql

@H

@pl
� @Npj

@pl

@H

@ql

�
:

The partial derivatives of the Hamilton function H can be written as follows:

@H

@pl
D

SX

k D 1

 
@H

@Nqk

@Nqk

@pl
C @H

@Npk

@Npk

@pl

!
;

@H

@ql
D

SX

k D 1

 
@H

@Nqk

@Nqk

@ql
C @H

@Npk

@Npk

@ql

!
:
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That we insert into the above expression for PNqj:

PNqj D
X

l; k

"
@Nqj

@ql

 
@H

@Nqk

@Nqk

@pl
C @H

@Npk

@Npk

@pl

!
� @Nqj

@pl

 
@H

@Nqk

@Nqk

@ql
C @H

@Npk

@Npk

@ql

!#
:

This can be summarized as follows:

PNqj D
X

k

"
@H

@Nqk

˚Nqj; Nqk
�

q; p C
@H

@Npk

˚Nqj; Npk
�

q; p

#
: (2.204)

In the same manner one finds:

PNpj D
X

k

"
� @H

@Nqk

˚Nqk; Npj
�

q; p C
@H

@Npk

˚Npj; Npk
�

q; p

#
: (2.205)

Hamilton’s equations of motion,

PNqj D
@H

@Npj
I PNpj D �

@H

@Nqj
; (2.206)

are thus valid if and only if (2.202) and (2.203) are fulfilled. Exactly this was to be
proven.

Theorem 2.5.2 turns out to be a rather handy criterion for the canonicity of a given
phase transformation.

2.5.6 Exercises

Exercise 2.5.1 Let .q;p/ �! . Nq; Np/ be a phase transformation for which

SX

j D 1

pj Pqj � H D
SX

j D 1

�Ppjqj C pj Pqj � PNpj Nqj
� �H C dF4

dt

is valid where F4 D F4.p; Np; t/ is an arbitrary function of the old and the new
momenta. Show that

1. H and the phase transformation

Nqj D Nqj.q;p; t/ I Npj D Npj.q;p; t/

are completely determined by the generating function F4.
2. The transformation mediated by F4 is canonical.
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Exercise 2.5.2 Is it possible that two components of the angular momentum, e.g.
Lx; Ly, appear simultaneously as canonical momenta? Explain

Exercise 2.5.3 Investigate whether the following transformation is canonical:

Nq D ln

�
sin p

q

�
I Np D q cot p :

Exercise 2.5.4 q; p are canonically conjugate variables. By the transformation

Nq D ln
�
1Cpq cos p

�
;

Np D 2
�
1Cpq cos p

� p
q sin p

new coordinates Nq; Np are defined.

1. Show that the transformation is canonical.
2. Show that the transformation is generated by

F3 . p; Nq; t/ D � �eNq � 1�2 tan p

Exercise 2.5.5

1. Let p and q be canonically conjugate variables. Is the following transformation
canonical?

Oq D Oq . p; q/ D arcsin
q

r
q2 C p2

˛2

Op D Op . p; q/ D 1

2

�
˛q2 C p2

˛

�

˛ is a real constant.
2. Which transformation is provided by the following generating function?

F1 .q; Oq/ D 1

2
˛q2 cot Oq

Exercise 2.5.6 A mechanical system with the Hamilton function

H D 1

2m
p2q4 C k

2q2

is given as well as the generating function of a canonical transformation:

F1 .q; Nq/ D �
p

m k
Nq
q
:
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1. What are the transformation formulas

p D p .Nq; Np/ I q D q .Nq; Np/ ‹

2. What is the new Hamilton function

H D H .Nq; Np/ ‹

3. Find the solution of the problem for the variables Nq; Np!

Exercise 2.5.7 A system is described by the Hamilton function

H .q; p/ D 3

2
ˇqp .ˇ 2 R/

where q and p are conjugate variables.

1. Which phase transformation .q; p/ ! .Oq; Op/ is provided by the generating
function

F2 .q; Op/ D ˛q2 Op3 .˛ 2 R/ ‹

2. Show that the transformation is indeed canonical.
3. Write down

OH .Oq; Op/

4. What are the equations of motion for the ‘new’ variables Oq and Op?

Exercise 2.5.8 For which values ˛ and ˇ is the phase transformation

Nq D q˛ cos .ˇ p/ I Np D q˛ sin .ˇ p/

canonical?

Exercise 2.5.9 For a one-dimensional system a transformation of variables is
performed,

.q; p/ �! .Nq; Np/ ;

where it is found:

Nq D qkpl I Np D qmpn I k; l;m; n 2 R :

1. How are k; l;m; n to be chosen in order to make the transformation canonical?
2. Which (canonical) transformation comes out in particular for m D 0?
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3. Determine the generating functions of the canonical transformations from 1. if
these are of the type

F1 D F1.q; Nq/ Š

4. How would a generating function of the type

F2 D F2.q; Np/

look like?

Exercise 2.5.10 An electron (mass m, charge �e) moves in a homogeneous
magnetic field

B D .0; 0;B/ D rot A :

For the vector potential A the Coulomb-gauge shall be valid:

div A D 0 :

1. Show that

A.r/ D 1

2
B.�y; x; 0/

is a thinkable representation of the multiple-valued vector potential.
2. Take

q1 D x ; q2 D y ; q3 D z :

and verify the following form of the Hamilton function

H D p23
2m
C H0

H0 D 1

2m

�
p1 � 1

2
m!cq2

�2
C 1

2m

�
p2 C 1

2
m!cq1

�2

with

!c D eB

m
:

3. Consider from now on exclusively H0.D H.p3 � 0//. Let a phase transformation

.q;p/ �! . Oq; Op/
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be due to the generating function

F1 .q; Oq/ D m!c

�
q1 Oq1 C q2 Oq2 � Oq1 Oq2 � 1

2
q1q2

�

Calculate the transformation formulas

q D q . Oq; Op/ ; p D p . Oq; Op/ ;
Oq D Oq .q;p/ ; Op D Op .q;p/ :

4. How does the transformed Hamilton function

OH D OH . Oq; Op/

look like? What kind of problem of motion remains to be solved?
5. Try to trace back the transformation formulas from part 3. to a generating

function of type

F2 D F2 .q; Op/ :

2.6 Self-examination Questions

To Section 2.1

1. What is the objective of the Hamilton mechanics?
2. Contrast the advantages and disadvantages of Newton’s formulation of classical

mechanics with those of the Lagrange version!
3. Which transformation of variables does produce the transition from Lagrange to

Hamilton mechanics?
4. How is the Legendre-transform of the function f .x; y/ with respect to the

variable y defined?

To Section 2.2

1. Which are the active and which are the passive variables of the transformation
from the Lagrangian to the Hamilton function?

2. Formulate Hamilton’s equations of motion!
3. Under which conditions is H identical to the total energy of the system?
4. Demonstrate that total and partial time derivative of H are equal.
5. Which advantage is brought about in the Hamilton-formalism by cyclic coordi-

nates?
6. What is the idea of the Routh-formalism? How is the Routh function related to

the Hamilton function?
7. How does one find the Hamilton function of a physical system?
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8. What is the Hamilton function of the harmonic oscillator?
9. Which Hamilton function does describe the motion of a particle of mass m and

charge Nq in an electromagnetic field?
10. Formulate the Hamilton function in cylindrical and in spherical coordinates for

a particle of mass m that is subject to a conservative force but not to constraints.

To Section 2.3

1. List and comment the most important integral principles of classical mechanics!
2. What do we understand by the modified Hamilton’s principle?
3. Formulate precisely the variational prescription for the modified Hamilton’s

principle!
4. Which are the characteristic differences between the original and the modified

Hamilton’s principle?
5. How is the action A defined?
6. What does the principle of least action say?
7. By what do the variational prescriptions for the Hamilton’s principle and the

principle of least action differ from each other?
8. Which special case is treated by Fermat’s principle?
9. What do we understand by the principle of least time and what by the principle

of the shortest way?
10. How does the Jacobi’s principle differ from the principle of least action?
11. What do we understand by the metric tensor?
12. Formulate the Jacobi’s principle for the force-free movement!

To Section 2.4

1. Is a mechanical problem solved with the specification of the configuration path?
Give reasons for your answer!

2. What do we understand by the event space?
3. In which representation spaces do, respectively, Lagrange and Hamilton for-

malism work?
4. How does the path in the event space of the linear harmonic oscillator look like,

how is its phase trajectory?
5. Define the state space!
6. What does the term state  mean?
7. Which minimum information must be given in order to fix all mechanical

properties of a general N-particle system?
8. Why must the time evolution of a state  necessarily follow from a differential

equation of first order?
9. Why is the configuration q.t/ of a mechanical system not yet a state?

10. What is the definition of the Poisson bracket?
11. Formulate the equation of motion of an arbitrary phase function f .q;p; t/ by

the use of the Poisson bracket!
12. In which manner does the Poisson bracket depend on the choice of the canonical

variables .q;p/?
13. What are the fundamental Poisson brackets?
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14. List some formal properties of the Poisson bracket!
15. What is the Jacobi identity?
16. How can we use the Poisson bracket in order to check whether F.q;p; t/

represents an integral of motion?
17. What does Poisson’s theorem state?
18. Give reasons why classical mechanics and quantum mechanics can be under-

stood as different realizations of the same superordinate abstract mathematical
structure!

To Section 2.5

1. What is the actual reason for the invariance of the Lagrange’s equations of
motion with respect to point transformations in the configuration space and
with respect to mechanical gauge transformations?

2. How does the Hamilton function change when a mechanical gauge transforma-
tion is performed? What does thereby happen to the canonical equations?

3. Are by the generalized coordinates q1; : : : ; qs the corresponding generalized
momenta pj uniquely fixed?

4. What is a phase transformation?
5. What is the meaning of a canonical transformation? When is it called canonical

in the narrower sense?
6. Name, in connection with the modified Hamilton’s principle, a first criterion for

a phase transformation .q;p/ �! . Nq; Np/ to be canonical!
7. What do we understand by the generating function of a canonical transforma-

tion?
8. Which types of generating functions for canonical transformations do you

know? What is their common feature?
9. Give at least two generating functions for a phase transformation that inter-

changes momenta and positions!
10. Which generating function does provide the identity transformation?
11. How does the generating function for a point transformation in the configura-

tion space look like? What happens thereby to the canonical momenta?
12. Find at least two criteria for the canonicity of a phase transformation!



Chapter 3
Hamilton-Jacobi Theory

The considerations of the last section of the last chapter concerning canonical
transformations reveal such a manifold of transformation possibilities that it should
in fact be possible to construct by it efficient

general methods for the solution of mechanical problems

We therefore investigate now which way a Hamilton function H has to be trans-
formed in order to make the solution of the physical problem as simple as possible,
may be even trivial. The following methods, for instance, may offer themselves:

1. One chooses the transformation in such a way that in the new variables Nq, Np the
transformed Hamilton function H constitutes a known, already solved problem
(e.g. harmonic oscillator, see Exercise 2.5.6!).

2. One chooses the transformation in such a way that all new variables Nqj are cyclic.
In Sect. 2.5.1 we had already shown that then the integration of the equations of
motion becomes trivial, at least if we can additionally assume:

@H

@t
D 0

What then simply remains is:

Npj D ˛j D const ; j D 1; : : : ; S ;

H D H.˛/ I !j D @H

@˛j
;

Nqj D !j tC ˇj ; j D 1; 2; : : : ; S :

The 2S constants ˛j, ˇj are eventually fixed by initial conditions.
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3. One chooses the transformation in such a way that

Nqj D ˇj D const I Npj D ˛j D const ; j D 1; 2; : : : ; S :

The solution is then ‘simply’ found by inversion of the transformation,

q D q.ˇ;˛; t/ I p D p.ˇ;˛; t/ ;

where the ˇj, ˛j are again fixed by initial conditions.

The problem is, however, in finding the canonical transformations which fit 1., 2.,
3..

3.1 Hamilton-Jacobi Equation

The procedure 1. appears of course rather special, realizable surely only for a few
special cases. The procedures 2. and 3. are more general, where 3. has the advantage
over 2. to be applicable also for systems with an explicit time-dependence of the
Hamilton function. We will therefore concentrate ourselves here on method 3..

So we seek a canonical transformation after which the new variables Nq and Np
are constant in time. That surely holds if the transformation achieves for the new
Hamilton function

H D H C @F

@t
� 0 : (3.1)

That would namely trivially mean:

PNqj D
@H

@Npj
D 0 H) Nqj D ˇj D const ; j D 1; 2; : : : ; S ;

PNpj D �
@H

@Nqj
D 0 H) Npj D ˛j D const ; j D 1; 2; : : : ; S

It is advisable, but not at all necessary, to choose the generating function F as of the
type F2,

F2 D F2 .q; Np; t/ ;

Then it holds according to (2.161):

pj D @F2
@qj
I Nqj D @F2

@Npj
:

If we insert this into (3.1) it results in the
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Hamilton-Jacobi differential equation

H

�
q1; : : : ; qS;

@F2
@q1

; : : : ;
@F2
@qS

; t

�
C @F2

@t
D 0 : (3.2)

From this equation the generating function F2 must be determined. We want to
discuss this equation a bit in order to be able to develop a practicable method of
solution.

1. The solution is called, from reasons which later become clear,

Hamilton’s action function F2 D S.

2. The Hamilton-Jacobi differential equation (HJD) represents a

non-linear partial differential equation of first order
for F2 in .SC 1/ variables q1; : : : ; qS; t

being therewith in general mathematically not so easy to deal with. It is non-
linear since H depends quadratically on the momenta and therewith on @F2=@qj.
There appear only partial derivatives of first order with respect to qj and t.

3. The HJD contains .SC 1/ different derivatives of the required function F2. After
the integration one therefore finds .S C 1/ constants of integration. But since
F2 appears in the HJD only in the form @F2=@qj or @F2=@t F2 C C the solution
F2 is unique only up to an additive constant. One of the integration constants is
therefore trivially additive:

Solution: F2 .q1; : : : ; qS; t j ˛1; ˛2; : : : ; ˛S/C ˛S C 1 : (3.3)

˛S C 1 is unimportant since in the transformation formulas (2.161) only the
derivatives of F2 play a role. One calls (3.3) a complete solution of the HJD.

4. The HJD determines only the q and the t dependences of the solution F2 D
F2.q; Np; t/ without making any statement about the momenta Npj. However, we
intend to have the Npj D const having therewith the freedom to identify the
integration constants with the new momenta:

Npj D ˛j ; j D 1; 2; : : : ; S : (3.4)

Following these considerations we now construct a method of solution:

(a) Formulate H D H.q;p; t/, insert pj D .@F2=@qj/, and establish the HJD.
(b) Solve the HJD for F2,

F2 D S .q1; : : : ; qS; t j ˛1; : : : ; ˛S/ ; (3.5)

and identify the integration constants with the new momenta:

Npj D ˛j ; j D 1; : : : ; S : (3.6)



178 3 Hamilton-Jacobi Theory

(c) Take

Nqj D @S .q; t j˛/
@˛j

D Nqj .q; t j˛/ D ˇj ; j D 1; : : : ; S : (3.7)

These are S equations which are to be solved for the coordinates q1; : : : ; qS:

qj D qj .t jˇ1; : : : ; ˇS; ˛1; : : : ; ˛S/ D qj .t jˇ;˛/ ; j D 1; : : : ; S :
(3.8)

(d) Calculate the momenta from

pj D @S.q; t j˛/
@qj

D pj.q; t j˛/ ; j D 1; : : : ; S (3.9)

and insert therein the coordinates from (3.8):

pj D pj .t jˇ1; : : : ; ˇS; ˛1; : : : ; ˛S/ D pj.t jˇ;˛/ ; j D 1; : : : ; S :
(3.10)

(e) The initial conditions

q.0/j D qj .t D t0/ I p.0/j D pj .t D t0/ ; j D 1; : : : ; S

yield with (3.9):

˛ D ˛
�
t0Ip.0/; q.0/

�
: (3.11)

With (3.8) ˇ, too, is then determined:

ˇ D ˇ
�
t0Ip.0/; q.0/

�
: (3.12)

(f) The so derived ˛ and ˇ are inserted into (3.8) and (3.10) so that the
mechanical problem is solved.

Finally we want to discuss the

physical meaning of the HJD solution.

Until now F2 D S.q; Np; t/ is merely the generating function of a special canonical
transformation which takes care for H � 0 and consequently for the desired
transition

� � .q;p/ S�! � � .ˇ;˛/ D const : (3.13)
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The total temporal derivative of S makes the physical meaning clearer:

dF2
dt
D

SX

j D 1

�
@F2
@qj
Pqj C @F2

@ Npj

PNpj

�
C @F2

@t
:

For F2 D S it particularly holds:

@F2
@qj
D pj I PNpj � 0 I

@F2
@t
D H � H D �H :

Hence it remains:

dS

dt
D

SX

j D 1

pj Pqj � H D L : (3.14)

S is therefore just the action functional that we got to know in connection with the
Hamilton’s principle,

S D
Z

L dtC const ; (3.15)

and that for a system which at the time t D t0 fulfills the initial conditions q D q.0/,
p D p.0/. Equation (3.15) serves here of course only as the physical interpretation of
the HJD solution. It can not at all be used for the determination of S. For such a case
q.t/ and Pq.t/ have to be known for the actual motion of the system in order to be
inserted into L. But then the problem would already have been completely solved.

It is interesting to remember that previously we could derive the Lagrange- and
Hamilton-equations of motion from Hamilton’s principle by the use of the definite
action integral

t2Z

t1

L dt :

These equations, together with an initial phase �.0/, fix the total phase trajectory
�.t/:

�.0/ � �q.0/; p.0/
�

R t2
t1

L dt
�! �.t/ � .q.t/; p.t// ; (3.16)

The solution of the HJD, in contrast, is the indefinite action integral (3.15) which
now can be interpreted practically as the generating function of the transformation
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reverse to (3.16):

�.t/ � .q.t/; p.t//
R

L dt C const�! � � .ˇ;˛/ : (3.17)

3.2 The Method of Solution

By the simple example of the linear harmonic oscillator we want to illustrate the
Hamilton-Jacobi procedure which was developed in the last section. To make it as
clear as possible we strictly proceed according to the formal scheme presented there.
To (a):
The Hamilton function of the harmonic oscillator reads (2.35):

H D p2

2m
C 1

2
m!20q2 : (3.18)

We seek a canonical transformation which makes H D 0. Let the corresponding
generating function be of the form

F2 D F2 .q; Np; t/ D S .q; Np; t/ (3.19)

with

p D @S

@q
: (3.20)

According to (3.2) one then finds the Hamilton-Jacobi differential equation:

1

2m

�
@S

@q

�2
C 1

2
m!20q2 C @S

@t
D 0 : (3.21)

To (b):
We choose the following solution approach:

S .q; Np; t/ D W .q j Np/C V .t j Np/ : (3.22)

Insertion into the HJD yields:

1

2m

�
@W

@q

�2
C 1

2
m!20q2 D �@V

@t
:

The solution approach (‘ansatz’) (3.22), which one calls a ‘separation approach
(ansatz)’, allows to split the HJD into a part that depends only on q (left side)



3.2 The Method of Solution 181

and another one that depends only on t (right side). Therefore each side of the
equation must necessarily be constant separately equal to the same. The original
partial differential equation decomposes therewith into two ordinary differential
equations:

1

2m

�
dW

dq

�2
C 1

2
m!20q2 D ˛ ; (3.23)

dV

dt
D �˛ : (3.24)

Equation (3.24) yields immediately

V.t/ D �˛ tC V0 ; (3.25)

where the additive constant V0 is unimportant. From (3.23) we get:

�
dW

dq

�2
D m2!20

�
2˛

m!20
� q2

�
: (3.26)

The generating function we are looking for is therewith:

S.q; ˛; t/ D m!0

Z
dq

s
2˛

m!20
� q2 � ˛ t : (3.27)

The indefinite integral delivers the unessential constant C D ˛S C 1. It is a standard-
integral so that the integration can be carried out without any difficulty:

S.q; ˛; t/ D m!0

2

41
2

q

s
2˛

m!20
� q2 C ˛

m!20
arcsin

0

@ q

s
m!20
2j˛j

1

A

3

5 � ˛ tC C

(3.28)

At this stage, however, the integration is in principle not necessary because later we
will be interested only in the partial derivatives of S.

We identify the constant ˛ with the new momentum:

Np D ˛ : (3.29)

To (c):
We take:

Nq D @S

@˛

ŠD const D ˇ : (3.30)
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This means according to (3.27):

ˇ D 1

!0

Z
dq

�
2˛

m!20
� q2

	�1=2
� t :

This is again a standard-integral:

ˇ C t D 1

!0
arcsin

�
q!0

r
m

2˛

�
: (3.31)

The solution for q reads:

q D 1

!0

r
2˛

m
sin .!0.tC ˇ// D q.t jˇ; ˛/ : (3.32)

The new coordinate Nq D ˇ obviously has the dimension ‘time’.
To (d):
We now use (3.9) and (3.26),

p D @S

@q
D dW

dq
D m!0

s
2˛

m!20
� q2 ; (3.33)

and insert (3.32):

p D p2 ˛m cos .!0.tC ˇ// D p.t jˇ; ˛/ : (3.34)

To (e):
We want to be precise and therefore choose the following concrete initial conditions:

t D t0 D 0 W p.0/ D 0 I q.0/ D q0 ¤ 0 : (3.35)

Therewith we can fix by (3.33) the constant ˛:

˛ D 1

2
m!20q20 : (3.36)

Since the system possesses at the inversion point .p.0/ D 0/, point of maximum
amplitude q0, only potential energy we can conclude

˛ D E D total energy :

We now insert (3.35) and (3.36) into (3.31):

ˇ D 1

!0
arcsin.1/ D �

2!0
: (3.37)
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The action function S thus generates a canonical transformation that leads to a
generalized momentum Np D ˛ which is identical to the total energy E and to a
generalized coordinate Nq D ˇ which represents a (constant) time. Energy and time
are obviously canonically conjugate variables!
To (f):
Eventually we get the complete solution by inserting ˛ and ˇ into (3.32) and (3.34),
respectively:

q.t/ D
s

2E

m!20
cos!0t I p.t/ D �p2E m sin!0t : (3.38)

That is the well-known result for the harmonic oscillator!
Let us add to our discussion still two further considerations:

1. The solution of the HJD is a generating function of the type F2.q; Np; t/. Let
us demonstrate by use of the above results the construction of another type of
generating function, for instance F1 D F1.q; Nq; t/. At first we have with (3.29)
and (3.32):

Np D ˛ D 1

2
m!20q2 sin�2 .!0 .tC Nq// ŠD �@F1

@Nq : (3.39)

This we insert into (3.34):

p D m!0 q cot .!0 .tC Nq// ŠD @F1
@q

: (3.40)

A first integration of (3.40) yields:

F1 .q; Nq; t/ D 1

2
m!0 q2 cot .!0 .tC Nq//C f1 .Nq; t/ : (3.41)

We differentiate this expression partially with respect to Nq and compare the result
with (3.39). Then it follows necessarily:

@f1
@Nq D 0 :

Furthermore, F1 has to fulfill the HJD (3.2):

�@F1
@t
D 1

2m

�
@F1
@q

�2
C 1

2
m!20q2 :



184 3 Hamilton-Jacobi Theory

This means with (3.40) and (3.41),

�@f1
@t
C

1
2

m!20q2

sin2 .!0 .tC Nq//
D 1

2
m!20q2

�
cot2 .!0 .tC Nq//C 1

�
;

which can be satisfied again only by

@f1
@t
D 0

Except for an inessential additive constant we are therefore left with the
generating function:

F1 .q; Nq; t/ D 1

2
m!0q

2 cot .!0 .tC Nq// : (3.42)

Except for the time dependence we got to know this expression already in
Eq. (2.182) as the generating function of a canonical transformation for the
harmonic oscillator.

2. We had realized in (3.15) that the solution of the HJD is identical to the indefinite
action integral. Let us check this statement for the just discussed harmonic
oscillator. With (3.33) in (3.27) it holds at first:

S.q; ˛; t/ D
Z

dq p� ˛t :

We insert (3.38):

S.q; ˛; t/ D 2E
Z

dt sin2 !0t � E t ; .˛ D E/ : (3.43)

On the other hand, the oscillator-trajectory (3.38) yields the Lagrangian:

L D T � V D p2

2m
� 1
2

m!20q2 D E
�
sin2 !0t � cos2 !0t

� D 2E sin2 !0t � E :

Therewith it follows from (3.43) the expected result:

S D
Z

L dtC C :
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3.3 Hamilton’s Characteristic Function

The integration of the Hamilton-Jacobi differential equation of the harmonic
oscillator in the last section became possible first of all by the use of a so-called
separation approach (ansatz) (3.22) which separates the q- and t-dependences
additively from each other. Such a separation is then always reasonable when the
old Hamilton function does not explicitly contain time:

@H

@t
D 0 ” H W integral of motion :

Then the HJD (3.2) reads:

H

�
q;
@S

@q1
; : : : ;

@S

@qS

�
C @S

@t
D 0 : (3.44)

The total time-dependence is now due to the second summand so that the ansatz

S.q; Np; t/ D W .q j Np/ � E t (3.45)

seems to be obvious by which the time-dependence is completely eliminated from
the HJD (3.44):

H

�
q;
@W

@q1
; : : : ;

@W

@qS

�
D E : (3.46)

In normal cases, i.e. for scleronomic constraints, the constant E is just the total
energy of the system. The function W.q j Np/ is called

Hamilton’s characteristic function

E is of course via W dependent on the new momenta Npj D ˛j:

E D E.˛1; : : : ; ˛S/ : (3.47)

The canonical transformation generated by the function S from (3.45) is then given
by

Nqj D @W

@˛j
� @E

@˛j
t I pj D @W

@qj
(3.48)

But one can consider W.q j Np/ also on its own as the generating function of a
canonical transformation (in the narrower sense), i.e. no longer only as part of
S.q; Np; t/. W is of the type F2 generating therewith the transformation

pj D @W

@qj
I Nqj D @W

@Npj
I H D H : (3.49)
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Here we presume

@H

@t
D 0 ” H D E D const (3.50)

We demand from the generating function W that it leads to

all Nqj cyclic ” all Npj D ˛j D const (3.51)

That corresponds to the solution procedure 2. presented at the beginning of this
chapter. From (3.50) then simply by insertion:

H

�
q1; : : : ; qS;

@W

@q1
; : : : ;

@W

@qS

�
D E .˛1; : : : ; ˛S/ ; (3.52)

i.e. in spite of the now somewhat different objective (3.51), the same differential
equation as in (3.46) follows.

Since by construction

H D H D E . Np/ D H . Np/ (3.53)

the canonical equations of motion can be trivially integrated:

PNqj D
@H

@Npj
D @E

@˛j
D !j ; (3.54)

Nqj.t/ D !j tC ˇj D @W

@Npj
: (3.55)

For a clarification we want to sketch here in detail, as in the last section, the
respective method of solution:

(a) We set up the HJD in the form (3.52)!
(b) We look for the complete solution for W with parameters ˛1; : : : ; ˛S:

W D W .q1; : : : ; qS; ˛1; : : : ; ˛S/ : (3.56)

(c) We identify:

Npj D ˛j ; j D 1; 2; : : : ; S : (3.57)

(d) We resolve the HJD (3.52) for

pj D @W

@qj
D pj .q; ˛1; : : : ; ˛S/ (3.58)

or differentiate the solution W accordingly.
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(e) We set

E D E.˛/ (3.59)

and calculate:

!j D @E

@˛j
; j D 1; 2; : : : ; S : (3.60)

Equation (3.59) is arranged according to aspects of pure convenience. We
clarify this by two plausible examples:

1. With the ansatz

E.˛/ D
SX

j D 1

˛2j

2m
(3.61)

the respective transformation leads because of

H D H D
SX

j D 1

Np2j
2m

(3.62)

to the Hamilton function H of a system of free mass points. The interaction
present in H is thus transformed away and the solutions of the problem
then according to (3.55) have the known form of those for the force-free
movement of mass points:

Nqj.t/ D ˛j

m
tC ˇj : (3.63)

By the way, this corresponds to the procedure 1. as indicated at the beginning
of this chapter.

2. One might also opt to take simply

E .˛1; : : : ; ˛S/ D ˛1 : (3.64)

One identifies then the new momentum Np1 with ˛1 and the other S � 1
momenta Npj with the S � 1 essential integration constants of the complete
solution W of the HJD (3.52). Then we have

!j D ıj1 (3.65)

and the new coordinates are:

Nq1 D tC ˇ1 I Nqj D ˇj ; j D 2; : : : ; S : (3.66)
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(f) We solve

Nqj D !j.˛/ tC ˇj D @W

@˛j
.q;˛/ (3.67)

for

qj D qj.t;˛;ˇ/ (3.68)

and insert the solution then into (3.58):

pj D pj.t;˛;ˇ/ : (3.69)

(g) With the initial conditions

q.0/j D qj.t D t0/ I p.0/j D pj.t D t0/

it follows from (3.58):

˛ D ˛
�
p.0/; q.0/

�
: (3.70)

With (3.68) and (3.69) one further finds:

ˇ D ˇ
�
p.0/; q.0/

�
: (3.71)

By insertion of ˛ and ˇ into (3.68) and (3.69) the problem is completely solved.

Let us reflect at the end a bit more on the physical meaning of Hamilton’s
characteristic function W. We had seen in (3.15) that the solution of the full
HJD (3.2) is identical to the indefinite action integral

R
L dt. We can ascribe to W,

too, a similar interpretation.

W D W .q; Np/ H) dW

dt
D

SX

j D 1

�
@W

@qj
Pqj C @W

@Npj

PNpj

�
D

SX

j D 1

pj Pqj : (3.72)

Thus W corresponds to the action A that was used in (2.65) to formulate the principle
of least action:

W D
Z SX

j D 1

pj Pqj dt D
Z SX

j D 1

pj dqj : (3.73)

A is the definite and W the indefinite integral.
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3.4 Separation of the Variables

We have to ask ourselves whether the Hamilton-Jacobi procedure in the form up
to now presented is helpful at all. In the end one replaces 2S ordinary (Hamilton’s)
differential equations by a partial differential equation. The latter is in general very
much more difficult to solve. The method represents therefore a mighty auxiliary
means, second to none of the other procedures, only if the HJD can be separated.
What this means we will make plain to us in this section.

We presume that H is not explicitly time-dependent and therefore represents an
integral of motion. The canonical transformation is carried out by the characteristic
function W.q; Np/ studied in the last section. We can then apply the Hamilton-Jacobi
differential equation in the form of (3.52):

H

�
q1; : : : ; qS;

@W

@q1
; : : : ;

@W

@qS

�
D E : (3.74)

Let us assume that q1 and @W=@q1 appear in H only as

f

�
q1;

@W

@q1

�
;

an expression that does not contain any other qj; @W=@qj; j > 1 so that (3.74) can
be cast into the form:

H

�
q2; : : : ; qS;

@W

@q2
; : : : ;

@W

@qS
; f

�
q1;

@W

@q1

��
D E : (3.75)

Then the following ansatz suggests itself:

W.q; Np/ D W .q2; : : : ; qS; Np/CW1 .q1; Np/ : (3.76)

Insertion into (3.75) yields:

H

 
q2; : : : ; qS;

@W

@q2
; : : : ;

@W

@qS
; f

�
q1;

@W1

@q1

�!
D E : (3.77)

Let us assume that we had already found the solution for W. Then (3.77) must
become an identity after the insertion of (3.76), i.e. must be fulfilled for arbitrary q1.
A change of the coordinate q1 should not become noticeable with respect to H. Since
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q1, however, appears only in f , f itself must be constant:

f

�
q1;

dW1

dq1

�
D C1 ; (3.78)

H

 
q2; : : : ; qS;

@W

@q2
; : : : ;

@W

@qS
IC1

!
D E : (3.79)

Since the new momenta Npj are by construction all constant, W1 is only dependent
on q1. We can therefore replace in (3.78) the partial by the corresponding total
derivative. What did we achieve with (3.78) and (3.79)? Equation (3.78) is an
ordinary differential equation for W1 while (3.79) is still a partial differential
equation but with a smaller by one number of independent variables.

In certain cases all the coordinates can successively be separated in this manner
and in the generalization of (3.76) the full solution of the HJD may be approached
as follows:

W D
SX

j D 1

Wj
�
qjI ˛1; : : : ; ˛S

�
: (3.80)

Therewith the HJD is then decomposed into S ordinary differential equations of the
form

Hj

�
qj;

dWj

dqj
; ˛1; : : : ; ˛S

�
D ˛j (3.81)

One says in such a case that the HJD is separable in the coordinates fqjg. Each
equation in (3.81) contains only one coordinate qj and the corresponding derivative
of Wj with respect to qj; and should therefore be normally simply solvable for
dWj=dqj. The subsequent integration should be possible. Whether or not a separation
of the form (3.80) is indeed possible depends very strongly on the choice of the
generalized coordinates qj, though, and of course also, on the type of the Hamilton
function. If one succeeds, for instance, to find the coordinates for which the various
terms of the Hamilton function can additively be grouped as follows,

H.q;p/ D
SX

j D 1

Hj.qj; pj/ ;

then the ansatz (3.80) apparently leads directly to (3.81).
For the special case where only one coordinate is non-cyclic a separation is

always possible:

q1 non-cyclic
qj; j>1 cyclic

	
H) pj D @W

@qj
D ˛j D const ; j > 1 : (3.82)
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Which ansatz in such a case is now advisable? By construction W is a transformation
on exclusively cyclic coordinates. q2; : : : ; qS are, however, already cyclic. For these
W should therefore be the identity transformation (2.176):

F2 .q; Np/ D
SX

j D 2

qj Npj : (3.83)

With Npj D ˛j the following ansatz for W then suggests itself:

W D W1.q1/C
SX

j D 2

˛jqj : (3.84)

The HJD (3.74) therewith becomes an ordinary differential equation of first order
for W1:

H

�
q1;

dW1

dq1
; ˛2; : : : ; ˛S

�
D E : (3.85)

Equation (3.84) can naturally be generalized insofar as that such an ansatz is not
only applied for the case where all the coordinates qj except one are cyclic but, very
generally, each cyclic coordinate qi is separable by an ansatz of the form

W D W
�
qj; j ¤ i; Np

�C ˛iqi : (3.86)

For non-cyclic coordinates there does not exist a general procedure for sepa-
ration. Nevertheless, the Hamilton-Jacobi method may be considered as the most
successful means for finding general solutions of equations of motion. That will
finally be demonstrated by two examples:
(1) Planar motion of a particle in a central field

‘Central field’ means V.r/ D V.r/. As generalized coordinates the spherical
coordinates offer themselves, where, in addition, the planar motion provides # D
const. Thus there are left

q1 D r I q2 D ' : (3.87)

So the Hamilton function (2.45) reads:

H D 1

2m

 
p2r C

p2'
r2

!
C V.r/ : (3.88)

' is obviously cyclic and therewith

p' D ˛' D const .orbital angular momentum/ : (3.89)
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According to (3.86) it recommends itself as ansatz for the characteristic function W:

W D W1.r/C ˛' ' : (3.90)

Since for this example @H=@t D 0 and furthermore the constraint (motion in a
plane) is scleronomic means the HJD to be solved reads:

1

2m

(�
@W

@r

�2
C 1

r2

�
@W

@'

�2)
C V.r/ D 1

2m

(�
dW1

dr

�2
C ˛2'

r2

)
C V.r/ D E :

(3.91)

From that it follows immediately:

dW1

dr
D
s

2m .E � V.r// � ˛
2
'

r2
: (3.92)

The characteristic function W is then:

W D
Z

dr

s

2m .E � V.r// � ˛
2
'

r2
C ˛' ' : (3.93)

Thereby, in the first summand, we have of course an indefinite integral.
As in (3.65) we now choose

E D ˛1 ” !j D ıj1 ; (3.94)

getting therewith from the equations of transformation (3.66) and (3.67):

tC ˇ1 D Nq1 D @W

@˛1
D @W

@E
D
Z

dr
ms

2m .E � V.r// � ˛
2
'

r2

: (3.95)

The reversal then yields r D r.tI ˛;ˇ/.

ˇ2 D Nq2 D @W

@˛2
D @W

@˛'
D �

Z
dr

˛'

r2s

2m .E � V.r// � ˛
2
'

r2

C ' : (3.96)

We further take

ˇ2 D '0 ; x D 1

r
; ˛' D L
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and have then found with

' D '0 �
Z

dxr
2m

L2
.E � V.1=x//� x2

(3.97)

after inversion the known orbital equation r D r.'/ of the central-force problem. L
is identical to the orbital angular momentum. The results (3.95) and (3.97) needed
very much more computational effort in the Newton’s mechanics ((2.256), (2.257),
Vol. 1). Initial conditions fix ˇ1; '0; E; L.
(2) Particle in the gravitational field

The Hamilton function H D T C V D E is known:

H D 1

2m

�
p2x C p2y C p2z

�Cm g z : (3.98)

x and y are cyclic and therewith the corresponding momenta constant:

px D ˛x D const I py D ˛y D const : (3.99)

A suitable approach for the characteristic function W is then:

W D W1.z/C ˛x xC ˛y y : (3.100)

Therewith the HJD reads:

1

2m

(�
dW1

dz

�2
C ˛2x C ˛2y

)
C m g z D E :

It follows then immediately:

W1.z/ D
Z

dz
q
2m.E � m g z/� ˛2x � ˛2y

D � 1

3m2g

˚
2m.E � m g z/� ˛2x � ˛2y

�3=2 C C :

For the characteristic function we thus have:

W D � 1

3m2g

˚
2m.E � m g z/� ˛2x � ˛2y

�3=2 C ˛x xC ˛y y : (3.101)
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We take again E D ˛1 getting then according to (3.66):

Nq1 D tC ˇ1 D @W

@E
D � 1

m g

˚
2m.E � m g z/� ˛2x � ˛2y

�1=2
;

Nq2 D ˇ2 D @W

@˛x
D xC ˛x

m2g

˚
2m.E � m g z/� ˛2x � ˛2y

�1=2
;

Nq3 D ˇ3 D @W

@˛y
D yC ˛y

m2g

˚
2m.E � m g z/� ˛2x � ˛2y

�1=2
:

From the first line we derive:

z.t/ D �1
2

g .tC ˇ1/2 C
2mE � �˛2x C ˛2y

�

2m2g
: (3.102)

Inserting the first line into the two other lines yields furtheron:

x.t/ D ˇ2 C ˛x

m
.t C ˇ1/ ; (3.103)

y.t/ D ˇ3 C ˛y

m
.tC ˇ1/ : (3.104)

The rest is settled by initial conditions. We choose for t D 0 W

x.0/ D y.0/ D z.0/ D 0 I
px.0/ D p0 I py.0/ D pz.0/ D 0 : (3.105)

With these conditions we deduce:

px D @W

@x
D ˛x D const D p0 ;

py D @W

@y
D ˛y D const D 0 ;

pz D @W

@z
D ˚2m.E �m g z/� ˛2x � ˛2y

�1=2

D ˚
2m.E �m g z/� p20

�1=2
;

pz.0/ D 0 H) E D 1

2m
p20 :

With Eqs. (3.102) up to (3.105) we still have:

ˇ1 D ˇ2 D ˇ3 D 0 :
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This yields the well-known solution:

z.t/ D �1
2

g t2 I x.t/ D p0
m

t I y.t/ � 0 : (3.106)

3.5 The Action and Angle Variable

3.5.1 Periodic Systems

We now discuss an important modification of the Hamilton-Jacobi method that is
especially designed for

periodic systems

for which we are often more interested in the characteristic frequencies of the
movement than, for instance, in the actual shape of the trajectory.

What do we understand by ‘periodic’?
In case of only one degree of freedom .S D 1/ the answer is immediately clear.

After a certain time � , the ‘period’, the system again reaches its initial state. The
phase space is the two-dimensional .p; q/-plane. In this context one distinguishes
two types of periodicities:

(1) Libration

The phase trajectory is a closed curve:

q.tC �/ D q.t/ ;

p.tC �/ D p.t/ : (3.107)

q and p are periodic with the same frequency. That is typical for oscillating systems
such as pendulum, spring etc., which move between two states of vanishing kinetic
energy (Figs. 3.1 and 3.2).

Fig. 3.1 Simple example of a
libration
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Fig. 3.2 The linear harmonic
oscillator as an example of a
periodic system (libration)

Fig. 3.3 Simple example of a
rotation

Example: ‘Linear Harmonic Oscillator’
The phase trajectory is an ellipse as we have discussed as example to (2.99):

1 D p2

2m E
C q2

2E

m!20

; H D E :

(2) Rotation

p is periodic in this case, too,

p.tC �/ D p.t/ ; (3.108)

but q is not. In fact, the coordinate changes within the period � by a constant value
q0:

q.tC �/ D q.t/C q0 : (3.109)

The phase trajectory in this case is open where, however, p is a periodic function of
q (Fig. 3.3).

Example: ‘Axial Rotation of a Rigid Body’

q D ' I q0 D 2� :

Sometimes both types of periodic movement can be observed for one and the same
system, as for instance for the pendulum (Fig. 3.4). We have derived the Hamilton
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Fig. 3.4 The pendulum as an
example of a periodic system
with both libration and
rotation

function of the pendulum as Eq. (2.33) in Sect. 2.2.2:

H D p2'
2ml2

� m g l cos' D E :

As generalized momentum we found:

p' D m l2 P' D ˙
p
2m l2.E Cm g l cos'/ :

p' is the angular momentum of the pendulum and therefore a real quantity. The
radicand must therefore be positive:

cos' � � E

m g l
:

(a) E > m g l: All angles ' are possible. The pendulum overturns. It is about a
rotation.

(b) �m g l < E < m g l: Only a limited region of the angle Œ�'0; '0� with cos'0 D
�.E=m g l/ is allowed. In this case it obviously is about a libration.

For systems with S > 1 degrees of freedom the motion is called periodic if
the projection of the phase trajectory onto each .qj; pj/-plane is periodic in the
above sense. Thereby it is not required that all .qj; pj/ sets are periodic with the
same frequency so that the path line in the 2S-dimensional phase space is then not
necessarily a simple periodic curve. If the quotients of the two frequencies one each
of the projected trajectories are not rational numbers then even an open trajectory
arises. In such a case one speaks of a conditional periodic motion.

For systems for which the Hamilton-Jacobi differential equation can be com-
pletely separated, so that (3.80) as well as (3.81) hold, the periodicity can easily be
checked.

W D
SX

j D 1

Wj
�
qjI˛

�
;

pj D @W

@qj
D dWj

dqj
D pj

�
qjI ˛

�
: (3.110)
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In such a case the projected trajectories are independent of each other. If pj.qj/

represents for each j D 1; : : : ; S a closed curve or a periodic function as given
in (3.108) and (3.109) then the movement of the system as a whole is periodic.

3.5.2 The Action and Angle Variable

The considerations of this section are concerned exclusively with periodic systems.
Let us first summarize the essentials of the Hamilton-Jacobi method:

We look for a canonical transformation

.q;p/ �! . Nq; Np/

so that we get:

Npj D const 8j ;

Nqj D
�

const 8j” S .q; Np; t/ ;
cyclic 8j” W .q; Np/ :

The generating functions S and W are here the solutions of the HJD with the
constants of integration ˛1; : : : ; ˛S, which are identified with the new momenta:

Npj D ˛j 8j :

One could have just as well equated arbitrary functions of the ˛j with the Npj. The

‘action variables’ Jj

are rather special functions of the ˛j:

Jj D
I

pj dqj ; j D 1; 2; : : : ; S : (3.111)

The integration is extended over a full period of the libration and rotation, as the
case may be (Fig. 3.5).

We presume as (3.110) a separable system and can then write for (3.111):

Jj D
I

dWj
�
qjI˛

�

dqj
dqj D Jj.˛/ : (3.112)

Jj thus represents the increase of the generating function W, experienced by W per
qj-circle. In (3.112) qj is nothing but a variable of integration so that the action
variable Jj, too, does indeed depend only on the constants ˛1; ˛2; : : : ; ˛S being
therefore appropriate to be chosen as new momenta Npj. Since the pairs of variables
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Fig. 3.5 To the interpretation of the action variable of a libration (left) and a rotation (right)

Fig. 3.6 Action variable for the special case of a cyclic coordinate

.qj; pj/ are independent of each other, the same holds of course also for the Jj. The
reversal of (3.112) yields:

˛j D ˛j .J1; : : : ; JS/ ; j D 1; 2; : : : ; S : (3.113)

Therewith, the Hamilton’s characteristic function W becomes dependent on the
J1; : : : ; JS:

W D W .q1; : : : ; qSI J1; : : : ; JS/ : (3.114)

Because of (3.64)

H D H D ˛1.J/ (3.115)

also the new Hamilton function is then a function exclusively of the Jj:

H D H .J1; : : : ; JS/ : (3.116)

A special case is given by

qj cyclic ” pj D const

in which case the phase trajectory runs parallel to the qj axis (Fig. 3.6). To this
limiting case of a periodic motion a period qj0 can be ascribed at random. Since for
rotations qj represents mostly an angle, one agrees upon qj0 D 2� . This means for
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the related action variable:

Jj D 2� pj ; if qj cyclic : (3.117)

We now come to the

‘angle variables’ !j

which can be introduced as the conjugate variables to the Jj:

Npj D Jj ” Nqj D !j ; j D 1; 2; : : : ; S :

By construction (see (3.116)) all Nqj are cyclic. The !j can be derived from W:

!j D @W

@Jj
; j D 1; 2; : : : ; S : (3.118)

With Hamilton’s equation of motion for PNqj it follows:

P!j D @

@Jj
H.J/ D �j .J1; : : : ; JS/ D const : (3.119)

The integration is then trivial:

!j D �j tC ˇj ; j D 1; 2; : : : ; S : (3.120)

This corresponds to the procedure presented in Sect. 3.3. But the special advantage
of the method does not consist in that. This becomes clear when one inspects the
physical meaning of the action and angle variables. For this purpose let us calculate
the change of !i owing to the change of the coordinate qj over a full cycle:

�j!i D
I

j

d!i D
I
@!i

@qj
dqj D

I
@2W

@qj@Ji
dqj

D @

@Ji

I
@W

@qj
dqj D @

@Ji
Jj :

Thus !i undergoes a change only for qj D qi, and then just by the value 1:

�j!i D ıij : (3.121)

This means with (3.120), if �i is the period of qi:

�i!i D �i �i D 1 : (3.122)
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We therefore have:

�i D 1

�i
W frequency of the periodic motion belonging to qi :

Herein we find the actual importance of the method of action and angle variables
because it allows for a determination of the frequencies of periodic motions without
being obliged to work out the full solution for the motion of the system. One can
directly calculate the frequencies � without a back transformation to the actual
coordinates. Our standard example the

linear harmonic oscillator

will again serve to illustrate the method.
The phase trajectory is an ellipse, the system is thus periodic. By

H D H D 1

2m
p2 C 1

2
m!20q2 D ˛1

we have:

p D ˙m!0

s
2˛1

m!20
� q2 D dW

dq
:

The zeros of the radicand define the reversal points:

q˙ D ˙
s
2˛1

m!20
:

Because of Pq D @H
@p it is p > 0 on the way q� �! qC but p < 0 on the way back

qC �! q�. We can calculate therewith the action variable:

J D
I

p dq D 2
qCZ

q�

p dq D 2m!0

qCZ

q�

s
2˛1

m!20
� q2 dq

D 2m!0

2

64
1

2
q

s
2˛1

m!20
� q2 C ˛1

m!20
arcsin

q
q

2˛1
m!20

3

75

ˇ̌
ˇ̌
ˇ̌
ˇ

qC

q�

D 2�

!0
˛1 :

Hence the new Hamilton function takes the simple form:

H D ˛1 D !0

2�
J : (3.123)
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For the frequency � of the periodic motion, then follows the expected result:

� D @H

@J
D 1

2�
!0 : (3.124)

3.5.3 The Kepler Problem

The just discussed example of the harmonic oscillator served only as an illustration.
The full usefulness of the method manifests itself more noticeably in connection
with the rather sophisticated problems of the planetary and atomic mechanics.

The Kepler problem is defined by the potential

V.r/ D �k

r
.k > 0/ (3.125)

Concrete realizations are for instance:

k D � m M ” gravitation ((2.261), Vol. 1) ;

k D q1 q2
4� "0

” Coulomb ((2.258), Vol. 1)
(3.126)

Because of (3.125) spherical coordinates are appropriate. The Hamilton function
then reads according to (2.45):

H D 1

2m

�
p2r C

1

r2
p2# C

1

r2 sin2 #
p2'

�
� k

r
: (3.127)

For the generalized momenta we found already in (2.44):

pr D m Pr ; (3.128)

p# D m r2 P# ; (3.129)

p' D m r2 sin2 # P' D Lz D const : (3.130)

' is cyclic. The z-component of the angular momentum p' D Lz is therefore a
constant of motion. We have as HJD:

1

2m

"�
@W

@r

�2
C 1

r2

�
@W

@#

�2
C 1

r2 sin2 #

�
@W

@'

�2#
� k

r
D ˛1 D E : (3.131)

The problem is separable:

W D Wr.r/CW#.#/CW'.'/ : (3.132)
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Since ' is cyclic we choose for W' the identity transformation:

W' D ˛' ' ; (3.133)

˛' D p' D Lz D const : (3.134)

We properly rearrange the HJD (3.131):

1

2m
r2
�

dWr

dr

�2
� k r � E r2 D � 1

2m

"�
dW#

d#

�2
C ˛2'

sin2 #

#
:

The left-hand side does depend only on r, the right-hand side only on # . Conse-
quently, each side itself must already be equal to the same constant:

�
dW#

d#

�2
C ˛2'

sin2 #
D ˛2# D const (3.135)

�
dWr

dr

�2
C ˛2#

r2
D 2m

�
EC k

r

�
(3.136)

˛1; ˛# ; ˛' are the three required constants of integration. One easily sees that ˛2# is
just the square of the total angular momentum:

Lx D y pz � z py D �m r2
�

sin ' P# C sin# cos# cos' P'


;

Ly D z px � x pz D m r2
�

cos' P# � sin# cos# sin ' P'


;

Lz D x py � y px D m r2 sin2 # P' :

Therewith we have:

jLj2 D L2x C L2y C L2z D m2r4
� P#2 C sin2 # P'2



D p2# C

p2'
sin2 #

: (3.137)

The comparison with (3.135) shows:

˛2# D jLj2 : (3.138)

˛1 (3.131), ˛' (3.134) and ˛# (3.138) are thus constants of integration with
fundamental physical meanings.
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Let us now concentrate on the calculation of the action variables:

J' D
I

p' d' D
I

dW'

d'
d' D ˛'

I
d' ; (3.139)

J# D
I

p# d# D
I

dW#

d#
d# D

I s

˛2# �
˛2'

sin2 #
d# ; (3.140)

Jr D
I

pr dr D
I

dWr

dr
dr D

I s

2m

�
EC k

r

�
� ˛

2
#

r2
dr : (3.141)

We want to evaluate these expressions step by step and very detailedly. J' turns out
to be simple:

J' D 2� ˛' : (3.142)

When calculating J# it is to be borne in mind that p# as a ‘physical’ momentum
must be real.

p# D ˛'

r
a2 � 1

sin2 #
;

a2 D ˛2#
˛2'
� 1 :

Therefore there are reversal points (Fig. 3.7) with

sin#1;2 D jaj�1 � 1 :

In (3.140) we have therefore to take for a certain path the positive root and for the
back path the negative one:

#1 �! #2 W p# D m r2 P# > 0 W C
q

a2 � 1

sin2 #
;

#2 �! #1 W p# < 0 W �
q

a2 � 1

sin2 #
:

Fig. 3.7 Specification of the
limits of integration for the
determination of the action
variable J# of the
Kepler problem
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It remains then to be calculated:

J# D 2˛'

#2Z

#1

C
r

a2 � 1

sin2 #
d# D 2i˛'

#2Z

#1

� d#

sin#
;

� D
p
1 � a2 sin2 # :

In a good table of integrals we find:

#2Z

#1

�

sin#
d# D



�1
2

ln.�C cos#/C 1

2
ln.� � cos#/C a ln.a cos# C�/

�ˇ̌
ˇ̌
#2

#1

:

One verifies by differentiation that the right-hand side is indeed the antiderivative of
the integrand�= sin# . With

#2 D � � #1 I cos#1 D � cos#2 > 0 I �.#1/ D �.#2/ D 0 ;

and

ln.cos#2/ D ln.� cos#1/ D ln.cos#1/˙ i�

it further follows:

#2Z

#1

�

sin#
d# D ˙i�.a � 1/

In any case J# must be positive, therefore the lower sign is valid here:

J# D 2�
�
˛# � ˛'

�
: (3.143)

Notice that the angle-dependent parts J' , J# are still completely independent of the
type of the central field. The actual form (3.125) does not yet enter anywhere our
calculation. That happens only for the still to be determined Jr-integral.

However, before doing that let us derive the result (3.143) once more in another,
maybe somewhat more elegant manner. We exploit from the beginning that the
motion occurs in a fixed orbital plane since Lz D const where the z direction is not
at all fixed by any means. Therefore we have even to conclude that L D const. But
then we can calculate the increment dW of the generating function in two different
sets of coordinates.

1. Spherical coordinates .r; #; '/:

p' D Lz D ˛' D const :
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2. Planar polar coordinates of the orbital plane .�; '/:

p' D Lz D jLj D ˛# D const :

In the last step we still used (3.138):

dW

dt
D
X

j

0

B@
@W

@qj
Pqj C @W

@Npj

PNpj„ƒ‚…
D 0

1

CA D
X

j

pj Pq :

By this relation we can write for dW:

dW D pr drC p' d' C p# d# D p� d�C p' d' :

Since the radial parts are of course the same in both systems of coordinates we
further have:

p# d# D p' d' � p' d' D ˛# d' � ˛' d' :

Therewith the action variable J# is found as in (3.143):

J# D
I

p# d# D ˛#
I

d' � ˛'
I

d' D 2�.˛# � ˛'/ :

Finally we are left with the task of calculating the Jr integral. For this we have
according to (3.141)–(3.143):

Jr D
I s

2m

�
EC k

r

�
�
�
J' C J#

�2

4�2r2
dr

D
I p

2m .E � Veff.r// dr ; (3.144)

Veff.r/ D �k

r
C
�
J' C J#

�2

8�2 m r2
: (3.145)

For bound states, which we want to presume here (periodic motion!), it must hold:

E < 0

The reversal points r1;2 are found as zeros of the radicand in (3.144):

0 < r1 � r � r2 < 1 :
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Again we have to take into consideration that

pr D mPr
(
> 0 for r1 �! r2 ;

< 0 for r2 �! r1 :
(3.146)

Therefore one has to choose in (3.144) on one way the positive and on the way
back the negative root. The direct integration turns out to be rather cumbersome.
It is therefore recommendable to perform a so-called ‘complex integration’. This
technique will be presented in detail in Sect. 4.4 of Vol. 3. Unfortunately and
inconsistent with the general idea of this basic course, we have here to anticipate
a bit. The reader who is not yet familiar with the complex integration should skip
the following discussion until Eq. (3.150).

We choose a path of integration in the complex r plane as indicated in Fig. 3.8.
Since the values of the function are positive on the way there .r1 ! r2/ and negative
on the way back .r2 ! r1/ the integration contains both branches of the two-valued
square root function. In the region on the left-hand side of the directed integration
path (Fig. 3.8, lower part), however, the function is unique. Only at the cutting line
between the two branching points r1; r2 the function values have a discontinuity. If
we contract the integration path onto the r1 r2 line we get by use of Cauchy’s residue
theorem ((4.386), Vol. 3):

Jr D 2� i � (residues of the poles to the left of the directed integration path)

Fig. 3.8 Illustration of the
path of integration for the
calculation of the action
variable Jr of the Kepler
problem
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The integrand in (3.144) has poles in the interesting region at r D 0 and r D 1:

Jr D 2� i .a�1.0/C a�1.1// (3.147)

(a�1 W symbol for the residue). Let us first inspect the pole at r D 0. There the
integrand behaves like

�
.1C x/�1=2 D 1 � .1=2/xC 0.x2/�:

1

r

q
�˛2#

s
1 � 2m

˛2#
.E r2 C k r/ D i˛#

r



1 � m

˛2#
.E r2 C k r/CO.r2/

�
:

The residue thus is:

a�1.0/ D i˛# : (3.148)

In order to discuss the point r D1 we transform:

r D 1

u
H) dr D � 1

u2
du :

r ! 1 thus means u ! 0. The integrand in (3.144) now reads:

� 1
u2
p
2mE

s

1C k

E
u � ˛

2
#u2

2mE
D � 1

u2
p
2mE

�
1C k

2E
u � ˛

2
#u2

4mE
CO.u2/

�
:

The residue is the coefficient of the .1=u/ term:

a�1.1/ D �
p
2m E

1

2

k

E
D � i

2
k

r
2m

�E
: (3.149)

We insert (3.148) and (3.149) into (3.147) getting therewith:

Jr D �2� ˛# C � k

r
2m

�E
: (3.150)

Because ˛# D .1=2�/.J# C J'/ we can also write:

Jr D �.J# C J'/C � k

r
2m

�E
: (3.151)

Since H D E D ˛1 we can now express the new Hamilton function by the action
variables:

H
�
Jr; J# ; J'

� D � 2�2m k2
�
Jr C J# C J'

�2 : (3.152)
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The three frequencies of the periodic motion,

�j D @H

@Jj
; j D r; #; ' ;

are obviously all the same:

� D 4�2m k2
�
Jr C J# C J'

�3 : (3.153)

One says that the motion is completely degenerate and simple-periodic. For a
potential of the form (3.125) the trajectory is closed for negative total energy E.
After a period the angles #; ' and the radius r retain again their original initial
values. Notice that the degeneracy with respect to the angles # and ' is already a
characteristic of all central fields. This one realizes when inspecting (3.144) where
E is connected with J'; J# in the form .J' C J#/ without that we had to specify
V.r/ D V.r/.

We are still able to derive with (3.151) and (3.153) an interesting secondary
result:

�
Jr C J# C J'

�3 D �3k3 .2m/3=2

.�E/3=2
;

� D 1

�
D � k

r
m

�2E3
: (3.154)

The period of the motion is therefore related to the semi-major axis ((2.270), Vol. 1),

a D � k

2E
;

in the following manner:

�2 � a3 : (3.155)

This relationship we got to know as the Kepler’s third law ((2.278), Vol. 1).

3.5.4 Degeneracy

In Sect. 3.5.1 we have referred to the movement of a system in the 2S-dimensional
phase space as periodic if the projection of the trajectory onto each of the
S .qj; pj/-planes is periodic in terms of libration and rotation, respectively, where
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the frequencies

�j D 1

�j
; j D 1; 2; : : : ; S (3.156)

can certainly be distinct. The phase trajectory is called simple-periodic in the case
when after a sufficiently long time the phase comes back to its initial value. This
requires, however, that the frequencies �j are rational multiples of each other. If not
then the phase trajectory is conditional-periodic.

If the frequencies �j are indeed rational multiples of each other,

p1�1 D p2�2 I p2�2 D p3�3 I : : : I pS�1�S�1 D pS�S I pi 2 N ;

then there obviously exist .S � 1/ independent relations of the type:

SX

j D 1

n.l/j �j D 0 ; l D 1; 2; : : : ; S � 1 ; n.l/j 2 Z : (3.157)

One speaks of an ‘m-fold degenerate’ system if there are m � .S� 1/ relations of
this kind. The motion is ‘completely degenerate’ if m D S�1. That is, for instance,
the case if, as for the Kepler problem, all �j are equal. A simple-periodic, i.e. closed
phase trajectory is therefore always completely degenerate.

In the case of an m-fold degeneracy, the m degeneracy conditions can be used in
order to describe the periodic motion by S�m instead of S frequencies. That can be
done as follows: One performs a canonical transformation

.!; J/ �! �
!; J

�
(3.158)

with the generating function

F2
�
!; J

� D
mX

l D 1

SX

j D 1

Jl n.l/j !j C
SX

l D m C 1

Jl !l : (3.159)

The second summand corresponds to the identity transformation (2.176):

!l D @F2
@Jl
D
(PS

j D 1 n.l/j !j for l D 1; : : : ;m ;

!l for l D mC 1; : : : ; S : (3.160)

For the new frequencies we then have:

�l D P!l D
(PS

j D 1 n.l/j �j D 0 for l D 1; : : : ;m ;

�l for l D mC 1; : : : ; S : (3.161)



3.5 The Action and Angle Variable 211

After the transformation there are left only S�m independent, non-zero, distinct fre-
quencies. In the first line in (3.161) we find just the m degeneracy conditions (3.157).
Since, on the other hand, it must generally hold

� j D @H

@Jj
;

the Hamilton function can always be written such that it depends only on S � m
action variables:

H D H
�
JmC1; : : : ; JS

�
: (3.162)

For the Kepler motion S D 3, and there are on hand two degeneracy conditions:

�' � �# D 0 I �# � �r D 0 : (3.163)

That leads according to (3.159) to the following generating function:

F2 D
�
!' � !#

�
J1 C .!# � !r/ J2 C !r J3 : (3.164)

After (3.160) the next step yields:

!1 D !' � !# I !2 D !# � !r I !3 D !r : (3.165)

Because of (3.163) that means for the frequencies:

�1 D �2 D 0 I �3 D �r : (3.166)

The generating function F2 fixes also the new action variables, because

Jj D @F2
@!j

leads with (3.164) to:

J' D J1 I J# D �J1 C J2 I Jr D �J2 C J3 :

Resolved for Jj it is:

J1 D J' I J2 D J' C J# I J3 D J' C J# C Jr : (3.167)
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The transformed Hamilton function H eventually depends only on one action
variable (3.152):

H D �2�
2m k2

J
2

3

D H
�
J3
�
; (3.168)

� D @H

@J3
D 4�2m k2

J
3

3

: (3.169)

3.5.5 Bohr-Sommerfeld Atom Theory

The perhaps most spectacular success of the method of action and angle variables
represents Bohr’s atom theory whose quantum hypothesis can be formulated most
simply via action variables.

Definition 3.5.1 J is an ‘eigen-action variable’ if the corresponding frequency is
non-zero and non-degenerate

In the example of the last section J3 is such an eigen-action variable. In classical
mechanics there is no restriction on the range of values for J. Experimental
observations in the framework of atomic physics, however, require the setting up
of the classically not provable

quantum hypothesis

If J is an eigen-action variable then the actual motion of the system is permitted
only on those orbits for which holds:

J D n h ; (3.170)

n 2 N, h D 6;626176 � 10�34 J s (Planck’s quantum of action).
Let us consider as an example the

hydrogen atom” Kepler problem with k D e2

4� "0
.

According to (3.168) the energy of the shell electron amounts to:

E D � 2�2m e4

.4� "0/
2 J

2

3

: (3.171)
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It is quantized because J3 is an eigen-action variable.

En D �ER

n2
; n D 1; 2; : : : ; (3.172)

ER D 2�2m e4

.4� "0/
2 h2
D 13;61 eV ; Rydberg energy : (3.173)

n is the so-called principal quantum number. Equation (3.172) corresponds
exactly to the correct quantum mechanical result.

3.6 The Transition to Wave (Quantum) Mechanics

The application of classical mechanics to atomic problems has led to spectacular
successes by the Bohr-Sommerfeld atom theory, it however leaves behind also
serious discrepancies between theory and experiment. In particular it is based
on hypotheses which appear rather arbitrary. What we need is something like a
generalization of the macroscopically correct classical mechanics in order to be able
to describe also microscopic (atomic) systems. This problem was already touched
upon briefly in Sect. 2.4.5 where we inferred from the classical Poisson bracket that
there should exist a super-ordinate mathematical structure which permits besides
classical mechanics further realizations such as for instance, the quantum mechanics
in the form of the so-called matrix mechanics (Heisenberg). We will now exploit
an analogy reflection on optics in order to interpret classical mechanics as a
limiting case of quantum mechanics in the form of the so-called wave mechanics
(Schrödinger):
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3.6.1 The Wave Equation of Classical Mechanics

The following considerations are valid for systems with

H D T C V D E D const ; (3.174)

i.e., the Hamilton function is not explicitly time-dependent, and there are no rheo-
nomic constraints. According to (3.45) we can then separate the time-dependence
of the action function:

S .q; Np; t/ D W .q; Np/ � E t : (3.175)

Let us remember: S is a generating function of the type F2, which takes care for
H D 0 and therewith leads to Np D const; Nq D const. The characteristic function
W.q; Np/ is time-independent, and because of Np D ˛ D const we can conclude:

W D const ” fixed plane in the configuration space :

The planes S D const, on the other hand, are moving in the configuration space,
shifting themselves in the course of time t over the fixed W-planes (Fig. 3.9). They
build within the configuration space propagating wave fronts of the so-called

waves of action

We ask ourselves:

1. What is the velocity of the propagating S-planes?
2. What is the physical meaning of the motion of the waves of action?

For simplicity we assume that the considered system consists of one single particle,

q D .x; y; z/ ; (3.176)

Fig. 3.9 Action-wave fronts
in the configuration space
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so that the configuration space coincides with the three-dimensional visual space.
The

wave velocity u

is the propagation-velocity of a certain point of the front of the wave of action. Since
the area of constant S will change its shape as a function of time, the wave velocity
will in general not be the same for all points of the wave front. Let us consider two
neighboring points in the configuration space and event space, respectively:

A D .x; y; z/ at time t ;
B D .xC dx; yC dy; zC dz/ at time tC dt :

From A to B the action function changes by dS:

dS D @S

@t
dtC @S

@x
dxC @S

@y
dyC @S

@z
dz

D �E dtCrW � dr : (3.177)

How fast have we to move from A to B so that the observed action S does not
change, i.e. in order to co-move with the wave of action? From the requirement

dS
ŠD 0 D �E dtC .rW � u/ dt

we have with (3.177):

rW � u D E : (3.178)

u is oriented perpendicularly to the wave front. rW stands perpendicularly on the
area W D const being therewith parallel or antiparallel to u:

juj D jEj
jrWj : (3.179)

W is a generating function of the type F2. According to the general transformation
formulas (2.161) it therefore holds in the present case for the momentum of the
particle p:

p D rW : (3.180)

The particle momentum and therewith the total trajectory of the particle are also
taking course perpendicularly to the wave front S D const and W D const,
respectively. The velocity of the wave of action and the velocity of the particle
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are thus (anti-)parallel! For the magnitudes we have

u D jEj
jrWj D

jEj
p
D jEj

m v

and therewith:

u v D jEj
m
D const : (3.181)

Particle and action-wave velocity are therefore oriented (anti-)parallelly where their
magnitudes are inversely proportional to each other.
Limiting cases:

E D T H) u D v

2
; (3.182)

E D V H) u D 1; da v D 0 : (3.183)

We come to a first conclusion: There exist obviously two types of motion which turn
out to be completely equivalent for the description of the system:

(1) actual particle motion,
(2) wave of action.

Here we have a first hint of the

particle-wave dualism

which will become fundamentally important for quantum mechanics. In order to
further deepen this aspect we reformulate the familiar Hamilton-Jacobi differential
equation for the particle motion into a wave equation for the wave of action:

u D jEj
p
D jEjp

2m T
D jEjp

2m.E � V/
: (3.184)

The HJD reads

1

2m

"�
@W

@x

�2
C
�
@W

@y

�2
C
�
@W

@z

�2#
C V D E (3.185)

or in short:

jrWj2 D 2m.E � V/ : (3.186)
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Comparison with (3.184) yields:

jrWj2 D E2

u2
: (3.187)

This is of course in accordance with (3.179). Waves of action and particle movement
both are therefore solutions of the HJD. Because of

rW D rS and � E D @S

@t

we obtain from (3.187) the
wave equation of classical mechanics

.rS/2 D 1

u2

�
@S

@t

�2
: (3.188)

What did we achieve? The wave equation (3.188) is surely a very adequate
formulation of classical mechanics, at least for the description of atomic systems.
However, the wave equation is not in all respects exact!

We therefore seek a new theory which has a broader region of validity than the
classical mechanics and which contains classical mechanics as a certain limiting
case. Such a theory of course can not be derived from our hitherto existing
knowledge about classical mechanics.

We are in fact forced to construct an as plausible as possible approach whose
justification must be taken in the final analysis by a comparison of its results with
experimental data.

Thereby the above formulation of classical mechanics in the form of a wave
equation will substantially help us. Namely, a rather analogous problem has been
managed in optics.
Idea:

Is the classical mechanics in the framework of the to be found super-ordinate
theory possibly something like the geometrical optics in relation to the general
theory of light waves?

For many optical problems one does not need to apply the full electromagnetic
theory of light waves. Sometimes the auxiliary concept of

‘light rays’ Š paths of ‘light particles’

is sufficient in order to reach reasonable results with quasi-geometrical considera-
tions. However, to this approach limits are set, namely, for instance, when diffraction
phenomena become relevant. Then light has to be considered as wave motion for
which planes of constant phase are propagating with the velocity u through the
space. We will investigate in the following the indicated analogy in some more
detail.
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3.6.2 Insertion About Light Waves

Today one knows that ‘light’ is an electromagnetic process which is described by
the
scalar wave equation of optics

r2' � n2

c2
@2'

@t2
D 0 (3.189)

Here:

' W scalar electromagnetic potential ;
c D 3 � 1010 cm s�1 W speed of light in vacuum ;

n W index of refraction, generally n D n.r/ ;
u D c=n W speed of light in matter :

We are looking for simple solutions of the wave equation. For this purpose first we
assume

n D const

Then the following ansatz (plane wave)

' D '0ei.k � r �!t/ (3.190)

obviously solves the wave equation provided:

k D ! n

c
D 2� �

u
D 2�

	
(3.191)

Thereby we have exploited

! D 2� � I u D � 	 (3.192)

The direction of k (wave vector) may define the z-axis. Let k0 be the wave vector in
vacuum .n D 1/:

k D n k0 I ! D c k0 : (3.193)

Therewith we can write the solution (3.190) also as follows:

' D '0 ei k0.nz � ct/ : (3.194)
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In the next step we now assume

n D n.r/ ¤ const :

The space-dependence of the index of refraction gives rise to perturbations (diffrac-
tions) of the light wave; the plane wave (3.194) is no longer solution of (3.189).
Strictly speaking, even the wave equation has no longer the form of (3.189). In
order that this form of the wave equation remains valid to a good approximation,
though, and the solution ' at least still possesses the structure (3.194), it is required
that:

jrn.r/j 	 n.r/
	

This characterizes the limiting case of geometrical optics (Sect. 4.3.16, Vol. 3):

n.r/ is only weakly space-dependent so that n � const may be assumed
over regions of the extension	

But then ' also should still have approximately a form as in (3.194). One therefore
tries the following ansatz:

' D exp .A.r/C i k0 .L.r/ � c t// : (3.195)

The first term fixes the amplitude to be of course constant for n D const. One calls

L.r/ W ‘light (optical) path’, ‘eikonal’

where L.r/ D nz if n D const. We now insert the ansatz (3.195) into the wave
equation (3.189):

r' D ' Œr .A.r/C i k0L.r//� ;

r2' D '
h
.r .A.r/C i k0L.r///

2 Cr2 .A.r/C i k0L.r//
i

D '
h
.r A.r//2 � k20 .r L.r//2 C 2i k0 .r A.r// � .r L.r//

Cr2A.r/C i k0r2L.r/
�
:

The wave equation (3.189) hence yields:

0 D i k0
�r2L.r/C 2 .r A.r// � .r L.r//

�

C
h
r2A.r/C .r A.r//2 � k20 .r L.r//2 C n2k20

i
:
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Real and imaginary parts of this equation must already separately vanish:

r2L.r/C 2 .r A.r// � .r L.r// D 0 ; (3.196)

r2A.r/C .r A.r//2 C k20
�

n2 � .r L.r//2


D 0 : (3.197)

Up to now everything is still exact. The presumptions of the

geometrical optics

can now be formulated as follows:

A.r/ W weakly r-dependent ;

	0 	 changes in the medium :

	0 is the wave length of the light in vacuum. Because of k20 D 4�2=	20 the last term
in (3.197) dominates. That yields to a good approximation the so-called
eikonal equation of geometrical optics

.r L.r//2 D n2 D c2

u2
: (3.198)

The solutions define planes of constant phases .L D const/, i.e. wave fronts. The
ray trajectories are running perpendicularly to these wave fronts.

The eikonal equation (3.198) is formally identical to the wave equation (3.188)
of classical mechanics. Between classical mechanics and geometrical optics an
analogy exists insofar as the classical mechanics comes to the same statements
about the action function S and W, respectively, as the geometrical optics about
the eikonal L.

3.6.3 The Ansatz of Wave Mechanics

The considerations of the last section suggest the following attempt for a general-
ization of classical mechanics:

classical mechanics” geometrical-optical limiting case of a wave mechanics

We extend the hitherto theory in the sense that we now interpret the

particle motion as wave motion.

We can draw the final justification of this idea of course, if at all, only from a later
comparison between theory and experiment. We use, at first only tentatively, the
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following assignments:

.rW/2 D E2

u2
” .rL/2 D n2 (3.199)

W ” L (3.200)

jEj
u
D
p
2m.E � V/ ” n D c

u
: (3.201)

That does not at all mean that the single terms were exactly equal. They only
correspond to each other. For instance, they might be proportional to each other.

If the particle can really be interpreted as a wave then it should also be possible
to ascribe to it a wave length 	 and a frequency �. After (3.200) W is analogous to
L. But then

S D W � E t

should correspond in (3.195) to the total phase:

k0.L � c t/

That means E � c k0 and therewith

E � � :

The proportionality factor must have the dimension of an ‘action’:

E D h � : (3.202)

This is the energy spectrum of the particle wave. Furtheron it holds:

u D 	� H) 	 D u

�
D E=p

E=h
:

The wave length of the particle can therefore be fixed as

	 D h

p
(3.203)

The experiment impressively confirms these relations provided

h: Planck’s quantum of action (3.170).

We see that energy and momentum of the particle define frequency and wave length
of the particle wave. Just in this sense the particle motion can be interpreted as
wave motion.
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We now want to upgrade classical mechanics to a super-ordinate wave mechanics
in a similar manner as the geometrical optics has been supplemented to the wave
optics. The wave optics is reached by exactly solving the wave equation (3.189).
With

' � e�i!t (3.204)

we get a time-independent wave equation

r2' C !2

u2
' D r2' C 4�2

	2
' D 0 : (3.205)

' describes in a certain sense the state of the light wave. Analogously the state of
the particle may be described by the

wave function  D  .r; t/
where a more deepened physical interpretation may be left over to the field of
quantum mechanics. It follows with

4�2

	2
D 4�2

h2
p2 D 1

„2 2m.E � V/ I „ D h

2�

by analogy from the wave equation (3.205)

� C 2m

„2 .E � V/ D 0 : (3.206)

This is the famous

time-independent Schrödinger equation

which fundamentally dominates the whole of quantum mechanics.
We still multiply, eventually, Eq. (3.206) by „2=2m:

�
� „

2

2m
�C V.r/

�
 .r; t/ D E .r; t/ : (3.207)

This is an eigen-value equation (see (4.64), Vol. 1) of the so-called
Hamilton operator

H D � „
2

2m
�C V.r/ ; (3.208)

H .r; t/ D E .r; t/ : (3.209)

This operator arises from the classical Hamilton function H.q; p/ by replacing
the dynamical variables q; p by corresponding operators. Obviously it holds the
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following assignment (‘position representation’):

Oq H) r I Op H) „
i
r : (3.210)

We close this section with a schematic summary of our conclusions:

3.7 Exercises

Exercise 3.7.1 Formulate the Hamilton-Jacobi differential equation for a force-free
particle and solve it for the characteristic function W.

Exercise 3.7.2 Find the Hamilton-Jacobi differential equation for the one-
dimensional movement of a particle of mass m in the potential

V.x/ D �b x

and solve the problem with the initial conditions

x.t D 0/ D x0 I Px.t D 0/ D v0 :

Exercise 3.7.3 A particle of mass m performs a one-dimensional movement in the
potential:

V.q/ D c e�q c; � 2 R

Calculate q.t/ and p.t/ by use of the Hamilton-Jacobi method. Apply as character-
istic function W.q; Op/ a generating function of type F2.q; Op/.
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Exercise 3.7.4 A particle of mass m executes a two-dimensional movement in the
xy-plane in the potential

V.x; y/ D c.x � y/ .c D const/

Solve the Hamilton-Jacobi differential equation for the characteristic function
W.x; y; Opx; Opy/. Use the initial conditions:

x.t D 0/ D y.t D 0/ D 0
Px.t D 0/ D v0x > 0

Py.t D 0/ D 0 :

Exercise 3.7.5 Write down the Hamilton-Jacobi differential equation for the two-
dimensional harmonic oscillator in Cartesian coordinates. Find x.t/ and y.t/!

Exercise 3.7.6 Given the linear harmonic oscillator:

H D p2

2m
C 1

2
m!20q2

Perform in the framework of the Hamilton-Jacobi theory a canonical transformation
in such a manner that the ‘new’ coordinate Oq and the ‘new’ momentum Op are
constants of motion:

.q; p/
S�! .˛; ˇ/ :

The generating function S may be of the type F3 D F3.p; Oq; t/. Calculate q.t/ and
p.t/ with the initial conditions:

t D 0 W p.0/ D p0 D 0 ; q.0/ D q0 > 0 :

How is the generating function S related to the action functional of Hamilton’s
principle?

Exercise 3.7.7 Apply the method of the action and angle variables to determine the
frequencies of a three-dimensional harmonic oscillator with pairwise different force
constants.

Exercise 3.7.8 Consider the three-dimensional harmonic oscillator of the last
exercise, but now for the case that all the force constants are equal. Transform the
result of the last exercise to eigen-action variables!
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3.8 Self-examination Questions

To Section 3.1

1. Which canonical transformations do you know that makes the integration of the
Hamilton equations of motion quasi-trivial?

2. How does the Hamilton-Jacobi differential equation read? Sketch briefly its
motivation and its derivation!

3. Which type of differential equation does the HJD represent? Which function shall
be determined with the HJD?

4. How is the solution of the HJD classified? Give reasons for this classification!
5. Outline the procedure of solution by which problems of classical mechanics can

be treated via the HJD!

To Section 3.2

1. What is the Hamilton-Jacobi differential equation of the linear harmonic oscilla-
tor?

2. What is to be understood by separation ansatz (approach)? Find such an ansatz
for the HJD of the harmonic oscillator!

3. Of which type must the generating function be which fulfills the HJD?

To Section 3.3

1. When is a separation ansatz for the HJD-solution, which separates q- and t-
dependencies, reasonable?

2. How is Hamilton’s characteristic function defined?
3. One can consider Hamilton’s characteristic function as a generating function of

a canonical transformation. Of which type is this transformation? What shall be
provided by it?

4. Under which conditions does the transformation, caused by Hamilton’s charac-
teristic function, lead to the Hamilton function of a system of free mass points?

5. Describe the physical meaning of Hamilton’s characteristic function!

To Section 3.4

1. When is the Hamilton-Jacobi method useful at all?
2. Under which conditions does a separation ansatz for the solution of the HJD

appear reasonable?
3. When do we denote the HJD as separable in the coordinates qj?
4. Which form does the Hamilton’s characteristic function have in the case of cyclic

coordinates?

To Section 3.5

1. What is to be understood by a libration, what by a rotation?
2. When is the movement of the pendulum a libration and when is it a rotation?
3. When is a multi-dimensional movement .S > 1/ periodic? When is it called

conditional-periodic?
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4. How can one check easily the periodicity in case of completely separable
systems?

5. How are the action and angle variables defined?
6. Outline the advantages of the action and angle variables! For which systems is

the method applicable?
7. How does the angle variable !i change when the coordinate qj runs through its

full period?
8. How does the Hamilton function of the linear harmonic oscillator look like after

transformation on action variables?
9. How does one calculate the frequency �i of the periodic qi-movement?

10. Find the HJD for the Kepler problem!
11. Show that the Kepler problem is completely separable by the use of spherical

coordinates!
12. Do the action variables J' , J# of the Kepler problem depend in any way on the

type of the central field?
13. How does the transformed Hamilton function H of the Kepler problem depend

on the action variables Jr, J# , J'?
14. When is the Kepler movement called completely degenerate?
15. When is a motion called simple-periodic and when conditional-periodic?
16. What does an ‘m-fold degenerate system’ mean?
17. When is a simple-periodic phase trajectory completely degenerate?
18. How many independent frequencies are necessary to describe an m-fold

degenerate, S-dimensional trajectory?
19. What are the degeneracy conditions for the Kepler movement?
20. What is an eigen-action variable?
21. Formulate the quantum hypothesis!
22. Apply the quantum hypothesis to the motion of the electron in the hydrogen

atom!

To Section 3.6

1. Explain the term action wave!
2. What does one understand by the velocity u of the action wave?
3. Which direction does u have?
4. For a system that consists only of one single particle, what can you say about the

direction and magnitude of the particle velocity and the action wave velocity?
What does concretely hold when the total energy consists only of kinetic
energy?

5. Interpret the term particle-wave dualism in classical mechanics!
6. What do we consider as the wave equation of classical mechanics?
7. How does the scalar wave equation of the optics look like? What is its solution

in the case of a constant index of refraction?
8. Define the term ‘eikonal’!
9. List the assumptions which guarantee the validity of geometrical optics!

10. What is the ‘eikonal equation’ of geometrical optics?
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11. Discuss the analogy between the eikonal equation of geometrical optics and the
scalar wave equation of classical mechanics!

12. How can we ascribe frequency and wavelength to a ‘mechanical’ particle?
13. Which analogy-consideration can introduce the wave function of a particle?
14. What is the Schrödinger equation of a particle?
15. Which relation does exist between Hamilton function (classical mechanics) and

Hamilton operator (quantum mechanics)?



Appendix A
Solutions of the Exercises

Section 1.2.7

Solution 1.2.1 We follow Example (2) in Sect. 1.2.2. There we had derived as
general solution:

r.t/ D A e!t C B e�!t

The initial conditions supply for A and B the equations of determination:

r0 D AC B I �r0! D .A � B/! :

This leads to A D 0 and B D r0. The solution thus reads:

r.t/ D r0 e�!t :

In this special case the bead is moving with decreasing velocity towards the center
of rotation, finally to come to rest there.

Solution 1.2.2

1. We calculate the constraint force, conveniently according to (1.112). The appli-
cation of cylindrical coordinates r; '; z appears reasonable. Transformation
formulas ((1.381), Vol. 1):

x D r cos' I y D r sin ' I z D z :

Constraints:

f1.r; t/ D z D 0
f2.r; t/ D ' � !t D 0 :

© Springer International Publishing Switzerland 2016
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Gradient expressed by cylindric coordinates ((1.388), Vol. 1):

r �
�
@

@r
;
1

r

@

@'
;
@

@z

�
D er

@

@r
C e'

1

r

@

@'
C ez

@

@z
:

That means:

rf1 D .0; 0; 1/ D ez I rf2 D
�
0;
1

r
; 0

�
D 1

r
e' :

Constraint force according to (1.112):

Z D
2X

�D 1

	�rf� D 	1ez C 	2 1
r

e' :

	1 and 	2 are at first undetermined Lagrange multipliers. Since in this example
no driving force is present (K � 0) we have according to (1.111) by use of
cylindric coordinates ((2.19), Vol. 1):

mRr D m
�Rr � r P'2� er C m .r R' C 2Pr P'/ e' C mRzez

ŠD Z :

The constraints lead to:

Rz D 0 I P' D ! I R' D 0 :

It remains to solve (component-by-component):

m
�Rr � r!2

� D 0

2mPr! D 	2
1

r

0 D 	1 :

Therewith the Lagrange multipliers are fixed:

	1 D 0 I 	2 D 2mrPr! :

The constraint force

Z D 2mPr! e'

therefore indeed fulfills the previous (Sect. 1.2.2) plausible assumption: Z ? er.
We now have the equation of motion (as previously),

Rr D r!2 ;
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with the general solution:

r.t/ D A e!t C B e�!t :

The given initial conditions lead to A D B D r0=2 and therewith:

r.t/ D r0
2

�
e!t C e�!t

� D r0 cosh.!t/ Õ Pr.t/ D r0 ! sinh.!t/ :

Thereby we have also determined the explicit time-dependence of the constraint
force:

Z.t/ D 2mr0 !
2 sinh.!t/ e' :

2. With (1.113) we calculate:

d

dt
.T C V/ D �	1 @f1

@t
� 	2 @f2

@t
D C2mrPr!2

D 2mr20!
3 cosh.!t/ sinh.!t/ :

Solution 1.2.3

1. Constraints:

z D 0 (scleronomic)

y � x tan!t D 0 (rheonomic) :

Both constraints are holonomic and therewith the number of degrees of freedom
S D 3 � 2 D 1. A proper generalized coordinate is of course the distance q D r
of the bead from the center of rotation.

2. With the transformation formulas

x D q cos!t I y D q sin!t

we have:

Px D Pq cos!t � q! sin!t

Py D Pq sin!tC q! cos!t

Kinetic energy:

T D m

2

�Px2 C Py2� D m

2

�Pq2 C q2!2
� D T.q; Pq/
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Potential energy:

V D m g y D mgq sin!t D V.q; t/

Lagrangian:

L D T � V D m

2

�Pq2 C q2!2
� � mgq sin!t

3. Equation of motion:

d

dt

@L

@Pq D mRq I @L

@q
D mq!2 � mg sin!t

to solve:

Rq � q!2 C g sin!t D 0

We start with the respective homogeneous equation:

Rq � q!2 D 0

General solution

q0.t/ D ˛e!t C ˇe�!t :

Ansatz for a special solution of the inhomogeneous equation:

qs.t/ D � sin!t .! ¤ 0/ :

Insertion into the equation of motion:

��!2 sin!t � !2� sin!tC g sin!t D 0
�2�!2 C g D 0 Õ � D g

2!2
:

Therewith we have the general solution of the inhomogeneous differential
equation:

q.t/ D ˛e!t C ˇe�!t C g

2!2
sin!t :

4. We use the given initial conditions:

q.t D 0/ D r0 Õ r0 D ˛ C ˇ
Pq.t D 0/ D 0 Õ !.˛ � ˇ/C g

2!
D 0
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Õ 2˛ D r0 � g

2!2

Õ ˛ D r0
2
� g

4!2
I ˇ D r0

2
C g

4!2

That yields the complete solution:

q.t/ D r0
2

�
e!t C e�!t

� � g

4!2

�
e!t � e�!t

�C g

2!2
sin!t :

We calculate the first derivative wit respect to the time

Pq.t/ D r0!

2

�
e!t � e�!t

� � g

4!

�
e!t C e�!t

�C g

2!
cos!t :

For large times it holds:

Pq.t/ t!1�!
�
1

2
r0! � g

4!

�
e!t :

The bead moves outwards if Pq.t!1/ > 0, i.e.

!2 >
g

2r0
:

5. The constraint is in principle rather difficult to be explicitly found. However,
in the co-rotating coordinate system it is about an effectively one-dimensional
problem:

mRr D �Fg C Fz :

Fg is the component of the gravitational force acting into the direction of the
wire:

Fg D mg sin!t :

Fz is the centrifugal force for which we generally have ((2.79), Vol. 1):

Fz D �m .! � .! � r// D �m
�
!.! � r/� r!2

� D mr!2 :

The last step is correct since ! and r are orthogonal to each other. If we insert
Fz D m!2r into the above equation of motion we find after eliminating the
mass m:

Rr � !2rC g sin!t D 0 :

That is identical to the Lagrange equation from part 3.
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Solution 1.2.4

1. Constraints:

' � !t D 0 I z � ˛�2 D 0 Õ S D 3 � 2 D 1 degrees of freedom :

2. Transformation formulas:

x D � cos' Õ Px D P� cos' � � P' sin '

y D � sin ' Õ Py D P� sin' C � P' cos'

z D ˛�2 Õ Pz D 2˛� P� :

Kinetic and potential energy:

T D 1

2
m
�Px2 C Py2 C Pz2�

D 1

2
m
� P�2 �cos2 ' C sin2 '

�C �2 P'2 �cos2 ' C sin2 '
�C 4˛2�2 P�2�

D 1

2
m
�
1C 4˛2�2� P�2 C 1

2
m�2!2

V D mgz D mg˛�2 :

Lagrangian:

L D T � V D 1

2
m
�
1C 4˛2�2� P�2 C 1

2
m
�
!2 � 2˛g

�
�2 :

3. Special case:

! Dp2˛g :

The Lagrangian simplifies to:

L D 1

2
m
�
1C 4˛2�2� P�2 :

Therewith we have:

@L

@ P� D m
�
1C 4˛2�2� P�

d

dt

@L

@ P� D m
��
1C 4˛2�2� R�C 8˛2� P�2�

@L

@�
D 4m˛2� P�2 :
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Equation of motion

�
1C 4˛2�2� R�C 4˛2� P�2 D 0 :

Multiplication by P� yields:

�
1C 4˛2�2� P� R�C 4˛2� P�3 D d

dt

�
1C 4˛2�2� P�2 ŠD 0 :

That means that .1C 4˛2�2/ P�2 represents an integral of motion.

Solution 1.2.5

1.

x D � cos' I y D � sin ' I z D z ;

Px D P� cos' � � P' sin ' I Py D P� sin' C � P' cos'

H) Px2 C Py2 D P�2 C �2 P'2 :

Lagrangian:

L D T � V D m

2

� P�2 C �2 P'2 C Pz2� � V0 ln
�

�0
:

2.

d

dt

@L

@ P� �
@L

@�
D 0 D m R� � m � P'2 C V0

�
;

d

dt

@L

@ P' �
@L

@'
D 0 D m �2 R' C 2m � P� P' ;

d

dt

@L

@Pz �
@L

@z
D 0 D m Rz :

3. ' and z are cyclicH)

p' D @L

@ P' D m �2 P' D const W z-component of the angular momentum ;

pz D @L

@Pz D m Pz D const W z-component of the (linear) momentum :

Solution 1.2.6

1. The kinetic energy

T D Ttrans C Trot ;
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is composed of a translational part (m: mass of the cylinder)

Ttrans D 1

2
m.R � r/2 P'2 ;

and a rotational part

Trot D 1

2
J
�
P' C P#


2
;

where

J D 1

2
m r2

is the moment of inertia of the cylinder. The rolling off condition reads:

R d' D r d#

H) P# D �R

r
P' :

The potential energy is:

V D m g.R � r/ .1 � cos'/ :

That yields the Lagrangian:

L D T � V

D 1

2
m.R � r/2 P'2 C 1

4
mr2

�
P' C P#


2 �m g.R � r/.1 � cos'/

D 1

2
m

 
.R � r/2 C 1

2
r2
�
1 � R

r

�2!
P'2 � m g.R� r/.1 � cos'/

D 3

4
m.R � r/2 P'2 C m g.R� r/ cos' � m g.R� r/ :

2. With

@L

@'
D �m g.R� r/ sin '

and

d

dt

@L

@ P' D
3

2
m.R � r/2 R'
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we have the equation of motion for ':

R' D �2
3

g

R � r
sin ' :

3. For small deflections ' 	 1 one can approach:

sin ' � '

H) R' D �2
3

g

R � r
' :

With

! D
r
2

3

g

R � r

the general solution is then

'.t/ D a cos!t C b sin!t ;

where a and b are fixed by initial conditions.

Solution 1.2.7

1. Cylindrical coordinates .r; '; z/ appear to be obviously convenient.
Constraint:

tan ˛ D r

z
” z D r cot˛

Degrees of freedom:

S D 3 � 1 D 2

Generalized coordinates:

q1 D r I q2 D '

Transformation formulas (Fig. A.1):

x D r cos'

y D r sin'

z D r cot˛
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Fig. A.1

2. Lagrangian:

Px D Pr cos' � r P' sin '

Py D Pr sin ' C r P' cos'

Pz D Pr cot˛

H) Px2 C Py2 C Pz2 D Pr2 cos2 ' C r2 P'2 sin2 ' � 2Prr P' cos' sin ' C Pr2 sin2 '

Cr2 P'2 cos2 ' C 2Prr P' sin ' cos' C Pr2 cot2 ˛

H) T D m

2

˚�
1C cot2 ˛

� Pr2 C r2 P'2�

V D mgz D mgr cot˛

H) L D T � V D m

2

��
1C cot2 ˛

� Pr2 C r2 P'2� �mgr cot˛

Equations of motion:

d

dt

@L

@Pr D m
�
1C cot2 ˛

� Rr
@L

@r
D m

�
r P'2 � g cot˛

�

d

dt

@L

@ P' D m
�
r2 R' C 2rPr P'�
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@L

@'
D 0

H)
�
1C cot2 ˛

� Rr � r P'2 C g cot˛ D 0
r R' C 2Pr P' D 0 .r ¤ 0/

3. ' is cyclic

H) p' D @L

@ P' D mr2 P' D const

Angular-momentum conservation!

Solution 1.2.8

1. The constraints are:

z1 D z2 D 0

x1 D y2 D 0

x22 C y21 D l2

So the system possesses one degree of freedom. With ' as generalized coordinate
one finds the transformation formulas:

x2 D l cos'

y1 D l sin'

Kinetic energy:

T D m

2
Px22 C

m

2
Py21 D

m

2
l2 P'2 �sin2 ' C cos2 '

�

D 1

2
ml2 P'2

Potential energy:

V D mgy1 C 0 D mgl sin '

The Lagrangian is then:

L D T � V D 1

2
ml2 P'2 �mgl sin'
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2. The Lagrange equation of motion for ' reads:

0 D d

dt

@L

@ P' �
@L

@'
D ml2 R' C mgl cos'

H) 0 D R' C g

l
cos'

Multiplication by P' and integration:

R' P' C g

l
cos' P' D 0

H) 1

2
P'2 C g

l
sin ' D c D const

H) P' D
r
2
�

c � g

l
sin '




This can be further integrated after separation of variables:

dt D d'
r
2
�

c � g

l
sin '




H) t � t0 D
'Z

'0

d' 0
r
2
�

c � g

l
sin' 0




The constants of integration '0 D '.t0/ and c follow by exploiting the initial
conditions.
For ‘small angles’ the solution simplifies to:

t � t0 D � l

g

�r
2
�

c � g

l
'


�
r
2
�

c � g

l
'0


�
:

Solution 1.2.9 The motion can be decomposed into a translation of the center of
gravity S and a rotation of the rod around its center of gravity within the xy-plane.
For the latter we need the moment of inertia of the rod (see (4.11), Vol. 1):

J D
Z

d3r�.r/.n � r/2 :

n is the unit vector in the direction of the rotation axis. For the calculation of J we
use cylindrical coordinates N�, N', z. The z-axis may be identical to the axis of the rod.
Then the rotation axis will be the x-axis (or equivalently the y-axis):

.n � r/ D .1; 0; 0/ � . N� cos N'; N� sin N'; z/ D .0;�z; N� sin N'/ :
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It remains to calculate:

J D �0
RZ

0

N�d N�
2�Z

0

d N'
CLZ

�L

dz
�
z2 C N�2 sin2 N'�

Õ J D 1

3
ML2

 
1C 3

4

�
R

L

�2!
R�L�! 1

3
ML2 :

Kinetic energy:
Translation:

TS D 1

2
M
�Px2S C Py2S

� D 1

2
M
�
.�L P' sin'/2 C .L P' cos'/2

� D 1

2
ML2 P'2 :

Rotation:

TR D 1

2
J P'2 D 1

6
ML2

 
1C 3

4

�
R

L

�2!
P'2 R�L�! 1

6
ML2 P'2 :

Potential energy:

V D Mgy D MgL sin ' :

Lagrangian:

OL D T � V D 2

3
ML2 P'2 �MgL sin ' :

Lagrange equation of motion of the second kind:

d

dt

@ OL
@ P' D

4

3
ML2 R' I @ OL

@'
D �MgL cos'

Õ R' C 3

4

g

L
cos' D 0 :

With the substitution ' ! ' � �=2 we get a differential equation of the oscillation
type as for the mathematical pendulum (2.124, Vol.1). However, it does not come to
a real oscillation since the rod ‘is falling’ only from ' D �=2 to ' D 0 in order to
hit at ' D 0 the bottom of the earth. The solution of the equation of motion turns
out to be an elliptical integral.
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Solution 1.2.10

1. Constraints:

x2 C y2 C z2 � R2 D 0 W holonomic-scleronomic ;
y

x
� tan!t D 0 W holonomic-rheonomic :

2. q D #

x D R sin# cos!t ;

y D R sin# sin!t ;

z D R cos# :

T D m

2

�Px2 C Py2 C Pz2� D m

2

�
R2 sin2 # !2 C R2 P#2



:

The first summand results from the rotation of the ring, the second from the
motion on the ring.

V D m g R.1� cos#/ :

Lagrangian:

L D m

2
R2
�
!2 sin2 # C P#2



� m g R.1� cos#/ :

Equation of motion:

d

dt

@L

@ P# D m R2 R# ;

@L

@#
D m R2!2 sin# cos# �m g R sin#

H) R# C
� g

R
� !2 cos#



sin# D 0 :

3. # 	 1 W cos# � 1; sin# � # .
Therewith the equation of motion simplifies to

R# C !2# D 0 ;
!2 D g

R
� !2

with the general solution:

#.t/ D A cos!tC B sin!t :
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Solution 1.2.11

1. There are four holonomic-scleronomic constraints:

l D rC S ; (length of the thread) ;

z.m/ D 0 ;
x.M/ D 0 ;
y.M/ D 0 :

2. Because of the four constraints there remain 6� 4 D 2 degrees of freedom. Thus
we need two generalized coordinates

q1 D ' I q2 D S :

From Fig. 1.29 we read off the transformation formulas:

x.m/ D r cos' D .l � S/ cos' ;

y.m/ D r sin' D .l� S/ sin' ;

z.M/ D �S

H) Px.m/ D �PS cos' � .l � S/ P' sin' ;

Py.m/ D �PS sin ' C .l � S/ P' cos' ;

Pz.M/ D �PS :

Kinetic energy:

T D 1

2
m
�Px2.m/C Py2.m/�C 1

2
M Pz2.M/ D 1

2
.mCM/PS2 C 1

2
m.l � S/2 P'2 :

Potential energy:

V D M g z.M/ D �M g S :

Lagrangian:

L D T � V D 1

2
.mCM/PS2 C 1

2
m.l � S/2 P'2 CM g S :

We realize that the coordinate ' is cyclic. That means:

@L

@ P' D m.l� S/2 P' D const D J P' D L0 :
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This is the angular-momentum conservation law. The quantities

J D J.t/ and P' D P'.t/

change in course of time but the product remains constant.
For the second coordinate q2 D S we have the Lagrange equation of motion:

d

dt

@L

@PS D .mCM/RS ;

@L

@S
D �m.l� S/ P'2 CM g D � L20

m.l� S/3
CM g

H) .mCM/RSC L20
m.l� S/3

�M g D 0 :

We multiply this equation by PS and integrate:

1

2
.mCM/PS2 C L20

2m.l� S/2
�M g S D const :

But that is the energy conservation law:

T C V D E D const :

3. Equilibrium means:

RS D 0 :

But then it must also be valid:

L20
m.l� S/3

D M g H) S D S0 D const ;

!0 D P'0 D L0
m.l � S0/2

D
s

M g

m.l � S0/
:

We read off from the equation of motion:

P' > !0 ” RS < 0 ” Rz.M/ > 0 W M slips upwards !

P' < !0 ” RS > 0 ” Rz.M/ < 0 W M slips downwards !
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4. For the special case ! D P' D 0 the equation of motion yields:

RS D M

mCM
g :

This is just the delayed free-fall of the mass M.

Solution 1.2.12

1. Lagrangian:

L D T � V D 1

2
m l2 P'2 � m g.1� cos'/l ;

d

dt

@L

@ P' D m l2 R' I @L

@'
D �m g l sin ' �„ƒ‚…

small deflections

�m g l'

H) oscillation equation:

R' C g

l
' D 0 :

General solution:

'.t/ D A cos!0tC B sin!0t I !0 D
r

g

l
:

Special boundary condition '.0/ D 0:

'.t/ D '0 sin!0t :

2. The thread tension is the constraint force which guarantees the constant length
of the thread.

m Rr.t/ W force which acts on the mass m.

r.t/ D
�

x.t/
y.t/

�
D l

�
cos'.t/
sin '.t/

�

H) Pr.t/ D l P'.t/
�� sin'.t/

cos'.t/

�

H) mRr.t/ D m l R'.t/
�� sin '.t/

cos'.t/

�
C m l P'2.t/

�� cos'.t/
� sin '.t/

�

D m g ex � Z er :
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From that we determine the thread tension:

Z D Z er ;

Z D m g.ex � er/ �m Rr.t/ � er ;

ex D
�
1

0

�
I er D

�
cos'.t/
sin '.t/

�
H) ex � er D cos'.t/

H) Z D m g cos'.t/C m l P'2.t/ :

Small pendulum displacements: cos'.t/ � 1 � 1
2
'2.t/:

H) Z D m g

�
1 � 1

2
'20 sin2 !0t

�
Cm l!20'

2
0 cos2 !0t

D m g

�
1 � 1

2
'20 C

1

2
'20 cos2 !0tC '20 cos2 !0t

�

H) Z D m g

�
1 � 1

2
'20 C

3

2
'20 cos2 !0t

�
:

Solution 1.2.13

1. Constraints:

z D 0
x2 C y2 C z2 � l2 D 0

H) s D 3 � 2 D 1 degree of freedom
2. Transformation formulas:

x D r cos' y D r sin '
H) Px D Pr cos' � P'r sin' Py D Pr sin ' C P'r cos'

Kinetic energy:

T D m

2

�Px2 C Py2� D m

2

�Pr2 C r2 P'2�

Potential energy:

V D �mgx D �mgr cos'

Lagrangian:

L .r; '; Pr; P'/ D T � V D m

2

�Pr2 C r2 P'2�C mgr cos'
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3. Given:

q1 WD ' ; q2 WD r :

Generally it holds for m variables and p holonomic constraints:

mX

j D 1

aijdqj C bitdt D 0 i D 1; l : : : ; p

here: m D 2 variables (q1 D ', q2 D r) and p D 1 constraints:

q2 D r D l D const

H) dq2 D 0

H) a11 D 0 ; a12 D 1 ; b1t D 0

Generally we have for the constraint forces:

Qj D
pX

i D 1

	iaij

where the 	i are Lagrange multipliers. Here:

Q1 D Q' D 0 ; Q2 D Qr D 	

Therewith we get the equations of motion:

0 D Q' D d

dt

@L

@ P' �
@L

@'

D d

dt

�
mr2 P'�C mgr sin '

D mr2 R' C 2mrPr P' C mgr sin '

	 D Qr D d

dt

@L

@Pr �
@L

@r

D d

dt
.mPr/ �mr P'2 �mg cos'

D mRr � mr P'2 � mg cos'

H) 0 D R' C 2Pr
r
P' C g

r
sin '

Qr

m
D Rr � r P'2 � g cos'
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With r D l and Rr D 0 it follows for the thread tension Qr from the equation of
motion for r:

Qr D �m
�
l P'2 C g cos'

�

(see solution to Exercise 1.2.12, part (1))
4. With Pr D 0, the approach of small angles

' 	 1 H) sin ' � '

and the definition

!0 WD
r

g

l

we find the equation of motion:

R' C !20' D 0

The general solution is:

'.t/ D ˛ sin!0tC ˇ cos!0t

With the initial conditions

'.0/ D 0 H) ˇ D 0
P'.0/ D ˛!0 D

p
g=l '0 H) ˛ D '0

we have the solution:

'.t/ D '0 sin!0t

Solution 1.2.14

1. By use of the Cartesian coordinates of the block of mass M

X D s cos˛ ; Y D s sin ˛

and the coordinates of the mass m

x D s cos˛ C l sin ' ; y D s sin ˛ � l cos'
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the kinetic energy can be expressed by s and ':

T D M

2

� PX2 C PY2�C m

2

�Px2 C Py2�

D M

2

�Ps2 cos2 ˛ C Ps2 sin2 ˛
�C m

2

�Ps2 cos2 ˛ C 2lPs P' cos˛ cos' C l2 P'2 cos2 '

CPs2 sin2 ˛ C 2lPs P' sin ˛ sin ' C l2 P'2 sin2 '
�

With the addition theorem ((1.61), Vol. 1)

cos .˛ � ˇ/ D cos˛ cosˇ C sin ˛ sinˇ

it simplifies to:

T D 1

2
.M C m/Ps2 C m

2
l2 P'2 C mlPs P' cos .˛ � '/ :

With the potential energy

V D Mgs sin ˛ C mg .s sin ˛ � l cos'/ :

we then get for the Lagrangian:

L D T � V

D 1

2
.M C m/Ps2 C 1

2
ml2 P'2 C mlPs P' cos .˛ � '/ � .M C m/gs sin ˛ C mgl cos'

2. Lagrange equation of motion for s:

0 D .M C m/RsC ml
� R' cos .˛ � '/C P'2 sin .˛ � '/�C .M C m/g sin˛

H) Rs D �g sin˛ � ml

M Cm

� R' cos .˛ � '/C P'2 sin .˛ � '/�

Lagrange equation of motion for ':

0 D ml2 R' C mlPs P' sin .˛ � '/
CmlRs cos .˛ � '/ �mlPs P' sin .˛ � '/C mgl sin '

H) R' D �g

l
sin ' � Rs

l
cos .˛ � '/
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Special solution:

' D '0 D const

H) Rs D �g sin˛ D �g
sin '0

cos .˛ � '0/
H) s.t/ D s0 C v0t � g

2
t2 sin ˛

'.t/ D ˛

(s0 and v0 by initial conditions)
3. Insertion of the differential equation for Rs into the differential equation for R'

yields:

R' D g

l
.sin˛ cos .˛ � '/ � sin '/

C m

M C m

� R' cos .˛ � '/C P'2 sin .˛ � '/� cos .˛ � '/

D g

l
cos˛ sin .˛ � '/

C m

M C m

� R' cos2 .˛ � '/C P'2 sin .˛ � '/ cos .˛ � '/�

Thereby we exploited the addition theorem ((1.60), Vol. 1):

sin .˛ � '/ D sin ˛ cos' � cos˛ sin '

For M 
 m it can approximately be assumed:

m

M C m
� 0

H) R' � �g

l
cos˛ sin .' � ˛/

With the abbreviation

! D
r

g

l
cos˛

and the approximation for small angle deflections (' � ˛)

sin .' � ˛/ � ' � ˛
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it comes out as oscillation equation:

R' D �!2.' � ˛/
H) '.t/ D ˛ C O' sin .!tC delta/

( O' and ı from initial conditions)

Solution 1.2.15

1. There are five holonomic-scleronomic constraints:

1. z1 D 0
2. z2 D 0
3. �y1 =�x1 D tan˛
4. �y2 = x2 D tanˇ
5. r1 C r2 D l

The system therewith possesses s D 2 � 3 � 5 D 1 degrees of freedom.
2. s D 1 H) one generalized coordinate, e.g.:

q D r1

Transformation formulas:

x1 D �q cos˛

y1 D �q sin˛

z1 D 0
x2 D .l � q/ cosˇ

y2 D �.l � q/ sinˇ

z2 D 0

3. Kinetic energy:

T D m1

2

�Px21 C Py21
�C m2

2

�Px22 C Py22
�

D m1

2
Pq2 �cos2 ˛ C sin2 ˛

�C m2

2
Pq2 �cos2 ˇ C sin2 ˇ

�

D 1

2
.m1 C m2/ Pq2

Potential energy:

V D m1gy1 C m2gy2

D �m1gq sin˛ � m2g.l� q/ sinˇ
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H) Lagrangian:

L D T � V

D 1

2
.m1 C m2/ Pq2 C m1gq sin˛ Cm2g.l� q/ sinˇ

4. Lagrange equation of motion:

d

dt

@L

@Pq D .m1 C m2/Rq ŠD @L

@q
D .m1 sin ˛ � m2 sinˇ/g

H) Rq D m1 sin˛ � m2 sinˇ

m1 C m2

g ‘delayed’free fall

Integration of the equation of motion and application of the initial conditions:

q.t/ D r1.t/ D 1

2

m1 sin ˛ �m2 sinˇ

m1 Cm2

gt2 C r0

‘System in its equilibrium’ means:

q.t/ D const

H) 0 D m1 sin ˛ � m2 sinˇ

H) m1

m2

D sinˇ

sin ˛

5. Now the 5. constraint will not be used to eliminate a variable. Therefore two
generalized coordinates are necessary:

q1 D r1 I q2 D r2

Because of r1 C r2 D l D const it follows:

dq1 C dq2 D 0
H) a11 D a12 D 1

H) generalized constraint forces:

Q1 D Q2 D 	

Lagrangian:

L D 1

2

�
m1 Pq21 C m2 Pq22

�C m1gq1 sin˛ C m2q2 sinˇ
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H) equation of motion:

d

dt

@L

@Pqi
� @L

@qi
D Qi D 	 i D 1; 2

H) m1 Rq1 � m1g sin˛ D 	
m2 Rq2 � m2g sinˇ D 	

From the 5. constraint it follows:

Pq1 C Pq2 D 0 H) Rq1 D �Rq2
H) Rq1 � g sin˛ D 	

m1

�Rq1 � g sinˇ D 	

m2

H) �g .sin ˛ C sinˇ/ D 	
�
1

m1

C 1

m2

�

Therewith we have the constraint force ‘thread tension’:

Q D 	 D �g
m1m2

m1 C m2

.sin˛ C sinˇ/

In the equilibrium it holds (see the preceding part of this exercise):

m1

m2

D sinˇ

sin ˛

H) sin ˛ C sinˇ D
�
1C m1

m2

�
sin ˛

D m1 C m2

m2

sin ˛

Finally we have the thread tension in the equilibrium:

Q0 D �m1g sin˛ D �m2g sinˇ

Solution 1.2.16

1. Starting point may be two body-fixed systems of Cartesian coordinates with
parallel axes, as indicated in Fig. 1.34. The origins of coordinates are in the
middle of the respective cylinder axis. Rotation axes:

n1 D n2 D �ez :
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r1, r2 may be the points of support of the thread, i.e. the contact points of the
thread tension:

r1 D .0;R1; z1/ I r2 D .0;�R2; z2/ :

Thread tensions:

F1 D .F; 0; 0/ D �F2 :

Torque moments:

M.1/
ex D .0;R1; z1/ � .F; 0; 0/ D .0; z1F;�R1F/

M.2/
ex D .0;�R2; z2/ � .�F; 0; 0/ D .0;�z2F;�R2F/ :

Paraxial components:

M.1/
ex � n1 D R1F I M.2/

ex � n2 D R2F :

Angular momentum law ((4.17), Vol. 1):

J1 R'1 D R1F I J2 R'2 D R2F :

Momenta of inertia of the cylinders with homogeneous mass density according
to ((4.13), Vol. 1):

J1 D 1

2
M1R

2
1 I J2 D 1

2
M2R

2
2 :

Rolling off condition:

x2 D constC R1'1 C R2'2

Õ Rx2 D R1 R'1 C R2 R'2 :

Translation of cylinder 2 according to the center of mass theorem:

M2 Rx2 D M2g � F :

Therewith it follows by insertion:

M2R1 R'1 CM2R2 R'2 D M2g � F

Õ M2R1
R1F

J1
CM2R2

R2F

J2
D M2g � F
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Õ F

�
1C R21M2

J1
C R22M2

J2

�
D M2g

Õ F

�
1C 2M2

M1

C 2
�
D M2g :

So it holds for the thread tension:

F D M1M2

3M1 C 2M2

g :

2. Generalized coordinates: '1; '2
Constraint: Winding up the thread:

x2 D constC R1'1 C R2'2

Õ Px2 D R1 P'1 C R2 P'2
Rx2 D R1 R'1 C R2 R'2 :

Kinetic and potential energy:

T D 1
2
J1 P'21 C 1

2
J2 P'22 C 1

2
M2 Px22

V D �M2g.x2 � const/ :

Lagrangian:

L D 1

2
J1 P'21 C

1

2
J2 P'22 C

1

2
M2 .R1 P'1 C R2 P'2/2 CM2g .R1'1 C R2'2/ :

3. Equations of motion:

d

dt

@L

@ P'i
� @L

@'i
D 0 i D 1; 2 :

We calculate the i D 1-equation:

@L

@ P'1 D J1 P'1 CM2R1 .R1 P'1 C R2 P'2/

Õ d

dt

@L

@ P'1 D J1 R'1 CM2R1 .R1 R'1 C R2 R'2/

D
�
1

2
M1 CM2

�
R21 R'1 CM2R1R2 R'2

@L

@'1
D M2gR1 :
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That leads to the first equation of motion:

�
1

2
M1 CM2

�
R1 R'1 CM2R2 R'2 D M2g : (A.1)

We calculate the i D 2-equation:

@L

@ P'2 D J2 P'2 CM2R2 .R1 P'1 C R2 P'2/

Õ d

dt

@L

@ P'2 D J2 R'2 CM2R2 .R1 R'1 C R2 R'2/

D 3

2
M2R

2
2 R'2 CM2R2R1 R'1

@L

@'2
D M2gR2 :

That yields the second equation of motion:

3

2
R2 R'2 C R1 R'1 D g : (A.2)

We insert R22 R'2 from (A.2) into (A.1):

�
1

2
M1 CM2

�
R1 R'1 C 2

3
M2g � 2

3
M2R1 R'1 D M2g

Õ
�
1

2
M1 C 1

3
M2

�
R1 R'1 D 1

3
M2g :

This is the equation of motion for '1:

R1 R'1 D 2M2

3M1 C 2M2

g : (A.3)

That for '2 follows immediately:

R2 R'2 D 2

3
g � 2

3

2M2

3M1 C 2M2

g D 2

3
g
3M1 C 2M2 � 2M2

3M1 C 2M2

Õ R2 R'2 D 2M1

3M1 C 2M2

g :
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Trivially integrable with given initial conditions:

Rx2 D R1 R'1 C R2 R'2 D 2g
M1 CM2

3M1 C 2M2

:

That corresponds to the ‘delayed’ free fall. With the given initial conditions one
easily finds:

x2.t/ D M1 CM2

3M1 C 2M2

gt2 :

4. Newton’s mechanics delivers according to part 1. for the thread tension:

M2 Rx2 D M2g � F Õ F D M2g

�
1 � 2M1 C 2M2

3M1 C 2M2

�
:

That is the ‘old’ result of the Newton’s mechanics from part 1.

F D M1M2

3M1 C 2M1

g :

Solution 1.2.17

1. The constraint is the rolling off of the solid cylinder within the hollow cylinder,
i.e.:

arc of circle cAB D arc of circle cAC

” R. C '/ D r�

Proper generalized coordinates are:

q1 WD ' q2 WD  

2. The hollow cylinder swings with fixed axis around its center of gravity. Its
potential energy is therefore constant (D 0). The potential energy of the solid
cylinder is:

VS D �mg.R � r/ cos'

The kinetic energy of the cylinders is composed by the translation of the center
of gravity S of the solid cylinder

Tt D 1

2
m.R � r/2 P'2
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and the rotations of both cylinders:

Tr D 1

2
JH P 2 C 1

2
JV . P� � P'/2 :

Here are

JH D MR2 and JS D 1

2
mr2

the moment of inertia of the hollow cylinder and the solid cylinder, respectively
(check it!). With the rolling off condition

� D R

r
. C '/

we find:

Tr D 1

2
MR2 P 2 C 1

4
mr2

�
R

r

� P C P'� � P'
�2

D 1

2
MR2 P 2 C 1

4
mr2

�
R2

r2
� P 2 C 2 P P' C P'2� � 2R

r

� P P' C P'2�C P'2
�

D 1

2
R2
�

M C 1

2
m

�
P 2 C 1

2
mR.R � r/ P' P C 1

4
m.R � r/2 P'2

That yields the Lagrangian:

L D T � V D Tr C Tt � VV

D 1

2
R2
�

M C 1

2
m

�
P 2 C 1

2
mR.R � r/ P' P C 3

4
m.R � r/2 P'2 C mg.R � r/ cos'

3.  is cyclic:

@L

@ 
D 0

H) p D @L

@ P D R2
�

M C 1

2
m

�
P C 1

2
mR.R � r/ P' D const

H) 0 D R2
�

M C 1

2
m

�
R C 1

2
mR.R � r/ R'

H) R D � m.R � r/

2R

�
M C 1

2
m

� R'
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With

@L

@'
D �mg.R � r/ sin'

@L

@ P' D
3

2
m.R � r/2 P' C 1

2
mR.R � r/ P 

d

dt

@L

@ P' D
3

2
m.R � r/2 R' C 1

2
mR.R � r/ R 

we have:

0 D 3

2
m.R � r/2 R' C 1

2
mR.R � r/ R C mg.R� r/ sin'

H) 0 D 3

2
.R � r/ R' C 1

2
R R C g sin'

After replacing R it follows:

0 D 1

2
.R � r/

2
6643 �

mR

2R

�
M C 1

2
m

�

3
775 R' C g sin'

D 1

2
.R � r/

3M C m

M C 1

2
m
R' C g sin'

That yields the equation of motion for ':

0 D R' C 2M C m

3M C m

g

R � r
sin '

4. The usual approximation sin' � ' for small deflections leads to the oscillation
equation

R' C !2'' D 0

with the eigen-frequency

!' D
r
2M C m

3M C m

g

R � r
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and known solution '.t/. Furthermore,  .t/ is found from

R D m.R � r/

2R

�
M C 1

2
m

� 2M C m

3M C m

g

R � r
'.t/

D mg

R.3M C m/
'.t/

by integration with given initial conditions.

Solution 1.2.18

1. Constraints:

z1 D z2 D 0
.x1 � x2/

2 C .y1 � y2/
2 D l2

H) S D 6 � 3 D 3 degrees of freedom

generalized coordinates:
x; y: coordinates of the center of gravity; ': angle of the dumbbell relative to the
x-axis
Transformation formulas:

x1 D x � l

2
cos' I y1 D y � l

2
sin '

x2 D xC l

2
cos' I y2 D yC l

2
sin '

2. Friction forces:

Fx1 D �˛Px1 D �˛
�
PxC l

2
P' sin '

�

Fy1 D �˛Py1 D �˛
�
Py � l

2
P' cos'

�

Fx2 D �˛Px2 D �˛
�
Px � l

2
P' sin '

�

Fy2 D �˛Py2 D �˛
�
PyC l

2
P' cos'

�

Generalized forces:

Qj D Fx1

@x1
@qj
C Fx2

@x2
@qj
C Fy1

@y1
@qj
C Fy2

@y2
@qj
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@x1
@x
D 1 I @x1

@y
D 0 I @x1

@'
D l

2
sin '

@x2
@x
D 1 I @x2

@y
D 0 I @x2

@'
D � l

2
sin '

@y1
@x
D 0 I @y1

@y
D 1 I @y1

@'
D � l

2
cos'

@y2
@x
D 0 I @y2

@y
D 1 I @y2

@'
D l

2
cos'

Qx D Fx1 C Fx2 D �2˛Px
Qy D Fy1 C Fy2 D �2˛Py

Q' D l

2

�
Fx1 sin ' � Fx2 sin' � Fy1 cos' C Fy2 cos'

�

D l

2
sin ' .Fx1 � Fx2/„ ƒ‚ …

�˛l P' sin '

� l

2
cos'

�
Fy1 � Fy2

�
„ ƒ‚ …

C˛l P' cos'

D �1
2
˛l2 P'

3. Equations of motion:
holonomic constraints; non-conservative forces (1.33):

d

dt

@T

@Pqj
� @T

@qj
D Qj j D x; y; '

Px1 D PxC l

2
P' sin ' I Py1 D Py � l

2
P' cos'

Px2 D Px � l

2
P' sin ' I Py2 D PyC l

2
P' cos'

H) T D 1

2
m
�Px21 C Px22 C Py21 C Py22

�

D m
�Px2 C Py2�Cm

l2

4
P'2

H) mRx D �˛Px
mRy D �˛Py
m R' D �˛ P'
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4. General solutions:

qi.t/ D ˛i C ˇi exp
�
�˛t

m




˛i; ˇi from initial conditions:

x.0/ D y.0/ D 0 I '.0/ D 0
H) ˛i D �ˇi

H) qi.t/ D ˛i

�
1 � exp

�
�˛t

m





Pqi.0/ D ˛i˛

m

H) ˛x D vx
m

˛

˛y D vy
m

˛

˛' D ! m

˛

Solution 1.2.19

1. Constraints:

z D const D 0
y D .a.t/� x/ tan˛

The constraint for y shall not be used for a reduction of the number of
coordinates:

q1 D x I q2 D y

Lagrangian:

L D T � V D m

2

�Px2 C Py2� � mgy

2. Constraint in differential form:

0 D .Pa.t/dt � dx/ sin ˛ � dy cos˛
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With the notation after (1.95):

a11 D � sin˛ I a12 D � cos˛

generalized constraint forces:

Qx D �	 sin ˛ I Qy D �	 cos˛

	: Lagrange multiplier
Lagrange equation of the first kind:

d

dt

@L

@ P̨ �
@L

@˛
D Q˛ I ˛ D x; y

mRx D �	 sin˛

mRyC mg D �	 cos˛

An additional equation of determination is found from the constraint 1. by
twofold differentiation with respect to time:

Ry D .c � Rx/ tan˛

Insert Rx , Ry:

�g � 	
m

cos˛ D
�

cC 	

m
sin ˛

�
tan˛

�g cos˛ � 	
m

�
cos2 ˛ C sin2 ˛

� D c sin ˛

H) 	 D �mg cos˛ � cm sin ˛

Qx D m sin˛ .g cos˛ C c sin˛/

Qy D m cos˛ .g cos˛ C c sin ˛/

3. Equation of motion for x.t/:

mRx D Qx

H) Rx D sin ˛ .g cos˛ C c cos˛/ D const

with initial conditions:

x.t/ D 1

2
sin˛ .g cos˛ C c sin˛/ t2 C x0
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y.t/ by integration of the equation of motion or directly from the constraint:

y.t/ D
�
1

2
ct2 � x.t/

�
tan ˛

Solution 1.2.20

1. As long as the mass point is on the spherical surface the constraint reads:

R � z � z0 W x2 C y2 C z2 � R2 D 0 :

Below the ‘jump height’ z0, however, the constraint is:

z0 � z W x2 C y2 C z2 � R2 > 0 :

We see that in the general case the constraints are not suitable to reduce the
number of variables.
With spherical coordinates .r; '; #/ as generalized coordinates and the transfor-
mation formulas

x D r sin# cos'

y D r sin# sin '

z D r cos#

the kinetic energy is

T D m

2

�Px2 C Py2 C Pz2�

D m

2

�
Pr2 C r2 P#2 C r2 sin2 # P'2




and the potential energy:

V D mgz D mgr cos# :

The general form of the Lagrangian is therewith:

L D T � V D m

2

�
Pr2 C r2 P#2 C r2 sin2 # P'2



� mgr cos# :

2. On the spherical surface, i.e. in the region R � z � z0 the constraints are
holonomic:

r D R D const
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It remains:

L D L.#; '/ D m

2

�
R2 P#2 C R2 sin2 # P'2



� mgR cos# :

The equations of motion for # and ' then read:

d

dt

@L

@ P# D mR2 R# D @L

@#
D mR2 sin# cos# P'2 C mgR sin#

d

dt

@L

@ P' D
d

dt

�
mR2 sin2 # P'� D @L

@'
D 0 :

The coordinate ' is cyclic, therefore:

p' D @L

@ P' D mR2 sin2 # P' D const :

The z-component of the angular momentum related to the origin is an integral of
motion since the gravitational force acts in z-direction so that no torque appears
in z-direction.

3. Constraint for R � z � z0:

r � R D 0
H) dr D 0 ; Pr D 0 :

Lagrange equation of the first kind for r with the constraint force Qr:

d

dt

@L

@Pr �
@L

@r
D Qr

mRr �mr
� P#2 C sin2 # P'2



C mg cos# D Qr :

With

r D R D const ; Pr D 0

and the velocity

v2 D R2
� P#2 C sin2 # P'2




we have:

Qr D mg cos# � mv2

R
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The ‘hopping point’ z0 D R cos#0 is characterized by:

Qr.z0/ D 0

H) mgz0
R
D mv20

R

H) z0 D v20
g

where v0 can be derived from the energy conservation law:

m

2
v20 C mgz0 D mgR

H) v20 D 2g .R � z0/ :

Then we have the equation of determination for z0:

z0 D 2 .R � z0/

H) z0 D 2

3
R :

Accordingly the mass point moves in the free fall with the initial conditions:

z D z0 D 2

3
R

v D v0 D
r
2

3
gR :

Solution 1.2.21 F has only a radial component:

Fr D ˛

r2

�
1 � Pr

2 � 2rRr
c2

�

We take

U.r; Pr/ D ˛

r

�
1C Pr

2

c2

�

and verify by insertion that:

Qr D Fr D d

dt

@U

@Pr �
@U

@r

@

@r



1

r

�
1C Pr

2

c2

��
D � 1

r2

�
1C Pr

2

c2

�
;
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@

@Pr


1

r

�
1C Pr

2

c2

��
D 2

Pr
r c2

;

d

dt

@

@Pr


1

r

�
1C Pr

2

c2

��
D 2

r2c2
.rRr � Pr2/ ;

�
d

dt

@

@Pr �
@

@r

�

˛

r

�
1C Pr

2

c2

��
D ˛

r2

�
2rRr
c2
� 2Pr

2

c2
C 1C Pr

2

c2

�

D ˛

r2

�
1 � 1

c2
.Pr2 � 2rRr/

�
D Fr :

Thus the above U.r; Pr/ is indeed the generalized potential of the force F. Since the
motion takes place in the plane,

x D r cos' I y D r sin ' ;

it holds for the kinetic energy:

T D 1

2
m.Px2 C Py2/ D 1

2
m.Pr2 C r2 P'2/ :

The Lagrangian therefore reads:

L D 1

2
m.Pr2 C r2 P'2/� ˛

r

�
1C Pr

2

c2

�
:

Let us look for an alternative solution which appears a bit more systematical:
For the generalized potential U.r; Pr/ it must be required:

F D Qr D d

dt

@U

@Pr �
@U

@r

The solution can only be guessed. Because of the second derivative in F the
following ansatz appears plausible:

U.r; Pr/ D ˛f .r/C ˛g.r/Pr2

Insertion of F and this ansatz for U into the above equation and then arranging
according to the time derivatives of r:

F D d

dt

@U

@Pr �
@U

@r

H) 1

r2

�
1 � Pr

2 � 2rRr
c2

�
D d

dt
.2gPr/� � f 0 C g0Pr2�
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D �
2gRrC 2g0Pr2� � � f 0 C g0Pr2�

2

c2r
Rr � 1

c2r2
Pr2 C 1

r2
D 2gRrC g0Pr2 � f 0 :

Comparison of the coefficients of Rr yields:

g.r/ D 1

c2r
: H) g0.r/ D � 1

c2r2
;

being consistent with the coefficients of Pr2. By comparing the remaining terms we
have:

f 0.r/ D � 1
r2

H) f .r/ D 1

r
C const :

The constant of integration is arbitrarily choosable being set to zero for simplicity.
Then we have the generalized potential:

U.r; Pr/ D ˛

r
C ˛

c2r
Pr2 D ˛

r

�
1C Pr

2

c2

�
:

Solution 1.2.22

1. xM D R ' (rolling condition!) ; yM D R .
2. Mass point:

xm D xM � R sin ' D R.' � sin '/ ;

ym D yM � R cos' D R.1� cos'/ :

This is the ordinary cycloid (see Example 4 in Sect. 1.2.2).
Center of gravity:

RS D
M rM C 1

2
M rm

M C 1

2
M

D 2

3
rM C 1

3
rm

H) xS D xM � 1
3

R sin ' D R

�
' � 1

3
sin'

�
;

yS D yM � 1
3

R cos' D R

�
1 � 1

3
cos'

�
:

This is the so-called ‘shortened’ cycloid.
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3. Tm: kinetic energy of the mass point

Tm D 1

2
m
�Px2m C Py2m

�
;

Pxm D R P'.1 � cos'/ I Pym D R P' sin '

H) Tm D m R2 P'2.1 � cos'/

TM: kinetic energy of the disc being composed by a rotational and a translational
part:

TM D T rot
M C T tr

M ;

T tr
M D

1

2
M
�Px2M C Py2M

� D 1

2
M R2 P'2 :

For the rotational part we need the moment of inertia J of the disc with respect
to an axis through the center of the disc (D D thickness of the disc):

J D
Z

r2 dm D �0
Z

r2 d3r D M

� R2 D

•
dz r3 dr d'

D M

� R2D
D 2�

RZ

0

r3dr D 1

2
M R2 :

Therewith we have:

T rot
M D

1

2
J P'2 D 1

4
M R2 P'2

H) TM D 3

4
M R2 P'2 :

The total kinetic energy is then:

T.'; P'/ D 1

2
M R2 P'2



3

2
C .1 � cos'/

�
:

The potential energy V can also be divided into contributions of the mass point
and the disc:

V.'/ D Vm C VM D m g ym C Cm C VM

D �1
2

M g R cos' C 1

2
M g RC Cm C VM :
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The contribution of the disc is constant. The choice of the origin is free. Then we
can choose the constant Cm of course so that

V.'/ D �1
2

M g R cos'

4.

L D T.'; P'/ � V.'/ D 1

2
M



R2 P'2

�
5

2
� cos'

�
C g R cos'

�
:

Equation of motion:

@L

@ P' D M R2 P'
�
5

2
� cos'

�
;

d

dt

@L

@ P' D M R2 R'
�
5

2
� cos'

�
CM R2 P'2 sin ' ;

@L

@'
D 1

2
M
�
R2 P'2 sin ' � g R sin '

�

H) R'.5 � 2 cos'/C
�
P'2 C g

R



sin ' D 0 :

Simplification for small oscillations:

' 	 1 W cos' � 1 ; sin' � ' ; P'2 � 0
” R' C g

3R
' � 0 H) !2 � g

3R
:

5. The motion of the total mass concentrated at the center of gravity

Mtot D M C m D 3

2
M

is caused by the total force:

F D Z� 3
2

M g ey

Newton’s equations of motion therefore read:

3

2
M .RxS; RyS/ D

�
Zx;Zy � 3

2
M g

�
:

xS, yS we have already calculated in part 2.
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PxS D R P'
�
1� 1

3
cos'

�
; PyS D 1

3
R P' sin '

H) RxS D 1

3
R
� R'.3� cos'/C P'2 sin '

�
;

RyS D 1

3
R
� R' sin ' C P'2 cos'

�
:

The constraint force has therefore the components:

Zx D 1

2
M R

� R'.3 � cos'/C P'2 sin '
�
;

Zy D 1

2
M R

�
R' sin ' C P'2 cos' C 3g

R

�
:

6. Condition for the ‘taking off’: Zy
ŠD 0

Because of @L=@t D 0 and scleronomic constraints the energy conservation law
is valid:

E D T C V D 1

2
M



R2 P'2

�
5

2
� cos'

�
� g R cos'

�
D const :

We express E by the initial velocity v:

E D 1

2
M



v2
�
5

2
� 1

�
� g R

�
; v D R P'j'D 0 D PxM.' D 0/ :

Thus we have for arbitrary ':

3

2
v2 � g R D R2 P'2

�
5

2
� cos'

�
� g R cos' :

We determine v from the condition Zy D 0 at ' D 2�=3. So we need according
to part 5. P', R' at ' D 2�=3:

' D 2�

3
H) sin ' D 1

2

p
3 I cos' D �1

2
;

P'2
�
' D 2�

3

�
D 1

2

�
v2

R2
� g

R

�
:
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According to part 4. it is:

6 R'
�
' D 2�

3

�
C 1

2

p
3

�
1

2

v2

R2
C 1

2

g

R

�
D 0

H) R'
�
' D 2�

3

�
D �
p
3

24

�
v2

R2
C g

R

�
:

Equation of determination for v:

0
ŠD Zy

�
' D 2�

3

�

D 1

2
M R

�
1

2

p
3 R'
�
' D 2�

3

�
� 1
2
P'2
�
' D 2�

3

�
C 3g

R

�

” 0 D � 1
16

�
v2

R2
C g

R

�
� 1
4

�
v2

R2
� g

R

�
C 3g

R

H) v2 D 51

5
g R :

7. Moment of inertia:

JS D JmS C JMS ;

JS: Moment of inertia of the total system with respect to the center of gravity
S,

JmS: Contribution of the additional mass,
JMS: Contribution of the disc.

After Steiner’s theorem (Sect. 4.2.4, Vol. 1) it holds:

JMS D J CM
h
.xM � xS/

2 C .yM � yS/
2
i
:

J is the moment of inertia of the disc related to an axis through the center of the
disc as calculated in 3.

JMS D 1

2
M R2 CM

�
1

9
R2 sin2 ' C 1

9
R2 cos2 '

�
D 11

18
M R2 ;

JmS D 1

2
M
h
.xm � xS/

2 C .ym � yS/
2
i
D

D 1

2
M

�
4

9
R2 sin2 ' C 4

9
R2 cos2 '

�
D 4

18
M R2

H) JS D 5

6
M R2 :
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Fig. A.2

The constraint force Z acts on the point of support. It gives rise to a torque
around S leading therewith to a rotation of the disc (Fig. A.2):

M D a � Z D �axZy � ayZx
�

ez :

Since the rotational movement is exclusively caused by the constraint force Z the
equation of motion reads:

JS R' D axZy � ayZx :

For the vector a it holds:

a D .� .xM � xS/ ; yS ; 0/ D
�
�1
3

R sin' ; R

�
1 � 1

3
cos'

�
; 0

�

H) JS R' D
�
�1
3

R sin '

�
1

2
M R

�
R' sin ' C P'2 cos' C 3g

R

�

�R

�
1 � 1

3
cos'

�
1

2
M R

� R'.3 � cos'/C P'2 sin'
�

H) 5 R' D � R' sin2 ' � P'2 sin ' cos' � 3g

R
sin'

� R' �9 � 6 cos' C cos2 '
� � P'2.3 sin ' � cos' sin '/

H) R'.15� 6 cos'/C 3 P'2 sin ' C 3g

R
sin ' D 0 ;

H) R'.5 � 2 cos'/C
�
P'2 C g

R



sin ' D 0 :

This agrees with the equation of motion in part 4.!

Solution 1.2.23

1. Lagrangian:

L D T � V D T D 1

2
m
�Pr2 C r2 P'2� :
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The coordinate ' is cyclic:

p' D @L

@ P' D m r2 P' D Lz D const :

The angular momentum is an integral of motion.
2. Because of the disregard of the kinetic energy in radial direction it is Pr2 � 0:

T D 1

2
m r2 P'2 D L2z

2m r2
:

The work W carried out corresponds to the change of the kinetic energy (energy
theorem!):

W D T.r D R/� T.r D R0/ D L2z
2m

�
1

R2
� 1

R20

�
:

3. Yes! The Lagrangian is the same as that in part 1., ' is still cyclic.
4. From Pr.t/ D �b t we have the constraint:

r.t/ D �1
2

b t2 C R0 (holonomic-rheonomic) :

The constraint force Z which causes this time-dependence is the only acting
force. Therefore it holds:

m Rr D Z :

In planar polar coordinates (see (2.13), Vol. 1) it is:

Rr D �Rr � r P'2� er C .r R' C 2Pr P'/ e' :

The conservation of angular momentum leads to:

.r R' C 2Pr P'/ D 1

r

d

dt
r2 P' D 1

r m

d

dt
Lz D 0

H) Z D m
�Rr � r P'2� er D �m

�
bC r P'2� er

D �
 

m bC L2z
m r3.t/

!
er :

5.

T D 1

2
m
�Pr2 C r2 P'2� D 1

2
m b2t2 C L2z

2m r2
D �m b .r � R0/C L2z

2m r2

H) W D �m b .R � R0/C L2z
2m

�
1

R2
� 1

R20

�
:
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Solution 1.2.24

1. Constraint:

r D l� R0' (holonomic-scleronomic) :

Position vector of the mass point:

r.P/ D R0 C Nr ;

where R0 D R0.cos'; sin'/ and Nr D r e' D r.� sin'; cos'/.

H) r.P/ D .R0 cos' � .l � R0'/ sin ';R0 sin ' C .l� R0'/ cos'/ ;

Pr.P/ D .�R0 P' sin' C R0 P' sin' � .l � R0'/ P' cos';

R0 P' cos' � R0 P' cos' � .l � R0'/ P' sin '/

D � .l � R0'/ P' er :

Lagrangian:

L D T � V D T D 1

2
mPr2.P/ D 1

2
m .l � R0'/

2 P'2 :

The coordinate ' is not cyclic, different from the preceding exercise. The
angular momentum Lz is therefore not a conserved quantity. However, because
of the holonomic-scleronomic constraint and because of @L=@t D 0 energy
conservation holds:

E D const D T :

2. The energy conservation law saves already one integration:

P' D

r
2E

m
l � R0'

I t D 0 W v0 D
l

r
2E

m
l
D
r
2E

m

H) P' D v0

l � R0'
:

This can be rewritten:

v0 D l P' � R0' P' H) v0t D l' � 1
2

R0'
2 C C :
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It follows immediately from the initial conditions that C D 0. We solve for ':

' D l

R0
˙
s

l2

R20
� 2

R0
v0t :

Because of '.0/ D 0 only the minus sign can be valid:

'.t/ D l

R0

 
1 �

r
1 � 2R0

l2
v0t

!
:

After the time t0 the thread is fully wound up, i.e.:

R0' .t D t0/ D l :

That means:

t0 D 1

2

l2

R0v0
:

3.

p' D @L

@ P' D m .l � R0'/
2 P' :

Angular momentum with respect to O:

L D mr.P/ � Pr.P/
D m

�
R0er C re'

� � �� .l � R0'/ P'
�
er

D �mr.l � R0'/ P'
�
e' � er

�

D m .l� R0'/
2 P'ez

Solution 1.2.25

1. We firstly calculate the moment of inertia of the roller. For that we use cylindrical
coordinates r; '; Nz. The Nz-direction may coincide with the axis of the cylinder.
For the mass density it is assumed:

�.r; '; Nz/ D ˛ r :

What is ˛? We express ˛ by the mass M:

M D
Z

roller

d3r �.r/ D 2� h ˛

RZ

0

r2dr D 2� h ˛
1

3
R3

H) ˛ D 3M

2� h R3
:
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Moment of inertia with respect to the Nz-axis:

J D
Z

roller

r2 dm D
Z

roller

r2�.r/ d3r D 2� h ˛

RZ

0

r4 dr D 3M

R3
1

5
R5 D 3

5
M R2 :

In the region 0 � z � l the mass m performs a one-dimensional motion, i.e.
without any side-deviation:

generalized coordinate: z ;

constraint: z D R ' :

Kinetic energy:

T D 1

2
J P'2 C 1

2
m Pz2 D 1

2

�
3

5
M C m

�
Pz2 :

Potential energy:

V D m g.lC R � z/ (minimum when the thread is fully wound up) :

Lagrangian:

L .z; Pz/ D 1

2

�
3

5
M C m

�
Pz2 � m g.lC R � z/ :

Equation of motion:

d

dt

@L

@Pz D
�
3

5
M C m

�
Rz ŠD @L

@z
D m g

H) Rz D m

mC 3

5
M

g :

The mass m performs a uniformly accelerated motion (delayed free-fall!).
With the initial conditions

z.t D 0/ D 0 I Pz.t D 0/ D 0

we find:

z.t/ D 1

2

m

mC 3

5
M

g t2 :
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Fig. A.3

2. For z > l the side-movement comes additionally into play. From Fig. A.3 we
take the position vector rm of the mass m:

rm D .R cos'; lC R sin'/

H) Prm D R P'.� sin '; cos'/ :

R P' is of course no longer equal to Pz !
Kinetic energy:

T D 1

2
m R2 P'2 C 1

2
J P'2 D 1

2

�
mC 3

5
M

�
R2 P'2 :

Potential energy:

V D m g R.1� sin '/ :

Lagrangian:

L.'; P'/ D 1

2

�
mC 3

5
M

�
R2 P'2 �m g R.1� sin '/ :

Equation of motion:

d

dt

@L

@ P' �
@L

@'
D
�

mC 3

5
M

�
R2 R' �m g R cos'

ŠD 0

H) R' D 1

R

m

mC 3

5
M

g cos' :

One may compare this result with that from part 1. From z D l .' D 0/ to
z D l C R .' D �=2/ R' decreases monotonically to zero. If then in addition
M 
 m may be assumed then R' � 0. That means:

P' � P'l D const ( P'l known from part 1. !)
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It follows:

z D lC R sin ' � lC R sin Œ P'l .t � tl/� ;

Pz D R P' cos' � R P'l cos Œ P'l .t � tl/� ;

Rz D R R' cos' � R P'2 sin ' � �R P'2l sin Œ P'l .t � tl/� :

tl is the time after which the thread is wound up to its full length. It can be
determined with the result from part 1.:

l D 1

2

m

mC 3

5
M

g t2l H) tl D

vuuut2l

�
mC 3

5
M

�

m g
:

In the region l � z � lC R it is 0 � ' � �=2 and therewith Rz < 0. Obviously a
deceleration takes place.
We still have to discuss the side-movement:

x D R cos' � R cos Œ P'l .t � tl/� ;

Px D �R P' sin' � �R P'l sin Œ'l .t � tl/� ;

Rx D �R R' sin' � R P'2 cos' � �R P'2l cos Œ'l .t � tl/� :

3.

mRz D m g � Z H) Z D m .g � Rz/ :

0 � z � l W

Z D m g

0
B@1 � m

mC 3

5
M

1
CA D m

3M

3M C 5m
g D const � m g :

l � z � lC R W

Rz � �R P'2l sin ' :
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According to part 1. we have:

P'l D 1

R
Pz .t D tl/ D 1

R

m

mC 3

5
M

g

vuuut2l

�
mC 3

5
M

�

m g

H) R P'2l D
1

R

m

mC 3

5
M

g 2l

H) Rz � � 2
R

g l
5m

3M
sin '

H) Z � m g

�
1C 10l m

3M R
sin'

�
:

Solution 1.2.26

1. Constraints:

z1 D z2 D 0 (planar motion) ;

.x2 � x1/
2 C .y2 � y1/

2 D .2a/2 (constant distance) :

p=3: number of constraints H) number of degrees of freedom:

S D 3N � p D 6 � 3 D 3 :

Thus we need three generalized coordinates (Fig. A.4):

q1 D r I q2 D ' I q3 D # :

Fig. A.4
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Kinetic energy:

T D TS C TE ;

TS: motion of the center of gravity, ‘orbital motion’; TE: self-rotation around S.

center of gravity: R D 1

M

2X

i D 1

miri D 1

2
.r1 C r2/ ;

total mass: M D m1 Cm2 D 2m ;

TS D 1

2
M PR2 D m

� PR2x C PR2y
�
;

Rx D r cos' H) PRx D Pr cos' � r P' sin' ;

Ry D r sin ' H) PRy D Pr sin' C r P' cos'

H) TS D m
�Pr2 C r2 P'2� :

Self-rotation:

TE D 1

2
m1a

2 P̨ 21 C
1

2
m2a

2 P̨ 22 I
˛1 D ' � # I ˛2 D � C ˛1 D � C ' � #

H) TE D m a2
�
P' � P#


2
:

Potential energy:

V D �m �

�
1

r1
C 1

r2

�
;

r2 D
p

r2 C a2 � 2r a cos.� � #/ D
p

r2 C a2 C 2r a cos# ;

r1 D
p

r2 C a2 � 2r a cos# :

Lagrangian:

L D TS C TE � V D m
�Pr2 C r2 P'2�C m a2

�
P' � P#


2

Cm �
h�

r2 C a2 C 2r a cos#
��1=2 C �r2 C a2 � 2r a cos#

��1=2i
:
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Equations of motion:
q1 D r W

d

dt

@L

@Pr D 2m Rr ;

@L

@r
D 2m r P'2 � m �

"
r C a cos#

.r2 C a2 C 2r a cos #/3=2
C r � a cos #

.r2 C a2 � 2r a cos #/3=2

#

H) Rr � r P'2 D �1
2
�

"
r C a cos #

.r2 C a2 C 2r a cos #/3=2
C r � a cos #

.r2 C a2 � 2r a cos #/3=2

#
:

q2 D ' W ' is cyclic!

p' D @L

@ P' D 2m r2 P' C 2m a2
�
P' � P#



D const :

q3 D # W
d

dt

@L

@ P# D �2m a2
�
R' � R#



;

@L

@#
D m � r a

"
sin#

�
r2 C a2 C 2r a cos#

�3=2 �
sin#

�
r2 C a2 � 2r a cos#

�3=2

#

H) R' D R# � � r

2a
sin#

"
1

�
r2 C a2 C 2r a cos#

�3=2 �
1

�
r2 C a2 � 2r a cos#

�3=2

#
:

2. Orbital angular momentum Š angular momentum of the center of gravity:

LO D R � P D
�

r cos'
r sin'

�
�M

�Pr cos' � r P' sin '
Pr sin ' C r P' cos'

�

D �
2m r2 P'� ez :

Intrinsic (eigen) angular momentum Š angular momentum with respect to S:

LI D
2X

i D 1

mia
2

�
cos˛i

sin˛i

�
� P̨ i

�� sin˛i

cos˛i

�

D
2X

i D 1

mia
2 P̨ i
�
cos2 ˛i C sin2 ˛i

�
ez D 2m a2

�
P' � P#



ez :
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Total angular momentum of the dumbbell:

L D LO C LI D 2m
h
r2 P' C a2

�
P' � P#


i
ez D p'ez

H) L D const ; since ' is cyclic :

3.

.1C x/�3=2 D 1 � 3
2

xC 15

8
x2 � 35

16
x3 C : : :

H) 1

r31;2
D 1

r3

"
1C

 
a2

r2
˙ 2a

r
cos#

!#�3=2

D 1

r3

"
1 � 3

2

 
a2

r2
˙ 2a

r
cos#

!

C15
8

 
a4

r4
C 4a2

r2
cos2 # ˙ 4a3

r3
cos#

!

�35
16

 
a6

r6
˙ 6a5

r5
cos# C 12a4

r4
cos2 # ˙ 8a3

r3
cos3 #

!
C : : :

#

� 1

r3

"
1� 3a

r
cos# C 3

2

a2

r2
.5 cos2 # � 1/

˙ 5

2

a3

r3
cos#

�
3 � 7 cos2 #


#

H) rC a cos#

r31
C r � a cos#

r32

� 1

r3



2rC 3a2

r

�
5 cos2 # � 1�

�6 a2

r
cos2 # C 5a4

r3
cos2 #

�
3 � 7 cos2 #

��

D 1

r2



2C 3a2

r2
�
3 cos2 # � 1�C 5a4

r4
cos2 #

�
3 � 7 cos2 #

��
:

H) 1

r31
� 1

r32
D 1

r3

�
�6a

r
cos# C 5a3

r3
cos#.3 � 7 cos2 #/C : : :

�

D �cos#

r3
a

r

�
6 � 5a2

r2
.3 � 7 cos2 #/C : : :

�
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Therewith we rewrite the equations of motion from part 1.:
q1 D r W

Rr � r P'2 D � �
r2



1C 3

2

�
a2

r2

� �
3 cos2 # � 1�C : : :

�
:

q2 D ' (unchanged):

d

dt

h
r2 P' C a2. P' � P#/

i
D 0 :

q3 D # W

R' D R# C 3

2

�

r3
sin 2# � 5

4

�

r3

�a

r


2
sin 2#.3 � 7 cos2 #/C : : :

We have used sin 2# D 2 sin# cos# .
For a=r �! 0 these equations simplify further:

Rr � r P'2 C �

r2
� 0 ;

d

dt

�
r2 P'� � 0 ;

R' � R# � 3
2

�

r3
sin 2# � 0 :

The first two equations do not contain any #-contributions. The orbital motion
r D r.'/ is therefore decoupled from the intrinsic motion which is labeled by # .

4. Case 1:
The dumbbell-rod may be directed always onto P (Fig. A.5)

H) # D 0 D const H) P# D 0 :

Uniform circular movement:

r D R D const I P' D !1 D const :

Fig. A.5
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Fig. A.6

Lagrange equations:

q1 D r W �R!21 D �
�

R2



1C 3 a2

R2
C : : :

�
;

q2 D ' W d

dt

�
R2!1 C a2!1

� D 0 ;
q3 D # W 0 D 0 :

The last two equations are trivially fulfilled, while the first yields:

!21 D
�

R3



1C 3

� a

R


2�
:

Case 2:
The dumbbell-rod is oriented always tangentially on the circle (Fig. A.6):

# D �

2
D const H) P# D 0 :

Uniform circular motion:

r D R D const I P' D !2 D const :

Lagrange equations:

q1 D r W �R!22 D �
�

R2



1 � 3

2

a2

R2
C : : :

�
;

q2 D ' W d

dt

�
R2!2 C a2!2

� D 0 ;
q3 D # W 0 D 0 :

The last two equations are again trivially fulfilled, while the first now yields:

!22 D
�

R3

�
1 � 3

2

a2

R2

�
:

The cited theorem holds of course also for the dumbbell motion. However,
because of the inhomogeneity of the gravitational field the total force is different
for the two above discussed special cases!
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Solution 1.2.27 Equations of motion for L1:

d

dt

@L1
@Pxi
� @L1
@xi
D 0 Õ mRxi D qEi .i D 1; 2; 3/ :

Equations of motion for L2:

d

dt

@L2
@Pxi
� @L2
@xi
D 0 Õ mRxi D qEi .i D 1; 2; 3/ :

Both Lagrangians lead to the same equations of motion being therefore equivalent.
Both describe the motion of a charged particle in a constant homogeneous electrical
field E. This result becomes understandable if one realizes that

d

dt
.qE � rt/ D qE � PrtC qE � r :

Thus both functions are related to each other by a mechanical gauge transforma-
tion (1.84):

L1 D L2 C d

dt
.qE � rt/ � L2 C d

dt
f .r; t/ :

That explains the equivalence!

Section 1.3.5

Solution 1.3.1 With the notation from Sect. 1.3.2 we have:

ds D
p

dx2 C dy2 D
p
1C y02dx :

Thus the functional

J D
BZ

A

ds D
xBZ

xA

p
1C y02dx :

is to be varied. We take

f .x; y; y0/ D f .y0/ D
p
1C y02

H) @f

@y
D 0 I @f

@y0 D
y0

p
1C y02 :
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For the variation ıJ we had derived subsequent to Eq. (1.123):

ıJ D @f

@y0 ıy
ˇ̌
ˇ̌
B

A

C
BZ

A

�
@f

@y
� d

dx

@f

@y0

�
ıy dx :

That means here:

ıJ D y0
p
1C y02 ıy

ˇ̌
ˇ̌
ˇ

B

A

�
BZ

A

 
d

dx

y0
p
1C y02

!
ıy dx :

1. A and B are at first fixed for all curves of the competitive set. It holds therefore:

ıy.A/ D ıy.B/ D 0 :

The first summand in the above expression for ıJ thus vanishes. The requirement
ıJ D 0 leads for otherwise arbitrary ıy to

d

dx

y0
p
1C y02 D 0 ”

y0
p
1C y02 D const ” y0 D m D const :

The shortest connection between A and B is therefore the line AB (see Example 1
in Sect. 1.3.2).

2. The competitive set now consists of all lines from A to arbitrary points B on the
straight line g, which must be oriented parallelly to the y-axis in order that for
all lines xA and xB are fixed. For each curve which is admitted to the variation
one therefore has y0 D const so that now the second summand in the above ıJ-
expression vanishes. The first summand, however, is unequal zero since now only
A is fixed:

ıy.A/ D 0 I ıy.B/ ¤ 0 :

This means:

0
ŠD ıJ D y0.B/p

1C y02.B/
ıy.B/

H) y0.B/ D 0 :

The stationary path has then a zero-slope. It is just the straight line which starts
at A and ends perpendicularly on g.
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Fig. A.7

Solution 1.3.2 Vector line element in cylindrical coordinates:

dr D d� e� C � d' e' C dz ez :

In our case it is d� D 0 since � � R D const (Fig. A.7). Arc length:

ds D pdr � dr D
p

R2d'2 C dz2 D
p

R2 C z02 d' I z D z.'/ :

The length of the connection line can be calculated by:

S D
Z 2

1

ds D
Z '2

'1

p
R2 C z02d' Õ f

�
'; z; z0� D

p
R2 C z02 :

The requirement that S is minimal leads to Euler’s equation:

ıS
ŠD 0 ” @f

@z
� d

d'

@f

@z0
ŠD 0 :

Because of

@f

@z
D 0
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we get

@f

@z0 D const D c D z0
p

R2 C z02

and therewith

z0 D cR

1 � c2
D d D const :

The shortest connection is therefore a helical line:

z.'/ D d ' C Od :

Solution 1.3.3

1. By mass distribution it is understood mass per length:

m.x/ D dm

dx
:

For the kinetic energy T we then have

T D 1

2

lZ

0

m.x/ Py2dx

with

Py D @y

@t
D Py.x; t/ :

2. We try:

V D ˛
0

@
lZ

0

ds� l

1

A I ds D
p

dx2 C dy2 :

It follows with y0 D dy=dx:

V D ˛
0

@
lZ

0

p
1C y02dx � l

1

A :
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3. ‘Small deflections’ means also small y0,

p
1C y02 � 1C 1

2
y02

H) V � ˛

2

lZ

0

y02dx :

Action functional:

S D
t2Z

t1

L dt D 1

2

t2Z

t1

2

4
lZ

0

�
m.x/Py2 � ˛ y02� dx

3

5 dt :

The competitive set consists of curves whose deflections vanish at the points
x D 0 and x D l (constraints!) and which are fixedly preset at the times t1 and t2
(Hamilton’s principle!).

0
ŠD ıS D

t2Z

t1

lZ

0

�
m.x/Py ı Py � ˛y0 ıy0� dx dt

D
lZ

0

m.x/ ŒPy ıy�jt2t1 dx � ˛
t2Z

t1

Œy0 ıy�
ˇ̌l
0

dt �
t2Z

t1

lZ

0

�
m.x/Ry � ˛y00� ıy dx dt :

Since ıy vanishes at the limits it remains:

0 D �
t2Z

t1

lZ

0

�
m.x/Ry � ˛y00� ıy dx dt :

Apart from that ıy is freely choosable so that it must hold already

m.x/
@2y

@t2
D ˛@

2y

@x2

This is the required differential equation. For the special case of a homogeneous
mass distribution m.x/ D m=l we get the simple oscillation equation.

Solution 1.3.4 Lagrangian:

L D T � V D m

2
Pz2 �mgz

It holds for the given trajectory:

Pz.t/ D �gtC Pf
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Action functional:

S D
t2Z

t1

dt

�
m

2

��gtC Pf �2 �mg

�
�1
2

gt2 C f

��

D
t2Z

t1

dt

�
m

2
g2t2 �mgtPf C m

2
Pf 2 C 1

2
mg2t2 �mgf

�

D mg2
t2Z

t1

dt t2 C m

2

t2Z

t1

dt Pf .t/2 � mg

t2Z

t1

dt
�
tPf C f

�

Integration by parts:

t2Z

t1

dt tPf D tf
ˇ̌
ˇ
t2

t1„ƒ‚…
D 0 , because of f .t1/D f .t2/D 0

�
t2Z

t1

dt f :

We are left with:

S D mg2 � 1
3

�
t32 � t31

�C m

2

t2Z

t1

dt Pf .t/2 :

The first summand is independent of f .t/. The second is minimal at

Pf .t/ D 0 H) f .t/ D const :

Because of f .t1/ D f .t2/ D 0 it must therefore be:

f .t/ � 0

Solution 1.3.5 Take:

g.y; y0/ � f � y0 @f

@y0 I f D f .y; y0/

Therewith:

dg

dx
D @

@x
f

„ƒ‚…
D 0

� @

@x

�
y0 @f

@y0

�

„ ƒ‚ …
D 0

C@f

@y
y0 � y0 @2f

@y@y0 y0 C @f

@y0 y00 � @f

@y0 y00 � y0 @2f
@y02 y00

D y0
�
@f

@y
� @2f

@y@y0 y0 � @2f

@y02 y00
�



292 A Solutions of the Exercises

D y0
�
@f

@y
� d

dx

@f

@y0

�

D 0

According to Euler’s equation (1.124) the bracket is zero.
So we have:

g.y; y0/ D f � y0 @f

@y0 D const :

Solution 1.3.6

y.x/ W position of the rope in the xy-plane

F D
CdZ

�d

dx y.x/ W area between rope and x-axis

l D
2Z

1

dS D
2Z

1

p
dx2 C dy2 D

2Z

1

dx
p
1C y02 W length of the rope !

Variational task:

ı .F � 	l/ D
CdZ

�d

dx
�

y.x/� 	
p
1C y02




„ ƒ‚ …
f D f .y;y0/

Preconditions of Exercise 1.3.5 are fulfilled:

f � y0 @f

@y0 D const

H) y � 	
p
1C y02 C 	 y02

p
1C y02

ŠD a D const

” y � 	p
1C y02 D a

Solving for y02:

.y � a/2 D 	2

1C y02 H) 1C y02 D 	2

.y � a/2

H) y02 D 	2

.y � a/2
� 1 D 	2 � .y � a/2

.y � a/2
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H) dy

dx
D
p
	2 � .y � a/2

y � a

H) dx D y � ap
	2 � .y � a/2

dy D d

dy

�
�
p
	2 � .y � a/2



dy

H) x � b D �
p
	2 � .y � a/2 I b D const :

It follows:

.x � b/2 C .y � a/2 D 	2 H) circle with radius 	 and its center at.b; a/

a, b and 	 from boundary points and constraint.

P1 W .�d � b/2 C .�a/2 D 	2
P2 W .d � b/2 C .�a/2 D 	2

Subtraction:

.dC b/2 � .d � b/2 D 0 ” 4db D 0 H) b D 0

H) a D
p
	2 � d2

Length of the rope:

l D
CdZ

�d

dx
p
1C y02

see above y � a D
p
	2 � x2 H) y0 D �xp

	2 � x2

H) 1C y02 D 1C x2

	2 � x2
D 	2

	2 � x2

H)
p
1C y02 D 	p

	2 � x2

Therewith it holds:

l D
CdZ

�d

dx
	p

	2 � x2
D 	

CdZ

�d

dx
d

dx
arcsin

x

	
D 2	 arcsin

d

	

H) 	 determined by l and d H) a is found!
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Solution 1.3.7

1. Potential energy of the cable in the earth’s gravitational field:

V D
2Z

1

dmgy D ˛g

2Z

1

dsy D ˛g

C.A=2/Z

�.A=2/
dx
p

dx2 C y02y :

Each type of curve which is admitted to the variation has its endpoints at 1 and 2
and possesses, to begin with, a firmly given length L:

L D
2Z

1

ds D
C.A=2/Z

�.A=2/
dx
p
1C y02 : (A.4)

This constraint is included in the variation as in Exercise 1.3.6 by a Lagrange
multiplier 	:

ıJ
ŠD 0 I J D

C.A=2/Z

�.A=2/
dx.˛gy � 	/

p
1C y02 :

The functional to be used in Euler’s equation,

f .x; y; y0/ D .˛gy � 	/
p
1C y02 � f .y; y0/

is not explicitly x-dependent. So we have according to Exercise 1.3.5:

f � y0 @f

@y0 D c D const :

That means:

.˛gy � 	/
p
1C y02 � .˛gy � 	/ y02

p
1C y02 D c

, c
p
1C y02 D ˛gy � 	

, y02 D .˛g y � 	/2
c2

� 1

, dx D dy
q

.˛gy�	/2
c2

� 1
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, x D
Z

dy
q

.˛gy�	/2
c2

� 1

, x D c

˛g

Z
dzp

z2 � 1
�

z D ˛g y � 	
c

�
:

Thus we have found:

x.y/ D c

˛g
arc cosh

�
˛gy � 	

c

�
C d :

The reversal yields the required curve form:

y.x/ D c

˛g
cosh

�˛g

c
.x � d/



C 	

˛g
:

This equation must be fulfilled by the suspension points .�A=2;H/ and
.CA=2;H/. Together with the constraint (A.4) this leads to three equations
of determination for the three still unknown quantities c, d and 	. Therewith the
energetically most convenient shape of curve of the cable for a given L is fixed.

2. With the solution y.x/ from part 1. for a given L we calculate the potential energy
V of the cable. From the minimum of V as a function of L we then get the optimal
length of the cable!

Section 1.4.4

Solution 1.4.1

L0 D L0 �q0; Pq0; t; ˛
� D L

�
q
�
q0; t; ˛

�
; Pq �q0; Pq0; t; ˛

�
; t
�
:

With this expression we calculate:

@L0

@˛
D

SX

j D 1

�
@L

@qj
� @qj

@˛
C @L

@Pqj
� @Pqj

@˛

�

D
SX

j D 1

��
d

dt

@L

@Pqj

�
@qj

@˛
C @L

@Pqj

d

dt

@qj

@˛

�

D d

dt

0

@
X

j

@L

@Pqj
� @qj

@˛

1

A :
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In the second step we have exploited the Lagrange equations of motion and the
continuous differentiability of the qj. This expression is valid for arbitrary ˛, i.e.
also for ˛ D 0:

@L0

@˛

ˇ̌
ˇ̌
˛D 0

D d

dt

0

@
X

j

@L

@Pqj
� @qj

@˛

1

A

˛D 0

:

According to the presumption, however, the Lagrangian shall be invariant with
respect to the transformation of coordinates. Therefore L0 can not explicitly depend
on ˛:

@L0

@˛

ˇ̌
ˇ̌
˛D 0

D 0 :

This yields immediately the Noether’s theorem:

I .q; Pq; t/ D
SX

j D 1

@L

@Pqj

@qj .q0; t; ˛/
@˛

ˇ̌
ˇ̌
˛D 0

D const :

According to that, each transformation that lets L to be invariant leads to a conserved
quantity.

Solution 1.4.2 Rotation around the z-axis ((1.320), Vol. 1):

0

@
x
y
z

1

A D
0

@
cos˛ sin ˛ 0

� sin˛ cos˛ 0
0 0 1

1

A

0

@
x0
y0
z0

1

A D
0

@
x0 cos˛ C y0 sin ˛
�x0 sin ˛ C y0 cos˛

z0

1

A :

˛ D 0 means the identical mapping. Further on it follows:

Px D Px0 cos˛ C Py0 sin ˛

Py D �Px0 sin˛ C Py0 cos˛

Pz D Pz0 :

So we have:

Px2 C Py2 C Pz2 D Px02 C Py02 C Pz02 :

Analogously one finds:

x2 C y2 D x02 C y02

z D z0 :
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The Lagrangian is thus invariant with respect to the here performed transformation
of coordinates:

L .q; Pq/ D L
�
q0; Pq0� :

Therewith the preconditions for the Noether’s theorem from Exercise 1.4.1 are
fulfilled.
For the calculation of the integral of motion we need from Exercise 1.4.1:

@x .q0; ˛/
@˛

D �x0 sin ˛ C y0 cos˛ D y

@y .q0; ˛/
@˛

D �x0 cos˛ � y0 sin ˛ D �x

@z

@˛
D 0 :

Hence we find the following conserved quantity,

I D @L

@Px � yC
@L

@Py � .�x/ D mPxy � mPyx D px � y � py � x D Lz D const :

which turns out to be the z-component of the angular momentum!

Solution 1.4.3

1. In this case, too, it holds of course as in Exercise 1.4.1:

@L0

@˛
D d

dt

0

@
X

j

@L

@Pqj
� @qj

@˛

1

A :

However, it is now:

@L0

@˛
D @

@˛

d

dt
f
�
q0; t; ˛

� D d

dt

@

@˛
f
�
q0; t; ˛

�
:

The integral of motion therefore reads:

bI .q; Pq; t/ D
SX

j D 1

@L

@Pqj

@qj .q0; t; ˛/
@˛

ˇ̌
ˇ̌
˛D 0

� @

@˛
f
�
q0; t; ˛

�ˇ̌ˇ̌
˛D 0

D const :

2.

L.x; Px/ D m

2
Px2 � mgx :
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The Galilean transformation

x �! x0 D xC ˛t

fulfills the preconditions which we had to require. With Px D Px0 � ˛ it follows for
the ‘new’ Lagrangian:

L0 �x0; Px0; t; ˛
� D m

2

�Px0 � ˛�2 �mg
�
x0 � ˛t

� D L
�
x0; Px0�C d

dt
f
�
x0; t; ˛

�
:

Thereby we have defined:

d

dt
f
�
x0; t; ˛

� D �˛mPx0 C m

2
˛2 Cmg˛t

Õ f
�
x0; t; ˛

� D �˛mx0 C m

2
˛2tC 1

2
mg˛t2

Õ @f

@˛

ˇ̌
ˇ̌
˛D 0

D �mxC 1

2
mgt2 :

With

@L

@Px �
@x

@˛

ˇ̌
ˇ̌
˛D 0

D �mPxt

and part 1. it follows:

bI .x; Px; t/ D �mPxtC mx � 1
2

mgt2 D m

�
x � Pxt � 1

2
gt2
�
:

That is the well-known result for the free fall. With

x.t/ D x0 C v0t � 1
2

gt2

Px.t/ D v0 � gt

thus

bI D mx0

is surely a conserved quantity, even though a trivial one.
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Section 2.1.1

Solution 2.1.1

1.

f .x/ D ˛ x2 H) u D df

dx
D 2˛ x H) x D u

2˛

H) f .x/ � x
df

dx
D �˛ x2

H) g.u/ D � u2

4˛
:

2.

f .x; y/ D ˛ x2y3 H) v D
�
@f

@y

�

x

D 3˛ x2y2

H) y2 D v

3˛x2

H) f .x; y/ � y

�
@f

@y

�

x

D �2˛ x2y3 D �2˛ x2
v3=2

.3˛ x2/3=2

H) g.x; v/ D �2
3

v3=2

.3˛ x2/1=2
:

Solution 2.1.2

1.

f .x/ D ˛ .xC ˇ/2

H) u D df

dx
D 2˛ .xC ˇ/ H) x D u

2˛
� ˇ

H) f .x/� x
df

dx
D ˛

� u

2˛


2 � u
� u

2˛
� ˇ




D ˇu � u2

4˛

D g.u/

Back-transformation:

g.u/ D ˇu � u2

4˛

H) �x D dg

du
D ˇ � u

2˛
H) u D .ˇ C x/ 2˛
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H) g.u/� u
dg

du
D ˇu � u2

4˛
� ˇuC u2

2˛

D u2

4˛
D ˛ .ˇ C x/2

D f .x/

2.

f .x; y/ D ˛x3y5

H) v D
�
@f

@y

�

x

D 5˛x3y4 H) y4 D v

5˛x3

H) f .x; y/� y

�
@f

@y

�

x

D ˛x3y5 � 5˛x3y5

D �4˛x3y5

H) g.x; v/ D �4˛x3
v5=4

.5˛x3/5=4

Back-transformation:

y D �
�
@g

@v

�

x

D C5˛x3
v1=4

.5˛x3/5=4

H) v5=4 D y5
�
5˛x3

�5=4

H) g.x; v/ � v
�
@g

@v

�

x

D �4˛x3
v5=4

.5˛x3/5=4
C 5˛x3

v5=4

.5˛x3/5=4

D ˛x3
v5=4

.5˛x3/5=4

D ˛x3y5 D f .x; y/

Solution 2.1.3

1. Legendre transformation with S as active variable:

F.T;V/ D U � S

�
@U

@S

�

V

D U � TS :
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By the differential one recognizes that F is a function of T and V:

dF D dU � SdT � TdS D �SdT � pdV :

Partial derivatives:
�
@F

@T

�

V

D �S I
�
@F

@V

�

T

D �p :

2. Legendre transformation with V as active variable:

H.S; p/ D U � V

�
@U

@V

�

S

D U C pV :

By the differential one recognizes that H is a function of S and p:

dH D dU C pdV C Vdp D TdSC Vdp :

Partial derivatives:
�
@H

@S

�

p

D T I
�
@H

@p

�

S

D V :

3. Legendre transformation with S and V as active variables:

G.T; p/ D U � S

�
@U

@S

�

V

� V

�
@U

@V

�

S

D U � TSC pV :

By the differential one recognizes that G is a function of T and p:

dG D dU � SdT � TdSC pdV C Vdp D �SdT C Vdp :

Partial derivatives:
�
@G

@T

�

p

D �S I
�
@G

@p

�

T

D V :

Section 2.2.3

Solution 2.2.1 Given

H D H.q;p; t/ I Pqj D @H

@pj
I Ppj D �@H

@qj
:
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For the differential dL of the Lagrangian,

L.q; Pq; t/ D
SX

j D 1

pj
@H

@pj
� H D

SX

j D 1

pj Pqj � H ;

one finds with the Hamilton’s equations of motion:

dL D
SX

j D 1

�
pjd Pqj C dpj Pqj � @H

@qj
dqj � @H

@pj
dpj

�
� @H

@t
dt

D
SX

j D 1

�
pjd Pqj C Ppjdqj

� � @H

@t
dt :

For the total differential dL it must of course also be valid:

dL D
SX

j D 1

�
@L

@qj
dqj C @L

@Pqj
d Pqj

�
C @L

@t
dt :

The comparison yields:

pj D @L

@Pqj
I Ppj D @L

@qj
I @L

@t
D �@H

@t
:

From the first two equations we get:

Ppj D d

dt

@L

@Pqj
D @L

@qj
; j D 1; l : : : ; S :

That was to be shown.

Solution 2.2.2

total mass: M D m1 C m2 ;

reduced mass: � D .m1 m2/ =M ;

relative coordinate: r D r1 � r2 ;
center of mass: R D 1

M .m1r1 C m2r2/ D .X;Y;Z/ ;
generalized coordinates: X;Y;Z; r; #; ' :

Lagrangian according to (1.164) (Fig. A.8):

L D 1

2
M. PX2 C PY2 C PZ2/C 1

2
�.Pr2 C r2 P#2 C r2 sin2 # P'2/� V.r/ :



A Solutions of the Exercises 303

Fig. A.8

X;Y;Z; ' are cyclic. Therefore:

Px D M PX D const D Cx ;

Py D M PY D const D Cy ;

Pz D M PZ D const D Cz ;

P' D � r2 sin2 # P' D const D C' :

Legendre transformation with respect to PX; PY; PZ; P' W

R
�

X;Y;Z; r; #; '; Pr; P#;Px;Py;Pz; p'



D 1

2M

�
C2

x C C2
y C C2

z

�C C2
'

2� r2 sin2 #
� 1
2
�
�
Pr2 C r2 P#2



C V.r/

D R
�

r; #; Pr; P#
ˇ̌
ˇ Cx;Cy;Cz;C'



:

Equations of motion:
r; # non-cyclic:

d

dt

@R

@Pqj
D @R

@qj

qj D r W �� Rr D � C2
'

� r3 sin2 #
� � r P#2 C @V

@r
;

qj D # W �� r2 R# D � C2
' cos#

� r2 sin3 #

X;Y;Z; ' cyclic:

PX D @R

@Px
D @R

@Cx
D Cx

M
;
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PY D @R

@Py
D @R

@Cy
D Cy

M
;

PZ D @R

@Pz
D @R

@Cz
D Cz

M
;

P' D @R

@p'
D @R

@C'
D C'
� r2 sin2 #

;

PPx D �@R

@X
D 0 I PPy D �@R

@Y
D 0 I PPz D �@R

@Z
D 0 ;

Pp' D �@R

@'
D 0 :

Solution 2.2.3

1.

r D .x; y/ D �.cos'; sin'/ D �e� Õ r D jrj D �
Pr D P�.cos'; sin'/C � P'.� sin '; cos'/ D P�e� C � P' e' :

Kinetic energy:

T D m

2
Pr2 D m

2

� P�e� C � P'e'
�2 D m

2

� P�2 C �2 P'2� :

Potential energy:

F.r/ D �
�
˛ C ˇ

r

�
r D �.˛�C ˇ/e�

ŠD �rV
((1.388), Vol.1)D �

�
e�
@V

@�
C e'

1

�

@V

@'

�

Õ @V

@�
D ˛�C ˇ I @V

@'
� 0

Õ V.�/ D 1

2
˛�2 C ˇ�C � :

The constant � is unimportant.
2. Lagrangian:

L D T � V D m

2

� P�2 C �2 P'2�� 1
2
˛�2 � ˇ�
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Generalized momenta:

p� D @L

@ P� D m P� I p' D @L

@ P' D m�2 P' :

3.

P� D p�
m
I P' D p'

m�2

Õ L?.�; '; p�; p'/ D 1

2m

 
p2� C

p2'
�2

!
� 1
2
˛�2 � ˇ� :

Hamilton function:

H D p� P�C p' P' � L? D 1

2m

 
p2� C

p2'
�2

!
C 1

2
˛�2 C ˇ� :

Integrals of motion:

• @H
@t D 0 and scleronomic constraints (planar motion) Õ

H D T C V D E D const energy conservation :

• @H
@'
D 0Õ ': cyclic Õ

p' D m�2 P' D const angular-momentum conservation :

Solution 2.2.4

1. In Exercise 1.2.5 we have calculated the Lagrangian:

L D 1

2
m
� P�2 C �2 P'2 C Pz2� � V0 ln

�

�0
:

The generalized momenta then read:

p� D @L

@ P� D m P� I p' D @L

@ P' D m �2 P' I pz D @L

@z
D m Pz

H) H D p� P�C p' P' C pzPz � L D 1

2
m. P�2 C �2 P'2 C Pz2/C V0 ln

�

�0
:
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This yields the Hamilton function:

H D 1

2m

 
p2� C

p2'
�2
C p2z

!
C V0 ln

�

�0
:

2. Hamilton’s equations of motion:

Pp� D �@H

@�
D p2'

m �3
� V0
�
;

Pp' D �@H

@'
D 0 I Ppz D �@H

@z
D 0 ;

P� D @H

@p�
D p�

m
I P' D @H

@p'
D p'

m �2
I Pz D @H

@pz
D pz

m
;

@H

@t
D 0 :

3. Conservation laws:
'; z are cyclic. Consequently:

p' D m �2 P' D const W angular-momentum conservation law ;
pz D m Pz D const W principle of conservation of linear momentum :

@H
@t D 0 and @

@t r.q; t/ D 0. From that it follows:

H D E D const W energy conservation law :

Solution 2.2.5

1. †: rest system of coordinates
constraints:
one-dimensional motion H) z D y D 0 H) q D x
spring ‘relaxed’ for x0 D d
kinetic energy:

T D m

2
Px2

potential energy:

V D k

2

�
x0 � d

�2 D k

2
.x � v0t � d/2



A Solutions of the Exercises 307

Lagrangian:

L D T � V D m

2
Px2 � k

2
.x � v0t � d/2

generalized momentum:

px D @L

@Px D mPx H) Px D px

m

H) L�.x; px; t/ D p2x
2m
� k

2
.x � v0t � d/2

H) Hamilton function:

H D pxPx � L D p2x
m
� L�

D p2x
2m
C k

2
.x � v0t � d/2

obviously:

H D T C V D E

but:

@L

@t
¤ 0 I @H

@t
¤ 0

H) H is not a conserved quantity
Equations of motion:

Px D @H

@px
D px

m
H) Ppx D mRx

Ppx D �@H

@x
D �k .x � v0t � d/

H) mRxC kx D k .v0tC d/

2. †0: co-moving system of coordinates

x0 D x � v0t H) Px0 D Px � v0
H) L

�
x0; Px0� D m

2

�Px0 C v0
�2 � k

2

�
x0 � d

�2

H) p0
x D

@L

@Px0 D m
�Px0 C v0

�
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H) L
� �

x0; p0
x

� D p02
x

2m
� k

2

�
x0 � d

�2

H) H D p0
xPx0 � L

� �
x0; p0

x

�

D p0
x

�
p0

x

m
� v0

�
� p02

x

2m
C k

2

�
x0 � d

�2

H) H D p02
x

2m
� p0

xv0 C
k

2

�
x0 � d

�2

Reverse situation compared to that from part 1.:

H ¤ E D p02
x

2m
C k

2

�
x0 � d

�2

H is not the total energy, but:

@H

@t
D 0 H) H W integral of motion

Equations of motion:

Px0 D @H

@p0
x

D p0
x

m
� v0

H) p0
x D m

�Px0 C v0
� H) Pp0

x D mRx0

Pp0
x D �

@H

@x0 D �k
�
x0 � d

�

Combination:

mRx0 C kx0 D kd

That is the undamped harmonic oscillator with a time-independent external
force!

Solution 2.2.6 The system is conservative and subject to holonomic-scleronomic
constraints. Thus the Hamilton function is identical to the total energy and an
integral of motion:

H D T C V D E D const :

All forces are conservative:

F1 D Ck .x2 � x1/ ex D �r1V
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F2 D Ck .x3 � x2/ ex � k .x2 � x1/ ex D �r2V
F3 D �k .x3 � x2/ ex D �r3V :

This leads to the potential energy:

V D 1

2
k
�
.x1 � x2/

2 C .x3 � x2/
2


:

Kinetic energy:

T D 1

2
m1

�Px21 C Px23
�C 1

2
m2 Px22 :

Lagrangian:

L D T � V D 1

2
m1

�Px21 C Px23
�C 1

2
m2 Px22 �

1

2
k
�
.x1 � x2/

2 C .x3 � x2/
2


:

Generalized momenta:

p1 D @L

@Px1 D m1 Px1 Õ Px1 D p1
m1

p2 D @L

@Px2 D m2 Px2 Õ Px2 D p2
m2

p3 D @L

@Px3 D m1 Px3 Õ Px3 D p3
m1

:

Inserting the momenta into the Lagrangian:

L� .x1; x2; x3; p1; p2; p3/ D 1

2m1

�
p21 C p23

�C 1

2m2

p22 �
1

2
k
�
.x1 � x2/

2 C .x3 � x2/
2


:

Hamilton function:

H D
3X

j D 1

pj Pxj � L� .x1; x2; x3; p1; p2; p3/

D 1

2m1

�
p21 C p23

�C 1

2m2

p22 C
1

2
k
�
.x1 � x2/

2 C .x3 � x2/
2


:

Equations of motion:

•

Px1 D @H

@p1
D p1

m1
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Pp1 D � @H

@x1
D �k .x1 � x2/

Õ Rx1 D 1

m1

Pp1 D � k

m1

.x1 � x2/

H)

Rx1 C k

m1

.x1 � x2/ D 0 : (A.5)

•

Px2 D @H

@p2
D p2

m2

Pp2 D � @H

@x2
D k .x1 � x2/C k .x3 � x2/

Õ Rx2 D 1

m2

Pp2 D k

m2

.x1 � 2x2 C x3/

H)

Rx2 C k

m2

.�x1 C 2x2 � x3/ D 0 : (A.6)

•

Px3 D @H

@p3
D p3

m1

Pp3 D � @H

@x3
D �k .x3 � x2/

Õ Rx3 D 1

m1

Pp3 D � k

m1

.x3 � x2/

H)

Rx3 C k

m1

.x3 � x2/ D 0 : (A.7)

Solution approach:

xi.t/ D ˛i ei!t i D 1; 2; 3 :
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This we insert into (A.5)–(A.7) getting therewith a homogeneous system of
equations for the coefficients ˛i:

�˛1!2 C k

m1

.˛1 � ˛2/ D 0

�˛2!2 C k

m2

.2˛2 � ˛1 � ˛3/ D 0

�˛3!2 C k

m1

.˛3 � ˛2/ D 0 :

A non-trivial solution requires a vanishing secular determinant:

ˇ̌
ˇ̌
ˇ̌
ˇ

�!2 C k
m1

� k
m1

0

� k
m2

�!2 C 2 k
m2

� k
m2

0 � k
m1

�!2 C k
m1

ˇ̌
ˇ̌
ˇ̌
ˇ

ŠD 0 :

That is equivalent to

�
�!2 C k

m1

�2 �
�!2 C 2 k

m2

�
� 2k2

m1m2

�
�!2 C k

m1

�
ŠD 0 :

One of the possible solutions (eigen-frequencies) can be directly read off:

!1 D
s

k

m1

: (A.8)

The other solutions follow from

�
�!2 C k

m1

� �
�!2 C 2 k

m2

�
� 2k2

m1m2

ŠD 0 ;

or

!4 � !2
�

k

m1

C 2 k

m2

�
ŠD 0 :

The other eigen-frequencies are then:

!2 D 0 (A.9)

!3 D
s

k

�
1

m1

C 2

m2

�
: (A.10)
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Note that the negative roots in (A.8) and (A.10) are mathematically possible
solutions but physically not allowed because the frequencies cannot be negative.
In order to find the amplitudes ˛i we insert the solutions (A.8)–(A.10) into the
homogeneous system of equations.

• ! D !1
One finds immediately:

˛2 D 0 I ˛1 D �˛3 :

The middle atom is at rest while the two outer atoms oscillate in opposing phases
with equal amplitudes.

• ! D !2
Again the solution is simple:

˛1 D ˛2 D ˛3 :

This corresponds to a simple (in phase) translation of the three atoms without any
relative motion.

• ! D !3
It holds:

�˛1k
�
1

m1

C 2

m2

�
C k

m1

.˛1 � ˛2/ D 0 Õ ˛1 D �1
2

m2

m1

˛2 :

The second equation of the homogeneous system of equations reads for ! D !3:

�˛2k
�
1

m1

C 2

m2

�
C k

m2

.2˛2 � ˛1 � ˛3/ D 0 Õ ˛1 D ˛3 :

The two outer atoms oscillate in phase with equal amplitudes, while the middle
atom oscillates in opposing phase to the two outer atoms, and with modified
amplitude.

The general oscillation is then a superposition of the three fundamental oscillations
discussed here.

Solution 2.2.7

†0: inertial system; axes: x0; y0; z0
†: accelerated (rotating) non-inertial system; axes: x; y; z

rotation around the z D z0-axis with ! D !ez

Equation of motion ((2.77), Vol. 1):

mRr D F �m.! � .! � r//„ ƒ‚ …
centrifugal force

� 2m.! � Pr/„ ƒ‚ …
Coriolis force
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in addition:

F D �rV

Does there exist a potential Vtot from which even the pseudo forces can be derived?
If yes, how does it look like?

(a) Centrifugal force:

F.cf / D �m.! � .! � r// D �m
˚
!.! � r/� r!2

�

D �m
˚
!2zez � !2r

�

D m!2
�
xex C yey

�

H) V.cf / D �m!2

2

�
x2 C y2

�

Verification:

F.cf / D �
�

ex
@

@x
C ey

@

@y

�
V.cf / D m!2

�
xex C yey

�

(b) Coriolis force

F.co/ D �2m .! � Pr/ D 2m .Pr �!/

compare with the Lorentz force:

2m  ! Oq charge

!  ! B D rot A

H) generalized potential according to (1.78):

V.co/ D �2mPr � A

with:

rot A D ! H) A D !

2
.�y; x; 0/ D 1

2
.! � r/

H) V.co/ .r; Pr; t/ D �m .Pr � .! � r//

D �m! .�PxyC Pyx/

D �m! .xPy � yPx/
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H) generalized Lagrangian:

L D m

2

�Px2 C Py2 C Pz2� � V.�/ � V.cf / � V.co/

D T � V
�p

x2 C y2


C m!2

2

�
x2 C y2

�Cm! .xPy � yPx/

1. Cartesian coordinates:
generalized momenta:

px D @L

@Px D mPx � m!y H) Px D px

m
C !y

py D @L

@Py D mPyC m!x H) Py D py

m
� !x

pz D @L

@Pz D mPz H) Pz D pz

m

L� D m

2

�px

m
C !y


2 C m

2

�py

m
� !x


2 C p2z
2m
C m!2

2

�
x2 C y2

�

Cm!
�pyx

m
� !x2 � pxy

m
� !y2



� V

�p
x2 C y2




D 1

2m

�
p2x C p2y C p2z

�C �px!y � py!x
�C m

2
!2
�
x2 C y2

�

Cm

2
!2
�
x2 C y2

� �m!2
�
x2 C y2

�C ! �pyx � pxy
� � V

�p
x2 C y2




L� D 1

2m

�
p2x C p2y C p2z

�� V
�p

x2 C y2



With

Pxpx C Pypy C Pzpz D 1

m

�
p2x C p2y C p2z

�C !ypx � !xpy

it follows then for the Hamilton function:

H D 1

2m

�
p2x C p2y C p2z

� � ! �xpy � ypx
�C V

�p
x2 C y2
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Equations of motion:

Px D @H

@px
D px

m
C !y I Ppx D �@H

@x
D !py � @V

@x

Py D @H

@py
D py

m
� !x I Ppy D �@H

@y
D �!px � @V

@y

Pz D @H

@pz
D pz

m
I Ppz D �@H

@z
D 0

z is cyclic, pz therefore a conserved quantity!
2. Cylindrical coordinates:

x D � cos' I y D � sin ' I z D z

H) Px D P� cos' � � P' sin ' I Py D P� sin' C � P' cos'

H) xPy � yPx D � P� cos' sin ' C �2 P' cos2 '

�� P� cos' sin ' C �2 P' sin2 '

D �2 P'

H) Lagrangian:

L D m

2

� P�2 C �2 P'2 C Pz2� � V.�/C 1

2
m!2�2 C m!�2 P'

generalized momenta:

p� D @L

@ P� D m P� H) P� D p�
m

p' D @L

@ P' D m�2 P' C m!�2 H) P' D p'
m�2
� !

pz D @L

@Pz D mPz H) Pz D pz

m

therewith:

L� D m

2

 
p2�
m2
C �2

�
p'

m�2
� !

�2
C p2z

m2

!

�V.�/C 1

2
m!2�2 C m!�2

�
p'

m�2
� !

�
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D 1

2m

 
p2� C

p2'
�2
C p2z

!
� �2 p'!

�2

Cm

2
�2!2 C 1

2
m!2�2 C !p' � m!2�2 � V.�/

D 1

2m

 
p2� C

p2'
�2
C p2z

!
� V.�/

in addition:

p� P�C p' P
 C pzPz D 1

m

 
p2� C

p2'
�2
C p2z

!
� p'!

H)

H D 1

2m

 
p2� C

p2'
�2
C p2z

!
� !p' C V.�/

Equations of motion:

P� D @H

@p�
D p�

m
I Pp� D �@H

@�
D p2'

m�3
� @V

@�

P' D @H

@p'
D p'

m�2
� ! I Pp' D �@H

@'
D 0

Pz D @H

@pz
D pz

m
I Ppz D �@H

@z
D 0

H) z and ' are cyclic
H) 2 conservation laws:

p' D m�2 P' C m!�2 D const I pz D mPz D const :

Solution 2.2.8 The motion is restricted to a plane, e.g. the xy-plane, without further
constraints. As generalized coordinates plane polar coordinates r; ' are therefore
recommendable:

x D r cos' I y D r sin ' :

The generalized potential U of the non-conservative force F has been determined in
Exercise 1.2.21 having led there to the Lagrangian:

L D T �U D 1

2
m
�Pr2 C r2 P'2� � ˛

r

�
1C Pr

2

c2

�
:
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If one sums up the velocity-dependent terms to a ‘generalized’ kinetic energy T?

then it can also be written:

L D T?.r; '; Pr; P'/ � V.r/

T?.r; '; Pr; P'/ D 1

2

�
m � 2˛

rc2

�
Pr2 C 1

2
mr2 P'2

V.r/ D ˛

r
:

Generalized momenta:

pr D @L

@Pr D
@T?

@Pr D
�

m � 2˛
rc2

�
Pr Õ Pr D pr

m � 2˛
rc2

p' D @L

@ P' D
@T?

@ P' D mr2 P' Õ P' D p'
mr2

pr Pr D p2r
m � 2˛

rc2

I p' P' D
p2'

mr2
:

Lagrangian as function of the coordinates and the momenta:

L?.r; '; pr; p'/ D 1

2

�
m � 2˛

rc2

�  
pr

m � 2˛
rc2

!2
C 1

2
mr2

� p'
mr2


2 � ˛
r

D p2r
2
�
m � 2˛

rc2

� C p2'
2mr2

� ˛
r

Hamilton function:

H.r; '; pr; p'/ D prPrC p' P' � L?.r; '; pr; p'/ D T?.r; '; pr; p'/C V.r/

D p2r
2
�
m � 2˛

rc2

� C p2'
2mr2

C ˛

r
:

Section 2.4.6

Solution 2.4.1

1. For arbitrary phase functions f .q;p; t/ we have according to (2.114):

˚
f ; pj

� D @f

@qj
:
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That we use here:

fLx; pxg D @

@x

�
y pz � z py

� D 0 ;
˚
Lx; py

� D @

@y

�
y pz � z py

� D pz ;

fLx; pzg D @

@z

�
y pz � z py

� D �py :

Analogously one finds the other brackets:

˚
Li; pj

� D "ijlpl ;

where .i; j; l/ D .x; y; z/ and cyclic, "ijl W fully antisymmetric unit tensor of third
rank ((1.192),Vol. 1).

2.

fLx;Lxg D
˚
Ly;Ly

� D fLz;Lzg D 0 ;
˚
Lx;Ly

� D ˚
y pz � z py; z px � x pz

�

D fy pz; z pxg �
˚
z py; z px

�
„ ƒ‚ …

D 0

�fy pz; x pzg„ ƒ‚ …
D 0

C ˚z py; x pz
�

D y fpz; zg px C x fz; pzg py D �y px C x py

D Lz :

The other brackets are calculated completely analogously:

˚
Li;Lj

� D "ijl Ll ;

where .i; j; l/ D .x; y; z/ and cyclic.

Solution 2.4.2

1. Use Exercise 2.4.1, part 2.:

˚
L2;Lx

� D ˚
L2x C L2y C L2z ;Lx

� D ˚L2y C L2z ;Lx
�

D LyfLy;Lxg C fLy;LxgLy C LzfLz;Lxg C fLz;LxgLz

D �LyLz � LzLy C LzLy C LyLz

D 0
analogously:

˚
L2;Ly

� D ˚
L2;Lz

� D 0
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2. The statement follows directly from Poisson’s theorem. As an example the case
may be investigated that Lx and Ly are integrals of motion. Because of

@Lx

@t
D @Ly

@t
D 0

Lx and Ly are indeed integrals of motion if it holds:

fH;Lxg D fH;Lyg D 0

Jacobi identity:

0 D fLx; fLy;Hgg C fH; fLx;Lygg C fLy; fH;Lxgg
D 0C fH; fLx;Lygg C 0
D fH;Lzg

With

@Lz

@t
D 0

we have found that Lz, too, is an integral of motion.

Solution 2.4.3

1. Particle without constraint in the central field:

V.r/ D V.r/ :

Spherical coordinates are obviously convenient. The Hamilton function was
already derived in 2.45:

H D 1

2m

 
p2r C

p2#
r2
C p2'

r2 sin2 #

!
C V.r/ :

For the momenta thereby Eq. (2.44) holds:

pr D @L

@Pr D mPr

p# D @L

@ P# D mr2 P#

p' D @L

@ P' D mr2 sin2 # P' :
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Of course one recognizes already here that ' is cyclic, the corresponding
momentum is therefore an integral of motion.

2. Because of

Lz D xpy � ypx D m.xPy � yPx/
D m

�
r sin# cos'

�
Pr sin# sin ' C r P# cos# sin ' C r sin# P' cos'




� r sin# sin '
�
Pr sin# cos' C r P# cos# cos' � r sin# P' sin '





D m
�
r2 sin2 # P' cos2 ' C r2 sin2 # P' sin2 '

�

D mr2 sin2 # P'

we have:

p' D Lz :

Poisson bracket:

˚
H;Lz

� D ˚H; p'
� D @H

@'
D 0

Lz is not explicitly time-dependent: @Lz=@t D 0. According to (2.121) Lz is
therewith an integral of motion!

Solution 2.4.4

1.

@

@t
f f ; gg D @

@t

SX

j D 1

�
@f

@qj

@g

@pj
� @f

@pj

@g

@qj

�

D
SX

j D 1

�
@2f

@t @qj

@g

@pj
C @f

@qj

@2g

@t @pj
� @2f

@t @pj

@g

@qj
� @f

@pj

@2g

@t @qj

�

D
SX

j D 1


�
@

@qj

@f

@t

�
@g

@pj
�
�
@

@pj

@f

@t

�
@g

@qj
C @f

@qj

�
@

@pj

@g

@t

�

� @f

@pj

�
@

@qj

@g

@t

��

D
�
@f

@t
; g

	
C
�

f ;
@g

@t

	
:
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2. Equation of motion:

d

dt
f f ; gg D ff f ; gg;Hg C @

@t
f f ; gg

D �ffg;H; g; f g � ffH; f g; gg C
�
@f

@t
; g

	
C
�

f ;
@g

@t

	
(Jacobi identity)

D
�

f ; fg;Hg C @g

@t

	
C
�
f f ;Hg C @f

@t
; g

	

D
�

f ;
dg

dt

	
C
�

df

dt
; g

	
:

3.

f f ; g hg D
SX

j D 1

�
@f

@qj

@

@pj
.g h/� @f

@pj

@

@qj
.g h/

�

D
SX

j D 1

�
h
@f

@qj

@g

@pj
C g

@f

@qj

@h

@pj
� g

@f

@pj

@h

@qj
� h

@f

@pj

@g

@qj

�

D h
SX

j D 1

�
@f

@qj

@g

@pj
� @f

@pj

@g

@qj

�
C g

SX

j D 1

�
@f

@qj

@h

@pj
� @f

@pj

@h

@qj

�

D h f f ; gg C g f f ; hg :

Solution 2.4.5

1. For an arbitrary phase function f .q;p; t/ Eqs. (2.113) and (2.114) are valid:

f f ; pjg D @f

@qj

f f ; qjg D � @f

@pj

With A D A.r;p/ and L D r � p we then have:

Li D
X

jk

"ijkxjpk

fLi;Amg D
X

jk

"ijkfxjpk;Amg
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D
X

jk

"ijk
�
xjfpk;Amg C fxj;Amgpk

�

D
X

jk

"ijk

�
@Am

@pj
pk � xj

@Am

@xk

�

2. In particular for xm we have:

fLi; xmg D
X

jk

"ijk

�
@xm

@pj
pk � xj

@xm

@xk

�
D
X

jk

"ijk
��xjımk

�

D
X

j

"imj xj

3. Analogously:

fLi; pmg D
X

jk

"ijkımjpk

D
X

k

"imk pk

4. For the components of the angular momentum we have with the formula from
part 1.:

fLi;Ljg D
X

kl

"ikl

�
@Lj

@pk
pl � xk

@Lj

@xl

�

Insertion of

Lj D
X

mn

"jmn xm pn

@Lj

@pk
D
X

mn

"jmn xmınk D
X

m

"jmk xm D �
X

m

"jkm xm

@Lj

@xl
D
X

mn

"jmnıml pn D
X

m

"jlm pm

yields:

fLi;Ljg D �
X

klm

"ikl
�
"jkmxmpl C "jlmxkpm

�
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With

X

k

"ikl"jkm D ıijılm � ıimılj

X

l

"ikl"jlm D �ıijıkm C ıimıkj

we have:

fLi;Ljg D �ıij

X

l

xlpl C xipj C ıij

X

k

xkpk � xjpi

D xipj � xjpi

D
X

k

"ijkLk

5. With

A2 D
X

m

A2m

it is:

fLi;A2g D 2Pjkm "ijkAm

�
@Am
@pj

pk � xj
@Am
@xk




Solution 2.4.6

1. The two-particle system possesses six degrees of freedom and is therefore
described by six Cartesian coordinates (x˛1; x˛2; x˛3I˛ D 1; 2) and the corre-
sponding six momenta (p˛1; p˛2; p˛3I˛ D 1; 2). The angular momenta are:

L˛ D L˛ .x˛;p˛/ ˛ D 1; 2 :

Then the Poisson bracket reads:

fL1;L2g D
2X

˛D 1

3X

j D 1

�
@L1 .x1;p1/

@x˛j

@L2 .x2;p2/
@p˛j

� @L1 .x1;p1/
@p˛j

@L2 .x2;p2/
@x˛j

�
:

For each ˛ D 1; 2 the two products within the bracket contain one factor which
is zero. For ˛ D 1 in both products the second factor, for ˛ D 2 the first factor is
zero. That proves the assertion!



324 A Solutions of the Exercises

2. We use the result of Exercise 2.4.1 and that from part 1.:

˚
L11;L1 � L2

� D
X

j

˚
L11;L1jL2j

� D
X

j

˚
L11;L1j

�
L2j

D
X

jk

"1jkL1kL2j D
X

jk

"1jkL2jL1k

D .L2 � L1/1 D � .L1 � L2/1 :

That is also valid for the two other components so that the assertion is proven:

˚
L1;L1 � L2

� D ��L1 � L2
�
:

3. Proof by complete induction with the result from part 2. as induction base. The
assertion may be true for n D k. We draw the conclusion for kC 1:

n
L1; .L1 � L2/kC1o D ˚

L1; .L1 � L2/k
�
.L1 � L2/

C .L1 � L2/k fL1; .L1 � L2/g
D �k .L1 � L2/k�1 .L1 � L2/ .L1 � L2/

� .L1 � L2/k .L1 � L2/

D �.kC 1/ .L1 � L2/k .L1 � L2/ :

That proves the assertion!

Solution 2.4.7

1. Equation of motion for the observable f :

df

dt
D f f ;Hg C @f

@t

With

f integral of motion ” f f ;Hg D �@f

@t

and

H integral of motion ” fH;Hg D �@H

@t
” @H

@t
D 0
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we have then:
�
@f

@t
;H

	
D @

@t
f f ;Hg �

�
f ;
@H

@t

	

D � @
@t

�
@f

@t

�

H) @f

@t
integral of motion

2.

H D p2

2m
H) @H

@t
D 0 H) H integral of motion

f f ;Hg D
�

q � pt

m
;

p2

2m

	
D
�

q;
p2

2m

	
�
�

pt

m
;

p2

2m

	

D 1

2m

˚
q; p2

� � t

2m2

˚
p; p2

�

D 1

2m

�
p fq; pg„ƒ‚…

D 1

C fq; pg„ƒ‚…
D 1

p


� t

2m2

�
p fp; pg„ƒ‚…

D 0

C fp; pg„ƒ‚…
D 0

p



D p

m
D �@f

@t

Although explicitly time-dependent f turns out to be an integral of motion. Thus
@f =@t, too, should be an integral of motion:

�
@f

@t
;H

	
D
�
� p

m
;

p2

2m

	
D � 1

2m2

˚
p; p2

�
„ƒ‚…

D 0

D 0 D �@
2f

@t2

Therewith, @f =@t is an integral of motion.

Solution 2.4.8 Hamilton function:

H D p2

2m
C 1

2
m!2q2 :

We exploit the linearity of the Poisson bracket in order to calculate:

fH; f g D
�

p2

2m
C 1

2
m!2q2; p sin!t �m!q cos!t

	

D
�

p2

2m
; p sin!t

	
�
�

p2

2m
;m!q cos!t

	
C
�
1

2
m!2q2; p sin!t
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�
�
1

2
m!2q2;m!q cos!t

	

D 1

2m
sin!t

˚
p2; p

�� 1
2
! cos!t

˚
p2; q

�C 1

2
m!2 sin!t

˚
q2; p

�

�1
2

m2!3 cos!t
˚
q2; q

�
:

Fundamental brackets (2.108) to (2.110) and product rule (2.118):

fp2; pg D p fp; pg„ƒ‚…
0

C fp; pg„ƒ‚…
0

p D 0

fp2; qg D p fp; qg„ƒ‚…
�1
C fp; qg„ƒ‚…

�1
p D �2p

fq2; pg D q fq; pg„ƒ‚…
C1
C fq; pg„ƒ‚…

C1
q D 2q

fq2; qg D q fq; qg„ƒ‚…
0

C fq; qg„ƒ‚…
0

q D 0 :

It remains:

fH; f g D ! cos!t � pCm!2 sin!t � q

On the other hand it is:

@f

@t
D p! cos!tC m!2q sin!t ) fH; f g D @f

@t
) df

dt
D 0

f .q; p; t/ is thus an integral of motion!
We confirm this statement by a direct calculation of the total time derivative of f ,

where we exploit at appropriate places Hamilton’s equations of motion:

df

dt
D Pp sin!t C p! cos!t �m! Pq cos!tC m!2q sin!t

D
�
�@H

@q

�
sin!tC p! cos!t �m!

�
@H

@p

�
cos!tC m!2q sin!t

D �m!2q sin!tC p! cos!t � p! cos!tC m!2q sin!t

D 0

Solution 2.4.9 Taylor expansion:

A.t/ D A.0/C 1

1Š
PA.0/ tC 1

2Š
RA.0/ t2 C l : : :
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Because of

@A

@t
D 0

it holds:

PA.0/ D fA.0/;Hg :

Because of

@H

@t
D 0

it is in addition

@

@t
fA.0/;Hg D 0 :

That means

RA.0/ D ffA.0/;Hg ;Hg :

This procedure can be continued leading eventually to:

A.t/ D A.0/C 1

1Š
fA.0/;Hg tC 1

2Š
ffA.0/;Hg ;Hg t2 C : : :

Section 2.5.6

Solution 2.5.1

1.

dF4 D
�
H � H

�
dtC

SX

j D 1

�
pjdqj � dpjqj � pjdqj C d Npj Nqj

�
:

One reads off:

@F4
@t
D H � H I @F4

@pj
D �qj I @F4

@Npj
D Nqj :

and solves

qj D �@F4
@pj
D qj .p; Np; t/
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for Npj getting therewith the first part of the transformation:

Npj D Npj.q;p; t/ :

Into the second relation

Nqj D @F4
@Npj
D Nqj .p; Np; t/

we insert the just found Np:

Nqj D Nqj.q;p; t/ :

For the new Hamilton function we find:

H . Nq; Np; t/ D H .q. Nq; Np; t/;p. Nq; Np; t/; t/C @

@t
F4 .p . Nq; Np; t/ ; Np; t/ :

2. Modified Hamilton’s principle:

0
ŠD ıS D ı

t2Z

t1

dt

0

@
X

j

pj Pqj � H

1

A

D ı

t2Z

t1

dt

2

4
X

j

�Ppjqj C pj Pqj � PNpj Nqj
� � H

3

5

Cı fF4 . Np .t2/ ;p .t2/ ; t2/� F4 . Np .t1/ ;p .t1/ ; t1/g ;

Note that Np.t1;2/ and p.t1;2/ are not fixed. In fact it holds:

ı fF4 . Np .t2/ ;p .t2/ ; t2/ � F4 . Np .t1/ ;p .t1/ ; t1/g D
SX

j D 1

�
@F4
@pj

ıpj C @F4
@Npj

ı Npj

�ˇ̌
ˇ̌
t2

t1

:

It remains therewith:

0
ŠD

SX

j D 1

�
@F4
@pj

ıpj C @F4
@Npj

ı Npj

�ˇ̌
ˇ̌
t2

t1

C
t2Z

t1

dt
SX

j D 1

�
ı Ppjqj C Ppjıqj C ıpj Pqj C pjı Pqj � ı PNpj Nqj � PNpjı Nqj � @H

@Nqj
ı Nqj � @H

@Npj
ı Npj

!
:
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We perform some integrations by parts:

t2Z

t1

dt qjı Ppj D qjıpj

ˇ̌t2
t1
�

t2Z

t1

dt Pqjıpj ;

t2Z

t1

dt pjı Pqj D pjıqj„ƒ‚…
D 0

jt2t1 �
t2Z

t1

dt Ppjıqj ;

t2Z

t1

dt Nqjı PNpj D Nqjı Npj

ˇ̌t2
t1
�

t2Z

t1

dt PNqjı Npj :

That leads to:

0
ŠD

SX

j D 1

"�
@F4
@pj
C qj

�

„ ƒ‚ …
D 0

ıpj

ˇ̌t2
t1
C
�
@F4
@Npj
� Nqj

�

„ ƒ‚ …
D 0

ı Npj

ˇ̌t2
t1

#

C
t2Z

t1

dt
SX

j D 1


 ��Pqj C Pqj
�
ıpj C

�Ppj � Ppj
�
ıqj

C
 
PNqj �

@H

@Npj

!
ı Npj �

 
PNpj C

@H

@Nqj

!
ı Nqj

�
:

Since ı Npj; ı Nqj are independent quantities it follows eventually:

PNqj D
@H

@Npj
I PNpj D �

@H

@Nqj
:

Solution 2.5.2 According to (2.203) it should then hold

˚
Li; Lj

� D 0 :

But in Exercise 2.4.1, part (2) we have shown:

˚
Li; Lj

� D "ijlLl :

That means in particular:

˚
Lx; Ly

� D Lz :

Therefore, Lx and Ly cannot simultaneously occur as canonical momenta.
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Solution 2.5.3 Trivially we have fNq; Nqg D fNp; Npg D 0. Thus we have still to prove

fNq; Npgq; p D 1 :

@Nq
@q
D q

sin p

�
� sin p

q2

�
D �1

q
;

@Nq
@p
D q

sin p

�
cos p

q

�
D cot p ;

@Np
@q
D cot p ;

@Np
@p
D � q

sin2 p
:

It follows therewith:

fNq; Npg D @Nq
@q

@Np
@p
� @Nq
@p

@Np
@q
D 1

sin2 p
� cot2 p D 1� cos2 p

sin2 p
D 1 :

Solution 2.5.4

1. We show

fNq; Npg D 1 :

For that we need:

@Nq
@q

@Np
@p
D

1

2
q�1=2 cos p

1C q1=2 cos p

�
2
�
1C q1=2 cos p

�
q1=2 cos p � 2q1=2 sin p q1=2 sin p

�

D
1

2
q�1=2 cos p

1C q1=2 cos p

�
2q1=2 cos pC 2q.cos2 p � sin2 p/

�

D cos2 p � sin2 p
q1=2 cos p

1C q1=2 cos p
;

@Nq
@p

@Np
@q
D �q1=2 sin p

1C q1=2 cos p

��
1C q1=2 cos p

�
q�1=2 sin pC q�1=2 cos p q1=2 sin p

�

D � sin2 p � sin2 p
q1=2 cos p

1C q1=2 cos p
:

Therefrom we get:

@Nq
@q

@Np
@p
� @Nq
@p

@Np
@q
D cos2 pC sin2 p D 1 :
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Hence the transformation is canonical!
2. If F3.p; Nq/ is the generating function then it must be

q D �@F3
@p
I Np D �@F3

@Nq :

Let us check:

@F3
@p
D � �eNq � 1�2 1

cos2 p
ŠD �q

” eNq D 1C q1=2 cos p ” Nq D ln
�
1C q1=2 cos p

�
q. e. d.

@F3
@Nq D �2

�
eNq � 1� eNq tan p D �2 �1C q1=2 cos p � 1� �1C q1=2 cos p

�
tan p

D �2q1=2 sin p
�
1C q1=2 cos p

� ŠD �Np
” Np D 2q1=2 sin p

�
1C q1=2 cos p

�
q. e. d.

Solution 2.5.5

1. We check the fundamental Poisson brackets. The brackets

fOq; Oqgq;p D f Op; Opgq;p D 0

are trivial. With

d

dx
arcsin x D 1p

1 � x2
for jxj < 1

it follows:

@Oq
@q
D 1vuuut1� q2

q2 C p2

˛2

0

BBB@
1r

q2 C p2

˛2

�
1

2
q � 2q

�
q2 C p2

˛2

�3=2

1

CCCA

D
s
˛2

p2

0
BB@1 �

q2

q2 C p2

˛2

1
CCA D

s
˛2

p2

p2

˛2

q2 C p2

˛2
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D

r
p2

˛2

q2 C p2

˛2

@Oq
@p
D 1vuuut1 � q2

q2 C p2

˛2

�1
2

q
2p

˛2�
q2 C p2

˛2

�3=2

D �
s
˛2

p2
qp

˛2q2 C p2

@Op
@q
D ˛q

@Op
@p
D p

˛
:

Therewith we have for the Poisson bracket:

fOq; Opgq;p D
@Oq
@q

@Op
@p
� @Oq
@p

@Op
@q
D

p2

˛2

q2 C p2

˛2

C ˛

p

pq

˛2q2 C p2
˛q

D 1

q2 C p2

˛2

�
p2

˛2
C q2

�
D 1 :

2. It is:

p D @F

@q
D ˛q cot Oq

Op D �@F

@Oq D
1

2
˛q2

1

sin2 Oq :

It follows therefrom:

Op D 1

2
˛q2

1

sin2 Oq D
1

2
˛q2

�
1C cot2 Oq�

D 1

2
˛q2

�
1C p2

˛2q2

�
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or rather:

sin2 Oq D 1

2
˛q2

1

Op D
˛q2

˛q2 C p2

˛

D q2

q2 C p2

˛2

H) Oq D Oq.p; q/ D arcsin
qr

q2 C p2

˛2

:

The transformation is exactly the same as that from part 1.

Solution 2.5.6

1.

p D @F1
@q
D pm k

Nq
q2
;

Np D �@F1
@Nq D

p
m k

q
H) q D

p
m k

Np ;

p D pm k Nq Np
2

m k
D 1p

m k
Nq Np2 :

2. Because of @F1=@t D 0 we have:

H .Nq; Np/ D H .q .Nq; Np/ ; p .Nq; Np// D 1

2m

1

m k
Nq2 Np4 .m k/2

Np4 C 1

2
k
Np2

m k

H) H .Nq; Np/ D Np
2

2m
C 1

2
m!2 Nq2 ; !2 D k

m
:

3. H is according to part 2. the Hamilton function of the harmonic oscillator. The
solution is thus known.

Solution 2.5.7

1. Transformation formulas:

p D @F2
@q
D 2˛qOp3

Oq D @F2
@Op D 3˛q2 Op2

H) Op D
�

p

2˛q

�1=3

Oq D 3
�
1

4
˛q4p2

�1=3
:
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2. The fundamental Poisson brackets are to be checked. The brackets

fOq; Oqgq;p D 0 ; f Op; Opgq;p D 0

are trivially fulfilled. It remains to show:

fOq; Opgq;p D 1 :

With

@Oq
@q
D 4

�
1

4
˛p2

�1=3
q1=3

@Oq
@p
D 2

�
1

4
˛q4

�1=3
p�1=3

@Op
@q
D �1

3

� p

2˛


1=3
q�4=3 @Op

@p
D 1

3

�
1

2˛q

�1=3
p�2=3

it follows

fOq; Opgq;p D
@Oq
@q

@Op
@p
� @Oq
@p

@Op
@q
D 4

�
˛p2

4

�1=3
q1=3

1

3

�
1

2˛q

�1=3
p�2=3

C2
�
˛q4

4

�1=3
p�1=3 1

3

� p

2˛


1=3
q�4=3 D 2

3
C 1

3
D 1

and therewith the canonicity of the transformation.
3. The new Hamilton function results from the old one by:

bH .Oq; Op/ D H .q .Oq; Op/ ; p .Oq; Op//C @F2 .q .Oq; Op/ ; Op; t/
@t

:

With

@F2
@t
D 0

and

OqOp D 3
�
1

4
˛q4p2

�1=3 � p

2˛q

�1=3
D 3

2
qp

it follows:

bH .Oq; Op/ D 3

2
ˇq .Oq; Op/ p .Oq; Op/ D ˇ OqOp :

4. Therewith the new equations of motion read:

POq D @ OH
@Op D ˇ Oq

POp D �@
OH
@Oq D �ˇ Op :
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Solution 2.5.8

@Nq
@q

@Np
@p
D ˛q˛�1 cos.ˇp/ ˇq˛ cos.ˇp/ D ˛ˇq2˛�1 cos2.ˇp/ ;

@Nq
@p

@Np
@q
D �ˇq˛ sin.ˇp/ ˛q˛�1 sin.ˇp/ D �˛ˇq2˛�1 sin2.ˇp/ ;

It follows:

fNq; Npg D ˛ˇq2˛�1 ŠD 1 :

It is about a canonical transformation only for ˛ D 1=2 and ˇ D 2.

Solution 2.5.9

1. Since the fundamental Poisson brackets fNq; Nqg D 0 and fNp; Npg D 0 are trivially
fulfilled it remains to investigate:

fNq; Npg D ˚
qkpl; qmpn

� D qk
˚
pl; qm

�
pn C qm

˚
qk; pn

�
pl

D qk

�
0 � @pl

@p

@qm

@q

�
pn C qm

�
@qk

@q

@pn

@p
C 0

�
pl

D qk
��lmpl�1qm�1� pn C qm

�
knqk�1pn�1� pl

D .kn � lm/qkCm�1plCn�1

ŠD 1 :

Thus we have to require:

kC m D 1 I lC n D 1 I kn � lm D 1 :

Hence for any arbitrary m the transformation is canonical if it holds:

k D 1 � m I l D �m I n D 1C m

Nq D q1�mp�m I Np D qmp1Cm :

2. For m D 0 it is Nq D q and Np D p. It is then the identity transformation!
3. For the generating function F1 D F1.q; Nq/ it must be valid according to (2.151):

p D p.q; Nq/ D @F1
@q
I Np D Np.q; Nq/ D �@F1

@Nq :
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From part 1. one takes:

p.q; Nq/ D Nq� 1
m q

1�m
m D 1

q

�
q

Nq
� 1

m

I Np.q; Nq/ D qm

�
q

Nq
� 1Cm

m 1

q1Cm
D 1

Nq
�

q

Nq
� 1

m

That leads to:

F1.q; Nq/ D m

�
q

Nq
� 1

m

C f .Nq/ Õ @F1
@Nq D �

1

Nq
�

q

Nq
� 1

m

C df

d Nq :

The comparison to Np shows that f can be only an unimportant constant. So the
required generating function is:

F1.q; Nq/ D m

�
q

Nq
� 1

m

:

4. Similar considerations as in part 3. are now performed for a generating function
of the type F2.q; Np/ with (2.161):

p D p.q; Np/ D @F2
@q
I Nq D Nq.q; Np/ D @F2

@Np :

It follows with part 1.:

p.q; Np/ D Np 1
1Cm q� m

1Cm I Nq.q; Np/ D q1�m Np� m
1Cm q

m2
1Cm D q

1
1Cm Np� m

1Cm :

From the first equation we get:

F2.q; Np/ D .1C m/ Np 1
1Cm q

1
1Cm C g.Np/ Õ @F2

@Np D q
1

1Cm Np� m
1Cm C dg

d Np
The comparison to the second equation reveals that g.Np/, too, can be only an
unimportant constant. Thus it remains:

F2.q; Np/ D .1C m/ .Np q/
1

1Cm

Solution 2.5.10

1. With

div A D @Ax

@x
C @Ay

@y
C @Az

@z
D 0
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A is subject to the Coulomb-gauge. Furthermore A yields the correct magnetic
induction:

rot A D 1

2
B

ˇ̌
ˇ̌
ˇ̌
ˇ̌

ex ey ez
@

@x

@

@y

@

@z
�y x 0

ˇ̌
ˇ̌
ˇ̌
ˇ̌
D 1

2
B .ez C ez/ D .0; 0;B/ :

2. Generally the Lagrangian for a particle with the charge Oq in the electromagnetic
field with the electrical potential '.q/ and the vector potential A.q/ reads
according to (1.78):

L .q; Pq/ D m
2
Pq2 C Oq . Pq � A.q/ � '.q// :

Therefore, the generalized momenta

pj D @L

@Pqj
D mPqj C OqAj.q/

are different from the components of the mechanical momentum:

pmech D m Pq D p � OqA.q/ :

With

Pq D pmech

m
D 1

m
.p� OqA.q//

one gets as Hamilton function in the general case:

H .p;q/ D p Pq.p;q/ � L .q; Pq.p;q//
D p Pq � m

2
Pq2 � OqA � PqC Oq'

D 1

m
p .p � OqA/� 1

2m
.p� OqA/2 � 1

m
OqA � .p � OqA/C Oq'

D 1

2m
.p � OqA.q//2 C Oq'.q/ :

Here it holds in particular:

Oq D �e

'.q/ � 0

A.q/ D .�q2; q1; 0/
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Hamilton function:

H .q;p/ D 1

2m
.pC e A/2

D 1

2m

"�
p1 � 1

2
eBq2

�2
C
�

p2 C 1

2
eBq1

�2
C p23

#

D p23
2m
C 1

2m

"�
p1 � 1

2
m!cq2

�2
C
�

p2 C 1

2
m!cq1

�2#

D p23
2m
C H0 :

3. In general it holds:

pj D @F1
@qj

and Opj D �@F1
@Oqj

:

Here we have:

p1 D @F1
@q1
D m!c

�
Oq1 � 1

2
q2

�

p2 D @F1
@q2
D m!c

�
Oq2 � 1

2
q1

�

Op1 D �@F1
@Oq1 D �m!c .q1 � Oq2/

Op2 D �@F1
@Oq2 D �m!c .q2 � Oq1/ :

That leads to the first set of transformation formulas:

Oq1 .q;p/ D 1

m!c
p1 C 1

2
q2

Oq2 .q;p/ D 1

m!c
p2 C 1

2
q1

Op1 .q;p/ D p2 � 1
2

m!cq1

Op2 .q;p/ D p1 � 1
2

m!cq2 :
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The reversal yields:

q1 . Oq; Op/ D Oq2 � 1

m!c
Op1

q2 . Oq; Op/ D Oq1 � 1

m!c
Op2

p1 . Oq; Op/ D 1

2
m!c Oq1 C 1

2
Op2

p2 . Oq; Op/ D 1

2
m!c Oq2 C 1

2
Op1 :

4. From the above transformation formulas it results:

p1 � 1
2

m!cq2 D Op2

and

p2 C 1

2
m!cq1 D m!c Oq2 :

Therewith we get the transformed Hamilton function

OH0 . Op; Oq/ D H0 .q . Op; Oq/ ;p . Op; Oq//

D 1

2m

� Op22 C m2!2c Oq22
�

D Op
2
2

2m
C 1

2
m!2c Oq22

which turns out to be formally identical to that of the harmonic oscillator whose
equations of motion are known to us:

Oq2.t/ ; Op2.t/ :

Furthermore, Oq1 and Op1 are cyclic and therewith both constants of motion:

POq1 D @H0

@Op1 D 0 H) Oq1 D const

POp1 D �@H0

@Oq1 D 0 H) Op1 D const :

By means of the transformation formulas from part 3. one then finds the equa-
tions of motion for the old variables with the corresponding initial conditions.
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5. We have:

pj D @F2.q; Op/
@qj

Oqj D @F2.q; Op/
@Opj

:

By means of the transformation formulas from part 3. the pj and Oqj can be
expressed as functions of the qj and Opj:

p1 D 1

2
m!cq2 C Op2

p2 D 1

2
m!cq1 C Op1

Oq1 D 1

m!c
Op2 C q2

Oq2 D 1

m!c
Op1 C q1 :

By integration and differentiation one obtains:

p1 D @F2
@q1
D 1

2
m!cq2 C Op2

H) F2 D 1

2
m!cq2q1 C Op2q1 C f .q2; Op1; Op2/

p2 D @F2
@q2
D 1

2
m!cq1 C @f

@q2
D 1

2
m!cq1 C Op1

H) F2 D 1

2
m!cq2q1 C Op2q1 C Op1q2 C g. Op1; Op2/

Oq1 D @F2
@Op1 D q2 C @g

@Op1 D
1

m!c
Op2 C q2

H) F2 D 1

2
m!cq2q1 C Op2q1 C Op1q2 C 1

m!c
Op1 Op2 C h. Op2/

Oq2 D @F2
@Op2 D q1 C 1

m!c
Op1 C dh

d Op2 D
1

m!c
Op1 C q1

H) F2 D 1

2
m!cq2q1 C Op2q1 C Op1q2 C 1

m!c
Op1 Op2 C const :

Therewith F2 is determined except for an arbitrary constant:

F2 D 1

2
m!cq2q1 C Op2q1 C Op1q2 C 1

m!c
Op1 Op2 :
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Section 3.7

Solution 3.7.1

H D 1

2m

�
p2x C p2y C p2z

� H) @H

@t
D 0 I H D E :

Therewith the HJD reads:

1

2m

"�
@W

@x

�2
C
�
@W

@y

�2
C
�
@W

@z

�2#
D E :

Since x; y; z are cyclic the HJD is trivially separable:

W D ˛x xC ˛y yC ˛z z I .˛ D p D Np/ :

W is thus just the identity transformation.

Solution 3.7.2

H D p2

2m
� bx H) @H

@t
D 0 I H D E :

Therewith it follows the HJD:

1

2m

�
@W

@x

�2
� bx D E H) dW

dx
D ˙

p
2m.EC bx/ :

Except for the trivial additive constant we then have:

W.x/ D ˙ 1

3mb
Œ2m.EC bx/�3=2 :

We take E D ˛ and obtain then from (3.67):

t C ˇ D @W

@˛
D ˙1

b
Œ2m.˛ C bx/�1=2

H) x.t/ D b

2m
.tC ˇ/2 � ˛

b
:

With the initial conditions the solution is:

x.t/ D b

2m

�
tC m v0

b


2 � 1
2

m

b
v20 C x0 :
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Solution 3.7.3 Hamilton function:

H D p2

2m
C c e�q :

Because of

@H

@t
D 0

we get

H D E D const :

The transformation

.q; p/ H) .Oq; Op/ H H) bH

may be so that Oq is cyclic. Generating function:

W D F2.q; Op/ D W.q; Op/ :

Because of

@W

@t
D 0 follows bH D H D bH. Op/ :

Since Oq is cyclic the new momentum is Op D ˛ D const.
Hamilton-Jacobi differential equation:

1

2m

�
@W

@q

�2
C c e�q D E D E.˛/ :

Solving for W leads to:

W.q; Op/ D p2m
Z

dq
p

E � c e�q :

Choose

E D E.˛/ D ˛ Õ @E

@˛
D 1 :

That yields for the new coordinate the trivial result:

Oq.t/ D tC ˇ ˇ D const :
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Otherwise it must also be valid:

Oq D @W

@˛
D 1

2

p
2m

Z
dq

1p
˛ � c e�q

:

Substitution:

x D pc e
1
2 �q Õ dx

dq
D 1

2
� x Õ dq D 2

�

dx

x
:

Therewith we calculate:

Oq D
p
2m

�

Z
1p
˛ � x2

1

x
dx

D
p
2m

�

1p
˛

ln

 
xp

˛ Cp˛ � x2

!

D �
p
2m

�

1p
˛

ln

�r
˛

x2
C
r
˛

x2
� 1

�

D �
p
2m

�

1p
˛

arccosh

�p
˛

x

�
:

That can be solved for x:
p
˛

x
D cosh

�
��
r
˛

2m
.tC ˇ/

�
D
r
˛

c
e� 1

2 �q

Õ e
1
2 �q D

r
˛

c

1

cosh
�
�
p

˛
2m .tC ˇ/

�

(cosh x D cosh.�x/). The generalized coordinate is therewith already determined:

q.t/ D 2

�
ln

(r
˛

c

1

cosh
�
�
p

˛
2m .tC ˇ/

�
)
:

The generalized momentum is derivable from (see above):

p2 D 2m .˛ � c e�q/ D 2m˛ � 2mc
˛

c

1

cosh2
�
�
p

˛
2m .tC ˇ/

�

D 2m˛

 
1 � 1

cosh2
�
�
p

˛
2m .tC ˇ/

�
!

D 2m˛ tanh2
�
�

r
˛

2m
.tC ˇ/

�
:
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Therewith we have the result:

p.t/ D p2m˛ tanh

�
�

r
˛

2m
.tC ˇ/

�
:

The solution is now complete. ˛ and ˇ are due to initial conditions.

Solution 3.7.4 Hamilton function:

H D p2x
2m
C p2y
2m
C c.x � y/ ;

@H

@t
D 0 :

The generating function W.x; y; Opx; Opy/ for the transformation

�
x; y; px; py

� W�! �Ox; Oy; Opx; Opy
�

shall be of such a kind that the new coordinates are all cyclic. The generating
function W is of the type F2:

px D @W

@x
; py D @W

@y
; Ox D @W

@Opx
; Oy D @W

@Opy
:

The HJD is then:

1

2m

 �
@W

@x

�2
C
�
@W

@y

�2!
C c.x � y/ D E :

For the solution a separation approach (ansatz) appears recommendable:

W.x; y; Opx; Opy/ D Wx.x; Opx; Opy/CWy.y; Opx; Opy/ :

Then the HJD reads:

1

2m

�
dWx

dx

�2
C cx

„ ƒ‚ …
only x-dependent

D E � 1

2m

�
dWy

dy

�2
C cy

„ ƒ‚ …
only y-dependent

H) 1

2m

�
dWx

dx

�2
C cx D ˛1

E � 1

2m

�
dWy

dy

�2
C cy D ˛1

H) dWx

dx
D ˙p2m .˛1 � cx/
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dWy

dy
D ˙

p
2m .E � ˛1 C cy/

H) Wx D � 1

3mc
.2m.˛1 � cx//3=2

Wy D ˙ 1

3mc
.2m.E � ˛1 C cy//3=2 :

So the total characteristic function is:

W D � 1

3mc
.2m/3=2

˚
.˛1 � cx/3=2 � .E � ˛1 C cy/3=2

�
:

We identify the new momenta with the constants:

Opj D ˛j D const

where ˛2 still remains undetermined. Therewith we have:

px D @W

@x
D ˙

p
2m.˛1 � cx/

py D @W

@y
D �p2m.E � ˛1 C cy/ :

Choose, for convenience:

E D E.˛1; ˛2/ D ˛2 :

Then we have:

POx D @ OH
@˛1
D @E

@˛1
D 0 H) Ox D ˇ1

POy D @ OH
@˛2
D @E

@˛2
D 1 H) Oy D tC ˇ2 :

Solving of

ˇ1 D @W

@˛1
D �1

c

�p
2m.˛1 � cx/C

p
2m.˛2 � ˛1 C cy/




tC ˇ2 D @W

@˛2
D ˙1

c

p
2m.˛2 � ˛1 C cy/
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leads to:

y.t/ D c

2m
.tC ˇ2/2 � ˛2 � ˛1

c

x.t/ D � c

2m
.tC ˇ1 C ˇ2/2 C ˛1

c

px D ˙
p

c2.tC ˇ1 C ˇ2/2 D ˙c.tC ˇ1 C ˇ2/
py D �

p
c2.tC ˇ2/2 D �c.tC ˇ2/ :

Equations of motion:

Px D @H

@px
D px

m

Ppx D �@H

@x
D �c H) px.t/ D �c.tC ˇ1 C ˇ2/

Py D @H

@py
D py

m

Ppy D �@H

@y
D c H) py.t/ D c.tC ˇ2/ :

The initial conditions yield:

py.0/ D 0 H) ˇ2 D 0
px.0/ D mv0x H) ˇ1 D �mv0x

c

y.0/ D 0 H) ˛1 D ˛2

x.0/ D 0 H) ˛1 D c2

2m

�
�mv0x

c


2 D 1

2
mv20x D E :

So we have found the solution:

x.t/ D � c

2m

�
t � mv0x

c


2 C m

2c
v20x

y.t/ D c

2m
t2 :

Solution 3.7.5

H D 1

2m

�
p2x C p2y

�C 1

2
m
�
!2x x2 C !2y y2

� H) @H

@t
D 0 I H D E :
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The HJD reads:

1

2m

"�
@W

@x

�2
C
�
@W

@y

�2#
C 1

2
m
�
!2x x2 C !2y y2

� D E :

Separation approach (ansatz):

W D W.x; yI ˛/ D Wx.xI ˛/CWy.yI ˛/ :

This is inserted into the HJD:

1

2m

�
dWx

dx

�2
C 1

2
m!2x x2 D E � 1

2m

�
dWy

dy

�2
� 1
2

m!2y y2 :

Both sides separately must already be constant. We take E D ˛1:

1

2m

�
dWx

dx

�2
C 1

2
m!2x x2 D ˛2 D const

1

2m

�
dWy

dy

�2
C 1

2
m!2y y2 D ˛1 � ˛2 D const

H) dWx

dx
D m!x

s
2˛2

m!2x
� x2 ;

dWy

dy
D m!y

s
2.˛1 � ˛2/

m!2y
� y2 :

For the characteristic function we obtain eventually:

W.x; y;˛/ D
Z

dWx

dx
dxC

Z
dWy

dy
dy

D m!x

2

4 x

2

s
2˛2

m!2x
� x2 C ˛2

m!2x
arcsin

0

@x

s
m!2x
2˛2

1

A

3

5

Cm!y

2

4 y

2

s
2.˛1 � ˛2/

m!2y
� y2 C ˛1 � ˛2

m!2y
arcsin

0

@y

s
m!2y

2.˛1 � ˛2/

1

A

3

5 :
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It holds furtheron:

ˇ1 C t D @W

@˛1
D @

@˛1

Z
dWy

dy
dy

D 1

!y

Z
dy

"
2.˛1 � ˛2/

m!2y
� y2

#�1=2
D 1

!y
arcsin

2

4y

s
m!2y

2.˛1 � ˛2/

3

5

H) y.t/ D
s
2.˛1 � ˛2/

m!2y
sin
�
!y.ˇ1 C t/

�
;

ˇ2 D @W

@˛2
D @

@˛2

Z
dWx

dx
dxC @

@˛2

Z
dWy

dy
dy

D 1

!x

Z
dx

�
2˛2

m!2x
� x2

��1=2
� 1

!y

Z
dy

"
2.˛1 � ˛2/

m!2y
� y2

#�1=2

D 1

!x
arcsin

0

@x

s
m!2x
2˛2

1

A � ˇ1 � t

H) x.t/ D
s
2˛2

m!2x
sin Œ!x.ˇ1 C ˇ2 C t/� :

ˇ1; ˇ2; ˛1; ˛2 are fixed by initial conditions!

Solution 3.7.6 With the generating function F3 D F3.p; Oq; t/,

q D �@F3
@p

; Op D �@F3
@Oq

the transformation shall be done so that the ‘new’ coordinate and the ‘new’
momentum are constant:

.q; p/
F3�! .Oq D ˛ D const; Op D ˇ D const/ :

It succeeds by use of the generating function S.p; Oq; t/ D F3.p; Oq; t/ by which OH �
0:

0
ŠD bH.Oq; Op; t/ D H.p; q; t/C @S

@t
D H

�
p;�@S

@p
; t

�
C @S

@t
(HJD) :
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This differential equation for S reads explicitly:

1

2m
p2 C 1

2
m!20

�
@S

@p

�2
C @S

@t
D 0 :

For the solution a separation ansatz is chosen:

S.p; Oq; t/ D W.p; Oq/C V.t; Oq/ :

The HJD does not say anything about the Oq-dependence of S. However, it must come
out Oq D ˇ D const which, for instance, can be achieved by equating it to one of the
integration constants. The HJD is now:

1

2m
p2 C 1

2
m!20

�
dW

dp

�2
D �dV

dt

The left-hand side depends only on p, the right-hand side only on t. Each side
separately must already be constant. We therefore take except for an unimportant
additive constant:

ˇ D �dV

dt
H) V.t/ D �ˇt

Hence it follows for the left-hand side of the W-equation:

�
dW

dp

�2
D 2

m!20

�
ˇ � p2

2m

�
D 1

m2!20

�
2mˇ � p2

�
:

That leads to the following solution of the HJD:

S.ˇ; p; t/ D ˙ 1

m!0

Z
dp
p
2mˇ � p2 � ˇt :

Now we take:

˛ D Op D � @S

@̌
D t� 1

m!0

Z
dp

mp
2mˇ � p2

D t� 1

!0
arcsin

pp
2mˇ

Therewith the ‘old’ momentum is:

p D ˙
p
2mˇ sin .!0.t � ˛//
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For the ‘old’ coordinate we get:

q D �@S

@p
D �@W

@p
D � 1

m!0

p
2mˇ � p2 D

D �
p
2mˇ

m!0
cos .!0.t � ˛// :

With the initial conditions

p0 D p.t D 0/ D 0 H) ˛ D 0
q0 D q.t D 0/ > 0

it follows then:

q.t/ D
s

2ˇ

m!20
cos .!0t/

p.t/ D �
p
2mˇ sin .!0t/ :

In the preceding equations always the lower sign is valid because of q.t D 0/ > 0.
With

q0 D
s

2ˇ

m!20
H) ˇ D 1

2
m!20q20 D E

it follows after insertion of q0:

q.t/ D q0 cos!0t

p.t/ D �m!0q0 sin!0t :

Let us conclude with some remarks on the physical meaning:

S.ˇ; p; t/ D �
p
2mˇ

m!0

Z q
1 � sin2 !0t dp � ˇt :

With

dp D �m!20 q0 cos .!0t/ dt
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it follows then:

S.ˇ; p; t/ D
p
2mˇ

m!0
m!20

s
2ˇ

m!20

Z
cos2 !0t dt � ˇt

D 2ˇ
Z

cos2.!0t/dt � ˇt :

On the other hand it is

L D T � V D 1

2m
m2!20q20 sin2 !0t � 1

2
m!20q20 cos2 !0t

D ˇ �sin2 !0t � cos2 !0t
�

D �2ˇ cos2.!0t/C ˇ

So the generating function is just the negative indefinite action functional:

S.ˇ; p; t/ D � R Ldt

Solution 3.7.7 From

H D H D 1

2m

�
p2x C p2y C p2z

�C 1

2
m
�
!2x x2 C !2y y2 C !2z z2

� D ˛1

it follows by rearranging:

1

2m

�
p2x C p2y

�C 1

2
m
�
!2x x2 C !2y y2

� D ˛1 � 1

2m
p2z �

1

2
m!2z z2 :

Separation approach:

W D Wx.x;˛/CWy.y;˛/CWz.z;˛/

H) px D dWx

dx
I py D dWy

dy
I pz D dWz

dz
:

Insertion into the above equation means that the right-hand side depends only on z,
while the left-hand side is only a function of x and y. Therefore it must hold:

˛1 � 1

2m

�
dWz

dz

�2
� 1
2

m!2z z2 D const D ˛z

H) pz D dWz

dz
D m!z

s
2.˛1 � ˛z/

m!2z
� z2 :
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Reversal points:

z˙ D ˙
s
2.˛1 � ˛z/

m!2z
:

Jz D
I

pzdz D 2m!z

zCZ

z�

s
2.˛1 � ˛z/

m!2z
� z2 dz

D 2m!z

2

66664
1

2
z

s
2.˛1 � ˛z/

m!2z
� z2 C ˛1 � ˛z

m!2z
arcsin

zs
2.˛1 � ˛z/

m!2z

3

77775

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

zC

z�

D 2m!z
˛1 � ˛z

m!2z
�

H) Jz D 2�

!z
.˛1 � ˛z/ :

Furtheron it holds:

1

2m

�
dWx

dx

�2
C 1

2
m!2x x2 D ˛z � 1

2m

�
dWy

dy

�2
� 1
2

m!2y y2
ŠD ˛x

H) px D dWx

dx
D m!x

s
2˛x

m!2x
� x2 :

Reversal points:

x˙ D ˙
s
2˛x

m!2x
:

This means:

Jx D 2m!x

xCZ

x�

s
2˛x

m!2x
� x2 dx :

The same calculation as the above one yields:

Jx D 2�

!x
˛x :
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Eventually we are still left with:

1

2m

�
dWy

dy

�2
C 1

2
m!2y D ˛z � ˛x :

The same considerations as those above lead now to:

Jy D 2�

!y
.˛z � ˛x/ :

Finally it follows:

H D ˛1 D !z

2�
Jz C ˛z D !z

2�
Jz C !y

2�
Jy C ˛x

H) H.J/ D 1

2�

�
!xJx C !yJy C !zJz

�
:

Frequencies:

�˛ D @H

@J˛
D 1

2�
!˛ I ˛ D x; y; z :

Solution 3.7.8 Degeneracy conditions:

�x � �y D 0 I �y � �z D 0 :

This yields according to (3.159) the generating function:

F2 D
�
!x � !y

�
J1 C

�
!y � !z

�
J2 C !zJ3

H) N!1 D @F2
@J1
D !x � !y I N!2 D @F2

@J2
D !y � !z I N!3 D @F2

@J3
D !z :

This means:

N�1 D N�2 D 0 I N�3 D �z :

From F2 it follows also:

Jx D @F2
@!x
D J1 I Jy D @F2

@!y
D �J1 C J2 I Jz D @F2

@!z
D �J2 C J3

H) Jx C Jy C Jz D J3 D J :

This means:

H D !

2�
J :
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Angle variable, 195–213, 224, 226
Angular momentum, 30, 55, 60, 61, 84, 85, 93,

99, 136, 146, 147, 168, 191, 193,
197, 202, 203, 235, 239, 254, 265,
274–276, 282, 283, 297, 305, 322

conservation law, 93, 244, 306
Antiderivative, 205
Atwood’s free-fall machine, 13, 20–22, 43–45

B
Bohr-Sommerfeld atom theory, 212–213
Brachistochrone problem, 72–74, 98

C
Canonical equations, 106–117, 119, 120, 149,

150, 152, 153, 173, 186
Canonical transformation, 148–171, 173, 175,

176, 180, 183–185, 189, 198, 210,
224, 225, 335

Cartesian coordinates, 5, 30, 32, 85, 115, 116,
119, 224, 248, 253, 314, 323

Cauchy’s residue theorem, 207
Center of gravity, 54, 56–59, 61, 83, 240, 257,

260, 268, 270, 272, 281, 282
Central field, 7, 30, 84, 146, 191, 205, 209,

226, 319
Charged particle in an electromagnetic fiield,

31, 98, 115–116

Commutator, 144
Competing ensemble, 67, 75, 78
Competitive set, 63, 64, 126, 287, 290
Completely degenerate, 209, 210, 226
Complex integration, 207
Conditional periodic, 197, 210, 225, 226
Configuration path, 62–64, 85, 98, 120, 121,

131, 134, 172
Configuration space, 5, 34, 62, 85, 97, 131,

134, 148, 151, 162, 173, 214, 215
Conservative system, 15, 17–20, 22, 31, 63,

66, 76–78, 80, 85, 87, 90, 95, 96, 98,
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Conserved quantities, 36, 50, 82, 128, 275,
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Constant of motion, 30, 143, 152, 202
Constraint force, 10–12, 14, 17, 21, 23, 35,

40–42, 45–49, 57–59, 87, 97, 101,
229, 230, 245, 247, 252, 253, 263,
265, 271, 273, 274

Constraints
in differential, but not integrable form, 9
as inequalities, 8

Correspondence principle, 144
Criteria for canonicity, 165–167
Curvilinear-orthogonal, 130, 131
Cyclic coordinate, 25–27, 83, 84, 89, 92, 97,

109, 110, 152–153, 191, 199
Cycloidal curve, 27, 28
Cycloidal pendulum, 27–29
Cylindrical coordinates, 50, 91, 94, 95, 116,

119, 229, 237, 240, 288, 315

D
d’Alembert’s principle, 10–62, 65, 76, 77, 79,

80, 87, 97, 102
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Degeneracy, 209–212, 226, 353
•-variation, 66, 121, 124, 125, 129
Driving force, 11, 42, 78, 230
Dumbbell, 3, 12, 24–27, 56, 61, 260, 283, 285

E
Earth’s gravitational field, 8–9, 24, 27, 49–57,

61, 81, 82, 97, 294
Eigen-action variable, 212, 213, 224, 226
Eikonal equation of geometrical optics, 220,

226, 227
Electron-optical law of refraction, 132–133
Energy dissipation, 36
Ensemble parameter, 63, 67
Euler-Lagrange differential equations, 76, 132
Euler’s equation, 69, 70, 72, 73, 98, 288, 292,

294
Event space, 134–135, 143, 172, 215
Extended Hamilton principle, 78, 80

F
Fermat’s principle, 128, 172
Forces of constraint, 1, 2, 13
Friction, 35–37, 57, 118
Frictional force, 14, 35, 37, 56, 57, 97, 98,

260
Fundamental Poisson brackets, 138–140, 166,

172, 331, 334, 335

G
Gauge transformation, 33, 98

mechanical, 34, 97, 98, 149, 150, 164, 173
Generalized constraint force, 40, 46, 57, 252,

263
Generalized coordinates, 1–11, 18, 20–22, 24,

25, 28, 29, 32, 33, 37, 38, 40, 41, 44,
45, 47, 51–54, 56, 57, 61, 62, 66, 84,
89, 92, 97, 98, 102, 107, 111, 118,
129, 134, 137, 146, 148, 173, 183,
190, 191, 231, 238, 239, 243, 251,
255, 257, 260, 264, 277, 280, 302,
316, 343

Generalized force, 31, 57, 260
component, 15, 32, 78, 90, 97

Generalized Lagrangian function, 31, 314
Generalized masses, 18, 129
Generalized momentum, 25, 60, 86, 97, 98,

112, 114, 115, 183, 197, 307, 343
Generalized potentials, 31–35, 58, 98, 115,

116, 267, 268, 313, 316
of the Lorentz force, 33, 115

Generalized velocities, 5, 18, 36, 86, 98, 106,
108, 134

Generating function, 153–160, 162, 164, 165,
167, 168, 170, 171, 173, 176–181,
183–186, 198, 205, 210, 211, 214,
215, 223–225, 331, 335, 336, 342,
344, 348, 351, 353

Geodesic line, 128, 131
Geometrical optics, 128, 217, 219, 220, 222,

226, 227
Geometric constraints, 1
Gliding bead, 22, 87
Gravitational field, 52, 53, 56, 57, 59, 61, 193,

285

H
Hamilton function, 98, 106–111, 114,

116–119, 121, 124, 127, 142,
143, 145–151, 155, 162, 163, 166,
168–173, 175, 176, 180, 185, 187,
190, 191, 193, 199, 201, 202,
208, 211, 212, 214, 222, 225–227,
305–309, 314, 317, 319, 325, 328,
333, 334, 337–339, 342, 344

Hamilton-Jacobi differential (HJD) equation,
177–180, 183–193, 197, 198, 202,
203, 216, 217, 223–226, 341, 342,
344, 347–349

Hamilton mechanics, 101–173
Hamilton operator, 116, 145, 222, 227
Hamilton principle, 62–82, 98, 120–124, 126,

127, 149, 154, 158–160, 172, 173,
179, 290, 328

Hamilton’s action function, 177
Hamilton’s characteristic function, 185–188,

199, 225
Hamilton’s equations, 107, 110, 113, 118, 119,

123, 136, 137, 139, 145, 149, 151,
156, 159, 160, 167, 171, 179, 200,
225, 302, 306, 326

Hamilton’s equations of motion, 107, 110, 113,
118, 119, 123, 136, 137, 139, 145,
149, 151, 156, 159, 160, 167, 171,
179, 200, 225, 302, 306, 326

Harmonic oscillator, 113, 114, 145, 146,
162–164, 172, 175, 180, 183, 184,
202, 224, 225, 308, 333, 339

HJD. See Hamilton-Jacobi differential (HJD)
equation

Holonomic constraints
holonomic-rheonomic constraints, 4
holonomic-scleronomic constraints, 3, 6, 7,

20, 24, 87, 243, 251, 275



Index 357

Homogeneity of space, 88–92, 99
Homogeneity of time, 85–88
Hydrogen atom, 212

I
Identical transformation, 95, 96, 161–162, 173,

191, 203, 210, 335, 341
Initial conditions, 1, 5, 17, 21, 23, 26, 27,

29, 37, 48, 49, 53–55, 57, 61, 82,
83, 102, 109, 110, 134, 153, 164,
175, 176, 178, 179, 182, 188, 193,
194, 223, 224, 229, 231, 232, 237,
248–252, 257, 260, 262, 263, 266,
276, 277, 339, 341, 344, 346, 348,
350

Initial phase, 136, 179
Integral of motion, 50, 57, 59, 60, 84, 96–99,

108, 143, 144, 146, 147, 173, 185,
189, 235, 274, 297, 308, 319, 320,
324–326

Interchange of momenta and coordinates, 152,
161

Isotropy of space, 92–95

J
Jacobi identity, 141, 143, 173, 319, 321
Jacobi’s principle, 129–133, 172

K
Kepler motion, 211
Kepler problem, 30–31, 202–210, 212, 226
Kepler’s law, 209
Kinetic energy, 16, 17, 21, 22, 25, 28, 36, 43,

58, 59, 78, 79, 81, 86, 128, 129, 231,
235, 239, 241, 243, 246, 249, 251,
257, 264, 267, 269, 274, 277, 278,
281, 289, 304, 306, 309, 317

L
Lagrange equations of motion

of the first kind, 40, 42, 77, 98
of the second kind, 17, 76, 118

Lagrange multipliers, 38–40, 42–48, 54, 55,
77, 98, 230, 247, 263

Lagrangian function, 17, 18, 20, 21, 28, 30, 33,
49

Legendre transform/transformation, 102–106,
109, 111, 113, 118, 148, 157–159,
171, 300–301, 303

Libration, 195–199, 209, 225

Linear harmonic oscillator, 134–136, 147, 172,
180, 196, 201, 224–226

Linear operator, 144
Lorentz force, 31–33, 115, 313
Lost force, 14

M
Matrix mechanics, 213
Mechanical gauge transformation, 34, 97, 98,

149, 150, 164, 173, 286
Method of Lagrange multipliers, 40, 42–48
Metric tensor, 129–131, 172
Modified Hamilton’s principle, 120–123, 149,

153, 154, 158–160, 172, 173, 328
Moment of inertia, 45, 47, 236, 240, 258, 269,

272, 276, 277
Momentum conservation law, 90, 91

N
Noether’s theorem, 85, 96, 296, 297
Non-holonomic constraints, 8–10, 38, 40, 76,

77, 98

O
Orbital angular momentum, 61, 191, 193,

282–283

P
Parameter representation, 27–28, 75, 97, 121,

122, 125
Particle in an elevator, 4, 11
Particle-wave dualism, 216, 226
Pearls of an abacus, 8
Pendulum oscillation, 112–113
Periodic systems, 195–198
Phase space, 107, 114, 122, 124, 135, 136,

148, 151, 195, 197, 209
Phase transformation, 151, 152, 154, 156, 158,

160, 165–167, 169–171, 173
Piston machine, 1, 2
Planar double pendulum, 7
Planck’s quantum of action, 212, 221
Plane polar coordinates, 118, 316
Point transformation, 8, 18, 30, 97, 101, 148,

149, 151, 162, 173
Poisson bracket, 133–148, 166, 172, 173, 213,

320, 323, 325, 331, 332, 334, 335
Poisson’s theorem, 143, 144, 173, 319
Potential energy, 21, 25, 28, 30, 36, 50, 58, 61,

81, 82, 111, 112, 117, 118, 182, 232,
234, 236, 239, 241, 243, 246, 249,



358 Index

251, 255, 257, 264, 269, 277, 278,
281, 294, 295, 304, 306, 309

Principal quantum number, 213
Principle of least action, 123–129, 172
Principle of least time, 128, 172
Principle of the shortest path, 128
Principle of virtual work, 12, 14, 23, 42, 97

Q
Quantum hypothesis, 212, 226
Quantum mechanics, 101, 102, 116, 144–146,

173, 213–223, 227

R
Rayleigh’s dissipation function, 35
Reduced mass, 83, 84, 302
Relative coordinate, 83, 302
Residue, 207, 208
Rigid body, 3, 13, 196
Rolling wheel, 9, 10
Rotation, 13, 22, 28, 48, 59, 71–72, 92, 94, 96,

196–199, 209, 225, 229, 231, 236,
240–242, 253, 258, 273, 296, 312

Routh-formalism, 109, 111, 171
Routh function, 109, 110, 118, 171
Rydberg energy, 213

S
Scalar potential, 32
Scalar wave equation of optics, 218, 226, 227
Schrödinger equation, 222, 227
Separation ansatz, 225, 349
Separation approach, 180–181, 185, 344, 347,

351

Separation of the variables, 189–195
Simple-periodic, 197, 209, 210, 226
Spherical coordinates, 30, 117, 131, 172, 202,

205, 264, 319
State, 1, 5, 6, 57, 62, 87, 97, 120, 136, 137,

142, 153, 172, 173, 195, 206, 222
State space, 136–137, 172

T
Thread tension, 2, 13, 21, 22, 44, 53–55, 61,

245–246, 248, 253–255, 257
Total differential, 65, 106, 110, 158, 159, 302
Total energy, 36, 87, 98, 108, 114, 116, 119,

171, 182, 183, 209, 226, 308
Total mass, 61, 83, 270, 281, 302
Two-body problem, 83, 118

V
Variational condition, 120
Variational problem, 66, 67, 120
Vector potential, 32, 170, 337
Virtual displacement, 11–14, 23, 38, 41, 62,

63, 65, 66, 68, 77, 87, 97, 121, 123,
124

Virtual work, 11–14, 23, 24, 42, 78–80, 97

W
Wave equation of classical mechanics,

214–217, 220, 226, 227
Wave function, 222, 227
Wave length of the particle, 221
Wave mechanics, 213, 220–223
Wave of action, 215–216
Wave velocity, 215, 226


	General Preface
	Preface to Volume 2
	Contents
	1 Lagrange Mechanics
	1.1 Constraints, Generalized Coordinates
	1.1.1 Holonomic Constraints
	(1) Holonomic-Scleronomic Constraints
	(2) Holonomic-Rheonomic Constraints

	1.1.2 Non-holonomic Constraints
	(1) Constraints as Inequalities
	(2) Constraints in Differential, but Not Integrable Form


	1.2 The d'Alembert's Principle
	1.2.1 Lagrange Equations
	(1) Holonomic Constraints
	(2) Conservative System
	(3) Conservative System with Holonomic Constraints

	1.2.2 Simple Applications
	(1) Atwood's Free-Fall Machine
	(2) Gliding Bead on a Uniformly Rotating Rod
	(3) Oscillating Dumbbell
	(4) Cycloidal Pendulum
	(5) N-Particle System Without Constraints
	(6) Kepler Problem

	1.2.3 Generalized Potentials
	1.2.4 Friction
	1.2.5 Non-holonomic Systems
	1.2.6 Applications of the Method of Lagrange Multipliers
	(1) Atwood's Free-Fall Machine
	(2) Rolling Barrel on an Inclined Plane
	(3) Rolling of a Wheel on a Rough Undersurface

	1.2.7 Exercises

	1.3 The Hamilton Principle
	1.3.1 Formulation of the Principle
	1.3.2 Elements of the Calculus of Variations
	(1) Shortest Connection Between Two Points in the Plane
	(2) Minimum Area of Rotation
	(3) Brachistochrone Problem

	1.3.3 Lagrange Equations
	1.3.4 Extension of the Hamilton Principle
	1.3.5 Exercises

	1.4 Conservation Laws
	1.4.1 Homogeneity of Time
	1.4.2 Homogeneity of Space
	1.4.3 Isotropy of Space
	(a) Field of an Infinite Homogeneous Plane
	(b) Field of an Infinite Homogeneous Circular Cylinder
	(c) Field of a Homogeneous Circular Ring (Annulus)

	1.4.4 Exercises

	1.5 Self-examination Questions

	2 Hamilton Mechanics 
	2.1 Legendre Transformation
	2.1.1 Exercises

	2.2 Canonical Equations of Motion
	2.2.1 Hamilton Function
	2.2.2 Simple Examples
	(1) Pendulum Oscillation
	(2) Harmonic Oscillator
	(3) Charged Particle in the Electromagnetic Field
	(4) Particle Without Constraint

	2.2.3 Exercises

	2.3 Action Principles
	2.3.1 Modified Hamilton's Principle
	2.3.2 Principle of Least Action
	2.3.3 Fermat's Principle
	2.3.4 Jacobi's Principle
	2.3.4.1 Application Examples


	2.4 Poisson Brackets
	2.4.1 Representation Spaces
	(1) Configuration Space
	(2) Event Space
	(3) Phase Space
	(4) State Space

	2.4.2 Fundamental Poisson Brackets
	2.4.3 Formal Properties
	2.4.4 Integrals of Motion
	2.4.5 Relationship to Quantum Mechanics
	2.4.6 Exercises

	2.5 Canonical Transformations
	2.5.1 Motivation
	(1) Interchange of Coordinates and Momenta
	(2) Cyclic Coordinates

	2.5.2 The Generating Function
	2.5.3 Equivalent Forms of the Generating Function
	2.5.4 Examples of Canonical Transformations
	(1) Interchange of Momenta and Coordinates
	(2) Identity Transformation
	(3) Point Transformation
	(4) Harmonic Oscillator
	(5) Mechanical Gauge Transformation

	2.5.5 Criteria for Canonicity
	2.5.6 Exercises

	2.6 Self-examination Questions

	3 Hamilton-Jacobi Theory 
	3.1 Hamilton-Jacobi Equation
	3.2 The Method of Solution
	3.3 Hamilton's Characteristic Function
	3.4 Separation of the Variables
	3.5 The Action and Angle Variable
	3.5.1 Periodic Systems
	(1) Libration
	(2) Rotation

	3.5.2 The Action and Angle Variable
	3.5.3 The Kepler Problem
	3.5.4 Degeneracy
	3.5.5 Bohr-Sommerfeld Atom Theory

	3.6 The Transition to Wave (Quantum) Mechanics
	3.6.1 The Wave Equation of Classical Mechanics
	3.6.2 Insertion About Light Waves
	3.6.3 The Ansatz of Wave Mechanics

	3.7 Exercises
	3.8 Self-examination Questions

	A Solutions of the Exercises
	Section 1.2.7
	Section 1.3.5
	Section 1.4.4
	Section 2.1.1
	Section 2.2.3
	Section 2.4.6
	Section 2.5.6
	Section 3.7

	Index

